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Abstract 

 

During the last few years the development of inert anodes for 
the primary aluminium industry has advanced considerably. 
This update reviews results of tests on (1) anodes made of 
ferrites (Ni, Co and Zn) alone or in combination with nickel 
oxide and copper leading to the final composition 
Ni1-x-yFe2-xMyO4, where M is zinc and/or cobalt, x is from 0 to 
0.5 and y is from 0 to 0.6; (2) anodes made of oxides (Ni, Li, 
Sn, Sb, Cu) alone or in combinations; and finally (3) anodes 
made of combinations of metal powders including Ni, Al, Fe, 
Cu and Zn. The studies examined the solubility in cryolite 
alumina melts, but also performance in electrolysis tests from 
which the results are discussed. Laboratory solubility tests 
revealed that compositions with limited corrosion (1-2 cm/y) 
exist and could be successful not only in laboratory but also in 

industrial cells.        
 

 
Introduction 

 
The development of inert anodes for the primary aluminium 
industry has been reviewed several times[1-15] during recent 
years. The primary reason is that  inert anodes eliminate 
production of  greenhouse gases during the electrolysis process 
and evolve oxygen instead. Benedyk [11] and de Nora [15] have 
proposed the following criteria, which  inert (or non-
consumable) anodes should fulfil: 

- an erosion rate of less than 10mm per year at a 
normal current density of 0.8 Acm-2 

- polarization voltage of less than 0.5V at 0.8Acm-2 

- continuous voltage drop no worse than  carbon 
anodes 

- robust properties to survive in normal plant 
conditions 

- stability in oxygen at 1,000°C
- resistance to fluoridation 

- thermal stability with adequate thermal shock 
resistance 

- adequate mechanical strength 

- low electrical resistivity 

- low overvoltage for oxygen evolution 

- electronically conductive 

- no lowering of metal quality standards 

- easy, stable electrical connections 

- environmentally safe 

- improved health and safety 

- lower cell capital cost
- retrofit potential 
- improved cathode life 

- low cost and easy fabrication into large shapes 

All these criteria are very difficult to fulfil. However, according 
to Welch et al [12] the reasons for developing an inert anode are 

to eliminate work practices associated with anode changes, 
namely; 

-  elimination of all costs associated with carbon 
anodes and 

-  elimination of carbon dioxide emissions 

Of special interest recently has been the compilation of a series 
of papers dealing with the material challenge [14], the energy 
balance of electrolysis cells [13], metal purity [16], and the 
economic aspects [17] of producing inert anodes. The following 
update is a continuation of a previous review [1] and reviews of 
previously un-referenced literature. 
 

Oxides 
 
Oxygen-evolving, non-consumable anodes are being developed 
for use in industrial aluminium production. Ceramic type 
electrodes dissolve slowly into the electrolyte, a process 
governed by mass transport conditions. According to Keller et al 
[18], the life of all-oxide or cermet anodes used in practical 
aluminium electrolysis will depend largely on the rate of 
dissolution of the electrode constituents into the electrolyte. This 
depends mainly on the reduction rates for the anode components 
at the cathode.  
 
CeO  2

 

 
The solubility reaction of cerium oxide into cryolite melts was 
studiedby Dewing et al [19], who investigated solubility as a 
function of the oxygen pressure, alumina content of the melt and 
the aluminium fluoride content of the melt. They found that the 
cerium in solution is exclusively Ce3+. The dominant species is 
CeF3, where the  CeF3 is probably complexed as Na2CeF5. 
There is no evidence for the existence of CeOF [20]. The 
control of oxygen pressure is important in measuring the 
solubility of an oxide which has more than one  oxidation state. 
Practical experience when using CeO2-coated anodes as oxygen-
liberating electrodes, has shown that the solubility varies less 
with alumina concentration than expected. The absence of Ce4+ 
in solution is also favourable; however if Ce3+ and Ce4+ 
coexisted, then an oxidation-reduction cycle could lead to poor 
current efficiency.   

