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Abstract 
 
The heat treatable AlMgSi-alloys of the 6xxx-series are widely 
used for automotive sheet applications due to their good 
combination of strength and formability. Magnesium and silicon 
are the main alloying elements in this group forming the age-
hardening phase Mg2Si. Moreover intentional addition of copper, 
manganese and also impurities (for example iron) can have a 
significant influence on the mechanical properties and on the 
forming behavior of automotive body sheets. Beside the chemical 
composition also thermo-mechanical process parameters can lead 
to changes in material properties. The purpose of this work is to 
investigate the influence of alloying elements and process 
parameters on (I) strength and (II) ductility in temper T4 and after 
the typical paint bake cycle at 185°C/20min. Furthermore (III) the 
formability of different AlMgSi-alloys is studied with bending 
tests, cross-die tests, hole expansion tests and FLC-analysis. 
 

Introduction 
 
The aluminum alloys have received considerable interest from the 
automotive industry, as they aim to design and manufacture light 
weight vehicles with the objective to improve fuel efficiency and 
reduce vehicle emissions. Aluminum sheets for automotive body-
in-white application require high strength accompanied by good 
formability, corrosion resistance and weldability. Furthermore, for 
autobody applications the sheets should offer good surface 
appearance and high dent resistance. In this regard the heat 
treatable AlMgSi-alloys (6xxx series) are finding increased usage 
in the automotive industry in the last years. Heat treatable alloys 
have the advantage to combine both, good formability in temper 
T4 (solution-treated and naturally aged state) and high strength by 
way of age hardening created in the automotive paint bake cycle 
at ~ 185 °C. This paint bake cycle increases the strength of these 
alloys due to precipitation hardening and at the same time it 
enables the curing of the paint.  
Silicon and magnesium are the main alloying elements of the 
AlMgSi-alloys. In the recent years several alloy modifications 
have been introduced to meet the requirements of the car 
manufacturers. The different types of 6xxx series alloys vary not 
only by the ratio between silicon and magnesium, they also have 
different additions of transition elements (e.g. Cu, Mn, Fe, V). 
Varying element contents in combination with specific processing 
modifications result in a wide range of mechanical properties in 
the final product. To utilize the potential of different 6xxx series 
alloys in view of processing and application more completely, the  

 
knowledge of interactions between chemical composition, 
thermo-mechanical process parameters and mechanical properties 
plays an important role. For this reason the present work 
compares four prominent AlMgSi-alloys (AA6016, AA6005A, 
AA6063, and AA6013) to illustrate these correlations. Beside the 
mechanical properties, also the forming performance will be 
compared by bending tests, hole-expansion tests, cross-die tests 
and by the forming limit curves (FLC).  
 

Experimental 
 

Within this study four different alloys, AA6016, AA6005A, 
AA6063 and AA6013 were investigated. The chemical 
composition of the investigated material is shown in Table I. 
These alloys were produced at AMAG rolling in form of 1.0 mm 
thick sheets. The thermo-mechanical treatment was similar for all 
variants. The alloys were DC-cast as large ingots and then scalped 
on their rolling surface. For the hot rolling the alloys were 
preheated. This kind of homogenization heat treatment reduces 
the segregation arising from non-equilibrium solidification during 
casting, equalize the distribution of the constituents and dissolves 
soluble phases. After this heat treatment the hot ingots were 
transferred to the rolling line. Then the hot band was coiled and 
allowed to cool before it was cold rolled to the final gauge. To 
adjust the right property profile (strength and formability), the 
material was then solution treated in a continuous heat-treatment 
line. During the solution heat treatment the material was rapidly 
heated up, followed by subsequent water quenching to achieve 
temper T4 after RT storage. Hereby recovery and recrystallization 
of the as-deformed microstructure takes place and the hardening 
phases dissolve which are afterwards necessary to receive a high 
strength after the paint bake cycle. To improve the age hardening 
response a further pre-ageing was carried out directly after 
solution annealing [1, 2]. Within this investigation the hereby 
produced temper is named T4*. The standard temper after 
solution treatment and natural aging (T4) and the pre-aged temper 
T4* are typical states which are delivered to the automotive 
industry. These tempers generally allow a good forming 
performance through all forming operations which are applied by 
the car manufacturers. The final strength of the manufactured 
parts will be achieved after the forming operations through cold 
work hardening and by age hardening during the final automotive 
paint bake cycle at typical 185 °C for 20 min. Within this 
investigation the hereby produced temper is named T6*.  
 

