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Preface

This book arises from a symposium ‘Morphology, shape and phylogenetics’ which
formed part of the Second Biennial International Conference of the Systematics
Association held at the University of Glasgow in August 1999. The aim of the Biennial
conferences is to encourage discussion between many systematists who, although
they specialise in specific taxonomic groups, confront common methodological and
theoretical problems. The aim is to encourage younger scientists both to present their
own work but also to become involved in broader systematic issues. As a catalyst these
symposia bring together scientists with contrasting views.
This particular symposium, dedicated to the relationship between morphometrics

and systematics, was stimulated by recent publications which have suggested ways
in which morphometric data may be used in phylogenetic systematics as well as a
synthesis of morphometric methods. The time seemed right for a compilation of ideas.
We would like to thank the Systematics Association, Dr Gordon Curry, University

of Glasgow and his team of organisers who made the symposium possible.

Norman MacLeod and Peter L. Forey

The Natural History Museum, London, 2001



Speakers participating in the symposium ‘Morphology, shape and phylogenetics’ at the Second Biennial
International Conference of the Systematics Association held the University of Glasgow in August
1999.



Chapter 1

Introduction: morphology, shape,
and phylogenetics

Norman MacLeod and Peter L. Forey

This book is about the ways in which the study of morphology can be used in phyloge-
netic analysis and how the results of phylogenetic analysis can provide meaning for the
study of morphological variation. Through the text phylogeny is understood to be the
organizing principle for all biological data. Even though variations in organismal form
can be studied from non-phylogenetic points-of-view, it is generally acknowledged that
such variations are not different in principle, from any other type of biological data
and cannot be fully understood in the absence of the historical perspective provided by
phylogeny. Similarly, phylogenetic analysis is impossible in the absence of some way
of describing the morphological variation between individuals, populations, species,
and higher taxa. Even molecular phylogenetic studies are dependent on morpholog-
ical data in that the molecular samples are typically collected from specimens that
have been identified as belonging to morphologically defined species on the basis of
shared morphological attributes. Additionally, the molecules themselves have form
manifested as secondary and tertiary molecular structure.
Morphological correspondences form the basis of phylogenetic reconstruction.

However, modern methods of phylogenetic analysis treat morphological data in
an inconsistent manner. For example, the coding conventions demanded by most
parsimony-analysis algorithms require thatmorphological data be described as discrete
characters and/or character states (e.g., spine: present, absent). While this descriptive
convention works well for some discrete morphological attributes (e.g., tail red or
tail blue), many of the morphological descriptors used routinely by phylogeneticists
represent variables that, at least in principle, can adopt a range of values (e.g., height
of tooth cusps, location of eyes, see Thiele 1993). Despite the fact that character and
character state descriptions such as ‘spine: short, long’ imply precise metrical def-
initions of ‘short’ and ‘long’, such terms are often used in an ambiguous manner.
Even more subtle are the descriptors of shape such as ‘leaf shape: oval, round’. Just
where in the context of any particular systematic comparison does ‘round’ stop and
‘oval’ begin? Most scientific papers using coding of morphological variation for phy-
logenetic analysis are vague or completely silent on this issue. Additionally, many
meristic observations (e.g., counts of vertebrae or numbers of leaves per whorl) are
variable within taxonomic groups. All of these data raise the question of coding obser-
vations in discrete ways for what are inherently variable observations. Some authors
(e.g., Pimentel and Riggins 1987; Felsenstein 1988) have rejected outright the use of
continuous variation in phylogenetic analysis. Other authors have suggested that state
delimitationmust necessarily be arbitrary and therefore such data are inappropriate for



2 Norman MacLeod and Peter L. Forey

phylogenetic analysis. However, a number of delimitation methods have been devised
(Mickevich and Johnson 1976; Colless 1980; Almedia and Bisby 1984; Thorpe 1984;
Archie 1985; Chappill 1989; Thiele 1993), and although each may have advantages
and disadvantages, a simple rejection of such data, at the very least, deserves more
discussion.
In another direction the techniques of geometric morphometrics are able to describe

shapes accurately by using the language of mathematical geometry and can potentially
have a significant input to the theory, as well as to the practice or morphological
characterization. If we are able to describe shape more accurately there may be more
potential sources of morphological variation available for analysis. However, there is
a general issue of the suitability of using such variables which takes us to the heart of
evolutionary and phylogenetic theories – the concept of homology.
Phylogenetic homology is the most important unifying principle in biology (Bock

1973) and is probably the subject most written about within the biological litera-
ture. In phylogenetic systematics homology is equated with synapomorphy (Patterson
1982). This means that propositions of homology are theories to be tested rather than
self-evident truths to be acknowledged or assumed. In order to propose a theory of
homology an initial postulate of identity is followed by testing (the tests applied are
conjunction – meaning that no two presumed homolgues can occur simultaneously in
the same organism – and congruence with other postulated homologies). The initial
postulate of morphological identity is sometimes called primary homology (de Pinna
1991) and consists of two activities: identifying that structures are similar in composi-
tion and topological relationships and coding the similarity for phylogenetic analysis
(see Hawkins 2000 for discussion). As an example consider the wing of a bird and a
bat. These structures share a similar composition (bone) and topological relationships
with, for instance, the shoulder girdle. The presence of a wing would be congruent
with other characters such as warm-bloodedness and the presence of amniotic mem-
branes. However, the wing of a bird and a wing of a bat would be non-homologous in
a phylogenetic sense because, despite being compositionally and topographically the
same, the wing of a bat is not congruent with the many other character-state distri-
butions (e.g., fur, mammary glands, three-ear ossicles) suggesting that bats are more
closely related to animals without wings (e.g., tree shrews and primates). The impor-
tant aspect of this concept of homology relevant to the subject of this book is that
there is an initial proposition of structural identity.
The concept of homology in geometry (and by extension, inmorphometrics) is some-

what different since, there is no initial estimation of primary homology and no tests
of conjunction and congruence are applied. Standard morphometrics would recognize
potential homology between the dorsal fin of a salmon, an ichthyosaur, and a killer
whale as homology of shape (triangular) and position (centrally located along the dor-
sal surface) while ignoring the fact that these structures had arisen quite independently
in the phylogenetic history of these lineages as evidenced by the state distributions
of other characters. Therefore, the extension of structure-level concept of homol-
ogy in phylogenetic analysis to the geometrical point-to-point correspondences typical
of many morphometric data sets raises several difficult – and therefore interesting –
problems. Inmanymorphometric shape studies it is descriptions of curvature, angular-
ity, ratios, etc. that are being assessed and compared such that it is difficult to see how
a particular angle formed by or ratio of parts (e.g., 1.543) can be regarded as being
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homologous. As pointed out by Zelditch et al. (2000: 80) “morphometric variables
are not, in and of themselves, equivalent to characters”. There would seem to be a
preliminary hypothesis of analysis necessary so that shapes of homologous structures
are being compared. In some morphometric analysis form is described with reference
to landmarks without any justification that the landmarks are homologous in the sense
used above. However, if those landmarks are chosen respecting the concept of homol-
ogy used in phylogenetic systematics there may be much more that we can learn from
the morphometric study of form.
Many of the problems systematists have encountered in the efforts to usemorpholog-

ical data in phylogenetic contexts derive from the nature and descriptive complexity of
those data. Organisms exhibit a bewildering array of structures that are often very dif-
ficult to abstract meaningfully into the scalar values (e.g., lengths, widths, breadths,
and depths) of traditional systematic measurement systems. In addition, geometric
concepts such as size and shape (not to mention shape translations) have proven to
be more complex – and to require more complex descriptive-analysis tools – than
had been widely appreciated. But, recent advances in morphometrics have, at least
partially, addressed this descriptive problem. To some extent these advances have
been possible because of recent dialogues within the morphometrics community (e.g.,
Marcus et al. 1993, 1996).
Geometric morphometrics represents a quantitative synthesis of two themes that

have dominated the study of form for well over a century (Bookstein 1993). The older
of these can be traced from the Renaissance studies of form by Leonardo da Vinci,
Albrecht Dürer, Michelangelo, and others through its introduction into the modern
scientific literature by D’Arcy Thompson (1917). This theme visualizes morpholog-
ical change as a smooth mapping transformation between the starting and ending
forms of implicit form classes. Thompson was intrigued particularly by the manner in
which geometrically simple deformation patterns could combine with existing organic
geometries to produce seemingly complex results. In order to give graphical expres-
sion to the underlying simplicity of the deformation pattern Thompson employed a
Cartesian grid system in which the intersections of the grid lines were taken to repre-
sent corresponding or ‘landmark’ points on both the starting and final forms. Although
Thompson’s ‘transformation-grid’ approach to shape characterization intrigued gen-
erations of morphologists and geometers, his invention proved stubbornly resistant
to precise quantitative formulation. Biological acceptance of such transformation-
ist notions were also not helped by Thompson’s own goal of using transformation
grids to demonstrate that interspecific variation obeyed law-like rules reflecting the
predominance of physical forces in the creation of morphological novelty.
The second theme united by themorphometric synthesis grewout of FrancisGalton’s

biometric ‘regression analysis’ by way of the distinction between the truly linear aspect
of patterning between a pair of morphometric variables (quantified in terms of their
covariance or correlation) and the non-linear aspect of their patterning (quantified in
terms of the residual scatter about a linear regression line). Galton’s original insightwas
expanded into what has now come to be known as the generalized linear model which
includes bivariate/multiple regression analysis, component/factor analysis, discrim-
inant/canonical variates analysis, canonical correlation analysis and path analysis).
From this beginning, attention came to focus on the abstraction of synthetic linear
components from covariance or correlation matrices that can be thought of as vectors
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existing within a multidimensional space defined by the original variables. In the more
extreme forms of this research program these synthetic vectors – and not the origi-
nal variables – came to be regarded by some as being closer to ‘true’ observations.
In terms of morphological analyses though, the problem with this approach was that
these methods in their original formulation failed to preserve the inherently geometric
nature of the data and failed to support techniques, whereby the analytic results could
be expressed in terms of the original geometries.
The geometric morphometric synthesis combines these two established themes in

quantitative morphological analysis by, (1) focusing on the representation of landmark
configurations (= geometries) as variables, (2) registering geometric data collected
from actual specimens to remove size and orientation differences. This operation effec-
tively projects these data onto the surface of a k-3 dimensional hypersphere (where
k = number of landmarks) with the inter-specimen distance representing the great
circle distances between all pairs of taxa, and (3) formalizing Thompson’s transfor-
mationist approach through the use of an algorithmic-graphical device known as the
‘thin-plate spline’. Discussions detailing various methods included within the geo-
metric synthesis and examples of applications can be found in various publications
(e.g., Rohlf and Bookstein 1990; Bookstein 1991; Reyment 1991; Marcus et al. 1993;
Marcus et al. 1996) as well as herein. At present, these methods represent a very large
and somewhat abstract body of largely theoretical work whose practical application to
the understanding of morphological variation, the creation of morphological novelty,
and covariances between form and a variety of non-geometric covariates has yet to
be explored in detail. What is clear, however, is that these tools can detect, represent,
and describe morphologies in ways that are analytically superior to all previous meth-
ods. Their existence, at the very least, provides systematists with an opportunity to
revisit a number of long-standing issues regarding the employment and interpretation
of morphological data in systematic contexts and the relation of these to phylogenetic
studies.
During the past 15 years themorphometrics community has been as slow to embrace,

explore, and exploit the phylogenetic aspects of their data (e.g., through various
‘comparative method’ strategies, see Harvey and Pagel 1991), as mainstream phy-
logeneticists have been slow to embrace, explore, and exploit the new geometric
approaches to morphological analysis. Fortunately, however, there are signs of a rap-
prochement between phylogenetic systematics and morphometrics. Some systematists
have begun to re-evaluate their traditional phylogenetic-systematic taboos regarding
the use of continuously-distributed variables (e.g., Zelditch et al. 1995; Rae 1998)
while others have begun to explore methods whereby phylogenetic information can be
included in morphometric studies (MacLeod 2001). This book represents an attempt
to further this dialogue by undertaking a comprehensive exploration of the relation-
ship between continuously-distributed morphological (morphometric) variables and
phylogenetic. In particular the essays contained herein focus on four fundamental
questions.

1. Can continuously-distributed variables (of any type) be used in phylogenetic
inference?

2. Can morphometric variables be used to constrain and/or test phylogenetic
hypotheses?



Introduction 5

3. What strategies are available for taking advantage of morphometric information
within the context of a phylogenetic analysis?

4. What strategies are available for taking advantage of phylogenetic information
within the context of a morphometric analysis?

The authors represent a cross-section of phylogenetic systematists, morphometri-
cians, and comparative-method specialists with a collective expertise than encompasses
a wide spread of biological subdisciplines. Above all, these are biologists who have
thought deeply and creatively about the relation between morphology and phylogeny.
While they would not be expected to agree entirely with one another’s positions on
a variety of controversial practical and methodological issues, they are united in their
belief that the phylogenetic treatment of morphological data represents a frontier
of systematic research whose time has come and that promises to yield important
new insights into the questions of the origin, patterning, and maintenance of organic
morphological diversity that have always stood at the heart of biological systematics.
Christopher J. Humphries leads off with a re-evaluation of the homology problem

in the context of morphological and especially morphometric characters. The concept
of a character in phylogenetic analysis is intimately tied to a concept of homology,
which in turn is a theory based on constant and repeatable observation. How this
relates to the data used in morphometric analysis is discussed to set the scene for later
essays.
Joseph Felsenstein continues the discussion of quantitative characters and their use in

phylogenetic systematics by considering the question ofwhether it is necessary – or even
desirable – to transform such characters into discrete states. Felsenstein asks difficult
questions about the current state of our knowledge of the genetic, developmental, and
functional aspects of morphology and suggests possible ways for future collaborations
between morphometrics and these disciplines.
Todd Rae points out that complete harmony between morphometric analysis and

phylogenetic analysis may not be possible since the aims are different. However, he
suggests that there may be areas of overlap in measurement data and that metric data
can be used in phylogenetic analysis as characters as long as due caution is exercised.
Karen Sidwell and Geraldine Reid deal specifically with the different ways in which

continuously variable characters have been coded as discrete integers prior to phy-
logenetic analysis. They point out that different ways of coding lead to different
descriptions and different sensitivity to reflecting the variation in the original obser-
vations. But more importantly, they demonstrate that some of the methods used to
assign codes to continuous variables may be forcing us to recognize differences, and
hence different codes for phylogenetic analysis, than are truly there.
Donald Swiderski, Miriam Zelditch, William Fink open the discussion of how mor-

phometric data can be used to recognize phylogenetically meaningful characters by
reviewing a variety of morphometric methods and asking the question of whether the
variables produced by these methods conform to the concepts of correspondence and
homology. In the context of this review these authors offer an alternative strategy for
characterizing inter-landmark boundary curves in a manner consistent with the needs
of phylogenetic systematics.
Norman MacLeod focuses on the use of landmark-based morphometric sum-

maries and their specific relationship to the concepts of spatial localization, biological
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homology, and the character coding problem. In a series of examplesMacLeod demon-
strates a variety of ways landmark-based morphometric strategies can successfully
contribute the analysis of morphology in phylogenetic contexts, culminating in a
reconsideration of Naylor’s (1996) simulated fish morphology dataset.
Fred L. Bookstein closes this subsection with the first presentation of a new method

for the analysis of spatially localized shape deformations that may be of use in dis-
covering and describing new phylogenetic characters and character states. Since the
discovery of new morphological characters has long been recognized as a principle
advantage of the metrical description of morphology, this new class of morphometri-
cally defined features – called creases – holds great potential for helping to fulfil the
potential of morphometrics in systematic and phylogenetic analyses.
F. James Rohlf’s contribution initiates a subsection of essays dealing with the

mechanics of combining phylogenies with morphometric descriptions of shapes to
model the morphological aspects of evolutionary processes (e.g., ancestral character
state estimation). Rohlf’s method employs the squared-change parsimony estimation
criterion and results in a series of deformation-based shape change models that can
be used to illustrate shape change as a continuously variable parameter along any
phylogenetic tree.
David Polly continues this discussion by considering the question of how best to

assess the divergence times among taxa that are crucial to ancestral character state
estimation. Using an example dataset drawn from fossil carnivorans Polly employs
a combination of phylogenetic and stratigraphical data to determine an expected
per generation rate of shape divergence to which actual shape divergence estimates
can be compared. Results of these types of comparisons will allow systematists to
use phylogenetically-referenced morphological data to quantitatively test a variety of
functional and developmental hypotheses.
Andrea Webster and Andrew Purvis continue this theme of using given phylogenies

to estimate ancestral character states for continuous characters and from these deduc-
ing rates of evolution. Their chapter emphasizes that the results of different methods
which have been used to infer ancestral states for continuous characters are inherently
dependent upon the assumptions of the model of evolution and do not always corre-
spond to states observable in fossils. These discussions have implications for the way
in which we infer ancestral states in general.

References

Almeida, M. T. and Bisby, F. A. (1984) ‘A simple method for establishing taxonomic characters
from measurement data’, Taxon, 33, 405–409.

Archie, J. W. (1985) ‘Methods for coding variable morphological features for numeric
taxonomic analysis’, Systematic Zoology, 34, 326–345.

Bock, W. J. (1973) ‘Philosophical foundations of classical evolutionary taxonomy’, Systematic
Zoology, 22, 375–392.

Bookstein, F. L. (1991) Morphometric tools for landmark data: geometry and biology,
Cambridge: Cambridge University Press.

Bookstein, F. L. (1993) ‘A brief history of themorphometric synthesis’, inMarcus, L. F., Bello, E.
and Garcı́a-Valdecasas, A. (eds) Contributions to morphometrics, Madrid: Museo Nacional
de Ciencias Naturales 8, pp. 18–40.

Chapill, J. A. (1989) ‘Quantitative characters in phylogenetic analysis’, Cladistics, 5, 217–234.



Introduction 7

Colless, D. H. (1980) ‘Congruence between morphological and allozyme data for Menidia:
a reappraisal’, Systematic Zoology, 29, 288–299.

Felsenstein, J. (1988) ‘Phylogenies and quantitative characters’, Annual Review of Ecology and
Systematics, 19, 445–471.

Harvey, P. H. and Pagel, M. D. (1991) The comparative method in evolutionary biology,
Oxford: Oxford University Press.

Hawkins, J. A. (2000) ‘A survey of primary homology assessment: different botanists perceive
and define characters in different ways’, in Scotland, R. and Pennigton, R. T. (eds)Homology
and systematics, London: Taylor and Francis, pp. 22–53.

Marcus, L. F., Bello, E. and Garcı́a-Valdecasas, A. (1993) Contributions to morphometrics,
Madrid: Museo Nacional de Ciencias Naturales 8.

MacLeod, N. (2001) ‘The role of phylogeny in quantitative paleobiological analysis’,
Paleobiology, 27, 226–241.

Marcus, L. F., Corti, M., Loy, A., Naylor, G. J. P. and Slice, D. E. (eds) (1996) Advances in
morphometrics, NATO ASI Series, New York: Plenum Press.

Michevich, M. F. and Johnson, M. F. (1976) ‘Congruence between morphological and allozyme
data’, Systematic Zoology, 25, 260–270.

Naylor, G. J. P. (1996) ‘Can partial warps be used as cladistic characters?’, in Marcus, L. F.,
Corti, M., Loy, A., Naylor, G. J. P. and Slice, D. E. (eds) Advances in Morphometrics, New
York: Plenum Press, pp. 519–530.

Patterson, C. (1982) ‘Morphological characters and homology’, in Joysey, K. A. and
Friday, A. E. (eds) Problems of phylogenetic reconstruction, Systematics Association Special
Volume, No. 21, London: Academic Press, pp. 21–74.

Pimentel, R. A. and Riggins, R. (1987) ‘The nature of cladistic data’, Cladistics, 3, 201–209.
de Pinna, M. C. C. (1991) ‘Concepts and tests of homology in the cladistic paradigm’, Cladistics,
7, 367–394.

Rae, T. C. (1998) ‘The logical basis for the use of continuous characters in phylogenetic
systematics’, Cladistics, 14, 221–228.

Reyment, R. A. (1991)Multidimensional paleobiology, Oxford: Pergamon Press.
Rohlf, F. J. and Bookstein, F. L. (1990) Proceedings of theMichiganMorphometricsWorkshop,
Ann Arbor: The University of Michigan Museum of Zoology Special Publication 2.

Swiderski, D. L., Zelditch, M. L. and Fink, W. L. (1998) ‘Why morphometrics is not special:
coding quantitative data for phylogenetic analysis’, Systematic Biology, 47, 508–519.

Thiele, K. (1993) ‘The holy grail of the perfect character: the cladistic treatment ofmorphometric
data’, Cladistics, 9, 275–304.

Thompson, D. W. (1917) On growth and form, Cambridge: Cambridge University Press.
Thorpe, R. S. (1984) ‘Coding morphometric characters for constructing distance Wagner
networks’, Evolution, 38, 244–355.

Zelditch, M. L., Fink, W. L. and Swiderski, D. L. (1995) ‘Morphometrics, homology, and
phylogenetics: quantified characters as synapomorphies’, Systematic Biology, 44, 179–189.

Zelditch, M. L., Swiderski, D. L. and Fink, W. L. (2000) ‘Discovery of phylogenetic characters
in morphometric data’, in Wiens, J. J. (ed.) Phylogenetic analysis of morphological data,
Washington: Smithsonian Institution Press, pp. 37–83.



Chapter 2

Homology, characters and
continuous variables

Christopher John Humphries

ABSTRACT

Owen (1849) coined ‘homology’ to describe relationships between organisms, using
corresponding morphological parts (homologues) of vertebrate skeletons. Since that
time it has been recognised that homology is the central relation in comparative biol-
ogy. Relationships of taxa are recognised through homologues that are discovered
through analysis of characters. Characters have been described for myriad purposes –
operationally as entities diagnostic of taxa, as identifying attributes of organisms,
as transformation series in evolution and as taxic homologues. Characters come
from many sources and the debate on what constitutes a ‘good’ character lies on a
scale of preferences from clear-cut qualitative morphology to continuous variables
(measurements, ratios, counts) that need to be manipulated with a range of special
coding procedures to extract cladistic signal. It will be shown that, for measurement
data, characters are described in terms of positional correspondence of parts between
internal or external points. In evolution and phylogenetic systematics, homologues are
described as transforming relations from unknown common ancestors. In cladistics,
characters are seen as hypotheses of taxic homology subject to the tests of similarity,
conjunction and congruence. It will be proposed that the recognition of primary homo-
logues is possible for discrete variables and operationally defined states derived by
gap-codingmethods applied to continuous or overlapping variables. However, because
continuous or overlapping variables are transformation series equivalent to manipu-
lated range data, the lack of theory for the coding methods and the need for prior
assumptions makes it difficult to find cladistic structure in measurement characters.

Introduction

The term ‘homology’ was first used to describe relationships between organisms, with
particular reference to corresponding morphological parts (homologues) of vertebrate
skeletons (Owen 1843, 1849). After 150 years of debate it is recognised today that
homology is neither an empirical problem, nor a theoretical one, but the central
relation in comparative biology. Acres of print have been written on the subject of
homology. In the last 10 years there has been considerable discussion of how to deal
with characters and particularly how one determines homologies through character
analysis. A recent re-consideration of morphometric data, and the purpose of this
book, explores what characters, character states, continuous variables, transformation
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and homology mean in systematics and morphometrics. On top of all this are the
different points of view as to which phylogenetic and cladistic methods are actually
appropriate in systematics. These distinctions are critical as the debate revolves around
what is meant by character transformation and how this is seen in our understanding
of homology.
The problems of characters and character analysis are not new but stretch back

at least two centuries (Rieppel 1988). However, the use of continuous variables and
morphometrics has its origins amongst the ideal morphologists at the turn of the
twentieth century. Irrespective of this history, the use of morphometrics in systematic
contexts has undergone a clear revival over the last 10 years or so. Indeed, it has
come full circle from being considered of little or no use in cladistics (Pimentel and
Riggins 1987; Cranston and Humphries 1988; Farris 1990), to being apposite for
the discovery of natural groups (e.g., Fink and Zelditch 1995; Zelditch et al. 1995,
2000; Swiderski et al. 1998; MacLeod 1999, 2002, in press). My purpose is to review
these differences of opinions in the light of recent studies from the perspective of an
unreconstructed cladist interested in morphological characters.

Homology

Homology refers to the property of topological relations between different organisms.
Owen (1849) distinguished homology from analogy, the latter interpreted as meaning
something different in terms of relations, comparability of function, for example. As
pointed out by David Williams (person. comm.) it is not only possible for comparable
organs to be homologous and analogous, but also to be homologous and not analo-
gous, or even analogous and not homologous. Wings in birds and forelimbs in hoofed
mammals are clearly homologous in form but not analogous in function. Owen was
quite clear on the subject of this distinction. This impinges on the great 1830 debate
between Cuvier and Geoffroy St. Hilaire, that concluded animals were all based on
the same fundamental ‘ground’ plan. Owen used St. Hilaire’s ‘principle of connec-
tions’ to describe the similarities and subtle differences of form and the ‘principle of
composition’ to describe the topographical relations of organs, the two combining as
the basic properties of homology (Brady 1985; Rieppel 1988; Schuh 2000).
As Brady (1994) pointed out, Geoffroy St. Hilaire had already emphasised the

importance of homology in the mid-nineteenth century when he drew connections
between similar organs of animals; for example, when comparing the paddle of a por-
poise, the hand of man and the foot of a horse. As Brady discusses, Darwin, when
commenting on Geoffroy’s insight, noted it was possible to shift from figurative into
a historical explanation by connecting together those forms more closely related to
each other by comparison to other organisms. Different organs have changed into
many forms of varying shape and size. Yet the main body organs, although showing
some differences, always remained in the same order, such as the relative positions of
forelimbs in tetrapods, whether frogs, birds, bats or shrews. Such was the realisation
of constancy of topological position. The concept of sameness and difference has been
the centrepiece of homology debates ever since (Patterson 1982).
Explanation, according to most accounts, is the real task of science and descrip-

tion is just one procedure to achieve this end. Darwin (1859) gave great emphasis to



10 Christopher J. Humphries

explanation, and argued in the Origin of Species that patterns of morphology and
classification await explanation, implying that both are descriptive activities. Darwin
never gives account of the science that produces these patterns, but his assumption
that taxonomic relations are discovered prior to the inception of explanation remains
an interesting one (Brady 1994). Darwin used natural selection by successive gradual
changes to explain that the different forms changed or transformed from an ancestral
archetype into the visible structures that we see in modern organisms. Consequently,
Darwin changed Geoffroy’s philosophical relations of corresponding parts into his-
torically literal or actual transformations. For example, limbs of crabs turned into
jaws and stamens and pistils were derived from leaves. All transformations were grad-
ual transitions from one form into another. When there were no intermediate forms
between real ones, he imagined them (Brady 1994). From this it follows, as Brower
(2000) points out, that modern concepts of homology are all manifestations of our
conviction that there is a single natural system that explains all of biodiversity. It fol-
lows, too, that homology is considered as similar due to common ancestry because the
natural system can be explained by evolution by common descent.
Consequently, the correspondence of parts between one organism and another is

the establishment of a hypothesis to suggest that particular characters belong to a
phylogenetic transformation series from one taxon to another or between modern
organisms and their common ancestors (Hennig 1966). However, Nelson (1994) has
shown that modern cladists never treat species, Recent or fossil, as ancestors and
descendants of one another, but rather as taxa, characters, or character states at
the terminals of a cladogram. In systematic research one determines correspondences
between organisms through correspondence of their characters. Woodger (in Cain and
Harrison 1958) noted that; ‘[i]n comparing two things we set up a one-to-one relation
or correspondence between the parts of the one and those of the other and proceed
to state how corresponding parts resemble or differ from one another with respect
to certain sets of properties’. Remane (1952) elaborated the procedure and stated
that homology is recognised only through the relative position or organs and tissues,
similarity of special structures and connections by intermediate taxa (see Schuh 2000).
Remane suggested, therefore, that the relationships of taxa are recognised through
homologues that are discovered through analysis of characters.
According to Brady (1985) Remane’s viewpoint was empirical because it distin-

guished between the condition to be explained, similarity of structure, from the
explanation, the theory of evolution. This was a critical observation because it demon-
strated that empirical work on characters and taxa must precede interpretation, and
reference to unknown ancestors is interpretation of that pattern. However, Hennig
(1966) had already criticised Remane’s approach. Hennig (1966: 94) stated of Remane
that ‘the criterion of linkage of intermediate forms’ and the ‘criterion of special qual-
ity of the structures’ are accessory criteria to the ‘criterion of sameness of position in
comparable fabric systems’, an observation that turns out to be more or less identical
to Woodger’s set theory approach.
In developing his principles of phylogenetic systematics, Hennig (1966: 93) noted

that ‘different characters that are regarded as transformation stages of the same original
character are generally called homologous’. He made it clear that that transformation
‘refers to real historical processes of evolution’ and not from deriving one character
from another in the sense of ideal morphology. Rather cladograms were hypothesised
to be artificial constructs, with hypothetical ancestors at the internal nodes, which
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Patterson (1982) likened to archetypes in transformational homology and morpho-
types if viewed taxically (see below). Hennig thus fleshed out the Darwinian notion of
historical transformation, but was absolutely clear that, as one is never in a position
to observe phylogenetic transformation, the question arises as to what criteria could
convince one that transformation series are comprised of homologues. Hennig (1966:
93–94) stated that ‘[a]pparently it is often forgotten that the impossibility of deter-
mining directly the essential criterion of homologous characters – their phylogenetic
derivation from one and the same previous condition – is meaningless for defining the
concept of “homology”’. Thus, he went on to describe a range of auxiliary criteria, of
geological character precedence, chronological progression and ontogenetic character
precedence as independent means to establish potential synapomorphies.
Hennig’s auxiliary criteria have since all been rejected (see Wiley 1981). But crit-

ically, Hennig changed the concept of homology to allow for losses as well as gains
to be used in phylogenetic systematics. He realised that genealogy implied similarity,
but the reciprocal was not necessarily true. Similarity could be misleading owing to
parallel and convergent changes. He thus coupled particular kinds of similarity with
particular kinds of groups.
As any student of systematics will know, Hennig used synapomorphy to diagnose

monophyletic groups, parallel and convergent changes gave rise to polyphyletic groups
and grouping on symplesiomorphies rendered paraphylies. Allowing for losses as well
as originations in characters meant that transformation series could equally be the
reduction of organs as to their gain. The rejection of Hennig’s auxiliary criteria, and
the realisation that theories of characters (synapomorphies) gave theories about groups
(monophyly), Patterson (1982, 1988) equated synapomorphy with homology, a view-
point that has been held by many since (Janvier 1984; Stevens 1984; de Pinna 1991;
Panchen 1994; Nelson 1994; Brower 2000). The implication of such a viewpoint
is that homology is discovered through analysis of characters and does not impinge
a priori. If then, character analysis – the discovery of homologues – is an empirical
procedure discovered by comparing similar organs, but synapomorphies are evidence
of homology as a relation and thus monophyletic groups, it follows that homology is
both part of character analysis and cladistic analysis.
Rieppel (1988) started to resolve the issue of primary homology by suggesting

that one could apply tests of similarity to discover whether homologues could be
erected as hypotheses with similar topological correspondence before cladistic anal-
ysis and a ‘test’ of congruence.1 De Pinna (1991) further resolved Rieppel’s ‘relation
of homologous similarity (synapomorphy)’ by distinguishing between primary and

1 However, it must be borne in mind that it could be possible for a morphological transformation between
two non-homologous characteristics (e.g., character states that were incorrectly ascribed to the same
character [= transformation series]) to be consistentwith a cladogram.We are not so bound by Patterson’s
(1982) logic to consider that any transformation between any set of morphological descriptors must be
accepted as homologous so long as it is congruent with the majority of other characteristics. It is especially
true that Type 1 and Type 2 statistical errors can occur and this is worrying. For example, Zelditch et al.
(1995) consider that partial warps are homologous characters, it seems, based on the proposition that, so
long as partial-warp ordinations are consistent with an established cladogram they must be homologues.
However, independent work since then has shown that, when evaluated on their own, partial warps
do not behave like the morphological characters traditional systematists use. Partial warps are prone to
homoplasy, and different studies have shown that morphometric characters were not able to reconstruct a
credible phylogeny if used in the absence of traditional, qualitative characters (MacLeod person. comm.).
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secondary homology. Primary homology is the discovery of characters and character
formulation, literally the generation of new characters through thorough sampling
of taxa. Secondary homology equates with the discovery of synapomorphy, through
collective cladistic analysis of primary homologues, the so-called legitimation phase of
homologous similarity. Brower and Shawaroch (1996) after comparingmorphological
and molecular data suggested that primary homology assessment in itself is a two-step
process, the determination of topographic identity followed by character state identity.
Operationally, this comprises first the recognition of characters and then scoring of the
characters into a matrix for further analysis (e.g., Hawkins 2000). The final outcome
is that synapomorphies are distinguished from homoplasy and symplesiomorphy as
interpretations on rooted trees after one or more rounds of cladistic analysis (Brower
2000). Cladograms are chosen in terms of best fit through optimisation of characters
and thus the primary homology statements (similarity and topographic alignment) are
‘tested’ by showing the greatest congruence with other characters (Patterson 1982).
Congruent characters are generally considered as homologues associated with mono-
phyletic groups and incongruent characters, or homoplasies, are associated with
paraphyletic and polyphyletic groups.
The shared presence of homologues is the basis for recognising monophyletic groups

(Patterson 1982). Shared presence of a homologue between two or more taxa is thus
the only evidence we have of relationship, that the taxa form a group, taxic homology.
The shared presence of homologues is indicated by a qualifying phrase, such that all
vertebrates share vertebrae as distinct from those organisms that lack vertebrae. For a
character to become an established homology the feature in questionmust also occur in
the same topographical position within the organisms being compared. Rieppel (1988)
states that the relative positions of organs or structures in topographical correspon-
dence are essential conceptually, to initially generate primary homology propositions.
This is true for all organisms it seems. In addition to the tetrapod example given
above, in flowering plants bisexual flowers invariably display the same sequence of
whorls from the outside to the centre of the flower, sepals, petals, stamens and ovules,
whatever myriad modifications might occur amongst them.
Homologising the features of topographical correspondence then becomes the basis

for hypotheses of groups. Patterson (1982) called this taxic homology which he
contrasted sharply from transformational homology. The crucial point about the trans-
formational approach is perhaps indicated using a binary character. Given two states,
0 and 1, only one, but not both, but either at any one time can be a synapomorphy in a
rooted tree (Farris et al. 1970). Brower (2000: 13) summarised succinctly the potency
of such an approach: ‘While evolutionary systematists (and Hennig) had no method
to realise their phylogenetic theories, and pheneticists had no theory to discriminate
among the many possible methods of grouping based on similarity, cladists, partic-
ularly pattern cladists who saw fit to separate and discard the metaphysical husk of
common ancestry, were able to compare the advantages of both, using the method of
grouping by parsimonious patterns of shared character state change.’
As Scotland (2000) noted, in cladistics the taxic approach is concerned with the

monophyly of groups. The transformational approach is concerned with change.
Patterson (1982) first described taxic homology to imply hierarchy of groups, when
he recognised that transformational homology does not necessarily. Using the same
two-state example, 0 means absence and the 1s become the only candidates for
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synapomorphy on a rooted tree. Transformational homology (for example as in an
ordered multistate character) seems to be a complex interplay between topological
correspondence and literal transformation through metamorphosis, a concept that
need not imply hierarchy at all. It is this aspect that raises problems for the use of
continuous variables in systematics. As described by Patterson (1982) in Owen’s con-
ception, general homologies between organisms are the result of transformations from
an archetype. Patterson went on to show that such an interpretation does not lead to
new insights in grouping, but goes more to provide an empty hypothesis of differ-
ence between a modern form and an ancestor. Taxic homologies on the other hand
are considered to be those characters that diagnose groups relative to other organisms.
Transformation from one character to anothermight be implied, but the important dis-
tinction is that the grouping characters form the morphotype or list of homologues of a
group. Morphotypes imply definite hierarchies of relationships and can be interpreted
to equate with the internal nodes of cladograms.

Characters

To be of use in systematics, characters have to be extracted from a mass of observa-
tional data and turned into matrices of consistent scores for further analysis. There
are various procedures for the determination of primary homologues and the range of
methods for coding has many choices (e.g., Forey and Kitching 2000; Wiens 2000).
There is considerable debate about how characters and character states might be
defined. As Brower (2000) noted, the process of sampling organisms for characters is
still largely an intuitive process done in the same way now as hundreds of years ago.
Attempts at quantifying the approach is still fraught with difficulties largely because
two or more systematists rarely look at organisms and score characters in the same
way (Gift and Stevens 1997). Nevertheless, it is generally agreed amongst biologists
that a character is any feature or attribute that is shared among organisms that has
the potential for becoming synapomorphies after cladistic analysis (e.g., Colless 1985;
Fristrup 1992; Scotland and Pennington 2000). For characters or character states to
be cladistic and hence be features of taxa, they ideally would be invariant in some
taxa and completely absent in others. However, this is rarely the case. Characters and
character states must be extracted from observations on the sampled organisms and
summarised into a data matrix that (hopefully) contains some pattern reflecting rela-
tionships among the taxa that can be discovered via appropriate analysis. For most
computerised cladistic analyses characters are arranged into binary and multistate
columns with each integer representing a different state. For multistate characters
each column represents a transformation series of dependent variables that can be
ordered (in the sense of Mickevich 1982) or unordered during cladistic analysis.
There has always been a tension between the notion of defining characters in order

to identify and distinguish organisms and the discovery of homologies in comparative
biology to systematise the relations among organisms. Smith (1994: 37), for example,
stated that ‘[c]haracters are observed variations which provide diagnostic features for
differentiation amongst taxa’. He showed that characters must occur in two or more



14 Christopher J. Humphries

states (one of which may be absence2) and they should be defined as objectively as
possible (see also Mayr et al. 1953; Cain and Harrison 1958; Stuessy 1990). Features
that are relatively indistinguishable from one another are generally coded as the same
character state so as to reflect the underlying notion of primary homology.
Wiley (1981: 116) stated that: ‘A character is a feature of an organism which is the

product of an ontogenetic or cytogenetic sequence of previously existing features, or
a feature of a previously existing parental organism(s). Such features arise in evolu-
tion by the modification of previously existing ontogenetic or cytogenetic or molecular
sequence.’ Such a definition recognised that features of organisms are the products of
evolution and hence have arisen as changes in ontogeny and transformation through
time. Pimentel and Riggins (1987) stated that a character can only be a feature of
an organism when it can be recognised as a distinct variable. For cladistic analysis,
Farris et al. (1970) made it clear that, in order to be able to determine characters
for phylogenetic reconstruction, it was necessary to recognise that they were mutually
exclusive states that could be considered transformations with a fixed order of evolu-
tion. Hennig’s interpretations of characters and transformation series was refined by
Farris et al. (1970) so that characters have a ‘fixed order of evolution’, ‘each state is
derived from another state’ and ‘there is a unique state from which the every other is
ultimately derived’.
Jardine (1969) considered diagnosing taxa and describing individual organisms

using the same character to be a confusing process. He said that the presence of
a backbone is not a property of Vertebrata, but all of the organisms within the
group Vertebrata possess backbones. Jardine made the distinction between taxa and
organisms on the basis of characters and character states. Taxa have characters and
organisms have individual attributes or character states.
For phylogenetic systematists, characters to convey cladistic informationmust trans-

form from one state into another through time. However, this does not mean that a
brown eye changes into a blue eye or that ovate leaves change into obovate leaves.
Similarly, invertebrate animals lacking backbones do not change into those possessing
them. What actually changes is the frequency of a particular character state for a given
character and the frequencies of different character states change through time. Thiele
(1993) stated that cladistic character states are frequency distributions and conversely,
all cladistic character states have particular frequencies of distribution. Thus, desirable
cladistic characters are those with large, clear-cut changes rather than small, gradual
ones and a ‘good cladistic character’ is, in effect, a value judgement on data.
As Stevens (2000: 82) noted: ‘a character is the sum of features showing particular

similarities (e.g., Patterson 1982; Stevens, 1984), topographical homologies (Jardine
1969), topographical identities (Brower and Schawaroch 1996), or relationships of
primary homology (e.g., de Pinna 1991)’. Stevens (2000) elaborated on the scheme
proposed by Brower and Schawaroch (1996) and suggested that the stages between the
beginning of a study on a particular group through to the cladistic analysis comprised a
sequence of at least three operations between choosing characters and delimiting states.

2 The arguments against using absence are compelling (e.g., Nixon and Carpenter 1993). Using absence as
a state confuses the obvious differences between genuinely absent, not yet developed and secondary loss.
Therefore, absence as a state is logically flawed, except in the case of ‘not present’.
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The first stage was the lining up of characters thought to be the same (similarity or
topographic identity). The second stage involved the actualmeasurement of individuals
(which he called data 1) and grouping the measurements in some way for the taxa to
be analysed (data 2). Finally the third stage compared all the measurements between
taxa to create the data matrix (data 3). All three stages offer opportunities for making
errors largely because there are so many different ways of undertaking them. Gift
and Stevens (1997) had noted that even the first stage of delimiting similarities gave as
many different solutions as recorders collecting the data. Patterson and Johnson (1977)
also brought attention to this problem. In a pungent criticism Patterson and Johnson
(1977: 361) noted that ‘the emphasis has shifted from observation, the source of the
matrix, to whatever message can be extracted from the matrix . . . ’. In a reanalysis of
the characters of osmeroid fish an 11 per cent error rate in the original observations and
subsequent coding of the errors had immense consequences for the topologies obtained
by cladistic analysis. The third stage is highly significant. As indicated already the ideal
character states for cladistics are those that have distinct gaps. However, when it comes
to coding measurement data it appears that the methods are frequently operationally
less clear-cut than those for qualitative variables (see Farris 1990 for example).

Continuous variables

Considering that there are a number of ways for determining and coding qualitative
characters the question arises of whether continuous and non-continuous characters
and overlapping and non-overlapping distributions of observations along the variable
axes can actually yield cladistic characters given the requirements of synapomorphy
and secondary homology. Variables are observed variations of some attribute or char-
acteristic feature, ergo characters = variables. The three-step procedure of Stevens
becomes complicated when applied to overlapping distributions on variable axes. The
first stage of determining the similarities or topographical identities involves the fixing
of points for determining geometric locations on the organisms concerned. The second
stage involves the actual collection of observations (=measurements) of the vari-
ables to obtain distributions on which to apply a comparative method. Comparisons
between the organisms use methods for distinguishing geometric transformations.
There are a variety of methods, but they all make a general scheme of size, shape
or meristic values. The third stage is the different morphs (recognised on the basis of
observed discontinuities in the distribution of observations along the variable axis) are
then coded into a taxon× character matrix for cladistic analysis. If reproducible ways
can be found to recognise discontinuities in the distribution of the observations along
the variable/character axes those discontinuities can be used to delimit different states.
Provided discontinuities in the distribution of observations are present, quantitative
character analysis proceeds in a manner identical to qualitative character analysis.
However, if no discontinuities in the distribution of observations along a quantita-
tive variable axis are found, the third stage of this process cannot be completed and
the quantitative variable must be regarded as unsuitable for inclusion in a cladistic
investigation. Under these circumstances the variable/character cannot be used for
diagnosing a group.
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Primary homology and topographical identity

Determination of topographic identity of continuous variables in things such as the
shape of jaws or length/width ratios of leaves is complicated by a number of factors:
complexities of shape, allometric change during ontogeny and sheer variation that
superficially appears to render unique values for every specimen under consideration.
This is not saying that qualitative variables are any less problematic, just that detailed
variation such as measurements become inherently less easy to divide into gaps. The
problem of ontogeny is fundamental to all methods and Hennig (1966) was careful
to point out that because individuals change throughout the life cycle the same stages
or semaphoronts had to be compared. For different stages of an insect’s life cycle
semaphoronts are possibly easily identified but for subtle changes in measurement
data defining semaphoronts becomes a more difficult problem. Løvtrup (1988) was
at pains to point out that allometric trajectories (especially after birth in vertebrates)
differ from one organism to another and show great variation within taxa. Kluge
(1988) even suggested that maybe the whole allometric phase might be the level of
comparison for morphometric data.
For complex shape data, Zelditch et al. (1995) and Swiderski et al. (1998) suggest

two strategies, either examine the shape as a whole or subdivide the shape into individ-
ual dimensions, including aspect ratios and distances between landmarks as a measure.
Both approaches have advantages and disadvantages. Viewing complex morphology
as single items of comparison can lead to problems of coding as sampling increases.
Determining the information content of characters with many different states shuffle in
other problems of direction, order and polarity during cladistic analysis. Although one
is naturally using quantitative analysis to search for discontinuities, there are instances
where artificial gaps are created (Chappill 1989). Thus comparing suites of unique
shapes can lead to creating columns of variables that are effectively autapomorphs in
the final matrix. Atomising the components of any character as a reductionist pur-
suit can lead to separate columns of independent variables that are both logically and
biologically correlated. Stevens (2000) notes that problems also emerge when charac-
ters are wrongly linked biologically and logically. In all characters finding the logical
and biological divisions becomes increasingly difficult when overlap increases. Several
characters might only be one, but theory is lacking on the precise course of action to
follow for coding them (see also Fink and Zelditch 1995; Pleijel 1995; Hawkins et al.
1997; Hawkins 2000).
One of the complicating issues in quantitative andmorphometric literature is the lan-

guage surrounding units of comparison and the use of the term homology. Homology
tends to bridge the formalisms of geometric shape analysis and the evidential use as
character hypotheses supporting monophyletic groups in systematics. Following a tra-
dition set by D’Arcy Wentworth Thompson (1942), shape analysts frequently apply
homology tomean comparisons between discrete geometric structures, such as compa-
rable points or curves, and, by a further extension, to the multivariate descriptors that
arise as part of the subsequent multivariate analyses. Smith (1988: 335) distinguished
this aspect as operational homology: ‘character correspondence, among taxa, based
on the optimal matching of internal and external landmarks on exemplars, samples, or
developmental series of OTUS. It is usually a quantified construct within which land-
marks, variables, and characters are oriented for comparison in systematic biology. In
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this context, morphometrics can provide very precise quantitative values for character
states.’
In Smith’s context, the term ‘homologous’ means something other than the primary

and secondary homology in systematics. Rather, it is used for corresponding parts in
different samples of taxa or developmental stages during life cycles. In morphomet-
rics, then, to declare something ‘homologous’ is an assertion about comparison of
structures in a consistent manner rather than anything to do with historical transfor-
mations gradual or otherwise. However, Zelditch et al. (1995: 180) note that ‘when
systematists choose particular landmarks, the choice is often defended on the grounds
that they sample parts of the organism judged to be homologous at the most inclusive
level being studied’. MacLeod (1999) challenges the Zelditch et al. assertion on this
issue and provides several examples where biologically non-homologous features have
been used as landmarks. Moreover, a homologue is a structure, part of an organism,
not an infinitesimal location point. MacLeod (1999) also challenges the notion that
landmarks can be homologous with one another in the absence of evidence for point-
to-point correspondence. Similarly, to declare an interpolation (such as a thin-plate
spline) a ‘homology map’ means that one intends to refer to its features as if they had
something to do with valid biological explanations pertaining to the regions between
the landmarks, about which there is frequently no data (MacLeod 1999, 2002, in
press). This is an important point as systematists use outlines to make comparisons
between taxa and it is a key source of relevant information that could be used in cladis-
tic analysis. For detailed discussions of the landmark-outline debate see Bookstein
et al. (1982, 1985), Ehrlich et al. (1983), and Bookstein (1990, 1991, 1996a,b,
1997).
Thus, homology in morphometrics is a complicated interplay between precise topo-

logical correspondence and differences amongst taxa as literal transformations through
ontogenetic and phylogenetic metamorphosis. This might explain the sharp criticisms
of Pimentel and Riggins (1987), Cranston and Humphries (1988) and Bookstein
(1994) who felt that it was impossible to apply taxic homology to overlapping vari-
ables, but these are all comments that did not take full cognizance of primary homology
assessment. To put it into the context of this paper however, determining similarity
and topographic identity can easily be undertaken with both measurements and mor-
phometric data as with any other procedure used for determining primary homologies,
and which like any source of data, has potential for cladistic analysis. Stevens (2000)
has already noted that there is so much confusing baggage around the word homology
that the word should be replaced with pertinent and relevant replacements. Bookstein
et al. (1985), and Bookstein (1991), attempt to simplify and marry two concepts of
homology by arguing that the ‘traditional’ concept of homology should be extended
to cover morphometric homology. However, they are quite clear that there is a dis-
tinction. MacLeod (1999) disagrees with the idea of extending the concept because
biological homology refers to structures, not infinitesimal points on structures. Thus,
landmarks simply abstract the spatial position of putatively homologous structures
relative to other such structures. These points are not themselves homologous because
alternative, but nearby, locations can serve equally well for morphometrics. Indeed
outlines and outline segments have a firmer claim on correspondence to the biolog-
ical concept of homology than landmarks (MacLeod, person. comm.). Unsurprising
then that Fink and Zelditch (1995), Zelditch et al. (1995) and Swiderski et al. (1998)
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have suggested that the term ‘homologous’ should be replaced with ‘corresponding’
or ‘comparable’ when dealing with landmarks at the character definition phase in
morphometrics. Various authors are at pains to point out that morphometric and
quantitative data are somehow different from qualitative data. But, all character
sources can be assessed along a scale of good to bad or best to worse in terms of
the chances for yielding cladistic classifications (Chappill 1989; Thiele 1993).

Character state identity

Character coding for both continuous or overlapping variables and qualitative vari-
ables has been the subject of intense scrutiny over the last few years. The question
is simple: how are measurements of raw data coded into the 0s, 1s and 2s of a data
matrix (see Scotland and Pennington 2000; Wiens 2000)? Stevens (2000) comment-
ing on Brower and Schawaroch’s (1996) division for primary homology assessment
noted that topographic identity for morphological characters was somewhat factual
and uncontroversial. The real problems for morphological characters emerge at the
character state identity stage and the problem becomes even more acute for overlap-
ping variables. Here, the problem is what to call a character, or a character state.
A useful rule of thumb is to consider that characters are equivalent to variables, and
discontinuities are equivalent to the character state boundaries. If there are no discon-
tinuities the character is invariant having only one state. Pimental and Riggins (1987)
recognise conventional nominal variable coding for obvious characters and states as
the normal way to proceed, but given the range of character variation from obvious
discontinuities to gaps made by gap-coding methods, suggest that only qualitative
gaps be coded. Hawkins (2000) presents several challenges to conventional coding
variously known as composite coding (Wilkinson 1995), unspecified homologue cod-
ing, ratio coding, logically related coding, unifying coding, inapplicable data coding,
positional coding and mixed coding. In addition to these there are coding schemes for
multistate characters, contingent coding methods and a variety of different ways for
coding presence and absence (Pleijel 1995; Forey and Kitching 2000).
Given all the vagaries associated with relatively clear-cut situations the situation

becomes more complicated with continuous distributions of observations or measure-
ments. Usually opaque to assessment in raw form, one can only begin to discover
grouping homologies through specific methods for converting raw data into discrete
codes for subsequent cladistic analysis. Thus undertaking the second and third stages
of primary homology assessment, delimiting and coding the features of organisms as
characters and character states, is part of the process of recognising their systematic
value. Despite these difficulties, Thiele (1993) believes that continuous variables should
only be excluded if the cladistic analysis cannot handle such data or if it can be shown
empirically that those characters convey no information or phylogenetic signal relative
to other characters in the data matrix. It is also obvious that there are many manipula-
tions to continuous variables that can be undertaken, principally coding features in a
matrix and the question of whether manipulations such as scaling and weighting (e.g.,
Goldman 1988; Thiele and Ladiges 1988) are justifiable with respect to the results
obtained.
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In theory, continuous variables have an infinite number of potential values. However
that does not mean that observations/measurements must be continuously distributed
along such variable axes, and the continuity of the variable scale has nothing neces-
sarily to do with the nature of the distribution of observations that might be made
along that scale. Although there are several methods (e.g., in MacClade) that can be
used to examine continuous variables without recoding and have some limited use for
looking at character evolution over trees (e.g., Swofford and Berlocher 1987; Huey
and Bennett 1987), there are few computer algorithms available for cladistic analysis
of raw data (but see Felsenstein 1988). Most methods manipulate the raw scores. The
values can be bounded within a certain range but the potential list of values can still
be large. Some argue that there are few variables that can actually be considered as
continuous because our ability to measure values to the nth degree are so imprecise
that the potential values are in fact finite. Of the few studies available in order to com-
pare continuous variables with qualitative variables on cladograms, all raw data are
invariably filtered during coding as discrete integers (e.g., Cranston and Humphries
1988; Thiele and Ladiges 1988; Chappill 1989; Thiele 1993).
Methods include simple gap coding (Mickevich and Johnson 1976), segment coding

(Colless 1980), divergence coding (Thorpe 1984; Almeida and Bisby 1984), homoge-
nous subsets coding (Simon 1983), generalized gap coding (Archie 1985; Goldman
1988; see also Thiele and Ladiges 1988), range coding (Baum 1988) and gap weight-
ing (Thiele 1993). Samples of taxa are ranked along a scaled attribute axis, and then
simple rules are applied to create gaps, segments or subsets in an effort to produce
discrete codes for the continuous values. The attribute axis is rescaled into states for
cladistic analysis.
Simple gap coding divides the axis at those points where no values occur or between

the means of the frequency distributions at the point where the ‘gap’ exceeds a partic-
ular preconceived value, such as one standard deviation about the mean. Usually, the
attribute axis will be divided into fewer states than there are taxa and for most com-
puter programs there is an upper bound to the number of states per character that can
be analysed. Chappill (1989: 220) indicated that desirable attributes for any method
should be that it should ‘reflect the proportional differences between taxa’, . . .have
‘[T]he ability to discriminate between divergent taxa’, . . . ‘using a particular charac-
ter should be equal for all comparisons between pairs of such taxa’, . . . ‘the number
of states produced should be proportional to the variability of the character’, . . . ‘it
should not recognize insignificantly small differences between taxa’, . . . ‘and the addi-
tion of new taxa, or improved sampling, should not reduce the discrimination possible
between the original taxa.’
It turns out there are problems with all of the methods. Farris (1990) provided a

characteristically robust critique indicating that each method had its drawbacks and
most damning of which that these were techniques more commonly used by phe-
neticists (e.g., Sneath and Sokal 1973), as incorporated into the studies of Cranston
and Humphries (1988), Goldman (1988), Thiele and Ladiges (1988), and Chappill
(1989). More specifically, it is the assumptions for scaling multistate characters to unit
range (so as to reduce their effect in comparison to binary characters and confounding
weightingwith scaling) that causesmost problems. That there is no real justification for
scaling or weighting multistate characters a priori confounds the outcomes in cladistic
analysis.
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Coding methods invariably consist of four stages: the terminal taxa are identified,
a sample of each is measured and scored with sample means and variance, and then
the means and ranges are converted to integers using a gap, segment or range-coding
method. It seems that the problem with all coding methods (quantitative and qualita-
tive) is that the rules for converting themeasurement data into codes lack any justifiable
theory. What is needed in a systematic morphometric analysis is agreement about the
discontinuities in the distribution of observations (MacLeod, person. comm.; Zelditch
et al. 1995). The existence of discontinuities represents the practical justification, con-
gruence provides the operational test and an agreed definition of discontinuity. Farris
(1990) showed explicitly that for generalised gap coding (Archie 1985) as used by
Thiele and Ladiges (1988), for example, varying the sample size, using different stan-
dard deviations between the means, and thus varying the critical gap size had profound
effects on the outcomes. This method like all others attempts to formulate ‘ad hoc’
rules for subdividing a continuum. Gradual continua simply cannot be used as a basis
for unambiguous grouping. Farris (1990) further demonstrated that homogenous sub-
set coding and gap coding gave very different results on the same data set and that
generalised gap coding could yield nonsensical codes. He elaborated further saying
that it was of no use to rescale codes as these invariably produced meaningless charac-
ter states. Farris concluded by saying that if a character can be broken up into several
meaningful distinct conditions there are no rational grounds for reducing weights of
the distinctions but to code the states in an appropriate manner. This would surely
justify morphometric methods at least in some cases. On the other hand, if the coded
states obtained by one of continuous variable techniques reflect no meaningful distinc-
tion, the remedy is to eliminate the arbitrary differences. Of the many examples I have
examined I would say that many of the states are meaningless except by justification
on statistical differences.
Furthermore there are those who have used morphometrics to justify using their col-

lected data (e.g., Chappill 1989) regardless of whether those data uniquely characterise
taxonomic groups or not. The problem is that those who have used morphometrics
have wanted to find ways of using the data they collected, regardless of whether those
data characterised groups of taxa or not. That was wrong, but some cladists have over-
reacted in regarding all morphometric data as being unacceptable (e.g., Pimentel and
Riggins 1987). They considered (1) continuous variables imply possibility of a con-
tinuous distribution of observations (irrespective of whether this possibility is realised
in nature), and (2) no theoretical justification for ad hoc methods of subdividing a
continuum could be found. On the contrary, morphometrics is important for system-
atics because it (1) can yield additional variables that can be used to define groups
(provided it is realised that the subject of morphometric analysis is to uncover the
discontinuities that separate taxa from one another), (2) can test hypotheses of the
correctness/objectivity of state definition for qualitative characters, and (3) can render
the assignment of states to taxa/individuals more precisely. Sadly it seems that some
cladists and traditional systematists avoid morphometrics because they are innumerate
and apprehensive at the idea of having to learn new skills, (2) they question the cost-
benefit of morphometric analyses, and (3) they understand that if they subject many of
their personal/traditional character state definitions (which are rarely defined in pre-
cise terms) to the rigour of morphometric analysis, those definitions might be found
wanting. All of those reasons are understandable at some level, but none of them have
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anything to do with the theory or logic of cladistic analysis. The mistakes of the past
will need to be explained and acknowledged by systematists and morphometricians
before progress in this area will be able to be made.

Cladistic analysis

Given the difficulties encountered by coding methods it might be considered perverse
to enquire whether the performance of such characters can be applied. Nevertheless,
Thiele (1993) asked the question whether morphometric data were of any use for infer-
ring phylogenies. Of the few studies available, he noted that Cranston and Humphries
(1988), Thiele and Ladiges (1988) and Chappill (1989) all used consistency indices
as performance indicators to determine the differences between explicit quantitative
and qualitative characters. Thiele (1993) tested the efficacy of continuous variables by
suggesting that if a set of morphometric characters induces one phylogeny, the matrix
should contain cladistic co-variation. Also cladograms derived from quantitative char-
acters should be similar to those derived from other data sets. In all three analyses,
morphometric data gave lower consistency indices on the cladograms in comparison
to the qualitative data. He noted, however, that in his own study of Angophora, the
morphometric variables performed well and mapped well onto cladograms produced
from the qualitative data. Later Thiele (1993) applied a more elaborate test on mor-
phometric data in studies of Banksia. Again, he found that morphometric characters
produced lower consistency indices than qualitative data, but did perform better than
results obtained from random data. In studies of partitioned data sets, representing
difference sections of Banksia, in all but one out of four studies, the morphometric
and qualitative characters were significantly similar, and both produced similar clado-
grams. It was significant to notice that both qualitative and quantitative data sets
produced similar trees.

Conclusions

It would seem that any source of data is suitable for cladistic analysis. It is obvious
that the more clear-cut observations can be, the more obvious divisions can be made in
coding characters. However, unlike Pimentel and Riggins (1987) and Chappill (1989)
I agree with Thiele (1993) and Stevens (2000) that all data should be scrutinised for
potential analysis. It is obvious that the more quantitative observations become, the
more difficult it becomes to partition that information into characters and character
states. The methods for doing so become elaborate and lack obvious underlying theory
to justify the methods. In at least some cases (e.g., Thiele 1993, Fink and Zelditch
1995 and subsequent papers) cladistic analysis appears to have succeeded in inferring
hypotheses of relationship. Rather than considering that some data are better than
others, not all data sets can be considered as one homogenous class. What might be
true for one class of characters might not be true for others. As Thiele noted the best
data are not necessarily different in kind from the worst.
Nevertheless, at the end of the day the most robust classifications are those with

the highest information content. There is no doubt that manipulating measurement
data into long transformation series reduces the information content and creates gaps
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where none can actually be agreed upon except by convention. For measurement data,
of the kinds that compare different leaf lengths or widths, for example, transcribing
the results into clear-cut integers becomes vacuous, especially when individual scores
or codes are given for each taxon in the analysis. There is little doubt too that recom-
mendations for analysing continuous variables to include such things as aligning the
variation into series from the smallest to largest or vice versa, and insisting on ordered
transformation series is a perverse use of transformation series analysis in the sense
of Mickevich (1982). Homology is about relations and at the minimum refers to the
fact that at least one homologue must be present in two taxa and absent from a third
to be useful. In this context it appears that overlapping variables have less in the way
of relational information. The use of gap-coding methods to determine discrete states
appears not to have any particular theory, and like many phenetic studies, are methods
devised on statistical or algorithmic ground without clear reasons for doing so (Farris
1990). In this context the gap-coding procedures have little in the way of theory as
compared with some morphometric methods (see MacLeod, this volume) and it is
clear that the different procedures have their drawbacks, but especially in attempting
to create gaps when none are really present. Stevens (2000) noted that there are two
kinds of data: ‘one in which the states are taken from visual inspection of overlapping
variation and one in which states are taken from largely non-overlapping variation’.
The latter invariably contained stronger cladistic signal.
I believe that Patterson (1982) was right to draw attention to the distinction between

transformational and taxic homology. It seems to me that much of the ambiguity that
exists in cladistics today is a direct result of worrying about transformation. Taxa and
characters are really the same thing. Characters are variables and thus portions or
fragments of organisms. To overcome the ambiguities what is needed is to bring the
activities of morphometrics and cladistics closer together to find nested hierarchies of
characters and taxa. It still worries me that the arguments about transformation and
character evolution have got muddled up with the business of sorting out homology
and classification, and if these were teased fully apart I am sure the activities of both
groups could come closer together.
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Chapter 3

Quantitative characters, phylogenies,
and morphometrics

Joseph Felsenstein

ABSTRACT

Morphometrics gives us a source of quantitative characters, and thus raises the ques-
tion of how to use them in inferring phylogenies. I argue here that we can use statistical
models for quantitative characters evolving along phylogenies, but that these require
knowledge of the covariance of evolutionary change along lineages of characters. These
reflect not merely genetic covariances, but selective covariances as well. In the absence
of good estimates of these covariances, molecular data may bear much of the brunt of
inferring phylogenies, leaving the quantitative character models to be used when the
quantitative characters are themselves of interest. Models involving characters chas-
ing selective peaks, and punctuated equilibrium models are discussed. For discrete
characters, threshold models involving underlying quantitative characters are of great
interest. For this ‘character uncoding problem’ it may be necessary to use Markov
Chain Monte Carlo methods.

Introduction

In spite of its title, the main subject of this paper will be to consider the use of quan-
titative characters in inference of phylogenies. Morphometrics can be viewed as a set
of methods for extracting measurable traits from shapes. We come to morphometrics
at the end, after first reviewing the way in which the resulting traits might be used.
The great merit of morphometrics is that it automates the extraction of numerical
measures from shapes, and thus presents evolutionary biologists with a torrent of
quantitative characters, bringing the issues of how to treat them to the fore. In this
chapter, I will use the term ‘character’ to refer to a feature of an organism, one that
may assume a variety of ‘states’ or numerical values. In effect, a character is a column
of the species × characters data matrix. Phylogenetic systematists often use the term
‘character’ differently: to refer only to the derived (apomorphic) states.
There have been represented at this symposium three main positions for how, and

whether, quantitative characters may be used in inferring phylogenies:

Position 1 That they cannot be used. This view was represented in this sympo-
sium, though not in this volume. It holds that if the states of the character are not
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inherently discrete, they are too problematic to use to infer phylogenies. Refer-
ences to papers taking this position will be found in the paper in this volume by
Humphries (2002).

Position 2 That they can be used, but only after being coded into discrete states
by an appropriate method. Swiderski et al. (2002) exemplifies this view. Given
this position, the solution to the ‘character coding problem’ becomes central to
any use of quantitative characters.

Position 3 That they can used, without necessarily being transformed into dis-
crete characters first. Quantitative statistical methods should be employed. This
review will take this view, with some important exceptions. As we will see, this
view is not without its difficulties.

Before phylogenetic systematics became widespread, quantitative characters were
often used by systematists. Frequently such characters were first reduced to discrete
states such as ‘long’ and ‘short’. Their use was not placed in any statistical con-
text. It should be self-evident that valid information was extracted in this way, as
the phylogenies of the last 100 years have held up remarkably well. What could not
be done when quantitative characters were used in this way was to place any statisti-
cal interpretation on the results. One could infer that one phylogeny was better than
another, but better by how much was not obvious. Twelve years ago I reviewed many
of these same issues (Felsenstein 1988). My conclusions have not changed substan-
tially since, but, as they have not been accepted by most morphological systematists,
insistent and peevish repetition is in order. I ended that review doubting whether sys-
tematists will typically have the information necessary to use quantitative characters
in a statistical treatment of phylogenetic inference. It thus seemed likely that molecular
sequences would bear the brunt of such inference. But given an inferred phylogeny, we
could then make statistical inferences about the evolution of quantitative characters.
In the years since that review, the use of quantitative comparative methods has

become widespread. Statistical treatment of quantitative characters has made few
inroads in the inference of phylogenies, but phylogenies have popularized statistical
inferences about the evolution of the characters. Phylogenies and quantitative charac-
ters are getting together, though with the conversation going more one way than the
other.

Brownian motion and character correlation

Attempts to model statistically the inference of phylogenies from quantitative char-
acters have taken the Brownian motion model as their base. This was introduced
as a model of gene frequency change by Edwards and Cavalli-Sforza (1964) in their
pathbreaking paper on statistical inference of phylogenies. I applied it to quantitative
characters (Felsenstein 1973). Lande (1976) also used a Brownian motion model for
character change in his work on long-term evolution.
Brownian motion has an expected mean change of zero, and a variance of change

that increases linearly with time. At the level of population genetics, the variability
may arise from two sources: genetic drift or variable natural selection.
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Brownian motion, drift, and selection

A quantitative trait that has genetic variation controlled by a single locus will change
as the gene frequencies at the locus undergo genetic drift. This process may be approx-
imated by Brownian motion model. The approximation is imperfect, as the amount
of change generated by Brownian motion is constant everywhere on the scale, while
the amount generated by genetic drift becomes smaller as alleles near fixation. If the
trait has additive genetic variance VA, the variance of change due to genetic drift is
VA/Ne per generation. Interestingly, this relationship for one locus can be extended
to a trait that is the sum of effects from n loci with the same result. Thus Brown-
ian motion is a reasonable approximation to change of a quantitative character by
genetic drift, provided that VA remains approximately constant. Quantitative genetic
models of change in selectively neutral alleles by genetic drift have been introduced by
Chakraborty and Nei (1982) and Lynch and Hill (1986). In these models the additive
genetic variance is depleted by fixation, but continually replenished by new neutral
mutations.
A second source of change of varying direction is natural selection. In a simple model

of natural selection the change of gene frequency is

�p ∼= sp(1− p) (3.1)

If in different generations the selection coefficient s varies, including variation in its
sign, the result can be a random walk that is difficult to distinguish from genetic
drift. Cavalli-Sforza and Edwards (1967) suggested that varying selection at a single
locus could be approximated by Brownian motion. I have (Felsenstein 1973, 1981)
extended this to quantitative characters controlled by multiple loci, and argued that
varying selection might be an important source of stochastic change in quantitative
characters, particularly when neutrality is unlikely.

Response to selection

One of the central formulas of quantitative genetics gives the expected selection
response as the product of the heritability (h2) and the selection differential:

R = h2S (3.2)

The selection differential is the difference in mean phenotype between the selected
parents and the population from which they were drawn. For natural selection, Lande
(1981) has given a version of this formula in which the expected response is the product
of the additive genetic variance and the slope of the gradient of log fitness:

R = VA ∂ log w̄
∂x̄

(3.3)

The gradient term is simply the derivative of the logarithm of mean fitness, the deriva-
tive being taken with respect to the mean phenotype. The expressions above give the
expected selection response. The actual selection response will also have a term from
genetic drift added to this, a term whose expectation is zero.
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Character correlation

These formulas are for the case of a single character. In morphological analysis we
will be much concerned with character correlation, and want to know how to treat
multiple characters. There are versions of these formulas for multiple characters, with
matrices replacing these scalar quantities. For example, in the analogue to Lande’s
formulation, the vector of change in p characters �z is the product of a p× p matrix
of genetic covariances (A) and a p-dimensional vector b of the gradient of log fitness
with respect to the means of all p characters (Lande 1981), plus a vector of terms for
genetic drift (e):

�z = A(b+ e) (3.4)

Taking expectations over generations in a lineage we can compute the covariance of
changes in the different characters through time. We will assume for simplicity that the
expectation of b is zero, and we can make use of the fact that the genetic drift changes
e have expectation zero and are uncorrelated with each other and with the changes in
selection gradient. The expectation of the covariances of changes of characters over
time is

E[�z(�z)T] = A(E[bbT]+ βI)AT (3.5)

The constant can easily be shown to be the inverse of the effective population size

β = 1
Ne

(3.6)

The term E[bbT] is the covariance, across time, of the gradient of log fitness. We will
call it B. Then

E[�z(�z)T] = A(B+ βI)AT (3.7)

The covariances between characters thus come from three sources: genetic drift (β),
additive genetic covariances (A), and the covariances of the selective pressures (B). This
last source of covariation will be the least familiar. Nevertheless, it is not new. Stebbins
(1950) discussed selective correlation, a term that came from Tedin (1925). Even
if characters have no genetic covariance, their change along a phylogenetic lineage
can covary owing to the covariance of the selection pressures on them. Imagine a
set of species, some of which enter arctic habitats. Suppose that there is no genetic
covariance among body size, relative limb length, and darkness of coloration in a
mammal. In accordance with Bergman’s, Allen’s, and Glogler’s rules, natural selection
may favor larger body size, smaller relative limb length, and darker coloration in arctic
environments (as in Figure 3.1). Thus these characters will be expected to change in
a correlated manner: in the absence of genetic covariance, there would be a selective
covariance in their changes. In the above equations, this is given by the covariance
matrix B, which can create covariances even when the genetic covariance matrix A is
a diagonal matrix.
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Figure 3.1 An example of selective correlation. Mammalian lineages enter arctic environments, leading
to correlated changes in body size, relative limb length, and coloration.

The problem of estimation

Note that if we were to find a transformation that removed all additive genetic covari-
ances, we would not remove all covariances between characters as long as there were
also selective covariances. In order to make a statistical estimate of the phylogeny, we
need to find a transformation that will remove the covariances of evolutionary change.
We could then use the Brownian motion model to infer phylogenies. The difficulty lies
in inferring the selective covariances. We can imagine doing, though perhapswith great
effort, a quantitative genetic experiment to infer the additive genetic covariances in
one or more species. We can hope that these additive genetic covariances stay roughly
constant over a large enough span of time that we can use the results. But where are
we to get an estimate of the selective covariances?
There are two possible sources:

• We may have paleontological data that follow a lineage through time, and enable
us to infer the covariances of a set of characters through time. This does not
give us a direct estimate of the selective covariances, but it does estimate the
covariances of evolutionary change. If we also have an estimate of the additive
genetic covariances, we can use Equation 3.7 to infer the selective covariances.
Even if we do not have an estimate of the additive genetic covariances available,
we at least then have an estimate of the covariances of evolutionary change, which
is what we need to transform the characters to independence so that we can use
the Brownian motion model.

• Wecan usemolecular data to infer the phylogeny, and then observe the covariances
of evolutionary change along that phylogeny. This is not done directly, as we can-
not see the phenotypes of hypothetical ancestors. Instead we can use phylogenetic
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comparative methods, which use the distribution of multiple characters on the tips
of a known phylogeny to infer the covariances of evolutionary change (Felsen-
stein 1985; Harvey and Pagel 1991). Again, this does not give us the selective
covariances directly.

Dilemmas and opportunities

Fossil and neontological data

The use of the comparativemethod (item2 above)may seembeside the point: the objec-
tive is to infer the phylogeny, and we are assuming that we already have the phylogeny!
But there are cases where we can make useful inferences. In particular, suppose that
we have a group with both paleontological and neontological data. From the present-
day species we infer a molecular phylogeny, and then use phylogenetic comparative
methods to infer the covariances of evolutionary change of the quantitative characters.
We then transform the characters to independence using those covariances. These new
characters can be computed in both the living species and the fossils in the phylogeny.
For each possible placement of the fossil species, the likelihood of the tree for the
quantitative character data can be computed. The placement which maximizes this
likelihood is to be preferred. This is in effect a Total Evidence approach (likelihood
version), because the placement of the fossil species does not affect the likelihood of
the tree on the molecular data. Taken together, the placement of all species by this
method would maximize the overall likelihood, if we compute the overall likelihood
as the product of the likelihoods of the molecular tree and the morphological tree.
This process is illustrated in Figure 3.2. In fact, only the part of the figure shown in

bold lines is necessary, as hinted at by the double-headed arrow between the overall

Figure 3.2 Flow chart showing the use of molecular phylogenies of present-day species to infer
covariances of morphological characters, thereby allowing fossil data to be included.
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phylogeny and the covariances. The two adjust to each other in light of all data.
The lighter lines in the diagram show steps that may be useful to make preliminary
estimates.
This approach can also be useful when we have two groups of present-day organ-

isms, and have a molecular data set for one of them. If we are willing to assume
that the morphological characters had the same covariances of evolutionary change
in both groups, we could infer the phylogeny from the molecular data in one group,
infer the character covariances in that group, and then use those covariances to infer
the phylogeny in the other group. This too can be seen as a Total Evidence approach
(likelihood version). Sometimes we may want to apply this method when there are
not two distinct groups, but instead where there is only a phylogeny for some of the
species in the group. If we had a phylogeny from which some species were omitted, it
could be used to infer character covariances. Then the missing species could be placed
from their morphological characters.

Do we need molecules?

In the preceding argument, molecular inferences provided information about part or
all of the phylogeny. That information was needed to obtain the covariances needed
to make use of the quantitative characters. One can have serious doubts as to whether
quantitative characters could be used in the absence of molecular data. This would
at first sight seem to back Position I – that quantitative characters cannot be used in
the inference of phylogenies. But it does differ from that position in one important
respect. Adherents of Position I typically deny that statistical inference approaches
using quantitative character data are possible. I am concerned about circularity in
the inference – it may not be possible to infer both the phylogeny and the character
covariances. But given that independent information is available about the phylogeny,
one can use comparative methods to infer the covariances. If we have both we can use
them, together with the morphological characters, to infer both the phylogenies and
the covariances. The morphological characters together with their statistical model
will have an effect, however small, on the phylogeny.
This is a statistical analysis. As always, it is subject to worries about the correctness

of the model. But if our interest is in the evolution of these particular characters (rather
than in the phylogeny itself), this position is closer to Position III than to Position I.
In many cases the quantitative characters are collected because they are of intrinsic
interest to the biologist, rather than simply as markers for inferring the phylogeny.
As molecular data become easier to obtain, they tend to displace quantitative charac-
ter data from the job of inferring phylogenies, so that more and more of the use of
quantitative characters will be motivated by interest in the evolution of those charac-
ters. There will be less and less use of quantitative characters as arbitrary markers for
inferring phylogeny.

