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Available morphological analyses for fine particles are briefly 
reviewed. Three methods for characterizing morphology of alumina and 
hydrate are studied in some detail: shape factor by Optomax Image 
Analyzer, signature by sieve cascadography and Fourier method. The shape 
factor represents only a global deviation from a circle and does not fully 
reflect small scale protuberances on the particle profile. The sieve 
cascadography, when fully developed, can be a useful tool for shape 
characterization. The commercially implemented Fourier analysis provides 
information on both global and local shape features by its morphological 
descriptors which can be used for distinguishing various types of 
particles. An example is given in which a newly defined "blockiness index" 
from a combination of Fourier descriptors is used to identify and quantify 
the blocky alumina or hydrate crystals. 
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Introduction 

Particle morphological analysis deals primarily with shape analysis of 
fine particles. In contrast to size analysis which has been well 
developed, morphological analysis has started to progress at an accelerat-
ing pace only in the last decade. A cross section of various attempts to 
establish a systematic methodology for shape analysis is given in 
Figure 1 (1). 

Not included in the figure are some new developments such as the sieve 
cascadography (2,3) and the fractal analysis (4,5). The sieve cascado-
graphy will be discussed in some detail in this paper. The fractal 
analysis was formulated by Mandelbrot (6) for dealing with many naturally 
occurring boundaries whose profiles have no tangents or differentiate 
describing functions at many points and cannot be precisely described by 
the traditional Euclidean geometry and calculus. The underlying notion of 
the analysis is that dimension is not an absolute quantity but an opera-
tional concept. The methodology has been recently applied to the charac-
terization of fine particles (4,5), particularly those possessing rugged 
boundaries. A quantity called the fractal dimension which has a value 
between 1 and 2 for a fractal or rugged curve is used to describe the 
ruggedness of a fine particle profile. The gross shape of the particle, 
however, is not accounted for. Depending on the nature of the material, a 
fine particle profile may exhibit different fractal dimensions at different 
levels of resolution under which the profile is examined. 

Most characterization methods are based on two-dimensional images of 
individual particles as the images are most receptive to the human percep-
tion of shape. Other methods, however, infer shape features from physical 
measurements without information on individual particles. The information 
content and the uniqueness and completeness of the shape descriptors 
derived from those schemes also vary. For example, the frequently used 
ratio of the Martin-to-Feret diameter, the Heywood flatness ratio and 
elongation ratio contain only four points on a particle profile as the 
shape information. In?contrast, the shape factor, which is defined as 
4 it (area)/(perimeter) , and the Fourier method in principle utilize all 
the points on the profile. 

Many methods use a single parameter to characterize the complex shape 
features of a particle or an assembly of particles. It is conceivable then 
that two or more inherently different shapes could have the same value of 
the parameter, thus creating the problem of nonuniqueness. A few methods 
circumvent this situation by providing an array of descriptors to distin-
guish a particle or a sample of particles from others. The Fourier method 
and the sieve cascadography to be discussed in this paper are examples of 
such methods. 

Three methods for particle shape characterization have been studied 
and evaluated to some extent: the shape factor, the sieve cascadography 
and the Fourier analysis. The objective of this paper is to review the 
feasibility of the three methods for extracting shape information from 
alumina and hydrate particles. 

Shape Factor 

As our first attempt at characterizing particle shape, the Optomax 
Semiautomatic Image Analyzer (by Optomax Inc.) was used for its portion of 
the system on shape factor determination. 
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Schemes for Assessment of Particle Shape 

