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Abstract 

Important factors for the aluminium industry for succeeding in 
reducing greenhouse gas emissions and increase energy 
efficiency is not only the speed in which the organization is able 
to utilize new knowledge, but also the development and use of 
new advanced process control systems. New advanced process 
control systems imply utilizing state of the art process control 
systems as e.g. Nonlinear Model Predictive Control (NMPC). 
Although the conventional control structures are dominating the 
aluminium industry, several authors have addressed advanced 
process control structures for controlling the Hall-Heroult 
process. This includes the adaptive control of alumina addition, 
9 -Box Matrix Control, LQG Control, Model Predictive Control 
and control structures involving the Neural network approach. 
Recently Hydro has been active in developing an NMPC control 
structure for controlling the Hall-Heroult process. The Hydro 
NMPC control structure and results from operational practice on 
Hydro's HAL275 and Hal4e cells are presented. 

Introduction 

An important factor for succeeding in reducing greenhouse gas 
emissions and increase energy efficiency in aluminium 
production is the use of new advanced process control systems 
and increased process knowledge. New advanced process 
control systems imply utilizing state of the art process control 
systems as e.g. Nonlinear Model Predictive Control (NMPC). 
NMPC is not a well defined term, but in our context NMPC 
means the use of a nonlinear mechanistic model, state 
estimation, and the solution of an online constrained nonlinear 
optimization problem. 

Controlling the alumina reducing process is challenging due to 
nonlinear process characteristics, coupled mass and energy 
balance, and few measurements. The scope of this paper is to 
present experiences with Hydro's NMPC strategy for controlling 
an aluminium electrolysis cell. 

An important challenge in an NMPC application is connected to 
the estimator, in that the complexity and efficiency of the NMPC 
is closely related to the quality of the estimates produced by the 
estimator. This paper mainly highlights these issues. The paper 
is organized by a short introduction to the Hall-Heroult process. 
Then follows a short introduction to the NMPC control 
philosophy and the use of an estimator herein. Finally, results 
and experiences from operational practice on Hydro's HAL275 
and Hal4e technology are presented and discussed. 

The Hall-Heroult process 

The Hall-Heroult process is the dominating process for 
producing aluminum today ([1]). The fundamentals of the 
process are to dissolve A1203 in molten cryolite (also known as 
electrolyte or bath), and electrically reduce complex aluminum 
containing ions to pure aluminum. The overall electrochemical 
reaction in the electrolyte is 

2A1203+3C^4A1+3C02 (1) 

where carbon is fed to the reaction as consumable anodes. By 
the use of various additives, in particular A1F3, the operating 
temperature of the electrolyte can be lowered from 1010°C to 
approximately 960°C. Both decreased temperature and increased 
excess A1F3 is believed to be beneficial for the amount of metal 
produced (current efficiency) and the energy consumption. As 
molten cryolite is very corrosive, the only component of an 
acceptable cost presently capable of coexisting with it over time 
is frozen cryolite. It is therefore necessary to maintain a layer of 
frozen cryolite (side ledge) to prevent the carbon walls from 
eroding. In order to maintain the side ledge there has to be a 
substantial heat loss through the side ledge and the carbon walls 
of the cell. The cell voltage applied is typically 4.3V, and the 
electric current through the cell is typically 150 - 350kA. A 
sketch of a cell is shown in Figure 1. 

Collector bar 

Figuel: The figure illustrates a cell for producing liquid 
aluminium. 
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In a modern plant of today 100-300 cells are placed and 
connected in series. There are three control inputs to the process, 
anode beam adjustments (controlling energy input), addition of 
A1F3 and addition of A1203, and three controlled variables, 
electrolyte temperature (also known as bath temperature), 
concentration (or mass) of A1F3 and concentration of A1203. A 
cell is regularly excited since liquid aluminium is tapped and 
some of the anode blocks are changed on a daily basis. This 
induces severe disturbances in the energy balance, and it implies 
that the operating conditions will vary significantly and hence 
provoke nonlinear cell effects. The process has strong internal 
couplings, for instance between the mass and energy balance 
through the side ledge. The coupled mass and energy balance 
combined with nonlinear process characteristics and few 
measurements, makes the Hall-Heroult process challenging to 
control ([2], [3], [4]). 

Although conventional control structures, like PID-variants 
combined with heuristics, are dominating the industry, several 
authors have addressed advanced process control structures of 
control variables regarding the Hall-Heroult process. This 
includes adaptive control of alumina addition ([5]), 9 -Box 
Matrix Control ([6]), LQG Control ([7], [4]), Model Predictive 
Control (MPC) ([8]) and control structures involving the Neural 
network approach ([9]). 

