الإهـارات الإعربيـة المتححـدة
وزارةًالـتـريـيـة والـتـعلـيـيم

McGraw-Hill Education

 الرياضيات المتقدّمـة نسـخة الإمـارات العـربية المتحدةللصف 12 مجلد 1

mheducation.com/prek-12

جهيع الحقوق محفوظة © للعام 2017 لصالح مؤسسة McGraw-Hill Education
جهيي الحقوق محفوظة. لا يجوز إعادة إنتاج أي جزء من هذا المنشور أو توزيعه في أي صورة أو
 McGraw-Hill Education الإرسال عبرها أو البث لأغراض آلتعليم عن بُعدـي

الحقوق الحصرية للتصنيع والتصدير عائدة لهؤسسة McGraw-Hill Education. لا يمكن إعادة تصدير هذا الكتاب من البلد الذي باعته له McGraw-Hill Education. هذه الواير النسـخة الإقليمية غير متاحة خارج أوروبا والشرق الأوسط وإفريقيا.

طُبع في دولة الإمارات العربية المتحدة.
رقم النشر الدولي: 3-681079-52-1-978 (نسخة الطالب)
رئ41079-4
رقم النشر الدولي: 52-581851-52-1-978 (نسخة المعلم)
(نسخة المعلم) MHID: :1-52-681851-5 (

صاصب السّمو الشّيخ خليفة بن زايد آل نهيان رئيس دولـة الإمارات العربيّة المتّحدة، حفظه اللّه
"يجب التزوُّد بالعلوم الحديثة والمعارفِّن الواسعة، والإقبال عليها بروج عالية ورغبة صادقة؛ حتى تتمكّن دولة الإمارات خلال

الألفيّة الثالثة من تحقيق نقلة حضاريّة واسعة."
من أقوال صاحب السّمو الشّيخ خليفة بن زايد آل نهيان

دلالات ألـوان عــــلـم دولة الإمارات العربية المتّحدة

اسـتلهمت ألـوان الـعـلـم من الــبيت الـشهير للـــشاعرصفيّ الـدّين الحنّي:

بيضُ صَنائعُنا خُضْرٌ مَرابعُنا

سودُ وَقائِعُنا حُمْرُ قَواضينـا

يرمز إلىى النَّماء والازدهار والبيئة الخضراء، والنُهضة \square يرمز إلى عمل الخير والعطاء، ومنهمج الْدولة لدعم الأمن والشالام فيا العالـم. \square

يرمز إلـى تضحيات الجيل السابق لتأسيس الاتحاد، \square

الحضارية فيالــولة. وتضحيات شهداء الـوطن لحماية منجزاته وهكتسباته.

رؤية دولـة الإمارات العربية الـمتحدة 2021

2. متصدون فـي الـمصير - المضين على خطى الآباء المؤسسين. - أمن وسلامة الوطن الما - تعزيز مكانة الإمارات في الساهة الذولية.
3. متصدون في المسؤولية

- الإماراتينيالواثق المسؤول.
-الأسر المتماسكة المزدرهرة.
-- ثقافة غنية ونابضة.

4. متصدون فـي الرخاء

- حياة صحية مديدة. - نظام تعليمـين من الطراز الاؤل. - أساوب صيايا متكامامل. - حمايةالبيئة.

3. متصدون في الـمعرفة

- الضاقات الكامنة لرأس المال البشري المواطن.
-
- اقتصاد معرففي عالي الإنتاجية.

1. الوحدة 1 تهههيدات لحسـاب التفاضل والتكامل
2. النههايات والاتصال 2
132.3 التفاضل.
تطبييتات الاشتقاق 4
التكامل 5
تطبيقتات التكامل الهـحلود 6
طـرائق التكامل 7

الرا

يضهن مؤلفونا الرواد أن برامـج McGraw-Hill الخاصة بالرياضيات منظمة بشكل رأسي حقيقي بواسطة البداية مـع النهاية في النجاح العقلي في الجبر 1 وما بعده. بواسطـة "التخطيط الخلفي" للهحتوى من برامـج المدارس الثانوية، فإن جميع برامجنا الرياضية موضحة بشكل جيد في نطاقها وتسلسلها.
الهؤلفْون الرواد

جلبرت جاي كويفاس، حاصل على درجة الدكتور اه. أستاذ تعليم الرّياضيات جامعة ولاية تكساس - سـان ماركوس سـان ماركوس. تكساس
جوانب الخبرة: تطبيق الهـاهبم والههارات في سباقات رباضية ثُرية. عمليات تهئيلبة رياضية

ج. أ. كارتر حاصل على درجة الدكتوراه. مدير مساعد التدريس والتحليم مدرسة أدلاي إي ستيفنسون الثانوية
 جوانب الخبر ة: استخدام التكنولوجيا والوسائل التحليهية لتصوبر الهـاهيم. تحقيق فهم الرباضبات لدى المتحلمين باللفة الالهجليزية

كارول مالوي حاصلة على درجة الدكتور اه. أستاذ مساعد جامعة نورث كارولينا في تشـابيل هيل
 جوانب الخبرة: عملبات التهئيل والتفكبر النقدي ونجاح الطالب فُي الجبر 1

روجر داي، ححاصل على درجة الدكتوراه في التعليم من الهجلس آلوطني
رئيس قسم الرياضيات مدرسـة بونتياك تاون شـيب الثانوية بونتباك، إلِينوي
جوانب الخبرة: فهـم وتطببق الاحتمالبة، والإحصائِيات. وتحليم مدرس الرياضبات

1.

52

1-1 كثيرات الححلود والـدوال النسبية
1-2 الدوال العكسية

1-3 الدوال الهثلثية والدوال الهثلثية الهكسية
1-4 الدوال الأسيية واللو غاريتهية

1-5 تحويلات الدوال

النهايات والاتصال

2-1 هو اجعـة هوجزة عـن التفاضل والتكاهل: الههـاسـات وهـول الـهنتنى

2-2
2-3

2-4 العتصـال ونتائُحه

100

111
2-6 التقويف الوسيهي لنتهاية

123

التُماضل

3

الاستعـداد للوحدة 3
3-1 الهمهاسـات والسرعمة المتتجهة
3-2 الاشتقاقت
3-3 حساب الهشتتقات: قاعدة القتوة
3-4 قواعد الضرب والقسههة
3-5 قاعدة السلسلة
3-6 مشتقات الدوال الهـثلثية
3-7 اشتقتاق الدوال الأسية والدوال اللوغاريتهية

3-8 الاشتـقاق الضهنـي والدوال الهـثلثية الهعكـوسـة
3-9 دوال القطـع الزائد

3-10 نظـرية القيهة الهتوسطـة

4-1 التقريبات الخطية وطريقة نيوتن
4-2 الصيغ غير الهعرّفة وقاعدة لوبيتال
4-3 القيم العظهى والصغرى
4-4 الدوال الهتزايدة والهتناقصة
4-5 التقعر واختبار المشتقة الثانية
4-6 نظرة عامة على رسمم الهنحنيات
4-7 القيم الهثلى
4-8 الهعدّلات الهرتبطة
4-9 معدلات التغير في الاقتصاد والعلوم

الاستــداد للوحدة 5
5-1 الدوال الأصلية

5-2 الهجهموع والرمز سييجها

5-3 الهساحـة

5-4 التكامل الهـحـدود

5-5 النظـرية الأسـاسية لحساب التفاضل والتكامل

5-6 التكامل بالتـويض

5-7 التكامل العـددي
5-8 اللوغـاريتم الطبيعي كتكامل

تطبيثّات على التكامال الهبحيود

الاستعـداد للوحدة 6
6-1 الهساحة بين منـحنيين
6-2 الحجمم: شرائع وأقراص وحلقات
6-3 الاحججام بالأصداف الأسطوانية
6-4 طول القتوس ومساحة السطح
6-5 حركة الهقذوفات
6-6 تطبيـتات التكامل على الفيزياء والهندسـة

6-7 الاحتهال

طراكُّة (لتكامكا

الاهـتعـداد للوحدة 7.

7-1 مراجــة الصيغ وطـرائق التكامل
7-2 التكامل بالأجزاء

7-3 طرائق تكامل الدوال الهثلثية
7-4 تكامل الدوال النسبية باستتخدام الكسور الـجزئية

7-5 جداول التكامل وأنظـهة الـحاسيوب الجبرية

7-6 التكاملات الهــتلة

نقدّم في هذه الوحدة مجهوعةً من الموضوعـات المألوفة، وفي المقام الأول تلك التي نعدّهـا
 لرياضيات ما قبل التفاضل والتكامل، فإننا سعينا إلى تسليط الأضواء على بعض عـلامات الترميز والمصطلحات الموحّدة التي نستخدمها في هذا الكتاب.

أثناء نهوّ حيوان النوتيلاس، يحيط نفسه بصدفةِ حلزونية الشككل. وتعتمد هذه الهندسـة البديعة على كّمّ ل

كلية ثابتة. ونقصد بذلك أنه إن رسمت مستطيلا يحيط بالصدفة، فتبقى نسبة طوله إلى عرضه

تُّة العديد من الطرق لتمثيل هذه الخاصية رياضيًا. ندرس في الإحداثيات القطبية (التي نعرضها في الوحدة 9) الحلزونات اللوغاريتمية التي تتهيز بخاصية النهو الثَابت لزاويتها، ويقابل ذلك ثِبـات
 الهحيط بالصدفة إلى سلسلة من الهربعات كما يوضّح الشكّل تشكّل الأطوال النسبية للهربعات متتالية فيبوناتشي الشهيرة، العددين السابقين له.

$$
\begin{aligned}
& \text { تتهيّز متتالية فيبوناتشي بقائهةٍ مذهلةٍ من الخواصّ المثيرة للاهتمام. (ابحثئوا على شبكة الإنترنت } \\
& \text { لتعرفوا تمامُا ماذا نقصد!) تقابل الأعداد الهوجودة في الهتتالية ظواهر مذهلةُ في الطبيعة، كعدد } \\
& \text { بتلات الزنبق (3) والحوذان (5) والقطيفة (13) ونبات حشيشة الحمى (34). ورغم أن الطريقة } \\
& \text { المستخدمة لتوليد متتالية فيبوناتشَي بسيطة، فمن المفيد أيضًا التفكير في كيفية التعبير عنها على }
\end{aligned}
$$

الشككل 1.1 على الصفحة التالية) لا بدّ أن يظهر تمثيلًا بيانيًّا ينحني نُحو الأعَلى، كمنحنَّى لقطـع
مكافئ أو منحنُّى أسي.

 إطار التفاضل والتكامل. يتجلى أحدهما في أهمية البحث عن أمن
 الثاني، فيتمثل بالتفاعل المتبادل بين التمثيلات البيانيانية والدوال. ومن خـلال ربط تقنيات الجبر مـع الصور المرئية التي تقدّمها التمثيلات البيانية، ستحسّن من قدرتك على حلى مسائل في الرياضيات من الحياة اليومية بصورةٍ كبيرةِ.

صدفة النوتيلاس

الشكل 1.1
متتالية فيبوناتشي

كثيرات الحدود والدوال النسبية

نظام الأعداد الحقيقية والهتباينات

نبدأ حساب التفاضل والتكامل انطلافا من نظام الأعداد الحقيقية، حيث سنركّز على الخواصّ ذات الأهمية الخاصة بالنسبة إلى حساب التفاضل والتكامل.
 الصيغة n إنّ الأعداد غير النسبية هي كل الأعداد الحقيقية التي لا يهكن كتابتها باليا بالصيغة
 وعلى النتيض من ذلك، للأعداد غير النسبية امتداداتٌ عشُريٌّ غير دورية وغير منتهية. فِلى سبيل المثال، نورد أدناه ثلاثة أعدادٍ غير نسبيةٍ مألوفةٍ مع امتداداتها العشرية:

$$
\begin{aligned}
\sqrt{2} & =1.4142135623 \ldots \\
\pi & =3.1415926535 \ldots \\
e & =2.7182818284 \ldots
\end{aligned}
$$

نتصوّر أنّ الأعداد الحقيقية أعدادٌ مرتبةٌ على طول خط الأعداد الموضّح في الشكل 1.2 (الأعداد الحقيقية). ويشار إلى مجهوعة الأعداد الحقيقية بالرمز

الشكل 1.2
خط الأعداد الحقيقية

الحل يبيّن في الشكل 1.6 تمثيلاً بيانيُّا لكثيرةٍ حدودٍ تقع على يسار المتباينة. وبها أنّ كثيرة الحدود يمكن تحليلها إلى الحوامل فإن (1.1) يكافئ

$$
\begin{equation*}
(x+3)(x-2)>0 \tag{1.2}
\end{equation*}
$$

هيكن لهذا أن يحدث بطريقتين ائنتين فحسب: حين يكون كلا الحاملين موجبًا أو حين

 - كفترة بالصورة

> ستـذكر بلا شـك التعريف الموحّد التالي.

التعريف 1.1

 . وهذا ينصّ عـلى أنّه 1 و وباستخدام التعريف، يكون

$$
|-4|=-(-4)=4
$$

لاحظ أنه لأي عددين حقيقيين a وb

$$
|a \cdot b|=|a| \cdot|b|
$$

$$
|a+b| \neq|a|+|b|
$$

بصورةٍ عامّة. (للتحقق من ذلك، خذ ببساطة $a=5$ و $a=-2$ واحسب $a=1$ ولتا الكهيتين). ولكن، الصحيح دائما هو:

$$
|a+b| \leq|a|+|b|
$$

ويشـار إلى هذه العـلاقة باسم الهتباينة الهثلثية. إنّ تفسير العالاقة

(1.3)

الهـثال 1.5 حـلّ متبـاينتٍ تضـمٍ قيهـة مطـلقة
 $|x-2|<5$
 أوجد حلّ المتباينة

الححل استغرق أولُ بضع لحظاتِ في قِراءة مـا تنصّ عليه هذه المتبا تعطي الهسافة من x إلى 2، فإنّ (1.3) تنصّ عـلى أنّ المسـافة من x إلى 2 إلى 2 يجب أن تكون أُصفر من 5. ولذلك، أوجد كل الأعداد x التي تبعد عن 2 مسـافةً أصنـر من 5.

 الفترة: (-3,7).

$$
y=x^{2}+x-6
$$

ملاحظات

لأي عددين حقيقيين a تعطي العلاقة، بين a و b. (انظر الشُكل 1.7)

الشكل 1.7

المسـافة بين a و

1.8 الشكل $1 \times 5-2 \mid<5$
1.8 الشكل $1 \times 5-2 \mid<5$

الهـثال 1.6 حل متباينة تضـم قيهـة مطـلقة لهـجهوع أوجد حلّ الهتباينة

$$
|x+4| \leq 7
$$

الحل لاستخدام تفسيرنا للمسافة، فإن علينا كتابة (1.4) بالصورة

$$
|x-(-4)| \leq 7
$$

ويشير هذا إلى أنّ المسافة مـن x إلى 4- أقل من أو تساوي 7. نوضّح الحل في الشكل 11.9.

$$
-r<x<r
$$

في المثال 1.7، نستخدم ذلك لإعادة النظر في المتباينة الواردة في المـثال 1.5.

بإضافة 2 إلى كلّ حدّ نحصل على الحل

$$
-3<x<7
$$

والذي يهكن كتابته أيضًا وفق صيغة الفترة (3,7-) كما سبق وأشرنا.

تذكر أنّ الهسـافة بين النقطتين

$$
\begin{aligned}
d\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
1.10 \text { نوضّح ذلك في الشكل }
\end{aligned}
$$

المثثال 1.8 اسـتخدام قانون المسـافـة أوجد المسافة بين النقطتين (2, 2 (1) و(4) 3). الحل إنّ المسافة بين (2, 1) و(4) 2 (3) تساوي

- $d\{(1,2),(3,4)\}=\sqrt{(3-1)^{2}+(4-2)^{2}}=\sqrt{4+4}=\sqrt{8}$

مـعادلات المسـتقيمـات

العام	تعداد السكّان
1960	179,323,175
1970	203,302,031
1980	226,542,203
1990	248,709,873

تجري الحكومة إحصاءُ سكانيًّا على مستوى البلاد كلّ 10 سنواتٍ لتحديد تعداد السّكان. نوضّ الحّح

من صحوبات تحليل هذه البيانات أنّ الأعداد كبيرةًّ جدَا. ويمكن الحدّ من وطأة هذه المشكلة

 يمكن تبسيط بيانات التعداد السّكاني عبر تقريب الأعداد إلى أقَرب مليون. نوضّح بيانات التحويل في الجدول الهرافق، ونبيّن أيضًا مخططط تشتّت لنقاط البيانات هذه في الشُكل 1.11.

x	y
0	179
10	203
20	227
30	249

> الهثثال 1.7 طـريقة بديلة لـحل المتباينات أوجد حلألا للمتباينة 5 > 2 2 2 | الحل يكافئ هذا متباينةُ ثنائية الطرف $-5<x-2<5$

قد يبدو أن النقاطـ في الشكل 1.11 تشكّل خطَا مستقيمًا. (استخدم الهسطرة وتحقّق

 البيانات على مستقيمٍ واححد. وينطوي هذا البرهان على مفهوم الميل المـألوف.

التعريف 1.2

الحل

$$
\begin{equation*}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \tag{1.5}
\end{equation*}
$$

يكون رأسـيًاً ويكون الهـيل غـير معـرّف.

نصف المـل في أغلب الأحيان على أنه "التغيّر في y مقسـومُا على التغيّر في x" ويكتب
أو بالصورة بصورة أبسطط

بالإشارة إلي الشككل 1.12b (والذي يكون فيه للمستقيم ميلّ موجب)، لاحظ أنّه لكل أربع

$$
\frac{\Delta y}{\Delta x}=\frac{\Delta y^{\prime}}{\Delta x^{\prime}}
$$

1.12b الشكل

المـثلثات المتشـابهة والهيل

1.12a الشكل

الميل

وبذلك فإن الهيل هو نفسه بغض النظر عن النقاط الهختارة على الهستقيم. لاحظ أنّ أي مستقيمٍ يكون أفقيًا، إذا كان ميله صفرًا فقط.

الهـثال 1.9 إيجاد ميل مستقيم
 أوجد ميل المستقيم الذي يهرّ عبر (15) (2) و(3) 5 (4). الحل مـن (1.5)، نحصل على
 - $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-3}{2-4}=\frac{2}{-2}=-1$

الهـثال 1.10 استتخدام الميل لتـحديد ما إذا كانت النقاط متسـامتة
 الحل لاحظ أونّا أنّ ميل المستقيم الذي يصل بين (1,2) و(3,10) (3) يساوي

$$
m_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{10-2}{3-1}=\frac{8}{2}=4
$$

وبطريقة مشابهة، فإنّ ميل المستقيم الذي يصل بين $(3,10)$ و(4,14) يسـاوي $m_{2}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{14-10}{4-3}=4$

وبها أنّ الهيلين متسـاويان، فلا بدّ أنّ النقاط متسامتة.
تذكر أكك إذا كنت تعلم ميل مستقيمر ونقطـةِ يمرّ من خلالها المستقيم، فإن لديك مـا يكفي من المعلومات لتمثيله بيانيًا. والطريقة "الأسهـل لتهثيل مستقيم بيانيًا هي تحديد نقطتين ورسَم مستقيمٍ يهرّ بهما. وفَي هذه الحالة، لا حاجة لك إلا أن تجد النّنطة الثَأنية.

المـثال 1.11 تمثيـل مستقيمٍ بيانيًا

$$
\begin{aligned}
& \frac{2}{3}=\frac{y_{2}-1}{x_{2}-2}
\end{aligned}
$$

ولك الحرية في اختيار الإحداثي x الخاص بالنقطة الثانية. على سبيل الهـثال، عإيجاد النقطة

$$
\frac{2}{3}=\frac{y_{2}-1}{5-2}=\frac{y_{2}-1}{3}
$$

نحصل على 1 - $1=1$ = 2 أو 3 = 3 وبالتالي فإن نقطةً ثانيةً هي (3 , 3). إنّ التمثيل البياني للمستقيم موضّح في الشكل 1.13a. من الطَّرق البديلة لإيجاد نقّطةِ ثانيةٍ هي استخخدام الميل

$$
m=\frac{2}{3}=\frac{\Delta y}{\Delta x}
$$

يُفهـم مـن الهيل
 في المثال 1.11، كان اختيار $x=5$ عششوائيًا تمامُّاء؛ حيث يمكنك اختيار أي فيمةٍ تريدها
 x

1.13a الشكل

التمثيل البياني للمستقيم

1.13b الشكل

استخـدام المـيل لإيجاد نقطة ثانية

$$
\begin{align*}
& m=\frac{y-y_{0}}{x-x_{0}} \tag{1.6}\\
& \text { بضرب كلا طرفي }(1.6) \\
& y-y_{0}=m\left(x-x_{0}\right)
\end{align*}
$$

صيغة النقطة والميل

(1.7)

$$
y=m\left(x-x_{0}\right)+y_{0}
$$

يطـلق عـلى المـعادلة (1.7) اسـم صـيغـة النـقطـة والهـيل.

الهـثال 1.12 إيجـاد مـعـادلة مسـتقيـم بدلالة نتطـتين

 أوجد معادلة المستقيم الذي يهمرّ بالنقطتين (3,1) و(4, 4) ومثّله بيانيًا. والإحداثي $x_{0}=3$ والإحداثني $x_{0}=1$ وإنتا نحصل عـلى معـادلة المستقيم:

$$
\begin{equation*}
y=-2(x-3)+1 \tag{1.8}
\end{equation*}
$$

التمثكيل المستقيم بيانيًا، حدّد النقطتين 3.14 بسهولة.
علي الرغم من أنّ صيغة النقطة والميل للمـادلة هـي في أغـي أغلب الأحـيان الطريقة الأكثر

الشكل 1.14 $y=-2(x-3)+1$

$$
y=m x+b
$$

 y). في المثال 1.12، فإنك تضرب ببساطة (1.8) لتحصل علّى 1 (1 ($y=-2 x+6$ أو

$$
y=-2 x+7
$$

$$
\text { وكما ترى من الشُكل 1.14، يقطـع التمثيل البياني المـحور y عند } 7 \text { = } 7
$$

$$
\text { تقدّم النظرية } 1.2 \text { نتيجةً مألوفةً عـن توازي الـستقيمات وتعامدهـا. }
$$

النظرية 1.2

يكون مستقيمان (غير رأسـين) متوازيين إذا كان لهما الهـا الميل نفسـه. وأي مستقيمين رأسيين همـا

 هـا متعامدان حكهُا.

بما أننا نستطيع قراءة الهميل من معادلة مستقيم، فـمن السهل تحديد الحالات التي يكون فيها المستقيمان متوازيين أو متعامدين. ونوضّح ذلك في المثالين 1.13 و1.14.

الهثـال 1.13 إيجاد معادلة مستقيم موازٍ
أوجد معادلة مستقيمٍ موازِ لــ 2 - $y=3 x=13$ ويمرّ بالنقطة (1, 3-) الحل من السهل قراءة ميل المستقيم من المعادلة: m=3 إذًا تكون معادلة المستقيم الموازي هي:

$$
y=3[x-(-1)]+3
$$

الهثال 1.14 إيجاد معادلة مستقيمٍٍ عهودي

 أن المستقيم يجب أن يمرّ بالنتطة (1,2)، فإن معادلة المستقيم المتعامد هي $y=\frac{1}{2} x+\frac{3}{2}$ و $y=\frac{1}{2}(x-1)+2$

يبين الشكل 1.16 التمثيل البياني للمستقيمين
نعود الآن إلى هذا المثال التههيدي الفرعي ونستخدم معادلة مستقيمٍ لنقدّر التعداد السّكانيّ في عام 2000.

الهثثال 1.15 استخدام مستقيمٍٍ للتنبؤ بالتعداد السكاني
من ببانات التعداد السكاني الخاصة بإحصاء عدد السكان خلال الأعوام 1960 و1970 و1980 و1990 في المثال 1.8، تنتّأ بالتعداد السكاني للعام 2000. الحل نبدأ في هذا الهئال الفرعي بتبيان أنّ النقاط الهـئ الهوجودة في الجدول المقابل ليست

 1980 و1990) للتنبؤ بالتعداد السكاني عام 2000؟ (هذا مثالٌ بسيطِّ لإجراء أكثـر عموميةً بدعى الاستكمال) يساوي ميل المستقّيم الذي يصل بين نتطتي البيانات $m=\frac{249-227}{30-20}=\frac{22}{10}=\frac{11}{5}$

وبالتالي فإن معادلة المستقيم

$$
y=\frac{11}{5}(x-30)+249
$$

$$
\frac{11}{5}(40-30)+249=271
$$

1.17 الشكل

التعداد السّكاني

 الساباق.

الدوال

لأي مجهوعتين جزئيتين B A من المستقيم الحقيقي، نورِد التعريف التالي:

التعريض 1.3

إنّ الدالة f هي قاعدةٌ تربط بين العنصر الواحد بالضبط في مجهوعة B مـ كل عنصر x

$$
\text { فٔي مجهوعة A'وفي هذه الحالة، نكتب (} y=f(x) \text { = }
$$

 أنه
محدد، فإن مجال f ه هو أكبر مجموعة من الأعداد الجقيقية التي بكون فيها التعبير معرّفًا. نشير إلى x على أنه الهتغيّر المستقل وإلى y على أنه الهتغيّر التابـ.

 منحنٍّ مان: هو التمثيل البياني لدالة عبر استخدام اختبار الخط المستقيهِ الرأسي: إذا قطع أي
 في ضؤء أنه تُوجد في هذه آلحالكَ قيمتان لــ y تقابلان قيمةً واحدةً لــ

المثال 1.16 استخدام اختبار الهستقيم الرأسي

حدّد المنحنيات البيانية الواردة في الشكلين 1.18 g و1.18b والتي تقابل دوالُّ.

1.18b الشكل

المستقيمـان المتوازيان

1.18a الشكل

الهستقيمان المتوازيان

الحل لاحظ أنّ الدائرة في الشكل 1.18a ليست تهثيلًا بيانيًا لدالة. وذلك لأن أحد الهستقيمات

إن الدوال المـألوفة على الأغلب هي كثيرات حدود. وتا وتعدّ هذه الدّوال الأبسط من حيث التعامل معها لأنّها تعرّف بصورةٍ كاملَّةٍ من خلال الحسابِ.

التعـريف 1.4

إنّ كتيرة الـحدود هي الدالة التي يمكن كتابتها بالصيغة

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

وفيها صحيح (درجة كثيرة الحدود).

ملحوظة 1.2
يمكن تعريف الدوال بصيغ بسيطة، مثل 2 بي بصورةٍ عامة، أي حالةٍ تحقق

 فإنّها تعرّف الدّالة.

1.19a الشكل

يفشـل المنحنى في ان يكون تهئيل بياني لدالة "مـع اختبار المستِقيم الرأسي

1.19b الشكل

ينجح المنحنى في ان يكون
تهثيل بياني لدالة "مـع اختبار المستقيم الرأسي

لاحظ أنّه يمكن تعريف كثيرة الحدود لجميع قيم x على الأعـداد الحقيقية الحكامله. عـلاوةً

الهورد في مال يلي أمئلةً عن كثيرات لكثيرات حدود حدود:

$$
\text { كثيرة حدود من الدرجة } 0 \text { او ثابت } f(x)=2 \text { كـت }
$$

كثيرة حدود من الدرجة 1 أو خطية $f(x)=3 x+2$
كثيرة حدود من الدرجة 2 أو تربيعية $f(x)=5 x^{2}-2 x+2 / 3$
كثيرة حدود من الدرجة الثالثة أو تكـيبية $f(x)=x^{3}-2 x+1$
$f(x)=-6 x^{4}+12 x^{2}-3 x+13$
(كثيرة حدود من الدرجة الخامسـة) $f(x)=2 x^{5}+6 x^{4}-8 x^{2}+x-3$
نعرض في الأشكال 1.20a-1.20f التمثيلات البيانية لهذه الدوال الست.

1.20c الشكل
$f(x)=5 x^{2}-2 x+2 / 3$

$f(x)=2 x^{5}+6 x^{4}-8 x^{2}+x-3$

1.20b الشكل
$f(x)=3 x+2$

1.20e الشكل
$f(x)=-6 x^{4}+12 x^{2}-3 x+13$

1.20a الشكل
$f(x)=2$

1.20d الشكل
$f(x)=x^{3}-2 x+1$

$$
\begin{aligned}
& \text { التعريف } 1.5 \\
& \text { تدعى أي دالة يهكن كتابتها بالصيغة } \\
& f(x)=\frac{p(x)}{q(x)} \\
& \text { حيث ان p وq كثيرتا حدود، بالدالة النسببية. }
\end{aligned}
$$

لاحظ بما أنّ (x) و $p(x)$ كثيرتا حدود، فيهكن تعريف كلتيهما من أجل x، وبذلك يمكن تعريف

$$
\text { الدالة النسبية } f(x)=\frac{p(x)}{q(x)} \text { من أجل كل قيم } x \text { حيث ان } 0 \text { حي } 0 \text { و }
$$

المـثال 1.18 الدالة النسـبية البسيطـة

$$
f(x)=\frac{x^{2}+7 x-11}{x^{2}-4} \quad \text { أوجد مـجال الدالة }
$$

$$
x^{2}-4=(x-2)(x+2)
$$

بالتالي، الهقام يساوي الصفر عندما $x= \pm 2$ فقط. وهذا يشير إلى أنّ مجال f هو

$$
\{x \in \mathbb{R} \mid x \neq \pm 2\}=(-\infty,-2) \cup(-2,2) \cup(2, \infty)
$$

تعرّف دالة الجذذر التتربيعي بالطريقة المعتادة. عـندما نكتب $y=\sqrt{x}$ فإننا نقصد أنّ y هو

$$
\sqrt{x^{2}}=|x|
$$

بها أنّ $\sqrt{\text { إنّ }}$ تطلب إيجاد العدد غير السالب الذي مربعه x^{2} فإننا نبحث عن |x| وليس عـن x يمكن القول إنّ

$$
x \geq 00 \text { فتط إذا } x=x
$$

الهـثال 1.19 إيجاد مـجال دالة تضـم جـذرًا تربيعيًا أو تكعـيبيًا

$$
\text { أوجد المـجال لكل من } g(x)=\sqrt[3]{x^{2}-4}, f(x)=\sqrt{x^{2}-4} .
$$

الحل بهـا أنّ الجذور الزوجية معرفةٌ فقَط لكل القيم غـير السالبة، فإنّ (x) $f(x)$ معرّفة فَّط
 x $x \geq 2$

نجد أنّه من المغيد في أغلب الأحيان تسمية نقاطط التقاطـع وغيرها من النقاط الهامـامة في
 للدالة f أو جَذِرًا للمعادلة f إيا

الشكل 1.21
$f(x)=\frac{x^{2}+7 x-11}{x^{2}-4}$

الهـثال 1.20 إيجاد الأصفار بالتحليل إلى العوامل
 الحل لإيجاد نتطة التقاطع مـ المحور y. نضع $x=0$ لنحصل على

ولإيجاد نقاط التقاطع مـح الهحور x نحلّ الهـادلة 0 و $f(x)$ وفي هذه الحالة، يهكننا أن نحلل

$$
\begin{aligned}
& f(x)=x^{2}-4 x+3=(x-1)(x-3)=0 \\
& \text { يهكنك الآن قراءة الصفرين: } 1 \text { وx=3 وx } x \text { كما هو محدد في الشكل } 1.22 .
\end{aligned}
$$

لسوء الحظ، لا يكون التحليل إلى العوامل بهذه السهولة دائما. وبالطبع، من أجل الدالة
التربيعية

$$
a x^{2}+b x+c=0
$$

(من أجل $a \neq 0)$ بیطى الحل (الحلول) من خلال الصيغة التربيعية الهـألوفة:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

الهثال 1.21 إيجاد الأصفار باستخدام الصيغة التربيعية

$$
\text { أوجد أصفار 12-5x } 12 .
$$

الحل قد لا يحالفك الحظ كثئرًا في محاولة تحليل هذه العلاقة إلى العوامل. ولكن لدينا من الدالة التربيعية:

$$
x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4 \cdot 1 \cdot(-12)}}{2 \cdot 1}=\frac{5 \pm \sqrt{25+48}}{2}=\frac{5 \pm \sqrt{73}}{2}
$$

بالتالي. يِطى الحلّان من خلال في أنك لم تستطِعِ تحليل كثيرة الحدود إلى (العوامل!)
عادةً ما يكون إيجاد أصفار كثيرات حدودٍ درجتها أعلى من 2 ودوال أخرى أكثرُ صـوربةً، بل

 حساب التفاضل والتكامل. ولكن في حالة كثيرات الحدود، تزودنا النظرية 1.3 (الناتجة عن

النظرية 1.3
للدوال التي درجتها n يوجد على الأكثر n صضرًا متمايزًا أو مختلمًا.
لاحظ أنّ النظرية 1.3 لا تخبرنا بعدد الأصغار التي تضمها كثيرة حدودٍ ما، بل إنّ العدد

 مختلفًا. لكن، يجب أن تضم كثيرات الحدود ذوات الدرجة الفردية على الأقل صفرًا حقيقيًا
 كها هو موضّح في الأشكال 3.23a و3.23b و3.23، وهذه هي التهثيلات البيانية للدوال.

$$
\begin{aligned}
& f(x)=x^{3}-2 x^{2}+3=(x+1)\left(x^{2}-3 x+3\right) \\
& g(x)=x^{3}-x^{2}-x+1=(x+1)(x-1)^{2} \\
& h(x)=x^{3}-3 x^{2}-x+3=(x+1)(x-1)(x-3)
\end{aligned}
$$

ملحوظة 1.3
قد بكون لكثيرات الحدود أيضًا أصفار أعداد مركبة على سبيل $f(x)=x^{2}+1$ المثال 'أوصفار أعداد مركبة فقطـط x= $x i$ التخيلبة المُعـرفة من خـلال源 في دراستنا هذه على الأصفار

على التوالي. لاحظ أنك يهكن أن ترى من خلال التحليل الى العوامل مكان تواجد الأصفار

1.23c الشكل

ثلاثة أصفار

1.23b الشكـل

صفران ايثنان

1.23a الشكـل صفر واحد

تُوضّح النظرية 1.4 أهمية الحلاقة بين عوامل كثيرات الحدود وأصفارها.

النظرية 1.4 (نظرية العامل) لأي دالة كثيرة الحدود f، فإن $f(a)=0$ إذا وفقط إذا كان (a $f(x)$ عاملاً للدالة $f(x)$ علا

الهـثال 1.22 إيجاد أصفار كثيرة حدود تكعيبية

$$
\text { أوجد أصفار } \left.2 x+2 x=x^{3}-x^{2}-2 x\right)
$$

 f $x=-1.5$ والآخر بُجوار $x=1.5$ تستطيع إيجاد هذين الصفرين بصورةٍ أكثثر

 إضافية. يمكن لمعظمّالـحاسبات البيانية والأجهزة الحاسوبية الجبرية إيجاد الأصفار التقريبية
 طريقة نيوتن) لإيجاد تقريباتِ دقيقةٍ إلى الأصفار. إنّ الطرِّقَة الوحِيدة لإيجاد الحلّ الدقيق هي

$$
f(x)=x^{3}-x^{2}-2 x+2=(x-1)\left(x^{2}-2\right)=(x-1)(x-\sqrt{2})(x+\sqrt{2})
$$

$$
\text { ومنها يهكن أن ترى أن الصفرين هما x=1 x= } x=\sqrt{2} \text { و } x=\sqrt{2} .
$$

الهثثال 1.23 إيجاد نقاط تقاطـع مسـتقيهٍ مـع قطـٍ مكافئ
 الحل يبيّن تمثيل الهنحنيين (انظر الشكل 1.25 في الصفحة التالية) وجود نقطتي تقاطع إحداههما بجوار $x=-2$ والأنخرى بجوار $x=4$ وين

1.24a الشكل
$y=x^{3}-x^{2}-2 x+2$

1.24b الشكل

تكبير لإظهار الصفر بجوار
$x=-1.4$

1.24c الشكل

تكبير لإظهار الصفر بجوار $x=1.4$

> ولتحديد هاتين النقطتين بدقة، نساوي بين الدالتين ونحل لإيجاد $x^{2}-x-5=x+3$ يعطينا طرح (3+3) من كلا الطرفين

$$
0=x^{2}-2 x-8=(x-4)(x+2)
$$

 هاتين النقطتين متوافقتان مع نقطتي التقاطع المبينتين في الشكّل 1.25. ولسوء الحظ، لن يكون بالإمكان على الدوام حل المحادلات بالضبط، كما فـلنا في الأمثلة 1.23-1.20. سنستكشف بعض خيارات التعاطي مـع مسائل أكثر تعقيدًا في القسـم 0.2.

الشكل 1.25
$y=x+3$, $y=x^{2}-x-5$

في التمارين 18-15، أوجد (a) المسافة بين النقطتين، و(b)
 للمستتقيم الذي يهرّ بالنقطتين.
15. $(1,2),(3,6)$
16. $(1,-2),(-1,-3)$
17. $(0.3,-1.4),(-1.1,-0.4)$
18. $(1.2,2.1),(3.1,2.4)$

في التمارين 22-19، أوجـد نقطـةً ثانيةً عـلى الهسـتقيه الذي ميلّه m وتقع عليه النقطـة P P ومثّل المسـتقيم وأوجـد معـادلةً له.
19. $m=2, P=(1,3)$
20. $m=0, P=(-1,1)$
21. $m=1.2, P=(2.3,1.1)$
22. $m=-\frac{1}{4}, P=(-2,1)$

في التمارين 28-23، حدّد مـا إذا كان المستتقيمـان متوازيين أم متعـامدين أم غير ذلك.
23. $y=3(x-1)+2$ and $y=3(x+4)-1$
24. $y=2(x-3)+1$ and $y=4(x-3)+1$
25. $y=-2(x+1)-1$ and $y=\frac{1}{2}(x-2)+3$
26. $y=2 x-1$ and $y=-2 x+2$
27. $y=3 x+1$ and $y=-\frac{1}{3} x+2$
28. $x+2 y=1$ and $2 x+4 y=3$

في التهرينات 32-29، أوجد معـادلة مستقيـر يمرّ بالنقطـة
 على المسـتقيم المعـطى.
29. $y=2(x+1)-2$ at $(2,1)$
30. $y=3(x-2)+1$ at $(0,3)$
31. $y=2 x+1$ at $(3,1)$
32. $y=1$ at $(0,-1)$

تهارين كتابية

 النقاط A، B وّC هي مستقيمة.
2. إذا لم ينجح المنحنِى في اختبار المستقيم الرأسي، فإنّ ذلك ألهنحنى ليس تهثيلاًا بيانِيًا لدالة. اشرح هذه النتيجَة من خلال تعريف الدوال. 3. يِنبغي ألا تكتب معادلة المستقيم بصيغة الميل والمتطع بصورةٍ
 وy=2.4x-3.92 على افتراض أنّ $x=1.8$ فأي معادلةٍ تفضل

 الميل بسرعَةٍ من أيٍ من المعادلتِين؟ إشُرح السبب في عدم كون أي صيفةٍ من صِّيغتي المعادلة ,,أفضل...
4. لفهم التعريف 1.1، حريّ بك أن تعتقد أنّ x أِ

يي التهـارين 10-1، أوجد حلّ المتباينة.

1. $3 x+2<8$
2. $3-2 x<7$
3. $1 \leq 2-3 x<6$
4. $-2<2 x-3 \leq 5$
5. $\frac{x+2}{x-4} \geq 0$
6. $\frac{2 x+1}{x+2}<0$
7. $x^{2}+2 x-3 \geq 0$
8. $x^{2}-5 x-6<0$
9. $|x+5|<2$
10. $|2 x+1|<4$

في التهـارين 14-11، حدّد مـا إذا كانت النقاط مستقيمـة.

11. $(2,1),(0,2),(4,0)$
12. $(3,1),(4,4),(5,8)$
13. $(4,1),(3,2),(1,3)$
14. $(1,2),(2,5),(4,8)$
15.

38.

في التمارين 42-39، حدّد مـا إن كانت الدالة الهعـطـاة كثيرة الحـدود أو نسبية أو كلتيههما، أو غير ذلكـ
39. $f(x)=x^{3}-4 x+1$
40. $f(x)=\frac{x^{3}+4 x-1}{x^{4}-1}$
41. $f(x)=\frac{x^{2}+2 x-1}{x+1}$
42. $f(x)=\sqrt{x^{2}+1}$

في التمارين 48-43، أوجد مـجال الدالة.
43. $f(x)=\sqrt{x+2}$
44. $f(x)=\sqrt[3]{x-1}$
45. $f(x)=\frac{\sqrt{x^{2}-x-6}}{x-5}$
46. $f(x)=\frac{\sqrt{x^{2}-4}}{\sqrt{9-x^{2}}}$
47. $f(x)=\frac{4}{x^{2}-1}$
48. $f(x)=\frac{4 x}{x^{2}+2 x-6}$

في التتهرينين 49 و 50، أوجـد قيم الـدالة الهـحـددة.

49. $f(x)=x^{2}-x-1 ; \quad f(0), f(2), f(-3), f(1 / 2)$
50. $f(x)=\frac{3}{x} ; \quad f(1), f(10), f(100), f(1 / 3)$

في التمترينينٍ 51 و 52، نتدّم شـرحًا موجزًا لحـالة مـا اذكر
 51 يرغب ببيع قطعة حلوى جديدة؛ x = عدد قطـع الحلوى
المُباعة في الشُهر الأول.

في التمرينين 33 و 34، أوجد معـادلةًّ للهستقتيم الذي يمرّ

33.

34.

 لتـحديد مـا إذا كان الهنـحنى تمثيل بياني لدالة.
35.

36.

65. $f(x)=x^{2}-4 x+3$
66. $f(x)=x^{2}+x-12$
67. $f(x)=x^{2}-4 x+2$
68. $f(x)=2 x^{2}+4 x-1$
69. $f(x)=x^{3}-3 x^{2}+2 x$
70. $f(x)=x^{3}-2 x^{2}-x+2$
71. $f(x)=x^{6}+x^{3}-2$
72. $f(x)=x^{3}+x^{2}-4 x-4$

في التهرينين 73 و 74، أوجد كل نقاط التقاطـع.
73. $y=x^{2}+2 x+3$

$$
y=x+5
$$

74. $y=x^{2}+4 x-2$
$y=2 x^{2}+x-6$

تطبيقات

75. تعطى درجة غليان الهاء (بالفهرنهايت) عند الارتفاع
 . $B(h)=-1.8 h+212$ يُعِّ هذا الارتفاع خطرُّا على البُشر؟
76. قِيسَ معدّل دوران كرة جولف تضرب بواسطة عضصًا ذات

رأس معدني على أنّه 9100 من أجل كرة 100 مرة قيمة انضضاطـاطها 120 و 10000 من أجل كرة قيمـة
انضغاطهـا 60. يستخدم معظم لاعبي الجولف كراتٍ قيمة انضناطها 90. إذا كان معـّل دوّران الكرة تابِّا لقيمهة

 قيمة انضغاطهـا 100. قدّر معدّل دورانّ كرةٍ قيمـة انضغاطهـا

77 7 بِتمـد معدّل صرير صرصارٍ على درجة الحرارة، إذ يصدر
أَحد أنواع صراصير الأشـجأُر صريرًا بتواتر 160 مرة في

 بصرير الصرصار.
عند وصف طريقة قياس درجة الحرارة عبر عدّ مرّات صرير
الصرصار، تقترح معظم الأدلة عدّ مرّات الصرير خلال 15 ثُانية. اسـتخدم التمرين 77 لتفسير السبب في اعتبار هذه الـدّة مدةً ملائمة.
79. لعب أحد الأشخاص لعبةً حاسـوبيةٍ عدة مراتـ الِّة وتبين الإحصاءات أنه قِد فـاز 415 مرة وخسـر 120 مـرة، وسُـجِلت

الفوز لرفع النسبة الهـئوية المُسجلة للفوز إلى \%80٪؟

تهارين استتكشافية

1. افترض أنّ لديك آلةً تكبّر الصور الفوتوغـرافية الْية بصورةٍ تناسبية.

إلى 12×8 عبر مضاعفة العرض والارتفاع. يمكنك تشكيل

 من $=1$ بالمعادلة السـابِقة) نحو صحيح، فبإمكانك استخدام حلك الخاص

في التمهريناتٍ 56-53، ناقش مـا إذا كـنت تعتقد أنّ y

= y = الحتمال الإصابة بسرطـان الرئة، = عدد السـجائر الهدخّنة في اليوم
y. 55 = وزن أحد الأشخاص، x= عدد دقائق التمرين كل يوم
ك. y = سـرعـة سقوط جسـم، x = وزن الجسـم
57. يبيّن الشكل A سـرعة أحد الدّراجين بالنسبة للزمن. بالنسبة إلى لأجزاء الهستوية من هذا التمثيل البياني، ما الذي يحدث

 الهـنحنى البياني الهقإِبلة لصحود الدّراج إلى أعلى التلّة وتلك الهقابلة لهبوطة إلى أسفـلها.

58. يبيّن الشكل B تعداد سكان بلدِ صفيرٍ بدلالة إلزمن. وخلال

ومن الحرب ومن الطاعون. حدّد هذه الأحداث الهامة.

في التمارين 64-59، أوجـد كل نقاط تقاطـع التمثيل البياني

59. $y=x^{2}-2 x-8$
60. $y=x^{2}+4 x+4$
61. $y=x^{3}-8$
62. $y=x^{3}-3 x^{2}+3 x-1$
63. $y=\frac{x^{2}-4}{x+1}$
64. $y=\frac{2 x-1}{x^{2}-4}$

الدوال العكسية

ثهمة عددٌ هـائلّ من الهسائل العكسبة. فـلى سبيل المثال، في مخطط القلب الكهربائي (EKG)،

 نظرًا إلى أنّ الأطِّباء يحاولون تحديد قيّم الدخل (أي النشَاط الكهربائي على سطح القلب) عبر

 قيمةٌّ"معطاةٌ للخرِج (أي قيمة تقع ضمن مدى دالةٍ معطاة)، ونرغب بإيجاد قيمهة الدخل (القيمة
 الهجال $x \in\{f\}$ الذي من أجله $x=f(x)$ (انظر الشكل التّوضيحي للدالة الـكسية g الهبين في الشكل 1.26).
 8
 وفي ضوء ذلك، نقول إن الدالة التكـيبية هي معكوس

دالتان تعكس كلّ منهما أثر الأخرى

الهثtال 2.1

$$
\text { إذا كان } f(x)=x^{3} و(x)=x^{1 / 3} \text { أوضح أنّ }
$$

$$
g(f(x))=x, f(g(x))=x
$$

لجميع قيم
الحل من أجل كل الأعداد الحقيقية x لدينا

$$
\begin{aligned}
& f(g(x))=f\left(x^{1 / 3}\right)=\left(x^{1 / 3}\right)^{3}=x \\
& g(f(x))=g\left(x^{3}\right)=\left(x^{3}\right)^{1 / 3}=x
\end{aligned}
$$

لاحظ في الهثال 2.1 أنّ أثر f يبطل أثر g وبالعكس. نأخذ هذا الهبدأ على أنه تعريف الدالة
العكســة.
التعـريف 2.1
 وأنّ ($x \in B$

و من أجل كل قيم \quad م $\quad f(g(x))=x$
، من أجل كل قيم A x مل $\quad g(f(x))=x$

لاحظ أن الكثير من الدوال الهألوفة ليس لها دوال عكسية.
المـثال 2.2 الدوال التي ليس لها دوال عكسـية

 بالتالي، إذا كان علينا تعريف معكوس للدالة" f فكيف سنعرّف

الشكل 1.27
$y=8$ إيجاد قيمة x الهقابلة

ملحوظة 2.1
انتبه جيداً إلى الترميز. لاحظ أن
نكتب المعكوس الضربي لـ $f(x)$
بالصيغة $\frac{1}{f(x)}=[f(x)]^{-1}$

 مـعكوس. من أجل $f(x)=x^{2} g(x)=\sqrt{x}$ يغ f هي مـكا أن نستبق الأمور بالقول إنّ الدالة

 . $f^{-1}(x)=\sqrt{x}$ لدينا

التعريف 2.2

 $y=f(x)$ لـ مجال $x \in\{f\}$

الشكل 1.29

$$
a \neq b \text { من أجل ، } f(a)=f(b)
$$

إذًا l لتنجح في اختبار المستقيم
الأفقي وبالتالي ليس فيها مقابل واحد
إلى واحد.

ملحوظة 2.2

لاحظ أنّ التعريف المكافئ للدالة واحد لواحد هو التالي. نقول عـن دالة $f(x)$ أنها دالة واحد
 الأحيان مفيدًا من أجل البراهين التي تنطوي على دوال واحد لواحد.

من المفيد أن نفكّر بمفهوم واحد لوإحد بدلالة التمثيلات البيانية. لاحظ أنّ الدالة f تعدّ

 ينبغي أن تبدو النتيجة التالية الآن منطقية.

النظرية 2.1 يكون للدالة f دالة عكسية إذا وفقط إذا دالة واحد لواحد.

وتنصّ هذه النظرية ببساطة أنه لكل دالة واحد لواحد دالة عكسية وأن كل دالةٍ لها دالةٌ عكسية هي دالة واحد لواحد. ولكنها لا تذكر شيئًا عن طريقة إيجاد الدالة العكسية. وبالنسبة للدوال البسيطة جدُا، يمكننا إيجاد المعكوس عبر حل المعادلات.

الهثال 2.3 إيجاد دالة عكسية

$$
f(x)=x^{3}-5 \text { أوجد معكوس الدالة }
$$

 f f (أي حلَ لإيجاد قيمة الدخل x التي تعطي قيمة الخرج الملحوظة y). لدينا

$$
y=x^{3}-5
$$

إن إضافة 5 إلى الطرفين وأخذ الجذر التكعيبي يعطياننا

$$
(y+5)^{1 / 3}=\left(x^{3}\right)^{1 / 3}=x
$$

وبالتالي، $x=f^{-1}(y)=(y+5)^{1 / 3}$ يعطينا عكس الهتغيرين x و y

- $f^{-1}(x)=(x+5)^{1 / 3}$

الشكل 1.30
يقطع كل مستقيم أفقتي المنحنـي في نقطة واحدة على الألكّثر . وبالتالي

الشكل 1.31

$$
y=x^{3}-5
$$

$$
\begin{aligned}
& \text { المثثال } 2.4 \\
& \text { وضّح أنه لا يوجد للدالة }
\end{aligned}
$$

الحل يهكنك أن ترى من الرسم البياني (انظر الشكل 1.32) أن f ليست دالة والة

1.33 الشكل

الشكل 1.32

$$
y=10-x^{4}
$$

حتى إن لم نستطع صراحةً إيجاد دالة عكسية، فيمكن أن نهثّل ذلك بيانيّا. لاحظ أنه إذا

$$
b=f(a)
$$

$$
f^{-1}(b)=f^{-1}(f(a))=a
$$

فيكون لدينا

أي إنّ
 $y=f^{-1}(x)$

 نوضّح في المـئال 2.5 تهاثل دالةٍ ومعكوسها.

الهـثال $2.5 \quad$ التمثيل البياني لدالة ومعكوسـهـا
ارسم تمثيلاً بيانيًا لــــــــا

الرسمين الظاهرين في الشكل 1.34.

الشكل 1.35

الشكل 1.34

$$
y=x^{1 / 3}, y=x^{3}
$$

الرياضيات اليوم
كيم روســـو (1955-) عـالم

 الأكثثر آحتهمالاً لإقامة القتلة المتسـلسـلين والمـفتصمبـين وغيرهـم مـن الهـجرمين. خـدم روســو مـدة 21 عـامِّا فـي
دائرة شركـة فـانكوفر. وقـد تتلمـذ عـلى يد الأستاذين بول وباتريشيـيا براتنغهـام مـن جامـعـة فـراسـر. وقَد طوّر الأستاذان نظـرية نـهط الجريمـة التي تتنبأ بمهواقـع الالجرائم في ضوء أماكـن إقامة الهـجُرمين وعـملهم ؤلهوههم. بينما عكس روسا روسهـو نهوذ جهـما واسـتخـدم مـواقـع

الإجرائم لتحديد الهكان الأرجـح لإقامـة الهـجـرمين.
وقـد قامت أحـــ أحداث الحلقة
الأولى من مسـلسـل
Numbers
روسـهـو.

في معظم الأحيان، ل نستطيع إيجاد صيغةٍ للدالة العكسية وعلينا أن نقبل ببساطةٍ بمعرفة أن هناك دالةً عكسيةفحسب. لاحظ أننا نستطيع استخدام مبدأ التهاثل الهبيّن أعـلاه باختصار لرسم التمثيل البياني لدالة عكسية، وذلك حتى إن لم تكن لدينا صيغة تلك الدالة. (انظر الشـكـل الهـال 1.35)

رسـم التمثيل البياني لدالة عكسـية مـجهولة ارسم تمثيلاً بيانيًّا لــ $f(x)=x^{5}+8 x^{3}+x+1$ ومعكوسهـا.

الحل على الرغم من أننا غير قادرين على إيجاد صيغةٍ للدالة العكسية، فإننا نستطيع رسمم

 القسم 9.1، سنطّلح على طريقةٍ ذَكيةٍ لرسمم هذا التهثيل البياني بواسطة حاسبة التهثيل

الشكل 1.36
$y=f^{-1}(x), y=f(x)$
7. $f(x)=x^{5}-1$
8. $f(x)=x^{5}+4$
9. $f(x)=x^{4}+2$
10. $f(x)=x^{4}-2 x-1$
11. $f(x)=\sqrt{x^{3}+1}$
12. $f(x)=\sqrt{x^{2}+1}$

وي التمهرينات 18-13، افترض أنّ للدالة دالةً عكسـية.

13. $f(x)=x^{3}+4 x-1$,
(a) $f^{-1}(-1)$,
(b) $f^{-1}(4)$
14. $f(x)=x^{3}+2 x+1$,
(a) $f^{-1}(1)$,
(b) $f^{-1}(13)$
15. $f(x)=x^{5}+3 x^{3}+x$,
(a) $f^{-1}(-5)$,
(b) $f^{-1}(5)$
16. $f(x)=x^{5}+4 x-2$,
(a) $f^{-1}(38)$,
(b) $f^{-1}(3)$
17. $f(x)=\sqrt{x^{3}+2 x+4}$,
(a) $f^{-1}(4)$,
(b) $f^{-1}(2)$
18. $f(x)=\sqrt{x^{5}+4 x^{3}+3 x+1}$,
(a) $f^{-1}(3)$,
(b) $f^{-1}(1)$

> كتابـة التـهـارين
> 1. اشرح بالكلمات (وبصورة) السبب في صحة الآتي: إذا كانت
2. افترض أنّ التمثيل البياني لدالةٍ ينجحِ في اختبار الـسِّقيم

يعمل الرادار من خـلال ارتداد ذبذبٍة كهْرَمَنْنْاطيسِّيّة عـالية

الدخل والخرج.

يحاولون تحديد المرض المسبب للأعراض. اشرح السبب

$$
\begin{array}{r}
g(x)=x^{1 / 5}, f(x)=x^{5} \\
g(x)=\left(\frac{1}{4} x\right)^{1 / 3}, f(x)=4 x^{3} \\
g(x)=\sqrt[3]{\frac{x-1}{2}} \text {. } 2 \\
(x \neq 0, x \neq-2) g(x)=\frac{1-2 x}{x}, f(x)=\frac{1}{x+2} \quad .4
\end{array}
$$

5. $f(x)=x^{3}-2$
6. $f(x)=x^{3}+4$
30. $f(x)=x^{3}-2 x-1$
31. $f(x)=x^{5}-3 x^{3}-1$
32. $f(x)=x^{5}+4 x^{3}-2$
33. $f(x)=\frac{1}{x+1}$
34. $f(x)=\frac{4}{x^{2}+1}$
35. $f(x)=\frac{x}{x+4}$
36. $f(x)=\frac{x}{\sqrt{x^{2}+4}}$

متـيّدة.
 متحاكستان. ومثّل كلتا الدالتين بيانيًا. 38. وضّح أنّ متحاكستان. ومثّل كلتا الدالتين بيانيًا.
 واحد لواحد. ثـم أوجد معكوسـها. ومثّل كلتا الدالتين بيانيًا.
 واحد لواحد. ثم أوجد معكوسها. ومثّل كلتا الدالتين بيانيًا.
41. مشّّل الدالة $f(x)=(x-2)^{2}$ وأوجد فترةً تكون فيها دالة واحد لواحد. أوجد الدالة العكسية الهقيدة على تلك الفترة. ومثّل كلتا الدالتين بيانيًا.
 واحد لواحد. أوجد الدالة العكسية المقيدة على تلك الفترة. ومثّل كلتا الدالتين بيانيًا.
43. مثّل الدالة $f(x)=\sqrt{x^{2}-2 x}$ وأوجد فترةً تكون فئ فيها دالة واحد لواحد. أوجد الدالة العكسية المقيدة على تلك الفترة. ومثّل كلتا الدالتين بيانيًا.
44. مثّّل الدالة $f(x)=\frac{x}{x^{2}-4}$ وأوجد فترةً تكون فيها دالة واحد

لواحد. أوجد الدالة العكسية المقيدة على تلك الفترة الـترة.
ومثّل كلتا الدالتين بيانيّا.
45. مثّل الدالة $f(x)=\sin x$ وأوجد فترةً تكون فيها دالة واحد

لواحد. أوجد الدالة العكسية المقيدة على تلك الفترة.

> ومثّل كلتا الدالتين بيانيًا.
46. مثّل الدالة $f(x)=\cos$ وأوجد فترةً تكون فيها دالة واحد

لواحدّ أوجد الدالة المعكوسـة المقيدة على تلك الفترة. ومثّل كلتا الدالتين بيانيّا.

تطـبيقات

47. يتغيّر دخل إحدى الشـركات مـع الزمن.
48. يتفيّر طول شـخصِ مـح الزمن.
49. عنـد إسقاط كرة، يتنيّر ارتفاعهـا مـع الزمن.
20.

21.

22.

في التمرينات 26-23، افتترض أنّ للدالة f دالةً عكسـية وانشترح سـبـب صـحة العبارة.

 25. إذا
26. إذا كان مـجال الدالة f كل الأعداد الحقيقية، فإن مدى ألدالة

في التمرينات 36-27، اسـتخدم تمثيلًا بيانيًا لتتحديد مـا

 كَذلك، مثّل الدّالة المعكـوسـة.
27. $f(x)=x^{3}-5$
28. $f(x)=x^{2}-3$
29. $f(x)=x^{3}+2 x-1$
54. افترض أنّ أحد الهوظفين 5 أله زيادةً في الراتب بنسبة 6\% مـع عـلاوة قدرها أـا \$500. أوجد مقَّكوب هذا الأجر في الحالات التالية: (a) أتـت الزيادة بنسبة 6\% قَبل العـلاوة، (أتت الزيادة بنسبة 6\% بـد العـاوة (b)

تهارين اسـتكششافية

50. عند رمي كرةٍ إلى الأعلى، يتغيّر ارتفاعهـا مـع الزمن.

52. يعتمد عدد السـرات الحرارية الهـحروقة على مدى سرعـة جريان الشخص.
53. افترض أن مديرك قد أخبرك أنك نلت زيادةً في الراتب
 إلى ظروفِ خارجّةٍ عن إرادته، سـتُقتطع من رواتب
 نفسها التي كنت عليها منذ أسبوعين؟ أوضح أن الزيادة بنسبة 10\% والتخفيض بنسبة 10\% ليستا عمليتين منكوستين. أوجد مبكوس إضافة 10\%. (تلميح: لإضافـة

الدوال الهثيلثية والدوال الهثثلثية العكسبية

يتضمّن عـدد كبير من الظواهر التي تواجهها في حياتك اليوميةأمواجُا. فـلى سبيل المثال. تُنقل الموسيقى

الشكل 1.37
الهذياع وموجات الصوت

$$
\begin{aligned}
& \text { التتعر ين } 3.1 \\
& \text { تكون الدالة f دورية و زمـنها الدوري T إذا كان } \\
& f(x+T)=f(x)
\end{aligned}
$$

الدوري الأسـاسي.

عندما نتاقش الزمن الدان الدوري لدالة. فإنتا نركّز في أغلب الأحبان عـلى الزمن الدوري الأساسي.

ثقّة العديد من الطرق الهتكافئة لتعريف الجيب وجيب التمام للدوال. ونودّ أن نؤكّد على تعريفب بسيطٍ يمكنك من خلاله استنباط الكثير من الخواصّ الأساسية لهذه الدّوال بسهولة. بالإشـارة إلى الشكـل 1.38، ابدأ عبر

 أن مدى كلٍ من هـاتين الدالتين هو الفترة [1, 1-1-1].

ملحوظةة 3.1

لاحظ أنه بما أنّ محيط دائرة (C=2 C) نصف قططرها وحدة واحدة فانه يساوي 2π نستنتج بأنّ 360° نقابل

الزاوية بالدرجات	0°	30°	45°	60°	90°	135°	180°	270°	360°
الزاوية بالراديان	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π	$\frac{3 \pi}{2}$	2π

البرهـان
بالرجوع إلى الشكل 1.38، بما أنّ الدائرة الكاملة تساوي 2π rad 2π إنى 2π إلى إي زاوية سـوف تأُخذك في دورة كاملة حول الدائرة وتعود إلى النقطة نفسـها (x, $)$ وهـا وهذا يؤدي إلى أن

$$
\sin (\theta+2 \pi)=\sin \theta
$$

$\cos (\theta+2 \pi)=\cos \theta$
لكل قيم θ تكون 2π هي أصغر زاوية موجبة تحقق هذه النظرية.
 و 3.51 على الترتيب.

1.39b الشكل

1.39a الشكل
$y=\sin x$

لاحظ أنه يهكنك إجراء انسحابٍ للتمثيل البياني لـ

$$
\sin \left(x+\frac{\pi}{2}\right)=\cos x
$$

يبين الجدول الهرفق بصض القيم الشائئة للجيب وجيب التمام. لاحظ أنه يمكن قراءة العديد من تلك القيم مباشـرة من الشّكل 1.38.
 (b) $\cos ^{2} x-3 \cos x+2=0$ و (a) $2 \sin x-1=0$ (a)

据

$$
\begin{aligned}
& \text { باستخدام هذه الهعلومة، يهكنك تحليل الطرف الأيسر إلى العوامل لتحصل على } \operatorname{los} x-2) \\
& 0=\cos ^{2} x-3 \cos x+2=(\cos x-1)
\end{aligned}
$$

- تلخيص كل الحلول عن طريق كتابة x=2n

نتوم الآن بإعطاء تعريفات للدوال الهئلئية الأربع المتبقية.

x	$\sin x$	$\cos x$
0	0	1
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
$\frac{\pi}{2}$	1	0
$\frac{2 \pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$
$\frac{3 \pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$
$\frac{5 \pi}{6}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$
π	0	-1
$\frac{3 \pi}{2}$	-1	0
2π	0	1

ملاحظة 3.2
بدلاُ من كتابة $\cos \theta)^{2}{ }^{2}$ و . فإننا نستخدم الترميز $\sin ^{2}$ و على $\cos ^{2} \theta$ ذلك، فإننا غالباً ما نحذف الأقواس ونكتب، على سبيل الهثال، $\sin 2 x$ بدلأ من

$$
\begin{aligned}
& \text { التعريف } 3.2 \\
& \tan x=\frac{\sin x}{\cos x} \text { دالة الظلّ معرفة كمـا يلـي } \\
& \cot x=\frac{\cos x}{\sin x} \text { دالة ظلّ التمام معرفة كمـا يلـي } \\
& \sec x=\frac{1}{\cos x} \text { دالة القاطع معرفة كما يلـ } \\
& \csc x=\frac{1}{\sin x} \text { دالة قاطع التمام معرفة كما يلي }
\end{aligned}
$$

التمثيلات البيانية لهذه الدوال موضحة في الأشكال 1.38a و 1.38b و 1.38c و 1.38d لاحظ موافـع خطوط

 cos x تحديد خطوط التقارب الرأسية، سيصبح رسم التمتيلاتات البيانية سهلًا نسبيًا.

لاحظ بأنّ $\tan x$ و lot دوال دورية دورتها π بينما x و 2π و 2π دوال دورية دورتها من الههم تعلم تأثير التعديلات البسيطة على هذه الدوال. ونقدم بیض الأفكار هنا وفي التهرينات.

ملاحظة 3.3

تحتوي معظم الآلات الحاسبة على مناتيح للدوال $\sin x$ و \cos و tan x الثلاث الأخرى. ويعكس هـا الدور الرئيس الذي تؤديه $\sin x$ و و و \tan في التطبيقات. لحساب قيم الدالة للدوال الهثلثية الثلاث الأخرى، يمكنك ببساطة استخدام الهتطابقات $\cot x=\frac{1}{\tan x^{\prime}}, \quad \sec x=\frac{1}{\cos x}$ $\csc x=\frac{1}{\sin x}$,

1.40b الشكل

$$
y=\cot x
$$

1.40d الشكل
$y=\csc x$

1.40a الشكل

$$
y=\tan x
$$

1.40c الشكل
$y=\sec x$

مثثال 3.2 تبديل السعـة والدورة
$y=\sin x \ldots$ مـِّل $y=\sin 2 x, y=2 \sin x$ بيانيّا ووضح طـريقة اختلاف كل منهما عـن التمثيل البياني
(.1.41a انظر الشكل) .

1.41c الشكل
$y=\sin (2 x)$

1.41b الشكل
$y=2 \sin x$

1.41a الشكل
$y=\sin x$

y $y=\sin x$
 $y=\sin c x$ y y و y = A هي $2 \pi / c$ وعلى نحوِ مهاثل. من أجل الدالة $y=A \cos c x$ تكون السعة $A=$ وتكون الدورة $2 \pi / c$.
يهكن استخدام دوال الجيب وجيب التمام. لنهذجة موجات الصوت. تهـل النفهة الصافية (فكّر في الشوكة الرنانة) موجة ضنطِ تصفها الدالة الجيبية $y=A$ sin $c t$ (نستخدم هنا الهتغيّر t نظرُا إلى أن ضغط الهواء يمثل دالة زمنية). تحدد السعة A إلى أي مدى يبدو الصوت مرتنغًا وتحدد الدورة طبقة صوت النغمة. في هذا الإطار. سبكون من الملائم الحديث عن التكرار النغهة. (يقاس التكرار بالهرتز، حيث كل 1 هيرتز يساوي 1 دورة في الثانية الواحدة). لاحظ بأنّ التكرار هـو ببساطة المعكوس الضربي للدورة.

مثثال 3.3 إيجاد السعة والدورة والتكرار

 (1.42b انظر الشكل) (1.42)

1.42b الشكل
$y=2 \sin (x / 3)$

1.42a الشكل

$$
y=4 \cos 3 x
$$

يوجد عدد هائل من التوانين أو الهتطابقات التي قد تكون مفيدة في التـامل مـع الدوال الهـثلثية. ينبغي أن تلاحظ أنه - ومن تعريف $\cos \theta$ و \cos (انظر الشكّل 1.38)، فإن نظرية فيثاغورس تعطينا المتطابقة المعـروفة

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

نظرَا إلى أنّ وتر المثلك المشيار إليه يساوي 1. وهذا صحيح بالنسبة لأي زاوية θ. بالإضافة إلى ذلك.

$$
\cos (-\theta)=\cos \theta, \sin (-\theta)=-\sin \theta
$$

ننظم لائحة متطابقات مهمة في النظرية 4.2.

پآي عددين حقيقيين α و β ، نحصل على المتطابقات التالية:
(3.1)
(3.2)
(3.3)
(3.4)
$\sin (\alpha+\beta)=\sin \alpha \cos \beta+\sin \beta \cos \alpha$
$\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$

$$
\sin ^{2} \alpha=\frac{1}{2}(1-\cos 2 \alpha)
$$

$$
\cos ^{2} \alpha=\frac{1}{2}(1+\cos 2 \alpha)
$$

من المتطابقات الأساسية الملخصة في النظرية 3.2، يمكن استخلاص عدة متطابقات أخرى مفيدة. نستخلص اثنتين من تلك المتطابقات في المثيال 3.4.

مثثال 3.4 اشتقاق متطابقات مثلثية جديدة اشتق الهتطابتتين $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta, \sin 2 \theta=2 \sin \theta \cos$. الـحل يهكن الحصول على هاتين المتطابتتين من القانونين (4.1) و(4.2) على الترتيب، من خلال استبدا
 الـعادلة (3.4).

الدوال المثلثية الهعكوسة

نقوم الآن بتوسيع مجهوعة الدوال الهتاحة لك بتعريض معكوس الدوال المثئثية. من أجل البدء، انظر إلى التمثيل البياني لـ $y=\sin$ (انظر الشكل 1.41a) لاحظ بأنه لا يهكنتا تعريف دالة معكوسة، لأن واحد إلى واحد. ورغم أنّ دالة الجيب ليس لها دالة عكسية، يهكننا تعريف واحدة بتعديل مـجال الجيب. نتوم
بذلك عن طريق اختيار جزء من الهنحنى يجتاز اختبار الهستقيم الأفقي. إذا قيدنا الهجال بالفترة . فعندها تكون $y=\sin x$ دالة واحد لواحد (انظر الشكل 1.43) ومن ـُم، يكون لها معكوس. وهكذا نهرّف دالة

معكوسـة الـجيب كما يلي
(3.5)

$$
-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}, \sin y=x \mid \text { اذ } y=\sin ^{-1} x
$$

 $\sin y=x$ الأكثئر ملائمة. للتحقق من أن هذه دوال معكوسة، لاحظ أنّ

$$
x \in[-1,1]^{\sin }\left(\sin ^{-1} x\right)=x
$$

(3.6)

$$
x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \sin ^{-1}(\sin x)=x
$$

اقرأ المعادلة (3.6) بحرص شـديد. إنها لا تقول بأن $\sin ^{-1}(\sin x)=x$ قل قيم x، وبدلاُ من ذلك، فتط تلك

$$
\text { القيم المقيدة بالمجال، [} \sin ^{-1}(\sin \pi) \neq \pi \text { بها أنّ }
$$

$$
\sin ^{-1}(\sin \pi)=\sin ^{-1}(0)=0
$$

مثال 3.5 قيمة دالة معكوس الجيب

 (b) $\sin ^{-1}\left(-\frac{1}{2}\right)$ (a) $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$ (وجد قيهة
 . $-\frac{\pi}{6} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$
\sin ^{-1}\left(-\frac{1}{2}\right)=-\frac{\pi}{6}
$$

من خلال الهـال 3.5، قد تعتقد أن (3.5) طريقة ملتوية لتعريف دالة. إذا كان هذا ما اعتقدته، فقد فرهت
 إلى دالة الجيب.

 بالانتقال إلى $y=\cos x$.

الشكل 1.43
$y=\sin x$ on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

مـلاحظة 3.4

غـالبَا ما يستخدم علماء الرياضيات $\sin ^{-1} x$ الترميز \arcsin بدنَ منا
 sin x

الشكل 1.44
$y=\sin ^{-1} x$
 (انظر الشكل 1.45). ونتيجة لذلك، نهرِّف دالة معكوس جيب التتهام كما يلبي . $0 \leq y \leq \pi, \cos y=x$ اذا وفتط اذا كان $y=\cos ^{-1} x$

لاحظ هنا أنه لدينا

$$
x \in[-1,1] \text { لكل فلم } \cos \left(\cos ^{-1} x\right)=x
$$

$x \in[0, \pi]_{\text {a }} \cos ^{-1}(\cos x)=x$

مـثال 3.6 قيمة دالة معكوس جيب التمام

$$
\text { (b) } \cos ^{-1}\left(-\frac{\sqrt{2}}{2}\right) \text { (a) } \cos ^{-1}(0) \text { (أوجد قيمة }
$$

 الصعب رؤية أنّ وضع الدرجات. في هذه الحالة، فينبغي لك تغييرها فورًا لوضع التقدير بالرديان (rad)). من أجل (b)، الحث الح
 . ونتيجةً لذلك.

$$
\cos ^{-1}\left(-\frac{\sqrt{2}}{2}\right)=\frac{3 \pi}{4}
$$

 الفترة [0, 0 [(الموضّحة في الشكل 1.45) من خلال المستقيم $y=x$ = (انظر الشكل 1.46).

ويمكنتا تعريف معكوسات كل من الدوال الهـثلئية الأربعة الهتبقية بطرق مشـابهة. من أجل $y=\tan x=$ نقيد
 بعد أن قهت بذلك، سترى بسهولة أننا نهرّف دالة معكوس الظلّ كما يلي

$$
.-\frac{\pi}{2}<y<\frac{\pi}{2}, \tan y=x \text { اذا وفتطـ اذا } y=\tan ^{-1} x
$$

$$
\text { في الشكل } 1.47 \text { من خـال المستقيم } x=x .
$$

الشكل 1.48

$$
y=\tan ^{-1} x
$$

الشكل 1.47

$$
y=\tan x \text { on }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

الشكل 1.45
$y=\cos x$ on $[0, \pi]$

الشكل 1.46
$y=\cos ^{-1} x$

مـثال 3.7 إيجاد قيهـة معكوس الظـلّ أوجد قيمة (1) ${ }^{\text {أوج }}$

الـحل يجب أن تبحث عن الزاوية θ في الفترة $)$ ($-\frac{\pi}{2}, \frac{\pi}{2}$ والتي تكون عندها 1 و وذلك غاية في

 الهجال بشكل مناسـب، ويتباين الهؤلفون في اختـيارهم لطريقة التقييد. وقد اختـرنا (بصورة تعسفية نوعًا مـا) تقييد المجال ليكون [sec x المجال. (لاحظ خط التقارب الرأسي عن $\left.x=\frac{\pi}{2}\right)$ بالتالي، نعرّف دالة معكوس القـاطـع كهـا يلي $y \in\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right], \sec y=x$ اذا $y=\sec ^{-1} x$

$$
\text { يوضّح الشَكل } 1.50 \text { التمثيل البياني لـ }
$$

مـثال 3.8 إيجاد قيمـة معكوس الـقاطـع

$$
\text { أوجد قيمة } \sec ^{-1}(-\sqrt{2})
$$

$$
\text { في الفترة } \left.\sec ^{-1}(-\sqrt{2})=\frac{3 \pi}{4}\right) \text { فيكون } \frac{\pi}{2}, \pi
$$

لا تشتمل الآلات الحاسبة عادةً على دوال من أجل $\sec x$ أو \sec قيمة القاطع المطلوبة لتصبح قيمة قاطع الجيب وتستخدم معكوس الجيب قاطـع، كما فُعلنا في المئال 3.8.

سنلخص الهجال والهدى لكلِ واحدة من الثُلاث دوال المثّلثُية المعكوسة الرئيسية في الهامش. في العديد من التطبيقات، نكون بحاجة لحساب طول أحد أضلاع منّلث قـائم الزاوية باستخدام طول ضلع آخر وزاوية حادة (أي زاوية قياسها بين 0 و 0 راديان) $\frac{\pi}{2}$ يمكننا أن نفعل هذا بسهولة إلى حد ما. كما في المثال 3.9.

مـثال 3.9 إيجاد ارتفاع برج

 . (انظر الشكل 1.51). (a) أوجد ارتفاع البرج. (b) مـا فياس الزاوية إذا كان الشخص يبعد 200 متر عن القاعدة؟

الـحل من أجل (a)، نحول 60° أونُ لتصبح بالراديان:

$$
60^{\circ}=60 \frac{\pi}{180}=\frac{\pi}{3} \text { radians }
$$

نعلم أنّ قاعدة المثلث في الشكل 1.51 تساوي 100 متر يجب علينا الآن حسـاب ارتفاع البرج h. باستخدام المـُلثات المتشابهة الموضّحة في الشكل 1.51. نجد

$$
\frac{\sin \theta}{\cos \theta}=\frac{h}{100}
$$

$$
h=100 \frac{\sin \theta}{\cos \theta}=100 \tan \theta=100 \tan \frac{\pi}{3}=100 \sqrt{3} \approx 173 \text { متر }
$$

الشكل 1.49
$y=\sec x$ on $[0, \pi]$

الشكل 1.50
$y=\sec ^{-1} x$

ملاحظة 3.5

يمكننا وبطريقة مهـاثلة تحديد معكوسـات $\cot x$ و csc x بسـبب ندرة اسـتخدام هذه الدوال، فسنـحذفها هـنا وندرسـها في التدريبات.

الشكل 1.51
ارتفاع برج

في الهـئال 3.10، نقوم بتبسيط التعبيرات التي تشهل كلألا من الدوال الهثلثية والدوال المثلثية الهعكوسة.

مثال 3.10 تبسيط التعبيرات التي تحتوي على دوال مثلثية معكوسة

(b) $\tan \left(\cos ^{-1} x\right)$ و (a) $\sin \left(\cos ^{-1} x\right)$)

 قائم الزاوية وتره 1 وزاوية مجاورة θ. إذًا. ومن تعريف sines و cosine \cos ، نعرف أن قاعدة المئلث والارتفاع sin 0 وبحسب نظرية فيئاغورس

$$
\sin \left(\cos ^{-1} x\right)=\sin \theta=\sqrt{1-x^{2}}
$$

 يمكن أن تتراوح من 0 إلى π.

$$
\text { كانت } \sin \theta \geq 0 \text {. وبحسب متطابقة فيئاغورس } 0 \leq \theta \leq \sin ^{2} \theta+\cos ^{2} \theta=1 \text { نجد أنّ }
$$

$$
\sin \theta= \pm \sqrt{1-\cos ^{2} \theta}= \pm \sqrt{1-x^{2}}
$$

بها أنّ $\sin \theta \geq 0$ يجب أن يكون

$$
\sin \theta=\sqrt{1-x^{2}}
$$

لكل قيم x.

