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Preface

This book is a systematic, rigorous, and self-consistent introduction to the
theory of continuous-time stochastic processes. But it is neither a tract nor a
recipe book as such; rather, it is an account of fundamental concepts as they
appear in relevant modern applications and literature. We make no pretense
of it being complete. Indeed, we have omitted many results, which we feel are
not directly related to the main theme or that are available in easily accessible
sources. (Those readers who are interested in the historical development of the
subject cannot ignore the volume edited by Wax (1954).)

Proofs are often omitted as technicalities might distract the reader from
a conceptual approach. They are produced whenever they may serve as a
guide to the introduction of new concepts and methods towards the appli-
cations; otherwise, explicit references to standard literature are provided. A
mathematically oriented student may find it interesting to consider proofs as
exercises.

The scope of the book is profoundly educational, related to modeling real-
world problems with stochastic methods. The reader becomes critically aware
of the concepts involved in current applied literature, and is moreover provided
with a firm foundation of the mathematical techniques. Intuition is always
supported by mathematical rigor.

Our book addresses three main groups: first, mathematicians working in
a different field; second, other scientists and professionals from a business or
academic background; third, graduate or advanced undergraduate students of
a quantitative subject related to stochastic theory and/or applications.

As stochastic processes (compared to other branches of mathematics) are
relatively new, yet more and more popular in terms of current research output
and applications, many pure as well as applied deterministic mathematicians
have become interested in learning about the fundamentals of stochastic the-
ory and modern applications. This book is written in a language that both
groups will understand, and in its content and structure will allow them to
learn the essentials profoundly and in a time-efficient manner. Other scientist-
practitioners and academics from fields like finance, biology, or medicine might
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be very familiar with a less mathematical approach to their specific fields, and
thus be interested in learning the mathematical techniques of modeling their
applications.

Furthermore, this book would be suitable as a textbook accompanying
a graduate or advanced undergraduate course or as a secondary reading for
students of mathematical or computational sciences. The book has evolved
from course material that has already been tested for many years for various
courses in engineering, biomathematics, industrial mathematics, and mathe-
matical finance.

Last but certainly not least, this book should also appeal to anyone who
would like to learn about the mathematics of stochastic processes. The reader
will see that previous exposure to probability, even though helpful, is not
essential and that the fundamentals of measure and integration are provided
in a self-consistent way. Only familiarity with calculus and some analysis is
required.

The book is divided into three main parts. In part I, comprising chapters
1–4, we introduce the foundations of the mathematical theory of stochastic
processes and stochastic calculus, thus providing tools and methods needed
in part II (chapters 5 and 6), which is dedicated to major scientific areas of
applications. The third part consists of appendices, each of which gives a basic
introduction to a particular field of fundamental mathematics (like measure,
integration, metric spaces, etc.) and explains certain problems in greater depth
(e.g., stability of ODEs) than would be appropriate in the main part of the
text.

In chapter 1 the fundamentals of probability are provided following a stan-
dard approach based on Lebesgue measure theory due to Kolmogorov. Here
the guiding textbook on the subject is the excellent monograph by Métivier
(1968). Basic concepts from Lebesgue measure theory are furthermore pro-
vided in appendix A.

Chapter 2 gives an introduction to the mathematical theory of stochastic
processes in continuous time, including basic definitions and theorems on pro-
cesses with independent increments, martingales, and Markov processes. The
two fundamental classes of processes, namely Poisson and Wiener, are intro-
duced as well as the larger, more general, class of Lévy processes. Further, a
significant introduction to marked point processes is also given as a support
for the analysis of relevant applications.

Chapter 3 is based on Itô theory. We define the Itô integral, some fun-
damental results of Itô calculus, and stochastic differentials including Itô’s
formula, as well as related results like the martingale representation theorem.

Chapter 4 is devoted to the analysis of stochastic differential equations
driven by Wiener processes and Itô diffusions, and demonstrates the con-
nections with partial differential equations of second order, via Dynkin and
Feynman–Kac formulas.

Chapter 5 is dedicated to financial applications. It covers the core economic
concept of arbitrage-free markets and shows the connection with martingales
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and Girsanov’s theorem. It explains the standard Black–Scholes theory and
relates it to Kolmogorov’s partial differential equations and the Feynman–Kac
formula. Furthermore, extensions and variations of the standard theory are
discussed as well as interest rate models and insurance mathematics.

Chapter 6 presents fundamental models of population dynamics such as
birth and death processes. Furthermore, it deals with an area of important
modern research, namely the fundamentals of self-organizing systems, in par-
ticular focusing on the social behavior of multiagent systems, with some appli-
cations to economics (“price herding”). It also includes a particular applica-
tion to the neurosciences, illustrating the importance of stochastic differential
equations driven by both Poisson and Wiener processes.

Problems and additions are proposed at the end of the volume, listed by
chapter. More than being just exercises in a classical way, problems are pro-
posed as a stimulus for discussing further concepts which can be of interest
for the reader. Different sources have been used, including a selection of prob-
lems submitted to our students over the years. This is the reason why we can
provide only selected references.

The core of this monograph, on Itô calculus, was developed during a series
of courses that one of the authors VC has been offering at various levels in
many universities. That author wishes to acknowledge that the first drafts of
the relevant chapters were the outcome of a joint effort by many participating
students: Maria Chiarolla, Luigi De Cesare, Marcello De Giosa, Lucia Mad-
dalena, and Rosamaria Mininni, among others. Professor Antonio Fasano is
due our thanks for his continuous support, including producing such material
as lecture notes within a series that he has coordinated.

It was the success of these lecture notes, and the particular enthusiasm
of the coauthor DB, who produced the first English version (indeed, an un-
expected Christmas gift), that has led to an extension of the material up
to the present status, including in particular a set of relevant and updated
applications, which reflect the interests of the two authors.

VC also would like to thank his first advisor and teacher, Professor Grace
Yang, who gave him the first rigorous presentation of stochastic processes and
mathematical statistics at the University of Maryland at College Park, always
referring to real world applications. DB would like to thank the Meregalli and
Silvestri families for their kind logistical help while in Milan. He would also like
to acknowledge research funding from the EPSRC, ESF, Socrates–Erasmus,
and Charterhouse and thank all the people he worked with at OCIAM, Uni-
versity of Oxford, over the years, as this is where he was based when embarking
on this project.

The draft of the final volume has been carefully read by Giacomo Aletti,
Daniela Morale, Alessandra Micheletti, Matteo Ortisi, and Enea Bongiorno
(who also took care of the problems and additions) whom we gratefully ac-
knowledge. Still, we are sure that some odd typos and other, hopefully non-
crucial, mistakes remain, for which the authors take all responsibility.
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We also wish to thank Professor Nicola Bellomo, editor of the Model-
ing and Simulation in Science, Engineering, and Technology Series, and Tom
Grasso from Birkhäuser for supporting the project. Last but not the least, we
cannot forget to thank Rossana VC and Casilda DB for their patience and
great tolerance while coping with their “solitude” during the preparation of
this monograph.

Vincenzo Capasso and David Bakstein
Milan, November 2003
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Part I

The Theory of Stochastic Processes



1

Fundamentals of Probability

We assume that the reader is already familiar with the basic motivations and
notions of probability theory. In this chapter we recall the main mathematical
concepts, methods, and theorems according to the Kolmogorov approach (see
Kolmogorov (1956)), by using as a main reference the book by Métivier (1968).
We shall refer to appendix A of this book for the required theory on measure
and integration.

1.1 Probability and Conditional Probability

Definition 1.1. A probability space is an ordered triple (Ω,F , P ), where Ω
is any set, F a σ-algebra of subsets of Ω, and P : F → [0, 1] a probability
measure on F , such that

1. P (Ω) = 1 (and P (∅) = 0),
2. for all A1, . . . , An, . . . ∈ F with Ai ∩Aj = ∅, i �= j:

P

(⋃
i

Ai

)
=
∑

i

P (Ai).

The set Ω is called the sample space, ∅ the empty set , the elements of F are
called events, and every element of Ω is called an elementary event.

Definition 1.2. A probability space (Ω,F , P ) is finite if Ω has finitely many
elementary events.

Remark 1.3. If Ω is finite, then it suffices to only consider the σ-algebra of all
subsets of Ω, i.e., F = P(Ω).

Definition 1.4. Every finite probability space (Ω,F , P ) with F = P(Ω) is
an equiprobable or uniform space, if

∀ω ∈ Ω : P ({ω}) = k (constant);

i.e., its elementary events are equiprobable.
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Remark 1.5. Following the axioms of a probability space and the definition of
a uniform space, if (Ω,F , P ) is equiprobable, then

∀ω ∈ Ω : P ({ω}) =
1
|Ω| ,

where | · | denotes the cardinal number of elementary events in Ω, and

∀A ∈ F ≡ P(Ω) : P (A) =
|A|
|Ω| .

Intuitively, in this case we may say that P (A) is the ratio of the number of
favorable outcomes, divided by the number of all possible outcomes.

Example 1.6. Consider an urn that contains 100 balls, of which 80 are red and
20 are black but that are otherwise identical, from which a player draws a
ball. Define the event

R: The first drawn ball is red.

Then

P (R) =
|R|
|Ω| =

80
100

= 0.8.

Definition 1.7. We shall call any event F ∈ F such that P (F ) = 0, a null
event.

Conditional Probability

Definition 1.8. Let (Ω,F , P ) be a probability space and A,B ∈ F , P (B) >
0. Then the probability of A conditional on B, denoted by P (A|B), is any
real number in [0, 1] such that

P (A|B) =
P (A ∩B)
P (B)

.

This number is left unspecified whenever P (B) = 0.

We must anyway notice that conditioning events of zero probability cannot
be ignored. See later a more detailed account of this case in connection with
the definition of conditional distributions.

Remark 1.9. Suppose that P (B) > 0. Then the mapping PB : F → [0, 1] with

∀A ∈ F : PB(A) =
P (A ∩B)
P (B)

defines a probability measure PB on F . In fact, 0 ≤ PB(A) ≤ 1 and PB(Ω) =
P (B)
P (B) = 1. Moreover, if A1, . . . , An, . . . ∈ F , Ai ∩Aj = ∅, i �= j, then

PB

(⋃
n∈N

An

)
=
P (
⋃

nAn ∩B)
P (B)

=
∑

n P (An ∩B)
P (B)

=
∑

n

PB(An).
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Proposition 1.10. If A,B ∈ F , then

1. P (A ∩B) = P (A|B)P (B) = P (B|A)P (A);
2. if A1, . . . , An ∈ F , then

P (A1∩· · ·∩An) = P (A1)P (A2|A1)P (A3|A1∩A2) · · ·P (An|A1∩· · ·∩An−1).

Proof: Statement 1 is obvious. Statement 2 is proved by induction. The propo-
sition holds for n = 2. Assuming it holds for n− 1, we get

P(A1 ∩ · · · ∩An)
= P (A1 ∩ · · · ∩An−1)P (An|A1 ∩ · · · ∩An−1)
= P (A1) · · ·P (An−1|A1 ∩ · · · ∩An−2)P (An|A1 ∩ · · · ∩An−1);

thus it holds for n as well. Since n was arbitrary, the proof is complete. �

Definition 1.11. Two events A and B are independent if

P (A ∩B) = P (A)P (B).

Thereby A is independent of B, if and only if B is independent of A, and vice
versa.

Proposition 1.12. Let A,B be events and P (A) > 0; then the following two
statements are equivalent:

1. A and B are independent,
2. P (B|A) = P (B).

If P (B) > 0, then the statements hold with interchanged A and B as well.

Example 1.13. Considering the same experiment as in Example 1.6, we define
the additional events (x, y) with x, y ∈ {B,R} as, e.g.,

BR: The first drawn ball is black, the second red,
·R: The second drawn ball is red.

Now the probability P (·R|R) depends on the rules of the draw.

1. If the draw is with subsequent replacement of the ball, then due to the
independence of the draws,

P (·R|R) = P (·R) = P (R) = 0.8.

2. If the draw is without replacement, then the second draw is dependent on
the outcome of the first draw, and we have

P (·R|R) =
P (·R ∩R)
P (R)

=
P (RR)
P (R)

=
80 · 79 · 100
100 · 100 · 80

= 0.79.

Definition 1.14. Two events A and B are mutually exclusive if A ∩B = ∅.
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Proposition 1.15. 1. Two events cannot be both independent and mutually
exclusive, unless one of the two is a null event.

2. If A and B are independent events, then so are A and B̄, Ā and B, as
well as Ā and B̄, where Ā := Ω \A is the complementary event.

Definition 1.16. The events A,B,C are independent if

1. P (A ∩B) = P (A)P (B),
2. P (A ∩ C) = P (A)P (C),
3. P (B ∩ C) = P (B)P (C),
4. P (A ∩B ∩ C) = P (A)P (B)P (C).

This definition can be generalized to any number of events.

Remark 1.17. If A,B,C are events that satisfy point 4 of Definition 1.16, then
it is not true in general that it satisfies points 1–3 and vice versa.

Example 1.18. Consider a throw of two distinguishable, fair six-sided dice, and
the events

A: the roll of the first dice results in 1, 2 or 5,
B: the roll of the first dice results in 4, 5 or 6,
C: the sum of the results of the roll of the dice is 9.

Then P (A) = P (B) = 1/2 and P (A ∩ B) = 1/6 �= 1/4 = P (A)P (B). But,
since P (C) = 1/9 and P (A ∩B ∩ C) = 1/36, we have that

P (A)P (B)P (C) =
1
36

= P (A ∩B ∩ C).

On the other hand, consider a uniformly shaped tetrahedron, which has the
colors white, green and red on its separate surfaces and all three colors on the
fourth. Randomly choosing one side, the events

W: the surface contains white,
G: the surface contains green,
R: the surface contains red,

have the probabilities P (W ) = P (G) = P (R) = 1/2. Hence P (W ∩ G) =
P (W )P (G) = 1/4, etc., but P (W )P (G)P (R) = 1/8 �= 1/4 = P (W ∩G ∩R).

Definition 1.19. Let C1, . . . , Ck be subfamilies of the σ-algebra F . They con-
stitute k mutually independent classes of F if

∀A1 ∈ C1, . . . ,∀Ak ∈ Ck : P (A1 ∩ · · · ∩Ak) =
k∏

i=1

P (Ai).
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Definition 1.20. A family of elements (Bi)i∈I of F , with I ⊂ N, is called a
(countable) partition of Ω if

1. I is a countable set,
2. i �= j ⇒ Bi ∩Bj = ∅,
3. P (Bi) �= 0, for all i ∈ I,
4. Ω =

⋃
i∈I Bi.

Theorem 1.21. (Total law of probability). Let (Bi)i∈I be a partition of Ω
and A ∈ F ; then

P (A) =
∑
i∈I

P (A|Bi)P (Bi).

Proof: ∑
i

P (A|Bi)P (Bi) =
∑

i

P (A ∩Bi)
P (Bi)

P (Bi) =
∑

i

P (A ∩Bi)

= P

(⋃
i

(A ∩Bi)

)
= P

(
A ∩

⋃
i

Bi

)
= P (A ∩Ω) = P (A).

�
The following fundamental Bayes theorem provides a formula for the ex-

change of conditioning between two events; this is why it is also known as the
theorem for probability of causes.

Theorem 1.22. (Bayes). Let (Bi)i∈I be a partition of Ω and A ∈ F , with
P (A) = 0; then

∀i ∈ I : P (Bi|A) =
P (Bi)
P (A)

P (A|Bi) =
P (A|Bi)P (Bi)∑

j∈I P (A|Bj)P (Bj)
.

Proof: Since A =
⋃k

j=1(Bj ∩A), then

P (A) =
k∑

j=1

P (Bj)P (A|Bj).

Also, because

P (Bi ∩A) = P (A)P (Bi|A) = P (Bi)P (A|Bi)

and by the total law of probability, we obtain

P (Bi|A) =
P (Bi)P (A|Bi)

P (A)
=

P (Bi)P (A|Bi)∑k
j=1 P (A|Bj)P (Bj)

.

�
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Example 1.23. Continuing with the experiment of Example 1.6, we further
assume that there is a second indistinguishable urn (U2), containing 40 red
balls and 40 black balls. By randomly drawing one ball from one of the two
urns, we make a probability estimate about which urn we had chosen:

P (U2|B) =
P (U2)P (B|U2)∑2
i=1 P (Ui)P (B|Ui)

=
1/2 · 1/2

1/2 · 1/5 + 1/2 · 1/2 =
5
7
;

thus P (U1|B) = 2/7.

1.2 Random Variables and Distributions

A random variable is the concept of assigning a numerical magnitude to ele-
mentary outcomes of a random experiment, measuring certain of the latter’s
characteristics. Mathematically, we define it as a function X : Ω → R on
the probability space (Ω,F , P ), such that for every elementary ω ∈ Ω it as-
signs a numerical value X(ω). In general, we are then interested in finding the
probabilities of events of the type

[X ∈ B] := {ω ∈ Ω|X(ω) ∈ B} ⊂ Ω (1.1)

for every B ⊂ R, i.e., the probability that the random variable will assume
values that will lie within a certain range B ⊂ R. In its simplest case, B can be
a possibly unbounded interval or union of intervals of R. More generally, B can
be any subset of the Borel σ-algebra BR, which is generated by the intervals
of R. This will require, among other things the results of measure theory and
Lebesgue integration in R. Moreover, we will require the events (1.1) to be P -
measurable, thus belonging to F . We will later extend the concept of random
variables to generic measurable spaces.

Definition 1.24. Let (Ω,F , P ) be a probability space. Then every Borel-
measurable mapping X : Ω → R, with for all B ∈ BR : X−1(B) ∈ F , is a
random variable, denoted by X : (Ω,F) → (R,BR). If X takes values in R̄,
then it is said to be extended.

Definition 1.25. If X : (Ω,F) → (R,BR) is a random variable, then the
mapping PX : BR → R, where

PX(B) = P (X−1(B)) = P ([X ∈ B]) ∀B ∈ BR,

is a probability on R. It is called the probability law of X.

If a random variable X has a probability law PX , we will use the notation
X ∼ PX .

The following proposition shows that a random variable can be defined in
a canonical way in terms of a given probability law on R.
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Proposition 1.26. If P : BR → [0, 1] is a probability, then there exists a
random variable X : R→ R such that P is identical to the probability law PX

associated with X.

Proof: We identify (R,BR, P ) as the underlying probability space so that the
mapping X : R→ R, with X(s) = s, for all s ∈ R, is a random variable, and
furthermore, denoting its associated probability law by PX , we obtain

PX(B) = P (X−1(B)) = P (B) ∀B ∈ BR.

�

Definition 1.27. Let X be a random variable. Then the mapping

FX : R→ [0, 1],

with
FX(t) = PX(]−∞, t]) = P ([X ≤ t]) ∀t ∈ R,

is called the partition function or cumulative distribution function of X.

Proposition 1.28. 1. For all a, b ∈ R, a < b: FX(b)− FX(a) = PX(]a, b]).
2. FX is right-continuous and increasing.
3. limt→+∞ FX(t) = 1, limt→−∞ FX(t) = 0.

Proof: Points 1 and 2 are obvious, given that PX is a probability. Point 3 can
be demonstrated by applying points 2 and 4 of Proposition A.23. In fact, by
the former, we obtain

lim
t→+∞FX(t) = lim

t→+∞PX(]−∞, t]) = lim
n
PX(]−∞, n])

= PX

(⋃
n

]−∞, n]

)
= PX(R) = 1.

Analogously, by point 4 of Proposition A.23, we get limt→−∞ FX(t) = 0. �

Proposition 1.29. Conversely, if we assign a function F : R → [0, 1] that
satisfies points 2 and 3 of Proposition 1.28, then, by point 1, we can define a
probability PX : BR → R associated with a random variable X whose cumula-
tive distribution function is identical to F .

Definition 1.30. If the probability law PX : BR → [0, 1] associated with
the random variable X is endowed with a density with respect to Lebesgue
measure1 μ on R, then this density is called the probability density of X. If
f : R→ R+ is the probability density of X, then

∀t ∈ R : FX(t) =
∫ t

−∞
fdμ and lim

t→+∞FX(t) =
∫ +∞

−∞
fdμ = 1,

1 See Definition A.52.
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as well as
PX(B) =

∫
B

fdμ ∀B ∈ BR.

We may notice that the Lebesgue–Stieltjes measure, canonically associated
with FX as defined in Definition A.50 is identical to PX .

Definition 1.31. A random variable X is continuous if its cumulative distri-
bution function FX is continuous.

Remark 1.32. X is continuous if and only if P (X = x) = 0 for every x ∈ R.

Definition 1.33. A random variable X is absolutely continuous if FX is ab-
solutely continuous or, equivalently, if PX is defined through its density.2

Proposition 1.34. Every absolutely continuous random variable is continu-
ous, but not vice versa.

Example 1.35. Let F : R → [0, 1] be an extension to the Cantor function
f : [0, 1]→ [0, 1], given by

∀x ∈ R : F (x) =

⎧⎨⎩
1 if > 1,
f(x) if x ∈ [0, 1],
0 if x < 0,

where f is endowed with the following properties:

1. f is continuous and increasing,
2. f ′ = 0 almost everywhere,
3. f is not absolutely continuous.

Hence X is a random variable with continuous but not absolutely continuous
distribution function F .

Remark 1.36. Henceforth we will use “continuous” in the sense of “absolutely
continuous”.

Remark 1.37. If f : R → R+ is a function that is integrable with respect to
Lebesgue measure μ on R and ∫

R

fdμ = 1,

then there exists an absolutely continuous random variable with probability
density f . Defining

F (x) =
∫ x

−∞
f(t)dt ∀x ∈ R,

then F is a cumulative distribution function.
2 See Proposition A.56.
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Example 1.38. (Continuous probability densities).

1. Uniform (denoted U(a, b)):

∀x ∈ [a, b] : f(x) =
1

b− a, a, b ∈ R, a < b.

2. Standard normal or standard Gaussian (denoted N(0, 1)):

∀x ∈ R : f(x) =
1√
2π

exp
{
−1

2
x2

}
, (1.2)

also denoted N(0, 1).
3. Normal or Gaussian (denoted N(m,σ)2):

∀x ∈ R : f(x) =
1

σ
√

2π
exp

{
−1

2

(
x−m
σ

)2
}
, σ > 0,m ∈ R.

4. Exponential (denoted E(λ)):

∀x ∈ R+ : f(x) = λe−λx,

where λ > 0.
5. Gamma (denoted Γ (λ, α)):

∀x ∈ R+ : f(x) =
e−λx

Γ (α)
λ(λx)α−1,

where λ, α ∈ R∗
+. Here

Γ (α) =
∫ ∞

0

yα−1e−ydy

is the gamma function, which for n ∈ N∗ is (n − 1)!, i.e., a generalized
factorial.

6. Standard Cauchy (denoted C(0, 1)):

∀x ∈ R : f(x) =
1
π

1
1 + x2

.

7. Cauchy (denoted C(a, h)):

∀x ∈ R : f(x) =
1
π

h

h2 + (x− a)2 .

Definition 1.39. Let X be a random variable and let D denote a countable
set of real numbers D = {x1, . . . , xn, . . .}. If there exists a function p : R →
[0, 1], with

1. for all x ∈ R \D : p(x) = 0,



12 1 Fundamentals of Probability

2. for all B ∈ BR:
∑

x∈B p(x) < +∞,
3. for all B ∈ BR: PX(B) =

∑
x∈B p(x),

then X is discrete and p is the (discrete) distribution function of X. The set
D is called the support of the function p.

Remark 1.40. Let p denote the discrete distribution function of the random
variable X, having support D. The following properties hold:

1.
∑

x∈D p(x) = 1.
2. For all B ∈ BR such that D ∩B = ∅, PX(B) = 0.
3. For all x ∈ R :

PX({x}) =
{

0 if x /∈ D,
p(x) if x ∈ D.

Hence PX corresponds to the discrete measure associated with the “masses”
p(x), x ∈ D.

Example 1.41. (Discrete probability distributions).

1. Uniform:
∀i = 1, . . . , n : p(xi) =

1
n
, n ∈ N.

2. Poisson:
∀x ∈ N : p(x) = exp{−λ}λ

x

x!
, λ > 0,

also denoted by P (λ), where λ is said to be the intensity.
3. Binomial:

∀x = 0, 1, . . . , n : p(x) =
n!

(n− x)!x!p
x(1−p)n−x, n ∈ N, p ∈ [0, 1],

also denoted by B(n, p).

Remark 1.42. The cumulative distribution function FX of a discrete random
variable X is an RCLL (right-continuous with left limit) function with finite
jumps. If p is the distribution function of X, then

p(x) = FX(x)− FX(x−) ∀x ∈ D,

or, more generally,

p(x) = FX(x)− FX(x−) ∀x ∈ R.

The concept of random variable can be extended to any function defined
on a probability space (Ω,F , P ) and valued in a measurable space (E,B), i.e.,
a set E endowed with a σ-algebra B of its parts.
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Definition 1.43. Every measurable function X : Ω → E, with X−1(B) ∈ F ,
for all B ∈ B, assigned on the probability space (Ω,F , P ) and valued in (E,B)
is a random variable. The probability law PX associated with X is defined
by translating the probability P on F into a probability on B, through the
mapping PX : B → [0, 1], such that

∀B ∈ B : PX(B) = P (X−1(B)) ≡ P (X ∈ B).

Definition 1.44. Let (Ω,F , P ) be a probability space and (E,B) a measur-
able space. Further, let E be a normed space of dimension n, and let B be its
Borel σ-algebra. Every vector X : (Ω,F)→ (E,B) is called a random vector.
In particular, we can take (E,B) = (Rn,BRn).

Remark 1.45. The Borel σ-algebra on Rn is identical to the product σ-algebra
of the family of n Borel σ-algebras on R: BRn =

⊗
n BR.

Proposition 1.46. Let (Ω,F , P ) be a probability space and X : Ω → Rn a
mapping. Moreover, let, for all i = 1, . . . , n, πi : Rn → R be the ith projection,
and thus Xi = πi ◦ X, i = 1, . . . , n, be the ith component of X. Then the
following statements are equivalent:

1. X is a random vector of dimension n.
2. For all i ∈ {1, . . . , n}, Xi is a random variable.

Proof: The proposition is an obvious consequence of Proposition A.17. �

Definition 1.47. Under the assumptions of the preceding proposition, the
function

∀Bi ∈ BR : PXi(Bi) = P (X−1
i (Bi)) : BR → [0, 1], 1 ≤ i ≤ n,

is called the marginal distribution of the random variable Xi. The probability
PX associated with the random vector X is called the joint probability of the
family of random variables (Xi)1≤i≤n.

Remark 1.48. If X : (Ω,F) → (Rn,BRn) is a random vector of dimension
n and if Xi = πi ◦ X : (Ω,F) → (R,BR), 1 ≤ i ≤ n, then, knowing the
joint probability law PX, it is possible to determine the marginal probability
PXi , for all i ∈ {1, . . . , n}. In fact, if we consider the probability law of Xi,
i ∈ {1, . . . , n}, as well as the induced probability πi(PX), for all i ∈ {1, . . . , n},
then we have the relation

PXi = πi(PX), 1 ≤ i ≤ n.

Therefore, for every Bi ∈ BR, we obtain

PXi(Bi) = PX(π−1
i (Bi)) = PX(X1 ∈ R, . . . , Xi ∈ Bi, . . . , Xn ∈ R)

= PX(CBi), (1.3)
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where CBi
is the cylinder of base Bi in Rn. This can be further extended

by considering, instead of the projection πi, the projections πS , where S ⊂
{1, . . . , n}. Then, for every measurable set BS , we obtain

PXS (BS) = PX(π−1
S (BS)).

Notice that in general the converse is not true; the knowledge of the marginals
does not imply the knowledge of the joint distribution of a random vector X,
unless further conditions are imposed.

Definition 1.49. Let X : (Ω,F)→ (Rn,BRn) be a random vector of dimen-
sion n. The mapping FX : Rn → [0, 1], with

t = (t1, . . . , tn) : FX(t) := P (X1 ≤ t1, . . . , Xn ≤ tn) ∀t ∈ Rn,

is called the joint cumulative distribution function of the random vector X.

Remark 1.50. Analogous to the case of random variables, FX is increasing and
right-continuous on Rn. Further, it is such that

lim
xi→+∞,∀i

F (x1, . . . , xn) = 1,

and for any i = 1, . . . , n :

lim
xi→−∞F (x1, . . . , xn) = 0.

Conversely, given a distribution function F satisfying all the above properties,
there exists an n-dimensional random vector X with F as its cumulative
distribution function. The underlying probability space can be constructed in
a canonical way. In the bidimensional case, if F : R2 → [0, 1] satisfies the
above conditions, then we can define a probability P : BR2 → [0, 1] in the
following way:

P (]a,b]) = F (b1, b2)− F (b1, a2) + F (a1, a2)− F (a1, b2),

for all a,b ∈ R2, a = (a1, a2), b = (b1, b2). Hence there exists a bidimensional
random vector X with P as its probability.

Remark 1.51. Let X : (Ω,F) → (Rn,BRn) be a random vector of dimension
n, Xi = πi ◦X, 1 ≤ i ≤ n, the nth component of X, and let FXi , 1 ≤ i ≤ n,
and FX be the respective cumulative distribution functions of Xi and X. The
knowledge of FX allows one to infer FXi , 1 ≤ i ≤ n, through the relation

FXi(ti) = P (Xi ≤ ti) = FX(+∞, . . . , ti, . . . ,+∞),

for every ti ∈ R.
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Definition 1.52. Let X : (Ω,F)→ (Rn,BRn) be a random vector of dimen-
sion n. If the probability law PX : BRn → [0, 1] with respect to X is endowed
with a density with respect to the Lebesgue measure μn on Rn (or prod-
uct measure of Lebesgue measures μ on R), then this density is called the
probability density of X. If f : Rn → R+ is the probability density of X, then

FX(t) =
∫ t

−∞
fdμn ∀t ∈ Rn,

and moreover

PX(B) =
∫

B

f(x1, . . . , xn)dμn ∀B ∈ BR.

Proposition 1.53. Under the assumptions of the preceding definition, defin-
ing Xi = πi ◦X, 1 ≤ i ≤ n, then PXi is endowed with density with respect to
Lebesgue measure μ on R and its density function fi : R→ R+ is given by

fi(xi) =
∫ i

f(x1, . . . , xn)dμn−1,

where we have denoted by
∫ i the integration with respect to all variables but

the ith one.

Proof: By (1.3) we have that for all Bi ∈ BR:

PXi
(Bi) = PX(CBi

) =
∫
CBi

f(x1, . . . , xn)dμn

=
∫

R

dx1 · · ·
∫

Bi

dxi · · ·
∫

R

f(x1, . . . , xn)dxn

=
∫

Bi

dxi

∫ i

f(x1, . . . , xn)dμn−1.

By putting fi(xi) =
∫ i
f(x1, . . . , xn)dμn−1, we see that fi is the density of

PXi . �
Remark 1.54. The definition of a discrete random vector is analogous to Def-
inition 1.39.

1.3 Expectations

Definition 1.55. Let (Ω,F , P ) be a probability space and X : (Ω,F) →
(R,BR) a real-valued random variable. Assume that X is P -integrable, i.e.,
X ∈ L1(Ω,F , P ); then

E[X] =
∫

Ω

X(ω)dP (ω)

is the expected value or expectation of the random variable X.
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Remark 1.56. By Proposition A.28 it follows that if X is integrable with re-
spect to P , its expected value is given by

E(X) =
∫

R

IR(x)dPX(x) :=
∫
xdPX .

Remark 1.57. If X is a continuous real-valued random variable with density
function f of PX , then

E[X] =
∫
xf(x)dμ.

Instead, if f is discrete with probability function p, then

E[X] =
∑

xp(x).

Definition 1.58. A real-valued P -integrable random variable X is centered,
if it has expectation zero.

Proposition 1.59. Let (Xi)1≤i≤n be a real, P -integrable family of random
variables on the same space (Ω,F , P ). Then

E[X1 + · · ·+Xn] =
n∑

i=1

E[Xi].

Moreover, for every α ∈ R, E[αX] = αE[X], and thus it is linear.

Remark 1.60. If X is a real, P -integrable random variable, then X − E[X] is
a centered random variable. This follows directly from the linearity of expec-
tations.

Definition 1.61. Given a real P -integrable random variable X, if E[(X −
E[X])n] < +∞, n ∈ N, then it is the nth centered moment. The second
centered moment is the variance, and its square root, the standard deviation
of a random variable X, denoted by V ar[X] and σ =

√
V ar[X] respectively.

Proposition 1.62. Let (Ω,F) be a probability space and X : (Ω,F) →
(R,BR) a random variable. Then the following two statements are equivalent:

1. X is square-integrable with respect to P (see Definition A.61).
2. X is P -integrable and V ar[X] < +∞.

Moreover, under these conditions

V ar[X] = E[X2]− (E[X])2. (1.4)

Proof: 1⇒2: Because L2(P ) ⊂ L1(P ), X ∈ L1(P ). Obviously, the constant
E[X] is P -integrable; thus X − E[X] ∈ L2(P ) and V ar[X] < +∞.

2⇒1: By assumption, E[X] exists and X − E[X] ∈ L2(P ); thus X =
X − E[X] + E[X] ∈ L2(P ). Finally, due to the linearity of expectations,

V ar[X] = E[(X − E[X])2] = E[X2 − 2XE[X] + (E[X])2]
= E[X2]− 2(E[X])2 = E[X2]− (E[X])2.

�
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Proposition 1.63. If X is a real-valued P -integrable random variable and
V ar[X] = 0, then X = E[X] almost surely with respect to the measure P.

Proof: V ar[X] = 0⇒
∫

(X −E[X])2dP = 0. With (X −E[X])2 nonnegative,
X − E[X] = 0 almost everywhere with respect to P , thus X = E[X] almost
surely with respect to P. This is equivalent to

P (X �= E[X]) = P ({ω ∈ Ω|X(ω) �= E[X]}) = 0.

�

Proposition 1.64. (Markov’s inequality). Let X be a nonnegative real P -
integrable random variable on a probability space (Ω,F , P ); then

P (X ≥ λE[X]) ≤ 1
λ

∀λ ∈ R+.

Proof: If λ ≤ 1, then the inequality is obvious, since P (X ≥ λE[X]) ≤ 1. If
λ > 1, then putting m = E[X] results in

m =
∫ +∞

0

xdPX ≥
∫ +∞

λm

xdPX ≥ λmP (X ≥ λm),

thus P (X ≥ λm) ≤ 1/λ. �

Proposition 1.65. (Chebyshev’s inequality). If X is a real-valued and P -
integrable random variable with variance V ar[X] (possibly infinite), then

P (|X − E[X]| ≥ ε) ≤ V ar[X]
ε2

.

Proof: Apply Markov’s inequality to the random variable (X − E[X])2.

Example 1.66.

1. If X is a P -integrable continuous random variable with density f , where
the latter is symmetric around the axis x = a, a ∈ R, then E[X] = a.

2. If X is a Gaussian variable, then E[X] = m and V ar[X] = σ2.
3. If X is a discrete, Poisson distributed random variable, then E[X] = λ,
V ar[X] = λ.

4. If X is binomially distributed, then E[X] = np, V ar[X] = np(1− p).
5. If X is continuous and uniform with density f(x) = I[a,b](x) 1

b−a , a, b ∈ R,

then E[X] = a+b
2 , V ar[X] = (b−a)2

12 .
6. If X is a Cauchy variable, then it does not admit an expected value.

Definition 1.67. Let X : (Ω,F)→ (Rn,BRn) be a vector of random variables
with P -integrable components Xi, 1 ≤ i ≤ n. The expected value of the vector
X is

E[X] = (E[X1], . . . , E[X2])′.
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Definition 1.68. If X1, X2 and X1X2 are P -integrable random variables,
then

Cov[X1, X2] = E[(X1 − E[X1])(X2 − E[X2])]

is the covariance of X1 and X2.

Remark 1.69. Due to the linearity of the E[·] operator, if E[X1X2] < +∞,
then

Cov[X1, X2] = E[(X1 − E[X1])(X2 − E[X2])]
= E[X1X2 −X1E[X2]− E[X1]X2 + E[X1]E[X2]]
= E[X1X2]− E[X1]E[X2].

Proposition 1.70. 1. If X is a random variable, square-integrable with re-
spect to P , and a, b ∈ R, then

V ar[aX + b] = a2V ar[X].

2. If both X1 and X2 are in L2(Ω,F , P ), then

V ar[X1 +X2] = V ar[X1] + V ar[X2] + 2Cov[X1, X2].

Proof: 1. Since V ar[X] = E[X2]− (E[X])2, then

V ar[aX + b] = E[(aX + b)2]− (E[aX + b])2

= a2E[X2] + 2abE[X] + b2 − a2(E[X])2 − b2 − 2abE[X]
= a2(E[X2]− (E[X])2) = a2V ar[X].

2.

V ar[X1] + V ar[X2] + 2Cov[X1, X2]
= E[X2

1 ]− (E[X1])2 + E[X2
2 ]− (E[X2])2 + 2(E[X1X2]− E[X1]E[X2])

= E[(X1 +X2)2]− 2E[X1]E[X2]− (E[X1])2 − (E[X2])2

= E[(X1 +X2)2]− (E[X1 +X2])2 = V ar[X1 +X2].

�

Definition 1.71. If X1 and X2 are square-integrable random variables with
respect to P , having the respective standard deviations σ1 > 0 and σ2 > 0,
then

ρ(X1, X2) =
Cov[X1, X2]

σ1σ2

is the correlation coefficient of X1 and X2.
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Remark 1.72. If X1 and X2 are L2(Ω,F , P ) random variables, then, by the
Cauchy–Schwarz inequality (1.15),

|ρ(X1, X2)| ≤ 1;

moreover,

|ρ(X1, X2)| = 1⇔ ∃a, b ∈ R so that X2 = aX1 + b, a.s.

Definition 1.73. Let X be a real-valued random variable and s ∈ R. Then
eisX is a complex-valued random variable and its expectation

φX(s) = E
[
eisX

]
=
∫

R

eisxfX(x)dx if X is continuous,

φX(s) = E
[
eisX

]
=
∑

n

eisxnPX(xn) if X is discrete

is the characteristic function of X. It is continuous for all s ∈ R and

|φX | ≤ φX(0) = 1.

Example 1.74. The characteristic function of a standard normal random vari-
able X is

φX(s) = E
[
eisX

]
=

1√
2π

∫ ∞

−∞
eisXe−

1
2 x2
dx

= e−
s2
2

∫ ∞

−∞
e−

1
2 (X−is)2dx = e−

s2
2 .

Remark 1.75. The characteristic function of a continuous random variable X
represents the Fourier transform of its density function fX . By invoking the
inverse Fourier transform

fX(x) =
1
2π

∫
R

φX(s)e−isxds,

we recover the probability density function. The probability density of a ran-
dom variable has a unique characteristic function. Hence if two random vari-
ables have identical characteristic functions, they are identical.

1.4 Independence

Definition 1.76. The random variables X1, . . . , Xn, defined on the same
probability space (Ω,F , P ), are independent if they generate independent
classes of σ-algebras. Hence

P (A1 ∩ · · · ∩An) =
n∏

i=1

P (Ai) ∀Ai ∈ X−1
i (BR).
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The following is an equivalent definition.

Definition 1.77. The components Xi, 1 ≤ i ≤ n, of an n-dimensional ran-
dom vector X defined on the probability space (Ω,F , P ) are independent
if

PX =
n⊗

i=1

PXi
,

where PX and PXi
are the probability laws of X and Xi, 1 ≤ i ≤ n, respec-

tively. (See Proposition A.43.)

To show that Definitions 1.77 and 1.76 are equivalent, we need to show
that the following equivalence holds:

P (A1 ∩ · · · ∩An) =
n∏

i=1

P (Ai)⇔ PX =
n⊗

i=1

PXi
∀Ai ∈ X−1

i (BR).

We may recall first that PX =
⊗n

i=1 PXi is the unique measure on BRn that
factorizes on rectangles; i.e., if B =

∏n
i=1Bi, with Bi ∈ BR, we have

PX(B) =
n∏

i=1

PXi
(Bi).

To prove the implication from left to right, we observe that if B is a rectangle
in BRn as defined above, then

PX(B) = P (X−1(B)) = P

(
X−1

(
n∏

i=1

Bi

))
= P

(
n⋂

i=1

X−1
i (Bi)

)

=
n∏

i=1

P (X−1
i (Bi)) =

n∏
i=1

PXi(Bi).

Vice versa, for all i = 1, . . . , n:

Ai ∈ X−1
i (BR)⇒ ∃Bi ∈ BR, so that Ai = X−1

i (Bi).

Thus, since A1 ∩ · · · ∩An =
⋂n

i=1X
−1
i (Bi), we have

P (A1 ∩ · · · ∩An) = P

(
n⋂

i=1

X−1
i (Bi)

)
= P (X−1(B)) = PX(B)

=
n∏

i=1

PXi(Bi) =
n∏

i=1

P (X−1
i (Bi)) =

n∏
i=1

P (Ai).

Proposition 1.78. 1. The real-valued random variables X1, . . . , Xn are in-
dependent if and only if, for every t = (t1, . . . , tn)′ ∈ Rn,

FX(t) := P (X1 ≤ t1 ∩ · · · ∩Xn ≤ tn) = P (X1 ≤ t1) · · ·P (Xn ≤ tn)
= FX1(t1) · · ·FXn(tn).
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2. Let X = (X1, . . . , Xn)′ be a real-valued random vector with density f and
probability PX that is absolutely continuous with respect to the measure
μn. The following two statements are equivalent:
• X1, . . . , Xn are independent.
• f = fX1 · · · fXn almost surely.

Remark 1.79. From the previous definition it follows that if a random vector
X has independent components, then their marginal distributions determine
the joint distribution of X.

Example 1.80. Let X be a bidimensional random vector with uniform density
f(x) = c ∈ R, for all x = (x1, x2)′ ∈ R. If R is, say, a semicircle, then X1

and X2 are not independent. But if R is a rectangle, then X1 and X2 are
independent.

Proposition 1.81. Let X1, . . . , Xn be independent random variables defined
on (Ω,F , P ) and valued in (E1,B1), . . . , (En,Bn). If the mappings

gi : (Ei,Bi)→ (Fi,Ui), 1 ≤ i ≤ n,

are measurable, then the random variables g1(X1), . . . , gn(Xn) are indepen-
dent.

Proof: Defining hi = gi(Xi), 1 ≤ i ≤ n, gives

h−1
i (Ui) = X−1

i (g−1
i (Ui)) ∈ X−1

i (Bi)

for every Ui ∈ Ui. The assertion then follows from Definition 1.76. �

Proposition 1.82. If X : (Ω,F) → (E,B) is a random variable with proba-
bility law PX and H : (E,B) → (F,U) a measurable function, then, defining
Y = H◦X = H(X), Y is a random variable. Furthermore, if H : (E,B)→ (R,
BR), then Y ∈ L1(P ) is equivalent to H ∈ L1(PX) and

E[Y ] =
∫
H(x)PX(dx).

Corollary 1.83. Let X = (X1, X2)′ be a random vector defined on (Ω,F , P )
whose components are valued in (E1,B1) and (E2,B2), respectively. If h :
(E1×E2,B1⊗B2)→ (R,BR), then Y = h(X) ≡ h◦X is a real-valued random
variable. Moreover,

E[Y ] =
∫
h(x1, x2)dPX(x1, x2),

where PX is the joint probability of X1 and X2.
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Proposition 1.84. If X1 and X2 are real-valued independent random vari-
ables on (Ω,F , P ) and endowed with finite expectations, then their product
X1X2 ∈ L1(Ω,F , P ) and

E[X1X2] = E[X1]E[X2].

Proof: Given the assumption of independence of X1 and X2, it is a a tedious
though trivial exercise to show that X1, X2 ∈ L1(Ω,F , P ). For the second
part, by Corollary 1.83:

E[X1X2] =
∫
X1X2dP(X1X2) =

∫
X1X2d(PX1 ⊗ PX2)

=
∫
X1dPX1

∫
X2dPX2 = E[X1]E[X2].

�

Remark 1.85. From Definition 1.68 and Remark 1.69 it follows that the co-
variance of two independent variables is zero.

Proposition 1.86. If two random variables X1 and X2 are independent, then
the variance operator V ar[·] is additive, but not homogeneous. This follows
from Proposition 1.70 and Remark 1.85.

Sums of Two Random Variables

Let X and Y be two real-valued, independent, continuous random variables
on (Ω,F , P ) with densities f and g, respectively. Defining Z = X + Y , then
Z is a random variable, and let FZ be its cumulative distribution. It follows
that

FZ(t) = P (Z ≤ t) = P (X + Y ≤ t) = P(X,Y )(Rt),

where Rt = {(x, y) ∈ R2|x+ y ≤ t}. By Proposition 1.78 (X,Y ) is continuous
and its density is f(X,Y ) = f(x)g(y), for all (x, y) ∈ R2. Therefore, for all
t ∈ R:

FZ(t) = P(X,Y )(Rt) =
∫ ∫

Rt

f(x)g(y)dxdy

=
∫ +∞

−∞
dx

∫ t−x

−∞
f(x)g(y)dy =

∫ +∞

−∞
f(x)dx

∫ t

−∞
g(z − x)dz

=
∫ t

−∞
dz

∫ +∞

−∞
f(x)g(z − x)dx ∀z ∈ R.

Hence, the function

fZ(z) =
∫ +∞

−∞
f(x)g(z − x)dx (1.5)

is the density of the random variable Z.
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Definition 1.87. The function fZ defined by (1.5) is the convolution of f
and g, denoted by f ∗ g. Analogously it can be shown that, if f1, f2, f3 are the
densities of the independent random variables X1, X2, X3, then the random
variable Z = X1 +X2 +X3 has density

f1 ∗ f2 ∗ f3(z) =
∫ +∞

−∞

∫ +∞

−∞
f1(x)f2(y − x)f3(z − y)dxdy

for every z ∈ R. This extends to n independent random variables in an anal-
ogous way.

Remark 1.88. Let Z = X1 +X2 be the sum of two independent random vari-
ables. Then the characteristic function of Z is

φZ(s) = E
[
eisZ
]

= E
[
eisX1

]
E
[
eisX2

]
= φX1(s)φX2(s).

By inverting φZ(s) we can recover fZ as the convolution of fX1 and fX2 .
An easier way, whenever applicable, for identifying the probability law of the
sum of independent random variables is based on the uniqueness theorem of
characteristic functions associated with probability laws.

Example 1.89.

1. The sum of two independent Gaussian random variables distributed as
N(m1, σ

2
1) and N(m2, σ

2
2) is distributed as N(m1 +m2, σ

2
1 + σ2

2) for any
m1,m2 ∈ R and any σ2

1 , σ
2
2 ∈ R∗

+. Note that

aN(m1, σ
2
1) + b = N(am1 + b, a2σ2

1).

2. The sum of two independent Poisson variables, distributed as P (λ1) and
P (λ2), is distributed as P (λ1 + λ2) for any λ1, λ2 ∈ R∗

+.
3. The sum of two independent binomial random variables distributed as
B(r1, p) and B(r2, p) is distributed as B(r1 + r2, p) for any r1, r2 ∈ N∗

and any p ∈ [0, 1].

The Gaussian, Poisson, and binomial distributions are said to reproduce them-
selves.

Definition 1.90. Consider N independent and identically distributed ran-
dom variables Xi, i = 1, . . . , N, with common probability law P1, belong-
ing to a family G of probability laws. Let PN be the probability law of
XN =

∑N
i=1Xi. We say that the family G is stable if P1 ∈ G implies PN ∈ G.

Clearly, Gaussian and Poisson laws are stable (see, e.g., Samorodnitsky
and Taqqu (1994)).
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The Central Limit Theorem for Independent Random Variables

Theorem 1.91. (Central limit theorem for independent and identically
distributed random variables). Let (Xn)n∈N be a sequence of independent
identically distributed random variables in L2(Ω,F , P ) with m = E[Xi],
σ2 = V ar[Xi], for all i, and

Sn =
1
n

∑n
i=1Xi −m
σ/
√
n

=
∑n

i=1Xi − nm
σ
√
n

.

Then
Sn

d−→
n→∞N(0, 1);

i.e., if we denote by Fn = P (Sn ≤ x) and

Φ(x) =
∫ x

−∞

1√
2π
e−

1
2 y2
dy, x ∈ R,

then limn Fn = Φ, uniformly in R, and thus

sup
x∈R

|Fn(x)− Φ(x)| −→
n

0.

A generalization of the central limit theorem, that does not require the
random variables to be identically distributed is the following.

Theorem 1.92. (Lindeberg). Let (Xn)n∈N be a sequence of independent ran-
dom variables in L2(Ω,F , P ) with E[Xi] = 0, for all i, and denote by

s2n =
n∑

i=1

V ar[Xi] =
n∑

i=1

E
[
X2

i

]
.

If the Lindeberg condition,

∀ε > 0 : lim
n

1
s2n

n∑
i=1

∫
|Xi|≥εsn

X2
i dP = 0,

is satisfied, then
Sn

d−→
n→∞N(0, 1).

Proof: See, e.g., Shiryaev (1995). �
This can further be generalized for noncentered random variables.

Corollary 1.93. Let (Xn)n∈N be a sequence of independent random variables
in L2(Ω,F , P ) with mi = E[Xi], σ2

i = V ar[Xi], and s2n =
∑n

k=1 σ
2
i . If

∀ε : lim
n

1
s2n

n∑
i=1

∫
|Xi−mi|≥εsn

|Xi −mi|2dP = 0,

then ∑n
i=1Xi − E[Sn]√

V arSn

d−→
n→∞N(0, 1).
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Theorem 1.94. Let (Xn)n∈N be a sequence of independent and identically
distributed random variables with m = E[Xi], σ2 = V ar[Xi], for all i, and let
(Vn)n∈N be a sequence of N-valued random variables such that

Vn

n

P−→
n

1.

Then
1√
Vn

n∑
i=1

Xi
P−→
n
N
(
m,σ2

)
.

Proof: See, e.g., Chung (1974). �

Tail Events

Definition 1.95. Let (An)n∈N ∈ FN be a sequence of events and let

σ(An, An+1, . . .), n ∈ N,

as well as

T =
∞⋂

n=1

σ(An, An+1, . . .)

be σ-algebras. Then T is the tail σ-algebra associated with the sequence
(An)n∈N and its elements are called tail events.

Example 1.96. The essential supremum

lim sup
n

An =
∞⋂

n=1

∞⋃
i=n

Ai

and essential infimum

lim inf
n

An =
∞⋃

n=1

∞⋂
i=n

Ai

are both tail events for the sequence (An)n∈N. If n is understood to be time,
then we can write

lim supAn = {An i.o.};
i.e., An occurs infinitely often (i.o.). Thus, for infinitely many n ∈ N, while

lim inf An = {An a.a.},

i.e., An occurs almost always (a.a.), thus for all but finitely many n ∈ N.

Theorem 1.97. (Kolmogorov’s zero-one law). Let (An)n∈N ∈ FN be a se-
quence of independent events. Then for any A ∈ T : P (A) = 0 or P (A) = 1.

Lemma 1.98. (Borel–Cantelli).
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1. Let (An)n∈N ∈ FN be a sequence of events. If
∑

n P (An) < +∞, then

P

(
lim sup

n
An

)
= 0.

2. Let (An)n∈N ∈ FN be a sequence of independent events. If
∑

n P (An) =
+∞, then

P

(
lim sup

n
An

)
= 1.

Proof: See, e.g., Billingsley (1968). �

1.5 Conditional Expectations

Let X,Y : (Ω,F , P ) → (R,BR) be two discrete random variables with joint
discrete probability distribution p. There exists an, at most countable, subset
D ⊂ R2, such that

p(x, y) �= 0 ∀(x, y) ∈ D,
where p(x, y) = P (X = x ∩ Y = y). If, furthermore, D1 and D2 are the
projections of D along its axes, then the marginal distributions of X and Y
are given by

p1(x) = P (X = x) =
∑

y

p(x, y) �= 0 ∀x ∈ D1,

p2(y) = P (Y = y) =
∑

x

p(x, y) �= 0 ∀y ∈ D2.

Definition 1.99. Given the preceding assumptions and fixing y ∈ R, then
the probability of y conditional on X = x ∈ D1 is

p2(y|x) =
p(x, y)
p1(x)

=
P (X = x ∩ Y = y)

P (X = x)
= P (Y = y|X = x).

Furthermore,
y → p2(y|X = x) ∈ [0, 1] ∀x ∈ D1

is called the probability function of y conditional on X = x.

Definition 1.100. Analogous to the definition of expectation of a discrete
random variable, the expectation of Y , conditional on X = x, is

E[Y |X = x] =
∑

y

yp2(y|x) ∀x ∈ D1,

=
1

p1(x)

∑
y

yp(x, y) =
1

p1(x)

∑
y∈R

yp(x, y)

=
1

p1(x)

∫ ∫
Rx

ydP(X,Y )(x, y)

=
1

P ([X = x])

∫
[X=x]

Y (ω)dP (ω),
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with Rx = {x} × R.

Definition 1.101. Let X : (Ω,F) → (E,B) be a discrete random variable
and Y : (Ω,F)→ (R,BR) P -integrable. Then the mapping

x→ E[Y |X = x] =
1

P ([X = x])

∫
[X=x]

Y (ω)dP (ω) (1.6)

is the expected value of Y conditional on X, defined on the set x ∈ E with
PX(x) �= 0.

Remark 1.102. It is standard to extend the mapping (1.6) to the entire set
E by fixing its value arbitrarily at the points x ∈ E where P ([X = x]) = 0.
Hence there exists an entire equivalence class of functions f defined on E,
such that

f(x) = E[Y |X = x] ∀x ∈ E such that PX(x) �= 0.

An element f of this class is said to be defined on E, almost surely with respect
to PX . A generic element of this class is denoted by either E[Y |X = ·], E[Y |·],
or EX [Y ]. Furthermore, its value at x ∈ E is denoted by either E[Y |X = x],
E[Y |x], or EX=x[Y ].

Definition 1.103. Let X : (Ω,F) → (E,B) be a discrete random variable
and x ∈ E so that PX(x) �= 0, and let F ∈ F . The indicator of F , denoted by
IF : Ω → R, is a real-valued, P -integrable random variable. The expression

P (F |X = x) = E[IF |X = x] =
P (F ∩ [X = x])
P (X = x)

is the probability of F conditional upon X = x.

Remark 1.104. Let X : (Ω,F) → (E,B) be a discrete random variable. If we
define EX = {x ∈ E|PX(x) �= 0}, then for every x ∈ EX the mapping

P (·|X = x) : F → [0, 1],

so that

P (F |X = x) =
P (F ∩ [X = x])
P (X = x)

∀F ∈ F

is a probability measure on F , conditional on X = x. Further, if we arbitrarily
fix the value of P (F |X = x) at the points x ∈ E where PX is zero, then we
can extend the mapping

x ∈ EX → P (F |X = x)

to the whole of E, so that P (·|X = x) : F → [0, 1] is again a probability
measure on F , defined almost surely with respect to PX .
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Definition 1.105. The family of functions (P (·|X = x))x∈E is called a regu-
lar version of the conditional probability with respect to X.

Proposition 1.106. Let (P (·|X = x))x∈E be a regular version of the condi-
tional probability with respect to X. Then, for any Y ∈ L1(Ω,F , P ):∫

Y (ω)dP (ω|X = x) = E[Y |X = x], PX-a.s.

Proof: First, we observe that Y , being a random variable, is measurable.3 Now
from (1.6) it follows that

E[IF |X = x] = P (F |X = x) =
∫
IF (ω)P (dω|X = x)

for every x ∈ E, PX(x) �= 0. Now let Y be an elementary function so that

Y =
n∑

i=1

λiIFi
.

Then, for every x ∈ EX :

E[Y |X = x] =
n∑

i=1

λiE[IFi |X = x] =
n∑

i=1

λi

∫
IFi(ω)P (dω|X = x)

=
∫ ( n∑

i=1

λiIFi

)
(ω)P (dω|X = x) =

∫
Y (ω)dP (ω|X = x).

If Y is a positive real-valued random variable, then, by Theorem A.14, there
exists an increasing sequence (Yn)n∈N of elementary random variables so that

Y = lim
n→∞Yn = sup

n∈N

Yn.

Therefore, for every x ∈ E:

E[Y |X = x] = sup
n∈N

E[Yn|X = x] = sup
n∈N

∫
Yn(ω)dP (ω|X = x)

=
∫ (

sup
n∈N

Yn

)
(ω)dP (ω|X = x) =

∫
Y (ω)dP (ω|X = x),

where the first and third equalities are due to the property of Beppo–Levi (see
Proposition A.28). Lastly, if Y is a real-valued, P -integrable random variable,
then it satisfies the assumptions, being the difference between two positive
integrable functions. �
3 This only specifies its σ-algebras but not its measure.
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Proposition 1.107. Let X : (Ω,F) → (E,B) be a discrete random variable
and Y : (Ω,F) → (R,BR) a P -integrable random variable. Then, for every
B ∈ B we have that∫

[X∈B]

Y (ω)dP (ω) =
∫

B

E[Y |X = x]dPX(x).

Proof: Since X is a discrete random variable and [X ∈ B] =
⋃

x∈B [X = x],
where the elements of the collection ([X = x])x∈B are mutually exclusive, we
observe that by the additivity of the integral:∫

[X∈B]

Y (ω)dP (ω)

=
∑
x∈B

∫
[X=x]

Y (ω)dP (ω) =
∑

x∗∈B

∫
[X=x∗]

Y (ω)dP (ω)

=
∑
x∗
E[Y |X = x∗]P (X = x∗) =

∑
x∗∈B

E[Y |X = x∗]PX(x∗)

=
∑
x∈B

E[Y |X = x]PX(x) =
∫

B

E[Y |X = x]dPX(x),

where the x∗ ∈ B are such that PX(x∗) �= 0. �
We may generalize the above proposition as follows.

Proposition 1.108. Let X : (Ω,F) → (E,B) be a random variable and Y :
(Ω,F)→ (R,BR) a P -integrable random variable. Then there exists a unique
class of real-valued f ∈ L1(E,B, PX), such that∫

[X∈B]

Y (ω)dP (ω) =
∫

B

fdPX ∀B ∈ B.

Proof: First we consider Y positive. The mapping v : B → R+ given by

v(B) =
∫

[X∈B]

Y (ω)dP (ω) ∀B ∈ B

is a bounded measure and absolutely continuous with respect to PX . In fact,

PX(B) = 0⇔ P ([X ∈ B]) = 0⇒
∫

[X∈B]

Y (ω)dP (ω) = 0⇔ v(B) = 0.

Because PX is bounded, thus σ-finite, then, by the Radon–Nikodym Theorem
A.53, there exists a unique f ∈ L1(E,B, PX) such that

v(B) =
∫

B

fdPX ∀B ∈ B.

The case Y of arbitrary sign can be easily handled by the standard decompo-
sition Y = Y + − Y −. �



30 1 Fundamentals of Probability

Definition 1.109. Under the assumptions of the preceding proposition every
f ∈ L1(E,B, PX) such that∫

B

fdPX =
∫

[X∈B]

Y (ω)dP (ω) ∀B ∈ B

is the expected value of Y conditional on X. We will again resort to the
notation of Remark 1.102; any of these f will be denoted by E[Y |X = ·].
Note that E[Y |X = ·] is only defined almost surely with respect to PX .

Proposition 1.110. If X : (Ω,F) → (E,B) is a random variable and f :
(E,B) → (R,BR) a P -integrable function, then, defining Y = f ◦X = f(X),
Y is a P -integrable random variable and

E[Y |X = x] = f(x) ∀x ∈ E,PX(x) �= 0.

Proof: By the definition of a composite function:∫
B

f(x)dPX =
∫

[X∈B]

f ◦X(ω)dP (ω) =
∫

[X∈B]

Y (ω)dP (ω) ∀x ∈ EX ,

for every B ∈ B. By uniqueness in L1(E,B, PX) of the expected value of Y
conditional on X = x, it follows that

E[Y |X = x] = f(x), PX -a.s.

�

Proposition 1.111. If Y : (Ω,F) → (R,BR) is a positive random variable,
then

E[Y |X = x] ≥ 0, PX − a.s.

Proof: Since ∫
[X∈B]

Y dP ≥ 0 ∀B ∈ B,

it follows that ∫
B

E[Y |X = x]PX(dx) ≥ 0 ∀B ∈ B,

and therefore E[Y |X = x] ≥ 0, almost surely with respect to PX . �

Definition 1.112. Let X : (Ω,F) → (E,B) be a random variable and Y a
real-valued, P -integrable random variable also defined on (Ω,F). We denote
by

E[Y |X] = E[Y |X = ·] ◦X : (Ω,F , P )→ (R,BR)

such that
E[Y |X](ω) = E[Y |X = X(ω)] ∀ω ∈ Ω.
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Theorem 1.113. Let X : (Ω,F) → (E,B) be a random variable and Y a
real-valued, P -integrable random variable. Then the mapping E[Y |X] is a real-
valued random variable and

E[E[Y |X]] = E[Y ].

Proof:

E[Y ] =
∫
Y (ω)dP (ω) =

∫
[X∈E]

Y (ω)dP (ω) =
∫

E

E[Y |X = x]dPX(x)

= E[E[Y |X]].

�

Theorem 1.114. (Monotone convergence for conditional expectations).
If (Yn)n∈N is an increasing sequence of real-valued random variables on
(Ω,F , P ), converging almost surely to Y ∈ L1(Ω,F , P ), then the sequence
E[Yn|X = x] converges to E[Y |X = x],almost surely with respect to PX .

Proof: If Y ≥ 0 is a real-valued random variable on (Ω,F , P ), then

E[Y |X = x] ≥ 0, PX -a.s.,

from which it follows that, by monotonicity,

∀n ∈ N : E[Yn+1|X = x] ≥ E[Yn|X = x], PX -a.s.

Moreover,

∀B ∈ B :
∫

[X∈B]

YndP =
∫

B

E[Yn|X = x]dPX(x)

and
∀B ∈ B :

∫
[X∈B]

Y dP ≥
∫

[X∈B]

YndP.

Thus
E[Y |X = x] ≥ E[Yn|X = x], PX -a.s.

The monotone sequence (E[Yn|X = x])n∈N is bounded from above and con-
verges almost surely with respect to PX . By applying Lebesgue’s dominated
convergence theorem to the sequences (E[Yn|X = x])n∈N and (Yn)n∈N, we
obtain ∫

[X∈B]

Y dP = lim
n

∫
[X∈B]

YndP = lim
n

∫
B

E[Yn|X = x]dPX(x)

=
∫

B

lim
n
E[Yn|X = x]dPX(x), a.s.
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With {limnE[Yn|X = x], x ∈ E} (defined almost surely with respect to PX ,)
being B-measurable, the equality proves that

E[Y |X = x] = lim
n
E[Yn|X = x], a.s.

�

Theorem 1.115. (dominated convergence for conditional expectations). If
(Yn)n∈N is a sequence of real-valued random variables, Z a real random vari-
able belonging to L1(Ω,F , P ), with E[Z] <∞ and

|Yn| ≤ Z for all n ∈ N,

then from Yn → Y , almost surely with respect to PX , it follows that

E[Yn|X = x]→ E[Y |X = x], PX-a.s.

A notable extension of previous results and definitions is the subject of
the following presentation.

Expectations Conditional on a σ-Algebra

Again due to the Radon–Nykodim theorem, the following proposition holds.

Proposition 1.116. Let (Ω,F , P ) be a probability space and F ′ a σ-algebra
contained in F . For every real-valued random variable Y ∈ L1(Ω,F , P ), there
exists a unique element g ∈ L1(Ω,F ′, P ) such that ∀B′ ∈ F ′:∫

B′
Y dP =

∫
B′
gdP.

We will call this element the conditional expectation of Y given F ′ and will
denote it by E[Y |F ′] or by EF ′

[Y ].

Remark 1.117. It is not difficult to identify

E[Y |X] = E[Y |FX ]

if FX is the σ-algebra generated by X.

Proposition 1.118. (tower laws). Let Y ∈ L1(Ω,F , P ). For any two subal-
gebras G and B of F such that G ⊂ B ⊂ F , we have

E[E[Y |B]|G] = E[Y |G] = E[E[Y |G]|B].

Proof: For the first equality, by definition, we have∫
G

E[Y |G]dP =
∫

G

Y dP =
∫

G

E[Y |B]dP =
∫

G

E[E[Y |B]|G]dP

for all G ∈ G ⊂ B, where comparing the first and last terms completes the
proof. The second equality is proven along the same lines. �
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Proposition 1.119. Let B be a sub-σ-algebra of F . If Y is a real B-measurable
random variable and both Z and Y Z are two real-valued random variables in
L1(Ω,F , P ), then

EB[Y Z] = Y EB[Z].

In particular,
EB[Y ] = Y.

Proof: See, e.g., Métivier (1968). �

Definition 1.120. Let (Ω,F , P ) be a probability space, and let G be a sub-
σ-algebra of F . We say that a real random variable Y on (Ω,F , P ) is inde-
pendent of G with respect to the probability measure P if

∀B ∈ BR, ∀G ∈ G : P (G ∩ Y −1(B)) = P (G)P (Y −1(B)).

Proposition 1.121. Let G be a sub-σ-algebra of F ; if Y ∈ L1(Ω,F , P ) is
independent of G, then

E[Y |G] = E[Y ], a.s.

Proof: Let G ∈ G; then, by independence,∫
G

Y dP =
∫
IGY dP = E[IGY ] = E[IG]E[Y ] = P (G)E[Y ] =

∫
G

E[Y ]dP,

from which the proposition follows. �

Remark 1.122. Both the monotone and dominated convergence theorems ex-
tend in an analogous way to expectations conditional on σ-algebras.

Definition 1.123. A family of random variables (Yn)n∈N is uniformly inte-
grable if

lim
m→∞ sup

n

∫
|Yn|≥m

|Yn|dP = 0.

Proposition 1.124. Let (Yn)n∈N be a family of random variables in L1. Then
the following two statements are equivalent:

1. (Yn)n∈N is uniformly integrable,
2. supn∈NE[|Yn|] < +∞ and for all ε, there exists δ > 0 such that A ∈ F ,
P (A) ≤ δ ⇒ E[|YnIA|] < ε.

Proposition 1.125. Let (Yn)n∈N be a family of random variables dominated
by a nonnegative X ∈ L1 on the same probability space (Ω,F , P ), so that
|Yn(ω)| ≤ X(ω) for all n ∈ N. Then (Yn)n∈N is uniformly integrable.

Theorem 1.126. Let Y ∈ L1 be a random variable on (Ω,F , P ). Then the
class (E[Y |G])G⊂F , where G are sub-σ-algebras, is uniformly integrable.

Proof: See, e.g., Williams (1991). �
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Theorem 1.127. Let (Yn)n∈N be a sequence of random variables in L1 and

let Y ∈ L1. Then Yn
L1

→ Y if and only if

1. Yn
P−→
n
Y ,

2. (Yn)n∈N is uniformly integrable.

Proposition 1.128. Let (Ω,F , P ) be a probability space and F ′ a sub- σ-
algebra of F . Furthermore, let Y and (Yn)n∈N be real-valued random variables,
all belonging to L1(Ω,F , P ). Under these assumptions the following properties
hold:

1. E[E[Y |F ′]] = E[Y ];
2. E[αY + β|F ′] = αE[Y |F ′] + β almost surely (α, β ∈ R);
3. if Yn ↑ Y , then E[Yn|F ′] ↑ E[Y |F ′] almost surely;
4. if Y is F ′-measurable, then E[Y |F ′] = Y almost surely;
5. if φ : R → R is convex and φ(Y ) P -integrable, then φ(E[Y |F ′]) ≤
E[φ(Y )|F ′] almost surely (Jensen’s inequality).

Proof:

1. This property follows from Proposition 1.116 with B′ = Ω.
2. This is obvious from the linearity of the integral.
3. This point is a consequence of the Beppo–Levi property (see Proposition

A.28).
4. This property follows from the fact that for all B′ ∈ F ′ :

∫
B′ Y dP =∫

B′ Y dP , with Y F ′-measurable and P -integrable.
5. Here we use the fact that every convex function φ is of type φ(x) =

supn(anx + bn). Therefore, defining ln(x) = anx + bn, for all n, we have
that

ln(E[Y |F ′]) = E[ln(Y )|F ′] ≤ E[φ(Y )|F ′]

and thus
φ(E[Y |F ′]) = sup

n
ln(E[Y |F ′]) ≤ E[φ(Y )|F ′].

�

Proposition 1.129. If Y ∈ Lp(Ω,F , P ), then E[Y |F ′] is an element of
Lp(Ω,F ′, P ) and

‖E[Y |F ′]‖p ≤ ‖Y ‖p (1 ≤ p <∞). (1.7)

Proof: With φ(x) = |x|p being convex, we have that |E[Y |F ′]|p ≤ E[|Y |p|F ′]
and thus E[Y |F ′] ∈ Lp(Ω,F , P ), and after integration we obtain (1.7). �

Proposition 1.130. The conditional expectation E[Y |F ′] is the unique F ′-
measurable random variable Z such that for every F ′-measurable X : Ω → R,
for which the products XY and XZ are P -integrable, we have

E[XY ] = E[XZ]. (1.8)
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Proof: From the fact that E[E[XY |F ′]] = XY (point 1 of Proposition 1.128)
and because X is F ′-measurable, it follows from Proposition 1.119 that
E[E[XY |F ′]] = E[XE[Y |F ′]]. On the other hand, if Z is an F ′-measurable
random variable, so that for every F ′-measurable X, with XY ∈ L1(Ω,F , P )
and XZ ∈ L1(Ω,F , P ), it follows that E[XY ] = E[XZ]. Taking X = IB ,
B ∈ F ′ we obtain ∫

B

Y dP = E[Y IB ] = E[ZIB ] =
∫

B

ZdP

and hence, by uniqueness of E[Y |F ′], that Z = E[Y |F ′] almost surely. �

Theorem 1.131. Let (Ω,F , P ) be a probability space, F ′ a sub-σ-algebra of
F , and Y be a real-valued random variable on (Ω,F , P ). If Y ∈ L2(P ), then
E[Y |F ′] is the orthogonal projection of Y on L2(Ω,F ′, P ), a closed subspace
of the Hilbert space L2(Ω,F , P ).

Proof: By Proposition 1.129, from Y ∈ L2(Ω,F , P ) it follows that

E[Y |F ′] ∈ L2(Ω,F ′, P )

and, by equality (1.8), for all random variables X ∈ L2(Ω,F ′, P ), it holds
that

E[XY ] = E[XE[Y |F ′]],

completing the proof, by remembering that (X,Y ) → E[XY ] is the scalar
product in L2. �

Remark 1.132. We may interpret the theorem above by stating that E[Y |F ′]
is the best mean square approximation in L2(Ω,F ′, P ) of Y ∈ L2(Ω,F , P ).

1.6 Conditional and Joint Distributions

Let (Ω,F , P ) be a probability space, X : (Ω,F , P ) → (E,B) a random vari-
able, and F ∈ F . Following previous results, a unique element E[IF |X = x] ∈
L1(E,B, PX) exists such that for any B ∈ B

P (F ∩ [X ∈ B]) =
∫

[X∈B]

IF (ω)dP (ω) =
∫

B

E[IF |X = x]dPX(x). (1.9)

We can write
P (F |X = ·) = E[IF |X = ·].

Remark 1.133. By (1.9) the following properties hold:

1. For all F ∈ F : P (F |X = x) ≥ 0, almost surely with respect to PX .
2. P (∅|X = x) = 0, almost surely with respect to PX .
3. P (Ω|X = x) = 1, almost surely with respect to PX .
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4. For all F ∈ F : 0 ≤ P (F |X = x) ≤ 1, almost surely with respect to PX .
5. For all (An)n∈N ∈ FN collections of mutually exclusive sets:

P

(⋃
n∈N

An|X = x

)
=
∑
n∈N

P (An|X = x), PX -a.s.

If, for a fixed x ∈ E, points 3, 4, and 5 hold simultaneously, then P (·|X = x) is
a probability, but in general they do not. For example, it is not in general the
case that the set of points x ∈ E, PX(x) �= 0, for which 4 is satisfied, depends
upon F ∈ F . Even if the set of points for which 4 does not hold has zero
measure, their union over F ∈ F will not necessarily have measure zero. This
is also true for subsets F ′ ⊂ F . Hence, in general, given x ∈ E, P (·|X = x) is
not a probability on F , unless F is a countable family, or countably generated.
If it happens that, apart from a set E0 of PX -measure zero, P (·|X = x) is a
probability, then the collection (P (·|X = x))x∈E−E0 is called a regular version
of the conditional probability with respect to X on F .

Definition 1.134. Let X : (Ω,F)→ (E,B) and Y : (Ω,F , P )→ (E1,B1) be
two random variables. We denote by FY the σ-algebra generated by Y , hence

FY = Y −1(B1) = {[Y ∈ B]|B ∈ B1}.

If there exists a regular version (P (·|X = x))x∈E of the probability conditional
on X on the σ-algebra FY , denoting by PY (·|X = x) the mapping defined on
B1, then

PY (B|X = x) = P ([Y ∈ B]|X = x) ∀B ∈ B1, x ∈ E.

This mapping is a probability, called the distribution of Y conditional on X,
with X = x. PY (·|X = x) is also termed the induced measure on Y .

Remark 1.135. From the properties of the induced measure it follows that

E[Y |X = x] =
∫
Y (ω)dP (ω|X = x) =

∫
Y dPY (Y |X = x).

Existence of Conditional Distributions

The following shows the existence of a regular version of the conditional dis-
tribution of a random variable in a very special case.

Proposition 1.136. Let X : (Ω,F) → (E,B) and Y : (Ω,F) → (E1,B1) be
two random variables. Then the necessary and sufficient condition for X and
Y to be independent is:

∀A ∈ B1 : P ([Y ∈ A]|·) = constant(A), PX-a.s.
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Therefore,
P ([Y ∈ A]|·) = P ([Y ∈ A]), PX-a.s.,

and if Y is a real-valued integrable random variable, then

E[Y |·] = E[Y ], PX-a.s.

Proof: Independence of X and Y is equivalent to

P ([X ∈ B] ∩ [Y ∈ A]) = P ([X ∈ B])P ([Y ∈ A]) ∀A ∈ B1, B ∈ B,

or ∫
[X∈B]

I[Y ∈A](ω)P (dω) = P ([Y ∈ A])
∫
IB(x)dPX(x)

=
∫

B

P ([Y ∈ A])dPX(x),

and this is equivalent to affirming that

P ([Y ∈ A]|·) = P ([Y ∈ A]), PX -a.s. (1.10)

which is a constant k for x ∈ E. If we can write

P ([Y ∈ A]|·) = k(A), PX -a.s.,

then

∀B ∈ B :
∫

[X∈B]

I[Y ∈A](ω)dP (ω) =
∫

B

k(A)dPX(x) = k(A)P ([X ∈ B]),

from which it follows that

∀B ∈ B : P ([X ∈ B] ∩ [Y ∈ A]) = k(A)P ([X ∈ B]).

Therefore, for B = E, we have that

P ([Y ∈ A]) = k(A)P ([X ∈ E]) = k(A).

Now, we observe that (1.10) states that there exists a regular version of the
probability conditional on X, relative to the σ-algebra F ′ generated by Y ,
where the latter is given by

P ([Y ∈ A]|·) = PY (A) ∀x ∈ E.

Hence, by Remark 1.135, it can then be shown that E[Y |·] = E[Y ]. �
We have already shown that if X is a discrete random variable, then the

real random variable Y has a distribution conditional on X. The following
theorem provides more general conditions under which this conditional distri-
bution exists.
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Theorem 1.137. (Jirina). Let X and Y be two random variables on (Ω,F , P )
with values in (E,B) and (E1,B1), respectively. If E and E1 are complete sepa-
rable metric spaces with respective Borel σ-algebras B and B1, then there exists
a distribution of Y conditional on X.

Definition 1.138. Given the assumptions of Definition 1.134, if PY (·|X = x)
is defined by density with respect to measure μ1 on (E1,B1), then this density
is said to be conditional on X, written X = x, and denoted by fY (·|X = x).

Proposition 1.139. Let X = (X1, . . . , Xn) : (Ω,F) → (Rn,BRn) be a
vector of random variables, whose probability is defined through the den-
sity fX(x1, . . . , xn) with respect to Lebesgue measure μn on Rn. Fixing q =
1, . . . , n, we can consider the random vectors

Y = (X1, . . . , Xq) : (Ω,F)→ Rq

and
Z = (Xq+1, . . . , Xn) : (Ω,F)→ Rn−q.

Then Z admits a distribution conditional on Y, for almost every Y ∈ R,
defined through the function

f(xq+1, . . . , xn|x1, . . . , xq) =
fX(x1, . . . , xq, xq+1, . . . , xn)

fY(x1, . . . , xq)
,

with respect to Lebesgue measure μn−q on Rn−q. Thereby fY(x1, . . . , xq) is
the marginal density of Y at (x1, . . . , xq), given by

fY(x1, . . . , xq) =
∫
fX(x1, . . . , xn)dμn−q(xq+1, . . . , xn).

Proof: Writing y = (x1, . . . , xq) and x = (x1, . . . , xn), let B ∈ BRq and B1 ∈
BRn−q . Then

P ([Y ∈ B] ∩ [Z ∈ B1]) = PX((Y,Z) = X ∈ B ×B1) =
∫

B×B1

fX(x)dμn

=
∫

B

dμq(x1, . . . , xq)
∫

B

fX(x)dμn−q(xq+1, . . . , xn)

=
∫

B

fY(x)dμq

∫
B1

fX(x)
fY(y)

dμn−q

=
∫

B

dPY

(∫
B1

fX(x)
fY(y)

dμn−q

)
,

where the last equality holds for all points y for which fY(y) �= 0. By the
definition of density, the set of points y for which fY(y) = 0 has zero measure
with respect to PY, and therefore we can write in general:
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P ([Y ∈ B] ∩ [Z ∈ B1]) =
∫

B

dPY(y)
∫

B1

fX(x)
fY(y)

dμn−q.

Thus the latter integral is an element of P ([Z ∈ B1]|Y = y). Hence∫
B1

fX(x)
fY(y)

dμn−q = P ([Z ∈ B1]|Y = y) = PZ(B1|Y = y),

from which it follows that fX(x)
fY(y) is the density of P (·|Y = y). �

Example 1.140. Let fX,Y (x, y) be the density of the bivariate Gaussian distri-
bution. Then

fX,Y (x, y) = k exp
{
−1

2
(a(x−m1)2 + 2b(x−m1)(y −m2) + c(y −m2)2)

}
,

where

k =
1

2πσxσy

√
1− ρ2

, a =
1

(1− ρ2)σ2
x

,

b =
−ρ

(1− ρ2)σxσy
, c =

1
(1− ρ2)σ2

y

.

The distribution of Y conditional on X is defined through the density

fY (Y |X = x) =
fX,Y (x, y)
fX(x)

, where fX(x) =
1

σx

√
2π

exp

{
−1

2

(
x−m
σx

)2
}
.

From this it follows that

fY (Y |X = x)

=
1

σy

√
2π(1− ρ2)

exp

⎧⎨⎩− 1
2(1− ρ2)

(
y −m2 − σy

σx
(x−m1)

σy

)2
⎫⎬⎭ .

Therefore, the conditional density is normal, but with mean

E[Y |X = x] =
∫
ydPY (y|X = x) =

∫
yfY (y|X = x)dy = m2 + ρ

σy

σx
(x−m1)

and variance (1−ρ2)σ2
y. The conditional expectation in this case is also called

the regression line of Y with respect to X.

Remark 1.141. Under the assumptions of Proposition 1.136, two generic ran-
dom variables defined on the same probability space (Ω,F , P ) with values
in (E,B) and (E,B1), respectively, are independent if and only if Y has a
conditional distribution with respect to X = x, which is independent of x:
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PY (A|X = x) = PY (A), PX -a.s., (1.11)

which can be rewritten to hold for every x ∈ E. If X and Y are independent,
then their joint probability is given by

P(X,Y ) = PX ⊗ PY .

Integrating a function f(x, y) with respect to P (X,Y ), by Fubini’s theorem,
results in∫

f(x, y)P(X,Y )(dx, dy) =
∫
dPX(x)

∫
f(x, y)dPY (y). (1.12)

Using (1.11), then (1.12) can be rewritten in the form∫
f(x, y)P(X,Y )(dx, dy) =

∫
dPX(x)

∫
f(x, y)dPY (y|X = x).

The following proposition asserts that this relation holds in general.

Proposition 1.142. (generalization of Fubini’s theorem). Let X and Y be
two generic random variables defined on the same probability space (Ω,F , P )
with values in (E,B) and (E,B1), respectively. Moreover, let PX be the prob-
ability of X and PY (·|X = x) the probability of Y conditional on X = x, for
every x ∈ E. Then, for all M ∈ B ⊗ B1, the function

h : x ∈ E →
∫
IM (x, y)PY (dy|x)

is B-measurable and positive, resulting in

P(X,Y )(M) =
∫
PX(dx)

(∫
IM (x, y)PY (dy|x)

)
. (1.13)

In general, if f : E × E1 → R is P(X,Y )-integrable, then the function

h′ : x ∈ E →
∫
f(x, y)PY (dy|x)

is defined almost surely with respect to PX, and is PX-integrable. Thus we
obtain ∫

f(x, y)P(X,Y )(dx, dy) =
∫
h′(x)PX(dx). (1.14)

Proof: We observe that if M = B ×B1, B ∈ B, and B1 ∈ B1, then

P(X,Y )(B ×B1) = P ([X ∈ B] ∩ [Y ∈ B1]) =
∫

B

P ([Y ∈ B1]|X = x)dPX(x),

and by the definition of conditional probability
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P(X,Y )(B ×B1) =
∫
IB(x)PY (B1|x)dPX(x)

=
∫
dPX(x)

∫
PY (dy|x)IB(x)IB1(y).