 
Influence of Chemical Composition and Process Parameters on Mechanical Properties and Formability of 

AlMgSi-Sheets for Automotive Application 

227

Light Metals 2014
Edited by: John Grandfield

TMS (The Minerals, Metals & Materials Society), 2014



Table I. Actual chemical composition of the investigated material 
 Si 

[wt.%] 
Fe 

[wt.%] 
Cu 

[wt.%] 
Mn 

[wt.%] 
Mg 

[wt.%] 
Cr 

[wt.%] 
Zn 

[wt.%] 
Si/Mg 

[-] 
AA6016 1.03 0.17 0.08 0.08 0.32 0.01 0.01 3.2 
AA6005A 0.81 0.19 0.04 0.17 0.50 0.01 0.01 1.6 
AA6063 0.64 0.19 0.02 0.02 0.55 0.01 0.02 1.4 
AA6013 0.75 0.27 0.75 0.50 0.98 0.01 0.02 0.8 

 
 

The 6xxx series aluminum alloys are characterized in general 
through their main alloying elements Si and Mg and additions of 
Cu, Mn and Fe. As it can be seen in Table I, the alloys exhibit 
different Si/Mg-ratios. AA6016 has the highest Si/Mg-ratio which 
goes along with a high amount of Si in excess. From former 
investigations it is known, that a high Si/Mg-ratio results, on the 
one hand, in an increased strengthening coefficient, which 
improves the formability of the alloy [3]. On the other hand, 
industrial produced AlMgSi-alloys are always contaminated with 
traces of iron and together with the alloying element Si they form 
intermetallic particles (Al-Fe-Si) which influence the formability 
negatively. In AlMgSi-alloys, intermetallic particles are mainly -
AlFeSi and -AlFeSi. These particles are formed during 
solidification and homogenization of as-cast ingots and do not 
dissolve when the alloy is further heat treated. The -particles 
have a more globular morphology than the plate-like -particles, 
which are known to promote the formation of voids during 
deformation [4, 5, 6, 7]. The formability can therefore be 
improved by promoting the formation of -AlFeSi due to an 
optimized homogenization heat treatment or by adding -
stabilizer elements such as Mn [5, 7, 8]. Hirth et al. reported, that 
a higher Si-content does not have a significant influence on the 
aging kinetics, but primarily affects the initial strength level due 
to the increased solution and cluster hardening provided by the 
higher Si level [9]. Copper additions generally increase the 
artificial aging kinetics [10] but have a negative impact on 
bendability [11].  
 
Characterization of the mechanical properties 
 
To investigate the mechanical properties in temper T4/T4* and 
temper T6/T6* (after 2% prestrain, by 185°C/20min), tensile tests 
in LT direction according to DIN EN 10002 (Lo = 80 mm) were 
carried out. The results of tensile tests are also of particular value 
for sheet metal forming operations. The tensile strain hardening 
exponent n was measured according to ISO 10275 and the vertical 
anisotropy r according to ISO 10113. To evaluate the plane 
anisotropy r regarding to equation (1), the r-values were also 
measured in testing direction L and 45°: 
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Characterization of the formability 
 
Forming Limit Curve (FLC). In order to describe fundamental 
formability characteristics of the investigated sheet materials a 
forming limit curve was determined and therefore the Nakazima 
test method was employed (acc. to EN ISO 12004).  
 
Bending test. To characterize the bending performance a plane 
strain bending test according to VDA 238-100 was carried out. 
The test was performed on sheet metal strips with a length of 250 
mm and a width of 70 mm, each taken from the later bending 

direction (within this study only bending in L-direction was 
carried out). The metal strips were pre-strained for 10% and 
afterwards the strips were machined to bending test samples of 60 
x 60 mm².  
 
Hole expansion test. Hole expansion tests were conducted on an 
Erichsen 142/40, 400kN hydraulic sheet metal tester. Specimens 
for hole expansion testing were prepared and tested according to 
ISO/TS 16630. The material sheets were cut along the rolling 
direction into square specimens of 100 x 100 mm². A conical 
punch with a top angle of 60° was used for hole-expansion 
purpose and the initial hole was made by punching using a die 
diameter of 10 mm (do). The motion of the punch into the hole 
was stopped when a crack at the edge of the expanding hole was 
observed. The limiting hole expansion ratio  was then calculated 
according to: 
 

100
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−

=
d
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In equation (2) dh [mm] is the average hole diameter after testing 
and do [mm] is the initial diameter of the hole. In Figure 1 the 
used die tool for the hole-expansion test, as well as a final 
expanded part, are shown. 
 
