Bphys/Biol-E 101 = HST 508 = GEN224

Instructor: George Church
Teaching fellows: Lan Zhang (head), Chih Liu, Mike Jones, J. Singh, Faisal Reza, Tom Patterson, Woodie Zhao, Xiaoxia Lin, Griffin Weber

Lectures Tue 12:00 to 2:00 PM Cannon Room (Boston)
Tue 5:30 to 7:30 PM Science Center A (Cambridge) Your grade is based on five problem sets and a course project, with emphasis on collaboration across disciplines.

Open to: upper level undergraduates, and all graduate students. The prerequisites are basic knowledge of molecular biology, statistics, \& computing.

Please hand in your questionnaire after this class. First problem set is due Tue Sep 30 before lecture via email or paper depending on your section TF.

Bio 101: Genomics \& Computational Biology

Tue Sep 16 Intro 1: Minimal "Systems", Statistics, Computing
Tue Sep 23 Intro 2: Biology, comparative genomics, models \& evidence, applications
Tue Sep 30 DNA 1: Polymorphisms, populations, statistics, pharmacogenomics, databases
Tue oct 06 DNA 2: Dynamic programming, Blast, multi-alignment, HiddenMarkovModels
Tue oct 14 RNA 1: 3D-structure, microarrays, library sequencing \& quantitation concepts
Tue Oct 21 RNA 2: Clustering by gene or condition, DNA/RNA motifs.
Tue Oct 28 Protein 1: 3D structural genomics, homology, dynamics, function \& drug design
Tue Nov 04 Protein 2: Mass spectrometry, modifications, quantitation of interactions
Tue Nov 11? Network 1: Metabolic kinetic \& flux balance optimization methods
Tue Nov 18 Network 2: Molecular computing, self-assembly, genetic algorithms, neural-nets
Tue Nov 25 Network 3: Cellular, developmental, social, ecological \& commercial models
Tue Dec 02 Project presentations
Tue Dec 09 Project Presentations
Tue Dec 16 Project Presentations

Intersection (not union) of:

Computer Sience \& Math

Biology, Ecology, Society, \& Evolution

Intro 1: Today's story, logic \& goals

Life \& computers : Self-assembly required
Discrete \& continuous models
Minimal life \& programs
Catalysis \& Replication
Differential equations
Directed graphs \& pedigrees
Mutation \& the Single Molecules models
Bell curve statistics
Selection \& optimality

Discrete	Continuous
a sequence lattice digital $\sum \Delta \mathrm{x}$	a weight matrix of sequences molecular coordinates analog (16 bit A2D converters)
neural/regulatory on/off sum of black \& white essential/neutral alive/not	dxadients \& graded responses gray conditional mutation probability of replication

Defined quantitative measures

Seven basic (Système International) SI units:
$\mathrm{s}, \mathrm{m}, \mathrm{kg}, \mathrm{mol}, \mathrm{K}, \mathrm{cd}, \mathrm{A}$
(some measures at precision of 14 significant figures)

Quantal: Planck time, length: 10^{-43} seconds, 10^{-35} meters, $\mathrm{mol}=6.0225 \quad 10^{23}$ entities.
casa.colorado.edu/~ajsh/sr/postulate.html
physics.nist.gov/cuu/Uncertainty/
scienceworld.wolfram.com/physics/SI.html

Bits (discrete)

bit $=$ binary digit
1 base $>=2$ bits 1 byte $=8$ bits

+ Kilo Mega Giga Tera Peta Exa Zetta Yotta + $\begin{array}{cccccccc}3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 \\ - & \text { milli } & \text { micro } & \text { nano } & \text { pico } & \text { femto } & \text { atto } & \text { zepto yocto - }\end{array}$

Kibi Mebi Gibi Tebi Pebi Exbi
$1024=2^{10} \quad 2^{20} \quad 2^{30} \quad 2^{40} \quad 2^{50} \quad 2^{60}$
http://physics.nist.gov/cuu/Units/prefixes.html

Quantitative definition of life?