This shows that (1.13) holds for M = B × B1. It is then easy to show that
(1.13) holds for every elementary function on B⊗B1. With the usual limiting
procedure, we can show that for every B ⊗ B1-measurable positive f we get∫ ∗

f(x, y)dP(X,Y )(x, y) =
∫ ∗

dPX(x)
∫ ∗

f(x, y)PY (dy|x).

As usual we have denoted by
∫ ∗ the integral of a nonnegative measurable

function, independently of its finiteness. If, then, f is measurable as well as
both P(X,Y )-integrable and positive, then∫ ∗

dPX(x)
∫ ∗

f(x, y)PY (dy|x) <∞,

where ∫ ∗
f(x, y)PY (dy|x) <∞, PX -a.s., x ∈ E.

Thus h′ is defined almost surely with respect to PX and (1.14) holds. Finally,
if f is P(X,Y )-integrable and of arbitrary sign, applying the preceding results
to f+ and f−, we obtain that∫

f(x, y)PY (dy|x) =
∫
f+(x, y)PY (dy|x)−

∫
f−(x, y)PY (dy|x)

is defined almost surely with respect to PX , and again (1.14) holds. �

1.7 Convergence of Random Variables

Convergence in Mean of Order p

Definition 1.143. Let X be a real-valued random variable on the probability
space (Ω,F , P ). X is integrable to the pth exponent (p ≥ 1) if the random
variable |X|p is P -integrable; thus |X|p ∈ L1(P ). By Lp(P ) we denote the
whole of the real-valued random variables on (Ω,F , P ) that are integrable to
the pth exponent. Then, by definition,

X ∈ Lp(P )⇔ |X|p ∈ L1(P ).

The following results are easy to show:
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Theorem 1.144.

X,Y ∈ Lp(P )⇒

⎧⎪⎪⎨⎪⎪⎩
αX ∈ Lp(P ) (α ∈ R),
X + Y ∈ Lp(P ),
sup{X,Y } ∈ Lp(P ),
inf{X,Y } ∈ Lp(P ).

Theorem 1.145. If X,Y ∈ Lp(P ) with p, q > 1 and 1
p + 1

q = 1, then XY ∈
Lp(P ).

Corollary 1.146. If 1 ≤ p′ ≤ p, then Lp(P ) ⊂ Lp′
(P ).

Proposition 1.147. Putting Np(X) = (
∫
|X|pdP )

1
p for X ∈ Lp(P ) (p ≥ 1),

we get the following results.

1. Hölder’s inequality: If X ∈ Lp(P ), Y ∈ Lq(P ) with p, q > 1 and 1
p + 1

q = 1,
then N1(XY ) ≤ Np(X)Nq(Y ).

2. Cauchy–Schwarz inequality:∣∣∣∣∫ XY dP

∣∣∣∣ ≤ N2(X)N2(Y ), X, Y ∈ L2(P ). (1.15)

3. Minkowski’s inequality:

Np(X + Y ) ≤ Np(X) +Np(Y ) for X,Y ∈ Lp(P ), (p ≥ 1).

Proposition 1.148. The mapping Np : Lp(P )→ R+ (p ≥ 1) has the follow-
ing properties:

1. Np(αX) = |α|Np(X) for X ∈ Lp(P ), α ∈ R;
2. X = 0⇒ Np(X) = 0.

By 1 and 2 of Proposition 1.148 as well as 3 of Proposition 1.147, we can
assert that Np is a seminorm on Lp(P ), but not a norm.

Definition 1.149. Let (Xn)n∈N be a sequence of elements of Lp(P ) and let
X be another element of Lp(P ). Then the sequence (Xn)n∈N converges to X
in mean of order p, if limn→∞ ‖Xn −X‖p = 0.

Convergence in Distribution

Now we will define a different type of convergence of random variables, which is
associated with its partition function (see Loève (1963) for further references).
We consider a sequence of probabilities (Pn)n∈N on (R,BR) and define the
following.



1.7 Convergence of Random Variables 43

Definition 1.150. The sequence of probabilities (Pn)n∈N converges weakly to
a probability P if the following conditions are satisfied:

∀f : R→ R continuous and bounded: lim
n→∞

∫
fdPn =

∫
fdP.

We write
Pn

W−→
n→∞P.

Definition 1.151. Let (Xn)n∈N be a sequence of random variables on the
probability space (Ω,F , P ) and X a further random variable defined on the
same space. (Xn)n∈N converges in distribution to X if the sequence (PXn)n∈N

converges weakly to PX . We write

Xn
d−→

n→∞X.

Theorem 1.152. Denoting by F the partition function associated with X,
then, for every n ∈ N, with FXn

being the partition function associated with
Xn, the following two conditions are equivalent:

1. for all f : R→ R continuous and bounded: limn→∞
∫
fdPXn

=
∫
fdPX;

2. for all t ∈ R such that F is continuous in t : limn→∞ FXn(t) = F (t).

We will henceforth denote the characteristic functions associated with the
random variables X and Xn, by φX and φXn , for all n ∈ N, respectively.

Theorem 1.153. (Lévy’s continuity theorem). If (PXn
)n∈N converges weakly

to PX , then for all t ∈ R : φXn(t)−→
n
φX(t). If there exists φ : R → C such

that for all t ∈ R : φXn(t)−→
n
φX(t) and, moreover, if φ is continuous in zero,

then φ is the characteristic function of a probability P on (R,BR), such that
(PXn

)n∈N converges weakly to P .

Theorem 1.154. (Polya). If FX is continuous and for all t ∈ R:

lim
n→∞FXn

(t) = FX(t),

then (φXn)n∈N converges pointwise to φX and the convergence is uniform on
all the bounded intervals [−T, T ].

Almost Sure Convergence and Convergence in Probability

Definition 1.155. Let (Xn)n∈N be a sequence of random variables on the
probability space (Ω,F , P ) and X a further random variable defined on the
same space. (Xn)n∈N converges almost surely to X, denoted by Xn

a.s.−→
n
X or,

equivalently, limn→∞Xn = X almost surely, if

∃S0 ⊂ Ω such that P (S0) = 0 and ∀ω ∈ Ω \ S0 : lim
n→∞Xn(ω) = X(ω).
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Definition 1.156. (Xn)n∈N converges in probability (or stochastically) to X,
denoted by Xn

P−→
n
X or, equivalently, P − limn→∞Xn = X, if

∀ε > 0 : lim
n→∞P (|Xn −X| > ε) = 0.

Theorem 1.157. The following relationships hold:

1. almost sure convergence ⇒ convergence in probability ⇒ convergence in
distribution;

2. convergence in mean ⇒ convergence in probability;
3. if the limit is a degenerate random variable (i.e., a deterministic quantity)

then convergence in probability ⇔ convergence in distribution.

Skorohod Representation Theorem

A fundamental result was obtained by Skorohod, relating convergence in law
and almost sure convergence (see, e.g., Billingsley (1968)).

Theorem 1.158. (Skorohod representation theorem). Consider a sequence
(Pn)n∈N of probability measures and a probability measure P on (Rk,BRk),
such that Pn

W−→
n→∞P. Let Fn be the distribution function corresponding to Pn,

and F the distribution function corresponding to P . Then there exists a se-
quence of random variables (Yn)n∈N and a random variable Y defined on a
common probability space (Ω,F , P ), with values in (Rk,BRk), such that Yn

has distribution function Fn, Y has distribution function F, and

Yn
a.s.−→

n→∞Y.

Note

For proofs of the various results, see, e.g., Ash (1972), Bauer (1981), or
Métivier (1968).

1.8 Exercises and Additions

1.1. Prove Proposition 1.15.

1.2. Prove all the points of Example 1.66.

1.3. Show that the statement of Example 1.80 is true.

1.4. Prove all points of Example 1.89 and, in addition, the following: LetX be
a Cauchy distributed random variable, i.e., X ∼ C(0, 1); then Y = a+ hX ∼
C(a, h).
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1.5. Give an example of two random variables that are uncorrelated but not
independent.

1.6. If X has an absolutely continuous distribution with pdf f(x), its entropy
is defined as

H(X) = −
∫

D

f(x) ln f(x)dx,

where D = {x ∈ R|f(x) > 0}.

1. Show that the maximal value of entropy within the set of nonnegative ran-
dom variables with a given expected value μ is attained by the exponential
E(μ−1).

2. Show that the maximal value of entropy within the set of real random
variables with fixed mean μ and variance σ2 is attained by the Gaussian
N(μ, σ2).

1.7. We say that X is a compound Poisson random variable if it can be
expressed as

X =
N∑

k=1

Yk

for N ∈ N∗, and X = 0 for N = 0, where N is a Poisson random variable
with some parameter λ ∈ R∗

+, and (Yk)k∈N∗ is a family of independent and
identically distributed random variables, independent of N . Determine the
characteristic function of X.

1.8. Let X be a random variable with characteristic function φ. We say that
φ is infinitely divisible (i.d.), if for any n ∈ N∗, there exists a characteristic
function φn such that

φ(s) = (φn(s))n for any s ∈ R.

1. Show that the characteristic function of a Gaussian random variable X ∼
N(μ, σ2) is i.d.

2. Show that the characteristic function of a Poisson random variable X ∼
P (λ) is i.d.

3. Show that the characteristic function of a compound Poisson random vari-
able is i.d.

4. Show that the exponential distribution E(λ) is i.d.
5. Show that the characteristic function of a Gamma random variable X ∼
Γ (α, β) is i.d.

6. Show that an i.d. characteristic function never vanishes.
7. Show that the characteristic function of a uniform random variable X ∼
U(0, 1) is not i.d.
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1.9. (Kolmogorov) Show that a function φ is an i.d. characteristic function
with finite variance if and only if

lnφ(s) = ias+
∫

R

eisx − 1− isx
x2

G(dx) for any s ∈ R,

where a ∈ R and G is an increasing function of bounded variation (the reader
may refer to Gnedenko (1963)).

1.10. (Lévy–Khintchine) Show that a function φ is an infinitely divisible char-
acteristic function if and only if

lnφ(s) = ias− σ
2s2

2
+
∫

R−{0}
(eisx − 1− isχ(x))λL(dx) for any s ∈ R,

where a ∈ R, σ2 ∈ R∗
+,

χ(x) = −I]−∞,1](x) + xI]−1,1[(x) + I[1,+∞[,

and λL is a Lévy measure, i.e. a measure defined on R∗ such that∫
R∗

min{x2, 1}λL(dx) < +∞.

The triplet (a, σ2, λL) is called the generating triplet of the infinitely divisible
characteristic function φ. (The reader may refer to Fristedt and Gray (1997)
or Sato (1999).)

1.11. A distribution is infinitely divisible if and only if it is the weak limit of
a sequence of distributions, each of which is compound Poisson (the reader
may refer to Breiman (1968)).

1.12. We will say that two distribution functions F and G on R are of the
same type if there exist two constants a ∈ R∗

+ and b ∈ R such that

F (ax+ b) = G(x) for any x ∈ R.

It is easy to see that this is an equivalence relation.
We may then introduce the definition of stable law as follows: F is stable,

if the convolution of any two distributions of the same type as F is again of
the same type.

Show that φ is the characteristic function of a stable law if and only if for
any a1 and a2 in R∗

+, there exist two constants a ∈ R∗
+ and b ∈ R such that

φ(a1s)φ(a2s) = eibsφ(as).

1.13. Show that any Cauchy distribution is stable.
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1.14. Show that every stable law is infinitely divisible. What about the con-
verse?

1.15. Show that if φ is the characteristic function of a stable law which is
symmetric about the origin, then there exist c ∈ R∗

+ and α ∈]0, 2] such that

φ(s) = e−c|s|α for any x ∈ R.

1.16. If φ1(t) = sin t, φ2(t) = cos t are characteristic functions, then give an
example of random variables associated with φ1, φ2, respectively.

Let φ(t) be a characteristic function, and describe the random variable
with characteristic function |φ(t)|2.

1.17. Let X1, X2, . . . , Xn be independent and identically distributed random
variables with common density f , and

Yj = jth smallest of the X1, X2, . . . , Xn, j = 1, . . . , n.

It follows that Y1 ≤ · · · ≤ Yj ≤ · · · ≤ Yn. Show that

fY1,...,Yn =
{
n!
∏n

i=1 f(yi), if y1 < y2 < · · · < yn,
0, otherwise.

1.18. Let X and (Yn)n∈N be random variables such that

X ∼ E(1), Yn(ω) =
{
n, if X(ω) ≤ 1

n ,
0, otherwise.

Give, if it exists, the limit lim
n→∞Yn:

• in distribution,
• in probability,
• almost surely,
• in mean of order p ≥ 1.

1.19. Let (Xn)n∈N be a sequence of uncorrelated random variables with com-
mon expected value E[Xi] = μ and such that supV ar[Xi] < +∞.

Show that
∑n

i=1

Xi

n
converges to μ in mean of order p = 2.

1.20. Give an example of random variables X,X1, X2, . . . such that (Xn)n∈N

converges to X

• in probability but not almost surely,
• in probability but not in mean,
• almost surely but not in mean and vice versa,
• in mean of order 1 but not in mean of order p = 2 (generally p > 1).
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1.21. Let (Xn)n∈N be a sequence of independent and identically distributed
random variables such thatXi ∼ B(p) for all i. Let Y be uniformly distributed
on [0, 1] and independent of Xi, for all i. If Sn = 1

n

∑n
k=1(Xk − Y )2, show

that (Sn)n∈N converges almost surely and determine its limit.

1.22. Let (Xn)n∈N be a sequence of independent and identically distributed
random variables; determine the limit almost surely of

1
n

n∑
k=1

sin
(
Xi

Xi+1

)
in the following case:

• Xi = ±1 with probability 1/2,
• Xi is a continuous random variable and its density function fXi

is an even
function.

(Hint: Consider the sum on the natural even numbers.)

1.23. (Large deviations). Let (Xn)n∈N be a sequence of independent and iden-
tically distributed random variables and suppose that their moment generat-
ing function M(t) = E[etX1 ] exists and is finite in [0, a], a ∈ R∗

+. Prove that
for any t ∈ [0, a]

P (X̄ > E[X1] + ε) ≤ (e−t(E[X1]+ε)M(t))n < 1,

where X̄ denotes the arithmetic mean of X1, . . . , Xn, n ∈ N.
Apply the above result to the cases X1 ∼ B(1, p) and X1 ∼ N(0, 1).

1.24. (Chernoff ). Let (Xn)n∈N be a sequence of independent and identically
distributed simple (finite range) random variables, satisfying E[Xn] < 0 and
P (Xn > 0) > 0 for any n ∈ N, and suppose that their moment generating
function M(t) = E[etX1 ] exists and is finite in [0, a], a ∈ R∗

+. Show that

lim
n→∞

1
n

lnP (X1 + · · ·+Xn ≥ 0) = ln inf
t
M(t).

1.25. (Law of iterated logarithms). Let (Xn)n∈N be a sequence of independent
and identically distributed simple (finite range) random variables with mean
zero and variance 1. Show that

P

(
lim sup

n

Sn√
2n ln lnn

= 1
)

= 1.

1.26. Let X be a d-dimensional Gaussian vector. Prove that for every Lips-
chitz function f on Rd, with ‖f‖Lip ≤≤ 1, the following inequality holds for
any λ ≥ 0:

P (f(X)− E[f(X)] ≥ λ) ≤ e−λ2
2 .
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1.27. Let X be an n-dimensional centered Gaussian vector. Show that

lim
r→+∞

1
r2

lnP
(

max
1≤i≤n

Xi ≥ r
)

= − 1
2σ2

.

1.28. Let (Yn)n∈N be a family of random variables in L1, then the following
two statements are equivalent:

1. (Yn)n∈N is uniformly integrable,
2. supn∈NE[|Yn|] < +∞ and for all ε, there exists a δ > 0 such that A ∈ F ,
P (A) ≤ δ ⇒ E[|YnIA|] < ε.

(Hint:
∫

A
|Yn| ≤ rP (A) +

∫
|Yn|>r

Yn for r > 0.)

1.29. Show that the random variables (Yn)n∈N are uniformly integrable if and
only if supnE[f(|Yn|)] < ∞ for some increasing function f : R+ → R+ with
f(x)/x→∞ as n→∞.

1.30. Show that for any Y ∈ L1, the family of conditional expectations
{E[Y |G], G ⊂ F} is uniformly integrable.

The following exercises are extending the concept of sequences of random
variables and are introducing (discrete) processes and martingales. The lat-
ter’s continuous equivalents will be the subject of the following chapters.

1.31. Let (Ω,F , P ) be a probability space and (Fn)n≥0 be a filtration, that
is, an increasing family of sub-σ-algebras of F :

F0 ⊆ F1 ⊆ · · · ⊆ F .

We define F∞ := σ(
⋃

n Fn) ⊆ F . A process X = (Xn)n≥0 is called adapted
(to the filtration (Fn)n≥0) if for each n, Xn is Fn-measurable.

A process X is called a martingale (relative to (Fn, P )) if

• X is adapted,
• E[|Xn|] <∞ for all n (⇔ Xn ∈ L1),
• E[Xn|Fn] = Xn−1 almost surely (n ≥ 1).

1. Show that if (Xn)n∈N is a sequence of independent random variables with
E[Xn] = 0 for all n ∈ N, then Sn = X1 +X2 + · · · +Xn is a martingale
with respect to (Fn = σ(X1, . . . , Xn), P ) and F0 = {∅, Ω}.

2. Show that if (Xn)n∈N is a sequence of independent random variables with
E[Xn] = 1 for all n ∈ N, then Mn = X1 ·X2 · · · · ·Xn is a martingale with
respect to (Fn = σ(X1, . . . , Xn), P ) and F0 = {∅, Ω}.

3. Show that if {Fn : n ≥ 0} is a filtration in F and ξ ∈ L1(Ω,F , P ), then
Mn ≡ E[ξ|Fn] is a martingale.

4. An urn contains white and black balls; we draw a ball and replace it with
two balls of the same color; the process is repeated many times. Let Xn

be the proportion of white balls in the urn before the nth draw. Show
that the process (Xn)n≥0 is a martingale.



50 1 Fundamentals of Probability

1.32. A process C = (Cn)n≥1 is called predictable if

Cn is Fn−1-measurable (n ≥ 1).

We define

(C •X)n :=
n∑

k=1

Ck(Xk −Xk−1).

Prove that if C is a bounded predictable process and X is a martingale, then
(C •X) is a martingale null at n = 0 (stochastic integration theorem).

1.33. Let N = N ∪ {+∞}. A random variable T : (Ω,F) → (N,BN) is a
stopping time if and only if

∀n ∈ N : {T ≤ n} ∈ Fn.

Let X be a martingale with respect to the natural filtration (Ft)n∈R+ and
let T be a stopping time with respect to the same filtration. Show that the
stopped process XT ; = (Xn∧T (ω))n≥0 is a martingale with the same expected
value of X.
(Hint: Consider the predictable process Cn = I(T≥n) and apply the result of
problem 1.32 to the process (XT −X0)n = (CT •X)n.)

1.34. Let (Xn)n≥0 be an adapted process with Xn ∈ L1 for all n. Prove that
X admits a Doob decomposition

X = X0 +M +A,

where M is a martingale null at n = 0 and A is a predictable process null
at n = 0. Moreover, this decomposition is unique in the sense that if X =
X0 + M̃ + Ã is another such decomposition, then

P (Mn = M̃n, An = Ãn,∀n) = 1.

1.35. Consider the model

ΔXn = Xn+1 −Xn = pXn +ΔMn,

where Mn is a zero-mean-martingale. Prove that

p̂ =
1
n

n∑
k=1

1
Xj
ΔXj

is an unbiased estimator of p (i.e., E[p̂] = p). (Hint: Use the stochastic inte-
gration theorem.)
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Stochastic Processes

2.1 Definition

We commence along the lines of the founding work of Kolmogorov by regard-
ing stochastic processes as a family of random variables defined on a prob-
ability space and thereby define a probability law on the set of trajectories
of the process. More specifically, stochastic processes generalize the notion of
(finite-dimensional) vectors of random variables to the case of any family of
random variables indexed in a general set T . Typically, the latter represents
“time” and is an interval of R (in the continuous case) or N (in the discrete
case).

Definition 2.1. Let (Ω,F , P ) be a probability space, T an index set, and
(E,B) a measurable space. An (E,B)-valued stochastic process on (Ω,F , P )
is a family (Xt)t∈T of random variables Xt : (Ω,F)→ (E,B) for t ∈ T .

(Ω,F , P ) is called the underlying probability space of the process (Xt)t∈T ,
while (E,B) is the state space or phase space. Fixing t ∈ T , the random
variable Xt is the state of the process at “time” t. Moreover, for all ω ∈ Ω,
the mapping X(·, ω) : t ∈ T → Xt(ω) ∈ E is called the trajectory or path of
the process corresponding to ω. Any trajectory X(·, ω) of the process belongs
to the space ET of functions defined in T and valued in E. Our aim is to
introduce a suitable σ-algebra BT on ET that makes the family of trajectories
of our stochastic process a random function X : (Ω,F)→ (ET ,BT ).

More generally, let us consider the family of measurable spaces (Et,Bt)t∈T

(as a special case, all Et may coincide with a unique E) and define WT =∏
t∈T Et. If S ∈ S, where S = {S ⊂ T | S is finite}, the product σ-algebra

BS =
⊗

t∈S Bt is well defined as the σ-algebra generated by the family of
rectangles with sides in Bt, t ∈ S.

Definition 2.2. If A ∈ BS , S ∈ S, then the subset π−1
ST (A) is a cylinder in

WT with base A, where πST is the canonical projection of WT on WS .
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It is easy to show that if CA and CA′ are cylinders with bases A ∈ BS and
A′ ∈ BS′

, S, S′ ∈ S, respectively, then CA ∩CA′ , CA ∪CA′ , and CA \CA′ are
cylinders with base in WS∪S′

. From this it follows that the set of cylinders
with finite-dimensional base is a ring of subsets ofWT (or, better, an algebra).
We denote by BT the σ-algebra generated by it. (See, e.g., Métivier (1968).)

Definition 2.3. The measurable space (WT ,BT ) is called the product space
of the measurable spaces (Et,Bt)t∈T .

From the definition of BT we have the following result.

Theorem 2.4. BT is the smallest σ-algebra of the subsets of WT that makes
all canonical projections πST measurable.

Furthermore the following is true.

Lemma 2.5. The canonical projections πST are measurable if and only if
π{t}T for all t ∈ T , are measurable as well.

Moreover, from a well-known result of measure theory, we have the follow-
ing proposition.

Proposition 2.6. A function f : (Ω,F) → (WT ,BT ) is measurable if and
only if for all t ∈ T, the composite mapping π{t} ◦ f : (Ω,F) → (Et,Bt) is
measurable.

For proofs of Theorem 2.4, Lemma 2.5, and Proposition 2.6, see, e.g.,
Métivier (1968).

Remark 2.7. Let (Ω,F , P, (Xt)t∈T ) be a stochastic process with state space
(E,B). Since the function space ET =

∏
t∈T E, the mapping f : Ω → ET ,

which associates every ω ∈ Ω with its corresponding trajectory of the process,
is (F − BT )-measurable, and, in fact, we have that

∀t ∈ T : π{t} ◦ f(ω) = π{t}(X(·, ω)) = Xt(ω),

π{t} ◦ f = Xt, which is a random variable, is obviously measurable.

Definition 2.8. A function f : Ω → ET defined on a probability space
(Ω,F , P ) and valued in a measurable space (ET ,G) is called a random func-
tion if it is (F-G)-measurable.

How can we define a probability law PT on (ET ,BT ) for the stochastic
process (Xt)t∈T defined on the probability space (Ω,F , P ) in a coherent way?
We may observe that from a physical point of view, it is natural to assume
that in principle we are able, from experiments, to define all possible finite-
dimensional joint probabilities

P (Xt1 ∈ B1, . . . , Xtn ∈ Bn)
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for any n ∈ N, for any {t1, . . . , tn} ⊂ T , and for any B1, . . . , Bn ∈ B;
i.e., the joint probability laws PS of all finite-dimensional random vectors
(Xt1 , . . . , Xtn

), for any choice of S = {t1, . . . , tn} ⊂ S, such that

PS(B1 × · · · ×Bn) = P (Xt1 ∈ B1, . . . , Xtn
∈ Bn).

Accordingly, we require that, for any S ⊂ S,

PT (π−1
ST (B1 × · · · ×Bn) = PS(B1 × · · · ×Bn) = P (Xt1 ∈ B1, . . . , Xtn

∈ Bn).

A general answer comes from the following theorem. After having con-
structed the σ-algebra BT on ET , we now define a measure μT on (WT ,BT ),
supposing that, for all S ∈ S, a measure μS is assigned on (WS ,BS). If S ∈ S,
S′ ∈ S ′, and S ⊂ S′, we denote the canonical projection of WS on WS′

by
πSS′ , which is certainly (BS′

-BS)-measurable.

Definition 2.9. If, for all (S, S′) ∈ S × S ′, with S ⊂ S′, we have that
πSS′(μS′) = μS . Moreover,

(WS ,BS , μS , πSS′)S,S′∈S;S⊂S′

is called a projective system of measurable spaces and (μS)S∈S is called a
compatible system of measures on the finite products (WS ,BS)S∈S .

Theorem 2.10. (Kolmogorov–Bochner). Let (Et,Bt)t∈T be a family of Pol-
ish spaces (i.e., metric, complete, separable) endowed with their respective
Borel σ-algebras, and let S be the collection of finite subsets of T and, for
all S ∈ S with WS =

∏
t∈S Et and BS =

⊗
t∈S Bt, let μS be a finite mea-

sure on (WS ,BS). Under these assumptions the following two statements are
equivalent:

1. there exists a μT measure on (WT ,BT ) such that for all S ∈ S : μS =
πST (μT );

2. the system (WS ,BS , μS , πSS′)S,S′∈S;S⊂S′ is projective.

Moreover, in both cases, μT , as defined in 1, is unique.

Proof: See, e.g., Métivier (1968). �

Definition 2.11. The unique measure μT of Theorem 2.10 is called the pro-
jective limit of the projective system (WS ,BS , μS , πSS′)S,S′∈S;S⊂S′ .

As a special case we consider a family of probability spaces (Et,Bt, Pt)t∈T .
If, for all S ∈ S, we define PS =

⊗
t∈S Pt, then (WS ,BS , PS , πSS′)S,S′∈S;S⊂S′

is a projective system and the projective probability limit
⊗

t∈T Pt is called
the probability product of the family of probabilities (Pt)t∈T .

With respect to the projective system of finite-dimensional probability
laws PS =

⊗
t∈S PXt of a stochastic process (Xt)t∈R+ , the projective limit

will be the required probability law of the process.
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Theorem 2.12. Two real-valued stochastic processes (Xt)t∈R+ and (Yt)t∈R+

that have the same finite-dimensional probability laws have the same probabil-
ity law.

Definition 2.13. Two stochastic processes are equivalent if and only if they
have the same projective system of finite-dimensional joint distributions.

A more stringent notion is the following.

Definition 2.14. Two real-valued stochastic processes (Xt)t∈R+ and (Yt)t∈R+

on the probability space (Ω,F , P ) are called modifications or versions of one
another if,

for any t ∈ T, P (Xt = Yt) = 1.

Remark 2.15. It is obvious that two processes that are modifications of one
another are also equivalent.

An even more stringent requirement comes from the following definition.

Definition 2.16. Two processes are indistinguishable if

P (Xt = Yt,∀t ∈ R+) = 1.

Remark 2.17. It is obvious that two indistinguishable processes are modifica-
tions of each other.

Example 2.18. Let (Xt)t∈T be a family of independent random variables de-
fined on (Ω,F , P ) and valued in (E,B). (In fact, in this case, it is sufficient to
assume that only finite families of (Xt)t∈T are independent.) We know that
for all t ∈ T the probability Pt = Xt(P ) is defined on (E,B). Then

∀S = {t1, . . . , tr} ∈ S : PS =
r⊗

k=1

Ptk
, for some r ∈ N∗,

and the system (PS)S∈S is compatible with its finite products (ES ,BS)S∈S .
In fact, if B is a rectangle of BS , i.e., B = Bt1 × · · · × Btr , and if S ⊂ S′,
where S, S′ ∈ S, then

PS(B) = PS(Bt1 × · · · ×Btr ) = Pt1(Bt1) · · · · · Ptr (Btr )
= Pt1(Bt1) · · · · · Ptr (Btr )Ptr+1(E) · · · · · Ptr′ (E)

= PS′(π−1
SS′(B)).

By the extension theorem we obtain that PS = πSS′(PS′).

Remark 2.19. The compatibility condition PS = πSS′(PS′), for all S, S′ ∈ S
and S ⊂ S′, can be expressed in an equivalent way by either the distribution
function FS of the probability PS or its density fS . Respectively, we obtain:
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1. for all S, S′ ∈ S, S ⊂ S′, for all (xt1 , . . . , xtr
) ∈ ES :

FS(xt1 , . . . , xtr
) = FS′(xt1 , . . . , xtr

,+∞, . . . ,+∞);
2. for all S, S′ ∈ S, S ⊂ S′, for all (xt1 , . . . , xtr

) ∈ RS :
fS(xt1 , . . . , xtr ) =

∫
· · ·
∫
dxtr+1 · · · dxtr′ fS′(xt1 , . . . , xtr , xtr+1 , . . . , xtr′ ).

Definition 2.20. A real-valued stochastic process (Xt)t∈R+ is continuous in
probability if

P − lim
s→t

Xs = Xt, s, t ∈ R+.

Definition 2.21. A function f : R+ → R is right-continuous if for any t ∈
R+, with s > t,

lim
s↓t
f(s) = f(t).

Instead, the function is left-continuous if for any t ∈ R+, with s < t,

lim
s↑t
f(s) = f(t).

Definition 2.22. A stochastic process (Xt)t∈R+ is right-(left-)continuous if
its trajectories are right-(left-)continuous almost surely.

Definition 2.23. A stochastic process (Xt)t∈R+ is said to be right-continuous
with left limits (RCLL) or continu à droite avec limite à gauche (càdlàg)
if, almost surely, it has trajectories that are RCLL. The latter is denoted
Xt− = lims↑tXs.

Theorem 2.24. Let (Xt)t∈R+ and (Yt)t∈R+ be two RCLL processes. Xt and
Yt are modifications of each other if and only if they are indistinguishable.

Definition 2.25. A real-valued stochastic process (Xt)t∈R+ on the probabil-
ity space (Ω,F , P ) is called separable if

• there exists a T0 ⊂ R+, countable and dense everywhere in R+;
• there exists an A ∈ F , P (A) = 0 (negligible),

such that

• for all t ∈ R+ : there exists (tn)n∈N ∈ TN
0 , such that limn→∞ tn = t;

• for all ω ∈ Ω \A : limn→∞Xtn(ω) = Xt(ω).

The subset T0 of R+, as defined above, is called the separating set.

Theorem 2.26. Let (Xt)t∈R+ be a separable process, having T0 and A as
its separating and negligible sets, respectively. If ω /∈ A, t0 ∈ R+, and
limt→t0 Xt(ω) for t ∈ T0 exists, then so does the limit limt→t0 Xt(ω) for
t ∈ R+, and they coincide.

Proof: See, e.g., Ash and Gardner (1975). �



56 2 Stochastic Processes

Theorem 2.27. Every real stochastic process (Xt)t∈R+ admits a separable
modification.

Proof: See, e.g., Ash and Gardner (1975). �

Remark 2.28. By virtue of Theorem 2.27, we may henceforth only consider
separable processes.

Definition 2.29. Let (Xt)t∈R+ be a stochastic process defined on the proba-
bility space (Ω,F , P ) and valued in (E,BE). The process (Xt)t∈R+ is said to
be measurable if it is measurable as a function defined on R+ × Ω (with the
σ-algebra BR+ ⊗F) and valued in E.

Proposition 2.30. If the process (Xt)t∈R+ is measurable, then the trajectory
X(·, ω) : R+ → E is measurable for all ω ∈ Ω.

Proof: Let ω ∈ Ω and B ∈ BE . We want to show that (X(·, ω))−1(B) is an
element of BR+ . In fact,

(X(·, ω))−1(B) = {t ∈ R+|X(t, ω) ∈ B} = {t ∈ R+|(t, ω) ∈ X−1(B)},

meaning that (X(·, ω))−1(B) is the path ω of X−1, which is certainly mea-
surable, because X−1(B) ∈ BR+ ⊗ F (as follows from the properties of the
product σ-algebra). �

If the process is measurable, it makes sense to consider the integral∫ b

a
X(t, ω)dt along a trajectory. By Fubini’s theorem, we have∫

Ω

dω

∫ b

a

dtX(t, ω) =
∫ b

a

dt

∫
Ω

dωX(t, ω).

However, in general, it is not true that a function f(ω1, ω2) is jointly measur-
able in both variables, even if it is separately measurable in each of them. It is
therefore required to impose conditions that guarantee the joint measurability
of f in both variables. Evidently, if (Xt)t∈R+ is a stochastic process, then for
all t ∈ R+ : X(t, ·) is measurable.

Definition 2.31. The process (Xt)t∈R+ is said to be progressively measurable
with respect to the filtration (Ft)t∈R+ , which is an increasing family of sub-
algebras of F , if, for all t ∈ R+, the mapping (s, ω) ∈ [0, t]×Ω → X(s, ω) ∈ E
is (B[0,t] ⊗ Ft)-measurable. Furthermore, we henceforth suppose that Ft =
σ(X(s), 0 ≤ s ≤ t), t ∈ R+, which is called the generated or natural filtration
of the process Xt.

Proposition 2.32. If the process (Xt)t∈R+ is progressively measurable, then
it is also measurable.
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Proof: Let B ∈ BE . Then

X−1(B) = {(s, ω) ∈ R+ ×Ω|X(s, ω) ∈ B}

=
∞⋃

n=0

{(s, ω) ∈ [0, n]×Ω|X(s, ω) ∈ B}.

Since
∀n : {(s, ω) ∈ [0, n]×Ω|X(s, ω) ∈ B} ∈ B[0,n] ⊗Fn,

we obtain that X−1(B) ∈ BR+ ⊗F . �

Theorem 2.33. If the process (Xt)t∈R+ is continuous in probability, then it
admits a separable and progressively measurable modification.

Proof: See, e.g., Ash and Gardner (1975). �

Definition 2.34. A filtered complete probability space (Ω,F , P, (Ft)t∈R+) is
said to satisfy the usual hypotheses if

1. F0 contains all the P -null sets of F ,
2. Ft =

⋂
s>t Fs, for all t ∈ R+; i.e., the filtration (Ft)t∈R+ is right-

continuous.

Henceforth we will always assume that the usual hypotheses hold, unless
specified otherwise.

Definition 2.35. Let (Ω,F , P, (Ft)t∈R+) be a filtered probability space. The
σ-algebra on R+ ×Ω generated by all sets of the form {0} ×A, A ∈ F0, and
]a, b] × A, 0 ≤ a < b < +∞, A ∈ Fa, is said to be the predictable σ-algebra
for the filtration (Ft)t∈R+ .

Definition 2.36. A real-valued process (Xt)t∈R+ is called predictable with
respect to a filtration (Ft)t∈R+ , or Ft-predictable, if as a mapping from R+ ×
Ω → R it is measurable with respect to the predictable σ-algebra generated
by this filtration.

Definition 2.37. A simple predictable process is of the form

X = k0I{0}×A +
n∑

i=1

kiI]ai,bi]×Ai
,

where A0 ∈ F0, Ai ∈ Fai , i = 1, . . . , n, and k0, . . . , kn are real constants.

Proposition 2.38. Let (Xt)t∈R+ be a process that is Ft-predictable. Then,
for any t > 0, Xt is Ft−-measurable.

Lemma 2.39. Let (Xt)t∈R+ be a left-continuous real-valued process adapted
to (Ft)t∈R+ . Then Xt is predictable.
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Lemma 2.40. A process is predictable if and only if it is measurable with
respect to the smallest σ-algebra on R+ × Ω generated by the adapted left-
continuous processes.

Proposition 2.41. Every predictable process is progressively measurable.

Proposition 2.42. If the process (Xt)t∈R+ is right-(left-)continuous, then it
is progressively measurable.

Proof: See, e.g., Métivier (1968). �

2.2 Stopping Times

In what follows we are given a probability space (Ω,F , P ) and a filtration
(Ft)t∈R+ on F .

Definition 2.43. A random variable T defined on Ω (endowed with the σ-
algebra F) and valued in R̄+ is called a stopping time (or Markov time) with
respect to the filtration (Ft)t∈R+ , or simply an Ft-stopping time, if

∀t ∈ R+ : {ω|T (ω) ≤ t} ∈ Ft.

The stopping time is said to be finite if P (T =∞) = 0.

Remark 2.44. If T (ω) ≡ k (constant), then T is always a stopping time. If T
is a stopping time with respect to the filtration (Ft)t∈R+ generated by the
stochastic process (Xt)t∈R+ , t ∈ R+, then T is called the stopping time of the
process.

Definition 2.45. Let T be an Ft-stopping time. A ∈ F is said to precede T
if, for all t ∈ R+ : A ∩ {T ≤ t} ∈ Ft.

Proposition 2.46. Let T be an Ft-stopping time, and let FT = {A ∈ F|A
precedes T}; then FT is a σ-algebra of the subsets of Ω. It is called the σ-
algebra of T-preceding events.

Proof: See, e.g., Métivier (1968).

Theorem 2.47. The following relationships hold:

1. If both S and T are stopping times, then so are S ∧ T = inf{S, T} and
S ∨ T = sup{S, T}.

2. If T is a stopping time and a ∈ [0,+∞[, then T ∧ a is a stopping time.
3. If T is a finite stopping time, then it is FT -measurable.
4. If both S and T are stopping times and A ∈ FS, then A∩ {S ≤ T} ∈ FT .
5. If both S and T are stopping times and S ≤ T , then FS ⊂ FT .

Proof: See, e.g., Métivier (1968).
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Theorem 2.48. Let (Xt)t∈R+ be a progressively measurable stochastic process
valued in (S,BS). If T is a finite stopping time, then the function

X(T ) : ω ∈ Ω → X(T (ω), ω) ∈ E

is FT -measurable (and hence a random variable).

Proof: We need to show that

∀B ∈ BE : {ω|X(T (ω)) ∈ B} ∈ FT ,

hence

∀B ∈ BE ,∀t ∈ R+ : {ω|X(T (ω)) ∈ B} ∩ {T ≤ t} ∈ Ft.

Fixing B ∈ BE we have

∀t ∈ R+ : {ω|X(T (ω)) ∈ B} ∩ {T ≤ t} = {X(T ∧ t) ∈ B} ∩ {T ≤ t},

where {T ≤ t} ∈ Ft, since T is a stopping time. We now show that {X(T∧t) ∈
B} ∈ Ft. In fact, T ∧ t is a stopping time (by point 2 of Theorem 2.47) and is
FT∧t-measurable (by point 3 of Theorem 2.47). But FT∧t ⊂ Ft and thus T ∧ t
is Ft-measurable. Now X(T ∧ t) is obtained as a composite of the mapping

ω ∈ Ω → (T ∧ t(ω), ω) ∈ [0, t]×Ω (2.1)

with
(s, ω) ∈ [0, t]×Ω → X(s, ω) ∈ E. (2.2)

The mapping (2.1) is (Ft − B[0,t] ⊗ Ft)-measurable (because T ∧ t is Ft-
measurable) and the mapping (2.2) is (B[0,t] ⊗Ft −BE)-measurable, since X
is progressively measurable. Therefore, X(T ∧ t) is Ft-measurable, completing
the proof. �

2.3 Canonical Form of a Process

Let (Ω,F , P, (Xt)t∈T ) be a stochastic process valued in (E,B) and, for every
S ∈ S, let PS be the joint probability law for the random variables (Xt)t∈S

that is the probability on (ES ,BS) induced by P through the function

XS : ω ∈ Ω → (Xt(ω))t∈S ∈ ES =
∏
t∈S

E.

Evidently, if
S ⊂ S′(S, S′ ∈ S), XS = πSS′ ◦XS′

,

then it follows that
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PS = XS(P ) = (πSS′ ◦XS′
)(P ) = πSS′(PS′),

and therefore (ES ,BS , PS , πSS′)S,S′∈S,S⊂S′ is a projective system of proba-
bilities.

On the other hand, the random function f : Ω → ET that associates
every ω ∈ Ω with a trajectory of the process in ω is measurable (following
Proposition 2.6). Hence we can consider the induced probability PT on BT ,
PT = f(P ); PT is the projective limit of (PS)S∈S . From this it follows that
(ET ,BT , PT , (πt)t∈T ) is a stochastic process with the property that, for all S ∈
S, the random vectors (πt)t∈S and (Xt)t∈S have the same joint distribution.

Definition 2.49. The stochastic process (ET ,BT , PT , (πt)t∈T ) is called the
canonical form of the process (Ω,F , P, (Xt)t∈T ).

Remark 2.50. From this it follows that two stochastic processes are equivalent
if they admit the same canonical process.

2.4 Gaussian Processes

Definition 2.51. The real-valued stochastic process (Ω,F , P, (Xt)t∈R+) is
called a Gaussian process if, for all n ∈ N∗ and for all (t1, . . . , tn) ∈ Rn

+, the
n-dimensional random vector X = (Xt1 , . . . , Xtn)′ has multivariate Gaussian
distribution, with probability density

ft1,...,tn
(x) =

1
(2π)n/2

√
detK

exp
{
−1

2
(x−m)′K−1(x−m)

}
, (2.3)

where {
mi = E[Xti ], i = 1, . . . , n,
K = (σij) = Cov[Xti

, Xtj
], i, j = 1, . . . , n.

Remark 2.52. Vice versa, by assigning n numbers mi, i = 1, . . . , n, and a
positive definite n × n matrix K = (σij) (i.e., such that for all a ∈ Rn :∑n

i,j=1 aiσijaj > 0), which in particular is nonsingular, we uniquely determine
a Gaussian distribution with density given by (2.3). Now Pt1,...,tn represents
the marginal probability law of Pt1,...,tn,tn+1,...,tm , m > n, if and only if their
densities satisfy the condition

ft1,...,tn(xt1 , . . . , xtn)

=
∫
· · ·
∫
dxtn+1 · · · dxtmft1,...,tn,tn+1,...,tm(xt1 , . . . , xtn , xtn+1 , . . . , xtm).

Hence, assigning a projective system of Gaussian laws (PS)S∈S (where S is
the set of finite intervals of R+) is equivalent to assigning two vectors/matrices
of functions
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mi : R+ → R,

K : R+ × R+ → R,
where ∀n ∈ N∗,∀(t1, . . . , tn) ∈ Rn

+,∀a ∈ Rn :
∑n

i,j=1K(ti, tj)aiaj > 0.

Then the projective system (PS)S∈S is given by the density (2.3). Because
R is a Polish space, by the Kolmogorov–Bochner Theorem 2.10, we can now
assert that:
there exists a Gaussian process (Xt)t∈R+ , such that{

∀t ∈ R+ : m(t) = E[Xt]
∀(t, r) ∈ R+ × R+ : K(t, r) = Cov[Xt, Xr].

2.5 Processes with Independent Increments

Definition 2.53. The stochastic process (Ω,F , P, (Xt)t∈R+), with state space
(E,B), is called a process with independent increments if, for all n ∈ N and
for all (t1, . . . , tn) ∈ Rn

+, where t1 < · · · < tn, the random variables Xt1 , Xt2 −
Xt1 , . . . , Xtn −Xtn−1 are independent.

Theorem 2.54. If (Ω,F , P, (Xt)t∈Rt
) is a process with independent incre-

ments, then it is possible to construct a compatible system of probability laws
(PS)S∈S , where again S is a collection of finite subsets of the index set.

Proof: To do this, we need to assign a joint distribution to every random
vector (Xt1 , . . . , Xtn) for all (t1, . . . , tn) in Rn

+ with t1 < · · · < tn. Thus, let
(t1, . . . , tn) ∈ Rn

+, with t1 < · · · < tn, and μ0, μs,t be the distributions of X0

and Xt −Xs, for every (s, t) ∈ R+ × R+, with s < t, respectively. We define

Y0 = X0,

Y1 = Xt1 −X0,

. . .

Yn = Xtn −Xtn−1 ,

where Y0, Y1, . . . , Yn have the distributions μ0, μ0,t1 , . . . , μtn−1,tn
, respectively.

Moreover, since the Yi are independent, (Y0, . . . , Yn) have joint distribution
μ0 ⊗ μ0,t1 ⊗ · · · ⊗ μtn,tn−1 . Let f be a real-valued,

⊗n B-measurable function
and consider the random variable f(Xt1 , . . . , Xtn

), then

E[f(Xt1 , . . . , Xtn
)]

= E[f(Y0 + Y1, . . . , Y0 + · · ·+ Yn)]

=
∫
f(y0 + y1, . . . , y0 + · · ·+ yn)d(μ0 ⊗ μ0,t1 ⊗ · · · ⊗ μtn−1,tn)(y0, . . . , yn).

In particular, if f = IB , with B ∈
⊗n B, we obtain the joint distribution of

Xt1 , . . . , Xtn :
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P ((Xt1 , . . . , Xtn
) ∈ B) = E[IB(Xt1 , . . . , Xtn

)] (2.4)

=
∫
IB(y0 + y1, . . . , y0 + · · ·+ yn)d(μ0 ⊗ μ0,t1 ⊗ · · · ⊗ μtn−1,tn

)(y0, . . . , yn).

Thus having obtained PS , where S = {t1, . . . , tn}, with t1 < · · · < tn,
we show that (PS)S∈S is a compatible system. Let S, S′ ∈ S;S ⊂ S′,
S = {t1, . . . , tn}, with t1 < · · · < tn and S′ = {t1, . . . , tj , s, tj+1, . . . , tn},
with t1 < · · · < tj < s < tj+1 < · · · < tn. For B ∈ BS and B′ = π−1

SS′(B), we
will show that PS(B) = PS′(B′).

We can observe, by the definition of B′, that

IB′(xt1 , . . . , xtj
, xs, xtj+1 , . . . , xtn

)

does not depend on xs and is therefore identical to IB(xt1 , . . . , xtn
). Thus

putting U = Xs −Xtj and V = Xtj+1 −Xs, we obtain

PS′(B′) =
∫
IB′(y0 + y1, . . . , y0 + · · ·+ yj , y0 + · · ·+ yj + u, y0 + · · ·

+yj + u+ v, . . . , y0 + · · ·+ yn)d(μ0 ⊗ μ0,t1 ⊗ · · ·
⊗μtj ,s ⊗ μs,tj+1 ⊗ · · · ⊗ μtn−1,tn

)(y0, . . . , yj , u, v, yj+2, . . . , yn)

=
∫
IB(y0 + y1, . . . , y0 + · · ·+ yj , y0 + · · ·+ yj + u+ v, y0 + · · ·

+u+ v + yj+2, . . . , y0 + · · ·+ yn)d(μ0 ⊗ μ0,t1 ⊗ · · ·
⊗μtj ,s ⊗ μs,tj+1 ⊗ · · · ⊗ μtn−1,tn)(y0, . . . , yj , u, v, yj+2, . . . , yn).

Integrating with respect to all the variables except u and v, after applying
Fubini’s theorem, we obtain

PS′(B′) =
∫
h(u+ v)d(μtj ,s ⊗ μs,tj+1)(u, v).

Letting yj+1 = u+ v we have

PS′(B′) =
∫
h(yj+1)d(μtj ,s ∗ μs,tj+1)(yj+1).

Moreover, we observe that the definition of yj+1 = u + v is compatible with
the above notation Yj+1 = Xtj+1 −Xtj . In fact, we have

u+ v = xs − xtj
+ xtj+1 − xs = xtj+1 − xtj

.

Furthermore, for the independence of (Xtj+1 −Xs) and (Xs −Xtj ), the sum
of random variables

Xtj+1 −Xs +Xs −Xtj = Xtj+1 −Xtj



2.6 Martingales 63

has to have the distribution μtj ,s ∗ μs,tj+1 , where ∗ denotes the convolu-
tion product. Therefore, having denoted the distribution of Xtj+1 −Xtj

with
μtj ,tj+1 , we obtain

μtj ,s ∗ μs,tj+1 = μtj ,tj+1 .

As a consequence we have

PS′(B′) =
∫
h(yj+1)dμtj ,tj+1(yj+1).

This integral coincides with the one in (2.4), and thus

PS(B′) = P ((Xt1 , . . . , Xtn) ∈ B) = PS(B).

If now S′ = S ∪ {s1, . . . , sk}, the proof is completed by induction. �

Definition 2.55. A process with independent increments is called time-
homogeneous if

μs,t = μs+h,t+h ∀s, t, h ∈ R+, s < t.

If (Ω,F , P, (Xt)t∈R+) is a homogeneous process with independent increments,
then as a particular case we have

μs,t = μ0,t−s ∀s, t ∈ R+, s < t.

Definition 2.56. A family of measures (μt)t∈R+ that satisfy the condition

μt1+t2 = μt1 ∗ μt2

is called a convolution semigroup.

Remark 2.57. A time-homogeneous process with independent increments is
completely defined by assigning it a convolution semigroup.

2.6 Martingales

Definition 2.58. Let (Xt)t∈R+ be a real-valued family of random variables
defined on the probability space (Ω,F , P ) and let (Ft)t∈R+ be a filtration.
The stochastic process (Xt)t∈R+ is said to be adapted to the family (Ft)t∈R+

if, for all t ∈ R+, Xt is Ft-measurable.

Definition 2.59. The stochastic process (Xt)t∈R+ , adapted to the filtration
(Ft)t∈R+ , is a martingale with respect to this filtration, provided the following
conditions hold:

1. Xt is P -integrable, for all t ∈ R+;
2. for all (s, t) ∈ R+ × R+, s < t : E[Xt|Fs] = Xs almost surely.
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(Xt)t∈R+ is said to be a submartingale (supermartingale) with respect to
(Ft)t∈R+ if, in addition to condition 1 and instead of condition 2, we have:

2′. for all (s, t) ∈ R+ × R+, s < t : E[Xt|Fs] ≥ Xs (E[Xt|Fs] ≤ Xs) almost
surely.

Remark 2.60. When the filtration (Ft)t∈R+ is not specified, it is understood to
be the increasing σ-algebra generated by the random variables of the process
(σ(Xs, 0 ≤ s ≤ t))t∈R+ . In this case we can write E[Xt|Xr, 0 ≤ r ≤ s], instead
of E[Xt|Fs].

Example 2.61. The evolution of a gambler’s wealth in a game of chance, the
latter specified by the sequence of real-valued random variables (Xn)n∈N, will
serve as a descriptive example of the above definitions. Suppose that two
players flip a coin and the loser pays the winner (who guessed head or tail
correctly) the amount α after every round. If (Xn)n∈N represents the cumu-
lative fortune of player 1, then after n throws he holds

Xn =
n∑

i=0

Δi.

The random variables Δi (just like every flip of the coin) are independent and
take values α and −α with probabilities p and q, respectively. Therefore, we
see that

E[Xn+1|X0, . . . , Xn] = E[Δn+1 +Xn|X0, . . . , Xn]
= Xn + E[Δn+1|X0, . . . , Xn].

Since Δn+1 is independent of every
∑k

i=0Δi, k = 0, . . . , n, we obtain

E[Xn+1|X0, . . . , Xn] = Xn + E[Δn+1] = Xn + α(p− q).

• If the game is fair, then p = q and (Xn)n∈N is a martingale.
• If the game is in player 1’s favor, then p > q and (Xn)n∈N is a submartin-

gale.
• If the game is to the disadvantage of player 1, then p < q and (Xn)n∈N is

a supermartingale.

Example 2.62. Let (Xt)t∈R+ be (for all t ∈ R+) a P -integrable stochastic
process on (Ω,F , P ) with independent increments. Then (Xt−E[Xt])t∈R+ is
a martingale. In fact:4

E[Xt|Fs] = E[Xt −Xs|Fs] + E[Xs|Fs], s < t,

4 For simplicity, but without loss of generality, we will assume that E[Xt] = 0, for
all t. In the case where E[Xt] �= 0, we can always define a variable Yt = Xt−E[Xt],
so that E[Yt] = 0. In that case (Yt)t∈�+ will again be a process with independent
increments, so that the analysis is analogous.
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and recalling that both Xs is Fs-measurable and (Xt−Xs) is independent of
Fs, we obtain that

E[Xt|Fs] = E[Xt −Xs] +Xs = Xs, s < t.

Proposition 2.63. Let (Xt)t∈R+ be a real-valued martingale. If the function
φ : R→ R is both convex and measurable and such that

∀t ∈ R+ : E[φ(Xt)] < +∞,

then (φ(Xt))t∈R+ is a submartingale.

Proof: Let (s, t) ∈ R+ × R+, s < t. Following Jensen’s inequality and the
properties of the martingale (Xt)t∈R+ , we have that

φ(Xs) = φ(E[Xt|Fs]) ≤ E[φ(Xt)|Fs].

Letting
Vs = σ(φ(Xr), 0 ≤ r ≤ s) ∀s ∈ R+

and with the measurability of φ, it is easy to verify that Vs ⊂ Fs for all s ∈ R+

and therefore

φ(Xs) = E[φ(Xs)|Vs] ≤ E[E[φ(Xt)|Fs]|Vs] = E[φ(Xt)|Vs].

�

Lemma 2.64. Let X and Y be two positive real random variables defined on
(Ω,F , P ). If X ∈ Lp(P ) (p > 1) and if, for all α > 0,

αP (Y ≥ α) ≤
∫
{Y ≥α}

XdP, (2.5)

then Y ∈ Lp(P ) and ‖Y ‖p ≤ q‖X‖p, where 1
p + 1

q = 1.

Proof: We have

E[Y p] =
∫

Ω

Y p(ω)dP (ω) =
∫

Ω

dP (ω)p
∫ Y (ω)

0

λp−1dλ

= p

∫
Ω

dP (ω)
∫ ∞

0

λp−1I{λ≤Y (ω)}(λ)dλ

= p

∫ ∞

0

dλλp−1

∫
Ω

dP (ω)I{λ≤Y (ω)}(λ)

= p

∫ ∞

0

dλλp−1P (λ ≤ Y ) = p

∫ ∞

0

dλλp−2λP (Y ≥ λ)

≤ p
∫ ∞

0

dλλp−2

∫
{Y ≥λ}

XdP
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= p

∫
Ω

dP (ω)X(ω)
∫ ∞

0

dλλp−2I{Y (ω)≥λ}(λ)

= p

∫
Ω

dP (ω)X(ω)
∫ Y (ω)

0

dλλp−2 =
p

p− 1

∫
Ω

dP (ω)X(ω)Y p−1(ω)

=
p

p− 1
E[Y p−1X],

where, throughout, λ denotes Lebesgue measure, and when changing the order
of integration we invoke Fubini’s theorem. By Hölder’s inequality, we obtain

E[Y p] ≤ p

p− 1
E[Y p−1X] ≤ p

p− 1
E[Xp]

1
pE[Y p]

p−1
p ,

which, after substitution and rearrangement, gives

E[Y p]
1
p ≤ qE[Xp]

1
p ,

as long as E[Y p] < +∞ (in such case we may, in fact, divide the left- and
right-hand sides by E[Y p]

p−1
p ). But in any case we can consider the sequence

of random variables (Y ∧n)n∈N (Y ∧n is the random variable defined letting,
for all ω ∈ Ω, Y ∧ n(ω) = inf{Y (ω), n}); since, for all n, Y ∧ n satisfies
condition (2.5), then we obtain

‖Y ∧ n‖p ≤ q‖X‖p,

and in the limit
‖Y ‖p = lim

n→∞ ‖Y ∧ n‖p ≤ q‖X‖p.

�

Proposition 2.65. Let (Xn)n∈N∗ be a sequence of real random variables de-
fined on the probability space (Ω,F , P ), and X+

n the positive part of Xn.

1. If (Xn)n∈N∗ is a submartingale, then

P

(
max

1≤k≤n
Xk > λ

)
≤ 1
λ
E[X+

n ], λ > 0, n ∈ N∗.

2. If (Xn)n∈N∗ is a martingale and if, for all n ∈ N∗, X ∈ Lp(P ), p > 1,
then

E

[(
max

1≤k≤n
|Xk|

)p]
≤
(

p

p− 1

)p

E[|Xn|p], n ∈ N∗.

(Points 1 and 2 are called Doob’s inequalities.)

Proof: 1. For all k ∈ N∗ we put Ak =
⋂k−1

j=1{Xj ≤ λ} ∩ {Xk > λ} (λ > 0),
where all Ak are pairwise disjoint and A = {max1≤k≤nXk > λ}. Thus it is
obvious that A =

⋃n
k=1Ak. Because in Ak, Xk is greater than λ, we have
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Ak

XkdP ≥ λ
∫

Ak

dP.

Therefore,

∀k ∈ N∗, λP (Ak) ≤
∫

Ak

XkdP,

resulting in

λP (A) = λP

(
n⋃

k=1

Ak

)
= λ

n∑
k=1

P (Ak)

≤
n∑

k=1

∫
Ak

XkdP =
n∑

k=1

∫
Ω

XkIAk
dP =

n∑
k=1

E[XkIAk
]. (2.6)

Now, we have

E[X+
n ] =

∫
Ω

X+
n dP

≥
∫

A

X+
n dP =

n∑
k=1

∫
Ak

X+
n dP =

n∑
k=1

∫
Ω

X+
n IAk

dP

=
n∑

k=1

E[X+
n IAk

] =
n∑

k=1

E[E[X+
n IAk

|X1, . . . , Xk]]

=
n∑

k=1

E[IAk
E[X+

n |X1, . . . , Xk]] ≥
n∑

k=1

E[IAk
E[Xn|X1, . . . , Xk]],

where the last row follows from the fact that IAk
is σ(X1, . . . , Xk)-measurable.

Moreover, since (Xn)n∈N∗ is a submartingale we have

E[X+
n ] ≥

n∑
k=1

E[IAk
Xk]. (2.7)

By (2.6) and (2.7), E[X+
n ] ≥ λP (A), and this completes the proof of 1. We

can also observe that
n∑

k=1

E[IAk
X+

n ] =
n∑

k=1

E[E[X+
n IAk

|X1, . . . , Xk]]

≥
n∑

k=1

E[IAk
E[Xn|X1, . . . , Xk]] ≥

n∑
k=1

E[IAk
Xk] ≥ λP (A)

and therefore

λP

(
max

1≤k≤n
Xk > λ

)
≤

n∑
k=1

E[IAk
X+

n ]. (2.8)
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2. Let (Xn)n∈N∗ be a martingale such that Xn ∈ Lp(P ) for all n ∈ N∗.
Since φ = |x| is a convex function, it follows from Proposition 2.63 that
(|Xn|)n∈N∗ is a submartingale. Thus from (2.8) we have

λP

(
max

1≤k≤n
|Xk| > λ

)
≤

n∑
k=1

E[IAk
|X+

n |] =
n∑

k=1

E[IAk
|Xn|]

=
n∑

k=1

∫
Ak

|Xn|dP =
∫

A

|Xn|dP (λ > 0, n ∈ N∗).

Putting X = max1≤k≤n |Xk| and Y = |Xn|, we obtain

λP (X > λ) ≤
∫

A

Y dP =
∫
{X>λ}

Y dP,

and from Lemma 2.64 it follows that ‖X‖p ≤ q‖Y ‖p. Thus E[Xp] ≤ qpE[Y p],
proving 2. �

Remark 2.66. Because

max
1≤k≤n

|Xk|p =
(

max
1≤k≤n

|Xk|
)p

,

by point 2 of Proposition 2.65 it is also true that

E

[
max

1≤k≤n
|Xk|p

]
≤
(

p

p− 1

)p

E[|Xn|p].

Corollary 2.67. If (Xn)n∈N∗ is a martingale such that Xn ∈ Lp(P ) for all
n ∈ N∗, then

P

(
max

1≤k≤n
|Xk| > λ

)
≤ 1
λp
E[|Xn|p], λ > 0.

Proof: From Proposition 2.63 we can assert that (|Xn|p)n∈N∗ is a submartin-
gale. In fact, φ(x) = |x|p, p > 1, is convex. By point 1 of Proposition 2.65, it
follows that

P

(
max

1≤k≤n
|Xk|p > λp

)
≤ 1
λp
E[|Xn|p],

which is equivalent to

P

(
max

1≤k≤n
|Xk| > λ

)
≤ 1
λp
E[|Xn|p].

�

Lemma 2.68. The following are true:

1. If (Xt)t∈R+ is a martingale, then so is (Xt)t∈I for all I ⊂ R+.
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2. If, for all I ⊂ R+ and I finite, (Xt)t∈I is a (discrete) martingale, then so
is (Xt)t∈R+ .

Proof: 1. Let I ⊂ R+, (s, t) ∈ I2, s < t. Because (Xr)r∈R+ is a martingale,

Xs = E[Xt|Xr, 0 ≤ r ≤ s, r ∈ R+].

Observing that

σ(Xr, 0 ≤ r ≤ s, r ∈ I) ⊂ σ(Xr, 0 ≤ r ≤ s, r ∈ R+)

and remembering that in general

E[X|B1] = E[E[X|B2]|B1], B1 ⊂ B2 ⊂ F ,

we obtain:

E[Xt|Xr, 0 ≤ r ≤ s, r ∈ I]
= E[E[Xt|Xr, 0 ≤ r ≤ s, r ∈ R+]|Xr, 0 ≤ r ≤ s, r ∈ I]
= E[Xs|Xr, 0 ≤ r ≤ s, r ∈ I]
= Xs.

The last equality holds because Xs is measurable with respect to σ(Xr, 0 ≤
r ≤ s, r ∈ I).

2. See, e.g., Doob (1953). �

Proposition 2.69. Let (Xt)t∈R+ be a stochastic process on (Ω,F , P ) valued
in R.

1. If (Xt)t∈R+ is a submartingale, then

P

(
sup

0≤s≤t
Xs > λ

)
≤ 1
λ
E[X+

t ], λ > 0, t ≥ 0.

2. If (Xt)t∈R+ is a martingale such that, for all t ≥ 0, Xt ∈ Lp(P ), p > 1,
then

E

[
sup

0≤s≤t
|Xs|p

]
≤
(

p

p− 1

)p

E[|Xt|p].

Proof: See, e.g., Doob (1953). �

Definition 2.70. A subset H of L1(Ω,F , P ) is uniformly integrable if

lim
c→∞ sup

Y ∈H

∫
{|Y |>c}

|Y |dP = 0.

Theorem 2.71. A martingale is uniformly integrable if and only if it is of the
form Mn = E[Y |Fn], where Y ∈ L1(Ω,F , P ). Under these conditions {Mn}n
converges almost surely and in L1.
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Proof: See, e.g., Baldi (1984). �
The subsequent proposition specifies the limit of a uniformly integrable

martingale.

Proposition 2.72. Let Y ∈ L1(Ω,F , P ), {Fn}n be a filtration and F∞ =⋃
n Fn be the σ-algebra generated by {Fn}n. Then

lim
n→∞E[Y |Fn] = E[Y |F∞] almost surely and in L1.

Proof: See, e.g., Baldi (1984). �

Doob–Meyer Decomposition

Proposition 2.73. Every martingale has a right-continuous version.

Theorem 2.74. Let Xt be a supermartingale. Then the mapping t → E[Xt]
is right-continuous if and only if there exists an RCLL modification of Xt.
This modification is unique.

Proof: See, e.g., Protter (1990). �

Definition 2.75. Consider the set S of stopping times T , with P (T <∞) =
1, of the filtration (Ft)t∈R+ . The right-continuous adapted process (Xt)t∈R+

is said to be of class D if the family (XT )T∈S is uniformly integrable. Instead,
if Sa is the set of stopping times with P (T ≤ a) = 1, for a finite a > 0, and
the family (XT )T∈Sa is uniformly integrable, then it is said to be of class DL.

Proposition 2.76. Let (Xt)t∈R+ be a right-continuous submartingale. Then
Xt is of class DL under either of the following two conditions:

1. Xt ≥ 0 almost surely for every t ≥ 0;
2. Xt has the form

Xt = Mt +At, t ∈ R+,

where (Mt)t∈R+ is a martingale and (At)t∈R+ an adapted increasing pro-
cess.

Lemma 2.77. If (Xt)t∈R+ is a uniformly integrable martingale, then it is of
class D.

Definition 2.78. Let (Xt)t∈R+ be an adapted stochastic process with RCLL
trajectories. It is said to be decomposable if it can be written as

Xt = X0 +Mt + Zt,

where M0 = Z0 = 0, Mt is a locally square-integrable martingale, and Zt has
RCLL-adapted trajectories of bounded variation.



2.6 Martingales 71

Theorem 2.79. (Doob–Meyer). Let (Xt)t∈R+ be an adapted right-continuous
process. It is a submartingale of class D, with X0 = 0 almost surely if and
only if it can be decomposed as

∀t ∈ R+, Xt = Mt +At a.s.,

where Mt is a uniformly integrable martingale with M0 = 0 and At ∈ L1(P )
is an increasing predictable process with A0 = 0. The decomposition is unique
and if, in addition, Xt is bounded, then Mt is uniformly integrable and At

integrable.

Definition 2.80. Resorting to the notation of Theorem 2.79, the process
(At)t∈R+ is called the compensator of Xt.

Proposition 2.81. Under the assumptions of Theorem 2.79, the compensator
At of Xt is continuous if and only if Xt is regular in the sense that for every
predictable finite stopping time T we have that E[XT ] = E[XT− ].

Definition 2.82. A stochastic process (Mt)t∈R+ is a local martingale with
respect to the filtration (Ft)t∈R+ if there exists a “localizing” sequence (Tn)n∈N

such that for each n ∈ N, (Mt∧Tn
)t∈R+ is an Ft-martingale.

Definition 2.83. Let (Xt)t∈R+ be a stochastic process. Property P is said to
hold locally if

1. there exists (Tn)n∈N, a sequence of stopping times, with Tn < Tn+1,
2. limn Tn = +∞ almost surely,

such that XTnI{Tn>0} has property P for n ∈ N∗.

Theorem 2.84. Let (Mt)t∈R+ be an adapted and RCLL stochastic process and
let (Tn)n∈N be as in the preceding definition. If MTn

I{Tn>0} is a martingale
for each n ∈ N∗, then Mt is a local martingale.

Remark 2.85. Any RCLL martingale is a local martingale. (Choose Tn = n
for all n ∈ N∗.)

Lemma 2.86. Any martingale is a local martingale.

Proof: Simply take Tn = t. �

Theorem 2.87. (local form Doob–Meyer). Let (Xt)t∈R+ be a nonnegative
right-continuous Ft-local submartingale with localizing sequence (Tn)n∈N and
(Ft)t∈R+ a right-continuous filtration. Then there exists a unique increasing
right-continuous predictable process (At)t∈R+ such that A0 = 0 almost surely
and P (At <∞) = 1 for all t > 0, so that Xt − At is a right-continuous local
martingale.
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Theorem 2.88. Let (Mt)t∈R+ be a martingale with M0 = 0 almost surely
and bounded in L2. Then M2

t is a submartingale and by Doob’s L2 inequality
(Proposition 2.69)

E

[
sup

t
M2

t

]
≤ 4E[M2

∞] <∞.

Therefore, M2
t is a submartingale of class D and there exists a unique inte-

grable predictable increasing process 〈Mt〉, with 〈M0〉 = 0, such thatM2
t −〈Mt〉

is a uniformly integrable martingale.

Definition 2.89. For two L2 martingales M and N, the process

〈M,N〉 =
1
4
(〈M +N〉 − 〈M −N〉)

is called the predictable covariation of M and N . Furthermore, if 〈M,N〉 = 0,
then the two martingales are said to be orthogonal.

Remark 2.90. Evidently 〈M,M〉 = 〈M〉, and by the latter’s martingale as-
sumption we have that 〈M,N〉 is the unique finite variation predictable RCLL
process such that 〈M,N〉0 = 0 and MN − 〈M,N〉 is a martingale. Thus M
and N are orthogonal if and only if MN is a martingale.

2.7 Markov Processes

Definition 2.91. Let (Xt)t∈R+ be a stochastic process on a probability space,
valued in (E,B) and adapted to the increasing family (Ft)t∈R+ of σ-algebras
of subsets of F . (Xt)t∈R+ is a Markov process with respect to (Ft)t∈R+ if the
following condition is satisfied:

∀B ∈ B,∀(s, t) ∈ R+ × R+, s < t : P (Xt ∈ B|Fs) = P (Xt ∈ B|Xs) a.s.
(2.9)

Remark 2.92. If, for all t ∈ R+, Ft = σ(Xr, 0 ≤ r ≤ t), then the condition
(2.9) becomes

P (Xt ∈ B|Xr, 0 ≤ r ≤ s) = P (Xt ∈ B|Xs) a.s.

for all B ∈ B, for all (s, t) ∈ R+ × R+, and s < t.

Proposition 2.93. Under the assumptions of Definition 2.91, the following
two statements are equivalent:

1. for all B ∈ B and all (s, t) ∈ R+ × R+, s < t : P (Xt ∈ B|Fs) = P (Xt ∈
B|Xs) almost surely;

2. for all g : E → R,B-BR-measurable such that g(Xt) ∈ L1(P ) for all t,
for all (s, t) ∈ R2

+, s < t : E[g(Xt)|Fs] = E[g(Xt)|Xs] almost surely.
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Proof: The proof is left to the reader as an exercise. �

Lemma 2.94. If (Yk)k∈N∗ is a sequence of real, independent random vari-
ables, then, putting

Xn =
n∑

k=1

Yk ∀n ∈ N∗,

the new sequence (Xn)n∈N∗ is Markovian with respect to the family of σ-
algebras (σ(Y1, . . . , Yn))n∈N∗ .

Proof: From the definition of Xk it is obvious that

σ(Y1, . . . , Yn) = σ(X1, . . . , Xn) ∀n ∈ N∗.

We thus first prove that, for all C,D ∈ BR, for all n ∈ N∗:

P(Xn−1 ∈ C, Yn ∈ D|Y1, . . . , Yn−1)
= P (Xn−1 ∈ C, Yn ∈ D|Xn−1) a.s. (2.10)

To do this we fix C,D ∈ BR and n ∈ N∗ and separately look at the left- and
right-hand sides of (2.10). We get

P(Xn−1 ∈ C, Yn ∈ D|Y1, . . . , Yn−1) = E[IC(Xn−1)ID(Yn)|Y1, . . . , Yn−1]
= IC(Xn−1)E[ID(Yn)|Y1, . . . , Yn−1] = IC(Xn−1)E[ID(Yn)] a.s., (2.11)

where the second equality of (2.11) holds because IC(Xn−1) is σ(Y1, . . . , Yn−1)-
measurable, and for the last one we use the fact that ID(Yn) is independent
of Y1, . . . , Yn−1. On the other hand, we obtain that

P (Xn−1 ∈ C, Yn ∈ D|Xn−1) = E[IC(Xn−1)ID(Yn)|Xn−1]
= IC(Xn−1)E[ID(Yn)] a.s. (2.12)

In fact, IC(Xn−1) is σ(Xn−1)-measurable and ID(Yn) is independent of
Xn−1 =

∑n−1
k=1 Yk. For (2.11) and (2.12), equation (2.10) follows and hence

P((Xn−1, Yn) ∈ C ×D|Y1, . . . , Yn−1)
= P ((Xn−1, Yn) ∈ C ×D|Xn−1) a.s. (2.13)

As (2.13) holds for the rectangles of BR2 (= BR⊗BR), by the measure extension
theorem (see, e.g., Bauer (1981)), it follows that (2.13) is also true for every
B ∈ BR2 . If now A ∈ BR, then the two events

{Xn−1 + Yn ∈ A} = {(Xn−1, Yn) ∈ B},

where B ∈ BR2 is the inverse image of A for a generic mapping + : R2 → R

(which is continuous and hence measurable), are identical. Applying (2.13) to
B, we obtain
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P (Xn−1 + Yn ∈ A|Y1, . . . , Yn−1) = P (Xn−1 + Yn ∈ A|Xn−1) a.s.,

and thus

P (Xn−1 + Yn ∈ A|X1, . . . , Xn−1) = P (Xn−1 + Yn ∈ A|Xn−1) a.s.,

and then
P (Xn ∈ A|X1, . . . , Xn−1) = P (Xn ∈ A|Xn−1) a.s.

Therefore, (Xn)n∈N∗ is Markovian with respect to (σ(X1, . . . , Xn))n∈N∗ or,
equivalently, with respect to (σ(Y1, . . . , Yn))n∈N∗ . �

Proposition 2.95. Let (Xt)t∈R+ be a real stochastic process defined on the
probability space (Ω,F , P ). The following two statements are true:

1. If (Xt)t∈R+ is a Markov process, then so is (Xt)t∈J for all J ⊂ R+.
2. If for all J ⊂ R+, J finite: (Xt)t∈J is a Markov process, and then so is

(Xt)t∈R+ .

Proof: See, e.g., Ash and Gardner (1975). �

Theorem 2.96. Every real stochastic process (Xt)t∈R+ with independent in-
crements is a Markov process.

Proof: We define (t1, . . . , tn) ∈ Rn
+ such that 0 < t1 < · · · < tn and t0 = 0.

If, for simplicity, we further suppose that X0 = 0, then Xtn =
∑n

k=1(Xtk
−

Xtk−1). Putting Yk = Xtk
− Xtk−1 , then, for all k = 1, . . . , n, the Yk are

independent (because the process (Xt)t∈R+ has independent increments) and
we have that

Xtn =
n∑

k=1

Yk.

From Lemma 2.94 we can assert that

∀B ∈ BR : P (Xtn
∈ B|Xt1 , . . . , Xtn−1) = P (Xtn

∈ B|Xtn−1) a.s.

Thus ∀J ⊂ R+, J finite, (Xt)t∈J is Markovian. The theorem then follows by
point 2 of Proposition 2.95. �

Definition 2.97. Let p(s, x, t, A) be a nonnegative function defined for 0 ≤
s < t <∞, x ∈ R, A ∈ BR. Then p is a Markov transition probability function
if

1. for all 0 ≤ s < t <∞, for all A ∈ BR, p(s, ·, t, A) is BR-measurable;
2. for all 0 ≤ s < t < ∞, for all x ∈ R, p(s, x, t, ·) is a probability measure

on BR;
3. p satisfies the Chapman–Kolmogorov equation:

p(s, x, t, A) =
∫

R

p(s, x, r, dy)p(r, y, t, A) ∀x ∈ R, s < r < t.
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Definition 2.98. If (Xt)t∈[t0,T ] is a Markov process, then the distribution P0

of X(t0) is the initial distribution of the process.

Theorem 2.99. Let E be a Polish space endowed with the σ-algebra BE of
its Borel sets, P0 a probability measure on BE , and p(r, x, s, A), t0 ≤ r < s ≤
T, x ∈ E,A ∈ BE a Markov transition probability function. Then there exists
a unique (in the sense of equivalence) Markov process (Xt)t∈[t0,T ] valued in
E, with P0 as its initial distribution and p as its transition probability.

Proof: See, e.g., Ash and Gardner (1975) or Dynkin (1965). �

Remark 2.100. From Theorem 2.99 we can deduce that

p(s, x, t, A) = P (Xt ∈ A|Xs = x), 0 ≤ s < t <∞, x ∈ R, A ∈ BR.

Definition 2.101. A Markov process (Xt)t∈[t0,T ] is said to be homogeneous
if the transition probability functions p(s, x, t, A) depend on t and s only
through their difference t − s. Therefore, for all (s, t) ∈ [t0, T ]2, s < t, for all
u ∈ [0, T − t], for all A ∈ BR, and for all x ∈ R:

p(s, x, t, A) = p(s+ u, x, t+ u,A) a.s.

Remark 2.102. If (Xt)t∈[t0,T ] is a homogeneous Markov process with transition
probability function p, then, for all (s, t) ∈ [t0, T ]2, s < t, for all A ∈ BR, and
for all x ∈ R, we obtain

p(t0, x, t0 + t− s,A) = p(s, x, t, A) a.s.,

where p(t0, x, t0 + t− s,A) is denoted by p(t̄, x, A), with t̄ = (t− s) ∈ [0, T −
t0], x ∈ R, A ∈ BR.

Semigroups Associated with Markov Transition Probability
Functions

Let BC(R) be the space of all continuous and bounded functions on R, en-
dowed with the norm ‖f‖ = supx∈R |f(x)|(< ∞), and let p(s, x, t, A) be a
transition probability function (0 ≤ s < t ≤ T, x ∈ R, A ∈ BR). We consider
the operator

Ts,t : BC(R)→ BC(R), 0 ≤ s < t ≤ T,

defined by assigning, for all f ∈ BC(R),

(Ts,tf)(x) =
∫

R

f(y)p(s, x, t, dy).

If s = t, then
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p(s, x, s, A) =
{

1 if x ∈ A,
0 if x /∈ A.

Therefore,
Tt,t = I (identity). (2.14)

Moreover, we have that

Ts,tTt,u = Ts,u, 0 ≤ s < t < u. (2.15)

In fact, if f ∈ BC(R) and x ∈ R,

(Ts,t(Tt,uf))(x)

=
∫

R

(Tt,uf)(y)p(s, x, t, dy)

=
∫ ∫

R2
f(z)p(t, y, u, dz)p(s, x, t, dy)

=
∫

R

f(z)
∫

R

p(t, y, u, dz)p(s, x, t, dy) (by Fubini’s theorem)

=
∫

R

f(z)p(s, x, u, dz) (by the Chapman–Kolmogorov equation)

= (Ts,uf)(x).

Definition 2.103. The family {Ts,t}0≤s≤t≤T is a semigroup associated with
the transition probability function p(s, x, t, A) (or with its corresponding
Markov process).

Definition 2.104. If (Xt)t∈R+ is a Markov process with transition probability
function p and associated semigroup {Ts,t}, then the operator

Asf = lim
h↓0

Ts,s+hf − f
h

, s ≥ 0, f ∈ BC(R)

is called the infinitesimal generator of the Markov process (Xt)t≥0. Its domain
DAs consists of all f ∈ BC(R) for which the above limit exists uniformly (and
therefore in the norm of BC(R)) (see, e.g., Feller (1971)).

Remark 2.105. From the preceding definition we observe that

(Asf)(x) = lim
h↓0

1
h

∫
R

[f(y)− f(x)]p(s, x, s+ h, dy).

Definition 2.106. Let (Xt)t∈R+ be a Markov process with transition proba-
bility function p(s, x, t, A), and {Ts,t} (s, t ∈ R+, s ≤ t) its associated semi-
group. If, for all f ∈ BC(R), the function

(t, x) ∈ R+ × R→ (Tt,t+λf)(x) =
∫

R

p(t, x, t+ λ, dy)f(y) ∈ R

is continuous for all λ > 0, then we say that the process satisfies the Feller
property.
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Theorem 2.107. If (Xt)t∈R+ is a Markov process with right-continuous tra-
jectories satisfying the Feller property, then, for all t ∈ R+, Ft = Ft+ ,
where Ft+ =

⋂
t′>t σ(X(s), 0 ≤ s ≤ t′), and the filtration (Ft)t∈R+ is right-

continuous.

Proof: See, e.g., Friedman (1975). �

Remark 2.108. It can be shown that Ft+ is a σ-algebra.

Example 2.109. Examples of processes with the Feller property, or simply
Feller processes, include Wiener processes (Brownian motions), Poisson pro-
cesses, and all Lévy processes (see later sections).

Examples of Stopping Times

Let (Xt)t∈R+ be a continuous Markov process taking values in Rv and suppose
that the filtration (Ft)t∈R+ , generated by the process, is right-continuous. Let
B ∈ BRv \ {∅}, and we define T : Ω → R̄+ as:

∀ω ∈ Ω, T (ω) =
{

inf{t ≥ 0|X(t, ω) ∈ B} if the set is �= ∅,
+∞ if the set is = ∅.

This gives rise to the following theorem.

Theorem 2.110. If B is an open or closed subset of Rv, then T is a stopping
time.

Proof: For B open, let t ∈ R+. In this case it can be shown that

{T < t} =
⋃

r<t,r∈Q+

{ω|X(r, ω) ∈ B}.

Since X(r) is F-measurable,

{ω|X(r, ω) ∈ B} ∈ Fr ⊂ Ft ∀r < t, r ∈ Q+,

and therefore the (countable) union of such events will be an element of Ft as
well, and thus {T < t} ∈ Ft. Now, fixing δ > 0 and N ∈ N such that δ > 1

N ,
we have that

∀n ∈ N, n ≥ N :
{
T < t+

1
n

}
∈ Ft+δ.

Hence

{T ≤ t} =
∞⋂

n=N

{
T < t+

1
n

}
∈ Ft+δ

and, due to the arbitrary choice of δ, this results in
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{T ≤ t} ∈
⋂
δ>0

Ft+δ = F+
t = Ft.

For B closed, for all n ∈ N, we define Vn = {x ∈ Rv|d(x, B) < 1
n} and

Tn =
{

inf{t ≥ 0|X(t, ω) ∈ Vn} if the set is �= ∅,
+∞ if the set is = ∅.

It can be shown that B =
⋂

n∈N Vn, {T ≤ t} =
⋂

n∈N{Tn < t}, and, since
(with Vn open) {Tn < t} ∈ Ft+ , we finally get that {T ≤ t} ∈ Ft+ = Ft. �

Definition 2.111. The stopping time T is the first hitting time of B or,
equivalently, the first exit time from Rv \B.

Definition 2.112. A Markov process (Xt)t∈R+ with transition probability
function p(s, x, t, A) is said to have the strong Markov property if, for all
A ∈ BR,

P (X(T + t) ∈ A|Ft) = p(T,X(T ), T + t, A) a.s. (2.16)

Remark 2.113. Equation (2.16) is formally analogous to the Markov property

P (X(t) ∈ A|Fs) = p(s,X(s), t, A) for s < t,

with which it coincides when T = k (constant).