(a)    (b) 

Figure 1. (a) The die tool used for the hole-expansion test and (b) 
the final deformed part 

 
Cross-die test. This test has been used as a simulative test by the 
automotive industry to evaluate the forming characteristics of 
sheet metals. The drawing height (specimen height), as well as the 
maximum strain which can be sustained by the specimens before 
the onset of tearing, are the results of the cross-die test. The 
experimental setup and the produced specimen are shown in 
Figure 2. 
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Figure 2. Die tool used for the cross-die test (left) and final 

deformed part (right) 
 

Results and Discussion 
 

Mechanical properties 
 

In Figure 3 the mechanical properties of the investigated material 
are shown in temper T4* and after the simulated paint bake cycle 
treatment of 2 % prestrain + 185°C/20min (T6*). AA6013 
exhibits highest strength level compared to the other alloys, which 
can be related to its chemical composition. Additions of copper to 
AlMgSi-alloys refine the precipitate structure, induce the 
formation of the strengthening phase Q’ (Cu-containing phase) 
and increase therefore the strength level [12]. Furthermore, the 
relatively high Mn-content in AA6013 increases the initial 
strength, presumably due to solid solution hardening [13]. In 
contrast, AA6063 shows the lowest strength, both in temper T4* 
and in T6*. This alloy contains nearly no Cu and Mn and, also the 
Mg- and Si-content is comparably low. Alloy AA6005A shows a 
very high T6* strength, which can be related to the higher Mg-
content in comparison to AA6016 (more Mg-Si precipitates ( ``) 
can be formed).  
 

 
Figure 3. Yield tensile strength Rp0,2 and ultimate tensile strength 

Rm in temper T4* and in temper T6*  
 
In order to explain the influence of the thermo-mechanical 
processing on mechanical properties, Figure 4 illustrates a 
comparison between standard temper T4 and the pre-aged temper 
T4* for AA6016. As it can be seen, temper T4* reacts to the 
applied simulated paint-bake cycle with a more pronounced 
increase in strength. It is assumed that the Mg-Si clusters formed 
during the pre-aging with subsequent natural aging exceed a 
critical size which makes them more stable than those in the 
naturally aged T4 state [14]. The stable clusters can act as nuclei 
for the `` precipitation during subsequent artificial aging and 
enhance therefore the artificial aging kinetics.  

 
Figure 4. Yield tensile strength Rp0,2 and ultimate tensile strength 

Rm in temper T4 and T4* for AA6016  
 
The elongation A80 and the uniform elongation Ag of the 
investigated material is illustrated in Figure 5. In this comparison 
AA6016 reaches the highest elongation values, whereas AA6013 
drops behind. This result is generally understandable in relation to 
its high strength in temper T4*. Due to the lower elongation for 
AA6005A and AA6063, in comparison to AA6016, the 
assumption could be made, that a lower Si/Mg-ratio leads to lower 
elongation values.  
 

 
Figure 5. Elongation A80 and uniform elongation Ag in temper T4* 
 
Figure 6 shows the vertical anisotropy r, the plane anisotropy r, 
the strain hardening exponent n and the yield ratio Rp0,2 /Rm. These 
values give a first indication about the formability of the tested 
alloys. The anisotropy plays an important role during forming 
processes, especially during deep drawing. Materials with a high 
vertical anisotropy value possess a high resistance to plastic flow 
in the direction of the sheet thickness. The strain-hardening 
exponent can be considered to be an indicator for the maximum 
attainable deformation during cold forming. The higher the n-
value and, consequently, the higher the uniform strain, the lower 
is the tendency of the material to neck locally. AA6005A and 
AA6063 reach a high r-value in 90° but the plane anisotropy of 
these alloys is comparably high. This means, that the forming 
behavior is not uniform in all rolling directions (0°, 45° and 90°). 
This could lead to earing during deep drawing. AA6016 has a 
comparably low r-value and shows the highest n-value. AA6013 
shows the most uniform r-value in all rolling directions, with a 
plane anisotropy of 0. Normally the r-value in 45° direction is 
much lower, than the values for 0° and 90° (this applies for 

Rp0,2 (T4*) Rm (T4*)
Rp0,2 

(2% prestrain + 
185 C/20min)

Rm 
(2% prestrain + 
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AlMgSi-alloys). Due to the fact that r-valu
rolling-texture it can be assumed that the
AA6013 influence the rolling texture po
anisotropy. Further texture-measurements w
explain these results more properly.  
The yield ratio is also an indication for the a
should be as low as possible. The investigate
identical results, with the exeption of AA6
ratio of AA6013 is obviously related to its hi
T4*. 
 

Figure 6. Vertical anisotropy r, strain-harden
anisotropy r and Rp0,2 /Rm ratio in 

 
Forming Limit Curve (FLC) 
 
With the forming limit curves, which ar
investigated material in Figure 7, it is p
process limitations in sheet metal forming 
strain path (e.g. necking and tearing). It can 
allows the highest deformation rate until firs
is related to the lower strength level in com
alloys. Although AA6013 shows the hig
tensile testing, the FLC is comparable to A
cannot be explained in detail within the sco
we assume a correlation with the very low p
AA6013 (due to a high r-value in 45°).  
 

