Impedance

The impedance Z of a resistance R in series with a reactance X is:
Z=R+jX

Rectangular and polar forms of impedance Z:
Z=R+jX=R"+X)"Ztan (X /R) = |Z| 2 = |Z|cos$ + j|Z|sind
Addition of impedances Z; and Z,:

Zi+Z,= Ry +jX)) + R; +jX2) = Ry + Ry) + j(Xi + Xa)
Subtraction of impedances Z; and Z,:

Zi-Zy= (R, +jX1) - (R +jX2) = (R; - Ry) + j(Xi - Xa)
Multiplication of impedances Z; and Z,:

Ly * Ly = |n| Ly * |Zo| LYz = (|Z4] * |Zo] ) £($1 + $2)

Division of impedances Z; and Z,:

Ly 2y = Zn| L9y | |Zo| LYz = (1Z4] ] |Zo] ) £($1 — §2)

In summary:

- use the rectangular form for addition and subtraction,

- use the polar form for multiplication and division.

Admittance

An impedance Z comprising a resistance R in series with a reactance X can be converted to an admittance Y
comprising a conductance G in parallel with a susceptance B:
Y=Z"=1/R+jX)=R-jX)/R*+X)=R/R*+XH)-jX/R*+X})=G-jB
G=R/R*+X»)=R/|Z)

B=X/R+X)=X/|Z)

Using the polar form of impedance Z:

Y =1/|Z|2é = |Z| " 2~ = |Y|Z=¢ = [Y]|cos$ - j|Y|sin¢

Conversely, an admittance Y comprising a conductance G in parallel with a susceptance B can be converted to an
impedance Z comprising a resistance R in series with a reactance X:
Z=Y'=1/(G-jB)=(G+jB)/(G*+B)=G/(G*+B) +jB/(G*+B)=R+jX
R=G/(G*+B)=G/|Y]

X=B/(G*+B)=B/|Y|

Using the polar form of admittance Y:

Z=1/|Y|Z==Y|"2d=|Z|£6 = |Z|cosp + j|Z|sind

The total impedance Zg of impedances Z4, Z,, Z3,... connected in series is:

Zs = Z] + Z| + Z| +...

The total admittance Yp of admittances Yy, Y3, Y3,... connected in parallel is:

Yp = Y] + Y] + Y] +.ee

In summary:

- use impedances when operating on series circuits,

- use admittances when operating on parallel circuits.

Reactance

Inductive Reactance

The inductive reactance Xy, of an inductance L at angular frequency ® and frequency f is:

Xy, = oL =2nfL

For a sinusoidal current i of amplitude I and angular frequency ®:

i=1Isinot

If sinusoidal current i is passed through an inductance L, the voltage e across the inductance is:
e =L di/dt = oLI cosot = X I cosot

The current through an inductance lags the voltage across it by 90°.

Capacitive Reactance

The capacitive reactance Xc of a capacitance C at angular frequency ® and frequency f is:
Xc=1/w0C=1/2zrfC

For a sinusoidal voltage v of amplitude V and angular frequency o:

v =V sinot

If sinusoidal voltage v is applied across a capacitance C, the current i through the capacitance is:
i=Cdv/dt=®CV cosnt =V cosot / Xc

The current through a capacitance leads the voltage across it by 90°.



Resonance

Series Resonance

A series circuit comprising an inductance L, a resistance R and a capacitance C has an impedance Zg of:
Zs=R+j(Xy - Xc)

where X1, = oL and Xc=1/®C

At resonance, the imaginary part of Zg is zero:

XC = XL

ZSr =R

o, = (1/LC)" =2xf,

Parallel resonance

A parallel circuit comprising an inductance L with a series resistance R, connected in parallel with a capacitance C,
has an admittance Yp of:

Yp=1/R+jXp)+1/(-jX0)=R/ R+ X)) - j(X/ (R*+X.%) -1/ Xc)

where X1, = oL and Xc=1/®C

At resonance, the imaginary part of Yp is zero:

Xc=R*+X ) /X =X, + R/ X, =X (1+R*/ X))

Zer=Yn' =R+ X )/R=XXc/R=L/CR

o, =(1/LC - R*/LY"=2xf,

Note that for the same values of L, R and C, the parallel resonance frequency is lower than the series resonance
frequency, but if the ratio R/ L is small then the parallel resonance frequency is close to the series resonance
frequency.

