
Robin Nixon

Learning
 PHP, MySQL,
& JavaScript
WITH JQUERY, CSS & HTML5

5th Edition
 Includes

Web Apps & Mobile

http://www.allitebooks.org

http://www.allitebooks.org

Robin Nixon

Learning PHP, MySQL & JavaScript
With jQuery, CSS & HTML5

FIFTH EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

http://www.allitebooks.org

978-1-491-97891-7

[M]

Learning PHP, MySQL & JavaScript
by Robin Nixon

Copyright © 2018 Robin Nixon. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Melanie Yarbrough
Copyeditor: Rachel Head
Proofreader: Rachel Monaghan

Indexer: Judy McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

July 2009: First Edition
August 2012: Second Edition
June 2014: Third Edition
December 2018: Fourth Edition
May 2018: Fifth Edition

Revision History for the Fifth Edition
2018-05-08: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491978917 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning PHP, MySQL & JavaScript, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491978917
http://www.allitebooks.org

For Julie

http://www.allitebooks.org

Table of Contents

Preface. xxiii

1. Introduction to Dynamic Web Content. 1
HTTP and HTML: Berners-Lee’s Basics 2
The Request/Response Procedure 2
The Benefits of PHP, MySQL, JavaScript, CSS, and HTML5 5

MariaDB: The MySQL Clone 6
Using PHP 6
Using MySQL 7
Using JavaScript 8
Using CSS 10

And Then There’s HTML5 10
The Apache Web Server 11
Handling Mobile Devices 12
About Open Source 12
Bringing It All Together 13
Questions 14

2. Setting Up a Development Server. 17
What Is a WAMP, MAMP, or LAMP? 18
Installing AMPPS on Windows 18

Testing the Installation 22
Accessing the Document Root (Windows) 24
Alternative WAMPs 25

Installing AMPPS on macOS 26
Accessing the Document Root (macOS) 27

Installing a LAMP on Linux 28
Working Remotely 28

v

Logging In 29
Using FTP 29

Using a Program Editor 30
Using an IDE 31
Questions 33

3. Introduction to PHP. 35
Incorporating PHP Within HTML 35
This Book’s Examples 37
The Structure of PHP 38

Using Comments 38
Basic Syntax 39
Variables 40
Operators 45
Variable Assignment 48
Multiple-Line Commands 50
Variable Typing 52
Constants 53
Predefined Constants 54
The Difference Between the echo and print Commands 55
Functions 55
Variable Scope 56

Questions 62

4. Expressions and Control Flow in PHP. 63
Expressions 63

TRUE or FALSE? 64
Literals and Variables 65

Operators 66
Operator Precedence 67
Associativity 69
Relational Operators 70

Conditionals 74
The if Statement 75
The else Statement 76
The elseif Statement 78
The switch Statement 79
The ? Operator 82

Looping 83
while Loops 84
do...while Loops 86
for Loops 86

vi | Table of Contents

Breaking Out of a Loop 88
The continue Statement 89

Implicit and Explicit Casting 90
PHP Dynamic Linking 91
Dynamic Linking in Action 92
Questions 93

5. PHP Functions and Objects. 95
PHP Functions 96

Defining a Function 97
Returning a Value 98
Returning an Array 99
Passing Arguments by Reference 100
Returning Global Variables 102
Recap of Variable Scope 102

Including and Requiring Files 103
The include Statement 103
Using include_once 103
Using require and require_once 104

PHP Version Compatibility 104
PHP Objects 105

Terminology 106
Declaring a Class 107
Creating an Object 108
Accessing Objects 108
Cloning Objects 110
Constructors 111
Destructors 111
Writing Methods 112
Declaring Properties 113
Declaring Constants 113
Property and Method Scope 114
Static Methods 115
Static Properties 116
Inheritance 117

Questions 120

6. PHP Arrays. 123
Basic Access 123

Numerically Indexed Arrays 123
Associative Arrays 125
Assignment Using the array Keyword 126

Table of Contents | vii

The foreach...as Loop 127
Multidimensional Arrays 129
Using Array Functions 132

is_array 132
count 132
sort 133
shuffle 133
explode 133
extract 134
compact 135
reset 136
end 136

Questions 137

7. Practical PHP. 139
Using printf 139

Precision Setting 140
String Padding 142
Using sprintf 143

Date and Time Functions 143
Date Constants 146
Using checkdate 146

File Handling 147
Checking Whether a File Exists 147
Creating a File 147
Reading from Files 149
Copying Files 150
Moving a File 150
Deleting a File 151
Updating Files 151
Locking Files for Multiple Accesses 153
Reading an Entire File 154
Uploading Files 155

System Calls 161
XHTML or HTML5? 162
Questions 163

8. Introduction to MySQL. 165
MySQL Basics 165
Summary of Database Terms 166
Accessing MySQL via the Command Line 166

Starting the Command-Line Interface 167

viii | Table of Contents

Using the Command-Line Interface 171
MySQL Commands 172
Data Types 177

Indexes 187
Creating an Index 187
Querying a MySQL Database 193
Joining Tables Together 203
Using Logical Operators 205

MySQL Functions 206
Accessing MySQL via phpMyAdmin 206
Questions 207

9. Mastering MySQL. 209
Database Design 209

Primary Keys: The Keys to Relational Databases 210
Normalization 211

First Normal Form 212
Second Normal Form 214
Third Normal Form 216
When Not to Use Normalization 218

Relationships 219
One-to-One 219
One-to-Many 220
Many-to-Many 221
Databases and Anonymity 222

Transactions 223
Transaction Storage Engines 223
Using BEGIN 224
Using COMMIT 225
Using ROLLBACK 225

Using EXPLAIN 226
Backing Up and Restoring 227

Using mysqldump 227
Creating a Backup File 229
Restoring from a Backup File 231
Dumping Data in CSV Format 231
Planning Your Backups 232

Questions 232

10. Accessing MySQL Using PHP. 235
Querying a MySQL Database with PHP 235

The Process 235

Table of Contents | ix

Creating a Login File 236
Connecting to a MySQL Database 237

A Practical Example 243
The $_POST Array 246
Deleting a Record 247
Displaying the Form 247
Querying the Database 248
Running the Program 249

Practical MySQL 250
Creating a Table 251
Describing a Table 251
Dropping a Table 252
Adding Data 253
Retrieving Data 254
Updating Data 255
Deleting Data 255
Using AUTO_INCREMENT 256
Performing Additional Queries 257