Historical/Terrestrial Biology vs "General Biology"
Probability of replication ... of complexity from simplicity (in a specific environment)

Robustness/Evolvability
(in a variety of environments)

Examples: mules, fires, nucleating crystals, mold replicas, pollinated flowers, viruses, predators, geological layers, $\underline{\text { molecular ligation, factories, self assembling machines }}{ }_{10}$

Which models will we search, merge \& check in this course?

- Sequence: Dynamic programming, assembly, translation \& trees.
- 3D structure: motifs, catalysis, complementary surfaces - energy and kinetic optima
- Functional genomics: clustering
- Systems: qualitative \& boolean networks
- Systems: differential equations \& stochastic
- Network optimization: Linear programming

Transistors > inverters > registers > binary adders $>$ compilers $>$ application programs

Spice simulation of a CMOS inverter (figures)

Intro 1: Today's story, logic \& goals

Life \& computers : Self-assembly required Discrete \& continuous models Minimal life \& programs
Catalysis \& Replication
Differential equations
Directed graphs \& pedigrees
Mutation \& the Single Molecules models Bell curve statistics
Selection \& optimality

Elements of RNA-based life: C,H,N,O,P
Useful for many species:
$\mathrm{Na}, \mathrm{K}, \mathrm{Fe}, \mathrm{Cl}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{Mo}, \mathrm{Mn}, \mathrm{S}, \mathrm{Se}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Co}, \mathrm{B}, \mathrm{Si}$

Self-replication of complementary nucleotide-based oligomers
$5^{\prime} \operatorname{ccg}+\operatorname{ccg}=5^{\prime}$ CGGCGG ${ }^{\prime} \operatorname{cogecg}$ CGG $+\mathrm{CGG} \underset{\text { ccgccg }}{\Rightarrow}$ CGGCGG
2.71828182845905000000000 2.71828182845904523536028747135266
perl -e "print exp(1);"
excel: = EXP(1)
f77: print*, $\exp (1 . q 0)$
Mathematica: $\mathrm{N}[\operatorname{Exp}[1], 100] 2.71828182845904523536028747135266249775$ 7247093699959574966967627724076630353547594571382178525166427

- Underlying these are algorithms for arctangent and hardware for RAM and printing. - Beware of approximations \& boundaries.
- Time \& memory limitations. E.g. first two above 64 bit floating point: 52 bits for mantissa ($=15$ decimal digits), 10 for exponent, 1 for $+/$ signs.

Why Perl \& Excel?

In the hierarchy of languages, Perl is a "high level" language, optimized for easy coding of string searching \& string manipulation. It is well suited to web applications and is "open source" (so that it is inexpensive and easily extended). It has a very easy learning curve relative to $\mathrm{C} / \mathrm{C}++$ but is similar in a few way to C in syntax.

Excel is widely used with intuitive stepwise addition of columns and graphics.

Facts of Life
101
Where do parasites come from?
(computer \& biological viral codes)
AIDS - HIV-1
26 M dead (worse than black plague \& 1918 Flu) www.apheda.org.au/campaigns/images/hiv stats.pdf Computer viruses \& hacks $\frac{\text { www.ncbi.nlm.nih.gov/Taxonomv/Browser/wwwtax.cgi?id=1167 }}{}$ over \$3 trillion/year M41L, D67N, T69D, L210W, T215Y, H208Y www.ecommercetimes.com/perl/story/4460.htm ${ }^{\text {PISPIETVPVKLKPGMDGPK VKQWPLTEEK }}$

LoveBug

IKALIEICAE LEKDGKISKI
Set dirtemp $=3 \mathrm{D}$ fso.GetSpecialFolder (2)
Set c =3D fso.GetFile(WScript.ScriptFulIName)
c.Copy(dirsystem\&" MSKernel32.vbs")
c.Copy(dirwin\&" Win32DLL.vbs")
c.Copy(dirsystem\&"LLOVE-LETTER-FOR-YOU.TXT.vbs")
regruns()
htmlo
spreadtoemail()
listadriv() GPVNPYDTPV FAIKKKNSDK WRKLVDFREL NKRTQDFCEV
\square
TXT