Reactive Loads and Power Factor

Resistance and Series Reactance

The impedance Z of a reactive load comprising resistance R and series reactance X is:
Z=R+jX=|Z|Lp

Converting to the equivalent admittance Y:
Y=1/Z=1/R+jX)=R-jX)/R*+X)=R/|Z]-jX/|Z]

When a voltage V (taken as reference) is applied across the reactive load Z, the current I is:
I=VY=VR/|Z-jX/|Z})=VR/|Z] - jVX /|Z]’ =Tp - jIq

The active current Ip and the reactive current I are:

Ip = VR / |Z|* = |I|cosd

Io=VX/|Z|* = [I|sind

The apparent power S, active power P and reactive power Q are:

S=VI|I|=V2/|Z|= 12|

P=VI,=1,}|Z?/R=VR/|Z = IR

Q=VIo=I1JZ|*/ X =V*X/|Z* = |I’X

The power factor cos¢ and reactive factor sin¢ are:

cosd=1Ip/|I|=P/S=R/|Z|

sing=1o/[1|=Q/S=X/|Z|

Resistance and Shunt Reactance

The impedance Z of a reactive load comprising resistance R and shunt reactance X is found from:
1/Z=1/R+1/jX

Converting to the equivalent admittance Y comprising conductance G and shunt susceptance B:
Y=1/Z=1/R-j/X=G-jB=|Y|Z—}

When a voltage V (taken as reference) is applied across the reactive load Y, the current I is:
I=VY=V(G-jB)=VG-jVB=1I;-jlg

The active current Ip and the reactive current I are:

Ip=VG=V/R=|l|cosd

Io=VB=V/X=|lsing

The apparent power S, active power P and reactive power Q are:

S=VII|=1/|Y|= VY|

P=VI=1;’/G=I’G/|Y}?=V*G

Q=VIp=1y>/B=I’B/|Y=V’B

The power factor cos¢ and reactive factor sin¢ are:

cosd=Ip/|[I|=P/S=G/|Y|

sing=1o/[1|=Q/S=B/|Y|



Complex Power

When a voltage V causes a current I to flow through a reactive load Z, the complex power S is:
S = VI* where I* is the conjugate of the complex current I.

Inductive Load

Z=R+jX.

I= Ip - jIQ

cos¢ =R /|Z| (lagging)

I*=1Ip +jlo

S=P+jQ

An inductive load is a sink of lagging VArs (a source of leading VArs).
Capacitive Load

Z=R-jXc

I=1Ip+jlo

cosd =R /|Z]| (leading)

I* = Ip - j]Q

S=P-jQ

A capacitive load is a source of lagging VArs (a sink of leading VArs).

Three Phase Power

For a balanced star connected load with line voltage Vj,e and line current Ijipe:
Vstar = Vline / '\13

Istar = ]line

Zstar = Vstar / Istalr = Vline / ‘\l3lline

Sstar = 3Vstar]star = VsVIineIline = \IIine2 / Zstar = 3Iline2Zstar

For a balanced delta connected load with line voltage Vi, and line current Ijpe:
Vdelta = Vline

Taetta = Tine / V3

Zdelta = Vdelta / Idelta = ‘/3Vline / IIine

Sdelta = 3Vdelta]delta = ‘I3Vlinelline = 3\IIine2 / Zdelta = IIinedeelta

The apparent power S, active power P and reactive power Q are related by:

S2 - PZ + Q2
P =Scosd
Q = Ssin¢

where cos¢ is the power factor and sin¢ is the reactive factor
Note that for equivalence between balanced star and delta connected loads:
Zdelta = 3Zstar

Per-unit System

For each system parameter, per-unit value is equal to the actual value divided by a base value:

Epu =E/ Ebase

]pu =1/ Ibase

Zpu =7/ Zbase

Select rated values as base values, usually rated power in MV A and rated phase voltage in kV:

Sbase = Srated = '\I3Elinelline

Ebase = Ephase = Eline/ ‘13

The base values for line current in kA and per-phase star impedance in Ohms/phase are:

Ibase = Sbase / 3Ebase ( = Sbase / ‘/3Eline)

Zbase = Ebase / Ibase = 3Ebase2 / Sbase ( = Eline2 / Sbase)

Note that selecting the base values for any two of Spase, Ebases Ibase OF Zpase fixes the base values of all four. Note also
that Ohm's Law is satisfied by each of the sets of actual, base and per-unit values for voltage, current and
impedance.