من أجل الجزء (b). يمكنك أن ترى من الشككل 1.52 أنّ
$\tan \left(\cos ^{-1} x\right)=\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\sqrt{1-x^{2}}}{x}$
لاحظ بأن هذه الهتطابقة الأخيرة صحيحة. سواء كانت $x=\cos$ موجبة أو سالبة. ■

الشكل 1.52
$\theta=\cos ^{-1} x$
\qquad x

2. يميّّل طالب $f(x)=\cos x$ بيانيًا على حاسبة بيانية ويحصل على ما
 الهـتاد. وبعد التحقق، تكتشَ 10 أن الحاسبة تبين نافذة التمئيل البياني竍 الذي حدث وطريقة تصحيحه. 3. إنّ الدوال المعكوسة ضرورية من أجل حل الهعادلات. إنّ المدى المقَد الذي كان علينا أن نستخدمه لتعريف معكوسات الدوال الهتئلثية يقبد أيضًا فائدتها في حل المعادلات. اشرح طريقة استخدام $\sin ^{-1} x$ لإيجاد كل حلول الـعـادلة $\sin u=x$.
3. يفضًّل كثير من الطلاب استخدام الدرجات لقياس الزوايا ولا يفهـون سبب تعلمهر القياس بالراديان. كما نوقش في النص، يقيس الراديان
 في العديد من التطبيقات. بالإضافة إلى ذلك. سنـرى لاحقًا أنّ الكثير من قوانين حساب التفاضل والتكامل تكون أبسط بصيغة الراد الاديان منا منها بالدرجة. بصرف النظر عن الاعتياد، ناقش كل مزايا الدرجة عن الراديان.

بالهوازنة، أيهها أفضل؟

$$
\begin{aligned}
& \text { من أجل الجزء (b). تعطينا المثـلثات المتشابهة في الشككل } 1.51 \\
& \tan \theta=\frac{h}{200}=\frac{100 \sqrt{3}}{200}=\frac{\sqrt{3}}{2} \\
& \text { بها أنّ } \\
& \text { - } \theta=\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right) \approx 0.7137 \mathrm{rad} \text { (حوالي } 41 \text { درجة) }
\end{aligned}
$$

35. (a) $\cos (2 \theta)=2 \cos ^{2} \theta-1$
(b) $\cos (2 \theta)=1-2 \sin ^{2} \theta$
36. (a) $\sec ^{2} \theta=\tan ^{2} \theta+1$
(b) $\csc ^{2} \theta=\cot ^{2} \theta+1$

37. $\cos ^{-1} 0$
38. $\tan ^{-1} 0$
39. $\sin ^{-1}(-1)$
40. $\cos ^{-1}(1)$
41. $\mathrm{sec}^{-1} 1$
42. $\tan ^{-1}(-1)$
43. $\mathrm{sec}^{-1} 2$
44. $\mathrm{csc}^{-1} 2$
45. $\cot ^{-1} 1$
46. $\tan ^{-1} \sqrt{3}$

$$
\begin{aligned}
& \text { 1. برهن أنّه لــابت ما } \beta \text {. } \\
& 4 \cos x-3 \sin x=5 \cos (x+\beta) \\
& \text { ثُّه، أوجد تقديرًا لقيهة } \beta \text {. } \\
& \text { 2. برهن أنّه لثابتِ ما } \beta \text {. } \\
& 2 \sin x+\cos x=\sqrt{5} \sin (x+\beta) \\
& \text { تمّ، أوجد تقديرًا لقيمة } \beta \text {. }
\end{aligned}
$$

في التهرينات من 49 إلى 52، حدد ما إذا كانت الدالة دورية. وإذا كانت دورية، أوجد الدورة (الأسـاسية) الأصغر.
49. $f(x)=\cos 2 x+3 \sin \pi x$
50. $f(x)=\sin x-\cos \sqrt{2} x$
51. $f(x)=\sin 2 x-\cos 5 x$
52. $f(x)=\cos 3 x-\sin 7 x$

في التهرينات من 53 إلى 56، استخدم مدى θ لتحديد قيمة الدالة الهشار إليها.
53. $\sin \theta=\frac{-}{3}, 0 \leq \theta \leq \frac{-}{2} ; \quad$ أوجد $\cos \theta$.
54. $\cos \theta=\frac{4}{5}, 0 \leq \theta \leq \frac{\pi}{2} ;$ أوجد $\sin \theta$.
55. $\sin \theta=\frac{1}{2}, \frac{\pi}{2} \leq \theta \leq \pi$; أوجد $\cos \theta$.
56. $\sin \theta=\frac{1}{2}, \frac{\pi}{2} \leq \theta \leq \pi$; $\tan \theta$.

58. $\cos \left(\tan ^{-1} x\right)$
59. $\tan \left(\sec ^{-1} x\right)$
60. $\cot \left(\cos ^{-1} x\right)$
61. $\sin \left(\cos ^{-1} \frac{1}{2}\right)$
62. $\cos \left(\sin ^{-1} \frac{1}{2}\right)$
63. $\tan \left(\cos ^{-1} \frac{3}{5}\right)$
64. $\csc \left(\sin ^{-1} \frac{2}{3}\right)$
 دوال من أجل $\tan ^{-1} x \sin ^{-1} x, \cos ^{-1}$ فَّط.

 التهرين 4. أعطِ سببًا واحدًا لاختيارنا هذا الهدى.

في التهرينين 1 و 2، حول القياس المعطى بالراديان إلى درجات.

1. (a) $\frac{\pi}{4}$
(b) $\frac{\pi}{3}$
(c) $\frac{\pi}{6}$
(d) $\frac{4 \pi}{3}$
2. (a) $\frac{3 \pi}{5}$
(b) $\frac{\pi}{7}$
(c) 2
(d) 3

في التهرينين 3 و 4، حول القياس الهعطى بالدرجات إلى راديان.
3. (a) 180°
(b) 270°
(c) 120°
(d) 30°
4. (a) 40°
(b) 80°
(c) 450°
(d) 390°

في التهرينات من 5 إلى 14، أوجد كافة حلول المعادلة المعطاة.
5. $2 \cos x-1=0$
6. $2 \sin x+1=0$
7. $\sqrt{2} \cos x-1=0$
8. $2 \sin x-\sqrt{3}=0$
9. $\sin ^{2} x-4 \sin x+3=0$
10. $\sin ^{2} x-2 \sin x-3=0$
11. $\sin ^{2} x+\cos x-1=0$
12. $\sin 2 x-\cos x=0$
13. $\cos ^{2} x+\cos x=0$
14. $\sin ^{2} x-\sin x=0$

في التهرينات من 15 إلى 24، ارسـم تهثيلًا بيانيًا للدالة.

15. $f(x)=\sin 2 x$
16. $f(x)=\cos 3 x$
17. $f(x)=\tan 2 x$
18. $f(x)=\sec 3 x$
19. $f(x)=3 \cos (x-\pi / 2)$
20. $f(x)=4 \cos (x+\pi)$
21. $f(x)=\sin 2 x-2 \cos 2 x$
22. $f(x)=\cos 3 x-\sin 3 x$
23. $f(x)=\sin x \sin 12 x$
24. $f(x)=\sin x \cos 12 x$

في التهرينات من 25 إلى 32، حدد السعة والدورة والتردد.
25. $f(x)=3 \sin 2 x$
26. $f(x)=2 \cos 3 x$
27. $f(x)=5 \cos 3 x$
28. $f(x)=3 \sin 5 x$
29. $f(x)=3 \cos (2 x-\pi / 2)$
30. $f(x)=4 \sin (3 x+\pi)$
31. $f(x)=-4 \sin x$
32. $f(x)=-2 \cos 3 x$
33. $\sin (\alpha-\beta)=\sin \alpha \cos \beta-\sin \beta \cos \alpha$
34. $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$

يقيس مقياس جهد كهربائي في الواقع متوسط الجهد (ويدعى جذر متوسط مربيع القيمة) ويساوي
 $33 \frac{1}{3}$ rpm 76 يقوم مشذّل أسطوانات قديم بتدوير الأسطورانات بسرعة (دورة في الدقيقة). ما دورة التدوير (مقدرة بالدقيةة)؟ ما دورة أسطوانة سرعتها
77. لنفترض أنّ مبيعات تذاكر إحدى شـركات الطيران (بآلاف الدراهم)

تعطى بالعلاقة بالشهور. ما الظاهرة من الحياة اليومية التي يمكن أن تتسبب بتقلّب مبيعات التذاكر منهذجة بدلالة الــ كـ الذي يقابل 0 ك = 0 بصرف النظر عن التقلبات الموسمية، ما مقدار زيادة مبيیات شركة الطيران سنويًا؟ 78. يبدأ مدوزنو آلات البيانو عادةً بضرب شوكة رنان رنانة. ثم ضرب مغتاح البيانو الهقابل لها. إذا كان لكلٍ من الشوكة الرنانة ونغهة البيانو تكرار مقداراره 8. يكون الصوت الناتج
 بيانيًّا واشرح طريقة تهكن مدوزن البيانو من سماع الفرق الضئيل في التكرار.

تهرينات استكششافية

1. The Ring) قام الفيزيائي فيليب موريسون في كتابه رنين الحقيقة بإجراء تجربة لتقدير محيط الأرض. في ولاية نبراسكا، قاس الزاوية إلى نجمة ساطعة في السماء، ثـم قاد 370 ميل جنوبًا إلى ولاية كانساس وقاس الزاوية الجديدة للنجهة. أظهرت بیض الحسا 3 الحسابات الهندسية أنّ الفارق بين الزاويتين - والذي يساوي 5.00° درجة

 يبلغ قياسه 5.02° درجة يساوي 370 ميل فدِّر محيط الكرة الأرضية. استندت هذه التجربة إلى تجربة مماثلة قام بها العالم الياليوناني القدانديم إراتوستينس. عرف الإغريق القدماء والإسبان أيام كولومبس أنّ الأرض كانت دائرية. وكان الاختلاف في ما بينهم حول المحيط فتط. المانـ دافع كولومبوس عن رقم يساوي حوالي نصف القيمة الفـلية، وذلك الأنه لم تكن هناك سفينة قادرة على البثاء في المياه فترة طويلة بها يكفي للإبحار طوال الهسافة الحقيقية.

في التهرينات مـن 65 إلى 68، استخدم حاسبة التهثيل البياني أو الحاساسوب لتحديد عـد 65 إلى حلول كل معادلة، وتقدير الحلول

عـديًا (x مقدرة بالراديان).
65. $2 \cos x=2-x$
66. $3 \sin x=x$
67. $\cos x=x^{2}-2$
68. $\sin x=x^{2}$

التطبيقات
69. بقيس شخص يجلس على بعد ميلين من موفق إطلاق صاروخ بزاوية

قياسها 20° درجة فوق الموقع الحالي. فما مقدار ارتفاع الصاروخ؟
70. شُجرة طولها 6 أقدام على بعد 4 أقدام من قاعدة عمود إنارة وتصنع ظطلا طوله قدمان. فما ارتناع عمود الإنارة؟

يقف مسّاحّ على بعد 80 قدمُا قاعدة مبنى حكومي ويقيس من مكانه
 ينع على مسافة 20 قدمٌا داخل الجزء الأمامي للهيكل. أوجد المسافة من الأرض إلى قمة البرج.
 داخل الجزء الأمامي للهيكل. حدد عدد الأقدام الاضافية على ارتفاع البرع.
73. صورة معلةَ في معرض فني لها إطار بارتفاع 20 إنشًا، ويرتفع الجزء
 6 أقدام عن الأرض على مسافة x مترا من الجدار الألـو فلتكن A الزا الزاوية التي يشكلها الشَاع من عين الشخص إلى الجزء السفلي من الإلطار والشُاع من عين الشخص إلى الجزء العلوي من الإطار. اكتب A A كدالة

لـ x ومـثّل $y=A(x)$ بيانيّا.

تهدف لعبة الجولف إلى ضرب كرة لتدخل في حفرة قُطرها 4.5 إنشُّا
افترض أنّ لاعب جولف يتف على بعد x متر من الحفرة ويحاول

 للحقفرة والشُعاع من الكرة إلى الحافة اليسرى من الحفرة. أوجد A

75. في دارة التيار الهـردد، يعطى الجهد بالعلاقة

يهكن أن تكون رسومات الحاسوب مضللة. ينجح هذا التمرين بأفضل
 مثّل $y=\sin x^{2}$ مستخدمُّا نافذة تهثيلِ بِيانيٍ يمثّل كل بيكسل فيها

 الآنن، غيّر نافذة التمثيل البياني بحيث يصبح منتصف الشُاشُـة الأصلية (في الغالب 0 ($x=0$ في أقصى يسار الشاشَة الجديدة. من الهرجّح أن ترى ما يبدو أنه خليط عشُوائي من النقاط. تابع تغيير التهثيل البياني بزيادة قيم x. صف الأنهاط أو غياب الأنماط الذي تراهـ من الهي الهنترض أن تجد نهطُا يبدو وكأنه صفان من النقاط عبر أعلى أِلى وأسفل الشُـاشة، ونهطُا آخر يشبه الهوجه الجيبية الأصلية. لكل نهطِ تجده، اختر النـو النقاط المجاورة التي لها إحداثيات a و b. ـُم غيِّر التمئيل البياني بحيث تصـي تصبح据 $a \leq x \leq b$
 من التمثيل، وتكمن مهمتك في تحديد ما إذا كان الجزء المتروك مهئًا أم 8.

تساوي مساحة الوقود في الأسفل مساحة جزء الدائرة المحصور بأنصاف الأقطار ناقص مساحة الهـُلت المُشَكل فوق الوقود في الشُكل.

ابداً بالهثلث، الذي تساوي مساحته نصف القاعدة مضروبة بالارتفاع. اشرح لمَ يساوي الارتفاع d-1. اعتُر على مثلث قائم الزاوية في الشكل (يوجد اثنان
 يساوي طول الضلع الأفتَي نصف فاعدة المثلث الأكبر. أوضح أنّ هذا يساوي

ارجي إلى الهثلث قائم الزاوية الهستخدم أعلاه ذو الزاوية العليا (e/2). ثـم أوجد المساحة المهلوءة بالوقود واقسم على π لإيجاد جزء الخزان المملوء بالوقود

الدوال الأسية واللوغـاريتهية

نتكاثر بعضض أنواع البكتيريا بسرعة كبيرة، ويحتمل أنك قد اكتشفت ذلك إذا سبق لك أن أصبت بالتهابٍ
 سأَعة. فُّي هذاً القسم، سنُناقشُ بصض الدوال التي بهكن استخدامها لنمذجةً مثل هذا النهو السريع.

لحساب عدد البكتيريا بعد 10 ساعات، يمكن أن تقوم بحساب العدد بعد 4 ساعات و5 5 ساعاتات وهكذا

 P(3) = $2^{3} \cdot 100$ يؤدي بنا هذا النّهط إلى

$$
P(10)=2^{10} \cdot 100=102,400 .
$$

لاحظ أنه بهكن نهذة العدد بواسطة الدالة

$$
P(t)=2^{t} \cdot 100 .
$$

 عدد البكتيرياً في الهوقع بعد نصف ساعة يساوي تقريبًا

$$
P(1 / 2)=2^{1 / 2} \cdot 100=\sqrt{2} \cdot 100 \approx 141 .
$$

$$
\begin{aligned}
& \text { من السهل تفسير الأسس الكسـرية كجذور. فـلى سبيل المـثال، } \\
& x^{1 / 2}=\sqrt{x} \\
& x^{1 / 3}=\sqrt[3]{x} \\
& x^{2 / 3}=\sqrt[3]{x^{2}}=(\sqrt[3]{x})^{2} \\
& x^{3.1}=x^{31 / 10}=\sqrt[10]{x^{31}}
\end{aligned}
$$

وهكذا. لكن ماذا عن الأسس غير النسبية؟ من ألهؤكد أن تعريفها أكثر صعوبة، ولكنها تؤه المطلوب منها بالضبط. و و ${ }^{3.15}$ بهذه الطـريقة، نُعرّف ${ }^{3} 2^{x}$ مِن أجل x غير نسبي من أجل ملء إلفـجوات في التمثيل البياني

$$
2^{a}<2^{x}<2^{b}
$$

إذا أردت لسببٍ من الأسباب إيجاد أو كهبيوترك بإيجاد العدد التقريبي:
$P(\pi)=2^{\pi} \cdot 100 \approx 882$
من أجل التسهيل، سنقوم الآن بتلخيص القواعد المعتادة للأسس. قواعد الأسس (من أجل x, y>0)

- لأية أعدادٍ صحيحة m و n n. $x^{m / n}=\sqrt[n]{x^{m}}=(\sqrt[n]{x})^{m}$

$$
\left(\frac{x}{y}\right)^{p}=\frac{x^{p}}{y^{p}} \quad, \quad x^{-p}=\frac{1}{x^{p}}, \quad(x y)^{p}=x^{p} \cdot y^{p}
$$

- لأية أعدادٍ حقيقية p وq ،

$$
\left(x^{p}\right)^{q}=x^{p \cdot q}
$$

- لأية أعدادٍ حقيقية p و q .

$$
\frac{x^{p}}{x^{q}}=x^{p-q}, \quad x^{p} \cdot x^{q}=x^{p+q}
$$

طوال دراستك لـحساب التفاضل والتكامل، ستحتاج لأن تكون قادرًا على التحويل بسرعـة في ما بين الشكل الأسي والشكل الكسري أو الجذري.

مثال 4.1 تحويل التعبيرات إلى الشكل الأسـي
(d) $\left(2^{x} \cdot 2^{3+x}\right)^{2}$ ووّل كل تعبير إلى الشكل الأسي: (c) $\frac{3 x^{2}}{2 \sqrt{x}}$ (b) $\frac{5}{\sqrt[3]{x}}$ ،(a) $3 \sqrt{x^{5}}$ الحل في الحالة (a)، كل ما عليك فعله هو ترك 3 وتحويل الأس:

$$
\begin{aligned}
& 3 \sqrt{x^{5}}=3 x^{5 / 2} \\
& \text { في البسط } x \text { في الحالة (b)، استخدم أسُـا سـالبًا لتكتب } \\
& \frac{5}{\sqrt[3]{x}}=5 x^{-1 / 3}
\end{aligned}
$$

في الحالة (c)، افصل الثوابت عن المتفيّرات أولًا ثـم حوّل إلى أبسط صورة: $\frac{3 x^{2}}{2 \sqrt{x}}=\frac{3}{2} \frac{x^{2}}{x^{1 / 2}}=\frac{3}{2} x^{2-1 / 2}=\frac{3}{2} x^{3 / 2}$
في الحالة (d)، قم بالعمليات داخل الأقواس أوُغ ثُم قَم بالتربيع:

- $\left(2^{x} \cdot 2^{3+x}\right)^{2}=\left(2^{x+3+x}\right)^{2}=\left(2^{2 x+3}\right)^{2}=2^{4 x+6}$

بشكلِ عـام، لدينا التعريف التالي.
التتعريف 4.1

يجب الحرص على التمييز بين الدوال الجبرية مثل $f(x)=x^{2 / 3} و(x)=x^{3}$ والدوال الأسية.

 على فترات منتظمة (مثل البكتيريا في بداية هذا القسم). إنّ نظام العد القياسي الذي نستخدم

$$
\begin{equation*}
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \tag{4.1}
\end{equation*}
$$

لاحظ أن المعادلة (4.1) تحوي اثنين على الأقل من أوجه القصور المهمة. الأول، لم نبين إلى

يكفي في الوقت الراهن القول إنّ الهعادلة (4.1) تعني أنه يهكن تقريب e بحساب قيم

 دوآليك، فإنها ستصبح بالتدريج أكثر قربًا إلى العدد غير النسبي e.

$$
\begin{aligned}
\left(1+\frac{1}{10}\right)^{10} & =2.5937 \ldots \\
\left(1+\frac{1}{1000}\right)^{1000} & =2.7169 \ldots \\
\left(1+\frac{1}{10,000}\right)^{10,000} & =2.7181 \ldots
\end{aligned}
$$

مثثال 4.2 حسـاب القيم الأسـية

قرّب
الـحل باستتخدام الآلة الحاسـبة، نجـد أن
$e^{4}=e \cdot e \cdot e \cdot e \approx 54.598$
من القواعد المعتادة للأسس،
$e^{-1 / 5}=\frac{1}{e^{1 / 5}}=\frac{1}{\sqrt[5]{e}} \approx 0.81873$
(على الآلة الحاسبة، من الملائم استبدال 1/5- جـ 0.2-). أخيرًا،

تلخص التمثيلات البيانية للدوال الأسية العديد من خصائصها المهمة.
مـثال 4.3 رسـم التـمثيلات البيانية الأسـية

الحل باستخدام آلة الحاسبة أو الحاسوب، يجب أن تحصل على تمثيلات بيانية مماثلة

$y=e^{x}$

1.54b الشكل
$y=e^{x / 2}$

$$
y=e^{-x}
$$

$y=2^{x}$

1.54a الشكل
$y=e^{2 x}$

$y=(1 / 2)^{x}$

لاحظ أن كلًا من التمثيلات البيانية في الأشكال 1.53a و1.23b و1.53a و1.54a و1.54 تبدأ قريبة
 حادًا. وهذا صحيح بالنسبة لكل الدوال الأسية التي فيها الأساس أكـبر من 1 الكا ومعامل إيجابي

 و1.55b، عـلى الترتيب. ترتفع التمثيلات البيانية عندما تتحرك باتجاه اليسار وتنـار الانضفض نحو الهـحور x عندما تتحرك باتجاه اليمين. تجدر الإشـارة إلى أنه وفق قواعد الأسس،

$$
(1 / e)^{x}=e^{-x}(1 / 2)^{x}=2^{-x}
$$

في الأشُكال من 3.65 إلى 3.67. كل دالة أسية تهـِّل دالة واحد لواحد، مـا يحتّم لها دالة معُكوسة. نعرّف الدوال اللوغاريتمية بأنها معكوسات الدوال الدوال الأسية.

التعـريف 4.2

$$
x=b^{y} \text { إذا وفَّط إذ } y=\log _{b} x
$$

$$
\begin{aligned}
\log _{10} 10=1 & \left(\text { since } 10^{1}=10\right) \\
\log _{10} 100=2 & \left(\text { since } 10^{2}=100\right) \\
\log _{10} 1000=3 & \left(\text { since } 10^{3}=1000\right)
\end{aligned}
$$

وهكذا. إنّ قيمة $45 \log _{10} 45$ أقل وضوحا مـن القيم الثـلاث السابقة، ولكن الفكرة نفسها: أنت
 دقَ، ستحتاج إلى استخدام التجربة والخطأ. ستحصل على 1.6532 ع $1 . \log _{10} 45$ على
和 $x=b^{y}>0$ الحقيقية بأكهلَه. () ($-\infty$).

كمـا هو الحال مـ الدوال الأسية، يتوضّح أن قيم الأسـاس الأكثر فائدة هي 2 و 10 و ع. نختصر
 لوغاريتم طبيعي).

مثثال 4.4 إيجاد قيم اللوغاريتمات

 نود أن نؤكد على الحلاقة العكسية التي يحددها التعريف 4.2. ونقصد بذلك أنّ $\log _{b} x$ و
 بالتحديد، من أجل الأسـاس e. لدينا

$$
\begin{equation*}
x \ln \left(e^{x}\right)=x \quad \text { و } x \text { لأي } e^{\ln x}=x \tag{4.2}
\end{equation*}
$$

$$
y=\ln x=\log _{e} x \quad \text { بحسب التعريف 4.2، نجد أنّ }
$$

$$
x=e^{y}=e^{\ln x}
$$

يهكن أن نستخدم هذه العلاقة بين اللوغاريتمات الطبيعية والأسس لحل المعادلات التي تَحتوي على اللوغاريتمات والأسس، كما هو الحال في الـمثّالين 4.5 و 4.6.

مثثال 4.5 حل معـادلة لوغـاريتمية

$$
\text { حل المعادلة } 3 \text { (} x+5 \text {) } 3 \text { من أجل x. }
$$

الحل بأخذ الأس لطرفي المعادلة وكتابة الأشياء بترتيب عكسي (من أجل السهولة)، نجد أنّ

$$
\begin{aligned}
& e^{3}=e^{\ln (x+5)}=x+5 \\
& \text { من (4.2). طرح } 5 \text { من كلا الطرفين يعطينا } \\
& \text { - } e^{3}-5=x
\end{aligned}
$$

> مثال 4.6 حل معـادلة أسـية
> حل المعادلة 7 مل 7 من ${ }^{x+4}$ من أجل

$$
\begin{aligned}
\ln 7 & =\ln \left(e^{x+4}\right)=x+4 . \\
& \\
& \text { من كلا الطرفين يعطينا } \\
& \ln 7-4=x
\end{aligned}
$$

كمـا هو الحال دائّنا، توفّر التمثيلات البيانية ملخصات مرئية ممتازة لأهم خصاص الدالة.

مثال 4.7 تهثيل اللوغـاريتمات بيانيًا
ارسم التمثيلات البيانية لـــ, $y=\ln x$ و $y=\log x$ وناقش خصائص كل منها بإيجاز.
 في الأشكال 1.56a و1.55b. لاحظ أنه يجب أن يكون لكلا التمثيلين البيانيين خط تقارب

 التمثيلين البيانيين متشابهان جدُال، بالرغمم من عدم تطابقهـا.

تتضهن النظرية 4.1 ملخصًا للخصائص المهثلة بيانيًا.

1.56a الشكل

$$
y=\log x
$$

1.56b الشكل
$y=\ln x$

الببرهـان
. $x=b^{y}>0$ لاحـظ أنه بما أنّ log $_{b} x=y$ (i)

تشترك كل اللوغـاريتمات في مجموعة الخصائص المـحدِّدة الواردة في النظرية 4.2.

$$
\begin{aligned}
& \text { نظرية } 4.2
\end{aligned}
$$

$$
\begin{aligned}
& \log _{b}(x y)=\log _{b} x+\log _{b} y \quad \text { (i) } \\
& \log _{b}(x / y)=\log _{b} x-\log _{b} y \quad \text { (ii) } \\
& \log _{b}\left(x^{y}\right)=y \log _{b} x \text { (iii) }
\end{aligned}
$$

كمـا هـو الحال مع معظم القواعد الجبرية، فإن كل خاصية من هذه الخصائص يمكنها تبسيط الحسابات بشكل كبير عند تطبيقها.

مـثال 4.8 تبسـيط التعـبيرات اللـوغـاريتمية
 الححل أولاُ، لاحظ أنه يوجد أكثير من ترتيب يمكن العمل به لحل كل مسألة. بالنسبة إلى

$$
\begin{aligned}
\log _{2} 27^{x}-\log _{2} 3^{x} & =\log _{2} 3^{3 x}-\log _{2} 3^{x} \\
& =3 x \log _{2} 3-x \log _{2} 3=2 x \log _{2} 3=\log _{2} 3^{2 x}
\end{aligned}
$$

بالنسبة للجزء (b)، لاحظ أنّ 8 (b=2 8 و 8 ($1 / 2=2^{3}$ إذن، $\ln 8-3 \ln (1 / 2)=3 \ln 2-3(-\ln 2)$

$$
=3 \ln 2+3 \ln 2=6 \ln 2=\ln 2^{6}=\ln 64
$$

في في المثئل الحالات، يكون من المفيد استخدام قواعد اللوغاريتمات لتبسيط تعبير محدد، كمـا

باستخدام قواعد الأسس واللوغاريتمات، يمكننا إعادة صياغة أي دالة أسية كدالة أسية لها أُساس e على النحو التالي. لأي أساس 0 > 0 لدينا

$$
\begin{equation*}
a^{x}=e^{\ln \left(a^{x}\right)}=e^{x \ln a} \tag{4.3}
\end{equation*}
$$

مـثال 4.10 إعـادة صياغـة الدالة الأسـية كدالة أسـية لها أسـاس أعـد صياغة الدوال الأسية الحل من (4.3)، لدينا

$$
2^{x}=e^{\ln \left(2^{x}\right)}=e^{x \ln 2},
$$

$$
5^{x}=e^{\ln \left(5^{x}\right)}=e^{x \ln 5}
$$

$$
\begin{equation*}
\left(\frac{2}{5}\right)^{x}=e^{\ln \left[(2 / 5)^{x}\right]}=e^{x \ln (2 / 5)} \tag{9}
\end{equation*}
$$

بما أنه يهكننا إعـادة صياغة دالة أسية لها أسـاس موجب في ما يتحلق بدالة أسية لها أسـاس
 التالي. سنوضّح في ما بعد

$$
\begin{equation*}
. x>0, b \neq 1 . b>0 \left\lvert\, \dot{\mid} \cdot \log _{b} x=\frac{\ln x}{\ln b}\right. \tag{4.4}
\end{equation*}
$$

افترض أنّ $y=\log _{b} x$ إذن بالتعريف 4.2، يصبح لدينا $x=b^{y}$ بأخذ اللوغاريتم الطبيعي لكلا جانبي هذه المعادلة، نحصل بناء على النظرية 4.2 (iii) على

$$
\ln x=\ln \left(b^{y}\right)=y \ln b
$$

$$
\begin{aligned}
& \square=3 \ln x+4 \ln y-5 \ln z
\end{aligned}
$$

بقسمة كلا الجانبين على b

$$
y=\frac{\ln x}{\ln b}
$$

لتتكون (4.4).

تُعتبر المـادلة (4.4) مفيدة في حساب اللوغاريتمات ذات الأساسـات خـلاف e أو 10. 10 وهذا
 فتط. يُرد توضيحنا لهذه الفكرة في المثال 4.11.

مثال 4.11 تقريب قيمة اللـوغـاريتمات

قا $\log _{7} 12$ بتقريب قيمة الحل من (4.4)، لدينا

$$
\log _{7} 12=\frac{\ln 12}{\ln 7} \approx 1.2769894
$$

الدوال الزائدية

 الزائدي(Hyperbolic Sine) وجيب التمام الزائدي (Hyperbolic Cosine)، ولهذه الدوال تطبيقآت هامة. علي سبيل المثال، تم بناء قوس جـيت واي في ميزوري على شكل تهثيل بياني لجيب تمام زائدي. (انظر الصورة الموجودة في الهـامش). تُحَدِد دالة الّجيب الزائدي [التي

$$
\cosh x=\frac{e^{x}+e^{-x}}{2}, \sinh x=\frac{e^{x}-e^{-x}}{2}
$$

قوس جيت واي
التمثيلات البيانية لتلك الدوال موضحة في الأشكال 1.57a و1.55b. غالبَّا ما يكون استخدام

 الدوال الزائدية بالتوازي مـح نَظائرها المثلثية.

1.57b الشكل
$y=\cosh x$

1.57a الشكل

$y=\sinh x$

مـثال 4.12 حسـاب قيم الدوال الزائدية

.(b) $f(x)=\cosh x_{9}$
الحل بالنسبة للجزء (a)، لدينا 0 (anh $0=\frac{e^{0}-e^{-0}}{2}=\frac{1-1}{2}=0$ احظ أن
هذا يعني أنّ $\sinh 0=\sin 0=0 \cdot \frac{e^{1}-e^{-1}}{2} \approx 1.18$ كذلك، لدينما 1.18 بينما
هـد $\sinh (-1)=\frac{e^{-1}-e^{1}}{2} \approx-1.18$

$$
\begin{aligned}
& \sinh (-x)=\frac{e^{-x}-e^{x}}{2}=\frac{-\left(e^{x}-e^{-x}\right)}{2}=-\sinh x \\
& \text { [تنطبق القاعدة نفسها على دالة الجيب: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { لدينا، } \\
& \text { x } x \text { في الحقيقة، وبالنسبة لأي } \cosh (-1)=\cosh 1 \\
& \cosh (-x)=\frac{e^{-x}+e^{x}}{2}=\frac{e^{x}+e^{-x}}{2}=\cosh x
\end{aligned}
$$

ملاءمـة الهـنحنى للبيـانات

مثال 4.13 مطـابقة البيانات لمـنحنى الدالة الأسـية

 الإحل يْبَ أن نجد الحل للحصول على

$$
5=f(0)=a e^{b \cdot 0}=a
$$

لذلك a=5. بعد ذلك، وإذا كان للتمثيل البياني أن يهرّ عبر النقطة (3 (3)، يجب أن يكون

$$
9=f(3)=a e^{3 b}=5 e^{3 b} \quad \text { لدينا }
$$

لإيجاد الحل للحصول على b، نقسم كلا طرفي المحادلة على 5 ونأخذ اللوغاريتم الطببعي

$$
\ln \left(\frac{9}{5}\right)=\ln e^{3 b}=3 b \quad \text { للُطرفين، ما يعطينا الناتج }
$$

من (4.2). أخيرَا، تعطينا القسمة على 3 قيمة b: $b=\frac{1}{3} \ln \left(\frac{9}{5}\right)$

$$
\text { بناءُ عليه، } \cdot f(x)=5 e^{\frac{1}{3} \ln (9 / 5) x}
$$

تأمل بيانات عدد سكان الولايات الهتحدة منذ 1790 حتى 1860، الواردة في الجدول الهرفق.
يمكن الاطلاع على مخطط لنقاط إلبيانات في الشكل 1.58 (حيث يهـثل المّقياس الرأسي

 هذه البيانات باستخدام الدالة التربيعية أم الدالة التكعيبية أم الدالة الأسية أم ماذا؟ المكنـا استخدام خصائص اللوغاريتمات من النظرية 4.2 للمساعدة في تحديد ما إذا كان من

 تقع على التّهثيل البياني لهذّه الدالة "الأسية). إذن،

$$
\ln y=\ln \left(a e^{b x}\right)=\ln a+\ln e^{b x}=\ln a+b x
$$

إذا رسمت تهثيلاً بيانيًا جديد، حيث يوضّح المحور الأفقي قَيم x ويوافق المحور الرأسي قيم

الشكل 1.58

 الأسية من التهثِيل البياني للدالة متعددة الحدود: تصبح التمثيلات البيانية خطوطًا مستقيمة، بينما تصبح التمثيلات البيّانية للدوال متعددة الحدود (من الدرجة 1 ¹) منحنيات لوغاريتمية. وعادةً ما يستخدم العلماء والمهندسـون التمثيلات البيانية شُبه اللوغاريتمية لمساعدتهم في فـهم الظواهر الفيزيائية ممثلة ببعض البيانات.

مـثال 4.14 اسـتخدام التمثيل البياني شبـه اللوغـاريتهي لتعـريف نوع الدالة حدد إذا ما كان عدد سكان الأمم المتحدة منذ 1790 حتى 1860 يتزايد كدالة أسية أم كثيرة

الحل كها ذكر سالفًا، تكمن الخدعة في رسم تهثيل بياني شبه لوغاريتمي. أي أنه بدُّ

 أن النقاط ليست متسامتة بالضبط (كّيف تثبت ذلك؟)، إلا أنّ التمثيل البياني جدًا إلي الخط
 تمثيل عدد السكان بواسطة دالة أسية. وسيكون النموذج الأسي 1780 و

البياني شَبه اللوغاريتمي. أي أنّ، عدد ألسكان بواسـطة

الشكل 1.59

التهارين 1.4

في التهرينات 12-7. حول كل تعبير إلى شكل أسـي.
7. $\frac{1}{x^{2}}$
8. $\sqrt[3]{x^{2}}$
9. $\frac{2}{x^{3}}$
10. $\frac{4}{x^{2}}$
11. $\frac{1}{2 \sqrt{x}}$
12. $\frac{3}{2 \sqrt{x^{3}}}$

في التمرينات 16-13، أوجد القيهـة الصـحيحة للتعبير الـموضـح دون استتخدام آلة حاسبـة.

تهـارين الكتابة

1. بدءًا من خلية واحدة، تكون الإنسان بفضل 50 جيلًا من

 باختصار كيفية زيادة الدوال الأسية بسرعـة.

$x=3 ، x=2 ، x=1 ، x=\frac{1}{2}-ـ g(x)=2^{x}$ و. $f(x)=x^{2}$ قارن بين

الصغيرة؟

و 2 و $2=2$ بشكل عام، أي الدوال أكبر لقيم x السالبة؟ لقيم x
الهوجبة؟
2. $4^{3 / 2}$
3. $8^{2 / 3}$
4. $\frac{\sqrt{8}}{2^{1 / 2}}$
5. $\frac{2}{(1 / 3)^{2}}$

لتقيدير التهرينـات قيمة. 20-17، استتخدم آلة حاسـبة أو كهبيوتر
17. $2 e^{-1 / 2}$
18. $4 e^{-2 / 3}$
19. $\frac{12}{e}$
20. $\frac{14}{\sqrt{e}}$

أوْجيذري. التهرينات 6-1، حول كل تعبير أسي إلى شكل كسـري

1. 2^{-3}
2. 4^{-2}
3. $3^{1 / 2}$
4. $6^{2 / 5}$
5. $5^{2 / 3}$
6. $4^{-2 / 3}$

الفوز بوجبة مجانية واحدة على الأفـل. الاحتمال الدقيق هي (10 - 10$)^{10}$ احسب هذا العدد وقارنه بتخمينك.
56. في التمرين 55، إذا كان لديك 20 تذكرة بفرصة 1

 لتكتشف ذلك.
57. بشكل عـام، إذا كان لديك n فرصة للفوز بـ 1 فـي

واحدة عـلى الأقِّل هي
 سبب جيد لوجود هـذا السؤال في هذا القسـم!)
58. إذا كان

59. للبيانات المعطـاة، احسـب النقاط (u,v). أوجد الثوابت m و b ${ }^{\text {ا }}$ بحيث واستخدم نتائج التمرين 58 لإيجاد ثابت a بحيث

x	2.2	2.4	2.6	2.8	3.0	3.2
y	14.52	17.28	20.28	23.52	27.0	30.72

60 ـ كرر التهرين 59 للبيانات المعطـاة.

x	2.8	3.0	3.2	3.4	3.6	3.8
y	9.37	10.39	11.45	12.54	13.66	14.81

61. قم بإنشاء مخطط لوغاريتم- لوغـاريتم (انظر التمرين
58) لبيانات سكان الولايات المتحدة في المثال 4.14 4. 4 مقارنةً بالمخطط شا شا 1.59، هل يبدو الهخطط لوغاريتم- لوغاريتم خطـئِّا؟ بناءً
 دالة أسية أم دالة متعددة الحدود (ذات قوة جبرية)؟ 62. قم بإنشاء مخطط شبه لوغاريتم للبيانات في التمرين 59. مقارنةً بهخطط لوغاريتم- لوغاريتم الذي أنسأته
 هل من الأفضل تهثيل هذه البيانات بواسطة دالة أسية أم دالة ذات قوة جبرية؟
63. يحدد تركيز [H+ أيونات الهيدروجين الحرة في الهحلول الكيميائي درجة حموضة pH الهحالولول، على

 المـوضّـحة وقارن التـمثيلات البيانية.

21. $f(x)=e^{2 x}$ and $g(x)=e^{3 x}$
22. $f(x)=2 e^{x / 4}$ and $g(x)=4 e^{x / 2}$
23. $f(x)=3 e^{-2 x}$ and $g(x)=2 e^{-3 x}$
24. $f(x)=e^{-x^{2}}$ and $g(x)=e^{-x^{2} / 4}$
25. $f(x)=\ln 2 x$ and $g(x)=\ln x^{2}$
26. $f(x)=e^{2 \ln x}$ and $g(x)=x^{2}$

في التمرينات 36-27، قم بـحل الهعـادلة الهوضحـة للحصـول
27. $e^{2 x}=2$
29. $e^{x}\left(x^{2}-1\right)=0$
31. $4 \ln x=-8$
33. $e^{2 \ln x}=4$
35. $e^{x}=1+6 e^{-x}$
28. $e^{4 x}=3$
30. $x e^{-2 x}+2 e^{-2 x}=0$
32. $x^{2} \ln x-9 \ln x=0$
34. $\ln \left(e^{2 x}\right)=6$
36. $\ln x+\ln (x-1)=\ln 2$

في التمـرينات37 و38، اسـتخـدم تعريف اللوغـاريتم لتتحديد القيمـة.

37. (a) $\log _{3} 9$
(b) $\log _{4} 64$
(c) $\log _{3} \frac{1}{27}$
38. (a) $\log _{4} \frac{1}{16}$
(b) $\log _{4} 2$
(c) $\log _{9} 3$

في التهرينات 39 و 40، استتخدم المعادلة (4.4) لتقريب القيمـة.

39. (a) $\log _{3} 7$
(b) $\log _{4} 60$
(c) $\log _{3} \frac{1}{24}$
40. (a) $\log _{4} \frac{1}{10}$
(b) $\log _{4} 3$
(c) $\log _{9} 8$

في التمرينات 46-41، أعـد صياغة التعبير كلوغـاريتم

41. $\ln 3-\ln 4$
42. $2 \ln 4-\ln 3$
43. $\frac{1}{2} \ln 4-\ln 2$
44. $3 \ln 2-\ln \frac{1}{2}$
45. $\ln \frac{3}{4}+4 \ln 2$
46. $\ln 9-2 \ln 3$
47. $f(0)=2, f(2)=6$
48. $f(0)=3, f(3)=4$
49. $f(0)=4, f(2)=2$
50. $f(0)=5, f(1)=2$

في التهرينات 54-51، ارجـع إلى الدوال الزائدية.

مجمل خط الاعـداد.
x 52

54. $3 x+2)=0$ أوجد كل حلول

التـطبيقات
مطحم للوجبات السريعة يعطي لكل عميل تذكرة مباراة. ومع
 مجانية. إذا كنت ذهبت إلى المطـمـ 10 مرات، فقيم فرصك في

1. مثّل 1 . $x^{2}=2^{x}$ $x^{a}=a^{x}$ للمعادلة
 مقارنةً بدور $x=3$ كحلٍ لـ
يحدث عندها التفيير، قم بحل a $a=2.1,2.2, \ldots, 2.9$

مختلف. استهر في تضييق فاصل التغيير عن طريق اختبار a $a=2.71,2.72, \ldots, 2.79$.

2 $y=x \ln x$有 $y=x^{a} \ln x$ و $y=x^{1 / 2} \ln x, y=x^{2} \ln x$ رعهوعة مختلفة من الثوابت الهوجبة a. لأن الهعادلة „ فإنتا نفترض أنّ $y=\ln x$ لها موضع تفرد

 حدد ترتيب موضع التفرد عند $x=0$ بالنسبة (b) $f(x)=\frac{1}{x^{3}} g$ (b) $f(x)=\frac{1}{x^{2}}$ و (a) $f(x)=\frac{1}{x}$ لـ كلمـا ارتفع ترتيب موضع التفرد، كلمـا كان موضـع التفرد ״״سيئًا،.. بناءً عـلى عملك، ما مدى سوء موضع التفرد لـ $y=\ln x$ عند

64 . تُعتبر العصارة المعدية حمضًا، بـ 2.5 مـ 2.5 يبلع

 . 63
65. تُحدد قوة ريختر M لزلزال مـا من حيث الطاقـة

E
 و6 (c). لكل زيادة في M بهقدار 1، ما هو العامل الذي يغيّر ؟
66. يُحدد مستوى ديسبل للضوضاء من حيث شـدة I I I I
 هي شـدة الصوت المسـهوع بالكاد. احسـب مستويات شـدة الأصـوات بقوة dB=80 (a) $\mathrm{dB}=90$ و (b) $\mathrm{dB}=100$ (c) لكل (c) لك زيادة بمقدار 1 ديسبل، ما هـو العامل الذي
67. يبلغ طول قوس 630 متر ويبلغ طوله 630 متر. (يعتقد

 . استخدم حاسبة التمثيل البياني لتقريب تقاطـعـات y وحدد إذا ما كانت القياسـات الأفقية والرأسـية للنهوذج صـحيحة أم لا.
68. لتمثيل مخطط قوس باستخـدام قطـع مكافئ، يمكنك البدء بـ $y=-c(x+315)(x-315)$ لثابت مـا c. اشـرح سـبب إعطاء ذلك التقاطعات x الصحيحة. 1 الصـة حدد الثابت c الذي يعطي y تقاطعُا قـدره 630. ارسـم cos الهكافئ والزائدي في التـمرين 67 على الهحاور نفسـها. هـل التمثيلات البيانية متطابقة تقريبًا أم مختلفة جـدأِّ
69. في البيانو القياسـي، يحدث A A أسـفل C C الأوسـط موجة صوتية تكرارهـا 220 Hz (دورة في الثانية). تكرار A الأعـلى بمقدار الجواب 440Hz. بشككل عـام، ينتج عـن مضاعـة الاو التكرار نفس نفـمة الجواب الأعلى. أوجد الصيغـة الأسـية للتكرار f كدالة لعدد الـجوابات x أعلى A الموجود أسفل
. الأوسـط C
70. توجد 12 نخمة في الجواب بالبيانو القياسي.
 إذا تم ضبط النفمات بالتسـاوي، فهـا يعـنـي أن C C الأوسـط
 التمرين 69 لتقدير تردد C الأوسط.

تحويلات الدوال

أنت الآن على علمر بقائمة طويلة من الدوال: كثيرة الحدود والنسبية والمثلثية والأسِية

 فبالتحرين 5.1.1. في فـائمة الدوال الخاصة بنا من خلال الجهع بينها. وسنبدأ بطريقة مباشرة

التعريف 5.1
افترض أنّ f f و g عبارة عن دالتين بمجالات f و و f • عن طريق g f

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(f-g)(x) & =f(x)-g(x) \\
(f \cdot g)(x) & =f(x) \cdot g(x)
\end{aligned}
$$

لكل x في x لم

$$
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}
$$

في المـثال 5.1، سندرس تركيبات مختلفة لعدة دوال بسيطة.
الهـثال 5.1 تركيبات الدوال إذا كانت الححل أونُ، لاحظ أن مجال f هو مجهل خط الاعداد ومجال g هو مجموع كل g هـ x الآن،

$$
\begin{aligned}
& (f+g)(x)=x-3+\sqrt{x}-1 \\
& (3 f-g)(x)=3(x-3)-\sqrt{x-1}=3 x-9-\sqrt{x-1} \\
& \text { لاحظ أنّ مجال (} \\
& \left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\frac{x-3}{\sqrt{x-1}} \\
& \text { الهجال هو } x \neq 1 \text { 1 } 1 \text { لتجنب القسمة على } 0 \text {. }
\end{aligned}
$$

التعريف 5.1 والمثال 5.1 يبينان لنا كيفية عمل تسلسل حسـابي باستخدام الدوال. العمل على دوال لا تستجيب مباشرةً إلى التسلسل الحسابي هو تركيب لدالتين.

تركيب دالتين عبارة عن عملية من خطوتين، على النحو المُشَار إليه سالفًا في المخطط الهامشُي. فانتبه

\qquad

الهـثال 5.2 إيجاد تركيب دالتين إذا كانت الححل أؤُ، لدينا

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x))=f(\sqrt{x-2}) \\
& =(\sqrt{x-2})^{2}+1=x-2+1=x-1
\end{aligned}
$$

من الـغري كتابة أن مجال $f \circ g$ هو مجمل الخط الفحلي، ولكن انظر بمزيد من العناية. ولاحظ أنه

 أنّ مجال (fog) هو
بالنسبة للتركيب الــاني،

$$
\begin{aligned}
(g \circ f)(x) & =g(f(x))=g\left(x^{2}+1\right) \\
& =\sqrt{\left(x^{2}+1\right)-2}=\sqrt{x^{2}-1}
\end{aligned}
$$

 مجال $g \circ f$ هو \quad مذ

الهـثال 5.3 تحديد تركيبات الدوال

 (d) $\cos ^{2} x$ و (c) $\sin x^{2}$ و (b) (b) ($\left.\sqrt{x}+1\right)^{2}$ الحل (a) لاحظ أن 1 (a) 1 (a) توجد داخل الجذر التربيعي. إذن، فالخيار الأول هو أن يكون لديك

$$
f(x)=\sqrt{x}, g(x)=x^{2}+1
$$

 g $f(x)=\sin x^{\prime}$ هو الخيار الأول.
 بشكل عـام، من الصعب تقريبًا أخذ التمثيلات البيانية لـ الـا (إذا كانت إحدى الدوال f f و g ا خطية، مـع ذلك، يوجد إجراء بياني بسيط لتمثيل التركيب بيانيًا. بحيث تُستكشف التتحويلات الخطية في بقية هذا القسم.
 أن تتمكن مـن استنتّاج النتيجة العامة منَ المثال 5.4.

المـثال 5.4 الإزاحة الرأسية لتتمثيل بياني مثّل $y=x^{2}$ و $y=x^{2}+3$ بيانيًا؛ وقم بهقارنة ومغايرة التمثيلات البيانية. الـحل قد تتمكن من رسم ذلك يدوئا. ينبغي أن تحصل على تمثيلات بيانية مشابهة للتمثيلات البيانية الموجودة في الأشكال 1.60a و 1.60b. يبين كلا الشكلين قطوعًا مكافئة تفتح لأعلى. يتمثل الاختلاف الرئيسي الواضـح في أن 3. في الحقيقة، وبالنسبة لأي قيمة معطاة لـ x، سيتم رسم النقطة الموجودة على التى التمثيل البياني $y=x^{2}+3$ أعلى بمقدار 3 وحدات عن النقطة المطابقة على التمثيل البياني 3 ولـي

$y=x^{2}+3, y=x^{2}$

إزاحة التهثيل إلى الأعلى

 القطوع الهكافئة، تكون أقصر مسافة رأسية عند $x=0$ إلا أنها تصبح أفقية على نحو متزايد عندما تتحرك بعيدًا عـن المحور y. وتقاس المسافة البالفة 3 بين القطوع الهكافئة رأسئًا.

 نشير إلى + + $f(x)$ بوصفه ازاحة رأسية (لأعلى أو لأسفل بمقدار |c| وحدات).

نستكشف في الهثال 5.5 مـا يحدث إذا مـا أضفنا ثابثًا إلى x.

لاحظ أنّ التمثيل البياني لـ $y=(x-1)^{2}$ يبدو مشابهُا للتمثيل البياني لـ $y=x^{2}$ بـ إلا أنه انتقل بهتدار

 -نسه يستمر لأي x تقوم باختياره. ويتضح ذلك من المخطط الهتزامن للدالتين (انظر الشكل 1.63).

الشكل 1.63
إزاحة التمثيل إلى اليمين

 $f(x-c)$ ($y=f(x+c)$ و $f(x+c)$ بوصفهما الإزاحة الأفقية (اليمنى واليسرى، على التوالي، بمقدار c وحدة).

لتفادي اللبس في مـا يتحلق بطريقة ازاحة التمثيل البياني لـ لـ (الهقدار داخل الأقواس) صفر. بالنسبة لـ

$$
\text { التمثِّيل البياني لـ (y=f(x-c ع عند } x=f \text {. }
$$

الــثال 5.6 مقارنة بين الإزاحة الرأسـية والأفقية

بغرض التمثيل البياني) لـ $y=f(x)$ الهوضح في الشكل 1.64a، ارسم التمثيلات البيانية لـ

$$
y=f(x-2), y=f(x)-2
$$

الحل لتمثيل $2=f(x)-2$ بيانيًا، قم فقَط بإزاحة التمثيل البياني الأصلي لأسفل بمقدار

يستكشَ المثال 5.7 أثر ضرب أو قسمة x أو y في أو على ثابت.
الحل التمثيلات البيانية موضحة في الأشكال 1.65a و 1.65b على التوالي.

الهثثال 5.7 مقارنة بعض التهثيلات البيانية الهرتبطة

1.65c الشكل
$y=x^{2}-1 \quad$, $y=4\left(x^{2}-1\right)$

1.65b الشكل

$$
y=4\left(x^{2}-1\right)
$$

1.65a الشكل
$y=x-1$

تبدو التمثيلات البيانية متطابقة إلى أن تقارن الهـاييس على الـحوور y. فالمقياس في الشكل
 تخطيط الدالة على المقياس نفسه، كما هو الحال في الشُكل 1.65c. هنا، يبدو التطحع المكافئ

هل يهكنك تحديد الفرق هنا؟ في هذه الحالة: تفير مقياس X الآن، بالعامل نفسه وهو 4
 (1)
 تكون المقاطع مح محور x مختلفة، ولكن المقاطـع مـع محور y تكون متشابهة.

1.66c الشكل
$y=x^{2}-1 \quad$ و $y=(4 x)^{2}-1$

1.66b الشكل
$y=(4 x)^{2}-1$

1.66a الشكل

$$
y=x^{2}-1
$$

 يهكنك أخذ التمثيل البياني لـ $y=f(c x)$ وضرب إلمقياس على مـحور y في c في c وللحصول على
 على مـحور x" في 1/c. يمكن الجهع بين هذه القواعد الأساسية لفهم التمثيلات البيانية الأكثر تعقيدًا.

المـثال 5.8 الإزاحة والتمـددة
 الـحل ليمكنك الحصول من بالتهتيل البياني، يكون لذلك أثر ضرب المقياس y في 2 ثم تحريك الرسم البـر البياني لأسفل بهقدار

$$
3 \text { وحدات. (انظُر التهثيلات البيانية في الأشكال 1.67a و 1.67b). }
$$

الهـثال 5.9 الإزاحـة في كلا اتجاهي x و

 لـ لـ لـ
 الحدود كمربع كامل. لدينا

$$
y=x^{2}+4 x+3=\left(x^{2}+4 x+4\right)-4+3=(x+2)^{2}-1
$$

1.68b الشكل

$$
y=(x+2)^{2}-1
$$

$$
\text { يلخص الجدول التالي اكتشافاتنا في هذا القسمع } f(x) \text { تحويلات }
$$

الأثّ على التمثيل البياني	الشك	التحويل	
\| C		$f(x)+c$	الإزاحة الرأسية
(C \|	$f(x+c)$	الإزاحة الأفقية	
ضرب الهقياس الرأسي في	$c f(x)(c>0)$	المقياس الرأسي	
قسمة المقياس الأفقي على	$f(c x)(c>0)$	المقياس الأفقي	

التهرين 1.5

في التهرينات 16-7، أوجد التركيبات $f(x)$ و ($f(x) ، ~ و ح د د ~ ا ل ه ـ ج ا ل ا ت ~$ الخاصة بها.
7. $\sqrt{x^{4}+1}$
8. $\sqrt[3]{x+3}$
9. $\frac{1}{x^{2}+1}$
10. $\frac{1}{x^{2}}+1$
11. $(4 x+1)^{2}+3$
12. $4(x+1)^{2}+3$
13. $\sin ^{3} x$
14. $\sin x^{3}$
15. $e^{x^{2}+1}$
16. $e^{4 x-2}$

في التمهرينات 22-17، حدد الدوال $h(x)$ ($h(x)$ و $و(x)$ بحيث تسـّاوي الدالة المعطـاة
17. $\frac{3}{\sqrt{\sin x+2}}$
18. $\sqrt{e^{4 x}+1}$
19. $\cos ^{3}(4 x-2)$
20. $\ln \sqrt{x^{2}+1}$
21. $4 e^{x^{2}}-5$
22. $\left[\tan ^{-1}(3 x+1)\right]^{2}$

المَوضّـح في الشكل لتمـثيل الدالة المُشـار إليها بيانيًا.

23. $f(x)-3$
24. $f(x+2)$
25. $f(x-3)$
26. $f(x)+2$
27. $f(2 x)$
28. $3 f(x)$
29. $-3 f(x)+2$
30. $3 f(x+2)$

التمثيل البياني لتمـارين 30-23

1. قـد يكون المـجالِ المقيد للمـثال 5.2 مـحيرًا. فكّر في التي التناظـر التالي. افترض أنّ لديك رحلـة بالطـائرة من نيويورك إلى لوس أنجلوّس مـع التوقَف
 اشـرح سـبب إلغاء الرحلة ا(أو إعـادة توجيههـا عـلى الأقلى) حتى ألـى إذا كان الطمس جيدًا في نيويورك ولوس أنجلوس.
2. اشبرح سبب كون التهثيلات البيانية لـ 1 و 1 و ال1 1

$$
\text { التمشثيل البياني لَّ } 1 \text { y }
$$

 التربيع لِإعـادة صياغـة أي دالة تربيعية بالشـكل $a(x-d)^{2}+e$. وباسـتخـدام قـواعـد التححويل في هـي هذا القسـمه، اشـرح لماذا يعـني ذلك أن القطوع المكافئة (ذات $a>0$) ستبدو متشابهة في الأسـاس.

بتحريك التهثيل البياني لـ $y=f(x)$ أربع وحداتّ جهـة اليسـار،
بدلا مـن جهة الـيمين

الهـيجالالته الخـاصـاتة 6-1، أوجها.

1. $f(x)=x+1, \quad g(x)=\sqrt{x-3}$
2. $f(x)=x-2, \quad g(x)=\sqrt{x+1}$
3. $f(x)=e^{x}, \quad g(x)=\ln x$
4. $f(x)=\sqrt{1-x}, \quad g(x)=\ln x$
5. $f(x)=x^{2}+1, \quad g(x)=\sin x$
6. $f(x)=\frac{1}{x^{2}-1}, \quad g(x)=x^{2}-2$

بالنسبة لـ، $y=|x|^{3}$ صف طريقة مقارنة التمثيل البياني الموجود على يسار المـحور y مـع التمثيل البياني الموجود على لمين

56. بالنسـبة لـ $y=x^{3}$ صف طريقة مقارنة التمثيل البياني الموجود
 المحور y. بيّن أنه بالنسببة لـ
 $y=f(x)$ المـحور y و $f(-x)=-f(x)$ لكل x ، صفت كيفية تهنيل بيانيًا على يسار المـحور y 57 تكرإرات الدوال ضرورية في تطبيقات متنوعـة. لتكرار $f(x)$ وأ و $x_{2}=f\left(x_{1}\right)$ و $x_{1}=f\left(x_{0}\right)$ واحسأ بالقيمة الأولية $x_{3}=f\left(x_{2}\right)$ $x_{1}=\cos 1 \approx 0.54$ و $x_{0}=1$ وتكون التكرارات 1 و $f(x)=\cos x$ و

دواليك. استمر في حسـاب التكرارات وبيّن أنهـا تقترب

تريده) وبيّن أن التكرارات مـع هذا . 0.739085
58. بالإشـارة إلى التمـرين 57 كـ بيّن أنه يمكن كتابة تكرارات

$$
x_{3}=f\left(f\left(f\left(x_{0}\right)\right)\right), x_{2}=f\left(f\left(x_{0}\right)\right), x_{1}=f\left(x_{0}\right) \xrightarrow{\text { الدالة }}
$$ وهكذا دواليك. مـثّل $y=\cos (\cos (\cos (\cos x)))$

 التمرين 57 لتحديد خط التحديد.
59. احسـب عـدة تكرارات لـ 5 (انظر التمرين 57) $f(x)=\sin$ (انـرا
 عـلى الـدـى الطويل؟

$$
\text { 60. كرر التهرين } 59 \text { لـ } f(x)=x^{2} .
$$

61. في الحالات حيث تكرر تكرارات الدالة (انظـر التهرين 57)
 يجب أن تكَون أي نقطـة ثابتة حـلأ للمعـادلة $\cos x=x$ النقاط $f(x)=\cos x$ عـن طـر الثابتة .
 قارن نتائجكك بنتائج التهـرين 59.

قهر ينات اسـتاتكشافية

 إلى الشكل a> 0

 المكعب":، بيّن أوغ夫 أنّ البّ
 (b) $y=x^{3}-3 x^{2}+3 x+2$ و (a) $y=x^{3}-3 x^{2}+3 x-1$ يمكنك الحصول عـلى تحويل بسـيطـ إلى $y=x^{3}-3 x^{2}+4 x-2 x$ مـع

 يمكن الحصول عـلى أي مكعب (y=ax التحـويلات الأسـاسـية من $y=a x^{3}+k x$ بالنسبة الثابت k نفسـه.

31. $f(x-4)$
32. $f(x+3)$
33. $f(2 x)$
34. $f(2 x-4)$
35. $f(3 x+3)$
36. $3 f(x)$
37. $2 f(x)-4$
38. $3 f(x)+3$

التمثيل البياني لتمارين 38-31
في التهرينات 44-39، أكهل التتربيع واشرح طـريقة تحويل التمثيل البياني لـ $y=x^{2}$ إلى التهثيل البياني للدالة الهعـطـاة.
39. $f(x)=x^{2}+2 x+1$
40. $f(x)=x^{2}-4 x+4$
41. $f(x)=x^{2}+2 x+4$
42. $f(x)=x^{2}-4 x+2$
43. $f(x)=2 x^{2}+4 x+4$
44. $f(x)=3 x^{2}-6 x+2$

في التهرينات 48-45، مثل الدالة المعططاة بيانيًا وقارنها بالتمثيل البيّياني لـ
45. $f(x)=-2\left(x^{2}-1\right)$
46. $f(x)=-3\left(x^{2}-1\right)$
47. $f(x)=-3\left(x^{2}-1\right)+2$
48. $f(x)=-2\left(x^{2}-1\right)-1$

في التمرينات 52-49، مثل الدالة المعطـاة بيانيًا وقـارنها بالتهثيل

$$
\text { البياني لـ } y=(x-1)^{2}-1=x^{2}-2 x=
$$

49. $f(x)=(-x)^{2}-2(-x)$
50. $f(x)=-(-x)^{2}+2(-x)$
51. $f(x)=(-x+1)^{2}+2(-x+1)$
52. $f(x)=(-3 x)^{2}-2(-3 x)-3$

$$
\begin{aligned}
& \text { 53. بناءً على التهرينات 48-45، اذكر فَاعدة تحويل التمثيل البياني }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 54. بناءً على التمرينات 52-49، اذكر قَاعدة تحويل التمثيل البياني }
\end{aligned}
$$

(a) $f(x)=x^{2}+2 x+1,0 \leq x \leq 2$ أوجد الامتداد الهتسـاوى لـ

$$
\text { (b) } f(x)=e^{-x}, 0 \leq x \leq 2 \text {, }
$$

3. وعلى غرار الامتداد الهتساوي الهذكور في التمرين الاستكشافي 2، تتطلب التطبيقات في بـض الأحيان أن تكون الدالة فردية؛ أي任 $0 \leq x \leq 2$ يتطلب الامتداد الفردي أنه بالنسبة $f(x)=x^{2}$ - $\left.2 \leq x \leq 0, f(x)=-f(-x)=-(-x)^{2}=-x^{2}\right\rfloor$ مبثّل $y=f(x)= \begin{cases}-x^{2} & \text { if }-2 \leq x \leq 0 \\ x^{2} & \text { if } 0 \leq x \leq 2\end{cases}$ إدارة النصف الأيمن من التمثيل البياني، بيانئًا، للحصول على الـي
النصف الأيسر من التمثيل البياني. أوجد الامتداد الفـيا
(b) $f(x)=e^{-x}-1,0 \leq x \leq 2$ g (a) $f(x)=x^{2}+2 x, 0 \leq x \leq 2$
4. في العديد من التطبيقات، من الضروري أخذ مقطع م)

وبسطها من أجل التوقِعـات أو التحليلات الأخرى. على
سببل المثـال. افترض أنّ لديك إشـارة إلكترونية تسـاوي

x $x=-1$ $f(-1)=2$ أم لا. إذا كانت الإشـارةً دورية، فبيّن لماذا سيكون تنبؤًا جيدُا. في بيض التطبيقات، قد تفترض أن الدالـو الة متساوية. أي، 2 $\leq x \leq 0$ 」 $f(x)=2(-x)=-2 x$

$$
f(x)= \begin{cases}-2 x & \text { if }-2 \leq x \leq 0 \\ 2 x & \text { if } 0 \leq x \leq 2\end{cases}
$$

تهرينات الهـرا جعية

في التمرينين 1 و 2، أوجد ميل الهستقيم مـن خـلال النّقاط الـهـحـددية.

1. $(2,3),(0,7)$
2. $(1,4),(3,1)$
 أو"مـتعـامـدة أو غـير ذلكـ
3. $y=3 x+1$ and $y=3(x-2)+4$
4. $y=-2(x+1)-1$ and $y=\frac{1}{2} x+2$
 رؤوس المثّلث قـائم الزاوية. 6. تمثل البيانات التعـداد السكاني في أوقَات مـختلفة. ارسـم

5. أوجد معـادلة المستقيم مـن خـال النقاط المـحددة في الرسـم البياني التالي واحسـب الإحـداثي y المناسـب لـ $x=4$ الـي

$$
\text { 8. بالنسبة إلى } f(x)=x^{2}-3 x-4 \text { ، احسب } f(0) \text { (2) و } f(4) .
$$

تهـويـنات كـتابـة

تتضمن القائهـة التالية مصطلحات المعـرفـة ونظريات واردة في هذا الفصل. بالنسـبة لكل مصطلـح أو نظرية، (1) اذكر تعريف أو عبارة دقيقة، (2) اذكر معنى المصطلحـح أو الـنظرية بعبارات عـامة، و (3) صف أنواع الهسـائل ذات الصلة بالهصطلـح أو النظرية. خطوط متعامدة

أصفار الدالة خط تقارب رأسي

دالة دورية
دالة جيب الزاوية القوسي arcsin

لوغاريتم

خطوط متوازية المقطـع	مـيل الخط
الحد الأقصى الهـحلي	نافذة التمثيل البياني
دالة فردية	دالة عكسية
دالة جيب التهام	دالة الجيب
دالة أسية	e

تركيب

هـح أم خطـأ
اذكر إذا مـا كانت كل عـبارة صحيحة أم خاطـئة وبيّن السـبب
 تُـديل العبأرة الموضّحـة إلى العبارة الجديدة الصـحيحة.
 2. يجب أن تهمّ كل التمثيلات البيانية باختبار الخط الرأسي. 3. للدالة التكحيبية تمثيلًا بيانيًا بحد أقصى مـحلي وحد أدنى محـلي.
4. إذا لهم يكن للدالة حـد أوّصى أو أدنى محلي، فـإنها تكون فردية.
5. يهكن الحصول عـلى التـشيل البياني لهعكوس f عـن طريق عكس التمثيل البياني لـ f عبر y لم y المطري.
6. إذا كانت f عبارة عـن دالة مثلثية، فإن حل المعادلة 1 عـر 1 هو (1)
7. الدوال الأسـية واللوغـاريتمية هي معكوس بعضهـا البعض. 8. للدوال التربيعية رسـومات بيانية مثّل القطـع المكافئ

$$
\begin{aligned}
& \text { 31. أوجد كل خطوط التقارب لـ } \\
& \text { 32. أوجد كل خطوط التقارب لـ }
\end{aligned}
$$ الميُطـةاة. التمرينات 36-33، أوجد أو قدّر كل أصفـار الدالة

33. $f(x)=x^{2}-3 x-10$
34. $f(x)=x^{3}+4 x^{2}+3 x$
35. $f(x)=x^{3}-3 x^{2}+2$
36. $f(x)=x^{4}-3 x-2$

في التتمرينين 37 و 38، حدد عـدد الحلول.
37. $\sin x=x^{3}$
38. $\sqrt{x^{2}+1}=x^{2}-1$
39. يقف مسـاح علي بعد 50 قدمُا من عمهود الهاتْ

 44. قم بحل المعادلة x: 8 ج

في التهرينين 45 و 46، قم بحل الهعادلة x.
45. $3 e^{2 x}=8$
46. $2 \ln 3 x=5$

47. $f(x)=x^{2}, \quad g(x)=\sqrt{x-1}$
48. $f(x)=x^{2}, \quad g(x)=\frac{1}{x^{2}-1}$

49. $e^{3 x^{2}+2}$
50. $\sqrt{\sin x+2}$
 الرسَم البيـياني لـ $y=x^{2}$ إلى الرسـم البيـياني للـدالة المعـطـاة.
51. $f(x)=x^{2}-4 x+1$
52. $f(x)=x^{2}+4 x+6$

والْنق التهمرينين المذكورين. 9 و أوجد مـعادلة الهسـتقيم مـن خـلال الهيل
9. $m=-\frac{1}{3}, \quad(-1,-1)$
10. $m=\frac{1}{4}$,

11.

12.

في التمرينين 13 و 14، أوجد مـجال المعـادلة المعطـاة.
13. $f(x)=\sqrt{4-x^{2}}$
14. $f(x)=\frac{x-2}{x^{2}-2}$

15. $f(x)=x^{2}+2 x-8$
16. $f(x)=x^{3}-6 x+1$
17. $f(x)=x^{4}-2 x^{2}+1$
18. $f(x)=x^{5}-4 x^{3}+x-1$
19. $f(x)=\frac{4 x}{x+2}$
20. $f(x)=\frac{x-2}{x^{2}-x-2}$
21. $f(x)=\sin 3 x$
22. $f(x)=\tan 4 x$
23. $f(x)=\sin x+2 \cos x$
24. $f(x)=\sec 2 x$
25. $f(x)=4 e^{2 x}$
26. $f(x)=3 e^{-4 x}$
27. $f(x)=\ln 3 x$
28. $f(x)=e^{\ln 2 x}$

أولًا، انظر باستقامة لرمية الإرسـال (هـا يحني أسـاسًا أنّ رمية
 الأرض. حدد نقطـة البداية (0, 9 (0). يبعد الجانب الخلفي من مربع
 حوالي 3 أقدام عـن سطـح الأرض و60 63 قدمُا مُا من مستهل ضربة الكرة، عند (39) (39) أوجد زاوية رمية الإرسال (أي الزاوية التي
 0). وبطبيعة الحال، فنالبًا ما تنحني رمية الإرسـال لأسفل بسبب الجاذبية. بتجاهل مقاومة الهواء، فإن مسار الكرة التي سـددت نحو $y=-\frac{16}{(v \cos \theta)^{2}} x^{2}-(\tan \theta) x+9$ الزاوية θ السر ft / s السرعة الأولية $y=0$ لتُسـدد في الجانب الخلفي من خط الإرسال، فإنك تحتا عندما $x=60$ عوّض في هذه القيم بالإضافة إلى $120=v$ = في $\cos ^{2} \theta$ واستبدل $\sin \theta$ بـ $\cos \theta$ بـ z بيط \cos يعـك معادلة جبرية في z. قدّر بالعدد. z. وبالهثل، عوّض $x=39$ و 3 و
 لرمية الإرسـال من $\cos ^{-1} z<\theta<\cos ^{-1} w$

3. غـالبًا ما يقول لاعبو كرة البيسبول أن رمية الكرة السريعةٍ بشكل غير معتاد ترتفع أو تقفز حتى تصل إلى القاعدة الدا وأحد تفسيرات هذا الخطأ هو عدم قـدرة اللاعبين على تتبّع الكرة

الخكرة عند وضولها إلى القاعدة. افترض أنّ ارتفاع الكرة عندما تصل إلى القأعدة الرئيسة هو 6 و 6 قو $h=-(240 / v)^{2}$ قدم وسرعتهـا
 الارتفاع يكون $h=-(120 / v)^{2}+6$ قدم قارن أرتفاعات منتصف

الطريق لرمية الكرة بـ 132 الاع 120 و 139 (حوالي 90 و95 90 على التوالي). هل يتهكن اللاعب ضـر ضارب الكرة من تحديد فروق كثيرةً بينها؟ والآن قارن بين الإرتفاعـات عـات عند
 تقفز يهين القاعدة. كم قَدمُا تقفزها الرمية الأسرع؟

في التمرينات 56-53، حدد ما ما إذا كانت دالة متباينة الم الم لا.
 وإذّا كانت دالة متباينة، فاذكـر معـكوسـها.

53. $x^{3}-1$
54. $e^{-4 x}$
55. $e^{2 x^{2}}$
56. $x^{3}-2 x+1$

في التمرينات 60-57، مثّل بيانيًا الهعكوس بدون حله.
57. $x^{5}+2 x^{3}-1$
58. $x^{3}+5 x+2$
59. $\sqrt{x^{3}+4 x}$
60. $e^{x^{3}+2 x}$

فِّي التهرينات 64-61، أوجد قيمـة الكهية باستتخدام دائرّة الوحدة.
61. $\sin ^{-1} 1$
62. $\cos ^{-1}\left(-\frac{1}{2}\right)$
63. $\tan ^{-1}(-1)$
64. $\csc ^{-1}(-2)$

في التهرينات 68-65، حوّل إلى أبسطط صورة التعبير الجّذري.
65. $\sin \left(\sec ^{-1} 2\right)$
66. $\tan \left(\cos ^{-1}(4 / 5)\right)$
67. $\sin ^{-1}(\sin (3 \pi / 4))$
68. $\cos ^{-1}(\sin (-\pi / 4))$

في التمرينين 69 و 70، أوجد كل حلول المعادلة.

69. $\sin 2 x=1$
70. $\cos 3 x=\frac{1}{2}$

تهرينات استكششافية

1. مثّل بيانيًّا أي دالة $y=f(x)$ لها معكوس. (حسب اختيارك)
 ($y=g(x)=f(x+2)$ لتحديد صيغة $. k(x)=f(x-4)+5$,
2. في لعبة التنس، تتجاوز رمية الإرسال الشبكة ثمر تسقط في الهربيع الهوجود في الجانب الهانحر من الشبكة. في هذا التمرين.

الثهباياءت والاهتصال

$1 \sqrt{6} \rightarrow 10$

عنـدما تدخل غـرفة مظلمة، تتكيّف عيناك على المستوى المنخفض من الضوء بزيادة حـجم حدقَة العين،
 تدخل غـرفة مضاءة بشكل جـيد، تنقبض الحدقـة مما يقلّل من مقدار الضوء الذي يدخل العين حيث يؤثر الضوء الشـديد على وظـائف جهازك البصري.

وقَد درس العلماء هذه الآلية بإجراء التجارب ومـحاولة الحثور عـلى الوصف الرياضي لهذه النتائج.
وفي هذه الحالة، قد ترغـب

حدقـة صغـيرة

حدقة كبيرة

الخاصيتان تهثيل الأسـاسيتان لهذه الحدقة كدالة لمقدار الرياضية الضوء الهوجود. وستكون

1. كلما تزايد مقدار الضوء (x)، تتناقص حدقَة العين (y) حتى

القيمة الصنـرى p.
2. كلما تناقص مقدار الضوء (x)، تتزايد حدقة العين (y) حتى
القيمة العظمى P.

يوجد العديد مـن الدوال التي تتمتع بهاتين الخاصيتين، ولكن

 بهـثابة الخيط الذي يربط عمليًا كل موضوعـات التفاضل والتكامل

 والتكامل ومـا بعد ذلك.

مراجعة موجزة عن التثاضل والتكامل: المهماسات وطول المنحنى

في هذا الدرس، نتناول الحدود بين رياضيات ما قبل التفاضل والتكامل وحساب التضاضل والتّكامل من خلال التحقيق في العديد من المسائل الهامة التي تتطلب استخدام التفاضل
 ويبقى لهذا الكسر القيمة نفسهـا بغض النظر عن أي نقطتين تستخدمهما لحساب الميل. فعلى سبيل
 على فيمة الهيل 3 من أي نتطتين من هذه النقاط. فـلى سبيل الهثال،

$$
m=\frac{4-1}{1-0}=3 \quad \text { و } \quad m=\frac{10-1}{3-0}=3
$$

إننا نعمل في التفاضل والتكامل على تعميم هذه الهسألة لإيجاد الهيل للمنحنى عند نقطة. على
 اختيار نتطة ثانية على القطـع الهكأفئ، مثل (2,5). ويعد ميل المستقيم عبر هاتين النقطتين (ويطلقِ عليه المستقيم القاطـع: انظر الشكل 2.2a) سـل الحسـاب. لدينا

$$
m_{\mathrm{sec}}=\frac{5-2}{2-1}=3
$$

ومع ذلك، باستخدام النقطتين (0,1) و (1,2)، نحصل على ميل مختلف (انظر الشُكل 2.2b):

$$
m_{\mathrm{sec}}=\frac{2-1}{1-0}=1
$$

وبوجه عام، فإنّ ميل المستقيمات القاطعة التي تجمع نقاط مختلفة على الهنحنى ليست لها القيمة نفسها، كما هو موضّح في الشكلين 2.2a و2.2b. إذًا، ما الذي نعنيه بميل منحنى عند نقطة؟ يمكن تصور الإجابة من خلال تكبير الرسم البياني والتركيز على النّقطة المحددة. وفي هذه الحالة، بالتركيز على النقطة (1, 1)، ينبغي أن تحصل على

 على القطـع الهكافئ تكون كل منها أقرب إلى النقطة (1, 2) من التي تسبقها. احسب ميل المستقيهات التي تهر بالنقطة (1, 2) وكل نقطة من النقاط. وكلمـا اقتربت النقطّة الثانية من النقطة (1 1)، كان الميّل الهـحسوب أقرب إلى الإجابة التي تنشدها. على سبيل الهثال، فإن النقطة (1.5,3.25) على القطـع الهكافئ قريبة من (1 1)). وميل الهستقيم الذي يصل بين هذه النقاط يساوي:

2.2a الشكل

المستقيم القاطع؛ الهيل = 3

2.2b الشكل

1 = المستقيم القاطح؛ الميل

$$
\text { قدّر ميل } y=x^{2}+1 \text { عند } 1 .
$$

الحل نركز على النقطة ذات الإحداثيات $x=1$ و و $x=1$ و 2 لتقدير الهيل، اختر عددا من

 (قيم x من 2 و 1.1 و 1.01) والنقاط عندمًا 1 (1 (قيم x م من 0 و 0.9 و 0.99)، نحسب قيم y الهقابلة باستخدام $y=x^{2}+1$ والحصول على قيم الميل الموضحة في الجدول التالي.

