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My journey learning to code started when I graduated from college with a political science degree. 
After I left school, I struggled to get a job. I didn’t have the skills employers were looking 

for, and I watched as my friends who studied more practical subjects went on to get high- paying 
jobs. Meanwhile, I was stuck applying for jobs and not getting them, making no money, and feeling 
like a failure. So, living in Silicon Valley and being surrounded by coders, I decided to try to learn to 
program. Little did I know that I was about to start the craziest and most fulfilling journey of my life.

This attempt wasn’t my first shot at learning to code: I had tried to learn to program in the past 
without success. During my freshman year of college, I took a programming class, found it impossible 
to understand, and quickly dropped it. Unfortunately, most schools teach Java as a first programming 
language, which is challenging for beginners to understand. Instead of Java, I decided to teach myself 
Python, one of the easiest languages for beginners to learn. Despite learning an easy- to- understand 
language, I still almost gave up. I had to piece together information from many different sources, which 
was frustrating. It also didn’t help that I felt like I was on my journey alone. I didn’t have a class full 
of students I could study with and lean on for support.

I was close to giving up when I started spending more time in online programming communities 
like Stack Overflow. Joining a community kept me motivated, and I began to gain momentum again. 
There were many ups and downs, and at times I felt like quitting, but less than a year after I made 
my fateful decision to learn to program, I was working as a software engineer at eBay. A year earlier, I 
would have been lucky to get a customer support job. Now, I was getting paid $50 an hour to program 
for a well- known tech company. I couldn’t believe it! The best part wasn’t the money, though. Once 
I became a software engineer, my confidence increased tenfold. After learning to code, I felt like I 
could accomplish anything.

After eBay, I started working at a startup in Palo Alto. Eventually, I decided to take some time off 
work and go on a backpacking trip to Southeast Asia. I was in the backseat of a taxi driving through 
the narrow streets of Seminyak, Bali, in the rain when I had an idea. Back home, people were always 
asking me about my experience as a software engineer. Working as a software engineer in Silicon 
Valley is not unusual, but I was different from many of my peers because I do not have a computer 
science degree.

My idea was to write a book called The Self- Taught Programmer: not only about programming but 
about everything I learned to get hired as a software engineer. In other words, I wanted to help people 
take the same journey I did. So I set out to create a roadmap for aspiring self- taught programmers.  
I spent a year writing The Self- Taught Programmer and self- published it. I wasn’t sure if anyone would 
read it, and I thought most likely no one would, but I wanted to share my experience anyway. To my 
surprise, it sold thousands of copies in the first few months. With those sales came messages from 
people from around the world who were either self- taught programmers or wanted to become one.

Introduction
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These messages inspired me, so I decided to help solve another problem I faced learning to program: 
feeling alone on the journey. My solution was to create a Facebook group called Self- Taught Program-
mers, a place for programmers to support one another. It now has more than 60,000 members and 
has evolved into a supportive community filled with self- taught programmers helping each other by 
answering questions, trading knowledge, and sharing success stories. If you want to become part of 
our community, you can join at https://facebook.com/groups/selftaughtprogrammers. You can 
also subscribe to my newsletter at theselftaughtprogrammer.io.

When I used to post things online about working as a software engineer without a computer science 
degree, I would always get at least a few negative comments that it is impossible to work as a pro-
grammer without a degree. Some people would cry, “What do you self- taught programmers think you 
are doing? You need a degree! No company is going to take you seriously!” These days, the comments 
are few and far between. When they do come, I point the commenter to the Self- Taught Programmers 
group. We have self- taught programmers working at companies worldwide in every position, from 
junior software engineers to principal software engineers.

Meanwhile, my book continued to sell better than I ever thought possible and is even a popular 
Udemy course as well. Interacting with so many wonderful people learning to program has been an 
amazing and humbling experience, and I am excited to continue my journey with this book. This 
book is my follow- up to my first book, The Self- Taught Programmer, so if you haven’t already read it, 
you should go back and read that first, unless you already understand programming basics. This book 
assumes you can program in Python, so if you can’t, you can either go back and read my first book, 
take my Udemy course, or learn Python using whatever resource works best for you.

What You Will Learn
While my first book, The Self- Taught Programmer, introduces programming and the skills you need to 
learn to program professionally, this book is an introduction to computer science. Specifically, it is an 
introduction to data structures and algorithms. Computer science is the study of computers and how 
they work. When you go to college to become a software engineer, you don’t major in programming; 
you major in computer science. Computer science students study math, computer architecture, com-
pilers, operating systems, data structures and algorithms, network programming, and more.

Each of these topics is the subject of many very long books, and covering them all is way beyond 
the scope of this book. Computer science is a massive subject. You can study it your entire life and 
still have more to learn. This book does not aim to cover everything you would learn about if you 
went to school to get a computer science degree. Instead, my goal is to give you an introduction to 
some of the essential concepts in computer science so that you will excel in different situations as a 
self- taught programmer.

As a self- taught programmer, the two most important subjects for you to understand are data struc-
tures and algorithms, which is why I decided to focus this book on them. I divided this book into two 
parts. Part I is an introduction to algorithms. You will learn what an algorithm is and what makes one 

https://facebook.com/groups/selftaughtprogrammers
http://theselftaughtprogrammer.io
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better than another, and you will learn different algorithms such as linear and binary search. Part II 
is an introduction to data structures. You will learn what a data structure is and study arrays, linked 
lists, stacks, queues, hash tables, binary trees, binary heaps, and graphs. Then, I wrap up by covering 
what to do once you’ve finished this book, including the next steps you can take and other resources 
to help you on your journey learning to program.

In my previous book, I explained how it doesn’t make sense to study computer science before you 
learn to program. That doesn’t mean you can ignore it, though. You have to study computer science 
if you want to become a successful programmer. It is as simple as this: if you don’t understand com-
puter science, you will not get hired. Almost every company that employs programmers makes them 
pass a technical interview as part of the application process, and technical interviews all focus on the 
same subject: computer science. Specifically, they focus on data structures and algorithms. To get hired 
at Facebook, Google, Airbnb, and all of today’s hottest companies, big and small alike, you have to 
pass a technical interview focusing on data structures and algorithms. If you don’t have a depth of 
knowledge in these two subjects, you will get crushed in your technical interviews. A technical inter-
view is not something you can wing. Your potential employer will ask you detailed questions about 
data structures, algorithms, and more, and you better know the answers if you want to get hired.

On top of that, when you get hired for your first job, your employer and co- workers will expect 
you to know computer science basics. If they have to explain to you why an O(n**3) algorithm is not 
a good solution, they won’t be happy with you. That is the situation I found myself in when I got my 
first programming job at eBay. I was on a team with incredibly talented programmers from Stanford, 
Berkley, and Cal Tech. They all had a deep understanding of computer science, and I felt insecure and 
out of place. As a self- taught programmer, studying computer science will help you avoid this fate.

Furthermore, studying data structures and algorithms will make you a better programmer. Feedback 
loops are the key to mastering a skill. A feedback loop is when you practice a skill and get immediate 
feedback on whether you did a good job. When you are practicing programming, there is no feedback 
loop. For example, if you create a website, the website may work, but your code could be horrible. 
There is no feedback loop to tell you if your code is any good or not. When you are studying algo-
rithms, however, that is not the case. There are many famous computer science algorithms, which 
means you can write code to solve a problem, compare your result to the existing algorithm, and 
instantly know whether you wrote a decent solution. Practicing with a positive feedback loop like this 
will improve your coding skills.

The biggest mistake I made as a new self- taught programmer attempting to break into the software 
industry was not spending enough time studying data structures and algorithms. If I had spent more 
time studying them, my journey would have been much more manageable. You don’t have to make 
that mistake!

As I mentioned, computer science is a massive subject. There is a reason why computer science 
students spend four years studying it: there is a lot to learn. You may not have four years to spend 
studying computer science. Fortunately, you don’t have to. This book covers many of the most impor-
tant things you need to know to have a successful career as a software engineer. Reading this book 
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will not replace a four- year computer science degree. However, if you read this book and practice the 
examples, you will have a solid foundation for passing a technical interview. You will start feeling 
comfortable on a team of computer science majors, and you will also significantly improve as a 
programmer.

Who Is This Book For?
So I’ve convinced you that self- taught programmers can program professionally and that you need to 
study computer science, especially data structures and algorithms. But does that mean you can’t read 
this book unless you are learning to program outside of school? Of course not! Everyone is welcome 
in the self- taught community! My first book was surprisingly popular with college students. A few 
college professors even contacted me and told me they were teaching their programming classes 
using my book.

College students studying computer science often ask me if they should drop out. My goal is to 
inspire as many people to learn to program as possible. That means letting people know it is possible 
to program professionally without a degree in computer science. If you are already in school studying 
computer science, that works too, and no, you should not drop out. Stay in school, kids! Even if you 
are in school, you can still be part of the self- taught community by applying our “always be learning” 
mindset to your schoolwork and going above and beyond to learn even more than your professors 
teach you.

So how do you know if you are ready to study computer science? Easy. If you already know how 
to program, you are ready! I wrote this book for anyone who wants to learn more about computer 
science. Whether you are reading this book to fill in the gaps in your knowledge, prepare for a technical 
interview, feel knowledgeable at your job, or become a better programmer, I wrote this book for you.

Self- Taught Success Stories
I got hired as a software engineer without a degree, and I hear new success stories from self- taught 
programmers every day. As a self- taught programmer, you absolutely can have a successful career as 
a software engineer without a degree. I know this can be a sticking point for some people, so before 
we dive into computer science, I want to share a few self- taught programmer success stories from my 
Facebook group.

Matt Munson
First up is Matt Munson, a member of the Self- Taught Programmers Facebook group. Here is his story 
in his own words:
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It all started when I lost my job at Fintech. To make ends meet, I started working odd jobs: 
cutting lenses for glasses, fixing and tuning cars, working as a carnie, and doing small side 
programming projects. Despite my best efforts, after a few months, I lost my apartment. This 
is the story of how I escaped homelessness by becoming a programmer.

When I lost my job, I was enrolled in school. After I lost my house, I kept doing schoolwork 
out of my car and tent for a couple of months. My family wasn’t able to help me. They didn’t 
understand minimum wage jobs don’t pay anywhere near enough to feed one person and keep 
gas in the tank while keeping a roof over your head. Nonetheless, I was still unwilling to 
reach out to my friends for help. In September, I sold my truck, cashed what I had left in a 
401(k), and drove the 1,800 or so miles from my hometown in Helena, Montana, to take my 
chances in Austin, Texas.

Within a week, I had two or three interviews, but no companies wanted to take a chance on a 
homeless guy, skilled or not. After a few months of this, I had friends and strangers donating 
to my GoFundMe to try to help me get back on my feet. At this point, I was eating about once 
a day, seldom anything good, in any sense of the word. My only shot at getting out of this 
situation was becoming a programmer.

Finally, I decided to do one last push. I sent out my résumé en masse to any job I remotely had 
a chance of being qualified for. The next day, a small startup called me for an interview. I did 
my best to look decent. I shaved, put on clean clothes, tied my hair back, showered (a hell of 
a task for the homeless), and showed up. I came clean, explained my situation, explained why 
I took my chances here in Austin, did my best during the interview to show I may not be the 
best as I stood there at that moment, but given an opportunity, I would work my ass off to 
show that one day I could be the best.

I left feeling like I bombed the interview. I thought maybe my honesty had sunk my chances, 
but a week and a half later, after feeling like giving up entirely, the startup called me back in 
for a second interview.

When I showed up, it was only the big dog. The boss said he was impressed by my honesty, 
and he wanted to give me a chance. He told me I had a decent foundation, and I was like a 
box: a sturdy but relatively empty box. He thought I was sturdy enough to handle anything 
they threw at me, and I would learn on the job. Finally, he told me I would start on 
December 6.
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One year later, I live in a much nicer apartment than before becoming a programmer. I am 
respected among my co- workers, and they even ask my opinion on significant company mat-
ters. You can do or be anything. Never be afraid to try, even if it means taking a real chance 
at everything falling apart.

Tianni Myers
Next up is Tianni Myers, who read The Self- Taught Programmer and emailed me the following story 
about his journey learning to code outside of school:

My self- taught journey started in a web design class I took in college while working toward a 
bachelor’s degree in media communications. At the time, I was interested in writing and had 
dreams of working in marketing. My goals shifted after deciding to learn to program. I’m 
writing to share my self- taught story about how I went from retail cashier to a junior web 
developer in 12 months.

I started out learning the basics of HTML and CSS on Code Academy. I wrote my first Python 
program, a numbers game; the computer picked a random number, and the user had three 
tries to guess the correct one. That project and Python got me excited about computers.

My mornings started at 4 a.m., making a cup of coffee. I spent 6 to 10 hours a day reading 
programming books and writing code. At the time, I was 21, and I worked part- time at 
Goodwill to make ends meet. I had never been happier because I spent most of my day doing 
what I loved, which was building and creating various programming languages as my tools.

I was on Indeed one day casually applying for jobs. I wasn’t expecting to get a response, but I 
did a few days later from a marketing agency. I did a SQL assessment on Indeed followed by a 
phone interview, then a code assessment, and soon after an in- person interview. During my 
interview, the web development director and two senior developers sat down and reviewed my 
answers for the code assessment. I felt good because they were blown away by some of my 
answers and pleasantly surprised when I told them I was self- taught. They told me some of 
my answers were better than ones given by senior developers that they had previously given 
the same code assessment. Two weeks later, they hired me.

If you can put in the work and get through the pain, then you can make your dreams come 
true as I did.
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Getting Started
The code examples in this book are in Python. I chose Python because it is one of the easiest program-
ming languages to read. Throughout the book, I formatted the code examples like this:

for i in range(100): 
    print("Hello, World!") 
 
>> Hello, World! 
>> Hello, World! 
>> Hello, World! 

The text # http://tinyurl.com/h4qntgk contains a URL that takes you to a web page that contains 
the code from it, so you can easily copy and paste it into Python’s IDLE text editor if you are having 
problems getting the code to run. The text that comes after >> is the output of Python’s interactive 
shell. Ellipses after an output (...) mean “and so on.” If there is no >> after an example, it means 
either the program doesn’t produce any output or I am explaining a concept, and the output is not 
important. Anything in a paragraph in monospaced font is some form of code or code output or 
programming jargon.

Installing Python
To follow the examples in this book, you need to have Python version 3 installed. You can download 
Python for Windows and Unix at http://python.org/downloads. If you are on Ubuntu, Python 3 
comes installed by default. Make sure you download Python 3, not Python 2. Some of the examples 
in this book will not work if you are using Python 2.

Python is available for 32- bit and 64- bit computers. If you purchased your computer after 2007, it 
is most likely a 64- bit computer. If you aren’t sure, an Internet search should help you figure it out.

If you are on Windows or a Mac, download the 32-  or 64- bit version of Python, open the file, and 
follow the instructions. You can also visit http://theselftaughtprogrammer.io/installpython for 
videos explaining how to install Python on each operating system.

Troubleshooting
If you are having difficulties installing Python, please post a message in the Self- Taught Programmers 
Facebook group. You can find it at https://facebook.com/groups/selftaughtprogrammers. When 
you post code in the Self- Taught Programmer Facebook group (or anywhere else online asking for 
help), make sure to put your code in a GitHub Gist. Never send a screenshot of your code. When 
people help you, they often need to run your program themselves. When you send a screenshot, 

http://tinyurl.com/h4qntgk
http://python.org/downloads
http://theselftaughtprogrammer.io/installpython
https://facebook.com/groups/selftaughtprogrammers
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they have to type all of your code by hand, whereas if you send your code in a GitHub Gist, they can 
quickly copy and paste it into their IDE.

Challenges
Many of the chapters in this book end with a coding challenge for you to solve. These challenges are 
meant to test your understanding of the material, make you a better programmer, and help prepare 
you for a technical interview. You can find the solutions to all of the challenges in this book on GitHub 
at https://github.com/calthoff/tstcs_challenge_solutions.

As you are reading this book and solving the challenges, I encourage you to share your wins with 
the self- taught community by using #selftaughtcoder on Twitter. Whenever you feel like you are 
making exciting progress on your journey learning to code, send a motivational tweet using  
#selftaughtcoder so other people in the community can get motivated by your progress. Feel free 
to also tag me: @coryalthoff.

Sticking with It
There is one last thing I want to cover before you dive into learning computer science. If you are 
reading this book, you’ve already taught yourself to program. As you know, the most challenging part 
about picking up a new skill like programming isn’t the difficulty of the material: it is sticking with 
it. Sticking with learning new things is something I struggled with for years until I finally learned a 
trick that I would like to share with you, called Don’t Break the Chain.

Jerry Seinfeld invented Don’t Break the Chain. He came up with it when he was crafting his first 
stand- up comedy routine. First, he hung a calendar up in his room. Then, if he wrote a joke at the 
end of each day, he gave himself a red X (I like the idea of green check marks better) on the calendar 
for that day. That’s it. That is the entire trick, and it is incredibly powerful.

Once you start a chain (two or more green check marks in a row), you will not want to break it. 
Two green check marks in a row become five green check marks in a row. Then 10. Then 20. The 
longer your streak gets, the harder it will be for you to break it. Imagine it is the end of the month, 
and you are looking at your calendar. You have 29 green check marks. You need only one more for a 
perfect month. There is no way you won’t accomplish your task that day. Or as Jerry Seinfeld describes it:

After a few days, you’ll have a chain. Just keep at it, and the chain will grow longer every 
day. You’ll like seeing that chain, especially when you get a few weeks under your belt. Your 
only job next is to not break the chain.

My dedication to preserving one of my chains has led me to do crazy things, like going to the gym 
in the middle of the night, to keep it intact. There is no better feeling than looking back at the calendar 
page containing your first perfect month and seeing it filled with green check marks. If you are ever 

https://github.com/calthoff/tstcs_challenge_solutions
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in a rut, you can always look back at that page and think about the month where you did every-
thing right.

Technical books are hard to get through. I’ve lost count of how many I’ve abandoned partway 
through. I tried to make this book as fun and easy to read as possible, but to give yourself extra insur-
ance, try using Don’t Break the Chain to ensure you finish this book. I also partnered with  
monday.com to create a free Self- Taught Programmer template and app that keeps track of your coding 
streaks for you. You can try it at https://hey.monday.com/CoryAlthoff.

With that said, are you ready to study computer science?
Let’s get started!

http://monday.com
http://monday.com
https://hey.monday.com/CoryAlthoff
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1 What Is an Algorithm?

Whether you want to uncover the secrets of the universe or you just want to pursue a career 
in the 21st century, basic computer programming is an essential skill to learn.

Stephen Hawking

An algorithm is a sequence of steps that solves a problem. For example, one algorithm for making 
scrambled eggs is to crack three eggs over a bowl, whisk them, pour them into a pan, heat the pan on 
a stove, stir them, and remove them from the pan once they are no longer runny. This section of the 
book is all about algorithms. You will learn algorithms you can use to solve problems such as finding 
prime numbers. You will also learn how to write a new, elegant type of algorithm and how to search 
and sort data.

In this chapter, you will learn how to compare two algorithms to help you analyze them. It is 
important for a programmer to understand why one algorithm may be better than another because 
programmers spend most of their time writing algorithms and deciding what data structures to use 
with them. If you have no idea why you should choose one algorithm over another, you will not be 
a very effective programmer, so this chapter is critical.

While algorithms are a fundamental concept in computer science, computer scientists have not 
agreed on a formal definition. There are many competing definitions, but Donald Knuth’s is among the 
best known. He describes an algorithm as a definite, effective, and finite process that receives input 
and produces output based on this input.

Definiteness means that the steps are clear, concise, and unambiguous.

Effectiveness means that you can perform each operation precisely to solve the problem.

Finiteness means that the algorithm stops after a finite number of steps.

A common addition to this list is correctness. An algorithm should always produce the same output 
for a given input, and this output should be the correct answer to the problem the algorithm solves.

Most, but not all, algorithms fulfill these requirements, and some of the exceptions are important. 
For example, when you create a random number generator, your goal is to generate randomness so 
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someone can’t use the input to guess the output. Also, many algorithms in data science are not strict 
about correctness. For example, it may be sufficient for an algorithm to estimate output, as long as the 
estimate’s uncertainty is known. In most cases, however, your algorithms should fulfill all the previous 
requirements. If you write an algorithm for making scrambled eggs, the user might not be happy if, 
occasionally, the algorithm produces an omelet or boiled eggs instead.

Analyzing Algorithms
There is often more than one algorithm we can use to solve a problem. For example, there are several 
different ways to sort a list. When several algorithms solve a problem, how do you know which one 
is best? Is it the simplest? The fastest? The smallest? Or something else?

One way to judge an algorithm is by its run time. An algorithm’s run time is the amount of time it 
takes your computer to execute an algorithm written in a programming language like Python. For 
example, here is an algorithm in Python that counts from 1 to 5 and prints each number:

for i in range(1, 6):
    print(i)

You can measure this algorithm’s run time using Python’s built- in time module to track how long 
your computer takes to execute it:

import time
 
start = time.time()
for i in range(1, 6):
    print(i)
end = time.time()
print(end – start)
 
>> 1
>> 2
>> 3
>> 4
>> 5
>> 0.15141820907592773

When you run your program, it prints the numbers from 1 to 5 and outputs the time it took to 
execute. In this case, it took 0.15 seconds.

Now, rerun your program:

import time
 
start = time.time()
for i in range(1, 6):
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    print(i)
end = time.time()
print(end – start)
 
>> 1
>> 2
>> 3
>> 4
>> 5
>> 0.14856505393981934

The second time you run your program, you should see a different run time. If you rerun your 
program, you will see yet another run time. The algorithm’s run time keeps changing because the 
available processing power your computer has when it runs your program varies and in turn affects 
the program’s run time.

Further, this algorithm’s run time would be different on another computer. If you run it on a com-
puter with less processing power, it would be slower, whereas it would be faster on a more powerful 
computer. Furthermore, this program’s run time is affected by the programming language you wrote 
it in. For example, the run time would be faster if you run this same program in C because C can be 
faster than Python.

Because an algorithm’s run time is affected by so many different variables, such as your computer’s 
processing power and the programming language, run time is not an effective way to compare two 
algorithms. Instead, computer scientists compare algorithms by looking at the number of steps they 
require. You can input the number of steps involved in an algorithm into a formula that can compare 
two or more algorithms without considering the programming language or computer. Let’s take a look 
at an example. Here is your program from earlier that counts from 1 to 5:

for i in range(1, 6):
    print(i)

Your program takes five steps to complete (it goes through a loop five times and prints i each time). 
You can express the number of steps your algorithm requires with this equation:

f(n) = 5 

If you make your program more complicated, your equation will change. For example, you may 
want to keep track of the sum of all the numbers you are printing:

count = 0
for i in range(1, 6):
    print(i)
    count += i
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Now, your algorithm takes 11 steps to complete. First, it assigns the variable count to zero. Then, 
it prints five numbers and increments five times (1 + 5 + 5 = 11).

This is the new equation for your algorithm:

f(n) = 11 

What happens if you change the 6 in your code to a variable?

count = 0
for i in range(1, n):
    print(i)
    count += i

Your equation changes to this:

f(n) = 1 + 2n 

Now the number of steps your algorithm takes depends on whatever the value of n is. The 1 in the 
equation represents the first step: count = 0. Then, there are two times n steps after that. For example, 
if n is 5, f(n) = 1 + 2 × 5. Computer scientists call the variable n in an equation that describes the 
number of steps in an algorithm the size of the problem. In this case, you could say the time it takes 
to solve a problem of size n is 1 + 2n, or in mathematical notation, T(n) = 1 + 2n.

An equation describing the number of steps in an algorithm is not very helpful, however, because, 
among other things, you can’t always reliably count the number of steps in an algorithm. For example, 
if an algorithm has many conditional statements, you have no way of knowing which of them will 
execute in advance. The good news is, as a computer scientist, you don’t care about the exact number 
of steps in an algorithm. What you want to know is how an algorithm performs as n gets bigger. Most 
algorithms perform fine on a small data set but may be a disaster with larger data sets. Even the most 
inefficient algorithm will perform well if n is 1. In the real world, however, n will probably not be 1. 
It may be several hundred thousand, a million, or more.

The important thing to know about an algorithm is not the exact number of steps it will take but 
rather an approximation of the number of steps it will take as n gets bigger. As n gets larger, one part 
of the equation will overshadow the rest of the equation to the point that everything else becomes 
irrelevant. Take a look at this Python code:

def print_it(n):
    # loop 1
    for i in range(n):
        print(i)
    # loop 2
    for i in range(n):
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        print(i)
        for j in range(n):
            print(j)
            for h in range(n):
                print(h)

What part of this program is most important for determining how many steps your algorithm takes 
to complete? You may think both parts of the function (the first loop and the second loop containing 
other loops) are important. After all, if n is 10,000, your computer will print many numbers in 
both loops.

It turns out that the following code is irrelevant when you are talking about your algorithm’s 
efficiency:

# loop 1 
for i in range(n):
    print(i)

To understand why, you need to look at what happens as n gets bigger.
Here is the equation for the number of steps in your algorithm:

T(n) = n + n**3

When you have two nested for loops that take n steps, it translates to n**2 (n to the second power) 
because if n is 10, you have to do 10 steps twice, or 10**2. Three nested for loops are always n**3 
for the same reason. In this equation, when n is 10, the first loop in your program takes 10 steps, and 
the second loop takes 103 steps, which is 1,000. When n is 1,000, the first loop takes 1,000 steps, and 
the second loop takes 1,0003, which is 1 billion.

See what happened? As n gets bigger, the second part of your algorithm grows so much more quickly 
that the first part becomes irrelevant. For example, if you needed this program to work for 
100,000,000 database records, you wouldn’t care about how many steps the first part of the equation 
takes because the second part will take exponentially more steps. With 100,000,000 records, the 
second part of the algorithm would take more than a septillion steps, which is 1 followed by 24 zeros, 
so it is not a reasonable algorithm to use. The first 100,000,000 steps aren’t relevant to your decision.

Because the important part of an algorithm is the part that grows the fastest as n gets bigger, com-
puter scientists use big O notation to express an algorithm’s efficiency instead of a T(n) equation. Big 
O notation is a mathematical notation that describes how an algorithm’s time or space requirements 
(you will learn about space requirements later) increase as the size of n increases.

Computer scientists use big O notation to create an order- of- magnitude function from T(n). 
An order of magnitude is a class in a classification system where each class is many times greater 
or smaller than the one before. In an order- of- magnitude function, you use the part of T(n) that 
dominates the equation and ignore everything else. The part of T(n) that dominates the equation 
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is an algorithm’s order of magnitude. These are the most commonly used classifications for order 
of magnitude in big O notation, sorted from the best (most efficient) to worst (least efficient):

Constant time

Logarithmic time

Linear time

Log- linear time

Quadratic time

Cubic time

Exponential time

Each order of magnitude describes an algorithm’s time complexity. Time complexity is the maximum 
number of steps an algorithm takes to complete as n gets larger.

Let’s take a look at each order of magnitude.

Constant Time
The most efficient order of magnitude is called constant time complexity. An algorithm runs in constant 
time when it requires the same number of steps regardless of the problem’s size. The big O notation 
for constant complexity is O(1).

Say you run an online bookstore and give a free book to your first customer each day. You store 
your customers in a list called customers. Your algorithm might look like this:

free_books = customers[0]

Your T(n) equation looks like this:

T(n) = 1

Your algorithm requires one step no matter how many customers you have. If you have 1,000 cus-
tomers, your algorithm takes one step. If you have 10,000 customers, your algorithm takes one step, 
and if you have a trillion customers, your algorithm takes only one step.

When you graph constant time complexity with the number of inputs on the x- axis and the number 
of steps on the y- axis, the graph is flat (Figure 1.1).

As you can see, the number of steps your algorithm takes to complete does not get larger as the 
problem’s size increases. Therefore, it is the most efficient algorithm you can write because your algo-
rithm’s run time does not change as your data sets grow larger.
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Logarithmic Time
Logarithmic time is the second most efficient time complexity. An algorithm takes logarithmic time 
when its run time grows in proportion to the logarithm of the input size. You see this time complexity 
in algorithms such as a binary search that can discard many values at each iteration. If this is not 
clear, don’t worry, because we will discuss this in depth later in the book. You express a logarithmic 
algorithm in big O notation as O(log n).

Figure 1.2 shows what it looks like when you plot a logarithmic algorithm.
The required number of steps grows more slowly in a logarithmic algorithm as the data set gets larger.
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Linear Time
The next most efficient type of algorithm is one that runs in linear time. An algorithm that runs in 
linear time grows at the same rate as the size of the problem. You express a linear algorithm in big O 
notation as O(n).

Suppose you must modify your free book program so that instead of giving a free book to the first 
customer of the day, you iterate through your list of customers and give them a free book if their name 
starts with the letter B. This time, however, your list of customers isn’t sorted alphabetically. Now you 
are forced to iterate through your list one by one to find the names that start with B.

free_book = False
customers = ["Lexi", "Britney", "Danny", "Bobbi", "Chris"]
for customer in customers:
    if customer[0] == 'B':
        print(customer)

When your customer list contains five items, your program takes five steps to complete. For a list 
of 10 customers, your program requires 10 steps; for 20 customers, 29 steps; and so on.

This is the equation for the time complexity of this program:

f(n) = 1 + 1 + n

And in big O notation, you can ignore the constants and focus on the part that dominates 
the equation:

O(n) = n

In a linear algorithm, as n gets bigger, the number of steps your algorithm takes increases by how-
ever much n increases (Figure 1.3).
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Log- Linear Time
An algorithm that runs in log- linear time grows as a combination (multiplication) of logarithmic and 
linear time complexities. For example, a log- linear algorithm might evaluate an O(log n) operation 
n times. In big O notation, you express a log- linear algorithm as O(n log n). Log- linear algorithms 
often divide a data set into smaller parts and process each piece independently. For example, many 
of the more efficient sorting algorithms you will learn about later, such as merge sort, are log- linear.

Figure 1.4 shows what a log- linear algorithm looks like when you plot it on a graph.

As you can see, log- linear complexity is not as efficient as linear time. However, its complexity does 
not grow nearly as quickly as quadratic, which you will learn about next.

Quadratic Time
After log- linear, the next most efficient time complexity is quadratic time. An algorithm runs in 
quadratic time when its performance is directly proportional to the problem’s size squared. In big O 
notation, you express a quadratic algorithm as O(n**2).

Here is an example of an algorithm with quadratic complexity:

numbers = [1, 2, 3, 4, 5]
for i in numbers:
    for j in numbers:
        x = i * j
        print(x)
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Figure 1.4: Log- linear complexity
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This algorithm multiplies every number in a list of numbers by every other number, stores the 
result in a variable, and prints it.

In this case, n is the size of your numbers list. The equation for this algorithm’s time complexity is 
as follows:

f(n) = 1 + n * n * (1 + 1)

The (1 + 1) in the equation comes from the multiplication and print statement. You repeat the 
multiplication and print statement n * n times with your two nested for loops. You can simplify the 
equation to this:

f(n) = 1 + (1 + 1) * n**2

which is the same as the following:

f(n) = 1 + 2 * n**2

As you may have guessed, the n**2 part of the equation overshadows the rest, so in big O notation, 
the equation is as follows:

O(n) = n**2

When you graph an algorithm with quadratic complexity, the number of steps increases sharply as 
the problem’s size increases (Figure 1.5).
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As a general rule, if your algorithm contains two nested loops running from 1 to n (or from 0 to  
n − 1), its time complexity will be at least O(n**2). Many sorting algorithms such as insertion and 
bubble sort (which you will learn about later in the book) follow quadratic time.

Cubic Time
After quadratic comes cubic time complexity. An algorithm runs in cubic time when its performance 
is directly proportional to the problem’s size cubed. In big O notation, you express a cubic algorithm 
as O(n**3). An algorithm with a cubic complexity is similar to quadratic, except n is raised to the 
third power instead of the second.

Here is an algorithm with cubic time complexity:

numbers = [1, 2, 3, 4, 5]
for i in numbers:
    for j in numbers:
        for h in numbers:
            x = i + j + h
            print(x)

The equation for this algorithm is as follows:

f(n) = 1 + n * n * n * (1 + 1)

Or as follows:

f(n) = 1 + 2 * n**3

Like an algorithm with quadratic complexity, the most critical part of this equation is n**3, which 
grows so quickly it makes the rest of the equation, even if it included n**2, irrelevant. So, in big O 
notation, quadratic complexity is as follows:

O(n) = n**3

While two nested loops are a sign of quadratic time complexity, having three nested loops running 
from 0 to n means that the algorithm will follow cubic time. You will most likely encounter cubic time 
complexity if your work involves data science or statistics.
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Both quadratic and cubic time complexities are special cases of a larger family of polynomial time 
complexities. An algorithm that runs in polynomial time scales as O(n**a), where a = 2 for quadratic 
time and a = 3 for cubic time. When designing your algorithms, you generally want to avoid polyno-
mial scaling when possible because the algorithms can get very slow as n gets larger. Sometimes you 
can’t escape polynomial scaling, but you can find comfort knowing that the polynomial complexity 
is still not the worst case, by far.

Exponential Time
The honor of the worst time complexity goes to exponential time complexity. An algorithm that runs 
in exponential time contains a constant raised to the size of the problem. In other words, an algorithm 
with exponential time complexity takes c raised to the nth power steps to complete. The big O notation 
for exponential complexity is O(c**n), where c is a constant. The value of the constant doesn’t matter. 
What matters is that n is in the exponent.