Recently Hydro have been active in developing an advanced 
control structure, by initiating an NMPC project that has resulted 
in a patent application for NMPC control of the Hall-Heroult 
process ([10]). 

Motivation 

Given reasonable operational targets, it is believed that 
minimizing the process variations around target values results in 
good process operations in the sense of minimum pollution to 
the environment, maximum production and minimum 
expenditure. Used in the context of the alumina reduction cell 
the focus should be on achieving low anode effect frequency, 
good gas scrubbing efficiency and low deviation from target 
when it comes to alumina concentration, bath temperature and 
acidity. 

The dynamics in reducing the mass of A1F3 is considered slow, 
and the control of the concentration of A1F3 has to deal with 
slow responses when changing the A1F3 concentration. The 
dynamics in the mass of A1203 is fast, and the control of the 
concentration of A1203 has to deal with quick responses. The 
control of the concentration of A1203 is usually considered as an 
isolated problem. 

The bath temperature is usually measured manually once a day 
or at least once a week. The concentration of A1F3 (acidity) is 
typically measured manually once or twice a week, while the 
concentration of A1203 is not normally measured at all, and only 
in conjunction with experiments. The continuous measurements 
are the pseudo bath resistance Rb and continuous measurement 
of a temperature in the cathode (Tcat). Rb is used as an input for 
the anode beam adjustment, and acts as a control variable in 
conjunction with the energy input to the cell. Because the energy 
balance and the mass balance are coupled through the side ledge 

(see e.g. [11]), the control of a cell must be considered as a 
nonlinear multivariable control problem. 

Experimental conditions 

All the results referred to in this paper are from the 
development phase of the control strategy. The control strategy 
was developed mainly on Hydro's HAL275 technology, but has 
recently been ported to and tested on Hydro's Hal4e cell 
technology. 

Towards a novel control philosophy 

In this work a (mathematical) model represents a theoretical 
representation of the Aluminium Electrolysis Cell, where the 
modeling methodology is based on First Principle. This means 
that the model describing the process is based on fundamental 
understanding of the physics such as heat and mass transfer 
relations and basic physical property relations. Modeling by 
First Principle usually takes the form of nonlinear differential 
equations, and hence results in a nonlinear model. By using 
theory from chemistry and thermodynamics, the mass and 
energy balances of the cell is described in such a manner that the 
time behavior of a chosen set of process variables and the 
relationship between them can be determined or estimated. The 
chosen set of process variables modeled is typical the side ledge 
thickness, mass of liquid bath and metal, concentration and mass 
of AIF3, concentration and mass of A1203, mass of sludge, bath 
temperature, cathode temperature, various heat flows, bath and 
metal height and pseudo resistance, to mention the most 
important ones. 

The model represents an idealized framework, and will to a 
certain degree deviate from the physical process due to model 
uncertainty. In order to make the model work in a non-ideal 
framework, estimation techniques known as Kalmanfiltering is 
used ([12]). 

Kaiman filter state estimation for the aluminium reduction cells 
is known from [13]. By using Kalmanfiltering techniques, the 
model uncertainty is adjusted for based on the information 
available in the measurements of process variables (a sub-set of 
all the process variables) and the process inputs. The 
measurements are typically the pseudo resistance, bath 
temperature, cathode temperature, liquid bath and metal height 
and the concentration of A1F3. The process inputs are typically 
the line current, added masses, anode movements and events 
(anode effect, metal tap, liquid bath tap/addition, anode change). 
Based on the information available via the inputs and 
measurements, the outcome of the model adjustment is a more 
accurate estimation of the chosen set of process variables at the 
given time instance. By this, hardly measurable and non-
measurable process variables can be estimated and predicted and 
used in a controller, making it possible to achieve better control 
of mass and energy balance of the aluminium electrolysis cell. 
By nonlinear Model Predictive Control (NMPC) we understand 
the use of a nonlinear dynamical model, state estimation 
(process variable estimation) and the solution of an online 
constrained nonlinear optimization problem to calculate the 
control inputs to the physical process. The structure of the 
NMPC controller is depicted in Figure 2. 
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Figure 2: The figure indicates the layout of the NMPC 
controller as applied by Hydro. 

The block labeled Process is meant to illustrate the physical 
process - one instance of the Aluminium electrolysis cell. The 
Process is operated by applying process control inputs (mass and 
energy) and by measuring some process outputs. The 
measurement could only be done up to a certain level of 
accuracy. The level of inaccuracy is described as Measurement 
Noise. The block labeled Estimator contains a mathematical 
model of the Process. The Process is described by using First 
Principle modeling techniques and results in several process 
parameters and process variables. The model also contains 
differential equations, which capture the time derivative of a 
selected sub-set of the process variables. This sub-set is called 
process states. 