Allowing for uncertainty

Of course, molecular data do not provide us with a precise picture of the phylogeny.
The issue arises as to how to incorporate into the analysis the uncertainty about the
phylogeny. There seem to be two ways of doing this. The harder (but slightly superior)
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way (Felsenstein 1985) would be to combine the probabilistic model of change of the
molecules with the Brownian motion model of the quantitative characters, allowing
for the covariances of the latter. One could then compute a likelihood for all of the
data, given both a tree and the covariances of evolutionary change of the quantitative
characters. The collection of trees and covariances that were supported by the data
would be those that had the highest likelihoods. If these did not have trees of different
topologies, we could use asymptotic theory to choose the contour of the log-likelihood
surface that defined the confidence interval – if there were n species and p characters it
would be the 95 per cent value of a χ2 distribution with 2n−3+p(p+1)/2−1 degrees
of freedom. This is the number of quantities (branch lengths and covariances less one
for a scaling between them that is confounded) being estimated. The combination of
tree and covariances that are acceptable can be based on the contours of the joint-
likelihood curve for the covariances and the tree. For an oversimplified picture see
Figure 3.3. The actual tree is not a single variable, and the character covariances are
also multidimensional. This approach would seem to resolve the question of whether
there is some circularity involved in using the same characters to determine the tree as
are used in inferring covariances in character evolution.
We could imagine using the method to infer just the character covariances. In that

case the confidence interval on the covariances would be defined by the degrees of
freedom restricted by defining the covariances (in this case, p(p + 1)/2). The set of
trees and covariances that lies within the likelihood contour for one-half the significant
value of a χ2 variate with that number of degrees of freedom would be found, and
then the trees ignored, leaving the set of covariances. Similarly a confidence interval
on the tree could be inferred by doing this and ignoring the resulting covariances,
using 2n− 3 as the degrees of freedom. More specific hypotheses about the character

Figure 3.3 Simultaneous inference of the tree and the character correlations when probabilistic models
for both molecular and morphological characters are available. Point estimates of the tree
and a correlation are shown, and approximate likelihood-based confidence intervals for the
individual parameters can be based on the profile likelihoods (contours with dark shading
and two-headed arrows) and joint confidence intervals based on the contours of the full
likelihood curve (lighter shading).
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covariances (such as that a covariance between two particular characters is zero) could
be tested with even fewer degrees of freedom and consequently a tighter confidence
interval. However at the moment none of this can be done, simply because present-day
software is not designed for this task.
The other and simpler method is to estimate the tree solely from the molecular

data. This gives us a slightly less precise estimate of the tree. However it is quite easy
to allow for the uncertainty of the tree in inferring the covariances. I have pointed
out (Felsenstein 1988) that for this one can use bootstrap sampling of the molecular
sequences. For each bootstrap sample, one would infer the tree, and then use that
tree to estimate the covariances of the quantitative characters. The resulting collection
of estimates of the covariances would properly reflect the uncertainty about the tree.
As the quantitative character data are derived from samples of individuals in each
species, one could add another level of bootstrapping, resampling individuals within
species each time. This would be unnecessary if the within-species covariances were
allowed for inferring the phylogenetic covariances (Lynch 1991). Current versions
of PHYLIP allow the bootstrapping of the molecular data to be carried out and the
bootstrap sample estimates of the trees to be used to make multiple estimates of the
covariances. Version 3.6 of PHYLIP will also allow for within-species components of
variance (Lynch 1991) in inferring the covariances.

A way out?

One might wonder why we need to bother with the molecular data at all. Why not
infer both the tree and the covariances from the same data set? One immediately
wonders whether any such effort is totally circular. Interestingly, there is only a partial
circularity, though it may be circular enough to make the whole effort mostly an
academic exercise. We can get a good picture of this problem simply by counting
degrees of freedom.
If there are n species and p characters, the data set has a total of np degrees of

freedom. Of these, p are lost when we discard the means of the characters, leaving us
with p(n − 1). There are p(p + 1)/2 quantities to infer in the covariance matrix (the
variances and the covariances). In the tree there are 2n− 3 branch lengths. However,
we cannot use these quantities without taking into account that two of them are
redundant. In particular, the total length of the tree is confounded with one of the
parameters of the covariance matrix. If we double the length of the tree and halve all
of the covariances, we leave the likelihood unchanged, since this leaves the covariances
of the data unchanged. So we must remove one of the degrees of freedom.
This leaves us with a total of

p(n− 1)− p(p+ 1)/2− (2n− 3)+ 1 = np− 2n− 1
2p

2 − 3
2p+ 4 (3.8)

degrees of freedom. Simultaneous inference of the tree and the covariance matrix will
be possible when this number is positive. We can separate the terms in n and p to get
a condition for simultaneous inference (assuming p > 2):

n >

1
2p

2 + 3
2p− 4

p− 2
(3.9)
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Table 3.1 shows the upper limit of the number of characters that satisfies this condition,
for some values of n: Below 6 species, there is no whole number of characters that
satisfies the conditions. As the number of species rises, the lower limit on characters
is just above 2, and the upper limit can be shown to remain just below 2n − 5. One
might wonder whether this is worth the effort. Given this upper limit on the number of
characters, the inference of the tree cannot bemade precise by increasing the number of
characters without limit (I am indebted to Andrew Rambaut and Michael Charleston
for pointing this out to me). On the other hand, one can make the inference of the
covariances more and more precise by increasing the number of species sampled. This
holds out some hope for the analysis of characters, but not much for the inference of
the phylogeny. Even if we are willing to concentrate on the characters instead of the
phylogeny, there is a limit to how many species we can find in the relevant group – it
may be far easier to find new characters than new species.
With three species, there is no possibility of inferring both the phylogeny and the

character covariances. It was this case that persuaded me (Felsenstein 1988) that the
two were inextricably confounded and that any attempt to infer them separately was
hopeless. As we can see, this was not entirely true. They can be separated in principle,
but the prospects for making practical use of this are not very encouraging.

Table 3.1 For different numbers of species, the small-
est and the largest number of characters
for which there are enough degrees of free-
dom to simultaneously infer the tree and
the covariances. Values obtained by solving
the quadratic condition in p in Equation 3.9
are shown

Species Characters Characters
greater than less than

6 2.43 6.56
7 2.30 8.70
8 2.23 10.77
9 2.18 12.82

10 2.16 14.84
11 2.13 16.87
12 2.12 18.88
13 2.11 20.89
14 2.10 22.90
15 2.09 24.91
16 2.08 26.92
17 2.07 28.93
18 2.07 30.93
19 2.06 32.94
20 2.06 34.94
25 2.05 44.95
30 2.04 54.96
35 2.03 64.97
40 2.03 74.97
50 2.02 84.98

100 2.01 194.99
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Genomics to the rescue?

Ahead lies the terra incognita of genomics. Though difficult and expensive now, it is
clear that in a decade it will be relatively easy to do genomics on characters of interest.
We could find the loci that make the largest contribution to genetic variation of the
characters within populations and, if we can cross individuals from different popula-
tions, also find the quantitative trait loci (QTLs) that make the largest contributions
to differences between populations, and perhaps differences between species.
To the extent that we can do this, we transform the data into QTL gene frequencies

in different populations. However, we can find only the loci of largest effect, leav-
ing behind a residuum of polygenic variation at ‘background’ loci. Thus, until that
residuum becomes small enough to be insignificant, quantitative genetic models will
be useful. The transition from polygenic models to models that have known loci will
be gradual. In general, to detect a locus with half the effect, we must quadruple the
sample size.
In some cases the inability to detect loci of small effect may not be a serious problem.

If the divergence of the loci were due primarily to natural selection, most of that
divergence would be reflected in the gene frequencies of the loci of largest effect.
In simple forms of selection (e.g., directional selection), changes in gene frequencies
are proportional to the sizes of the genetic effects at the loci. A locus whose genetic
variants have twice the effect of those at another locus will thereby accumulate genetic
differences that are twice as large. That in turn means that the phenotypic differences
caused by those loci will be four times as great, since both the genetic effects and the
gene frequency differences are twice as great. There is thus some prospect that the
availability of genomics will rapidly illuminate cases where the differences are caused
by natural selection, by detecting loci of large effect, which may be responsible for
most of the differences.
No one has yet thought through howwe can use QTL data, possibly in combination

with a polygenic model for residual genetic variation, to infer phylogenies and to
illuminate character covariation. The time for doing so is approaching. As I have
suggested elsewhere (Felsenstein 2000), genomic data do promise insights on whether
natural selection has acted on the characters under study or on unobserved characters
correlated with them. Given the possibility of escaping some of the constraints that
have plagued analysis of morphology, genomic data seem worth investigating.

Chasing peaks

Wehavemodeled natural selection as acting in randomly varying directions in different
lineages. It is not self-evident that natural selectionwill vary randomly in direction from
moment to moment. A more convincing model would be natural selection towards an
optimum (cf. Lande 1976). Some of the possible variants on this model would be:

• A single optimum stays in one place with all species attracted to it. The species
wander by random genetic drift (Lande 1976; Hansen and Martins 1996).

• Different species have different optima, the optima separating at the time of spe-
ciation. Each optimum wanders independently in the space, perhaps by Brownian
motion (Felsenstein 1988; Hansen and Martins 1996).
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• Different species have different optima, the optima separating at speciation.
The optima wander, but their positions are constrained so that they describe
an Ornstein–Uhlenbeck process (random walk of an elastically bound particle)
around a common point (Felsenstein 1988).

• Perhaps more realistically, each species has a different optimum, the optima sepa-
rating at speciation, but optima of recently diverged species wander in a correlated
fashion, the correlation declining the longer they are diverged.

A full treatment of the movement of a quantitative character under any of these
models is difficult, but it is greatly simplified the longer a population remains under
the influence of a peak. It is not hard to show that if a population is following a peak
which is itself undergoing Brownian motion or the Ornstein–Uhlenbeck process, its
distance from the peak settles down into a normal distribution with constant variance.
In effect the population mean is towed along by the peak, but at the end of a somewhat
flexible cable. The farther the peak wanders the more of the change of the character
must be attributed to the movement of the peak and the less of it is accounted for by
the cable.
If selection moves the population (say) 10 per cent of the way toward the peak each

generation, then the departure of the population from the peak will represent events
that have occurred in roughly the last 1/0.10 = 10 generations. If each lineage lasts
much longer than that, and if genetic drift during the 10 generations is much smaller
than the net movement of the peak over its existence, then the mean of the quantitative
character is basically going where the peak goes.
Figure 3.4 shows a numerical example from a computer simulation of two charac-

ters (not all details of which are described here). The two characters are negatively
genetically correlated, with a correlation coefficient of −0.9. They wander by genetic
drift about a peak which is itself moving. In the leftmost panel little time has elapsed;
the peak has not moved much and the two characters show the negative correlation
that is a consequence of their genetic covariation. The peak wanders with positive cor-
relation between the two characters. Changes in the position of the optimum in one
character have a correlation of 0.9 with the changes in the other character. Thus the
genetic covariation ‘wants’ the characters to be negatively correlated, while selective

Figure 3.4 Covariation of two characters when genetic covariation between them is −0.9 but when
they are attracted to optimum values that vary through time with a covariance of 0.9
in movements of the optima of the characters. For short periods of elapsed time the
phenotypic covariation is negative, but as we wait 10 and 100 times longer, the movements
of the optima tow the character values in positively correlated ways.
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covariation wants them to be positively correlated. In the center panel of the figure, 10
times as much time has elapsed and there has been some wandering of the peaks. This
smears out the distribution of character values from lower-left to upper-right, resulting
in a roughly circular distribution. In the rightmost panel we see the distribution over
100 times as much time as in the first panel (10 times as much as the center panel).
Now the peak movement is the dominant influence, and the characters show a strong
positive correlation.
This is reason to expect that selective covariances will be important – the covariation

of character change will then mostly be a matter of the covariation of peak movements
with respect to different characters. For example, provided selection favors large size
and also tends to favor dark coloration in the same lineages, then there will be a
correlated distribution of these characters that will override any genetic correlation.

Punctuational models

In the models discussed here, it has been assumed that quantitative characters change
continually along a branch of the tree. Under a punctuated equilibrium model, they
would instead be expected to change mostly at the time a branch originates, and
be static thereafter. If there were a burst of change (of roughly equal size) at the
start of each branch, and no change thereafter, we might think that this could be
accommodated by having the expected variance accumulated in each branch be equal.
The tree would then consist of a series of branches, each of unit length. Hansen and
Martins (1996) have made calculations along these lines (see also Felsenstein 1988).
If this were all that we needed to take into account, it would be straightforward to
analyze data under the assumption of punctuation (though there would be the issue
of which branch at each fork was the newly-originated one).
The difficulty with this tempting model is that we do not see all branches. Even if

we can collect all extant species, there should be many forks at which the new species
has persisted while the parent species has died out. That would show up in our tree
as a burst of change in the middle of a branch. Branches that had undergone more
of these bursts of change would be longer, so that not all branches would be of unit
length. In addition to species that have become extinct, we may be omitting some
extant species from our data set. If there are 200 beetles in our group, but we analyze
only a capriciously-chosen sample of 40, there will be many places where a fork gave
rise to one of our sampled species, with the parent species being the ancestor of ones
we have omitted. This will create additional uncertainties about the branch lengths on
the tree.
In short, a punctuationalmodelmay be harder to distinguish froma gradualistmodel

than first appears. There is hope for doing so if many characters are analyzed, as under
the assumption of punctuated equilibrium the parent species should not change while
the daughter species changes in many characters. But the analysis is complex, and
needs much further examination.

The character coding problem

Many analyses of quantitative characters first reduce them to discrete characters. This
is known as the ‘character coding problem’, and a variety of methods have been
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suggested for recoding the characters. Sometimes this is done under the assumption
that parsimony methods require discrete states. Most parsimony programs do have
such a requirement, though in the early years of the parsimony literature methods were
put forward that use the original quantitative scale (Farris 1970).
We might also want to recode the quantitative characters into discrete states if we

believed that the continuous scale masked regions that had widely varying properties.
For example, if a character can rather easily wander between values 4 and 10, and can
also wander easily between 1 and 3, but has great difficulty changing from a value of
3 to a value of 4, we might want to approximate this by having two discrete states,
one consisting of all values below 3.5, the other of all values above 3.5. If the change
between these two ranges is sufficiently improbable, we want to weight it heavily. We
would be losing some information by not distinguishing between values of (say) 6 and
10, but we would be gaining some information by taking into account the greater
difficulty of change in certain regions of the scale.
I believe that many of the character coding methods, such as gap coding (Mickevich

and Johnson 1976; see also Simon 1983 and Archie 1985) are implicitly trying to
take account of situations like this, using the empirical distribution of character values
among species as an indication of where the regions of difficult change are located.
There are complications owing to the fact that species are not drawn independently
from a distribution, but arise on a phylogeny in a highly clustered fashion. Thus, a gap
in the distribution along the character scale may reflect, not a region which is rarely
occupied, but the distinction between two clades. There is in addition the question
of why coding is taking place one character at a time, when evolution at different
characters may be correlated. These issues have never been given the serious statistical
examination they deserve.
Given that there are ways to analyze quantitative characters on quantitative scales,

there is no compelling reason to engage in character coding. Until we have a well-
thought-out method for detecting regions of scales that ought to be treated differently,
perhaps the best advice about character coding is to just say no.

The character uncoding problem

In fact, one may want to do the opposite. It is possible for discrete characters to mask
an underlying continuous scale. The threshold model of evolution has been around
since the work of Wright (1934) on digit number in guinea pigs. It has been applied
to human genetics by Falconer (1965). This model imagines an invisible underlying
character (usually called ‘liability’) and a threshold value. The discrete trait results
from a developmental system that monitors whether the liability exceeds the thresh-
old value. The liability has the usual quantitative genetics. This class of models has
some attractive features. We may compare it to a simple alternative, a simple Markov
chain that alternates between two states, 0 and 1 (cf. Pagel 1994). In the threshold
model, once a lineage changes from being largely of state 0 to being largely of state
1, its underlying liability is probably near the threshold. The longer the time that a
lineage has remained in state 1, the farther the liability may have wandered beyond the
threshold, and the less likely an immediate return to state 0. The simple Markov pro-
cess model, by comparison, has the same probability of returning to state 0 however
long it has been in state 1.
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Figure 3.5 The threshold model, showing the role of the threshold and the underlying (unobserved)
liability character, and the result of the simulation of the change of a threshold character
along a simple phylogeny. The value of the underlying liability character is shown next to each
node in the tree, and the shading in each branch shows the proportion of that population
which has state 1.

Figure 3.5 shows a depiction of the threshold model and a simulation of the
change of a discrete character along a tree. Note that the threshold model has one
other advantage over the simple Markov chain. It does not actually envisage a lin-
eage changing instantaneously from one state to another. At any time, the lineage
has both states present in it, their proportions depending on where the threshold
value lies in the distribution of the liability character. In many cases almost all of
the phenotypes in the population will be the same, but as the mean of the liability
crosses the threshold, there will be a period of polymorphism. This can be seen in the
simulated tree.
The difficulty with the threshold model is its mathematical intractability. To com-

pute the likelihood of a discrete character on a phylogeny, we would have to compute
the probability that each individual lies above or below the threshold (depending on its
observed phenotype). The probability density of the liabilities is a multivariate normal
distribution, but the joint probability of the discrete phenotypes computes a corner of
this distribution:

Prob[1, 1, 0, 1, 1, 0, 0]

= Prob[x1 > c, x2 > c, x3 < c, x4 > c, x5 > c, x6 < c, x7 < c]

=
∞∫
c

∞∫
c

c∫
−∞

∞∫
c

∞∫
c

c∫
−∞

c∫
−∞

Prob[x1, x2, x3, x4, x5, x6] dx1 dx2 dx3 dx4 dx5 dx6.

(3.10)

Integrals of corners of normal distributions are hard to compute. It appears likely that
they will yield only to Markov Chain Monte Carlo methods. These may make use of
threshold models practical. This is in effect the ‘character uncoding problem’, and it
seems more likely to be of interest than the character coding problem.
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Morphometrics at last

At the end, let us come full circle, back to morphometrics. Given all of this, where
does it leave morphometrics? Morphometrics is a source of numeric characters. Mor-
phometricians point out that it is much more than just another source of them, that
it places individuals in a morphometric space that has particular desirable properties.
Other numerical methods may choose coordinates that lead to absurd results when
one extrapolates, or lead to misleading covariation when there is measurement error.
For the present discussion these distinctions are not important – we could as well be
discussing any source of numeric characters.
Of the three positions on the use of quantitative characters in inferring phylogenies,

Position I (that they cannot be used) would certainly lead to a lack of interest in using
morphometrics. It might possibly be argued that this does not preclude the use of mor-
phometrics retrospectively, using phylogenies to analyze the change of morphometric
parameters. However that would require us to accept some model of change of these
quantitative characters. If there were such a model possible, one could think of using
it to infer phylogenies. Most practitioners of Position I do not believe that any such
model is worth serious consideration.
Position II – that we can use quantitative characters only if discretely coded – leads

to an interest in deriving discrete characters from morphometric parameters. Zelditch
et al. (1995) have developed methods for doing so, and this has led to some con-
troversy (for debate and earlier references see Rohlf 1998 and Zelditch et al. 1998).
It becomes important to have the correct coding and the character coding problem
becomes paramount.
Position III requires that we not only be able to derive numerical measurements from

morphometric data, but thatwe ask about their genetic and selective correlations. Most
of the morphometric literature has asked what parameterizations are best justified on
geometric or mathematical grounds. Genetic correlations include developmental cor-
relations. Asking about them should lead us toward a genetic and developmental
morphometrics rather than a geometric morphometrics (Felsenstein 1992). As long as
we do not have developmental models, we cannot construct developmental morpho-
metrics from them. When they become available, they will lead to insights into the
expected genetic correlations of morphometric parameters.
In inferring developmental models, we may be able to take the reverse route.

Morphometric analyses along phylogenies may lead to insights into the genetic cor-
relations, and thus may be a major source of insight into developmental models. The
‘evo-devo’ literature has yet to mine this lode. To do so will require the quantita-
tive models of morphometrics, but also require us to relinquish a purely geometric
approach.
The position taken in this essay has elements of similarity not only to Position III,

but also to Position I. It argues that we typically do not have evidence as to the selec-
tive correlations, and often not for the genetic correlations either. Thus, most use of
quantitative characters will be retrospective. However when this is possible, and when
genetic correlations or developmental models are available, it should allow us to make
interesting inferences about the selection pressures. We will then be making progress
toward a functional morphometrics, even an ecological or behavioral morphometrics.
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If the genetical and/or developmental models are known, and the phylogenetic distri-
bution also, we could make inferences about how selection is acting on the characters.
Alternatively, if ecological information about selection is available, and also phyloge-
netic distribution, we might hope to infer genetic correlations and discriminate among
developmental models. We can hope that the era of geometric morphometrics will be
followed by an era in which developmental morphometrics exists in dynamic inter-
action with functional morphometrics, the interaction being mediated by modeling
change of quantitative characters across phylogenies.
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Chapter 4

Scaling, polymorphism and
cladistic analysis

Todd C. Rae

ABSTRACT

The uneasy nature of the relationship between morphometrics and phylogenetic sys-
tematics is traceable to the differences in the theoretical perspectives of the two schools.
Morphometric techniques can be used in a cladistic framework only if they do not
violate certain assumptions. If we accept the use of metric data in cladistic analysis,
some compensation must be made for scaling. Two popular solutions to this impasse,
residuals and centroids, violate the fundamental cladistic data requirement of inde-
pendence. Ratios derived for each individual, however, allow metric data to be scaled
for size without reference to other taxa/organsims. Metric coding may also allow a
more robust treatment of species polymorphisms. Modern cladistic algorithms treat
polymorphic taxa as higher taxa, making such methods inappropriate for species-level
analysis. The use of metric coding methods is more appropriate than assigning such
taxa either missing values or a presumed primitive condition, andmay allow a logically
consistent method for the incorporation of molecular sequence variability in cladistic
analysis.

Introduction

The purpose of the present volume is to outline the areas of agreement (or lack
thereof) between practitioners of morphometric analysis and cladistic analysis and,
perhaps, to suggest areas of overlap that need additional attention. Any serious hope
for a rapprochement between the two disciplines relies on the explicit recognition
of the practical aims of these methods of analysis and the theoretical foundations
upon which they rest. One can inform and/or be incorporated into the other if and
only if their respective underlying assumptions are not violated. Given this caveat,
there are several conceivable schemata for the use of morphometric data and tech-
niques in cladistic analysis, some of which are discussed below. In particular, two
perennial data problems in phylogenetics, scaling and polymorphism, are examined;
each, in its own way, embodies the ways that morphometrics and phylogeny are
related.
The discussion that follows takes its philosophical basis from the perspective of a

cladist anxious to introduce the rigour and repeatability of quantitative analysis into
the study of phylogenetic relationships between species. Any unintended bias can be
attributed to this particular viewpoint.
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Methods of analysis

Morphometric relationships and cladistic relationships are not necessarily the same, or
even similar. This is not surprising, given the difference in the theoretical basis of these
methods. Although both schools of analysis derive relationships among organisms by
the simultaneous analysis of multiple characters, at their core morphometrics and
cladistics address different sets of questions; the former is concerned with distances
between individuals in multidimensional morphospace, while the latter attempts to
reconstruct the phylogenetic relationships of taxa. Because these are fundamentally
different ways of approaching the analysis of organisms, and because the relationships
they describe are not the same at the level of theory, the areas of overlap between the
logical domains of these two systems are unclear at present.
At the heart of phylogenetic systematics is the question of whether species are dif-

ferent from one another for a given characteristic. The character state codes assigned
to taxa before parsimony analysis are reflections of a series of decisions as to whether
or not the taxa are deemed to be ‘the same’ for a particular character (Rae 1998). This
type of partitioning is necessarily binary; taxa are either the same or they are different.
The binary nature of cladistic coding holds true regardless of whether the original
data are discrete (e.g., presence/absence) or continuous (e.g., metric), or whether they
incorporate two or more character states.
As has been argued elsewhere (Rae 1998), assigning codes to taxa on the basis of

metric data is not isomorphic with the arbitrary division of a continuum. The idea that
the values of all individuals in an analysis form a continuum is based on a confusion
of the level of analysis; species can be shown to differ from one another for a certain
trait regardless of any overlap in the values of the individuals of those species (Thiele
1993). Cladistics ultimately operates at the level of genetic isolation (i.e., the species;
Hennig 1966), and therefore metric data form no multi-taxic continuum. Each species
can be characterised in terms of measurement data, and these data are analysed to
determine if taxa are the same or different. Morphometric analysis, on the other
hand, is concerned primarily with distances between individuals in morphospace. The
simultaneous analysis of multiple characters is analogous to parsimony analysis of
cladistic data, but operates within a theoretical multidimensional space, rather than
the historically based phylogenetic system. Even given this fundamental distinction
between the aims, there may still be some areas of overlap between the two disciplines.
In particular, some morphometric techniques may be employed to code metric data
for cladistic analysis (see Chapter 7).
The logical consequence of the observations outlined above is that morphometric

techniques must fulfill two conditions to be applicable to the study of phylogenetic sys-
tematics. First, these techniques must be applied to species, not individuals. As Hennig
(1966) emphasised, tokogenetic relationships (i.e., those between individuals) cannot
be elucidated by cladistic analysis. As a result, traditional multivariate morphometrics
that operate at the level of the individual cannot be used for coding data for cladistics.
Second, any attempt to utilise morphometric techniques at the level of species must do
so in such a way that researchers can determine whether taxa are the same or differ-
ent; that is, it must be possible to develop hypotheses of primary homology between
species. Several promising techniques have been proposed (e.g., Chapter 8), but will
have to go further to demonstrate compliance with the necessary criteria of cladistics.
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More commonly used univariate metric techniques are applicable to cladistics, pro-
vided that certain conditions are fulfilled. Where those prerequisites are not met, the
methods must be deemed inappropriate. For example, gap coding and segment coding
both rely on arbitrary distinctions, to a greater or lesser extent, which causes diffi-
culties for their use in phylogenetic analysis (see Chapter 5). In these methods, the
codes assigned to taxa are entirely dependent on a form of subjective choice, as there
is no external criterion from which to derive the critical values for gaps/segments (Rae
1998). As Kluge and Farris (1969: 189–190) state, ‘to achieve an accurate estimate of
the real relationships of organisms, . . .we must carefully select our procedures in such
a way that personal bias has little chance of influencing the outcome of the analysis.’
It is precisely the same lack of theoretical justification for any particular method, and
the disparate results that different methods produce, that resulted in the rejection of
phenetic approaches to phylogenetics (Wiley 1981).
Homogeneous subset coding, or HSC (Simon 1983), on the other hand, is one

method that produces non-arbitrary, repeatable discrimination between taxa, allow-
ing metric data to be utilised in phylogenetic systematics (Rae 1998). The technique
operates by performing a statistical multiple comparisons test on the sample taxa
and grouping those taxa that show identical distributions of significant differences to
other taxa for the character in question (for examples, see Rae 1993). In this way, non-
arbitrary codes are produced, based on standard statistical tests and the results violate
none of the explicit preconditions of phylogenetic systematics. This procedure is similar
to that used in divergence coding (Thorpe 1984), with the exception that HSC does
not simultaneously weight character states. Another non-arbitrary coding method,
one particularly suited for large data sets, is finite mixture coding (Strait et al. 1996),
although there may be other theoretical difficulties associated with this method (Rae
1998). The remainder of the present contribution is concerned with corollaries of the
conclusion that non-arbitrary coding methods allow the use of metric characteristics
in cladistic analysis.

Scaling

Because ‘(s)ize . . . and the effects of differences in size or scale appear to be inextri-
cably linked to almost every aspect of . . . biology’ (Jungers 1985: x), raw metric data
are often found to be significantly correlated with the size of the organisms under
investigation. This correlation can introduce a confounding factor in cladistic anal-
ysis, as characters are required to be independent of one another. The problem of
scaling metric data for phylogenetic analysis is illustrated by an example from cranial
pneumatisation in primates.
The volume of the maxillary sinus, an air cell found lateral of the nasal cavity in

most eutherian mammals (Novacek 1993), varies dramatically among anthropoid pri-
mates (Cave and Haines 1940), the group that contains monkeys and apes (including
humans). Several analyses of ape phylogeny (e.g., Andrews and Martin 1987) have
included maxillary sinus size as a character distinguishing various subgroups, depend-
ing on the author, each with a unique number/assignment of character states (Rae
1999a). These character state determinations have been made without reference to
scaling.
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More recently, the advent of computer tomography (CT) imaging and computer
assisted three-dimensional virtual reconstructions have allowed accurate quantita-
tive assessment of the volumes of internal structures for the first time (Koppe et al.
1996). Raw data from examinations of extant hominoids appear to support the inter-
pretation that several character state changes have occurred in the evolution of the
Hominoidea. Scaling these data, however, reveals a different story. Among extant
hominoids, sinus volume is significantly correlated with cranial size (measured by
the traditional univariate scalar of basicranial length and three-dimensional facial
volumes) and the association is both very strong (r = 0.89, p < 0.01) and isomet-
ric (Rae and Koppe 2000). Thus, scaling analysis suggests that no change in maxillary
sinus volume (independent of cranial size) has occurred in ape evolution. This example
highlights the necessity of ensuring that relative measures of traits are used in cladistic
analysis.
How this scaling is to be achieved, however, is another matter. Two popular meth-

ods of scaling metric data in morphometrics, residuals and centroids, have properties
that may exclude them for use in cladistic analysis. The practices of scaling via residu-
als and centroids are identical in the sense that the denominator is derived from some
experiment-wide correction factor. In the case of residuals, the element of subtraction
is derived from the regression line, inferred from all individuals of all sample taxa.
Thus, the value assigned to any given individual is dependent on which taxa, and

which individuals from those taxa, are included in the analysis. Change either the taxa
or the samples within taxa and the scaled values of all individuals will be different,
since the slope and/or position of the regression line, from which the scaling is derived,
will not necessarily be the same. In this way, data thus obtained are not independent
and therefore violate one of the fundamental assumptions of phylogenetic systematics.
Centroids are similarly culpable, as these ‘average’ values again are often inferred
from all individuals sampled, making the value of each individual a function of the
measurements of other organisms.
This is not to say simply that sample-dependent methods are inappropriate for

phylogenetic systematics. All morphological studies must rely on sampling taxa and
individuals. What is questionable in residual/centroid scaling is the interdependence
between taxa and individuals, which transgresses the necessary prerequisite for inde-
pendent data in cladistics. Taxa (or individuals) cannot be considered independent if
their characterisation (i.e., the actual values for a particular attribute) can be shown
to change solely in response to the presence or absence of other taxa (or individuals)
in the study.
These transgressions of the underpinning of cladistic analysis are not trivial; interde-

pendence of data can introduce serious bias into resulting topologies. It is precisely this
sort of bias that is probably to blame for the failure of cladograms produced from a
non-independent morphometric data set to match those derived from molecular data1

(Collard andWood 2000: 5003), leading the authors to conclude that ‘little confidence

1 The report of Collard and Wood (2000) strongly echoes a previous study (Hartman 1988), in which
parsimony analysis of 102 measurements of ape molar teeth similarly failed to reproduce a molecu-
lar phylogeny. Most of the morphological characters used in the latter paper, however, were strongly
influenced by one factor (enamel thickness), resulting in a topology that was, in effect, a single trait
phylogeny.
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can be placed in phylogenies generated solely from higher primate craniodental evi-
dence’. This (erroneous) claim has been partly responsible for the recent call for a
fundamental reassessment of the relevance of morphological data to systematics (Gura
2000).
Another form of ratio, those derived for each individual independently, avoids the

problem of non-independence. For example, using some form of the geometric mean
(an average value of all measurements of an individual) as the scaling value for the
metric characters of a single organism (Jungers et al. 1995) enables the use of a value
that has been ‘corrected’ for the size of the individual in a way that is not derived
from measurements of other organisms. In this way, the scaled value for any character
of a particular organism remains the same regardless of the other individuals or taxa
in the analysis, which means it can be analysed cladistically. Ratios may have certain
undesirable statistical properties (Atchley et al. 1976), but these often can be overcome
by any number of transformations (Hills 1978). The practical shortcomings in no way
detract from the theoretical applicability of scaled ratio data for cladistics. Techniques
similar to these have been used with some success by the author (Rae 1997, 1999b)
in testing various hypotheses of the phylogenetic position of fossil primate taxa. The
acceptance of the use of metric characteristics in cladistics not only introduces an
element of rigour to character analysis and expands the number of potential traits to
be analysed, it also may allow the successful incorporation of polymorphic data in
matrices subjected to parsimony analysis.

Polymorphism

Although the presence of multiple character states in a single species is, (a) a well-
documented biological phenomenon, (b) one of the three necessary conditions of
natural selection, and (c) in the case of peppered moth colour polymorphism, the
most oft-cited textbook example of change in a species over time, it remains a dif-
ficult aspect of taxa to analyse cladistically. In fact, parsimony analysis computer
programs are incapable of resolving within-species polymorphism when coded as such
(see below). Excluding these taxa and/or data, however, has been shown to seriously
affect resulting topologies (Wiens and Servedio 1997).
Taxonomic polymorphism, where the presence of multiple character states is

attributable to the presence of multiple taxa within a single terminal (Nixon and
Davis 1991), can be resolved, both in theory and practice, using current parsimony
algorithms (Simmons 1993). The analysis of intra-specific polymorphism, however, is
beyond the theoretical scope of parsimony implementations; for example, PAUP treats
all polymorphisms coded as such (e.g., 1/2) as if they were taxonomic (Swofford and
Begle 1993: 95). Thus, these programs will produce an answer, even though the data
provided do not satisfy a necessary theoretical criterion. This is analogous to perform-
ing a t-test when the samples possess significantly heterogeneous variances; an answer
can be produced, but it is meaningless because the data violate a crucial assumption
of the analysis (Sokal and Rohlf 1981).
Several methods have been mooted to solve this deficiency in cladistics (Mabee and

Humphries 1993). Most have concentrated on changing the way that polymorphism
is coded in the data matrix. One popular method is to code a polymorphic taxon
as ‘unknown’. The obvious fault with this method is that the algorithm will assign
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the taxon with the character state that is most likely, given the most parsimonious
arrangement of the other data, and that state may not match those actually present
in the taxon. In addition, the resulting topologies can differ substantially from those
that would have obtained otherwise (Nixon and Davis 1991).
Other methods of incorporating polymorphisms, such as utilising step matrices

(Mardulyn and Pasteels 1994) or plesiomorphies (Kornet and Turner 1999), concen-
trate on changing the coding of polymorphisms to conform to current implementations
of parsimony analysis in computer programs. This approach, in some ways, puts the
cart before the horse; as with codingmetric characters (see above), the emphasis should
be to determine whether taxa are the same or different for each character. Again, as
with measurement data, statistical tests of significance can be used to provide such a
determination.
If we accept techniques (such as HSC) for coding metric data for parsimony analysis,

there is no logical reason to prevent their use for coding frequency data, such as
that produced in the study of polymorphisms. Provided that the statistical tools (e.g.,
controls for experiment-wide degrees of freedom) are available to perform multiple
comparisons (cladistic analysis requires a minimum of four terminal taxa), creating
codes that correspond to whether taxa are the same or different in terms of their
respective frequencies of character states should follow precisely the same process used
for univariate metric data. In this way, polymorphisms can be incorporated in data
matrices without violating crucial data requirements, making assumptions of polarity,
or needlessly complicating parsimony calculations.
One potentially important extension of this argument concerns the analysis ofmolec-

ular sequence data. Common practice is to include a single representative of a taxon
(e.g., Yoder 1994), which may limit the ability of the analysis to discover the most par-
simonious topology (Wiens and Servedio 1997). Conversely, some choose to include
multiple terminals from a single species (e.g., Ruvolo 1994), which directly contradicts
the assumptions of cladistic analysis by attempting to resolve tokogenetic relation-
ships. Tokogenetic relationships (those between individuals) are not hierarchical and
cannot be resolved by phylogenetic systematics (Goldstein and DeSalle 2000). The use
of HSC on polymorphism frequency data from multiple sequences of a species may
provide a theoretically sound and practical method of incorporating these important
data in cladistics. This, in turn, may help to eliminate some of the perceived con-
flict between gene trees and phylogenetic trees (Rogers 1994) and the ‘discovery’ of
blatantly illogical ‘paraphyletic species’ (Melnick and Hoelzer 1993).

Conclusions

The above discussion, partly due to its philosophical nature, has left several practical
points to one side (e.g., the effect of sample size and variance on multiple comparison
tests). It is hoped, however, that several important points concerning the relationship
between morphometrics and phylogenetic systematics have been emphasised:

1. that apparent distinctions between traditional morphometrics and cladistics are
the direct result of the underlying differences in their theoretical bases and the
questions with which they are concerned,
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2. that any attempts to include morphometric data in cladistic analysis must include
explicit reference to appropriate scaling that results in no inter-dependence of the
data, and

3. that acceptance of metric data in cladistics allows the inclusion of polymorphisms
(in the form of frequency data) in coded datamatrices, whichmay also be extended
to molecular sequence information.

Although these caveats/conclusions are in noway comprehensive, they outline possible
ways that the two disciplines of morphometrics and cladistics can begin to interact in
a cogent and robust manner.
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Chapter 5

Overlapping variables in
botanical systematics

Geraldine Reid and Karen Sidwell

ABSTRACT

Character coding has received occasional attention from botanists and problems of
discovering characters suitable for phylogenetic analysis from overlapping variables
have been addressed sporadically at best. A review of overlapping variables in plant
phylogenetics over the last 10 years is presented. We show that plant systematists have
tended to score data matrices in order to produce cladograms rather than focus atten-
tion on the individual characters as hypotheses. The unspoken rule for coding data
matrices appears to be to process as much observational data as possible into discrete
integers and by using filters, delete recalcitrant variables. Lack of methodological clar-
ity, fear of statistical techniques, and a desire for rapid results have all contributed
to the illogical exclusion of continuous data from cladistic analyses. To illustrate the
theoretical issues, practical case studies from diatoms (Pleurosigmataceae) and higher
plants (Oxalis section Ionoxalis) are presented. Different methodological approaches
most commonly mentioned in botanical literature (simple gap coding, generalized
gap coding, segment coding) are implemented and the consequences of including or
excluding continuous characters are explored. The utility of overlapping characters
for phylogenetic reconstruction is investigated with parsimony analysis using the pro-
grammes PAUP, Hennig86 and Pee-Wee. We clarify the issues and methods for coding
overlapping variables for cladistic analysis. The effect of each of the coding methods
on tree topology is discussed. It is shown that the four methods used here are all inap-
propriate. Greater time must be spent researching homologues in data sets containing
overlapping characters to prevent potentially large amounts of information from being
ignored.

Introduction

This chapter addresses issues relating to overlapping characters in botanical systemat-
ics analysed using standard parsimony techniques.
The aims are three fold:

• To briefly review the use of quantitative continuous data in plant systematics over
the last 10 years.

• To investigate overlapping variables in data sets from diatoms and higher plants.
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• To compare and contrast the four coding methods most commonly used in the
literature.

• To investigate the effect of coding overlapping data on phylogenies derived using
three parsimony programmes.

For clarity, a short definition of our use of ‘morphometric’ is necessary. It refers
to overlapping linear measurements as measured from plants. The terms metric,
morphometric, continuous and quantitative are all used here synonymously.

Review of the last 10 years in plant phylogenetics

This review takes Chappill (1989) as a start point. Stevens (1991), Pleijel (1995),
Wilkinson (1995) and others have recognised that character coding has received little
attention in the literature. Botanical publications that include phylogenetic trees pro-
duced from published morphological data matrices using parsimony methods were
investigated and theoretical papers across the biological spectrum were taken into
account.
Theoretical papers that cover continuous variables over the past 10 years can be

summarised as arguments for and against coding continuous characters in cladistic
analysis.
Arguments against including overlapping variables tend to prevail and stem from

Pimentel and Riggins (1987) who suggested that:

• continuous data are ‘non-cladistic’, only mutually exclusive states should be
recognised,

• coding such data introduces artificial distinctions, and
• homology cannot be assessed by the similarity test.

Pimentel and Riggins (1987: 275) state that ‘continuously varying quantitative data
are not suitable for cladistic analysis because there is no justifiable basis for recognising
discrete states among them’. Although these arguments appear to have been largely
followed by botanists, they are rarely alluded to in practical phylogenetic studies.
Arguments for including overlapping variables are becoming increasingly noticeable
in the literature:

• biological data are inherently continuous,
• the data are precise and replicable,
• qualitative data should be quantified whenever possible,
• to exclude overlapping variables is illogical, and
• a large amount of potentially useful information is being ignored.

Thiele (1993) and Stevens (1991) both stated that continuous data should not be
rejected a priori. Stevens (1991: 562) discussed the fact that qualitative data is drawn
from quantitative variables: ‘if such qualitative variation is examined carefully, it will
be found that much describes an underlying continuum that has been transformed
by the terms we use; discontinuities are only semantic’. Thiele (1993: 283) agreed,
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Table 5.1 Summary of literature survey of American Journal of
Botany; The Botanical Journal of the Linnean Soci-
ety; Cladistics and Systematic Biology from 1989–1999
showing botanical systematic studies

Journal Including Discussing Including
morphological cladistic continuous continuous
analyses characters characters

Am. J. Bot. 30 3 0
Bot. J. Linn. Soc. 20 1 1
Cladistics 7 2 2
Syst. Biol. 7 1 0

recognising that ‘all character states (as used in cladistic analyses) are frequency dis-
tributions of attribute values over a sample of individuals of a taxon’, concluding that
‘every effort should be made to include overlapping morphometric data in analyses,
followed by detailed testing of the resulting trees, so that empirical assessments of
such data can be made’ (Thiele 1993: 296). Swiderski et al. (1998) also considered it
illogical to exclude these kinds of data. Rae (1998: 226) concluded that continuous
variables ‘fulfill the necessary criterion for use in phylogenetic analysis (homologous
character states), and since they can be coded in a non-arbitrary, biologically appro-
priate manner, there can be no theoretically justifiable means for dismissing them
from phylogenetic systematics.’ Thiele (1993: 275) found that continuous morpho-
metric data ‘. . .map phylogeny almost as accurately as more conventional qualitative
morphological data’.
A review of four botanical journals highlights the use of different kinds of morpho-

logical data in phylogenies. Table 5.1 shows the number of morphological cladistic
analyses published in the last 10 years, and of those, the number that discussed contin-
uous characters and the number of those that included them in analysis. It can be seen
that, out of a total of 64 papers, 7 discussed overlapping variables and only 3 (Ladiges
et al. 1989; 1992; Linder and Mann, 1998) utilised these data in phylogenetic studies.
Most papers did not explicitly describe character choice. Morphological characters

appear to be used because ‘They lent themselves to cladistic analysis of the . . . taxa’
(Williams et al. 1994: 1028) and also because they had a ‘prominence in the traditional
classification of taxa involved’ (Williams et al. 1994: 1028). In several papers botanists
coded seemingly continuous variables with no discussion of the rationale behind this.
For example, Boufford et al. (1990) had 2 out of 22 characters that were numerical
and seemingly continuously variable, and nowhere provided any discussion of how
the characters were selected, measured or coded.
Four papers explicitly discussed and rejected the use of continuous characters.

Luckow and Hopkins (1995) and Kelly (1997) felt unable to code continuous charac-
ters. Crisp andWeston (1993) concluded in their study of Teleopea that morphometric
characters were useful for investigations of species delimitation, but not for looking at
the relations between taxa. Freudenstein (1994) thought such characters were not use-
ful to his work. One other paper worth mentioning here is that of Morton and Kincaid
(1995) who devised a model for coding pollen morphometric data ‘using conventional
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statistical procedures coupled with data visualisation and Monte Carlo simulation’
(Morton and Kincaid 1995: 1173). The conventional statistical procedures employed
were inspection of prediction and confidence ellipses (e.g., 99 per cent) and use of
ANOVA. This approach enabled them to code three character states for pollen grains.
They did not however attempt to use the data in a cladistic analysis.
Three papers that both discussed and used continuously variable characters in their

analyses differ in the methods used to code those characters. Linder and Mann (1998)
used Almeida and Bisby’s (1984) ranging method, which is a non-statistical method
where the ranges are plotted out graphically and gaps identified visually. The ratio-
nale for using morphometric data was that it was ‘very useful for distinguishing
between the species of Thamnochortus’ (Linder and Mann 1998: 322), therefore
it might be informative of relationships in that group. They concluded that, in this
case, the ‘contribution of the morphometric characters to the resolution of the clado-
gram is weak’ (Linder and Mann 1998: 339). However, the continuous characters
did contribute to the resolution of the terminal clades without contradicting the
topology produced by qualitative characters alone. Ladiges et al. (1989: 346; 1992:
106) gap coded their characters following the earlier work of Ladiges et al. (1987).
Ladiges et al. (1992: 106) coded the characters where ‘clear disjunctions in measures
were used to define states. Where three or more character states were recognised
the plesiomorphic state was chosen on the basis of outgroup comparison and trans-
formations were based on an assumed developmental trend from the plesiomorphic
state’.
From this brief summary it is clear that there is no consensus regarding the use of

morphometric data in phylogenetic analyses. The argument for including such data
appears to be gaining strength and there are no justifiable reasons to exclude such
information a priori from any analysis even though the majority of botanical papers
reviewed above have done so implicitly.

Methods

Two different data sets, from diatoms (Pleurosigmataceae) and higher plants (Oxalis
section Ionoxalis) were used. All characters were assumed to be independent. The
diatom data set contained 13 characters: 9 qualitative and 4 quantitative, listed in
Table 5.2. The characters were selected from all parts of the diatom frustule and
included all parts measured in previous taxonomic studies. They were measured using
a micrometer eye piece graticule. TheOxalis data set contained 20 characters: 8 qual-
itative and 12 quantitative, listed in Table 5.3. Those characters which were selected
were relatively easy to observe and measure given the time available for the study and
were taken from all parts of the plants. They were measured using a mm ruler or
a micrometer eye piece graticule. Four coding methods: simple gap coding, segment
coding, and two forms of generalized gap coding were applied to all morphometric
characters. Three parsimony programmes: Hennig86, PAUP v.3.1 and Pee-Wee were
employed to look at the effect of including such data in phylogenetic analysis.
All coding methods follow the same initial procedure requiring calculation of the

pooled within group standard deviation (Sp). The value of Sp is obtained by find-
ing the standard deviation of all the measurements for one character for all taxa.
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Table 5.2 Characters and codes for Pleurosigmataceae

Character Description

1 Valves: arcuate 0; sigmoid 1
2 Striae: transverse and oblique 0; longitudinal and transverse 1
3 Raphe: single curvature 0; double curvature 1
4 Central external raphe fissures: curved in same direction 0; in opposite directions 1
5 Central bars: smooth, slender 0; wide and thick 1; smooth and flattened 2; smooth with

undulating outer edge 3
6 Central area: even 0; transapically offset 1
7 Crescent at apex absent 0; present 1
8 Valve outline: smooth 0; undulating 1
9 Hyaline area at apex: absent 0; present 1

10 Diatom length (µm)
11 Diatom breadth (µm)
12 Number of longitudinal striae per 10 µm
13 Number of transverse striae per 10 µm

Table 5.3 Characters and codes for Oxalis section Ionoxalis

Character Description

1 Heterostyly: homostylous 0; distylous 1; tristylous 2
2 Number of leaflets: three 0; more than three 1
3 Nerves on bulb scale: three 0; more than three 1
4 Flanges on petioles: not extended above bulb 0; extended 1
5 Hair type: nonseptate 0; septate 1
6 Seed surface: lacking transverse ridges 0; transverse ridges present 1
7 Leaflet shape: entire 0; lobed 1
8 Inflorescence type: umbelliform cyme 0; branched cyme 1
9 Petiole length (mm)

10 Leaflet length (mm)
11 Leaflet width (mm)
12 Leaflet lobe length (mm)
13 Scape length (mm)
14 Bract length (µm)
15 Pedicel length (mm)
16 Sepal length (µm)
17 Sepal width (µm)
18 Petal length (µm)
19 Fruit length (µm)
20 Fruit width (µm)

The equation is:

S2p =
k∑
j=1

(nij − 1)s2ij
/ k∑
j=1

(nij − 1)

Then

Sp = √
S2p
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where n = sample size for character i in taxon j; S2p = the pooled within group variance
for character i; k is the number of taxa.
For each method the mean (Y) of each character for each taxon is calculated and

taxa ranked in order of mean size (see Table 5.4). The coding methods then proceed
as follows:

Simple gap coding – Mickevich and Johnson 1976

The first taxon is given a code (m) of 0. The difference between adjacent means is calcu-
lated (Yi−Yj). This value is compared to the pooled within group standard deviation.
If the ‘the gap’ difference is greater than the pooled within group standard deviation
multiplied by an arbitrary constant (c) then the taxon is given a new code (m+ 1).

If (Yi − Yj) > cSp then Y ′
i = m and Y ′

j = m+ 1

If the difference between adjacent means is not greater than the pooled within group
standard deviation then the second taxon retains the same character code (m) as the
prior taxon.

If (Yi − Yj) ≤ cSp then Y ′
i = Y ′

j = m

This procedure is repeated throughout the study group until all taxa are coded.

Working through an example using character 11 of the diatom data set (see Table 5.4)
The Sp = 7.26 and c is set to 1. The taxa are ranked in order with the taxon with the
lowest mean first (see Table 5.4,G. gibbii) which is given a code of 0. The means of the
first two adjacent taxa are compared (13.4−10.4 = 3) the resulting value is compared
to the cSp, it is less than cSp i.e., 3 < 7.26 therefore G. perthense is given a code of 0.
The means of the second two adjacent taxa are then compared (13.7 − 13.4 = 0.3)
the result is compared to the Sp and again 0.3 < 7.26 therefore G. wansbeckii is also
given the code 0. The code changes to 1 at G. pensacole, as the gap of the adjacent
means (42.7− 31 = 11.7) is greater than the cSp (11.7 > 7.26), therefore, it is now in
the next gap.

Segment coding

Using thismethod the range of a character is divided into equal sized segments. The seg-
ments (w) are derived by adding Sp to the first taxon mean (Yi) and then adding Sp to
the result until w′ is greater than or equal to the value of the last taxon mean.

Yi + Sp = w then w + Sp = w′

The taxa are then coded by comparing the taxon means (Y) to the segments (w).
The first taxon is given the code 0. If the next taxon mean falls within the first segment
it retains the code 0. If the taxon mean falls outside the first segment it becomes w+1,
that is, is given the code 1.

Working through an example using character 11 from the diatom data set (see
Table 5.4) The Sp is calculated as 7.26 and using c as 1. The taxa are ranked in
order with the taxon with the lowest mean first (see Table 5.4, G. gibbii). The first
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segment is derived by adding cSp to the first character mean (10.4+7.26 = 17.66) this
gives us the first segment. All taxa with means less than or equal to 17.66 are given the
code 0, that is,G. gibbii, G. perthense andG. wansbeckii. The next segment is derived
from 17.66 + 7.26 = 24.92 giving the segment of 17.67 to 24.92 and all taxa with
means lying in this segment are given the code 1, that is, G. turgidum, G. exoticum.
This is continued for all taxa.

Generalized gapcoding – Archie 1985

Generalized gap coding was described by Archie (1985) and advocated by Chappill
(1989) and Thiele and Ladiges (1988). This method attempts to give a better repre-
sentation of the characters rather than forcing them directly into arbitrary character
states. Generalized gap coding is a two stage process, first subsets are derived from the
taxon means and second codes are derived from the subsets. The subsets are found
as follows. The cSp is added to the first taxon mean (Y), and taxa with means less
than, or equal to, this value form the first subset. The cSp is then added to the second
taxon mean, all taxa with means less than, or equal to, this value form the second
subset. Adding cSp to each taxon mean continues as above until all taxa are grouped
in subsets.
The second stage is to code the subsets. At this stage the method of Thiele and

Ladiges (1988) differs from Archies’ method. The difference can be summarised as
follows:

Generalized gapcoding – sensu Archie (1985) Code the first taxon as 0. Increase the
value by one for each successive taxon if it is included in a new subset and by a further
1 if it is no longer in a previous subset. If a subset is fully contained within another
previous subset, then the second subset is discarded. This method keeps the differences
in magnitude between code values.

Generalized gapcoding – sensu Thiele and Ladiges (1988) Code the first taxon as 0.
Increase the value by 0.5 for each successive taxon if it is included in a new subset
and by a further 0.5 if it is no longer in the previous subset. The taxon values are then
coded as sequential integers 0, 1, 2, 3, 4, 5, . . . removing any differences in magnitude.
Ladiges then ordered the states of the generalized gap coded characters from smallest
to largest, before running analyses, but did not order the qualitative variables.

Working through an example sensu Archie using character 11 of the diatom data
set (see Table 5.4) The Sp = 7.26 and c is set to 1. The taxa are ranked in order
starting with the lowest mean (see Table 5.4, G. gibbii). The cSp is added to the mean
of G. gibbii (10.4 + 7.26 = 17.66) giving a first subset of 10.4 to 17.66. Then cSp
is added to the next taxon mean i.e. G. perthense (13.4 + 7.26 = 20.66) giving the
second subset as 13.4 to 20.66. Then cSp is added to the next taxonmeanG.wansbeckii
(13.7+7.26 = 20.96) giving the third subset as 13.7 to 20.96. The cSp is added to the
next taxon mean, G. turgidum (17.7+ 7.26 = 24.96) giving the fourth subset of 17.7
to 24.96. G. gibbii is given a code of 0 (see Table 5.4). G. perthense is given a code
of 1 as it starts a new subset, but is still contained in subset 1. G. wansbeckii receives
a code of 1 as the third subset is discarded as it is totally contained within the second
subset, that is, G. wansbeckii neither starts a new non-inclusive subset or leaves one



Overlapping variables in botanical systematics 61

(Table 5.4). G. turgidum receives a code of 3 as it leaves subset 1 and starts subset 4.
This is continued throughout the data set (see Table 5.4).

Working through an example sensu Thiele and Ladiges using character 11 of the
diatom data set (see Table 5.4) The Sp = 7.26 and c is set to 1. The taxa are ranked
in order starting with the lowest mean (see Table 5.4, G. gibbii). The cSp is added to
the mean of G. gibbii (10.4 + 7.26 = 17.66) giving a first subset of 10.4 to 17.66.
Then cSp is added to the next taxon mean, that is, G. perthense (13.4+7.26 = 20.66)
giving the second subset as 13.4 to 20.96. Then cSp is added to the next taxon mean
G. wansbeckii (13.7 + 7.26 = 20.96) giving the third subset as 13.7 to 20.96. The
cSp is added to the next taxon mean, G. turgidum (17.7 + 7.26 = 24.96) giving
the fourth subset of 17.7 to 24.96. G. gibbii is given a code of 0 (see Table 5.4).
G. perthense is given a code of 0.5 as it starts a new subset, but is still contained in
subset 1. G. wansbeckii receives a code of 0.5 as the third subset is discarded as it is
totally contained within the second subset, that is, G. wansbeckii neither starts a new
non-inclusive subset or leaves one (Table 5.4). G. turgidum receives a code of 1.5 as it
leaves subset 1 and starts subset 4. This is continued throughout the data set. The codes
are then re-coded 0, 1, 2, 3, . . . every time a new number is encountered regardless of
the magnitude of the code change, that is, G. perthense at 0.5 has a code of 1 and
G. turgidum at 1.5 has a code of 2 even though it has shown a greater magnitude of
change.

In summary it can be seen each of the different coding methods used here results
in a different suite of character codes for character 11 of the diatom data set
(see Table 5.4). In all coding methods the taxon with lowest mean value always
receives 0 (e.g., G. gibbii), whereas the other taxa receive arbitrarily different codes
(e.g., G. pensacole receives 4 different codes with the 4 different methods). Each
method of coding postulates a different hypothesis of homology. The complete data
matrices for Pleurosigmataceae and Oxalis showing the 4 different coding methods
can be seen in Tables 5.5 and 5.6.

Phylogenetic analyses

Tables 5.2 and 5.3 list the characters used in the analyses and their character states.
Character codes are recorded in Tables 5.5 and 5.6. Each data set was analysed
using Hennig86 (ie*) and PAUP (maximum parsimony) under equal weights with
all characters unordered.
However, as all characters cannot be assumed to contribute to the same extent in

predicting relationships, implied differential weighting was employed using the com-
puter programme Pee-Wee using the options hold*, mult*50 to search for trees of the
highest fit, performing random addition sequences of 50 replications. All characters
were unordered. Replication was followed by tree bisection and branch-swapping.
The amb-option was used to eliminate the effect of ambiguous support.
The effect on tree length of including the gap-coded characters was to increase it in

all cases, as would be expected with increasing the number of characters included in
the analysis. Except in the Oxalis data set under simple gap coding as all characters
received the same code of 0 for all taxa, that is, they did not make any contribution
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Table 5.5 Data matrix for the diatom data set with the codes for the 4 different coding methods.
‘Original data matrix’ is the binary/multistage characters 1–9, the subsequent blocks are
the codings of the quantitative characters 10–13 repeated for each coding method

Original data Simple Segment Generalized Generalized
matrix Archie Thiele

toxonidea 000000000 0000 0222 1784 1463
angulatum 100000000 0000 1221 3863 3542
balticum 111111101 0000 2200 6800 5500
murphii 111111101 0000 2200 6800 5500
subtilis 111121101 0000 2210 6731 5421
gibbii 110100100 0001 0023 0076 0054
california 111121100 1000 1200 5710 4410
sterreburgii 111131101 0000 1200 5700 4400
exoticum 111121110 0000 0120 25A0 2371
perthense 111100110 0000 1010 5141 4131
wansbeckii 110100100 0000 0022 11B4 1183
cali 111121101 0000 3200 8700 6400
turgidum 111121110 0000 2110 6330 5220
pensacole 111121101 1100 3400 8A00 6600

Notes: In the character codes A = 10; B = 11.

Table 5.6 Data matrix for the Oxalis data set with the codes for the 4 different coding methods.
‘Original data matrix’ is the binary/multistage characters 1–8, the subsequent blocks are the
codings of the quantitative characters 9–20 repeated for each coding method

Original data Simple Segment Generalized Archie Generalized
matrix Thiele

debilis 00000111 0000000000?? 1111111121?? 44354475A9?? 3324336477??
intermedia 00100110 00000000000? 21222010101? D9698241433? 96465231333?
eggersii 00100110 0000000000?? 0000000010?? 1101111032?? 1101111022??
primavera 10101110 000000000000 222321112111 CA8BC7549866 875785436656
gregarii 20001010 000000000000 000010100000 211230600010 211220500010
nelsonii 21101100 00000?000000 21312?022120 9894B?1BCB83 65637?189963
magnifica 21101100 0000000000?? 1220120222?? 6B516A1AED?? 48314717AA??
lasiandra 21101100 00?0000000?? 12?0220221?? 8D?1A927B6?? 59?1662585??
macrocarpa 20001100 00?0???????? 21?2???????? B6?7???????? 74?5????????
drummondii 10001110 000000000000 100110222111 621442987455 421332765445
divergens 11000110 000000000000 000001011100 210116136A22 210114124822
lunulata 20011110 000000000000 000000000000 000001001101 000001001101

Notes: In the character codes A = 10; B = 11; C = 12; D = 13; E = 14.

to the analysis. In the diatom data set the ci and ri are decreased with each coding
method. Whereas in the Oxalis data set the ri is decreased with all coding methods
(except simple gap coding as the characters are not used in the analysis) but the ci
varies unpredictably, it decreased with segment coding but increased with generalized
gap coding. This may be caused by the higher number of autapomorphic states for
these coding methods, which increase ci but decrease ri (Table 5.7).
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Table 5.7 Tree statistics for each of the coding methods for each of the data sets

Original Simple Segment Generalized Generalized
Archie Thiele

Diatom data set
Trees 9 30 8 12 135
Length 12 16 28 40 41
ci 91 87 78 87 85
ri 95 91 84 84 81
Oxalis data set
Trees 1 1 4 72 72
Length 14 14 59 112 112
ci 64 64 57 90 90
ri 77 77 62 66 66

Discussion

Coding overlapping morphological characters is fraught with methodological prob-
lems. The difficulties are various:

• Simple gap coding is problematic as the addition of new taxa can have a huge effect
on codes for all taxa in the data set. The major problem is that taxa which may
be very different can be given the same code as if they are part of a long series of
closely spaced taxa, as is the case with the diatom data set character 11. Swiderski
et al. (1998: 511) dismissed simple gap coding as it ‘misrepresents the amount of
overlap when distributions are skewed or otherwise deviate from normality’.

• Segment coding results in the loss of slight differences in character states between
populations. A slight shift in the mean could mean that a gap will disappear,
for example, by increasing the population size. Segment coding overcomes the
problems of simple gap coding in that it recognises the differences in long series
of closely spaced taxon means. But it can put taxa with values of 9.999999 and
10.000001 into different codes if the segment boundary is 10.0.

• Generalized gap coding claims to maintain the relative differences between taxa,
but only roughly does so. It can lead to one code per taxon and has a very high
number of codes. This can cause problems when using Hennig86 and Pee-Wee as
the programmes only accept character codes less than 10. Chappill only accepted
characters where gaps separated more than one taxon, that is, she would not use
any character that coded as automorphies as they are always fully consistent with
the tree.

Variables affecting character codes and resulting phylogenies

When including such data in phylogenetic analyses, tree topology is dependent entirely
on the coding method employed. The same is true of all types of characters but is
‘hidden’ in qualitative characters, usually in the character description or notmentioned
at all. In many cases, each of the 4 coding methods used here gave different homology
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hypotheses for each character, which had direct impact on the resulting phylogenetic
trees. The variables that affect character codes in the diatom and higher plant data
sets include:

• Sample choice: Taxonomic studies often include many specimens of one taxon
and only a few representatives from another. It is imperative that as many
specimens as possible are examined for each taxa to gain a realistic representation
of the variation within the taxon.

• Character choice: Phylogenetic analyses assume independence of characters.
• Measurement error: This can depend greatly on the skill of the person making the

measurements. Factors such as how long they have been looking down a micro-
scope that session can influence the accuracy of the measurements taken, that is,
operational error. Variables need to be carefully prescribed so that measurements
are taken from homologous landmarks.

• The choice of constant c: The choice of value for c is arbitrary. However, c is
recommended as 1 and a lower value, for example, 0.5 should be used only when
a character shows statistically significant variation between populations yet it does
not exhibit a gap between means.

• Treatment of raw data: Chappill (1989) chose to log transform her data so that
proportional differences would be recognised. Such transformation is not required
if data has a normal distribution, that is, it is only needed if the variances are not
equal.

• Scaling data: A number of workers advocate the use of scaling coded multistate
characters to unit range (Colless 1980; Goldman 1988; Chappill 1989; Cranston
and Humphries 1988; Thiele and Ladiges 1988). Thiele and Ladiges (1988: 27)
stated this was so that ‘many state characters did not dominate the analysis’ and
weighted to give each character the ‘same weight as a binary character’. Farris
(1990: 91) pointed out that rescaling characters was illogical and should not be
undertaken a priori.

• Statistical values used: Thorpe (1984: 247) recommended the use of the mean
rather than the median for ranking character data as it is a better estimate of
the ‘centrality of the distribution as it derives its value from the character states
of all the samples’. All workers using these coding methods in our review have
implemented this recommendation.

• Missing data: None of the coding methods used here deal adequately with the
problem of missing data. The data set forOxalis had a large number of characters
that were unable to be measured due to lack of appropriate specimens. Inclusion
of these specimens at a later date would have an effect on the overall patterns of
coding.

Other solutions: Swiderski et al. (1998) recommended the use of Almeida and Bisby
(1984) graphical displays of data. In this method, the ranges of the taxa are plotted out
with the median values marked along with the first and third quartet. The diagram is
then used to visually divide the measurement data into classes. This method is flawed
in that different workers could see a different number of partitions. Even if they see
the same number of groups, they may see different members in that group. Gift and
Stevens (1997) clearly show the problems with character delimitation by different
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individuals from graphic displays. Almeida and Bisby’s (1984) method worked under
the assumption that character states should be discrete or almost so. This does not help,
however, in the case where most characters are continuous, which, due to their very
nature, show no discrete boundaries. Swiderski et al. (1998) considered the problem
to be a practical rather than theoretical.
The main question addressed in this chapter is whether it is possible to resolve

overlapping variables into homologues. The 4 coding methods above raise both theo-
retical and practical issues. Each method allocates codes on the basis of taxon means
and does not account for a taxon range that may span more than one character state.
Taxon means are ranked from lowest to highest prior to coding. When new taxa are
introduced into the analysis, or taxa that have missing character values are added,
the order of character means can drastically change and alter the character codes. All
methods rely on calculation of the cSp, a value based on all individual data points for
all taxa. If new taxa or new data points are introduced, the value of cSp will almost
certainly change and alter the resulting codes. These methods, therefore, are forcing
non-homologous states onto the characters.
In summary:

• The assumption that overlapping variables can be resolved into homologues needs
reconsideration.

• Gaps created by all these methods are artefacts.
• There still does not appear to be a general solution to the problems of coding

continuous characters.
• We need to have a coding method that accurately reflects hypotheses of homology.
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Chapter 6

Comparability, morphometrics
and phylogenetic systematics

Donald L. Swiderski, Miriam L. Zelditch and
William L. Fink

ABSTRACT

Although qualitative descriptions of shape are commonly used in phylogenetic system-
atics, there are numerous objections to using quantitative descriptions of these same
features. Previously, we argued that no earlier discussions of this issue provided a
general argument that supports exclusion of all morphometric data from phylogenetic
studies. Rather, we concluded that data from at least some morphometric methods
can support hypotheses of shape homology, but data from other methods cannot. In
this chapter, we explore the reasons for this difference. We then present a general
criterion for determining whether any morphometric method produces descriptions
that are suitable for phylogenetic analysis: the comparability of the shapes described
by the variables that a particular method produces. Then we examine several mor-
phometric methods and evaluate whether they meet this criterion. Some methods (like
elliptical Fourier and eigenshape analyses) cannot be used in phylogenetic systematics
because they have no mechanism to ensure comparability. These methods commonly
employ large numbers of points on a given specimen and the points on one specimen
need not have a one-to-one correspondence to points on another specimen. Conse-
quently, the variables computed from the coordinates of the points need not refer to
the same region of the specimen. Other methods use smaller numbers of points that
are judged to be comparable among specimens on a one-to-one basis (i.e., landmarks).
Methods that produce variables from the coordinates of landmarks at least have the
potential to refer to comparable regions of the specimens. Although the use of land-
marks is an important step toward insuring comparability, it is neither necessary nor
sufficient. Methods that do not use landmarks may still produce comparable descrip-
tions if other information is used to specify what anatomical feature is described by
the variable. Conversely, methods that do use landmarks may not produce compa-
rable descriptions if the landmarks are not adequate to constrain the morphometric
description. This latter situation may arise when the landmarks are few and far apart
(in analyses using shape coordinates or extended eigenshape analysis) or when addi-
tional manipulations of the data are used to generate new variables from combinations
of the original ones (as in principal components analysis). Thus, we conclude that
morphometric descriptions can be used in phylogenetic systematics if due caution
is taken at every stage of the analysis to insure that variables refer to comparable
features.
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Introduction

Shape differences are often used to infer phylogenetic relationships. For example,
a recent analysis of relationships among anteaters (Mammalia: Myrmecophagidae)
included such features as ‘shape of premaxilla in ventral view’ and ‘curvature of
the basicranial axis’ (Gaudin and Branham 1998). An analysis of Aramigus wee-
vils (Coleoptera: Curculionidae) used such features as ‘convexity of the eyes’ and the
‘constriction of the pronotal base’ (Normark and Lanteri 1998). Analyses of flowering
plants may include both the general proportions of the leaf (lanceolate vs. cordate) and
smoothness of the leaf margin (dentate vs. entire) (e.g., Swenson and Bremer 1997).
Some systematists have expressed doubts about the reliability of phylogenetic infer-
ences based on shape and other morphological features (Hedges and Maxson 1996;
Givnish and Sytsma 1997). However, their principal argument is that there is a high
risk of homoplasy (i.e., unrecognized independent origins of similar features) because
morphological traits are often convergent. In other words, they are concerned about
the reliability of the information obtained from morphological comparisons, not the
legitimacy of making those comparisons.
Although the use of morphological traits in phylogenetics is generally considered

acceptable if the features are qualitatively described, there is considerable opposi-
tion to using quantitative morphometric descriptions of those same features (Pimentel
and Riggins 1987; Cranston and Humphries 1988; Mickevich and Weller 1990;
Crowe 1994). The foundation of this opposition is the perception that morphometric
descriptions do not convey the information needed to formulate and test a hypoth-
esis that two shapes are homologous. For example, Mickevich and Weller (1990:
145) claim ‘. . . the simplicity of a morphometric variable renders it less tractable’
and Pimentel and Riggins (1987: 208) assert that ‘ . . .dimensions are indirect mea-
sures of a feature, and sufficiently vague to question what is appropriate for tests of
homology’.
We addressed some of these issues in a previous paper (Zelditch et al. 1995). We

agreed with many of the objections to variables generated by commonly used morpho-
metric variables, but we also pointed out that those criticisms do not necessarily apply
to all variables generated by all methods. In particular, we concluded that some meth-
ods of analyzing locations of landmarks sensu Bookstein (1991, i.e., points judged
to be comparable among forms) do produce results that can be used in phylogenetic
systematics. We reached this conclusion because the comparability of the landmarks
provides information crucial to judging whether two shapes are homologous. In con-
trast, somemethods of describing outlines do not include landmarks and do not employ
any other mechanism to insure that the same shape feature is comparable across spec-
imens. Without this information, it is not possible to judge whether two shapes are
homologous. Therefore, we concluded that the results of these methods of analyz-
ing outlines cannot be used in phylogenetic systematics. However, there are outline
methods that use information from landmarks to improve the fit between the original
outline and its morphometric reconstruction (Bookstein and Green 1993; MacLeod
1999). Because the included landmarks could also be used to define comparable regions
or segments of the outline, our earlier conclusion regarding outline-based studies may
not apply to these methods.
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In viewof the continuing development of these and othermorphometricmethods, we
reconsider the question of what kind of morphometric data can be used in phylogenetic
analyses. We begin by examining what information a phylogenetic analysis requires
of morphometric descriptions and the role that this information plays in the inference
of phylogenetic relationships. Our goal is to present a set of general criteria that
can be used to evaluate any method of morphometric analysis. Then we use those
criteria to evaluate several specific methods. Included in this survey are two methods
that produce descriptions of the relative locations of landmarks (shape coordinates
and partial warps), and three methods that produce descriptions of outlines (elliptical
Fourier analysis, eigenshape analysis, and extended eigenshape analysis). To illustrate
the methods, we use each to analyze the same data set: a small collection of mandibles
from several species of terrestrial squirrels (Sciuridae, Marmotini).

Requirements of phylogenetic analysis

Phylogenetic systematics is rooted in the concept of descent with modification (Hennig
1966). Descendant organisms acquire traits transmitted genetically from their ances-
tors. These traits may be modified by mutation and recombination, and passed on
to subsequent descendants. Accordingly, taxa sharing a recent common ancestor are
expected to share derived traits that they inherited from that ancestor. These traits
will not be found in other taxa because only the descendants of that ancestor have the
novel modifications. Similarly, modifications that occurred in a more distant ancestor
will be shared by a more inclusive set of taxa that are the descendants of that earlier
ancestor. That expectation is not always met because parallelism and convergence pro-
duce misleading similarities, that is, features that have multiple, independent origins.
Consequently, phylogenetic analysis is not a simple matter of reconstructing the nested
sets of monophyletic taxa, but a process of testing and re-testing hypotheses of homol-
ogy and monophyly. In other words, the existence of homoplasy forces systematists
to adopt an approach that tests hypotheses about the origin of similarities.
The concept of descent with modification is the key to understanding what kinds

of information morphometric descriptions must convey if those descriptions are to
play a role in phylogenetic inference. The traits used to infer phylogenies must be
features that can be transmitted from one generation to the next. That is, they must
be intrinsic features of individual organisms. As Pimentel and Riggins (1987) observe,
statistical parameters and axes computed by principal components analysis (PCA)
do not meet this requirement because these kinds of variables describe properties of
aggregates. Individuals do not have means or variances, or principal components. An
individual can be scored in terms that describe its distance from the mean, in units
of variance, in directions described by principal component axes (and can even be
scored on the principal components of a sample that did not include that individual);
but this description does not necessarily refer to attributes that the individual could
have inherited from an ancestor. Instead, this description specifies the location of the
individual in a morphometric space that is defined by an array of individuals and
measurements. A change in any component of that array, addition or removal of
any individual or measurement, would change every component of the description of
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the individual because the space, itself, would be different. Therefore, we agree with
Pimentel and Riggins (1987) that variables defined by the diversity of the sample that
happens to be on hand at the moment are not appropriate variables for an analysis of
phylogenetic relationships.
If the traits used in phylogenetic inference must be intrinsic features of individual

organisms, then the first requirement of any description is that it must convey infor-
mation that connects the trait to the organism. This criterion applies to qualitative
descriptions as much as it does to quantitative descriptions. We cannot judge whether
‘red’ is homologous if we do not know what feature is red. Only the specification
that ‘red’ refers to ‘feathers’ indicates which ‘red’ and ‘not-red’ objects are compa-
rable. This information that connects the trait to the organism (the specification of
‘feathers’) necessarily entails another hypothesis of homology. In this example, that
hypothesis is the homology of ‘feathers’ at some level that includes all the taxa in the
current study. If that hypothesis is wrong, the question of which state of the charac-
ter ‘feathers’ diagnoses a monophyletic group becomes non-sensical because there is
no group to divide. In practice, the hypothesis that the character diagnoses a mono-
phyletic group often goes untested because the study is focussing on the more recent
divergence diagnosed by the states of the character (colour of feathers, not origin of
feathers). Even so, the character whose states are to be compared should be described
in enough detail that the hypothesis of its homology can be evaluated should other
data indicate such an analysis is warranted (e.g., discovery of numerous congruent
differences in feather structure).
Although we agree with Pimentel and Riggins (1987) that the traits used in phylo-

genetic inference must be intrinsic features of individual organisms, we do not agree
with their claim that all measurement data must be rejected because measurements
are abstractions, not anatomical parts. The fact that ‘parts’ are also abstractions is
readily apparent in the empirical studies detailing complex webs of anatomical con-
nections and functional interactions (van der Klaauw 1948–1952; Dullemeijer 1958;
Liem 1973; Lombard andWake 1986; Schaeffer and Lauder 1986; Wake 1993). These
kinds of analyses represent a clear challenge to the conventional notion that anatom-
ical parts can be delimited by tracing boundaries between different types of tissues.
In fact, Moss and colleagues (Moss and Young 1960; Moss 1962; Moss and Saletijn
1969) take a novel approach to delimiting parts – their functional matrix paradigm –
and demonstrate just how different the list of parts can be. Furthermore, the particu-
lar kind of abstraction that is the focus of Pimentel and Riggins’ (1987) objection, the
measurement of a length, underlies the qualitative assessment of ‘long’ vs. ‘short’ as
much as it does the quantitative assessment of ‘greater than 10 cm’ vs. ‘less than 10 cm’.
Because systematists routinely engage in such abstractions in the course of qualitative
description, they cannot count as a reason to reject quantitative descriptions.
The requirement that phylogenetic inference be based on intrinsic features of organ-

isms only means that the description of a measurement must specify a unique location
on the organism. This is not an onerous requirement or even a particularly remarkable
one. It is nothing more than a requirement to avoid vagueness by specifying which dis-
tance was measured among the myriad similar measurements that are possible. For
example, skull width could be measured at a number of points, and thus an individual
could have several different values for skull width. This ambiguity can be avoided by
specifying that the width should be measured between particular end points, such as
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the distal tips of the mastoid processes. This specificity also helps to insure that the trait
passes Patterson’s (1982) test of conjunction. A trait fails this test, and the hypothesis
of homology is rejected, if different states occur in the same organism. If the endpoints
of a measurement are carefully defined, the only way for the measured length to fail
the test is for the endpoints to fail the test. In the example above, skull width at the
mastoid process would fail the test only if a taxon had two pairs of mastoid processes.
Patterson’s other tests of homology are similarity and congruence. As de Pinna

(1991) points out, similarity usually is not used as an explicit test, but as a criterion for
proposing a hypothesis of homology. Conjunction can also be considered an element
of similarity because the test is essentially an evaluation of topographic similarity. This
leaves congruence as the only actual ‘test’ of hypotheses of homology. Because the test
of congruence is applied to hypotheses of homology – that are based on judgements
of similarity and differences – the testing of congruence does not concern us here. The
focus of this chapter is the justification for submitting a trait to the test of congruence
in the first place. Thus, we are concerned only with the evaluation of similarity, and
the question of whether morphometric description can provide a legitimate basis on
which to formulate a hypothesis of homology.
It is important to bear in mind that similarity is a relative description, both in

general usage and in phylogenetic systematics. Characterizing two things as ‘similar’
is meaningless; one must also indicate what would be ‘dissimilar’. In phylogenetic
systematics, ‘similar’ means sharing a derived trait and ‘dissimilar’ means lacking that
trait. In other words, ‘similar’ is shorthand for ‘sharing a similar divergence from a
more primitive condition’. Again, one must know what the more primitive condition
is. However, the inference that one condition is primitive and the other is derived,
ultimately depends on the structure of the phylogenetic tree.
A preliminary hypothesis could be based on outgroups or ontogenetic sequences,

but it is not unusual for these hypotheses to be rejected. In any event, the inferences of
ingroup and outgroup, or primitive and derived, are phylogenetic hypotheses that are
beyond the scope of any morphometric analysis and beyond the scope of this volume.
The issue addressed in this chapter is whether morphometric methods can provide
the information needed to judge similarity according to the relevant criteria. This
does not mean all cases must be unambiguous. It does mean that it must be possible
to provide an unambiguous description of the alternative states, and formulate an
explicit hypothesis of common ancestry that can be falsified by incongruence with the
phylogeny. In this regard, ‘length greater 10 cm’ is better than ‘long’ as a character-
state description because it more clearly delineates the criterion for judging similarities
and differences.
There are other objections to using morphometric variables, but most of them

concern an expectation that homoplasy in these traits is even more common than
homoplasy in qualitatively described traits (Felsenstein 1988; Mickevich and Weller
1990; Garland and Adolph 1994). This expectation is usually justified by referring to
studies that show such traits are determined by multiple loci, or by demonstrating that
different combinations of contributing elements could achieve the same net effect, as
in ratios. However, this is not an argument against quantitative evaluation, it is an
argument against the homology of the kinds of traits that are commonly subjected to
quantitative analysis. If the same limb length can be accomplished by different com-
binations of limb segment lengths, then perhaps limb length is not homologous. It is
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also possible that the limb length in question is primitive and the proportions of the
segments were modified while the total length remained constant. The only way to
choose between these alternatives is to test whether limb length or limb proportion is
congruent with the phylogeny.
Pimentel and Riggins (1987: 201) remarked that ‘Good cladistics like all good sci-

ence is dependent upon good data’. Their implication is that good characters are
dependent on good description. We concur, but would also point out that the require-
ments for good description are the same whether the traits are described qualitatively
or quantitatively. There must be information in the description that unambiguously
specifies the location of the trait on the organism. That information supplies the basis
for comparing the observed values and formulating hypotheses of transformation and
homology.