— Class 1 | Individual Particles 

Category 1 —Distances Between Parallel Tangents 

Heywood 
Flatness Ratio m =— 

Elongation Ratio n =-

Krumbein 
Lees 

Category 2 Standard Shape Comparisons 

-Hausner 
■ Projected Area Diameter d 

P — f Surface Coefficient 
k Volume Coefficient 

Mackey 
Lees 
Wadell - Sphericity and Roundness 

E Krumbein 
Rittenhouse 

Category 3 Lengths of Intercepts 

Church 
Cole 
Chalkley 

Class 2 — Bulk Properties 

Beddow 
Flow Rate 
Permeability 
Porosity 
Bouncing 

Class 3 — Generated Shapes 

-Fourier Series 
-Polynomial Generation 
- Matrix Mapping 
" Syntactic Methods 

Class 4 Use of Words 

-BS 2955 
-Shape Group 
-Morphology Class 
-Information Content of Words 

Figure 1. A proposed classification of schemes of shape analysis (after J. K. Beddowl 
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The system comprises a microcomputer, a TV monitor, a twin floppy disk 
u n i t , a graphics t a b l e t , a p r in te r and the image analysis software package. 
In add i t ion , the video display package includes a TV camera, a camera 
dr iver and mixer u n i t , a microscope in ter face and support system. With 
th is conf igurat ion, e i ther microscopic image or photographic image { e . g . , 
from SEM) can be processed and analyzed. The image appears on the TV 
monitor. A cursor operated from the graphics tab le t stylus appears « i n -
c identa l ly with the image of par t ic les and is used to guide t rac ing around 
par t ic les of i n t e r e s t . Tracing is performed using the stylus on the 
graphics t a b l e t . The image analysis program performs the data and s t a t i s -
t i c a l analysis for various geometric features, one of which is the shape 
f a c t o r , o, which is defined as: 

a = 4 IT (a rea ) / (per imeter ) (1) 

It is noted that the shape factor is dimensionless and rotationally 
invariant, i.e., independent of the direction at which the measurement is 
made. 

The shape factor as defined in Equation 1 indicates the degree of 
departure from being a perfect circle. In the limiting case of a circle, 
the shape factor becomes 1. For reference purposes, the shape factors for 
various geometries are given in Table I. It is obvious that the shape 
factor is small for elongated figure and decreases as the aspect ratio 
increases. Variation of the shape factor appears to be relatively small 
for particles or geometries not too different from a circle or square in 
gross shape. A typical histogram of the shape factor can be seen in 
Figure 2. 

Table I. Shape Factors For Various Geometries 

Geomet 

Circle 

Equi la ter ; 

Square 

Pentagon 

Hexagon 

Heptagon 

Octagon 

Nonagon 

Decagon 

Rectangle 

Rectangle 

Rectangle 

Rectangle 

Rectangle 

7 

1 Triangl 

with 

with 

with 

with 

with 

AR+ 

AR 

AR 

AR 

AR 

e 

= 
= 

= 
= 
= 

1 

2 

3 

5 

10 

5 

0 

0 

0 

0 

Shape Factor* 

1.00 

0.605 

0.785 

0.865 

0.907 

0.932 

0.948 

0.959 

0.967 

0.754 

0.698 

0.589 

0.436 

0.260 

*Shape Factor = 4 n (area)/(perimeter) 

+AR = Aspect Ratio = Long side/short side 
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In an attempt to determine if different size fractions within the same 
sample show different shape factors, a smelting grade alumina was sieved to 
the following narrow size fractions: 38-44, 44-61, 61-125, 125-177 and 
177-350 ym. The measured shape factors are given in Table II which reveals 
that the shape factor is about the same within the range of 38 to 177 vim 
while the coarse fraction shows a smaller value. It appears that to 
characterize the shape of particles by the shape factor independent of the 
size effect, samples could be prepared to be within that size range. 

Table II. Shape Factors for Various Size Fractions of an Alumina 

Sample, vim 

38-44 

44-61 

61-125 

125-177 

177-350 

Mean 

0.839 

0.836 

0.826 

0.836 

0.776 

Shape Factor 
Standard 
Deviation 

0.0531 

0.0560 

0.0543 

0.0602 

0.0651 

A wide variety of alumina and hydrate samples were characterized with 
the shape factor. They represent many sources, both within and outside 
Alcoa, and different shapes. The mean of the measured shape factor varies 
from about 0.75 to 0.92. The alumina sample with a mean shape factor of 
0.92 is rather spherical while the sample with a value of 0.75 appears very 
irregular in shape as seen under a light microscope or from SEM 
photographs. 

The shape factor is a lumped parameter for reflecting the global shape 
features. Like many other single-parameter shape characterizing methods, 
it suffers from the drawback of low discriminating power among various 
shapes. For example, the shape factors for the blocky crystals in Figures 
3 to 5 are not apparently different from those for aggregates or 
agglomerates. Thus more sophisticated shape characterization schemes are 
desirable or necessary for some special applications. 