Transformers

The primary and secondary MV A ratings of a transformer are equal, but the voltages and currents in the primary
(subscript 1) and the secondary (subscript ,) are usually different:

‘I3Enineluine =8= ‘I3E21ine121ine

Converting to base (per-phase star) values:

3E1basellbase = Sbase = 3E2base12base

Elbase / E2base = I2base / Ilbase

Zlbase / Z2base = (Elbase / EZbase)2

The impedance Z,y, referred to the primary side, equivalent to an impedance Z,p, on the secondary side, is:
Z2]pu = ZZpu(Elbase / EZbase)2

The impedance Zi,p, referred to the secondary side, equivalent to an impedance Z,, on the primary side, is:
Z12pu = leu(E2base / Elbase)2

Note that per-unit and percentage values are related by:

Zpy="7Zv, 1100

Symmetrical Components

In any three phase system, the line currents I,, I}, and I, may be expressed as the phasor sum of:
- a set of balanced positive phase sequence currents Iy, I,y and Iy (phase sequence a-b-c),

- a set of balanced negative phase sequence currents I, I, and I, (phase sequence a-c-b),

- a set of identical zero phase sequence currents I,g, Ing and Iy (cophasal, no phase sequence).
The positive, negative and zero sequence currents are calculated from the line currents using:
L= (I, + hI, + h’L) /3

Lo=(I,+hI, +hl)/3

Lo=(+1,+1)/3

The positive, negative and zero sequence currents are combined to give the line currents using:
Ia = Ial + IaZ + IaO

Ty = Ipy + Ipp + Typ = Ly + hI + Ly

Lo =l + Lo + Lo = hlyy + WL + L

The residual current I, is equal to the total zero sequence current:

=T+l +lo=3Lo=L+I,+ =1

which is measured using three current transformers with parallel connected secondaries.

I is the earth fault current of the system.

Similarly, for phase-to-earth voltages V., Vpe and V., the residual voltage V, is equal to the total zero sequence
voltage:

Vr = Va(] + Vb() + VcO = 3Va0 = Vae + Vbe + Vce = 3Vne

which is measured using an earthed-star / open-delta connected voltage transformer.

V. 1s the neutral displacement voltage of the system.

The h-operator

The h-operator (1.£120°) is the complex cube root of unity:

h=-1/2 +j\/3 /12=1/£120° = 1£-240°

h?=-1/2-jV3/2=1£240°=1£-120°

Some useful properties of h are:

1+h+h*=0

h+h’=-1=1/180°

h - h% = jV3 =3.290°

h?-h=-jV3 =32£-90°



Fault Calculations

The different types of short-circuit fault which occur on a power system are:

- single phase to earth,

- double phase,

- double phase to earth,

- three phase,

- three phase to earth.

For each type of short-circuit fault occurring on an unloaded system:

- the first column states the phase voltage and line current conditions at the fault,

- the second column states the phase 'a' sequence current and voltage conditions at the fault,
- the third column provides formulae for the phase 'a' sequence currents at the fault,

- the fourth column provides formulae for the fault current and the resulting line currents.
By convention, the faulted phases are selected for fault symmetry with respect to reference phase 'a'.
1= fault current

I = earth fault current

E, = normal phase voltage at the fault location

Z., = positive phase sequence network impedance to the fault

7, = negative phase sequence network impedance to the fault

Z,, = zero phase sequence network impedance to the fault

Single phase to earth - fault from phase 'a' to earth:

Va=0 |a1=|az=|ao=|a/3 |a1=Ea/(Z1+Zz+Zo) |f=3|aO=3Ea/(Z1+ZZ+ZO)=Ie
lb=1.=0 Va1 # Vg +Vy =0 laz2 = laq la=1s=3E,/ (Z4 + Z; + Z,)
If=|a=|e Ia0=|a1

Double phase - fault from phase 'b' to phase 'c":

Vb=V, lag +1,2=0 la1 = Eal (Z1 + Z3) l¢= - j\3la1 = - jV3Ea / (Z4 + Z)
.,=0 lo=0 lag = - lag b =1¢=-jV3E./ (Z1 + Z))
li=lp=-1c Va1 = Vap lg = 0 Ic = - 1¢=JV3E, | (Z1 + Z))