Mandibles and landmarks

Before comparing the abilities of different morphometric methods to anchor shape
descriptions to anatomical features, we present here a brief introduction to squirrel
mandibles. We have also included a brief discussion of the landmarks used in some of
the analyses.
As is typical for rodents, the lower jaw holds a large incisor and a relatively small

number of cheek teeth – three molars and a premolar (Figure 6.1). Anterior to the
cheek teeth, the bone is little more than a sheath for the incisor. The root of the incisor
curls below the cheek teeth and up into the articular process. At the posterior end
of the articular process is the condyle, that articulates with the skull at the posterior
end of the zygomatic arch. The articular process projects posteriorly more than dor-
sally, so that the condyle is not far from the occlusal plane of the cheek teeth. Rising
between the molars and the articular process is a rather short and thin coronoid pro-
cess. The small size of this process reflects the small size of the temporalis muscle, the
jaw closing muscle that inserts on it. This muscle originates on the side of the brain
case and pulls up and back. Below the articular process is a large angular process
that provides some of the insertion area for the masseter muscle, another jaw closing
muscle, that also occupies most of the area below the cheek teeth. One of the principal
portions of the masseter originates on the zygomatic arch and pulls almost straight

Figure 6.1 Outline of Spermophilus variegatus mandible with locations of landmarks.
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up. Another portion originates on the side of the rostrum and pulls the jaw forward
and up.1

For the landmark-based analyses, we identified nine topographical features that
could be located reliably in all specimens in the study. We did not use the posterior
corner of the articular process, behind the condyle, because a distinct projection in
this direction is not found in all taxa. Also, we did not use points on the teeth because
their locations are affected by the amount of wear, which differs according to the
abrasiveness of the diet. There are additional points that could have been used as
landmarks, such as the mental foramen. To increase the comparability of analyses
that use landmarks and those that do not, we used only landmarks that are located on
the outline of the jaw.
Because the purpose of landmarks (and the reason they are called landmarks) is to

represent comparable locations on the anatomy of the organism, we chose points that
can be described as unique locations on distinctive anatomical features. For example,
landmark 5 is on the elliptical condyle of the jaw joint at the anterior end of the
ellipse. Perception of the location of this point may be influenced by the orientation
of the specimen relative to the viewer (so care was taken to place all specimens in
the same orientation for digitizing), but the definition of the point is unambiguous.
To insure that this point is comparable, we verified that all the squirrels examined
for this study have an elliptical condyle with the long axis approximately parallel to
the anteroposterior axis of the animal. Based on their uniformity, we infer that the
elliptical shape and its orientation are primitive for these squirrels, that is, homologous
for a group that includes at least these squirrels. Thus, this landmark is a distinctive
anatomical feature, one that is present in all taxa in the study and one which we infer
was present in the most recent common ancestor of these taxa. Accordingly, we regard
landmarks of this type as comparable features in their own right and not as abstract
geometric conventions for the representation ofmore conventional anatomical features
(contra MacLeod 1999).
Similar arguments apply to all of the landmarks used in this study. Landmarks 2, 3

and 8 are at the intersections of conventional anatomical structures; these structures
and their intersections are found in all specimens in the study. Landmarks 4, 6 and 7
are at the tips of processes and can also be recognized as points of maximal curvature
on those processes. These latter three points also have mechanical and anatomical
significance as the limits of the attachment areas for their respective muscles. The
consistent relationship between the musculature and the bony processes is evidence
in support of the homology of the processes, and provides an additional motivation
for including landmarks on these processes in the morphometric analysis, but they
are not immediately relevant to the inference that these landmarks are comparable.
That inference depends only on the consistent shapes of those processes. In fact, the

1 Additional details about muscle attachment areas and orientations in squirrels can be found in Ball and
Roth (1995) and in Thorington and Darrow (1996). Previous studies of marmotines (ground squirrels,
marmots and prairie dogs) suggest there has been an evolutionary transition from a diet that includes
primarily fruit and nuts to a diet that includes primarily grasses, herbs and their seeds (Howell 1938;
Bryant 1945; Black 1963). In other mammals, similar shifts in diet are associated with such changes in
jaw morphology as general elongation, enlargement and posterior shift of the tooth row, and expansion
of muscle attachment areas (Greaves 1978; Janis and Ehrhardt 1988).
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inconsistency of the bending of the coronoid process is the primary reason we did not
recognize other landmarks on that structure (between 3 and 4, or between 4 and 5)
even though that information would be valuable for understanding the relationship
between the shape of this structure and its function.
The two landmarks whose comparability might seem most dubious are 1 and 9 on

the opening of the incisor alveolus. These landmarks are points at the dorsal and ventral
extremes of the aperture, but they are not simply points on a diameter across a circular
aperture. If they were, there would be legitimate questions about their independence as
well as about their comparability (Bookstein 1991). However, the medial wall of the
alveolus is flattened where it contributes to the mandibular symphysis (the articulation
of the right and left jaws). Consequently, the landmarks are actually corners in the
wall of the alveolus and can be recognized independently. If the coordinates of these
points are correlated, it is because the evolution of these features is correlated, not
because one point is defined in relation to the other.
In summary, all of the landmarks described in this section meet the conditions for

comparability set out in the previous section. All are defined with reference to specific
anatomical features that a systematist familiar with the group can easily identify. In
fact, all of the landmarks are specific anatomical features, themselves. Furthermore,
this information about these anatomical features, our inferences regarding their homol-
ogy can be tested, either by analyzing a more complete set of taxa or by analyzing a
more inclusive set of taxa.

Comparison of morphometric methods

The focus of these analyses is to determine which methods are suitable for phylo-
genetic analysis, not to provide a complete analysis of the evolutionary history of
mandibular shape in marmotine squirrels. Accordingly, the specimens in this study
represent a small number of functionally and morphologically differentiated taxa.
Based on previous systematic studies (Bryant 1945; Black 1963), one of the ground
squirrels (Spermophilus variegatus) represents the sister group to the monophyletic
group containing all of the other marmotines analyzed here. Therefore, the focus of
the comparisons will be on identifying features shared by some of these marmotines
that distinguish them from S. variegatus. However, because these marmotines repre-
sent only a small part of the morphological diversity in the group, inferences about
evolutionary transformations based on these data should be regarded as preliminary
hypotheses and not definitive statements about marmotine evolution.

Bookstein shape coordinates

Bookstein shape coordinates (Bookstein 1991) are the location of one landmark with
respect to a line defined by two other landmarks (the baseline). Each specimen is
rescaled and rotated so that the baseline points have coordinates (0, 0) and (1, 0).
After this rotation, the x- and y-coordinates of every other landmark represent dis-
tances away from one end of the baseline in each direction, in multiples of baseline
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Figure 6.2 Analysis of shape coordinates, (A) Triangle described by shape coordinates of landmark 7,
(B) Scatter-plot of shape coordinates for landmarks 6, 7 and 8 in all seven marmotines.
Symbol legend: filled circle – S. variegatus, open circle – S. franklini, filled triangle – S. tride-
cemlineatus, open triangle – S. spilosoma, filled square – S. columbianus, open square –
C. ludovicianus, filled diamond – M. flaviventris.

length. Differences between specimens in the location of these landmarks relative to the
baseline can be displayed in a bivariate plot of the shape coordinates. Each landmark
can also be viewed as the apex of a triangle whose base is the baseline. The shape
coordinates describe the shape of that triangle, so differences between two specimens
in the shape coordinates of a landmark represent a difference in the shape of that
triangle.
Figure 6.2A shows the triangle representing the location of landmark 7, on the

angular process, relative to the baseline connecting landmarks 1 and 5. The shape
coordinates for this landmark (Figure 6.2B) indicate that in Cynomys ludovicianus
(black-tailed prairie dog) and Marmota flaviventris (yellow-bellied marmot) this cor-
ner of the angular process is more ventrally located relative to the length of the baseline
than it is in S. variegatus or any of the other four species of Spermophilus (ground
squirrels). Based on this information, we could hypothesize that the relatively ventral
location of the medial corner of the angular process is a homology shared by a group
that includes the prairie dog and marmot and excludes the five ground squirrels. How-
ever, before doing that it is important to remember that shape coordinates are not the
absolute position of the landmark, but its position relative to the baseline. There is
a considerable portion of the jaw between the baseline and landmark 7. The shape
coordinates do not indicate whether this corner is lower because the angular process
is deeper, or because the body of the jaw is deeper (between landmarks 3 and 8),
or perhaps because of some combination of general deepening of the entire jaw and
relatively greater deepening of the angular process.
Combining information from several landmarks can provide additional information

that can be used to more narrowly circumscribe the region of shape change. In the case
of landmark 7, the locations of landmarks 6 and 8 should be particularly informative
because they are also on the angular process. Figure 6.2B shows that in C. ludovi-
cianus, all three landmarks are more ventral relative to baseline length than they are
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in S. variegatus. Therefore, the body of the jaw, not the angular process, is relatively
deeper in C. ludovicianus than in S. variegatus. InM. flaviventris, landmark 8 does not
move down with landmarks 6 and 7; instead, landmark 8 moves forward relative to
the baseline. Thus, the deepening relative to S. variegatus occurs in the angular process
of M. flaviventris, not in the body of the jaw. Similarly, comparison of the shape coor-
dinates of these three landmarks in other taxa indicates that in three ground squirrels
(S. franklini, S. spilosoma and S. tridecemlineatus) the angular process is relatively
longer than in S. variegatus. Furthermore, the locations of landmarks 6 and 7 indicate
that the posterior part of the process is more elongate in S. spilosoma, whereas the
anterior is more elongate in the other two.
This analysis demonstrates that one triangle of landmarks is insufficient to pin a

shape difference to a particular region on a form. Therefore, shape coordinates for
a single triangle cannot be directly translated into a character; they do not provide
enough information to support a hypothesis about the homology of the observed
shapes. However, examination of several shape coordinates does allow detection of
the location and extent of a shape difference. This more complete description can
be used to construct characters for phylogenetic analysis. In the example above, we
described four shape differences distinguishing various taxa from S. variegatus. Based
on one of these differences we could hypothesize that the relatively elongate shape of
the angular process shared by S. tridecemlineatus and S. franklini is a homologous
feature that indicates these two taxa share a recent common ancestor not shared by
the other taxa. Each of the other three shape differences distinguishes only one species
from S. variegatus. These three taxa may have autapomorphic shapes, or they may
share these derived shapes with taxa that were not included in this analysis.

Partial warps

In the analysis using shape coordinates, we inferred the localized shape changes from
comparison of changes in the relative locations of several landmarks. Thin-plate spline
analysis provides a means of precisely describing specific geometric patterns of rela-
tive landmark displacements (Bookstein 1989, 1991; see also Bookstein 1996; Rohlf
1996). In thin-plate spline analysis, every shape is described in terms of its differences
from a reference form. More technically, each observed arrangement of landmarks is
a point on a complexly curved multidimensional surface called Kendall’s shape space.
The number of dimensions of this surface is a function of the number of landmarks.
For two-dimensional forms, the number of dimensions of Kendall’s shape space is
2p − 4, where p is the number of landmarks. Shapes described by different numbers
of landmarks exist in different spaces with different numbers of dimensions. Because
Kendall’s shape space is curved, it has a non-Euclidean geometry. This means that
many commonly used methods of analyzing shape variation are not immediately avail-
able. The process of defining components of shape and shape variation is equivalent
to defining axes of a coordinate system. In Kendall’s shape space, as on any curved
surface, straight lines that are initially parallel will eventually converge. Consequently,
the same amount of shape difference at different places on the surface will have dif-
ferent descriptions in terms of the coordinate system. Thin-plate spline analysis is one
way of projecting locations of shapes in Kendall’s shape space onto a Euclidean space
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that is tangent to Kendall’s shape space. The reference form defines both the point of
tangency and the axes of the tangent space.
In thin-plate spline analysis, the axes of the tangent space are computed by eigenanal-

ysis of the bending-energy matrix, which is a function of the interlandmark distances
among all the landmarks of the reference form. Eigenanalysis is a commonly used tech-
nique for computing the principal axes of a distribution. The interpretation of those
axes depends on the kind of data contained in the matrix that was analyzed. In PCA
the matrix under analysis represents observations of many traits in many individuals;
therefore, the result is a new description of the diversity in that sample of individuals.
The original variables described dimensions of variation; therefore the new variables –
the principal components axes – also describe dimensions of variation. Principal com-
ponents scores represent the projections of specimens (the original specimens or new
specimens) onto those axes. In thin-plate spline analysis, the matrix under analysis is a
function of the relative positions of landmarks in the reference form; therefore the axes
represent potential rearrangements of those landmarks. Scores denoting the projec-
tions of other specimens onto these axes represent of descriptions of the arrangements
of landmarks in those specimens as rearrangements of the reference form. Because
the thin-plate spline axes are functions of the shape of the reference form and are not
dependent on an analysis of variability, arguments against using scores on principal
components axes in phylogenetic systematics (Zelditch et al. 1995) do not apply to
scores on thin-plate spline axes.
As we mentioned above, the axes produced by the thin-plate spline analysis are

computed from the relative positions of landmarks in one form and represent pat-
terns of possible change in the relative positions of landmarks. These axes are called
partial warps. The patterns of relative landmark displacement they represent can be
illustrated by multiplying the pattern by an arbitrary vector. Figure 6.3 illustrates one
such pattern computed using the specimen of S. variegatus as the reference form. The
scores obtained by projecting a second shape onto the partial warps would indicate the
observed contribution of that pattern of relative landmark displacement to the total
difference in relative landmark positions between the reference form and the second
form. Because the landmarks have x- and y-coordinates, the partial warps scores have
x- and y-components. Thus, partial warps scores are the x, y coefficients of the vector
that would be multiplied by the partial warp pattern to illustrate that component of
the actual difference between the two specimens (Slice et al. 1996).

Figure 6.3 Diagrammatic representation of a partial warp for the reference form, S. variegatus.
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Thin-plate spline analysis can also be described by analogy to the bending of an
idealized thin steel plate (hence the terms ‘bending energy’ and ‘warps’). Steel plate
tends to bend in a manner that minimizes both the total amount bending and the
energy required for that bending. In the analogy, the reference shape is a set of points
that can be pushed up or down orthogonal to the plane of the undeformed plate. The
difference in relative landmark positions between the reference shape and the second
shape represents the distances that the points on the plate will be pushed up or down.
The patterns of bending that can be detected using the vertical displacements of the
points representing the landmarks of the reference form are a function of the number of
landmarks and the distances between them. These patterns are called principal warps.
The number of principal warps may seem rather small, but all possible sets of relative
landmark displacements can be described by the sum of a combination of principal
warps, each multiplied by the appropriate magnitude. This is similar to the way in
which simple sine functions are summed to produce more complex waveforms.2

As discussed above, partial warps can be computed for any reference, including a
random scatter of points. To insure that descriptions are framed in terms that are
relevant to the biological issues under investigation, there needs to be a criterion for
choosing a reference form that is appropriate to those issues. Earlier in this chapter
we argued that the characters in a phylogenetic analysis must refer to features of an
organism. If we are to claim that partial warps, or combinations of partial warps,
represent features of an organism, then the reference should be a form that represents
an observed morphology. A reference form that is a mean of several species may not
resemble any observed form, especially if the species are quite different. Although we
would argue against using the mean of several species as reference shape for phyloge-
netic analysis when there are large gaps between the species, we do support the using
a mean computed from a more restricted array of specimens (i.e., representatives of a
single species or of an age group within a species). This may seem inconsistent with
our opposition to methods dependent on the axes of variation in a sample, but it is not.
The partial warps of the mean shape are computed without reference to the variation
around that mean. Differences of other specimens from the mean do not enter the
analysis until the computation of partial warps scores, that represent those differences
projected onto the partial warps defined by the mean. The argument can also be made
that the mean is a hypothetical construct not a direct observation, regardless of the
diversity in the sample. Although this is technically correct, when the sample size is
large and the variance is small, it is likely that several individuals will have shapes that
are indistinguishable from the mean. In addition, it can be argued that the variation of
such a sample represents random noise and therefore the features of the mean actually
are the features of each individual in the sample. Of course, one can always side-step
all of these issues by using the individual closest to the mean as the reference form. If
the reference is a single specimen, then there is no question that the partial warps refer
to features of an organism.

2 In some older literature (e.g., Bookstein 1991; Swiderski 1993), the term principal warps was applied to
both the three-dimensional patterns of the bending steel plate and the two-dimensional patterns of land-
mark displacements now called partial warps, and partial warps scores were simply called partial warps;
mathematically, the two-dimensional partial warp is a projection of the three-dimensional principal warp.
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One of the more attractive features of thin-plate spline analysis is that the interpo-
lation function used to compute the bending of the thin steel plate can also be used to
compute deformed grid pictures in the style of D’Arcy Thompson (1917) to illustrate
differences between shapes. Figure 6.4 shows deformed grids illustrating differences in
jaw shape between S. variegatus and the other six marmotines. All shapes are rescaled
to the same centroid size (the square-root of the sum of the squared distances of the
landmarks from their centroid) and each second form is rotated to an optimal position
with respect to the reference form, S. variegatus (one that minimizes the square-root
of the sum of the squared distances between corresponding landmarks). Grids for two
of the ground squirrels, S. franklini and S. tridecemlineatus, exhibit very little defor-
mation. There is some uniform stretching along the anteroposterior axis, but there
is a similar amount of stretching in the grids of other species. Of the remaining four
species, S. spilosoma appears to be distinct from the other three. In S. columbianus,
C. ludovicianus and M. flaviventris, the gridlines are compressed between landmarks
3, 4 and 5, which indicates that the tips of the coronoid and articular processes are
relatively closer to the back of the tooth row. In addition, the gridlines are dilated
between landmarks 6, 7 and 8, which indicates expansion of the angular process. In
S. spilosoma, the only posterior landmarks that undergo much relative displacement
are 5 and 6. Another feature unique to S. spilosoma is a dorsoventral expansion
between landmarks 1 and 9, reflecting the relatively thicker incisor of this species.
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Figure 6.4 Deformed grids illustrating changes in relative landmark locations, comparing each specimen
to S. variegatus.
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Although S. columbianus, C. ludovicianus and M. flaviventris share some general
similarities in the deformations of the posterior region of the jaw, closer examination
also reveals several differences. Three warps account for most of the transformations
in this region (Figure 6.5). The first is the largest scale warp (partial warp 1), that
describes contrasting displacements of landmarks in the middle of the form relative to
landmarks closer to the ends of the form. InM. flaviventris, the partial warp scores for
this feature indicate a large anteroposterior component, a gradient of relative posterior
expansion. (A similar, but smaller, expansion is also found S. spilosoma). Partial

Figure 6.5 Scatter plots of partial warp scores for the three largest scale warps, and deformed
grids illustrating that component of the deformation of M. flaviventris. Symbol legend: filled
circle – S. variegatus, open circle – S. franklini, filled triangle – S. tridecemlineatus, open
triangle – S. spilosoma, filled square – S. columbianus, open square – C. ludovicianus, filled
diamond – M. flaviventris.
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warp 2, the next largest scale feature, also accounts for much of the transformation in
this region. This feature is a little more complex: the landmarks on the tooth row and
the landmark at the posterior end of the angular process move in one direction, the
landmark at the anterior end of the angular process and on the tips of the coronoid and
articular processes move in the opposite direction. For this feature, S. columbianus,
C. ludovicianus and M. flaviventris have large x-scores, which can be most simply
described as a transformation of this rectangle of landmarks into a trapezoid. The
dorsal landmarks (2, 3, 4 and 5) move closer together, the ventral landmarks (6, 7
and 8) move farther apart. In addition, displacements of landmarks 2 and 3 relative
to 1 and 9 at the base of the incisor indicate a relative elongation of the anterior-most
region of the jaw. The third feature accounting for substantial transformation in this
region is partial warp 3. This feature is similar to partial warp 2, but with the corners
of the rectangle closer together (landmarks 4, 6, 7 and 8). Partial warp 3 also involves
contrasting displacements of landmarks 1 and 9 at the base of the incisor. The scores for
this component indicate that it accounts for a substantial portion of the transformation
of M. flaviventris, and a smaller proportion of the change in S. columbianus.
One possible interpretation of these three partial warps is that they represent three

distinct characters to be analyzed separately just as one would analyze differences in
forelimbs and hindlimbs separately. Using S. variegatus as the outgroup to all the
others, as we did when analyzing the shape coordinates, scores on partial warp 1
indicate a small difference may be shared by S. franklini and S. tridecemlineatus.
A much larger difference in the opposite direction may be shared by S. spilosoma and
M. flaviventris (withM. flaviventris having amuch greater divergence in this direction).
The −y component of this change may also be shared by S. columbianus. Scores on
partial warp 2 indicate there are relatively small differences in this feature among
four of the marmotines, and a much larger divergence from S. variegatus that may
be shared by S. columbianus, C. ludovicianus and M. flaviventris. Scores on partial
warp 3 indicate S. spilosoma diverges from S. variegatus in the opposite direction of
the other taxa. Interestingly, most of the taxa fall on a line running from S. spilosoma
toM. flaviventris, which may indicate that the only taxon diverging from S. variegatus
in a new direction is S. franklini.
As we argued before (Swiderski et al. 1998), many of the commonly used coding

protocols can be used, withminormodifications, to assign character state codes to taxa
based on these scatter plots. The number of states recognized for each character would
depend on the variation within each species and coding protocol that is used. We have
not assigned explicit states in this example because all methods require more than
one specimen per species, and because our purpose is not to continue the discussion
of coding methods, but to show that the coding would be based scores that refer to
specific shape differences in well-defined anatomical regions.
One of the arguments against treating each partial warp as a separate character

is that this decomposition of shape differences is biologically arbitrary, that is, they
have no necessary relationship to the patterns of variation and evolutionary change
(Rohlf 1998). As Rohlf points out, most partial warps describe transformations of
broadly overlapping regions and most specimens have scores on several overlapping
warps. Naturally, these observations raise concerns about the independence of the
characters the partial warps represent. The problem of character independence is
not new to systematists; the journals and textbooks contain many discussions of this
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problem and methods of addressing it. However partial warps present a much more
complex problem. Because of their overlap, they can sum to quite different transfor-
mations. As Figure 6.5 shows, high scores on partial warps 2 and 3 can represent
large changes in angular process associated with lesser changes elsewhere in the jaw.
Figure 6.6 shows combinations of these two warps as vectors of landmark displace-
ment for three of the specimens. In M. flaviventris, that has high scores on both
warps, the entire angular process appears to be relatively longer than in S. variegatus.
In contrast, C. ludovicianus has a high score only on partial warp 2, and only the
posterior part of the process appears to be relatively longer than in S. variegatus. In
S. spilosoma, that has negative scores on partial warp 3, the anterior of the process is
actually relatively shorter than in S. variegatus. Furthermore, these three changes in
the shape of the angular process appear to be associated with quite different changes
in the rest of the jaw. Thus, the partial warps are not necessarily equivalent to famil-
iar anatomical features, and differences in partial warp scores cannot automatically
be translated into hypotheses of homologous shapes. However, decomposition of the
total deformations into their component warps can be used as a tool for investigat-
ing possible relationships among anatomical regions because the warps refer directly
to the specific features of anatomy archived as landmarks. Therefore, hypotheses of
homologous shapes can be based on the results of a partial warps analysis.

Figure 6.6 Vectors of relative landmark displacement representing the sum of partial warps 2 and 3.
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On occasion, a principal warp may, fortuitously, correspond closely to a familiar
anatomical feature. In this study, such a feature is partial warp 4, which describes
changes at the base of the tooth row relative to the rest of the jaw (Figure 6.7). Both
S. columbianus and C. ludovicianus have large scores on the x-axis reflecting similar
elongation of the tooth row relative to the rest of the jaw. There also are noticeable
displacements of landmarks 4, 5 and 6 relative to one other, but these are small in
comparison to the relative displacements of these landmarks implied by other warps.
Furthermore, no other warp or combination warps accounts for the relative elongation
of the tooth row seen in the total deformations (Figure 6.4). Under these circumstances,
it seems reasonable to treat the individual warp as the description of that specific
anatomical difference.
The inferences of which taxa share derived features based on the partial warps are

somewhat different from the inferences based on the shape coordinates. This differ-
ence does not represent a conflict between the methods, nor does it represent a flaw in
eithermethod. Instead, the differences between these results reflect the fact that they are
describing different features. No warp refers to only a single triangle of landmarks.
Each warp refers to relative displacements of all nine landmarks. This information
described by the partial warps is present in the shape coordinates, but it is not easily
detected from an inspection of them. For example, the shape coordinates for land-
mark 3 indicate it is located more posteriorly in S. franklini, S. tridecemlineatus, S.
columbianus andC. ludovicianus, but shape coordinates for landmark 2 indicate it also
is located more posteriorly in S. franklini and S. tridecemlineatus (Figure 6.8). Thus,

Figure 6.7 Deformed grid for partial warp 4 in C. ludovicianus, illustrating relative elongation of
tooth row.

Figure 6.8 Scatter plot of shape coordinates for the landmarks at each end of the tooth row in all
seven marmotines. Symbol legend: filled circle – S. variegatus, open circle – S. franklini, filled
triangle – S. tridecemlineatus, open triangle – S. spilosoma, filled square – S. columbianus, open
square – C. ludovicianus, filled diamond – M. flaviventris.
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simultaneous examination of the two sets of shape coordinates reveals the relative
elongation of the tooth row in S. columbianus and C. ludovicianus, and also a poste-
rior displacement of the entire tooth row in S. franklini and S. tridecemlineatus. Our
descriptions of the shape coordinates and warps describing changes of the angular
process do not match so closely because no single warp closely corresponds to this
anatomical region.
More important than the differences between the shape features reported by these

two analyses is the similarity in the way landmarks were used to specify the anatom-
ical features to which the scores refer. Because the shape changes described in each
analysis could be pinned to specific anatomical features, we could be certain that we
were evaluating comparable features. For this reason we conclude that partial warps
and shape coordinates can be a basis for formulating hypotheses of homology and
monophyly.

Fourier analysis

The methods described above evaluate only the relative positions of a small number of
points. Numerous morphometricians have pointed out that other shape information,
such as the curvature of the outline or the texture of the surface, is not included in
those landmark-based analyses (Ehrlich et al. 1983; Read and Lestrel 1986; Bookstein
and Green 1993; Lestrel 1997a; Pesce Delfino et al. 1997; MacLeod 1999). It may be
possible to interpolate changes in the curvature of the coronoid process or the incisor
alveolus from the thin-plate spline deformation grids, but information about the actual
differences in outline curvatures were not used to compute the deformation grids.
One approach to describing an outline (or any curved line) is to decompose it into

a Fourier series, which is a trigonometric series of the general form:

f (θ ) = A0 +
N∑
n=1

an cos nθ +
N∑
n=1

bn sin nθ , (6.1)

(Detailed expositions of Fourier methods can be found in Tolstov 1962, Davis 1989,
Lestrel 1997b, and references therein). Values of θ range from 0 to 2π , and values
of n are positive whole numbers ranging from 1 to a maximum of N, which is 1

2 the
number of digitized points. Each outline is described independently, and comparisons
among outlines are based on the values of the coefficients an and bn. When n = 0,
f (θ ) is the constant A0, which represents the best fitting straight line (open curves) or
circle (closed outlines). The goodness-of-fit criterion is the minimum of the sum of the
squared distances of the digitized points from the reconstructed curve.
Each increment of n represents the frequency of a periodic function, commonly

called a harmonic, that is added to the constant to improve the fit of the reconstructed
curve to the digitized points. For example, when n = 1, the function completes one
cycle between the starting point and ending point of the curve. The amplitude of
the nth harmonic is

√
a2n + b2n, and represents the contribution of that harmonic to the

description of the total form (specifically, the proportion of the squared deviations of
the digitized points from the constant that is explained by the harmonic). The coeffi-
cients an and bn are also determined by the least-squares criterion. Each harmonic with
an amplitude greater than zero produces some improvement of the fit of the recon-
struction to the digitized points, but there need not be a steady decline in the increment
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of improvement of fit. If the digitized outline is highly corrugated (like the suture line
of an ammonite), the harmonics with the highest frequencies could be among the ones
with the highest amplitudes. In addition to amplitude, the coefficients an and bn can be
used to compute the phase angle (tan−1 (an/bn)), which represents the position of the
starting point of the harmonic relative to the starting point of the digitized outline. If
the shapes being compared have been rescaled to the same size and rotated to the same
orientation, the phase angle provides a means of checking whether a given harmonic
refers to the same anatomical feature on the outline.
Two forms of Fourier analysis are commonly used to describe closed outlines. In

the older method, the outline is digitized in equal angular increments around a central
point and points on the outline are described in polar coordinates. This method cannot
be used to analyze complex forms in which a radius intersects the outline at more
than one point. Furthermore, if the outline is digitized in large angular increments,
narrow projections could be excessively smoothed, or missed entirely. In Elliptical
Fourier Analysis (Kuhl and Giardina 1982; Rohlf and Archie 1984; Ferson et al.
1985), points on the outline are described in the more familiar x- and y-coordinates,
and each coordinate is computed by a Fourier series:

x(t) = A0 +
N∑
n=1

an cos nt +
N∑
n=1

bn sin nt, (6.2)

y(t) = C0 +
N∑
n=1

cn cos nt +
N∑
n=1

dn sin nt, (6.3)

A0 and C0 are the coordinates of the outline’s centroid; t ranges from 0 to 2π. The
name Elliptical Fourier Analysis refers to the first term of the series, which describes
an ellipse; successive terms account for deviations from that ellipse. Although Ellip-
tical Fourier Analysis uses twice as many coefficients to describe the same form, this
disadvantage is outweighed by the relative ease of computing those coefficients, and
by the greater variety of forms that can be analyzed.
The coefficients produced by Elliptical Fourier Analysis are sensitive to the position

of the first point digitized on the outline, and to the size, location, and orientation of
the outline in the coordinate space used for digitizing. The effects of this sensitivity on
comparative studies can be minimized by performing a few simple operations that are
determined by the ellipse described by the first term of the Fourier series (Kuhl and
Giardina 1982; Ferson et al. 1985). Size is standardized by dividing the coordinates of
the outline points by the square root of the area of the ellipse. Location and orientation
are standardized by translating and rotating each form so that the ellipse is centered on
the origin and the long axis of the ellipse is aligned with the x-axis. Starting position is
standardized by changing the start of the sequence of points on the outline to a point
at the end of the ellipse in the positive x-direction. Ferson et al. (1985) note that these
procedures have the consequence of making the alignment of outlines dependent on
their shapes.
For our analysis of marmotine jaws, we digitized 170 points on each outline. As in

the analyses using shape coordinates and partial warps, the incisors were not digitized.
Figure 6.9 illustrates outlines computed from 1, 2 and 50 harmonics for three of the
specimens. Typically, elliptic Fourier analysis produces very accurate reconstructions
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Figure 6.9 Outlines of mandibles reconstructed by Fourier harmonics, (A) S. variegatus, (B) M. fla-
viventris, (C) S. tridecemlineatus. Legend: circles – one harmonic, triangles – two harmonics,
solid line – 50 harmonics.

of the original outline with substantially fewer harmonics than the maximum. This
proved to be the case for all of our 50 harmonic reconstructions (well below the
maximum of 85). Previous studies have taken advantage of this property to eliminate
digitizing error or to remove artifacts introduced by digital imaging (e.g., Ferson et al.
1985; Lestrel and Huggare 1997). In these studies, least-squares analysis of the dif-
ference between the computed outline and the digitized data is used to produce an
objective goodness-of-fit criterion to determine how many harmonics are sufficient to
describe the outlines.
In each of the three cases shown, the outline has a different orientation with respect

to the coordinate grid. This is because the ellipse described by the first harmonic has a
different relationship to the outline. In all three forms, the negative end of the x-axis
passes near the lower edge of the opening of the incisor alveolus. The positive end of this
axis is near the lower edge of articular process in S. variegatus and S. tridecemlineatus.
In M. flaviventris, the positive end of the axis is about midway between the articular
and angular processes. This means that the ellipse is describing a different aspect of
shape in each form, especially in M. flaviventris. The mandibles of both S. variegatus
and M. flaviventris may be deeper than the mandible of S. tridecemlineatus, but they
are deeper in different directions.
The differences in the orientations of the first harmonic ellipses may seem rather

small, but they are quite important because they have implications for each subsequent
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harmonic. The second harmonic refers to the differences between the outline and ellipse
that can be described by a trefoil. Because the ellipses have different relationships to the
outline, so do the trefoils. The ellipses for S. variegatus and S. tridecemlineatus cover
much of the articular process, leaving the coronoid process projecting above and the
angular process projecting below. The triangular shape representing the sum of the first
two harmonics is a better fit to the coronoid and angular processes (and to the body of
the mandible), and a poorer fit to the articular process. In contrast, both the coronoid
and articular processes of M. flaviventris project above its first harmonic ellipse, and
consequently, this corner of the triangle projects farther above the ellipse than it does
in the other two cases. Similarly, the aspects of shape remaining to be described by
subsequent harmonics also differ among the specimens. These differences are most
noticeable at the lower right corner of the triangle, where different portions of the
angular process project beyond the triangle in each case.
The analyses shown here demonstrate that a given Fourier harmonic can refer to a

different aspect of outline shape for each specimen in a study. This lack of compara-
bility occurs because nothing in their computation anchors them to specific digitized
points. Fourier analysis is a procedure for using a series of progressively more com-
plex trigonometric functions to describe a smooth curve that passes through all of the
digitized points. Those functions are not associated with any particular set of points;
the coefficients are the values that minimize the sum of squared deviations of all the
points. Because there is no link between a harmonic and the locations of a specific
set of digitized points, the same harmonic can refer to different anatomical features
in different specimens even if all the points are landmarks in the strictest sense. Given
the lack of correspondence between Fourier harmonics and anatomical features, we
cannot envision any legitimate use of the coefficients of individual harmonics in a
phylogenetic study. Because the harmonic cannot be tied to the anatomy, it cannot
support a hypothesis about the homology of an anatomical feature. This means that
an individual harmonic cannot be interpreted as a character. If a harmonic cannot
be interpreted as a character, the values of its coefficients cannot support hypotheses
about the homology of the character’s states.
The only circumstances in which Fourier decompositions could be used in a com-

parative analysis would be when the shape is treated as a whole without concern for
the homology of its components. Then, one might use a plot of amplitude against
harmonic number to sort objects into different shape classes, for example, forms with
three lobes and those with four lobes. This kind of analysis could only be used if there
is no reason to suspect that any of the individual lobes are homologous. Even under
these conditions, the amplitude profile cannot be used to automatically classify shapes
because an outline with one large lobe and two small ones might be grouped with
outlines that have four lobes rather than with other outlines that have three lobes.

Eigenshape analysis

Zahn and Roskies (1972) observed that a complex curve can be described as a series
of steps in which the direction of the step is related to the direction expected of a
step around a circle. When a specimen is described with steps of equal length, size
(perimeter length) is represented by step length, and shape is represented by the set of
angles (φ∗) describing the deviation of each step from the expected direction. When



88 Donald L. Swiderski et al.

each specimen is described by the same number of equal length steps, size differences
are described by the differences in step length, and size independent shape differences
are described by the differences in the sets of φ∗ values. Eigenshape analysis (Lohmann
and Schweitzer 1990) is a procedure for using the sets of φ∗ values to analyze patterns
of shape variation. The core of eigenshape analysis is a singular value decomposition
of the covariance or correlation matrix computed from the descriptions of the individ-
ual specimens. The result is a set of orthogonal shape functions (eigenshape functions)
that describe patterns of shape variation in the sample, in order of decreasing con-
tribution to the total variance of the sample. These functions are vector multiples of
the eigenvectors of the original covariance or correlation matrix. Because the original
variables are a series of angles describing step directions relative to a circle, the eigen-
shape functions can be used to construct outlines that represent canonical patterns of
shape variation, called eigenshapes.
We have two objections to using the results of an eigenshape analysis in a phylo-

genetic analysis. Our first objection concerns the nature of the eigenshape functions.
Like principal components, eigenshape functions represent the axes of variation and
covariation in the sample at hand. Because the descriptors are features of the sample
distribution, not features of individuals, they cannot be used as a basis for inferring
homologies. Therefore, eigenshape functions cannot be interpreted as characters and
the scores of individuals on these axes cannot be interpreted as character states.
Our second objection concerns the use of a series of equal length steps to describe

the outlines of individual specimens. Specifically, we are concerned with the ability to
link a specific step to a specific anatomical feature. Below, we illustrate this problem
by comparing 50-step Zahn and Roskies functions for outlines of the lower jaws of
M. flaviventris and S. franklini (Figure 6.10). To make the description of step direction
more accessible, we have replaced φ∗ with φ, which relates the direction of each step to
the direction expected of a step along a straight line. In plots of φ against step number,
flat regions of the outline are represented in consecutive steps in the same direction;
in plots of �φ against step number, these regions are represented by consecutive steps
with no change of direction.
In the two outlines, and in their corresponding φ and �φ plots, the first five steps

describe the curvature of the diastema between the incisor and the premolar. After this
series, there is an abrupt change of direction as the outline turns to follow the base of
the tooth row. From this point, the outline turns upward to follow the anterior edge of
the coronoid process. Although the top of the coronoid is reached by step 14 in both
outlines, different numbers of steps are used to describe all other anatomical features.
Consequently, the same numbered step describes a different anatomical feature in the
two outlines. The lack of correspondence between step number and anatomical feature
is most evident in the φ and �φ plots between steps 15 and 30. The peaks and troughs
in these plots describe the abrupt changes of direction at the tips and bases of the three
posterior processes. In this region, a step number that refers to the tip of a process in
one organism refers to the base of process in the other organism.
Using the same number of steps to describe both outlines may be a convenient

method of partitioning their descriptions into separate size and shape components, but
it has several inconvenient consequences for comparisons of shape differences. One
consequence is that the number of steps used to describe a given feature in the outline
will reflect the proportion of the outline occupied by that feature. This might seem
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Figure 6.10 Information obtained from the Zahn and Roskies function, (A) Outlines, (B) Step direc-
tions, (C) Changes in step directions. (The step from the centroid to the outline has been
omitted.) Legend: circles – S. franklini, diamonds – M. flaviventris.

like a positive consequence because it implies that information about the relative size
of the features can be extracted from the number of steps. The number of steps seems
to suggest that M. flaviventris has relatively smaller coronoid and articular process
than S. franklini. The reality is that this information is not independent of the fact
thatM. flaviventris also has a relatively larger angular process. Because more steps are
needed to describe the angular process, fewer are available to describe the rest of the
jaw. In other words, a change in the number of steps required to describe one part of
the outline may actually reflect a change in a different part of the outline.
Use of the same number of steps may also impede the description of other aspects of

shape. In both specimens, the transition between the tooth row and coronoid process
occurs at the same step number. This gives the misleading impression that coronoid
process is the same relative distance from the incisor alveolus; however, the base
of the coronoid is actually relatively closer to the alveolus in M. flaviventris. The
true distance between these features is obscured by both the larger number of steps
occupied by the angular process and by the relatively deeper curvature of the diastema
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in M. flaviventris. Differences in the shapes of the coronoid and articular process
are also obscured by the smaller number of steps allocated to their descriptions in
M. flaviventris. Because so few steps are used to describe the coronoid process of
M. flaviventris, it appears to lack the sharp, recurved tip seen in S. franklini. In reality,
the tip only appears to be blunted in M. flaviventris because the tip occurs in the
middle of a step. A similar effect occurs at the posterior tip of the angular process of
M. flaviventris, even though more steps are used to describe this process. Thus, even
when step number is ignored and comparisons are based on the set of steps that refer
to the same feature, the φ values do not necessarily represent equivalent descriptions
of that feature.
Based on the lack of correspondence between anatomical features and steps in the

Zahn and Roskies function, we conclude that individual φ or φ∗ values, and any vari-
ables that might be computed from them, cannot be used alone as a basis for inferring
homologies. This lack of correspondence arises because the same number of steps is
used to describe each outline. Consequently, any correspondence between anatomical
features and the points digitized on the outline is lost. Therefore, additional informa-
tion is needed to determine whether a particular step, or sequence of steps, describes
a comparable portion of the outline in all specimens. Even with that information,
descriptions of individual features may not be equivalent; but without that informa-
tion, data derived from the Zahn and Roskies function cannot be used in phylogenetic
systematics.

Extended eigenshape analysis

Extended eigenshape analysis (MacLeod 1999) is designed to address some of the
limitations inherent in conventional eigenshape analysis. One difference between the
two methods is that extended eigenshape analysis uses the φ form of the Zahn and
Roskies function not the φ∗ form. The more important difference between the two
methods is that extended eigenshape analysis uses a set of landmarks on the outline
to constrain computation of the Zahn and Roskies function so that all cases have
the same number of steps between a given pair of landmarks. The number of steps
between a particular pair of landmarks is determined by complexity of that portion of
the outline (the number of changes in direction between digitized points). As shown
in Figure 6.11, the incorporation of the landmark data produces better alignments of
the outlines and of the Zahn and Roskies functions.
The premise that underlies the use of landmarks to constrain the Zahn and Roskies

function is that a section of outline between comparable points is, itself, a comparable
anatomical feature. For example, landmarks 3 and 4 are the anatomical references
used to identify the anterior edge of the coronoid process as a comparable feature
of all marmotine mandibles in this study. Accordingly, the same set of terms in the
constrained Zahn and Roskies function describes this feature in all specimens. This is
an important improvement in outline description because it provides a rationale for
shifting attention from the outline as a whole to the components of the outline, which
may or may not be evolving independently.
Although the use of landmark data to constrain the Zahn and Roskies func-

tion produces closer correspondence of descriptive terms to anatomical features, the
description of long or complex segments can still be problematic. Figure 6.12 shows
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Figure 6.11 Information obtained from the Zahn and Roskies function, using landmarks to delimit com-
parable segments of outline, (A) Outlines, (B) Step directions. Legend: circles – S. franklini,
diamonds – M. flaviventris.

Figure 6.12 Reconstruction of the outline between landmarks 5 and 6, showing lack of correspondence
between steps, even when the Zahn and Roskies function is constrained by landmarks.

the reconstructed outline between landmarks 5 and 6 for M. flaviventris and S. spi-
losoma. This complex curve covers the articular condyle, posteroventral edge of the
articular process, and dorsal edge of the angular process. Among the seven taxa, there
are differences in the relative sizes of each of these components. In addition, the region
of the articular process immediately below the condyle is expanded in various degrees
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and in various directions. We did not treat the corner of this process as a landmark
because we are uncertain about its homology. We also did not recognize any point in
the curve between the articular and angular processes as a landmark because this curve
is usually gradual and lacks distinctive anatomical features, so no point along the curve
stands out as distinct and comparable. Because of this combination of variability and
lack of landmarks, step 25 (of 33) is close to the junction of the articular and angular
processes in S. spilosoma and considerably further out on the angular process of M.
flaviventris. Thus, even when landmarks are used to constrain the number of steps for
a particular stretch of outline, individual steps in the Zahn and Roskies function do
not correspond from specimen to specimen except in the immediate vicinity of each
landmark.
The lack of a one-to-one correspondence between step number and anatomical fea-

ture is important because the φ values in individual steps are used as input for the
next stage of the analysis. Thus, there is an assumption that each step of the Zahn
and Roskies interpolation is comparable. In contrast, no information about features
between landmarks is used at any stage of the thin-plate spline analysis. The thin-plate
spline interpolation can be used to draw the outline of the coronoid process of the
reference shape before and after a deformation, but the picture of the outline after
deformation is completely dependent on the descriptions of the relative positions of
the landmarks. No information about the outline of the coronoid process in the sec-
ond specimen is used to draw the picture of the deformed outline of the reference
form. Thin-plate spline analysis uses an interpolation function to describe observa-
tions; eigenshape analysis (conventional and extended) uses an interpolation function
to define observations.
Our objection to using results of conventional eigenshape analysis in phylogenetic

analyses is based on two features of eigenshape analysis: the use of an interpolation
function to describe shapes of individual specimens and the use of axes of variation in
a sample as a basis for describing differences between shapes. The principal distinction
of extended eigenshape analysis is that it employs a better version of the interpolation
function. This improvement results in more accurate descriptions of the outlines, but
it still does not meet the requirements for a phylogenetic analysis.

Other shape indices

Our rejection of the constrained Zahn and Roskies function should not be construed
as a rejection of the idea that segments of outline can be judged to be comparable. We
are only opposed to the idea of further dividing a segment in the absence of concrete
anatomical evidence to support that division. Instead, we suggest that the segments
deemed comparable should be treated as wholes. In this section, we present some
suggestions for implementing this approach.
Figure 6.13 shows plots of points digitized along the stretch of outline between

landmarks 3 and 4. This segment of outline covers the anterior edge of the coronoid
process, which is the area of insertion for the temporalis muscle. The coordinates
of these points were transformed to shape coordinates relative to a baseline between
landmarks 3 and 5 (articular condyle). Qualitatively, the anterior edge of the coronoid
process can be described as having an S-shape. The lower limb of the S becomes
progressively more vertical, the upper limb becomes horizontal again, and in some
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Figure 6.13 An alternative approach to comparing sections of outline bounded by two landmarks,
(A) Outlines of the anterior edge of the coronoid process (between landmarks 3 and
4) reconstructed from shape coordinates using landmarks 3 and 5 as the baseline.
Symbol legend: filled circle – S. variegatus, open circle – S. franklini, filled triangle –
S. tridecemlineatus, open triangle – S. spilosoma, filled square – S. columbianus, open square –
C. ludovicianus, filled diamond – M. flaviventris, (B) Diagrammatic representation of some
of the measurements used to analyze differences between outlines.

taxa tilts below horizontal. The four taxa shown in Figure 6.13 differ in the height of
the tip of the process above the baseline, the tightness of the bends in the S, and the
slope of the middle of the S (where the direction of curvature is reversed). The taxa
also appear to differ in the symmetry of the S and in the smoothness of the curves.
Judging from the differences among the taxa, curvature (or sinuosity), symmetry, and
smoothness appear to be independently evolving features of the shape of this curve.
The combination of curvature, symmetry and chord lengths account for the height of
the process.
Each aspect of the outline described qualitatively above, can also be evaluated

quantitatively. Table 6.1 lists results a few of the possible variables. Smoothness was
computed as the sum of squares of the signed changes in step direction divided by the
net change in step direction. Symmetry was evaluated by finding the point at which
the direction of curvature is reversed and drawing a line from the origin, through that
point, to its intersection with the reversed curve and then comparing the chord lengths
(their difference divided by their sum) (Figure 6.13B). Sinuosity was computed as the
net curvature of the two limbs. Curvature for a single bend can be computed as the
length of the moment arm, which is the ‘depth’ of the curve, divided by the length of
its chord (Swartz 1990). To compute sinuosity, we used the sum of the moment arms
divided by the sum of the chord lengths. When asymmetry is low, sinuosity is close
to the average of the curvatures of the two limbs; as asymmetry increases, sinuosity
approaches the curvature of longer limb.
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Table 6.1 Variables describing the shape of the anterior edge of the coronoid process (See text and
Figure 6.13 for descriptions of the measurements.)

Taxon Smoothness Chord Sinuosity Curvature – Curvature –
asymmetry lower limb upper limb

S. variegates 2.42 0.108 0.108 0.128 −0.092
S. franklini 1.21 0.009 0.068 0.052 −0.084
S. spilosoma 2.76 −0.211 0.134 0.107 −0.176
S. tridecemlineatus 2.01 0.307 0.125 0.110 −0.132
S. columbianus 3.31 −0.062 0.082 0.065 −0.101
C. ludovicianus 2.57 0.008 0.135 0.132 −0.137
M. flaviventris 2.38 0.001 0.090 0.092 −0.087

The variables we describe above would evaluate many of the same features evaluated
by a Fourier analysis. In a Fourier analysis, net curvature and sinuosity would be
described by low frequency harmonics, asymmetry by intermediate harmonics, and
smoothness by high frequency harmonics. The crucial difference is that the coefficients
of the Fourier harmonics are not independent of each other. Each Fourier harmonic
explains the deviation of the digitized points from the curve described by the sum of all
lower frequency harmonics. In contrast, each of the variables we used was evaluated
independently. It may be troublesome to some that our measures of smoothness and
asymmetry do not refer to the residuals from a fitted shape, but we view this as a
positive attribute because a curve can be uneven or asymmetric whether the underlying
shape is a C, an S, or some more complex shape.
Some of the measurements we used also have attributes in common with the Zahn

and Roskies function. Our computation of smoothness entails measurements of each
change in step direction. However, these computations do not require the assump-
tion that specific points on different specimens are comparable simply because they
have the same position in the sequence of points digitized on comparable curves. Our
computations of chord asymmetry and sinuosity use the inflection point to demarcate
the two limbs of the S-curve, and those limbs are measured separately. However,
the chord lengths and moment arms of those limbs represent nothing more than
intermediate steps in the computation of a value that refers to an attribute of the
entire segment of outline between the two landmarks. Furthermore, this analysis does
not treat the inflection point as anything other than a geometric attribute of the S-
curve. If we had evidence that the inflection point was biologically comparable (e.g.,
if we had evidence that different components of the temporalis muscle inserted on
either side of this point), then we would have another landmark, which would justify
treating the upper and lower limbs of the S as separate characters. If that were the
case, we would evaluate the curvatures of the separate limbs, not the sinuosity of the
entire S.
Another useful attribute of our computations of chord asymmetry and sinuosity is

that they return a single value for each specimen. This attribute eliminates the temp-
tation to use a fitted power series or Fourier series to decompose the curve into a set
of terms describing features that may not be comparable. It also eliminates the need
to compute principal component axes or other n-dimensional vectors to specify the
locations of specimens in the measurement space. Consequently, there is also no need
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to rely on coefficients of similarity based on the distances between specimens in the
morphometric space. Instead, the values of smoothness, chord asymmetry and sinu-
osity can be evaluated directly for evidence of evolutionary divergence; such variables
can be a basis for formulating hypotheses of monophyly.
Based on the values reported in Table 6.1, we would infer that S. spilosoma

and S. columbianus share an increase in smoothness and S. franklini has a unique
decrease. The S-curve is slightly asymmetric in S. variegatus, with the upper limb
slightly longer than the lower. Three taxa share a reduction of this asymmetry, but
in S. tridecemlineatus it has increased. Two taxa, S. spilosoma and S. columbianus,
share reversed asymmetry in which the lower limb is longer than the upper. With
regard to sinuosity, S. variegatus has the median value; S. spilosoma, S. tridecemlinea-
tus, and C. ludovicianus have higher values (larger deflections relative to net length);
S. franklini, S. columbianus, and M. flaviventris have lower values. Based on these
results, we would infer that there are two derived traits shared by S. spilosoma and
S. columbianus (increased smoothness and reversed asymmetry), and one that conflicts
with this pairing (sinuosity). These hypotheses about transformations of the anterior
margin of the coronoid process can be coded and combined with any other characters
we might wish to use to infer the phylogenetic relationships of these taxa. Similar
analyses can be used to evaluate the features of any other stretch of outline judged to
be comparable among specimens.
We recognize that there are other ways of quantifying the attributes of a curve, and

that there may be other attributes that could be described. Our intention was only to
present some variables that do not imply claims of comparability beyond those that
can be based on the landmarks. If comparability is based on anatomy, a hypothesis
of homology can be justified. This criterion will be met by any variable that can be
described in terms that designate the specific anatomical domain that is evaluated.

Conclusions and recommendations

Based on our analyses of marmotine mandibles, we conclude that it is possible to
use information about outline shape in phylogenetic analysis, if certain conditions
are met. Thus, our previous statement (Zelditch et al. 1995) opposing the use of all
outline data in phylogenetic systematics was too broad. The methods that are com-
monly used to describe outlines do have problems, but the problems are specific to
the ways in which variables are computed. In Fourier analysis, the first term can
refer to a different aspect of shape in each specimen. Because each subsequent term
refers to an aspect of shape not described by the previous terms, it is possible that no
term in the description describes a comparable feature of all specimens. In the Zahn
and Roskies function, lack of correspondence arises because step length is a function
of outline length, not anatomy, so steps with the same number can fall on different
anatomical features. Eigenshape analysis exacerbates this problem by computing prin-
cipal axes of variation from the Zahn and Roskies descriptors. If a variable refers to
measurements taken on different parts of the outline, its variance is meaningless and
the covariances of such variables are also meaningless. (The same criticism applies to
principal components computed from Fourier coefficients.) Thus, we do not withdraw
our earlier rejection of these methods. Rather, we now leave open the possibility that
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methods lacking these flaws may produce variables that can be used in phylogenetic
systematics.
If morphometric descriptions of outlines are to be used in phylogenetic analyses, the

variables they produce must refer to features of the outline that are comparable. In
other words, a variable must refer to a region of outline that is anatomically defined.
This does not mean that every digitized point on the outline must be a landmark. It
does mean that the coordinates of points that are not landmarks and the steps between
such points, cannot be compared between specimens on a one-to-one basis. Rather, the
set of points describing a particular part of an outline must be treated as related bits of
information about the larger whole. Furthermore, each variable computed from this
information must describe some aspect of the entire curve, not an aspect of a region
within the curve that is not comparable between specimens.
The requirement that the region of outline must be comparable does not mean that

the curve must be bounded by landmarks. Certainly, they are useful when they are
available, but they are not necessary. Other anatomical references can be used to define
the comparable region. For example, a region of outline might simply be defined as
the curve joining the articular and angular processes. This curve can be described
quantitatively using variables like the ones we used to describe the anterior edge of the
coronoid process. There is an additional complication that must be addressed when the
curve is not delimited by landmarks: care must be taken to insure that the description
does not depend on the location of the endpoints. However, this is still a generous
requirement that permits the computation of several descriptive variables.
Using landmarks and other anatomical references to identify comparable features of

outlines solves the problem of using information from outlines in phylogenetic analy-
ses. If the features are comparable, the tests of hypotheses about the homology of curve
shapes are both reasonable and legitimate. The principal problem that remains to be
solved is evaluation of the evolutionary independence of traits prior to mapping them
onto a phylogenetic tree. The problem arises whether we are talking about different
partial warps or different sections of outline. It is not unique to morphometric analyses
(e.g., Vermeij 1973; Swiderski 1991; Wake 1993), but it assumes a somewhat greater
importance in these studies because morphometric variables often describe overlap-
ping regions or different aspects of the same region. Principal components analysis has
been used to investigate these relationships among quantitative variables (Lessa and
Stein 1992; Auffray et al. 1996; Rohlf et al. 1996), but it is not a valid solution because
it describes sample variances and covariances, not comparable features of individuals.
What is needed are methods that examine combinations of shape variables without
losing the comparability that morphometricians have worked so hard to incorporate
in their measurement data.
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Chapter 7

Phylogenetic signals in
morphometric data *

Norman MacLeod

ABSTRACT

Although many of the goals and concepts of qualitative morphological analysis and
morphometrics are similar, systematists have largely rejected the use of morphometric
methods in phylogenetic analysis on a variety of grounds. This review finds that (1) the
concepts of a cladistic character and a morphometric variable are essentially identical,
(2) morphometric methods can be instrumental in discovering and documenting new
morphological characters and character states, (3) prior objections to the use of mor-
phometric variables because of their continuous nature confuse the issues of variable
type with those surrounding the distributions of sets of observations, (4) morphomet-
rics offers the best method of determining whether morphological observations are
discontinuous (= can be coded as discrete character states) or continuous (= cannot
be coded as discrete character states), (5) constellations of landmark-based morpho-
metric variables represent adequate summaries of putative structure-level homologues
for use in phylogenetic analyses, (6) partial warp analyses do not performwell in either
simulated or actual phylogenetic systematic analyses because of their inherent insta-
bility and lack of adequate spatial localization, and (7) a new method of subdivided
relative warp analysis (described herein) performs very well at recognizing simulated
morphological character states and recovering a simulatedmorphological phylogenetic
hierarchy. Based on these results it is concluded that the potential of morphomet-
ric data analysis methods (especially relative warp-based methods) to contribute to
phylogenetic-systematic investigations should be explored further.

Introduction

The fundamental observation of biology is morphology. Morphological data form
the basis of virtually all systematic descriptions. Morphological features define the
basic units of biology: the species and other monophyletic taxa (Nelson 1989) and are
used by all biologists – including geneticists and molecular systematists – to identify
those groups in the overwhelming majority of cases. Indeed, even molecular data are
morphological insofar as the chemical properties that enable particular molecules to
function in biological processes – and so be maintained by natural selection – derive

* This chapter is dedicated to F. James Rohlf on the occasion of his 65th birthday.
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as much from the arrangement of atoms in each molecule’s structure (= its shape) as
from its composition.
Morphological data are regarded as being of significance in systematics because

morphological variation is believed to be characterized by gaps between taxa. The
presence of these gaps makes each taxon uniquely diagnosable and their hierarchical
structure reflects action of morphological change superimposed on the evolutionary
process of ancestry and descent. These gaps may arise as a result of a number of
evolutionary processes (see Otte and Endler 1989 for reviews), but their discovery,
description, and interpretation represents the first and most basic task of all systematic
research.
Morphometrics is the study of covariances between patterns of morphological vari-

ation and patterns of variation in other associated or causal variables (Bookstein
1991; MacLeod in press). As such, morphometrics and systematic biology share
a common interest in the analysis of morphology, in assessing the nature of mor-
phological variation, and in studying degrees of covariance with those patterns (e.g.,
taxonomic covariances, ecological covariances, functional covariances, phylogenetic
covariances). Given that morphometrics also invariably incorporates strong elements
of quantification and formal hypothesis testing, it would seem natural for biological
morphologists to regard morphometric tools as an integral part of their approach to
systematics. This, however, has not been the case.
The reasons for the persistent lack of a strong connection between systematics and

morphometrics are many. But, for contemporary systematists I believe they can be
traced back to a sense of unease within the systematics community over historical
connections between the systematic philosophy of phenetics and many morphometric
procedures (e.g., Crowe 1994). Indeed, it often seems as though many systematists
equate morphometrics with phenetics – even though this is demonstrably not the
case (see Bookstein et al. 1985; Bookstein 1994) – and regard both as being beyond
the bounds of accepted systematic practice. This, perhaps unrecognized, avoidance
of morphometrics by systematists is mirrored within the morphometrics community
which has, for the most part, avoided taking phylogenetic patterning into considera-
tion in their interspecific data analyses despite many recent and clear demonstrations
of the need to do so (Felsenstein 1985, 1988; Harvey and Pagel 1991; MacLeod
2001).
The purpose of this chapter is to explore the past, present, and future of rela-

tions between systematics, and morphometrics. In keeping with the theme of the
volume, this exploration will be organized around the topic of morphological phy-
logenetic analysis, though the methods, discussion, and conclusions drawn should
be applicable to other areas of systematics (e.g., biogeography, ecology) as well. In
particular, it will consider the question of how and why morphometric data should
be utilized in the context of descriptive and analytic phylogenetic systematics. These
explorations will take the form of both a (re)consideration of systematic concepts
and practices, as well as their demonstration via example analyses. By venturing into
the ‘no-man’s land’ between systematics and morphometrics this study represents a
gathering together of this topic’s disparate strands in an attempt to bridge the con-
ceptual divides that presently separate large segments of the systematics community
in an area that has traditionally stood at the heart of organism-centered biological
investigations.
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Characters and variables

Any discussion of the relation between contemporary systematics and morphometrics
should begin by examining issues surrounding the concepts of ‘systematic characters’
and ‘morphometric variables’. Farris et al. (1970: 172) defined a systematic character
(= the transformation series of Hennig 1966), as “a collection of mutually exclu-
sive states which (a) have a fixed state such that (b) each state is derived directly
from just one other state and (c) there is a unique state from which every other state is
derived.” Pimentel andRiggins (1987: 201) defined a ‘character’ as “a feature of organ-
isms that can be evaluated as a variable with two or more ordered states.” Contrast
these descriptions with the standard biometric concept of a variable (Zar 1974: 2) as
“a characteristic that varies from one biological entity to another.” Similarly, Sokal
and Rohlf (1981: 11) define a biometric variable as “a property with respect to which
individuals in a sample differ in some ascertainable way.” If one strips away parts b
and c from the Farris et al. (1970) definition – which are matters of theory and inter-
pretation – and restricts the Zar (1974) and the Sokal and Rohlf (1981) definitions
to morphological characteristics or properties, it can be appreciated that the opera-
tional concepts of ‘systematic character’ and ‘morphometric variable’ are essentially
identical.
There are four basic types of variables: ratio-scale variables, interval-scale vari-

ables, ordinal-scale variables, and nominal variables. Ratio-scale variables represent
continuous, infinitely divisible, numerical scales in which a unit difference represents
the same quantity regardless of its location along the scale (e.g., measured heights,
lengths, widths). These variables are typically represented by real numbers. Meristic
variables are considered a special class of ratio-scale variables that can take only dis-
crete, integer values (e.g., number of eggs layed in a clutch, number of eyes, number
of digits). Interval-scale variables represent continuous numerical scales in which a
unit difference represents different quantities depending upon its location along the
measurement scale. The classic examples of this variable type are the Fahrenheit and
Centigrade (but not the Kelvin) temperature scales (e.g., 100 ◦C is not twice as hot
as 50 ◦C) since the zero point is set arbitrarily. Circular variable scales are also of
this type. Ordinal-scale and nominal variables both represent discrete measurement
scales, but along these scales there is no requirement that a unit difference represents
the same quantity regardless of its location along the scale. These scales differ depend-
ing on whether the attribute can be represented as a ranked (ordinal) or non-ranked
(nominal) sequence. Both ratio-scale and interval-scale variables can be transformed
into ordinal-scale or nominal variables via application of appropriate rules.
The characters described and discussed in the theoretical systematic literature (e.g.,

Kitching et al. 1998) are almost always nominal-scale variables. In addition to the
G, A, T, C nominal variables of molecular phylogenetics, systematic attributes typi-
cally treated as nominal variables include such standard examples as eye color (e.g.,
brown, hazel, blue), hair color (e.g., brown, black, blonde), egg type (e.g., aminote,
non-aminote), and body covering (e.g., scales, feathers, hair). A standard symbology
for a nominal systematic variable is A, A′. The convention of naming these vari-
ables with numerical symbols (0, 1, 2, . . .) does not make them interval-scale variables
because the difference criterion essential to that variable type is violated. Nominal
variables may be converted to ordinal-scale variables through application of a rule
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(e.g., outgroup comparison) that establishes the variable’s order. Hennig’s (1966)
original concept of the transformation series represents an example of a systematic
ordinal-scale variable. However, the common contemporary practice of submitting
numerically coded state variables to phylogenetic analysis in the unordered mode
means that most systematic character/character-state datasets are composed of nomi-
nal variables. This data type contrasts markedly with morphometric datasets, that are
almost always composed of ratio-scale variables.
I suspect it is the fundamental differences between these two variable types, along

with a desire to work as close to the abstract ideal of a systematic character as possible,
that many systematists have in mind when they make categorical statements like the
following.

Continuously varying quantitative data are not suitable for cladistic analysis
because there is no justifiable basis for recognizing discrete states among them.
(Pimentel and Riggins 1987: 201).

. . . it would be inadmissible to use a [morphometric] length variable that had been
arbitrarily divided into to states, one of lengths less than, the other of lengths
greater than the median length, since it would be just as reasonable to choose
any point along such a continuum at which to delimit states. (Crisp and Weston
1987: 67).

None of the authors on coding methods has yet faced the question of how we
could test for the presence of underlying discrete states. Lacking such a test, there
is no reason to discretize [sic] quantitative characters. (Felsenstein 1988: 462).

Such statements would be uncontroversial if each organismal phenotype presented
large sets of ratio-scale and nominal variables for analysis in that one could simply
identify the variable type and exclude the ratio-scale subset. In practice, however,
things are a bit more complicated. Many authors have pointed out that it is a common
practice for phylogenetic systematic analyses to be performed on data matrices con-
taining quantitative, ratio-scale variables that have been semantically ‘discretized’ into
nominal variables (= characters, see Simon 1983; Almeida and Bisby 1984; Thorpe
1984; Archie 1985; Baum1988; Goldman 1988; Chappill 1989; Stussey 1990; Stevens
1991; Thiele 1993; Rae 1998; Strait et al. 1996; Swiderski et al. 1998). Moreover,
even many standard examples of ‘good’ cladistic (= nominal) variables fail to stand
up to even casual scrutiny.
For example, Pimentel and Riggins (1987: 202) refer to flower-petal colour as a

cladistic (nominal) variable in their discussion of character-state concepts. Colour, of
course, is really a ratio-scale variable – hence the endless list of names for slightly
different colours – based on the frequency spectrum of reflected light. The fact that
systematists often find it convenient to describe colour as though it were a nominal
variable, changes neither the nature of the phenomenon that produces colour nor the
arbitrariness of the various nominal scales used to describe the visible light spectrum.
Based on the fact that ratio-scale variables are routinely used as characters in contem-
porary phylogenetic analysis, one cannot logically exclude morphometric variables
from the list of useful systematic character types or covariates simply on the basis of
their continuous measurement scales.
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Using morphology to discover character states

Contemporary systematists are able to treat ratio-scale and interval-scale variables as
ordinal-scale or, more typically, nominal variables because they regard the pattern(s)
of variation they exhibit as being discontinuously distributed along the theoretically
continuous measurement scale. In those instances where a discontinuous distribution
of size or shape measurements can be documented for a sample there can be no objec-
tion to the morphometric definition of subdistribution limits and the relabelling of
the subdistributions as nominal classes. This operation conforms exactly to the recog-
nition of discrete states within a larger character (see Eldredge and Cracraft 1980;
Nelson and Platnick 1981; Wiley 1981; Smith 1994; Kitching et al. 1998). Under
this conceptualization the theoretically continuous variable axis represents the char-
acter and the discontinuously distributed clusters of observations arrayed along this
axis represent fixed and mutually exclusive state classes. Indeed, explicit demonstra-
tion of the distributional discontinuities on which such state boundaries are based,
their formal definition, and their illustration should be required of all peer-reviewed,
morphological, systematic communications.
For instance, morphological size variables (e.g., length, area) are routinely used

to subdivide the variation observed between presumed homologous structures into
states. Typically these subdivisions are given qualitative names (e.g., feature size: small,
large) and coded as nominal states (e.g., 0, 1), often without any supporting data
demonstrating discontinuity or defining state boundaries. Morphometric data analysis
methods were originally formulated to provide such demonstrations and definitions.
In this context it is difficult to understand how recourse to morphometric variables and
analyses has been so consistently ignored by systematists. The fact that these simple
principles of demonstration–documentation have not been followed in the past has
been responsible for much unnecessary confusion and over the nature of phylogenetic
systematic analysis and the validity of particular analytic results.
The salient aspects of this process – and the advantages of the morphometric

approach – can be illustrated with a simple example. In their phylogenetic analy-
sis of Silurian encrinurine trilobites from the central Canadian Arctic, Adrain and
Edgecombe (1997) employed 40 different morphological characters drawn from six
different trilobite character complexes. Of these characters – all of which were
nominally coded in the standard manner – 25 represented continuous, ratio-scale mor-
phometric variables (e.g., Height of Eye: not stalked [0], very tall, ‘stalked’ [1]; Size of
Transverse Tubercle Row: subdued [0], prominently expressed [1]; Depth of Doublu-
ral Notch: shallow, broad [0], deep [1]). Figure 7.1 shows tracings of the ‘Depth of
Doublural Notch’ character taken from the plates provided by Adrain and Edgecombe
(1997) with the character-states assigned to these morphologies marked. Obviously,
there is a wide range of morphological variation inherent in this feature. Just as
obviously, there are notch outlines that could be described accurately as ‘shallow,
broad’ (e.g., Avalanchurus simoni) and others that could be described as ‘deep’ (e.g.,
Struszia epsteini). Nevertheless, a wide range of intermediate morphologies also exist
that do not seem to fit clearly into either nominal class (e.g., Mackenziurus deedeei,
S. dimitrovi, S. onoae).
Is the variation exhibited by these morphologies distributed continuously or dis-

continuously? What are the class boundaries of Adrain and Edgecombe’s (1997)
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Figure 7.1 Doublural notch and notch outlines for a selection of Arctic encrinurine trilobite pygydia
(= tail segments). The doublural notch is located on the underside of the pygydium and
accepts the anterior portion of the specimen’s glabella when the animal is enrolled. As such,
it is related to a cranidial character. Adrain and Edgecombe (1997) used this fundamentally
shape-based, morphometric character in their phylogenetic analysis of this group. In that
study the notch outlines of Billevittia adraini, Mackenziurus ceejayi, “Struszia” mccartneyi, and
Avalanchurus simoni were nominally described as ‘shallow, broad’ [0] while the notch outlines
of the remaining species were described as ‘deep’ [1]. S. = Struszia, M. = Mackenziurus,
A. = Avalanchurus, B. = Billevittia.

character-state classes? Are the character-state assignments correct? Are other char-
acters lurking in this feature and could be used in phylogenetic systematic contexts?
Systematists must have answers to these questions – along with analogous questions
for all of the other morphometric characters used in this study – if they are to evalu-
ate the validity of the conclusions reached, attempt to reproduce the analysis on their
own, or (perhaps most importantly) attempt to extend this analysis to other groups
of encrinurine trilobites in particular, or to trilobites in general. The answers to these
questions are very difficult to obtain, explain, or justify through simple, qualitative
inspection of these figures.1 Obtaining answers to these questions is perhaps the most
obvious area in which morphometrics can contribute to systematics.

1 Adrain and Edgecombe (1997) did not provide a table of illustrations such as Figure 7.1 for this – or
any other – character, but illustrated their characters via traditional plates of photographs within which
many more sources of variation were present.
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Figure 7.2 Landmarks and implied triangles used to geometrically assess doublural notch shape using
Bookstein Shape Coordinates. For this analysis the baseline was taken as the chord between
the end-point landmarks. The central landmark was taken as the lowest point on the curve
nearest the midpoint of the baseline chord. Although this central landmark definition iden-
tifies it as a ‘constructed’ point, the concept effectively quantifies the qualitative descriptors
‘shallow’ and ‘deep’ used by Adrain and Edgecombe (1997) to assign these morphologies
to nominal character states.

A variety of morphometric approaches to the analysis of this dataset could be
selected. Perhaps the simplest geometric analysis method would be to characterize
each notch by a triangle of landmarks, with two landmarks representing the endpoints
of the structure and the third representing the notch’s nadir. Once coordinate values
for these landmarks had been obtained the curves could be compared to one another
using the Bookstein Shape Coordinate (BSCoord)method (Bookstein 1986). Bookstein
Shape Coordinates are well-suited to this analytic situation in that the Adrain and
Edgecombe (1997) ‘Depth of Doublural Notch’ character seems concerned primarily
with the depth of the notch nadir relative to the baseline formed by the notch endpoints.
Figure 7.2 shows the landmarks points selected to represent the doublural notch

character and Figure 7.3 shows the results of BSCoord analysis. The distribution of the
free coordinate (= notch nadir) suggests that, for this small dataset, shape variation is
continuous from the shallowest to the deepest notch profiles. Given these results there
seems no obvious morphological discontinuity at which to place a line of definition
between Adrain and Edgecombe’s (1997) depth of doublural notch state classes.
In addition to raising questions about the definition of Adrain and Edgecombe’s

character states, these results cast doubt on their character-state assignments. Although
the four species they assigned to the ‘shallow, broad’ character-state class do rep-
resent the shallowest curves in this dataset, the variation exhibited by these curves
along the y-shape coordinate axis (= curve depth sensu stricto) is greater or equal
to the variation between the lower limit of this provisional subgroup and the next
grouping of shape coordinates. Based on these results it is difficult to understand why
“Struszia” mccartneyi’s notch is described as ‘shallow, broad’ while Struszia martini’s
andMackenziurus deedeei’s notches are described as ‘deep’.
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Figure 7.3 Results of a shape coordinates analysis of the trilobite doublural notch landmarks shown in
Figure 7.2. This plot represents the distribution of x and y values of the central landmark for
each representative individual after the baseline (see Figure 7.2 caption) had been rescaled
to unit length and standardized orientation. Note the lack of a pronounced discontinuity
among these shapes along the y-shape coordinate. Such a discontinuity would be expected
given Adrain and Edgecombe’s (1997) subdivision of the doublural notch character into two
discrete character states. S. = Struszia, M. = Mackenziurus, A. = Avalanchurus, B. = Billevittia.