$m_{\text {sec }}$	النفطة الثانبة
$\frac{1-2}{0-1}=1$	$(0,1)$
$\frac{1.81-2}{0.9-1}=1.9$	$(0.9,1.81)$
$\frac{1.9801-2}{0.99-1}=1.99$	(0.99, 1.9801)

$m_{\text {sec }}$	$(2,5)$
$\frac{5-2}{2-1}=3$	$(1.1,2.21)$
$\frac{2.21-2}{1.1-1}=2.1$	$(1.01,2.0201)$
$\frac{2.0201-2}{1.01-1}=2.01$	

لاحظ أنه في كل من العمودين، كلما اقتربت النقطة الثانية من النقطة (1 (1)، اقتربت قيمة ميل القاطع من القّيهة 2. ويكون التقدير الهنطقي لهيل الهنحنى في النقطة (2 1 2 (2) هو 2. سنطور أسلوبًا قويًّا وبسيطًا في الوقت ذاته لحساب قيم الهيل بالضبط. وسنرى أنه (في بعض
 النقطة. لاحظ ما يميز مسائل التفاضل والتكامل عن مسائل الجبر الهقابلة. تحتوي مسائل التفاضل
 من القيم التقريبية الهتتالية، ستسهـح لنا النهاية بحساب الهيل بدقة.

$$
\begin{aligned}
& \text { الهثال } 1.2 \text { تقدير ميل المنـحنى }
\end{aligned}
$$

الحل ويعتبر هذا مسـألة هامة للفاية، وهي مسـألة سنعود لتناولها لاحقًا. أما الآن، اختر عديدًا من النقاط بالقرب من (0) 0) واحسب ميل المستقيمات القاطحة التي تصل هذه النقاط بالنقطة (0,0) (0) ويوضّح الجدول التالي مجهوعة من الاختيارات.

$m_{\text {sec }}$		$m_{\text {sec }}$	النقطة الدانبة
0.84147	$(-1, \sin (-1))$	0.84147	$(1, \sin 1)$
0.99833	$(-0.1, \sin (-0.1))$	0.99833	(0.1, $\sin 0.1$)
0.99998	$(-0.01, \sin (-0.01))$	099998	(0.01, $\sin 0.01$)

 من العدد 1. ويكون التقدير الجيد لميل الهنحنى في النقطة (0,0)، هو، 1 وبالرغم من أنـن أنـا لا نملك
 ولاحظ أنه بالقرب من (0,0)، يشبه التهثيل البياني $y=x$ خطُّا مستقيمّا بهيل 1.

الشكل 2.4 $y=\sin x$

2.5c الشكل

ثاث فَطـع مستقَيمة

الهسألة الثانية اللتى تتطلب إستخدام التفاضل والتكامل هي حسـاب الهسافة على طول مسار منحنى. وبالرغم من أن هذه المسألة تعتبر أقل أهمية من مثالنا الأول (تاريخبًا وفي تطور علما التفاضل
 الشبه بين تطوّور هذه المسـألة وعملنا السـابق على الهـيل. تذكر أن المسافة (الخطط الهستقيم) بين النقطتين $)$ $d\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$. على سبيل المثال، فإن الهسافة بين النقطتين (1, 0$)$ و) 3 (4) هي $d\{(0,1),(3,4)\}=\sqrt{(3-0)^{2}+(4-1)^{2}}=3 \sqrt{2} \approx 4.24264$.
وعلى الرغـم من ذلك، لا يعتبر ذلك الوسـيلة الوحيدة التي قـد نرغبـ في حسـاب الهسـافـة بين نقطتين
 على شكل المنحنىى المستقيم الذي يصل بين النقطتين، بل ستهتم فقّط بالهسـافـة التي تحتاج إلى قـطعهـا عـلى طـول

المنـحنى (طول الموس عـلى الــنحنى).
لاحظ أنّه γ بد أن تكون المسـافة على طـول المنحنى أكبر مـن $3 \sqrt{2}$ (طول الخط الهستقيم).
وبالحصول عـلى قـرينة من مسـألة المـيل، يمكنـنا وضع اسـتراتيجية للحصول عـلى قـيم مـتـالية مقدرة
 استخـدام قـطع مستقيمة، كمـا في الشكل 2.5b. لاحظر أن مسهوع طـولي القطعتين الهستقيهتين يبدو
 $d_{2}=d\{(0,1),(1.5,0.25)\}+d\{(1.5,0.25),(3,4)\}$

$$
=\sqrt{(1.5-0)^{2}+(0.25-1)^{2}}+\sqrt{(3-1.5)^{2}+(4-0.25)^{2}} \approx 5.71592
$$

ربما تكون متقدمًا عـنا بكثير الآن. إذا كان تقريب طول المنحنى بتطعتين مستقيمتين يقدم تقريبًا مقبولا، فلم لا نستخدم ثلاثًا نقاطـا أو أربعًا أو أكثر؟ باستخدام القطـع المستقيمة الثلاث الموضحة في الشكل 2.5c، نحصل على تقريبًا أفضل

$$
\begin{aligned}
d_{3} & =d\{(0,1),(1,0)\}+d\{(1,0),(2,1)\}+d\{(2,1),(3,4)\} \\
& =\sqrt{(1-0)^{2}+(0-1)^{2}}+\sqrt{(2-1)^{2}+(1-0)^{2}}+\sqrt{(3-2)^{2}+(4-1)^{2}} \\
& =2 \sqrt{2}+\sqrt{10} \approx 5.99070 .
\end{aligned}
$$

لاحظ أنه كلما زاد عدد القطع المستقيمة التي نستخدمها. كان التقريب أفضل. وستصبح هذه الْنـه العملية أُقل صعوبة مـع تطوير مغاهيم التكامل. أما آلآن، فسنذكر عددًا من التقديرات المتتالية الأفضل
 ويقترح الجدول أن طول المنحنى يساوي تقريبًا 6.1 (وهي قيمة تختلف كثيرًا عن مسـافة الخط

المسافـ	
4.24264	1
5.71592	2
5.99070	3
6.03562	4
6.06906	5
608713	6
6.09711	7

الهستقيم في 4.2). إذا واصلنا هذه العهلية باستخدإم الهزيد من القطـع المستقيمة، فسيكون مجهوع أطوألهم قريبُا من الطول الفعلي للهنحنى (أي حوالي 6.126). وكمـا هو الحال مـع مسائل

حساب ميل الهنحنى، يتم حساب طول الـولـو القوس كنهاية.

الهـثال 1.3 تقدير طـول قوس عـلى المـنحنى

قدر طول قوس الهنحنى $y=\sin$ بالفترة $x \leq \pi \leq$ 0 0 . (انظر الشكل 2.6a). الحل نقاط أطراف الهنحنى في هذه الفترة هما (0 0) و(0) (0) والهسـافة بين هاتين النقطتين
 [(الموضحةً في الشُكل 2.6a) هي

$$
d_{2}=\sqrt{\left(\frac{\pi}{2}\right)^{2}+1}+\sqrt{\left(\frac{\pi}{2}\right)^{2}+1} \approx 3.7242
$$

 (أني أربع قُطـع مستقيمة كما هو موضّح في الشكّل 2.6b)، يساوي مجهوع أطوال هذه القطع

تقدير المنـحنى باسـتخدام قطعتين مستقيمتين

$$
d_{4}=2 \sqrt{\left(\frac{\pi}{4}\right)^{2}+\frac{1}{2}}+2 \sqrt{\left(\frac{\pi}{4}\right)^{2}+\left(1-\frac{1}{\sqrt{2}}\right)^{2}} \approx 3.7901
$$

وباستخدام تسـع نقاط (أي ثماني قطـع مسـتقيمة)، ستحتاج إلى حاسـبة وبعض الصبر لحسـاب

مـا وراء القتوانين

في عملية تقدير كل من ميل المنحنى وطوله، نتفذ ببعض عمليات التقريب (خط مستقيمه)
 كلما كانت القطعة المستقيمة أقصر، اقتربت القيم التقريبية من القيمة المنشودودة ويتلخص جوهر ذلك بهفهوم النهاية، وهو ما يفصل رياضيات ما قـبل التفاضل والتكامل عن التم التماضل
 في هذه الأمثلة الحل الدقيق. في الوحدات القادمة، سنجد طرقًا مختصرة وبسيطة بشكل مـدهش للإجـابات الـدتَيقة.

$$
\text { المّثيال التمارين 1.1) إلى 6، قدّر ميل } y=f(x) \text { عند } x=a \text { (كمـا في }
$$

1. $f(x)=x^{2}+1$,
(a) $a=1$
(b) $a=2$
2. $f(x)=x^{3}+2$,
(a) $a=1$
(b) $a=2$
3. $f(x)=\cos x$,
(a) $a=0$
(b) $a=\pi / 2$
4. $f(x)=\sqrt{x+1}$,
(a) $a=0$
(b) $a=3$

تمارين الكتابة

1
مستقيمات قاطعة. لاحظ أن $y=x^{2}+1$ يشكل منحنى. اشرح
سبب أُنه سيكون للمستقيم القاطع الذي يصل بين $(1,2)$ و (1.1, 2.21) ميلُا أكبر من المنحنى. نأقش كيف يكون ميل المستقيم القاطـع الذي يصل بين (1.21 (1) و (1.81 ,0.9) مقارنة

بهيل المنحنى.
اشرح السبب في أن كل فيمة تقريبية لطول القوس في المثال

للمساحة في التهرين 13 باستخدام (a) 16 مستطيلًا (b) 6 (b) 32 مستطيلًا (c) 64 مستطيلًا. وباستخدام هذه الحسابات لتخيل القيمة الدقيقة للمساحة تحت التطـع المكافئ. 15. استخدم أسلوب التمرين 13 لتقدير المسـاحة وفوق $y=\sin x$ وأعلى الهـحور x بين $x=0$ و $x=\pi$ و
 وفوق المـحور x بين x=0 x و 13 و

و (b) (b $n=8$ قطع مستقيمة. اشرح السبب في أن الطول الفعلي يساوي 2 2/ 1 ما مدى دقة تقديراتك؟
 و $n=8$ (b) قطـع مستقيمة. اشرح السبب في أن الطول
 التمرين مقارنة بالتقدير الناتج عن الجزء (b) من التمرين 17؟

تهارين اسـتكشافية

في هذا التمرين، ستتعـلم طريقة حسـاب مـيل المنحنـى عـند نقطـة مباشـرة. افترض أنك تود معرفة ميل $y=1$ عـنـ 1 عـند

تصل بين النقطة (1, 1) والنقاط القَريبة. على فـرض أنّ النماط القَريبة لها إحداثيات x x $1+h ،$ حيث إنّ h عدد صغير (موجب أو سـالب). اشـرح السبب في أن إحداثيات y الهقابلة تساوي يمكنن أن يُبسّطـ إلى h+ 2. بينما يقترب h من القيمة 0، يقدر

مـحددة لــــ a.
5. $f(x)=e^{x}$,
(a) $a=0$
(b) $a=1$
6. $f(x)=\ln x$,
(a) $a=1$
(b) $a=2$

في التمارين 7 إلى 12، قدّر طـول المنحنـى $y=f(x)$ في
 مستقيمة. (c) إذا تهكنـت مـن برمـجة حاسـبة أو حاسـب آلي، استتخدم n أكبر وخمـن الطول الفعلي للمنـحنى.
7. $f(x)=\cos x, 0 \leq x \leq \pi / 2$
8. $f(x)=\sin x, 0 \leq x \leq \pi / 2$
9. $f(x)=\sqrt{x+1}, 0 \leq x \leq 3$
10. $f(x)=1 / x, 1 \leq x \leq 2$
11. $f(x)=x^{2}+1,-2 \leq x \leq 2$
12. $f(x)=x^{3}+2,-1 \leq x \leq 1$

تناقش التهـارين 13 إلى 16 الهمسـألة الخـاصة بإيجـاد مسـاحـة

13. ارسـم القطع المكافئ $y=1-x^{2}$ وظلـل المنطقة فـوق الهحور

 (2) (3) (4) بارتفاع $f\left(\frac{3}{4}\right)$ وعـرض $x=1$ و $x=\frac{1}{2}$ ويمتد $x=1$ إلى $x=1$ (3)
 [-1, 1]
لكل فترة جزئية. أوجد مـجموع مسـاحات المستـوـيلات.

 الفعلية تحت القطـع المكافئ.
14. استخدم حاسـبة أو حاسـبًا آليًا لمقارنة القيمة التقريبية

مثهوم النهاية

في هذا الدرس، نطور مفهوم النهايات باستخدام لغة متداولة وتوضيح الفكرِة باستخدام بعض الأمثلة البسيطة. ويبدو المفهوم سهل الاستيعاب مـن الناحية البديهية، ولكن يكون أصعب في التحديد من الناحية الدقيَةَة. ونقدم التعريف الدقَيق للنهـايات في الدرس 2.6. فهناك، نعرّف النهآيات بعـناية وبتفصيل مستفيض: ويعتبر المفهوم غير الرسمي للنّهايات والذي نقدمه ونعمل عليه في الدروس 2.3 و 2.4 و 2.5 كافيًا لجهيع الأغراض.
افترض أنّ الدالة f معرفة لجميع قتُم x في الفترة المفتوحة التي تحتوي على a، باستثنـاء

 ؤكثكتبن 4 . 4 .

$$
g(x)=\frac{x^{2}-5}{x-2}, f(x)=\frac{x^{2}-4}{x-2}
$$

لاحظ أن كلًا من الدالتين غير معرفة عند x=2. إذاً، ما الذي يعنيه ذلك بخلاف أنه لا يمكنك
 الشكلين $2.7 a$ و2.7b).
لاحظ أنّ التمثيلات البيانية لهاتين الدالتين تبدو مختلفة بالقرب من 2. قول أي شيء عن قيهـة هذه الدوال عند $2=2$ (حيث إنها خارج مـجال كلتا الدالتين) يهكننا دراسة سلوكهـما بالقُرب من هذه النقطة. وهذا ما ستساعدنا فيه النهايات.

2.7a الشكل
$y=\frac{x^{2}-4}{x-2}$

الــثال 2.1 إيجاد قيمهة الـنهايات

$$
\text { أوجد قيمة } \lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}
$$

x	$f(x)=\frac{x^{2}-4}{x-2}$
1.9	3.9
1.99	3.99
1.999	3.999
1.9999	3.9999

x	$f(x)=\frac{x^{2}-4}{x-2}$
2.1	4.1
2.01	4.01
2.001	4.001
2.0001	4.0001

لاحظ أنه مـع تحركك لأسفل العمود الأول من الجدول، تقترب قيم x من 2．ولكنها جميحها أصغر من 2．ونستخدم الترميز 2 （ $x \rightarrow 2^{-}$للإشارة إلى أنّ x تقترب من 2 من جهة اليسار． لاحظ أن الجدول والتمثيل البياني يوضحان انه كلما اقتربت x أكثر نحو العدد 2 （على أن تكون 2 ＜ 2 ، تقترب $f(x)$ أكثر إلى 4．وفي ضوء هذه المعطيات، نقول إنّ نهاية الدالة عنـدما تقترب x x مـن 2 مـن اليسـار هي 4．وتكتب

$$
\lim _{x \rightarrow 2^{-}} f(x)=4
$$

ونستخدم الترميز $x \rightarrow 2^{+}$للإشـارة إلى أنّ x تقترب من 2 هن جهة اليهين ．ونحسب بعضًا من هذه القيم في الجدول الثاني．

 2 مـن اليهين هي 4، وتكتب

$$
\lim _{x \rightarrow 2^{+}} f(x)=4
$$

ونطلق على

يُعدّ الغرض من مفهوم النهايات الهذكور هنا هو نقل سـلوك الدالة بالقرب من بعض النقاط مححل الاهتمام ولكن ليس عند هذه النقطة تحديدّا．وأخيرًا، ثلاحظ أنه يمكننا أيضًا تحديد هذه النهاية جبريًا على النحو التالي．لاحظ أنه حيث إن للتعبير في البسط عوامل

حيث يمكننا حذف العامل（2－x）لأنه في النهاية 2 x x ق قريبة من 2، ولكن $2 \neq 2$.
.

$$
x+
$$

$$
\begin{aligned}
& \text { 据 } f(x)=\frac{x^{2}-4}{x-2} \\
& \lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} \\
& \text { حذف الحامل }=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{x-2}
\end{aligned}
$$

2．7b الشكل
$y=\frac{x^{2}-5}{x-2}$

الهـثال 2.2 النهايات غيير الههوجودة

$$
\text { أوجد قيمة } \lim _{x \rightarrow 2}=\frac{x^{2}-5}{x-2}
$$

الـحل كما في الهـال 2.1، نعتبر النهايات أحادية الطرف لــ
. بناءٔ على التمثيل البياني في الشكل 2.7b وجدول القيم التقريبية للدالة الهوضح جانبًا، لاحظ أنه بينما تقترب x أكثر من العدد 2 (على أن تكون 2 أ 2)، تزداد ($2(x)$ بدون حد. حيث إنه ل يوجد عدد تقترب منه

$$
\text { غير موجودة. } \lim _{x \rightarrow 2^{-}} g(x)
$$

 يتناقص بدون حدود بينما تقترب x من 2 من اليمين. وحيث إنّه لا يوجد عدد تقترب منه

نقول إن

$$
\text { غ } \quad \lim _{x \rightarrow 2^{+}} g(x)
$$

غير موجودة وتكتب

$$
x_{2}+2
$$

وأخيرًا، حيث إنه ل يوجد قيمة مشتركة للنهايات أحادية الطرف (x) g (ففي الحقيقة كلتا النهايتان غير موجودتين)، نقول إنّ

غير موجودة. $\lim _{x \rightarrow 2} g(x)$

قبل الانتقال، لا بدّ أن نلخص ما ذكرناه بشأن النهايات.

توجد النهايات اذا وفقط اذا كانت النهايتين أحاديتي الطرف موجودتين ومتسـاويتين. أي إنّ،

$$
\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L \text { اذا وفقط } \lim \text { اذد } \lim _{x \rightarrow a} f(x)=L
$$

بعبارة أخرى، يمكننا أن نقول
 لاحظ أنه يمكننا التفكير في النهايات من وجهة نظر بيانية بحتة، كمـا في المـيال 2.3.

المـثال 2.3 تحـديد النـهايات بيانيًا

 جهة اليمين (1 (1). في هذه الحالة، لاحظ أن النقاط الطرفية للتمثيل البياني تقع في

 إن التمثيل البياني يقترب من قيمة y التي تساوي العدد 1 عـندما تقترب x من 1 1 م عـلى

x	$g(x)=\frac{x^{2}-5}{x-2}$
1.9	13.9
1.99	103.99
1.999	1003.999
1.9999	$10,003.9999$

x	$g(x)=\frac{x^{2}-5}{x-2}$
2.1	-5.9
2.01	-95.99
2.001	-995.999
2.0001	-9995.9999

الهـثال 2.4 النهايات التتي يختصو فيها عـاملين أوجد قيمة $\lim _{x \rightarrow-3} \frac{3 x+9}{x^{2}-9}$
 بناءً على هذا الدليل العددي والبياني، فـن المـطـي

$$
\lim _{x \rightarrow-3^{+}} \frac{3 x+9}{x^{2}-9}=\lim _{x \rightarrow-3^{-}} \frac{3 x+9}{x^{2}-9}=-\frac{1}{2}
$$

لاحظ أيضًا أنّ
$\lim _{x \rightarrow-3^{-}} \frac{3 x+9}{x^{2}-9}=\lim _{x \rightarrow-3^{-}} \frac{3(x+3)}{(x+3)(x-3)} \quad$ اختصار العامل (3)

$$
=\lim _{x \rightarrow-3^{-}} \frac{3}{x-3}=-\frac{1}{2}
$$

$$
\lim _{x \rightarrow-3^{+}} \frac{3 x+9}{x^{2}-9}=-\frac{1}{2}
$$

وأخيرُا، حيث إنّ الدالة تقترب من القيمة نفسها بينها تقترب $x \rightarrow-3$ من الطـن واليسار (أي أنّ النهايتين أحاديتي الطرف متساويتان)، نقول

$$
\lim _{x \rightarrow-3} \frac{3 x+9}{x^{2}-9}=-\frac{1}{2}
$$

وفي المثيال 2.4، توجد النهاية حيث توجد النهايتان أحاديتا الطرف وتتسـاويان. في المثيال 2.5، ٌُ يوجد أي من النهايتين أحاديتي الطرف.

الهـثال 2.5 الـنهاية غيـيو الـهوجودة حدّد ما إذا كانت

 غير موجودة $\lim _{x \rightarrow 3^{+}} \frac{3 x+9}{x^{2}-9}$
وبالمثل، من التمثيل البياني وجدول القيم لــ 3 > 3 ، يمكنـنا أن نقول $\lim _{x \rightarrow 3^{-}} \frac{3 x+9}{x^{2}-9}$

حيث إنه لا يوجد أي من النهايتين أحاديتي الطرف، نقول إنّ غير موجودة $\lim _{x \rightarrow 3} \frac{3 x+9}{x^{2}-9}$
ونأخذ هنا كلتا النهايتين أحاديتي الطرف بغرض الاكتمال. وبالطبع ينبغي أن تتذكر دائهـا أنه إذا

لا يمكن حل العديد من النهايات باستخدام الطرق الجبرية. وفي هذه الحالات، يهكننا
تقريب النهاية باستخدام الدليل العددي والبياني كما نرى في المثال 2.6.

الشكل 2.9
$\lim _{x \rightarrow-3} \frac{3 x+9}{x^{2}-9}=-\frac{1}{2}$

x	$\frac{3 x+9}{x^{2}-9}$
-2.9	-0.508475
-2.99	-0.500835
-2.999	-0.500083
-2.9999	-0.500008

x	$\frac{3 x+9}{x^{2}-9}$
-3.1	-0.491803
-3.01	-0.499168
-3.001	-0.499917
-3.0001	-0.499992

x	$\frac{3 x+9}{x^{2}-9}$
3.1	30
3.01	300
3.001	3000
3.0001	30,000

x	$\frac{3 x+9}{x^{2}-9}$
2.9	-30
2.99	-300
2.999	-3000
2.9999	$-30,000$

الهـثال 2.6 تقريب قيهـة النهاية

$$
\text { أوجد قيهة } \text { lim }_{x \rightarrow 0} \frac{\sin x}{x}
$$

اللحـل بعكس بعض النهايات التي درسـناهـا سـابقًا، لا يوجد طـريقة جبرية تحـول هذا التعبير إلى أبسط صورة. وبالرغم مـن ذلك، لُ يزال بإمكانتا رسم التمثيل البياني (انظر الشكل 2.11) وحساب بعض قيم الدالة.

x	$\frac{\sin x}{x}$
0.1	0.998334
0.01	0.999983
0.001	0.99999983
0.0001	0.9999999983
0.00001	0.999999999983

x	$\frac{\sin x}{x}$
-0.1	0.998334
-0.01	0.999983
-0.001	0.99999983
-0.0001	0.9999999983
-0.00001	0.999999999983

يقودنا التمثيل البياني وجدول القيم إلى التخمـينات التالية:

$$
\lim _{x \rightarrow 0^{-}} \frac{\sin x}{x}=1, \lim _{x \rightarrow 0^{+}} \frac{\sin x}{x}=1
$$

والتي من خـالهـا نتصور أن

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

في الوحدة 2. سندرس هذه النهايات بعناية أكبر (ونبرهن على أنّ هذه التصورات - صـحيحة) .

مـلاحظة 2.1

يعتبر حسـاب النهايات بحاسـبة أو حاسـوب أمرُا غـير موثوق. ونسـتخدم التمـيلات البيانية وجداول القيم فقطط كدليل (قوي) يشـير لما يمكن أن تسـاويه الإجابة المـحتملة. وللتأكد، نحتاج للحصول عـلى تحقق دقَيق مـن صحة تصوراتنا. ونستكشَف ذلك في الدروس 2.3 إلى 2.7.

المثال 2.7 الـحالات التي لا تتفق فيها النهايات أحادية الطرف

$$
\text { أوجد قيمـة }{ }^{\text {أو }} \text {. }
$$

الـحل إن التمثيل البياني المتولد من الحاسوب في الشكل $2.12 a$ غير كامل. حيث إنّ |x|
 الدوائر الفارغة عند تقاطمـات النصفين للتمثيل البياني مـع المـحور y. لدينا أيضًا

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{x}{|x|} & =\lim _{x \rightarrow 0^{+}} \frac{x}{x} \quad x>0 \text { Lـنـا } \\
& =\lim _{x \rightarrow 0^{+}} 1 \\
& =1
\end{aligned}
$$

حيث إنّ النهايتين أحاديتي الطرف غير متساويتين. ينبغي عليك أن تـذكر أيضًا أن هذه

2.11 الشكل

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

2.12a الشكلx
$y=\frac{x}{|x|}$

2.12b الشكل

غ $\lim _{x \rightarrow 0} \frac{x}{|x|}$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} \frac{x}{|x|}=\lim _{x \rightarrow 0^{-}} \frac{x}{-x} \quad x<0 \text { بـا أنَ } \\
& =\lim _{x \rightarrow 0^{-}}-1 \\
& =-1 \\
& \text { ينتج عـن ذلك أن : } \lim _{x \rightarrow 0} \frac{x}{|x|}
\end{aligned}
$$

الهـثال 2.8 نهاية تصف حـركة رمية بيسبول

 الحادية لهذه الرمية 60 mph ، ويمكن الحصول على موقـع الكرة الأيسر /الأيمن (بالقدم) بينما تعبر قاعدة الملعب من خلال

$$
f(\omega)=\frac{1.7}{\omega}-\frac{5}{8 \omega^{2}} \sin (2.72 \omega)
$$

Keeping Your Eye on the مقتبسة من البيانات التجريبية من كتاب واتس وباهيل) $f(\omega)=0$ = حيث تهثّل ω السرعة الدورانية للكرة بالقياس الدائري لكل ثانية وحيث يقابل (Ball منتصف قاعدة الهلعب. ويعرف بين محترفي اللعبة من الرماة في البيسبول أنه كلما صغرت

 . الدالة. ويقترح الدليل

ω	$f(\omega)$
10	0.1645
1	1.4442
0.1	0.2088
0.01	0.021
0.001	0.0021
0.0001	0.0002

2.13 الشكل

$$
y=\frac{1.7}{\omega}-\frac{5}{8 \omega^{2}} \sin (2.72 \omega)
$$

وتشير النهاية إلى أنّ رمية الكرة المثيرة التي $ل$ يوجد بها دوران γ الت تـحرك على الإطلاق
 3 قَياس دائري في الثانية الواحدة أفضل رمية (أي أكثر حركة). انظر مرة أخرى الى الّشكل

$$
2.13 \text { لتقنع نفَسكُ بأن هذا الأمر يبدو منطقيًا تهامَّما. }
$$

التهارين 2.2

تكون الدوال مثل إذا
 اشرح السبب وراء أهمية إستقلال مفهوم النهايات عن كيفية تحديد (f) (أو إذا كانت مـحددة أم ل). 4. يعتبر أكثر النهايات شيوعُا والذي نواجهه في حياتنا اليومية هو حدود السرعة. اذكر كيف يكون هذا النوع من النهايات مختلف تمامُا عن النهايات التي ناقشنـاهـا.

 اسـتـخـدم التحليل إلى العوامل للتحقق من صـحة$$
\text { 1. } \lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}
$$

2. $\lim _{x \rightarrow-1} \frac{x^{2}+x}{x^{2}-x-2}$

تمارين الكتابة

1. افترض أن معلمك يقول إنّ "النهاية هي التوقع لمـا ستكون عليه قيمة (a) ". ناقش صحة هـ هـذه العبارة. ماذا يعني ذلك؟ هل تقدم وجهة نظر هـامة؟ هـل هناك أي معلومات مضللة بها؟ ضـع الجملة بالخط المائل مـع وصفك الخاص لما تكون عليه النهاية.

 الحالة التيَّ بين أيدينا؟ هل يمكن أن يكون الدليل البياني والعددي مقنعين تهامُـا؟ لقد لاحظنـا أنّ . 3
 المبدأ.

في التمارين من 13 إلى 22، اسـتخـدم الدليل العـددي

13. $\lim _{x \rightarrow 0} \frac{x^{2}+x}{\sin x}$
14. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{2}-2 x+1}$
15. $\lim _{x \rightarrow 0} e^{-1 / x^{2}}$
16. $\lim _{x \rightarrow 1} \frac{x-1}{\ln x}$
17. $\lim _{x \rightarrow 0} \frac{\tan x}{x}$
18. $\lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{x}$
19. $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$
20. $\lim _{x \rightarrow 1} \frac{\sqrt{5-x}-2}{\sqrt{10-x}-3}$
21. $\lim _{x \rightarrow 2} \frac{x-2}{|x-2|}$
22. $\lim _{x \rightarrow-1} \frac{|x+1|}{x^{2}-1}$

في التهارين مـن 23 إلى 26، ارسـم التهثيل البياني للدالة بالـخواص المـذكورة.
$. \lim _{x \rightarrow 1} f(x) \quad f(-1)=2, f(0)=-1, f(1)=3.23$
$. \lim _{x \rightarrow-2} f(x)=19 \lim _{x \rightarrow 1^{+}} f(x)=3,-2 \leq x \leq 1-\quad f(x)=1.24$
$\lim _{x \rightarrow 0^{+}} f(x)=3, \lim _{x \rightarrow 0^{-}} f(x)=2 . f(0)=1.25$. $\lim _{x \rightarrow 2} f(x)$ و مورير مودة. $f(2)=3 . f(0)=1 \lim _{x \rightarrow 0} f(x)=-2.26$ 27 . احسب ${ }^{\text {احس }} \lim _{x \rightarrow 2} \frac{x+1}{x^{2}-4} \lim _{x \rightarrow 1} \frac{x^{2}+1}{x-1}$ ونايات الهماثلة للتحقق

$$
\text { من التالي. افترض أنّ (f) و و } g(x) \text { هي كثيرات حدود }
$$

حيث إنّ
بشـأن

28
掊 $f(a)=0$

$$
\varsigma_{x \rightarrow a} \frac{f(x)}{g(x)}
$$

29. فِكِر في الحجِج التالية بشأن

sint ثانيًا، بأخذ x=1, 0.1, 0.01 وما إلى ذلك. نحسب部 $\pi=\sin 10 \pi=\sin 100 \pi=\cdots=0$ النهاية 0. أي من الحجـ تبدو أفضل بالنسبة لك؟ اشـرح ذلك. استكشَف النهايات وحدد أي الإجابات صحيحة.

$$
f(0.1), f(0.01) \text {. احسب } . f(x)=\frac{x}{x^{2}+0.000001} \perp .30
$$

و f(0.001)
 (a قدّر عدديًّا (a) 31

قيم الدالة لــ x>0 $x>0$ تتزايد بينما تتتاقص x، أما عـندما x>0
3. $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}$
4. $\lim _{x \rightarrow 1} \frac{(x-1)^{2}}{x^{2}+2 x-3}$
5. $\lim _{x \rightarrow 3} \frac{3 x-9}{x^{2}-5 x+6}$
6. $\lim _{x \rightarrow-2} \frac{2+x}{x^{2}+2 x}$

في التمرينين 7 و8، حدد كل نهاية أو اذكر عـدم وجُودهـا في كلٍ مهما يلي:

7. (a) $\lim _{x \rightarrow 0^{-}} f(x)$
(b) $\lim _{x \rightarrow 0^{+}} f(x)$
(c) $\lim _{x \rightarrow 0} f(x)$
(d) $\lim _{x \rightarrow-2^{-}} f(x)$
(e) $\lim _{x \rightarrow-2^{+}} f(x)$
(f) $\lim _{x \rightarrow-2} f(x)$
(g) $\lim _{x \rightarrow-1} f(x)$
(h) $\lim _{x \rightarrow 1^{-}} f(x)$
8. (a) $\lim _{x \rightarrow 1^{-}} f(x)$
(b) $\lim _{x \rightarrow 1^{+}} f(x)$
(c) $\lim _{x \rightarrow 1} f(x)$
(d) $\lim _{x \rightarrow 2^{-}} f(x)$
(e) $\lim _{x \rightarrow-2^{+}} f(x)$
(f) $\lim _{x \rightarrow 2} f(x)$
(g) $\lim _{x \rightarrow 3^{-}} f(x)$
(h) $\lim _{x \rightarrow-3} f(x)$
$f(x)=\left\{\begin{array}{ll}2 x, & x<2 \\ x^{2}, & x \geq 2\end{array} \quad-\quad\right.$ ارسم التمثيل البياني وحدد كل نهاية فيما يلي:
(a) $\lim _{x \rightarrow 2^{-}} f(x)$
(b) $\lim _{x \rightarrow 2^{+}} f(x)$
(c) $\lim _{x \rightarrow 2} f(x)$
(d) $\lim _{x \rightarrow 1} f(x)$
(e) $\lim _{x \rightarrow 3} f(x)$
$f(x)= \begin{cases}x^{3}-1, & x<0 \\ 0, & x=0-1 \\ \sqrt{x+1}-2, & x>0\end{cases}$
وحدد كل نهاية فيما يلي:
(a) $\lim _{x \rightarrow 0^{-}} f(x)$
(b) $\lim _{x \rightarrow 0^{+}} f(x)$
(c) $\lim _{x \rightarrow 0} f(x)$
(d) $\lim _{x \rightarrow-1} f(x)$
(e) $\lim _{x \rightarrow 1^{-}} f(x)$
11.أوجد قيمة $f(1.5), f(1.1), f(1.01)$ و $f(1.001$ وخمـن
فيمة لــ

12. أوجد قيمة $f(-1.001)$ و $f(-1.5), f(-1.1), f(-1.01)$

قيمة $f(-0.5), f(-0.9), f(-0.99)$ و $f(-0.999)$ وخمن
40. لموقف السيارات الهذكور في التمرين 39، حدد جميع قيم a بإيجاز تأثير ذلك على استراتيجية إيقاف السيارة (على الو سبيل المثال، هل يوجد أوقات تكون على عـجلى أـلـ لتحريك سيارتك أو أوقات لا يهم إن حركت سيارتك أم ه؟).

تهارين اسـتكششـافية

1. في موقف مهاثل للمذكور في المثال 2.8، يمكن

تهثيل الهوقـع الأيمن/الأيسر لقذيفة كرة من خـلال
P= $\frac{5}{8 \omega^{2}}(1-\cos 4 \omega t)$

 t وأوجدنا قيمة النهاية بينما $0 \rightarrow 0$. 0 . وبينما يمنحنا ذلك بعض المعطيات حول معدلات الدوران المـحوري الناتجة عن الضربات التي يصعب صدها، تنبثق صورة أُفضل

الدالة (الـي النظر إلى رام من أعلىى وحاول تصور كرة بيسبول تبدأ من يد الرامي عند $t=0$ وتصل في النهاية إلى الرامي
 لــ ω تعتقد أنها مثيرة للاهتمام. أي قيم ω تنتج رميات يصعب صدها؟ 2. في هذا التمرين، ستعتهد النتائج التي تحصل عليها على . lim $_{x \rightarrow 0} \frac{\cos x-1}{x^{2}}$ قية الحاسوب أو حاسبتك. سنستكش ابدأ بالعهليات الحسـابية الهقدمة في الجدول (قد تختلف إجاباتك):

x	$f(x)$
0.1	$-0.499583 \ldots$
0.01	$-0.49999583 \ldots$
0.001	$-0.4999999583 \ldots$

اذكر بأقصى دقة ممكنة النمط الموضح هنا. ما الذي
 الحاسـوب أو حاسبتك هذه الإجابة؟ إذا واصلت تجربة القوى الأسية للعدد 0.1 (0.000001 و0.0000001 وهكار)، يجب أن تحصل في النهاية على نتيجة من 0.5-. هل تعتقد أن هذه الإجابة الدقيقة الصحيحة أم تم تقريب الإجابة؟ لماذا يكون التقريب أمرَّا لا 8 مفر منه؟ يبدو أنّ 0.5- هي القيمة الدقيقة للنهاية. ومـع ذلك، إذا واصلت إيجاد قيمة الدالة عند قيم أصغر من x، ستجد في النهاية قيمـة دالة تسـاوي 0. وسـنـاقش هذا الخـا الدرس 2.7. أما الآن، أوجد قيمة $\operatorname{los} x$ عند القيمة الحالية

اشرح السبب في أنّ ذلك يشير إلى أنه إذا وجدت
竼 ${ }_{x \rightarrow 0}(1+x)^{1 / x}$
والسالبة. قَرّب

 . $\lim _{x \rightarrow 0}(1+x)^{1 / x}=\lim _{x \rightarrow 0}(1)^{1 / x}=1$ يساوي 1 دائةَا، فإنّ
32. قَّر عدديًا
 السـالبة، فاشـرح السبب.
 اذكر مثالاُ على دالة
 . $._{x \rightarrow 0} f(x) \neq f(0)$ ولكن

تطبيقات

35. يتم الحصول على ميل المـماس للمنحنى $y=\sqrt{x}$ عـند

النقطة $x=1$ من خـلال $x=\lim _{h \rightarrow 0} \frac{\sqrt{1+h}-1}{h}$ قدّر الميل
 بالنقطة $(1,1)$
36.، يتم الحصول على السرعة المتجهة لجسـم تحرك

مبألا في x ساعـات عند عـلامة x=1 سـاعة من خـلال . $v=\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}$
37. في الشكل 2.13، يوضح الموقع النهائي لكرة مقذوفة

عند الزمن $t=0.68$ كدالة لمعدل الدوران الهحوري ω.
وينبغي أن يقرر الرامي عند الزمن $t=0.4$ أن يحرك

 حيث موقع الكرة بين ما يراه الرامي عند $t=0.4$ وبين ما يحاول
ضربه عن
38. تم رمي قذيفة كرة بمسكة مـختلفة عن الهذكورة

في الهثال 2.8 ويمكن تمثيل موقعها الأيمن/
الأيسر بينها تعبر قاعدة الملقب من خلال
. $f(\omega)=\frac{0.625}{\omega^{2}}\left[1-\sin \left(2.72 \omega+\frac{\pi}{2}\right)\right]$

$$
\text { البياني والعددي لتخمـن (} \lim _{\omega \rightarrow 0^{+}} f(\omega)
$$

39. يفرض موقف سيارات رسومًا AED 2 للساعة أو جزء من

الساعة، مع حد أقصى للتكلفة AED 12 لليوم بأكهـهـ.
إذا كان $f(t)$ يساوي إجمالي فاتورة موقف السيارات

. $0 \leq t \leq 24$

حسـاب النهايات

والآن، لديك فكرة عن ما تعنيه النهاية، لذا نحتاج إلى وضع بص القواعد لحسـاب نهايات الدوال البسيطة. وسـنبدأ بنهايتين بسيطتين.

(3.1)	
$\lim _{x \rightarrow a} c=c$.	a ثابت c وأي عدد حقيقي

بعبارة أخرى، تكون نهاية أي ثابت هي الثابت نفسه. ولا يعتبر هذا مفاجئًا حيث إنّ الدالة
 النهايات البسيطة الأخرى ما يلي.

$$
\lim _{x \rightarrow a} x=a . \quad \text { لأي عدد حقيقي a، }
$$

الشكل 2.14
$\lim _{x \rightarrow a} c=c$

$$
(3.2)
$$

 تأكد من أن تصل لدرجة جـدة مـن الإجادة لترميز النهايات وتتمكن من التعرف علي مدى
 الأكثر تعقيدُا. ونحتّاج أيضًا إلى القواعد الأساسية الموجودة في النظرية 3.1.

النظرية 3.1

يلي: افترض أنّ
(i) $\lim _{x \rightarrow a}[c \mathbf{x} f(x)]=c \times \lim _{x \rightarrow a} f(x)$,
(ii) $\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$,
(iii) $\lim _{x \rightarrow a}[f(x) \times g(x)]=\left[\lim _{x \rightarrow a} f(x)\right]\left[\lim _{x \rightarrow a} g(x)\right]$
(iv) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}\left(b, \lim _{x \rightarrow a} g(x) \neq 0\right)$.

يوجد برهان النظرية 3.1 في الهلحق A الذي يتطلب التعريف الرسممي للنهايات الذي
تهت مناقشته بالدرس 2.6. وينبغي عليك أن تفكر في هذه القواعد على أنـيا نتائج منطقية،

$$
\text { وتقترب (} \mathrm{L}+\mathrm{M} \text { من M. فـنـبني أن يقترب }
$$

لاحظ أنه بتطبيق ألجزء (iii) من النظرية 3.1 بحيث (أنربي $g(x)=f(x)$ نعرف أنه عندما تكون ، موجودة $\lim _{x \rightarrow a} f(x)$

$$
\begin{aligned}
\lim _{x \rightarrow a}[f(x)]^{2} & =\lim _{x \rightarrow a}[f(x) \mathbf{x} f(x)] \\
& =\left[\lim _{x \rightarrow a} f(x)\right]\left[\lim _{x \rightarrow a} f(x)\right]=\left[\lim _{x \rightarrow a} f(x)\right]^{2}
\end{aligned}
$$

وبالمثل، لأي عدد صحيح موجب n يهكننا تطبيق الجزء (iii) من النظرية 3.1 بشكل متكرر للحصول على

$$
\begin{equation*}
\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n} \tag{3.4}
\end{equation*}
$$

(انظر التمرينين 61 و62).

$$
\lim _{x \rightarrow a} x^{n}=a^{n}
$$

أي أنه لحساب النهاية لأي قَوة أسية موجبة لـ x، تقوم ببساطة بالتعويض عن قيمة x التي يتم الاقتراب منها.

$$
\begin{aligned}
& \text { مثثال } 3.1 \text { إيجاد نهاية كثيرة حدود } \\
& \text {. } \left.\text { lim }_{x \rightarrow 2}\left(3 x^{2}-5 x+4\right) \text { (}\right) \text { قبّق قواعد النهايات لإيجاد } \\
& \text { الحل لدينا } \\
& \lim _{x \rightarrow 2}\left(3 x^{2}-5 x+4\right)=\lim _{x \rightarrow 2}\left(3 x^{2}\right)-\lim _{x \rightarrow 2}(5 x)+\lim _{x \rightarrow 2} 4 \quad \text {. } 3.1 \text { (ii) } \\
& =3 \lim _{x \rightarrow 2} x^{2}-5 \lim _{x \rightarrow 2} x+4 \quad \text { بناءًا على النظرية (i) (i) } \\
& \text { - } \quad=3 \times(2)^{2}-5 \times 2+4=6 \text {. } \\
& \text { مثثال } 3.2 \text { إيجاد نهاية دالة نسبية } \\
& \text {. } \text { lim }_{x \rightarrow 3} \frac{x^{3}-5 x+4}{x^{2}-2} \text { قبّق قواعد النهايات لإيجاد } \\
& \text { الحل لدينا } \\
& \lim _{x \rightarrow 3} \frac{x^{3}-5 x+4}{x^{2}-2}=\frac{\lim _{x \rightarrow 3}\left(x^{3}-5 x+4\right)}{\lim _{x \rightarrow 3}\left(x^{2}-2\right)} \\
& =\frac{\lim _{x \rightarrow 3} x^{3}-5 \lim _{x \rightarrow 3} x+\lim _{x \rightarrow 3} 4}{\lim _{x \rightarrow 3} x^{2}-\lim _{x \rightarrow 3} 2} \quad \text { (ii) } 3.1 \text { (i) بناءا على النظرية } \\
& \text { - }=\frac{3^{3}-5 \times 3+4}{3^{2}-2}=\frac{16}{7} \text { بناءًا على (3.4). }
\end{aligned}
$$

ربما قد لاحظت أنه في الأمئلة 3.1 و3.2، انتهى الأمر بيساطة بالتعويض عن قيمة x. بعد اتخاذ العديد من الخطوات الوسيطة. في المـيال 3.3، الأمر ليس بهذه البساطة.

مثثال 3.3 إيجاد نهاية بالتحليل إلى عوامل

$$
\begin{array}{r}
\lim _{x \rightarrow 1} \frac{x^{2}-1}{1-x} \text { الوجد قيمل لاحظ أنّ }
\end{array}
$$

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{1-x} \neq \frac{\lim _{x \rightarrow 1}\left(x^{2}-1\right)}{\lim _{x \rightarrow 1}(1-x)}
$$

جها أن نهاية المقام صضرًا. (تذكر أن نهاية ناتج القسهة هو ناتج قسهة النهايات فقط عند وجود النهايتين وتكون نهاية الهقام ليست صفرًا). ويهكننا حل هذه المسألة بهلاحظة أن

$$
\begin{aligned}
& =\lim _{x \rightarrow 1} \frac{(x+1)}{-1}=-2 \quad x=1 \text { تبن المقّام وتويض }
\end{aligned}
$$

حيث يكون حذف الحامل (1-1 $)$ ممكنًا لأنه في النهاية عندما $1 \rightarrow 1$. $x \rightarrow$ تقترب x من 1، ولكن $x \neq 1$ ، وبالتالي

$$
x-1 \neq 0
$$

النظرية 3.2، توضّح أنّ نهاية كثيرات الحدود هي ببساطة قيمة كثيرات الحدود عند هذه النقطة: أي أنه لإيجاد نهاية كثيرة حدود، نـوض بيساطة عن القيمة التي تقترب منها x
\square
لأي كثيرة حدود 3.2 أي $\lim _{x \rightarrow a} p(x)=p(a)$.

من هنا يصبح إيجاد قيّهة نهاية كثيرات الحدود سهلًا. ويتم إيجاد قيمهة العديد من النهايات الأخرى بالسهولة نفسها.

النظرية 3.3

افترض أنّ 1 lim $\lim _{x \rightarrow a} f(x)=L$ هو أي عدد صحيح موجب. إذًا،

$$
\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}=\sqrt[n]{L}
$$

$$
\text { حيث إنّه لكل n زوجي، نفترض أن L > } 0 .
$$

يُقدَّم برهان النظرية 3.3 في الهلحق A. لاحظ أن هذه النتيجة تذكر أنه يمكننا (تحت الشروط الهوضحة في الفرضية) أن ندخل النهايات "داخل" الجذور النونية n. ويهكننا بعدها

استخدام قواعدنا القائمة لحساب النهايات بالداخل.

مثال 3.4 إيجاد قيمة نهاية الجذر النوني لكثيرة حدود

$$
\text { أوجد قيمة } \lim _{x \rightarrow 2} \sqrt[5]{3 x^{2}-2 x}
$$

$$
\text { الححل من نظريتي } 3.2 \text { و3.3، لدينا }
$$

$\lim _{x \rightarrow 2} \sqrt[5]{3 x^{2}-2 x}=\sqrt[5]{\lim _{x \rightarrow 2}\left(3 x^{2}-2 x\right)}=\sqrt[5]{8}$

ملحوظـة 3.1

$$
\text { أوجد قيمة } \lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x}
$$

الـحل أوُلا، لاحظ أن كلا البسط والهـام يقتربان من 0 عـندما يقترب x من 0. وبعكس المئال 3.3. لا يمكننا تحليل البسط إلى العوامل. ومـع ذلك. يهكننا تنسيب البسط على النحو التالي:

$$
\begin{aligned}
\frac{\sqrt{x+2}-\sqrt{2}}{x} & =\frac{(\sqrt{x+2}-\sqrt{2})(\sqrt{x+2}+\sqrt{2})}{x(\sqrt{x+2}+\sqrt{2})}=\frac{x+2-2}{x(\sqrt{x+2}+\sqrt{2})} \\
& =\frac{x}{x(\sqrt{x+2}+\sqrt{2})}=\frac{1}{\sqrt{x+2}+\sqrt{2}}
\end{aligned}
$$

بشَكل عام، في الحالة التي تكون فيها النهايات لكل من البسطـ والهعام تساوي 0، ينبغي أن تحاول تبسط التعبير جبريًا إلى أبسط صورة للحصول على اختصارات كما سنفعل في الأمئلة 3.3 و3.5.

$$
\begin{aligned}
& \text { البرهـان }
\end{aligned}
$$

$$
\begin{aligned}
& p(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0} . \\
& \text { إذًا، من النظرية } 3.1 \text { ومن النتيجة (3.4)، } \\
& \lim _{x \rightarrow a} p(x)=\lim _{x \rightarrow a}\left(c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0}\right) \\
& =c_{n} \lim _{x \rightarrow a} x^{n}+c_{n-1} \lim _{x \rightarrow a} x^{n-1}+\cdots+c_{1} \lim _{x \rightarrow a} x+\lim _{x \rightarrow a} c_{0} \\
& =c_{n} a^{n}+c_{n-1} a^{n-1}+\cdots+c_{1} a+c_{0}=p(a) \text {. }
\end{aligned}
$$

بذلك فإننا لا نتتصر على مناقشَة الدوال الجبرية فتط (أي تلك التي يمكن بناؤها باستخدام الجمع والطرح والضرب والقسهة، والأسية. وأخذ الجذر النوني n)، نضع النتيجة التالية الآن، بدون برهان.

لاحظ أن نظرية 3.4 تنص على أنّ نهايات الـ sine وال cosine والدالة الأسيّة واللوغاريتم الطبيعي. والـ
 للدوال التي تتمتع بهذه الخاصية (يطلق عليها الدوال المتصلة) في القسم 4.4.

مثال 3.6 إيجاد قيمة نهاية معكوس دالة مثلثية

$$
\text { أوجد قيمة }{ }_{x \rightarrow 0} \lim _{x \rightarrow 0} \sin ^{-1}\left(\frac{x+1}{2}\right)
$$

$$
\text { الحل من أجزاء النظرية } 3.4 \text { (v) و (viii)، لدينا }
$$

$$
\lim _{x \rightarrow 0} \sin ^{-1}\left(\frac{x+1}{2}\right)=\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}
$$

يوجد الكثير من النهايات التي يمكننا حسابها باستخدام التواعد الأولية. ويهكن إيجاد فيمة الديد من النهايات باستخدام التحليل بعناية مها يتطلب داتمّا منهجية غير مباشـرة. على سبيل الهـيال، فكِّر في المسألة في الهـثال 3.7.

مثال 3.7 نهاية ناتج ضرب ليس بناتج ضرب النهايات

$$
\text { أوجد فيمة (}{ }_{x \rightarrow 0}(x \cot x)
$$

الـحل قد يكون رد فـلك الأول أن تقول أن نهاية ناتج ضرب لا بد أن تكون ناتج ضرب النهايات:

$$
\begin{align*}
\lim _{x \rightarrow 0}(x \cot x) & =\left(\lim _{x \rightarrow 0} x\right)\left(\lim _{x \rightarrow 0} \cot x\right) \quad \text { غير صحيح } \\
& =0 \cdot ?=0 \tag{3.5}
\end{align*}
$$

حيث وضعنا علامة استفهام"؟" فربها لا تعرف ما يحب أن تفعله في

 ذات الصلة إذا وجدت النهايات. يقترح التمثيل البياني في الشكّل 2.16 أنّ 3 أنّ تحسب بعض فيم الدوال كذلك، لإقناع نفسك بأن هذه هي الحالة بالفعل. حيث إنَّ المعادلة (3.5) لا تنطبق

2.16 الشكل $y=\cot x$

$$
\begin{aligned}
& \text { ومـح المساواة الأخيرة إذا كان } x \neq 0 \text { (كها هو الحال عندما } 0 \text {) } 0 \text {). إذا، لدينا } \\
& \lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x}=\lim _{x \rightarrow 0} \frac{1}{\sqrt{x+2}+\sqrt{2}}=\frac{1}{\sqrt{2}+\sqrt{2}}=\frac{1}{2 \sqrt{2}} .
\end{aligned}
$$

وحيث أنه لا يبدو أن أي من القواعد بهكن تطبيقها، نرسم تهثيلًا بيانيّا (انظر الشكل 2.17) ونحسب بصض فيم الدوال. بناء على هذه. نتصور أن

$$
\lim _{x \rightarrow 0}(x \cot x)=1
$$

أي أنّ النهاية لا تساوي 0 على الإطلاق. كما كنت تشك في البداية. يهكنك أن تفكر في النهاية كذلك على

$$
\begin{aligned}
\lim _{x \rightarrow 0}(x \cot x) & =\lim _{x \rightarrow 0}\left(x \frac{\cos x}{\sin x}\right)=\lim _{x \rightarrow 0}\left(\frac{x}{\sin x} \cos x\right) \\
& =\left(\lim _{x \rightarrow 0} \frac{x}{\sin x}\right)\left(\lim _{x \rightarrow 0} \cos x\right) \\
& =\frac{\lim _{x \rightarrow 0} \cos x}{\lim _{x \rightarrow 0} \frac{\sin x}{x}}=\frac{1}{1}=1,
\end{aligned}
$$

 (نتحقق من صحة التخمين الأخير في القسم 2.6 باستخدام نظرية الشطيرة والتي تلي ذلك). ـ
وعند هذه النقطة، سنقدم أداة تساعد على تحديد عدد من النهايات الهامة.

$$
f(x) \leq g(x) \leq h(x)
$$

لكل x في الفترة (c, d) مـا عـدا النقطة (c, d) ($a \in$ $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$

$$
\lim _{x \rightarrow a} g(x)=L \text { كما أن }
$$

ولعدد L. إذًا، يكون:

يُّتَّم برهان النظرية 3.5 في الملحق A حيث إنها تعتهد على التعريف الدقيق للنهايات والهوجود في الدرس 2.6. وعلى الرغم من ذلك، إذا راجعت الشُكل 2.18. فسترى بوضوح أنه إذا كانت (x) و $h(x)$ تقع بين
 فإنّ (x) $g(x)$ تنحصر بين $h(x)$ و $h(x)$ وبالتالي فينبغي أن تكون نهايتها L. يتمثّل التحدي في استخدام نظرية الشطيرة في إيجاد الدوال الملائهة f و h و التي تُحُدُ دالة معينة g من الأعلى والأسفل، على التوالي، ولها

$$
\text { قيمة النهاية نفسها عندما } x \rightarrow a \rightarrow
$$

مثثال 3.8 استخدام نظرية الشطيرة للتحقق مـن صحة نهاية

$$
\text { . } \lim _{x \rightarrow 0}\left[x^{2} \cos \left(\frac{1}{x}\right)\right] \text { حدّد قيمة }
$$

الحل قد يكون رد فحلك الأول أن تلاحظ، أنّ نهاية ناتج ضرب قد تكون ناتج ضرب النهايات:

$$
\begin{equation*}
\lim _{x \rightarrow 0}\left[x^{2} \cos \left(\frac{1}{x}\right)\right] \stackrel{?}{=}\left(\lim _{x \rightarrow 0} x^{2}\right)\left[\lim _{x \rightarrow 0} \cos \left(\frac{1}{x}\right)\right] \text { غير صحيح } \tag{3.6}
\end{equation*}
$$

 وإيابًا بين 1- و 1 إضافة إلى ذلك. كلما اقترب x من 0. زادت سرعة التذبذب. ينبغي أن تحسب بیض قيم

x	$x \cot x$
± 0.1	0.9967
± 0.01	0.999967
± 0.001	0.99999967
± 0.0001	0.9999999967
± 0.00001	0.999999999967

ملحوظة 3.1
تنطبق نظرية الشطيرة على النهايات
أحادية الطرف.

يظهر التمثيل البياني لـ $y=x^{2} \cos \left(\frac{1}{x}\right.$ في الشُكل 2.20 وجدول فيَم الدوال الهوضّح في الهامش.

الشكل 2.19

$y=\cos \left(\frac{1}{x}\right)$

يشير التمثيل البياني وجدول قيم الدالة إلى التخمين

$$
\lim _{x \rightarrow 0}\left[x^{2} \cos \left(\frac{1}{x}\right)\right]=0
$$

الذي نثبته باستخدام نظرية الشُطيرة. أولُا، علينا إيجاد الدالتين f وh بحيث يكون

$$
f(x) \leq x^{2} \cos \left(\frac{1}{x}\right) \leq h(x)
$$

$$
\text { لجهيع القيم التي يكون عندها } x \neq 0 \text { يكون } 0 \text { وتذكّر أنّ } \lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} h(x)=0
$$

$$
-1 \leq \cos \left(\frac{1}{x}\right) \leq 1
$$

لجميع القيم التي يكون عندها $x \neq 0$ وإذا ضربنا (3.7) في x^{2} (لاحظ بها أنّ 0 (x^{2} (فإن عملية الضرب هذه تُبقي على الهتباينات)، فإننا سنحصل على

$$
-x^{2} \leq x^{2} \cos \left(\frac{1}{x}\right) \leq x^{2}
$$

لجهيع القيم التي بكون عندها 0 ونوضّح هذه الهتباينة في الشُكل 2.21. وفضـاً عن ذلك.

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left(-x^{2}\right)=0= & \lim _{x \rightarrow 0} \\
& x^{2} \\
& \text { لذا فإنه يتبين لنا الآن من نظرية الشطيرة أنّ }
\end{aligned}
$$

$$
\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x}\right)=0
$$

أيضًا، كما كنّا قد خحّنًا من قبل.
ما وراء الصيغ
 النظرية 3.1. لذا فُقد لجأنا إلى طريقة غير مباشرة لإيجاد النهايات. ويُشار في بعض الأحيان إلى هذه الحملية البارعة المتقنة من التمثيلات البيانية الموثقة بالحسبان وما يتبـه
 المسائل إلى أنّ على الهرء أن ينظر إلى الهسائل مـن زاوية بيانية وعددية وتحليلية). في حالة المثال 3.8، يشير العنصر الأول والثاني من هذه "القاعدة" (وهـما التمثيلات البيانية في الشكّل 2.20 والجدول الهـرفق لقيم الدالة) إلى تخهين مقبول، بينما العنصر الثالث يقدّم لنا تحقّقًا رياضئًا دقيقًا من صحة التخمين. ما الأوجه التي تشـير إلى أنّ هذا يبدو مثّل المنهـج

x	$x^{2} \cos (1 / x)$
± 0.1	-0.008
± 0.01	8.6×10^{-5}
± 0.001	5.6×10^{-7}
± 0.0001	-9.5×10^{-9}
± 0.00001	-9.99×10^{-11}

2.21 الشكل

$$
\begin{gathered}
y=x^{2} \cos \left(\frac{1}{x}\right), y=x^{2} \\
y=-x^{2}
\end{gathered}
$$

غالبًا ما يتم تعريف الدوال بتعابير مختلفة في فترات مختلفة. وتُعّد هذه الدوالّ متعدّدة التعريف مهمة، سيتم مناقشتها في المـثال 3.9.

مثال 3.9 نهاية الدالة متعددة التعريف

$$
\text { أوجد قيمة (} \lim _{x \rightarrow 0} f(x) \text { تُعرّف } f \text { كما يلي }
$$

$$
f(x)= \begin{cases}x^{2}+2 \cos x+1, & x<0 \text { عندما } \\ e^{x}-4, & x \geq 0\end{cases}
$$

الحل بها أنّ f تعرّف بتعابير مختلفة عندما يكون $x<0$ وعندما بكون $x \geq 0$ و علينا أن نأخذ في الحسبان
النهايات أحادية الطرف. حيث إنّ
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left(x^{2}+2 \cos x+1\right)=2 \cos 0+1=3$
وبحسب النظرية 3.4. نجد أيضًا أنّ
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left(e^{x}-4\right)=e^{0}-4=1-4=-3$

$$
\text { بما أنّ النهايات أحادية الطرف مختلفة، فإنّ (x) } \lim _{x \rightarrow 0} f(x \text { مودة. }
$$

$$
\begin{aligned}
& \text { ونختم هذا الدرس بهثال عن استخدام النهايات في حساب السرعة. في الدرس 2.1، نرى أن الجسم الذي }
\end{aligned}
$$

(أي السرعة الهتجهة عند اللحظة 1 (تقابل السرعة المتوسطة في فترة زمنية) معطاة بالنهاية:

$$
\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}
$$

اليوم في الرياضيـات
مايكل فريدمان (-1951) عالم رياضيات أمريكي كان السبّا إلى حل واحدة مـن أكثر المسـائل
 بوانكاريه رباعية الأبعاد. ويقول ويان مايكل فُريدمان، وهـو الحائز على ميدالية فيلدز، التي ترقى فيّي مـجال الرياضيات إلى مستوى جائزة نوبل: "يأني الكثير من قوة الرياضيات من

عملية الجمـع بين رؤى من فـروع
مختلفة لهذا الفرع من المعرفة. فالرياضيات بوصفها أسلوب تفَكير

لا تهثل مجهوعـة مـختلفة من الهوضوعات إلى حد بعيد. لذا فإنه من المهكن تطبيقها على أي فرع من فروع المعرفـة. "' ويرى مايكل فـريدمان في الرياضيات مـجالًا مفتوحـا للبحث. قـاثلًا : "ليس من الضروري أن تكون ذا باع طويل فُي مجال مـا

كي تسهـم في تقدمه"

مـثال 3.10 إيجاد نهاية تصف السـرعـة اللحظية

افترض أنّ الدالة التي تحدد موقُعًا لجسم ما عـند الزمن t (بالثواني) تتمثّل بـ

$$
\begin{aligned}
& f(t)=t^{2}+2(\overline{\mathrm{a}}) \\
& \text { أوجد السرعـة اللحظية للجسم عند الزمن } 1 \text {. } 1
\end{aligned}
$$

الـحل بالنظر إلى ما قَد تعلمناه للتوّ عن النهايات، فإنّ حل هذه المسألة يعد الآن سـهلاً. حيث إنّ

$$
\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0} \frac{\left[(1+h)^{2}+2\right]-3}{h}
$$

وفي حين أننا لا نستطيع ببسـاطة أن نـوض عن h بالعدد 0 (لماذا؟) بإمكاننا أن نكتب

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{\left[(1+h)^{2}+2\right]-3}{h}=\lim _{h \rightarrow 0} \frac{\left(1+2 h+h^{2}\right)-1}{h} \quad \text { تفكيك الحدّ المـربّع } \\
& =\lim _{h \rightarrow 0} \frac{2 h+h^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(2+h)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2+h}{1}=2 . \quad h \text { اختصار العامل المشترك } \\
& \text { إذاا فإن السرعة اللحظية لهذا الجسـم عند الزمن } t=1 \text { هي } 2 \text { قدم بالثانية. }
\end{aligned}
$$

استخخدم نظرية الشطبرة لإثبات أنكّ على صواب: عرّف الدالتين
f

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} h(x)
$$

30. لماذا لا تستطيع استخدام نظرية الشطـيرة كما في المثال 29 لإثبات

أنّ 0 (
31. $\lim _{x \rightarrow 0^{+}}\left[\sqrt{x} \cos ^{2}(1 / x)\right]=0$ نستخدم نظرية الشطيرة لإثبات أنّ 0 ؤنّا $f(x) \leq \sqrt{x} \cos ^{2}(1 / x) \leq h(x)$ وعرّف الدالتين f و h. ووضّح بيانيّا أن

32. افترض أنّ $f(x)$ مـحدودة: بهعنى أن هناك M M ثابتةً بحيث تكون |f(x)| \mid لجميع قيم x. استخدم نظرية الشطيرة لإثبات أنّ

$$
\lim _{x \rightarrow 0} x^{2} f(x)=0
$$

في التتمرينات 36-33، اسـتخدم دالة الهوقع الهعطـاة $f(t)$ لإيجاد السـرعـة اللـحظية عـند الزمن a
33. $f(t)=t^{2}+2, a=2$
34. $f(t)=t^{2}+2, a=0$
35. $f(t)=t^{3}, a=0$
36. $f(t)=t^{3}, a=1$
$\lim _{x \rightarrow 0^{+}} \frac{\sqrt{1-\cos x}}{x}$ 37. إذا كانت النهاية سـريُـا.
 39 $\lim _{x \rightarrow a^{+}} f(x)$ وحدّد $\lim _{x \rightarrow a^{-}} f(x)=g(a)$ وضّح السبب وراء أنّ $h(x)$ و $و(x)$

$$
f(x)=\left\{\begin{array}{lll}
g(x), & x<a \\
c & , & x=a \\
h(x), & x>a
\end{array}\right.
$$

 41. أوجد قيمهة كل نهاية وعلّل كل خطوة مشيرُا إلى النظرية أو المـأدلة

$$
\begin{array}{ll}
\text { (a) } \lim _{x \rightarrow 2}\left(x^{2}-3 x+1\right) & \text { (b) } \lim _{x \rightarrow 0} \frac{x-2}{x^{2}+1}
\end{array}
$$

42. أوجد قيمة كل نهاية وعلّل كل خطوة مشيرُا إلى النظرية أو المعادلة

الــناسبة.
(a) $\lim _{x \rightarrow-1}[(x+1) \sin x]$
(b) $\lim _{x \rightarrow 1} \frac{x e^{x}}{\tan x}$
 لتحديد النهاية، إن أمكـن. $\lim _{x \rightarrow a} h(x)=0$
43. $\lim _{x \rightarrow a}[2 f(x)-3 g(x)]$
44. $\lim _{x \rightarrow a}[3 f(x) g(x)]$
45. $\lim _{x \rightarrow a} \frac{[f(x)]^{2}}{g(x)}$
46. $\lim _{x \rightarrow a} \frac{2 f(x) h(x)}{f(x)+h(x)}$

1. انطلافًّا من معرفتك بالتهثيلات البيانية لكثيرات الحدود، اشرح لهاذا

$$
\text { تُعتبر المعادلتان (3.1) و (3.2) والنظرية } 3.2 \text { واضحة. }
$$

2. اشرح نظرية الشطيرة بجملة واحدة أو اثنتين. استخدم مثـالًا من الحياة اليومية (مثّلا كأن تضع دوالّ تهثّل مواقـع ثلاثة أشخاص وهم
يسـيرون) لإثبات صحتها.
3. 3 بدّ من تفسير الدوالّ متعددة التعريف بدقَة. في المثّال 3.9، اشرح لماذا تكون

$$
\text { إلى نهايات أحادية الطرف لإيجاد قيمة (lim }{ }_{x \rightarrow 0} f(x)
$$

4. في المثال 3.8، اشرح لمـاذا ليس من الجيد بما يكفي أن نقول: بما أنّ

$$
\lim _{x \rightarrow 0} x^{2} \cos (1 / x)=0 \text { فإنّ } \lim _{x \rightarrow 0} x^{2}=0
$$

في التهارين 28-1، أوجد قيمـة النهاية الهشـار إليها، إذا وُجِدت. . $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ على فرض أنّ

1. $\lim _{x \rightarrow 0}\left(x^{2}-3 x+1\right)$
2. $\lim _{x \rightarrow 2} \sqrt[3]{2 x+1}$
3. $\lim _{x \rightarrow 0} \cos ^{-1}\left(x^{2}\right)$
4. $\lim _{x \rightarrow 2} \frac{x-5}{x^{2}+4}$
5. $\lim _{x \rightarrow 3} \frac{x^{2}-x-6}{x-3}$
6. $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}-3 x+2}$
7. $\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x^{2}-4}$
8. $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}+2 x-3}$
9. $\lim _{x \rightarrow 0} \frac{\sin x}{\tan x}$
10. $\lim _{x \rightarrow 0} \frac{\tan x}{x}$
11. $\lim _{x \rightarrow 0} \frac{x e^{-2 x+1}}{x^{2}+x}$
12. $\lim _{x \rightarrow 0} x^{2} \csc ^{2} x$
13. $\lim _{x \rightarrow 0} \frac{\sqrt{x+4}-2}{x}$
14. $\lim _{x \rightarrow 0} \frac{2 x}{3-\sqrt{x+9}}$
15. $\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{x}-1}$
16. $\lim _{x \rightarrow 4} \frac{x^{3}-64}{x-4}$
17. $\lim _{x \rightarrow 1}\left(\frac{1}{x-1}-\frac{2}{x^{2}-1}\right)$
18. $\lim _{x \rightarrow 0}\left(\frac{2}{x}-\frac{2}{|x|}\right)$
19. $\lim _{x \rightarrow 0} \frac{1-e^{2 x}}{1-e^{x}}$
20. $\lim _{x \rightarrow 0} \frac{\sin |x|}{x}$
21. $\lim _{x \rightarrow 2} f(x)$, حيث $f(x)= \begin{cases}2 x, & x<2 \\ x^{2}, & x \geq 2\end{cases}$
22. $\lim _{x \rightarrow-1} f(x)$, حيث $f(x)= \begin{cases}x^{2}+1 & , \quad x<-1 \\ 3 x+1 & , \quad x \geq-1\end{cases}$
23. $\lim _{x \rightarrow-1} f(x)$, حي $f(x)=\left\{\begin{array}{lll}2 x+1 & , & x<-1 \\ 3 & , & -1<x<1 \\ 2 x+1 & , & x>1\end{array}\right.$
24. $\lim _{x \rightarrow 1} f(x)$, حيث $f(x)=\left\{\begin{array}{lll}2 x+1 & , & x<-1 \\ 3 & , & -1<x<1 \\ 2 x+1 & , & x>1\end{array}\right.$
25. $\lim _{h \rightarrow 0} \frac{(2+h)^{2}-4}{h}$
26. $\lim _{h \rightarrow 0} \frac{(1+h)^{3}-1}{h}$
27. $\lim _{x \rightarrow 2} \frac{\sin \left(x^{2}-4\right)}{x^{2}-4}$
28. $\lim _{x \rightarrow 0} \frac{\tan x}{5 x}$

تطبيقات

65. افترض أنّ القانون الضريبي في دولة ما ينص على أن الالتزام الضريبي المفروض على x من الدولارات من الدخل الخاضع للضريبة

$$
T(x)=\left\{\begin{array}{l}
0.14 x, \quad 0 \leq x<10,000 \\
1500+0.21 x, \quad 10,000 \leq x
\end{array}\right.
$$

 الضريبي تبلغ 12\% على أول 20,000\$ من الأرباح الخاضعة للضريبة

$$
T(x)= \begin{cases}\text { 16\% على الباقي. أوجد الثابتين a و } b \\ a+0.12 x, & x \leq 20,000 \\ b+0.16(x-20,000), & x>20,000\end{cases}
$$

بحيث توجد
هـاتان النهايتان موجودنين؟

تهارين استكشـافية

1. تعرف القيهة $x=0$ بأنها الصفر المُكرر n (n ($n \geq 1$)للدالة f إذا كانت

 x=0 تصفه مُكرر؟ والسبب في أنّ التـريف ليس بالبساطة التي نتطلح إليها هو أنه يجب أن يسري على الدوال غير كثيرات الحدود أيضًا. أوجد تكرار $x=0$ ع $f(x)=\sin x ; f(x)=x \sin x ; f(x)=\sin x^{2}$ عندما يكون
 يمكن أن تقول عن تكرار 2
مختلفة لــ c مرة باستخدام الأدلة البيانية والعددية. إذا علمت أنّ . $\lim _{x \rightarrow 0} \frac{\sin c x}{c x}=1$ $k \neq 0$ و

في التمرينين 47 و 48، احسب نهاية 1 (p(x) $=x^{2}-1$. $\lim _{x \rightarrow 0} p(3+2 p(x-p(x))) .48 \quad \lim _{x \rightarrow 0} p(p(p(p(x)))) .47$
49. أوجد كل الأخطاء في المعادلات الاتية: $\lim _{x \rightarrow 0} \frac{1}{x}=\lim _{x \rightarrow 0} \frac{x}{x^{2}}=\lim _{x \rightarrow 0} x \lim _{x \rightarrow 0} \frac{1}{x^{2}}=0 \cdot ?=0$.
50. أوجد كل الأخطاء في المعادلات الانية:

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}=\frac{0}{0}=1
$$

51. أعط مثـألُ للدالتين f و f و بحيث توجد [

$$
\lim _{x \rightarrow 0} g(x), \lim _{x \rightarrow 0} f(x)
$$

$$
\text { على الأقل من } \lim _{x \rightarrow 0} g(x) \lim _{x \rightarrow 0} f(x)
$$

53. إذا وُجِدت (أنّ]
54. هل ما يلي صواب أم خطأ؟ إذا كانت (x) تكون
في التمارين 60-55، استخدم الأدلة العددية لتخهين قيمة النهاية إن وُجِدت. تحقّق مـن إجابتك باستخدام نظامكا الجبري (CAS). إذا كنت لا توافق، فأي من إجاباتك صحيح؟
55. $\lim _{x \rightarrow 0^{+}}(1+x)^{1 / x}$
56. $\lim _{x \rightarrow 0} e^{1 / x}$
57. $\lim _{x \rightarrow 0^{+}} x^{-x^{2}}$
58. $\lim _{x \rightarrow 0^{+}} x^{\ln x}$
59. $\lim _{x \rightarrow 0} \tan ^{-1} \frac{1}{x}$
60. $\lim _{x \rightarrow 0} \ln \left|\frac{1}{x}\right|$

$$
\text { 61. إذا كان } \lim _{x \rightarrow a} \text { استخدم النظرية } 3.1 \text { لإثبات أنّ }
$$ $. \lim _{x \rightarrow a}[f(x)]^{4}=L^{4}$ ن أن

62. استخدم الاستقراء الرياضي لإثبات أنّ
صحيح موجب n.
63. يُرْز لدالة أكبر عدد صحيح بـ [x $f(x)=$ وهي تساوي أكبر

عدد صحيح يكون أصغر من x أو مساوئًا لها. وبذلك يكون و

و (c) $\lim _{x \rightarrow 1.5}[2 x]$ و (b) $\lim _{x \rightarrow 1.5}[x]$ و (a) $\lim _{x \rightarrow 1}[x]$ (استكشَ وهر وج (d) $\lim _{x \rightarrow 1}(x-[x])$

الاتصال ونتائجَه

إذا مـا تم إخبارنا بأنّ آلة إستمَرت بالعهـل عـلى نحو متواصل لمدة سـتين سـاعـة، فـمعظمـنا سـيفهم أن معنى ذلك إلشـي
 الفترة يمكـن رسـمه بدون انقطاع، بمعـنى أن يتم رسـمه بدون رفـع القـلم عـن الورقّة.

2.22b الشكل
$f(a)$

$f(a)$
البياني عـند

2.22d الشكل

ار

2.22c الشكل
($\lim _{x \rightarrow a} f(x)$

$$
\text { ولكن (هناك فـجوة } \lim _{x \rightarrow a} f(x) \neq f(a)
$$

$$
\text { في التمثيل البياني عند } x=a \text {). }
$$

وهذا يشير إلى التعريف التالي للاتصال عند نقطة مـا.

التعريف 4.1

لدالة f محرّقة في فترة مفتوحة تتضمن $x=a$ ، نتول إنّ f متصلة عند a عـندما

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

وإلا فإنه يُقال أن f غير متصلة عند $x=a$. تكون

أئًا كان الغرض، من الأفضل أن تفكر في المفهوم البديهي للاتصال المشـار إليه

ويبيّن هذا أنّ التمثيل البياني لـ f هو خط مستقيم، فيه تجويف عند x=1 كمـا هو موضح

$$
\begin{aligned}
& \text { الهـثال } 4.1 \text { إيجاد مكان اتصـال الدالة النسببية } \\
& \text { حدّد أين تكون } f(x)=\frac{x^{2}+2 x-3}{x-1} \text { متصلة. } \\
& \text { الحل لاحظ أنّ } \\
& f(x)=\frac{x^{2}+2 x-3}{x-1}=\frac{(x-1)(x+3)}{x-1} \text { حلّل البسط الى الدوامل } \\
& =x+3 \text {, for } x \neq 1 \quad \text { حذف العوامل المشُتركة. } \\
& \text { الحّل لاحظ أين تكون أنّ } f(x)=\frac{x^{2}+2 x-3}{x-1} \text { متصلة. }
\end{aligned}
$$

كي تكون f متصلة عند $x=a$ = التّعريف يقول إنه: f(a) (i) $\lim _{x \rightarrow a} f(x)$ (ii) $x=a$ النهاية وقيمة f عند (iii) يجب أن تكونا متساويتين. وِعالاوةً على ذلك، هذا يشُير إلى أن الدالة تكون متصلة عند نقطة ما عندما يهكن حساب نهايتها عند فتلك النقطة عن طريق التعويض

2.23 الشكل
$y=\frac{x^{2}+2 x-3}{x-1}$

الهثال 4.2 إزالة فجـوة من التمثيل البياني

$$
g(x)= \begin{cases}\frac{x^{2}+2 x-3}{x-1}, & x \neq 1 \\ a, & x=1\end{cases}
$$

بالنسبة لعدد حقيقي a

$$
\lim _{x \rightarrow 1} g(x)=\lim _{x \rightarrow 1} \frac{x^{2}+2 x-3}{x-1}
$$

$$
=\lim _{x \rightarrow 1}(x+3)=4
$$

لاحظ أنّنا إذا اخترنا أن يكون $a=4$ فعندها يكون لدينا

$$
\lim _{x \rightarrow 1} g(x)=4=g(1)
$$

$$
\text { وعندئذ، تكون g متصلة عندما يكون } 1 \text { = } 1 .
$$

لاحظ أن التمثيل البياني لـ و هو ذاته التمثيل البياني لـ f الذي شاهد أهته في الشكل 2.23،
 - هناك طريقة بسيطة جدَّا لكتابة (و(x). (فكّر في هذا الأمر).
 x=1 النقطة، نتول إن الانْصال في هذه الحالة قابِل للإزالة. ولكن ليست جميت الاننصالات قابلة للإزالة. أمعن النظر في الشكلين 2.22b و 2.22 بعناية وأقنت ننسك بأن الانئصال الذي في الشكل 2.22c قابل للإزألة. بينما الانْصالان اللذان في الشكلين 2.22b و 2.22 C غير قابَّلين للإزالة. بإيجاز، للدالة f اننصال غير قابل للإزالة عند $x=a$ إذا كانت $x=a$ غير موجودة. الهثال 4.3 الدوالّ التي لا يمكن تهديدها على نحو متصل هكانرح كيف أنّ
الحل (a) لاحظ من الشُكل 2.25a (وأنشَئ جدولُ بقيم الدالة أيضًا) أنّ النهاية

$$
\text { وبالتالي، بغض النظر عن طريقة معرفة (f(0)، فإنّ f لن تكون متصلة عند } 0=0 \text { = }
$$ (b) وبالمثل، لاحظ أنّ (1/x) لـ النهاية غير موجودة، فليست هناك طريقة لإعادة تعريف الدالة عند 0 ع 0 لجـلها متصلة هـ

من خلال تجربتك مـع التمثيلات البيانية لبعض الدوال الشـائعة، يجب ألا تمتّل النتيجة التالية مفاجأة لك.

