الـكليـات التـقتنيـة

الحقيبة التلدريبية:
تقنية التحكم الآلي عملي
في تخصصات
الآلات والمعدات الكهربـائية
والقوى الكهربـائية و مشفل لوحة التحكم

مقلدمة"

الحمـد لله وحده،والصـلاة والسـلام على من لا نبي بعده، محمـد بن عبداللـه وعلى آلله

> وصـحبـه وبعد ،

تسعى المؤسسـة العامة للتدريب التقني والمهني لتأهيل الكوادر الوطنية المدرية القادرة
على شغل الوظائف التقنية والفنية والمهنيـة المتوفرة ٌِِ سـوق العمل، ويـأتي هذا الاهتمـام نتيجـة للتوجهات السـديدة من لـدن قادة هذا الوطن التي تصب وِّ مجهلها نحو إيجاد وطن متصامل يعتمد ذاتياً على الله ثم على موارده وعلى قوة شبـابه المسلح بالعلم والإيمـان من أجل الاستـمرار قدماً پٌِ دفع عجلة التقدم التتموي؛ لتصل بعون الله تعالى لمصـاف الدول المتقدمة صناعياً. وقد خطت الإدارة العامة لتصميم وتطوير المناهـج خطوة إيجابيـة تتفق مع التجارب

الدوليـة المتقدمـة وِ بنـاء البرامـج التـدريبية، وفق أسـاليب علمية حديثة تحاكي متطلبات سـوق العمل بكافة تخصصـاته لتلبي متطلباته ، وقد تمثلت هذه الخطوة يِّمشروع إعداد المعايير
المهنية الوطنية الذي يمثل الركيزة الأسـاسيـة يِْ بناء البرامـج التدريبيـة، إذ تعتمد المعايير ِوْ بنائها على تشكيل لجان تخصصية تمثل سـوق العمل والمؤسسـة العامة للتدريب التقني والمهني بحيث تتوافق الرؤية العلمية مع الواقع العملي الذي تفرضه متطلبات سـوق العمل؛ لتتخرج هذه اللجان يٌ النهاية بنظرة متـكاملة لبرنامـج تدريبي أكثر التصـاقاً بسوق العمل، وأكثر واقعية ِ2ْ تحقيق متطلباته الأسـاسية.

وتتـاول هذه الحقيبة التدريبية " تقنية التحصم الآلي- عملي " لمتدربي تخصصـات
الآلات والمعدات الكهربائية والقوى الكهربائية ومشغل لوحة التحكم" للكليات التقنية موضوعات حيوية تتتـاول كيفية اكتسـاب المهارات الـلازمة لهذا التخصص.
والإدارة العامة لتصـيه وتطوير المناهـج وهي تضـع بين يديك هـذه الحقيبة التدريبيـة تأمل
من الله عز وجلً أن تسهم بالشكل مباشر بِّ تأصيل المهارات الضرورية اللازمة، بأسلوب مبسط يخلو من التعقيد ، مدعم بالتطبيقات والأشكـال التي تدعم عملية اكتسـاب هذه

والله نسـأل أن يوفق القائمـين على إعدادهـا والمستفيدين منها لما يحبـه ويرضاه؛ إنه سميع

الإدارة العامة لتصـميم وتطوير المناهـج

رقّم الصفحة	الموضـــوع
r	تقهيل
ε	MATLAB الوحلدة الأولى : أسلاسيات برنـامج
-	MATLAB التجربة الأولى:
9	الوحلدة الثانية : تحليل الاستجابة الزمنية لبعض الأنظمة الصناعية ذات الدائرة المفتوحة
1.	التجربة الأولى: استجابة نظام حراري لإشـارة الخطوة
10	التتجربة الثانية: استجابة محرك تيار مستمر لإشـارة الخطو
11	التجربة الثالثة: استجابة نظام الإضاءة لإشـارة الخطوة
r	الوحلدة الثالثة : تحليل الاستجابة الزمنية لبعض الأنظهة الصناعية ذات الدائرة المفلقة
rr	P- التجربة الأولى: الحاكم التتاسبي
rV	التجربة الثانية: الحاكم التكاملي
M	PI- Controller التجربة الثالثة: الحاكم التتاسبي التكاملي
ro	PID- Controller التجربة الرابعة: الحاكم التتاسبي التكاملي التفاضلي
ε.	التجربة الخامسة: الحاكم التتاسبي التكاملي التفاضلي الرقمي Automatic Speed Control التحكم الرقمي وِّ سـرعة محرك تيار مستمر
Er	التجربة السادسة: الحاكم التتاسبي التكاملي التفاضلي الرقمي Automatic Light Control التحكم الرقمي يٌ الإضاء
\&	

الحمد للله رب العالمـين، والصـلاة والسـلام على سيدنـا محمد وآله وصحبـه، ،أمـا بعد ، فهذا هو الكتاب الخاص بالمنهج العملي لمقرر: "تقنية التحككم الآلي" نقدمـه لأبنائنا متدربي الكليات التقنية التابعة للمؤسسـة العامة للتعليم الفني والتدريب المهني، تخصص الحـي الآلات الكهربائية"، ، حيث لا يخفى على أحد مـا للجانب التطبيقي من أهمية يِّ عملية التحصيل العملي وترسيخ المفاهيم لدى المتدرب.

