إختر الإجابة الصحيحة:

Y (P)

ا فانت $\mathbf{z} = (-1, 1, 1, -1, 1)$ منتصف $\frac{1}{1}$ حیث \mathbf{z} (اے \mathbf{z} , \mathbf{z}) ، ب \mathbf{z} (۲ , \mathbf{z}) فإن الحاکانت ج

..... = ル + イ+ &

Y (P)

٤- (ج)

 (Υ) إذا كان $\frac{1}{7} = \frac{1}{7}$ بي متجه وحدة فإن ك =

(ب) ۷

*\(\frac{\forall \chi \chi}{\sqrt{}} \pm \text{(4)}

<u>₹</u> ② <u>\</u>3

٥ (٤)

(د) ۹

(٤) معادلة الكرة التي مركزها (٢ , ٣٠ , ١) و طول نصف قطرها ٢ √٥ هي

(۹) (س-۲)۲+(ص+۳)۲+(٤ – ۱)۲=۶ کم آه

 $Y = (1 - \xi) + (2 + \xi) + (3 - \xi)$

 $a = {(1 - \epsilon)} + {(2 - \epsilon)} + {(3 - \epsilon)} = a$

 $Y = {}^{5}(1 + 2) + {}^{5}(9 - 4) + {}^{5}(1 + 2) = {}^{5}(1 + 2) + {}^{5}(1 + 2) = {}^{5}(1$

(٥) الصورة القياسية لمعادلة الكرة التي مركزها (٢ , ٣٠ , ٤) و تمس المستوى سم مع هي

 $\xi = (\xi - \xi) + (\Psi + \psi) + (\xi - \xi) = \xi$

 $q = (\xi - \xi) + (\psi + \psi) + (\psi - \psi)$

 $17=(\xi-\xi)+(7+\omega)+(7-\omega)$

17 = (2 + 2) + (4 - 2) + (5 + 2)

(10-, 7-, 0) (P, -7, 01) (D(-P, -7, -01)

(٧) إذا كانت س ٢ + ص ٢ + ع ٢ - ١٤ ص - ٨ع + ٢ك = ٠ معادلة كرة طول قطرها ٤ ﴿ ◘ حيث ك ﴿ ح *

فإن لے =....

Y (P)

+ (9)

" (~)

(ج) ۸

(ب) ۷

* (2)

(د) ۹

7(3)

1. 3

(د) ۸

17 (3)

1. 3

(٩) إذا قطع محور السبنات الكرة التي مركزها (٣، -٤، ١٢) و طول نصف قطرها ١٣ وحدة طول في النقطتين ٢، ب فإن طول $\overline{9}$ =

(P)

۸ (ج) 17 (0)

(١٠) إذا كان ٢ ب ج مثلث فيه ٢ (١، ٢، ٣) ، ب (٠، ١، ٢) ، ج (٢، ١، ٠) فإن طول المتوسط المرسوم من الرأس

(7 , 7 - , 7)

(A) 1/0

(ج) ه

(۱۱) إذا كان $\frac{1}{9}$ قطر في الدائرة $(m-6)^{7} + (m-6)^{7} + (3-1)^{7} = 67$ حيث $\frac{1}{9}$ ($\frac{1}{9}$ ، $\frac{1}{9}$) فإن $\frac{1}{9}$

(17) إذا كان $\frac{7}{1} = \frac{7}{1}$ ، $\frac{7}{1} = \frac{7}{1}$ ، $\frac{7}{1} = \frac{7}{1}$ فإن مركبة $\frac{7}{1}$ ف إتجاه $\frac{7}{1} = \frac{7}{1}$

\frac{1}{\pi} \end{align*

 $|| \vec{r} - \vec{r} - \vec{r} - \vec{r} ||$ فإن $|| \vec{r} - \vec{r} -$

17 (2) Y V (3)

₩ A (P)

♣ (P)

العمود المرسوم من النقطة (-7, -7, 1)على محور السينات يساوى (11)

17 (P)

1.1/ (7)

اِذا کان $\frac{1}{1} = (-1, -1, -1)$ ، $\frac{1}{1} = (-1, -1, -1)$ فإن متجه الوحدة في اتجاه الب

 $\begin{pmatrix} 1 & \frac{1}{1 + 1} & \frac{1}{1 +$

(١٦) إذا كان أ = (١ , ٢ , ٢) ، ب = (١ , ١ , الى ال وكان | أ +ب ||= ٧ وحدة طول حيث (ص

فإن ك =

1. (P)

(ب) ۸

11(7)

 $\frac{1}{1}$ إذا كان $\frac{1}{1} = 7$ س + 7 فإن ك = -7 س -3 س + 3 و كان $\frac{1}{1}$ ل فإن ك = -7 س....

ج) ۸ ٦()

۲

£ (P)

ا فا کان $\overline{l} = (1 + 1)$ افا کان $\overline{l} = (1 + 1)$ افاکان $\overline{l} = (1 + 1)$ افا کان $\overline{l} = (1 + 1)$ افا کان $\overline{l} = (1$

40 (P)

140 (-)

770 (F)

٥ (٥)

۷ (ع)

TY (3)

ج - ۱

 θ اذا کانت θ هی قیاس الزاویة المحصورة بین المتجهین θ اذا کانت θ یاب ، θ افان θ افان θ یاب المتجهین المتجهین المتجهین المتجهین المتجهین المتجهین المتجهین المتجهین المتحبه المت

°11. °17.

***7** - Q

(۲۲) في الشكل المقابل: إذا كان ٢ ب ج د ٢ بَ جَ دَ مكعب طول

ضلعه ۲ وحدة طول فإن المب/ • بر =

1- 😔

1 (P)

#~#Y- (P)

1- (2)

٤- (ج)

(۴) صفر

(٢٣) في الشكل المجاور إذا كان ب ينصف الزاوية بين المتجهين أ ، ج حيث $(\overrightarrow{Y} \mid Y \mid , \cdot , \cdot) = \overleftarrow{x} \cdot (\cdot , \cdot) = \overleftarrow{y} \cdot (1 - , \cdot Y \mid) = \overleftarrow{f}$

فإن ك =

(ب) ۲

r (P)

£(P)