Sieve Cascadography 

Unlike the methods based on images such as the shape factor and the 
Fourier analysis, the concept of sieve cascadography is based on the notion 
that, for particles with a given size, each particle shape has a charac-
teristic residence time through a cascade of sieves which are identical in 
opening size and construction and are subject to controlled vibration. 
Grossly regular and round particles pass through the test system more 
rapidly than irregular and elongated particles. Thus, measurement of the 
particle flux exiting the stack of sieves gives the unique shape informa-
tion or signature of a powder. The presence of a large fraction of 
particles of a specific shape will be indicated by a peak in the plot 
representing the residence time of those particles in the sieve stack. The 
sieve cascadography derives its name from the analogy to the gas or liquid 
chromatography in that cascading the particles through a number of 
identical sieves provides temporal separation of particle species (2). 
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(a). Blocky cryetal: Shape factor - 0.841 
BkKkliw» Index - 8.12 (a). Mocky crystal: Shape factor - 0.843 

Blocklneai Index - 11.2 

(bl. Aggregate Shape (actor - 0 769 
Blocklnaaa Index - 0.895 
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Agglomerate: Shape factor - 0.758 
Blockiness index ■ 0.246 (b). Aggregate Shape factor - 0.744 

Blocklneas Index - 0.480 
(c). Agglomerate: Shape factor - 0.807 

Blocklneas Index - 0.348 

Figure 3. Blockiness index for blocky crystal, aggregate and agglomerate of hydrate 
Figure 4. Blockiness Index for blocky crystal, aggregate end agglomerate of cooler discharge alumina 
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(b). Aggregate: Shape factor ■ 0.636 
Blockiness index = 0.411 

(c) Agglomerate: Shape factor = 0.831 
Blockiness index = 1.17 

Figure 5 Blockiness index for blocky crystal, aggregate and agglomerate of bench calcined alumina 
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I t has been established that for a good and practical gross 
separation, -100+120 mesh or comparable fract ions of powders could be used 
to pass through a stack of 20 ident ical 100-mesh sieves (3) . I t is noted 
that increasing the number of sieves used increases both the resolution and 
the time required for analysis. To prepare a sample for analysis, the 
powder is f i r s t sized for 10 minutes on a sieve stack. The sample is then 
injected in to the f i r s t (top) sieve at s tar t and the part ic les are 
collected at regular time intervals at the base of the stack. For prevent-
ing par t i c le -par t i c le interference during the i n i t i a l period of the anal-
ys i s , a loading c r i te r ion is used: one par t ic le or less for each hole in 
the f i r s t sieve. This usually amounts to less than 2.5 g of sample for 
100-mesh sieves. 

Typical ly , the reproducib i l i ty of the method is good. Shown in 
Figures 6a and 6b are test data for two d i f ferent alumina samples, each 
measured twice. The trends and the def lect ion points of the characteriza-
t ion curves are preserved and, in general, the curves are close to each 
other between duplicate runs. 

Several aluminas produced or processed under various conditions were 
characterized by the sieve cascadography. The results for four rather 
d i f fe ren t ly shaped aluminas are compared in Figure 7 where the normalized 
mass f lux is plotted as a function of the residence t ime. The data plots 
are a measure of the powders' shape d is t r ibut ions or signatures. I t is 
seen that the shape d is t r ibut ions of the four aluminas are rather d i f ferent 
as ref lected by the magnitude and location of peak(s), the number and 
locations of def lect ion points, e tc . This seems to indicate that indeed 
the cascadograph signature for each sample is unique. 

The basic idea of the sieve cascadography has been examined using the 
shape factor described ea r l i e r . Samples of a given alumina which passed 
through the sieve stack at various time intervals were collected and 
characterized by the shape fac tor . Data in Table I I I which shows a 
generally decreasing shape factor with increasing residence time seems to 
support the p rac t i ca l i t y of the sieve cascadography. As confirmed by the 
scanning electron micrographs in Figure 8, smooth and re la t ive ly round 
part ic les move rapidly through the sieve stack while more elongated or 
i r regular part ic les move slowly. 