يتعلم المتدرب من هذه التجارب خصـائص التحكم وِ الحلقة المفتوحة والمفلقة وكذلك كمـا يتعلم المتدرب خصـائص نظم الرتبة الأولى. كمـا يتعلم تأثير الحاكمـات بأنواعها المختلفة على الوحدة المحكومة. كمـا يتعلم المتدرب استتخدام برنامـج Matlab يٌ أنظمة التحكـمَ. وقد تم وضـع عشـر تجارب مبينة يِّ الفهرس.

وقد روعي عند إعداد هذه التجارب المختبرات والأجهزة المتوفرة لدينـا وهي: مختبر Com3Lab من شركة Leybold الألمانيـة. هذا المختبر متوفر وِّ كثير من الكليات التقنية يِ المملكة . وقد سـارعنا بترجمة ملفاته وحررنا مختبرات تتـاسبب هـع محتوياته. نـأمل إن شاءالله أن نكـون قد وفقنا يِّ ذلك. ورغم المجهودات التي بذلت فهذه المختبرات تعتبر كقاعدة يمكن تطويرهـا.

الوحلدة الأولى

MATLAB أساسيـات بـرنـامج

التجربة الاؤلى

ششرح الستخلام بـرنـامج MATLAB

الهدف من التجربة :

- - أس أن يتدرب المتدرب من خـلال هذه التـجربة على:

الأجهزةومكونات التجربة:

- جهاز حاسبـ
- برنامـج MATLAB و Simulink محتوياً على الملف الذي يشمل الأدوات الرياضية التي يمكن استعمـالها يٌِ الحسـابات والرسومات وهوControl Tool Box.

خطوات إجراء التجربة:
بعد تشغيل برنامتج ماتلاب نعرف دالة التحويل كهما يلي:

$$
G(s)=\frac{n(s)}{d(s)}
$$

حيث إن: n(s) يمثل بسط دالة التحويل. و d(s) يمثل مقام دالة التحويل وكـلاهمـا يمثل كثيرات الحدود وٌ يتم إدخال كثيرة الحدود بإدخال معامـلاتها عل هيئة صف: أدخل كثيرة الحدود التالية:

$$
p(s)=s^{2}+3 s+1
$$

معامـلات p(s) هي: 1، 3، 1 فندخلها وٌ MATLAB كـالتالي:
" $p=\left[\begin{array}{ll}1 & 3 \\ 1\end{array}\right] ;$

يجب إدخال جميع المعاملات حتى التي تساوي صفراً.

$$
\text { مثال: أدخل كثيرة الحدود التالية: } p(s)=s^{3}+3 s+1 \quad \text { مثا }
$$

 معامل s² هنا يساوي صفر ، ومن ثم ندخل المعامـاتلات كالتالي:

$$
\text { مثال: أدخل دالة التحويل التالية: } G(s)=\frac{s^{2}+2 s+1}{s^{3}+4 s^{2}+2 s+1} \quad
$$

"n=[1 2 1];
„d=[14 42 1];
"Tf(n,d)
يمكن كتابة الدالة يٌِ مـاتلاب وذلك بكتابة الأمر التالي:
"roots(n)
= ans

$$
-1
$$

$$
-1
$$

لحساب أقطاب اللدالة:

"roots(d)

$$
\begin{gathered}
\text { ans= } \quad \text { تسـجل الإجابة على الثـاشة كمـا يلي }=3.5115 \\
-0.2442+0.4745 i \\
-0.2442-0.4745 i
\end{gathered}
$$

لرسم جذور البسط التي تمتل الأصفار وجذور المقام التي تمثل الأقطاب (شكل ا- ():

»rlocus(n,d)

شكل 1-1 : أصفار و أقطاب الدالة
»clf
»clc
لمسـح الرسـم من الشـاشـة نستعمل الأمر لمسـح البرنامـج من الشاشـة نستعمل الأمر
»step(n,d)
لرسـم استتجابة النظام لإشـارة الخطوة نستعمل الأمر