Preventing Hacking Attempts 258
Steps You Can Take 259
Using Placeholders 260
Preventing HTML Injection 263

Using mysqli Procedurally 264
Questions 266

11. Form Handling. 267
Building Forms 267
Retrieving Submitted Data 269

Default Values 270
Input Types 271
Sanitizing Input 278

An Example Program 280
HTML5 Enhancements 283

The autocomplete Attribute 283
The autofocus Attribute 283
The placeholder Attribute 283
The required Attribute 284
Override Attributes 284
The width and height Attributes 284
The min and max Attributes 284
The step Attribute 284
The form Attribute 285

x | Table of Contents

The list Attribute 285
The color Input Type 285
The number and range Input Types 285
Date and Time Pickers 286

Questions 286

12. Cookies, Sessions, and Authentication. 287
Using Cookies in PHP 287

Setting a Cookie 289
Accessing a Cookie 290
Destroying a Cookie 290

HTTP Authentication 290
Storing Usernames and Passwords 294
An Example Program 296

Using Sessions 299
Starting a Session 299
Ending a Session 302
Setting a Timeout 303
Session Security 304

Questions 307

13. Exploring JavaScript. 309
JavaScript and HTML Text 310

Using Scripts Within a Document Head 311
Older and Nonstandard Browsers 311
Including JavaScript Files 312
Debugging JavaScript Errors 313

Using Comments 314
Semicolons 314
Variables 314

String Variables 315
Numeric Variables 315
Arrays 316

Operators 316
Arithmetic Operators 317
Assignment Operators 317
Comparison Operators 318
Logical Operators 318
Incrementing, Decrementing, and Shorthand Assignment 318
String Concatenation 318
Escape Characters 319

Variable Typing 319

Table of Contents | xi

Functions 321
Global Variables 321
Local Variables 321
The Document Object Model 322

Another Use for the $ Symbol 324
Using the DOM 325

About document.write 326
Using console.log 326
Using alert 326
Writing into Elements 326
Using document.write 327

Questions 327

14. Expressions and Control Flow in JavaScript. 329
Expressions 329
Literals and Variables 330
Operators 331

Operator Precedence 332
Associativity 332
Relational Operators 333

The with Statement 336
Using onerror 337
Using try...catch 338
Conditionals 339

The if Statement 339
The else Statement 339
The switch Statement 340
The ? Operator 342

Looping 342
while Loops 342
do...while Loops 343
for Loops 344
Breaking Out of a Loop 345
The continue Statement 345

Explicit Casting 346
Questions 347

15. JavaScript Functions, Objects, and Arrays. 349
JavaScript Functions 349

Defining a Function 349
Returning a Value 351
Returning an Array 353

xii | Table of Contents

JavaScript Objects 354
Declaring a Class 354
Creating an Object 356
Accessing Objects 356
The prototype Keyword 356

JavaScript Arrays 359
Numeric Arrays 360
Associative Arrays 361
Multidimensional Arrays 362
Using Array Methods 363

Questions 368

16. JavaScript and PHP Validation and Error Handling. 371
Validating User Input with JavaScript 371

The validate.html Document (Part 1) 372
The validate.html Document (Part 2) 374

Regular Expressions 377
Matching Through Metacharacters 378
Fuzzy Character Matching 378
Grouping Through Parentheses 379
Character Classes 380
Indicating a Range 380
Negation 380
Some More Complicated Examples 381
Summary of Metacharacters 383
General Modifiers 385
Using Regular Expressions in JavaScript 385
Using Regular Expressions in PHP 386

Redisplaying a Form After PHP Validation 387
Questions 393

17. Using Asynchronous Communication. 395
What Is Asynchronous Communication? 396
Using XMLHttpRequest 396

Your First Asynchronous Program 399
Using GET Instead of POST 403
Sending XML Requests 406
Using Frameworks for Asynchronous Communication 411

Questions 411

18. Introduction to CSS. 413
Importing a Stylesheet 414

Table of Contents | xiii

Importing CSS from Within HTML 414
Embedded Style Settings 415

Using IDs 415
Using Classes 415
Using Semicolons 416
CSS Rules 416

Multiple Assignments 416
Using Comments 417

Style Types 418
Default Styles 418
User Styles 418
External Stylesheets 419
Internal Styles 419
Inline Styles 420

CSS Selectors 420
The Type Selector 420
The Descendant Selector 420
The Child Selector 421
The ID Selector 422
The Class Selector 423
The Attribute Selector 424
The Universal Selector 424
Selecting by Group 425

The CSS Cascade 425
Stylesheet Creators 426
Stylesheet Methods 426
Stylesheet Selectors 427

The Difference Between div and span Elements 429
Measurements 431
Fonts and Typography 433

font-family 433
font-style 434
font-size 434
font-weight 435

Managing Text Styles 435
Decoration 435
Spacing 436
Alignment 436
Transformation 436
Indenting 436

CSS Colors 437
Short Color Strings 438

xiv | Table of Contents

Gradients 438
Positioning Elements 440

Absolute Positioning 440
Relative Positioning 440
Fixed Positioning 441

Pseudoclasses 443
Shorthand Rules 445
The Box Model and Layout 446

Setting Margins 446
Applying Borders 448
Adjusting Padding 449
Object Contents 451

Questions 451

19. Advanced CSS with CSS3. 453
Attribute Selectors 454

Matching Parts of Strings 454
The box-sizing Property 455
CSS3 Backgrounds 456

The background-clip Property 456
The background-origin Property 458
The background-size Property 458
Using the auto Value 459
Multiple Backgrounds 459

CSS3 Borders 461
The border-color Property 461
The border-radius Property 461

Box Shadows 465
Element Overflow 466
Multicolumn Layout 466
Colors and Opacity 468

HSL Colors 468
HSLA Colors 469
RGB Colors 469
RGBA Colors 469
The opacity Property 470

Text Effects 470
The text-shadow Property 470
The text-overflow Property 470
The word-wrap Property 471

Web Fonts 472
Google Web Fonts 473

Table of Contents | xv

Transformations 474
3D Transformations 475

Transitions 476
Properties to Transition 476
Transition Duration 477
Transition Delay 477
Transition Timing 477
Shorthand Syntax 478