 $(\mathbf{Y} \mathbf{\xi})$ إذا كان ل $(\mathbf{Y} \mathbf{\xi} - \mathbf{\xi} - \mathbf{\xi} + \mathbf{\xi} - \mathbf{\xi} - \mathbf{\xi} - \mathbf{\xi} - \mathbf{\xi} + \mathbf{\xi} - \mathbf{\xi} - \mathbf{\xi} - \mathbf{\xi} + \mathbf{\xi} - \mathbf{\xi} - \mathbf{\xi} + \mathbf{\xi} - \mathbf{\xi} - \mathbf{\xi} + \mathbf{\xi} - \mathbf$

٥ (١) ۸ (ج)

(ج) ځ

 $(\mathbf{Y0})$ جيوب تمام الإتجاه للمتجه $\mathbf{Y} = (\mathbf{Y} , \mathbf{Y} , \mathbf{Y})$ هي

 $(1,1,1-) \odot \qquad \left(\frac{\circ}{\tau},\circ,\frac{\circ-}{\tau}\right) \odot \qquad \left(\frac{\tau}{\tau},\frac{\tau}{\tau},\frac{\tau-}{\tau}\right) \odot \qquad (7,1,7-) \bigcirc$

°V0 (2)

1. (P)

7 P

(۲۹) إذا كان قياس الزاوية بين مستقيم ، المحور صم يساوى قياس الزاوية بين المستقيم و المحور ع و قياس كل منهم ٢٠٠ فإن قياس الزاوية بين المستقيم و المحور سم يساوى

°£0 (P) °7. (P)

٠٦، ج

(۲۷) إذا كان أب = -٣ سَ + ٣ صَ + ٧ عُ ، بَهُ = صَ + ٥ عُ فإن | أَجُمُ | =

 $\dots = \frac{1}{2} \times \frac{1}{2} \times$

17 3 15 8

إذا كان $\| \ \ \ \ \ \ \| \ \ \ \| \ \ \ \ \| \ \ \ \ \| \ \ \ \ \ \| \ \ \ \ \| \ \ \ \ \ \| \ \ \ \ \ \| \ \ \ \ \ \ \ \ \ \ \$

فإن || أ + ب + ج ||=

17 ② 17 ② 1. ①

ا فان ۱۰ ب ج د متوازی أضلاع و کان $\frac{1}{1+2}$ و کان $\frac{1}{1+2}$ بنا کان ۲ ب ب ر $\frac{1}{1+2}$ و کان $\frac{1}{1+2}$ بنا کان ۲ ب ب ر ازا کان ۲ ب ر ازا کان ۲ ب ب ر ازا کان ۲ ب ب ر ازا کان ۲ ب را کان ۲ ب را

الأضلاع تساوى

1.1/ ÷ ② 1.1/ ⊗ 7/ v €

 $\frac{7-\epsilon}{7} = \frac{3-\omega}{7} = \frac{3+\omega}{7} = \frac{3+\omega}{7} = \frac{3+\omega}{7} = \frac{3+\omega}{7} = \frac{3+\omega}{7} = \frac{3-\gamma}{7}$ إذا كان المستقيم $\frac{3+\omega}{7} = \frac{3+\omega}{7} = \frac{3+\omega}{7} = \frac{3+\omega}{7} = \frac{3+\omega}{7} = \frac{3+\omega}{7}$

فإن ٣ك + ٢٢ =

تیاس الزاویة بین المستقیمین $0_{1}:$ 1س = 1س = 1 ، 1 1 1 1 1 1 1 1 یساوی 1 1 1

°14. (2) °1. (2) °1. (3) °1. (4) °1. (

(۳۳) معادلة المستوى المار بالنقطة (۳,۲,۱) و يوازى كل من المحورين سم، صم هي

 $\Upsilon = \omega \implies \qquad (2) \qquad \qquad (3) \qquad \qquad (4) \qquad (4) \qquad (5) \qquad (4) \qquad (5) \qquad (6) \qquad (7) \qquad (7$

اِذا کانت المتجهات $(\xi, q-, 0) = \frac{1}{2}$ ، $(\eta, q-, 0) = \frac{1}{2}$ ، $(\eta, q-, 0) = \frac{1}{2}$ مستویه " تقع فی (۲۴)

مستوى واحد" فإن ك =

(د) ۳–

r- ⊕

(د) ۹۰

۳۰ (ج)

° £ 0 (-)

· •

r (P)

باذا کان المستوی $m - m + r^2 + r = •$ ، المستوی کی m - 3 - 0 = • متعامدان فإن ک m - 3 - 0 = • متعامدان فإن ک m - 3 - 0 = •

۳- (۵)

(ج) ۳

Y- @

۲ (

(۳۷) إذا كان المستقيم m = 7 m = 1 يوازى المستوى m + 7 m + 1 m + 1 وإن m + 1

1-3

10

r (P)

(٣٨) قياس الزاوية المحصورة بين المستويين س − ع + ١ = ٠ ، ٢ س−٢ ص − ع = ٠ يساوى

٥٦٠ (٤)

°9.

° £ 0 (-)

°4. (P)

(٣٩) طول العمود المرسوم من النقطة ٢ = (٣ , ٠ , -٥)على المستوى ٢س + ١٥ص +٤٤ – ٦ = ٠ يساوى

د) ۷

1

ه (ب)

£ (P)

(١٠٠٠) إذا كان المستوى س + ٥ ص - ٣٦ ع = ٣٠ يقطع من محاور الإحداثيات سر، صر، ع الأجزاء ٢٠ ب، ج على

الترتيب فإن ٢ + ب + ج =

٤١٤)

ج ۲۱

٣٠ (ب

(۴) صفر

(٤١) معادلة المستوى المار بالنقطة (٦ , ١ , ٥) و عمودى على المتجه (٣ , ١ , ٣) هي

(ب) ٢س + ص + ٣٤ = ١٥

 $\xi = \varepsilon + \omega + \omega$

(ج) س - ۲ص + هع = ۱۵

٥٦ (٤)

فان ا =

- (1, T, T) (P)
- $(\mathfrak{t},\mathfrak{t}-,\boldsymbol{\cdot}) \odot \qquad (\boldsymbol{\cdot},\mathfrak{t},\mathfrak{t}) \odot \qquad (\mathfrak{t},\boldsymbol{\cdot},\mathfrak{t}-) \odot$
- (٢٣) حجم متوازى السطوح الذي فيه ثلاثة رؤوس ليست في وجه واحد هي ١ (٣ , ١ , ٣) ، ب(-١ , ٣ , ١) ،

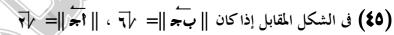
ج (۱ , ۱ , ۲) يساوى

- ج) ۱۶
 - YA (P)

إذا كان محيط قاعدة المخروط الدائري القائم ه π۱۲ سم و طول

راسمه ۱۰ سم و کانت نقطة ج هي منتصف ۲۰ فإن بج ۰ ج و =

- 47 @
- 9 (P)
- 0 £ (3)
- £4- (*)



- $1 \frac{1}{1} = \frac{1}{1} \frac{1}{1} = \frac{1}{1}$ فإن بأ $\frac{1}{1} = \frac{1}{1}$ ، بأ $\frac{1}{1} = \frac{1}{1}$

- **(٢)** النقطة التي تنتمي للمستقيم 🗸 = (٢ ، -١ ، ٣) + ك (١ ، ٢ ، -١) همي ..

