
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321833891
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321833891
https://plusone.google.com/share?url=http://www.informit.com/title/9780321833891
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321833891
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321833891/Free-Sample-Chapter

“I’ve never purchased a better
programming book… This book proved
to be the most informative, easiest to
follow, and had the best examples of
any other computer-related book I have
ever purchased. The text is very easy to
follow!”

—Nick Landman

“This book by Welling & Thomson
is the only one which I have found to
be indispensable. The writing is clear
and straightforward but never wastes
my time. The book is extremely well
laid out. The chapters are the right
length and chapter titles quickly take
you where you want to go.”

— Wright Sullivan, President,
A&E Engineering, Inc.,
Greer South Carolina

“I just wanted to tell you that
I think the book PHP and MySQL
Web Development rocks! It’s logically
structured, just the right difficulty level
for me (intermediate), interesting and
easy to read, and, of course, full of
valuable information!”

—CodE-E, Austria

“There are several good
introductory books on PHP, but
Welling & Thomson is an excellent
handbook for those who wish to build
up complex and reliable systems. It’s
obvious that the authors have a strong
background in the development of
professional applications and they
teach not only the language itself, but
also how to use it with good software
engineering practices.”

— Javier Garcia, senior telecom engi-
neer, Telefonica R&D Labs, Madrid

“I picked up this book two days ago
and I am half way finished. I just can’t
put it down. The layout and flow is
perfect. Everything is presented in such
a way so that the information is very
palatable. I am able to immediately grasp
all the concepts. The examples have also
been wonderful. I just had to take some
time out to express to you how pleased
I have been with this book.”

—Jason B. Lancaster

“This book has proven a trusty
companion, with an excellent crash
course in PHP and superb coverage of
MySQL as used for Web applications.
It also features several complete
applications that are great examples
of how to construct modular, scalable
applications with PHP. Whether you
are a PHP newbie or a veteran in search
of a better desk-side reference, this one
is sure to please!”

—WebDynamic

“The true PHP/MySQL bible, PHP
and MySQL Web Development by Luke
Welling and Laura Thomson, made me
realize that programming and databases
are now available to the commoners.
Again, I know 1/10000th of what there
is to know, and already I’m enthralled.”

—Tim Luoma, TnTLuoma.com

“Welling and Thomson’s book is
a good reference for those who want
to get to grips with practical projects
straight off the bat. It includes webmail,
shopping cart, session control, and
web-forum/weblog applications as a
matter of course, and begins with a
sturdy look at PHP first, moving to
MySQL once the basics are covered.”

—twilight30 on Slashdot

“This book is absolutely excellent,
to say the least…. Luke Welling and
Laura Thomson give the best in-depth
explanations I’ve come across on such
things as regular expressions, classes and
objects, sessions etc. I really feel this
book filled in a lot of gaps for me with
things I didn’t quite understand…. This
book jumps right into the functions
and features most commonly used with
PHP, and from there it continues in
describing real-world projects, MySQL
integration, and security issues from
a project manager’s point of view.
I found every bit of this book to be well
organized and easy to understand.”

—notepad on codewalkers.com

“A top-notch reference for
programmers using PHP and MySQL.
Highly recommended.”

—The Internet Writing Journal

“This book rocks! I am an
experienced programmer, so I didn’t
need a lot of help with PHP syntax;
after all, it’s very close to C/C++. I don’t
know a thing about databases, though,
so when I wanted to develop a book
review engine (among other projects)
I wanted a solid reference to using
MySQL with PHP. I have O’Reilly’s
mSQL and MySQL book, and it’s
probably a better pure-SQL reference,
but this book has earned a place on my
reference shelf…Highly recommended.”

—Paul Robichaux

“One of the best programming
guides I’ve ever read.”

—jackofsometrades from Lahti, Finland

“This is a well-written book
for learning how to build Internet

applications with two of the most
popular open-source Web development
technologies…. The projects are the
real jewel of the book. Not only are the
projects described and constructed in
a logical, component-based manner,
but the selection of projects represents
an excellent cross-section of common
components that are built into many
web sites.”

—Craig Cecil

“The book takes an easy, step-by-
step approach to introduce even the
clueless programmer to the language of
PHP. On top of that, I often find myself
referring back to it in my Web design
efforts. I’m still learning new things
about PHP, but this book gave me a
solid foundation from which to start
and continues to help me to this day.”

—Stephen Ward

“This book is one of few that really
touched me and made me ‘love’ it.
I can’t put it in my bookshelf; I must
put it in a touchable place on my
working bench as I always like to refer
from it. Its structure is good, wordings
are simple and straight forward, and
examples are clear and step by step.
Before I read it, I knew nothing of PHP
and MySQL. After reading it, I have the
confidence and skill to develop any
complicated Web application.”

—Power Wong

“This book is God…. I highly
recommend this book to anyone
who wants to jump in the deep end
with database driven Web application
programming. I wish more computer
books were organized this way.”

—Sean C Schertell

PHP and MySQL®
Web Development

Fifth Edition

Hoboken, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

PHP and MySQL®

Web Development

Fifth Edition

Luke Welling
Laura Thomson

Editor

Mark Taber

Project Editor

Lori Lyons

Project Manager

Dhayanidhi

Copy Editor

Lori Eby

Indexer

Tim Wright

Technical Editor

Julie Meloni

PHP and MySQL® Web Development

Copyright © 2017 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has been taken
in the preparation of this book, the publisher and authors assume no responsibility for
errors or omissions. Nor is any liability assumed for damages resulting from the use of the
information contained herein.

ISBN-13: 978-0-321-83389-1

ISBN-10: 0-321-83389-9

Library of Congress Control Number: 2016934688

Printed in the United States of America

First Printing: September 2016

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Pearson cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark
or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
authors and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Contents at a Glance

Introduction 1

I: Using PHP

 1 PHP Crash Course 11

 2 Storing and Retrieving Data 53

 3 Using Arrays 75

 4 String Manipulation and Regular Expressions 101

 5 Reusing Code and Writing Functions 131

 6 Object-Oriented PHP 159

 7 Error and Exception Handling 199

II: Using MySQL

 8 Designing Your Web Database 209

 9 Creating Your Web Database 221

 10 Working with Your MySQL Database 247

 11 Accessing Your MySQL Database from the Web with PHP 271

 12 Advanced MySQL Administration 291

 13 Advanced MySQL Programming 315

III: Web Application Security

 14 Web Application Security Risks 331

 15 Building a Secure Web Application 341

 16 Implementing Authentication Methods with PHP 365

IV: Advanced PHP Techniques

 17 Interacting with the File System and the Server 379

 18 Using Network and Protocol Functions 403

 19 Managing the Date and Time 423

viii Contents at a Glance

 20 Internationalization and Localization 437

 21 Generating Images 449

 22 Using Session Control in PHP 475

 23 Integrating JavaScript and PHP 493

 24 Other Useful Features 519

V: Building Practical PHP and MySQL Projects

 25 Using PHP and MySQL for Large Projects 529

 26 Debugging and Logging 543

 27 Building User Authentication and Personalization 561

 28 Building a Web-Based Email Service with Laravel Part I Web Edition

 29 Building a Web-Based Email Service with Laravel Part II Web Edition

 30 Social Media Integration Sharing and Authentication Web Edition

 31 Building a Shopping Cart Web Edition

VI: Appendix

 A Installing Apache, PHP, and MySQL 599

 Index 615

Table of Contents

Introduction 1

I: Using PHP

 1 PHP Crash Course 11

Before You Begin: Accessing PHP 12

Creating a Sample Application: Bob’s Auto Parts 12

Creating the Order Form 12

Processing the Form 14

Embedding PHP in HTML 14

PHP Tags 16

PHP Statements 16

Whitespace 17

Comments 17

Adding Dynamic Content 18

Calling Functions 19

Using the date() Function 19

Accessing Form Variables 20

Form Variables 20

String Concatenation 22

Variables and Literals 23

Understanding Identifiers 23

Examining Variable Types 24

PHP’s Data Types 24

Type Strength 25

Type Casting 25

Variable Variables 25

Declaring and Using Constants 26

Understanding Variable Scope 27

Using Operators 28

Arithmetic Operators 28

String Operators 29

Assignment Operators 29

Comparison Operators 31

Logical Operators 32

x Contents

Bitwise Operators 33

Other Operators 33

Working Out the Form Totals 36

Understanding Precedence and Associativity 37

Using Variable Handling Functions 39

Testing and Setting Variable Types 39

Testing Variable Status 40

Reinterpreting Variables 41

Making Decisions with Conditionals 41

if Statements 41

Code Blocks 42

else Statements 42

elseif Statements 43

switch Statements 44

Comparing the Different Conditionals 45

Repeating Actions Through Iteration 46

while Loops 47

for and foreach Loops 49

do...while Loops 50

Breaking Out of a Control Structure or Script 50

Employing Alternative Control Structure Syntax 51

Using declare 51

Next 52

 2 Storing and Retrieving Data 53

Saving Data for Later 53

Storing and Retrieving Bob’s Orders 54

Processing Files 55

Opening a File 55

Choosing File Modes 55

Using fopen() to Open a File 56

Opening Files Through FTP or HTTP 58

Addressing Problems Opening Files 58

Writing to a File 61

Parameters for fwrite() 62

File Formats 62

Closing a File 63

xiContents

Reading from a File 65

Opening a File for Reading: fopen() 66

Knowing When to Stop: feof() 66

Reading a Line at a Time: fgets(), fgetss(),
and fgetcsv() 67

Reading the Whole File: readfile(), fpassthru(),
file(), and file_get_contents() 68

Reading a Character: fgetc() 69

Reading an Arbitrary Length: fread() 69

Using Other File Functions 69

Checking Whether a File Is There: file_exists() 70

Determining How Big a File Is: filesize() 70

Deleting a File: unlink() 70

Navigating Inside a File: rewind(), fseek(), and ftell() 70

Locking Files 71

A Better Way: Databases 73

Problems with Using Flat Files 73

How RDBMSs Solve These Problems 74

Further Reading 74

Next 74

 3 Using Arrays 75

What Is an Array? 75

Numerically Indexed Arrays 76

Initializing Numerically Indexed Arrays 76

Accessing Array Contents 77

Using Loops to Access the Array 78

Arrays with Different Indices 79

Initializing an Array 79

Accessing the Array Elements 79

Using Loops 79

Array Operators 81

Multidimensional Arrays 82

Sorting Arrays 85

Using sort() 85

Using asort() and ksort() to Sort Arrays 86

Sorting in Reverse 87

xii Contents

Sorting Multidimensional Arrays 87

Using the array_multisort() function 87

User-Defined Sorts 88

Reverse User Sorts 89

Reordering Arrays 90

Using shuffle() 90

Reversing an Array 92

Loading Arrays from Files 92

Performing Other Array Manipulations 96

Navigating Within an Array: each(), current(), reset(),
end(), next(), pos(), and prev() 96