النظرية 4.1

جهيع كثيرات الحدود متصلة على جميع مجالها. وبالإضافة إلى ذلك فإنّ號 e^{x} وتصلة على جهيع مجالها، و $\sin x, \cos x, \tan ^{-1} x$

بجب أن تحرص على عدم الخلط بين مسألة اتصال دالة عند نتطة ما وكونها ببساطة معرفة عند تلك النتطة. حبث يهكن تعريف دالة ما عند نتطة ما دون أن تكون متصلة عندها. (أعد النظر إلى الأُشكال
. 2.22 d , 2.22c 9 2.22b

الشكل 2.24
$y=g(x)$

2.25a الشكل $y=\frac{1}{x^{2}}$

2.25b الشكل
$y=\cos (1 / x)$

البرهـان

لقد ثبت لنا بالفتل (في النظرية 3.2) أنه لأي كثيرة حدود (a) وأي عدد حقيقي a،

$$
\lim _{x \rightarrow a} p(x)=p(a)
$$

ونجد من خلالها أنّ p متصلة عند $x=a$ = كما يرجع باقي النظرية إلى النظريتين 3.3 و 3.4 بالطريقة ذاتها. يمكننا من خلال هذه الدوالّ المتصلة الأسـاسية أن نكوّن مـجهوعة كبيرة من الدوالّ المتصلة. وذلك باستخدام النظرية 4.2.

الأمر ببسـاطة أن النظرية 4.2 تقول إنّ مجهوع أي دالتين متصلتين أو الٍٍفرق بينهمها أو ناتج

البرهـان

(إذا كانت f و g متصلتين عند $x=a$ (i)

$$
\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x) \text {.لنظرية } 3.1
$$

$$
=f(a) \pm g(a) \quad \text { جما أنٌ } f \text { و } f \text { متصاتَن عند }
$$

$$
=(f \pm g)(a)
$$

 الحل هنا، f ناتج قسمة كثيرتي حدود (وبالتالي متصلتان). هذا الرسم البياني للدالة المشار
 من النظرية 4.2. f ستكون متصلة عند جميع قيم x حيث لا لا يكون الهقام صفرُا، حيث

$$
x^{2}-3 x-4=(x+1)(x-4) \neq 0
$$

وهكذا، فإنّ f متصلة حيث يكون 4 (فكّر لمـا لم تر أي شيء مميز يتعلق بالرسم - البياني عند

> اتصـال لمعظم الدافة النتيجة من النولية. 4.3، تكون لدينا جهـيع الأدوات الأسـاسية التي تلزم لإنشاء

2.26 الشكل

$y=\frac{x^{4}-3 x^{2}+2}{x^{2}-3 x-4}$

$$
\begin{aligned}
& \text { الهـثال } 4.4 \text { اتصـال الدوال النسـبية } \\
& \text { حدّد أين تكون f متصلة، عندما تكون } f(x)=\frac{x^{4}-3 x^{2}+2}{x^{2}-3 x-4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { النظرية } 4.2
\end{aligned}
$$

$$
\begin{aligned}
& x=a \text { متصلة عند (i) } \\
& x=a \text { متصلة عند (f•g) (ii) } \\
& \text { (} f / g \text { متصلة عند } x=a \text { (} x=0 \text { (iii) }
\end{aligned}
$$

النظرية 4.3

افترض أنّ $\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)=f(L)$

وقد ورد إثبات للنظرية 4.3 في الملحق A.
لاحظ أنه إذا كانت f f متصلة، فعندها يمكن أن نجد النها 4 النهاية "للداخل". ويجب أن يكون هذا منطفيًا، بها أنّن L $ا$ ما

النتيجة 4.1

افترض أنّ g متصلة عند a و f متصلة عند (a)g. بالتالي، فإن التركيب $f \circ g$ متصل عند a.

البرهان

من النظرية 4.3، لدينا
$\lim _{x \rightarrow a}(f \circ g)(x)=\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)$

الهثال 4.5 الاتصال لدالة مركبة
حدّد أين تكون (2) $h(x)=\cos \left(x^{2}-5 x+2\right.$ متصلة.
$h(x)=f(g(x))$
الحل لاحظ أنّ

حبث تكون متصلة لكل قيم xx بحسب النتيجة 4.1 .

التعريف 4.2

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a) \quad, \quad \lim _{x \rightarrow b^{-}} f(x)=f(b)
$$

(وذلك عندما لا نحدّد فترة، فنعني متصلة في كل مكان).

لكثير من الدوال، يُعدّ أمرَّا بسيطًا تحدبد الفترات التي تكون الدالة متصلة عندها. نوضّح ذلك في المثال 2.6.

$$
\text { حدّد الفترة (الفترات) حيث تكون f متصلة، إذا كان } f(x)=\sqrt{4-x^{2}} .
$$

الشكل 2.27
f متّصلة على الفترة [2: f

الحل أونّ لاحظ أن f محرّفة على $2 \leq x \leq 2 \leq$ 2 $2 \leq$ فقط. ثانيًّ، لاحظ أن f هي تركيب لدالتين وبالتالي، فهي متصلة لكل قيم x التي يكون عندها للدالة في الشكل 2.28. بها أنّ

$$
4-x^{2}>0
$$

بالنسبة إلى 2 < 2 2 - لدينا f متصلة لكل قيم x في الفترة (2, 2- 2 (2)، بحسب النظرية 4.1 - - ${ }^{\text {- }} \lim _{x \rightarrow-2^{+}} \sqrt{4-x^{2}}=0=f(-2)$

المـثال 4.7 فترة الاتصـال للوغـاريتم حدد الفترة (الفترات) التي تكون عـندها الدالة (3-1 $f(x)=\ln (x)$ متصلة.
 .

تهيمن دائرة الإيرادات الداخلية على بعض الدوال الأكثر إرهاقًا في الوجود. السطور القليلة

ناقص	التزامك الضربيبي هـو	ولكن لبس فون	للهبلن الخاضِ للضربية فوق
AED 0	10\%	AED 6000	AED 0
AED 300	15\%	AED 27.950	AED 6000
AED 3654	27\%	AED 67.700	AED 27.950

 دالة للمبلنّ" الضريبي x (بافتراض أنّ x يمكن أن يكون أي عدد صـحيح ولِّيس مبلغًا بالدولار

$$
T(x)= \begin{cases}0.10 x & , \\ 0.15 x-300, & 0<x \leq 6000 \\ 0.27 x-3654, & 27,950<x \leq 27,950 \\ \end{cases}
$$

تأكد من أنك تفـهم ما نترجمه حتي الآن. لِحظ أنّه من المهـم أن تكون هذه الدالة متصلة: وفكّر في قضضايا الحدالة التي من شـأنها أن تنشأ إذا لم يكن ذلك!

الهـثال 4.8 اتصـال جداول الضريبة الاتحادية

تأكد من أن دالة معدل الضريبية الاتحادية T متصلة عند x=27,950 المشتركة. ثم أوجد a

ناقْ	التزاهـا الضريبي هو	ولكن لمبس فوف	للهبلـع الخاضـع للضريبة فوى
a	30\%	AED 141.250	AED 67.700
b	35\%	AED 307.050	AED 141.250
c	38.6\%	-	AED 307.050

الحل بالنسبة لـ T لتكون متصلة عند $x=27,950$ فيجب أن يكون لدينا

$$
\lim _{x \rightarrow 27,950^{-}} T(x)=\lim _{x \rightarrow 27,950^{+}} T(x)
$$

يما أن الدالتين 300-0.15x و 3654 - $0.27 x$ متصلتان، يمكننا أن نحسب النهايات أحادية

$$
\text { الطّرف عبر التعويض 27,950= } x \text {. بالتالي. }
$$

$$
\lim _{x \rightarrow 27,950^{-}} T(x)=0.15(27,950)-300=3892.50
$$

2.28 الشكل
$y=\sqrt{4-x^{2}}$

$$
\lim _{x \rightarrow 27,950^{+}} T(x)=0.27(27,950)-3654=3892.50
$$

بها أنّ النهايات أحادية الطرف متساوية وتساوي قيمة الدالة عند تلك النقطة، فإن T(x) متصلة عند $x=27,950$

 الجدول، نختّار ä لنحصل على النهايات أحادية الطرف عند x=67,700 كي تتطابق. لدينا

$$
\lim _{x \rightarrow 67,700^{-}} T(x)=0.27(67,700)-3654=14,625
$$

$$
\begin{gathered}
\lim _{x \rightarrow 67,700^{+}} T(x)=0.30(67,700)-a=20,310-a \\
\text { لذا، نجـل النهايات أحادية الطرف متساوية للحصول على -a } \\
14,625=20,310 \\
a=20,310-14,625=5685
\end{gathered}
$$

يجب أن تبدو النظرية 4.4 نتيجة واضحة لتعريفنا البديهي للاتصال.

النظرية 4.4 (نظرية القيمة الوسطبيّة)

 مرة واحدة على الأقل. أي أنها، دالة متصلة لا يمكن أن تتجاوز أي أعداد بين قيمها في النقطتين الطرفيتين .ولفحل ذلك يجب أن يقفز التمثيل البياني عبر الخط الأفقي 1 الخي يمكن حدوته في الدوال الهتصلة. (انظر الشكل 2.29a). بالطبع، يهكن تُلدالة أن تـتناول قِّيمة معينة W أكثر من مرة. (انظر الشكل 2.29b). على الرغم من أن هذه التمثيلات البيانية تجـل
 حساب التفاضل والتكامل المتقدم.

ملاحظات تاريخية

كارل ويرسـتراس(1815-1897)
عالم رياضيات ألماني أثبت نظرية القيهـة الوسطيّة والعديد من النتائج الأسـاسية الأخرى من حساب التفاضل والتكامل. وكارل ويرستراس معروفًا بكونه مدرسًا مستارًا حيث نشـر طـرا طـلابه

محاضراته في جميع أنحاء أوروبا، بسبب وضو وخها أبها وأصالتها ويعرف أيضًا باسمم المبارز
التحليّلِ الرياضي أحد الحؤسيتي

2.29a الشكل

رسـم توضيحي لنظرية القيمـة الوسـطيّة

2.29b الشكل
cـ c أكثر من قيمة واحدة

في النتيجة 4.2، نرى تطبيًِا مهمًا لنظرية القيمة الوسطيّة.

النتيجة 4.2

 . $f(c)=0$ = 0 . fa $f(a) \cdot f(b)>0$ (تذكّر أنّ c تكون عند ذلك صفرًا لـf).

لاحظ أنّ النتيجة 4.2 ببساطة حالة خاصة من نظرية التيمة الوسطيّة حيث W=0 W (انظر الشكل 2.30). نظرية القيمةَ الوسطيّة والنتيجة 4.2 هما مثالان عن وجود النظريات فهما تخبرانك عن وجود عدد c يحقق بضض الشُروط، لكنها لا تخبرك عن ماهية c ذلك.

طـريقة التنصيف

في المثال 4.9، نرى كيف أنّ النتيجة 4.2 يهكن أن تساعدنا في تحديد مكان أصفار الدالة.

الهثال 4.9 إيجاد أصفار الدالة بطريقة التنصيف

$$
\text { أوجد أصفار } f(x)=x^{5}+4 x^{2}-9 x+3
$$

الحل بها أنّ f هي كثيرة حدود من الدرية
 (2.31 2.3 هناك ثلاثة أصغار مرئية في الرسمم البباني. بها أنّ $y=f(x)$ f f

 صعوبة الحصول على الاجابة بقدر ما هي فـهم طريقة إيجاد الاجابة. تشير النتيجة 4.2 إلى

طرية بسيطة وفاعلة. تعرف بطريقة التنصيف. 0

 بكون الصفر في الفترة (0.5, 0.25). ونستمر على هذا النسق حتى تضيق الفترة التي فيها الصفر، كها موضّح في الجدول التالي.

a	b	$f(a)$	$f(b)$	**طة المنتصف	f
0	1	3	-1	0.5	-0.469
0	0.5	3	-0.469	0.25	1.001
0.25	0.5	1.001	-0.469	0.375	0.195
0.375	0.5	0.195	-0.469	0.4375	-0.156
0.375	0.4375	0.195	-0.156	0.40625	0.015
0.40625	0.4375	0.015	-0.156	0.421875	-0.072
0.40625	0.421875	0.015	-0.072	0.4140625	-0.029
0.40625	0.4140625	0.015	-0.029	0.41015625	-0.007
0.40625	0.41015625	0.015	-0.007	0.408203125	0.004

متابعة هذه الـملية عبر 20 خطوة إضافية تؤدي إلى الصفر التقريبي
 بالطريقة ذاتها .ا...
وعلى الرغم من أنّ طريقة التنصيف هي عملية شُاقة، فإنها طريقة بسبطة لكنها موثوفة لإيجاد الأصفار المقربة.

الشكل 2.30

نظرية القيمة الوسطيّة حيث c

2.31 الشكل

$$
y=x^{5}+4 x^{2}-9 x+3
$$

التهارين 2.4

 الواردة في التتعريف 4.1 لم يتم مراعاتها
15. $f(x)=\frac{x}{x-1} \quad x=1$ عند \quad 16. $f(x)=\frac{x^{2}-1}{x-1} \quad x=1 \quad$ عند
17. $f(x)=\sin \frac{1}{x} \quad x=0$ عند \quad 18. $f(x)=\frac{e^{x-1}}{e^{x}-1} \quad x=0$

في التهارين 28-21، حدّد الفترات التي تكون عـندها
21. $f(x)=\sqrt{x+3}$
22. $f(x)=\sqrt{x^{2}-4}$
23. $f(x)=\sqrt[3]{x+2}$
24. $f(x)=(x-1)^{3 / 2}$
25. $f(x)=\sin ^{-1}(x+2)$
26. $f(x)=\ln (\sin x)$
27. $f(x)=\frac{\sqrt{x+1}+e^{x}}{x^{2}-2}$
28. $f(x)=\frac{\ln \left(x^{2}-1\right)}{\sqrt{x^{2}-2 x}}$
29. افترض أنّ القانون الضريبي في دولة ما ينص عـلى أنّ الالتزام الضريبي المفروض عـني

الدخل الخاضع للضـريبة موضّـح بـ
$T(x)=\left\{\begin{array}{lll}0 & x \leq 0 \\ 0.14 x & , & 0<x<10,000 \\ c+0.21 x, & 10,000 \leq x .\end{array}\right.$
حدّد الثـابت c الذي يُجعل هذه الدالة متصلة لجميع قيم x. قدّد سببيًا منطقيًا لكون أن هذه الدالة يجب أن تكون متصلة.
 الضريبي تبلغ 12\% على أُول AED 20,000 من الأرباح الخاض للضريبة و 16\% على الباقي. أوجد الثابتين a و b للدالة الضريبية
 31. في المثال 4.8، أوجد b و c C إلكمـال الجدول.

في التمارين 36-33، اسـتخـدم نظرية القيمة الوسـطيّة
 لإيجآد فترة طـولها 1/32 والتي

الت
تـحتوي عـلى الصـفر.
33. $f(x)=x^{2}-7$,
(a) $[2,3]$;
(b) $[-3,-2]$
34. $f(x)=x^{3}-4 x-2$,
(a) $[2,3]$;
(b) $[-1,0]$
35. $f(x)=\cos x-x,[0,1]$
36. $f(x)=e^{x}+x,[-1,0]$

تهارين كتابية

1. فكّر بشـأن الدوال التالية "من الحياة اليومية"، وكل واحدة منهـا هي دالة في الزمن كمتغير مستقل: ارتفاع كائن يسقطـ و ومبلغ من
 ومقدار تركيز مركّب كيميائي في أنبوب اختبار وآخر فَياس لجها يقيس مستوى الكوليسترول في دم شـخضص. أي مهـا يلي دوال متصلة؟ اشرح إجاباتك.
2. سواء أكانت العملية مستمرة أم $ل$ ليس أمرُّا فى غاية الوضوح
 وذلك وهم بصري، لأن كلا من الأفلام والتلفزيون تتكوّن من "لقطات" فردية تتم إعادة تشخيلها بالعديد من اللقطـات في
الثانية. من أين يأتي وهم الحركة المستهرة؟ وبا وبالنظر إلى أن الشخص الحادي يرمش عـدة مرات في الدقيقة الواحدة، فهل تصورنا للحالم مستمر في الواقع؟ 3. عندما ترسم تمثيلًا بيانيًا للقطع المكافئ $y=x^{2}$ عقلم رصاص أو قلم حبر، فهل رسمك (على الهستوى الجزيئي) في الواقع تهثيل بياني لدالة متصلة؟ هل التمثيل البياني أو حاسوبك تمثيل بياني لدالة متصلة؟ هـل سبق وأن حدئت معنا مشاكـاكل في تفسير التمثيل البياني بشكل صـحيح بسبب
3. لكل من التهئيلات في الأشكال 2.22a-2.22d، صِف (بمثال) مـا يمكن أن تبدو عليه صيغة (f(x) إنشاء التمثيل البياني الهطلوب.

1. $f(x)=\frac{x^{2}+x-2}{x+2}$
2. $f(x)=\frac{x^{2}-x-6}{x-3}$
3. $f(x)=\frac{x-1}{x^{2}-1}$
4. $f(x)=\frac{4 x}{x^{2}+x-2}$
5. $f(x)=\frac{4 x}{x^{2}+4}$
6. $f(x)=\frac{3 x}{x^{2}-2 x-4}$
7. $f(x)=x^{2} \tan x$
8. $f(x)=x \cot x$
9. $f(x)=\ln x^{2}$
10. $f(x)=3 / \ln x^{2}$
11. $f(x)= \begin{cases}2 x, & x<1 \\ x^{2}, & x \geq 1\end{cases}$
12. $f(x)=\left\{\begin{aligned} \frac{\sin x}{x}, & x \neq 0 \\ 1, & x=0\end{aligned}\right.$
13. $f(x)= \begin{cases}3 x-1, & x \leq-1 \\ x^{2}+5 x, & -1<x<1 \\ 3 x^{3}, & x \geq 1\end{cases}$
14. $f(x)= \begin{cases}2 x, & x \leq 0 \\ \sin x, & 0<x \leq \pi \\ x-\pi, & x>\pi\end{cases}$
15. افترض أنّ التالية صحيح دائئًا، خاطئ دائئًا، أو ربها يكون صحيحُا
/ ربها يكون خاطئًّ. اشرح ما يلي. (a) (b) (b)
ليست متصلة عند a = x.

$$
\text { 47. افترض أنّ } f(x) \text { متصلة عند x=0. أثبت أنّ } 0 \text {. } 0 \text {. }
$$

48

$$
\text { عند } x=a .
$$

50. حدّد ما إذا كان عكس التهرين 49 صحيحًا. وهو أنه إذا كانت x=a $x=a$ فـل من الضروري أن يكون صحيحًا أن
f(x) يجب أن تكون متصلة عند =a

$$
\text { 51. افترض أنّ } f(x)=\max _{a \leq t \leq x} f(t) \text { دالة متصلة عند } x \geq a \text { وحدّد } x \text { م }
$$

$$
\text { أثبت أنّ (x) متصلة عندما x } x \text {. فهـل يكون هذا صحيحُا دون }
$$

$$
\text { افتراض أنّ } f(x) \text { متصلة؟ }
$$

52

$$
\lim _{x \rightarrow 0} f(g(x)) \neq f\left(\lim _{x \rightarrow 0} g(x)\right)
$$

$$
\text { وهي } f(a)=f(b)=0 \text { و } f(x) \neq 0 \text { عند } \text { و }^{\text {¢ }} \text {. وافترض أيضًا }
$$

أنّ 0 > 0 ($f(c)$ لعدد ما c بين a و b. استخدم نظرية القيمة الوسطيّة

$$
\text { لشرح أن } f(x)>0 \text { لجميع قيم } 0 \text { a } a \text {. }
$$

 نظرية القيمة الوسطيّة وجود صفر للدالة $f(x)$ بين $x=-1$ بي ؟ ما الذي يحدث إذا جربت طريقة التنصيف؟
 فعندها بكون لـ f نقطة ثابتة [حل لـ 56. اثبت الجزأين الأخيرين في النظرية 4.2.

في التهرينين 37 و 38، اسـتخدم التمثيل البياني الهعطى لتتعريف جـهـيع الفتترات التتي تكون عـندهـا الـدالة متصـلـة.
37.

38.

في التمارين 41-39، حدّد قيم a و b التي تجعل الدالة المعطاة متصلة.
39. $f(x)=\left\{\begin{array}{lll}\frac{2 \sin x}{x} & , & x<0 \\ a & , & x=0 \\ b \cos x & , & x>0\end{array}\right.$
40. $f(x)=\left\{\begin{array}{lll}a e^{x}+1, & x<0 \\ \sin ^{-1} \frac{x}{2}, & 0 \leq x \leq 2 \\ x^{2}-x+b, & x>2\end{array}\right.$
41. $f(x)= \begin{cases}a\left(\tan ^{-1} x+2\right), & x<0 \\ 2 e^{b x}+1, & 0 \leq x \leq 3 \\ \ln (x-2)+x^{2}, & x>3\end{cases}$
42. أثبت النتيجة 4.1.
$\lim _{x \rightarrow a^{+}} f(x)=f(a)$ الدالة متصلة من اليمين عند $x=a$ إذا كانت في التمرينين 43 و 44، حدّد مـا إذا كانت $f(x)$ متصلة من
43. $f(x)= \begin{cases}x^{2}, & x \leq 2 \\ 3 x-3, & x>2\end{cases}$
44. $f(x)= \begin{cases}x^{2}, & x<2 \\ 3, & x=2 \\ 3 x-3, & x>2\end{cases}$
45. حدّد مـا معنْي أن تكون الدالة متصـيلة مـن اليسـار عـنـ x=a

$$
\text { من اليسـار عـند } 2=2 \text {. }
$$

لبعض الدوال (T) و(اشـرح السبب الذي يجعل من المنطقي أن
 [$30 \leq T \leq 34$

تهارين اسـتكمشافنية

1. في النص، ناقشنا استخدام طريقة التنصيف لإيجاد الحل

 نظرية القيمة الوسطيّة أنه يوجد حل بين $x=0$ و $x=1$ و بطريقة التنصيف، نخمـن نقطة الهنتصف أي أسباب للشك في أن الحل في الحقيقة أقرب إلى 0 ألى من 1 =1
باستخدام قيم الدوال 1
 و و (f(b)، حيث تكون قيمة إحدى الدوال موجبة والأخرى سـالبة.
 وفي كلِ من الطريقتين توقف عندما تكون على نسبة 0.001 من الحل $0.1984 \approx 0$ ج 0.1 أي الطرق كانت أفضل؟ قبل
 الم الأولى؟ جرّب إن كان بإمكانك أن تحدد بيانيًّا السبب في أن طريقتك تفلح بشَكل أفضل مـع المسـألة الأولى.

حدد جميع قيم x التي تكون فيها الدالة متصلة.

$$
\begin{aligned}
& f(x)= \begin{cases}0 & \text { غ } x \\
x & \text { غير نسـبيّة } x \\
x & \text { نسبيّ } x\end{cases} \\
& g(x)= \begin{cases}x^{2}+3 & \text { غير نسـبيّة } x \\
4 x & \text { غنـيّة } x\end{cases} \\
& h(x)= \begin{cases}\cos 4 x & \text { غير نسبيّة } x \\
\sin 4 x & \text { نسبيّة }\end{cases}
\end{aligned}
$$

هل تعتقد أن قوة الاحتكاك يجبٍ أن تكون في الحقيقة متصلة؟ عدّل التمثيل البياني ليكون متصـلُ بينما تبقى معظم الخـوا المذكورة في المـطـيات موجودة.
60. افترض أن مرتب عـامل يبدأ من AED 40,000
 بيانيًا؛ ولهاذا تكون دالة غير متصلة؟ كيف تُقَارَن بالدالة
القَامَ بالحسابات مص t

$$
\text { القيام بالحسابات مـع } f(t) \text { أكثر من }
$$

61. في صباح يوم الاثنين، غادرت إحدى الهديرات في رحلة عمل

فيَ الساعة 7:13 a.m. ووصلت إلى وجهتها في الساعـاعة 2:03 الـي . وفي الصباح التالي، غادرت للعودة الي ألهنزل في الساعة
1:7:17 a.m مصباح إنارة على الطرِّيق وساعة أحد البنوك تتغير من الساعة 10:32 a.m كانت في المكان نفسه وفي الوققت نفسـه في اليومينّ. ولا يصدق
 نظرية القيهة الوسطيّة لتجادل بأنه يجب أن يكون صحيحًا في نقطة ما من الرحلة، أن المديرة كانت في المكان نفسه وفي الوقت نفسه يومي الاثنين والثُلاثاء.
62. افترض أنك تهدئ من سرعـة سـيارتك للتوقف عنـد عـلامة

 بشكل كامل. استخدم نظرية القيمة الوسطيّة لتّجادل بأنه كانت هناك لحظة من الزمن توقَفت فيها سـيارتك (بل كانت ثانيتين على الأقل في إلحقيقة). ما أوجه الاختلاف بين هـا التوقف والتوقف الذي أراد الشرطي رؤيته؟
63. يُحَدَد جنس تهاسيح الهيسيسبي الوليدة من خلال درجة حرارة البيض في العش. ولا ينجح البيض في النمو مـا لم تكون درجة الحرارة بين $26^{\circ} \mathrm{C}$ و $36{ }^{\circ} \mathrm{C}$ وينهو جهيع الذي تبلـغ درجة حرارته ما بين $26^{\circ} \mathrm{C}$ و $30^{\circ} \mathrm{C}$ ليصبح إناثًا بينها ينهو البيض الذي تبلغ درجة حرارته ما بين $34^{\circ} \mathrm{C}$ و $36^{\circ} \mathrm{C}$ ليصبح ذكورًا. وتقلِ نسبة
 $T^{\circ} \mathrm{C}$ هي نسبة الإناث التي نمت من البيض عن درجن

$$
f(T)= \begin{cases}100 & 26 \leq T \leq 30 \\ g(T) & 30<T<34 \\ 0 & 34 \leq T \leq 36\end{cases}
$$

النهايات التي تتخهين اللانهاية؛ خطوط التتأرب

الـهثال 5.1 إعـادة النظـر في النهاية البسـيطـة

 . $\lim _{x \rightarrow 0} \frac{1}{x}:$ تفحصالـحل بالطبع، يمكننا رسمم تهثيل بياني (راجع الشكل 2.32) وحساب جـدول قيم الدالة بسهولة، عن طريق اليد. (راجع الجداول الموجودة في الهامش). بينها نقول إن النهايتين $x \rightarrow 0^{-}$وعلى وجه التحديد، عندما يكون

$$
\text { ، يتناقص } \frac{1}{x} \text { بدون حدود للإشـارة إلى ذلك، نكتب }
$$

(5 2)

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty \tag{51}
\end{equation*}
$$

$$
\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty
$$

و
 x=0 $x=0$ ، لأن $x \rightarrow$ ، كما رأينا في الشكل 2.32. وعندمـا يحدث ذلك، نقول إنّ الخط x=0 (5.2)، إلا أننا نقول إنهما "تساويان" م و م- عـلى التوالي، لنكون محددين فقط في مـا
 (5.2)، فإننا نقول (كمـا في السـابق) إنّ

الشكل 2.32
$\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty$ and $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty$

x	$\frac{1}{x}$
0.1	10
0.01	100
0.001	1000
0.0001	10,000
0.00001	100,000

x	$\frac{1}{x}$
-0.1	-10
-0.01	-100
-0.001	-1000
-0.0001	$-10,000$
-0.00001	$-100,000$

المـثال 5.2 الدالة التي تكون نهايتاهـا أحاديتا الطرف كلتاههما لانهائية

$$
\text { أوجد قيمـة } \lim _{x \rightarrow 0} \frac{1}{x^{2}}
$$

الـحل يبدو أن التمثيل البياني (في الشكل 2.33) يشير إلى خط التقارب الرأسي في . $x=0$

x	$\frac{1}{x^{2}}$
0.1	100
0.01	10,000
0.001	1×10^{6}
0.0001	1×10^{8}
0.00001	1×10^{10}

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{x^{2}}=\infty
$$

x	$\frac{1}{x^{2}}$
-0.1	100
-0.01	10,000
-0.001	1×10^{6}
-0.0001	1×10^{8}
-0.00001	1×10^{10}

$$
\text { , } \quad \lim _{x \rightarrow 0^{-}} \frac{1}{x^{2}}=\infty
$$

بها أنّ النهايتين أحاديتي الطرف تتطابقان (أي، تتناهى كلتاهها إلى م)، فإننا نقول إنّ

$$
\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty
$$

تفيد هذه العبارة الموجزة بأن النهاية غير موجودة، ولكن أيضًا يوجد خـط تقارب رأسي

ملحـوظة 5.2

يحاول علماء الرياضيات نقل أكبر قدر مهكن من المعلومات بأقل عدد ممكن من الرموز.

$$
\text { لأن x يقترب من 0، عندما يكون x>0 أو } 0 \text { > } 0 \text {. }
$$

$$
\text { أوجد قيمة } \lim _{x \rightarrow 5} \frac{1}{(x-5)^{3}}
$$

المـثال 5.3 حالة لا تتطابق فيها النهايات اللانهائية مـن طـف واحد

$$
\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty
$$

ملحوظة 5.1
قد يبدو متناقضًا في البداية أن نتول إن . $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty$ موجودة ثم نكتب ومـع ذلك، لأن م ليست بعدد حقيقي، فلا يوجد تناقض $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty$ هنا. إننا نقول إنّا للإشـارة إلى أنه عـندما تزيد قيم الدالة دون حدود.

الـحل من التهثيل البياني للدالة في الشكل 2.34، ينبغي أن تحصل على فكرة واضحة

 يفيد أنّ الكسر يزيد في القيمة المطلقة، بدون حدود عـندما $5 \rightarrow 5$. - $(x-5)^{3}>0$ وندمـ

نشير إلى إشـارة كل عـامل من خلال كتابة اشـارة "+" أو "-" فوق أو تحت كل واحد. وهـا يتيح لك أن ترى إشارات الحدود الهختلفة بنظرة سـريعة. وفي هذه الحالة. نحصل على

$$
\text { في النهاية، نقول أن } \lim _{x \rightarrow 5} \frac{1}{(x-5)^{3}} \text { موجودة، }
$$ - بها أن النهايات أحادية الطرف مختلفة.

استنادًا إلى الأمثلة 5.1 و 5.2 و5.3 ، يهكن تهييز ما إذا كان الهتام يتناهى إلى 0 والبسـط
 النهاية تتناهى إلى م ـ أو م من خلال دراسـة إشـارات ألعوامل المختلفة بعناية.

الــثال 5.4 حالة أخرى لا تتطابق فيها النهايات اللانهائية مـن طرف واحد

$$
\text { أوجد قيمة } \lim _{x \rightarrow-2} \frac{x+1}{(x-3)(x+2)}
$$

الـحل أوُن، لاحظ من التمثيل البياني للدالة الموضـح في الشكل 2.35 أنه يبدو وجود

. $x \rightarrow-2^{+}$

الهـثال 5.5 النهـاية التي تتضـهـن دالة مثلثية

$$
\lim _{x \rightarrow \frac{\pi}{2}} \tan x \text { أوجد قيمة }
$$

الحـل يشير التمثيل البياني للدالة الموضّحة في الشكل 2.36 إلى أنّ هـناك خط تقارب رأسي عند $x=\frac{\pi}{2}$. نتحقق من هذا السـلوك، من خـلال مـلاحظـة أن

2.34 الشكل
$\lim _{x \rightarrow 5^{+}} \frac{1}{(x-5)^{3}}=\infty$
$\lim _{x \rightarrow 5^{-}} \frac{1}{(x-5)^{3}}=-\infty$,

الشكل 2.35
$\lim _{x \rightarrow-2} \frac{x+1}{(x-3)(x+2)}$ غير موجود

الشكل 2.36
$y=\tan x$

$$
\begin{aligned}
& \text { مـلاحظة أنّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { لذلك، هـناك بالفعل خـط تقارب رأسي عـند 2 } \\
& \text { - غ غ } \lim _{x \rightarrow-2} \frac{x+1}{(x-3)(x+2)} \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 5^{+}} \frac{1}{(x-5)^{3}}=\infty . \quad x>5 \text { مبا } \\
& (x-5)^{3}<0^{+}(x-5)^{3} \rightarrow 0 \text { ، } x \rightarrow 5^{-} \text {بالهـثل، عـندما } \\
& \text { في هذه الحالة، نحصل على }
\end{aligned}
$$

النهايات عـند اللانهاية

كهـا أننا مهتمون بدراسـة السلوك النهائي للدالة حيث تتزايد x دون حدود (تكتب
 أنه حيث 1 أ $\frac{1}{x} \rightarrow 0 . x \rightarrow$ وفي ضوء ذلك، نكتب

$$
\lim _{x \rightarrow \infty} \frac{1}{x}=0
$$

$$
\lim _{x \rightarrow-\infty} \frac{1}{x}=0 \quad \text { كذلك }
$$

عندما $x \rightarrow \infty$ وع $x \rightarrow-\infty$ وعندما $x \rightarrow$ وفي هذه الحالة، نسمي $y=0$ خطًا تقاربيًا أفققيًا.

الهـثال 5.6 إيجاد خطوط التقـارب الأفقية أوجد أي خطوط تقارب أفقية للتمثيل البياني $f(x)=2-\frac{1}{x}$

$$
\begin{array}{r}
\lim _{x \rightarrow \infty}\left(2-\frac{1}{x}\right)=2 \\
\lim _{x \rightarrow-\infty}\left(2-\frac{1}{x}\right)=2,
\end{array}
$$

- وبالتالي، يكون الخط $y=2$ خط تقارب افقي.

وكما ترون في النظرية 5.1، سلوك $\frac{1}{x^{t}}$ لأي قوة نسبية موجبة t ، عندما $x \rightarrow \pm \infty$ ، هو

$$
\text { نفسه الذي لاحظـناه للدالة } f(x)=\frac{1}{x} \text { إلى حد كبير. }
$$

يأتي برهـان على النظرية 5.1 في الملحق A . تأكد من أن الحجة التالية منطقية بالنسبة

$$
\begin{aligned}
& \lim _{x \rightarrow \frac{\pi}{2}^{-}} \tan x=\lim _{x \rightarrow \frac{\pi}{2}^{-}} \begin{array}{cc}
+ \\
\sin x \\
\cos x \\
+ & \cos x>0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { لذلك، يكون الخط } x=\frac{\pi}{2} \text { هو في الواقع خط تقارب رأسي } \\
& \text { - غـير موجود } \lim _{x \rightarrow \frac{\pi}{2}} \tan x \text {, }
\end{aligned}
$$

الشكل 2.37

$$
\lim _{x \rightarrow \infty} \frac{1}{x}=0 \quad \lim _{x \rightarrow-\infty} \frac{1}{x}=0
$$

الشكل 2.38
$\lim _{x \rightarrow \infty}\left(2-\frac{1}{x}\right)=2$
$\lim _{x \rightarrow-\infty}\left(2-\frac{1}{x}\right)=2$,

ملحوظـة 5.3
جميع القواعد الأسـاسيّة للنهايات المذكورة في النظرية 3.1 تنطبق أيضًا على النهايات
. $x \rightarrow \pm \infty$ عندما

في النظرية 5.2، نرى أنه يسهل تحديد الدالة كثيرة الحدود عند اللانهاية.

النظـرية 5.2:

للدالة كثيرة الحدود من الدرجة

$$
\lim _{x \rightarrow \infty} p_{n}(x)= \begin{cases}\infty, & a_{n}>0 \\ -\infty, & a_{n}<0\end{cases}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} p_{n}(x)=\lim _{x \rightarrow \infty}\left(a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}\right) \\
& =\lim _{x \rightarrow \infty}\left[x^{n}\left(a_{n}+\frac{a_{n-1}}{x}+\cdots+\frac{a_{0}}{x^{n}}\right)\right] \\
& =\infty \text {, } \\
& \lim _{x \rightarrow \infty}\left(a_{n}+\frac{a_{n-1}}{x}+\cdots+\frac{a_{0}}{x^{n}}\right)=a_{n} \quad \text { إذا كان }
\end{aligned}
$$

لاحظ أنه يمكاك عمل عبارات مهماثلة بشأن قِيمة

 (النُظرية 3.1)، والتي تنطبق أيضًا على النهآيات عندما

الـثثال 5.7 نهاية ناتج القسمة ليس ناتج قسمة النهايات

$$
\begin{aligned}
& \text {. } \lim _{x \rightarrow \infty} \frac{5 x-7}{4 x+3} \text { أوجد قيمد } \\
& \text { الحل قد يتم حثك على كتابة }
\end{aligned}
$$

بشير التمثيل البياني في الشكّل 2.39 والجدول الهرفق إلى أن القيمة التي تم تخمينها
 عند وجود كلا النهايتين (وتكون النهاية في الهقام غير صفرية). لأن كالًا من النهايتين الهوجودتين في المقام والبسط لانهائية، فُّهاتان النهايتان غير موجودتان. ويتضح أنه عندما يكون للنهاية الشكل

$$
\text { إلى } \infty \text {. }
$$

البسط والمقام على أكبر قوة للمتغير x التي تظهر في المقام.

لدينا هنا

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{5 x-7}{4 x+3} & =\lim _{x \rightarrow \infty}\left[\frac{5 x-7}{4 x+3} \cdot \frac{(1 / x)}{(1 / x)}\right] & & \frac{1}{x} \rightarrow \text { اضرب البسط و الهقام الضرب }
\end{aligned}
$$

2.39 الشكل
$\lim _{x \rightarrow \infty} \frac{5 x-7}{4 x+3}=\frac{5}{4}$

x	$\frac{5 x-7}{4 x+3}$
10	1
100	1.223325
1000	1.247315
10,000	1.249731
100,000	1.249973

$$
\begin{aligned}
& =\frac{\lim _{x \rightarrow \infty}(5-7 / x)}{\lim _{x \rightarrow \infty}(4+3 / x)} \\
& =\frac{5}{4}=1.25
\end{aligned}
$$

وهـو ما يتفق مـع مـا شـاهدناه بيانيًا وعـدديًا عـلى حد سـواء.
في المثئل 5.8، نطبق قاعدة الإبهام لمسألة نهاية شـائعة.
الهـثال 5.8 ايجاد خطـوط تقاربية مائلة أوجد قيهـة $\lim _{x \rightarrow \infty} \frac{4 x^{3}+5}{-6 x^{2}-7 x}$ وأوجد أي خطوط تقاربية مـائلة.

الحل كالعادة، نقوم أونُ بدراسـة تمثيل بياني. (انظر الشكل 2.40a). نلاحظ هـنا أن التمثيل البياني يبدو انه يتناهى إلى الـي الفترة [2, 2-] ، يبدو التمثيل البياني إلى حد كبير مثل الخط المستقيم. إذا نظرنا إلى التمثيل البياني في إطار أكبر إلى حد ما. يكون هذا الارتباط الخطي أكثر وضوحًا.

2.40a الشكل
$y=\frac{4 x^{3}+5}{-6 x^{2}-7 x}$

2.40b الشكل
$y=\frac{4 x^{3}+5}{-6 x^{2}-7 x}$

باستخدام قاعدة الإبهام، نحصل على
$\lim _{x \rightarrow \infty} \frac{4 x^{3}+5}{-6 x^{2}-7 x}=\lim _{x \rightarrow \infty}\left[\frac{4 x^{3}+5}{-6 x^{2}-7 x} \cdot \frac{\left(1 / x^{2}\right)}{\left(1 / x^{2}\right)}\right] \frac{1}{x^{2}} \rightarrow$ اضرب البسط و الـقام
$=\lim _{x \rightarrow \infty} \frac{4 x+5 / x^{2}}{-6-7 / x} \quad \frac{1}{x^{2}} \rightarrow$ الضرب
$=-\infty$,
بما أنه عـندما أه $x \rightarrow$ يتناهى البسط إلى ∞ ويتناهى الهقام إلى 6-.
لتوضيح السلوك الهبين في الشكل 4.40b ، نقوم بإجراء قسمة مطولة:

$$
\frac{4 x^{3}+5}{-6 x^{2}-7 x}=-\frac{2}{3} x+\frac{7}{9}+\frac{5+49 / 9 x}{-6 x^{2}-7 x}
$$

بما أن الحد الثالث في هذا الامتداد يتناهى إلى 0 عندما

$$
-\frac{2}{3} x+\frac{7}{9}
$$

عندما $x \rightarrow \infty$. لهذا السبب، يمكننا أن نقول إن التمثيل البياني له خط تقارب مائل
 مـع الخطوط المتقاربة الرأسية أو الأفقية، يقترب التمثيل البياني من الخط المستقيم . الهـائل

النهايات التي تتضمن دوالُ أسية تكون مهمة للفاية في العديد من التطبيقات.
الهـثال 5.9 نهايتان لدالة أسية
. $\lim _{x \rightarrow 0^{+}} e^{1 / x}$ أوجد قيمـة $\lim _{x \rightarrow 0^{-}} e^{1 / x}$
الحل يظهر تمثيل بياني تم إنشاؤه بالحاسوب في الشكل 2.41a. بالرغم من أنه تمثيل
بياني غير عـادي، إلا أنه يبدو أن قيم الدوال تقترب من 0، عـندما تقترب x مـن 0 من اليسـار وتتناهى إلى اللانهاية عندما تقترب x من 0 من اليمين. للتحقق من ذلك، تذكر أنّ
 عند الجمـع بين هذه النتائج، نحصل على
$\lim _{x \rightarrow 0^{-}} e^{1 / x}=0$

2.41a الشكل
$y=e^{1 / x}$.

2.43b الشكل
$y=e^{x}$.
وبالمثل، $\lim _{x \rightarrow \infty} e^{x}=\infty, \lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty$ $\lim _{x \rightarrow 0^{+}} e^{1 / x}=\infty$

كما نرى في المثال 5.10، التمثيلات البيانية لبعض الدوال المثلثية العكسية لها خطوط تقارب أفقَية.

الــثال 5.10 نهايتان لدالة مثلثية معكـوسـة

$$
\text { أوجد قيمـة } \lim _{x \rightarrow-\infty} \tan ^{-1} x \text { و } \lim _{x \rightarrow \infty} \tan ^{-1} x
$$

الححل يشـير التهثيل البياني 1 (الهوضح في الشكل $y=\tan ^{-1}$ (2.42a) إلى وجود خط

إلى التهثيل البياني لـ $y=\tan x$ في الشكل $2.42 b$ نرى أن $\tan x$ تتناهى إلى ∞ ع عندما

$$
\lim _{x \rightarrow-\infty} \tan ^{-1} x=-\frac{\pi}{2}, \lim _{x \rightarrow \infty} \tan ^{-1} x=\frac{\pi}{2}
$$

في الهثال 5.11. نفكر في نهوذج الحجم لبؤبؤ العينين لأحد الحيوانات. تذكر أنه في الضوء الساطـع، يتقلص البؤبؤ لتقليل كمية الضوء التي تدخل الحين، بينها في الضوء الخافت، يتمدد البؤبؤ ليسهـح بمرور مزيد من الضوء. (راجع مقدمة الوحدة.)

2.42a الشكل
$y=\tan ^{-1} x$

2.42b الشكل

المثثال 5.11 إيجاد حجـم بؤبؤ العينين لأحد الـحيوانات

لنفترض أن قطر بؤبؤ العينين لأحد الحيوانات موضّح في $f(x)$ ، ، حيثما يكون x هـو
 مع (a) الحد الأدنى من الضوء و (b) الحد الأقصى من الضوء.

 الشكل 2.43a. ويبدو أن قيم y تقترب من 20 عـندما تقترب x مـن 0. والهقام في ${ }^{0.4} x^{0.4}$ لحذف الأسس السـالبة، بحيث

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{160 x^{-0.4}+90}{4 x^{-0.4}+15} & =\lim _{x \rightarrow 0^{+}} \frac{160 x^{-0.4}+90}{4 x^{-0.4}+15} \cdot \frac{x^{0.4}}{x^{0.4}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{160+90 x^{0.4}}{4+15 x^{0.4}}=\frac{160}{4}=40 \mathrm{~mm}
\end{aligned}
$$

 بالتكبير بحيث يكون 0.1 x $0 \leq x$ ، مما يجـل نهاية 40 تبدو أكثر منطقية. بالنسبة للجزء (b)، نعتبر أن النهاية عـندما x تتناهي إلى م . . بالنسبة للشكَل 2.43a، يبدو

$$
\lim _{x \rightarrow \infty} \frac{160 x^{-0.4}+90}{4 x^{-0.4}+15}=\frac{90}{15}=6 \mathrm{~mm}
$$

النهاية

$y=f(x)$

وهذا ينطبق على العديد من خطوط التقارب، ولكن ليس كلها. اشرح لماذا لا تتقاطع أبدَا خطوط التقارب الرأسية. اشـرح لماذا قَد تتقاطـع خطوط التقارب الأفقية أو المائلة بأي عدد من المرات، ارسمم مثالًا واحدًا.
(b) $\lim _{x \rightarrow a^{+}} f(x)$ و (a) $\lim _{x \rightarrow a^{-}} f(x)$ في التمارين 1-1، حدّ 1 (c) (c) ($\lim _{x \rightarrow a} f^{\prime}(x)$ غير هوجودة).

1. $f(x)=\frac{1-2 x}{x^{2}-1}, a=1$
2. $f(x)=\frac{1-2 x}{x^{2}-1}, a=-1$
3. $f(x)=\frac{x-4}{x^{2}-4 x+4}, a=2$
4. $f(x)=\frac{1-x}{(x+1)^{2}}, a=-1$

5. $\lim _{x \rightarrow-2} \frac{x^{2}+2 x-1}{x^{2}-4}$
6. $\lim _{x \rightarrow-1^{-}}\left(x^{2}-2 x-3\right)^{-2 / 3}$
7. $\lim _{x \rightarrow 0} \cot x$
8. $\lim _{x \rightarrow \pi / 2} x \sec ^{2} x$

تمارين الكتابة
1 يبدو غريبًا أن نستخدم أ في وصف النهايات ولكن لا نتوم

 التفكير في نهاية م على أنها تعني "الحصول على عدلى كـلى كبير جدًا" ونهاية 0 على أنها تعني "الحصصول على عدد قـريب

轻 التالية: 3 3 . $1 /(x-2$ (2) وابححث عن خط التقارب الأفقي $y=0$ وخط التقارب
 خط أُفقي عند $x=2$ وستوضح التمثيل البياني أففتيًّا بشُكل
 ستقوم معظم أجهزة الحاسوب بحساب مواقع النقاط لرموز x' المـجاورة وتحاول ربط النقاط بقطعة مستقيمة. لماذا قد ينتج عن ذلك وجود خط رأسي في موقع خط التقارب الرأسي؟
4. يتعلم العديد من الطلاب أنّ خطوط التقارب هي خطوط يجعلها التمثيل البياني أقرب كثيرًا بدون الوصول إليها أبدُا.

سرعة متجهة إلى النصف؟
38 . ارسم بيانيًا دالة السرعـة الهتجهة فـي التمرين 37 مـع
 اللاعب ليصل إلى سرعة تساوي 90\% من السرعة المتجههة للنهاية. كرر مـ إلـ $k=0.001$ (ممثتّا وضع النسر).

في التمارين 48-39، استخـدم أدلة بيانية وعددية لتخمين قيمة النهاية المشار إليها.
39. $\lim _{x \rightarrow \infty} \frac{\ln (x+2)}{\ln \left(x^{2}+3 x+3\right)}$
40. $\lim _{x \rightarrow \infty} \frac{\ln \left(2+e^{2 x}\right)}{\ln \left(1+e^{x}\right)}$
41. $\lim _{x \rightarrow \infty} \frac{x^{2}-4 x+7}{2 x^{2}+x \cos x}$
42. $\lim _{x \rightarrow-\infty} \frac{2 x^{3}+7 x^{2}+1}{x^{3}-x \sin x}$
43. $\lim _{x \rightarrow \infty} \frac{x^{3}+4 x+5}{e^{x / 2}}$
44. $\lim _{x \rightarrow \infty}\left(e^{x / 3}-x^{4}\right)$
45. $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}$
46. $\lim _{x \rightarrow 0} \frac{\ln x^{2}}{x^{2}}$
47. $\lim _{x \rightarrow 0^{+}} x^{1 / \ln x}$

في التمرينين 49 و 50، استخددم أدلة بيانية وعـددية لتخهين قيمة النهاية المشار إليها. ثم، تحقق مـن التخمين من خـلال إيجاد النهاية بالضبط
(إرشاد : اضرب واقسم على التعبير $\lim _{x \rightarrow \infty}\left(\sqrt{4 x^{2}-2 x+1}-2 x\right) .49$ المقترن: (49) $\lim _{x \rightarrow \infty}\left(\sqrt{5 x^{2}+4 x+7}-\sqrt{5 x^{2}+x+3}\right) .50$ 51. لنفترض أنّ $f(x)=\frac{p(x)}{q(x)}$ دالة نسبث $f(x)$ حرج $f(x)$ أكبر من درجة $q(x)$ حدّد ما إذا كان $y=f(x)$ له خط تقارب أفقي.
52. لنفترض أنّ $f(x)=\frac{p(x)}{q(x)}$ دالة نسبيث $f(x)$ حيث درجة (أكبر أس)

9. $\lim _{x \rightarrow \infty} \frac{x^{2}+3 x-2}{3 x^{2}+4 x-1}$
10. $\lim _{x \rightarrow \infty} \frac{2 x^{2}-x+1}{4 x^{2}-3 x-1}$
11. $\lim _{x \rightarrow-\infty} \frac{-x}{\sqrt{4+x^{2}}}$
12. $\lim _{x \rightarrow \infty} \frac{2 x^{2}-1}{4 x^{3}-5 x-1}$
13. $\lim _{x \rightarrow \infty} \ln \left(\frac{x^{2}+1}{x-3}\right)$
14. $\lim _{x \rightarrow 0^{+}} \ln (x \sin x)$
15. $\lim _{x \rightarrow 0^{+}} e^{-2 / x^{3}}$
16. $\lim _{x \rightarrow \infty} e^{-(x+1) /\left(x^{2}+2\right)}$
17. $\lim _{x \rightarrow \infty} \cot ^{-1} x$
18. $\lim _{x \rightarrow \infty} \sec ^{-1} \frac{x^{2}+1}{x+1}$
19. $\lim _{x \rightarrow 0} \sin \left(e^{-1 / x^{2}}\right)$
20. $\lim _{x \rightarrow \infty} \sin \left(\tan ^{-1} x\right)$
21. $\lim _{x \rightarrow \pi / 2} e^{-\tan x}$
22. $\lim _{x \rightarrow 0^{+}} \tan ^{-1}(\ln x)$

في التتمارين 28-23، حدّد كل خطوط التقارب الأفقية

. إذا كانت $f(x) \rightarrow-\infty$ أم $f(x) \rightarrow \infty$
23. (a) $f(x)=\frac{x}{4-x^{2}}$
(b) $f(x)=\frac{x^{2}}{4-x^{2}}$
24. (a) $f(x)=\frac{x}{\sqrt{4+x^{2}}}$
(b) $f(x)=\frac{x}{\sqrt{4-x^{2}}}$
25. $f(x)=\frac{3 x^{2}+1}{x^{2}-2 x-3}$
26. $f(x)=\frac{1-x}{x^{2}+x-2}$
27. $f(x)=4 \tan ^{-1} x-1$
28. $f(x)=\ln (1-\cos x)$

والتمائلة التمارين 32-29، حدّد كل خطوط التقارب الرأسية

29. $y=\frac{x^{3}}{4-x^{2}}$
30. $y=\frac{x^{2}+1}{x-2}$
31. $y=\frac{x^{3}}{x^{2}+x-4}$
32. $y=\frac{x^{4}}{x^{3}+2}$
33. لنفترض أنّ حجم بؤبؤ عين حيوان محدد يُعطى بالحلاقة
(mm) (l (l (

程 $f(x)=\frac{80 x^{-0.3}+60}{2 x^{-0.3}+5}$
ضوء وحجهـه مـع وجود كهية لانهائية من الضوء.

$$
\text { 34. } f(x)=\frac{80 x^{-0.3}+60}{8 x^{-0.3}+15} \text { كرّر التمرين } 33 \text { مـ }
$$

35. قم بتعديل الدالة في التمرين 33 لإيجاد الدالة f بحيث ِكون

$$
\lim _{x \rightarrow \infty} f(x)=2, \lim _{x \rightarrow 0^{+}} f(x)=8
$$

$$
\begin{aligned}
& \text { 37. لنفترض أن السرعة المتجهِ للاعب قفّز حر بعد t ثانية بعد } \\
& \text { القفز موضحة من خلال } \\
& \text { أقصى سـرعـة متجهة } k=0.00064 \text { و و } k=0.00128 \text {. بأي عامل } \\
& \text { يتوجب على لاعبب القفز الحر تغيير قيمة } k \text { لخفض أقَّصى }
\end{aligned}
$$

70. بعد تناول حقنة، بختلف تركيز الدواء في العضلات
和 $f(t)=e^{-0.02 t}-e^{-0.42 t}$
 تجاهل مقاومة الهواء، أقصى ارتفاع يصل إليه صاروخ تم
، $h=\frac{v_{0}^{2} R}{19.6 R-v_{0}^{2}} \mathrm{~m} / \mathrm{s}$ إطلاقه بسرعة متجهة أولية حيث R هو نصف قطـر الأرض. في هذا التهرين، نفسّر هذا كدالة h هناك قيد إضافي. أُوِجد القيمة (الهوجبي
 وناقش أهمية خط التقارب الرأسي عند
ve السرعـة المتجهة للإفلات.

تهر ينات استكشـافية

1. لنفترض أنك تقوم بقذف كرة سلة من مسافة (أفقية) قدرهـا
 للحصول على حركة مئالية. من الضروري أن تكون السرعـة المتجهة الأولية ${ }^{\text {v }}$ وزاوية الإطلاق الأولية ${ }_{0}$ مُلبّبيتين للمعادلة $v_{0}=\sqrt{g L} / \sqrt{2 \cos ^{2} \theta_{0}\left(\tan \theta_{0}-h / L\right)}$

$g=32 \mathrm{ft} / \mathrm{s}^{2} \mathrm{~g}$ و للقيام برمبة حرة، خذ $h=2 \mathrm{ft}$ و $L=15 \mathrm{f}$ ورئر وارسم تهثيلًا بيانيًا لــ
 كل خط تقارب رأسي. قدّر القيمة الصغرى لـ اشرح لماذا من الأسهل أن نقوم بقذف كرة بسرعـر ألوة متجهة أولية قليلة. هناك ميزة أخرى لهذه السرعة المتجهة الأولية. لنفترض أن السلة قَطرها 2 ft والكرة قَطرها 1 ft 1 . لعمل رمية حرة، تكون مثثالية. ما الحد الأقصى للمسافة الأفقية التي يهكن أن $L=15$ ft تقطعها الكرة وهي متجهة إلى السلة (دون ضربها في اللوحة

 التي تتوافق مـح
 أكبر من أي هـامش لسرعة متجهة أولية أخرى.
 الدالة $f(x)$. فكِّر في الدالة $f(x)=x e^{-x}$ عنـدما $f(x \rightarrow \infty$.
 ناتج الضرب عندما يصغر أحد الحدود ويكبر الحد الآخر؟ ذلك

2. أوجد دالة $f(x)=\frac{x-4}{g(x)}$ بحيث $g(x)$ به اثنان من خطوط التقارب الأفقية $y= \pm 1$ وليس له خطوط تقارب رأسية.

في التمارين 64-59، قم بتسهمية العبارة بوصفها صحيحة أو خاطئة (ليست دائمًا صحيحـة) للأعـداد الحقيقية a و b
إذا كان

$$
\lim _{x \rightarrow \infty}[f(x)+g(x)]=a+b
$$

$$
\lim _{x \rightarrow \infty}\left[\frac{f(x)}{g(x)}\right]=\frac{a}{b} \mathbf{b} \mathbf{6 0} \text {. إذا كان } \lim _{x \rightarrow \infty} g(x)=b \text { و } \lim _{\rightarrow \infty} f(x)=a
$$

$\lim _{x \rightarrow \infty}[f(x)-g(x)]=0$.61
$\lim _{x \rightarrow \infty}[f(x)+g(x)]=\infty$ فإن $\lim _{x \rightarrow \infty} g(x)=\infty, \lim _{x \rightarrow \infty} f(x)=\infty$. إذا كان
65. من الصعب جدًا إيجاد عبارات بسيطة في حساب التفاضل والتكامل تكون دائمّا صحيحة، وهذا أحد الأسمباب التي تجـلـ التطور المتأني للنظرية مهمٌا للفاية. ربما تكون قد سمـعت عـن $f(x)=\frac{g(x)}{h(x)}$ القاعدة البسيطة: لإيجاد خط التقارب الرأسي
 أعطِ مثانُلا حيث يكون h(a) C ولكن لا يوجد خط تقارب رأسي

$$
\text { عند } x=a
$$

تطبيقات

67. لنفترض أن طول حيوان صغير بعد t أيام من الولادة هو
. $h(t)=\frac{300}{1+9(0.8)^{t}} \mathrm{~mm}$ الطول النهائي للحيوان (أي، الطول عندما
68. لنفترض أن طول حيوان صغير بعد t أيام من الولادة هو . فما طول الحيوان عند الولادة؟ مـا $h(t)=\frac{100}{2+3(04)^{t}} \mathrm{~mm}$ الطول النهائي للحيوان (أي، الطول عندما 69. 6 لنفترض أن جسمُا له سرعـة متجهة أولية

和 $v_{E}=F c t / \sqrt{m^{2} c^{2}+F^{2} t^{2}}$. $\lim _{t \rightarrow \infty} v_{E}, \lim _{t \rightarrow \infty} v_{N}$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left[\frac{f(x)}{g(x)}\right]=0 \text { فإن } 63 \\
& \lim _{x \rightarrow \infty}\left[\frac{f(x)}{g(x)}\right]=1 \text { 64 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { المهيمن؟ جرب أيضًا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { تحديد نوع الدالة المهيهنة، متعددة الحدود أم لوغاريتهية. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { أي حد "المهيمن". استخدم أدلة بيانية وعددية لتخمين قيمة } \\
& \text {. } \lim _{x \rightarrow \infty}\left(x e^{-x}\right)
\end{aligned}
$$

التعريف الـرسـهي للنبهاية

تذكر أننا نكتب

$$
\lim _{x \rightarrow a} f(x)=L,
$$

إذا كانت $f(x)$ تقترب كئيرًا من L عندما x يقترب كثيرُا من a . بالرغم من السهولة، إلا أن هذا الوصف يعد غير دقيق، لأنه ليس لدينا تعريف دقيق لما يعنيه معنى "الاقتراب
 ينجح التحليل الرياضي (هذا الفرع من الرياضيات الذي يكون فيه حساب التفاضل والتكامل هو الدراسة الأبسط) .

 والأحياء. في الطب، $ل$ يتم ذلك إلا من خلال دراسـة متأنية للعالم الهـجهري لنجد أن

 فهُمَا أعـمق للرياضيات.
نبدأ بالدراسة المتأنية للمـيال الابتدائي. ينبغي أن تعتقد أن

$$
\lim _{x \rightarrow 2}(3 x+4)=10
$$

إذا طلب تفسير معنى هذه النهاية الهحددة لطالب زميل، فينبغي عليك تكرار الشرح
 تقترب من 10 . وهذا يعني، ينبغي أن نكون الأني
 مثّلًا، هل يمكننا استتخدام القوة (4 (3x) لنكون في مسافة 1 من 10؟ لمعرفة قيم التي ستضمن ذلك، نكتب متباينة توضح أن (4x+4) تقع في مـجال وحدة واحدة من

$$
\begin{align*}
& |(3 x+4)-10|<1 \\
& \text { عند حذف القيم الهطلقة، نرى أن هذا مكافئ لـ } \\
& \text { أو } \\
& -1<3 x-6<1
\end{align*}
$$

بما أننا نحتاج إلى تحديد كيف نجـل الهتفير x قريب من العدد 2 فإننا نريد أن

$$
\begin{gather*}
-\frac{1}{3}<x-2<\frac{1}{3} \\
|x-2|<\frac{1}{3} \tag{6.1}
\end{gather*}
$$

عند عكس الخطوات التي تؤدي إلى المتباينة (6.1)، نرى أنه إذا كان x ضمـن مسافة 1 $\frac{1}{3}$ من العدد 2 ، فإن (4 $3 x$) سيكون ضمـن المسافـة المـحددة (1 مـن 10). (راجـع الشكل
 تريد من 10؟ ربها لا، ولكن إذا استخدمت مسافة أصغر، ربها ستكون أكثر اقتناعًا.

ملاحظات تاريخية

أوغستين لويس كوشـي

(1789--1857)
عالم رياضيات فرنسي أوجد الدقة فُي الرياضيات، بها فَي ذلك التعريف الحديث للنهاية. (الصياغة δ (الموضحة في هذا الدرس منسووبة إلى الحالم ويرستراس). كان كوشي واحدًا من عـلماء الرياضيات انـويا العلم العزير في التاريخ، حيث شـارك بإسـهـامامات مهـمة في نظرية الأعداد والجبر الخطي والمعادلات التفاضرلية والفلك والبصريات والهتغيرات المحقدة. كتب أحد زمالائه، وهـو رجل تعسر عليه فـهمه، "كوشي مجنـون وليس هناك ما يمّكين
القيام به عـنه. فبالرغـهم مهـا توصلنا إليه حالئًا. إلا أنه هـو إلوحيد النذي يعرف كيف ينبغي أن تتم الرياضيات".

الشكل 2.44

据 $2-\frac{1}{3}<x<2+\frac{1}{3}$ $|(3 x+4)-10|<1$
 القرب الذي نحتاجّه لنكون قادرين على عمل ذلك؟ الإجابة هي فـري أي شخص. يمكننا تحقيق ذلك من خلال تكرار الحجـج في مثال 6.1، وهذه الهرة لمسافة غير مـحددة، نسميها ع (إبسبلون، حيث 0 (ε)).

مثال 6.2 التحقق من نهاية
 فقّط من خـلال جعل x قريب بما يكفي من 2. الحل الهدف من ذلك هو تحديد مدى قيم x التي ستضهـن أنّ (4x+3) يبقى ضمن ع من 10. (راجـ الشكل 2.45 لرسمم هذا المدى). لدينا

$$
\begin{aligned}
& |(3 x+4)-10|<\varepsilon, \\
& -\varepsilon<(3 x+4)-10<\varepsilon \\
& -\varepsilon<3 x-6<\varepsilon \\
& -\frac{\varepsilon}{3}<x-2<\frac{\varepsilon}{3} \quad \text { وهذا مكافئ لـ } \quad \text { وهسمة على } 3 \text { نحصل على: }
\end{aligned}
$$

$$
|x-2|<\frac{\varepsilon}{3}
$$

لاحظ أنّ كل خطوة من الخطوات السابقة عكسية، لذلك فإنّ
 في حدود الهسافة المطلوبة ع من 10. أي إنّ،

$$
\left.|x-2|<\frac{\varepsilon}{3} \quad|\quad|(3 x+4)-10 \right\rvert\,<\varepsilon
$$

توقف لحظة أو اثنتين لتدرك ما فـلناه في مثال 6.2. مـن خـلال استخدام مسـافة غير

 على ذلك، فقد وضحنا صراحة ما يعنيه "القرب من 2 2" في سـياق المسألة الحـا الحالية. وبالتالي،
 أخذ xليكون في الفترة المـحددة.

الشكل 2.45

مدى قيم x التي تحافظ على $|(3 x+4)-10|<\varepsilon$

$$
\begin{aligned}
& \text { مثال } 6.1 \text { استكشـاف نهاية بسيطة } \\
& \text { أوجد قيم x التي تكون لها (3x+4) ضهن مسافة } 100 \text { من } 10 \text { م } \\
& |(3 x+4)-10|<\frac{1}{100} \\
& \text { عند حذف القيم المطلقة، نحصل على }-\frac{1}{100}<\frac{1}{100} \\
& -\frac{1}{100}<3 x-6<\frac{1}{100} \\
& \text { بالقسمة على } 3 \text { نحصل على: } \\
& \text { - }|x-2|<\frac{1}{300} \quad \text { وهذا مكافئ لـ }
\end{aligned}
$$

وبعد ذلك، ندرس هذه الفكرة الأكثئر دقة للنهاية في حالة وجود دالة غير معرفة عند النقطة مححل الاستفهام.

مثال 6.3 إثبات أنّ النهاية صسحيحة

$$
\lim _{x \rightarrow 1} \frac{2 x^{2}+2 x-4}{x-1}=6 \text { اثبت أنّ }
$$

الحل من السهل استخدام القواعد المعتادة للنهايات للوصول إلى هذه النتيجة. ولكنها تعد مسألة أخرى أن نتحقق من أن ذلك صحيح باستخدام الفكرة الجديدة الأكثئر دقة للنهاية. وفي هذه الحالة، نريد أن نـرف مدى قرب x الذي يجب أن يكون إلى 1 لضمـان أنّ

$$
f(x)=\frac{2 x^{2}+2 x-4}{x-1}
$$

$$
\text { تقع ضمن مسـافة غير محددة } 0 \text { > ع من } 6 .
$$

 ($\delta>0$

$$
-\varepsilon<\frac{2 x^{2}+2 x-4}{x-1}-6<\varepsilon
$$

يعادل

عند إيجاد الهقام المشترك والطرح في الحد الهتوسط ، نحصل على $-\varepsilon<\frac{2 x^{2}+2 x-4-6(x-1)}{x-1}<\varepsilon \quad$ و $\quad-\varepsilon<\frac{2 x^{2}-4 x+2}{x-1}<\varepsilon$

بها أن البسط يتحلل إلى عوامل . فهذا يِادل

$$
-\varepsilon<\frac{2(x-1)^{2}}{x-1}<\varepsilon
$$

بما أن $x \neq 1$ ، فيمكننا اختصار عوامل (1-1 $)$ لنحصل على

$$
-\varepsilon<2(x-1)<\varepsilon
$$

بالتسمة على 2

$$
\begin{equation*}
-\frac{\varepsilon}{2}<x-1<\frac{\varepsilon}{2} \tag{أو}
\end{equation*}
$$

وهو ما يحادل x المطلوبة لاستيفاء

$$
\begin{aligned}
& 0<|x-1|<\delta=\frac{\varepsilon}{2} \\
& \left|\frac{2 x^{2}+2 x-4}{x-1}-6\right|<\varepsilon
\end{aligned}
$$

تضهن أن
نوضّح ذلك بيانيًا في الشكل 2.46.

مـا رأيناه حتى الآن يدفعنا إلى عمل التعريف الحام التالي، الهوضح في الشكل 2.47.

التعريض 6.1 (التعريف الدقيق للنهاية)

لدالة f معرفة في بعض الفترات المفتوحة التي تتضمن a (ولكن ليس بالضرورة عند a

$$
\lim _{x \rightarrow a} f(x)=L
$$

$$
|f(x)-L|<\varepsilon
$$

الشكل 2.46
位 $0<|x-1|<\frac{\varepsilon}{2}$
$6-\varepsilon<\frac{2 x^{2}+2 x-4}{x-1}<6+\varepsilon$

الشكل 2.47

仿 $a-\delta<x<a+\delta$ $L-\varepsilon<f(x)<L+\varepsilon$
 تستوفي التعريف.

ملاحظة 6.1

نريد أن نؤكد على أن هذا التعريف الأسـاسي للنهاية ليس فكرة جديدة. وإنها، هو عبارة رياضية دقيقة للفكرة الأولية للنهاية التي نوقّشت في الدرس 4.2. أيضًا، ينبغي أن نشير بكل
 عدد قليل منها، يجب تعلم كيفية العمل من خـلال التعريف، حتى بالنسبة لعدد قليل من الهسـائل، لتسليط الضوء بشكل أعمق على الهفهوم.

يقدم مئال 6.4 تحديُا غير متوقُع، بالرغم من أنه أكثر تعقيدًا بدرجة قليلة من المسائل السـابقة.

مثال 6.4 استخـدام التعريف الدقيق للنهاية

$$
\text { استخدم التعريف } 6.1 \text { لإثبات أن } \lim _{x \rightarrow 2} x^{2}=4
$$ الحل

$$
\text { والتي عـندها ס > | } 2-x \mid \text { > } 0 \text { يضمن }
$$

$$
\begin{equation*}
\left|x^{2}-4\right|<\varepsilon \tag{6.2}
\end{equation*}
$$ لاحظ أنّ

| التحليل إلى عوامل الفرق بين مربعين

بها أننا مهتمون فقط بها يحدث بالقرب من x=2 ، فإننا نفترض أنّ x تقع في الفترة [1, 3] . وفي هذه الحالة، نحصل على

$$
x \in[1,3] \text { بهـا أن } \quad|x+2| \leq 5
$$

وهكذا، من (6.2)

$$
\left|x^{2}-4\right|=|x+2||x-2|
$$

$$
\begin{equation*}
\leq 5|x-2| \tag{6.3}
\end{equation*}
$$

وأخيرًا، إذا كنا بحاجة إلى

$$
\begin{equation*}
5|x-2|<\varepsilon \tag{6.4}
\end{equation*}
$$

فسيكون لدينا أيضًا من (6.3) أن

$$
\left|x^{2}-4\right| \leq 5|x-2|<\varepsilon
$$

$$
\text { |x-2|< } 1
$$

في ضوء ذلك، لدينا حاليًا اثنان من القيود: أنّ 1 > | 2 - $2 \mid$ وأن 1 أن
كلا القيدين، نختار
كما هو مطلوب. نوضّح ذلك في الشكل 2.48. ■ .

2.48 الشكل

 $\left|x^{2}-4\right|<\varepsilon$

البرهـان

دع
عرّف عرّ

$$
\begin{aligned}
& \text { وأيضًا، فإن } \\
& \left|x^{2}-4\right|=|x-2| \cdot|x+2|
\end{aligned}
$$

- $<\frac{\varepsilon}{5}(5)=\varepsilon$

$$
\begin{aligned}
& \text { يوضح العمل الهقدم في النص أعلاه كيفية تحديد قيمة لـ } \text { ا ـ البرهان الأساسي للنهاية } \\
& \text { ينبغي أن يتبع الخطوات الهبينة في الهامشُ. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { عكسي (راجع الهامس)، نحصل عـى دلك لهدا الحيار من } \\
& 0<|x-2|<\delta \\
& \left|x^{2}-4\right|<\varepsilon \\
& \text { سـيضمن أنّ }
\end{aligned}
$$

اسـتكشـاف تعريف النهاية بيانيًا

كما ترى في مثال 6.4، لا يتم الوصول إلى إيجاد δ عنـد ع مـحدد، بسهولة دالئّما. ولكن، يمكنتا أن نستكشَف التعريف بيانيًّا لأي دالة. أوْلا، نعيد النظر في مثال 6.4 بيانيًا

مثال 6.5 اسستكشاف تعريف الدقيق للنهـاية بيانيًا

$$
\begin{aligned}
& \text {. الحل في مثال 6.4، اكتشفنا أنه لــ } \delta=\min \left\{1, \frac{\varepsilon}{5}\right\} \\
& \left|x^{2}-4\right|<\varepsilon \text { ع } 0<|x-2|<\delta
\end{aligned}
$$

 ($\left.2-\frac{\varepsilon}{5}, 2+\frac{\varepsilon}{5}\right)$ خذ (الجـئ $2-\frac{1}{10} \leq x \leq 2+\frac{1}{10}$ السفلي من الشاشة. (انظر الشكل 2.49). بالطبع، يمكننا رسم نفس الصورة فعليًا لأي قيمهة معينة ع ، لأن لدينا صيغة واضحة لإيجاد δ عند وجود ع . بالنسبة لمعظم مسائل النهايات،

مـثال 6.6 اسـتكشـاف تعـريف النهاية لـدالـة مـثلثية

الحل تبدو هذه النهاية معقولة بها يكفي. على كل حال، $\sin \frac{2 \pi}{2}=0$ و $f(x)=\sin x$ تعد دالة متصلة. ولكن، تكمن النقطة في التحقق من ذلك بعناية. بالنظر إلى أي 0 > ع ، فإننا نريد إيجاد 0 > 0 ، والتي عندهـا

$$
\begin{aligned}
& 0<|x-2|<\delta \\
& \left|\sin \frac{\pi x}{2}-0\right|<\varepsilon
\end{aligned}
$$

لاحظ أنه لأن ليس لدينا جبر لتبسيط $\frac{\pi x}{2}$ ، فـلا يمكننا تحقيق ذلك رمزيًا. بدُّا من ذلك،

$$
-\frac{1}{2}<\sin \frac{\pi x}{2}-0<\frac{1}{2}
$$

 الشكل 2.50a

إذا كنت تتبع آلة حاسبة أو تمثيلًا بجهاز الكمبيوتر، فستلاحظ أن التمثيل البياني يبقى على الشاشة (أي أن، قيم y تبقى في الفترة [0.5,0.5وبالتالي، قَمنا بالتحديد تجريبئًا أنه لكّل

$$
\delta=2.333333-2=2-1.666667=0.333333
$$

2.50a الشكل $y=\sin \frac{\pi x}{2}$

سينجع. (وبالطبع ستنجح أي قيمة δ أصغر من 0.333333). لتوضيح ذلك، نعيد رسم

 2.51a). ومرة أخرى، يوضّح لنا تتبع التمثيل البياني أن قيم y ستبقى في الهدى الهطلوب لكل

$$
\delta=2.063492-2=2-1.936508=0.063492
$$

سينجح هنا. نعيد رسم التهثيل البياني باستخدام مدى جديد لقيم x (راجع الشكل 2.51a)،

2.50b الشكل
$y=\sin \frac{\pi x}{2}$

2.51 B الشكل

$$
y=\sin \frac{\pi x}{2}
$$

2.51a الشكل
$y=\sin \frac{\pi x}{2}$

من المهم أن ندرك أننا لا نثبت أنّ النهاية الهوجودة في الأعلى صحيحة. ولإثبات ذلك،
 التوضيحية البيانية لنصبح أكثير دراية بالتعريف وما يمثله δ و ع ع ــ

مثال 6.7 استكشاف تعريف النهاية عندما تكون النهاية غير موجودة

$$
\lim _{x \rightarrow 0} \frac{x^{2}+2 x}{\sqrt{x^{3}+4 x^{2}}}=1 \text { حدّد ما صحة أو عدم صحة }
$$

الحل نتوم أولَا بإنشاء جدول لقيم الدالة. من الجدول وحده، قد نهيل إلى تخمين أنّ النهاية تساوي 1. ولكنتا بذلك نرتكب خطأ كبيرًا . لأننا لم نراعِ القيم السالبة لـ x أو نرسم تهثئلا بيانيًا. الشكل 2.52a يوضح التمثيل البياني الافتراضي الهرسوم من خلال نظام الجـبر
 (على الأقل عندما $x \rightarrow 0$ نحن بحاجة لإيجاد 0 > δ والذي من خلاله يضهن δ > | 0 | $|x|$ > 0 أن

$$
\begin{aligned}
& 1-\frac{1}{2}<\frac{x^{2}+2 x}{\sqrt{x^{3}+4 x^{2}}}<1+\frac{1}{2} \\
& \frac{1}{2}<\frac{x^{2}+2 x}{\sqrt{x^{3}+4 x^{2}}}<\frac{3}{2}
\end{aligned}
$$

x	$\frac{x^{2}+2 x}{\sqrt{x^{3}+4 x^{2}}}$
0.1	1.03711608
0.01	1.0037461
0.001	1.00037496
0.0001	1.0000375

2.52a الشكل

$y=\frac{x^{2}+2 x}{\sqrt{x^{3}+4 x^{2}}}$

سنقوم بتجريب $\delta=0.1$ لنرى ما إذا كان هذا صغيرًا بها يكفي. لذلك. فإننا نعين مدى x في الفترة [0.1, 0.1-5

 (δ, δ) . . ولكن $f(-0.05) \approx-0.981$ (\quad يقع في الفترة $(0.5,1.5)$. يجب أن تقنع نفسك بأنه
 لاحظ أنه لجميع قيم x في الفترة (1,0) ، 0 (0) 0)) وهذا يعني أنه لا يوجد خيار δ يجـل
 ينبغي عليك ملاحظة أنه بالرغم من أننا لم نوضح إلا أن النهاية ليست 1، فإن الأمر أكثر تعقيدًا لإظهار أن النهاية غير موجودة.