- النقطة التي تنتمي للمستوى $\sqrt{-} = (-1, \cdot, \cdot) + ك (\cdot, \cdot, \cdot) + \gamma (1, \cdot, \cdot, -1)$ هي -
- $(\cdot , \cdot , \cdot) \odot \qquad (\cdot , \cdot , \tau) \odot \qquad (\tau , \cdot , \tau) \odot \qquad (\tau , \cdot , \cdot) \bigcirc$

- - (🗚) معادلة المحور س في الفراغ هي

(c) ع = ٠ ، ص = ٠

(, , ٣- , ٤) 3

أسئلة إنتاج الإجابة

(٣) اوجد الصور المختلفة لمعادلة المستقيم الذي يمر بالنقطة $\{ (7, 1 - 1, 7) \}$ و الموازى للمتجه $(7, 2, 1) \}$ ثم عين نقطة تقاطعه مع المستوى الإحداثي سمص

(٤) أوجد المعادلات البارامترية للمستقيم المار بالنقطتين $\{Y, Y, Y\}$ ، $\{Y, Y, Y\}$ ، $\{Y, Y, Y\}$ ، $\{Y, Y, Y\}$ هذا المستقيم أم $\{Y, Y, Y\}$

(٥) إوجد معادلة المستقيم المار بالنقطة (٣, ٢, ٥) و يصنع مع الإتجاهات الموجبة لمحاور الإحدثيات زوايا متساوية.

(7,1,1) أوجد معادلة المستقيم المار بنقطة الأصل و يقطع المستقيم (5,1,1) على التعامد.

w = 7 + 2 w =

(۸) أثبت أن المستقيمان $\frac{1}{\sqrt{2}} = (7,7,7) + 2$, $\frac{1}{2}$, \frac

شبت أن المستقيمان $\sqrt{1} = (7,1-1,7) + 2 + (1-1,5,0)$ ، $\sqrt{1} = (7,1-1,7) + 2 + (1-1,5,0)$

 $(1 \cdot 1)$ أوجد طول العمود المرسوم من النقطة (1, 1, 1) على المستقيم (1, 1, 1) العمود المرسوم من النقطة (1, 1, 1)

ر۱۱) اوجد الصور المختلفة لمعادلة المستوى المار بالنقطة $\{(1, -7, 1)\}$ و العمودى على المستقيم (1, -7, 1) و العمودى على المستقيم (1, -7, 1) .

(١٢) اوجد الصور المختلفة لمعادلة المستوى المار بالنقطة ١٩ (٣ , ٣ , ٢) و الذي يوازي كل من المتجهين

(١٤) إوجد الصور المختلفة لمعادلة المستوى المار بالنقاط الرام , ١ , ٠) ، ب (٠ , ٧ , ٧) ، جر(٤ , ١ , ٥).

(10) إذا قطع المستوى 700 + 700 + 700 + 700 + 700 + 700 + 700 الإحداثيات <math>1000 + 100 + 7

 $\frac{11}{(17)}$ اوجد معادلة المستوى الذي يحوى المستقيم $\frac{1}{12}$: $\frac{1}{12}$ $\frac{1}{12}$ و يمر بنقطة الأصل.

(۱۷) إثبت أن المستقيمين \mathbf{b}_{1} : $\mathbf{v}_{2} = \mathbf{v}_{3}$ ، \mathbf{b}_{3} : $\mathbf{v}_{3} = \mathbf{v}_{3}$ متقاطعان ثم إوجد معادلة المستوى الذي يحتويهما.

(19) إذا كان المستوى سہ: 7 س – 0 + 0 + 0 ، 0 ب 0 ب 0 ب 0 ب المستقيم 0 ل المستقيم 0 ل المستقيم 0 ل المستقيم 0 المستقيم 0 ل المستقيم 0 المستقيم 0

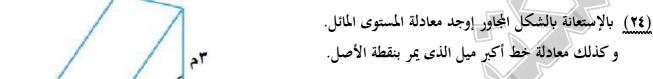
آ قياس الزاوية بين المستويين س ، ص آ قياس الزاوية بين المستوى س ، المستقيم U .

(٢٠) إثبت أن المستويين سه: 700 + 70 + 70 = 3 ، صه: 1 + 700 + 70 = 1 متوازيان و أوجد البعد بينهما.

(٢١) أوجد مسقط النقطة ١(٠, ٩, ٦) على المستقيم المار بالنقطتين ب(٢, ٢, ٣)، ج(٧, -١, ٥).

(۲۲) اوجد نقطة تقاطع المستقيم m = 7 + 7 ، m = -3 ، m = 6 + 6 مع المستوى m = 7 + 6 من m = 7 + 7 = 1 ثم اوجد قياس الزاوية بينهما.

ر (۲۳) او جد معادلة المستوى الذى يحتوى المستقيم $\sqrt{} = (1, 7, 3) + (3, 1, 1)$ ، عمودى على المستقيم $\sqrt{} = (3, 0.1, 0.1)$ عمودى على المستقيم $\sqrt{} = (3, 0.1, 0.1) + (3, 0.1, 0.1)$.



(٢٥) إوجد الصور المختلفة لمعادلة خط تقاطع المستويين س + ص + ع = ١ ، س + ع = ٠

(۲۸) اوجد نقطة ۲ تقع على المستوى ٢س + ص - ٢ع= ١ بحيث يكون بعدها عن النقطة ب (١٠،٠،١) أقل ما يمكن.