Double phase to earth - fault from phase 'b' to phase 'c' to earth:

Vb=Vc=0
.=0
If=|b+|c=|e

Ia1 + |a2 + IaO =0
Va1 = Va2 = vaO

Ia1 = Ea / Znet
la2 = = 1a1Zo [ (Z2 + Zo)
lao = - laiZa | (Z2 + Zy)

l=3l0=-3E.Z,/Z,, =,
l=15/2-jV3E.(Z2/ 2+ Zo) | =,,
le=1s/2+jV3EL(Z2 ]2 + Zo) | =,,

Znet = Z] + ZzZ(] / (Z2 + Zo) and Zzz = Z]Zz + Z2Z0 + Z()Z] = (Zz + ZO)Znet
Three phase (and three phase to earth) - fault from phase 'a' to phase 'b' to phase 'c' (to earth):

Vo=V, =V (=0)
|a+|b+|c=o(=|e)
l;=1,=hl, = h%,

Vao =V, (=0)
Va1 = Vaz =0

li=EalZ4
|a2=0
|ao=0

li=la=EilZy =1,
|b=Eb/Z1
lo = E./ Z4

Note that the single phase fault current is greater than the three phase fault current if Z, is less than (2Z, - Z,).
The values of Z;, Z, and Z, are each determined from the respective positive, negative and zero sequence
impedance networks by network reduction to a single impedance.

Note that if the system is earthed through an impedance Z, (carrying current 3I,) then an impedance 3Z, (carrying
current Iy) must be included in the zero sequence impedance network.

Three Phase Fault Level

The symmetrical three phase short-circuit current I, of a power system with no-load line and phase voltages Ejipe
and Eppase and source impedance Zg per-phase star is:

Isc = Ephase / |ZS| = Eline / ‘I3|ZS|

The three phase fault level S, of the power system is:

Sse = 3’| Zs| = 3Ephaselse = 3Epnase” / |Zs| = Eiine” / | Zs|

Note that if the X / R ratio of the source impedance Zs (comprising resistance Rg and reactance Xg) is sufficiently
large, |Zs| = Xs.



Power Factor Correction

If an inductive load with an active power demand P has an uncorrected power factor of cos¢; lagging, and is
required to have a corrected power factor of cos¢, lagging, the uncorrected and corrected reactive power demands,
Q; and Q,, are:

Q; =P tan¢,

Q, =P tan¢,

where tand, = (1 / cos’, - 1)

The leading (capacitive) reactive power demand Q¢ which must be connected across the load is:

Qc = Qq - Q=P (tan¢, - tan¢,)

The uncorrected and corrected apparent power demands, Sy and S,, are related by:

Sicosd; =P = S,cosd,

Comparing corrected and uncorrected load currents and apparent power demands:

L/ 1; =8,/ 81 =cosd; / cosd,

If the load is required to have a corrected power factor of unity, Q, is zero and:

QC = Q| =P tam])]

]2/[] =Sz/Sl=COS¢1=P/S]

Shunt Capacitors

For star-connected shunt capacitors each of capacitance Cg,, on a three phase system of line voltage Vi, and
frequency f, the leading reactive power demand Qcg,r and the leading reactive line current Iy, are:

QCstar = Vline2 / XCstar = 2ﬂ:sztaerinez

]line = QCstar / '\I3Vline = Vline / ‘\I3XCstar

Cstar = QCstar / 27'|:fVline2

For delta-connected shunt capacitors each of capacitance Cgera On a three phase system of line voltage Vi, and
frequency f, the leading reactive power demand Qcgeita and the leading reactive line current Iy, are:

Qcuetta = 3Vine’ / Xcaetta = 67 CoeiaViine

Tine = Qcaetta / Y3Viine = Y3Viine / Xcetta

Caetta = Qcaetta / 67 Viine”

Note that for the same leading reactive power Qc:

XCdelta = 3)(Cstar

Cdelta = Cstar /3

Reactors

Shunt Reactors

For star-connected shunt reactors each of inductance Ly, on a three phase system of line voltage V), and frequency
f, the lagging reactive power demand Qy,, and the lagging reactive line current Iy, are:

QLstar = Vlinez / XLstar = \Iline2 / 2nfl—*star

]line = QLstar / ‘I3VIine = Vline / ‘I3XLstar

Lstar = \IIine2 / 2TI:f()Lstar

For delta-connected shunt reactors each of inductance Lgea 0n a three phase system of line voltage Vi, and
frequency f, the lagging reactive power demand Qpger. and the lagging reactive line current Iy, are:

Quaetta = 3Viine” / Xrdetta = 3Viine / 27fLaetta

Tine = Qractta / V3Viine = V3Viine / XLaeita

Ldelta = 3\Iline2 / 2Tl:f()Ldelta

Note that for the same lagging reactive power Qy,:

XLdelta = 3XLstar

Ldelta = 3Lstar

Series Reactors

For series line reactors each of inductance Lgeries carrying line current Iy, on a three phase system of frequency f, the
voltage drop Vgrop across each line reactor and the total lagging reactive power demand Qperies Of the set of three
line reactors are:

Vdrop = IIine)(Lselries = 2Tl:fLseriesIline

QLseries = 3\Idrop2 / XLseries = 3\Idroplline = 3Iline2XLseries = 6nfLseriesIIine2

Lseries = QLseries / 6'":f[linez

Note that the apparent power rating Sy.ting Of the set of three line reactors is based on the line voltage Vi, and not
the voltage drop V grep:

Srating = -\I3Vlinelline



Harmonic Resonance

If a node in a power system operating at frequency f has a inductive source reactance Xy, per phase and has power
factor correction with a capacitive reactance Xc per phase, the source inductance L and the correction capacitance C
are:

L= XL /®

C=1/wXc

where © = 2nf

The series resonance angular frequency ®, of an inductance L with a capacitance C is:

o,=(1/LC)"=woXc/ X"

The three phase fault level S, at the node for no-load phase voltage E and source impedance Z per-phase star is:
See =3E?/|Z|=3E*/ R +jX,|

If the ratio Xy, / R of the source impedance Z is sufficiently large, |Z| = Xy, so that:

Se ~3E?/ Xy,

The reactive power rating Q¢ of the power factor correction capacitors for a capacitive reactance Xc per phase at
phase voltage E is:

Qc=3E*/Xc

The harmonic number f, / f of the series resonance of X, with Xc is:

f./f=0,/0=Xc/X))"~ (Sx/ Q)"

Note that the ratio Xy, / X¢ which results in a harmonic number f, / f is:

Xy /Xc=1/(f /1)

so for £, / f to be equal to the geometric mean of the third and fifth harmonics:

f./f=~15=3.873

XL/ Xc=1/15=0.067

Dielectric Dissipation Factor

If an alternating voltage V of frequency f is applied across an insulation system comprising capacitance C and
equivalent series loss resistance Rg, then the voltage Vg across Rg and the voltage V¢ across C due to the resulting
current I are:

VR = IRS

VC = IXC

V= (V& +Vc)*

The dielectric dissipation factor of the insulation system is the tangent of the dielectric loss angle & between V¢ and
V:

tand = Vr/ VC = Rs / XC = ZTCfCRs

Rs = Xctand = tand / 2nfC

Note that an increase in the dielectric losses of a insulation system (from an increase in the series loss resistance Rg)
results in an increase in tand. Note also that tand increases with frequency.

The dielectric power loss P is related to the capacitive reactive power Q¢ by:

P = I’'Rg = I’Xctand = Qctand

The power factor of the insulation system is the cosine of the phase angle ¢ between Vi and V:

cosd=Vi/V

so that 8 and ¢ are related by:

8+ ¢=90°

tand and cos¢ are related by:

tand = 1/ tand = cos¢ / sing = cos¢ / (1 - cos’$p)”

so that when cos¢ is close to zero, tand = cos¢

Note that the series loss resistance Rg is not related to the shunt leakage resistance of the insulation system (which is
measured using direct current).



Notation

The library uses the symbol font for some of the notation and formulae. If the symbols for the letters 'alpha beta
delta' do not appear here [a B 8] then the symbol font needs to be installed before all notation and formulae will be
displayed correctly.