Fortunately, you won’t encounter exponential complexity often. One example of exponential com-
plexity involving trying to guess a numerical password consisting of n decimal digits by testing every 
possible combination is O(10**n).

Here is an example of password guessing with O(10**n) complexity:

pin = 931
n = len(pin)
for i in range(10**n):
    if i == pin:
        print(i)

The number of steps this algorithm takes to complete grows incredibly fast as n gets larger. When 
n is 1, this algorithm takes 10 steps. When n is 2, it takes 100 steps. When n is 3, it takes 1,000 steps. 
As you can see, at first, an exponential algorithm looks like it doesn’t grow very quickly. However, 
eventually, its growth explodes. Guessing a password with 8 decimal digits takes 100 million steps, 
and guessing a password with 10 decimal digits takes more than 10 billion steps. Exponential scaling 
is the reason why it is so important to create long passwords. If someone tries to guess your password 
using a program like this, they can easily guess it if your password is four digits. However, if your 
password is 20 digits, it is impossible to crack because the program will take longer to run than a 
person’s life span.

This solution to guessing a password is an example of a brute- force algorithm. A brute- force 
algorithm is a type of algorithm that tests every possible option. Brute- force algorithms are not usually 
efficient and should be your last resort.

Figure 1.6 compares the efficiency of the algorithms we have discussed.



Chapter 1 What Is an Algorithm? 15

Best- Case vs. Worst- Case Complexity
An algorithm’s performance can change depending on different factors, such as the type of data you 
are working with. Because of this, when you evaluate an algorithm’s performance, you need to con-
sider its best- , worst- , and average- case complexities. An algorithm’s best- case complexity is how it 
performs with ideal input, and an algorithm’s worst- case complexity is how it performs in the worst 
possible scenario for it. An algorithm’s average- case complexity is how it performs on average.

For example, if you have to search one by one through a list, you may get lucky and find what you 
are looking for after checking the first item in your list. That would be the best- case complexity. 
However, if the item you are looking for isn’t in the list, you would have to search the entire list, which 
is the worst- case complexity.

If you have to search through a list one by one a hundred times, on average you will find what you 
are looking for in O(n/2) time, which is the same as O(n) time in big- O notation. When comparing 
algorithms, you often start by looking at the average- case complexity. If you want to do a deeper anal-
ysis, you can also compare their best- case and worst- case complexities.

Space Complexity
Computers have finite resources such as memory, so in addition to thinking about an algorithm’s time 
complexity, you should consider its resource usage. Space complexity is the amount of memory space 
your algorithm needs and includes fixed space, data structure space, and temporary space. Fixed space 
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is the amount of memory your program requires, and data structure space is the amount of memory 
your program needs to store the data set, for example, the size of a list you are searching. The amount 
of memory your algorithm uses to hold this data depends on the amount of input the problem requires. 
Temporary space is the amount of memory your algorithm needs for intermediary processing, for 
example, if your algorithm needs to temporarily copy a list to transfer data.

You can apply the time complexity concepts you learned earlier to space complexity. For example, 
you can calculate a factorial of n (a product of all positive integers less than or equal to n) using an 
algorithm that has a constant, O(1), space complexity:

x = 1
n = 5
for i in range(1, n + 1):
    x = x * i

The space complexity is constant because the amount of space your algorithm needs does not grow 
as n gets larger. If you decided to store all the factorials up to n in a list, your algorithm would have a 
linear space complexity, O(n):

x = 1
n = 5
a_list = []
for i in range(1, n + 1):
    a_list.append(x)
    x = x * i

Your algorithm’s space complexity is O(n) because the amount of space it uses grows at the same 
pace as n.

Like with time complexity, the acceptable level of space complexity for an algorithm depends on 
the situation. In general, though, the less space an algorithm requires, the better.

Why Is This Important?
As a computer scientist, you need to understand the different orders of magnitude to optimize your 
algorithms. When you are trying to improve an algorithm, you should focus on changing its order of 
magnitude instead of improving it in other ways. For example, say you have an O(n**2) algorithm that 
uses two for loops. Instead of optimizing what happens inside your loops, it is much more important 
to determine whether you can rewrite your algorithm so that it doesn’t have two nested for loops and 
thus has a smaller order of magnitude.

If you can solve the problem by writing an algorithm with two unnested for loops, your algorithm 
will be O(n), which will make a massive difference in its performance. That change will make a much 
bigger difference in your algorithm’s performance than any efficiency gains you could get by tweaking 
your O(n**2) algorithm. However, it is also important to think about best-  and worst- case scenarios 
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for your algorithm. Maybe you have an O(n**2) algorithm, but in its best- case scenario, it is O(n), 
and your data happens to fit its best- case scenario. In that case, the algorithm may be a good choice.

The decisions you make about algorithms can have enormous consequences in the real world. For 
example, say you are a web developer responsible for writing an algorithm that responds to a customer’s 
web request. Whether you decide to write a constant or quadratic algorithm could make the difference 
between your website loading in less than one second, making your customer happy, and taking more 
than a minute, which may cause you to lose customers before the request loads.

Vocabulary
algorithm: A sequence of steps that solves a problem.

run time: The amount of time it takes your computer to execute an algorithm written in a program-
ming language like Python.

size of the problem: The variable n in an equation that describes the number of steps in an algorithm.

big O notation: A mathematical notation that describes how an algorithm’s time or space require-
ments increase as the size of n increases.

order of magnitude: A class in a classification system where each class is many times greater or 
smaller than the one before.

time complexity: The maximum number of steps an algorithm takes to complete as n gets larger.

constant time: An algorithm runs in constant time when it requires the same number of steps 
regardless of the problem’s size.

logarithmic time: An algorithm runs in logarithmic time when its run time grows in proportion to 
the logarithm of the input size.

linear time: An algorithm runs in linear time when it grows at the same rate as the problem’s size.

log- linear time: An algorithm runs in log- linear time when it grows as a combination (multiplica-
tion) of logarithmic and linear time complexities.

quadratic time: An algorithm runs in quadratic time when its performance is directly proportional 
to the square of the size of the problem.

cubic time: An algorithm runs in cubic time when its performance is directly proportional to the 
cube of the size of the problem.

polynomial time: An algorithm runs in polynomial time when it scales as O(n**a), where a = 2 for 
quadratic time and a = 3 for cubic time.

exponential time: An algorithm runs in exponential time when it contains a constant raised to the 
problem’s size.

brute- force algorithm: A type of algorithm that tests every possible option.
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best- case complexity: How an algorithm performs with ideal input.

worst- case complexity: How an algorithm performs in the worst possible scenario for it.

average- case complexity: How an algorithm performs on average.

space complexity: The amount of memory space an algorithm needs.

fixed space: The amount of memory a program requires.

data structure space: The amount of memory a program requires to store the data set.

temporary space: The amount of memory an algorithm needs for intermediary processing, for 
example, if your algorithm needs to temporarily copy a list to transfer data.

Challenge
1. Find a program you’ve written in the past. Go through it and write down the time complexities 

for the different algorithms in it.



2 Recursion

To understand recursion, one must first understand recursion.

Anonymous

An iterative algorithm solves problems by repeating steps over and over, typically using a loop. Most 
of the algorithms you’ve written in your programming journey so far are likely iterative algorithms. 
Recursion is a method of problem- solving where you solve smaller instances of the problem until you 
arrive at a solution. Recursive algorithms rely on functions that call themselves. Any problem you 
can solve with an iterative algorithm, you can also solve with a recursive one; however, sometimes, a 
recursive algorithm is a more elegant solution.

You write a recursive algorithm inside of a function or method that calls itself. The code inside the 
function changes the input and passes in a new, different input the next time the function calls itself. 
Because of this, the function must have a base case: a condition that ends a recursive algorithm to 
stop it from continuing forever. Each time the function calls itself, it moves closer to the base case. 
Eventually, the base case condition is satisfied, the problem is solved, and the function stops calling 
itself. An algorithm that follows these rules satisfies the three laws of recursion:

■■ A recursive algorithm must have a base case.
■■ A recursive algorithm must change its state and move toward the base case.
■■ A recursive algorithm must call itself recursively.

To help you understand how a recursive algorithm works, let’s take a look at finding the factorial of 
a number using both a recursive and iterative algorithm. The factorial of a number is the product of all 
positive integers less than or equal to the number. For example, the factorial of 5 is 5 × 4 × 3 × 2 × 1.

5! = 5 * 4 * 3 * 2 * 1

Here is an iterative algorithm that calculates the factorial of a number, n:

def factorial(n):
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    the_product = 1
    while n > 0:
        the_product *= n
        n = n -  1
    return the_product

Your function, factorial, accepts the number, n, that you are using in your calculation.

def factorial(n):

Inside your function, you define a variable, the_product, and set it to 1. You use the_product to 
keep track of the product as you multiply n by the numbers preceding it, for example, 5 * 4 * 3 * 2 * 1.

Next, you use a while loop to iterate backward from n to 1 while keeping track of the product.

while n > 0:
    the_product *= n
    n = n -  1

At the end of your while loop, you return the_product, which contains the factorial of n.

return the_product

Here is how to write the same algorithm recursively:

def factorial(n):
    if n == 0: 
        return 1
    return n * factorial(n -  1)

First, you define a function called factorial that accepts the number, n, as a parameter. Next comes 
your base case. Your function will call itself repeatedly until n is 0, at which point it will return 1 and 
will stop calling itself.

if n == 0:
    return 1

Whenever the base case is not satisfied, this line of code executes:

return n * factorial(n -  1)

As you can see, your code calls the factorial function, which is itself. If this is your first time 
seeing a recursive algorithm, this probably looks strange to you, and it might even look like this code 
could not possibly work. But I promise you it does work. In this case, your factorial function calls 
itself and returns the result. However, it does not call itself with the value of n; rather, it calls it with 
the value of n − 1. Eventually, n will be less than 1, which will satisfy your base case:
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if n == 0:
    return 1

That is all the code you have to write for your recursive algorithm, which is only four lines of code:

def factorial(n):
    if n == 0:
        return 1
    return n * factorial(n -  1)

So, how does it work? Internally, each time your function hits a return statement, it puts it on a 
stack. A stack is a type of data structure you will learn more about in Part II. It is like a list in Python, 
but you remove items in the same order you added them. Let’s say you call your recursive factorial 
function like this:

factorial(3)

Your variable, n, starts as 3. Your function tests your base case, which is False, so Python executes 
this line of code:

return n * factorial(n -  1)

Python does not know the result of n * factorial(n − 1) yet, so it puts it on the stack.

# Internal stack (do not try to run this code)
 
# n = 3
[return n * factorial( n -  1)]

Then, your function calls itself again after decrementing n by 1:

factorial(2)

Your function tests your base case again, which evaluates to False, so Python executes this 
line of code:

return n * factorial(n -  1)

Python does not know the result of n * factorial(n − 1) yet, so it puts it on the stack.

# Internal stack
 
# n = 3                        # n = 2
[return n * factorial( n -  1), return n * factorial( n -  1),]

Once again, your function calls itself after decrementing n by 1:

factorial(1)
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Python does not know the result of n * factorial(n − 1) yet, so it puts it on the stack.

# Internal stack
 
# n = 3                        # n = 2                       # n = 1
[return n * factorial( n -  1), return n * factorial( n -  1), return n * 
factorial( n -  1),]

Again, your function calls itself after decrementing n by 1, but this time n is 0, which means your 
base case is satisfied, so you return 1.

if n == 0:
    return 1

Python puts the return value on the stack again, but this time it knows what it is returning: the 
number 1. Now, Python’s internal stack looks like this:

# Internal stack
 
# n = 3                        # n = 2                       # n = 1
[return n * factorial( n -  1), return n * factorial( n -  1), return n * factorial( 
n -  1), 1]

Because Python knows the last return result, it can now calculate the previous return result and 
remove the previous result from the stack. In other words, Python multiples 1 * n, and n is 1.

1 * 1 = 1

Now, Python’s internal stack looks like this:

# Internal stack
 
# n = 3                        # n = 2                       
[return n * factorial( n -  1), return n * factorial( n -  1), 1]

Once again, because Python knows the last return result, it can calculate the previous return result 
and remove the previous result from the stack.

2 * 1 = 2

Now, Python’s internal stack looks like this:

# Internal stack
 
# n = 3                        
[return n * factorial( n -  1), 2]
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Finally, because Python knows the last return result, it can calculate the previous return result, 
remove the previous result from the stack, and return the answer.

3 * 2 = 6
 
# Internal stack
 
[return 6]

As you can now see, calculating the factorial of a number is a perfect example of a problem you can 
solve by finding solutions to smaller instances of the same problem. By recognizing that and writing 
a recursive algorithm, you created an elegant solution to calculate a number’s factorial.

When to Use Recursion
How often you want to use recursion in your algorithms is up to you. Any algorithm you can write 
recursively, you can also write iteratively. The main advantage of recursion is how elegant it is. As you 
saw earlier, your iterative solution to calculate factorials took six lines of code, whereas your recur-
sive solution took only four. A disadvantage of recursive algorithms is that they often take up more 
memory because they have to hold data on Python’s internal stack. Recursive functions can also be 
more difficult than iterative algorithms to read and debug because it can be harder to follow what is 
happening in a recursive algorithm.

Whether or not you use recursion to solve a problem depends on the specific situation, for example, 
how important memory usage is versus how much more elegant your recursive algorithm will be than 
a corresponding iterative algorithm. Later in the book, you will see more examples where recursion 
offers a more elegant solution than an iterative algorithm, like traversing a binary tree.

Vocabulary
iterative algorithm: An algorithm that solves problems by repeating steps over and over, typically 
using a loop.

recursion: A method of solving a problem where the solution depends on solutions to smaller 
instances of the same problem.

base case: A condition that ends a recursive algorithm to stop it from continuing forever.

factorial: The product of all positive integers less than or equal to a number.

Challenge
1. Print the numbers from 1 to 10 recursively.





3 Search Algorithms

An algorithm must be seen to be believed.
Donald Knuth

As a professional programmer, you will spend a lot of time working with data. If you become a 
web or app developer, you will display data to users when they visit your website or app. Often, you 
have to manipulate the data before you can show it to them. If you become a data scientist, you will 
spend even more time working with data. Maybe Netflix will hire you to use its data to improve its 
algorithm for recommending movies. Or Instagram will employ you to analyze its data to help keep 
users on its platform longer.

One of the most fundamental things a programmer working with data needs to know is how to 
search it. Computer scientists search data by writing a search algorithm: an algorithm that looks for 
data in a data set. A data set is a collection of data. Two common examples of search algorithms are 
linear and binary searches. As a professional programmer, you most likely will not spend much time 
implementing search algorithms because programming languages like Python have them built-in. 
However, learning how to code a few search algorithms will make you a better programmer because it 
will help you better understand fundamental computer science concepts such as linear and logarithmic 
order of magnitudes. It is also crucial for you to understand these algorithms to know which of Python’s 
built- in search algorithms to use and how they will perform on different data sets.

In this chapter, you will learn how to search a list for a number using two different algorithms: a 
linear search and a binary search. Then, after you code each search algorithm yourself, I will show 
you how to perform the same search using Python’s built- in tools.

Linear Search
In a linear search, you iterate through every element in a data set and compare it to the target number. 
If your comparison finds a match, the number is in the list. If your algorithm ends without finding a 
match, the number is not in the list.
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Here is a linear search algorithm in Python:

def linear_search(a_list, n):
    for i in a_list:
        if i == n:
            return True
    return False
 
a_list = [1, 8, 32, 91, 5, 15, 9, 100, 3]
print(linear_search(a_list, 91))
 
>> True

The first part of your program calls your linear_search function and passes in a list and the number 
to search for, n:

a_list = [1, 8, 32, 91, 5, 15, 9, 100, 3]
print(linear_search(a_list, 91))

In this case, n is 91, so your algorithm is looking to see if 91 is in a_list.
You then use a for loop to iterate through each element in a_list:

for i in a_list:

Next, you use an if statement to compare each element in a_list to n:

if i == n:

If there is a match, you return True. If you make it through the list and there is no match, you 
return False:

for i in a_list:
     if i == n:
          return True
return False

When you run your program, it returns True because the number, n (in this case, 91), is in 
a_list:

print(linear_search(a_list, 91))
 
>> True

If you rerun your program but search for 1,003 instead of 91, your program will return False 
because 1,003 is not in a_list:

print(linear_search(a_list, 1003))
 
>> False
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When to Use a Linear Search
A linear search’s time complexity is O(n). In the worst- case scenario, in a list of 10 items, your algorithm 
will take 10 steps. The best- case scenario for a linear search is O(1) because the item you are looking 
for could be the first item in the list, so your algorithm will take only one step because it stops as soon 
as it finds a match. On average, a linear search will take n/2 steps.

You should consider using a linear search when your data is not sorted. Sorted data is data arranged 
in a meaningful way. For example, you can sort a list of numbers sequentially (either ascending or 
descending):

# Unsorted List 
the_list = [12, 19, 13, 15, 14, 10, 18]
 
# List Sorted in Ascending Order 
the_list = [10, 12, 13, 14, 15, 18, 19]

If your data is sorted, you can use a more efficient binary search, which you will learn about shortly.
When you are programming in the real world, instead of writing your own linear search, you can 

use Python’s built- in keyword in. Here is how to perform a linear search on a list of numbers using 
Python’s in keyword:

unsorted_list = [1, 45, 4, 32, 3]
print(45 in unsorted_list)
 
>> True

Using Python’s in keyword, you performed a linear search on unsorted_list in just one line of code.
In the examples so far, you’ve searched only for numbers. You can also use a linear search to find 

characters in strings. In Python, you can search for a character in a string using a linear search like this:

print('a' in 'apple')

Binary Search
A binary search is another, faster algorithm for searching a list for a number. However, you cannot 
use a binary search on every data set because it works only when your data is sorted.

A binary search searches for an element in a list by dividing it into halves. Suppose you have the list 
of numbers shown in Figure 3.1 sorted (from lowest to highest) and you are looking for the number 19.

10 12 13 14 15 18 19

Figure 3.1: Sorted data set for a binary search
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Your first step in a binary search is to locate the middle number. There are seven items in this list, 
so the middle number is 14 (Figure 3.2).

Since 14 is not the number you are searching for, you continue.
The next step is to determine whether the number you are looking for is greater than or less than 

the middle number. The number you are looking for, 19, is greater than 14, so there is no need to 
search the bottom half of the list. You can get rid of it. Now all that is left is the upper half of the list 
with three numbers left to search (Figure 3.3).

Next, you repeat the process by locating the middle number again, which is now 18 (Figure 3.4).

Since 18 is not the number you are searching for, you again determine whether you keep the lower 
half or upper half of the list. Because 19 is greater than 18, you keep the upper half and eliminate the 
lower half.

That leaves only one number, 19, which is the number you are searching for (Figure 3.5). If the 
number were not 19, you would know it is not in the list.

10 12 13

14

15 18 19

Figure 3.2: A binary search first locates the 
middle number.

15 18 19

Figure 3.3: The next step in a 
binary search eliminates the half of 
the data that cannot contain 
the number.

15

18

19

Figure 3.4: A binary search then 
finds the middle number again.
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In a linear search, it would have taken seven steps to find 19. It took only three steps with a binary 
search, which is less than half the number of steps.

Here is how you implement a binary search in Python:

def binary_search(a_list, n):
    first = 0
    last = len(a_list) -  1
    while last >= first:
        mid = (first + last) // 2
        if a_list[mid] == n:
            return True
        else:
            if n < a_list[mid]:
                last = mid -  1
            else:
                first = mid + 1
    return False

Your function binary_search takes two arguments, a_list and n (the target number):

def binary_search(a_list, n):

You use the variables first and last to keep track of the beginning and the end of the list you are 
searching. You start by setting the value of first to 0. Next, you assign the variable last to the length 
of the list minus one. You will change the value of these variables as you divide a_list into smaller 
and smaller segments:

first = 0
last = len(a_list) -  1

Your algorithm’s loop continues as long as there are still items in your list:

while last >= first:

Inside your loop, you locate the midpoint of a_list by adding first plus last and then dividing by 2:

mid = (first + last) // 2

The double- slash is the floor division operator, which returns the whole value of division, rounded 
down. For example, 7 divided by 2 is 3.5, but with floor division, it is 3. You use floor division, so 
mid is always a whole number because indexes are always whole numbers.

19

Figure 3.5: Our binary search found our number.
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Next, you use a conditional statement to check whether the element at the midpoint of your list is the 
element you are looking for. If it is, you return True because you found the number you are looking for:

if a_list[mid] == n:
    return True

If the item at the midpoint of your list is not the target item, you check whether the target item is 
greater than or less than the midpoint value. If the target item is less than the midpoint value, you set 
last to the midpoint value minus 1, which cuts off the upper half of the list from further processing:

if n < a_list[mid]:
    last = mid -  1

If the target item is greater than the midpoint value, you set the value of first to the midpoint 
value plus 1, which cuts off the lower half of the list from further processing:

else:
    first = mid + 1

Your loop then repeats on a smaller segment of the list you create using the variables first and last:

mid = (first + last) // 2

When your loop terminates, your function returns False because if you’ve made it to the end of 
your function, the number is not in your iterable:

return False

When to Use a Binary Search
A binary search takes O(log n) time. It is more efficient than a linear search because you don’t have to 
search an entire list. Instead, you can throw out whole list segments without searching them. A binary 
search’s efficiency makes an enormous difference when you are dealing with large amounts of data. 
For example, say you are searching a list with a million numbers. If you performed a linear search, 
it might take you a million steps to complete your search. With a logarithmic binary search, on the 
other hand, it would take you only 20 steps.

Let’s take a closer look at what it means for an algorithm to be logarithmic. Exponentiation is a 
mathematical operation you write as bn (or b**n in Python), where you multiply a number b times 
itself n times. In this equation, the number b is called the base, and the number n is called the expo-
nent. The process of exponentiation means raising b to the power n. For example, 2**2 = 2*2, 2**3 
= 2*2*2, and so on. A logarithm is the power you must raise a number to in order to produce another 
number. In other words, it is the inverse of exponentiation. For example, a logarithm can tell you how 
many times you need to multiply 2 by itself to get 8. That question in mathematical notation is log

2
(8). 

The solution to log
2
(8) is 3 because you need to multiply 2 by itself 3 times to get 8 (Figure 3.6).
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In a binary search, the first time you halve your list, you will have n/2 items left in it. After the 
second iteration, you will have n/2/2 items left, and after the third iteration, you will have n/2/2/2 items 
left. Put another way, after your first iteration in a binary search, there will be n/2*1 items left, and 
n/2**3 items left after the third iteration. So, more generally, after x iterations, you will have n/2**x 
items left in your list.

You can use a logarithm to solve how many iterations it will take a binary search to find a number 
in a list in the worst- case scenario. For example, say you have a list with 100 numbers in it and you 
want to know how many iterations it will take a binary search to discover a number is not there. To 
answer this, you need to solve for n in 2**n = 100, which is the same as log

2
(100). You can solve this 

equation intuitively by guessing. For example, you might start by guessing that n is 5, but 2**5 is 32, 
which is too small. You can keep guessing: 2**6 is 64, which is also too small, and 2**7 is 128, which 
is greater than 100, and is thus your answer. In other words, if you perform a binary search on a list 
with 100 items, and the item is not there, it will take your algorithm 7 steps to determine that. In 
other words, 100/2/2/2/2/2/2/2 < 1.

When you run a binary search, it divides your list in half each iteration, which means the logarithm 
describing its run time is base 2. However, in big O notation, a logarithm’s base doesn’t matter because 
you can change it by multiplying the logarithm by a constant. The math details are beyond the scope 
of this book, but the important thing to know is that the logarithm base doesn’t matter in big O 
notation. What is important is whether an algorithm is logarithmic, which usually happens when your 
algorithm reduces the computation amount by half or some other significant amount each iteration.

Because of how efficient a binary search is, if you have sorted data you need to search, it is usually 
best to use one. However, even if you have unsorted data, sometimes it is worth sorting it to take 
advantage of a binary search. For example, if you have a large list and plan to do many searches, it 
might benefit you to sort your data once to vastly speed up each one of the searches you will do in 
the future.

As with a linear search, Python has a built- in module to perform a binary search, which you should 
use when writing real- world applications. The key to writing a binary search using Python’s built- in 
tools is to use bisect_left from the bisect module, which finds the index of an existing element in 
a sorted list using a binary search:

from bisect import bisect_left
 
 
sorted_fruits = ['apple', 'banana', 'orange', 'plum']
bisect_left(sorted_fruits, 'banana')
 
>> 1

2 x 2 x 2 = 8

3

log2(8) = 3

Base

Figure 3.6: Exponential notation versus logarithmic notation
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In this case, bisect_left returned 1 because 'banana' is at index 1 in sorted_fruits. If the item 
you are looking for is not in your sorted iterable, bisect_left returns where it would be if it were there.

from bisect import bisect_left
 
 
sorted_fruits = ['apple', 'banana', 'orange', 'plum']
bisect_left(sorted_fruits, 'kiwi')
 
>> 2

As you can see, 'kiwi' is not in your sorted iterable, but if it were, it would be at index 2.
Because bisect_left tells you where an item should go if it isn’t there, to check if an item is in an 

iterable, you need to see if the index is within the iterable (bisect could return a position outside of 
your iterable) and if the item at the index bisect_left returns is the value you are looking for. Here 
is how to use bisect_left to perform a binary search in Python:

from bisect import bisect_left
 
 
def binary_search(an_iterable, target):
    index = bisect_left(an_iterable, target)
    if index <= len(an_iterable) and an_iterable[index] == target:
        return True
    return False

If bisect_left returns an index within your iterable and that index contains your target, you return 
True because the item is in your iterable. Otherwise, it is not, and you return False.

Searching for Characters
You know how to search for characters in a list using Python’s built- in linear and binary search tools. 
But what if you had to write a linear or binary search from scratch to search for characters instead 
of numbers? To understand how to search for characters, you need to understand more about how a 
computer stores them.

A character set is a map between characters and binary numbers. Computer scientists use character 
encoding to implement different character sets. In American Standard Code for Information Interchange 
(ASCII), your computer maps each letter of the alphabet to a seven- bit number. Figure 3.7 shows the 
relationship between binary and the different characters in the English language.

For example, the ASCII value of A is 1000001 in binary (you will learn more about binary later in 
the book) and 65 in base 10 (the number system you use every day). The binary digit for b is 01100010. 
Uppercase letters, lowercase letters, punctuation symbols, numerals, and various control characters 
that indicate actions, such as page breaks and line feeds, all have ASCII codes. There are ASCII codes 
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for the numbers 0 through 9 because 0 through 9 in the ASCII table are not numeric values. They are 
characters for nonmathematical purposes, such as expressing the numerals in the street address 26 
Broadway Street, New York. Because ASCII maps each character to a 7- bit binary number, it can only 
represent a maximum of 128 different characters (27 is 128). Most computers, however, extend ASCII 
to 8 bits so that it can represent 256 characters.

While you can represent the 256 characters in the Latin- script alphabet with ASCII, it does not 
support enough characters to deal with the text from other writing systems, such as Japanese or 
Mandarin. To deal with this problem, computer scientists developed the Unicode character set. 
Character encoding means assigning a number to characters for digital representation. UTF- 8 is one 
of the character encoding methods computer scientists use to implement the Unicode character set.

Instead of using 7 or 8 bits like ASCII, UTF- 8 uses up to 32 bits to encode each character, which 
allows you to represent more than a million characters. UTF- 8 is compatible with ASCII because it 
uses the same bit representation for the Latin- script alphabet. For example, both ASCII and UTF- 8 
represent an uppercase A with 1000001.
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0111 1011
0111 1100
0111 1101
0111 1110
0111 1111

[NUL]
[SOH]
[STX]
[ETX]
[EOT]
[ENQ]
[ACK]
[BEL]
[BS]
[TAB]
[LF]
[VT]
[FF]
[CR]
[SO]
[SI]
[DLE]
[DC1]
[DC2]
[DC3]
[DC4]
[NAK]
[SYN]
[ETB]
[CAN]
[EM]
[SUB]
[ESC]
[FS]
[GS]
[RS]
[US]

Dec Bin Char Dec Bin Char Dec Bin Char

Figure 3.7: ASCII chart
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You can use Python’s built- in ord() function to get a character’s ASCII value:

print(ord('a'))
 
>> 97 

As you can see, the ASCII value for a is 97 (in base 10).
The ord() function is useful when you need to work directly with the underlying ASCII codes of 

different characters. To modify the binary search you wrote earlier to search for characters, you have 
to get and compare the ASCII values of characters. Each time through your loop, you check to see 
whether the ASCII code of each character is higher than, lower than, or equal to the character’s ASCII 
code you are looking for. Instead of showing you the solution here, I challenge you to code it yourself 
at the end of this chapter.

You now know how linear and binary searches work and when to use them when you are searching 
for data. While a binary search is very efficient, it is not the fastest way to search for data. In Part II, 
you will learn how to search for data using a hash table and why it is the most efficient kind of search.

Vocabulary
search algorithm: An algorithm that looks for data in a data set.

data set: A collection of data.

linear search: A search algorithm that iterates through each element in a set of data and compares 
it to the target number.

sorted data: Data arranged in a meaningful way.

binary search: Another algorithm for searching a list for a number, and it is faster than a linear search.

floor division operator: An operator that returns the whole value of division, rounded down.

exponentiation: A mathematical operation you write as bn (or b**n in Python), where you multiply 
a number b times itself n times.

base: The b in the equation for exponentiation (bn).

exponent: The n in the equation for exponentiation (bn).

logarithm: The power you must raise a number to in order to produce another number.

character set: A map between characters and binary numbers.
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ASCII: The American Standard Code for Information Interchange character set.

Unicode: A character set that can store more characters than ASCII.

character encoding: Assigning a number to characters for digital representation.

UTF- 8: One of the methods of character encoding computer scientists use to implement the Unicode 
character set.

Challenge
1. Given a list of words in alphabetical order, write a function that performs a binary search for 

a word and returns whether it is in the list.





4 Sorting Algorithms

I think the bubble sort would be the wrong way to go.
Barack Obama

As a computer scientist, in addition to searching for data, you will often have to sort data. Sorting 
data means arranging it in a meaningful way. For example, if you have a list of numbers, you could 
sort them from the smallest to the largest (ascending). Or, imagine you are building an app that keeps 
track of the books each user has read. In an app like this, you might want to allow the user to see their 
books sorted in different ways. For example, you could give them the option to see their books sorted 
from the shortest book to the longest, oldest to newest, or newest to oldest.

There are many different sorting algorithms to help you sort data, each with strengths and weaknesses. 
For example, some sort algorithms work best in specific situations, like if an iterable is nearly sorted. In 
this chapter, you will learn about bubble sort, insertion sort, and merge sort. Other popular sorts include 
quicksort, shell sort, and heap sort. There are many sorting algorithms you will have to use in only rare 
circumstances, so after teaching you a few sorts, I spend the remainder of the chapter showing you how 
to use Python’s built- in functions to sort data, something you will often use in real- world programming.

When you are building your programs in the real world, you should almost always use your 
programming language’s built- in sorting function. You should not implement the classic sorting algo-
rithms discussed here (except in rare circumstances) because modern programming languages like 
Python have built- in sorting functions that are faster. However, learning a few of the classic sorting 
algorithms will help you better understand time complexity and teach you concepts you can use in 
situations other than sorting, such as the merge step in a merge sort.

Bubble Sort
Bubble sort is a sorting algorithm where you iterate through a list of numbers, compare each number 
to the next number, and swap them if they are out of order. Computer scientists call it a bubble sort 
because the numbers with the highest values “bubble up” to the end of the list, and the numbers with 
the smallest values move to the beginning of the list as the algorithm progresses.
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Say you have the following list:

[32, 1, 9, 6] 

First, you compare 1 and 32:

[32, 1, 9, 6] 

Thirty- two is bigger, so you swap them:

[1, 32, 9, 6] 

Next, you compare 32 and 9:

[1, 32, 9, 6] 

Thirty- two is larger, so you swap them again:

[1, 9, 32, 6] 

Finally, you compare 32 and 6:

[1, 9, 32, 6] 

Once again, you swap them:

[1, 9, 6, 32] 

As you can see, 32 “bubbled up” to the end of the list. However, your list is still not in order because 
9 and 6 are not in the right spots. So, your algorithm starts at the beginning again and compares 1 and 9:

[1, 9, 6, 32] 

Nothing happens because 1 is not greater than 9. Next, it compares 9 and 6:

[1, 9, 6, 32] 

Nine is greater than 6, so you swap them, and your list is now in order:

[1, 6, 9, 32] 

In a bubble sort, the largest number in your list will move to the end of your list at the end of your 
algorithm’s first iteration, but if the smallest number in your list starts at the end, it will take multiple 
passes for your algorithm to move it to the beginning of your list. For instance, in this example, 32 
ended up at the end of your list after one iteration. Say your list started like this, though:

[32, 6, 9, 1] 

In this case, it will take four iterations to move 1 from the end of the list to the beginning.
It can be helpful to use a bubble sort visualizer to better understand how this algorithm works. 