استعهال SIMULINK يسهل تمثيل النظم بالرجوع إلى رسـوم جاهزة وربطها ببعضها ثم
تشغيلها.
لرسـم مخطط باستعمـال Simulink نقوم بمـا يلي:
-

- التعرف على نوافذ Simulink
- التعرف على العناصر الأسـاسية التي سنستخخدمها مثل Sources و Sinks و Linear فتح صفحة جديدة لتمثيل النظام المراد دراستـه والاستعانة بالمدرب لبنـاء المـخطط - لتشغيل المحاكاة ننقر على Simulation ثم Start
- للحصول على النتائج ننقر مرتين على أيقونة جهاز العرض Scope فتظهر الاستجابة .

$$
\begin{align*}
& \text { أسئلة ومناقثتة } \\
& \text { لدينا دالة التحويل التالية: } \\
& G(s)=\frac{s+1}{s(s+2)(s+3)} \\
& G(s)=\frac{2}{s(s+1)(s+2)}
\end{align*}
$$

أوجد الأصفار والأقطاب باستخدام برنامج MATLAB لكل دالة. Simulink ارسم الاستجابة الزمنية لإشارة الخطوة للدالتين باستخدار

الوحلدة الثانية

تحليل الاستجابة الزمنية لبعض الأنظمة الصناعية

ذات الدائرة المفتوحة

التجربة الاولى

استجابة نظام حراري لإشارة الخطوة

الهدف مز التجربة:

- أن يتعرف المتدرب من خلال هذه التجربة على:
- الأجهزة المستخدمة يٌ مختبر التحكـم Com3Lab - طريقة تشغيل الكرت الإلكتروني المبني عليه هذا المختبر.
- استجابة نظام حراري لإشثارة الخطوة. - تأثير التشويش على الحلقة المفتوحة.

الأجهزةوالمكونات

- مصدر التغذية (Power Supply)
- الكرت الإلكتروني.
- مولد إشارة Function Generator - وحدة متحكم فيها (Controlled Unit)
خطواتإجراء التجربة
- شغل لوحة العمليات وأجب عن الأسئلة التي تسهح بمواصلة العمل. - قم بتوصيل الأجهزة وفق الشكل(Y - ب).
- قم بمعايرة جهاز العرض وتأكد من عمل كل الأجهزة.
- قبل تشغيل التجربة اطلب من المسؤول عن المختبر مراجعة التوصيـلات. - اختر إشارة خطوة w= 7 v ثم ارسم إشارة الدخل والخرج معا خلال زمن قدره
X 200s سـجل القيمة التي استقر عليها الخرج
- أعد التجربة بإدخال تشويش على عملية التسخين (تشغيل المروحة بجهد 5v) وسـجل

X01 القيمة التي استقر عليها الخرج

تسجيل النتتائج
بدون تشويش: Z=0 v جهد الخرج يسـاوي:
$\mathrm{X}_{0}=\ldots \ldots . \quad \mathrm{v}$

أدخل تشويش على إثـارة الخرج و سـجل القيمة النهائية

شكل(

بوجود تشويش: Z = 5 v جهد الخرج يسـاوي

$$
X_{01}=\ldots \ldots . v
$$

قارن بين القيمتين ، مـاذا تستتتج؟
\qquad
\qquad
مـاذا تلاحظ يِّ بداية استتجابة النظام الحراري لإشـارة الخطوة؟

وصل التجربة شكل(ץ-)) وذلك بتتبيت إثنـارة الدخل على القيم المبينـة ٌِِ الجدول وتسـجيل
 النتائج ֵٌِ الجدول التالي.

V	7	0	ε	قيمـة إشـارة الدخل $\mathrm{y}(\mathrm{v})$
				قيمة إشـارة الخرج x (v)

Characteristic بدلالة إشـارة الدخل y باستتخدام راسـم \mathbf{X} بارسم منحنى إشـارة الخرج -
 مـاذا تلاحظ حول المنحنى؟
\qquad
\qquad

احسب ميل المنحنى اختر نقطتين على المنحنى ثم أكمل ما يلي:

$\Delta y=y_{2}-y_{1}$
$\Delta y=.$. -.........
$\Delta y=$
...........
$\Delta x=x_{2}-x_{1}$
$\Delta x=\ldots \ldots \ldots .$.
$\Delta x=\ldots \ldots \ldots$.
$K_{p}=\ldots \ldots$.

