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2. MODELING

Hall-Héroult cells are very challenging to model. This is true now and it was especially true half a
century ago. The aluminum industry has invested huge resources in the development of mathemat-
ical models especially to support its cell design activities. Today the use of mathematical models
is considered indispensable to the successful design of efficient high current cells. However, there

was a time when it was not clear if the investment in modeling would ever become beneficial.

The papers included in this section present the work that made the difference. They have es-
tablished that it is possible to develop reliable mathematical models of the cell thermo-electric
behavior in order to correctly predict the cell heat balance, and the very complex magneto-hydro-
dynamic (MHD) cell behavior in order to correctly predict the cell stability. Today, it would be
unthinkable to design efficient high amperage cells without the help of those two types of models.

A third type of model has more recently become the focus of intensive R&D, namely the bath
bubble flow models used to support the effort to minimize the bubble layer electrical resistance
below the anodes. This type of model has not yet reached maturity and so only a partial story will
be presented here.

Of course, many more types of models have been developed than these three categories. Papers
on these others, such as potroom ventilation models, pot shell mechanical deformation models and

smelter logistic models are also presented.

Models more specifically representing the anode or the cathode behavior are not presented
here as they are more appropriately included in Electrode Technology for Aluminum Production
(Volume 4 of this Essential Readings in Light Metals collection).
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SIMULATION OF THERMAL, ELECTRIC AND CHEMICAL
BEHAVIOUR OF AN ALUMINUM CELL ON A
+DIGITAL COMPUTER

A, Ek and G, E, Fladmark

Abstract

Part one of the paper presents a method for calculating the tempera~
ture and electric potential in the cathode of a reduction cell, The time-
independent temperature and potential fields are described by two coupled
quasi-linear partial differential equations of elliptic type in two dimen-
sions with appropriate boundary conditions, Box~integration is used for
constructing the difference equations. Because of the temperature depen-
dent coefficients a special strategy of inner-outer iterations is used for
solving the system of equations. Part two of the paper presents a model
for the energy and mass balance of a complete reduction cell, The model
takes into account energy production aud consumption in all parts of the
cell, The dynamic solution requires the integration of 16 coupled non-
linear first-order differential equations, A stationary solution of the
energy balance is found by golving a set of 15 non-lineer algebraic equa-
tions, The model has been tested against measurements from a real cell,
and good results have been obtained, '

Mr, Ek and Mr. Fladmark are, respectively, physicist and mathematician
at the Physics Division, Institutt for Atomenergi, N-2007, KJELLER,
Norway.
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Preface

The purpose of this paper is to present some of the work concerning
aluminum production which has been carried out at Institutt for Atom-
energi during the last two years. The institute has, with its background
in nuclear reactor calculations, developed vowerfull numerical competence
which is now also being used in industrial process modelling,

The presented work has been done in cooperation with, and is paid
by A/S Ardal og Sunndal Verk,

The paper presents two different numerical techniques, and is there-
fore divided in part I and II.
Part T

Numerical Calculation of Temperature and Electric
Potential in the Cathode of a Reduction Cell

by

G. E, Fladmark

L. INTRODUCTION

This part of the paper presents a numerical method for calculating
the stationary temperature and potential fields in the cathode of an
aluminum reduction cell, With the cathode, we here also mean the side
lining, the frozen cryolite at the side and the melted aluminum in the
cell,

Results from the calculation are also the heat flux and the electric
current density. The heat flux and the temperature distribution are used
to study the thermic balance of the cell, The current distribution in
aluminum is necessary, along with the magnetic fields, if one wants to
calculate the convection of the metal, This is shown in the paper of
Miller & Solberg (3).

