المنقذ في الرياضيات للصف الثاني عشر

ثالثا: الدوال الجذرية

- اذا كانت رتبة الجذر فردية فإن مجال الجذر R
- إذا كانت رتبة الجذر زوجية فهناك حالتان

ا) اذا كان الجذر فى البسط فإن المجال يكون $0 \ge 1$ ما بداخل الجذر

$$q(x) = \sqrt{2x+4}$$

2) اذا كان الجذر فى المقام فإن
 المجال 0 > ما بداخل الجذر

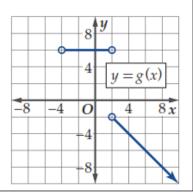
$$h(x) = \frac{5x}{\sqrt{3-x}}$$

ثانيا: الدوال النسبية

المجال{ أصفار المقام }/R

$$f(x) = \frac{3x - 1}{x^2 - 25}$$

$$R/\{5, -5\}$$

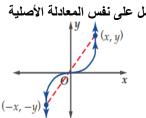

ملحوظة: عند التحليل اذا كانت الأصفار غير حقيقية فإن المجال R

خامسا: المدى من على الرسم البيانى من على المحور y كما ورد فى المثال السابق لحساب المجال بيانيا أولا: الدوال كثيرة الحدود

مجالها R

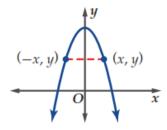
$$f(x) = 3x^2 + 4x - 1$$

رابعا: المجال من على الرسم من على المحور x

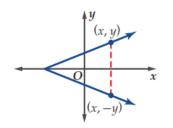

ايجاد المقطع السينى أو المقطع x جبريا f(x) = 0 نصع المعادلة ثم تقوم بحل المعادلة

ايجاد المقطع الصادى أو المقطع y جبريا نضع 0 م من المعادلة وتكون النقطة هي ((0,f(0))

المقاطع


حول نقطة الأصل

-x ب x بالتعویض عن کل x ب x و بالتعویض عن کل y ب y نحصل علی نفس المعادلة الأصلیة


حول المحور ٧

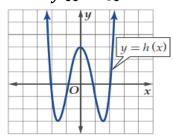
-x ب x ب عن كل x ب x ب خبريا بالتعويض عن كل x ب نحصل على نفس المعادلة الأصلية

حول المحور x

-y ب y عن كل y ب y نحصل على نفس المعادلة الاصلية

التمايل

الدوال الفردية


تكون الدالة زوجية اذا كانت متماثلة حول نقطة الأصل

اعداد أ. إبراهيم الدبور

الدوال الزوجية

تكون الدالة زوجية اذا كانت متماثلة حول المحور y

خطوات الاختبار

- -x ب x عوض کل x
- اذا كان الاس زوجى تسحب على الاشارة
- اذا كان الاس فردى تظل السالب وتضرب بالمعامل
- اذا لم تتغير اى اشارة تكون زوجية
 - اذا تغیرت جمیع الاشارات تکون
 فدیة

اللوال الزوجية والفردية

سنوك الطرفر

لقيع القصوي

تكون النهاية موجودة اذا كان

 $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$

تكون الدالة متصلة عند a اذا كان

$$\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = f(a)$$

$$\lim_{x\to a^{-}} f(x) = \lim_{x\to a^{+}} f(x)$$

تكون النهاية غير موجودة اذا كان

 $\lim_{x\to a^{-}} f(x) \neq \lim_{x\to a^{+}} f(x)$

y = f(x)

الفجوة: أصفار المقام المشتركة مع البسط

$$f(x) = \frac{x-5}{x^2-25} = \frac{(x-5)}{(x-5)(x+5)}$$

عند x=5 عند

$$\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) \neq f(a)$$

اعادة تعريف الدالة حتى تكون متصلة

$$f(x) = egin{cases} x = a \ & x = a \end{cases}$$
 الدالة الإصلية $x = a$

كيفية عمل الجدول

اذا كان عند عدد موجب

1.99	1.999	2	2.001	2.01
		tı		1 = 131

اذا كان عند عدد سالب

-2.001	-2	-1.999	-1.99

عند الصفر

-0.001	0	0.001	0.01

القفزة: تظهر في الدوال المتفرعة اذا كان $\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$

$$f(x) \begin{cases} 2x+1 & x \ge 2 \\ x^2-2 & x < 2 \end{cases}$$

- عوض x=2 في كلا الطرفين اذا x=2حصلت على اجابتان مختفتان يوجد قفزة و الله كانت نفس الاجابة لا يوجد قفزة.
- تقوم بعمل جدول مع ملاحظة التعويض بشكل صحيح في كل طرف

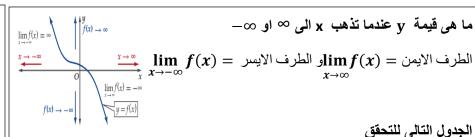
-			
~Z		7	
x	_	7.	