مـاذا يمثل الثابت Kp للنظام الحراري؟
\qquad
\qquad
\square

أسئلة ومناقشة

- مـاذا تـلاحظ حول استتجابة النظام الحراري لإشـارة الخطوة؟
\qquad
\qquad
- مـا نوع هذا النظام؟
\qquad
\qquad - مـا تأثير التشويش (تشغيل المروحة) على خرج النظام؟
\qquad
\qquad
- هل تتأثر الدائرة المفتوحة بالتشنويش؟

التجربة الثانية

استجابة محرك تيـيار مستمر لإشارة| الخطوة

الهدف من التجربة:

- أن يتعرف المتدرب من خـلال هذه التجربة على مـا يلي:
- الأجهزة المستخدمة يٌ هختبر التحكم Com3Lab
- نظام من الرتبة الأولى (PT 1 أو محرك التيار المستتمر)
- استجابة النظام من الدرجة الأولى لإنثارة الخطوة

الأجهزةوالمكونات:
-

- مولد إثـارة Function Generator
- نظام من الرتبة الأولى PT1 و محرك تيار مستمر (نفترض أن محرك التيار المستمر نظام من الدرجة الأولى)

خطوات إجراء التجربة:

- قم بتوصيل الأجهزة كما يٌ الشكل(Y- 1) مع أفضلية تغيير النظام PT1 بمحرك المروحة.
- قبل تشغيل التجربة اطلب من المدرب مراجعة التوصيل ومعايرة الأجهزة.
- قم بتشغيل التجربة وتحديد الخطوة بـ 10v وزمن 5s وسـجل إشنارتي القناتين Y و و Y
- ستجل ملحوظاتك.

الشكل ((

تسجيل النتتائج

> وارســم منـحنى استـجـابة النظام لإشـارة الخطوة

من خلال منحنى الاستجابة ومنحنى إثنارة الدخل احسب كسب النظامو الثابت الزمني .

الثابت الزمني T	$\begin{gathered} \text { الكسب } / \mathrm{Y}_{\mathrm{s}}=\mathrm{X}_{0} / \mathrm{K}_{0} \end{gathered}$	القيمة التي استقر عليها الخرج	قيمة الخطوة X_{0}

أكمل النموذج الرياضي للمحرك (دالة النظام بدلالة المتغير المركب S)

$$
\mathrm{G}(\mathrm{~s})=
$$

\qquad
أعد التجربة باستخدام SIMULINK

قارن بين النتائج
\qquad
\qquad

أسئلة ومناقشة

- ارسـم المخطط الصندوقي للتجربة

مـا الهدف من استتجابة النظام لإشـارة الخطوة ؟

مـاذا تستخلص من هذه التجريـة ؟

التجربة الثالثة

استجابة نظام الإضاءة لإشارة الخطوة

الهدف مز التجربة:

- أن يتعرف المتدرب من خلال هذه التجربة على ما يلي: Com3Lab الأجهزة المستخدمة يٌ مختبر التحكـ - إشارة الخطوة وتأثيرها على خرج نظام الإضاءة
- نوعية النظام من خلال الاستجابة
- الكسب والثابت الزمني لنظام الإضاءة

الأجهزةوالمكونـات:

- مصدر التغذية (Power Supply)
- الكارت الإلكتروني.
- مولد إثـارة Function Generator - نظام الإضاءة يٌ اللوحة COM3LAB - جهاز الكمبيوتر

خطوات إجراء التجربة:

- شغل الكمبيوتر و لوحة العمليات ثم وصل التجربة حسب الشكل(Y - -
- قبل تشغيل التجربة اطلب من المسيؤول عن المختبر مراجعة التوصيل ومعايرة الأجهزة. - افتح راسم الاستجابة لإشثارة الخطوة ثم حدد الخطوة على 0 فولت والزمن 1 ثانية.

$$
\begin{aligned}
& \text { - قم بتشغيل التجربة وستجل إثنارتي القناتين Y و و Y } 2 \text { على راسم الذبذبات. } \\
& \text { - سـجل ملحوظاتك. }
\end{aligned}
$$

الشكل (Y - Y): توصيل التتجربة

تسجيل النتتائج

وارسم منتحى استتجابة النظام لإشـارة الخطوة
\qquad

احسب كسـب النظام و الثابت الزمني .

$\begin{gathered} \text { الثابت الزمني } \\ \hline \end{gathered}$	$\begin{gathered} \text { الكسبّ } / \mathrm{Y}_{0} \\ \mathrm{~K}_{\mathrm{s}}=\mathrm{X}_{0} \end{gathered}$	القيمة التي استقر عليها الخرج	قيمة الخطوة X_{0}

أكمل النموذج الرياضي لنظام الإضاءة (دالة النظام بدلالة المتغير المركب S)

$$
G(s)=
$$

\qquad

أسئلة ومناقشة

- ارسم المخطط الصندوقي للتجربة

مـا الهدف من استجابة النظام لإشارة الخطوة ؟

- بها أن الثابت الزمني يعتبر صغير جدا هٌِ حالة نظام الإضاءة، مـاذا تستتتج ؟
\qquad
\qquad

مـاذا تستخلص من هذه التجربة ؟
\qquad
\qquad

الوحدةالثالثة

تتليل الاستجابة الزمنية لبفض النظم الصناعية ذاتالدائرةالمفلقة

التجربة الاولى

P- Controller الحاكم التنـاسبي

الهدف من التجربة:

- أن يتعرف المتدرب من خلال هذه التجربة على ما يلي:
- الأجهزة المستخدمة يٌ مختبر التحكـم Com3Lab
- الحاكم التتاسبي وتأثيره على نظام من الرتبة الأولى.