Applying Any Function to Each Element in an Array:
array_walk() 97

Counting Elements in an Array: count(), sizeof(),
and array_count_values() 98

Converting Arrays to Scalar Variables: extract() 99

Further Reading 100

Next 100

 4 String Manipulation and Regular Expressions 101

Creating a Sample Application: Smart Form Mail 101

Formatting Strings 104

Trimming Strings: chop(), ltrim(), and trim() 104

Formatting Strings for Output 105

Joining and Splitting Strings with String Functions 112

Using explode(), implode(), and join() 112

Using strtok() 113

Using substr() 114

Comparing Strings 115

Performing String Ordering: strcmp(), strcasecmp(),
and strnatcmp() 115

Testing String Length with strlen() 115

Matching and Replacing Substrings with String Functions 116

Finding Strings in Strings: strstr(), strchr(), strrchr(),
and stristr() 116

Finding the Position of a Substring: strpos()
and strrpos() 117

Replacing Substrings: str_replace()
and substr_replace() 118

xiiiContents

Introducing Regular Expressions 119

The Basics 120

Delimiters 120

Character Classes and Types 120

Repetition 122

Subexpressions 122

Counted Subexpressions 123

Anchoring to the Beginning or End of a String 123

Branching 123

Matching Literal Special Characters 123

Reviewing Meta Characters 124

Escape Sequences 125

Backreferences 126

Assertions 126

Putting It All Together for the Smart Form 127

Finding Substrings with Regular Expressions 128

Replacing Substrings with Regular Expressions 129

Splitting Strings with Regular Expressions 129

Further Reading 130

Next 130

 5 Reusing Code and Writing Functions 131

The Advantages of Reusing Code 131

Cost 132

Reliability 132

Consistency 132

Using require() and include() 132

Using require() to Include Code 133

Using require() for Website Templates 134

Using auto_prepend_file and auto_append_file 139

Using Functions in PHP 140

Calling Functions 141

Calling an Undefined Function 142

Understanding Case and Function Names 143

Defining Your Own Functions 144

Examining Basic Function Structure 144

Naming Your Function 145

Using Parameters 146

xiv Contents

Understanding Scope 148

Passing by Reference Versus Passing by Value 150

Using the return Keyword 152

Returning Values from Functions 153

Implementing Recursion 154

Implementing Anonymous Functions (or Closures) 155

Further Reading 157

Next 157

 6 Object-Oriented PHP 159

Understanding Object-Oriented Concepts 160

Classes and Objects 160

Polymorphism 161

Inheritance 161

Creating Classes, Attributes, and Operations in PHP 162

Structure of a Class 162

Constructors 163

Destructors 163

Instantiating Classes 163

Using Class Attributes 164

Calling Class Operations 165

Controlling Access with private and public 166

Writing Accessor Functions 166

Implementing Inheritance in PHP 168

Controlling Visibility Through Inheritance with private
and protected 169

Overriding 170

Preventing Inheritance and Overriding with final 172

Understanding Multiple Inheritance 172

Implementing Interfaces 173

Using Traits 174

Designing Classes 176

Writing the Code for Your Class 177

Understanding Advanced Object-Oriented Functionality in PHP 185

Using Per-Class Constants 185

Implementing Static Methods 185

Checking Class Type and Type Hinting 185

xvContents

Late Static Bindings 186

Cloning Objects 187

Using Abstract Classes 188

Overloading Methods with __call() 188

Using __autoload() 189

Implementing Iterators and Iteration 190

Generators 192

Converting Your Classes to Strings 194

Using the Reflection API 194

Namespaces 195

Using Subnamespaces 197

Understanding the Global Namespace 197

Importing and Aliasing Namespaces 198

Next 198

 7 Error and Exception Handling 199

Exception Handling Concepts 199

The Exception Class 201

User-Defined Exceptions 202

Exceptions in Bob’s Auto Parts 204

Exceptions and PHP’s Other Error Handling Mechanisms 208

Further Reading 208

Next 208

II: Using MySQL

 8 Designing Your Web Database 209

Relational Database Concepts 210

Tables 210

Columns 211

Rows 211

Values 211

Keys 211

Schemas 212

Relationships 213

Designing Your Web Database 213

Think About the Real-World Objects You Are Modeling 213

Avoid Storing Redundant Data 214

xvi Contents

Use Atomic Column Values 216

Choose Sensible Keys 217

Think About What You Want to Ask the Database 217

Avoid Designs with Many Empty Attributes 217

Summary of Table Types 218

Web Database Architecture 218

Further Reading 220

Next 220

 9 Creating Your Web Database 221

Using the MySQL Monitor 222

Logging In to MySQL 223

Creating Databases and Users 224

Setting Up Users and Privileges 225

Introducing MySQL’s Privilege System 225

Principle of Least Privilege 225

User Setup: The CREATE USER and GRANT Commands 225

Types and Levels of Privileges 227

The REVOKE Command 230

Examples Using GRANT and REVOKE 230

Setting Up a User for the Web 231

Using the Right Database 232

Creating Database Tables 232

Understanding What the Other Keywords Mean 234

Understanding the Column Types 235

Looking at the Database with SHOW and DESCRIBE 237

Creating Indexes 238

Understanding MySQL Identifiers 239

Choosing Column Data Types 240

Numeric Types 241

Date and Time Types 243

String Types 244

Further Reading 246

Next 246

 10 Working with Your MySQL Database 247

What Is SQL? 247

Inserting Data into the Database 248

xviiContents

Retrieving Data from the Database 250

Retrieving Data with Specific Criteria 251

Retrieving Data from Multiple Tables 253

Retrieving Data in a Particular Order 259

Grouping and Aggregating Data 259

Choosing Which Rows to Return 261

Using Subqueries 262

Updating Records in the Database 265

Altering Tables After Creation 265

Deleting Records from the Database 268

Dropping Tables 268

Dropping a Whole Database 268

Further Reading 269

Next 269

 11 Accessing Your MySQL Database from the Web with PHP 271

How Web Database Architectures Work 272

Querying a Database from the Web 275

Checking and Filtering Input Data 276

Setting Up a Connection 277

Choosing a Database to Use 278

Querying the Database 278

Using Prepared Statements 279

Retrieving the Query Results 280

Disconnecting from the Database 281

Putting New Information in the Database 282

Using Other PHP-Database Interfaces 286

Using a Generic Database Interface: PDO 286

Further Reading 289

Next 289

 12 Advanced MySQL Administration 291

Understanding the Privilege System in Detail 291

The user Table 293

The db Table 295

The tables_priv, columns_priv, and procs priv Tables 296

Access Control: How MySQL Uses the Grant Tables 298

Updating Privileges: When Do Changes Take Effect? 299

xviii Contents

Making Your MySQL Database Secure 299

MySQL from the Operating System’s Point of View 299

Passwords 300

User Privileges 300

Web Issues 301

Getting More Information About Databases 301

Getting Information with SHOW 302

Getting Information About Columns with DESCRIBE 304

Understanding How Queries Work with EXPLAIN 304

Optimizing Your Database 309

Design Optimization 309

Permissions 309

Table Optimization 310

Using Indexes 310

Using Default Values 310

Other Tips 310

Backing Up Your MySQL Database 310

Restoring Your MySQL Database 311

Implementing Replication 311

Setting Up the Master 312

Performing the Initial Data Transfer 313

Setting Up the Slave or Slaves 313

Further Reading 314

Next 314

 13 Advanced MySQL Programming 315

The LOAD DATA INFILE Statement 315

Storage Engines 316

Transactions 317

Understanding Transaction Definitions 317

Using Transactions with InnoDB 318

Foreign Keys 319

Stored Procedures 320

Basic Example 320

Local Variables 323

Cursors and Control Structures 323

xixContents

Triggers 327

Further Reading 329

Next 329

III: Web Application Security

 14 Web Application Security Risks 331

Identifying the Threats We Face 331

Access to Sensitive Data 331

Modification of Data 334

Loss or Destruction of Data 334

Denial of Service 335

Malicious Code Injection 337

Compromised Server 338

Repudiation 338

Understanding Who We’re Dealing With 339

Attackers and Crackers 339

Unwitting Users of Infected Machines 339

Disgruntled Employees 339

Hardware Thieves 340

Ourselves 340

Next 340

 15 Building a Secure Web Application 341

Strategies for Dealing with Security 341

Start with the Right Mindset 342

Balancing Security and Usability 342

Monitoring Security 342

Our Basic Approach 343

Securing Your Code 343

Filtering User Input 343

Escaping Output 348

Code Organization 350

What Goes in Your Code 351

File System Considerations 352

Code Stability and Bugs 352

Executing Commands 353

xx Contents

Securing Your Web Server and PHP 354

Keep Software Up-to-Date 354

Browse the php.ini file 355

Web Server Configuration 356

Shared Hosting of Web Applications 356

Database Server Security 357

Users and the Permissions System 358

Sending Data to the Server 358

Connecting to the Server 359

Running the Server 359

Protecting the Network 360

Firewalls 360

Use a DMZ 360

Prepare for DoS and DDoS Attacks 361

Computer and Operating System Security 361

Keep the Operating System Up to Date 361

Run Only What Is Necessary 362

Physically Secure the Server 362

Disaster Planning 362

Next 364

 16 Implementing Authentication Methods with PHP 365

Identifying Visitors 365

Implementing Access Control 366

Storing Passwords 369

Securing Passwords 369

Protecting Multiple Pages 371

Using Basic Authentication 372

Using Basic Authentication in PHP 372

Using Basic Authentication with Apache’s .htaccess Files 374

Creating Your Own Custom Authentication 377

Further Reading 377

Next 377

IV: Advanced PHP Techniques

 17 Interacting with the File System and the Server 379

Uploading Files 379

HTML for File Upload 381

xxiContents

Writing the PHP to Deal with the File 382

Session Upload Progress 387

Avoiding Common Upload Problems 389

Using Directory Functions 390

Reading from Directories 390

Getting Information About the Current Directory 394

Creating and Deleting Directories 394

Interacting with the File System 395

Getting File Information 395

Changing File Properties 397

Creating, Deleting, and Moving Files 398

Using Program Execution Functions 398

Interacting with the Environment: getenv() and putenv() 401

Further Reading 402

Next 402

 18 Using Network and Protocol Functions 403

Examining Available Protocols 403

Sending and Reading Email 404

Using Data from Other Websites 404

Using Network Lookup Functions 408

Backing Up or Mirroring a File 412

Using FTP to Back Up or Mirror a File 412

Uploading Files 420

Avoiding Timeouts 420

Using Other FTP Functions 420

Further Reading 421

Next 421

 19 Managing the Date and Time 423

Getting the Date and Time from PHP 423

Understanding Timezones 423

Using the date() Function 424

Dealing with Unix Timestamps 426

Using the getdate() Function 427

Validating Dates with checkdate() 428

Formatting Timestamps 429

Converting Between PHP and MySQL Date Formats 431

xxii Contents

Calculating Dates in PHP 433

Calculating Dates in MySQL 434

Using Microseconds 435

Using the Calendar Functions 436

Further Reading 436

Next 436

 20 Internationalization and Localization 437

Localization Is More than Translation 437

Understanding Character Sets 438

Security Implications of Character Sets 439

Using Multibyte String Functions in PHP 440

Creating a Basic Localizable Page Structure 440

Using gettext() in an Internationalized Application 444

Configuring Your System to Use gettext() 444

Creating Translation Files 445

Implementing Localized Content in PHP Using gettext() 447

Further Reading 448

Next 448

 21 Generating Images 449

Setting Up Image Support in PHP 449

Understanding Image Formats 450

JPEG 450

PNG 450

GIF 451

Creating Images 451

Creating a Canvas Image 452

Drawing or Printing Text on the Image 453

Outputting the Final Graphic 455

Cleaning Up 455

Using Automatically Generated Images in Other Pages 456

Using Text and Fonts to Create Images 457

Setting Up the Base Canvas 460

Fitting the Text onto the Button 461

Positioning the Text 464

Writing the Text onto the Button 464

Finishing Up 465

xxiiiContents

Drawing Figures and Graphing Data 465

Using Other Image Functions 474

Next 474

 22 Using Session Control in PHP 475

What Is Session Control? 475

Understanding Basic Session Functionality 476

What Is a Cookie? 476

Setting Cookies from PHP 476

Using Cookies with Sessions 477

Storing the Session ID 477

Implementing Simple Sessions 478

Starting a Session 478

Registering Session Variables 478

Using Session Variables 479

Unsetting Variables and Destroying the Session 479

Creating a Simple Session Example 480

Configuring Session Control 482

Implementing Authentication with Session Control 483

Next 491

 23 Integrating JavaScript and PHP 493

Understanding AJAX 493

A Brief Introduction to jQuery 494

Using jQuery in Web Applications 494

Using jQuery and AJAX with PHP 504

The AJAX-Enabled Chat Script/Server 504

The jQuery AJAX Methods 507

The Chat Client/jQuery Application 510

Further Reading 517

Next 517

 24 Other Useful Features 519

Evaluating Strings: eval() 519

Terminating Execution: die() and exit() 520

Serializing Variables and Objects 521

Getting Information About the PHP Environment 522

Finding Out What Extensions Are Loaded 522

xxiv Contents

Identifying the Script Owner 523

Finding Out When the Script Was Modified 523

Temporarily Altering the Runtime Environment 524

Highlighting Source Code 525

Using PHP on the Command Line 526

Next 527

V: Building Practical PHP and MySQL Projects

 25 Using PHP and MySQL for Large Projects 529

Applying Software Engineering to Web Development 530

Planning and Running a Web Application Project 530

Reusing Code 531

Writing Maintainable Code 532

Coding Standards 532

Breaking Up Code 535

Using a Standard Directory Structure 536

Documenting and Sharing In-House Functions 536

Implementing Version Control 536

Choosing a Development Environment 537

Documenting Your Projects 538

Prototyping 538

Separating Logic and Content 539

Optimizing Code 540

Using Simple Optimizations 540

Testing 541

Further Reading 542

Next 542

 26 Debugging and Logging 543

Programming Errors 543

Syntax Errors 543

Runtime Errors 544

Logic Errors 549

Variable Debugging Aid 551

Error Reporting Levels 553

Altering the Error Reporting Settings 554

Triggering Your Own Errors 556

xxvContents

Logging Errors Gracefully 557

Logging Errors to a Log File 560

Next 560

 27 Building User Authentication and Personalization 561

Solution Components 561

User Identification and Personalization 562

Storing Bookmarks 563

Recommending Bookmarks 563

Solution Overview 563

Implementing the Database 565

Implementing the Basic Site 566

Implementing User Authentication 569

Registering Users 569

Logging In 575

Logging Out 579

Changing Passwords 580

Resetting Forgotten Passwords 582

Implementing Bookmark Storage and Retrieval 587

Adding Bookmarks 588

Displaying Bookmarks 590

Deleting Bookmarks 591

Implementing Recommendations 594

Considering Possible Extensions 598

 28 Building a Web-Based Email Service with Laravel Part I Web Edition

 29 Building a Web-Based Email Service with Laravel Part II Web Edition

 30 Social Media Integration Sharing and Authentication Web Edition

 31 Building a Shopping Cart Web Edition

VI: Appendix

 A Installing Apache, PHP, and MySQL 599

Installing Apache, PHP, and MySQL Under UNIX 600

Binary Installation 600

Source Installation 601

Basic Apache Configuration Modifications 608

xxvi Contents

Is PHP Support Working? 610

Is SSL Working? 610

Installing Apache, PHP, and MySQL for Windows and Mac OS X
Using All-in-One Installation Packages 612

Installing PEAR 613

Installing PHP with Other Web Servers 614

 Index 615

Lead Authors

Laura Thomson is Director of Engineering at Mozilla Corporation. She was formerly a principal
at both OmniTI and Tangled Web Design, and she has worked for RMIT University and the
Boston Consulting Group. She holds a Bachelor of Applied Science (Computer Science) degree
and a Bachelor of Engineering (Computer Systems Engineering) degree with honors. In her
spare time she enjoys riding horses, arguing about free and open source software, and sleeping.

Luke Welling is a software engineer and regularly speaks on open source and web development
topics at conferences such as OSCON, ZendCon, MySQLUC, PHPCon, OSDC, and LinuxTag.
He has worked for OmniTI, for the web analytics company Hitwise.com, at the database vendor
MySQL AB, and as an independent consultant at Tangled Web Design. He has taught computer
science at RMIT University in Melbourne, Australia, and holds a Bachelor of Applied Science
(Computer Science) degree. In his spare time, he attempts to perfect his insomnia.

Contributing Authors

Julie C. Meloni is a software development manager and technical consultant living in
Washington,D.C. She has written several books and articles on web-based programming
languages and database topics, including the bestselling Sams Teach Yourself PHP, MySQL
and Apache All in One.

John Coggeshall is the owner of Internet Technology Solutions, LLC—an Internet and PHP
consultancy serving customers worldwide, as well as the owner of CoogleNet, a subscription
based WiFi network. As former senior member of Zend Technologies’ Global Services team, he
got started with PHP in 1997 and is the author of four published books and over 100 articles on
PHP technologies.

Jennifer Kyrnin is an author and web designer who has been working on the Internet
since 1995. Her other books include Sams Teach Yourself Bootstrap in 24 Hours, Sams Teach
Yourself Responsive Web Design in 24 Hours, and Sams Teach Yourself HTML5 Mobile Application
Development in 24 Hours.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

You can email or write directly to let us know what you did or didn’t like about this book—as
well as what we can do to make our books stronger.

Please note that we cannot help you with technical problems related to the topic of this book, and that
due to the high volume of mail we receive, we might not be able to reply to every message.

When you write, please be sure to include this book’s title and author, as well as your name
and phone or email address.

Email: feedback@developers-library.info

Mail: Reader Feedback
 Addison-Wesley Developer’s Library
 800 East 96th Street
 Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at www.informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

http://www.informit.com/register

Accessing the Free Web Edition

Your purchase of this book in any format, print or electronic, includes access to the
corresponding Web Edition, which provides several special features to help you learn:

 ■ The complete text of the book online

 ■ Interactive quizzes and exercises to test your understanding of the material

 ■ Bonus chapters not included in the print or e-book editions

 ■ Updates and corrections as they become available

The Web Edition can be viewed on all types of computers and mobile devices with any modern
web browser that supports HTML5.

To get access to the Web Edition of PHP and MySQL Web Development, Fifth Edition, all you need
to do is register this book:

1. Go to www.informit.com/register

2. Sign in or create a new account

3. Enter ISBN: 9780321833891

4. Answer the questions as proof of purchase

The Web Edition will appear under the Digital Purchases tab on your Account page.
Click the Launch link to access the product.

http://www.informit.com/register

This page intentionally left blank

Introduction

Welcome to PHP and MySQL Web Development. Within its pages, you will find distilled knowledge
from our experiences using PHP and MySQL, two of the most important and widely used web
development tools around.

Key topics covered in this introduction include

 ■ Why you should read this book

 ■ What you will be able to achieve using this book

 ■ What PHP and MySQL are and why they’re great

 ■ What’s changed in the latest versions of PHP and MySQL

 ■ How this book is organized

Let’s get started.

Note

Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

Why You Should Read This Book

This book will teach you how to create interactive web applications from the simplest order
form through to complex, secure web applications. What’s more, you’ll learn how to do it
using open-source technologies.

This book is aimed at readers who already know at least the basics of HTML and have done
some programming in a modern programming language before but have not necessarily
programmed for the web or used a relational database. If you are a beginning programmer,
you should still find this book useful, but digesting it might take a little longer. We’ve tried not
to leave out any basic concepts, but we do cover them at speed. The typical readers of this book
want to master PHP and MySQL for the purpose of building a large or commercial website.
You might already be working in another web development language; if so, this book should
get you up to speed quickly.

2 Introduction

We wrote the first edition of this book because we were tired of finding PHP books that were
basically function references. These books are useful, but they don’t help when your boss or
client has said, “Go build me a shopping cart.” In this book, we have done our best to make
every example useful. You can use many of the code samples directly in your website, and you
can use many others with only minor modifications.

What You Will Learn from This Book

Reading this book will enable you to build real-world, dynamic web applications. If you’ve built
websites using plain HTML, you realize the limitations of this approach. Static content from a
pure HTML website is just that—static. It stays the same unless you physically update it. Your
users can’t interact with the site in any meaningful fashion.

Using a language such as PHP and a database such as MySQL allows you to make your sites
dynamic: to have them be customizable and contain real-time information.

We have deliberately focused this book on real-world applications, even in the introductory
chapters. We begin by looking at simple systems and work our way through the various parts of
PHP and MySQL.

We then discuss aspects of security and authentication as they relate to building a real-world
website and show you how to implement these aspects in PHP and MySQL. We also introduce
you to integrating front-end and back-end technologies by discussing JavaScript and the role it
can play in your application development.

In the final part of this book, we describe how to approach real-world projects and take you
through the design, planning, and building of the following projects:

 ■ User authentication and personalization

 ■ Web-based email

 ■ Social media integration

You should be able to use any of these projects as is, or you can modify them to suit your
needs. We chose them because we believe they represent some the most common web
 applications built by programmers. If your needs are different, this book should help you along
the way to achieving your goals.

What Is PHP?

PHP is a server-side scripting language designed specifically for the web. Within an HTML page,
you can embed PHP code that will be executed each time the page is visited. Your PHP code is
interpreted at the web server and generates HTML or other output that the visitor will see.

PHP was conceived in 1994 and was originally the work of one man, Rasmus Lerdorf. It was
adopted by other talented people and has gone through several major rewrites to bring us the

3Introduction

broad, mature product we see today. According to Google’s Greg Michillie in May 2013, PHP
ran more than three quarters of the world’s websites, and that number had grown to over 82%
by July 2016.

PHP is an open-source project, which means you have access to the source code and have the
freedom to use, alter, and redistribute it.

PHP originally stood for Personal Home Page but was changed in line with the GNU recursive
naming convention (GNU = Gnu’s Not Unix) and now stands for PHP Hypertext Preprocessor.

The current major version of PHP is 7. This version saw a complete rewrite of the underlying
Zend engine and some major improvements to the language. All of the code in this book has
been tested and validated against the most recent release of PHP 7 at the time of writing, as
well as the latest version in the PHP 5.6 family of releases, which is still officially supported.

The home page for PHP is available at http://www.php.net.

The home page for Zend Technologies is http://www.zend.com.

What Is MySQL?

MySQL (pronounced My-Ess-Que-Ell) is a very fast, robust, relational database management system
(RDBMS). A database enables you to efficiently store, search, sort, and retrieve data. The MySQL
server controls access to your data to ensure that multiple users can work with it concurrently,
to provide fast access to it, and to ensure that only authorized users can obtain access. Hence,
MySQL is a multiuser, multithreaded server. It uses Structured Query Language (SQL), the standard
database query language. MySQL has been publicly available since 1996 but has a development
history going back to 1979. It is the world’s most popular open-source database and has won
the Linux Journal Readers’ Choice Award on a number of occasions.

MySQL is available under a dual licensing scheme. You can use it under an open-source license
(the GPL) free as long as you are willing to meet the terms of that license. If you want to
distribute a non-GPL application including MySQL, you can buy a commercial license instead.

Why Use PHP and MySQL?

When setting out to build a website, you could use many different products.

You need to choose the following:

 ■ Where to run your web servers: the cloud, virtual private servers, or actual hardware

 ■ An operating system

 ■ Web server software

 ■ A database management system or other datastore

 ■ A programming or scripting language

http://www.php.net
http://www.zend.com

4 Introduction

You may end up with a hybrid architecture with multiple datastores. Some of these choices are
dependent on the others. For example, not all operating systems run on all hardware, not all
web servers support all programming languages, and so on.

In this book, we do not pay much attention to hardware, operating systems, or web server
software. We don’t need to. One of the best features of both PHP and MySQL is that they work
with any major operating system and many of the minor ones.

The majority of PHP code can be written to be portable between operating systems and web
servers. There are some PHP functions that specifically relate to the filesystem that are operating
system dependent, but these are clearly marked as such in the manual and in this book.

Whatever hardware, operating system, and web server you choose, we believe you should
seriously consider using PHP and MySQL.

Some of PHP’s Strengths

Some of PHP’s main competitors are Python, Ruby (on Rails or otherwise), Node.js, Perl,
Microsoft .NET, and Java.

In comparison to these products, PHP has many strengths, including the following:

 ■ Performance

 ■ Scalability

 ■ Interfaces to many different database systems

 ■ Built-in libraries for many common web tasks

 ■ Low cost

 ■ Ease of learning and use

 ■ Strong object-oriented support

 ■ Portability

 ■ Flexibility of development approach

 ■ Availability of source code

 ■ Availability of support and documentation

A more detailed discussion of these strengths follows.

Performance

PHP is very fast. Using a single inexpensive server, you can serve millions of hits per day.
It scales down to the smallest email form and up to sites such as Facebook and Etsy.

5Introduction

Scalability

PHP has what Rasmus Lerdorf frequently refers to as a “shared-nothing” architecture. This
means that you can effectively and cheaply implement horizontal scaling with large numbers
of commodity servers.

Database Integration

PHP has native connections available to many database systems. In addition to MySQL, you
can directly connect to PostgreSQL, Oracle, MongoDB, and MSSQL, among others. PHP 5 and
PHP 7 also have a built-in SQL interface to flat files, called SQLite.

Using the Open Database Connectivity (ODBC) standard, you can connect to any database that
provides an ODBC driver. This includes Microsoft products and many others.

In addition to native libraries, PHP comes with a database access abstraction layer called PHP
Database Objects (PDOs), which allows consistent access and promotes secure coding practices.

Built-in Libraries

Because PHP was designed for use on the Web, it has many built-in functions for performing
many useful web-related tasks. You can generate images on the fly, connect to web services
and other network services, parse XML, send email, work with cookies, and generate PDF
documents, all with just a few lines of code.

Cost

PHP is free. You can download the latest version at any time from http://www.php.net for no
charge.

Ease of Learning PHP

The syntax of PHP is based on other programming languages, primarily C and Perl. If you
already know C or Perl, or a C-like language such as C++ or Java, you will be productive using
PHP almost immediately.

Object-Oriented Support

PHP version 5 had well-designed object-oriented features, which continued to be refined and
improved in PHP version 7. If you learned to program in Java or C++, you will find the features
(and generally the syntax) that you expect, such as inheritance, private and protected attributes
and methods, abstract classes and methods, interfaces, constructors, and destructors. You will
even find some less common features such as iterators and traits.

http://www.php.net

6 Introduction

Portability

PHP is available for many different operating systems. You can write PHP code on free
UNIX-like operating systems such as Linux and FreeBSD, commercial UNIX versions, OS X, or
on different versions of Microsoft Windows.

Well-written code will usually work without modification on a different system running PHP.

Flexibility of Development Approach

PHP allows you to implement simple tasks simply, and equally easily adapts to implementing
large applications using a framework based on design patterns such as Model-View-Controller
(MVC).

Source Code

You have access to PHP’s source code. With PHP, unlike commercial, closed-source products,
if you want to modify something or add to the language, you are free to do so.

You do not need to wait for the manufacturer to release patches. You also don’t need to worry
about the manufacturer going out of business or deciding to stop supporting a product.

Availability of Support and Documentation

Zend Technologies (http://www.zend.com), the company behind the engine that powers PHP,
funds its PHP development by offering support and related software on a commercial basis.

The PHP documentation and community are mature and rich resources with a wealth of
information to share.

Key Features of PHP 7

In December 2015, the long-awaited PHP 7 release was made available to the public. As
mentioned in this introduction, the book covers both PHP 5.6 and PHP 7, which might lead
you to ask “what happened to PHP 6?” The short answer is: there is no PHP 6 and never was
for the general public. There was a development effort around a codebase that was referred to
as “PHP 6” but it never came to fruition; there were many ambitious plans and subsequent
complications that made it difficult for the team to continue to pursue. PHP 7 is not PHP 6 and
doesn’t include the features and code from that development effort; PHP 7 is its own release
with its own focus—specifically a focus on performance.

Under the hood, PHP 7 includes a refactor of the Zend Engine that powers it, which resulted
in a significant performance boost to many web applications—sometimes upwards of 100%!
While increased performance and decreased memory use were key to the release of PHP 7, so
was backward-compatibility. In fact, relatively few backward-incompatible language changes
were introduced. These are discussed contextually throughout this book so that the chapters

http://www.zend.com

7Introduction

remain usable with PHP 5.6 or PHP 7, as widespread adoption of PHP 7 has not yet occurred by
commercial web-hosting providers.

Some of MySQL’s Strengths

MySQL’s main competitors in the relational database space are PostgreSQL, Microsoft SQL
Server, and Oracle. There is also a growing trend in the web application world toward use of
NoSQL/non-relational databases such as MongoDB. Let’s take a look at why MySQL is still a
good choice in many cases.

MySQL has many strengths, including the following:

 ■ High performance

 ■ Low cost

 ■ Ease of configuration and learning

 ■ Portability

 ■ Availability of source code

 ■ Availability of support

A more detailed discussion of these strengths follows.

Performance

MySQL is undeniably fast. You can see the developers’ benchmark page at http://www.mysql.com/
why-mysql/benchmarks/.

Low Cost

MySQL is available at no cost under an open-source license or at low cost under a commercial
license. You need a license if you want to redistribute MySQL as part of an application and
do not want to license your application under an open-source license. If you do not intend
to distribute your application—typical for most web applications—or are working on free or
open-source software, you do not need to buy a license.

Ease of Use

Most modern databases use SQL. If you have used another RDBMS, you should have no trouble
adapting to this one. MySQL is also easier to set up and tune than many similar products.

Portability

MySQL can be used on many different UNIX systems as well as under Microsoft Windows.

http://www.mysql.com/why-mysql/benchmarks/
http://www.mysql.com/why-mysql/benchmarks/

8 Introduction

Source Code

As with PHP, you can obtain and modify the source code for MySQL. This point is not
important to most users most of the time, but it provides you with excellent peace of mind,
ensuring future continuity and giving you options in an emergency.

In fact, there are now several forks and drop-in replacements for MySQL that you may consider
using, including MariaDB, written by the original authors of MySQL, including Michael
‘Monty’ Widenius (https://mariadb.org).

Availability of Support

Not all open-source products have a parent company offering support, training, consulting,
and certification, but you can get all of these benefits from Oracle (who acquired MySQL with
their acquisition of Sun Microsystems, who had previously acquired the founding company,
MySQL AB).

What Is New in MySQL (5.x)?

At the time of writing, the current version of MySQL was 5.7.

Features added to MySQL in the last few releases include

 ■ A wide range of security improvements

 ■ FULLTEXT support for InnoDB tables

 ■ A NoSQL-style API for InnoDB

 ■ Partitioning support

 ■ Improvements to replication, including row-based replication and GTIDs

 ■ Thread pooling

 ■ Pluggable authentication

 ■ Multicore scalability

 ■ Better diagnostic tools

 ■ InnoDB as the default engine

 ■ IPv6 support

 ■ Plugin API

 ■ Event scheduling

 ■ Automated upgrades

Other changes include more ANSI standard compliance and performance improvements.

https://mariadb.org

9Introduction

If you are still using an early 4.x version or a 3.x version of the MySQL server, you should know
that the following features were added to various versions from 4.0:

 ■ Views

 ■ Stored procedures

 ■ Triggers and cursors

 ■ Subquery support

 ■ GIS types for storing geographical data

 ■ Improved support for internationalization

 ■ The transaction-safe storage engine InnoDB included as standard

 ■ The MySQL query cache, which greatly improves the speed of repetitive queries as often
run by web applications

How Is This Book Organized?

This book is divided into five main parts:

Part I, “Using PHP,” provides an overview of the main parts of the PHP language with
examples. Each example is a real-world example used in building an e-commerce site rather
than “toy” code. We kick off this section with Chapter 1, “PHP Crash Course.” If you’ve already
used PHP, you can whiz through this chapter. If you are new to PHP or new to programming,
you might want to spend a little more time on it.