Note that this BSCoord-based analysis reduced these somewhat complex curves to
triangles of landmark points (Figure 7.2). In some cases the underlying morphology is
indeed triangular (e.g., A. simoni, S. martini) and sowould not suffer by representation
as a geometric triangle. For the majority of the curves in this small dataset, though,
representation as a triangle severely distorts the true nature of the morphology that is
being used in the qualitative assessment of their variation.
In addition, to these considerations the reliability of the biological correspondence

with which the notch nadir landmark has been placed on the curve is open to ques-
tion. While various geometric criteria can be advanced to help guide the placement of
this landmark, none of these geometric criteria have anything necessarily to do with
the underlying biological processes responsible for the notch structure. In the absence
of much more biological information about the notch, the physio-chemical processes
responsible for its formation, its comparative ontogeny, etc., it is questionable whether
this third coordinate represents the same type of observation represented by the base-
line landmark coordinates. Given this inherent biological uncertainty, coupledwith the
distortions imposed on the morphological system as a result of abstraction to just three
landmarks, one might suspect that the negative results obtained by the BSCoord anal-
ysis may have as much to do with how the morphological variation was measured as
with the nature of geometric variation among the original notch curves. Consequently,
it seems reasonable to employ an alternative method of morphometric analysis in order
to (1) test the BSCoord results for robustness to examination by different geometric
methods and (2) determine whether the addition of geometric data to the measure-
ment system supports refinements to the Adrain and Edgecombe (1997) system of
morphological descriptors.
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Once again, there are a variety of methods that could be employed to analyze
these curves and draw conclusions about the manner in which their shapes are dis-
tributed. One available candidate is open-curve eigenshape analysis (MacLeod 1999).
This method is similar to relative warp analysis (Bookstein 1991), but draws a distinc-
tion between landmarks and semi-landmarks (Bookstein 1997). In essence, open-curve
eigenshape analysis uses formal landmarks to define the endpoints of the curve and
(if necessary) subdivide the curve into segments. These segments are then represented
by semi-landmarks that are accorded a sequence-level correspondence to one another
between shapes within the sample.
It is important to note that there is no necessary implication of biologically homol-

ogous correspondence between semi-landmarks. The nature of their correspondence
resides at the level of geometry and sequence order only. This type of correspondence
is justified when it is the only level of correspondence assessment available on which
to base morphological comparisons. Sequence-level correspondence is no different in
principle from the qualitative assessments of between-curve-segment correspondence
in the absence of additional biological information that are made routinely by sys-
tematists. Such comparisons have been accepted as a basis for the characterization
of morphological attributes for centuries. If one can base comparisons on point-to-
point correspondences that have some larger biological-phylogenetic significance one
should do so (but see discussion of morphological homology below). In the absence
of such biological information, morphologies can still be quantitatively compared –
and shape-distribution hypotheses tested – using the sequence-level correspondences
inherent in the concept of semi-landmarks (Bookstein 1997).
In the present example the fifteen doublural notch outlines shown in Figure 7.1 were

digitized and the two end-point coordinates designated as biological landmarks. These
semi-landmark-defined outlines were then converted to Zahn and Roskies (1972)
angular-deviation shape functions and submitted to a singular value decomposition
in the manner that has become standard for eigenshape-based methods (see MacLeod
1999 and references therein). A plot of the notch-curve scores on (= covariances with)
the first two eigenshape axes (Figure 7.4) suggests that discontinuities do exist in the
distribution of shapes within this dataset. In particular, A. simoni, M. ceejayi, and
Billevittia adraini exhibit shape scores along the first eigenshape axis (ES-1) that are
atypically low relative to the remainder of the dataset. Since Adrain and Edgecombe
(1997) assigned these three species to their ‘broad, shallow’ character-state class, this
grouping is not unexpected. However, “S”. mccartneyi occupies a position along
the ES-1 axis on the other side of the morphological discontinuity delimited by A.
simoni, M. ceejayi, and B. adraini. Since “S”. mccartneyi was also characterized as
exhibiting a ‘shallow, broad’ doublural notch by Adrain and Edgecombe (1997), these
eigenshape-based morphometric results are inconsistent with their qualitative assess-
ment of morphological variation. Similarly, the distribution of shapes along the second
eigenshape axis (ES-2) suggests that shape variation within the twoM. deedeei speci-
mens also exhibits a morphological discontinuity with respect to the remainder of the
sample. This distinction in doublural notch morphology was not noticed by Adrain
and Edgecombe (1997).
To obtain a better understanding of the types of morphological contrasts implicit in

Figure 7.4, assessments of ‘pure’ shape variation along these two eigenshape axes can
be obtained through modeling (Figure 7.5, see MacLeod 1999 for an explanation of
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Figure 7.4 Eigenshape results for the doublural notch curves shown in Figure 7.1. A. Ordination of
notch curves within the plane formed by eigenshapes 1 and 2. B. Ordination of notch curves
within the plane formed by eigenshapes 2 and 3. By taking the geometry of the entire notch
into consideration geometric discontinuities between the central cluster of morpholo-
gies and Billevittia adraini, Mackenziurus ceejayi, and Avalanchurus simoni are evident along
Eigenshape 1. A similar shape discontinuity exists between the two Mackenziurus deedeei
specimens and the remaining shapes along Eigenshape 2. Qualitative assessments of discon-
tinuities such as these form the basis for traditional systematic character-state assignments.
Morphometric methods, such as eigenshape analysis, are available to help systematists eval-
uate observed shape distributions. Once such results have helped ‘sharpen the eyes’ of
systematists they would be free to re-evaluate shape distributions in a traditional qualitative
manner, or to explicitly use results like these to make character-state assignments. See text
for additional discussion. S. = Struszia, M. = Mackenziurus, A. = Avalanchurus, B. = Billevittia.

the modeling method). The series of shape models determined for the ES-1 axis con-
firm Adrain and Edgecombe’s (1997) original distinction between shallow and broad
curves (= low scores) and narrow deep curves (= intermediate and high scores). But,
contrary to the results of Adrain and Edgecombe’s (1997) qualitative analysis, this is
not the only shape-variation mode that has potential for defining systematically inter-
esting morphological discontinuities. The series of models determined for the (ES-2)
suggest that the contrast between V-shaped notch outlines (= low and intermediate
scores) and U-shapes notch outlines (= high scores) also has potential for characteriz-
ingM. deedeei in a manner consistent with traditional qualitative analyses. Inspection
of Figure 7.1 after viewing these results shows that the twoM. deedeei notch outlines
do indeed exhibit characteristically more U-shaped notch profiles – much more steeply
sided with broader, flatter bottoms – than the remainder of the dataset.
In this example, morphological character states were defined on the basis of pro-

nounced gaps or discontinuities in the distribution of shapeswithin a sample of trilobite
pygydia. It is important to note that even though the morphometric variables used to
ordinate these shapes were continuous, ratio-scale variables, the eigenshape analysis
revealed two different discontinuities within the distribution of observations along
these continuous variables and that these quantitative gaps were later confirmed by
a qualitative (re)inspection of the shapes. Consequently, the specification and analy-
sis of continuous morphometric variables facilitated the recognition of discontinuous
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Figure 7.5 Geometric models of the first three eigenshape axes shown in Figure 7.4. A. Model
sequences computed at designated locations along the eigenshape 1, 2, and 3 axes. B. Along-
axis or superposition-style representations of model sequences. Using these figures it is
clear that the shape contrast represented along Eigenshape 1 corresponds to Adrain and
Edgecombe’s (1997) qualitative states ‘shallow, broad’ and ‘deep’. Eigenshape 2 corresponds
to a contrast between U-shaped and V-shaped notch geometries (a distinction missed by
Adrain and Edgecombe, 1997). Eigenshape 3 corresponds to a contrast between curve
symmetry or irregularity in the region of the nadir. Models such as these can aid in the
interpretation of abstract morphometric ordinations – and in the recognition of new char-
acters or character states – by portraying coordinate positions within the shape space as
geometric figures that can be compared in a traditional, qualitative manner.

patterns of shape variation that could be retrospectively coded by the traditional
method of qualitative inspection. This is consistent with the descriptions of standard
contemporary systematic procedure (e.g., Farris et al. 1970; Pimentel and Riggins
1987; Felsenstein 1988).
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Based on this example analysis it seems hard to argue that morphometric data analy-
sis can, in principle, play no useful role in the systematic study of biotic character-state
data. Indeed, these results suggest that morphometric approaches can represent noth-
ing more than a direct – albeit more sophisticated – extension of traditional qualitative
morphological analysis methods that simply draw the systematist’s eye to patterns that
he or she might not have immediately recognized. Once the presence of such discon-
tinuities within the sample has been made obvious by the morphometric analysis,
they can be readily understood and utilized by more traditional qualitative inspection.
Similar conclusions have been reached by a number of other systematists (Thiele and
Ladiges 1988; Thiele 1993; Fink and Zelditch 1995; Zelditch et al. 1995; Rohlf 1998;
Swiderski et al. 1998; Rae 1998), though none has provided a simple example of this
process.2

Continuity: axes vs observations

Obviously, not all patterns of variation between putative taxonomic groups will be
characterized by pronounced discontinuities. For instance, morphological characters
that are the result of polygenic suites will exhibit a progressive shift in the mean
value for a population under directional selection; even if the selection pressure is
intense (Falconer 1981; Felsenstein 1988). While the continuous patterns of variation
characteristic of anagenetic evolution should not be confused with the morphologi-
cal discontinuities implied by cladogenesis (Zelditch et al. 1995), it is the case that
both modes of evolutionary change may be characterized by zone of between-group
morphological overlap that are determined (at least in part) by group-membership
(Figure 7.6).
This observation has been used by a number of systematists to argue that

continuously-distributed variables should be used, together with discontinuously-
distributed variables, to reconstruct phylogenetic patterns. However, continuously-
distributed ratio-scale or interval-scale variables cannot be transformed into the
nominal or sometimes ordinal variables used by most phylogenetic inference algo-
rithms except through the application of ad hoc rules. Gap coding (Mickevich and
Johnson 1976; Archie 1985), segment coding (Colless 1980; Thorpe 1984; Chappill
1989) statistical ‘difference between means’ tests (e.g., homogeneous subset coding,
Farris 1990; Thiele 1993; Rae 1998); and statistical ‘overlap analysis’ (Almedia and
Bisby 1984; Swiderski et al. 1998) all represent attempts to devise rule-based systems
for subdividing continuous patterns of variation in morphological variables based on
a consideration of frequency and/or a priori group-membership.
The difficulty with these rule-based methods is that they – sometimes to a greater

extent, sometimes to a lesser – alter the nature of the variable description from that
of the individual to that of the group. Figure 7.6 illustrates this problem. Figure 7.6A
shows the typical situation for a morphological character measured on a continuous,
ratio scale. All values along the scale are possible. Above this scale a hypothetical
frequency distribution of a set of morphometric measurements is illustrated. In this

2 See also Chappill (1989) and Thiele (1993) for discussions of semantic confusion between the notions of
continuous variables and discontinuous patterns of variation that often occur in the systematic literature.



Figure 7.6 Conceptual diagram illustrating the difference between continuous variables and continu-
ous distributions of variable observations. A and B represent sets of frequency distributions
along a continuous morphometric variable axis for discontinuously distributed (A) and con-
tinuously distributed (B) sets of observations. These observations have been gathered into
two putative taxonomic groups, or phena. The gap in A represents a morphological discon-
tinuity that serves to distinguish the phena from one another objectively and independently
and that may be used to recognize one, or the other, or both as a monophyletic group.
This situation poses no theoretical or practical problems in terms of character recognition
of character-state coding, as evidenced by the widespread inclusion of such characters in
systematic datasets (Scheme 1). The lack of an inter-phenal gap in B represents several
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example the overall distribution is discontinuous with two well-separated subgroups
evident along the continuous variable axis. Using morphometric methods it is a simple
matter to determine the observed range of separation between the subdistributions
(= discovery phase of analysis). Once this is accomplished, the morphological dis-
continuity discovered by the systematist can be used to define the range of variation
for putative state classes of the morphological variable (Figure 7.6A, Scheme 1). Indi-
viduals can then be assigned to these state classes without needing to take putative
group membership into consideration. As a result, the variable axis (= character) is
objectively subdivided into segments (= state classes) by the observations with taxic
groups emerging as a result, rather than as an assumption, of the analysis. Character
states discovered and described in this manner will be genuinely independent in that
they make no a priori reference to group membership.
Contrast this with the situation in Figure 7.6B which shows the same morphological

scale above which the frequency histogram for an alternative set of morpholog-
ical observations is illustrated. In this case, the distribution is continuous and
bimodal along the measurement scale. Since there is no morphological discontinuity
that can be used to recognize and define phenotypic states unambiguously, partition-
ing must be made on the basis of group membership. Either the range of the overlap
between putative phena is designated as a separate state from the non-overlapping
ranges of the distribution (e.g., Archie 1985) or the means of the putative phena are
tested for statistically significant separation and the entire phenon assigned to a state
on the basis of the test results (e.g., Thiele 1993; Rae 1998). This practice, which lies
at the heart of all gap coding, gap weighting, segment coding, subset coding, overlap
analysis, etc. procedures, might be described by the generic term ‘member coding’.
Member coding leads to the production of questionable character-state definitions.

For example, since the definition of the group must be based on other criteria (presum-
ably discontinuously distributed character states), the member-coded character state
cannot be regarded as an independent descriptor of morphological variation. Logi-
cal consistency is also challenged by member coding. Member-coded character-state
definitions cannot be recognized as ‘features of organisms’ because some proportion
of the member specimens exhibit morphologies that are dependently distinguished
from (Figure 7.6B, Scheme 2) or identical to (Figure 7.6B, Scheme 3) to those of
other groups. Such procedures can even result in group members receiving a single
character-state code as if all members of the group were morphologically distinct from
all members of anothermember coded group regardless of whether this disjunctionwas
actually observed. Member-coded character states codify assessments of group-based
frequency trends or probability statements that are dependent on group diagnosis
rather than objective and independent morphological descriptors. As such they rep-
resent a fundamentally different type of quasi-morphological variable that should

systematic problems. Continuously distributed observations cannot be used to objectively or
independently distinguish the phena from one another, because the limiting criterion is irreducibly
dependent on the recognition of one of the other phena, which are presumably diagnosed on the basis
of other variables. Various schemes have been developed to arbitrarily subdivide such continua (e.g.,
gap coding, interval coding, see Schemes 2 and 3), but all are dependent on a priori group recognition
to work. Since character states defined in these ‘member-coding’ schemes cannot objectively and
independently delineate phena they are of little use in phylogenetic systematics.



114 Norman MacLeod

not be mixed with real morphological variables (whether continuously distributed or
discontinuously distributed) in either phylogenetic or morphometric analyses unless
appropriate measures are implemented to take the introduction of such mixed-mode
data into consideration.
Rather than spending time trying to rationalize the arbitrary subdivision of continu-

ous morphological data so that these can be used in phylogenetic systematic analyses,
systematists would be better advised to acquaint themselves with tools of morpho-
metrics since the use of these tools will greatly improve their chances of recognizing
and correctly interpreting the morphological discontinuities that are present in their
data. The doublural notch analysis discussed in the previous section contains a prac-
tical example of this situation. Despite the fact that Adrain and Edgecombe’s (1997)
qualitative analysis failed to recognize the distinction between V-shaped and U-shaped
notch morphologies, application of a more generalized morphometric procedure was
able to reveal its presence in those data. The addition of a new character and set of
discontinuous character-state distinctions – such as can be achieved by morphometric
methods – is of far more use to systematics than the inconsistent and logically suspect
results of member-coding procedures.

Distances, landmarks, and homology

While morphometric variables cannot be rejected for systematic study because of their
type – they are no different in this respect from traditional systematic characters,
cladistic characters, statements or systematic keys – there may be other problems with
this class of morphological descriptors that would limit their utility in some systematic
contexts. Pimentel and Riggins (1987: 201) argued that in addition to being able to be
ordered and independent, true systematic charactersmust be “homologous expressions
of a feature found in the ingroup and outgroup”.
Morphometric variables have long been criticized as being intrinsically non-

homologous representations of form on several different grounds. The most common
of these is an objection to the reification of (usually multivariate) morphometric
variables as organismal ‘attributes’ in any meaningful biological sense of that term
(Pimentel and Riggins 1987). This criticism confuses the methodology of principal
components (= eigenanalysis) with the data to which the method has been applied.
Until recently the most common type of morphometric data was linear distances

between pairs of landmark points (see Blackith and Reyment 1971; Reyment et al.
1984; Bookstein et al. 1985; Reyment 1991). Eigenanalysis of covariance or correla-
tion matrices derived from such data yield variables that are differentially weighted
amalgamations of scalar magnitudes. Pimentel and Riggins (1987) point out correctly
that such amalgamations do not correspond to the concept of biological homology, but
this deficiency arises as a result of the lack of topological information in the scalar dis-
tance matrix rather than arising out of the eigenanalytic procedure itself. For example,
if the necessary topological information is restored to the analytical system by keep-
ing track of the relative orientations of the distance variables (e.g., the ‘truss analysis’
method of Strauss and Bookstein 1982; see also Bookstein et al. 1985) the results
of such an analysis can be recombined into a model of morphological deformation
that exhibits the properties of topological correspondence and spatial localization
required of biological homologues (MacLeod in press). Such topologically-informed
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eigenanalysis-based procedures could be used, in principle, to identify and interpret
discontinuities in shape distributions in a manner conceptually similar to qualitative
morphological analysis procedures. Thus, the problem Pimentel and Riggins (1987)
refer to in their criticism of morphometrically-defined characters is a problem of the
manner in which morphological variation had been portrayed up to that point in
time (as topology-free scalar magnitudes) rather than a problem that arises from the
eigenanalytic methods used to summarize patterns of variation within those data.
At approximately the same time that Pimentel and Riggins (1987) made their criti-

cism several morphometricians independently began to recognize and understand the
origins of the same problem: that the absence of topological information frommorpho-
metric datasets severely constrained the interpretability of their analytic results. From
1986 through 1991 F. L. Bookstein, C. Goodall, D. G. Kendall, F. J. Rohlf, and oth-
ers effectively synthesized and reformulated several disparate data and method-based
schools or morphometric analysis into a single, unified ‘geometric morphometrics’
with topology at its center. This synthesis was achieved by refocusing attention on
the coordinate positions of landmark points scattered over a structure and regarding
deformations of those, using those coordinate point constellations, as morphometric
variables. Operationally, this reformulation of morphometrics involves the submis-
sion of landmark constellations – variously adjusted to remove the effects of size
and differential orientation – as input into (for the most part) eigenanalysis-based
procedures. The results of such analyses produce mathematically elegant summaries
of geometrical deformation patterns that could be expressed in either the abstract
notation of mathematics (e.g., data matrices, deformation grids, scatterplots) or
the geometric representation of morphological variation in traditional qualitative
systematics (e.g., Bookstein 1991; MacLeod 1999). This was possible because the
magnitudes of Cartesian coordinates preserve information about the relative amount
and directions – the topology – of landmark displacements between forms.
Since topological information has now been inextricably embedded into the corpus

of geometric morphometrics, a reconsideration of Pimentel and Riggin’s (1987) claim
that morphometric variables cannot express biological homology is necessary. In my
view, this question has two aspects, (1) whether the constellations of landmark points
defined on the basis of biological structures are homologous to other constellations
of landmark points similarly defined (= structure-level homology), and (2) whether
individual landmark points are homologous with other landmark points (= point-level
homology).
Unfortunately, the morphometric literature makes little distinction between the

concepts of geometric homology and biological homology. Landmarks are defined
as relocatable coordinate positions on an object in a two-dimensional or three-
dimensional Euclidean measurement space (Bookstein 1991, MacLeod in press).
Since geometrical homology is defined on the basis of topological correspondence,
corresponding landmarks are, by definition, geometrical homologues.
Biological homology beginswith topological (= geometrical) homology, but extends

its concept to embrace aspects of history and origin. Although the concept of the homo-
logue was known to Aristotle (who used it to infer correctly that porpoises were more
closely related to mammals than to sharks), Richard Owen (1843: 374) is responsible
for the concept’s canonical formulation as “the same organ in different animals under
every variety of form and function.” Darwin (1859) regarded his theory of common
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descent as providing a biological explanation for the difference between homologous
and analogous structures, after which the former was re-defined as ‘similarity due to
common ancestry’. Unfortunately this reformulation led to the concept’s use in two
different senses: (1) a transcendental or transformational sense as a sequence of ideal-
istic modifications (e.g., fish jaw bones changing into mammalian ear ossicles) and (2)
a taxonomic or taxic sense (e.g., tetrapods being recognized as a monophyletic lineage
based on the fact that all members exhibit four limbs, except for those in which the
limb number has been reduced due to secondary loss). Patterson (1982) pointed out
this duality, rejected the tranformationalist conceptualization as being non-falsifiable,
and equated taxic homology with the Hennigian concept of synapomorphy.
Thus, while the triangular dorsal fins of sharks, porpoises, and goldfish might be

regarded as geometrically homologous, these structures are not biologically homol-
ogous because the implied taxic grouping is not supported by other morphological
characteristics (e.g., developmental patterns, skeletal characteristics, soft anatomy).
This stands in contrast to the popular description of these three organismal groups as
belonging to the group ‘fish’ which is a phenetically-defined morphological concept
based entirely on topological similarities in gross external morphology.
Since the concept of biological homology is logically tied to organic structures and

incorporates the notion of topological similarity (Rieppel 1980, 1994; Patterson 1982),
morphometric variables that assess aspects of topological similarity between those
structures can be used to delimit taxic groups in a manner consonant with the stric-
tures of biological homology. This is nothing more, or less, than what is done in the
qualitative assessment ofmorphological variation patternswithin or between groups of
organisms. Contra Zelditch et al. (1995), morphometric decompositions of landmark
constellations are not biologically homologous by definition because (1) morphomet-
rics measure topological similarity and topological similarity is only one aspect of
biological homology, and (2) the taxic groups recognized by a morphometrical anal-
ysis of one structure may be falsified by other morphometric or qualitative results for
other structures (this is also true of ‘standard’ systematic characters). Caution must
be exercised not to confuse the failure of a particular morphometric result to recog-
nize a distinction between complex morphological structures with a failure of such a
distinction to exist Morphometrics usually assesses patterns of topological similarity
and difference between aspects of organisms shape, not the organisms themselves; see
doublural notch example above. Nevertheless, the overall similarity between morpho-
metric and qualitative procedures of analysis at the level of morphological structures
(structure-level homology) seems clear and consonant.
The idea that individual landmark points represent biological homologues is

logically separate from the issue of structure-level homology. Landmark points
were originally described as ‘homologous’ in order to distinguish them from the
geometrically-constructed boundary point locations used in most forms of morphome-
tric outline analysis (Bookstein et al. 1986; Bookstein 1990, 1991). Bookstein (1991)
identified three classes of biological landmarks: discrete juxtapositions of structures or
tissues (Type 1), maxima of curvature (Type 2), or extrema (Type 3). This classifica-
tion focuses attention on the amount of information necessary to identify or relocate
the landmark.
Type 1 landmarks may occur at any point on or within a form so long as that

form is composed of different structures or tissue types. While these landmarks are
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constrained to exist on the boundaries (= outlines) of structural components or tissue-
defined regions, their locations are not determined by any characteristics of the overall
boundary or outline. Type 2 landmarks lie on the boundaries of single structures or
regions and are defined by the nature of the curving surface of that boundary. Type 3
landmarks represent those coordinate locations on single structures (irrespective of
whether the structure is composed of various substructures or regions) that represent
the extremes of the structure’s boundaries. Like Type 2 landmarks these points are
constrained to lie on the object’s outline.
No consideration has been traditionally given to the nature of any substructure or

tissue when locating Type 3 landmarks. Their definition is dependent on the nature of
the outline (= by the distribution of adjacent boundary coordinates), on the orientation
of the object, and on the number of axes one wishes to locate extrema along. Because
the nature of Type 3 landmarks is so variable and dependent on such a wide variety of
conditions, Bookstein (1997) revised his 1991 classification and termed this class of
landmarks ‘semi-landmarks.’ The category semi-landmarks includes the former Type 3
landmarks of Bookstein (1991) as well as the boundary coordinates used in outline
morphometrics (e.g., Fourier analysis, eigenshape analysis, edgels).
Bookstein’s (1997) revised landmark classification describes the range of landmark-

based morphometric observations more comprehensively and recognizes fundamental
similarities between observational types more consistently. Since the newer landmark
taxonomy abandons the older distinction between individual landmarks and bound-
ary coordinates – which formed the rationale for labeling the former as ‘homologous’
in order to distinguish them from the latter – this appellation no longer serves any
purpose. More importantly though, Bookstein’s (1997) revised landmark classifica-
tion recognizes the fundamental unity of all landmark types as relocatable points that
correspond across specimens in a geometrical sense. In other words, individual land-
marks represent geometrical homologues. But, the ability to represent and summarize
topological patterns among biologically homologous structures does not render corre-
sponding landmarks themselves biologically homologous. To make such a conceptual
leap is to confuse the idiosyncrasies of a representative with the characteristics of the
group being represented.
In order to appreciate this distinction, in your mind’s eye visualize a familiar mor-

phological feature. While it is acceptable to describe the alternative forms of a radius
bone, a canine tooth, a genal spine, or a pectoral fin as ‘long’ or ‘short’, ‘elliptical’ or
‘subquadrate’, ‘pointed’ or ‘blunt’, etc. – because any reasonable set of morphometric
measurements derived from sets of landmarks located on these objects exhibit non-
overlapping distributions – it is quite a different matter to claim that the ‘geometrical
midpoints’ or the ‘proximal and distal termini’ of differently shaped bones or teeth,
or spines, etc. correspond with the ‘geometrical midpoints’ or the ‘proximal and distal
termini’ of differently shaped bones or teeth, or spines, etc. of other specimens in any
save a topological sense. Within reasonable limits it is irrelevant whether correspond-
ing landmark points fall on precisely the same point of a feature because the level of
topological similarity required by this decision is not part of the biological homol-
ogy concept. Since, in the great majority of instances, a wide variety of alternative
landmark pairs can pass the similarity, conjunction, and congruence tests of biolog-
ical homologues (see below for an example), true homology – for there can only be
one pair of landmark points that define a length on any biological structure that are
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biological homologues of another pair of landmark points on another homologous
structure – cannot be separated from false homology at the level of the mathemati-
cal point by the tests available to systematists. Consequently, the entire question of
‘biologically homologous landmarks’ is moot. Wagner (1994) points out that cases
may exist in which the concepts of biological and topological homology coincide
(e.g., point-intersections between three skull bones representing a Type 1 landmark).
However, such situations are conjectural at present and represent a distinct minority
of landmarks currently used for morphometrical analyses. In the absence of highly-
detailed developmental and phylogenetic evidence, the notion of mathematical ‘point
homologies’ will likely remain either an assumption or an assertion for the foreseeable
future.
Bookstein (1991) described another type of relation that bears on the issue of homol-

ogy in morphometrics: deformational homology. Tracing the origins of this concept
to Thompson (1917), deformational homology begins with a series of geometrically-
homologous point-to-point mappings on two forms and postulates sets of smooth
deformations implied by a comparison of the forms. Often these deformations can be
described by a single or a series of generalized deformational type(s) (e.g., pure inho-
mogeneous, quadratic, rigid motion involving several landmarks, spiral deformation;
see Bookstein 1991 for examples). Unfortunately, Bookstein’s (1991) discussion is
unclear as to whether he was referring to geometric or biological homology in advanc-
ing this concept of Thompsonian deformational homology. Thompson (1917) believed
his deformational types (even though he never referred to them in those terms) resulted
from the operation of basic physical laws. However, Thompson refrained from dis-
cussing his concept in evolutionary-phylogenetic terms because he rejected Darwin’s
theory (see Mayr 1982).
Regardless of Thompson’s opinions on evolutionary theory, his concept of defor-

mational homology underpins much of the ‘morphometric synthesis’ (Bookstein 1993)
because the language of deformations is useful in summarizing and interpreting the
results of geometrical morphometric data analyses. It is this concept of deformational
homology, however, that Pimentel and Riggins (1987) implicitly refer to when they
criticize morphometric variations as being capable of representing only transforma-
tional homology. However, as pointed out by Bookstein (1994), Rohlf (1998) and
MacLeod (in press) this metaphorical linkage between the morphometric-geometric
‘language of deformations’ and transformational homology diverts uncautious read-
ers from the main point of systematic morphometrics. The deformational graphic
methods used to portray geometric morphometric results (e.g., thin plate splines) are
only illustrative conventions; useful for visualizing geometric relationships. Just as
written descriptions of transformational homologies can be recast rhetorically as state-
ments of taxic homology (Zelditch et al. 1995), so too can ratio-scale morphometric
variables – even complex, multivariate variables – be used to quantitatively define taxic
groups on the basis of topological similarities or differences among a priori-defined
putatively homologous features. The relevant questions, then, are not whether indi-
vidual landmarks can be declared homologous (they cannot), whether morphometric
variables can be used to recognize groups of taxa on the basis of shared topological
similarity between putative homologues (the evidence for this is quite overwhelming
as demonstrated by over a century of morphometric analyses), nor whether morpho-
metric variables represent some quality different from what is typically represented
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by a large number of qualitative morphological characters (they do not). Rather the
relevant questions are (1) whether morphometrically-defined variables exhibit a hier-
archical structure that can be logically represented on a cladogram and used to define
congruently nested sets of taxa and (2) whether the taxic groups defined on the basis of
morphometric analysis agree with groupings defined on the basis of more traditional
morphological analyses.

Partial warp variables as phylogenetic characters:
a test of congruence

Extending from their arguments regarding the homology of landmarks, Zelditch et al.
(1995, see also Fink and Zelditch 1995) have recently advocated the use of par-
tial warp-based morphological-deformation variables in phylogenetic analysis. Partial
warps are calculated from principal warps, which are eigenvectors of the bending-
energy matrix that express the ways a reference configuration of landmarks can be
geometrically deformed (Bookstein 1991). The partial warp scores are computed by
projecting the values of a Procrustes-aligned set of landmarks separately onto each of
the principal warp vectors.
Zelditch et al. (1995) preferred the partial warps approach to all other multivariate

methods ofmorphometric data analysis for systematic studies because they believe such
summaries to represent non-arbitrary and spatially-localized features of a geometric-
biological system that are unique to individual organisms (as opposed to being
arbitrary summaries of populations or samples), and that variables so-defined can
be used to recognize morphological characters and define character states in a manner
that supports their analysis within a hierarchical data-analysis system (e.g., those used
for phylogenetic inference). The primary problems these authors sought to solve by
advocating the use of partial warp variables in systematic-phylogenetic contexts were
(1) improved ways of discovering of new morphological characters to be used in phy-
logenetic analysis, and (2) demonstrating that quantitative morphological characters
were no different from qualitative morphological characters in systematic contexts.
The Zelditch et al. (1995) arguments have not been met with widespread agree-

ment within the morphometrics or systematics communities. Bookstein (1994, see
also Monteiro 2000) questioned whether any morphometrically-defined shape vari-
ables could unambiguously order shape transformations. The ShapeNonmonotonicity
Theorem shows that deformation-based shape variables can be created to support any
ordering of end-member shapes. Moreover, Bookstein (1994) argued that geometric
deformations per se could not be used as systematic characters because they lack the
property of commutativity. Fink and Zelditch (1995) and Zelditch et al. (1998), in
very brief responses to the Bookstein (1994) article did not dispute any of his geomet-
rical arguments, but attributed Bookstein’s disagreements with them over the use of
morphometrical variables in systematics to disagreements over ‘semantics’.
Lynch et al. (1996) attempted to use the method of Zelditch et al. (1995) to create

systematic characters, but were uncomfortable with the results. These authors recom-
mended that simulation studies be used to validate the Zelditch et al. (1995) method.
Naylor (1996) conducted such a study using a simulated fish phylogeny that was
reported to contain no homoplasy and was based on only a single morphological
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character-state change per branch. His results showed that although parsimony-based
analysis of the entire multistate-coded, partial-warp dataset did recover the correct
tree topology, these morphometrically-defined characters exhibited an extraordinarily
high degree of homoplasy (RI = 0.48). In addition, Naylor’s results indicated that
none of the known character-state transformations – most of which could have been
captured easily by traditional, qualitative analysis – were represented in the character-
state matrix based on partial warp scores. Zelditch et al. (1998) dismissed Naylor’s
(1996) results claiming that he used a different method from the one they proposed.3

Rohlf (1998, see also Monteiro 2000) also criticized several practical aspects of
the Zelditch et al. (1995) method. These include (1) the arbitrariness in the Zelditch
et al. (1995, see also Fink and Zelditch 1995) advocacy of using a single individual
exhibiting an extreme landmark configuration (e.g., representative of an outgroup
in the case phylogenetic studies, and early developmental stage in the case of onto-
genetic studies) rather than a Procrustes mean landmark configuration as the basis
(= tangent point) for the principal warp decomposition; (2) the arbitrariness of using
a method that makes no reference to patterns of shape variation present within a sam-
ple as a basis for summarizing shape patterns of shape variation within the sample;
(3) the well-known sensitivity of the partial warps method to changes in the reference
landmark configuration (Bookstein 1991); (4) the notion that partial warp decompo-
sitions are uniquely spatially localized (see alsoMacLeod in press); (5) the inevitability
of even simple morphological changes being partialled out into a complex of distinct
morphometric variables with consequent loss of interpretability; and (6) the unsuit-
ability of partial warp-based results for subsequent statistical analysis due to lack of
independence. Zelditch et al. (1998) did not dispute any of Rohlf’s (1998) geometric
arguments, but appealed repeatedly to non-specific, putative failures on Rohlf’s (1998)
part to understand their ‘biological logic’, ‘biological interpretation’, or ‘biological rea-
soning’. Variations on these criticisms have also been voiced by Adams and Rosenberg
(1998) with a response by Zelditch and Fink (1998).
In order to continue the evaluation of the Zelditch et al. (1995) partial warpmethod,

a comparative strategy was used to determine the level of congruence between a tree
obtained from traditional, qualitatively-defined, morphological characters and one
based on morphometrically-defined, partial warp characters with both datasets being
obtained from a small sample of real organisms. Previous partial warp-based phylo-
genetic studies of real organisms have either mapped a few character-state transitions
onto independently justified cladograms (e.g., Zelditch et al. 1995) or included them
along with other qualitatively-assessed morphological data in a single analysis (e.g.,
Fink and Zelditch 1995). While former cannot distinguish between consistent and
coincidental patterns of correspondence between coded morphological and morpho-
metrical variables (Rohlf 1998), the latter cannot measure the unique contribution of
themorphometric subset or support direct comparisons between alternative summaries
of morphological variation. The more rigorous approach of Naylor (1996), which
is similar to the approach used by Cranston and Humphries (1988) to evaluate the

3 Since details of the methods advocated by Zelditch and Fink have differed in different studies (e.g., Fink
and Zelditch 1995; Zelditch and Fink 1995; Zelditch et al. 1995) the differences Zelditch et al. (1998)
are alluding to is unclear. I have been unable to recognize any substantive difference between the method
described by Zelditch et al. (1995) and the one used by Naylor (1996).
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contribution of quantitative characters to tree resolution, accomplishes both of these
tasks and has not, to my knowledge, been attempted previously with this type of
morphometric data. The approach described below also avoids the simplicity and
artificiality of simulations.
Patterns of hierarchical character-state variation were compared for two datasets

collected from images of 13 encrinurine trilobite species illustrated by Adrain
and Edgecombe (1997, see Figure 7.7). These authors conducted a traditional,
morphology-based parsimony analysis on a larger group of encrinurine trilobites, of
which these 13 species form a subset. Between 33 percent and 71 percent of the
40 characters assigned to the character complexes used by Adrain and Edgecombe
(1997) to infer phylogenetic relations among these trilobites were morphometric vari-
ables whose axes had been semantically subdivided and described-defined as nominal
character states. Figure 7.8 shows the position of these 12 species within a maximum
parsimony cladogram calculated on the basis of the entire 40-character dataset (8A)
and within an agreement subtree formed from the nine equally-parsimonious clado-
grams calculated from the 12 Adrain and Edgecombe (1997) cranidial characters (8B).
While there are differences between these two cladograms, the primary topology of A.
simoni − S. harrisoni → Struzia species + F. bachae → Mackenziurus is stable, as is
the unity of theMacKenziurus subclade. The topology of these trees, along with their
ensemble consistency and retention indices (CI = 0.6593, RI = 0.6643, RC = 0.4380)
indicate that a substantial degree of hierarchical structure in morphological characters
exists within these two datasets.
In order to determine whether partial warp-based morphometric methods can

recover phylogenetically informative characters, these trees were compared with a tree
derived from partial warp scores computed in the manner recommended by Zelditch
et al. (1995). For this analysis a total of 10 landmarks representing consistency relocat-
able positions on the trilobite cranidiumwere collected from each specimen (Figure 7.7,
upper drawing). Because trilobites are bilaterally symmetrical in dorsal view, these
landmarks were confined to the left side of the cranidium. Aspects of the glabella and
fixed cheek – both of which supplied characters for the traditional analysis – were
quantified by these landmarks.
Principal warps were calculated from the B. adraini landmark constellation (the

outgroup used in the Adrain and Edgecombe 1997) and used to determine partial
warp scores for the 12 ingroup taxa. Translation of these partial warp scores into a
series of nominal character states was accomplished using scatterplots of the scores
to look for gaps in the score distribution along the partial warp x and y axes (see
Zelditch et al. 1995; Fink and Zelditch 1995). Figure 7.9 illustrates two examples
of these, along with the corresponding thin-plate splines, for warps that represent
different spatial scales of deformation.4

Interestingly, none of the partial warp plots could be regarded as resembling any
of the nominal characters used in the traditional analysis. Whereas the latter are
almost always confined to various subregions within the form (e.g., degree of glabellar

4 Although this analysis differs from Zelditch et al. (1995) and Fink and Zelditch (1995) in that only a
single representative of the species in question was used, this simplification does not change the principles
involved; especially insofar as each of the specimens illustrated in Figure 7.7 exhibits the entire range of
cranidial characters and character states used in the traditional, qualitative analysis.



Figure 7.7 Encrinurine trilobite cranidial morphology (upper figure, right), landmarks (upper figure,
left) and morphological variation for 12 representative species. Images from Adrain and
Edgecombe (1997) and used with permission from Palaeontographica Canadiana.
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Figure 7.8 A. Strict consensus tree for the two equally parsimonious cladograms that resulted from a
branch-and-bound analysis (equal character weighting) of the 40 morphological characters
coded for these 13 encrinurine trilobite species by Adrain and Edgecombe (1997). Tree
statistics as follows: CI = 0.6593, RI = 0.6643, RC = 0.4380. Note general agreement
between phylogenetic and taxonomic groupings, especially for the genus Mackenziurus.
B. Agreement subtree for the eight equally parsimonious cladograms that resulted from
a branch-and-bound analysis (equal character weighting) of the 13 cranidial morphological
characters coded for these same 13 trilobite species. Tree statistics as follows: CI = 0.6818,
RI = 0.7021, RC = 0.4787. Note general agreement between the cranidial character
agreement subtree and total character consensus tree topologies.

elongation, angle formed by the posterior margin of the fixed cheek) that are indepen-
dent structural units of the carapace, the former – by definition – represent patterns
of variation over the entire landmark series irrespective of any structural subdivision.
Of course, different landmarks within the series receive different weights within the
partial-warp vectors (in the same way that different variables receive different weights
on a PCA axis), but these spatially defined weight patterns do not respect obvious
structural boundaries. Moreover, the associated scores must be calculated from the
entire set of landmark data. This means that the principal warps – and the partial
warps of which they are a part – are not truly localized in the same sense that this
term is applied in a traditional, qualitative, morphological analysis (see Rohlf 1998
and MacLeod in press for further discussions of this issue).
The agreement subtree derived from these partial warp-based morphometric vari-

ables is shown in Figure 7.10. Obviously, the partial warps analysis failed to recover a
consistent hierarchical structure in these partial warp-defined variables. As a result, the
cladogram based on a qualitative analysis of morphological characteristics (Figure 7.8)
was not recovered. These results are consistent with the previous results of Naylor
(1996) based on simulated patterns of morphological variation, and the warnings of
Bookstein (1996) and Rohlf (1998) regarding the stability and consistency problems
inherent in attempting to use partial warp-defined variables as taxonomic characters.
The best that can be said of this result is that the partial warps method demon-
strated very low discriminatory power for inferring adequately resolved hierarchical
patterning from these landmarks. The poor performance of this character-definition
method on these morphologies takes its place among the list of similar empirical fail-
ures to infer credible phylogenetic patterns from morphometric data (e.g., Cranston
and Humphries 1988; Chappill 1989; Crowe 1994).



124 Norman MacLeod

Figure 7.9 Representative partial warps and partial warp score plots for a principal warp analysis of
the trilobite cranidial landmarks shown in Figure 7.1. A. Scatterplot of partial warp 2 scores
(above) and corresponding principal warp (below). This primarily expresses shape variation
in the region of the eye socket and fixed cheek. B. Scatterplot of partial warp 5 scores
(above) and corresponding principal warp (below). This primarily expresses shape variation
as a transverse antero-posterior compression of the cranidium. Zelditch et al. (1995) suggest
that partial warp scatterplot axes such as these can be used as systematic characters. These
authors recommend that gaps in the distribution of taxa along partial warp axes be used
to define character states. For example, the pronounced gaps between Struszia harrisoni
and the remaining trilobite species along both partial warps 2x and 2y (A, upper figure),
and between Mackenziurus ceejayi and the remaining trilobite species along partial warp 5y
(B, upper figure), could be coded as separating these three putative characters into two
states.

A relative warp approach to quantitative morphological
analysis in systematics: congruence, interpretability,
and extension

Relative warps in systematics

As an alternative to the partial warp-based approach tomorphometric character defini-
tion advocated by Zelditch et al. (1995), the method of relative warps was evaluated
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Figure 7.10 Agreement subtree for the 976 equally parsimonious cladograms that resulted from a
branch-and-bound analysis (equal character weighting) of the 14 partial warp-based mor-
phometric characters coded for 12 trilobite species using the methods and conventions
described by Zelditch et al. (1995). Tree statistics as follows: CI = 0.8571, RI = 0.7255,
RC = 0.6218. Note lack of agreement between this partial warp-based morphometric
character agreement subtree and the total character consensus tree and cranidial char-
acter agreement subtree topologies. The failure of partial warps to recover a consistent,
hierarchically structured, morphological signal from these trilobite data is consistent with
the predictions of Bookstein (1994, 1996) and Rohlf (1998) regarding the analytic utility
of partial warp methods in phylogenetic contexts.

using the same comparative test. Relative warps differ from partial warps in being
based on patterns of shape covariance between objects included within an empirical
or reference sample. They are, in their simplest formulation, the results of an eigen-
analysis of the reference sample covariance matrix where the objects from which the
covariances are calculated represent a series of column vectors of landmark locations,
in either 2-space (x, y) or 3-space (x, y, z).
While this relativewarps approach has been advocated indirectly byRohlf (1998, see

also Bookstein 1996 and Monteiro 2000), it has, to my knowledge, never been tested
empirically. Zelditch et al. (1995) criticized methods that employ an eigenanalysis
of covariance-matrices, arguing that such methods (1) employ optimization criteria
that do not correspond to putative principles of ‘phylogenetic informativeness’ (2) are
inherently tied to particular samples (and so do not constitute independent descriptions
of morphological state, see also Pimentel and Riggins 1987), and (3) and do not
produce variables that are spatially localized descriptions of morphological variation
to a degree sufficient to conform to the biological concept of homology.
With respect to the first criticism, the purpose of a systematic analysis of organis-

malmorphology is to search for discontinuities or gaps in the patterns ofmorphological
variation. This is true whether the analysis is qualitative – as is the case in traditional
systematic investigations – or quantitative. Small discontinuities or gaps will exist
between each individual in a sample or population. Nevertheless, to be of systematic
utility, the discontinuities or gaps between character states must be greater than the
discontinuities or gaps that exist between individuals that exhibit the same character
state. If morphological gaps exist between subsets of species in a sample their exis-
tence will contribute to the variance of any morphological descriptors (e.g., shape
functions) that are sensitive to the presence of the gap. Since covariance-based eigen-
analysis aligns multivariable vectors (= axes) with the directions of maximum variance
within a dataset, it likely that such procedures will be of great use in locating any gaps
that are of genuine systematic interest gaps within morphological datasets. In other
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words, we would expect that the discontinuities we seek as systematists would be
reflected in specimen ordinations that are variance-optimized over the entire sample.
This is precisely the sort of pattern we look for when we qualitatively assess morphol-
ogy. It cannot be logical to accept such evaluation procedures in qualitative contexts,
while, at the same time, denying their relevance in quantitative contexts. In addition,
exactly the same type of eigenanalysis-based optimization is employed by partial warp
analysis (where a hypothetical bending-energy matrix is substituted for the covari-
ance matrix) to define the principal-partial warps whose use Zelditch et al. (1995)
advocate.
With respect to the second criticism, this too is inconsistent with accepted contem-

porary phylogenetic practice. While theoretical treatments of cladistic characters often
make reference to the desirability of non-relative character definitions (e.g., Pimentel
and Riggins 1987), in practice, the use of relative, sample-referenced, character defini-
tions is commonplace (Chappill 1989; Stevens 1991; Thiele 1993). Moreover, Zelditch
et al. (1992, 1995, 1998), Zelditch and Fink (1995), and Fink and Zelditch (1995)
employ sample-referenced methods to obtain the ‘mean forms’ that they then use as
the basis (= tangent point) for their partial warp analysis. Given the extreme insta-
bility of partial warps in the face of changes in the reference shape, their criticism of
covariance-based eigenanalysis methods – which are, on the whole, much more robust
to variation in appropriately constructed samples than partial warps – seems erratic.
This also holds for the Zelditch et al. (1995, as well as Pimentel and Riggins’ 1987)

criticism that any alteration of a sample’s composition might significantly perturb the
orientation of a variance-optimised morphometric variable axis such as those deter-
mined by PCA or relative warp analysis. Certainly this is true if a strongly atypical
individual is included in the sample. But in appropriately selected samples the need
to deal with substantially outlying individuals should be minimized. Inclusion of a
‘typical’ individual in a samplewould not necessarily produce strongly divergent results
(see below). Moreover, inclusion of a strongly contrasting individual in a parsimony-
based morphological phylogenetic analysis or a likelihood-based molecular analysis
also has the ability to perturb the results (e.g., Zelditch et al. 1998), yet this is obvi-
ously not regarded by most systematists as grounds on which to preclude the use of
such methods in phylogenetic contexts. Indeed, in the same way that Zelditch et al.
(1992, see other references above) employed a small, but representative, reference
sample to establish the basis for their morphometric analysis of ontogeny, a small, but
representative reference sample could be used to establish a basis for any covariance-
eigenanalysis morphological analysis with additional individuals – that were not part
of the sample used to estimate the population eigenvectors – being projected into the
eigenvector-defined reference space (see MacLeod and Rose 1993; MacLeod in press
for examples and discussion). While this issue deserves a much more in-depth treat-
ment, once again, it should not be the case that particular morphometric methods are
dismissed for being sensitive to certain analytic situations while, at the same time, the
implications of such sensitivities for other methods are casually accepted elsewhere.
With respect to the third criticism, MacLeod (in press) has shown that the interpreta-

tion of partial warps is no more, and no less, spatially localized than the interpretation
of relative warps (= coordinate point eigenshapes) or PCA axes. As a result, these lat-
ter constructs provide as good a fit to the concept of biological homology as partial
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warp axes; which is to say, not a very good fit at all (see Distances, Landmarks, and
Homology section above).
Interestingly, in the canonical examples of partial warp-based character-state

descriptions the arrays of partial warp axes are calculated for a constellation of
landmarks scattered over the entire body of the organism under investigation. This
stands in striking contrast to the normal, qualitative systematic practice of subdivid-
ing a complex organic structure into a number of putatively homologous structures
and then treating these structures as independent units of morphological variation.
From their discussions of the partial warps method it is clear that Zelditch and Fink
regard the eigenanalytic decomposition of the reference form’s bending-energy matrix
as being the mathematical equivalent of the traditional systematist’s qualitative dis-
assembly of an organism into quasi-independent character complexes. Nevertheless,
the partial warps are never truly localized in that spatial information from all parts
of the morphology (via the landmark positions) is used to compute all partial warp
scores.
To achieve an analytic procedure that is closer to accepted contemporary practice

in comparative morphology it would be necessary to first subdivide the organism’s
body into landmark-defined substructures, carry out separate morphometric analyses
on these substructures, use those results to search for discontinuous patterns of vari-
ation, code those patterns in the standard manner, and then compute the results of
a parsimony-based phylogenetic analysis. Of course, such a subdivided data analy-
sis strategy could be undertaken for any morphometric procedure, including partial
warps. However, the fact that no examples of this analytic variant currently exist,
alongwith the emphasis on the putative homology of partial warps that underpins these
canonical examples, suggests that the original partial-warps-as-systematic-characters
concept does not include such a subdivided data analytic strategy.

The Naylor simulated fish phylogeny revisited

To test the proposition that a subdivided relative warp morphometric data analytic
approach can recover systematically useful character states better than a canonical
partial warps approach the former was applied to the Naylor (1996) fish morphology
simulations. Those results were then compared to the ‘phylogenetic’ derivation of the
simulation models and the results of Naylor’s partial warp analysis of these same data.
Naylor’s simulations are regarded as the most relevant set of test data for these com-
parisons because the ‘phylogeny’ is known and because the fish simulations represent
a level of morphological complexity commensurate with the canonical examples of
the partial warp approach.
Figure 7.11 shows the fish simulations used in the relative warps test. These images

represent new drawings based on scans of the original Naylor (1996, figure 2) figures.
Since these are not the original figures theremay be some variance between the originals
and these new drawings; especially insofar as the originals were reproduced at such a
small size that the precise original landmark locations were very difficult to discern.
Inferred landmark locations on the new drawings were quantified as pairs of Cartesian
coordinates in the usual way.
In order to test the fidelity of the new drawings and the reproducibility of the

Naylor (1996) results, a partial warps analysis was conducted on the new drawings



Figure 7.11 Morphological variation in a series of fish morphology simulations used by Naylor (1996) to
exemplify the ability of partial warp-based morphometric methods to recover phylogenetic
signals. Landmarks are the same as those used by Naylor, except for the four eye landmarks
(Naylor used a single landmark located in the eye center) which were used to represent
eye shape as well as (relative to other landmarks) eye location. Morphological simulation
figures redrawn from Naylor (1996).
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Figure 7.12 Comparison of two representative partial warp score distributions for this study (x-axis)
and the original Naylor (1996) study (y-axis). A. Partial Warp 34x. B. Partial Warp 35x.
The near identity of the partial warp score patterns confirms that the redrawn simulations
are virtually identical to the original Naylor (1996) simulations.

and the resulting warp score distributions compared to Naylor’s figure 3 and table 1.5

Although the magnitude of the scores differed (presumably as a result of modifications
to the tpsSplin program used to compute the partial warp scores between 1995 and
2000), the relative patterning of scores was virtually identical (Figure 7.12). In addi-
tion to supporting the fidelity of the new drawings with respect to Naylor’s originals,
this near identiy makes a useful point about the nature of landmarks. Since it is very
unlikely that exactly the same (= homologous) landmarks were chosen on the orig-
inal and new drawings in all cases, the similarity of the old and new partial warp
results demonstrates that there is no need for landmarks to be absolutely homologous
in either biological or geometrical senses in order to represent the gross shapes of
landmark-defined objects. The concept of a landmark as nothing more that a relocat-
able reference whose purpose is to locate the approximate relative positions of gross
structural elements is sufficient to achieve remarkably consistent results provided all
other aspects of the analysis remain constant.6

Prior to the relative warp analysis, these landmarks were combined into a series
of 13 groups (Table 7.1) that effectively subdivided the overall morphology into a
set of quasi-distinct, but biologically homologous, characters. This step parallels the
subdivision of complex morphologies that is universally applied in systematic practice.
While this subdivision was arranged to reflect the characters used to construct the
Naylor (1996) simulation, a complete measurement of the form required the inclusion
of additional characters (e.g., dorsal fin shape, pelvic fin shape).

5 For this analysis a single ‘eye’ landmark located in the middle of the eye ellipse was used (instead of the
four eye landmarks shown in Figure 7.11) in order to render the landmark system comparable to that
used by Naylor (1996).

6 This result should not, however, be taken as supporting a claim that partial warps per se are robust to
changes in the reference or basis shape, see Rohlf (1998).
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Table 7.1 Characters and defining landmarks used in the
relative warp analysis of Naylor’s fish icons. See
Figure 7.11 for landmark positions

n Characters Landmarks

1 Mouth Region 1-2-29-28-27
2 Orbital-Branchial Region 3-2-27-26
3 Pectoral Region 4-3-26-25
4 Abdomen 11-10-7-6-22-21-18-17
5 Caudal Peduncle 12-11-17-16
6 Tail 16-15-14-13-12
7 Dorsal Fin 4-5-6
8 Adiopose Fin 7-8-9-10
9 Anal Fin 18-19-20-21

10 Pelvic Fin 22-23-24-25
11 Eye 32-30-31-33
12 Gill 34-35-36
13 Pectoral Fin 37-38-39-40

Once these subsidiary datasets had been assembled each set of landmark constella-
tions was registered (= oriented and scaled) using the Generalized Least Squares (GLS)
algorithm (Rohlf 1990). These registered coordinate data were then used as input for
a series of thirteen separate relative warp analyses. Representative patterns of shape
variation on the two most important relative warp shape difference axes for six of
these characters is shown in Figure 7.13. In each instance the relative warp results
separated the nine shapes into a series of mutually exclusive groups; usually into two
groups, but in two cases (eye shape and pectoral fin shape) into three. Each of these
taxic groupings save one was consistent with the pattern of morphological changes
used by Naylor (1996) to construct the simulation.
This single exception was the Orbital-Brachial Region Shape (Figure 7.13E).

Naylor’s (1996) change (3) – ‘lengthening of region containing gill and eye’ was pur-
ported to be shared by simulations III and VII in his simulation. The relative warp
results for this character groups together simulations III, VII, and IX as exhibiting
orbital-brachial region landmark constellations that are similar to one another and
distinctly different from the remaining substructure (= character) constellations of
the other simulations by a considerable degree along the most important shape differ-
ence axis (Relative Warp 2, RW-2). However, inspection of the fish shape simulations
in Figure 7.11, and Naylor’s (1996) original figure 2, shows that simulation IX does
indeed exhibit an antero-posteriorly lengthened orbital-brachial region that is strongly
reminiscent of the states for this character found in simulations III and VII. This inter-
pretation is also supported by Character 12 (gill shape, Figure 7.13F), that suggests
simulation IX is apomorphic for this orbital-brachial region-related attribute.
Although the relative warp analysis was quite successful in finding the same taxic

groupings implied by Naylor’s simulated phylogeny, this does not necessarily mean
that character-state assignments made of the basis of these morphometric data exhibit
a consistent hierarchical structure that could be used to recover the simulated pattern
of sister-group relationships. To conduct this test the distributions of taxa for the
thirteen characters were divided into subgroups based on the presence of unambiguous
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discontinuities in the patterns of shape variation along either the RW-2 or RW-3 axes.
These taxic subgroups were then assigned nominal character-state labels with state
‘0’ being assigned to the group containing the outgroup morphotype. The resultant
morphometric character-state matrix is shown in Table 7.2.

Figure 7.14 Maximum parsimony cladogram resulting from a branch-and-bound analysis (equal charac-
ter weighting) of the 13 relative warp-based morphological characters coded for the nine
Naylor (1996) simulated fish morphologies (see Figure 7.13 for examples). Tree statistics
as follows: CI = 0.9286, RI = 0.9474, RC = 0.8797. Naylor’s (1996) previous partial
warps analysis of these simulations succeeded in recovering this tree but yielded a much
lower tree Retention Index (0.48). This suggests that the partial warps approach creates
substantial amounts of homoplasy in morphometrically-based systematic datasets. See text
for discussion.

Table 7.2 Relative warp-based character/character-state matrix. See
Figure 7.11 for simulation morphologies. See Table 7.1 for
character definitions and Figure 7.13 for character-state
groupings

Simulations Characters

1 2 3 4 5 6 7 8 9 10 11 12 13

III 0 1 0 1 0 0 0 0 1 0 2 0 0
IV 0 0 0 1 0 0 1 0 1 0 0 0 0
V 1 0 1 0 0 0 0 1 0 0 1 0 1
VI 0 0 1 0 0 1 0 1 0 0 0 0 1
VII 0 1 0 1 1 0 0 0 1 0 2 0 0
VIII 0 0 0 1 0 0 1 0 1 1 0 0 0
IX 1 1 1 0 0 0 0 1 0 0 1 1 2
X 0 0 1 0 0 1 0 1 0 0 0 0 0
Outgroup 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 7.15 Effect of including new morphologies on the Naylor (1996) fish simulation relative warp
results. A. Relative warp ordinations within the plane of the two most important shape-
discrepancy axes (relative warps 2 and 3) for simulations III through X and the ancestral
form (A). B. Relative warp ordinations within the plane of the two most important shape-
discrepancy axes (relative warps 2 and 3) for simulations I through X and the ancestral
form (A). Inset landmark constellations illustrate representative character state morpholo-
gies for the morphometrically-defined taxic subgroups. Note that inclusion of the internal
node simulation morphologies I and II did not appreciably change the separation between
character-state groupings or the intra-state ordinations of morphotypes within this plane
through the shape space. While the inclusion of additional (typical) individuals to a sample
will engender some small alternation the geometry of the sample’s shape space, this alter-
ation would not be expected to automatically obscure the presence and recognition of
real morphological discontinuities. Moreover, it is possible to project individuals into the
space defined by a statistically representative sample of morphotypes without altering the
nature of the eigenvector-defined shape space at all (see MacLeod and Rose 1993 for an
example). Accordingly, objections to the use of eigenanalysis-based methods in morpho-
logical systematics because of their so-called inherent instability in the face of additions to
the reference sample (e.g., Zelditch et al. 1995) may, in many instances, be irrelevant to
systematic practicalities. Geometric analysis should be able to duplicate any result obtained
by traditional, qualitative methods. See Figure 7.11 for simulation morphologies.

Analysis of this character-state matrix eliminating simulations I and II (as ancestral
internal nodes) to repeat the conditions of the Naylor partial warp analysis resulted in
the location of one maximally parsimonious trees (Figure 7.14). Although the orienta-
tions of the relative warp axes between topology of this tree is identical to that of the
original Naylor (1996) simulation, of the 13 relative warp characters used in this anal-
ysis, only one (Orbital-Brachial Region Shape, see above) shows any homoplasy and
this homoplasy represents a single character-state reversal. This reversal is regarded
as a mistake in Naylor’s original coding of his morphological simulations. Taken as
a whole, these relative warp-based characters represents a perfect match in terms of
topology and tree descriptive indices to the Naylor (1996) simulated phylogeny. This
relative warp-based tree also correctly predicts the character states of simulations I
and II (the ancestral forms withheld from the phylogenetic analysis). Finally, contrary
to the predictions of Zelditch et al. (1995), this relative warp-based character analysis
is robust to the inclusion of additional specimens in sample (Figure 7.15).
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While one successful analytic result – especially of a simulated dataset – does not
definitively prove the case for the utility of morphometric approaches to character
analysis, this relative warp-based result is by far the most successful example of mor-
phometric variables being used to locate and define systematic-phylogenetic characters
currently known. In the most successful partial warps analysis to date (Fink and
Zelditch 1995) the tree based on only the morphometrically-defined characters dif-
fered from the tree produced by the combined morphometric + qualitative character
dataset suggesting that these two datasets disagree. Tree statistics for the relative warp
analysis of the Naylor (1996) simulations are overwhelmingly better than Naylor’s
(1996) partial warps results and substantially better than for the (Fink and Zelditch
1995) partial warps characters.

Summary

Goals of qualitative and quantitative morphological analysis in systematics are the
same. Both are concerned primarily with representing patterns of morphological vari-
ation in organisms and relating these patterns to other patterns of variation in other
variables. Systematists are particularly concerned with the documentation of morpho-
logical discontinuities that exist between groups of individual organisms because these
discontinuities (may) reflect cladogenesis.
Many of the morphological patterns that interest systematists represent geometries

that can, in principle, vary continuously. These are best expressed as ratio-scale vari-
ables; the same types of variables that are routinely used in morphometric analysis.
Such variables are compatible with the standard systematic concept of the ‘character’
as defined by Farris et al. (1970) and by Pimentel and Riggins (1987). Systematists
have often been confused by the fact that sets of observations or measurements along
continuous, ratio-scale, morphometric variables can exhibit either continuous or dis-
continuous (= clustered) patterns of variation. Sets of observations or measurement
that exhibit the latter offer no particular difficulties in terms of devising objective
rules for transforming morphometric ratio-scale variables (= characters) into the
nominal variables (character states) required by contemporary phylogenetic analy-
sis algorithms. Sets of observations or measurement that exhibit the former offer no
hope of being able to delineate groups of taxa logically, consistently, or objectively,
irrespective of various ‘member coding’ procedures that have been devised.
The fact that a large number of systematic studies employ characters that are ratio-

scale morphometric variables that have been subdivided arbitrarily into discrete states
emphasizes the practical and uncontroversial use of morphometric data in systematic
contexts, as well as the routine systematic observation of discrete distribution of obser-
vations or measurements along such variable axes. Explicit morphometric analysis
methods, however, offer systematists practical means of discovering, assessing, and
describing the morphological gaps on which taxic diagnoses are based as well as more
consistently coding observations or measurements along variable (= character) axes
for systematic analysis.
Traditional objections to the use of morphometric data in systematic contexts

because they do not conform to the concept of biological homology derive from a
misunderstanding of morphometric variables (especially landmark coordinates), an
inconsistent approach to the specification of traditional, qualitative observations in
systematics, and a lack of appreciation for the spatial limits implicit in the concept of
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biological homology. As has been pointed out by a pantheon of systematists stretch-
ing from Richard Owen to Colin Patterson, homologues are structures that exist at
particular spatial scales and are most often recognized by either internal or external
topological similarity with other such structures. Landmarks may represent homolo-
gous structures for the purposes of assessing topological similarity, but landmarks –
as geometric points – are not intrinsically homologous (see MacLeod 1999 for exam-
ples of non-homologous systematic landmarks). Rather they represent abstractions of
structures that may (or may not) represent true homologues.
Finally, the recent suggestion that morphometric partial warps of landmark config-

urations can be used as a new source of morphological characters and character-states
was evaluated via comparison of trees resulting from a traditional qualitative, and par-
tial warps-based quantitative analysis of trilobite cranidial characters for a selection
of 12 encrinurine species from the Canadian Arctic. Results showed that the partial
warps-based tree differed strongly from the tree derived from qualitative morphologi-
cal analysis and that none of the characters used for the latter was ‘discovered’ by the
former. These results are consistent with the theoretical and practical results obtained
by others on both simulated and real taxa. In aggregate, they raise serious concerns
regarding the applicability of using partial warps in systematic contexts. Alternatively,
a new procedure for using landmark-based morphometric analysis based on relative
warps is described and applied to a simulated phylogeny. Results show that this new
method (1) correctly ‘discovered’ the distinctions between simulated morphologies,
(2) produced exactly the same tree as would have been produced by a qualitative anal-
ysis of the simulated morphologies, (3) did not introduce elevated levels of homoplasy
to the phylogenetic analysis, and (4) resolved heretofore unsuspected ambiguities in
the simulation.
Reliance on qualitative methods to recognize and document morphological dis-

continuities in systematic datasets has led, in many cases, to needless confusion and
controversy over the validity of phylogenetic systematic results and appropriateness of
interpretations based on those results. The descriptive and analytic rigor that would
result from introducing morphometric methods into phylogenetic systematics would
have substantial and positive implications for both fields. A period of active experi-
mentation with these methods is now needed to further explore their compatibility.
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Chapter 8

Creases as morphometric characters

Fred L. Bookstein

ABSTRACT

The real number line, with its familiar ordering and its geometry of gaps and aver-
ages, misleads the systematist’s intuition in predictable ways when imagined in the
broader context of morphospaces for organismal shape variation. This chapter illumi-
nates one frequently encountered misconception arising from the distinction between
continuity of natural phenomena and discontinuity of descriptions of those phenom-
ena. For the specific problem of shape description in systematics, a new semantics
of discontinuous descriptors is sketched, the method of creases, using a calculus
borrowed from classical catastrophe theory via the thin-plate spline. Creases sup-
port claims about homology considerably stronger than other, earlier translations
of landmark-location data into the language of systematics. They may supply the
long-sought after passage from continuous, descriptive morphospaces to discrete
characters.

Introduction: on themes visual and methodological

Take a tetrahedron. Or, better, make a tetrahedron, by unfolding a wire paperclip
into the shape of two equilateral triangles sharing an edge at which they meet at 60◦.
Number the corners or thread colored objects through the wire in their vicinity, so
you can tell them apart: 1, 2, 3, 4.
The vertices of the tetrahedron are meant as an ordination of the shapes of four

biological taxa arranged in a three-dimensional space at their ‘shape coordinate’ loca-
tions. The concern of this chapter is the range of potential measurements by which
they can be ordered, individually or in combinations. This chapter will use the word
‘ordination’ to mean a representation of taxa by positions of points in some Euclidean
space, such as the vertices of the tetrahedron here, whereas the words ‘ordering’ or
‘sorting’ will apply to one-dimensional representations.
The easiest way to investigate this measurement space is via the ways the tetrahedron

can lie in your hand: the group of rigid rotations of the tetrahedron, ‘represented’
(as the mathematicians like to say) by its action on the taxa at the corners. By tumbling
the tetrahedron in your hand you begin to understand the domain of shape variables
that characterize the relationships among its vertices.
So tumble it, then, until you understand how to produce all possible orderings of

these taxa as the top-to-bottom ranking of the vertices after a variety of rotations.
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Figure 8.1 The 74 shape orderings of four specimens: distinct orderings of the vertices of a tetrahedron
by projection onto an axis. (A) Four distinct values; this can be obtained in 24 different
vertical orderings. (B) Three distinct values, 36 versions. (C) Three-way tie, eight versions.
(D) Two two-way ties, six versions. The shape variable embodying the ordering is vertical
in all panels.

There are 74 of these orderings, as follows:

• Four distinct quantities (Figure 8.1A), in any of the 24 possible rankings of the
vertices (e.g., 1 > 2 > 3 > 4, 4 > 3 > 2 > 1, 2 > 3 > 1 > 4). This can be
done in 24 different ways; note that turning the tetrahedron upside-down yields
a different ordering.

• Three distinct quantities (Figure 8.1B), whenever the tetrahedron is posed with
some edge horizontal (e.g., 1 > 3 = 4 > 2, 4 > 3 > 1 = 2). This can be done
in 36 different ways: six choices of edge, times six orderings each of the resulting
three values.

• Two distinct quantities involving a three-way tie (Figure 8.1C), which obtains
when viewing the tetrahedron with one face horizontal (e.g., 4 > 1 = 2 = 3).
This can be achieved in eight different ways.

• Two distinct quantities each encountered twice (Figure 8.1D), which obtains
when viewing the tetrahedron with pairs of opposite edges both horizontal (e.g.,
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1 = 2 < 3 = 4). This can be achieved in six different ways. In each such con-
figuration, the plane of your hand is parallel to both of the edges spanned by
the tied taxa, and the vertical is their common perpendicular. For this particular
tetrahedron, that vector also connects the centroids of the two edges in question,
but that is not the case in general.

Thus, for every ordering of the four vertices, except the completely unresolved report
1 = 2 = 3 = 4, there is some range of tetrahedron orientations that can be represented
by a vertical coordinate (the distance from your hand). If the original ordination is
by Procrustes distances among some set of shape coordinates, then these ‘possible
verticals’ are all themselves shape variables (Bookstein 1991). Thus, every ordering,
except the uninformative 1 = 2 = 3 = 4, is accessible through some shape variable
that is a linear projection of those shape coordinates.
This absolute ambiguity is neither an illusion nor a contradiction. Instead, it

illustrates the limits of the naı̈ve systematist’s intuition in matters of quantification
(see Bookstein 1991, 1994). Just as the methodology of physics is a terribly mislead-
ing model for quantitative praxis across the sciences in general, so the real number
line – with its familiar ordering, gaps, and arithmetic – is an inappropriate guide to
quantitative methodology in comparative biology. In particular, the familiar number
line is of no use in describing shape. The geometrical grammar of quantitative mor-
phological descriptions and their comparisons arises from notions akin to rotating our
tetrahedron, not sorting the number line. The role of morphometrics within system-
atics is to sort through all the possible orderings of shape-based ordinations – all the
possible vertical coordinates that could be generated out of the original shape measure-
ments – in order to find some that are useful for testing hypotheses about the shape
data in a specific systematic context. Geometrically, all shape variables are equally
valid descriptors, and it is part of the morphometrician’s task to preserve access to
them all.
Through practice, this morphospace for your tetrahedron can become nearly as

familiar as that of the real number line. Yet, as soon as there are more than four forms
in a data set, the geometry of alternative linear descriptors is no longer that of familiar
three-dimensional Euclidean space. In these cases we will need other visual aids if
we are to understand the range of possible form descriptors. Consider, for instance,
the simplest interesting morphospace for the shape of configurations of landmarks: the
four-dimensional space that arises from sets of four labeled points of the plane when
one ignores size, orientation, and position. The four points are now not the vertices of
a tetrahedron, each standing for one whole shape, but rather, each set of four points
makes up a shape of its own. For a review of this version of shape space, see Bookstein
(1997a, 1998a) or Rohlf (this volume).
Figure 8.2 shows, at upper left, a random sample of five four-landmark shapes

from the Dryden–Mardia distribution (Dryden andMardia 1998) arising from circular
Gaussian variation of landmarks independently around a fixed mean form. The forms
are superimposed in the so-called Procrustes pose – with position, orientation, and
scale all constrained by a single least-squares criterion – and then flattened so that
the data lie in a four-dimensional subspace of the eight dimensions (four sets of two
Cartesian coordinates) in which they were originally digitized. The geometry of pos-
sible shape measurements of these five forms is the four-dimensional equivalent of
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Figure 8.2 Morphospace for an arbitrary dichotomy of five randomly generated quadrilateral shapes
(A). The axis labeled ‘between-taxon’ (B) is the shape variable that perfectly confirms a
discrimination of shapes 1 and 2 from shapes 3, 4, and 5. The other splines (C) represent
‘within-taxon’ contrasts in perpendicular directions of shape space. At each taxon is the icon
of its quadrilateral of landmarks. (D) This same variable visualized as a spline of Procrustes
length 0.25 in either direction; it is mainly a uniform transformation.

the tetrahedron. Mathematicians call this configuration a 4-simplex, where a line seg-
ment is a 1-simplex, a triangle a 2-simplex, and your familiar tetrahedron a 3-simplex.
As there were 74 different postures of the tetrahedron – 74 different rank-orders of the
shapes of four taxa – there are 540 for the 4-simplex. Of these, themost relevant for sys-
tematics are those that reduce to binary variables: contrasts such as 2 < 1 = 3 = 4 = 5
of one taxon against the other four, and contrasts such as 3 = 4 < 1 = 2 = 5 of two
taxa against the other three. Notice that there is no concern for gap coding in mor-
phospaces like this one, inasmuch as by altering the measurement formula the coding
of a variable can be simplified to the irreducible minimum of two values separated by
one gap.
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Figure 8.2 goes on to show the complete geometry of the four-landmark shape
morphospace for one arbitrarily chosen exemplar of this binary class: the contrast of
forms 1 and 2 against the others. The ordination is as shown in the upper right panel, in
which the contrast of interest is the ‘between-taxon’ axis running vertically (‘upward’
from the hand holding the hypertetrahedron). All the other dimensions of shape space
are concealed in the two substructures viewed on edge along the horizontal. The upper
is a simple line (the join between shape 1 and shape 2), the lower the plane through
shapes 3, 4, and 5 viewed in some arbitrary foreshortening of its own.
Looking at the tetrahedron under the two-pairs case (Figure 8.1D), the direction of

the vertical was fixed by the statement of the problem (to orient the tetrahedron with
the edges spanning both tied pairs parallel to your hand). The same constraint pertains
to this five-taxon version: only one vector is perpendicular to both domains of within-
taxon variation, the line between taxon 1 and taxon 2 and the plane through taxa 3,
4, and 5. Here, perpendicularity is in terms of the underlying Procrustes geometry of
shape distance (see Bookstein 1997a, 1998a).
Directions like these can be diagrammed helpfully by moving each landmark of

the mean shape to the location it would have if only the vertical coordinate in this
plot were changing (not any of the other shape dimensions) and then relating the
final form to the mean form by a thin-plate spline. In Figure 8.2C are the splines
that result from going ‘down’ (in the direction from taxon 12 to taxon 345) and
then from going ‘up’ (the direction from taxon 345 to taxon 12). In Figure 8.2D
are representatives of the remaining directions in morphospace perpendicular to this
particular contrast: the contrasts between forms 1 and 2, between forms 3 and 4, and
forms 3 and 5. These three shape contrasts, together with either of the two at far
right, span the complete space of all possible contrasts of shape for this quadrilateral.
In other words, combinations of these deformation patterns are the equivalent of the
three-dimensional set of re-orientations of the tetrahedron that applied in the four-form
(paperclip) example. To name this contrast, we read the grid (or the equivalent vector
of partial warp loadings). The feature that is ‘vertical’ here, the contrast between (12)
and (345), is mainly a uniform transformation, relative extension or compression of
the form in the direction of the grid’s diagonals, with hardly any bending. Conversely,
the transformations that are ‘horizontal’ – that are ignored by this character – involve
a great deal of bending (as in the grids for shape 3 to shape 4 or shape 5) or the
orthogonal uniform transformation that changes the aspect ratio, vertical : horizontal.
For alternative descriptions of transformations of quadrilaterals, see the discussion in
Bookstein (1991).
Now just as the tetrahedron could be rotated to generate any ordering of the four

vertices that we wished along its vertical, so this 4-simplex can be rotated to any other
vertical ordering. Figure 8.3 shows the same set of panels for the ‘taxa’ that arise when
2 and 5 are reassigned, so that now shape of taxon 5 goes with that of taxon 1 and
shape of taxon 2 with taxa 3 and 4. The vertical coordinate, the perpendicular to both
within-taxonmorphospaces, is now a different sort of shape variable entirely, as can be
seen in the geometry of its spline (Figure 8.3C): it combines amainly vertical/horizontal
uniform term with a substantial amount of bending. The between-taxon axes make
an angle of about 73◦ between Figure 8.2 and Figure 8.3.
We could continue in this way for the remaining eight possible two-versus-three

bipolar contrasts of this (or any other) set of five four-landmark forms. For each,
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Figure 8.3 A different dichotomy of the same five quadrilaterals. See Figure 8.2 caption for label-
ing conventions. Again some shape variable confirms the perfect bifurcation between
these ‘taxa’.

there is a shape variable aligned with that contrast and perpendicular to both of the
within-‘taxon’ variance structures that the geometry is arranged to ignore. For five
landmarks, the statementwould be true of any bipolar contrast among seven forms; for
six landmarks, among nine forms; . . . , for k landmarks, 2k−3 forms, corresponding to
the 2k−4 dimensions of the full Procrustes shape space. Since, in practice, landmarks
are not very difficult to come by – in general much easier to produce than new taxa –
there results a praxis for producing unique morphometric variables congruent with
any imaginable node of a cladogram.
To readers who have not had this situation explained to them before, the proposition

that given enough landmarks we can extract a variable confirming any bifurcation
whatsoever in a data set of three or more taxa, regardless of its actual systematics,
seems absurd. Yet, that is the way rotations of sufficiently high-dimensional descriptor
spaceswill be exploited below. Themanner inwhich these shape spaces yield descriptor
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variables surely seems not tomap onto phylogenetics thewaywe expect variables ought
to: onto a real line or a circle, some ratio or some angle, capable of stable arithmetic
summaries in terms of order and gaps between groups.
The problem is not with the geometry, but with our systematic expectations.

Quantification in biometry is not like the number line, but rather like the tetrahe-
dron. There is a space of possible measures a great deal richer than the actual data,
a space not only continuous but multidimensional and non-Euclidean. The task of
describing a contrast of shape lies primarily in the formulation of variables in some
manner that is sensible for an ultimate systematic purpose, whereas the issue of col-
lecting and sorting the variables’ values is only secondary. The geometric simplicity
of the number line, with its too-familiar relationships of greater-than and less-than
arising out of human social history, conceals the myriad of ways in which ordering
principles themselves arise flexibly before being constrained optimally to illuminate a
systematic question. Before taxa can be contrasted, the space of variables spanning
all the possible descriptions must itself be ordered. And this ordering – the selection
of some single variable from the complete hypersphere of possibilities – needs to be
logically coherent, just as the ordering afforded by the tetrahedron was equivalent to
the task of deciding ‘which way is up’ from the full spherical space of possibilities.
This decision actually entrains all of the final ‘systematic findings’ – they are begged
at the time the variables are selected.
Consequently, it will not do to guess at the identity of useful variables a priori. There

are far toomany candidates available. This sort of guesswork cannot result in outcomes
having any validity as guides to morphospace, whether angles, ratios, or partial warp
scores. To select a descriptor of shape variation in advance of inspecting the complete
morphospace of that shape representation is to impose an arbitrary discontinuity at
will: a stance unlikely to lead to biological inferences having any authority.
There are only two sensible ways to break the symmetry of description in the space

of ‘all possible contrasts’ (the space of simplexes and their rotations). Either one must
have directions of contrast specified a priori as covariates of exogenous specimen
properties (e.g., membership in particular taxon groups predicated in advance), or
else these directions must arise as functions of sample variation likewise specified in
advance (e.g., relative warps [= principal components of empirical shape covariance
matrices in the Procrustes metric]). In this way, there is no guesswork or mysticism
involved in the production of interesting directions in shape space. The directions are
embodied in the systematist’s a priori choice or definition of ‘interesting contrast’ or
‘figure of merit’.

Localization in biometry

The task of selecting an interesting direction in organismal shape space is not sta-
tistical, but systematic: the visualization of a contrast supplied by the data in some
automatic fashion such as a planned mean difference. Any such direction is a topic
of potentially informative discussion. But to be useful in a systematic context, the
discussion cannot be in the language of ‘directions in shape space’ (the geometry of
Figures 8.2 and 8.3). It must be phrased instead in the ordinary, extensive language
of organismal form, exploiting the classic semantics of references to parts and their
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proportions, direction and magnitude of gradients, and the like. In the contemporary
literature of morphometrics (which has been couched more often in the language of
statistical signal analysis than that of biological interpretation) this entire concern had
been ‘put off until later’, until appropriate tools had been invented that might formal-
ize the systematist’s intuition. One such tool is now available, the method of creases
(Bookstein 1998b,c,d, 2000). The remainder of this chapter deals with the geometric
and biometric language of creases.
Any discussion of localization in morphometrics must begin with an exploration of

that other system of localization we intuit without any special education: localization
within a physical landscape. For instance, this analogy is built into the grid visualiza-
tion scheme for the thin-plate splines we are using. The typical viewer of Figure 8.4
does not see a landscape in the landmark displacement plot at upper left, but it is very
difficult to nullify the perception of the same displacements as a landscape once the
‘contours’ of the landscape have been indicated (Figure 8.4, upper right).
Figure 8.4 goes on to present a random assortment of ‘points of view’ (elevations)

of this surface. Within a broad range of angles we see the same localization regardless

Figure 8.4 Shape changes as landscapes. A shift of the midpoint of a quincunx (upper left), visualized
as a splined grid (upper right), is immediately decoded as a surface shape (a landscape). The
central landmark on the grid is in the same relative position as the undotted end of the
segment in the panel to its left. As this shape is tumbled (lower 10 images), one proves
particularly informative about the shape change: the panel at center right, in which grid lines
just touch without crossing.
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of optical elevation or foreshortening (but turn the page upside-down, and those that
looked like peaks now look like pits – a classic optical illusion). Linear transforma-
tions such as these orthogonal projections are uniform throughout the image and thus
cannot add any local information of the sort systematists seek. Hence, all of these
new perspectives convey the same information about non-uniformities of the grid.
Nevertheless, they do not all appear to be equally informative. Our eyes find some
of them quite a bit more striking than others. Careful inspection of figures like these
suggests that the most interesting or intuitively accessible grids are those resembling
the exemplar at the center right: grids for which one of the warped lines conveying the
deformation comes to just touch another without quite crossing. This is an instance
of the general tendency of image semantics to emphasize points at which atypical
coincidences occur (Koenderink 1990).
There are two generic (= mathematically typical) ways that this can happen, each

demonstrated several times in the grids of Figure 8.4. Projections of curving surfaces
onto specific planes can fold (Figure 8.5A), or they can have cusps (Figure 8.5B). At a
fold, nearby parts of one surface are mapped to the same region of the image surface
after one side is mirrored away from the fold line. At a cusp, one part of the surface
rises up to occlude another part. To say these are generic means that small changes in
the mapping perspective do not make them vanish, only move a bit. That is why they
occur more than once in Figure 8.4.
The specific perspective at center right in Figure 8.4, where nearly parallel grid lines

touch but do not cross, is not generic in this sense. Small changes in the point of view
turn the touching locus into a combination of cusps and folds, or else make it go
away entirely (as shown in Figure 8.6). For any smooth landscape that is nearly flat,
but not exactly flat, there is a direction of view closest to the zenith for which some
grid on the surface appears to touch without crossing, at which both that point and
that view are isolated (discrete, distinctive). But whereas contour maps of landscapes
are maps from the underlying plane to one real value (height), creases represent this

Figure 8.5 The two generic (typical) ways in which grid diagrams fail to be one-to-one: (A) folds and
(B) cusps. These are both exemplified in many of the panels of Figure 8.4.
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Figure 8.6 The crease (center) is the transitional case between the one-to-one map (left) and the map
with interrelated folds and cusps (right).

same just-touching construction for maps into a space of two real values, that is, the
deformation of one image into another.