1.99 1.999		2	2.001	2.01

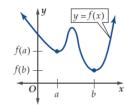
2x + 1

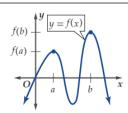
االانفصال اللانهائي: أصفار المقام الغير مشتركة مع البسط

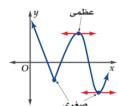
عند x=-5 يوجد انصال لانهائي

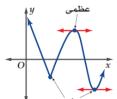

 $\lim_{x\to a^{-}} f(x) = \pm \infty , \lim_{x\to a^{+}} f(x) = \pm \infty$

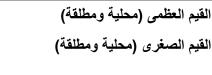
لا يمكن اعادة تعريفها لتكون متصلة


السلوك الطرفي للدوال النسبية

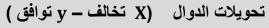

- اذا كان درجة البسط اقل من درجة المقام يكون السلوك v=0 الطرفي للطرفين عند
- اذا كان درجة البسط تساوى درجة المقام يكون السلوك الطرفي كالتالي

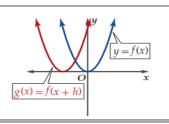

$$oldsymbol{y} = rac{oldsymbol{u}}{oldsymbol{u}}$$
معامل أكبر أس

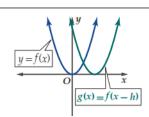



-1000	-100	-10	0	10	100	1000

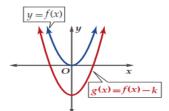
جبريا من المعادلات

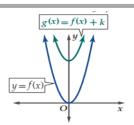

 $f(x_2)$ و $f(x_1)$ و المعادلة لايجاد x_2 و عوض x_1


متوسط التغير =
$$\frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

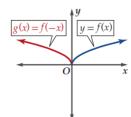

$f(x_2)$ و $f(x_1)$ توجد قیمة تعوض في القانون السابق

تحدد النقاط x_1 و x_2 من على الرسم



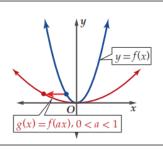


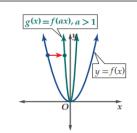
الازاحة (يمين ويسار) مرتبطة ب x


- ازاحة يسار وحدتينF(x+2)
- ازاحة يمين 3 وحدات f(x-3)

الانتقال (أعلى - أسفل) غيرمرتبطة ب x

- F(x) + 2
 ازاحة أعلى وحدتين
- ازاحة أسفل 3 وحدات f(x)-3

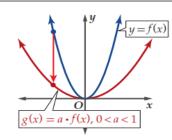


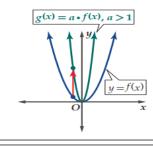

بيانيا

• حول المحور x اذا كان السالب بعيد عن x g(x) = -f(x) g(x) = -f(x) حول المحور g(x) = -f(x)

- - g(x) = f(-x)

الانعكاس

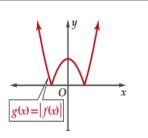


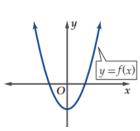


التمدد والانكماش الأفقى (مرتبط ب x)

- اذا كان مطلق معامل x أكبر من 1 يحدث انكماش افقى g(x) = f(2x)
 - ر (۱۳۰۰) مراد (۱۳۰۶) و اذا كان مطلق معامل x اقل من 1 يحدث تمدد افقى

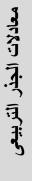
$$g(x) = f(\frac{1}{2}x)$$

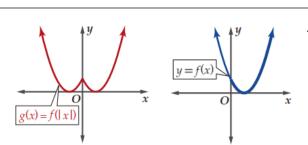



|f(x)|

(f(x) بالتمدد والانكماش الرأسى (مرتبط ب

- اذا كان مطلق معامل f(x) أكبر من 1 يحدث تمدد رأسى اذا كان مطلق معامل واست g(x) = 2f(x)
- اذا كان مطلق معامل f(x) اقل من 1 يحدث انكماش رأسى اذا كان


$$g(x) = \frac{1}{2}f(x)$$



نقوم بعمل انعكاس لكل اجزاء الرسم

التي تقع اسفل المحور x حول المحور x

f(|x|)