 
 Cr  2O  3 – NiO – CuO 

 
On a laboratory scale, Pietrzyk and Oblakowsky [21]examined 
an inert anode with the composition 62.3 wt% Cr2O3, 35.7wt% 
NiO and 2wt% CuO, which had a bulk density of 3.66 gcm-3. 
The electrolyte contamination was found to be 0.0008 wt% Cr, 
0.0005 wt% Ni and 0.0222wt% Cu. The rate of dissolution was 
lower than one centimetre per year and metal contamination was 
0.3wt%. A mass transfer anode dissolution mechanism was 
experimentally confirmed. The Ni in the electrolyte reaches a 
stable value and does not contribute to the time-dependent 
corrosion. The concentration in the metal becomes linear with 
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time provided that the concentration in the electrolyte remains 
constant. The dissolution of Cr does not depend on the 
concentration already found in the bath. A saturation solubility 
was not reached after 10 hours.  

 
NiFe  2O  4 and CoFe  2O  4

 

 
Metal oxides, due to their high thermodynamic stability and 
favourable electro-catalytic activity for oxygen evolution, are 
tested as anodes for the electrolysis of alumina. Oxygen is 
liberated at the anode and is environmentally friendly. In this 
respect, Augustin et al [22, 23] investigated the behaviour of 
nickel and cobalt ferrites. Laboratory tests were run, and the 
corrosion stability in molten cryolite electrolyte was found to be 
satisfactory. 
 
 
NiO-Li  2O

 

 
The rate of corrosion of electrodes based on NiO-(2.5wt%)Li2O 
was determined by Zaikov et al [24] by weighing the sample 
during the experiment after placing it in the melt. The rate of 
corrosion of oxide electrodes depends on the preparation 
parameters. Increasing sintering time and temperature decreased 
the corrosion rate. The main focus of attention must be the 
physical and structural properties of the formed oxide bodies. 
Samples had been tested in alumina-saturated electrolyte for 4.5 
hours under electrolysis conditions [25]. After the test, the 
anode was in good shape without any visible changes. 

 
Ni  2O  3, NiO 

 
Research on nickel oxide electrodes was performed by Wu and 
Mao [26]. They prepared five kinds of Ni2O3-based and NiO-
based cermet materials which they used in aluminium 
electrolysis tests. They found that during sintering, Ni2O3 was 
transformed into NiO, thus resulting in anode cracking. In 
corrosion and electrolysis tests, Du [27] determined the thermal 
shock and corrosion resistance of the test anodes. The measured 
corrosion rate was less than 3 cm per year, which completely 
met their requirements.  

 
SnO  2

 

 
The solubility of SnO2 in cryolite melts and its dissolution 
mechanism have been examined several times. Haarberg et al 
[28] found the SnO2-solubility to be 0.08wt% in pure cryolite at 
1,035°C. It will be higher under reducing conditions. They 
expected increased solubility due to the presence of divalent or 
even mono-valent tin. The dissolved species can be reduced to 
metallic tin at the aluminium cathode. However, the 
electrochemical behaviour was examined more intensively by 
Issaeva et al [29] and Yang and Thonstad [30]. Cyclic 
voltammetry and potential step measurements were performed 
on platinum, gold and glassy carbon electrodes. The 
voltammograms showed peaks associated with the presence of 
two oxidation states in the melt i.e. Sn2+ and Sn4+. In melts 
without oxides, volatile species such as SnF2 and SnF4 were 
formed anodically. The presence of dissolved alumina was 
found to stabilize the dissolved tin species. The anodic 
dissolution of tin demonstrated the co-formation of divalent and 
tetravalent tin in cryolite-alumina melts.  
 

The preparation of tin oxide doped with copper oxide was 
examined by Dolet et al [31]. They observed fast and high 
densification rates in air at 1,150°C. Copper dissolved into the 
SnO2 structure. They prepared highly densified 0.99 SnO2-
0.01CuO-based ceramics with additions of antimony, tantalum 
or niobium oxides. Las et al [32] observed that the electrical 
properties of tantalum and niobium-doped ceramics are grain-
boundary controlled at least at low temperatures. Antimony-
doped materials have a different electrical behaviour due to the 
presence of a segregation layer of antimony which inhibits grain 
boundary effects. 
 