Proposition 2.114. Equation (2.16) is equivalent to the assertion that for
all f : R→ R, measurable, bounded,

E[f(X(T + t))|FT ] = E[f(X(T + t))|X(T )] a.s. (2.17)

Proof: See, e.g., Ash and Gardner (1975). �

Remark 2.115. By Proposition 2.42 and Theorem 2.48, if (Xt)t∈R+ is right-
continuous and if T is a finite stopping time of the process, then X(T ) is
FT -measurable.

Lemma 2.116. Every Markov process (Xt)t∈R+ that satisfies the Feller prop-
erty has the strong Markov property, at least for a discrete stopping time T .

Proof: Let T be a discrete stopping time of the process (Xt)t∈R+ and {tj}j∈N

its codomain. Fixing a j ∈ N we have {T ≤ tj} ∈ Ftj and {T < tj} =⋃
tl<tj

{T ≤ tl} ∈ Ftj
. Therefore,

Gj ≡ {T = tj} = {T ≤ tj} \ {T < tj} ∈ Ftj

and

∀t ∈ R+, Gj ∩ {T ≤ t} =
{
∅ for tj > t,
Gj for t ≥ tj .

From this we obtain, for all t ∈ R+, Gj ∩ {T ≤ t} ∈ Ft, that is, Gj ∈ FT .
Proving equation (2.16) is equivalent to showing that if t ∈ R+, A ∈ BR, then:
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1. p(T,X(T ), T + t, A) is FT -measurable;
2. for all E ∈ FT , P ((X(T + t) ∈ A) ∩ E) =

∫
E
p(T,X(T ), T + t, A)dP.

Before proving point 1, we will show that 2 holds. Let E ∈ FT ; then, by
Ω =

⋃
j∈NGj , it follows that

P ((X(T + t) ∈ A) ∩ E) =
∑
j∈N

P ((X(T + t) ∈ A) ∩ E ∩Gj)

=
∑
j∈N

P ((X(T + t) ∈ A) ∩ E ∩ (T = tj))

=
∑
j∈N

P ((X(t+ tj) ∈ A) ∩ E ∩ (T = tj))

=
∑
j∈N

P ((X(t+ tj) ∈ A) ∩ E ∩Gj). (2.18)

But
E ∩Gj = E ∩ ({T ≤ tj} \ {T < tj}) ∈ Ftj

(in fact, E∩{T ≤ tj} ∈ Ftj
following point 4 of Theorem 2.47), and therefore

P ((X(t+ tj) ∈ A) ∩ E ∩Gj) =
∫

E∩Gj

P (X(t+ tj) ∈ A|Ftj )dP.

Moreover, by the Markov property,

P (X(t+ tj) ∈ A|Ftj ) = p(tj , X(tj), tj + t, A) a.s. (2.19)

Using (2.18) and (2.19), we obtain

P ((X(T + t) ∈ A) ∩ E) =
⋃
j∈N

∫
E∩Gj

p(tj , X(tj), tj + t, A)dP

=
⋃
j∈N

∫
E∩{T=tj}

p(tj , X(tj), tj + t, A)dP

=
⋃
j∈N

∫
E∩{T=tj}

p(T,X(T ), T + t, A)dP

=
∫

E

p(T,X(T ), T + t, A)dP.

For the proof of 1, we now observe that, by the Feller property, the mapping

(r, z) ∈ R+ × R→
∫

R

p(r, z, r + t, dy)f(y) ∈ R

is continuous (for f ∈ BC(R)). Furthermore, T and X(T ) are FT -measurable,
and therefore the mapping
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ω ∈ Ω → (T (ω), X(T (ω), ω))

is FT -measurable. Hence the composite of the two mappings

ω ∈ Ω →
∫

R

p(T,X(T ), T + t, dy)f(y) ∈ R

is FT -measurable (for f ∈ BC(R)). Now let (fm)m∈N ∈ (BC(R))N be a
sequence of uniformly bounded functions such that limm→∞ fm = IA. Then,
from our previous observations,

∀m ∈ N,

∫
R

p(T,X(T ), T + t, dy)fm(y)

is FT -measurable and, following Lebesgue’s theorem on integral limits, we get∫
R

p(T,X(T ), T + t, dy)IA(y) = lim
m→∞

∫
R

p(T,X(T ), T + t, dy)fm(y),

and thus

p(T,X(T ), T + t, A) =
∫

R

p(T,X(T ), T + t, dy)IA(y)

is FT -measurable. �
Before generalizing Lemma 2.116, we assert the following.

Lemma 2.117. If T is a stopping time of the stochastic process (Xt)t∈R+ ,
then there exists a sequence of stopping times (Tn)n∈N such that:

1. for all n ∈ N, Tn has a codomain that is at most countable;
2. for all n ∈ N, Tn ≥ T ;
3. Tn ↓ T almost surely for n→∞.

Moreover, {Tn =∞} = {T =∞} for every n.

Proof: See, e.g., Friedman (1975). �

Theorem 2.118. If (Xt)t∈R+ is a right-continuous Markov process that sat-
isfies the Feller property, then it satisfies the strong Markov property.

Proof: Let T be a finite stopping time of the process (Xt)t∈R+ and (Tn)n∈N a
sequence of stopping times satisfying properties 1, 2, and 3 of Lemma 2.117
with respect to T . We observe that, for all n ∈ N, FT ⊂ FTn . In fact, if
A ∈ FT , then

∀t ∈ R+, A ∩ {Tn ≤ t} = (A ∩ {T ≤ t}) ∩ {Tn ≤ t} ∈ Ft,

provided that A ∩ {T ≤ t} ∈ Ft, {Tn ≤ t} ∈ Ft. Just like for Lemma 2.116,
we will need to show that the points 1 and 2 of its proof hold in this present
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case. Following Proposition 2.114, point 2 is equivalent to asserting that for
all E ∈ FT and all f ∈ BC(R) :∫

E

f(X(T + t))dP =
∫

E

dP

∫
R

p(T,X(T ), T + t, dy)f(y). (2.20)

Then, by Proposition 2.42, for all n ∈ N, we have that for all E ∈ FTn
and

all f ∈ BC(R)∫
E

f(X(Tn + t))dP =
∫

E

dP

∫
R

p(Tn, X(Tn), Tn + t, dy)f(y).

Moreover, since Tn ↓ T for n→∞ and by the right-continuity of the process
X, it follows that

X(Tn)→ X(T ) for n→∞.
From the continuity5 of the mapping

(λ, x) ∈ R+ × R→
∫

R

p(λ, x, λ+ t, λy)f(y) for f ∈ BC(R),

we have that, for n→∞:∫
R

p(Tn, X(Tn), Tn + t, dy)f(y)→
∫

R

p(T,X(T ), T + t, dy)f(y). (2.21)

On the other hand, if f is continuous, then we also get

f(X(Tn + t))→ f(X(T + t)) for n→∞. (2.22)

Therefore, if E ∈ FT and f ∈ BC(R), then E ∈ FTn for all n, and we have

lim
n→∞

∫
E

f(X(Tn + t))dP = lim
n→∞

∫
E

dP

∫
R

p(Tn, X(Tn), Tn + t, dy)f(y).

Since f and p are bounded, following Lebesgue’s theorem, we can take the
limit of the integral and then (2.20) follows from (2.21) and (2.22). The proof
of point 1 is entirely analogous to the proof of Lemma 2.117. �

The above results may be extended to more general, possibly uncountable
state spaces. In particular, we will assume that E is a subset of Rd for d ∈ N∗.
If we consider the time-homogeneous case, a Markov process (Xt)t∈R+ on
(E,BE), will be defined in terms of a transition kernel p(t, x,B) for t ∈ R+,
x ∈ E, B ∈ BE , such that

p(h,Xt, B) = P (Xt+h ∈ B|Ft) ∀t, h ∈ R+, B ∈ BE ,

given that (Ft)t∈R+ is the natural filtration of the process. Equivalently, if we
denote by BC(E) the space of all continuous and bounded functions on E,
endowed with the sup norm,
5 By the Feller property.
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E[g(Xt+h)|Ft] =
∫

E

g(y)p(h,Xt, dy) ∀t, h ∈ R+, g ∈ BC(E).

In this case the transition semigroup of the process is a one-parameter con-
traction semigroup (T (t), t ∈ R+) on BC(E) defined by

T (t)g(x) :=
∫

E

g(y)p(t, x, dy) = E[g(Xt)|X0 = x], x ∈ E,

for any g ∈ BC(E). The infinitesimal generator will be time independent. It
is defined as

Ag = lim
t→0+

1
t
(T (t)g − g)

for g ∈ D(A), the subset of BC(E) for which the above limit exists, in BC(E),
with respect to the sup norm. Given the above definitions, it is obvious that
for all g ∈ D(A),

Ag(x) = lim
t→0+

1
t
E[g(Xt)|X0 = x], x ∈ E.

If (T (t), t ∈ R+) is the contraction semigroup associated with a Markov pro-
cess, it is not difficult to show that the mapping t→ T (t)g is right-continuous
in t ∈ R+ provided that g ∈ BC(E) is such that the mapping t → T (t)g is
right continuous in t = 0. Then, for all g ∈ D(A) and t ∈ R+,∫ t

0

T (s)gds ∈ D(A)

and

T (t)g − g = A
∫ t

0

T (s)gds =
∫ t

0

AT (s)gds =
∫ t

0

T (s)Agds

by considering Riemann integrals. The following, so-called Dynkin’s formula,
establishes a fundamental link between Markov processes and martingales (see
Rogers and Williams (1994), page 253).

Theorem 2.119. Assume (Xt)t∈R+ is a Markov process on (E,BE), with
transition kernel p(t, x,B), t ∈ R+, x ∈ E, B ∈ BE. Let (T (t), t ∈ R+)
denote its transition semigroup and A its infinitesimal generator. Then, for
any g ∈ D(A), the stochastic process

M(t) := g(Xt)− g(X0)−
∫ t

0

Ag(Xs)ds

is an Ft-martingale.

Proof: The following equations hold:
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E [M(t+ h)|Ft] + g(X0)

= E

[
g(Xt+h)−

∫ t+h

t

Ag(Xs)ds

∣∣∣∣∣Ft

]
−
∫ t

0

Ag(Xs)ds

=
∫

E

g(y)p(h,Xt, dy)−
∫ t+h

t

∫
E

Ag(y)p(s− t,Xt, dy)−
∫ t

0

Ag(Xs)ds

= T (h)g(Xt)−
∫ h

0

T (s)Ag(Xt)ds−
∫ t

0

Ag(Xs)ds

= g(Xt)−
∫ t

0

Ag(Xs)ds = M(t) + g(X0).

�
The next proposition shows that a Markov process is indeed characterized

by its infinitesimal generator via a martingale problem (see, e.g., Rogers and
Williams (1994), page 253).

Theorem 2.120. (martingale problem for Markov processes). If an RCLL
Markov process (Xt)t∈R+ is such that

g(Xt)− g(X0)−
∫ t

0

Ag(Xs)ds

is an Ft-martingale for any function g ∈ D(A), where A is the infinitesimal
generator of a contraction semigroup on E, then Xt is equivalent to a Markov
process having A as its infinitesimal generator.

Example 2.121. A Poisson process (see the following section for more details)
is an integer-valued Markov process (Nt)t∈R+ . If its intensity parameter is
λ > 0, the process (Xt)t∈R+ , defined by Xt = Nt−λt, is a stationary Markov
process with independent increments. The transition kernel of Xt is

p(h, x,B) =
∞∑

k=0

(λh)k

k!
e−λhI{x+h−λh∈B} for x ∈ N, h ∈ R+, B ⊂ N.

Its transition semigroup is then

T (h)g(x) =
∞∑

k=0

(λh)k

k!
e−λhg(x+ h− λh) for x ∈ N, g ∈ BC(R).

The infinitesimal generator is then

Ag(x) = λ(g(x+ 1)− g(x))− λg′(x+).

According to previous theorems,

M(t) = g(Xt)−
∫ t

0

ds(λ(g(Xs + 1)− g(Xs))− λg′(Xs+)

is a martingale for any g ∈ BC(R).
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Markov Diffusion Processes

Definition 2.122. A Markov process on R with transition probability func-
tion p(s, x, t, A) is called a diffusion process if

1. for all ε > 0, for all t ≥ 0, and for all x ∈ R : limh↓0 1
h

∫
|x−y|>ε

p(t, x, t +
h, dy) = 0;

2. there exist a(t, x) and b(t, x) such that, for all ε > 0, for all t ≥ 0, and for
all x ∈ R,

lim
h↓0

1
h

∫
|x−y|<ε

(y − x)p(t, x, t+ h, dy) = a(t, x),

lim
h↓0

1
h

∫
|x−y|<ε

(y − x)2p(t, x, t+ h, dy) = b(t, x).

a(t, x) is the drift coefficient and b(t, x) the diffusion coefficient of the process.

Lemma 2.123. Conditions 1 and 2 of Definition 2.122 are satisfied if

1.∗ there exists a δ > 0 such that, for all t ≥ 0 and for all x ∈ R,
limh↓0 1

h

∫
R
|x− y|2+δp(t, x, t+ h, dy) = 0;

2.∗ for all t ≥ 0 and for all x ∈ R,

lim
h↓0

1
h

∫
R

(y − x)p(t, x, t+ h, dy) = a(t, x),

lim
h↓0

1
h

∫
R

(y − x)2p(t, x, t+ h, dy) = b(t, x).

Proof: We fix ε > 0, x ∈ R, |x− y| > ε⇒ |y − x|2+δ

ε2+δ
≥ 1, and hence

1
h

∫
|x−y|>ε

p(t, x, t+ h, dy) ≤ 1
hε2+δ

∫
|x−y|>ε

|y − x|2+δp(t, x, t+ h, dy)

≤ 1
hε2+δ

∫
R

|y − x|2+δp(t, x, t+ h, dy).

From this, due to 1∗, follows 1 of Definition 2.122. Analogously, for j = 1, 2,

1
h

∫
|x−y|>ε

|y − x|jp(t, x, t+ h, dy) ≤ 1
hε2+δ−j

∫
R

|y − x|2+δp(t, x, t+ h, dy),

and again from 1∗, we obtain

lim
h↓0

1
h

∫
|x−y|>ε

|y − x|jp(t, x, t+ h, dy) = 0.

Moreover,
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lim
h↓0

1
h

∫
R

|y − x|jp(t, x, t+ h, dy) = lim
h↓0

1
h

(∫
|x−y|>ε

|y − x|jp(t, x, t+ h, dy)

+
∫
|x−y|<ε

|y − x|jp(t, x, t+ h, dy)
)
,

which, along with 2∗, gives point 2 of Definition 2.122. �

Proposition 2.124. If (Xt)t∈R+ is a diffusion process with transition proba-
bility function p and drift and diffusion coefficients a(x, t) and b(x, t), respec-
tively, and if As is the infinitesimal generator associated with p, then we have
that

(Asf)(x) =
∂f

∂x
a(s, x) +

1
2
∂2f

∂x2
b(s, x), (2.23)

provided that f is bounded and twice continuously differentiable.

Proof: Let f ∈ BC(R) ∩ C2(R). From Taylor’s formula we obtain

f(y)− f(x) = f ′(x)(y − x) +
1
2
f ′′(x)(y − x)2 + o(|y − x|2) (2.24)

for |y − x| < δ (which is in a suitable neighbourhood of x), and thus

(Asf)(x) = lim
h↓0

1
h

∫
R

[f(y)− f(x)]p(s, x, s+ h, dy)

= lim
h↓0

1
h

∫
|y−x|<δ

f ′(x)(y − x)p(s, x, s+ h, dy)

+
1
2

lim
h↓0

1
h

∫
|y−x|<δ

f ′′(x)(y − x)2p(s, x, s+ h, dy)

+ lim
h↓0

1
h

∫
|y−x|<δ

o(|y − x|2)p(s, x, s+ h, dy)

+ lim
h↓0

1
h

∫
|y−x|≥δ

[f(y)− f(x)]p(s, x, s+ h, dy).

Because f ∈ BC(R)

lim
h↓0

1
h

∫
|y−x|≥δ

[f(y)− f(x)]p(s, x, s+ h, dy)

≤ lim
h↓0

1
h
c

∫
|y−x|≥δ

p(s, x, s+ h, dy) = 0,

by point 1 of Definition 2.122, where c is a constant. By point 2 of the same
definition:
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lim
h↓0

1
h

∫
|y−x|<δ

f ′(x)(y − x)p(s, x, s+ h, dy)

= f ′(x) lim
h↓0

1
h

∫
|y−x|<δ

(y − x)p(s, x, s+ h, dy)

= f ′(x)a(t, x),

as well as

1
2

lim
h↓0

1
h

∫
|y−x|<δ

f ′′(x)(y − x)2p(s, x, s+ h, dy) =
1
2
f ′′(x)b(x, t).

Fixing ε > 0, we finally observe that if we choose δ such that Taylor’s formula
(2.24) holds, so that

|y − x| < δ ⇒ o(|y − x|2)
|y − x|2 < ε,

we get

lim
h↓0

1
h

∫
|y−x|<δ

o(|y − x|2)p(s, x, s+ h, dy)

≤ lim
h↓0

1
h

∫
|y−x|<δ

ε|y − x|2p(s, x, s+ h, dy)

= εb(t, x)

and, from the fact that ε is arbitrary, we conclude that

lim
h↓0

1
h

∫
|y−x|<δ

o(|y − x|2)p(s, x, s+ h, dy) = 0.

�

Markov Jump Processes

Consider a Markov process (Xt)t∈R+ valued in a countable set E (say, N or
Z). In such a case it is sufficient (with respect to Theorem 2.99) to provide
the so-called one-point transition probability function

pij(s, t) := p(s, i, t, j) := P (Xt = j|Xs = i)

for t0 ≤ s < t, i, j ∈ E. It follows from the general structure of Markov
processes that the one-point transition probabilities satisfy the following re-
lations:

(a) pij(s, t) ≥ 0,
(b)
∑

j∈E pij(s, t) = 1,
(c) pij(s, t) =

∑
k∈E pik(s, r)pkj(r, t),
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provided t0 ≤ s ≤ r ≤ t, in R+, and i, j ∈ E. To these three conditions we
need to add
(d)

lim
t→s+

pij(s, t) = pij(s, s) = δij =
{

1 for i = j,
0 for i �= j.

The time-homogeneous case gives transition probabilities (p̃ij(t))t∈R+ , such
that

pij(s, t) = p̃ij(t− s), s ≤ t.
From now on we shall limit our analysis to the time-homogeneous case, whose
transition probabilities will be denoted (pij(t))t∈R+ . The following theorems
hold (Gihman and Skorohod (1974), pp. 304–306).

Theorem 2.125. The transition probabilities (pij(t))t∈R+ of a homogeneous
Markov process on a countable state space E are uniformly continuous in
t ∈ R+ for any fixed i, j ∈ E.

Theorem 2.126. The limit

qi = lim
h→0+

1− pii(h)
h

≤ +∞

always exists (finite or not), and for arbitrary t > 0:

1− pii(t)
t

≤ qi.

If qi < +∞, then for all t > 0 the derivatives p′ij(t) exist for any i, j ∈ E and
are continuous. They satisfy the following relations:

1. p′ij(t+ s) =
∑

k∈E p
′
ik(t)pkj(s),

2.
∑

j∈E p
′
ij(t) = 0,

3.
∑

j∈E |p′ij(t)| ≤ 2qi.

In the following theorem the condition qi < +∞ is not required.

Theorem 2.127. The limits

lim
t→0+

pij(t)
t

= p′ij(0) =: qij < +∞

always exist (finite) for any i �= j.

As a consequence of Theorems 2.126 and 2.127, provided qi < +∞, we
obtain evolution equations for pij(t):

p′ij(t) =
∑
k∈E

qikpkj(t),

with qii = −qi. These equations are known as Kolmogorov backward equations.
Consider the family of matrices (P (t))t∈R+ , with entries (pij(t))t∈R+ , for i, j ∈
E. We may rewrite conditions (c) and (d) in matrix form as follows:
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(c′) P (s+ t) = P (s)P (t) for any s, t ≥ 0;
(d′) limh→0+ P (h) = P (0) = I.

A family of stochastic matrices fulfilling conditions (c′) and (d′) is called a
matrix transition function. If a matrix transition function satisfies the condi-
tion ∑

j �=i

qij = −qii ≡ qi < +∞

for any i ∈ E, it is called conservative. The matrix Q = (qij)i,j∈E is called
the intensity matrix . The Kolmogorov backward equations can be rewritten
in matrix form as

P ′(t) = QP (t), t > 0,

subject to
P (0) = I.

If Q is a finite-dimensional matrix, the function exp{tQ} for t > 0 is well
defined.

Theorem 2.128. (see Karlin and Taylor (1975), page 152). If E is finite, the
matrix transition function can be represented in terms of its intensity matrix
Q via

P (t) = etQ, t ≥ 0.

Given an intensity matrix Q of a conservative Markov jump process with
stationary (time-homogeneous) transition probabilities, we have that (see
Doob (1953))

P (Xu = i ∀u ∈]s, s+ t]|Xs = i) = e−qit

for every s, t ∈ R+, and state i ∈ E. This shows that the sojourn time in state
i is exponentially distributed with parameter qi. This is independent of the
initial time s ≥ 0.

Furthermore, let πij , i �= j, be the conditional probability of a jump to state
j, given that a jump from state i has occurred. It can be shown (Doob (1953))
that

πij =
qij
qi
,

provided that qi > 0. For qi = 0, state i is absorbing , which obviously means
that once state i is entered, the process remains there permanently. Indeed,

P (Xu = i, for all u ∈]s, s+ t]|Xs = i) = e−qit = 1,

for all t ≥ 0. A state i for which qi = +∞ is called an instantaneous state. The
expected sojourn time in such a state is zero. A state i for which 0 ≤ qi < +∞
is called a stable state.
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Example 2.129. If (Xt)t∈R+ is a homogeneous Poisson process with intensity
λ > 0, then

pij(t) =

{
e−λt (λt)j−i

(j−i)! for j > i,
0 otherwise.

This implies that

qij = p′ij(0)

⎧⎨⎩
λ for j = i+ 1,
−λ for j = i,
0 otherwise.

For the following result we refer again to Doob (1953).

Theorem 2.130. For any x ∈ E, there exists a unique RCLL Markov process
associated with a given intensity matrix Q and such that P (X(0) = x) = 1.

Consider a time-homogeneous Markov jump process on a countable state
space E with intensity matrix Q = (qij)i,j∈E . The matrix Q can be seen as a
functional operator on E as follows: For any f : E → R+ define

Q : f → Q(f) =
∑
j∈E

qijf(j) =
∑
j �=i

qij(f(j)− f(i)).

For f bounded in E we may define, for any x ∈ E,

Ex[f(X(t+ s))]− Ex[f(X(t))]
= Ex[EX(t)[f(X(s))− f(X(0))]]

=
∑
j �=i

(f(j)− f(i))P (X(s) = j|X(0) = i)Px(X(t) = i).

Assume we may interchange the derivative and sum of the series:

d

dt
Ex[f(X(t))] =

∑
j �=i

qij(f(j)− f(i))Px(X(s) = i),

which can be written as

d

dt
Ex[f(X(t))] = Ex[Q(f)(X(t))].

By returning to the integral formulation

Ex[f(X(t))]− Ex[f(X(0))] =
∫ t

0

Ex[Q(f)(X(s))]ds, (2.25)

the above can be seen as a Dynkin’s formula for Markov jump processes in
terms of the intensity matrix Q. Indeed, from Rogers and Williams (1994)
(pp. 30–37), we obtain the following theorem.
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Theorem 2.131. For any function g ∈ C1,0(R+ ×E) such that the mapping

t→ ∂

∂t
g(t, x)

is continuous for all x ∈ E, the process(
g(t,X(t))− g(0, X(0))−

∫ t

0

(
∂g

∂t
+Q(g(s, ·))

)
(s,X(s))ds

)
t∈R+

is a local martingale.

Corollary 2.132. For any real function f defined on E, the process(
f(X(t))− f(X(0))−

∫ t

0

Q(f)X(s)ds
)

t∈R+

(2.26)

is a local martingale. Whenever the local martingale is a martingale, we re-
cover equation (2.25).

Proposition 2.133. (martingale problem for Markov jump processes). Given
an intensity matrix Q, if an RCLL Markov process X ≡ (X(t))t∈R+ on E is
such that the process (2.26) is a local martingale, then Q is the intensity ma-
trix of the Markov process X.

Further discussions on this topic may be found in Doob (1953) and Karlin
and Taylor (1981) (an additional and updated source regarding discrete-space
continuous-time Markov chains is Anderson (1991)). For applications, see, for
example, Robert (2003).

2.8 Brownian Motion and the Wiener Process

A small particle (e.g., a pollen corn) suspended in a liquid is subject to in-
finitely many collisions with atoms, and therefore it is impossible to observe
its exact trajectory. With the help of a microscope it is only possible to con-
firm that the movement of the particle is entirely chaotic. This type of move-
ment, discovered under similar circumstances by the botanist Robert Brown,
is called Brownian motion. As its mathematical inventor Einstein already
observed, it is necessary to make approximations, in order to describe the
process. The formalized mathematical model defined on the basis of these is
called a Wiener process. Henceforth, we will limit ourselves to the study of
the one-dimensional Wiener process in R, under the assumption that the three
components determining its motion in space are independent.

Definition 2.134. The real-valued process (Wt)t∈R+ is a Wiener process if
it satisfies the following conditions:
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1. W0 = 0 almost surely;
2. (Wt)t∈R+ is a process with independent increments;
3. Wt −Ws is normally distributed with N(0, t− s), (0 ≤ s < t).

Remark 2.135. From point 3 of Definition 2.134 it becomes obvious that every
Wiener process is homogeneous.

Proposition 2.136. If (Wt)t∈R+ is a Wiener process, then

1. E[Wt] = 0 for all t ∈ R+,
2. K(s, t) = Cov[Wt,Ws] = min{s, t}, s, t ∈ R+.

Proof: 1. Fixing t ∈ R, we observe that Wt = W0 + (Wt − W0) and thus
E[Wt] = E[W0] + E[Wt − W0] = 0. The latter is given by the fact that
E[W0] = 0 (by 1 of Definition 2.134) and E[Wt −W0] = 0 (by 3 of Definition
2.134).

2. Let s, t ∈ R+ and Cov[Wt,Ws] = E[WtWs] − E[Wt]E[Ws], which (by
point 1) gives Cov[Wt,Ws] = E[WtWs]. For simplicity, if we suppose that
s < t, then

E[WtWs] = E[Ws(Ws + (Wt −Ws))] = E[W 2
s ] + E[Ws(Wt −Ws)].

Since (Wt)t∈R+ has independent increments, we obtain

E[Ws(Wt −Ws)] = E[Ws]E[Wt −Ws]

and by point 1 of Proposition 2.136 (or 3 of Definition 2.134) it follows that
this is equal to zero, thus

Cov[Wt,Ws] = E[W 2
s ] = V ar[Ws].

If we now observe thatWs = W0+(Ws−W0) and hence V ar[Ws] = V ar[W0+
(Ws −W0)], then, by the independence of the increments of the process, we
get

V ar[W0 + (Ws −W0)] = V ar[W0] + V ar[Ws −W0].

Therefore, by points 1 and 3 of Definition 2.134 it follows that

V ar[Ws] = s = inf{s, t},

which completes the proof. �

Remark 2.137. By 1 of Definition 2.134, it follows, for all t ∈ R+, Wt =
Wt−W0 almost surely and by 3 of the same definition, that Wt is distributed
as N(0, t). Thus

P (a ≤Wt ≤ b) =
1√
2πt

∫ b

a

e−
x2
2t dx, a ≤ b.
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Remark 2.138. The Wiener process is a Gaussian process. In fact, if n ∈
N∗, (t1, . . . , tn) ∈ Rn

+ with 0 = t0 < t1 < . . . < tn and (a1, . . . , an) ∈
Rn, (b1, . . . , bn) ∈ Rn, such that ai ≤ bi, i = 1, 2, . . . , n, it can be shown
that

P(a1 ≤Wt1 ≤ b1, . . . , an ≤Wtn
≤ bn) (2.27)

=
∫ b1

a1

· · ·
∫ bn

an

g(0|x1, t1)g(x1|x2, t2 − t1) · · · g(xn−1|xn, tn − tn−1)dxn · · · dx1,

where

g(x|y, t) =
e−

|x−y|2
2t

√
2πt

.

In order to prove that the density of (Wt1 , . . . ,Wtn
) is given by the integrand

of (2.27), by uniqueness of the characteristic function, it is sufficient to show
that the characteristic function φ′ of the n-dimensional real-valued random
vector, whose density is given by the integrand of (2.27), is identical to the
characteristic function φ of (Wt1 , . . . ,Wtn

). Thus, let λ = (λ1, . . . , λn) ∈ Rn.
Then

φ(λ) = E
[
ei(λ1Wt1+···+λnWtn )

]
= E

[
ei(λn(Wtn−Wtn−1 )+(λn+λn−1)(Wtn−1−Wtn−2 )+···+(λ1+···+λn)Wt1 )

]
= E

[
eiλn(Wtn−Wtn−1 )

]
E
[
ei(λn+λn−1)(Wtn−1−Wtn−2 )

]
· · ·

· · ·E
[
ei(λ1+···+λn)Wt1

]
,

where we exploit the independence of the random variables Wti − Wti−1 ,
i = 1, . . . , n. Furthermore, because (Wti−Wti−1) isN(0, ti−ti−1), i = 1, . . . , n,
we get

φ(λ) = e
−λ2

n
2 (tn−tn−1)e

−(λn+λn−1)2

2 (tn−1−tn−2) · · · e
−(λ1+···+λn)2

2 t1 .

We continue by calculating the characteristic function φ′:

φ′(λ) =
∫ +∞

−∞
· · ·
∫ +∞

−∞
eiλ·xg(0|x1, t1) · · · g(xn−1|xn, tn − tn−1)dxn · · · dx1

=
∫ +∞

−∞
· · ·
(∫ +∞

−∞
eiλnxng(xn−1|xn, tn − tn−1)dxn

)
· · · dx1.

Because ∫ +∞

−∞
eiλx 1

σ
√

2π
e

−|x−m|2
2σ2 dx = eimλ−λ2σ2

2 , (2.28)

we obtain
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φ′(λ) =
∫ +∞

−∞
· · ·
(
eiλnxn−1−λ2

n
2 (tn−tn−1)

)
· · · dx1

= e−
λ2

n
2 (tn−tn−1)

∫ +∞

−∞
· · ·(∫ +∞

−∞
ei(λn+λn−1)xn−1g(xn−2|xn−1, tn−1 − tn−2)dxn−1

)
· · · dx1.

By recalling (2.28) and applying it to each variable, we obtain

φ′(λ) = e
−λ2

n
2 (tn−tn−1)e

−(λn+λn−1)2

2 (tn−1−tn−2) · · · e
−(λ1+...+λn)2

2 t1

and hence φ′(λ) = φ(λ). We now show that g(0|x1, t1) · · · g(xn−1|xn, tn−tn−1)
is of the form

1
(2π)

n
2
√

detK
e−

1
2 (x−m)′K−1(x−m).

We will only show it for the case where n = 2; then

g(0|x1, t1)g(x1|x2, t2 − t1) =
1

2π
√
t1(t2 − t1)

e
− 1

2

�
x2
1

t1
+

(x2−x1)2

t2−t1

�

=
1

2π
√
t1(t2 − t1)

e
− 1

2

�
x2
1(t2−t1)+(x2−x1)2t1

t1(t2−t1)

�
.

If we put

K =
(
t1 t1
t1 t2

)
(where Kij = Cov[Wti

,Wtj
]; i, j = 1, 2),

then

K−1 =
( t2

t1(t2−t1)
− 1

t2−t1

− 1
t2−t1

1
t2−t1

)
,

resulting in

g(0|x1, t1)g(x1|x2, t2 − t1) =
1

2π
√

detK
e−

1
2 (x−m)′K−1(x−m),

where m1 = E[Wt1 ] = 0,m2 = E[Wt2 ] = 0. Thus

g(0|x1, t1)g(x1|x2, t2 − t1) =
1

2π
√

detK
e−

1
2x′K−1x,

completing the proof. �

Proposition 2.139. If (Wt)t∈R+ is a Wiener process, then it is also a mar-
tingale.
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Proof: The proposition follows from Example 2.62, because (Wt)t∈R+ is a
centered process with independent increments. �

Theorem 2.140. Every Wiener process (Wt)t∈R+ is a Markov process.

Proof: The theorem follows directly by Theorem 2.96. �

Theorem 2.141. (Kolmogorov’s continuity theorem). Let (Xt)t∈R+ be a sep-
arable real-valued stochastic process. If there exist positive real numbers r, c, ε, δ
such that

∀h < δ, ∀t ∈ R+, E[|Xt+h −Xt|r] ≤ ch1+ε, (2.29)

then, for almost every ω ∈ Ω, the trajectories are continuous in R+.

Proof: For simplicity, we will only consider the interval I =]0, 1[, instead of
R+, so that (Xt)t∈]0,1[. Let t ∈]0, 1[ and 0 < h < δ such that t + h ∈]0, 1[.
Then by the Markov inequality and by (2.29) we obtain

P (|Xt+h −Xt| > hk) ≤ h−rkE[|Xt+h −Xt|r] ≤ ch1+ε−rk (2.30)

for k > 0 and ε− rk > 0. Therefore

lim
h→0

P
(
|Xt+h −Xt| > hk

)
= 0;

namely, the process is continuous in probability and, by hypothesis, separable.
Under these two conditions it can be shown that any arbitrary countable dense
subset T0 of ]0, 1[ can be regarded as a separating set. Thus we define

T0 =
{
j

2n

∣∣∣∣ j = 1, . . . , 2n − 1;n ∈ N∗
}

and observe that, by (2.30),

P

(
max

1≤j≤2n−2

∣∣∣X j+1
2n
−X j

2n

∣∣∣ ≥ 1
2nk

)
≤

2n−2∑
j=1

P

(∣∣∣X j+1
2n
−X j

2n

∣∣∣ ≥ 1
2nk

)
≤ 2nc2−n(1+ε−rk) = c2−n(ε−rk).

Because (ε−rk) > 0 and
∑

n 2−n(ε−rk) <∞, we can apply the Borel–Cantelli
Lemma 1.98 to the sets

Fn =
{

max
0≤j≤2n−1

∣∣∣X j+1
2n
−X j

2n

∣∣∣ ≥ 1
2nk

}
,

yielding P (B) = 0, where B = lim supn Fn =
⋂

n

⋃
k≤n Fk. As a consequence,

if ω /∈ B, then ω ∈ Ω \ (
⋂

n

⋃
k≥n Fk); i.e., there exists an N = N(ω) ∈ N∗,

such that, for all n ≥ N,∣∣∣X j+1
2n

(ω)−X j
2n

(ω)
∣∣∣ < 1

2nk
, j = 0, . . . , 2n − 1. (2.31)
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Now, let ω /∈ B and s be a rational number, such that

s = j2−n + a12−(n+1) + · · ·+ am2−(n+m), s ∈ [j2−n, (j + 1)2−n[,

where either aj = 0 or aj = 1 and m ∈ N∗. If we put

br = j2−n + a12−(n+1) + · · ·+ ar2−(n+r),

with b0 = j2−n and bm = s for r = 0, . . . ,m, then

|Xs(ω)−Xj2−n(ω)| ≤
m−1∑
r=0

|Xbr+1(ω)−Xbr
(ω)|.

If ar+1 = 0, then [br, br+1[= ∅; if ar+1 = 1, then [br, br+1[ is of the form
[l2−(n+r+1), (l + 1)2−(n+r+1)[. Hence from (2.31), it follows that

|Xs(ω)−Xj2−n(ω)| ≤
m−1∑
r=0

2−(n+r+1)k ≤ 2−nk
∞∑

r=0

2−(r+1)k ≤M2−nk, (2.32)

with M ≥ 1. Fixing ε > 0, there exists an N1 > 0 such that, for all n ≥ N1,
M2−nk < ε

3 , and from the fact that M ≥ 1, it also follows that, for all
n ≥ N1, 2−nk < ε

3 . Let t1, t2 be elements of T0 (separating set) such that
|t1 − t2| < min{2−N1 , 2−N(ω)}. If n = max{N1, N(ω)}, then there is at most
one rational number of the form j+1

2n (j = 1, . . . , 2n − 1) between t1 and t2.
Therefore, by (2.31) and (2.32) it follows that

|Xt1(ω)−Xt2(ω)|

≤
∣∣∣Xt1(ω)−X j

2n
(ω)
∣∣∣+ ∣∣∣X j+1

2n
(ω)−X j

2n
(ω)
∣∣∣+ ∣∣∣Xt2(ω)−X j+1

2n
(ω)
∣∣∣

<
ε

3
+
ε

3
+
ε

3
= ε.

Hence the trajectory is uniformly continuous almost everywhere in T0 and
has a continuous extension in [0, 1]. By Theorem 2.26, the extension coincides
with the original trajectory. Therefore, the trajectory is continuous almost
everywhere in ]0, 1[. �

Theorem 2.142. If (Wt)t∈R+ is a real-valued Wiener process, then it has
continuous trajectories almost surely.

Proof: Let t ∈ R+ and h > 0. Because Wt+h −Wt is normally distributed
as N(0, h), putting Zt,h = Wt+h−Wt√

h
, Zt,h has standard normal distribution.

Therefore, it is clear that there exists an r > 2 such that E[|Zt,h|r] > 0, and
thus E[|Wt+h − Wt|r] = E[|Zt,h|r]h

r
2 . If we write r = 2(1 + ε), we obtain

E[|Wt+h −Wt|r] = ch1+ε, with c = E[|Zt,h|r]. The assertion then follows by
Kolmogorov’s continuity theorem. �
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Remark 2.143. Since Brownian motion is continuous in probability, it admits
a separable and progressively measurable modification.

Lemma 2.144. Let (Wt)t∈R+ be a real-valued Wiener process. If a > 0, then

P

(
max
0≤s≤t

Ws > a

)
= 2P (Wt > a).

Proof: We employ the reflection principle by defining the process (W̃t)t∈R as{
W̃t = Wt if Ws < a,∀s < t,
W̃t = 2a−Wt if ∃s < t such that Ws = a.

The name arises because once Ws = a, then W̃s becomes a reflection of Ws

about the barrier a. It is obvious that (W̃t)t∈R is a Wiener process as well.
Moreover, we can observe that

max
0≤s≤t

Ws > a (2.33)

if and only if eitherWt > a or W̃t > a. These two events are mutually exclusive
and thus their probabilities are additive. As they are both Wiener processes
it is obvious that the two events have the same probability and thus

P

(
max
0≤s≤t

Ws > a

)
= P (Wt > a) + P (W̃t > a) = 2P (Wt > a),

completing the proof. For a more general case, see (B.11). �

Theorem 2.145. If (Wt)t∈R+ is a real-valued Wiener process, then

1. P (supt∈R+
Wt = +∞) = 1,

2. P (inft∈R+ Wt = −∞) = 1.

Proof: For a > 0,

P

(
sup
t∈R+

Wt > a

)
≥ P

(
sup

0≤s≤t
Ws > a

)
= P

(
max
0≤s≤t

Ws > a

)
,

where the last equality follows by continuity of trajectories. By Lemma 2.144:

P

(
sup
t∈R+

Wt > a

)
≥ 2P (Wt > a) = 2P

(
Wt√
t
>

a√
t

)
, for t > 0.

Because Wt is normally distributed as N(0, t), Wt√
t

is standard normal and,
denoting by Φ its cumulative distribution, we get

2P
(
Wt√
t
>

a√
t

)
= 2
(

1− Φ
(
a√
t

))
.
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By limt→∞ Φ( a√
t
) = 1

2 , it follows that

lim
t→∞ 2P

(
Wt√
t
>

a√
t

)
= 1,

and because {
sup
t∈R+

Wt = +∞
}

=
∞⋂

a=1

{
sup
t∈R+

Wt > a

}
,

we obtain 1.
Point 2 follows directly from 1, by observing that if (Wt)t∈R+ is a real-

valued Wiener process, then so is (−Wt)t∈R+ . �
Theorem 2.146. If (Wt)t∈R+ is a real-valued Wiener process, then,

∀h > 0, P

(
max

0≤s≤h
Ws > 0

)
= P

(
min

0≤s≤h
Ws < 0

)
= 1.

Moreover, for almost every ω ∈ Ω the process (Wt)t∈R+ has a zero (i.e.,
crosses the spatial axis) in ]0, h], for all h > 0.

Proof: If h > 0 and a > 0, it is obvious that

P

(
max

0≤s≤h
Ws > 0

)
≥ P

(
max

0≤s≤h
Ws > a

)
.

Then, by Lemma 2.144,

P

(
max

0≤s≤h
Ws > a

)
= 2P (Wh > a) = 2P

(
Wh√
h
>

a√
h

)
= 2
(

1− Φ
(
a√
h

))
.

For a → 0, 2(1 − Φ( a√
h
)) → 1 and thus P (max0≤s≤hWs > 0) = 1. Further-

more,

P

(
min

0≤s≤h
Ws < 0

)
= P

(
max

0≤s≤h
(−Ws) > 0

)
= 1.

Now we can observe that

P

(
max

0≤s≤h
Ws > 0,∀h > 0

)
≥ P

( ∞⋂
n=1

(
max

0<s≤ 1
n

Ws > 0

))
= 1.

Hence

P

(
max

0≤s≤h
Ws > 0,∀h > 0

)
= 1

and, analogously,

P

(
min

0≤s≤h
Ws < 0,∀h > 0

)
= 1.

From this it can be deduced that for almost every ω ∈ Ω the process (Wt)t∈R+

becomes zero in ]0, h], for all h > 0. On the other hand, since (Wt)t∈R+ is a
time-homogeneous Markov process with independent increments, it has the
same behavior in ]h, 2h] as in ]0, h], and thus it has zeros in every interval. �
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Theorem 2.147. Almost every trajectory of the Wiener process (Wt)t∈R+ is
differentiable almost nowhere.

Proof: Let D = {ω ∈ Ω|Wt(ω) is differentiable for at least one t ∈ R+}.
We will show that D ⊂ G, with P (G) = 0 (obviously, if P is complete, then
D ∈ F). Let k > 0 and

Ak =

{
ω

∣∣∣∣∣lim sup
h↓0

|Wt+h(ω)−Wt(ω)|
h

< k for at least one t ∈ [0, 1[

}
.

Then, if ω ∈ Ak, we can choose m ∈ N sufficiently large, such that j−1
m ≤ t <

j
m for j ∈ {1, . . . ,m}, and for t ≤ s ≤ j+3

m , W (s, ω) is enveloped by the cone
with slope k. Then, for an integer j ∈ {1, . . . ,m}, we get∣∣∣W j+1

m
(ω)−W j

m
(ω)
∣∣∣ ≤ ∣∣∣W j+1

m
(ω)−Wt(ω)

∣∣∣+ ∣∣∣−Wt(ω) +W j
m

(ω)
∣∣∣

<

(
j + 1
m

− j − 1
m

)
k +
(
j

m
− j − 1

m

)
k

=
2k
m

+
k

m
=

3k
m
. (2.34)

Analogously, we obtain that∣∣∣W j+2
m

(ω)−W j+1
m

(ω)
∣∣∣ ≤ 5k

m
(2.35)

and ∣∣∣W j+3
m

(ω)−W j+2
m

(ω)
∣∣∣ ≤ 7k

m
. (2.36)

Because Wt+h−Wt√
h

is distributed as N(0, 1), it follows that

P (|Wt+h −Wt| < a) = P

(
|Wt+h −Wt|√

h
<

a√
h

)
=
∫ a√

h

− a√
h

1√
2π

exp
{
−x

2

2

}
dx

≤ 1√
2π

2
a√
h

=
2a√
2πh

.

Putting Am,j = {ω|(2.34),(2.35),(2.36) are true}, because the process has in-
dependent increments, we obtain

P (Am,j) = P ({ω|(2.34) is true})P ({ω|(2.35) is true})P ({ω|(2.36) is true})

≤ 8
(

2π
m

)− 3
2 3k
m

5k
m

7k
m
,

and thus P (Am,j) ≤ cm− 3
2 , j = 1, . . . ,m. Putting Am =

⋃m
j=1Am,j , then
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P (Am) ≤
m∑

j=1

P (Am,j) ≤ cm− 1
2 . (2.37)

Now let m = n4 (n ∈ N∗); we obtain P (An4) ≤ cn−2 = c
n2 and thus∑

n

P (An4) ≤ c
∑

n

1
n2
<∞.

Therefore, by the Borel–Cantelli Lemma 1.98,

P

(
lim sup

n
An4

)
= 0.

It can now be shown that

Ak ⊂ lim inf
m

Am ≡
⋃
m

⋂
i≥m

Ai ⊂ lim inf
n

An4 ⊂ lim sup
n

An4 ,

hence Ak ⊂ A
′′
n4 and P (A

′′
n4) = 0. Let

D0 = {ω|W (·, ω) is differentiable in at least one t ∈ [0, 1[}.

Then D0 ⊂
⋃∞

k=1Ak = G0, which means that D0 is contained in a set of prob-
ability zero, namelyD0 ⊂ G0 and P (G0) = 0. Decomposing R+ =

⋃
n[n, n+1[,

since the motion is Brownian and of independent increments,

Dn = {ω|W (·, ω) is differentiable in at least one t ∈ [n, n+ 1[},

analogously to D0, will be contained in a set of probability zero, i.e., Dn ⊂ Gn

and P (Gn) = 0. But D ⊂
⋃

nDn ⊂
⋃

nGn, thus completing the proof. �

Proposition 2.148. (scaling property). Let (Wt)t∈R+ be a Wiener process.
Then the time-scaled process (W̃t)t∈R+ defined by

W̃t = tW1/t, t > 0, W̃0 = 0

is also a Wiener process.

Proof: See, e.g., Karlin and Taylor (1975). �

Proposition 2.149. (strong law of large numbers). Let (Wt)t∈R+ be a
Wiener process. Then

Wt

t
→ 0, as t→ +∞, a.s.

Proof: See, e.g., Karlin & Taylor (1975). �
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Proposition 2.150. (law of iterated logarithms). Let (Wt)t∈R+ be a Wiener
process. Then

lim sup
t→+∞

Wt√
2t ln ln t

= 1, a.s.,

lim inf
t→+∞

Wt√
2t ln ln t

= −1, a.s.

As a consequence, for any ε > 0, there exists a t0 > 0, such that for any t > t0
we have

−(1 + ε)
√

2t ln ln t ≤Wt ≤ (1 + ε)
√

2t ln ln t, a.s.

Proof: See, e.g., Breiman (1968). �

Brownian Motion After a Stopping Time

Let (W (t))t∈R+ be a Wiener process with a finite stopping time T and FT the
σ-algebra of events preceding T . By Remark 2.143 and Theorem 2.48, W (T )
is FT -measurable and hence measurable.

Remark 2.151. Brownian motion is endowed with the Feller property and
therefore also with the strong Markov property. (This can be shown by using
the representation of the semigroup associated with (W (t))t∈R+ .)

Theorem 2.152. Resorting to the previous notation, we have that

1. the process y(t) = W (T + t)−W (T ), t ≥ 0, is again a Brownian motion;
2. σ(y(t), t ≥ 0) is independent of FT

(thus a Brownian motion remains a Brownian motion after a stopping time).

Proof: If T = s (s constant), the assertion is obvious. We now suppose that
T has a countable codomain (sj)j∈N and that B ∈ FT . If we consider further
that 0 ≤ t1 < · · · < tn and that A1, . . . , An are Borel sets of R, then

P(y(t1) ∈ A1, . . . , y(tn) ∈ An, B)

=
∑
j∈N

P (y(t1) ∈ A1, . . . , y(tn) ∈ An, B, T = sj)

=
∑
j∈N

P ((W (t1 + sj)−W (sj)) ∈ A1, . . .

. . . , (W (tn + sj)−W (sj)) ∈ An, B, T = sj).

Moreover, (T = sj) ∩ B = (B ∩ (T ≤ sj)) ∩ (T = sj) ∈ Fsj (as observed
in the proof of Theorem 2.48), and since a Wiener process has independent
increments, the events ((W (t1+sj)−W (sj)) ∈ A1, . . . , (W (tn+sj)−W (sj)) ∈
An) and (B, T = sj) are independent; therefore,
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P(y(t1) ∈ A1, . . . , y(tn) ∈ An, B)

=
∑
j∈N

P ((W (t1 + sj)−W (sj)) ∈ A1, . . .

. . . , (W (tn + sj)−W (sj)) ∈ An)P (B, T = sj)

=
∑
j∈N

P (W (t1) ∈ A1, . . . ,W (tn) ∈ An)P (B, T = sj)

= P (W (t1) ∈ A1, . . . ,W (tn) ∈ An)P (B),

where we note that W (tk + sj)−W (sj) has the same distribution as W (tk).
From these equations (having factorized) follows point 2. Furthermore, if we
take B = Ω, we obtain

P (y(t1) ∈ A1, . . . , y(tn) ∈ An) = P (W (t1) ∈ A1, . . . ,W (tn) ∈ An).

This shows that the finite-dimensional distributions of the process (y(t))t≥0

coincide with those of W . Therefore, by the Kolmogorov–Bochner theorem,
the proof of 1 is complete.

Let T be a generic finite stopping time of the Wiener process (Wt)t≥0

and (as in Lemma 2.117) (Tn)n∈N a sequence of stopping times, such that
Tn ≥ T, Tn ↓ T as n→∞ and Tn has an at most countable codomain. We put,
for all n ∈ N, yn(t) = W (Tn + t)−W (Tn) and let B ∈ FT , 0 ≤ t1 ≤ · · · ≤ tk.
Then, because for all n ∈ N, FT ⊂ FTn (see the proof of Theorem 2.118) and
for all n ∈ N, the theorem holds for Tn (as already shown above), we have

P (yn(t1) ≤ x1, . . . , yn(tk) ≤ xk, B) = P (W (t1) ≤ x1, . . . ,W (tk) ≤ xk)P (B).

Moreover, since W is continuous, from Tn ↓ T as n → ∞, it follows that
yn(t) → y(t) a.s., for all t ≥ 0. Thus, if (x1, . . . , xk) is a point of continuity
of the k-dimensional distribution Fk of (W (t1), . . . ,W (tk)), we get by Lévy’s
continuity Theorem 1.153

P(y(t1) ≤ x1, . . . , y(tk) ≤ xk, B)
= P (W (t1) ≤ x1, . . . ,W (tk) ≤ xk)P (B). (2.38)

Since Fk is continuous almost everywhere (given that Gaussian distributions
are absolutely continuous with respect to Lebesgue measure and thus have
density), (2.38) holds for every x1, . . . , xk. Therefore, for every Borel set
A1, . . . , Ak of R, we have that

P (y(t1) ∈ A1, . . . , y(tk) ∈ Ak, B) = P (W (t1) ∈ A1, . . . ,W (tn) ∈ Ak)P (B),

completing the proof. �

Definition 2.153. The real-valued process (W1(t), . . . ,Wn(t))′t≥0 is said to
be an n-dimensional Wiener process (or Brownian motion) if:
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1. for all i ∈ {1, . . . , n}, (Wi(t))t≥0 is a Wiener process,
2. the processes (Wi(t))t≥0, i = 1, . . . , n, are independent

(thus the σ-algebras σ(Wi(t), t ≥ 0), i = 1, . . . , n, are independent).

Proposition 2.154. If (W1(t), . . . ,Wn(t))′t≥0 is an n-dimensional Brownian
motion, then it can be shown that:

1. (W1(0), . . . ,Wn(0)) = (0, . . . , 0) almost surely;
2. (W1(t), . . . ,Wn(t))′t≥0 has independent increments;
3. (W1(t), . . . ,Wn(t))′ − (W1(s), . . . ,Wn(s))′, 0 ≤ s < t, has multivariate

normal distribution N(0, (t − s)I) (where 0 is the null-vector of order n
and I is the n× n identity matrix).

Proof: The proof follows from Definition 2.153. �

2.9 Counting, Poisson, and Lévy Processes

Whereas Brownian motion and the Wiener process are continuous in space
and time, there exists a family of processes that are continuous in time, but
discontinuous in space, admitting jumps. The simplest of these is a counting
process, of which the Poisson process is a special case. The latter also allows
many explicit results. The most general process admitting both continuous
and discontinuous movements is the Lévy process, which contains both Brow-
nian motion and the Poisson process. Finally, a stable process is a particular
type of Lévy process, which reproduces itself under addition.

Definition 2.155. Let (τi)i∈N∗ be a strictly increasing sequence of positive
random variables on the space (Ω,F , P ), with τ0 ≡ 0. Then the process
(Nt)t∈R̄+

given by

Nt =
∑
i∈N∗

I[τi,+∞](t), t ∈ R̄+,

valued in N̄, is called a counting process associated with the sequence (τi)i∈N∗ .
Moreover, the random variable τ = supi τi is the explosion time of the process.
If τ =∞ almost surely, then Nt is nonexplosive.

Theorem 2.156. Let (Ft)t∈R̄+
be a filtration that satisfies the usual hypothe-

ses (see Definition 2.34). A counting process (Nt)t∈R̄+
is adapted to (Ft)t∈R̄+

if and only if its associated random variables (τi)i∈N∗ are stopping times.

Proof: See, e.g., Protter (1990). �

Proposition 2.157. An RCLL process may admit at most jump discontinu-
ities. If P (Xt �= Xt−) > 0 such a process (Xt)t∈R+ has a fixed jump at a time
t.
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Remark 2.158. A nonexplosive counting process is RCLL. Its trajectories are
right-continuous step functions with upward jumps of magnitude 1 andN0 = 0
almost surely.

Theorem 2.159. Let (Nt)t∈R+ be a counting process. Then its natural filtra-
tion is right-continuous.

Poisson Process

Definition 2.160. Let (Ti)i∈N∗ be a sequence of independent and identically
distributed random variables with common exponential probability law (i.e.
E[Ti] = 1/λ for a given parameter λ > 0), and let τn =

∑n
i=1 Ti. Then the

process (Nt)t∈R+ , given by

Nt =
∑

n∈N∗
I[τn,+∞](t) =

∑
n∈N∗

nI[τn,τn+1[(t), t ∈ R+,

is a Poisson process of intensity λ.

Remark 2.161. Following the definition of the Poisson process we have that

τn = inf{t ∈ R+|Nt = n}, n ∈ N∗.

Remark 2.162. The sequence of random variables (Ti)i∈N∗ underlying a Pois-
son process is usually referred to as its interarrival times.

Theorem 2.163. A Poisson process is an adapted counting process without
explosions that has both independent and stationary increments.

The subsequent theorem specifies the distribution of the random variable
Nt, t ∈ R+.

Theorem 2.164. Let (Nt)t∈R+ be a Poisson process of intensity λ > 0. Then
for any t ∈ R+ the random variable Nt has the Poisson probability distribution

P (Nt = n) = e−λt (λt)
n

n!
, n ∈ N,

with parameter λt. Furthermore, E[Nt] = λt, V ar[Nt] = λt, its characteristic
function is

φNt(u) = E
[
eiuNt

]
= e−λt(1−exp{iu}),

and its probability generating function is

gNt(u) = E
[
uNt
]

= eλt(u−1), u ∈ R∗
+.
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Proof: The characteristic function of T1 is

φT1(u) = E
[
eiuT1

]
=
∫ ∞

0

eiuT1λe−λT1dT1 =
λ

λ− iu , u ∈ R.

From the independence and identical distribution property of T1, . . . , Tn, it
follows that

φτn
(u) = E

[
eiuτn

]
=
(
E
[
eiuT1

])n
=
(

λ

λ− iu

)n

, u ∈ R,

which can be shown to be the characteristic function of the Gamma distribu-
tion Γ (λ, n). Hence for any n ∈ N, assuming that τ0 = 0, we have that τn are
Gamma distributed and thus

P (Nt = n) = P (τn ≤ t)− P (τn+1 ≤ t)

=
∫ t

0

λe−λx (λx)n−1

(n− 1)!
dx−

∫ t

0

λe−λx (λx)n

n!
dx =

(λt)n

n!
e−λt.

The other quantities can be calculated by solving

E[Nt] =
∞∑

n=0

n
(λt)n

n!
e−λt = λt

∞∑
n=0

(λt)n−1

(n− 1)!
e−λt = λt,

E
[
N2

t

]
=

∞∑
n=0

n2 (λt)n

n!
e−λt = λt

∞∑
n=0

((n− 1) + 1)
(λt)n−1

(n− 1)!
e−λt

= (λt)2 + λt,

V ar[Nt] = E
[
N2

t

]
− (E[Nt])

2
,

E
[
eiuNt

]
=

∞∑
n=0

eiun (λt)n

n!
e−λt = e−λt(1−exp{iu})

∞∑
n=0

(
λteiu

)n
n!

e−λt exp{iu}

= e−λt(1−exp{iu}),

E
[
uNt
]

=
∞∑

n=0

un (λt)n

n!
e−λt = eλt(u−1)

∞∑
n=0

(uλt)n

n!
e−uλt = eλt(u−1).

�

Theorem 2.165. Let (Nt)t∈R+ be a Poisson process of intensity λ > 0 and
Ft = σ(Ns, s ≤ t). Then

1. (Nt)t∈R+ is a process with independent increments; i.e., for s, t ∈ R+,
Nt+s −Nt is independent of Ft.

2. (Nt)t∈R+ is stationary; i.e., for s, t ∈ R+, Nt+s −Nt has the same proba-
bility law as

Ns −N0 ≡ Ns.
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Remark 2.166. The jump times τn, for any n ∈ N∗, are Ft stopping times:

{τn ≤ t} = {Nt = n} ∈ Ft, t ∈ R+.

Definition 2.167. P 0: Let (Nt)t∈R+ be a stochastic process. For each ω ∈ Ω
we have that

1. Nt(ω) ∈ N, t ∈ R+;
2. N0(ω) = 0 almost surely and limt→+∞ P (Nt(ω) = 0) = 0;
3. Nt(ω) is nondecreasing and right-continuous, and at points of discontinu-

ity, the jump
Nt(ω)− sup

s<t
Ns(ω) = 1.

Theorem 2.168. Assumption (P 0) of the preceding definition is equivalent
to the following:

(P 0)′ (Nt)t∈R+ is an RCLL Markov process with probability law

P (Nt = n) = e−λt (λt)
n

n!
, t ∈ R+, n ∈ N.

Proposition 2.169. Under assumption P 0 let τ ′n = inf{t ∈ R+ : Nt ≥ n}
and Tn = τn − τn−1, for all n ∈ N. Then the following statements are all
equivalent:

P 1 : Tn are independent exponentially distributed random variables with pa-
rameter λ.

P 2 : For any 0 < t1 < · · · < tk the increments Nt1 , Nt2 −Nt1 , . . . , Ntk
−Ntk−1

are independent and each of them is identically Poisson distributed:

Nti −Nti−1 ∼ P (λ(ti − ti−1)).

P 3 : For any 0 < t1 < · · · < tk the increments Nt1 , Nt2 −Nt1 , . . . , Ntk
−Ntk−1

are independent and the distribution of Nti −Nti−1 depends only on the
difference ti − ti−1.

P 4 : For any 0 < t1 < · · · < tk in R+ and n1, . . . , nk in N we have that

lim
h↓0

P
(
Ntk+h

−Ntk
= 1
∣∣Ntj = nj , j ≤ k

)
= λh+ o(h),

lim
h↓0

P
(
Ntk+h

−Ntk
≥ 2
∣∣Ntj = nj , j ≤ k

)
= o(h).

Furthermore, (Nt)t∈R+ has no fixed discontinuities.

Theorem 2.170. A process (Nt)t∈R+ with stationary increments has a ver-
sion in which it is constant on all sample paths except for upward jumps of
magnitude 1, if and only if there exists a parameter λ > 0 so that its charac-
teristic function

φNt(u) = E
[
eiuNt

]
= e−λt(1−exp{iu})

or, equivalently, Nt ∼ P (λt).
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Proof: See, e.g., Breiman (1968). �

Theorem 2.171. Let (Nt)t∈R+ be a Poisson process of intensity λ. Then
(Nt − λt)t∈R+ and ((Nt − λt)2 − λt)t∈R+ are martingales.

Remark 2.172. Because Mt = (Nt − λt)2 − λt is a martingale, by uniqueness,
the process (λt)t∈R+ is the predictable compensator of (Nt−λt)2, i.e., 〈(Nt−
λt)2〉 = λt, for all t ∈ R+, as well as the compensator of the Poisson process
(Nt)t∈R+ directly.

Theorem 2.173. Let (Nt)t∈R̄+
be a simple counting process on R+ adapted

to Ft. If the Ft-compensator At of Nt is continuous and F0-measurable, then
Nt is a doubly stochastic Poisson process (with stochastic intensity), directed
by At, also known as a Cox process.

Proof: For u ∈ R let

Mt(u) = eiuNt−(exp{iu}−1)At .

Then, by using the properties of stochastic integrals, it can be shown that

E[Mt(u)|F0] = E
[
eiuNt−(exp{iu}−1)At

∣∣∣F0

]
= 1.

Because At is assumed to be F0-measurable

E
[
eiuNt |F0

]
= e(exp{iu}−1)At ,

representing the characteristic function of a Poisson distribution with (stochas-
tic) intensity At. �

Lévy Process

Definition 2.174. Let (Xt)t∈R+ be an adapted process with X0 = 0 almost
surely. If Xt

1. has independent increments,
2. has stationary increments,
3. is continuous in probability so that Xs

P−→
s→t

Xt,

then it is a Lévy process.

Proposition 2.175. Both the Wiener and the Poisson processes are Lévy
processes.

Theorem 2.176. Let (Xt)t∈R+ be a Lévy process. Then it has an RCLL ver-
sion (Yt)t∈R+ , which is also a Lévy process.
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Proof: See, e.g., Kallenberg (1997). �
For Lévy processes we can invoke examples of filtrations that satisfy the

usual hypotheses.

Theorem 2.177. Let (Xt)t∈R+ be a Lévy process and Gt = σ(Ft,N ), where
(Ft)t∈R+ is the natural filtration of Xt and N the family of P -null sets of Ft.
Then (Gt)t∈R+ is right-continuous.

Theorem 2.178. Let (Xt)t∈R+ be a Lévy process and T a stopping time. Then
the process (Yt)t∈R+ , given by

Yt = XT+t −XT ,

is a Lévy process on the set ]T,∞[, adapted to FT+t. Furthermore, Yt is in-
dependent of FT and has the same distribution as Xt.

Remark 2.179. Because, by Theorem 2.176, every Lévy process has an RCLL
version, by Proposition 2.157, the only type of discontinuity it may admit are
jumps.

Definition 2.180. Taking the left limit Xt− = lims→tXs, s < t, we define

ΔXt = Xt −Xt−

as the jump at t. If supt |ΔXt| ≤ c almost surely, c ∈ R+, constant and
nonrandom, then Xt is said to have bounded jumps.

Theorem 2.181. Let (Xt)t∈R+ be a Lévy process with bounded jumps. Then

E [|Xt|p] <∞, i.e., Xt ∈ Lp for any p ∈ N∗.

Theorem 2.182. Let (Xt)t∈R+ be a Lévy process. Then it has an RCLL ver-
sion without fixed jumps (see Proposition 2.157).

Proof: See, e.g., Kallenberg (1997). �
We proceed with the general representation theorem of a Lévy process,

commencing with the analysis of the structure of its jumps. Along the lines
of the definition of counting and Poisson processes, let Λ ∈ BR, such that 0
is not in Λ̄, the closure of Λ. For a Lévy process (Xt)t∈R+ we also, as before,
define the random variables

τΛ
i+1 = inf

{
t > τΛ

i |ΔXt ∈ Λ
}
, i = 0, . . . , n; τΛ

0 ≡ 0.

Because (Xt)t∈R+ has RCLL paths and 0 /∈ Λ it is easy to demonstrate that{
τΛ
n ≥ t

}
∈ Ft+ = Ft,

thus (τΛ
i )i∈N∗ are stopping times, and moreover τΛ

i > 0 almost surely as well
as limn→∞ τΛ

n = +∞ almost surely. If we now define
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NΛ
t =

∑
0<s≤t

I{Λ}(ΔXs) ≡
∞∑

i=1

I[τΛ
i ≤t](t),

then (NΛ
t )t∈R+ is a nonexplosive counting process and, more specifically, we

have the following theorem.

Theorem 2.183. Let Λ ∈ BR, with 0 /∈ Λ̄. Then (NΛ
t )t∈R+ is a time-

homogeneous Poisson process with intensity

ν(Λ) = E
[
NΛ

1

]
.

Remark 2.184. If the Lévy process (Xt)t∈R+ has bounded jumps, then ν(Λ) <
+∞.

Theorem 2.185. For any t ∈ R+ the mapping

Λ→ Nt(Λ) ≡ NΛ
t , Λ ∈ BR; 0 /∈ Λ̄,

is a random (counting) measure. Furthermore the mapping

Λ→ ν(Λ), Λ ∈ BR; 0 /∈ Λ̄,

is a σ-finite measure.

Proof: See, e.g., Protter (1990). �

Definition 2.186. The measure ν given by

ν(Λ) = E

⎡⎣ ∑
0<s≤1

I{Λ}(ΔXs)

⎤⎦ , Λ ∈ BR\{0},

is called the Lévy measure of the Lévy process (Xt)t∈R+ .

Theorem 2.187. Under the assumptions of Theorem 2.185, let f be a mea-
surable function, finite on Λ. Then∫

Λ

f(x)Nt(dx) =
∑

0<s≤t

f(ΔXs)I{Λ}(ΔXs).

Because by Theorem 2.183 (NΛ
t )t∈R+ is a time-homogeneous Poisson pro-

cess, we also have the following proposition.

Proposition 2.188. Under the assumptions of Theorem 2.187, the process
(
∫

Λ
f(x)Nt(dx))t∈R+ is a Lévy process. In particular, if f(x) = x, then the

process is nonexplosive almost surely for any t ∈ R+.
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Theorem 2.189. Let Λ ∈ BR, 0 /∈ Λ̄. Then the process(
Xt −

∫
Λ

f(x)Nt(dx)
)

t∈R+

is a Lévy process.

Now, if we define

Jt =
∫
{|x|≥1}

xNt(dx) =
∑

0<s≤t

ΔXsI{|ΔXs|≥1}(|ΔXs|),

then because (Xt)t∈R+ has RCLL paths for each ω ∈ Ω, its trajectory has
only finitely many jumps bigger than 1 during the interval [0, t]. Therefore
(Jt)t∈R+ has paths of finite variation on compacts.

Both (Jt)t∈R+ (by Proposition 2.188) and Vt = Xt − Jt (by Theorem 2.189)
are Lévy processes, where in particular the latter has jumps bounded by 1.
Hence all moments of (Vt)t∈R+ exist and are finite. Because E[V1] = μ (and
E[V0] = 0), we have E[Vt] = μt, by the stationarity of the increments. If we de-
fine Yt = Vt−E[Vt], for all t ∈ R+, then (Yt)t∈R+ has independent increments
and mean zero. Hence it is a martingale. If we further define Zt = Jt + μt,
then the following decomposition theorem holds.

Theorem 2.190. Let (Xt)t∈R+ be a Lévy process. Then it can be decomposed
as

Xt = Yt + Zt,

where Yt and Zt are both Lévy processes and, furthermore, Yt is a martingale
with bounded jumps and Yt ∈ Lp, for all p ≥ 1, whereas Zt has trajectories of
finite variation on compacts.

Proposition 2.191. Let (Xt)t∈R+ be a Lévy process and ν its Lévy measure.
Then for any a ∈ R∗

+

Zt =
∫
{|x|<a}

x[Nt(dx)− tν(dx)] (2.39)

is a zero mean martingale.

By Theorem 2.171 the process (Nt − λt)t∈R+ is also a zero mean martin-
gale and (Zt)t∈R+ can be interpreted as a mixture of compensated Poisson
processes.

Theorem 2.192. Let (Xt)t∈R+ be a Lévy process with jumps bounded by a ∈
R∗

+ and let
Vt = Xt − E[Xt] ∀t ∈ R+.
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Then (Vt)t∈R+ is a zero mean martingale that can be decomposed as

Vt = Zc
t + Zt ∀t ∈ R+,

where Zc
t is a martingale with continuous paths and Zt as defined in (2.39).

In fact, Zc
t = Wt is Brownian motion.

Theorem 2.192 can be interpreted by saying that a Lévy process with
bounded jumps can be decomposed as the sum of a continuous martingale
(Brownian motion) and another martingale that is a mixture of compensated
Poisson processes. More generally, a third component would be due to the
presence of unbounded jumps.

Theorem 2.193. (Lévy decomposition). Let (Xt)t∈R+ be a Lévy process and
μ ∈ R. Then

Xt = Wt +
∫
{|x|<1}

x[Nt(dx)− tν(dx)] + μt+
∑

0<s≤t

ΔXsI{|ΔXs|≥1}(|ΔXs|),

where

1. Wt is Brownian motion,
2. for any set Λ ∈ BR\{0}, 0 /∈ Λ̄:
• NΛ

t ≡
∫

Λ
Nt(dx) is a Poisson process independent of Wt,

• NΛ
t is independent of NΛ′

t if Λ ∩ Λ′ = ∅,
• NΛ

t has intensity ν(Λ),
• ν(dx) is a measure on R \ {0} such that

∫
min{1, x2}ν(dx) <∞.

Proof: See, e.g., Jacod and Shiryaev (1987). �

Theorem 2.194. (Lévy–Khintchine formula). Under the assumptions of
Theorem 2.193 let u ∈ R and

φXt(u) = E
[
eiuXt

]
= exp{−tψ(u)}, (2.40)

where

ψ(u) =
1
2
σ2u2 − iμu+

∫
{|x|<1}

(1− exp{iux}+ iux)ν(dx)

+
∫
{|x|≥1}

(1− exp{iux})ν(dx).

For given ν, σ2, μ there exists a unique probability measure on the probability
space of Xt under which (2.40) is the characteristic function of a Lévy process
(Xt)t∈R+ .

Proof: See, e.g., Bertoin (1996). �
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Stable Lévy Process

As a corollary we will briefly mention stable processes. They are a particular
family of Lévy processes that reproduce themselves under linear combinations.
Hence a number of processes already discussed fall into this category.

Definition 2.195. A random variable X has a stable distribution if there ex-
ists a number n ≥ 2 of independently identically distributed random variables
Yi, i = 1, . . . , n, as well as numbers an ∈ R, bn ∈ R+, such that

n∑
i=1

Yi ∼ an + bnX.

In fact, it can be demonstrated (see, e.g., Samorodnitsky and Taqqu
(1994)) that this is equivalent to what follows.

Definition 2.196. A random variable X has a stable distribution, if its char-
acteristic function is of the form

E
[
eiuX

]
=

⎧⎪⎨⎪⎩
e−σα|u|α(1−iβsgn{u} tan πα

2 )+iμu for α ∈]0, 2] \ {1},

e−σ|u|(1+iβ 2
π sgn{u} ln |u|)+iμu for α = 1,

where β ∈ [−1, 1], σ2 ∈ R+, and μ ∈ R are unique. We also say that X is
α-stable.

Remark 2.197. For α = 2 we obtain the characteristic function of a Gaussian
distribution implying that the latter is also stable. Further well-known distri-
butions can be obtained for α = 1, β = 0 (Cauchy), α = 0.5, β = 1 (Lévy),
and α = β = σ = 0 (constant). For other parameter ranges no closed-form
formulae for the densities exist.

Definition 2.198. A stochastic process (Xt)t∈T is stable if for ti ∈ T , i =
1, . . . , n, the densities of (Xt1 , . . . , Xtn) are stable.

Remark 2.199. A stable process is a Lévy process.

Corollary 2.200. If α ∈]0, 2] \ {1} and β = 0, then a Lévy stable process
(Xt)t∈T has the scaling property, i.e., the rescaled process (t

1
αX1)t∈T has the

same probability law as (Xt)t∈T . This is a generalization of the specific case
for the Wiener process of Proposition 2.148.

2.10 Marked Point Processes

We will now generalize the notion of a compensator (see Definition 2.80)
to a larger class of counting processes, including the so-called marked point
processes. For this we will commence with a point process on R+,
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N =
∑

n∈N∗
ετn
,

defined by the sequence of random times (τn)n∈N∗ on the underlying proba-
bility space (Ω,F , P ). Here εt is the Dirac measure (also called point mass)
on R+, i.e.,

∀A ∈ BR+ : εt(A) =
{

1 if t ∈ A,
0 if t /∈ A.

The corresponding definition of the same process as a counting process was
given in Definition 2.155.

Definition 2.201. (A∗): Let Ft = σ(Ns, 0 ≤ s ≤ t), t ∈ R+, be the natural
filtration of the counting process (Nt)t∈R+ . We assume that

1. the filtered probability space (Ω,F , (Ft)t∈R+ , P ) satisfies the usual hy-
potheses (see Definition 2.34);

2. E[Nt] < ∞, for all t ∈ R+, i.e., avoiding the problem of exploding mar-
tingales in the Doob–Meyer decomposition (see Theorem 2.87).

Proposition 2.202. Under assumption (A∗) of Definition 2.201 there exists
a unique increasing right-continuous predictable process (At)t∈R+ , such that

1. A0 = 0,
2. P (At <∞) = 1 for any t > 0,
3. the process (Mt)t∈R+ defined as Mt = Nt − At is a right-continuous zero

mean martingale.

The process (At)t∈R+ is called the compensator of the process (Nt)t∈R+ .

Proposition 2.203. (See Bremaud (1981), Karr (1986).) For every nonneg-
ative Ft-predictable process (Ct)t∈R+ , by Proposition 2.202, we have that

E

[∫ ∞

t

CtdNt

]
= E

[∫ ∞

0

CtdAt

]
. (2.41)

Theorem 2.204. Given a point (or counting) process (Nt)t∈R+ satisfying as-
sumption (A∗) of Definition 2.201 and a predictable random process (At)t∈R+ ,
the following two statements are equivalent:

1. (At)t∈R+ is the compensator of (Nt)t∈R+ .
2. The process Mt = Nt −At is a zero mean martingale.

Remark 2.205. In infinitesimal form (2.41) provides the heuristic expression

dAt = E[dNt|Ft−],

giving a dynamical interpretation to the compensator. In fact, the increment
dMt = dNt − dAt is the unpredictable part of dNt over [0, t[, also therefore
known as the innovation martingale of (Nt)t∈R+ .
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In the case where the innovation martingale Mt is bounded in L2 we may
apply Theorem 2.88 and introduce the predictable variation process 〈M〉t,
with 〈M〉0 = 0 and M2

t −〈M〉t being a uniformly integrable martingale. Then
the variation process can be compensated in terms of At by the following.

Theorem 2.206. (See Karr (1986), page 64.) Let (Nt)t∈R+ be a point process
on R+ with compensator (At)t∈R+ and let the innovation processMt = Nt−At

be an L2-martingale. Defining ΔAt = At −At−, then

〈M〉t =
∫ t

0

(1−ΔAs)dAs.

Remark 2.207. In particular, if At is continuous in t, then ΔAt = 0, so that
〈M〉t = At. Formally in this case we have

E
[
(dNt − E[dNt|Ft−])2|Ft−

]
= dAt = E[dNt|Ft−],

so that the counting process has locally and conditionally the typical behavior
of a Poisson process.

Stochastic Intensities

Let N be a simple point process on R+ with a compensator A, satisfying the
assumptions of Proposition 2.202.

Definition 2.208. We say that N admits an Ft-stochastic intensity if a (non-
trivial) nonnegative, predictable process λ = (λt)t∈R+ exists, such that

At =
∫ t

0

λsds, t ∈ R+.

Remark 2.209. Due to the uniqueness of the compensator, the stochastic in-
tensity, whenever it exists, is unique.

Formally, from
dAt = E[dNt|Ft−]

it follows that
λtdt = E[dNt|Ft−],

i.e.,

λtdt = lim
Δt→0+

1
Δt
E[ΔNt|Ft−]

and, because of the simplicity of the process, we also have

λtdt = lim
Δt→0+

1
Δt
P (ΔNt = 1|Ft−),

meaning that λtdt is the conditional probability of a new event during [t, t+dt],
given the history of the process over [0, t].
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Example 2.210. (Poisson process). A stochastic intensity does exist for a Pois-
son process with intensity (λt)t∈R+ and, in fact, is identically equal to the
latter (hence deterministic).

A direct consequence of Theorem 2.206 and of the previous definitions is
the following theorem.

Theorem 2.211. (Karr (1986), page 64). Let (Nt)t∈R+ be a point process sat-
isfying assumption (A∗) of Definition 2.201 and admitting stochastic intensity
(λt)t∈R+ . Assume further that the innovation martingale

Mt = Nt −
∫ t

0

λsds, t ∈ R+,

is an L2-martingale. Then for any t ∈ R+ :

〈M〉t =
∫ t

0

λsds.

An important theorem that further explains the role of the stochastic
intensity for counting processes is the following (see Karr (1986), page 71).

Theorem 2.212. Let (Ω,F , P ) be a probability space over which a simple
point process with an Ft-stochastic intensity (λt)t∈R+ is defined. Suppose that
P0 is another probability measure on (Ω,F) with respect to which (Nt)t∈R+ is
a stationary Poisson process with rate 1. Then P << P0 and for any t ∈ R+

we have
dP

dP0
|Ft = exp

{∫ t

0

(1− λs)ds+
∫ t

0

lnλsdNs

}
. (2.42)

Conversely, if P0 is as above and P a probability measure on (Ω,F), absolutely
continuous with respect to P0, then there exists a predictable process λ, such
that N has stochastic intensity λ with respect to P (and equation (2.42) holds).

Marked Point Processes

We will now consider a generic Polish space endowed with its σ-algebra (E, E)
and introduce a sequence of (E, E)-valued random variables (Zn)n∈N∗ in addi-
tion to the sequence of random times (τn)n∈N∗ , which are R̄+-valued random
variables.

Definition 2.213. The random measure on R̄+ × E,

N =
∑

n∈N∗
ε(τn,zn),

is called a marked point process with mark space (E,B). zn is called the mark
of the event occurring at time τn. The process



2.10 Marked Point Processes 115

Nt = N([0, t]× E), t ∈ R+,

is called the underlying counting process of the process N . As usual, we assume
that the process (Nt)t∈R+ is simple.

For B ∈ E the process

Nt(B) := N([0, t]×B) =
∑

n∈N∗
I[τn≤t,Zn∈B](t), t ∈ R+,

represents the counting process of events occurring up to time t with marks
in B ∈ E . The history of the process up to time t is denoted as

Ft := σ(Ns(B)|0 ≤ s ≤ t, B ∈ E).

We will assume throughout that the filtered space (Ω,F , (Ft)t∈R+ , P ) satisfies
the usual hypotheses (see Definition 2.34).

Remark 2.214. Note that, for any n ∈ N∗, while τn is Fτn−-measurable, Zn is
Fτn-measurable but not Fτn−-measurable; i.e.,

Fτn = σ ((τ1, Z1), . . . , (τn, Zn)) ,

whereas
Fτn− = σ ((τ1, Z1), . . . , (τn−1, Zn−1), τn) .

Hence τn is an (Ft)t∈R+ stopping time.

By a reasoning similar to the one employed for regular conditional proba-
bilities in chapter 1, the following theorem can be proved, which provides an
extension of Theorem 2.204 to marked point processes.

Theorem 2.215. (Bremaud (1981), Karr (1986), Last and Brandt (1995).)
Let N be a marked point process such that the underlying counting process
(Nt)t∈R+ satisfies the assumptions of Proposition 2.202. Then there exists a
unique random measure ν on R+ × E such that

1. for any B ∈ E, the process ν([0, t]×B) is Ft-predictable;
2. for any nonnegative Ft-predictable process C on R+ × E:

E

[∫
C(t, z)N(dt× dz)

]
= E

[∫
C(t, z)ν(dt× dz)

]
.

The random measure ν introduced in the preceding theorem is called the
Ft-compensator of the process N . The above theorem again suggests that
formally the following holds:

ν(dt× dz) = E [N(dt× dz)|Ft−] .

The following propositions mimic the corresponding results for the unmarked
point processes.
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Proposition 2.216. For any B ∈ E, the process

Mt(B) := Nt(B)− ν([0, t]×B), t ∈ R+,

is a zero-mean martingale.

We will call the process M = (Mt(B))t∈R+,B∈E the innovation process of
N . From now on let us denote At(B) := ν([0, t]×B).

Proposition 2.217. (Karr (1986), page 65.) Let N be a marked point process
on R+ × E, with compensator ν, and let B1 and B2 be two disjoint sets in E
for which Mt(B1) and Mt(B2) are L2- martingales. Then

〈Mt(B1),Mt(B2)〉t = −
∫ t

0

ΔAs(B1)ΔAs(B2)ds.

Hence, if (At(B))t∈R+ is continuous in t for any B ∈ E, the two martingales
Mt(B1) and Mt(B2) are orthogonal.

Definition 2.218. Let N be a marked point process on R+×E. We say that
(λt(B))t∈R+,B∈E is the Ft-stochastic intensity of N provided that,

1. for any t ∈ R+, the map

B ∈ E → λt(B) ∈ R+

is a random measure on E ;
2. for any B ∈ E the process (λt(B))t∈R+ is the stochastic intensity of the

counting process
Nt(B) =

∑
n∈N∗

I[τn≤t,Zn∈B](t);

i.e., for any t ∈ R+, B ∈ E :

At(B) =
∫ t

0

λs(B)ds,

in which case the process (At(B))t∈R+,B∈E is known as the cumulative stochas-
tic intensity of N .

In the presence of the absolute continuity (hence the continuity) of the
process At(B) as a function of t, the following is an obvious consequence of
Proposition 2.217.