Part II, “Using MySQL,” discusses the concepts and design involved in using relational database
systems such as MySQL, using SQL, connecting your MySQL database to the world with PHP,
and advanced MySQL topics, such as security and optimization.

Part III, “Web Application Security,” covers some of the general issues involved in developing
a web application using any language. We then discuss how you can use PHP and MySQL to
authenticate your users and securely gather, transmit, and store data.

Part IV, “Advanced PHP Techniques,” offers detailed coverage of some of the major built-
in functions in PHP. We have selected groups of functions that are likely to be useful when
building a web application. You will learn about interaction with the server, interaction with
the network, image generation, date and time manipulation, and session handling.

Part V, “Building Practical PHP and MySQL Projects,” is our favorite section. It deals with
practical real-world issues such as managing large projects and debugging, and provides sample
projects that demonstrate the power and versatility of PHP and MySQL.

10 Introduction

Accessing the Free Web Edition

Your purchase of this book in any format includes access to the corresponding Web Edition,
which provides several special features to help you learn:

 ■ The complete text of the book online

 ■ Interactive quizzes and exercises to test your understanding of the material

 ■ Bonus chapters not included in the print or e-book editions

 ■ Updates and corrections as they become available

The Web Edition can be viewed on all types of computers and mobile devices with any modern
web browser that supports HTML5.

To get access to the Web Edition of PHP and MySQL Web Development, Fifth Edition all you need
to do is register this book:

1. Go to www.informit.com/register

2. Sign in or create a new account

3. Enter ISBN: 9780321833891

4. Answer the questions as proof of purchase

The Web Edition will appear under the Digital Purchases tab on your Account page. Click the
Launch link to access the product.

Finally

We hope you enjoy this book and enjoy learning about PHP and MySQL as much as we did
when we first began using these products. They are really a pleasure to use. Soon, you’ll be able
to join the many thousands of web developers who use these robust, powerful tools to easily
build dynamic, real-time web applications.

http://www.informit.com/register

1
PHP Crash Course

This chapter gives you a quick overview of PHP syntax and language constructs. If you are
already a PHP programmer, it might fill some gaps in your knowledge. If you have a background
using C, Perl, Python, or another programming language, it will help you get up to speed
quickly.

In this book, you’ll learn how to use PHP by working through lots of real-world examples taken
from our experiences building real websites. Often, programming textbooks teach basic syntax
with very simple examples. We have chosen not to do that. We recognize that what you do is
get something up and running, and understand how the language is used, instead of plowing
through yet another syntax and function reference that’s no better than the online manual.

Try the examples. Type them in or download them from the website, change them, break them,
and learn how to fix them again.

This chapter begins with the example of an online product order form to show how variables,
operators, and expressions are used in PHP. It also covers variable types and operator
 precedence. You will learn how to access form variables and manipulate them by working out
the total and tax on a customer order.

You will then develop the online order form example by using a PHP script to validate the
input data. You’ll examine the concept of Boolean values and look at examples using if, else,
the ?: operator, and the switch statement. Finally, you’ll explore looping by writing some PHP
to generate repetitive HTML tables.

Key topics you learn in this chapter include

 ■ Embedding PHP in HTML

 ■ Adding dynamic content

 ■ Accessing form variables

 ■ Understanding identifiers

12 Chapter 1 PHP Crash Course

 ■ Creating user-declared variables

 ■ Examining variable types

 ■ Assigning values to variables

 ■ Declaring and using constants

 ■ Understanding variable scope

 ■ Understanding operators and precedence

 ■ Evaluating expressions

 ■ Using variable functions

 ■ Making decisions with if, else, and switch

 ■ Taking advantage of iteration using while, do, and for loops

Before You Begin: Accessing PHP

To work through the examples in this chapter and the rest of the book, you need access to
a web server with PHP installed. To gain the most from the examples and case studies, you
should run them and try changing them. To do this, you need a testbed where you can
experiment.

If PHP is not installed on your machine, you need to begin by installing it or having your
system administrator install it for you. You can find instructions for doing so in Appendix A,
“Installing Apache, PHP, and MySQL.”

Creating a Sample Application: Bob’s Auto Parts

One of the most common applications of any server-side scripting language is processing HTML
forms. You’ll start learning PHP by implementing an order form for Bob’s Auto Parts, a fictional
spare parts company. You can find all the code for the examples used in this chapter in the
directory called chapter01 on the CD-ROM.

Creating the Order Form

Bob’s HTML programmer has set up an order form for the parts that Bob sells. This relatively
simple order form, shown in Figure 1.1, is similar to many you have probably seen while
surfing. Bob would like to be able to know what his customers ordered, work out the total
prices of their orders, and determine how much sales tax is payable on the orders.

13Creating a Sample Application: Bob’s Auto Parts

Figure 1.1 Bob’s initial order form records only products and quantities

Part of the HTML for this form is shown in Listing 1.1.

Listing 1.1 orderform.html— HTML for Bob’s Basic Order Form

 <form action="processorder.php" method="post">
 <table style="border: 0px;">
 <tr style="background: #cccccc;">
 <td style="width: 150px; text-align: center;">Item</td>
 <td style="width: 15px; text-align: center;">Quantity</td>
 </tr>
 <tr>
 <td>Tires</td>
 <td><input type="text" name="tireqty" size="3"
 maxlength="3" /></td>
 </tr>
 <tr>
 <td>Oil</td>
 <td><input type="text" name="oilqty" size="3"
 maxlength="3" /></td>
 </tr>
 <tr>
 <td>Spark Plugs</td>
 <td><input type="text" name="sparkqty" size="3"
 maxlength="3" /></td>
 </tr>
 <tr>

14 Chapter 1 PHP Crash Course

 <td colspan="2" style="text-align: center;"><input type="submit" value="Submit
Order" /></td>
 </tr>
 </table>
 </form>

Notice that the form’s action is set to the name of the PHP script that will process the
customer’s order. (You’ll write this script next.) In general, the value of the action attribute
is the URL that will be loaded when the user clicks the Submit button. The data the user
has typed in the form will be sent to this URL via the HTTP method specified in the method
 attribute, either get (appended to the end of the URL) or post (sent as a separate message).

Also note the names of the form fields: tireqty, oilqty, and sparkqty. You’ll use these names
again in the PHP script. Because the names will be reused, it’s important to give your form fields
meaningful names that you can easily remember when you begin writing the PHP script. Some
HTML editors generate field names like field23 by default. They are difficult to remember. Your
life as a PHP programmer will be easier if the names you use reflect the data typed into the field.

You should consider adopting a coding standard for field names so that all field names
throughout your site use the same format. This way, you can more easily remember whether,
for example, you abbreviated a word in a field name or put in underscores as spaces.

Processing the Form

To process the form, you need to create the script mentioned in the action attribute of the
form tag called processorder.php. Open your text editor and create this file. Then type in the
following code:

<!DOCTYPE html>
<html>
 <head>
 <title>Bob's Auto Parts - Order Results</title>
 </head>
 <body>
 <h1>Bob's Auto Parts</h1>
 <h2>Order Results</h2>
 </body>
</html>

Notice how everything you’ve typed so far is just plain HTML. It’s now time to add some
simple PHP code to the script.

Embedding PHP in HTML

Under the <h2> heading in your file, add the following lines:

<?php
 echo '<p>Order processed.</p>';
?>

15Embedding PHP in HTML

Save the file and load it in your browser by filling out Bob’s form and clicking the Submit Order
button. You should see something similar to the output shown in Figure 1.2.

Figure 1.2 Text passed to PHP’s echo construct is echoed to the browser

Notice how the PHP code you wrote was embedded inside a normal-looking HTML file.
Try viewing the source from your browser. You should see this code <!DOCTYPE html>

<html>
 <head>
 <title>Bob's Auto Parts - Order Results</title>
 </head>
 <body>
 <h1>Bob's Auto Parts</h1>
 <h2>Order Results</h2>
 <p>Order processed.</p>
 </body>
</html>

None of the raw PHP is visible because the PHP interpreter has run through the script and replaced
it with the output from the script. This means that from PHP you can produce clean HTML
viewable with any browser; in other words, the user’s browser does not need to understand PHP.

This example illustrates the concept of server-side scripting in a nutshell. The PHP has
been interpreted and executed on the web server, as distinct from JavaScript and other client-
side technologies interpreted and executed within a web browser on a user’s machine.

The code that you now have in this file consists of four types of text:

 ■ HTML

 ■ PHP tags

 ■ PHP statements

 ■ Whitespace

16 Chapter 1 PHP Crash Course

You can also add comments.

Most of the lines in the example are just plain HTML.

PHP Tags

The PHP code in the preceding example began with <?php and ended with ?>. This is similar
to all HTML tags because they all begin with a less than (<) symbol and end with a greater
than (>) symbol. These symbols (<?php and ?>) are called PHP tags. They tell the web server
where the PHP code starts and finishes. Any text between the tags is interpreted as PHP.
Any text outside these tags is treated as normal HTML. The PHP tags allow you to escape
from HTML.

There are actually two styles of PHP tags; each of the following fragments of code is equivalent:

 ■ XML style

<?php echo '<p>Order processed.</p>'; ?>

This is the tag style that we use in this book; it is the preferred PHP tag style. The server
administrator cannot turn it off, so you can guarantee it will be available on all servers,
which is especially important if you are writing applications that may be used on
different installations. This tag style can be used with Extensible Markup Language (XML)
documents. In general, we recommend you use this tag style.

 ■ Short style

<? echo '<p>Order processed.</p>'; ?>

This tag style is the simplest and follows the style of a Standard Generalized Markup
Language (SGML) processing instruction. To use this type of tag—which is the shortest
to type—you either need to enable the short_open_tag setting in your confi g fi le or
 compile PHP with short tags enabled. You can fi nd more information on how to use this
tag style in Appendix A. The use of this style is not recommended for use in code you plan
to distribute. It will not work in many environments as it is no longer enabled by default.

PHP Statements

You tell the PHP interpreter what to do by including PHP statements between your opening
and closing tags. The preceding example used only one type of statement:

echo '<p>Order processed.</p>';

As you have probably guessed, using the echo construct has a very simple result: It prints
(or echoes) the string passed to it to the browser. In Figure 1.2, you can see the result is that the
text Order processed. appears in the browser window.

Notice that there is a semicolon at the end of the echo statement. Semicolons separate
 statements in PHP much like periods separate sentences in English. If you have programmed in
C or Java before, you will be familiar with using the semicolon in this way.

Leaving off the semicolon is a common syntax error that is easily made. However, it’s equally
easy to find and to correct.

17Embedding PHP in HTML

Whitespace

Spacing characters such as newlines (carriage returns), spaces, and tabs are known as whitespace.
As you probably already know, browsers ignore whitespace in HTML, and so does the PHP
engine. Consider these two HTML fragments:

<h1>Welcome to Bob's Auto Parts!</h1><p>What would you like to order today?</p>

and

<h1>Welcome to Bob's
Auto Parts!</h1>
<p>What would you like
to order today?</p>

These two snippets of HTML code produce identical output because they appear the same to
the browser. However, you can and are encouraged to use whitespace sensibly in your HTML
as an aid to humans—to enhance the readability of your HTML code. The same is true for PHP.
You don’t need to have any whitespace between PHP statements, but it makes the code much
easier to read if you put each statement on a separate line. For example,

echo 'hello ';
echo 'world';

and

echo 'hello ';echo 'world';

are equivalent, but the first version is easier to read.

Comments

Comments are exactly that: Comments in code act as notes to people reading the code.
Comments can be used to explain the purpose of the script, who wrote it, why they wrote it
the way they did, when it was last modified, and so on. You generally find comments in all but
the simplest PHP scripts.

The PHP interpreter ignores any text in comments. Essentially, the PHP parser skips over the
comments, making them equivalent to whitespace.

PHP supports C, C++, and shell script–style comments.

The following is a C-style, multiline comment that might appear at the start of a PHP script:

/* Author: Bob Smith
 Last modified: April 10
 This script processes the customer orders.
*/

Multiline comments should begin with a /* and end with */. As in C, multiline comments
cannot be nested.

18 Chapter 1 PHP Crash Course

You can also use single-line comments, either in the C++ style:

echo '<p>Order processed.</p>'; // Start printing order

or in the shell script style:

echo '<p>Order processed.</p>'; # Start printing order

With both of these styles, everything after the comment symbol (# or //) is a comment until
you reach the end of the line or the ending PHP tag, whichever comes first.

In the following line of code, the text before the closing tag, here is a comment, is part of
a comment. The text after the closing tag, here is not, will be treated as HTML because it is
outside the closing tag:

// here is a comment ?> here is not

Adding Dynamic Content

So far, you haven’t used PHP to do anything you couldn’t have done with plain HTML.

The main reason for using a server-side scripting language is to be able to provide dynamic
content to a site’s users. This is an important application because content that changes
according to users’ needs or over time will keep visitors coming back to a site. PHP allows you
to do this easily.

Let’s start with a simple example. Replace the PHP in processorder.php with the following
code:

<?php
 echo "<p>Order processed at ";
 echo date('H:i, jS F Y');
 echo "</p>";
?>

You could also write this on one line, using the concatenation operator (.), as

<?php
 echo "<p>Order processed at ".date('H:i, jS F Y')."</p>";
?>

In this code, PHP’s built-in date() function tells the customer the date and time when his
order was processed. This information will be different each time the script is run. The output
of running the script on one occasion is shown in Figure 1.3.

19Adding Dynamic Content

Figure 1.3 PHP’s date() function returns a formatted date string

Calling Functions

Look at the call to date(). This is the general form that function calls take. PHP has an
 extensive library of functions you can use when developing web applications. Most of these
functions need to have some data passed to them and return some data.

Now look at the function call again:

date('H:i, jS F')

Notice that it passes a string (text data) to the function inside a pair of parentheses.
The element within the parentheses is called the function’s argument or parameter. Such
 arguments are the input the function uses to output some specific results.

Using the date() Function

The date() function expects the argument you pass it to be a format string, representing the
style of output you would like. Each letter in the string represents one part of the date and
time. H is the hour in a 24-hour format with leading zeros where required, i is the minutes
with a leading zero where required, j is the day of the month without a leading zero, S
 represents the ordinal suffix (in this case th), and F is the full name of the month.

Note

If date() gives you a warning about not having set the timezone, you should add the
date.timezone setting to your php.ini file. More information on this can be found in
the sample php.ini file in Appendix A.

20 Chapter 1 PHP Crash Course

For a full list of formats supported by date(), see Chapter 19, “Managing the Date and Time.”

Accessing Form Variables

The whole point of using the order form is to collect customers’ orders. Getting the details of
what the customers typed is easy in PHP, but the exact method depends on the version of PHP
you are using and a setting in your php.ini file.

Form Variables

Within your PHP script, you can access each form field as a PHP variable whose name relates
to the name of the form field. You can recognize variable names in PHP because they all
start with a dollar sign ($). (Forgetting the dollar sign is a common programming error.)

Depending on your PHP version and setup, you can access the form data via variables in
 different ways. In recent versions of PHP, all but one of these ways have been deprecated, so
beware if you have used PHP in the past that this has changed.

You may access the contents of the field tireqty in the following way:

$_POST['tireqty']

$_POST is an array containing data submitted via an HTTP POST request—that is, the form
method was set to POST. There are three of these arrays that may contain form data: $_POST,
$_GET, and $_REQUEST. One of the $_GET or $_POST arrays holds the details of all the form
variables. Which array is used depends on whether the method used to submit the form was
GET or POST, respectively. In addition, a combination of all data submitted via GET or POST is
also available through $_REQUEST.

If the form was submitted via the POST method, the data entered in the tireqty box will be
stored in $_POST['tireqty']. If the form was submitted via GET, the data will be in
$_GET['tireqty']. In either case, the data will also be available in $_REQUEST['tireqty'].

These arrays are some of the superglobal arrays. We will revisit the superglobals when we discuss
variable scope later in this chapter.

Let’s look at an example that creates easier-to-use copies of variables.

To copy the value of one variable into another, you use the assignment operator, which in
PHP is an equal sign (=). The following statement creates a new variable named $tireqty and
copies the contents of $ POST['tireqty'] into the new variable:

$tireqty = $_POST['tireqty'];

Place the following block of code at the start of the processing script. All other scripts in
this book that handle data from a form contain a similar block at the start. Because this code

21Accessing Form Variables

will not produce any output, placing it above or below the <html> and other HTML tags that
start your page makes no difference. We generally place such blocks at the start of the script to
make them easy to find.

<?php
 // create short variable names
 $tireqty = $_POST['tireqty'];
 $oilqty = $_POST['oilqty'];
 $sparkqty = $_POST['sparkqty'];
?>

This code creates three new variables—$tireqty, $oilqty, and $sparkqty—and sets them to
contain the data sent via the POST method from the form.

You can output the values of these variables to the browser by doing, for example:

echo $tireqty.' tires
';

However, this approach is not recommended.

At this stage, you have not checked the variable contents to make sure sensible data has been
entered in each form field. Try entering deliberately wrong data and observe what happens.
After you have read the rest of the chapter, you might want to try adding some data validation
to this script.

Taking data directly from the user and outputting it to the browser like this is an extremely
risky practice from a security perspective. We do not recommend this approach. You should
filter input data. We will start to cover input filtering in Chapter 4, “String Manipulation and
Regular Expressions,” and discuss security in depth in Chapter 14, “Web Application Security
Risks.”

For now, it’s enough to know that you should echo out user data to the browser after passing
it through a function called htmlspecialchars(). For example, in this case, we would do the
following:

echo htmlspecialchars($tireqty).' tires
';

To make the script start doing something visible, add the following lines to the bottom of your
PHP script:

 echo '<p>Your order is as follows: </p>';
 echo htmlspecialchars($tireqty).' tires
';
 echo htmlspecialchars($oilqty).' bottles of oil
';
 echo htmlspecialchars($sparkqty).' spark plugs
';

If you now load this file in your browser, the script output should resemble what is shown in
Figure 1.4. The actual values shown, of course, depend on what you typed into the form.

22 Chapter 1 PHP Crash Course

Figure 1.4 The form variables the user typed in are easily accessible in processorder.php

The following sections describe a couple of interesting elements of this example.

String Concatenation

In the sample script, echo prints the value the user typed in each form field, followed by some
explanatory text. If you look closely at the echo statements, you can see that the variable name
and following text have a period (.) between them, such as this:

echo htmlspecialchars($tireqty).' tires
';

This period is the string concatenation operator, which adds strings (pieces of text) together.
You will often use it when sending output to the browser with echo. This way, you can avoid
writing multiple echo commands.

You can also place simple variables inside a double-quoted string to be echoed. (Arrays are
somewhat more complicated, so we look at combining arrays and strings in Chapter 4.)
Consider this example:

 $tireqty = htmlspecialchars($tireqty);
 echo "$tireqty tires
";

This is equivalent to the first statement shown in this section. Either format is valid, and which
one you use is a matter of personal taste. This process, replacing a variable with its contents
within a string, is known as interpolation.

Note that interpolation is a feature of double-quoted strings only. You cannot place variable
names inside a single-quoted string in this way. Running the following line of code

echo '$tireqty tires
';

simply sends $tireqty tires
 to the browser. Within double quotation marks, the
variable name is replaced with its value. Within single quotation marks, the variable name or
any other text is sent unaltered.

23Understanding Identifiers

Variables and Literals

The variables and strings concatenated together in each of the echo statements in the
sample script are different types of things. Variables are symbols for data. The strings are
data themselves. When we use a piece of raw data in a program like this, we call it a literal to
 distinguish it from a variable. $tireqty is a variable, a symbol that represents the data the
customer typed in. On the other hand, ' tires
' is a literal. You can take it at face
value. Well, almost. Remember the second example in the preceding section? PHP replaced the
variable name $tireqty in the string with the value stored in the variable.

Remember the two kinds of strings mentioned already: ones with double quotation marks and
ones with single quotation marks. PHP tries to evaluate strings in double quotation marks,
resulting in the behavior shown earlier. Single-quoted strings are treated as true literals.

There is also a third way of specifying strings using the heredoc syntax (<<<), which will be
familiar to Perl users. Heredoc syntax allows you to specify long strings tidily, by specifying an
end marker that will be used to terminate the string. The following example creates a three-line
string and echoes it:

echo <<<theEnd
 line 1
 line 2
 line 3
theEnd

The token theEnd is entirely arbitrary. It just needs to be guaranteed not to appear in the text.
To close a heredoc string, place a closing token at the start of a line.

Heredoc strings are interpolated, like double-quoted strings.

Understanding Identifiers

Identifiers are the names of variables. (The names of functions and classes are also identifiers;
we look at functions and classes in Chapter 5, “Reusing Code and Writing Functions,” and
Chapter 6, “Object-Oriented PHP.”) You need to be aware of the simple rules defining valid
identifiers:

 ■ Identifiers can be of any length and can consist of letters, numbers, and underscores.

 ■ Identifiers cannot begin with a digit.

 ■ In PHP, identifiers are case sensitive. $tireqty is not the same as $TireQty. Trying
to use them interchangeably is a common programming error. Function names are an
exception to this rule: Their names can be used in any case.

 ■ A variable can have the same name as a function. This usage is confusing, however, and
should be avoided. Also, you cannot create a function with the same name as another
function.

24 Chapter 1 PHP Crash Course

You can declare and use your own variables in addition to the variables you are passed from the
HTML form.

One of the features of PHP is that it does not require you to declare variables before using
them. A variable is created when you first assign a value to it. See the next section for details.