النهايات التي تتضـهـن اللانهاية

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

تذكر أننا نكتب

 علينا أن نكون قادرين على جعلّ التعريف التالي.

التعريف 6.2
للدالة f الـُحَّرّفة a في بحض الفترات المفتوحة التي تحتوي على a (ولكن ليس بالضرورة

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

تساوي a نفسـه)، نتول

إذا أُعطيت $M>0$. 1 . (راجع الشكل 2.53 للتفسير البياني لذلك).
 جعل ذلك أكثر دقة ثم فكر في التعريف التالي.

الشكل 2.53
$\lim _{x \rightarrow a} f(x)=\infty$

التعـر يف 6.3 (التعريف الدقيق للنهاية)
للدالة f المعرفة في فترة مفتوحة تحتوي على a (ولكن ليس بالضرورة تساوي a نفسه)،

$$
\lim _{x \rightarrow a} f(x)=-\infty
$$

من السهل الحفاظ على هذه التعريفات مباشـرة إذا كنت تفكر في معناهـا. يهكنك ألا تحفظهم.

2.54 الشكل
$\lim _{x \rightarrow a} f(x)=-\infty$

مثال 6.8 اسـتخدام تعريف النهاية عـندما تكون النهاية لانهائية

$$
\text { انبت أنّ } \lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty
$$

$$
\text { (ولكن لا تَساوي } 0 \text {) إذًا }
$$

(6.5)

لذلك، لأي $M>0$ ، إذا ما أخذنا \quad ، $\delta=\sqrt{\frac{1}{M}}$ وأجرينا الحل بترتيب عكسي، نحصل على

$$
\frac{1}{x^{2}}>M \quad 0<|x-0|<\delta
$$

$$
\text { كمـا هو المطلوب . لاحظ أنّ هذا يوضّح على سبيل الهـئال، أنه، لكل100 } \frac{1}{x^{2}}>100 \cdot M=1
$$ - كلمـا كان

 حاول معرفة كيف تبدو التعريفات المناسبة لنفسك. إذا كتبنا
 بتعبير أدق، لدينا التعريف التالي.

$$
\begin{aligned}
& \frac{1}{x^{2}}>M \\
& \text { بها أن كلاً من M و² قيم موجبة،فإن (6.5) تكافئ } \\
& x^{2}<\frac{1}{M} \\
& \text { عند أخذ الجذر التربيحي لكلا الطرفين وتذكر أن } \\
& |x|<\sqrt{\frac{1}{M}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (راجـع الشَكل } 2.54 \text { للتفسير البياني لذلك). }
\end{aligned}
$$

وبالمثل، قلنا إن من L . لذلك، ينبغي علينا أن نكَون قَادرين على جـلى فقط من خلال جعلَ x كبيرًا بها يكفي في القيمة الهطلقة والسـالبة. لدينا التعريف التالي.

نستخدم التعريفين 6.4 و6.5 كمـا نفقل مع التعريفات 6.3-6.1، كما نرى في مثال 6.9.

مثال 6.7 استتخدم تعريف النهاية حيثما تصبـع X لانهائية

$$
\text { انبت أنّ } \lim _{x \rightarrow-\infty} \frac{1}{x}=0
$$

 0، ببساطة من خلال جـل x كبيرًا بما يكفي في القيمة المطلقة والسـالبة. لذلك، فإننا نحتاج

$$
\begin{aligned}
& \left|\frac{1}{x}-0\right|<\varepsilon \text { إلى تحديد رموز } x \text { تلك التي } \\
& \left|\frac{1}{x}\right|<\varepsilon \\
& \text { بها أنّ } \\
& \frac{1}{-x}<\varepsilon
\end{aligned}
$$

(6.6)

اقسم كلا الطرفين على ع وقم بالضرب في x (تذكر أنّ 0 (x و 0 ع 0 ع ع بحيث يغير ذلك من اتجاه الهتباينة)، ونحصل على

$$
-\frac{1}{\varepsilon}>x
$$

لذلك، إذا أخذنا $N=-\frac{1}{\varepsilon}$ وأجرينا الحل بترتيب عكسي، فإننا نكون قد طبقّنا التعريف وبالتالي أثبتنا أن النهاية صحيحة.

إننا لا نستخدم تعريفات النهايات لإثبات كل نهاية تأتي. في الواقع، نستخدمها لإثبات بعض النهايات الأسـاسية فقط ولإثبات نظرية النهاية التي كنا نستخدمها لبا لبا برهان. ويعمل زيادة استخدام هذه النظريات على تقديم مبررات قَوية لنهايات جديدة. وكمثال على ذلك، أثبتنا الآن قاعدة النهاية للمجهموع.

$$
\begin{aligned}
& \text { النظرية } 6.1 \\
& \text { لأي عدد حقيقي a إذا كان } \lim _{x \rightarrow a} f(x)=L_{1} \text { وكان } \lim _{x \rightarrow a} g(x)=L_{2} \text { فإن. } \\
& \lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)=L_{1}+L_{2}
\end{aligned}
$$

2.56
$\lim _{x \rightarrow-\infty} f(x)=L$

ملحـو ظلة 6.2
ينبغي عليك توخي الحذر من ملاحظة التشـابه بين التعريفات لخمس نهايات قـدمناهـا. وتتحامل كل نهاية مـ وصف دقيق لمـا تعنيه أن تكون "قريبة". ويهثل العمل من خـلال هذه التعريفات فائدة كبيرة حتى تتمكن من تقديم مفرداتك الخاصة لكل نهاية. لا تقم بمجرد حفـا التعريفات الأسـاسيّة كما ورد هنا. ولكن، قـم بالحل لفـهم مـا تعنيه وتقدير اللغة الدقيقة التي تستخدمها الرياضيات.

البرهان

بها أنّ $\left|f(x)-L_{1}\right|<\varepsilon_{1} \quad 0<|x-a|<\delta_{1}$
بالمثل. بما أنّ

$$
\begin{equation*}
\left|g(x)-L_{2}\right|<\varepsilon_{2} \quad \text { يضمن أن } \quad 0<|x-a|<\delta_{2} \tag{6.8}
\end{equation*}
$$

$$
\lim _{x \rightarrow a}[f(x)+g(x)]=\left(L_{1}+L_{2}\right) \quad \text { وآانن، من أجل الحصول على }
$$

$$
\text { ينبغي أن نوضح أنه لأي عدد } 0 \text { > ع . هناك عدد } 0 \text { > } 0 \text { بحبث }
$$

$$
\left|[f(x)+g(x)]-\left(L_{1}+L_{2}\right)\right|<\varepsilon \quad \text { يضهن أن } \quad 0<|x-a|<\delta
$$

$$
\begin{align*}
\left|[f(x)+g(x)]-\left(L_{1}+L_{2}\right)\right| & =\left|\left[f(x)-L_{1}\right]+\left[g(x)-L_{2}\right]\right| \quad \text { ४حظ } \\
& \leq\left|f(x)-L_{1}\right|+\left|g(x)-L_{2}\right|
\end{align*}
$$

من خلال المتباينة المثلئية. بالطبع، يهكن جـل كا صغيرين اعتباطيُّا، من (6.7) و (6.8). وبشُكل خاصن ، إذا أخذنا $0<|x-a|<\delta_{2}$
, $0<|x-a|<\delta_{1}$
نجد من (6.7) و (6.8) و (6.9) أن

$$
\left|[f(x)+g(x)]-\left(L_{1}+L_{2}\right)\right| \leq\left|f(x)-L_{1}\right|+\left|g(x)-L_{2}\right|
$$

$$
<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

كها هو مطلوب. بالطبع، سيحدث ذلك إذا أخذنا

- $0<|x-a|<\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$

يتم إبثات التواعد الأخرى للنهايات على نحو مهائل. ونبتّها في الملحق Ax.

التهارين 2.6

تخالف هذه القيود. أعط وصفك الخاص الخـك للنهايةّ (باللفة
 يرى علماء الرياضيات أن تعريف ס-ع بسيط وبليغ؟ لقد حسبت العديد من النهايات قبل مشـاهـدة تعريف النهاية. اشرح كيف يمكن لهذا التعريف أن يغيّر و/أو يحسّن من فهمك لعملية النهايةّ. كل كلمة في التعريف ס-ع منتقاة بعناية وموضوعة في الجملة بهكانها الدقيقي. صِف ما الخطأ فـي في كل من "التعريفات" التالية التي تحوي أخطاء طفيفة (أمستخدمُا أمثـلة!) (إذا كان $|f(x)-L|<\varepsilon$. $0<|x-a|<0$. فعـندها يكون

لجهيع القيم 0 > 0 و ولجميع القيم 0 > 0 > 0 . إذا كان
$|f(x)-L|<\varepsilon$ ع \mid هـ
لجميع قيم 0 > 0 يوجد هنـاك 0 > 0 ه بحيث إنه

$$
|f(x)-L|<\varepsilon, 0<|x-a|<\delta
$$

1. قام إسحق نيوتن عام 1687 في كتابه المتميّز الأصول الرياضية للفلسفة الطبيعية، والذي يقدم العديد من مبادئ حساب التفاضل والتكامل، بوصف النهاية المهـمة أنها $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ الكهيات دون أن تقارب النهاية دومُا، وهي النهاية التي تقترب إليها تلك النسب لتكون أقرب إليها من أي فـر ألـا معطى، لكنها لا تتجاوزها، ولا تصل إليها أبدًا حتى تـتا ألاشى الكميات". إذا حدث وأن شعرت بالإرهاق في أي لحظة مـن
 عليك إلا أن تفكّر بالطريقة التي قّد يبدو عليها عند التـر التعبير
 الهطروحة التالية. ما القيود التي تفرضها عبارتا "لا تتجاوزه" الا
 بسيطة، لا تكون بالضرورة بالشكل
 نهاية عـند اللـانهاية.
2. $\lim _{x \rightarrow \infty} \frac{x^{2}-2}{x^{2}+x+1}=1$
3. $\lim _{x \rightarrow \infty} \frac{e^{x}+x}{e^{x}-x^{2}}=1$
4. $\lim _{x \rightarrow-\infty} \frac{x^{2}+3}{4 x^{2}-4}=0.25$
5. $\lim _{x \rightarrow-\infty} \frac{3 x^{2}-2}{x^{2}+1}=3$

في التهارين 32-27، أثبت أنّ النهاية صحيحة باستخدام التعريف الملائم (مفترضًا أنّ k عدد صد صحيح)
27. $\lim _{x \rightarrow \infty}\left(\frac{1}{x^{2}+2}-3\right)=-3$
28. $\lim _{x \rightarrow \infty} \frac{1}{(x-7)^{2}}=0$
29. $\lim _{x \rightarrow-3} \frac{-2}{(x+3)^{4}}=-\infty$
30. $\lim _{x \rightarrow 7} \frac{3}{(x-7)^{2}}=\infty$
31. $\lim _{x \rightarrow \infty} \frac{1}{x^{k}}=0$, for $k>0$
32. $\lim _{x \rightarrow-\infty} \frac{1}{x^{2 k}}=0$, for $k>0$

في التمارين 36-33، عرّف 0 > 0 مححدّدة بحيث لا يوجد لها أي $8>0$ تستوفي تعريف النهاية.
33. $f(x)=\left\{\begin{array}{lll}2 x & x<1, \\ x^{2}+3 & x>1 & \text { ! إذا كا } \\ \text { إن }\end{array} \quad \lim _{x \rightarrow 1} f(x) \neq 2\right.$

> 37. 37. أثبت النظرية النظرية (ii) 3.1 3.1 .
39. أثبت نظرية الشُطيرة، كها هو موضّح في النظرية 3.5 3.5
41. غسالة معدنية يبلغ نصف قطرها (الخارجي) r بوصة، تزن $2 r^{2}$ بـر أونصة. تقوم شركة بتصنيع غسالات بمعاس بوصتين لعملاء مختلفين لديهم نسب مختلفة من التساهل مـ الأخطاء. إذا طلب العميل غسالة وزنها $8 \pm$ أونصة، فما قيمة التساهل مـ الأخطاء بالنسبة لنصف القطر؟ بمعنى آخر، أوجد δ بحيث
 يضمن أن بكون الوزن ضمن (
 شكل بليات كروية. فإذا كان يجب أن يكون حجم كل بلية ضمن حدود ع من $1 / 6$ ، ، فكم يجب أن يكون نصف التطر قريبًا من 1/2 ؟

قهارين استتكشافية

1.في هذا الدرس، لم نتم بـد بحل أي مسألة لم نتهكّن من حلّها مسبثًا في دروس سابقة. والآن سنفغل ذلك، ونحن نستكش

لكي تكون النهاية موجودة، وبالنظر إلى كلّ 0 > ع ، فإنه يجب أن نُكون قادرين على إيجاد $0>0$ بحيث تكون المتباينات ذات الصينة "إذا كان/فإنّ" صحيحة. لإثبات أنّ النهايةً غير موجودة، علينا أن نوجد 0 > 8 مححّدة بحيث أنّ المتباينات ذات الصيفة "إذا كان/فإنّ" تكون غير صحيحة لأي اختيار لـ هناك". قم بالقباس بالنسبة للحالة التالية. افتّرض أنّ العبارة "كل واحد يحبّ أححُا مـا" صحيحة. إذا أردت أن تتحقّق من العبارة. لهـاذا يتحين عليك أن تتحدّث إلى كل شـخص على سطح الأرض؟ ولكن، بافتراض أنّ العبارة غير صحيحة، ماذا ينبغي عليك أن تنـل لتدحضها؟

$$
\text { في التتمارين 12-1، أوجد بالرمـوز } \delta \text { بدلالة ع . }
$$

1. $\lim _{x \rightarrow 0} 3 x=0$
2. $\lim _{x \rightarrow 1} 3 x=3$
3. $\lim _{x \rightarrow 2}(3 x+2)=8$
4. $\lim _{x \rightarrow 1}(3 x+2)=5$
5. $\lim _{x \rightarrow 1}(3-4 x)=-1$
6. $\lim _{x \rightarrow-1}(3-4 x)=7$
7. $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x-1}=3$
8. $\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}=-2$
9. $\lim _{x \rightarrow 1}\left(x^{2}-1\right)=0$
10. $\lim _{x \rightarrow 1}\left(x^{2}-x+1\right)=1$
11. $\lim _{x \rightarrow 2}\left(x^{2}-1\right)=3$
12. $\lim _{x \rightarrow 0}\left(x^{3}+1\right)=1$

التمارين 6-1). هل تعتمد الصيغة على توضّح هذه الإجابة بيانيًا.
13. بناءً على التمرينين 9 و 11، هل تعتمد قيمة δ على قيمة a حيث يكون حينى

في التمارين 18-15، حدّد عـدديًا وبيانيًا δ الهـناظــــا $\varepsilon-\delta$ مـثّل الدالة بيانيًا في نافذا (b) $\varepsilon=0.05$ (a) $\varepsilon=0.1$ [مدى x هـو (x ($a-\delta, a+\delta)$ ومدى y هـو ($)$ (مـن أنّ اختياراتك مـوفّتة.
15. $\lim _{x \rightarrow 0}\left(x^{2}+1\right)=1$
16. $\lim _{x \rightarrow 0} \cos x=1$
17. $\lim _{x \rightarrow 1} \sqrt{x+3}=2$
18. $\lim _{x \rightarrow 1} \frac{x+2}{x^{2}}=3$
19. عدّل تعريف $\lim _{x \rightarrow a^{-}} f(x)$ ع ع لتعريف النهايتين أحاديّتي الطرف . $\lim _{x \rightarrow a^{+}} f(x)$ و
20. أوجد باستخدام الرموز أكبر δ مناظرة لــ $\lim _{x \rightarrow 1^{-}} 1 / x=1$
لـ

 لـ
21. (a) $\lim _{x \rightarrow 1^{+}} \frac{2}{x-1}=\infty$
(b) $\lim _{x \rightarrow 1^{-}} \frac{2}{x-1}=-\infty$
22. (a) $\lim _{x \rightarrow 0^{+}} \cot x=\infty$
(b) $\lim _{x \rightarrow \pi^{-}} \cot x=-\infty$

لها قيمة دالة أكبر من 1/6؟ قيم الدالة الوحيدة المهكنة هي 1/5 ، . $1 / 2$ • $1 / 3$ • $1 / 4$ قيم x ذات قيمه الدالة $1 / 5$ هي $1 / 5$ هي $1 / 5$ و $2 / 5$ و $3 / 5$ و $4 / 5$ وهكذا
 (عدال 2/3 مـ

 1/6
2. اذكر تعريڤًا لـــ" $f(x)$ متصلة عند $x=a$ " 6.1 باستخـدام التعريف. استخخدمه لإثبات أن الدالة في التهرين الاستكشافي 1 متصلة عند كل عدد غـير نسبي، وغير متصلة عند كل عدد نسبي.

دالة غير مألوفة. تذكّر أنّ الأعداد النسبية يمكن أن تكتب على شكل كسور p/q ، حيث p و q q عددان صحـيحان. وسنفترض أنّ p/q قد تم تحويلها إلى أبسط صورة عبر القسـمة على العوامـل المشتركة (على سبيل المثيال 1/2 وليس 2/4). عرّف

سـنحاول أن نبيّن أنّ
据 $f(2 / 3)=1 / 3$
 $\lim _{x \rightarrow 2 / 3} f(x)=0$ هذا الـ x غير نسبي، فإنّ فرضية بسيطة. وسنـجربهـا مـع居 $|f(x)|<1 / 6$

النهايات وأخططاء فتّدان الدلالة

"لا تبد أي اهتمام للرجل الذي خلف الستار..." (مقتبسـة من رواية سـاحر أوز) الأشياء ليست دومُا كما تبدو عليه. وعلى الرغم من ذلك، يميل الناس إلى قبول إجابة
 حاسبة). أْن نضع في اعتبارنا دائمّا أنّ هذه الأجهزة تؤدي معظم العمليات الحسـابية على ألى
 ولكن في بیض الأحيان تكون نتائج أخطاء التقريب في سلسلة من العهليات الحسـابية كارثية. فِي هذا الدرس، سوف نستكشف هذه الأخطاء بإيجاز ونتعلم كيف نتعرف إليها ونتفادى الوقوع في بعضها.
سندرس أولًا مثـالًا يبدو سهلًا نسبيًا.

مـثال 7.1 النهـاية عـند السـلوك البياني والعـددي غـير العـادي

$$
\lim _{x \rightarrow \infty} \frac{\left(x^{3}+4\right)^{2}-x^{6}}{x^{3}} \text { أوجد قيمة }
$$

الحل للوهلة الأولى، يبدو البسط مثل م - م، وهو غير مـحدد بينهـا يهتد المقام إلى
 البسط. أوُُ، نرسم التمثيل البياني ونحسبَ بعض قِيم الدالة. (لن تقوم جميع الحواسِيب
 ترى نتائج مشـابهـة للنتائج الهوضـحة هـنا). في الشَكل 2.57a، تكاد تبدو الدالة ثابتة، إلى
 مـع الشكّ 2.57a
ربها أنّك قـد تفاجأت بآخر قيمتين في الجدول. حتى تلك النقطة، بدا أن قَيم الدالة تستقر على 8.0 بدقَّ بالغة. إذُا، ما الْذي حدث هـي هنا وما القيهـة الحقيقية للنهاية؟ للإجابة عن هذا السؤال ننظر بإمعـان إلى قيم الّدالة في الفترة بين

قيم محسوبة خطـأُ

x	$\frac{\left(x^{3}+4\right)^{2}-x^{6}}{x^{3}}$
2×10^{4}	8.0
3×10^{4}	8.14815
4×10^{4}	7.8125
5×10^{4}	0

x	$\frac{\left(x^{3}+4\right)^{2}-x^{6}}{x^{3}}$
10	8.016
100	8.000016
1×10^{3}	8.0
1×10^{4}	8.0
1×10^{5}	0.0
1×10^{6}	0.0

2.57a الشكل

$$
y=\frac{\left(x^{3}+4\right)^{2}-x^{6}}{x^{3}}
$$

بسلوك الدالة يزداد صعوبةً. ونستخدم كلمَ 1 ولمة بدا لأن السـلوك المتذبذب الذي نراه ليس سوى وهم ناتج عـن الدقة المـحدودة للحاسـوب المستخدم في تنفيذ الحسـابات ورسم التمثيل البياني.

تمـثيل الـحاسـوب للأعـداد الـحقيقية

السبب وراء السلوك غـير العادي الهـلاحظ في الهثال 7.1 يرجـ إلى الطريقة التي تهثّل
 يكفي أن نفكر في أنّ الحواسيب والحّلات الحاسبةً تخزّن الأعداد الحقيقية داخلئيًا بترميز

 بالأس. وهكذا فإنٍ الجزء العشري هنـا هـو 1.234567 والأس هو 6.

 الحاسبة لها ذاكرة "للجزء العشُري تبلغ 14 منزلة وللأس تبلـغ 3 أرقام. وفي حاسـوب ذي 14 منزلةً، يشـير هذا إلى أنّ الحاسـوب يحتفظ بأول 14 منزلة فِّط للَّعبير الڭشـري لأي رقم معطى.

$$
\begin{aligned}
& \text { مثال } 7.2 \text { تمثيل الحاسـوب للعـدد النسبي }
\end{aligned}
$$

14 رقم

$$
\begin{aligned}
& \text { مثال } 7.2 \text { تمثيل الـحاسـوب للعـدد النسببي } \\
& \text { حـدّد كيف ذي } 14 \text { منزلة تخزين } \frac{1}{3} \text { داخليُّا في حاسـوب ذي } 10 \text { منازل، وكيف يتم تخزين } 10 \text { د } \frac{2}{3} \text { داخليًا في }
\end{aligned}
$$

$$
\begin{aligned}
& 14 \text { رقم }
\end{aligned}
$$

قارن القيمة الدقيقة لـ

مـع النتيجة التي تحصل عليها من آلة حاسبة أو حاسوب بجزء عشري ذي 14 منزلةُ.
الحل لاحظ أنّ

ومـح ذلك، إذا تم تنفيذ هذا الحساب على آلة حاسبة بجزء عشـري ذي 14 منزلةَ، فإن العدد

 خطـأ فـقد بـدان الدلالة. هذه الأخطـاء دقيقة، وغـالبًا مـا تكون كارثية. بالعودة الآن إلى الهثال 7.1، سـنرى أن هذا النوع من الخطأ هـو الذي تسـبّب بالسـلوك غـير الحادي الذي لاْحظناه من

$$
\text { في المـثال 7.1. درسـنا الدالة } f(x)=\frac{\left(x^{3}+4\right)^{2}-x^{6}}{x^{3}}
$$

نفّذ حسـاب $f\left(5 \times 10^{4} f\right.$ بخطوة واحدة كمـا لو كان حاسـوب ذو 14 منزلةً سـينفذهـا. الـحل لدينا

$$
\begin{aligned}
f\left(5 \times 10^{4}\right) & =\frac{\left[\left(5 \times 10^{4}\right)^{3}+4\right]^{2}-\left(5 \times 10^{4}\right)^{6}}{\left(5 \times 10^{4}\right)^{3}} \\
& =\frac{\left(1.25 \times 10^{14}+4\right)^{2}-1.5625 \times 10^{28}}{1.25 \times 10^{14}} \\
& =\frac{(125,000,000,000,000+4)^{2}-1.5625 \times 10^{28}}{1.25 \times 10^{14}} \\
& =\frac{\left(1.25 \times 10^{14}\right)^{2}-1.5625 \times 10^{28}}{1.25 \times 10^{14}}=0
\end{aligned}
$$

بها أنّ 125,000,000,000,004 مقرّب إلى 125,000,000,000,000.

لاحظ أنّ المتهم الحقيقي هو هنا ليس التقريب 125,000,000,000,000، ولكّ ولكن الـن حقيقة أنّ
 فريدة من نوعها عند الحسـاب العددي للنهايات

ملحوظة 7.1

إذا كان ذلك ممكنـا، تجنب طُرح القَيم الهتساوية تقريبَا. في بعض الأحيان، يمكن تحقيق ذلك من خـلال بصض التلاعب الجبري بالدالة.
 عـن طِريق إعـادة كتابة الدالة على النحو التالي:

$$
\begin{aligned}
f(x) & =\frac{\left(x^{3}+4\right)^{2}-x^{6}}{x^{3}} \\
& =\frac{\left(x^{6}+8 x^{3}+16\right)-x^{6}}{x^{3}} \\
& =\frac{8 x^{3}+16}{x^{3}}
\end{aligned}
$$

حيث تخلصنا من الطرح. باستخخدام هذا التعبير الجديد (وما يعادله) للدالة، يمكننا حسـاب جدول قيم الدالة بصورة موثوقة.

لاحظ أيضًا أنّنا إذا أعدنا رسم التمثيل البياني في الشكل 2.57a باستخدام التعبير الجديد (شاهد الشَكل 2.58)، فلن نجد التذبذب الهؤجود في الشكلين 2.57a و 2.57b. من التعبير المكتوب، نحصل بسهولة على $\lim _{x \rightarrow \infty} \frac{\left(x^{3}+4\right)^{2}-x^{6}}{x^{3}}=8$ وهي تتماشى مـع الشكل 2.58 والجدول الهصححح لقيم الدالة.

مـثال 7.6 فقدان الدلالة الذي يتضـمـن دالة مثلثية

$$
\lim _{x \rightarrow 0} \frac{1-\cos x^{2}}{x^{4}} \text { أوجد قيمـة }
$$ الحـل كالهعتاد، ننظر إلى الرسمم البياني (شـاهد الشكل 2.59) وبعض قيم الدالة.

x	$\frac{1-\cos x^{2}}{x^{4}}$
-0.1	0.499996
-0.01	0.5
-0.001	0.5
-0.0001	0.0
-0.00001	0.0

x	$\frac{1-\cos x^{2}}{x^{4}}$
0.1	0.499996
0.01	0.5
0.001	0.5
0.0001	0.0
0.00001	0.0

كها في المـئال 7.1. لاحظ أن قيم إلدالة تبدو أنها تقترب من 0.5، ثم فجأة تأخذ انخفاضًا

x	$\frac{8 x^{3}+\mathbf{1 6}}{x^{3}}$
10	8.016
100	8.000016
1×10^{3}	8.000000016
1×10^{4}	8.00000000002
1×10^{5}	8.0
1×10^{6}	8.0
1×10^{7}	8.0

 التخلص من الطرح. لاحظ ذلك

ولأنّ هذا التعبير الأخير (الهكافئ) لم تتم الإشـارة فيه إلى الطرح، يجب أن نكون قادرين

$$
\lim _{x \rightarrow 0} \frac{1-\cos x^{2}}{x^{4}}=\frac{1}{2}
$$

2.59 الشكل

$$
y=\frac{1-\cos x^{2}}{x^{4}}
$$

ونعرض هنا مثالاُ واحدًا أخيرُا، حيث يحدث خطـأ فقدان الأهمية، رغم عدم الإشـارة بوضوح إلى وجود الطرح.

مثثال 7.7 خطـأ فقدان الدلالة الذي يتضـهن ناتج جهـع

$$
\lim _{x \rightarrow-\infty} x\left[\left(x^{2}+4\right)^{1 / 2}+x\right] \text { أوجد قيمة }
$$

x	$\frac{\sin ^{2}\left(x^{2}\right)}{x^{4}\left(1+\cos x^{2}\right)}$
± 0.1	0.499996
± 0.01	0.4999999996
± 0.001	0.5
± 0.0001	0.5
± 0.00001	0.5

$$
\begin{aligned}
& \text { وباستـخدام هذا لحسـاب قيَم الدالة، نحصل عـلى الجدول المـرفق. } \\
& \text { وباستخدام التمثيل البياني والجدول الجديد، نخمّن أنّ }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1-\cos ^{2}\left(x^{2}\right)}{x^{4}\left(1+\cos x^{2}\right)} \quad 1-\cos ^{2}\left(x^{2}\right)=\sin ^{2}\left(x^{2}\right) \\
& =\frac{\sin ^{2}\left(x^{2}\right)}{x^{4}\left(1+\cos x^{2}\right)}
\end{aligned}
$$

x	$x\left[\left(x^{2}+4\right)^{1 / 2}+x\right]$
-100	-1.9998
-1×10^{3}	-1.999998
-1×10^{4}	-2.0
-1×10^{5}	-2.0
-1×10^{6}	-2.0
-1×10^{7}	0.0
-1×10^{8}	0.0

الشكل 2.60

$$
y=x\left[\left(x^{2}+4\right)^{1 / 2}+x\right]
$$

يجب أن تالاحظ التفزة المعاجئة في فيـم الجدول، والتذبذب الحاد في التمثيل البياني.

 على النحو التالي.

$$
\begin{align*}
x\left[\left(x^{2}+4\right)^{1 / 2}+x\right] & =x\left[\left(x^{2}+4\right)^{1 / 2}+x\right] \frac{\left[\left(x^{2}+4\right)^{1 / 2}-x\right]}{\left[\left(x^{2}+4\right)^{1 / 2}-x\right]} \quad \\
& =x \frac{\left[\left(x^{2}+4\right)-x^{2}\right]}{\left[\left(x^{2}+4\right)^{1 / 2}-x\right]} \\
& =\frac{4 x}{\left[\left(x^{2}+4\right)^{1 / 2}-x\right]}
\end{align*}
$$

نستخدم التعبير الأخير لإنشاء رسم بياني في النافذة ذاتها كذلك المستخدم في الشكل 2.60 ولإنشاء جدول القيم الهرفقّ. فْي الشكل 2.61، همكنتا رؤية أنّه لا يوّجد من

التذبذبات الحادة التي شَدناها في الشكل 2.60 والرسم البياني يبدو خطُا أفقيًا.

x	$\frac{1}{\|c\|} 4 x$
-100	-1.9998
$\left.\left.-1 \times 10^{3}+4\right)^{1 / 2}-x\right]$	-1.999998
-1×10^{4}	-1.99999998
-1×10^{5}	-1.9999999998
-1×10^{6}	-2.0
-1×10^{7}	-2.0
-1×10^{8}	-2.0

الشكل 2.61

$y=\frac{4 x}{\left[\left(x^{2}+4\right)^{1 / 2}-x\right]}$

وعلاوةً علبي ذلك، فإن القيم المعروضة في الجدول لمٌ تعد تظهر قفزة مغاجئة تدل على وجود خطأ فقدان الدلالة. يمكنتا الآن أن نُخّمّن بثقة أنّ

- $\lim _{x \rightarrow-\infty} x\left[\left(x^{2}+4\right)^{1 / 2}+x\right]=-2$

مـا وراء الصيغ

في الأمثلة 7.7-7.5، أوضحنا الحسابات التي حدثت فيها أخطاء فـادحة لفقدان الدان الالة.

 ستصبح مستخدمًا ذكيًا للتكنولوجيا وأكثر تشَكيكًا بها.

التهارين 2.7

11. $\lim _{x \rightarrow \infty} 4^{4 / 3}\left(\sqrt[3]{x^{2}+1}-\sqrt[3]{x^{2}-1}\right)$
12. $\lim _{x \rightarrow \infty} x^{2 / 3}(\sqrt[3]{x+4}-\sqrt[3]{x-3})$

في التهرينين 13 و 14، قارن بين النهايات لإظهار الأخطاء الصَغيرة التي يمكن أن تكون لها عواقب كارثية
13. $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x-1}$, $\lim _{x \rightarrow 1} \frac{x^{2}+x-2.01}{x-1}$
14. $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}$, $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4.01}$

$$
\begin{aligned}
x=1 \text { 15. قارادن بين (رين } x=10 \text { و } x=100
\end{aligned}
$$

16. إذا كنت تستطيع الوصول إلي نظام حاسوب جبري، فتمر

باختباره على النهايات في الأمثلة 7.1 و 7.6 و 7.7. بناءً على
هذه النتائج، هل تعتقد أنّ نظامك الحاسوبي الجبري يجري
حسابات دقيقة أم تقديرات عددية؟
في التهرينين 17 و 18، قارن بين الإجابة الدقيقة وأخرى تم الحصول عليها من حاسوب ذي جزء عشري من ست منازل.
17. $(1.000003-1.000001) \times 10^{7}$
18. $(1.000006-1.000001) \times 10^{7}$

تهارين استتكشافية

1. كما أنتا عرضة للوقوع في أخطاء التقريب عند استخدام الحسابات المنشأة بالحاسوب، فنحن عرضة للأخطاء في التمثيلات البيانية المنشأة بالحاسوب أِيضًا. حيث إنّ الحاسوب يتوم بحساب ڤيهم الدالة قبل أن بقرر أين بتم تعيين نتاط التمثيل البياني. قَم بتمثيل $y=\sin x^{2}$ بيانيًا (تهثيليل بياني حيث النقاط غير مثُصلة - أي مخطط نتاط هو الأفضل). يجب أن تشاهد التذبذبات التي تتوقعها من دالة الجيب، ولكن هـع كون التذبذبات تزداد سِسرعة كلما صارت x أكبر. حرك نافذتك الخاصة بالتهثيل البياني إلى اليهين عدة مرات. عند نتطة ما، سيصبح المخطط فوضويًا جدًا وغير قابل للقراءة تقريبًا. واعتمادًا على التكنولوجيا الخاصة بك، قد ترى

تهارين كتابية

1. الحذر مهم في استخدام التكنولوجيا. وكذلك التكرار مهم. ويعتقد أنّ هذه الخاصية في بعض الأحيان سـلبية (مضيعة للوقت، لا لزوم لها)، ولكن دورها الإيجابي هو واحد من الدروس المستفادة من هذا الدرس. ونتصد بالتكرار، استكشثاف مسألة باستخدام الأدوات البيانية والعددية والرمزية. لِمَ يُـد من المهـه استخدام طرق متعددة؟
2. متى يتوجب عليك النظر إلى التمثيل البياني؟ وأن تحسب فيّم الدالة؟ وأن تقوم بالإجراءات الرمزية؟ وإبّات ס-ع؟ وإعطاء الأولوية للتقنيات في هذه الوحدة. a 3 محددة، يمكننا أن نحسأِ أصغر لـ h. لماذا علينا أن نكون حذرين من أخطاء فقدان الدلالة؟
3. لتد قمنا بتنسيب البسط في الهثال 7.7. والتاعدة القديهة
 لـعُرفة لــاذا قد تحتاج للجذر التربيعي في البسط. افترض أنـا يوكنك الحصول على منزلة عشُرية واحدة فقَط من الدقة، بحيث بكون 1.7 حبي و 9 - أي من التقديرات التقريبية يهكن أن تنغذه ذهنيّا؟

في التمارين 12-1 (a) استخدم التمثِيلات البيانية والعددية
 أو على آلة حاسبة يظهر فيه خطأ فقدان الد الدالد الد. (c) أعد كتابة الدالة بحيث تتجنب خطأ فقدأ فـدان الدلالة.

1. $\lim _{x \rightarrow \infty} x\left(\sqrt{4 x^{2}+1}-2 x\right)$
2. $\lim _{x \rightarrow-\infty} x\left(\sqrt{4 x^{2}+1}+2 x\right)$
3. $\lim _{x \rightarrow \infty} \sqrt{x}(\sqrt{x+4}-\sqrt{x+2})$
4. $\lim _{x \rightarrow \infty} x^{2}\left(\sqrt{x^{4}+8}-x^{2}\right)$
5. $\lim _{x \rightarrow \infty} x\left(\sqrt{x^{2}+4}-\sqrt{x^{2}+2}\right)$
6. $\lim _{x \rightarrow \infty} x\left(\sqrt{x^{3}+8}-x^{3 / 2}\right)$
7. $\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{12 x^{2}}$
8. $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$
9. $\lim _{x \rightarrow 0} \frac{1-\cos x^{3}}{x^{6}}$
10. $\lim _{x \rightarrow 0} \frac{1-\cos x^{4}}{x^{8}}$

استكشف ما الذي يحدث بين x=15 و 15 و 16 احسب جهيع النقاط (15.1, $\sin 15.1^{2}$ ($\left.15 \sin 15^{2}\right)$ وهكذا دواليك.
 لتفسير هذا النهط، ناقش أن هناك ما يقرب من من نصف فترة منحنى الجيب مفقودة بين كل نقطة معينة. أيضًا، استكشف

أنماطُا معينة في الهخطّط. هـل هذه الأنهاط حقيقة أم وههم؟ لشرح ما يُجري، تذكر أن التمئيل البياني بالحاسوب
 بكسل يمثل x واحدة و x و واحدة . افترض أن الحاسوب يعين النقاط عند $x=0$ و $x=0.1$ و $x=0.2$ وهكذا دواليك. قيم y y ستكون عندها $\sin 0^{2}$ و $\sin 0.1^{2} 0.2^{2}$ وهكذا دواليك.

تهارين الهبراجعة

في التهرينين 1 و 2، قدّر عـدديًا ميل $y=f(x)$ عـند $x=a$ عـيل

1. $f(x)=x^{2}-2 x, a=2$
2. $f(x)=\sin 2 x, a=0$

في التمرينين 3 و (b) 4، قدّر عـد n (b) x
3. $f(x)=\sin x, 0 \leq x \leq \frac{\pi}{4}$
4. $f(x)=x^{2}-x, 0 \leq x \leq 2$

فيّمة التنهارية. 10-5، استتخدم الأدلة العددية والبيانية لتخهمين
5. $\lim _{x \rightarrow 0} \frac{\tan ^{-1} x^{2}}{x^{2}}$
6. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{\ln x^{2}}$
7. $\lim _{x \rightarrow-2} \frac{x+2}{|x+2|}$
8. $\lim _{x \rightarrow 0}(1+2 x)^{1 / x}$
9. $\lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{x}$
10. $\lim _{x \rightarrow \infty} x^{2 / x}$

في التهرينين 11 و 12، عرّف النهايات مـن التتهثيل البياني لf f f.
11. (a) $\lim _{x \rightarrow-1^{-}} f(x)$
(b) $\lim _{x \rightarrow-1^{+}} f(x)$
(c) $\lim _{x \rightarrow-1} f(x)$
(d) $\lim _{x \rightarrow 0} f(x)$
12. (a) $\lim _{x \rightarrow 1^{-}} f(x)$
(b) $\lim _{x \rightarrow 1^{+}} f(x)$
(c) $\lim _{x \rightarrow 1} f(x)$
(d) $\lim _{x \rightarrow 2} f(x)$

13. حدد نقاط عدم الاتصال في الدالة الممثلة بيانيّا أعـلاه.

$$
\cdot \lim _{x \rightarrow 1^{+}} f(x)=-1, \lim _{x \rightarrow 1^{-}} f(x)=1,
$$

تهـارين كـتابية

تتضمن القائهة التالية الهصطلحات التي تم تعريفها والنظريات التي
 تعريفًا أو عبارةً دقَيقَّة، (2) اذكر مـا تعنيه عمومُا (3) صف أنواع الهسائل التي تقترن بذلك.

طول القطعة
الهستقيمة
Length of segment
قيمة متوسطة Intermediate Value

Method of bisections

قـطــة مستقيـهة segment نظرية
Theorem
ميل منحنى
Slope of curve

صواب أم خطأ

اذكر ما إذا كانت كل عبارة صحيحة أم خاطئة واشـرح السبب بإيجاز. إذا كانت العبارة خاطئة، فحاول أن "تصححهـا" عبر تعديل العبارة المعطاة لإنشاء عبارة جديدة تكون صحيحة. 1. في حساب التفاضل والتكامل، غـالبًا مـا يتم حل المسائل عن طريق تقريب الحل أوُلُ ومن ثـم تحسين التقريب.
2. $. \lim _{x \rightarrow 1} f(x)=2$
$. \lim _{x \rightarrow a}[f(x) \mathbf{x} g(x)]=\left[\lim _{x \rightarrow a} f(x)\right]\left[\lim _{x \rightarrow a} g(x)\right] \quad .3$ $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\substack{x \rightarrow a \\ \lim _{x \rightarrow a} f(x)}}{\lim _{x \rightarrow a} g(x)} .4$
 $\lim _{x \rightarrow \infty} p(x)=\infty$. 6
 يكون للدالة f خط تقارب راسي عند f خ 8. عادةُ ما تكون أخطاء التقريب الصغيرة ذات تأثثير مـحدود على الحساب. $\lim _{x \rightarrow a} \sqrt{f(x)}=\sqrt{L}$ إذا $\lim _{x \rightarrow a} f(x)=L \quad .9$

والأفي التمـارين والمـائلة. 54-47، حدّد جهميع خطوط التقارب الرأسـية
47. $f(x)=\frac{x+1}{x^{2}-3 x+2}$
48. $f(x)=\frac{x+2}{x^{2}-2 x-8}$
49. $f(x)=\frac{x^{2}}{x^{2}-1}$
50. $f(x)=\frac{x^{3}}{x^{2}-x-2}$
51. $f(x)=2 e^{1 / x}$
52. $f(x)=3 \tan ^{-1} 2 x$
53. $f(x)=\frac{3}{e^{x}-2}$
54. $f(x)=3 \ln (x-2)$

في التهرينين 55 و 56، (a) استخدم الأدلة البيانية والعددية
 حاسوب أو على آلة حاسبة يظهر فيه خطأ فقدأ ألدان الدلالة. (c)
55. $\lim _{x \rightarrow 0} \frac{1-\cos x}{2 x^{2}}$
56. $\lim _{x \rightarrow \infty} x\left(\sqrt{x^{2}+1}-x\right)$

تهارين اسـتكـشـافـية

. 1
 نقطة انفصال قابل للإزاله. بالنسبة لهذه القيمة، أوجد نهاية ألهـة حيث x تقترب من هذه الق القيمة. مثِّل جزءًا من التمثيل البياني لـ f

 أوجِد (d) f الذي يتوافق مـع هـه بأبسط ما يمكن. إن كان ممكنًا، قارن بين تمثيلك البياني وتهثيل منشـأ بالحاسوب.
 (سنوات بعد 2000). فسّتر كلألا مها يلي (على (ملى نحو مستقلى)
 $\lim _{t \rightarrow 4^{+}} f(t)=800, \lim _{t \rightarrow 4^{-}} \bar{f}(t)=500$ (c) تقارب رأسي عند 10 و 10

$$
\lim _{t \rightarrow 8} f(t)=950(\mathrm{~d})
$$

في التتمارين 36-15، أوجـد قيهـة النهاية. أجـب بعـدد أو ه أو هأو بِعبارة لا يوجـد.
15. $\lim _{x \rightarrow 2} \frac{x-x-2}{x^{2}-4}$
16. $\lim _{x \rightarrow 1} \frac{x-1}{x^{2}+x-2}$
17. $\lim _{x \rightarrow 0} \frac{x^{2}+x}{\sqrt{x^{4}+2 x^{2}}}$
18. $\lim _{x \rightarrow 0} e^{-\cot x}$
19. $\lim _{x \rightarrow 0}(2+x) \sin (1 / x)$
20. $\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x^{2}}$
21. $\lim _{x \rightarrow 2} f(x)$, where $f(x)= \begin{cases}3 x-1 & x<2 \text { اذا كا كان } \\ x^{2}+1 & x \geq 2\end{cases}$
22. $\lim _{x \rightarrow 1} f(x)$, where $f(x)= \begin{cases}2 x+1 & x<1 \text { اذا كا كان } 1 \text { اذ } 1 \text { كان }\end{cases}$
23. $\lim _{x \rightarrow 0} \frac{\sqrt[3]{1+2 x}-1}{x}$
24. $\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{10-x}-3}$
25. $\lim _{x \rightarrow 0} \cot \left(x^{2}\right)$
26. $\lim _{x \rightarrow 1} \tan ^{-1}\left(\frac{x}{x^{2}-2 x+1}\right)$
27. $\lim _{x \rightarrow \infty} \frac{x^{2}-4}{3 x^{2}+x+1}$
28. $\lim _{x \rightarrow \infty} \frac{2 x}{\sqrt{x^{2}+4}}$
29. $\lim _{x \rightarrow \pi / 2} e^{-\tan ^{2} x}$
30. $\lim _{x \rightarrow-\infty} e^{-x^{2}}$
31. $\lim _{x \rightarrow \infty} \ln 2 x$
32. $\lim _{x \rightarrow 0^{+}} \ln 3 x$
33. $\lim _{x \rightarrow-\infty} \frac{2 x}{x^{2}+3 x-5}$
34. $\lim _{x \rightarrow-2} \frac{2 x}{x^{2}+3 x+2}$
35. $\lim _{x \rightarrow 0}(1-3 x)^{2 / x}$
36. $\lim _{x \rightarrow 0} \frac{2 x-|x|}{|3 x|-2 x}$

38. استخدم نظرية القيمة الهتوسطة للتحقق من أن الــر $f(x)=x^{3}-x-1$

التنصيف لإيجاد فترة طولها 1/32 تحتوي على صفر.

في التمـارين 42-39، أوجـد جهميع نقاط عـدم الاتصـال وحدّد
39. $f(x)=\frac{x-1}{x^{2}+2 x-3}$
40. $f(x)=\frac{x+1}{x^{2}-4}$
41. $f(x)= \begin{cases}\sin x, & x<0 \\ x^{2}, & 0 \leq x \leq 2 \\ 4 x-3, & x>2\end{cases}$
42. $f(x)=x \cot x$

في التمارين 46-43، أوجد جهييع الفترات التي تكون عنـدها
الدالة متصلة:
43. $f(x)=\frac{x+2}{x^{2}-x-6}$
44. $f(x)=\ln (3 x-4)$
45. $f(x)=\sin \left(1+e^{x}\right)$
46. $f(x)=\sqrt{x^{2}-4}$

حقوق الطبع والتأليف © محنوظة لصالح مؤسسة McGraw-Hill Education
تعتبر مسابقة الهـاراثون إحدى أشهر مسابقات العـُو، وهي تمتد إلى مسافة 26 ميلًا و385 ياردة.
 باستخدام القانون ألمعروف باسم "المعدّل يساوي الْمسـافة مقسومة على الزمن". هِمكننا حساب

متوسط سرعة بالديني:

$$
\frac{26+\frac{385}{1760}}{2+\frac{10}{60}+\frac{55}{3600}} \approx 12.0 \mathrm{mph}
$$

يبيّن ذلك أن متوسط سرعة بالديني أقل من 5 دقائق لكل ميل عبر مسافة تمتد على 26 ميلًا ومع ذلك، فاز جوستن جاتلين من الولايات المتحدة الأمريكية بسباق العدو لمسـافة 100 متر في 9.85 ثوانِ، كما فاز شاون كراوفورد من الولايات المتحدة الأمريكية بسباق العدو لمسافة 200 متر في 19.79 ثانية. بلغت متوسّطات سرعات أولئك العدّائين

$$
\frac{\frac{100}{1610}}{\frac{9.85}{3600}} \approx 22.7 \mathrm{mph} \quad, \quad \frac{\frac{200}{1610}}{\frac{19.79}{3600}} \approx 22.6 \mathrm{mph} .
$$

نظرُرا لأن هـاتين السرعتين أكبر بكثير من سـرعة عدّاء المـاراثون، فإن الفائزين بهذه المسابقات يُطلق عليهم "أسرع اشخخاص في العالم".
يهكن عمل ربط مهم باستخدام تجربة فكرية. إذا كان الشخص نفسه قد ركض مسافة 200 متر في 19.79 ثانية مـع إنهاء أول 100 متر خلال 9.85 ثوانٍ، فقارن بين متوسط سرعات المائة متر الأولى والثانية. في المائة متر الثانية، تكون المسافة التي تم ركضها 100 = 100 - 200 متر والزمن -9.85 = 9.94

$$
\frac{200-100}{19.79-9.85}=\frac{100}{9.94} \approx 10.06 \mathrm{~m} / \mathrm{s} \approx 22.5 \mathrm{mph}
$$

لاحظ أن حساب السرعة باستخدام وحدة m/s هو نفسه مثل الحساب الذي يجب أن نستخدمه للميل بين النقاط (100, 9.85) و(200,19.79). الربط بين الميل والسرعة (وكميات أخرى مهمة)
موضّح في هذه الوحدة.

الهمهاسات والسرعـعة الهتتجهة

يحمل المقلاع التقليدي صخرة على طرف حبله، بحيث تقوم بتدويره في حركة دائرية ثمـ تحرره. عندما تحرر الحبل، في أي اتجاه ستنطلق الصخرة؟ نم توضيح منظر رأسي لهذا في الشُكل 5.1 الا

 الهمـاس لكي تشمل الهزيد من الهنحنيات الحامة.
 (1, 2). (انظر الشكل 3.2). يلامس الهماس الهنحنى بالقرب من نتطة التماس. بكلمات أخرى، مثل

 هاتين النمّطتين. يُطلق على مثل هذه الخطوط اسم القاطـع، ويُرمز لميل القاطـح بـ :Mec

الشكل 3.1
مسار الصخرة

$$
m_{\mathrm{sec}}=\frac{10-2}{3-1}=4
$$

معادلة القاطع التي يتم تحديدها باستخدام

$$
\frac{y-2}{x-1}=4
$$

الشكل 3.2
$y=x^{2}+1$

$$
y=x^{2}+1
$$

$$
y=4(x-1)+2
$$

ومنـه نسـتنتـج:
ما يمكن ملاحظته في الشكل 3.4a هو أن القاطـع لا يبدو كثيرًا انه مماس. من أجل ايضاح هذا الإجراء، سنأخذ النقطة الثانية لتكون أقرب قليلًا من نتطة التماس، ليكن عند (5 ,2). يعطي

$$
m_{\mathrm{sec}}=\frac{5-2}{2-1}=3
$$

 ولكن ليس بالضبط. سنقوم باختيار النقطة الثانية لتكون أقرب إلى نتطة التماس. ليكن (1.05, 2.1025). ينبغي أن يعطينا هذا تقريبًا أفضل. في هذه الحالة، فإنه لدينا

$$
m_{\mathrm{sec}}=\frac{2.1025-2}{1.05-1}=2.05
$$

ذلك ميل القاطع بالصيغة:

3.4a الشكل

القاطـع الذي يربط بين
$(3,10),(1,2)$
 مهـاس. حتى عند التكبير للرجة كبيرة، كها هو واضح في الشكل 3.4d. سنتابع ذلك الإجراء

$$
\begin{aligned}
& m_{\mathrm{sec}}=\frac{f(1+h)-2}{(1+h)-1}=\frac{\left[(1+h)^{2}+1\right]-2}{h} \\
& =\frac{\left(1+2 h+h^{2}\right)-1}{h}=\frac{2 h+h^{2}}{h} \quad \text { ضرب واختصر } \\
& =\frac{h(2+h)}{h}=2+h \\
& \text { ضـح العامل المشترك h واختصر }
\end{aligned}
$$

لاحظ أنه كلما اقترب h من 0، اقترب ميل القاطـع من 2. والذي نعرّفه بأنه ميل الهماس.

لإيجاد ميل المهاس لـ $y=f(x)$ عند $x=a$. اختر نتطتين أولَا على المنحنى. تكون إحدى النقطتين هي نتطة

$$
\begin{equation*}
m_{\mathrm{sec}}=\frac{f(a+h)-f(a)}{(a+h)-a}=\frac{f(a+h)-f(a)}{h} \tag{1.1}
\end{equation*}
$$

لاحظ أن التعبير في (1.1) (يُسمى فرق ناتج القسهة) يعطي ميل القاطحع لأي نتطة ثانية
 النتطة الثانية لتكون أقرب إلى نقطة التماس، والتي بدورها تجـلـ h h أقرب إلى 0.
 من النقطة P (مثُلًا عندما يكون0 h h)، اقتربت الخطوط القاطعة من الهمطس عندP .

الشكل 3.7 اقتراب الخطوط القاطقة من المهماس عند النقطةP

إلى 0. مـتى وُجدت هذه النهاية.

$m_{\mathrm{tan}}=\frac{y-f(a)}{x-a}$ يمثّل المهاس إذًا المار بالنقطة ($a, f(a)$ بميل $m_{\text {tan }}$. والذي يُعطى بالصيغ

$$
y=m_{\tan }(x-a)+f(a)
$$

معادلة المهـاس

$$
\begin{aligned}
& \text { مـثال } 1.1 \text { إيجاد معـادلة المـماس }
\end{aligned}
$$

$$
\begin{aligned}
& \text { الـحل نحسب الميل باستـخدام الصيغة (1.2): } \\
& m_{\mathrm{tan}}=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(1+h)^{2}+1\right]-(1+1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1+2 h+h^{2}+1-2}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h+h^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(2+h)}{h} \quad \text { ض العامل المشـترك } h \text { واختصر } \\
& =\lim _{h \rightarrow 0}(2+h)=2
\end{aligned}
$$

لاحظ أن النتطة التي تقابل x=1 هي (1,2) والخط الذي له الميل 2 عند النقطة (1) تحدده المعادلة

$$
y=2 x \text { و } y=2(x-1)+2
$$

لاحظ مدى التقابل الوثيق مـع الخطوط القاطعة التي حسبناهـا سـابقًا. نبيّن تهثيلًا بيانئًا للدالّة وهذا

- المهماس في الشكل 3.8.

الشكـل 3.8
$y=x^{2}+1$

$$
x=1
$$

$$
\begin{aligned}
& \text { مثال } 1.2 \text { الهمـاس للتمثيل البياني لدالّة نسبية }
\end{aligned}
$$

$$
\begin{aligned}
& \text { الحل عملًا بالصيغة (1.2)، فإنه لدينا } \\
& m_{\mathrm{tan}}=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0} \frac{\frac{2}{2+h}-1}{h} \quad f(2+h)=\frac{2}{2+h} \quad \text { نَ } \\
& =\lim _{h \rightarrow 0} \frac{\left[\frac{2-(2+h)}{(2+h)}\right]}{h}=\lim _{h \rightarrow 0} \frac{\left[\frac{2-2-h}{(2+h)}\right]}{h} \quad \text { اجمع الكسور واضرب } \\
& =\lim _{h \rightarrow 0} \frac{-h}{(2+h) h}=\lim _{h \rightarrow 0} \frac{-1}{2+h}=-\frac{1}{2} \text {. } \\
& \text { اختصر h } \\
& \text { النقطة الهعابلة لـ } x=2 \text { هي (} 2,1 \text {. بما أن } 1 \text { (} f(2) \text {. تكون معادلة الهماس هي: } \\
& y=-\frac{1}{2}(x-2)+1 \\
& \text { نبّن تهثيُاًا بيانِّا للدالةّ والمهاس في الشكل 3.9. }
\end{aligned}
$$

في الحالات التي بتغذر (أو يصعب) فيها تحديد قيهة النهاية لميل المهاس، يمكننا تقريب النهاية عدديًا. نوضّا ذلكُ في الهثال 1.3.

مثال 1.3 التقريب البياني والعددي للمماسات

 الشُكل 3.10b حبث قَنا بالتكبير لتوفير تناصيل أفضل. لتقريب الهيل، نتوم بتُدير إحداثيات نتطة واحدة على الهماس على ألا تكون (1-0 ,0). في الشككل 3.10b. يبدو أن الهماس يمر بالنتطة (1, 1). يكون تقدير
 ونحسب ميول الخطوط القاطـة. على سبيل المثال. عند تغريب فيم y لأربيع منازل عشُرية. نحصل على

$m_{\text {scc }}$	النتطة الثانية	$m_{\text {scc }}$	النتطة الثانية
$\frac{-3-(-1)}{-0.5-0}=4.0$	$(-0.5,-3)$	$\frac{0-(-1)}{1-0}=1$	$(1,0)$
$\frac{-1.2222-(-1)}{-0.1-0}=2.222$	(-0.1, -1.2222)	$\frac{-0.8182-(-1)}{0.1-0}=1.818$	(0.1, -0.8182)
$\frac{-1.0202-(-1)}{-0.01-0}=2.02$	(-0.01, -1.0202)	$\frac{-0.9802-(-1)}{0.01-0}=1.98$	(0.01, -0.9802)

في كلا المهودنن. كلما اقتربت النقطة الثانية من (1-2 (0). اقترب ميل التاطع الى 2. بكون إيًا التقدير - المعقول لهيل الهماس عند النقطة (1-0 0 هو 2 (0.

الشكل 3.9
(2,1) 1 ($y=\frac{2}{x}$

3.10a الشكل

$$
y=\frac{x-1}{x+1}
$$

3.10b الشكل

تُوصف السرعة المتجهة غالبَّا على أنها كمية تحدد السرعة والاتجاه لجسهم ما. لاحظ أنه إذا كانت سيارتك ل تشتمل على عداد سرعات، فإنه يمكنك تحديد سـرعتك باستخخدام القانون الهعروف
المسـافة = المعدل(السـرعـة) × الزمـن

باستخدام القانون (1.3)، يمكنك إيجاد المعدل (السرعة) ببساطة عـن طريق قسمة المسافة على الزمن. بينما يشير المعدل في القَانون (1.3) إلى السـرعة المتوسطة خلال مدة زمنية، فنحن نهتم بالسرعـة في لحظة معينة. ينبغي أن توضح القصة التالية الفرق.

في نقاط المرور، يسـأل ضباط الشرطة عـادةً السائقين إذا ما كانوا يعرفون السرعة التي كانوا يسـيرون بها. لنفترض أن الإجابة التالية وردت من سـائق شديد الحهاس، والذي قد يجيب أن خلال 3 أعوام وشهرين و7 أيام و5 سـاعات و45 دقيقة ماضية، قطُعوا مسافة 45,259.7 ميلًا، لذا، فإن سرعتهم كانت

بالطبع لن ينبهر معظم ضباط الشرطة بهذا التحليل. ولكن لماذا يعتبر خطأ؟؟ بينما ل يوجد شـيء خطأ فـي القانون (1.3) أو الحساب، فهـن المحقول الجدال في عدم صحة النتائج ما لم يتول أحد غـيرهـم قيادة السـيارة طيلة فترة الأعوام الثلاثة.

على فرض أن السائق اقَترح الفرضية التالية عوضًا عـن ذلك: "أنا غادرت الهنزل في 6:17 P.M وقطعت 17 ميلأ بالضبط حتى اللحظة التي أوقفتني فيها في الساعة 6:43 P.M. لذلك، كانت سرعتي هي

$$
\begin{aligned}
& \text { وهذا أدنى من الحد الأقصى للسرعة البالغ } 45 \mathrm{mph} .
\end{aligned}
$$

بينما يِد هذا تقديرُا أفضل بكثير للسرعـة المتجهة عن 1.6 mph التي تم حسابها سابقًا، فإنها لا تزال سـرعة متجهة متوسطة باستخدام مدة زمنية طويلة للفاية.
بصفة أعمه، على فرض أن الدالّة $s(t)$ تعطي الموفع الذي تحرك منه جسم ما في الزمنt وسـلك خطًا
 أن الجسـم يقع

موقع السيارة بعد t دقائق من القيادة في خط مستقيم تحدده

$$
s(t)=\frac{1}{2} t^{2}-\frac{1}{12} t^{3}, \quad 0 \leq t \leq 4
$$

حيث S يُقاس بالأميال و $t=2$ بالدقائق. قَرّب السرعة المتجهة في فترة زمنية طولها دقيقتان $t=2$ الحل لحسـاب المتوسط على مدى دقيقتين من $t=2$ إلى ، $t=4$ نجد من خلال الصيغة (1.4) أن

$$
\begin{aligned}
v_{\mathrm{avg}} & =\frac{s(4)-s(2)}{4-2} \approx \frac{2.6667-1.3333}{2} \\
& \approx 0.6667 \mathrm{mi} / \mathrm{min} \\
& \approx 40 \mathrm{mph}
\end{aligned}
$$

بالطبع، الفترة البالغ طولها دقيقتين تعد طويلة نسبئًا، نظرُرا لأن السيارات قد تزيد السرعة وتبطئها بشُكل كبير خلال دقيقتين. وسنحصل على التقريب الهعدل عن طريق إيجاد المتوسط في خلال دقيقة واحدة:

$$
\begin{aligned}
v_{\mathrm{avg}} & =\frac{s(3)-s(2)}{3-2} \approx \frac{2.25-1.3333}{1} \\
& \approx 0.91667 \mathrm{mi} / \mathrm{min} \\
& \approx 55 \mathrm{mph}
\end{aligned}
$$

رغم أن التقدير الأخير يعد بالتأكيد افضل من الأول، فإنه يهكننا القيام بما هو أفضل. كلما قمنا بتمصير الفترة الزمنية أكثير وأكثر، ينبغي أن تقترب السرعة المتجهة المتوسطة أكثئر وأكثر من السرعة الهتجهة في

$$
v_{\text {avg }}=\frac{s(2+h)-s(2)}{(2+h)-2}=\frac{s(2+h)-s(2)}{h} \quad \text { لدينا }
$$

 بأن يكون h سالبًا. يبدو أن السرعة المتجهة الهتوسطة تقترب من ميل واحد/دقيقة (60 mph)، عندما

h	$\frac{s(2+h)-s(2)}{h}$
1.0	0.9166666667
0.1	0.9991666667
0.01	0.9999916667
0.001	0.999999917
0.0001	1.0
0.00001	1.0

> هذا يرشدنا إلى صياغة التعريف التالي.

تعريف 1.2

إذا كان $s(t)$ يمثل موقع جُسيم ما بالنسبة إلى مكان ثابت في الزمن t عندما تحرك الجُسيم في اتجاه خط مستقيم، فإذًا السرعـة اللحظية في الزمن $t=a$ تحدده الصيغة

$$
\begin{equation*}
v(a)=\lim _{h \rightarrow 0} \frac{s(a+h)-s(a)}{(a+h)-a}=\lim _{h \rightarrow 0} \frac{s(a+h)-s(a)}{h} \tag{1.5}
\end{equation*}
$$

بشـرط وجود النهاية. السـرعـة هي القيمة الهطلقة للسرعة المتجهة.

ملاحظات

 (i) لاحظ إذًا أنه. على سبيل المثال. $s(t)$ إذا كان t يُقَاس بالثّواني (المتوسطة أو اللحظية) تُقاس بالقدم لكل ثانية (ft/s). (ii) عندما يُستخدم مصطلح السرعة المتجهة بدون فبد

أو شرط. فإنه يشير إلى السرعة الهتجهة اللحظبة.

مثال 1.5 إيجاد السرعة المتجهة المتوسطة واللحظية

على فرض أن ارتفاع جسم يسقط بعد t ثانية من سقوطه من ارتفاع 64 قدمُّا، تهثئله الهعادلة铻 $s(t)=64-16 t^{2}$ الهتوسطة بين الزمنين $t=2.5$ و $t=2$ و $t=1.9$ والسرعة المتجهة الهتوسطة بين الزمنين 1.9

$$
\text { والسرعة المتجهة اللحظبة عند الزمن } 2 \text { t } 2 .
$$

$$
\text { الحل السرعة المتجهة المتوسطة بين الزمنين } 1 \text { t= } 1 \text { هي }
$$

$$
v_{\text {avg }}=\frac{s(2)-s(1)}{2-1}=\frac{64-16(2)^{2}-\left[64-16(1)^{2}\right]}{1}=-48(\mathrm{ft} / \mathrm{s})
$$

$$
\text { السرعة المتجهة المتوسطة بين الزمنين } 1.5 \text { و } t=2 \text { هي }
$$

$$
v_{\text {avg }}=\frac{s(2)-s(1.5)}{2-1.5}=\frac{64-16(2)^{2}-\left[64-16(1.5)^{2}\right]}{0.5}=-56(\mathrm{ft} / \mathrm{s})
$$

$$
\text { السرعة المتجهة المتوسطة بين الزمنين } t=2.9 \text { هي } t=2 \text { هي }
$$

$$
v_{\mathrm{avg}}=\frac{s(2)-s(1.9)}{2-1.9}=\frac{64-16(2)^{2}-\left[64-16(1.9)^{2}\right]}{0.1}=-62.4(\mathrm{ft} / \mathrm{s})
$$

تذكر أن السرعة المتجهة تشير إلى كل من السرعة والاتجاه. في هذه المسألة، ($s(t)$ يقيس الارتفاع فوق سطح الأرض. لذا. السرعة الهتجهة السالبة تشير إلى أن الجسم يتحرك في الاتجاه السالب (أو الهابط). سرعة الجسمم عند مَعْلَم الثانية "2" تكون إذًا

لاحظ أن صيغة السرعة الهتجهة اللحظية (1.5) وصيغة ميل الهمـاس (1.2) متطابقتان. لتوثيق الارتباط

 وعلى نحو مماثل، السرعة المتجهة المتوسطة بين $t=1.5$ و $t=2$ تعطي ميل التاطع المقابل. (انظر

الشُكل 3.11c).

3.11c الشكل
$t=2$ المهماس عند

3.11b الشكـل

$$
t=2 \text { و القاطع بين } t=1.5
$$

3.11a الشكل
$t=2$ والقاطع بين $t=1$

السرعة الهتجهة هي مـدل (بدقة أكبر، معدل التغير اللحظي للموقع بدلالة الزمن). بصفة عامة. متوسـط معـدل التغفير لدالّة ما بين $x=b(a \neq b)$ و $x=a$ تهثله الصيغة

$$
\begin{aligned}
& \quad \frac{f(b)-f(a)}{b-a} \\
& \quad \text { صيغـة معـدل التغير اللحظي للدالّة } x=a \text { هن } f(x)-f(a) \\
& \lim _{h \rightarrow 0} \frac{f(a+h)-}{h}
\end{aligned}
$$

بشرط وجود النهاية. وحدات معدل التنير اللحظي هي وحدات f مقسومة على (أو لكل من) وحدات x.

$$
\text { ينبغي أن تنظر إلى هذه النهاية باعتبارهـا ميل المماس لـ } x=a=f(x) \text { عند }
$$

$$
\begin{aligned}
& v(2)=\lim _{h \rightarrow 0} \frac{s(2+h)-s(2)}{(2+h)-2} \\
& =\lim _{h \rightarrow 0} \frac{\left[64-16(2+h)^{2}\right]-\left[64-16(2)^{2}\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[64-16\left(4+4 h+h^{2}\right)\right]-\left[64-16(2)^{2}\right]}{h} \quad \text { اضرب واختصر } \\
& =\lim _{h \rightarrow 0} \frac{-64 h-16 h^{2}}{h}=\lim _{h \rightarrow 0} \frac{-16 h(h+4)}{h} \quad \text { ضع العامل المشترك } h \text { واختصر } \\
& =\lim _{h \rightarrow 0}[-16(h+4)]=-64 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

مثال 1.6 تفسير معدلات التغير

إذا كانت الدالّة (f(t) تمثل تعداد سكان مدينة ما بملايين الأشَخاص بعد t أعوام من الأول من يناير عام

$$
\text { (c) } \lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=0.3, \text { (b) } f(2)-f(1)=0.31
$$

الحل بها أن
 0.34 مليون نسمة لكل عام بين 2000 و2002. وعلى نحو مماثل، التعبير (b) هو متوسط معدل التغير بين a $a=1$ سنوي في 2001. وأخيرًا. التعبير (c) يمثل معدل التغير اللحظي لتعداد السكان في الزمن 1 (c) 1 اعتبارًا من الأول من يناير، 2002. كان التحداد السكاني في الـدينة ينمو بمعدل 0.3 مليون نسهة لكل عام

قد تكون لاحظت أننا قد أضفنا العبارة "بشُرط وجود النهاية" في نهاية تعريفات ميل المهاس، والسرعة الهتجهة اللحظية. ومعدل التغير اللحظي. ويمثل ذلك أهمية بما أن تلك النهايات الهحددة لا تكون موجودة داتمّا كما سنرى في المــال 1.7.

مثثال 1.7 تمثيل بياني بدون مهاس عند نقطة

الحل من التمثيل البياني في الشكل 3.12. لاحظ أنه مهما قمنا بالتكبير على النقطة (0,0)، لن يتغير
 إلى أن الهماس غير موجود. علاوة على ذلك، إذا كان h هو أي عدد موجب، فميل القاطـع المار بالنتطتين

$$
\text { الهيل 1-. بتحديد | } f(x)=\mid \text { واعتبار نهايات من جهة واحدة، إذا كان h> } 0 \text { فإذًا } 1 \text {. } h|=h| \text { وبالتالي }
$$

$$
\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{+}} \frac{|h|-0}{h}=\lim _{h \rightarrow 0^{+}} \frac{h}{h}=1
$$

الشكل 3.12 $y=|x|$

$$
\begin{aligned}
& \lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{-}} \frac{|h|-0}{h}=\lim _{h \rightarrow 0^{-}} \frac{-h}{h}=-1 \\
& \text { بها أن النهايات من الجهتين تكون مختلفة. نستنتج أن } \\
& \lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \text { غير موجودة }
\end{aligned}
$$

(إرشاد: ابحث عن هذا الموضوع في كتاب مرجبي أو على الإنترنت). 2. ابحث في وسائل الإعلام، واكتشف مراجع إلى خمسة معدلات مختلفة
 الدالّة. اذكر الدالّة الأسـاسية في أمثلتك الخمسـة بأكبر قدر مهكن من

1 1 بصفة عامة. السرعة المتجهة اللحظية لجسـم ما 8 يمكن حسابها بشكل مباشـر؛ وعملية النهاية هي الطريقة الوحيدة لحساب السرعة الهتجهة في لحظة معينة من دالّة الموقع المرتبطة به. مـع أخذ ذلك

في الاعتبار، كيف يحسب عداد السرعات في السيارة السرعة؟

في التمارين 18-15، استخدم دالّة الموقع s (بالأمتار) لإيجاد

15. $s(t)=-4.9 t^{2}+5$, (a) $a=1$; (b) $a=2$
16. $s(t)=4 t-4.9 t^{2}$, (a) $a=0$; (b) $a=1$
17. $s(t)=\sqrt{t+16}$, (a) $a=0$; (b) $a=2$
18. $s(t)=4 / t$, (a) $a=2$; (b) $a=4$

في التمارين 22-19، تمثل الدالّة موقـع جسمم ما بالقدم عند الزمـن ، (a) $t=0$ (a) وانية. أوجد السرعة المتجهة المتوسطة بين $t=2$ و $t=2$ (d) $t=1.99$ و $t=2, t=1.9$ و $t=2$ (b) $t=1$ و و و $t=2$ و (e) قدّر السرعة المتجهة اللحظية عند 2 (e)
19. $s(t)=16 t^{2}+10$
20. $s(t)=3 t^{3}+t$
21. $s(t)=\sqrt{t^{2}+8 t}$
22. $s(t)=3 \sin (t-2)$

في التمارين 26-23، استخدم البرهان البياني والعددي لشرح

23. $f(x)=|x-1| a=1$ عند
24. $f(x)=\frac{4 x}{x-1} a=1$ عند
25. $f(x)=\left\{\begin{array}{ll}x^{2}-1 & x<0 \text { عند } \\ x+1 & x \geq 0 \text { إذا كان }\end{array} \quad a=0\right.$

في التمارين 30-27، ارسمم مهاسًا مقبولُا عند النقطة المعلومة أو حدد إذا كان غير موجود.

$$
x=0 \text { عند } y=\tan ^{-1} x .28
$$

$x=0$ عند $y=|x| .29$

الدقَة هـل الهعدل مُعطى كنسبة متوية أم عـدد؟ في حساب التفاضل والتكامل، نحسب عـادةً الهعدلات باعتبارهـا أعـدادًا، هـل هذا يتسق مـع

الاستخدام القياسي؟
3. ارسم التمثيل البياني لدالّة تكون غير متصلة عند x=1 1 ـ ثم ارسم التمثيل
 في كلتا الحالتين، فسّر سبب عدم وجود مهـاس عند 1 . 1 . 1

في التمارين 8-1، استخخدم التعريف 1.1 لإيجاد معادلة لـة المهـاس

حصولك على الهعـادلة الصـحيحة.

1. $f(x)=x^{2}-2, a=1$
2. $f(x)=x^{2}-2, a=0$
3. $f(x)=x^{2}-3 x, a=-2$
4. $f(x)=x^{3}+x, a=1$
5. $f(x)=\frac{2}{x+1}, a=1$
6. $f(x)=\frac{x}{x-1}, a=0$
7. $f(x)=\sqrt{x+3}, a=-2$
8. $f(x)=\sqrt{x+3}, a=1$
(a) في التمارين 12-9، احسـب ميل القاطـع بين النقاط ع ع ، $x=2, x=1.5$ (c) $، x=3, x=2$ (b) $، x=2, x=1$ $، x=2.1$ و $x=2$ (f) , $x=2$, $x=1.9$ (e) ، $x=2.5$, $x=2$ (d)
 لتقدير ميل القاطـع عـند 2 =
9. $f(x)=x^{3}-x$
10. $f(x)=\sqrt{ } x^{2}+1$
11. $f(x)=\frac{x-1}{x+1}$
12. $f(x)=e^{x}$

في التمرينين 13 و14، نظّم لانُحة للنقاط A و B B، و C، و D تمثل اشـارات قيم الهيل اشـارات قيم للمهماسات.

39. يوضح الجدول درجة حرارة تجمد الهـاء بالدرجات المـئوية عند

مستويات ضنط مـختلفة. قّدر ميل المهـاس عند $p=1$ وفسّر النتيجة. قدّر ميل المهاس عند 3 ق وفسّر النتيجة.

$p(\mathrm{~atm})$	0	1	2	3	4
${ }^{\circ} \mathrm{C}$	0	-7	-20	-16	-11

40. يوضح الجدول مدى ركلة كرة قّدم انطلقت بزاوية 30° فُوق المستوى الأفْفي بسرعـات أولية متعددة. قدّر ميل المهاس عند 50 و 50 وفسّر النتيجة.

58	47	37	28	19	مسـافـة
70	60	50	40	30	

41. يوضـح الجدول ارتفاع شـصص ما يتسلق منحدرًا في صورة دالّة زمنية. متى بلغ الهتسلق القمة؟ متى كان المتسلق يسـير بأعلى معدل في طريق الصعود؟ متى كان المتسلق يسير بأعلى معدل في طريق الهبوط؟ ماذا تعتقد حدوثه في الأماكن التي يكون فيها التمئيل البياني مستويًا؟

42. يوضـح الجدول كمية المياه في خزان مياه بهدينة ما في صورة دالّة زمنية. متى كان الخزان مهتلئًا أكثر؟ فـارغًا اقل ما يمكا يمك؟ متى كان

الوقت من اليوم الذي تعتقد أن مقدار مستوى الماء يهثله؟

43. على فرض أن كوبًا سـاخنًا من القهوة تُرك في غرفة لهدة ساعتين.

دالّة زمنية. ثم ارسمم تمثيلًا بيانيًا لهـا سـوف يبدو عـليه معدل التظير لدرجة الحرارة.
44. ارسم تهتيلاً بيانيًا يمثّل ارتفاع القافَز بالحبال. ارسم تهثيلًا بيانيًا للسرعة المتجهة الخاصة بالشخص (استخـدم + للسرعـة المتجهة تصاعديًا و - للسرعة المتجهة تنازليًّا).

تهرينات اسـتکشـافية

1. سيارة تسير على طريق في مسار يأخذ الشكل 1 و. 1 كانت تتحرك
 وجود غزال يقف عند النقطة (1, $1, \frac{3}{4}$ أوجد مكان أضاع السيارة. إذا كانت السيارة تتحرك من اليمين إلى اليسار، فكيف سيغير هذا الإجابة؟ هل هـن ال هـاك ثـمة مكان (x,y) لن تصل إضاءة مصابيح السيارة الأمامية إليه أبدًا (x, $(x) ؟$

عنـد
$x=1$

في التهرينين 31 و32، فسّر (a) إلى (c) كها في الهثال 1.6.

31. على فرض أن $f(t)$ تهثل الرصيد بالدرهم في حساب بنكي بعد t

أعوام من الأول من يناير عام 2000.
(b) $2[f(4)-f(3.5)]=25,036$, . (a) $\frac{f(4)-f(2)}{2}=21,034$
(c) $\lim _{h \rightarrow 0} \frac{f(4+h)-f(4)}{h}=30,000$.