Proposition 2.219. Let N be a marked point process on R+ with mark space
(E, E) and stochastic intensity (λt(B))t∈R+,B∈E . Let B1 and B2 be two disjoint
sets in E, such that the corresponding innovation martingales are bounded in
L2. Then M(B1) and M(B2) are orthogonal; i.e.,

〈Mt(B1),Mt(B2)〉t = 0 for any t ∈ R+.
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Representation of Point Process Martingales

Let N be a point process on R+ with F-compensator A. From the section on
martingales, we know that, if M = N − A is the innovation martingale of N
and H is a bounded predictable process, then

M̃t =
∫ t

0

H(s)dMs, t ∈ R+,

is also a martingale. In fact, the converse also holds, as stated by the following
theorem, which extends an analogous result for Wiener processes to marked
point processes.

Theorem 2.220. (Martingale representation.) Let N be a marked point pro-
cess on R+ with mark space (E, E), and let M be its innovation process with
respect to the internal history (Ft)t∈R+ . Suppose the assumptions of Proposi-
tion 2.202 are satisfied and let (M̃t)t∈R+ be a right-continuous and uniformly
integrable Ft-martingale. Then there exists a process (H(t, x))t∈R+,x∈E, such
that

M̃t = M̃0 +
∫

[0,t]×E

H(s, x)Ms(dx).

Proof: See Last and Brandt (1995), page 342. �

The Marked Poisson Process

A marked Poisson process is a marked point process, such that any univariate
point process counting its points with a mark in a fixed Borel set is Poisson.
It turns out that these processes are necessarily independent whenever the
corresponding mark sets are disjoint. Consider a marked point process N on
R+ × E and let Λ be a σ-finite deterministic measure on R+ × E. Then,
formally, we have the following definition.

Definition 2.221. N is a marked Poisson process if, for any s, t ∈ R+, s < t
and any B ∈ E ,

P (N(]s, t]×B) = k|Fs) =
(Λ(]s, t]×B))k

k!
exp {−Λ(]s, t]×B)} ,

for k ∈ N, almost surely with respect to P .

In the preceding case the intensity measure Λ is such that

Λ(]s, t]×B) = E[N(]s, t]×B)]

for any s, t ∈ R+, s < t, and any B ∈ E . It is the (deterministic) compensator
of the marked Poisson process, formally:

Λ(dt× dx) = E[N(dt× dx)|Ft−] = E[N(dt× dx)],

thus confirming the independence of increments for the marked Poisson pro-
cess. Now the following theorem is a consequence of the definitions.
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Theorem 2.222. Let N be a marked Poisson process and B1, . . . , Bm ∈ E,
for m ∈ N∗ mutually disjoint sets. Then N(· × B1), . . . , N(· × Bm) are inde-
pendent Poisson processes with intensity measures Λ(· × B1), . . . , Λ(· × Bm),
respectively.

Proof: See Last and Brandt (1995), page 182. �
The underlying counting process of a marked Poisson process N(]0, t] ×

E) is itself a univariate Poisson process with intensity measure Λ̄(]s, t]) =
Λ(]s, t]×E) for any s, t ∈ R+, s < t. The intensity measure may be chosen to
be continuous, in which case Λ̄({t}) = 0, or even absolutely continuous with
respect to the Lebesgue measure on R+, so that

Λ̄([0, t]) =
∫ t

0

λ(s)ds,

where λ ∈ L1(R+).

2.11 Exercises and Additions

2.1. Let (Ft)t∈R+ be a filtration on the measurable space (Ω,F). Show that
Ft+ =

⋂
u>t Fu is a σ-algebra (see Theorem 2.107 and Remark 2.108).

2.2. Prove that two processes that are modifications of each other are equiv-
alent.

2.3. A real-valued stochastic process, indexed in R, is strictly stationary , if
and only if all its joint finite-dimensional distributions are invariant under a
parallel time shift; i.e.,

FXt1 ,...,Xtn
(x1, . . . , xn) = FXt1+h,...,Xtn+h

(x1, . . . , xn)

for any n ∈ N, any choice of t1, . . . , tn ∈ R and h ∈ R, and any x1, . . . , xn ∈ R.

1. Prove that a process of independent and identically distributed random
variables is strictly stationary.

2. Prove that a time-homogeneous process with independent increments is
strictly stationary.

3. Prove that a Gaussian process (Xt)t∈R is strictly stationary if and only if
the following two conditions hold:
(a) E[Xt] = constant for any t ∈ R;
(b) Cov[s, t] = K(t− s) for any s, t ∈ R, s < t.

2.4. An L2 real-valued stochastic process indexed in R is weakly stationary if
and only if the following two conditions hold:

(a) E[Xt] = constant for any t ∈ R;



2.11 Exercises and Additions 119

(b) Cov[s, t] = K(t− s) for any s, t ∈ R, s < t.

1. Prove that an L2 strictly stationary process is also weakly stationary.
2. Prove that a weakly stationary Gaussian process is also strictly stationary.

2.5. Show that Brownian motion is not stationary.

2.6. (prediction) Let (Xr−j , . . . , Xr) be a family of random variables repre-
senting a sample of a (weakly) stationary stochastic process in L2. We know
that the best approximation in L2 of an additional random variable Xr+s,
for any s ∈ N∗, in terms of (Xr−j , . . . , Xr) is given by E[Y |Xr−j , . . . , Xr]. To
evaluate this quantity is generally a hard task. On the other hand, the problem
of the best linear approximation can be handled in terms of the covariances
of the random variables Xr−j , . . . , Xr, Xr+s as follows.

Prove that the best approximation of Xr+s in terms of a linear function
of (Xr−j , . . . , Xr), is given by

X̂r+s =
j∑

k=0

akXr−k,

where the ak satisfy the linear system

j∑
k=0

akc(|k − i|) = c(s+ i) for 0 ≤ i ≤ j.

Here we have denoted c(m) = Cov[Xi, Xi+m].

2.7. Refer to Proposition 2.46. Prove that FT is a σ-algebra of the subsets of
Ω.

2.8. Prove all the statements of Theorem 2.47.

2.9. Prove Lemma 2.117 by considering the sequence

Tn =
∞∑

k=1

k2−nI(k−1)2−n≤T≤k2−n .

2.10. Let (Ft)t∈R+ be a filtration and prove that T is a stopping time, if and
only if the process Xt = I{T≤t} is adapted to (Ft)t∈R+ . Show that if T and S
are stopping times, then so is T + S.

2.11. Show that any (sub- or super-) martingale remains a (sub- or super-)
martingale with respect to the induced filtration.

2.12. Let (Xt)t∈R+ be a martingale in L2. Show that its increments on
nonoverlapping intervals are orthogonal.
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2.13. Prove Proposition 2.93. (Hint: To prove that 1⇒2 it suffices to use the
indicator function on B; to prove that 2⇒1 it should first be shown for simple
measurable functions, and then the theorem of approximation of measurable
functions through elementary functions is invoked.)

2.14. Prove Remark 2.105.

2.15. Verify Example 2.129.

2.16. Determine the infinitesimal generator of a time-homogeneous Poisson
process.

2.17. We say that (Zt)t∈R+ is a compound Poisson process if it can be ex-
pressed as

Z0 = 0

and

Zt =
Nt∑

k=1

Yk for t > 0,

whereNt is a Poisson process with intensity parameter λ ∈ R∗
+ and (Yk)k∈N∗ is

a family of independent and identically distributed random variables, indepen-
dent of Nt. Show that the compound Poisson process (Zt)t∈R+ is a stochastic
process with time-homogeneous (stationary) independent increments.

2.18. Show that

1. The Brownian motion and the compound Poisson process are both almost
surely continuous at any t ≥ 0.

2. The Brownian motion is sample continuous, but the compound Poisson
process is not sample continuous.

Hence almost sure continuity does not imply sample continuity.

2.19. In the compound Poisson process, assume that the random variables Yn

are independent and identically distributed with common distribution

P (Yn = a) = P (Yn = −a) =
1
2
,

where a ∈ R∗
+.

1. Find the characteristic function φ of the process (Zt)t∈R+ .
2. Discuss the limiting behavior of the characteristic function φ when λ →

+∞ and a→ +∞ in such a way that the product λa2 is constant.

2.20. An integer-valued stochastic process (Nt)t∈R+ with stationary (time-
homogeneous) independent increments is called a generalized Poisson process.
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1. Show that the characteristic function of a generalized Poisson process
necessarily has the form

φNt
(u) = eλt[φ(u)−1]

for some λ ∈ R∗
+ and some characteristic function φ of a nonnegative

integer valued random variable. The Poisson process corresponds to the
degenerate case φ(u) = eiu.

2. Let (N (k)
t )t∈R+ be a sequence of independent Poisson processes with re-

spective parameters λk. Assume that λ =
∑+∞

k=1 λk < +∞. Show that the
process

N
(k)
t =

+∞∑
k=1

kN
(k)
t , t ∈ R+,

is a generalized Poisson process, with characteristic function

φ(u) =
+∞∑
k=1

λk

λ
eiku.

3. Show that any generalized Poisson process can be represented as a com-
pound Poisson process. Vice versa, if the random variables Yk in the com-
pound Poisson process are integer valued, then the process is a generalized
Poisson process.

2.21. Let (Xn)n∈N ⊂ E be a Markov chain, i.e., a discrete-time Markov jump
process, where E is a countable set. Let i, j ∈ E be states of the process; j is
said to be accessible from state i if for some integer n ≥ 0, pij(n) > 0: i.e.,
state j is accessible from state i if there is positive probability that in a finite
number of transition states j can be reached starting from state i. Two states
i and j, each accessible to the other, are said to communicate, and we write
i↔ j. If two states i and j do not communicate, then either

pij(n) = 0 ∀n ≥ 0

or

pji(n) = 0 ∀n ≥ 0,

or both relations are true.
We define the period of state i, written d(i), as the greatest common divisor

of all integers n ≥ 1 for which pii(n) > 0 (if pii(n) = 0 for all n ≥ 1, define
d(i) = 0).

1. Show that the concept of communication is an equivalence relationship.
2. Show that, if i↔ j, then d(i) = d(j).
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3. Show that if state i has period d(i), then there exists an integer N de-
pending on i such that for all integers n ≥ N

pii(nd(i)) > 0.

2.22. 1. Consider two urns A and B containing a total of N balls. A ball is
selected at random (all selections are equally likely) at time t = 1, 2, . . .
from among the N balls. The drawn ball is placed with probability p in
urn A and with probability q = 1 − p in urn B. The state of the system
at each trial is represented by the number of balls in A. Determine the
transition matrix for this Markov chain.

2. Assume that at each time t there are exactly k balls in A. At time t+1 an
urn is selected at random proportionally to its content (i.e., A is chosen
with probability k/N and B with probability (N − k)/N). Then a ball is
selected either from A with probability p or from B with probability 1−p
and placed in the previously chosen urn. Determine the transition matrix
for this Markov chain.

3. Now assume that at time t+1 a ball and an urn are chosen with probability
depending on the contents of the urn (i.e., a ball is chosen from A with
probability p = k/N or from B with probability q. Urn A is chosen with
probability p and B with probability q). Determine the transition matrix
of the Markov chain.

4. Determine the equivalence classes in parts 1, 2, and 3.

2.23. Let (Xn)n∈N be a Markov chain whose transition probabilities are pij =
1/[e(j− i)!] for i = 0, 1, . . . and j = i, i+1, . . .. Verify the martingale property
for

• Yn = Xn − n,
• Un = Y 2

n − n,
• Vn = exp{Xn − n(e− 1)}.

2.24. Let (Xt)t∈R+ be a process with the following property:

• X0 = 0;
• for any 0 ≤ t0 < t1 < · · · < tn, the random variables Xtk

− Xtk−1 (1 ≤
k ≤ n) are independent;

• if 0 ≤ s < t,Xt −Xs is normally distributed with

E(Xt −Xs) = (t− s)μ, E
[
(Xt −Xs)2

]
= (t− s)σ2

where μ, σ are real constants (σ �= 0).

The process (Xt)t∈R+ is called Brownian motion with drift μ and variance σ2

(Note that if μ = 0 and σ = 1, then Xt is the so-called standard Brownian
motion). Show that Cov(Xt, Xs) = σ2 min{s, t} and (Xt−μt)/σ is a standard
Brownian motion.
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2.25. Show that if (Xt)t∈R+ is a Brownian motion, then the processes

Yt = cXt/c2 for fixed c > 0,

Ut =
{
tX1/t for t > 0,
0 for t = 0,

and
Vt = Xt+h −Xh for fixed h > 0

are each Brownian motions.

2.26. Let (Xt)t∈R+ be a Brownian motion and let Mt = max0≤s≤tXs. Prove
that Yt = Mt −Xt is a continuous-time Markov process. (Hint: Note that for
t′ < t,

Y (t) = max
{

max
t′≤s≤t

{(Xs −Xt′)}, Yt′

}
− (Xt −Xt′).)

2.27. Let T be a stopping time for a Brownian motion (Xt)t∈R+ . Then the
process

Yt = Xt+T −XT , t ≥ 0,

is a Brownian motion, and σ(Yt, t ≥ 0) is independent of σ(Xt, 0 ≤ t ≤ T ).
(Hint: At first consider T constant. Then suppose that the range of T is a

countable set and finally approximate T by a sequence of stopping times such
as in Lemma 2.117.)

2.28. Let (Xt)t∈R+ be an n-dimensional Brownian motion starting at 0 and
let U ∈ Rn×n be a (constant) orthogonal matrix, i.e., UUT = I. Prove that

X̃t ≡ UXt

is also a Brownian motion.

2.29. Let (Xt)t∈R+ be a Lévy process:

1. Show that the characteristic function of Xt is infinitely divisible.
2. Suppose that the law of X1 is PX1 = μ. Then, for any t > 0 the law of Xt

is PX1 = μt.
3. Given two Lévy processes (Xt)t∈R+ and (X ′

t)t∈R+ , if PX1 = PX′
1
, then the

two processes are identical in law.

We call μ = PX1 the infinitely divisible distribution of the �Lévy process
(Xt)t∈R+ .

2.30. A Lévy process (Xt)t∈R+ is a subordinator if it is also a real and non-
negative process.

1. Show that sample paths of a subordinator are increasing.
2. Show that a Lévy process (Xt)t∈R+ is a subordinator if and only if X1 ≥ 0

almost surely.
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2.31. Show that the Brownian motions with drift, i.e.,

Xt = σWt + αt for α, σ ∈ R,

are the only Lévy processes with continuous paths.

2.32. Consider two sequences of real numbers (αk)k∈N and (βk)k∈N such that∑
k∈N β

2
kαk < +∞. Let Nk

t be a sequence of Poisson processes with intensities
αk, k ∈ N, respectively.

Then the process

Xt =
∑
k∈N

βk(Nk
t − αkt), t ∈ R+,

is a Lévy process having ν as its Lévy measure.

2.33. Show that

1. any Lévy process is a Markov process;
2. conversely, any stochastically continuous and temporarily homogeneous

Markov process on R is a Lévy process.

2.34. According to, e.g., Grigoriu (2002), we define as a classical semimartin-
gale any adapted, RCLL process Xt that admits the following decomposition:

Xt = X0 +Mt +At,

where Mt is a local martingale and At is a finite variation (on compacts)
RCLL process such that M0 = A0 = 0.

1. Show that any Lévy process is a semimartingale.
2. Show that the Poisson process is a semimartingale.
3. Show that the square of a Wiener process is a semimartingale.

2.35. (Poisson process and order statistics). Let X1, . . . , Xn denote a sample,
i.e. a family of nondegenerate independent and identically distributed random
variables with common cumulative distribution function F . We define the
ordered sample as the family

Xn,n ≤ · · · ≤ X1,n,

so that Xn,n = min{X1, . . . , Xn} and X1,n = max{X1, . . . , Xn}. The random
variable Xk,n is called the k-order statistic.

Let N = (Nt)t∈R+ be a homogeneous Poisson process with intensity λ > 0.
Prove that the arrival times Ti of N in ]0, t], conditionally upon {Nt = n},
have the same distribution as the order statistics of a uniform sample on ]0, t[
of size n; i.e., for all Borel sets A in R+ and any n ∈ N, we have

P ((T1, T2, . . . , TNt) ∈ A|Nt = n) = P ((Un,n, . . . , U1,n) ∈ A).
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2.36. (self-similarity). A real-valued stochastic process (Xt)t∈R+ is said to be
self-similar with index H > 0 (H -ss) if its finite-dimensional distributions
satisfy the relation

(Xat1 , . . . , Xatn
) d=aH(Xt1 , . . . , Xtn

)

for any choice of a > 0 and t1, . . . , tn ∈ R+. Show that a Gaussian process with
mean function mt = E[Xt] and covariance function K(s, t) = Cov(Xs, Xt) is
H -ss for some H > 0 if and only if

mt = ctH , and K(s, t) = s2HC(t/s, 1)

for some constant c ∈ R and some nonnegative definite function C. As a
consequence, show that the standard Brownian motion is 1/2-ss. Also, show
that any α-stable process is 1/α-ss.

2.37. (affine processes). Let Φ = (Φt)t∈R+ be a process on a given probability
space (Ω,F , P ), such that E[‖Φt‖] < +∞ for each t ∈ R+. The past-future
filtration associated with Φ is defined as the family

Fs,T = σ{Φu|u ∈ [0, s] ∪ [T,+∞[}.

We shall call Φ an affine process if it satisfies

E[Φt|Fs,T ] =
T − t
T − sΦs +

t− s
T − sΦT , s < t < T.

Show that the condition above is equivalent to the property that for s ≤ t <
t′ ≤ u, the quantity

E

[
Φt − Φt′

t− t′

∣∣∣∣Fs,u

]
=
Φu − Φs

u− s ,

and hence does not depend on the pair (t, t′).

2.38. Prove that the Brownian motion is an affine process.

2.39. Let X = (Xt)t∈R+ be a Lévy process, such that E[‖Xt‖] < +∞ for each
t ∈ R+. Show that X is an affine process.

2.40. Consider a process M = (Mt)t∈R+ that is adapted to the filtration
(Ft)t∈R+ on a probability space (Ω,F , P ) and satisfies

E[‖Mt‖] < +∞ and E
[∫ t

0

du|Mu|
]
< +∞ for any t > 0.

Prove that the following two conditions are equivalent:

1. M is an Ft-martingale;
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2. for every t > s,

E

[
1

t− s

∫ t

s

duMu

∣∣∣∣Fs

]
= Ms.

2.41. (empirical process and Brownian bridge). Let U1, . . . , Un, . . . , be a se-
quence of independent and identically distributed random variables uniformly
distributed on [0, 1]. Define the stochastic process b(n) on the interval [0, 1] as
follows:

b(n)(t) =
√
n

(
1
n

n∑
k=1

I[0,t](Uk)− t
)
, t ∈ [0, 1].

1. For any s and t in [0, 1], compute E[b(n)(t)] and Cov[b(n)(s), b(n)(t)].
2. Prove that, as n → ∞, the finite-dimensional distributions of the process

(b(n)(t))t∈[0,1] converge weakly towards those of a Gaussian process on
[0, 1] whose mean and covariance functions are the same as those of b(n).
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The Itô Integral

3.1 Definition and Properties

The remaining chapters on the theory of stochastic processes will primarily
focus on Brownian motion, as it is by far the most useful and applicable model,
which allows for many explicit calculations and, as has been demonstrated in
the pollen grain example, arises naturally. Continuing the formal analysis of
this example, suppose that a small amount of liquid flows with the macroscopic
velocity a(t, u(t)) (where u(t) is its position at time t). Then a microscopic
particle that is suspended in this liquid will, as mentioned, display evidence
of Brownian motion. The change in the particle’s position u(t + dt) − u(t)
over the time interval [t, t + dt[ is due to, first, the macroscopic flow of the
liquid, with the latter’s contribution given by a(t, u(t))dt. But, second, there
is the additional molecular bombardment of the particle, which contributes to
its dynamics with the term b(t, u(t))[Wt+dt−Wt], where (Wt)t≥0 is Brownian
motion. Summming the terms results in the equation

du(t) = a(t, u(t))dt+ b(t, u(t))dWt,

which, however, in the current form does not make sense, because the trajec-
tories of (Wt)t≥0 are not differentiable. Instead, we will try to interpret it in
the form

∀ω ∈ Ω : u(t)− u(0) =
∫ t

0

a(s, u(s))ds+
∫ t

0

b(s, u(s))dWs,

which requires us to give meaning to an integral
∫ b

a
f(t)dWt that, as will be

demonstrated, is not of Lebesgue–Stieltjes6 hence neither of Riemann–Stieltjes
type.
6 For a revision, see the appendix or, in addition, e.g., Kolmogorov and Fomin

(1961).
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Definition 3.1. Let F : [a, b] → R be a function and Π the set of the parti-
tions π : a = x0 < x1 < · · · < xn = b of the interval [a, b]. Putting

∀π ∈ Π : VF (π) =
n∑

i=1

|F (xi)− F (xi−1)|,

then F is of bounded variation, if

sup
π∈Π

VF (π) <∞.

Also, VF (a, b) = supπ∈Π VF (π) is called the total variation of F in the interval
[a, b].

Remark 3.2. If F : [a, b] → R is monotonic, then F is of bounded variation
and

VF (a, b) = |F (b)− F (a)|.

Lemma 3.3. Let F : [a, b]→ R. Then the following two statements are equiv-
alent

1. F is of bounded variation;
2. there exists an F1 : [a, b] → R, and there exists an F2 : [a, b] → R mono-

tonically increasing, such that F = F1 − F2.

Lemma 3.4. If F : [a, b]→ R is monotonically increasing, then F is λ-almost
everywhere differentiable in [a, b] (where λ is the Lebesgue measure).

Corollary 3.5. If F : [a, b] → R is of bounded variation, then F is differen-
tiable almost everywhere.

Definition 3.6. Let f : [a, b] → R be continuous and F : [a, b] → R of
bounded variation, for all π ∈ Π,π : a = x0 < x1 < · · · < xn = b. We will fix
points ξi arbitrarily in [xi−1, xi[, i = 1, . . . , n and construct the sum

Sn =
n∑

i=1

f(ξi)[F (xi)− F (xi−1)].

If for maxi∈{1,...,n}(xi− xi−1)→ 0 the sum Sn tends to a limit (that depends
neither on the choice of the partition nor on the selection of the points ξi
within the partial intervals of the partition), then this limit is the Riemann–
Stieltjes integral of f with respect to the function F over [a, b] and is denoted
by the symbol

∫ b

a
f(x)dF (x).

Remark 3.7. By Theorem 2.147 and by Corollary 3.5, it can be shown that a
Wiener process is not of bounded variation and hence

∫ b

a
f(t)dWt cannot be

interpreted in the sense of Riemann–Stieltjes.
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Definition 3.8. Let (Wt)t≥0 be a Wiener process defined on the probability
space (Ω,F , P ) and C the set of functions f(t, ω) : [a, b] × Ω → R satisfying
the following conditions:

1. f is B[a,b] ⊗F-measurable;
2. for all t ∈ [a, b], f(t, ·) : Ω → R is Ft-measurable, where Ft = σ(Ws, 0 ≤
s ≤ t);

3. for all t ∈ [a, b], f(t, ·) ∈ L2(Ω,F , P ) and
∫ b

a
E[|f(t)|2]dt <∞.

Remark 3.9. Condition 2 of Definition 3.8 stresses the nonanticipatory nature
of f through the fact that it only depends on the present and the past history
of the Brownian motion, but not on the future.

Definition 3.10. Let f ∈ C. If there exist both a partition π of [a, b], π : a =
t0 < t1 < · · · < tn = b and some real-valued random variables f0, . . . , fn−1

defined on (Ω,F , P ), such that

f(t, ω) =
n−1∑
i=0

fi(ω)I[ti,ti+1[(t)

(with the convention that [tn−1, tn[= [tn−1, b]), then f is a piecewise function.

Remark 3.11. By condition 2 of Definition 3.8 it follows that, for all i ∈
{0, . . . , n}, fi is Fti-measurable.

Definition 3.12. If f ∈ C, with f(t, ω) =
∑n−1

i=0 fi(ω)I[ti,ti+1[(t), is a piece-
wise function, then the real random variable Φ(f) is a (stochastic) Itô integral
of the process f, where

∀ω ∈ Ω : Φ(f)(ω) =
n−1∑
i=0

fi(ω)(Wti+1(ω)−Wti(ω)).

Φ(f) is denoted by the symbol
∫ b

a
f(t)dWt, henceforth suppressing the explicit

dependence on the trajectory ω wherever obvious.

Lemma 3.13. Let f, g ∈ C be piecewise functions. Then they have the prop-
erties that

1. E[
∫ b

a
f(t)dWt] = 0,

2. E[
∫ b

a
f(t)dWt

∫ b

a
g(t)dWt] =

∫ b

a
E[f(t)g(t)]dt.

Proof: 1. Let f(t, ω) =
∑n−1

i=0 fi(ω)I[ti,ti+1[(t). Then
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E

[∫ b

a

f(t)dWt

]
= E

[
n−1∑
i=0

fi(Wti+1 −Wti)

]

= E

[
n−1∑
i=0

E[fi(Wti+1 −Wti)|Fti ]

]

= E

[
n−1∑
i=0

fiE[Wti+1 −Wti
|Fti

]

]
,

where the last step follows from Remark 3.11. Now, because (Wt)t≥0 has
independent increments, (Wti+1−Wti) is independent of Fti . Hence E[Wti+1−
Wti |Fti ] = E[Wti+1 −Wti ] and the completion of the proof follows from the
fact that the Wiener process has mean zero.

2. The piecewise functions f and g can be represented by means of the
same partition a = t0 < t1 < · · · < tn = b of the interval [a, b]. For this
purpose it suffices to choose the union of the partitions associated with f
and g, respectively. Thus let f(t, ω) =

∑n−1
i=0 fi(ω)I[ti,ti+1[(t) and g(t, ω) =∑n−1

i=0 gi(ω)I[ti,ti+1[(t). Then

E

[∫ b

a

f(t)dWt

∫ b

a

g(t)dWt

]

= E

⎡⎣n−1∑
i=0

fi(Wti+1 −Wti)
n−1∑
j=0

gj(Wtj+1 −Wtj )

⎤⎦
= E

⎡⎣n−1∑
i=0

n−1∑
j=0

figi(Wti+1 −Wti
)(Wtj+1 −Wtj

)

⎤⎦
= E

⎡⎣n−1∑
i=0

n−1∑
j=0

E[figi(Wti+1 −Wti
)(Wtj+1 −Wtj

)|Fti∨tj
]

⎤⎦ ,
where ti ∨ tj = max{ti, tj}. If i < j, then ti < tj and therefore Fti ⊂ Ftj ,
resulting in fi being Ftj -measurable (already being Fti-measurable) and
(Wti+1 − Wti

) being Ftj
-measurable (already being Fti+1 -measurable with

ti+1 ≤ tj). Finally, by Remark 3.11, gj is Ftj -measurable. Thus

E[figj(Wti+1 −Wti)(Wtj+1 −Wtj )|Ftj ]
= figj(Wti+1 −Wti)E[Wtj+1 −Wtj |Ftj ]
= 0,

given that (Wtj+1 −Wtj ) is independent of Ftj ((Wt)t≥0 having independent
increments) and E[Wtj+1 −Wtj ] = 0.

Instead if i = j, then
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E[figi(Wti+1 −Wti
)(Wti+1 −Wti

)|Fti
] = figiE[(Wti+1 −Wti

)2|Fti
]

= figiE[(Wti+1 −Wti
)2].

But since (Wti+1 −Wti
) is normally distributed as N(0, ti+1 − ti),

E[(Wti+1 −Wti
)2] = ti+1 − ti

and therefore

E[figi(Wti+1 −Wti
)2|Fti

] = figi(ti+1 − ti).

Putting parts together, we obtain

E

[∫ b

a

f(t)dWt

∫ b

a

g(t)dWt

]
= E

[
n−1∑
i=0

figi(ti+1 − ti)
]

=
n−1∑
i=0

E[figi](ti+1 − ti) =
∫ b

a

E[f(t)g(t)]dt.

�

Corollary 3.14. If f ∈ C is a piecewise function, then

E

⎡⎣(∫ b

a

f(t)dWt

)2
⎤⎦ =

∫ b

a

E
[
(f(t))2

]
dt <∞.

Lemma 3.15. If S denotes the space of piecewise functions belonging to the
class C, then S ⊂ L2([a, b]×Ω) and Φ : S → L2(Ω) is linearly continuous.

Proof: By point 3 of the characterization of the class C, it follows that S ⊂
L2([a, b] × Ω), whereas by Corollary 3.14, it follows that Φ takes values in
L2(Ω). The linearity and continuity of Φ can be inferred from Definition 3.12
and, again, from Corollary 3.14, respectively, the latter by observing that if
f ∈ S, then

‖f‖2L2([a,b]×Ω) =
∫ b

a

E
[
(f(t))2

]
dt,

‖Φ(f)‖2L2(Ω) = E
[
(Φ(f))2

]
= E

⎡⎣(∫ b

a

f(t)dWt

)2
⎤⎦ .

Thus ‖Φ(f)‖2L2(Ω) = ‖f‖2L2([a,b]×Ω), which guarantees the continuity of the
linear mapping Φ.7 �
7 For this classical result of analysis, see, e.g., Kolmogorov and Fomin (1961).
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Lemma 3.16. C is a closed subspace of the Hilbert space L2([a, b] × Ω) and
is therefore a Hilbert space as well. The scalar product is defined as

〈f, g〉 =
∫ b

a

∫
Ω

f(t, ω)g(t, ω)dP (ω)dt =
∫ b

a

E[f(t)g(t)]dt.

Hence Φ has a unique linear continuous extension in the closure of S in C
(which we will continue to denote by Φ), i.e., Φ : S̄ → L2(Ω).

Lemma 3.17. S is dense in C.

Proof: See, e.g., Dieudonné (1960). �

Theorem 3.18. The (stochastic) Itô integral Φ : S → L2(Ω) has a unique
linear continuous extension in C. If f ∈ C, we denote Φ(f) by

∫ b

a
f(t)dWt.

Proposition 3.19. If f, g ∈ C, then

1. E[
∫ b

a
f(t)dWt] = 0,

2. E[
∫ b

a
f(t)dWt

∫ b

a
g(t)dWt] =

∫ b

a
E[f(t)g(t)]dt,

3. E[(
∫ b

a
f(t)dWt)2] =

∫ b

a
E[(f(t))2]dt (Itô isometry).

Proof: 1. Let f ∈ C, then, because the closure of S in C coincides with C, there
exists (fn)n∈N ∈ SN such that limn→∞

∫ b

a
E[(f(t)− fn(t))2]dt = 0, and hence

limn→∞ fn = f in L2([a, b] × Ω). Because Φ is linearly continuous, we also
have that

lim
n→∞Φ(fn) = Φ(f) (in L2(Ω)),

thus

lim
n→∞E

⎡⎣(∫ b

a

(f(t)− fn(t))dWt

)2
⎤⎦ = 0.

Because P is a probability on (Ω,F) (hence a finite measure), the conver-
gence of Φ(fn) to Φ(f) in L2(Ω) implies the convergence in L1(Ω). Therefore,
limn→∞E[|

∫ b

a
(f(t)− fn(t))dWt|] = 0, from which it follows that

lim
n→∞E

[∫ b

a

(f(t)− fn(t))dWt

]
= 0,

and from the linearity of both the stochastic integral and its expectation, we
obtain

lim
n→∞E

[∫ b

a

fn(t)dWt

]
= E

[∫ b

a

f(t)dWt

]
.

Now 1 follows by point 1 of Lemma 3.13.
2. Let f, g ∈ C. Then
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∃(fn)n∈N ∈ SN such that fn
n→ f in L2([a, b]×Ω);

∃(gn)n∈N ∈ SN such that gn
n→ g in L2([a, b]×Ω).

By the continuity of the scalar product (in L2([a, b]×Ω)):

〈fn, gn〉 n→ 〈f, g〉,

and thus

lim
n→∞

∫ b

a

E[fn(t)gn(t)]dt =
∫ b

a

E[f(t)g(t)]dt. (3.1)

Moreover, by point 2 of Lemma 3.13:∫ b

a

E[fn(t)gn(t)]dt = E

[∫ b

a

fn(t)dWt

∫ b

a

gn(t)dWt

]
. (3.2)

From the fact that fn
n→ f in L2([a, b] × Ω), it also follows that Φ(fn) n→

Φ(f) in L2(Ω) (by the continuity of Φ) and, analogously, since gn
n→ g in

L2([a, b]×Ω), it follows that Φ(gn) n→ Φ(g) in L2(Ω). Then, by the continuity
of the scalar product in L2(Ω), we get

〈Φ(fn), Φ(gn)〉 n→ 〈Φ(f), Φ(g)〉,

and hence

lim
n→∞E

[∫ b

a

fn(t)dWt

∫ b

a

gn(t)dWt

]
= E

[∫ b

a

f(t)dWt

∫ b

a

g(t)dWt

]
. (3.3)

The assertion finally follows from (3.1), (3.2), and (3.3).
Point 3 is a direct consequence of 2. �

Remark 3.20. If f ∈ C and (fn)n∈N ∈ SN such that fn
n→ f in L2([a, b]× Ω),

then

1. Φ(fn) n→ Φ(f) in L2(Ω) (by the continuity of Φ),
2. Φ(fn) n→ Φ(f) in probability.

In fact, as already mentioned, with P being a finite measure, convergence in
L2(Ω) implies convergence in L1(Ω) and, furthermore, convergence in L1(Ω)
implies convergence in probability, by Theorem 1.157.

An alternative approach to the concept of a stochastic integral is the fol-
lowing.

Definition 3.21. Let C1 be the set of functions f : [a, b]×Ω → R such that
the conditions 1 and 2 of the characterization of the class C are satisfied, but,
instead of condition 3, we have

P

(∫ b

a

|f(t)|2dt <∞
)

= 1. (3.4)
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Remark 3.22. It is obvious that C ⊂ C1 and thus S ⊂ C1. We will show that
it is also possible to define a stochastic integral in C1, which, in C, is identical
to the (stochastic) Itô integral as defined above.

Lemma 3.23. If f ∈ S ⊂ C1, then for all c > 0 and for all N > 0:

P

(∣∣∣∣∣
∫ b

a

f(t)dWt

∣∣∣∣∣ > c
)
≤ P

(∫ b

a

|f(t)|2dt > N
)

+
N

c2
. (3.5)

Proof: See, e.g., Friedman (1975). �

Lemma 3.24. If f ∈ C1, then there exists (fn)n∈N ∈ SN such that

lim
n→∞

∫ b

a

|f(t)− fn(t)|2dt = 0 almost surely.

Proof: See, e.g., Friedman (1975). �

Remark 3.25. Resorting to the same notation as in the preceding lemma, we
also have that P−limn→∞

∫ b

a
|fn(t)−f(t)|2dt = 0, because almost sure conver-

gence implies convergence in probability. Let f ∈ C1. Then, by the preceding
lemma, there exists (fn)n∈N ∈ SN such that limn→∞

∫ b

a
|f(t) − fn(t)|2dt = 0

almost surely. Let (n,m) ∈ N × N. Then, because (a + b)2 ≤ 2(a2 + b2), we
obtain∫ b

a

|fn(t)− fm(t)|2dt ≤ 2

(∫ b

a

|fn(t)− f(t)|2dt+
∫ b

a

|fm(t)− f(t)|2dt
)

and hence limm,n→∞
∫ b

a
|fn(t)− fm(t)|2dt = 0 almost surely. Consequently

P − lim
n→∞

∫ b

a

|f(t)− fn(t)|2dt = 0.

But (fn − fm) ∈ S ∩ C1 (for all n,m ∈ N) and by Lemma 3.23, for all ρ > 0
and all ε > 0:

P

(∣∣∣∣∣
∫ b

a

(fn(t)− fm(t))dWt

∣∣∣∣∣ > ε
)
≤ P

(∫ b

a

|fn − fm|2dt > ρε2
)

+ ρ.

Finally, by the arbitrary nature of ρ, we have that

lim
m,n→∞P

(∣∣∣∣∣
∫ b

a

(fn(t)− fm(t))dWt

∣∣∣∣∣ > ε
)

= 0.

Hence the sequence of random variables (
∫ b

a
fn(t)dWt)n∈N is Cauchy in prob-

ability and therefore admits a limit in probability (see, e.g., Baldi (1984) for
details). This limit will be denoted by

∫ b

a
f(t)dWt.
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Definition 3.26. If f ∈ C1 and (fn)n∈N ∈ SN such that limn→∞
∫ b

a
|f(t) −

fn(t)|2dt = 0 almost surely, then the limit in probability to which the sequence
of random varibles (

∫ b

a
fn(t)dWt)n∈N converges is the (stochastic) Itô integral

of f .

Remark 3.27. The preceding definition is well posed, because it can be shown
that

∫ b

a
f(t)dWt is independent of the particular approximating sequence

(fn)n∈N. (See, e.g., Baldi (1984) for details.)

Theorem 3.28. If f ∈ C1, then (3.5) applies again.

Proof: See, e.g., Friedman (1975). �

Theorem 3.29. Let f ∈ C1 and (fn)n∈N ∈ CN
1 . If

P − lim
n→∞

∫ b

a

|fn(t)− f(t)|2dt = 0,

then

P − lim
n→∞

∫ b

a

fn(t)dWt =
∫ b

a

f(t)dWt.

Proof: Fixing c > 0, ρ > 0, by Theorem 3.28, we obtain

P

(∣∣∣∣∣
∫ b

a

(fn(t)− f(t))dWt

∣∣∣∣∣ > c
)
≤ P

(∫ b

a

|fn(t)− f(t)|2dt > c2ρ
)

+ ρ.

Now, the proof follows for n→∞. �
Now we are able to show that the stochastic integral in C1 of Definition

3.26 is identical to the one of Theorem 3.18 in C. In fact, for f ∈ C, because
S is dense in C, there exists (fn)n∈N ∈ SN such that

lim
n→∞E

[∫ b

a

|fn(t)− f(t)|2dt
]

= 0. (3.6)

Putting Xn =
∫ b

a
|fn(t)− f(t)|2dt for all n ∈ N, by the Markov inequality, we

obtain
∀λ > 0: P (Xn ≥ λE[Xn]) ≤ 1

λ
(n ∈ N),

and thus P (Xn ≥ ε) ≤ E[Xn]
ε for ε = λE[Xn]. But by (3.6), limn→∞E[Xn] =

0, and therefore also limn→∞ P (Xn ≥ ε) = 0 and

P − lim
n→∞

∫ b

a

|fn(t)− f(t)|2dt = 0. (3.7)

From (3.7) and by Theorem 3.29, it follows that
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P − lim
n→∞

∫ b

a

fn(t)dWt =
∫ b

a

f(t)dWt, (3.8)

where the limit
∫ b

a
f(t)dWt is the stochastic integral of f in C1. But, on the

other hand, (3.6) implies, by point 2 of Remark 3.20, that Φ(fn) n→ Φ(f) in
probability (Φ is the linear continuous extension in C) and thus again

P − lim
n→∞

∫ b

a

fn(t)dWt =
∫ b

a

f(t)dWt. (3.9)

Now by (3.8) and (3.9) as well as the uniqueness of the limit, the proof is
complete. �

Remark 3.30. If f ∈ C1 and P (
∫ b

a
|f(t)|2dt = 0) = 1, then

∀N > 0: P

(∫ b

a

|f(t)|2dt > N
)

= 0

and, by Theorem 3.28,

P

(∣∣∣∣∣
∫ b

a

f(t)dWt

∣∣∣∣∣ > c
)

= 0 ∀c > 0,

so that

P

(∣∣∣∣∣
∫ b

a

f(t)dWt

∣∣∣∣∣ = 0

)
= 1.

Theorem 3.31. If f ∈ C1 and continuous for almost every ω, then, for every
sequence (πn)n∈N of the partitions πn : a = t

(n)
0 < t

(n)
1 < · · · < t(n)

n = b of the
interval [a, b] such that

|πn| = sup
k∈{0,...,n}

∣∣∣t(n)
k+1 − t

(n)
k

∣∣∣ n→ 0,

we have

P − lim
n→∞

n−1∑
k=0

f
(
t
(n)
k

)(
W

t
(n)
k+1
−W

t
(n)
k

)
=
∫ b

a

f(t)dWt.

Proof: By definition of the piecewise function

f(t, ω) =
n−1∑
k=0

fk(ω)I[tk,tk+1[(t),

we have that
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n−1∑
k=0

f
(
t
(n)
k

)(
W

t
(n)
k+1
−W

t
(n)
k

)
=
∫ b

a

fn(t)dWt.

Now by Theorem 3.29 all that needs to be shown is that

P − lim
n→∞

∫ b

a

|fn(t)− f(t)|2dt = 0,

which follows by the continuity of f for almost every ω. �

Proposition 3.32. Let (πn)n∈N be a sequence of the partitions πn : a = t
(n)
0 <

t
(n)
1 < · · · < t(n)

n = b of the interval [a, b] such that |πn| n→ 0 and, for all n ∈ N,
let Sn =

∑n−1
j=0 (W

t
(n)
j+1
−W

t
(n)
j

)2, i.e., the quadratic variation of (Wt)t∈[a,b] with
respect to the partition πn. Then we have that

1. E[Sn] = b− a for all n ∈ N;
2. V ar[Sn] = E[(Sn − (b− a))2] n→ 0.

Proof: 1.

E[Sn] =
n−1∑
j=0

E

[(
W

t
(n)
j+1
−W

t
(n)
j

)2
]

=
n−1∑
j=0

V ar
[
W

t
(n)
j+1
−W

t
(n)
j

]

=
n−1∑
j=0

(
t
(n)
j+1 − t

(n)
j

)
= b− a.

2. Because Brownian motion, by definition, has independent increments,
we have that

V ar[Sn] =
n−1∑
j=0

V ar

[(
W

t
(n)
j+1
−W

t
(n)
j

)2
]
.

Writing δj = W
t
(n)
j+1
−W

t
(n)
j

, then, by (1.4),

n−1∑
j=0

V ar
[
(δj)2

]
=

n−1∑
j=0

(
E
[
(δj)4

]
−
(
E
[
(δj)2

])2) ≤ n−1∑
j=0

E
[
(δj)4

]
.

Now, by the definition of Brownian motion, the increments δj are Gaussian,
i.e., N(0, tj+1 − tj), and direct calculation results in

E
[
(δj)4

]
=
∫ +∞

−∞
(δj)4

exp
{
− (δj)

2

2(tj+1−tj)

}
√

2π(tj+1 − tj)
dδj = 3(tj+1 − tj)2 n→ 0.

�
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Remark 3.33. Given the hypotheses of the preceding proposition, by the
Chebychev inequality,

P (|Sn − (b− a)| > ε) ≤ V ar[Sn]
ε2

n→ 0 (ε > 0).

It follows that P − limn→∞ Sn = b− a. On the other hand, if we compare it
to the classical Lebesgue integral, we obtain

lim
n→∞

n−1∑
j=0

(
t
(n)
j+1 − t

(n)
j

)2

≤ lim
n→∞ |πn|

n−1∑
j=0

(
t
(n)
j+1 − t

(n)
j

)
= lim

n→∞ |πn|(b− a) = 0.

Remark 3.34. Because the Brownian motion (Wt)t≥0 is continuous for almost
every ω, we can apply Theorem 3.31 with f(t) = Wt, obtaining the result of
Proposition 3.35.

Proposition 3.35.
∫ b

a
WtdWt = 1

2 (W 2
b −W 2

a )− b−a
2 .

Proof: Let (πn)n∈N be a sequence of the partitions πn : a = t
(n)
0 < t

(n)
1 < · · · <

t
(n)
n = b of the interval [a, b] such that |πn| n→ 0. Then, by Theorem 3.31, we

have ∫ b

a

WtdWt = P − lim
n→∞

n−1∑
k=0

W
t
(n)
k

(
W

t
(n)
k+1
−W

t
(n)
k

)
. (3.10)

Because, in general, a(b− a) = 1
2 (b2 − a2 − (b− a)2), therefore

W
t
(n)
k

(
W

t
(n)
k+1
−W

t
(n)
k

)
=

1
2

(
W 2

t
(n)
k+1
−W 2

t
(n)
k

−
(
W

t
(n)
k+1
−W

t
(n)
k

)2
)
.

Substitution into (3.10) results in∫ b

a

WtdWt = P − lim
n→∞

1
2

n−1∑
k=0

(
W 2

t
(n)
k+1
−W 2

t
(n)
k

−
(
W

t
(n)
k+1
−W

t
(n)
k

)2
)

=
1
2
(W 2

b −W 2
a )− P − lim

n→∞
1
2

n−1∑
k=0

(
W

t
(n)
k+1
−W

t
(n)
k

)2

=
1
2
(W 2

b −W 2
a )− P − lim

n→∞
1
2
Sn =

1
2
(W 2

b −W 2
a )− b− a

2
,

by Remark 3.33. �

Remark 3.36. The classical Lebesgue integral results in
∫ b

a
tdt = b2−a2

2 . How-
ever, in the (stochastic) Itô integral we obtain an additional term (− b−a

2 ).
Generally, in certain practical applications involving stochastic models, the
Stratonovich integral is employed. In the latter, t(n)

k is replaced by r(n)
k =
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t
(n)
k +t

(n)
k+1

2 , thus eliminating the additional term (− b−a
2 ). Therefore, in general,

one obtains a new family of integrals by varying the chosen point of the parti-
tion. In particular, the Stratonovich integral has the advantage that its rules of
calculus are identical with the ones of the classical integral. But, nonetheless,
the Itô integral is often a more appropriate model for many applications.

3.2 Stochastic Integrals as Martingales

Theorem 3.37. If f ∈ C and, for all t ∈ [a, b]: X(t) =
∫ t

a
f(s)dWs, then

(Xt)t∈[a,b] is a martingale with respect to Ft = σ(Ws, 0 ≤ s ≤ t).

Proof: Initially, let f ∈ C ∩ S. Then there exists a π, a partition of [a, b],
π : a = t0 < t1 < · · · < tn = b, such that

f(t, ω) =
n−1∑
i=0

f(ti, ω)I[ti,ti+1[(t), t ∈ [a, b], ω ∈ Ω,

and for all t ∈ [a, b] :

X(t) =
∫ t

a

f(s)dWs =
k−1∑
i=0

f(ti)(Wti+1 −Wti
) + f(tk)(Wt −Wtk

)

for k, such that tk ≤ t < tk+1. Because for all i ∈ {0, . . . , k}, f(ti) is Fti-
measurable (by Remark 3.11), X(t) is obviously F-measurable, for all t ∈
[a, b]. Now, let (s, t) ∈ [a, b]× [a, b] and s < t. Then it needs to be shown that

E[X(t)|Fs] = X(s) a.s.

and thus
E[X(t)−X(s)|Fs] = 0 a.s.

We observe that

X(t)−X(s)

=
∫ t

s

f(u)dWu =
k−1∑
i=0

f(ti)(Wti+1 −Wti)

+f(tk)(Wt −Wtk
)−

h−1∑
j=0

f(tj)(Wtj+1 −Wtj )− f(th)(Ws −Wth
)

if th ≤ s < th+1 and tk ≤ t < tk+1, where h ≤ k. Therefore,
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X(t)−X(s)

=
k−1∑
i=h

f(ti)(Wti+1 −Wti) + f(tk)(Wt −Wtk
)− f(th)(Ws −Wth

)

=
k−1∑

i=h+1

f(ti)(Wti+1 −Wti) + f(tk)(Wt −Wtk
)− f(th)(Wth+1 −Ws).

Because s < tj , for j = h+ 1, . . . , k, thus Fs ⊂ Ftj
, and by the properties of

conditional expectations we obtain

E[X(t)−X(s)|Fs]

=
k−1∑

i=h+1

E[f(ti)(Wti+1 −Wti)|Fs]

+E[f(tk)(Wt −Wtk
)|Fs] + E[f(th)(Wh+1 −Wts)|Fs]

=
k−1∑

i=h+1

E[E[f(ti)(Wti+1 −Wti)|Fti ]|Fs]

+E[E[f(tk)(Wt −Wtk
)|Ftk

]|Fs] + E[f(th)(Wth+1 −Wts)|Fs]

=
k−1∑

i=h+1

E[f(ti)E[Wti+1 −Wti |Fti ]|Fs]

+E[f(tk)E[Wt −Wtk
|Ftk

]|Fs] + f(th)E[Wth+1 −Wts |Fs]

=
k−1∑

i=h+1

E[f(ti)E[Wti+1 −Wti ]|Fs]

+E[f(tk)E[Wt −Wtk
]|Fs] + f(th)E[Wth+1 −Wts ]

= 0,

since E[Wt] = 0 for all t and (Wt)t≥0 has independent increments. This com-
pletes the proof for the case f ∈ C ∩ S.

Now, let f ∈ C, then ∃(fn)n∈N ∈ (C ∩ S)N such that limn→∞
∫ b

a
|f(t) −

fn(t)|2dt = 0, by Lemma 3.24. We put

Xn(t) =
∫ t

a

fn(s)dWs ∀n ∈ N,∀t ∈ [a, b],

for which we have just shown that ((Xn(t))t∈[a,b])n∈N is a sequence of martin-
gales. Now, let (s, t) ∈ [a, b]× [a, b] and s < t. Then it will be shown that

E[X(t)−X(s)|Fs] = 0 a.s. (3.11)

We obtain for all n ∈ N:
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E[X(t)−X(s)|Fs]
= E[X(t)−Xn(t)|Fs] + E[Xn(t)−Xn(s)|Fs] + E[Xn(s)−X(s)|Fs].

Because (Xn(t))t∈[a,b] is a martingale, E[Xn(t) − Xn(s)|Fs] = 0. We also
observe that

E
[
(E[X(t)−Xn(t)|Fs])2

]
≤ E

[
E
[
|X(t)−Xn(t)|2

∣∣Fs

]]
= E

[
|X(t)−Xn(t)|2

]
= E

[∣∣∣∣∫ t

a

(f(u)− fn(u))dWu

∣∣∣∣2
]

=
∫ t

a

E
[
|f(u)− fn(u)|2

]
du

n→ 0,

following the properties of conditional expectations and by point 3 of Proposi-
tion 3.19. Hence E[X(t)−Xn(t)|Fs] converges to zero in L2(Ω), analogously,
and so does E[X(s)−Xn(s)|Fs], proving equation (3.11). Finally we need to
show that X(t) is Ft-measurable for t ∈ [a, b]. This follows from the fact that
Xn(t) is Ft-measurable for n ∈ N and moreover

E
[
|X(t)−Xn(t)|2

]
=
∫ t

a

E
[
|f(u)− fn(u)|2

]
du

n→ 0,

following the above derivation. Hence Xn(t)→ X(t) in L2(Ω). �

Proposition 3.38. Resorting to the notation of the preceding theorem, the
martingale (Xt)t∈[a,b] is continuous (in L2(Ω)).

Proof: If t, s ∈ [a, b], then

lim
t→s

E
[
|X(t)−X(s)|2

]
= lim

t→s
E

[∣∣∣∣∫ t

s

f(u)dWu

∣∣∣∣2
]

= lim
t→s

∫ t

s

E
[
(f(u))2

]
du = 0,

by point 3 of Proposition 3.19 and following the continuity of the Lebesgue
integral. �

Theorem 3.39. If f ∈ C1, then (Xt)t∈[a,b] admits a continuous version and
thus admits a modified form with almost every trajectory being continuous.

Proof: See, e.g., Baldi (1984) or Friedman (1975). �
Following Theorems 2.27 and 3.39, from now on we can always con-

sider continuous and separable versions of (Xt)t∈[a,b]. If f ∈ C and X(t) =∫ t

a
f(u)dWu, t ∈ [a, b], then because (by Theorem 3.37) (Xt)t∈[a,b] is a martin-

gale, it satisfies Doob’s inequality (Proposition 2.69) and the following propo-
sition holds.



142 3 The Itô Integral

Proposition 3.40. If f ∈ C, then

1. E[maxa≤s≤b |
∫ s

a
f(u)dWu|2] ≤ 4E[|

∫ b

a
f(u)dWu|2] = 4E[

∫ b

a
|f(u)|2du];

2. P (maxa≤s≤b |
∫ s

a
f(u)dWu| > λ) ≤ 1

λ2E[
∫ b

a
|f(u)|2du], λ > 0.

Proof: Point 1 follows directly from 2 of Proposition 2.65 with p = 2.
Point 2 follows by continuity(

max
a≤s≤b

∣∣∣∣∫ s

a

f(u)dWu

∣∣∣∣)2

= max
a≤s≤b

∣∣∣∣∫ s

a

f(u)dWu

∣∣∣∣2 ;

therefore

P

(
max

a≤s≤b

∣∣∣∣∫ s

a

f(u)dWu

∣∣∣∣ > λ) = P

((
max

a≤s≤b

∣∣∣∣∫ s

a

f(u)dWu

∣∣∣∣)2

> λ2

)

= P

(
max

a≤s≤b

∣∣∣∣∫ s

a

f(u)dWu

∣∣∣∣2 > λ2

)

and the proof follows from 1 of Proposition 2.69. �

Remark 3.41. Generally, maxa≤s≤bXs, almost everywhere with respect to P ,
is defined due to the continuity of Brownian motion.

Stochastic Integrals with Stopping Times

Let f ∈ C1([0, T ]), (Wt)t∈R+ a Wiener process and τ1, τ2 two random variables
representing stopping times, such that 0 ≤ τ1 ≤ τ2 ≤ T. Then∫ τ2

τ1

f(t)dWt =
∫ τ2

0

f(t)dWt −
∫ τ1

0

f(t)dWt.

Lemma 3.42. Defining the characteristic function as

χi(t) =
{

1 if t < τi,
0 if t ≥ τi,

i = 1, 2,

we have that

1. χi(t) is Ft = σ(Ws, 0 ≤ s ≤ t)-measurable (i = 1, 2);
2.
∫ τ2

τ1
f(t)dWt =

∫ T

0
χ2(t)f(t)dWt −

∫ T

0
χ1(t)f(t)dWt.

Proof: See, e.g., Friedman (1975). �

Theorem 3.43. Let f ∈ C1([0, T ]) and let τ1, τ2 be two stopping times, such
that 0 ≤ τ1 ≤ τ2 ≤ T. Then

1. E[
∫ τ2

τ1
f(t)dWt] = 0;

2. E[(
∫ τ2

τ1
f(t)dWt)2] = E[

∫ τ2

τ1
|f(t)|2dt].
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Proof: By Lemma 3.42, we get∫ τ2

τ1

f(t)dWt =
∫ T

0

(χ2(t)− χ1(t))f(t)dWt,

and after applying Proposition 3.19 the proof is completed. This theorem is,
in fact, just a generalization of Proposition 3.19. �

3.3 Itô Integrals of Multidimensional Wiener Processes

We denote by Rmn all real-valued m× n matrices and by

W(t) = (W1(t), . . . ,Wn(t))′, t ≥ 0,

an n-dimensional Wiener process. Let [a, b] ⊂ [0,+∞[ and we put

CW([a, b])
= {f : [a, b]×Ω → Rmn|∀1 ≤ i ≤ m,∀1 ≤ j ≤ n : fij ∈ CWj ([a, b])},
C 1W([a, b])
= {f : [a, b]×Ω → Rmn|∀1 ≤ i ≤ m,∀1 ≤ j ≤ n : fij ∈ C1Wj ([a, b])},

where CWj ([a, b]) and C1Wj ([a, b]) correspond to the classes C([a, b]) and
C1([a, b]) respectively, as defined in part 3.1.

Definition 3.44. If f : [a, b] × Ω → Rmn belongs to C1W([a, b]), then the
stochastic integral with respect to W is the m-dimensional vector defined by

∫ b

a

f(t)dW(t) =

⎛⎝ n∑
j=1

∫ b

a

fij(t)dWj(t)

⎞⎠′

1≤i≤m

, (3.12)

where each of the integrals on the right-hand side is defined in the sense of
Itô.

Proposition 3.45. If (i, j) ∈ {1, . . . , n}2 and

fi : [a, b]×Ω → R belongs to CWi([a, b]);
fj : [a, b]×Ω → R belongs to CWj ([a, b]),

then

E

[∫ b

a

fi(t)dWi(t)
∫ b

a

fj(t)dWj(t)

]
= δijE

[∫ b

a

fi(t)fj(t)dt

]
, (3.13)

where δij = 1, if i = j or δij = 0, if i �= j, is the Kronecker delta.
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Proof: Suppose i �= j. Then the processes (Wi(t))t≥0 and (Wj(t))t≥0 are
independent. Hence so are the σ-algebras F (i) = σ(Wi(s), s ≥ 0) and
F (j) = σ(Wj(s), s ≥ 0). Moreover, for all t ∈ [a, b] : fi(t) is F (i)-measurable,
fj(t) is F (j)-measurable, and F (i)

t = σ(Wi(s), 0 ≤ s ≤ t) ⊂ F (i) as well
as F (j)

t = σ(Wj(s), 0 ≤ s ≤ t) ⊂ F (j). Therefore, fi = (fi(t))t∈[a,b] and
fj = (fj(t))t∈[a,b] are independent. So are

∫ b

a
fi(t)dWi(t) and

∫ b

a
fj(t)dWj(t),

and therefore

E

[∫ b

a

fi(t)dWi(t)
∫ b

a

fj(t)dWj(t)

]

= E

[∫ b

a

fi(t)dWi(t)

]
E

[∫ b

a

fj(t)dWj(t)

]
= 0,

by Proposition 3.19. If instead i = j, then the proof immediately follows by
Proposition 3.19. �

Proposition 3.46. Let f : [a, b]×Ω → Rmn and g : [a, b]×Ω → Rmn. Then

1. if f ∈ CW([a, b]), then

E

[∫ b

a

f(t)dW(t)

]
= 0 ∈ Rm;

2. if f, g ∈ CW([a, b]), then

E

[(∫ b

a

f(t)dW(t)

)(∫ b

a

g(t)dW(t)

)′]
= E

[∫ b

a

(f(t))(g(t))′dt

]
;

3. if f ∈ CW([a, b]), then

E

⎡⎣∣∣∣∣∣
∫ b

a

f(t)dW(t)

∣∣∣∣∣
2
⎤⎦ = E

[∫ b

a

|f(t)|2dt
]
,

where

|f |2 =
m∑

i=1

n∑
j=1

(fij)2

and ∣∣∣∣∣
∫ b

a

f(t)dW(t)

∣∣∣∣∣
2

=
m∑

i=1

⎛⎝ n∑
j=1

∫ b

a

fij(t)dWj(t)

⎞⎠2

.
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Proof: 1. Let f ∈ CW([a, b])(⊂ C1W([a, b])). Then

E

[∫ b

a

f(t)dW(t)

]
=

⎛⎝E
⎡⎣ n∑

j=1

∫ b

a

fij(t)dWj(t)

⎤⎦⎞⎠′

1≤i≤m

=

⎛⎝ n∑
j=1

E

[∫ b

a

fij(t)dWj(t)

]⎞⎠′

1≤i≤m

= 0 ∈ Rm,

by Proposition 3.19.
2. Let f, g ∈ CW([a, b]) and (1, k) ∈ {1, . . . ,m}2. Then

E

[(∫ b

a

f(t)dW(t)

)(∫ b

a

g(t)dW(t)

)′]
lk

= E

⎡⎣⎛⎝ n∑
j=1

∫ b

a

flj(t)dWj(t)

⎞⎠⎛⎝ n∑
j′=1

∫ b

a

gj′k(t)dWj′(t)

⎞⎠⎤⎦
=

n∑
j=1

n∑
j′=1

E

[∫ b

a

flj(t)dWj(t)
∫ b

a

gj′kdWj′(t)

]
=

n∑
j=1

E

[∫ b

a

flj(t)gjk(t)dt

]

= E

⎡⎣ n∑
j=1

∫ b

a

flj(t)gjk(t)dt

⎤⎦ = E

⎡⎣∫ b

a

n∑
j=1

(flj(t)gjk(t))dt

⎤⎦
= E

[∫ b

a

((f(t))(g(t))′)lkdt

]
,

by Proposition 3.45. Having verified each of the components, the proof of 2 is
complete.

3. Let f ∈ CW([a, b]). Then by 2 we have

E

[(∫ b

a

f(t)dW(t)

)(∫ b

a

f(t)dW(t)

)′]
= E

[∫ b

a

(f(t))(f(t))′dt

]
. (3.14)

Furthermore, it is easily verified that if a generic b ∈ Rmn, then

|b|2 =
m∑

i=1

n∑
j=1

(bij)2 = trace(bb′),

and if a generic a ∈ Rm, then

|a|2 =
m∑

i=1

(ai)2 = trace(aa′).

Therefore, if in equation (3.14) we consider the trace of both the former and
the latter term, we obtain 3. �
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3.4 The Stochastic Differential

Definition 3.47. Let (u(t))0≤t≤T be a process such that for every (t1, t2) ∈
[0, T ]× [0, T ], t1 < t2:

u(t2)− u(t1) =
∫ t2

t1

a(t)dt+
∫ t2

t1

b(t)dWt, (3.15)

where a ∈ C1([0, T ]) and b ∈ C1([0, T ]). Then u(t) is said to have the stochastic
differential

du(t) = a(t)dt+ b(t)dWt (3.16)

on [0, T ].

Remark 3.48. If u(t) has the stochastic differential in the form of (3.16), then
for all t > 0, we have

u(t) = u(0) +
∫ t

0

a(s)ds+
∫ t

0

b(s)dWs.

Hence

1. the trajectories of (u(t))0≤t≤T are continuous almost everywhere (see The-
orem 3.39);

2. for t ∈ [0, T ], u(t) is Ft = σ(Ws, 0 ≤ s ≤ t)-measurable, thus u(t) ∈
C1([0, T ]).

Example 3.49. The stochastic differential of (W 2
t )t≥0 is given by

dW 2
t = dt+ 2WtdWt. (3.17)

In fact, if 0 ≤ t1 < t2, then, by Proposition 3.35, it follows that∫ t2

t1

WtdWt =
1
2
(W 2

t2 −W
2
t1)−

t2 − t1
2

.

Therefore W 2
t2 −W 2

t1 = t2− t1 +2
∫ t2

t1
WtdWt, which is of the form (3.15) with

a(t) = 1 and b(t) = 2Wt, t ≥ 0.

Example 3.50. The stochastic differential of the process (tWt)t≥0 is given by

d(tWt) = Wtdt+ tdWt. (3.18)

Let 0 ≤ t1 < t2 and (πn)n∈N be a sequence of partitions of [t1, t2], where
πn : t1 = r

(n)
1 < · · · < r(n)

n = t2, such that |πn| n→ 0. Then, by Theorem 3.31,∫ t2

t1

tdWt = P − lim
n→∞

n−1∑
k=1

r
(n)
k

(
W

r
(n)
k+1
−W

r
(n)
k

)
. (3.19)
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Moreover, because (Wt)t≥0 is continuous almost surely, we can consider∫ t2
t1
Wtdt, obtaining∫ t2

t1

Wtdt = lim
n→∞

n−1∑
k=1

W
r
(n)
k+1

(
r
(n)
k+1 − r

(n)
k

)
almost surely.

But since almost sure convergence implies convergence in probability, we have∫ t2

t1

Wtdt = P − lim
n→∞

n−1∑
k=1

W
r
(n)
k+1

(
r
(n)
k+1 − r

(n)
k

)
. (3.20)

Combining the relevant terms of (3.19) and (3.20), we obtain∫ t2

t1

tdWt +
∫ t2

t1

Wtdt = P − lim
n→∞

n−1∑
k=1

(
r
(n)
k+1Wr

(n)
k+1
− r(n)

k W
r
(n)
k

)
= t2Wt2 − t1Wt1 ,

which is of form (3.15) with a(t) = Wt and b(t) = t, proving equation (3.18).

Proposition 3.51. If the stochastic differential of (ui(t))t∈[0,T ] is given by

dui(t) = ai(t)dt+ bi(t)dWt, i = 1, 2,

then (u1(t)u2(t))t∈[0,T ] has the stochastic differential

d(u1(t)u2(t)) = u1(t)du2(t) + u2(t)du1(t) + b1(t)b2(t)dt, (3.21)

and thus, for all 0 ≤ t1 < t2 < T

u1(t2)u2(t2)− u1(t1)u2(t1)

=
∫ t2

t1

u1(t)a2(t)dt+
∫ t2

t1

u1(t)b2(t)dWt

+
∫ t2

t1

u2(t)a1(t)dt+
∫ t2

t1

u2(t)b1(t)dWt +
∫ t2

t1

b1(t)b2(t)dt. (3.22)

Proof (see, e.g., Baldi (1984)): Case 1: ai, bi constant on [t1, t2], i.e., ai(t) = ai,
bi(t) = bi, for all t ∈ [t1, t2], i = 1, 2, ai, bi in C1([0, T ]). Then

u1(t2) = u1(t1) + a1(t2 − t1) + b1(Wt2 −Wt1), (3.23)
u2(t2) = u2(t1) + a2(t2 − t1) + b2(Wt2 −Wt1). (3.24)

The proof of formula (3.22) is complete by employing equations (3.17), (3.18),
(3.23), (3.24), and the definitions of both the Lebesgue and stochastic inte-
grals.

Case 2: It can be shown that (3.22) holds for ai, bi, i = 1, 2, being piecewise
functions.

Case 3: Eventually it can be shown that (3.22) holds for any ai, bi (ai, bi ∈
C, i = 1, 2). �
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Remark 3.52. Generally, if u(t), b(t) ∈ C1([0, T ]), then, by the Cauchy–Schwarz
inequality (see Proposition 1.147), u(t)b(t) ∈ C1([0, T ]) as well, and so∫ T

0
u(t)b(t)dWt is well defined.

Remark 3.53. If f : R → R is a continuous function, then f(Wt) ∈ C1([0, T ]);
in fact, the trajectories of (f(Wt))t∈[0,T ] are continuous almost everywhere
and thus condition (3.4) is certainly verified. In particular, we have

(Wn
t )t∈[0,T ] ∈ C1([0, T ]) ∀n ∈ N∗.

Corollary 3.54. For every integer n ≥ 2 we get

d(Wn
t ) = nWn−1

t dWt +
1
2
(n− 1)nWn−2

t dt. (3.25)

Proof: The proof follows from Proposition 3.51 by induction. �

Corollary 3.55. For every polynomial P (x):

dP (Wt) = P ′(Wt)dWt +
1
2
P ′′(Wt)dt. (3.26)

Remark 3.56. The second derivative of P (Wt) is required for its differential.

Proposition 3.57. If f ∈ C2(R), then

df(Wt) = f ′(Wt)dWt +
1
2
f ′′(Wt)dt. (3.27)

Proof: Given the integration-by-parts formula

f(x) = f(0) + f ′(0)x+
∫ x

0

(x− y)f ′′(y)dy, (3.28)

and because f ∈ C2(R), it follows that f ′′ ∈ C0(R). Then, by the Weierstrass
theorem, we can approximate it with polynomials. Hence

∃(qn(x))n∈N, (3.29)

a sequence of polynomials uniformly converging to f ′′ on compacts. If we now
write

Qn(x) = f(0) + f ′(0)x+
∫ x

0

(x− y)qn(y)dy, n ∈ N,

it is evident that Qn(x) is a polynomial with Q′′
n = qn(x); thus (Q′′

n(x))n∈N

uniformly converges to f ′′ on compacts. Moreover, Qn(x) n→ f(x), Q′
n(x) n→

f ′(x) uniformly on its compacts. In fact, by (3.29), it is possible to replace
the limit with the integral in (3.28). Applying (3.26) to the polynomials Qn,
we obtain that for t1 < t2
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Qn(Wt2)−Qn(Wt1) =
∫ t2

t1

Q′
n(Wt)dWt +

1
2

∫ t2

t1

Q′′
n(Wt)dt. (3.30)

Therefore we observe that

Qn(Wt2)
n→ f(Wt2) a.s. (and thus in probability),

Qn(Wt1)
n→ f(Wt1) a.s. (and thus in probability),

1
2

∫ t2

t1

Q′′
n(Wt)dt

n→ 1
2

∫ t2

t1

f ′′(Wt)dt a.s. (and thus in probability),

and also

lim
n→∞

∫ t2

t1

[Q′
n(Wt)− f ′(Wt)]2dt = 0 a.s. (and thus in probability).

Hence by Theorem 3.29 we have that

P − lim
n→∞

∫ t2

t1

Q′
n(Wt)dWt =

∫ t2

t1

f ′(Wt)dWt.

Finally, by equation (3.30)

f(Wt2)− f(Wt1) =
∫ t2

t1

f ′(Wt)dWt +
1
2

∫ t2

t1

f ′′(Wt)dt.

�

3.5 Itô’s Formula

As one of the most important topics on Brownian motion, Itô’s formula rep-
resents the stochastic equivalent of Taylor’s theorem about the expansion of
functions. It is the key concept that connects classical and stochastic theory.

Proposition 3.58. If u(t, x) : [0, T ] × R → R is continuous with the deriva-
tives ux, uxx, and ut, then

du(t,Wt) =
(
ut(t,Wt) +

1
2
uxx(t,Wt)

)
dt+ ux(t,Wt)dWt. (3.31)

Proof: Case 1: We suppose u(t, x) = g(t)ψ(x), with g ∈ C1([0, T ]) and ψ ∈
C2(R). Then by Proposition 3.57,

dψ(Wt) = ψ′(Wt)dWt +
1
2
ψ′′(Wt)dt

and, by formula (3.21), we obtain an expression for (3.31), namely
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d(g(t)ψ(Wt)) = g(t)ψ′(Wt)dWt +
1
2
g(t)ψ′′(Wt)dt+ ψ(Wt)g′(t)dt.

Case 2: If

u(t, x) =
n∑

i=1

gi(t)ψi(x), g ∈ C1([0, T ]), ψ ∈ C2(R), i = 1, . . . , n, (3.32)

then (3.31) is an immediate consequence of the first case.
Case 3: If u is a generic function, satisfying the hypotheses of the propo-

sition, it can be shown that there exists (un)n∈N, a sequence of functions of
type (3.32), such that for all K > 0:

lim
n→∞ sup

|x|≤K

sup
t∈[0,T ]

{|un − u|+ |(un)t − ut|+ |(un)x − ux|+ |(un)xx − uxx|} = 0.

Therefore, we can approximate u uniformly through the sequence un and the
proof follows from the second case. �
Remark 3.59. We note that, contrary to what is obtained for an ordinary
differential, (3.31) contains the additional term 1

2uxx(t,Wt)dt. This is due to
the presence of Brownian motion.

Remark 3.60. If u(t, z, ω) : [0, T ]× R×Ω → R is continuous with the deriva-
tives uz, uzz, and ut such that, for all (t, z), u(t, z, ·) is Ft = σ(Ws, 0 ≤ s ≤ t)-
measurable, then formula (3.31) holds for every ω ∈ Ω.

Theorem 3.61. (Itô’s formula). If du(t) = a(t)dt + b(t)dWt and if f(t, x) :
[0, T ] × R → R is continuous with the derivatives fx, fxx, and ft, then the
stochastic differential of the process f(t, u(t)) is given by

df(t, u(t)) =
(
ft(t, u(t)) +

1
2
fxx(t, u(t))b2(t) + fx(t, u(t))a(t)

)
dt

+fx(t, u(t))b(t)dWt. (3.33)

Proof: See, e.g., Karatzas and Shreve (1991). �

3.6 Martingale Representation Theorem

Theorem 3.37 stated that, given a process (ft)t∈[0,T ] ∈ C([0, T ]), the Itô in-
tegral

∫ t

0
fsdWs is a zero mean L2-martingale. The martingale representation

theorem establishes the relationship between a martingale and the existence
of a process vice versa.

Theorem 3.62. (martingale representation theorem I). Let (Mt)t∈[0,T ] be an
L2-martingale with respect to the Wiener process (Wt)t∈[0,T ] and (Ft)t∈[0,T ]

its natural filtration. Then there exists a unique process (ft)t∈[0,T ] ∈ C([0, T ]),
so that

∀t ∈ [0, T ] : M(t) = M(0) +
∫ t

0

f(s)dWs a.s. (3.34)
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Theorem 3.63. (Martingale representation theorem II). Let (Mt)t∈[0,T ] be
a martingale with respect to the Wiener process (Wt)t∈[0,T ] and (Ft)t∈[0,T ] its
natural filtration. Then there exists a unique process (ft)t∈[0,T ] ∈ C1([0, T ]) so
that (3.34) holds.

The martingale representation theorems are a direct consequence of the
following theorem (see Øksendal (1998)).

Theorem 3.64. (Itô representation theorem). Let (Xt)t∈[0,T ] ∈ L2(Ω,FT , P )
be a stochastic process. Then there exists a unique process (ft)t∈[0,T ] ∈
C([0, T ]), so that

∀t ∈ [0, T ] : X(t) = E[X(0)] +
∫ t

0

f(s)dWs.

For the proof of the Itô representation theorem we require the following
lemma.

Lemma 3.65. The linear span of random variables of the Doléans exponential
type

exp

{∫ T

0

h(t)dWt −
1
2

∫ T

0

(h(t))2dt

}
for a deterministic process (ht)t∈[0,T ] ∈ L2([0, T ]) is dense in L2(Ω,FT , P ).

Proof (of the Itô representation theorem): Initially suppose that (Xt)t∈[0,T ]

has the Doléans exponential form

Xt = exp
{∫ t

0

h(s)dWs −
1
2

∫ t

0

(h(s))2ds
}

∀t ∈ [0, T ],

for a deterministic process (ht)t∈[0,T ] ∈ L2([0, T ]). Also define

Y (t) = exp
{∫ t

0

h(s)dWs −
1
2

∫ t

0

(h(s))2ds
}

∀t ∈ [0, T ].

Then, invoking Itô’s formula we obtain

dY (t)

= Y (t)
(
h(t)dWt −

1
2
(h(t))2dt

)
+

1
2
Y (t)(h(t))2dt = Y (t)h(t)dWt.(3.35)

Therefore

Y (t) = 1 +
∫ t

0

Y (s)h(s)dWs, t ∈ [0, T ],

and in particular
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X(T ) = Y (T ) = 1 +
∫ T

0

Y (s)h(s)dWs,

so that, after taking expectations, we obtain E[X(T )] = 1. Now by Lemma
3.65 we may extend the proof to any arbitrary (Xt)t∈[0,T ] ∈ L2(Ω,FT , P ).
To prove that the process (ht)t∈[0,T ] is unique, suppose that two processes
h1

t , h
2
t ∈ C([0, T ]) exist with

X(T ) = E[X(0)] +
∫ T

0

h1(t)dWt = E[X(0)] +
∫ T

0

h2(t)dWt.

Subtracting the two integrals and taking expectation of the squared difference,
we obtain

E

⎡⎣(∫ T

0

(
h1(t)− h2(t)

)
dWt

)2
⎤⎦ = 0,

and using the Itô isometry we obtain∫ T

0

E
[
h1(t)− h2(t)

]2
dt = 0,

implying that h1
t = h2

t almost surely for all t ∈ [0, T ]. �

3.7 Multidimensional Stochastic Differentials

Definition 3.66. Let (ut)0≤t≤T be an m-dimensional process and

a : [0, T ]×Ω → Rm,a ∈ C1W([0, T ]),
b : [0, T ]×Ω → Rmn, b ∈ C1W([0, T ]).

The stochastic differential du(t) of u(t) is given by

du(t) = a(t)dt+ b(t)dW(t) (3.36)

if, for all 0 ≤ t1 < t2 ≤ T

u(t2)− u(t1) =
∫ t2

t1

a(t)dt+
∫ t2

t1

b(t)dW(t).

Remark 3.67. Under the assumptions of the preceding definition, we obtain
for 1 ≤ i ≤ m

dui(t) = ai(t)dt+
n∑

j=1

(bij(t)dWj(t)).
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Example 3.68. Suppose that the coefficients a11 and a12 of the system{
du1(t) = a11(t)u1(t)dt+ a12(t)u2(t)dt,
du2(t) = a21(t)u1(t)dt+ a22(t)u2(t)dt

(3.37)

are subject to the noise

a11(t)dt = a0
11(t)dt+ ã11(t)dW1(t),

a12(t)dt = a0
12(t)dt+ ã12(t)dW2(t).

The first equation of (3.37) becomes

du1(t)
= (a0

11(t)u1(t) + a0
12(t)u2(t))dt+ ã11(t)u1(t)dW1(t) + ã12(t)u2(t)dW2(t)

= ā1(t)dt+ b11(t)dW1(t) + b12(t)dW2(t),

where the meaning of the new parameters ā1, b11, and b12 is obvious. Now, if
both a21 and a22 are affected by the noise

a21(t)dt = a0
21(t)dt+ ã21(t)dW3(t),

a22(t)dt = a0
22(t)dt+ ã22(t)dW4(t),

then the second equation of (3.37) becomes

du2(t) = ā2(t)dt+ b23(t)dW3(t) + b24(t)dW4(t).

In this case the matrix

b =
(
b11 b12 0 0
0 0 b23 b24

)
is of order 2× 4, but, in general, it is possible that m > n.

Theorem 3.69. (multidimensional Itô formula). Let f(t,x) : R+ × Rm →
R be continuous with the derivatives fxi , fxixj , and ft. Let u(t) be an m-
dimensional process, endowed with the stochastic differential

du(t) = a(t)dt+ b(t)dW(t),

where a = (a1, . . . , am)′ ∈ CW([0, T ]) and b = (bij)1≤i≤m,1≤j≤n ∈ CW([0, T ]).
Then f(t,u(t)) has the stochastic differential

df(t,u(t)) =

(
ft(t,u(t)) +

m∑
i=1

fxi(t,u(t))ai(t)

.+
1
2

n∑
l=1

m∑
i,j=1

fxixj (t,u(t))bil(t)bjl(t)

⎞⎠ dt
+

n∑
l=1

m∑
i=1

fxi(t,u(t))bil(t)dWl(t). (3.38)
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If we put aij = (bb′)ij, i, j = 1, . . . ,m:

L =
1
2

m∑
i,j=1

aij
∂2

∂xi∂xj
+

m∑
i=1

ai
∂

∂xi
+
∂

∂t

and introduce the gradient operator

∇x =
(
∂

∂x1
, . . . ,

∂

∂xm

)′
,

then, in vector notation, equation (3.38) can be written as

df(t,u(t)) = Lf(t,u(t))dt+∇xf(t,u(t)) · b(t)dW(t), (3.39)

where ∇xf(t,u(t)) · b(t)dW(t) is the scalar product of two m-dimensional
vectors.

Proof: Employing the following two lemmas the proof is similar to the one-
dimensional case. (See, e.g., Baldi (1984).) �

Lemma 3.70. If (W1(t))t≥0 and (W2(t))t≥0 are two independent Wiener pro-
cesses, then

d(W1(t)W2(t)) = W1(t)dW2(t) +W2(t)dW1(t). (3.40)

Proof: Since W1(t) and W2(t) are independent, it is easily shown that Wt =
1√
2
(W1(t) +W2(t)) is also a Wiener process. Moreover, for a Wiener process

W (t) we have
dW 2(t) = dt+ 2W (t)dW (t). (3.41)

Hence from
W1(t)W2(t) = W 2(t)− 1

2
W 2

1 (t)− 1
2
W 2

2 (t),

it follows that W1(t)W2(t) is endowed with the differential

d(W1(t)W2(t))

= dW 2(t)− 1
2
dW 2

1 (t)− 1
2
dW 2

2 (t)

= dt+ 2W (t)dW (t)− 1
2
dt−W1(t)dW1(t)−

1
2
dt−W2(t)dW2(t)

= 2
(

1
2
W1(t)dW1(t) +

1
2
W1(t)dW2(t) +

1
2
W2(t)dW1(t) +

1
2
W2(t)dW2(t)

)
−W1(t)dW1(t)−W2(t)dW2(t),

completing the proof. �
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Lemma 3.71. If W1, . . . ,Wn are independent Wiener processes and

dui(t) = ai(t)dt+
n∑

j=1

(bij(t)dWj(t)), i = 1, 2,

then

d(u1u2)(t) = u1(t)du2(t) + u2(t)du1(t) +
n∑

j=1

b1jb2jdt. (3.42)

Proof: It is analogous to the proof of Proposition 3.51 (see, e.g., Baldi (1984)).
Use equations (3.40), (3.41), (3.18), and approximate the resulting polynomi-
als. �

Remark 3.72. Note that equation (3.41) is not a particular case of (3.40) (in
the latter, independence is not given), whereas equation (3.42) generalizes
both.

Remark 3.73. The multidimensional Itô formula (3.39) asserts that the pro-
cesses

f(t,u(t))− f(0,u(0))

and ∫ t

0

Lf(s,u(s))ds+
∫ t

0

∇xf(s,u(s)) · b(s)dW(s)

are stochastically equivalent. They are both continuous and so their trajec-
tories coincide almost surely. Taking expectations on both sides, we therefore
get

E[f(t,u(t))]− E[f(0,u(0))] = E

[∫ t

0

Lf(s,u(s))ds
]
.

3.8 Exercises and Additions

3.1. Let (Xt)t∈R+ be a Brownian motion in R, X0 = 0. Prove directly from
the definition of Itô integrals that∫ t

0

X2
sdXs =

1
3
X3

t −
∫ t

0

Xsds.

3.2. Prove Corollary 3.54.

3.3. Prove Lemma 3.71.

3.4. Prove the multidimensional Itô formula (3.39).
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3.5. Let (Wt)t∈R+ denote an n-dimensional Brownian motion and let f : Rn →
R be C2. Use Itô’s formula to prove that

df(Wt) = ∇f(Wt)dWt +
1
2
 f(Wt)dt,

where ∇ denotes the gradient and  =
∑n

i=1
∂2

∂x2
i

is the Laplace operator.