Of greatest interest, has been the composition: 96 wt% SnO2 + 2 
wt% Sb2O3 + 2 wt% CuO. First of all, Galasiu et al [33] 
developed a method to increase the thermal shock resistance by 
adding pre-sintered, ground material to the bulk composition. 
They also found [34] that the higher the sintering temperature, 
the better the mechanical properties. Then they varied the 
amount of  the Sb2O3 and CuO-dopants [35].At dopant 
concentrations of more than 2 wt% the sintering behavior and 
electronic conductivity decreases while the activation energy for 
the conductivity increases.  
 
Popescu and Constantin [36] developed a method to fix tin 
oxide bodies to a metallic conductor, before Galasiu et al [37] 
performed electrolysis tests in 200 A laboratory test cells for a 
maximum duration of 100 hours. During this time the test 
electrodes were completely destroyed. They observed migration 
of copper to the surface of the inert anode and dissolution of 
copper into the electrolyte during electrolysis causing anode 
corrosion. This phenomenon was confirmed by Vecchio-Sadus 
and co-workers [38], who examined the corrosion behaviour in 
detail. They electrolysed anodes for 90 minutes at an anodic 
current density of 1 Acm-2 and selected electrolyte compositions 
so as to keep the bath temperature between 830-975°C. The 
anodic corrosion rate at a bath ratio of 1.5 and at 975°C was 
12.5 mgAh-1, while the anodic corrosion rate at a bath ratio of 
0.74 and at 830°C was 6.5 mgAh-1. A four-fold increase in 
corrosion rate was observed at open circuit, thus demonstrating 
the protection which oxygen evolution provides during 
electrolysis. Besides the depletion of copper from the anode, 
they saw a build-up of an alumina-rich surface layer under 
certain conditions. Pietrzyk and Oblakowsky [21] determined 
the corrosion rate to be less than 1 cm per year with a metal 
contamination of about 0.3 wt%, with tin reaching saturation 
solubility in the bath after 8 hours.  
 

On laboratory scale, Popescu and co-workers examined the 
current efficiency systematically. Their anode composition was 
96 wt% SnO2 + 2 wt% Sb2O3 + 2 wt% CuO. They determined  
current efficiency by measuring the total amount of oxygen 
evolved at the anode, and examined the influence of 
temperature, current density and interpolar distance [39], as well 
as the influence of electrolyte composition [40] and the 
behaviour during an anode effect in [41].  
 

The influence of silver oxide additions to tin oxide-based inert 
anodes on the electrical and chemical properties concluded 
Galasiu’s experiments [42]. Best results were obtained with the 
following anode composition: 96 wt% SnO2-2wt% Sb2O3-2 
wt% Ag2O. This composition has the lowest electrical 
resistivity, but the best corrosion resistance in cryolite-alumina 
baths. 

1127



From Light Metals 2002, Wolfgang A. Schneider, Editor

 
ZnO 

 
Besides inert anodes based on SnO2, Galasiu et al [43,44] also  
tried ZnO as an inert anode material adding dopants such as 2 
wt% SnO2, 2 wt% Sb2O3, 2 wt% CuO, 2 wt% Fe2O3, 2 wt% 
Bi2O3, 1 wt% Cr2O3 and 1 wt% ZrO2. First results look 
promising with the best dopant being ZrO2. Dewing et al [45] 
found the dissolution mechanism to be: 

3ZnO + 2AlF3 -> ZnF2 + Al2O3. 
 
ZnFe  2O  4

 

 
Zinc ferrite was used as an inert anode material by Yu et al [46]. 
Zinc ferrite materials are corrosion resistant under anodic 
polarization. The highest corrosion rate appears at an anodic 
current density of 0.5-0.75 Acm-2. High anodic current densities 
(more than 1.5 Acm-2), high alumina bath concentrations and 
low molar bath ratios are the most important factors for using 
inert anodes.  