32 على فرض أن $f(m)$ تمثل قيمـة سيارة بالدرهم قطمت مسافة m ألف
(b) $f(40)-f(39)=-2040$.(a) $\frac{f(40)-f(38)}{2}=-2103$. ميل (c) $\lim _{h \rightarrow 0} \frac{f(40+h)-f(40)}{h}=-2000$,
33. في بصض الأحيان. قد تنشأُ إجابة صحيحة من اتباع طريقة خاطئة. بالنسبة للدوال التربيحية (لكن بالتأكيد ليس بالنسبة لهعظم الدوال الأخرى). السرعـة المتجهة المتوسـطة بين $t=r$ و $t=r$ تسـاوي $t=r$ ت السرعتين المتجهتين المتوسطتين عند $t=s$ و $t=r$ و $t=r$ لتوضيح ذلك، على فرض أن $f(t)=a t^{2}+b t+c$ هي داللة المسافة. بيّن أن السرعة

المتجهة الهتوسطة بين $t=r$ و $t=r$ و $t=r$ تساوي $a(s+r)+b$ بيّن أن
 $a(s+r)+b=\frac{(2 a r+b)+(2 a s+b)}{2}$ هي $2 a s+b$ وأخيزِا، بيّن أن 34. أوجد دالّة تكعيبية [جرّب السرعة المتجهة المتوسطة بين $t=s$ و $t=r$ مختلفة عن السرعتين

$$
\text { الهتجهتين المتوسطتين عند } t=r \text { و } t={ }^{\text {و }} \text { المـنـ }
$$

(a) أوجد جهيع النقاط التي عندها يكون ميل المهاس للدالّة

$$
\text { y = } 5 \text { بساوي } 5 \text {. } 3 x+1
$$

بيّن أن ميل الهماس للدالّة $y=x^{3}+3 x+1 c$ يمكن أن يساوي 1 عند

$$
\begin{aligned}
& \text { أي نقطة. } \\
& \text { r } y=x, y=x^{2}+1 \text { بيّن أن التمثيلين البيانيين لكل من (a) (a) } 36
\end{aligned}
$$

$$
\begin{aligned}
& \text {. } y=x
\end{aligned}
$$

(a) بقطع منحنى $y=x^{3}+3 x+1$ في أكثر (a)

من نقطة واحدة.

إلا عند نقطة واحدة فقَط.
38 38

حساب متوسط السرعات باستخدام قياسين متجاورين فتط (على سبيل المثال، 50 مترًا و56 مترًا). كرر ذلك مـع جميع الأزواج الستة المتجاورة وأوجد أكبر سرعة (إذا كنت تريد التحويل إلى mph، فاقسم على 0.447). لاحظ أن جميع الهدد الزمنية هي في الأصل مضاعفات 1/30، مما يوضح
 الهثير للشك أن تكون جهيع المسافات من الأعداد الكلية؟ لمعرفة كم قد يؤثر الـئر هذا على حساباتك، غيّر بعض المسافات. مئلُا، إذا غيّرت 60 (مترُرا) إلى 59.8. فكيف ستتغير الحسابات التي أجريتها لمتوسط السرعة الهتجهة ؟ تتهـل إحدى الـى طرق تحديد مكان وقوع الخطاً، في النظر إلى نهط السرعات الهتوسطة المتجهة: هل تبدو منطقية؟ في الأماكن حيث يبدو النمط مئيرًا للشكك، جرّرّب
 على تحليلك للأخطاء: ما أعلى (أدنى) ذروة يمكن أن تصل إليها السرعة؟
2. ما السرعة القصوى بالنسبة للأشخاص؟ تم تقدير أن كارل لويس بلغ

السرعة القصوى 28 mph عندما فاز بالهيدالية الذهبية في دورة الأولمبياد 1992. على فرض أنه لدينا البيانات التالية لعداء ما.

النثو	الْانَ
6.26666	62
6.46666	64
7.06666	70

الثّو	\%
5.16666	50
5.76666	56
5.93333	58
6.1	60

نحن نريد تقدير السرعة القصوى. يمكننا البدء بحسـاب
اللمسنـة على مدى السباق بأكمله، وليست السرعة القصوى. على فرض أننا نريد

الاشـبتّاق

 الهتجهة. ويتم التعبير عن كلتيهما بدلالة النهاية نفسها. وفي ذلك إشـارة إلى قدرة عـلم الرياضيات؛ حيث يتم وصف مفهومين غير مترابطين بالتحبير الرياضي نفسه. كما نبين أن في تلك النهاية الهعينة إفادة كبيرة حتى أنها تحمل اسمٌا خاصًا.

تعر يف 2.1
(2.1)

مشتقة الدالّة f عند النقطة $x=a$ تُحرّف كما يأتي:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

بشرط وجود النهاية. إذا كانت النهاية موجودة، فإننا نقول إن f تكون قابلة للاشتقاق عند $x=a$
(2.2)

$$
f^{\prime}(a)=\lim _{b \rightarrow a} \frac{f(b)-f(a)}{b-a} \text { صيغة أخرى من (2.1) هي: } 38 \text { في الدرس التمرين } 3 \text { الدرئ) }
$$

مثال 2.1 إيجاد المشـتقة عـند نقطـة

$$
\begin{aligned}
& f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[3(1+h)^{3}+2(1+h)-1\right]-(3+2-1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3\left(1+3 h+3 h^{2}+h^{3}\right)+(2+2 h)-1-4}{h} \quad \text { اضرب ثم اختصر } \\
& =\lim _{h \rightarrow 0} \frac{11 h+9 h^{2}+3 h^{3}}{h} \quad \text { ضح العامل المشترك ثم اختصر } \\
& \square=\lim _{h \rightarrow 0}\left(11+9 h+3 h^{2}\right)=11 \text {. }
\end{aligned}
$$

على فرض أن في المثال 2.1 كان ينبغي أيضًا إيجاد النهاية المطول لإيجاد كل من (2)

عـن a بـ x.

مـثال 2.2 إيجاد المشتقتة عـند نقطة غـير مـحددة

أوجد مشتقة الدالّة 1 و $f(x)=3 x^{3}+2 x$ عند القيهة غير المحددة لـ x. ثم أوجد قيمة الهشتقة عند $x=3$ و $x=2 ،$ و $x=1$
الحل من خلال استبدال a مححل x وفقًا لتعريف المشتتة (2.1)، يكون لدينا $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$=\lim _{h \rightarrow 0} \frac{\left[3(x+h)^{3}+2(x+h)-1\right]-\left(3 x^{3}+2 x-1\right)}{h}$
$=\lim _{h \rightarrow 0} \frac{3\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}\right)+(2 x+2 h)-1-3 x^{3}-2 x+1}{h} \quad$ اضرب واختصر
$=\lim _{h \rightarrow 0} \frac{9 x^{2} h+9 x h^{2}+3 h^{3}+2 h}{h} \quad \begin{array}{ll}\text { المشترك العـامل }\end{array}$
$=\lim _{h \rightarrow 0}\left(9 x^{2}+9 x h+3 h^{2}+2\right)$
$=9 x^{2}+0+0+2=9 x^{2}+2$.
لاحظ أنه في هذه الحالة، لدينا مشتقة دالّة جديدة، 21 ($f^{\prime}(x)=9 x^{2}+$ وبهجرد التعويض بـx x.

․ $\cdot f^{\prime}(3)=9(9)+2=83$ و
يقودنا المثال 2.2 إلى التعريف التالي.

تعريف 2.2

مشتقة الدالّة f هي الدالّة f التي تُعطى بالهعادلة

$$
\begin{equation*}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \tag{2.3}
\end{equation*}
$$

بالتفاضل. بالإضافة إلى ذلك، f تكون قَابلة للاشتقاق (للتفاضل) على فترة مفتوحة I إذا كانت قابلة للاشتقاق عند كل نتطة في I.

في الهثالين 2.3 و 2.4، لاحظ أن إيجاد الهشتقة يتضمن كتابة تعريف النهاية ثم التوصل

$$
\begin{aligned}
& \text { مثال } 2.3 \text { إيجاد مشتقة دالّة نسبية } \\
& \text { إذا كانت (} f(x)=\frac{1}{x}(x \neq 0) \text { فأوجد }{ }^{\prime} \text {. }{ }^{\prime}(x) \text {. } \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad \text { الحل لدينا: } \\
& =\lim _{h \rightarrow 0} \frac{\left(\frac{1}{x+h}-\frac{1}{x}\right)}{h} \quad f(x+h)=\frac{1}{x+h} \text { ن. }
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\left[\frac{x-(x+h)}{x(x+h)}\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{x(x+h)}=-\frac{1}{x^{2}}
\end{aligned}
$$

$$
\text { لذلك } \text {. } f^{\prime}(x)=-x^{-2}
$$

لاحظ أن إذا كان
تتخطى فوائد الحصول على داله مالة مشتقة مجرد تبسيط حساب الاشتقاق عنـد نقاط متعددة. كها سنـرى لاحمًا، تهدنا الدالّة المشتقة بقدر كبير من المعرفة حول الدالّة الأصلية.

 نقاط ثلاثُ مختلفة. ميل المهاس في الشكل 3.13a يكون سالبَا؛ وميل المهـاس في الشكل 3.13c

3.13b الشكل
$m_{\text {tan }}=0$

3.13c الشكل
$m_{\text {tan }}>0$

3.13a الشكل
$m_{\text {tan }}<0$

3.13d الشكل

$y=f^{\prime}(x)$ (النقاط الثلاث)

$$
\begin{aligned}
& \text { مثال } 2.4 \text { مشـتقة دالّة الـجذر التربيعي } \\
& \text { إذا كانت } f(x)=\sqrt{x} \text { (حيث } x \text { (} x \text {) } 0 \text {)، فأوجد } \\
& \text { الـحل لدينا: } \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{(x+h)-x}{h[\sqrt{x+h}+\sqrt{x}]} \quad \text { اضرب واختصر } \\
& =\lim _{h \rightarrow 0} \frac{h}{h[\sqrt{x+h}+\sqrt{x}]} \quad \quad \text { اختصر } \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}} \\
& =\frac{1}{2 \sqrt{x}}=\frac{1}{2} x^{-1 / 2} .
\end{aligned}
$$

وميل المهاس في الشكل 3.13b يكون صفرًا. تعطينا المـماسـات الثلاثة هذه ثلاث نقاط التمثيل البياني للّدالّة المشتقة (انظر الشكل 3.13d)، عن طريق تقدير قيمة (x) ${ }^{\prime}$ عند النقاط الثلاث.

 الـحل لا داعي للقلق حول القيم الدقيقة لــ ــ الـي

العام لتمشيلها ألبياني. كما في الأشَكال 3.13a-3.13d، سنقوم باختيار بضع نقاط مهـمة لتحليلها بعناية. ينبغي أن تركز على أي انفصالات وأماكن حيث يدور التمثيل البياني لــ f.
 تكون المشتقة 0. كلما تحركنا من اليسار إلى اليمين، يتزايد التمثيل البياني حيث يكون 2

 اليسار. عند التحرك إلى اليمين من 2 $x=-1$ يزداد التهثيل البياني في الانحدار حتى قرابة
 ، ثم تكون أقل سلبية عند $x=2$ x 2 أخيرا، يزداد التمثيل البياني انحدارًا كلما تحركنا إلى اليمين من x=2 2 إذا جمعنا تلك النقاط معًا، فسيكون لدينا التمثيل البياني الهحتمل لـ

مثال 2.6 رسـم التمثيل البياني لـ f مـن التمثيل البياني لـ من التهثيل البياني لـ f ${ }^{\prime}$ في الشكل 3.16، ارسم تمثيلًا بيانيًا معقوًُا لـ

 ($x<-2$
 $y=f(x)$ بأن التمثيل البياني يعكس إتجاهه (أي التحول من التناقص إلى التزايد) عند 2

الشكل 3.17
$y=f^{\prime}(x)$
$y=f(x) \mathrm{J}$

الشكل 3.16
$y=f^{\prime}(x)$

الشكل 3.14
$y=f(x)$

الشكل 3.15
$y=f^{\prime}(x), y=f(x)$
 أخيرًا، حيث x>3 3 نحصل على 3 و $f^{\prime}(x)>0$ وبالتالي فإن التمثيل البياني تصاعدي هنا. ستجد

 y لسبب ما. انظر بعناية إلى التمثيل البياني لـ (1) الفترة (-2, $)$) عن الفترة (1,3). وهذا يشير إلى أن المهماسـات وكذلك، التمثيل البياني سـيزداد انحدارهـا على الفترة (2, 1-) عن الفترة (1,3).

رمـوز الاشـتقاق البديلة

نحدد للدالّة المشتقة الرمز ألأ توجد رموز أخرى شائعة الاستخدام لـ لـ وعيوب. استخدم أحد مؤسسي حساب الت

$$
f^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)
$$

 بخبرك بأن تأخذ الاشتقاق من أي تعبير مهـا يلي.
 للأشتقاق عند $x=0$)، على الرغم من أنها متصلة دائمّا. وبالتالي، توجد دوال متصلة تكا قابلة للاشتقاق. قد تكون تعجبت بالفـل مها إذا كان العكس صحيحُا. أي، هـل توجد دوال قابلة للاشتقاق ولا تكون متصلة؟ الإجابة هي "لا"، كـا توضحه النظرية 2.1.

النظرية 2.1

إذا كانت f قابلة للاشتقاق عند $x=a$ فان f تكون متصلة عند $x=a$

البرهان

$$
\begin{aligned}
\lim _{x \rightarrow a}[f(x)-f(a)] & =\lim _{x \rightarrow a}\left[\frac{f(x)-f(a)}{x-a}(x-a)\right] & (x-a) \\
& =\lim _{x \rightarrow a}\left[\frac{f(x)-f(a)}{x-a}\right] \lim _{x \rightarrow a}(x-a) & \text { ضرب واقسم } f \text { بنا } f \text { قابلة للإشتقاق } f \text { النظرية }
\end{aligned}
$$

قـنا باستخدام التعريف البديل للمشتقة (2.2) الذي ناقشناه سابقًا. بتطبيق النظرية 3.1 في الدرس 1.3، يتبع ذلك آلن ما يلي

$$
\begin{aligned}
0 & =\lim _{x \rightarrow a}[f(x)-f(a)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} f(a) \\
& =\lim _{x \rightarrow a} f(x)-f(a),
\end{aligned}
$$

■ والذي يعطينا النتيجة.
لاحظ أن النظرية 2.1 تخبرنا بأنه إذا كانت الدالة غير متصلة عند نقطة ما. فإذن لن يكون

مـلاحظات تاريخية غـوتفريد فيلهلم لايبنتز
(1616-1646) عالم رياضيات وفيلسـوف ألهـاني قَّم الكثئير من الرموز والهصطلحات في حساب التقاضل والتكامل ويُتسب له (بجانب السيد إسـحاق نيوتن) ابتكار حساب التفاضل والتكامل. وكان لايبنتز عبقريًا؛ فما إن حصل على شُهـادة القانون، بدأ في نشَ أبحاث في علم المنطق وآلأحكام القضانيةً في سـن 20. وهو أحد رواد عصر النَّضضة بحق، وله إسهـامات مـهمهة في السياسـة والفلسفة وعلم اللأهـوت والهندسـة واللفويات والجيولوجيا والهندسـة الهعمارية الهـارية والفيزياء، كها اشتهر بكونه أعـطم الهحررين في زمانه. وعلى جانب الرياضيات. فَقد استمد لايبنتز العديد من القواعد الأسـاسية لحساب المشَتقات وساعـد على

تحفيز تطوير حساب التفاضل والتكامل من خلال اتصال الصاته الواسعة. وكان للرمـز البسيط والهنطقي الذي اخترعه الفضل في أن يكُون حِّاب التفاضل
 قطاع عريض من الجمهوور. ولما يتم إحداث إلا تطويرِّا بسـيطا لهـ توصـل إليه منذ 300 عام. ومن كلماته. "ميزة الاكتشاف قـو قد

تتجلى للهـرء في الرموز ولكن الهيزة الأعظم تُكَمن في تصبيرهمه

بإيجاز عن الشيء بطبيعته الدّقْبقة ...ثمَ بالطّبع يقل جهد التفكير كثيرًُا".

مثال 2.7 إثبات أن الدالّة تكون غير قابلة للإشتقاق عـند نقطة أثبت أنّ

$$
x=2 \text { غير قابلة للإشتقاق } f(x)= \begin{cases}4, & x<2 \\ 2 x, & x \geq 2\end{cases}
$$

الححل يشير التمثيل البياني (انظر الشكل 3.18) إلى وجود رأس مُدبب عند 2 = 2 لذا قد

$$
\begin{array}{rlrl}
\lim _{h \rightarrow 0^{+}} \frac{f(2+h)-f(2)}{h} & =\lim _{h \rightarrow 0^{+}} \frac{2(2+h)-4}{h} \\
& =\lim _{h \rightarrow 0^{+}} \frac{4+2 h-4}{h} & & \\
& =\lim _{h \rightarrow 0^{+}} \frac{2 h}{h}=2 . & &
\end{array}
$$

$$
\lim _{h \rightarrow 0^{-}} \frac{f(2+h)-f(2)^{-}}{h}=\lim _{h \rightarrow 0^{-}} \frac{4-4}{h}=0
$$

غبما أن النهايات للإشتقاقن عند توضح الأشكال 3.19a-3.19d مجهوعة متنوعة من الدوال التي لا يوجد (a) لها. في كل حالة، ضع في اعتبارك أن المشتقة غير موجودة.

3.19b الشكل

خط تقارب رأسي

3.19a الشكل

انفصال قفزي

مهـاس رأسي

3.19c الشكل

رأس مُدبب

التتفاضـل الـعـددي

في حالات عديدة أثناء التطبيقات، يكون من غير المهكن أور العملي حسـاب المشتّقات رمزيًا.
 بَشكَل تام.

الـحل على الرغم من صعوبة العمل بتعريف النهاية لمشتقة هذه الدالّه أُدأن المشتقة عند $x=1$ هي نهاية ميول الخطوط القاطعة. سنقوم بحساب بعض مهما يلي

h	$\frac{f(1+h)-f(1)}{h}$
0.1	4.7632
0.01	4.3715
0.001	4.3342

h	$\frac{f(1+h)-f(1)}{h}$
-0.1	3.9396
-0.01	4.2892
-0.001	4.3260

لاحظ أن الميول تبدو متقاربة إلى 4.33 تقريبًا كلها اقترب h من 0. لذلك، نقوم بالتقريب

$$
f^{\prime}(1) \approx 4.33
$$

مثثال 2.9 تقدير السـرعـة المتتجهة عـدديًا
افترض أنّ متسابقًا قَطع المسافات التالية في الأوقات الزمنية المعطاة. قدّر السرعة المتجهة للمتسـابق عند الثانية "6".

$t(\mathrm{sec})$	5.0	5.5	5.8	5.9	6.0	6.1	6.2	6.5	7.0
$f(t)(\mathrm{ft})$	123.7	141.01	151.41	154.90	158.40	161.92	165.42	175.85	193.1

الـحل السرعة المتجهة اللحظية هي النهاية للسرعة المتجهة المتوسطة كلما تقلصت الفترة الزمنية. نحسب أونُ السرعات المتجهة المتوسطة على أقصر الفترات الزمنية الهعطاة، من

$$
5.9 \text { إلى } 6.0 \text { ومن } 6.0 \text { إلى 6.1. }
$$

بها أن هذين أفضل تقديرين فرديين متاحين من البيانات، يمكنـنا قسسمة الفرق وتقدير السرعة المتجهة 35.1ft/s. ومع ذلك، توجد معلومات مفيدة في بقية البيانات. استنادًا إلى الجدول
 يمكننا قبول التقدير الأعلى 35.2ft/s. ينبغي التأكيد على أنه لا توجد إجابة صحيحة وحيدة

ما وراء الصيغ

في الدروس 3.8-3.3، نستهد صينًا عديدة لحساب الهستـقات. كلما زادت معرفـتك بهـذه الصيغ، ضـع في اعتبارك أسباب اهتمهامنا بالاشتْاق. أوصلتنا دراسات دقيقة أُجريت على الـى ميل المماس للمنحنى والسرعة المتجهة لجسمر متحرك إلى النهاية نفسها، والتي أطلقنا
 كمية أخرى. وقد أوصلتنا دراسة التغير بطريقة كهية إلى تقدم لا حصر له بشكل مباشر في العلوم والهندسة الحديئة.

السترعة الهتجة\|	الغترة الزمنية
$34.78 \mathrm{ft} / \mathrm{s}$	$(5.5,6.0)$
$34.95 \mathrm{ft} / \mathrm{s}$	$(5.8,6.0)$
$35.00 \mathrm{ft} / \mathrm{s}$	(5.9, 6.0)
$35.20 \mathrm{ft} / \mathrm{s}$	(6.0, 6.1)
$35.10 \mathrm{ft} / \mathrm{s}$	(6.0, 6.2)
$34.90 \mathrm{ft} / \mathrm{s}$	(6.0, 6.5)

15. (a)

16. (a)

(b)

في التههرينين 17 و 18، اسـتخـدم التتمثيل البياني الهـوضـع

17. (a)

(b)

18. (a)

(b)

في التتهارئن 22-19، احسـب الـهشـتقة في الطـرف الأيهـن $D_{+} f(0)=\lim _{h \rightarrow 0^{+}} \frac{f(h)-f(0)}{h}$ والمشــتقة في الطـرف الأيسـر ${ }^{\text {أ }}$. $f_{-} f(0)=\lim _{h \rightarrow 0^{-}} \frac{f(h)-f(0)}{h}$ مـوجـودة؟
19. $f(x)= \begin{cases}2 x+1 & , x<0 \\ 3 x+1 & , x \geq 0\end{cases}$
20. $f(x)= \begin{cases}0 & , x<0 \\ 2 x & , x \geq 0\end{cases}$
21. $f(x)= \begin{cases}x^{2} & , x<0 \\ x^{3} & , x \geq 0\end{cases}$
22. $f(x)= \begin{cases}2 x & , x<0 \\ x^{2}+2 x & , x \geq 0\end{cases}$

تمارين كتابية

1. يعد الاشتـقاق مههُما بسبب العـديد مـن الاستـخـدامـات

 للاشتقاق ملسـاء أكثر من الدوال التي تكون متصلة ولكن غـير قابلة للاشتقاق، أو الدوال التي تكون غـير متصـلـع
2. صِف بإيجاز مـا تخبرك به المشتقة عـن الدالّة الأصلية. عـلى وجه الخصوص، إذا كانت المشـتقة موجبة عـند نقطـة مـا فـماذا الاذا تعلم عـن اتجاه الدالّة عـند هذه النقطـة؟ مـا الذي سـيختلف إذا كانت المشـتقة سـالبة عـند نقطـة مـا؟
3. مشتقة 4 ه 5 هي $f(x)=3 x-5$. $f^{\prime}(x)$ اشرح سـبب صحة ذلك

بدلالة الميل.

في التتمارين 1-4، احسسب (2. ${ }^{\prime}$ باسـتـخـدام النهايتين (2.1)
و (2.2).

1. $f(x)=3 x+1, a=1$
2. $f(x)=3 x^{2}+1, a=1$
3. $f(x)=\sqrt{3 x+1}, a=1$
4. $f(x)=\frac{3}{x+1}, a=2$

في التمارين 12-5، احسب الدالّة المشتقة 'f باستخدام

تعـريف الـمشـتقة.

5. $f(x)=3 x^{2}+1$
6. $f(x)=x^{2}-2 x+1$
7. $f(x)=x^{3}+2 x-1$
8. $f(x)=x^{4}-2 x^{2}+1$
9. $f(x)=\frac{3}{x+1}$
10. $f(x)=\frac{2}{2 x-1}$
11. $f(t)=\sqrt{3 t+1}$
12. $f(t)=\sqrt{2 t+4}$

في التهمرين 13 و 16، اسـتخـدم التهـثيل البياني الهوضـح لـ لـو لرسـم التتهثيل البيـاني لهـشـتقة الـدالة.
13. (a)

(b)

14. (a)

(b)

ارسم التمثيل البياني للدالّة بالخواص التالية: $\cdot f^{\prime}(3)=4 g(0)=1, f(1)=0, f(3)=6, f^{\prime}(0)=0, f^{\prime}(1)=-1$
40. ارسم التمثيل البياني للدالّة بالخواص التالية: و $f(-2)=4, f(0)=-2, f(2)=1, f^{\prime}(-2)=-2, f^{\prime}(0)=2$

$$
f^{\prime}(2)=1
$$

 نتائجك، حدد النمط وخمّن صيغة عـامة لمشتقة الدالّة الـي 42. اختبر تخمينك في التهرين 41 على الدالّة 41 الد 4 والد 1 والّة $.1 / x=x^{-1}$

تطبيقات
43. يوضح الجدول هامش الخطأ بالدرجات لضربات الإرسال في

 وفسّرهـا من حيث فائدة ضرب الكرة من ارتفاع أكبر.

3	2.85	2.7	2.5	2.39	ها x ها x
2.12	1.87	1.62	1.29	1.11	الأمتار الخطأ

44. استخدم الجدول في التمرين 43 لتقدير المشتقة عند x=2.85.
45. تستخدم وكالة حماية البيئة قياس الطن/الميل في الجالون

الهيل في الجالون لهركبةٍ من خـالال وزن المركبة (مقدرُرًا
 مقدرةٌ بالميل في الجالون. يعطي الجدول البيانات الخاصة
 في الجالون خلال (a) عام 1994 و (b) عـام 2000. هـل تشَير تقديراتك إلى أن السيارات تزداد أو تنخفض كفاءتها؟

2000	1998	1996	1994	1992	الحام
47.7	47.3	46.5	45.7	44.9	طن/هبل في الجالون

46. يوضح الجدول التالي قيم كفاءة استهلاك الوقود مقدرةً بالميل في الجالون لسيارات من عام 1992 إلى 2000. قدّر

معدّل التغير مقدرةً بوحدة MPG خلال (a) والد 1994 وخلال (b) عـام 2000. هل تشير تقديراتك إلى أن كفاءة

 لوزن السيارات المتوسط؟؟ إذا بِّي الوزن ثابتًا، فَما الذي تتوقع أنع

أن يحدث لاستهلاك الوقود مقدرًا بـ MPG؟

2000	1998	1996	1994	1992	ما الا
28.1	28.5	28.3	28.1	28.0	MPG

في التـهرينين 47 و 48، أعـطِ الوحدات الخاصة بدالّة

تمثّل الموقع مقدرًا بالأمتار وعند الزمن t مقدرًا بالثواني. $f(t)$ (a) (b) (b) x دولازا.

في التمارين 26-23، قدّر قيمة المشـتقة عدديًا.

$$
\begin{array}{rr}
f(x)=\frac{x}{\sqrt{x^{2}+1}} \downharpoonleft f^{\prime}(1) .23 & f(x)=x e^{x^{2}} \downharpoonleft f^{\prime}(2) .24 \\
f(x)=\cos 3 x \downharpoonleft f^{\prime}(0) .25 & f(x)=\ln 3 x \downharpoonleft f^{\prime}(2) .26
\end{array}
$$

في التهرينين 27 و 28، اسـتخدم الهسـافات $f(t)$ لتقدير

$$
\text { السَّرعـة الهتجهـة عـند } 2 \text { = } 2 .
$$

27.

t	1.7	1.8	1.9	2.0	2.1	2.2	2.3
$f(t)$	3.1	3.9	4.8	5.8	6.8	7.7	8.5

28.

t	1.7	1.8	1.9	2.0	2.1	2.2	2.3
$f(t)$	4.6	5.3	6.1	7.0	7.8	8.6	9.3

29. مثّل بيانيًا وحدد جميع قيم x التي عندها تكا
$f(x)=\left|x^{2}-4 x\right|(\mathrm{b}), f(x)=|x|+|x-2|$ (a) للاشتقاق
30. مثّل بيانيًا وحدد جهيع قيمر x التي عندهـا تكون 8 غير قابلة
$g(x)=e^{-2 /\left(x^{3}-x\right)}(\mathrm{b}), g(x)=e^{-2 / x}(\mathrm{a})$ للإشتقاق
31. حيث 3 حيث $f(x)=x^{p}$ أوجد جهيع الأعداد الحقيقية p بحيث يكون
. ${ }^{\prime}$ '
a 32
و b بحيث يكون (0)
32. أعط مثالُّ يوضح أن ما يأتي لا يتحقق لكل الدوال f: إذا كانت
33. إذا كانت f قابلة للإشتقاق عند $x=a \neq 0$ كأوجد x فأوجد قيمة

$$
\lim _{x \rightarrow a} \frac{[f(x)]^{2}-[f(a)]^{2}}{x^{2}-a^{2}}
$$

$$
\lim _{h \rightarrow 0} \frac{f(a+c h)-f(a)}{h}=c f^{\prime}(a)
$$

37.استخدم التهثيل البياني لتنظيم ما يأتي بترتيب تصاعدي:

38. استخدم التمثيل البياني لتنظيم ما يأتي بترتيب تصاعدي: 38 و
$f(0), f(0)-f(-1), \frac{f(0)-f(-0.5)}{0.5}, f^{\prime}(0)$.

 باحتمال انقراض الحيوانات أو أسمماء الحائلات. افترض أنك أنت وأسلافك تنجبون أطفالُا تبعًا للاحتمـالات التالية: $f_{0}=0.2$ احتمال إنجاب طفلٍ واحبٍ فقّط، $f_{2}=0.5$ هو احتمال إنجاب طفلين. عرّف $F(x)=0.2+0.3 x+0.5 x^{2}(1)>1$ ووضح أنّ 1 و 1 و 1 و أوجد حلّ $F(x)=x$ بين $x=0$ و و $x=1$ هـ هـا العدد هو احتمال انقراض "نسلك" في وقبْ مـا في المستقبل. أوجد القيم غير الصفرية لـ 1 (1) ($F^{\prime}(1)>1$ $x=a$ لناتج قسـمة الفرق التماثلي لدالّة f يتع مركزهـا عنـد الصيغة . أوضح أن قسمة الفرق التماثلي بصيغة ميل مستقيمٌ قاطـعٍ
 الفرق التماثلي مع اقتراب h من 0. ثم احسـب النهاية وقار

قسهمة الفرق التماثلي وناتج قسمة الفرق الحادي. على وجه
 بعد ذلك، قارن قيم ناتجي قسهة الفرق عـند h قا $h=0.5$ و أحده $h=-0.5$ أحدهما أصغر والآخر أكبر. وقارن متوسط ناتجي قسـي الفرق هذين بناتج قسمة الفرق التماثلثي عند ألد
 الفرق التماثلي قد يوفر تقديرًا أفضل للمشتقة. بحد ذلك، احسب العديد من نواتج قسمة الفرق التماثلي لـ مركزهـا $a=2$. تذكّر أننا أوضحنا في المثال 2.7 أن المشتقة f $f^{\prime}(2)$

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a-h)}{2 h}=f^{\prime}(a) \quad \text { موجودّة، إذًا }
$$

 بالجرامات عند الزمن t دقيقة.

49. لتكن $f(t)$ تمثل قيمة تداول سـهرٍ عـند الزمن t يومُا. فإذا كانت <0

على بصض الأسهم من هذا النوع، فهـل ينبغي عليك بيع ما بحوزتك أم شراء الهزيد؟
50. افترض أن هناك سهـمين قيمتا تداولـهما
 السهم الذي ينبغي عليك شراؤه؟ اشرح بإيجاز.
51. يفترض نهط انتشار أحد الأمراض أن المرض ينتشر في
 ليبلغ ذروته، ثم ينخفض من جديٍٍ إلى الصفر في دلالةٍ عـن نهاية الوباء. إذا كانت $I(t)$ تهثل عدد الأشَخاص الهـصابين عنـ
 أولئك المصابين $ل$ يشَون من المرض.
52. يفترض أحد أنهاط نهوّ التّعداد السّكاني أن النهوّ يكون سـريعًا
 السّكاني بالتناقص. فإذا كانت $\operatorname{lا}$ الـت

53. تفرض شـركة الاتصالات الهاتفية درهـمَا واحدًا على كـلى كل

اتصالِ مدته 20 دقيقة، ثمّ 10 فلسـات في الدقيقة للدقائق
الــ 60 التالية و 80 سـنتًا في الدقيقة من أجل كل دقيقة
إضافية بعد ذلك (أو للجزء من الدقيقة). لتكن (أحن $f(t)$ تمثل

($f^{\prime}(t)$
54. تفرض إحدى الدول ضريبة دخل بنسبة 10\% على الـ الـ الا AED20,000 الأولى للدخل و 16\% على الدخل الإضافي فوق AED20,000. لتكن (f(t) الضريبة المفروضة من قِبَل الدولة على مبلغ AEDt من الدخل. حدّد (t) بأكمل قـدرٍ

```
مهكن.
```


تهارين اسـتكثـاضية

1

البياني

حسـاب المششتقات: قاعـدة التوة

لقد حسبت الآن العديد من المشتقات باستخدام تعريف النهاية. وفي الحقيقة، قد تكون أجريت ما يكفي من الحسـابات لتبدأ باستخخدام بعض الطرق الهـختصرة. وسـنكهـل على هذا الهنوال في هذا الدرس عبر تطوير بعض القواعد الأساسـية

قاعـدة القوة
نراجع أوٌُ تحريف النهاية للمشتقة لحساب مشتقتين بسيطتين جـدا.

$$
\text { (3.1) } \quad \frac{d}{d x} c=0 \quad c \text { ce }
$$

لاحظ أن (3.1) تنص على أنه عند أي ثابت C ، فإن للمستقيم الأفقي مماس ميله صفر. أي أن المهـاس لمستقيم أفقي هو المستقيم الأفقي نفسه. (انظر الشكل 3.20). لإثبات المعادلة (5.1)، ليكن $f(x)=c$. لجميع قيم x . من تعريف النهاية، لدينا

$$
\begin{aligned}
\frac{d}{d x} c & =f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{c-c}{h}=\lim _{h \rightarrow 0} 0=0
\end{aligned}
$$

وبصورة مشـابهة، لدينا
(3.2)

$$
\frac{d}{d x} x=1
$$

الشكل 3.20
مستقيم أفقي

لاحظ أن (5.2) تنص على أن المماس على $y=x$ هو مستفيرّ ميله واحد (أي $y=x$: : انظر الشُكل 3.21)، وهذا ليس بالأمر الهغاجئ.

لإثبات المـادلة (3.2)، نجـل $f(x)=x$. من تعريف النهاية، لدينا

$$
\begin{aligned}
\frac{d}{d x} x & =f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)-x}{h} \\
& =\lim _{h \rightarrow 0} \frac{h}{h}=\lim _{h \rightarrow 0} 1=1
\end{aligned}
$$

لشكل 3.21
$y=x$ المهماس مـر

يقدم الجدول المبيّن في الهامش قائهةُ موجزةً لمشتَقًاتِ حُسبت مسبقًا إما بمئابة أمثلةٍ أو في التمارين باستخدام تعريف النهاية لاحظ أن قوّة x في المشتـتة أصغر بواحد دائمّا من قوة x في الدالّة الأساسية. وعلاوةً على ذلك، فإن معامل x في المشتقة هو نفسه قوة x في الدالة الأساسية. وهذا يقترح النتيجة التالية.

$$
\frac{d}{d x} x^{n}=n x^{n-1} \quad \begin{array}{r}
\text { لأي عدردٍ } 3.1 \text { (قاعحدة القوة } 3>0
\end{array}
$$

البـرهـان

$$
\text { من تعريف النهاية المعطى في المعادلة (3.2)، إذا كان } f(x)=x^{n} \text {. فإن }
$$

噱 $(x+h)^{3}=x^{3}+3 x^{2} h+3 x h^{2}+h^{3}(x+h)^{2}=x^{2}+2 x h+h^{2}$

$$
\begin{equation*}
(x+h)^{n}=x^{n}+n x^{n-1} h+\frac{n(n-1)}{2} x^{n-2} h^{2}+\cdots+n x h^{n-1}+h^{n} \tag{3.4}
\end{equation*}
$$

$$
\begin{align*}
& \frac{d}{d x} x^{n}=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h} \tag{3.3}\\
& \text { لتقدير النهاية، سوف نحتاج إلى تحويل التعبير الهوجود في البسط إلى أبسط صورة. تذكر أنّ }
\end{align*}
$$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{x^{n}+n x^{n-1} h+\frac{n(n-1)}{2} x^{n-2} h^{2}+\cdots+n x h^{n-1}+h^{n}-x^{n}}{h} \\
& =\lim _{h \rightarrow 0} \frac{n x^{n-1} h+\frac{n(n-1)}{2} x^{n-2} h^{2}+\cdots+n x h^{n-1}+h^{n}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left[n x^{n-1}+\frac{n(n-1)}{2} x^{n-2} h^{1}+\cdots+n x h^{n-2}+h^{n-1}\right]}{h} \\
& =\lim _{h \rightarrow 0}\left[n x^{n-1}+\frac{n(n-1)}{2} x^{n-2} h^{1}+\cdots+n x h^{n-2}+h^{n-1}\right]=n x^{n-1}
\end{aligned}
$$

مـثال 3.1 باستخدام قاعدة القوة

$$
\begin{align*}
& \frac{d}{d x}\left(\frac{1}{x}\right)=-\frac{1}{x^{2}} \tag{3.5}\\
& \left.\frac{d}{d x} x^{-1}=(-1) x^{-2}\right)
\end{align*}
$$

أي أن مشتقةّ ${ }^{\text {أ }}$ تتبع النمط نفسه في قاعدة القوة التي أشرنا إليها للتوّ وأثبتناها للأسس

$$
\text { وبصورةٍ مهاثلة، استخدمنا في الدرس } 3.2 \text { تعريف النهاية لنبيّن أن }
$$

$$
\begin{equation*}
\frac{d}{d x} \sqrt{x}=\frac{1}{2 \sqrt{x}} \tag{3.6}
\end{equation*}
$$

$$
\frac{d}{d x} x^{1 / 2}=\frac{1}{2} x^{-1 / 2} \text { نستطيع أن نحيد كتابة (3.6) أيضًا بالصيغـا }
$$

بحيث تتبع مشتقة هذه القوة النسبية لـ x النمط نفسه أيضًا في قاعدة القوة التي أثبتناها من أجل الأسس الصحيحة الموجبة.

كـا سـوف نرى، فإن قاعدة القوة تنطبق على أي قوة لـ x. لن نستطيع إثبات هذه الحقيقة لبعض الوقت الآن، وذلك نظرُرا
 يمكن تعهيمه لكون التوسّع في المعادلة (3.4) لا ينطبق سوى على الأسس الصحيحة الموجبة. ومـح ذلك، فسوف نستخدم القاعدة بطـاقةٍ عـند أي قوة لـ x. نذكر هـا فـي النظرية 3.2

إن قاعدة القوة سهلة الاستخدام، كهـا نرى في الهثال 3.2.

$$
\begin{align*}
& \text { النظرية } 3.2 \text { (القاعـدة العامة للقوة) } \tag{3.7}
\end{align*}
$$

$$
\begin{aligned}
& \text { أوجد مشتْقة (a) } \\
& \text { الحل (a) لدينا } \\
& f^{\prime}(x)=\frac{d}{d x} x^{8}=8 x^{8-1}=8 x^{7} \\
& \text {. } g^{\prime}(t)=\frac{d}{d t} t^{107}=107 t^{107-1}=107 t^{106} \\
& \text { تذكر أنّنا أوضحنا في الدرس } 3.2 \text { أن }
\end{aligned}
$$

انتبه

$$
h(x)=x^{\pi}(\mathrm{c}) g(x)=\sqrt[3]{x^{2}}(\mathrm{~b}) \cdot f(x)=\frac{1}{x^{19}}(\mathrm{a}) \text { أوجد مشتقةً }
$$

الحل (a) من (3.7)، لدينا

$$
f^{\prime}(x)=\frac{d}{d x}\left(\frac{1}{x^{19}}\right)=\frac{d}{d x} x^{-19}=-19 x^{-19-1}=-19 x^{-20}
$$

(إذا كتبنا (3.7) لحساب المشتفة. وذلك على النحو التالي.

$$
\begin{array}{r}
g^{\prime}(x)=\frac{d}{d x} \sqrt[3]{x^{2}}=\frac{d}{d x} x^{2 / 3}=\frac{2}{3} x^{2 / 3-1}=\frac{2}{3} x^{-1 / 3} \\
\cdot h^{\prime}(x)=\frac{d}{d x} x^{\pi}=\pi x^{\pi-1}
\end{array}
$$

كسـري. فما الذي نقصده بالضبط عند رفُع عددٍ إلى القوة غير النسبية π ؟

التـواعـد العـامة للمشـتـتات

تعطينا فَاعدة القوة فئةُ كبيرةً من الدّوال التي يهكننا حسـاب مشتقاتها بسرعةٍ وبدون استخـدام تعريف النهاية وتوستع القواعد التالية لجمح المشتقات وطرحهـا بصورة إضافية عدد المشتقات التي يهكننا حسـابها بدون اللجوء إلى التعريف. خذ في الحسبان دائهـا أن المشتقة هي نهاية؛ فقواعد التفاضل الواردة في النظرية 3.3 تتبع مباشرةً القواعد المقابلة الخاصة بالنهايات.

النظرية 3.3

إذا كانت $f(x)$ و $g(x)$ قـابلتين للإشتقاق عـند x وكان c أي ثابت، فـإن

$$
\begin{array}{r}
\frac{d}{d x}[f(x)+g(x)]=f^{\prime}(x)+g^{\prime}(x)(\mathrm{i}) \\
\frac{d}{d x}[f(x)-g(x)]=f^{\prime}(x)-g^{\prime}(x) \text { (ii) } \\
\cdot \frac{d}{d x}[c f(x)]=c f^{\prime}(x) \text { (iii) }
\end{array}
$$

البرهـان
نبرهن فقط الجزء (i) مـن السؤال. حيث نترك برهـان (ii) و (iii) بهثابة تهرينين. افترض أنّ $k(x)=f(x)+g(x)$

تأكد هـنـا من انك لن تقع في الخطـأ المشـترك:

$$
\frac{d}{d x} x^{-19} \neq-19 x^{-18}
$$

تخبرك قاعدة القوة أنه يجب موجباً أو ســالباً 1 من الأس إذا كان

وأخيرًا لدينا (c)

$$
\begin{aligned}
& \text { وبالتالي من تعريف نهاية المشتقة (2.3)، نحصل على } \\
& \frac{d}{d x}[f(x)+g(x)]=k^{\prime}(x)=\lim _{h \rightarrow 0} \frac{k(x+h)-k(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{[f(x+h)+g(x+h)]-[f(x)+g(x)]}{h} \\
& \text { تعـريف } k(x) \\
& \text { تجهيع حدود } f \\
& =\lim _{h \rightarrow 0} \frac{[f(x+h)-f(x)]+[g(x+h)-g(x)]}{h} \\
& \text { وتجميع حدود } 8 \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =f^{\prime}(x)+g^{\prime}(x)
\end{aligned}
$$

نوضح النظرية 3.3 عبر السير في حساب المشتقة خطوةً خطوة، مـع عرض جميع التفاصيل

مثال 3.3 إيجاد مشتقة مـجهوع

$$
\text { أوجد مشتقةّ } f(x)=2 x^{6}+3 \sqrt{x}
$$

الـحل لدينا

$$
\begin{array}{rlr}
f^{\prime}(x) & =\frac{d}{d x}\left(2 x^{6}\right)+\frac{d}{d x}(3 \sqrt{x}) \\
& =2 \frac{d}{d x}\left(x^{6}\right)+3 \frac{d}{d x}\left(x^{1 / 2}\right) & \text { (iii) النظرية } 3.3 \text { النظرية } 3 \text { قاعدة التوة } \\
& =2\left(6 x^{5}\right)+3\left(\frac{1}{2} x^{-1 / 2}\right) & \\
& =12 x^{5}+\frac{3}{2 \sqrt{x}} &
\end{array}
$$

مثثال 3.4 إعادة كتابة دالّةٍ قبل حساب الهشتقة

$$
f(x)=\frac{4 x^{3}-3 x+2 \sqrt{x}}{x} \text { أوجد مشتّةة }
$$

الحل
كتابة f(x) عبر التخلص من x في المقام. لدينا

$$
f(x)=\frac{4 x^{2}}{x}-\frac{3 x}{x}+\frac{2 \sqrt{x}}{x}=4 x-3+2 x^{-1 / 2}
$$

من النظرية 3.3 وقاعدة القوة (3.7)، نحصل على
$f^{\prime}(x)=4 \frac{d}{d x}(x)-3 \frac{d}{d x}(1)+2 \frac{d}{d x}\left(x^{-1 / 2}\right)=4-0+2\left(-\frac{1}{2} x^{-3 / 2}\right)=4-x^{-3 / 2}$

مثال 3.5 إيجاد معـادلة المهـاس
 الحل

$$
f^{\prime}(x)=0-4-2 x^{-2}=-4-2 x^{-2}
$$

 بالنقطة $(1,2)$ المــادلة التالية

$$
y-2=-6(x-1)
$$

نبيّن تمثيلًا بيانيًا لـ $y=f(x)$ والمهاس عند $x=1$ في الشكل 3.22.

الشكل 3.22
左 $y=f(x)$

من ثهرات وجود دالّة مشتقة هو أننا نستطيع حساب المشتقّة من مشتَقّة أخرى. ومن الواضح أن مثل هذه المشتقات ذات الرتب العليا لها تطبيقاتٌ هامّة.
 الرتبة الثانية لـ f و وتكتب على أنها

للإشـارة إلى المشتـقات الثلاث الأولى.

وبالنسبة للمشتقات من الرتبة الرابعة أو أكتُر، فإننا نكتب رتبة المشتقة بين قوسين. انتبه ألا تخلط بين هذا الرمز وبين الأسس.

تفاضل لا بيبنز	الهستغنة	الرُّتبة
$\frac{d f}{d x}$	$y^{\prime}=f^{\prime}(x)$	1
$\frac{d^{2} f}{d x^{2}}$	$y^{\prime \prime}=f^{\prime \prime}(x)$	2
$\frac{d^{3} f}{d x^{3}}$	$y^{\prime \prime \prime}=f^{\prime \prime \prime}(x)$	3
$\frac{d^{4} f}{d x^{4}}$	$y^{(4)}=f^{(4)}(x)$	4
$\frac{d^{5} f}{d x^{5}}$	$y^{(5)}=f^{(5)}(x)$	5

.يتم حسـاب المشتقات ذات الرتب العليا ببساطةٍ عبر حسـاب عدّة مشتقاتِ أولى، كما نرى في المثال 3.6

التسـارع

ما المعلومات التي تقّدمها لنا المشتقة من الرتبة الثانية؟ بيانيًا، نحصل على خاصيةٍ تدعى التقعر والتي نوضّحها بالتفصيل في الوحدة 3. من التطبيقات الهامة للمشتقة من الرتبة الثانية التسـارع، والتي سـوف ناقشَها بإيجازٍ الآن. لعلّك ثملك فكرةً عن مصطلح التسارع، وهو المعدّل اللحظي لتغير السرعة. وبالنتيجة، إذا كانت سرعة جسمٍ عند الزمن تصطى من خلال العلاقة ، فإن التسارع بساوي

$$
a(t)=v^{\prime}(t)=\frac{d v}{d t}
$$

مثال 3.7 حساب تسارع لاعب القفز الحرّ
 . $f(t)=640-20 t-16 t^{2}$

جها أن الهسافة تقاس بالأقدام والزمن يقاس بالثواني، فإن وحدة السرعة الهتجهة هي قدم في الثانية، وبالتالي فإن وحدة التسارع هي قدم
في الثانية في الثانية، وتكتب بالصيغة ft/s/s وبصورة أكثئر شيوعًا تكتب على أنها ft/s ft (قدم في مريع الثانية). وهذا يشير إلى أن السرعة
الهتجهة تتغير بمقدار 32 ft/s كل ثانية وأن السرعة نحو الأسفل (بالاتجاه السالب) تزداد بمقدار 32 ft/s كل ثانية بسبب الجاذبية الأرضية.

مـا وراء الـقوانين

إن قاعدة التوة تختصر علينا الكثير خلال حساب الكثير من المشتقًات. حيث يستى علماء الرياضيات دايتّا إلى تسريع العمليات الحسابية وزيادة كفاءتها بالصورة القصوى. فــن خلال تجاوز الخطوات الطات الطويلة
 إبداعية. ولكن من المهمّ أن نتذكر أنه ينبغي البرهان على الطرق المختصرة - كقاعدة القوة- بعنابة.

التهارين 3 3

إن السّرد التاريخي الوارد في التمرين 2 ليس إلا جزءًا من خلافِ مستمرِ بين أششخاص يستخدمون التقنيات في الرياضيات على نحورٍ أعهى بدون إئباتها وبين أولئك الذين يصرّون على البرهان الكا الـامل لها قبل إتاحتها للاستخدام من قبل أي شـخص. فإلى أيّ الفريتين تهيل أنت؟ حدّد موقفك بكتابة مقالةِ عن ذلك. وحاول خلا ما قد يورده الطرف الآخر من براهين مـع تفنيدها. في الحين الذي توجد فيه بين يديك طريقةٌ "سهلدّة" لحسـاب مشتقّة فقّد تتساءل عن السبب في رغبتنا بأن تتعلّم الطريقة $f(x)=x^{4}$ في "الصعبة". لتقديم إجابةِ عـن ذلك، ناقش الطريقة التي يجب أن تتبعها لتجد مشتقَة دالةّ لم تتعلّم الطريقة الهختصرة لاشتّقاقها من قبل.

في التمـارين 14-1، أوجد مشتقة كل دالّة.

1. $f(x)=x^{3}-2 x+1$
2. $f(x)=x^{9}-3 x^{5}+4 x^{2}-4 x$
3. $f(t)=3 t^{3}-2 \sqrt{t}$
4. $f(s)=5 \sqrt{s}-4 s^{2}+3$
5. $f(w)=\frac{3}{w}-8 w+1$
6. $f(y)=\frac{2}{y^{4}}-y^{3}+2$
7. $h(x)=\frac{10}{\sqrt[3]{x}}-2 x+\pi$
8. $h(x)=12 x-x^{2}-\frac{3}{\sqrt{x^{2}}}$
9. $f(s)=2 s^{3 / 2}-3 s^{-1 / 3}$
10. $f(t)=3 t^{\pi}-2 t^{1.3}$
11. $f(x)=\frac{3 x^{2}-3 x+1}{2 x}$
12. $f(x)=\frac{4 x^{2}-x+3}{\sqrt{x}}$
13. $f(x)=x\left(3 x^{2}-\sqrt{x}\right)$
14. $f(x)=(x+1)\left(3 x^{2}-4\right)$

في التمارين 20-15، احسب المشتقّة الهطلوبة.

$$
\left.f(t)=t^{4}+3 t^{2}-2\right\lrcorner f^{\prime \prime}(t) .15
$$

اشرح لصديقٍ ليس على معرفةٍ بأمور التفاضل والتكامل طريقة استخدام قاعدة القوة (رياضيًا). قَرّر إن كان من الأفضل تقديم تفسيراتٍ منفصلةٍ حول الأسس الهوجبة والسـالبة، والأسس الصحبحة وغير وغير الصحيحة. وغيرها من الحالات الخاصة.

خلال القرن الثامن عشُر، كانت "البراهين" غامضةً وفقَ المعايير الحديئة. ناهبك عن أنها كانت تنتقد إلى الدّقة. وفي عام الأسقف بيركلي الهختصّ في علوم ما وراء الطبيعة مقالةً أطلق عليها اسم الهحلل وخاطب فيها "عالم رياضيات كافر" (يعتقد أنه إدموند
 البرهان الهتفق عليه عينها لقاعدة القوة من خلال العلاقة:

 - $n x^{n-1}$ h وبالتالي تصبح المشُتقّة تساوا اعترض بيركلي على هذا البرهان فائلألا
"بيد أنه يبدو أن الاستنتاج يفتقد إلى الصحة والشمهولية. ذلك أننا إذا
 كانت كيانًا موجودًا. أو الفرضبة القائلة بأن هناك زيادادات في الأصل حيث يعتهد هذا البرهان على افتراض خاطئِ في إعطائه هذه النتيجة.
 اختزال الزيادات، فحريّ بنا أن ننترض أنه يجب اختزال كل ما يتبع عن

$$
\left.f(t)=4 t^{2}-12+\frac{4}{t^{2}}\right\lrcorner f^{\prime \prime \prime}(t) \cdot \mathbf{1 6}
$$ هذه الفرضية ضمن هذا التهرين."

$$
f(x)=2 x^{4}-\frac{3}{\sqrt{x}} \downharpoonleft \frac{d^{2} f}{d x^{2}} \cdot 17
$$

فهل تعتقد أن اعتراض بيركلي سلي؟؟ وهل من الهقبول من الناحية

$$
f(x)=x^{6}-\sqrt{x} \downharpoonleft \frac{d^{2} f}{d x^{2}} \cdot 18
$$ افتراض أن الشيء نغسه غير موجودٍ من أجل تجنّب الاضطرار إلى الـلى فبول نتائج أخرى؟ ومن الناحية الرياضية. كيف تجعلنا النهاية لا نتع الـي

$$
\left.f(x)=x^{4}+3 x^{2}-2 / \sqrt{x}\right\lrcorner f^{(4)}(x) .19
$$ في جدلية اعتراض بيركلي على الزيادة h سواءٌ من حيث وجودها أو

$$
\left.f(x)=x^{10}-3 x^{4}+2 x-1\right\lrcorner f^{(5)}(x) \cdot 20
$$ عدم وجودها؟

$$
\begin{aligned}
& \text { الحل بها أن التسارع هو مشتقّة السرعة. فإننا نحسب السرعة المتجهة أولّا: } \\
& v(t)=f^{\prime}(t)=0-20-32 t=-20-32 t \mathrm{ft} / \mathrm{s} \\
& \text { يِطبنا حساب مشتقة هذه الدالّة } \\
& a(t)=v^{\prime}(t)=-32 \mathrm{ft} / \mathrm{s}^{2}
\end{aligned}
$$

في التمرينين 33 و 34 (a)، حدّد قيمة (قيم) x التي يكوين

 على منحنى 45° المحور $x=f(x)$ عند زاوية قياس
33. $f(x)=x^{3}-3 x+1$
34. $f(x)=x^{4}-4 x+2$

في التهرينين 35 و 36، (a) حدّد قيهة (قيم) x التي عندها لا يو جد ميل للهماس على منحنى (b) $y=f(x)$ (b) مثّل الدالّة بيانيًا وحدّد الدّلالة البيانية لكلّ نقطةٍ من تلك النّقاط.
35. (a) $f(x)=x^{2 / 3}$
(b) $f(x)=|x-5|$
(c) $f(x)=\left|x^{2}-3 x-4\right|$
36. (a) $f(x)=x^{1 / 3}$
(b) $f(x)=|x+2|$
(c) $f(x)=\left|x^{2}+5 x+4\right|$

أوجد جميع قيم x والتي يشكّل عندها الهماس على
 (b) زاوية قياسها 30° مـع المحور x ، على فرض أن

الزاويتين تقاسان باتجامٍ معاكسِ لعقارب الساعة.
38. أوجد جميع قيم x التي عندها بكون الد المهاسان على . متوازيين. (a) $y=x^{4}+x^{3}+3, y=x^{3}+2 x+1$
أوجد كثيرة الحدود من الدرجة الثانية (بالصينة

$$
f(0)=-2, f^{\prime}(0)=2(a) \text { (a }\left(a x^{2}+b x+c\right.
$$

$$
\text { . } f^{\prime \prime}(0)=3 \text { و }
$$

$$
. f^{\prime \prime}(0)=1, f(0)=0, f^{\prime}(0)=(b)
$$

40. أوجد صيفةً عامةُ لإيجاد المشتقة من الرتبة
(a) $f(x)=\sqrt{x}$
(b) $f(x)=\frac{2}{x}$

艮 $y=\frac{1}{x}$
居 $y=\frac{1}{x}$ عند $x=0, y=0$
$y=\frac{1}{x}$ تحصل على الهساحة نفسها باستخدام المهماس على عند أيّ قيمة 0 . $x=a$.
41. وضّح أن نتيجة التهرين 41 لا تنطبق على $4=\frac{1}{x^{2}}$ ع أي أن

مساحة المثلث الهحدود بـ

$$
\text { ل } \gamma x=a>0 \text { تعتمد على قيمة } a=\frac{1}{x^{2}} \text { عند }
$$

43. على فرض أن a عدد حقيقي، وأن f فابلة للإشتقاق لكل قيم

$$
\text { في الحالتين } 0 \text {) } 0 \text { (a) } f^{\prime}(x) \text { و } 0 \text {) }{ }^{\text {(b) }} \text {. }
$$

44. على فرض أن a عدد حقيقي، وأن f f قابلة للإشتقاق لكل قيم $g^{\prime}(x)$ وأن $x \geq a$ أن .(b) $f^{\prime}(x)<0$ و (a) $f^{\prime}(x)>0$ في الحالتين
في التمارين 48-45، أوجد دالة مُشتقتها معطاة.
45. $f^{\prime}(x)=4 x^{3}$
46. $f^{\prime}(x)=5 x^{4}$
47. $f^{\prime}(x)=\sqrt{x}$
48. $f^{\prime}(x)=\frac{1}{x^{2}}$

في التمارين 24-21، استخدم دالّة الموقع المعطاة
لإيجاد دالتي السرعة المتجهة والتسـارع.
21. $s(t)=-16 t^{2}+40 t+10$
22. $s(t)=-4.9 t^{2}+12 t-3$
23. $s(t)=\sqrt{t}+2 t^{2}$
24. $s(t)=10-\frac{10}{t}$

25. $h(t)=-16 t^{2}+40 t+5$, (a) $t_{0}=1$ (b) $t_{0}=2$
26. $h(t)=10 t^{2}-24 t$, (a) $t_{0}=2(b) t_{0}=1$

في التهارين 30-27، أوجد معادلةً الممـاس عند

 . $x==a$27. $f(x)=x^{2}-2, a=2$
28. $f(x)=x^{2}-2 x+1, a=2$
29. $f(x)=4 \sqrt{x}-2 x, a=4$
30. $f(x)=3 \sqrt{x}+4, a=2$

في التهرينِّن 31 و 32، اسِتخدم التهثيل البياني لـ f لكي

31. (a)

32. (a)

1. تطوف طائرةٌ عند ارتفاع ميلين وعلى مسـافة 10 أميال من أحد الهطارات. بقع الهطار عن النتطة (0) (0) وتبدأ الطائرة بالهبوط عند النتطة (10,2) إلى أن تصل إلى الهطار. صهم
 الارتناع وتعطي x المسافة الأرضية عن الهـطار ((فكّر بذلك أثناء الرسم!) اششرح ما الذي تمثّله المشتّقة (x) ليست السرعة الهتجهة.) أشرح السبب في أهمية و/أو ضرورة
 الحدود الأبسط التي تحقق هذه الشروط هي كثيرة حدودٍ تكعيبة
部 مـتّل الدالّة الناتجة بيانثا؛ فهِل تبدو صحيحة؟ على فرض أن قوانين خطوط الطيران تحظر أن تساوي المشَتَة

أكبر من ذلك. فها الـغزى من هذا القانون؟ وضّح أن مسار الطائرة الذي توصّلت إليه غير قانونيم برهن أن جهيع مسارات الطيران التي تحقق الشُروط الأربعة ليست قانونيةً في حقية الأمر. ولذلك، يتعيّن أن يبدأ الهبوط عند مسافير الهـة أبعد من 10 أميال من الهطار. أوجد مسار الطائرة عند بدء الهبوط على بعد 20 ميلًا مـع تحقيق كافة الشُروطـ
2. في كتاب التسلية الذي عنوانه . Surely You're Joking Mr .Feynman ضد التكنولوجيا التي كانت رائجةً في عصره (وهي الهعداد).

حيث يقوم التحدّي على حساب الجذر التكيبي للعدد
1729.03. واستطاع فينمان أن بأتي بالإجابة 12.002 قبل
 بأن الحظّ قد تدخّل في اختيار العدد 1729.03؛ فــد كـد كان يعله أن التدم الهكقّبة تحتوي على 1728 بوصةٌ مكِبة. اشـرح السبب الذي استدلّ به فينمان من خلال ذلك على ألى أنّ الإجابة أكبر بقليلِ من 12. وكيف توصّل إلى دقِّةٍ متدارها ثـالاثة أرقام؟
 للكسور الصفيرة، تساوي الزيادة عن الجذر التكيبِيبّ ثلك الزيادة عن العدد الأصلي. فالزيادة 1.03 تشّكّل جزئًا واحدًا
 هو إيجاد الكسر 1/1728، مقسومُما على 3 ومضروبًا بـ 12. 12." ولكي ترى ما فعل، أوجد معادلة الهمـاس على 3 على y عند x=1729.03 1728

بالنسبة لجميع الحيوانات التي تصيش على اليابسة، تتبع
.49
العـلاقة من أجل عرض السـاق w وطول الـجسم b معـادلةً

 أنه بالنسبة للحيوانات الكبيرة، يزداد عرض السّاق (اللازم لحمل جسم الحيوان) بوتيرةٍ أسرع من طـول الجسمر. لهاذا يفرض ذلك حدًا على حجم جسم الحيوانات التي تعيش على اليابسـ؟؟
50. على فرض أن الدالّة (d) تهثّل متوسطـ السرعـة بوحدة

الإطـلاق لقطع مسـافة 200 متر يساوي 19.32 S فإن居
. 51 لتكن الداللّة ($f(t)$ تساوي الناتج الإجمالي المحلي (GDP) مقدرًا بمليار دولار في الولايات المتحدة الأمريكية خلال الال عالما f
 (1998)

t	1996	1997	1998	1999	2000	2001
$f(t)$	7664.8	8004.5	8347.3	8690.7	9016.8	9039.5

52. لتكن f(t) الدالّة التي تعطي الوزن المتوسط للسيارات الخفيفة المنتجة مـحليًّا خلال عال

t	1985	1990	1995	2000
$f(t)$	4055	4189	4353	4619

53. إذا كان الهوقع x لجسمٌ عند الزمن t يعطى مـن خـلال
 وفقًا لقانون نيوتن الثاني، فإن التسارع يتناسبـ مـي مـحصّلة
 الهشتقة من الرتبة الثانية (t) مشتقّة التسارع في بعض الأحيان على (t) في أن هذا المصطلح ملائم.
54. يصرّح أحد مسؤولي القطاع العام قائُلا: "لقد حققنا

انخفاضًا في معدّل زيادة الدّين القومي." فـإذا الذا كانت

 عن حجم $d(t)$ بحدّ ذاته؟

قواعـد الخيرب والقسهـة

 دالتين أو الفرق بينهما. وفي ضوء ذلك، قَد تتساءل مـا إن كانت مشتقة ناتج ضرب دالّتين تساوي ناتج ضرب مشـتقّتيهمـا. سـنختبر هـذا التّخحمـين بإيراد مـثالٍ بسـيط.

قاعـدة الضـرب

$$
\begin{align*}
& \text { ليكن } \\
& \frac{d}{d x}\left[\left(x^{2}\right)\left(x^{5}\right)\right]=\frac{d}{d x} x^{7}=7 x^{6} \\
& \left(\frac{d}{d x} x^{2}\right)\left(\frac{d}{d x} x^{5}\right)=(2 x)\left(5 x^{4}\right) \\
& =10 x^{5} \neq 7 x^{6}=\frac{d}{d x}\left[\left(x^{2}\right)\left(x^{5}\right)\right]
\end{align*}
$$

يهكنك أن ترى بوضوح الآن من خلال (4.1) أن مشتقّة ضرب لا تساوي بصورةٍ عـامةٍ ناتج ضرب الهشتـقات اللجزئية. تعطي النظرُية 4.1 القاعـدة الصـحيحة.

$$
\begin{aligned}
& \text { النظطرية } 4.1 \text { (قاعدة الضرب) } \\
& \text { افترض أن f و g قـابلتان للإشتقاق. إذًا } \\
& \frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
\end{aligned}
$$

البرهـان

في إطار رغبتنا ببرهان فَاعدةٍ عامة، فلا سبيل لنا سوى إلى استخدام تعريف نهاية المشتقة. من أجل

$$
\begin{align*}
\frac{d}{d x}[f(x) g(x)] & =p^{\prime}(x)=\lim _{h \rightarrow 0} \frac{p(x+h)-p(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x}{h} \tag{4.3}
\end{align*}
$$

 وطرح $f(x) g(x+h)$ في البسـط، يكون لدينا

$$
\begin{aligned}
p^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x+h)+f(x) g(x+h)-f(x) g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x+h)}{h}+\lim _{h \rightarrow 0} \frac{f(x) g(x+h)-f(x) g(x}{h}
\end{aligned}
$$

اقسم لجزئين

$$
=\lim _{h \rightarrow 0}\left[\frac{f(x+h)-f(x)}{h} g(x+h)\right]+\lim _{h \rightarrow 0}\left[f(x) \frac{g(x+h)-g(x)}{h}\right]
$$

$$
=\left[\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right]\left[\lim _{h \rightarrow 0} g(x+h)\right]+f(x) \lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}
$$

عرّف مشتقة الدالة f و مشتقة الدالة g

في المثال 4.1، لاحظ أن قاعدة الضرب تجنّبنا القيام بضرب اعتباطي.

الـحل على الرّغم من أننا يِكن أن نبدأ بضرب التعبير، فإن قاعدة الضرب من شأنها أن تبسّط عملنا:

$$
\begin{aligned}
f^{\prime}(x) & =\left[\frac{d}{d x}\left(2 x^{4}-3 x+5\right)\right]\left(x^{2}-\sqrt{x}+\frac{2}{x}\right)+\left(2 x^{4}-3 x+5\right) \frac{d}{d x}\left(x^{2}-\sqrt{x}+\frac{2}{x}\right) \\
& =\left(8 x^{3}-3\right)\left(x^{2}-\sqrt{x}+\frac{2}{x}\right)+\left(2 x^{4}-3 x+5\right)\left(2 x-\frac{1}{2 \sqrt{x}}-\frac{2}{x^{2}}\right)
\end{aligned}
$$

مثـال 4.2 إيجاد معـادلة الهمـاس

 أوجد معادلة الهمـاس على$$
y=\left(x^{4}-3 x^{2}+2 x\right)\left(x^{3}-2 x+3\right)
$$

$$
\text { عند } 0 \text { ع }
$$

الحل مـن فاعدة الضرب، لدينا

$$
y^{\prime}=\left(4 x^{3}-6 x+2\right)\left(x^{3}-2 x+3\right)+\left(x^{4}-3 x^{2}+2 x\right)\left(3 x^{2}-2\right)
$$

قاعـدة القسـمـة

$$
\begin{gathered}
\frac{d}{d x}\left(\frac{x^{5}}{x^{2}}\right)=\frac{d}{d x}\left(x^{3}\right)=3 x^{2} \\
\frac{\frac{d}{d x}\left(x^{5}\right)}{\frac{d}{d x}\left(x^{2}\right)}=\frac{5 x^{4}}{2 x^{1}}=\frac{5}{2} x^{3} \neq 3 x^{2}=\frac{d}{d x}\left(\frac{x^{5}}{x^{2}}\right)
\end{gathered}
$$

وبها أنه من الواضح أن هاتين الإجابتين ليستا متماثلتين، فذلك يدلّنا على أن مشتقّة قسهمةٍ تساوي بصورةٍ عـامةٌ ناتج قسمة المشتقّتين. تعطي النظرية 4.2 القاعدة الصحيحة.

$$
\begin{aligned}
& \overline{\text { البر هـان }} \\
& \text { بالنسبة لـ } \\
& \frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=Q^{\prime}(x)=\lim _{h \rightarrow 0} \frac{Q(x+h)-Q(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{f(x+h)}{g(x+h)}-\frac{f(x)}{g(x)}}{h}
\end{aligned}
$$

$$
\begin{aligned}
& \text { النظرية 2-4 (قاعدة القسمة) } \\
& \text { افترض أن f و g قَابلتان للإشتّقاق. إذًا } \\
& \frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}} \\
& g(x) \neq 0 \text { بشرط أنّ }
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\left[\frac{f(x+h) g(x)-f(x) g(x+h)}{g(x+h) g(x)}\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h) g(x)-f(x) g(x+h)}{h g(x+h) g(x)}
\end{aligned}
$$

وكما في برهان قاعدة الضرب، نبحث عن الحدّ الصحيح للجهع والطرح ضمـن البسط، بحيث نستطيع عزل تعريفي النهاية لـ

$$
\begin{aligned}
& Q^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h) g(x)-f(x) g(x)+f(x) g(x)-f(x) g(x+h)}{h g(x+h) g(x)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\lim _{h \rightarrow 0}\left[\frac{f(x+h)-f(x)}{h}\right] g(x)-f(x) \lim _{h \rightarrow 0}\left[\frac{g(x+h)-g(x)}{h}\right]}{\lim _{h \rightarrow 0} g(x+h) g(x)} \\
& =\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}} \quad \text { حدد مشتقة الدالة لكلّ g} f
\end{aligned}
$$

حيث استفدنا من الحقيقة القائلة أن و قابلة للإشتقاق لتوضيح أن و متصلة، بحيث يكون

$$
\text { ■ } h \rightarrow 0 \text { عندما } g(x+h) \rightarrow g(x) \text {) }
$$

 بوجود إشارة ناقص بين الحدّين. ولهذا السّبب، عليك التحامل بحذرٍ شـديدٍ مـع الترتيب.

مثال 4.3 استخخدام قاعـدة القسـمة

$$
\text { احسب مشتقّة } f(x)=\frac{x^{2}-2}{x^{3}+1}
$$

الحل باستخدام قاعدة التسمة، لدينا

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left[\frac{d}{d x}\left(x^{2}-2\right)\right]\left(x^{3}+1\right)-\left(x^{2}-2\right) \frac{d}{d x}\left(x^{3}+1\right)}{\left(x^{3}+1\right)^{2}} \\
& =\frac{2 x\left(x^{3}+1\right)-\left(x^{2}-2\right)\left(3 x^{2}\right)}{\left(x^{3}+1\right)^{2}} \\
& =\frac{-x^{4}+6 x^{2}+2 x}{\left(x^{3}+1\right)^{2}}
\end{aligned}
$$

وفي هذه الحالة، أعدنا كتابة البسط لأنّ ذلك يبسّط لنا الأمر بصورةٍ دقيقة. ونقوم بهذا -الإجرَاء غالبًا في قاعدة القسمة.

بها أننا نملك الآن قاعدة القسمة، فيمكننا تحليل استخدام قاعدة القوة للأسس الصحيحة

$$
\begin{aligned}
& \text { النظـرية 3-4 (قاعدة القوة) } \\
& \frac{d}{d x} x^{n}=n x^{n-1} \quad \text { لأيّ أسّّ صحيح } n \neq-1 \text { فإن } n \text { الن }
\end{aligned}
$$

لقد أثبتنا هذه النظرية سـابقًا مـع الأسس الصحيحة الهوجبة. إذًا، على فرض أنّ 0 > 0 وأنّ

$$
\begin{aligned}
& M=-n>0 \\
& \frac{d}{d x} x^{n}=\frac{d}{d x} x^{-M}=\frac{d}{d x}\left(\frac{1}{x^{M}}\right) \quad x^{-M}=\frac{1}{x^{M}} \text { بَ } \\
& =\frac{\left[\frac{d}{d x}(1)\right] x^{M}-(1) \frac{d}{d x}\left(x^{M}\right)}{\left(x^{M}\right)^{2}} \quad \text { بإستخدام قاعدة القسمة } \\
& =\frac{(0) x^{M}-(1) M x^{M-1}}{x^{2 M}} \quad M>0 \text { بإستخدام قاعدة القوة بها إن } \\
& =\frac{-M x^{M-1}}{x^{2 M}}=-M x^{M-1-2 M} \quad \text { بإستخدام قَواعد الأسس المعروفة } \\
& \text { - } \quad=(-M) x^{-M-1}=n x^{n-1} \quad n=-M \text { بَ }
\end{aligned}
$$

كما نرى في المثال 4.4، فمن المفضّل أحيانًا إعادة كتابة دالّةٍ بدُّلا من استخدام قاعدة الضرب أو القسمة بصورةٍ تلقائية.

مثال 4.4 حالة لا حاجـة فيها لاسـتخدام قاعـدتي الضرب والقسـمة

$$
\text { احسب مشتقّة } f(x)=x \sqrt{x}+\frac{2}{x^{2}} .
$$

الحل على التّغم من أنّه قد يكون من المغري استخدام قاعدة الضرب للحدّ الأول وقاعدة القسمة للحتّ الثاني، فلاحظ أنه من الأبسط أن نـيد كتابة الدالّة أولأ. يمكنتا جمع قوّتي x في الحدّ الأول. وبها أن الحدّ الثاني كسررٌ بسطه ثابت، فيمكننا كتابته بصورةٍ أبسط باستخدام أسّّ سالب. لدينا

$$
\begin{aligned}
& f(x)=x \sqrt{x}+\frac{2}{x^{2}}=x^{3 / 2}+2 x^{-2} \\
& \text { باستخدام فاعدة القوة، فيكون لدينا ببساطة }
\end{aligned}
$$

ستصادف استخداماتِ هامةً لقاعددتي الضرب والقسمة خلال دراسـاتك الرياضية والعلمية. وسنبدأ باثنين من التطبيقات البسيطَة الآن.

مثال 4.5 استكشـاف معـدّل تغيّر الإيراد

بمعدّل AED2 في العام. وعند السّــر الحالي، يشتري المستهلكون 150 ألف قَطعة، ولكنّ العدد المبيع يتناقص بمعدّل 8 آلاف فُطعة في العـام. فما معدّل تغيّر الإيراد الإجمالي؟ وهل

يتزابد الإيراد الإجماليّ أم يتناقص؟
الحل للإجابة عن هذين السؤالين. فإننا بحاجة إلى العلاقة الأساسية
الإيراد = الكهية x السـر
 بما أن هاتين الكميتين تتغيران مح الزمن، فإننا نكتب R (الكت $R(t)=Q(t) P(t)$ حيث $R(t)$ هو الإيراد، و

الهبيعة و P(t هي السحر، وكلّها مقدّرة عند الزّمن t. ليست لدينا صينٌ لأيٌّ من هاتين الدالتين، ولكن من خـلال قـاعدة الضرب، يكون لدينا

$$
R^{\prime}(t)=Q^{\prime}(t) P(t)+Q(t) P^{\prime}(t)
$$

 السالبة لـ (0'(0) ترمز إلى الانخفاض في Q. بالتالي،

$$
\text { ألف درهمٌ في الحام } 100 \text { = (2)(250) + (25) } 10(0)=(8)
$$

- بها أن معدّل التغيّر موجب، فإن الإيراد يتزايد.

مثال 4.6 استتخدام الاشتقاق لتحليل ضـربة كرة الجـولف

ضُربت كرة جولف كتلتها 0.05 kg بعصُا كتلتها 0 kg وسرعتها

 الحل من قاعدة القسهة، يكون لدينا

$$
u^{\prime}(m)=\frac{83(m+0.05)-83 m}{(m+0.05)^{2}}=\frac{4.15}{(m+0.05)^{2}}
$$

 أن التمثيل البياني لـ u(m) ينبغي أن يتزايد من الجهة اليسرى إلى الجهة اليمنى. (انظر الشكل

 سـرعة الكرة، والناتج عنـ زيادة وزن العصيّ الثقيلة أصـلًا، عن تناقص القدرة على التحكّمر.

$u(m)=\frac{83 m}{m+0.05}$

3.4 التهارين

3. قد تكون لاحظت أن في المثال 1-4 لم نضرب حدود المشتقّة.
 الأسهـل تعويض $x=a$ أُولُا ومن ثمّ تبسيط جمهيع الحدود أو ضربها ومن ثّمّ تـوريض
4. يفضّل الكثير من الطـلاب قاعدة الضرب على قاعدة الـد القسهة. تستخدم الكثير من أجهزة الحاسـوب فعليًا قاعـدة الضا لحسـاب مشتقّة (انظر التمرين 34 في الصفحة التالية.) إذا أُعطيت
تبسيطات المسائل الواردة في الهـثال 4.3، فسّر السّبب في أن قاعدة القسمة قد تكون مفضّلة.

في التمارين 16-1، أوجـد مشتقّة كلّ دالّة.