Geometry of creases in one and two dimensions

Thus far this chapter has emphasized the intuition of possibilities at the expense of
mathematical rigor. Now it is time to replace talk of tumbling and touching by descrip-
tions of actual algorithmic approaches. Because the subject of study pertains to a
four-dimensional geometry (the two dimensions of the original square grid, mapped
into the two others of the deformed version), we can use the underlying mathematics
of catastrophe theory (Poston 1978) – the calculus of ways in which the Cartesian
quality of a projected grid can break down. The following discussion is based mainly
on Bookstein (2000).
Consider the function f : x → y = (x4 + x3 − 3x2 + 4x)/3, [0, 1] → [0, 1], con-

strued as a map between two one-dimensional continua (intervals) x and y registered
at their endpoints (Figure 8.7A). In the more usual presentation as a Cartesian graph
(Figure 8.7B) an inflection is apparent where the tangent crosses the curve near its mid-
point. One can locate this inflection by a dynamic graphical maneuver (Figure 8.7C),
shearing the curve steadily more and more downward into curves x → y − εx for
increasing ε, in search of the first value of ε for which the corresponding curve has
an isolated zero slope. This happens for ε = 3

4 , the particular sheared graph indicated
with an arrow and drawn by itself in Figure 8.7D. The corresponding one-dimensional
continuum simply projects this curve onto a vertical axis, where the inflection – now
horizontal – is visualized as the pile-up of dots near the middle of the range (on the
right).
For functions near the identity (such as the example here) ε is near 1 and the range

of the sheared vertical graph is the small quantity (1 − ε). Then the singularity of the
dot map is hard to read. If we rewrite x→ y− εx as x→ (1− ε)(x+ (y− x)/(1− ε)),
dropping the prefactor, we arrive at a family of maps x → x + α(y − x), where α

is (1 − ε)−1. These are linear extrapolates of x → y from the identity as shown in
Figure 8.7E. The corresponding one-dimensional versions are ordinary magnifications
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Figure 8.7 The one-dimensional equivalent of the crease is the graphical location and enhancement
of an inflection point by a combination of shearing and vertical expansion. See text for
discussion.

of the dot patterns generated by y− εx. As before, there is one member of this family
having isolated derivative zero somewhere, the function x→ x + 4(y − x) shown by
itself in Figure 8.7F. This curve is just a fourfold vertical distortion of the curve in
Figure 8.7D. Because the corresponding one-dimensional continuum is now full-scale
within its copy of the real line R1, the viewing eye can more precisely discern the locus
at which the dots pile up. The search for inflections at slope ε has become a search for
values of α = 1/(1− ε) for which the map x+ α(y− x) first ‘overruns itself’: first has
a zero of its derivative just before incorporating a domain of going backward.
For applications to organismal form, our task is to construct a graphical manipu-

lation for maps Rk → Rk, k > 1, as close as possible in spirit to what was shown in
Figure 8.7. The discussion here takes k = 2: a matched pair of labeled point sets S and
T (Starting and Target forms) in the Cartesian plane. Consider, for example, the two
point sets in Figure 8.8: a starting form S (Figure 8.8B), a quincunx (pattern of spots in
an ×, like the 5-side on the dice used for gambling), and a target form T (Figure 8.8A)
in which the central spot has been displaced by a modest amount (in this instance, 15
percent of the diameter) along its diagonal. We have already seen maps like this in
Figure 8.4. Now we are ready to construct the algorithm that automatically produces
the special points of view suited to visualizing the crease.
At any point, the derivative of such a map is a 2 × 2 tensor OθTDO−θS , where the

O’s are orthogonal matrices (rotations) and D a diagonal matrix of principal strains
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Figure 8.8 Computation of the crease for the transformation of a quincunx S into a target form
T. (A) Original spline, with dots indicating the target form T and crosshairs locating the
maximum strain. (B) Derivative of the spline as a 2 × 2 symmetric tensor on the starting
form S. (C) Spline after a suitable multiple of the identity transformation is rotated out.
(D) The same as an extrapolation instead, so as to preserve graphical scale. See text for
discussion.

(Bookstein 1991). The symmetric part is OθSDO−θS , the rotational part OθT−θS . The
symmetric part can be drawn on the S form as a symmetric tensor field (Figure 8.8B)
of axes of the ellipses into which little circles in the starting form are taken by the
interpolation at hand. One equivalent in two or more dimensions for the inflection
produced in Figure 8.7 is the locus at which some principal strain is an extremum
σext as a function of position. For an interpolant of closed algebraic form, like the
thin-plate spline here, these are easily located by mesh refinement. In this example,
there is one single extremum of compression, toward the top of the major diagonal,
indicated by its principal directions atop the original spline diagram. The extremal
strain happens to be a compression to 0.6330 of the original length; the thin plate,
because it smoothes, has reduced this ratio below the 30 percent shrinkage of the
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interlandmark distance spanning the locus. In both forms, the principal axes of the
interpolation at this point lie at ±45◦ to the horizontal.
While the location of these crosshairs is plausible by eye, it is no more verifiable than

the equivalent problem of localization in Figure 8.7A. By analogy with that R1 → R1

case, we first subtract a multiple of the identity map corresponding to the ‘slope’ (= the
isotropic map having the same derivative as that extremal strain in its direction) to
arrive at the mappingO−θSS→ O−θTT−0.6330O−θSS, where both θs are taken at the
locus of extremal strain. Dropping the θs from the notation in this case of θS = θT, this
is the map S → T− 0.6330S. Arithmetic here is carried out vectorwise on the points
of S and T separately, and the interpolation engine applied to the result: by linearity
of the thin plate, this is the same as the difference of splines S→ T and S→ 0.6330S.
Its grid (Figure 8.8C) is informative, but there remains an undesirable shrinkage of
scale exactly like that shown at lower left in Figure 8.7. Just as in the one-dimensional
case, this shrinkage is circumvented by converting the problem to extrapolation from
the identity. Because the thin-plate spline is linear in its right-hand side, the grid for
the map S→ T− 0.6330S differs only in scale from the grid for the map

S→ (1− 0.6330)−1(T− 0.6330S) = 2.725T− 1.725S = S+ 2.725(T− S)
(8.1)

Again arithmetic is done coordinatewise by landmark, and again, by linearity, the
resulting map is a sum of its components: the identity plus 2.725 times the spline
S → T. This is the spline that moves every point of S by a vector just 2.725 times as
long as the vector by which it was displaced to get to its position in T.
In the general case, with θS �= θT, the projection S → OθS−θTT − σextS becomes the

extrapolation

S→ S+ ei(θS−θT)

ei(θS−θT) − σext
(T− S) (8.2)

up to an arbitrary rotation. The figures that follow take this rotation as O(π/2)−θS , so
that in all cases the extrapolated map has principal strains horizontal and vertical with
vertical principal strain zero.
In the grid corresponding to the extremal extrapolation (Figure 8.8D), the structure

of the original R2 → R2 map (Figure 8.8A) has been enhanced until it is legible. The
extrapolation has pushed the deformation of the original quincunx along the diagonal
(the locus of extremal strain) until it ‘overruns itself’, just as in Figure 8.7. Figure 8.9A
is a graphical enlargement of the interesting part of this grid, the locus at which the
map has directional derivative precisely zero.
In that both of the derivatives of y′ at (0, 0) are zero, this map has a singularity

there. The generic singularities of maps R2 → R2 are folds and cusps (Whitney’s
theorem; see Bruce and Giblin 1992), having canonical forms (x, y) → (x, y2) and
(x, y) → (x, xy + y3), respectively. The singularity here is neither of these, taking the
form y′ = x2y + y3 up to a function of x: the ‘ideal type’ shown in Figure 8.9B. As a
map R2 → R2 it seems not to have a conventional name, at least, not in English. In
earlier publications (Bookstein 2000) I have named it the crease. The vertical line x = 0
is mapped into itself by this transformation, but the derivative of that map is zero at
the singularity. Lines y = sx of non-zero slope through the singularity are mapped
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Figure 8.9 The form of the grid at the crease (A) for S → S + 2.725(T − S) is a bent version of the
polynomial x2y + y3 (B). Overextrapolations, such as S → S + 3.5(T − S) (C), generate
the familiar configuration of two folds joined at two cusps.

into cubics y′ = (s + s3)x3 all having slope zero at the singularity. That is, only one
line through the origin of the starting grid S has an image that is a proper geometric
traversal of the x-axis; all others cross at an angle of 0◦. If the value of α is too large,
the resulting mapping extends ‘past the singularity’ into a region that reverses the sign
of area, and thus no longer has an inverse. These regions of overextrapolation are
bounded by a pair of cusps joined by two folds (Figure 8.9C) between which the map
turns areas upside-down.
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Example: effect of schizophrenia on a midsagittal brain polygon

The data set for our first example (DeQuardo et al. 1996) was acquired and analyzed in
1994 in the course of research into the neuroanatomy of schizophrenia. These data are
the locations of 13 landmarks in a sample of 28 approximately midsagittal sections of
three-dimensional magnetic resonance (MR) scans of human brains, 14 from normal
adults and 14 from persons diagnosed with schizophrenia. The landmarks concentrate
in the midbrain, where fluid volumes jostle with many different clearly delineated
nuclei carrying out many different functions. Actually, only eight of these are proper
Type-1 landmarks (Bookstein 1991); the rest sample extended curves. We ignored this
distinction in the originally published analysis, and continue to ignore it here (but see
Bookstein 1997b, 1998a).
For multivariate analysis it is convenient again to use the Procrustes shape coor-

dinates (Figure 8.10A), locations of the landmarks of all the original specimens of
the data set after each configuration is fitted to their average by minimizing summed
squared discrepancy over the similarity group. For the two-group comparison at hand,
one averages each fitted coordinate pair in this same coordinate system (Figure 8.10B).
The landmarks of the mean shape for the normal adults are indicated by +; for the
schizophrenics, by ×. There are a total of 2 × 3 − 4 = 22 degrees of freedom in this
multivariate space, but we will always draw its points as vectors of multiple landmarks
in the original Cartesian plane. One pair of landmarks that will concern us presently
is highlighted by a bracket.
Contrasts like this one can be tested for statistical significance by one general-

purpose procedure, a permutation test (Good 2000) of Procrustes distance. Here,
the squared Procrustes distance between the mean shapes is 0.001444. Without mak-
ing any probabilistic assumptions that require verification (e.g., Gaussian distribution
of landmark variability jointly or separately, see Goodall 1991), we can compare this
quantity to the distribution of distances between averages of 14 of these 28 forms and
averages of the other 14 when these subsets of 14 are selected at random from the full
set of 40,116,600 possibilities. In 5,000 such random subsettings of the 28 cases, the

Figure 8.10 A data set of 13 midplane brain landmarks. (A) Procrustes shape coordinates for all 28
subjects. (B) Averages by group (+, 14 normal subjects; ×, 14 adult male schizophrenics).
The mean difference is significant at 0.036 by omnibus permutation test (see text). The
bracketed landmarks underlie the crease that will be found in the next figure.
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Figure 8.11 Crease analysis of the schizophrenia data set: the spline N → S from normal mean to
schizophrenic mean. Panels are as in Figure 8.8. At extrapolation (α = −2.303) a crease
appears between the landmarks bracketed in Figure 8.10. It is evidently the only localized
characteristic of this shape comparison, and tested as a crease, it is significant beyond the
0.001 level.

observed Procrustes distance is exceeded 183 times, for an empirical significance level
of 0.0366. It is this quantity that has been declared ‘the significance level of the group
difference’ in earlier publications.
As 0.0366 is less than the conventional 0.05, we are authorized to talk about the

features of this shape difference. But what shall we say about it? The thin-plate spline
interpolation grid (Figure 8.11A) shows some sort of bulge near the center. Perhaps it is
this region that is responsible for the significance of the permutation result. Themethod
of creases introduced in the previous section can be used to help make sense of the
geometrical signal in cases like these. The derivative of the interpolation between these
average shapes, diagrammed as a symmetric tensor field (Figure 8.11B), has only one
region of high strain, located in the vicinity of the visible bulge. The extreme principal
strain there is 1.434; its orientation (Figure 8.11C) suits the analysis of the bulge as
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well. Extrapolation to the crease singularity (Figure 8.11D) is for α = 1/(1−1.434) =
−2.303. In this panel, the starting grid has been rotated so that its vertical is aligned
with this same principal strain. Visually, the structure of this singularity is just what
we were led to expect from Figure 8.9. More to the point, there seems to be no other
signal anywhere in the diagram. The crease is all there is here – a monolithic organizing
icon for reporting the deformation ‘as a whole’ with great graphical force.
By virtue of this degree of localized organization, the evidence of shape change

in this example is considerably more persuasive than the omnibus permutation test
implied. Customized for localized phenomena such as this, a better permutation test
would estimate the frequency with which extrapolations to the same factor of −2.303
result in grids that include or over-shoot a singularity when one compares the mean
of one randomly selected half of the data base to the mean for the other half. It is
sufficient to examine the permutation distribution of this largest principal strain to see
how frequently it exceeds 1.434 in magnitude. In 1,000 random subsettings of these
28 cases into halves, no principal strain anywhere larger than 1.434 was found.
Back at the right in Figure 8.10, it is clear that the two landmarks indicated by the

bracket have moved more than the other 11. Their motions, which are in opposite
directions, are collinear with the segment between their mean positions and, nearly
enough, with that principal strain of 1.434. We know now that these landmarks strad-
dle the crease just estimated. Hence, the distance between these two landmarks, relative
to the overall central moment of the configurations (the scale normalized out in the
course of the Procrustes registration), is likely to be a very sensitive indication of this
shape change. Indeed this separation averages about one-third more in the syndromal
subgroup than in the normal adults, a comparison ostensibly ‘significant’ by separate
t-test at ρ ∼ 0.0013. As there are 78 such separations, a Bonferroni-corrected prob-
ability would be 78 × 0.0013 ∼ 0.10. But we did not come to be thinking about this
by selecting it as the best of the interlandmark separations. Rather, over this feature-
less background, the only possible signal appears aligned with this particular pair of
landmarks, falling off toward something uninteresting in all directions. The crease is a
convenient way of wielding this evidence of spatial coherence in the course of reasoning
about the reality and implications of this shape difference, and the relative separation
of this pair of landmarks (relative, that is, to the overall scaling of the configuration,
which is by Centroid Size) seems like the most useful possible quantitative character.
What is the meaning of such a finding? In the context of geometric information, the

analysis in Figure 8.11D seems to have uncovered a focal feature. This algorithmic
approach has called attention automatically to the same bulge on which the view-
ing eye fastened in Figure 8.11A. Far richer than any alternative style of reporting,
Figure 8.11D organizes crucial information about change of length and its gradients
throughout the image in a way that shows us how dominant this particular singular
feature is. Quite literally, there is nothing else to talk about in this geometric diagram.
In this sense, what we have accomplished is an automated caricature that takes the
atypical features of a scene and exaggerates them for ease of communication.
The same finding can be rephrased in the language of anatomy. We have

located the center of directional compression of a structured dysmorphogenic field
that, in this example, seems to summarize all that might be interesting about the
schizophrenia-associated deformity as a whole. The expansion (actually, an erosion
of neural matter) that we are examining is centered directly over the quadrigeminal
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cistern, an extension of the third ventricle under the splenium of corpus callosum, so
that the discriminator we have uncovered here has the semantics of a good morphome-
tric character – the relative extension of the quadrigeminal cistern along the direction
toward colliculus. This is certainly not any sort of standard measurement in the geom-
etry of schizophrenia (indeed there are no such standard geometric measurements in
the biomedical literature). But it is entirely in keeping with the grammar of quantita-
tive keys, which often deal with the relative sizes of parts. In this case, the part that
we discerned algorithmically was already there to be measured, even having a Latin
name. The shape variable we have produced is not, in the language of Figure 8.1, an
‘edge’ of the ordination. It is not the mean difference between the clinical groups, but
a picture of the most local aspect only. If these two groups were proper taxa, this
particular descriptor would be a fine candidate for a character. Of this interpretation
there will be more below.
To complete the analysis of this data set, we need to look at extrema of the

smaller principal strain, the one corresponding to peaks of compression. The finding in
Figure 8.12will come as no surprise: the greatest compression is located approximately
parallel to the expansion of Figure 8.11 where it springs from the landmarks just
beneath. The extremal strain is 0.79, and so yields a crease at extrapolation factor

Figure 8.12 (A, B) Analysis of the minimum strain for N → S. (C, D) Analyses of the reverse spline
S → N result in the same features.
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α = 4.8. Because this strain is closer to unity than the larger principal strain of 1.43
in the same vicinity, it is inappropriate to test it for significance separately.
Readers often ask about the dependence of this sort of analysis on the choice of

starting form – in these figures, it is the normal mean form on which the grid is
squared, the syndromal that is shown as deformed. When the forms N (normals) and
S (schizophrenics) are similar, as is the case here, the map S → N (reverse spline)
closely resembles the map N → N + α(S − N) with α = −1, which is to say, the
map N → 2N − S. To the accuracy of this approximation, the crease diagram will
look the same whichever form, N or S, is taken as the ‘starting’ form. Compare the
two versions of the ‘normalization of schizophrenia’ in Figure 8.12 or the alternative
analysis of the quadrigeminal bulge in Figure 8.12D. Crease analysis in general is not
polarized: no direction need have been specified in advance.

Example: sexual dimorphism in a curving form
without landmarks

The data for the second example come courtesy of Christos Davatzikos of Johns
Hopkins University. As explained in Davatzikos et al. (1996), these are outlines tracing
around the human corpus callosum, the thick bundle of neural matter connecting the
two cerebral hemispheres. The tracing is of the intersection of this bundle by the mid-
plane of the head. The sample consists of 16 three-dimensionalMR brain images: eight
from elderly males and eight from elderly females. The outlines were traced automati-
cally by an active contour method that searches the image for a locus of steep grayscale
gradient without distorting a prototype too far (a standard boundary-trackingmethod,
see citations in Xu et al. 2000). On one subject, 100 points were evenly spaced around
the outline. Then sets of 100 points for each of the other 15 forms were selected on the
polygonal outlines by an elastic method of ‘slipping’ with respect to the evenly-spaced
points on the first form. When points are attached to outlines in this way, they bear
information along only one Cartesian coordinate, the direction normal to the outline.
Such points are called semilandmarks. The full data set, 100 points for 16 cases, is
shown in Figure 8.13. These configurations were Procrustes-averaged and converted
to shape coordinates by superposition over that average just as for landmarks. The full
sample of shape coordinates and their averages by sex are shown in Figure 8.14.
The mean shapes (Figure 8.14B) look considerably more divergent in shape than

the group averages of the schizophrenia example (Figure 8.10B). On the other hand,
these sample sizes are smaller (only eight per group) and the points more numerous.
In the Procrustes formulation for landmarks, distances between matched points are
computed using all the information available, two coordinates per point. Semiland-
marks are originally acquired and processed in Procrustes scatters as coordinate pairs,
just like landmarks. But for statistical analysis they are better considered in a different
Cartesian coordinate system that varies its orientation from point to point: the system
of tangent and normal to the mean outline curve. The real import of data sets like
these characterizes outlines only in the direction perpendicular to the (typical) curve.
The usual Procrustes formula, by attending to shifts in both directions, is incorpo-
rating too great a degree of noise into the computation for the signal here to emerge
clearly. We can correct this problem by reducing the ‘distance’ squared and summed
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Figure 8.13 Hundred-semilandmark outline shapes of the midline corpus callosum for eight elderly
males (above) and eight elderly females (below).

Figure 8.14 Procrustes analysis of this data set. The mean difference is significant at 0.005 by a suitably
modified permutation test. See text for discussion.

in the Procrustes formula to only one of its coordinates, the distance normal to the
average curve.
Following this modification, the permutation test goes forward exactly as before.

The true summed squared normal difference between the group averages is calibrated
against the distribution of that same sum of squares, all the way around the outline,
when group is randomized over the 16 cases. There are 12,869 other groupings of
this data set into 8 versus 8; a thousand of these were taken at random. Out of the
thousand, only five permutations generated pseudogroups having a larger summed
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squared distance taken in this locally directional sense. In other words, the two group
mean shapes in Figure 8.14 are significantly different at about the 0.5 percent level. It
is telling that this same contrast could not be shown to be statistically significant by
Davatzikos et al. (1996) using analysis of areas.
As in the first example, it remains to extract the features of this difference – to

put the contrast into words. Again, the thin-plate spline is the best available tool. In
Figure 8.15A is the spline, extrapolated twofold, from the average of the male forms
to the average for the females. There is clearly a reshaping of the region of splenium
involving some directional size change and some adjustment of its connection with the
isthmus. In a somewhat focused-down version of the entire Procrustes analysis, for

Figure 8.15 Inspection of the thin-plate spline between the means suggests a superposition on poste-
rior structures only. There is now a strikingly localized divergence between the samples
along the upper curve of splenium.
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the posterior half of the form, we can see some of this difference in the nearly perfect
separation of the outlines by sex in the vicinity of the ‘bump’ at the top of splenium
(Figure 8.15B).
When I first inspected these data in 1996, the decision to attend to the vicinity of sple-

nium was just an intuition. Today, however, the method of creases produces it directly
and automatically as an explicitly quantitative descriptor. In other words, the shape
contrast is ‘characterized’ – turned into an objective character. Figure 8.16 exploits
the crease in this second data set (which, you will recall, has no landmark points at
all, only semilandmarks). Figure 8.16A is the analytic computation corresponding to
our informal report of Figure 8.15A, the precise location and orientation of the global
maximumof strain from themale to the femalemean form. Themaximum strain, com-
puted analytically from the spline’s explicit formula, is 1.413. If we were to replace the
female mean form, then, by the form that deviated from the male form by a multiple of
−0.413−1 = −2.42 of the actual transformation here – the form for which landmarks
shifted 2.42-fold as far in the opposite direction – then this optimal derivative would
be precisely zero, giving the creased grid in Figure 8.16B. Algebraically, if the grid in
Figure 8.16A corresponds to the splineM→ F, whereM and F are themale and female
mean forms in the Procrustes geometry, then Figure 8.16B is the result of applying the
standard splining technique to the map M → (M − 2.42(F −M)). Also, the original
Cartesian system has been rotated so that the direction in which strain was artificially
sent to zero is now the y-axis of the original coordinate system. (The grid in Figure 8.15
isM→M + 2(F −M) = 2F −M.) There results a great clarification of the analysis.
However distorted the form of the ‘callosum’ here, its message about the geometry

of the original difference of means by gender is astonishingly clear. We knew this strain
had to be aligned with the boundaries of the callosal outline in its vicinity, as there
was no possibility of shear along that boundary once the data were ‘slipped’ along
that direction top and bottom. But one could not anticipate how spatially focused that

Figure 8.16 Automatic production of this same feature by the method of creases. (A) locus of extreme
extension (1.413); (B) the corresponding extrapolation to the crease. At somewhat higher
extrapolation a second crease will appear at the other end of the arch.
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expansion of thickness would be found to be. The crease organization that ordinarily
(Figure 8.9) looks like a 90◦ rotation of a pair of abutting parentheses, )(, here takes
on an appearance like an hourglass instead – a highly local squeezing-inward (in the
real contrast M → F, extension outward) at the posterior end of an arch that other-
wise manifests a more-or-less constant strain in this direction (arrows in the figure).
The width of this ‘waist’ is roughly the same as that of the ‘bump’ in Figure 8.15B.
There is an additional center of compression in the crease picture, at the crook of
genu, showing a similarly localized aspect of relative female hypertrophy at a slightly
lower value of maximum strain. It was presaged at far left in the grid of Figure 8.15B,
just as the crease here was already visualized at far right. In between these two foci
of compression, the extrapolation in Figure 8.16 is quite smoothly graded. We might
have anticipated this in the smooth progression of grid cell shape within the arch in
Figure 8.15A.
In a comparison of a mere eight forms of each gender, it would be unwise to spec-

ulate further on this localization. But the technique of creases is likely to be a great
aid to hypothesis generation in larger samples, for which the underlying uncertainty
of these foci is often less. In the systematic context, the bulge in the female splenium
(specifically, the relative height of the arch at that locus) would serve as a perfectly
satisfactory quantitative morphometric character if the two groups here were differ-
ent taxa; and we have evidently produced it by an entirely automatic procedure. Thus
the method of creases is not restricted to landmark point data, but extends to repre-
sentation of curves without any formal change. We will exploit this extension in the
phylogenetic example to come.

Lab rats

A third preliminary example treats an octagon of landmarks from 20 male laboratory
rat skulls observed over 83 days of growth. The original Cartesian coordinates are set
out in full in Bookstein (1991) for these 20 rats and one other with incomplete data.
In Figure 8.17, changes of sample mean shape between contiguous age classes, extrap-
olated eightfold, are displayed by thin-plate spline. These splines draw our attention
to a stable focus of interest at upper left, but it is quite difficult to put into words just
what it is that we are looking at, or what other signals there may be elsewhere in this
sequence of diagrams. From the crease representation, Figure 8.18, it is startling to
see that the maximum strain near spheno-occipital synchondrosis (SOS, Figure 8.17),
ranging over 1.05–1.07 per time interval, is, from age 14 days on, approximately stable
in position, and that its gradient varies only slowly in orientation. This phenomenon
was far from apparent in the earlier figure, as our eye was drawn away from it by the
less stable (but more dramatic) features toward the back of the skull.
The corresponding analysis of the minimum directional derivative (Figure 8.19)

shows even greater stability over the second through fourth time intervals, from age 14
days to 40 days. (For legibility, changes within the subspace of uniform variation have
been suppressed.) The minimum strains for the three temporal intervals in question
are 0.927, 0.943, 0.928. The directions of their creasing are nearly the same, and their
product is 0.811. Then extrapolation by a factor of (1 − 0.811)−1 = −5.29 can be
expected to drive their composite to minimum directional derivative zero. Figure 8.20
shows this extrapolation of 14-to-40-day change for each of the 20 animals having
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Figure 8.17 The Vilmann rat neurocranial data set (Bookstein 1996), revisited: mean growth changes
for consecutively observed shape changes of a configuration of eight landmarks, magnified
eightfold. The task is to describe what is systematic in this series. Landmarks: Bas, basion;
Opi, opisthion; IPS, interparietal suture; Lam, lambda; Brg, bregma; SES, spheno-ethmoid
synchondrosis; ISS, intersphenoidal synchondrosis; SOS, spheno-occipital synchondrosis.

Figure 8.18 Crease analysis of Figure 8.17, uniform component suppressed, for maximum extensions.
These are usually located in the cranial base. See text for discussion.

data at both ages. The scenes are evidently similar, and indeed the minimum strain is
always near zero.
We do better to analyze these same comparisons by the crease method, so as to

explicitly parameterize that local minimum along the calva. Figure 8.21 analyzes the
20 animals separately, one at a time. The result is quite unanticipated, and clearly
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Figure 8.19 Crease analysis of Figure 8.17, uniform component suppressed, for minimum extension.
The grids for growth 14–21, 21–30, and 31–40 are startlingly similar.

invalidates the implication in Bookstein (1996) that this data set could be analyzed
more or less in its entirety by the method of relative warps. While the minimum σext
of relative growth is highly variable among these animals (from 0.878 to 0.678 of the
change in overall Centroid Size), both the locus of the minimum and its orientation are
remarkably invariable across this small sample. Here is startlingly strong evidence for
a hypothesis of canalization (stable regulation of certain growth parameters individual
by individual).

A phylogenetic example

I combine the logic of the tetrahedron and the method of creases in revisiting a data
set from extant and fossil hominoids, along with an outgroup, originally published
to illuminate another issue entirely (Bookstein et al. 1999). The data set comprises
11 calvarial landmark points and 20 semilandmarks on the midsagittal planes of 16
modern humans, 5 archaicHomo (H. heidelbergensis Bodo I, Kabwe I, and Petralona,
Atapuerca SH5, and theH. neanderthalensis Guattari I), the australopith STS5, and 2
modern Pan troglodytes. (The original publication referred as well to external lambda
and inion and three landmarks on the maxilla, all omitted here.) Landmarks were



Figure 8.20 Analysis of animals individually using an extrapolation factor of (1 − 0.811)−1 = 5.29,
where 0.811 is the product of the minimal strains on three of the creases of the previous
figure.

Figure 8.21 Crease analysis of the animals individually. All have a crease in very nearly the same position,
but the extremal strain varies widely, from 0.678 to 0.878, over this fixed age range. The
location of this apparent invariant of ontogenetic shape change is suggested as a good
morphometric character that would be extremely difficult to construct by manipulation
of conventional shape variables.
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located by hand upon actual stereolithographs of CT scans of the skulls, were trans-
ferred to a computed midsagittal section according to textural cues, and were then
augmented by 10 semilandmarks each on the inner and outer tables of the frontal bone
in this same plane section. Semilandmarks were extracted in Edgewarp (Bookstein and
Green 1994) using the principle of jointly sliding points to a position of minimum
bending energy (Bookstein 1997a), and all configurations of 31 points were reduced
to Procrustes shape coordinates in the usual way.
For this demonstration, the 16H. sapiens are averaged, likewise the 5 archaicHomo

and the 2 Pan, and the single australopith comprises a group of one. The resulting
four shapes can be placed at the vertices of a tetrahedron according to Procrustes dis-
tance. Figure 8.22 shows this tetrahedron as projected onto its principal coordinate
planes. Each edge of this tetrahedron can be visualized as a thin-plate spline defor-
mation of one vertex (one taxon mean) onto another. Figure 8.23 presents one of
the two ways of showing these, as deformations pointing backwards in grade. With

Figure 8.22 Principal coordinate projections for four taxa, ordinated by the Procrustes distances
among their Procrustes mean shapes for configurations of 11 landmarks and 20
semilandmarks in the midsagittal calvarium. H. Homo.
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Figure 8.23 Thin-plate splines for all pairs of taxa in Figure 8.22, each taken in one of the possible
two directions. Landmarks: Gla, glabella; Nas, nasion; FC, foramen cecum; CG, crista galli;
CO, canalis opticus; EBr, external bregma; IBr, internal bregma; ILa, internal lambda; IIn,
internal inion; Opi, opisthion; Bas, basion.

this polarity, all deformations involve thickening of the frontal bone in the vicinity
of glabella (Bookstein et al. 1999), but there seem to be other features varying in a
manner that is difficult to verbalize.
The descriptive task becomes easier if we convert from these grids, which are com-

posites of many features, to the corresponding crease images, Figure 8.24, which are
designed to present one feature at a time. To save space, the figure restricts its atten-
tion to three of the six pairwise comparisons, and please recall that all creases are
rotated to lie horizontally in these displays, so that individual frames are not in any
consistent orientation. In the left column is the analysis of archaic Homo as a defor-
mation of modern. Above, the only focus of specific expansion over this comparison
is the frontal bone near glabella: its thickness more than doubles. Put another way,
the frontal bone in this vicinity has thinned by more than half from the archaic to the
modern Homo average, and that is the greatest reduction of relative extent anywhere
in the thin-plate spline interpolating this pair of configurations of 31 points. At lower
left is the greatest relative compression from modern to archaic, which is to say, the
greatest relative expansion of the modern average with respect to the archaic average.
There is a clear crease here also, one that nearly fills the front half of the cranial cavity
with a compression by up to 30 percent (relative to Centroid Size, the normalizing
factor for Procrustes shape coordinates). The direction of compression is predomi-
nantly vertical, but the arrowhead shape of the grid image conveys some horizontal
compression as well.
The greatest relative expansion from STS5 to Pan, upper right panel, is seen here

again as a graphical compression of the frontal bone. This effect wraps around most
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Figure 8.24 Crease analyses for the upper three splines in Figure 8.23. Upper row, creases for expan-
sion for the comparison indicated (expansions backwards in time). Lower row, creases
for compression for the comparison indicated (expansion forward in time).

of the arc from glabella to bregma. The frontal is thicker in Pan along most of its
length; while there is indeed some compression at glabella, it is not focused there. In
the lower right panel is shown a striking relative compression of Pan not too dissimilar
to that between the grades of Homo. One of its features, at the top in the diagram, is a
compression by the same 30 percent, with the same anatomically vertical orientation,
near the vicinity of the midline sinus. But another focus emerges at nearly the same
degree of compression that is horizontally aligned at lambda. This second feature is
hinted at in the Homo–Homo comparison as well, lower left, but there it seems less
directional, and also of lower magnitude.
The deformation of archaicHomo into STS5 (middle column) has a focus of vertical

compression below glabella, where the other two ‘chronological edges’ of the tetra-
hedron had local expansions instead; and the focus of greatest expansion is along the
anterior cranial base, between crista galli and canalis opticus, not in the vicinity of
glabella at all. This contrast seems unrelated to the outer two.
Recall from the Introduction (Figures 8.2 and 8.3) that to generate binary contrasts,

instead of gap-coding quantitative features we would rotate the tetrahedron until spe-
cific pairs of edges lay horizontally. In these configurations of the tetrahedron, the
vertical is indifferent to the contrasts within the pairs of grouped taxa separately, and
hence net Procrustes distance between the edges is minimized when it is taken straight
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up or down. In the context of a search for creases, one does the same after substituting
bending energy for Procrustes distance in the definition of what counts as ‘straight up’.
For any pair of groups of taxa in this shape space, there is one unique deformation
from some weighted average of the taxa of one grouping to some weighted average of
the taxa of the other grouping that minimizes the overall bending energy. The algebra
by which these particular composite contrasts are produced is set out in Appendix 1.
From the four taxa of this example, three contrasts are particularly meaningful: the
outgroup Pan against the hominins, Homo against the pool of australopith and Pan,
and modern Homo against all of its ancestors. Crease analyses of these three ‘orienta-
tions of the tetrahedron’ are collected in Figure 8.25. In all frames, the starting form
is the sample grand mean.
At left in Figure 8.25 is the analysis for the deformation from average modernHomo

to the ‘face of the tetrahedron’ facing it, the space of shapes spanned by the other
three taxa. In effect, the computation compares modern Homo to that ‘hypothetical
common ancestor’, that combination of the other three taxa, to which it relates by
the least bent (least focal) transformation possible: the estimated common ancestor
requiring the least local changes to pass from ancestral state to modern. Thus, in this
approach bending energy serves as the precise morphometric equivalent of parsimony
in more conventional methods.
This least-bent contrast plainly resembles the specific contrast of modern with

archaicHomo, Figure 8.24, in both its positive and its negative focal features. Themost

Figure 8.25 Crease analyses analogous to the geometry of Figure 8.1C (one taxon versus the span
of the other three), left and right columns, or Figure 8.1D, one edge versus the other
edge, middle column. The strong resemblances between the panels of this figure and the
preceding convey considerable phylogenetic information (see text).



Creases as morphometric characters 169

extensive (i.e., least bent) feature of decrease in size in modern Homo relative to the
combination of the three other taxa is the reduction of the frontal bone in a small
vicinity of glabella that we have already seen. And the greatest relative enlargement of
modern Homo, in comparison to this particular combination of the other three taxa,
also strikingly resembles that for the direct comparison of modern to archaic Homo.
In phylogenetic language, this comparison of form looks like a good terminal charac-
ter, stable over expansion of the range of comparisons against which we are testing
it. It is startling that the character produced by this criterion seems to have nothing to
do with the shape of the brain in this plane (cf. Bookstein et al. 1999).
The contrast of Pan to the composite clade of hominins, right-hand column, is also

easy to interpret in phylogenetic terms. The greatest relative expansion of Pan, upper
right, is the same character we have already seen at upper left: specific expansion of
the sinus at glabella. The greatest compression of Pan with respect to the sister group,
however, looks like the comparison to STS5 in particular (preceding figure, same
panel): diminutions by almost equivalent rates across the calva at lambda and vertically
in the vicinity of the frontal sinus. Thus, we have two more candidate characters here,
or, if you prefer, a hint that sinus diminution arose twice, in two different geometric
combinations.
Themiddle column of Figure 8.25 pairs the twoHomo species against STS5 and Pan.

If the obvious phylogenetic hypothesis is correct, the comparison of these two groups
should strongly resemble the deformation linking the inner pair of sister taxa, archaic
Homo and STS5, alone. By comparing the middle columns of Figures 8.24 and 8.25
one can see that is indeed the case. Notice in each comparison that what was the focal
compression of greatest strain for one figure becomes the focus of second-greatest for
the other. For instance, in comparing the upper center panels of Figures 8.24 and 8.25,
the region of the crease at the top of Figure 8.25 is indeed compressed at the top of
Figure 8.24, but not to zero area; and the crease in the middle of the Figure 8.24 panel
is compressed, again not quite to zero, in the corresponding fabric of Figure 8.25.
Whether this should count as one character or two cannot be settled without datamore
detailed about hominid/hominin grades, better anatomical coverage, and information
from the third dimension.
In a related demonstration, O’Higgins (2000) visualizes the crease corresponding

to the first principal coordinate of a data set comparing modern humans to Gibraltar
I, Monte Circeo, and Kabwe I Neanderthals using 10 landmark points in the same
general vicinity as those of the example here. His finding confirms the attention directed
by the creases of Figures 8.24 and 8.25 at the hafting zone (anterior cranial base to
superior maxilla) as a promising domain of derived character states for H. sapiens.

Discussion

As the title of this chapter indicates, and as I have hinted a few times earlier in the text,
I believe that the crease should serve as prototype for the long-sought phylogenetic
operationalization of the morphometric character, the summary of organismal form
that is supposed to map onto a cladogram. Creases are, after all, discrete features
located on drawings in a sensible way and arising out of image geometry so as to
confirm a hypothesis of contrast among operational taxonomic units. Unlike all earlier
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approaches to this problem (distances, angles, principal components), every crease is
already spatially organized, with parameters for position, orientation, and even a
magnitude of its own (the parameter |1− ε| = |1/α| of Figures 8.9ff).
What of homology for these ostensible characters? Homology in the phylogenetic

sense pertains to parts of an organism, not geometric loci like these creases and cer-
tainly not algebraic parameters like position, orientation, and α. In the Procrustes
framework, homology is declared a priori for the landmark and semilandmark loca-
tions themselves, and shape variables in general, which are linear combinations of
Procrustes shape coordinates, inherit as much of the classic notion as applies to those
linear combinations. Thus, forms having the same ratios of distances among nearby
landmarks might be reasonably taken as sharing a homologous character state, but
not forms sharing a ratio or angle involving large transects of the form (unless it could
be argued to be homogeneously generated during development, or selectable by virtue
of some biomechanical function), nor a priori patterns of large-scale bending such as
partial warp scores (Rohlf 1998). The homology afforded by creases is more powerful
than this, in principle, and potentially far more powerful in practice, as the algebra
of the crease enforces the localization in space that ‘characterizes’ good characters in
the systematic context. Creases break the rotational symmetry of Bookstein (1994)
or Figure 8.1 here by restoring the criterion of anatomical coherence that the general
linear combination of shape coordinates could not enforce (Bookstein 1991). In short,
creases per se have a better claim on homology in the systematic sense than shape
coordinates per se; something important has been gained in the passage from algebra
to geometric localization.
As the text discussion of Figure 8.16 indicated, creases come in series, ordered by the

extrapolation at which they appear. Actually there are two of these sequences, one for
the extensions (Figure 8.11, say) and another for the compressions (Figure 8.12). All of
them, not just the first and minus-first, can be produced algorithmically. (For instance,
the two creases in the lower right panel of Figures 8.24 and 8.25 could be identi-
fied separately in this way.) Thus, we have moved some distance down the path to
automated description of informative contrasts between samples or holotypes, what
Richard Reyment has been calling image-based taxonomy.
Of the findings reviewed in this chapter, the focal quality of the contrast between

normal adults and schizophrenics was long-suspected (or, rather, if the difference
had been some global feature, it would have been found by now), and the differ-
ence between male and female callosa was likewise suspected (or Davatzikos would
not have collected his 1996 data set in the first place). But the spatial concentra-
tion shown in the crease at lower left in Figure 8.24, regarding hominization of
the frontal bone in midsagittal section, came as a surprise when it was published
as a tentative character for recent hominid grades (Bookstein et al. 1999). Consider-
ably more specific in its import than the ‘hafting zone’ interpretation, the crease calls
attention to one particular sinus, over which an interesting argument can be erected
(Prossinger et al. 2000). The 1999 publication identified this crease, and declared it
systematically important, but the present visualization is better at proving localization
than the series of permutation tests for difference as a function of position reported
there.
The regularity of the growth crease for the rat skulls (Figure 8.21) is even more

surprising. The invariance of the location of the crease here is exactly the kind of
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discontinuous descriptor that a systematist would wish to use for contrasting this
particular species with others at lesser or greater remove. It would be interesting
to apply the same technique to the extant anthropoid apes, inasmuch as onto-
genetic series of our more immediate ancestors are unlikely ever to be obtained.
The parameters of ‘growth creases’ are, by their very algebra, not equivalent to
any of the obvious extensive measures of these skulls, nor to the changes of their
ratios, but instead encapsulate patterns of the geometric distribution of growth
rates. In these rats they proved both geometrically stable and strongly indepen-
dent of just how much shape change there happened to be (the parameter σext
incorporated in the panel labels of Figure 8.21). Insofar as this crease is present
invariably over these 20 specimens, it must serve as the derived state of a char-
acter at some taxonomic level. Such ontogenetic creases, when reliably present,
would surely represent a more powerful bridge between morphometrics and system-
atics than earlier approaches using allometric regressions or principal components
models.
The rich extension of morphometric description that creases afford was already

implicit in the opening theme of this chapter: the enormous flexibility of the space of
shape descriptions available for any contrast of images of organisms. The method of
creases exploits the deepest of morphometrics’ strengths, the possibility of carrying
out direct manipulations on the space of possible variables (here, the domain of the
tensor field whose extrema we are locating on the organism), while greatly strength-
ening the tie to the actual geometry of the organism that was previously brought to
the eye, but not to the algebra, by the method of thin-plate splines. Clearly there
is far more information in organismal form than systematists are currently exploit-
ing. Now is the time for a direct assault on the underlying methodological task, that
of producing shape descriptions that correspond to the scientific uses systematists
need to make of them. The time is past when systematists should limit themselves
to the variables that they, or their graduate assistants, just happen to know how to
measure.
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Appendix 1: constructing hypothetical forms by
minimizing bending energy

Figure 8.25 concerns comparisons of hypothetical forms produced as composites of
grouped taxa. Algebraically, the production of these hypothetical ancestral compos-
ites is a straightforward modification of the formalism used for sliding landmarks
(Bookstein 1997a). Instead of each landmark sliding separately on its own tangent vec-
tor, a configuration of landmarks slides as awhole along aweighted combination of the
little vectors that connect corresponding landmarks within the groupings that are to be
held ‘horizontal’. The classical thin-plate spline computes the interpolant of one config-
uration of k landmarksX1, . . . ,Xk onto another set Y1, . . . ,Yk that minimizes integral
quadratic variation. Using the bending-energy matrix L−1

k derived from the Procrustes
grand mean form (the starting grid in Figure 8.25), arbitrarily select one form of the
first group of taxa, say, X0 = X01, . . . ,X0k, and another form Y0 = Y01, . . . ,Y0k from
the second group of taxa. If there are n1 additional formsX1, . . . ,Xn1 in the first group
of taxa, and n2 additional forms Y1, . . . ,Yn2 in the second (either n1 or n2 can be zero),
we seek the forms X0 + ∑n1

1 αi(Xi −X0) and Y0 + ∑n2
1 βj(Yj − Y0) the difference of

which has the least bending energy. Since the coefficients of each of these combinations
sum to 1, you may think of each as a weighted average of the shapes of the taxa in its
grouping.
To minimize this bending energy, set up a matrix U of 2k rows by n1 + n2 columns

in which the ith column, i = 1, . . . , n1, represents Xi − X0, first all its x-coordinates
and then all its y-coordinates, and the (n1 + j)th column, j = 1, . . . , n2, similarly
represents Yj − Y0 written out as 2k differences of Procrustes coordinates in the same
way. The bending energy to be minimized by suitable α’s and β’s is the quadratic form

Yt
(
L−1
k 0

0 L−1
k

)
Y ≡ YtL−1

k Y (8.3)

and the minimum is to be taken over the hyperplane Y = (Y0 −X0)+UT of possible
differences of weighted composites, where T is the vector (α1, . . . ,αn1 ,β1, . . . ,βn2 )
governing the weighted averaging.
The solution to this familiar generalized or weighted least-squares problem is

achieved for parameter vector T = −(UtL−1
k U)

−1UtL−1
k (Y0 − X0). Up to sign, the

solution (Y0 −X0)+UT is independent of the choice of base vectors X0 and Y0 from
the groups and from the decision about which set is to be called the X’s and which the
Y’s. For a different application of generalized least squares to the same sort of problem,
now modified to take phylogenetic covariances into account, see Rohlf (2000).
To ease graphical interpretation, the algorithm removes the uniform component

(Bookstein 1997a) from these deformations before sending them for crease analysis as
explained earlier in this chapter.

Appendix 2: how to approximate your own creases

The commercial program package Splus in which all the crease examples in this paper
were produced is not as widely available as Jim Rohlf’s very convenient series of
programs (http://life.bio.sunysb.edu/morph/) for a variety of morphometric manipu-
lations of landmark data. You can approximate creases usingRohlf’s program tpsRegr,



Creases as morphometric characters 173

even though it was designed for regressions, not graphical extrapolations. Instruct the
program to carry out a multivariable (not multiple) regression of Procrustes shape
coordinates on a dummy variable for the two sides of the contrast of interest: an
‘independent variable’ that is −0.5 for one group and 0.5 for the other. The uniform
component should be omitted, as it complicates the reading of extrapolated grids while
affording no possibility whatever of any localized information.
Under this combination of switch settings, the vector of regression coefficients that

tpsRegr produces is exactly equal to the non-uniform part of the groupmean difference
in Procrustes coordinates. To extrapolate the group difference, use the keyed window
option (not the slider bar) to produce ‘predicted forms’ for predictor values much
larger than ±0.5, for instance, ±10.0. The corresponding deformation grid is likely
to resemble the scene at right in Figure 8.9 in many different places: there will be
several of these assemblages of paired cusps and folds. Slowly decrement the ‘predictor
value’ backwards towards zero, until all the creases have evaporated. Then slide it
back outward until the first one just appears somewhere, then a second, etc. Reverse
analyses (e.g., Figure 8.12) are generated in the same screen when the sign of the
‘predictor value’ is reversed.
Because regression requires forms to stay in linearized Procrustes coordinates, this

approximation has no access to the complex parameter ei(θS−θT) of the complete Equa-
tion 8.2, the effect of which is to rotate the forms out of the correct Procrustes
superposition in order to see the crease most clearly. Without that rotation, creases will
be produced by tpsRegr in approximately correct position, and at the approximately
correct value of α, but may have a different graphical appearance than the figures
here, with a patch of S-shaped grid lines that slew sideways as they cross the crease.
Bookstein (2000) shows how to improve this representation, still in the Procrustes
superposition, by rotating the Starting form upon its grid.
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Chapter 9

Geometric morphometrics
and phylogeny

F. James Rohlf

ABSTRACT

This chapter reviews some of the important properties of geometric morphometric
shape variables and discusses the advantages and limitations of the use of such data
in studies of phylogeny. A method for fitting morphometric data to a phylogeny
(i.e., estimating ancestral states of the shape variables) is presented using the squared-
change parsimony estimation criterion. These results are then used to illustrate shape
change along a phylogeny as a deformation of the shape of any other node on the tree
(e.g., the estimated root of the tree). In addition, a method to estimate the digitized
image of an ancestor is given that uses averages of unwarped images. An example
dataset with 18 wing landmarks for 11 species of mosquitoes is used to illustrate the
methods.

Introduction

The relatively new field of geometric morphometrics represents an important new
paradigm for the statistical study of shape variation and its covariation with other
variables. Rohlf and Marcus (1993) give a general overview of the field and Bookstein
(1991) supplies a more technical account. Marcus et al. (1996) include both introduc-
tory material and many examples of applications to biology andmedicine. Dryden and
Mardia (1998) give a comprehensive coverage of shape statistics and Small (1996) cov-
ers some of the important properties of shape spaces. Rohlf (1999a) gives an overview
of some of the relationships between shape statistics and the shape spaces on which
they are based. The fundamental advances of geometric morphometrics over tradi-
tional approaches include the way one measures the amount of difference between
shapes (using Procrustes distance), the elucidation of the properties of the multidimen-
sional shape space defined by this distance coefficient, the development of specialized
statistical methods for the study of shape, and the development of new techniques for
graphical representations of the results.
Traditional morphometric approaches are based on the application of standard

multivariate analyses of arbitrary collections of distance measures, ratios, and angles.
These variables typically represent only part of the information that may be obtained
from the relative positions of the landmarks on which these measurements are based.
For example, they do not take into account information about the spatial relationships
among the measured variables. Intuitively, one expects methods that are able to take
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such additional information into account to have greater statistical power. Traditional
methods also only allow one to visualize statistical relationships either numerically or
as scatter plots, not as estimates of the shapes themselves.
Shape is a function of the relative positions of morphological landmarks.1 Mathe-

matically, shape consists of those properties of landmark coordinates that are invariant
to the effects of object size, location, and orientation. If suitable landmarks are avail-
able, the simplest method to capture a shape is to record the coordinates of those
landmarks and then mathematically remove the effects of variation in size, location,
and orientation. Landmarks must be sufficient to capture the shape of the structure
of interest (some shapes are much easier to deal with in this way than others). When
landmarks are not sufficient, one can also include points around partial or complete
outlines (Bookstein 1996c) but their use is beyond the scope of the present paper. The
points must, of course, indicate the location of the same anatomical feature on differ-
ent specimens. Thus, the structures must be homologous in some sense. Landmarks are
simply points used to track the changes in shape of some structure of interest. It is not
assumed that the partial warps or other mathematical functions of the coordinates
of these points are homologous. Bookstein (1994) discusses some of the problems of
considering shape variables as being homologous characters.
More than one approach to geometric morphometrics has been proposed. This is

perhaps not surprising given the history of the development of ad hoc approaches in
morphometrics. However, there is growing evidence (Bookstein 1996a; Rohlf 1996a,
2000a,c) that only methods based on Kendall’s shape space can be rigorously applied
to a broad variety of applications, have the best statistical power, and impose minimal
constraints on the patterns of variation that can be detected. Bookstein (1996a) refers
to this realization as the ‘morphometric consensus’.
There has been considerable interest in the ways in which these new geometric

morphometric methods might be used to solve problems in systematics. Applications
such as developing more powerful discriminators and visualizing the key differences
in shape do not seem controversial. The use of cluster and ordination techniques on
shape data in order to search for structure within a collection of specimens is also
straightforward if one is careful to avoid methods that distort the shape space (Rohlf
2000a). Avoiding distortion is especially important if morphometric data are to be
used in ontogenetic studies and to estimate phylogenies.
The next section provides an overview of some of the methods used in geometric

morphometrics. An understanding of the properties of shape variables and the shape
spaces they define is needed in order to appreciate how they can be used in practical
systematic applications.

Shape variables and multivariate spaces

The data for each specimen consists of a k × p matrix of coordinates, where p is
the number of landmark points and k is the dimensionality of the physical space
within which the objects are digitized (k = 2 or 3). For simplicity, the account given

1 The analysis of shapes of outlines are also part of geometric morphometrics but will not be covered here.
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below considers just the two-dimensional case. It is often convenient to treat the kp
coordinates as a single row vector with kp elements. The order of the elements is
arbitrary (x1, y1, x2, y2, . . . , xp, yp will be assumed here). A sample of n specimens may
then be represented conveniently as a matrix with n rows and kp columns, that is, as
points in a kp-dimensional space.
However, these raw coordinates contain information about the size, location, and

orientation of each specimen. This irrelevant information can be eliminated by opti-
mally superimposing the specimens onto a standard reference shape. Specimens are
superimposed by first centering them on the origin, scaling them to unit centroid size
(square root of the sum of their squared coordinates, Sneath 1967, Gower 1971,
and Bookstein 1991: 93–95), and then rotating to align them with the reference
shape so that the square root of the sum of squared differences between the cor-
responding landmarks is as small as possible. The minimized quantity, often called
a Procrustes distance d, has often been used to measure the amount of difference
between pairs of biological shapes (e.g., Sneath 1967). As discussed below, there is
a related quantity, ρ, to which this term is also applied. Note that reflections are
not permitted when rotating unless one knows that the coordinates for a particular
specimen are reflected relative to the coordinates of the other specimens (e.g., a right
wing in a study where most other specimens are represented by left wings). This is
because genuine shape differences may appear to be reflections (see Goodall 1991 and
Rohlf 1996).
An average can be defined as the shape whose sum of squared Procrustes distances

to the other specimens is minimal. It is also the maximum-likelihood estimate for the
average shape in certain statistical models (Dryden and Mardia 1993; Kent 1994).
This average shape may be computed using an iterative procedure that has been called
generalized least-squares (GLS) Procrustes superimposition method, as described by
Gower (1975) and Rohlf and Slice (1990). This method is now called generalized
Procrustes analysis (GPA), since it is not what is now commonly called a generalized
least-squares procedure in the statistical literature (e.g., McCullagh and Nelder 1989).
Weighted means can also be used (Goodall 1991, is an example). The average con-
figuration is usually scaled to have unit centroid size and it is convenient to align the
average configuration to its principal axes to give it a standard orientation.
The GPA procedure produces a transformed dataset in which each specimen is

aligned to the reference shape (usually the average shape). The matrix of aligned
specimens has interesting geometric properties (Rohlf 1999a). The Euclidean distance
between the aligned specimens and the reference (both with unit centroid size) is a
partial Procrustes distance dP (Dryden and Mardia 1998) where size is not adjusted
to minimize the Procrustes distance. Because shapes correspond to points in a curved
shape space, it is natural to consider measuring distance as a geodesic or great circle
distance, ρ. These Procrustes distances are related as ρ = 2 sin−1 (dp/2), with 0 ≤ ρ ≤
π/2 radians.
Kendall (1984) worked out some of the geometric properties of the space implied

by the use of this distance as a metric (the space is now called Kendall shape space,
Small 1996). While the GPA procedure and the methods discussed below can easily be
carried out for three-dimensional coordinates, their geometry is more complicated and
will not be discussed here. Dryden and Mardia (1993) and Small (1996) also address
some of the properties of shape space for three-dimensional data.
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Special statistical methods (rather than the usual linear multivariate methods) are
required to take into account the non-Euclidean geometry of the shape spaces men-
tioned above. When variation in shape is sufficiently small it is possible to make a good
linear approximation to the space and then use standard multivariate methods (Kent
1994) to test hypotheses. The resulting space is of the same dimensionality as Kendall
shape space and may be viewed as tangent to it. The reference shape corresponds to
the point of tangency. A linear approximation will, of course, be best when the point
of tangency is taken as close as possible to the positions of the points that will be used
in an analysis (that is why the average shape is usually used as the reference shape).
The projections of the points corresponding to the observed shapes are used for sub-
sequent statistical analyses. Thus, one of the first things to investigate in a practical
application is whether the observed variation in shape is sufficiently small that the dis-
tribution of points in the tangent space may be used as a satisfactory approximation
to their distribution in shape space. A direct method for investigating this is simply to
plot Euclidean distances between all pairs of points in the linear tangent space against
their Procrustes distances in curved shape space. An approximately linear relationship
with a slope close to unity implies that one may satisfactorily use the tangent space
to approximate shape space for these data. The tpsSmall software (Rohlf 1998b) per-
forms these computations. In practice the fit is usually very good (I am not aware of
any cases of a poor fit except when some specimens were inadvertently reflected).
Multivariate statistical analyses are usually performed using measurements on suites

of variables rather than directly on points in a multidimensional space. There are
several approaches that can be used to generate variables from shape spaces, two of
which are described below.
Kendall tangent space coordinates (Kent 1994), V′, are computed as

V′ = X′ − InXc, (9.1)

where X′ is the projection of points in a space orthogonal to the reference using

X′ = X(Ikp −Xt
cXc), (9.2)

where X is the n × kp matrix of aligned specimens (each centered on the origin and
scaled to unit centroid size), Ikp is a kp× kp identity matrix, Xc is the reference (also
centered on the origin and scaled to unit centroid size) as a row vector of kp elements,
and the superscript t indicates matrix transpose. Matrix V′ will be at most of rank
kp− k− 1− k(k− 1)/2.
Kent (1994) suggests that one may use these shape variables in standardmultivariate

analyses if the data are concentrated in a relatively small region of shape space. Shapes
close to the reference shape map to points near the origin and maximally dissimilar
shapes map to points at a distance of 1 from the origin. Multivariate analyses using
these variables may run into difficulties because their covariance matrix will be sin-
gular. This singularity results from the rank of the matrix being less than the number
of shape variables. If this is taken into account – for example by using generalized
inverses – then the results will be identical to those obtained using the next approach
(see Rohlf 1999a).
Partial warp scores including the uniform component (Bookstein 1991, 1996b)

are the basis for another approach. These shape variables partition shape variation



Geometric morphometrics and phylogeny 179

into uniform (infinite scale) and non-uniform (local deformation) components. The
former has two dimensions for two-dimensional data and five dimensions for three-
dimensional data. The latter have 2p − 6 dimensions for two-dimensional data and
3p − 12 for three-dimensional data. The uniform component is best estimated using
the linearized Procrustes method of Bookstein (1996b). For two-dimensional data, the
uniform component scores may be given by U = V′T, where
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and x and y are the coordinates of the landmarks in the reference (which has been
aligned to its principal axes so that

∑
xiyi = 0, α = ∑

x2i , and γ = ∑
y2i ). The

matrix U has n rows and two columns. The three-dimensional case is somewhat more
complicated and explicit equations have not yet been fully worked out (see Bookstein
1996b).
The non-uniform shape component may be decomposed to partial warps (Bookstein

1991) and used as shape variables. These are based on the thin-plate spline and are
described in Bookstein (1991), Rohlf (1993), and Rohlf (1998a). This spline can be
used to represent shape differences as a smooth deformation of a reference shape into
another shape. Partial warp scores (projections) are computed as

W = V(E⊗ Ik), (9.4)

an n× 2(p− 3) matrix where E contains the first p− k− 1 columns of the matrix of
normalized eigenvectors of the bending energy matrix (see below), Ik is a k×k identity
matrix, and⊗ is the Kronecker tensor product operator. The order of operations differ
from that given in Rohlf (1993) because it was assumed there that all the x coordinates
were given first followed by the y coordinates. The bending energy matrix is the upper
left p× p block of L−1, where L is a (p+ 3)× (p+ 3) matrix which is a function of the
reference and is defined in Bookstein (1991). The U and W matrices are orthogonal
to each other. Together,

W′ = (W |U), (9.5)

they have 2p− 4 columns which span the tangent space.
While the decomposition of shape variation into components at different spatial

scales is mathematically elegant, one should be careful in how one interprets it biolog-
ically. The decomposition is relative to the selection and configuration of landmarks
in the reference shape. Unlike many types of multivariate ordination analyses, it is not
based on any information about covariation among shape changes in the data. The
addition of a landmark can result in what was a uniform shape change becoming a
local shape change and a landmark deletion can transform a local shape change into
a uniform shape change. Even differences in the relative positions of the landmarks in
the reference result in changes in the spatial scales to which variation is assigned. One
must also be careful not to interpret the partial warp variables individually (e.g., 1x,
1y, etc.) since a change in the orientation of the reference will cause a change in all
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of the partial warps (geometrically, they also rotate at each spatial scale). Despite
these limitations, partial warps are very useful as a set of non-redundant geometrically
orthogonal axes that can be used as shape variables that capture all possible shape
variation for a given set of landmarks.
If one wishes to analyze landmarks located on more than one structure (e.g., on

two structures that articulate), then one can perform the above computations on each
structure separately and then append the resultingW′ matrices (Adams 1999a,b).

Fitting shape data to a phylogeny

Given an estimated phylogeny, several methods could be used to estimate the shapes
corresponding to the internal nodes of the tree (the hypothetical taxonomic units,
HTUs). However, it is important that the methods produce estimates of shape that are
invariant to the effects of variation in the orientation of the specimens or to rotations
of the tangent space. Procrustes superimposition removes the effects of variation in
orientation by superimposition of all specimens onto a reference shape that is set at
some particular orientation.
Methods of statistical analysis should not give different results dependent upon dif-

ferent choices for the orientation of the reference shape. This means that the usual
linear parsimony method (Farris 1970) should not be used to estimate ancestral
states since computations minimizing Manhattan distances are not invariant to the
effects of rotation (Rohlf 1998a). The squared-change parsimony method described
by Huey and Bennett (1987) and Maddison (1991) is a simple method that satisfies
this important constraint. The maximum-likelihood method for continuous charac-
ters (Felsenstein 1988) also has this property of invariance. For an evolutionary model
based on normally distributed Brownian motion it yields the identical estimates for
the ancestral states (Maddison 1991; Martins 1999).
In the squared-change parsimonymethod ancestral states are estimated such that the

sum of the squared branch lengths are minimized over a phylogenetic tree. Huey and
Bennett (1987) and Maddison (1991) noted that the estimates of the character values
for an internal node is simply the average of the character values of the adjacent nodes.
This is because a mean minimizes a sum of squared deviations (Sokal and Rohlf 1995).
Of course, these computations are complicated by the fact that the character states of
one or more of the connecting internal nodes will also have to be estimated so that an
iterative algorithm has been used. However, McArdle and Rodrigo (1994) presented
a convenient matrix-based algorithm to simultaneously estimate the character states
for all the internal nodes on a tree. This algorithm for an unrooted tree is described
below.
Following McArdle and Rodrigo (1994), the matrix of estimated ancestral states

is computed as follows. First, define matrix M as a (n + nI) × (n + nI) connectance
matrix, where n is the number of terminal nodes (operational taxonomic units, OTUs)
and n is the number of internal nodes (maximally n− 2). If nodes i and j are directly
connected in the tree then mij is equal to the reciprocal of the length of the branch
connecting them (if estimates of branch lengths are not available then they are treated
as all of unit length). All other elements of M are set to zero. The obvious problem
with zero-length branches can be handled by replacing any zero-length branches with
multifurcations. Then define MA as the nI × (n + nI) matrix consisting of the last nI
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rows of matrixM. MatrixMA(T) contains the first n columns ofMA (for the terminal
nodes) andMA(I) contains the last nI columns of theMA (for the internal nodes).
The diagonal elements of the nI × nI coefficient matrix C are defined as the row

sums of matrixMA and the off-diagonal entries are equal to the corresponding entries
ofMA(I), but multiplied by −1 (i.e., they are the negative reciprocals of branch lengths
between all pairs of internal nodes). Finally, a matrix of the estimates of the ancestral
states is given by

Ẑ = C−1MA(T)Z, (9.6)

where Z is a matrix with n rows and each column corresponding to a shape variable
(the V′ or W′ matrices as defined above to yield the V̂′ or Ŵ′ matrices). Thus, the
estimated states are computed as a weighted average of the states in the OTUs by
pre-multiplying a matrix of shape variables by the ni × n matrix C−1MA(T).
The procedure used here differs from that used by McArdle and Rodrigo (1994)

in how a rooted tree is treated. When estimates of branch lengths are not available
(i.e., unit length branch lengths are used), their procedure estimated separate evolu-
tionary steps along both branches connected to the root. In effect, this doubles the
length of the branch in which the root is placed. As noted by Maddison (1991), this
results in different estimates of the ancestral states that can change the length of the
tree itself. This seems undesirable and is not consistent with the other methods of
phylogenetic inference such as linear parsimony or maximum-likelihood. A simple
solution is to follow Huey and Bennett (1987), use an unrooted tree in the compu-
tations, and then root the tree afterwards for display. This, then, yields the identical
estimate for the root as obtained using the method of independent contrasts and GLS
(see Garland and Ives 2000; Rohlf 2001). Estimates of the ancestral states for the root
can then be computed using interpolation between the nodes at the two ends of the
branch where the root is placed. This strategy also has the advantage that matrixCwill
be square and not require any adjustments to ensure that it will be non-singular. The
matrix of coefficients, C−1MA(T), is augmented to include an initial row corresponding
to the root HTU.

Visualizations

Conventional multivariate statistical analyses usually provide scatter plots that allow
one to visualize the patterns of variation and covariation in a dataset to the extent
that they are adequately summarized in a few dimensions. Geometric morphomet-
ric methods enable additional visualizations of the results of multivariate analyses.
Points can be visualized as shapes and vectors can be visualized as a sequence of shape
changes. This is possible because points in the multivariate space can be mapped to a
corresponding position in tangent space and from there back to a set of landmark coor-
dinates in the physical space of an organism. The visualization computation is easy to
do because the transformations are linear even though they correspond to non-linear
shape deformations (Rohlf 1999a). In those analyses that include a projection into a
lower-dimensional space (e.g., when one retains only the first few principal compo-
nents analysis (PCA) or CVA axes) some information is lost, but the shape can still be
estimated by assuming that the projection of a shape onto the discarded dimensions are
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equal to the mean (zero) for that dimension (Rohlf 1993). Similarly, one can visualize
the shapes corresponding to the interior nodes of a tree from the estimated values for
the shape variables for the interior nodes. Shapes corresponding to positions along a
branch can then be visualized by interpolating the values of the shape variables for the
nodes at each end of the branch (interpolating using the reciprocals of the distances
to the endpoints of the branch).
Given an estimated shape expressed in terms of Kendall tangent space coordi-

nates, V′, the matrix, X, of coordinates of the landmarks can be computed using
the relationship

X = V′ + cos (ρ)Xc, (9.7)

where ρ is the Procrustes distance from the shape to the reference. Because cos (ρ) is
usually just slightly less than 1.0 and V′ is approximately a deviation of an aligned
shape from the reference, we are approximately just adding the reference back in.
If the shape was expressed in terms of partial warps, then the matrix of landmark

coordinates is given by

X =W′(E⊗ Ik |T)−1 + cos (ρ)Xc. (9.8)

The columns of the (E⊗ Ik |T) matrix are orthogonal and of unit length so the matrix
inverse can be implemented as a simple matrix transposition. Because the V′ and W′

matrices differ by only a rotation and a projection to eliminate dimensions in which
there is no variation, both approaches yield the same visualizations.
Because shape differences can often be subtle, it is sometimes helpful to include other

information in a plot of the coordinates of an estimated shape. For example, a standard
technique is to show the estimated shape as a thin-plate spline that warps the reference
shape into the estimated shape. This can make it easier to detect regions of expansion,
contraction, or other deformations of the landmarks needed to warp the reference
into the estimated shape. Use of the thin-plate spline also allows one to exaggerate the
differences if they are very small and hard to see. However, in phylogenetic studies
the reference shape may not have any special significance and it may be much more
interesting to show an estimated shape as a deformation from some ancestral starting
form (i.e., show a thin-plate spline warping the estimated shape of an ancestor into
that of a descendant).
A limitation of the plots described above is that a set of points representing the

locations of the landmarks does not provide a very realistic depiction of the part of
the organism being studied. This can sometimes make it difficult to remember the
relationships between the configuration of points and the actual structures that they
represent. A solution is to include a digitized image of the organism in the background
of the plot.
Of course, the image must be registered with respect to the locations of the

landmarks. Bookstein (1991) gives an algorithm to construct an average image corre-
sponding to the landmark locations in the reference shape. This is done by transforming
the image of each specimen to create images with landmarks that align with those in
the reference. For the ith specimen, the pixels in an image of the reference are replaced
by the pixels they correspond to in the image of the ith specimen. The correspon-
dence is determined by the thin-plate spline that maps the location of each pixel in the
reference to a unique location in the image of the ith specimen.
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This is called ‘image unwarping’ because each specimen is treated as a transforma-
tion of the reference. The resultant registered images are then averaged pixel by pixel
(averaging the RGB intensities separately) to create an average image. The technique
can easily be generalized to produce images for any estimated shape such as that corre-
sponding to an internal node of a tree. One simply unwarps the images to the estimated
landmark configuration and then averages them. Since the landmark configuration for
an internal node is computed as a weighted average of the OTUs (see Equation (9.6)),
one could also use a weighted average of the pixels. This would mean that pixels for
terminal nodes closer (shorter path length) to an internal node would receive greater
weight.
Once one has estimates of the ancestral states of the interior nodes, one can per-

form ordination analyses (e.g., PCA, or non-metric multidimensional scaling analysis
(NMMDSA) Kruskal 1964a,b), that includes for the OTUs and the HTUs. The phy-
logenetic tree can be represented in the plot by connecting points corresponding to
ancestors and their descendants (analogous to the common practice of showing mini-
mum spanning trees in ordinations, Rohlf 1977). This is a more direct approach than
that of Rohlf (1981). Assuming that most of the variations can be expressed in a few
dimensions, such plots should provide useful visualizations of the estimated evolution-
ary trajectory through shape space. If the tree is accurate then such plots should give
a good overall impression of how the shapes evolved.
Examples of some of these visualizations are given in the next section for a small

dataset.

An example

To illustrate the methods presented above, a small example dataset was created con-
sisting of the x, y coordinates of 18 landmarks located on thewings ofmosquitoes. One
species was used from each of the genera in the study by Harbach and Kitching (1998)
that includedNorth American species. The list of 11 species used in the present study is
provided in Table 9.1. Images of the wings were scanned from Carpenter and LaCasse
(1955) and the locations of the landmarks were digitized using the tpsDig software

Table 9.1 List of species and their codes
used in this study

Species Code

Anopheles Anop
Aedes Aedes
Psorophora Psor
Culex Cule
Culiseta Culi
Mansonia Mans
Orthopodomyia Orth
Wyeomyia Wyeo
Uranotaenia Uran
Toxorhynchites Toxo
Deinocerites Dein
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Figure 9.1 Average positions of the 18 landmarks (GLS consensus configuration) superimposed on the
average unwarped image of a mosquito wing.

Figure 9.2 Phylogenetic tree extracted from figure 15A of Harbach and Kitching (1998). Branch lengths
estimated as the number of character changes reported by them for each node. The location
corresponding to the ancestor of the Aedini is indicated by the solid dot (see Figure 9.3).

(Rohlf 1999b). The GLS average locations of the 18 landmarks are shown in Figure 9.1
superimposed on the image of the average unwarped mosquito wing (computed using
the tpsSuper software, Rohlf 2000d). This average configuration was used as the ref-
erence configuration for the subsequent statistical computations. Figure 9.2 shows a
phylogenetic tree extracted from figure 15A of Harbach and Kitching (1998) for the
11 genera included in the present study. The branch lengths are shown proportional to
the numbers of character changes they list for each node (taking into account genera
included in their study but not included in the present one). Only two of their char-
acters involved the landmarks in the present study. Their character no. 65 is related
to the relative location of landmark 15 and character no. 67 is related to the relative
location of landmark 11. The other 71 characters were from other parts of the adult
and from the pupal and fourth-instar larval stages.
A matrix of partial warp scores (including the uniform component) was computed

and the squared-change parsimony criterion was used to estimate the values of these
shape variables for all of the interior nodes (except the root) in the tree given in
Figure 9.2. The values for the root were then estimated as the weighted average of the
values for the nodes at each end of the basal branch. The partial warp scores were
then transformed to landmark coordinates using Equation (9.8) in order to display
the landmark configurations for the interior nodes (as was done for the root of the tree,
one can use interpolation to visualize shapes corresponding to intermediate positions
along the branches). Figure 9.3 shows the estimated configuration of landmarks (©)
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Figure 9.3 Visualization of the estimated shape for ancestor of the Aedini (Aedes, Psorphora, and
Mansonia, see Figure 9.2). The grid shows the thin-plate spline transformation from the
starting form (•) to the estimated configuration (◦). The estimated shape at the root of
the tree was used as the starting form.

Figure 9.4 Ordination from a non-metric multidimensional scaling analysis of a matrix of distances
between all species (•) and estimated internal nodes (◦). Phylogenetic tree from Figure 9.2
superimposed using broken lines to link points. OTU codes are given in Table 9.1. Internal
nodes numbered in a preorder traversal of the tree beginning with the root. Stress = 0.145.
matrix correlation = 0.978.

for the ancestor of the Aedini (HTU 7, the node basal to Aedes, Psorophora, and
Mansonia, see Figure 9.2). Since many of the differences among shapes are somewhat
subtle, the estimated landmark configuration for the root of the tree is also shown and
the differences in position indicated by vectors. The thin-plate spline grid indicates
a region of compression with landmarks 2, 15, 16, and 17 moving closer together.
These computations were performed using the tpsTree software (Rohlf 2000e).
Figure 9.4 shows a perspective view of a three-dimensional ordination of the rela-

tionships among both the OTUs and the estimated internal nodes. Even though the
results were similar, a NMMDSA solution is presented rather than the results of a
PCA since it achieved a better fit (a matrix correlation of 0.98 rather than 0.92). The
PCA solution was used as the initial configuration for the NMMDSA computations.
A disadvantage of using a non-metric ordination is that it is not possible to directly
compute the shape corresponding to any position in the ordination. Fortunately, in
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our case PCA solution is similar enough so that it can be used as a guide to estimate
the shape changes associated with different directions in the ordination. The OTUs
and HTUs are linked together as in Figure 9.2 to show the estimated evolutionary
trajectory in shape space. The HTUs are numbered in the order in which they would
first be encountered in a pre-order traversal of the phylogenetic tree. These computa-
tions were performed using the NTSYSpc software (Rohlf 2000b) on the combined
W′ and Ŵ′ matrix (partial warp scores for both the OTUs and the HTUs) produced
by tpsTree.
Assuming the phylogenetic tree in Figure 9.2 is correct, the ordination indicates a

rather complicated and un-parsimonious evolutionary trajectory through shape space.
The root and the next two internal nodes (HTUs 1–3) are located near the center of
the space, but then there is a large change to the right for HTU 4 (node 51 in Harbach
and Kitching 1998) followed by a dramatic shift to the left in HTU 5. One of the
descendants of HTU 5, Toxorhynchites, is at the extreme left but the other descen-
dant, Culiseta, is located to the back right of the diagram. Harbach and Kitching
(1998: 354) state that the monophyly of their node 51 is poorly supported though ‘not
inconceivable’. They also state that if the relationship is real then one must postulate a
remarkable divergence of Toxorhynchites from its sister group. That conclusion is cer-
tainly supported by Figure 9.4. The length of the tree in our shape spacewould bemuch
shorter if, for example, Toxorhynchites and Uranotaenia were sister groups. Interest-
ingly, in their discussion of the difficulties of placing the Toxorhynchites, Harbach
and Kitching (1998) list several characters that have independent occurrences in these
two genera.
Wing shape in Toxorhynchites is shown in Figure 9.5 as a deviation from the esti-

mated shape for the root of the tree. Much of the change can be described by a region
of expansion moving landmarks 15 and 17 away from 16 and 18. The wing is also
more elongate which is a uniform shape change. The estimated image for the ancestral
mosquito is similar to that of the reference (shown in Figure 9.1). This is expected
since the node corresponding to the root of the tree is somewhat centrally located
in Figure 9.4 (if the reference were included in a PCA ordination it would be at the
centroid of the distribution).
The other unexpected result is the placement of Weomyia near the center of the

distribution rather than at the periphery as one might expect because of its very long
branch in Figure 9.2. Weomyia is a derived member of the Sabethini and many Old

Figure 9.5 Wing shape in Toxorhynchites (◦) expressed as a deformation of the estimated root (•).
The grid represents a thin-plate spline from the root to Toxorhynchites. An image of the
estimated root (computed as an unweighted average of images unwarped to the shape of
the root) is shown in the background.
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and New World genera that belong to this lineage were not included in the present
study.