الأجهزةوالمكونات:

- مصدر التغذية (Power Supply)
- الكارت الإلكتروني.
- مولد إشارة Function Generator
- نظام من الرتبة الأولى (محرك تيار مستمر، نظام الإضاءة)

خطوات إجراء التجربة:

- شغل لوحة العمليات.
 المستمر عوضا عن PT1)

قبل تشـغيل التجربة اطلب مـن المدرب مراجعة التوصيل

> سـجـل نتائـج التـجربة يٌِ الجدول التالـي

أحسب الخطأ $\mathrm{e}=\mathrm{w}_{0}-\mathrm{x}_{0}(\mathrm{v})$		قيمة الخرج X_{0} (V)	معامل الحاكم التتاسبي K_{p}
			$\mathrm{K}_{\mathrm{p}}=1$
			$\mathrm{K}_{\mathrm{p}}=10$
			$\mathrm{K}_{\mathrm{p}}=50$

مـاذا تلاحظ؟
\qquad
\qquad
\qquad
 k

شـكل (r- -) : هخطط التجربة

$\begin{gathered} \text { أحسب الخطأ } \\ e=W_{0}-x_{0} \text { (v) } \end{gathered}$		قيمة الخرج X_{0} (V)	معامل الحاكم التـاسبي K_{p}
			$\mathrm{K}_{\mathrm{p}}=1$
			$\mathrm{K}_{\mathrm{p}}=10$
			$\mathrm{K}_{\mathrm{p}}=50$

قارن النتائج التي توصلت إليها باستخدام اللوحة والنتائج التي توصلت إليها باستخدام Simulink
\qquad
\qquad
\qquad
\qquad

أعد التجربة مـع النظام الحراري بخطوة 7v وخلال زمن 200s حسب التوصيل شـكل(r-r

تسجيل النتتائج

$$
\begin{aligned}
& \text { بدون تشويش: Z=0 v استقر الخرج على القيمة: } \\
& \mathrm{X}_{0}= \\
& \text {....... } \mathrm{V} \\
& \text { بوجود تشويش: Z = } 5 \text { v استقر الخرج على: } \\
& \mathrm{X}_{01}=\ldots . . \mathrm{v} \\
& \text { قارن بين القيهتـين ، مـاذا تستتتج؟ }
\end{aligned}
$$

\qquad
\qquad

هل يتأثر النظام ذو الدائرة المغلقة بالتشويش؟

لماذا لم يتأثر الخرج بالتشويش بٌِ التحكم بالدائرة المغلقة مثلمـا تأثر به يٌْ الدائرة المفتوحة؟
\qquad
\qquad

أسئلة ومناقشة

> - ارسـم المخطط الصندوقي للتجربة (نـتفي بنظام واحد)

- كيف يؤثر الحاكم التتاسبي على الخطأ ؟
\qquad
\qquad
- كيف يؤثر الحاكم التتاسبي على زمن الاستقرار ؟
\qquad
\qquad
-

\qquad
\qquad

ماذا تستخلص من هذه التجربة ؟
\qquad
\qquad

- مـا تأثير التشويش على الدائرة المغلقة؟
\qquad
\qquad

التجربة الثانية
 الحاكم التكاملي (I-Controller)

الهدف من التجربة:

- أن يتعرف المتدرب من خلال هذه التجربة على ما يلي:
- الأجهزة المستخدمة وٌِ مختبر التحكم Com3Lab

PT الحاكم التكاملي وتأثيره على نظام من الرتبة الأولى -

- استجابة النظام ${ }^{\text {P }}$ Step Function

الأجهزةوالمكونات:

$$
\begin{aligned}
& \text { - مصدر التغذية (Power Supply) } \\
& \text { - الكارت الإلكتروني. } \\
& \text { - مولد إشـارة (Function Generator) } \\
& \text { - نظام من الرتبة الأولى PT1 } \\
& \text { - } \\
& \text { - ولوحة تفيير معاملات الحاكـهـات. }
\end{aligned}
$$

خطوات إجراء التجربة:

- شغل لوحة العمليات وأجب عن الأسئلة التي تسمح بمواصلة العمل.
- اضبط قيمة دخل الوحدة المتحكم فيها بواسطة مولد إثـارة الدخل عند النقطة Out

بعد أن قمنا بالمعايرة وهي إثشارة قفزة.
 بمدحرك التيار المستمر).

