

(يخّصنص بّ درجات للـيؤال الأول)
إجابة السيؤال الؤول: (إجباري)

竍

$$
\mu\left(\begin{array}{c}
1- \\
1- \\
Y
\end{array}\right)=\left(\begin{array}{c}
11- \\
11- \\
Y Y
\end{array}\right) \frac{1}{11}=\left(\begin{array}{c}
Y \\
\theta \\
y
\end{array}\right)\left(\begin{array}{ccc}
Y & \theta- & Y- \\
0 & 1 & V \\
1 & Y & Y
\end{array}\right) \frac{1}{11}=y_{0}^{1} p=\therefore
$$

$$
\left\langle\frac{1}{Y}\{(Y, 1-61-)\}=\text { C.f } \therefore\right.
$$

［気

$$
r\left(1 r_{0}\right)+r(r \cdot a)+r\left(1 q_{0}\right) b \frac{1}{\Gamma}=
$$

$$
\begin{aligned}
& \text { 立 } \quad(F \cdot 6.64)=-6\left(46 \Lambda_{6}, 1\right)=46(.6461 \theta)=1 \therefore
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
y \\
\theta \\
y
\end{array}\right)=\left(\begin{array}{c}
u \\
\nu \\
\varepsilon
\end{array}\right)\left(\begin{array}{lll}
y & 1 & 1 \\
1 & 1- & Y- \\
\mu & 1- & 1
\end{array}\right) \quad \therefore \\
& \frac{1}{Y} .11=(1+Y) Y+(1-Y-)|-(1+Y-)|=\left|\begin{array}{lll}
Y & 1 & 1 \\
1 & 1- & Y- \\
Y & 1- & 1
\end{array}\right|=|P| \therefore \\
& \frac{1}{r}\left(\begin{array}{ccc}
\mu & \theta_{-} & Y- \\
\theta_{-} & 1 & V \\
1 & Y & \mu
\end{array}\right) \frac{1}{11}=\left(\begin{array}{ccc}
\mu & V & Y \\
Y & 1 & \theta_{-} \\
1 & \theta_{-} & r
\end{array}\right) \frac{1}{11}={ }^{11} p
\end{aligned}
$$

[uان

$$
\frac{V}{\xi}=\frac{1+r-N}{r} \therefore \quad \frac{V}{\xi}=\frac{r^{v^{2}}}{1-r^{v^{2}}} \because
$$

6 $\left.\frac{1}{Y}(1) \leftarrow \quad \xi-\sim \right\rvert\, 1-N \& \therefore$

$$
\frac{q}{q}=\frac{1-r^{v^{N}}}{Y-r^{2}} \because
$$

$$
\frac{r}{r}=\frac{1+v-v \mid r-v}{1-N} \times \frac{v}{1-v 1+v-N} \therefore
$$

$$
\frac{Y}{H}=\frac{r-\sigma}{\frac{Y-N}{1-N}} \times \frac{1-N N}{Y-v(1-v)^{\theta}} \therefore
$$

$$
\frac{1}{Y}(Y) \leftarrow|\cdot-=r| \cdot-N:
$$

[ultald

$$
\left(Y_{6} \varepsilon-6 Y-\right)=\stackrel{K}{Y}
$$

(Y) 6 (1) (1) ©

$$
\text { 会 } u \text { نئ }
$$

إهابةا النسيؤال الرابع: الجهز

$$
\frac{1}{\mathrm{p}} \quad \uplus \Lambda-=[(\uplus+\theta)-(\uplus-\theta)] \varepsilon=(r \xi-i \sigma)^{\varepsilon}=\varepsilon
$$

$$
\left.\frac{\pi-}{r}=(\theta>) v \therefore \quad \frac{\Lambda-}{\lambda}=\theta \text { b } \quad, \quad \Lambda={ }^{r}(\Lambda-)\right) \downarrow=J \therefore
$$

$$
\frac{1}{r}\left(\frac{\pi-}{r} \pm+\frac{\pi-}{r} \frac{\operatorname{Li}}{r}\right) \wedge={ }^{\frac{\pi-}{r}} \Rightarrow \lambda=\varepsilon \in
$$

[

$$
\dot{\min }=(\bar{\rho}-\bar{\jmath}) \cdot \tilde{N} \because
$$

命

$$
\frac{1}{Y} \text { 侖 }=Y Y+\varepsilon 17+418+w^{2} \therefore
$$

$$
\begin{aligned}
& \left\langle\frac{1}{Y}\{ \right. \\
& \dot{4}-\theta=\frac{\ddot{-1}}{4-1} \times \frac{4 \varepsilon+7}{\unlhd+1}=16 \\
& \ddot{4}+\theta=\frac{\ddot{H}+\theta}{4+\theta} \times \frac{Y \text { Y }}{\ddot{4}-\theta}={ }_{\gamma \varepsilon}
\end{aligned}
$$

.

$$
\Leftarrow \widehat{\hat{\mathrm{r}}}
$$

$$
\left|\begin{array}{ccc}
\rightarrow- & y- & 0 \rightarrow+{ }^{r} u+1 \\
1 & 1 & \\
1 & \ddots & \cdot \\
1 & & \vdots \\
& & ++^{r}++1=
\end{array}\right|
$$

$$
\frac{1}{\psi} \quad w=u_{0} \therefore \therefore
$$

$$
\frac{1}{Y} 1 \text { YO }={ }_{\theta}^{\mu}=w \therefore
$$

$$
\begin{aligned}
& \left\langle\frac{1}{p} q=\sim_{0} \operatorname{m}^{\mu} \therefore\right.
\end{aligned}
$$