Questions 480

20. Accessing CSS from JavaScript. 481
Revisiting the getElementById Function 481

The O function 481
The S Function 482
The C Function 483
Including the Functions 484

Accessing CSS Properties from JavaScript 484
Some Common Properties 485
Other Properties 486

Inline JavaScript 488
The this Keyword 488
Attaching Events to Objects in a Script 489
Attaching to Other Events 490

Adding New Elements 491
Removing Elements 492
Alternatives to Adding and Removing Elements 493

Using Interrupts 494
Using setTimeout 494
Canceling a Timeout 495
Using setInterval 495
Using Interrupts for Animation 497

Questions 499

21. Introduction to jQuery. 501
Why jQuery? 501
Including jQuery 502

Choosing the Right Version 502
Downloading 504
Using a Content Delivery Network 504
Customizing jQuery 505

jQuery Syntax 505
A Simple Example 506

xvi | Table of Contents

Avoiding Library Conflicts 507
Selectors 507

The css Method 508
The Element Selector 508
The ID Selector 509
The Class Selector 509
Combining Selectors 509

Handling Events 510
Waiting Until the Document Is Ready 511
Event Functions and Properties 512

The blur and focus Events 513
The this Keyword 514
The click and dblclick Events 514
The keypress Event 515
Considerate Programming 517
The mousemove Event 517
Other Mouse Events 520
Alternative Mouse Methods 521
The submit Event 522

Special Effects 523
Hiding and Showing 524
The toggle Method 525
Fading In and Out 526
Sliding Elements Up and Down 527
Animations 528
Stopping Animations 531

Manipulating the DOM 532
The Difference Between the text and html Methods 533
The val and attr Methods 533
Adding and Removing Elements 535

Dynamically Applying Classes 537
Modifying Dimensions 537

The width and height Methods 538
The innerWidth and innerHeight Methods 540
The outerWidth and OuterHeight Methods 540

DOM Traversal 541
Parent Elements 541
Child Elements 545
Sibling Elements 545
Selecting the Next and Previous Elements 547
Traversing jQuery Selections 549
The is Method 550

Table of Contents | xvii

Using jQuery Without Selectors 552
The $.each Method 552
The $.map Method 553

Using Asynchronous Communication 554
Using the POST Method 554
Using the GET Method 555

Plug-ins 555
jQuery User Interface 556
Other Plug-ins 556

Questions 556

22. Introduction to jQuery Mobile. 559
Including jQuery Mobile 560
Getting Started 561
Linking Pages 563

Linking Synchronously 563
Linking Within a Multipage Document 564
Page Transitions 565

Styling Buttons 568
List Handling 571

Filterable Lists 572
List Dividers 574

What Next? 577
Questions 577

23. Introduction to HTML5. 579
The Canvas 579
Geolocation 581
Audio and Video 583
Forms 584
Local Storage 585
Web Workers 585
Microdata 585
Questions 586

24. The HTML5 Canvas. 587
Creating and Accessing a Canvas 587

The toDataURL Function 589
Specifying an Image Type 591
The fillRect Method 591
The clearRect Method 591
The strokeRect Method 592

xviii | Table of Contents

Combining These Commands 592
The createLinearGradient Method 593
The addColorStop Method in Detail 595
The createRadialGradient Method 596
Using Patterns for Fills 598

Writing Text to the Canvas 600
The strokeText Method 600
The textBaseLine Property 601
The font Property 601
The textAlign Property 601
The fillText Method 602
The measureText Method 603

Drawing Lines 603
The lineWidth Property 604
The lineCap and lineJoin Properties 604
The miterLimit Property 606

Using Paths 606
The moveTo and lineTo Methods 607
The stroke Method 607
The rect Method 608

Filling Areas 608
The clip Method 610
The isPointInPath Method 613
Working with Curves 614

The arc Method 614
The arcTo Method 617
The quadraticCurveTo Method 618
The bezierCurveTo Method 619

Manipulating Images 620
The drawImage Method 620
Resizing an Image 621
Selecting an Image Area 621
Copying from a Canvas 623
Adding Shadows 623

Editing at the Pixel Level 625
The getImageData Method 625
The putImageData Method 628
The createImageData Method 628

Advanced Graphical Effects 629
The globalCompositeOperation Property 629
The globalAlpha Property 632

Transformations 632

Table of Contents | xix

The scale Method 633
The save and restore Methods 634
The rotate Method 634
The translate Method 635
The transform Method 636
The setTransform Method 638

Questions 639

25. HTML5 Audio and Video. 641
About Codecs 642
The <audio> Element 643
Supporting Non-HTML5 Browsers 646
The <video> Element 647

The Video Codecs 648
Supporting Older Browsers 651

Questions 653

26. Other HTML5 Features. 655
Geolocation and the GPS Service 655
Other Location Methods 656
Geolocation and HTML5 657
Local Storage 660

Using Local Storage 661
The localStorage Object 661

Web Workers 663
Drag and Drop 666
Cross-Document Messaging 668
Other HTML5 Tags 672
Questions 672

27. Bringing It All Together. 675
Designing a Social Networking App 676
On the Website 676
functions.php 676

The Functions 677
header.php 679
setup.php 682
index.php 683
signup.php 684

Checking for Username Availability 685
Logging In 685

checkuser.php 688

xx | Table of Contents

login.php 689
profile.php 691

Adding the “About Me” Text 692
Adding a Profile Image 692
Processing the Image 692
Displaying the Current Profile 693

members.php 696
Viewing a User’s Profile 696
Adding and Dropping Friends 697
Listing All Members 697

friends.php 700
messages.php 703
logout.php 706
styles.css 708
javascript.js 710

A. Solutions to the Chapter Questions. 713

B. Online Resources. 735

C. MySQL’s FULLTEXT Stopwords. 739

D. MySQL Functions. 743

E. jQuery Selectors, Objects, and Methods. 753

Index. 777

Table of Contents | xxi

Preface

The combination of PHP and MySQL is the most convenient approach to dynamic,
database-driven web design, holding its own in the face of challenges from integrated
frameworks—such as Ruby on Rails—that are harder to learn. Due to its open source
roots (unlike the competing Microsoft .NET Framework), it is free to implement and
is therefore an extremely popular option for web development.

Any would-be developer on a Unix/Linux or even a Windows/Apache platform will
need to master these technologies. And, combined with the partner technologies of
JavaScript, jQuery, CSS, and HTML5, you will be able to create websites of the caliber
of industry standards like Facebook, Twitter, and Gmail.