- قبل تشغيل التجربة اطلب من المسؤول عن المختبر مراجعة التوصيل ومعايرة الأجهزة. - قم بتشغيل التجربة بخطوة 5v و زمن 10s وسـجل إشارتي القناتين Y و و Y 2 على راسـم الذذبذبات.

تسجيل النتتائج
قم بتغيير معامل الحاكم التتكاملي KI (1 و 10) وارسم منحنى استتجابة النظام ثم أكمل الجدول التالي:

الخطأ e (v)	زمن التعدي $\mathrm{t}_{\mathrm{p}}(\mathrm{~s})$	$\begin{gathered} \text { التعدي } \\ M_{p}(v) \end{gathered}$	زمن الصعود $\mathrm{t}_{\mathrm{r}}(\mathrm{~s})$		$\begin{gathered} \text { الثابت التـكاملي } \\ K_{I} \end{gathered}$
					1
					1.

مـا تأثير الثابت التكاملي KI على المتغيرات المبينة يٌِ الجدول؟
\qquad
\qquad

أعد التجربة باستخخدام SIMULINK و اعتمـادا على الشـكل(ץ- 0)

غير الثابت التـكاملي حسب الجدول ثم سـجل النتائج ٌِْ الجدول

الخطأ $\mathrm{e}(\mathrm{v})$	زمن التعدي $\mathrm{t}_{\mathrm{p}}(\mathrm{~s})$	$\begin{gathered} \text { التعدي } \\ \mathrm{M}_{\mathrm{p}}(\mathrm{v}) \end{gathered}$	زمن الصعود t_{r} (s)		الثابت التكاملي K_{I}
					- 0
					1
					r

مـا ذا تلاحظ حول تأثر المتغيرات المبينة يٌِ الجدول
\qquad
\qquad
\qquad
\qquad

مـاذا تستتتج؟
\qquad
\qquad

أسئلة" ومنـاقشة
 ارسـم المخطط الصنـدوقي للتجربة

\qquad
\qquad
\qquad

عنــد زيـادة قيمـة معامـل الحــاكم التـكــاملي تظهـر ذبذبـة مخهــدة و تـزداد نسـبـة التعـــي. مـا سبب ذلك؟
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

التجربة الثالثة

الحاكم التناسبي التكاملي PI- Controller

الهدف مز التجربة:

- أن يتعرف المتدرب من خـلال هذه التجربة على مـا يلي:
- الأجهزة المستخدمة يِ مختبر التحكم Com3Lab PT1 الحاكم التتاسبي التكاملي وتأثيره على نظام من الرتبة الأولى -

الأجهزةوالمكونـات:

- مصدر التغذية (Power Supply)
- الكارت الإلكتروني.
- مولد إشارة (Function Generator)
- نظام من الرتبة الأولى PT1 أو محرك التيـار المستمر
- جهاز راسـم ذبذبات (Oscilloscope). - ولوحة تغيير معامـلات الحـاكمـات.

خطوات إجراء التجربة:

- شغل لوحة العمليات وأجب عن الأسئلة التي تسهـح بهواصلة العمل.
- بعد أن قمنا بالمعايرة وهي إشـارة قفزة.
- قم بتوصيل الأجهزة كما وٌِ الشكل(r- 7) .
- قبل تشغيل التجربة اطلب من المدرب مراجعة التوصيل ومعايرة الأجهزة.

إثشارتي القناتين Y Y و 2 و على راسـم الذبذبات.

- سـجل ملحوظاتك.

الشكل (

تسجيل النتـائج

$$
\begin{aligned}
& \text { - أعد رسم منحنيي الدخل والخرج مع تغيير الثابت } \\
& \text { - لكل قيمـة لـ K أكمل الجدول }
\end{aligned}
$$

$\begin{gathered} \text { زمن الاستقرار }{ }_{\text {t }} \text { زمتق } \end{gathered}$	الخطأ $\mathrm{e}=\mathrm{W}_{0}-\mathrm{X}_{0}$	قيمة الدخل W_{0}	قيمة الخرج X_{0}	$\begin{gathered} \text { الثابت } \\ K_{p} \\ \hline \end{gathered}$
				1
				1.
				0.