C capacitance [farads, F] Q charge [coulombs, C]
E voltage source [volts, V] q instantaneous Q [coulombs, C]
e instantaneous E [volts, V] R resistance [ohms, Q]

G conductance [siemens, S] T time constant [seconds, s]

| current [amps, A] t instantaneous time [seconds, s]

i instantaneous | [amps, A] \') voltage drop [volts, V]

k coefficient [number] \ instantaneous V [volts, V]

L inductance [henrys, H] W energy [joules, J]

M mutual inductance [henrys, H] (o} magnetic flux [webers, Wb]
N number of turns [number] ¥ magnetic linkage [webers, Wb]
P power [watts, W] " instantaneous ¥ [webers, Wb]
Resistance

The resistance R of a circuit is equal to the applied direct voltage E divided by the resulting steady current I:
R=E/I

Resistances in Series

When resistances Ry, R, Rj, ... are connected in series, the total resistance Rg is:
RS=R1+R2+R3+...

Voltage Division by Series Resistances

When a total voltage Eg is applied across series connected resistances Ry and R,, the current I which flows through
the series circuit is:

IS=Es/RS=Es/(R|+R2)

The voltages V; and V, which appear across the respective resistances Ry and R, are:

V| = IsR1 = EsR1 / Rs = EsR] /(R1 + Rz)

V2 = IsR2 = Est / Rs = Est / (R] + Rz)

In general terms, for resistances Ry, Rj, Rj, ... connected in series:

]S=Es/Rs=Es/(R|+R2+R3+...)

Vn = ISRn = EsR" / RS = ESRn / (R] + Rz + R3 + ...)

Note that the highest voltage drop appears across the highest resistance.

Resistances in Parallel

When resistances Ry, Ry, Rj, ... are connected in parallel, the total resistance Rp is:
1/Rp=1/Ri+1/R,+1/R3+...

Alternatively, when conductances Gy, G;, G, ... are connected in parallel, the total conductance Gp is:
GP=G|+G2+G3+...

where G, =1/R,

For two resistances R; and R, connected in parallel, the total resistance Rp is:

Rp = R]Rz / (R] + Rz)

Rp = product / sum

The resistance R, to be connected in parallel with resistance R; to give a total resistance Rp is:
R; =R(Rp/ (R; - Rp)

R; = product / difference



Current Division by Parallel Resistances

When a total current Ip is passed through parallel connected resistances Ry and R,, the voltage Vp which appears
across the parallel circuit is:

Vp = IpRp = IpRle / (R] + Rz)

The currents I; and I, which pass through the respective resistances Ry and R are:

]1 = VP/R] = IpRp/R] = IpRz / (R] + Rz)

Iz = Vp / Rz = IpRp / Rz = IpR] / (R] + Rz)

In general terms, for resistances Ry, Ry, Rj, ... (with conductances Gy, G;, Gs, ...) connected in parallel:
Vp=IpRp=Ip/Gp=]p/(G]+G2+G3+...)

]n = Vp / Rn = VpG" = IpGn / Gp = IpG" / (G] + Gz + G3 + ...)

where G, =1/R,

Note that the highest current passes through the highest conductance (with the lowest resistance).

Capacitance

When a voltage is applied to a circuit containing capacitance, current flows to accumulate charge in the capacitance:
Q= j idt=CV

Alternatively, by differentiation with respect to time:

dq/dt=i=C dv/dt

Note that the rate of change of voltage has a polarity which opposes the flow of current.
The capacitance C of a circuit is equal to the charge divided by the voltage:

C=Q/V=jidt/V
Alternatively, the capacitance C of a circuit is equal to the charging current divided by the rate of change of voltage:
C=i/dv/dt=dq/dt/dv/dt=dq/dv

Capacitances in Series

When capacitances Cy, C,, Cj, ... are connected in series, the total capacitance Csg is:
1/Cs=1/C;+1/C3+1/C5+...

For two capacitances C; and C, connected in series, the total capacitance Cg is:
Cs=CiC/(Ci+Cy)

Cs = product / sum

Voltage Division by Series Capacitances

When a total voltage Eg is applied to series connected capacitances Cy and C,, the charge Qs which accumulates in
the series circuit is:

Qs = Iisdt =EsCs = EsC1C,/ (C + Cy)
The voltages V; and V, which appear across the respective capacitances C; and C, are:

V| = J.lsdt / C| = EsCs / C] = EsCz / (C] + Cz)

Vz = J.lsdt / Cz = EsCs / C2 = EsC] / (C] + Cz)
In general terms, for capacitances Cy, C,, Cj, ... connected in series:

Qs=jisdt=EsCs=Es/(l/Cs)=Es/(1/C|+1/C2+1/C3+...)