Audience
This book is for people who wish to learn how to create effective and dynamic web‐
sites. This may include webmasters or graphic designers who are already creating
static websites but wish to take their skills to the next level, as well as high school and
college students, recent graduates, and self-taught individuals.

In fact, anyone ready to learn the fundamentals behind responsive web design will
obtain a thorough grounding in the core technologies of PHP, MySQL, JavaScript,
CSS, and HTML5, and you’ll learn the basics of the jQuery and jQuery Mobile libra‐
ries, too.

Assumptions This Book Makes
This book assumes that you have a basic understanding of HTML and can at least put
together a simple, static website, but does not assume that you have any prior knowl‐
edge of PHP, MySQL, JavaScript, CSS, or HTML5—although if you do, your progress
through the book will be even quicker.

xxiii

Organization of This Book
The chapters in this book are written in a specific order, first introducing all of the
core technologies it covers and then walking you through their installation on a web
development server so that you will be ready to work through the examples.

In the first section, you will gain a grounding in the PHP programming language,
covering the basics of syntax, arrays, functions, and object-oriented programming.

Then, with PHP under your belt, you will move on to an introduction to the MySQL
database system, where you will learn everything from how MySQL databases are
structured to how to generate complex queries.

After that, you will learn how you can combine PHP and MySQL to start creating
your own dynamic web pages by integrating forms and other HTML features. You
will then get down to the nitty-gritty practical aspects of PHP and MySQL develop‐
ment by learning a variety of useful functions and how to manage cookies and ses‐
sions, as well as how to maintain a high level of security.

In the next few chapters, you will gain a thorough grounding in JavaScript, from sim‐
ple functions and event handling to accessing the Document Object Model, in-
browser validation, and error handling. You’ll also get a comprehensive primer on
using the popular jQuery library for JavaScript.

With an understanding of all three of these core technologies, you will then learn how
to make behind-the-scenes Ajax calls and turn your websites into highly dynamic
environments.

Next, you’ll spend two chapters learning all about using CSS to style and lay out your
web pages, before discovering how the jQuery libraries can make your development
job a great deal easier. You’ll then move on to the final section on the interactive fea‐
tures built into HTML5, including geolocation, audio, video, and the canvas. After
this, you’ll put together everything you’ve learned in a complete set of programs that
together constitute a fully functional social networking website.

Along the way, you’ll find plenty of advice on good programming practices and tips
that can help you find and solve hard-to-detect programming errors. There are also
plenty of links to websites containing further details on the topics covered.

Supporting Books
Once you have learned to develop using PHP, MySQL, JavaScript, CSS, and HTML5,
you will be ready to take your skills to the next level using the following O’Reilly ref‐
erence books:

• Dynamic HTML: The Definitive Reference by Danny Goodman

xxiv | Preface

http://shop.oreilly.com/product/9780596527402.do

• PHP in a Nutshell by Paul Hudson
• MySQL in a Nutshell by Russell Dyer
• JavaScript: The Definitive Guide by David Flanagan
• CSS: The Definitive Guide by Eric A. Meyer and Estelle Weyl
• HTML5: The Missing Manual by Matthew MacDonald

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, options, and buttons.

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path‐
names, directories, and Unix utilities. Also used for database, table, and column
names.

Constant width

Indicates commands and command-line options, variables and other code ele‐
ments, HTML tags, and the contents of files.

Constant width bold

Shows program output and is used to highlight sections of code that are dis‐
cussed in the text.

Constant width italic

Shows text that should be replaced with user-supplied values.

This element signifies a tip, suggestion, or general note.

This element indicates a warning or caution.

Preface | xxv

http://shop.oreilly.com/product/9780596100674.do
http://shop.oreilly.com/product/9780596514334.do
http://shop.oreilly.com/product/9780596805531.do
http://shop.oreilly.com/product/0636920012726.do
http://shop.oreilly.com/product/0636920029243.do

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
http://lpmj.net.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Learning PHP, MySQL & JavaScript
by Robin Nixon (O’Reilly). Copyright 2018 Robin Nixon, 978-1-491-97891-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North

xxvi | Preface

http://lpmj.net
mailto:permissions@oreilly.com
http://oreilly.com/safari
http://www.oreilly.com/safari

Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/lpmjch_5e.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I would like to once again thank my editor, Andy Oram, and everyone who worked
so hard on this book, including Jon Reid, Michal Špaček, and John Craig for their
comprehensive technical reviews, Melanie Yarbrough for overseeing production,
Rachel Head for copy editing, Rachel Monaghan for proofreading, Rebecca Demarest
for illustrations, Judy McConville for creating the index, Karen Montgomery for the
original sugar glider front cover design, Randy Comer for the latest book cover, and
everyone else too numerous to name who submitted errata and offered suggestions
for this new edition.

Preface | xxvii

http://bit.ly/lpmjch_5e
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Introduction to Dynamic Web Content

The World Wide Web is a constantly evolving network that has already traveled far
beyond its conception in the early 1990s, when it was created to solve a specific prob‐
lem. State-of-the-art experiments at CERN (the European Laboratory for Particle
Physics, now best known as the operator of the Large Hadron Collider) were produc‐
ing incredible amounts of data—so much that the data was proving unwieldy to dis‐
tribute to the participating scientists, who were spread out across the world.

At this time, the internet was already in place, connecting several hundred thousand
computers, so Tim Berners-Lee (a CERN fellow) devised a method of navigating
between them using a hyperlinking framework, which came to be known as Hyper‐
text Transfer Protocol, or HTTP. He also created a markup language called Hypertext
Markup Language, or HTML. To bring these together, he wrote the first web browser
and web server.

Today we take these tools for granted, but back then, the concept was revolutionary.
The most connectivity so far experienced by at-home modem users was dialing up
and connecting to a bulletin board that was hosted by a single computer, where you
could communicate and swap data only with other users of that service. Conse‐
quently, you needed to be a member of many bulletin board systems in order to effec‐
tively communicate electronically with your colleagues and friends.

But Berners-Lee changed all that in one fell swoop, and by the mid-1990s, there were
three major graphical web browsers competing for the attention of 5 million users. It
soon became obvious, though, that something was missing. Yes, pages of text and
graphics with hyperlinks to take you to other pages was a brilliant concept, but the
results didn’t reflect the instantaneous potential of computers and the internet to
meet the particular needs of each user with dynamically changing content. Using the
web was a very dry and plain experience, even if we did now have scrolling text and
animated GIFs!