Table I I I . Shape Factors for Part icles with Various 

Residence Times in Sieve Cascadograph 

Shape Factor 
Standard 
Deviation 

0.0670 

0.0400 

0.0501 

0.0676 

0.0792 

0.0682 

0.0788 

Sample Residence Time 

Start ing Material 

10-20 s 

30-60 s 

2-4 min 

4-8 min 

8-16 min 

32-64 min 

Mean 

0.866 

0.895 

0.872 

0.834 

0.830 

0.833 

0.829 
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Figure 6. Reproducibility tests for sieve cascadography 
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Figure 7. Characterization curves of various aluminas by sieve cascadography 
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The signature curves obtained from the sieve cascadography are 
currently difficult to interpret and, in some cases, experience is required 
to use the signature for distinguishing samples with subtle differences. 
From the practical point of view, it would be desirable in further develop-
ments if readily usable information can be extracted from the data plots in 
the form of an array of parameters. Hopefully, these parameters are physi-
cally meaningful. The improvement in data analysis, coupled with refine-
ment and automation in data acquisition hardware and techniques, should 
make the method of sieve cascadography an operationally simple and useful 
tool for shape characterization and classification. 

It is noted that the same concept of residence time as a function of 
particle shape has been applied to a similar technique using a tilted, 
rotating cylinder (7). 

Fourier Analysis 

One of the important features of a unique and adequate shape analysis 
is that given a set of shape descriptors derived from the analysis one can 
technically regenerate the original particle profile. One such method is 
the Fourier analysis of digitized profile points (8,9,10). 

Fourier functions are one of several sets of orthogonal, normalized 
and complete functions capable of adequately representing the complicated 
particle profiles (11). Other functions include Walsh functions and Haar 
functions. Fourier functions, however, are more widely used and rather 
effective in most cases. The method of Fourier analysis has been examined 
in this study. 

Hardware 

The system configuration used for the Fourier analysis of par t ic le 
prof i les (Shape Analyzer™ by Shape Technology) is schematically shown in 
Figure 9. I t consists of a high qual i ty TV camera connected to a micro-
computer (by Intercontinental Micro Systems with a Z-80A microprocessor) 
through an analog-to-digi ta l converter with an accompanying TV monitor. 
The TV monitor is capable of displaying the real time image as well as 
"freezing" the par t ic le images for analysis in the computer. The system 
also contains dual 8-inch floppy disk dr ives, a 70-megabyte hard disk for 
mass storage, a 20-megabyte streaming tape for backup and a p r in te r . With 
an optical microscope, the morphology of a f ine par t i c le may be studied 
d i rect ly through the TV camera. A l ternat ive ly , a photographic image such 
as from SEM or TEM may be analyzed. 

The TV camera scans the f i e l d of view hor izonta l ly . The f i e l d has a 
resolution of 480 (ver t i ca l ) X 512 (horizontal) pixels or ce l l s . 

Software 

Software is divided into two major parts: data acquisition and data 
analysis. Data acquisition involves digitizing images in three different 
modes: automatic, semiautomatic and manual. The automatic mode provides 
the fastest digitizing but cannot distinguish two particles in contact with 
each other from a single integral particle. If the particles are well 
dispersed, this mode of digitizing can be used with ease and speed. The 
semiautomatic mode permits the choice of whether a specific particle should 
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Figure 9. Automated image analyzing system, Shape Analyzer 
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be considered and does th is automatically from par t ic le to par t ic le within 
the same window frame on the screen. This mode is generally preferred. 
The manual mode is used with a keyboard-controlled cursor to move to the 
desired par t i c le for image d i g i t i z a t i o n . In any mode, part ic les which only 
pa r t i a l l y appear within the window frame are automatically excluded for 
analysis. Data analysis is performed by the Fourier method with f ina l 
results in the form of a set of morphological descriptors. These 
descriptors have unique physical meanings. 

Prof i le Tracing 

The par t i c le prof i les are f i r s t observed by the TV camera. At the 
operator's response for accepting the image, the analog video signals are 
sent to the analog-to-digi ta l converter where the analog signals are 
converted to d ig i t a l signals which are then transferred to the computer. 