You assign values to variables using the assignment operator (=) as you did when copying one
variable’s value to another. On Bob’s site, you want to work out the total number of items
ordered and the total amount payable. You can create two variables to store these numbers.
To begin with, you need to initialize each of these variables to zero by adding these lines to the
bottom of your PHP script.

$totalqty = 0;
$totalamount = 0.00;

Each of these two lines creates a variable and assigns a literal value to it. You can also assign
variable values to variables, as shown in this example:

$totalqty = 0;
$totalamount = $totalqty;

Examining Variable Types

A variable’s type refers to the kind of data stored in it. PHP provides a set of data types.
Different data can be stored in different data types.

PHP’s Data Types

PHP supports the following basic data types:

 ■ Integer—Used for whole numbers

 ■ Float (also called double)—Used for real numbers

 ■ String—Used for strings of characters

 ■ Boolean—Used for true or false values

 ■ Array—Used to store multiple data items (see Chapter 3, “Using Arrays”)

 ■ Object—Used for storing instances of classes (see Chapter 6)

Three special types are also available: NULL, resource, and callable.

Variables that have not been given a value, have been unset, or have been given the specific
value NULL are of type NULL.

Certain built-in functions (such as database functions) return variables that have the type
resource. They represent external resources (such as database connections). You will almost
certainly not directly manipulate a resource variable, but frequently they are returned by
 functions and must be passed as parameters to other functions.

Callables are essentially functions that are passed to other functions.

25Examining Variable Types

Type Strength

PHP is called a weakly typed or dynamically typed language. In most programming languages,
variables can hold only one type of data, and that type must be declared before the variable can
be used, as in C. In PHP, the type of a variable is determined by the value assigned to it.

For example, when you created $totalqty and $totalamount, their initial types were
 determined as follows:

$totalqty = 0;
$totalamount = 0.00;

Because you assigned 0, an integer, to $totalqty, this is now an integer type variable.
Similarly, $totalamount is now of type float.

Strangely enough, you could now add a line to your script as follows:

$totalamount = 'Hello';

The variable $totalamount would then be of type string. PHP changes the variable type
according to what is stored in it at any given time.

This ability to change types transparently on the fly can be extremely useful. Remember PHP
“automagically” knows what data type you put into your variable. It returns the data with the
same data type when you retrieve it from the variable.

Type Casting

You can pretend that a variable or value is of a different type by using a type cast. This feature
works identically to the way it works in C. You simply put the temporary type in parentheses in
front of the variable you want to cast.

For example, you could have declared the two variables from the preceding section using a cast:

$totalqty = 0;
$totalamount = (float)$totalqty;

The second line means “Take the value stored in $totalqty, interpret it as a float, and store it
in $totalamount.” The $totalamount variable will be of type float. The cast variable does not
change types, so $totalqty remains of type integer.

You can also use built-in functions to test and set type, which you will learn about later in this
chapter.

Variable Variables

PHP provides one other type of variable: the variable variable. Variable variables enable you to
change the name of a variable dynamically.

As you can see, PHP allows a lot of freedom in this area. All languages enable you to change
the value of a variable, but not many allow you to change the variable’s type, and even fewer
allow you to change the variable’s name.

26 Chapter 1 PHP Crash Course

A variable variable works by using the value of one variable as the name of another.
For example, you could set

$varname = 'tireqty';

You can then use $$varname in place of $tireqty. For example, you can set the value of
$tireqty as follows:

$$varname = 5;

This is equivalent to

$tireqty = 5;

This approach might seem somewhat obscure, but we’ll revisit its use later. Instead of having to
list and use each form variable separately, you can use a loop and variable variable to process
them all automatically. You can find an example illustrating this in the section on for loops
later in this chapter.

Declaring and Using Constants

As you saw previously, you can readily change the value stored in a variable. You can also
declare constants. A constant stores a value just like a variable, but its value is set once and
then cannot be changed elsewhere in the script.

In the sample application, you might store the prices for each item on sale as a constant. You
can define these constants using the define function:

define('TIREPRICE', 100);
define('OILPRICE', 10);
define('SPARKPRICE', 4);

Now add these lines of code to your script. You now have three constants that can be used to
calculate the total of the customer’s order.

Notice that the names of the constants appear in uppercase. This convention, borrowed from
C, makes it easy to distinguish between variables and constants at a glance. Following this
convention is not required but will make your code easier to read and maintain.

One important difference between constants and variables is that when you refer to a constant,
it does not have a dollar sign in front of it. If you want to use the value of a constant, use its
name only. For example, to use one of the constants just created, you could type

echo TIREPRICE;

As well as the constants you define, PHP sets a large number of its own. An easy way to obtain
an overview of them is to run the phpinfo() function:

phpinfo();

This function provides a list of PHP’s predefined variables and constants, among other useful
information. We will discuss some of them as we go along.

One other difference between variables and constants is that constants can store only boolean,
integer, float, or string data. These types are collectively known as scalar values.

27Understanding Variable Scope

Understanding Variable Scope

The term scope refers to the places within a script where a particular variable is visible.
The six basic scope rules in PHP are as follows:

 ■ Built-in superglobal variables are visible everywhere within a script.

 ■ Constants, once declared, are always visible globally; that is, they can be used inside
and outside functions.

 ■ Global variables declared in a script are visible throughout that script, but not inside
functions.

 ■ Variables inside functions that are declared as global refer to the global variables of the
same name.

 ■ Variables created inside functions and declared as static are invisible from outside the
function but keep their value between one execution of the function and the next.
(We explain this idea fully in Chapter 5.)

 ■ Variables created inside functions are local to the function and cease to exist when the
function terminates.

The arrays $_GET and $_POST and some other special variables have their own scope rules.
They are known as superglobals and can be seen everywhere, both inside and outside functions.

The complete list of superglobals is as follows:

 ■ $GLOBALS—An array of all global variables (Like the global keyword, this allows you to
access global variables inside a function—for example, as $GLOBALS['myvariable'].)

 ■ $_SERVER—An array of server environment variables

 ■ $_GET—An array of variables passed to the script via the GET method

 ■ $_POST—An array of variables passed to the script via the POST method

 ■ $_COOKIE—An array of cookie variables

 ■ $_FILES—An array of variables related to file uploads

 ■ $_ENV—An array of environment variables

 ■ $_REQUEST—An array of all user input including the contents of input including
$_GET, $_POST, and $_COOKIE (but not including $_FILES)

 ■ $_SESSION—An array of session variables

We come back to each of these superglobals throughout the book as they become relevant.

We cover scope in more detail when we discuss functions and classes later in this chapter. For
the time being, all the variables we use are global by default.

28 Chapter 1 PHP Crash Course

Using Operators

Operators are symbols that you can use to manipulate values and variables by performing an
operation on them. You need to use some of these operators to work out the totals and tax on
the customer’s order.

We’ve already mentioned two operators: the assignment operator (=) and the string
 concatenation operator (.). In the following sections, we describe the complete list.

In general, operators can take one, two, or three arguments, with the majority taking two.
For example, the assignment operator takes two: the storage location on the left side of
the = symbol and an expression on the right side. These arguments are called operands—that is,
the things that are being operated upon.

Arithmetic Operators

Arithmetic operators are straightforward; they are just the normal mathematical operators.
PHP’s arithmetic operators are shown in Table 1.1.

Table 1.1 PHP’s Arithmetic Operators

Operator Name Example

+ Addition $a + $b

- Subtraction $a - $b

* Multiplication $a * $b

/ Division $a / $b

% Modulus $a % $b

With each of these operators, you can store the result of the operation, as in this example:

$result = $a + $b;

Addition and subtraction work as you would expect. The result of these operators is to add or
subtract, respectively, the values stored in the $a and $b variables.

You can also use the subtraction symbol (-) as a unary operator—that is, an operator that takes
one argument or operand—to indicate negative numbers, as in this example:

$a = -1;

Multiplication and division also work much as you would expect. Note the use of the asterisk
as the multiplication operator rather than the regular multiplication symbol, and the forward
slash as the division operator rather than the regular division symbol.

The modulus operator returns the remainder calculated by dividing the $a variable by the $b
variable. Consider this code fragment:

$a = 27;
$b = 10;
$result = $a%$b;

29Using Operators

The value stored in the $result variable is the remainder when you divide 27 by 10—that is, 7.

You should note that arithmetic operators are usually applied to integers or doubles. If you
apply them to strings, PHP will try to convert the string to a number. If it contains an e or
an E, it will be read as being in scientific notation and converted to a float; otherwise, it will be
converted to an integer. PHP will look for digits at the start of the string and use them as the
value; if there are none, the value of the string will be zero.

String Operators

You’ve already seen and used the only string operator. You can use the string concatenation
operator to add two strings and to generate and store a result much as you would use the
addition operator to add two numbers:

$a = "Bob's ";
$b = "Auto Parts";
$result = $a.$b;

The $result variable now contains the string "Bob's Auto Parts".

Assignment Operators

You’ve already seen the basic assignment operator (=). Always refer to this as the assignment
operator and read it as “is set to.” For example,

$totalqty = 0;

This line should be read as “$totalqty is set to zero.” We explain why when we discuss the
comparison operators later in this chapter, but if you call it equals, you will get confused.

Values Returned from Assignment

Using the assignment operator returns an overall value similar to other operators. If you write

$a + $b

the value of this expression is the result of adding the $a and $b variables together. Similarly,
you can write

$a = 0;

The value of this whole expression is zero.

This technique enables you to form expressions such as

$b = 6 + ($a = 5);

This line sets the value of the $b variable to 11. This behavior is generally true of assignments:
The value of the whole assignment statement is the value that is assigned to the left operand.

When working out the value of an expression, you can use parentheses to increase the
 precedence of a subexpression, as shown here. This technique works exactly the same way
as in mathematics.

30 Chapter 1 PHP Crash Course

Combined Assignment Operators

In addition to the simple assignment, there is a set of combined assignment operators. Each
of them is a shorthand way of performing another operation on a variable and assigning the
result back to that variable. For example,

$a += 5;

This is equivalent to writing

$a = $a + 5;

Combined assignment operators exist for each of the arithmetic operators and for the string
concatenation operator. A summary of all the combined assignment operators and their effects
is shown in Table 1.2.

Table 1.2 PHP’s Combined Assignment Operators

Operator Use Equivalent To

+= $a += $b $a = $a + $b

-= $a -= $b $a = $a - $b

*= $a *= $b $a = $a * $b

/= $a /= $b $a = $a / $b

%= $a %= $b $a = $a % $b

.= $a .= $b $a = $a . $b

Pre- and Post-Increment and Decrement

The pre- and post-increment (++) and decrement (--) operators are similar to the += and -=
operators, but with a couple of twists.

All the increment operators have two effects: They increment and assign a value. Consider
the following:

$a=4;
echo ++$a;

The second line uses the pre-increment operator, so called because the ++ appears before the $a.
This has the effect of first incrementing $a by 1 and second, returning the incremented value.
In this case, $a is incremented to 5, and then the value 5 is returned and printed. The value of
this whole expression is 5. (Notice that the actual value stored in $a is changed: It is not just
returning $a + 1.)

If the ++ is after the $a, however, you are using the post-increment operator. It has a different
effect. Consider the following:

$a=4;
echo $a++;

31Using Operators

In this case, the effects are reversed. That is, first, the value of $a is returned and printed, and
second, it is incremented. The value of this whole expression is 4. This is the value that will be
printed. However, the value of $a after this statement is executed is 5.

As you can probably guess, the behavior is similar for the -- (decrement) operator. However,
the value of $a is decremented instead of being incremented.

Reference Operator

The reference operator (&, an ampersand) can be used in conjunction with assignment.
Normally, when one variable is assigned to another, a copy is made of the first variable and
stored elsewhere in memory. For example,

$a = 5;
$b = $a;

These code lines make a second copy of the value in $a and store it in $b. If you subsequently
change the value of $a, $b will not change:

$a = 7; // $b will still be 5

You can avoid making a copy by using the reference operator. For example,

$a = 5;
$b = &$a;
$a = 7; // $a and $b are now both 7

References can be a bit tricky. Remember that a reference is like an alias rather than like a
pointer. Both $a and $b point to the same piece of memory. You can change this by unsetting
one of them as follows:

unset($a);

Unsetting does not change the value of $b (7) but does break the link between $a and the
value 7 stored in memory.

Comparison Operators

The comparison operators compare two values. Expressions using these operators return either
of the logical values true or false depending on the result of the comparison.

The Equal Operator

The equal comparison operator (==, two equal signs) enables you to test whether two values are
equal. For example, you might use the expression

$a == $b

to test whether the values stored in $a and $b are the same. The result returned by this
 expression is true if they are equal or false if they are not.

You might easily confuse == with =, the assignment operator. Using the wrong operator will
work without giving an error but generally will not give you the result you wanted. In general,

32 Chapter 1 PHP Crash Course

nonzero values evaluate to true and zero values to false. Say that you have initialized two
variables as follows:

$a = 5;
$b = 7;

If you then test $a = $b, the result will be true. Why? The value of $a = $b is the value
assigned to the left side, which in this case is 7. Because 7 is a nonzero value, the expression
evaluates to true. If you intended to test $a = = $b, which evaluates to false, you have
 introduced a logic error in your code that can be extremely difficult to find. Always check your
use of these two operators and check that you have used the one you intended to use.

Using the assignment operator rather than the equals comparison operator is an easy mistake
to make, and you will probably make it many times in your programming career.

Other Comparison Operators

PHP also supports a number of other comparison operators. A summary of all the comparison
operators is shown in Table 1.3. One to note is the identical operator (===), which returns true
only if the two operands are both equal and of the same type. For example, 0=='0' will be
true, but 0==='0' will not because one zero is an integer and the other zero is a string.

Table 1.3 PHP’s Comparison Operators

Operator Name Use

== Equals $a == $b

=== Identical $a === $b

!= Not equal $a != $b

!== Not identical $a !== $b

<> Not equal (comparison operator) $a <> $b

< Less than $a < $b

> Greater than (comparison operator) $a > $b

<= Less than or equal to $a <= $b

>= Greater than or equal to $a >= $b

Logical Operators

The logical operators combine the results of logical conditions. For example, you might be
interested in a case in which the value of a variable, $a, is between 0 and 100. You would need
to test both the conditions $a >= 0 and $a <= 100, using the AND operator, as follows:

$a >= 0 && $a <=100

PHP supports logical AND, OR, XOR (exclusive or), and NOT.

The set of logical operators and their use is summarized in Table 1.4.

33Using Operators

Table 1.4 PHP’s Logical Operators

Operator Name Use Result

! NOT !$b Returns true if $b is false and vice versa

&& AND $a && $b Returns true if both $a and $b are true;
otherwise false

|| OR $a || $b Returns true if either $a or $b or both are
true; otherwise false

and AND $a and $b Same as &&, but with lower precedence

or OR $a or $b Same as ||, but with lower precedence

xor XOR $a x or $b Returns true if either $a or $b is true, and false
if they are both true or both false.

The and and or operators have lower precedence than the && and || operators. We cover
precedence in more detail later in this chapter.

Bitwise Operators

The bitwise operators enable you to treat an integer as the series of bits used to represent it.
You probably will not find a lot of use for the bitwise operators in PHP, but a summary is
shown in Table 1.5.

Table 1.5 PHP’s Bitwise Operators

Operator Name Use Result

& Bitwise AND $a & $b Bits set in $a and $b are set in the result.

| Bitwise OR $a | $b Bits set in $a or $b are set in the result.

~ Bitwise NOT ~$a Bits set in $a are not set in the result and
vice versa.

^ Bitwise XOR $a ^ $b Bits set in $a or $b but not in both are set in
the result.

<< Left shift $a << $b Shifts $a left $b bits.

>> Right shift $a >> $b Shifts $a right $b bits.

Other Operators

In addition to the operators we have covered so far, you can use several others.

The comma operator (,) separates function arguments and other lists of items. It is normally
used incidentally.

34 Chapter 1 PHP Crash Course

Two special operators, new and ->, are used to instantiate a class and access class members,
respectively. They are covered in detail in Chapter 6.

There are a few others that we discuss briefly here.

The Ternary Operator

The ternary operator (?:) takes the following form:

condition ? value if true : value if false

This operator is similar to the expression version of an if-else statement, which is covered
later in this chapter.

A simple example is

($grade >= 50 ? 'Passed' : 'Failed')

This expression evaluates student grades to 'Passed' or 'Failed'.

The Error Suppression Operator

The error suppression operator (@) can be used in front of any expression—that is, anything
that generates or has a value. For example,

$a = @(57/0);

Without the @ operator, this line generates a divide-by-zero warning. With the operator
included, the error is suppressed.

If you are suppressing warnings in this way, you need to write some error handling code to
check when a warning has occurred. If you have PHP set up with the track_errors feature
enabled in php.ini, the error message will be stored in the global variable $php_errormsg.

The Execution Operator

The execution operator is really a pair of operators—a pair of backticks (``) in fact. The
 backtick is not a single quotation mark; it is usually located on the same key as the ~ (tilde)
symbol on your keyboard.

PHP attempts to execute whatever is contained between the backticks as a command at the
server’s command line. The value of the expression is the output of the command.

For example, under Unix-like operating systems, you can use

$out = `ls -la`;
echo '<pre>'.$out.'</pre>';

Or, equivalently on a Windows server, you can use

$out = `dir c:`;
echo '<pre>'.$out.'</pre>';

35Using Operators

Either version obtains a directory listing and stores it in $out. It can then be echoed to the
browser or dealt with in any other way.

There are other ways of executing commands on the server. We cover them in Chapter 17,
“Interacting with the File System and the Server.”

Array Operators

There are a number of array operators. The array element operators ([]) enable you to access
array elements. You can also use the => operator in some array contexts. These operators are
covered in Chapter 3.

You also have access to a number of other array operators. We cover them in detail in
Chapter 3 as well, but we included them here in Table 1.6 for completeness.

Table 1.6 PHP’s Array Operators

Operator Name Use Result

+ Union $a + $b Returns an array containing everything in $a
and $b

== Equality $a == $b Returns true if $a and $b have the same key
and value pairs

=== Identity $a === $b Returns true if $a and $b have the same key
and value pairs in the same order and of the
same type.

!= Inequality $a != $b Returns true if $a and $b are not equal

<> Inequality $a <> $b Returns true if $a and $b are not equal

!== Non-identity $a !== $b Returns true if $a and $b are not identical

You will notice that the array operators in Table 1.6 all have equivalent operators that work
on scalar variables. As long as you remember that + performs addition on scalar types and
union on arrays—even if you have no interest in the set arithmetic behind that behavior—the
 behaviors should make sense. You cannot usefully compare arrays to scalar types.

The Type Operator

There is one type operator: instanceof. This operator is used in object-oriented programming,
but we mention it here for completeness. (Object-oriented programming is covered in Chapter 6.)

The instanceof operator allows you to check whether an object is an instance of a particular
class, as in this example:

class sampleClass{};
$myObject = new sampleClass();
if ($myObject instanceof sampleClass)
 echo "myObject is an instance of sampleClass";

36 Chapter 1 PHP Crash Course

Working Out the Form Totals

Now that you know how to use PHP’s operators, you are ready to work out the totals and tax
on Bob’s order form. To do this, add the following code to the bottom of your PHP script:

$totalqty = 0;
$totalqty = $tireqty + $oilqty + $sparkqty;
echo "<p>Items ordered: ".$totalqty."
";
$totalamount = 0.00;

define('TIREPRICE', 100);
define('OILPRICE', 10);
define('SPARKPRICE', 4);

$totalamount = $tireqty * TIREPRICE
 + $oilqty * OILPRICE
 + $sparkqty * SPARKPRICE;

echo "Subtotal: $".number_format($totalamount,2)."
";

$taxrate = 0.10; // local sales tax is 10%
$totalamount = $totalamount * (1 + $taxrate);
echo "Total including tax: $".number_format($totalamount,2)."</p>";

If you refresh the page in your browser window, you should see output similar to Figure 1.5.

As you can see, this piece of code uses several operators. It uses the addition (+) and
 multiplication (*) operators to work out the amounts and the string concatenation operator (.)
to set up the output to the browser.

Figure 1.5 The totals of the customer’s order have been calculated, formatted, and displayed

37Understanding Precedence and Associativity

It also uses the number_format() function to format the totals as strings with two decimal
places. This is a function from PHP’s Math library.

If you look closely at the calculations, you might ask why the calculations were performed in
the order they were. For example, consider this statement:

$totalamount = $tireqty * TIREPRICE
 + $oilqty * OILPRICE
 + $sparkqty * SPARKPRICE;

The total amount seems to be correct, but why were the multiplications performed before the
additions? The answer lies in the precedence of the operators—that is, the order in which they
are evaluated.

Understanding Precedence and Associativity

In general, operators have a set precedence, or order, in which they are evaluated. Operators
also have associativity, which is the order in which operators of the same precedence are
evaluated. This order is generally left to right (called left for short), right to left (called right for
short), or not relevant.

Table 1.7 shows operator precedence and associativity in PHP. In this table, operators with the
lowest precedence are at the top, and precedence increases as you go down the table.