Estimating a phylogeny from shape data

There are two approaches that could be used. First, one could just use geometric mor-
phometric methods as exploratory tools to look for conventional characters that could
be used along with other information to infer a phylogeny. There is little reason to
expect the individual tangent space coordinates or particular partial warps to corre-
spond to the taxonomically most useful or biologically most meaningful variables since
they are defined a priori and do not take into account any patterns of covariation in the
data. It seems likely that visualizations of the results of multivariate techniques such
as PCA, canonical variates analysis, or multivariate multiple regression could be quite
helpful in discovering useful characters. To maximize the chance of finding useful fea-
tures one would want to use multivariate techniques that fully search the multivariate
shape space (including all possible rotations) and not limit one to studying variation
along a single set of axes (Rohlf 1998a).
Alternatively, one could use morphometric shape variables directly as data for a

method of phylogenetic inference. The continuous, maximum-likelihood (Felsenstein
1988), squared-change parsimony methods, and neighbor-joining methods are possi-
ble approaches because they are able to treat the shape variables as continuous and
will produce the same results for different arbitrary orientations of the reference shape.
However, it may not be worthwhile to try to estimate a tree using shape variables from
only a single structure unless it is very complex and many landmarks can be identified.
If the results shown in Figure 9.4 are representative and the phylogeny is correct then
it will be very difficult to infer the correct phylogenetic tree from morphometric data.
One could also pool information frommore than one structure. Partial warps can be

combined from different structures by simply appending them as additional variables.
However, it is not clear what their relative weights should be. Should structures with
more partial warps (because they have more landmarks) be given greater weight? That
would be the effect of simply combining the partial warps for different structures in a
single data matrix. Note that one does not need to standardize the partial warp scores
before one can combine them as they are already in the same units. This approach
corresponds to the separate subsets method developed by Adams (1999a,b) for the
analysis of articulated structures.

Discussion

There have been many papers concerned with how one can make use of the new
techniques of geometric morphometrics in systematics – especially for phylogeny esti-
mation. Zelditch et al. (1992, 1993, 1995), Zelditch and Fink (1995), Swiderski
(1993), and Fink and Zelditch (1995) used partial warp scores to search for vari-
ables that could be used in cladistic studies. They compared regressions of individual
partial warps to obtain discrete characters and used linear (Wagner) parsimony to
estimate a phylogeny. This approach has the attraction that it treats shape variables
as just additional characters that can be combined with other conventional characters.
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Adams and Rosenberg (1998) and Rohlf (1998a) discuss some problems with their
approach (see, however, Zelditch et al. 1998 for a rebuttal). One of the points which is
relevant here is that by reducing continuous shape variables to discrete states one loses
the ability to visualize shape change along an estimated clade and to estimate evolu-
tionary trajectories in shape space. A technical point is that one should use methods
that ensure that the results are free from artifacts due to arbitrary decisions about the
orientation of the specimens. While the partial warps are invariant to variation in the
orientation of the specimens, the partial warp scores are influenced by the orientation
of the reference. One should not use statistical analyses whose results are sensitive to
the arbitrary orientation of the reference.
The studies cited above did not use the mean configuration of landmarks as the

reference configuration (which they called the starting form). They usually used the
average landmark configuration for juveniles of an outgroup species. The effect of this
choice is to degrade their approximation of shape space by the tangent space. This was
done because the authors wished to express shape changes as deformations of a logical
starting form rather than the overall average shape. As shown above, one can keep
these roles separate. The mean shape can be used as the reference to define the tangent
space that is used for statistical computations (e.g., regression analysis, estimation of
ancestral states, phylogeny estimation, etc.). One is then free to use another shape as
the starting form for visualizing shape differences as a deformation using the thin-plate
spline. One need not have just a single starting form. Each node above the root could
be expressed as a deformation of any of its ancestors. This flexibility may facilitate the
biological interpretation of the results.
The studies cited above also emphasize analyses of the partial warps at each spatial

scale (i.e., shape differences are described separately corresponding to each princi-
pal warp and uniform shape differences are explicitly excluded from consideration).
Describing the overall shape differences only in terms of this particular decomposition
implies that it should be more interpretable than any other decomposition. As Zelditch
et al. (1992) point out, because the decomposition of shape variation by partial warps
is complete any other complete decomposition would just be a rearrangement of the
same information. However, rearrangements of information can be very useful. Just
as analyses of individual Fourier harmonics can miss important patterns of covariance
in outline shape because they do not happen to correspond to a single harmonic. That
is, the pattern does not correspond exactly to a frequency that is 1

2 ,
1
3 ,

1
4 etc. of the

outline length. Examining harmonics or partial warps individually makes it difficult
to detect patterns that do not happen to correspond to a single spatial scale in the
decomposition.
The thin-plate spline decomposition is determined by the particular choice of the

reference configuration of landmarks and a mathematical model related to the physics
of bending infinite sheets of metal – not by any analysis of the empirical patterns of
covariance in the data or any biological model of ontogeny or phylogeny. The warps
do decompose the overall shape variation into components at different spatial scales,
but there is nothing biologically special about any particular scale. Even the distinc-
tion between the uniform component and the non-uniform components is somewhat
arbitrary. The addition of a landmark can change an infinite scale uniform shape
into a local deformation. The solution is to use multivariate methods that take into
consideration all possible rotations of the tangent space (e.g., multivariate analysis of
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variance, canonical variates analysis, etc.). Changes in a single feature or of a single
developmental process could result in variation at several spatial scales depending on
the selection of landmarks (i.e., it could involve more than one principal warp). Such
changes may be difficult to detect if the partial warps are only examined individually.
Richtsmeier et al. (1992) distinguish between developmental and evolutionary

trajectories (a path in a multidimensional morphometric shape space) and develop-
mental and evolutionary patterns (the corresponding sequence of shape changes in
the physical space of the organism). They stress that the importance of the ability to
go from a trajectory to the corresponding pattern and back again because it ensures
that “statistical rigor and biological meaning are components of the same approach”
Richtsmeier et al. (1992: 298). The methods presented in this chapter are able to do
this using simple equations to map points in shape space to coordinate configura-
tions (or even estimated two-dimensional or three-dimensional images) in the physical
space of an organism and then back again. However, they conclude that comparisons
of two trajectories is problematic using coordinate-based approaches and they sug-
gest the use of Euclidean distance matrix analysis (EDMA), methods (see Richtsmeier
and Lele 1993, Richtsmeier et al. 1998, Lele and Richtsmeier 1991, Lele 1993, Lele
and Cole 1996 for a description of these methods and examples of applications to
developmental and evolutionary trajectories).
Rohlf (1999a, 2000a) point out a major problem with this approach – that trajec-

tories in the EDMA shape space are greatly constrained by the curved geometry of
the space itself. Richtsmeier et al. (1992) describe another major problem – points
along an estimated trajectory may not correspond to configurations of landmarks
that are physically possible when EDMAmethods are used. Physical impossibility can
be detected by the presence of more than two (for two-dimensional data) or three
(for three-dimensional data) non-zero eigenvalues in the PCA used to transform an
estimated inter-landmark distance matrix into a set of landmark coordinates. These
authors argue (Richtsmeier et al. 1992: 299) that this property could be used to “deter-
mine the physical boundaries of ontogenetic and evolutionary changes and to answer
questions concerning constraints on physical systems”. However, the types of physical
boundaries that EDMA methods could violate are properties (e.g., the length of a side
of a triangle cannot exceed the sum of the lengths of the other two sides). The EDMA
algorithm is not capable of detecting whether an estimated configuration of landmarks
corresponds to a biomechanically unreasonable structure. It does not seem likely that
the detection of physically impossible shapes along an estimated trajectory would lead
to new biological insights. The generation of physically impossible shapes is simply
an artifact of the EDMA approach. Physically impossible shapes cannot arise with the
morphometric methods presented above.
Geometric morphometric shape variables can also be used with the comparative

method to estimate correlations adjusted to take into account the effects of non-
independence of OTUs in a phylogeny. This can be done by projecting each of the
columns of the V′ or W′ matrices onto the independent contrasts (Felsenstein 1985)
defined by the phylogeny. More generally, one could use GLS methods as described by
Martins and Hansen (1997). Rohlf (2001) compares these approaches and discusses
their interrelationships.
An important constraint on the application of these techniques to morphometric

data is that the adjusted shape variables must be treated in a way that does not depend
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upon an arbitrary orientation of the reference and the analyses should be relatively
insensitive to small changes in the configuration of landmarks in the reference. This
means that one should not estimate correlations between some variable and individual
partial warps or Kendall tangent space coordinates. However, one could estimate
correlations between a variable and the entire suite of partial warps or perform a two-
block partial least-squares analysis (Rohlf and Corti 2000) of the covariation between
a set of variables and the entire set of partial warps after correcting for the effects of
phylogeny.
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metrics of landmark points’, in Höhne, K. and Kikinis, R. (eds) Visualization in biomedical
computing. Lecture notes in computer science, Amsterdam: Springer-Verlag, pp. 405–410.

Carpenter, S. J. and LaCasse, W. J. (1955) Mosquitoes of North America (north of Mexico),
Los Angeles and California: University of California Press.

Dryden, I. L. and Mardia, K. V. (1993) ‘Multivariate shape analysis’, Sankhya, 55, 460–480.
Dryden, I. L. and Mardia, K. V. (1998) Statistical shape analysis. New York: Wiley.
Farris, J. S. (1970) ‘Methods for computing Wagner trees’, Systematic Zoology, 19, 83–92.
Felsenstein, J. (1985) ‘Phylogenies and the comparative method’, American Naturalist, 125,
1–15.

Felsenstein, J. (1988) ‘Phylogenies and quantitative characters’, Annual Review of Ecology and
Systematics, 192, 445–471.



Geometric morphometrics and phylogeny 191

Fink, W. L. and Zelditch, M. L. (1995) ‘Phylogenetic analysis of ontogenetic shape transforma-
tions: a reassessment of the piranha genus Pygocentrus (Teleostei)’, Systematic Biology, 44,
344–361.

Garland, T. and Ives, A. R. (2000) ‘Using the past to predict the present: confidence intervals
for regression equations in phylogenetic comparative methods’, American Naturalist, 155,
346–364.

Goodall, C. R. (1991) ‘Procrustes methods in the statistical analysis of shape (with discussion
and rejoinder)’, Journal of the Royal Statistical Society, Series B, 53, 285–339.

Gower, J. C. (1971) ‘Statistical methods of comparing differentmultivariate analyses of the same
data’, in Hodson, F. R., Kendall, D. G. and Tautu, P. (eds)Mathematics in the archaeological
and historical sciences, Edinburgh: Edinburgh University Press, pp. 138–149.

Gower, J. C. (1975) ‘Generalized Procrustes analysis’, Psychometrika, 40, 33–51.
Harbach, R. E. and Kitching, I. J. (1998) ‘Phylogeny and classification of the Culicidae
(Diptera)’, Systematic Entomology, 23, 327–370.

Huey, R. B. and Bennett, A. F. (1987) ‘Phylogenetic studies of coadaptation: pre-
ferred temperature versus optimal performance temperatures of lizards’, Evolution, 41,
1098–1115.

Kendall, D. G. (1984) ‘Shape-manifolds, Procrustean metrics and complex projective spaces’,
Bulletin of the London Mathematical Society, 16, 81–121.

Kent, J. T. (1994) ‘The complex Bingham distribution and shape analysis’, Journal of the Royal
Statistical Society, Series B, 56, 285–299.

Kruskal, J. B. (1964a) ‘Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis’, Psychometrika, 29, 1–27.

Kruskal, J. B. (1964b) ‘Nonmetric multidimensional scaling: a numerical method’,
Psychometrika, 29, 28–42.

Lele, S. (1993) ‘Euclidean distance matrix analysis: estimation of mean form and form
difference’,Mathematical Geology, 25, 573–602.

Lele, S. and Cole, T. M. III. (1996) ‘A new test for shape differences when variance–covariance
matrices are unequal’, Journal of Human Evolution, 31, 193–212.

Lele, S. and Richtsmeier, J. T. (1991) ‘Euclidean distance matrix analysis: a coordinate free
approach for comparing biological shapes using landmark data’,American Journal of Physical
Anthropology, 86, 415–427.

Maddison, W. P. (1991) ‘Squared-change parsimony reconstructions of ancestral states for
continuous-valued characters on a phylogenetic tree’, Systematic Zoology, 40, 304–314.

Marcus, L. F., Corti, M., Loy, A., Naylor, G. J. P. and Slice, D. E. (1996) Advances in
morphometrics, New York: Plenum.

Martins, E. P. (1999) ‘Estimation of ancestral states of continuous characters: a computer
simulation study’, Systematic Biology, 48, 642–650.

Martins, E. P. and Hansen, T. F. (1997) ‘Phylogenies and the comparative method: a general
approach to incorporating phylogenetic information into the analysis of interspecific data’,
American Naturalist, 149, 646–667.

McArdle, B. and Rodrigo, A. G. (1994) ‘Estimating the ancestral states of a continuous-valued
character using squared-change parsimony: an analytical solution’, Systematic Biology, 43,
573–578.

McCullagh, P. and Nelder, J. A. (1989) Generalized linear models, 2nd edn, London: CRC
Press.

Richtsmeier, J. T., Cheverud, J. M. and Lele, S. (1992) ‘Advances in anthropological
morphometrics’, Annual Review of Anthropololgy, 21, 283–305.

Richtsmeier, J. T., Cole, T. M. III, Valeri, C. J. and Lele, S. (1998) ‘Preoperative morphology
and development in sagittal synostosis’, Journal of Craniofacial Genetics and Developmental
Biology, 18, 64–78.



192 F. James Rohlf

Richtsmeier, J. T. and Lele, S. (1993) ‘A coordinate free approach to the analysis
of growth patterns: models and theoretical considerations’, Biological Reviews, 68,
381–411.

Rohlf, F. J. (1977) ‘Classification of Aedes mosquitoes using statistical methods’, Mosquito
Systematics, 9, 372–388.

Rohlf, F. J. (1981) ‘Spatial representation of phylogenetic trees computed from dissimilar-
ity matrices’, in Martinell, J. (ed.) International Symposium on Concepts and Method
in Paleontology, Barcelona, Spain, Departament de Paleontologia, Univ. de Barcelona,
pp. 303–311.

Rohlf, F. J. (1993) ‘Relative warp analysis and an example of its application to mosquito wings’,
in Marcus, L. F., Bello, E. and Garcia-Valdecasas, A. (eds) Contributions to morphometrics,
Madrid: Museo Nacional de Ciencias Naturales, pp. 131–159.

Rohlf, F. J. (1996) ‘Morphometric spaces, shape components and the effects of linear transfor-
mations’, in Marcus, L. F., Corti, M., Loy, A., Naylor, G. J. P. and Slice, D. E. (eds) Advances
in morphometrics, New York: Plenum, pp. 117–129.

Rohlf, F. J. (1998a) ‘On applications of geometric morphometrics to studies of ontogeny and
phylogeny’, Systematic Biology, 47, 147–158.

Rohlf, F. J. (1998b) ‘tpsSmall: is shape variation small?, version 1.11’, Department of Ecol-
ogy and Evolution, State University of New York at Stony Brook. Online. Available
<HTTP://life.bio.sunysb.edu/morph>.

Rohlf, F. J. (1999a) ‘Shape statistics: procrustes superimpositions and tangent spaces’, Journal
of Classification, 16, 197–223.

Rohlf, F. J. (1999b) ‘tpsDig, version 1.18’, Department of Ecology and Evolution, State Uni-
versity of New York at Stony Brook. Online. Available <HTTP://life.bio.sunysb.edu/morph>

Rohlf, F. J. (2000a) ‘On the use of shape spaces to compare morphometric methods’, Hystrix,
11, 9–25.

Rohlf, F. J. (2000b) ‘NTSYS-PC: numerical taxonomy and multivariate analysis system, version
2.02k’, Setauket: Exeter Software.

Rohlf, F. J. (2000c) ‘Statistical power comparisons among alternative morphometric methods’,
American Journal of Physical Anthropology, 111, 463–478.

Rohlf, F. J. (2000d) ‘tpsSuper: superimposition, version 1.06’, Department of Ecol-
ogy and Evolution, State University of New York at Stony Brook. Online. Available
<HTTP://life.bio.sunysb.edu/morph>

Rohlf, F. J. (2000e) ‘tpsTree: fitting shapes to trees, version 1.12’, Department of Ecology and
Evolution, State University of New York at Stony Brook.

Rohlf, F. J. (2001) ‘Comparative methods for the analysis of continuous variables: Geometric
interpretations’, Evolution, 55, 2143–2160.

Rohlf, F. J. and Corti, M. (2000) ‘The use of partial least-squares to study covariation in shape’,
Systematic Biology, 49, 740–753.

Rohlf, F. J. and Marcus, L. F. (1993) ‘A revolution in morphometrics’, Trends in Ecology and
Evolution, 8, 129–132.

Rohlf, F. J. and Slice, D. E. (1990) ‘Extensions of the Procrustes method for the optimal
superimposition of landmarks’, Systematic Zoology, 39, 40–59.

Small, C. G. (1996) The statistical theory of shape, New York: Springer.
Sneath, P. H. A. (1967) ‘Trend-surface analysis of transformation grids’, Journal of Zoology,
London, 151, 65–122.

Sokal, R. R. andRohlf, F. J. (1995)Biometry: the principles and practice of statistics in biological
research, 3rd edn, San Francisco: W. H. Freeman.

Swiderski, D. L. (1993) ‘Morphological evolution of the scapula in the tree squirrels, chipmunks,
and ground squirrels (Sciuridae): an analysis using thin-plate splines’, Evolution, 47,
1854–1873.



Geometric morphometrics and phylogeny 193

Zelditch, M. L., Bookstein, F. L. and Lundrigan, B. L. (1992) ‘Ontogeny of integrated skull
growth in the cotton rat Sigmodon fulviventer’, Evolution, 46, 1164–1180.

Zelditch, M. L., Bookstein, F. L. and Lundrigan, B. L. (1993) ‘The ontogenetic complexity of
developmental constraints’, Journal of Evolutionary Biology, 6, 121–141.

Zelditch, M. L. and Fink, W. L. (1995) ‘Allometry and developmental integration of body
growth in a Piranha, Pygocentrus nattereri (Teleostei: Ostariophysi)’, Journal ofMorphology,
223, 341–355.

Zelditch, M. L., Fink, W. L. and Swiderski, D. L. (1995) ‘Morphometrics, homology, and
phylogenetics: quantified characters as synapomorphies’, Systematic Biology, 44, 179–189.

Zelditch, M. L., Fink, W. L., Swiderski, D. L. and Lundrigan, B. L. (1998) ‘On applications of
geometric morphometrics to studies of ontogeny and phylogeny: a reply to Rohlf’, Systematic
Biology, 47, 159–167.



Chapter 10

A parametric bootstrap approach
to the detection of phylogenetic
signals in landmark data

Theodore M. Cole III, Subhash Lele, and Joan T. Richtsmeier

ABSTRACT

A phylogenetic signal is present in a morphometric data set if similarities in form
reflect genealogical relationships. The degree to which such a reflection exists can be
measured by comparing the topology of a morphometric-based hierarchical cluster-
ing with the topology of a cladogram that is specified a priori using other sources of
data. A strong phylogenetic signal is indicated by a high degree of agreement between
topologies. A lack of agreement is indicative either of data with a strong “alternative”
signal (attributable to homoplasy) or of data with a lack of a signal of any kind. In
considering the uncertainties inherent in morphometric data, we present a newmethod
for detecting phylogenetic signals when form is described using landmark-coordinate
data. We also provide a parametric bootstrapping algorithm that, while applied to
landmarks, is general enough to be applied to any sort of morphometric data where a
reasonablemodel ofwithin-sample variation can be specified. We go on to demonstrate
how the bootstrap data can be used to make topological comparisons between mor-
phometric clusterings and the cladogram, using: (1) bootstrap proportions attached
to cladogram nodes; (2) tree-comparison statistics; and (3) analysis of the frequen-
cies of morphometric-based clusterings that occur when bootstrapping under the
model. Our method is exemplified by examining phylogenetic patterning in midfa-
cial shape for ateline primates. We conclude by discussing topics where more research
is needed, concentrating on efforts to partition morphometric data into homologous
and homoplasious components.

Introduction

Within the past quarter century, the science of comparative biology has undergone
a substantial transformation, centered on the advocacy of an explicitly phylogenetic
(historical) perspective in the study of evolution. Such a perspective is now consid-
ered essential for testing hypotheses about adaptation, the evolution of biological
roles, evolutionary covariances among characters, and general principles of organis-
mal design (Gould and Lewontin 1979; Lauder 1981, 1990; Coddington 1988; Wake
and Larson 1987; Larson and Losos 1996; Huelsenbeck et al. 2000). In addition, a
phylogenetic framework is required for the study of the mechanisms underlying evo-
lutionary transformations in form, such as heterochrony (e.g., Fink 1982; Wake and
Larson 1988; McKinney and McNamara 1991). Within the same quarter century,
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there has been a proliferation of new methods in morphometrics, particularly where
analyses of landmark data are concerned (Rohlf and Marcus 1993; Bookstein 1996).
While applications of morphometrics have varied widely, many of them address evo-
lutionary questions, so that a combination of the “new comparative biology” and
the “new morphometrics” seems natural. However, despite their simultaneous devel-
opment, there has been little synthesis of the two fields, and we perceive substantial
theoretical and methodological gaps between them.
The mandates of the new comparative biology should strongly influence the course

of morphometric research, as the latter should be regarded as a tool for pursuing the
goals of the former. Therefore, we are faced with the task of developing new methods
(or retooling existing ones) so thatmorphometrics becomemore relevant to researchers
who study the history of biological patterns and processes. The purpose of this chapter
is to take an initial step in meeting this challenge. We begin with a basic question that
has broad relevance: what does it mean for a data set to have (or to lack) a phylogenetic
signal? We then propose a method for recognizing a phylogenetic signal in a set of
morphometric data. We will be concerned specifically with the analysis of landmark
data, although much of what we will present may be applied to other quantitative
descriptors of biological form.

What are phylogenetic signals?

In the most basic sense, we say that there is a phylogenetic signal in morphometric
data when closely-related taxa are more similar to one another than they are to more
distantly-related taxa. Because phylogenies are hierarchically organized, it is useful to
refine this basic definition in terms of a comparison between two nested, hierarchical
trees. The first tree is a phylogenetic one, represented by a cladogram that provides a
history of the speciations that gave rise to the clade’s member taxa. The second tree
is a phenogram, which is constructed using the landmark data, where the hierarchical
structure is described using a clustering algorithm. The strength of the landmark data’s
phylogenetic signal is reflected in the degree to which these two trees match. If the
topologies of the cladogram and the phenogram are very similar, we can say that
there is evidence of a strong phylogenetic signal contained within the landmark data.
The morphometric affinities based on the landmark data would therefore reflect the
genealogical relationships among taxa. If the two topologies are very different, we can
conclude that form has evolved in a way that does not reflect phylogeny.
Now that we have established (in basic terms) what phylogenetic signals are, we

can begin to think about how they come about and what they mean. We can also
think about what it means if there is a strong, nonrandom signal that does not reflect
phylogeny. Finally, we can consider why there may be no apparent signal at all, so
that morphometric variation is randomly distributed with respect to phylogeny.

How do phylogenetic signals originate and
why are they interesting?

Before discussing phylogenetic signals further, we must state a fundamental assump-
tion. Throughout this chapter, we will assume that there is a preexisting estimate of
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Figure 10.1 Evolution of phylogenetic signal through stochastic processes. The observed differences
in form between taxa are functions of the time since they shared a common ancestor
(see text).

the phylogenetic relationships among the study taxa (a cladogram) and that this esti-
mate has been made without error (Pagel 1999; Huelsenbeck et al. 2000). To reduce
the chance of making circular arguments, we also will assume that the cladogram has
been estimated using data other than morphometric measurements (e.g., using molec-
ular sequences, developmental patterns, aspects of behavior and life history, etc.).
Naturally, as other researchers refine their estimates of the phylogenetic relationships
among taxa, we will be faced with the task of revising our ownmorphometric analyses
accordingly.
There are many possible scenarios where organisms evolve so that phylogenetically-

patterned form variation is the result. As a first example, let us consider a scenario
where natural selection plays no role, so that form evolves solely via stochastic
(= random) processes (e.g., Felsenstein 1988). If we make some simplifying assump-
tions, we may find that the history of speciations largely determines the observed
differences in form among terminal taxa. More specifically, the expected difference
between any two taxa will be a function of the time that has passed since they last
shared a common ancestor.1 Consider the history of a four-taxon clade that is mapped
onto a space where the horizontal axis is some measure of form (measured with mor-
phometrics) and the vertical axis is time (Figure 10.1). The common ancestor for the
radiation gives rise to two daughter lineages (labelled Lineage1 and Lineage 2), which,
in turn, give rise to four terminal taxa. Taxa A and B arise from Lineage 1, while
taxa C and D arise from Lineage 2. Whenever speciation occurs, we assume that the
daughter taxa (whether lineages or terminal taxa) will evolve independently and at ran-
dom from that point onward (Cavalli-Sforza and Piazza 1975; Cheverud et al. 1985;
Felsenstein 1985, 1988). We therefore expect taxa A and B to be the most similar
because their evolutionary histories are identical, up to the point where they diverge
from their common ancestor. From that point onward, they evolve independently.

1 The assumptions we must make in this simple case are that all of the lineages evolve at the same rate
and that the forms of sister taxa will tend to diverge following a speciation. From another point of
view, these assumptions are the conditions that must hold if phenetic similarities are to be an accurate
reflection of genealogical relationships (Colless 1970; Sneath and Sokal 1973; Cavlli-Sforza and Piazza
1975; Felsenstein 1982).
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Figure 10.2 A phylogenetic signal that is produced and maintained by natural selection. The different
clades radiate within their respective adaptive zones, but no taxa move from one zone
into the other. Note that while a phylogenetic signal is present at a high taxonomic level,
it becomes obscured at lower levels.

However, relative to the age of the entire clade, they have not had very much time for
differences between them to evolve. In contrast, if we consider the difference between
taxa A andD, we see that their last common ancestor is much closer to the base of the
clade. Therefore, their common history is proportionately much shorter, and the time
over which they have evolved independently is much longer. We thus expect them to
have greater morphometric differences, simply because they have had more time to
accumulate those differences through random processes.
We can also imagine scenarios where natural selection plays an active role in the

production and maintenance of phylogenetic signals. As a simple example, suppose
that the taxa in a clade have evolved different forms as specializations to different
biological roles (Bock and van Wahlert 1965). Figure 10.2 shows a hypothetical sit-
uation where there is an association between organismal form and the occupation of
two different adaptive zones. Now suppose that populations of the ancestral taxon for
the clade encounter two novel sets of environmental conditions, so that a speciation
occurs. Associated with the initial speciation, there may be a morphological diver-
gence between the lineages, which may be especially pronounced if the lineages are
entering novel adaptive zones where their respective forms can function as key adapta-
tions to new biological roles (Harvey and Pagel 1991). Following the initial speciation,
there may be a number of subsequent speciations in each clade (particularly if a key
adaptation is involved), but the members of the two large clades may experience no
further selective forces that would tend to force them outside of their respective adap-
tive zones. Their occupation of those zones is, therefore, very stable over time. As a
result, the phylogenetic signal is maintained at a relatively high taxonomic level, even
though it may become obscured at lower levels. Harvey and Pagel (1991) refer to
this pattern as phylogenetic niche conservatism. They also point out that reversals in
the evolution of some complex forms and adaptations may be very unlikely, provid-
ing further reinforcement of phylogenetic signals once they have originated. Finally,
Simpson (1961) points out that the separation between clades in such a case might
be further reinforced by extinctions in the boundary between adaptive zones (i.e., in
the valleys between adaptive peaks). Therefore, we might consider extinctions and
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Figure 10.3 Homoplasy that obscures the phylogenetic signal, resulting in an “alternative” signal. While
taxa B and C are distant relatives, they have converged on similar morphologies.

the incompleteness of the fossil record as other potential factors that influence the
expression of a phylogenetic signal in a data set.
In addition, there may be interesting situations where there is a strong, nonran-

dom signal in the data that is not a phylogenetic signal. In this discussion, we will
call such instances “alternative signals”. Researchers who are interested in adapta-
tion and the role of selection may find instances of alternative signals particularly
valuable. For example, there may be instances where striking morphometric similar-
ities between distantly-related animals are the result of convergence (Figure 10.3). If
such similarities have arisen independently they can allow the construction of testable
hypotheses about adaptation (Coddington 1988; Harvey and Pagel 1991; Wake 1991;
Brooks 1996; Losos and Larson 1996). Homoplasies might also be frequent enough
at lower taxonomic levels to be considered “rampant” in the measurements exam-
ined. While striking structural and functional similarities can evolve independently
in distantly-related animals (e.g., the well-known similarities between some marsupial
and placental carnivores), this pattern is also likely to occur in closely-related taxa with
similar developmental programs (Sluys 1989; Brooks 1996; see also Alberch 1980,
1985). When taxon-specific developmental programs are essentially minor variations
on the same theme, different taxa are likely to find similar morphological solutions to
similar biological problems, obscuring evidence of shared history.
There may also be cases where there is no apparent signal of any kind. One familiar

example is “star radiation” (Figure 10.4), where speciations occurred very rapidly, so
that the cladogram’s nodes are all concentrated near the root. If there have been no
further selective forces to cause taxa to evolve in parallel, the taxa will have evolved
independently for nearly all of the clade’s history. As a result of this speciation pat-
tern, nearly all of the morphometric differences that accumulate between taxa will be
autapomorphic, so that “closely-related species are no more likely to be similar than
any two species picked at random” (Mooers et al. 1999: 250). If autapomorphies are
ubiquitous, phylogenetic signals will be very hard to recognize. This will be especially
true if each of the lineages experiences very different selective pressures, causing them
to follow highly divergent evolutionary pathways.
Finally, there may be difficulties in detecting a phylogenetic signal if morphometric

traits exhibit high evolvabilities (sensu Houle 1992), so that they are evolutionarily
labile. In our initial depiction of the origins of a phylogenetic signal (Figure 10.1),
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Different adaptive zones

Figure 10.4 A “star radiation”. Because the taxa separated very early and have been subjected to dif-
ferent patterns of selection, the accumulation of autapomorphies has completely obscured
any type of phylogenetic signal.

Figure 10.5 Evolutionary lability that has obscured a phylogenetic signal (see text for discussion). The
phylogenetic relationships are the same as in Figures 10.1 and 10.3.

the evolution of the clade was very neat and orderly, with the evolutionary paths of
the taxa staying well separated in space. However, suppose that each taxon covers
a great deal of morphological ground as it evolves. If this is the case, the evolution-
ary pathways of the individual taxa may cross one another many times, so that form
variation becomes randomly distributed with respect to the phylogenetic relationships
between taxa (Figure 10.5). The reasons that morphometric data may be labile (so
phylogenetic signals are therefore absent) are varied. On one hand, the lability may
be an intrinsic characteristic of the organisms themselves. For example, high degrees
of within-population genetic variation and low levels of stabilizing selection may both
be contributing factors (Houle 1992). On the other, the apparent lability of the traits
may not be a quality of the organisms themselves, but of a rapidly fluctuating envi-
ronment, where the organisms are chasing fast-moving adaptive peaks through the
morphological space. Whatever their cause, a particularly interesting aspect of labile
data is that the patterns they produce may be very difficult to distinguish from the
homoplasy that results from parallel responses to selection (compare the positions of
the taxa in Figures 10.3 and 10.5).
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To conclude this section, we would like to consider the implications of strong signals
(whether phylogenetic or alternative) for the way that we think about morphometric
variation in a phylogenetic framework. To begin, we must recognize that morphomet-
ric data are phenetic data, and that phenetic similarities are, by definition, mixtures of
homologous and homoplasious similarities (Cain and Harrison 1960; Simpson 1961;
Sneath and Sokal 1973; Felsenstein 1982; Cheverud et al. 1985). The difficulties of rec-
ognizing homologies in morphometric variables prior to construction of a phylogeny
are widely recognized, and many investigators have been skeptical of the validity of
continuous data as characters for estimating phylogenies (e.g., Pimentel and Riggins
1987; Cranston and Humphries 1988; Chappill 1989; Bookstein 1994). Much recent
debate has focused on landmark data in particular (Zelditch et al. 1995, 2000; Fink
and Zelditch 1995; Adams and Rosenberg 1998; Rohlf 1998). However, in look-
ing at the distribution of morphometric variation relative to a phylogeny that has
already been estimated using other data, we can approach questions about homology
and homoplasy from a somewhat different perspective, because we already have a
cladogram in place.
Discussions about homology frequently include detailed considerations of terminol-

ogy, but for the purposes of our presentation we will opt for a fairly simple definition.
We would consider a shared “state” of form or shape to be homologous if it is a
shared-derived state that characterizes amonophyletic group; this is Patterson’s (1982)
criterion of congruence (Zelditch et al. 1995; Chang and Kim 1996). If a shared mor-
phometric state is, in fact, homologous, we expect to see congruence between phenetic
and cladistic topologies, that returns us to our original definitions of a phylogenetic
signal. Therefore, the presence of a strong phylogenetic signal suggests thatmorphome-
tric similarities tend (in an overall sense) to be homologous, rather than homoplasious.
If we judge some shared aspect of form to be homologous, we gain the advantage of
discussing that morphometric similarity in terms that are familiar to phylogenetic
systematists, including “symplesiomorphy” and “synapomorphy”. However, what is
most important about the provisional identification of a morphometric homology is
that it provides us with a starting point for better understanding the processes that gen-
erate evolutionary diversity. As Sanderson and Hufford (1996: 329) succinctly state:
“At issue in the study of homology is how character states become different despite
their common origin.”
In contrast, a strong “alternative” signal tells us something very different about

how morphometric similarities tend to evolve from different beginnings (Sanderson
and Hufford 1996). To recognize homoplasy in discrete character states, Hennig
(summarized by Brooks 1996) recommended that similar states should be provisionally
considered as homologous. Following the construction of a cladogram, this assump-
tion is reevaluated for each character, and similarities that are incongruent with the
phylogeny are reclassified as homoplasies. For morphometric data, we could make the
same assumption initially (i.e., that all morphometric similarities are homologous).
However, if we then found a strong alternative signal, we would have evidence that
our initial assumption was incorrect. We would then have to consider the possibility
that some proportion of the morphometric similarities we observed were homoplasies.
We might then be able to construct testable hypotheses about the biological roles of
these similarities and the factors that would tend to produce homoplasies of form
(e.g., adaptations to similar environments, developmental constraints).
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Uncertainty and the bootstrap

Now thatwe have introduced some basic ideas aboutwhat phylogenetic signals are and
how they might arise, we can turn our attention to how they can be studied using real
data. As we stated earlier, we can evaluate the phylogenetic signal in morphometric
data by comparing cladistic and phenetic hierarchical topologies. However, we first
need to discuss the nature of the data that are used to construct them.
When we compare a phenogram to a cladogram, we assume that the cladogram is

measured without error. However, this assumption cannot be made for morphometric
phenograms, because we know that the measurements vary within populations. We
also acknowledge that our sample sizes often may be small, particularly when we are
studying rare organisms or fossils, so that sampling errors become an important con-
sideration in estimating morphometric affinities. We therefore realize that uncertainty
in statistical estimation threads its way throughout our study of phylogenetic signals
from start to finish. The fact of this uncertainty has led us to use the bootstrap, which
is a very versatile method for addressing issues of statistical uncertainty in interesting
and informative ways.
The bootstrap technique was developed in the late 1970s and early 1980s by Efron

and colleagues (see Efron and Tibshirani (1991, 1993) for reviews). It is a frequently
used method for working with statistics that have either very complex or unknown dis-
tributions, where intensive computational effort can be used to address problems that
might otherwise be intractable (Efron and Tibshirani 1991). Phylogenetic applications
of the bootstrap and related methods were introduced soon after the development of
the bootstrap itself. As with other bootstrap applications, the first phylogenetic uses
were motivated by concerns about the uncertainties of statistical estimation.
Felsenstein (1985) was the first to use the nonparametric bootstrap to address

concerns about the uncertainty of sampling discrete characters for use in phylogeny
estimation. His method of attaching bootstrap proportions to cladogram nodes is
now widely used in the systematics literature (see below). At roughly the same time,
Lanyon (1985) used the jackknife (a related method) as a means of dealing with the
uncertainties of estimating genetic distances and the phylogenies inferred from them.
Mueller and Ayala (1982) had previously suggested the use of the jackknife for this
same purpose. More recently, Huelsenbeck et al. (1996) used the parametric bootstrap
to model variation in DNA sequence data, demonstrating the versatility of the method.
Their aims were to examine bias in phylogenetic estimation, to compare the support
for competing phylogenetic hypotheses, to conduct power analyses, and to measure
the repeatability of a tree’s subclades. This last aim is the same as Felsenstein’s (1985)
and is probably the most frequent application of the bootstrap in phylogenetics.
Before we describe how we have applied the bootstrap in this study, we will pro-

vide a brief illustration of how the method generally works in applications other than
phylogenetics. Suppose we havemeasured a sample of organisms using a continuously-
distributed variable (e.g., bodymass or length), andwewant to use the data to estimate
a parameter θ , which is a smooth function of the data. In addition to obtaining a point
estimate of θ (a statistic called T), we want to say something about our uncertainty in
making that estimate. The uncertainty involved in making point estimates is usually
quantified using standard errors and confidence intervals. For many familiar statistics
(e.g., means, regression coefficients, and correlation coefficients), there are analytical
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formulae for calculating these uncertainty measures. However, if there are no available
analytical methods for the statistics that interest us, we can apply the bootstrap. If the
sample has n observations, we can construct a pseudosample by drawing n observa-
tions from the sample randomly and with replacement. By “randomly”, we mean that
all observations have the same probability of being selected. By “with replacement”,
we mean that any given observation can be sampled more than once and that some
observations may not be sampled at all. From the pseudosample, we compute a boot-
strap estimate of T and call it T∗. This process is then repeated for M independent
pseudosamples, where M is a large number (usually between 200 and 1,000), so that
we get a bootstrap distribution of T∗. Once the bootstrap distribution is obtained, we
calculate its mean T̂∗ = �(T∗)/M, which is the bootstrap estimate of T. The standard
error of T is estimated by the standard deviation of the T∗ estimates, and there are
several ways that bootstrap confidence intervals for T can be computed (Efron and
Tibshirani 1991, 1993; Davison and Hinkley 1997).
The type of resampling just described is called nonparametric bootstrapping,

because no assumptions aremade about the distribution of the data. However, suppose
we can make reasonable assumptions about how the data are distributed (although
the distribution of the statistic of interest may remain very complex or unknown). In
that case, we can use parametric bootstrapping, where a fitted parametric model serves
as the basis for generating random data sets that can serve as pseudosamples (Efron
and Tibshirani 1991, 1993; Huelsenbeck et al. 1996; Davison and Hinkley 1997).
Returning to our simple example, suppose we can assume that the measurement data
are distributed as N(µ, σ 2); that is, the data are normally distributed with mean µ and
variance σ 2. To perform a parametric bootstrap, we first obtain sample estimates of
µ and σ 2, called x̄ and s2, respectively. We then generateM independent pseudosam-
ples, each with n random observations that are distributed as N(x̄, s2). The parametric
bootstrap estimates of the mean and standard error of T are then computed as with
the nonparametric method. The primary advantage of parametric bootstrapping is
that the standard-error and confidence-interval estimates are generally more accurate
than nonparametric estimators. This is an especially important concern when studying
multivariate data, where the sample sizes required for precise nonparametric estimates
increase exponentially with the number of variables (Silverman 1986).

A model for describing morphometric
variation using landmarks

An explicit model of within-sample variation is necessary for any application of the
parametric bootstrap. Before we describe the statistical model and computations that
we use in this study, we will present a more general picture of biological variation in
landmark data, which is largely based on Lele (1999). Suppose we are interested in a
sample of n organisms and we measure them using a series of K landmarks in D (= 2
or 3) dimensions. The mean for the population is described by a K ×D matrix called
M, where each row represents the D-dimensional coordinates of a landmark. While
M is not directly observable, we can imagine the mean configuration of landmarks in
a “Nature Space” (Figure 10.6), where within-sample variation arises. No single indi-
vidual is likely to be identical in form to the mean, nor are any two individuals likely
to be identical. This phenotypic variability is due to both genetic and environmental



Phylogenetic signals in landmark data 203

Figure 10.6 The “Nature Space”, where individual differences in form originate. The parametric mean
configuration for a hypothetical five-landmark organism is indicated by the crosses (+).
The filled symbols represent the landmark locations of different specimens (where like
symbols belong to the same specimen). These locations are phenotypic perturbations
of the mean, that reflect underlying genetic and environmental variations. Note that the
dispersion patterns differ from one landmark to the next. Some landmarks have roughly
circular distributions (1, 2, and 3), while others are elliptical. Some landmarks (1 and 3)
have relatively small dispersions, while others (2) are large. In addition, some of the
perturbations may be correlated – note the similarity in the rank-order of perturbations
(from upper left to lower right) for landmarks 4 and 5. As described in the text, the
positions of the perturbations in Nature Space cannot be reconstructed; however, some
descriptors of the dispersion patterns can be estimated.

variation (Falconer and Mackay 1996). In the Nature Space, phenotypic variation is
manifested as perturbations aroundM (Figure 10.6). Note that the dispersion patterns
of these perturbations can vary in size and shape from landmark to landmark. Some
landmarks may be more variable than others and this will be indicated by the rela-
tive sizes of their dispersions. The perturbation scatters also can vary in shape from
one landmark to another, with some being round and others elliptical. Finally, there
may be covariances between the landmarks, so that the relative positions of the obser-
vations at one landmark may be correlated with their positions at other landmarks.
We describe the phenotypic variation statistically with a general perturbation

model. This model was used by Goodall (1991) in the development of superimpo-
sition (Procrustes) methods and by Lele (1993; Lele and Richtsmeier 1990; Lele and
McCulloch 2001) in the development of Euclidean distance matrix analysis (EDMA).
We can describe the landmark data for each observation in a sample with a K × D
matrix called Xi. Each Xi is related toM as follows:

Xi = (M+ Ei)�i + ti

Ei is a K × D matrix of perturbations that describe how Xi differs from M in the
Nature Space. For the population, these perturbations are assumed to have a multi-
variate normal distribution with a K × D mean matrix 0 and a covariance structure
�K⊗�D, where the⊗ operator denotes a Kronecker product. �K is aK×Kmatrix that
describes the variances and covariances of the landmarks, while �D is aD×Dmatrix
that describes the variances and covariances of the perturbations with respect to the
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Nature Space’s coordinate-system axes (i.e., they describe the eccentricity and orienta-
tion of the perturbation scatters). The mean and the variance–covariance matrices are
obviously of great biological interest. Unfortunately, they are not estimable because of
the presence of the other terms in the equation, which are called nuisance parameters
(Neyman and Scott 1948; Lele and Richtsmeier 1990; Lele 1993). The orthogonal
K×K matrix �i describes the rotation of Xi (as we measure it) relative toM (as it lies
in the Nature Space), while the K × D matrix ti describes the translation of Xi rela-
tive toM. Unfortunately, these entirely arbitrary parameters are unobservable, which
means that reconstruction of the Nature Space from empirical data is impossible (Lele
1993, 1999; Lele and McCulloch 2001).
Fortunately, there are some biologically interesting components of the model that

are identifiable and can be estimated using method-of-moments techniques developed
by Lele (1993) and Lele and McCulloch (2001). While we cannot observe directly
the coordinates of the population mean form (M), we can compute the coordinates
of a consistent sample estimate of the mean, called M̂, up to translation, rotation,
and reflection. Similarly, while we cannot estimate the sample among-landmarks
variance–covariance matrix (�K), we can compute a consistent estimate of a singular
version of it, called �∗

K. Finally, while neither the among-axes variance–covariance
matrix (�D) nor its eigenvectors is estimable, its eigenvalues can be estimated (Lele
and McCulloch 2001), describing the overall eccentricity of the perturbation scat-
ters. Alternatively, we can make the simplifying assumption that �D = I (Lele and
Cole 1996). We should emphasize that all of these estimators are coordinate-system
invariant, so that they are not affected by the positions and orientations of the observa-
tions in any arbitrary coordinate system (Lele 1993). If we assume that the landmark
perturbations aboutM approximate a multivariate normal distribution, we can use M̂
and �∗

K to randomly generate pseudosamples under the model (Lele and Cole 1996).
This data-generating procedure is at the heart of our parametric bootstrappingmethod,
as described in the following section.

Parametric bootstrapping under the model

Wenowprovide a description of the parametric bootstrapping algorithm thatwe use to
assess a phylogenetic signal. Themethod is illustrated schematically in Figure 10.7. The
particular details of scale adjustments, dissimilarity metrics, and clustering algorithms
may vary from one application to another, so we will only speak of them in general
terms for the time being.

1 Using the sample-specific estimates of themean form (M̂ for each sample), compute
a matrix of the pairwise dissimilarities in form between taxa. As explained below,
this matrix is called F� (or S� if the data are scale-adjusted). F� is used as the basis
of a hierarchical cluster analysis, yielding a morphometric-based clustering that
is referred to as the “empirical phenogram”. If the goal is to study shape, rather
than form (where information about scale is retained), the mean forms should be
scaled first (see Lele and Cole 1996 for a discussion).

2 Again using the sample-specific estimates of M̂ and �∗
K, generate a set of pseu-

dosamples of the appropriate sample sizes. An algorithm for generating random
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Figure 10.7 Schematic of the parametric bootstrapping algorithm used in this study. Data from
four taxa (A, B, C, and D) are used to estimate mean forms (M̂) and among-landmark
variance–covariance matrices (�∗

K). The means are first used to estimate the empirical
tree, shown at the bottom of the figure. The means and covariance matrices are then
used to generate a large number (e.g., 500) of pseudosamples, assuming multivariate
Gaussian perturbations. Each set of pseudosamples is, in turn, used to estimate a boot-
strap tree. The intermediate step of computing a dissimilarity matrix is not shown. Finally,
each of the bootstrap trees is compared with the cladogram, using bootstrap proportions,
tree-comparison statistics, or some other measure of topological similarity.

data under the model is provided by Lele and Cole (1996). After calculating
the pseudosample means, construct a matrix of pairwise dissimilarities called
F∗

� (or S∗
�), where the asterisk indicates that it is computed from a set of

pseudosamples.
3 Generate M sets of pseudosamples by repeating Step 2 a large number of times

(e.g., 200–1,000). Use the resulting bootstrap distribution of F∗
� (or S∗

�) matri-
ces and a hierarchical clustering algorithm to obtain a distribution of bootstrap
phenograms.

4 Compare the bootstrap phenograms to the cladogram, examining the bootstrap
proportions attached to cladogram nodes or using tree-comparison statistics. We
might also examine the frequencies with which different bootstrap phenograms
occur when resampling under the model. Each of these methods for comparison
is described below.

Constructing phenograms based on
morphometric dissimilarity

Given the collection of sample mean forms, we must determine which of the means
are most similar and which are most different (Steps 1 and 2 of the bootstrapping
algorithm). These similarities and differences serve as the basis for constructing our
morphometric clusterings (the empirical and bootstrap phenograms). For landmark
data, we can use EDMA (Lele and Richtsmeier 1991, 2001; Lele 1993; Lele and
McCulloch 2001), which is a coordinate-system-invariant method of describing and
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comparing forms. The basis of all EDMA applications is the form matrix (FM).
Suppose we have the mean coordinates of a taxon A, measured with K landmarks.
The form matrix FM(A) is defined as:

FM(A) =




0 d(1, 2) · · · d(1,K)

d(2, 1)
. . .

...
. . . d(K − 1,K)

d(K, 1) d(K, 1 − K) 0




where d(i, j) is the Euclidean distance between landmarks i and j. This representation
of form is coordinate-system invariant because the elements of FM(A) are always
the same, no matter how A is positioned (= translation) or oriented (= rotation and
reflection). Now, suppose we have a second taxon B, with its own formmatrix FM(B),
and we want to compare the forms. We can define a form-difference matrix, called
FDM(A,B), as follows:

FDM(A, B)ij = FM(A)ij
FM(B)ij

where i, j = 1, . . . , K and with the convention that 0/0 = 0. Each element of the
FDM is the ratio of like distances in A and B. If A and B are identical in form, all of
the off-diagonal elements of the FDM will be one. If a given distance is greater in A
than in B, the corresponding element of the FDM will be greater than one. Similarly,
an instance where the distance in B is greater will be indicated by an element that is
less than one. If all of the off-diagonal elements are equal and are different from one,
A and B will have the same shape, but will differ in scale. Finally, if the off-diagonal
elements are heterogeneous, A and Bwill differ in shape. Importantly, the FDM shares
the property of coordinate-system invariance with the form matrices, meaning that its
elements are always the same, no matter how either A or B are translated, rotated, or
reflected.
In the algorithm described above, we discussed dissimilaritymeasures in very general

terms, but we can now define them more precisely. The form-difference matrix can be
used as the basis for a dissimilarity measure, called F�, between two taxa (Richtsmeier
et al. 1998). Given FDM(A, B), we can calculate:

F�(A, B) =
√∑

[ln(FDM(A, B))]2

where the summation is over all of the below-diagonal elements. F�(A, B) is a metric
and is equivalent to theQ-mode Euclidean distance betweenA andB (Sneath and Sokal
1973: 124), when that distance is calculated using all In-transformed interlandmark
distances. If A and B are identical, then F� will equal zero; otherwise, F� will become
increasingly positive as A and B become more different in form. If the taxa we are
comparing vary substantially in scale, we may want to concentrate on variation in
shape, rather than in form. Scaling of each sample mean is accomplished simply by
computing the FM and then dividing each element by an appropriate scaling factor
(derived from the elements themselves), yielding a shape matrix called SM (Lele and
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Cole 1996). Some examples of possible scaling factors include any single interlandmark
distance (e.g., one that measures maximum length or breadth), the maximum distance,
the median distance, or the geometric mean of all of the distances. Whichever scaling
factor is chosen, we strongly recommend that the choice should be based solely on
biological grounds (Lele and Cole 1996).
Given the means of multiple taxa, we collect all of the pairwise F� statistics in a

symmetric dissimilarity matrix called F�. For example, if there are three taxa called
A, B, and C:

F� =

 0 F�(B,A) F�(C,A)
F�(A,B) 0 F�(C,B)
F�(A,C) F�(B,C) 0




Alternatively, a dissimilarity matrix based on shape matrices would be called S�. With
such a dissimilarity matrix in hand, we can use it as the basis for hierarchical cluster
analysis to obtain both the empirical phenogram and the distribution of bootstrap
phenograms.
In outlining our algorithm, we have spoken of hierarchical clustering in very general

terms. However, the choice of a clustering algorithm should be carefully considered.
There are many different algorithms available for constructing hierarchical clusters
and these may yield different results, even when based on the same dissimilarity
matrix (Sokal and Rohlf 1962; Sneath and Sokal 1973; Johnson and Wichern 1982).
In deciding which method to use, we note that hierarchical clustering methods can-
not summarize morphological relations between taxa in a multivariate space without
introducing some kind of distortion, and some of the information about pairwise
dissimilarities is invariably lost (Sokal and Rohlf 1962; Sneath and Sokal 1973). There-
fore, the best choice of a clustering algorithm might be the method that introduces the
least distortion and provides the most faithful summary of the information in the dis-
similarity matrix. One way of measuring this accuracy is through use of the cophenetic
correlation (Sokal and Rohlf 1962), which is the correlation between the elements of
the original dissimilarity matrix and those implied by the hierarchical clustering. The
“best” algorithmic result, using this criterion, will be the one with the cophenetic
correlation that is closest to 1.0. Finally, we would strongly discourage selecting the
method that produces the clustering that is most similar in topology to the cladogram;
this practice would defeat the purpose of our method by biasing the results toward the
detection of a strong signal, where a weaker one may exist in reality.

Measuring the signal

After generating the empirical phenogram and a distribution of bootstrap phenograms,
we can compare their topologies to that of the cladogram. Because we are interested in
comparing the topologies of two different hierarchical trees, we have a choice of sev-
eral different approaches. First, we can calculate bootstrap proportions (colloquially
referred to as “bootstrap support”) for each of the nodes of the cladogram. Second,
we can employ any number of tree-comparison statistics for evaluating the agreement
between cladistic and phenetic topologies. Finally, we can examine the frequencies of
the different topologies that occur under when resampling under the model. Although
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this last approach does not involve actual tree comparisons, it can be very interesting
and informative.
Bootstrap proportions: The distribution of bootstrap phenograms can be used to

assign a bootstrap proportion (Felsenstein 1985; Efron et al. 1996) to each internal
node (= subclade) of the cladogram. Suppose we are interested in the node corre-
sponding to a subclade that includes three taxa A, B, and C. The associated bootstrap
proportion is the percentage of bootstrap phenograms where A, B, and C cluster
together to the exclusion of all other taxa. Note that there is no consideration of the
internal structure of the clade, only of the identity of its member taxa. Note also
that bootstrap proportions aremarginal proportions (Felsenstein 1985), meaning that
the proportions for different nodes are calculated independently. To relate bootstrap
proportions to a phylogenetic signal’s strength, we would say that a bootstrap pro-
portion of 100 percent would indicate a perfect phylogenetic signal for the subclade,
while 0 percent would indicate that the subclade’s members never cluster together.
We can attach bootstrap proportions not only to the cladogram, but to the empirical
phenogram as well. In doing so, we get an idea of the repeatability in the data (sensu
Hillis and Bull 1993), so that we have an explicit picture of the uncertainty in estimat-
ing the phenetic clustering. This is similar to the concept of the “robust validity” of
distance and correlation matrices that was used by Cheverud et al. (1989).
Finally, and as an aside, we would like to make a comment regarding terminol-

ogy. While bootstrap proportions are popularly referred to as measures of “bootstrap
support”, we have avoided using that term. “Support” has a very specific statistical
definition that is related to principles of likelihood (Edwards 1992), and this defini-
tion is different from what we measure using bootstrap proportions. Hillis and Bull
(1993) similarly favor the use of “bootstrap proportions”, while discouraging the use
of “bootstrap P values”.
Tree-comparison statistics: Tree-comparison statistics are commonly used to mea-

sure the degree of difference between two hierarchical structures, expressing this degree
as a single number. There are many different statistics available (see reviews by Rohlf
(1974, 1982), Hubert (1978), Penny and Hendy (1985), and Lapointe and Legendre
(1990)), and bootstrapping can be used to generate estimates of their standard errors
and confidence intervals. For this study, we have developed a simple tree-comparison
statistic that we find useful because its interpretation is very straightforward. To com-
pare a cladogram with a phenogram, we first represent their topologies in matrix form
using cardinality matrices (Lapointe and Legendre 1992), where all of the informa-
tion about branching sequences is retained, but where branch lengths are ignored.
The dissimilarity between two taxa A and B is defined as the total number of taxa
in the smallest clade/cluster containing both A and B. Therefore, if A is closest to B,
the dissimilarity between them will be the minimum possible value of 2 (the size of
the smallest possible clade/cluster). If A is most distant from B, the dissimilarity will
be the maximal value, which is equal to the total number of taxa in the study (which
is the largest possible clade/cluster). Figure 10.8 provides three examples of how car-
dinality matrices are constructed. In the third example, note how cardinality matrices
can be used with cladograms that have unresolved multifurcations.
To compare the cladogram with the empirical phenogram, suppose we represent

the topology of the former with a cardinality matrix CC, and we represent the
topology of the latter with a second cardinality matrix CP. We can compare the
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Figure 10.8 Examples of how the topologies of phenograms and cladograms are expressed using car-
dinality matrices. See text for an explanation of how the matrix elements are defined. For
the cladogram at the bottom of the figure, note how unresolved multifurcations can be
accommodated.

two cardinality matrices by subtracting one from the other, forming a cardinality
difference matrix (CDM). Suppose we subtract the cladogram topology from the
phenogram topology:

CDM = CP − CC
If the two topologies are identical, then all of the elements of CDM will equal zero.
If the topologies differ, then some or all of the off-diagonals of CDM will be non-
zero. The elements of CDM are useful for defining an overall measure of topological
dissimilarity. As one of a number of possibilities, we can use the absolute value of
the off-diagonal element of CDM that is furthest from zero, calling that number C:
C = max(abs(CDM)). The minimal value that C can take is 0, indicating that the
topologies are identical (a perfect phylogenetic signal). The maximal value that C can
take is the total number of taxaminus 2. An advantage of this particular statistic is that
it gives us an idea of the depth of the topological dissimilarity (moving from the branch
tips toward the root). If C = 1, then we know that the greatest difference between the
topologies is concentrated near the branch tips. More specifically, if C = 1, we know
that the greatest differences occur within one or more three-taxon subclades. (Note
thatC does not tell us howmany three-taxon subclades differ, only that there is at least
one difference of that magnitude.) If C is maximal, we know that the disagreement
between topologies extends all the way to their roots.
Suppose we have used the parametric bootstrap algorithm to estimateM bootstrap

estimates of C (each called C∗). When we look at the distribution of C∗, we see that it
contains two types of information (Figure 10.9). First, themode of the distribution is a
measure of the agreement between the cladogram and the bootstrap phenograms. The
closer the mode is to zero, the greater the agreement tends to be, as described above.
Second, the dispersion of the distribution is a measure of the precision (= repeatability)
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Figure 10.9 Hypothetical bootstrap distributions of the C∗ statistic. A perfect agreement between
topologies is indicated by a value of zero. At the upper left, there is a case where there is
a strong phylogenetic signal (mode of zero) and high repeatability, indicated by the small
dispersion. At the upper right, there is still evidence of a phylogenetic signal (mode of
zero), but it is less repeatable, indicated by the greater dispersion. At the lower left is a
strong alternative signal, indicated by the combination of a lack of agreement (mode very
different from zero) and high repeatability. At the lower right, there is no apparent signal,
with a large dispersion and no distinct mode.

of C∗. Here, we define precision in a way that is similar to Hillis and Bull’s (1993:
183–184) definition: “. . . the correspondence between multiple sets of bootstrap pseu-
dosamples taken from the same initial sample”. In our case, we are looking at the
correspondence between bootstrap phenograms generated from the same set of sam-
ple estimates. Note that while the mode of the distribution can be seen as an indication
of a phylogenetic signal, the dispersion does not necessarily lead us to that conclusion
by itself. C∗ can be highly precise (= repeatable) when bootstrapping under the model
without the presence of a phylogenetic signal; it may instead be indicative of a strong
alternative signal. By itself, a small dispersion ofC∗ simply tells us that the hierarchical
clusterings that are based on the bootstrap data are highly repeatable. In contrast, if
the bootstrap clusterings are highly variable, the precision may be too low to distin-
guish any repeatable structure in the morphometric data, so that no signal of any kind
is detected.
Topology frequencies: We have found that it is instructive to look at the frequen-

cies with which different topologies occur under bootstrap resampling. Here, we are
looking at the same data that are used to compute bootstrap proportions, but without
condensing them in that way. We simply count the number of times that each topology
is observed and express that number as a percentage of the total number of bootstrap
resamples. We then know whether some topologies are more likely to be observed
than others, and we can make observations about how these topologies tend to be
similar or different.
Given a set of taxa, how many different topologies do we expect to observe when

bootstrapping? Initially, we might guess that each possible topology will be observed
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with the same frequency, given enough resamples. However in practice, we tend to
observe far fewer topologies than all those possible. There are two reasons for this. The
first is that we would only expect to see each of the possible topologies if the sample
means were all the same. If the means differ (as they usually do – otherwise, we would
probably not be interested in carrying out the study in the first place), then the number
of topologies observedwill necessarily be limited. The second reason is that the among-
taxon variation observed in interspecific studies tends to be substantially larger than
within-taxon variation. Therefore, the relationships between well-separated means in
multidimensional space will tend to remain stable under bootstrap sampling. As a
result, most of the bootstrap phenograms will probably lie close together in the space
of all possible phenogram topologies (see Efron et al. 1996), unless within-taxon
variances are relatively very large.
In summary, we recommend the use of a combination of all three of the methods just

described here. Taken together, they can give a measurement of the repeatability of the
data when resampling under the model, they can provide a picture of the taxonomic
levels where homoplasies occur, and (primarily in the case of bootstrap proportions)
they allow us to “localize” parts of the cladogram where the phylogenetic signal may
be particularly strong or may be nonexistent.

A simple example

To demonstrate our methods, we will examine morphometric variation in the facial
skeletons of ateline primates. The subfamily Atelinae is a small clade of Neotropi-
cal monkeys that are characterized by large body size and possession of prehensile
tails. Despite their close phylogenetic relationships, there is a large degree of anatom-
ical diversity within the clade, especially in skull form. This diversity makes them a
particularly interesting group for studies of comparative functional anatomy. There
are four living ateline genera: Ateles (spider monkeys), Alouatta (howler monkeys),
Lagothrix (woolly monkeys), and Brachyteles (muriquis or woolly spider monkeys).
Figure 10.10 shows the hypothesized genealogical relationships among the genera,
following Rosenberger and Strier (1989). Ateles and Brachyteles are the two most
closely-related genera. The Ateles–Brachyteles clade is then joined by Lagothrix,
followed by Alouatta, that joins as the sister-taxon to the other three genera. This
phylogenetic estimate is based on a variety of data (e.g., anatomy, genetics, life history,
and behavior), but is not based on skull form.

Figure 10.10 Phylogenetic relationships of living ateline genera, following Rosenberger and Strier
(1989).
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Figure 10.11 Results of the bootstrap analysis. The cladogram (left) is shown with bootstrap pro-
portions that measure the agreement between it and the structures of the bootstrap
phenograms. The UPGMA phenogram (right) is shown with bootstrap proportions that
measure its repeatability (see text). The bootstrap distribution for the C∗ statistic is
shown in the center.

Our sample consists of adult specimens of Ateles geoffroyi (N = 10); Alouatta
seniculus (N = 6); Lagothrix lagothricha (N = 14), and Brachyteles arachnoides
(N = 7). To avoid the potentially confounding effects of sexual dimorphism, only
females were examined. Variation in midfacial form was initially quantified by
recording the three-dimensional positions of six homologous landmarks on the
facial skeleton: (1) rhinion; (2) prosthion; (3) premaxilla-maxilla suture at alveolus;
(4) inferior end of the zygomaxillary suture; (5) maxillary tuberosity; and (6) posterior
nasal spine. Because ateline taxa vary in their adult sizes, we scaled the mean form
matrix of each genus by the geometric mean of all interlandmark distances. This scal-
ing measure seems to be a reasonable representation of the overall “volume” of the
midfacial skeleton.
Figure 10.11 shows the empirical phenogram that results when S� (the matrix

of shape dissimilarities) is subjected to UPGMA clustering, with a cophenetic
correlation > 0.99. Other clustering methods (including single linkage, complete link-
age, and neighbor joining) yielded the same phenogram. While this particular data
set seems robust to differences in the choice of clustering algorithm, it should not be
assumed that this will always be the case. When the empirical phenogram is com-
pared to the cladogram, we see a similarity in the position of Alouatta, relative to
the Lagothrix–Ateles–Brachyteles cluster and clade. So, not only is Alouatta more
distantly related to Lagothrix, Ateles, and Brachyteles than any of those taxa are to
each other, it exhibits the most distinctly different shape. The difference between the
topologies lies within the Lagothrix–Ateles–Brachyteles cluster and clade. In terms of
shape, Lagothrix and Ateles are the most similar taxa, despite of the fact that Ateles
and Brachyteles are the most closely related.
To quantify the effects of uncertainty in measuring shape differences, we gener-

ated 500 sets of parametric pseudosamples that were used to obtain a distribution of
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bootstrap phenograms. Within the bootstrap phenograms, only two topologies were
observed (out of the 15 that are possible with four taxa). The most frequently observed
topology (481/500 or 96.2%) matched the empirical phenogram, while the remaining
topology (19/500 or 3.8%)matched the cladogram. Becausewe observed one topology
an overwhelming majority of the time, and because that topology does not match the
cladogram, we have convincing evidence for a strong alternative signal in the morpho-
metric data. At the same time, we have evidence for a high degree of repeatability in
the morphometric data, because the overwhelming majority of bootstrap phenograms
are identical, matching the empirical phenogram.
Figure 10.11 shows the bootstrap proportions superimposed on the nodes of the

cladogram. Alouatta was always the most distinct in shape, so that the bootstrap pro-
portion associated with theLagothrix–Ateles–Brachyteles clade is 100 percent. Within
that clade, we see the very low proportion associated with the Ateles-Brachyteles
clade (3.8%), indicating that this close phylogenetic relationship was not reflected
in the strongly-patterned morphometric data. Finally, we come to the same con-
clusion when we look at the bootstrap distribution of the C∗ statistic. C∗ equals
zero 3.8 percent of the time, indicating that perfect matches between the bootstrap
phenograms and the cladogram were rare. C∗ equals one 96.2 percent of the time
and never equaled two (the maximum value). This indicates that the mismatches were
always restricted to the structure of theLagothrix–Ateles–Brachyteles cluster and never
extended any deeper toward the cladogram root (so that Alouattawas always the most
distinct).
Since our ultimate goal is to better understand how organisms evolve, we would

like to suggest an evolutionary scenario that accounts for the strong alternative sig-
nal. As we mentioned previously, there is considerable intergeneric variation in ateline
facial morphology, and much of this variation has been interpreted in terms of biome-
chanical adaptation to different diets (e.g., Rosenberger and Strier 1989; Anapol and
Lee 1994). Ateles and Lagothrix are primarily frugivorous, with relatively small and
low-crowned postcanine teeth and facial skeletons that are somewhat more gracile,
especially for Ateles. In contrast, Alouatta and Brachyteles incorporate a far greater
proportion of mature leaves in their diets. As a correlate, they possess very large molars
with high shearing crests. Their faces are also substantially larger (relative to the rest
of the skull) than in their frugivorous relatives. It is generally thought that the ancestral
ateline was probably a generalized frugivore and that the most parsimonious hypoth-
esis for the evolution of dietary specializations in the clade is a parallel acquisition
of folivory in Alouatta and Brachyteles (Rosenberger and Strier 1989; Rosenberger
1992). Therefore, when we return to the empirical phenogram, we might hypothesize
that the strong alternative signal is due in part to the symplesiomorphic (shared prim-
itive) retention of a frugivorous diet by both Ateles and Lagothrix, with a correlated
retention of a primitive facial structure.
An obvious question is why Alouatta and Brachyteles are not more similar, given

our hypothesis that they have adopted similar dietary strategies in parallel. We can
speculate, that the lack of similarity may be due toAlouatta’s unique and bizarre mod-
ifications in its hyolaryngeal apparatus (Rosenberger and Strier 1989), so that many
of the diet-related morphological similarities that might have arisen between Alouatta
and Brachyteles have simply been “swamped” by Alouatta’s many morphological
autapomorphies that are not related to its diet. It is interesting to note that, as the
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analysis now stands, we cannot tell how much of the clustering of Lagothrix–Ateles
and Brachytelesmight be attributed to synapomorphies for those data and how much
is due to the fact that Alouatta is simply so different. To make such a distinction, we
would require an outgroup and a way to decompose the morphometric similarities
into homologous and homoplasious components (see Further research).
Finally, we should emphasize again that our interpretations of evolutionary patterns

in the atelines is strongly dependent on our assumptions of how the taxa are related.
It is clear that our ideas could require substantial revisions if we were confronted with
new evidence that would lead us to accept a different cladogram.

Discussion

Uncertainty in constructing the cladogram: As we have mentioned several times, the
results that we gain in applying our methods are always contingent on our a priori
specification of a cladogram. As a result, our interpretations could be impacted sub-
stantially if the cladogram were different. In general, we will choose the cladogram
that we believe to be correct, given our current knowledge, and we assume that there
has been no uncertainty in its construction (Pagel 1999; Huelsenbeck et al. 2000).
We realize, of course, that uncertainties also play a role in estimating phylogenetic
relationships and that our assumption is ultimately (though necessarily) a simplifica-
tion. While considerations of cladistic uncertainties are beyond the scope of this study,
we are intrigued by the recent work of Huelsenbeck et al. (2000), who have taken a
Bayesian perspective toward that problem. UsingMarkov chainMonte Carlo methods
with DNA sequence data, these authors have presented a method of assigning weights
to different cladograms, in an effort to determine which are more likely to be correct,
given the data. For researchers who use morphometrics, such methods may ultimately
prove to be extremely useful for evaluating the distribution of form variation relative
to a set of “credible” cladograms, so that the implications of cladogram differences
can be evaluated.
Parametric versus nonparametric bootstrapping:We have stressed parametric meth-

ods for pseudosample generation in this chapter, but our methods are easily used
with nonparametric bootstrapping. There are relative advantages and disadvantages
to both resampling methods. As we mentioned previously, one of the primary advan-
tages to using a fitted parametric model is that estimators of uncertainty will generally
be more accurate, especially for modest sample sizes. For this reason, we recommend
the parametric bootstrap for most applications. However, if we have doubts about
the suitability of the parametric model, the nonparametric bootstrap may be prefer-
able. In our ateline example, we believe that the assumption of normally-distributed
perturbations is reasonable for modeling within-sample variation. If this assumption
proved unreasonable, a nonparametric bootstrap would be a better choice, as the
advantages of parametric bootstrapping only hold when the model is valid. Unfor-
tunately, because the Nature Space is unobservable, we cannot test the adequacy of
the parametric model directly. Therefore, it might be worthwhile to try nonparamet-
ric bootstrapping as a test of the parametric model’s suitability. This is because we
expect the results to converge (as the number of pseudosamples increases) if the para-
metric model is a good descriptor of the observed variation. This type of comparison
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measures the “robustness of specification” for the parametric model (Davison and
Hinkley 1997). If the results differ considerably, it might be advisable either to use the
nonparametric results or to use another parametric model.
Generality of the method: While we have emphasized the use of parametric boot-

strapping with landmark data and EDMA, the basic bootstrapping strategy that we
have outlined is very general. It can be appliedwith any type of datawhere the data vary
within samples and, preferably, where a reasonable model of within-sample variation
can be specified. For example, a researcher might be interested in determining whether
a phylogenetic signal is present in the postcranial skeleton for a group of organisms,
and the data may consist of the maximum lengths of the limb bones. In that case,
within-sample variations can be described by assuming multivariate normal distribu-
tions and using the samplemean vectors and variance–covariancesmatrices to generate
pseudosamples. This approach can be taken with either unscaled (form) or scaled
(shape) data. The measurements do not even have to be continuously distributed.
Meristic (= count) data can also be used, providing they exhibit within-sample varia-
tion. For example, Mosimann et al. (1978) show how a multivariate lognormal model
can be used to describe the relative proportions of counts. This model could conceiv-
ably serve as the basis for parametric bootstrapping to examine phylogenetic signals in
scale counts for reptiles or in fin-ray counts for fishes. In contrast to landmark-based
applications, we can apply tests for multivariate normality in these cases to determine
whether our model choices are reasonable; otherwise, nonparametric bootstrapping
is always an option.
Further research:While signal detection is an important first step in the phylogenetic

analysis of morphometric data, it is clearly not an end in itself. Rather, it is an indica-
tion that the data contain interesting information that should be investigated further.
One particularly interesting area for future research is the development of methods
for studying “mosaic” evolution in a phylogenetic context. Our method for detect-
ing phylogenetic signals is based on measures of morphometric dissimilarity (e.g., F�),
where differences in many interlandmark distances are summarized in terms of a single
number that describes the “overall” degree of difference in form. However, a signal
in overall form does not necessarily imply that there is the same pattern or strength of
signal for each of the contributing measurements. In reality, complex organisms tend
to evolve as “mosaics”, where an organism’s components or parts can potentially
evolve at different rates and in response to different selective pressures (e.g., Lande
and Arnold 1983). So, the distribution of the “whole” with respect to the phylogeny
can be thought of as a consensus of the distribution of the “parts”. We would nat-
urally like to decompose this consensus into its component parts. For example, we
would like to recognize those parts that are homologous and those that are homopla-
sious. We would also like the ability to distinguish different patterns and events of
homoplasy (e.g., different episodes of convergence, parallelism, and reversal). While
there are existing methods of “optimizing” changes in discrete character states over
a cladogram (e.g., Swofford and Maddison 1987), there are no analogous methods
for studying the evolution of multivariate, continuously-distributed “characters” in
a phylogenetic context. We believe that the development of such methods should be
a high priority in further efforts to bridge the gaps between the “new comparative
biology” and the “new morphometrics”.
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Chapter 11

Phylogenetic tests for differences in
shape and the importance of
divergence times
Eldredge’s enigma explored

P. David Polly

ABSTRACT

When the shapes of phylogenetically divergent samples are compared, standard tests
of significance (such as Hotelling’s T2) are not applicable. Instead shape differences
between taxa should be assessed relative to the amount of time since they last shared
a common ancestor. This can be accomplished using the same methods applied to
univariate data from an evolutionary time-series. Thirteen samples of viverravid car-
nivorans (Viverravidae, Carnivora) from the Paleogene of the Bighorn Basin, Wyoming
were compared in this way. The amount of divergence time separating samples
was determined from their phylogenetic tree and their stratigraphic setting. Branch
lengths were first estimated in millions of years, then converted to generations using
an allometric equation relating body-mass and generation-time in extant mammals.
A Log-Rate–Log-Interval (LRI) distribution was used to estimate the per-generation
rate of shape change, the latter of which was used to calculate the expected shape
divergence for each pair of taxa. The amount of shape divergence tended to be less
than that expected, given the number of generations separating the samples. Shape
change was close to a statistical definition of stasis, indicating that long-term rates of
molar shape evolution are slow relative to their potential. This may be due to func-
tional constraints on the configuration of crown features and the complexity of the
developmental processes controlling their topographical relationships. Phylogenetic
comparisons of shape are dependent on accurate estimates of branch lengths, that
may be complicated by data and methodological considerations. In particular, many
phylogenetic methods are ambiguous when it comes to determining the time interval
separating two stratigraphically distinct samples.

Introduction

Two goals of morphometrics are the description of differences in size and shape and the
statistical testing of those differences. There are many kinds of differences, however,
eachwith its own appropriate test. In this chapter, I consider shape differences between
phylogenetically divergent populations, showing that an estimate of the time since their
common ancestry is necessary to assess their significance.
Morphological shape, like any other heritable trait, covaries with phylogeny. The

amount of divergence between two biological populations is likely to be proportional
to the time elapsed since they last shared a common ancestor. Standard tests for
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differences in sample means (e.g., T or T2 tests) are therefore not particularly mean-
ingful. Rather, differences between populations should be compared to the amount
of divergence expected given the time interval since their common ancestry. Popu-
lations with an ancient ancestry are expected to be more divergent than those with
a recent one. The amount of divergence expected under a null hypothesis of ran-
dom change can be estimated from data on among-population shape difference and a
phylogenetic hypothesis that includes divergence times. Here I apply this procedure to
molar shape differences, asmeasured by Procrustes distance, in early Eocene viverravid
carnivorans.
Why are standard tests for differences in mean not appropriate? A t-test, or its

equivalent, is normally used when two samples are expected to have the same mean
and variance. An example of its application is a pharmaceutical test in which a drug
is applied to an experimental group and its effects compared to an untreated control
group. If the drug has no effect, we expect the two groups to be alike except for differ-
ences due to sampling error (Figure 11.1A). The probability that the two samples will
have different means is a function of the number of individuals in each and the variance
of the parent population (Sokal and Rohlf 1995). In contrast, when two populations
have diverged over evolutionary time, we cannot assume they will have the samemean.
An example is a morphometric study of the scapulae of mammals with various loco-
motory habits. We might, on the one hand, expect the scapulae of fossorial species to
be more like one another than they are to those of cursorial species. On the other hand,
we might expect the scapulae of canids to be more like one another than they are to
felids. In either case, we cannot presume that any of them will be exactly alike because
differences will have accumulated, generation by generation, over time (Figure11.1B).
The assumption of a t-test – that means are equal except due to sampling error – does
not pertain. Rather, the difference in means between two biological populations is a
function of the number of individuals in each sample, the additive variance of their
respective populations, and the number of sampling generations between them and the
original parent population (Felsenstein 1973; Bookstein 1991; Falconer and Mackay
1996). Any statistical test of between-species differences, including shape differences
measured by landmark techniques, must take these factors into account. Techniques
for comparing phylogenetically divergent samples are not new. Independent contrasts,
autocorrelation analysis, squared-change parsimony, and maximum-likelihood meth-
ods are now commonly used in inter-specific studies of trait correlation (Felsenstein
1985; Cheverud and Dow 1985; Maddison 1991) and ancestral trait reconstruction
(Martins and Hansen 1997; Schluter et al. 1997; Garland et al. 1999).
The amount of change expected in a numeric variable under a randomwalk model is

a function of the square root of time (Bookstein 1991; Berg 1993; Gingerich 1993a).
The single most probable value at the end of the walk is the same as its starting
value. However, the distribution of other possible end values gets broader the more
steps there are in the walk. The breadth of that distribution increases, not directly
with the number of steps, but with the square root of the number of steps. If two
closely related populations are compared, their difference is therefore likely to be
proportionally greater than that of two distantly related ones. This is because over
a longer time interval the random fluctuations of the walk are more likely to return
to their starting value than they are over a short interval. We are familiar with this
process in molecular evolution with its ‘multiple hits’.
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Figure 11.1 Populations, sampling, and phylogenetic divergence. (A) Standtard t-test scenario in which
the two samples to be compared were randomly drawn from the same parent population.
The mean and variance of each are expected to be identical to one another and to the
parent population except for differences due to chance. (B) The scenario considered
in this chapter in which the two samples being compared are descended from a common
ancestor. Differences between the samples are the result of the cumulative effects of a
number of cycles of generational resampling. Tests of difference or similarity must take
into account the number of generations separating the two samples.