- مـاذا تلاحظ؟
- مـاذا تستتتج؟
\qquad
\qquad

أعد التجربة باستخدام simulink اعتمادا على الشكل(V-r -

تسجيل النتائج
 ثبت K

2	1	0.1	$\mathrm{~K}_{\mathrm{I}}$

مـاذا تلاحظ؟
\qquad
\qquad
مـاذا تستتتج؟
\qquad
\qquad
ثبت KI وغير K

2	1	0.1	$\mathrm{~K}_{\mathrm{p}}$

- مـاذا تلاحظ؟
\qquad
\qquad
- ماذا تستتتج؟

أسئلة ومناقشة

> - ارسـم المخطط الصندوقي للتجربة (لنظام واحد فقط)

- مـا تأثير الحاكم التتاسبي التكاملي على استتجابة النظام؟

التجربة الرابعة

PID- Controller الحاكم التنـاسبي التكاملي التفاضلي

الهدف من التجربة :

- تأثير العنصر التتاسبي من الحاكم PID على استجابة النظام المتحكم فيهـ. - تأثير العنصر التكاملي من الحاكم PID عل استجابة النظام المتحكم فيـه، تأثير العنصر التفاضلي من الحاكم PID على استجابة النظام المتحكم فيه.
- التتحكم هِْ نضـام من الدرجة الثانية وهو محرك للتيار المستـمر و نموذجه الرياضي الحقيقي هو :

$$
G(s)=\frac{21.81}{0.0063 s^{2}+0.379 s+1}
$$

الأجهزةومكونات التجربة:
جهاز حاسـب
Control Tool Box و Simulink يحتوي على MATLAB برنـامتج -

خطواتّ إجراء التجربة:

-
-

- نطبق الإجراءات التالية:

منطط/التجربة:

(A - الشكـ)
باعتبار K K

التعدي M_{p}	الخطأ e	قيمة الخرج X_{0}	زمن الصعود $\mathrm{t}_{\mathrm{r}}(\mathrm{~s})$	زمن الصعود $\mathrm{t}_{\mathrm{r}}(\mathrm{~s})$	K_{p}
					$\cdot 1$
					$\cdot, 0$
					r

مـاذا تلاحظ؟

مـاذا تستتتج؟
\qquad
\qquad
\qquad
\qquad

$\begin{gathered} \text { التعدي } \\ M_{p} \end{gathered}$	الخطأ e	$\begin{gathered} \text { قيمـة الخرج } \\ X_{0} \end{gathered}$	زمن الصعود t_{r} (s)	زمن الصعود t_{r} (s)	K_{i}
					$\bullet \cdot \bigcirc$
					\bullet • 1
					\bullet - 0
					1

\qquad
\qquad
\qquad

مـاذا تستتتج؟
\qquad
\qquad
\qquad

مـا تأثير الحاكم التكاملي على متغير الخرج؟
\qquad
\qquad

التعدي M_{p}	الخطأ e	قيمة الخرج X_{0}	زمن الصعود $\mathrm{t}_{\mathrm{r}}(\mathrm{s})$	زمن الصعود $\mathrm{t}_{\mathrm{r}}(\mathrm{s})$	K_{d}
					$\cdot 1$
					$\cdot 0$
					1

مـاذا تلاحظ؟
\qquad
\qquad
\qquad
مـاذا تستتتج؟
\qquad
\qquad
\qquad

مـا تأثير الحاكم التفاضلي على متغير الخرج؟
\qquad
\qquad

أسئلة ومناقشة

- مـا تأثير الجزء التتاسبي من الحاكم PID على الاستجـابة؟
- مـا تأثير الجزء التتاسبي التـكاملي من الحاكم PID على الاستتجابة؟
\qquad
\qquad
- مـا تأثير الجزء التكاملي التفاضلي من الحاكم PID على الاستجابة؟
\qquad
\qquad
- مـا تأثير الحاكم التتاسبي التـكاملي التفاضلي على إنثـارة الخطأ؟
\qquad
\qquad

التجربة| الخامسلة
 الحاكم التناسبي التكاملي التفاضلي الرقتمي

التحكم الرقمي في سرعة محرك تيـيار مستمر Automatic Speed Control

الهدف مز التجربة:

أن يتعرف المتدرب من خلال هذه التجربة على:
 - طريقة تشغيل الكرت الإلكتروني المبني عليه هذا المختبر.

- من تحليل منحنى استجابة سرعة النظام المتحكم يمكنتا حسـاب Ks,Tu,Tg - تصميم الحاكم PID بإتباع خطوات البحث عن الحل الأمثل حسب شين، هرونس و ريسويك واختبارهـا پٌِ حالة الحلقة المغلقة.