There are many bubble sort visualizers you can search for on the internet that can cement your under-
standing of how this sorting algorithm works. I recommend doing this for the sorting algorithms you 
will learn about in this chapter.
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Here is how to write a bubble sort algorithm in Python:

def bubble_sort(a_list):
    list_length = len(a_list) - 1
    for i in range(list_length):
        for j in range(list_length):
            if a_list[j] > a_list[j + 1]:
                a_list[j], a_list[j + 1] = a_list[j + 1], a_list[j]
    return a_list

Your function bubble_sort takes a list of numbers, called a_list, as a parameter:

def bubble_sort(a_list):

Inside your function, you get your list’s length, subtract 1, and save the result in list_length to 
control how many iterations your algorithm will make:

list_length = len(a_list) -  1

Your function has two nested loops so that you can iterate through your list and make comparisons:

for i in range(list_length):
    for j in range(list_length)

Inside your inner for loop, you use an if statement to compare the current number to the one 
after it by adding 1 to the current number’s index:

if a_list[j] > a_list[j + 1]:   

This line of code is the current number:

a_list[j]

This line of code is the next number in your list:

a_list[j + 1]

If the current number is greater than the next number, you swap them. The following Python syntax 
allows you to swap two items without loading one of the items into a temporary variable:

a_list[j], a_list[j + 1] = a_list[j + 1], a_list[j]

Your algorithm’s comparisons all happen inside your inner loop. Your outer loop is there only to 
keep your algorithm running for as many swaps as it takes to put your list in order. Take, for example, 
the list from the beginning of the section:

[32, 1, 9, 6] 

After one inner- loop iteration, your list looks like this:

[1, 9, 6, 32] 
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Recall, however, that this list is not in order. If you had only your inner loop, your algorithm would 
end prematurely, and your list would not be in order. That is why you need your outer loop: to start 
your algorithm’s inner loop over from the beginning and repeat it until your list is in order.

You can improve the efficiency of your bubble sort by including − i in your second for loop. That 
way, your inner loop will not compare the last two numbers the first time through the loop; the second 
time through the loop, it will not compare the last three numbers; and so on.

def bubble_sort(a_list):
    list_length = len(a_list) -  1
    for i in range(list_length):
        for j in range(list_length -  i):
            if a_list[j] > a_list[j + 1]:
                a_list[j], a_list[j + 1] = a_list[j + 1], a_list[j]
    return a_list

You don’t have to make these comparisons because the highest numbers bubble to the end of your 
list. For instance, in the initial example at the beginning of this section, you saw 32 bubbled up to the 
end of your list after the first iteration of your sort. That means the largest number is at the end of 
your list after the first iteration; the second largest number is at the next- to- the- last spot after the 
second iteration, and so forth. This means you do not need to compare the other numbers to them 
and can end your loop early. For example, take a look at the list from the beginning of this section:

[32, 1, 9, 6] 

After one full inner- loop iteration, it looks like this:

[1, 9, 6, 32] 

After one iteration, the largest number moves to the end of your list, so you no longer have to 
compare numbers to 32 because you know it is the largest number in your list.

The second time through your inner loop, the second- largest value will move to its final position, 
second from the end, etc.

[1, 6, 9, 32] 

So, each time through your inner loop, your inner loop can terminate sooner.
You can also make your bubble sort more efficient by adding a variable that keeps track of whether 

your algorithm made any swaps in your inner loop. If you get through an inner loop with no swaps, 
your list is sorted, and you can exit the loop and return your list without any further processing.

def bubble_sort(a_list):
    list_length = len(a_list) -  1
    for i in range(list_length):
        no_swaps = True
        for j in range(list_length -  i):
            if a_list[j] > a_list[j + 1]:
                a_list[j], a_list[j + 1] = a_list[j + 1], a_list[j]
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                no_swaps = False
        if no_swaps:
            return a_list
    return a_list

In this case, you added a variable called no_swaps that starts as True at the beginning of your inner 
loop. If you swap two numbers inside your inner loop, you set it to False. If you make it through 
your inner loop and no_swaps is True, your list is sorted, and you can end your algorithm. This small 
change makes your bubble sort run significantly faster when a list starts nearly sorted.

When to Use Bubble Sort
In this implementation of bubble sort, your algorithm sorts numbers, but you can also write a bubble 
sort (or any other sort) that sorts strings. For example, you could modify a bubble sort to sort strings 
alphabetically by each word’s first letter.

A bubble sort’s main advantage is how simple it is to implement, making it a good starting point 
for teaching sorting algorithms. Because a bubble sort relies on two nested for loops, its time com-
plexity is O(n**2), which means while it can be acceptable for small sets of data, it is not an efficient 
choice for larger data sets.

A bubble sort is also stable. A stable sort is one that does not disturb any sequences other than the 
one specified by the sort key. For example, say you have a database containing records for these 
four animals:

Akita

Bear

Tiger

Albatross

If you sort by the first letter of the first character, you expect this output:

Stable Sort

Akita

Albatross

Bear

Tiger

This output is an example of a stable sort because Akita and Albatross are in the same order as in 
the original list, even though your sort looked only at the first letter of each name. An unstable sort 
might disrupt the original order of the two animal names that start with A, so Albatross might come 
before Akita even though Akita came before Albatross in the original list.
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Unstable Sort

Albatross

Akita

Bear

Tiger

In other words, in a stable sort, when there are two equal keys, the items maintain their original order.
Despite its stability, because a bubble sort is O(n**2) and because there are other, more efficient 

sorts you can use (which you are about to learn), you are unlikely to see anyone using a bubble sort 
outside of the classroom.

Insertion Sort
An insertion sort is a sorting algorithm where you sort data like you sort a deck of cards. First, you 
split a list of numbers into two: a sorted left half and an unsorted right half. Then, you sort the left 
half the same way you sort a hand of playing cards. For example, when you sort a hand of five cards 
in ascending order, you go through your cards one by one, inserting each card to the right of every 
card lower than it.

Here is how an insertion sort algorithm works on a list with four elements: 6, 5, 8, and 2. Your 
algorithm starts with the second item in your list, which is 5:

[6, 5, 8, 2]

Next, you compare the current item to the previous item in your list. Six is greater than 5, so you 
swap them:

[5, 6, 8, 2]

Now the left half of your list is sorted, but the right half is not:

[5, 6, 8, 2]

Then, you move to the third item in your list. Six is not greater than 8, so you don’t swap 8 and 6:

[5, 6, 8, 2]

Because the left half of your list is sorted, you do not have to compare 8 and 5:

[5, 6, 8, 2]

Next, you compare 8 and 2:

[5, 6, 8, 2]

Because 8 is greater than 2, you go one by one through the sorted left half of the list, comparing 2 
to each number until it arrives at the front and the entire list is sorted:

[2, 5, 6, 8]
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Here is how to code an insertion sort in Python:

def insertion_sort(a_list):
    for i in range(1, len(a_list)):
        value = a_list[i]
        while i > 0 and a_list[i -  1] > value:
            a_list[i] = a_list[i -  1]
            i = i -  1
        a_list[i] = value
    return a_list

You start by defining an insertion_sort function that takes a list of numbers as input:

def insertion_sort(a_list):

Your function uses a for loop to iterate through each item in the list. Then it uses a while loop for 
the comparisons your algorithm makes when adding a new number to the sorted left side of your list:

for i in range(1, len(a_list)):
    ... 
    while i > 0 and a_list[i -  1] > value:
        ...

Your for loop begins with the second item in your list (index 1). Inside your loop, you keep track 
of the current number in the variable value:

for i in range(1, len(a_list)):
    value = a_list[i]

Your while loop moves items from the unsorted right half of your list to the sorted left half. It con-
tinues as long as two things are true: i must be greater than 0, and the previous item in the list must 
be greater than the item that comes after it. The variable i must be greater than 0 because your while 
loop compares two numbers, and if i is 0, that means your algorithm is at the first item in the list, 
and there is no previous number to compare it to.

while i > 0 and a_list[i -  1] > value:

Your while loop executes only if the number in value is smaller than the previous item in the list. 
Inside your while loop, you move the greater value to the right of your list. Then, your algorithm 
works on finding out where to put the smaller value in the sorted left half of your list. You decrement 
i so your loop can make another comparison and see if the smaller number needs to move even far-
ther to the left.

while i > 0 and a_list[i -  1] > value:
    a_list[i] = a_list[i -  1]
    i = i -  1        
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When your while loop terminates, you insert the current number in value in the correct position 
in the sorted left half of the list:

a_list[i] = value

Let’s take a look at how your insertion sort algorithm works with the following list:

[6, 5, 8, 2]

The first time through your for loop, i is 1, and value is 5:

for i in range(1, len(a_list)):
    value = a_list[i]

The following code in bold is True because i > 0 and 6 > 5, so your while loop executes:

while i > 0 and a_list[i -  1] > value:
    a_list[i] = a_list[i -  1]
    i = i -  1
a_list[i] = value

This code:

while i > 0 and a_list[i -  1] > value:
    a_list[i] = a_list[i -  1]
    i = i -  1
a_list[i] = value

changes your list from this:

[6, 5, 8, 2]

to this:

[6, 6, 8, 2]

And this code:

while i > 0 and a_list[i -  1] > value:
    a_list[i] = a_list[i -  1]
    i = i -  1
a_list[i] = value

decrements i by 1. The variable i is now 0, which means your while loop will not execute again:

while i > 0 and a_list[i -  1] > value:
    a_list[i] = a_list[i -  1]
    i = i -  1
a_list[i] = value
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Next, this line of code:

while i > 0 and a_list[i -  1] > value:
    a_list[i] = a_list[i -  1]
    i = i -  1
a_list[i] = value

changes your list from this:

[6, 6, 8, 2]

to this:

[5, 6, 8, 2]

You’ve sorted the first two items in your list, and all your algorithm has to do now is repeat the 
same process to sort the right half of the list containing 8 and 2.

When to Use Insertion Sort
Like a bubble sort, an insertion sort is stable. Also like a bubble sort, an insertion sort is O(n**2), 
so it is not very efficient. However, unlike a bubble sort, computer scientists use insertion sorts in 
real- world applications. For example, an insertion sort may be an efficient choice if you have nearly 
sorted data. When a list is sorted or almost sorted, an insertion sort’s time complexity is O(n), which 
is very efficient.

Say you have the following list:

[1, 2, 3, 4, 5, 7, 6]

As you can see, all the numbers are sorted except for the last two numbers. Because the second 
loop (the while loop) in an insertion sort executes only if two numbers are out of order, sorting this 
nearly sorted list with an insertion sort takes only eight steps, which is linear because the second loop 
has to run only once.

Merge Sort
A merge sort is a recursive sorting algorithm that continually splits a list in half until there are one or 
more lists containing one item and then puts them back together in the correct order. Here is how it 
works. First, you use recursion to continually break your list in half until your original list becomes 
one or more sublists containing only one number (Figure 4.1).

[3][6]

[6, 3]

[6, 3, 9, 2]

[9, 2]

[9] [2]

Figure 4.1: The first part of a merge sort
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Lists containing one item are sorted by definition. Once you have sorted lists containing one item 
each, you merge your sublists two at a time by comparing the first item in each list. Merging your lists 
means combining them in sorted order.

First, you merge [6] and [3], then you merge [9] and [2]. In this case, each list contains only one 
number, so you compare the two numbers and put the smallest number at the beginning of your new, 
merged list and the larger number at the end. Now, you have two sorted lists:

[3, 6], [2, 9]

Then, you merge these two lists:

# unmerged
[3, 6], [2, 9]
 
#merged
[]

First, you compare 3 and 2. Since 2 is smaller, it goes into your merged list:

# unmerged
[3, 6], [9]
 
#merged
[2]

Now you compare 3 and 9. Since 3 is smaller, it goes into your merged list:

# unmerged
[6], [9]
 
#merged
[2, 3]

Finally, you compare 6 and 9. Since 6 is smaller, it goes into your merged list. Then, you put the 
9 into the merged list:

# unmerged
[], []
 
#merged
[2, 3, 6, 9]

Now that you’ve finished all your merges, you have a single, sorted list.
Here is how to implement a merge sort in Python:

def merge_sort(a_list):
    if len(a_list) > 1:
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        mid = len(a_list) // 2
        left_half = a_list[:mid]
        right_half = a_list[mid:]
        merge_sort(left_half)
        merge_sort(right_half)
 
        left_ind = 0
        right_ind = 0
        alist_ind = 0
        while left_ind < len(left_half) and right_ind < len(right_half):
            if left_half[left_ind] <= right_half[right_ind]:
                a_list[alist_ind] = left_half[left_ind]
                left_ind += 1
            else:
                a_list[alist_ind] = right_half[right_ind]
                right_ind += 1
            alist_ind += 1
 
        while left_ind < len(left_half):
            a_list[alist_ind]=left_half[left_ind]
            left_ind += 1
            alist_ind += 1
 
        while right_ind < len(right_half):
            a_list[alist_ind]= right_half[right_ind]
            right_ind += 1
            alist_ind += 1

This part of your algorithm is responsible for breaking your lists into sublists:

  if len(a_list) > 1:
      mid = len(a_list) // 2
      left_half = a_list[:mid]
      right_half = a_list[mid:]
      merge_sort(left_half)
      merge_sort(right_half)
 
      left_ind = 0
      right_ind = 0
      alist_ind = 0

This part is responsible for merging two lists:

      left_ind = 0
      right_ind = 0
      alist_ind = 0
      while left_ind < len(left_half) and right_ind < len(right_half):
          if left_half[left_ind] <= right_half[right_ind]:
              a_list[alist_ind] = left_half[left_ind]
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              left_ind += 1
          else:
              a_list[alist_ind] = right_half[right_ind]
              right_ind += 1
          alist_ind += 1
 
      while left_ind < len(left_half):
          a_list[alist_ind]=left_half[left_ind]
          left_ind += 1
          alist_ind += 1
 
      while right_ind < len(right_half):
          a_list[alist_ind]= right_half[right_ind]
          right_ind += 1
          alist_ind += 1

Recursion is the key to this algorithm. We will discuss later in the chapter how the second half of 
the algorithm that merges lists works. Let’s walk through the recursive part function call by call. Say 
you start with the list from the beginning of this section:

[6, 3, 9, 2]

The first time you call your merge_sort function, your function creates three variables:

# Function call 1
 
a_list = [6, 3, 9, 2]
left_half = [6, 3]
right_half = [9, 2]

You pass a_list to your function, and this code creates the other two variables by dividing a_list 
into a left half and a right half:

mid = len(a_list) // 2
left_half = a_list[:mid]
right_half = a_list[mid:]

Next, your function recursively calls itself and passes in left_half as a parameter:

merge_sort(left_half)

Now, Python creates three more variables:

# Function call 2
 
a_list = [6, 3]
left_half = [6]
right_half = [3]
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The crucial thing to understand is left_half in the first function call and a_list in the second 
function call point to the same list. That means when you change left_half in the second function 
call, it changes a_list in the first function call.

Now your code calls itself again, but this time left_half is [6], and your base case stops further 
recursion.

if len(a_list) > 1:

So, Python moves on to the next line of code:

merge_sort(right_half)

The variable right_half is [3], so your base case stops your function from calling itself again.

if len(a_list) > 1:

Now Python calls your merge code. Your merge code merges left_half, which is [6], and right_
half, which is [3], and saves the result by modifying a_list, which is now sorted:

# Function call 2
 
a_list = [3, 6]
left_half = [6]
right_half = [3]

As you learned earlier, when you modify a_list in function call 2, you are also changing the var-
iable left_half in function call 1.

Originally, Python’s state during function call 1 looked like this:

# Function call 1
 
a_list = [6, 3, 9, 2]
left_half = [6, 3]
right_half = [9, 2]

But in function call 2, you modified a_list, which also changed left_half in function call 1. Now 
function call 1’s state looks like this:

# Function call 1
 
a_list = [3, 6, 9, 2]
left_half = [3, 6]
right_half = [9, 2]

This change is important, because as you know, when you use recursion, Python returns to previous 
states when you hit your base case. As you can see, left_half is now sorted.

Your algorithm then calls itself recursively again, the same process plays out, and right_half gets 
sorted. That means function one’s state now looks like this:
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# Function call 1
 
a_list = [3, 6, 9, 2]
left_half = [3, 6]
right_half = [2, 9]

As you can see, right_half is now sorted in function one call’s state. Now, when your algorithm 
comes back to function one’s state, it merges left_half and right_half, which previous recursive 
function calls have already sorted. So, when your algorithm gets to this point and calls its merge code, 
your function has two sorted lists, left_half and right_half, and it just has to merge them to pro-
duce your final, sorted list.

Now, let’s look at the code that merges two lists. Your merge code starts with three variables, which 
you set to 0:

left_ind = 0
right_ind = 0
alist_ind = 0

You use these variables to track the indexes of three lists: left_half, right_half, and a_list.
This code compares each first item in left_half to each first item in right_half and puts the 

smaller number in its correct position in a_list:

while left_ind < len(left_half) and right_ind < len(right_half):
    if left_half[left_ind] <= right_half[right_ind]:
        a_list[alist_ind] = left_half[left_ind]
        left_ind += 1
    else:
        a_list[alist_ind] = right_half[right_ind]
        right_ind += 1
    alist_ind += 1

And this code finishes each merge and can also handle a situation in which the two lists you are 
merging are uneven:

while left_ind < len(left_half):
    a_list[alist_ind] = left_half[left_ind]
    left_ind += 1
    alist_ind += 1
 
while right_ind < len(right_half):
    a_list[alist_ind]= right_half[right_ind]
    right_ind += 1
    alist_ind += 1
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For example, say you were merging these two lists:

[2], [6, 4]

Python would call your merge code with these variables:

left_ind = 0
right_ind = 0
alist_ind = 0
 
a_list = [6, 3]
left_half = [6]
right_half = [3]

The expressions left_ind < len(left_half) and right_ind < len(right_half) evaluate to True, 
so you enter your while loop. This code:

left_half[left_ind] <= right_half[right_ind]:

evaluates to 6 <= 3, which is False, so this code runs:

if left_half[left_ind] <= right_half[right_ind]:
    a_list[alist_ind] = left_half[left_ind]
    left_ind += 1
else:
    a_list[alist_ind] = right_half[right_ind]
    right_ind += 1
alist_ind += 1

Now your variables look like this:

left_ind = 0
right_ind = 1
alist_ind = 1
 
a_list = [3, 3]
left_half = [6]
right_half = [3]

The next time through your while loop, the following code does not execute because right_ind 
is not less than the length of right_half:

while left_ind < len(left_half) and right_ind < len(right_half):
    if left_half[left_ind] <= right_half[right_ind]:
        a_list[alist_ind] = left_half[left_ind]
        left_ind += 1
    else:
        a_list[alist_ind] = right_half[right_ind]
        right_ind += 1
    alist_ind += 1
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Next, this code executes because left_ind is less than the length of left_half:

while left_ind < len(left_half):
    a_list[alist_ind] = left_half[left_ind]
    left_ind += 1
    alist_ind += 1
 
while right_ind < len(right_half):
    a_list[alist_ind]= right_half[right_ind]
    right_ind += 1
    alist_ind += 1

Now your variables look like this:

left_ind = 1
right_ind = 1
alist_ind = 2
 
a_list = [3, 6]
left_half = [6]
right_half = [3]

Your list is now sorted, and your merge is complete.

When to Use Merge Sort
A merge sort is an example of a divide- and- conquer algorithm. A divide- and- conquer algorithm is one 
that recursively breaks a problem into two or more related subproblems until they are simple enough 
to solve easily. In a merge sort, you break down a list into sublists until each sublist has only one item, 
making it simple to solve because a list with one item is sorted by definition. A merge sort’s run time is 
O(n * log n) because while splitting the initial list into sublists is logarithmic, the algorithm requires 
linear time to handle each item in the sublists as it merges them. With log- linear time complexity, a 
merge sort is one of the most efficient sorting algorithms and widely used by computer scientists. For 
example, Python uses merge sort in its built- in sorting algorithms, which you will learn about shortly. 
Like bubble sort and insertion sort, a merge sort is also stable.

You can also apply the merge concept from a merge sort to situations other than sorting. For 
example, imagine you are in a classroom with 50 students. Every student has a random amount of 
change in their pocket, up to $1. What is the best way to add up all of the change? The first answer 
you may think of is to have the professor walk up to every student and ask them how much change 
they have and add it all up. That solution is a linear search, and its run time is O(n). Instead of 
performing a linear search, it is more efficient to have the students merge themselves. Here is how it 
works: every student will pick the student next to them, take their change, and add it to theirs (and 
remember the new total). The students without any change then leave the room. You then repeat this 
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process until there is only one student left and they’ve added up all of the change in the room. Instead 
of 50 steps, using a merge to count the room’s change takes only 6 steps.

Sorting Algorithms in Python
Python has two built- in sort functions: sorted and sort. Python’s sorting functions use Timsort, a 
hybrid sorting algorithm that combines merge sort and insertion sort. A hybrid sorting algorithm is 
one that combines two or more other algorithms that solve the same problem, either choosing one 
(depending on the data) or switching between them throughout the algorithm. Timsort’s mix of inser-
tion and merge sort makes it an efficient algorithm and is the reason you usually use Python’s built- in 
sorting algorithms instead of trying to code your own.

Python’s sorted function allows you to sort any iterable, as long as Python can compare the data 
in it. For example, you can call sorted on a list of integers, and Python will return a new list with the 
integers from the original list sorted in ascending order:

a_list = [1, 8, 10, 33, 4, 103]
print(sorted(a_list))
 
>> [1, 4, 8, 10, 33, 103]

If you call sorted on a list of strings, Python will return a new list sorted alphabetically by each 
string’s first letter:

a_list = ["Guido van Rossum", "James Gosling", "Brendan Eich", "Yukihiro Matsumoto"]
print(sorted(a_list))
 
>> ['Brendan Eich', 'Guido van Rossum', 'James Gosling', 'Yukihiro Matsumoto']

Python’s sorted function has an optional parameter called reverse, so if you want to sort your 
iterable in descending order, you can pass in reverse=True:

a_list = [1, 8, 10, 33, 4, 103]
print(sorted(a_list, reverse=True))
 
>> [103, 33, 10, 8, 4, 1]

Sorted also has a parameter called key that lets you pass in a function. Python then calls that 
function on each item in your iterable and uses the result to sort it. For example, you can pass in the 
len function, which will sort a list of strings by length:

a_list = ["onehundred", "five", "seventy", "two"]
print(sorted(a_list, key=len))
 
>> ['two', 'five', 'seventy', 'onehundred']
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Python’s other function for sorting is sort, which has the same optional parameters as sorted, but 
unlike sorted, sort works only on lists. Also, unlike sorted, sort sorts in place: it changes the original 
list instead of returning a new one. Here is an example of using sort on a list:

a_list = [1, 8, 10, 33, 4, 103]
a_list.sort()
print(a_list)
 
>> [1, 4, 8, 10, 33, 103]

As you can see, Python sorted the numbers in your original list in ascending order.

Vocabulary
sorting data: Arranging data in a meaningful way.

bubble sort: A sorting algorithm where you iterate through a list of numbers, compare each number 
with the next number, and swap them if they are out of order.

stable sort: A sort that does not disturb any sequences other than the one specified by the sort key.

insertion sort: A sorting algorithm where you sort data like you sort a deck of cards.

merge sort: A recursive sorting algorithm that continually splits a list in half until there are one or 
more lists containing one item, and then puts them back together in the correct order.

divide- and- conquer algorithm: An algorithm that recursively breaks a problem into two or more 
related subproblems until they are simple enough to solve easily.

hybrid sorting algorithm: An algorithm that combines two or more other algorithms that solve the 
same problem, either choosing one (depending on the data) or switching between them throughout 
the algorithm.

Challenge
1. Research and write a sorting algorithm that is not a bubble sort, insertion sort, or merge sort.
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One of the most important skills any entrepreneur should learn is to program a computer. This is a 
critical skill if you want to start a tech startup, but a basic knowledge of code is useful even in tradi-
tional fields, because software is changing everything.

Redi Hoffman

In this chapter, you will learn how to solve some of the most common string- based technical inter-
view questions. While you most likely won’t have to find anagrams at your software engineering job, 
learning how to detect them teaches you to solve problems using concepts such as sorting, which you 
will have to do. Furthermore, other things you will learn in this chapter, such as modular arithmetic 
and list comprehensions, will be useful in your day- to- day programming.

Anagram Detection
Two strings are anagrams if they contain the same letters, but not necessarily in the same order (case 
does not matter). For example, Car and arc are anagrams. The key to determining whether two strings 
are anagrams is to sort them. If the sorted strings are the same, they are anagrams. Here is how to write 
an algorithm that determines whether two strings are anagrams:

def is_anagram(s1, s2):
    s1 = s1.replace(' ','').lower()
    s2 = s2.replace(' ','').lower()
    if sorted(s1) == sorted(s2):
        return True
    else:
        return False
 
s1 = 'Emperor Octavian'
s2 = 'Captain over Rome'
print(is_anagram(s1,s2))
 
>> True
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Anagrams sometimes contain multiple words and include uppercase and lowercase letters, so you 
start your function by removing spaces from your strings and converting all the characters to lowercase:

s1 = s1.replace(' ','').lower()
s2 = s2.replace(' ','').lower()

You then sort both strings and compare the result to determine whether they are the same. If they 
are, the strings are anagrams, and you return True. Otherwise, they are not, and you return False.

if sorted(s1) == sorted(s2):
    return True
else:
    return False

Because your algorithm to detect anagrams relies on Python’s built- in sorted function, its run time 
is O(n log n).

Palindrome Detection
A palindrome is a word that reads the same backward as forward. Hannah, mom, wow, and racecar are 
all examples of palindromes. There are several ways to determine whether a string is a palindrome. 
One way is to copy the string, reverse it, and compare it to the original. If they are equal, the string 
is a palindrome.

Here is how to reverse a string in Python:

print("blackswan"[::- 1])
 
>> nawskcalb

Here is how to check whether a string is a palindrome:

def is_palindrome(s1):
    if s1.lower() == s1[::- 1].lower():
        return True
    return False

First, you use Python’s built- in lower function to make sure capitalization doesn’t affect your 
comparison. Then, you use Python’s slicing syntax to reverse the string and compare it to the original:

if s1.lower() == s1[::- 1].lower():

If the two strings are the same, the string is a palindrome, and you return True:

return True



Chapter 5 String Algorithms 57

Otherwise, the strings are not palindromes, and you return False:

Return False

The slowest part of your algorithm to detect palindromes is Python’s syntax for reversing a list. 
Because Python has to visit every item in a list to reverse it, the run time to reverse a list is O(n), which 
makes your algorithm’s run time O(n) as well.

Last Digit
Another common interview question is to return the rightmost digit in a string. For example, given 
the string "Buy 1 get 2 free", your function should return the number 2.

One elegant way to solve this problem is to use Python’s list comprehension feature. A list com-
prehension is Python syntax for creating a new, altered list from an existing iterable (like another list).

Here is the syntax for a list comprehension:

new_list = [expression(i) for i in iterable if filter(i)]

iterable is the iterable you are using to create your new list. expression(i) is a variable that holds 
each element from iterable. For example, in this regular expression, c contains each character in 
the string "selftaught".

print([c for c in "selftaught"])
>> ['s', 'e', 'l', 'f', 't', 'a', 'u', 'g', 'h', 't']

As you can see, Python returns a list that contains all the letters from your original string 
"selftaught".

filter(i) allows you to make changes to the original iterable. For example, you can create a filter 
that adds items to your iterable only if they meet your filter’s requirements:

print([c for c in "selftaught" if ord(c) > 102])
>> ['s', 'l', 't', 'u', 'g', 'h', 't']

Python’s built- in function ord returns the ASCII code for a letter. In this case, you added a filter 
that adds characters to your iterable only if the character’s ASCII code is greater than 102 (the letter 
f). As you can see, your new list is missing the letters e, f, and a.

You can use Python’s isdigit function to filter everything except numbers:

s = "Buy 1 get 2 free" 
nl = [c for c in s if c.isdigit()]
print(nl)
 
>> ['1', '2']
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Now that you know how to use a list comprehension to find all the digits in a string, there is only one 
more step to find the rightmost digit, namely, using a negative index to get the last digit from your new list:

s = "Buy 1 get 2 free"
nl =[c for c in s if c.isdigit()][- 1]
print(nl)
 
>> 2

First, your list comprehension returns a list of all the digits in your string. Then, you use a negative 
index to get the last item in your new list of numbers, which is the rightmost digit in your original string.

As you can see, you can use a list comprehension to turn three or four lines of code into one elegant 
line, which will help you write short, readable code when you are programming professionally.

Because your algorithm iterates through every character in the string to check whether it is a digit 
and reverses a list, its run time is O(n).

Caesar Cipher
A cipher is an algorithm for encryption or decryption. Julius Caesar, the famous Roman general and 
politician, protected his confidential messages by encrypting them using an ingenious cipher. First, 
he would pick a number. Then, he would shift every letter by that number. For example, if he chose 
the number 3, the string abc would become def.

If the shift took him past the alphabet’s end, he rotated back to the front of the alphabet. For example, 
if he had to shift z two places, it would become b.

Modulo arithmetic is the key to coding a Caesar cipher. Modulo arithmetic is a type of arithmetic 
where numbers wrap around at a specific value. You should already be familiar with modulo arithmetic 
because you can tell time (Figure 5.1).

12

39

10 2

11 1

8

6
7 5

4

Figure 5.1: You use modulo arithmetic when you tell time.
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For example, suppose there is a flight from New York to Lima, Peru, that leaves at 9 p.m. Suppose 
the two cities are in the same time zone, and the flight takes eight hours. What time will the flight 
arrive? Nine plus 8 is 17, but a 12- hour clock doesn’t show 17. To determine the arrival time, you add 
9 and 8 (17) and perform modulo 12 on the result.

17 % 12

Twelve divides into 17 one time, with a remainder of 5, which means the flight will arrive at 5 a.m. 
(Figure 5.2).

Modular arithmetic is helpful when you are writing any program involving time. For example, if 
you were building a website for processing flight times, you could use modular arithmetic to figure 
out what time a flight will land.

Now that you understand how modular arithmetic works, you can code a Caesar cipher by writing 
a function that takes a string and a number to shift each letter by and outputs a new, encrypted string:

import string
 
 
def cipher(a_string, key): 
    uppercase = string.ascii_uppercase
    lowercase = string.ascii_lowercase
    encrypt = ''  
    for c in a_string:
        if c in uppercase:
            new = (uppercase.index(c) + key) % 26
            encrypt += uppercase[new]
        elif c in lowercase:
            new = (lowercase.index(c) + key) % 26
            encrypt += lowercase[new]
        else:
            encrypt += c
    return encrypt

12

39

10 2

11 1

8

6
7 5

4

Figure 5.2: Eight hours after 9 is 5.
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Your function, cipher, accepts two parameters: a_string, which is the string you want to encrypt, 
and key, the number of places you are shifting each letter.

You start by using Python’s built- in string module to create two strings that contain every character 
in the alphabet in both uppercase and lowercase:

import string
 
 
def cipher(a_string, key): 
    uppercase = string.ascii_uppercase
    lowercase = string.ascii_lowercase

If you print uppercase and lowercase, the output looks like this:

>> 'abcdefghijklmnopqrstuvwxyz'
>> 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

Next, you create the variable encrypt, which starts as an empty string but later will hold your 
encrypted string:

encrypt = ''  

Then, you iterate through your string, keeping track of each character in the variable c:

for c in a_string:

If the character is uppercase, you find the character’s index in uppercase (which, remember, is 
ABCDEFGHIJKLMNOPQRSTUVWXYZ). Then you add key to that index, which will give you the new, encrypted 
character. For example, if the character is A and key is 2, first, you get the index of A in uppercase, 
which is index 0, and then add 2. Index 2 in uppercase is the letter C.

There is a problem with using this method to get the new character, though. What happens if you 
shift the letter Z one or more places? The letter Z is at index 25. If you add 2 to 25, you get index 27, 
which does not exist. Because Z is the last letter in the alphabet, you need to go to the alphabet’s 
beginning to get the new, encrypted character. In this case, you need to get index 2, which is C 
(index 0 + 2).

You solve this by using modulo 26 on the sum of each character’s starting index plus key. First, 
you get the character’s starting index in uppercase. Then, you add key and perform modulo 26.

if c in uppercase:
    new = (uppercase.index(c) + key) % 26

This code works because you are using modular arithmetic to “wrap around” whenever you reach 
a certain value. In this situation, you “wrap around” whenever your index exceeds 25.

Once you have the new index for the encrypted character, you use it to look up what character it 
is in uppercase and store it in the variable encrypt.
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encrypt += uppercase[new]

If the character is lowercase, you do the same thing but use lowercase instead:

elif c in lowercase:
    new = (lowercase.index(c) + key) % 26
    encrypt += lowercase[new]

If the character isn’t in uppercase or lowercase, it is a special character, so you add it to encrypt 
without making any changes:

else:
    encrypt += c

At the end of your loop, you return your new, encrypted string:

return encrypt

Because your algorithm only has to iterate through every letter in the string to encrypt it, its run 
time is O(n).

Vocabulary
anagrams: Two strings that contain the same letters, but not necessarily in the same order (case 
does not matter).

palindrome: A word that reads the same backward as forward.

list comprehension: Python syntax to create a new, altered list from an existing iterable (like 
another list).

cipher: An algorithm for encryption or decryption.

modulo arithmetic: A type of arithmetic where numbers wrap around at a specific value.

Challenge
1. Use a list comprehension to return a list of all the words in the following list that have more 

than four characters: ["selftaught", "code", "sit", "eat", "programming", "dinner", 
"one", "two", "coding", "a", "tech"].





6 Math

Do not worry too much about your difficulties in mathematics, I can assure you that mine are 
still greater.

Albert Einstein

In this chapter, you will learn some basic math that will help you pass a technical interview and 
improve as a programmer. While searching for prime numbers might not help you in your day- to- day 
programming, understanding the different algorithms you can use to find them will make you a better 
programmer. And while testing your ability to use the modulo operator in your algorithms is one 
of the most common technical interview “gotchas,” the modulo operator can also be handy in real- 
world applications. Finally, this chapter introduces the concept of boundary conditions. If you create 
applications without thinking about boundary conditions, you will likely produce a website or app 
filled with unexpected errors, so it is important to learn what they are and how to prepare for them.