3.6. Let (Wt)t∈R+ be a one-dimensional Brownian motion withW0 = 0. Using
Itô’s formula, show that

E[W k
t ] =

1
2
k(k − 1)

∫ t

0

E[W k−2
s ]ds, k ≥ 2, t ≥ 0.

3.7. Use Itô’s formula to write the following stochastic process ut in the stan-
dard form

dut = a(t)dt+ b(t)dWt

for a suitable choice of a ∈ Rn, b ∈ Rnm, and dimensions n,m:

1. u1(t,W1(t)) = 3 + 2t+ e2W1(t) (W1(t) is one-dimensional);
2. u2(t,Wt) = W 2

2 (t) +W 2
3 (t) (Wt = (W2(t),W3(t)) is two-dimensional);

3. u3(t,Wt) = ln(u1(t)u2(t));
4. u4(t,Wt) = exp

{
u1(t)
u2(t)

}
;

5. u5(t,Wt) = (5 + t, t+ 4Wt) (Wt one-dimensional);
6. u6(t,Wt) = (W1(t)+W2(t)−W3(t),W 2

2 (t)−W1(t)W2(t)+W3(t)) (Wt =
(W1(t),W2(t),W3(t)) is three-dimensional).

3.8. Let (Wt)t∈R+ be an n-dimensional Brownian motion starting at x �= 0.
Are the processes

ut = ln
(
|Wt|2

)
,

vt =
1
|Wt|

martingales? If not, find two processes (ut)t∈R+ , (vt)t∈R+ such that

ut − ut,

vt − vt

are martingales.

3.9. Let (Xt)t∈R+ be an Itô integral

dXt = vtdWt,

where vt ∈ Rn and (Wt)t∈R+ is an n-dimensional Brownian motion.

1. Give an example to show that X2
t , in general, is not a martingale.
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2. Prove that

Mt = X2
t −
∫ t

0

|vs|2ds

is a martingale. The process 〈X,X〉t =
∫ t

0
|vs|2ds is called the quadratic

variation process of the martingale Xt. (See the next chapter for a more
comprehensive definition.)

3.10. (exponential martingales). Let dZt = αdt + βdWt, Z0 = 0 where α, β
are constants and (Wt)t∈R+ is a one-dimensional Brownian motion. Define

Mt = exp
{
Zt −

(
α+

1
2
β2

)
t

}
= exp

{
−1

2
β2t+ βWt

}
.

Use Itô’s formula to prove that

dMt = βMtdWt.

In particular, M = (Mt)t∈R+ is a martingale.

3.11. Let (Wt)t∈R+ be a one-dimensional Brownian motion, and let φ ∈
L2

loc[0, T ] for any T ∈ R+. Show that for any θ ∈ R,

Xt := exp
{
iθ

∫ t

0

φ(s)dWs +
1
2
θ2
∫ t

0

φ2(s)ds
}

is a local martingale.

3.12. With reference to the preceding problem 3.11, assume now that

P

(∫ +∞

0

φ2(s)ds = +∞
)

= 1,

and let

τt := min
{
uR+|

∫ u

0

φ2(s)ds ≥ t
}
, t ∈ R+.

Show that (Xτt)t∈R+ is an Fτt-martingale.

3.13. With reference to problem 3.12, let

Zt :=
∫ t

0

φ(s)dWs, t ∈ R+.

Show that (Zτt)t∈R+ has independent increments and Zτt −Zτs ∼ N(0, t−s)
for any 0 < s < t < +∞. (Hint: Show that if F ′ ⊂ F ′′ ⊂ F are σ-fields on
the probability space (Ω,F , P ) and Z is an F ′′-measurable random variable,
such that

E
[
eiθZ

∣∣F ′] = e−θ2σ2/2,

then Z is independent of F ′ and Z ∼ N(0, σ2).)
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3.14. With reference to problem 3.13, show that the process (Zτt
)t∈R+ is a

standard Brownian motion.

3.15. Let (Wt)t∈R+ be a one-dimensional Brownian motion. Formulate suit-
able conditions on u, v such that the following holds:

Let dZt = utdt+ vtdWt, Z0 = 0 be a stochastic integral with values in R.
Define

Mt = exp
{
Zt −

∫ t

0

[
us +

1
2
vsv

′
s

]
ds

}
.

Then M = (Mt)t∈R+ is a martingale.

3.16. Let (Wt)t∈R+ be a one-dimensional Brownian motion. Show that for
any real function, which is continuous up to its second derivative, the process(

f(Wt)−
1
2

∫ t

0

f ′′(Ws)ds
)

t∈R+

is a local martingale.

3.17. Let X be a time-homogeneous Markov process with transition proba-
bility measure Pt(x, A), x ∈ Rd, A ∈ BRd , with d ≥ 1. Given a test function
ϕ, let

u(t,x) := Ex[ϕ(X(t))] =
∫

Rd

ϕ(y)Pt(x, dy), t ∈ R+, x ∈ Rd.

Show that, under rather general assumptions, the function u satisfies the so-
called Kolmogorov equation

∂

∂t
u(t,x)

=
1
2

d∑
i,j=1

qij(x)
∂2

∂xi∂xj
u(t,x)

+
d∑

j=1

fj(x)
∂

∂xj
u(t,x)

+
∫

Rd

⎛⎝u(t,x + y)− u(t,x)− 1
1 + |y|2

d∑
j=1

yj
∂

∂xj
u(t,x)

⎞⎠ ν(x, dy)

for t > 0, x ∈ Rd, subject to the initial condition

u(0,x) = φ(x), x ∈ Rd.

Here f and Q are functions with values being, respectively, vectors in Rd and
symmetric, nonnegative d × d matrices, f : Rd → Rd and Q := (qij) : Rd →
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L+(Rd,Rd), and ν is a Lévy measure, i.e., ν : Rd → M(Rd \ {0}), being
M(Rd \ {0}) the set of nonnegative measures on Rd \ {0} such that∫

Rd

(|y2| ∧ 1)ν(x, dy) < +∞.

The functions f,Q, and ν are known as the drift vector, diffusion matrix, and
jump measure, respectively. Show that the process X has continuous trajec-
tories whenever ν ≡ 0.
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Stochastic Differential Equations

4.1 Existence and Uniqueness of Solutions

Definition 4.1. Let (Wt)t∈R+ be a Wiener process on the probability space
(Ω,F , P ), equipped with the filtration (Ft)t∈R+ , Ft = σ(Ws, 0 ≤ s ≤ t).
Furthermore, let a(t, x), b(t, x) be measurable functions in [0, T ] × R and
(u(t))t∈[0,T ] a stochastic process. Now u(t) is said to be the solution of the
stochastic differential equation

du(t) = a(t, u(t))dt+ b(t, u(t))dWt, (4.1)

with the initial condition

u(0) = u0 a.s. (u0 a random variable), (4.2)

if

1. u(0) is F0-measurable;
2. |a(t, u(t))| 12 , b(t, u(t)) ∈ C1([0, T ]);
3. u(t) is differentiable and du(t) = a(t, u(t))dt+ b(t, u(t))dWt,

thus u(t) = u(0) +
∫ t

0
a(s, u(s))ds+

∫ t

0
b(s, u(s))dWs, t ∈]0, T ].

Remark 4.2. If u(t) is the solution of (4.1), (4.2), then it is nonanticipatory
(by point 3 of the preceding definition and as already observed in Remark
3.48).

Lemma 4.3. (Gronwall). If φ(t) is an integrable, nonnegative function, de-
fined on t ∈ [0, T ], with

φ(t) ≤ α(t) + L
∫ t

0

φ(s)ds, (4.3)

where L is a positive constant and α(t) is an integrable function, then

φ(t) ≤ α(t) + L
∫ t

0

eL(t−s)α(s)ds.
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Proof: Putting ψ(t) = L
∫ t

0
φ(s)ds as well as z(t) = ψ(t)e−Lt, then z(0) =

ψ(0) = 0, and moreover

z′(t) = ψ′(t)e−Lt − Lψ(t)e−Lt = Lφ(t)e−Lt − Lψ(t)e−Lt

≤ Lα(t)e−Lt + Lψ(t)e−Lt − Lψ(t)e−Lt.

Therefore z′(t) ≤ Lα(t)e−Lt and after integration, z(t) ≤ L
∫ t

0
α(s)e−Lsds.

Hence

ψ(t)e−Lt ≤ L
∫ t

0

α(s)e−Lsds⇒ ψ(t) ≤ L
∫ t

0

eL(t−s)α(s)ds,

but, by (4.3), ψ(t) = L
∫ t

0
φ(s)ds ≥ φ(t)− α(t), completing the proof. �

Theorem 4.4. (existence and uniqueness). Resorting to the notation of the
preceding definition, if the following conditions are satisfied:

1. for all t ∈ [0, T ] and all (x, y) ∈ R×R: |a(t, x)−a(t, y)|+|b(t, x)−b(t, y)| ≤
K∗|x− y|;

2. for all t ∈ [0, T ] and all x ∈ R: |a(t, x)| ≤ K(1+ |x|), |b(t, x)| ≤ K(1+ |x|)
(K∗,K constants);

3. E[|u0|2] <∞;
4. u0 is independent of FT (which is equivalent to requiring u0 to be F0-

measurable),

then there exists a unique (u(t))t∈[0,T ], solution of (4.1), (4.2), such that

• (u(t))t∈[0,T ] is continuous almost surely (thus almost every trajectory is
continuous);

• (u(t))t∈[0,T ] ∈ C([0, T ]).

Remark 4.5. If (u1(t))t∈[0,T ] and (u2(t))t∈[0,T ] are two solutions of (4.1), (4.2),
belonging to C([0, T ]), then the uniqueness of a solution is understood in the
sense that

P

(
sup

0≤t≤T
|u1(t)− u2(t)| = 0

)
= 1.

Proof (of Theorem 4.4): Uniqueness. Let u1(t) and u2(t) be solutions of (4.1),
(4.2) belonging to C([0, T ]). Then, by point 3 of Definition 4.1,

u1(t)− u2(t)

=
∫ t

0

[a(s, u1(s))− a(s, u2(s))]ds+
∫ t

0

[b(s, u1(s))− b(s, u2(s))]dWs

=
∫ t

0

ã(s)ds+
∫ t

0

b̃(s)dWs, t ∈]0, T ],

where ã(s) = a(s, u1(s)) − a(s, u2(s)) and b̃(s) = b(s, u1(s)) − b(s, u2(s)).
Because, in general, (a+ b)2 ≤ 2(a2 + b2), we obtain
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|u1(t)− u2(t)|2 ≤ 2
(∫ t

0

ã(s)ds
)2

+ 2
(∫ t

0

b̃(s)dWs

)2

,

and by the Cauchy–Schwarz inequality(∫ t

0

ã(s)ds
)2

≤ t
(∫ t

0

|ã(s)|2ds
)
,

therefore

E

[(∫ t

0

ã(s)ds
)2
]
≤ tE

[∫ t

0

|ã(s)|2ds
]
.

Moreover, by point 2 of Theorem 4.4

E

[∫ T

0

(b(s, ui(s)))2ds

]
≤ E

[∫ T

0

(K(1 + |ui(s)|))2ds
]

≤ 2K2E

[∫ T

0

(1 + |ui(s)|2)ds
]
< +∞

for i = 1, 2 and because ui(s) ∈ C. Now, this shows b(s, ui(s)) ∈ C for i = 1, 2
and thus b̃(s) ∈ C. Then, by Proposition 3.19

E

[(∫ t

0

b̃(s)dWs

)2
]

= E

[∫ t

0

(b̃(s))2ds
]
,

from which it follows that

E[(u1(t)− u2(t))2] ≤ 2tE
[∫ t

0

(ã(s))2ds
]

+ 2E
[∫ t

0

(b̃(s))2ds
]
.

By point 1 of Theorem 4.4, we have that

|ã(s)|2 ≤ (K∗)2|u1(s)− u2(s)|2,
|b̃(s)|2 ≤ (K∗)2|u1(s)− u2(s)|2,

and therefore

E[|u1(t)− u2(t)|2]

≤ 2t(K∗)2
∫ t

0

E[|u1(t)− u2(t)|2]ds+ 2(K∗)2
∫ t

0

E[|u1(t)− u2(t)|2]ds

≤ 2T (K∗)2
∫ t

0

E[|u1(t)− u2(t)|2]ds+ 2(K∗)2
∫ t

0

E[|u1(t)− u2(t)|2]ds

= 2(K∗)2(T + 1)
∫ t

0

E[|u1(t)− u2(t)|2]ds.
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Since, by Gronwall’s Lemma 4.3,

E[|u1(t)− u2(t)|2] = 0 ∀t ∈ [0, T ],

we get
u1(t)− u2(t) = 0, P -a.s. ∀t ∈ [0, T ]

or, equivalently, for all t ∈ [0, T ]:

∃Nt ⊂ Ω,P (Nt) = 0 such that ∀ω /∈ Nt : u1(t)(ω)− u2(t)(ω) = 0.

Because the type of processes that we consider are separable, there exists an
M ⊂ [0, T ], a separating set of (u1(t) − u2(t))t∈[0,T ], countable and dense in
[0, T ], such that, for all t ∈ [0, T ]

∃(tn)n∈N ∈MN such that lim
n
tn = t, P -a.s.

and
lim
n

(u1(tn)− u2(tn)) = u1(t)− u2(t), P -a.s.

(and the empty set A, where this does not hold, does not depend on t). Putting
N =

⋃
t∈M Nt, we obtain P (N) = 0 and

∀ω /∈ N : u1(t)− u2(t) = 0, t ∈M,

hence
∀t ∈ [0, T ], ∀ω /∈ N ∪A : u1(t)− u2(t) = 0

and thus

P

(
sup

0≤t≤T
|u1(t)− u2(t)| = 0

)
= 1.

Existence. We will prove the existence of a solution u(t) by the method of
sequential approximations. We define{
u0(t) = u0,

un(t) = u0 +
∫ t

0
a(s, un−1(s))ds+

∫ t

0
b(s, un−1(s))dWs, ∀t ∈ [0, T ], n ∈ N∗.

Assuming u0 being F0-measurable and by point 3 of Theorem 4.4, it is obvious
that u0 ∈ C([0, T ]). By induction, we will now show both that

∀n ∈ N : E[|un+1(t)− un(t)|2] ≤ (ct)n+1

(n+ 1)!
, (4.4)

where c = max{4K2(T + 1)(1 + E[|u0|2]), 2(K∗)2(T + 1)}, and

∀n ∈ N : un+1 ∈ C([0, T ]). (4.5)

By conditions 1 and 2 of Theorem 4.4, we obtain
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E[|b(s, u0)|2] ≤ E[K2(1 + |u0|)2] ≤ 2K2(1 + E[|u0|2]) < +∞,

where we make use of the generic inequality

(|x|+ |y|)2 ≤ 2|x|2 + 2|y|2, (4.6)

and thus
b(s, u0) ∈ C([0, T ]).

Analogously a(s, u0) ∈ C([0, T ]), resulting in u1 being nonanticipatory and
well posed. As a further result of (4.6), we have

|u1(t)− u0|2 =
∣∣∣∣∫ t

0

a(s, u0)ds+
∫ t

0

b(s, u0)dWs

∣∣∣∣2
≤ 2
∣∣∣∣∫ t

0

a(s, u0)ds
∣∣∣∣2 + 2

∣∣∣∣∫ t

0

b(s, u0)dWs

∣∣∣∣2
and by the Schwarz inequality∣∣∣∣∫ t

0

a(s, u0)ds
∣∣∣∣2 ≤ t ∫ t

0

|a(s, u0)|2ds ≤ T
∫ t

0

|a(s, u0)|2ds.

Moreover, by Proposition 3.19, we have

E

[∣∣∣∣∫ t

0

b(s, u0)dWs

∣∣∣∣2
]

= E

[∫ t

0

|b(s, u0)|2ds
]
.

Therefore, as a conclusion and by point 2 of Theorem 4.4

E[|u1(t)− u0|2] ≤ 2TE
[∫ t

0

|a(s, u0)|2ds
]

+ 2E
[∫ t

0

|b(s, u0)|2ds
]

≤ 2TE
[∫ t

0

K2(1 + |u0|)2ds
]

+ 2E
[∫ t

0

K2(1 + |u0|)2ds
]

= (2TK2 + 2K2)E
[∫ t

0

(1 + |u0|)2ds
]

= 2K2(T + 1)tE[(1 + |u0|)2]
≤ 4K2(T + 1)t(1 + E[|u0|2]) = ct,

where the last inequality is a direct result of (4.6). Hence (4.4) holds for n = 1,
from which it follows that u1 ∈ C([0, T ]). Supposing now that (4.4) and (4.5)
hold for n, we will show that this implies that they also hold for n + 1. By
the induction hypotheses un ∈ C([0, T ]). Then, by point 2 of Theorem 4.4 and
proceeding as before, we obtain that

a(s, un(s)) ∈ C([0, T ]) and b(s, un(s)) ∈ C([0, T ]).
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Therefore un+1 is well posed and nonanticipatory. We thus get

| un+1(t)− un(t)|2

≤
(∫ t

0

|a(s, un(s))− a(s, un−1(s))|ds

+
∣∣∣∣∫ t

0

(b(s, un(s))− b(s, un−1(s)))dWs

∣∣∣∣)2

≤ 2
(∫ t

0

|a(s, un(s))− a(s, un−1(s))|ds
)2

+2
(∫ t

0

(b(s, un(s))− b(s, un−1(s)))dWs

)2

, (4.7)

and by the Schwarz inequality(∫ t

0

|a(s, un(s))− a(s, un−1(s))|ds
)2

≤ t
∫ t

0

|a(s, un(s))− a(s, un−1(s))|2ds

≤ T (K∗)2
∫ t

0

|un(s)− un−1(s)|2ds,

where the last inequality is due to point 1 of Theorem 4.4. Moreover, by
Proposition 3.19,

E

[(∫ t

0

(b(s, un(s))− b(s, un−1(s)))dWs

)2
]

= E

[∫ t

0

|b(s, un(s))− b(s, un−1(s))|2ds
]

≤ (K∗)2E
[∫ t

0

|un(s)− un−1(s)|2ds
]
,

again by point 1. Now we obtain

E[|un+1(t)− un(t)|2] ≤ 2T (K∗)2E
[∫ t

0

|un(s)− un−1(s)|2ds
]

+2(K∗)2E
[∫ t

0

|un(s)− un−1(s)|2ds
]

≤ cE
[∫ t

0

|un(s)− un−1(s)|2ds
]

≤ c
∫ t

0

(cs)n

n!
ds =

(ct)n+1

(n+ 1)!
,

where the last inequality is due to the induction hypotheses. Hence the proof
of (4.4) is complete and so un+1 ∈ C([0, T ]). Moreover, from (4.6) it follows
that
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sup
0≤t≤T

|un+1(t)− un(t)|2 ≤ 2
(∫ t

0

|a(s, un(s))− a(s, un−1(s))|ds
)2

+2 sup
0≤t≤T

∣∣∣∣∫ t

0

(b(s, un(s))− b(s, un−1(s)))dWs

∣∣∣∣2 ,
where, after taking expectations and recalling point 1 of Proposition 3.40

E

[
sup

0≤t≤T
|un+1(t)− un(t)|2

]
≤ 2E

⎡⎣(∫ T

0

|a(s, un(s))− a(s, un−1(s))|ds
)2
⎤⎦

+8E

[∫ T

0

|b(s, un(s))− b(s, un−1(s))|2ds
]

≤ 2T (K∗)2E

[∫ T

0

|un(s)− un−1(s)|2ds
]

+8(K∗)2E

[∫ T

0

|un(s)− un−1(s)|2ds
]

= 2T (K∗)2
∫ T

0

E[|un(s)− un−1(s)|2]ds

+8(K∗)2
∫ T

0

E[|un(s)− un−1(s)|2]ds

≤ (cT )n

n!
(2(K∗)T 2 + 8(K∗)2T ),

where the last equality is due to 1 of Theorem 4.4 as well as the Schwarz
inequality, and the last inequality, is due to (4.4). Hence

E

[
sup

0≤t≤T
|un+1(t)− un(t)|2

]
≤ c∗ (cT )n

n!
, (4.8)

with c∗ = 2(K∗)2T 2 + 8(K∗)2T . Because the terms are positive

sup
0≤t≤T

|un+1(t)− un(t)|2 =
(

sup
0≤t≤T

|un+1(t)− un(t)|
)2

,

and therefore

P

(
sup

0≤t≤T
|un+1(t)− un(t)| > 1

2n

)
= P

(
sup

0≤t≤T
|un+1(t)− un(t)|2 > 1

22n

)
≤ E

[
sup

0≤t≤T
|un+1(t)− un(t)|2

]
22n

≤ c∗ (cT )n

n!
22n,
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where the last two inequalities are due to the Markov inequality and (4.8),
respectively. Because the the progression

∑∞
n=1

(cT )n

n! 22n converges, so does

∞∑
n=1

P

(
sup

0≤t≤T
|un+1(t)− un(t)| > 1

2n

)
,

and, by the Borel–Cantelli Lemma 1.98, we have that

P

(
lim sup

n

{
sup

0≤t≤T
|un+1(t)− un(t)| > 1

2n

})
= 0.

Therefore, putting A = lim supn{sup0≤t≤T |un+1(t) − un(t)| > 1
2n }, for all

ω ∈ (Ω −A):

∃N = N(ω) such that ∀n ∈ N,n ≥ N(ω)⇒ sup
0≤t≤T

|un+1(t)− un(t)| ≤ 1
2n
,

and u0 +
∑∞

n=0(un+1(t)− un(t)) converges uniformly on t ∈ [0, T ] with prob-
ability 1. Thus, given the sum u(t) and observing that u0 +

∑n−1
k=0(uk+1(t)−

uk(t)) = un(t), it follows that the sequence (un(t))n of the nth partial sum of
u0 +

∑∞
n=0(un+1(t)− un(t)) has the limit

lim
n→∞un(t) = u(t), P -a.s., uniformly on t ∈ [0, T ]. (4.9)

Analogous to the property of the processes un, it follows that the trajectories
of u(t) are continuous almost surely and nonanticipatory. We will now demon-
strate that u(t) is the solution of (4.1), (4.2). By point 1 of the same theorem,
we have∣∣∣∣∫ t

0

a(s, un−1(s))ds−
∫ t

0

a(s, u(s))ds
∣∣∣∣ ≤ K∗

∫ t

0

|un−1(s)− u(s)|ds,

and since we can take the limit of (4.9) inside the integral sign,∫ t

0

a(s, un−1(s))ds
n→
∫ t

0

a(s, u(s))ds, P -a.s., uniformly on t ∈ [0, T ],

and therefore also in probability. Moreover,

|b(s, un−1(s))− b(s, u(s))|2 ≤ (K∗)2|un−1(s)− u(s)|2,

and thus∫ t

0

|b(s, un−1(s))− b(s, u(s))|2ds n→ 0, P -a.s., uniformly on t ∈ [0, T ],

and therefore also in probability. Hence, by Theorem 3.29, we also have
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P − lim
n→∞

∫ t

0

b(s, un−1(s))dWs =
∫ t

0

b(s, u(s))dWs.

Then if we take the limit n→∞ of

un(t) = u0 +
∫ t

0

a(s, un−1(s))ds+
∫ t

0

b(s, un−1(s))dWs, (4.10)

by the uniqueness of the limit in probability, we obtain

u(t) = u0 +
∫ t

0

a(s, u(s))ds+
∫ t

0

b(s, u(s))dWs,

with u(t) as the solution of (4.1), (4.2). It remains to show that

E[u2(t)] <∞, for all t ∈ [0, T ].

Because, in general, (a+ b+ c)2 ≤ 3(a2 + b2 + c2), by (4.10), it follows that

E[u2
n(t)] ≤ 3

(
E[(u0)2] + E

[∣∣∣∣∫ t

0

a(s, un−1(s))ds
∣∣∣∣2
]

+E

[∣∣∣∣∫ t

0

b(s, un−1(s))dWs

∣∣∣∣2
])

≤ 3
(
E[(u0)2] + TE

[∫ t

0

|a(s, un−1(s))|2ds
]

+E
[∫ t

0

|b(s, un−1(s))|2ds
])
,

where the last relation holds due to the Schwarz inequality as well as point
3 of Proposition 3.19. From 2 of Theorem 4.4 and inequality (4.6), it further
follows that

|a(s, un−1(s))|2 ≤ K2(1 + |un−1(s)|)2 ≤ 2K2(1 + |un−1(s)|2),
|b(s, un−1(s))|2 ≤ K2(1 + |un−1(s)|)2 ≤ 2K2(1 + |un−1(s)|2).

Therefore

E[u2
n(t)] ≤ 3

(
E[(u0)2] + 2K2(T + 1)

∫ t

0

(1 + E[|un−1(s)|2])ds
)

≤ 3
(
E[(u0)2] + 2K2T (T + 1) + 2K2(T + 1)

∫ t

0

E[|un−1(s)|2]ds
)

≤ c(1 + E[(u0)2]) + c
∫ t

0

E[|un−1(s)|2]ds,

where c is a constant that only depends on K and T . Continuing with the
induction, we have
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E[u2
n(t)] ≤

(
c+ c2t+ c3

t2

2
+ · · ·+ cn+1 t

n

n!

)
(1 + E[(u0)2]),

and taking the limit n→∞,

lim
n→∞E

[
u2

n(t)
]
≤ cect

(
1 + E

[
(u0)2

])
≤ cecT

(
1 + E

[
(u0)2

])
.

Therefore, by Fatou’s Lemma A.26 and by 3 of Theorem 4.4, we obtain

E
[
u2(t)

]
≤ cecT

(
1 + E

[
(u0)2

])
< +∞, (4.11)

and hence (u(t))t∈[0,T ] ∈ C([0, T ]), completing the proof. �

Remark 4.6. By (4.11), it also follows that

sup
0≤t≤T

E
[
u2(t)

]
≤ cecT

(
1 + E

[
(u0)2

])
< +∞.

Remark 4.7. Theorem 4.4 continues to hold if its hypothesis 1 is substituted
by the following condition.

1′. For all n > 0, there exists aKn > 0 such that, for all (x1, x2) ∈ R2, |xi| ≤ n
i = 1, 2:

|a(t, x1)− a(t, x2)| ≤ Kn|x1 − x2|,
|b(t, x1)− b(t, x2)| ≤ Kn|x1 − x2|.

Proof: See, e.g., Friedman (1975). �

Example 4.8. We suppose that in (4.1) a(t, u(t)) = 0 and b(t, u(t)) = g(t)u(t).
Then the stochastic differential equation{

u0(t) = u0,
du(t) = g(t)u(t)dWt

has the solution

u(t) = u0 exp
{∫ t

0

g(s)dWs −
1
2

∫ t

0

g2(s)ds
}
.

Putting

X(t) =
∫ t

0

g(s)dWs −
1
2

∫ t

0

g2(s)ds

and Y (t) = exp{X(t)} = f(X(t)), then u(t) = u0Y (t) and thus du(t) =
u0dY (t). We will further show that u0dY (t) = g(t)u(t)dWt. Because

dX(t) = −1
2
g2(t)dt+ g(t)dWt,

with the help of Itô’s formula, we obtain
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dY (t) =
(
−1

2
g2(t)fx(X(t)) +

1
2
g2(t)fxx(X(t))

)
dt+ g(t)fx(X(t))dWt

=
(
−1

2
g2(t) exp{X(t)}+

1
2
g2(t) exp{X(t)}

)
dt+ g(t) exp{X(t)}dWt

= Y (t)g(t)dWt,

resulting in du(t) = u0Y (t)g(t)dWt = u(t)g(t)dWt.

Example 4.9. Three important stochastic differential equations that have wide
applicability, for instance in financial modeling, are

1. arithmetic Brownian motion{
u0(t) = u0,
du(t) = adt+ bdWt;

2. geometric Brownian motion{
u0(t) = u0,
du(t) = au(t)dt+ bu(t)dWt;

3. (mean-reverting) Ornstein–Uhlenbeck process{
u0(t) = u0,
du(t) = (a− bu(t))dt+ cdWt.

The derivations of the solutions of 1–3 resort to a number of standard solution
techniques for stochastic differential equations. Throughout, for the sake of
generality, we will denote the initial time by t0, but still assume that Wt0 = 0.

1. Direct integration gives

u(t) = u0 + a(t− t0) + bWt,

so that we can take the expectation and variance directly to obtain

E[u(t)] = u0 + a(t− t0), V ar[u(t)] = b2(t− t0).

2. We calculate the stochastic differential d lnu(t) with the help of Itô’s for-
mula (3.33) and obtain

d lnu(t) =
(
a− 1

2
b2
)
dt+ bdWt.

We can then integrate both sides directly, which results in

lnu(t) = lnu0 +
(
a− 1

2
b2
)

(t− t0) + bWt,

⇔ u(t) = u0 exp
{(

a− 1
2
b2
)

(t− t0) + bWt

}
. (4.12)
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To calculate its expectation we will require the expected value of ũ(t) =
exp{bWt}. We apply Itô’s formula to calculate the latter’s differential as

d exp{bWt} = dũ(t) = bũ(t)dWt +
1
2
b2ũ(t)dt,

which after direct integration, rearrangement and the taking of expecta-
tions results in

E[ũ(t)] = ũ(0) +
∫ t

t0

1
2
b2E[ũ(s)]ds.

Differentiating both sides with respect to t gives

dE[ũ(t)]
dt

=
1
2
b2E[ũ(t)],

which, after rearrangement and integration, results in

E[ũ(t)] = e
1
2 b2(t−t0).

Therefore, the expectation of (4.12) is

E[u(t)] = u0e(a− 1
2 b2)(t−t0)E

[
ebWt

]
= u0ea(t−t0). (4.13)

For the variance we employ the standard general result (1.4), so that we
only need to calculate E[(u(t))2]. For this, we proceed as above in deriving
the stochastic differential of (u(t))2, differentiating twice with respect to
t, integrating and taking expectations, to get

E[(u(t))2] = (u0)2 exp{2a(t− t0)}+
b2

2a
(exp{2a(t− t0)} − 1).

Therefore the variance of (4.12) is

V ar[u(t)] = E[(u(t))2]− (E[u(t)])2 =
b2

2a
(exp{2a(t− t0)} − 1).

3. To find the solution of the Ornstein–Uhlenbeck process, we require an
integrating factor φ = exp{bt}, so that

d(φu(t)) = φ(bu(t) + du(t)) = φ(adt+ cdWt).

Because the drift term, which depended on u(t), has dropped out, we can
integrate directly and, after rearrangement, obtain

u(t) =
a

b
exp{bt0}+u0 exp{−b(t− t0)}+c

∫ t

t0

exp{−b(t−s)}dWs. (4.14)

Therefore, the expectation of (4.14) is
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E[u(t)] =
a

b
exp{bt0}+ u0 exp{−b(t− t0)}

and for the variance we again resort to (1.4), so that we require E[(u(t))2].
Squaring (4.14) and taking expectations yields

E[(u(t))2] =
(a
b
ebt0 + u0e−b(t−t0)

)2

+
(
c

∫ t

t0

e−b(t−s)dWs

)2

= (E[u(t)])2 + c2
∫ t

t0

e−2b(t−s)ds,

where the last step is due to the Itô isometry (point 3 of Proposition 3.19).
Hence the variance of (1.4) is

V ar[u(t)] = (E[u(t)])2 + c2
∫ t

t0

exp{−2b(t− s)}ds− (E[u(t)])2

=
c2

2b
(1− exp{−2b(t− t0)}).

Remark 4.10. Let (Xt)t be a process that is continuous in probability, station-
ary, Gaussian, and Markovian. Then it is of the form Yt + c, where Yt is an
Ornstein–Uhlenbeck process and c a constant.

Proof: See Breiman (1968). �
We have seen in the proof of Theorem 4.4 that if E[(u0)2] < +∞, then

E[(u(t))2] < +∞. This result can be generalized as follows.

Theorem 4.11. Given the hypotheses of Theorem 4.4, if E[(u0)2n] < +∞ for
n ∈ N, then

1. E[(u(t))2n] ≤ (1 + E[(u0)2n])ect,
2. E[sup0≤s≤t |u(s)− u0|2n] ≤ c̄(1 + E[(u0)2n])tnect,

where c and c̄ are constants that only depend on K, T , and n.

Proof: For all N ∈ N we put

u0
N (ω) =

{
u0(ω) for |u0(ω)| ≤ N,
Nsgn{u0(ω)} for |u0(ω)| > N ;

aN (t, x) =
{
a(t, x) for |x| ≤ N,
a(t,Nsgn{x}) for |x| > N ;

bN (t, x) =
{
b(t, x) for |x| ≤ N,
b(t,Nsgn{x}) for |x| > N

and denote by uN (t) the solution of
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uN (0) = u0

N ,
duN (t) = aN (t, uN (t))dt+ bN (t, uN (t))dWt

(the solution will exist due to Theorem 4.4). Then, applying Itô’s formula to
f(uN (t)) = (uN (t))2n, we obtain

d(uN (t))2n

= (n(2n− 1)(uN (t))2n−2b2N (t, uN (t))
+2n(uN (t))2n−1aN (t, uN (t)))dt+ 2n(uN (t))2n−1bN (t, uN (t))dWt.

Hence

(uN (t))2n

= (u0
N )2n + n(2n− 1)

∫ t

0

(uN (s))2n−2b2N (s, uN (s))ds

+2n
∫ t

0

(uN (s))2n−1aN (s, uN (s))ds+ 2n
∫ t

0

(uN (s))2n−1bN (s, uN (s))dWs.

Since uN (t) = u0
N +
∫ t

0
aN (s, uN (s))ds+

∫ t

0
bN (s, uN (s))dWs, E[(u0

N )2n] < +∞
and both aN (t, x) and bN (t, x) are bounded, we have

E[(uN (t))2n] < +∞,

meaning8 (uN (t))n ∈ C([0, T ]). By 2 of Theorem 4.4 and by (a+b)2 ≤ 2(a2+b2)
it follows that

|aN (s, un(s))| ≤ K(1 + |uN (s)|),
|bN (s, un(s))|2 ≤ 2K2(1 + |uN (s)|2).

Moreover, because (uN (t))n ∈ C([0, T ]) we have

E

[
2n
∫ t

0

|uN (s)|2n−1|bN (s, uN (s))|dWs

]
= 0,

and therefore

E[u(t)2n] = E[(u0
N )2n] +

∫ t

0

E[(2nuN (s)aN (s, uN (s))

+n(2n− 1)b2N (s, uN (s)))uN (s)2n−2]ds

8 It suffices to make use of the following theorem for E[
� t

0
bN (s, uN (s))dWs]

2n:
Theorem. If fn ∈ C([0, T ]) for n ∈ �∗, then

E

�� T

0

f(t)dWt

�2n

≤ [n(2n − 1)]nT n−1E

�� T

0

f2n(t)dt

�
.

Proof: See, e.g., Friedman (1975). �
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≤ E[(u0
N )2n] + n(2n+ 1)

∫ t

0

E[(uN (s)aN (s, uN (s))

+b2N (s, uN (s)))uN (s)2n−2]ds

≤ E[(u0
N )2n] + n(2n+ 1)K2

∫ t

0

E[(1 + u2
N (s))uN (s)2n−2]ds,

where the first inequality follows when condition 2 of Theorem 4.4 is substi-
tuted by xa(t, x) + b2(t, x) ≤ K2(1 + x2) for all t ∈ [0, T ], and all x ∈ R. Now
since, in general, x2n−2 ≤ 1 + x2n, we have

uN (s)2n−2(1 + u2
N (s)) ≤ 1 + 2uN (s)2n.

Therefore,

E[uN (t)2n] ≤ E[(u0
N )2n] + n(2n+ 1)K2

∫ t

0

E[1 + 2uN (s)2n]ds

and, by putting φ(t) = E[uN (t)2n], we can write

φ(t) ≤ φ(0) + n(2n+ 1)K2

∫ t

0

(1 + 2φ(s))ds

= φ(0) + n(2n+ 1)K2t+ 2n(2n+ 1)K2

∫ t

0

φ(s) = α(t) + L
∫ t

0

φ(s)ds,

where α(t) = φ(0) + n(2n + 1)K2t and L = 2n(2n + 1)K2. By Gronwall’s
Lemma 4.3, we have that

φ(t) ≤ α(t) + L
∫ t

0

eL(t−s)α(s)ds,

and thus

E[uN (t)2n]

≤ E[(u0
N )2n] +

L

2
t+ L

∫ t

0

eL(t−s)

(
E[(u0

N )2n] +
L

2
s

)
ds

= E[(u0
N )2n] +

L

2
t− E[(u0

N )2n] + E[(u0
N )2n]eLt + LeLt

∫ t

0

e−LsL

2
sds

=
L

2
t+ E[(u0

N )2n]eLt − L
2
t− 1

2
eLt(e−Lt − 1) ≤ eLt(1 + E[(u0

N )2n]).

Therefore, point 1 holds for uN (t) (N ∈ N∗) and, taking the limit N →∞, it
also holds for u(t). For the proof of 2, see, e.g., Gihman and Skorohod (1972).

�
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4.2 The Markov Property of Solutions

In the preceding section we have shown that if a(t, x) and b(t, x) are measur-
able functions on (t, x) ∈ [0, T ]×R that satisfy conditions 1 and 2 of Theorem
4.4, then there exists a unique solution in C([0, T ]) of{

u(0) = u0 a.s.,
du(t) = a(t, u(t))dt+ b(t, u(t))dWt,

(4.15)

provided that the random variable u0 is independent of FT = σ(Ws, 0 ≤ s ≤
T ) and E[(u0)2] < +∞. Analogously, for all s ∈]0, T ], there exists a unique
solution in C([s, T ]) of{

u(s) = us a.s.,
du(t) = a(t, u(t))dt+ b(t, u(t))dWt,

(4.16)

provided that the random variable us is independent of Fs,T = σ(Wt−Ws, t ∈
[s, T ]) and E[(us)2] < +∞. (The proof is left to the reader as a useful exercise.)
Now, let t0 ≥ 0 and c be a random variable with u(t0) = c almost surely
and, moreover, c be independent of Ft0,T = σ(Wt −Wt0 , t ≥ t0) as well as
E[c2] < +∞. Under conditions 1 and 2 of Theorem 4.4 there exists a unique
solution {u(t), t ∈ [t0, T ]} of the stochastic differential equation (4.15) with
the initial condition u(t0) = c almost surely, and the following holds.

Lemma 4.12. If h(x, ω) is a real-valued function defined, for all (x, ω) ∈
R×Ω such that

1. h is BR ⊗F-measurable,
2. h is bounded,
3. for all x ∈ R : h(x, ·) is independent of Fs for all s ∈ [t0, T ],

then

∀s ∈ [t0, T ] : E[h(u(s), ·)|Fs] = E[h(u(s), ·)|u(s)] a.s. (4.17)

Proof: We limit ourselves to the case of h being decomposable of the form

h(x, ω) =
n∑

i=1

Yi(x)Zi(ω), (4.18)

with the Zi independent of Fs. In that case

E[h(u(s), ·)|Fs] =
n∑

i=1

E[Yi(u(s))Zi(·)|Fs] =
n∑

i=1

Yi(u(s))E[Zi(·)|Fs],

because Yi(u(s)) is Fs-measurable. Therefore

E[h(u(s), ·)|Fs] =
n∑

i=1

Yi(u(s))E[Zi(·)],
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and recapitulating, because σ(u(s)) ⊂ Fs, we have

E[h(u(s), ·)|Fs] =
n∑

i=1

Yi(u(s))E[Zi(·)|u(s)]

=
n∑

i=1

E[Yi(u(s))Zi(·)|u(s)] = E[h(u(s), ·)|u(s)].

It can be shown that every h that satisfies conditions 1, 2, and 3 can be
approximated by functions that are decomposable as in (4.18). �

Theorem 4.13. If (u(t))t∈[t0,T ] is a Markov process with respect to the filtra-
tion Ut = σ(u(s), t0 ≤ s ≤ t), then it satisfies the condition

∀B ∈ BR,∀s ∈ [t0, t[: P (u(t) ∈ B|Us) = P (u(t) ∈ B|u(s)) a.s. (4.19)

Proof: Putting Ft = σ(c,Ws, t0 ≤ s ≤ t), then u(t) is Ft-measurable, as can
be deduced from Theorem 4.4. Therefore, σ(u(t)) ⊂ Ft and thus Ut ⊂ Ft. In
order to prove (4.19), it is now sufficient to show that

∀B ∈ BR,∀s ∈ [t0, t[: P (u(t) ∈ B|Fs) = P (u(t) ∈ B|u(s)) a.s. (4.20)

Fixing B ∈ BR and s < t, we denote by u(t, s, x) the solution of (4.15)
with the initial condition u(s) = x a.s. (x ∈ R), and we define the mapping
h : R×Ω → R as

h(x, ω) = IB(u(t, s, x;ω)) for (x, ω) ∈ R×Ω.

h is bounded, and moreover, for all x ∈ R, h(x, ·) is independent of Fs, because
so is u(t, s, x;ω) (given that u(s) = x ∈ R is a certain event). Furthermore,
observing that if t0 < s, s ∈ [0, T ], we obtain

u(t, t0, c) = u(t, s, u(s, t0, c)) for t ≥ s, (4.21)

where c is the chosen random value. Equation (4.21) states the fact that
the solution of (4.15) with the initial condition u(t0) = c is identical to the
solution of the same equations with the initial condition u(s) = u(s, t0, c)
for t ≥ s (see, e.g., Baldi (1984)). Equation (4.21) is called the semigroup
property or dynamic system. (The proof of the property is left to the reader
as an exercise.) Now, because h(x, ω) = IB(u(t, s, x;ω)) satisfies conditions 1,
2, and 3 of Lemma 4.12 and by (4.21) we have h(u(s), ω) = IB(u(t;ω)). Then,
by (4.17), we obtain

P (u(t) ∈ B|Fs) = P (u(t) ∈ B|u(s)) a.s.,

completing the proof. �
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Remark 4.14. By (4.21) and (4.20) we also have

P (u(t) ∈ B|u(s)) = P (u(t, s, u(s)) ∈ B|u(s))

and, in particular,

P (u(t) ∈ B|u(s) = x) = P (u(t, s, u(s)) ∈ B|u(s) = x), x ∈ R.

Hence
P (u(t) ∈ B|u(s) = x) = P (u(t, s, x) ∈ B), x ∈ R. (4.22)

Theorem 4.15. If (u(t))t∈[t0,T ] is the solution of{
u(t0) = c a.s.,
du(t) = a(t, u(t))dt+ b(t, u(t))dWt,

defining, for all B ∈ BR and all t0 ≤ s < t ≤ T and all x ∈ R:

p(s, x, t, B) = P (u(t) ∈ B|u(s) = x) = P (u(t, s, x) ∈ B),

then p is a transition probability (of the Markov process u(t)).

Proof: We have to show that the conditions 1, 2 and 3 of Definition 2.97 are
satisfied.

Point 1. Fixing s and t such that t0 ≤ s < t ≤ T and B ∈ BR,

p(s, x, t, B) = P (u(t) ∈ B|u(s) = x) = E[IB(u(t))|u(s) = x], x ∈ R.

Then, as a property of conditional probabilities, p(s, ·, t, B) is BR-measurable.
Point 2 is true by the definition of p(s, x, t, B).
Point 3. Fixing s and t such that t0 ≤ s < t ≤ T and x ∈ R, p(s, x, t, B) =

P (u(t, s, x) ∈ B), for all B ∈ BR. This is the induced probability P of u(t, s, x).
Therefore, if ψ : R→ R is a bounded BR-measurable function, then∫

R

ψ(y)p(s, x, t, dy) =
∫

Ω

ψ(u(t, s, x, ω))dP (ω).

Now, let ψ(y) = p(r, y, t, B) with B ∈ BR, y ∈ R, t0 ≤ r < t ≤ T. Then, for
s < r, we have∫

R

p(r, y, t, B)p(s, x, r, dy)

=
∫

Ω

p(r, u(r, s, x, ω), t, B)dP (ω)

= E[p(r, u(r, s, x), t, B)] = E[P (u(t) ∈ B|u(r) = u(r, s, x))]
= E[E[IB(u(t))|u(r) = u(r, s, x)]] = E[IB(u(t))] = P (u(t) ∈ B)
= p(s, x, t, B).

In fact, u(t) satisfies (4.15) with the initial condition u(s) = x. �
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Remark 4.16. By Theorem 2.99, the knowledge of the solution u(t) of{
u(t0) = c a.s.,
du(t) = a(t, u(t))dt+ b(t, u(t))dWt

is equivalent to assigning the transition probability p to the process u(t) and
the distribution P0 of c.

Remark 4.17. Every stochastic differential equation generates Markov pro-
cesses in the sense that every solution is a Markov process.

Now, if we assume that in the assumptions of Definition 4.1 the coefficients
a and b do not explicitly depend upon time, i.e., (4.1) becomes

du(t) = a(u(t))dt+ b(u(t))dWt, (4.23)

then the stochastic differential equation is called autonomous and the exis-
tence and uniqueness Theorem 4.4 can be restated in the following way.

Theorem 4.18. Let a(x), b(x) be measurable functions in R with the property
that for some constant K > 0:

|a(x)− a(y)|+ |b(x)− b(y)| ≤ K|x− y|, x, y ∈ R.

Then for any u0 ∈ L2(Ω,F0, P ), independent of FT , there exists a unique
(u(t))t∈[0,T ], solution of the system (4.23) with initial condition (4.2), such
that

• (u(t))t∈[0,T ] is continuous almost surely;
• (u(t))t∈[0,T ] ∈ C([0, T ]).

Theorem 4.19. Implicit in the underlying hypotheses of Theorem 4.4 is that
if the stochastic differential equation is autonomous of form (4.23), then the
Markov process {u(t, t0, c), t ∈ [t0, T ]} is homogeneous.

Remark 4.20. The transition measure of the homogeneous process (ut)t∈[t0,T ]

is time-homogeneous, i.e.,

P (u(t+ s) ∈ A|u(t) = x) = P (u(s) ∈ A|u(0) = x) almost surely,

for any s, t ∈ R+, x ∈ R and A ∈ BR.

Theorem 4.21. If for{
u(t0) = c a.s.,
du(t) = a(t, u(t))dt+ b(t, u(t))dWt,

the hypotheses of Theorem 4.4 are satisfied, with a(t, x) and b(t, x) being con-
tinuous in (t, x) ∈ [0,∞]×R, then the solution u(t) is a diffusion process with
drift coefficient a(t, x) and diffusion coefficient b2(t, x).
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Proof: We prove point 1 of Lemma 2.123. Let u(t, s, x) be a solution of the
problem with initial value

u(s) = x a.s., x ∈ R (fixed), t ≥ s (s fixed).

By (4.22):

p(t, x, t+ h,A) = P (u(t+ h, t, u(t)) ∈ A|u(t) = x) = P (u(t+ h, t, x) ∈ A).

Hence p(t, x, t + h,A) is the probability distribution of the random variable
u(t+ h, t, x) and thus

E[f(u(t+ h, t, x)− x)] =
∫

R

f(y − x)p(t, x, t+ h, dy),

for every function f(z) such that9 |f(z)| ≤ K(1 + |z|2n), with α ≥ 1, K > 0,
and f(z) continuous. It is now sufficient to prove that

lim
h↓0

1
h
E[|u(t+ h, t, x)− x|4] = 0.

Given that z4 is of the preceding form f(z), the above limit follows from

1
h
E[|u(t+ h, t, x)− x|4] ≤ 1

h
Kh2(1 + |x|4)

by 2 of Theorem 4.11.
Now we prove 2 of Lemma 2.123. This is equivalent to showing that

lim
h↓0

1
h
E[u(t+ h, t, x)− x] = a(t, x).

Because u(t, t, x) = x almost surely, due to the definition of the stochastic
differential we obtain

E[u(t+ h, t, x)− x] = E

[∫ t+h

t

a(s, u(s, t, x))ds+
∫ t+h

t

b(s, u(s, t, x))dWs

]
.

But since E[
∫ t+h

t
b(s, u(s, t, x))dWs] = 0, we get

E[u(t+ h, t, x)− x] = E

[∫ t+h

t

a(s, u(s, t, x))ds

]

= E

[∫ t+h

t

(a(s, u(s, t, x))− a(s, x))ds
]

+
∫ t+h

t

a(s, x)ds

=
∫ t+h

t

E[a(s, u(s, t, x))− a(s, x)]ds+
∫ t+h

t

a(s, x)ds,

9 The assumption |f(z)| ≤ K(1 + |z|2n) implies that E[|f(z)|] ≤ K(1 + E[|z|2n])
and, by Theorem 4.11, E[|u(t + h, t, x)|2n] < +∞. Therefore, f(u(t + h, t, x)− x)
is integrable.
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after adding and subtracting the term a(s, x). Moreover, | · | being a convex
function, by the Schwarz inequality:∣∣∣∣∣

∫ t+h

t

E[a(s, u(s, t, x))− a(s, x)]ds
∣∣∣∣∣

≤
∫ t+h

t

E[|a(s, u(s, t, x))− a(s, x)|]ds

≤ h 1
2

(∫ t+h

t

(E[|a(s, u(s, t, x))− a(s, x)|])2ds
) 1

2

≤ h 1
2

(∫ t+h

t

E[|a(s, u(s, t, x))− a(s, x)|2]ds
) 1

2

.

Then, by hypothesis 1 of Theorem 4.4,

|a(s, u(s, t, x))− a(s, x)|2 ≤ (K∗)2|u(s, t, x)− x|2,

and, by 2 of 4.11:

E[|u(s, t, x)− x|2] ≤ Kh(1 + |x|2), K constant, positive,

and thus for h ↓ 0

1
h

∣∣∣∣∣
∫ t+h

t

E[a(s, u(s, t, x))− a(s, x)]ds
∣∣∣∣∣ ≤ 1

h
h

1
2K∗(hKh(1 + |x|2)) 1

2 → 0.

Hence, as a conclusion, by the mean value theorem for t ≤ r ≤ t+ h:

lim
h↓0

1
h
E[u(t+ h, t, x)− x] = lim

h↓0
1
h

∫ t+h

t

a(s, x)ds = lim
h↓0

1
h
a(r, x) = a(t, x).

Lastly, we have to show that the assumptions of Lemma 2.123 are satisfied
(see, e.g., Friedman (1975)). �

The Strong Markov Property of Solutions of Stochastic
Differential Equations

Lemma 4.22. By hypotheses 1. and 2. of Theorem 4.4, we have that

∀R > 0,∀T > 0 : E

[
sup

r≤t≤T
|u(t, s, x)− u(t, r, y)|2

]
≤ C(|x−y|2 + |s−r|),

for |x| ≤ R, |y| ≤ R, 0 ≤ s ≤ r ≤ T , where C is a constant that depends on
R and T .
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Proof: See, e.g., Friedman (1975). �
Theorem 4.23. By hypotheses 1 and 2 of Theorem 4.4, (u(t, s, x))t∈[s,T ], the
solution of

du(t) = a(t, u(t))dt+ b(t, u(t))dWt

satisfies the Feller property and hence the strong Markov property.

Proof: Let f ∈ BC(R). By the Lebesgue theorem, we have

E[f(u(t+ r, s, x))]→ E[f(u(t+ s, s, x))] for r → s. (4.24)

Moreover, by Lemma 4.22, and again by the Lebesgue theorem:

E[f(u(t+ r, r, y))]− E[f(u(t+ r, s, x))]→ 0 for y → x, r → s; (4.25)

therefore,

E[f(u(t+ r, r, y))]− E[f(u(t+ s, s, x))]→ 0 for y → x, r → s.

Hence (s, x) →
∫

R
p(s, x, s + t, dy)f(y) is continuous and so (u(t, s, x))t∈[s,T ]

satisfies the Feller property and, by Theorem 2.99 (because it is continuous)
has the strong Markov property. �

4.3 Girsanov Theorem

Theorem 4.24. (Lévy characterization of Brownian motion). Let (Xt)t∈R+

be a real-valued continuous random process on a probability space (Ω,F , P ).
Then the following two statements are equivalent:

1. (Xt)t∈R+ is a P -Brownian motion;
2. (Xt)t∈R+ and X2

t −t are P -martingales (and with respect to their respective
natural filtrations).

Proof: See, e.g., Ikeda and Watanabe (1989). �
Example 4.25. The Wiener process (Wt)t∈R+ is a continuous square-integrable
martingale, with Wt−Ws ∼ N(0, t−s), for all 0 ≤ s < t. To show that W 2

t −t
is also a martingale we need to show that either

E[W 2
t − t|Fs] = W 2

s − s ∀0 ≤ s < t,

or, equivalently, that

E[W 2
t −W 2

s |Fs] = t− s ∀0 ≤ s < t.

In fact,

E[W 2
t −W 2

s |Fs] = E
[
(Wt −Ws)

2
∣∣∣Fs

]
= V ar[Wt −Ws] = t− s.

Because of uniqueness, we can say that 〈Wt〉 = t, for all t ≥ 0 by indistin-
guishability.
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Example 4.26. Consider the Itô integral

Xt =
∫ t

0

hsdWs, t ∈ [0, T ],

for bounded hs ∈ C([0, T ]). Then

Mt = X2
t −
∫ t

0

|fs|2ds, t ∈ [0, T ]

is a martingale and the compensator 〈Xt〉 =
∫ t

0
|fs|2ds is the quadratic varia-

tion process of the martingale Xt.

Lemma 4.27. Let Z be a strictly positive random variable on (Ω,F , P ) with
E[Z] ≡ EP [Z] = 1. Furthermore, define the random measure dQ = ZdP . If G
is a σ-algebra with G ⊆ F , then for any adapted random variable X ∈ L1(Q)
we have that

EQ[X|G] =
E[XZ|G]
E[Z|G]

.

Lemma 4.28. Let (Ft)t∈[0,T ], for T > 0, be a filtration on the probability
space (Ω,F , P ), and let (Zt)t∈[0,T ] be a strictly positive Ft-martingale with
respect to the probability measure P such that EP [Zt] = 1 for any t ∈ [0, T ].
A sufficient condition for an adapted stochastic process (Yt)t∈[0,T ] to be an
Ft-martingale with respect to the measure dQ = ZT dP is that the process
(ZtYt)t∈[0,T ] is an Ft-martingale with respect to P .

Proof: Because (ZtYt)t∈[0,T ] is an Ft-martingale with respect to P , for s ≤
t ≤ T , by the tower law of probability we have that

E[ZTYt|Fs] = E[E[ZTYt|Ft]|Fs] = E[YtE[ZT |Ft]|Fs] = E[YtZt|Fs]
= YsZs.

As a consequence we have that

EQ[Yt|Fs] =
E[ZTYt|Fs]
E[ZT |Fs]

=
ZsYs

Zs
= Ys.

�

Proposition 4.29. 1. Let ht ∈ L2([0, T ]) be a Q-deterministic function,
Wt(ω) a Brownian motion, and define

Yt(ω) = exp
{∫ t

0

hsdWs(ω)− 1
2

∫ t

0

h2
sds

}
, t ∈ [0, T ].

Then, by Itô’s formula (see (3.35)),

dYt = YthtdWt.
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2. Let ϑs(ω) ∈ C([0, T ]) with T ≤ ∞ and define

Zt(ω) = exp
{∫ t

0

ϑs(ω)dWs(ω)− 1
2

∫ t

0

ϑ2
s(ω)ds

}
, t ∈ [0, T ].

Then, by Itô’s formula,
dZt = ZtϑtdWt.

Lemma 4.30. (Novikov condition). Under the assumptions of point 2 of
Proposition 4.29, if

E

[
exp

{
1
2

∫ T

0

|ϑ(s)|2ds
}]

< +∞,

then (Zt)t∈[0,T ] is a martingale and E[Zt] = E[Z0] = 1.

Theorem 4.31. (Girsanov). Let (Zt)t∈[0,T ] be a P -martingale and let ϑs sat-
isfy the Novikov condition. Then the process

Yt = Wt −
∫ t

0

ϑsds

is a Brownian motion with respect to the measure dQ = ZT dP .

Proof: We resort to the Lévy characterization of Brownian motion, Theorem
4.24 and prove point 2. Let Mt = ZtYt. Then, by Lemma 4.28, to prove that
(Yt)t∈[0,T ] is a Q-martingale it is sufficient to show that (Mt)t∈[0,T ] is a P -
martingale. Assuming that (ϑt)t∈[0,T ] satisfies the Novikov condition and that
(Zt)t∈[0,T ] is a martingale with E[Zt] = 1, by Itô’s formula we obtain

dMt = ZtdYt + YtdZt + Ztϑtdt = Zt(dWt − ϑtdt) + YtZtϑtdWt + Ztϑtdt

= Zt(dWt + YtϑtdWt) = Zt(1 + ϑtYt)dWt.

Hence (Mt)t∈[0,T ] is a martingale. To further show that Y 2
t − t is a martingale

is left as an exercise. �

Remark 4.32. The Girsanov theorem implies that for all F1, . . . , Fn ∈ B, where
B is the state space of the processes and for all t1, . . . , tn ∈ [0, T ]:

Q(Yt1 ∈ F1, . . . , Ytk
∈ Fk) = P (Wt1 ∈ F1, . . . ,Wtk

∈ Fk)

and Q! P as well as with Radon–Nikodym derivative

dQ

dP
= MT , on FT .

Furthermore, because by the Radon–Nikodym Theorem A.53

Q(F ) =
∫

F

MT (ω)P (dω)
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and MT > 0, we have that

Q(F ) > 0⇒ P (F ) > 0

and vice versa, so that

Q(F ) = 0⇒ P (F ) = 0,

and thus P ! Q. Therefore, the two measures are equivalent.

4.4 Kolmogorov Equations

We will consider the stochastic differential equation

du(t) = a(t, u(t))dt+ b(t, u(t))dWt (4.26)

and suppose that the coefficients a and b satisfy the assumptions of the exis-
tence and uniqueness Theorem 4.4. We will denote by u(t, x), for s ≤ t ≤ T ,
the solution of (4.26) subject to the initial condition

u(s, s, x) = x a.s. (x ∈ R).

Remark 4.33. Under the assumptions 1 and 2 of Theorem 4.4 on the coeffi-
cients a and b, if f(t, x) is continuous in both variables as well as |f(t, x)| ≤
K(1 + |x|m) with k,m positive constants, it can be shown that

lim
h↓0

1
h

∫ t+h

h

E[f(s, u(s, t, x))]ds = f(t, x), (4.27)

lim
h↓0

1
h

∫ t

t−h

E[f(s, u(s, t, x))]ds = f(t, x). (4.28)

The proof employs similar arguments as the proofs of Theorems 4.21 and 4.11.

Lemma 4.34. If f : R → R is a twice continuously differentiable function
and if there exist C > 0 and m > 0 such that

|f(x)|+ |f ′(x)|+ |f ′′(x)| ≤ C(1 + |x|m), x ∈ R,

and if the coefficients a(t, x) and b(t, x) satisfy assumptions 1 and 2 of Theo-
rem 4.4, then

lim
h↓0

1
h

(E[f(u(t, t− h, x))]− f(x)) = a(t, x)f ′(x) +
1
2
b2(t, x)f ′′(x). (4.29)

Proof: By Itô’s formula, we get
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f(u(t, t− h, x))− f(x) =
∫ t

t−h

a(s, u(s, t− h, x))f ′(u(s, t− h, x))ds

+
∫ t

t−h

1
2
b2(s, u(s, t− h, x))f ′′(u(s, t− h, x))ds

+
∫ t

t−h

b(s, u(s, t− h, x))f ′(u(s, t− h, x))dWs,

and after taking expectations

E[f(u(t, t− h, x))]− f(x)

= E

[∫ t

t−h

a(s, u(s, t− h, x))f ′(u(s, t− h, x))ds

+
∫ t

t−h

1
2
b2(s, u(s, t− h, x))f ′′(u(s, t− h, x))ds

]
,

hence
1
h
(E[f(u(t, t− h, x))]− f(x))

=
1
h

∫ t

t−h

E[a(s, u(s, t− h, x))f ′(u(s, t− h, x))]ds

+
∫ t

t−h

E

[
1
2
b2(s, u(s, t− h, x))f ′′(u(s, t− h, x))

]
ds.

Then Proposition 4.29 follows from Lemma 4.27 because u(t, t, x) = x. �
Remark 4.35. Resorting to the notation of Definitions 2.103 and 2.104, equa-
tion (4.29) can also be written as

Atf = lim
h↓0

Tt−h,tf − f
h

= f ′a(t, ·) +
1
2
f ′′b2(t, ·). (4.30)

Moreover, by Theorem 4.21 and Proposition 2.124, we also have

Asf = lim
h↓0

Ts,s+hf − f
h

= f ′a(s, ·) +
1
2
f ′′b2(s, ·), (4.31)

if f ∈ BC(R) ∩ C2(R). On the other hand, in the time-homogeneous case we
have

Af = lim
h↓0

Thf − f
h

= f ′a(·) +
1
2
f ′′b2(·).

Theorem 4.36. If u(t) is the Markovian solution of the homogeneous stochas-
tic differential equation (4.23) and A the associated infinitesimal generator,
then for f ∈ BC(R) ∩ C2(R) the process

Mt = f(u(t))−
∫ t

0

[Af ](u(s))ds (4.32)

is a martingale.
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Proof: By Itô’s formula, we have that

f(u(t)) = f(u0) +
∫ t

0

[Af ](u(s))ds+
∫ t

0

b(u(s))f ′(u(s))dWs,

which, substituted into (4.32), results in

Mt = f(u0) +
∫ t

0

b(u(s))f ′(u(s))dWs.

Since an Itô integral is a martingale with respect to filtration (Ft)t∈R+ gen-
erated by the Wiener process (Wt)t∈R+ , therefore

E[Mt|Fs] = Ms.

If we now consider the filtration (Mt)t∈[0,T ], generated by (Mt)t∈[0,T ], then

E[Mt|Ms] = E[E[Mt|Fs]|Ms] = E[Mt|Fs] = Ms,

because Fs ⊂Ms. �
Furthermore, we note that it is valid to reverse the argumentation of The-

orem 4.21, as the following theorem states.

Theorem 4.37. If (u(t))t∈[0,T ] is a diffusion process with drift a(t, x) and
diffusion coefficient c(t, x), where

1. a(t, x) is continuous in both variables as well as |a(t, x)| ≤ K(1 + |x|), K
a positive constant;

2. c(t, x) is continuous in both variables and has continuous as well as
bounded derivatives ∂

∂tc(t, x) and ∂
∂xc(t, x), and moreover 1

c(t,x) is bounded;
3. there exists a function ψ(x) that is independent of t and where

ψ(x) > 1 + |x|, sup
0≤t≤T

E[ψ(u(t))] < +∞,

as well as∣∣∣∣∫
Ω

(y − x)p(t, x, t+ h, dy)
∣∣∣∣+ ∣∣∣∣∫

Ω

(y − x)2p(t, x, t+ h, dy)
∣∣∣∣ ≤ ψ(x)h,∫

Ω

(|y|+ y2)p(t, x, t+ h, dy) ≤ ψ(x),

then there exists a Wiener process Wt, so that u(t) satisfies the stochastic
differential equation

du(t) = a(t, u(t))dt+
√
c(t, u(t))dWt.

Proof: See, e.g., Gihman and Skorohod (1972). �
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Remark 4.38. Equation (4.31) can also be shown by Itô’s formula, as in the
proof of Lemma 4.34.

Proposition 4.39. Let f(x) be r times differentiable and suppose that there
exists an m > 0 so that |f (k)(x)| ≤ L(1 + |x|m). If a(t, x) and b(t, x) both
satisfy the assumptions of Theorem 4.4 and there exist ∂k

∂xk a(t, x), ∂k

∂xk b(t, x),
k = 1, . . . , r, that are continuous as well as∣∣∣∣ ∂k

∂xk
a(t, x)

∣∣∣∣+ ∣∣∣∣ ∂k

∂xk
b(t, x)

∣∣∣∣ ≤ Ck(1 + |x|mk), k = 1, . . . , r

(with Ck and mk being positive constants), then the function φs(z) =
E[f(u(t, s, z))] is r times differentiable with respect to z (i.e., with respect
to the initial condition).

Proof: See, e.g., Gihman and Skorohod (1972). �

Theorem 4.40. If the coefficients a(t, x) and b(t, x) are continuous and have
continuous partial derivatives a′x(t, x), a′′x(t, x), b′x(t, x), and b′′xx(t, x), and
moreover, if there exist a k > 0 and an m > 0 such that

|a(t, x)|+ |b(t, x)| ≤ k(1 + |x|),
|a′x(t, x)|+ |a′′xx(t, x)|+ |b′x(t, x)|+ |b′′xx(t, x)| ≤ k(1 + |x|m),

and furthermore if the function f(x) is twice continuously differentiable with

|f(x)|+ |f ′(x)|+ |f ′′(x)| ≤ k(1 + |x|m),

then the function

q(t, x) ≡ E[f(u(s, t, x))], 0 < t < s, x ∈ R, s ∈]0, T [, (4.33)

satisfies the equation

∂

∂t
q(t, x) + a(t, x)

∂

∂x
q(t, x) +

1
2
b2(t, x)

∂2

∂x2
q(t, x) = 0, (4.34)

with the boundary condition

lim
t↑s
q(t, x) = f(x). (4.35)

Equation (4.34) is called Kolmogorov’s backward differential equation.

Proof: Since, by the semigroup property, u(s, t − h, x) = u(s, t, u(t, t − h, x))
and in general E[f(Y (·, X))|X = x] = E[f(Y (·, x))], we have

q(t− h, x) = E[f(u(s, t− h, x))] (4.36)
= E[E[f(u(s, t− h, x))|u(t, t− h, x)]]
= E[E[f(u(s, t, u(t, t− h, x)))|u(t, t− h, x)]]
= E[E[f(u(s, t, u(t, t− h, x)))]] = E[q(t, u(t, t− h, x))].
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By Proposition 4.39, q(t, x) is twice differentiable with respect to x and, by
Lemma 4.34, we get

lim
h↓0

E[q(t, u(t, t− h, x))]− q(t, x)
h

= a(t, x)
∂

∂x
q(t, x) +

1
2
b2(t, x)

∂2

∂x2
q(t, x).

Therefore, by equation (4.36) the limit

lim
h↓0

q(t, x)− q(t− h, x)
h

= lim
h↓0

q(t, x)− E[q(t, u(t, t− h, x))]
h

,

and thus

∂

∂t
q(t, x) = lim

h↓0
q(t, x)− q(t− h, x)

h
= −a(t, x) ∂

∂x
q(t, x)− 1

2
b2(t, x)

∂2

∂x2
q(t, x).

It can further be shown that ∂
∂tq(t, x) is continuous in t and so are ∂q

∂x as well
as ∂2q

∂x2 . We observe that

|E[f(u(s, t, x))− f(x)]| ≤ E[|f(u(s, t, x))− f(x)|],

and, by Lagrange’s theorem (also known as the mean value theorem),

|f(u(s, t, x))− f(x)| = |u(s, t, x)− x||f ′(ξ)|,

with ξ related to u(s, t, x) and x through the assumptions |f ′(ξ)| ≤ k(1+ |ξ|m)
and

(1 + |ξ|m) ≤
{

1 + |x|m if u(s, t, x) ≤ ξ ≤ x,
1 + |u(s, t, x)|m if x ≤ ξ ≤ u(s, t, x).

Therefore, by both the Schwarz inequality and the fact that

E[(u(s, t, x)− x)2] ≤ L̃(1 + |x|2)(s− t)2,

we obtain

|E[f(u(s, t, x))− f(x)]|
≤ LE[|u(s, t, x)− x|(1 + |x|m + |u(s, t, x)|m)]

≤ L(E[(u(s, t, x)− x)2]) 1
2 (E[(1 + |x|m + |u(s, t, x)|m)2])

1
2 ,

where L is a positive constant. Since L̃(1+ |x|2)(s−t)2 → 0 for t ↑ s, it follows
that

lim
t↑s
E[f(u(s, t, x))] = f(x).

�

Remark 4.41. If we put t̃ = s − t for 0 < t < s, then ∂
∂t̃

= − ∂
∂t and the limit

limt↑s is equivalent to limt̃↓0. Hence (4.34) takes us back to a classic parabolic
differential equation with initial condition (4.35) given by limt̃↓0 q(t̃, x) = f(x).
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Theorem 4.42. (Feynman–Kac formula). Under the assumptions of Theo-
rem 4.40, let c be a real-valued, nonnegative continuous function in ]0, T [×R.
Then the function, for x ∈ R,

q(t, x) = E
[
f(u(s, t, x))e−

� s
t

c(u(τ,t,x),τ)dτ
]
, 0 < t < s < T, (4.37)

satisfies the equation

∂

∂t
q(t, x) + a(t, x)

∂

∂x
q(t, x) +

1
2
b2(t, x)

∂2

∂x2
q(t, x) + c(t, x)q(t, x) = 0,

subject to the boundary condition limt↑s q(t, x) = f(x). Equation (4.37) is
called the Feynman–Kac formula.

Proof: The proof is a direct consequence of Theorem 4.40 and Itô’s formula,
considering that the process

Z(t) = e−
� s

t
c(u(τ,t,x),τ)dτ , 0 < t < s < T, x ∈ R,

satisfies the stochastic differential equation

dZ(t) = c(u(t, t0, x)t)Z(t)dt

with initial condition Z(t0) = 1. �

Remark 4.43. We can interpret the exponential term in the Feynman–Kac
formula as a “killing” process. Let (Wt)t∈R+ be a Wiener process that may
disappear into a “coffin” state at a random killing time T . Let the killing
probability over an interval ]t, t + dt] be equal to c(Wt)dt + o(dt). Then the
survival probability until T is given by

(1− c(Wt1))dt(1− c(Wt2))dt · · · (1− c(WT ))dt+ o(1), (4.38)

where 0 = t0 < t1 < · · · < tn = T , dt = ti+1 − ti. As dt→ 0, (4.38) tends to

e−
� T
0 c(Wt)dt.

Hence for any function f ∈ BC(R):

q(t, x) = E[f(Wt), T > t] = E[f(Wt)P (T > t)]

= E
[
f(Wt)e−

� s
t

c(u(τ,t,x),τ)dτ
]
.

Proposition 4.44. Consider the Cauchy problem:{
L0[q] + ∂q

∂t = 0 in [0, T [×R,
limt↑T q(t, x) = φ(x) in R,

(4.39)

where L0[·] = 1
2b

2(t, x) ∂2

∂x2 + a(t, x) ∂
∂x , and suppose that
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(B1) φ(x) is continuous in R and ∃A > 0, a > 0 such that |φ(x)| ≤
A(1 + |x|a);

(B2) a and b are bounded in [0, T ]×R and uniformly Lipschitz in (t, x) on
compact subsets of [0, T ]× R;

(B3) b is Hölder continuous in x and uniform with respect to (t, x) on
[0, T ]× R;
under the conditions (B1), (B2), (B3), and (A1) (see Appendix C), the Cauchy
problem (4.36) admits a unique solution q(t, x) in [0, T ]× R such that

|q(t, x)| ≤ C(1 + |x|a), (4.40)

where C is a constant.

Proof: The uniqueness is shown through Corollary C.17 and existence follows
from Theorem C.20. Then (4.39) follows, by (B1) and by Theorem C.19, with
m = 0. �

Theorem 4.45. Under the conditions (B1), (B2), (B3), and (A1), the solution
of the Cauchy problem (4.39) is given by

q(t, x) = E[φ(u(T, t, x))] ≡ Et,x[φ(u(T ))]. (4.41)

Proof: The proof follows directly by Theorem 4.40, recalling the uniqueness
of the solution of (4.39). �

We denote by Γ ∗
0 (x, s; y, t) the fundamental solution of L0 + ∂

∂s (s < t).
By Theorem C.20, where we replace t by T − t, q(t, x) can be expressed by
means of the fundamental solution Γ ∗

0 as

q(t, x) =
∫

R

Γ ∗
0 (x, s; y, T )φ(y)dy. (4.42)

From equations (4.41) and (4.42), it then follows that

E[φ(u(T, t, x))] =
∫

R

Γ ∗
0 (x, s; y, T )φ(y)dy. (4.43)

Analogously, for all 0 ≤ s < t ≤ T :

E[φ(u(t, s, x))] =
∫

R

Γ ∗
0 (x, s; y, t)φ(y)dy (4.44)

or, equivalently,∫
R

φ(y)p(s, x, t, dy) =
∫

R

Γ ∗
0 (x, s; y, T )φ(y)dy, (4.45)

and because equation (4.45) holds for every φ that satisfies (B1), it will cer-
tainly hold for every φ ≡ I]−∞,z], z ∈ R. We obtain the following theorem.
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Theorem 4.46. Under the conditions (A1) and (B1), the transition probabil-
ity p(s, x, t, A) = P (u(t, s, x) ∈ A) of the Markov process u(t, s, x) (the solu-
tion of the differential equation (4.26)) is endowed with density. The latter is
given by Γ ∗

0 (x, s; y, t) and thus

p(s, x, t, A) =
∫

A

Γ ∗
0 (x, s; y, t)dy (s < t), for all A ∈ BR. (4.46)

Definition 4.47. The density Γ ∗
0 (x, s; y, t) of p(s, x, t, A) is the transition

density of the solution u(t) of (4.26).

Remark 4.48. Following the explanations in Appendix C, we can assert that
Γ ∗

0 (x, s; y, t) is the solution of Kolmogorov’s backward equation{
L0[Γ ∗

0 ] + ∂
∂tΓ

∗
0 = 0,

limt→T Γ
∗
0 (x, s; y, T ) = δ(x− y). (4.47)

Example 4.49. The Brownian motion (Wt)t≥0 is the solution of{
du(t) = dWt,
u(0) = 0 a.s.

We define the operator L0 by 1
2Δ, where Δ is the Laplacian ∂2

∂x2 . The funda-
mental solution Γ ∗

0 (x, s; y, t) of the operator 1
2Δ + ∂

∂t , s < t, corresponds to
the fundamental solution Γ0(y, t;x, s) of the operator 1

2Δ−
∂
∂t , s < t, which,

apart from the coefficient 1
2 , is the diffusion or heat operator. We therefore

find that
Γ ∗

0 (x, s; y, t) = Γ (y, t;x, s) =
1√

2π(t− s)
e−

(x−y)2

2(t−s) ,

the probability density function of Wt −Ws.

Under the assumptions of Theorem 4.46, the transition probability

p(s, x, t, A) = P (u(t, s, x) ∈ A)

of the Markov diffusion process u(t, s, x), the latter being the solution of
the stochastic differential equation (4.26), subject to the initial condition
u(s, s, x) = x a.s. (x ∈ R), admits a density f(s, x, t, y), which is the solu-
tion of system (4.47). Under these conditions the following also holds (see
Gihman and Skorohod (1974), pp. 374 onwards):

Theorem 4.50. In addition to the assumptions of Theorem 4.46, if the tran-
sition density is sufficiently regular so that there exist continuous derivatives

∂f

∂t
(s, x, t, y),

∂

∂y
(a(t, y)f(s, x, t, y)),

∂2

∂y2
(b(t, y)f(s, x, t, y)),

then f(s, x, t, y), as a function of t and y, satisfies the equation
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∂f

∂t
(s, x, t, y) +

∂

∂y
(a(t, y)f(s, x, t, y))− ∂2

∂y2
(b(t, y)f(s, x, t, y)) = 0 (4.48)

in the region t ∈]s, T ], y ∈ R.

Proof: Let g ∈ C2
0 (R) denote a sufficiently smooth function with compact

support. By proceeding as in Lemma 4.34 (see also equation (4.31)),

lim
h→0

1
h

(∫
g(y)f(t, x, t+ h, y)dy − g(x)

)
= a(t, x)g′(x) +

1
2
b(t, y)g”(x)

uniformly with respect to x. The Chapman–Kolmogorov equation for the tran-
sition densities is

f(t1, x, t3, y) =
∫
f(t1, x, t2, z)f(t2, z, t3, y)dz for t1 < t2 < t3.

If we take t1 = s, t2 = t, t3 = t+ h, we obtain

∂

∂t

∫
f(s, x, t, y)g(y)dy

=
∫
∂

∂t
f(s, x, t, y)g(y)dy

= lim
h→0

1
h

(∫
g(y)f(s, x, t+ h, y)dy −

∫
g(z)f(s, x, t, z)dz

)
= lim

h→0

1
h

(∫
f(s, x, t, z)

(∫
g(y)f(s, z, t+ h, y)dy − g(z)

))
dz

=
∫
f(s, x, t, z)

(
a(t, z)g′(z) +

1
2
b(t, z)g′′(z)

)
dz.

An integration by parts leads to∫
∂

∂t
f(s, x, t, y)g(y)dy

=
∫ (

− ∂

∂y
(a(t, y)f(s, x, t, y)) +

1
2
∂2

∂y2
(b(t, y)f(s, x, t, z))

)
dy,

which represents a weak formulation of (4.48). �
Equation (4.48) is known as the forward Kolmogorov equation or Fokker–

Planck equation. It is worth pointing out that while the forward equation has
a more intuitive interpretation than the backward equation, the regularity
conditions on the functions a and b are more stringent than those needed in
the backward case. The problem of existence and uniqueness of the solution of
the Fokker–Planck equation is not of an elementary nature, especially in the
presence of boundary conditions. This suggests that the backward approach
is more convenient than the forward approach from the viewpoint of analysis.
For a discussion on the subject we refer to Feller (1971), page 326 onwards,
Sobczyk (1991), page 34, and Taira (1988), page 9.
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4.5 Multidimensional Stochastic Differential Equations

Let a(t,x) = (a1(t,x), . . . , am(t,x))′ and b(t,x) = (bij(t,x))i=1,...,m,j=1,...,n be
measurable functions with respect to (t,x) ∈ [0, T ] × Rn. An m-dimensional
stochastic differential equation is of the form

du(t) = a(t,u(t))dt+ b(t,u(t))dW(t), (4.49)

with the initial condition
u(0) = u0 a.s., (4.50)

where u0 is a fixed m-dimensional random vector. The entire theory of the
one-dimensional case translates to the multidimensional case, with the norms
redefined as

|b|2 =
m∑

i=1

|bi|2 if b ∈ Rm,

|b|2 =
m∑

i=1

n∑
j=1

|bij |2 if b ∈ Rmn.

Further, we introduce the notation

Dα
x =

∂α

∂xα
=

∂α1+···+αm

∂xα1
1 · · · ∂xαm

m
, |α| = α1 + · · ·+ αm,

which, as an application of Itô’s formula, gives the following result.

Theorem 4.51. If for a system of stochastic differential equations the condi-
tions of the existence and uniqueness theorem (analogous to Theorem 4.4) are
satisfied and if

1. there exist Dα
xa(t,x) and Dα

xb(t,x) continuous for |α| ≤ 2, with

|Dα
xa(t,x)|+ |Dα

xb(t,x)| ≤ k0(1 + |x|β), |α| ≤ 2,

where k0, β are strictly positive constants;
2. f : Rm → R is a function endowed with continuous derivatives to second

order, with
|Dα

xf(x)| ≤ c(1 + |x|β′
), |α| ≤ 2,

where c, β′ are strictly positive constants;

then, putting q(t,x) = E[f(u(s, t,x))] for x ∈ Rm and t ∈]0, s[, we have that
qt, qxi , qxixj are continuous in (t,x) ∈]0, s[×Rm and q satisfies the backward
Kolmogorov equation

∂q

∂t
+

m∑
i=1

ai
∂q

∂xi
+

1
2

m∑
i,j=1

(bb′)ij
∂2q

∂xi∂xj
= 0 in ]0, s[×Rm, (4.51)

lim
t↑s
q(t,x) = f(x). (4.52)
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Applications of Itô’s Formula: First Hitting Times

Let Ω ⊂ Rm and u(t) be the solution of (4.49) with the initial condition
u(s) = x almost surely, x ∈ Ω. Putting

τx,s = inf{t ≥ s|u(t) ∈ ∂Ω},
then τx,s is the first hitting time of the boundary of Ω or the first exit time
from Ω. Because ∂Ω is a closed set, by Theorem 2.99, τx,s is a stopping time.
Following Theorem 3.69, if φ : (x, t) ∈ Rm × R+ → φ(x, t) ∈ R is sufficiently
regular, then we obtain Itô’s formula

dφ(u(t), t) = Lφ(u(t), t)dt+∇xφ(u(t), t) · b(t)dW(t),

which we can apply on the interval [s, τx,s]:

φ(u(τx,s), τx,s) = φ(x, s) +
∫ τx,s

s

Lφ(u(t′), t′)dt′

+
∫ τx,s

s

∇xφ(u(t′), t′) · b(t′)dW(t′)

and after taking expectations

E[φ(u(τx,s), τx,s)] = φ(x, s) + E
[∫ τx,s

s

Lφ(u(t′), t′)dt′
]
. (4.53)

The value of the stochastic integral is 0 by Theorem 3.43. If we now suppose
that φ satisfies the conditions{

Lφ(x, t) = −1 ∀t ≥ s,∀x ∈ Ω,
φ(x, t) = 0 ∀x ∈ ∂Ω, (4.54)

then, by (4.53), we get

E[φ(u(τx,s), τx,s)] = φ(x, s)− E[τx,s] + s,

and by (4.54),
E[φ(u(τx,s), τx,s)] = 0.

Thus
E[τx,s] = s+ φ(x, s). (4.55)

Remark 4.52. If equation (4.49) is homogeneous (i.e., a = a(x) and b = b(x)
do not explicitly depend on time), then the process u(t), namely, the solution
of (4.49), is time-homogeneous. Without loss of generality we can assume that
s = 0. Then (4.55) becomes

E[τx] = φ(x), x ∈ Ω, (4.56)

which is Dynkin’s formula. Notably, in this case, φ(x) is the solution of the
elliptic problem {

M [φ] = −1 in Ω,
φ = 0 on ∂Ω, (4.57)

where M =
∑m

i=1 ai
∂

∂xi
+ 1

2

∑m
i,j=1(bb

′)ij
∂2

∂xi∂xj
.
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Crossing Points

If we now suppose that φ satisfies the conditions{
L[φ](x, t) = 0 ∀t ≥ s,∀x ∈ Ω,
φ(x, t) = f(x) ∀x ∈ ∂Ω, (4.58)

then, by (4.53), we obtain

E[φ(u(τx,s), τx,s)] = φ(x, s), (4.59)

which is Kolmogorov’s formula.