V.,=Iisdt/C“=EsC5/C,.=E5/C,.(1 /Cs)=Es/Cy(1/Cy+1/Cp+1/C3+..)
Note that the highest voltage appears across the lowest capacitance.

Capacitances in Parallel

When capacitances Cy, C,, Cj, ... are connected in parallel, the total capacitance Cp is:
Cp=C]+C2+C3+...



Charge Division by Parallel Capacitances

When a voltage Ep is applied to parallel connected capacitances C; and C,, the charge Qp which accumulates in the
parallel circuit is:

Qp = Iipdt =EpCp= Ep(C] + Cz)
The charges Qg and Q, which accumulate in the respective capacitances C; and C, are:

Q= Iildt =EpC;=QpCi/ Cp=QpC;/ (C1 +Cy)

Q= Iizdt =EpCy; = QpC, / Cp = QpC, / (C1 + Cy)
In general terms, for capacitances Cy, C5, Cs, ... connected in parallel:

Qp= Iipdt =EpCp=Ep(C; + C; + C3 +..)

Q, = Jindt =EpC, = QpC, / Cp = QpC,, / (Ci + C2 + G5+ .0)
Note that the highest charge accumulates in the highest capacitance.

Inductance

When the current changes in a circuit containing inductance, the magnetic linkage changes and induces a voltage in
the inductance:

dy/dt=e =L di/dt

Note that the induced voltage has a polarity which opposes the rate of change of current.

Alternatively, by integration with respect to time:

¥ =Jedt=LI

The inductance L of a circuit is equal to the induced voltage divided by the rate of change of current:

L =e/di/dt = dy/dt/ di/dt = dy/di

Alternatively, the inductance L of a circuit is equal to the magnetic linkage divided by the current:
L=Y/I

Note that the magnetic linkage W is equal to the product of the number of turns N and the magnetic flux ®:
¥Y=No®=LI

Mutual Inductance

The mutual inductance M of two coupled inductances L; and L, is equal to the mutually induced voltage in one
inductance divided by the rate of change of current in the other inductance:

M = E,y, / (diy/dt)

M = Eq, / (diy/dt)

If the self induced voltages of the inductances L; and L, are respectively Eqs and E,s for the same rates of change of
the current that produced the mutually induced voltages Eq,, and E,y,, then:

M = (Ezm / Eq)Ly

M = (Eim / E3)L;

Combining these two equations:

M = (EinEom / EgEs)” (LiL2)" = kn(LiLy)"

where ky is the mutual coupling coefficient of the two inductances L and L,.

If the coupli/ng between the two inductances L; and L, is perfect, then the mutual inductance M is:

M = (L;Ly)"

Inductances in Series

When uncoupled inductances Ly, L, L3, ... are connected in series, the total inductance Lg is:
LS=L1+L2+L3+...

When two coupled inductances L, and L, with mutual inductance M are connected in series, the total inductance Lg
is:

Ls = L] + L2 +2M

The plus or minus sign indicates that the coupling is either additive or subtractive, depending on the connection
polarity.
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Inductances in Parallel

When uncoupled inductances Ly, L,, L3, ... are connected in parallel, the total inductance Lp is:
1/Lp=1/L;j+1/Ly+1/Ls+...

Time Constants

Capacitance and resistance

The time constant of a capacitance C and a resistance R is equal to CR, and represents the time to change the
voltage on the capacitance from zero to E at a constant charging current E / R (which produces a rate of change of
voltage E / CR across the capacitance).

Similarly, the time constant CR represents the time to change the charge on the capacitance from zero to CE at a
constant charging current E / R (which produces a rate of change of voltage E / CR across the capacitance).

If a voltage E is applied to a series circuit comprising a discharged capacitance C and a resistance R, then after time
t the current i, the voltage vg across the resistance, the voltage v across the capacitance and the charge qc on the
capacitance are:

i=(E/R)e 'R

vg=iR=Ee "/

ve=E-vg=E(1-¢e "R

gc=Cvc=CE(-¢ "R

If a capacitance C charged to voltage V is discharged through a resistance R, then after time t the current i, the
voltage vg across the resistance, the voltage v across the capacitance and the charge qc on the capacitance are:
i=(V/R)e 'R

vg=iR=Ve /¥

Ve=vg=Ve /R

gc=Cvc=CVe /R

Inductance and resistance

The time constant of an inductance L and a resistance R is equal to L. / R, and represents the time to change the
current in the inductance from zero to E / R at a constant rate of change of current E / L (which produces an induced
voltage E across the inductance).