Binary
Computers “think” in binary. A binary number is a number in the base 2 numeral system. A numeral 
system is a writing system for expressing numbers. In base 2, numbers have only two digits: 0 and 
1. In binary, a digit is called a bit, which stands for binary digit. The number system you are used to 
counting in is called base 10, and it has 10 digits (zero through nine). A numeral system’s base is the 
number of digits the system has. The binary and decimal numeral systems are not the only number 
systems. There are also other numeral systems like base 16, called the hexadecimal system, which is 
popular with programmers.

Here are some examples of binary numbers:

100
1000
101
1101
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When you are looking at these numbers, you do not know if they are in base 2 or base 10. For 
example, the first number, 100, could be either 100 in base 10 or 4 in base 2.

There are several notations you can use to show a number is base 2. For example, computer  scientists 
often put a b before a number to show the number is in base 2. Here are other ways to indicate that a 
number is in base 2:

100b
10002

%100
0b100

A place value is the numerical value a digit has because of its position in a number. For example, a 
four- digit number has place values that represent thousands, hundreds, tens, and ones. For example, the 
number 1,452 is one thousand, plus four hundreds, plus five tens, plus two ones (Figure 6.1).

In the decimal system, each place value is a power of 10. The rightmost place value is 10 to the 
zero power, which is 1. The next place value is 10 to the first power, which is 10. The next place value 
is 10 to the second power (10 × 10), which is 100. The next place value is 10 to the third power  
(10 × 10 × 10), which is 1000 (Figure 6.2).

You can express the number 1,452 as an equation using its place values:

(1 * 10 ** 3) + (4 * 10 ** 2) + (5 * 10 ** 1) + (2 * 10 ** 0) = 1452

Or visualize it as follows:

1 * 10 ** 3 = 1 * 1000 = 1000 +
4 * 10 ** 2 = 4 * 100 = 400 +
5 * 10 ** 1 = 5 * 10 = 50 +

Thousands Hundreds Tens Ones

1 4 5 2

Figure 6.1: The place values for the  
number 1,452 in base 10

Thousands

103

Hundreds

102

Tens

101

Ones

100

1 4 5 2

Figure 6.2: The powers of 10 used in the  
place values in base 10
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2 * 10 ** 0 = 2 * 1 = 2 
                    ___________
                    1452

The binary number system works the same way as the decimal system, except there are only two 
digits, 0 and 1, and the place values are powers of 2, instead of powers of 10.

The rightmost place value is 2 to the zero power, which is 1. The next place value is 2 to the first 
power, which is 2. The next place value is 2 to the second power, which is 4 (2 × 2). The next place 
value is 2 to the third power, which is 8 (2 × 2 × 2) (Figure 6.3).

Here is an equation that represents the number 1101 in base 2:

  (1 * 2 ** 3) + (1 * 2 ** 2) + (0 * 2 ** 1) 
  + (1 * 2 ** 0) = 
 
8 + 4 + 0 + 1 = 13

Or:

1 * 2 ** 3 = 1 * 8 = 8 +
1 * 2 ** 2 = 1 * 4 = 4 +
0 * 2 ** 1 = 0 * 2 = 0 +
1 * 2 ** 0 = 1 * 1 = 1 
                    ____
                    13

As you can see, 1101 in binary is 13 in base 10.
In the decimal system, you count by starting at zero: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. At that point, you 

run out of digits. To represent the next number, as you know, you create 10 by using 2 digits. You 
represent 10 with a 1 followed by a 0.

When you count in binary, you also start with zero.

0

And like the decimal system, the next number is 1.

1

Eights

23

Fours

22

Twos

21

Ones

20

Figure 6.3: The powers of 2 used  
in the place values in base 2
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After 1, you run out of digits. That means you need to use two digits to represent the number 2, 
just like you have to use two digits in the decimal system to represent the number 10.

In binary, you represent 2 with a 1 and a 0:

10

The 0 stands for no 1s, and the 1 stands for one quantity of 2.
How do you represent the number 3 in binary?

11      

The first 1 means one quantity of 1, and the second 1 means one quantity of 2. When you add 2 
and 1, you get 3.

Next up is 4, which in binary is as follows:

100

The first 0 means no ones, the second 0 means no twos, and the 1 means one quantity of four. Add 
them up, and you get 4.

Bitwise Operators
Usually, when you are programming and dealing with numbers, you work with integers and floats 
like 100 and 10.5. There are times, however, when it is useful for you to work with binary numbers 
instead. For example, working with binary numbers can help you quickly solve problems such as 
determining whether a number is a power of 2.

You can use the bin method to work with binary numbers in Python.

print(bin(16))
 
>> 0b1000

When you print bin(16), the result is 0b10000, which is 16 in binary. As you learned earlier, 0b 
lets you know the number is in binary.

A bitwise operator is an operator you can use in an expression with two binary numbers. For 
example, Python’s bitwise AND operator performs Boolean arithmetic bit by bit. When both bits are 
1 (True), Python returns 1; otherwise, Python returns 0 (False). The logic for each bit in bitwise AND 
is the same as the keyword and in Python. As you know, when you use Python’s keyword and, if both 
sides of the expression are True, Python returns True.

print(1==1 and 2==2)
>> True
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If both sides are False, it returns False.

print(1==2 and 2==3)
>> False

If one side is True and the other is False, it returns False as well.

print(1==1 and 1==2)
>> False

Let’s look at an example of using bitwise AND. Say you have two integers, 2 and 3. Two in binary 
is 0b10, and 3 is 0b11. The first bit of 2 is 0, and the first bit of 3 is 1.

10 # 2
11 # 3
— —   
 0

Applying bitwise AND to these bits produces 0 because there is a True and a False, which returns 
False (remember: 0 is False and 1 is True). Applying bitwise AND to the second set of bits produces 
1 because both binary digits are True, so Python returns True.

10 # 2
11 # 3
— —   
10

In this case, the bitwise AND operation produces 0b10, which is the number 2 in binary (you will 
learn why this is useful shortly).

In Python, the bitwise AND operator is the ampersand symbol (&). Here is how you can use bitwise 
AND on the binary numbers 0b10 and 0b11 in Python:

print(0b10 & 0b11)
 
>> 2

You don’t have to use a bitwise operator like bitwise AND on binary numbers.

print(2 & 3)
 
>> 2

In this case, you evaluated bitwise AND on decimal numbers, but Python uses the binary values 
for 2 and 3 to carry out the operation.
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Python also has a bitwise OR operator, which operates bit by bit and returns 1 when one or more 
of the two bits is True and returns False when both are False, just like the or keyword in Python. 
For example, let’s take a look at what happens when you use the bitwise OR operator on the numbers 
2 and 3. Applying bitwise OR to the first two bits produces 1 because one of the bits is True.

10 # 2
11 # 3
— —   
 1

When you use bitwise OR on the second set of bits, Python returns 1 because both bits are True (1).

10 # 2
11 # 3
— —   
11

As you can see, the result of bitwise OR on 2 and 3 is 0b11, which is the decimal number 3.
In Python, the bitwise OR operator is the pipe symbol (|).

print(2 | 3)
>> 3

The binary operators you’ve learned about so far are some of the most common; however, there are 
other binary operators like bitwise XOR, bitwise NOT, bitwise right shift, and bitwise left shift you 
can learn about in Python’s documentation.

Let’s take a look at some situations where bitwise operators are helpful. You can use the bitwise 
AND operator to check whether a number is even or odd. An even number like 2 always has a 0 at 
the end, whereas the number 1 always has a 1 at the end (and contains only one binary digit: 1).

10 # 2
 1 # 1

When you use bitwise AND on an even number and 1, Python will always return False because 
the even number will end with a 0, and 1 has only one binary digit: 1.

10 # 2
 1 # 1
--
 0

On the other hand, when you use bitwise AND on an odd number and 1, Python will always return 
True because the odd number will end with a 1, and 1 has only one binary digit: 1.
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11 #3
 1 #1
--
 1

Because 1 has only one digit in binary, it doesn’t matter if the number you are checking for evenness 
has one binary digit or one thousand. Because 1 has only one binary digit, you make only one 
comparison: the last binary digit in the number and 1.

Here is how to check if a number is even or odd using the AND bitwise operator in Python:

def is_even(n):
    return not n & 1

In your function is_even, you return not n & 1. Your code n & 1 uses the bitwise AND operator 
on n and 1. Then, you use not to change the result to the opposite of whatever it would have been, 
because when you perform bitwise AND on an even number and 1, it returns False, which means the 
number is even. In this case, you want your function to return True to represent that the number is 
even, so you use not to switch True to False and False to True.

You can also use the bitwise AND operator to see if an integer is a power of 2. Every number that 
is a power of 2 has a single 1 in its binary representation because binary is base 2, which means any 
power of 2 has only a single 1. For example, the number 8 is 0b1000 in binary. Conversely, a number 
that is 1 less than a power of 2 contains all 1 bits. For example, the number 7, which is 1 less than 8, 
is 0b111 in binary.

When you apply the bitwise AND operator to these two binary numbers, you can see the resulting 
binary will be all zeros when the first number is a power of 2.

1000 # 8
0111 # 7 
— — — — 
0000

If the number is not a power of 2, there will be at least one binary digit that is a 1.

0111 # 7
0110 # 6
— — — — 
0001

Here is how to use the bitwise AND operator in Python to determine if a number is a power of 2:

def is_power(n):
    if n & (n -  1) == 0:
        return True
    return False
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Your function is_power takes the number in question. Inside your function, you use an if state-
ment to check if using bitwise AND on n and n − 1 is equal to 0. If it is, n is a power of 2, and you 
return True. Otherwise, it is not, and you return False.

FizzBuzz
FizzBuzz is one of the all- time classic interview challenges. I once heard a story about an engineer 
interviewing for a principal software engineer position, and they asked him to solve FizzBuzz. He 
couldn’t, and he was very embarrassed. Don’t worry, though; you are about to learn how to solve it, 
so that won’t happen to you.

Here’s the FizzBuzz challenge: write a program that prints the numbers from 1 to 100. If the number 
is a multiple of 3, print “Fizz.” If the number is a multiple of 5, print “Buzz.” If the number is a mul-
tiple of 3 and 5, print “FizzBuzz.”

The key to this challenge is using the modulo operator, which divides two values and returns the 
remainder. If the remainder is 0, you know the dividend (the number you divided) is a multiple of 
the divisor (the number you divided by). For example, 6 % 3 divides 6 by 3 and returns a remainder of 0.

print(6 % 3)
 
>> 0

Because there is no remainder, you know 6 is a multiple of 3.
When you evaluate 7 % 3, there is a remainder, so you know 7 is not a multiple of 3.

print(7 % 3)
>> 1

To solve FizzBuzz, you iterate through the numbers 1 to 100 and use modulo to check whether 
each number is a multiple of 3 and 5, only 3, or only 5.

Here is how you do it:

def fizzbuzz(n):
    for i in range(1, n + 1):
        if i % 3 == 0 and i % 5 == 0:
            print('FizzBuzz')
        elif i % 3 == 0:
            print('Fizz')
        elif i % 5 == 0:
            print('Buzz')
        else:
            print(i)



Chapter 6 Math 71

Even though you want to find the numbers from 1 to 100, it is best to pass in a number, n, instead 
of hard- coding 100. Passing in n makes your program flexible if you want to run your program with 
a different number. So, your function, fizzbuzz, accepts n as a parameter.

def fizzbuzz(n):

First, you use a for loop to iterate through each number from 1 to n + 1.

for i in range(1, n + 1):

Then, you use a conditional statement with the modulo operator to determine if the number, i, is 
divisible by both 3 and 5. If it is, you print “FizzBuzz.”

if i % 3 == 0 and i % 5 == 0:
    print('FizzBuzz')

Next, you use another conditional statement to check if the number is divisible by 3. If it is, you 
print “Fizz.”

elif i % 3 == 0:
    print('Fizz')

Then you use one more conditional statement to see if the number is divisible by 5. If it is, you 
print “Buzz.”

elif i % 5 == 0:
    print('Buzz')

If the number is not divisible by 3, 5, or both, you print the number.

else:
    print(i)

When you run your program, you will see that numbers that are divisible by 3, like 6 and 27, say 
“Fizz.” Numbers that are divisible by 5, like 10 and 85, say “Buzz,” and numbers divisible by both, 
like 15 and 30, say “FizzBuzz.”

>> 1 2 Fizz 4 Buzz Fizz 7 8...Buzz Fizz 97 98 Fizz Buzz

Your algorithm takes n steps, which means it is linear. If you pass in 100, your algorithm will take 
100 steps, and if you pass in 1000, it will take 1,000 steps.

The modulo operator was the key to solving this problem. The modulo operator is not just useful 
in technical interviews, though. It is also useful when you are building real- world applications. For 
example, say you have a text file that is 50,000 lines long, and you can fit 49 lines on a page.  
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How much text will there be on the last page? The last page will have 20 lines because 50,000 % 49 
= 20. What if you had a database with 20,000 items in it and you wanted to do something to every 
other item? One way to accomplish this is to iterate through each item and only change items with 
an even index.

Greatest Common Factor
The greatest common factor is the largest positive integer that evenly divides two or more other inte-
gers. In this chapter, you will learn, given two integers, such as 20 and 12, how to find their greatest 
common factor.

In the case of 20 and 12, you can evenly divide them both by 1, 2, and 4. Since 4 is the largest 
number, it is their greatest common factor.

Factors of 20: 1, 2, 4, 5, 10

Factors of 12: 1, 2, 3, 4, 6

One algorithm for finding the greatest common factor of two numbers is to check all possible divi-
sors to see which ones divide evenly into both numbers. For example, to find the greatest common 
factor of 20 and 12, you can start by dividing them both by 1, then 1, then 3, etc. You do not need to 
test any numbers greater than the smaller of the two numbers because a number larger than the small-
est number could not divide evenly into it. For example, a number greater than 12 does not divide 
evenly into 12.

Here is the Python code for your algorithm:

def gcf(i1, i2):
    gcf = None
    if i1 > i2:
        smaller = i2
    else:
        smaller = i1
    for i in range(1, smaller + 1):
        if i1 % i == 0 and i2 % i == 0:
            gcf = i
    return gcf
        
gcf(20, 12)

Your function gfc accepts as parameters the two positive integers of which you are looking for the 
greatest common factor.

def gcf(i1, i2):

Inside your function, you determine which of the two integers is smaller and assign it to the vari-
able smaller so that you can stop testing divisors once you hit that number.
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if i1 > i2:
    smaller = i2
else:
    smaller = i1

Next, you use a for loop to test each divisor from 1 to the value of the variable smaller plus 1 (so 
that you also test the smaller number).

for i in range(1, smaller + 1):

Next, you use an if statement to see if the divisor divides evenly into both integers. If it does, you 
assign the divisor to the variable gcf.

if i1 % i == 0 and i2 % i == 0:
    gcf = div

Just because you found one common factor doesn’t mean you’ve found the greatest common factor, 
however. If you find another, larger divisor, you set gcf to it the next time around your loop. That 
way, when your loop ends, gfc will contain the largest divisor.

There is a problem with your code, though. What if one of the integers is 0?

print(gcf(0, 22))
    
>> None

Your program returns the wrong answer when one of the integers is 0.
Your code’s inability to handle 0 is an example of a boundary condition: input outside of the input 

you expected your program to receive. When calculating the greatest common factor of two numbers, 
if either of the integers is 0, the greatest common factor is the other integer. For example, the greatest 
common factor of 0 and 12 is 12.

When you are writing algorithms, you should always think about what sort of unexpected input 
could break it. In this case, your algorithm is incorrect when the input is 0. Here is how to modify 
your program to return the correct output if either of the integers is 0:

def gcf(i1, i2):
    if i1 == 0:
        return i2
    if i1 == 0:
        return i1
 
    if i1 > i2:
        smaller = i2
    else:
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        smaller = i1
 
    for divisor in range(1, smaller + 1):
        if(i1 % divisor == 0) and (i2 % divisor == 0):
            gcf = divisor
            
    return gcf

Your program also cannot handle negative numbers, so you should add a test at the beginning to 
ensure both numbers are positive.

def gcf(i1, i2):
    if i1 < 0 or i2 < 0:
        raise ValueError("Numbers must be positive.")
    if i1 == 0:
        return i2
    if i1 == 0:
        return i
 
    if i1 > i2:
        smaller = i2
    else:
        smaller = i1
 
    for divisor in range(1, smaller+1):
        if(i1 % divisor == 0) and (i2 % divisor == 0):
            gcf = divisor
            
    return gcf

Your greatest common factor code is linear because your algorithm solves the problem in n steps. 
Linear is not bad, but there is a better way to solve this problem.

Euclid’s Algorithm
A more efficient solution for finding the greatest common factor is called Euclid’s algorithm. First, you 
divide one number, x, by the other number, y, to find the remainder. Then, you divide again, using 
the remainder for y and the previous y as the new x. You continue this process until the remainder is 
0. The last divisor is the greatest common factor.

For example, to find the greatest common factor of 20 and 12, you start by dividing 20 by 12 (or 
12 by 20) and get the remainder: 8. Next, you divide 12 by the remainder, and 12 divided by 8 pro-
duces a remainder of 4. Now, you divide 8 by 4. This time, there is no remainder, which means 4 is 
the greatest common factor.

20 / 12 = 1 remainder 8
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12 / 8 = 1 remainder 4

8 /4 = 2 remainder 0

Here is Euclid’s algorithm in Python:

def gcf(x, y): 
    if y == 0:
        x, y = y, x   
    while y != 0:
        x, y = y, x % y
    return x

Your gcf function accepts as parameters the two numbers of which you are looking for the greatest 
common factor.

In the first line of code, you address a boundary condition. If y is 0, Python will raise an exception 
later in your program, trying to divide by 0. If y is 0, you swap the contents of the variables x and y 
to solve this problem.

if y == 0:
    x, y = y, x

Next, you create a while loop that iterates until y becomes 0.

while y != 0:

Inside your while loop, this statement swaps the values in x and y with y and the remainder of x 
divided by y.

x, y = y, x % y

When your while loop ends, it means x % y returned a remainder of 0. You then return the value 
of x, which holds the greatest common factor of x and y.

return x

You can use math to prove this algorithm is logarithmic rather than linear, significantly improving 
its performance with large numbers over your original algorithm in finding the greatest common factor 
of two numbers.

Primes
A prime number is a positive integer divisible only by itself and 1. Numbers like 2, 3, 5, 7, and 11 are 
examples of prime numbers. In this section, you will learn how to write a function that determines 
if a number is a prime or not.
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Here is how you do it:

def is_prime(n):
    for i in range(2, n):
        if n % i == 0:
            return False
    return True

Your function is_prime, takes the number you want to check whether or not it is a prime (n).

def is_prime(n):

You then use a for loop to iterate through every number from 2 to n. You start with 2 (not 1) because 
prime numbers are still divisible by 1.

for i in range(2, n):

If n is 10, your code will iterate from 2 to 9, which means 10 gets skipped (you want this to happen 
because prime numbers are also divisible by themselves).

Next, you use modulo to check whether there is a remainder when you divide n by i. If there is no 
remainder, you found a divisor other than 1 or the number. That means n is not a prime number, so 
you return False.

if n % i == 0:
    return False

If you’ve iterated through your number range without finding a divisor, it means n is a prime, and 
you return True.

return True

Because your algorithm takes n steps to complete, it is a linear algorithm.
You can improve your algorithm by ending your loop at the square root of n instead of at n − 1.

import math
 
 
def is_prime(n):
    for i in range(2, int(math.sqrt(n)) + 1):
        if n % i == 0:
            return False
    return True

Here is why you can stop at the square root of n. If a * b == n, then either a or b has to be less 
than or equal to the square root of n. Why? Because if both a and b are greater than the square root 
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of n, then a * b has to be greater than n and, therefore, cannot equal n. So, you cannot have two num-
bers, a and b, where both are larger than the square root of n, multiply to become n since a * b will 
be greater than n. Since one divisor must be less than or equal to the square root of n, you don’t have 
to test up to n. Instead, you can stop at the first integer larger than the square root of n. If you don’t 
find any number less than or equal to the square root of n that divides n evenly, then you won’t find 
any number that does.

You can easily modify your program to print a list of all the prime numbers within a number range.

def is_prime(n):
    for i in range(2, int(math.sqrt(n)) + 1):
        if n % i == 0:
            return False
    return True
 
 
def find_primes(n):
    return [i for i in range(2, n) if is_prime(i)]

First, you create a new function called find_primes, which takes as a parameter n, which is the 
number up to which you are looking for primes.

You then use a list comprehension to iterate from 2 to n, only adding items to your new list if 
is_prime returns True.

return [is_prime(i) for i in range(2, n)]

Your algorithm to find all the prime numbers in a number range calls your linear is_prime function 
inside a loop, which means it has an O(n**2) time complexity and is not very efficient. The algorithm 
you learned in this chapter is not the only algorithm for finding prime numbers, though. There are 
other, more complicated algorithms to find prime numbers that have a more efficient time complexity 
you can learn as well.

Vocabulary
greatest common factor: The largest positive integer that evenly divides two or more other integers.

boundary condition: Input outside of the standard input you expect your program to receive.

prime number: A positive integer divisible only by itself and 1.

bitwise operator: An operator you can use in an expression with two binary numbers.

binary number: A number in the base 2 numeral system.

numeral system: A writing system for expressing numbers.
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bit: In binary, a digit is called a bit, which stands for binary digit.

base: A numeral system’s base is the number of digits the system has.

place value: The numerical value a digit has because of its position in a number. 

Challenge
1. Research and write another way to find prime numbers.



7 Self- Taught  
Inspiration: 
Margaret Hamilton

All of my friends who have younger siblings who are going to college or high school— my number- one 
piece of advice is: you should learn how to program.

Mark Zuckerberg

Today, there are so many resources to teach yourself how to program; it is easy to forget it wasn’t 
always that way. Margaret Hamilton, one of the original coders on the Apollo space mission and one of 
the greatest self- taught programmers of all time, made her mark on technology long before program-
ming courses were widely available.

While Hamilton did go to college (she received a B.A. from the University of Michigan in mathe-
matics), her programming skills were entirely self- taught. In the 1950s and ’60s, everyone was self- 
taught because computer science as we know it did not exist yet, so programmers had to figure things 
out on their own. At the time, the word software engineering didn’t even exist: Hamilton helped coin 
it! After she graduated from college in 1960, Hamilton began her programming career working at 
MIT on software called Project Whirlwind to predict the weather. While she was at MIT, she helped 
create the code for the world’s first portable computer.

Hamilton’s success with Project Whirlwind led to a position with SAGE, an organization that helped 
detect potential Soviet airstrikes during the Cold War. If you’re a Star Trek fan, you’ll know the story 
of the Kobayashi Maru— a training exercise for Starfleet cadets that was unwinnable. Future officers 
might not have been able to beat the game, but they could show important character traits through 
their choices. Hamilton encountered a real- life Kobayashi Maru situation and, like the infamous Cap-
tain Kirk, managed to beat it. Every newcomer to SAGE was given a practically unsolvable program 
and tasked with getting it to run. The programmer who created it even wrote comments in Greek and 
Latin to make the challenge harder. Hamilton was the first engineer to get it to run, which secured 
her place within the organization.

Her ability to solve difficult problems got her hired for NASA’s Apollo mission, culminating in Neil 
Armstrong, Buzz Aldrin, and Michael Collins landing on the moon in 1969. While the astronauts get 
the most credit for the historic mission, more than 400,000 people contributed to it, and Hamilton 
was instrumental to its success.



Introduction to Algorithms80

One of her team’s most significant accomplishments was developing a system that could alert the 
team about emergencies. This process was a critical part of the moon landing’s success and benefited 
greatly from Hamilton’s insistence on rigorous testing. Dr. Paul Curto, who nominated her for a NASA 
Space Act Award, said her work comprised the “foundation for ultra- reliable software design” because, 
to date, no one has found a bug in the Apollo software.

On November 22, 2016, President Barack Obama awarded Hamilton the Presidential Medal of 
Freedom to recognize her outstanding software engineering achievements and cementing her position 
as one of the greatest self- taught programmers of all time.
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8 What Is a Data Structure?

Algorithms + Data Structures = Programs.
Niklaus Wirth

A data structure is a way of organizing data in a computer so programmers can effectively use it 
in their programs. Throughout this book, you’ve already used some of Python’s built- in data struc-
tures such as lists and dictionaries to search data, sort data, and more. This section of the book will 
teach you more about data structures and how to use them. You will also learn about new types of 
data structures you may not be familiar with yet, such as arrays, linked lists, stacks, queues, trees, 
heaps, graphs, and hash tables. Each of these data structures has advantages and disadvantages. The 
best data structure to use in a program depends on what type of problem you are trying to solve and 
what you are trying to optimize for. In Part II of this book, you will learn about the pros and cons of 
different data structures so that when you are building applications, you can decide what the best data 
structure to use will be. Plus, you will learn how to answer the most common questions interviewers 
ask about data structures so that when it comes time for you to go through a technical interview, you 
will pass with flying colors.

You cannot be a great programmer without a solid understanding of data structures because 
programming means writing algorithms and choosing the right data structure to go with them. That 
is why Niklaus Wirth famously wrote, “Algorithms + Data Structures = Programs.” The algorithm tells 
your computer what to do, and your data structure tells your computer how to store the data from 
your algorithm. Linux Torvalds, the creator of Linux, stressed the importance of data structures even 
more with his famous quote, “I will, in fact, claim that the difference between a bad programmer and 
a good one is whether he considers his code or his data structures more important. Bad programmers 
worry about the code. Good programmers worry about data structures and their relationships.” I 
want you to be a good programmer, which is why I will focus on teaching you about data structures 
for the remainder of this book.
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An abstract data type is a description of a data structure, whereas a data structure is an actual 
implementation. For example, a list is an abstract data type: it describes a data structure that holds 
a group of items where each item has a position relative to the others. A list also has operations to 
manipulate its items, like adding and removing them. When you use a Python list, you are using a 
data structure, not an abstract data type, because a data structure is the actual implementation of an 
abstract data type. For example, Python could have two different list data structures, implemented in 
entirely different ways, both based on the list abstract data type.

Computer scientists classify data structures based on different properties, for example, whether 
they are linear or nonlinear. A linear data structure arranges data elements in a sequence, while a 
nonlinear data structure links data nonsequentially. For example, Python lists are a linear data struc-
ture: each element can have one element before and one element after it. In contrast, graphs (which 
you will also learn more about later) are nonlinear structures where each element can connect to 
many other elements.

Traversing a data structure means going from the first element in a data structure to the last. In a 
linear data structure, you can easily traverse from the first element to the last without backtracking 
(moving backward in the data structure), whereas in a nonlinear data structure you often have to 
backtrack. It is often more efficient to access individual elements in a linear data structure because 
nonlinear data structures often require backtracking or recursion to access a single element. Because 
you can easily traverse a linear data structure, making a change to every element in one is often simpler 
than making a change to every element in a nonlinear structure. Because you don’t have to backtrack 
to visit every element, linear data structures are often easier to design and use. Regardless, nonlinear 
data structures can be better (and more efficient) for certain kinds of problems. For example, you 
can use nonlinear data structures to store and access data that would be inefficient to store in a linear 
structure, such as the connections in a social network.

Computer scientists also classify data structures by whether they are static or dynamic. A static 
data structure has a fixed size, while a dynamic data structure can grow or shrink in size. Usually, 
you define the size of a static data structure when you create it in your program. Once you make it, 
your data structure’s size is fixed and cannot change, but you can change the data’s values inside it. 
Python does not have static data structures; however, lower- level programming languages like C do.

One problem with static data structures is that you must allocate a certain amount of memory for 
them. Computer memory is where your computer stores data. There are different kinds of memory, 
and explaining them all is outside the scope of this book, but for this chapter, you can think of memory 
as a place your computer stores data with an address it can use to reference it later. If the number of 
data elements you are working with ends up being smaller than the size you allocated, you’ve wasted 
memory space. Additionally, it may not be possible to add more elements than fit in the space you gave 
your data structure. Often the only way to add more elements to a static data structure is to allocate 
memory for a new structure big enough to contain the old and the new elements and then to copy the 
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data from the old structure to this newly allocated memory together with the new elements. Because 
of this, static data structures are not the best data structure to use if you don’t know the number of 
elements you need to store in advance. However, if you know how many data elements you want to 
store and that number is not likely to change, then a static data structure often outperforms a dynamic 
one. For example, if you are maintaining a list of “undo” functions for a program that allows users 
up to 10 undo operations, a static data structure would be appropriate.

Many data structures can be static or dynamic. For example, arrays (which we will discuss in the 
next chapter) are often static data structures, but many modern programming languages, such as 
Python, offer dynamic arrays (lists).

In contrast to static data structures, you can easily change the size of a dynamic data structure. 
In a dynamic data structure, your computer allocates additional memory as you add more elements. 
When you remove elements, your computer frees that memory for other data. With their flexible size, 
dynamic data structures allow you to add and remove data elements efficiently, and these structures 
make efficient use of memory resources. However, accessing elements in dynamic data structures can 
be slow compared to static data structures, and storing a certain number of elements in dynamic data 
structures can often consume more memory than storing the same number of elements in static data 
structures. When dealing with an unknown amount of data, especially in situations where memory 
space is limited, dynamic data structures are often a good choice.

Unless you are writing low- level code for an operating system or some other project where you 
have to squeeze out every possible performance optimization, you most likely will not spend a lot 
of time thinking about choosing a static or dynamic data structure. Instead, you will probably spend 
more time deciding whether you should use a linear or nonlinear data structure and, once you’ve made 
that decision, which linear or nonlinear data structure to use. As you learned earlier, different data 
structures have pros and cons. These pros and cons are mostly related to their efficiency in inserting, 
deleting, searching, and sorting data and how efficiently they use memory space. For example, it is 
incredibly efficient to check if an item is in a Python dictionary, even if it has a billion data pieces. It 
is not nearly as efficient to search a graph for a piece of data, though. In the next chapter, we’ll dive 
into more detail about when and how to use data structures.

Vocabulary
data structure: A way of organizing data in a computer so programmers can effectively use it in 
their programs.

linear data structure: A data structure that arranges data elements in a sequence.

nonlinear data structure: A data structure that links data nonsequentially.

traversing: Going from the first element in a data structure to the last.
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static data structure: A data structure with a fixed size.

dynamic data structure: A data structure that can grow or shrink in size.

computer memory: Where your computer stores data.

Challenge
1. Write a list of all the data structures you’ve used in Python.



9 Arrays

We salute the coders, designers, and programmers already hard at work at their desks, and we 
encourage every student who can’t decide whether to take that computer science class to give it a try.

Michael Bloomberg, former mayor, New York City

A list is an abstract data type that describes a data structure that stores ordered values. Lists usually 
have an operation for creating a new, empty list, testing if it is empty, prepending an item, appending 
an item, and accessing an element at an index. You are already familiar with Python lists, one of many 
different implementations of the list abstract data type, which is a type of array. In this chapter, you 
will learn more about arrays.

An array is a data structure that stores elements with indexes in a contiguous block of memory. 
Arrays are often homogeneous and static. A homogeneous data structure can hold only a single data 
type, such as integers or strings. A static data structure is a data structure you cannot resize after you 
create it. When you create an array in a low- level programming language like C, you decide how many 
elements of a particular data type you want to store in it. Then, your computer assigns a block of 
memory for your array based on the number of elements and how much memory one element of that 
data type requires. This block consists of items stored one after the other in your computer’s memory.

A Python list is a heterogeneous variable- length array. A variable- length array is one with a size 
that can change after you create it. A heterogeneous array is one that can hold different types of data 
rather than just a single type. Guido van Rossum wrote Python in C, but Python hides the complex-
ities of array creation and manipulation. Instead, it presents you with a list data structure you can use 
without worrying about assigning its length ahead of time or specifying what data types it can hold.

Figure 9.1 shows an example of how a computer stores an array in its memory.

Memory Addresses
0x41700

a

0x41701 0x41702 0x41703 0x41704 0x41705

b c d e f

0 1 2 3 4 5

Figure 9.1: An example of data in an array
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You can access each element in this array with a unique integer index. Usually, the first index in 
an array is index 0; however, different programming languages use different indexing schemes. Both 
Python and C use zero- based indexing, but some other languages, like MATLAB and Fortran, use one- 
based indexing (the first element is index 1). Some programming languages even allow you to use any 
integer value for the index of the first element. The memory location of the first element in an array 
is called its base address. When your computer needs to add a new item to an array, it calculates the 
location in memory it should put it in using this formula:

base_address + index * size_of_data_type

It takes the base address and adds it to the index multiplied by how much memory space the 
data type in the array takes up. Your computer also uses this formula when it needs to find an item 
in an array.

Arrays can be one- dimensional or multidimensional. In a one- dimensional array, you access each 
element in the array with an integer index:

array = [1, 2, 3]
print(array[0])
 
>> 1

In a multidimensional array, you access each individual element with two indexes (an integer 
index for each dimension):

multi_array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
print(array[1][2])
 
>> 6

Regardless of whether an array is one- dimensional or multidimensional, your computer stores its 
elements in a contiguous block of memory and uses a mathematical formula that maps the index to 
a memory location to access them.