Based on the concept of "contour fo l lowing" (12), the image 
d i g i t i z i n g , or spec i f ica l ly edge t rac ing, is done by comparing the video 
data with a preset threshold gray l eve l . This threshold number is the 
estimate of the gray level that best d i f ferent ia tes between the image and 
the background. The gray level 0 is the darkest and level 255 the 
br ightest . Consider the case of dark images in l i gh t background. Points 
with gray levels lower (that i s , darker) than the threshold number are 
considered to be wi th in the image; those with higher gray levels are 
considered as background. Based on th is procedure, the edges of the 
par t i c le image may be traced. The program has been wr i t ten to show the 
traced p ro f i l e (or extracted edge) immediately superimposing the par t ic le 
image that has been d i g i t i zed . Thus, the operator can examine whether a 
threshold value has been properly selected within a range. 

There are two major factors which w i l l cause the d ig i t i zed (x, y) 
points to deviate from " t rue" edge points. F i r s t , due to the fact that the 
(x, y) data obtained from the d i g i t i z i ng process are discrete in nature, 
roundoff error is involved. Second, some degree of fuzziness of the edges 
can exist due to the var iat ion in gray leve ls . As a consequence of these 
factors, certain amounts of high frequency noise are present in the image 
of the par t i c le p r o f i l e . The noise is f i l t e r e d by means of a s ta t i s t i ca l 
procedure (13). The "smoothed" d ig i t i zed points are then checked for 
possible reentrant portions before data are analyzed by the R-S Fourier 
method to be discussed l a te r . 

Fourier Method 

Three major Fourier methods have been developed: the R-9 method (8, 
14), the 9-i method (15) and the R-S method (16). A l l methods u t i l i z e the 
Fourier transform on the points of the par t i c le p ro f i l e to obtain the i r own 
morphological descriptors. In the R-9 method, the (x, y) pairs or coordi-
nates are converted to polar coordinates or (R, 9) pa i rs , using the center 
of gravity of the par t ic le image as the or ig in (Figure 10). These (R, 9) 
pairs are then expanded in to a Fourier series and the descriptors are 
calculated from the Fourier coef f i c ien ts . In the 0 - i method, the (x, y) 
pairs are transformed to {9, l) pairs where 0 and i represent the angular 
direct ion of the par t ic le p ro f i l e and the arc length, respectively 
(Figure 11). S imi lar ly , the function Q(i) is then normalized and expanded 
into a Fourier series the coef f ic ients of which are used for obtaining the 
descriptors. F ina l l y , in the R-S method, the (x, y) coordinates of the 
p ro f i l e are f i r s t transformed into a polar representation of (R, 9 ) . A 
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Figure 10. Schematic of R-fl Fourier method 
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Figure 11. Schematic of ф-/ Fourier method 
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Fourier series expansion is used to express R as a function of the normal-
ized arc length, S. Another Fourier series is used to represent dO/dS as a 
function of S also. The Fourier coeff ic ients for both expansions, R(S) and 
d9/dS, can then be used to generate morphological descriptors. 

The R-9 method has the advantage of storing a l l the size and shape 
information analy t ica l ly in the descriptors. I t , however, cannot handle 
part ic les with an appreciable number of reentrant points (Figure 12). From 
our past experiences, alumina and hydrate part ic les do not exhibi t the 
reentrant problems. In contrast, the 0-fc method can analyze more complex 
shapes. But i t suffers from the disadvantage that important quantit ies in 
physical applications such as the area, moment of i n e r t i a , e tc , cannot be 
found analy t ica l ly and must be found using numerical integrat ion tech-
niques. I t also does not y ie ld size information as in the R-9 method. 
Like the 0 - i method, the R-S method is not affected by reentrant points on 
the par t ic le p r o f i l e . I t is possible to calculate quanti t ies such as the 
area, moment of i n e r t i a , e tc , ana ly t i ca l l y . Due to i t s need to calculate 
two Fourier ser ies, the R-S method is slower. The R-9 method and the R-S 
method are s t a t i s t i c a l l y simi lar but geometrically d i f f e ren t . 

The par t icu lar Fourier method used in th is study is the R-9 method due 
to i t s s impl ic i ty and ease of in te rpre ta t ion . But the other methods can be 
implemented in the analysis without much d i f f i c u l t y . 