If a voltage E is applied to a series circuit comprising an inductance L and a resistance R, then after time t the
current i, the voltage vr across the resistance, the voltage v, across the inductance and the magnetic linkage yy, in
the inductance are:

i=(E/R)(1-e"®'"

vp=iR=E(1-e ®'"

VL= E - VR = Ee-tR/L

y=Li=(LE/R)1-e ™'Y

If an inductance L carrying a current I is discharged through a resistance R, then after time t the current i, the
voltage vg across the resistance, the voltage vy, across the inductance and the magnetic linkage yy, in the inductance
are:
i=le
vg=iR =IRe ®'"

VL, =VR= IRe ®/L

y=Li=Lle ™"

Rise Time and Fall Time

The rise time (or fall time) of a change is defined as the transition time between the 10% and 90% levels of the total
change, so for an exponential rise (or fall) of time constant T, the rise time (or fall time) t;g.9¢ is:

ti0-90 = (]1’109 - anl)T ~22T

The half time of a change is defined as the transition time between the initial and 50% levels of the total change, so
for an exponential change of time constant T, the half time ts is :

tso=(In1.0 - In0.5)T = 0.69T

Note that for an exponential change of time constant T:

- over time interval T, a rise changes by a factor 1 - e ' (= 0.63) of the remaining change,

- over time interval T, a fall changes by a factor e ' (= 0.37) of the remaining change,

- after time interval 3T, less than 5% of the total change remains,

- after time interval 5T, less than 1% of the total change remains.

-tR/L
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Power

The power P dissipated by a resistance R carrying a current I with a voltage drop V is:
P=V*/R=VI=IR

Similarly, the power P dissipated by a conductance G carrying a current I with a voltage drop V is:
P=VG=VI=I'/G

The power P transferred by a capacitance C holding a changing voltage V with charge Q is:

P = VI = CV(dv/dt) = Q(dv/dt) = Q(dq/dt) / C

The power P transferred by an inductance L carrying a changing current I with magnetic linkage W is:
P = VI = LI(di/dt) = ¥(di/dt) = ¥(dy/dt) / L

Energy

The energy W consumed over time t due to power P dissipated in a resistance R carrying a current I with a voltage
drop V is:

W =Pt=V’t/R=VIt=ItR

Similarly, the energy W consumed over time t due to power P dissipated in a conductance G carrying a current I
with a voltage drop V is:

W=Pt=V*G=VIt=Tt/G

The energy W stored in a capacitance C holding voltage V with charge Q is:

W=CV*/2=QV/2=Q%/2C

The energy W stored in an inductance L carrying current I with magnetic linkage ¥ is:
W=LI*/2=¥I/2=¥"/2L

Batteries

If a battery of open-circuit voltage Eg has a loaded voltage Vi, when supplying load current Iy, the battery internal
resistance Rg is:

Rp=(Eg-Vy) /I

The load voltage V1, and load current Iy, for a load resistance Ry, are:

VL = ILRL = EB - ILRB = EBRL / (RB + RL)

IL=VL/RL=(EB'VL)/RB=EB/(RB+RL)

The battery short-circuit current I is:

I, =Eg/Rg=Egl./(Eg-Vy)

Voltmeter Multiplier

The resistance Rg to be connected in series with a voltmeter of full scale voltage Vy and full scale current drain Iy to
increase the full scale voltage to V is:

Rs=(V-Vy) /1y

The power P dissipated by the resistance Rg with voltage drop (V - Vy) carrying current Iy is:

P=(V-Vy)'/Rs= (V- Vy)ly=Iy'Rs

Ammeter Shunt

The resistance Rp to be connected in parallel with an ammeter of full scale current I, and full scale voltage drop Va
to increase the full scale current to I is:

Rp=VA/(I-14)

The power P dissipated by the resistance Rp with voltage drop V, carrying current (I - 1) is:

P= VA2 IRp=Va(I-1)=(1- IA)ZRP
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