Remark 4.53. In the homogeneous case, if φ(x) is the solution of the elliptic
problem {

M [φ] = 0 in Ω
φ = f on ∂Ω , (4.60)

then equation (4.49) becomes

E[φ(u(τx,s))] = φ(x), x ∈ Ω. (4.61)

4.6 Stability of Stochastic Differential Equations

We consider the autonomous system of stochastic differential equations

du(t) = a(u(t))dt+ b(u(t))dW(t) (4.62)

and suppose that b(x) �= 0, for all x ∈ Ω̄ (compact sets of Rm). In this case
the operator

M =
m∑

i=1

ai
∂

∂xi
+

1
2

m∑
i,j=1

(bb′)ij
∂2

∂xi∂xj

is uniformly elliptic (see Appendix C) and the elliptic problem{
M [φ] = −1 in Ω,
φ = 0 on ∂Ω

has a bounded solution. Therefore, by Dynkin’s formula E[τx] = φ(x), it
follows that τx < +∞ almost surely and thus the system exits from Ω (to
which 0 belongs) in a finite time with probability 1 (for all Ω bounded).
Therefore, for any b the system is unstable, even if the deterministic system
was asymptotically stable.

We now consider the case in which 0 is also an equilibrium for b. We let
a(0) = 0, b(0) = 0 and look for a suitable definition of stability in this case.
Let {

du(t) = a(t,u(t))dt+ b(t,u(t))dW(t), t > t0,
u(t0) = c, (4.63)

be a system of stochastic differential equations, where
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1. the conditions of the existence and uniqueness theorem are satisfied glob-
ally on [t0,+∞];

2. a and b are continuous with respect to t;
3. c ∈ Rm is a constant.

Then there exists a unique solution u(t, t0, c), t ∈ [t0,+∞[, which is a Markov
diffusion process with drift a and diffusion matrix bb′. With c being constant,
the moments E[|u(t)|k], k > 0, exist for every t. If we suppose that a(t,0) =
b(t,0) = 0 for all t ≥ t0 and let v : [t0,+∞[×Rm → R be a positive definite
function equipped with the continuous partial derivatives ∂

∂t ,
∂

∂xi
, and ∂2

∂xi∂xj
,

then we can apply Itô’s formula to the process V (t) = v(t,u(t, t0, c)), so that

dV (t) = L[v](t,u(t))dt+
m∑

i=1

n∑
j=1

∂

∂xi
v(t,u(t))bij(t,u(t))dWj(t). (4.64)

For the origin to be a stable point we require that for all t : dV (t) ≤ 0 for
every trajectory. But this is not possible due to the presence of the random
term. At least we require that

E[dV (t)] ≤ 0, (4.65)

and hence
E[L[v](t,u(t))dt] ≤ 0. (4.66)

If,
∀t ≥ t0,∀x ∈ Rm : L[v](t,x) ≤ 0, (4.67)

then condition (4.66) is certainly satisfied. The functions v(t,x) that satisfy
(4.67) are the stochastic equivalents of Lyapunov functions. Integrating equa-
tion (4.64), we obtain

V (t) = v(t0, c) +
∫ t

t0

L[v](r,u(r))dr

+
∫ t

t0

m∑
i=1

n∑
j=1

∂

∂xi
v(r,u(r))bij(r,u(r))dWj(r),

V (s) = v(t0, c) +
∫ s

t0

L[v](r,u(r))dr

+
∫ s

t0

m∑
i=1

n∑
j=1

∂

∂xi
v(r,u(r))bij(r,u(r))dWj(r),

and subtracting one from the other gives

V (t)−V (s) =
∫ t

s

L[v](r,u(r))dr+
∫ t

s

m∑
i=1

n∑
j=1

∂

∂xi
v(r,u(r))bij(r,u(r))dWj(r).
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Putting

H(t) =
∫ t

s

m∑
i=1

n∑
j=1

∂

∂xi
v(r,u(r))bij(r,u(r))dWj(r),

Ft = σ
(
F (i)

s , 0 ≤ s ≤ t, i = 1, . . . , n
)
,

we obtain

E[V (t)− V (s)|Fs] = E

[∫ t

s

L[v](r,u(r))dr|Fs

]
+ E[H(t)|Fs]. (4.68)

It can be shown that H(t) is a martingale with respect to {Ft, t ∈ R+} (the
proof is equivalent as in the scalar case of Theorem 3.37). Therefore

E[H(t)|Fs] = H(s) = 0.

Then (4.68) can be written as

E[V (t)− V (s)|Fs] = E

[∫ t

s

L[v](r,u(r))dr | Fs

]
,

and by (4.67)
E[V (t)− V (s)|Fs] ≤ 0.

Thus V (t) is a supermartingale with respect to {Ft, t ∈ R+}. By the super-
martingale inequality

∀[a, b] ⊂ [t0,+∞) : P
(

sup
a≤t≤b

v(t,u(t)) ≥ ε
)
≤ 1
ε
E[v(a,u(a))]

and, for a = t0, u(a) = c (constant), b→ +∞ we obtain

P

(
sup

t0≤t≤+∞
v(t,u(t)) ≥ ε

)
≤ 1
ε
v(t0, c) ∀ε > 0, c ∈ Rm.

If we suppose that limc→0 v(t0, c) = 0, then

lim
c→0

P

(
sup

t0≤t≤+∞
v(t,u(t)) ≥ ε

)
≤ 1
ε
v(t0, c) = 0 ∀ε > 0, (4.69)

and hence, for all ε1 > 0, there exists a δ(ε1, t0) such that

∀|c| < δ : P
(

sup
t0≤t≤+∞

v(t,u(t)) ≥ ε
)
≤ ε1.

If we suppose that
|u(t)| > ε2 ⇒ v(t,u(t)) > ε,

as, for example, if v is the Euclidean norm, then (4.69) can be written as

lim
c→0

P

(
sup

t0≤t≤+∞
u(t, t0, c) ≥ ε

)
= 0 ∀ε > 0.
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Definition 4.54. The point 0 is a stochastically stable equilibrium of (4.63)
if

lim
c→0

P

(
sup

t0≤t≤+∞
|u(t, t0, c)| ≥ ε

)
= 0 ∀ε > 0.

The point 0 is asymptotically stochastically stable if{
0 is stochastically stable,
limc→0 P (limt→+∞ u(t, t, c) = 0) = 1.

The point 0 is globally asymptotically stochastically stable if{
0 is stochastically stable,
P (limt→+∞ u(t, t0, c) = 0) = 1 ∀c ∈ Rm.

Theorem 4.55. The following two statements can be shown to be true (see
also Arnold (1974) and Schuss (1980)):

1. If L[v](t,x) ≤ 0, for all t ≥ t0, x ∈ Bh (see Appendix D), then 0 is
stochastically stable.

2. If v(t,x) ≤ ω(x) for all t ≥ t0, with positive definite ω(x) and negative
definite L[v], then 0 is asymptotically stochastically stable.

Example 4.56. Consider, for a, b ∈ R, the one-dimensional linear equation

du(t) = au(t)dt+ bu(t)dW (t), (4.70)

subject to a given initial condition u(0) = u0. We know that the solution is
given by

u(t) = u0 exp
{(

a− b
2

2

)
t+ bW (t)

}
.

By the strong law of large numbers (see Proposition 2.149)

W (t)
t
→ 0 a.s. for t→ +∞,

and we have

• u(t)→ 0 almost surely, if a− b2

2 < 0,
• u(t)→ +∞ almost surely, if a− b2

2 > 0.

If a = b2

2 , then
u(t) = u0 exp{bW (t)},

and therefore

P

(
lim sup
t→+∞

u(t) = +∞
)

= 1.

Let us now consider the function v(x) = |x|α for some α ∈ R+. Then
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L[v](x) =
(
a+

1
2
b2(α− 1)

)
α|x|α.

It is easily seen that, if a− b2

2 < 0, we can choose α such that 0 < α < 1− 2a
b2

and obtain a Lyapunov function v with

L[v](x) ≤ −kv(x)

for k > 0. This confirms the global asymptotic stability of 0 for the stochastic
differential equation.

The result in the preceding example may be extended to the nonlinear case
by local linearization techniques (see Gard (1988), page 139).

Theorem 4.57. Consider the scalar stochastic differential equation

du(t) = a(t, u(t))dt+ b(t, u(t))dW (t), (4.71)

where, in addition to the existence and uniqueness conditions, the functions a
and b are such that two real constants a0 and b0 exist so that

a(t, x) = a0x+ ā(t, x),
b(t, x) = b0x+ b̄(t, x),

for any t ∈ R+ and any x ∈ R, with ā(t, x) = o(x) and b̄(t, x) = o(x),
uniformly in t. Then, if a0 − b20

2 < 0, the equilibrium solution ueq ≡ 0 of
equation (4.57) is stochastically asymptotically stable.

Proof: Consider again the function

v(x) = |x|α

for some α > 0. From Itô’s formula we obtain

L[v](x)

=

(
a0 +

ā(t, x)
x

+
1
2
(α− 1)

(
b0 +

b̄(t, x)
x

)2
)
α|x|α

=
(
a0 −

b20
2

+
ā(t, x)
x

+
1
2
αb20 + (α− 1)

(
b0
b̄(t, x)
x

+
b̄2(t, x)

2x2

))
α|x|α.

Choose α > 0 and r > 0 sufficiently small so that for x ∈] − r, 0[∪]0, r[ we
have ∣∣∣∣ ā(t, x)x

∣∣∣∣+ 1
2
αb20 +

∣∣∣∣(α− 1)
(
b0
b̄(t, x)
x

+
b̄2(t, x)

2x2

)∣∣∣∣ < ∣∣∣∣a0 −
b20
2

∣∣∣∣ .
We may then claim that a constant k > 0 exists such that
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L[v](x) ≤ −kv(x),

from which the required result follows. �
We now consider the autonomous multidimensional case, i.e., a stochastic

differential equation in Rn of the form

du(t) = a(u(t))dt+ b(u(t))dW(t). (4.72)

The preceding results provide conditions for the asymptotic stability of 0 as
an equilibrium solution. In particular, we obtain that, for a suitable initial
condition c ∈ Rn, we have

lim
t→+∞u(t, 0, c) = 0, a.s.

We may notice that almost sure convergence implies convergence in law of
u(t, 0, c) to the degenerate random variable ueq ≡ 0, i.e., the convergence of
the transition probability to a degenerate invariant distribution with density
δ0(x), the standard Dirac delta function:

P (t,x,B)→
∫
B

δ0(x)dx for any B ∈ BRn .

If (4.72) does not have an equilibrium, we may still investigate the possibility
that an asymptotically invariant (but not necessarily degenerate) distribution
exists for the solution of the stochastic differential equation; still in terms of
a Lyapunov function. The following theorem (see Gard (1988)) provides an
answer, which is from an analysis of Has’minskii (1980).

Theorem 4.58. Consider a stochastic differential equation in Rn :

du(t) = a(t,u(t))dt+ b(t,u(t))dW(t), (4.73)

where W(t) is an m-dimensional vector of independent Wiener processes. Let
D and (Dn)n∈N be open sets in Rn such that

Dn ⊂ Dn+1, D̄n ⊂ D,D =
⋃
n

Dn,

and suppose a and b satisfy the conditions of existence and uniqueness for
equation (4.72), on each set {(t, x)} ∈ {[t0,+∞[×Dn} for some t0 ∈ R+.
Suppose further that a nonnegative function v ∈ C1,2([t0,+∞[×D) exists with

lim
n→∞ inf

t>t0
x∈D\Dn

v(t, x) = +∞.

Then, for any initial condition c independent of W, such that P (c ∈ D) = 1,
there is a unique solution u(t) of equation (4.73), subject to u(t0) = c, so that
u(t) ∈ D almost surely for all t > t0. Thus

P (τD = +∞) = 1,

where τD is the first exit time of u(t, t0, c) from D.
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For autonomous systems

du(t) = a(u(t))dt+ b(u(t))dW(t),

we have the following theorem.

Theorem 4.59. Given the same assumptions as in Theorem 4.58, suppose
further that n0 ∈ N and M,k ∈ R+ \ {0} exist, such that

1.
∑n

i,j=1 (
∑m

k=1 bik(x)bkj(x)) ξiξj ≥M |ξ|2 for all x ∈ D̄n0 , ξ ∈ Rn;
2. L[v](x) ≤ −k for all x ∈ D \ D̄n0 .

Then there exists an invariant distribution P̃ with nowhere-zero density in D,
such that for any B ∈ BRn ,B ⊂ D:

P (t,x,B)→ P̃ (B) as t→ +∞,

where P (t,x,B) is the transition probability P (t,x,B) = P (u(t,x) ∈ B) for
the solution of the given stochastic differential equation.

Application: A Stochastic Food Chain

As a foretaste of the next part on applications of stochastic processes we take
an example from Gard (1988), page 177. Consider the system

du1 = u1[(a1 + σ1dW1)− b11u1 − b12u2]dt, (4.74)
du2 = u2[(−a2 + σ2dW2) + b21u1 − b22u2 − b23u3]dt, (4.75)
du3 = u3[(−a3 + σ3dW3) + b32u2 − b33u3]dt (4.76)

subject to suitable initial conditions. This system represents a food chain in
which the three species’ growth rates exhibit independent Wiener noises with
scaling parameters σi > 0, i = 1, 2, 3, respectively. If we assume that all the
parameters ai and bij are strictly positive and constant for any i, j = 1, 2, 3,
it can be shown that, in the absence of noise, the corresponding deterministic
system admits, in addition to the trivial one, a unique nontrivial feasible equi-
librium xeq ∈ R3

+. This one is globally asymptotically stable in the so-called
feasible region R3

+ \ {0}, provided that the parameters satisfy the inequality

a1 −
(
b11
b21

)
a2 −

(
b11b22 + b12b21

b21b32

)
a3 > 0.

This result is obtained through the Lyapunov function

v(x) =
n∑

i=1

ci

(
xi − xeq

i − x
eq
i ln

xi

xeq
i

)
,

provided that the ci > 0, i = 1, 2, 3, are chosen to satisfy
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c1b12 − c2b21 = 0 = c2b23 − c3b32.

In fact, if one denotes by B the interaction matrix (bij)1≤i,j≤3 and C =
diag(c1, c2, c3), the matrix

CB +B′C = −2

⎛⎝ c1b11 0 0
0 c2b22 0
0 0 c3b33

⎞⎠
is negative definite. The derivative of v along a trajectory of the deterministic
system is given by

v̇(x) =
1
2

(x− xeq) · [CB +B′C] (x− xeq) ,

which is then negative definite, thus implying the global asymptotic stability
of xeq ∈ R3

+.

Returning to the stochastic system, consider the same Lyapunov function
as for the deterministic case. By means of Itô’s formula we obtain

L[v](x) =
1
2

(
(x− xeq) · [CB +B′C] (x− xeq) +

3∑
i=1

ciσ
2
i x

eq
i

)
.

It can now be shown that, if the σi, i = 1, 2, 3, satisfy

3∑
i=1

ciσ
2
i xi < 2 min

i
{cibiixeq

i } ,

then the ellipsoid

(x− xeq) · [CB +B′C] (x− xeq) +
3∑

i=1

ciσ
2
i x

eq
i = 0

lies entirely in R3
+. One can then take as Dn0 any neighborhood of the ellip-

soid such that D̄n0 ⊂ R3
+ and the conditions of Theorem 4.58 are met. As a

consequence the stochastic system (4.74)–(4.76) admits an invariant distribu-
tion with nowhere-zero density in R3

+. An additional interesting application
to stochastic population dynamics can be found in Roozen (1987).

4.7 Exercises and Additions

4.1. Prove Remark 4.7.

4.2. Prove Remark 4.10.
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4.3. Prove that if a(t, x) and b(t, x) are measurable functions in [0, T ]×R that
satisfy conditions 1 and 2 of Theorem 4.4, then, for all s ∈]0, T ], there exists
a unique solution in C([s, T ]) of{

u(s) = us a.s.,
du(t) = a(t, u(t))dt+ b(t, u(t))dWt,

provided that the random variable us is independent of Fs,T = σ(Wt−Ws, t ∈
[s, T ]) and E[(us)2] <∞.

4.4. Complete the proof of Theorem 4.13 by proving the semigroup property :
If t0 < s, s ∈ [0, T ], denote by u(t, s, x) the solution of{

u(s) = x a.s.,
du(t) = a(t, u(t))dt+ b(t, u(t))dWt.

Then
u(t, t0, c) = u(t, s, u(s, t0, c)) for t ≥ s,

where x is a fixed real number and c is a random variable.

4.5. Complete the proof of Theorem 4.31 (Girsanov) showing that (Y 2
t −

t)t∈[0,T ] is a martingale where

Yt = Wt −
∫ t

0

ϑsds,

(Wt)t∈[0,T ] is a Brownian motion, and (ϑt)t∈[0,T ] satisfies the Novikov condi-
tion.

4.6. Show that

Γ ∗
0 (x, s; y, t) =

∫
R

Γ ∗
0 (x, s; z, r)Γ ∗

0 (z, r; y, t)dz (s < r < t). (4.77)

Expression (4.77) is in general true for the fundamental solution Γ (x, t; ξ, r)
(r < t) constructed in Theorem C.19.

4.7. Let (Wt)t∈R+ be a Brownian motion. Consider the population growth
model:

dNt

dt
= (rt + αWt)Nt, (4.78)

where Nt is the size of population at time t (N0 > 0 given) and (rt +α ·Wt) is
the relative rate of growth at time t. Suppose the process rt = r is constant.

1. Solve the stochastic differential equation (4.78).
2. Estimate the limit behavior of Nt when t→∞.
3. Show that if Wt is independent of N0, then

E[Nt] = E[N0]ert.
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An extension model of (4.78) for exponential growth with several indepen-
dent white noise sources in the relative growth rate is given as follows: Let
(W1(t), . . . ,Wn(t))t∈R+ be Brownian motion in Rd, with α1, . . . , αn constants.
Then

dNt =

(
rdt+

n∑
k=1

αkdWk(t)

)
Nt, (4.79)

where Nt is, again, the size of population at time t with N0 > 0 is given.

4. Solve the stochastic differential equation (4.79).

4.8. Let (Wt)t∈R+ be a one-dimensional Brownian motion. Show that the
process (Brownian motion on the unit circle)

ut = (cosWt, sinWt)

is the solution of the stochastic differential equations (in matrix notation)

dut = −1
2
utdt+KutdWt, (4.80)

where K =
[

0 −1
1 0

]
.

More generally, show that the process (Brownian motion on the ellipse)

ut = (a cosWt, b sinWt)

is a solution of (4.80), where K =
[

0 −a
b

b
a 0

]
.

4.9. (Brownian bridge). For fixed a, b ∈ R consider the one-dimensional equa-
tion: ⎧⎨⎩u(0) = a,

dut =
b− ut

1− t dt− dWt (0 ≤ t < 1).

Verify that

ut = a(1− t) + bt+ (1− t)
∫ t

0

dWs

1− s (0 ≤ t < 1)

solves the equation and prove that limt→1 ut = b almost surely. The process
(ut)t∈[0,1[ is called the Brownian bridge (from a to b).

4.10. Solve the following stochastic differential equations:

1.
[
du1

du2

]
=
[

1
0

]
dt+

[
1 0
0 u1

] [
dW1

dW2

]
.

2. dut = utdt+ dWt. (Hint: Multiply both sides with e−t and compare with
d(e−tut).)
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3. dut = −utdt+ e−tdWt.

4.11. Consider n-dimensional Brownian motion W = (W1, . . . ,Wn) starting
at a = (a1, . . . , an) ∈ Rn (n ≥ 2) and assume |a| < R. What is the expected
value of the first exit time τK of B from the ball

K = KR = {x ∈ Rn; |x| < R}?

(Hint: Use Dynkin’s formula.)

4.12. Find the generators of the following processes:

1. Brownian motion on an ellipse (see problem 4.8).
2. Arithmetic Brownian motion:{

u(0) = u0,
du(t) = adt+ bdWt.

3. Geometric Brownian motion:{
u(0) = u0,
du(t) = au(t)dt+ bu(t)dWt.

4. (Mean-reverting) Ornstein–Uhlenbeck process:{
u(0) = u0

du(t) = (a− bu(t))dt+ cdWt.

4.13. Find a process (ut)t∈R+ whose generator is the following:

1. Af(x) = f ′(x) + f ′′(x), where f ∈ BC(R) ∩ C2(R);
2. Af(t, x) = ∂f

∂t + cx∂f
∂x + 1

2α
2x2 ∂2f

∂x2 , where f ∈ BC(R2) ∩C2(R2) and c, α
are constants.

4.14. Let  denote the Laplace operator on Rn, φ ∈ BC(Rn) and α > 0.
Find a solution (ut)t∈R+ of the equation(

α− 1
2
 
)
u = φ in Rn.

Is the solution unique?

4.15. Consider a linear stochastic differential equation

du(t) = [a(t) + b(t)u(t)]dt+ [c(t) + d(t)u(t)]dW (t), (4.81)

where the functions a, b, c, d are bounded and measurable. Prove:

1. If a ≡ c ≡ 0, then the solution u(t) = u0(t) is given by

u0(t) = u0(0) exp
{∫ t

0

[
b(s)− 1

2
d2(s)

]
ds+

∫ t

0

d(s)dWs

}
.
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2. Setting u(t) = u0(t)v(t), show that u(t) is a solution of (4.81) if and only
if

v(t) = v(0) +
∫ t

0

[u0(s)a(s)− c(s)d(s)]ds+
∫ t

0

c(s)u0(s)ds.

Thus the solution of (4.81) is u0(t)v(t) with u(0) = u0(0)v(0).

4.16. Consider a diffusion process X associated with a stochastic differential
equation with drift μ(x, t) and diffusion coefficient σ2(x, t). Show that for any
θ ∈ R the process

Yθ(t) = exp
{
θX(t)− θ

∫ t

0

μ(X(s), s)ds− 1
2

∫ t

0

σ2(X(s), s)ds
}
, t ∈ R+,

is a martingale.

4.17. Consider a diffusion process X associated with a stochastic differential
equation with drift μ(x, t) = αt and diffusion coefficient σ2(x, t) = βt, with
α ≥ 0 and β > 0. Let Ta be the first passage time to the level a ∈ R; evaluate

E
[
e−λT 2

a

∣∣∣X(0) = 0
]

for λ > 0.

(Hint: Use the result of problem 4.16)

4.18. Let u(t), t ∈ R+, be the solution of the stochastic differential equation

du(t) = a(u(t))dt+ σ(u(t))dW (t)

subject to the initial condition

u(0) = u0 > 0.

Provided that a(0) = σ(0) = 0, show that, for every ε > 0, there exists a
δ > 0 such that

Pu0

(
lim

t→+∞u(t) = 0
)
≥ 1− ε

whenever 0 < u0 < δ if and only if∫ δ

0

exp
{∫ y

0

2a(x)
σ2(x)

}
dy <∞.

Further, if σ(x) = σ0x + o(x), and similarly a(x) = a0x + o(x), the stability
condition is

a0

σ2
0

<
1
2
.
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4.19. Let X be a diffusion process associated with a stochastic differential
equation with drift μ(x, t) = −αx and constant diffusion coefficient σ2(x, t) =
β, with α ∈ R∗

+ and β ∈ R. Show that the moments qr(t) = E[X(t)r], r =
1, 2, . . . of X(t) satisfy the system of ordinary differential equations

d

dt
qr(t) = −αrqr(t) +

β2r(r − 1)
2

qr−2(t), r = 1, 2, . . .

with the assumption qr(t) = 0 for any integer r ≤ −1.

4.20. Let X be the diffusion process defined in problem 4.18. Show that the
characteristic function of X(t), defined as ϕ(v; t) = E[exp{ivX(t)}], v ∈ R,
satisfies the partial differential equation

∂

∂t
ϕ(v; t) = −αv ∂

∂v
ϕ(v; t)− 1

2
β2v2ϕ(v; t).

4.21. Let u(t) be the solution of the stochastic differential equation

du(t) = a(u(t))dt+ b(u(t))dW (t)

subject to an initial condition

u(0) = u0 ∈ (α, β) ⊂ R.

Show that the mean μT (u0) of the first exit time

T = inf{t ≥ 0 | u(t) /∈ (α, β)}

is the solution of the ordinary differential equation

−1 = a(u0)
dμT

du0
+

1
2
b(u0)2

d2μT

du2
0

subject to the boundary conditions

μT (α) = μT (β) = 0.
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The Applications of Stochastic Processes
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Applications to Finance and Insurance

Mathematical finance is one of the most influential driving forces behind the
research into stochastic processes. This is due to the fact that a significant part
of the world’s financial markets relies on stochastic models as the underlying
basis for valuation and risk management. But, perhaps more surprisingly, the
financial market was also one of the main drivers that led to their discovery.

As early as 1900, Louis Bachelier, a young doctorate researcher, analyzed
financial contracts, also called financial derivatives, traded on the Paris bourse
and in his thesis (Bachelier (1900)) attempted to lay down a mathematical
foundation for their valuation. This was some years before Einstein, in the
context of physics, discovered Brownian motion, later formalized by Wiener,
which in turn led to the development of Itô theory in the 1950’s, represent-
ing the interface of classical and stochastic mathematics. All these then came
to prominence through Robert Merton’s (1973) as well as Black and Scholes’
(1973) derivation of their partial differential equation and formula for the pric-
ing of financial option contracts. These represented direct applications of the
then already known backward Kolmogorov equation and Kac–Feynman for-
mula. It serves as the most widely used basic model of mathematical finance.

In his work, Bachelier concluded that prices of assets traded on the ex-
change are random and represent market-clearing equilibria under which there
are equal numbers of buyers and sellers, whose riskless profit expectations
must be zero. The latter foreshadowed the economic concept of no-arbitrage
and, mathematically related, martingales. Both are fundamental building
blocks of all financial modeling involving stochastic processes, as was shown
by Harrison and Kreps (1979) and Harrison and Pliska (1981).

Many books on mathematical finance commence in describing discrete-
time stochastic models before deriving the continuous-time equivalent. How-
ever, in line with all the preceding chapters on the theory of stochastic pro-
cesses, we will only focus on continuous-time (and space) models. Discrete-
time models in practice serve, primarily, for numerical solutions of continuous
processes, but also for an intuitive introduction to the topic. We refer to
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Wilmott, Howison, and Dewynne (1993) for the former and Pliska (1997) as
well as Cox, Ross and Rubinstein (1979) for the latter.

5.1 Arbitrage-Free Markets

In economic theory the usual definition of a market is a physical or conceptual
place where supply meets demand for goods or services and they are exchanged
in certain ratios. These exchange ratios are typically formulated in terms of
a base monetary measuring unit, namely a currency, and called prices. This
motivates the following definition of a market for the purpose of (continuous-
time) stochastic modeling.

Definition 5.1. A filtered probability space (Ω,F , P, (Ft)t∈[0,T ]) endowed
with adapted stochastic processes (S(i)

t )t∈[0,T ], i = 0, . . . , n, representing asset
prices in terms of particular currencies, is called a market .

The asset prices are usually considered stochastic, because they do change
over time and often unpredictably so, depending on whether supply outweighs
demand or vice versa.

Remark 5.2. The risky assets (S(i)
t )t∈[0,T ], i = 1, . . . , n, are RCLL stochastic

processes, thus their future values are not predictable.

Nonetheless, it is often convenient to consider the concept of a riskless
asset.

Remark 5.3. If we define, say, S(0)
t := Bt as the riskless asset, then (Bt)t∈[0,T ]

is a deterministic, and thus predictable process.

Furthermore, in a market it is possible to exchange assets. This is repre-
sented by defining holding and portfolio processes.

Definition 5.4. A holding process Ht = (H(0)
t ,H

(1)
t , . . . , H

(n)
t ), which is

adapted and predictable to the filtration (Ft)t∈[0,T ], together with the asset
processes generates the portfolio process

Πt = Ht ·
(
Bt, S

(1)
t , . . . , S

(n)
t

)′
,

where (Πt)t∈[0,T ] is also adapted to (Ft)t∈[0,T ].

Note that the drivers of the asset and holding processes are different. The
former are exogenously driven by aggregate supply and demand in the market,
whereas the latter are controlled by a particular market participant. Usually,
but not always, the latter is considered to have no influence on the former.
The respective underlying random variables also have different dimensions,
St are stated in prices per unit, and Ht represent number of units. It is also
often important to distinguish the following two cases.
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Definition 5.5. If T < ∞, then the market has a finite horizon. Otherwise,
if T = +∞, then the market is said to have an infinite horizon.

But the definition of a market and its properties, so far, are insufficient to
guarantee that the mathematical model is a realistic one in terms of economics.
For this purpose, conditions have to be imposed on the processes constituting
the market.

Proposition 5.6. A realistic mathematical model of a market has to satisfy
the following conditions.

1. (Conservation of funds and nonexplosive portfolios). For every T ≥ 0 the
holding process Ht has to satisfy:

ΠT = Π0 +
∫ T

0

H
(0)
t dBt +

n∑
i=1

∫ T

0

H
(i)
t dS

(i)
t , (5.1)

along with the nonexplosion condition∫ T

0

dΠt <∞ a.s.

The conservation of funds condition is also called the self-financing port-
folios property.

2. (Nonarbitrage). A deflated portfolio process (Π∗
t )t∈[0,T ] with almost surely

Π∗
0 = 0 and Π∗

T > 0 or, equivalently, with almost surely Π∗
0 < 0 and

Π∗
T ≥ 0 is inadmissible. Here Π∗

t = Πt/S
(j)
t for any arbitrary numeraire

asset j.
3. (Trading and/or credit limits). Either (Ht)t∈[0,T ] is square-integrable and

of bounded variance or Πt ≥ c for all t, with −∞ < c ≤ 0 constant and
arbitrary.

Here condition 1 is obvious, as (in theory, at least) no money may suddenly
disappear and neither can there be infinite wealth. For condition 3 there is a
standard example (see Exercise 5.4) demonstrating that in continuous time
there exist arbitrage opportunities, if it is not satisfied. Finally, condition 2
is also obvious, in the sense that if an investor could create riskless wealth
above the return of the riskless asset (in economic language: “a free lunch”),
which could potentially lead to infinite profits. Hence the model would be ill
posed. To avoid this, the first fundamental theorem of asset pricing has to be
satisfied.

Theorem 5.7. (First fundamental theorem of asset pricing). If there exists
an equivalent martingale (probability) measure Q ∼ P (see Definition A.52)
for any arbitrary deflated portfolio process (Π∗

t )t∈[0,T ] in a particular market,
namely

Π∗
0 = EP [Π∗

t Λt] = EQ [Π∗
t ] ∀t ∈ [0, T ],



214 5 Applications to Finance and Insurance

where Λt is the Radon–Nikodym derivative (see Remark 4.32)

dQ

dP
= Λt on Ft.

Then the market is free of arbitrage opportunities, if the assumptions of Gir-
sanov’s Theorem 4.31 are satisfied.

Proof: As the proof is quite lengthy and involved in the general continuous-
time case, we refer to Delbaen and Schachermayer (1994). �

Theorem 5.8. (Second fundamental theorem of asset pricing). If there exists
a unique equivalent martingale (probability) measure Q ∼ P for any arbitrary
deflated portfolio process (Π∗

t )t∈[0,T ] in a particular market, then the market
is complete.

Proof: This proof is also very involved for the general continuous-time case,
and we refer to Cherny and Shiryaev (2001). �

We attempt to make the significance of the two fundamental theorems
more intuitive and thereby demonstrate the duality between the concepts of
nonarbitrage and the existence of a martingale measure. Assume a particular
portfolio in an arbitrage-free market has value Π̃T (ω) for each ω ∈ FT . If
another portfolio Π̂0 can be created so that a self-financing trading strategy
(Ĥt)t∈[0,T ] exists that replicates Π̃T (ω), namely

Π̂T (ω) = Ĥ0 · S0 +
n∑

i=0

∫ T

0

H
(i)
t dS

(i)
t ≥ Π̃T (ω) ∀ω ∈ FT ,

then, necessarily,
Π̂t ≥ Π̃t ∀t ∈ [0, T ], (5.2)

and, in particular
Π̂0 ≥ Π̃0.

Otherwise there exists an arbitrage opportunity by buying the cheaper port-
folio and selling the overvalued one. In fact, by this argumentation, the value
of Π̃0 has to be the solution of the constrained optimization problem

Π̃0 = min
(Ht)t∈[0,T ]

Π̂0

subject to the value conservation condition (5.1) and the (super)replication
condition (5.2). Hence if we can find an equivalent measure Q under which

EQ

[
n∑

i=0

∫ T

0

H
(i)
t dS

(i)
t

]
≤ 0

then the value of the replicated portfolio has to satisfy
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Π̃0 = max
Q
EQ

[
Π̃T

]
,

subject to, again, the value-conservation condition and the (super)martingale
condition

EQ

[
Π̂t

]
≥ Π̂0.

The latter can be considered as the so-called dual formulation of the repli-
cation problem. By the second fundamental theorem of asset pricing, if Q is
unique, then all inequalities turn to equalities and

Π̃0 = EQ

[
Π̃T

]
= Π̂0. (5.3)

This result states that the nonarbitrage value of an arbitrary portfolio in
an arbitrage-free and complete market is its expectation under the unique
equivalent martingale measure.

Here we have implicitly assumed that the values of the portfolios are stated
in terms of a numeraire of value 1. Generally, a numeraire asset or deflator
serves as a meain whose units all other assets are stated. The following theorem
states that numeraires can be changed.

Theorem 5.9. (Numeraire invariance theorem). A self-financing holding
strategy (Ht)t∈[0,T ] remains self-financing under a change of almost surely
positive numeraire asset; i.e., if

ΠT

S
(i)
T

=
Π0

S
(i)
T

+
∫ T

0

d

(
Πt

S
(i)
t

)
,

then
ΠT

S
(j)
T

=
Π0

S
(j)
T

+
∫ T

0

d

(
Πt

S
(j)
t

)
,

with i �= j, provided
∫ T

0
dΠt <∞.

Proof: We arbitrarily choose S(i)
t = 1 for all t ∈ [0, T ], and for notational

simplicity write S(j)
t ≡ St. Now it suffices to show that if

ΠT = Π0 +
∫ T

0

dΠt = Π0 +
∫ T

0

Ht · dSt, (5.4)

this implies
ΠT

ST
=
Π0

S0
+
∫ T

0

Ht · d
(

St

St

)
. (5.5)

Taking the differential and substituting (5.4):
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d

(
Πt

St

)
=
dΠt

St
+Πtd

(
1
St

)
+ dΠtd

(
1
St

)
= Ht ·

((
dSt

St

)
+ Std

(
1
St

)
+ dStd

(
1
St

))
,

after integration gives (5.5). �
In fact, in an arbitrage-free complete market, for every choice of numeraire

there will be a distinct equivalent martingale measure. As we will demonstrate,
the change of numeraire may be a convenient valuation technique of portfolios.

5.2 The Standard Black–Scholes Model

The Black–Scholes–Merton market has a particularly nice and simple, yet very
intuitive form. It consists of a riskless account process (Bt)t∈[0,T ], following

dBt

Bt
= rdt,

with constant instantaneous riskless interest rate r, so that

Bt = B0e
rt

and typically B0 ≡ 1. Here r describes the instantaneous time value of money,
namely how much relative wealth can be earned when saved over an infinites-
imal instance t + dt, or, conversely, how it is discounted if received in the
future.

Furthermore there exists a risky asset process (St)t∈[0,T ], following geo-
metric Brownian motion (see Example 4.9)

dSt

St
= μdt+ σdWt

with a constant drift μ and a constant volatility σ scaling a Wiener process
dWt, resulting in

ST = S0 exp
{(

μ− 1
2
σ2

)
T + σWT

}
.

Both assets are adapted to the filtered probability space (Ω,F , P, (Ft)t∈[0,T ]).
The market has a finite horizon and is free of arbitrage as well as complete.
To demonstrate this we take Bt as the numeraire asset and attempt to find
an equivalent measure Q, for which the discounted process

S∗
t :=

St

Bt
(5.6)

is a local martingale. Invoking Itô’s formula gives
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dS∗
t = S∗

t ((μ− r)dt+ σdWt), (5.7)

which, by Girsanov’s Theorem 4.31, shows that

WQ
t = Wt +

μ− r
σ

t

turns (5.6) into a martingale, namely

S∗
0 = EQ [S∗

t ] ,

under the equivalent measure Q, given by

dQ

dP
= exp

{
−μ− r

σ
WT −

(
μ− r
σ

)2
T

2

}
on FT .

Now by the numeraire invariance theorem this means that there will be unique
martingale measures for all possible deflated portfolios, and hence there is no
arbitrage in the Black–Scholes model and it is complete. This now allows us to
price arbitrary replicable portfolios according to formula (5.3). But going back
to the primal replication problem, we can derive the Black–Scholes partial
differential equation from the conservation-of-funds condition (5.1). Explicitly,
the replication constraints for a particular portfolio

Vt := Πt

in the Black–Scholes model are

Vt = V0 +
∫ t

0

H(S)
s dSs +

∫ t

0

H(B)
s dBs

= H
(S)
t St +H(B)

t Bt (5.8)

subject to the sufficient nonexplosion condition∫ t

0

∣∣∣H(B)
s

∣∣∣ ds+
∫ t

0

∣∣∣H(S)
s

∣∣∣2 ds <∞ a.s.

Now, invoking Itô’s formula, we obtain

dVt =
∂V

∂t
+ μSt

∂V

∂S
+

1
2
σ2S2

t

∂2V

∂S2
(5.9)

on the left side of equation (5.8) and

dVt = H
(S)
t dSt +H(B)

t dBt (5.10)

on the right. Now, by equating (5.9) and (5.10) as well as choosing

Ht =
∂V

∂S
and Ĥt = Vt −

∂V

∂S
St,
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the hedging strategy is entirely risk free, as the Wiener process has cancelled.
Rearranging results in the so-called Black–Scholes equation

LBSVt :=
∂V

∂S
+

1
2
σ2S2

t

∂2V

∂S2
+ rSt

∂V

∂S
− rVt = 0. (5.11)

First, it is notable that the physical drift is not present. This is given by the
logic that the hedger will always be riskless and thus the statistical properties
of the process are irrelevant as risk cancels out. Second, the partial differential
equation is a backward Kolmogorov equation (see equation (4.34)) with killing
rate r. As such we know that we require a suitable terminal condition and
should look for a solution given by the Feynman–Kac formula (4.37). In fact,
the valuation formula (5.3) provides us with exactly that. First, let us define
the concept of an important financial instrument.

Definition 5.10. A financial derivative or contingent claim (Vt)t∈[0,T ] on an
underlying asset St is an R-valued function of the process (St)t∈[0,T ] adapted
to the filtered probability space (Ω,F , P, (Ft)t∈[0,T ]).

Remark 5.11. Common derivatives are options. So-called vanilla options are
Calls and Puts. They have the time T value, also called the payoff

VT = max{ST −K, 0} (Call)

and
VT = max{K − ST , 0} (Put),

where K is a positive constant call the strike price. In fact, options can be
regarded as a synthetic portfolio (Πt)t∈[0,T ], which provides a certain payoff

VT (ω) = ΠT (ω) ∀ω ∈ FT .

Hence, substituting the payoff of a call option into formula (5.3) and em-
ploying Bt as numeraire, we obtain

V0 = EQ

[
VT

BT

]
= EQ

[
e−rT max {ST −K, 0}

]
= e−rT

(
EQ

[
ST I[ST >K](ST )

]
−KEQ

[
I[ST >K](ST )

])
. (5.12)

Now by (5.7) it becomes obvious that to change to the martingale measure
implies setting the drift of the risky asset to r. Hence,

EQ

[
ST I[ST >K](ST )

]
=
∫ ∞

K

ST f(ST )dST (5.13)

=
∫ ∞

−d2

S0e
(r− 1

2 σ2)T+σ
√

Txϕ(x)dx

= SerTΦ(d1)
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and similarly
EQ

[
ST I[ST >K](ST )

]
= Φ(d2), (5.14)

where f(x) is the log-normal density of ST , ϕ(x) the standard normal density
(1.2), Φ(x) its cumulative distribution, and

d1 =
ln S0

K +
(
r + 1

2σ
2
)
T

σ
√
T

, (5.15)

as well as d2 = d1 − σ
√
T . Hence the so-called Black–Scholes formula for a

Call option is

VBS(S0) := V0 = S0Φ(d1)−Ke−rTΦ(d2), (5.16)

and similarly, the Black–Scholes Put formula is

V0 = Ke−rTΦ(−d2)− S0Φ(−d1). (5.17)

In fact, both are related through the so-called Put-Call parity :

Put + S0 = Call +Ke−rT . (5.18)

Binary Options and Martingale Probabilities

In fact, the payoff kernel of equation can be arbitrary, and in today’s financial
markets, a vast and ever increasing variety of option payoffs are available. We
will look at some standard structures under the Black–Scholes assumptions.

A binary or digital Call option has the simple payoff VT = I[ST ≥K](ST ).
Hence its value is

V0 = e−rTEQ[I[ST ≥K](ST )]

= e−rTΦ(d2),

as has already been demonstrated in (5.14). In fact, the option has the inter-
pretation

V0 = e−rTQ(ST > K), (5.19)

i.e., the probability under the martingale measure of the risky asset exceeding
the strike at T . In fact, if (Ct)t∈[0,T ] is a call option, then

− ∂C
∂K

≡ −∂VBS

∂K
= Vt; (5.20)

i.e., the derivative of a Call option with respect to strike is the negative dis-
counted probability of being in the money at expiry under the risk-neutral
martingale measure.



220 5 Applications to Finance and Insurance

Barrier Options and Exit Times

A common example of derivatives that depend on the entire path of an under-
lying random variable (St)t∈[0,T ] are so-called barrier options. They are often
typical Put or Call options with the additional feature that, if the underlying
random variable hits a particular upper or lower barrier (or both) at any time
in [0, T ], an event is triggered. One particular example is a so-called “down-
and-out knockout Call option” (Dt)t∈[0,T ] that becomes worthless when a
lower level b is hit. Hence the payoff is

DT = max{ST −K, 0}I[mint∈[0,T ] St>b],

thus, slotting the payoff into the standard valuation formula, we need to cal-
culate

D0 = e−rTEQ

[
max{ST −K, 0}I[mint∈[0,T ] St>b]

]
= e−rT

(
EQ

[
(ST −K)I[mint∈[0,T ] St>b∩ST >K]

])
= e−rT

(
EQ

[
ST I[mint∈[0,T ] St>b∩ST >K]

]
−KQ

(
min

t∈[0,T ]
St > b ∩ ST > K

))
. (5.21)

It is not difficult to see that the latter probability can be transformed as

Q

(
min

t∈[0,T ]
WQ

t > g(b) ∩WQ
T > g(K)

)
= Q

(
WQ

T < −g(K)
)
−Q

(
min

t∈[0,T ]
WQ

t < g(b) ∩WQ
T > g(K)

)
, (5.22)

where

g(x) =
ln x

S0
−
(
r − 1

2σ
2
)
T

σ
.

Now using the reflection principle of Lemma 2.144, we see that the last term
of (5.22) can be rewritten as

Q
((
W̃Q

T < g(b) ∪WQ
T < g(b)

)
∩WQ

T > g(K)
)

= Q
(
W̃Q

T < g(b) ∩WQ
T > g(K)

)
= Q(WQ

T < 2g(b)− g(K)).

Since WQ
T is a standard Brownian motion under Q, we obviously have the

probability law

Q
(
WQ

T < y
)

= Φ

(
y√
T

)
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for any y ∈ R. Backsubstitution gives the solution of the last term of (5.21).
We leave the remaining (rather cumbersome) steps of the derivation as an
exercise (5.6). Eventually, the result turns out as

D0 = VBS(S0)−
(
S0

b

)1− 2r
σ2

VBS

(
b2

S0

)
in terms of the Black–Scholes price (5.16).

American Options and Stopping Times

So far we have only considered so-called European options where a sole payoff
occurs at time T . The type of option where the payoff may occur at any
time up to expiry at the holder’s discretion is called American. It can be
shown through replication nonarbitrage arguments (see, e.g., Øksendal (1998)
or Musiela and Rutkowski (1998)) that their valuation formula is

V ∗
0 = sup

τ∈[0,T ]

EQ [V ∗
τ ] .

Here τ clearly is a stopping time. In general we are dealing with an opti-
mal stopping or free boundary problem and there are usually no closed-form
solutions. The American option value can be posed in terms of a linear comple-
mentary problem (see, e.g., Wilmott, Howison, and Dewynne (1993)). Defining
the value of immediate exercise as Pt, we have

LBSVt ≤ 0 and Vt ≥ Pt, (5.23)

with
LBSV (V − P ) = 0 and VT = PT .

Now, if there exists an early exercise region R = {Sτ |τ < T}, we necessarily
have Vτ = Pτ , if LBSVτ = LBSPτ > 0, then this represents a contradiction
to (5.23). Therefore, in this case early exercise can never be optimal, as, for
instance, for a Call option with payoff Pτ = max{Sτ −K, 0}, and thus

LBS max{Sτ −K, 0} =
1
2
σ2K2δ(Sτ −K) + rKIS>K(Sτ ) ≥ 0,

where δ represent the Dirac-delta. Conversely, if V (A) < P (A) for some region
A, thenA ⊆ R; i.e., it would certainly be optimal to exercise within this region
and probably even within a larger one. As an example, for a Put option with
Pτ = max{K − Sτ , 0}, we have that

V (0, 0) = Ke−rT < P (0, T ) = K.

Typically, American options are valued employing numerical methods.
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5.3 Models of Interest Rates

The Black–Scholes model incorporates the concept of the time value of money
through the instantaneous short rate r. However, it assumes that this rate is
deterministic and even constant throughout time or, in other words, the term
structure (of interest rates) is flat and with zero volatility. But in reality it is
neither. In fact, a significant part of the financial markets is related to debt or,
as it is more commonly called, fixed income instruments. The latter, in their
simplest form, are future cash flows promised to a beneficiary by an emitter,
who may be a government, corporation, sovereign, etc. The buyer of the debt
hopes to pay as little up front as possible; vice versa for the counterparty.
These securities can be regarded as derivatives on interest rates. The latter
are used as a tool of expressing the discount between money received today and
money received in the future. In reality, this discount tends to be a function of
the time to maturity T of the debt, and moreover it changes continuously and
unpredictably. These concepts can be formalized in a simple discount bond
market.

Definition 5.12. A filtered probability space (Ω,F , P, (Ft)t∈[0,T ]) endowed
with adapted stochastic processes (B(i)

t )t∈[0,Ti], i = 0, . . . , n, Tn ≤ T , with

B
(i)
Ti

= 1 ∀i = 0, . . . , n,

representing discount bond prices is called a discount bond market . The term
structure of (continuously compounded) zero rates (r(t, T ))∀t,T ;t≤T is given
by the relationship

B
(i)
t = e−r(t,Ti)(Ti−t) ∀i.

By the fundamental theorems of asset pricing, the discount bond market is
free of arbitrage if there exist equivalent martingale measures for all discount
bond ratios B(i)

t /B
(j)
t , i, j ∈ {0, . . . , n}. But instead of evolving the discount

bond prices directly, models for fixed income derivatives focus on the dynamics
of the underlying interest rates. We will give brief summaries of the main
approaches to interest rate modeling.

Short Rate Models

Motivated by the Black–Scholes model, the first stochastic modeling ap-
proaches were performed on the concept of the short rate.

Definition 5.13. The instantaneous short rate

rt := r(t, t) ∀t ∈ [0, T ]

is connected to the value of a discount bound through

B
(i)
t = EQ

[
e−

� Ti
t rsds

]
∀i = 0, . . . , n, (5.24)

under the risk-neutral measure Q.
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Vasicek (1977) proposed that the short rate follows a Gaussian process

drt = μr(t, rt)dt+ σr(t, rt)dWP
t

under the physical or empirical measure P . This then results in a nonarbitrage
relationship between the short rate and bond processes of different maturities
based on the concept of a market price of risk process (λt)t∈[0,T ].

Proposition 5.14. Let the short rate rt follow the diffusion process

drt = μr(rt, t)dt+ σr(rt, t)dWP
t .

Furthermore, assume that the discount bonds B(i)
t with t ≤ Ti for all i have in-

terest rates as their sole risky factor and follow the sufficiently regular stochas-
tic processes

dB
(i)
t = μi(r, t, Ti)dt+ σi(r, t, Ti)dWP

t ∀i.

Then the nonarbitrage bond drifts are given by

μi = rt + σiλ(rt, t),

where λ(rt, t) is the market price of the interest rate risk process.

Proof: Let us define the portfolio process (Πt)t as

Πt = H
(1)
t B

(1)
t +H(2)

t B
(2)
t (5.25)

and normalize it by putting H(1)
t ≡ 1 and H(2)

t := Ht for all t. The dynamics
over a time interval dt are then given by

dΠt = dB
(1)
t +HtdB

(2)
t . (5.26)

Invoking Itô’s formula we have

μi =
∂B(i)

∂t
+ μr

∂B(i)

∂r
+

1
2
σr
∂2B(i)

∂r2

for the bond drift and

σi = σr
∂B(i)

∂r
(5.27)

for the bond volatility. Substituting both into (5.26) after cancellations, we
obtain

dΠt = (μ1 −Htμ2) +
(
σr
∂B(1)

∂r
−Htσr

∂B(2)

∂r

)
dWP

t .

It becomes obvious that when choosing the hedge ratio as
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Ht = σr
∂B(1)

∂r

(
σr
∂B(2)

∂r

)−1

, (5.28)

the Wiener process dWP
t and hence all risk vanishes so that

dΠt = rtdt, (5.29)

meaning that the bond must earn the riskless rate. Now, substituting (5.27),
(5.28), and (5.29) into (5.25), after rearrangement we get the relationship

μ1 − rtB(1)
t

σ1
=
μ2 − rtB(2)

t

σ2
.

By observing that the two sides do not depend on the opposite index and we
can write

μi − rtB(i)
t

σi
= λ(rt, t) ∀i,

where λ(rt, t) is an adapted process, independent of Ti. �

Corollary 5.15. By changing to the risk-neutral measure Q given by

dQ

dP
= exp

{
−
∫ t

0

λdWP
s −

∫ t

0

λ2

2
ds

}
on Ft,

the risk-neutralized short rate process is given by

drt = (μr − σrλ)dt+ σrdW
Q
t ,

where

WQ
t = WP

t +
∫ t

0

λds.

The reason why λ arises is that the short rate, representing the stochastic
variable, contrary to the asset price process St in the Black–Scholes model,
is not directly tradeable, meaning that a portfolio Htrt is meaningless. One
cannot buy units of it directly for hedging.

In practice, however, λ is rarely calculated explicitly. Instead, in a short
rate modeling framework some functional forms of μr and σr are specified and
their parameters calibrated to observed market prices. This implies that one
is moving from a physical measure P to a risk-neutral measure Q. For that
purpose it is useful to choose the short rate processes such that there exists a
tractable analytic solution for the bond price. In fact, the Vasicek stochastic
differential equation under the measure Q for the short rate is chosen to be
the mean-reverting Ornstein–Uhlenbeck process (see Example 4.9)

drt = (a− brt)dt+ σdWQ
t ,
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which, by substituting it into (5.24), leads one to conjecture that the solution
of a discount bond maturing at time T , namely with terminal condition BT =
1, is of the form

Bt = eC(t,T )−D(t,T )rt ,

thus preserving the Markov property of the process. Some cumbersome, yet
straightforward, calculations show that

D(t, T ) =
1
b

(
1− e−b(T−t)

)
(5.30)

and

C(t, T ) =
σ2

2

∫ T

t

(D(s, T ))2ds− a
∫ T

t

D(s, T )ds. (5.31)

It becomes apparent that the model only provides three parameters to describe
the dynamics of a potentially complex term structure. Therefore, another
common model is that of Hull and White (1990), also called the extended
Vasicek model, which makes all the parameters time-dependent, namely,

drt = (at − btrt)dt+ σtdW
Q
t ,

thereby allowing a richer description of the yield curve dynamics.

Heath–Jarrow–Morton Approach

As an evolution in interest rate modeling Heath, Jarrow, and Morton (1992)
defined an approach assuming a yield curve to be specified by a continuum
of traded bonds and evolved it through instantaneous forward rates f(t, T )
instead of the short rate. The former are defined through the expression

B
(T )
t = e−

� T
t

f(t,s)ds, (5.32)

and thus

f(t, T ) = −∂ lnB(T )
t

∂T
(5.33)

and
f(t, t) = rt. (5.34)

In fact, the Heath–Jarrow–Morton approach is very generic, and most other
models are just specializations of it. It assumes that forward rates, under the
risk-neutral measure Q associated with the riskless account numeraire, follow
the stochastic differential equation

df(t, T ) = μ(t, T )dt+ σ(t, T ) · dWQ
t , (5.35)

where σ(t, T ) and dWQ
t are n-dimensional. In fact, due to nonarbitrage argu-

ments, the drift function μ(t, T ) can be fully specified. Invoking Itô’s formula
on (5.32), we obtain the relationship
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dB
(T )
t

B
(T )
t

=

⎛⎝rt − ∫ T

t

μ(t, s)ds+
1
2

∣∣∣∣∣
∫ T

t

σ(t, s)ds

∣∣∣∣∣
2
⎞⎠ dt

−
∫ T

t

σ(t, s)dsdWQ
t

because ∫ T

t

∂f(t, s)
∂t

dsdt =
∫ T

t

μ(t, s)dsdt+
∫ T

t

σ(t, s)dsdWQ
t ,

and by noting (5.34), (5.35) as well as Fubini’s Theorem A.41. But now, for
the deflated discount bond to be a martingale, the drift has to be rt. Thus

∫ T

t

μ(t, s)ds =
1
2

∣∣∣∣∣
∫ T

t

σ(t, s)ds

∣∣∣∣∣
2

and so

μ(t, T ) = σ(t, T ) ·
∫ T

t

σ(t, s)ds (5.36)

Substituting (5.36) into (5.35), we obtain arbitrage-free processes of a contin-
uum of forward rates, driven by one or more Wiener processes:

df(t, T ) = σ(t, T ) ·
∫ T

t

σ(t, s)ds+ σ(t, T ) · dWQ
t .

It can be noted that, unlike for short rate models, no market price of risk
appears. This is due to the fact that forward rates are actually tradeable, as
the following section will demonstrate.

Brace–Gatarek–Musiela Approach

As a very intuitive and simple yet powerful approach, Brace, Gatarek, and
Musiela (1997) and other authors (Miltersen, Sandmann, and Sondermann
(1997), Jamshidian (1997)) in parallel introduced a model of discrete forward
rates (F (i)

t )t∈[0,T ], i = 1, . . . , n, that span a yield curve through the discrete
discount bonds

B
(k)
t =

k∏
i=1

(
1 + F (i)

t (Ti − Ti−1)
)−1

, 1 ≤ k ≤ n. (5.37)

The forward rates are assumed to follow the system of stochastic differential
equations

dFt = μ(t,Ft)dt+Σ(t,Ft)dWt,
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where Σ is a diagonal matrix containing the respective volatilities and dWt

is a vector of Wiener processes with correlations

E
[
dW

(i)
t dW

(j)
t

]
= ρijdt.

In particular, all forward rate processes are considered of the lognormal form

dF
(i)
t

F
(i)
t

= μ(i)(t,Ft) + σ(i)
t dW

(i)
t ∀i. (5.38)

Again, similar to the Heath–Jarrow–Morton model, a martingale nonarbitrage
argument determines the drift μ(i) for each forward rate F (i)

t . To see this we
can write (5.37) as a recurrence relation, and after rearrangement we obtain

F
(i)
t B

(i)
t =

B
(i−1)
t −B(i)

t

Ti − Ti−1
, (5.39)

which states that the left-hand side is equivalent to a portfolio of traded
assets and has to be driftless under the martingale measure associated with
a numeraire asset. In fact, we have a choice of numeraire asset among all
combinations of available bonds (5.37). We arbitrarily choose a bond B(N)

t ,
1 ≤ N ≤ n, with associated forward measure QN and thus

EQN

[
d

(
F

(i)
t

B
(i)
t

B
(N)
t

)]
= 0. (5.40)

The derivation is left as an exercise, and the end-result is

μ
(i)
t =

⎧⎪⎪⎨⎪⎪⎩
−
∑N

j=i+1
(Tj+1−Tj)F

(j)
t σ

(i)
t σ

(j)
t ρij

1+(Tj+1−Tj)F
(j)
t

if i < N,

0 if i = N,∑n
j=N+1

(Tj+1−Tj)F
(j)
t σ

(i)
t σ

(j)
t ρij

1+(Tj+1−Tj)F
(j)
t

if i > N.

(5.41)

This model is particularly appealing as it directly takes real-world observable
inputs like forward rates and their volatilities and also discrete compound-
ing/discounting. But the potentially large number of Brownian motions makes
the model difficult to handle computationally, as it may require large-scale
simulations.

5.4 Contingent Claims under Alternative Stochastic
Processes

In practice, Black–Scholes is the most commonly used model, despite its sim-
plicity. Nonetheless, there are significant modeling extensions that try to make
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it more realistic. As already discussed, the introduction of stochastic interest
rate processes is a significant step. But there exist other issues. The most
significant of them is the fact that the volatility parameter σ is constant. In
practice, Put and Call options of different strikes K and expiries T are traded
on exchanges and their prices V̂ (T,K) are directly observable. This fact mo-
tivates one to determine so-called implied volatilities σimp(T,K), because the
simple Black–Scholes formulae (5.16) and (5.17) are one-to-one mappings be-
tween prices of options with respective T and K to the volatilities σ. The
implied volatility is then such that

VBS(σimp(T,K)) = V̂ (T,K).

Stating option prices in terms of their implied volatility makes them directly
comparable in the sense that an option with a higher implied volatility is more
expensive than one with a lower.10

If the Black–Scholes model were an accurate description of the real world,
then σimp(T,K) = σ constant. But in the real world this is not the case.
Usually implied volatilities are both dependent on K and T . Typical shapes
of the implied volatility surface across the strike are so-called skews or smiles.
The former usually means that σimp(K1, T ) > σimp(K2, T ), with K1 < K2

for Put options and vice versa for Calls, implying that the market believes
there is a greater risk in a downward move in St and thus sees a negative
correlation between St and σimp. A smile shape is usually due to the fact that
out-of-the-money11 options are relatively more expensive. There are various
modeling approaches to overcome this deficiency of the Black–Scholes model.

Local Volatility

Dupire (1994) demonstrated that extending the risky asset process under the
martingale measure to

dSt

St
= rdt+ σ(t, St)dWt (5.42)

results in a probability distribution that recovers all observed option prices
V̂ (T,K). By (5.12) and (5.13) it is clear that we can write the observed (Call)
option price as

V̂ (T,K) = e−rT

∫ ∞

K

(ST −K)f(0, S0, T, ST )dST .

Having differentiated with respect to K we obtained the cumulative distribu-
tion as (5.19) and (5.20). Repeatedly differentiating, we obtain the so-called
risk-neutral transition density
10 By Put-Call parity (5.18), the implied volatility for Puts and Calls in an arbitrage-

free market has to be identical for all pairs T, K.
11 Approximately, a Put option with K < S0 and a Call option with K > S0.
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f(0, S0, T,K) = erT ∂
2V̂

∂K2
. (5.43)

Now, by Theorem 4.50 f(0, S0, T,K) has to satisfy the Kolmogorov forward
equation

∂f

∂T
=

1
2
∂2(σ2(T,K)K2f)

∂K2
− ∂(rKf)

∂K
(5.44)

with initial condition
f(S0, 0, x, 0) = δ(x− S0).

Substituting (5.43) into (5.44), integrating twice with respect to K (after
applying Fubini’s Theorem A.41 when changing the order of integration), and
noting the boundary condition

lim
K→∞

∂V̂

∂T
= 0,

we obtain
∂V̂

∂T
=

1
2
σ2(T,K)K2 ∂

2V̂

∂K2
− rK ∂V̂

∂K
.

Thus

σ(T,K) =

√√√√ ∂V̂
∂T + rK ∂V̂

∂K

1
2σ

2K2 ∂2V̂
∂K2

,

fully specifying the process (5.42).

Jump Diffusions

Merton (1976) introduced an extension to the Black–Scholes model, which
appended the risky asset process by a Poisson process (Nt)t∈[0,T ], with N0 = 0
and constant intensity λ, independent of (Wt)t∈[0,T ], to allow asset prices to
move discontinuously. The compensated risky asset price process now follows

dSt

St−
= (r − λm)dt+ σdWt + JtdNt, (5.45)

under the risk-neutral equivalent martingale measure, with (Jt)t∈[0,T ] an in-
dependent and identically distributed sequence of random variables valued in
] − 1,∞[ of the form Jt = JiI[t>τi[(t) with J0 = 1, τi an increasing sequence
of times and where

E[dNt] = λdt and E[Jt] = m.

Then the solution to (5.45) can be written as

ST = S0 exp
{(

r − σ
2

2
− λm

)
T + σWT

} NT∏
i=1

Ji.
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Defining an option value process by (V (t, St))t∈[0,T ], we apply Itô’s formula
along with its extension to Poisson processes and assume that jump risk in
the market is diversifiable (see Merton (1976) and references therein) so that
we can use the chosen risk-neutral measure Q, we obtain

[LBSV ](0, S0) = λ

(
m
∂V

∂S
− E[V (0, J0S0)] + V (0, S0)

)
.

The solution to this partial differential equation can still be written in the
form (5.12), namely

V (0, S0) = e−rT
(
EQ

[
ST I[ST >K](ST )

]
−KQ(ST > K)

)
,

but closed form expressions of the expectation and probability terms only
exist for special cases. Two such cases were identified by Merton (1976), first
when Nt ∈ {0, 1} and J1 = −1, i.e., the case when there exists the possibility
of a single jump that puts the risky asset into the absorbing state 0. Then the
solution for, say, a Call option is VBS but with a modified risk-free rate r+λ.
The second case is when

lnJt ∼ N(μ, γ2)

so that
m = eμ+ 1

2 γ2
.

Then

V (0, S0) =
∞∑

i=0

e−λmT (λmT )i

i!
VBS(σi, ri),

where the risk-free rate is given by

ri = r +
i

T

(
μ+

γ2

2

)
− λ(m− 1),

and the volatility by

σn =

√
σ2 +

i

T
γ2.

Another, semiclosed form expression exists when Jt are exponentially dis-
tributed (see Kou (2002)), but usually the solution has to be written in terms
of Fourier transforms that need to be solved numerically.

5.5 Insurance Risk

Ruin Probabilities

A typical one-company insurance portfolio is modelled as follows. The initial
value of the portfolio is the so-called initial reserve u ∈ R∗

+. At random times
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σn ∈ R∗
+, a random claim Un ∈ R∗ occurs for n ∈ N∗. During the time interval

]0, t] ⊂ R∗
+ an amount Πt ∈ R∗

+ of income is collected through premiums. The
cumulative claims process up to time t > 0 is then given by

Xt =
∞∑

k=1

UkI[σk≤t](t).

In this way the value of the portfolio at time t, the so-called risk reserve, is
given by

Rt = u+Πt −Xt.

The claims surplus process is given by

St = Xt −Πt.

If we assume that premiums are collected at a constant rate β > 0, then

Πt = βt, t > 0.

Now, the time of ruin τ(u) of the insurance company is a function of the
initial reserve level. It is the first time when the claim surplus process crosses
this level, namely

τ(u) := min{t > 0|Rt < 0} = min{t > 0|St > u}.

Hence, an insurance company is interested in the ruin probabilities; first the
finite horizon ruin probability, which is defined as

ψ(u, x) := P (τ(u) ≤ x) ∀x ≥ 0;

second, the probability of ultimate ruin, defined as

ψ(u) := lim
x→+∞ψ(u, x) = P (τ(u) ≤ +∞).

It may also be interested in the survival probability defined as

ψ̄(u) = 1− ψ(u).

It is clear that

ψ(u, x) = P

(
max

0≤t≤x
St > u

)
.

The above model shows that the marked point process (σn, Un)n∈N∗ on
(R∗

+ × R∗
+) plays an important role. As a particular case, we consider the

marked Poisson process with independent marking , i.e., the case in which
(σn)n∈N∗ is a Poisson process on R∗

+ and (Un)n∈N∗ is a family of independent
and identically distributed R∗

+-valued random variables, independent of the
underlying point process (σn)n∈N∗ . In this case, we have that the interoccur-
rence times between claims Tn = σn − σn−1 (with σ0 = 0) are independent
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and identically exponentially distributed random variables with a common
parameter λ > 0 (see Rolski et al. (1999)). In this way the number of claims
Nt during ]0, t], t > 0, i.e., the underlying counting process

Nt =
∞∑

k=1

I[σk≤t](t)

is a Poisson process on R∗
+ with intensity λ. Now, let the claim sizes Un be

independent and identically distributed with common cumulative distribution
function FU and let (Un)n∈N∗ be independent of (Nt)t∈R+ . We may notice that
in this case the cumulative claim process

Xt =
Nt∑

k=1

Uk =
∞∑

k=1

UkI[σk≤t](t), t > 0,

is a so-called compound Poisson process. Clearly, the latter has stationary
independent increments and, in fact, it is a Lévy process, so that we can state
the following theorem.

Theorem 5.16. (Karlin and Taylor (1981), page 428). Let (Xt)t∈R∗
+

be a
stochastic process having stationary independent increments and let X0 = 0.
It is then a compound Poisson process if and only if its characteristic function
φXt(z) is of the form

φXt
(z) = exp{−λt(1− φ(z))}, z ∈ R,

where λ > 0 and φ is a characteristic function.

With respect to the above model, φ is the common characteristic function
of the claims Un, n ∈ N∗. If μ and σ2 are the mean and the variance of U1,
respectively, we have

E[Xt] = μλt,

V ar[Xt] =
(
σ2 + μ2

)
λt.

We may also obtain the cumulative distribution function of Xt through the
following argument:

P (Xt ≤ x) = P

(
Nt∑

k=1

Uk ≤ x
)

=
∞∑

n=0

P

(
Nt∑

k=1

Uk ≤ x
∣∣∣∣∣Nt = n

)
P (Nt = n)

=
∞∑

n=0

(λt)ne−λt

n!
F (n)(x)
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for x ≥ 0 (it is zero otherwise), where

F (n)(x) = P (U1 + · · ·+ Un ≤ x), x ≥ 0,

with

F (0)(x) =
{

1 for x ≥ 0,
0 for x < 0.

In the special case of exponentially distributed claims, with common param-
eter μ > 0, we have

FU (u) = P (U1 ≤ u) = 1− e−μu, u ≥ 0,

so that U1 + · · ·+ Un follows a gamma distribution with

F
(n)
U (u) = 1−

n−1∑
k=0

(μu)ke−μu

k!
=

μn

(n− 1)!

∫ u

0

e−μvvn−1dv

for n ≥ 1, u ≥ 0. The following theorem holds for exponentially distributed
claim sizes.

Theorem 5.17. Let

FU (u) = 1− e−μu, u ≥ 0.

Then
ψ(u, x) = 1− e−μu−(1+c)λxg(μu+ cλx, λx),

where

c = μ
β

λ
,

g(z, θ) = J(θz) + θJ (1)(θz) +
∫ z

0

ez−vJ(θv)dv − 1
c

∫ cθ

0

ecθ−vJ
(
zc−1v

)
dv,

with θ > 0. Here

J(x) =
∞∑

n=0

xn

n!n!
, x ≥ 0,

and J (1)(x) is its first derivative.

Proof: See, e.g., Rolski et al. (1999), page 196. �
For the general compound Poisson model we may provide information

about the finite-horizon ruin probability P (τ(u) ≤ x) by means of martingale
methods. We note again that, in terms of the claim surplus process St, we
have

τ(u) = min{t|St > u}, u ≥ 0,

and
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ψ(u, x) = P (τ(u) ≤ x), x ≥ 0, u ≥ 0.

The claim surplus process is then given by

St =
Nt∑

k=1

Uk − βt,

where λ > 0 is the arrival rate, β the premium rate, and FU the claim size
distribution. Let

Yt =
Nt−∑
k=1

Uk, t ≥ 0,

be the left-continuous version of the cumulative claim size Xt. Based on the
notion of reversed martingales (see Rolski et al. (1999), page 434), it can be
shown that the process

Zt = X∗
x−t, t ∈ [0, x[, x > 0,

with
X∗

t =
Yt

u+ βt
+
∫ x

t

Yv

v

u

(u+ βv)2
dv, 0 < t ≤ x,

for u ≥ 0 and x > 0, is an FX
t -martingale. Let

τ0 = sup{v|v ≥ x, Sv ≥ u},

and τ0 = 0, if S(v) < u for all v ∈ [0, x]. Then τ := x − τ0 is a bounded
FX

t -stopping time. As a consequence,

E[Zτ ] = E[Z0],

i.e.,

E

[
Yx

u+ βx

∣∣∣∣Yx ≤ u+ βx
]

= E

[
Yτ0

u+ βτ0
+
∫ x

τ0

Yv

v

u

(u+ βv)2
dv

∣∣∣∣Sx− ≤ u
]
.

On the other hand, we have

P (τ(u) > x) = P
(
Sx ≤ u ∩ τ0 = 0

)
= P (Sx ≤ u)− P

(
Sx ≤ u ∩ τ0 > 0

)
.

Now, since
Yτ0 = u+ βτ0 for τ0 > 0,

we have

E

[
Yτ0

u+ βτ0

∣∣∣∣Sx ≤ u
]

= E

[
Yτ0

u+ βτ0

∣∣∣∣Sx ≤ u ∩ τ0 > 0
]

= P
(
Sx ≤ u ∩ τ0 > 0

)
.

Thus, for u > 0, we have the following result.
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Theorem 5.18. (Rolski et al. (1999), page 434). For all u ≥ 0 and x > 0,

1− ψ(u, x) = max
{
E

[
1− Yx

u+ βx

]
, 0
}

+ E
[∫ x

τ0

Yv

v

u

(u+ βv)2
dv

∣∣∣∣Sx ≤ u
]
.

In particular, for u = 0,

1− ψ(0, x) = max
{
E

[
1− Yx

βx

]
, 0
}
.

A Stopped Risk Reserve Process

Consider the risk reserve process

Rt = u+ βt−
Nt∑

k=1

Uk.

A useful model for stopping the process is to stop Rt at the time of ruin τ(u)
and let it jump to a cemetery state. In other words, consider the process

Xt =
{

(1, Rt) if t ≤ τ(u),
(0, Rτ (u)) if t > τ(u).

The process (Xt, t)t∈R+ is a piecewise deterministic Markov process as defined
in Davis (1984). The infinitesimal generator of (Xt, t)t∈R+ is given by

Ag(y, t)

=
∂g

∂t
(y, t) + I[y≥0](y)

(
β
∂g

∂y
(y, t) + λ

(∫ y

0

g(y − v, t)dFU (v)− g(y, t)
))

for g satisfying sufficient regularity conditions, so that it is in the domain of
A (see Rolski et al. (1999), page 467). If g does not depend explicitly upon
time and g(y) = 0 for y < 0, then the infinitesimal generator reduces to

Ag(y) = β
dg

dy
(y) + λ

(∫ y

0

g(y − v)dFU (v)− g(y)
)
.

The following theorem holds.

Theorem 5.19. Under the above assumptions,

1. the only solution g(y) to Ag(y) = 0, such that g(0) > 0 and g(y) = 0, for
y ∈]−∞, 0[, is the survival function ψ̄(y) = P (τ(u) = +∞);

2. let x > 0 be fixed and let g(y, t) solve Ag = 0 in (R× [0, x]) with boundary
condition g(y, x) = I[y≥0](y). Then g(y, 0) = P (τ(y) > x) for any y ∈ R,
x ∈ R∗

+.
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5.6 Exercises and Additions

5.1. Let (Fn)n∈N and (Gn)n∈N be two filtrations on a common probability
space (Ω,F ,P) such that Gn ⊆ Fn ⊆ F for all n ∈ N; we say that a real-
valued discrete time process (Xn)n∈N is an (Fn,Gn)-martingale if and only
if

• (Xn)n∈N is an Fn-adapted integrable process;
• for any n ∈ N, E[Xn+1 −Xn|Gn] = 0.

A process C = (Cn)n≥ is called Gn-predictable if Cn is Gn−1-measurable. Given
N ∈ N, we say that a Gn-predictable process C is totally bounded by time N
if

• Cn = 0 almost surely for all n > N ;
• there exists a K ∈ R+ such that Cn < k almost surely for all n ≤ N .

Let C be a Gn-predictable process, totally bounded by time N . We say that
it is a risk-free {Gn}N -strategy if, further,

N∑
i=1

Ci(Xi −Xi−1) ≥ 0 a.s., P

(
N∑

i=1

Ci(Xi −Xi−1) > 0

)
> 0.

Show that there exists a risk-free {Gn}N -strategy for X = (Xn)n∈N if and only
if there does not exist an equivalent measure P̃ such that Xn∧N is a (Fn,Gn)-
martingale under P̃. This is an extension of the first fundamental theorem of
asset pricing, Theorem 5.7. See also Dalang, Morton, and Willinger (1990).

5.2. Given a filtration (Fn)n∈N on a probability space (Ω,F ,P), the filtration
Fm

n := Fn−m is called an m-delayed filtration. An Fn-adapted, integrable
stochastic process X = (Xn)n∈N is an m-martingale if it is an (Fn,Fm

n )-
martingale (see problem 5.1). Find a real-valued (2-martingale) X where no
profit is available during any unit of time; i.e.,

∀i, P(Xi −Xi−1 > 0) > 0, P(Xi −Xi−1 < 0) > 0,

but admits a risk-free {F1
n}3-strategy C; i.e.,

3∑
i=1

Ci(Xi −Xi−1) ≥ 0 a.s., P

(
3∑

i=1

Ci(Xi −Xi−1) > 0

)
> 0.

(See Aletti and Capasso (2003).)

5.3. With reference to problem 5.2, consider a risk-free {Fn}N -strategy. Show
that there exists an n ∈ {1, . . . , N} such that

Cn(Xn −Xn−1) ≥ 0 a.s., P (Cn(Xn −Xn−1) > 0) > 0;

i.e., if no profit is available during any unit of time, then we cannot have a
profit up to time N . (See Aletti and Capasso (2003).)
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5.4. Consider a Black–Scholes market with r = μ = 0 and σ = 1. Then
a value-conserving strategy H(S)

t = 1/
√
T yields a portfolio value of Πt =∫ t

0
dWs/

√
T − s. Show that

P (Πτ ≥ c, 0 ≤ τ ≤ T ) = 1,

with c an arbitrary constant and τ a stopping time. Hence any amount can
be obtained in finite time. It is easy to see that (unlike conditions 1 and 2)
condition 3 of Proposition 5.6 is not automatically satisfied (see, e.g., Duffie
(1996)).

5.5. For a drifting Wiener process Xt = Wt + μt, where Wt is P -Brownian
motion and its maximum value attained is

Mt = max
τ∈[0,t]

Xτ ,

apply the reflection principle and Girsanov’s theorem to show that

P (XT ≤ a ∩MT ≥ b) = e2μbP (XT ≥ 2b− a+ 2μT )

for a ≤ b and b ≥ 0. See also Musiela and Rutkowski (1998) or Borodin and
Salminen (1996).

5.6. Referring to the Barrier option problem (5.21), show that

Q

(
min

t∈[0,T ]
WQ

t > g(b) ∩WQ
T > g(K)

)
= Φ(d1)−

(
b

S0

) 2r
σ2 −1

Φ

(
ln b2

S0K +
(
r − 1

2σ
2
)
T

σ
√
T

)
, (5.46)

where d1 is given by (5.15). From (5.46) obtain the joint density of ST and
its minimum over [0, T ], and thus solve

EQ

[
ST I[mint∈[0,T ] St>b∩ST >K]

]
.

5.7. Why can it be conjectured that the bond equation in the Vasicek model
is of the form

Bt = eC(t,T )−D(t,T )rt? (5.47)

Derive the results (5.30) and (5.31). (Hint: Derive a partial differential equa-
tion for P (t, T ) using a similar argumentation as for the Black–Scholes equa-
tion. Substitute (5.47) and solve. (See also Hunt and Kennedy (2000).))

5.8. In the Brace–Gatarek–Musiela model, derive the nonarbitrage drifts
(5.41) of the lognormal forward rates F (i)

t . (Hint: In equation (5.40) note

that B
(i)
t

B
(N)
t

is a martingale under QN . Given this, derive the drift as
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μi = −
d

〈
lnF (i)

t , ln B
(i)
t

B
(N)
t

〉
dt

and solve.)

5.9. A nonarbitrage argument shows that a so-called swap rate S(t, Ts, Te)
has to satisfy

S(t, Ts, Te) =
∑e

i=s+1 F
(i−1)
t B

(i)
t (Ti − Ti−1)

As,e
, (5.48)

where

As,e =
e∑

i=s+1

Bi
t(ti − ti−1)

is called an annuity. If relationship (5.39) holds and the forward rates are
driven by (5.38), then show that the swap rate process can approximately be
written as

dS(t, Ts, Te) = σS(t,Ts,Te)S(t, Ts, Te)dW
As,e

t ,

where σS(t,Ts,Te) is deterministic and dW
As,e

t is a Brownian motion under
the martingale measure induced by taking As,e as numeraire. (Hint: Assume
that the coefficients of all the forward rates F (i)

t in (5.48) are approximately
deterministic, invoke Itô’s formula, and apply Girsanov’s theorem.)

5.10. The constant elasticity of variance market (see Cox (1996) or Boyle and
Tian (1999)) is a Black–Scholes market where the risky asset follows

dSt = μStdt+ σS
α
2

t dWt

for 0 ≤ α < 2. Show that this market has no equivalent risk-neutral measure.
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Applications to Biology and Medicine

6.1 Population Dynamics:
Discrete-in-Space–Continuous-in-Time Models

In the chapter on stochastic processes the Poisson process was introduced
as an example of an RCLL nonexplosive counting process. Furthermore, we
reviewed a general theory of counting processes as point processes on the
real line within the framework of martingale theory and dynamics. Indeed,
for these processes, under the usual regularity assumptions, we can invoke
the Doob–Meyer decomposition theorem (see (2.79) onwards) and claim that
any nonexplosive RCLL process (Xt)t∈R+ satisfies a generalized stochastic
differential equation of the form

dXt = dAt + dMt (6.1)

subject to a suitable initial condition. Here A is the compensator of the process
representing the model of “evolution” and M is a martingale representing the
“noise.”

As was mentioned in the sections on counting and marked point processes,
a counting process (Nt)t∈R+ is a random process that counts the occurrence of
certain events over time, namely Nt being the number of such events having
occurred during the time interval ]0, t]. We have noticed that a nonexplosive
counting process is RCLL with upward jumps of magnitude 1 and we impose
the initial condition N0 = 0, almost surely. Since we deal with those count-
ing processes that satisfy the conditions of Theorem 2.87 (local Doob–Meyer
decomposition theorem), a nondecreasing predictable process (At)t∈R+ (the
compensator) exists such that (Nt −At)t∈R+ is a right-continuous local mar-
tingale. Further, we assume that the compensator is absolutely continuous
with respect to the usual Lebesgue measure on R+. In this case we say that
(Nt)t∈R+ has a (predictable) intensity (λt)t∈R+ such that

At =
∫ t

0

λsds for any t ∈ R+,
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and the stochastic differential equation (6.1) can be rewritten as

dXt = λtdt+ dMt. (6.2)

If the process is integrable and λ is left-continuous with right limits (LCRL),
one can easily show that

λt = lim
Δt→0+

1
Δt
E[Nt+δt −Nt|Ft−] a.s.

and, if we further assume the simplicity of the process, we also have

λt = lim
Δt→0+

1
Δt
P (Nt+δt −Nt = 1|Ft−) a.s.;

i.e., λtdt is the conditional probability of a new event during [t, t+dt] given the
history of the process during [0, t]. It really represents the model of evolution of
the counting process, similar to classical deterministic differential equations.

Example 6.1. Let X be a nonnegative real random variable with absolutely
continuous probability law having density f , cumulative distribution function
F , survival function S = 1− F , and hazard rate function α(t) = f(t)

S(t) , t > 0.
Assume ∫ t

0

α(s)ds = − ln(1− F (t)) < +∞ for any t ∈ R+,

but ∫ +∞

0

α(t)dt = +∞.

Define the univariate process Nt by

Nt = I[X≤t](t)

and let (Nt)t∈R+ be the filtration the process generates; i.e.,

Nt = σ(Ns, s ≤ t) = σ
(
X ∧ t, I[X≤t](t)

)
.

Define the left-continuous adapted process Yt by

Yt = I[X≥t](t) = 1−Nt−.

It can be easily shown (see, e.g., Andersen et al. (1993)) that Nt admits

At =
∫ t

0

Ysα(s)ds

as a compensator and hence Nt has stochastic intensity λt defined by
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λt = Ytα(t), t ∈ R+.

In other words,

Nt −
∫ X∧t

0

α(s)ds

is a local martingale. Here α(t) is a deterministic function, while Yt, clearly, is a
predictable process. This is a first example of what is known as a multiplicative
intensity model.

Example 6.2. Let X be a random time as in the previous example, and let U
be another random time, i.e., a nonnegative real random variable. Consider
the random variable T = X ∧ U and define the processes

Nt = I[T≤t]I[X≤U ](t)

and
NU

t = I[T≤t]I[U<X](t)

and the filtration
Nt = σ

(
Ns, N

U
s , s ≤ t

)
.