 
Cermets 

 

NiFe  2O  4 + NiO + Cu 

 
The dissolution mechanism of elements from the anode into the 
electrolyte and from the electrolyte into the aluminium pad have 
been examined during recent years. Chin et al [47] dissolved 
nickel oxide, iron oxide and elemental copper, frequent 
constituents of inert anodes, in alumina-saturated cryolite melts. 
They observed that the transfer of these elements from the 
fluoride melt into the aluminium was complete and that nickel, 
iron and copper were reduced and alloyed into aluminium in 
non-electrolytic experiments. This indicates that anodes made 
from these components are not completely inert with respect to 
molten cryolite in contact with aluminium.  
 
Olsen and Thonstad [48] tested various compositions of nickel 
ferrite cermets in laboratory cells, using conventional 
electrolytes for 50 hours and a current density of 0.8 Acm-2. In 
the metal product they found typically 2,200ppm Fe, 400ppm Ni 
and 450ppm Cu   with anode corrosion rates of 0.12 cm per 
year. Xiao et al [49] observed that the normal corrosion is due to 
chemical dissolution of the anode material and to reduction of 
the corrosion products into the cathode metal. The corrosion rate 
increased with increasing cathode surface. At potentials higher 
than about 2.4V, the anodes showed catrastophic corrosion 
which the authors ascribe to decomposition of the anode 
materials by depletion of alumina at the anode surface provoked 
by low alumina bulk concentration and/or high current density. 
The mass transfer from oxide anodes into the melt and from 
there into the metal was then examined by Hives et al [50] and 
by Pietrzyk and Oblakowski [51]. As described by Chin et al 
[47] these authors also found that the electrolyte is close to 
saturation with respect to these species and the rate-determining 
step of the anode corrosion process is the alloying of the species 
into the aluminium, where the stability of the elements is in the 
order Ni>Fe>Cu. If the mass transfer from the electrolyte into 
the metal could be decreased, this would also decrease the 
contamination level of anode constituents in the deposited metal 
[52].  
 

Olsen and Thonstad [53] examined the corrosion behaviour of 
ferrite anodes in 50 hour electrolysis tests. They found that 
nickel exhibited significantly lower mass transfer coefficients 
than iron and copper. The extrapolated corrosion rates of the 
anode ranged between 1.2-2.0 cm per year, which is acceptable 
from an industrial point of view. Blinov et al [54, 55] examined 
the corrosion mechanism independent of bath temperature. 
Samples with compositions developed by Alcoa (NiFe2O4-
18NiO-17Cu) were tested for more than 130 hours and at an 
anodic current density of 0.2 Acm-2. The corrosion rate at a bath 
temperature of 800°C was determined to be less than 10-3 
gcm-2h-1 and at a bath temperature of 950°C was more than 8 x 
10-3 gcm-2h-1. Even at low corrosion rates of anodes during 
electrolysis, the aluminium produced had fairly high levels of 
impurities, exceeding standard specifications. The corrosion rate 
of inert anodes can be reduced significantly by using low-
temperature electrolytes. 
  

The solubility of NiO and NiAl2O4 in alumina-cryolite melts 
was examined by Lorentsen et al [56] in laboratory experiments. 
They found the NiO stable solid phase to be NiO at low alumina 
activities and NiAl2O4 at high alumina activities, and measured 
the Gibbs energy of formation for NiAl2O4 as –28.6 kJ per mol. 
The solubility of NiAl2O4 in alumina saturated melts increases 
with increasing temperature. The solubility of FeO and FeAl2O4 
was measured by Jentofsten et al [57]. FeO was the stable solid 
phase at low alumina concentrations, while FeAl2O4 was stable 
at high alumina concentrations. They determined the Gibbs 
energy of formation for FeAl2O4 at 1,020°C to be –17.6 kJ per 
mol. The solubility of FeAl2O4 in alumina saturated melts 
increased with increasing temperature. According to Dewing 
and Thonstad [58] all iron oxides (FeO, Fe2O3, Fe3O4 and 
FeAl2O4) dissolve in cryolite-alumina melts to give solutions 
containing both Fe2+ and Fe3+. The factor controlling the 
Fe2+/Fe3+ ratio is the oxygen pressure. However, the anode and 
anode gas of an industrial Hall-Héroult cell appear to be 
insufficiently oxidizing to cause significant conversion of Fe2+ 
to Fe3+. The authors account for an anomaly in the liquidus 
diagrams for FeF2 – Na3AlF6 and FeO - Na3AlF6 in terms of a 
solid solution of FeF2 in cryolite.  