Array Performance
You can access and modify any single element in an array in constant time. For example, suppose 
you look up the data at index 3 in an array. In that case, your computer has to get information from 
only one memory location, even if there are a million elements in your array. Searching an unsorted 
array is O(n) because you need to check every item in the array. However, you can often sort arrays, 
like when you have a list of names or addresses, or a large set of numbers, in which case searching 
the array can be O(log n). Figure 9.2 shows the run times of arrays.
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If arrays are so efficient, you might wonder why you shouldn’t use them in every situation. While 
accessing and modifying individual elements in an array is very fast, modifying the shape of an array 
in any way (adding or deleting items) is O(n). Because your computer stores the elements in an array 
in a single continuous block of memory, inserting an element into an array means you have to shift 
all the elements coming after the added element, which is not efficient. For example, suppose you 
have an array that looks like Figure 9.3.

Look at what happens when you add z after a and b in Figure 9.4.

Data 
Structure

Time Complexity
Average Worst

Access Search Insertion Deletion Access Search Insertion Deletion
Array O(1) O(n) O(n) O(n) O(1) O(n) O(n) O(n)
Stack O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1)
Queue O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1)
Linked 
List

O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1)

Hash 
Table

N/A O(1) O(1) O(1) N/A O(n) O(n) O(n)

Binary 
Search 
Tree

O(log n) O(log n) O(log n) O(log n) O(n) O(n) O(n) O(n)

Figure 9.2: Array operation run times

Memory Locations
0x41700

“a”

0x41701 0x41702 0x41703 0x41704 0x41705

“b” “c” “d” “e” “f”

Figure 9.3: An array stored in a computer’s memory

Memory Locations
0x41700

a

0x41701 0x41702 0x41703 0x41704 0x41705

b z c d e

0 1 2 3 4 5

0x41706

f

6

Figure 9.4: Adding data to an array often 
means changing many memory locations.
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Making the third item in this list z requires your computer to shift four elements to different memory 
locations.

Having to shift elements is not a problem with small arrays, but if your program needs to add items 
to random locations in a large array (especially near the beginning), your computer may spend a lot 
of time copying memory around. This problem is worse for static arrays because your computer can’t 
guarantee the memory addresses that come after the memory block it reserved for the array are free. 
That means when you add an element to an array in a language like C, you may need to reserve a new 
block of memory for the array, copy all the items from the old block to the new one, add the new 
element, and then free the old block. Python adds items to its lists more efficiently through a process 
called overallocation: reserving more memory for an array than it needs and keeping track of how 
many elements the array is storing and how much unused space it has.

As a programmer, you will frequently use arrays in your programs. You should consider using an 
array any time you need to store and access sequential data. For example, say you were programming 
a game like Call of Duty and you wanted to create a page that shows how the top 10 players rank. You 
could use an array to easily keep track of the top 10 players, their scores, and their order by storing 
the highest- ranking player at index 0 and the lowest ranking player at index 9. Arrays are one of the 
most important data structures for mathematical calculations. If you need to deal with large amounts 
of numerical data, you will get familiar with arrays. Computer scientists also use arrays to implement 
other data structures. For example, in later chapters you will learn how to implement stack and queue 
data structures using arrays.

Many programming languages’ run- time systems use arrays to implement higher- level structures 
such as lists, which Python programmers use extensively. Arrays like the ones in Python’s Numerical 
Python (NumPy) package are helpful for mathematical and scientific applications, financial applica-
tions, statistics, and so forth. NumPy arrays support mathematical operations such as matrix multi-
plication, which is used, for example, in graphics applications to scale, translate, and rotate graphical 
objects. In operating systems, arrays often handle any operation that manipulates a data sequence, 
such as memory management and buffering.

An array is not the best choice for large data sets you want to add data to often because adding 
items to an array is O(n). In this situation, linked lists, which you will learn about in the next chapter, 
are often a better choice. When you insert an item into an array, it changes the index of other elements, 
so if you need your data to keep the same index, a Python dictionary is probably a better choice.

Creating an Array
If you are programming in Python, you can use a list in most cases when you need an array. However, 
if you need the performance of a homogenous array, you can use Python’s built- in array class. Here 
is how it works:
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import array   
 
arr = array.array('f', (1.0, 1.5, 2.0, 2.5))
print(arr[1])
 
>> 1

First, you import Python’s built- in array module:

import array   

Then, you pass array.array two parameters. The first parameter tells Python what data type you 
want your array to hold. In this case, f stands for float (a data type in Python for decimal numbers), 
but you can also create an array with Python’s other data types. The second parameter is a Python list 
containing the data you want to put into your array.

arr = array.array('f', (1.0, 1.5, 2.0, 2.5))

Once you’ve created your array, you can use it like a Python list:

print(arr[1])

However, if you try to add a piece of data to your array other than the data type you initially passed 
in, you will get an error:

arr[1] = 'hello'
 
>> TypeError: "must be real number, not str"

Python’s NumPy package also offers an array you can use to make calculations run nearly as fast 
as a lower- level programming language like C. You can learn more about creating arrays with NumPy 
by reading its documentation at numpy.org.

Moving Zeros
In a technical interview, you might have to locate all the zeros in a list and push them to the end, leav-
ing the remaining elements in their original order. For example, suppose you have this list:

[8, 0, 3, 0, 12]

You would take it and return a new list with all the zeros at the end, like this:

[8, 3, 12, 0, 0]

http://numpy.org
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Here is how you solve this problem in Python:

def move_zeros(a_list):
   zero_index = 0
   for index, n in enumerate(a_list):
       if n != 0:
           a_list[zero_index] = n
           if zero_index != index:
               a_list[index] = 0
           zero_index += 1
   return(a_list)
 
a_list = [8, 0, 3, 0, 12]
move_zeros(a_list)
print(a_list)

First, you create a variable called zero_index and set it to 0:

zero_index = 0

Then, you loop through every number in a_list, using the enumerate function to keep track of 
both the index and the current number in the list:

for index, n in enumerate(a_list):

Next comes this code, which executes only if n is not equal to 0:

if n != 0:
   a_list[zero_index] = n
   if zero_index != index:
       a_list[index] = 0
   zero_index += 1

When n is not equal to 0, you use the index stored in zero_index to replace whatever is at   
zero_index with n. Then, you check to see if zero_index and index are no longer the same number. 
If they are not the same number, it means there was a zero earlier in the list, so you replace whatever 
number is at the current index with 0 and increment zero_index by 1.

Let’s take a look at why this works. Say this is your list, and your algorithm just hit the first zero, 
which means index is 1.

[8, 0, 3, 0, 12]

Because the number is a zero, this time around your loop, this code will not execute:

if n != 0:
    a_list[zero_index] = n
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    if zero_index != index:
        a_list[index] = 0
    zero_index += 1

That means you did not increment zero_index. The next time around your loop, index is 2, n is 
3, and your list is still the same.

[8, 0, 3, 0, 12]

Because this time n is not 0, this code executes:

if n != 0:
    a_list[zero_index] = n
    if zero_index != index:
        a_list[index] = 0
    zero_index += 1

When this part of your code runs:

a_list[zero_index] = n

it changes your list from this:

[8, 0, 3, 0, 12]

to this:

[8, 3, 3, 0, 12]

Then, this line of code:

if zero_index != index:
    a_list[index] = 0

changes your list from this:

[8, 3, 3, 0, 12]

to this:

[8, 3, 0, 0, 12]

Your code swapped the zero in the back of the list to the next nonzero number toward the front 
of the list.

Now, your algorithm hits a zero again, and the same thing happens.

[8, 3, 0, 0, 12]
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Your variable zero_index and index are no longer the same and zero_index is 3, which is the index 
of the 0 farthest back in the list. The next time around, n is 12, so this code executes again:

if n != 0:
    a_list[zero_index] = n
    if zero_index != index:
        a_list[index] = 0
    zero_index += 1

This code:

a_list[zero_index] = n

changes your list from this:

[8, 3, 0, 0, 12]

to this:

[8, 3, 12, 0, 12]

This code:

if zero_index != index:
   a_list[index] = 0

changes it from this:

[8, 3, 12, 0, 12]

to this:

[8, 3, 12, 0, 0]

As you can see, the zeros are now at the end of the list, with the rest of the numbers preceding them 
in their original order.

Your algorithm contains one main loop that iterates through the elements in a_list, which means 
its time complexity is O(n).

Combining Two Lists
When preparing for a technical interview, you should be prepared to combine two lists, something you 
will have to do often in your day- to- day programming. For example, suppose you have a list of movies:

movie_list = [ "Interstellar", "Inception", 
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               "The Prestige", "Insomnia", 
               "Batman Begins"
           ]

and a list of ratings:

ratings_list = [1, 10, 10, 8, 6]

You want to combine these two sets of data into a single list of tuples containing each movie title 
and its rating, like this:

[('Interstellar', 1), 
('Inception', 10), 
('The Prestige', 10),
('Insomnia', 8),
('Batman Begins', 6)]

You can use Python’s built- in zip function to combine these lists:

print(list(zip(movie_list, ratings_list)))
 
>> [('Interstellar', 1), ('Inception', 10), ('The Prestige', 10), ('Insomnia', 8), 
('Batman Begins', 6)]

The zip function takes one or more iterables and returns a zip object containing one piece of data 
from each iterable, which you then turn into a list. Your output is a list of tuples, with each list con-
taining the name of a movie matched to its rating.

Finding the Duplicates in a List
Another common technical interview question is to check for duplicate items in a list, which you will 
also have to do often in real- world programming. One solution is to compare each item in your list to 
every other item. Unfortunately, comparing every item to every other item requires two nested loops 
and is O(n**2). Python sets provide a better way to look for duplicates. A set is a data structure that 
cannot contain duplicate elements. If a set has a string such as 'Kanye West', it is impossible to add 
another instance of 'Kanye West' to it.

Here is how to create a set and add data to it:

a_set = set()
a_set.add("Kanye West")
a_set.add("Kendall Jenner")
a_set.add("Justin Bieber")
print(a_set)
 
>> {'Kanye West', 'Kendall Jenner', 'Justin Bieber'}
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Your code creates a set with three strings in it: "Kanye West", "Kendall Jenner", and "Justin Bieber".
Now try to add a second instance of "Kanye West" to your set:

a_set = set()
a_set.add('Kanye West')
a_set.add('Kanye West')
a_set.add('Kendall Jenner')
a_set.add('Justin Bieber')
print(a_set)
 
>> {'Kanye West', 'Kendall Jenner', 'Justin Bieber'}

As you can see, your set still has only three items in it. Python did not add a second instance of 
'Kanye West' because it is a duplicate.

Since sets cannot contain duplicates, you can add items from an iterable to a set one by one, and 
if its length does not change, you know the item you are trying to add is a duplicate.

Here is a function that uses sets to check for the duplicates in a list:

def return_dups(an_iterable):
   dups = []
   a_set = set()

   for item in an_iterable:
       l1 = len(a_set)
       a_set.add(item)
       l2 = len(a_set)
       if l1 == l2:
           dups.append(item)
   return dups
 
a_list = [
    "Susan Adams", 
    "Kwame Goodall", 
    "Jill Hampton", 
    "Susan Adams"]
 
dups = return_dups(a_list)
print(dups)

The list you are evaluating contains four elements with one duplicate: "Susan Adams".
Your function return_dups accepts an iterable called an_iterable as a parameter:

def return_dups(an_iterable):

Inside your function, you create an empty list to hold the duplicates called dups:

dups = []
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Then, you create an empty set called a_set:

a_set = set()

Next, you use a for loop to iterate through each item in an_iterable:

for item in an_iterable:

Next, you get the set’s length, add an item from an_iterable, and check if the length changed:

l1 = len(a_set)
a_set.add(item)
l2 = len(a_set)

If your set’s length did not change, the current item is a duplicate, so you append it to your dups list:

if l1 == l2:
    dups.append(item)

Here is your complete program:

def duplicates(an_iterable):
    dups = []
    a_set = set()
    for item in an_iterable:
        l1 = len(a_set)
        a_set.add(item)
        l2 = len(a_set)
        if l1 == l2:
            dups.append(item)
    return dups
 
a_list = [
    'Susan Adams', 
    'Kwame Goodall', 
    'Jill Hampton', 
    'Susan Adams']
 
dups = duplicates(a_list)
print(dups)
 
>> ['Susan Adams']

When you run your function and pass in an iterable with duplicates, it outputs your dups list con-
taining all the duplicates.
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Finding the Intersection of Two Lists
Another common technical interview question involves writing a function to find the intersection of 
two lists, which is also helpful in your day- to- day programming. For example, say you have a list of 
winning lottery numbers in one list and another list that contains the most common winning lottery 
numbers of all time.

this_weeks_winners = [2, 43, 48, 62, 64, 28, 3]
most_common_winners = [1, 28, 42, 70, 2, 10, 62, 31, 4, 14]

Your goal is to find how many of the current winning numbers are in the winner’s list.
One way to solve this problem is to use a list comprehension to create a third list and use a filter 

to check whether each value in list1 is also in list2:

def return_inter(list1, list2):
    list3 = [v for v in list1 if v in list2]
    return list3
 
list1 = [2, 43, 48, 62, 64, 28, 3] 
list2 = [1, 28, 42, 70, 2, 10, 62, 31, 4, 14] 
print(return_inter(list1, list2))
 
>> [2, 62, 28]

As you can see, the numbers 2, 62, and 28 are in both lists.
This line of code uses a for loop to walk through list1 and appends the item to your new list only 

if that value is also in list2.

list3 = [v for v in list1 if v in list2]

Python’s in keyword searches an iterable for a value. Because you are dealing with unordered lists, 
Python performs a linear search when you use the keyword in inside your list comprehension. Since 
you are using the in keyword inside a loop (the first part of the list comprehension), your algorithm’s 
time complexity is O(n**2).

Another option is to use a set to solve this problem. In Python, sets have an intersection function 
that returns any elements that appear in two or more sets.

You can easily change lists into sets like this:

set1 = set(list1)
set2 = set(list2)

Once you’ve converted your lists to sets, you can apply the intersection function to find out where 
the two sets have duplicate items. Here is the syntax for calling the intersection function on two sets:

set1.intersection(set2)
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Next, you convert the intersected set back into a list using the list function:

list(set1.intersection(set2))

Let’s put it all together:

def return_inter(list1, list2):
    set1 = set(list1)
    set2 = set(list2)
    return list(set1.intersection(set2))
 
list1 = [2, 43, 48, 62, 64, 28, 3]
list2 = [1, 28, 42, 70, 2, 10, 62, 31, 4, 14]
new_list = return_inter(list1, list2)
print(new_list)
 
>> [2, 28, 62]

The first line defines a function called return_inter that accepts two lists as parameters:

def return_inter(list1, list2):

Next, you convert the lists into sets:

set1 = set(list1)
set2 = set(list2)

Then you call the intersection function and find the duplicates:

list(set1.intersection(set2))

Finally, you convert the set back into a list and return the result:

return list(set1.intersection(set2))

You are not limited to using the intersection function on only two sets. You can call it on as many 
sets as you like. This code finds the common elements of four sets:

(s1.intersection(s2, s3, s4))

Vocabulary
list: An abstract data type that describes a data structure that stores ordered values.

array: A data structure that stores elements with indexes in a contiguous block of memory.
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homogeneous data structure: A data structure that can store elements of only a single data type, 
such as integer or float.

heterogeneous variable- length array: An array whose size can change after you create it that can 
also store multiple data types.

variable- length array: An array that’s size can change after you create it.

heterogeneous array: An array that can hold different types of data.

base address: The memory location of the first element in an array.

one- dimensional array: An array where you access each element in the array by an integer index.

multidimensional array: An array where you access each element using an index tuple.

overallocation: Reserving more memory for a list than what it would strictly need and keeping 
track of how many elements the list is storing and how much unused space the list has.

set: A data structure that cannot contain duplicate elements.

Challenge
1. Given an array called an_array of non- negative integers, return an array consisting of all the 

even elements of an_array, followed by all the odd elements of an_array.
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Learning to write programs stretches your mind and helps you think better [and] creates 
a way of thinking about things that I think is helpful in all domains.

Bill Gates, Co- founder, Microsoft

A linked list is another implementation of the list abstract data type. Like an array, you can append, 
prepend, search for, and delete items in a linked list. However, elements in a linked list do not have 
indexes because your computer does not store the items in a linked list in sequential memory locations. 
Instead, a linked list contains a chain of nodes, with each node holding a piece of data and the next 
node’s location in the chain. The data in each node that stores the next node’s location in the linked 
list is called a pointer. The first node in a linked list is called the head. The last element in a linked list 
often contains a pointer that points to None, so you know it is the last node in the list (Figure 10.1).

Unlike an array, your computer can store the nodes in a linked list in nonconsecutive memory 
locations (Figure 10.2).

In Figure 10.2, your computer stores the character a at the memory location 41860. Your computer 
does not have to store the next element in the list, b, at the next sequential memory location (41861). 
Instead, your computer can store b anywhere in memory. In this case, your computer is storing it at 
memory location 41862.

Head Nonea b c

Figure 10.1: A linked list is a chain of nodes.

0x41860

“a”

0x41861 0x41862 0x41863 0x41864 0x41865

“b” “c” “d” “e”

0x41866

Figure 10.2: A linked list does not need to store nodes 
in consecutive memory locations.
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Each node carries a pointer to the next node’s address in the list, connecting all the list elements 
(Figure 10.3). The first element in the linked list, a, carries a pointer to memory address 1862, which 
is the location of b, the second element in the list. The element b contains a pointer to the location 
of the next node’s memory address, c, etc. This design creates a sequence of elements that are all 
mapped together.

When you insert an element into a linked list, your computer does not have to shift any data because 
it has to adjust only two pointers. For example, Figure 10.4 shows what happens when you add the 
element f into your list after a.

Your computer changes the pointer for a to the memory location of f and adds a pointer in f to the 
next item, b (see Figure 10.4). Nothing else needs to change.

There are many different types of linked lists. The linked list in Figure 10.4 is singly linked. A 
singly linked list is a type of linked list with pointers that point only to the next element. In a doubly 
linked list, each node contains two pointers: one pointing to the next node and one pointing to the 
previous node. This allows you to move through a doubly linked list in either direction (Figure 10.5).

pointer

0x41860

“a”

0x41861 0x41862 0x41863 0x41864 0x41865 0x41866

“b” “c” “d” “e”

Figure 10.3: Pointers map the nodes of a linked list.

change one
change two

0x41860

“a” “f”

0x41861 0x41862 0x41863 0x41864 0x41865 0x41866

“b”
new

element

“c” “d” “e”

Figure 10.4: Inserting an element into a linked list requires 
adjusting two pointers.

0x41860

“a” “f”

0x41861 0x41862 0x41863 0x41864 0x41865

“b” “c” “d” “e”

Figure 10.5: A doubly linked list has pointers that go 
in two directions.
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You can iterate through a singly linked list only by starting at the head and moving to the end. 
You can iterate through a doubly linked list from the head to the end, but you can also go backward 
between nodes.

In a circular linked list, the last node points back to the first node, which allows you to go from 
the last element of the list back to the front of the list (Figure 10.6). This type of data structure is 
useful in applications that repeatedly cycle through data that doesn’t have a clear beginning or ending 
point. For example, you could use a circular linked list to track players in a round- robin online game, 
or you could use a circular list in a resource pooling environment where users take turns using allo-
cated slices of CPU time. A linked list contains a cycle when any node points back to a previous node.

Linked List Performance
In an array, you can access an item in constant time if you know its index. However, the only way to 
access an element in a linked list is to do a linear search for it, which is O(n) (Figure 10.7). Adding 
and removing a node in a linked list, on the other hand, is O(1), whereas inserting and deleting items 
from an array is O(n). This difference is the most significant advantage of using a linked list over an 
array. Finally, searching a linked list, like an array, is also O(n).

0x41860

“a” “f”

0x41861 0x41862 0x41863 0x41864 0x41865

“b” “c” “d” “e”

Figure 10.6: A circular linked list points from the 
end back to the head.

Data 
Structure

Time Complexity
Average Worst

Access Search Insertion Deletion Access Search Insertion Deletion
Array O(1) O(n) O(n) O(n) O(1) O(n) O(n) O(n)
Stack O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1)
Queue O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1)
Linked 
List

O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1)

Hash 
Table

N/A O(1) O(1) O(1) N/A O(n) O(n) O(n)

Binary 
Search 
Tree

O(log n) O(log n) O(log n) O(log n) O(n) O(n) O(n) O(n)

Figure 10.7: Linked list operation run times
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Conceptually, a linked list is the same as a Python list or array, and you can use a linked list in any 
situation you would use them. As you know, adding or removing data from an array is O(n), so you 
should consider using one if you’re writing an algorithm that adds and removes data often because 
adding data to a linked list is O(1). Memory management systems in operating systems use linked 
lists extensively, as do databases, and business systems for accounting, financial transactions, and sales 
transactions. You can also use a linked list to create other data structures. For example, you can use 
a linked list to create two data structures you will learn about in later chapters: stacks and queues. 
Finally, linked lists are essential to the blockchain technology behind the web 3.0 movement, which 
powers cryptocurrency. Blockchains themselves are similar to linked lists, and some blockchains use 
linked lists in their technology.

While linked lists are useful in some situations, they also have several disadvantages. The first dis-
advantage of a linked list is that each node must carry a pointer to the next node. A linked list’s pointers 
require system resources, so linked lists require more memory than arrays. If the size of the data you 
are storing in a single node is small, such as a single integer, the size of a linked list can be twice the 
size of an array holding the same data.

The second disadvantage of a linked list is that it does not allow random access. In computer sci-
ence, random access is when you can access data randomly in constant time. For example, there is 
no way to jump to the third element in a linked list like you could in an array. Instead, you have to 
start at the head of the list and follow each pointer until you reach the third element. While this can 
be a disadvantage, there are some more advanced versions of linked lists that overcome this problem.

Create a Linked List
There are many different ways to implement a linked list in Python. One way to create a linked list 
is to define classes representing the linked list and its nodes. Here is how you define a class to repre-
sent a node:

class Node:
    def __init__(self, data, next=None):
        self.data = data
        self.next = next

Your class has two variables: the first, data, holds a piece of data, and the second, next, contains 
the next node in the list. In Python, you don’t have to deal directly with memory addresses (like in the 
programming language C) because it handles that for you. When you create an object, like an instance 
of a class called Node, Python returns a pointer (or reference) to the object. This pointer is, essentially, 
an address of where the actual data resides in the computer’s memory. When you assign objects to var-
iables in Python, you are dealing with pointers (references), so you can easily link objects together 
because Python is doing all the underlying work for you.
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Next, you define a class to represent your linked list, with an instance variable called head that 
holds your list’s head:

class LinkedList:
    def __init__(self):
        self.head = None

Inside your LinkedList class, you create an append method that adds a new node to your list:

class LinkedList:
    def __init__(self):
        self.head = None
    
    def append(self, data):
        if not self.head:
            self.head = Node(data)
            return
        current = self.head
        while current.next:
            current = current.next
        current.next = Node(data)

Your method append accepts a piece of data as a parameter, creates a new node with it, and adds it 
to your linked list.

If your list doesn’t have a head yet, you create a new node, and it becomes the head of your 
linked list:

if not self.head:
    self.head = Node(data)
    return

Otherwise, if your list already has a head, you find the last node in your linked list, create a new 
node, and set its instance variable next to it. To accomplish this, you create a variable called current 
and assign it to your list’s head:

current = self.head

Then you use a while loop that continues as long as current.next is not None because you know 
you are at the end of your linked list when it is:

while current.next:

Inside your while loop, you continually assign current to current.next until current is None 
(and you’ve reached the end of your list), and your while loop terminates:

while current.next:
    current = current.next
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The variable current now holds the last node in your list, so you create a new node and assign it 
to current.next:

current.next = Node(data)

Here is an example of using append to add new nodes to your linked list:

a_list = LinkedList()
a_list.append("Tuesday")
a_list.append("Wednesday")

You can also add the __str__ method to your LinkedList class so you can easily print all of the 
nodes in your list:

def __str__ (self):
    node = self.head
    while node is not None:
        print(node.data)
        node = node.next
 
 
a_list = LinkedList()
a_list.append("Tuesday")
a_list.append("Wednesday")
print(a_list) 
    
>> Tuesday
>> Wednesday

In Python, __str__ is a “magic method.” When you define __str__ inside a class, Python calls that 
method when you print the object.

While Python does not have linked lists built into the language, it does have a built- in data struc-
ture called a deque, which uses linked lists internally. Using Python’s built- in deque data structure 
allows you to take advantage of a linked list’s efficiency without having to code one yourself.

from collections import deque
 
 
d = deque()
d.append('Harry')
d.append('Potter')
 
for item in d:
    print(item)
 
>> 'Harry'
>> 'Potter'
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Search a Linked List
You can slightly modify your append method from your LinkedList class in the previous section to 
search for an item in a linked list:

def search(self, target):
    current = self.head
    while current.next:
        if current.data == target:
            return True
        else:
            current = current.next
    return False

Your method, called search, accepts one parameter called target, which is the piece of data you 
are looking for. You iterate through your linked list, and if the current node’s data matches the target 
value, you return True:

if current.data == target:
    return True

If the current node’s data is not a match, you set current to the next node in the linked list and 
continue iterating:

else:
    current = current.next

If you reach the end of your linked list without a match, you know it is not in your list and return False:

return False

You can see this algorithm in action by creating a linked list of 20 random numbers with values 
ranging from 1 to 30 and searching it for the number 10:

import random
 
a_list = LinkedList()
 
for i in range(0, 20):
    j = random.randint(1, 30)
    a_list.append(j)
    print(j, end= " ")
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Removing a Node from a Linked List
Removing a node from a linked list is another common technical interview question. You can also use 
a linear search to find a node in a linked list and delete it. You delete a node by changing the previous 
node’s pointer so it no longer points to the node you want to delete (Figure 10.8).

Here is how to remove a node from a linked list:

def remove(self, target):
    if self.head == target:
        self.head = self.head.next
        return 
    current = self.head
    previous = None
    while current:
        if current.data == target:
            previous.next = current.next
        previous = current
        current = current.next

Your method remove accepts one parameter, target, which is the piece of data that the node you 
want to remove contains.

Inside your method, first you handle what happens if the node you want to delete is the head of 
your list:

if self.head == target:
    self.head = self.head.next
    return 

a b c

a c

Figure 10.8: To remove a node, change the previous 
node’s pointer.
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If it is, you set self.head to the next node in your list and return.
Otherwise, you iterate through your linked list, keeping track of both the current node and the 

previous node in the variables current and previous:

current = self.head
previous = None

Next, you use a while loop to iterate through your linked list. If you find the data you are looking 
for, you set previous.next to current.next, which removes the node from your list:

while current:
    if current.data == target:
        previous.next = current.next
    previous = current
    current = current.next

Reverse a Linked List
You should also know how to reverse a linked list. To reverse a linked list, you iterate through the 
list, keeping track of both the current node and the previous node. Then, you make the current node 
point to the previous node. Once you’ve changed all the pointers in your linked list, you’ve reversed 
it (Figure 10.9).

Let’s take a look at the code to reverse a linked list:

def reverse_list(self):
    current = self.head
    previous = None
    while current:
        next = current.next
        current.next = previous
        previous = current
        current = next
    self.head = previous

a

a

b Points
to Next

Points to
Previous

current

b

current

Figure 10.9: Reversing a linked list
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First, you use a while loop to iterate through your linked list, using the variables current and 
previous to keep track of the current node and the previous node.

Inside your while loop, first you assign current.next to the variable next so that you save that 
data when you assign current.next to previous in the next line. Once you’ve set current.next to 
previous, you’ve reversed the pointer for that node.

next = current.next
current.next = previous

Then, all you have to do is set previous to current and set current to next to continue iterating 
through your linked list and changing the rest of the pointers:

previous = current
current = next

Once you’ve changed all your pointers, you set self.head to previous. The reason you set the head 
to previous and not current is because once you’ve made it to the end of your linked list, current 
will be None, and previous will contain what used to be the last node in your linked list, which you 
turn into the first node when you set it to your list’s head.

Finding a Linked List Cycle
Earlier, you learned that the last element points back to the list’s head in a circular linked list (see 
Figure 10.6). Another common interview question is to detect whether a linked list contains a cycle. 
In other words, you are checking whether the last item in the list points to any item in the list instead 
of having None as its value for its “next” variable. One algorithm for detecting a linked list cycle is 
called the tortoise- and- the- hare algorithm. In the algorithm, you iterate through your linked list at two 
different speeds, keeping track of nodes in a slow variable and a fast variable. If the linked list is a 
circle, eventually the fast variable will lap the slow variable, and both variables will be the same. If 
that happens, you know the linked list is circular. If you reach the end of your linked list without it 
happening, you know it does not contain a cycle.

Here is how you implement a tortoise- and- the- hare algorithm:

def detect_cycle(self):  
    slow = self.head  
    fast = self.head  
    while True:  
        try:  
            slow = slow.next  
            fast = fast.next.next  
            if slow is fast:  
                return True  
        except:  
            return False
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You start with two variables, a fast variable and a slow variable:

slow = self.head  
fast = self.head 

Then you create an infinite loop:

while True:

Inside your infinite loop, you assign the next node in the linked list to slow and the node after it to 
fast. You put this code inside a try block because if the linked list is not circular, eventually fast will 
be None, which means you will call fast.next.next on None, which will cause an error. The try block 
also prevents your program from failing if the input is an empty list or a noncircular list with one item.

try:  
    slow = slow.next  
    fast = fast.next.next  

Next, you check to see whether slow and fast are the same object. You are not checking whether 
the two linked list node’s values are the same because the same data could appear in more than one 
node. Instead, you use the is keyword to check whether the two nodes are the same object. If they 
are the same object, you return True because the linked list is circular.

if slow is fast:  
    return True 

If there is an error, it means you called .next.next on None, which means your linked list is not 
circular, and you return False.

Vocabulary
linked list: An implementation of the list abstract data type.

node: A part of a data structure that contains a piece of data and can connect to other pieces of data.

pointer: The piece of data in each node that contains the location of the next node in a linked list.

head: The first node in a linked list.

singly linked list: A type of linked list with pointers that point only to the next element.

doubly linked list: A type of linked list where each node contains two pointers: one pointing to 
the next node and one pointing to the previous node, which allows you to move through a doubly 
linked list in either direction.
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circular linked list: A type of linked list where the last node points back to the first node, which 
allows you to go from the last element of the list back to the front of the list.

cycle: When any node in a linked list points back to a previous node.

random access: When you can access data randomly in constant time.

Challenges
1. Create a linked list that holds the numbers from 1 to 100. Then, print every node in your list.
2. Create two linked lists: one that contains a cycle and one that doesn’t. Make sure each one has 

a detect_cycle method to see if it has a cycle. Call detect_cycle on each list.
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If you want to create and be a visionary, you’re probably going to be working with technology 
in some way.

Steph Curry

A stack is an abstract data type and a linear data structure that allows you to remove only the most 
recent element you added. You can imagine a stack as a pile of books or dishes. In a pile of books, 
you can add or remove only the top book. To reach the third book in a pile of books, you must first 
remove all the books above it.

A stack is an example of a last- in, first- out (LIFO) data structure. A last- in, first- out data structure 
is a data structure where the last item you put into the data structure is the first item to come out of 
it. Because you can access its contents one by one only, a stack is also an example of a limited- access 
data structure: a type of data structure that forces you to access its information in a particular order.

Stacks have two primary operations: pushing and popping (Figure 11.1). Pushing an item onto 
a stack means putting a new item in it. Popping an item from a stack means removing the last item 
from it. Stacks can also have additional operations, such as peeking, which means looking at the top 
element in a stack without removing it.

Stacks can be bounded or unbounded. A bounded stack is a stack that limits how many items you 
can add to it, while an unbounded stack is a stack that does not limit how many elements you can 
add to it. If you are still confused about the difference between an abstract data type and a data struc-
ture, a stack might help you understand the difference. The stack abstract data type describes the idea 
of a data structure that only allows you to access the most recent item you put on it. However, there 
are several different ways to create a data structure like this. For example, you can create a stack by 
defining a class that internally uses either a linked list or an array to track the stack’s items. When you 
are writing the code for a stack using either an array or a linked list, you’ve moved from the abstract 
idea of a stack to a data structure: the actual implementation of an abstract data type.
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When to Use Stacks
Pushing and popping elements from a stack are all O(1). While stacks are efficient for adding and 
removing data, they are not as efficient for operations that require you to access the entire stack 
(Figure 11.2). For example, suppose you needed to print the contents of a stack. One solution is to 
print each object as you pop it off the stack. Printing each element as it comes off your stack is O(n). 
However, it also produces a list of objects in reverse order. Your stack will also be empty because you’ve 
popped all the items off of it. Another solution is to pop each element off the original stack as you 
append them to a temporary stack. Then you can print each element as you pop it off the temporary 
stack and append it back to the original stack. However, this solution requires more resources because 
you have to store all your data in a temporary stack. This solution is also O(2*n): twice as long as it 
takes to print the items in an array.