The hazard rate function α of X is known as the net hazard rate; it is given
by

α(t) = lim
h→0+

1
h
P [t ≤ X ≤ t+ h|X > t].

On the other hand, the quantity

α+(t) = lim
h→0+

1
h
P [t ≤ X ≤ t+ h|X > t, U > t]

is known as the crude hazard rate, whenever the limit exists. In this case

Nt −
∫ t

0

I[T≥t]α(s)ds

is a local martingale.

Birth-and-Death Processes

A Markov birth-and-death process provides an example of a bivariate counting
process. Let (Xt)t∈R+ be the size of a population subject to a birth rate λ and
a death rate μ. Then the infinitesimal transition probabilities are

P (Xt+δt = j|Xt = h) =

⎧⎪⎪⎨⎪⎪⎩
λhδt+ o(δt) if j = h+ 1,
μhδt+ o(δt) if j = h− 1,
1− (λh+ μh)δt+ o(δt) if j = h,
o(δt) otherwise.
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Let N (1)
t and N (2)

t be the number of births and deaths, respectively, up to
time t ≥ 0, assuming N (1)

0 = 0 and N (2)
0 = 0. Then

(Nt)t∈R+ =
(
N

(1)
t , N

(2)
t

)
is a bivariate counting process with intensity process (λXt−, μXt−)t∈R+ (see
Figures 6.1 and 6.2). This is an example of a formulation of a Markov process
with countable state space as a counting process. In particular, we may write
a stochastic differential equation for Xt as follows:

dXt = λXt−dt− μXt−dt+ dMt,

where Mt is a suitable martingale noise.
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Fig. 6.1. Simulation of a birth-and-death process with birth rate λ = 0.2, death rate
μ = 0.05, initial population X0 = 10, time step dt = 0.1, and interval of observation
[0, 10]. The continuous line represents the number of births N

(1)
t ; the dashed line

represents the number of deaths N
(2)
t .

A Model for Software Reliability

LetNt denote the number of software failures detected during the time interval
]0, t] and suppose that F is the true number of faults existing in the software at
time t = 0. In the Jelinski–Moranda model (see Jelinski and Moranda (1972))
it is assumed that Nt is a counting process with intensity

λt = ρ(F −Nt−),

where ρ is the individual failure rate (see Figure 6.3). One may note that this
model corresponds to a pure death process in which the total initial population
F usually is unknown, as is the rate ρ.
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Fig. 6.2. Simulation of a birth-and-death process with birth rate λ = 0.09, death
rate μ = 0.2, initial population X0 = 10, time step dt = 0.1, and interval of obser-
vation [0, 10]. The continuous line represents the number of births N

(1)
t ; the dashed

line represents the number of deaths N
(2)
t .
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Fig. 6.3. Simulation of a model for software reliability: individual failure rate
ρ = 0.2, true initial number of faults F = 50, time step dt = 0.1, and interval
of observation [0, 50].
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Contagion: The Simple Epidemic Model

Epidemic systems provide models for the transmission of a contagious dis-
ease within a population. In the “simple epidemic model” (Bailey (1975) and
Becker (1989)) the total population N is divided into two main classes:

(S) the class of susceptibles, including those individuals capable of contracting
the disease and becoming infectives themselves;

(I) the class of infectives, including those individuals who, having contracted
the disease, are capable of transmitting it to susceptibles.

Let It denote the number of individuals who have been infected during the
time interval ]0, t]. Assume that individuals become infectious themselves im-
mediately upon infection and remain so for the entire duration of the epidemic.
Suppose that at time t = 0 there are S0 susceptible individuals and I0 infec-
tives in the community. The classical model based on the law of mass action
(see, e.g., Bailey (1975) or Capasso (1993)) assumes that the counting process
It has stochastic intensity

λt = βt(I0 + It−)(S0 − It−),

which is appropriate when the community is mixing uniformly. Here βt is
called the infection rate(see Figure6.4).

It can be noted that formally this corresponds to writing N(t) with the
stochastic differential equation

dIt = βt(I0 + It−)(S0 − It−)dt+ dMt,

where Mt is a suitable martingale noise. In this case we obtain

〈M〉t =
∫ t

0

λsds

for the variation process 〈M〉t, so that

M2
t −

∫ t

0

λsds

is a zero mean martingale. As a consequence

V ar[Mt] = E

[∫ t

0

λsds

]
= E[It].

More general models can be found in Capasso (1990) and references therein.
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Fig. 6.4. Simulation of a simple epidemic (SI) model: initial number of susceptibles
S0 = 500, initial number of infectives I0 = 4, infection rate (constant) β = 5 · 10−6,
time step dt = 1, interval of observation [0, 1000].

Contagion: The General Stochastic Epidemic

For a wide class of epidemic models the total population (Nt)t∈R+ includes
three subclasses. In addition to the classes of susceptibles (St)t∈R+ and infec-
tives (It)t∈R+ already introduced in the simple model, a third class is consid-
ered, i.e.,

(R), the class of removals. This comprises those individuals who, having con-
tracted the disease, and thus being already infectives, are no longer in the
position of transmitting the disease to other susceptibles because of death,
immunization, or isolation. Let us denote the number of removals as (Rt)t∈R+ .

The process (St, It, Rt)t∈R+ is modelled as a multivariate jump Markov process
valued in E′ = N3. Actually, if we know the behavior of the total population
process Nt, because

St + It +Rt = Nt for any t ∈ R+,

we need to provide a model only for the bivariate process (St, It)t∈R+ , which
is now valued in E = N2. The only nontrivial elements of a resulting intensity
matrix Q (see chapter on Markov processes) are given by

• q(s,i),(s+1,i) = α, birth of a susceptible;
• q(s,i),(s−1,i) = γs, death of a susceptible;
• q(s,i),(s,i+1) = β, birth of an infective;
• q(s,i),(s,i−1) = δi, removal of an infective;



246 6 Applications to Biology and Medicine

• q(s,i),(s−1,i+1) = κsi, infection of a susceptible.

For α = β = γ = 0, we have the so-called general stochastic epidemic (see,
e.g., Bailey (1975) and Becker(1989)). In this case the total population is
constant (assume R0 = 0; see Figure 6.5):

Nt ≡ N = S0 + I0 for any t ∈ R+.
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Fig. 6.5. Simulation of an SIR epidemic model with vital dynamics: initial number
of susceptibles S0 = 500, initial number of infectives I0 = 4, initial number of
removed R0 = 0, birth rate of susceptibles α = 10−4, death rate of a susceptible
γ = 5 · 10−5, birth rate of an infective β = 10−5, rate of removal of an infective
δ = 8.5 ·10−4, infection rate of a susceptible k = 1.9 ·10−5, time step dt = 1, interval
of observation [0, 500].

Contagion: Diffusion of Innovations

When a new product is introduced in a market, its diffusion is due to a process
of adoption by individuals who are aware of it. Classical models of innova-
tion diffusion are very similar to epidemic systems, even though in this case
rates of adoption (infection) depend upon specific marketing and advertising
strategies (see Capasso, Di Liddo, and Maddalena (1994) and Mahajan and
Wind (1986)). In this case the total population N of possible consumers is
divided into the following main classes:

(S) the class of potential adopters, including those individuals capable of
adopting the new product, thus themselves becoming adopters;
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(A)the class of adopters, those individuals who, having adopted the new prod-
uct, are capable of transmitting it to potential adopters.

Let At denote the number of individuals who, by time t ≥ 0, have already
adopted a new product that has been put on the market at time t = 0. Sup-
pose that at time t = 0 there are S0 potential adopters and A0 adopters in
the market. In the basic models it is assumed that all consumers are homoge-
neous with respect to their inclination to adopt the new product. Moreover,
all adopters are homogeneous in their ability to persuade others to try new
products, and adopters never lose interest, but continue to inform those con-
sumers who are not aware of the new product. Under these assumptions the
classical model for the adoption rate is again based on the law of mass action
(see Bartholomew (1976)), apart from an additional parameter λ0(t) that de-
scribes adoption induced by external actions, independent of the number of
adopters, such as advertising, price reduction policy, etc. Then the stochastic
intensity for this process is given by

λ(t) = (λ0(t) + βtAt−)(S0 −At−),

which is appropriate when the community is mixing uniformly. Here βt is
called the adoption rate(see Figure 6.6).
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Fig. 6.6. Simulation of the contagion model for diffusion of innovations: external in-
fluence λ0(t) = 5·10−4t, adoption rate (constant) β = 0.05, initial potential adopters
S0 = 100, initial adopters A0 = 5, time step dt = 0.01, interval of observation [0, 3].

Inference for Multiplicative Intensity Processes

Let
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dNt = αtYtdt+ dMt

be a stochastic equation for a counting process Nt, where the noise is a zero
mean martingale. Furthermore, let

Bs =
Js−
Ys

with Js = I[Ys>0](s).

Bt is, like Yt, a predictable process, so that by the integration theorem,

M∗
t =

∫ t

0

BsdMs

is itself a zero mean martingale. It can be noted that

M∗
t =

∫ t

0

BsdMs =
∫ t

0

BsdNs −
∫ t

0

αsJs−ds,

so that

E

[∫ t

0

BsdNs

]
= E

[∫ t

0

αsJs−ds
]

;

i.e.,
∫ t

0
BsdNs is an unbiased estimator of E[

∫ t

0
αsJs−ds]. If α is constant and

we stop the process at a time T such that Yt > 0, t ∈ [0, T ], then

α̂ =
1
T

∫ T

0

dNs

Ys

is an unbiased estimator of α. This method of inference is known as Aalen’s
method (Aalen (1978)) (the reader may also refer to Andersen et al. (1993) for
an extensive application of this method to the statistics of counting processes).

Inference for the Simple Epidemic Model

We may apply the above procedure to the simple epidemic model as discussed
in Becker (1989). Let

Bs =
I[Ss>0](s)
Is−Ss−

and suppose β is constant. Let T be such that St > 0, t ∈ [0, T ]. Then an
unbiased estimator for β would be

β̂ =
1
T

∫ T

0

dIs
Ss−Is−

=
1
T

1
S0I0

+
1

(S0 − 1)(I0 − 1)
+ · · ·+ 1

(ST + 1)(IT + 1)
.

The standard error (SE) of β̂ is

1
T

(∫ T

0

B2
sdIs

)2

.
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By the central limit theorem for martingales (see Rebolledo (1980)) we can
also deduce that

β̂ − β
SE(β̂)

has an asymptotic N(0, 1) distribution, which leads to confidence intervals
and hypothesis testing on the model in the usual way (see Becker (1989) and
references therein).

Inference for a General Epidemic Model

In Yang (1985) a model was proposed as an extension of the general epidemic
model presented above. The epidemic process is modelled in terms of a mul-
tivariate jump Markov process (St, It, Rt)t∈R+ , or simply (St, It)t∈R+ , when
the total population is constant, i.e.,

Nt := St + It +Rt = N + 1.

In this case, if we further suppose that S0 = N , I0 = 1, R0 = 0, instead
of using (St, It), the epidemic may be described by the number of infected
individuals (not including the initial case) M1(t) and the number of removals
M2(t) = Rt during ]0, t], t ∈ R∗

+. Since we are dealing with a finite total
population, the number of infected individuals and the number of removals
are bounded, so that

E[Mk(t)] ≤ N + 1, k = 1, 2.

The processesM1(t) andM2(t) are submartingales with respect to the history
(Ft)t∈R+ of the process, i.e., the filtration generated by all relevant processes.
We assume that the two processes admit multiplicative stochastic intensities
of the form

Λ1(t) = κG1(t−)(N −M1(t−)),
Λ2(t) = δ(1 +M1(t−)−M2(t−)),

respectively, where G1(t) is a known function of infectives in circulation at
time t. It models the release of pathogen material by infected individuals.
Hence

Zk(t) = Mk(t)−
∫ t

0

Λk(s)ds, k = 1, 2,

are orthogonal martingales with respect to (Ft)t∈R+ . As a consequence,
Aalen’s unbiased estimators for the infection rate κ and the removal rate
δ are given by

κ̂ =
M1(t)
B1(t−)

, δ̂ =
M1(t)
B1(t−)

,

where
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B1(t) =
∫ t

0

G1(s)(N −M1(s))ds,

B2(t) =
∫ t

0

(1 +M1(s)−M2(s))ds.

Theorem 1.3 in Jacobsen (1982), page 163, gives conditions for a multivariate
martingale sequence to converge to a normal process. If such conditions are
met, then as N →∞,(√

B1(t)(κ̂− κ)√
B2(t)(δ̂ − δ)

)
d→N

((
0
0

)
, Γ

)
,

where

Γ =
(
κ 0
0 δ

)
.

In general, it is not easy to verify the conditions of this theorem. They surely
hold for the simple epidemic model presented above, where δ = 0. Related
results are given in Ethier and Kurtz (1986) and Wang (1977) for a scaled
infection rate κ→ κ

N (see the following section). See also Capasso (1990) for
additional models and related inference problems.

6.2 Population Dynamics: Continuous Approximation of
Jump Models

A more realistic model than the general stochastic epidemic of the preceding
section, which takes into account a rescaling of the force of infection due to
the size of the total population, is the following (see Capasso (1993)):

q(s,i),(s−1,i+1) =
κ

N
si = Nκ

s

N

i

N
.

We may also rewrite

q(s,i),(s,i−1) = δN
i

N
=
i

N
,

so that both transition rates are of the form

q
(N)
k,k+l = Nβl

(
k

N

)
for

k = (s, i)

and

k + l =
{

(s, i− 1),
(s− 1, i+ 1).
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This model is a particular case of the following situation:

Let E = Zd ∪ {Δ}, where Δ is the point at infinity of Zd, d ≥ 1. Further, let

βl : Zd → R+, l ∈ Zd,∑
l∈Zd

βl(k) < +∞ for each k ∈ Zd.

For f defined in Zd, and vanishing outside a finite subset of Zd, let

Af(x) =
{∑

l∈Zd βl(x)(f(x+ l)− f(x)), x ∈ Zd,
0, x = Δ.

Let (Yl)l∈Zd be a family of independent standard Poisson processes. Let
X(0) ∈ Zd be nonrandom and suppose

X(t) = X(0) +
∑
l∈Zd

lYl

(∫ t

0

βl(X(s))ds
)
, t < τ∞, (6.3)

X(t) = Δ, t ≥ τ∞, (6.4)

where
τ∞ = inf{t|X(t−) = Δ}.

The following theorem holds (see Ethier and Kurtz (1986), page 327).

Theorem 6.3. 1. Given X(0), the solution of system (6.3)–(6.4) above is
unique.

2. If A is a bounded operator, then X is a solution of the martingale problem
for A.

As a consequence, for our class of models for which

q
(N)
k,k+l = Nβl

(
k

N

)
, k ∈ Zd, l ∈ Zd,

we have that the corresponding Markov process, which we shall denote by
X̂(N), satisfies, for t < τ∞:

X̂(N)(t) = X̂(N)(0) +
∑
l∈Zd

lYl

(
N

∫ t

0

βl

(
X̂(N)(s)
N

)
ds

)
,

where the Yl are independent standard Poisson processes. By setting

F (x) =
∑
l∈Zd

lβl(x), x ∈ Rd,

and
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X(N) =
1
N
X̂(N),

we have

X(N)(t) = X(N)( 0) +
∑
l∈Zd

l

N
Ỹl

(
N

∫ t

0

βl

(
X(N)(s)

)
ds

)

+
∫ t

0

F (X(N)(s))ds, (6.5)

where
Ỹl(u) = Yl(u)− u

is the centered standard Poisson process. The state space for X(N) is

EN = E ∩
{
k

N
, k ∈ Zd

}
for E ⊂ Rd. We require that x ∈ EN and β(x) > 0 imply x + l

N ∈ EN . The
generator for X(N) is

A(N)f(x)

=
∑
l∈Zd

Nβl(x)
(
f

(
x+

l

N

)
− f(x)

)

=
∑
l∈Zd

Nβl(x)
(
f

(
x+

l

N

)
− f(x)− l

N
∇f(x)

)
+ F (x)∇f(x), x ∈ EN .

By the strong law of large numbers, we know that

lim
N→∞

sup
u≤v

∣∣∣∣ 1
N
Ỹl(Nu)

∣∣∣∣ = 0, a.s.

for any v ≥ 0. As a consequence, the following theorem holds (Ethier and
Kurtz (1986), page 456).

Theorem 6.4. Suppose that for each compact K ⊂ E,∑
l∈Zd

|l| sup
x∈K

βl(x) < +∞,

and there exists MK > 0 such that

|F (x)− F (y)| ≤MK |x− y|, x, y ∈ K;

suppose X(N) satisfies equation (6.5) above, with

lim
N→∞

X(N)(0) = x0 ∈ Rd.
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Then, for every t ≥ 0,

lim
N→∞

sup
s≤t

∣∣∣X(N)(s)− x(s)
∣∣∣ = 0 a.s.,

where x(t), t ∈ R+ is the unique solution of

x(t) = x0 +
∫ t

0

F (x(s))ds, t ≥ 0,

wherever it exists.

For the application of the above theorem to the general stochastic epidemic
introduced at the beginning of this section see problem 6.9. For a graphical
illustration of the above see Figures 6.7 and 6.8. Further, and interesting
examples may be found in section 6.4 of Tan (2002).
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Fig. 6.7. Continuous approximation of a jump model: general stochastic epidemic
model with S0 = 0.6N , I0 = 0.4N , R0 = 0, rate of removal of an infective δ = 10−4;
infection rate of a susceptible k = 8 · 10−3N ; time step dt = 10−2; interval of
observation [0, 1500]. The three lines represent the simulated It/N as a function of
time t for three different values of N .

6.3 Population Dynamics: Individual-Based Models

The scope of this chapter is to introduce the reader to the modeling of a system
of a large but still finite population of individuals subject to mutual interac-
tion and random dispersal. These systems may well describe the collective
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Fig. 6.8. Continuous approximation of a jump model: the same model as in Figure
6.7 of a general stochastic epidemic model with S0 = 0.6N , I0 = 0.4N , R0 = 0, rate
of removal of an infective δ = 10−4, infection rate of a susceptible k = 8 · 10−3N ,
time step dt = 10−2, interval of observation [0, 1500]. The three lines represent the
simulated trajectory (St/N, It/N) for three different values of N .

behavior of individuals in herds, swarms, colonies, armies, etc. (examples can
be found in Burger, Capasso, and Morale (2003), Durrett and Levin (1994),
Flierl et al. (1999), Gueron, Levin, and Rubenstein (1996), Okubo (1986),
Skellam (1951)). It is interesting to observe that under suitable conditions the
behavior of such systems in the limit of the number of individuals tending to
infinity may be described in terms of nonlinear reaction-diffusion systems. We
may then claim that while stochastic differential equations may be utilized
for modeling populations at the microscopic scale of individuals (Lagrangian
approach), partial differential equations provide a macroscopic Eulerian de-
scription of population densities.

Up to now, Kolmogorov equations like that of Black–Scholes were lin-
ear partial differential equations; in this chapter we derive nonlinear partial
differential equations for density-dependent diffusions. This field of research,
already well established in the general theory of statistical physics (see, e.g.,
De Masi and Presutti (1991), Donsker and Varadhan (1989), Méléard (1996)),
has gained increasing attention, since it also provides the framework for the
modelling, analysis, and simulation of agent-based models in economics and
finance (see, e.g., Epstein and Axtell (1996)).

The Empirical Distribution

We start from the Lagrangian description of a system of N ∈ N \ {0, 1} par-
ticles. Suppose the kth particle (k ∈ {1, . . . , N}) is located at Xk

N (t), at time
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t ≥ 0. Each (Xk
N (t))t∈R+ is a stochastic process valued in the state space

(Rd,BRd), d ∈ N \ {0}, on a common probability space (Ω,F , P ). An equiva-
lent description of the above system may be given in terms of the (random)
measures εXk

N (t) (k = 1, 2, . . . , N) on BRd such that, for any real function
f ∈ C0(Rd) we have ∫

Rd

f(y)εXk
N (t)(dy) = f

(
Xk

N (t)
)
.

As a consequence, information about the collective behavior of the N particles
is provided by the so-called empirical measure, i.e., the random measure on
Rd:

XN (t) :=
1
N

N∑
k=1

εXk
N (t), t ∈ R+.

This measure may be considered as the empirical spatial distribution of the
system. It is such that for any f ∈ C0(Rd):∫

Rd

f(y)[XN (t)](dy) =
1
N

N∑
k=1

f
(
Xk

N (t)
)
.

In particular, given a region B ∈ BRd , the quantity

[XN (t)](B) :=
1
N

(
�
{
Xk

N (t) ∈ B
})

denotes the relative frequency of individuals, out of N , that at time t stay in
B. This is why the measure-valued process

XN : t ∈ R+ → XN (t) =
1
N

N∑
k=1

εXk
N (t) ∈MRd (6.6)

is called the process of empirical distributions of the system of N particles.

The Evolution Equations

The Lagrangian description of the dynamics of the system of interacting par-
ticles is given via a system of stochastic differential equations. Suppose that
for any k ∈ {1, . . . , N}, the process (Xk

N (t))t∈R+ satisfies the stochastic dif-
ferential equation

dXk
N (t) = FN [XN (t)](Xk

N (t))dt+ σNdW
k(t), (6.7)

subject to a suitable initial condition Xk
N (0), which is an Rd-valued random

variable. Thus we are assuming that the kth particle is subject to random
dispersal, modelled as a Brownian motion W k. In fact, we suppose that W k,
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k = 1, . . . , N, is a family of independent standard Wiener processes. Further-
more the common variance σ2

N may depend on the total number of particles.
The drift term is defined in terms of a given function

FN :MRd → C(Rd)

and it describes the “interaction” of the kth particle located at Xk
N (t) with

the random field XN (t) generated by the whole system of particles at time t.
An evolution equation for the empirical process (XN (t))t∈R+ can be obtained
thanks to Itô’s formula. For each individual particle k ∈ {1, . . . , N} subject
to its stochastic differential equation, given f ∈ C2

b (Rd × R+), we have

f
(
Xk

N (t), t
)

= f
(
Xk

N (0), 0
)

+
∫ t

0

FN [XN (s)]
(
Xk

N (s)
)
∇f
(
Xk

N (s), s
)
ds

+
∫ t

0

[
∂

∂s
f
(
Xk

N (s), s
)

+
σ2

N

2
 f
(
Xk

N (s), s
)]
ds

+σN

∫ t

0

∇f
(
Xk

N (s), s
)
dW k(s). (6.8)

Correspondingly, for the empirical process (XN (t))t∈R+ , we get the following
weak formulation of its evolution equation. For any f ∈ C2,1

b (Rd × R+) we
have

〈XN (t), f(·, t)〉 = 〈XN (0), f(·, 0)〉+
∫ t

0

〈XN (s), FN [XN (s)](·)∇f(·, s)〉 ds

+
∫ t

0

〈
XN (s),

σ2
N

2
 f(·, s) +

∂

∂s
f(·, s)

〉
ds

+
σN

N

∫ t

0

∑
k

∇f
(
Xk

N (s), s
)
dW k(s). (6.9)

In the previous expressions, we have used the notation

〈μ, f〉 =
∫
f(x)μ(dx), (6.10)

for any measure μ on (Rd,BRd) and any (sufficiently smooth) function f :
Rd → R.

The last term of (6.9) is a martingale with respect to the process’s
(XN (t))t∈R+ natural filtration. Hence we may apply Doob’s inequality (see
Proposition 2.69) such that

E

[
sup
t≤T
|MN (f, t)|2

]
≤ 4σ2

N‖∇f‖2∞T
N

.

This shows that, for N sufficiently large, the martingale term, which is the
only source of stochasticity of the evolution equation for (XN (t))t∈R+ , tends
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to zero, for N tending to infinity, since ∇f is bounded in [0, T ], and σ2
N

N → 0
for N tending to infinity. Under these conditions we may conjecture that
a limiting measure-valued deterministic process (X∞(t))t∈R+ exists, whose
evolution equation (in weak form) is

〈X∞(t), f(·, t)〉 = 〈X∞(0), f(·, 0)〉+
∫ t

0

〈X∞(s), F [X∞(s)](·)∇f(·, s)〉 ds

+
∫ t

0

〈
X∞(s),

σ2
∞
2
 f(·, s) +

∂

∂s
f(·, s)

〉
ds

for σ2
∞ ≥ 0. Actually, various nontrivial mathematical problems arise in con-

nection with the existence of a limiting measure-valued process (X∞(t))t∈R+ .
A typical resolution includes the following:

1. Prove the existence of a deterministic limiting measure-valued process
(X∞(t))t∈R+ .

2. Prove the absolute continuity of the limiting measure with respect to the
usual Lebesgue measure on Rd.

3. Provide an evolution equation for the density p(x, t).

In the following subsections we will show how the above procedure has been
carried out in particular cases.

A “Moderate” Repulsion Model

As an example we consider the system (due to Oelschläger (1990))

dXk
N (t) = − 1

N

N∑
m=1,m�=k

∇VN

(
Xk

N (t)−Xm
N (t)

)
dt+ dW k(t), (6.11)

where W k, k = 1, . . . , N, represent N independent standard Brownian mo-
tions valued in Rd (here all variances are set equal to 1). The kernel VN is
chosen of the form

VN (x) = χd
NV1(χNx), x ∈ Rd, (6.12)

where V1 is a symmetric probability density with compact support in Rd and

χN = N
β
d , β ∈]0, 1[. (6.13)

With respect to the general structure introduced in the preceding subsection
on evolution equations, we have assumed that the drift term is given by

FN [XN (t)]
(
Xk

N (t)
)

= [∇VN ∗XN (t)]
(
Xk

N (t)
)

= − 1
N

N∑
m=1,m�=k

∇VN

(
Xk

N (t)−Xm
N (t)

)
.
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System (6.11) describes a population of N individuals, subject to random
dispersal (Brownian motion) and to repulsion within the range of the kernel
VN . The choice of the scaling (6.12) in terms of the parameter β means that
the range of interaction of each individual with the rest of the population
is a decreasing function of N (correspondingly, the strength is an increasing
function of N). On the other hand, the fact that β is chosen to belong to ]0, 1[
is relevant for the limiting procedure. It is known as moderate interaction and
allows one to apply suitable convergence results (laws of large numbers) (see
Oelschläger (1985)).

For the sake of useful regularity conditions, we assume that

V1 = W1 ∗W1,

where W1 is a symmetric probability density with compact support in Rd,
satisfying the condition∫

Rd

(1 + |λ|α)|W̃1(λ)|2dλ <∞ (6.14)

for some α > 0 (here W̃1 denotes the Fourier transform of W1). Henceforth
we also make use of the following notations:

WN (x) = χd
NW1(χNx), (6.15)

hN (x, t) = (XN (t) ∗WN )(x), (6.16)
VN (x) = χd

NV1(χNx) = (WN ∗WN )(x), (6.17)
gN (x, t) = (XN (t) ∗ VN )(x) = (hN (·, t) ∗WN )(x), (6.18)

so that system (6.11) can be rewritten as

dXk
N (t) = −∇gN (Xk

N (t), t)dt+ dW k(t), k = 1, . . . , N. (6.19)

The following theorem holds.

Theorem 6.5. Let

XN (t) =
1
N

N∑
k=1

εXk
N (t)

be the empirical process associated with system (6.11). Assume that

1. condition (6.14) holds;
2. β ∈]0, d

d+2 [;
3.

sup
N∈N

E [〈XN (0), ϕ1〉] <∞, ϕ1(x) = (1 + x2)1/2; (6.20)

4.
sup
N∈N

E
[
||hN (·, 0)||22

]
<∞; (6.21)
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5.
lim

N→∞
L (XN (0)) = εΞ0 in M(M(Rd)), (6.22)

where Ξ0 is a probability measure having a density p0 ∈ C2+α
b (Rd) with

respect to the usual Lebesgue measure on Rd.

Then the empirical process XN converges to X∞, which admits a density
satisfying the evolution equation

∂

∂t
p(x, t) =

1
2

(Δp(x, t))2 +
1
2
Δp(x, t), (6.23)

= ∇(p(x, t)∇p(x, t)) +
1
2
Δp(x, t),

p(·, 0) = p0.

More precisely,

lim
N→∞

L(XN ) = εΞ in M(C([0, T ],M(Rd))), (6.24)

where
Ξ = (Ξ(t))0≤t≤T ∈ C([0, T ],M(Rd))

admits a density
p ∈ C2+α,1+ α

2
b (Rd × [0, T ]),

which satisfies

∂

∂t
p(x, t) =

1
2
∇(1 + 2p(x, t))∇p(x, t), (6.25)

p(x, 0) = p0(x).

It can be observed that equation (6.25) includes nonlinear terms, as in the
porous media equation (see Oelschläger (1990)). This is due to the repulsive
interaction between particles, which in the limit produces a density-dependent
diffusion. A linear diffusion persists because the variance of the Brownian
motions in the individual equations was kept constant. We will see in a second
example how it may vanish when the individual variances tend to zero for N
tending to infinity. We will not provide a detailed proof of Theorem 6.5, even
though we are going to provide a significant outline of it, leaving further details
to the referred literature.

By proceeding as in the previous subsection, a straightforward application
of Doob’s inequality for martingales (Proposition 2.69) justifies the vanishing
of the noise term in the following evolution equation for the empirical measure
(XN (t))t∈R+ :

〈XN (t), f(·, t)〉 = 〈XN (0), f(·, 0)〉+
∫ t

0

〈XN (s),∇gN (·, s)∇f(·, s)〉 ds
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+
∫ t

0

〈
XN (s),

σ2

2
 f(·, s) +

∂

∂s
f(·, s)

〉
ds

+
σ

N

∫ t

0

∑
k

∇f
(
Xk

N (s), s
)
dW k(s) (6.26)

for a given T > 0 and any f ∈ C2,1
b (Rd × [0, T ]). The major difficulty in a

rigorous proof of Theorem 6.5 comes from the nonlinear term

ΞN,f (t) =
∫ t

0

〈XN (s),∇gN (·, s)∇f(·, s)〉 ds. (6.27)

If we rewrite (6.27) in an explicit form we get

ΞN,f (t) =
∫ t

0

1
N2

N∑
k,m=1

∇VN

(
Xk

N (s)−Xm
N (s)

)
∇f
(
Xk

N (s), s
)
ds. (6.28)

Since for β > 0 the kernel VN → δ0, namely the Dirac delta function, this
shows that, in the limit, even small changes of the relative position of neigh-
bouring particles may have a considerable effect on ΞN,f (t). But in any case,
the regularity assumptions made on the kernel VN let us state the following
lemma which provides sufficient estimates about gN and hN as defined above.

Lemma 6.6. Under the assumptions 2 and 4 of Theorem 6.5, the following
holds:

E

[
sup
t≤T
‖hN (·, t)‖22 +

∫ t

0

〈
XN (s), |∇gN (·, s)|2

〉
ds+

∫ t

0

‖∇hN (·, t)‖22ds
]
<∞.

(6.29)
As a consequence the sequence {hN (·, t) : N ∈ N} is relatively compact in
L2(Rd).

A significant consequence of the above lemma is the following one.

Lemma 6.7. With XN as above, the sequence L(XN ) is relatively compact in
the space M(C([0, T ],M(Rd))).

By Lemma 6.7 we may claim that a subsequence of (L(XN ))N∈N exists,
which converges to a probability measure on the space M(C([0, T ],M(Rd)))
(see the appendix on convergence of probability measures). The Skorohod
representation Theorem 1.158 then assures that a process Xk

∞ exists in
C([0, T ],M(Rd)) such that

lim
l→∞

XNl
= Xk

∞, almost surely with respect to P.

If we can assure the uniqueness of the limit, then all Xk
∞ will coincide with

some X∞.
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Remark 6.8. We need to notice that a priori the limiting process X∞ may still
be a random process in C([0, T ],M(Rd)).

The proof of Theorem 6.5 is now based on the proof of the two following
lemmas. Uniqueness of X∞ is a consequence of Lemma 6.10.

Lemma 6.9. Under the assumptions of Theorem 6.5 the random variable
X∞(t) admits almost surely with respect to P a density h∞(·, t) with respect
to the usual Lebesgue measure on Rd for any t ∈ [0, T ]. Moreover,

〈X∞(t), f〉 = 〈X∞(0), f〉 − 1
2

∫ t

0

〈∇h∞(·, s), (1 + 2h∞(·, s))∇f〉 ds,

with 0 ≤ t ≤ T , f ∈ C1
b (Rd), almost surely with respect to P.

This shows that if we assume that X∞(0) admits a deterministic den-
sity p0 at time t = 0, then (X∞(t))t∈[0,T ] satisfies a deterministic evolution
equation and is thus itself a deterministic process on C([0, T ],M(Rd)). From
the general theory we know that equation (6.23) admits a unique solution
p ∈ C2+α,1+α/2

b (Rd × [0, T ]). We can now state the following lemma.

Lemma 6.10.

‖h∞(·, t)− p(·, t)‖22 ≤ C
∫ t

0

‖h∞(·, s)− p(·, s)‖22ds.

Due to Gronwall’s Lemma 4.3 we may then state that

sup
t≤T
‖h∞(·, t)− p(·, t)‖22 = 0,

which concludes the proof of Theorem 6.5.

Ant Colonies

As another example, we consider a model for ant colonies. The latter provide
an interesting concept of aggregation of individuals. According to a model pro-
posed in Morale, Capasso, and Oelschläger (2004), (1998) (see also Burger,
Capasso, and Morale (2003)) (based on an earlier model by Grünbaum and
Okubo (1994)), in a colony or in an army (in which case the model may be
applied to any cross section) ants are assumed to be subject to two conflict-
ing social forces: long-range attraction and short-range repulsion. Hence we
consider the following basic assumptions:

(i) Particles tend to aggregate subject to their interaction within a range of
size Ra > 0 (finite or not). This corresponds to the assumption that each
particle is capable of perceiving the others only within a suitable sensory
range; in other words, each particle has a limited knowledge of the spatial
distribution of its neighbors.
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(ii) Particles are subject to repulsion when they come “too close” to each
other.

We may express assumptions (i) and (ii) by introducing in the drift term FN

in (6.7) two additive components (see Warburton and Lazarus (1991)): F1,
responsible for aggregation, and F2, for repulsion, such that

FN = F1 + F2.

The Aggregation Term F1

We introduce a convolution kernel Ga : Rd → R+, having a support confined
to the ball centered at 0 ∈ Rd and radius Ra ∈ R̄+ as the range of sensitivity
for aggregation, independent of N . A generalized gradient operator is obtained
as follows. Given a measure μ on Rd, we define the function

[∇Ga ∗ μ] (x) =
∫

Rd

∇Ga(x− y)μ(dy), x ∈ Rd,

as the classical convolution of the gradient of the kernel Ga with the measure
μ. Furthermore, Ga is such that

Ga(x) = Ĝa(|x|), (6.30)

with Ĝa a decreasing function in R+. We assume that the aggregation term
F1 depends on such a generalized gradient of XN (t) at Xk

N (t):

F1[XN (t)]
(
Xk

N (t)
)

= [∇Ga ∗XN (t)]
(
Xk

N (t)
)
. (6.31)

This means that each individual feels this generalized gradient of the mea-
sure XN (t) with respect to the kernel Ga. The positive sign for F1 and (6.30)
expresses a force of attraction of the particle in the direction of increasing
concentration of individuals.

We emphasize the great generality provided by this definition of a generalized
gradient of a measure μ on Rd. By using particular shapes of Ga, one may
include angular ranges of sensitivity, asymmetries, etc. at a finite distance (see
Gueron et al (1996)).

The Repulsion Term F2

As far as repulsion is concerned we proceed in a similar way by introducing
a convolution kernel VN : Rd → R+, which determines the range and the
strength of influence of neighbouring particles. We assume (by anticipating a
limiting procedure) that VN depends on the total number N of interacting
particles. Let V1 be a continuous probability density on Rd and consider the
scaled kernel VN (x) as defined in (6.12), again with β ∈]0, 1[. It is clear that
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lim
N→+∞

VN = δ0, (6.32)

where δ0 is Dirac’s delta function. We define

F2[XN (t)]
(
Xk

N (t)
)

= − (∇VN ∗XN (t))
(
Xk

N (t)
)

= − 1
N

N∑
m=1

∇VN

(
Xk

N (t)−Xm
N (t)

)
. (6.33)

This means that each individual feels the gradient of the population in a small
neighborhood. The negative sign for F2 expresses a drift towards decreasing
concentration of individuals. In this case the range of the repulsion kernel
decreases to zero as the size N of the population increases to infinity.

The Diffusion Term

In this model randomness may be due to both external sources and “social”
reasons. The external sources could, for instance, be unpredictable irregulari-
ties of the environment (like obstacles, changeable soils, varying visibility). On
the other hand, the innate need of interaction with peers is a social reason. As
a consequence, randomness can be modelled by a multidimensional Brownian
motion Wt.

The coefficient of dWt is a matrix function depending upon the distribu-
tion of particles or some environmental parameters. Here, we take into account
only the intrinsic stochasticity due to the need of each particle to interact with
others. In fact, experiments carried out on ants have shown this need. Hence,
simplifying the model, we consider only one Brownian motion dWt with the
variance of each particle σN depending on the total number of particles, not on
their distribution. We could interpret this as an approximation of the model
by considering all the stochasticities (also the ones due to the environment)
modeled by σNdWt.

Since σN expresses the intrinsic randomness of each individual due to its
need for social interaction, it should be decreasing as N increases. Indeed,
if the number of particles is large, the mean free path of each particle may
reduce down to a limiting value that may eventually be zero:

lim
N→∞

σN = σ∞ ≥ 0. (6.34)

Scaling Limits

Let us discuss the two choices for the interaction kernel in the aggregation
and repulsion terms, respectively. They anticipate the limiting procedure for
N tending to infinity. Here we are focusing on two types of scaling limits, the
McKean–Vlasov limit , which applies to the long-range aggregation, and the
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Fig. 6.9. A simulation of the long-range aggregation (6.31) and short-range repul-
sion (6.33) model for the ant colony with diffusion.

moderate limit , which applies to the short-range repulsion. In the previous
subsection we have already considered the moderate limit case.

Mathematically the two cases correspond to the choice made on the in-
teraction kernel. In the moderate limit case (see, e.g., Oelschläger (1985))
the kernel is scaled with respect to the total size of the population N via a
parameter β ∈]0, 1[. In this case the range of interaction among particles is
reduced to zero for N tending to infinity. Thus any particle interacts with
many (of order N

α(N) ) other particles in a small volume (of order 1
α(N) ), where

both α(N) and N
α(N) tend to infinity. In the McKean–Vlasov case (see, e.g.,

Méléard (1996)) β = 0, so that the range of interaction is independent of N,
and as a consequence any particle interacts with order N other particles.

This is why in the moderate limit we may speak of mesoscale, which lies
between the microscale for the typical volume occupied by each individual
and the macroscale applicable to the typical volume occupied by the total
population. Obviously, it would be possible also to consider interacting particle
systems rescaled by β = 1. This case is known as the hydrodynamic case, for
which we refer to the literature (De Masi and Presutti (1991), Donsker and
Varadhan (1989)).

The case β > 1 is less significant in population dynamics. It would mean
that the range of interaction decreases much faster than the typical distance
between neighboring particles. So most of the time particles do not approach
sufficiently close to feel the interaction.



6.3 Population Dynamics: Individual-Based Models 265

Fig. 6.10. A simulation of the long-range aggregation (6.31) and short-range repul-
sion (6.33) model for the ant colony with diffusion (smoothed empirical distribution).

Evolution Equations

Again, the fundamental tool for deriving an evolution equation for the em-
pirical measure process is Itô’s formula. As in the previous case, the time
evolution of any function f

(
Xk

N (t), t
)
, f ∈ C2

b (Rd × R+), of the trajectory(
Xk

N (t)
)
t∈R+

of the individual particle, subject to the stochastic differential
equation (6.7), is given by (6.8). By taking into account expressions (6.31) and
(6.33) for F1 and F2 and (6.10), then from (6.8), we get the following weak
formulation of the time evolution of XN (t) for any f ∈ C2,1

b (Rd × [0,∞[):

〈XN (t), f(·, t)〉 = 〈XN (0), f(·, 0)〉+
∫ t

0

〈XN (t), (XN (s) ∗ ∇Ga) · ∇f(·, s)〉 ds

−
∫ t

0

〈XN (t),∇gN (·, s) · ∇f(·, s)〉 ds

+
∫ t

0

〈
XN (t),

σ2
N

2
 f(·, s) +

∂

∂s
f(·, s)

〉
ds

+
σN

N

∫ t

0

∑
k

∇f
(
Xk

N (s), s
)
dW k(s), (6.35)

gN (x, t) = (XN (t) ∗ VN )(x). (6.36)
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Fig. 6.11. A simulation of the long-range aggregation (6.31) and short-range repul-
sion (6.33) model for the ant colony with diffusion (two-dimensional projection of
the smoothed empirical distribution).

Also for this case we may proceed as in the previous subsection on evolution
equations with the analysis of the last term in (6.35). The process

MN (f, t) =
σN

N

∫ t

0

∑
k

∇f
(
Xk

N (s), s
)
dW k(s), t ∈ [0, T ],

is a martingale with respect to the process’s (XN (t))t∈R+ natural filtration.
By applying Doob’s inequality (Proposition 2.69), we obtain

E

[
sup
t≤T
|MN (f, t)|

]2
≤ 4σ2

N‖∇f‖2∞T
N

.

Hence, by assuming that σN remains bounded as in (6.34), MN (f, ·) vanishes
in the limit N → ∞. This is again the essential reason of the deterministic
limiting behavior of the process, since then its evolution equation will no
longer be perturbed by Brownian noise.

We will not go into more details at this point. The procedure is the same as
for the previous model. But here we confine ourselves to a formal convergence
procedure. Indeed, let us suppose that the empirical process (XN (t))t∈R+

tends, as N → ∞, to a deterministic process (X(t))t∈R+ , which for any t is
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absolutely continuous with respect to Lebesgue measure on Rd, with density
ρ(x, t):

lim
N→∞

〈XN (t), f(·, t)〉 = 〈X(t), f(·, t)〉

=
∫
f(x, t)ρ(x, t)dx, t ≥ 0.

As a formal consequence we get

lim
N→∞

gN (x, t) = lim
N→∞

(XN (t) ∗ VN )(x) = ρ(x, t),

lim
N→∞

∇gN (x, t) = ∇ρ(x, t),

lim
N→∞

(XN (t) ∗ ∇Ga)(x) = (X(t) ∗ ∇Ga(x))

=
∫
∇Ga(x− y)ρ(y, t)dy.

Hence, by applying the above limits, from (6.35) we obtain∫
Rd

f(x, t)ρ(x, t)dx

=
∫

Rd

f(x, 0)ρ(x, 0)dx

+
∫ t

0

ds

∫
Rd

dx [(∇Ga ∗ ρ(·, s))(x)−∇ρ(x, s)] · ∇f(x, s)ρ(x, s)

+
∫ t

0

ds

∫
Rd

dx

[
∂

∂s
f(x, s)ρ(x, s) +

σ2
∞
2
 f(x, s)ρ(x, s)

]
, (6.37)

where σ∞ is defined as in (6.34).
It can be observed that (6.37) is a weak version of the following equation

for the spatial density ρ(x, t):

∂

∂t
ρ(x, t) =

σ2
∞
2
 ρ(x, t) +∇ · (ρ(x, t)∇ρ(x, t))

−∇ · [ρ(x, t)(∇Ga ∗ ρ(·, t))(x)], x ∈ Rd, t ≥ 0, (6.38)
ρ(x, 0) = ρ0(x). (6.39)

In the degenerate case, i.e., if (6.34) holds with equality, equation (6.38) be-
comes

∂

∂t
ρ(x, t) = ∇ · (ρ(x, t)∇ρ(x, t))−∇ · [ρ(x, t)(∇Ga ∗ ρ(·, t))(x)]. (6.40)

As in the preceding subsection on moderate repulsion, we need to prove exis-
tence and uniqueness of a sufficiently regular solution to equation (6.40). We
refer to Burger, Capasso, and Morale (2003) or Nagai and Mimura (1983) and
also to Carrillo (1999) for a general discussion of this topic.
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A Law of Large Numbers in Path Space

In this section we supplement our results on the asymptotics of the empirical
processes by a law of large numbers in path space. This means that we study
the empirical measures in path space

XN =
1
N

N∑
k=1

εXk
N (·),

where Xk
N (·) = (Xk

N (t))0≤t≤T denotes the entire path of the kth particle in
the time interval [0, T ]. The particles move continuously in Rd. Moreover, XN

is a measure on the space C([0, T ],Rd) of continuous functions from [0, T ] to
Rd. As in the case of empirical processes, one can prove the convergence of XN

to some limit Y . The proof can be achieved with a few additional arguments
from the limit theorem for the empirical processes.

By heuristic considerations in Morale, Capasso, and Oelschläger (2004) we
get a convergence result for the empirical distribution of the drift ∇gN (·, t) of
the individual particles

lim
N→∞

∫ T

0

〈XN (t), |∇gN (·, t)−∇ρ(·, t)|〉 dt = 0, (6.41)

lim
N→∞

∫ T

0

〈XN (t), |XN (t) ∗ ∇Ga −∇Ga ∗ ρ(·, t)|〉 dt = 0.

So equation (6.41) allows us to replace the drift

∇gN (·, t)−XN (t) ∗ ∇Ga

with the function
∇ρ(·, t)−∇Ga ∗ ρ(·, t)

for large N . Hence, for most k, we have Xk(t) ∼ Y (t), uniformly in t ∈ [0, T ],
where Y = Y (t), 0 ≤ t ≤ T, is the solution of

dY (t) = [∇Ga ∗ ρ(·, t)(Y (t))−∇ρ(Y (t))] dt+ σ∞dW k(t), (6.42)

with the initial condition, for each k = 1, . . . , N ,

Y (0) = Xk
N (0). (6.43)

So, not only does the density follow the deterministic equation (6.38), which
presents the memory of the fluctuations by means of the term σ∞

2  ρ, but also
the stochasticity of the movement of each particle is preserved.

For the degenerate case σ∞ = 0, the Brownian motion vanishes asN →∞.
From (6.42) the dynamics of a single particle depend on the density of the
whole system. This density is the solution of (6.40), which does not contain
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any diffusion term. So, not only do the dynamics of a single particle become
deterministic, but neither is there any memory of the fluctuations present,
when the number of particles N is finite. The following result confirms these
heuristic considerations (see Morale, Capasso, and Oelschläger ( 2004)).

Theorem 6.11. For the stochastic system (6.7)–(6.33) make the same as-
sumptions as in Theorem 6.5. Then we obtain

lim
N→∞

E

[
1
N

N∑
k=1

sup
t≤T

∣∣Xk
N (t)− Y (t)

∣∣] = 0, (6.44)

where Y is the solution of (6.42) with the initial solution (6.43) for each
k = 1, . . . , N and ρ is the density of the limit of the empirical processes; i.e.,
it is the solution of (6.40).

Price Herding

As an example of herding in economics we present a model for price herding
that has been applied to simulate the prices of cars; see Capasso, Morale, and
Sioli (2003). The model is based on the assumption that prices of products
of a similar nature and within the same market segment tend to aggregate
within a given interaction kernel, which characterizes the segment itself. On
the other hand, unpredictable behavior of individual prices may be modelled
as a family of mutually independent Brownian motions. Hence we suppose that
in a segment of N prices, for any k ∈ {1, . . . , N} the price Xk

N (t), t ∈ R+,
satisfies

dXk
N (t)

Xk
N (t)

= Fk[X(t)]
(
Xk

N (t)
)
dt+ σk(X(t))dW k(t).

As usual, for a population of prices it is more convenient to consider the
evolution of rates. For the force of interaction Fk, which depends upon the
vector of all individual prices

X(t) :=
(
X1

N (t), . . . , XN
N (t)

)
,

we assume the following model, similar to the ant colony of the previous
subsection:

Fk[X(t)]
(
Xk

N (t)
)

=
1
N

N∑
j=1

1
Ajk

(
Ij(t)
Ik(t)

)βjk

∇Ka

(
Xk

N (t)−Xj
N (t)

)
, (6.45)

which includes the following ingredients:

(a) The aggregation kernel

Ka(x) =
1√

2πa2
e−

x2

2a2 ,

∇Ka(x) = − x
a2

1√
2πa2

e−
x2

2a2 .
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(b)The sensitivity coefficient for aggregation

1
Ajk

(
Ij(t)
Ik(t)

)βjk

depending (via the parameters Ajk and βjk) on the relative market share
Ij(t) of the product j with respect to the market share Ik(t) of product k.
Clearly, a stronger product will be less sensitive to the prices of competing
weaker products.

(c) The coefficient 1
N takes into account possible crowding effects, which are

also modulated by the coefficients Ajk.

As an additional feature a model for inflation may be included in Fk. Given
a general rate of inflation (αt)t∈R+ , Fk may include a term skαt to model via
sk the specific sensitivity of price k. We leave the analysis of the model to the
reader, who may refer to Capasso, Morale, and Sioli (2003) for details.

Data are shown in Figure 6.12; parameter estimates are given in Tables
6.1, 6.2, and 6.3; Figure 6.13 shows the simulated car prices based on such
estimates.
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Fig. 6.12. Time series of prices of a segment of cars in Italy during the years
1991–2000 (source: Quattroruote Magazine, Editoriale Domus, Milan, Italy).

6.4 Neurosciences

Stein’s Model of Neural Activity

The main component of Stein’s model (Stein (1965), (1967)) is the depolariza-
tion Vt for t ∈ R+. A nerve cell is said to be excited (or depolarized), if Vt > 0,
and inhibited , if Vt < 0. In the absence of other events Vt decays according to
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Fig. 6.13. Simulated car prices.

Parameter Method of Estimation Estimate St. Dev.

X1(0) ML 1.6209E+00 5.8581E-02
X2(0) ML 8.4813E-01 6.0740E-03
X3(0) ML 7.4548E-01 2.3420E-02
X4(0) ML 1.0189E+00 1.2273E-01
X5(0) ML 1.4164E+00 1.4417E-01
X6(0) ML 2.4872E+00 6.2947E-02
X7(0) ML 1.2084E+00 4.7545E-02
X8(0) ML 1.0918E+00 4.7569E-02
a ML 5.0767E+03 6.5267E+02

Table 6.1. Estimates for the price herding model (6.45) for the initial conditions
Xk(0) and the range of the kernel a.

dV

dt
= −αV,

where α = 1/τ is the reciprocal of the nerve membrane time constant τ > 0.
In the resting state (initial condition) V0 = 0. Afterwards jumps may

occur at random times according to independent Poisson processes (NE
t )t∈R+

and (N I
t )t∈R+ with intensities λE and λI , respectively, assumed to be strictly

positive real constants. If an excitation (a jump) occurs for NE , at some time
t0 > 0, then

Vt0 − Vt0− = aE ,

whereas if an inhibition (again a jump) occurs for N I , then

Vt0 − Vt0− = −aI ,

where aE and aI are nonnegative real numbers. When Vt attains a given value
θ > 0 (the threshold), the cell fires. Upon firing Vt is reset to zero along with
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Parameter Method of Estimation Estimate St. Dev.

A12 ML 1.0649E-03 3.0865E-02
A13 ML 1.1489E-04 4.1737E-04
A14 ML 1.5779E-03 5.4687E-02
A15 ML 7.6460E-04 1.8381E-02
A16 ML 1.2908E-03 4.0634E-02
A17 ML 1.8114E-03 6.5617E-02
A18 ML 1.5956E-03 5.5572E-02
A23 ML 1.0473E-04 7.2687E-05
A24 ML 1.7397E-04 6.0809E-04
A25 ML 1.7550E-04 5.1100E-04
A26 ML 1.2080E-03 3.7392E-02
A27 ML 9.4809E-04 2.6037E-02
A28 ML 2.7277E-04 2.0135E-03
A34 ML 4.0404E-04 5.5468E-03
A35 ML 1.8136E-04 8.6471E-04
A36 ML 9.5558E-03 4.9764E-01
A37 ML 1.0341E-04 4.4136E-05
A38 ML 7.0953E-04 1.6428E-02
A45 ML 1.0066E-03 2.8485E-02
A46 ML 1.3354E-04 1.3632E-03
A47 ML 2.5239E-04 1.6979E-03
A48 ML 1.1232E-03 3.3652E-02
A56 ML 2.3460E-03 9.2592E-02
A57 ML 1.0143E-03 2.8898E-02
A58 ML 1.1026E-03 3.2724E-02
A67 ML 1.8560E-03 6.8275E-02
A68 ML 2.2820E-03 8.9278E-02
A78 ML 6.4630E-04 1.4003E-02

Table 6.2. Estimates for the price herding model (6.45) for the parameters Aij .

NE and N I and the process restarts along the previous model. By collecting
all of the above assumptions, the subthreshold evolution equation for Vt may
be written in the following form:

dVt = −αVtdt+ aEdN
E
t − aIdN

I
t ,

subject to the initial condition V0 = 0. The model is a particular case of a
more general (stochastic) evolution equation of the form

dXt = α(Xt)dt+
∫

R

γ(Xt, u)N(dt, du), (6.46)

where N is a marked Poisson process on R+ × R (in (6.46) the integration is
over u). In Stein’s model α(x) = −αx, with α > 0 (or simply α(x) = −x, if we
assume α = 1); γ(x, u) = u, and the marked Poisson process N has intensity
measure



6.4 Neurosciences 273

Parameter Method of Estimation Estimate St. Dev.

β12 ML 6.8920E-01 5.8447E+00
β13 ML 2.3463E+00 2.7375E+00
β14 ML 7.2454E-01 6.6182E+00
β15 ML 8.4049E-01 6.2349E+00
β16 ML 7.7929E-01 5.6565E+00
β17 ML 6.6793E-01 5.4208E+00
β18 ML 7.6508E-01 5.8422E+00
β23 ML 2.4531E+00 4.5883E-01
β24 ML 1.6924E+00 6.8734E+00
β25 ML 1.6262E+00 5.7128E+00
β26 ML 1.2122E+00 2.1666E+00
β27 ML 7.5140E-01 7.4760E+00
β28 ML 1.3537E+00 6.0109E+00
β34 ML 1.2444E+00 8.1509E+00
β35 ML 1.7544E+00 8.4976E+00
β36 ML 1.0572E+00 8.0208E+00
β37 ML 2.4730E+00 1.9801E-01
β38 ML 1.0674E+00 8.4626E+00
β45 ML 7.5781E-01 6.7267E+00
β46 ML 2.2121E+00 6.9754E+00
β47 ML 1.7360E+00 6.4971E+00
β48 ML 8.1043E-01 6.1451E+00
β56 ML 7.1269E-01 4.5857E+00
β57 ML 7.7251E-01 6.3947E+00
β58 ML 7.0792E-01 6.5014E+00
β67 ML 8.4060E-01 6.8871E+00
β68 ML 8.1190E-01 6.0759E+00
β78 ML 1.0794E+00 8.4994E+00

Table 6.3. Estimates for the price herding model (6.45) for the parameters βij .

Λ((s, t)×B) = (t− s)
∫

B

φ(u)du for any s, t ∈ R+, s < t,B ⊂ BR.

Here
φ(u) = λEδ0(u− aE) + λIδ0(u+ aI),

with δ0 the standard Dirac delta distribution. The infinitesimal generator A
of the Markov process (Xt)t∈R+ given by (6.46) is given by

Af(x) = α(x)
∂f

∂x
(x) +

∫
R

(f(x+ γ(x, u))− f(x))φ(u)du

for any test function f in the domain of A.
The firing problem may be seen as a first passage time through the thresh-

old θ > 0. Let A =]−∞, θ[. Then the random variable of interest is

TA(x) = inf{t ∈ R+|Xt ∈ A,X0 = x ∈ A},
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Parameter Method of Estimation Estimate St. Dev.

s1 ML 2.0267E-03 2.1858E-04
s2 ML 5.1134E-03 1.6853E-03
s3 ML 3.6238E-03 2.5305E-03
s4 ML 3.6777E-03 2.3698E-03
s5 ML 1.0644E-04 1.1132E-04
s6 ML 5.4133E-03 1.2452E-03
s7 ML 1.0769E-04 1.4414E-04
s8 ML 2.1597E-03 2.8686E-03
σ1 MAP 7.0000E-03 2.9073E-06
σ2 MAP 7.0000E-03 2.9766E-06
σ3 MAP 7.0000E-03 3.0128E-06
σ4 MAP 7.0000E-03 2.9799E-06
σ5 MAP 7.0000E-03 3.0025E-06
σ6 MAP 7.0000E-03 2.9897E-06
σ7 MAP 7.0000E-03 2.8795E-06
σ8 MAP 7.0000E-03 2.9656E-06

Table 6.4. Estimates for the price herding model (6.45) of sk and σk.

which is the first exit time from A. If the indicated set is empty, then we set
TA(x) = +∞. The following result holds

Theorem 6.12. (Tuckwell (1976), Darling and Siegert (1953)). Let (Xt)t∈R+

be a Markov process satisfying (6.46) and assume that the existence and
uniqueness conditions are fulfilled. Then the distribution function

FA(x, t) = P (TA(x) ≤ t)

satisfies
∂FA

∂t
(x, t) = AFA(·, t)(x), x ∈ A, t > 0,

subject to the initial condition

FA(x, 0) =
{

0 for x ∈ A,
1 for x /∈ A,

and boundary condition

FA(x, t) = 1, x /∈ A, x ≥ 0.

Corollary 6.13. If the moments

μn(x) = E [(TA(x))n] , n ∈ N∗,

exist, they satisfy the recursive system of equations

Aμn(x) = −nμn−1(x), x ∈ A, (6.47)
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subject to the boundary conditions

μn(x) = 0, x /∈ A.

The quantity μ0(x), x ∈ A, is the probability of Xt exiting from A in a finite
time. It satisfies the equation

Aμ0(x) = 0, x ∈ A, (6.48)

subject to
μ0(x) = 1, x /∈ A.

The following lemma is due to Gihman and Skorohod (1972).

Lemma 6.14. If there exists a bounded function g on R such that

Ag(x) ≤ −1, x ∈ A, (6.49)

then μ1 <∞ and P (TA(x) < +∞) = 1.

As a consequence of Lemma 6.14 a neuron in Stein’s model fires in a finite
time with probability 1 and with finite mean interspike interval. This is due
to the fact that the solution of (6.48) is μ0(x) = 1, x ∈ R, and this satisfies
(6.49). The mean first passage time through θ for an initial value x satisfies,
by (6.47):

−xdμ1

dx
(x) + λEμ1(x+ aE) + λIμ1(x− aI)− (λE + λI)μ1(x) = −1, (6.50)

with x < θ and boundary condition

μ1(x) = 0, for x ≥ θ.

The solution of (6.50) is discussed in Tuckwell (1989), where a diffusion ap-
proximation of the original Stein’s model of neuron firing is also analyzed.

6.5 Exercises and Additions

6.1. Consider a birth-and-death process (X(t))t∈R+ valued in N, as in section
6.1. In integral form the evolution equation for X will be

X(t) = X(0) + α
∫
X(s−)ds+M(t),

where α = λ− μ is the survival rate and M(t) is a martingale. Show that

1.

〈M〉(t) = 〈M,M〉(t) = (λ+ μ)
∫ t

0

X(s−)ds.
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2.
E[X(t)] = X(0)eαt.

3. X(t)e−αt is a square-integrable martingale.

4. V ar[X(t)e−αt] = X(0)
λ+ μ
λ− μ (1− e−αt).

6.2. (Age-dependent birth-and-death process). An age-dependent population
can be divided into two subpopulations, described by two marked counting
processes. Given t > 0, U (1)(A0, t) describes those individuals who already
existed at time t = 0 with ages in A0 ∈ BR+ and are still alive at time t;
and U (2)(T0, t) describes those individuals who are born during T0 ∈ BR+,
T0 ⊂ [0, t] and are still alive at time t. Assume that the age-specific death rate
is μ(a), a ∈ R+, and that the birth process B(T0), T0 ∈ BR+ admits stochastic
intensity

α(t0) =
∫ +∞

0

β(a0 + t0)U (1)(da0, t0−) +
∫ t0−

0

β(t0 − τ)U (2)(dτ, t0−),

where β(a), a ∈ R+ is the age-specific fertility rate. Assume now that suitable
densities u0 and b exist on R+ such that

E[U (1)(A0, 0)] =
∫

A0

u0(a)da

and
E[B(T0)] =

∫
T0

b(τ)dτ.

Show that the following renewal equation holds for any s ∈ R+ :

b(s) =
∫ +∞

0

da u0(a)n(s+ a)β(a+ s) +
∫ s

0

dτ β(s− τ)n(s− τ) b(τ),

where n(t) = exp{−
∫ t

0
μ(τ)dτ}, t ∈ R+. The reader may refer to Capasso

(1988).

6.3. Let Ē be the closure of an open set E ⊂ Rd for d ≥ 1. Consider a spatially
structured birth-and-death process associated with the marked point process
defined by the random measure on Rd :

ν(t) =
I(t)∑
i=1

εXi(t),

where I(t), t ∈ R+, denotes the number of individuals in the total population
at time t; and Xi(t) denotes the random location of the ith individual in Ē.
Consider the process defined by the following parameters:
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1. μ : Ē → R+ is the spatially structured death rate;
2. γ : Ē → R+ is the spatially structured birth rate;
3. for any x ∈ Ē, D(x, ·) : BRd → [0, 1] is a probability measure such that∫

Ē\{x}D(x, dz) = 1; D(x,A) for x ∈ Ē and A ∈ BRd represents the
probability that an individual born in x will be dispersed in A.

Show that the infinitesimal generator of the process is the operator L defined
as follows: for any sufficiently regular test function φ

Lφ(ν) =
∫

Ē

ν(dx)
∫

Rd

γ(x)D(x, dz)[−φ(ν) + φ(ν + εx+z)]

+μ(x)[−φ(ν) + φ(ν − εx)].

(The reader may refer to Fournier and Méléard (2003) for further analysis.)

6.4. LetX be an integer-valued random variable, with probability distribution
pk = P (X = k), k ∈ N. The probability generating function of X is defined
as

gX(s) = E[sX ] =
∞∑

k=0

skpk, |s| ≤ 1.

Consider a homogeneous birth-and-death processX(t), t ∈ R+, with birth rate
λ and death rate μ, and initial value X(0) = k0 > 0. Show that the probability
generating function GX(s; t) of X(t) satisfies the partial differential equation

∂

∂t
GX(s; t) + (1− s)(λs− μ)

∂

∂s
GX(s; t) = 0,

subject to the initial condition

GX(s; 0) = sk0 .

6.5. Consider now a nonhomogeneous birth-and-death process X(t), t ∈ R+,
with time-dependent birth rate λ(t) and death rate μ(t), and initial value
X(0) = k0 > 0. Show that the probability generating function GX(s; t) of
X(t) satisfies the partial differential equation

∂

∂t
GX(s; t) + (1− s)(λ(t)s− μ(t))

∂

∂s
GX(s; t) = 0,

subject to the initial condition

GX(s; 0) = sk0 .

Evaluate the probability of extinction of the population. (The reader may
refer to Chiang (1968).)
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6.6. Consider the general epidemic process as defined in section 6.1 with in-
fection rate κ = 1 and removal rate δ. Let GZ(x, y; t) denote the probability
generating function of the random vector Z(t) = (S(t), I(t)), where S(t) de-
notes the number of susceptibles at time t ≥ 0 and I(t) denotes the number
of infectives at time t ≥ 0. Assume that S(0) = s0 and I(0) = i0, and let
p(m,n; t) = P (S(t) = m, I(t) = n). The joint probability generating function
G will be defined as

GZ(x, y; t) = E[xS(t)yI(t)] =
s0∑

m=0

s0+i0−m∑
n=0

p(m,n; t)xm yn.

Show that it satisfies the partial differential equation

∂

∂t
GZ(x, y; t) = y(y − x) ∂2

∂x∂y
GZ(x, y; t) + δ(1− y) ∂

∂y
GZ(x, y; t),

subject to the initial condition

GZ(x, y; 0) = xs0yi0 .

6.7. Consider a discrete birth-and-death chain (Y (Δ)
n )n∈N valued in S =

{0,±Δ,±2Δ, . . .}, with step size Δ > 0, and denote by pi,j the one-step
transition probabilities

pij = P
(
Y

(Δ)
n+1 = jΔ

∣∣∣Y (Δ)
n = iΔ

)
for i, j ∈ Z.

Assume that the only nontrivial transition probabilities are

1. pi,i−1 = γi := 1
2σ

2 − 1
2μΔ,

2. pi,i+1 = βi := 1
2σ

2 + 1
2μΔ,

3. pi,i = 1− βi − γi = 1− σ2;

where σ2 and μ are strictly positive real numbers. Note that for Δ sufficiently
small, all rates are nonnegative. Consider now the rescaled (in time) process
(Y (Δ)

n/ε )n∈N, with ε = Δ2; show (formally and possibly rigorously) that the
rescaled process weakly converges to a diffusion on R with drift μ and diffusion
coefficient σ2.

6.8. With reference to the previous problem, show that the same result may
be obtained (with suitable modifications) also in the case in which the drift
and the diffusion coefficient depend upon the state of the process. For this case
show that the probability ψ(x) that the diffusion process reaches c before d,
when starting from a point x ∈ (c, d) ⊂ R, is given by
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ψ(x) =

∫ d

x
exp
{
−
∫ z

c

(
2 μ(y)

σ2(y)

)
dy
}
dz∫ d

c
exp
{
−
∫ z

c

(
2 μ(y)

σ2(y)

)
dy
}
dz
.

The reader may refer, e.g., to Bhattacharya and Waymire (1990).

6.9. Consider the general stochastic epidemic with the rescaling proposed
at the beginning of section 6.2. Derive the asymptotic ordinary differential
system corresponding to Theorem 6.4.
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Measure and Integration

A.1 Rings and σ-Algebras

Definition A.1. A collection F of the elements of a set Ω is called a ring on
Ω if it satisfies the following conditions:

1. A,B ∈ F ⇒ A ∪B ∈ F ,
2. A,B ∈ F ⇒ A \B ∈ F .

Furthermore, F is called an algebra if F is both a ring and Ω ∈ F .

Definition A.2. A ring F on Ω is called a σ-ring if it satisfies the following
additional condition:

3. For every countable family (An)n∈N of the subsets of F :
⋃

n∈NAn ∈ F .

A σ-ring F on Ω is called a σ-algebra if Ω ∈ F .

Definition A.3. Every collection F of the elements of a set Ω, is called a
semiring on Ω if it satisfies the following conditions:

1. A,B ∈ F ⇒ A ∩B ∈ F ,
2. A,B ∈ F ⇒ A ⊂ B ⇒ ∃(Aj)i≤j≤m ∈ F{1,...,m} of disjoint sets such that
B \A =

⋃m
j=1Aj .

If F is both a semiring and Ω ∈ F , then it is called a semialgebra.

Proposition A.4. A set Ω has the following properties:

1. If F is a σ-algebra of the subsets of Ω, then it is an algebra.
2. If F is a σ-algebra of the subsets of Ω, then
• E1, . . . , En, . . . ∈ F ⇒

⋂∞
n=1En ∈ F ,

• E1, . . . , En ∈ F ⇒
⋂n

i=1Ei ∈ F ,
• B ∈ F ⇒ Ω \B ∈ F .

3. If F is a ring on Ω, then it is also a semiring.
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Definition A.5. Every pair (Ω,F) consisting of a set Ω and a σ-ring F of
the subsets of Ω is a measurable space. Furthermore, if F is a σ-algebra, then
(Ω,F) is a measurable space on which a probability measure can be built. If
(Ω,F) is a measurable space, then the elements of F are called F-measurable
or just measurable sets. We will henceforth assume that if a space is measur-
able, then we can build a probability measure on it.

Example A.6.

1. If B is a σ-algebra on the set E and X : Ω → E a generic mapping, then
the set

X−1(B) = {A ⊂ Ω|∃B ∈ B such that A = X−1(B)}

is a σ-algebra on Ω.
2. Generated σ-algebra. If A is a set of the elements of a set Ω, then there

exists a smallest σ-algebra of subsets of Ω that contains A. This is the
σ-algebra generated by A, denoted σ(A). If, now, G is the set of all σ-
algebras of the subsets of Ω containing A, then it is not empty because it
has σ(Ω) among its elements, so that σ(A) =

⋂
C∈G C.

3. Borel σ-algebra. Let Ω be a topological space. Then the Borel σ-algebra
on Ω, denoted by BΩ , is the σ-algebra generated by the set of all open
subsets of Ω. Its elements are called Borelian or Borel-measurable.

4. The set of all bounded and unbounded intervals of R is a semialgebra.
5. If B1 and B2 are algebras on Ω1 and Ω2, respectively, then the set of

rectangles B1 ×B2, with B1 ∈ B1 and B2 ∈ B2, is a semialgebra.
6. Product σ-algebra. Let (Ωi,Fi)1≤i≤n be a family of measurable spaces and

let Ω =
∏n

i=1Ωi. Defining

R =

{
E ⊂ Ω|∀, i = 1, . . . , n ∃Ei ∈ Fi such that E =

n∏
i=1

Ei

}
,

then R is a semialgebra of the elements of Ω. The σ-algebra generated by
R is called the product σ-algebra of the σ-algebras (Fi)1≤i≤n.

Proposition A.7. Let (Ωi)1≤i≤n be a family of topological spaces with a
countable base and let Ω =

∏n
i=1Ωi. Then the Borel σ-algebra BΩ is identical

to the product σ-algebra of the family of Borel σ-algebras (BΩi
)1≤i≤n.

A.2 Measurable Functions and Measure

Definition A.8. Let (Ω1,F1) and (Ω2,F2) be two measurable spaces. A func-
tion f : Ω1 → Ω2 is measurable if

∀E ∈ F2 : f−1(E) ∈ F1.
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Remark A.9. If (Ω,F) is not a measurable space, i.e., Ω /∈ F , then there does
not exist a measurable mapping from (Ω,F) to (R,BR), because R ∈ BR and
f−1(R) = Ω /∈ F .

Definition A.10. Let (Ω,F) be a measurable space and f : Ω → Rn a
mapping. If f is measurable with respect to the σ-algebras F and BRn , the
latter being the Borel σ-algebra on Rn, then f is Borel-measurable.

Proposition A.11. Let (E1,B1) and (E2,B2) be two measurable spaces, U a
set of the elements of E2, which generates B2 and f : E1 → E2. The necessary
and sufficient condition for f to be measurable is f−1(U) ⊂ B1.

Remark A.12. If a function f : Rk → Rn is continuous, then it is Borel-
measurable.

Definition A.13. Let (Ω,F) be a measurable space. Every Borel-measurable
mapping h : Ω → R̄ that can only have a finite number of distinct values is
called an elementary function. Equivalently, a function h : Ω → R̄ is elemen-
tary if and only if it can be written as the finite sum

r∑
i=1

xiIEi ,

where, for every i = 1, . . . , r, the Ei are disjoint sets of F and IEi
is the

indicator function on Ei.

Theorem A.14. (Approximation of measurable functions through elemen-
tary functions.) Let (Ω,F) be a measurable space and f : Ω → R̄ a nonneg-
ative measurable function. There exists a sequence of measurable elementary
functions (sn)n∈N such that

1. 0 ≤ s1 ≤ · · · ≤ sn ≤ · · · ≤ f ,
2. limn→∞ sn = f .

Proposition A.15. If f1, f2 : Ω → R̄ are Borel-measurable functions, then
so are the functions f1 +f2, f1−f2, f1f2, and f1/f2, as long as the operations
are well defined.

Lemma A.16. If f : (Ω1,F1) → (Ω2,F2) and g : (Ω2,F2) → (Ω3,F3) are
measurable functions, then so is g ◦ f : (Ω1,F1)→ (Ω3,F3).

Proposition A.17. Let (Ωi,Fi)1≤i≤n be a family of measurable spaces, Ω =∏n
i=1Ωi and πi : Ω → Ωi for 1 ≤ i ≤ n the ith projection. Then the product σ-

algebra
⊗n

i=1 Fi of the family of σ-algebras (Fi)1≤i≤n is the smallest σ-algebra
on Ω for which every projection πi is measurable.

Proposition A.18. If h : (E,B) → (Ω =
∏n

i=1Ωi,F =
⊗n

i=1 Fi) is a map-
ping, then the following statements are equivalent:
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1. h is measurable;
2. for all i = 1, . . . n, hi = πi ◦ h is measurable.

Proof: 1 ⇒ 2 follows from Proposition A.17 and Lemma A.16. To prove that
2⇒ 1, it is sufficient to see that given R, the set of rectangles on Ω, it follows
that, for all B ∈ R : h−1(B) ∈ B. Let B ∈ R. Then for all i = 1, . . . , n, there
exists a Bi ∈ Fi such that B =

∏n
i=1Bi. Therefore, by recalling that due to

2 every hi is measurable, we have that

h−1(B) = h−1

(
n∏

i=1

Bi

)
=

n⋂
i=1

h−1
i (Bi) ∈ B.

�

Corollary A.19. Let (Ω,F) be a measurable space and h : Ω → Rn a func-
tion. Defining hi = πi◦h : Ω → R for 1 ≤ i ≤ n, the following two propositions
are equivalent:

1. h is Borel-measurable;
2. for all i = 1, . . . , n, hi is Borel-measurable.

Definition A.20. Let (Ω,F) be a measurable space. Every function μ : Ω →
R̄ that

1. for all E ∈ F : μ(E) ≥ 0,
2. for all Ei, . . . , En, . . . ∈ F such that Ei ∩ Ej = ∅, for i �= j, we have that

μ

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

μ(Ei)

is a measure on F . Moreover, if (Ω,F) is a measurable space and if

μ(Ω) = 1, (A.1)

then μ is a probability measure or probability. Furthermore, a measure μ is
finite if

∀A ∈ F : μ(A) < +∞
and σ-finite, if

1. there exists an (An)n∈N ∈ FN such that Ω =
⋃

n∈NAn;
2. for all n ∈ N : μ(An) < +∞.

Definition A.21. The ordered triple (Ω,F , μ), where Ω denotes a set, F a
σ-ring on Ω, and μ : F → R̄ a measure on F , is a measure space. If μ is a
probability measure, then (Ω,F , μ) is a probability space.12

12 Henceforth we will call every measurable space that has a probability measure
assigned to it a probability space.
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Definition A.22. Let (Ω,F , μ) be a measure space and λ : F → R̄ a measure
on Ω. Then λ is said to be absolutely continuous with respect to μ, denoted
λ! μ, if

∀A ∈ F : μ(A) = 0⇒ λ(A) = 0.

Proposition A.23. (Characterization of measure). Let μ be additive on an
algebra F and valued in R (and not everywhere equal to +∞). The following
two statements are equivalent:

1. μ is a measure on F .
2. For increasing (An)n∈N ∈ FN, where

⋃
n∈NAn ∈ F , we have that

μ

(⋃
n∈N

An

)
= lim

n→∞μ(An) = sup
n∈N

μ(An).

If μ is finite, then 1 and 2 are equivalent to the following.

3. For decreasing (An)n∈N ∈ FN, where
⋂

n∈NAn ∈ F , we have

μ

(⋂
n∈N

An

)
= lim

n→∞μ(An) = inf
n∈N

μ(An).

4. For decreasing (An)n∈N ∈ FN, where
⋂

n∈NAn = ∅, we have

lim
n→∞μ(An) = inf

n∈N
μ(An) = 0.

Proposition A.24. (Generalization of a measure). Let G be a semiring on
E and μ : G → R+ a function that satisfies the following properties:

1. μ is (finitely) additive on G,
2. μ is countably additive on G,
3. there exists an (Sn)n∈N ∈ GN such that E ⊂

⋃
n∈N Sn.

Under these assumptions

∃|μ̄ : B → R̄+ such that μ̄|G = μ,

where B is the σ-ring generated by G.13 Moreover, if μ is a probability measure,
then so is μ̄.

Proposition A.25. Let U be a ring on E and μ : U → R̄+ (not everywhere
equal to +∞) a measure on U . Then, if B is the σ-ring generated by U ,

∃|μ̄ : B → R̄+ such that μ̄|U = μ.

Moreover, if μ is a probability measure, then so is μ̄.
13 B is identical to the σ-ring generated by the ring generated by G.
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Lemma A.26. (Fatou). Let (An)n∈N ∈ FN be a sequence of random vari-
ables and (Ω,F , P ) a probability space. Then

P (lim inf
n

An) ≤ lim inf
n

P (An) ≤ lim sup
n

P (An) ≤ P (lim sup
n

An).

If lim infnAn = lim supnAn = A, then An → A.

Corollary A.27. Under the assumptions of Fatou’s Lemma A.26, if An → A,
then P (An)→ P (A).

A.3 Lebesgue Integration

Let (Ω,F) be a measurable space. We will denote by M(F , R̄) (or, respec-
tively, by M(F , R̄+)) the set of measurable functions on (Ω,F) and valued
in R̄ (or R̄+).

Proposition A.28. Let (Ω,F) be a measurable space and μ a positive mea-
sure on F . Then there exists a unique mapping Φ fromM(F , R̄+) to R̄+, such
that:

1. For every α ∈ R+, f, g ∈M(F , R̄+),
Φ(αf) = αΦ(f),
Φ(f + g) = Φ(f) + Φ(g),
f ≤ g ⇒ Φ(f) ≤ Φ(g).

2. For every increasing sequence (fn)n∈N of elements of M(F , R̄+) we have
that supn Φ(fn) = Φ(supn fn) (Beppo–Levi property).

3. For every B ∈ F , Φ(IB) = μ(B).

Definition A.29. If Φ is the unique functional associated with μ, the measure
on the measurable space (Ω,F), then for every f ∈M(F , R̄+):

Φ(f) =
∫ ∗

f(x)dμ(x) or
∫ ∗

f(x)μ(dx) or
∫ ∗

f(x)dμ

the upper integral of μ.

Remark A.30. Let (Ω,F) be a measurable space and let Φ be the functional
canonically associated with μ measure on F .

1. If s : Ω → R̄+ is an elementary function, thus s =
∑n

i=1 xiIEi , then

Φ(s) =
∫ ∗

sdμ =
n∑

i=1

xiμ(Ei).

2. If f ∈ M(F , R̄+) and defining Ωf = {s : Ω → R̄+|s elementary , s ≤ f},
then Ωf is nonempty and

Φ(f) =
∫ ∗

fdμ = sup
s∈Ωf

∫ ∗
sdμ = sup

s∈Ωf

(
n∑

i=1

xiμ(Ei)

)
.



A.3 Lebesgue Integration 289

3. If f ∈M(F , R̄+) and B ∈ F , then by definition∫ ∗

B

fdμ =
∫ ∗

IB · fdμ.

Definition A.31. Let (Ω,F) be a measurable space and μ a positive measure
on F . An F-measurable function f is μ-integrable if∫ ∗

f+dμ < +∞ and
∫ ∗

f−dμ < +∞,

where f+ and f− denote the positive and negative parts of f , respectively.
The real number ∫ ∗

f+dμ−
∫ ∗

f−dμ

is therefore the Lebesgue integral of f with respect to μ, denoted by∫
fdμ or

∫
f(x)dμ(x) or

∫
f(x)μ(dx).

Proposition A.32. Let (Ω,F) be a measurable space, endowed with measure
μ and f ∈M(F , R̄+). Then

1.
∫ ∗
fdμ = 0⇔ f = 0 almost surely with respect toμ,

2. for every A ∈ F , μ(A) = 0 we have∫ ∗

A

fdμ = 0;

3. for every g ∈M(F , R̄+) such that f = g, almost surely with respect to μ,
we have ∫ ∗

fdμ =
∫ ∗

gdμ.

Theorem A.33. (Monotone convergence). Let (Ω,F) be a measurable space
endowed with measure μ, (fn)n∈N an increasing sequence of elements of
M(F , R̄+), and f : Ω → R̄+ such that

∀ω ∈ Ω : f(ω) = lim
n→∞ fn(ω) = sup

n∈N

fn(ω).

Then f ∈M(F , R̄+) and ∫ ∗
fdμ = lim

n→∞

∫ ∗
fndμ.

Theorem A.34. (Lebesgue’s dominated convergence). Let (Ω,F) be a mea-
surable space endowed with measure μ, (fn)n∈N a sequence of μ-integrable
functions defined on Ω, and g : Ω → R̄+ a μ-integrable function, such that
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|fn| ≤ g, for all n ∈ N. If we suppose that limn→∞ fn = f exists almost surely
in Ω, then f is μ-integrable and we have∫

fdμ = lim
n→∞

∫
fndμ.

Lemma A.35. (Fatou). Let fn ∈M(F , R̄+). Then

lim inf
n

∫ ∗
fndμ ≥

∫ ∗
lim inf

n
fndμ.

Theorem A.36. (Fatou–Lebesgue).

1. Let |fn| ≤ g ∈ L1. Then

lim sup
n

∫
fndμ ≤

∫
lim sup

n
fndμ.

2. Let |fn| ≤ g ∈ L1. Then

lim inf
n

∫
fndμ ≥

∫
lim inf

n
fndμ.

3. Let |fn| ≤ g and f = limn fn, almost surely with respect to μ. Then

lim
n

∫
fndμ =

∫
fdμ.

Definition A.37. Let (Ω,F) and (E,B) be a measurable space, endowed
with measure μ, and let h : (Ω,F) → (E,B) be a measurable function. The
mapping μh : B → R̄+, such that μh(B) = μ(h−1(B)) for all B ∈ B is a
measure on E, called induced measure h on μ, denoted h(μ).

Proposition A.38. Given the assumptions of Definition A.37 the function
g : (E,B) → (R,BR) is integrable with respect to μh if and only if g ◦ h is
integrable with respect to μ and∫

g ◦ gdμ =
∫
gdμh.