Conceptual connections

Concept	Computers	Organisms
Instructions	Program	Genome
Bits	0,1	a,c,g,t
Stable memory	Disk,tape	DNA
Active memory	RAM	RNA
Environment	Sockets,people	Water,salts
I/O	AD/DA	proteins
Monomer	Minerals	Nucleotide
Polymer	chip	DNA,RNA,protein
Replication	Factories	1e-15 liter cell sap
Sensor/In	Keys,scanner	Chem/photo receptor
Actuator/Out	Printer,motor	Actomyosin
Communicate	Internet,IR	Pheromones, song

Minimal Life:
Self-assembly, Catalysis, Replication, Mutation, Selection

Growth \& decay $\mathbf{d y} / \mathrm{dt}=\mathbf{k y}$
 $\mathrm{y}=\mathrm{Ae}^{\mathrm{kt}} ; \mathrm{e}=2.71828 \ldots$

$\mathrm{k}=$ rate constant; half-life $=\log _{e}(2) / \mathrm{k}$

What limits exponential growth?

Exhaustion of resources
Accumulation of waste products

What limits exponential decay?

Finite particles, stochastic (quantal) limits

Computational power of neural systems

1,000 MIPS (million instructions per second) needed to derive edge or motion detections from video "ten times per second to match the retina ... The 1,500 cubic centimeter human brain is about 100,000 times as large as the retina, suggesting that matching overall human behavior will take about 100 million MIPS of computer power ... The most powerful experimental supercomputers in 1998, costing tens of millions of dollars, can do a few million MIPS."
"The ratio of memory to speed has remained constant during computing history [at Mbyte/MIPS] ... [the human] 100 trillion synapse brain would hold the equivalent 100 million megabytes."
--Hans Moravec http://www.frc.ri.cmu.edu/~hpm/book97/ch3/retina.comment.html
2002: the ESC is 35 Tflops \& 10Tbytes. http://www.top500.org/

Post-exponential growth \& chaos

Intro 1: Today's story, logic \& goals

Life \& computers : Self-assembly required
Discrete \& continuous models
Minimal life \& programs
Catalysis \& Replication
Differential equations
Directed graphs \& pedigrees
Mutation \& the Single Molecules models Bell curve statistics
Selection \& optimality

System models Feature attractions

E. coli chemotaxis	Adaptive, spatial effects
Red blood cell metabolism	Enzyme kinetics
Cell division cycle	Checkpoints
Circadian rhythm	Long time delays
Plasmid DNA replication	Single molecule precision
Phage λ switch	Stochastic expression

also, all have large genetic \& kinetic datsets.

Directed Graphs

Directed Acyclic Graph:
Biopolymer backbone
Phylogeny
Pedigree

Cyclic:
Polymer contact maps
Metabolic \&
Regulatory Nets

Time independent or implicit

34

Intro 1: Today's story, logic \& goals

Life \& computers : Self-assembly required
Discrete \& continuous models
Minimal life \& programs
Catalysis \& Replication
Differential equations
Directed graphs \& pedigrees
Mutation \& the Single Molecules models
Bell curve statistics
Selection \& optimality

Bionano-machines

Types of biomodels.
Discrete, e.g. conversion stoichiometry Rates/probabilities of interactions

Modules vs
"extensively coupled networks"