 
NiFe  2O  4 + NiO + Cu + Ag 

 
Alcoa improved its composition of inert anodes by adding silver 
in order to increase electrical conductivity. For the manufacture 
of inert anodes, a mixture comprises nickel and iron oxide with 
about 50-90 wt% and a mixture of copper and silver and/or 
silver alloys preferably up to 30 wt% [59]. The alloy or mixture 
of copper and silver comprises particles having an interior 
portion containing 90 wt% copper and 10 wt% silver and an 
exterior part containing at least 50 wt% silver and less than 10 
wt% copper [60]. The starting material for the manufacture of 
inert anodes comprises a mixture of copper and silver powder 
with a metal oxide powder containing about 51.7 wt% NiO and 
about 48.3 wt% Fe2O3. About 83 wt% of the NiO and Fe2O3 
powders are combined with 17 wt% of the copper and silver 
powder [61]. Reduced bath temperature is preferable in order to 
improve the corrosion resistance of the electrodes. For a cell 
operated at 920°C, the preferred molten bath composition is: 
bath ratio 0.8-1.0, 6 wt% CaF2 and 0.25 wt% MgF2. The cermet 
composite preferably includes an alloy phase and at least part of 
the ceramic phase has a spinel structure [62]. A solid conductor 
of oxide ions coats the anode. The solid conductor comprises 
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zirconia stabilised with yttria [63]. The metal base of the inert 
anode comprises besides copper and silver another noble metal 
such as palladium [64].  
 
An inert anode resulting in low impurity levels in the aluminium 
product comprises Fe2O3, NiO and ZnO and further comprises 
at least one metal selected from Cu, Ag, Pd, Pt and Au. The 
inert anode follows the formula Ni1-x-yFe2-xMyO4, where M is Zn 
and/or Co, x is from 0 to 0.5 and y is from 0 to 0.6 [65]. The 
aluminium product is said to contain less than 0.18 wt% iron, a 
maximum of 0.1 wt% copper and a maximum of 0.034 wt% 
nickel. Besides oxides of nickel and iron, the inert anode may 
include zinc oxide [66] and cobalt oxide [67]. More generally 
the composition of the inert anode follows the formula 
NixFe2yMzO(3y+x+z) +/-b [68] with M being at least one metal 
selected from Zn, Co, Al, Li and Cu; x is from 0.1 to 0.99; y is 
from 0.0001 to 0.9; z is from 0.0001 to 0.5; and b is from 0 to 
about 0.3.  
 

Just recently Alcoa announced that they had delayed 
deployment of new inert anodes due to thermal cracking 
problems and issues with electrical connections [69]. 
Experiments are being  performed in an  Alcoa smelter in Italy 
and in September 2001, Alcoa hope to have a full commercial 
pot operating with inert anodes at a U.S. plant. Alcoa is 
increasing production capacity of inert anodes to a level 
corresponding to one pot every 1.5 days. They hope to have one 
full potroom operating in 2002. Alcoa plans to begin converting 
their smelters to inert anodes within 2-3 years, conforming to 
plans elaborated with the U. S. Department of Energy [70]. Part 
of the engineering development involves numerous tests on the 
anodes to examine cracking and connection problems. At the 
time of writing, the longest period Alcoa had operated  inert 
anodes was 300 hours (12.5 days). Alcoa expects to run inert 
anodes continuously in excess of 6 months to be confident about 
long term performance.  
 