الأجهزةوالمكونات:

- مصدر التغذية (Power Supply)
- الكرت الإلكتروني.
- وحدة السرعة المتحكم فيها Speed Control Unit
-

Function Generator مولد إنثارات -

- النظام الميكانيكي (محرك تيار مستمر محمل ميكانيكيا مع مولد)، وإذا لم يكن موجودا نكتفي بهحرك المروحة يِّ اللوحة COM3LAB خطواتإجراء التجربة:
- شغل لوحة العمليات وأجب عن الأسئلة التي تسهح بمواصلة العمل.
 محرك + مولد) المثبت على الطاولة عوضا عن محرك COM3LAB.
- استعمل راسم الذبذبات للحصول على الخرج على القناة Y1.
- قبل تشغيل التجربة اطلب من المسؤول عن المختبر مراجعة التوصيـلات ومعايرة الأجهزة.
- قم بتشغيل التتجربة وسـجل إشـارة القناة Y1 على راسـم الذبذبات.

تسجيل النتتائج

$$
\begin{aligned}
& \text { ارسـم استتجابة النظام لإشـارة الخطوة. } \\
& \text { Ks اس } \\
& \text { Tu اس }
\end{aligned}
$$

أسئلة ومنـاقشة

اختر العبارة الصـحيحة الني تتطبق على منحنى خواص النظام ؟
أ- النظام المتحكم فيهـ يصل إلى قيمة الدخل.
ب- النظام المتحكم فيه يصد كلمـا زاد الزمن.
ج- النظام المتحكم فيه يستجيب بسرعة لتغير إشـارة الدخل.

مـاذا يحـدث للنظام ِِْ حالة زيادة المعامل Kp إلى قيمـة عاليةء
\qquad
\qquad
\qquad

التجربة السادسلة
 الحاكم التنـاسبي التكاملي التفـاضلي الرقمي

التحكم الرقّمي في الإضاءة Automatic Light Control

الهدف من التجربة:
أن يتعرف المتدرب من خلال هذه التجربة على:
Com3Lab الأجهزة المستخدمة وِّ مختبر التحكـر - طريقة تشغيل الكرت الإلكتروني المبني عليه هذا المختبر. . تحويل الإضاءة إلى جهد مستمر متتاسب مع الإضاءة ويمكن قياسـه عند القاعدة -

الأجهزةوالمكونـات:

- مصدر التغذية (Power Supply)
- الكرت الإلكتروني.
- وحدة الإضاءة المتحكم فيها Light Control Unit
- Oscilloscope جهاز راسـم ذبذبات

Function Generator مولد إشارات -

خطوات إجراء التجربة:

- شغل لوحة العمليات وأجب عن الأسئلة التي تسمح بمواصلة العمل. - وصل التجربة كما هو موضح يٌ الشكل (ץ- 9) - استعمل راسم الذبذبات للحصول على الخرج على القناة
 ومعايرة الأجهزة.
- قم بتثغيل التجربة وستجل إشنارة القناة Y1 على راسم الذبذبات.

تسجيل النتائج
1- ا- ارسـم استتجابة النظام عند استخخدام الحاكم التتاسبي فقط.
ارسـم استتجابة النظام عند استخدام الحاكم التكـاملي فقط.
rror ارسـم استجابة النظام عند استخدام الحاكم التتاسبي التكاملي معا.
مـاذا تلاحظ؟

مـاذا تستتتج؟
\qquad
\qquad
أسئلة ومنـاقشة
ا- الحتر العبارة الصديحة التي تتطبق على منحنى خواص النظام ؟
أ- النظام المتحكم فيـه يصل إلى قيمة الدخل.
ب- النظام المتحكم فيه يصد كلمـا زاد الزمن.
ج- النظام المتحكم فيه يستتجيب بسـرعة لتفير إشـارة الدخل.

ماذا يحدث للنظام ${ }^{2}$ محالة زيادة المعامل K إلى قيمة عالية؟

المراجـع

المؤلف	اسه المرجع
R. C. Dorf, Edison Wesley, 1990	Modern Control System
C. T. Chen, Publishing, 1993	Control System Design
John Van De Vegta, Prentice Hall, 1990	Feedback Control System,
B. Kuo, Prentice Hall	Automatic Control Systems
Prentice Hall, 2002	Johnson, C. D. Process Control Instrumentation Technology,
Prentice Hall, 2002	Bateson, R. N. Introduction to Control Systems Technology,
Prentice Hall, 1997	Ogata, K. Modern control Engineering,
Addisson Wesley, 1998	Dorf, R. C. and Bishop, R. H. Modern Control Systems,
أحمد فؤاد محمد عامر	، هندسة التحكم الآلي، مطبوعات الأكاديمية العربية للعلوموالتتكنولوجيا والنقل البحري،
	1991