Types of Systems Interaction Models

Quantum Electrodynamics
Quantum mechanics
Molecular mechanics
Master equations
Fokker-Planck approx.
Macroscopic rates ODE
Flux Balance Optima
Thermodynamic models
Steady State
Metabolic Control Analysis
Spatially inhomogenous
Population dynamics
subatomic
electron clouds
spherical atoms nm-fs stochastic single molecules stochastic
Concentration \& time (C,t) $\mathrm{dC}_{\mathrm{ik}} / \mathbf{d t}$ optimal steady state $\mathrm{dC}_{\mathrm{ik}} / \mathrm{dt}=0 \mathrm{k}$ reversible reactions $\sum \mathrm{dC}_{\mathrm{ik}} / \mathrm{dt}=0 \quad$ (sum k reactions) $\mathrm{d}\left(\mathrm{dC}_{\mathrm{ik}} / \mathrm{dt}\right) / \mathrm{dC}_{\mathrm{j}} \quad(\mathrm{i}=$ chem.species $)$ $\mathrm{dCi} / \mathrm{dx}$ as above $\mathbf{k m}-\mathbf{y r}$

Mean, variance, \& linear correlation coefficient

Expectation E (rth moment) of random variables X for any distribution $\mathrm{f}(\mathrm{X})$
First moment $=$ Mean μ; variance σ^{2} and standard deviation σ
$\mathrm{E}\left(\mathrm{X}^{\mathrm{r}}\right)=\sum \mathrm{X}^{\mathrm{r}} \mathrm{f}(\mathrm{X}) \quad \mu=\mathrm{E}(\mathrm{X}) \quad \sigma^{2}=\mathrm{E}\left[(\mathrm{X}-\mu)^{2}\right]$
Pearson correlation coefficient $\quad \mathrm{C}=\operatorname{cov}(\mathrm{X}, \mathrm{Y})=\mathrm{E}\left[\left(\mathrm{X}-\mu_{\mathrm{X}}\right)\left(\mathrm{Y}-\mu_{\mathrm{Y}}\right)\right] /\left(\sigma_{\mathrm{X}} \sigma_{\mathrm{Y}}\right)$
Independent X, Y implies $\mathrm{C}=0$,
but $\mathrm{C}=0$ does not imply independent X, Y. (e.g. $\mathrm{Y}=\mathrm{X}^{2}$)
$\mathrm{P}=\operatorname{TDIST}\left(\mathrm{C}^{*} \operatorname{sqrt}\left((\mathrm{~N}-2) /\left(1-\mathrm{C}^{2}\right)\right)\right.$ with dof $=\mathrm{N}-2$ and two tails.
where N is the sample size.

One DNA molecule per cell

Replicate to two DNAs.
Now segregate to two daughter cells

If totally random, half of the cells will have too many or too few.
What about human cells with $\mathbf{4 6}$ chromosomes (DNA molecules)?

Dosage \& loss of heterozygosity \& major sources of mutation in human populations and cancer.

For example, trisomy 21, a 1.5-fold dosage with enormous impact.

Binomial frequency distribution as a function of

$$
\mathrm{X} \in\{\text { int } 0 \ldots \mathrm{n}\}
$$

$$
\begin{aligned}
& \mathrm{p} \text { and } \mathrm{q} \quad 0 \leq \mathrm{p} \leq \mathrm{q} \leq 1 \quad \mathrm{q}=1-\mathrm{p} \quad \text { two types of object or event. } \\
& \text { Factorials } 0!=1 \quad n!=n(n-1) \text { ! } \\
& \text { Combinatorics (} \mathrm{C}=\text { \# subsets of size } \mathrm{X} \text { are possible from a set of total size of } \mathrm{n} \text {) } \\
& \frac{\mathrm{n}!}{\mathrm{X}!(\mathrm{n}-\mathrm{X})!}=\mathrm{C}(\mathrm{n}, \mathrm{X}) \\
& \mathrm{B}(\mathrm{X})=\mathrm{C}(\mathrm{n}, \mathrm{X}) \mathrm{p}^{\mathrm{X}} \mathrm{q}^{\mathrm{n}-\mathrm{X}} \quad \mu=\mathrm{np} \quad \sigma^{2}=\mathrm{npq} \\
& (\mathrm{p}+\mathrm{q})^{\mathrm{n}}=\sum \mathrm{B}(\mathrm{X})=1 \\
& \mathrm{~B}(\mathrm{X}: 350, \mathrm{n}: 700, \mathrm{p}: 0.1)=1.53148 \times 10^{-157} \\
& =\text { PDF[BinomialDistribution[700, 0.1], 350] Mathematica } \\
& \sim=0.00=\operatorname{BINOMDIST}(350,700,0.1,0) \text { Excel } 42
\end{aligned}
$$