Beddow (8) has shown that many two-dimensional par t ic le p ro f i l es , such 
as those from d ig i t i za t i on described ea r l i e r , may be reproduced quite well 
i f the boundary of a p ro f i l e is expanded as a truncated Fourier series of 
the polar coordinates (R, 9) using the center of gravity as the o r i g in : 

N 
R(9) - a + z {& cos n9 + b sin n9) (2) 

o _, n n 

where a , a and b are the Fourier coefficients and contain all of the 
size an9 shSpe infSrmation and n is the harmonic number. It is noted that 
the above Fourier coefficients are determined by a fast Fourier transform 
method. The above representation for a particle shape, however, is not 
unique in that the Fourier coefficients in Equation 2 are rotationally 
variant. This means that the same shape, in different orientations, will 
not have the same set of Fourier coefficients. It is necessary that 
adequate size and shape descriptors be developed. 

The following terms can be shown to be size invariant and rotationally 
invariant (14): 

W a ° 2 + 2 n ! i ( a " 2 + b"2) 

L =_ï 
0 Ro 
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Figure 1 2. Particle with re-entrant points 
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L1(n) = 0 for all n (5) 

L2(n) - - ^ (an
2 + bn

2) (n=l, 2, 3...N) (6) 
2Ro 

L3(m,n) - - ^ (amanan+m - bmbnan+ m + а^Ъ^ + bmanbn+m) 

0 (n+m = 2, 3, 4.. .N) (7) 

where a is the mean radius with respect to the polar angle, 0. 

Many of the above morphological descriptors are physically 
s ign i f i can t . For example, the "equivalent radius," R , is the radius of a 
c i rc le having the same area as that of the par t i c le p r o f i l e . The term L 
is the size normalized mean radius of the par t i c le p ro f i l e with respect ?o 
9. The shape term L„(2) ref lects e l i p t i c i t y or elongation of the par t ic le 
p r o f i l e . I t is related to the classical shape feature "aspect ra t io " of 
a par t ic le p r o f i l e . That i s , L„(2) is generally larger for an elongated 
pa r t i c l e . I t is usually based on a measurement of many points on the 
p ro f i l e as opposed to the classical method which employs only a few points. 
L„(3) represents the closeness of a par t ic le p ro f i l e to be an equilateral 
t r i ang le . Likewise, L„ (4) , L_(5) and L„(6) indicate the degree to which a 
par t ic le p ro f i l e resembles a four-sided or "blocky," f ive-sided and s ix -
sided geometric f igure , par t i cu la r ly i f i t is not far from being an equi-
la tera l polygon. Thus, L~(3) term dominates the series for a t r iangle and 
L„(4) term is orders of magnitude greater than other L,(n) terms for a 
square. Likewise, L?(5) and L„(6) are the most s ign i f icant terms for a 
pentagon and hexagon, respectively. Therefore, the proper L„(n) term can 
be used as one of the important shape c lass i f ie rs with respect to simple 
overall geometries. 

The L„{n) terms generally become progressionally smaller as n 
increases. The L?(n) terms described global shape propert ies. Two other 
important terms can be derived from the L„(n) series: 

N 
£ 

n=l 
!J = Radance = I L2(n) (8) 

and 

N 
ï = Roughness = I L„(n) (9) 

n=7 ~2K 

rom where o, the radance or not-roundness, is a measure of the deviation f . 
being a perfect c i rc le and, ¥, the roughness sums up the protuberances or 
small-scale perturbations on the par t ic le p r o f i l e . 
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As shown in Figure 13, the roughness progressionally increases with 
increasing protuberances added to a circle. Thus, it appears that the 
term defined in Equation 9 does indicate the degree of roughness on a 
particle profile. It is noted that the choice of 7 as the starting term of 
the series in Equation 9 for the roughness is more or less arbitrary. The 
reasoning behind the choice of 7 is that any terms of higher order than 
L2(6) do not significantly influence the overall or global shape of the 
particle. Instead they reflect the finer details of the profile. 
Sometimes it is also useful to employ a quantity called skewness which is 
defined as: 

N N 
Ф ■ Skewness - ï. z Ц(т,п) (10) 

m=l n=l J 

I t is noted that one of the strong points of the Fourier method is 
that the morphological descriptors given in Equations 3 through 7 can be 
used to regenerate the or ig inal par t ic le p r o f i l e . Thus, contrary to many 
other shape analysis with a single or few usable parameters, the Fourier 
method is unique and complete. And as mentioned ea r l i e r , the generated 
morphological descriptors are s ize, t rans la t iona l ly and rotat ional ly 
invar iant . 