Table 1.7 Operator Precedence in PHP

Associativity Operators

left ,

left Or

left Xor

left And

right Print

left = += -= *= /= .= %= &= |= ^= ~= <<= >>=

left ? :

left ||

left &&

left |

left ^

left &

n/a == != === !==

38 Chapter 1 PHP Crash Course

Associativity Operators

n/a < <= > >=

left << >>

left + - .

left * / %

right !

n/a Instanceof

right ~ (int) (float) (string) (array) (object) (bool) @

n/a ++ --

right []

n/a clone new

n/a ()

Notice that we haven’t yet covered the operator with the highest precedence: plain old
parentheses. The effect of using parentheses is to raise the precedence of whatever is contained
within them. This is how you can deliberately manipulate or work around the precedence
rules when you need to.

Remember this part of the preceding example:

$totalamount = $totalamount * (1 + $taxrate);

If you had written

$totalamount = $totalamount * 1 + $taxrate;

the multiplication operation, having higher precedence than the addition operation, would
be performed first, giving an incorrect result. By using the parentheses, you can force the
subexpression 1 + $taxrate to be evaluated first.

You can use as many sets of parentheses as you like in an expression. The innermost set of
parentheses is evaluated first.

Also note one other operator in this table we have not yet covered: the print language
construct, which is equivalent to echo. Both constructs generate output.

We generally use echo in this book, but you can use print if you find it more readable. Neither
print nor echo is really a function, but both can be called as a function with parameters in
parentheses. Both can also be treated as an operator: You simply place the string to work with
after the keyword echo or print.

Calling print as a function causes it to return a value (1). This capability might be useful if
you want to generate output inside a more complex expression but does mean that print is
marginally slower than echo.

39Using Variable Handling Functions

Using Variable Handling Functions

Before we leave the world of variables and operators, let’s look at PHP’s variable handling
functions. PHP provides a library of functions that enable you to manipulate and test variables
in different ways.

Testing and Setting Variable Types

Most of the variable functions are related to testing the type of function. The two most general
are gettype() and settype(). They have the following function prototypes; that is, this is
what arguments expect and what they return:

string gettype(mixed var);
bool settype(mixed var, string type);

To use gettype(), you pass it a variable. It determines the type and returns a string containing
the type name: bool, int, double (for floats, confusingly, for historical reasons), string,
array, object, resource, or NULL. It returns unknown type if it is not one of the standard
types.

To use settype(), you pass it a variable for which you want to change the type and a string
containing the new type for that variable from the previous list.

Note

This book and the php.net documentation refer to the data type “mixed.” There is no such data
type, but because PHP is so flexible with type handling, many functions can take many (or any)
data types as an argument. Arguments for which many types are permitted are shown with the
pseudo-type “mixed.”

You can use these functions as follows:

$a = 56;
echo gettype($a).'
';
settype($a, 'float');
echo gettype($a).'
';

When gettype() is called the first time, the type of $a is integer. After the call to settype(),
the type is changed to float, which is reported as double. (Be aware of this difference.)

PHP also provides some specific type-testing functions. Each takes a variable as an argument
and returns either true or false. The functions are

 ■ is_array()—Checks whether the variable is an array

 ■ is_double(), is_float(), is_real() (All the same function)—Checks whether
the variable is a float

 ■ is_long(), is_int(), is_integer() (All the same function)—Checks whether
the variable is an integer

40 Chapter 1 PHP Crash Course

 ■ is_string()—Checks whether the variable is a string

 ■ is_bool()—Checks whether the variable is a boolean

 ■ is_object()—Checks whether the variable is an object

 ■ is_resource()—Checks whether the variable is a resource

 ■ is_null()—Checks whether the variable is null

 ■ is_scalar()—Checks whether the variable is a scalar—that is, an integer, boolean,
string, or float

 ■ is_numeric()—Checks whether the variable is any kind of number or a numeric string

 ■ is_callable()—Checks whether the variable is the name of a valid function

Testing Variable Status

PHP has several functions for testing the status of a variable. The first is isset(), which has
the following prototype:

bool isset(mixed var[, mixed var[,...]])

This function takes a variable name as an argument and returns true if it exists and false
otherwise. You can also pass in a comma-separated list of variables, and isset() will return
true if all the variables are set.

You can wipe a variable out of existence by using its companion function, unset(), which has
the following prototype:

void unset(mixed var[, mixed var[,...]])

This function gets rid of the variable it is passed.

The empty() function checks to see whether a variable exists and has a nonempty, nonzero
value; it returns true or false accordingly. It has the following prototype:

bool empty(mixed var)

Let’s look at an example using these three functions.

Try adding the following code to your script temporarily:

echo 'isset($tireqty): '.isset($tireqty).'
';
echo 'isset($nothere): '.isset($nothere).'
';
echo 'empty($tireqty): '.empty($tireqty).'
';
echo 'empty($nothere): '.empty($nothere).'
';

Refresh the page to see the results.

The variable $tireqty should return 1 (true) from isset() regardless of what value you
entered in that form field and regardless of whether you entered a value at all. Whether it is
empty() depends on what you entered in it.

41Making Decisions with Conditionals

The variable $nothere does not exist, so it generates a blank (false) result from isset() and
a 1 (true) result from empty().

These functions are handy when you need to make sure that the user filled out the appropriate
fields in the form.

Reinterpreting Variables

You can achieve the equivalent of casting a variable by calling a function. The following three
functions can be useful for this task:

int intval(mixed var[, int base=10])
float floatval(mixed var)
string strval(mixed var)

Each accepts a variable as input and returns the variable’s value converted to the appropriate
type. The intval() function also allows you to specify the base for conversion when the
 variable to be converted is a string. (This way, you can convert, for example, hexadecimal
strings to integers.)

Making Decisions with Conditionals

Control structures are the structures within a language that allow you to control the flow of
execution through a program or script. You can group them into conditional (or branching)
structures and repetition structures (or loops).

If you want to sensibly respond to your users’ input, your code needs to be able to make
 decisions. The constructs that tell your program to make decisions are called conditionals.

if Statements

You can use an if statement to make a decision. You should give the if statement a condition
to use. If the condition is true, the following block of code will be executed. Conditions in if
statements must be surrounded by parentheses ().

For example, if a visitor orders no tires, no bottles of oil, and no spark plugs from Bob, it is
probably because she accidentally clicked the Submit Order button before she had finished
filling out the form. Rather than telling the visitor “Order processed,” the page could give her a
more useful message.

When the visitor orders no items, you might like to say, “You did not order anything on the
previous page!” You can do this easily by using the following if statement:

if ($totalqty == 0)
 echo 'You did not order anything on the previous page!
';

The condition you are using here is $totalqty = = 0. Remember that the equals operator (= =)
behaves differently from the assignment operator (=).

42 Chapter 1 PHP Crash Course

The condition $totalqty = = 0 will be true if $totalqty is equal to zero. If $totalqty is not
equal to zero, the condition will be false. When the condition is true, the echo statement
will be executed.

Code Blocks

Often you may have more than one statement you want executed according to the actions of
a conditional statement such as if. You can group a number of statements together as a
block. To declare a block, you enclose it in curly braces:

if ($totalqty == 0) {
 echo '<p style="color:red">';
 echo 'You did not order anything on the previous page!';
 echo '</p>';
}

The three lines enclosed in curly braces are now a block of code. When the condition is true,
all three lines are executed. When the condition is false, all three lines are ignored.

Note

As already mentioned, PHP does not care how you lay out your code. However, you should
indent your code for readability purposes. Indenting is used to enable you to see at a glance
which lines will be executed only if conditions are met, which statements are grouped into
blocks, and which statements are parts of loops or functions. In the previous examples, you
can see that the statement depending on the if statement and the statements making up the
block are indented.

else Statements

You may often need to decide not only whether you want an action performed, but also which
of a set of possible actions you want performed.

An else statement allows you to define an alternative action to be taken when the condition
in an if statement is false. Say you want to warn Bob’s customers when they do not order
anything. On the other hand, if they do make an order, instead of a warning, you want to
show them what they ordered.

If you rearrange the code and add an else statement, you can display either a warning or a
summary:

if ($totalqty == 0) {
 echo "You did not order anything on the previous page!
";
} else {
 echo htmlspecialchars($tireqty).' tires
';
 echo htmlspecialchars($oilqty).' bottles of oil
';
 echo htmlspecialchars($sparkqty).' spark plugs
';
 }

43Making Decisions with Conditionals

You can build more complicated logical processes by nesting if statements within each other.
In the following code, the summary will be displayed only if the condition $totalqty = = 0 is
true, and each line in the summary will be displayed only if its own condition is met:

if ($totalqty == 0) {
 echo "You did not order anything on the previous page!
";
} else {
 if ($tireqty > 0)
 echo htmlspecialchars($tireqty).' tires
';
 if ($oilqty > 0)
 echo htmlspecialchars($oilqty).' bottles of oil
';
 if ($sparkqty > 0)
 echo htmlspecialchars($sparkqty).' spark plugs
';
}

elseif Statements

For many of the decisions you make, you have more than two options. You can create a
sequence of many options using the elseif statement, which is a combination of an else
and an if statement. When you provide a sequence of conditions, the program can check each
until it finds one that is true.

Bob provides a discount for large orders of tires. The discount scheme works like this:

 ■ Fewer than 10 tires purchased—No discount

 ■ 10–49 tires purchased—5% discount

 ■ 50–99 tires purchased—10% discount

 ■ 100 or more tires purchased—15% discount

You can create code to calculate the discount using conditions and if and elseif statements.
In this case, you need to use the AND operator (&&) to combine two conditions into one:

if ($tireqty < 10) {
 $discount = 0;
} elseif (($tireqty >= 10) && ($tireqty <= 49)) {
 $discount = 5;
} elseif (($tireqty >= 50) && ($tireqty <= 99)) {
 $discount = 10;
} elseif ($tireqty >= 100) {
 $discount = 15;
}

Note that you are free to type elseif or else if—versions with or without a space are both
correct.

If you are going to write a cascading set of elseif statements, you should be aware that only
one of the blocks or statements will be executed. It did not matter in this example because

44 Chapter 1 PHP Crash Course

all the conditions were mutually exclusive; only one can be true at a time. If you write
conditions in a way that more than one could be true at the same time, only the block or
statement following the first true condition will be executed.

switch Statements

The switch statement works in a similar way to the if statement, but it allows the condition
to take more than two values. In an if statement, the condition can be either true or false.
In a switch statement, the condition can take any number of different values, as long as it
evaluates to a simple type (integer, string, or float). You need to provide a case statement to
handle each value you want to react to and, optionally, a default case to handle any that you
do not provide a specific case statement for.

Bob wants to know what forms of advertising are working for him, so you can add a question
to the order form. Insert this HTML into the order form, and the form will resemble Figure 1.6:

<tr>
 <td>How did you find Bob's?</td>
 <td><select name="find">
 <option value = "a">I’m a regular customer</option>
 <option value = "b">TV advertising</option>
 <option value = "c">Phone directory</option>
 <option value = "d">Word of mouth</option>
 </select>
 </td>
</tr>

Figure 1.6 The order form now asks visitors how they found Bob’s Auto Parts

45Making Decisions with Conditionals

This HTML code adds a new form variable (called find) whose value will be 'a', 'b', 'c', or
'd'. You could handle this new variable with a series of if and elseif statements like this:

if ($find == "a") {
 echo "<p>Regular customer.</p>";
} elseif ($find == "b") {
 echo "<p>Customer referred by TV advert.</p>";
} elseif ($find == "c") {
 echo "<p>Customer referred by phone directory.</p>";
} elseif ($find == "d") {
 echo "<p>Customer referred by word of mouth.</p>";
} else {
 echo "<p>We do not know how this customer found us.</p>";
}

Alternatively, you could write a switch statement:

switch($find) {
 case "a" :
 echo "<p>Regular customer.</p>";
 break;
 case "b" :
 echo "<p>Customer referred by TV advert.</p>";
 break;
 case "c" :
 echo "<p>Customer referred by phone directory.</p>";
 break;
 case "d" :
 echo "<p>Customer referred by word of mouth.</p>";
 break;
 default :
 echo "<p>We do not know how this customer found us.</p>";
 break;
}

(Note that both of these examples assume you have extracted $find from the $_POST array.)

The switch statement behaves somewhat differently from an if or elseif statement. An if
statement affects only one statement unless you deliberately use curly braces to create a block
of statements. A switch statement behaves in the opposite way. When a case statement in
a switch is activated, PHP executes statements until it reaches a break statement. Without
break statements, a switch would execute all the code following the case that was true.
When a break statement is reached, the next line of code after the switch statement is
executed.

Comparing the Different Conditionals

If you are not familiar with the statements described in the preceding sections, you might be
asking, “Which one is the best?”

46 Chapter 1 PHP Crash Course

That is not really a question we can answer. There is nothing that you can do with one or
more else, elseif, or switch statements that you cannot do with a set of if statements.
You should try to use whichever conditional will be most readable in your situation. You will
acquire a feel for which suits different situations as you gain experience.

Repeating Actions Through Iteration

One thing that computers have always been very good at is automating repetitive tasks. If you
need something done the same way a number of times, you can use a loop to repeat some parts
of your program.

Bob wants a table displaying the freight cost that will be added to a customer’s order. With the
courier Bob uses, the cost of freight depends on the distance the parcel is being shipped. This
cost can be worked out with a simple formula.

You want the freight table to resemble the table in Figure 1.7.

Figure 1.7 This table shows the cost of freight as distance increases

Listing 1.2 shows the HTML that displays this table. You can see that it is long and repetitive.

Listing 1.2 freight.html—HTML for Bob’s Freight Table

<!DOCTYPE html>
<html>
 <head>
 <title>Bob's Auto Parts - Freight Costs</title>
 </head>
 <body>

47Repeating Actions Through Iteration

 <table style="border: 0px; padding: 3px">
 <tr>
 <td style="background: #cccccc; text-align: center;">Distance</td>
 <td style="background: #cccccc; text-align: center;">Cost</td>
 </tr>
 <tr>
 <td style="text-align: right;">50</td>
 <td style="text-align: right;">5</td>
 </tr>
 <tr>
 <td style="text-align: right;">100</td>
 <td style="text-align: right;">10</td>
 </tr>
 <tr>
 <td style="text-align: right;">150</td>
 <td style="text-align: right;">15</td>
 </tr>
 <tr>
 <td style="text-align: right;">200</td>
 <td style="text-align: right;">20</td>
 </tr>
 <tr>
 <td style="text-align: right;">250</td>
 <td style="text-align: right;">25</td>
 </tr>
 </table>
 </body>
</html>

Rather than requiring an easily bored human—who must be paid for his time—to type the
HTML, having a cheap and tireless computer do it would be helpful.

Loop statements tell PHP to execute a statement or block repeatedly.

while Loops

The simplest kind of loop in PHP is the while loop. Like an if statement, it relies on a
 condition. The difference between a while loop and an if statement is that an if statement
executes the code that follows it only once if the condition is true. A while loop executes
the block repeatedly for as long as the condition is true.

You generally use a while loop when you don’t know how many iterations will be required to
make the condition true. If you require a fixed number of iterations, consider using a for loop.

The basic structure of a while loop is

while(condition) expression;

48 Chapter 1 PHP Crash Course

The following while loop will display the numbers from 1 to 5:

$num = 1;
while ($num <= 5){
 echo $num."
";
 $num++;
}

At the beginning of each iteration, the condition is tested. If the condition is false, the block will
not be executed and the loop will end. The next statement after the loop will then be executed.

You can use a while loop to do something more useful, such as display the repetitive freight
table in Figure 1.7. Listing 1.3 uses a while loop to generate the freight table.

Listing 1.3 freight.php—Generating Bob’s Freight Table with PHP

<!DOCTYPE html>
<html>
 <head>
 <title>Bob's Auto Parts - Freight Costs</title>
 </head>
 <body>
 <table style="border: 0px; padding: 3px">
 <tr>
 <td style="background: #cccccc; text-align: center;">Distance</td>
 <td style="background: #cccccc; text-align: center;">Cost</td>
 </tr>

 <?php
 $distance = 50;
 while ($distance <= 250) {
 echo "<tr>
 <td style=\"text-align: right;\">".$distance."</td>
 <td style=\"text-align: right;\">".($distance / 10)."</td>
 </tr>\n";
 $distance += 50;
 }
 ?>

 </table>
 </body>
</html>

To make the HTML generated by the script readable, you need to include newlines and spaces.
As already mentioned, browsers ignore this whitespace, but it is important for human readers.
You often need to look at the HTML if your output is not what you were seeking.

In Listing 1.3, you can see \n inside some of the strings. When inside a double-quoted string,
this character sequence represents a newline character.

49Repeating Actions Through Iteration

for and foreach Loops

The way that you used the while loops in the preceding section is very common. You set a
counter to begin with. Before each iteration, you test the counter in a condition. And at
the end of each iteration, you modify the counter.

You can write this style of loop in a more compact form by using a for loop. The basic
 structure of a for loop is

for(expression1; condition; expression2)
 expression3;

 ■ expression1 is executed once at the start. Here, you usually set the initial value of a
counter.

 ■ The condition expression is tested before each iteration. If the expression returns false,
iteration stops. Here, you usually test the counter against a limit.

 ■ expression2 is executed at the end of each iteration. Here, you usually adjust the value
of the counter.

 ■ expression3 is executed once per iteration. This expression is usually a block of code
and contains the bulk of the loop code.

You can rewrite the while loop example in Listing 1.3 as a for loop. In this case, the PHP code
becomes

<?php
for ($distance = 50; $distance <= 250; $distance += 50) {
 echo "<tr>
 <td style=\"text-align: right;\">".$distance."</td>
 <td style=\"text-align: right;\">".($distance / 10)."</td>
 </tr>\n";}
?>

Both the while and for versions are functionally identical. The for loop is somewhat more
compact, saving two lines.

Both these loop types are equivalent; neither is better or worse than the other. In a given
 situation, you can use whichever you find more intuitive.

As a side note, you can combine variable variables with a for loop to iterate through a series of
repetitive form fields. If, for example, you have form fields with names such as name1, name2,
name3, and so on, you can process them like this:

for ($i=1; $i <= $numnames; $i++){
 $temp= "name$i";
 echo htmlspecialchars($$temp).'
'; // or whatever processing you want to do
}

By dynamically creating the names of the variables, you can access each of the fields in turn.

50 Chapter 1 PHP Crash Course

As well as the for loop, there is a foreach loop, designed specifically for use with arrays. We
discuss how to use it in Chapter 3.

do...while Loops

The final loop type we describe behaves slightly differently. The general structure of
a do...while statement is

do
 expression;
while(condition);

A do...while loop differs from a while loop because the condition is tested at the end. This
means that in a do...while loop, the statement or block within the loop is always executed at
least once.

Even if you consider this example in which the condition will be false at the start and can
never become true, the loop will be executed once before checking the condition and ending:

$num = 100;
do{
 echo $num."
";
}while ($num < 1) ;

Breaking Out of a Control Structure or Script

If you want to stop executing a piece of code, you can choose from three approaches,
depending on the effect you are trying to achieve.

If you want to stop executing a loop, you can use the break statement as previously discussed
in the section on switch. If you use the break statement in a loop, execution of the script will
continue at the next line of the script after the loop.

If you want to jump to the next loop iteration, you can instead use the continue statement.

If you want to finish executing the entire PHP script, you can use exit. This approach is
 typically useful when you are performing error checking. For example, you could modify the
earlier example as follows:

if($totalqty == 0){
 echo "You did not order anything on the previous page!
";
 exit;
}

The call to exit stops PHP from executing the remainder of the script.

51Using declare

Employing Alternative Control Structure

Syntax

For all the control structures we have looked at, there is an alternative form of syntax.
It consists of replacing the opening brace ({) with a colon (:) and the closing brace with a new
keyword, which will be endif, endswitch, endwhile, endfor, or endforeach, depending on
which control structure is being used. No alternative syntax is available for do...while loops.

For example, the code

if ($totalqty == 0) {
 echo "You did not order anything on the previous page!
";
 exit;
}

could be converted to this alternative syntax using the keywords if and endif:

if ($totalqty == 0) :
 echo "You did not order anything on the previous page!
";
 exit;
endif;

Using declare
One other control structure in PHP, the declare structure, is not used as frequently in day-to-
day coding as the other constructs. The general form of this control structure is as follows:

declare (directive)
{
// block
}

This structure is used to set execution directives for the block of code—that is, rules about
how the following code is to be run. Currently, only two execution directives, ticks and
 encoding, have been implemented.

You use ticks by inserting the directive ticks=n. It allows you to run a specific function every
n lines of code inside the code block, which is principally useful for profiling and debugging.

The encoding directive is used to set encoding for a particular script, as follows:

declare(encoding='UTF-8');

In this case, the declare statement may not be followed by a code block if you are using
namespaces. We’ll talk about namespaces more later.

52 Chapter 1 PHP Crash Course

The declare control structure is mentioned here only for completeness. We consider some
examples showing how to use tick functions in Chapters 25, “Using PHP and MySQL for Large
Projects,” and 26, “Debugging and Logging.”

Next

Now you know how to receive and manipulate the customer’s order. In the next chapter, you’ll
learn how to store the order so that it can be retrieved and fulfilled later.