Normal frequency distribution as a function of $X \in\{-\infty . . . \infty\}$
$Z=(X-\mu) / \sigma$
Normalized (standardized) variables
$N(X)=\exp \left(-Z^{2} / 2\right) /(2 \pi \sigma)^{1 / 2}$
probability density function
npq large $\rightarrow \mathrm{N}(\mathrm{X}) \cong \mathrm{B}(\mathrm{X})$

Poisson frequency distribution as a function of $\mathrm{X} \in\{$ int $0 \ldots \infty\}$
$\mathrm{P}(\mathrm{X})=\mathrm{P}(\mathrm{X}-1) \mu / \mathrm{X} \quad=\quad \mu^{\mathrm{x}} \mathrm{e}^{-\mu} / \mathrm{X}!\quad \sigma^{2}=\mu$
n large \& p small $\rightarrow \mathrm{P}(\mathrm{X}) \cong \mathrm{B}(\mathrm{X}) \quad \mu=\mathrm{np}$
For example, estimating the expected number of positives
in a given sized library of cDNAs, genomic clones,
combinatorial chemistry, etc. $\mathrm{X}=\#$ of hits.
Zero hit term $=\mathrm{e}^{-\mu}$

One DNA molecule per cell

Replicate to two DNAs.
Now segregate to two daughter cells

If totally random, half of the cells will have too many or too few.
What about human cells with $\mathbf{4 6}$ chromosomes (DNA molecules)?
Exactly 46 chromosomes (but any 46):
$B(X)=C(n, x) p^{x} q^{n-x}$
$\mathrm{n}=46 * 2 ; \mathrm{x}=46 ; \mathrm{p}=0.5$
$B(X)=0.083$
$P(X)=\mu^{x} e^{-\mu} / X!$ $\mu=X=n p=46, P(X)=0.058$ But what about exactly the correct 46 ? the correct 46 ? $0.5^{46}=1.4 \times 10^{-14}$

Might this select for non random segregation? ${ }^{46}$

What are random numbers good for?

-Simulations.
-Permutation statistics.

Where do random numbers come from?

$X \in\{0,1\}$
perl -e "print rand(1);"
0.116790771484375
$0.8798828125 \quad 0.692291259765625 \quad 0.1729736328125$
excel: $=$ RAND () 0.48543949998926400 .6391685278993980
0.1009497853098360
f77: write(*,'(f29.15)') $\operatorname{rand(1)} 0.513854980468750$
$0.175720214843750 \quad 0.308624267578125$

Mathematica: Random[Real, $\{0,1\}]$
0.7474293274369694 0.50817941131490110 .02423389638451016

Where do random numbers come from really?

Monte Carlo.

Uniformly distributed random variates $\mathrm{X}_{\mathrm{i}}=$ remainder $\left(\mathrm{aX}_{\mathrm{i}-1} / \mathrm{m}\right)$
For example, $a=7^{5} \quad m=2^{31}-1$
Given two $X_{j} X_{k}$ such uniform random variates,
Normally distributed random variates can be made
(with $\mu_{\mathrm{X}}=0 \quad \sigma_{\mathrm{X}}=1$)
$\mathrm{X}_{\mathrm{i}}=\operatorname{sqrt}\left(-2 \log \left(\mathrm{X}_{\mathrm{j}}\right)\right) \cos \left(2 \pi \mathrm{X}_{\mathrm{k}}\right) \quad$ (NR, Press et al. p. 279-89)

Intro 1: Summary

Life \& computers : Self-assembly required Discrete \& continuous models
Minimal life \& programs
Catalysis \& Replication
Differential equations
Directed graphs \& pedigrees
Mutation \& the Single Molecules models
Bell curve statistics
Selection \& optimality