Data 
Structure

Time Complexity
Average Worst

Access Search Insertion Deletion Access Search Insertion Deletion
Array O(1) O(n) O(n) O(n) O(1) O(n) O(n) O(n)
Stack O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1)
Queue O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1)
Linked 
List

O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1)

Hash 
Table

N/A O(1) O(1) O(1) N/A O(n) O(n) O(n)

Binary 
Search 
Tree

O(log n) O(log n) O(log n) O(log n) O(n) O(n) O(n) O(n)

Figure 11.2: Stack operation run times

Push

Pop

Figure 11.1: Data can be pushed on a stack or popped from it.
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Stacks are one of the most frequently used data structures in computing. Computer scientists use 
stacks to implement breadth- first search algorithms to search for data in trees and graphs (which you 
will learn about in later chapters). The run- time systems for languages like Python and Java use a 
stack internally to handle function calls. Compilers use stacks to parse expressions, especially when 
you have expressions that use nested pairs of parentheses, like in standard arithmetic expressions, or 
nested pairs of brackets or braces. Computer scientists also use stacks in the backtracking algorithms 
you find in machine learning and other artificial intelligence areas. Because adding and removing 
elements from a stack are both O(1), they are an excellent choice whenever you are adding and 
removing data elements often. For example, programs that need an “undo” mechanism often use a 
stack or two to handle both “undo” and “redo.” Web browsers, for instance, often use two stacks to 
move backward and forward through your browsing history. Because accessing every element in a 
stack is O(n), they are not the best choice for algorithms that need to access every piece of data in a 
data collection continually.

Creating a Stack
As you have learned, there are a few ways to use a stack in Python. One way is to create a Stack class 
and manage its data internally using an array:

class Stack:
    def __init__(self):
        self.items = []
 
    def push(self, data):
        self.items.append(data)
 
    def pop(self):
        return self.items.pop()
 
    def size(self):
        return len(self.items)
 
    def is_empty(self):
        return len(self.items) == 0
 
    def peek(self):
        return self.items[− 1]

Inside your Stack class’s __init__ method, you define an instance variable called items and set it 
to an empty list. This list is where you will keep track of the items in your stack.

class Stack:
    def __init__(self):
        self.items = []
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Next, you define your stack’s push method. You use Python’s built- in append method to add a new 
piece of data to the end of items:

def push(self, data):
    self.items.append(data)

Your stack’s next method is pop. Inside pop, you use Python’s built- in pop method to return the 
most recently added item in your stack:

def pop(self):
    return self.items.pop()

The next method in your Stack class is called size, and it uses the len method to return the length 
of your stack:

def size(self):
    return len(self.items)

Your method is_empty checks whether your stack is empty:

def is_empty(self):
    return len(self.items) == 0

Finally, your last method is called peek and returns the last item in your stack.

def peek(self):
    return self.items[− 1]

You can also implement a Stack class by using a linked list internally. Here’s how to create a simple 
stack (with just push and pop) using a linked list:

class Node:
    def __init__(self, data):
        self.data = data
        self.next = None
 
 
class Stack:
    def __init__(self):
        self.head = None
 
    def push(self, data):
        node = Node(data)
        if self.head is None:
            self.head = node
        else:
            node.next = self.head
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            self.head = node
 
    def pop(self):
        if self.head is None:
            raise IndexError('pop from empty stack')
        poppednode = self.head
        self.head = self.head.next
        return poppednode.data

First, you define a node class to represent the nodes in your stack’s internal linked list:

class Node:
    def __init__(self, data):
        self.data = data
        self.next = None

Inside your Stack class, you define an instance variable for your linked list’s head:

class Stack:
    def __init__(self):
        self.head = None

Next, you define a method called push. Inside push, you create a new node. If your linked list 
doesn’t have a head, you assign it to the new node. Otherwise, you make this node the head of your 
linked list.

def push(self, data):
    node = Node(data)
    if self.head is None:
        self.head = node
    else:
        node.next = self.head
        self.head = node

Then, you define a method called pop:

def pop(self):
    if self.head is None:
        raise IndexError('pop from empty stack')
    poppednode = self.head
    self.head = self.head.next
    return poppednode.data

If someone tries to pop from your stack when it’s empty, you raise an exception:

if self.head is None:
    raise IndexError('pop from empty stack')
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Otherwise, you remove the first item in your linked list and return it:

poppednode = self.head
self.head = self.head.next
return poppednode.data

Here is an example of creating a stack using this code and pushing and popping items on and 
off of it:

stack = Stack()
stack.push(1)
stack.push(2)
stack.push(3)
 
for i in range(3):
    print(stack.pop())
 
>> 3
>> 2
>> 1

Finally, you can also use a Python list as a stack. Here is how it works:

stack = []
print(stack)
stack.append('Kanye West')
print(stack)
stack.append('Jay- Z')
print(stack)
stack.append('Chance the Rapper')
print(stack)
stack.pop()
print(stack)
 
>> []
>> ['Kanye West']
>> ['Kanye West', 'Jay- Z']
>> ['Kanye West', 'Jay- Z', 'Chance the Rapper']
>> ['Kanye West', 'Jay- Z']

Python’s lists come with the methods append and pop. The append method adds an item to the end 
of a list, which is the same as pushing an item onto a stack. The pop method removes an item from 
the end of a list. If you don’t specify which item to remove, it removes the last item.

When you first print your stack, it is empty because you haven’t added anything to it yet.

>> []
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Next, you push three items— 'Kanye West', 'Jay- Z', and 'Chance the Rapper'— onto your stack 
with these lines of code:

stack.append('Kanye West')
stack.append('Jay- Z')
stack.append('Chance the Rapper')

Then, you pop the last element, 'Chance the Rapper', off your stack, leaving the first two elements:

stack.pop()

That is why when you print your stack for the final time, 'Chance the Rapper' is missing:

>> ['Kanye West', 'Jay- Z']

Of course, when you use a Python list as a stack, you are not limited to taking items off your stack 
in the order you put them on, so if you want to enforce that, you need to create a Stack class.

Using Stacks to Reverse Strings
A common interview question for Python jobs is to reverse a string three different ways. If you are 
familiar with Python, you know you can reverse a string like this:

a_string[::- 1]

or like this:

''.join(reversed('a string'))

When it comes to reversing a string a third way, you may be stuck, however. The key is what you 
learned earlier in this chapter: you can use a stack to reverse a string because when you pop characters 
off a stack, they come off the stack in reverse order (see Figure 11.3).

super

r

e

p

u

s
Stack

repus

Figure 11.3: If you pop off the characters of super, you get repus.
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Here is how to use a stack to reverse a string:

def reverse_string(a_string):
    stack = []
    string = ""
    for c in a_string:
        stack.append(c)
    for c in a_string:
        string += stack.pop()
    return string
 
print(reverse_string("Bieber"))
 
>> "rebeiB"

Your function reverse_string accepts a string as a parameter:

def reverse_string(a_string):

Inside your function, you use a for loop to push each character onto your stack:

for c in a_string:
    stack.append(c)

You then use another loop to iterate through your stack and add each character to your a_string 
variable as you pop them off your stack:

for c in a_string:
    string += stack.pop()

Finally, you return your reversed string:

return string

Min Stack
Another common technical interview challenge is to design a data structure that supports stack oper-
ations such as push and pop and includes a method to return the smallest element. All stack oper-
ations must be O(1). The key to solving this challenge is to use two stacks: a main stack and a min 
stack. Your main stack will keep track of all the push and pop operations, and your min stack will 
keep track of the smallest element in the stack. Learning how to solve this problem isn’t just helpful 
for passing a technical interview: learning how to create a stack that tracks the smallest number is 
helpful in various situations you will encounter in your day- to- day programming.
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Here is how to implement a stack that keeps track of the minimum element in Python:

class MinStack():  
    def __init__(self):  
        self.main = []  
        self.min = []  
 
    def push(self, n):
        if len(self.main) == 0:  
            self.min.append(n)  
        elif n <= self.min[− 1]:  
            self.min.append(n)  
        else:  
            self.min.append(self.min[− 1])  
        self.main.append(n)  
 
    def pop(self):  
        self.min.pop()  
        return self.main.pop()  
 
    def get_min(self):  
        return self.min[− 1]

First, you define a class called MinStack. Inside __init__, you define two instance variables: main 
and min. You assign both variables to empty lists. You will use main to keep track of your main stack 
and use min to keep track of the smallest element.

class MinStack():  
    def __init__(self):  
        self.main = []  
        self.min = [] 

Next, you define your stack’s push method. Inside push, you check to see whether self.main is 
empty because if it is, then no matter what n is, it is the smallest number in your stack. If self.main 
is empty, you append n to min.

def push(self, n):  
    if len(self.main) == 0:  
        self.min.append(n) 

If self.main is not empty, you check to see whether n is less than or equal to the last item in self 
.min. The last item in self.min always needs to be the smallest number in your stack, so if n is less 
than or equal to the last item in self.min, you append n to self.min.

elif n <= self.min[− 1]:  
    self.min.append(n)  
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If n is not less than or equal to the last item in self.min (and is, therefore, larger), you append the 
last item in self.min to self.min:

else:
    self.min.append(self.min[− 1])

Appending the last item in self.min to self.min keeps the number of items in self.main the same 
as self.min so that you can keep track of the smallest number in the stack.

Let’s take a look at an example. When you push the first number onto your stack, your two internal 
stacks look like this:

min_stack = MinStack()
min_stack.push(10)
print(min_stack.main)
print(min_stack.min)
>> [10]
>> [10]

Here’s what happens when you push another, bigger number onto your stack:

min_stack.push(15)
print(min_stack.main)
print(min_stack.min)
 
>> [10, 15]
>> [10, 10]

Notice that min_stack.main is a normal stack, holding items in the order they come onto it:

>> [10, 15]

However, min_stack.min does not keep track of the items as they come onto the stack. Instead, it 
keeps track of whatever the smallest number is. In this case, it has 10 twice:

>> [10, 10]

Fifteen is not in min_stack.min because 15 will never be the smallest item in the stack.
When you call get_min, it returns the last item in self.min, which is the smallest number in 

the stack:

print(min_stack.get_min())
 
>> 10

In this case, it returns 10.
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After you’ve popped an item, your two stacks look like this:

min_stack.pop()
print(min_stack.main)
print(min_stack.min)
 
>> [10]
>> [10]

And when you call get_min a second time, the method once again returns 10:

print(min_stack.get_min())
>> 10

When you call pop one last time, both stacks are empty:

min_stack.pop()
print(min_stack.main)
print(min_stack.min)
 
>> []
>> []

As you can see, self.min kept track of the smallest number in the stack without ever having to 
store the number 15.

Stacked Parentheses
One time, when I was interviewing at a startup, they gave me the following problem: “Given a string, 
use a stack to check whether it has balanced parentheses, meaning every time there is an open paren-
thesis, there is a subsequently closed parenthesis.”

(str(1)) # Balanced
print(Hi!)) # Not balanced

Unfortunately, I messed up my answer badly. Your initial reaction to this problem may be to quickly 
solve it by parsing a string while using one counter for opening parentheses and another counter for 
closing parentheses. If the counters are equal at the end of the string, then the parentheses are bal-
anced. However, what happens if you encounter a string like the following one?

a_string = ")( )("

In this case, your solution will not work.



Data Structures124

A better way to solve this problem is to use a stack. First, you iterate through each character in the 
string, and if a parenthesis is open, you put it on the stack. If it is closed, you check to see whether 
an open parenthesis is already on the stack. If there isn’t, it means the string is not balanced. If there 
is, you pop an open parenthesis off the stack. If there are an equal number of opening and closing 
parentheses in the string, the stack will be empty at the end of your loop. If the stack is not empty, 
then there are not equal numbers of opening and closing parentheses.

Let’s check out the code:

def check_parentheses(a_string):
    stack = []
    for c in a_string:
        if c == "(":
            stack.append(c)
        if c == ")":
            if len(stack) == 0:
                return False
            else:
                stack.pop()
    return len(stack) == 0

Your check_parentheses function accepts the string to check for balanced parentheses as a 
parameter:

def check_parentheses(a_string):

Inside your function, you create a stack using a list:

stack = []

You use a for loop to iterate through the characters in a_string:

for c in a_string:

If the character is an opening parenthesis, you push it onto your stack:

if c == "(":    
    stack.append(c)

If the symbol is a closing parenthesis and the stack is empty, you return False because there is no 
matching opening parenthesis on your stack, which means the string is not balanced. If there are 
opening parentheses in the stack, you pop one off to match the closing parenthesis.

if c == ")":
    if len(stack) == 0:
        return False
    else:
        stack.pop()
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Once your for loop finishes, you return whether or not the length of your stack is zero:

return len(stack) == 0

If your function returns True, the parentheses are balanced; otherwise, they are not.
Understanding how to solve this problem is not just useful for technical interviews. The compilers 

for languages like Python and Java have code like this for parsing and evaluating expressions. If you 
ever need to write your own programming language or write code to parse data with opening and 
closing symbols, you can write code like this to evaluate it.

Vocabulary
stack: An abstract data type and a linear data structure that allows you to remove only the most 
recent element you added.

last in, first out data structure: A data structure where the last item you put into the data structure 
is the first item to come out of it.

limited- access data structure: A type of data structure that forces you to access its information in 
a particular order.

pushing: Putting a new item onto a stack.

popping: Removing the last item from a stack.

peeking: Looking at the top element in a stack without removing it.

bounded stack: A stack that limits how many items you can add to it.

unbounded stack: A stack that does not limit how many items you can add to it.

Challenges
1. Modify your balanced string program to check whether both parentheses, (), and brackets, {}, 

are balanced in a string.
2. Design a max stack that allows you to push, pop, and keep track of your stack’s biggest number 

in O(1) time.





12 Queues

All students should have the opportunity to learn how to program. Computer science is the basis for 
modern day creativity and expression. The computer programmers of tomorrow will revolu-
tionize medicine.

Anne Wojcicki

A queue is an abstract data type and a linear data structure where you can add items only to the 
rear and remove them from the front (Figure 12.1). The queue abstract data type describes a data 
structure that works like the checkout lines at a grocery store: the first person in the line is the first 
person to check out, and newcomers join the line’s rear.

A queue is an example of a first- in, first- out (FIFO) data structure. As the name implies, in a first- in, 
first- out data structure, the first item to enter the data structure is the first to come out of it. Queues, 
like stacks, are limited access data structures.

Queues have two primary operations: enqueueing and dequeueing (Figure 12.2). Enqueueing means 
adding an item to a queue, whereas dequeueing means removing an item. You enqueue elements to 
the rear of a queue and dequeue them from the front.

Remove Add
RearFront

A B C D

Figure 12.1: In a queue, you add items to the rear and remove them from the front.

40

5

Front

Dequeue Enqueue

Rear

76 19 30 20
10

Figure 12.2: The primary operations of queues are enqueueing and dequeueing.
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There are several different ways to implement the queue abstract data type as a data structure. For 
example, like with stacks, you can implement a queue data structure using an array or a linked list. 
Also, like stacks, queues can be bounded or unbounded. A bounded queue is one that limits how 
many items you can add to it, while an unbounded queue is one that does not limit how many items 
you can add to it. You can create a bounded queue using an array or an unbounded one using a linked 
list (you can also implement a bounded queue using a linked list if you keep track of the number of 
items you’ve stored in the queue).

When to Use Queues
Like stacks, queues are efficient for adding or removing data (Figure 12.3). Enqueueing and dequeue-
ing are both O(1) regardless of the queue’s size. Like stacks, queues are not efficient for accessing 
individual pieces of data because you have to iterate through a queue’s elements to find an item. That 
means accessing an item in a queue and searching a queue are both O(n).

As a programmer, you will frequently use queues. Queues are an ideal data structure when you are 
programming anything that relates to first come, first served. For example, a queue is helpful for 
programming an automated phone system that puts a caller in line when all the available operators 
are busy and then connects the earliest caller first, followed by callers who dialed in later. Operating 
systems use queues to handle requests to write data to a hard disk drive, stream audio and video, and 
send and receive network packets. Web servers, on the other hand, use queues to handle 
incoming requests.

Whenever you see a “buffering” message, it means the software system you are using is probably 
waiting for incoming data to add to its queue for processing. For example, to ensure smooth stream-
ing, audio and video streaming systems often set up a queue for incoming data. Say you are watching 
a movie on Netflix. The software on your TV responsible for showing you the movie might wait a 

Data 
Structure

Time Complexity
Average Worst

Access Search Insertion Deletion Access Search Insertion Deletion
Array O(1) O(n) O(n) O(n) O(1) O(n) O(n) O(n)
Stack O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1)
Queue O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1)
Linked 
List

O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1)

Hash 
Table

N/A O(1) O(1) O(1) N/A O(n) O(n) O(n)

Binary 
Search 
Tree

O(log n) O(log n) O(log n) O(log n) O(n) O(n) O(n) O(n)

Figure 12.3: Queue operation run times
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short amount of time before starting the movie so it can fill up its queue with the video data Netflix 
is sending. Once your television software allows you to start watching, more data will come in, and 
the system will add it to its queue. Using a queue enables the video player to take data packets off  
the queue’s front in a fixed, constant amount of time, making the viewing experience smooth, even if the  
incoming data comes in at an inconsistent rate. If too many data packets come in too quickly, the 
system keeps the packets in the queue until it’s ready for them. If the packets come in too slowly,  
the system can keep playing the packets in the queue until it runs out. Ideally, that doesn’t happen, 
but when you get a “buffering” message, the queue has run out of data, and no streaming can happen 
until it starts to fill up again.

Let’s imagine what a program like this looks like. It probably has a loop that runs until you’ve fin-
ished watching your program. Inside the loop, it has an algorithm. That algorithm is responsible for 
adding data to the queue and for removing and displaying the data to the user in the form of a video. 
Together, this algorithm and an appropriate data structure (a queue) are all you need to stream a movie 
to your television or laptop and further illustrates why programs = data structures + algorithms.

Creating a Queue
There are several different ways to implement a queue in Python. One way is to define a Queue class 
that uses a linked list to keep track of data internally. Here is how to create a queue using a linked list:

class Node:
    def __init__(self, data, next=None):
        self.data = data
        self.next = next
 
 
class Queue:
    def __init__(self):
        self.front = None
        self.rear = None
        self._size = 0
 
    def enqueue(self, item):
        self._size += 1
        node = Node(item)
        if self.rear is None:
            self.front = node
            self.rear = node
        else:
            self.rear.next = node
            self.rear = node
 
    def dequeue(self):
        if self.front is None:
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            raise IndexError('pop from empty queue')
        self._size − = 1
        temp = self.front
        self.front = self.front.next
        if self.front is None:
            self.rear = None
        return temp.data
    
    def size(self):
        return self._size

First, you define a Node class to represent the nodes in your queue’s internal linked list:

class Node:
    def __init__(self, data, next=None):
        self.data = data
        self.next = next

Inside your queue, you keep track of its front and rear items in the variables self.front and self 
.rear. You track the front and rear of your queue so you can enqueue and dequeue in constant time. 
You also track your queue’s size in the variable self._size.

def __init__(self):
    self.front = None
    self.rear = None
    self._size = 0

Next, you define a method called enqueue that adds an item to the rear of your queue:

def enqueue(self, item):
    self._size += 1
    node = Node(item)
    if self.rear is None:
        self.front = node
        self.rear = node
    else:
        self.rear.next = node
        self.rear = node

Your method accepts the data you want to store in your queue as a parameter:

def enqueue(self, item):

Inside enqueue, first you increment self._size by 1 because you are adding a new item to your 
queue. Then, you create a new node to store the item in your queue’s internal linked list:

self._size += 1
node = Node(item)



Chapter 12 Queues 131

If self.rear is None, it means your queue is empty, so you set self.front and self.rear to the 
node you just created (since there is only one item in your queue, that item is both the rear and the 
front). Otherwise, you assign your new node to self.rear.next to add it to your queue’s internal 
linked list. Then, you assign the new node to self.rear, so it is at the rear of your queue.

if self.rear is None:
    self.front = node
    self.rear = node
else:
    self.rear.next = node
    self.rear = node

Next, you define a method called dequeue to remove an item from the front of your queue:

def dequeue(self):
    if self.front is None:
        raise IndexError('pop from empty queue')
    self._size −  = 1
    temp = self.front
    self.front = self.front.next
    if self.front is None:
        self.rear = None
    return temp.data

The first line of code in your method throws an exception if you try to dequeue an item when your 
queue is empty:

if self.front is None:
    raise IndexError('pop from empty queue')

When you call dequeue, you remove and return the item at the front of your queue. To do this, you 
store the node at the front of your queue (self.front) in temp so you can reference it later after you 
remove it from your internal linked list:

temp = self.front

Next, you remove the item at the front of your queue from your queue’s internal linked list by 
assigning self.front to self.front.next:

self.front = self.front.next

If there are no more items in your queue after you remove the item at the front of your queue, you 
set self.rear to None because there is no longer an item at the rear of your queue:

if self.front is None:
    self.rear = None
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The last method you define is a method called size that returns the number of items in your queue:

def size(self):
    return self._size

With these three methods, you have created a simple queue using a linked list you can add and 
remove data from and check its size. You can now use your queue like this:

queue = Queue()
queue.enqueue(1)
queue.enqueue(2)
queue.enqueue(3)
print(queue.size())
for i in range(3):
    print(queue.dequeue())
 
>> 3
>> 1
>> 2
>> 3

In the previous code, you created a queue, added the numbers 1, 2, and 3 to it, printed your queue’s 
size, and then printed every item in your queue.

Let’s take a look at what happens inside your queue class when you run this program. When you 
call enqueue, there are no items in your queue, so you add a node to your queue’s internal linked list, 
and it is your queue’s front and rear (Figure 12.4).

Next, you add a 2 to your queue. Now there are two nodes in your queue’s internal linked list, and 
the node with 1 in it is no longer the rear: the node with 2 in it is now the rear (Figure 12.5).

1

F R

Figure 12.4: When there is one item in your queue, it is both the front and the rear.

1 2

F R R

Figure 12.5: Now the node with 1 in it is the front, and the node with 2 in it is the rear.
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Finally, you add a 3 to your queue. Now there are three nodes in your queue’s internal linked list, 
and the node with 2 in it is no longer the rear: the node with 3 in it is (Figure 12.6).

When you call dequeue for the first time, your remove the node with 1 in it. Now the node with 
2 in it is at the front your queue (Figure 12.7).

When you call dequeue for the second time, you remove the node with 2 in it. Now the node with 
3 in it is at the front and the rear of your queue (Figure 12.8).

Now when you call dequeue for the third time, you remove the node with 3 in it, your queue is 
empty, and self.front and self.rear both point to None (Figure 12.9).

R

31 2

F R R

Figure 12.6: The node with 1 in it is the front, and the node with 3 in it is the rear.

31 2

F R F R R

Figure 12.7: When you dequeue the 1, the front changes to the node with 2 in it.

31 2

F R F R F R

Figure 12.8: When you dequeue again, there is only one item left, so it is both the front and the rear.

31 2

F R F R F R

Figure 12.9: Now your queue is empty.
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Python’s Built- In Queue Class
Python also has a built- in class to create a queue you can use. Here is how it works:

from queue import Queue
 
q = Queue()
q.put('a')
q.put('b')
q.put('c')
print(q.qsize())
for i in range(3):
   print(q.get())
 
>> 3
>> a
>> b
>> c

First, you import Queue from the queue module:

from queue import Queue

Next, you create a queue by calling the Queue method:

q = Queue()

You add three strings onto your queue using the built- in method put:

q.put('a')
q.put('b')
q.put('c')

Then you check your queue’s size using the built- in method qsize:

print(q.qsize())

Finally, you use a for loop to pop all the items off your queue and print them:

for i in range(3):
   print(q.get())

Create a Queue Using Two Stacks
A common technical interview question is to create a queue using two stacks. Here is how to do it:
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class Queue:
    def __init__(self):
        self.s1 = []
        self.s2 = []
 
    def enqueue(self, item):
        while len(self.s1) != 0:
            self.s2.append(self.s1.pop())
        self.s1.append(item)
        while len(self.s2) != 0:
            self.s1.append(self.s2.pop())
 
    def dequeue(self):
        if len(self.s1) == 0:
            raise Exception("Cannot pop from empty queue")
        return self.s1.pop()

First, you define a Queue class with two internal stacks, self.s1 and self.s2:

class Queue:
    def __init__(self):
        self.s1 = []
        self.s2 = []

Next, you define a method called enqueue to add a new item to your queue:

def enqueue(self, item):
    while len(self.s1) != 0:
        self.s2.append(self.s1.pop())
    self.s1.append(item)
    while len(self.s2) != 0:
        self.s1.append(self.s2.pop())

When you add a new item to your queue, you need to put it at the rear of your first stack. Because 
you can add items only to the front of a stack, to put something at the rear of your first stack, you 
have to pop everything off it, add the new item, and then put everything back on.

In this case, you pop everything from your first stack, put it all onto your second stack, add the 
new item to your first stack (once it is empty), and then put everything back onto it. When you finish, 
your first stack will have all the original items, plus the new item at its rear.

while len(self.s1) != 0:
   self.s2.append(self.s1.pop())
self.s1.append(item)
while len(self.s2) != 0:
   self.s1.append(self.s2.pop())
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Now that you’ve defined enqueue, you create a method called dequeue to remove an item from 
your queue:

def dequeue(self):
    if len(self.s1) == 0:
       raise Exception("Cannot pop from empty queue")
    return self.s1.pop()

First, you check to see whether self.s1 is empty. If it is, it means the user is trying to dequeue an 
item from an empty queue, so you raise an exception:

if len(self.s1) == 0:
    raise Exception("Cannot pop from empty queue")

Otherwise, you pop the item at the front of your first stack and return it:

return self.s1.pop() 

In this implementation of a queue, enqueueing is O(n) because you have to iterate through every 
item in your stack. Dequeueing, on the other hand, is O(1) because you have to remove only the last 
item from your internal stack.

Vocabulary
queue: A linear data structure similar to a stack.

first- in,  first- out data structure: A data structure where the first item to enter the data structure is 
the first to come out of it.

enqueueing: Adding an item to a queue.

dequeueing: Removing an item from a queue.

bounded queue: A queue that limits how many items you can add to it.

unbounded queue: A queue that does not limit how many items you can add to it.

Challenge
1. Implement a queue using two stacks, but make enqueueing O(1).
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For self- educated scientists and thinkers such as Charles Darwin, Srinivasa Ramanujan, 
Leonardo da Vinci, Michael Faraday, myself, and many others, education is a relentless voy-
age of discovery. To us, education is an everlasting quest for knowledge and wisdom.

Abhijit Naskar

An associative array is an abstract data type that stores key- value pairs with unique keys. A key- 
value pair consists of two pieces of data mapped together: a key and a value. The key is the piece 
of data you use to retrieve the value. The value is the piece of data you use the key to retrieve. As 
a Python programmer, you should already be familiar with key- value pairs because you’ve been using 
Python dictionaries.

There are many different implementations of an associative array, but in this chapter, you will learn 
about hash tables. A hash table is a linear data structure that stores key- value pairs with unique keys, 
which means you cannot store duplicate keys in a hash table. The difference between an associative 
array and a hash table is that an associative array is an abstract data type, whereas a hash table is a  data 
structure and therefore is an implementation of an associative array. Python implements dictionaries 
using hash tables.

When you are programming, the system you are running your program from stores the data in a 
hash table inside an array data structure. When you add a piece of data to your hash table, your com-
puter uses a hash function to determine where in the array to store it. A hash function is code that 
takes a key as input and outputs an integer you can use to map a hash table key to an array index 
your computer uses to store the value. The index a hash function produces is called a hash value. 
You can store any type of data as a value in a hash table, but the key must be something your hash 
function can turn into an index, such as an integer or a string. This process makes retrieving values 
from a hash table incredibly efficient, which you will learn more about later.

Let’s quickly review how Python dictionaries work. You store key- value pairs in a Python dictio-
nary. Keys cannot be duplicates, but values can be. Here is an example of storing a key- value pair in 
a Python dictionary:
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a_dict = {}
a_dict[1776] = 'Independence Year' 

You can now use the key 1776 to look up the value 'Independence Year' like this:

print(a_dict[1776])
 
>> 'Independence Year' 

Now let’s take a look at how an example hash function works by determining the location of several 
keys, which, in this example, will be integers. Your computer does everything you are about to see 
for you behind the scenes when you use a dictionary in Python. Suppose you have a hash table with 
seven slots, and you want to store several integers in them (Figure 13.1). (In this case, for illustrative 
purposes, we are dealing only with keys and not keys and their values.)

The first number you need to store is 86. To store 86 in your hash table, you need a hash function. 
One simple hash function is to take each number and perform modulo by the number of slots avail-
able (Figure 13.2). For example, to get a hash value for 86, you evaluate 86 % 7. The result of 86 % 7 
is 2, which means you put 86 at index two in the array you are using to store your hash table’s data.

The next number you need to put into your hash table is 90, so you evaluate 90 % 7, which is 6. 
So, you put 90 at index six in your array (Figure 13.3).

0 1 2 3

Hash Table

4 5 6

Figure 13.1: A hash table stores key- value pairs in an array.

0 1 2 3 4 5 6

86

86
% 7
=  2

Figure 13.2: To store 86 in the hash table, you perform modulo 
by the number of slots and get 2.
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Finally, you need to add the numbers 21, 29, 38, 39, and 40 to your hash table. Here is what hap-
pens when you use modulo 7 on these numbers:

21 % 7 = 0

29 % 7 = 1

38 % 7 = 3

39 % 7 = 4

40 % 7 = 5

When you add these numbers to your hash table, it looks like Figure 13.4.

So far, adding data to your hash table has gone as planned. Suppose you want to add 30 to your 
hash table. Since 30 % 7 is 2, you should put 30 in slot 2. There is a problem, however, because 86 
is already in that slot. Two numbers hashing to the same slot is a collision. To resolve this collision, 
you can place 30 in the next empty slot. That resolution works, but then when you have to find 30, 
you have to use a hash function to find its location in the array, look in slot 3, realize that it is not 
30, and then look in subsequent slots until you find it, which adds time complexity. There are other 
ways of handling collisions, such as keeping lists (usually linked lists) at each location and putting 
each colliding pair into the list that goes with the original colliding location. When you create a hash 

0 1 2 3 4 5

86
6

90

86
% 7
=  2

Figure 13.3: To store 90 in the hash table, you perform modulo by 
the number of slots and get 6.

0 1 2 3 4 5 6

8621 29 38 39 40 90

86
% 7
=  2

Figure 13.4: Your hash table after adding all the numbers
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table, your goal is to use the correct number of slots and a hash function that produces the fewest 
collisions. However, when you are programming in Python, you don’t have to worry about collisions 
because dictionaries handle them for you.

As I mentioned earlier, in the previous example you are not storing key- value pairs. You can modify 
this example to store key- value pairs using two arrays: one to store keys and one for values. So, for 
example, if you were mapping self to taught, your hash function would turn self into an index in 
an array. You would then store self at that index in the array for keys and taught at that index in 
the array for values.

When to Use Hash Tables
Unlike the other data structures you’ve learned about so far (and the ones you will learn about later), 
on average, searching for data in a hash table is O(1). Inserting and deleting data in a hash table is 
O(1) on average as well. Collisions can erode the efficiency of hash tables, making searching, insertion, 
and deletion O(n) in the worst- case scenario. Still, hash tables are one of the most efficient structures 
for storing large data sets. The reason hash tables are so efficient is that to determine whether a piece 
of data is in a hash table, all you have to do is run your data through your hash function and check 
an array at that index, which is only one step. Figure 13.5 shows the run time for a hash table’s oper-
ations. It does not include a run time for the Access column for hash tables because hash tables do 
not allow you to access the nth item in it like an array or linked list.

Earlier, you learned about search algorithms and how if you sort your data, you can perform a 
binary search, which is significantly faster than a linear search. You also learned that there was another 
way to search for data that is even more efficient than the binary search you will learn about later. 
That method is searching for data in a hash table, which is O(1), meaning that searching for data in 
a hash table is the fastest possible way to search for data. The ability to look up data in constant time 
instead of having to do a linear or binary search makes an enormous difference when working with 
large data sets.

Data 
Structure

Time Complexity
Average Worst

Access Search Insertion Deletion Access Search Insertion Deletion
Array O(1) O(n) O(n) O(n) O(1) O(n) O(n) O(n)
Stack O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1)
Queue O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1)
Linked 
List

O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1)

Hash 
Table

N/A O(1) O(1) O(1) N/A O(n) O(n) O(n)

Binary 
Search 
Tree

O(log n) O(log n) O(log n) O(log n) O(n) O(n) O(n) O(n)

Figure 13.5: Hash table operation run times
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As a programmer, you will frequently use hash tables. For example, if you are a web developer, you 
will often work with JavaScript Object Notation (JSON), a data- interchange format. Many APIs send 
data in JSON, which you can easily turn into a Python dictionary. An application programming inter-
face (API) is a program that allows applications to communicate with each other. Any time you work 
with a key- value database in Python, you will use dictionaries. The popular version control system 
Git uses the hash values from a cryptographic hash function to store different versions of the data in 
your projects. Operating systems often use hash tables to help manage memory. Python itself uses 
dictionaries (hash tables) to hold object variable names and values.

You should consider using a hash table whenever you have a large amount of data and you need to 
access individual data items quickly. For example, suppose you were writing a program that needed 
to search the English dictionary or you wanted to create an app that requires fast access to anyone’s 
phone number in a phone book with hundreds of thousands or millions of entries. Hash tables are 
appropriate for either of these situations. Generally, they are a suitable data structure to use anytime 
you need fast, random access to data. However, if you were frequently operating on the data in sequen-
tial order, an array or a linked list might be a better choice.