(٢٩) إوجد معادلة الكرة التي مركزها النقطة (- ٢ ، ١ ، - ١) و المستقيم ٢س + ٢ ص + ع = ٣ مماساً لها. -----------

(٣٠) إوجد الصور المختلفة لمعادلة المستوى المار بالنقطة (1 , 1− , 1) و الذى يكون عمودياً عل كل من المستويين سه : س −ص +٤ − 1 = ٠.

الإجابات

ب	(1)	7	(٥)	7-	(\$)	د	(٣)	ب	(۲)	ب	(1)
P	(17)	7	(11)	P	(1•)	د	(4)	ب	(A)	ب	(Y)
Ĺ	(14)	ب	(۱۷)	7	(17)	ب	(10)	7	(18)	د	(17)
١	(۲٤)	P	(۲۳)	ج	(۲۲)	ب	(11)	د	(۲۰)	۲	(14)
د	(٣•)	د	(۲۹)	د	(۲۸)	7	(**)	ب	(۲٦)		(40)
Ĺ	(۲٦)	ب	(40)	P	(44)	ب	(٣٣)	*	(44)	7 >	(٣١)
ب	(٤٢)	ب	(٤١)	ج	(\$•)	P	(٣٩)	ب	(TA)	د	(٣٧)
د	(٤٨)	د	(٤٧)	7	(٤٦)	7	(\$0)	3	(٤٤)	ب	(٤٣)

حلول أسئلة إنتاج الإجابة

$$(\lambda - , \Upsilon - , \Upsilon -) = \overline{\uparrow} - \overline{} = \overline{} = \overline{} \cdot (\Upsilon - , \Sigma - , \Upsilon -) = \overline{\uparrow} - \overline{} = \overline{} \cdot (\Upsilon - , \Sigma - , \Upsilon -) = \overline{\uparrow} - \overline{} = \overline{} \cdot (\Upsilon - , \Sigma - , \Upsilon -) = \overline{} \cdot ($$

$$(V-,\cdot,\cdot)=\overline{1}-\overline{-}=\overline{1}$$
 ...

ن. النقط ٢ ، ب ، ج ، د تقع في مستوى واحد

$$\bullet = \frac{1}{\sqrt{2}}$$
 : المتجهات $\frac{1}{\sqrt{2}}$ ، $\frac{1}{\sqrt{2}}$ ، $\frac{1}{\sqrt{2}}$ ، $\frac{1}{\sqrt{2}}$ ، $\frac{1}{\sqrt{2}}$. $\frac{1}{\sqrt{2}}$ ، $\frac{1}{\sqrt{2}}$ ، $\frac{1}{\sqrt{2}}$. $\frac{1}{\sqrt{2}}$

له= ۱٥ ← *= 1-2 T + 11-2 T-T-

الصورة المتجهه لمعادلة المستقيم: (٣)

(1, も, ٣-) と +(٣, ١-, ٢) = ケ

الصورة الإحداثية:

$$\frac{\sqrt{3-3}}{7} = \frac{\sqrt{3-3}}{9} = \frac{3-3}{1} \quad \therefore$$

 \Leftarrow

 \Leftarrow

 $\frac{w-y}{1} = \frac{y-y}{2} = \frac{y-y}{2}$

 $\Upsilon - = \frac{1+\omega}{\epsilon} = \frac{\Upsilon - \omega}{\Upsilon - \omega}$

 $\overline{1} - \overline{U} = \overline{A}$

(T , T - , 1 -) = (A

(*, *-, 1-) と+(・, 1-, 1) = を

لإيجاد نقطة التقاطع مع المستوى سهص نضع ع = ٠

$$\frac{\psi - v}{v} = \frac{v + v}{v} = \frac{v - w}{v} \qquad \therefore$$

$$\mathbf{q} = \mathbf{Y} - \mathbf{\omega}$$

ب (\cdot , \cdot , \cdot) ، (\cdot , \cdot , \cdot) للمستقيم (\cdot , \cdot , \cdot) (\$)

$$\Rightarrow \frac{1}{\sqrt{1}} \Rightarrow \frac{1}{\sqrt{2}} \Rightarrow \frac$$

$$(\mathbf{r}_{-},\mathbf{r}_{+},\mathbf{r}_{-})-(\mathbf{r}_{+},\mathbf{r}_{-},\mathbf{r}_{-})=\mathbf{\bar{a}} \quad \therefore$$

الصورة المتجهه لمعادلة المستقيم:

٠٠ قيمة ك ليست وحيدة

النقطة جر(٢, ٣, ١) للمستقيم إذا و فقط إذا وجدت قيمة وحيدة لل تحقق المعادلات البارامترية

١ = ١ - ك

(o, 1, 1-) = -}

(

 $\frac{1}{7-} \neq \frac{1-}{1-}$

حلآخرد

النقطة جر(٢, ٣, ١) للمستقيم إذا و فقط إذا كان المجر// هـ

$$(\Upsilon, \Upsilon -, 1 -) = \frac{1}{2} \cdot (\circ, 1, 1 -) = \frac{1}{2} \cdot \cdots$$

$$heta$$
نفرض أن $heta$ س $heta$ فرض أن فرض أن نفرض أنفرض أن نفرض أنفرض أن نفرض أن نفرض أن نفرض أن نفرض أن نفرض أن نف

ج (۲, ۳, ۱) للمستقيم

الصف الثالث مراجعة هندسة فراغية

$$\mathbf{1} = \mathbf{\theta}^{\mathsf{T}} \mathbf{1} + \mathbf{\alpha}^{\mathsf{T}} \mathbf{0}_{\mathsf{u}} + \mathbf{\alpha}^{\mathsf{T}} \mathbf{0}$$

$$\frac{1}{|T|} \pm \theta = \theta = 0 \quad \Leftrightarrow \quad 1 = \theta = 0.$$

$$(\overline{T}, \overline{T}, \overline{T}, \overline{T}) \pm = \frac{1}{\overline{T}} \int_{\mathbb{T}} \frac{1}{\overline{T}} \frac{1}{\overline{T}} \frac{1}{\overline{T}} \frac{1}{\overline{T}} = \pm (\overline{T}, \overline{T}, \overline{T}, \overline{T})$$

$$(1,1,1,1) \triangle + (0,1,1) = \checkmark \qquad \qquad \Longleftrightarrow \qquad \left(\overrightarrow{T} \bigvee, \overrightarrow{T} \bigvee, \overrightarrow{T} \bigvee \right) \triangle + (0,1,1) = \checkmark \qquad \therefore$$