Metals 
 
Al-Cu alloy 

 

Sadoway [14] believes that metals offer the best potential for 
inert anode materials. Hryn and Pellin [71, 72] proposed a 
dynamic anode consisting of a cup-shaped metal alloy vessel 
filled with a molten salt that contains aluminium. A possible 
alloy is copper with 5 to 15 wt% aluminium. In the presence of 
oxygen, aluminium on the metal anode’s exterior surface forms 
a continuous alumina film that is thick enough to protect the 
anode from chemical attack by cryolite during electrolysis and 
thin enough to maintain electrical conductivity. However, the 
alumina film is soluble in cryolite, so it must be regenerated in- 
situ. Film regeneration is achieved by transport of aluminium 
from the anode’s molten interior through the metal wall to the 
anode’s exterior surface. The transported aluminium oxidises to 
alumina in the presence of evolving oxygen to maintain the 
protective alumina film. Periodic aluminium addition to the 
anode interior keeps the aluminium activity in the molten salt at 
the desired level.  
 
Ni-Al-Fe-Cu-X Alloys 
 
Stable alloys made of nickel, aluminium, iron and copper were 
for a long time, an interesting field of research. One way to 

manufacture such metal alloys was micropyretic synthesis, for 
which Submarian et al explored the combustion conditions [73]. 
Inert anodes containing the above mentioned metals were 
manufactured by combustion synthesis [74] and optional doping 
elements in amounts of 60-80 wt% nickel, 3-10 wt% aluminium, 
5-20 wt% iron, 0-15 wt% copper and 0-5 wt% of one or more of 
chromium, manganese, titanium, molybdenum etc. The 
combustion synthesis produced metallic and intermetallic 
phases. A composite oxide surface is produced in-situ by anodic 
polarisation of the micropyretic reaction product in molten 
fluoride electrolyte containing dissolved alumina or by high-
temperature treatment in an oxidizing gas [75]. It was reported 
[76] that best results were obtained with an anode composition 
Ni-Al-Cu-Fe-X which during electrolysis transforms to a Ni(Fe) 
porous core and a dense mixed oxide and ferrite on the surface. 
This anode material evolves oxygen during electrolysis.  
 
After extensive trials, Sekhar et al [77, 78] found the optimal 
composition to be Ni-6Al-10Cu-11Fe-3Zn (wt%). Anode blocks 
manufactured micropyretically out of this composition consisted 
of porous Ni, a Ni3Al intermetallic core and a mixed oxide 
surface layer consisting mainly of nickel oxide, nickel zinc 
ferrite and zinc oxide. Metals such as tin, silicon, cerium or zinc 
were added in order to decrease the corrosion rate of the inert 
anode [79]. A steady state between oxidation and dissolution at 
the inert anode surface was suggested. Zhang [80] used metallic 
inert  anodes, coated with cerium oxide, which resulted in stable 
cell voltage and very low corrosion rates.  
 
Non-carbon metal-based inert anodes can be made more high-
temperature resistant, electrically conductive and 
electrochemically active with a multilayer surface coating [81]. 
The surface may be rendered moreelectrocatalytically active 
when coated with an electrocatalyst [82] such as iridium, 
palladium and platinum. The surface can be rendered more 
electronically conductive by coating with a slurry  comprising a 
polymeric carrier oxide and an electronically conductive oxide 
coating [83]. The applied slurry is then solidified and attached to 
the substrate by heat treatment to form an adherent, protective, 
predominantly oxide-containing coating. The active constituents 
of the coating are oxides such as for example spinels or 
perovskites, in particular however, ferrites [84].  
 