التي تقع الى ايمين من المحور ٧ حول المحور ٧

• نقوم بعمل انعكاس لكل اجزاء الرسم

f(x) عند تركيب الدالة gof(x) نقوم بوضع الداله g(x) بدلا من كل x في الدالة ويا

$$f(x) = x^2 + 3$$
 , $g(x) = 3x - 1$

$$gof(x) = 3(x^2 + 3) - 1$$

وتكمل عملية التبسيط

g(x) عند تركيب الدالة fog(x) نقوم بوضع الداله f(x) في الدالة x في الدالة وينا

$$f(x) = x^2 + 3$$
 , $g(x) = 3x - 1$

$$fog(x) = (3x - 1)^2 + 3$$

وتكمل عملية التبسيط

fog(x) مجال التركيب •

$$f(x) = \frac{6}{2x+1}$$
 , $g(x) = \frac{4}{4-x}$

f(x) نقوم بإيجاد موانع الدالة (1

$$x \neq \frac{-1}{2}$$
 www.all

g(x) =نقوم بوضع الموانع (2

$$\frac{4}{4-x} = \frac{-1}{2} \rightarrow -4 + x = 8 \rightarrow x = 12$$

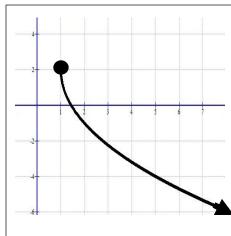
g(x) نقوم بأيجاد موانع الدالة (3 $x \neq 4$

 $R/\left\{\frac{-1}{2},4\right\}$ يكون مجال التركيب هو

• عند تركيب الدالة fog(2)

$$f(x) = x^2 + 3$$
 , $g(x) = 3x - 1$

g(2) نقوم بإيجاد قيمة (1


$$g(2) = 3(2) - 1 = 5$$

يكون الدالتين f(x), g(x)متعاكستين اذا كان

$$fog(x) = x$$
 , $gof(x) = x$

يكون الدالتينf(x), g(x) متعاكستين اذا كان

fog(x) = x , gof(x) = x

$$f(x) = -3\sqrt{x-1} + 2$$

$$x-1\geq 0 \qquad \rightarrow x\geq 1$$

المجال (1,∞)

ثم تكمل الجدول بالحاسبة

وتمثل الجدول بيانيا

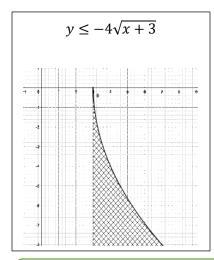
ثم توجد المدى من على الرسم

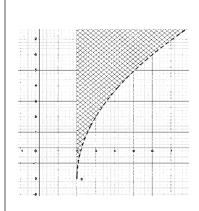
 $(-\infty,2]$ المدى

المجال (ما تحت الجذر فقط اكبر من او يساوى الصفر)

المدى: يفضل من على الرسم

طريقة رسم المعادلات


- Mode 7 (1
- 2) نكتب المعادلة ثم =
- Start (3 من المجال
- 4) End رقم اخر ضمن المجال
 - 5) Step دائما 1
- 6) انسخ الجدول ثم مثل الرسم


مل معادلات البنار التربيع

مل متباينات المبنر التربيع

طريقة رسم المتباينات

- نفس طريقة رسم المعادلات مع ملاحظة التالي
- اذا كانت $f(x) \geq f(x)$ او $f(x) \leq f(x)$ تكون (1 البداية • ويكون الخط متصل
- تكون f(x) > f(x) اذا كانت f(x) < f(x)البداية О ويكون الخط متقطع
- 3) نقوم بتظليل الجزء الاعلى من الرسم اذا كانت $f(x) \geq 0$ والجزء الادنى من الرسم $f(x) \leq 1$ اذا كانت

 $v > 4\sqrt{x-2} - 2$

 $\sqrt[4]{16x^8y^{20}}=2x^2|y^5|$ الجذور النونية: اذا كانت رتبة الجذر زوجية والناتج ذو أس فردى يجب وضع مطلق في الأجابة

مرافق الجذر: اذا كان الجذر في المقام نقوم بالضرب في مرافق الجذر للتخلص منه

$$\frac{3-\sqrt{x}}{\sqrt{x}+1} \to \frac{3-\sqrt{x}}{\sqrt{x}+1} \times \frac{\sqrt{x}-1}{\sqrt{x}-1} = \frac{3\sqrt{x}-3-x+\sqrt{x}}{x-1} = \frac{4\sqrt{x}-x-3}{x-1}$$