Since knowledge regarding the process states and variables can 
be seen as simplified versions of the true process, the 
discrepancy could be seen as uncertainty - here labeled State 
Noise. The value of the process control inputs and the value of 
the measurements are inputs to the Estimator. Based on the 
knowledge of the process control inputs and measurements, the 
purpose of the Estimator is to calculate an estimate of the current 
process variables (process states, estimated parameters and 
measurements). Further, the estimated measurements are 
compared to the physical measurements, and the deviation is 
used to adjust the model such that the deviation is minimized. 
This technique is referred to as a Kalmanfilter estimation 
technique ([12]). 

The estimated measurements, states and parameters are the 
output from the Estimator, and serves as an input to the 
nonlinear model predictive control (NMPC) block. The NMPC 
block uses a sub set of the estimated process variables (CV), 
usually in conjunction with some reference values and 
constraints, to calculate the optimal future process control input 
scenario (MV) in order to move the process from the current 
working point (given by the estimate), to the working point 
given by the reference values. The optimal future process 
control input scenario would typically be within a finite future 
time frame. Since the strategy is operating in the discrete time 
frame, the optimal future process control input scenario would 
be calculated each time step (say each 5th minute), based upon 
updated process variable estimates, which also are available 
each time step. However, only the first value of the future 
process control input scenario is put onto the physical process. 
This is illustrated in Figure 3. 
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Figure 3: The figure illustrates the NMPC principles. 

The optimal control input scenario (MV) is found by solving an 
optimization criterion by minimizing it with respect to predicted 
process variables, among others. The predictions stem from 
using the nonlinear dynamic model to predict the future values 
of the process variables. The optimizer used is an optimizer that 
is able to solve nonlinear constrained problems (typically an 
SQP algorithm). The nonlinear process model in the NMPC 
block is in this work the same as the nonlinear model in the 
Estimator block. 

Results and discussion 

An important challenge in an NMPC application is connected to 
the estimator, in that the complexity and efficiency of the NMPC 
is closely related to the quality of the estimates produced by the 
estimator. This is illustrated in Figure 4, where data from one of 
the early tests of NMPC in closed loop control of the Ilall-
Heroult process is shown. 
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Figure 4: The figure shows measured and estimated alumina 
concentration for different tuning (a) and (b) of an estimator for 
the Hall-Heroult process. Note that the measured alumina 
concentration is not available to the estimator. 

Figure 4 clearly illustrates that the performance of the estimator 
is crucial for the expected performance of the NMPC 
application. As plot a. in Figure 4 shows, the alumina 
concentration was poorly estimated, but as plot b. in Figure 4 
shows, by retuning of the estimator, it was possible to achieve 
good estimation of the alumina concentration. However, the 
quality of the estimates may not only depend on the accuracy of 
the model, but also of the estimating method selected and how 
process knowledge is applied. This is illustrated in Figure 5. 

As Figure 5 illustrates, knowledge about the performance of 
different Kalmanfilter algorithms may show important when 
selecting the right one for the Hall-Heroult process. One would 
like to choose the algorithm that converges to the true solution 
as fast as possible. 

Experience with the estimator algorithm on Hydro's Hal4e cells 
shows very good performance in estimating important process 
variables. An example is shown in Figure 6. 
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Figure 6: The figure shows the estimated and measured process 
variables (a.) bath temperature (Tb), (b.) excess A1F3, (c.) 
superheat (SH) and side ledge thickness on a Hal4e cell. 
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Figure 5: The figure illustrate the convergence speed (how fast 
the estimated curve approaches the simulated curve) for 
different estimator algorithms with respect to the same 
erroneous initial values. Subplot (a) shows the convergence 
properties for one type Kalmanfilter. Subplot (b) show the 
convergence properties for another Kalmanfilter algorithm and 
subplot (c) show the convergence properties for a third 
Kalmanfilter algorithm. The investigated case studied is the 
alumina concentration for the Hall-Heroult process. Note that 
the estimators do not have identical tuning. 

By having a selection of the estimated process variables 
available, this is not only utilized by the NMPC application, but 
also by the organization in that they are able to follow up 
process variables previously not accessible. This eases the 
follow up of the cell behavior and contributes to increased and 
better process knowledge and organizational learning. 

Conclusions 

We have presented an NMPC control structure for controlling 
the Hall-Heroult process. We claim that the most important 
challenge in an NMPC application is related to adjusting the 
model behavior to process data through the estimator. Results 
from the developing phase of the NMPC application regarding 
estimator performance is presented, and shows that by carefully 
selecting the estimator algorithm and applying process 
knowledge with respect to the tuning of the estimator, very good 
estimates of important process variables can be achieved. 
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