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Abstract 

 
An experimental investigation of the sealing process of an anode 
assembly used in electrolysis cells has been performed to better 
define the thermal and mechanical aspects of the cast iron thimble 
solidification between the steel stub and carbon hole. Three holes 
of a baked anode have been thoroughly measured with a 
Coordinate Measuring Machine (CMM) to obtain a high precision 
three-dimensional map of the carbon interface. These 
measurements were then compared to the outer surface of the 
frozen thimbles to obtain a room temperature air gap dimension. 
Thirty-nine thermocouples, placed in a strategic configuration, 
allowed the reconstruction of the temperature field in the steel 
stub, carbon block and solidifying cast iron thimble from the 
pouring to room temperature. Hence, heat transfer coefficients can 
be evaluated at the carbon/cast iron and steel/cast iron interfaces 
with a thermal model. Metallographic analysis is matched with the 
cooling curves. 
 

Introduction 
 
Prediction of the initial air gap in an anode is of high interest for 
people who aim at modeling the thermo-electro-mechanical 
behavior not only of an anode but also the whole aluminium 
electrolysis cell. It is a key parameter that defines the quality of 
thermal and electrical contact at the connection, thus influencing 
the voltage drop and current distribution in the anode and cell. 
 
In the recent years, many attempts have been made to model the 
anode with generally satisfactory results [1-5] using a simple 
relation proposed by Richard [4] to predict the air gap : 
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(1) 

Where, �� is the steel temperature at the moment of the cast iron 
solidification, �� is the solidification temperature of cast iron, � is 
the cast iron thickness and � are the thermal expansion 
coefficients. 
 
However, no actual measurements have been made in an 
industrial environment to assess the quality of the predictions 
made by this relation. 
 
This current work is an effort to provide crucial information to 
validate a 3D thermo-mechanical solidification model of an anode 
sealing process. Within this scope, the following results are 
presented : 

 
- Measurements of the air gap at the carbon/cast iron 

interface; 
- Measurements of the temperature field during the 

sealing process; 
- Metallographic analysis of the cast iron; 
- Evaluation of the heat transfer coefficients at the 

interfaces; 
 

Air gap measurement methodology 
 
Two different methodologies, both with their advantages and 
disadvantages have been considered to measure the air gap. Real-
time measurements with Linear Variable Displacement 
Transducers (LVDT) have been extensively used in experimental 
setups [6-12] and allows tracking the opening of the air gap as the 
molten metal solidifies and cools down. It is therefore an easy task 
to estimate the Heat Transfer Coefficient (HTC) at the interface as 
a function of gap opening and temperature along with 
thermocouple measurements so the method serves well for 
numerical model validation. The second method, differential 
measurements, doesn’t yield a real time air gap magnitude but 
rather a final value at room temperature. Three-dimensional 
measurements of the stub holes and cast iron thimbles are 
compared to obtain the air gap. The latter method has been chosen 
for reasons of logistics and simplicity.  
 
The stub holes are measured prior to casting with a coordinate-
measuring machine (CMM) by taking over 2000 points spread 
over equally spaced heights along the interior surface of each 
hole. The spatial coordinates of each point are stored in the CAD 
drawing file of the stub hole, indicating their position with respect 
to the theoretical surface. The same process is used with the 
frozen iron after is it withdrawn from the stub hole. The two sets 
of measurements are aligned with a best fit method and the air gap 
is computed locally from the sum of the deviation of the measured 
coordinates versus the CAD coordinates.    
 

CMM stub hole and thimble measurements 
 
Because of its bulky size and weight, the anode was mounted 
sideways next to the CMM as shown in Figure 1. An extension 
was used so the probe could reach the stub holes.  
 
A parametric Computer Numerical Control (CNC) program 
controls the CMM and the work is done with an automated 
procedure. The probe has a target measuring point corresponding 
to the CAD surface and an approach vector which is perpendicular 
to the surface. It records the actual measured point and its 
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deviation from the stored drawing. Figure 
representation of the measured points. The gree
an arbitrary tolerance compared to the CAD.  
 

Figure 1 : Set-Up of the stub holes measurements 

 

Figure 2 : 3D representation of a stub hole me
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Figure 3 : Measurements of the
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It therefore important to use thermocouples (TC
the process to be investigated, that is, r
temperature, fast response time and small therm
not to disturb the temperature field. Unsheath
3.175mm bead, type K and type S TCs wer
experiments based on preliminary trials 
qualification purpose. 
 

Thermocouple configuration
 
Thirteen TCs have been placed in each stub hole
thirty-nine measurement points.  Holes drilled in
and steel stub allow insertion of the TCs at the d
the steel, carbon and cast iron. Figure 5 shows 
for the whole anode with the following notation:
to the material in which the TC is (Cast Iron, 
number to identify the position of the TC and 
identifying the stub hole. 
 
Sets of TCs are placed on a radial pattern at two
that is, at one and two third of the depth of the
TCs are placed in the cast iron halfway between 
in the cylindrical part. Two TCs are in one fin of
TCs are placed 1 cm inside the steel surface an
the carbon 2 and 8.5 cm away from the interfa
that, there are three TCs placed in the middle 
distributed over the height. A silver compound 
ensure a good thermal contact between the ther
surfaces. 
 