، المستقيم المعطى ل ميث
$$\sqrt{\ } = (\xi, 1, \pi) + (\xi, 1, \pi)$$

$$(\mathbf{Y},\mathbf{1},\mathbf{Y}) = +(\mathbf{\xi},\mathbf{1},\mathbf{Y}) = \frac{\mathbf{x}}{\mathbf{x}} \quad :$$

$$(2 + \xi, 2 + 1, 2 + 7) = \frac{1}{2} \quad :$$

ن. متجه إتجاه
$$\mathbf{b}$$
, هو \mathbf{a} = \mathbf{c}

$$(27+5,2+1,27+7)-(\cdot,\cdot,\cdot), i=\frac{1}{\sqrt{2}}$$

$$(2 - \xi - , 2 - 1 - , 2 - 7 -) = \frac{1}{\sqrt{2}}$$

$$\left(\frac{19}{1\xi}\times \mathbb{Y}+\xi-\ ,\ \frac{19}{1\xi}+1-\ ,\ \frac{19}{1\xi}\times \mathbb{Y}+\mathbb{Y}-\right)=\frac{2}{12}$$

$$(1,0,\xi-) = \frac{1}{1\xi},\frac{\gamma-1}{1\xi},\frac{\gamma-1}{1\xi} = \frac{1}{1\xi}$$

$$\therefore \qquad (1,0,\xi-) = \frac{1}{1\xi},\frac{\gamma-1}{1\xi},\frac{\gamma-1}{1\xi} = \frac{1}{1\xi}$$

$$\therefore \qquad (1,0,\xi-) = \frac{1}{1\xi},\frac{\gamma-1}{1\xi},\frac{\gamma-1}{1\xi} = \frac{1}{1\xi}$$

$$(1, 0, \xi-) = \frac{1}{\sqrt{2}} \quad \Leftarrow \quad (1, 0, \xi-) = \frac{1}{\sqrt{2}} \quad \therefore$$

$$(1-, 7, 1) = \frac{1}{\sqrt{8}} \iff \frac{2+7=\omega}{\sqrt{4}}$$

$$(1-, 7, 1) = \frac{1}{\sqrt{8}} \iff \frac{2+7=\omega}{\sqrt{4}}$$

$$(1-, 7, 1) = \frac{1}{\sqrt{8}} \iff \frac{(4)}{\sqrt{4}}$$

$$(2-1) = \frac{1}{\sqrt{4}}$$

$$(\Upsilon - , \ \xi \ , \ \Upsilon) = \frac{1}{4} \iff \frac{2}{4} = \frac{1 - \omega}{2} = \frac{1 - \omega}{2} : \varphi$$

مراجعة هندسة فراغية

$$\frac{1-}{7-}=\frac{7}{\xi}=\frac{1}{7}$$
 ...

ل , // ل ل أى أن المستقيمان مستويان \leftarrow

 $(1-, 1-, 0) = \frac{1}{\sqrt{2}} \quad (0, 0-, 1) = \frac{1}{\sqrt{2}} \quad :$ ()

$$(1-, 1-, 0) \cdot (0, 0-, 1) = \frac{1}{\sqrt{2}} \cdot \frac{$$

 $\sqrt{x} = \sqrt{x}$ حيث حيث عن لى $x \in \mathcal{S}$ حيث $\sqrt{x} = \sqrt{x}$

$$(1-,1-,0)$$
, $\omega+(1,7,7-)=(0,0-,1)$, $\omega+(0,7-,7)$...

$$\left(\begin{smallmatrix} 2 \\ -1 \end{smallmatrix}\right), \begin{smallmatrix} 2 \\ -1 \end{smallmatrix}\right), \begin{smallmatrix} 2 \\ -1 \end{smallmatrix}\right) = \left(\begin{smallmatrix} 2 \\ -1 \end{smallmatrix}\right) = \left(\begin{smallmatrix} 2 \\ -1 \end{smallmatrix}\right), \begin{smallmatrix} 2 \\ -1 \end{smallmatrix}\right)$$

المستقيمان متقاطعان و لإيجاد نقطة التقاطع نعوض عن $oldsymbol{b} = -1$ في معادلة المستقيم الأول

$$(\cdot, \Upsilon, \Upsilon) = (0, 0-, \cdot) - (0, \Upsilon-, \Upsilon) = \frac{1}{\sqrt{2}}$$
 نقطة التقاطع هي $\frac{1}{\sqrt{2}}$

$$(?, 1-, 1) = \overline{a}, \quad (?, 1, \xi) = \overline{a} \quad \therefore \quad (?)$$

$$\therefore \quad \overrightarrow{a_{1}} \cdot \overrightarrow{a_{2}} = (2, 1, 1) \cdot (7, 1) \cdot (7, 1)$$

$$\bullet$$
 عند المستقيمان متقاطعان أو متخالفان. \bullet المستقيمان متقاطعان أو متخالفان.

$$(Y, 1-, 1), \omega+(1-, \xi, \cdot)=(Y, 1, \xi), \omega+(Y, 1-, Y)$$
 ...

ن.
$$\boxed{\mathbf{b}_{\gamma} = \frac{\gamma \gamma}{\delta}}$$
 ، من (۱) $\boxed{\mathbf{b}_{\gamma} = \frac{\gamma}{\delta}}$ و هذه القيم لا تحقق المعادلة (۳)

المستقيمان متخالفان.

مراجعة هندسة فراغية الشالث

$$(\mathbf{7} - \mathbf{7} , \mathbf{7}) = \frac{1}{2}$$
 للمستقیم ، $\frac{1}{2} = (\mathbf{7} , \mathbf{7} - \mathbf{7})$ للكن $\mathbf{7} = (\mathbf{7} , \mathbf{7})$

$$(7-,7,1) = \overline{7} \qquad \Longleftrightarrow \qquad (7,1-,1) - (\xi-,1,1) = \overline{7} \qquad \therefore$$

$$\frac{\overline{\xi}}{\xi} - \frac{\overline{\zeta}}{\sqrt{2}} + \frac{\overline{\zeta}}{\sqrt{2}} \times \frac{\overline{\zeta}}{\sqrt{2}} \qquad \Longleftrightarrow \qquad \frac{\overline{\xi}}{\sqrt{2}} - \frac{\overline{\zeta}}{\sqrt{2}} \times \frac{\overline{\zeta}}{\sqrt{2}} = \frac{\overline{\zeta}}{\sqrt{$$