An anode having a metallic anode body that self-forms during 
normal electrolysis with an  electrochemically active oxide-
based surface layer was then proposed [85]. The rate of 
formation of the surface layer/anode body interface is 
substantially equal to its rate of dissolution at the surface 
layer/electrolyte interface, thereby maintaining its thickness 
substantially constant.  Such inert, non-carbon anode electrolytic 
cells were developed [86, 87]. In one case the electrochemically 
active anode surfaces are in a coplanar arrangement [86]. The 
anode members are spaced apart by inter-member gaps forming 
flow-through openings for the circulation of electrolyte driven 
by the escape of anodically-evolved oxygen. In the other case, 
The electrolysis cell is equipped with a drained cathode and 
operates at a temperature of 730°C to 910°C without formation 
of a crust or ledge of solidified electrolyte [87]. The electrolyte 
is substantially saturated with alumina, particularly on the 
electrochemically active anode surface. Metal anodes with an 
oxidised surface demonstrate the potential for use as an 
electrode, however, long-term performance has not yet been 
demonstrated in an operating environment [88].  
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Ni-Fe 
 
During the development of Ni-Fe alloys as inert anode 
materials, Duruz and de Nora [89] proposed a metal-based core 
structure of low electrical resistance, coated with a series of 
superimposed, adherent conductive layers. These layers 
constitute a barrier impervious to mono-atomic oxygen and 
molecular oxygen; one intermediate layer on the oxygen barrier 
which remains inactive in the reactions for the evolution of 
oxygen gas; and one electrochemically active layer for the 
oxidation reaction of oxygen ions present at the 
anode/electrolyte interface into nascent mono-atomic oxygen.  
 
Duruz et al [90] proposed this electrochemically active 
transition metal oxide layer to be a hematite-based layer. The 
cell operation temperature is required to be sufficiently low to 
limit the solubility of iron species in the electrolyte. The inert 
anode body was then proposed to be an iron-nickel alloy body 
[91], whose surface is oxidised to form a coherent and adherent 
outer iron oxide-based layer. To reduce erosion, the anode may 
be kept chemically stable during cell operation by maintaining a 
sufficient amount of dissolved alumina and iron species in the 
electrolyte to prevent dissolution of the protective oxide layer on 
the anode. This protective oxide can be formed on the metal 
surface before cell operation by heating the iron-nickel anode 
body in an oxygen-containing atmosphere at a temperature 
which is preferably more than 100°C higher than the operating 
cell temperature [92]. This electrochemically-active oxide-based 
surface layer may also self –form during normal electrolysis 
[93] whereby the rate of formation of the layer is substantially 
equal to its rate of dissolution at the surface layer / electrolyte 
interface, thereby maintaining its thickness substantially 
constant.  
 
In order to render the metal anode surface more corrosion 
resistant, Duruz and de Nora [94] proposed to manufacture the 
nickel-iron anode body such that the metal surface has a nickel-
rich outer portion filled with iron oxide containing inclusions. 
The typical anode was a Ni-30 wt% Fe alloy [95], which was 
pre-oxidized for 30 minutes at 1,100°C in air to form a 
protective oxide film. This anode was used in  a 72-hour test at a 
bath temperature of 850°C and at a current density of 0.6 Acm-2. 
The bath composition was cryolite with an excess of more than 
20% AlF3 and about 3 wt% of alumina. In order to control low 
alumina concentrations in low temperature baths, Crottaz et al 
[96] developed a special alumina sensor for the analysis of high 
AlF3 electrolytes. During a meeting, de Nora [15] presented 
results of tests performed in 100 A, 1 kA and 20 kA drained 
cathode electrolysis cells. Iron contamination in the aluminium 
product was much less than 0.5 wt%, and this could be reduced 
by decreasing bath temperature. Only very little nickel 
contamination was found in the metal as this remains in the 
metallic anode core.  

 
Oxide Ion Conducting Membrane 

 
A novel non-consumable anode for the electrowinning of 
aluminium was developed by Rapp [97, 98]. This anode  
consists of a thin, dense oxide-ion conducting membrane with 
an electrocatalytic porous internal anode where reformed natural 
gas is electrochemically oxidized. This concept could 
potentially reduce carbon dioxide emissions by at least 50% as 

compared to the current carbon anode, and also eliminate other 
greenhouse gases at the smelting step. The operation of the new 
cell requires about one-third less electrical power, further 
reducing energy requirements. The anode is a thick closed-end 
ceria-based electrolyte tube coated internally with a porous Ni-
CeO2 slurry and provided with hydrogen or natural gas as 
reducing gas. The US Department of Energy supports the 
development of this novel anode with an investment of 
US$1.7m [99, 100].  