1

Shopping carts, search engines, and social networks have clearly altered how we use
the web. In this chapter, we’ll take a brief look at the various components that make
up the web, and the software that helps make using it a rich and dynamic experience.

It is necessary to start using some acronyms more or less right
away. I have tried to clearly explain them before proceeding, but
don’t worry too much about what they stand for or what these
names mean, because the details will become clear as you read on.

HTTP and HTML: Berners-Lee’s Basics
HTTP is a communication standard governing the requests and responses that are
sent between the browser running on the end user’s computer and the web server.
The server’s job is to accept a request from the client and attempt to reply to it in a
meaningful way, usually by serving up a requested web page—that’s why the term
server is used. The natural counterpart to a server is a client, so that term is applied
both to the web browser and the computer on which it’s running.

Between the client and the server there can be several other devices, such as routers,
proxies, gateways, and so on. They serve different roles in ensuring that the requests
and responses are correctly transferred between the client and server. Typically, they
use the internet to send this information. Some of these in-between devices can also
help speed up the internet by storing pages or information locally in what is called a
cache, and then serving this content up to clients directly from the cache rather than
fetching it all the way from the source server.

A web server can usually handle multiple simultaneous connections, and when not
communicating with a client, it spends its time listening for an incoming connection.
When one arrives, the server sends back a response to confirm its receipt.

The Request/Response Procedure
At its most basic level, the request/response process consists of a web browser asking
the web server to send it a web page and the server sending back the page. The
browser then takes care of displaying the page (see Figure 1-1).

2 | Chapter 1: Introduction to Dynamic Web Content

Figure 1-1. The basic client/server request/response sequence

The steps in the request and response sequence are as follows:

1. You enter http://server.com into your browser’s address bar.
2. Your browser looks up the Internet Protocol (IP) address for server.com.
3. Your browser issues a request for the home page at server.com.
4. The request crosses the internet and arrives at the server.com web server.
5. The web server, having received the request, looks for the web page on its disk.
6. The web server retrieves the page and returns it to the browser.
7. Your browser displays the web page.

For an average web page, this process also takes place once for each object within the
page: a graphic, an embedded video or Flash file, and even a CSS template.

In step 2, notice that the browser looks up the IP address of server.com. Every
machine attached to the internet has an IP address—your computer included—but
we generally access web servers by name, such as google.com. As you probably know,
the browser consults an additional internet service called the Domain Name Service

The Request/Response Procedure | 3

(DNS) to find the server’s associated IP address and then uses it to communicate with
the computer.

For dynamic web pages, the procedure is a little more involved, because it may bring
both PHP and MySQL into the mix. For instance, you may click on a picture of a
raincoat. Then PHP will put together a request using the standard database language,
SQL—many of whose commands you will learn in this book—and send the request to
the MySQL server. The MySQL server will return information about the raincoat you
selected, and the PHP code will wrap it all up in some HTML, which the server will
send to your browser (see Figure 1-2).

Figure 1-2. A dynamic client/server request/response sequence

The steps are as follows:

1. You enter http://server.com into your browser’s address bar.

4 | Chapter 1: Introduction to Dynamic Web Content

2. Your browser looks up the IP address for server.com.
3. Your browser issues a request to that address for the web server’s home page.
4. The request crosses the internet and arrives at the server.com web server.
5. The web server, having received the request, fetches the home page from its hard

disk.
6. With the home page now in memory, the web server notices that it is a file incor‐

porating PHP scripting and passes the page to the PHP interpreter.
7. The PHP interpreter executes the PHP code.
8. Some of the PHP contains SQL statements, which the PHP interpreter now

passes to the MySQL database engine.
9. The MySQL database returns the results of the statements to the PHP interpreter.

10. The PHP interpreter returns the results of the executed PHP code, along with the
results from the MySQL database, to the web server.

11. The web server returns the page to the requesting client, which displays it.

Although it’s helpful to be aware of this process so that you know how the three ele‐
ments work together, in practice you don’t really need to concern yourself with these
details, because they all happen automatically.

The HTML pages returned to the browser in each example may well contain Java‐
Script, which will be interpreted locally by the client, and which could initiate another
request—the same way embedded objects such as images would.

The Benefits of PHP, MySQL, JavaScript, CSS, and HTML5
At the start of this chapter, I introduced the world of Web 1.0, but it wasn’t long
before the rush was on to create Web 1.1, with the development of such browser
enhancements as Java, JavaScript, JScript (Microsoft’s slight variant of JavaScript), and
ActiveX. On the server side, progress was being made on the Common Gateway
Interface (CGI) using scripting languages such as Perl (an alternative to the PHP lan‐
guage) and server-side scripting—inserting the contents of one file (or the output of
running a local program) into another one dynamically.

Once the dust had settled, three main technologies stood head and shoulders above
the others. Although Perl was still a popular scripting language with a strong follow‐
ing, PHP’s simplicity and built-in links to the MySQL database program had earned it
more than double the number of users. And JavaScript, which had become an essen‐
tial part of the equation for dynamically manipulating Cascading Style Sheets (CSS)
and HTML, now took on the even more muscular task of handling the client side of
the asynchronous communication (exchanging data between a client and server after
a web page has loaded). Using asynchronous communication, web pages perform

The Benefits of PHP, MySQL, JavaScript, CSS, and HTML5 | 5

data handling and send requests to web servers in the background—without the web
user being aware that this is going on.

No doubt the symbiotic nature of PHP and MySQL helped propel them both for‐
ward, but what attracted developers to them in the first place? The simple answer has
to be the ease with which you can use them to quickly create dynamic elements on
websites. MySQL is a fast and powerful yet easy-to-use database system that offers
just about anything a website would need in order to find and serve up data to brows‐
ers. When PHP allies with MySQL to store and retrieve this data, you have the funda‐
mental parts required for the development of social networking sites and the
beginnings of Web 2.0.

And when you bring JavaScript and CSS into the mix too, you have a recipe for build‐
ing highly dynamic and interactive websites—especially as there is now a wide range
of sophisticated frameworks of JavaScript functions you can call on to really speed up
web development, such as the well-known jQuery, which is now probably the most
common way programmers access asynchronous communication features.