Index

Symbols
[] (array element operator), 35

- - (decrement operator), 30–31

== (equal operator), 31–32

$_POST array, 20

$.ajax() method, 508–509

$.get() method, 510

$.getJSON() method, 510

$.getscript() method, 510

$.post() method, 510

$this pointer, 164

\ (backslash), escape sequences,

125–126

^ (caret symbol), 121

, (comma operator), 33

@ (error suppression operator), 34

`` (execution operator), 34–35

/ (forward slash), 56, 120

% (percent) symbol, printing, 110

& (reference operator), 31

; (semicolon), 16, 222–223

() (parentheses), order of precedence,

37–38

?: (ternary operator), 34

| (vertical pipe), 123

616 absolute path

A
absolute path, 56

abstract classes, 188

access control implementing, 366–369

access modifiers, 165, 166

visibility, controlling, 169–170

accessing

array contents, 77–79

array elements, 79

with each() construct, 80–81

with foreach loop, 80

form variables, 20–22

assignment operators, 20

htmlspecialchars() function, 21–22

PHP, 12

accessor functions, 166–168, 178

ACID (atomicity, consistency, isolation,

and durability), 317–318

add_bms.php, 588–589

addClass() method, 498

adding

dynamic content, 18–19

locks to files, 71–73

addition operator, 28

address field (Bob’s Auto Parts order form),

54

administrator privileges (MySQL), 229

advantages of reusing code

consistency, 132

cost, 132

reliability, 132

aggregating SQL data, 259–261

AJAX (Asynchronous JavaScript and XML),

493–494

$.ajax() method, 508–509

asynchronous requests, 493

helper methods, 509–510

$.get(), 510

$.getscript(), 510

$.post(), 510

real-time chat application, building
chat server, 504–507

aliases

for namespaces, 198

for tables, 257–258

ALTER TABLE command (SQL), 265–268

altering

error reporting settings, 554–556

tables after creation, 265–268

alternative control structure syntax, 51

anchoring regular expressions to beginning

or end of string, 123

anonymous functions, 155–157

Apache

HTTP Server

.htaccess files, 374–377

configuring, 356

installing

on UNIX, 600–602

on Windows and Mac, 612–613

applying

functions to arrray elements, 97–98

localization to web pages, 440–445

language selector page, 442–444

software engineering to web
development, 530

templates to web pages, 134–139

text to buttons, 461–464

arbitrary lengths, reading, 69

ARCHIVE table type, 316

arguments, 39

arithmetic operators, 28–29

array elements, 76

accessing, 79

617auto_append_file directive

with each() construct, 80–81

with foreach loop, 80

applying functions to, 97–98

counting, 98–99

indices, 76

array key-value pairs for getdate() function,

427–428

array operators, 35, 81–82

array_count() function, 98–99

array_multisort() function, 87–88

array_pop() function, 92

array_push() function, 92

array_reverse() function, 92

array_walk() function, 97–98

arrays, 24, 75–76

$_POST, 20

accessing contents, 77–78, 78–79

bounding box contents, 463

converting to scalar variables,
99–100

initializing, 79

loading from files, 92–96

multidimensional arrays, 75, 82–85

sorting, 87–90

three-dimensional arrays, 84–85

two-dimensional arrays, 82–84

navigating, 96–97

numerically indexed arrays, 76–77

reordering, 90–91

with shuffle() function, 90–91

reversing, 92

sorting, 85–87

with asort() function, 86–87

with ksort() function, 86–87

reverse sorting, 83

with sort() function, 85–86

superglobal, 20, 27

asort() function, 86–87

assertions, 126–127

assigning values to variables, 24

assignment operators, 20

combined assignment operators, 30

values returned from, 29

associativity, 37–38

asynchronous requests, 493

atomic column values, 216–217

attackers, 339

attributes, 160, 162, 164–165, 177

access modifiers, 165, 166

accessor functions, 166–168

overriding, 170–172

preventing, 172

authentication, 333

access control, 366–369

basic authentication, 372–377

in PHP, 372–373

custom authentication, creating, 377

identifying visitors, 365–366

passwords

hash functions, 370–371

storing, 369

PHPbookmark project, 569–587

changing passwords, 580–582

logging in, 576–579

logging out, 580

registering users, 569–575

resetting forgotten passwords,
582–587

in session control, 483–491

authmain.php, 483–489

logout.php, 490–491

members_only.php, 489

authmain.php, 483–489

auto_append_file directive, 139–140

618 _autoload() function

bookmark_fns.php, 567–568

bookmarks (PHPbookmark project), 561

adding, 588–590

deleting, 591–594

displaying, 590–591

Book-O-Rama bookstore application,

213–214

inserting information into database,
282–285

results.php, 273–275

schema, 221

search form, 272–273

Boolean values, 24

bottom-up approach to security, 343

bounding box, 462–463

branching, 123

breaking up code, 535–536

browsedir2.php, 392

browsedir.php, 390

browsers

cookies, 476, 477

session ID, storing, 477–478

setting from PHP, 476–477

outputting images to, 455

session control, 475

authentication, 483–491

configuring, 482–483

sessions

creating, 480–482

registering variables,
478–479

starting, 478

browsing php.ini file, 355–356

Bubbler, 510

built-in functions, 144

buttons

applying text, 461–464

_autoload() function, 189

AUTO_INCREMENT keyword (MySQL), 234

auto_prepend_file directive, 139–140

autocommit mode (MySQL), 318

automatically generated images, 456

available extensions, identifying, 522–523

avoiding FTP timeouts, 420

B
backing up

files, 412–420

MySQL databases, 310–311

backreferences, 126

backtraces, 202

balancing security with usability, 342

bar chart, drawing, 465–474

basename() function, 397

basic authentication, 372–377

.htaccess files, 374–377

in PHP, 372–373

basic values, filtering, 346–347

basic_auth.php, 372–373

Bill Gates Wealth Clock, 407

bitwise operators, 33

blank canvas, creating, 452–453

BLOBs (binary large objects), 244

blocks, declaring, 42

Bob’s Auto Parts site

exception handling, 204–208

order form

address field, 54

creating, 12–14

fields, naming, 14

processing, 14

totals, calculating, 36–37

Smart Form Mail application, creating,
101–104

619classes

creating, 457–465

base canvas, setting up, 460–461

outputting to browser, 465

positioning text on, 464

text, writing on, 464–465

C
calculating

dates

in MySQL, 434–435

in PHP, 433–434

totals on order forms, 36–37

calendar functions, 436

_call method, 188–189

callable type, 24

calling

class operations, 165

functions, 19, 141–142

recursive functions, 154–155

undefined functions, 142–143

canvas images

creating, 452–453

printing text on, 453–454

Cartesian product, 254–255

case of strings, changing, 111–112

case sensitivity, of identifiers, 239

catch blocks, 200

CHAR type columns, 235

character class, 121–122

character sets, 120–121, 438–440

multi-byte, 438

security implications, 439–440

single-byte, 438

characters. See also special characters,

123–124

reading, 69

charts, drawing from stored MySQL data,

465–474

chat application

chat server, building, 504–507

user interface, building, 510–517

chat.php, 504–507

checkdate() function, 428–429

checking

for existence of files, 70

length of strings, 115–116

choosing

development environment, 537–538

file mode, 55

keys, 217

chop() function, 104

classes, 161

$this pointer, 164

abstract classes, 188

attributes, 162, 164–165, 177

converting to strings, 194

designing, 176–177

Exception class, 201–202

inheritance, 161–162, 168–169

late static bindings, 186–187

multiple inheritance, 172–173

preventing, 172

instantiating, 163–164

namespaces, 195–197

global namespaces, 197–198

importing, 198

subnamespaces, 197

naming, 177

ObjectIterator, 192

operations, 162–163

calling, 165

polymorphism, 161

structure of, 162–163

traits, 174–176

writing code for, 177–184

620 classes

data types, 240–246

date and time types, 243–244

numeric types, 241–242

string types, 244–246

displaying, 302

indexes, creating, 238

MySQL

CHAR type, 235

VARCHAR type, 235–236

primary key, 211

columns_priv table, 296–298

combined assignment operators, 30

command line

executing scripts on, 526–527

running PHP on, 526–527

commands

executing, 353–354

MySQL

CREATE INDEX, 238

CREATE TABLE, 232–233

CREATE USER, 226

DESCRIBE, 304

EXPLAIN, 304–309

GRANT, 226–227, 230–231

REVOKE, 230, 230–231

SHOW, 301–304

show tables, 237

use, 232

mysql, 223

SQL

ALTER TABLE, 265–268

DELETE, 268

INSERT, 248–249

ORDER BY clause, 259

SELECT, 250–251, 252–253

UPDATE, 265

accessor functions, 178

metatags, 177

click event, 500

Clifford, John, 510

cloning objects, 187–188

closedir() function, 391

closing files, 63–65

closures, 155–157

code

breaking up, 535–536

checking out, 537

for classes, writing, 177–184

operations, 181

commenting, 534

debugging, 352–353

indenting, 42, 534–535

maintainability, 532

optimizing, 540–541

organizing, 350–351

reusing, 133–134

advantages of, 131–132

functions, 140–157

in large web projects, 531–532

require() statement, 134–139

traits, 174–176

securing, 343

command execution, 353–354

escaping output, 348–350

filtering input data, 343–348

source code, highlighting, 525–526

standards, 532

defining naming conventions,
532–534

testing, 541–542

code blocks, 42

columns, 211, 235–237

atomic column values, 216–217

621CREATE TABLE command

comments, 17–18

comparing

conditionals, 45–46

constants and variables, 26

SQL and MySQL, 248

strings, 115

comparison operators, 31–32

equal operator, 31–32

for WHERE clause, 252–253

concatenating strings, 22

conditionals, 41

code blocks, 42

comparing, 45–46

else statements, 42–43

elseif statements, 43–44

if statements, 41–42

switch statement, 44–45

configuring

Apache HTTP Server, 356

MySQL users, 225–232

PHP image support, 449–450

session control, 482–483

authentication, 483–491

connecting

to MySQL, 277–278

to network services, interaction
failures, 548–549

ODBC, 286

constants, 26

error reporting levels, 553–554

per-class constants, 185

and variables, 26

constructors, 163

consuming data from other websites,

404–408

control structures

alternative syntax, 51

conditionals, 41

code blocks, 42

comparing, 45–46

else statements, 42–43

elseif statements, 43–44

if statements, 41–42

switch statement, 44–45

declare structure, 51–52

repetition structures, 46–50

do.while loops, 50

foreach loops, 49–50

for loops, 49–50

while loops, 47–48

stopping, 50

for stored procedures, 323–327

declare handlers, 325

controlling visibility, 169–170

conversion specification, 109

type codes, 110–111

converting

arrays to scalar variables, 99–100

classes to strings, 194

dates and times to Unix timestamp, 426

Gregorian to Julian calendar, 436

between PHP and MySQL date
formats, 431–433

cookies, 476, 477

session ID, 476

setting from PHP, 476–477

correlated subqueries, 264

count() function, 93, 98–99

counted subexpressions, 123

counting array elements, 98–99

crackers, 339

CREATE INDEX command, 238

CREATE TABLE command, 232–233

622 CREATE USER command

numeric types, 241–242

string types, 244–246

scalar values, 26

type casting, 25

type strength, 25

databases. See also RDBMSs (relational

database management systems)

advantages of, 209

designing, 213–220

dropping, 268–269

MySQL, 209

backing up, 310–311

chat server, building, 504–507

DATE_FORMAT() function, 431–432

dates, calculating, 434–435

displaying, 302

inserting data, 282–285

interaction failures, 547–548

restoring, 311

security, 299–301

UNIX_TIMESTAMP() function,
432–433

users, setting up, 225–232

null values, 217–218

ODBC, 286

optimizing, 309–310

design optimization, 309

table optimization, 310

PHPbookmark project, implementing,
565–566

querying, 278

RDBMSs, 74

replication, 311–313

initial data transfer, performing,
313

master, setting up, 312–313

slaves, setting up, 313

schemas, 212

CREATE USER command, 226

creating

Bob’s Auto Parts order form, 12–14

buttons

base canvas, setting up, 460–461

outputting to browser, 465

text, applying, 461–464

text, positioning, 464

column indexes, 238

directories, 394

files, 398

HTML elements, 497–498

images, 451–455

make_button.php, 458–460

MySQL tables, 232–234

MySQL users, 224

sessions, 480–482

cross joins, 258

crypt() function, 370

CSV table type, 316

current() function, 96–97

cursors, 323, 325

custom authentication, creating, 377

customer feedback form (Bob’s Auto

Parts site), creating, 101–104

customer order form

address field, 54

creating, 12–14

fields, naming, 14

processing, 14

totals, calculating, 36–37

D
data hiding, 160

data storage, RDBMSs, 74

data types, 24–25

for MySQL columns, 240–246

date and time types, 243–244

623DMZs (demilitarized zones)

security, 357–359

transactions, 317–319

update anomalies, 215

web database architecture, 218–220, 272

Date, C.J., 220

date and time type columns, 243–244

date() function, 18, 19–20, 424–427

format codes, 424–425

Unix timestamps, 426–427

DATE_FORMAT() function, 431–432

dates

calculating

in MySQL, 434–435

in PHP, 433–434

calendar functions, 436

converting between PHP and MySQL
formats, 431–433

Gregorian dates, 436

Julian dates, 436

validating with checkdate() function,
428–429

db table, 295–296

DDL (Data Definition Language), 248

debugging, 352–353

variables, 551–553

declare handlers, 325

declare structure, 51–52

declaring

blocks, 42

constants, 26

functions, 144

decrement operators, 30–31

define() function, 26

defining naming conventions for large

projects, 532–534

DELETE command (SQL), 268

delete_bms.php, 592–593

deleting

bookmarks, 591–594

files, 70, 398

records from database, 268

deletion anomalies, 215

delimiters, 120

denial of service, 335–337, 361

descenders, 463

DESCRIBE command, 304

designing

classes, 176–177

RDBMSs, 213–220

destroying

image identifiers, 455

sessions, 479

destructors, 163

die() function, 520–522

directories

creating, 394

reading from, 390–393

retrieving information, 394

submission form, 408

directory structure for large projects, 536

directory_submit.php, 409–412

disaster planning, 362–364

disconnecting from MySQL database, 281

disgruntled employees, threats

posed by, 339

displaying

bookmarks, 590–591

columns, 302

databases, 302

MySQL privileges, 302

tables, 237

division operator, 28

DML (Data Manipulation Language), 248

DMZs (demilitarized zones), 360–361

624 documentation

error reporting levels, 553–554

logging errors, 560

graceful error logging, 557–559

logic errors, 549–551

opening files, 58–61

programming errors, 543–551

runtime errors, 544–549

causes of, 545–549

syntax errors, 543–544

triggering your own errors, 556

error messages for undefined functions,

142–143

error reporting levels, 553–554

error reporting settings, altering, 554–556

error suppression operator, 34, 60

escape sequences, 125–126

escapeshellcmd() function, 354

escaping

from HTML, 16

output, 348–350

eval() function, 519–520

evaluating

SELECT queries, 304–309

strings, 519–520

event handling

jQuery, 499–504

click event, 500

focusout event, 503

on() method, 499–500

ready event, 499

submit event, 504

triggers, 327–329

Exception class, 201–202

exception handling, 199–201, 557

in Bob’s Auto Parts site, 204–208

catch blocks, 200

Exception class, 201–202

documentation

function libraries, 536

PHP manual, 531

project documentation, 538

dot notation, 255

double-quoted strings, interpolation, 22

do.while loops, 50

drawing bar charts, 465–474

dropping

databases, 268–269

tables, 268

DSN (data source name), 288

dump_array() function, 552–553

dump_variables.php, 551–553

dynamic content, adding, 18–19

E
each() construct, accessing array contents,

80–81

each() function, 80

echo statement, 22

else statements, 42–43

elseif statements, 43–44

email, sending and reading, 404

embedding PHP in HTML, 14–19

comments, 17–18

statements, 16

tags, 16

whitespace, 17

empty() function, 40

encapsulation, 160

end() function, 96–97

environment variables, 401–402

equal operator, 31–32

equi-joins, 258

error handling, 208

625files

finally blocks, 200

throw keyword, 200

try blocks, 199

user-defined exceptions, 202–204

executing commands, 353–354

execution directives, 51–52

execution operator, 34–35

existence of files, checking for, 70

exit() function, 520–522

EXPLAIN command, 304–309

explode() function, 95–96

splitting strings with, 112–113

extensions

loaded extensions, identifying, 522–523

PDO data access abstraction extension,
286–289

php_gd2.dll extension, registering, 450

extract() function, 99–100

F
fclose() function, 63–65

feedback form (Bob’s Auto Parts site),

creating, 101–104

feof() function, 66–67

fgetc() function, 69

fgetcsv() function, 67–68

fgets() function, 67–68

fgetts() function, 67–68

fields, naming, 14

file formats, 62–63

file() function, 68–69, 93

file mode, 55

choosing, 55

fopen() function, 57

file systems

absolute path, 56

file information, retrieving, 395–397

relative path, 56

security, 352

file_exists() function, 70

file_get_contents() function, 68–69

file_put_contents() function, 61

fileatime() function, 397

filedetails.php, 395–396

fileowner() function, 397

fileperms() function, 397

files

.htaccess files, 374–377

backing up, 412–420

characters, reading, 69

closing, 63–65

creating, 398

deleting, 70, 398

existence of, checking for, 70

flat files, 53–54

problems with, 73

image files

creating, 451–455

GIFs, 451

JPEGs, 450

PNGs, 450–451

loading arrays from, 92–96

locking, 71–73

logging errors to, 560

moving, 398

navigating inside, 70–71

opening, 55

error handling, 58–61

with fopen() function, 56–58

through FTP or HTTP, 58

in PHPbookmark application, 564–565

processing, 55

properties, changing, 397–398

reading from, 55, 65–66, 67–68, 68–69

626 files

fonts, TrueType, 457

fopen() function, 55, 66

file mode, 57

opening files with, 56–58

parameters, 56

foreach loops, 49–50, 190

accessing array elements, 80

FOREIGN KEY keyword (MySQL), 235

foreign keys, 212, 319

Book-O-Rama bookstore application,
221

forgot_passwd.php, 583–584

format codes, date() function, 424–425

formatting

strings

changing case of, 111–112

conversion specification, 109

for printing, 109–111

timestamps, 429–431

forms

Book-O-Rama bookstore application

HTML form, 282–285

search form, 272–273

customer order form

creating, 12–14

fields, naming, 14

processing, 14

Smart Form Mail application

creating, 101–104

regular expressions, 127–128

submission form, 408

variables, accessing, 20–22

fpassthru() function, 68–69

fputs() function, 61

fread() function, 69

front end interface, building for chat

application, 504–507

as cause for runtime errors, 546–547

line-by-line, 67–68

require() statement, 132–134

size of, determining, 70

uploading, 379–389, 420

HTML form, 381–382

php.ini settings, 380–381

tracking upload progress, 387–388

troubleshooting, 389

writing the file handling script,
382–387

writing to, 55, 61

filesize() function, 70, 397

filtering

input data, 276, 343–348

basic values, 346–347

double-checking expected values,
344–346

strings, 347–348

strings, 105–107

for output to browser, 105–106

for output to email, 106–107

final keyword, 172

finally blocks, 200

finding

non-matching rows, 256–257

strings within strings, 116–117

substrings with regular expressions,
128–129

firewalls, 360

flat files, 53–54

problems with, 73

float data type, 25

floating-point types, 242

floatval() function, 41

flock() function, 71–73

focusout event, 503

627functions

fseek() function, 70–71

ftell() function, 70–71

FTP

avoiding timeouts, 420

backing up files with, 412–420

files, opening, 58

ftp_mirror.php, 413–416

ftp_nlist() function, 421

ftp_size() function, 420

full joins, 254–255

func_num_args() function, 148

functions, 140

_autoload(), 189

_get(), 166–168

_set(), 166–168

accessor functions, 166–168, 178

aggregate functions (MySQL), 259–261

applying to array elements, 97–98

arguments, 39

array_count(), 98–99

array_multisort(), 87–88

array_pop(), 92

array_push(), 92

array_reverse(), 92

array_walk(), 97–98

asort(), 86–87

backtraces, 202

basename(), 397

built-in, 144

calling, 19, 141–142

case functions, 112

case sensitivity, 143

checkdate(), 428–429

chop(), 104

closedir(), 391

closures, 155–157

count(), 93, 98–99

crypt(), 370

current(), 96–97

date(), 18, 19–20, 424–427

format codes, 424–425

DATE_FORMAT(), 431–432

define(), 26

die(), 520–522

dump_array(), 552–553

each(), 80

empty(), 40

end(), 96–97

escapeshellcmd(), 354

eval(), 519–520

exit(), 520–522

explode(), 95–96

splitting strings with, 112–113

extract(), 99–100

fclose(), 63–65

feof(), 66–67

fgetc(), 69

fgetcsv(), 67–68

fgets(), 67–68

fgetts(), 67–68

file(), 68–69, 93

file_exists(), 70

file_get_contents(), 68–69

file_put_contents(), 61

fileatime(), 397

fileowner(), 397

fileperms(), 397

filesize(), 70, 397

floatval(), 41

flock(), 71–73

fopen(), 55, 66

file mode, 57

opening files with, 56–58

parameters, 56

628 functions

lookup functions, 408–412

ltrim(), 104

mail(), 104, 404

microtime(), 435

mkdir(), 394

mktime(), 426–427

multibyte string functions, 440

mysqli(), 547

namespaces, 195–197

global namespaces, 197–198

importing, 198

subnamespaces, 197

naming, 145–146

next(), 96–97

nl2br(), 70, 107–109

nonexistent, as cause for runtime errors,
545–546

number_format(), 37

in ObjectIterator class, 192

opendir(), 391

overloading, 145

parameters, 146–148

passing, 141

passing by reference, 150–151

passthru(), 399

phpinfo(), 26, 141

pollServer(), 515–516

pos(), 96–97

preg_match(), 128–129

preg_split(), 129–130

prev(), 96–97

printf(), 109–111

program execution, 398–401

prototype, 141–142

putenv(), 401–402

range(), 77

readdir(), 391

fpassthru(), 68–69

fputs(), 61

fread(), 69

fseek(), 70–71

ftell(), 70–71

ftp_nlist(), 421

ftp_size(), 420

func_num_args(), 148

fwrite(), 61

parameters, 62

get_loaded_extensions(), 523

getdate(), 427–428

array key-value pairs, 427–428

getenv(), 401–402

getlastmod(), 524

gettext(), 444–448

gettype(), 39

header(), 455

highlight_string(), 525

htmlspecialchars(), 21–22, 105–106

imagecolorallocate(), 453

imagecreatetruecolor(), 452–453

imagecreatfrompng(), 461

imagefill(), 453–454

imagefilledrectangle(), 472

imageline(), 472

imagestring(), 454

imagettftext(), 462

implode(), 113

ini_get(), 524–525

ini_set(), 524

intval(), 41

isset(), 40, 152

join(), 113

krsort(), 83

ksort(), 86–87

libraries, 536

629GIF (Graphics Interchange Format) files

readfile(), 68–69

recursive, 154–155

reset(), 96–97

return keyword, 152–153

returning values from, 153

rewind(), 70–71

rmdir(), 394

rsort(), 83

scope, 148–150

serialize(), 521

session_start(), 478

set_error_handler(), 557–558

setcookie(), 476

settype(), 39

show_source(), 525

shuffle(), 90–91

sizeof(), 98–99

sort(), 76, 85–86

sprintf(), 109

str_replace(), 107, 118–119

strcasecmp(), 115

strchr(), 117

strcmp(), 115

strftime(), 429–431

stristr(), 117

strnatcmp(), 115

strpos(), 117–118

strstr(), 116–117

strtok(), 113–114

strtolower(), 112

strtoupper(), 112

structure of, 144–145

strval(), 41

substr(), 114

system(), 399

trigger_error(), 556

trim(), 104

uasort(), 89

ucfirst(), 112

ucwords(), 112

uksort(), 89

umask(), 394

undefined functions, calling, 142–143

UNIX_TIMESTAMP(), 432–433

unlink(), 70

unserialize(), 521

urlencode(), 407

user-defined, 144

usort(), 88–89

variable functions, 146

variable handling functions, 39–40

vprintf(), 111

vsprintf(), 111

fwrite() function, 61

parameters, 62

G
GD2 image library, 449

generating

bar charts from stored MySQL data,
465–474

charts from stored MySQL data,
465–474

generators, 192–193

_get() function, 166–168

get_loaded_extensions() function, 523

getdate() function, 427–428

array key-value pairs, 427–428

getenv() function, 401–402

getlastmod() function, 524

gettext() function, 444–448, 446

gettype() function, 39

GIF (Graphics Interchange Format)