Application 

The Fourier analysis has been applied to a case where blocky alumina 
or hydrate part ic les are object ively ident i f ied and quanti f ied among 
agglomerate or aggregate pa r t i c les . The massive blocky crys ta ls , i f 
present, have s ign i f icant impacts on the character ist ics of the f ina l 
alumina products. 

Figures 3, 4 and 5 display the massive single prismatic part ic les 
compared with aggregates and agglomerates for one hydrate and two calcined 
aluminas. Two more blocky hydrate crystals are shown in Figures 14a and 
14b. Examination of Figures 3 to 5 and 14 reveals that the blocky crystals 
possess two d is t inc t character ist ics that can be easi ly detected by the 
shape analysis via the Fourier method. One is that the i r global or overall 
shape appears to be four-sided (square or s l i gh t l y rectangular). Thus, 
L?(4) values for those crystals should be large compared with those for 
aggregates or agglomerates. The other is that the i r edges are re la t ive ly 
smooth unlike the proturberances or small-scale perturbations typical of 
aggregates or agglomerates. Therefore, the roughness term, ¥, given in 
Equation 9 should be small . 

Each par t i c le in Figures 3 to 5 and 14 was d ig i t ized and analyzed f ive 
times to obtain an average set of values for the various morphological 
descriptors. Given in Table IV are some of the morphological descriptors. 
Indeed, L„(4) and f , the roughness, are the two descriptors that consis-
tent ly have the power to dist inguish blocky crystals from aggregates or 
agglomerates. In general, the L„(4) term is much higher and the roughness 
term is much lower for blocky crystals than for aggregates or agglomerates. 

From Light Metals 1985, HO. Bohner, Editor 

oooo 
* = 1.58 x 10"5 ¥ = 2.43 x 10"5 * = 2.54 x 10~5 * = 1.51 x 10 4 

OOOO 
* = 1.85 x 10"4 f = 1.01 x 10"3 Ф = 1.06 x 10"3 * = 1.10x 10 

Figure 13. Effect of perturbations to a circle on roughness, 4', from Fourier analysis 
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If we combine the above two shape classifiers by defining a new term 

called "blockiness index" (BI) 

L2(4) 
BI = _i , (11) 

the difference between single blocky crystals and agglomerates (or 
aggregates) would be even more distinct. In fact, as shown in Table IV and 
in Figures 3 to 5 and 14, the blockiness index for single blocky crystals 
is generally greater than 5 while for aggregates and agglomerates it is 
generally much less than 1 although the agglomerate shown in Figure 5 has a 
BI value of 1.17. 

Thus by analyzing the digitized particle images of hydrate or alumina 
samples through the Fourier analysis, one can assess objectively the 
percentage of blocky crystals in the population of particles. This can be 
especially useful when the camera views can be staged automatically to move 
from field to field within a given sample. 

Conclusions 

Compared to size analysis which has been well developed, studies of 
particle morphology and its effects on processing and handling characteris-
tics of powders have started to progress at an accelerating pace only in 
the last decade. Available morphological analyses for fine particles are 
briefly reviewed. Three methods for characterizing morphology of alumina 
and hydrate are studied in detail. The shape factor is a single-parameter 
approach and represents only a global deviation from a circle. It does not 
fully reflect small-scale roughness on a particle profile. The sieve 
cascadography uses the notion that a particle has a residence time charac-
teristic of its shape. The method, when fully developed in data acquisi-
tion and analysis, can be a useful tool for shape characterization. The 
commercially implemented Fourier analysis describes both global and local 
shape features by its morphological parameters which can be used to distin-
guish various types of particles. The method is applied to identifying 
blocky alumina and hydrate crystals among agglomerate and aggregate 
particles through a newly defined "blockiness index." 
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