MariaDB: The MySQL Clone
After Oracle purchased Sun Microsystems (the owners of MySQL), the community
became wary that MySQL might not remain fully open source, so MariaDB was
forked from it to keep it free under the GNU GPL. Development of MariaDB is led by
some of the original developers of MySQL and it retains exceedingly close compati‐
bility with MySQL. Therefore, you may well encounter MariaDB on some servers in
place of MySQL—but not to worry, everything in this book works equally well on
both MySQL and MariaDB, which is based on the same code base as MySQL Server
5.5. To all intents and purposes you can swap one with the other and notice no
difference.

Anyway, as it turns out, many of the initial fears appear to have been allayed as
MySQL remains open source, with Oracle simply charging for support and for edi‐
tions that provide additional features such as geo-replication and automatic scaling.
However, unlike MariaDB, MySQL is no longer community driven, so knowing that
MariaDB will always be there if ever needed will keep many developers sleeping at
night, and probably ensures that MySQL itself will remain open source.

Using PHP
With PHP, it’s a simple matter to embed dynamic activity in web pages. When you
give pages the .php extension, they have instant access to the scripting language. From
a developer’s point of view, all you have to do is write code such as the following:

<?php
 echo " Today is " . date("l") . ". ";
?>

6 | Chapter 1: Introduction to Dynamic Web Content

Here's the latest news.

The opening <?php tells the web server to allow the PHP program to interpret all the
following code up to the ?> tag. Outside of this construct, everything is sent to the
client as direct HTML. So, the text Here's the latest news. is simply output to the
browser; within the PHP tags, the built-in date function displays the current day of
the week according to the server’s system time.

The final output of the two parts looks like this:

Today is Wednesday. Here's the latest news.

PHP is a flexible language, and some people prefer to place the PHP construct
directly next to PHP code, like this:

Today is <?php echo date("l"); ?>. Here's the latest news.

There are even more ways of formatting and outputting information, which I’ll
explain in the chapters on PHP. The point is that with PHP, web developers have a
scripting language that, although not as fast as compiling your code in C or a similar
language, is incredibly speedy and also integrates seamlessly with HTML markup.

If you intend to enter the PHP examples in this book into a pro‐
gram editor to work along with me, you must remember to add <?
php in front and ?> after them to ensure that the PHP interpreter
processes them. To facilitate this, you may wish to prepare a file
called example.php with those tags in place.

Using PHP, you have unlimited control over your web server. Whether you need to
modify HTML on the fly, process a credit card, add user details to a database, or fetch
information from a third-party website, you can do it all from within the same PHP
files in which the HTML itself resides.

Using MySQL
Of course, there’s not a lot of point to being able to change HTML output dynami‐
cally unless you also have a means to track the information users provide to your
website as they use it. In the early days of the web, many sites used “flat” text files to
store data such as usernames and passwords. But this approach could cause problems
if the file wasn’t correctly locked against corruption from multiple simultaneous
accesses. Also, a flat file can get only so big before it becomes unwieldy to manage—
not to mention the difficulty of trying to merge files and perform complex searches in
any kind of reasonable time.

That’s where relational databases with structured querying become essential. And
MySQL, being free to use and installed on vast numbers of internet web servers, rises

The Benefits of PHP, MySQL, JavaScript, CSS, and HTML5 | 7

superbly to the occasion. It is a robust and exceptionally fast database management
system that uses English-like commands.

The highest level of MySQL structure is a database, within which you can have one or
more tables that contain your data. For example, let’s suppose you are working on a
table called users, within which you have created columns for surname, firstname,
and email, and you now wish to add another user. One command that you might use
to do this is as follows:

INSERT INTO users VALUES('Smith', 'John', 'jsmith@mysite.com');

You will previously have issued other commands to create the database and table and
to set up all the correct fields, but the SQL INSERT command here shows how simple
it can be to add new data to a database. SQL is a language designed in the early 1970s
that is reminiscent of one of the oldest programming languages, COBOL. It is well
suited, however, to database queries, which is why it is still in use after all this time.

It’s equally easy to look up data. Let’s assume that you have an email address for a user
and need to look up that person’s name. To do this, you could issue a MySQL query
such as the following:

SELECT surname,firstname FROM users WHERE email='jsmith@mysite.com';

MySQL will then return Smith, John and any other pairs of names that may be asso‐
ciated with that email address in the database.

As you’d expect, there’s quite a bit more that you can do with MySQL than just simple
INSERT and SELECT commands. For example, you can combine related data sets to
bring related pieces of information together, ask for results in a variety of orders,
make partial matches when you know only part of the string that you are searching
for, return only the nth result, and a lot more.

Using PHP, you can make all these calls directly to MySQL without having to directly
access the MySQL command-line interface yourself. This means you can save the
results in arrays for processing and perform multiple lookups, each dependent on the
results returned from earlier ones, to drill down to the item of data you need.

For even more power, as you’ll see later, there are additional functions built right into
MySQL that you can call up to efficiently run common operations within MySQL,
rather than creating them out of multiple PHP calls to MySQL.

Using JavaScript
The oldest of the three core technologies discussed in this book, JavaScript, was cre‐
ated to enable scripting access to all the elements of an HTML document. In other
words, it provides a means for dynamic user interaction such as checking email
address validity in input forms and displaying prompts such as “Did you really mean

8 | Chapter 1: Introduction to Dynamic Web Content

that?” (although it cannot be relied upon for security, which should always be per‐
formed on the web server).

Combined with CSS (see the following section), JavaScript is the power behind
dynamic web pages that change in front of your eyes rather than when a new page is
returned by the server.

However, JavaScript can also be tricky to use, due to some major differences in the
ways different browser designers have chosen to implement it. This mainly came
about when some manufacturers tried to put additional functionality into their
browsers at the expense of compatibility with their rivals.

Thankfully, the developers have mostly now come to their senses and have realized
the need for full compatibility with one another, so it is less necessary these days to
have to optimize your code for different browsers. However, there remain millions of
users using legacy browsers, and this will likely be the case for a good many years to
come. Luckily, there are solutions for the incompatibility problems, and later in this
book we’ll look at libraries and techniques that enable you to safely ignore these dif‐
ferences.