Theorem A.39. (Product measure). Let (Ω1,F1) and (Ω2,F2) be measur-
able spaces and the former be endowed with σ-finite measure μ1 on F1. Further
suppose that for all ω1 ∈ Ω1 a measure μ(ω1, ·) is assigned on F1 and that for
all B ∈ F2, μ(·, B) : Ω1 → R is a Borel-measurable function. If μ(ω1, ·) is uni-
formly σ-finite, then there exists a (Bn)n∈N ∈ FN

2 such that Ω2 =
⋃∞

n=1Bn

and, for all n ∈ N there exists a Kn ∈ R such that μ(ω1, Bn) ≤ Kn for
all ω1 ∈ Ω1. Then there exists a unique measure μ on the product σ-algebra
F = F1 ⊗F2 such that



A.3 Lebesgue Integration 291

∀A ∈ F1, B ∈ F2 : μ(A×B) =
∫

A

μ(ω1, B)μ1(dω1),

and
∀F ∈ F : μ(F ) =

∫
Ω1

μ(ω1, F (ω1))μ1(dω1).

Definition A.40. Let (Ω1,F1) and (Ω2,F2) be two measurable spaces, en-
dowed with σ-finite measures μ1, μ2 on F1 and F2, respectively. Defining
Ω = Ω1 ×Ω2 and F = F1 ⊗F2, the function μ : F → R̄ with

∀F ∈ F : μ(F ) =
∫

Ω1

μ2(F (ω1))dμ1(ω1) =
∫

Ω2

μ1(F (ω2))dμ2(ω2),

is the unique measure on F with

∀A ∈ F1, B ∈ F2 : μ(A×B) = μ1(A)× μ2(B).

Moreover, μ is σ-finite on F as well as a probability measure, if so are μ1 and
μ2. The measure μ is the product measure of μ1 and μ2, denoted by μ1 ⊗ μ2.

Theorem A.41. (Fubini). Given the assumptions of Definition A.40, let f :
(Ω,F) → (R,BR) be a Borel-measurable function, such that

∫
Ω
fdμ exists.

Then ∫
Ω

fdμ =
∫

Ω1

∫
Ω2

fdμ2dμ1 =
∫

Ω2

∫
Ω1

fdμ1dμ2.

Proposition A.42. Let (Ωi,Fi)1≤i≤n be a family of measurable spaces. Fur-
ther, let μ1 : F1 → R̄ be a σ-finite measure and let

∀(ω1, . . . , ωj) ∈ Ω1 × · · · ×Ωj : μ(ω1, . . . , ωj , ·) : Fj+1 → R̄

be a measure on Fj+1, 1 ≤ j ≤ n− 1. If μ(ω1, . . . , ωj , ·) is uniformly σ-finite
and for every c ∈ Fj+1

μ(. . . , c) : (Ω1 × · · · ×Ωj ,F1 ⊗ · · · ⊗ Fj)→ (R̄,BR̄),

such that

∀(ω1, . . . , ωj) ∈ Ω1 × · · · ×Ωj : μ(. . . , c)(ω1, . . . , ωj) = μ(ω1, . . . , ωj , c)

is measurable, then, defining Ω = Ω1 × · · · ×Ωn and F = F1 ⊗ · · · ⊗ Fn:

1. There exists a unique measure μ : F → R̄ such that for every measurable
rectangle A1 × · · · ×An ∈ F :

μ(A1 × · · · ×An)

=
∫

A1

μ1(dω1)
∫

A2

μ(ω1, dω2) · · ·
∫

An

μ(ω1, . . . , ωn−1, dωn).

μ is σ-finite on F and a probability whenever μ1 and all μ(ω1, . . . , ωj , ·)
are probability measures.
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2. If f : (Ω,F)→ (R̄,BR̄) is measurable and nonnegative, then∫
Ω

fdμ

=
∫

Ω1

μ1(dω1)
∫

Ω2

μ(ω1, dω2) · · ·
∫

Ωn

f(ω1, . . . , ωn)μ(ω1, . . . , ωn−1, dωn).

Proposition A.43. 1. Given the assumptions and the notation of Proposi-
tion A.42, if we assume that f = IF , then for every F ∈ F :

μ(F )

=
∫

Ω1

μ1(dω1)
∫

Ω2

μ(ω1, dω2) · · ·
∫

Ωn

IF (ω1, . . . , ωn)μ(ω1, . . . , ωn−1, dωn).

2. For all j = 1, . . . , n − 1, let μj+1 = μ(ω1, . . . , ωj , ·). Then there exists a
unique measure μ on F such that for every rectangle A1 × · · · × An ∈ F
we have

μ(A1 × · · · ×An) = μ1(A1) · · ·μn(An).

If f : (Ω,F)→ (R̄,BR̄) is measurable and positive, or else if
∫

Ω
fdμ exists,

then ∫
Ω

fdμ =
∫

Ω1

dμ1 · · ·
∫

Ωn

fdμn,

and the order of integration is arbitrary. The measure μ is the product
measure of μ1, . . . , μn and is denoted by μ1 ⊗ · · · ⊗ μn.

Definition A.44. Let (vi)1≤i≤n be a family of measures defined on BR and

v(n) = v1 ⊗ · · · ⊗ vn : Rn → R

the product measure. The convolution product of v1, . . . , vn, denoted by v1 ∗
· · · ∗ vn, is the induced measure that, for generic functions f : Rn → R,
associates (xi, . . . , xn) with

∑n
i=1 xi of v(n).

Proposition A.45. Let v1 and v2 be measures on BR. Then for every B ∈ BR

we have

v1 ∗ v2(B) =
∫

B

d(v1 ∗ v2) =
∫

R

IB(z)d(v1 ∗ v2) =
∫ ∫

IB(x1 + x2)d(v1 ⊗ v2).

A.4 Lebesgue–Stieltjes Measure and Distributions

Definition A.46. Let μ : BR → R̄ be a measure. It then represents a
Lebesgue–Stieltjes measure if for every interval I we have that μ(I) < +∞.

Definition A.47. Every function F : R → R that is right-continuous and
increasing is a distribution function on R.
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It is in fact possible to establish a one-to-one relationship between the set
of Lebesgue–Stieltjes measures and the set of distribution functions in the
sense that every Lebesgue–Stieltjes measure can be assigned a distribution
function and vice versa.

Proposition A.48. Let μ be a Lebesgue–Stieltjes measure on BR and the
function F : R→ R defined, apart from a constant, as

F (b)− F (a) = μ(]a, b]) ∀a, b ∈ R, a < b.

Then F is a distribution function, in particular the one assigned to μ.

Proposition A.49. Let F be a distribution function and

F (b)− F (a) = μ(]a, b]) ∀a, b ∈ R, a < b.

There exists a unique extension of μ, which is a Lebesgue–Stieltjes measure
on BR. This measure is the Lebesgue–Stieltjes measure canonically associated
with F .

Definition A.50. Every measure μ : BRn → R̄ that for every bounded inter-
val I of Rn has μ(I) < +∞ is a Lebesgue–Stieltjes measure on Rn

Definition A.51. Let f : R→ R be of constant value 1 and we consider the
function F : R→ R with

F (x)− F (0) =
∫ x

0

f(t)dt ∀x > 0,

F (0)− F (x) =
∫ 0

x

f(t)dt ∀x < 0,

where F (0) is fixed and arbitrary. This function F is a distribution function
and its associated Lebesgue–Stieltjes measure is called Lebesgue measure on
R.

Definition A.52. Let (Ω,F , μ) be a space with σ-finite measure μ and con-
sider another measure λ : F → R̄+. λ is said to be defined through its density
with respect to μ if there exists a Borel-measurable function g : Ω → R̄+ with

λ(A) =
∫

A

gdμ ∀A ∈ F .

This function g is the density of λ with respect to μ. In this case λ is absolutely
continuous with respect to μ (λ! μ). If μ is a Lebesgue measure on R, then
g is the density of μ. A measure ν is called μ-singular if there exists N ∈ F
such that μ(N) = 0 and ν(N \F) = 0. Conversely, if also μ(N) = 0 whenever
ν(N) = 0, then the two measures are equivalent (denoted λ ∼ μ).
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Theorem A.53. (Radon–Nikodym). Let (Ω,F) be a measurable space, μ a
σ-finite measure on F , and λ an absolutely continuous measure with respect
to μ. Then λ is endowed with density with respect to μ. Hence there exists a
Borel-measurable function g : Ω → R̄+ such that

λ(A) =
∫

A

gdμ, A ∈ B.

A necessary and sufficient condition for g to be μ-integrable is that λ is
bounded. Moreover, if h : Ω → R̄+ is another density of λ, then g = h,
almost surely with respect to μ.

Theorem A.54. (Lebesgue–Nikodym). Let ν and μ be a measure and a σ-
finite measure on (E,B), respectively. There exist a B-measurable function
f : E → R̄+ and a μ-singular measure ν′ on (E,B) so that

ν(B) =
∫

B

fdμ+ ν′(B) ∀B ∈ B.

Furthermore,

1. ν′ is unique.
2. If h : E → R̄+ is a B-measurable function with

ν(B) =
∫

B

hdμ+ ν′(B) ∀B ∈ B,

then f = h almost surely with respect to μ.

Definition A.55. A function F : R → R is absolutely continuous if, for all
ε > 0, there exists a δ > 0 such that for all ]ai, bi[⊂ R for 1 ≤ i ≤ n with
]ai, bi[∩]aj , bj [= ∅, i �= j,

bi − ai < δ ⇒
n∑

i=1

|F (bi)− F (ai)| < ε.

Proposition A.56. Let F be a distribution function. Then the following two
propositions are equivalent:

1. F is absolutely continuous.
2. The Lebesgue measure canonically associated with F is absolutely contin-

uous.

Proposition A.57. Let f : [a, b]→ R be a mapping. The following two state-
ments are equivalent:

1. f is absolutely continuous.
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2. There exists a Borel-measurable function g : [a, b] → R that is integrable
with respect to Lebesgue measure and

f(x)− f(a) =
∫ x

a

g(t)dt ∀x ∈ [a, b].

This function g is the density of f .

Proposition A.58. If f : [a, b]→ R is absolutely continuous, then

1. f is differentiable almost everywhere in [a, b],
2. f ′, the first derivative of f , is integrable in [a, b] and we have that

f(x)− f(a) =
∫ x

a

f ′(t)dt.

Theorem A.59. (Fundamental theorem of calculus). If f : [a, b] → R is
integrable in [a, b] and

F (x) =
∫ x

a

f(t)dt ∀x ∈ [a, b],

then

1. F is absolutely continuous in [a, b],
2. F ′ = f almost everywhere in [a, b].

Vice versa, if we consider a function F : [a, b]→ R that satisfies 1 and 2, then∫ b

a

f(x)dx = F (b)− F (a).

Proposition A.60. If f : [a, b] → R is differentiable in [a, b] and has inte-
grable derivatives, then

1. f is absolutely continuous in [a, b],
2. f(x) =

∫ x

a
f ′(t)dt.

Definition A.61. Let (Ω,F , μ) be a space endowed with measure and p > 0.
The set of Borel-measurable functions defined on Ω, such that

∫
Ω
|f |pdμ <

+∞ is a vector space on R and is denoted with the symbols Lp(μ) or
Lp(Ω,F , μ). Its elements are called functions integrable to the exponent p.
In particular, elements of L2(μ) are said to be square-integrable functions.
Finally, L1(μ) coincides with the space of functions integrable with respect to
μ.
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A.5 Stochastic Stieltjes Integration

Suppose (Ω,F , P ) is a given probability space with (Xt)t∈R+ a measurable
stochastic process whose sample paths (Xt(ω))t∈R+ are of locally bounded
variation for any ω ∈ Ω. Now let (Hs)s∈R+ be a measurable process, whose
sample paths are locally bounded for any ω ∈ Ω. Then the process H • X
defined by

(H •X)t(ω) =
∫ t

0

H(s, ω)dXs(ω), ω ∈ Ω, t ∈ R+

is called the stochastic Stieltjes integral of H with respect to X. Clearly,
((H ∗X)t)t∈R+ is itself a stochastic process.

If we assume further that X is progressively measurable and H is Ft-
predictable with respect to the σ-algebra generated by X, then H ∗ X is
progressively measurable. In particular, if N =

∑
n∈N∗ ετn is a point process

on R+, then for any nonnegative process H on R+, the stochastic integral
H ∗N exists and is given by

(H •N)t =
∑

n∈N∗
I[τn≤t](t)H(τn).

Theorem A.62. Let M be a martingale of locally integrable variation, i.e.,
such that

E

[∫ t

0

d|Ms|
]
<∞ for any t > 0,

and let C be a predictable process satisfying

E

[∫ t

0

|Cs|d|Ms|
]
<∞ for any t > 0.

Then the stochastic integral C ∗M is a martingale.



B

Convergence of Probability Measures on
Metric Spaces

B.1 Metric Spaces

For more details on the following and further results refer to Loève (1963),
Dieudonné (1960), and Aubin (1977).

Definition B.1. Consider a set R. A distance (metric) on R is a mapping
ρ : R×R→ R+, which satisfies the following properties.

D1.For any x, y ∈ R, ρ(x, y) = 0⇔ x = y.
D2.For any x, y ∈ R, ρ(x, y) = ρ(y, x).
D3.For any x, y, z ∈ R, ρ(x, z) ≤ ρ(x, y) + ρ(y, z) (triangle inequality).

Definition B.2. A metric space is a set R endowed with a metric ρ; we shall
write (R, ρ). Elements of a metric space will be called points.

Definition B.3. Given a metric space (R, ρ), a point a ∈ R, and a real num-
ber r > 0, the open ball (or the closed ball) of center a and radius r is the set
B(a, r) := {x ∈ R|ρ(a, x) < r} (or B′(a, r) := {x ∈ R|ρ(a, x) ≤ r}).

Definition B.4. In a metric space (R, ρ), an open set is any subset A of R
such that for any x ∈ A there exists an r > 0 such that B(a, r) ⊂ A.

The empty set is open, and so is the entire space R.

Proposition B.5. The union of any family of open sets is an open set. The
intersection of a finite family of open sets is an open set.

Definition B.6. The family T of all open sets in a metric space is called its
topology. In this respect the couple (R, T ) is a topological space.

Definition B.7. The interior of a set A is the largest open subset of A.

Definition B.8. In a metric space (R, ρ), a closed set is any subset of R which
is a complement of an open set.
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The empty set is closed, and so is the entire space R.

Proposition B.9. The intersection of any family of closed sets is a closed
set. The union of a finite family of closed sets is a closed set.

Definition B.10. In a metric space (R, ρ), the closure of a set A is the small-
est subset of R containing A. It is denoted by Ā. Any element of the closure
of A is called a point of closure of A.

Proposition B.11. A closed set is the intersection of a decreasing sequence
of open sets. An open set is the union of an increasing sequence of closed sets.

Definition B.12. A topological space is called a Hausdorff topological space
if it satisfies the following property:

(HT )For any two distinct points x and y there exist two disjoint open sets A
and B such that x ∈ A and y ∈ B.

Proposition B.13. A metric space is a Hausdorff topological space.

Definition B.14. In a metric space (R, ρ), the boundary of a set A is the set
∂A = Ā ∩ (R \A). Here R \A is the complement of A.

Definition B.15. Given two metric spaces (R, ρ) and (R′, ρ′), a function f :
R→ R′ is continuous, if for any open set A′ in (R′, ρ′), the set f−1(A′) is an
open set in (R, ρ).

Definition B.16. Two metric spaces (R, ρ) and (R′, ρ′) are said to be homeo-
morphic if a function f : R→ R′ exists satisfying the following two properties:

1. f is a bijection (an invertible function);
2. f is bicontinuous; i.e., both f and its inverse f−1 are continuous.

The function f above is called a homeomorphism.

Definition B.17. Given two distances ρ and ρ′ on the same set R, we say
that they are equivalent distances if the identity iR : x ∈ R "→ x ∈ R is a
homeomorphism between the metric spaces (R, ρ) and (R′, ρ′).

Remark B.18. We may remark here that the notions of open set, closed set,
closure, boundary, and continuous function are topological notions. They de-
pend only on the topology induced by the metric. The topological properties
of a metric space are invariant with respect to a homeomorphism.

Definition B.19. Given a subset A of a metric space (R, ρ) its diameter is
given by δ(A) = supx∈A,y∈A d(x, y). A is bounded if its diameter is finite.

Definition B.20. Given two metric spaces (R, ρ) and (R′, ρ′), a function f :
R → E′ is uniformly continuous if for any ε > 0, a δ > 0 exists such that
x, y ∈ R, ρ(x, y) < δ implies ρ′(f(x), f(y)) < ε.
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Proposition B.21. A uniformly continuous function is continuous. (The
converse is not true in general.)

Remark B.22. The notions of diameter of a set and of uniform continuity of a
function are metric notions.

Definition B.23. Let A,B be two subsets of a metric space R. A is said to
be dense in B if B ⊆ Ā. A is said to be everywhere dense in R if Ā = R.

Definition B.24. A metric space R is said to be separable if it contains an
everywhere dense countable subset.

Here are some examples of separable spaces with the corresponding every-
where countable subset.

• The space R of real numbers with distance function ρ(x, y) = |x− y|, with
the set Q.

• The space Rn of ordered n-tuples of real numbers x = (x1, x2, . . . , xn) with
distance function ρ(x, y) = {

∑n
k=1(yk −xk)2} 1

2 , with the set of all vectors
with rational coordinates.

• The space Rn
0 of ordered n-tuples of real numbers x = (x1, x2, . . . , xn) with

distance function ρ0(x, y) = max{|yk − xk|; 1 ≤ k ≤ n} with the set of all
vectors with rational coordinates.

• C2([a, b]), the totality of all continuous functions on the segment [a, b] with
distance function ρ(x, y) =

∫ b

a
[x(t)−y(t)]2dt with the set of all polynomials

with rational coefficients.

Definition B.25. A family {Gα} of open sets in the metric space R is called
a basis of R if every open set in R can be represented as the union of a (finite
or infinite) number of sets belonging to this family.

Definition B.26. R is said to be a space with countable basis if there is at
least one basis in R consisting of a countable number of elements.

Theorem B.27. A necessary and sufficient condition for R to be a space with
countable basis is that there exists in R an everywhere dense countable set.

Corollary B.28. A metric space R is separable if and only if it has a count-
able basis.

Definition B.29. A covering of a set is a family of sets, whose union contains
the set. If the number of elements of the family is countable, then we have
a countable covering. If the sets of the family are open, we have an open
covering.

Theorem B.30. If R is a separable space, then we can select a countable
covering from each of its open coverings.
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Theorem B.31. Every separable metric space R is homeomorphic to a subset
of R∞.

Definition B.32. In a metric space (R, ρ), a sequence (xn)n∈N is any function
from N to R.

Definition B.33. We say that a sequence (xn)n∈N admits a limit b ∈ R (is
convergent to b), if b is such that for any open set V , with x ∈ V , there
exists an nV ∈ N such that for any n > nV we have xn ∈ V. We write
limn→∞ xn = b.

Definition B.34. A subsequence of a sequence (xn)n∈N is any sequence k ∈
N "→ xnk

∈ R such that (nk)k∈N is strictly increasing.

Proposition B.35. If limn→∞ xn = b, then limk→∞ xnk
= b for any subse-

quence of (xn)n∈N.

Definition B.36. b is called a cluster point of a sequence (xn)n∈N if a subse-
quence exists having b as a limit.

Proposition B.37. Given a subset A of a metric space (R, ρ), for any a ∈ Ā
there exists a sequence of elements of A converging to a.

Proposition B.38. If x is the limit of a sequence (xn)n∈N, then x is the
unique cluster point of (xn)n∈N. Conversely, (xn)n∈N may have a unique clus-
ter point x and still this does not imply that x is the limit of (xn)n∈N (see
Aubin (1977), page 67, for a counterexample).

Definition B.39. In a metric space (R, ρ), a Cauchy sequence is a sequence
(xn)n∈N such that for any ε > 0 an integer n0 ∈ N exists such that m,n ∈ N,
m,n > n0 implies ρ(xm, xn) < ε.

Proposition B.40. In a metric space, any convergent sequence is a Cauchy
sequence. The converse is not true in general.

Proposition B.41. In a metric space, if a Cauchy sequence (xn)n∈N has a
cluster point x, then x is the limit of (xn)n∈N.

Definition B.42. A metric space R is called complete if any Cauchy sequence
in R is convergent to a point of R.

Definition B.43. A subspace of a metric space (R, ρ) is any nonempty subset
F of R endowed with the restriction of ρ to F × F .

Proposition B.44. If a subspace of a metric space R is complete, then it is
closed in R. In a complete metric space any closed subspace is complete.

Definition B.45. A metric space R is said to be compact if any arbitrary
open covering {Oα} of the space R contains a finite subcovering.
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Definition B.46. A metric space R is called precompact if, for all ε > 0, there
is a finite covering of R by sets of diameter < ε.

Remark B.47. The notion of compactness is a topological one, while the notion
of precompactness is a metric one.

Theorem B.48. For a metric space R, the following three conditions are
equivalent:

1. R is compact.
2. Any infinite sequence in R has at least a limit point.
3. R is precompact and complete.

Proposition B.49. Every precompact metric space is separable.

Proposition B.50. In a compact metric space any sequence which has only
one cluster value, a converges to a.

Proposition B.51. Any continuous mapping of a compact metric space into
another metric space is uniformly continuous.

Definition B.52. A compact set (or precompact set) in a metric space R is
any subset of R that is compact (or precompact) as a subspace of R.

Proposition B.53. Any precompact set is bounded.

Proposition B.54. Any compact set in a metric space is closed. In a compact
metric space, any closed subset is compact.

Proposition B.55. Any compact set in a metric space is complete.

Definition B.56. A set M in the metric space R is said to be relatively
compact if M = M̄ .

Theorem B.57. A relatively compact set is precompact. In a complete metric
space a precompact set is relatively compact.

Proposition B.58. A necessary and sufficient condition that a subset M of
a metric space R be relatively compact is that every sequence of points of M
has a cluster point in R.

Definition B.59. A metric space R is said to be locally compact , if for every
point x ∈ R there exists a compact neighborhood of x in R.

Theorem B.60. Let R be a locally compact metric space. The following prop-
erties are equivalent:

1. there exists an increasing sequence (Un) of open relatively compact sets in
R, such that Ūn ⊂ Un+1 for every n, and R = ∪nUn;

2. R is the countable union of compact subsets;
3. R is separable.
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Convergence of Probability Measures

Let (S, ρ) be a metric space and let S be the σ-algebra of Borel subsets gener-
ated by the topology induced by ρ. Let P, P1, P2, . . . be probability measures
on (S,S).

Definition B.61. A sequence of probability measures {Pn}n∈N converges
weakly to the probability measure P (notation Pn

W→ P ) if∫
E

fdPn →
∫

E

fdP

for every function f ∈ Cb(S), the class of continuous bounded functions on S.

Definition B.62. A set A in S such that P (∂A) = 0 is called a P -continuity
set.

Theorem B.63. Let Pn and P be probability measures on (S,S). These five
conditions are equivalent:

1. Pn
W→ P ,

2. limn

∫
fdPn =

∫
fdP for all bounded, uniformly continuous real functions

f ,
3. lim supn Pn(F ) ≤ P (F ) for all closed F ,
4. lim infn Pn(G) ≥ P (G) for all open G,
5. limn Pn(A) = P (A) for all P -continuity sets A.

On the set of probability measures on (S,S), we may refer to the topology
of weak convergence.

Definition B.64. Let Π be a family of probability measures on (S,S). Π is
said to be relatively compact if every sequence of elements of Π contains a
weakly convergent subsequence; i.e., for every sequence {Pn} in Π there exists
a subsequence {Pnk

} and a probability measure P (defined on (S,S), but not
necessarily an element of Π) such that Pnk

W→ P .

Definition B.65. A family Π of probability measures on the general metric
space (S,S) is said to be tight if, for all ε > 0, there exists a compact set K
such that

P (K) > 1− ε ∀P ∈ Π.

Consider sequences of random variables (Xn) and (Yn) valued in a metric
separable space (S, ρ) having common domain; it makes sense to speak of the
distance ρ(Xn, Yn), the function with value ρ(Xn(ω), Yn(ω)) at ω. Since S is
separable, ρ(Xn, Yn) is a random variable (see Billingsley (1968), page 225),
and we have the following theorem.

Theorem B.66. If Xn
D→ X and ρ(Xn, Yn) P→ 0, then Yn

D→ X.
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Let h be a measurable mapping of the metric space S into another metric
space S′. Denote by h(P ) the probability measure induced by h on (S′S ′),
defined by h(P )(A) = P (h−1(A)) for any A ∈ S ′. Let Dh be the set of
discontinuities of h.

Theorem B.67. If Pn
W→ P and P (Dh) = 0, then h(Pn) W→ h(P ).

For a random element X of S, h(X) is a random element of S′ (since h is
measurable), and we have the following corollary.

Corollary B.68. If Xn
D→ X and P (X ∈ Dh) = 0, then h(Xn) D→ h(X).

We recall now one of the most frequently used results in analysis.

Theorem B.69. (Helly). For every sequence (Fn) of distribution functions
there exists a subsequence (Fnk

) and a nondecreasing, right-continuous func-
tion F (a generalized distribution function) such that 0 ≤ F ≤ 1 and
limk Fnk

(x) = F (x) at continuity points x of F .

Consider a probability measure P on (R∞,BR∞) and let πk be the pro-
jection from R∞ to Rk, defined by πi1,...,ik

(x) = (xi1 , . . . , xik
). The functions

πk(P ) : Rk → [0, 1] are called finite-dimensional distributions corresponding
to P . It is possible to show that probability measures on (R∞,BR∞) converge
weakly if and only if all the corresponding finite-dimensional distributions
converge weakly.

Let C := C([0, 1]) be the space of continuous functions on [0, 1] with the
uniform topology, i.e., the topology obtained by defining the distance between
two points x, y ∈ C as ρ(x, y) = supt |x(t)− y(t)|. We shall denote with (C, C)
the space C with the topology induced by this metric ρ.

For t1, . . . , tk in [0, 1], let πt1...tk
be the mapping that carries the point x

of C to the point (x(t1), . . . , x(tk)) of Rk. The finite-dimensional distributions
of a probability measure P on (C, C) are defined as the measures πt1...tk

(P ).
Since these projections are continuous, the weak convergence of probability
measures on (C, C) implies the weak convergence of the corresponding finite-
dimensional distributions, but the converse fails (perhaps in the presence of
singular measures).

Definition B.70. A sequence (Xn) of random variables with values in a com-
mon measurable space (S,S) converges in distribution to the random variable
X (notation Xn

D→ X), if the probability laws Pn of the Xn converge weakly
to the probability law P of X:

Pn
W→ P.
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B.2 Prohorov’s Theorem

Prohorov’s theorem, gives, under suitable hypotheses, equivalence among rel-
ative compactness and tightness of families of probability measures.

Theorem B.71. (Prohorov). Let Π be a family of probability measures on
the probability space (S,S). Then

1. if Π is tight, then it is relatively compact;
2. suppose S is separable and complete; if Π is relatively compact, then it is

tight.

Proof: See, e.g., Billingsley (1968). �

B.3 Donsker’s Theorem

Weak Convergence and Tightness in C([0, 1])

Consider the space C := C([0, 1]) of continuous functions on [0, 1]. Weak con-
vergence of finite-dimensional distributions of a sequence of probability mea-
sures on C is not a sufficient condition for weak convergence of the sequence
itself in C. One can prove (see, e.g., Billingsley (1968)) that an additional con-
dition is needed, i.e., relative compactness of the sequence. Since C is a Polish
space, i.e., a separable and complete metric space, by Prohorov’s theorem we
have the following result.

Theorem B.72. Let (Pn) and P be probability measures on (C, C). If the
finite-dimensional distributions of Pn converge weakly to those of P , and if
{Pn} is tight, then Pn

W→ P .

To use this theorem we provide here some characterization of tightness.
Given a δ ∈]0, 1], a δ-continuity modulus of an element x of C is defined by

wx(δ) = w(x, δ) = sup
|s−t|<δ

|x(s)− x(t)|, 0 < δ ≤ 1.

Let (Pn) be a sequence of probability measures on (C, C).

Theorem B.73. The sequence (Pn) is tight if and only if these two conditions
hold:

1. For each positive η, there exists an a such that

Pn(x||x(0)| > a) ≤ η, n ≥ 1.

2. For each positive ε and η, there exists a δ, with 0 < δ < 1, and an integer
n0 such that

Pn(x|wx(δ) ≥ ε) ≤ η, n ≥ n0.



B.3 Donsker’s Theorem 305

The following theorem gives a sufficient condition for compactness.

Theorem B.74. If the following two conditions are satisfied:

1. For each positive η, there exists an a such that

Pn(x||x(0)| > a) ≤ η n ≥ 1.

2. For each positive ε and η, there exists a δ, with 0 < δ < 1, and an integer
n0 such that

1
δ
Pn

(
x

∣∣∣∣ sup
t≤s≤t+δ

|x(s)− x(t)| ≥ ε
)
≤ η, n ≥ n0,

for all t, then the sequence (Pn) is tight.

Let X be a mapping from (Ω,F , P ) into (C, C). For all ω ∈ Ω, X(ω) is an
element of C, i.e., a continuous function on [0, 1], whose value at t we denote
by X(t, ω). For fixed t, let X(t) denote the real function on Ω with value
X(t, ω) at ω. Then X(t) is the projection πtX.

Similarly, let (X(t1), X(t2), . . . , X(tk)) denote the mapping fromΩ into Rk

with values (X(t1, ω), X(t2, ω), . . . , X(tk, ω)) at ω. If each X(t) is a random
variable, X is said to be a random function. Suppose now that (Xn) is a
sequence of random functions. According to Theorem B.73, (Xn) is tight if
and only if the sequence (Xn(0)) is tight, and for any positive real numbers ε
and η there exists δ, (0 < δ < 1) and an integer n0 such that

P (wXn
(δ) ≥ ε) ≤ η, n ≥ n0.

This condition states that the random functions Xn do not oscillate too
much. Theorem B.74 can be restated in the same way: (Xn) is tight if (Xn(0))
is tight and if for any positive ε and η there exists a δ, 0 < δ < 1, and an
integer n0 such that

1
δ
P

(
sup

t≤s≤t+δ
|Xn(s)−Xn(t)| ≥ ε

)
≤ η (B.1)

for n ≥ n0 and 0 ≤ t ≤ 1. Let ξ1, ξ2, . . . be independent identically distributed
random variables on (Ω,F , P ) with mean 0 and variance σ2. We define the
sequence of partial sums Sn = ξ1 + · · · + ξn, with S0 = 0. Let us construct
the sequence of random variables Xn from the sequence (Sn) by means of
rescaling and linear interpolation, as follows:

Xn

(
i

n
, ω

)
=

1
σ
√
n
Si(ω) for

i

n
∈ [0, 1[; (B.2)

Xn(t)−Xn

(
i−1
n

)
Xn

(
i
n

)
−Xn

(
i−1
n

) − t− i−1
n

1
n

= 0 for t ∈
[
(i− 1)
n

,
i

n

]
. (B.3)
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With a little algebra, we obtain

Xn(t) = Xn

(
i− 1
n

)
+
t− i−1

n
1
n

(
Xn

(
i

n

)
−Xn

(
i− 1
n

))

=
t− i−1

n
1
n

Xn

(
i

n

)
+

(
i
n − t

1
n

)

=
1

σ
√
n
Si−1(ω)

i
n − t

1
n

+
t− (i−1)

n
1
n

1
σ
√
n
Si(ω)

=
1

σ
√
n
Si−1(ω)

(
i
n − t

1
n

+
t− i

n + 1
n

1
n

)
+

1
σ
√
n

t− (i−1)
n

1
n

ξi(ω)

=
1

σ
√
n
Si−1(ω) + n

(
t− i− 1

n

)
1

σ
√
n
ξi(ω).

Since i− 1 = [nt], if t ∈ [ (i−1)
n , i

n ], we may rewrite equation (B.3) as follows:

Xn(t, ω) =
1

σ
√
n
S[nt](ω) + (nt− [nt])

1
σ
√
n
ξ[nt]+1(ω). (B.4)

For any fixed ω,Xn(., ω) is a piecewise linear function whose pieces’ amplitude
decreases as n increases. Since the ξi and hence the Si are random variables
it follows by (B.4) that Xn(t) is a random variable for each t. Therefore, the
Xn are random functions.

The following theorem provides a sufficient condition for (Xn) to be a tight
sequence.

Theorem B.75. Suppose (Xn) is defined by (B.4). The sequence (Xn) is tight
if for each positive ε there exists a λ, with λ > 1, and an integer n0 such that,
if n ≥ n0, then

P

(
max
i≤n

|Sk+i − Sk| ≥ λσ
√
n

)
≤ ε

λ2
(B.5)

holds for all k.

Let us denote by PW the probability measure of the Wiener process as
defined in Definition 2.134 and whose existence is a consequence of Theorem
2.54. We will refer here to its restriction to t ∈ [0, 1], so that its trajectories
are almost surely elements of C([0, 1]).

Lemma B.76. Let ξ1, . . . , ξm be independent random variables with mean 0
and finite variance σ2

i ; put Si = ξ1 + · · ·+ ξi and s2i = σ2
1 + · · ·+ σ2

i . Then

P

(
max
i≤m

|Si| ≥ λsm
)
≤ 2P

(
|Sm| ≥ (λ−

√
2)sm

)
. (B.6)
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Theorem B.77. (Donsker). Let ξ1, ξ2, . . . , ξn be independent identically dis-
tributed random variables defined on (Ω,F , P ) with mean 0 and finite, positive
variance σ2:

E[ξn] = 0, E[ξ2n] = σ2.

Let Sn = ξ1 + ξ2 + · · ·+ ξn. Then the random functions

Xn(t, ω) =
1

σ
√
n
S[nt](ω) + (nt− [nt])

1
σ
√
n
ξ[nt]+1(ω)

satisfy Xn
D→W .

Proof: We first show that the finite-dimensional distributions of {Xn} converge
to those of W . Consider first a single time point s; we need to prove that

Xn(s) W→Ws.

Since ∣∣∣∣Xn(s)− 1
σ
√
n
S[ns]

∣∣∣∣ = (ns− [ns])
∣∣∣∣ 1
σ
√
n
ξ[ns+1]

∣∣∣∣
and since, by Chebyshev’s inequality,

P

(∣∣∣∣ 1
σ
√
n
ξ[ns]+1

∣∣∣∣ ≥ 1
)
≤
E

[∣∣∣ 1
σ
√

n
ξ[ns]+1

∣∣∣2]
ε2

=
1

σnε2
E
[
ξ2[ns]+1

]
=

1
σnε

σ2

=
σ

nε
→ 0, n→∞,

we obtain ∣∣∣∣Xn(s)− 1
σ
√
n
S[ns]

∣∣∣∣ P→ 0. (B.7)

Since limn→∞
[ns]
ns = 1, by the Lindeberg Theorem 1.92

1
σ
√
ns

[ns]∑
k=1

ξk
D→ N(0, 1),

so that
1

σ
√
n
S[ns]

D→Ws.

Therefore, by Theorem B.66, Xn(s) D→ Ws. Consider now two time points s
and t with s < t. We must prove

(Xn(s), Xn(t)) D→ (Ws,Wt).
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Since ∣∣∣∣Xn(t)− 1
σ
√
n
S[nt]

∣∣∣∣ P→ 0 and
∣∣∣∣Xn(s)− 1

σ
√
n
S[ns]

∣∣∣∣ P→ 0

by Chebyshev’s inequality, so that∥∥∥∥(Xn(s), Xn(t))−
(

1
σ
√
n
S[ns],

1
σ
√
n
S[nt]

)∥∥∥∥
R2

P→ 0,

and by Theorem B.66, it is sufficient to prove that

1
σ
√
n

(
S[ns], S[nt]

) D→ (Ws,Wt).

By Corollary B.68 of Theorem B.67 this is equivalent to proving

1
σ
√
n

(
S[ns], S[nt] − S[ns]

) D→ (Ws,Wt −Ws).

For independence of the random variables ξi, i = 1, 2, . . . , n, the random vari-
ables S[ns] and S[nt] − S[ns] are independent, so that

lim
n→∞E

[
e

iu
σ
√

n

�[ns]
j=1 ξj+

iv
σ
√

n

�[nt]
j=[ns]+1 ξj

]
= lim

n→∞E
[
e

iu
σ
√

n

�[ns]
j=1 ξj

]
· lim

n→∞E
[
e

iv
σ
√

n

�[nt]
j=[ns]+1 ξj

]
. (B.8)

Since limn→∞
[ns]
ns = 1, by the Lindeberg Theorem 1.92

1
σ
√
n
S[ns]

D→ N(0, s)

and for the same reason

1
σ
√
n

(S[nt] − S[ns])
D→ N(0, t− s),

so that
lim

n→∞E
[
e

iu
σ
√

n
S[ns]
]

= e−
u2s
2

and
lim

n→∞E
[
e

iv
σ
√

n
S[nt]−S[ns]

]
= e−

u2s
2 .

Substitution of these two last equations into (B.8) gives

1
σ
√
n

(
S[ns], S[nt] − S[ns]

) D→ (Ws,Wt −Ws),

and consequently
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(Xn(s), Xn(t)) D→ (Ws,Wt).

A set of three or more time points can be treated in the same way, and hence
the finite-dimensional distributions converge properly. Applying Lemma B.76
to the random variables ξ1, ξ2, . . . , ξn, we have

P

(
max
i≤n

|Si| ≥ λ
√
nσ

)
≤ 2P

(
|Sn| ≥ (λ−

√
2)
√
nσ
)
.

For λ
2 >

√
2 we have

P

(
max
i≤n

|Si| ≥ λ
√
nσ

)
≤ 2P

(
|Sn| ≥

λ

2
√
nσ

)
.

By the Central Limit Theorem,

P

(
|Sn| ≥

1
2
λσ
√
n

)
→ P

(
|N | ≥ 1

2
λ

)
<

8
λ3
E
[
|N |3

]
,

where the last inequality follows by Chebyshev’s and N ∼ N(0, 1). Therefore,
if ε is positive, there exists a λ such that

lim sup
n→∞

P

(
max
i≤n

|Si| ≥ λσ
√
n

)
<

ε

λ2

and then, by Theorem B.75, the family of the distribution functions of Xn is
tight. Since C is separable and complete, by Prohorov’s theorem this family
is relatively compact and then Xn

D→ X. �

An Application of Donsker’s Theorem

Donsker’s theorem has the following qualitative interpretation: Xn
D→W im-

plies that, if τ is small, then a particle subject to independent displacements
ξ1, ξ2, . . . at successive times τ1, τ2, . . . appears to follow approximately a Brow-
nian motion.

More important than this qualitative interpretation is the use of Donsker’s
theorem to prove limit theorems for various functions of the partial sums Sn.
By using Donsker’s theorem it is possible to use the relation Xn

D→ W to
derive the limiting distribution of maxi≤n Si.

Since h(x) = supt x(t) is a continuous function on C, Xn
D→ W implies,

by Corollary B.68, that

sup
0≤t≤1

Xn(t) D→ sup
0≤t≤1

Wt.

The obvious relation
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sup
0≤t≤1

Xn(t) = max
i≤n

1
σ
√
n
Si

implies
1

σ
√
n

max
i≤n

Si
D→ sup

0≤t≤1
Wt. (B.9)

Thus, under the hypotheses of Donsker’s theorem, if we knew the distribution
of suptWt we would have the limiting distribution of maxi≤n Si. The technique
we shall use to obtain the distribution of suptWt is to compute the limit
distribution of maxi≤n Si in a simple special case and then using h(Xn) D→
h(W ), where h is continuous on C or continuous except at points forming a
set of Wiener measure 0, we obtain the distribution of suptWt in the general
case.

Suppose that S0, S1, . . . are the random variables for a symmetric random
walk starting from the origin; this is equivalent to supposing that ξn are
independent and satisfy

P (ξn = 1) = P (ξn = −1) =
1
2
. (B.10)

Let us show that if a is a nonnegative integer, then

P

(
max

0≤i≤n
Si ≥ a

)
= 2P (Sn > a) + P (Sn = a). (B.11)

If a = 0 the previous relation is obvious; in fact, since S0 = 0,

P

(
max

0≤i≤n
Si ≥ 0

)
= 1

and obviously, by symmetry of Sn

2P (Sn > 0) + P (Sn = 0) = P (Sn > 0) + P (Sn < 0) + P (Sn = 0) = 1.

Suppose now that a > 0 and put Mi = max0≤j≤i Sj . Since

{Sn = a} ⊂ {Mn ≥ a}

and
{Sn > a} ⊂ {Mn ≥ a},

we have

P (Mn ≥ a)− P (Sn = a) = P (Mn ≥ a, Sn < a) + P (Mn ≥ a, Sn > a)

and
P (Mn ≥ a, Sn > a) = P (Sn > a).

Hence we have to show that
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P (Mn ≥ a, Sn < a) = P (Mn ≥ a, Sn > a). (B.12)

Because of (B.10), all 2n possible paths (S1, S2, . . . , Sn) have the same proba-
bility 2−n. Therefore, (B.12) will follow, if we show that the number of paths
contributing to the left-hand event is the same as the number of paths con-
tributing to the right-hand event. To show this it suffices to find a one-to-one
correspondence between the paths contributing to the right-hand event and
the paths contributing to the left-hand event.

Given a path (S1, S2, . . . , Sn) contributing to the left-hand event in (B.12),
match it with the path obtained by reflecting through a all the partial sums
after the first one that achieves the height a. Since the correspondence is one-
to-one, (B.12) follows. This argument is an example of the reflection principle.
See also Lemma 2.144.

Let α be an arbitrary nonnegative number, and let an = −[−αn 1
2 ]. By (B.12)

we have

P

(
max
i≤n

1√
n
Si ≥ an

)
= 2P (Sn > an) + P (Sn = an).

Since Si can assume only integer values and since an is the smallest integer
greater than or equal to αn

1
2 ,

P

(
max
i≤n

1√
n
Si ≥ α

)
= 2P (Sn < an) + P (Sn = an). (B.13)

By the central limit theorem

P (Sn ≥ an)→ P (N ≥ α),

where N ∼ N(0, 1) and σ2 = 1 by (B.10).
Since in the symmetric binomial distribution Sn → 0 almost certainly, the

term P (Sn = an) is negligible. Thus

P

(
max
i≤n

1√
n
Si ≥ α

)
→ 2P (N ≥ α) , α ≥ 0. (B.14)

By (B.14), (B.9), and (B.10), we conclude that

P

(
sup

0≤t≤1
Wt ≤ α

)
=

2√
2π

∫ α

0

e−
1
2 u2
du, α ≥ 0. (B.15)

If we drop the assumption (B.10) and suppose that the random variables
ξn are independent and identically distributed and satisfy the hypothesis of
Donsker’s theorem, then (B.9) holds and from (B.15) we obtain

P

(
1

σ
√
n

max
i≤n

Si ≤ α
)
→ 2√

2π

∫ α

0

e−
1
2 u2
du, α ≥ 0. (B.16)
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Thus we have derived the limiting distribution of maxi≤n Si by Lindeberg’s
theorem. Therefore, if the ξn are independent and identically distributed with
E[ξn] = 0 and E[ξ2n] = σ2, then the limit distribution of h(Xn) does not
depend on any further properties of the ξn. For this reason, Donsker’s theorem
is often called an invariance principle.



C

Maximum Principles of Elliptic and Parabolic
Operators

The maximum principle is a generalization of the fact that if a function f :
[a, b] → R, endowed with a first and second derivative, has f ′′ > 0 (f ′′ < 0)
in [a, b], then it attains its maximum (minimum) at the limits of the interval
it is defined on.

In fact, if a function, as the solution of a certain differential equation,
attains its maximum on the boundary of the domain Ω on which it is defined,
then it is said to underlie a maximum principle. The latter is a remarkable
instrument for the study of partial differential equations (e.g., uniqueness of
solutions, comparison of solutions, etc.).

C.1 Maximum Principles of Elliptic Equations

Let Ω ⊂ R be open bounded and let a, b, c, be real-valued functions defined
on Ω. We consider the partial differential operator

L[u] =
1
2
a(x)uxx + b(x)ux + c(x)u. (C.1)

L is said to be elliptic in a point x0 ∈ Ω if ax0 > 0. If for all x ∈ Ω : a(x) > 0,
then L is said to be uniformly elliptic.

Lemma C.1. For a(x) > 0, c(x) ≤ 0, for all x ∈ Ω, if

∃max
x∈Ω

u(x) = u(x0) > 0, x0 ∈ Ω,

and u ∈ C2(Ω). Then L[u](x0) ≤ 0.

Proof:

L[u](x0) =
1
2
a(x0)uxx(x0) + b(x0)ux(x0) + c(x0)u(x0),

where c(x0)u(x0) ≤ 0, b(x0)ux(x0) = 0 and a(x0)uxx(x0) ≤ 0 with x0 being
the maximum point of u. �
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Theorem C.2. Let a(x) > 0, c(x) ≤ 0 for all x ∈ Ω and there exists a λ > 0
such that 1

2λ
2a(x) + λb(x) > 0 for all x ∈ Ω. If u ∈ C2(Ω)∩C0(Ω̄), L[u] ≥ 0

in Ω and if maxΩ̄ u(x) > 0, then supΩ u(x) ≤ max∂Ω u(x), where ∂Ω is the
boundary of Ω.

Proof: See, e.g., Friedman (1963). �

Corollary C.3. Under the assumptions of the preceding theorem, if u ∈
C2(Ω)∩C0(Ω̄), L[u] ≤ 0 in Ω, and if minΩ̄ u(x) < 0, then infΩ u ≥ min∂Ω u.

Proof: See, e.g., Friedman (1963). �

Theorem C.4. (Strong maximum principle). Let L be a uniformly elliptic
operator (a(x) > 0 in Ω) with bounded coefficients a, b, c on compact sets of
Ω and let c(x) ≤ 0 in Ω. If u ∈ C2(Ω), L[u] ≥ 0 (L[u] ≤ 0) in Ω, and if
u �= constant, then u cannot attain a positive maximum (negative minimum)
in Ω.

Proof: See, e.g., Friedman (1963). �

Remark C.5. The boundedness of the coefficients a, b, c is essential, as the
following example demonstrates:

uxx + b(x)ux = 0, (C.2)

where

b(x) =
{
− 3

x if x �= 0,
0 if x = 0.

It is easily verified that u = 1 − x4 is the solution of (C.2), and moreover
max[−1,1] u(x) = u(0) = 1. In fact, b is not bounded in compact neighborhoods
of zero.

The First Boundary Value or Dirichlet Problem

The Dirichlet problem consists of finding a solution u of the system{
L[u](x) = f(x) in Ω,
u(x) = φ(x) in ∂Ω. (C.3)

Theorem C.6. Let a(x) > 0, c(x) ≤ 0; a, b, c, f uniformly Hölder continuous
with exponent α in Ω̄. Then there exists a unique u ∈ C2(Ω)∩C0(Ω̄), solution
of the Dirichlet problem.

Proof: See, e.g., Friedman (1963) or (1964). �
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C.2 Maximum Principles of Parabolic Equations

Let Q ⊂ R2 be open bounded and a, b, c be real-valued functions defined on
Q. We consider the partial differential operator

M [u] = a(x, t)uxx + b(x, t)ux + c(x, t)u− ut. (C.4)

M is of parabolic type in (x0, t0) ∈ Q if a(x0, t0) > 0. If a(x, t) > 0 in Q, then
M is said to be uniformly parabolic.

We suppose Q ⊂ R×]0, T [ and define

DT = {(x, T )|(x, t− δ) ∈ Q,∀0 < δ < δ0, δ0 independent of x},
Q0 = Q ∪DT ,

∂0Q = ∂Q \DT .

∂0Q is a closed set of R2 and is called a parabolic boundary.

Example C.7. Q = Ω×]t0, T [.

Theorem C.8. Let a(x, t) ≥ 0 and c(x, t) ≤ 0 in Q. If u ∈ C0(Q̄), ux, uxx, ut

belong to C0(Q0) and if M [u] ≥ 0 in Q0 and maxQ̄ u > 0, then supQ0
u(x, t) ≤

max∂0Q u(x, t).

Proof: See, e.g., Friedman (1963) or (1964). �
Definition C.9. For every P0 = (x0, t0) ∈ Q, let S(P0) = {P ∈ Q| a simple
continuous curve γP0 exists that is contained within Q and does not decrease
along t passing from P to P0 connecting P to P0} and let C(P0) be the
connecting component at t = t0 of Q ∩ {t = t0} that contains P0. Clearly
C(P0) ⊂ S(P0).

Theorem C.10. (Strong maximum principle). Let M be uniformly parabolic
in Q with bounded coefficients and let c(x, t) ≤ 0. If u, ux, uxx, ut are continu-
ous in Q and M [u] ≥ 0 in Q and if u attains a positive maximum in the point
P0 = (x0, t0) ∈ Q, then

u(P ) = u(P0) ∀P ∈ S(P0).

Proof: See, e.g., Friedman (1963) or (1964). �

The First Boundary Value Problem

Let Q be a domain bounded in R, Q ⊂ R×]0, T [ and define

B̃T = Q̄ ∩ {t = T},
B̃ = Q̃ ∩ {t = 0},

BT = B̃T , B = B̃,

S0 = {(x, t) ∈ ∂Q, 0 < t ≤ T},
S = S0 \BT ,

∂0Q = B ∪ S parabolic boundary of Q.



316 C Maximum Principles of Elliptic and Parabolic Operators

The first boundary value problem consists of finding a solution u of the system⎧⎨⎩
M [u](x, t) = f(x, t) in Q ∪BT ,
u(x, 0) = φ(x) in B (initial condition),
u(x, t) = g(x, t) in S (boundary condition),,

(C.5)

where f, φ, g are appropriately chosen functions. If g = φ in B̄ ∩ S̄, then the
solution u is always understood to be continuous in Q̄.

Definition C.11. ωR(P ) is a barrier function in R ∈ B̄ ∪ S if

1. ωR(P ) is continuous in Q̄,
2. ωR(P ) > 0 for P ∈ Q̄, P �= R,ωR(R) = 0,
3. M [ωR] ≤ −1 in Q ∪BT .

Remark C.12. If Q = Ω × (0, T ), then there always exists a barrier function
in any point P0 = (x0, t0) of S (0 < t0 ≤ T ) that is given by

ωP0 = Keγt

(
1
Rp

0

− 1
R

)
,

where K and p are positive constants, γ ≥ c(x, t), R0 = |x − x0|, R = (|x −
x̄|2 + (t− t0)2)

1
2 with x̄ > x0.

Theorem C.13. Let M be uniformly parabolic in Q; the functions a, b, c, and
f uniformly Hölder continuous in Q̄; φ continuous in B̄; and g continuous in
S̄ with φ = g in B̄ ∩ S̄. If, for all R ∈ S, there exists ωR a barrier function
in R, then there exists a unique u, solution of (C.5), with ux, uxx, ut Hölder
continuous.

Proof: See, e.g., Friedman (1963) or (1964). �

The Cauchy Problem

Let L[u] = auxx + bux + cu be an elliptic operator in R for all t ∈ [0, T ] and
let f : R × [0, T ] → R, φ : R → R be two appropriately assigned functions.
The Cauchy problem consists of finding a solution u of{

M [u] ≡ L[u]− ut = f(x, t) in R×]0, T ],
u(x, 0) = φ(x) in R.

(C.6)

The solution is understood to be continuous in R× [0, T ], with the derivatives
ux, uxx, ut continuous in R×]0, T ].

Theorem C.14. Let

0 ≤ a(x, t) ≤ C, |b(x, t)| ≤ C(|x|+ 1), c(x, t) ≤ C(|x|2 + 1), (C.7)

where C is a constant. If M [u] ≤ 0 in R×]0, T ], u(x, t) ≥ −B exp{β|x|2}
in R × [0, T ] (B, β positive constants), u(x, 0) ≥ 0 in R, then u(x, t) ≥ 0 in
R× [0, T ].
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Proof: See, e.g., Friedman (1963) or (1964). �

Corollary C.15. If a(x, t) ≥ 0, satisfying (C.7), then there exists at least one
solution u of the Cauchy problem with

|u(x, t)| ≤ Beβ|x|2 ,

where b, β are positive constants.

Proof: See, e.g., Friedman (1963) or (1964). �

Theorem C.16. Let

a(x, t) ≥ 0, |a(x, t)| ≤ C(|x|2 + 1), |b(x, t)| ≤ C(|x|+ 1), c ≤ C, (C.8)

where C is a constant. If M [u] ≤ 0 in R×]0, T ], u(x, t) ≥ −N(|x|q + 1) in
R × [0, T ] (N, q positive constants), u(x, 0) ≥ 0 in R, then u(x, t) ≥ 0 in
R× [0, T ].

Proof: See, e.g., Friedman (1964). �

Corollary C.17. If a(x, t) ≥ 0, satisfying (C.8), then there exists at least one
solution u of the Cauchy problem with

|u(x, t)| ≤ N(1 + |x|q),

where N, q are positive constants.

Proof: See, e.g., Friedman (1964). �

Definition C.18. A fundamental solution of the parabolic operator L− ∂
∂t in

R × [0, T ] is a function Γ (x, t; ξ, r), defined, for all (x, t) ∈ R × [0, T ] and all
(ξ, t) ∈ R × [0, T ], t > r, such that, for all f with compact support14, the
function

u(x, t) =
∫

R

Γ (x, t; ξ, r)f(ξ)dξ

satisfies

1. L[u]− ut = 0 if x ∈ R, r < t ≤ T ,
2. u(x, t)→ f(x) if t ↓ r.

We impose the following conditions:
(A1) there exists a μ > 0 such that a(x, t) ≥ μ for all (x, t) ∈ R× [0, T ];
(A2) the coefficients of L are continuous functions, bounded in R × [0, T ],
and the coefficient a(x, t) is continuous in t uniformly with respect to (x, t) ∈
R× [0, T ];
(A3) the coefficients of L are Hölder continuous functions (with exponent α) in
x, uniformly with respect to the variables (x, t) in compacts of R× [0, T ], and
the coefficient a(x, t) is Hölder continuous (with exponent α) in x, uniformly
with respect to (x, t) ∈ R× [0, T ].
14 The support of a function f : �→ � is the set {x ∈ �|f(x) �= 0}.
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Theorem C.19. If (A1), (A2), and (A3) are satisfied, then there exists
Γ (x, t; ξ, r), a fundamental solution of L− ∂

∂t , with

|Dm
x Γ (x, t; ξ, r)| ≤ c1(t− r)−

m+1
2 exp

{
−c2

(x− ξ)2
t− r

}
, m = 0, 1,

where c1 and c2 are positive constants. The functions Dm
x Γ , m = 0, 1, 2,

and DtΓ are continuous in (x, t; ξ, r) ∈ R × [0, T ] × R × [0, T ], t > r, and
L[Γ ]−Γt = 0, as function of (x, t). Finally, for all f bounded continuous, we
have ∫

R

Γ (x, t; ξ, r)f(x)dx→ f(ξ) for t ↓ r.

Proof: See, e.g., Friedman (1963). �

Theorem C.20. Let (A1), (A2), (A3) be satisfied, f(x, t) be a continuous
function in R× [0, T ], Hölder continuous in x, uniformly with respect to (x, t)
in compacts of R× [0, T ], and let φ be a continuous function in R. Moreover,
we suppose that

|f(x, t)| ≤ Aea1|x|2 in R× [0, T ],

|φ(x, t)| ≤ Aea1|x|2 in R,

where A, a1 are positive constants. There exists a solution of the Cauchy prob-
lem in 0 ≤ t ≤ T ∗, where T ∗ = min{T, c̄

a1
} and c̄ is a constant, that only

depends on the coefficients of L and

|u(x, t)| ≤ A′ea
′
1|x|2 in R× [0, T ∗],

with positive constants A′, a′1. The solution is given by

u(x, t) =
∫

R

Γ (x, t; ξ, 0)φ(ξ)dξ −
∫ t

0

∫
R

Γ (x, t; ξ, r)f(ξ, r)dξdr.

The operator M∗, as a supplement to M = L− ∂
∂t , is given by

M∗[v] = L∗[v] +
∂v

∂t
,

L∗[v] =
1
2
avxx + b∗vx + c∗v,

where b∗ = −b+ ax, c∗ = c− bx + 1
2axx, assuming that ax, axx, at exist and

are bounded.

Remark C.21.

M∗[v] =
1
2
avxx + axvx − bvx +

1
2
axxv − bxv + cv + vt

=
1
2
(av)xx − (bv)x + cv + vt,
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from which follows Green’s formula:

vM [u]− uM∗[v]

= v

(
1
2
auxx + bux + cu− ut

)
− u
(

1
2
(av)xx − (bv)x + cv + vt

)
=

1
2
(va)uxx −

1
2
(av)xx + vbux − u(bv)x + vcu− vcu− vut − uvt

=
1
2
((va)ux − (ua)vx − vax)x + (vbu)x − (uv)t.

Therefore, if u and v have compact support in a domain G, we have that∫ ∫
G

(vMu− uM∗v)dxdt = 0.

Definition C.22. A fundamental solution of the operator L∗+ ∂
∂t in R×[0, T ]

is a function Γ ∗(x, t; ξ, r), defined, for all (x, t) ∈ R × [0, T ] and all (ξ, t) ∈
R × [0, T ], t > r, such that, for all g continuous with compact support, the
function

v(x, t) =
∫

R

Γ ∗(x, t; ξ, r)g(ξ)dξ

satisfies

1. L∗[v] + vt = 0 if x ∈ R, 0 ≤ t ≤ r;
2. v(x, t)→ g(x) if t ↑ r.

We consider the following additional condition.
(A4) The functions a, ax, axx, b, bx, c are bounded and the coefficients of L∗

satisfy the conditions (A2) and (A3).

Theorem C.23. If (A1), (A1), (A3), and (A4) are satisfied, then there exists
a fundamental solution Γ ∗(x, t; ξ, r) of L∗ + ∂

∂t such that

Γ (x, t; ξ, r) = Γ ∗(ξ, r;x, t), t > r.

Proof: See, e.g., Friedman (1963). �
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Stability of Ordinary Differential Equations

We consider the system of ordinary differential equations{
d
dtu(t) = f(t,u(t)), t > t0,
u(t0) = c

(D.1)

in Rd and we suppose that, for all c ∈ Rd, there exists a unique general
solution u(t, t0, c) in [t0,+∞[. We further suppose that f is continuous in
[t0,+∞[×Rd and that 0 is the equilibrium solution of f . Thus f(t,0) = 0 for
all t ≥ t0.

Definition D.1. The equilibrium solution 0 is stable if, for all ε > 0:

∃δ = δ(ε, t0) > 0 such that ∀c ∈ Rd, |c| < δ ⇒ sup
t0≤t≤+∞

|u(t, t0, c)| < ε.

(D.2)
If the condition (D.2) is not verified, then the equilibrium solution is unstable.
The position of the equilibrium is said to be asymptotically stable if it is stable
and attractive, namely, if along with (D.2), it can also be verified that

lim
t→+∞u(t, t0, c) = 0 ∀c ∈ Rd, |c| < δ (chosen suitably). (D.3)

Remark D.2. There may be attraction without stability.

Remark D.3. If x∗ ∈ Rd is the equilibrium solution of f , then the position
y(t) = u(t)− x∗ tends towards 0.

Definition D.4. We consider the ball Bh ≡ B̄h(0) = {x ∈ Rd||x| ≤ h}, h >
0, which contains the origin. The continuous function v : Bh → R+ is positive
definite (in the Lyapunov sense) if{

v(0) = 0,
v(x) > 0 ∀x ∈ Bh \ {0}.

(D.4)

The continuous function v : [t0,+∞[×Bh → R+ is positive definite if
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v(t,0) = 0 ∀t ∈ [t0,+∞[,
∃ω : Bh → R+ positive definite such that v(t,x) ≥ ω(x) ∀t ∈ [t0,+∞[.

(D.5)
v is negative definite if −v is positive definite.

Now let v : [t0,+∞[×Bh → R+ be a positive definite function endowed
with continuous first partial derivatives with respect to t and xi, i = 1, . . . , d.
We consider the function

V (t) = v(t,u(t, t0, c)) : [t0,+∞[→ R+,

where u(t, t0, c) is the solution of (D.1). V is differentiable with respect to t
and we have

d

dt
V (t) =

∂v

∂t
+

d∑
i=1

∂v

∂xi

dui

dt
.

But dui

dt = fi(t,u(t, t0, c)), therefore

v̇ ≡ d

dt
V (t) =

∂v

∂t
+

d∑
i=1

∂v

∂xi
fi(t,u(t, t0, c)),

and this is the derivative of v with respect to time “along the trajectory” of
the system. If d

dtV (t) ≤ 0 for all t ∈ (t0,+∞[, then u(t, t0, c) does not increase
the value v, which measures by how much u moves away from 0. Through this
observation, the required stability of the Lyapunov criterion for the stability
of 0 has been formulated.

Definition D.5. Let v : [t0,+∞[×Bh → R+ be a positive definite function.
v is said to be a Lyapunov function for the system (D.1) relative to the equi-
librium position 0, if

1. v is endowed with first partial derivatives with respect to t and xi, i =
1, . . . , d;

2. for all t ∈]t0,+∞[: v̇(t) ≤ 0 for all c ∈ Bh.

Theorem D.6. (Lyapunov).

1. If there exists v(t,x) a Lyapunov function for the system (D.1) relative to
the equilibrium position 0, then 0 is stable;

2. if moreover the Lyapunov function v(t,x) is such that, for all t ∈ [t0,+∞[:
v(t,x) ≤ ω(x) with u being a positive definite function and v̇ negative
definite along the trajectory, then 0 is asymptotically stable.

Example D.7. We consider the autonomous linear system{
d
dtu(t) = Au(t), t > t0,
u(t0) = c,
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where A is a matrix that does not depend on time. A matrix P is said to be
positive definite if, for all x ∈ Rd,x �= 0 : x′Px > 0. Considering the function
v(x) = x′Px, we have

v̇ =
d

dt
v(u(t)) =

d∑
i=1

∂v

∂xi
(Au(t))i = u′(t)PAu(t) + u′(t)A′Pu(t).

Therefore, if P is such that PA+A′P = −Q, with Q being positive definite,
then v̇ = −u′Qu < 0 and, by 2 of Lyapunov’s theorem, 0 is asymptotically
stable.
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Nomenclature

“increasing” is used with the same meaning as “nondecreas-
ing”; “decreasing” is used with the same meaning as “non-
increasing.” In the strict cases “strictly increasing/strictly
decreasing” is used.

(Ω,F , P ) probability space with Ω a set, F a σ-algebra of parts of Ω,
and P a probability measure on F

(E,BE) measurable space with E a set and BE a σ-algebra of parts
of E

:= equal by definition
< f, g > scalar product of two elements f and g in an Hilbert space
< M,N > predictable covariation of the martingales M and N
< M >, < M,M > predictable variation of the martingale M
[a, b[ semiopen interval closed at extreme a and open at extreme

b
[a, b] closed interval of extremes a and b
R̄ extended set of real numbers; i.e., R ∪ {−∞,+∞}
Ā closure of a set A depending upon the context
C̄ the complement of the set C depending upon the context
Δ Laplace operator
δx Dirac delta-function localized at x
δij Kronecker delta; i.e., = 1 for i = j, = 0 for i �= j
∅ the empty set
εx Dirac delta-measure localized at x
≡ coincide
exp{x} exponential function ex∫ ∗ integral of a nonnegative measurable function, finite or not
lims↓t limit for s decreasing while tending to t
lims↑t limit for s increasing while tending to t
C the complex plane
N the set of natural nonnegative integers
N∗ the set of natural (strictly) positive integers



332 Nomenclature

Q the set of rational numbers
Rn n-dimensional Euclidean space
R+ the set of positive (nonnegative) real numbers
R∗

+ the set of (strictly) positive real numbers
Z the set of all integers
A infinitesimal generator of a semigroup
BRn σ-algebra of Borel sets on Rn

BE σ-algebra of Borel sets generated by the topology of E
DA domain of definition of an operator A
Ft or FX

t history of a process (Xt)t∈R+ up to time t; i.e., the σ-algebra
generated by {Xs, s ≤ t}

Ft+

⋂
s>t Ft

Ft− σ-algebra generated by σ(Xs, s < t)
FX σ-algebra generated by the random variable X
L(X) probability law of X
Lp(P ) set of integrable functions with respect to the measure P
M(F , R̄+) set of all F-measurable functions with values in R̄+

M(E) set of all measures on E
P(Ω) the set of all parts of a set Ω

P−→
n

or P -lim convergence in probability
W−→
n

weak convergence
a.s.−→
n

almost sure convergence
d−→
n

convergence in distribution
P−→
n

convergence in probability
∇ gradient
Ω the underlying sample space
ω an element of the underlying sample space
⊗ product of σ-algebras or product of measures
∂A boundary of a set A
Φ cumulative distribution function of a standard normal prob-

ability law
sgn{x} sign function; 1, if x > 0; 0, if x = 0; −1, if x < 0
σ(R) σ-algebra generated by the family of events R
� end of a proof
|a| absolute value of a number a; or modulus of a complex num-

ber a
|A| or �(A) cardinal number (number of elements) of a finite set A
||x|| the norm of a point x
]a, b[ open interval of extremes a, b
]a, b] semiopen interval open at extreme a and closed at extreme

b
a ∨ b maximum of two numbers
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A′ transpose of a matrix A
A \B the set of elements of A that do not belong to B
a ∧ b minimum of two numbers
B(x, r) or Br(x) the open ball centered at x and having radius r
C(A) set of continuous functions from A to R

C(A,B) set of continuous functions from A to B
Ck(A) set of functions from A to R with continuous derivatives up

to order k
Ck+α(A) set of functions from A to R whose k-th derivatives are Lip-

schitz continuous with exponent α
C0(A) set continuous functions on A with compact support
Cb(A) or BC(A) set of bounded continuous functions on A
Cov[X,Y ] the covariance of two random variables X and Y
E[·] expected value with respect to an underlying probability law

clearly identifiable from the context
E[Y |F ] conditional expectation of a random variable Y with respect

to the σ-algebra F
EP [·] expected value with respect to the probability law P
Ex[·] expected value conditional upon a given initial state x in a

stochastic process
f ∗ g convolution of functions f and g
f ◦X or f(X) a function f composed with a function X
f |A the restriction of a function f to the set A
f−, f+ negative (positive) part of f ; i.e., f− = max{−f, 0} (f+ =

max{f, 0})
f−1(B) the preimage of the set B by the function f
FX cumulative distribution function of a random variable X
H •X stochastic Stieltjes integral of the process H with respect to

the stochastic process X
IA indicator function associated with a set A; i.e., IA(x) = 1,

if x ∈ A otherwise IA(x) = 0
Lp(P ) set of equivalence classes of a.e. equal integrable functions

with respect to the measure P
N(μ, σ2) normal (Gaussian) random variable with mean μ and vari-

ance σ2

O(Δ) of the same order as Δ
o(δ) of higher order with respect to δ
P -a.s. almost surely with respect to the measure P
P (A|B) conditional probability of an event A with respect to an

event B
P ∗Q convolution of measures P and Q
P ! Q the measure P is absolutely continuous with respect to the

measure Q
P ∼ Q the measure P is equivalent to the measure Q
PX probability law of a random variable X
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Px probability law conditional upon a given initial state x in a
stochastic process

V ar[X] the variance of a random variable X
Wt standard Brownian motion, Wiener process
X ∼ P the random variable X has probability law P
a.e. almost everywhere
a.s. almost surely



Index

absolutely continuous, 287, 294
absorbing state, 88
adapted, 63, 102
algebra, 283

σ-, 283
Borel, 13, 284
generated, 8, 284
product, 13, 51, 284
semi, 283, 284
smallest, 52, 284, 285
tail, 25

asset
riskless, 212
risky, 212

attractive, 321
autonomous, 179

ball, 297
closed, 297
open, 297

basis, 299
bicontinuous, 298
bijection, 298
binomial

distribution, 12
variable, 17, 23

Black–Scholes
equation, 218
formula, 219
model, 216

Borel
σ-algebra, 284
–Cantelli lemma, 25
algebra, 13

measurable, 284, 285, 290
boundary, 298
bounded, 298
Brownian bridge, 205
Brownian motion, 90

arithmetic, 171
geometric, 171
Lévy characterization, 182

càdlàg, 55
Cantor function, 10
Cauchy

–Schwarz inequality, 42
distribution, 11
problem, 190, 316
sequence, 300
variable, 17, 44

cemetery, 235
class, 6, 19, 29

D, 70
DL, 70
equivalence, 27

closed
ball, 297
set, 297

closure, 298
point, 298

compact, 300
locally, 301
relatively, 301, 302
set, 301

compacts, 148
compatible system, 53, 61
compensator, 71, 106
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complement, 298

complete, 300

composite

function, 30

projection, 52

conditional

density, 38

distribution, 36

expectation, 26

expectation, on σ-algebra, 32

probability, 4

probability, regular version, 28, 36, 37

conservative, 88

contingent claim, 218

continuous

absolutely, 287, 294

function, 285, 298

Hölder, 190

in probability, 55

left-, 55

random variable, 10

right-, 9, 55, 57, 292

uniformly, 298

convergence

almost sure, 43

dominated, 289

in distribution, 42

in mean, 41

in probability, 43

monotone, 289

pointwise, 43

uniform, 43

weak, 42

convex, 34

convolution, 23, 63, 262, 292

semigroup, 63

correlation, 18

countable, 55

additive, 287

base, 284

basis, 299

family, 11

partition, 7

set, 26

covariance, 18, 22

covariation, 72

covering, 299

cylinder, 14, 51

decomposable, 70
decomposition

Doob, 50
Doob–Meyer, 70
Lévy, 110

definite
neagative, 322
positive, 60

deflator, 215
delta

Dirac, 201
Kronecker, 143

dense, 55, 299
everywhere, 299

density, 54, 293
conditional, 38
Gaussian, 11
normal, 11
probability, 9
risk-neutral transition, 228
transition, 192
uniform, 11, 17

depolarization, 270
derivative, 218
diameter, 298
diffusion

coefficient, 84, 179
matrix, 159
operator, 192
process, 84, 179

Dirac
delta, 201
measure, 112

Dirichlet problem, 314
distance, 297

equivalent, 298
distribution

binomial, 12
Cauchy, 11
conditional, 36
cumulative, 9
discrete, 12
empirical, 254
exponential, 11
finite-dimensional, 303
function, 54, 292
Gamma, 11, 104
Gaussian, 60
initial, 75
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joint, 21, 36
marginal, 13, 21, 26
Poisson, 12
stable, 111
uniform, 12

Doléans exponential, 151
Doob

–Meyer decomposition, 70
decomposition, 50
inequality, 66

drift, 84, 179
change of, 182
vector, 159

dynamic system, 177
Dynkin’s formula, 195

elementary
event, 3
function, 28, 285, 288
random variable, 28

elliptic, 195
equation, 313
operator, 196
uniformly, 313

entropy, 45
equation

Black–Scholes, 218
Chapman–Kolmogorov, 74, 193
Fokker–Planck, 193
Kolmogorov, 158
Kolmogorov backward, 87
Kolmogorov forward, 193, 229

equiprobable, 3
equivalent, 185, 293

distance, 298
process, 54

essential
infimum, 25
supremum, 25

event, 3, 113
T -preceding, 58
complementary, 6
elementary, 3
independent, 5
mutually exclusive, 5
tail, 25

excited, 270
expectation, 15

conditional, 26

conditional on σ-algebra, 32
expected value, 15

Feynman–Kac formula, 190
filtration, 56, 63

generated, 56
natural, 56
right-continuous, 77

finite, 3
σ-, 286
additive, 287
base, 52
dimensional distribution, 303
horizon, 213
measure, 286, 290
product, 53
space, 3
stopping time, 58
uniformly, 290

formula
Black–Scholes, 219
Dynkin, 82, 195
Feynman–Kac, 190
Green, 319
Itô, 149
Kolmogorov, 196

forward
measure, 227

Fourier transform, 19
function

barrier, 316
Cantor, 10
characteristic, 19, 43, 92, 103
composite, 30
continuous, 285, 298
convex, 34
cumulative distribution, 9
distribution, 54, 292
elementary, 28, 285, 288
equivalence class of, 27
Gamma, 11
indicator, 285
Lyapunov, 197, 322
Markov transition, 74
matrix transition, 88
measurable, 284
moment generating, 48
partition, 9, 43
piecewise, 129
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random, 52
space, 52
test, 273

Gaussian
bivariate, 39
density, 11
distribution, 60
process, 60
variable, 17, 23

gradient
generalized, 262

Green’s formula, 319

Hölder
continuous, 190
inequality, 42

Hausdorff topological space, 298
heat operator, 192
history, 115
holding, 212
homeomorphic, 298
homeomorphism, 298
horizon

finite, 213
infinite, 213

independent
class, 6
classes, 19
event, 5
increments, 61
marking, 231
mutually, 6
variable, 22, 36

index
indistinguishable, 54
modifications, 54

indicator, 27
function, 285

indistinguishable, 54
induced

measure, 36, 290
probability, 59

inequality
Cauchy–Schwarz, 42
Chebyshev, 17
Doob, 66
Hölder, 42

Jensen, 34, 65
Markov, 17
Minkowski, 42

infinitely divisible, 45
infinitessimal generator, 76
inhibited, 270
initial reserve, 230
instantaneous state, 88
integrable

P -, 16
P(X,Y )-, 40
μ-, 289
square-, 16, 295
uniformly, 33, 69

integral
Itô, 127, 135
Lebesgue, 138, 289
Lebesgue–Stieltjes, 127
Riemann–Stieltjes, 128
stochastic Stieltjes, 296
Stratonovich, 138
upper, 288

intensity, 103
cumulative stochastic, 116
matrix, 88
multiplicative, 241
stochastic, 113

interior, 297
Itô

formula, 149
integral, 127, 135
isometry, 132, 173
representation theorem, 151

jumps
bounded, 107
fixed, 102

killing, 190
Kolmogorov

–Chapman equation, 74, 193
backward equation, 87, 188
continuity theorem, 94
equation, 158, 185
formula, 196
forward equation, 193, 229
zero-one law, 25

Lévy
–Khintchine formula, 110
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characterization of Brownian motion,
182

continuity theorem, 43
decomposition, 110
measure, 108
process, 106

Lagrangian, 254
Laplacian, 192
large deviations, 48
law

of iterated logarithms, 100
of large numbers, 99
tower, 32

Lebesgue
–Stieltjes integral, 127
–Stieltjes measure, 10, 292
dominated convergence theorem, 31,

289
integral, 138, 289
integration, 288
measure, 9, 293
Nikodym theorem, 294

lemma
Borel–Cantelli, 25
Fatou, 170, 288, 290
Gronwall, 161

limit, 300
McKean–Vlasov, 263
moderate, 264
projective, 53, 60

Lindeberg condition, 24
Lipschitz, 48, 190
local

volatility, 228
locally compact, 301
Lyapunov

criterion, 322
function, 197, 322
theorem, 322

mark, 114
market, 212

discount bond, 222
Markov

chain, 121
inequality, 17
process, 72
property, 176
property, strong, 78, 181

sequence, 73
stopping time, 58
transition function, 74

martingale, 63, 139
innovation, 112
local, 71
representation theorem, 150, 151
reversed, 234
sub-, 64
super-, 64

maximum principle, 313
measurable, 28, 56

(F − BT )-, 51
F-, 284, 289
Ft-, 63
Borel-, 284, 285, 290
function, 284
jointly, 56
mapping, 285
progressively, 56, 58
projection, 285
rectangle, 291
set, 284
space, 284, 285

measure, 286
bounded, 29
characterization of, 287
compatible system of, 53
Dirac, 112
empirical, 255
equivalent, 185, 293
finite, 286, 290
forward, 227
generalization of, 287
induced, 36, 290
jump, 159
Lévy, 108
Lebesgue, 9, 293
Lebesgue–Stieltjes, 10, 292
physical, 223
probability, 3, 27, 286
product, 290–292
space, 286

metric, 297
notion, 299
space, 297

modifications
progressively measurable, 57
separable, 56, 57
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moment
centered, 16
generating function, 48

nonexplosive, 102
norm, 75

Euclidean, 198
semi-, 42
sup, 81

normal
bivariate, 39
density, 11

Novikov condition, 184
numeraire, 215

open
ball, 297
set, 297

operator
diffusion, 192
elliptic, 196
expectation, 18
heat, 192
parabolic, 317

option, 218
American, 221
barrier, 220
binary, 219
Call, 218
digital, 219
European, 221
Put, 218
vanilla, 218

orthogonal, 72

parabolic
boundary, 315
differential equation, 190
equation, 315
operator, 317
uniformly, 315

partition, 7, 128
function, 9

path, 51, 56
space, 268

payoff, 218
point, 297

cluster, 300
of closure, 298

Poisson
compound process, 120, 232
compound variable, 45
distribution, 12
generalized process, 120
intensity, 12, 103
marked process, 117, 231
process, 103
variable, 17, 23

polynomial, 148
portfolio, 212
positive

definite, 322
precede, 58
precompact, 301
predictable, 57

covariation, 72
premiums, 231
probability, 3, 286

axioms, 4
conditional, 4
conditional, regular version, 28, 36,

37
density, 9
generating function, 103
induced, 59
joint, 13, 40, 59
law, 8, 59, 61
law of a process, 53
measure, 3, 27, 286
one-point transition, 86
product, 53
ruin, 231
space, 3, 51, 286
survival, 231
total law of, 7
transition, 74, 178

process
adapted, 63
affine, 125
canonical form, 59
claims surplus, 231
compound Poisson, 120, 232
counting, 102
Cox, 106
cumulative claims, 231
diffusion, 84, 179
equivalent, 54
Feller, 77
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Gaussian, 60
generalized Poisson, 120
holding, 212
homogeneous, 75, 179
Lévy, 106
marked point, 114, 231
marked Poisson, 117, 231
Markov, 72
Ornstein–Uhlenbeck, 171
piecewise deterministic, 235
point, 111
Poisson, 103
portfolio, 212
separable, 55
stable, 111
stochastic, 51
time-homogeneous, 63
Wiener, 90
with independent increments, 61

product
convolution, 292
measure, 290–292
scalar, 132, 154

projection, 13, 26, 285
canonical, 51
composite, 52
orthogonal, 35

projective system, 53
property

Beppo–Levi, 28, 34, 288
Feller, 76, 182
scaling, 111

Radon–Nikodym derivative, 184
random

function, 52
variable, 8
variables, family of, 51
vector, 13, 38, 60

rate
forward, 225
interest, 222
riskless, 216
short, 222
swap, 238
zero, 222

RCLL, 55
rectangle, 21, 54, 284

measurable, 291

reflection principle, 96, 311
regression, 39
ring, 52, 283

σ-, 283
semi-, 283

risk
insurance, 230
reserve, 231

riskless
account, 216
asset, 212
rate, 216

ruin
probability, 231
time of, 231

sample, 124
scaling property, 99, 111
self-similar, 125
semicircle, 21
semigroup, 75

contraction, 83
convolution, 63
property, 177
transition, 82

seperable, 299
sequence, 28, 31

Cauchy, 134, 300
Markovian, 73

set
closed, 297
compact, 301
countable, 26
empty, 3
negligeable, 55
open, 297
separating, 55, 94

singular, 60, 293
space

complete, 38
function, 52
Hilbert, 35, 132
mark, 114
measurable, 284, 285
measure, 286
metric, 38, 297
normed, 13
on which a probability measure can

be built, 284
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path, 268
phase, 51
Polish, 53, 61
probability, 3, 51, 286
product, 52
separable, 38
state, 51
topological, 284, 297
uniform, 3

stable, 321
asymptotically, 321
distribution, 111
law, 23, 46
process, 111
state, 88
un-, 321

standard deviation, 16
stationary

strictly, 118
weakly, 118

stochastic
differential, 146, 152
differential equation, 161
process, 51
stability, 199

stopping time, 58
subordinator, 123
support, 12, 317
swap rate, 238

Taylor’s formula, 85
term structure, 222
test

function, 273
theorem

law of iterated logarithms, 100
approximation of measurable

functions through elementary
functions, 285

Bayes, 7
central limit, 24
dominated convergence, 31, 289
dominated convergence of conditional

expectations, 32, 33
Donsker, 307
Doob–Meyer, 71
Fatou–Lebesgue, 290
first fundamental of asset pricing, 213
Fubini, 40, 56, 62, 291

fundmental theorem of calculus, 295
Girsanov, 184
Itô representation theorem, 151
Jirina, 38
Kolmogorov zero-one law, 25
Kolmogorov’s continuity, 94
Kolmogorov–Bochner, 53, 61
Lévy’s continuity, 43
Lagrange, 189
law of iterated logarithms, 48
Lebesgue–Nikodym, 294
Lindeberg, 24
Lyapunov, 322
martingale representation, 117, 150,

151
mean value, 181
measure extension, 73
monotone convergence, 289
monotone convergence of conditional

expectations, 31, 33
numeraire invariance, 215
Polya, 43
product measure, 290
Prohorov, 304
Radon–Nikodym, 29, 294
second fundamental of asset pricing,

214
Skorohod representation, 44
strong law of large numbers, 99
total law of probability, 7
Weierstrass, 148

threshold, 271
tight, 302
time

exit, 78, 195
explosion, 102
hitting, 78, 195
homogeneous, 63, 108
of ruin, 231
stopping, 58, 77, 142
value of money, 222

topological
notions, 298

topological space, 297
topology, 297
tower law, 32
trajectory, 51, 56

uniformly
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continuous, 298
integrable, 69

usual hypotheses, 57

variable
binomial, 17, 23
Cauchy, 17, 44
centered, 16
compound Poisson, 45
elementary, 28
extensive, 8
Gaussian, 17, 23
independent, 22, 36

Poisson, 17, 23

random, 8

sums of, 22

variance, 16, 22

constant elasticity of, 238

variation

bounded, 128

quadratic, 137

total, 128

volatility

implied, 228

local, 228
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