$$|\overrightarrow{V}| = \overline{\xi + 9 + \xi}| = |\overrightarrow{A}|| \qquad \Longleftrightarrow \qquad (Y - , Y, Y) = \overleftarrow{A} \quad :$$

$$\xi, \Upsilon = \frac{\overline{\Upsilon + V}}{|\Upsilon|} = |\Upsilon|$$
 البعد $= \frac{|\Upsilon| + |\Upsilon|}{|\Upsilon| + |\Upsilon|} = |\Upsilon| + |\Upsilon$

$$(\Upsilon^-, \cdot, \Upsilon) - (\Upsilon, \Upsilon^-, 1-) = \overline{\lambda} \iff \qquad \qquad \overleftarrow{\gamma} - \overleftarrow{\pi} = \overleftarrow{\lambda} \quad \therefore$$

$$\overleftarrow{1} \bullet \overleftarrow{\nu} = \overleftarrow{\nu} \bullet \overleftarrow{\nu} \quad : \qquad \qquad : (\circ , \forall - , \, \dot{\epsilon} -) = \overleftarrow{\nu} \quad :$$

$$(\cancel{\xi}, \cancel{Y-}, \cancel{1}) \bullet (o, \cancel{Y-}, \cancel{\xi-}) = \overleftarrow{\mathcal{F}} \bullet (o, \cancel{Y-}, \cancel{\xi-}) \quad \therefore$$

$$\mathbf{Y} \cdot + \mathbf{Y} + \mathbf{\xi} - = \mathbf{\nabla} \cdot (\mathbf{0}, \mathbf{Y} - \mathbf{\xi} - \mathbf{0}) \quad \therefore$$

$$YY = \checkmark \bullet (\circ, \Upsilon -, \xi -)$$

$$\bullet = (3 - 3) + (9 - 9) + (3 - 3)$$

$$-3(m-1)-7(m+1)+6(3-3)=.$$

$$2m + 7m - 03 + 77 = \bullet$$
 Ileneç i laı is.

الصورة المتجهه.

$$\therefore \text{ Idungo } / \text{ a, } \text{ a, } \Rightarrow \overline{\text{ w}} = \overline{\text{a, }} \times \overline{\text{ a, }}$$

$$(\wedge, 1-, 1\cdot-) = \overline{\vee} \qquad \Longleftrightarrow \qquad \begin{vmatrix} \overline{z} & \overline{\checkmark} & \overline{\checkmark} \\ 1 & 7- & 1 \\ \underline{z} & 7 & 7 \end{vmatrix} = \overline{\vee} \quad \therefore$$

مراجعة هندسة فراغية

$$T + T - T = \checkmark (\land, 1-, 1-) :$$

$$\bullet = (2 - 2) + (0 - 0) + (3 - 2) = \bullet$$

$$\bullet$$
 الصورة العامة. \bullet الصورة العامة.

الصورة المتجهه.

$$(1, 1-, 1) = \overline{\nu} \qquad \Longleftrightarrow \qquad \bullet = 1-2+\nu - \nu \quad \therefore \qquad (17)$$

$$(1,1,1) = \frac{1}{\sqrt{2}} \quad \Leftarrow \quad \star = 1 + \mathcal{E} + \omega + \omega + \omega \cdot \cdot \cdot$$

$$\sim$$
 المستوى المطلوب \perp سہ ، صب \Rightarrow $\overline{V} = \overline{V}_{n} \times \overline{V}_{n}$

$$(1,1-,1)\bullet(7,1,7-)= \checkmark \bullet(7,1,7-) \quad \therefore$$

..
$$-Y(m-1)+(m+1)+(3-1)=\bullet$$
 الصورة القياسية.

J_____

$$(\cdot\,\,,\,\,1\,\,,\,\,\,\,\,\,\,\,) = \overline{\dot{\gamma}} \qquad \Longleftrightarrow \qquad \qquad \overline{\dot{\gamma}} = \overline{\dot{\gamma}} \quad : \quad (18)$$

$$(\Upsilon, \Upsilon, \Upsilon-) = \overline{\emptyset}$$
 :

$$(\cdot, \cdot, \cdot, \cdot) - (\circ, \cdot, \cdot, \cdot) = \overline{\star} \qquad \Leftarrow$$

$$\frac{1}{1-\frac{1}{2}} = \frac{1}{2}$$
 ..

 $(\circ, \cdot, 1) = \overline{+}$

$$\overleftarrow{\nabla} = \overleftarrow{\nabla} \times \overleftarrow{\nabla} = \overleftarrow{\nabla} \times \overleftarrow{\nabla}$$

$$(\lnot -, \lnot \lor , \lnot \lor) = \overleftarrow{\nu} \qquad \Leftarrow$$

$$(\cdot, 1, \forall) \bullet (\forall -, 1 \lor, \forall \cdot) = \checkmark \neg \bullet (\forall -, 1 \lor, \forall \cdot) \quad \therefore$$

$$\cdot = \xi (\omega - 1) + \forall (\omega - 1) - \xi = \epsilon$$
 .:

الصورة المتجهه.

الصورة القياسية.

$$17 \div$$
 بالقسمة $17 \div$ بالقسمة $17 \div$ بالقسمة $17 \div$

$$T = \frac{w}{v} + \frac{w}{v} +$$

$$(\forall, \cdot, \cdot) \Rightarrow (\cdot, \forall, \cdot) \Rightarrow (\cdot, \cdot, \cdot)$$

$$(\cdot\ ,\ \ ,\ \ \xi-)=\overleftarrow{\uparrow},\qquad \Longleftrightarrow\qquad \qquad (\cdot\ ,\ \ ,\ \ \xi)-(\cdot\ ,\ \ ,\ \ \cdot)=\overleftarrow{\uparrow},\qquad \therefore$$

$$(\Upsilon, \cdot, \cdot , \cdot) = \overline{A} \qquad \qquad (\cdot, \cdot, \cdot) - (\Upsilon, \cdot, \cdot) = \overline{A} \qquad (\cdot, \cdot, \cdot, \cdot) = \overline{A} \qquad (\cdot,$$

$$\therefore \|\overrightarrow{\mathsf{fi}} \times \overrightarrow{\mathsf{fi}}\| = \sqrt{(\mathsf{A}\mathsf{f})^{\mathsf{T}} + (\mathsf{T}\mathsf{f})^{\mathsf{T}} + (\mathsf{B}\mathsf{T})^{\mathsf{T}}} = \mathbf{F} \sqrt{\mathsf{PT}}$$