The data acquisition is performed with a DataTa
period of 24 hours after the time of the anode 
logger records one data point per TC per second.
 

Figure 5 : Thermocouple configuration in a 

Thermocouples results 
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Cast Iron 
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boundary conditions for every hole. Also, the filling rate and mass 
were not controlled. It resulted the center hole (2) being 
overfilled. The heterogeneous state of the carbon material can also 
have an influence on the thermal field. 
 
The casting sequence (3,1,2) can be deduced by the maximum 
temperature recorded. The stub hole 3 has a maximum 
temperature of almost 1300°C and the stub hole 2 doesn’t exceed 
1200°C. The cast iron was heated up to 1485°C in an induction 
furnace, transferred into a crucible and brought to the anode to be 
cast. In each of these steps, heat was lost and it explains the 
maximum temperature difference. The slight time lag between the 
thick and thin lines at 0s is the time taken to fill the cavity to reach 
the two highest TCs.  
 
It is obvious that the cooling is slower in the fins and in the higher 
part of the stub holes as the I3 TC is generally the slowest to cool 
down and the I2 TC is the fastest.  
 
The latent heat released by the phase changes during cooling is 
easily observable with two major plateaus in all the curves: one at 
around 1150°C associated with the formation of the austenite and 
one at around 750°C being the eutectoid reaction. However, two 
different behaviors can be observed depending on the TC 
locations. The curves representing the cooling in the fins, in which 
there is more mass, have a steadier and slower cooling rate and 
there is a subtle slope variation between 1050 and 1000°C 
suggesting there is another phase change there. The same behavior 
is not recorded by the TCs in the cylindrical part of the thimble. It 
also appears in thimble 1 and 3 that the thinner section (TC I2) 
experienced undercooling at the austenite formation temperature.  
Metallographic analyses presented in the next section confirm that 
a different solidification path was followed by the iron at the 
different locations.  
 
Carbon and Steel 
 
The curves recorded in the carbon (Figure 7) and steel (Figure 8) 
show a similar pattern to the three holes and for reasons of 
conciseness, only the curves for stub hole 1 are presented here. 
The differences between holes can be attributed to the same 
hypotheses stated in the previous section. 

Figure 7 : First half hour of the temperatures recorded in carbon for stub 
hole 1 

Figure 8 :  First half hour of the temperatures recorded in steel for stub 
hole 1 

Cast Iron Metallography 
 
Cast iron samples have been cut off the thimbles to perform 
metallographic analysis. The samples were cut to observe the 
microstructure at the corresponding location of TCs I1, I2, I3 and 
I4 in the stub hole number 1. The results presented here come 
from optical microscopy without etching. Further analysis with 
microprobe will be performed later to observe the matrix 
composition and alloying elements. It will then be possible to 
make more definitive statements on the phase changes observed in 
the cooling curves.  
 
Figure 9 to Figure 12 represent the microstructure from the thicker 
to the thinner section, corresponding to TCs I3, I4, I1 and I2 
respectively. There is an obvious evolution in the microstructure 
as a function of the cooling rate. The slowest one resulted in a 
dendritic structure and the fastest one gave graphite flakes. The 
two intermediate cooling rates yielded a hybrid structure made of 
dendrites and finer flakes. 
 

 

Figure 9 : Microstructure of the cast iron at TC I3 location 
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Figure 10 : Microstructure of the cast iron at TC

Figure 11 : Microstructure of the cast iron at TC

Figure 12 : Microstructure of the cast iron at TC

Interface Heat Transfer Coeffici
In order to evaluate the HTCs at the casting 
thermal model was built in Abaqus. The HTC
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Conclusion 
 
The results of an experimental investigation of the sealing of an 
anode assembly have been presented in order to provide 
information for the validation of a thermo-mechanical 
solidification model to predict the air gap at the carbon/cast iron 
interface. 
 
It was found that the relation previously proposed by Richard 
(Equation (1)) underestimates the magnitude of the air gap at the 
carbon/cast iron interface. Given that many works have used this 
relation to evaluate an initial air gap condition, it is suggested that 
the results of these works be reevaluated with the new available 
data. 
 
Cooling curves recorded with thermocouples during the sealing of 
an anode assembly allowed observation  of the thermal field as a 
function of time. Those curves will be useful for the validation of 
a thermo-mechanical solidification model to predict the air gap. 
 
From the cooling curves, it was possible to evaluate the heat 
transfer coefficient at the interfaces with a 3D thermal model. The 
coefficients found here are functions of time and are therefore 
only good as a guideline for modeling. It should be considered to 
carry out real time air gap measurements with LVDTs in 
conjunction with thermocouples in order not only to better 
evaluate the heat transfer coefficients, but also to have a better 
understanding of the strains as the cast iron cools down with the 
help of the forthcoming thermo-mechanical model. 
 
It was also possible to observe the importance of the effect of 
cooling rate on the final microstructure of the solidified cast iron 
through metallographic analysis going from dendritic structure to 
large flakes of graphite. Still to be determined is the need to take 
this phenomenon into account in an air gap prediction model. 
 
Reference [13] provides more details about the work presented in 
this paper. 
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