1. $f(x)=\left(x^{2}+3\right)\left(x^{3}-3 x+1\right)$
2. $f(x)=\left(x^{3}-2 x^{2}+5\right)\left(x^{4}-3 x^{2}+2\right)$
3. $f(x)=(\sqrt{x}+3 x)\left(5 x^{2}-\frac{3}{x}\right)$
4. $f(x)=\left(x^{3 / 2}-4 x\right)\left(x^{4}-\frac{3}{x^{2}}+2\right)$

تمارين كتابية

1. تمنحكك قاعدتا الضرب والقسمة القدرة عـلى حسـاب مشتـقّات

عدد كبير من الدّوال باستخدام الرموز. ولكن الكثير من

 2. يعدّ غوتفريد فيلهيلم لايبنتز (مـع السّير إسـحاق نيوتن) مـخترع الان التفاضل والتكامل. وتُنسب الكثير مـن الطرق الأسـاسية والرموز المستخدمة في حساب التفاضل والتكامـامل إلى الـى الـا

 كتبها عام 1699 من خلال النّص التالي. إذا أردنا إيجاد تفاضل فإننا نكتب: $x y$

$$
(x+d x)(y+d y)-x y=x d y+y d x+d x d y
$$

 وبالتالي، في أي من الحالات الخاصة، يكون الخطـوأ أصغر من أي كميةٍ محدودة. أجب عن رسالة لايبنتز برسالةٍ تصف فيها "أكتشافك" الخاص بقاعدة الضرب لـ لـ d(xyz.
29. تُضرب كرة بيسبول كتلتها 0.15 m/s وسرعتها بهضرب بيسبول كتلته mkg وبسرعة 40 m/s 40 (بعكس اتجاه حركة الكرة). .بعا الاصطدام، بلغت السرعة الابتدائية للكرة . $u(m)=\frac{82.5 m-6.75}{m+0.15} \mathrm{~m} / \mathrm{s}$ مصطلحات رياضة البيسبول. قارن (1) 30. في التهرين 29، إذا كنت كتلة كرة البيسبول M Kg وسترعتها 1.05 m/s 1.05 وإذا كانت كتلة الهضربر kg وسرعته 40 m/s، وكانت السرعة الابتدائية للكرة ($u(M)=\frac{86.625-45 M}{M+1.05} \mathrm{~m} / \mathrm{s}$ (موجبة أو سالبة) وفق مصطلحات رياضة البيسبول.
31. من الهنطتي أن ننترض في المثأل 4.6 أن سرعة عصا الجولف عند صدم الكرة تنخفض بزيادة كتلتها. فإذا كانت سرعـا مضرب: كتلته تساوي $v=8.5 / \mathrm{m}$ m C عند صدم الكرة، فإن السرعة الابتدائية للكرة تساوي

0.17 kg 32. في المثال 4.6، إذا كانت كتلة عصا الجورا وضُّربت الكرة بسرعة m/s m كا فيكون للكرة السرعة الابتدائية

$$
\text { . u(v) }=\frac{0.2822 v}{0.217} \mathrm{~m} / \mathrm{s}
$$

33. اكتب قاعدة الضرب للدالةّ (إلـة

34. استخدم قاعدة الضرب لتبّن أن مشتقّة號 ${ }^{\prime}(x)[g(x)]^{-2}$ - $f(x)[g(x)]^{-1}$

في التمرينين 35 و 36، أوجد مشتقّة كلّ دالّةٍ باستخدام قآعدة الضرب العامة التي وضعت في التهريّين 33.
35. $f(x)=x^{2 / 3}\left(x^{2}-2\right)\left(x^{3}-x+1\right)$
36. $f(x)=(x+4)\left(x^{3}-2 x^{2}+1\right)(3-2 / x)$
37. $f(x)=x g(x)$ على فرض أنّ و 8 متصلة عـن $x=0$ وعرّف
 $. g(x)=|x|$

 39. بالنسبنة للدالة

40. لأجل

艮 $y=f(x)$
اكبر ميل.
41. كرر الهـثال 4.4 باستخدام CAS. إذا كانت إجابته بالصيفة نفسها مثل الإجابة التي حصلنا عليها في النص. فاششرح طريتة حساب CAS إجـابته.
42. استخدم CAS لإيجاد مشتقة ذلك؟ كرر الأمبر مـع $2 x$ و 3x. استخدم طرقًا عامةً لتخهين مشتّقة $\sin k x$ لأي ثابت k.
5. $g(t)=\frac{3 t-2}{5 t+1}$
6. $g(t)=\frac{t^{2}+2 t+5}{t^{2}-5 t+1}$
7. $f(x)=\frac{3 x-6 \sqrt{x}}{5 x^{2}-2}$
8. $f(x)=\frac{6 x-2 / x}{x^{2}+\sqrt{x}}$
9. $f(u)=\frac{(u+1)(u-2)}{u^{2}-5 u+1}$
10. $f(u)=\frac{2 u}{u^{2}+1}(u+3)$
11. $f(x)=\frac{x^{2}+3 x-2}{\sqrt{x}}$
12. $f(x)=\frac{x^{2}-2 x}{x^{2}+5 x}$
13. $h(t)=t(\sqrt[3]{t}+3)$
14. $h(t)=\frac{t^{2}}{3}+\frac{5}{t^{2}}$
15. $f(x)=\left(x^{2}-1\right) \frac{x^{3}+3 x^{2}}{x^{2}+2}$
16. $f(x)=(x+2) \frac{x^{2}-1}{x^{2}+x}$

في التمارين 20-17، أوجد معادلة الهماس على التمثيل

17. $f(x)=\left(x^{2}+2 x\right)\left(x^{4}+x^{2}+1\right), a=0$
18. $f(x)=\left(x^{3}+x+1\right)\left(3 x^{2}+2 x-1\right), a=1$
19. $f(x)=\frac{x+1}{x+2}, a=0$
20. $f(x)=\frac{x+3}{x^{2}+1}, a=1$

يـ التهمارين 24-21، عـلى فـرض أن f f و g قابلتان لللإشـتقاق

بـيث
g ${ }^{\prime}$ أوجـد $g^{\prime}(1)=-2 g(0)=3$
الهمـاس عـلى التهمثيل البياني لـ $y=h(x)$ عـنـد $x=a$ ع
21. $h(x)=f(x) g(x) ;$ (a) $a=0$; (b) $a=1$
22. $h(x)=\frac{f(x)}{g(x)} ; ~($ a) $a=1$;
(b) $a=0$
23. $h(x)=x^{2} f(x)$; (a) $a=1$; (b) $a=0$
24. $h(x)=\frac{x^{2}}{g(x)} ;$ (a) $a=1$; (b) $a=0$
25. على فرض أنّ الكمية الهبيعة (Q(t) من أحد أنواع الدّمى عند
 في أن ذلك يترجم إلى العـلافَة

 . 1\% بيّن أنّ الإيراد ينـخفض بهعـدّل $R^{\prime}(t)=Q^{\prime}(t) P(t)+Q(t) P^{\prime}(t)$
واشـرح السّبب في أنّ هـا "واضـح."
26. كما في التهرين 25، افترض أنّ الكهيّة المبيعة تنخفض بمعدّل

4\%. فُّما المعدّل الذي يجب زيادة السّـر به للحفاظ على الإيراد ثابثًا؟
27. افترض أنّ سعر إحدى السّلع AED20 للتطعة وقد بيعت

20,000 قطعة. فإذا كان الستر يزداد بهعدل AED1.25 في
 العام الواحـد، فـبأي معـدل سـيزداد الإيراد؟
28. افترض أنّ سـحر القطعـة AED14، وأنّه قد بيعت 12,000 فَطعة. تريد الشـركة زيادة الكـهيّة الهبيعـة بهقدار 1200 قَطعـة في العام مـع زيادة الإيراد بمقدار AED20,000 في العـام العـام. فـما
. $\frac{d r}{d h}>0$ ف فكّر في h كمتغير و c كثتابت، ووضح أذ
 (d

اشرح لماذا يجب أن تكون نتائج الأجزاء من (a) إلى (d) صحيحة إذا كانت صيغة EPA المضمنة تُعد طريقة سهلة للوصول إلى معدلات متوسطة لكل من c و h. لمعرفة شُحور معين حول آلية عمل الصينة، استخدم c= 20 والتمثيل البياني r كدالةّ لـ h. اذكر تعليقك على سبب احتمال استخدام EPA لدالةّ معينة يصبح تمثيلها البياني موسـًا مثل هذا التمثيل البياني.

تهرينات استكاشافية

1. في العديد من الرياضات، يكون الاصطـدام بين الكرة والمضرب

 التنس، مضرب الجولف، إلخ) هو W و والسرعة المتجهة هي V- قبل الاصطدام (تشّير علامة السالب إلى أن الهضرب يتحرك في الاتجاه المعاكس للكرة). السرعة الهتجهة للكرة بعد الاصطدام ستكون (
الوسيط c الذي يسهى معامل الاسترداد، يمثل "ارتدادات"
الكرة عند الاصطدام. بمعالجة W كمتغير مستقل (مثل x x) والوسائط الأخرى كثوابت، احسب الاشتقاق وتحقق من أن لأن كل الهعامالات غير $\frac{d u}{d W}=\frac{V(1+c) w+c v w+v w}{(W+w)^{2}} \geq 0$

الأخرى، فإن سرعة الكرة تزداد. هـ هل هذا بطابـ إيق حدسك؟
ما الهثير للشك حول افتراض أن تكون كل الأشياء الأخرى $\frac{d u}{d c} 9 \frac{d u}{d w}, \frac{d u}{d v}, \frac{d u}{d V}$ متساوية؟ احسب وفشّر بشَكل مشابه كانًا . (إرشاد: يقع الوسيط c بين 0 و 1 علمُـا أن 0 يهثّل حالة ثبات الكرة، و 1 يهثل حالة السرعة التصوى للكرة.) 2. لنفترض أن لاعب كرة القدم يضرب الكرة بطاقة كافية بحيث تحصل الكرة الثابتة على سرعة ابتدائية قدرها ما
 اللاعب بسرعة 40 km/h سيجـل الكرة تنطلق بسرعة ابتدائية قدرها الاستكشافي 2 مـ 2.5 = $=0$ وافترض أن وزن الكرة أكبر قليلًا من
 التي تحولها الضربة إلى سرعة إضافية في الاتجاه الهعاكس؟
43. أوجد مشتّقة $f(x)=\frac{\sqrt{3 x^{3}+x^{2}}}{x}$ في برنامتج CAS. قارن إجابته

طريقة حصولنا على هذه الإجابة والإجابة الخاصة بيرنامج
CAS في حالة وجود اختلاف بينهما.
44
CAS هذه الإجابة والإجابة الخاصة ببرنامج CAS. في حالة وجود اختلاف بينهما.
45. لنغرض أن لا نهاية f و و (بمعنى أن (x) (). وضّح أن

46. باستخدام $F(x)$ (${ }^{(4)}(x)$ الهحدد في التهرين 45، احس باستخدام حفيقة أن
47. استخدم فاعدة ناتج الضرب لتوضيح أنه إذا كان

- $g^{\prime}(x)=2 f(x) f^{\prime}(x)$ إنان $f(x)$ قابلين للإشتّاقاق، $f(x)=[f(x)]^{2}$ يمكن الحصول على ذلك أيضًا باستخدام قاعدة السلسلة التي ستتم مناقشتها في الدرس 3.5 .

48. استخدم النتيجة من التمرين 47 وقاعدة ناتج الضا الضرب

تطبيقات

49. تتأثر كمية الإنزيم التفارغي بوجود منشط. إذا كان x هو
 $\lim _{x \rightarrow 0} f(x)$ التنشيط التفار غي هو و
50. يمكن أيضًا تثبيط إنتاج الإنزيم. وفي هذه الحالة، يتم تهثيل كمية الإنزيم كدالةّ لكمية الهـئبط بأستخدام

أوجد وفسر كل من (
51. بتم تصنيف معظم السيارات حسب الكفاءة في استخدام

الوقود عن طريق تقدير الأميال لكل جالون ألثناء التيادة في
الهدينة (c) وتقدير الأميال لكل جالون أثناء القيادة على الطريق السريعة (h). تستخدم هيئة الحماية البيئية الصينة rr=$\frac{1}{0.55 / c+0.45 / h}$
(a هذه النتيجة ضوء الهسافة بالهيل بالنسبة إلى الغاز.

قاعـدة السلسلـة

لا توجد لدينا حاليُّا طريقة لحساب مشتقة دالّة معينة مثّل
 ($P(t)=f(g(t))$ لاشتقاق دالتين مركبتين.

ستساعدنا الأمثلة البسيطة التالية على تحديد صيغة قاعدة السلسلة. لاحظ ذلك من قاعدة ناتج الضرب

$$
\begin{aligned}
\frac{d}{d x}\left[\left(x^{2}+1\right)^{2}\right] & =\frac{d}{d x}\left[\left(x^{2}+1\right)\left(x^{2}+1\right)\right] \\
& =2 x\left(x^{2}+1\right)+\left(x^{2}+1\right) 2 x \\
& =2\left(x^{2}+1\right) 2 x
\end{aligned}
$$

بالطبع يمكننا كتابة ذلك على شكل (1) 4x (x x^{2} ولكن الصيغة غير المبسطة تساعدنا على فهم صيغة قاعدة السلسلة. باستخدام هذه النتيجة وقاعدة ناتج الضرب، لاحظ أن

$$
\begin{aligned}
\frac{d}{d x}\left[\left(x^{2}+1\right)^{3}\right] & =\frac{d}{d x}\left[\left(x^{2}+1\right)\left(x^{2}+1\right)^{2}\right] \\
& =2 x\left(x^{2}+1\right)^{2}+\left(x^{2}+1\right) 2\left(x^{2}+1\right) 2 x \\
& =3\left(x^{2}+1\right)^{2} 2 x
\end{aligned}
$$

$$
\begin{aligned}
& \text { نحن نتركها كتهرين مباشر لتوسيع هذه النتيجة إلى } \\
& \frac{d}{d x}\left[\left(x^{2}+1\right)^{4}\right]=4\left(x^{2}+1\right)^{3} 2 x
\end{aligned}
$$

يجب أن تلاحظ أنه في كل الحالات، قمنا بتصفير الأس، وخفضنا القوة بهـدّار

$$
\begin{array}{r}
\frac{d}{d x}[f(g(x))]=\frac{d}{d x}\left[\left(x^{2}+1\right)^{4}\right]=4\left(x^{2}+1\right)^{3} 2 x=f^{\prime}(g(x)) g^{\prime}(x) \quad \text { هذا مثال على قاعدة السلسلة الذي تستخدم الصيغة الحامة التالية. } ا \text { التيبة }
\end{array}
$$

النظـرية 5.1 (قاعـدة السـلسـلة)

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)
$$

البرهـان

 . $\quad F(x)=f(g(x))$

$$
\begin{aligned}
& \frac{d}{d x}[f(g(x))]=F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{h} \quad F(x)=f(g(x)) \text {) } \\
& =\lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{h} \frac{g(x+h)-g(x)}{g(x+h)-g(x)} \quad g(x+h)-g(x) \text { ضرب البسط والمقام } \\
& =\lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{g(x+h)-g(x)} \lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \quad \text { تجميع الحدود }
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{g(x+h) \rightarrow g(x)} \frac{f(g(x+h))-f(g(x))}{g(x+h)-g(x)} \lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =f^{\prime}(g(x)) g^{\prime}(x)
\end{aligned}
$$

حيث يكون السطر التالي إلى الأخير صالحُا لأن

 - في هذا البرهان من المفيد في أغلب الأوقات التفكير في قاعدة السلسلة باستخدام صيفة ليبنز. إذا كان

$$
\begin{equation*}
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x} \tag{5.1}
\end{equation*}
$$

حيث يبدو أننا نختزل كل قيم du، حتى وإن لمَ تكن كسورًا.
مـثال 5.1 اسـتخـدام قاعـدة السـلسـلة
اشتق: : y=

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \frac{d u}{d x}=\frac{d}{d u}\left(u^{5}\right) \frac{d u}{d x} \quad y=u^{5} ن^{\text {i }} \text { L } \\
& =5 u^{4} \frac{d}{d x}\left(x^{3}+x-1\right) \\
& =5\left(x^{3}+x-1\right)^{4}\left(3 x^{2}+1\right)
\end{aligned}
$$

بالنسبة إلى التركيب (f(g) f(x)، تتم الإشارة إلى f غالبًا على أنها الدالة الخارجية وتتم الإشارة

 هي 1
مثال 5.2 استخدام قاعدة السـلسلة مـع دالّة الجذر التربيعي

$$
\text { أوجد } \frac{d}{d t}(\sqrt{100+8 t})
$$

ملحوظة 5.1
يجب أن تساعد قاعدة السلسلة على توصيل معنى بديهي كما يلي. نحن نفكر في $\frac{d y}{d x}$ على أنه معدل التغير اللحظي لـ 1 مـع بالنسبة إلى x، x كمـعدل تفير لحظي لـ y مـع بالنسبة إلى u و u u كمعدل للتغير اللحظي $\frac{d u}{d x}$ مـع بالنسبة إلى x. لذا، إذا كان (أي y يتغير بضعف $\frac{d y}{d u}=2$ معدل u) و u (أي u يتغير بخمسة أضعاف معدل x)، ويجب أن يوضح ذلك معنى أن y يتغير بمعدل أضعاف 10 =5 5 م 2 مرة $\frac{d y}{d x}=10$ من معدل x. 10 وهكذا مها تنص عليه الـــادلة (5.1).

$$
\begin{aligned}
\frac{d}{d t}(\sqrt{100+8 t}) & =\frac{d}{d t}\left(u^{1 / 2}\right)=\frac{1}{2} u^{-1 / 2} \frac{d u}{d t} \\
& =\frac{1}{2 \sqrt{100+8 t}} \frac{d}{d t}(100+8 t)=\frac{4}{\sqrt{100+8 t}}
\end{aligned}
$$

. لاحظ أن مشتقة الدالة الداخلية هنا هي مشتقة التعبير تحت رمز الجذر التربيعي.
أنت الآن في موضع حساب المشتَتة لرقم كبير جدًا من الدوال، عن طريق استخدام قاعدة السلسلة مـح الْجهع مــ قواعد تفاضل أخرى.

$$
\begin{aligned}
& \text { مثال } 5.3 \text { مشـتقات تتضهـن قاعـدة السـلسـلة والتواعـد الأخرى } \\
& \text { احسب مشتقة } h(x)=\frac{8}{\left(x^{3}+1\right)^{2}}, g(x)=\frac{8 x}{\left(x^{3}+1\right)^{2}} ، f(x)=x^{3} \sqrt{4 x+1}
\end{aligned}
$$

الـحل لاحظ الاختلافات في هذه الدوال الثلاثة. الدالّة الأولى $f(x)$ هي ناتج ضرب دالتين، و $g(x)$
 بالنسبة إلى الدالة الأولى، يوجد لدينا

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(x^{3} \sqrt{4 x+1}\right)=3 x^{2} \sqrt{4 x+1}+x^{3} \frac{d}{d x} \sqrt{4 x+1} \\
& =3 x^{2} \sqrt{4 x+1}+x^{3} \frac{1}{2}(4 x+1)^{-1 / 2} \underbrace{\frac{d}{d x}(4 x+1)}_{\text {قاعدة الضرب }} \\
& =3 x^{2} \sqrt{4 x+1}+2 x^{3}(4 x+1)^{-1 / 2}
\end{aligned}
$$

$$
g^{\prime}(x)=\frac{d}{d x}\left[\frac{8 x}{\left(x^{3}+1\right)^{2}}\right]=\frac{8\left(x^{3}+1\right)^{2}-8 x \frac{d}{d x}\left[\left(x^{3}+1\right)^{2}\right]}{\left(x^{3}+1\right)^{4}} \quad \text { قاعدة القسمةَ }
$$

$$
8\left(x^{3}+1\right)^{2}-8 x[2\left(x^{3}+1\right) \underbrace{\frac{d}{d x}\left(x^{3}+1\right)}]
$$

$$
=\frac{8\left(x^{3}+1\right)^{2}-16 x\left(x^{3}+1\right) 3 x^{2}}{\left(x^{3}+1\right)^{4}}
$$

$$
=\frac{8\left(x^{3}+1\right)-48 x^{3}}{\left(x^{3}+1\right)^{3}}=\frac{8-40 x^{3}}{\left(x^{3}+1\right)^{3}} .
$$

بالنسبة إلى h(x)، لاحظ أنه بدثُ مـن استخدام قاعدة ناتج القسمة، من الأبسط إعادة كتابة الداللّة بالصيغة 2-1

$$
\begin{aligned}
h^{\prime}(x) & =\frac{d}{d x}\left[8\left(x^{3}+1\right)^{-2}\right]=-16\left(x^{3}+1\right)^{-3} \underbrace{\frac{d}{d x}\left(x^{3}+1\right)}_{\text {(اشتقاق من الدا }}=-16\left(x^{3}+1\right)^{-3}\left(3 x^{2}\right) \\
& =-48 x^{2}\left(x^{3}+1\right)^{-3}
\end{aligned}
$$

في المثيال 5.4، نحـن نطبق قاعدة السلسلة عـلى دالّة مركبة معينة باستخدام مجموعة من
الدوال.

مـثال 5.4 مشـتقة تتضـهـن العـديد مـن قواعـد السـلسـلة

 $f(x)=\left(\sqrt{x^{2}+4}-3 x^{2}\right)^{3 / 2}$ أوجد مشتقة الـحل يوجد لدينا$$
f^{\prime}(x)=\frac{3}{2}\left(\sqrt{x^{2}+4}-3 x^{2}\right)^{1 / 2} \frac{d}{d x}\left(\sqrt{x^{2}+4}-3 x^{2}\right)
$$

قاعدة السلسلة

$$
=\frac{3}{2}\left(\sqrt{x^{2}+4}-3 x^{2}\right)^{1 / 2}\left[\frac{1}{2}\left(x^{2}+4\right)^{-1 / 2} \frac{d}{d x}\left(x^{2}+4\right)-6 x\right]\left[\begin{array}{l}
\text { قاعدة السلسلة }
\end{array}\right.
$$

$$
=\frac{3}{2}\left(\sqrt{x^{2}+4}-3 x^{2}\right)^{1 / 2}\left[\frac{1}{2}\left(x^{2}+4\right)^{-1 / 2}(2 x)-6 x\right]
$$

$$
=\frac{3}{2}\left(\sqrt{x^{2}+4}-3 x^{2}\right)^{1 / 2}\left[x\left(x^{2}+4\right)^{-1 / 2}-6 x\right]
$$

ونستخدم الآن قاعدة السلسلة لحسـاب مشتقة دالة عكسية مـع الأخذ في الحسبان الدالّة الأسـاسية. على فرض أننا نكتب

في مـجال f و $f(g(x))=x$ لكل قيم x في مجال g. من هذه المعادلة الأخيرة، على فرض أن f
و g قـابلتان للإشـتقاق، وهذا يتبع

$$
\frac{d}{d x}[f(g(x))]=\frac{d}{d x}(x)
$$

ومن قاعدة السلسلة يوجد لدينا الآن
$f^{\prime}(g(x)) g^{\prime}(x)=1$

$$
\text { وبحل هذا للحصول على (g) } g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))} \text { فإننا نحصل على }
$$

على فرض أننا لن نقسم على الصفر. نؤكد على هذه النتيجة استنادًا إلى النظرية 5.2.

النظرية 5.2

إذا كانت f قابلة للإشتقاق في أي مكان ولها دالة عكسية

$$
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}
$$

لكل

كما سـنرى في المــال 5.5، ولكي نستخدم النظرية 5.2، يجب علينا التمكن من حسـاب قيم الدّالة العكسية.

مثال 5.5 مشتتقة دالة عكسـية

الشكل 3.24

$$
y=x^{5}+3 x^{3}+2 x+1
$$

الـحل أؤغ، لاحظ من الشكل 3.24 أن f تبدو كأنها واحد إلى واحد ولذلك، لديها دالة عكسية. من النظرية 5.2، يوجد لدينا

$$
\begin{equation*}
g^{\prime}(7)=\frac{1}{f^{\prime}(g(7))} \tag{5.2}
\end{equation*}
$$

من السهل حسـاب 2 (
(7)

 متساوية.] بالرجوع إلى المعادلة (5.2)، يوجد لدينا الآن - $g^{\prime}(7)=\frac{1}{f^{\prime}(1)}=\frac{1}{16}$

■ الر الحيآضياة المعاصبرة في

فـان تشـونغ (-1949)
عـالمة رياضيات تايوانية تسُتهر بحياة عملية زاخرة بالنجاح في
 الأكاديهي. تقول فـان "عـندما تخرجت في تايوان. كان حولي أصدقّاء جيدون والكثير من عَالمات الربِاضيات...
يُعد التعلم من أقراناك وليس
من معلميك جزءُّا كبيرًا من التعليم." وقد كان التحاون صفة
مهميزة في حياتها الحملية. "إن
إيجاد المسألة الصحيحة هـو
فُي الغالب الجزء الرئيس من
العمل على تأسيس الارتباطـ
وعادة ستعطيك المسألة
الجيدة من شـخـص آخر دفعة
 مسـألّة جيدّة أخرى.

 صحبًا قليلًا أو من المستحيل حلّه بعبارة أكثـر دققة.

ما وراء الصييغ

إذا كنت تعتقد أن الطريقة المستخدمة في المـئل 5.5 غير مباشـرة، فُحينتّذ توجد لديك ألفكرة الصحيحة. تعطينا قاعدة السلسلة بشُكل خاص وحساب التماضل والتكامل بشكّل

 فـل ذلك هو فهـم النظرية وراء قاعدة السلسلة.

تهارين 3.5

10. (a) $f(v)=\frac{v^{2}-1}{v^{2}+1}$
(b) $f(v)=\frac{v^{2}+4}{\left(v^{3}\right)^{2}}$
11. (a) $g(x)=\frac{x}{\sqrt{x^{2}+1}}$
(b) $g(x)=\sqrt{\frac{x}{x^{2}+1}}$
12. (a) $g(x)=x^{2} \sqrt{x+1}$
(b) $g(x)=\sqrt{\left(x^{2}+1\right)(\sqrt{x}+1)^{3}}$
13. (a) $h(w)=\frac{6}{\sqrt{w^{2}+4}}$
(b) $h(w)=\frac{\sqrt{w^{2}+4}}{6}$
14. (a) $h(w)=\frac{\left(w^{3}+4\right)^{5}}{8}$
(b) $h(w)=\frac{8}{\left(w^{3}+4\right)^{5}}$
15. (a) $f(x)=\left(\sqrt{x^{3}+2}+2 x\right)^{-2}$
(b) $f(x)=\sqrt{x^{3}+2+2 x^{-2}}$
16. (a) $f(x)=\sqrt{4 x^{2}+\left(8-x^{2}\right)^{2}}$
(b) $f(x)=\left(\sqrt{4 x^{2}+8}-x^{2}\right)^{2}$

في التمارين 22 (a) في الإيجاد 5.2 (a)
17. $f(x)=x^{3}+4 x-1, a=-1$
18. $f(x)=x^{5}+4 x-2, a=-2$
19. $f(x)=x^{5}+3 x^{3}+x, a=5$
20. $f(x)=x^{3}+2 x+1, a=-2$
21. $f(x)=\sqrt{x^{3}+2 x+4}, a=2$
22. $f(x)=\sqrt{x^{5}+4 x^{3}+3 x+1}, a=3$

23. $f(x)=\sqrt[3]{x \sqrt{x^{4}+2 x \sqrt[4]{\frac{8}{x+2}}}}$
24. $f(x)=\frac{3 x^{2}+2 \sqrt{x^{3}+4 / x^{4}}}{\left(x^{3}-4\right) \sqrt{x^{2}+2}}$
25. $f(t)=\sqrt{t^{2}+4 / t^{3}}\left(\frac{8 t+5}{2 t-1}\right)^{3}$

تمارين كتابية

1. إذا كان الترس 1 يدور بهعدل 10 وكان 10 وكان الترس 2
 التي يدور بها الترس 2؟ الإجابة واضحة لمعظم الأششخاص.

 واضحة.
2.

部 $x^{2}+4 \sqrt{x^{3}-x+1}$ و معرفة $\left.{ }^{2}+4\right) \sqrt{x^{3}-x+1}$.
قاعدة (ناتج الضرب، السلسلة، إلخ) سيتم استخخدامها ومتى
يتم ذلك. ناقش الطريقة التي ستعرف من خلالها أي قاعدة

3. من التطبيقات البسيطة لقاعـدة السلسـلة: إذا كان
 وكيف يقارَن (f) $f(x)$ مـع $f(x)$ بيانيًا ولماذا توجد عـلاقة بين ميول

الهماسات كما يبين القانون؟
4. من التطبيقات البسيطة الأخرى لقاعـدة السلسلة: إذا كان

鲑 $h^{\prime}(x)=2 f^{\prime}(2 x)$ فـرح هذا المشتقة بيانيًا: $h(x)=f(2 x)$
 الهمـاسـات كها يبين القانون؟

في التمارين 4-1 أوجد المشتقة بدون استخـدام قاعـدة

1. $f(x)=\left(x^{3}-1\right)^{2}$
2. $f(x)=\left(x^{2}+2 x+1\right)^{2}$
3. $f(x)=\left(x^{2}+1\right)^{3}$
4. $f(x)=(2 x+1)^{4}$

في التهارين 16-5، اشتق كل دالّة

5. (a) $f(x)=\left(x^{3}-x\right)^{3}$
(b) $f(x)=\sqrt{x^{2}+4}$
6. (a) $f(x)=\left(x^{3}+x-1\right)^{3}$
(b) $f(x)=\sqrt{4 x-1 / x}$
7. (a) $f(t)=t^{5} \sqrt{t^{3}+2}$
(b) $f(t)=\left(t^{3}+2\right) \sqrt{t}$
8. (a) $f(t)=\left(t^{4}+2\right) \sqrt{t^{2}+1}$
(b) $f(t)=\sqrt{t}\left(t^{4 / 3}+3\right)$
9. (a) $f(u)=\frac{u^{2}+1}{u+4}$
(b) $f(u)=\frac{u^{3}}{\left(u^{2}+4\right)^{2}}$

$$
\begin{array}{ll}
x=3(\mathrm{c}), & x=1(\mathrm{~b}) x=0(\mathrm{a}) \text { عن } f(g(x)) .39 \\
x=3(\mathrm{c}), & x=1(\mathrm{~b}) x=0(\mathrm{a}) \text { عن } g(f(x)) .40
\end{array}
$$

لكُل دالتّةرينين 41 و 42، أوجد المشتقة مـن الرتبة الثانية
41. (a) $f(x)=\sqrt{x^{2}+4}$
(b) $f(t)=\frac{2}{\sqrt{t^{2}+4}}$
42. (a) $h(t)=\left(t^{3}+3\right)^{2}$
(b) $g(s)=\frac{3}{\left(5^{2}+1\right)^{2}}$

أوجد كل قيم x التي تجـعل $x(x)=\sqrt[3]{x^{3}-3 x^{2}+2 x}$ غـير

(a) .43

$$
\begin{equation*}
f(x)=\sqrt{x^{4}-3 x^{3}+3 x^{2}-x} \mathrm{~S} \text { كرر الجزء } a \text { بالنسـبة } \tag{b}
\end{equation*}
$$

ما الخطوات في اللمـحة الحامة الخاصة بإثبات قاعـد
 افـتراض أن 0

45. $f(x)=\left(x^{2}+3\right)^{2}(2 x)$
46. $f(x)=x^{2}\left(x^{3}+4\right)^{2 / 3}$
47. $f(x)=\frac{x}{\sqrt{x^{2}+1}}$
48. $f(x)=\frac{x}{\left(x^{2}+1\right)^{2}}$

تهارين اسـتكشـافية

m حيث 1 هـو كتلـة الجسـم الذي يخضع للتسـارع a بسـبب قـوة مستـخـدمـة F. هـذا القانون دقـيق عـند السـرعـات البطـيئة. وعـند السـرعـات العالية، نستخـدم القـانون الهقابل مـن نظرية النسبية لأينشتين. حيث الضوء. احسـب $)$
 (2

$$
\text { a) إذا كان } g_{1}(x)=f\left(x^{n}\right. \text { و بالنسـبة إلى }
$$

 هل يمكنك استتنتاج أن

ح $g_{4}(x)=f\left(h_{1}(x)+f\left(h_{2}(x)\right) g g_{3}(x)=f\left(h_{1}(x) h_{2}(x)\right)\right.$ ودن
 لكل x؟

26. $f(t)=\left(3 t+\frac{4 \sqrt{t^{2}+1}}{t-5}\right)^{3}$

في التمرينين 27 و 28، أوجـد مـعـادلة المهماس عـلى

27. $f(x)=\sqrt{x^{2}+16}, a=3$
28. $f(x)=\frac{6}{x^{2}+4}, a=-2$

29. $s(t)=\sqrt{t^{2}+8}$
30. $s(t)=\frac{60 t}{\sqrt{t^{2}+1}}$

في التهمرينين 31 و 32، اسـتخـدم الـهــلومـات ذات الصـلة لـحسـاب المهشـتقة (3 $)=f(x)=f(x)$

$$
f^{\prime}(2)=3, f^{\prime}(1)=4, g(1)=2, f(1)=3, g^{\prime}(1)=-2, g^{\prime}(3)=5
$$

$$
\text { 32. }{ }^{\prime}(2) \text { حيث: }
$$

$f^{\prime}(3)=-3, f^{\prime}(2)=-1, g(2)=3, f(2)=1, g^{\prime}(1)=2, g^{\prime}(2)=4$
 دالّلة فـردية إذا كان دان دالّة زوجية هي دالة فـردية فردية، وأن مشـتقة دالة فردية هي دالة

زوجية.
إذا كان التمشيل البياني للدالّة القابلة للإشتماق f متماثلُا حول لـ الـ

في التهمارين 35-38 أوجـد المشـتقة للـدالة f. f f
35. (a) $f\left(x^{2}\right)$
(b) $[f(x)]^{2}$
(c) $f(f(x))$
36. (a) $f(\sqrt{x})$
(b) $\sqrt{f(x)}$
(c) $f(x f(x))$
37. (a) $f(1 / x)$
(b) $1 / f(x)$
(c) $f\left(\frac{x}{f(x)}\right)$
38. (a) $1+f\left(x^{2}\right)$
(b) $[1+f(x)]^{2}$
(c) $f(1+f(x))$

في التتهرينين 39 وس40، اسـتـخـدم التتهثيلات البـيانيانية

$y=f(x)$

مشـتّتات الـدوال الهـثلثبية

تخيل وجود وزن يتدلى من زنبرك مـلق في السقَّف. (انظر الشكل 3.25). عنـدما يتحرك الجسم، فإنه سـيرتفح إلى أعلى وإلى أسفل في حركات نظامية تقل باستهرار حتى يصبح في حالة سكون مجددًا (اتزان).

 للزاوية. نحن نحسب مشتّقات هذه الدوال والدول الهئلئية الأخرى في هذا الدرس.
 $y=\sin x$ عند قيم x هـذه، يجب أن يساوي الاشتقاق 0. للمهاسات ميل موجب لـ لـ الا وميل سـالب لـ

 يجب أن يبدو الرسم الخاص بالتمثيل البياني للاشتقاق مثل التمثيل البياني في $x=\pi / 2$ الشكل 3.26b، الذي يبدو مثل التمثيل البياني لـ $y=\cos x=\operatorname{lل}$ نحن نوضح هـنا أن هذا التخهين

5.26b الشكل

مشتقة

الشكل 3.26a

$y=\sin x$

وضعية التوازن

الشكل 3.25 نظام الزنبرك-الكتلة

قبل أن نتنقل إلى حساب مشتقات الدوال الستة المثلثية، يجب أؤُّ الأخذ في الاعتبار

تبدو هذه النتيجة منطفية بالتأكيل، وخصوضًا عندما نضع في حسباننا التمثيل البياني لـ y= $\sin x$ من النظرية 3.4. ونحن الآن نثبت النتيجة.

البرهـان

بالنسبة إلى $0 \leq \sin \theta \leq \theta$

الشكل 3.27

تعريف $\sin \theta$

$$
\lim _{\theta \rightarrow 0^{-}} \sin \theta=0
$$

جما أن كلا النهايتين اللذين لهما نهاية واحدة فقط متماثلان، فهذا يتبع

- $\lim _{\theta \rightarrow 0} \sin \theta=0$

تم تخهين أن تكون النتيجة التالية صحيحة (وفعًا لتمثيل بياني وبض الحسابات) عندما فحصنا النهايات لأول مرة. يهكننا الآن أن نثبت النتيجة

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1 \quad 6.3 \text { النظر ية }
$$

الشكل 3.28

$$
\begin{equation*}
\text { مساحة } \Delta O Q R \text { >مساحة التطاع الدائري OPR >مساحة } 0 \text { > } 0 \tag{6.3}
\end{equation*}
$$

$$
\text { يمكنك أيضًا من خلال الشُكل } 3.29 \text { معرفة أن }
$$

مساحة التطاع الدائري
وهكذا من (6.3) و(6.4) و(6.5). و(6.6) يوجد لدينا

$$
\begin{equation*}
0<\frac{1}{2} \sin \theta<\frac{\theta}{2}<\frac{1}{2} \tan \theta . \tag{6.7}
\end{equation*}
$$

إذا قسمنا (6.7) على $\sin \theta \frac{1}{2} \operatorname{l} \operatorname{l}$ (حظ أن هذا موجب، لذلك لا تأثر المتباينات)، نحصل على

$$
1<\frac{\theta}{\sin \theta}<\frac{\tan \theta}{\sin \theta}=\frac{1}{\cos \theta} .
$$

الشكل 3.29
قَطاع دائري

$$
\begin{aligned}
& \frac{\theta}{2}=\frac{\theta}{2 \pi}\left(1^{2}\right) \pi= \\
& \text { مساحة } \sin \theta(1) \frac{1}{2}=\frac{1}{2}=\triangle O P R \text { (القاعدة) (الارتفاع) } \\
& \text { مساحة } \tan \theta(1) \frac{1}{2}=\triangle O Q R
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0^{+}} 0=0=\lim _{\theta \rightarrow 0^{+}} \theta \\
& \text { تتبع من نظرية الشطيرة، ومن (6.1) و(6.2) أن } \\
& \lim _{\theta \rightarrow 0^{+}} \sin \theta=0 \\
& \text { نحن نتركها كتدريب لتوضيح أن }
\end{aligned}
$$

$$
\begin{aligned}
& \text { بأخذ الهعكوسـات الضربية (ومرة أخرى، كل شيء هنا موجب)، نجد } \\
& 1>\frac{\sin \theta}{\theta}>\cos \theta .
\end{aligned}
$$

$$
\lim _{\theta \rightarrow 0} \cos \theta=1=\lim _{\theta \rightarrow 0} 1
$$

$$
\begin{aligned}
& \text { ولذلك تتبع النظرية (6.8) ونظرية الشطيرة التي تنص على أن } \\
& \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1
\end{aligned}
$$

- أيضًا

نحتاج إلى نتيجة نهاية اضافية ثانية قبل معالجة مشتقات الدوال المثلثية.

$$
\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta}=0
$$

x	$\frac{1-\cos x}{x}$
-0.1	-0.04996
-0.01	-0.00499996
-0.001	-0.0005
-0.0001	-0.00005

x	$\frac{1-\cos x}{x}$
0.1	0.04996
0.01	0.00499996
0.001	0.0005
0.0001	0.00005

3.30 الشكل
$y=\frac{1-\cos x}{x}$

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta}=\lim _{\theta \rightarrow 0}\left(\frac{1-\cos \theta}{\theta}\right)\left(\frac{1+\cos \theta}{1+\cos \theta}\right) \quad 1+\cos \theta \text { اضرب البسط والهقام بـر بـر } \\
& =\lim _{\theta \rightarrow 0} \frac{1-\cos ^{2} \theta}{\theta(1+\cos \theta)} \quad \text { اضرب البسط والمقام. } \\
& =\lim _{\theta \rightarrow 0} \frac{\sin ^{2} \theta}{\theta(1+\cos \theta)} \quad \sin ^{2} \theta+\cos ^{2} \theta=1 \text { بَ } \\
& =\lim _{\theta \rightarrow 0}\left[\left(\frac{\sin \theta}{\theta}\right)\left(\frac{\sin \theta}{1+\cos \theta}\right)\right] \\
& \text { افصل الحدود لأن النهايتين موجودتين } \\
& =(1)\left(\frac{0}{1+1}\right)=0 \text {, }
\end{aligned}
$$

```
* نحن في النهاية في موقع حساب مشتقات دوال الــ sine و الــ cosine. 
```

$$
\frac{d}{d x} \sin x=\cos x .
$$

البـرهـان

من تعريف النهاية للمشتقة، بالنسبة لـ $f(x)=\sin x$ يوجد لدينا
$\frac{d}{d x} \sin x=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin (x)}{h}$

$$
=\lim _{h \rightarrow 0} \frac{\sin x \cos h+\sin h \cos x-\sin x}{h} \quad \sin (\alpha+\beta)=\sin \alpha \cos \beta+\sin \beta \cos \alpha \text { متطابقات مثـلثية }
$$

$$
=\lim _{h \rightarrow 0} \frac{\sin x \cos h-\sin x}{h}+\lim _{h \rightarrow 0} \frac{\sin h \cos x}{h} \quad \sin x \text { و حدود } \sin \text { بشكل منفصلع حدول }
$$

$$
=(\sin x) \lim _{h \rightarrow 0} \frac{\cos h-1}{h}+(\cos x) \lim _{h \rightarrow 0} \frac{\sin h}{h} \quad \sin x \text { من الحد الأول و } \cos \text { من الحد الثانيل الى عاملي }
$$

$$
=(\sin x)(0)+(\cos x)(1)=\cos x
$$

$$
\text { ■ من النظريتين التابعتين } 6.3 \text { و 6.4. }
$$

تم ترك إثبات النتيجة التالية كتمـرين.

$$
\frac{d}{d x} \cos x=-\sin x . \quad 6.2 \text { النظرية }
$$

اشـتقاق الدوال المـثلثية الأربعة المتبقية التي تتبع قاعـدة ناتج القسـمة.
\square

البـرهـان
باسـتخدام قاعـدة ناتج القسـمة،

$$
\frac{d}{d x} \tan x=\frac{d}{d x}\left(\frac{\sin x}{\cos x}\right)
$$

$$
=\frac{\left[\frac{d}{d x}(\sin x)\right](\cos x)-(\sin x) \frac{d}{d x}(\cos x)}{(\cos x)^{2}}
$$

$$
=\frac{\cos x(\cos x)-\sin x(-\sin x)}{(\cos x)^{2}}
$$

$$
=\frac{\cos ^{2} x+\sin ^{2} x}{(\cos x)^{2}}=\frac{1}{(\cos x)^{2}}=\sec ^{2} x
$$

تِم ترك اشتقاقات الدوال المثلثية المتبقية كتمارين. تم تلخيص اشتقاقات كل الدوال المثلثية

$$
\begin{array}{llrl}
\frac{d}{d x} \sin x & =\cos x & \frac{d}{d x} \cos x & =-\sin x \\
\frac{d}{d x} \tan x & =\sec ^{2} x & \frac{d}{d x} \cot x & =-\csc ^{2} x \\
\frac{d}{d x} \sec x & =\sec x \tan x & \frac{d}{d x} \csc x & =-\csc x \cot x
\end{array}
$$

$$
\text { يوضح المثال } 6.1 \text { أين تكون قاعدة ناتج الضرب ضرورية. }
$$

مثال 6.2 حسـاب بعض المشتقات الاعتيادية

(b) $g(x)=4 \tan x-5 \csc x$ g (a) $f(x)=\sin ^{2} x$ احسب مشتقات الات (aser $f(x)=(\sin x)^{2}$ الحل بالنسبة إلى (a)، نعمل أوُّا على إعادة كتابة الدالّة على شكلى
واستخدام قـاعدة السلسلة. لدينا

$$
f^{\prime}(x)=(2 \sin x) \underbrace{\frac{d}{d x}(\sin x)}=2 \sin x \cos x
$$

بالنسبة إلى (b)، لدينا

- $g^{\prime}(x)=4 \sec ^{2} x+5 \csc x \cot x$

مثثال 6.3 مشتتات بعض الدوال المثلثية المتشـابهـة

$$
\text { (c) } h(x)=\cos 3 x \text { (b) } g(x)=\cos ^{3} x \text { ،(a) } f(x)=\cos x^{3} \text { (احسب اشتقاق }
$$ الححل لاحظ الاختلافات بين هذه الدوال الثلاثة. باستخدام الأقواس المضمنة التي لا يضرنا

$$
\text { وضحها، يوجد لدينا , } h(x)=\cos (3 x) g(x)=(\cos x)^{3} . f(x)=\cos \left(x^{3}\right) \text { بالنسبة إلى (a) }
$$

يوجد لدينا

$$
f^{\prime}(x)=\frac{d}{d x} \cos \left(x^{3}\right)=-\sin \left(x^{3}\right) \frac{d}{d x}\left(x^{3}\right)=-\sin \left(x^{3}\right)\left(3 x^{2}\right)=-3 x^{2} \sin x^{3} .
$$

$$
\underbrace{a x}_{\text {مشُتْة من الداخل }}
$$

$$
\begin{aligned}
& \text { مثثال } 6.1 \text { مشتقة قاعـدة ناتج الضرب } \\
& f(x)=x^{5} \cos x \text { أوجد مشتقة } \\
& \text { الـحل من قاعدة ناتج الضرب، لدينا } \\
& \frac{d}{d x}\left(x^{5} \cos x\right)=\left[\frac{d}{d x}\left(x^{5}\right)\right] \cos x+x^{5} \frac{d}{d x}(\cos x) \\
& \text { - }=5 x^{4} \cos x-x^{5} \sin x \text {. }
\end{aligned}
$$

$$
h^{\prime}(x)=\frac{d}{d x}(\cos 3 x)=-\sin (3 x) \underbrace{\frac{d}{d x}(3 x)}=-\sin (3 x)(3)=-3 \sin 3 x .
$$

بالجمـع بين القواعد المثلثية وقواعد ناتج الضرب وناتج القسمة والسـلسلة، يمكننا ايجاد الاشتقاق للعديد من الدوال المعقدة.

مـثال 6.4 مشتقة تشـتمل علـى قاعـدة السـلسـلة وقاعـدة ناتج القسـمة

مـثال 6.5 إيجاد معـادلة مـماس

$$
y=3 \tan x-2 \csc x \quad \text { أوجد معادلة مماس على منحنى }
$$

$$
\text { عند } x=\frac{\pi}{3}
$$

الحل المشتقة هي:
$y^{\prime}=3 \sec ^{2} x-2(-\csc x \cot x)=3 \sec ^{2} x+2 \csc x \cot x$.

$$
\begin{aligned}
& \text { عند } x=\frac{\pi}{3} \text { يوجد لدينا } \\
& y^{\prime}\left(\frac{\pi}{3}\right)=3(2)^{2}+2\left(\frac{2}{\sqrt{3}}\right)\left(\frac{1}{\sqrt{3}}\right)=12+\frac{4}{3}=\frac{40}{3} \\
& \text { خط المماس ذي الميل } \frac{40}{3} \text { ونقطة المهماس }\left(\frac{\pi}{3}, 3 \sqrt{3}-\frac{4}{\sqrt{3}}\right) \text { معـادلته } \\
& y=\frac{40}{3}\left(x-\frac{\pi}{3}\right)+3 \sqrt{3}-\frac{4}{\sqrt{3}} \\
& \text { الشكل } 3.31 \\
& y=3 \tan x-2 \csc x \\
& x=\frac{\pi}{3} \text { والمهـاس عنـد }
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\sin \left(\frac{2 x}{x+1}\right) \text { أوجد مشتقة } \\
& \text { الحل لدينا }
\end{aligned}
$$

$$
\begin{aligned}
& =\cos \left(\frac{2 x}{x+1}\right) \frac{2(x+1)-2 x(1)}{(x+1)^{2}} \quad \text { قاعدة ناتج القسمة } \\
& =\cos \left(\frac{2 x}{x+1}\right) \frac{2}{(x+1)^{2}} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ثم بالنسبة إلى (b) يوجد لدينا } \\
& g^{\prime}(x)=\frac{d}{d x}(\cos x)^{3}=3(\cos x)^{2} \underbrace{\frac{d}{d x}(\cos x)}_{\text {, }} \\
& =3(\cos x)^{2}(-\sin x)=-3 \sin x \cos ^{2} x \text {. } \\
& \text { وفي النهاية، بالنسبة إلى (c) يوجد لدينا }
\end{aligned}
$$

تبرز اهمية الدوال الهـثلثية بشكل طبيعي إلى جد مأ فـا في حل العديد من المسائل الفيزيائية.
 غياب الاحتكاك (على سنبيل المـثال، عندما توجد مقاومة للحركة مثل مقاومة الهواء، يتم إلنـاؤهـا)، ويتم حسابها باستخدام

$$
u(t)=a \cos (\omega t)+b \sin (\omega t)
$$

 تصور لنظام الزنبرك-الكتلة مثل هذا).

مثtل 6.6 تحليل نظام الزنبرك-الكتلة

لنفترض أن 6 (6 يقيس الإزاحة (المَّقيسة بالبوصة) لكتلة معلقة من زنبرك لهدة t ثانية بعد

$$
u(t)=4 \cos 2 t \quad \text { تحريرها وأن }
$$

أوجد السرعة المتجهة في أي زمن t وحدد أقصى سـرعة متجهة.

الحل بها أن (u(t) يمثل الموقع (الإزاحة)، يتم تحديد السرعة الهتجهة باستخدام (u'(t). يوجد

$$
u^{\prime}(t)=4(-\sin 2 t) \cdot 2=-8 \sin 2 t
$$

حيث يتم قياس $u^{\prime}(t)$ بالبوصة في الثانية. وبالطبع فإن $2 t$ يتذبذب بين 1- و 1 ولذلك، فإن أكبر قيمة يصل إليها

وضعية التوازن

نظـام الزنبرك-الكتلة
3. $f(t)=\tan ^{3} 2 t-\csc ^{4} 3 t$
4. $f(t)=t^{2}+2 \cos ^{2} 4 t$
5. $f(x)=x \cos 5 x^{2}$
6. $f(x)=x^{2} \sec 4 x$
7. $f(x)=\frac{\sin x^{2}}{x^{2}}$
8. $f(x)=\frac{x^{2}}{\csc ^{4} 2 x}$
9. $f(t)=\sin 3 t \sec 3 t$
11. $f(w)=\frac{1}{\sin 4 w}$
10. $f(t)=\sqrt{\cos 5 t \sec 5 t}$
13. $f(x)=2 \sin 2 x \cos 2 x$
12. $f(w)=w^{2} \sec ^{2} 3 w$
14. $f(x)=4 \sin ^{2} 3 x+4 \cos ^{2} 3 x$
15. $f(x)=\tan \sqrt{x^{2}+1}$
16. $f(x)=4 x^{2} \sin x \sec 3 x$
17. $f(x)=\sin ^{3}\left(\cos \sqrt{x^{3}+2 x^{2}}\right)$
18. $f(x)=\tan ^{4}\left(\sin ^{2}\left(x^{3}+2 x\right)\right)$

في التهارين 22-19، أوجد مشتقة كل دالّة.
19. (a) $f(x)=\sin x^{2}$
(b) $f(x)=\sin ^{2} x$
(c) $f(x)=\sin 2 x$
21. (a) $f(x)=\sin x^{2} \tan x$
(b) $f(x)=\sin ^{2}(\tan x)$
(c) $f(x)=\sin \left(\tan ^{2} x\right)$
20. (a) $f(x)=\cos \sqrt{x}$
(b) $f(x)=\sqrt{\cos x}$
(c) $f(x)=\cos \frac{1}{2} x$
22.
(a) $f(x)=\sec x^{2} \tan x^{2}$
(b) $f(x)=\sec ^{2}(\tan x)$
(c) $f(x)=\sec \left(\tan ^{2} x\right)$

تهمارين 3.6

1. بالانحدار والاستدارة الشـديدين. ومـع الأخذ في الحسبان نتائج هذا الدرس، ناقش الشَكل الفعلي لمنحنتى

2 في الكثير من التطبيقات الفيزيائية والهيندسية، يجعل الـحّد \sin الحسـابات صعـبة. يوجـد تبسـيط عـام
 x للزوايا الصغيرة". ناقش هـا
 $y=\cos x$ الصغيرة التي يكون تقريبها جـيدًا؟ الممـاس

عـند $x=0$ هـو ببسـاطة $x=1$ ولك ولكن التبسـيط
cosX"
اسـتخدامه أبًٍا. لماذا سـيكون هـذا التقريب أقل فـائدة من
$\varsigma \sin x \approx x$
3. استـخدم التحليل البياني كهـا في النص لمناقشـة أن

مشتقة $\cos x$ هي $\sin x-$.
4. إذا كانت دالّة f قـابلـة للإشتقاق لهـا دورة تتكون مـن p،

فُاشرح لمـاذا f أيضًا له دورة تتكون مـن P.
في التتهارين 18-1، أوجد مشـتقة كل دالّة.

1. $f(x)=4 \sin 3 x-x$
2. $f(x)=4 x^{2}-3 \tan 2 x$

اشـتـاق الدوال الأسبية والدوال اللوغاريتهية

الدوال الأسية واللوغاريتمية هي دوال من بين أكثر الدوال المعروفة التي نقابلها في التطبيقات. نحن نبدأ بتطبيق بسيط في الأعمـال.
على فرض أن لديك استثمارًا تتضاعف قيمته كل عام. إذا بدأ الاستتمار بمبلغ \$100. فستكون قيمة الاستثمار بعد عام واحد هي (2)\$100 أو \$200\$. بد عـام أمين، ستكون قيمته هي

 للهمردود أو APY). بالنسبة إلى طالب يدرس التفاضل والتكامل، لا بد أن يشير الهصطلح معدل إلى المشتقة.
نحن نضـ في حسباننا أؤًا إن التمثيل البياني سيبدو متشابهُا إلى حدٍ ما مـع التمثّيل البياني لـ السكل 3.33.

 زاد انحدار التمثيل البياني وكلما، زادت القيمة الموجبة للمشتقة. وعلى يسار نقطـة الأصلى ولما
 الخاص بـ $y=f^{\prime}(x)$ الموضح في الشكل 3.34 متسق مـع كل الهعلومات أعـلاه. (استخدم
 من 1 < 1 < 0 و 1 و بالتماشي مـع التمثيلات البيانية للمشتقات الهقابلة وسيمكنك معرفة

نهط معين.) وعلى وجه الخصوص. لاحظ أن رسم المشتّقة يهئل بدرجة قريبة التمثيل البياني للدالّة نفسها.

اشــتقاقات الـدوال الأسـيـة

$$
a>0 \text { يعطينا تعريف النهاية الاعتيادي لمشتقة } a f(x)=a^{x}
$$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h}
$$

$$
\text { من القواعد الهستخدمة للأسس } \lim _{h \rightarrow 0} \frac{a^{x} a^{h}-a^{x}}{h}
$$

$$
\begin{equation*}
=a^{x} \lim _{h \rightarrow 0} \frac{a^{h}-1}{h} \quad a^{x} \text { تحليل الحدود المشتـتركة } \tag{7.1}
\end{equation*}
$$

الشكل 3.33 $y=2^{x}$

الشكل 3.34
مستقة

ولسوء الحظ، لا يوجد لدينا في الوقت الحالي وسـائل لحساب النهاية في (7.1). ومع ذلك، على فرض وجود النهاية، ينص (7.1) عـلى أن
(7.2)

$$
\frac{d}{d x} a^{x}=\left(\dot{ا ب ت)} a^{x}\right.
$$

وعلاوة على ذلك فإن (7.2) متسق مع ما لاحظنـاه بيانيّا في الأشَكال 3.33 و 3.34. السؤال الذي نواجهه الآن هو: هل النهاية

$$
\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}
$$

موجودة لكل (أو أي) قيم لـ $a>0$ ؟ نحن نستكشف هذه النهاية عدديًا في الجدول التالي

$$
\text { الخاص بـ } 2=2=
$$

h	$\frac{2^{h}-1}{h}$
-0.01	0.6907505
-0.0001	0.6931232
-0.000001	0.6931469
-0.0000001	0.6931472

h	$\frac{2^{h}-1}{h}$
0.01	0.6955550
0.0001	0.6931712
0.000001	0.6931474
0.0000001	0.6931470

يقترح الإثبات العددي أن النهاية في السؤال موجودة وأن
$\lim _{h \rightarrow 0} \frac{2^{h}-1}{h} \approx 0.693147$
نتركها كتمرين لتوضيح أن الإثبات العددي يقترح أن

$$
\lim _{h \rightarrow 0} \frac{3^{h}-1}{h} \approx 1.098612
$$

القيم التقريبية لهذه النهايات ل تلفت الانتباه كثيرًا حتى تلاحظ أن
$\ln 3 \approx 1.098612$ g $\ln 2 \approx 0.693147$

(7.3)
$\frac{d}{d x} a^{x}=a^{x} \ln a$
النظرية 7.1
$\frac{d}{d x} a^{x}=a^{x} \ln a \quad a>0$ بالنسبة إلى أي ثابت
 يجب! أن توافق علىّى الإثباتات العددية والبيانية والبراهين الجبرية (الهكتملة تقريبًا) الْتي تدعمم هذا التخمين.

مثال 7.1 إيجاد معـدل التغيّر لاستثهمار معين

> الحل الهعدل اللحظي للتغير هو الاشتقاق

$$
v^{\prime}(t)=1002^{t} \ln 2
$$

$$
\frac{v^{\prime}(t)}{v(t)}=\frac{1002^{t} \ln 2}{1002^{t}}=\ln 2 \approx 0.693
$$

سيكون التغير بالنسبة الهئوية حوالي 69.3\% في العام. هذا مدهش بالنسبة إلى معظم الأشخاص. ستسبب نسبة 69.3 مضاعفة استثمارك في كل عام إذا كانت مركبة "باستمرار"

$$
\begin{aligned}
& \frac{d}{d x} e^{x}=e^{x} \ln e=e^{x} \\
& \text { بالرغم من أن هذه حالة خاصة ببساطة للنظرية 7.1، فهذه النتيجة مهمة بها يكفي بحيث } \\
& \text { نذكرها كنتيجة مستقلة. } \\
& \frac{d}{d x} e^{x}=e^{x}
\end{aligned}
$$

من المـحتمل أنك ستوافق على أن هذا هو أسهل فَانون للاشتقاق يهكن تذكره. في الدرس
3.6، نظرنا إلى نهوذج بسيط من اهتزازات كتلة تتعلق من زنبرك. ونوضـح الآن مزيدًا من مواقف الحياة اليومية بشكل أكبر.

مثثال 7.2 قاعدة السـلسلة مـع الدوال الأسية

$$
\begin{aligned}
& \text { الحلل (a) من قاعـدة السلسلة نحصل على } \\
& f^{\prime}(x)=3 e^{x^{2}} \frac{d}{d x}\left(x^{2}\right)=3 e^{x^{2}}(2 x)=6 x e^{x^{2}} \\
& \text { (b) باستخدام قاعدة ناتج الضرب وقاعدة السلسلة، نحصل على } \\
& g^{\prime}(x)=(1) e^{2 / x}+x e^{2 / x} \frac{d}{d x}\left(\frac{2}{x}\right) \\
& =e^{2 / x}+x e^{2 / x}\left(-\frac{2}{x^{2}}\right) \\
& =e^{2 / x}-2 \frac{e^{2 / x}}{x} \\
& =e^{2 / x}(1-2 / x) \\
& h^{\prime}(x)=3^{2 x^{2}} \ln 3 \frac{d}{d x}\left(2 x^{2}\right) \quad \text { في النهاية، يوجد لدينا (c) } \\
& =3^{2 x^{2}} \ln 3(4 x) \\
& -=4 x(\ln 3) 3^{2 x^{2}}
\end{aligned}
$$

مثال 7.3 إيجاد السـرعة المتجهـة لكتلة معلّقة
 الزنبرك-الكتلة، (راجع الشكل 3.35)، الإزاحة الرأسية في الزمن t.

(b) $u_{2}(t)=e^{-t / 6} \cos 4 t$
و
(a) $u_{1}(t)=e^{-t} \cos t$
ارسـم تمثيلًا بيانيًا لحركة الثقل واحسب السرعة المتجهة عند أي زمن t

الحل الشُكل 3.36a يوضـح تمثيلًا بيانيّا لـ أن
ثم يتوقف بسرعة عند u=0. (بالرغم من أن التمثيل البياني يستمر في التذبذب، فإن هذه
 - الكتلة) عندما تصطدم بنتوء في الطريق. إذا كان نظام التّعليق لسيارتك يحتا يحتاج إلى إصلاح، فربها تحصل على سلوك مشابه بدرجة أكبر لما تم توضيحه في الشكل 3.36b ، وهو التمثيل

3.36b الشكل
$y=e^{-t / 6} \cos (4 t)$

3.36a الشكل

$$
u(t)=e^{-t} \cos t
$$

يتم تحديد السرعة المتجهة للكتلة باستخدام الاشتقاق. وباستخدام قاعدة ناتج
الضرب، نحصل على

$$
u_{1}^{\prime}(t)=\frac{d}{d t}\left(e^{-t}\right) \cos t+e^{-t} \frac{d}{d t}(\cos t)
$$

$$
=e^{-t} \frac{d}{d t}(-t) \cos t-e^{-t} \sin t
$$

$$
=-e^{-t}(\cos t+\sin t)
$$

$$
u_{2}^{\prime}(t)=\frac{d}{d t}\left(e^{-t / 6}\right) \cos (4 t)+e^{-t / 6} \frac{d}{d t}[\cos (4 t)]
$$

$$
=e^{-t / 6} \frac{d}{d t}\left(-\frac{t}{6}\right) \cos (4 t)+e^{-t / 6}[-\sin (4 t)] \frac{d}{d t}(4 t)
$$

$$
=-\frac{1}{6} e^{-t / 6} \cos (4 t)-4 e^{-t / 6} \sin (4 t)
$$

$$
\begin{aligned}
& \text { للكتلة المعلّقة من زنبرك معين يمكن وصفها باستخدام } \\
& u(t)=A e^{\alpha t} \cos (\omega t)+B e^{\alpha t} \sin (\omega t)
\end{aligned}
$$

مشتقة اللوغـاريتم الطبيعي

ترتبط دالّة اللوغاريتم الطبيعي $\ln x$ بدرجة قَريبة من الدوال الأسية. لقد رأيناهـا بالفعل تزداد كجزء من قَانون الاشتقاق الأسي العام (7.3). إن التمثيل البياني للوغاريتم الطبيعي يبدو مثل الهوضّح في الشككل 3.37a.
يتم تعريف الدالّة فتط لـ $x>0$ وبينها تنظر إلى اليمين يرتفع التمثيل البياني دامئًا. وهكذا،
 أخرى x $x \rightarrow \infty$ أخرى، بها أن x x يقترب من 0 لجهة اليمين، فإن التمثيل البياني يصبح أكثر انـي انحدارًا ومن ثم
 الملاحظات. هل يبدو هذا التمثيل البياني مثل أي تمثيل بيأني ثِأي دالّة تعرفها؟

3.37b الشكل

مشتقة $f(x)=\ln$

3.37a الشكل
$y=\ln x$

باستخدام تعريف المشتقة، نحصل على ما يلي لـ $f(x)=\ln x$:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\ln (x+h)-\ln x}{h}
$$

لسوء الحظ، نحن لا نعرف طريقة لايجاد قيمة هذه النهاية أو حتى حقيقة مـا إذا كانت
 ومن ناحية أخرى، تذكر أن بالنسبة إلى $y=\ln x ، x>0$ إذا كان وفقط 7 ون النظريتين 5.2 و 7.2 يوجد لدينا ذلك لـ 5 لـ $f^{\prime}(x)=e^{x} \cdot f(x)=e^{x} و g(x)=\ln$ وهذا،

$$
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}=\frac{1}{e^{y}}=\frac{1}{x}
$$

والذي يثبت النتيجة التالية.

$$
\begin{array}{lr}
\frac{d}{d x}(\ln x)=\frac{1}{x} & 7.3 \text { لكظل } \tag{7.4}
\end{array}
$$

الحل (a) باستخدام قاعدة ناتج الضرب، نحصل على

$$
f^{\prime}(x)=(1) \ln x+x\left(\frac{1}{x}\right)=\ln x+1
$$

(b) $g(x)=\ln x^{3}=3 \ln x$ خصائص اللوغاريتهيات، تذكر أن بإمكاننا إعادة كتابة (الـابي واستخدام (7.4) ، ونحصل على

$$
g^{\prime}(x)=3 \frac{d}{d x}(\ln x)=3\left(\frac{1}{x}\right)=\frac{3}{x}
$$

(c) باستخدام فاعدة السلسلة (c) نحصل على

$$
h^{\prime}(x)=\frac{1}{x^{2}+1} \frac{d}{d x}\left(x^{2}+1\right)=\frac{1}{x^{2}+1}(2 x)=\frac{2 x}{x^{2}+1}
$$

$$
a^{x}=e^{\ln \left(a^{x}\right)}=e^{x \cdot \ln a}
$$

باستخدام القواعد العادية للأسس واللوغـاريتميات. ثـم يتبع ذلك

$$
\frac{d}{d x} a^{x}=\frac{d}{d x} e^{x \ln a}=e^{x \ln a} \mathbf{x} \frac{d}{d x}(x \ln a)=e^{x \ln a} \mathbf{x} \ln a
$$

$$
=a^{x} \times \ln a
$$

وهذا يمثل نتيجة النظرية 7.1

مثال 7.5 تحليل تركيز مـادة كيميائية

يتم تحديد التركيذ 10 لمادة كيميائية معينة بعد t ثانية (ثوانٍ) من التفاعل ذاتي التحفيز
 تركيز الهركّبَ الكيميائي لا يتخطّى 10.
الحل قبل حسـاب المشتقة، انظر بعناية إلى الدالّة c. المتغير المستقل هو t t والحد

 واستخدم قاعدة السلسلة يوجد لدينا

$$
\begin{aligned}
c^{\prime}(t) & =-10\left(9 e^{-20 t}+1\right)^{-2} \frac{d}{d t}\left(9 e^{-20 t}+1\right) \\
& =-10\left(9 e^{-20 t}+1\right)^{-2}\left(-180 e^{-20 t}\right) \\
& =1800 e^{-20 t}\left(9 e^{-20 t}+1\right)^{-2} \\
& =\frac{1800 e^{-20 t}}{\left(9 e^{-20 t}+1\right)^{2}}>0
\end{aligned}
$$

بها أن لكل المهاسـات ميل موجب، فإن التمثيل البياني لـ $y=c(t)$ يرتفـع من اليسار إلى اليمين كهـا هو موضح في الشكل 3.38. $\lim _{t \rightarrow \infty} c(t)$

بها أن التركيز يزداد في كل الوقت، فإن التركيز يظل دائمّا أقل من القيمة المـحددة والتي يمكن حسابها بسـولّة لتصبح

$$
\lim _{t \rightarrow \infty} \frac{10}{9 e^{-20 t}+1}=\frac{10}{0+1}=10
$$

التـفاضل اللـوغـاريتهي

توجد طريقة ممتازة تسهى التفاضل اللوغاريتهي تستخدم قواعد اللوغاريتميات للمساعـدة
 أن الدالَّة في المثال، 7.6 نوضح طريقة الاستفادة من خصائص اللوغاريتميات لإيجاد مشتقة دالة مثل تلك.

كهـا تهت ملاحظته بالفتل، لا تنطبق أي من قواعد الاشتقاق الموجودة لدينا. لقد بدأنا بأخذ اللوغاريتم الطبيعي لكلا طرفي المعادلةً

$$
\ln [f(x)]=\ln \left(x^{x}\right)
$$

$$
=x \ln x
$$

من الخصائص المعتادة للوغاريتميات. نقوم الآن بتفاضل كلا الطرفين لهذه المعادلة الأخيرة. باسنتخدام قاعدة السلسلة على الطـرف الأيسر وقاعدة ناتج الضرب على الطرف الأيمن، نحصـ

$$
\begin{aligned}
\frac{1}{f(x)} f^{\prime}(x) & =(1) \ln x+x \frac{1}{x} \\
\frac{f^{\prime}(x)}{f(x)} & =\ln x+1
\end{aligned}
$$

وبالحل لإيجاد (f) ${ }^{\prime}$ ، فإننا نحصل على

$$
f^{\prime}(x)=(\ln x+1) f(x)=(\ln x+1) x^{x}
$$

تهارين 3.7

في التمارين 24-1، اشتق كل دالّة.

تهارين كتابية

1. $f(x)=x^{3} e^{x}$
2. $f(x)=e^{2 x} \cos 4 x$
3. $f(t)=t+2^{t}$
4. $f(t)=t 4^{3 t}$
5. $f(x)=2 e^{4 x+1}$
6. $f(x)=(1 / e)^{x}$
7. $h(x)=(1 / 3)^{x^{2}}$
8. $h(x)=4^{-x^{2}}$
9. $f(u)=e^{u^{2}+4 u}$
10. $f(u)=3 e^{\tan u}$
11. $f(w)=\frac{e^{4 w}}{w}$
12. $f(w)=\frac{w}{e^{6 w}}$
13. $f(x)=\ln \sqrt{8 x}$
14. $f(x)=\ln 2 x$
15. $f(t)=t^{3} \ln t$
16. $f(t)=\ln \left(t^{3}+3 t\right)$
17. $g(x)=\cos x \ln \left(x^{2}+1\right)$
18. $g(x)=\ln (\cos x)$
(b) $g(t)=\ln \left(\sin t^{2}\right)$
19. (a) $f(x)=\sin \left(\ln x^{2}\right)$
(b) $g(t)=\frac{\ln \sqrt{t}}{t}$
20. (a) $f(x)=\frac{\sqrt{\ln x}}{x}$
(b) $f(x)=e^{\ln x}$
21. (a) $h(x)=2^{e^{x}}$
(b) $f(x)=\frac{e^{x}}{2^{x}}$
 من $x=-1$ إلى $x=1$. ${ }^{\prime}$ بتفسير $f^{\prime}(x)=e^{x}$ كميول للمـماسـات وملاحظة أن كلها زاد x زاد اد البياني لأعلى. بالنسبة إلى القيم الأكبر لـ l ال يبدو أن التهـئيل البياني لـ
 بصري.
22. يبدو أن التهثيل البياني لـ المشتقة أم مجرد خداع بصري.

التمثيلات البيانية لقيمة x الكبيرة (والتمثيل البياني لقيمة y الكبيرة جددًا) وقارن بين معدلات النمو النسبي للدوالـي والـي وبصفة

عامة، كيف يمكن مقارنة دالّة أسية بكثيرات الحددود؟

النهو النسبي للدوال. وبصفة عامة، كيف يمكن الهقارنة بين $؟ \sqrt[n]{x} 9 \ln x$
47. أوجد مشتقة $f(x)=e^{\ln \left(-x^{2}\right)}$ في برنامـج CAS. الإجابة الصحيحة هي أنها غير موجودة. اشرح طريقة حصولنا على هذه الإجابة والإجابة الخاصة بيرنامـج CAS، في حالة وجود
 اشـرح لماذا $2 x$ يُعد إجابة غير كاملة. 48. أوجـد مشتقة $f(x)=\ln \sqrt{4 e^{3 x}}$ مـع الخاصة ببرنامج CAS. في حالة وجود اختلاف بينهما. 49. تقريب بادي للترتيب (1,1) لـ لـ هو دالّة بالصيغة $f^{\prime \prime}(0)$ و $f^{\prime}(0) \times f(0)$ و $f(x)=\frac{a+b x}{1+c x}$ مططابقة للقيم الهقابلة الخاصة بـ بـ تجصل البيانية لكل من $f(0)$ و

 مطابقة للقيم المقابلة الخاصة بـ بـ ق قارن بين التمثيلات البيانية لـ لـ . 49 51. في الإحصاء، يتم استخدام الدالّة 5 التة $f(x)=e^{-x^{2}}$ لتحليل كميات عشَوائية تشهل توزيعًا على شكَل الناقِوس. تعطي حلول
 التي يتم تحليلها. أوجد كل الحلول.
52. كرر التمرين 51 مـع الدالّة التمثيلات البيانية للدالتين، اشرح لها التوزيع منتشر بارجيالـة أكبر مقارنة بالتمرين 51. 53. كرر التهرين 51 للدالّة العامة كل من m و c ئوابت.
 القيهة بأنها المنوال (أو المتوسط) للتوزيع.

تطبيقات

 . احسب السرعـة المتجهة في الزمن t. ارسـم دالّة السرعة المتجهة. متى تكون السرعة ألمتجهة صفرَّا؟ مـا موقـع الزنبرك عندما تكون سرعته المتجهة صفرًا؟
56.
 المتجهة. متى تكون السرعة المتجهـة صفرُرا؟ مـا موقـع الزنبرك عندما تكون سرعته المتجهة صفرًا؟
57. في التهرين 55، قدّر بيانيًا قيمة $t>0$ التي يتم الوصول إلى أقَصى سـرعـة متجهة عندهانـا
 59. يتم استخدام دوال هيل $f(x)=\frac{A x^{n}}{\theta^{n}+x^{n}}$ للـُوابت الهوجبة n ، A والأحيائية. وضّح أن位 $u=\ln x$ و $v=\ln \left(\frac{f(x) / A}{1-f(x) / A}\right)$
23. (a) $f(x)=\ln (\sin x)$
(b) $f(t)=\ln (\sec t+\tan t)$
24. (a) $f(x)=\sqrt[3]{e^{2 x} x^{3}}$
(b) $f(w)=\sqrt[3]{e^{2 w}+w^{3}}$

في التمارين 28-25، أوجد معـادلة الهمـاس على منـحنى
25. $f(x)=3 e^{x^{2}}$
26. $f(x)=3^{x^{e}}$
27. $f(x)=x^{2} \ln x$
28. $f(x)=2 \ln x^{3}$

في التهرينين 29 و 30، أوجد . $y=f(x)$
29. (a) $f(x)=x e^{-2 x}$
(b) $f(x)=x e^{-3 x}$
30. (a) $f(x)=x^{2} e^{-2 x}$
(b) $f(x)=x^{2} e^{-3 x}$

31. $v(t)=1003^{t}$
32. $v(t)=1004^{t}$
33. $v(t)=40 e^{0.4 t}$
34. $v(t)=60 e^{-0.2 t}$
35. يبدأ تكاثر البكتيريا بالعدد 200 ويتضاعف ثلاثة مرّات كل يوم. أوجد قانونًا للتكاثر بعد t يومُا وأُ وأوجد النسبة المئوية للتغير في التكاثر.
36. يبدأ تكاثر البكتيريا بالعدد 500 ويتضاعفـ كل أربا أربعة أيام. أوجد قانونًا للتكاثر بعد t يومُا وأوجد النسبا في التكاثر.
37. يتم تحديد تركيز مادة كيميائية معينة بعد t ثانية (ثوانٍ) من
 c' $c^{\prime}(t)>0$ الهـركّب الكيميائي لا يتخطَى 6 أبدًا.
38. يتم تحديد تركيز مادة كيميائية معينة بعد t ثانية (ثوانٍ) من التفاعل ذاتي التحفيز باستخدام c واستخـدم هذه المعلومات للتأكيد عـلى أنّ تركيز المركّب الكيميائي لا يتخطّى 5.

في الـتـتـارين 44-39 اسـتخدم تفاضل اللوغـاريتم لإيجاد
39. $f(x)=x^{\sin x}$
40. $f(x)=x^{4-x^{2}}$
41. $f(x)=(\sin x)^{x}$
42. $f(x)=\left(x^{2}\right)^{4 x}$
43. $f(x)=x^{\ln x}$
44. $f(x)=x^{\sqrt{x}}$
45. أوجد قيمة a بحيث يكون المهاس على منـحنى促 $x=a$
 بنقطة الأصل. احسب ميول الخطوط.

$$
\text { إجابتك وبين ln } \frac{1}{3} \text {. }
$$

قهارين اسـتكشـافية

1 1 . وجدنا مسبقًا أن e هي نهابة e e
 . يوجد اختلاف بين الخصائص المهمة الأخرى لهـا العدد

 تتقاطـع فيها؟ جرّب استتخدام الزوج
 للدوال ظروف يوجد حل آخر اصغر من a حل أكبر من a ؟ بالتجربة والخطأ، تحقق منَ أن e هو قو قيمة a التي يتغير عندهـا الحل "الآخر".

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{e^{-1 / x}}{x^{n}} \\
& \text { عدديًّا وبيانيًا. خمّن قيمة }
\end{aligned}
$$

موجب n واستخدم تخمينك مـع بقية التمرين. بالنسبة إلى $x(x)=\left\{\begin{array}{cl}0 & , x \leq 0 \\ e^{-1 / x} & , x>0\end{array}\right.$
 وقارن بين العمل المطلوب لتوضيح أن x=0 0
 البيانات التالية التي تم جهعهـا في دراسـة عـن الارتباط
 للأكسـجين في الهواء و y هو النسبة الهـئوية للهيهوجلوبين

الهتشبع بالأكسجين.

x	1	2	3	4	5	6	7	8	9
y	2	13	32	52	67	77	84	88	91

ارسم نقاط البيانات هذه. وكما أوضحت بالفـل فإن دوال هيل لها ميل موجب وثبات عند خط التـا التقارب الأفتي. استخدم القيمة المحددة لـ $f(x)$ لشـرح السبب في مـجموعة
 u (أو تقريبا خطية تهمامًا). أوجد الميل واستخدم ذلك لتحديد

$$
\text { قيم n و } \theta .
$$

60. في أحد كتب World Almanac (رزنامة العالم)، ابحث

 النهو حسب العقدن سـواء عدديًا أو بالنسبة المئوية فاحسبه بنفسك. (إن وجود ورقة بيانات هنا مفيد). للولايات المتحدة فترات نهو خطي وأسي. اشرح لمـاذا يتوافق النمو الخطي

 ثابتة. في أي ععدَ كانت النسبة الهـئويةٌ للنهو ثابتة (تقريبُا)؟

الاشتيتاق الخهمني والدوال الهثلثية الهعكوساة

قارن بين الدالتين التاليتين اللتين تصفان منحنيات معروفة:

$$
\begin{aligned}
y=x^{2}+3 & (\text { قطع مكافئ }) \\
x^{2}+y^{2}=4 & (د ا ي ٔ ر ة)
\end{aligned}
$$

و

المعادلة الأولى تحدد y كدالّة في x بوضوح لأن بالنسبة إلى كل x تعطي الهـادلة
 معينة، لأن الدائرة في الشُيكل 3.39 لا تجتاز اختبار المستقيم الرأسي. ومع ذلك، يمكنك

 (1,-
 فإننا نستخدم الهعادلة التي تصف نصف الدائرة السفلي $y=-\sqrt{4-x^{2}}$ لحساب المشتقة
 للقيام به. وعـلاوة على ذلك، ليس من المهكن دائئًا إيجاد حل لدالّة معينة يتم تعريفها ضمنيًّا باستخدام معادلة معطاة.