files, 451

630 Git

HTML

Book-O-Rama form, 282–285

elements

creating, 497–498

selecting with jQuery selectors,
496–497

escaping, 16

file upload form, 381–382

PHP, embedding, 14–19, 16

comments, 17–18

statements, 16

whitespace, 17

reusing, applying templates to web
pages, 134–139

submission form, 408

htmlspecialchars() function, 21–22,

105–106

HTTP files, opening, 58

I
identifiers, 23–24, 239–240

case sensitivity, 239

rules, 239

identifying script owner, 523

IETF (Internet Engineering Task Force), 404

if statements, 41–42

image identifiers, destroying, 455

imagecolorallocate() function, 453

imagecreatetruecolor() function,

452–453

imagecreatfrompng() function, 461

imagefill() function, 453–454

imagefilledrectangle() function, 472

imageline() function, 472

ImageMagick image library, 449

images

automatically generated, 456

Git, 537

global keyword, 150

global namespaces, 197–198

GNU gettext

installing, 444–445

translation files, 445–447

graceful error logging, 557–559

GRANT command, 226–227, 230–231

grant tables, 291–299

columns_priv table, 296–298

connection verification, 298

db table, 295–296

procs_priv table, 296–298

request verification, 298

tables_priv table, 296–298

user table, 293–295

Greenspun, Philip, 407

Gregorian dates, 436

grouping SQL data, 259–261

H
handle.php, 558

handles, 161

hash functions, 370–371

header() function, 455

headers, 438–439

locale-specific, 441–442

helper methods, 509–510

$.get(), 510

$.getJSON(), 510

$.getscript(), 510

$.post(), 510

heredoc syntax, 23

highlight_string() function, 525

highlighting source code, 525–526

hosting providers, 599–600

631interfaces

bar chart, drawing from stored SQL
data, 465–474

buttons

creating, 457–465

outputting to browser, 465

positioning text on, 464

text, applying, 461–464

writing text on, 464–465

canvas images

creating, 452–453

printing text on, 453–454

creating, 451–455

make_button.php, 458–460

GIFs, 451

JPEGs, 450

libraries, 449

outputting to browser, 455

php_gd2.dll extension, registering, 450

PNGs, 450–451

simplegraph.php, 451–452

support in PHP, configuring, 449–450

imagestring() function, 454

imagettftext() function, 462

IMAP4 (Internet Message Access protocol),

404

implode() function, 113

importing namespaces, 198

increment operators, 30–31

indenting code, 42

indexes, creating, 310

indices, 76

numerically indexed arrays, 76–77

inheritance, 161–162, 168–169

late static bindings, 186–187

multiple inheritance, 172–173

overriding, 170–172

preventing, 172

ini_get() function, 524–525

ini_set() function, 524

initializing arrays, 79

numerically indexed arrays, 76–77

inner joins, 258

InnoDB table type, 316

transactions, 318–319

input data, filtering, 343–348

basic values, 346–347

double-checking expected values,
344–346

strings, 347–348

INSERT command (SQL), 248–249

inserting data into SQL database, 248–250,

282–285

insertion anomalies, 215

installing

Apache

on UNIX, 600–602

on Windows and Mac, 612–613

GNU gettext, 444–445

MySQL on UNIX, 602–605

PEAR, 613–614

PHP

with other web servers, 614

on UNIX, 605–609

on Windows and Mac, 612–613

instanceof operator, 35, 185–186

instantiating classes, 163–164

integers, 25

integral data types, 241

interacting with the environment, 401–402

interfaces, 173–174

Book-O-Rama HTML form, 282–285

Iterator, 190–191

PDO data access abstraction extension,
286–289

632 internationalization

$.getJSON(), 510

$.getscript(), 510

$.post(), 510

events, 499–504

click event, 500

focusout, 503

on() method, 499–500

ready event, 499

submit, 504

namespace, 495

pseudo-selectors, 497

selectors, 495–498

acting on, 498

syntax, 496–497

selectors (jQuery), creating HTML
elements, 497–498

val() method, 498

in web applications, 494–495

Julian dates, 436

K
keys, 76, 211–212

Book-O-Rama bookstore application,
221

choosing, 217

foreign keys, 212, 319

success, 507

keywords

clone, 187–188

final, 172

global, 150

MySQL

AUTO_INCREMENT, 234

FOREIGN KEY, 235

NOT NULL, 234

PRIMARY KEY, 234–235

return, 152–153

internationalization, 437–438

applying to web pages, 440–445

language selector page, 442–444

locale-specific headers, 441–442

gettext() function, 444–448

GNU gettext, installing, 444–445

translation files, 445–447

interpolation, 22

intval() function, 41

isset() function, 40, 152

iteration, 46–50, 190–192

accessing array contents, 78–79

do.while loops, 50

foreach loops, 49–50

for loops, 49–50

while loops, 47–48

Iterator interface, 190–191

J
JavaScript. See also AJAX; jQuery

AJAX, 493–494

join() function, 113

joining strings, 113

joins

cross joins, 258

equi-joins, 258

full joins, 254–255

inner joins, 258

joining more than two tables, 255–256

left joins, 256–257

JPEG (Joint Photographic Experts Group)

files, 450

jQuery, 494–504

$.ajax() method, 508–509

addClass() method, 498

AJAX helper methods, 509–510

$.get(), 510

633login.php

static, 185

throw, 200

trait, 174–176

yield, 192–193

krsort() function, 83

ksort() function, 86–87

L
languages

headers, 438–439

multi-byte, 438

single-byte, 438

large web application projects, 529

choosing a development environment,
537–538

coding standards, 532

breaking up code, 535–536

commenting your code, 534

defining naming conventions,
532–534

indenting, 534–535

directory structure, 536

documenting, 538

function libraries, 536

optimizing code, 540–541

prototyping, 538–539

reusing code, 531–532

separating logic from content, 539–540

testing code, 541–542

version control, 536–537

writing maintainable code, 532

late static bindings, 186–187

left joins, 256–257

length of strings, checking, 115–116

libraries

function libraries, 536

image libraries, 449

jQuery library, loading, 494–495

LIMIT clause (SELECT command), 261–262

line-by-line reading from files, 67–68

linking tables, 218

list() construct, 81

list_functions.php, 522–523

literals, 23

LOAD DATA INFILE statement, 315

loaded extensions, identifying, 522–523

loading

arrays from files, 92–96

files with require() statement, 132–134

jQuery library, 494–495

local variables, 323

locales, 438

localization, 437–438

applying to web pages, 440–445

language selector page, 442–444

character sets, 438–440

multi-byte, 438

security implications, 439–440

single-byte, 438

gettext() function, 444–448

GNU gettext, installing, 444–445

translation files, 445–447

headers, 438–439

locale-specific, 441–442

locales, 438

multibyte string functions, 440

locking files, 71–73

logging errors

graceful error logging, 557–559

to log file, 560

logging in to MySQL, 223–224

logic, separating from content, 539–540

logic errors, 549–551

logical operators, 32–33

login.php, 566–567

634 logout.php

$.getscript(), 510

$.post(), 510

in Exception class, 201–202

jQuery

on(), 499–500

addClass(), 498

val(), 498

overloading, 188–189

static, 185

microseconds, 435

microtime() function, 435

mirroring files, 412–420

mkdir() function, 394

mktime() function, 426–427

modification anomalies, 215

modification date of scripts, obtaining,

523–524

modulus operator, 28

monitoring security, 342–343

moving files, 398

multibyte string functions, 440

multidimensional arrays, 75, 82–85

sorting, 87–90

with array_multisort() function,
87–88

reverse sorting, 89–90

user-defined sorts, 88–89

three-dimensional arrays, 84–85

two-dimensional arrays, 82–84

multiline comments, 17

multiple inheritance, 172–173

multiplication operator, 28

MyISAM storage engine, 316

MySQL, 209, 221–222. See also MySQL

monitor

aggregating data, 259–261

autocommit mode, 318

logout.php, 490–491

lookup functions, 408–412

lookup.php, 405

for loops, 49–50

loops

accessing array contents, 78–79

do.while loops, 50

foreach loops, 49–50, 190

for loops, 49–50

while loops, 47–48

ltrim() function, 104

M
Mac OS, installation packages, 612–613

mail() function, 104, 404

maintainability of code, 532

make_button.php, 458–460

many-to-many relationships, 213

master, setting up for replication, 312–313

matching

special characters, 123–124

substrings with string functions, 116

max_execution_time directive, 524

member.php, 576–577

members_only.php, 489

MEMORY table type, 316

Mercurial, 537

MERGE table type, 316

meta characters, 124–125

metatags, 177

on() method, 499–500

methods

$.ajax(), 508–509

AJAX helper methods, 509–510

$.get(), 510

$.getJSON(), 510

635MySQL

chat server, building, 504–507

columns

data types, 240–246

date and time types, 243–244

indexes, creating, 238

numeric types, 241–242

string types, 244–246

commands

AUTO_INCREMENT keyword, 234

CREATE USER, 226

DESCRIBE, 304

EXPLAIN, 304–309

FOREIGN KEY keyword, 235

GRANT, 226–227, 230–231

mysql, 223

NOT NULL keyword, 234

PRIMARY KEY keyword, 234–235

REVOKE, 230–231

SHOW, 301–304

SHOW command, 303–304

databases

backing up, 310–311

creating, 224

restoring, 311

selecting, 232

date format, converting to PHP,
431–433

DATE_FORMAT() function, 431–432

dates, calculating, 434–435

drawing charts from stored data,
465–474

identifiers, 239–240

case sensitivity, 239

rules, 239

installing

on UNIX, 602–605

on Windows and Mac, 612–613

joins

cross joins, 258

equi-joins, 258

full joins, 254–255

inner joins, 258

joining more than two tables,
255–256

left joins, 256–257

logging in, 223–224

optimizing databases, 309–310

design optimization, 309

table optimization, 310

privileges, 291–299

columns_priv table, 296–298

db table, 295–296

displaying, 302

procs_priv table, 296–298

tables_priv table, 296–298

updating, 299

user table, 293–295

querying from the Web, 275–281

disconnecting from database, 281

filtering input data, 276

prepared statements, 279–280

retrieving the results, 280–281

selecting the database, 278

setting up connection, 277–278

runtime errors, 547–548

security, 299–301

passwords, 300

web issues, 301

stored procedures, 320–327

control structures, 323–327

cursors, 323, 325

declare handlers, 325

example of, 320–323

local variables, 323

636 MySQL

DMZ, 360–361

firewalls, 360

network services, interaction failures,

548–549

next() function, 96–97

Nginx servers, 614

nl2br() function, 70, 107–109

nonexistent functions, as cause for runtime

errors, 545–546

non-matching rows, finding, 256–257

NOT NULL keyword (MySQL), 234

NOT operator, 32–33

NULL type, 24

null values, 217–218

number_format() function, 37

numeric type columns, 241–242

floating-point types, 242

integral data types, 241

numerically indexed arrays, 76–77

O
ObjectIterator class, 192

objects, 24, 160, 161

classes, 161

cloning, 187–188

instantiating a class, 163–164

interfaces, 160, 173–174

serializing, 521

ODBC (Open Database Connectivity), 286

one-to-many relationships, 213

one-to-one relationships, 213

one-way hash functions, 370

OO (object-oriented) development, 159

_autoload() function, 189

accessor functions, 166–168

attributes, 160

overriding, 170–172

tables

aliases, 257–258

altering after creation, 265–268

columns, 235–237

creating, 232–234

dropping, 268

viewing, 237–238

UNIX_TIMESTAMP() function, 432–433

user privileges, 300–301

users, 225–232

creating, 224

principle of least privilege, 225

privileges, 225–231, 227–230

web access, 231–232

mysql command, 223

MySQL monitor, 222–223

mysqli() function, 547

mysqli library, 277

prepared statements, 279–280

N
namespaces, 195–197

aliasing, 198

global namespaces, 197–198

importing, 198

jQuery, 495

subnamespaces, 197

naming

classes, 177

fields, 14

functions, 145–146

tables, 257–258

navigating

within arrays, 96–97

inside files, 70–71

network security, 360–361

denial of service attacks, 361

637operators

classes, 161

abstract classes, 188

attributes, 162, 164–165, 177

constructors, 163

converting to strings, 194

designing, 176–177

destructors, 163

Exception class, 201–202

instantiating, 163–164

ObjectIterator, 192

operations, 162–163

structure of, 162–163

writing code for, 177–184

encapsulation, 160

generators, 192–193

inheritance, 161–162, 168–169

multiple inheritance, 172–173

preventing, 172

instanceof operator, 185–186

interfaces, 173–174

Iterator, 190–191

iteration, 190–192

late static bindings, 186–187

namespaces, 195–197

global namespaces, 197–198

importing, 198

subnamespaces, 197

objects, 160, 161

cloning, 187–188

serializing, 521

operations, 160

calling, 165

per-class constants, 185

polymorphism, 161

reflection API, 194–195

static methods, 185

traits, 174–176

type hinting, 185–186

opendir() function, 391

opening files, 55

error handling, 58–61

with fopen() function, 56–58

through FTP or HTTP, 58

operands, 28

operating system, securing, 361–362

operations, 160, 162–163, 181

calling, 165

constructors, 163

destructors, 163

overriding, 170–172

preventing, 172

AND operator, 32–33

OR operator, 32–33

operators, 28

arithmetic operators, 28–29

array operators, 35, 81–82

assignment operators, 20, 29–31

combined assignment operators, 30

values returned from, 29

associativity, 37–38

bitwise operators, 33

comparison operators, 31–32

equal operator, 31–32

decrement operators, 30–31

error suppression operator, 34, 60

execution operator, 34–35

increment operators, 30–31

instanceof, 185–186

logical operators, 32–33

precedence, 37–38

reference operator, 31

string concatenation operator, 22

string operators, 29

for subqueries, 263

ternary operator, 34

type operator, 35

638 optimizing

passwords, 369–371

hash functions, 370–371

MySQL, 300

storing, 369

pattern matching, delimiters, 120

PEAR (PHP Extension and Application

Repository), installing, 613–614

per-class constants, 185

performance, optimizing databases

design optimization, 309

table optimization, 310

permissions, 59

PHP

accessing, 12

basic authentication, 372–373

dates, calculating, 433–434

embedding in HTML, 14–19

comments, 17–18

tags, 16

whitespace, 17

English language manual, 531

environment information,
 obtaining, 522

installing

with other web servers, 614

on UNIX, 605–609

on Windows and Mac, 612–613

statements, 16

tags

short style, 16

XML style, 16

PHP interpreter, 600

php_gd2.dll extension, registering, 450

PHPbookmark project, 561

add_bms.php, 588–589

basic site, implementing, 566–569

bookmark_fns.php, 567–568

optimizing

code, 540–541

databases, 309–310

design optimization, 309

table optimization, 310

options for session configuration, 482–483

ORDER BY clause, 259

order forms

address field, 54

creating, 12–14

fields, naming, 14

processing, 14

storing and retrieving orders, 54

strings, 115

totals, calculating, 36–37

organizing code, 350–351

outputting

buttons to browser, 465

images, 455

overloading methods, 188–189

overriding, 170–172

preventing, 172

owner of scripts, identifying, 523

P
parameters, 146–148

extract() function, 100

fopen() function, 56

fwrite() function, 62

htmlspecialchars() function, 105–106

passing, 141

parser errors, 543–544

passing by reference, 150–151

passing by value, 150–151

passing parameters, 141

passthru() function, 399

639privileges (MySQL)

bookmarks

adding, 588–590

deleting, 591–594

displaying, 590–591

database, implementing, 565–566

delete_bms.php, 592–593

files, 564–565

forgot_passwd.php, 583–584

implementing recommendations,
594–597

login.php, 566–567

member.php, 576–577

recommend.php, 595–597

register_form.php, 569–570

register_new.php, 570–572

solution components, 561–565

user authentication, 569–587

changing passwords, 580–582

logging in, 576–579

logging out, 580

registering users, 569–575

resetting forgotten passwords,
582–587

phpinfo() function, 26, 141

php.ini file

browsing, 355–356

date.timezone setting, 424

file upload settings, 380–381

session upload progress configuration
settings, 387

planning web application projects,

530–531

PNG (Portable Network Graphics) files,

450–451

PO (Portable Object) files, 445–446

Poedit, 446

pollServer() function, 515–516

polymorphism, 161

POP (Post Office Protocol), 404

pos() function, 96–97

position of substrings, identifying, 117–118

positioning text on buttons, 464

POSIX-style regular expressions, 119

precedence, 37–38

preg_match() function, 128–129

preg_split() function, 129–130

prepared statements, 279–280

Pressman, Roger, 542

prev() function, 96–97

preventing inheritance, 172

primary key, 211

PRIMARY KEY keyword (MySQL), 234–235

primary keys, Book-O-Rama bookstore

application, 221

principle of least privilege, 225

printf() function, 109–111

printing

echo statement, 22

formatting strings for, 109–111

percent symbol, 110

text on canvas images, 453–454

private access modifier, 166

visibility, controlling, 169–170

privileges (MySQL), 225–231, 227–230,

291–299, 300–301

administrator privileges, 229

columns_priv table, 296–298

CREATE USER command, 226

db table, 295–296

displaying, 302

GRANT command, 226–227

principle of least privilege, 225

procs_priv table, 296–298

revoking, 230

special privileges, 230

640 privileges (MySQL)