$$\frac{3-2}{\sqrt{2}} = \omega = \frac{3-3}{\sqrt{2}} : 0.5 : \omega = \frac{3-3}{\sqrt{2}}$$

$$\cdot$$
 . $\overset{\leftarrow}{\mathbf{a}_{\cdot}} = (1, 1, 1)$ ، النقطة $(-1, 1, 1) \in \mathbf{b}_{\cdot}$

$$\therefore \quad \overrightarrow{v} = \overrightarrow{e^{\dagger}} \times \overrightarrow{a},$$

$$(1-,\circ,\,\epsilon-)=\overleftarrow{\nu}\qquad \Longleftrightarrow \qquad \begin{vmatrix} \overleftarrow{\varepsilon} & \overleftarrow{\sim} & \overleftarrow{\sim} \\ & & \ddots & \ddots \\ & & & 1- \\ & & & 1 \end{vmatrix} = \overleftarrow{\nu} \quad \therefore$$

$$\stackrel{\leftarrow}{\mathbf{v}} \bullet \stackrel{\leftarrow}{\mathbf{v}} = \stackrel{\leftarrow}{\mathbf{v}} \bullet \stackrel{\leftarrow}{\mathbf{v}} \quad :$$

$$(\cdot,\cdot,\cdot) \bullet (1-,\circ,\mathfrak{t}-) = \overleftarrow{\mathcal{F}} \bullet (1-,\circ,\mathfrak{t}-) \quad \therefore$$

$$\bullet = \overline{\mathcal{S}} \bullet (1-, 0, \xi-)$$
 :

- ځس+٥ص-ع = ٠

الصورة القياسية ، الصورة العامة.

$$\frac{g}{w} = \frac{w}{2} = \frac{w}{3}$$
 : $v \leftarrow v = v = \frac{3}{2}$ بالقسمة ÷ ۱۲ $v \leftarrow v = \frac{w}{3}$

$$(\mathbf{r}, \mathbf{t}, \mathbf{t}) = \frac{1}{\sqrt{2}}, (\mathbf{r}, \mathbf{t}, \mathbf{t})$$

$$\mathbf{r}, \mathbf{t} = \mathbf{t}, (\mathbf{r}, \mathbf{t}, \mathbf{t})$$

$$\frac{g}{7} = \frac{w}{10} = 7$$
 ن لې : $\frac{w}{10} = 7$ بالقسمة $\frac{g}{7} = \frac{g}{10} = \frac{g}{10}$

$$(7, 10, 10) = \frac{1}{\sqrt{3}} \text{ is } (7, 10, 10) = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \cdot (7, 10, 10) = \frac{1}{\sqrt{3}} \cdot (7, 10) = \frac$$

$$(7, 10, 10)$$
 وخد نقطة تقاطع المستقيمين : $\sqrt{r} = \sqrt{r}$ $= \sqrt{r}$ $= \sqrt{r}$ نوجد نقطة تقاطع المستقيمين : \sqrt{r}

· المستقيمان متقاطعان في نقطة الأصل " و "

$$(\circ \cdot , \lnot - , \lnot 1 -) = \frac{1}{\sqrt{a}} \times \frac{1}{\sqrt{a}} = \frac{1}{\sqrt{a}} \times \frac{1}$$

$$(\bullet, \bullet, \bullet) \bullet (\circ \bullet, \lnot -, \lnot \lnot -) = \overleftarrow{\mathcal{F}} \bullet (\circ \bullet, \lnot -, \lnot \lnot -) \quad \therefore$$

الصورة المتجهه.

الصورة القياسية ، الصورة العامة.

$$\frac{r}{r} = \frac{1}{1-} = \frac{r}{r} \quad \therefore \quad \Leftrightarrow \quad \frac{r}{r} = \frac{1}{1-} = \frac{r}{r} \quad \therefore$$

$$(1, 7, 1) - (1, 1, 1) = \overline{1,1} \qquad \Longleftrightarrow \qquad \overline{1,1} = \overline{1,1} \qquad \cdots$$

$$(\cdot, \tau - \tau, \tau) = \sqrt{\tau_{\tau}} \quad \therefore$$

$$(1,1,7) = \overline{\alpha}, \times \overline{1,1}, \times \overline{\alpha} = \overline{\alpha}, \times \overline{1,1}, \times \overline{\alpha} = \overline{\alpha}$$

$$\therefore \overline{\alpha} = \overline{\alpha}, \times \overline{1,1}, \times \times$$

$$(1, \Upsilon, \mathfrak{t}) \bullet (1, 1, \Upsilon) = \checkmark \bullet (1, 1, \Upsilon) :$$

مراجعة هندسة فراغية

$$\bullet = (1-\mathcal{E}) + (\mathbf{w} - \mathbf{v}) + (\mathbf{z} - \mathbf{w}) + \mathbf{v}$$

الصورة القياسية

(· , 1- , ۲) = ----

$$(\circ, 1-, \Upsilon) = \frac{1-\omega}{6} \quad \Leftarrow \quad \frac{2}{6} = \frac{1-\omega}{1-} = \frac{1-\omega}{7} : 0$$

جتا (۹۰ - ۱۹۰ <u>هـ ا</u> هـ ا $\frac{1}{\sqrt{1}} = \theta$ جا

$$\psi = \frac{1}{r} = \frac{\pi}{r} = \frac{\pi}{r} \quad :$$

لإيجاد البعد بين المستويين نوجد نقطة في آحد المستويين ثم نوجد بعدها عن المستوى الآخر كما يلي

نوجد نقطة على المستوى صح مثهرً و ذلك بإختيار قيمة لـ ص ، قيمة لـ ع ونحسب قيمة س

$$(\bullet, \bullet, 1)$$
 النقطة المستوى $\bullet \bullet \longrightarrow \emptyset$ النقطة $(\bullet, \bullet, \bullet)$

$$\frac{1}{4} = 0 \qquad \Longleftrightarrow \qquad \frac{|\xi - \pi|}{|\xi - \pi| + |\xi|} = 0 \qquad \therefore$$

حل آخو :

$$\frac{1}{9} = \frac{\left| (1-) - \frac{\xi}{7} - \right|}{\frac{\xi}{1+\xi} + \frac{1}{2}} = 0 \quad \therefore$$

(٢١) نوجد المعادلة البارامترية المستقيم بج :