Figure 7. FLC (Nakazima) of AA6016, AA6
AA6013 in temper T4* for sheet thic

 
 
 

r-value r-value n-v

AA6016 0.68 0.28 0.
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st failures occur. This 
mparison to the other 
ghest strength during 
AA6005A. This result 
ope of this paper, but 
plane anisotropy r of 

 
6005A, AA6063 and 

ckness 1.0 mm 

Bending Performance 
 
Hemming is a typical assembl
industry to join the outer shee
body panels. The requirements
hemming are very tough, becau
180° bending over a radius equ
Failure during bending of A
intergranular fracture due to 
particles [15]. Furthermore, 
shearing in relation to micro-v
particles can lead to fracture du
the bending results of the in
AA6063 show the best ben
AA6005A and AA6013. Th
AA6013 can be related to its
copper tends to form grain b
solution heat treatment or coo
can also influence the bendab
AA6005A contain more Fe and
Fe-Si or Al-Fe-Si-Mn particles
bendability depends on the valu
n, which can be also seen here. 
 

Table II. Ben
 AA6016 A
Bending angle  156 

 
Hole-expansion test 
 
The design requirements of au
presence of holes on the sur
measure the elongation of t
calculation of the hole expans
information about material’s s
edge stretching. The followin
expanded samples. The stress f
cracks appear is similar to th
during flanging operations. Th
sheet-deformation during hol
microstructure (volume fracti
phases) might affect the ability 
 
(a) 

 
Figure 8. Appearance of a crac

(a) side view
 
The limiting hole expansion rat
listed in Table III. The alloys 
show nearly the same results 
AA6013 reaches the lowest h
which was expected due to the

value
yield ratio 

(Rp0,2/Rm)
.30 0.49
.29 0.52
.29 0.49
.25 0.59

,2 0,3 0,4

AA6016 AA6005A
AA6063 AA6013

ly method used in the automotive 
et to the inner part of the hang-on 
s to an alloy which is subjected to 
use the material has to withstand a 

ual to the half of the sheet thickness. 
AlMgSi-alloys can occur through 

the presence of grain boundary 
strain localization and intense 

voids formation around large phase 
uring bending [16]. Table II depicts 
nvestigated material. AA6016 and 
nding performance compared to 

he poor bending performance of 
s Cu-content due to the fact that 
boundary precipitates by improper 
oling. Large intermetallic particles 
ility negatively [17]. AA6013 and 
d Mn, which form intermetallic Al-
. Davidkov et al. [15] reported that 
ue of the strain hardening exponent 

nding angle in [°] 
AA6005A AA6063 AA6013 

134 159 84 

utomotive parts often demand the 
rface. Since hole expansion tests 
the material near the holes, the 
sion ratio is of high interest to get 
susceptibility to edge cracking or 
g Figure 8 demonstrates the hole 
field in the formed edge where the 
e stress field in the sheared edge 

he edge condition before flanging, 
le preparation, punch shape and 
ion and morphology of different 
of the hole flange to stretch [18].  

(b) 

 
ck on the rim of an expanded hole 
 and (b) top view 

tio  of the investigated materials is 
AA6016, AA6005A and AA6063 
with a ratio > 50 %. The alloy 

hole expansion ratio with 41,6 %, 
e high strength level of this alloy in 
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temper T4*. AA6013 contains a high amoun
which form different phases (e.g. Al-Fe-Si
Mg-Si) with a high volume fraction t
mechanical processing. These phases can c
precipitations (mainly Cu-rich precipitates)
deformation can be then initiated in the gra
void initiation [19]. 
 

Table III. Limiting hole expansion 
 AA6016 AA6005A 
Limiting hole 
expansion ratio  

53.0 56.7 

 
Cross-die test 
 
The forming test in a cross-die has been us
automotive industry to assess the formabili
The geometry of the cross-die displays typic
predominate during manufacturing of rea
Before the experimental test was carried o
performed to predict where and at which 
cracks occur. The simulation result was in 
the experiment. First cracks occur due to thin
the formed cross, which is illustrated with th
9 (b). In this area the material is mainly su
under tension.  
 
(a) (b) 

Figure 9. Appearance of a crack due to thinn
the cross-die sample (a) experiment and

 
The forming height of the investigated alloys
It is found, that the alloys AA6005 and AA
results in this test, whereas AA6013 drops be
 

Table IV. Cross-die forming heigh
 AA6016 AA6005A 
Forming height  18.2 18.4 

 
Conclusions 
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out a simulation was 
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he blue color in Figure 
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d (b) simulation 
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Figure 10. Tolerance window
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