correlated subqueries, 264

operators, 263

row subqueries, 264

as temporary table, 264

from the Web, 275–281

disconnecting from database, 281

filtering input data, 276

prepared statements, 279–280

retrieving the results, 280–281

selecting the database, 278

setting up connection, 277–278

R
range() function, 77

RDBMSs (relational database management

systems), 74

atomic column values, 216–217

columns, 211

design principles, 213–220

keys, 211–212

choosing, 217

MySQL

databases, creating, 224

databases, selecting, 232

logging in, 223–224

mysql command, 223

privileges, 225–231

tables, creating, 232–234

users, creating, 224

null values, 217–218

relationships, 213

rows, 211

schemas, 212

tables, 210, 218

update anomalies, 215

values, 211

readdir() function, 391

readfile() function, 68–69

tables_priv table, 296–298

updating, 299

user privileges, 228

user table, 293–295

processfeedback_v2.php, 108–109

processing

customer order form, 14

files, 55

processorder.php, 14–19

creating, 14

dynamic content, adding, 18–19

with exception handling, 205–208

form variables, accessing, 20–22

functions, calling, 19

procs_priv table, 296–298

progex.php, 400–401

program execution functions, 398–401

programming errors, 543–551

logic errors, 549–551

runtime errors, 544–549

causes of, 545–549

syntax errors, 543–544

properties of files, changing, 397–398

protected access modifier, 166

protecting multiple web pages, 371

protocols, 403–404

prototype, 141–142

prototyping web applications, 538–539

pseudo-selectors, 497

public access modifier, 166

visibility, controlling, 169–170

putenv() function, 401–402

Q
querying databases

SELECT queries, evaluating, 304–309

subqueries, 262–263

641results.php

reading

arbitrary lengths, 69

characters, 69

email, 404

from files, 55, 65–66, 67–68, 68–69

as cause for runtime errors, 546–547

line-by-line, 67–68

form directories, 390–393

ready event, 499

real-time chat application, chat server,

building, 504–507

recommend.php, 595–597

records

deleting, 268

storing, 62

updating, 265

recursive functions, 154–155

reducing web application security risks

access to sensitive data, 332–333

denial of service, 336–337

loss of data, 334–335

malicious code injection, 337

reference operator, 31

reflection API, 194–195

register_form.php, 569–570

register_new.php, 570–572

registering

php_gd2.dll extension, 450

session variables, 478–479

regular expressions, 119–130

anchoring to beginning or end
of string, 123

assertions, 126–127

backreferences, 126

branching, 123

character class, 121–122

character sets, 120–121

counted subexpressions, 123

delimiters, 120

escape sequences, 125–126

meta characters, 124–125

POSIX, 119

repetition, 122

in Smart Form Mail application,
127–128

special characters, matching, 123–124

strings, splitting, 129–130

substrings, finding, 128–129

substrings, replacing, 129

relationships, 213

relative path, 56

reordering arrays, 90–91

with shuffle() function, 90–91

repetition in regular expressions, 122

repetition structures, 46–50

accessing array contents, 78–79

do.while loops, 50

foreach loops, 49–50

for loops, 49–50

while loops, 47–48

replacing substrings

with regular expressions, 129

with string functions, 116

replication, 311–313

initial data transfer, performing, 313

master, setting up, 312–313

slaves, setting up, 313

repudiation, 338–339

require() statement, 132–134

adding templates to web pages, 134–139

reset() function, 96–97

resource type, 24

restoring MySQL databases, 311

results.php, 273–275

querying from the Web, filtering input
data, 276

642 retrieving data from SQL databases

require() statement, 132–134

applying templates to web pages,
134–139

traits, 174–176

reverse sorting functions, 83, 89–90

reversing arrays, 92

REVOKE command, 230, 230–231

rewind() function, 70–71

RFCs (Requests for Comments), 404

rmdir() function, 394

row subqueries, 264

rows, 211

inserting into SQL database, 248–250

non-matching rows, finding, 256–257

rsort() function, 83

rules

for identifiers, 239

of variable scope, 27

running PHP on command line, 526–527

runtime environment, temporarily

modifying, 524–525

runtime errors, 544–549

causes of, 545–549

calls to nonexistent functions,
545–546

connections to network services,
548–549

failure to check input data, 549

interaction with MySQL, 547–548

reading or writing files, 546–547

S
SaaS version control systems, 537

scalar values, 26

scalar variables, creating from arrays,

99–100

scandir.php, 393

schemas, 212

retrieving data from SQL databases,

250–259

criteria, specifying, 251–253

joining more than two tables, 255–256

from multiple tables, 253–258

finding rows that don’t match,
256–257

full joins, 254–255

ORDER BY clause, 259

SELECT command, 250–251

return keyword, 152–153

returning values from functions, 153

reusing code

advantages of, 131–132

consistency, 132

cost, 132

reliability, 132

functions, 140

built-in functions, 144

calling, 141–142

case sensitivity, 143

closures, 155–157

naming, 145–146

parameters, 146–148

parameters, passing, 141

prototype, 141–142

recursive functions, 154–155

return keyword, 152–153

returning values from, 153

scope, 148–150

structure of, 144–145

undefined functions, calling,
142–143

user-defined, 144

variable functions, 146

in large web projects, 531–532

maintainability, 532

643security

scope, 27, 148–150

<script> tag, 494–495

scripts

add_bms.php, 588–589

adding locks to, 71–73

authmain.php, 483–489

basic_auth.php, 372–373

bookmark_fns.php, 567–568

browsedir2.php, 392

browsedir.php, 390

chat.php, 504–507

delete_bms.php, 592–593

directory_submit.php, 409–412

dump_variables.php, 551–553

executing on command line, 526–527

filedetails.php, 395–396

forgot_passwd.php, 583–584

ftp_mirror.php, 413–416

functions, calling, 19

handle.php, 558

list_functions.php, 522–523

login.php, 566–567

logout.php, 490–491

lookup.php, 405

make_button.php, 458–460

member.php, 576–577

members_only.php, 489

modification date, obtaining, 523–524

owner, identifying, 523

processfeedback_v2.php, 108–109

processfeedback.php, 101–104

processorder.php

creating, 14

dynamic content, adding, 18–19

with exception handling, 205–208

progex.php, 400–401

recommend.php, 595–597

register_form.php, 569–570

register_new.php, 570–572

results.php, 273–275

scandir.php, 393

secret.php, 369

show poll.php, 468–474

simplegraph.php, 451–452

stopping, 50

terminating, 520–522

upload.php, 382–387

vieworders.php, 65–66

search form (Book-0-Rama bookstore

application), 272–273

secret.php, 367–369

security

application security threats

access to sensitive data, 331–333

actors, 339–340

compromised server, 338

denial of service, 335–337

loss of data, 334–335

malicious code injection, 337

modification of data, 334

repudiation, 338–339

attackers, 339

authentication

access control, 366–369

basic authentication, 372–377

custom authentication,
 creating, 377

passwords, 369–371

PHPbookmark project, 569–587

in session control, 483–491

visitors, identifying, 365–366

character sets, 439–440

code, securing, 343

bugs, 352–353

escaping output, 348–350

644 security

SQL databases from the web, 278

table types, 316

selectors (jQuery), 495–498

acting on, 498

HTML elements, creating, 497–498

pseudo-selectors, 497

syntax, 496–497

sending email, 404

serialization, 521

serialize() function, 521

session control, 475

authentication, 483–491

authmain.php, 483–489

logout.php, 490–491

members_only.php, 489

configuring, 482–483

cookies, 476, 477

setting from PHP, 476–477

session ID, storing, 477–478

sessions

creating, 480–482

destroying, 479

registering variables, 478–479

starting, 478

session ID, 476

storing, 477–478

session variables, 476, 479

unsetting, 479

session_start() function, 478

set_error_handler() function, 557–558

_set() function, 166–168

setcookie() function, 476

settype() function, 39

SGML (Standard Generalized Markup

Language), 16

shared hosting of web applications, security

issues, 356–357

filtering user input, 343–348

organizing code, 350–351

crackers, 339

database servers, securing, 357–359

disaster planning, 362–364

file systems, 352

MySQL, 299–301

passwords, 300

user privileges, 300–301

web issues, 301

networks, securing, 360–361

denial of service attacks, 361

DMZ, 360–361

firewalls, 360

operating system, securing, 361–362

permissions, 59

strategies for handling, 341–343

balancing security and usability,
342

monitoring, 342–343

starting with the right mindset, 342

twofold approach to, 343

web pages, protecting, 371

web servers, securing, 354–357

browsing php.ini file, 355–356

shared hosting of web applications,
356–357

updating software, 354–355

SELECT command (SQL), 250–251

evaluating, 304–309

LIMIT clause, 261–262

ORDER BY clause, 259

WHERE clause, 252–253

comparison operators, 252–253

selecting

HTML elements with selectors, 496–497

MySQL database, 232

645SSL (Secure Sockets Layer), troubleshooting

short style PHP tags, 16

SHOW command (MySQL), 301–304

syntax, 303–304

show poll.php, 468–474

show tables command, 237

show_source() function, 525

shuffle() function, 90–91

simple tables, 218

simplegraph.php, 451–452

single-byte languages, 438

single-line comments, 18

size of files, determining, 70

sizeof() function, 98–99

slaves, setting up for replication, 313

Smart Form Mail application

creating, 101–104

regular expressions, 127–128

SMTP (Simple Mail Transfer Protocol), 404

software, updating, 354–355

Software Engineering: A Practitioner’s
Approach, 542

software engineering, applying to web

development, 530

solution components for PHPbookmark

project, 561–565

sort() function, 76, 85–86

sorting arrays, 85–87

with asort() function, 86–87

with ksort() function, 86–87

multidimensional arrays, 87–90

reverse sorting, 83

with sort() function, 85–86

source code, highlighting, 525–526

special characters

meta characters, 124–125

pattern matching, 123–124

special privileges (MySQL), 230

splitting strings

explode() function, 112–113

with regular expressions, 129–130

with strtok() function, 113–114

with substr() function, 114

sprintf() function, 109

SQL (Structured Query Language),

247–248. See also MySQL

aggregating data, 259–261

INSERT command, 248–249

inserting data, 248–250

joins

cross joins, 258

equi-joins, 258

full joins, 254–255

inner joins, 258

joining more than two tables,
255–256

left joins, 256–257

querying from the Web, 275–281

disconnecting from database, 281

filtering input data, 276

prepared statements, 279–280

retrieving the results, 280–281

selecting the database, 278

setting up connection, 277–278

retrieving data, 250–259

from multiple tables, 251–253

SELECT command, 250–251

with specific criteria, 251–253

subqueries, 262–263

correlated subqueries, 264

operators, 263

row subqueries, 264

as temporary table, 264

SSL (Secure Sockets Layer),

troubleshooting, 610–612

646 stand-alone functions, _autoload()

in RDBMSs, 74

records, 62

session ID, 477–478

str_replace() function, 107, 118–119

strategies for handling security, 341–343

balancing with usability, 342

monitoring, 342–343

starting with the right mindset, 342

strcasecmp() function, 115

strchr() function, 117

strcmp() function, 115

strftime() function, 429–431

string operators, 29

string type columns, 244–246

strings. See also regular expressions

changing case of, 111–112

checking length of, 115–116

comparing, 115

concatenating, 22

creating from classes, 194

evaluating, 519–520

filtering for output, 105–107, 347–348

to browser, 105–106

to email, 106–107

finding within strings, 116–117

formatting

conversion specification, 109

for printing, 109–111

heredoc syntax, 23

interpolation, 22

joining, 113

multibyte string functions, 440

ordering, 115

regular expressions, anchoring to
 beginning or end of, 123

splitting

explode() function, 112–113

stand-alone functions, _autoload(), 189

starting sessions, 478

statements, 16. See also commands

echo, 22

else, 42–43

elseif, 43–44

if, 41–42

LOAD DATA INFILE, 315

prepared statements, 279–280

require(), 132–134

applying templates to web pages,
134–139

semicolons, 16

switch, 44–45

static keyword, 185

status of variables, testing, 40–41

stopping scripts, 50, 520–522

storage engines, 316–317

ARCHIVE, 316

CSV, 316

InnoDB, 316

foreign keys, 319

transactions, 318–319

MEMORY, 316

MERGE, 316

MyISAM, 316

stored procedures, 320–327

control structures, 323–327

declare handlers, 325

cursors, 323, 325

example of, 320–323

local variables, 323

storing

dates and times, Unix timestamps,
426–427

orders, 54

passwords, 300, 369

647tables

with regular expressions, 129–130

with strtok() function, 113–114

with substr() function, 114

substrings

find-and-replace operations,
118–119

finding position of, 117–118

replacing with string functions, 116

trimming, 104

stristr() function, 117

strlen() function, 115–116

strnatcmp() function, 115

strpos() function, 117–118

strstr() function, 116–117

strtok() function, 113–114

strtolower() function, 112

strtoupper() function, 112

structure

of classes, 162–163

of functions, 144–145

strval() function, 41

subclasses, 161–162

inheritance, 168–169

submit event, 504

subnamespaces, 197

subqueries, 262–263

correlated subqueries, 264

operators, 263

row subqueries, 264

as temporary table, 264

substr() function, 114

substr_replace() function, 118–119

substrings

find-and-replace operations, 118–119

finding position of, 117–118

finding with regular expressions,
128–129

replacing

with regular expressions, 129

with string functions, 116

subtraction operator, 28

Subversion, 537

success key, 507

superclasses, 161–162

superglobal arrays, 20, 27

support for images in PHP, setting up,

449–450

switch statement, 44–45

syntax

heredoc, 23

jQuery selectors, 496–497

semicolons, 16

SHOW command, 303–304

syntax errors, 543–544

system() function, 399

T
table types

ARCHIVE, 316

CSV, 316

InnoDB, 316

foreign keys, 319

transactions, 318–319

MEMORY, 316

MERGE, 316

MyISAM, 316

selecting, 316

tables, 210, 218

aliases, 257–258

altering after creation, 265–268

columns, 235–237

CHAR type, 235

VARCHAR type, 235–236

creating, 232–234

648 tables

ternary operator, 34

testing

code, 541–542

PHP support, 610

variable status, 40–41

text

applying to buttons, 461–464

bounding box, 462–463

descenders, 463

positioning on buttons, 464

regular expressions

anchoring to beginning or end of
string, 123

assertions, 126–127

backreferences, 126

branching, 123

character class, 121–122

character sets, 120–121

counted subexpressions, 123

delimiters, 120

escape sequences, 125–126

meta characters, 124–125

repetition, 122

in Smart Form Mail application,
127–128

special characters, matching,
123–124

strings, splitting, 129–130

substrings, finding, 128–129

writing on buttons, 464–465

threats to web application security

access to sensitive data, 331–333

actors, 339–340

compromised server, 338

denial of service, 335–337

malicious code injection, 337

modification of data, 334

repudiation, 338–339

displaying, 302

dropping, 268

grant tables, 292–293

columns_priv table, 296–298

connection verification, 298

db table, 295–296

procs_priv table, 296–298

request verification, 298

tables_priv table, 296–298

user table, 293–295

joining

full joins, 254–255

left joins, 256–257

linking tables, 218

optimizing, 310

records

deleting, 268

updating, 265

relationships, 213

retrieving data

criteria, specifying, 251–253

from multiple tables, 251–253

rows, inserting into SQL database,
248–250

simple tables, 218

subqueries as temporary table, 264

triggers, 327–329

viewing, 237–238

tables_priv table, 296–298

tags

JavaScript, <script> 494–495

PHP, 16

short style, 16

XML style, 16

templates, applying to web pages, 134–139

temporarily modifying runtime environment,

524–525

terminating scripts, 520–522

649user-defined exceptions

three-dimensional arrays, 84–85

throw keyword, 200

time, microseconds, 435

timestamps, formatting, 429–431

timezones, 423–424

top-down approach to security, 343

totals, calculating on order forms, 36–37

tracking file upload progress, 387–388

traits, 174–176

transactions, 317–319

using InnoDB, 318–319

translation files, 445–447

trigger_error() function, 556

triggering your own errors, 556

triggers, 327–329

trim() function, 104

trimming strings, 104

troubleshooting. See also error handling;

exception handling

with EXPLAIN command, 308–309

file upload, 389

opening files, 58–61

SSL, 610–612

TrueType fonts, 457

try blocks, 199

two-dimensional arrays, 82–84

twofold approach to security, 343

two-table joins, 254–255

type casting, 25

type codes for conversion specification,

110–111

type hinting, 185–186

type operator, 35

type strength, 25

U
uasort() function, 89

ucfirst() function, 112

ucwords() function, 112

uksort() function, 89

umask() function, 394

unary operator, 28–29

undefined functions, calling, 142–143

UNIX

Apache, installing, 600–602

MySQL, installing, 602–605

PHP, installing, 605–609

Unix Epoch, 426

Unix timestamps, 426–427

converting date and time to, 426

UNIX_TIMESTAMP() function, 432–433

unlink() function, 70

unserialize() function, 521

unsetting session variables, 479

update anomalies, 215

UPDATE command (SQL), 265

updating

privileges, 299

records, 265

software, 354–355

uploading files, 379–389, 420

HTML form, 381–382

php.ini settings, 380–381

tracking upload progress, 387–388

troubleshooting, 389

writing the file handling script,
382–387

upload.php, 382–387

urlencode() function, 407

usability, balancing with security, 342

use command, 232

user interface for chat application, building,

504–507

user personalization, 561

user table, 293–295

user-defined exceptions, 202–204

650 user-defined functions

reordering, 90–91

reversing, 92

sorting, 85–87

three-dimensional arrays, 84–85

two-dimensional arrays, 82–84

assigning values to, 24

assignment operators, 20

and constants, 26

data types, 24–25

scalar values, 26

type casting, 25

type strength, 25

debugging, 551–553

environment variables, 401–402

handles, 161

identifiers, 23–24

interpolation, 22

local variables, 323

scope, 27, 148–150

serializing, 521

session variables, 476, 479

registering, 478–479

unsetting, 479

status, testing, 40–41

version control, 536–537

viewing tables, 237–238

vieworders.php script, 65–66

visibility, controlling, 169–170

visitors, identifying, 365–366

vprintf() function, 111

vsprintf() function, 111

W
web access, configuring for MySQL users,

231–232

web application development

applying to software engineering, 530

user-defined functions, 144

parameters, 147

user-defined sorts, 88–89

users

authentication, identifying visitors,
365–366

MySQL, 225–232

creating, 224, 225–227

principle of least privilege, 225

privileges, 227–230, 300–301

privileges (MySQL), 291–299

web access, 231–232

usort() function, 88–89

V
val() method, 498

validating dates with checkdate() function,

428–429

values, 211

atomic column values, 216–217

basic values, filtering, 346–347

null values, 217–218

VARCHAR type columns, 235–236

variable functions, 146

variable handling functions, 39–40

variable variables, 25–26

variables, 23

accessing, 20–22

arrays, 75–76

accessing contents, 77–78

converting to scalar variables,
99–100

initializing, 79

loading from files, 92–96

multidimensional arrays, 75

navigating, 96–97

numerically indexed arrays, 76–77

651websites

chat application

chat server, building, 504–507

user interface, building, 510–517

internationalized software, 437–438

jQuery, 494–495

large projects

breaking up code, 535–536

choosing a development
 environment, 537–538

coding standards, 532

commenting your code, 534

defining naming conventions,
532–534

directory structure, 536

documenting, 538

function libraries, 536

indenting code, 534–535

optimizing code, 540–541

planning, 530–531

prototyping, 538–539

separating logic from content,
539–540

testing code, 541–542

version control, 536–537

writing maintainable code, 532

localization, 437–438

character sets, 438–440

locales, 438

operating system, securing, 361–362

reusing code, 531–532

security

code, securing, 343–352

database servers, securing,
357–359

disaster planning, 362–364

executing commands, 353–354

file system considerations, 352

network security, 360–361

strategies for handling, 341–343

web servers, 354–357

threats

access to sensitive data, 331–333

compromised server, 338

denial of service, 335–337

loss of data, 334–335

malicious code injection, 337

modification of data, 334

repudiation, 338–339

web database architecture, 218–220, 272

web pages

internationalization

language selector page, 442–444

locale-specific headers, 441–442

localizing, 440–445

protecting, 371

templates, applying with require()
statement, 134–139

web servers, 218–219

Apache HTTP Server

.htaccess files, 374–377

configuring, 356

Nginx, 614

security, 354–357

browsing php.ini file, 355–356

shared hosting of web applications,
356–357

updating software, 354–355

websites

Bill Gates Wealth Clock, 407

consuming date from other sites,
404–408

cookies, 476, 477

session ID, storing, 477–478

setting from PHP, 476–477

session control, 475

visitors, identifying, 365–366

652 WHERE clause (SELECT command)

file upload script, 382–387

to files, 55, 61

as cause for runtime errors, 546–547

text on buttons, 464–465

X
XML, AJAX, 493–494

XML style PHP tags, 16

XOR operator, 32–33

Y-Z
yield keyword, 192–193

WHERE clause (SELECT command),

252–253

comparison operators, 252–253

while loops, 47–48

whitespace, 17

Windows operating system, installation

packages, 612–613

writing

code for classes, 177–184

accessor functions, 178

attributes, 177

metatags, 177

operations, 181

	Cover
	Title Page
	Copyright Page
	Table of Contents
	Introduction
	I: Using PHP
	1 PHP Crash Course
	Before You Begin: Accessing PHP
	Creating a Sample Application: Bob’s Auto Parts
	Creating the Order Form
	Processing the Form

	Embedding PHP in HTML
	PHP Tags
	PHP Statements
	Whitespace
	Comments

	Adding Dynamic Content
	Calling Functions
	Using the date() Function

	Accessing Form Variables
	Form Variables
	String Concatenation
	Variables and Literals

	Understanding Identifiers
	Examining Variable Types
	PHP’s Data Types
	Type Strength
	Type Casting
	Variable Variables

	Declaring and Using Constants
	Understanding Variable Scope
	Using Operators
	Arithmetic Operators
	String Operators
	Assignment Operators
	Comparison Operators
	Logical Operators
	Bitwise Operators
	Other Operators

	Working Out the Form Totals
	Understanding Precedence and Associativity
	Using Variable Handling Functions
	Testing and Setting Variable Types
	Testing Variable Status
	Reinterpreting Variables

	Making Decisions with Conditionals
	if Statements
	Code Blocks
	else Statements
	elseif Statements
	switch Statements
	Comparing the Different Conditionals

	Repeating Actions Through Iteration
	while Loops
	for and foreach Loops
	do...while Loops

	Breaking Out of a Control Structure or Script
	Employing Alternative Control Structure Syntax
	Using declare
	Next

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