Characters in a String
When you solve a problem, it is helpful to think about using a hash table in your solution because they 
are so efficient. For example, suppose an interviewer asks you to count all the characters in a string. 
One solution to this problem is to use a Python dictionary. You can store each character as a key in 
your dictionary and the number of times it occurs in the string as a value. Here is how it works:

def count(a_string):
    a_dict = {}
    for char in a_string:
        if char in a_dict:
            a_dict[char] += 1
        else:
            a_dict[char] = 1
    print(a_dict)

Your function, count, accepts a string as a parameter (the string you want to count the characters of):

def count(a_string):

Inside your function, you create a dictionary:

a_dict = {}

Next, you use a for loop to iterate through your string:

for char in a_string:
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If the character is already in your dictionary, you increment its value by 1.

if char in a_dict:
    a_dict[char] += 1

If the character is not yet in your dictionary, you add it as a new key with a value of 1 since it is the 
first time the character has appeared so far.

else:
    a_dict[char] = 1

When you print your dictionary at the end, it contains each letter in the string as well as the number 
of times it occurs.

print(a_dict)

Let’s take a look at what happens when you run your function. When you call your function and 
pass in the string "Hello", on the first iteration, your program will add an uppercase H as a key in 
your dictionary and the number 1 as its value, which means your dictionary looks like this:

{"H": 1}

On the next iteration, the character is e. Because e is not in your dictionary yet, you add it to your 
dictionary as a key with a value of 1. Now your dictionary looks like this:

{"H": 1, "e": 1}

You do the same thing for the letter l. Now your dictionary looks like this:

{"H": 1, "e": 1, "l": 1}

On the next iteration, the character is l again. This time, the character is already in your dictionary, 
so you increment its key value by 1. Now your dictionary looks like this:

{"H": 1, "e": 1, "l": 2}

This process continues until you’ve gone through every character in your string. When your loop 
is over and you print your dictionary, it looks like this:

{'H': 1, 'e': 1, 'l': 2, 'o': 1}

By taking this approach, you’ve not only solved this problem but solved it in O(n) time by using a 
hash table (in this case, n is the number of characters in the string).
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Two Sum
Another common technical interview question you can use a hash table to solve is called two sum. In 
the two sum challenge, an interviewer asks you to return the two numbers’ indexes in an unsorted 
list that adds up to a target value. You can assume that only one pair adds up to the target number, 
and you may not use the same number in the list twice.

For example, say the target value is the number 5, and you have the following list of numbers:

[- 1, 2, 3, 4, 7]

In this case, the numbers at index positions 1 and 2 add up to the target number (5), so the answer 
is index 1 and index 2 (2 + 3 = 5).

One way to solve this problem is to use brute force by iterating through the list and adding up each 
pair of numbers to see if they add up to 5. Here is how to code a brute- force solution to this problem:

def two_sum_brute(the_list, target):
    index_list = []
    for i in range(0, len(the_list)):
        for j in range(i, len(the_list)):
            if the_list[i] + the_list[j] == target:
                 return [the_list[i], the_list[j]]

Your solution uses two nested loops. Your outer loop iterates through the list of numbers using i, 
while your inner loop also iterates through the list using j. You use both variables to create pairs, such 
as −1 and 2, 2 and 3, etc., and test if they add up to the target number. Your brute- force solution is 
simple, but it is not efficient. Because your algorithm requires two nested loops to iterate through 
every combination, it is O(n**2).

A more efficient way to solve this problem is to use a dictionary. Here is how to solve the two sum 
challenge using a dictionary:

def two_sum(a_list, target):
    a_dict = {}
    for index, n in enumerate(a_list):
        rem = target -  n
        if rem in a_dict:
            return index, a_dict[rem]
        else:
            a_dict[n] = index 

Your function two_sum takes two arguments, a list of numbers and the target number they should 
add up to:

def two_sum(a_list, target):
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Inside your function, you create a dictionary:

a_dict = {}

Then, you call enumerate on the list, which allows you to iterate through the list while keeping 
track of each number and its index in the list:

for index, n in enumerate(a_list):

Next, you subtract n from the target number:

rem = target -  n

The result is the number the current number needs to match with to add up to the target number 
you are looking for. If the number in the variable rem is in your dictionary, you know you’ve found 
the answer, so you return the current index and look up the index of the number you stored using 
the key rem inside your dictionary:

return index, a_dict[rem]

If the number in the variable rem is not in your dictionary, you add it to your dictionary, putting n 
as the key and its index as the value:

else:
    a_dict[n] = index 

Let’s take a look at how this works. Say you ran your program with this list and a target number of 5:

[- 1, 2, 3, 4, 7]

The first time around your loop, n is −1 and nothing is in your dictionary, so you add −1 at index 
0 to your dictionary. The second time around your loop, n is 2, so rem is 3 (5 − 2), so this time you 
add 2 at index 1 to your dictionary. The third time around your loop, n is 3, which means rem is 2. 
You already put 2 in your dictionary, which means you’ve found the answer.

Unlike your brute- force approach to solving your problem, this solution is O(n) because using a 
hash table means you no longer have to use two nested for loops, so it is much more efficient.

Vocabulary
associative array: An abstract data type that stores key- value pairs with unique keys.

key- value pair: Two pieces of data mapped together: a key and a value.

key: The piece of data you use to retrieve the value.
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value: The piece of data you use the key to retrieve.

hash table: A linear data structure that stores key- value pairs with unique keys.

hash function: Code that takes a key as input and outputs a unique piece of data that maps the key 
to an array index your computer uses to store the value.

hash value: The unique value a hash function produces.

collision: When two numbers hash to the same slot.

JavaScript Object Notation (JSON): A data- interchange format.

application programming interface (API): A program that allows applications to communicate 
with each other.

Challenge
1. Given a string, remove all duplicates words. For example, given the string 

"I am a self- taught programmer looking for a job as a programmer.", your function 
should return 
"I am a self- taught programmer looking for a job as a.".
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The most powerful people are the ones who never stop learning.
Rejoice Denhere

So far, all the data structures you’ve learned about have been linear. In the following chapters, you 
will learn about a few essential nonlinear data structures and abstract data types. The first one we will 
discuss is a tree, a nonlinear abstract data type made up of nodes connected in a hierarchical structure 
(Figure 14.1). Common tree operations include inserting, searching, and deleting.

There are several types of tree data structures: general trees, AVL trees, red- black trees, binary trees, 
binary search trees, and more. In this chapter, you will learn about general trees, binary search trees, 
and binary trees, with an emphasis on binary trees. Although covering every type of tree is outside of 
the scope of this book, I encourage you to learn more about other types of trees on your own.

A general tree is a data structure that starts with a node at the top. The node at the top of a tree is 
called the root node. Each node connected underneath a node in a tree is its child node. A node with 
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4 13 7 9

6148

Figure 14.1: An example of a tree data structure
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one or more child nodes is called a parent node. Sibling nodes share the same parent. The connection 
between two nodes in a tree is called an edge (Figure 14.2).

You can move from one node to another as long as they share an edge (Figure 14.3).

Every node in a tree except the root has a single parent node. A node without child nodes is called 
a leaf node, and a node with child nodes is called a branch node.

A binary tree is a tree data structure where each node can have only two child nodes (sometimes 
called a child or children). Every node in a binary tree (except the root) is either the left or right child 
of a parent node (Figure 14.4).

Everything else in a binary tree is the same as a general tree; the only difference is the child 
node limit.

5
Root Node

Parent Node

Child Node

Sibling Nodes

Edge

79

4 6 11

6137

Figure 14.2: A tree with a root node, parent nodes, child 
nodes, and edges
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Root Node

Parent Node

Child Node

Edge
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4 6 11
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Sibling Nodes

Figure 14.3: A path through a tree
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A binary search tree is a tree data structure where each node can have only two children, and the 
tree stores its nodes in sorted order where every node’s value is greater than any value in its left subtree 
and lower than any value in its right subtree (Figure 14.5). Like hash table keys, you cannot store 
duplicate values in a binary search tree. You can get around this restriction and handle duplicate values 
by adding a count field in your tree’s node objects to track the number of occurrences of a given value.

Unlike linear data structures like arrays and linked lists, you cannot always traverse a tree without 
backtracking. You can reach any node in a tree by starting from the root node, but once you have 
moved away from the root node, you can reach only that node’s descendants. A node’s descendants 
are its children and their children and their children’s children, etc. For example, Figure 14.6 shows 
a simple tree with a root node A, leaf nodes B, D, and E, and a branch node C. The A node has two 
children (B and C), and the C node has two children (D and E). The nodes B, C, D, and E are the A 
node’s descendants.

5

Right childLeft child

79

4 6 11

6137

Figure 14.4: In a binary tree, a parent node can have only two child nodes.
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Figure 14.5: An example of a binary search tree
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If you start from the root node and move only to right child nodes, you will walk through the nodes 
A, C, and E. If you instead move only to left child nodes, you will walk through the nodes A and B. 
You may have noticed that neither of these traversals includes the node D. To get to the node D, you 
must first move to the A node’s right child and then the C node’s left child. In other words, to get to 
the D node in this binary tree, you have to backtrack.

When to Use Trees
Inserting, deleting, and searching for data in a general and binary tree are all O(n). Binary search trees 
are more efficient: all three operations in a binary search tree are logarithmic because you can do a 
binary search to insert, delete, and search for nodes in a binary search tree (Figure 14.7).

You may be wondering why, if every operation is linear, you should ever use a general or binary 
tree. Even binary search trees that allow you to search for data logarithmically are slower than hash 
tables, so why should you ever use trees? Trees enable you to store hierarchical information that would 

Root Node

Branch Node

Leaf Nodes

A

B C

D E

Figure 14.6: A simple tree showing the root node, A, and its descendants

Data 
Structure

Time Complexity
Average Worst

Access Search Insertion Deletion Access Search Insertion Deletion
Array O(1) O(n) O(n) O(n) O(1) O(n) O(n) O(n)
Stack O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1)
Queue O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1)
Linked 
List

O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1)

Hash 
Table

N/A O(1) O(1) O(1) N/A O(n) O(n) O(n)

Binary 
Search 
Tree

O(log n) O(log n) O(log n) O(log n) O(n) O(n) O(n) O(n)

Figure 14.7: Binary search trees operation run times
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be difficult or impossible to represent in a linear data structure like an array. For example, imagine 
you wanted to represent the directories on your computer programmatically. You may have a Documents 
folder with 10 folders in it, and each of those folders has 20 folders in it, and each of those folders has 
4 folders in it, etc. Representing the relationship between folders on your computer and what directory 
a user is in would be confusing and challenging to do using an array, but with a tree, it is easy 
(Figure 14.8).

HTML and XML documents are another example of hierarchical data computer scientists represent 
with trees. HTML is a markup language you can use to create web pages. XML is a markup language 
for documents. You can nest HTML and XML tags, so programmers often store them as trees where 
each node represents a single element in the HTML or XML. When you are programming the front 
end of a website, the programming language JavaScript gives you access to the document object model 
(DOM). The document object model is a language- independent interface that models an XML or 
HTML document as a tree (Figure 14.9).

Continents

Asia

India
Italy

London Essex

Germany USAEngland

Munich Berlin

Europe North America

Figure 14.8: An example of folders in a tree
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You can use a tree to parse things like arithmetic expressions. For example, you can evaluate an 
expression like 2 + 3 * 4 by creating a tree like the one in Figure 14.10. You then evaluate the bottom 
of the tree (3 * 4) and then move up a level to calculate the final solution (2 + 7). A tree like the one 
in Figure 14.10 is called a parse tree. A parse tree is an ordered tree that stores data according to some 
type of syntax, like the rules for evaluating an expression.

Document

Root Element:

<html>

Element:

<head>

Element:

<body>

Element:

<title>

Element:

<h1>

Element:

<a>

Text:

“A heading”

Text:

“Link text”

Text:

“My title”

Attribute:

href

Figure 14.9: The document object model

2 + 3 * 4 = +

2

3 4

*

Figure 14.10: A tree for evaluating a mathematical expression
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Representing hierarchal data isn’t the only reason computer scientists use trees. As you already 
know, you can search a sorted binary tree in logarithmic time. While a logarithmic search isn’t as fast 
as a constant time lookup in a hash table, binary search trees offer a few advantages over hash tables. 
The first advantage is memory use. Because of collisions, hash tables can be 10 or more times larger 
than the amount of data you store in them. Binary search trees, on the other hand, do not consume 
any additional memory. Also, a binary search tree allows you to quickly traverse your data in both 
sorted and reverse sorted order, whereas you cannot traverse a hash table in sorted or reverse sorted 
order because hash tables don’t store data in order.

Creating a Binary Tree
Here is how to create a binary tree in Python:

class BinaryTree:
    def __init__(self, value):
        self.key = value
        self.left_child = None
        self.right_child = None
 
    def insert_left(self, value):
        if self.left_child == None:
            self.left_child = BinaryTree(value)
        else:
            bin_tree = BinaryTree(value)
            bin_tree.left_child = self.left_child
            self.left_child = bin_tree
 
    def insert_right(self, value):
        if self.right_child == None:
            self.right_child = BinaryTree(value)
        else:
            bin_tree = BinaryTree(value)
            bin_tree.right_child = self.right_child
            self.right_child = bin_tree

First, you define a class called BinaryTree to represent your tree. BinaryTree has three instance 
variables: key, left_child, and right_child. The variable key holds the node’s data (for instance, an 
integer), left_child keeps track of the node’s left child, and right_child keeps track of its right 
child. When you create a child node for your tree, you create a new instance of your BinaryTree class, 
which also has a key, a left child, and a right child. Every child node is a subtree. A subtree is a node 
in a tree, other than the root node, and its descendants. A subtree can have subtrees.

Next, you define a method called insert_left to create a child node and insert it into the left side 
of your tree.
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def insert_left(self, value):
    if self.left_child = None:
        self.left_child = BinaryTree(value)
    else: 
        bin_tree = BinaryTree(value)
        bin_tree.left_child = self.right_child
        bin_tree.left_child = bin_tree 

First, your method checks to see whether self.left_child is None. If it is, you create a new 
BinaryTree class and assign it to self.left_child.

if self.left_child = None:
    self.left_child = BinaryTree(value)

Otherwise, you create a new BinaryTree object, assign whatever BinaryTree object is currently at 
self.left_child to the new BinaryTree’s self.left_child, and then assign the new BinaryTree to 
self.left_child.

else:
    bin_tree = BinaryTree(value)
    bin_tree.left_child = self.left_child
    self.left_child = bin_tree

After defining the insert_left method, you also define a method called insert_right, which does 
the same thing as insert_left but adds a new node to the right side of your binary tree instead.

def insert_right(self, value):
    if self.right_child == None:
        self.right_child = BinaryTree(value)
    else:
        bin_tree = BinaryTree(value)
        bin_tree.right_child = self.right_child
        self.right_child = bin_tree

Now you can create a binary tree and add nodes to it like this:

tree = BinaryTree(1)
tree.insert_left(2)
tree.insert_right(3)
tree.insert_left(4)
tree.left_child.insert_right(6)
tree.insert_right(5)
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This code creates the binary tree in Figure 14.11.

Breadth- First Tree Traversal
As you learned earlier, you cannot always traverse a tree by moving from node to node without back-
tracking. That doesn’t mean you cannot search a tree for data, though. To search a tree for a piece of 
data, you need to visit every node in your tree and see if it contains the information you are looking 
for. There are several ways to visit each node in a binary tree. One way is a breadth- first traversal: a 
method of visiting every node in a tree by visiting each node in it level by level. For example, in the 
binary tree in Figure 14.12, the root is level 0, followed by levels 1, 2, and 3.

When you use a breadth- first traversal to perform a search, you call it a breadth- first search. You 
start a breadth- first search at the root of your tree (level 0) and go level by level through your tree, 
visiting each node one by one on each level until you reach the final level. You can code a breadth- first 
search by using two lists to track your tree’s current and next level. As you visit each node in your 
current list, you check to see if it matches the data you are looking for and add its children to your 
“next” list. When it is time to move to the next level, you switch the lists. Here is how to look for a 
number in a binary tree using a breadth- first search:

1

4

62
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3

Figure 14.11: A binary tree with five nodes
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Figure 14.12: Levels in a binary tree
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class BinaryTree:
    def __init__(self, value):
        self.key = value
        self.left_child = None
        self.right_child = None
 
    def insert_left(self, value):
        if self.left_child == None:
            self.left_child = BinaryTree(value)
        else:
            bin_tree = BinaryTree(value)
            bin_tree.left_child = self.left_child
            self.left_child = bin_tree
 
    def insert_right(self, value):
        if self.right_child == None:
            self.right_child = BinaryTree(value)
        else:
            bin_tree = BinaryTree(value)
            bin_tree.right_child = self.right_child
            self.right_child = bin_tree
 
    def breadth_first_search(self, n):
        current = [self]
        next = []
        while current:
            for node in current:
                if node.key == n:
                    return True
                if node.left_child:
                    next.append(node.left_child)
                if node.right_child:
                    next.append(node.right_child)
            current = next
            next = [] 
        return False

Your method, breadth_first_search, takes one parameter, n, which is the data to search for:

def breadth_first_search(self, n):

Next, you define two lists. You use the first list, current, to keep track of the nodes in the current level 
you are searching. You use the second list, next, to keep track of the nodes in the next level. You also 
add self to current, so your algorithm starts by searching your tree’s root (level zero).

current = [self]
next = []
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Your while loop continues as long as current still contains nodes to search.

while current:

Then you use a for loop to iterate through every node in current.

for node in current:

If the node’s value matches n (the value you are searching for), you return True.

if node.key == n:
    return True

Otherwise, you append the node’s left and right child nodes to your next list, if they’re not None, so 
they get searched when you search the next level.

if node.left_child:
    next.append(node.left_child)
if node.right_child:
    next.append(node.right_child)

Then, at the end of your while loop, you swap your lists current and next. The list of nodes to search 
next becomes the list of nodes to search now, and you set next to an empty list.

current = next  
next = []

If your while loop terminates, you return False because your breadth- first search did not find n 
in the tree.

return False

More Tree Traversals
A breadth- first traversal is not the only way to traverse a binary tree: you can also do a depth- first 
traversal. In a depth- first traversal, you visit all the nodes in a binary tree by going as deep as you 
can in one direction before moving to the next sibling. Depth- first traversal offers three ways to visit 
every node: preorder, postorder, and in order. The implementations of the three approaches are sim-
ilar, but their uses are different.

Say you have a binary tree shown in Figure 14.13. In preorder traversal, you start with the root and 
move to the left and then to the right. 
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Here is the code for a preorder tree traversal:

def preorder(tree):
    if tree:
        print(tree.key)
        preorder(tree.left_child)
        preorder(tree.right_child)

Your function recursively calls itself until it hits its base case, which is this line of code:

if tree:

This line of code prints each tree node’s value:

print(tree.key)

And these lines of code call preorder on each tree node’s left child and right child:

        preorder(tree.left_child)
        preorder(tree.right_child)

This traversal should be familiar to you because it is similar to what you did when you wrote merge 
sort in Chapter 4. When you coded the merge sort, you put a recursive call to the left half of a list 
followed by a recursive call to the right half of a list. Your algorithm called itself with the left half until 
you had a list with only one item. Your algorithm called your recursive code to break up your right 

1

2 3

4 5 6

87

 Preorder: 1, 2, 4, 3, 5, 7, 8, 6

Figure 14.13: A book represented as a tree
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half of the list whenever that happened. When you hit your base case, you moved up a level in your 
recursive stack and merged the two lists with the code you wrote underneath your two recursive calls. 
Your merge sort algorithm is similar to a preorder traversal but is called a postorder traversal. The 
difference between a postorder traversal and a preorder traversal is that you print each node’s value 
(or do something else) after your recursive calls in a postorder traversal.

def postorder(tree):
    if tree:
        postorder(tree.left_child)
        postorder(tree.right_child)
        print(tree.key)

With a postorder traversal, you move through a tree starting on the left, then moving to the right, 
and ending with the root, as shown in Figure 14.14.

If you imagine a postorder traversal as your merge sort algorithm, you print a node every time you 
make a merge.

Finally, you have an in- order traversal.

def inorder(tree):
    if tree:
        inorder (tree.left_child)
        print(tree.key)
        inorder (tree.right_child)
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4 5 6

87

Postorder: 4, 2, 7, 8, 5, 6, 3, 1

Figure 14.14: A postorder tree traversal
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An in- order traversal is like a preorder and postorder traversal, but you print the node’s value (or 
do something else) in between your two recursive calls. When you use an in- order traversal, you move 
through a tree from the left to the root to the right, as shown in Figure 14.15.

Invert a Binary Tree
Max Howell is the creator of Homebrew, a popular package manager. He famously interviewed at 
Google for a position as a software engineer and was rejected. After the interview, he tweeted, “Google: 
90% of our engineers use the software you wrote (Homebrew), but you can’t invert a binary tree on a 
whiteboard, so ##$$ off.” Inverting a binary tree means swapping all the nodes in it. In other words, 
every right node becomes a left node, and every left node becomes a right node. In this section, you 
will learn how to invert a binary tree, so you don’t end up like Max Howell in a technical interview.

To invert a binary tree, you need to visit every node on it and keep track of each node’s children so 
that you can swap them. One way to accomplish this is using a breadth- first search, which allows you 
to easily keep track of each left and right child and switch them.

Here is the code to invert a binary tree:

class BinaryTree:
    def __init__(self, value):
        self.key = value
        self.left_child = None
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Inorder: 4, 2, 1, 7, 5, 8, 3, 6

Figure 14.15: An in- order tree traversal
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        self.right_child = None
 
    def insert_left(self, value):
        if self.left_child == None:
            self.left_child = BinaryTree(value)
        else:
            bin_tree = BinaryTree(value)
            bin_tree.left_child = self.left_child
            self.left_child = bin_tree
 
    def insert_right(self, value):
        if self.right_child == None:
            self.right_child = BinaryTree(value)
        else:
            bin_tree = BinaryTree(value)
            bin_tree.right_child = self.right_child
            self.right_child = bin_tree
 
    def invert(self):
        current = [self]  
        next = []  
        while current:  
            for node in current:  
                if node.left_child:  
                    next.append(node.left_child)  
                if node.right_child:  
                    next.append(node.right_child)
                tmp = node.left_child  
                node.left_child = node.right_child
                node.right_child = tmp
            current = next  
            next = []

The code is the same as your breadth- first traversal to search for a number, but instead of checking 
whether a node’s value is n, you swap the right and left child each iteration.

To accomplish this, you have to first save node.left_child in a temporary variable called tmp. 
Then, you set node.left_child to node.right_child and node.right_child to tmp, which swaps 
the two child nodes.

tmp = node.left_child  
node.left_child = node.right_child  
node.right_child = tmp

When your algorithm finishes, you have successfully inverted your binary tree.
Another, more elegant way to invert a binary tree is to use a depth- first traversal, which you can 

try in the challenges.
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Vocabulary
tree: A nonlinear abstract data type made up of nodes connected in a hierarchical structure.

root node: The top node of a tree.

child node: A node connected to a parent node above it in a tree.

parent node: A node with one or more child nodes.

sibling nodes: Nodes that share the same parent.

edge: The connection between two nodes in a tree.

leaf node: A node without child nodes.

branch node: A node with child nodes.

binary tree: A tree data structure where each node can have only two children.

binary search tree: A tree data structure where each node can have only two children, and the tree 
stores its nodes in sorted order where every node’s value is greater than its left child’s value and 
lower than its right child’s value.

descendants: A node’s children and their children and their children’s children, etc.

HTML: A markup language you can use to create web pages.

XML: A markup language for documents.

document object model: A language- independent interface that models an XML or HTML docu-
ment as a tree.

parse tree: An ordered tree that stores data according to some type of syntax, like the rules for 
evaluating an expression.

subtree: A node in a tree, other than the root node, and its descendants.

breadth- first traversal: A method of visiting every node in a tree by visiting each node in it 
level by level.

breadth- first search: When you use a breadth- first traversal to perform a search.

depth- first traversal: Visiting all the nodes in a binary tree by going as deep as you can in one 
direction before moving to the next sibling.

inverting a binary tree: Swapping all of the nodes in it.

Challenges
1. Add a method called has_leaf_nodes to your binary tree code. The method should return True 

if the tree has no leaf nodes and False if it does not.
2. Invert a binary tree using a depth- first traversal.
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The rise of Google, the rise of Facebook, the rise of Apple, I think are proof that there is a place for 
computer science as something that solves problems that people face every day.

Eric Schmidt

A priority queue is an abstract data type that describes a data structure where each piece of data has 
a priority. Unlike a queue that releases items on a first- come, first- served basis, a priority queue serves 
elements by priority. It removes the data with the highest priority first, followed by the subsequent 
highest priority data (or the opposite with the smallest value coming first). A heap is one of many 
priority queue implementations. A heap is a tree- based data structure in which each node keeps 
track of two pieces of information: a value and its priority. You call a heap node’s value a key. While 
a node’s key and its priority can be unrelated, if its data is a numerical value, such as an integer or a 
character, you can also use it as its priority. In this chapter, I use the key in the heaps you will see also 
to represent priority.

Computer scientists build heaps using trees. There are many types of heaps (depending on what 
kind of tree you use to create your heap), but you will learn about binary heaps in this chapter.  
A binary heap is a heap that you create using a binary tree (Figure 15.1).

There are two types of binary heaps: max heaps and min heaps. A max heap’s parent node’s priority 
is always greater than or equal to any child node’s priority, and the node with the highest priority is 
the tree’s root. For example, Figure 15.2 shows a max heap with the integers 1, 2, 3, 4, 6, 8, and 10.

Figure 15.1: You create a binary heap using a binary tree.
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A min heap’s parent node’s priority is always less than or equal to any child node’s priority, and 
the node with the lowest priority is the root of the tree. Figure 15.3 shows a min heap with the same 
integers as the max heap from Figure 15.2.

In a binary heap, the ordering (min or max) applies only to a parent node and its children. There is 
no sorting between sibling nodes. As you can see in Figure 15.3, the siblings are not in order (6 and 4).

Computer scientists call creating a heap from a data structure like an array heapifying. For example, 
let’s say you have an array of unsorted keys like this:

["R", "C", "T", "H", "E", "D", "L"]

To heapify this data, first, you add each piece of data as a node to a binary tree. You start at the top 
of your tree and then fill in child nodes left to right on each subsequent level, as shown in Figure 15.4.

Then, you balance your heap. Balancing a heap means reordering keys that are out of order. In this 
case, you start with the last parent node (T) and compare it with its leaf nodes. If any of the leaf nodes 
have a value smaller than that of the parent node, you swap it with the parent node (Figure 15.5).

10

8 6

3 2 1 4

Figure 15.2: A max heap has the highest priority node as the root.

1

2 3

6 4 8 10

Figure 15.3: A min heap has the lowest priority node as the root.

R

C T

H E D L

Figure 15.4: The result of heapifying an array



Chapter 15 Binary Heaps 165

In this case, D is the smallest of the three nodes (T, D, and L), so you swap it with its parent node T.

Next, you move to the next-last parent and its leaf nodes (C, H, and E). C comes before both H 
and E, so you don’t make any swaps on the left side of the tree (Figure 15.7).

Now, you move up a level and compare again (Figure 15.8).
C has the lowest value of the nodes R, C, and D, so you swap C with R. Now C is the tree’s root 

(Figure 15.9).

R

C T

H E D L

Current Level

Figure 15.5: Swapping values to balance a heap

R

C D

H E T L

Figure 15.6: Swapping D and T is the first step to balance this heap.

R

C D

H E T L

Current Level

Figure 15.7: The left side of the heap was already balanced.
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Now you “trickle down” the R node by comparing its value with its leaf nodes. If the R node has a 
value larger than one of its leaf nodes, you swap them and compare R node’s value with its new leaf 
nodes. You continue this as long as R either has a value larger than any of its leaf nodes or you reach 
the lowest level of the heap. E comes before R, so you swap them (Figure 15.10).

Now, your heap is balanced (Figure 15.11).

Current Levelrrent Level
R

C D

H E T L

Figure 15.8: Balancing the tree at the next level

Root Node

C

R D

H E T L

Figure 15.9: C is now the root node in your binary heap.

Current Level

C

R D

H E T L

Figure 15.10: The R node trickles down the tree as long as it has a larger value than any of its 
leaf nodes.

C

E D

H R T L

Figure 15.11: A balanced heap
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Computer scientists often store heaps in arrays. You can store a heap in a Python list by distributing 
the keys into a list based on their position in the tree (Figure 15.12).

Inside of your list, your heap’s root node is at index 0. Its left child is at index 1, and its right child 
node is at index 2. You can use a mathematical equation to find the position of a node’s child. For any 
node, k, its left child’s index is 2k + 1, and the right child’s index is 2k + 2. For example, the equation 
to find the right child of C is 2 * 0 + 2, which equals 2. That means the right child for the node at 
index 0 is at index 2 (Figure 15.13).

When to Use Heaps
You can find the maximum or minimum value in a max or min heap in constant time, but removing 
the minimum node from a min heap or the maximum node from a max heap is logarithmic because 
after you remove the item, you have to balance the remaining nodes. Inserting data into a heap is 
logarithmic, and searching for data in a heap is O(n).

Heaps are helpful anytime you have to execute tasks according to priority. For example, your 
operating system could use a heap to keep track of different tasks and allocate resources depending 
on each task’s priority. You can also use a heap to implement Dijkstra’s algorithm for finding the short-
est path between two nodes in a graph. Dijkstra’s algorithm, which you will learn about in Chapter 16, 
can help you solve routing problems, like determining how to get from one city to another and routing 
in computer networks. Computer scientists also use heaps in a sorting algorithm called heapsort.

Creating a Heap
Python has a library function called heapq that makes it easy to create a min heap. Here is a program 
that uses the heapify function from heapq to heapify a list of seven elements:

from heapq import heapify
 
a_list = ['R', 'C', 'T', 'H', 'E', 'D', 'L']
heapify(a_list)

[0] [1] [2] [3] [4] [5] [6]

C E D H R T L

Figure 15.12: An array with keys at indexes based on their position in the tree.

[0] [2]

C E D H R T L

Figure 15.13: The right child of the root is at index 2.
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print(a_list)
 
>> ['C', 'E', 'D', 'H', 'R', 'T', 'L']

First, you import the heapify function from the heapq library. Then you pass a list to the heapify 
function. As you can see, when you print your heapified list, it is now a min heap you are storing in 
a Python list.

You can use the heapq library’s function heappop to extract a key from a heap and rebalance it. 
Here’s how to remove the root key from a heap and balance its remaining keys:

from heapq import heapify, heappop 
 
a_list = ['R', 'C', 'T', 'H', 'E', 'D', 'L']
heap = heapify(a_list)
print(a_list)
heappop(a_list) 
print("After popping")
print(a_list)
 
>> ['C', 'E', 'D', 'H', 'R', 'T', 'L']
>> After popping
>> ['D', 'E', 'L', 'H', 'R', 'T']

First, you import both heapify and heappop from the heapq module:

from heapq import heapify, heappop 

Then, you create a heap by passing your list to the heapify function and print it:

a_list = ['R', 'C', 'T', 'H', 'E', 'D', 'L']
heap = heapify(a_list)
print(a_list)

Next, you use the heappop function to pop the minimum element from your heap and print the result:

heappop(a_list) 
print("After popping")
print(a_list)

You can use a while loop to pop all the elements off a heap. Here is how to create a heap and pop 
all of its keys off:

from heapq import heapify, heappop 
 
a_list = ['D', 'E', 'L', 'H', 'R', 'T']
heapify(a_list)
while len(a_list) > 0:
    print(heappop(a_list))
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First, you create a heap:

a_list = ['D', 'E', 'L', 'H', 'R', 'T']
heapify(a_list)

Then, you use a while loop to pop all of its keys:

while len(a_list) > 0:
    print(heappop(a_list)) 

The heapq library also has a function called heappush that inserts a key into a heap and rebalances it. 
Here is how to use heappush to push an item onto your heap:

from heapq import heapify, heappush 
 
 
a_list = ['D', 'E', 'L', 'H', 'R', 'T']
heapify(a_list)
heappush(a_list, "Z")
print(a_list)
 
>> ['D', 'E', 'L', 'H', 'R', 'T', 'Z']

Python only provides a built- in function for min heaps, but you can easily create a max heap for 
numeric values by multiplying each value by −1. A max heap with strings as keys is more challenging 
to implement. Instead of using the heapq library, you have to create one using a class or code a 
heap yourself.

Finally, you can use heapq to handle priority- value pairs by storing tuples whose first element is 
the priority and the second element is the value, which could be anything. You will see an example 
of this in the next chapter when you code Dikijstras algorithm.

Connecting Ropes with Minimal Cost
You can use heaps to solve many problems that come up in your day- to- day programming as well as 
the ones that show up in technical interviews. For example, in a technical interview, you may be given 
a list of different rope lengths and asked to connect all of the ropes, two at a time, in the order that 
results in the lowest total cost. The cost of connecting two ropes is their sum, and the total cost is the 
sum of connecting all the ropes. So, for example, say you were given this list of ropes:

[5, 4, 2, 8] 

First, you could connect 8 and 2, then 4 and 10, and then 5 and 14. When you add up each cost, 
then, you get 43.
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[5, 4, 2, 8] # 8 + 2 = 10
[5, 4, 10] # 10 + 4 = 14
[5, 14] # 5 + 14 = 19
# 10 + 14 + 19 = 43

However, if you connect the ropes in a different order, you get a different answer. To get the correct 
answer, you need to connect the two smallest ropes each time, like this:

[5, 4, 2, 8] # 4 + 2 = 6
[5, 8, 6] # 6 + 5 = 11
[8, 11] # 8 + 11 = 19
# 6 + 11 + 19 = 36

The total cost when you approach the problem like this is 36, which is the correct answer.
You can use a min heap to write a function that solves this problem. Here is how to do it:

from heapq import heappush, heappop, heapify
 
 
def find_min_cost(ropes):
    heapify(ropes)
    cost = 0
    while len(ropes) > 1:
        sum = heappop(ropes) + heappop(ropes)
        heappush(ropes, sum)
        cost += sum
    return cost

First you define a function find_min_cost that takes your list of ropes as a parameter:

def find_min_cost(ropes):

Then, you use heapify to turn ropes into a min heap and define a variable called cost to keep track 
of the total cost of adding all of the ropes.

heapify(ropes)
cost = 0

Next, you create a while loop that runs as long as the length of ropes is greater than 1.

while len(ropes) > 1:

Inside of your loop you use heappop to get the two lowest values from your heap and add them up. 
Then you use heappush to push their sum back onto your heap. Finally, you add their sum to cost.
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sum = heappop(ropes) + heappop(ropes)
heappush(ropes, sum)
cost += sum

When your loop ends, you return cost, which contains the lowest cost for connecting all the ropes.

return cost

Vocabulary
priority queue: An abstract data type that describes a data structure where each piece of data has 
a priority.

heap: A tree- based data structure where each node keeps track of two data pieces: the data itself 
and its priority.

key: The value of a node in a heap.

binary heap: A heap that uses a binary tree as its underlying data structure.

max heap: A heap where the parent node’s priority is always greater than or equal to any child 
node’s priority, and the node with the highest priority is the tree’s root.

min heap: A heap where the parent node’s priority is always less than or equal to any child node’s 
priority, and the node with the lowest priority is the root of the tree.

heapifying: Creating a heap from a data structure like an array.

balancing a heap: Reordering keys that are out of order.