For now, let’s take a look at how to use basic JavaScript, accepted by all browsers:

<script type="text/javascript">
 document.write("Today is " + Date());
</script>

This code snippet tells the web browser to interpret everything within the <script>
tags as JavaScript, which the browser does by writing the text Today is to the current
document, along with the date, using the JavaScript function Date. The result will
look something like this:

Today is Sun Jan 01 2017 01:23:45

Unless you need to specify an exact version of JavaScript, you can
normally omit the type="text/javascript" and just use <script>
to start the interpretation of the JavaScript.

As previously mentioned, JavaScript was originally developed to offer dynamic con‐
trol over the various elements within an HTML document, and that is still its main
use. But more and more, JavaScript is being used for asynchronous communication,
the process of accessing the web server in the background.

Asynchronous communication is what allows web pages to begin to resemble stand‐
alone programs, because they don’t have to be reloaded in their entirety to display
new content. Instead, an asynchronous call can pull in and update a single element on
a web page, such as changing your photograph on a social networking site or replac‐

The Benefits of PHP, MySQL, JavaScript, CSS, and HTML5 | 9

ing a button that you click with the answer to a question. This subject is fully covered
in Chapter 17.

Then, in Chapter 21, we take a good look at the jQuery framework, which you can
use to save reinventing the wheel when you need fast, cross-browser code to manipu‐
late your web pages. Of course, there are other frameworks available too, but jQuery
is by far the most popular. Due to continuous maintenance, it is extremely reliable,
and it’s a major tool in the utility kit of many seasoned web developers.

Using CSS
CSS is the crucial companion to HTML, ensuring that the HTML text and embedded
images are laid out consistently and in a manner appropriate for the user’s screen.
With the emergence of the CSS3 standard in recent years, CSS now offers a level of
dynamic interactivity previously supported only by JavaScript. For example, not only
can you style any HTML element to change its dimensions, colors, borders, spacing,
and so on, but now you can also add animated transitions and transformations to
your web pages, using only a few lines of CSS.

Using CSS can be as simple as inserting a few rules between <style> and </style>
tags in the head of a web page, like this:

<style>
 p {
 text-align:justify;
 font-family:Helvetica;
 }
</style>

These rules change the default text alignment of the <p> tag so that paragraphs con‐
tained in it are fully justified and use the Helvetica font.

As you’ll learn in Chapter 18, there are many different ways you can lay out CSS rules,
and you can also include them directly within tags or save a set of rules to an external
file to be loaded in separately. This flexibility not only lets you style your HTML pre‐
cisely, but can also (for example) provide built-in hover functionality to animate
objects as the mouse passes over them. You will also learn how to access all of an ele‐
ment’s CSS properties from JavaScript as well as HTML.

And Then There’s HTML5
As useful as all these additions to the web standards became, they were not enough
for ever more ambitious developers. For example, there was still no simple way to
manipulate graphics in a web browser without resorting to plug-ins such as Flash.
And the same went for inserting audio and video into web pages. Plus, several annoy‐
ing inconsistencies had crept into HTML during its evolution.

10 | Chapter 1: Introduction to Dynamic Web Content

So, to clear all this up and take the internet beyond Web 2.0 and into its next itera‐
tion, a new standard for HTML was created to address all these shortcomings:
HTML5. Its development began as long ago as 2004, when the first draft was drawn
up by the Mozilla Foundation and Opera Software (developers of two popular web
browsers), but it wasn’t until the start of 2013 that the final draft was submitted to the
World Wide Web Consortium (W3C), the international governing body for web
standards.

It has taken a few years for HTML5 to develop, but now we are at a very solid and
stable version 5.1 (since 2016). It’s a never-ending cycle of development, though, and
more functionality is sure to be built into it over time. Some of the best features in
HTML5 for handling and displaying media include the <audio>, <video>, and
<canvas> elements, which add sound, video, and advanced graphics. Everything you
need to know about these and all other aspects of HTML5 is covered in detail starting
in Chapter 23.

One of the little things I like about the HTML5 specification is that
XHTML syntax is no longer required for self-closing elements. In
the past, you could display a line break using the
 element.
Then, to ensure future compatibility with XHTML (the planned
replacement for HTML that never happened), this was changed to

, in which a closing / character was added (since all ele‐
ments were expected to include a closing tag featuring this charac‐
ter). But now things have gone full circle, and you can use either
version of these types of elements. So, for the sake of brevity and
fewer keystrokes, in this book I have reverted to the former style of

, <hr>, and so on.

The Apache Web Server
In addition to PHP, MySQL, JavaScript, CSS, and HTML5, there’s a sixth hero in the
dynamic web: the web server. In the case of this book, that means the Apache web
server. We’ve discussed a little of what a web server does during the HTTP server/
client exchange, but it does much more behind the scenes.

For example, Apache doesn’t serve up just HTML files—it handles a wide range of
files, from images and Flash files to MP3 audio files, RSS (Really Simple Syndication)
feeds, and so on. And these objects don’t have to be static files such as GIF images.
They can all be generated by programs such as PHP scripts. That’s right: PHP can
even create images and other files for you, either on the fly or in advance to serve up
later.

The Apache Web Server | 11

To do this, you normally have modules either precompiled into Apache or PHP or
called up at runtime. One such module is the GD (Graphics Draw) library, which
PHP uses to create and handle graphics.

Apache also supports a huge range of modules of its own. In addition to the PHP
module, the most important for your purposes as a web programmer are the modules
that handle security. Other examples are the Rewrite module, which enables the web
server to handle a range of URL types and rewrite them to its own internal require‐
ments, and the Proxy module, which you can use to serve up often-requested pages
from a cache to ease the load on the server.

Later in the book, you’ll see how to use some of these modules to enhance the fea‐
tures provided by the three core technologies.

Handling Mobile Devices
We are now firmly in a world of interconnected mobile computing devices, and the
concept of developing websites solely for desktop computers has become rather
dated. Instead, developers now aim to develop responsive websites and web apps that
tailor themselves to the environment in which they find themselves running.

So, new in this edition, I show how you can easily create these types of products using
just the technologies detailed in this book, along with the powerful jQuery Mobile
library of responsive JavaScript functions. With it, you’ll be able to focus on the con‐
tent and usability of your websites and web apps, knowing that how they display will
be automatically optimized for a range of different computing devices—one less thing
for you to worry about.

To demonstrate how to make full use of its power, the final chapter of this book cre‐
ates a simple social networking example website, using jQuery Mobile to make it fully
responsive and ensure it displays well on anything from a small mobile phone screen
to a tablet or a desktop computer.