الشكل 3.39
الaماس عند النقطة
$(1,-\sqrt{3})$

$$
\begin{aligned}
& y^{\prime}(x)=-\frac{1}{2 \sqrt{4-x^{2}}}(-2 x)=\frac{x}{\sqrt{4-x^{2}}}
\end{aligned}
$$

وبدُّ من ذلك، على فرض أن الهعادلة $x^{2}+y^{2}=4$ تعرّف إحدى الدوال القابلة للاشتقاق أو أكثر للهتغير : : y : y فتكون المعادلة

$$
\begin{equation*}
x^{2}+[y(x)]^{2}=4 \tag{8.1}
\end{equation*}
$$

عند اشتـقاق كلا طرفي المعادلة (8.1) بالنسبة لــــx، سنحصل على

$$
\frac{d}{d x}\left\{x^{2}+[y(x)]^{2}\right\}=\frac{d}{d x}(4)
$$

$$
\text { ومن قاعدة السلسلة، } \frac{d}{d x}[y(x)]^{2}=2 y(x) y^{\prime}(x) \text { ولذ يوجد لدينا }
$$

$$
2 x+2 y(x) y^{\prime}(x)=0
$$

$$
\text { عند حل هذه المحادلة للحصول على (y' } y^{\prime} \text { نحصل على }
$$

$$
y^{\prime}(x)=\frac{-2 x}{2 y(x)}=\frac{-x}{y(x)}
$$

لاحظ أن هنا، يتم التعبير عـن المشتقة ${ }^{\text {ال }}$ بد $y^{\prime}(x)$ لالة كل من x و y. للحصول على الميل عند النقطة (1,- 13)، نقوم بتعويض $x=1$ و $y=-\sqrt{3}$ بحيث يكون

$$
y^{\prime}(1)=\left.\frac{-x}{y(x)}\right|_{x=1}=\frac{-1}{-\sqrt{3}}=\frac{1}{\sqrt{3}}
$$

لاحظ أن هذا هو الميل نفسـه الذي وجدناه مسبقًا عن طريق الحل أوُلُ للحصول على بشكل صريح ثم القيام بالاشتقاق. ُِطُلق على عـلى عملية اشتـقاق كل من طرفي معادلة معينة

$$
\frac{d}{d x} g(y)=g^{\prime}(y) y^{\prime}(x)
$$

ثمَ جمّع أي حدود مـع عـامل (x) الآخر مـن ألمعادلة ثم أوجد حل (y)

$$
\frac{d}{d x}\left(x^{2}+y^{3}-2 y\right)=\frac{d}{d x}(3)
$$

$$
2 x+3 y^{2} y^{\prime}(x)-2 y^{\prime}(x)=0 \quad \text { وهكذا، }
$$

$$
\begin{aligned}
& \text { وبالحل لإيجاد } \left.3 y^{2}-2\right) y^{\prime}(x)=-2 x \\
& y^{\prime}(x)=\frac{-2 x}{3 y^{2}-2}
\end{aligned}
$$

وبتعويض $x=2$ و $y=1$ نجد أن ميل الهمـاس عند النقطة (2, 1 هـ هو

$$
y^{\prime}(2)=\frac{-4}{3-2}=-4
$$

وبالتالي فإن معادلة المهـاس ستكون $y-1=-4(x-2)$
لقد رسمنا تهثيلا بيانيًا للمعادلة وللمهاس في الشكل 3.40 باستخدام وضع الرسم الضمني الخاص بالحاسوب.

الشكل 3.40

المهماس عند النقطة $(2,1)$

مثال 8.2 إيجاد مـمـاس باسـتخـدام الاشـتقاق الضـمني

وبها أن الحد الأول هو نتاج ضرب

$$
y^{\prime}(x)=\frac{2-2 x y^{2}}{2 x^{2} y+4}
$$

لذا فإن
عند تعويض $x=2$ و $y=-2$ نحصل على ميل الهماس،

$$
y^{\prime}(2)=\frac{2-16}{-16+4}=\frac{7}{6}
$$

وفي النهاية يتم تحديد معادلة المماس باستخدام

$$
y+2=\frac{7}{6}(x-2)
$$

الشكل 3.41

يمكنك استخـدام الاشتقاق الضمني لإيجاد الاشتقاق المطلوب من أي معادلة يمكنك كتابتها فعلِيًا. سنوضح ذلك في ما بعد لتطبُيق معين.

مثثال 8.3 معـدل تغير الـحجم بالنسبـة إلى الضغـط

 في ظل ظروف معينة، تكون معادلة فان دير والز التي تربط بين الضغط P P والحجم V لغاز$$
\begin{equation*}
\left(P+\frac{5}{V^{2}}\right)(V-0.03)=9.7 \tag{8.2}
\end{equation*}
$$

على فرض أن الهعادلة (8.2) تحدد ضمنيًّا الحجم V كدالة للضنط P استخدم الاشتقاق

$$
\text { الضمني لإيجاد } \frac{d V}{d P} \text { عند النقطة (5 } 1 \text {). }
$$

$$
\begin{aligned}
& 2 x y^{2}+x^{2}(2 y) y^{\prime}(x)-2=0-4 y^{\prime}(x) \\
& \text { عند تجميع الحدود التي تشمل (2xy } \\
& \left(2 x^{2} y+4\right) y^{\prime}(x)=2-2 x y^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{2} y^{2}-2 x\right)=\frac{d}{d x}(4-4 y)
\end{aligned}
$$

 عند النقطة (5) (5) في الشكل 3.42.

وبالطبع، بها أن بإمكاننا إيجاد مشتقة واحدة ضمنيًا، يمكننا أيضًا إيجاد المشتقات من الرتبة الثانية وذات الرتب الأعلى ضمـنيًا، كمـا نوضـح في الهثال 8.4 .

مثثال 8.4 إيجاد مشتقتة من الرتبة الثانية ضــنيًا

 وإجراء الاشتقاق مرة أخرى، نحصل على

$$
\begin{aligned}
y^{\prime}(x) y^{\prime}(x) & +y y^{\prime \prime}(x)-e^{-x y}\left[-y-x y^{\prime}(x)\right]\left[y+x y^{\prime}(x)\right] \\
& -e^{-x y}\left[y^{\prime}(x)+y^{\prime}(x)+x y^{\prime \prime}(x)\right]=0
\end{aligned}
$$

وبتجميع كل الحدود التي تشهل (y ${ }^{\prime \prime}(x)$ في طرف واحد من المعادلة نحصل على

الشكل 3.42

والمثّل بـانيا عـند النقطـة

$$
\begin{align*}
& y y^{\prime \prime}(x)-x e^{-x y} y^{\prime \prime}(x)=-\left[y^{\prime}(x)\right]^{2}-e^{-x y}\left[y+x y^{\prime}(x)\right]^{2}+2 e^{-x y} y^{\prime}(x) \\
& \text { وبأخذ العامل المشترك (y } y^{\prime \prime}(x) \\
& \left(y-x e^{-x y}\right) y^{\prime \prime}(x)=-\left[y^{\prime}(x)\right]^{2}-e^{-x y}\left[y+x y^{\prime}(x)\right]^{2}+2 e^{-x y} y^{\prime}(x) \\
& y^{\prime \prime}(x)=\frac{-\left[y^{\prime}(x)\right]^{2}-e^{-x y}\left[y+x y^{\prime}(x)\right]^{2}+2 e^{-x y} y^{\prime}(x)}{y-x e^{-x y}} \quad \text { لذا فإن } \tag{8.4}
\end{align*}
$$

$$
\begin{aligned}
& \text { الحل نحن نبدأ باشتقاق كلا طرفي المعادلة بدلالة x . لدينا } \\
& \frac{d}{d x}\left(y^{2}+2 e^{-x y}\right)=\frac{d}{d x}(6) \\
& \text { من قاعدة السلسلة وقاعدة ناتج الضرب، يوجد لدينا } \\
& 2 y y^{\prime}(x)+2 e^{-x y}\left[-y-x y^{\prime}(x)\right]=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { الحل عـند اشتقاق كلا طرفي (8.2) بالنسبة لـ P، نحصل عـلى } \\
& \frac{d}{d P}\left[\left(P+5 V^{-2}\right)(V-0.03)\right]=\frac{d}{d P}(9.7) \\
& \text { من قاعدة ناتج الضرب وقاعدة السلسلة، نحصل على } \\
& \left(1-10 V^{-3} \frac{d V}{d P}\right)(V-0.03)+\left(P+5 V^{-2}\right) \frac{d V}{d P}=0 \\
& \text { عند تجميع الحدود التي تشتمل على } \frac{d V}{d P} \text { ، نحصل على } \\
& {\left[-10 V^{-3}(V-0.03)+P+5 V^{-2}\right] \frac{d V}{d P}=0.03-V} \\
& \frac{d V}{d P}=\frac{0.03-V}{-10 V^{-3}(V-0.03)+P+5 V^{-2}} \quad \text { لذا فإن } \\
& \text { يوجد الآن لدينا } \\
& V^{\prime}(5)=\frac{0.03-1}{-10(1)(0.97)+5+5(1)}=\frac{-0.97}{0.3}=-\frac{97}{30} \\
& \text { (الوحدات بدلالة الحجم لكل وحدة ضiط). }
\end{aligned}
$$

$$
y^{\prime \prime}(0)=\frac{-1-(2)^{2}+2}{2}=-\frac{3}{2}
$$

على

انظر الشكل 3.43 لتطّلح على تمثيلٍ بياني لــ $y^{2}+2 e^{-x y}$ بالقرب من النقطة (0,2). تذكر انّه عند هذه النقطة، قـد أثبتنا قِاعدةً القوة $\frac{d}{d x} x^{r}=r x^{r-1}$
فقط للأسس الصححيحة (ارجع للنظرية 3.1 و 4.3)، بالرغم من أننا كنا نستخاندم هذه

النظر بة 8.1

$$
\text { لأي أس نسبي، r ، } \frac{d}{d x} x^{r}=r x^{r-1}
$$

البرهـان على فرض أن r هو أي عدد نسبي. إذًا، r r لبعض الأعداد الصحيحة p و q. فلتكن

$$
\begin{equation*}
y=x^{r}=x^{p / q} \tag{8.5}
\end{equation*}
$$

إذًا، برفع كلا طـرفي المعادلة (8.5) إلى القوة و. فإننا نحصل على

$$
y^{q}=x^{p}
$$

عـند اشتقاق كلا طرفي الهعادلة (8.6) بدلالة x ، سـنحصل عـلى

$$
\frac{d}{d x}\left(y^{q}\right)=\frac{d}{d x}\left(x^{p}\right)
$$

$$
q y^{q-1} \frac{d y}{d x}=p x^{p-1} \quad \text { ومن قاعدة السلسلة يوجد لدينا }
$$

مشتقتات الدوال الهثلثية المعكـوسـة

تُعد الدوال الهئلثية المعكوسة مفيدة في أي عـدد من التطبيقات. نحن نطوّر الآن قواعد اشتقاق لهذه الدوال. يجب عليك الانتباه الشَديد للهـجالات والهدى لهذه الدوال.

$$
\begin{aligned}
& \text { وبالحل للحصول على } \frac{d y}{d x} \text { نحصل على } \\
& \frac{d y}{d x}=\frac{p x^{p-1}}{q y^{q-1}}=\frac{p x^{p-1}}{q\left(x^{p / q}\right)^{q-1}} \quad y=x^{p / q} \quad \text { ن } \\
& =\frac{p x^{p-1}}{q x^{p-p / q}}=\frac{p}{q} x^{p-1-p+p / q} \quad \text { استخدام قَاعدة الأس } \\
& =\frac{p}{q} x^{p / q-1}=r x^{r-1}, \quad \frac{p}{q}=r \quad \text { بها } \\
& \text { كهـا هو مرغوب. }
\end{aligned}
$$

 [- $\left.-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$
-\frac{\pi}{2} \leq y \leq \frac{\pi}{2} \quad \text { و } \quad \sin y=x \quad y=\sin ^{-1} x
$$

$$
\text { بإجراء الاشـتقاق للمعادلة } \sin y=x \text { ضمنيًّا، نحصل على }
$$

$$
\frac{d}{d x} \sin y=\frac{d}{d x} x
$$

$$
\cos y \frac{d y}{d x}=1
$$

$$
\frac{d y}{d x}=\frac{1}{\cos y}
$$

هذا ليس كافيًّا بشكل تام، بالرغم من أن ذلك يعطينا المشتقة بدلالة y . لاحظ أن cos $y \geq 0 ،-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$

$$
\begin{aligned}
& \cos y=\sqrt{1-\sin ^{2} y}=\sqrt{1-x^{2}} \\
& \frac{d y}{d x}=\frac{1}{\cos y}=\frac{1}{\sqrt{1-x^{2}}} \text { وهذا يُطينا }
\end{aligned}
$$

$$
\text { بالنسبة إلى 1>x } 1>\text { أن }
$$

$$
\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}},-1<x<1
$$

وبدگّ من ذلك، يهكننا اشتقاق هذا القانون باستخدام النظرية 5.2 في الدرس 3.5. وبالهثل، يهكننا توضيح أن

$$
\left.\frac{d}{d x} \cos ^{-1} x=\frac{-1}{\sqrt{1-x^{2}}},-1<x<1\right\rfloor
$$

$$
\begin{aligned}
& \text { لإيجاد } \frac{d}{d x} \tan ^{-1} x \text { نذكر أن لدينا } \\
& -\frac{\pi}{2}<y<\frac{\pi}{2} \quad, \\
& \tan y=x \\
& \text { إذا وفقط إذا } \\
& y=\tan ^{-1} x \\
& \text { وباستخدام الاشتقاق الضمني، نحصل على } \\
& \frac{d}{d x} \tan y=\frac{d}{d x} x \\
& \text { وهكذا، }\left(\sec ^{2} y\right) \frac{d y}{d x}=1 \quad d y \text { (病 } \\
& \text { سنـحل هذا لإيجاد } \frac{d y}{d x} \text { للحصول على } \\
& \frac{d y}{d x}=\frac{1}{\sec ^{2} y} \\
& =\frac{1}{1+\tan ^{2} y} \\
& =\frac{1}{1+x^{2}} \\
& \frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}} \\
& \text { أي إنّ: }
\end{aligned}
$$

نترك مشتقات الدتا الدوال الهـثلثية المعكوسة المتبقية كتمارين. تم تلخيص مشتقات كل الدوال

$$
\begin{aligned}
\frac{d}{d x} \sin ^{-1} x & =\frac{1}{\sqrt{1-x^{2}}}, & & -1<x<1 \text { عند } \\
\frac{d}{d x} \cos ^{-1} x & =\frac{-1}{\sqrt{1-x^{2}}}, & & -1<x<1 \\
\frac{d}{d x} \tan ^{-1} x & =\frac{1}{1+x^{2}} & & \\
\frac{d}{d x} \cot ^{-1} x & =\frac{-1}{1+x^{2}} & & \\
\frac{d}{d x} \sec ^{-1} x & =\frac{1}{|x| \sqrt{x^{2}-1}}, & & |x|>1 \text { عند }, \\
\frac{d}{d x} \csc ^{-1} x & =\frac{-1}{|x| \sqrt{x^{2}-1}} & & |x|>1
\end{aligned}
$$

مثال 8.5 إيجاد مشتتقة دالّة مثلثية معكوسـة

 الـحل من قـاعـدة السلسـلة نحصل على
(a)

$$
\begin{aligned}
\frac{d}{d x} \cos ^{-1}\left(3 x^{2}\right) & =\frac{-1}{\sqrt{1-\left(3 x^{2}\right)^{2}}} \frac{d}{d x}\left(3 x^{2}\right) \\
& =\frac{-6 x}{\sqrt{1-9 x^{4}}} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
\frac{d}{d x}\left(\sec ^{-1} x\right)^{2} & =2\left(\sec ^{-1} x\right) \frac{d}{d x}\left(\sec ^{-1} x\right) \\
& =2\left(\sec ^{-1} x\right) \frac{1}{|x| \sqrt{x^{2}-1}}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\frac{d}{d x}\left[\tan ^{-1}\left(x^{3}\right)\right] & =\frac{1}{1+\left(x^{3}\right)^{2}} \frac{d}{d x}\left(x^{3}\right) \\
& =\frac{3 x^{2}}{1+x^{6}} .
\end{aligned}
$$

مثثال 8.6 نهذجـة معـدل التغـير في نظـر لاعـب كـرة

 من أهم المبادئ الإرشادية لمعظم الرياضات هو "إبقاء النظر إلى الكرة". في البـي البيسبول،
 الـئيس؟ الذي تحتاج زاوية نظّ لِّر ضارب الكرة أن تتغير به لمتابعة الكرة بينما تعبر اللوح
الحل انظر أوغًا إلى المثلث المحروض في الشكل 3.44 (في الصفحة التالية). نشير إلى

 أن 130

$$
\theta(t)=\tan ^{-1}\left[\frac{d(t)}{2}\right]
$$

$$
\begin{aligned}
\theta^{\prime}(t) & =\frac{1}{1+\left[\frac{d(t)}{2}\right]^{2}} \frac{d^{\prime}(t)}{2} \\
& =\frac{2 d^{\prime}(t)}{4+[d(t)]^{2}} \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

$$
\theta^{\prime}(t)=\frac{2(-130)}{4}=-65 \mathrm{rad} / \mathrm{sec}
$$

ثهة مشكلة معينة في ذلك وهي أن معظم الأشخاص يمكنهم تعقب الأشـياء بدقَة فقّط بمعدل 3 راديانَ في الثانيّة(rad/sec). لذا فإن إبقاء العين على الكرة في هذه الحالة مستتحيل فيزيائيًا."(اطلع على كتاب واتس وبئل إبقاء الحين على الكرّة.

مـا وراء القوانين

 تفكيرِّا إبداعينّا لْهـا يتجاوز استذكار القانون

3.8 التهارين

$2 x y^{2}+x^{2}(2 y) y^{\prime}=1$ نبدأ باشتقاق كل الحدود. ونحصل على الحا
يتعلم الكثير من الطـلاب القواعد بتلك الطريقة: أخذ
المشتقات "العادية" لكل الحدود والتثبيت عـند 'y في كل مرة يتم فيها أخذ مشتقة y. اشرح لماذا يصلح ذلك. وأعد صياغة القاعدة بدقة أكبر وبصيغة أسهل للفـهم.
 فیليًا؛ أي اشرح بدقة لهاذا نفترض أننا ننفذ اشتقاقًا ضمنيًا.
33. (a) $f(x)=4 \sec \left(x^{4}\right)$
(b) $f(x)=4 \sec ^{-1}\left(x^{4}\right)$
34. (a) $f(x)=\sin ^{-1}(1 / x)$
(b) $f(x)=\csc ^{-1} x$
35. في الهثال 8.6، تم التوضيح أن بهرور الزمن ستصل كرّة البيسبول إلى اللوح الرئيس، وسـيكون مـدلـي دوران
 الإنسـان. مـع العلم بأن أقصى معـدل للدوران

 اللاعب الكرة منه. في إعداد الدوري الرئيس، يجب عـلى اللاعب البدء بالأرجححّة عـندما تكون الكرة في منتصف الطريق ('30) من اللوح الرئيس. كيف يتوافقَ هـذا مع المسافة التي يفقد فيها اللاعبب متابعته للكرة؟
36. عـلى فرضٍ أن سـرعة ضرب الكرة 8.6

 الرئيس)، وارسـم التمثيل البياني.

 سـيرهـ؟ اللرئيس فيّي المثـال 8.6 للوقوف ومتابعة الكرة طوال

في التـهرينين 39 و 40، أوجـد مـواقع كل المـماسـات 39. $x^{2}+y^{2}-3 y=0$
40. $x^{2}+y^{2}-2 y=3$ 41. اذكر اسم الطريقة بتحديد هل ستجد المشتقة مباشرة أم

ضهنيّا.
(a) $x^{2} y^{2}+3 y=4 x$
(b) $x^{2} y+3 y=4 x$
(c) $3 x y+6 x^{2} \cos x=y \sin x$
(d) $3 x y+6 x^{2} \cos y=y \sin x$
42. اوجد قيمة $f(x)=\sin ^{-1}(\sin x)$ بشكل كامل بقدر الإمكان
 يكون
43 $\sin ^{-1} x+\cos ^{-1} x$ أوجد وحوّل لأبسـط صورة مشتـقة $\sin ^{-1} x$ واستخدم النتيجة لكتابة معادلة تربط بير

تطـبيقات

55. على فرض أنك تضع ملصقات على الحائط. يمتد الإطار من 6 إلى 8 أقدام فوق الأرض. يقف شـخص على مسأى x قدمُّا من الجدار وينظر إلى الملصق بزاوية رؤبية تتكون بالشحاع من عين الشخص (5 أقدام فوق الأرض) إلى قَمة الإطار وإلشّاع من عين الشخص إلى الجزء السظلي من الإطار. أوجد قيمة x التي تزيد زاوية الرؤية إلى أقصى حد . A
56. ما الاختلافات في التمرين 55 إذا كانت أعين الشخص فوق الأرض بمقدآر 6 أقدام؟
57. على فرض أن لدينا متلاع (انظر الدرس 3.1) يدور
 إطلاق صخرة منه عند النتطة (2.9, 0.77). إذا كانت إلصخرة تنطلق لمسافة 300 قدم، فإلى أين ستصل؟ [إرشاد: أوجد المماس عند النقطة (2.9, 0.77)، وأوجد النتطة

تهارين استكشافية

1. . يريد صاحب الأرض حفر قناة ري من خزان مُ مُحاط بالقطع الناقص 46 . $4 x^{2}+9 y^{2}=$ بريد صاحب الأرض حفر
 نحن سستكشف طريقة لإيجاد أفضل مسار. ارسم الخط والتطع الناقص، وارسم مهاس إلي التطـع الناقص الذي يوازي خط الهلكية. على فرض أن القناة يجب أن تبدأ عند نتطة التماس وتسير بشككل متحامد على الخطين. سنبدأ بتحديد النتطة على الطرف الأيمن مـن التطـع
 الهماس إلى التطُع الناقص عنّا

 الناقص التي ستبدأ القناة عندهال أوجد معادلـ الـلـ للمستقيم
 على $y=6-x=1$ وأوجد التقاطـع مـح المستقيم الطبيعي و左 $y=6-x$ تنتهي القناة عند هذه النتطة. 2. في هذا التهرين، ستصمه أنت مسرحُا للأفلام مـع توفير
 أن الشاشة تهتد رأسيًا من 10 إلى 30 قدمًا فوق الأرض.
 هي تحديد دالة معينة
 مستوى الأرض، تكون الزاوية من الجزء السفلي للشاشة إلى المشاهـد إلى أعلى الشـاشَ هي الزاوية نفسّها لمشاهـد بجلس في الصف الأول. ستتهكن من إتمام ذلك عند نطاق
 الارتفاع الذي يزيد زاوية الرؤية إلى أقصى حد. [إرشاد: اكتب الزاوية كنرق بين الهماساسات المعكوسة واستخدم

$$
\text { [. } \tan (a-b)=\frac{\tan a-\tan b}{1+\tan a \tan b} \text { القانون }
$$

عند نقاط التقاطع متعامدة). وفي هذه الحالة، نتول أن عائلة المنحنيات تكون متعامدة.

$$
\begin{array}{r}
y^{2}=x^{2}+k g y=\frac{c}{x} .47 \\
x^{2}+y^{2}=k y g x^{2}+y^{2}=c x .48 \\
x^{2}+3 y^{2}=k g y=c x^{3} .49 \\
x^{2}+4 y^{2}=k g y=c x^{4} .50
\end{array}
$$

$$
\begin{aligned}
& \text { 51. وفًْا اللتمرينين } 49 \text { و 50، خمّن لمعرفة عائلة من الدوال } \\
& \text { الهتعامدة على } y=c x^{n} \text {. وضّح أن تخهينك صحيح. هل } \\
& \text { توجد أي قيم n التي يجب استبعادهـا؟ } \\
& \text { 52. ما الخطأ في الحساب الخاطئ التالي؟ } \\
& \frac{d}{d x}\left(\sin ^{-1} x+\sec ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}+\frac{1}{|x| \sqrt{x^{2}-1}}
\end{aligned}
$$

53. بالنسبة إلى المنحنيات البيضاوية، توجد طرق جيدة لإيجاد النقاط ذات الإحداثيات النسببة راجع مقالة عزرا
"Three Fermat Trails to Elliptic Curves" بروون المنشورة في شهر مايو لحام 2000 في صحيفة مجلة
الرياضبات فَّي الكلية).

وضّح أن النقاط (3,0)- و (0,) تقع على منحنى
بيضاوي يتم تعريفه باستخدام أوْجد الْخط الذي يهر بهذه النقاط ووضح أن الخـي بتقاطـح مـع المنحنى في ني نتطة أخرى ذات إحداثيات نسبية (عدد صحيح في هـي هذه الحالة). ، $y^{2}=x^{3}-6 x+4$ بالنسبة إلى المنحنى البيضاوي
 الهمـاس للمنحنى عند تلك الك النقطة ووضح أنها تتقاطع مع الهنحنى في نقطة أخرى ذات إحداثيات نسبية.
54. على فرض أن دائرة نصف قطرها هو r ومركزها محاطة بالقطـع المكافئ $y=x^{2}$ عند نتطة التماس، يجب أن تكون الهيول نفسها. أوجد ميل الدائرة ضهنيًّا ووضح ذلك عند نتطة التماس $y=c-\frac{1}{2}$. ئم استخدم مــاد لات $c=r^{2}+\frac{1}{4}$ الدائرة والقطع الهكافئ لتوضيح

دوال القطـع الزائد

قوس جيت واي في ميسوري هو أحد الهياكل الهعمارية المميزة والمشهورة في الولايات المتحدة

 النفاضـل) .لسبب فائدتها في التطبيقات وملاءمتها في حل المسائل (وبصفة خاصة معادلات

قوس جيت واي في ميسوري

تعرّف دالّة ال Sine للقطـع الزائد كها يأتي:

$$
\sinh x=\frac{e^{x}-e^{-x}}{2}
$$

لكل $x \in(-\infty, \infty)$ تعرّف دالّة القطـع الزائد ال Cosine كما يأتي:

$$
\cosh x=\frac{e^{x}+e^{-x}}{2}
$$

ومجددُا لكل 1 ال $x \in(-\infty$ سنتركه كتهرين لاستخدام التعريفات للتحقق من

$$
\begin{equation*}
\cosh ^{2} x-\sinh ^{2} x=1 \tag{9.1}
\end{equation*}
$$

لكل x . لاحظ أننا إذا أخذنا $y=\sinh u$ و $x=\cosh u$ مـن (9.1) باستخدام
u بدُّ من x نحصل على:

$$
x^{2}-y^{2}=\cosh ^{2} u-\sinh ^{2} u=1
$$

وهذا ما يجب عليك معرفته كمعادلة للقطـع الزائد الأربع المتبقية. هذا

نعرّف دوال القطع الزائد الأربع المتبقية بدلالة دوال Cosh Sinh، بطريقةَ
 (tanh x sech x

$$
\begin{array}{ll}
\tanh x=\frac{\sinh x}{\cosh x}, & \operatorname{coth} x=\frac{\cosh x}{\sinh x} \\
\operatorname{sech} x=\frac{1}{\cosh x}, & \operatorname{csch} x=\frac{1}{\sinh x}
\end{array}
$$

يسهل استخدام هذه الدوالٍ جدُا، ويهكنـنا تُحْدِد سـلوكها بسهولة باستخدام ما

$$
\frac{d}{d x} \sinh x=\frac{d}{d x} \quad\left(\frac{e^{x}-e^{-x}}{2}\right)=\frac{e^{x}+e^{-x}}{2}=\cosh x
$$

وكذلك، يمكننا إنشاء قوانين المشتقات الهتبقية:
هذه هي كل التطبيقات الأولية لقواعد الاشتقاق السابقة وتم تركها كتمرين.

 موجب لكل x . وفيَي النهاية، يمكنك بسهولة التحقق من أن $\lim _{x \rightarrow \infty} \sinh x=\infty$

$$
\lim _{x \rightarrow-\infty} \sinh x=-\infty
$$

نحن نوضح تهثيلًا بيانيًا لـ $3.16=\sinh$ في الشكل 3.45. التهثيلات البيانية لـ lanh و \tanh و موضحة في الأشكال 3.46a و 3.46b، على الترتيب.

3.46b الشكل $y=\tanh x$

3.46a الشكل
$y=\cosh x$

الشكل 3.45
$y=\sinh x$

$$
\begin{aligned}
& \text { بالنسبة لـ } f(x)=\sinh \text { ، نلاحظ أن } \\
& f(x)=\sinh x=\frac{e^{x}-e^{-x}}{2} \quad \begin{cases}>0 & x>0 \text { إذ } \\
<0 & x<0 \text { إ }\end{cases}
\end{aligned}
$$

إذا كان السلك أو الشُريط الهـرن (مثل شـريط القوة أو شُريط الهاتف) معلق بين برجين، فسيتخذ شكل منـحنى سـلسـلي (مشتـق من الكلمة اللاتينية catena وتعني "سلسلة"، ويناظر $f(x)=a \cosh \left(\frac{x}{a}\right)$ التمثيل البياني لدالّة الـ Cosine

دوال القطـع الزائد المـعكوسـة

 إلى واحد (وذلك وفقًّا لاختبار المستقيم الأفقي). وأيضًا دالّة x x هي x هي دالّة واحد إلى
 معكوس الـ Sine زاوية القطـع الزائد باستخدام

$$
\text { sinh } y=x \quad y=\sinh ^{-1} x
$$

لكل $x \geq 1$ ، فإننا نعرّف معكوس الـ Cosine زاوية القطـع الزائد باستخدام

$$
y \geq 0 \quad \text {, إذا وفقط إذا } \quad \text { إ } \quad \text { إcosh } y=x \quad y=\cosh ^{-1} x
$$

وفي النهاية، لكل \tan ز $x \in(-1,1$ ، فإننا نعرّف معكوس القطـع الزائد باستخدام

$$
\tanh y=x \quad y=\tanh ^{-1} x
$$

يمكن تعريف معكوسات دوال القطع الزائد الثلاثة المتبقية بشكل مشابه. نرسم التمثيلات
 3.47c على الترتيب. وكالعادة، يمكنك الحصول على تلك عن طريق عكس التمثيل البياني
للدالّة الأسـاسية حول الهستقيم y=x .)

يمكننا إيجاد المشتقات لدوال القطـع الزائد المعكوسـة باستخدام الإشتقاق الضمني، تهمامٌا مثلهـا
فـلنـا مـع الدوال الهئلثية المعكوسـة. بهـا أنّ

3.47a الشكل $y=\sinh ^{-1} x$

$$
\begin{equation*}
\sinh y=x \quad \text { إذا وفقطط إذا } \quad y=\sinh ^{-1} x \tag{9.2}
\end{equation*}
$$

مـع اشتقاق كلا الطرفين في هذه المعادلة الأخيرة بالنسبة للمتغير x نحصل على

$$
\begin{gathered}
\frac{d}{d x} \sinh y=\frac{d}{d x} x \\
\cosh y \frac{d y}{d x}=1 \\
\frac{d y}{d x}=\frac{1}{\cosh y}=\frac{1}{\sqrt{1+\sinh ^{2} y}}=\frac{1}{\sqrt{1+x^{2}}} \\
\cosh ^{2} y-\sinh ^{2} y=1 \\
\frac{d}{d x} \sinh ^{-1} x=\frac{1}{\sqrt{1+x^{2}}} .
\end{gathered}
$$

لاحظ أن التشابه مـع قـانون الاشتقاق لـ الخمس الأخرى المعكوسة للقطـع الزائد. يهكن تنظيم لائحة بالمشتقات الباقية.

3.47c الشكل $y=\tan ^{-1} x$

من أجل الإستكمـال

$$
\begin{array}{rlrl}
\frac{d}{d x} \sinh ^{-1} x & =\frac{1}{\sqrt{1+x^{2}}} & \frac{d}{d x} \cosh ^{-1} x & =\frac{1}{\sqrt{x^{2}-1}} \\
\frac{d}{d x} \tanh ^{-1} x & =\frac{1}{1-x^{2}} & \frac{d}{d x} \operatorname{coth}^{-1} x & =\frac{1}{1-x^{2}} \\
\frac{d}{d x} \operatorname{sech}^{-1} x & =\frac{-1}{x \sqrt{1-x^{2}}} & \frac{d}{d x} \operatorname{csch}^{-1} x=\frac{-1}{|x| \sqrt{1+x^{2}}}
\end{array}
$$

وقبل الانتهاء من هذا الدرس، نتمنى التركيز على أن دوال القطـع الزائد المعكوسة لها ميزة مهمهة عـن الدوال العكسية السابقة التي ناقشَناها. يوضح ذلك أنـا النه يمكننا إيجاد حل للدوال العكسية بشكل صريح بدلالة المزيد من الدوال الأولية.

$$
\begin{aligned}
& \text { مثال } 9.2 \text { إيجاد قانون لدالّة قطـع زائد معكوسـة } \\
& \text {. } \sinh ^{-1} x \text { أوجد قانونًا صريحَا لـ } \\
& \text { الحل تذكر من (9.2) أن } \\
& \sinh y=x \text { إذا وفقط إذا كان } y=\sinh ^{-1} x \\
& \text { باستخدام هذا التعريف يوجد لدينا } \\
& x=\sinh y=\frac{e^{y}-e^{-y}}{2} \\
& \text { يهكننا حل هذه الهـادلة لإيجاد y كما يلي. أولُا تذكر أيضًا أن } \\
& \cosh y=\frac{e^{y}+e^{-y}}{2}
\end{aligned}
$$

والآن، لاحظ أن بإضافة هاتين المعادلتين الأخيرتين واستخدام المتطابقة (9.1)، يوجد لدينا

$$
\begin{aligned}
e^{y} & =\sinh y+\cosh y=\sinh y+\sqrt{\cosh ^{2} y} \quad \cosh y>0 \\
& =\sinh y+\sqrt{\sinh ^{2} y+1} \\
& =x+\sqrt{x^{2}+1}
\end{aligned}
$$

من (9.3) . وفي النهاية، عند أخذ اللوغاريتم الطبيعي لكلا الطرفين، نحصل على

$$
y=\ln \left(e^{y}\right)=\ln \left(x+\sqrt{x^{2}+1}\right)
$$

وهكذا، وجدنا قَانونًا لدالّة Sine القطع الزائد الهعكوسة: - $\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right)$

وبالمئل، يمكننا توضيح أن لكل 1 ، $x \geq 1$
$\cosh ^{-1} x=\ln \left(x+\sqrt{x^{2}-1}\right)$
ولكل $1<1<x$.
$\tanh ^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$
سنترك ذلك كتمرين لاشتقاق هذه الدوال والدوال المقابلة الخاصة بدوال التطـع الزائد المعكوسة المتبقية. توجد نقطة صغيرة في تذكر أي من هذه القوانين. كل ما تحتاجه فقَط هـو إدراك أن تلك القوانين متوفرة دائمًا عن طريق إجراء بعض عمليات الجبر الأولية.
19. أثبت أن 19 الُ $e^{x}=\cosh x+\sinh$ الواقع، سـنوضح أن تلك هي

الطريقة الوحيدة لكتابة
ذلك، على فرض أن فردية. أثبت أن اثنين، استنتج أن 20. أثبت أن $\operatorname{losh}(-x)=\cosh$ (أي \cosh يمثل دالة زوجية) وأن (أي، $\sinh (-x)=-\sinh x$. $\lim _{x \rightarrow-\infty} \tanh x=-1, \lim _{x \rightarrow \infty} \tanh x=1$ 21 أثبت أن 22 22 $\tanh x=\frac{e^{2 x}-1}{e^{2 x}+1}$ أثبت أن أن

تطببيقات

 بعيدة بمقدار 40 وارتفاعها $4=20 \mathrm{~m}$ ويكون الارتفاع في الaنتصف

، وارتفاع الطرف الأيمن بمقدار 20 . أوجد معادلة الشكل

25. على فرض أنّ السرعة المتجهة الرأسية (t) لجسمر يسقط كتلته
m تخضع للجاذبية وسحب الهواء يمكن حسـابها بالمعادلة

$$
v(t)=-\sqrt{\frac{m g}{k}} \tanh \left(\sqrt{\frac{k g}{m}} t\right)
$$

لثابت معين موجب kk
$\lim _{x \rightarrow \infty} V(t)$ أوجد السرعـة المتجهة النهائية عن طريق حسـاب (a)
(mg) متوازنة (أثبت أن جاذبية السرعة الهتجهة النهائية (b) بسحب الهواء (b) (kv2).

ارتفاع m 1000 . المـحلق الأول يطير في الهواء ورأسه إلى الأمام مع معامل سـحب قدره $k=\frac{1}{8}$. ألهـحلق الثاني يطير في الهواء بوضعية النسر الذي يفرد جناحيه مع k= السرعتين الهتجهتين النهائيتين.
27. اشتق لونج وويس الهعادلة التالية للسرعـة الهتجهة الأفقية لهكوك الفضاء أثناء إعادة الدخول
حيث حي vo هي السرعة الهتجهة في الزمن t= 0 (1 . أوجد أقصى عـجلة

. (إرشاد: الحد الأدنى لقيمة cosh هو 1. عـندما x=0 .)

1. تيبلغ طول قوس جيث اوبي 630 قدمٌا ويبلغ ارتناعه 630 قدمًا.

تمارين كتابية

1. قارن بين مشتقة الدوال المثلثية ومشتقات دوال القطـع الزائد. لاحظ أيضًا أن الهتطابقة الهثلثية 1 ($\cos ^{2} x+\sin ^{2} x=1$

فتَط بإشارة الطرح عن متطابقة القطع الزائد المناظرة
. $\cosh ^{2} x-\sinh ^{2} x=1$
2. وكما تهت ملاحظته في النص، فإن دوال القطع الزائد ليست
 من الدوال الأسية. اشرح لماذا يكون من الهـيد تخصيص أسماء معينة لهذه الدوال بدُّا من تركها كدوال أسية.
3. صِف باختصار التمثيلات البيانية لـ s و $\sinh x$ و $\tanh x$ و أي كثيرات الحدود البسيطة التي تمثلها التمثيلات البيانية لـ
\bigcirc
4. السلسلي (Cosine القطع الزائد) هو شكل ينتج عن سلك معلق لأن ذلك يوزع وزن السلك بالتساوي على أجزاء السلك.
وبمعرفة هذا، لماذا كان من الجيد بناء قوس جيت واي بهذا الشكل؟ لماذا قد تشك في أن مظهر البيضة له الشكل نفسه؟

في التمارين 4-1 ، ارسـم تهثيلًا بيانيًا لكل دالّة.

1. $f(x)=\cosh 2 x$
2. $f(x)=\cosh 3 x$
3. $f(x)=\tanh 4 x$
4. $f(x)=\sinh 3 x$

في التمارين 12-5 ، أوجد مشتقة كل دالّة.
5. (a) $f(x)=\cosh 4 x$
(b) $f(x)=\cosh ^{4} x$
6. (a) $f(x)=\sinh \sqrt{x}$
(b) $f(x)=\sqrt{\sinh x}$
7. (a) $f(x)=\tanh x^{2}$
(b) $f(x)=(\tanh x)^{2}$
8. (a) $f(x)=\operatorname{sech} 3 x$
(b) $f(x)=\operatorname{csch}^{3} x$
9. (a) $f(x)=x^{2} \sinh 5 x$
(b) $f(x)=\frac{x^{2}+1}{\operatorname{csch}^{2} x}$
10. (a) $f(x)=\frac{\cosh 4 x}{x+2}$
(b) $f(x)=x^{2} \tanh \left(x^{3}+4\right)$
11. (a) $f(x)=\cosh ^{-1} 2 x$
(b) $f(x)=\sinh ^{-1} x^{2}$
12. (a) $f(x)=\tanh ^{-1} 3 x$
(b) $f(x)=x^{2} \cosh ^{-1} 4 x$
. $\frac{d}{d x} \tanh x=\operatorname{sech}^{2} x, \frac{d}{d x} \cosh x=\sinh x$ أثبت كل مشتقة 14. أوجد مشتقة كل دالة $\operatorname{loth} x$ و و g و cochch. 15. باستخدام خصائص الدوال الأسية، اثبت أن $\operatorname{linh} x>0$ إذا كان . $x<0$ إذا كان $\sinh x<0$ و $x>0$ 16. . $^{\text {اثبت أن }} \cosh ^{2} x-\sinh ^{2} x=1$ 17. أوجد قَانونًا صريحّا، كمـا في الهـثال 9.2 لـ 9 . $\cosh ^{-1}$.

c ويصل إلى 630. مثّل بيانيًا القطع الهكافئ والشكل السلسلي

 اطلع الهؤلفون على كتب رياضيات حيث يتم تمـئيل القوس

 يطابق (تقريبَا) قياسات القوس التي تصل إلى 630 قدمُا

 حسبانك نهوذج آلقططع الهكافئ. للحصول على التقاططّات مـح الهحور x $x=-315$ و $x=315$ ($x=315$ اشرح لمـاذا يجب أن يشمل النهوذج الصيغة $y=-c(x+315)(x-315)$ لثابت معين موجب

نظـرية القيهـة الهـتوسـطة

في هذا الدرس، نتناول نظرية القيمة المتوسـطة التي تُعد بالفة الأهمية لأننا سنستنبط منها أفكارًا جديدة لعدد مـن الوحدات المقبلة. وقبل دراسـة النتيجة الأساسية. سنطلع على حالة خاصة يُطلق عليها نظرية رول.
 في الفترة المفتوحة (a,b)، وحيث إن ($)$ ($f(a)=f(b)$ فإنه يجب أن تكون هـناك نقطة على الأقل بين $x=a$ و $x=b$
 ممـاس أفقي. ارسم التمثيلات البيانية الخا النقطتين (a,f(a)) و (b,f(b)) بدون وجود ممـاس أفقي واحد على الأقل.

3.48b الشكل
تـثيل بياني بشكل
متناقص في البداية
3.48a الشكل
تمثيل بياني بشـكل متزايد
في البداية
) 3.48c 3.48a إلى (انظر الأشكال مـن

يعتمد برهان نظرية رول على نظرية القيم القصوى. ونحن حتى الآن نتناول الأفكار الأساسية للبرهان من وجهة نظر التمثيلات البيانية. يقدّم الملحق A برهـانًا على هذه النظرية
 ، فإنه عند النظر من اليسار إلى اليمين يجب عـلى التمثيل البياني أن يبدأ في التناقص أو أو التزايد. (انظر الشكلين (3.49b 3.49a وفي حال بدأ التهشيل البياني في التزايد، لاحظ أنه، للعودة إلى الهستوى الذي بدأ عنده، يجب أن يتحول في نقطة ما ويبدأ في التناقص. (فكر في الأمر بهذه الطريقة: إذا بدأت

ملا حـطات

 تاريخيةميشـيل رول (1719-1652) عالم رياضيات فرنسي أنبت صحة 1619 نظرية رول في كثيرات الحدود. نشأ رول في بيئة فقيرة واعتهد على تفسه في تعليمه وناضل في عـي عدد متنوع من الوظائفَ: فُعقل مسحاميًا
 كان عضوٌا فـعالْ في الأكاديهية العُرنسية للعلوم. وكان يناقش العان ألهع العقول في الأكاديهية أمثيال ديكار
 (فَيمكنتا على سبيل المثال
 رول كان مشهوورًا برفضه لحساب التفاضل والتكامل المتطور الجديد، وكان يُطلق عليه "مـجموعـة من

المغالطات العبقرية".

في تسلق جبل، فإن الارتفاع يزداد؛ وإذا أردت الحودة للأسفل إلى نقطة البداية، فسيتوجب عليك التحول عند نتطة ما وعندها سيبدأ الارتفاع في التناقص.)

3.49b الشكل

ينحدر التمثيل البياني ثـم يتحول للصعود إلى المكان الذّي بدأ منه.

3.49a الشكل

يصعد التمثيل البياني ثم بتحول
لينحدر إلى المكان الذي بدأ منه.

إذًا، تمة نتطة واحدة على الأقل يتحول عندها التمثيل البياني ويتفيّر من التزايد الى التناقص. (انظر الشكل

 من السهل توضيح أنه من الخطأ أن تكون فإنه من التعريف البديل للمشتقة الواردة في المعادلة (2.2) من الدرس 2-3، نجد أن

$$
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}>0
$$

يعني ذلك أنه لكل x قَريبة بها يكفي من c. يكون
(10.1)

$$
\frac{f(x)-f(c)}{x-c}>0
$$

 الحالة التي بدأ التمئيل البياني فيها بالانحدار متطابقة.

سنحاول الآن توضيح استنتاج نظرية رول.

$$
\begin{aligned}
& \text { مثثال } 10.1 \text { توضيح لنظرية رول } \\
& \text { أوجد فيهة c التي تحقق نظرية رول للدالة: } \\
& f(x)=x^{3}-3 x^{2}+2 x+2 \\
& \text { في الفترة [[0, } 1 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-6 x+2 \\
& \text { ثمّ سنحاول إيجاد فيم } C \text { حيث إن } \\
& f^{\prime}(c)=3 c^{2}-6 c+2=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } c=1-\frac{1}{3} \sqrt{ } 3 \approx 0.42265 \in(0,1) \text {, }
\end{aligned}
$$

نود التأكيد على أن المثال 10.1 هو مجرد مثال لتوضيح نظرية رول. إيجاد العدد (الأعداد) c التي تحقق استنتاج نظرية رول ليس النقطة التي نناقشَا فيا في المقابل، نهتم بنظرية رول بشكل أساسي لأننا نستخدمها لإثبات إحدى النتائج الأسماسية لأُساسيات حساب التفاضل والتكامل، وهي نظرية القيمة المتوسطة.

رغم أن نظرية رول هي نتيجة بسيطة. إلا أنه هِكننا استخدامها في استنتاج عدد كبير من خصائص الدوال. فنحن نهتم على سبيل المثال بإيجاد الأصفار في الدالّة f (وهبي حل المـادلة 0 = 0) للدالّة. تكمن فائدة نظرية رول هنا.

النظرية 10.2

 [a,b]. فإن

البرهـان

$$
\text { - } f^{\prime}(c)=0
$$

يهكننا بيساطة أن نحّم نتيجة النظرية 10.2، كها هو الحال في النظرية التالية.

النظرية 10.3

 بالغترة (a, b).

 هيكنتا استخدام النظرية 10.2 والنظرية 10.3 للتحقق من عدد الأصفار في دالّة ما. (تذكر أننا ندرس هنا الأصفار الحقِقبة فقط لدالة ما وليس الأصفار الهركبة). مثال 10.2 تحديد عدد الأصفار لدالة
أثبت أن 0 = 0 لها $x^{3}+4 x+1$ حل واحد فتط.

 حبث إن 0 ح

$$
f^{\prime}(x)=3 x^{2}+4>0
$$

على الأقل. وبما أن 0 看
f(x)=0 لديها حل واحد بالضبط.

الشكل 3.50
$y=x^{3}+4 x+1$

النظرية 10.4 (نظرية القيمة الهتوسطة)

$$
\begin{equation*}
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \tag{10.2}
\end{equation*}
$$

البرهـان

لاحظ أن الفرضيات متطابقة بالنسبة لفرضيات نظرية رول، عدا أنه لا يوجد افتراض حول قيم f عند

 أفقية. فإن الشكل 3.52 سيأخذ مظهر أشكال نظرية رول (الشكلان 3.49a و3.49b). تكمن فكرة البرهان في
"إمالة" الدالّة، ئم تطبيق نظرية رول.

الشكل 3.52
نظرية القيمة الهتوسطة

الشكل 3.51
الهستقيم القاطع

$$
\begin{aligned}
& \text { معادلة القاطع الهـار بالنقطتين الطرفيتين هي } \\
& y-f(a)=m(x-a) \\
& m=\frac{f(b)-f(a)}{b-a} \\
& \text { حيث }
\end{aligned}
$$

عرّف الدالّة "المائلة" g على انهها الفرق بين f والدالّة التي يكون تمثيلها البياني عبارة عـن القاطع:

$$
\begin{equation*}
g(x)=f(x)-[m(x-a)+f(a)] \tag{10.3}
\end{equation*}
$$

لاحظ أن g متصلة في [a,b] وقابلة للإشتقاق في (a,b)، وذلك لأن f لها الخصائص نفسها. عـلاوة على ذلك،

$$
\begin{gathered}
g(a)=f(a)-[0+f(a)]=0 \\
g(b)=f(b)-[m(b-a)+f(a)] \\
=f(b)-[f(b)-f(a)+f(a)]=0 . \quad \frac{f(b)-f(a)}{b-a}=m \text { ن }!\text { L }
\end{gathered}
$$

$g^{\prime}(c)=0$ بها أن (a)=g(b) وبإجراء إشتقاق لـ (10.3)، نحصل على

$$
\begin{equation*}
0=g^{\prime}(c)=f^{\prime}(c)-m \tag{10.4}
\end{equation*}
$$

$$
\begin{aligned}
& \quad f^{\prime}(c) \text { في النهاية، يُنتج حل (10.4) لإيجاد فيهة } \\
& f^{\prime}(c)=m=\frac{f(b)-f(a)}{b-a}
\end{aligned}
$$

قَبل استحـراضنا لبعض نقاطـ قـوة نظرية القيمـة المتوسـطـة، سـنستعرض بإيجاز استنتاجها.

 وجود عدد C في (0,2) يكون فيه

$$
f^{\prime}(c)=\frac{f(2)-f(0)}{2-0}=\frac{3-1}{2-0}=1
$$

بإيجاد هذا العدد C. نحـّد مـا يلي

$$
\begin{gathered}
f^{\prime}(c)=3 c^{2}-2 c-1=1 \\
3 c^{2}-2 c-2=0
\end{gathered}
$$

باستخدام الصيغة التربيعية. سنوجد c= $c=\frac{1+\sqrt{7}}{3}$. $c=\frac{1 \pm \sqrt{7}}{3}$ مي هذه الحالة. حلُا واحدًا وهود في الفترة (0,2). في الشككل 3.53. توضّح التمشيلات البيانية لـ $y=f(x=$ والهستقيم القاطـع للنقطتين الطرفيتين

$$
x=\frac{1+\sqrt{7}}{3} \text { لجزء من المنحنى في الفترة [0,2] والمهماس عند }
$$

الشكل 3.53
نظرية القيمة الهتوسطة

إن التوضيح الوارد بالمثال 10.3، الذي أوجدنا فيه العدد C وأكدت نظرية القيمة المتوسـطة وجوده، لا يمثّّل مـحور
 الفرق بين قيم الدوال بالفرق بين قيم X الهعابلة لها. كهـا هو الحال في الــعادلة (10.5) أدناه. لاحظ أنه، إذا أخذنا نتيجة نظرية القيمة المتوسطة بعين الاعتبار (10.2) وضربنا الطرفين في الكمية (a-b)،
فسـنحصل على

$$
\begin{equation*}
f(b)-f(a)=f^{\prime}(c)(b-a) \tag{10.5}
\end{equation*}
$$

كها تبيّن أن عددًا كبيرًا من أكثير النتائج أهمية في حسـاب التفاضل والتكامل (بها في ذلك النتيجة الهـروفة بالنظرية الأساسية لحساب التفاضل والتكامل) يتبع نظرية القيمة المتوسطـة. ويدور السؤال حول عـدد الدوال التي لها الهشتقة نفسها. تذكر أنه لأي ثابت C، يكون

$$
\frac{d}{d x}(c)=0
$$

ثهة سؤال لم تفكّر فيه على الأرجـح، وهو: هل من دوال أخرى تكون مشتقتها صفرُا؟ الإجابة هي لا، وتوضح ذلك النظرية 10.5.

التظبرية 10.5

على فرض أن $f^{\prime}(x)=0$ لكل قيم x في الفترة الهفتوحة I. فإن f ف ثابتة في I I.

> البر هـان

$$
\begin{aligned}
& \frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
\end{aligned}
$$

$$
\begin{aligned}
& f(b)=f(a) \text {, } \mathrm{i} \quad f(b)-f(a)=0 \\
& \text { بها أن a وb همها نتطتين عشوائيتين في I. فإن f ثابتة في I. وهو المطلوب. } \\
& \text { يرتبط السؤال التالي بالنظرية 10.5. نطلم على سبيل المثال أن } \\
& \frac{d}{d x}\left(x^{2}+2\right)=2 x
\end{aligned}
$$

ولكن، هل يوجد دوال أخرى لها الهشتقة نفسها؟ ينبغي عليك ذكر عدة أمثلة على ذلك. على سبيل الهثال.

$$
\text { x } 3 \text { و } 3 \text { 2 } 4 \text { لهما المشتقة 2x. وفي الحقيقة. }
$$

$$
\frac{d}{d x}\left(x^{2}+c\right)=2 x
$$

بالنسبة لأي ثابت c. هل يوجد أي دوال لها المشتقة 2x؟ تنص النتيجة 10.1 على أنه لا وجود لمثل هذه الدوال.

على فرض أن . $x \in I$ لكل $g(x)=f(x)+c$

الشكل 3.54
تهئيلان بيانيان متوازيان

$$
h^{\prime}(x)=g^{\prime}(x)-f^{\prime}(x)=0 \text { لنعرّف }
$$

لكل قيم x في I. في النظرية 10.5، يكون h(x)=c. للثابت c. ثم يتبع ذلك النتيجة بشُكل مباشُر من
تعريف .h(x).

نجد أن النتيجة 10.1 لها تطبيقات مهمة عندما نحاول عكس عملية الإشتقاق (يُطلق على ذلك الإشتقاق الهكسي). لنلقِ نظرة على هذا المثيال 10.4.

[^0]
أبعـد من القوانين

تتسـم نظرية القيهة المتوسطة بتعقيدها، لكن تطبيقاتها بعيدة الهدى. ورغـم أن التوضيح في الشككل 3.52 يجعل النتيجة واضحة. إلا أن نتائج نظرية القيمة المتوسطة، مثل المـئال 10.4، ضخحمة وليست جميع أجزائها واضحة.
 الهتوسطـة سـواء بطريقة مباشـرة أو غـير مباشـرة. قد يؤدي الفـم الكامل لنظرية حساب التماضل والتكامل إلى الـى استنتاجات مهمة، ول又 سيما عنـدما تفوق المسـائل ما يمكن لحدسك التعامل معه. ما النظريات الأخرى التي تعلهتها ولا تزال تقدّم لك رؤية ثاقبة لما وراء سـياقها الأصلي؟

التهارين 3.10

4. يهكن استنباط نظرية رول من نظرية القيمة الهتوسطة عبر إببات . $f(a)=f(b)$ خاص وجزء في هذا الكتاب. ولتوضيح السبب وراء قيامنا بذلك، سـنناقش طرفًا تسهِّل فُهم نظرية رول أكثر من نظرية القيهة الهتوسطـة.

في التمارين 6-1، تحقّق من فرضيات نظرية رول ونظرية القيمة

 المتوسـطـة، وجِـْ قيمـة c الذي يجعل الاسـتنتاج الخاص بالنظريتين صـحيحًا. اشرح الاستتنتاج برسـم تمثيل بياني.| 1. $f(x)=x^{2}+1,[-2,2]$ | 2. $f(x)=x^{2}+1,[0,2]$ |
| :--- | :--- |
| 3. $f(x)=x^{3}+x^{2},[0,1]$ | 4. $f(x)=x^{3}+x^{2},[-1,1]$ |
| 5. $f(x)=\sin x,[0, \pi / 2]$ | 6. $f(x)=\sin x,[-\pi, 0]$ |

1. بالنسبة لكل من نظرية رول ونظرية القيمة المتوسطة، على فرض أن f متصلة في الفترة الهغلقَ [a, f وقابلة للإشتّقاق في الفترة المفتوحة
 ذكر الاتصال. اشرح لمـاذا. لكن وضَّح لهاذا يستبعد هذا الافتراض居 $f(x)=x^{2 / 3}$ في 2. إحدى نتائج هذا الدرس هي أنه إذا كان $f^{\prime}(x)=g^{\prime}(x)$ في الفترة
 بيانيًا.
2. اششرح النتيجة 10.1 في ما يتعلق بدالّتي الموفـع والسرعة المتجهة. بمعنى أنه إذا كان لدى جسمين دالة السرعة الهتجهة نفـسهـا، فمـا الذي
3. على فرض أن 1 (t) تحدّد موقِع جسم ما في الزمن t. وإذا كانت s قابلة
 . $t=b$ و $t=c$ 40. بدأ عدّاءان سباقًا في الزمن 0. وبعد مرور فترة من الزمن

نفسها بالضبط.

和 $f(a)=g(a)$ f f و
$f(a)=g(a)$ 42 42 . $f(b)-f(a)=g(b)-g(a)$ مستخدمين في الهعطى $f(b)=g(b)$ و

في التمارين 46-43، اشرح لمَّ لا يصـح استخـدام نظرية القيمة المتوسطة. إذا كانت الفرضيات غير صحيحة، فإن النظرية الـا تفيدك بأي شيء حول صحة الاستنتاج. في ثلاث أو أربـ حالات، وضّح أنه لا توجد قيه الحالة الرابعة، أوجد قيمة c.
43. $f(x)=\frac{1}{x},[-1,1]$
44. $f(x)=\frac{1}{x^{2}},[-1,2]$
45. $f(x)=\tan x,[0, \pi]$
46. $f(x)=x^{1 / 3},[-1,1]$
 وقابلة للإشتـقاق في الفترة (2) ويوجد بها (2) $2(0)=f(0)$ وضّح أنه

 بالهـيال أنه من غير الضروري أن تكون $f(x)=0$ صحيحة بالنسبة لجهيع قيمْ x حِدْ الخطأ في "البرهان" الهزيف التالي. باستخدام نظرية القيهة الهتوسطة حيث $a=x$ و $0=0$. $f^{\prime}(c)=\frac{f(x)-f(0)}{x-0}$. بها أن

$$
\text { . } f(x)=0 \text {. } 0=\frac{f(x)}{x} \text { ، } 0 \text {. } f^{\prime}(c)=0 \text { وذك } f(0)=0
$$

قهارين اسـتكمشافية

1. إذا كانت لديك سـرعة متجهة متوسـطة بمقدار 60 mph على ساعة واحدة، وحدود السرعة هي 65 mph، فلن تستطيع إثبات أنك لم تتجاوز حدود السرعة. ما أطول فترة زمنية يهكنك استخدامهها في حساب 60 الـر الهتوسط 60 mph وتضمن عدم تخطي حدود السرعـة؟ يمكننا استخدام نظرية القيمة المتوسطة للإجابة عن السؤال. وذلك بعد توضيح سؤالين

 إليها سيارتك؟ مـا أكبر تباطؤ (خفض السرعـة) قد تصل إليه سيارتك؟
ادعمر تقديراتك ببعض البيانات الحقيقية (مثل تتحرك سـيارتي من 0 إلى 60 في غضون 15 ثانية). أطلق على الحدد الأكبر اسـم A (استخدم وحدات mph في الثانية). ثم أثبت أن التسارع (مشتقة السرعـة المتجهة) ثابت، ثم أنبت أن دالّة السرعـة المتجهة هي دالّة خطية. لذلك، إذا كانت
2. أثبت أنّ 0 = 0 ($x^{3}+5 x+1$ لها حل واحد بالضبط.
3. أثبت أنّ 0 = 0 لها حل واحد بالضبط.

10.أثبت أنّ 0 = 0 ($x^{4}+6 x^{2}-1$ حها حلان بالضبط.

4. أثبت أنّ 13 له $x^{5}+a x^{3}+b x+c=0$ حل واحد بالضبط لكل من

$$
a>0, b>0
$$

14.أثبت أن كثيرة الحدود من الدرجة الثالثة (مكتبة) بها ثلاثة أصفار على

الأكثر. (يمكنك استخدام الصيفة التربيعية).
في التهمارين 22-15، أوجد الدالّة g التي تجعل g. $g^{\prime}(x)=f(x)$
15. $f(x)=x^{2}$
16. $f(x)=9 x^{4}$
17. $f(x)=1 / x^{2}$
18. $f(x)=\sqrt{x}$
19. $f(x)=\sin x$
20. $f(x)=\cos x$
21. $f(x)=\frac{4}{1+x^{2}}$
22. $f(x)=\frac{2}{\sqrt{1-x^{2}}}$
23.على فرض أن f دالّة قابلة للإشتقاق بحيث 0 و $f(0)=f^{\prime}(0)=0$

السـالبة؟
24. وضَّح أنه بالنسبة لأي عددين حقيقيين u وv، u. l. $\cos u-\cos v|\leq|u-v|$

الوحيد للمعادلة $\sin x=x$ هو $x=0$ ماذا سيحدث إذا حاولت إيجاد
جميع نقاط التقاطـع باستخدام حاسبة التمثيل البياني؟ 26. أثبت أن جميع حلول الهعادلة $\tan ^{-1} x=x$ جما
 28.أثبت أن 27

$$
\text { إذا كان } a<b(a)<f(b) \text { ف } f(a)
$$

أنه إذا كان b< $a<$ فإن $f(a)>f(b)$.
في التهمارين 38-31، حدّد مـا إذا كانت دالّة متزايدة أم متنـاقصـة أم غـير
$31 f(x)=x^{3}+5 x+1$
32. $f(x)=x^{5}+3 x^{3}-1$
33. $f(x)=-x^{3}-3 x+1$
34. $f(x)=x^{4}+2 x^{2}+1$
35. $f(x)=e^{x}$
36. $f(x)=e^{-x}$
37. $f(x)=\ln x$
38. $f(x)=\ln x^{2}$

أجزاء أكتُر وأكثئر. ثمه حاول تخهين نهاية التقديرات. 3. تنصّ نتيجة تُعرَف باسم نظرية القيهة المتوسطة لكوشَي على أنه إذا كان f و g دالتين قابلتين للإشتّقاق في الفترة (a, b) ومتصلتين في [a, a]. فيوجد
 أوجد جميع الأخطاء الهوجودة في المحاولة غير الصالحة لإثبات النتيجة، شم أوجد البرهان الصحيح. الهحاولة غير الصالحة: إن فرضيات نظرية الثيمة المتوسطة مستوفاة في كالا الدالّتين، لذلك يوجد عدد c يكون فيه $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} و a<c<b(b)$号 $b-a=\frac{f(b)-f(a)}{f^{\prime}(c)}=\frac{g(b)-g(a)}{g^{\prime}(c)} \cdot g^{\prime}(c)=\frac{g(b)-g(a)}{b-a}$ $[f(b)-f(a)] g^{\prime}(c)=[g(b)-g(a)] f^{\prime}(c)$

السرعة الهتجهة تختلف من 65 mph 55 mph فإن السرعة المتجهة الهتوسطة ستصبح 60 mph. والآن. طبّق نظرية القيمة الهتوسطة على دالّة السرعة المتجهة $v(t) v$ في الفترة الزمنية [0,T]. حيث تتغيّر السرعة المتجهة من 55 [55 إلى 65 mph بمعدل تسارع ثابت A: إذا $A=\frac{65-55}{T-0}$ و $\quad v^{\prime}(c)=\frac{v(T)-v(0)}{T-0}$ ما مدى جودة الضهان؟
2. على فرض إلقاء إحدى الهلوتّات في بحيرة بمعدل في الشهر. وقد بلغ معدل إلقاء هذا الـلموّث في البحيرة خلال الشهرين الأولين ($A=p(2)-p(0)$ باستخدام $c=1$ (النقطة الهتوسطة في الغترة). فدِّر ($p(t)$ من خلال تطبيق نظرية القيهة المتوسطة على $A(t)$ في الفترة [0, [[$[1$ [للحصول على تقدير أفضل، طبّق نظرية القيهة الهتوسطة على
 CAS

تهارين هـرا جـعـة

تمـارين كتابية

 بالنسبة لكل مصطلح أو نظرية، (1) اذكر تعريف أو عبارة دقيتة. (2) اذكر معنى الهصطلح أو النظرية بعبارات عامة. و(3) صف أنواع الهسائل ذات

الصلة بالمصطلح أو النظرية.

الستوسـطة الهتجهة	السرعة المتجهة	الa-a
التسارع	قاعدة القوة	اشتّقاق
قاعدة السلسلة	قاعدة ناتج قسممة	قاعـدة ناتج
نظرية رول	نظرية القيهة الهنو	الإشتقاق الضمني

أوجد مشَتقة كل دالة:
$\sin x, \cos x, \tan x, \cot x, \sec x, \csc x, \sin ^{-1} x, \cos ^{-1} x, \tan ^{-1} x$, $\cot ^{-1} x, \sec ^{-1} x, \csc ^{-1} x, e^{x}, b^{x}, \ln x, \log _{b} x$

صواب أم خطـأ

اذكر إذا ما كانت كل عبارة صائبة أم خاطــة وبيّن السبب باختصار. إذا كانت العبارة خاطئة، حاول "تصحيحها" عن طريق تعديل العبارة الهوضّحة إلى عبارة جديدة صحيحة.

1. إذا كانت دالّة متصلة عند x=a فسيكون لها ممـاس عند $x=a$. 2. السرعة الهتجهة الهتوسطة بين $t=b$ و $t=a$ هي متوسـط السرعات

المتتجهة عند 3. ينتج المـيل عن مشتقة الدالّة.

$$
\text { البياني لـ } f(x) .
$$

5. ينتج عـن قاعدة القوة فاعدة لحساب مشتقة أي كثيرة حدود. 6. إذا تمت كتابة دالّة في صورة ناتج قسـمة، فاستخدم فـاعدة ناتج القسمة لإيجاد مشتقتها.
6. $f(t)=t \csc t$
7. $f(t)=\sin 3 t \cos 4 t$
8. $u(x)=2 e^{-x^{2}}$
9. $u(x)=\left(2 e^{-x}\right)^{2}$
10. $f(x)=x \ln x^{2}$
11. $f(x)=\sqrt{\ln x+1}$
12. $f(x)=\ln \sqrt{\sin 4 x}$
13. $f(x)=e^{\tan \left(x^{2}+1\right)}$
14. $f(x)=\left(\frac{x+1}{x-1}\right)^{2}$
15. $f(x)=e^{\sqrt{3 x}}$
16. $f(t)=t e^{4 t}$
17. $f(x)=\frac{6 x}{(x-1)^{2}}$
18. $\sin ^{-1}\left(2 x^{2}+1\right)$
19. $\sin \left(\cos ^{-1} x^{2}\right)$
20. $\tan ^{-1}(\cos 2 x)$
21. $\sec ^{-1}\left(3 x^{2}\right)$
$y=f(x)$ في التهرينين 51 و52، اسـتخدم التمثيل البياني

. 51

.52

في التمارين 60-53، أوجد المشتقة المطلوبة.
53. $f^{\prime \prime}(x)$ for $f(x)=x^{4}-3 x^{3}+2 x^{2}-x-1$
54. $f^{\prime \prime \prime}(x)$ for $f(x)=\sqrt{x+1}$
55. $f^{\prime \prime \prime}(x)$ for $f(x)=x e^{2 x}$
56. $f^{\prime \prime}(x)$ for $f(x)=\frac{4}{x+1}$

في التـمارين 8-3، اسـتخدم تعـريف النهاية لإيجاد الهشـتقة
3. $f^{\prime}(2)$ for $f(x)=x^{2}-2 x$
4. $f^{\prime}(1)$ for $f(x)=1+\frac{1}{x}$
5. $f^{\prime}(1)$ for $f(x)=\sqrt{x}$
6. $f^{\prime}(0)$ for $f(x)=x^{3}-2 x$
7. $f^{\prime}(x)$ for $f(x)=x^{3}+x$
8. $f^{\prime}(x)$ for $f(x)=\frac{3}{x}$

قي التمارين 14-9، أوجـد مـعادلة الهمـاس.

9. $y=x^{4}-2 x+1$ at $x=1$
10. $y=\sin 2 x$ at $x=0$
11. $y=3 e^{2 x}$ at $x=0$
12. $y=\sqrt{x^{2}+1}$ at $x=0$
13. $y-x^{2} y^{2}=x-1$ at $(1,1)$
14. $y^{2}+x e^{y}=4-x$ at $(2,0)$

في التمارين 18-15، اسـتخدم دالّة الهـوقـع المُعطى لإيجاد السـرعـة المتجهـة والتسـارع.

15. $s(t)=-16 t^{2}+40 t+10$
16. $s(t)=-9.8 t^{2}-22 t+6$
17. $s(t)=10 e^{-2 t} \sin 4 t$
18. $s(t)=\sqrt{4 t+16}-4$
19. في التمرين 15، تعطي الدالة (s(t) ارتفاع الكرة في الزمن t. أوجد

 20. في التمرين 17. تعطي الدالة $s(t)$ موقع كتلة مرتبطة بزنبرك في الزمن
 في الاتجاه نفسه أم في اتجاهين متضادين؟ ما الزمن الذي تتحرك فيه
الكتلة بسرعة؟

في التمرينين 21 و22، احسب ميول المستقيمات القاطعة بين

21. $f(x)=\sqrt{x+1}$

$$
\text { ميل الـمماس عند } 1 \text { = } 1 .
$$

في التمارين 50-23، أوجد مشتقة الدالّة المعطاة.
23. $f(x)=x^{4}-3 x^{3}+2 x-1$
25. $f(x)=\frac{3}{\sqrt{x}}+\frac{5}{x^{2}}$
27. $f(t)=t^{2}(t+2)^{3}$
28. $f(t)=\left(t^{2}+1\right)\left(t^{3}-3 t+2\right)$
29. $g(x)=\frac{x}{3 x^{2}-1}$
30. $g(x)=\frac{3 x^{2}-1}{x}$
31. $f(x)=x^{2} \sin x$
32. $f(x)=\sin x^{2}$
33. $f(x)=\tan \sqrt{x}$
34. $f(x)=\sqrt{\tan x}$

في التهرينين 77 و78، حل الجزأين بدون إيجاد
 مثِّل المعكوس بيانيًا.
77. $x^{5}+2 x^{3}-1, a=2$ 78. $e^{x^{3}+2 x}, a=1$ 79. أتبت أنّ |x| \mid | 1 | $\cos x-1$.
80. أثبت أنّ $x+x^{3} / 3+2 x^{5} / 15<\tan x<x+x^{3} / 3+2 x^{5} / 5$ لكل $0<x<1$
81. إذا كانت $f(x$ قابلة للإشتقاق عند $x=a ، ~ ف و ض ّ ح ~ ا ٔ ن ~(x) ~ و ~ م ت ص ل ة ~ ع ـ ن د ~$

$$
g(x)=\left\{\begin{array}{ll}
\frac{f(x)-f(a)}{x-a} & x \neq a \text { إ } \quad . \\
f^{\prime}(a) & x=a \text { 交 }
\end{array} \quad . \quad . \quad x=a\right.
$$

位 $T=a(x)=f(a)+f^{\prime}(a)(x-a)$

$$
\lim _{x \rightarrow a} e(x)=0 \text { حيث } e(x) \text { للدالّة الخطـأ } f(x)-T(x)=e(x)(x-a)
$$

في التتهرينيـن 83 و84، أوجـد قيهـة c بالشكـل الذي تـحققـه نظّرية الـقيهـة الهـتوسـطـة
$[0,2]$ [$f(x)=x^{2}-2 x .83$

$$
\text { [0,2] } f(x)=x^{3}-x .84
$$

في التتهرينين 85 و86، أوجـد جهميع دوال g حيث

$$
. g^{\prime}(x)=f(x)
$$

85. $f(x)=3 x^{2}-\cos x$
86. $f(x)=x^{3}-e^{2 x}$
87. يكون لكثيرة الحدود $f(x)$ جذر مكرر من الرتبة 2 عند $x=a$ إذا كان ($(x-a)^{2}$

النقطة (1,2).

88 كرّر التمرين 87 بالنسبة لـ $\left.f(x)=x^{3}+2 x\right)$ والنقطة (2) ور 89. يبلغ طول وتر غيتار L، وتبلغ كثافته p. ويتذبذب الشـد T T بالتردد (احسب الإشتقاق $\cdot f=\frac{1}{2 L} \sqrt{\frac{T}{p}}$

من وجهة نظر عـازف غيتار يخفف الوتر أو يحرّره "لضبط نغمته". أوجد $\frac{d f}{d L}$ الضغط عـلى الوتر بطوق.
57. $f^{\prime \prime}(x)$ for $f(x)=\tan (2 x)$
58. $f^{(4)}(x)$ for $f(x)=\left(x^{6}-3 x^{4}+2 x^{3}-7 x+1\right)^{2}$
59. $f^{(26)}(x)$ for $f(x)=\sin 3 x$
60. $f^{(31)}(x)$ for $f(x)=e^{-2 x}$
61. تساوي الإيرادات الثهن مضروبّا في الكمـية. على فرض أن السعر
 السعر يزداد بهعدل 10 فلسات في الحام الواحد وتقل الكمية المبيعة بمعدل 1500 فَطعة في العام الواحد، فبأي معدل تزداد الإيراد الـيرات؟ 62. يهكننا إيجاد القيمة (بالدرهمم) للاستتمار بصفته دالّة زمن (أعوام) باستخـدام

لتغيّر قيمة الاستثمار.
63. يمكننا إيجاد الموفـع في الفترة الزمنية t t لزنبرك يتحرك بشكـل رأسي
(a) باستخدام $f(t)=4 \cos 2 t$ أوجد موقع الزنبرك عندما بكون لديه

سـرعة متجهة قيمتها صفر، و(b) حد أقصى للسرعة المتجهة، و(c) حد

> أدنى للسرعة المتجهة.

$$
\begin{aligned}
& \text { 64. يمكننا إيجاد الهوفـع في الفترة الزمنية t لزنبرك المنر يتحرك بشكل رأسي } \\
& \text { باستخدام } f(t)=e^{-2 t} \sin 3 t \text {. أوجد سـرعـة الزنبرك الهتجهة في أي } \\
& \text { زمن }
\end{aligned}
$$

في التهمارين 68-65، أوجـد الـهشـتقة (y'(x.
65. $x^{2} y-3 y^{3}=x^{2}+1$
66. $\sin (x y)+x^{2}=x-y$
67. $\frac{y}{x+1}-3 y=\tan x$
68. $x-2 y^{2}=3 e^{x / y}$
69. إذا تمكّنت من استـخدام CAS، فـارسم التهثيل البياني في التمرين 65. أوجد قيهة y التي تتوافق مـع 0 م 0 . أوجد ميل المهـاس للمنحنى عـند
هذه النقطة. كذلك، أوجد (0)
70. إذا تمكّنت من استخدام CAS. فارسم التهثيل البياني في التمرين 67.
 عند هذه النقطة. كذلك، أوجد (0)

71. $y=x^{3}-6 x^{2}+1$
72. $y=x^{2 / 3}$
73. $x^{2} y-4 y=x^{2}$
74. $y=x^{4}-2 x^{2}+3$
75. أثبت أنّ المحادلة 0 = $x^{3}+7 x-1$ لها حل واحد بالضبط.
76. أُبت أنّ المـعادلة 0 = 0 ($x^{5}+3 x^{3}-2$ حل واحد بالضبط.

 الآن بعض مسائل كرة القاعدة. سـوف نتأمل الآن مدى الارتفاع الذا الأي يحتاج اللاعبون إلى رفع الكـرة إليه لجـل التهريرات سـلـلة في الإمسـاك بها يُـدَ

 في الشكل)، ويمكن تحديد القطع المكافئ من خـلال العـلاقة التالية بين

الثالثة الذي يهرّر الكرة بسـرعة $130 \mathrm{ft} / \mathrm{C}$ (130 mph (حوالي الني بسرعة 120 للوصول إلى القاعدة الأولى. أوجد قاعـدة إطلاق الكرة
 وميل الهماس، والارتفاع الذي يجب فيه على لاعب القاعدة الثالـالثـ الثة تصويب الكرة (وهو الارتفاع الذي ستصل إليه الكرة مـع افتراض انـرا العدام الجاذبية).
 ماذا عن تهريرة لاعب الدفاع للكري لمسافة 300 قدم بسرعـة 130 ft/s؟ ينكر معظم لاعبو كرة القاعدة أنهم يصوّبون الكرة بهذا الارتفاع، فما فـا الشيء المتأصل في خبراتهم ويجعل من الصعب عليهم تصديق هذه الحسـابات؟

تهارين اسـتكششافية

1. تُحد معرفة أين ينبغي تصويب الكرة مهارة مهمة في الحديد من النشاطـات
 أخرى)، فإن التصويب قَد يكون مهمة صعبة. عند إلقاء كرة قاعـدا

 وأي حركات جانبية. يهكن تقريب حركة الكرة المتحركة باستخدام
 بالسرعـة الابتدائية v ft/s عند الزاوية θ من المستـقيم الأفقي.

إذ ا أخذنا هذا الميل بعين الاعتبار، فيمكننا حسـاب ميل المهـاس عنـ ©

[^0]: مثال 10.4 إيجاد جهيع الدوال التي لها مشتقة معطاة

 $$
 \text { أوجد جميع الدوال التي مشتقتها تسـاوي: } 1.3 x^{2}+.
 $$

 الحل نكتب أوُلُ (من واقع خبرتنا مع الاشتقاقات) دالّة واحدة لها مشتقة صحيحة: النتيجة 10.1 أن أي دالّة أخرى لها الهشتقة نفسها تختلف عنها بئابت واحد على الأكثتر. إذًا، كل دالّا تساوي مشتقتها $3 x^{2}+1$ يكون لها الشُكل 101 ($x^{3}+x+$ بالنسبة للثابت c.