نفرض أن مسقط النقطة Arr على $\overrightarrow{++}$ هو النقطة ر(Arr1 - Arr2 , Arr4 ك)

$$(\Upsilon, \xi, \Upsilon) \leftarrow \frac{\Upsilon}{\Upsilon} = \emptyset \leftarrow \bullet = (\Upsilon, \xi -, \Upsilon) \bullet (\emptyset \Upsilon + \Psi -, \emptyset \xi - \Psi -, \emptyset \Upsilon + \Upsilon) :$$

$$7 - = 2 \iff 1 + 2(2 + 3) - 7(0 + 2) = 1 \iff 1 + 3(2 + 3) = 1 \iff 2 + 3(2 + 3) = 1 \iff 3 + 3(2 + 3) = 1 \implies 3 + 3(2 +$$

$$(*)$$
 بالتعویض فی $(*)$ \Longrightarrow $(*)$ بالتعویض فی $(*)$ \Longrightarrow $(*)$ بالتعویض فی $(*)$ بالتعویض فی $(*)$ بالتعویض فی $(*)$

$$\frac{|(\Upsilon_{-}, \circ, \xi) \circ (\Upsilon, \xi_{-}, \Upsilon)|}{|\xi_{-}| \times |\Upsilon|} = \theta \Leftrightarrow (\Upsilon_{-}, \circ, \xi) = \frac{1}{N} \cdot (\Upsilon, \xi_{-}, \Upsilon) = \frac{1}{N} \cdot (\Upsilon, \xi_{-}, \Upsilon$$

$$e^{\circ} \vee = \theta \qquad \Leftrightarrow \qquad \frac{\overline{\vee \vee \vee}}{rq} = \theta \Rightarrow ...$$

$$\mathbf{L}^{\prime}$$
 عرب \mathbf{L}^{\prime} = (٤, ١٥, ٨) + ك \mathbf{L}^{\prime} (٢, ٣, -١) المستوى المطلوب

.. المتجه العمودى للمستوى المطلوب هو
$$\sqrt{r} = (r, \pi, -1)$$

$$\sim$$
 معادلة المستوى هي : $(7, 7, -1) \cdot \frac{1}{\sqrt{2}} = (7, 7, -1) \cdot (1, 7, 3) $\Rightarrow 7 \cdot (7, 7, 3)$$

(۲٤) من الشكل : و (۰،۰،۰) ، ۶ (۵،۰،۳) ، ب (۵،۲،۳)
$$\sqrt{2}$$
 من الشكل : و $\sqrt{2}$ $\sqrt{2}$

معادلة المستوى المائل:
$$\Rightarrow (-7, \cdot, \cdot) \cdot \overline{\lambda} = (-7, \cdot, \cdot) \cdot (0, \cdot, \cdot)$$

مراجعة هندسة فراغية

(40)

$$(1)... \qquad \boxed{\varepsilon - = \omega} \qquad \Longleftrightarrow \qquad \qquad \bullet = \varepsilon + \omega \qquad \vdots$$

$$(7)... \quad \boxed{1 = 0} \qquad \Longleftrightarrow \qquad (1) \qquad \Longrightarrow \qquad (1)$$

$$-1$$
 ن -1 ن

المستوى يحتوي المستقيم ل
$$J$$
 (٥-, ٣, ٠) النقطة النقطة المستوى المستقيم ل المستوى

$$\overline{\mathcal{E}} \mid \overline{\mathbf{1}} - \overline{\mathbf{v}} \mid \mathbf{9} - \overline{\mathbf{v}} \mid \mathbf{9} - \overline{\mathbf{v}} \mid \mathbf{9} - \overline{\mathbf{v}} \mid \mathbf{8} \times \overline{\mathbf{a}} \mid \mathbf{9} - \overline{\mathbf{v}} \mid \mathbf{9} - \overline$$

$$(\circ - , \forall , \cdot) \cdot (1 \forall - , 1 \forall - , 4 -) = \overleftarrow{\mathcal{F}} \cdot (1 \forall - , 1 \forall - , 4 -) :$$

$$(77)$$
 او جد معادلة المستقيم المار بالنقطة (7) ، (7) و عمودی علی المستوی (7) س (7)

·· المستقيم لـ المستوى
$$\Rightarrow$$
 هـ = \sqrt{r} ، - ١١ ، ٥)

$$\frac{1-\mathcal{E}}{1-\frac{2}{m}} = \frac{2-m}{m} = \frac{3-1}{m}$$
 .. معادلة المستقيم :

(۲۸) أقرب نقطة على المستوى من النقطة بهي مسقط النقطة بعلى المستوى

 $(7 \cdot 1 \cdot 7) = \frac{1}{100}$ نوجد المعادلة البارمترية للمستقيم المار بالنقطة ب ، عمودى على المستوى أى أن هـ $(7 \cdot 1 \cdot 7) = 1$

w = 1 + 1 ل ، w = 1 ، w = 1 - 1 ل بالتعویض فی معادلة المستوی

$$\left(\frac{1-}{r}, \frac{1-}{r}, \frac{1}{r}\right)$$
 النقطة $\left(\frac{1-}{r}, \frac{1-}{r}, \frac{1}{r}\right)$ النقطة $\left(\frac{1-}{r}, \frac{1-}{r}, \frac{1}{r}, \frac{1}{r}\right)$ النقطة $\left(\frac{1-}{r}, \frac{1-}{r}, \frac{1}{r}, \frac{1}{r}\right)$

/_____

$$Y = \frac{|T-(1-)+1\times T+(T-)\times T|}{1+\xi+\xi/r} \iff (Y4)$$

$$= \sqrt{1+\xi+\xi/r}$$

$$(m+7)^{7} + (m-1)^{7} + (3+1)^{7} = 3 \qquad m^{7} + m^{7} + 3^{7} + 3m - 7m + 73 + 7 = 4$$

$$(1,1,1)=\overleftarrow{\nu} \qquad (1,1-,1)=\overleftarrow{\nu} \qquad \cdots \qquad (\ref{eq:constraints})$$

$$| \bullet = \not \neg \bullet (\triangledown, 1, \Upsilon -) | \qquad \Longleftrightarrow (1, 1 - , 1) \bullet (\triangledown, 1, \Upsilon -) = \not \neg \bullet (\triangledown, 1, \Upsilon -) \qquad \therefore$$

..
$$-Y(m-1)+(m+1)+x(3-1)=$$

$$\star$$
 الصورة العامة. \star