Challenge
1. Write a function that can accept a binary tree as a parameter and return True if it is a min heap 

and False if not.





16 Graphs

Learning to code will be a huge booster for your future, no matter what your professional 
plans may be. Learning to code will also make you extremely cool!

Max Levchin

A graph is an abstract data type in which a piece of data connects to one or more other pieces 
of data. Each piece of data in a graph is called a vertex or a node. A vertex has a name called a key.  
A vertex can have additional data called its payload. The connection between vertices in a graph is 
called an edge. A graph’s edges can contain a weight: the cost to travel between vertices. For example, 
if you created a graph representing the data in a map, each vertex could be a city, and the weight bet-
ween two vertices could be the distance between them (Figure 16.1).

There are several types of graphs, including directed graphs, undirected graphs, and complete 
graphs. A directed graph is one in which each edge has a direction associated with it, and you can 
move between two vertices only in that direction. The connection between two vertices is typically in 
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Figure 16.1: A graph contains vertices, edges, payloads, and weight.
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one direction, but you can also make an edge a two- way connection. A directed graph is an excellent 
choice for creating a graph representing a social network with followers (like Twitter). For example, 
you could use a directed graph to represent that you are following Lebron James on Twitter, but he 
is not following you back. When you are drawing a directed graph, you typically represent the edges 
with arrows showing the direction you can move (Figure 16.2).

An undirected graph is one in which the edges are bidirectional, which means you can travel in 
either direction between two connected vertices. You can think of this as a two- way connection, such 
as the relationship between friends on a social network like Facebook. For example, if Logan is friends 
with Hadley on Facebook, then Hadley is friends with Logan. When you are drawing an undirected 
graph, you usually draw the edges without arrows (Figure 16.3).

A complete graph is one in which every vertex is connected to every other vertex (Figure 16.4).
In an incomplete graph, some but not all vertices are connected (Figure 16.5).
A graph path is a sequence of vertices connected by edges (Figure 16.6). For example, say you had 

a graph representing a city. A path between Los Angeles and San Francisco would be a series of edges 
(representing roads) you can use to travel from Los Angeles to San Francisco.

A cycle is a path in a graph starting and ending at the same vertex. An acyclic graph is a graph that 
does not contain a cycle. See Figure 16.7.

Figure 16.2: A directed graph moves in a specific direction.
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Figure 16.3: An undirected graph can move in either direction.
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Many of these concepts should already be familiar to you because you’ve already learned about 
trees. A tree is a restricted form of a graph. Trees have direction (the parent- child relationship) and 
do not contain cycles, which makes them directed acyclic graphs with a restriction: a child can have 
only one parent.

Figure 16.4: A complete graph has connections among all vertices.
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Figure 16.5: An incomplete graph has some connected vertices.
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Figure 16.6: A graph path follows a specific sequence.



Data Structures176

There are several ways to create graphs programmatically. For example, you can use an edge list, 
an adjacency matrix, or an adjacency list. An edge list is a data structure where you represent each 
edge in a graph with two vertices that connect. For example, Figure 16.8 is a graph with four vertices.

You can represent it with an edge list like this:

[
[10, 20]
[10, 30]
[20, 10]
[20, 30]
[30, 10]
[30, 20]
[30, 40]
[40, 30]
]

This edge list is a list of lists, and each list contains two vertices from the graph that connect.
You can also represent a graph with an adjacency matrix. An adjacency matrix is a two- dimensional 

array of rows and columns that contains a graph’s vertices. In an adjacency matrix, you use the inter-
section of each row and column to represent an edge. Traditionally, you use a 1 to represent vertices 
that connect and a 0 to show vertices that do not. When two vertices are connected, they are adjacent. 
Figure 16.9 shows how you represent the same graph with an adjacency matrix:

Figure 16.7: An example of a graph that contains a cycle

20

30
40

10

Figure 16.8: A graph with four vertices
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One problem with adjacency matrices is sparsity or empty cells. There are eight empty cells in this 
example. Adjacency matrices are not a very efficient way to store data because they can end up with 
a large number of empty cells, which is an inefficient use of your computer’s memory.

Finally, you can also represent a graph with an adjacency list. An adjacency list is a collection of 
unordered lists, with each list representing the connections for a single vertex. Here is the same graph 
from Figure 16.8 as an adjacency list:

{
10: [20, 30],
20: [10, 30],
30: [10, 20, 40],
40: [30]
}

As you can see, the node 10 connects to 20 and 30, the node 20 connects to 10 and 30, and so on.

When to Use Graphs
As you already know, there are many different graph implementations. Adding a vertex and an edge 
to a graph is generally O(1). The run time for searching, deleting, and other algorithms in a graph 
depends on the graph’s implementation and which data structures you used to implement the graph: 
arrays, linked lists, hash tables, etc. In general, the performance of basic operations on graphs depends 
on either the number of vertices in the graph, the number of edges in the graph, or some combination 
of those two numbers since graphs essentially deal with two things: items in the graph (vertices) and 
connections (edges) between those items.

Graphs are helpful in many situations. For example, software engineers at social media companies 
like Instagram and Twitter use vertices in a graph to represent people and edges to represent the asso-
ciations between them. Programmers also use graphs to build networks, often representing the devices 
on it as vertices with the edges representing wireless or wired links between those devices. You can 
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Figure 16.9: An adjacency matrix of the graph in Figure 16.8
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use graphs to create maps with each vertex representing cities and other destinations and edges  
representing roads, bus routes, or air routes between those destinations. Programmers also use graphs 
to find the fastest path between destinations. They are also helpful for computer graphics. You can 
use the vertices and edges of graphs to represent the points, lines, and planes of 2D and 3D shapes 
(Figure 16.10).

Search engine algorithms often use graphs to help determine search ranking based on the connec-
tivity of the search and results. Operating systems and programming language systems also use graphs 
in memory management.

Creating a Graph
Here is how to create an adjacency list in Python:

class Vertex:
    def __init__(self, key):
        self.key = key
        self.connections = {}
 
    def add_adj(self, vertex, weight=0):
        self.connections[vertex] = weight
 
    def get_connections(self):
        return self.connections.keys()
 
    def get_weight(self, vertex):
        return self.connections[vertex]
 
 
class Graph:
    def __init__(self):
        self.vertex_dict = {}
 
    def add_vertex(self, key):
        new_vertex = Vertex(key)

Figure 16.10: Graphs can represent 3D shapes.
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        self.vertex_dict[key] = new_vertex
 
    def get_vertex(self, key):
        if key in self.vertex_dict:
            return self.vertex_dict[key]
        return None
 
    def add_edge(self, f, t, weight=0):
        if f not in self.vertex_dict:
            self.add_vertex(f)
        if t not in self.vertex_dict:
            self.add_vertex(t)
        self.vertex_dict[f].add_adj(self.vertex_dict[t], weight)

First, you define a vertex class, as you did earlier with nodes when you created linked lists:

class Vertex:
    def __init__(self, key):
        self.key = key
        self.connections = {}
 
    def add_adj(self, vertex, weight=0):
        self.connections[vertex] = weight

Your Vertex class has two instance variables: self.key and self.connections. The first variable, 
key, represents the vertex’s key, and the second variable, connections, is a dictionary where you will 
store the vertices each vertex is adjacent to.

def __init__(self, key):
    self.key = key
    self.connections = {}

Your Vertex class has a method called add_adj that accepts a vertex as a parameter and makes it 
adjacent to the vertex you called the method on by adding the connection to self.connections. The 
method also accepts a weight as a parameter if you want to add a weight to the relationship.

def add_adj(self, vertex, weight=0):
    self.connections[vertex] = weight

Next, you define a class called Graph. Graph has an instance variable self.vertex_dict that stores 
the vertices in each graph.

def __init__(self):
    self.vertex_dict = {}

Your class’s method add_vertex adds a new vertex to a graph by first creating a vertex and then 
mapping the key the user passes in as a parameter to the new vertex inside self.vertex_dict.
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def add_vertex(self, key):
    new_vertex = Vertex(key)
    self.vertex_dict[key] = new_vertex

Your next method, get_vertex, accepts a key as a parameter and checks self.vertex_dict to see if 
the vertex is your graph.

def get_vertex(self, key):
    if key in self.vertex_dict:
        return self.vertex_dict[key]
    return None

Finally, your graph class has a method called add_edge that adds an edge between two vertices in 
your graph.

def add_edge(self, f, t, weight=0):
    if f not in self.vertex_dict:
        self.add_vertex(f)
    if t not in self.vertex_dict:
        self.add_vertex(t)
    self.vertex_dict[f].add_adj(self.vertex_dict[t], weight)

Now you can create a graph and add vertices to it like this:

graph = Graph()
graph.add_vertex("A")
graph.add_vertex("B")
graph.add_vertex("C")
graph.add_edge("A", "B", 1)
graph.add_edge("B", "C", 10)
vertex_a = graph.get_vertex("A")
vertex_b = graph.get_vertex("B")

In this example, to keep things simple, two different vertices cannot have the same key.

Dijkstra’s Algorithm
When you are working with graphs, you often need to find the shortest path between two vertices. 
One of the most famous algorithms in computer science is called Dijkstra’s algorithm, and you can 
use it to find the shortest path from a vertex in a graph to every other vertex. The famous computer 
scientist Edsger Dijkstra invented it in only 20 minutes in his head without a pen or paper.

Here is how Dijkstra’s algorithm works. First, you pick a starting vertex. Your starting vertex is the 
vertex you will find the shortest path to every other vertex in your graph from. Say you have a graph 
that looks like Figure 16.11.
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If A is your starting vertex, at the end of your program, you will have a dictionary that contains 
every vertex in the graph and the shortest path from the starting vertex (A) to each vertex.

{
"A": 0,
"B": 2,
"C": 6,
"D": 7,
}

As you can see from Figure 16.11, the shortest path from A to D is 7 because vertex A to vertex B 
to vertex D is 7 (2 + 5), and vertex A to vertex C to vertex D is 14 (6 + 8).

At the beginning of the algorithm, you set the path from the starting vertex to itself to zero and 
set all the other path lengths to infinity (Figure 16.12).

The key to your algorithm is a priority queue. You use a priority queue to do a breadth- first search 
through your graph. You use your priority queue to track vertices and their distances from the starting 
vertex. Let’s take a look at how this works with the graph from earlier.

Your algorithm begins with the starting vertex A in your priority queue. You keep track of all of 
the shortest paths in a dictionary. In your dictionary, you set the distance from vertex A to itself to 0 
and set all other distances to infinity (Figure 16.13). At this point, you haven’t visited any vertices 
yet. Visiting a vertex means popping it off your priority queue, and if you haven’t found a shorter path 
from the starting vertex to it, look at all the vertices adjacent to it for shorter paths to the starting 
vertex. If you find a shorter path, you put that adjacent vertex on your priority queue.
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Figure 16.11: A graph with four vertices

Distance:

A:  0
B: ∞
C: ∞
D: ∞

Figure 16.12: Set the path to the starting vertex to zero and the other paths to infinity.
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At this point your priority queue has only one vertex, so you pop vertex A and its distance from 
the starting vertex (0) off of your priority queue and check to see if you’ve already found a shorter 
path to this vertex. When you are looking at a new vertex from your priority queue, if you’ve already 
found a shorter path from the starting vertex to that vertex, you do not need to do anything. In this 
case, you haven’t found a shorter path to vertex A, so you iterate through all the vertices adjacent 
to vertex A.

Next, you calculate the adjacent vertices’ distances from the starting vertex. You do this by adding 
the distance you got from the priority queue to the adjacent vertex’s weight (its distance from the 
vertex you popped off your priority queue). Because your priority queue holds two pieces of information 
for each vertex on it— the vertex and its distance from the starting vertex— no matter how far you get 
away from the starting vertex, you can easily calculate the distance between a new adjacent vertex 
and the starting vertex by adding the distance you got from your priority queue to the adjacent ver-
tices’ weight.

If the adjacent vertex’s distance from the starting vertex is shorter than any of the paths you’ve 
found so far, you add the new path to your dictionary and put the adjacent vertex on your priority 
queue. In this case, you put both of the vertices adjacent to vertex A (B and C) on your priority queue 
and add their paths to your dictionary (Figure 16.14).

Now, you pop the vertex B off of your priority queue because it has the highest priority (the short-
est path to the starting vertex). You have not found a shorter path from B to the starting vertex yet, 
so you continue visiting this vertex. You check all of its adjacent vertices for shorter paths, add any 
shorter paths you find to your dictionary, and update your priority queue. In this case, B has only one 
adjacent vertex with a shorter path (D), so you update D in your dictionary to 7 and add D and its 
distance to the starting vertex to your priority queue (Figure 16.15).

Unvisited Vertices {A, B, C, D}
Priority Queue [(2, B), (6, C)]
Distances {

A:  0,
B:  2,
C:  6,
D: ∞,
}

Figure 16.14: The data structures after visiting vertex A

Unvisited Vertices {A, B, C, D}
Priority Queue [(0, A)]
Distances {

A:  0,
B: ∞,
C: ∞,
D: ∞,
}

Figure 16.13: What the data structures in your algorithm look like when it first starts
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Now you pop the vertex C off your priority queue because it has the shortest path in your priority 
queue. C is also adjacent to D, but as you saw earlier, its distance from the starting vertex is 14 and 
you’ve already found a shorter path to D, so you do not add D to your priority queue again (Figure 16.16). 
Ignoring longer paths (not visiting them again) is what makes this algorithm so efficient.

Vertex D is not adjacent to any other vertices, so once you pop off vertex D, your algorithm is 
complete (Figure 16.17).

The following is the code to implement Dijkstra’s algorithm in Python. In this case, your algorithm 
expects a graph as a dictionary of dictionaries rather than the Graph class you coded earlier in the chapter.

import heapq
 
 
def dijkstra(graph, starting_vertex):
    distances = {vertex: float('infinity') for vertex in graph}
    distances[starting_vertex] = 0

Unvisited Vertices {A, B, C, D}
Priority Queue [(6, C) (7, D)]
Distances {

A:  0,
B:  2,
C:  6,
D:  7,
}

Figure 16.15: The data structures after visiting vertex B

Unvisited Vertices {A, B, C, D}
Priority Queue [(7, D)]
Distances {

A:  0,
B:  2,
C:  6,
D:  7,
}

Figure 16.16: The data structures after visiting vertex C

Unvisited Vertices {A, B, C, D}
Priority Queue [ ]
Distances {

A:  0,
B:  2,
C:  6,
D:  7,
}

Figure 16.17: The data structures after visiting vertex D
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    pq = [(0, starting_vertex)]
 
    while len(pq) > 0:
        current_distance, current_vertex = heapq.heappop(pq)
        if current_distance > distances[current_vertex]:
            continue
 
        for neighbor, weight in graph[current_vertex].items():
            distance = current_distance + weight
            if distance < distances[neighbor]:
                distances[neighbor] = distance
                heapq.heappush(pq, (distance, neighbor))
    return distances
 
 
graph = {
    'A': {'B': 2, 'C': 6},
    'B': {'D': 5},
    'C': {'D': 8},
    'D': {},
}
 
dijkstra(graph, 'A')
print(dijkstra(graph, 'A'))

First, you import heapq because your algorithm uses a heap as a priority queue. Your function 
dijkstra returns a dictionary containing the shortest paths from the starting vertex. Your function 
takes two parameters: a graph and the vertex you want to find the shortest paths from.

import heapq
 
 
def dijkstra(graph, starting_vertex):

In this implementation, you will pass in an adjacency list like this:

graph = {
    'A': {'B': 2, 'C': 6},
    'B': {'D': 5},
    'C': {'D': 8},
    'D': {},
}

When you call your function dijkstra, you pass in the graph and a string to represent a starting 
vertex like this:

dijkstra(graph, 'A')

The starting vertex must be a vertex in the graph.
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Inside your function, you create a dictionary called distances to hold the paths from the starting 
vertex to each other vertex in the graph. At the end of the algorithm, this dictionary will contain the 
shortest path from the starting vertex to every other vertex. You create the dictionary using a dictio-
nary comprehension: similar to a list comprehension but for dictionaries. Your dictionary compre-
hension maps each vertex to float('infinity'): Python’s representation of infinity. You map each 
vertex to infinity because your algorithm compares the lengths of paths and the paths start as unknown, 
so you use infinity to represent that.

distances = {vertex: float('infinity') for vertex in graph}

When you pass in the dictionary (representing a graph) from earlier to dijkstra, the previous code 
produces a dictionary that looks like this:

{'A': inf, 'B': inf, 'C': inf, 'D': inf}

Next, you set the distance from the starting vertex (the vertex you are finding all of the shortest paths 
from) to itself to zero since the distance between a vertex and itself is zero.

distances[starting_vertex] = 0

Next, you create a list (you will use as a priority queue) that initially holds the starting vertex and its 
distance from the starting vertex (zero):

pq = [(0, starting_vertex)]

Next comes your code to visit the vertices on your priority queue. You use a while loop that runs as 
long as there is still one or more vertices left in the priority queue. You use this while loop to visit all 
the vertices in your graph.

while len(pq) > 0:

Inside your while loop, you pop the distance from the starting vertex and the current vertex from 
your priority queue and save them in the variables current_distance and current_vertex. The 
current vertex is the vertex in the priority queue that has the shortest distance from the starting vertex. 
Your priority queue automatically serves you the vertex with the shortest distance whenever you pop 
a new vertex off it (because your priority queue is a min heap).

current_distance, current_vertex = heapq.heappop(pq)

You want to process a vertex only if you haven’t already found a shorter path from that vertex to 
the starting vertex. That is why next, you check to see if the current distance from the starting vertex 
is greater than a distance you’ve already recorded in your distances dictionary. If it is greater, you 
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don’t care about that path because you’ve already logged a shorter path, so you use the continue key-
word to jump back to the top of your while loop and examine another vertex (if there is one) instead.

if current_distance > distances[current_vertex]:
    continue

If the current_distance is not greater than (in other words, it is shorter than or equal to) 
distances[current_vertex], you iterate through all of the vertices adjacent to the current vertex.

for neighbor, weight in graph[current_vertex].items():

For each adjacent vertex, you calculate its distance from the starting vertex by adding   
current_ distance to its weight. This calculation works because current_distance represents how 
far from the starting vertex the current vertex is. The variable weight represents how far the adjacent 
vertex is from the current vertex, so when you add them together, you get the distance from the 
starting vertex.

distance = current_distance + weight

Next, you check to see if the new path you found for that adjacent vertex is shorter than the path 
you already have for that vertex in your distances dictionary. If it is, you update your dictionary with 
the new path. Then, you push the new distance and the vertex onto your priority queue so your 
algorithm can visit it.

if distance < distances[neighbor]:
    distances[neighbor] = distance
    heapq.heappush(pq, (distance, neighbor))

When you break out of your while loop, it means you’ve explored all of the vertices, and distances 
now contains the shortest path from the starting vertex to every other vertex in your graph. All that 
is left to do now is return distances.

return distances

Vocabulary
graph: An abstract data type where a piece of data connects to one or more other pieces of data.

vertex: A piece of data in a graph.

payload: Additional data in a graph vertex.

edge: The connection between vertices in a graph.

weight: The cost to travel between vertices.
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directed graph: A graph where each edge has a direction associated with it, and you can move bet-
ween two vertices only in that direction.

undirected graph: A type of graph where the edges are bidirectional, which means you can travel 
back and forth in either direction between two connected vertices.

complete graph: A graph where every vertex connects to every other vertex.

incomplete graph: A graph where some but not all vertices are not connected.

path: A sequence of vertices connected by edges.

cycle: A path in a graph starting and ending at the same vertex.

acyclic graph: A graph that does not contain a cycle.

edge list: A data structure where you represent each edge in a graph with two vertices that connect.

adjacency matrix: A two- dimensional array of rows and columns that contains a graph’s vertices.

adjacent: Two or more connected vertices in a graph.

adjacency list: A collection of unordered lists, with each list representing the connections for a 
single vertex.

Dijkstra’s algorithm: An algorithm you can use to find the shortest path from a vertex in a graph 
to every other vertex.

Challenge
1. Modify Dijkstra’s algorithm so it only returns the path from a starting vertex to another vertex 

you pass in.





17 Self- Taught 
Inspiration: Elon Musk

Today, Elon Musk is best known for founding Tesla, Space X, and PayPal, which revolutionized 
their industries. But long before he became an entrepreneur and one of the richest men on the 

planet, Musk was driven by a simpler idea: he wanted to design video games. How did self- taught 
programmer Musk go from a kid playing games to a billionaire? In this chapter, you will learn about 
Musk’s education and how his interest in gaming led him to learn to program.

Musk’s education began across the world from the Los Angeles home where he resides today. Born 
and raised in South Africa, Musk became interested in computers when he was ten years old. Musk was 
a driven child who would sometimes spend 10 hours a day reading books. He was also obsessed with 
video games. Musk explained that his love of video games drove him to learn to program. “I thought 
I could make my own games. I wanted to see how games work,” Musk explained. “That’s what led 
me to learn how to program computers.”

Musk started with a book on the BASIC programming language, a popular language in the 1960s, 
which many computers still used in the 1980s. The book offered a six- month program to learn to code, 
but Musk raced through the entire program in three days. It wasn’t long before Musk programmed 
his first video game. In 1984, when he was just 12 years old, Musk created Blastar. The space- based 
shooter drew inspiration from Alien Invaders. In Musk’s game, players shot down spaceships carrying 
hydrogen bombs while dodging deadly “status beams.”

Musk pitched his game to PC and Office Technology, which offered to buy Blastar for $500. Musk 
already learned how to turn a profit in his first programming venture: an important turning point in 
Musk’s education. Blastar taught Musk several vital lessons. First, he realized that after reading a book 
and playing around with coding, he could create his own video game. Translating his learning into a 
final product also brought results: at only 12 years old, Musk was making money from his program-
ming skills.

But Musk’s education did not end there. The drive that pushed Musk to learn programming 
continued into his teen years. At 17 years old, Musk moved from South Africa to Canada, where he 
planned to live with his great- uncle in Montreal. There was just one problem: the uncle had already 
moved to Minnesota, which Musk realized only once he reached Canada. Musk didn’t give up. He had 
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other relatives in Canada, so he bought a bus ticket and started tracking them down. It took a nearly 
2,000- mile bus ride for Musk to find a second cousin who offered him a place to stay. Still a teenager, 
Musk worked on a farm in Saskatchewan, cut logs in Vancouver, and cleaned out boilers.

Musk described cleaning boilers in Elon Musk: Tesla, SpaceX, and the Quest for a Fantastic Future 
Ecco, Illustrated edition (January 24, 2017): “You have to put on this hazmat suit and then shimmy 
through this little tunnel that you can barely fit in,” he explained. “Then, you have a shovel, and 
you take the sand and goop and other residue, which is still steaming hot, and you have to shovel it 
through the same hole you came through. There is no escape. Someone else on the other side has to 
shovel it into a wheelbarrow. If you stay in there for more than 30 minutes, you get too hot and die.”

In 1989, Musk enrolled at Queen’s University in Ontario. In college, Musk told a friend, “If there 
was a way that I could not eat, so I could work more, I would not eat. I wish there was a way to get 
nutrients without sitting down for a meal.” Musk’s drive continued to push him. He built and sold 
computers from his dorm room. “I could build something to suit their needs like a tricked- out gaming 
machine or a simple word processor that cost less than what they could get in a store,” Musk related.

He also spent hours playing games like Civilization and thought about a career in gaming. After 
transferring to the University of Pennsylvania, Musk began to gravitate toward business and technology. 
Although gaming had been his passion since he was a boy, Musk wanted to have a larger impact on 
the world. “I really like computer games, but then if I made really great computer games, how much 
effect would that have on the world,” Musk wondered. “It wouldn’t have a big effect. Even though 
I have an intrinsic love of video games, I couldn’t bring myself to do that as a career.”

In college, Musk knew he was a quick learner. He was already interested in solar power, space, the 
internet, and electric cars. After earning bachelor’s degrees in economics and physics, Musk moved to 
California to earn his PhD in energy physics at Stanford. Silicon Valley quickly drew Musk’s attention, 
and he dropped out of his doctoral program after only two days.

Instead, Musk launched Zip2 Corporation, which made online city guides. He sold the company 
in 1999 for more than $300 million. Since then, Musk has been involved with many other successful 
companies, including PayPal, SpaceX, Tesla Motors, and The Boring Company. The drive that pushed 
Musk to learn to program on his own helped Musk become one of the most successful entrepreneurs 
of all time.
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For most people on Earth, the digital revolution hasn’t even started yet. Within the next 10 years, all 
that will change. Let’s get the whole world coding!

Eric Schmidt

Nice work! You made it through all the technical parts of this book. Your hard work is paying off, 
and you are well on your path to becoming a software engineer. I want to thank you for choosing to 
read my book and being part of the self- taught community. I can’t believe how big our community has 
become. It has been terrific getting the chance to meet so many inspiring people, and I cannot wait 
to read your success story next. In this final chapter, I will cover what you should do moving forward 
and provide some resources that might help you.

What’s Next?
First, let’s take a second to celebrate how far you’ve come as a self- taught programmer. You not only 
know how to program, you also understand many fundamental computer science concepts. You know 
how to write algorithms to solve various problems, and you can look at two algorithms and quickly 
decide which one you want to use. You can write recursive algorithms to elegantly solve problems 
and search and sort data in various ways. You are familiar with a variety of data structures, and you 
don’t just know what they are: you know when to use them as well. Overall, you’ve become a much 
more knowledgeable programmer with so many new tools in your toolkit.

Not only have you significantly increased your programming knowledge, with a little bit of prac-
tice, you can pass a technical interview, which means you are well on your way to landing a job as a 
software engineer. So, what should you do next? That depends on how much professional program-
ming experience you have. If you already have experience, you can skip the next section. If you don’t 
have any experience and want to improve your odds of getting hired, read on.
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Climbing the Freelance Ladder
One thing new self- taught programmers struggle with is applying for jobs without any experience. 
They face the classic problem: they need experience to get a job and need a job to gain experience. 
I’ve come up with a solution to this problem that my students have had a lot of success with: I call 
it climbing the freelance ladder. I used the same method to get a job as a software engineer at eBay 
without any experience at a traditional company.

Before I got my job at eBay, I worked as a freelance programmer. The key to my success was I didn’t 
start trying to get big jobs. I started with small jobs on a platform called Elance (now Upwork). If you 
aren’t familiar with Upwork, it is a site for freelancers. Employers looking for contract work post a 
project, and contractors bid to do the job. There are other sites similar to Upwork, such as Freelancer 
.com and Fiverr. My first job paid something like $25 and took me several hours: not a great hourly 
wage. Fortunately, the job paid me much more in experience. The client was happy with my work on 
the project and left me a five- star review. That made getting my next project a little bit easier. Again, 
I worked hard and earned another five- star review. I worked my way up to bigger and bigger projects, 
eventually landing thousand- dollar projects.

When I interviewed at eBay, I didn’t have any prior programming experience at a traditional 
company; however, during my interview, I focused on talking about all the freelance projects I had 
worked on. My interviewers at eBay felt my freelance experience made me a great candidate, and they 
ended up offering me the job. If I had tried to interview there with no prior programming experience 
at a traditional company and without my freelance background, I doubt I would have gotten the job 
that kicked off my entire career.

If you want to work as a software engineer but don’t have any professional experience, don’t start 
interviewing yet. Sign up for a platform like Upwork and start trying to get any job you can, even if 
it pays only $25. Then, work your way up the freelance ladder by earning five- star reviews and bid-
ding on projects that pay more and more. When you’ve accumulated an impressive amount of expe-
rience, you are ready to apply for your dream software engineering job at your favorite company.

How to Get an Interview
I got my first job as a software engineer through LinkedIn. LinkedIn is still a fantastic resource for 
getting hired. Once you’ve gained some experience by climbing the freelance ladder, I recommend 
spending time updating your LinkedIn profile. Make sure to include your freelance experience as 
your most recent job and put your job title as software engineer. Consider reaching out to some of 
the companies you did work for and asking if they would consider endorsing your programming 
skills on LinkedIn.

https://Freelancer.com
https://Freelancer.com
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Once your LinkedIn profile is up- to- date (and your résumé is, too), it is time to start networking. 
I recommend picking five to ten companies where you are interested in working and reaching out to 
recruiters or other team members at those companies. Companies often have a shortage of engineers 
and offer referral bonuses to employees who refer engineers, so if you are qualified for the position, 
they will most likely be happy to hear from you.

You can also use a resource like Meetup.com to find groups who get together to network and meet 
new people, or you can directly apply for jobs using websites like Angel.co or Indeed.com.

How to Prepare for a Technical Interview
When it comes time to apply for jobs, eventually you will need to pass a technical interview. You 
should give yourself plenty of time to prepare for it. There is no steadfast rule, but I recommend that 
you give yourself at least two to three months to prepare. It also depends on how competitive the 
companies you are applying to are. If you are applying to one of the FAANG companies (Facebook, 
Amazon, Apple, Netflix, or Google/Alphabet), it is not unheard of for hopeful engineers to spend six 
months or more preparing for their technical assessments. If you are applying to a startup, on the 
other hand, you may be able to get away with preparing for only a few weeks.

I recommend dedicating at least a few hours a day to solving problems on LeetCode, one of my 
favorite resources for preparing for technical interviews. It has hundreds of data structure and algorithm 
practice problems as well as solutions.

One of the hardest parts about technical interviews is the unnatural environment they take place 
in. Usually, when you are programming, you don’t have someone standing over your shoulder evalu-
ating you. Programmers also are not used to solving problems in short time periods. Nevertheless, 
these artificial constraints are what you will face in a technical interview. Competitive programming 
is the best solution I’ve found to prepare for coding in this type of environment. Competitive program-
ming is coding as a sport. You compete against other programmers to solve computer science problems. 
It is the best way to prepare for a technical interview because it prepares you for the unique conditions 
you will be facing: solving problems under time pressure. When I did competitive programming to 
prepare for a set of technical interviews, I performed significantly better than in previous times when 
I only prepared by practicing problems on my own. You can try a website like Codeforces when you 
are ready to try competitive programming.

Once you’ve used competitive programming to get used to solving challenging technical problems 
quickly, you should try a few mock interviews with a software engineer, ideally someone who has 
conducted an interview before. If you can’t find a friend to help, you can try hiring a software engineer 
on a freelance platform like Upwork or on Codementor. You can hire an experienced software engi-
neer on these platforms for around $30 to $60, and spending even a few hours practicing a mock 
interview is an excellent investment.



Data Structures194

Additional Resources
As you know, computer science is an enormous topic. My goal was to write a book you would finish 
and cover the subjects most likely to help you in your programming careers. That means, unfortu-
nately, I had to leave a lot of topics out of this book. In this section, I will briefly cover some of the 
things I left out of this book and give you resources to learn about them.

Although you learned about binary trees in this book, I did not cover other trees deeply. You may 
want to spend more time studying different types of trees such as binary search trees, AVL trees, and 
parse trees. I also did not cover every common sorting algorithm. If you are preparing for a technical 
interview or want to learn even more about sorting algorithms, you should consider studying  
heapsort, selection sort, quicksort, counting sort, and radix sort.

You can learn about all these topics and more in Introduction to Algorithms by Thomas H. Cormen 
(MIT Press, 2010). Be warned, however, that this is not an easy book to read. Now that you under-
stand computer science basics, you will ideally find the content much easier to understand. Computer 
Science Illuminated by Nell Dale and John Lewis (Jones & Bartlett Learning, 2012) is an excellent 
choice for learning more about computer science subjects outside of data structures and algorithms.

Final Thoughts
Thanks for choosing to read my book. I hope you enjoyed reading it as much as I enjoyed writing it. If 
you have questions or comments, feel free to reach out to me in the Self- Taught Programmers Facebook 
group located at https://facebook.com/groups/selftaughtprogrammers. You can also subscribe 
to my newsletter to stay up- to- date with the Self- Taught community at https://selftaught.blog. 
Finally, you can keep in touch with me on social media. My handle is @coryalthoff on Instagram, 
Twitter, and Facebook. If you have a second to leave a review on Amazon, I will be eternally grateful. 
Each review helps sales enormously, which allows me to continue creating new educational material 
for self- taught programmers.

Take care!

https://facebook.com/groups/selftaughtprogrammers
https://selftaught.blog
https://www.instagram.com/coryalthoff/
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