Given enough time, random evolution has a high probability of erasing itself. This
means that rates calculated over short intervals are likely to be higher than ones cal-
culated over long intervals if the evolutionary process is random. Time in a random
walk is measured in the small steps over which change actually occurs. In sexually
reproducing organisms, those steps are generations. For our comparison, then, the
critical values change (1) with the square root of the number of generations separating
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Figure 11.2 Procrustes superposition of 13 lower molar shapes. (A) Diagram showing the landmarks
used in this study. (B) Generalized Least Squares superposition of the consensus land-
mark configurations from 13 population samples. Eleven of the shapes are from the
genus Didymictis (filled circles) and two are from the genus Viverravus (open circles). Lines
connecting the landmarks correspond to the heavy lines in part A.

the two populations and (2) in proportion with the amount of change expected per
generation.
The problem is applicable to the data shown in Figure 11.2, which illustrate dif-

ferences in the arrangement of molar cusp landmarks in some Paleogene carnivorans.
The molars of Didymictis (filled circles, Figure 11.2B) are quite different in shape than
those of Viverravus (open circles), although there is some shape variation among the
samples of both genera. In many landmark-based studies Hotelling’s T2 statistic could
be applied to test the significance of these differences. However, all of the samples in
Figure 11.2 are phylogenetically related, some more closely to others, some more dis-
tantly. All of the Didymictis samples, for example, are more closely related to one
another than they are to either of the Viverravus samples. In this chapter shape differ-
ences among these samples are assessed in terms of their phylogenetic relationships.
Rather than arriving at a probability that the samples are different (as in t-tests), this
investigation will assume that the samples are different and will instead assess whether
the observed differences are consistent with a random walk in shape change, given an
estimated time separating the samples.

Materials and methods

The data used in this study are from late Paleocene and early Eocene viverravid carnivo-
rans from North America (Polly 1997). Viverravids were small carnivores – estimated
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body masses ranging from the size of the living Least Weasel to that of the Coyote
(Appendix 1) – that were part of the early radiation of the Order Carnivora
colloquially known as ‘miacids’. Viverravids were primarily terrestrial in habit
(Heinrich and Rose 1997) and some (e.g., Viverravus acutus) were as sexually dimor-
phic as are many extant weasels (Polly 1997). Viverravids are the earliest known
members of Carnivora, first appearing in the Paleocene of North America about
60 million years ago (mya) (Fox and Youzwyshyn 1994). Their relationship to extant
Carnivora is controversial. Flynn and Galiano (1982) argued that they are the sister
group of extant felids, hyaenids, viverrids, and herpestids. Gingerich and Winkler
(1985) argued that they are a completely extinct carnivoran lineage with no close
relationship to any extant groups, a view echoed by Wyss and Flynn (1993) who con-
sidered them to be the sister group to all extant carnivorans. Hunt and Tedford (1993)
suggested that Carnivora itself may be polyphyletic and viverravids related only to the
aeluroid half.
The phylogenetic hypothesis used here (Figure 11.3) is from Polly (1997). It was gen-

erated using stratocladistics, a parsimony-based phylogeny reconstruction technique
that simultaneously minimizes ad hoc hypotheses of homoplasy and stratigraphic
non-preservation (Fisher 1992, 1994; Bodenbender 1995; Fox et al. 1999). Stra-
tocladistic phylogenies are fully resolved in that taxa are placed at branch tips, at
nodes, or along branches as dictated by character-state distributions and temporal
ordering. The basic units of analysis are restricted to discrete stratigraphic intervals
and represent ‘segments’ of evolutionary species (Simpson 1951). Thirty-nine discrete
morphological characters and one stratigraphic ordering variable were used in the
analysis. Figure 11.3A is a strict consensus of 1,470 morphologically most parsimo-
nious cladograms generated in that analysis (each with a consistency index of 0.784
and a retention index of 0.914). Figure 11.3B shows the two most stratocladistically
parsimonious phylogenetic trees (see Polly 1997 for details).
This study is restricted to viverravid species from the late Paleocene and early Eocene

Bighorn Basin deposits (Wyoming, USA). Restricting consideration to Bighorn Basin
material allowed tight control of sampling and age estimates. The Bighorn Basin
in northwestern Wyoming represents perhaps the longest continuous record – more
than eight million years – of mammalian life in the world (Gingerich 1980). More than
200,000 vertebrate specimens have been collected from the more than 2,000 meters
of sediment that accumulated during the uplift of the northern Rocky Mountains. The
combination of careful collecting, measured sections (Rose 1981; Gingerich and Klitz
1985; Bown et al. 1994; Clyde 1997), biostratigraphy (Gingerich 1991), and magne-
tostratigraphic dating (Butler et al. 1981; Clyde et al. 1994) make it possible to assign
remarkably precise absolute ages to all 37 samples considered here, probably accu-
rate to within 100,000 years. Samples relevant to this study are from the Torrejonian,
Clarkforkian, andWasatchian North American LandMammal Ages (NALMAs), that
span the late Paleocene and earliest Eocene. Absolute age estimates range from 58.8
to 52.7 mya. Figure 11.4 shows the stratigraphic and phylogenetic relation context of
the samples used in this study.
Landmark coordinates were collected from the lower first molars of the 13 viver-

ravid populations indicated with an asterisk in Appendix 1. These include two samples
of Viverravus acutus (Wa-1 and Wa-2), two samples of Didymictis leptomylus (Wa-1
and Wa-2), three samples of D. proteus (Cf-2, Cf-3, and Wa-0), and six samples



Figure 11.3 Cladogram and phylogenetic tree. (A) Consensus cladogram of viverravid samples from the
early Paleogene of the Bighorn Basin, Wyoming. (B) Phylogenetic tree (stratocladogram)
of the same taxa. Thin arrows indicate that a sample falls unequivocally along a branch or
at a node; thicker lines indicate that the position of a sample is unequivocal, falling either
at the node or as a sister-taxon. Both trees taken from Polly (1997).



Figure 11.4 Phylogeny of samples used. The phylogenetic and stratigraphic relationships of the 13
samples considered in this study. The vertical axis represents time, the horizontal axis is
the natural log of first lower molar occlusal area. The taxonomic name, mean molar area,
estimated body mass, and generation length are indicated for each sample. Lines connecting
samples are drawn according to the tree in Figure 11.3B. Along the left of the graph are
magnetostratigraphic intervals, ages, and meter levels; to the right are absolute ages.
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of D. protenus (Wa-1, Wa-2, Wa-3, Wa-4, Wa-5, and Wa-6). Eleven landmarks
were chosen (Figure 11.2A) and their coordinates were digitized using a Reflex®

microscope. A single specimen was redigitized 10 times to test measurement accuracy
and reproducibility. Less than 10 per cent of within-sample variation could be
attributed to irreproducibility of measurements, which was approximately equal at
all landmarks. See Polly (1998) for further details about landmark selection and their
biological significance.
Data were only collected from those teeth in which wear did not obscure cusp tips.

Consensus configurations were calculated for all 13 samples using generalized least
squares (GLS) fitting and these were used for the between-population comparisons in
this study. The standard deviation of the Procrustes tangent distances among the speci-
mens in each samplewas calculated and thesewere pooled for use in calculating rates of
morphological change as explained below. The pooled standard deviation was 0.025.
The shapemetric used in this study is a variant of the Procrustes distance. In this case,

the Euclidean distance, d, between points projected into a two-dimensional tangent
space from a multidimensional Procrustes shape space was used. Partial Procrustes
fitting using the GLS method was used to align the landmark sets. In partial Procrustes
fitting, specimens are first centered, then scaled to unit centroid size, and then superim-
posed by minimizing d, the square-root of the sum of the squared distances between all
corresponding landmarks (Rohlf 1999). In GLS the average configuration of the spec-
imen shapes is used as the point of contact between the tangent and shape spaces. The
tpsSmall program (Rohlf 1998) was used to calculate the Euclidean tangent distances,
that are reported in Appendix 2. If shape distances are small enough that projection
does not distort relationships among objects, tangent distances can be substituted for
Procrustes distances for multivariate analysis (Rohlf 1998).
For these data there is a good correlation between the distances in shape space and

the tangent distances (Figure 11.5). Because different superposition methods produce
different distances, two alternatives were tried. These were full Procrustes fitting (dF),
in which one of the specimens is scaled to cos(ρ) and pairwise fits between specimens
using the least squares (LS) method. These metrics did not produce different results
and are not reported further.
The lengths of tree branches in years were calculated by subtracting the estimated

end age from the estimated beginning age of each branch. Absolute ages in mya were
assigned to each sample by extrapolating from known age tie-in points in the Big Horn
Basin sequence. Linear regression of meters of sediment onto absolute age estimates for
seven magnetostratigraphic and geochemical tie points yielded a prediction equation
for converting meter level into absolute age. The tie points used included: 390m =
58.2mya, 500m = 57.8mya, 830m = 56.5mya, 1, 080m = 56.0mya, 2, 400m =
52.8mya, 2, 200m = 53.3mya, 1, 520m = 55.5mya (Koch et al. 1995; Clyde et al.
1994; Butler et al. 1981). The resulting prediction equation is:

y = −0.0026 x+ 58.98 (11.1)

where y is millions of years before present and x is meter level in the Big Horn Basin
sequence. Both the meter levels and estimated ages for each sample are reported in
Appendix 1. It should be noted that regression has the curious effect of ‘reassigning’
absolute ages to known tie points (e.g., the 1,520m horizon which represents the
Paleocene–Eocene boundary is assigned an age of 54.9mya rather than 55.5mya).
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Figure 11.5 Plot of Euclidean distances, d, in tangent space against Procrustes distance ρ2, in shape
space for 13 of viverrid first lower molar consensuses. The slope of the regression is
0.998430 and the correlation is 0.999999. Distances between shapes are small enough to
justify using tangent space distances in this analysis. Plot generated by tpsSmall (Rohlf 1998).

There are other interpolation methods that do not distort the original data points
(e.g., Fricke et al. 1998). Since the end goal is not to assign absolute ages but rather
to determine branch lengths these methodological discrepancies are unimportant. It
should also be noted that themeter levels and the absolute ages estimated from them are
subject to several other sources of uncertainty. Specimens were grouped into samples
by subage (that introduces some time averaging) and there is uncertainty around the
magnetostratigraphic tie points and the absolute ages assigned to them. Furthermore,
the sedimentation rate in the Big Horn Basin was not constant. Many different facies
are present in the sequence, each with its own sedimentary regime and rate, and the
global sedimentary rate apparently decreased through the section as the Laramide
orogeny ended (Clyde 1997). This error does not substantially affect the results of
this chapter, because the uncertainty in branch lengths due to the error is only a small
percentage of the total branch lengths.
Branch lengths were then converted from years to generations. The number of gen-

erations per branch was estimated by first estimating the body mass for the samples
being considered here and then by estimating the relationship between generation time
and body mass in mammals. To estimate body mass from the area of the first lower
molar the prediction equation for Carnivora from Legendré (1986) was used:

y = 1.922 x+ 0.709 (11.2)

where x is the natural log of the area of the first lower molar and y is the natural log
of body mass in grams. Body mass estimates for each sample considered here based on
this equation are presented in Appendix 1. Generation times were estimated from body
mass by using a prediction equation derived from regression generation time in days
on body mass in grams. Generation times of 89 species were calculated from data in
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Appendix 4 of Eisenberg (1981) by adding ‘Gestation’ and ‘Age at First Mating’. Body
masses for those species were taken from Eisenberg (1981) and Silva and Downing
(1995). The natural log of generation time was regressed on body mass, yielding the
following prediction equation:

y = 0.24 x+ 4.23 (11.3)

where y is the natural log of generation time in days and x is the natural log of body
mass in grams (r2 = 0.62). This equation was used to estimate the generation time
of each sample considered here (Table 11.1). Branch lengths between all possible
sample pairs, both in years and generations, are reported in Appendix 3. Note that the
conversion of branch length units to generations makes the tree additive rather than

Table 11.1 Rates of evolutionary change in mammalian dental traits

Trait Species Per-generation LRI slope Median log References
rate (haldanes) interval

Lower first Kanisamys spp. 0.000 −0.3 7.07 Gingerich and
molar length Gunnell 1995

Lower first Cantius spp. 0.000 −0.3 5.716 Clyde and
molar length Gingerich 1994

Upper third Microtus pennsylvanicus 0.003 −0.5 4.519 Gingerich
molar length 1993b

Lower first Hyopsodus spp. 0.011 −0.6 5.681 Gingerich and
molar length Gunnell 1995

Wing length American house sparrow 0.024 — — Hendry and
Kinnison 1999

Eye diameter Norwegian stickleback 0.043 — — Hendry and
Kinnison 1999

Lower first Cosomys primus 0.067 −0.8 5.299 Gingerich
molar length 1993b

Lower first Giraffokery punjabiensis 0.071 −0.8 5.80 Gingerich and
molar length Gunnell 1995

37 pooled Equus germanicus 0.097 −0.8 3.392 Gingerich
dental traits 1993b

Lower first Viverravid spp. 0.132 −0.8 6.02 This study
molar

Lower first Phenacolemur praecox 0.173 −0.9 5.58 Gingerich and
molar length Gunnell 1995

Body mass Mus musculus 0.180 −0.2 0.836 Gingerich
1993a

Lower first Progonomys sp. 0.574 −1.0 6.58 Gingerich and
molar length Gunnell 1995

Lower first Cantius spp. 0.653 −1.0 5.693 Clyde and
molar Gingerich 1994

Spot number Trinidadian guppies 0.742 — — Hendry and
Kinnison 1999

Lower first Hyracotherium grangeri 0.225 −0.9 5.033 Gingerich
molar length 1993a

Shell spire Littorina obtusata 1.905 −0.6 1.711 Gingerich
height 1993a
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ultrametric. The length of branches connecting smaller animals with shorter estimated
generation times are reduced relative to those connecting larger animals with longer
estimated generation times.
The per-generation rate of shape change was estimated as the y-intercept of a Log-

Rate–Log-Interval (LRI) distribution of rates (Gingerich 1983, 1993a; Gingerich and
Gunnell 1995; Hendry and Kinnison 1999). In many comparative methods, the rate
of character change is estimated from the variance of tree-tip values scaled by their
branch lengths (Felsenstein 1985). In addition to tree tips, within-branch and node
samples are available in the present study. The LRI method allows all of these data to
be combined in estimating the per-generation rate. This method employs regression
through a log-rate versus log-interval distribution.
The slope of the regression indicates the extent to which the data fit a distribu-

tion expected under an evolutionary random walk (Brownian motion). The regression
intercept provides an estimate of the per-generation rate of change. All possible rates
of shape change were calculated in haldanes (standard deviations per generation), a
dimension-independent unit that is convenient for comparing rates of evolutionary
change (Gingerich 1993a; Hendry and Kinnison 1999). The Procrustes tangent dis-
tances, d, from Appendix 2 were first standardized by dividing each by the pooled
standard deviation of the 13 samples (0.025). The standardized distances were then
divided by the corresponding branch length (in generations) from Appendix 3. An
LRI distribution of these rates was created by plotting the log10 of each rate by the
log10 of the interval over which it was calculated (Figure 11.6). A LS regression line
was calculated to determine the slope and the intercept. The slope indicates the extent
to which the data are consistent with a Brownian-motion process, 0.5 representing
a truly random process, 1.0 representing stasis, and 0.0 representing complete direc-
tionality (Gingerich 1993a). These slopes, projected through log-transformed data,

Figure 11.6 Log-Rate–Log-Interval plot. Data are molar crown shape of viverravid carnivores. The
vertical axis is the log10 of rate of shape change (in haldanes), the horizontal axis is the
interval over which the rate was calculated. The residual variation around the regression
line is unusually low for an LRI distribution.
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correspond respectively to three walk-modes in the original data space: Brownian-
motion divergence (that accumulates as the square root of time, or time 0.5), no
divergence (or which does not accumulate, or time 0.0), and constant, unidirectional
divergence (that accumulates linearly with time, or time 1.0). The inverse log of the
y-intercept is an estimate of the per-generation rate of the process, h0 (the rate of
change in haldanes over a single generation). The per-generation rate h0 is equivalent
to the square root of the rate β, a variance term, that is often used in phylogenetic
comparative methods (e.g., Felsenstein 1985; Harvey and Pagel 1991).
To test whether two populations are more divergent than expected, a probability

distribution must be estimated against which observed differences can be compared.
Evolution is a time-series process in which change accumulates generation by genera-
tion; the end point of an evolutionary sequence depends on its initial starting point, the
number of generations in the sequence, and the amount and ‘direction’ of change dur-
ing each generation. A Brownian-motion random walk is a time-series process whose
end point depends on its initial starting point, the number of steps in the walk, and
the change at each step; furthermore, in Brownian motion the direction of change at
any step is random and is not biased by change at other steps. There is no intrinsic
directionality or trend in a Brownian-motion random walk, making it the appropriate
model for random evolutionary change.
A probability distribution of series end points can be calculated using the Brownian-

motion model, the per-generation rate of change, and the number of generations
separating two populations on a phylogenetic tree. That distribution reflects the fre-
quency of end points if the same random walk is ‘walked’ many times from the same
initial starting point, with the same per-step rate of change, and for the same num-
ber of steps. Because there is no bias in the change at each step, the outcomes of a
Brownian-motion walk are normally distributed. In this chapter shape differences are
measured in units on a tangent plane to Procrustes space. Because that plane is two
dimensional the variance of a random walk on it is calculated as

r2 = 4Dt (11.4)

where r2 is the variance of the distribution, D is the squared per-step rate of change
(or the per-step variance), and t is time (Berg 1993). In this study, D is the squared
per-generation rate, h0 as estimated from the LRI distribution, and t is the number
of generations separating two populations on a phylogenetic tree. The probability
distribution for test used here is, thus, a normal distribution with a variance of 4h0t
centered on the value of one of the two populations being compared. Note that the
standard deviation of that distribution is the square root of the variance, or 2

√
h0t.

The square root of time in this equation corresponds to the scaling discussed in the
previous paragraph in relation to the slope of the LRI distribution. Regardless of the
dimensionality of the data, the variance of a Brownian-motion process scales linearly
with time.
Critical values for the test are now easily calculated. In evolutionary biology two

phenomena are often of interest: more divergence than expected (e.g., because of direc-
tional selection) and less than expected (e.g., stasis). These suggest two sets of critical
values, one for values at the tails of the normal distribution and one for values very
near its mean. To accommodate this, the standard 5 per cent value can be divided
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in two so that 2.5 per cent of the curve is allocated to the tails of the distribution
and 2.5 per cent around the mean (Bookstein 1991; Gingerich 1993a). Accordingly,
97.5 per cent of the space under a normal curve lies between points 2.241 standard
deviations above and below its center and 2.5 per cent between 0.031 standard devia-
tions (Sokal and Rohlf 1995). The standard deviation of the distribution is the square
root of its variance (given by Equation 11.4). Thus, given a total α of 0.05, any value
greater than 2.241 × 2h0

√
t can be considered non-random directional change and

any value less than 0.031× 2h0
√
t is non-random stasis.

When a large number of tests are made, it is likely that a fraction of them will result
in rejection of the null hypothesis by chance (Type I error). In this study 72 pairwise
comparisons are made (Appendix 2) to assess departures from a random-walk model.
If the critical value (α) of each test is set at 0.05 then 5 per cent of the tests will falsely
reject the null model. Out of 72 tests, more than three could fall into this category.
Bonferroni-style corrections adjust the critical values to make the test more robust in
the face of this possibility. Here an amended critical value was calculated as:

α′ = α

k
(11.5)

where α′ is the Bonferroni-corrected critical value, α is the original critical value (0.05),
and k is the number of comparisons made (72). The adjusted critical value is thus
0.0007, and the corresponding critical values would be 3.58×2h0

√
t for non-random

directional change and 0.0004× 2h0
√
t for non-random stasis. For comparison, con-

sistency with the null Brownian-motion model are flagged at critical levels of both
0.05 and 0.0007.

Results

Euclidean shape distances, d, in tangent space ranged from0.05 (found in several strati-
graphically adjacent comparisons) to 0.21 (between V. acutus Wa-2 and D. proteus
Wa-0). Measured in standard deviations, the range is 1.83–8.40. Both Euclidean shape
distances and their standard deviation equivalents are reported in Appendix 2. All
of the pairwise comparisons between a Viverravus and Didymictis population have
much larger shape distances than do comparisons within either group. This is not
surprising since those comparisons are separated by more than eight million years
(Appendix 3). Nevertheless, the longest branch length, though (between V. acutus
Wa-2 and D. protenus Wa-6), does not have the greatest shape divergence. Neither
does the shortest branch length (D. proteus Wa-0 to either D. leptomylus Wa-1 or
D. protenusWa-1) have the smallest shape divergence.
Shape divergence and branch length are strongly correlated, however. The LRI

distribution and the parameters estimated from it are summarized in Figure 11.6.
The pairwise rates range from −6.68 to −4.79 log units and the intervals from 4.95
to 6.97 log units. The distribution is unusually linear compared to similar plots of
univariate size traits (cf., Gingerich 1993a; Gingerich and Gunnell 1995). The slope of
the regression through the points is−0.83, suggesting a process tending towards stasis,
but with some random component (a perfectly random walk has a slope of −0.50,
perfect stasis produces a slope of −1.00). The y-intercept gives the per-generation rate
of change for the distribution (remembering that log10 of one generation is zero). It
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is −0.88 log units. Log detransformation yields an h0 of 0.132 haldanes (standard
deviations per generation). This rate is not exceptional, falling well within the range
of other studied traits (Table 11.1).
The amount of shape change that can be produced by a random walk when the

per-generation rate is scaled to the time intervals found between samples in this study
is large. The upper 5 per cent critical values (above which a random walk is rejected
in favor of directional selection) ranged from 175.9 to 1,811.8 standard deviations
(Appendix 4). None of the observed values in Appendix 2 approach these magnitudes.
The lower critical values (below which a random walk is rejected in favor of stabiliz-
ing selection) range from 2.4 to 25.1 standard deviations. All but six of the observed
distances fall below their respective critical values at the 5 per cent level, meaning that
they are not consistent with a Brownian-motion model. A stabilizing process must be
invoked to explain the small changes in molar shape observed over evolutionary inter-
vals of this length. The six comparisons that fall between the two critical values and are
thus consistent with Brownian-motion random change are all comparisons made over
very short intervals: Didymictis proteus Wa-0; D. protenus Wa-1, D. proteus Wa-0;
D. leptomylus Wa-2, D. protenus Wa-1; D. protenus Wa-2, D. protenus Wa-2; D.
leptomylusWa-1, D. protenusWa-1; D. leptomylusWa-1, and D. leptomylusWa-2;
D. leptomylusWa-1 (Appendix 2). When the Bonferroni adjustments are made to the
critical values – which make the stasis interval narrower and the directional interval
wider – all of the distances fall within the area consistent with Brownian motion. This
emphasizes that the shape divergences observed in this study are small relative to the
amount of divergence time, falling close to, but just outside of, the statistical limits of
stasis. This finding fits with the LRI slope of −0.83 reported above.

Discussion

Accurate estimates of phylogenetic divergence times are an important part of this study.
Calculation of evolutionary rates, estimation of per-generation rates, and estimation of
phylogenetic variance all incorporate branch lengths calibrated in absolute time units.
Accurately calibrated times of divergence are crucial. These are not unique to this
study. Many standard methods in evolutionary biology require time-of-divergence
estimates, including investigations of trait correlation (e.g., independent contrasts;
Felsenstein 1985), molecular clock studies (Zuckerkandl and Pauling 1962; Wilson
et al. 1987; Kumar and Hedges 1998), and ancestral node values reconstructions
(Martins and Hansen 1997; Garland et al. 1999). These investigations can make due
with coarse estimates of divergence time. Indeed, many have simply set each branch to
unit length. However, the more precise (and accurate) the time-of-divergence estimate,
the more precise the results. But precise branch lengths in units of absolute time are sel-
dom available, sometimes because authorsmake little attempt to procure relevant data,
but more often because paleontological data are either not available or have not been
incorporated into a phylogenetic hypothesis in a way that makes branch lengths easy
to determine. Traditional phylogenetic reconstruction algorithms – including parsi-
mony cladistics, maximum-likelihood, neighbor-joining, and UPGMA clustering – all
treat their operation taxonomic units (OTUs) as terminal taxa, meaning that only
minimum divergence times can be estimated. However, that situation is quickly chang-
ing. In addition to discrete-character-parsimony-based stratocladistics there are now
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distancemethods that placeOTUs along branches and at nodes. Serial sample UPGMA
(sUPGMA) reconstructs a phylogeny from data sampled serially in time using pairwise
distances and a list of the time-order of the samples (Rodrigo 2000). Maximum-
likelihood methods can also be adapted for dealing with non-contemporaneous OTUs
(Huelsenbeck and Rannala 2000).
The difficulty of calibrating divergence times from paleontological data is com-

pounded by vagueness introduced by standard phylogenetic reconstruction methods.
Cladograms and synapomorphies diagnose sister-group relationships, but are unable
to distinguish whether known taxa fall at tree nodes or lie at the tips. When closely
related species are being considered, this difference can be crucial for estimating diver-
gence times. Niles Eldredge pointed out that a cladogram showing the sister-group
relationships of two taxa is logically consistent with at least three true phylogenies
(Eldredge 1979; Eldredge and Cracraft 1980). Figure 11.7 illustrates this. Taxa A and
B share a derived feature (Figure 11.7A), and A occurs stratigraphically lower than B.
But the cladogram does not tell us whether both are descended from some unknown
common ancestor (Figure 11.7B), whether A is the ancestor of B (Figure 11.7C), or
whether B is the ancestor of A (Figure 11.7D). These three phylogenies imply three
very different sets of phylogenetic time intervals. Let us presume that A is older than
B by one million years and has a shape difference of one unit. If A and B are true sister
groups – each descended from some unknown common ancestor that existed earlier
in time – then total time separating them may be something like three million years

Figure 11.7 Eldredge’s enigma. (A) A cladogram of two sister-taxa, united by a synapomorphy.
(B, C, D) The three phylogenetic relationships consistent with the cladogram in A. The
branch lengths connected the two taxa and the rate of change given that interval are
shown below each scenario. See text for details.
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(it could be more or less depending on how ancient the common ancestor is). The rate
of shape change we estimate from them would thus be 1/3 (million) or 0.33 units per
million years. If A is ancestral to B, however, then only one million years separates
them and we estimate a shape-change rate of 1.0 units per million years. For this sce-
nario the third alternative is actually impossible: B could not really be ancestral to A.
But if it was, there would be an interval of negative one million years separating them
and a shape-change rate of −1.0. Because of the different branch lengths and shape-
change rates in each scenario, different per-generation rates would be estimated and
different comparison intervals would be used in assessing the significance of shape
change. The rate in Figure 11.7C is three times that in Figure 11.7B, and might be
judged directional while the latter might be static. Eldredge’s enigma should be given
careful attention when applying significance tests to phylogenetic data.
If branch lengths are incorrectly estimated they may or may not affect tests of sig-

nificance as used in this chapter. If all branches are uniformly misestimated, then the
significance of all pairwise tests are likely to change. In this case, all of the pairwise
rate comparisons using in the LRI distribution would be changed, which would shift
the entire distribution and result in a different estimate of the per-generation rate.
However, the interval over which each test is made and the variance associated with
that interval would both change, too. Uniformly underestimated branch lengths would
result in uniformly overestimated rates and an underestimated interval of comparison.
A high rate over a short interval is likely to be judged directional. Conversely, uniformly
overestimated lengths result in underestimated rates and a long interval of compari-
son. A false ‘stasis’ is likely to occur in this case. If only one or two branch lengths
are misjudged then only comparisons between taxa connected by those branches are
likely to be affected.
The incorrect branch lengths will affect a few of the points in the LRI distribution,

probably making it less linear, but not significantly changing its slope and intercept.
This means that the same per-generation rate would be estimated. Only those taxa
connected by the incorrect branches will have incorrect comparison intervals, the rest
will be unaffected. This study could be affected either by uniform misestimation or
by individually incorrect branches. The former could result from the regression used
to assign absolute ages to meter levels (Equation 11.1), from the regression used to
estimate bodymass (Equation 11.2), or from the regression used to estimate generation
times (Equation 11.3).
Individual branch lengths could also be misestimated only if the phylogenetic

hypothesis is incorrect. One such possibility is the basal node of Figure 11.4.
Protictis paralus was considered to be the last common ancestor of Viverravus and
Didymictis for the purposes of this study, but the original phylogenetic analysis
(Figure 11.2B) found its position equivocal – it could be ancestral or it could be the
sister group to Didymictis and Viverravus. If the latter, then the branches leading
from P. paralus could either be overestimated or underestimated. This would alter all
of the rates calculated between Viverravus and Didymictis sample and their intervals
of comparison.
This study indicates that long-term molar shape evolution is slow compared to its

estimated per-generation rate. Over periods of hundreds of thousands to millions of
years molar shape change is slow, falling close to the statistical definition of stasis
adopted here. The per-generation rate of change (0.132 h), however, is similar to that
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of other mammalian dental traits, many of which exhibit quite rapid long-term change
(Table 11.1). Interestingly, most previously studied traits were univariate measures of
size rather than shape. The only previous analysis of rates of dental shape change is
Clyde andGingerich (1994), who looked at rates of change inmolar crown shape using
the x and y components of Bookstein shape variables as their metric. These authors
found a similar pattern: long-term shape change was near stasis, but the per-generation
rate was like that of other dental size variables (Table 11.1).
Whymight the evolution ofmolar shape have a normal per-generation rate of change

(indicating that, on a short time scale, shape can change as rapidly as other variables),
yet evolve slowly over long periods? One factor may be that occlusal relationships
introduce functional constraints which allow small scale variation, but prevent major
topographical rearrangements of cusps. The functional relationships between upper
and lower tooth cusps, cristae, and basins have been well studied, indicating that there
is often a precise match in the morphology of occluding structures (Herring 1993;
Fortelius 1985; Kay and Hiiemae 1974; Crompton and Hiiemae 1970). In this study,
the landmarks all represent functional components of the molar crown, including the
carnassial blade, that is part of a tightly fitting shear surface, and the margins of the
talonid basin, that helps guide the teeth into centric occlusion (Polly 1998; Savage
1976; Crompton and Hiiemae 1970). Changes in the relative positions of these cusps
would require coordinated changes on the occluding upper teeth (P4 andM1). Another
factor thatmay constrain long-term shape change is that the developmental and genetic
control of molar cusp position is quite complex. The cusps on a single molar are
initiated by a cascade of gene expression centers – the enamel knots – beginning with a
single primary enamel knot, which coordinate a series of secondary enamel knots, each
of which is associated with one of the tooth’s cusps (Jernvall et al. 1998; Maas and Bei
1997; Thesleff and Sahlberg 1996; Jernvall et al. 1994). A number of genes and gene
products are involved in the cascade, including SHH, BMP-2, BMP-4, BMP-7, FGF-4,
p21, Msx-1, Msx-2, and Lef-1. The cascade of gene interactions suggests that changes
in the primary enamel knot or early secondary knots have cumulative effects on the
cusps associated with later knots (Jernvall 1995, 2000), although some studies have
shown that cusps associated with early cascade events are more variable (Polly 1998).
Keränen et al. (1998) found that species-specific morphological differences in tooth
shape were associated with changes in the expression of regulatory genes in secondary
knots.
Correspondingly, the early stages of molar crown ontogeny appear to be more con-

served than late stages (Popowics 1998; Wolsan 1989) and genetic changes that reduce
the signaling of the primary enamel knot result in drastically malformed teeth (Pispa
et al. 1999). Futhermore, complexly occluding teeth have enamel microstructural pat-
terns that are integrated with the gross crown morphology of the tooth (Koenigswald
1982, 1997a,b; Koenigswald and Clemens 1992). It has been found that the number of
amelogenin products that go into producing microstructural patterns increases along
with the complexity of the tooth (Mathur and Polly 2000; Girondot and Sire 1998).
Evolution of molar crown shape is, thus, a complex process involving many functional
and developmental variables. Long-term shape evolution may therefore require a large
number of developmentally compatible changes.
One reviewer of this chapter noted that the pairwise rate comparisons used in the

LRI analysis are not corrected for phylogenetic covariance and are, therefore, not
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statistically independent (Felsenstein 1985; Harvey and Pagel 1991). Phylogenetic
effects could affect the LRI distribution – and the per-generation rate estimated from
it – if the rate of shape change is significantly different in one part of the tree relative
to another or if particular branches have a much higher or lower rate of change than
the rest of the tree. For example, if the divergence of Viverravus and Didymictis were
associated with a greater degree of change than is found within either genus, then
between-genus rate comparisons would be higher relative to the interval over which
they were measured than would within-genus rate comparisons. The longest-interval
rates (the points at the lower right of the LRI distribution, Figure 11.6) would, in this
case, be shifted upwards on the LRI plot, changing both the slope of the regression
line and the per-generation rate estimate. However, the LRI distribution itself would
become notably non-linear because the shorter-interval rates would not be changed.
Any distortion caused by phylogenetic non-independence ought to manifest itself in
an LRI plot as a curvilinear distribution of points. Because the data in this study form
a tight linear distribution, it is presumed that phylogenetic non-independence is not a
confounding factor.

Conclusions

Morphometric data, or any quantitative data, demonstrably have phylogenetic signal
in them (Felsenstein 1985; Cheverud and Dow 1985; Schluter et al. 1997). Organ-
isms that share a recent common ancestor are expected to be more similar than those
whose ancestry is more ancient. For this reason, phylogenetic distance is an important
consideration in interpreting morphometric data, and geometric landmark morpho-
metrics is no exception. The standard T2 test is probably not appropriate if the shapes
being compared are from phylogenetically divergent populations or species. Instead,
shape differences should be compared in light of the divergence expected given the
length of time since the two shared a common ancestor. An appropriate null model is
a Brownian-motion random walk, which makes no assumptions about directionality
or magnitude of change. To apply such a test, several parameters must be estimated,
including the phylogeny connecting the taxa to be compared, the branch lengths of that
phylogeny (preferably in either absolute time or generations), the within-population
variance of the shape, between-sample distances in the shape, and the per-unit-time
rate of change in shape.
The fact that quantitative data contain phylogenetic signal implies that phylogeny

can be recovered from morphometric data (Felsenstein 1973, 1988). Despite the sim-
plicity of that statement, it has been a key controversy in the systematics literature for
more than a quarter of a century, first in the debates over phenetics (overall similarity)
and cladistics as phylogeny reconstruction methods (Williams 1971; Kluge and Farris
1969), and more recently in debates over maximum-likelihood and parsimony crite-
ria (Felsenstein 1978; Hillis et al. 1994; Kluge 1997; Siddall and Kluge 1997). One
interesting aspect of the question is that morphometrics usually involves a quantitative
assessment of differences (or similarities) in the same homologous feature among taxa.
The properties of random walks tell us that divergence in quantitative traits should
accumulate, on average, with the square root of time elapsed since they last shared a
common ancestor (Berg 1993). This suggests that, like molecular sequence data, mor-
phometric data ought to contain information that can, with quantifiable error, be used
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to reconstruct phylogeny, and that morphometric data will have a ‘saturation point’,
or a maximum divergence time beyond which they are incapable of accurately resolv-
ing a phylogeny. Different traits or variables will have different parameters in this
regard. Character-based phylogeny reconstruction, unlike morphometrics, is usually
concerned with the origin of new homologous traits (or the identification of homolo-
gies and homoplasies). Unlike random walks in quantitative variables, there is no
obvious null expectation associated with the origin of new characters (but see Schluter
et al. 1997). And unlike morphometrics, a multitude of characters can easily be com-
bined into a single analysis using parsimony-based methods. These differences are
often at the heart of debates on the use of morphometrics in systematics. It is entirely
conceivable, though, that the choice of data and method may best be made by consid-
eration of the scope of the phylogenetic problem, in terms of the period over which
the taxa have diverged. Relationships among closely related taxa with little discrete
character divergence may best be studied using quantitative data, while relationships
among more distantly related taxa may be best resolved using parsimony analysis of
discrete data.
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Appendices

Appendix 1 Age, meter level, sample size, mean area and standard deviation of first lower molar,
estimated body mass, and estimated generation times for samples relevant to this study.
Age details include North America Land Mammal Subages (NALMS), meter level in the
Bighorn Basin, and absolute age in millions of years before present. Mean molar area
in the natural log of the length times the width of the first lower molar. Body mass
estimates are given in grams. Estimated generation times are reported in years

Species NALMS Meters Age1 N Mean SD Mass2 Generation3

Didymictis proteus Ti-4 550 57.5 2 3.85 0.071 3,323 1.3
Didymictis proteus Ti-5 700 57.2 1 3.60 — 2,055 1.2
Didymictis proteus Cf-1 1,050 56.2 3 3.69 0.057 2,455 1.2
Didymictis proteus∗ Cf-2 1,300 55.6 20 3.95 0.092 4,001 1.4
Didymictis proteus∗ Cf-3 1,430 55.3 9 3.97 0.064 4,222 1.4
Didymictis proteus∗,∗∗ Wa-0 1,550 54.9 3 3.61 0.103 2,097 1.2
Didymictis leptomylus∗ Wa-1 1,600 54.8 7 3.89 0.128 3,612 1.4
Didymictis leptomylus∗ Wa-2 1,700 54.6 6 3.66 0.142 2,306 1.2
Didymictis leptomylus Wa-3 1,900 54.0 1 3.38 — 1,347 1.1
Didymictis protenus∗ Wa-1 1,600 54.8 3 4.44 0.158 10,336 1.8
Didymictis protenus∗ Wa-2 1,700 54.6 2 4.14 0.007 5,824 1.5
Didymictis protenus∗ Wa-3 1,900 54.0 6 4.12 0.197 5,573 1.5
Didymictis protenus∗ Wa-4 2,100 53.5 14 4.23 0.105 6,943 1.6
Didymictis protenus∗ Wa-5 2,250 53.1 12 4.34 0.145 8,474 1.7
Didymictis protenus∗ Wa-6 2,400 52.7 8 4.57 0.261 13,158 1.9
Viverravus laytoni Ti-5 700 57.2 2 2.05 0.057 104 0.6
Viverravus laytoni∗∗ Cf-2 1,300 55.6 2 2.11 0.129 117 0.6
Viverravus acutus Cf-3 1,430 55.3 1 1.92 — 82 0.5
Viverravus acutus∗ Wa-1 1,600 54.8 20 2.23 0.176 148 0.6
Viverravus acutus∗ Wa-2 1,700 54.6 24 2.31 0.164 172 0.7
Viverravus acutus Wa-3 1,900 54.0 27 2.55 0.151 272 0.7
Viverravus acutus Wa-4 2,100 53.5 18 2.53 0.176 262 0.7
Viverravus acutus Wa-5 2,250 53.1 12 2.61 0.136 309 0.7
Viverravus acutus Wa-6 2,400 52.7 9 2.79 0.135 435 0.8
Viverravus politus Ti-5 700 57.2 8 2.92 0.035 556 0.9
Viverravus politus Cf-2 1,300 55.6 2 2.52 0.064 259 0.7
Viverravus politus Cf-3 1,430 55.3 4 2.97 0.089 615 0.9
Viverravus politus Wa-1 1,600 54.8 4 3.29 0.093 1,128 1.0
Viverravus politus Wa-2 1,700 54.6 1 3.65 — 2,263 1.2
Viverravus politus Wa-3 1,900 54.0 1 3.73 — 2,639 1.3
Viverravus rosei Wa-2 1,700 54.6 1 1.81 — 66 0.5
Viverravus rosei Wa-3 1,900 54.0 2 1.63 0.046 47 0.5
Viverravus rosei Wa-4 2,100 53.5 2 1.63 0.031 47 0.5
Viverravus paralus∗∗ Ti-3 350 58.1 10 2.51 0.053 253 0.7
Protictis agastor Ti-3 350 58.1 5 3.54 0.124 1,831 1.2
Protictis haydenianus To 60 58.8 5 3.49 0.129 1,664 1.1

1 Age (millions of years before present) estimated from a linear LS regression of meters of accumulated sediment
(Gingerich 1991) onto absolute age in millions of years before present (Clyde et al. 1994): y = −0.0025x+58.8.

2 Body mass (grams) derived from linear LS regression line of body mass onto the area (length × width) of the
first lower molars of extant Carnivores (Legendré 1986): y = 1.922x + 0.709.

3 Generation time (years) estimated from a linear LS regression of mammalian generation lengths (Eisenberg
1981) onto body mass (Eisenberg 1981; Silva and Downing 1995): y = 0.2415x + 4.2276.

* Samples with molar shape data considered in this study.
** Samples lying at tree nodes.
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Chapter 12

Ancestral states and evolutionary
rates of continuous characters

Andrea J. Webster and Andy Purvis

ABSTRACT

In this chapter we review a number of methods recently developed to estimate ancestral
character states for continuous characters. Though parsimony and maximum likeli-
hood methods appear very different, we highlight deep similarities between them. We
show how an assumption of many of the methods (consistency of rate of change)
can be tested, and show that it does not hold for an example data set of carnivore
body masses. The methods are then compared in terms of the accuracy of their pre-
dictions; we use primate body mass and conodont Pa element size to assess how well
the ancestral estimates from each method agree with fossil evidence. No method was
found to give precise and accurate estimates, and adding complexity to models does
not necessarily improve the ancestral estimates obtained.

Introduction

Most chapters in this book focus on howmorphometric data and morphometric meth-
ods can inform systematics and phylogenetics. In this chapter, we will assume that a
phylogeny is available, andwill look at how it can be used together withmorphometric
characters to make inferences about ancestral states and rates of evolution.
The most direct way of finding out character states of ancestors is to examine fossils

of individuals from the ancestral species. However, this approach is often extremely
problematic: only a tiny proportion of individuals leave fossils, accurate placement
of these fossils within a phylogeny is difficult, and many interesting characters do not
fossilise. Faced with these difficulties, many biologists have explored ways of using
information about living species to make inferences about what their ancestors were
like. These inferences are then used to choose between alternative scenarios. Were the
ancient Galapagos finches granivores, insectivores or folivores? How large were the
ancestral primates? Were ancestral foraminifera smaller than their descendants?
In this chapter, we review the range of methods currently used to estimate ancestral

states for continuous characters. Many of these methods have been developed within
the last three years, and there has been rapid growth in their use. Our intention here is
not to provide an exhaustive review of the literature (two recent reviews are available:
Cunningham et al. 1998; Pagel 1999). Rather, we look at the assumptions of the
various methods, especially the assumption of rate constancy, and point out deep sim-
ilarities between methods developed under the apparently very different philosophies
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of parsimony and maximum likelihood methods. We use three data sets – primate and
carnivore body mass and palmatolepid conodont Pa element size – to illustrate how
key assumptions of some methods can be tested and to assess whether the ancestral
estimates from any method agree with what is inferred from the fossil record. This is
the first comparison of a wide range of methods against measurements from fossils,
though some previous studies have usedmultiple methods to estimate ancestral charac-
ters (e.g., Butler and Losos 1997; Martins 1999). In our data sets at least, assumptions
are commonly violated, no method gives precise and accurate estimates, and extra
complexity does not necessarily give better results. We discuss the implications of
these findings for the inference of ancestral states in general.

The methods

There are several methods used in the literature to estimate the ancestral character
states for a continuous variable, given a phylogeny and the descendent character
states. These methods also often provide an estimate of the rate of change of the
trait in question. We examine a number of these methods, listed in the first column of
Table 12.1. It is possible to roughly divide the methods into two groups: those using
a parsimony criterion to predict ancestral states (linear, squared change and weighted

Table 12.1 A summary of which methods calculate the ML rate and ancestral reconstruction under
the model specified by the method [Computer programs used to implement each method
are also indicated (not an exhaustive list)]

Method ML rate under Global ML Can be
specified model ancestral implemented in

reconstruction

One-parameter ��� ��� SE ML – Ancml1

GLM – Ancestor∗,5

Independent contrasts ���† ××× CAIC2

WITH branch length
information

Independent contrasts ���†BL = 1 ××× CAIC2

WITHOUT branch
length information

Two-parameter ��� ���SE GLM – Ancestor∗,5

Linear parsimony ××× ××× MacClade3

Squared change ��� ��� MacClade3

parsimony
Weighted squared Not valid to ��� PDSQCHP4

change parsimony calculate rate

SE indicates that standard errors are calculated. BL = 1: branch lengths must equal 1 for the calculated rate to
be the ML rate.
∗ cannot be used to calculate rate estimates.
† signifies the result must be squared to be equivalent to the ML rate.
1 Schluter et al. (1997),
2 Purvis and Rambaut (1995),
3 Maddison and Maddison (1992),
4 Garland et al. (1997),
5 Martins and Hansen (1997).
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squared change parsimony), with the remaining methods using a statistical model of
evolution (e.g., Brownian motion). Parsimony methods make no explicit assumption
about how change occurs over time: they merely follow the dictum of Ockham’s razor,
that the favoured explanation of the data is the one requiring the least evolutionary
change. Their criterion is simply to minimise some measure of change over the tree.
These methods can therefore be used to estimate ancestral states but cannot generally
be used to say anything about the rate at which this evolution occurs. Methods involv-
ing statistical models, unlike parsimony methods, make some explicit assumptions
about the way evolution occurs, so impose a framework onto which the data must be
fitted. This allows not only ancestral estimates to be made, but also allows inferences
involving the rate of evolution.
Although these methods are conceptually approaching the problem from two dif-

ferent angles, the differences are sometimes more apparent than real; any model which
reconstructs ancestral traits from descendants must involve measures of the descen-
dants’ traits and, frequently, an important consideration is the time which has elapsed
between the ancestor and its descendants. Although statistical and parsimony meth-
ods seem to use different reasoning to estimate ancestral reconstructions, algorithms
are shared, so methods which appear very different blur together where models and
criteria overlap.
As parsimony methods can often be viewed as simplification of statistical methods,

we will consider the statistical methods first. The following available methods can be
loosely grouped together under the heading of Brownian motion:

1 one-parameter maximum likelihood model (Schluter et al. 1997),
2 independent contrasts (Felsenstein 1985) (a) with and (b) without branch length

information, and
3 two-parameter maximum likelihood models (Martins 1994).

Thesemethodsmake use of a Brownianmotion (randomwalk)model of evolution in
some way (for details of this model see Box 12.1). Neither of the independent contrast
methods was ever intended to produce meaningful estimates of ancestral characters.
However they have been used in the past to infer ancestral states, and as such must be
considered in this review.

The one-parameter maximum likelihood method

This method, outlined by (Schluter et al. 1997), uses the Brownian motion model
in a maximum likelihood (ML) framework to calculate the ML rate parameter for
the model as well as the ML set of ancestral reconstructions. These two estimates
are calculated by two different processes. The ML rate parameter (β), is calculated
by finding the difference in the particular trait between the descendants from each
branching point in the phylogeny, weighting this change proportionally by the inverse
of the square root of the branch length between them, and then finding the rate which
maximises the likelihood of observing these weighted differences. Exact knowledge of
the ancestral state is irrelevant at this point because of Felsenstein’s ‘pulley principle’
(see Box 12.2). In this case β is the only parameter in the model that needs to be
estimated.
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The Brownian motion model has been used to describe the random evolution of traits;
it corresponds to random genetic drift. Alternatively, it may apply to traits evolving in
response to selection, where the direction of selection varies often. The model makes three
assumptions:

1 that the probability of change is independent of both prior and current character
states,

2 that transitions along any branches are independent of changes elsewhere in the
tree, and

3 that rates of change are constant (aside from stochastic variation) throughout time
and along all branches.

Total change along each branch of the phylogeny is equal to the rate of accumulation of
variance (β) multiplied by the amount of time (t) that has elapsed.

So:

Total squared change = βt + ε, where ε is the error term and β is the rate parameter.

Box12.1 The Brownian motion model of evolution.

The likelihood of a particular tree is determined by the sum of its branch lengths, so far
example (a) this is x+ y or 4+ 7 = 11.

x +2

y –2

y

x

Y = 7

X = 4

(b)(a)

If you consider the fork to act as pulley, the likelihood of this fork occuring will be the
same regardless of where the ancester is placed, as the total branch length subtracted
from one branch is always exactly added back to the other branch. This is shown in (b);
the total branch length is now (x+ 2)+ (y− 2) or 6+ 5 = 11.
This principle can be extended to a three way fork – the pulley can be rolled onto any

branch. The likelihood is now effectively being estimated for an unrooted tree. Hence,
the most likely tree, and consequently the most likely rate of evolution can be determined
without an accurate estimate of the ancestral character state.

Box12.2 Felsenstein’s Pulley Principle (Felsenstein 1981).



Ancestral character states 251

Maximum likelihood ancestral character states are estimated in a similar way.
Initially, ancestral states are computed as weighted averages of the values of
descendants, with the weights being inversely proportional to branch length between
ancestor and descendant. An iterative algorithm then moves through the phylogeny
from the root upwards adjusting the ancestral values so the set of estimated values
is statistically the most likely set of ancestral states when the whole phylogeny is
considered. This is shown to be the case when the rate of accumulation of vari-
ance is minimised (Maddison 1991); that is, when the sum of the square of the
weighted difference between ancestors and descendants over the whole tree is min-
imised (weights are again inversely proportional to branch length). The result is the
global ML reconstruction of ancestral states for this particular phylogeny.
It is also possible to calculate the standard error associated with an ancestral recon-

struction by calculating the standard deviation of the marginal distribution of the
ancestral state. This is equivalent to the standard error of the ancestral ML estimate.

Independent contrasts

Independent contrasts (Felsenstein 1985) is a method which allows comparative data
to be analysed as statistically independent points; it removes pseudo-replication in
the data that is due to phylogeny. When branch length information is being used, an
independent contrast is the difference between two sister clades, divided by a multiple
of the expected standard deviation of that difference. The standard deviation, under
Brownian motion, is proportional to the square root of the branch length. An inde-
pendent contrast is therefore a measure of absolute change over some function of time,
so is in many ways like a rate (Garland 1992). Hence a mean rate of change through-
out the phylogeny can be calculated. The mean rate of absolute change calculated
over the phylogeny can then be directly equated to the rate parameter when squared,
as the rate parameter is the accumulation of variance over time, or linear change
squared:

β = Accumulated variance
Branch length

Independent contrast = Absolute linear change√
Branch length

=
√
Accumulated variance√

Branch length

Independent contrasts are therefore another way of calculating the ML rate of change
in a trait.
Although the method gives the ML estimate of rate, it does not calculate the global

ML ancestral reconstructions. The nodal reconstructions are created as an intermedi-
ate stage in the calculation of phylogenetically independent contrasts and are simply
a weighted average value of the descendant character states, where the weights are
inversely proportional to branch lengths. The algorithm uses the model of Brownian
motion and its assumptions, but the reconstruction of the nodal values is only a local
solution – only direct descendants are considered when nodal states are assigned. This
is all that is required in order to calculate independent contrasts and because of the
pulley principle, all that is required to calculate the ML rate, but as a result the nodal
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reconstructions cannot be defended as estimates of ancestral character states. These
states are the states that are reconstructed by the one-parameter model in its first pass
down the tree.
Where there is no branch length information, independent contrasts are calculated

in the same way but with branch lengths all set to the same value; branch lengths
must be made to equal one when rate is to be considered. If all branches are assumed
to be equal and of length one (an implicit assumption that the amount of change
along a branch is independent of its length), the rate parameter will be that calculated
by squared change parsimony (see below) and by the one-parameter model where all
branch lengths are set to one. As when branch length information is used, the ancestral
reconstructions are not the global ML solutions, but will be those calculated by the
first pass down the tree in the one-parameter model.

Two-parameter model

More complex models are available, with two parameters rather than one. These are
extensions of the Brownian motion model of evolution. One example is the Ornstein–
Uhlenbeck model (Martins 1994), in which the random walk is constrained, such as
would occur when a trait is subjected to a stabilising selection pressure. The restraining
force can be thought of in two ways; either as a force which restrains species from
wandering too far from a central fixed point under random genetic drift, or as species
remaining close to an optimum whose variation is restricted by this constraining force
(termed α). This model is now a two-parameter model with the parameters α and β.
As the constraining force (α) becomes close to zero, the model becomes equivalent
to the one-parameter Brownian motion model. This model calculates the ML rate of
evolution in the same way as in the one-parameter model, but the ancestral states and
rate calculated are the reconstruction for the advanced two-parameter model; they are
different to the those for the one-parameter model. Tests of significance are used to
assess whether inclusion of α significantly improves the fit of the model to the data. If
not, then a one-parameter model is preferred.
Generalised linear models (GLM) can also be used to calculate the ML rate and

ancestral reconstructions for both the one and two parameter models (Martins and
Hansen 1997). The methods estimate the ancestral trait values as a linear combination
of the phenotypes of the species at the tips of the phylogenies. Ancestral states are
assigned the value of the average of all the descendant states weighted by a measure
of how closely the species are related to the ancestor in question. Although this also
gives the ML reconstruction under the Brownian motion model, the standard errors
it assigns to the ancestral estimates may differ slightly from those calculated by the
iterative algorithms.

Parsimony

All parsimony methods (described by Maddison (1991) and Swofford and Maddison
(1987)) use the criterion that the preferred ancestral reconstruction is that which min-
imises some measure of evolutionary change over the phylogeny as a whole. They all
use iterative algorithms in their implementation. There is no explicit model of evolution
specified in the dictum of parsimony but, as we shall see, some of these methods are
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equivalent to some ML approaches. The three methods examined here are:

1 weighted squared change parsimony (Maddison 1991),
2 squared change parsimony (Maddison 1991), and
3 linear change (Swofford and Maddison 1987).

Weighted squared change parsimony

In weighted squared change parsimony, the measure of change minimised is the sum
of squared changes divided by branch length, that is,

∑ change2

branch length

The ancestral reconstructions which minimise this measure are the most parsimonious
under this criterion. But not only this: these ancestral reconstructions are also the ML
reconstructions under Brownian motion model of evolution. This can be explained
because branch length in the parsimonymethod is analogouswith time in the Brownian
motion model. The square of linear change with time is variance. So this method is
in effect finding those ancestral reconstructions which minimise the accumulation of
variance with time (β in the one-parameter model).
It is not strictly correct to calculate a rate parameter with weighted squared change

parsimony as this would involve imposing some assumptions of how a character trait
evolves. Unless one specifies the nature of the process, it is meaningless to estimate the
rate at which it occurs. It is impossible to have a maximum likelihood rate without
specifying the conditions for which it is the solution.

Squared change parsimony

In squared change parsimony, branch length information is not considered to provide
any further contribution to the ancestral reconstruction and the sum of the squared
change over all branches is the unit minimised. By assuming that branch lengths are
unimportant, they are effectively set at 1 (any change along the branch is in units of
per branch rather than per branch length). Squared change parsimony is a special case
of weighted squared change parsimony, where the branch lengths equal 1. Therefore,
without imposing anything further to the model (in fact by reducing the amount of
information it uses, by saying branch lengths are equal), we are able to calculate ances-
tral reconstructions and rate of the evolution of the trait. The ancestral states are again
the ML reconstructions under the one-parameter model with equal branch lengths as
variance is still beingminimised, while the rate parameter is that under a one-parameter
model where branch lengths are all equal to one. As previously mentioned, this is also
the rate calculated by independent contrasts when no branch length data are used.

Linear parsimony

Linear parsimonyminimises absolute total change, rather than any function of squared
change. This method will not estimate the ML rate or the ML ancestral states under
any useful circumstances.
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Figure 12.1 This diagram relates the methods in terms of (A) their methodology, (B) the similarity of
their rate estimates and (C) the similarity of the ancestral state estimates. In (B) and (C)
the arrows link identical estimates, and any necessary conditions are stated by the arrows
(BL = branch length).

Table 12.1 and Figure 12.1 summarise how each method relates to the others and
which program can be used to implement them.

Practical application of the methods

When faced with so many different methods, it is difficult to decide which gives the
most accurate representation of historical characteristics. Another important consid-
eration, frequently overlooked, is which method best suits the data available – if the
data violate assumptions set down by the model, the conclusions will be flawed before
the calculations are even started. We present some case studies to first test the assump-
tions of Brownian motion models with some typical data sets, and second, to examine
the accuracy of each method when compared to actual fossil data.

Validity of using Brownian motion models

Before using the Brownian motion-based models to reconstruct ancestral character
states it is important to check that their ability to make predictions is not compromised
by the data that is being entered into them. If the data used break the assumptions of the
model, the ancestral reconstructions calculated from them could be misinformative;
little is known about how badly violation of assumptions affect performance.
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Figure 12.2 Carnivore phylogeny showing clade groupings (branch lengths not shown).
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It is possible to test whether the rate of evolution of traits is consistent throughout
the phylogeny, one of the assumptions of the one-parameter model. We initially tested
this assumption using body mass as the continuous trait and the carnivore phylogeny
(Bininda-Emonds et al. 1999), split into seven clades as shown in Figure 12.2. We used
independent contrasts, generated by CAIC (Purvis and Rambaut 1995), to obtain our
rate estimates: as expected, the one-parameter ML method produced exactly the same
estimates when it could be used.
The treatment of polytomies in these analyses could affect the rate estimates. There

may be some systematic bias in the variance associated with the multiple nodes when
compared to bifurcating nodes, therefore making better resolved clades seem to have
systematically different rates of evolution when compared to less resolved clades. We
dealt with polytomies in four different ways as follows:

1 Soft polytomies (i.e., polytomies taken to represent ignorance of the true pattern
of relationship), using all within-clade standardised linear contrasts to calculate
mean rate.

2 Soft polytomies, using only those standardised linear contrasts not directly
involved in a polytomy to calculate mean rate.

3 Hard polytomies (i.e., polytomies taken to represent multi-way speciation events),
using all within-clade standardised linear contrasts to calculate mean rate.

4 All species causing polytomies removed, using all within-clade standardised linear
contrasts to calculate mean rate.

The rates of phenotypic evolution are shown in Table 12.2. We then tested to see
whether there was a significant difference between these rates of evolution of body
mass. In order to normalise the distribution of the contrasts, theywere log transformed,
then we used ANOVA and Kruskal–Wallis tests to determine whether there was a
difference in rate of evolution between clades. The results of these tests are shown in
Table 12.2. Fisher’s individual error rate test was used to determine exactly which
clades were significantly different from each other.
Despite the different ways in which polytomies are treated, there is a significant dif-

ference in rate of evolution of body mass between some of the clades in the analysis.
Assigning hard polytomies produces the highest number of significant differences
among clades; using soft polytomies and excluding rates derived from a node with
more than two descendants produces the fewest. All analyses agree that the pinnipeds
(Phocidae andOtariidae) evolve at amuch slower rate than the felids, and that viverrids
evolve at a much slower rate than the felids and the mustelines.
There is the chance that the difference in rates is an artifact of data error causing

independent contrasts to over estimate difference between closely related species; small
measurement error between closely related species can be hugely exaggerated (Purvis
and Webster 1999). If this explanation is correct, the age of a node should be a signifi-
cant predictor of the rate estimate obtained from it. We therefore carried out anAncova
test with age of clade as the covariate. In none of the previously analysed datasets did
age of clade fall out as a significant covariate, and the significant difference in rates did
not disappear (Table 12.3). Similar analysis of the primate phylogeny ((Purvis 1995),
shown in Figure 12.3) revealed the same result: clades differ significantly in their rate
of body size evolution (cebids evolve at a slower rate than cercopithecines). These
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Table 12.3 Results of an ANCOVA test looking for a significant dif-
ference in rate of evolution between Carnivore clades (as
above) with age of clade as the covariate

Phylogeny type ANCOVA tests

Age Clade (p)
(covariate) (p)

Soft polytomies – all contrasts 0.3 0.002
Soft polytomies – contrasts not 0.3 0.004
involved in polytomies

Hard polytomies – all contrasts 0.2 0.001
No polytomies – speicies removed 0.5 0.004

results lead us to conclude that those methods requiring the data to uphold assump-
tions made by the Brownian motion model cannot be used with confidence across the
whole of the carnivore or primate phylogenies. This is likely to extend across many
other phylogenies in many other analyses.
However, this does not render these methods useless in the situations where rate is

not constant across the whole phylogeny. We suggest these methods should be used
repeatedly over separate subsets of the tree where rates are not significantly different.
For example, although there is a significant difference in rate between the five large
clades marked on the primate phylogeny (see Figure 12.3), there is no significant
variation within them: t-tests between sister clades at all points marked in Figure 12.3
with a black dot showed no significant differences (results not shown). Therefore,
although it would not be sound to apply one-parameter methods over the whole tree,
they can be used to predict ancestral traits over smaller subsets where rate is not
significantly different.

Biological inferences from rate variation

Rates calculated along pairs of sister branches may also be of interest in themselves.
While not being shown to be significantly different within clades in the carnivore
and primate phylogenies, rates do show some variation. The rate associated with the
galagos, appears to be faster than the others in the clade. This is probably due to an
error in the phylogeny; the ancestor of the galagos probably evolved long ago than the
1.8 million years ago suggested by the tree. However most of the other unusual rates
are probably indicators of real biological phenomena. For instance, many of those
species displaying unusual rates of body size change have been identified as phyletic
dwarfs or giants (Webster 2001).

Accuracy of ancestral state estimates

Which of the methods gives the most accurate picture of past events? A comparison
against fossil evidence is needed, but the need for these methods has arisen because of
lack of detail in the fossil record. Even where fossil material is present, only a fraction
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Hominoidea

Colobinae

Cercopithecinae

Ceboidea

Strepsirhini

Figure 12.3 Primate phylogeny showing clade groupings (branch lengths not shown). • indicates where
t-tests were performed.

of the characteristics of the organism have been preserved. For these reasons ances-
tral and descendent relationships are frequently sketchy and ancestral characteristics
at best an educated guess with confidence limits. A few reasonably well-established
dated phylogenies which include putative ancestor species do exist however. We use
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Figure 12.4 Palmatolepis phylogeny.

two: palmatolepid conodonts (Sweet 1988) and New World monkeys (Fleagle 1999;
Purvis 1995).
The subset of the conodont phylogeny we used is shown in Figure 12.4. We chose

to use length, width and area measurements of conodont Pa elements (Table 12.4).
The Pa element is thought to have been equivalent to a molar in a complex feeding
basket situated in the head of the conodont animal (Donoghue and Purnell 1999) and
it is likely that element scaled with the animal’s size. For each species, the length and
width of a Pa element was taken, using photographs from the literature. Length was
measured at its maximum point and width taken at the maximum point perpendicular
to this. Area was calculated roughly as length multiplied by width. By contrast, the
NewWorld monkey example has an ancestral history which is less certain (and as such
this dataset required more assumptions to be made). In particular, there is uncertainty
about the placement of Protopithecus and Dolichocebus. The phylogeny we used is
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Table 12.4 Size data used in the conodont analyses

Species Length (µm) Width (µm) Area (mm2)

Schmidtognathus wittekindti 911.93 244.91 223.34
Polygnathus cristatus 1985.60 866.40 1720.32
Mesotaxis asymmetricus 1381.48 635.56 878.01
Palmatolepis hassi 823.43 552.29 454.77
Palmatolepis subrecta 1097.33 651.33 714.73
Palmatolepis gracilis gonioclymeniae 1430.00 680.00 349.87
Palmatolepis gracilis gracilis 3030.00 1110.00 432.35
Palmatolepis gracilis manca 636.29 245.14 292.82
Palmatolepis perlobata helmsi 1792.80 993.60 155.98
Palmatolepis perlobata maxima 1112.00 388.80 3363.30
Palmatolepis rugosa ampla 984.00 355.56 1781.33
Palmatolepis crepida 802.57 364.86 972.40
Palmatolepis rugosa rugosa 1393.33 784.44 1092.99
Palmatolepis superlobata 889.33 528.00 884.05
Palmatolepis quadrantinodosalobata 1043.33 847.33 469.57
Palmatolepis glabra lepta 1352.44 300.89 406.94
Palmatolepis glabra pectinata 848.94 288.09 244.57
Palmatolepis glabra distorta 1198.40 468.00 560.85
Palmatolepis punctata 2209.33 1341.33 2963.45
Palmatolepis gigas 2317.33 740.80 1716.68
Palmatolepis triangularis 2248.00 1082.67 2433.83
Palmatolepis perlobata perlobata 1552.67 750.67 1165.54
Palmatolepis perlobata schindewolfi 1392.89 637.33 887.73
Palmatolepis glabra prima 1573.33 645.33 1015.32

shown in Figure 12.5 and the body mass data on which the analysis is based is shown
in Table 12.5.
After ensuring that rates of evolution were not significantly different within either

phylogeny, we calculated ancestral character states using the methods listed and as
implemented in the programs listed in Table 12.1 Although five different methods are
used to calculate ancestral reconstructions, more are represented by these results. This
is due to some methods such as weighted squared change parsimony (not used here)
and the one-parameter ML method producing the same ancestral reconstruction.
Although results were simple to interpret for conodonts, as all ancestors were placed

at nodes on the phylogeny, the primate phylogeny was more complicated. The fossil
primates are not placed at nodes. Therefore once nodal estimates of body size were
calculated, it was necessary to extrapolate back along the branch to the point at which
the fossil ancestor was placed. Although there is no certainty that these fossil ancestors
are direct ancestors of extant species, this extrapolation is still valid for most methods:
even if the extinct species should be placed on a small side branch, the best estimate of
their size under the Brownian motion model of evolution is the size at the point that
the side branch leaves the main branch.
Although this interpolation is valid for one-parameter methods, because it is linear,

it is not valid for the two parameter model involving the Ornstein–Uhlenbeck process
(which is not linear); similarly it is not valid to interpolate standard errors for any
method. These estimates were therefore eliminated from this analysis.
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Figure 12.5 New world monkey phylogeny.

To compare the accuracy of the point estimates, we ranked the methods under two
different criteria. We first rated the methods according to overall combined accuracy:
the estimate of ancestral size at each node was compared to the estimate from the
fossil record, and the residual sum of squares (RSS) calculated. The second measure
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Table 12.5 Body size data used in the primate analysis. Extant
species data taken from Purvis (2000) and fossil
species data taken from Fleagle (1999)

Body mass (g)

Extant species
Callithrix argentata 364.31
Callithrix humeralifer 350.02
Callithrix jacchus 290.62
Cebuella pygmaea 129.28
Leontopithecus chrysomelas 550.04
Leontopithecus chrysopygus 615.23
Leontopithecus rosalia 592.29
Saguinus bicolor 430.09
Saguinus midas 424.96
Saguinus leucopus 456.69
Saguinus oedipus 492.26
Saguinus imperator 412.82
Saguinus labiatus 497.20
Saguinus mystax 564.53
Saguinus fuscicollis 403.83
Saguinus tripartitus 376.91
Saguinus nigricollis 418.64
Callimico goeldii 566.23
Cebus albifrons 2560.61
Cebus capucinus 2983.94
Cebus olivaceus 2818.61
Cebus apella 2757.28
Saimiri boliviensis 772.01
Saimiri sciureus 762.80
Aotus trivirgatus 956.23
Aotus azarae 896.95
Callicebus brunneus 806.74
Callicebus moloch 980.44
Callicebus personatus 1523.86
Callicebus cupreus 1031.74
Pithecia monachus 1943.02
Pithecia pithecia 1667.37
Cacajao calvus 3422.07
Chiropotes satanas 2966.09
Alouatta palliata 7273.55
Alouatta seniculus 6707.62
Alouatta belzebul 6210.52
Ateles fusciceps 9009.19
Ateles geoffroyi 6522.42
Ateles paniscus 8094.98
Lagothrix lagothricha 6568.23
Brachyteles arachnoides 10981.86
Fossil species
Lagonimico conclutatus 1300
Mohanamico hershkovitzi 1000
Dolichocebus gaimanensis 2700
Neosaimiri fieldsi 840
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Table 12.5 (Continued)

Body mass (g)

Cebupithecia sarmientoi 2200
Sirtonia victoriae 10000
Sirtonia tatacoensis 5800
Protopithecus brasiliensis 23500

Table 12.6 Tests of accuracy of the ancestral estimates calculated by each method for the primate
phylogeny (a) and conodont phylogeny, (b) for each row the best ranking method is
highlighted in bold

Linear Squared change One- Two- Independent Independent
parsimony parsimony parameter parameter contrasts – contrasts –

equal branch real branch
lengths lengths

(a)
All estimates included
Total RSS 5.63 3.51 3.85 3.70 3.71
Median rank 2 2.5 3.5 3 3
Two estimates excluded
Total RSS 1.35 1.38 1.74 2.06 2.23
Median rank 2 2 3 4 4.5
(b)
Width
Total RSS 1.22 1.48 1.90 1.90 1.86 1.63
Median rank 1.5 3.5 4 4 5 3.5
Length
Total RSS 1.50 1.58 1.59 1.59 1.49 1.70
Median rank 3 3 4 5 2.5 6
Area
Total RSS 5.05 5.86 6.62 6.62 6.42 6.35
Median rank 1 3 4.5 4.5 3 3.5

of accuracy involved ranking methods at each node individually, basing judgement
on the square of the residual: each method was then assigned its median ranking,
thus reducing the influence of single outliers. The results of these comparisons are
shown in Table 12.6. Thosemethods giving an indication of confidence in the ancestral
estimates can be analysed further, by calculating what percentage of fossil sizes fell
within the confidence limits of each prediction. The results of this analysis are in
Table 12.7.
Some of the differences among methods merit discussion. The linear parsimony esti-

mates are often ranges; there is more than one most parsimonious assignment. This
method tends to concentrate change, so ancestral values are static over much of the
tree. Squared change parsimony gives a single most parsimonious reconstruction, and
conversely forces change to spread out over the tree. Unlike with linear parsimony,
ancestral values can lie outside the descendent range when using squared change
parsimony.
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Table 12.7 Percentage of fossil measurements which fall
within confidence intervals calculated for
conodont size

One-parameter One-parameter Two-parameter
(%) (GLM) (%) (GLM) (%)

Width 33 100 33
Length 50 100 50
Area 33 100 33

The ML reconstruction under Brownian motion takes the branch length into
account, and gives standard error estimates for the point estimates. Because change
on short branch length is weighted to be more important, the model predicts ancestral
characters to be closer to the ancestor at the end of smaller branches, so further from
those on longer branches. This is something not seen in the parsimony methods. The
two-parameter model produced results very similar to the one-parameter model as the
restraining force was estimated to be close to zero.
In primates, squared change parsimony gives the best prediction according to the

residual sum of squares with both parsimony methods scoring well in the median
ranking. Linear parsimony scores badly in the RSS because of two extremely bad
predictions. When the two fossils which have dubious placings are removed, linear
parsimony appears most accurate (using both RSS and median rank), followed by
squared change parsimony.
In our more comprehensive analysis on the Palmatolepidae, linear parsimony

gave the best point estimates and the lowest RSS for Pa width and area. With Pa
length, linear parsimony is second to estimates calculated during independent contrast
calculations. The more complicated one and two parameter models consistently do
less well in the ranking.
It is also possible to look at standard errors of the nodal estimates given by the

one and two parameter models (both GLM and Ancml standard error estimates are
included for the one-parameter model). Although the one-parameter model appears
successful when looking at the GLM estimates of the standard error, it is unlikely
to be wrong considering the confidence interval places the size of the Pa element
somewhere between the size of a mitochondrion and that of a rugby ball. The other
estimates are more precise, so they would be more useful, but they are not accurate.
Furthermore, simulations carried out by Martins (1999) indicate that even these wide
standard errors could be underestimates and that, in reality, confidence intervals could
be significantly larger than are indicated by all methods tested in this study.

Discussion

The methods used in these analyses, although involving different philosophies, are
deceptively similar – something which is not always appreciated. These methods can-
not be used as support for the accuracy of each other’s results, except as a consistency
check. It is also important that these methods are not used with data which violate
their implicit assumptions. Methods must not be considered a blanket solution for
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entire phylogenies, especially where phylogenies are large. Although ML methods are
considered to give a more accurate picture with more information, clades cannot be
added to a phylogeny at the expense of the integrity of the methods.
Reconstructing ancestral states will always be difficult. As many authors point out,

a large number of traits may be used to correctly reconstruct a tree, but single traits
cannot be reconstructed from a phylogeny even when that phylogeny is perfect as no
single trait fits a tree exactly. At the present time, and drawing conclusions from the
analyses we carried out, it appears, increasing method complexity has not improved
the ability of the methods to estimate ancestral states. If anything, simple parsimony
methods, and in particular linear parsimony, outperform the more complicated one
and two-parameter ML methods. It is likely that in the future, with more accurate
models of how traits evolve, ML methods will improve, but this study underlines the
importance of testing evolutionary methods against available palaeontological data.
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Chapter 13

Modelling the evolution of
continuously varying
characters on phylogenetic trees
The case of Hominid cranial capacity

Mark Pagel

ABSTRACT

I describe a generalised least squares model for analysing trait evolution on phyloge-
netic trees, and apply the model to characterise brain-size evolution in the hominids.
The model incorporates the conventional Brownian-motion or random-walk model
of trait evolution, but can also estimate a directional component to trait evolution –
such as would arise if the trait were getting bigger or smaller through evolutionary
time. This also makes it possible to reconstruct ancestral states that fall outside the
range of observed (extant) values, something that cannot occur with simple Brownian-
motion models. The model can also estimate three scaling parameters relevant to
testing hypotheses about the tempo and mode of trait evolution: is it punctuated or
gradual, does it proceed at a constant rate or speed up (slow down), and are the sim-
ilarities among species what we would expect? Applied to hominid trait evolution,
the model detects the well-known increase in brain size in this group, and as a result,
estimates ancestral states more accurately than the random-walk model. The model
further suggests that brain-size evolution has been gradual, but that its rate of increase
has increased over time (i.e., it is accelerating).

Introduction

Given a collection of species, information on their attributes, and a phylogeny that
describes their shared hierarchy of descent, the prospect is raised of reconstructing the
characteristics of the ancestors to these species. This is an intriguing idea, holding out
as it does the possibility of glimpsing the past and of seeing how the present came
about.
The attraction is more than just curiosity. Some ecological and evolutionary theo-

ries require a specific order and direction of evolution from ancestors to descendants.
Cope’s famous ‘law’ proposes that as species give way to their descendants body size
tends to increase, yielding an evolutionary trend toward increasing size. Where no
theory exists to make a prediction, reconstructed ancestral states provide, if accu-
rate, ideas about how and why creatures evolved as they did. Omland (1994, 1997),
for example, investigates empirical patterns of directional evolution in morphological
traits of ducks. Schluter, Mooers and colleagues (Schluter 1995; Schluter et al. 1997;
Mooers et al. 1999; Mooers and Schluter 1999) have been instrumental in calling
attention to these and other possibilities inherent in reconstructing ancestral states
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on phylogenies. Golding and Dean (1998) emphasise the potential for reconstructing
ancient genes and proteins.
The attributes of species come in all shapes and sizes, but they can be broadly

categorised into two classes. The so-called ‘discrete’ traits adopt a finite and typically
small number of states and may or may not be ordered. The presence or absence of
some feature is a binary discrete trait. Living solitarily, in a relationship with one
other, or in a group could be an ordered discrete trait. More often, traits are defined
in such a way as to constitute a continuously varying feature of the organism or its
environment. Wing length, geographic range size, body size, brain volume, age at
maturation, running speed, and body temperature are all examples of continuously
varying traits.
Here, I shall confinemyself to discussing the statistical reconstruction of the probable

ancestral character states of continuously varying traits, discrete traits having recently
been discussed elsewhere (Schluter 1995; Yang et al. 1995; Koshi and Goldstein 1996;
Schluter et al. 1997; Mooers and Schluter 1999; Pagel 1999a,b). Continuously vary-
ing traits also have received attention in recent work (Schluter et al. 1997; Garland
et al. 1999; Mooers et al. 1999), but I discuss a relatively new maximum-likelihood
model that can detect and characterise directional trends of evolution (see Pagel 1997,
1999b). This method can detect features of trait evolution not available to other meth-
ods, such as gradual versus punctuational change, accelerating versus decelerating trait
evolution, and whether phylogenetic effects are present. By virtue of being capable of
detecting directional trends the method raises the attractive possibility of reconstruct-
ing ancestral states to fall outside of the range of values observed amongst species.
That is, it may be possible to infer the historical existence of traits never directly
observed. I use a recent phylogeny proposed for the Hominid species (Foley 1998) and
information on cranial capacity to illustrate the method in the context of brain-size
evolution.