$\sqrt{x+16}=2+\sqrt{x}$ اوجد حل کل مما یلی

 عند حل معادلات اللجذ [لتربيعي نقوم بتر $(\sqrt{x+16})^2 = (5+\sqrt{x})^2$

$$x + 16 = 4 + 4\sqrt{x} + x$$

 اذا ظهر جذر جديد بعد التربيع نجعلة في طرف وباقي المسألة في الطرف الأخر ثم نقوم بالتربيع مرة أخرى

$$x - x + 16 - 4 = 4\sqrt{x}$$

$$12 = 4\sqrt{x}$$

$$\sqrt{x} = 3$$

$$x = 9$$

يجب التحقق من الحل وذلك بالتعويض في المعادلة

- اذا كأن كلا الطرفين متساويين يكون الحل
- اذا كان كلا الطرفين غير متساويين يكون الحل

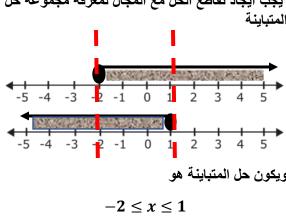
يجب ايجاد تقاطع الحل مع المجال لمعرفة مجموعة حل المتباينة

ويكون حل المتباينة هو

 $\sqrt{3x+6}+2\leq 5$ اوجد حل كل متباينة

1. عند حل المتباينة نقوم بايجاد مجال الجذر التربيعي

$$3x + 6 \ge 0 \rightarrow 3x \ge -6 \rightarrow x \ge -2$$


2. نقوم بحل المتباينة بجعل الجذر التربيعي في طرف لحالة . ثم تربيع الطرفين

$$\sqrt{3x+6} \le 3$$

$$3x+6 \le 9$$

$$3x \le 3$$

$$x \le 1$$

المتطابقات والدوال المثلثية

متطابقات الزاويتين المتتامتين

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$

$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$$

متطابقات فيثاغورث

$$sin^2\theta + cos^2\theta = 1$$

$$tan^2\theta + 1 = sec^2\theta$$

$$\cot^2\theta + 1 = \csc^2\theta$$

مقلوب الدوال

$$\csc \theta = \frac{1}{\sin \theta} \qquad \sec \theta = \frac{1}{\cos \theta}$$

$$sec\theta = \frac{1}{\cos \theta}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 $\cot \theta = \frac{\cos \theta}{\sin \theta}$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

متطابقات الزاويتين المتكاملتين

 $sin(\pm B) = sinA cosB \pm sinB cos A$

 $cos(A \pm B) = cosAcosB \mp sinA sinB$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

متطابقات الدوال الزوجية والفردية

$$\sin(-\theta) = -\sin\theta$$

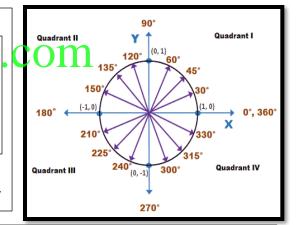
$$\cos(-\theta) = \cos\theta$$

$$\tan(-\theta) = \tan\theta$$

متطابقات الزاويتين المتكاملتين

$$\sin(\pi - \theta) = \sin\theta$$

$$cos(\pi - \theta) = -cos\theta$$


$$\tan(\pi - \theta) = -\tan\theta$$

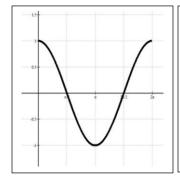
 $sin(2\theta) = 2sin\theta \cos\theta$ $cos(2\theta) = cos^2\theta + sin^2\theta$

$$tan(2\theta) = \frac{2\tan\theta}{1 - tan^2\theta}$$

$$\cos(2\theta) = 1 - 2\sin^2\theta$$

$$cos(2\theta) = 2cos^2\theta - 1$$

عند الحل يجب التأكد من الربع الذي تقع فيه الزاوية (θ)

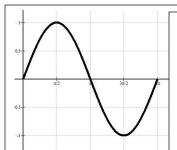

متطابقات نصف الزاوية

$$\sin\frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos\theta}{2}}$$

$$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}}$$
 , $\cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}}$, $\tan\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{1+\cos\theta}}$

$$\tan\frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos\theta}{1 + \cos\theta}}$$

عند الحل يجب التأكد من الربع الذي تقع فيه نصف الزاوية $(\frac{\theta}{2})$


1) $\cos \theta = 0$ at

$$heta=90$$
 , $heta=270$

2)
$$cos\theta = 1$$
 at

$$\theta = 0$$
 , $\theta = 360$

3)
$$sin\theta = -1$$
 at $\theta = 180$

1) $\sin \theta = 0$ at

$$\theta = 0$$
 , $\theta = 180$, $\theta = 360$

2)
$$sin\theta = 1$$
 at $\theta = 90$

3)
$$sin\theta = -1$$
 at $\theta = 270$