 
Cell design 

 
In order to use an inert anode in combination with a wettable 
cathode, new cell designs for the production of aluminium seem 
to be necessary. Electrolysis cells with vertical bipolar inert 
anodes/wettable cathodes were proposed by La Camera et al 
[101]. Beck and Brooks [102] propose the use of copper, nickel 
and iron composite bodies used as vertically arranged electrodes 
in aluminium reduction cells, and Brown [103] also proposed 
the concept of a  vertical electrode cell for the production of 
aluminium with reference to current research. Low-temperature 
electrolysis allows non-consumable metal-alloy anodes to show 
promise in laboratory cells. With such cells, commercial purity 
aluminium can be produced with promising high current 
efficiency.  
 

Future 
 
In an effort to concentrate forces in order to develop inert 
anodes by 2020, a road map was established in cooperation with 
the Aluminum Association and the US Department of Energy 
[104]. The North American aluminium industry is required to 
consider the desirability of joint efforts in inert anode 
technology research, as well as possible mechanisms for funding 
and directing the research efforts. The industry should also 
consider the government’s role in the overall effort to develop 
inert anode technology. Finally, the industry should consider 
examining other elements of advanced cell design that could 
complement inert anode technology and enhance its benefits. 
However, even before this date it could be possible to have 
aluminium electrolysis pots equipped with inert anodes and 
wettable cathodes.  
 
As reported by van Leeuwen [99, 105], such pots could be in 
operation in commercial scale by 2002 and the industry could 
adopt such new technology by 2005. It was reported that the 
shut down Troutdale smelter of Alcoa could be equipped with 
inert anodes up to the year 2003 [106] and commercialisation 
could start also in the same year [107, 108]. Even Pechiney 
wants to use Alcoa’s technology for inert anodes, once the 
development has proven successful but thinks this will take 
another five to ten years [109]. Alcoa believes the new 
technology will not consume more energy than the current Hall-
Héroult process. Observers expect Alcoa will need to perfect its 
technology on a larger scale before starting to install inert anode 
technology in other smelters. Cost savings in constructing a 
greenfield smelter could be significant [110] and perhaps as 
much as 35% [99, 108].  
 

Conclusion 

 
Much laboratory work has been performed during the last few 
years, especially to investigate the solubility of inert anode 
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composites (metals, oxides and cermets) into commercially used 
fluoride electrolytes. Alcoa and Moltech are the two companies 
that have achieved some success in the development of inert 
anodes. Alcoa uses cermet composites probably as described in 
[66-68], but still has difficulties in manufacturing anodes due to 
thermal shock and must solve the electrical connection between 
the cermet and bus bar [69]. The longest period inert anodes 
have been  operated is not more than 12.5 days but Alcoa 
expects to run inert cermet anodes continuously in excess of six 
months. 
 
Moltech used inert anodes based on a nickel-iron alloy [15, 89-
96] and announced that it operated 100 A, 1 kA and 20 kA 
aluminium electrolytic cells with such anodes and at bath 
temperatures at about 850°C [95]. However, according to 
Kvande and Haupin [13], Sadoway [14], Thonstad and Olsen 
[16], and Keniry [17] it seems nearly impossible to retrofit 
existing smelters with inert anodes in combination with wettable 
cathodes. Keniry [17] also stated that the economic benefits 
when changing over from carbon anodes to inert anodes are not 
big enough for largeinvestments. He proposes changes in cell 
design to the vertical electrode arrangement proposed by Brown 
[104].  
 
From the above demonstrated state of the art one can conclude 
that the aluminium industry is years away from a large-scale 
retrofit of existing aluminium smelters with inert anodes. 
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