General theory for statistical models of continuously
varying traits

The conventional approach to reconstructing ancestral states of continuous traits pro-
ceeds by choosing those values for the ancestral states that minimise some criterion of
the total amount of evolution on the tree (e.g., W. P. Maddison 1991; D. R. Maddison
1994). This is the method of maximum parsimony, and the criterion that is minimised
is usually the square of the amount of inferred change along the branches of the
phylogeny – hence ‘squared-change’ parsimony. Other criteria are possible, such as
minimising the absolute value of change.
The chief weaknesses of this approach are that it assumes that character change is

rare, and it fails to incorporate any stochastic element into the process of evolution.
Character change may not be rare (e.g., Schluter 1995; Pagel 1999b), and it is impor-
tant to document the expected uncertainty in our estimates of ancestral states to know
what alternative values can be safely ruled out. Maximum parsimony methods do not
provide estimates of this uncertainty, although an error-rate of sorts may be possible
in principle to calculate (Maddison 1995).
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The principle alternative to parsimony methods is to adopt a statistical approach
to reconstructing ancestral states (e.g., Pagel 1997, 1999a,b; Schluter et al. 1997;
Garland et al. 1999; Mooers et al. 1999; Mooers and Schluter 1999). For traits
that naturally vary along a continuous scale constant-variance random-walk models
(sometimes called Brownian motion) provide a useful framework within which to
model character evolution. In the conventional random-walk model, traits evolve each
instant of ‘time’ dt with amean change of zero and unknown and constant variance σ 2.
Time may be chronological or some other unit of divergence such as genetic distance.
The evolutionary process is presumed to unfold independently at each instant of time
and along each of the branches of the phylogeny.
This framework makes it possible to calculate the uncertainty associated with esti-

mates allotted to different parts of a phylogenetic tree. It is an important capability
when attempting to estimate ancestral states: trait values of species or lineages that
have diverged more from the root are expected to have larger variances and thus are
less reliable observations for reconstructing the past, other things equal. To see why,
consider that the expected variance of a given species’ trait value is tσ 2, where t records
the total path length (time or distance) from the root to that species. This is the vari-
ance in the trait that would be expected were the process of evolution to be re-run
many times from the same starting point. The starting point is the value of the trait at
the root of the tree, and is estimated from the data.
Schluter et al. (1997) apply this basic model to reconstructing ancestral wing lengths

in scrubwrens and to ecological diversification in lizards. Garland et al. (1999) investi-
gate the basic constant-variancemodel and variations on it for a range of characters and
taxa. Ancestral states obtained from the popular independent-contrasts approaches for
comparative studies (Felsenstein 1985; Harvey and Pagel 1991; Garland et al. 1992;
Pagel 1992) are equivalent to those obtained from the constant-variance random-walk
model. Similarly, ancestral states estimated from ‘local’ squared-change parsimony,
in which only the species immediately descendant from a node are used to estimate
the state of the node, are also equivalent to those obtained from the constant-variance
model.
A limitation of the standard constant-variance model is that, by presuming that

traits evolve according to an unbiased random-walk (neutral-drift), it cannot detect any
directional trends of trait evolution along the branches of the tree (Pagel 1997, 1999b).
Historical trends such as a phyletic increase in size, or more generally, greater amounts
of change in the traits of lineages that have diverged more, will be masked. This model
along with independent-contrast and squared-change parsimony approaches always
estimates the ancestral state at the root of the phylogeny as falling somewhere within
the range of observed values in the species data, as it has no route by which to place
them outisde of this range.
By comparison, here I shall show how a directional constant-variance model for

continuous traits can detect historical trends of trait evolution, and use them to develop
more plausible and accurate estimates of ancestral states. Unlike the neutral random-
walk model, the directional model presumes that there has been a bias in evolution
such that traits evolve at each instant of time dt with a mean of β and unknown and
constant variance σ 2 (Pagel 1997, 1999b). Note that here β is used to signify the bias
in the random walk, and not the variance of trait evolution as in Schluter et al. (1997).
The directional model, in effect, examines the correlation between the species’ trait
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values and the total phylogenetic distance or path length from the root of the tree. If a
directional trend exists, species that have divergedmore from the root, will tend also to
have changed more in a given direction, that is, be larger, or mature earlier, and so on.
The parameter of directional evolution is directly interpretable as the direction and

amount of change in a character per unit time or other unit of divergence. When a
significant trend exists, the estimate of the instantaneous variance of trait evolution
will be small, and consequently the directional model will reconstruct ancestral states
with narrower confidence intervals than the neutral-drift model. The directional model
can also, in such circumstances, reconstruct the character state at the root of the tree
to lie outside of the range of observed values in the data. When no directional trend
exists, the estimate of β will not differ statistically from zero, and the directional model
collapses to the random-walk model.

A framework for modelling continuously varying traits
evolving on phylogenies

The random-walk and directional models both estimate the instantaneous component
of variance σ 2, as defined above. It turns out that σ 2 is determined by choosing in
the random walk model a value of α, where α is the trait value assigned to the root
of the tree. In the directional model, σ 2 is found by choosing values of α and β. For
both models, the values of the parameters are chosen to minimise the variance of
the observed species values, taking into account their patterns of relatedness. In the
random-walk model the variance is calculated around α, whereas in the directional
model the variance is calculated around α+βti where ti is the total path length leading
to the ith species.
The parameters are found within a statistical framework known as generalised least

squares or GLS (e.g., Pagel 1997; Schluter et al. 1997) that allows one to take into
account the patterns of relatedness amongst species. Pagel (1997) further describes
how to estimate in the same GLS framework, the parameter of directional evolution,
β (a computer program is available from the author to perform all of the calculations
reported here).
Closely related species will tend to have similar trait values, even under a random

walk, owing to sharing most of their evolutionary history. This makes the phylogeny
a fundamental component of any exercise in reconstructing ancestral states, or more
broadly of any comparative statistical method. It specifies via the shared and unique
evolutionary trajectories the expected patterns of similarity amongst all pairs of species.
These patterns can be represented in a variance–covariance matrix, V . The matrix
V is a square matrix with the n main diagonal elements representing the expected
variances of the n species, and the n(n−1)/2 off-diagonal elements specifying expected
covariances amongst the possible pairs of species. The variance of a given species trait
value is presumed to be directly proportional to the total path length from the root to
a given species. The off-diagonal elements are proportional to the length of the shared
branches between any pair of species. Figure 13.1 shows a hypothetical phylogeny of
three species and the variance–covariance matrix that phylogeny implies.
Statistical models conventionally presume that observed patterns of similarity in

trait values are directly proportional to the topology of the phylogenetic tree. This
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Variance – Covariance matrix
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Y3Y2

Y0

Y1

Figure 13.1 A hypothetical phylogeny of three species with branch lengths shown in units of time (t). A
trait Y is measured on each of the three species. The matrix V is the variance–covariance
matrix presumed to describe the trait values, under a constant-variance random-walk
model of evolution. The main diagonal elements describe the variance of a species trait.
The variance is assumed to be directly proportional to the sum of the branch lengths from
the root to the tips. The expected covariance between any two species is assumed to be
proportional to the sum of their shared branch lengths.

means that were evolution to be re-run many times, the pattern of variance of traits
and correlation between the realised trait values of pairs of species in the phylogeny
is expected to be proportional to the relevant path lengths as represented in V . I have
suggested elsewhere (Pagel 1999b) that the occasional poor performance or sugges-
tion thereof, of some comparative methods (e.g., Westoby et al. 1995; Ricklefs and
Starck 1996; Price 1997; Harvey and Rambaut 1998) may arise when the relationship
presumed to hold between the topology and patterns of trait similarity is violated.
Usefully, though, this assumption of isomorphy between V and the realised pat-

terns of similarity can be tested. Three phylogenetic scaling parameters that bear
directly on it are estimable from the combination of the species’ data and the phy-
logeny (Pagel 1997, 1999b). They can then be used to scale the phylogeny in response
to patterns in the data, and to do so in such a way as to make the phylogeny opti-
mally conform to the presumed constant-variance model of evolution. That is, where
comparativemethods presume an underlying constant-variancemodel directly propor-
tional to branch lengths, the scaling parameters allow one to find the branch-length
basis in which the traits most closely conform to the constant-variance model. This
means that the assumption of constant variance can be tested directly and the topology
suitably modifed where it is rejected.

Phylogeny scaling parameter

Define λ as a parameter that estimates the extent to which the phylogeny correctly pre-
dicts patterns of similarity among species. It is a scalar that multiplies the off-diagonal
elements of V , and can range from 0 to 1. The default value of 1.0 leaves the off-
diagonals unchanged, and corresponds to the patterns of trait similarity being directly
proportional to the elements inV . This is the value of λ implicit in all conventional sta-
tistical models of trait evolution (e.g., Schluter et al. 1997) and in comparativemethods
such as independent contrasts (e.g., Felsenstein 1985; Harvey and Pagel 1991; Pagel
1992).
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When λ is 0.0, all of the off-diagonal elements are zero but the main diagonal ele-
ments are unchanged. This corresponds to the belief that the patterns of trait similarity
amongst species are independent of phylogeny. Topologically, it is equivalent to treat-
ing the data as if they arose from a ‘star’ or ‘big-bang’ phylogeny in which all species
emerge simultaneously from a common ancestor. Intermediate values of λ correspond
to patterns of trait similarity following, to a greater or lesser degree, the outlines of
the topology. Thus, λ measures the extent to which it is necessary when investigating
trait evolution to take the phylogeny into account (see Pagel 1999b).

Path-length scaling parameter

The parameter δ differentially scales the unique and shared path lengths in the phy-
logeny (Pagel 1999b) in response to patterns of trait evolution. It acts as a power to
which all of the elements of V are raised. The longest paths in a phylogeny, are, on
average, those along the main diagonals of V , that is, the paths leading to species. The
off-diagonals record the shared path lengths, corresponding on average to the earlier
(older) portions of the phylogeny. If the lengths of the main diagonals are directly
proportional to the magnitude of the trait, then δ is 1.0, and trait evolution has been
gradual. This is the default value implicitly presumed in models of trait evolution
applied to phylogenies.
If the traits at the end of the largest main diagonals have diverged disproportionately

more from the root, then δ is greater than 1.0. Values of δ greater than 1.0 lengthen
the longer paths in V disproportionately to the shorter paths. Because the longer paths
are typically those leading to species, this signifies that later evolution in the tree has
had a greater effect. Equivalently, it implies that the rate of trait evolution per unit
branch length has accelerated. If the main diagonal elements are found to be too
long given the trait values, then δ is less than 1.0. This acts to compress the longest
elements of V more than the shorter elements. It corresponds to earlier evolutionary
paths having contributed more to trait evolution, as might be expected of an adaptive
radiation. Trait evolution has been gradual but decelerating. Values of δ different from
1.0 correspond to scaled-gradualism (Pagel 1999b): the trait has evolved gradually but
according to a different scale from that implied by the untransformed path lengths.

Branch-length scaling parameter

A third parameter, κ, scales the relationship between the individual branch lengths
(as opposed to the total path lengths as with δ) and trait evolution (Pagel 1994). It is
found as the power to which individual branch lengths should be raised to maximise
the fit of the model of evolution to the data. When κ is 1.0, trait evolution is directly
proportional to branch lengths and evolution is gradual. Values of κ less than 1.0
signify proportionally more evolution in shorter branches. In the extreme, when κ is
0.0, all branches have the same length of 1.0 and by definition the amount of evolution
per branch is independent of branch length. This is the pattern that might be expected
from some models of punctuational evolution: rapid evolution at or near speciation
followed by longer epochs of stasis. If κ is greater than 1.0, longer branches contribute
proportionally more to trait evolution. This parameter, then, captures elements of the
‘mode’ of trait evolution (Pagel 1994, 1999b).
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All existing models of trait evolution implicitly adopt values of λ, δ, and κ equal
to 1.0. I will show below how these assumptions can be tested. Where they prove to
be at odds with the data, I will show how the parameters can be used to improve the
fit of the model to the data. The broader point is that important signatures of trait
evolution reside in the combination of the trait values and the phylogeny, and these
can be used to test hypotheses about underlying evolutionary processes (Pagel 1997,
1999b).

Hypothesis testing

All parameters are estimated in a maximum-likelihood framework (Edwards 1972),
such that the values of the parameters are chosen to make the observed data most
likely given the model of evolution. The likelihoods of different models provide a
direct measure of their relative goodness of fit to the data. Conventionally, one com-
pares the log-likelihoods of two models. If they are special cases of one another, the
difference in their log-likelihoods is distributed approximately as a χ2 variate with
degrees of freedom equal to the difference in the number of parameters in the two
models. For example, if none of the scaling parameters is invoked, the neutral drift
and directional models differ by one parameter (the neutral drift model implicitly
assumes that β = 0.0). Similarly, a model in which λ (or δ or κ) is presumed to be 1.0
is a special case of a model in which λ (or δ or κ) is allowed to take its maximum-
likelihood value. Pagel (1994, 1997) discusses how to test the likelihoods when the
models are not special cases of each other.

An application to the evolution of Hominid cranial capacity

The Hominids are those species that branched perhaps five million years ago from the
common ancestor to modern chimpanzees and humans. Their phylogenetic relation-
ships are uncertain, many phylogenetic hypotheses have been advanced, and the debate
about their phylogenetic relationships is sometimes intemperate (Wood and Collard
2000). Here, I use one recent phylogeny, derived from Foley’s (1998 and person.
comm.) proposals (Figure 13.2). The phylogeny is based upon cranial and post-cranial
characters, indices of tool use, and geography. The lengths of the branches are in units
of millions of years. I have placed Australopithecus afarensis (commonly known as
‘Lucy’) arbitrarily close (0.001 million years) to the root of the tree, dated to about 3.1
million years ago (mya). Some authors (e.g., Wood and Collard 2000) now prefer to
place H. habilis and H. rudolphensis as either emerging along with A. africanus from
the root node, or even classify them with the Australopithecines. Wood and Collard
(2000) review these and many of the other phylogenetic hypotheses advanced for the
Hominids.
The tips of the tree refer, except in the case of modern humans, to fossil ‘species’.

In several cases a fossil species is found over a considerable proportion of the total
tree and so I do not mean to imply, for example, that Homo ergaster arose only about
0.8mya, going extinct 0.6mya. Rather, H. ergaster probably arose at or near the
common ancestor to the later H. ergaster and H. erectus, and may have existed until
around 0.6mya (Foley 1998). At some point it branched into an independent lineage
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A. africanus

A. aethiopicus

A. robustus

A. boisei

A. afarensis

H. rudolphensis

H. habilis
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H. sapiens

H. neanderthalensis

H. heidelbergensis

3.1 2.4 1.9
1.8
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Figure 13.2 A phylogeny of the Hominid species, based upon Foley (1998 and pers. comm.). Branch
lengths are in units of millons of years of evolution. See the text for further description.

that paralleled one that would eventually lead to the common ancestor of modern
humans and Neanderthals. Fossil evidence forH. rudolphensis appears about 2.4mya
even though the tip is shown at about 1.8mya.
As all but one of the Hominid species are extinct, the total path lengths from the

root are different, even though measured as units of time. This makes it possible to
seek relationships between cranial capacity and time. When analysing only extant
species, the total amount of time from the root will generally be the same for all of
them. In these circumstances, branch lengths in units of genetic divergence can be
used in place of time. Indeed, such units may in general be more relevant than time to
underlying trait evolution, representing something like the ‘opportunity for selection’
(Pagel 1994).
Table 13.1 shows the species, the Hominid cranial capacities in cubic centimetres,

and the date attributed to the cranial elements from which the cranial capacity was
measured. I shall use these data, in combination with the phylogeny to investigate the
evolution of cranial capacity in the Hominids. I have used only one data point per
species, the one conforming to the last observation of that species. For some species,
such asH. erectus, cranial capacity measures exist for nearly its entire temporal range.
Including those points in the analysis could lead to different conclusions, a point to
which I shall return below. In particular, some authors (e.g., Aiello and Wheeler
1995; Ruff et al. 1997) suggest that Hominid cranial capacity is characterised by
distinct evolutionary ‘grades’ rather than being a single trajectory, and that H. erectus
cranial capacity was relatively stable for up to 1 million years. However, I have not
included those points here because my interest is to explore how using only a single
set of ‘species’ values can be informative (or not) about the past.
Table 13.2 shows the likelihood ratios of three different statistical models of the

evolution of cranial capacity and estimates of parameters relevant to these mod-
els. The cranial capacity data were logarithmically transformed before analysis. This
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Table 13.1 The Hominid data set (data from Aiello and Dunbar 1993)

Species Date, mya Endocranial volume, cc

Homo sapiens 0 1450
H. neanderthalensis 0.03 1512
H. heidlbergensis 0.4 1198
H. erectus (Java) 0.25 1100
H. ergaster (Africa) 0.90 908
H. habilis 1.5 673
H. rudolphensis 1.89 752
A. robustus 1.8 530 (n = 4)
A. boisei 1.78 504 (n = 2)
A. aethiopicus 2.5 410
A. africanus 2.74 452 (n = 6)
A. afarensis 3.1 433 (n = 3)

makes the function relating unlogged cranial capacity to time exponential in time.
The conventional constant-variance random-walk model fits the data least well. The
phylogeny-scaling parameter λ is estimated to be 1.0 indicating that there is a strong
link between phylogenetic relatedness and cranial capacity. The values of κ and δ are
both greater than 1.0. This indicates that trait evolution has been gradual but faster
in longer branches (κ) or paths (δ).
The constant-variance directional model fits the data substantially better than the

random-walk model. This model differs from the random-walk model only by the
parameter β, implying that β is significantly different from zero for these data, and
confirming a significant statistical trend towards increasing cranial capacity over time.
The directional model finds that the equation relating predicted cranial capacity to
time is exp[6.07 + 0.33 * time]. This also implies a gradualist interpretation of brain-
size evolution. The interpretation can be checked by fitting the branch-length scaling
parameter κ. The maximum-likelihood estimate of κ for these data is now 1.18 and
its 95 per cent confidence intervals include 1.0 but exclude zero. The value of κ has
declined because variance that was previously attributed to the random walk has now
been accounted for by β.
A value for κ near 1.0 supports a gradualist interpretation for these data. By exclud-

ing 0.0 from its 95 per cent confidence intervals the κ scaling parameter detects no
evidence for a punctuational interpretation of Hominid brain-size evolution. Strictly
speaking one cannot rule out a punctuational view, however. Each branch of the tree
may hide many undetected speciation events, such as would arise if extinction rates are
high. If each of these were associated with a burst of evolution, then evolution could
appear gradual when observed only from the perspective of the longer branches. With
branch lengths measured in units of time, this scenario is probably unlikely. Speciation
events are thought to influence genetic or phenotypic divergence under some punctua-
tional models and thus longer branches, where branch length records divergence, may
be confounded with more undetected speciation. However, the number of speciation
events will not influence branch length measured in units of time.
The third result in Table 13.2 includes the path-length scaling parameter δ within

the directional model. This model significantly improves upon the unscaled-directional
model, fitting a value of δ significantly greater than 1.0. This implies that the
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rate of brain-size evolution has increased over time, with the most rapid rates of
evolution being those leading to Neanderthals and modern Humans (the longest
total paths). The equation relating predicted cranial capacity to time in this model
is exp[6.07 + 0.20 * time1.55]: longer total path lengths make a greater contribution
than shorter ones.
The estimates of the instantaneous variance of evolution – the variance parameter –

differ as expected among the three models, with the random-walk model returning the
largest value. Superficially this would seem to imply that the random-walk model finds
that evolution has progressed by larger steps than in the other two models. In fact, the
correct interpretation is that the random-walk model mistakenly attributes all of the
variance in the trait (cranial capacity) to the random-walk. By comparison, the two-
directional models attribute large proportions of the variance to a systematic trend of
trait evolution. As a consequence, the estimate of error variance is reduced. This will
translate into more accurate estimates of reconstructed ancestral states (below).
The statistical approach has confirmed that there is an effect of phylogenetic

relatedness on similarity in cranial capacity (λ = 1.0), that cranial capacity has
increased steadily rather than following a random-walk (β > 0.0), that its evolu-
tion has been gradual and not punctuational (κ > 0.0), and that it has increased
its rate of evolution over time (δ > 1.0). The curves estimated for the directional
and scaled-directional models are plotted in Figure 13.3. Figure 13.3 shows that the
unscaled-directional model yields an exponentially increasing curve, but even this
fails to capture the rapid increase in brain size that becomes evident for later Homo
species. The scaled-directional model better captures the accelerating trend, showing
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Figure 13.3 Plot of Hominid cranial capacity versus the total time since the root of the tree. The dashed
curve represents the best fitting line from the unscaled-directional model: predicted cranial
capacity = exp[6.07+0.33 * time]; the solid curve represents the scaled-directional model:
predicted cranial capacity = exp[6.07 + 0.20 * time1.55]. See text for detail of the models.
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that Hominid brain size has increased at a faster than exponential rate over the past
three million years.
The scaled-directional model accounts for over 98 per cent of the variance in cranial

capacity. Still, there are some large deviations from the scaled-directional curve, most
conspicuously that of H. rudolphensis. There are also H. ergaster crania of around
800–900 cc not long after H. rudolphensis (e.g., Aiello and Dunbar 1993; Ruff et al.
1997). Whether these deviations represent adaptive divergence from an underlying
modal trajectory of evolution, or are indicative of entirely different trajectories is
unknown.
It is straightforward to calculate the period-doubling time for cranial capacity from

the two-directional model curves. These are plotted in Figure 13.4. The unscaled-
directional model is a simple exponential curve, and therefore it has a constant
period-doubling time, estimated here at about once every two million years. The
scaled-directional model indicates that the rate of evolution has increased through
time. Its period-doubling time begins at approximately the same point as the unscaled
model, but decreases to approximately once every 1 million years by the time of the
common ancestor to humans and Neanderthals.
All three models predict the root to be 433 cc (Table 13.2). This result is uninter-

esting, arising as it does because A. afarensis with a cranial capacity of 433 cc was
arbitrarily placed so close to the root. It is a characteristic of any statistical approach
that shorter branch lengths are given greater weight, denoting as they do that the value
observed at the end of the branch is unlikely to change substantially were the process
re-run. Nevertheless, the directional and scaled-directional models, as expected, return
smaller errors of prediction than the random-walk model (Table 13.2).
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Figure 13.4 The predicted period-doubling time for Hominid cranial capacity as derived from the
unscaled- and scaled-directional models. The horizontal line corresponds to the unscaled-
directional model. It is a simple exponential and thus has a constant period-doubling time.
The curve corresponds to the period doubling time for the scaled-directional model. It
declines as time from the root increases, reflecting the accelerating pace of change in
Hominid cranial capacity in later lineages.
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Of greater interest is to ask how well these models reconstruct the value at the root
of the tree when it is not known. Here, that question can be investigated by successively
removing species from the phylogeny of Figure 13.2 beginning at the root, and asking
the models to estimate the root only from the subset of species remaining. As the root
is known in this example, it is possible to draw some conclusions about the relative
performance of the various models. The interesting comparison is that between the
random-walk model and the directional model. The random-walk model estimates
of the ancestral state, as mentioned, are equivalent to those obtained from ‘local’
squared-change parsimony and from independent-contrast comparative methods.
Figure 13.5 shows the estimated cranial capacity for the species at the root of the

Hominid phylogeny derived from re-estimating the random-walk and directional mod-
els based upon successively smaller subsets of the data. The horizontal line in the
Figure is placed at 433 cc, corresponding to A. afarensis. The estimates derived from
the random-walk model steadily increase as species are deleted, and they always fall
within the range of cranial capacities observed in the data. Further, its confidence
intervals exclude the value of 433 cc. By comparison the directional-model estimates
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Figure 13.5 The predicted ancestral cranial capacity at the root of the Hominid phylogeny based
upon samples in which increasing numbers of species have been deleted from the data
set. The root value is 433 cc. Both models estimate the root value at 433 cc when all
species are included (only directional model symbol is shown; see text for explanation of
prediction). Beginning with ‘afarensis’ and moving from left to right, the data set excludes all
those species before and including the one listed below the estimate. Thus, the estimates
associated with ‘africanus’ exclude A. afarensis and A. africanus from the data. Estimates from
the random-walk model systematically diverge from 433 cc while those for the directional
model do not show a systematic bias, and have narrower confidence intervals. The dashed
line points to the estimate of the root derived from the directional model when the
path-length scaling parameter, δ, is used for this subset of the data (see text).
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are always closer to 433 cc and its confidence intervals are narrower but still overlap,
in two instances, the 433 line. The directional model also correctly estimates the ances-
tral state to fall outside of the range of values observed in the subset. These results are
encouraging in light of the relatively small number of data points in the subsets.
Both the random-walk and directional models have quite bad performances when

all species up to and includingH. habilis are removed. The directional-model estimates
would be improved were the scaling parameter δ included. In the subsets of data used
for Figure 13.5 the 95 per cent confidence intervals for δ overlapped 1.0, and therefore
I derived estimates of the root solely from the unscaled-directional model. Including
the scaling parameter in the directional model, despite the fact that it is not significant,
increases its estimate of the root, based on this subset, to 403 cc.
The models estimated from the complete data set can also be used to reconstruct the

probable ancestral states of the remaining interior nodes of the tree. Figure 13.6 shows
the Hominid phylogeny with ancestral states reconstructed from the random-walk
model and from the scaled-directional model. This comparison is drawn to highlight
the differences between the conventional ‘Brownian motion’ approach to reconstruct-
ing ancestral states and one that seeks tomake use of additional information in the data.
Themost obvious difference between the twomodels is that the random-walkmodel

reconstructs nodes from a ‘top-down’ perspective: it begins at the tips and works

A. africanus 452

A. aethiopicus 410

A. robustus 530

A. boisei 504

A. afarensis 433

H. rudolphensis 752

H. habilis 673

H. ergaster 908

H. erectus 1100

H. sapiens 1450 

H. neanderthalensis 1512

H. heidelbergensis 1198

RW=1198 
D=1099 (1143)

RW=1240 
D=1042 (1103)

RW=1040 
D=895 (990)

RW=1063 
D=584 (690)

RW=986 
D= 564 (666)

RW=869 
D=485 (556)

RW=518 
D=473

~900 ~1067

Figure 13.6 The predicted ancestral states at internal nodes of the Hominid phylogeny, as derived from
two models: RW = the random-walk model; D = the scaled-directional model (Table
13.2). The values in parentheses for the directional model correspond to the reconstructed
values obtained when the Australopithecine species are removed from the calculation of the
equation linking cranial capacity to time. The random-walk model returns estimates of the
ancestral states that are equivalent to those obtained from squared-change parsimony or
from independent contrast methods. The actual (fossil) cranial capacities of the species are
shown next to the species names. The fossil value for H. ergaster corresponds to a point
sampled 0.90 mya and is probably too low by at least 100 cc for a putative time period of
0.60 mya. The two points along the branch leading to H. ergaster and other Homo species
correspond to fossil H. ergaster crania measured around 1.2 and 1.5 mya.
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backwards, using only the two immediate descendants of each node to estimate the
value at the node. This means that the random-walk model consistently reconstructs
ancestral cranial capacities to be larger than one of the descendants. By comparison,
the directional model works from a ‘bottom-up’ perspective: it identifies a temporal
trend (if one exists) and then reconstructs ancestral values as a function of the starting
point (the root) and the distance from the root to the node being reconstructed.
The predictions of the random-walk model seem particularly implausible, implying

as they do at least six, often substantial, reversals of the trend towards increasing
brain size. The directional model predictions avoid this, but seem too low for the
nodes connecting to H. rudolphensis, H. habilis, and possibly H. erectus. These may
arise in part because the directional model is fitted to the entire data set, and it appears
that the two Australopithecine species are characterised by a shallower slope relating
cranial capacity to time. Deleting these species and re-estimating the directional-model
increases yields the model cranial capacity ∼exp[6.07 + 0.36 * time]. This equation
produces the reconstructed values for the Homo clade as shown in parentheses in
Figure 13.6. These seem much more in line with the trend of the data, and the one
reversal this model implies is probably within the measurement error of the data.

Discussion

The Hominid cranial capacity data in combination with a phylogeny provide an
unusual data set with which to compare the performance of various approaches for
reconstructing ancestral character states of continuously evolving traits. What emerges
from this data set is that conventional models that do not allow for the possibility of
directional trends can be badly misled when reconstructing ancestral values, if such
trends exist. The random-walk model investigated here is widely used, being equiva-
lent to the model that underpins independent-contrast and squared-change parsimony
methods. Its performance in predicting the root of the tree deteriorated rapidly as
smaller and smaller subsets of the data were used. Further, it gave what would appear
to be implausible reconstructions for the interior nodes of the tree.
By comparison, the directional model detected the temporal trend toward increasing

cranial capacity and used it to make what would appear to be more accurate estimates
of the ancestral character-state at the root of the Hominid phylogeny. Its performance
did not deteriorate as rapidly in subsets of the data, and its reconstructions of interior
nodes seemed more plausible than those derived from the random-walk model.
Directional trends such as those observed in the cranial capacity data should always

be tested for as a first step in reconstructing the past. They are interesting in their
own right, and as shown here, may be important for developing accurate estimates
of ancestral states. Simple random-walk models are doomed always to reconstruct
the past in the image of the present, a feature of this approach that elsewhere I have
referred to as ‘recapitulating the present’ (Pagel 1991). Directional approaches can
escape this trap and reconstruct previously unobserved values at ancestral nodes.
The scaling parameters λ, κ, and δ make it possible to ask whether the data and

phylogeny fit the implicit assumptions of the model of evolutionary change. This is
important, as several authors have now questioned the general utility of independent
contrast techniques for analysing comparative data (Westoby et al. 1995; Ricklefs



284 Mark Pagel

and Starck 1996; Price 1997; Harvey and Rambaut 1998). Under some models of
evolution trait values can be partially or completely independent of phylogeny, and
most evolutionary change may take place in earlier branches of the phylogeny. Under
these circumstances, independent-contrast techniques can be shown to perform worse
than techniques that do not use a phylogenetic correction. I have argued elsewhere
(Pagel 1999b) that these situations can be detected by estimating the phylogeney scaling
parameter λ and the path-length scaling parameter δ.
Estimating these parameters for the Hominid cranial capacity data, the branch-

length scaling parameter κ allows one to reject a punctuational model of evolution
as a description of these data on the phylogeny. Then, by estimating δ, a non-linear
transformation of the path lengths is seen significantly to improve the fit of the model,
implying that rates of evolution have increased over time. The importance of these
results lies in demonstrating that signatures of past evolutionary trends are present in
the data and can be used to assess the appropriateness of a given evolutionary model
as a representation of those data. Where a given model is shown to be inadequate, for
example the random-walk and unscaled-directional models here, I have shown that it
may be possible to re-scale the phylogeny to find a better description of the data.
To my knowledge this is the first phylogenetic analysis of Hominid cranial capacity

data, despite the fact that the issue of the temporal trend of Hominid cranial capac-
ity has been much discussed and debated (see Pilbeam and Gould 1974; Aiello and
Wheeler 1995; Ruff et al. 1997, and references therein). Apart from being the cor-
rect approach statistically (e.g., Table 13.2), the phylogeny focuses attention on the
evolutionary pathways relevant to particular hypotheses. If one is interested in cranial
capacity increase in Homo per se, then, for example, the Australopithecines in Fig-
ure 13.2 that arise after A. afarensis are not pertinent. In fact, as Figure 13.6 shows,
removing them improves the reconstructed ancestral states for Homo.
More radical pruning of the phylogeny could apply were one interested in charac-

terising the evolutionary trajectory leading to, say, H. sapiens. The phylogeny shows
that numerous side branches of the Homo clade are not relevant to this trajectory.
One can, in fact, trace the unique path leading from the root toH. sapiens, and ignore
all other information. This might be dubbed the ‘backbone’ hypothesis to signify that
one has analysed only the direct line of descent leading to H. sapiens. Doing this sug-
gests (see Figure 13.3 and additional fossil data on Figure 13.6) that cranial capacity
has increased linearly with time, at least in the path leading to H. sapiens. This is
in contrast to the strongly curvelinear result reported in Table 13.2 and Figure 13.3,
although the number of data points is small.
I have assumed throughout that a single variance of evolutionary change applies

equally throughout the tree. Mooers et al. (1999) discuss a model in which this vari-
ance component is allowed to vary in every branch. Although not a practical model
of evolution, requiring at least as many parameters as branches in the tree, it provides
a useful general model against which to test more restricted models. If this general
model does not fit the data significantly better than a restricted one, it gives evidence
in favour of the simpler model. I have treated the phylogeny as being known without
error. This, of course, will seldom be true and so it may be desirable to incorporate
uncertainty about the phylogeny into estimates of ancestral states and other param-
eters of evolution. A new set of techniques based upon Markov-Chain-Monte-Carlo
(MCMC) methods may make this possible. MCMC methods afford the possibility in
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principle of integrating parameter estimates (or estimates of ancestral states) over a
random sample of phylogenies from the space of all possible phylogenies for a given
set of species (Wilson and Balding 1998; Larget and Simon 1999; Lutzoni et al. 2001).
The general prospect of reconstructing novel ancestral states receives encouraging

support from the Hominid data. Statistical models similar to those described here
have already been employed to question widely-held beliefs about events ranging from
the origin of life, to the Cambrian explosion and gene-culture evolution in human
societies (Pagel 1999b). Whether the directional trends that make it possible to infer
novel historical states are common or are confined only to some kinds of traits is
unknown. Nevertheless, where such reconstructions are derived from statisticalmodels
that provide ways of assessing their appropriateness to the data, they can increasingly
stand alongside other methods as independent branches of enquiry into the nature of
past events of biological evolution.
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Chapter 14

Summary

Peter L. Forey

In the introduction to this book we asked four questions of the relationship between
morphometrics and phylogeny reconstruction. We now need to review how fully those
questions have been answered – if at all – and to enquire if the attempt prompted new
enquiries.
The first two questions asked whether continuously distributed variables can be

used in our attempts at phylogeny reconstruction. The consensus among our authors
appears to be yes – under certain conditions. And it is in specifying those conditions that
authors have explored the concepts of homology in systematics and morphometrics
as well as the nature of a character as used in phylogenetic systematics.
Humphries (Chapter 2) points out that in phylogenetic reconstruction – which today

almost universally means phylogenetic systematics or cladistics – homology is a theory
that specifies relationships between taxa. The discovery of individual homologues is
an empirical procedure that consists of character recognition as well as subsequent
cladistic analysis. It is at the level of character recognition and character coding
that morphometrics and phylogeny reconstruction interact. In phylogeny reconstruc-
tion character recognition is usually described as primary homology (Humphries,
Chapter 2) and consists of three stages: (1) some estimation of topographic identity
and/or compositional identity; (2) measurement of these ‘identical’ features and group-
ing the measurements; (3) comparing the measurements to construct a data matrix to
be analysed (Brower and Schawaroch 1996; Stevens 2000).
The first stage is clearly a key stage, yet it is one which causes some confusion

between morphometrics and phylogenetic systematics. For instance, in criticising an
earlier paper of Zelditch et al. (1995) which proposed that landmarks (points) neces-
sarily embody the concept of homologyMacleod (1999) pointed out that the dorsal fin
placed along the back of a swordfish, an ichthyosaur and a whale could be described
as ‘triangular’ in all. In morphometric terms and the mathematical descriptions (e.g.,
landmark-referenced triangles) that we may wish to apply to describe the shape, the
triangle would be considered homologous. In terms of systematics such comparisons
would not even satisfy the first stage of homology recognition since these structures
are not compositionally the same in all three taxa. Therefore, to use morphometrics
to describe those fins as equal or non-equal in their triangularity is meaningless in
terms of phylogeny reconstruction. If we were to compare the triangular dorsal fins of
a goldfish, a minnow and a carp, then such comparisons would be meaningful since
all are compositionally the same (they have bony fin rays and a scaled web) and have
the same relationships to surrounding structures (they are supported by endoskeletal
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radial bones which from articular surfaces with the fin rays). Clearly, this information
does require some prior knowledge (see below).
Additionally, any key positions that we may take as landmarks in order to describe

differences in shape or aspect ratio between the taxa, such as the positions of articula-
tion of the first and last fin rays, could be justified as biological primary homologues.
In contrast, it needs to be stressed that the ‘points’ used as landmarks for morpho-
metric analysis cannot be regarded as theoretical equivalents to primary homologues.
Geometric landmarks are not themselves inherently biological homologues. Instead
they are points, chosen because of their geometric suitability and used to describe
spatial arrangements from other landmarks. In morphometrics it is the space between
the landmarks that is homologous. As Bookstein identified landmarks may be of three
kinds. So-called Type 1 landmarks are points located at junctions between different tis-
sues or structures. Type 2 landmarks are points at the maxima of curvature and Type 3
landmarks are points interpolated between the principal landmarks, sometimes used
to more accurately describe an outline.
Nevertheless, although the axioms of morphometric analysis do not recognise bio-

logical homologues, it is perfectly possible that Type 1 landmarks may correspond
to primary homologues in phylogenetic systematics. Therefore, the Swiderski et al.
claim (Chapter 6) that it is acceptable to use as phylogenetic characters morphometric
figures that are anchored to biologically homologous structures seems reasonable. But
this does imply three constraints on using landmark-based morphometric variables
as phylogenetic characters. The first is that a geometric landmark is, theoretically, an
infinitesimal point and it is unlikely to be truly homologous in spatial terms between the
taxa sampled. The second is that such variables may only be chosen from taxonomic
samples taken from within relatively low taxonomic ranks where there can be little
ambiguity about the biological primary homology of the landmarks (since homology
is a theory always subject to test – Chapter 2 – there will always be some ambiguity).
The third flows from the second because it means that we must have some idea of
the phylogeny to start with. Thus, we may be justified in using morphometric vari-
ables of dorsal fin shape as data for phylogeny reconstructions of different species
of ichthyosaurs, or different species of whales but not for phylogeny reconstruction
of different species of tetrapods. This is because our prior phylogenetic analysis has
already demonstrated non-homology of the dorsal fins of ichthyosaurs and whales. It
should be pointed out, however, that even in cladistic analysis using qualitative char-
acters some idea of a phylogeny is usually accepted in order to choose the outgroup
taxon used to root the tree although this is not a theoretical requirement.
Morphometrics, like initial recognition of characters in phylogenetic systematics, is

atemporal – it is agnostic to history (phylogeny). However, accepting the constraints
imposed by phylogeny, morphometrics can repay us in our attempts at phylogeny
reconstruction and it can do this at the second stage of character recognition – the
measurement of identical features. ‘Identical’ here means features that we have already
judged to be identical based on topographic similarity or composition. The various
ways in which shape can be measured (e.g., Bookstein Shape Coordinates, open-
curve eigenshape analysis, partial warps, creases etc. – see chapters by Macleod,
Swiderski et al., Bookstein, Rohlf, Polly) can help us to differentiate one shape group
from another, or to determine whether there really is a further shape to be consid-
ered (Macleod, Chapter 7), or indeed if the shape variation among the taxa we are
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considering is truly continuous or discontinuous. For instance, we may differentiate
by eye a leaf margin in some taxa as being round in some and arch-shaped in others.
Morphometric description of the margin may further reveal details about the symme-
try of this curvature as a further variable which may or may not co-vary with round
or arch-shaped.
And with morphometric variables there are other factors to be taken into account.

Rae (Chapter 4) mentions the problem of scaling caused by absolute size of the struc-
ture being assessed. He gives an example elaborated in Rae and Koppe (2000) where
the volume of the maxillary sinus, which formerly was thought to be variable among
anthropoids and hence of potential systematic value, is similar in all if scaled to cranial
size. Such correlation between the size of one structure and another raises another issue
that we must be aware of in using morphometric data – this is character dependence.
In a cladistic analysis each column of data – the character with characters states –
is assumed to be independent of each other and to imply relationships between taxa.
These relationshipsmay be consistent or conflict with relationships revealed by another
character. Clearly, if one character is dependent on another this assumption is vio-
lated. Thus, to use the volume of the maxillary sinus as one character and the cranial
capacity as another would effectively be entering the same data twice and weighting
that data. Morphometric variables are not unique in this respect but they may be par-
ticularly prone to correlation and covariance since a shape difference between taxa in
one parameter may automatically imply a difference in another.
Felsenstein (Chapter 3), in typical lucid style, gives an excellent account of howquali-

tative (morphometric) characters can be analysed with qualitative data (e.g., molecular
data) by using the trees produced by qualitative data to estimate covariance among
the quantitative data and then apply the results to select maximum likelihood trees for
all taxa including fossils. Thus, Felsenstein takes an iterative view by using qualitative
data to infer something about the evolution of the quantitative data which can then
be fed back into a total evidence approach.
Of course, morphometric variables are used freely at the level of diagnosis of one

species from another. In fish taxonomy, for instance, it is common practice to distin-
guish species A from species B on parameters such as relative head length, numbers
of vertebrae, numbers of fin rays in the different fins and the positions of these fins
relative to one another. What authors have explored in this book is the potential use
of similarity between one species and another in any or all of such variables as phy-
logenetically important characters. This exploration is perfectly justifiable since the
variation we exploit to distinguish taxa must have a phylogenetic basis (Cole et al.,
Chapter 10; Polly, Chapter 11). Arguments suggesting they have no theoretical place
in phylogenetic reconstruction (Pimental and Riggins 1987; David and Laurin 1996)
are, in our view, misplaced.
Having decided that it is both possible, in theory, and desirable in practice to include

morphometric data into phylogenetic analysis it becomes necessary to discuss ways in
which descriptions of shape may be captured most faithfully. This is included espe-
cially in chapters by Bookstein (Chapter 8), MacLeod (Chapter 7) and Swiderski et al.
(Chapter 6), but it is a recurring theme through others. As MacLeod and Swiderski
et al. point out, it is landmark-based morphometrics that are the most often used and
it is key to Swiderski et al.’s method of coding characters for phylogenetic analysis in
which they equate the landmark points with homologues. Swiderski et al. translate
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the relative positions of the landmarks into abstract characters useful for phylogenetic
analysis by comparing the aspects of landmark variation patterns, which is the charac-
ter, with a standard. The character states are the deviations from that standard which,
in the Swiderski et al. case, is taken as an outgroup taxon (in traditional morpho-
metric analysis the standard is taken as the mean of all shapes to be compared). The
deviations used are mathematical descriptions of the distortion or partial warp of a
thin plate spline, which is a method for expressing shape difference in different regions
of the form. What perhaps needs more careful attention is the danger of equating the
mathematical distortion of the landmarks with a theory about what actually happened
in the evolution of one shape from another. We run the risk of equating the use of
landmark morphometrics with transformational homology in phylogenetic systemat-
ics. It is possible that at some level they do coincide. The difficulty is in knowing at
what level they fail to do so.
Furthermore, as pointed out by MacLeod (1999) the use of landmarks alone does

not necessarily accurately describe the shape between them and can, in some cases,
be positively misleading (MacLeod 1999: figure 20). Therefore, the recommendations
made byMacLeod that the outline between landmarks is systematically important and
that morphometric strategies be developed to represent such data (e.g., Swiderski et al.,
McLeod) is an important extension of the landmarkmethod. One such extension is that
the outline between landmarks be divided into many equally-spaced semi-landmarks
(Bookstein 1997; McLeod 1999), each of which can be compared from individual to
individual or taxon to taxon as part of an open-curve. There is no implication that
each corresponding semi-landmark from taxon to taxon is homologous and perhaps
this is one of the drawbacks of such methods. Nevertheless, there is no doubt that
it does provide a more accurate description of the shape between accepted end-point
positions and it is considerably more detailed and subject to repeatability tests than the
ad hoc estimations of shape that systematists regularly make. MacLeod also challenges
the idea of using partial warps to describe the variation in landmark positions between
taxa, by describing a new relative warp method. This relative warp approach, offered
here for the first time, appears to be more successful at recovering a phylogenetic signal
than partial warp analysis.
One of the issues surrounding landmark-basedmorphometrics is raised by Bookstein

(Chapter 8) who is concerned about how many landmarks may be necessary to fully
describe a shape difference between individuals or between species. Bookstein recog-
nises that our morphometric descriptions of shape may be constrained by the variables
we choose to measure at the outset of our analysis and hence may not capture the full
or even the greatest shape difference. In its place Bookstein has developed a method
of creases which is a method which attempts to compare shapes in multidimensions
simultaneously and to localise the greatest shape difference along the crease.
Most authors, who question the use of morphometric variables, do so at the level

of the difficulty of translating such variables into the standard codings required for
cladistic analysis (Bookstein 1994). Historically, part of the difficulty with using mor-
phometric data is they are inherently variable along some kind of scale. The issue of
whether the variation of a particular feature of an organism is continuous or discon-
tinuous is clearly of more than passing interest because this has been seen as one of
the primary reasons for rejecting morphometric variables for phylogenetic analysis.
Several of the authors in this book raise this issue.
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It is true that much of the variation that is used for phylogenetic analysis is inherently
continuous even though our character state matrices suggest that only part of that
continuum is expressed in the taxa studied. For example, in six species of the fish
genus Alosa (shads) the number of gill rakers (fine comb-like bony filaments on the
gill arches used for filter feeding) upon the lower part of the first gill arch as recorded
byWhitehead (1985) ranges in total from 18 to 73. However, two species have 18–24,
a further two have 38–52 and the additional two have 59–73 (the variation within each
group arises because the number of gill rakers increases to a maximum throughout
growth). Thus although there is no apparent reason why species should not display
intervening numbers they do not and the actual distributions are non-overlapping. Of
course, it is always possible that were more species known in this particular feature
the separation of these six species into three distinct groups would break down. But
it is worth remembering that this can also happen with non-continuously distributed
variables. For instance, the presence or absence of a certain bone in the skull roof of
fishes can be subject to considerable individual variation (Hilton and Bemis 1999).
There is another issue raised in connection with continuous variables encountered

in morphometric analysis. For morphometric data, whether they be meristic measure-
ments or interlandmark ratios it is rare for two or more of the sampled individuals
for any one taxon to be identical. Therefore, some consideration needs to be given to
exactly which of the measurements represents the conditions that will be coded for in
any one taxon. Of course, if the terminal units of our analysis are individuals there
is no problem but phylogenetic analysis (as opposed to human genealogy) is rarely,
if ever, done at this level. We may take a mean or modal value, or perhaps a range
within one standard deviation or, when using landmarks, even employ some aver-
aging criterion such as Procrustes fit. But the fact remains that such morphometric
variables are abstractions which are not repeatable in any one individual and they
are seen to be subject to sampling problems and as such they have been criticised. To
some extent this criticism of morphometric data is unreasonable since sampling can
be equally problematic when using qualitative data for phylogenetic analysis. Thus,
the presence or absence of a particular feature may be variable within the population
and there may be doubt about which of the variants to use for analysis. Additionally
our sampling may only detect one or other condition, and that condition may be the
extreme minority variant. Wiens (2000) gives a good account of the problems and
some solutions to using frequency data of different character states in phylogenetic
analysis.
One new technique offered in this book is the method devised by Cole et al.

(Chapter 10). These authors suggest that we may use a parametric bootstrapping
technique to sample the total variation expressed by the studied taxa. Bootstrapping
has long been applied to the problems of sampling discrete characters following the
recommendations and techniques outlined by Felsenstein (1985) and a similar para-
metric approach is regularly used in the phylogenetic analysis of molecular data. In
this application of the bootstrap Cole et al. use the morphometric information of each
of the taxa as represented by scatters of landmark constellations. The bootstrap is now
applied by sampling the taxa with replacement to replicate the original total number of
taxa and some statistical value applied to each of the nodes on the phenogram record-
ing what percentage of times that particular node is recovered in repeated phenetic
analyses.
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A further aspect of morphometric variables often discussed is how samples of values
ranged along a continuum are divided up into discrete codes. There is a wealth of
literature on this subject and this is referred to in many of the chapters but especially
byReid and Sidwell (Chapter 5; see alsoWiens 2000). All of themethods have strengths
and weaknesses but one of the interesting conclusions arrived at by Reid and Sidwell
is that different methods result in different ways of describing the variation and these
may have different consequences for the results of phylogenetic reconstruction. Rae
(Chapter 4) advocates the use of homogeneous subset coding. Since the methods are
conventions it is not surprising that there is no agreement on one technique or another.
At the same time it would be wrong to reject these attempts simply because of the lack
of an agreed method. A simple perusal at data matrices compiled for qualitative data
also shows lack of agreement among different authors in translating observations into
codes for phylogenetic analysis (e.g., see Hawkins 2000). But perhaps one of the most
pertinent messages to come out of these discussions is the difficulty of using coding to
express overlapping variables in continually distributed data (MacLeod, Chapter 7).
Such codingsmay be used but only after the individual taxa have been recognised. Even
here they imply that the taxa will have polymorphic codings unless it be accepted that
individuals of two or more taxa which have the extreme (overlapping) variants are
ignored during the succeeding phylogenetic analysis.
The results of the exploration of using morphometric variables as characters to

construct a phylogeny show that there is no inherent reason why they should not be
used but there remain problems and agreed criteria by which such variables are to be
coded. Of course, this is no different from qualitative data.
A further question asked in the Introduction relates to ways in which morphometric

information can supplement our understanding of the paths of evolution as deduced
from phylogenetic information obtained from non-morphometric data. As Felsenstein
(Chapter 3) suggests quantitative characters (and this includes morphometric vari-
ables) will be of interest for themselves rather as characters to be used in phylogenetic
analysis. In its simplest form we can simply map morphometric data on to an already
existing phylogenetic tree. An example of this is given by Forey (1991) where he
mapped various metric parameters of the vertebral column (numbers of vertebrae,
spacing of vertebrae) on to a phylogeny of coelacanths. This study showed that during
coelacanth evolution there was both an increase in the number of vertebrae as well as
a progressive crowding of the vertebrae within the abdominal region of the vertebral
column.
A more sophisticated use of morphometric data is exemplified by Polly (Chapter 11)

who plots rates of evolution of shape changes – in this case the changes in cusp patterns
on the first lower molars in species of a primitive group of early Cenozoic carni-
vores. Rates of morphological evolution are questions increasingly asked, particularly
because of the potential tomake comparisonswith rates ofmolecular evolution. Polly’s
study is important because it is rare to be able to incorporate tight stratigraphic con-
trol that is beneficial to date divergence events. More often, in the absence of a good
stratigraphic record, trees are simply divided up into equal length branches with cor-
responding potential error for miscalculating rates of change. But here, it is possible
to record actual time intervals between ancestor and descendant or between com-
mon ancestors and daughter taxa which can be used to calculate the rate of change
per generation time. Such knowledge is clearly important, especially when applying



Summary 293

parsimony methods to reconstruct ancestral states or rates of evolution (Webster and
Purvis, Chapter 12).
Unfortunately, such precise dating of divergence times is not generally available

and it therefore becomes difficult to calculate rates of change independent of some
prior model of rate of change. A slightly different approach may be taken by trying
to estimate the ancestral conditions of morphometric variables rather than the rate
per se and this is done by Webster and Purvis and also by Felsenstein (Chapter 3).
Of course, when trying to estimate ancestral conditions the rate of evolution along
different branches theoretically bears on this attempt. In consequence maximum like-
lihood methods may at first seemmost reasonable since models of rates can be built in.
However, Webster and Purvis conclude that the parsimony methods, which take the
paths of least change, generally perform better at recovering probable ancestral states.
Rohlf (Chapter 9) develops one particular parsimony method to estimate the shape
characteristics at the internal nodes (ancestral positions) of a phylogeny. He applies
this to wing venation pattern described by landmarks positions over a phylogeny of
mosquitoes. Thus, the shape change in venation can be followed across the phylogeny.
This book has taken up a particularly difficult challenge in bringing together the

two disciplines of morphometric analysis and phylogenetic systematics. Historically,
these two have had little dialogue, yet they have much to offer each other as this
book has demonstrated. We cannot claim unanimity for including all morphometric
data into phylogenetic analysis or the precise way in which any of that data is to
be incorporated. Nor can we claim that a phylogenetic perspective is necessary for
morphometrics. What we do claim is that where the two overlap it results in benefits
to both, that the dialogue has been productive and should continue.
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backbone 14
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behavior 196, 211
bending energy 168, 172
bending-energy matrix 77, 119, 127, 179
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243

Billevittia adraini 105, 108–9, 125
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birds 2, 9
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Bookstein, F. L. 6, 125
bootstrap trees see tree (bootstrap)
bootstrapping 35, 194, 201
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245, 249, 251–3
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Callicebus moloch 263–4
Callicebus personatus 263–4
Callimico goeldii 263–4
Callithrix argentata 263–4
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Cebupitheca sarmientoi 263–5
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centroid size see size (centroid)
centroids 45, 48
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character coding problem 39
character correspondence 17
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clade(s) 197, 212, 256, 259, 260
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cladogenesis 111, 134
cladogram 10, 11, 13, 119–20, 123, 194–6,
201, 205, 208, 212, 214, 223–4, 234

cladogram (consensus) 224
cladogram (parsimonious) 123, 125
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clustering (neighbor-joining) 233
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coding (segment) 19–20, 47, 56, 63, 111, 113
coding (simple gap) 56, 61, 63
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coefficients (cophenetic correlation) 207, 212
coefficients (regression) 201
Colobinae 260
common ancestor see ancestor (common)
commutativity 119
comparative biology 13–14, 141
comparative method 4, 189, 231
component/factor analysis 3
condyle 91
congruence 2, 8, 71, 200
conjunction 2, 8, 71
conodont(s) 247–8, 261–2, 266
consistency index (CI) 125
constraints (developmental) 200
continuous variable see variables (continuous)
convergence 11, 69, 198
coordinates (Bookstein shape) 74, 106
(see shape coordinates)

coordinates (Kendall tangent space) 178, 182
coordinates (tangent space) 187
coronoid 90
coronoid process 74, 87, 89–90, 92, 96
corpus callosum 156–7, 160
correlation (character) 30
correlation 3, 114, 201
correlation matrix 88
correlations (developmental) 42
correlations (genetic) 42
correlations (selective) 42
correspondence (point-to-point) 2
correspondence (topological) 9, 17; see also
homology (topographical)

Cosomys primus 229
counts 8
covariance 3, 88, 101, 114, 125, 145, 178,
194, 236

covariances (additive genetic) 30–1
covariances (phylogenetic) 172
covariance (selective) 31
Coyote 224
crabs 10
cranial size 48
cranidium 121
Cranston, P. S. 120
crease(s) 6, 146–7, 151, 154, 161, 163, 166,
168–70

creases (ontogenetic) 171
Crisp, M. 103
crista galli 167
Culex 183–4

Culiseata 183–4
Curculionidae 68
cursorial species see species (cursorial)
curvature 2
cusps 147, 151, 236
Cuvier, G. 9
Cynomys ludovicianus 75–6, 79–83

Darwin, C. 9, 10–11, 15
deformation 92
deformation grids 115
Deinocerites 183–4
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diastema 89
diatom(s) 53, 56, 61–2
Didymictis 222, 232, 237
Didymictis leptomylus 223–5, 233, 243–6
Didymictis protenus 224–5, 227, 233, 243–6
Didymictis proteus 224–5, 232–3, 243, 245–6
difference between means tests 111
directional selection see selection (directional)
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113, 125–6, 131, 134, 139

discrete characters see characters (discrete)
discrete states see states (discrete)
distance (Euclidean) 206, 227–8, 232, 244
distance (Euclidean tangent) 227
distance (Manhattan) 180
distance (Procrustes tangent) 227, 230
distance (Procrustes) 141, 154, 165, 167–8,
177, 182, 221, 228, 236

distance measures 175
distances 46
distribution (character-state) 223
distribution (Dryden–Mardia) 141
distribution (log-rate–log-interval) 220, 230,
235–7

distribution (multivariate normal) 215
divergence (phylogenetic) 222
DNA 214
Dolichocebus 261
Dolichocebus gaimanensis 263–4
dorsal fin 2, 129
doublural notch 104
drift (random genetic) 250
Dryden–Mardia distribution see distribution
(Dryden–Mardia)

Dürer, A. 3

ecological covariances 101
Efron, B. 201
egg type 102
eigenanalysis 77, 114, 125–6
eigenshape analyses 67, 69, 87–8, 95
eigenshape analysis (extended) 67, 69, 90, 92
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eigenshapes 88
eigenvalues 204
eigenvectors 204
Eldredge, N. 234–5
elliptical condyle 73
elliptical Fourier analysis 67, 69, 85
enamel knots 236
Eocene 22, 221, 223
Equus germanicus 229
Euclidean distance 177–8
Euclidean matrix distance analysis (EDMA)
189, 203, 205–6, 215

Euclidean space see space (Euclidean)
eutherian mammals see mammals (eutherian)
evolution 6
evolution (molecular) 221
evolution (parallel) 11, 69, 198
evolution (rates of) 247
evolution (theory of) 10
extended eigenshape analysis see eigenshape
analysis (extended)

extinctions 197
eye 14
eye (color) 102
eye (shape) 128
eye (socket) 122, 124

Famennia bachae 121–2
Farris, J. S. 20, 47, 102
feathers 70
Felidae 256, 258
felids 221
Felsenstein, J. 5, 103, 201
fin rays 271
finches (Galapagos) 247
Fink, William 5
fish taxonomy see taxonomy (fish)
Fisher’s individual error rate test 257
fishes (bony) 215
fixed cheek 122, 124
flower petal 103
flowering plants 12, 68
flowers 12
folds 147, 151
foraminifera 247
forelimbs 9
form matrix see matrix (form)
form-difference matrix see matrix
(form-difference)

fossil record 198
fossils 10, 201, 221, 247–8, 259, 264
fossorial species see species (fossorial)
Fourier analysis 84, 94–5
Fourier harmonic series 94

Fourier harmonics 84–5, 87, 188
frequency (gene) 28–9
frequency (topological) 210
frogs 9
frontal bone 165
frugivore see species (frugivorous)
function 5
functional covariances 101
fur 2

G. exoticum 60
G. gibbii 58–60
G. pensacole 58–61
G. perthense 58, 60–1
G. turgidum 60–1
G. wansbeckii 58, 60–1
galagos 259
Gallon, F. 3
gap coding see coding (gap)
gap weighting 113
gap-coding methods 22
gaps (morphological) 20, 134, 139
genal spine 117
gene frequency see frequency (gene)
genealogical relationships 194
genealogy 11
generalized gap coding see coding (generalized
gap)

generalized least squares (GLS) 130, 172, 177,
184, 189, 227

generalized linear model 3, 252
generalized Procrustes analysis (GPA) 177
generation time 220
generation(s) 222, 231
genetic covariation 38
genetic drift 28–30, 37
genetic isolation 46
genetics 5, 211
genomics 37
geometric mean 49
geometric morphometric synthesis 4
geometry 2, 4, 139
geometry (non-Euclidean) 76, 178; see also
geometry (Procrustes)

geometry (Procrustes) 143, 160
glabella 105, 121–2, 166–7, 169
gradualist model 39
graticule 56
ground squirrels 74–5, 79

hair color 102
haldanes 230
Hennig program 53, 56, 61, 63
Hennig, W. 10, 11, 14
heritability 29
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Herpestidae 256
heterochrony 194
hierarchy 12
higher plants 53, 56
higher taxa 1
holotypes 170
hominins 169
Hominoidea 48, 260
hominoids 163
Homo 165–9
Homo heidelbergensis 163
Homo neanderthalensis 163
Homo sapiens 165
homologies 17, 13, 70, 82, 104, 115, 118;
see also coding, homologue

homologous correspondence 108
homologues 53, 65, 100, 114, 117, 127,
135, 176, 200, 214

homology 2, 5, 8–11, 16, 22, 54, 61, 65,
67, 69–71, 73, 76, 84, 87, 92, 95–6,
116, 118–19, 135, 139, 170, 215

homology (biological) 115, 126, 129, 135
homology (geometric) 115
homology (operational) 17
homology (primary) 2, 12, 14, 46; see also
primary homologues

homology (secondary) 12, 15, 17
homology (taxic) 118
homology (topographical) 14; see also
correspondence (topographical)

homology (transcendental) 116
homology (transformational) 12–13, 116
homoplasy 12, 68–9, 119, 194, 198–9,
214–15, 223

hoofed mammals see mammals (hoofed)
horse 9
HSO 50
Huelsenbeck, J. P. 201
humerus 2
Humphries, C. J. 5, 120
hyolaryngeal apparatus 213
Hyopsodus 229
hypertetrahedron 143
Hyracotherium grangeri 229

ichthyosaurs 2
image unwarping 183
incisor 72, 81
independent contrasts method 221, 248–9,
251, 254–5, 257, 265

independent variables see variables
(independent)

individuals 1, 46, 69, 88
ingroup 71, 114
integers 5, 19–20, 22, 53

internal nodes 11
interval-scale variables see variables
(interval-scale)

Ionoxalis 53, 56
isometry 48

jaw joint 73
jaws 10, 16, 81, 83
Johnson, G. D. 15

Kanisamys 229
Killer whale see whale (Killer)
Kluge, A. 47
Kruskal–Wallis test 257–8

Lagonimico conclutatus 263–4
Lagothrix 211–14
Lagothrix lagothricha 212, 263–4
landmark coordinates 176, 181
landmarks 3–6, 17–18, 67–68, 73–6, 78–81,
92, 95–6, 108, 115–17, 119, 129, 135, 141,
143–4, 151, 153, 155, 157, 163, 170, 172,
176, 177, 179, 182, 184, 189, 194–5,
202–3, 205, 212, 215, 221–2, 227, 236–7

landmarks (type 1) 116
landmarks (type 2) 116–17
landmarks (type 3) 116–17
Lanyon, S. 201
leaf lengths 22, 68
Least Weasel 224
leaves see lengths (leaf)
lengths (branch) 233
lengths (leaf) 22, 68
lengths (limb) 30, 71–2
Leonardo da Vinci 3
Leontopithecus chrysomelas 263–4
Leontopithecus rosalia 263–4
life history 196, 211
limb length see lengths (limb)
linear change 253
linearized Procrustes method 179
Littorina obtusata 229
Lutrinae 256, 258
Lynch, M. 119

Mackenziurus 105, 109, 121
Mackenziurus ceejayi 105, 108–9, 122, 124–5
Mackenziurus deedeei 104, 106, 108–9, 122
Mackenziurus joeyi 122
Mackenziurus johnnyi 122, 125
magnetostratigraphy 225
mammals 31, 221
mammals (eutherian) 47
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mammals (hoofed) 9
mammary glands 2
man 9
mandibles 69, 95
mandibular symphysis 74
Manhattan distance see distance (Manhattan)
Mansonia 183–5
Markov chain 41
Markov Chain Monte Carlo analysis 27, 41,
214

Marmota flaviventris 75–6, 79–82, 86, 89–92
marmotine jaws 85
marmotines 73–4, 95
Marmotini 69
marsupials 198
mastoid processes 71
matrix (cardinality difference) 209
matrix (cardinality) 208
matrix (form) 206
matrix (form-difference) 206
maxilla 163
maxillary sinus 47
maxillary sinus size see size (maxillary sinus)
maximum likelihood 181, 187, 221, 233, 237,
248–9, 251–2, 262, 266–7

means 201
measurements 8, 69
measurements (meristic) 1
meristic data 215
Mesotaxis asymmetricus 261–2
metamorphosis 13
metric characteristics see characters (metric)
metric data 45–6, 51
miacids 223
Michelangelo 3
Mickevich, M. F. 68
microscope (Reflex®) 227
Microtus pennsylvanicus 229
midbrain 153
Mohanamico hershkovitzi 263–4
molar shape see shape (molar)
molars 72, 213
molecular clock 233
molecular data 12, 27, 31–3, 35, 48, 100
molecular phylogeny 1
molecular sequence 28, 45
molecular sequence data 50, 237
molecular systematists 100
molecules 1, 100
monkeys 211, 263
monkeys (howler) 211
monkeys (spider) 211
monkeys (woolly spider) 211
monkeys (woolly) 211
monophyletic group(s) 11–12, 70, 112
monophyletic taxa 69

monophyly 12, 69, 84
Monte Carlo simulation 56
morphological characters see characters
(morphological)

morphological discontinuity see
discontinuities (morphological)

morphological novelty 4
morphometric data 8
morphometric relationships see relationships
(morphometric)

morphometrics (behavioral) 42
morphometrics (developmental) 43
morphometrics (functional) 42–3
morphospace see space (morphospace)
mosaic evolution 215
mosquitoes 175, 183–4
Mueller, L. D. 201
multiple regression, multivariate 187
multivariate analyses 16
multivariate morphometrics 46
Mus musculus 229
Mustelina 258
Mustelinae 256
Myrmecophagidae 68

nasal cavity 47
natural selection see selection (natural)
Naylor, G. 6, 119–20, 127
Neanderthals 169; see also
Homo neanderthalensis

Neosaimiri fieldsi 263–4
niche (phylogenetic) 197
non-Euclidean geometry see geometry
(non-Euclidean)

non-metric multidimensional scaling
(NMMDSA) 183, 185

non-uniform component 179, 188
North American Land Mammal Ages
223, 243

occipital furrow 122
Ockham’s razor 249
ontogenetic character 11, 17
ontogenetic sequences 71
ontogenetic series 171
ontogenetic studies 120
ontogeny 16, 188, 236
orientation 115, 176, 177
Origin of Species 10
Ornstein–Uhlenbeck model 252, 262
Ornstein–Uhlenbeck process 38
Orthopodomyia 183–4
Otariidae 256, 257–8
outgroup 71, 81, 114, 163, 188
outline segments 18
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117, 157, 176

overlap analysis 111–12
ovules 12
Owen, Richard 8–9, 13, 115, 135
Oxalis 53, 56, 61–2, 64

Pa element 247–8, 261, 266
Paleocene 222–3
Paleogene 220, 224
paleontological data 31
Palmatolepidae 266
Palmatolepis 261
Palmatolepis crepida 261–2
Palmatolepis gigas 261–2
Palmatolepis glabra distorta 261–2
Palmatolepis glabra lepta 261–2
Palmatolepis glabra pectinata 261–2
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parsimony 1, 40, 46, 49, 50, 53, 120–1, 126,
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267
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parsimony (weighted squared change) 248,
253–5

partial warp analysis 126
partial warp axes 127
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187–8

path analysis 3
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relationships (topological) 9
relative warp analysis 100, 108, 129
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stratigraphical data 6
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Struszia dimitrovi 104, 122, 125
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tetrahedrons 139–41, 143, 163, 165, 167–8
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thin-plate spline 76, 118, 139, 150, 154, 159,
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transformations (evolutionary) 194
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tree (bootstrap) 205
tree (molecular) 32–3
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Woodger, J. H. 10
Wyeomyia 183–4, 186

yellow-bellied marmot 75

Zahn and Roskies function 91–2, 94–5
Zahn, C. T. 87–90, 92, 94, 108
Zelditch, M. 5
zygomatic arch 72



Systematics Association Publications

Systematics Association Publications
1. Bibliography of key works for the identification of the British fauna and flora, 3rd
edition (1967)†
Edited by G. J. Kerrich, R. D. Meikie and N. Tebble
2. Function and taxonomic importance (1959)†
Edited by A. J. Cain
3. The species concept in palaeontology (1956)†
Edited by P. C. Sylvester-Bradley
4. Taxonomy and geography (1962)†
Edited by D. Nichols
5. Speciation in the sea (1963)†
Edited by J. P. Harding and N. Tebble
6. Phenetic and Phylogenetic classification (1964)†
Edited by V. H. Heywood and J. McNeill
7. Aspects of Tethyan biogeography (1967)†
Edited by C. G. Adams and D. V. Ager
8. The soil ecosystem (1969)†
Edited by H. Sheals
9. Organisms and continents through time (1973)†
Edited by N. F. Hughes
10. Cladistics: a pratical course in systematics (1992)∗

P. L. Forey, C. J. Humphries, I. J. Kitching, R. W. Scotland, D. J. Siebert and
D. M. Williams
11. Cladistics: the theory and practice of parsimony analysis (2nd edition) (1998)∗

I. J. Kitching, P. L. Forey, C. J. Humphries and D. M. Williams

∗ Published by Oxford University Press for the Systematics Association
† Published by the Association (out of print)

Systematics Association Special Volumes

1. The new systematics (1940)
Edited by J. S. Huxley (reprinted 1971)
2. Chemotaxonomy and serotaxonomy (1968)∗

Edited by J. C. Hawkes



306 Systematics Association Publications

3. Data processing in biology and geology (1971)∗

Edited by J. L. Cutbill
4. Scanning electron microscopy (1971)∗

Edited by V. H. Heywood
5. Taxonomy and ecology (1973)∗

Edited by V. H. Heywood
6. The changing flora and fauna of Britain (1974)∗

Edited by D. L. Hawksworth
7. Biological identification with computers (1975)∗

Edited by R. J. Pankhurst
8. Lichenology: progress and problems (1976)∗

Edited by D. H. Brown, D. L. Hawksworth and R. H. Bailey
9. Key works to the fauna and flora of the British Isles and northwestern Europe, 4th
edition (1978)∗

Edited by G. J. Kerrich, D. L. Hawksworth and R. W. Sims
10. Modern approaches to the taxonomy of red and brown algae (1978)
Edited by D. E. G. Irvine and J. H. Price
11. Biology and systematics of colonial organisms (1979)∗

Edited by C. Larwood and B. R. Rosen
12. The origin of major invertebrate groups (1979)∗

Edited by M. R. House
13. Advances in bryozoology (1979)∗

Edited by G. P. Larwood and M. B. Abbott
14. Bryophyte systematics (1979)∗

Edited by G. C. S. Clarke and J. G. Duckett
15. The terrestrial environment and the origin of land vertebrates (1980)
Edited by A. L. Pachen
16. Chemosystematics: principles and practice (1980)∗

Edited by F. A. Bisby, J. F. Vaughan and C. A. Wright
17. The shore environment: methods and ecosystems (2 volumes) (1980)∗

Edited by J. H. Price, D. E. C. Irvine and W. F. Farnham
18. The Ammonoidea (1981)∗

Edited by M. R. House and J. R. Senior
19. Biosystematics of social insects (1981)∗

Edited by P. E. House and J.-L. Clement
20. Genome evolution (1982)∗

Edited by G. A. Dover and R. B. Flavell
21. Problems of phylogenetic reconstruction (1982)
Edited by K. A. Joysey and A. E. Friday
22. Concepts in nematode systematics (1983)∗

Edited by A. R. Stone, H. M. Platt and L. F. Khalil
23. Evolution, time and space: the emergence of the biosphere (1983)∗

Edited by R. W. Sims, J. H. Price and P. E. S. Whalley
24. Protein polymorphism: adaptive and taxonomic significance (1983)∗

Edited by G. S. Oxford and D. Rollinson
25. Current concepts in plant taxonomy (1983)∗

Edited by V. H. Heywood and D. M. Moore



Systematics Association Publications 307

26. Databases in systematics (1984)∗

Edited by R. Allkin and F. A. Bisby
27. Systematics of the green algae (1984)∗

Edited by D. E. G. Irvine and D. M. John
28.The orgins and relationships of lower invertebrates (1985)‡
Edited by S. Conway Morris, J. D. George, R. Gibson and H. M. Platt
29. Infraspecific classification of wild and cultivated plants (1986)‡
Edited by B. T. Styles
30. Biomineralization in lower plants and animals (1986)‡
Edited by B. S. C. Leadbeater and R. Riding
31. Systematic and taxonomic approaches in palaeobotany (1986)‡
Edited by R. A. Spicer and B. A. Thomas
32. Coevolution and systematics (1986)‡
Edited by A. R. Stone and D. L. Hawksworth
33. Key works to the fauna and flora of the British Isles and northwestern Europe, 5th
edition (1988)‡
Edited by R. W. Sims, P. Freeman and D. L. Hawksworth
34. Extinction and survival in the fossil record (1988)‡
Edited by G. P. Larwood
35. The phylogeny and classification of the tetrapods (2 volumes) (1988)‡
Edited by M. J. Benton
36. Prospects in systematics (1988)‡
Edited by J. L. Hawksworth
37. Biosystematics of haematophagous insects (1988)‡
Edited by M. W. Service
38. The chromophyte algae: problems and perspective (1989)‡
Edited by J. C. Green, B. S. C. Leadbeater and W. L. Diver
39. Electrophoretic studies on agricultural pests (1989)‡
Edited by H. D. Loxdale and J. den Hollander
40. Evolution, systematics, and fossil history of the Hamamelidae (2 volumes) (1989)‡
Edited by P. R. Crane and S. Blackmore
41. Scanning electron microscopy in taxonomy and functional morphology (1990)‡
Edited by D. Claugher
42. Major evolutionary radiations (1990)‡
Edited by P. D. Taylor and G. P. Larwood
43. Tropical lichens: their systematics, conservation and ecology (1991)‡
Edited by G. J. Galloway
44. Pollen and spores: patterns of diversification (1991)‡
Edited by S. Blackmore and S. H. Barnes
45. The biology of free-living heterotrophic flagellates (1991)‡
Edited by D. J. Patterson and J. Larsen
46. Plant-animal interactions in the marine benthos (1992)‡
Edited by D. M. John, S. J. Hawkins and J. H. Price
47. The Ammonoidea: environment, ecology and evolutionary change (1993)‡
Edited by M. R. House
48. Designs for a global plant species information system (1993)‡
Edited by F. A. Bisby, G. F. Russell and R. J. Pankhurst



308 Systematics Association Publications

49. Plant galls: organisms, interactions, populations (1994)‡
Edited by M. A. J. Williams
50. Systematics and conservation evaluation (1994)‡
Edited by P. L. Forey, C. J. Humphries and R. I. Vane-Wright
51. The Haptophyte algae (1994)‡
Edited by J. C. Green and B. S. C. Leadbeater
52. Models in phylogeny reconstruction (1994)‡
Edited by R. Scotland, D. I. Siebert and D. M. Williams
53. The ecology of agricultural pests: biochemical approaches (1996)∗∗

Edited by W. O. C. Symondson and J. E. Liddell
54. Species: the units of diversity (1997)∗∗

Edited by M. F. Claridge, H. A. Dawah and M. R. Wilson
55. Arthropod relationships (1998)∗∗

Edited by R. A. Fortey and R. H. Thomas
56. Evolutionary relationships among Protozoa (1998)∗∗

Edited by G. H. Coombs, K. Vickerman, M. A. Sleigh and A. Warren
57. Molecular systematics and plant evolution (1999)
Edited by P. M. Hollingsworth, R. M. Bateman and R. J. Gornall
58. Homology and systematics (2000)
Edited by R. Scotland and R. T. Pennington
59. The Flagellates: unity, diversity and evolution (2000)
Edited by B. S. C. Leadbeater and J. C. Green
60. Interrelationships of the Platyhelminthes (2001)
Edited by D. T. J. Littlewood and R. A. Bray
61. Major events in early vertebrate evolution (2001)
Edited by P. E. Ahlberg
62. The changing wildlife of Great Britain and Ireland (2001)
Edited by D. L. Hawksworth
63. Brachipods past and present (2001)
Edited by H. Brunton, L. R. M. Cocks and S. L. Long
64. Morphology, shape and phylogeny (2002)
Edited by N. MacLeod and P. L. Forey

∗ Published by Academic Press for the Systematics Association
† Published by the Palaeontological Association in conjunction with

Systematics Association
‡ Published by the Oxford University Press for the Systematics

Association
∗∗ Published by Chapman & Hall for the Systematics Association


	Book Cover
	Title
	Contents
	List of contributors
	Preface
	Introduction: morphology, shape, and phylogenetics
	Homology, characters and continuous variables
	Quantitative characters, phylogenies, and morphometrics
	Scaling, polymorphism and cladistic analysis
	Overlapping variables in botanical systematics
	Comparability, morphometrics and phylogenetic systematics
	Phylogenetic signals in morphometric data
	Creases as morphometric characters
	Geometric morphometrics and phylogeny
	A parametric bootstrap approach to the detection of phylogenetic signals  in landmark data
	Phylogenetic tests for differences in shape and the importance of  divergence times: Eldredge's enigma explored
	Ancestral states and evolutionary rates of continuous characters
	Modelling the evolution of continuously varying characters on  phylogenetic trees: the case of Hominid cranial capacity
	Summary
	Index
	Systematics Association Publications