In the calculations, conduction is assumed to be the mechanics of
heat transfer, However, surface radiation is taken into account., The
calculation will be done in a two-dimensional cartesian geocmetry, Leak-
age of heat or electric current in the third direction is taken care of
either by leskage coefficients or internal boundary conditions,

The author wishes to thank Mr., I, Martinussen, who has done most of
the prograrmming work.
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2, BASIC EQUATIONS
———

2,1 Heat Transfer

The basic equation for the heat transfer is written:

- v SFD 7 E) 4L (F,T) MF) =g @.1)
with

q = oZ,T) (v e()? (2.2)
where

¥ : position vector in space (x,z)

T temperature (OC)

K : heat conduction coeff, (W/m °c]

heat leacage coeff. (1/m?)
: heat source (W/m3)
: electrical potential (V)

<10>QDF‘

¢+ Laplacian operator
The following types of boundary conditions mey appear:

prescribed temperature on the boundary

prescribed temperature outside the boundary and heat transfer
coefficients

mrescribed heat current density on the boundary

symmetrical boundary conditions

W >

o Q
.. we

Surface radiation is approximated by letting:

a=a +a,T (2.3)

where

a : total heat transfer coeff, (W/m2 OC)
8, ¢ pertial heat transfer coeff. (W /m? °c)

0
8, ¢ partial heat transfer coeff, rate [W/m2 C)

2,2 Electric Current Transfer

The electric potential is given by:
-V o (r,) v olF) + L (¥,7) ¢(¥) =0 (2.4)
where

Le : electric current leacage coeff,
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Boundary conditions to be considered are:

: prescribed potential on the boundary

: prescribed potential outside the houndary and current transfer coeff,
: prescribed electric current density on the boundary

symmetric boundary conditions

oUawE>

3., METHOD OF SOLUTION

Ass:xming the temperature dependent material data given in a tabu-
lated way or as functions defined on the actual temperature range, the
solution of the temperature and the potential is performed in the follo=-
wing steps:

i) A temperature field is assumed.

ii) Calculate the potential from Eq. (2.14) with the material proper-
ties based on the last temperature,

iii) Calculate the source in Eq. (2.,1) from the last potential and
temperature,

~—

iv) Calculate the temperature dependent heat transfer coefficients

in the boundary conditions for Eq. (2.1).

v) Calculaste the temperature from Eq,(2,1) with the material pro-
perties based upon the last temperatwre,

vi) Make a jump to:
a) item iv) and vperform a new set of inner iterations in v).
b) item ii) and perform a new outer iterationm.

The outer iterations are stopped when a convergence criterion on
the temperature is met, Inner iterations are used for solving the poten-
tial and the temperature when the coefficients and the source are given,
In order to get a fast all-over convergence and low computing times, the
convergence criteria in the inner iterations should depend in some way
on the outer iterations,

This way of using an outer iteration loop has the advantage that
either by solving the temperature or the potential we have to solve the
same mathematical problem, namely:

Caleulste the function ¥(X) when s, a, 8, y and § (all depending on
the space point) are given where

- VBV Y+8P=s (3.1)

—
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with the boundary conditions:

B-g-r‘%+cuh=y (3.2)

Here 3/9n denotes the normal derivative operator,

s is the electric or thermic source,

a is the electric current or the heat transfer coefficient on the
boundary,

8 is the electric current or the heat conduction coefficient and

8§ is the leakage coeffiecient.

In Eq.{3.2) the values of a, 8 and y depend on the type A, B, C or
D boundary conditions discussed earlier,

3,2 Finite Difference Equations

We consider a plan through the cathode and divide this into a set
of rectangular and triangular cells (Fig., 1), In each cell we assume
constant material properties., The cell corners constitute the nodes were
we want the solution,

Two types of nodes exist, the internal and the boundary nodes, We
treat them separately,

Internal nodes

Fig, 2 shows a node surrounded by cells with different material
properties. We integrate Eq.(3.1) on the domain A with the boundary L

1]
£ =1, 2, 3, b4 By use of the divergence theorem we have: L

-fvevear+[sypaa -§B%‘de+f6¢dA=
A A L A

(3.3)

[}

[ saa
A

Assuming the following approximations:
1 wE) = w(F) Teh
(3.4)
> -> +
+_3 ylrg) = virg)
2) flr) = urg) (rg) ;T e Lys £ = 152,3,4

7y - 7 |
L= %
we get the following five point difference equation:

8 Y. . - & V. . s -8 Y s
0. . 1. Y 2. . ¥i,5-
i,j 0 S L I )
3.5
- a
141,

P . - 8 T T
141,73 2i,,j+1 w1,3+1 1,3
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with \
&, .73 111 (B K5+ B 1
43 -1 Y2 9 U
8,  =pe— i (8 By *8 h,) (3.6)
i,3 j=1 o2 431
1 ]
i )
a =} a + F, .|8
ol,.] =1 I":n.,‘] Tad J
55 ° Fi'j(s) (3.7)

The function Fi j is defined as:
9

k,

F;,; () =glxg, *+x, )by I T TR

1 %2 921 922
(3.8)
+ (x +x ) h. k. .+ (x + X )h.k.)
33 93 Il Tay Tyt
Here Uy denotes the material property in cell no fm.

Boundary nodes

The equation may be constructed from Eq.(3.5) by making the following
corrections:

1) Add to a and s, . the quantities A, , resp, €. ., which are
sos 143 1,J 1,sJ

1,
the results when taken the line-integral along the external boun-
dary of the cell,

2) Let 8 = § = s = 0 for cells outside the boundary.

As an example we consider the boundary node given in Fig., 3. The contri-
bution to the line integral is:

-f B-a-‘de=(u Vv, =7 )3 /Mm2aex
L, 4Ty, an 3y 14d 39
(3.9)

+ (o Yo . =Y )5&? k.2

assuming piecewise constant coefficients.
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Then
A =H, . [u)

i,d 1,5

’ ' (3.20)
EloJ i,d (Y]

with
= L ATT R s L A2 +x.2 3.11)

B 5 () Fog BT KA T N, T A (

The finite difference equations are written in the following way:

=3, 4 i=12,0000 1 (3.12)

> > >
Ay ¥y =By ¥y - By Yia
with the matrices and the vectgrs of order J(i), Matrix A, is three-

diagonal and B, is diagonal, by then denctes the solution™y st the nodes
along line i,

The method of successive overrelaxation is applied to Eq.(3.12),
Let t denote the iteration index, then:

-~

>

3> -+ -
Ay V5(8) = By b (6) + By Yy (6-d) v e
(3.13)

a

3i) = w (B00) = Fi(e-1)) # P (e-1) 5 1= 142,0000,T

The first equation is solved by matrix factorization (l) and the optimirn
w is calculated according to an algorithm of Varge [2).

3,3 Inner-outer Iterations

A total convergence is obtained by doing a certain number of inner
iterations during each outer iteration. In order to decrease the error
by a factor of at least &_ during the m'th outer iteration, the number
of inner iterations to be performed is:

N —__r_lﬂ.rém.___,
m  In{w-l) + 1n g

The parsmeter q depends on the properties of the iteration matrix.
In general we have g 2 1, However, numerical experiments have shown that
the value on q have a very small influence on the total convergence.

(3.14)

The outer iterations are stopped when

Nt - llce

where || || denotes the maximum norm and ¢ is the wanted aceuracy.
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L, EXAMPLES FROM. A CALCULATION

In Fig. 4 is shown the temperature distribution in the cathode as
resulting from a calculations The liguidus temperature of cryolite is
9579C, and symmetri has been assumed,

In the electric potential calculation, a uniform current density of
7.05 kA/m? is supplied from the anode to the top of aluminum, Let us
define the positive y-direction from the centerline towards the side, and
the positive z-direction from the top towards the bottom of the cell,
Figs, 5 then shows the y- and z-components of the current density in the
metal, The curves represent the average values over the height of 20 em
aluminum, and msy serve as input for the calculation of the convection
in the metal, Experiments show that the computed current densities may be
uncertain. The reason for this is the insufficient knowledge of the proper-
ties of the materials in the cell,
5._CONCLUSTON

The presented method allows a very detailed calculation of the ther-
mic and electric state in the cathode of the cell, Since materisl pro-
perties may differ from one node to the next, the fine-structure in the
cell construction may easily be studied, The number of nodes is restric~
ted only by computer space and computing time.

The size and shape of the cryolite freeze must be pre-specified and
kept constant in the calculations, Since the shape of the freeze is in
reality a function of the temperature distribution, & sort of manual
trial-and-error method must often be applied to achieve good results,

A method for calculating the shape of the cryolite freeze have now
been developed by the author,
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