About Open Source
The technologies in this book are open source: anyone is allowed to read and change
the code. Whether or not this status is the reason these technologies are so popular
has often been debated, but PHP, MySQL, and Apache are the three most commonly
used tools in their categories. What can be said definitively, though, is that their being
open source means that they have been developed in the community by teams of pro‐
grammers writing the features they themselves want and need, with the original code
available for all to see and change. Bugs can be found quickly and security breaches
can be prevented before they happen.

12 | Chapter 1: Introduction to Dynamic Web Content

There’s another benefit: all these programs are free to use. There’s no worrying about
having to purchase additional licenses if you have to scale up your website and add
more servers, and you don’t need to check the budget before deciding whether to
upgrade to the latest versions of these products.

Bringing It All Together
The real beauty of PHP, MySQL, JavaScript (sometimes aided by jQuery or other
frameworks), CSS, and HTML5 is the wonderful way in which they all work together
to produce dynamic web content: PHP handles all the main work on the web server,
MySQL manages all the data, and the combination of CSS and JavaScript looks after
web page presentation. JavaScript can also talk with your PHP code on the web server
whenever it needs to update something (either on the server or on the web page).
And with the powerful new features in HTML5, such as the canvas, audio and video,
and geolocation, you can make your web pages highly dynamic, interactive, and
multimedia-packed.

Without using program code, let’s summarize the contents of this chapter by looking
at the process of combining some of these technologies into an everyday asynchro‐
nous communication feature that many websites use: checking whether a desired
username already exists on the site when a user is signing up for a new account. A
good example of this can be seen with Gmail (see Figure 1-3).

Figure 1-3. Gmail uses asynchronous communication to check the availability of user‐
names

The steps involved in this asynchronous process will be similar to the following:

Bringing It All Together | 13

1. The server outputs the HTML to create the web form, which asks for the neces‐
sary details, such as username, first name, last name, and email address.

2. At the same time, the server attaches some JavaScript to the HTML to monitor
the username input box and check for two things: whether some text has been
typed into it, and whether the input has been deselected because the user has
clicked on another input box.

3. Once the text has been entered and the field deselected, in the background the
JavaScript code passes the username that was entered back to a PHP script on the
web server and awaits a response.

4. The web server looks up the username and replies back to the JavaScript regard‐
ing whether that name has already been taken.

5. The JavaScript then places an indication next to the username input box to show
whether the name is available to the user—perhaps a green checkmark or a red
cross graphic, along with some text.

6. If the username is not available and the user still submits the form, the JavaScript
interrupts the submission and reemphasizes (perhaps with a larger graphic
and/or an alert box) that the user needs to choose another username.

7. Optionally, an improved version of this process could even look at the username
requested by the user and suggest an alternative that is currently available.

All of this takes place quietly in the background and makes for a comfortable and
seamless user experience. Without asynchronous communication, the entire form
would have to be submitted to the server, which would then send back HTML, high‐
lighting any mistakes. It would be a workable solution, but nowhere near as tidy or
pleasurable as on-the-fly form field processing.

Asynchronous communication can be used for a lot more than simple input verifica‐
tion and processing, though; we’ll explore many additional things that you can do
with it later in this book.

In this chapter, you have read a good introduction to the core technologies of PHP,
MySQL, JavaScript, CSS, and HTML5 (as well as Apache), and have learned how they
work together. In Chapter 2, we’ll look at how you can install your own web develop‐
ment server on which to practice everything that you will be learning.

Questions
1. What four components (at the minimum) are needed to create a fully dynamic

web page?
2. What does HTML stand for?

14 | Chapter 1: Introduction to Dynamic Web Content

3. Why does the name MySQL contain the letters SQL?
4. PHP and JavaScript are both programming languages that generate dynamic

results for web pages. What is their main difference, and why would you use both
of them?

5. What does CSS stand for?
6. List three major new elements introduced in HTML5.
7. If you encounter a bug (which is rare) in one of the open source tools, how do

you think you could get it fixed?
8. Why is a framework such as jQuery Mobile so important for developing modern

websites and web apps?

See “Chapter 1 Answers” on page 713 in Appendix A for the answers to these ques‐
tions.

Questions | 15

CHAPTER 2

Setting Up a Development Server

If you wish to develop internet applications but don’t have your own development
server, you will have to upload every modification you make to a server somewhere
else on the web before you can test it.

Even on a fast broadband connection, this can still represent a significant slowdown
in development time. On a local computer, however, testing can be as easy as saving
an update (usually just a matter of clicking once on an icon) and then hitting the
Refresh button in your browser.

Another advantage of a development server is that you don’t have to worry about
embarrassing errors or security problems while you’re writing and testing, whereas
you need to be aware of what people may see or do with your application when it’s on
a public website. It’s best to iron everything out while you’re still on a home or small
office system, presumably protected by firewalls and other safeguards.

Once you have your own development server, you’ll wonder how you ever managed
without one, and it’s easy to set one up. Just follow the steps in the following sections,
using the appropriate instructions for a PC, a Mac, or a Linux system.

In this chapter, we cover just the server side of the web experience, as described in
Chapter 1. But to test the results of your work—particularly when we start using Java‐
Script, CSS, and HTML5 later in this book—you should ideally have an instance of
every major web browser running on some system convenient to you. Whenever pos‐
sible, the list of browsers should include at least Microsoft Edge, Mozilla Firefox,
Opera, Safari, and Google Chrome. If you plan to ensure that your sites look good on
mobile devices too, you should try to arrange access to a wide range of iOS and
Android devices.

17

What Is a WAMP, MAMP, or LAMP?
WAMP, MAMP, and LAMP are abbreviations for “Windows, Apache, MySQL, and
PHP,” “Mac, Apache, MySQL, and PHP,” and “Linux, Apache, MySQL, and PHP.”
These abbreviations each describe a fully functioning setup used for developing
dynamic internet web pages.

WAMPs, MAMPs, and LAMPs come in the form of packages that bind the bundled
programs together so that you don’t have to install and set them up separately. This
means you can simply download and install a single program and follow a few easy
prompts to get your web development server up and running fast, with minimal has‐
sle.

During installation, several default settings are created for you. The security configu‐
rations of such an installation will not be as tight as on a production web server,
because it is optimized for local use. For these reasons, you should never install such a
setup as a production server.

However, for developing and testing websites and applications, one of these installa‐
tions should be entirely sufficient.

If you choose not to go the WAMP/MAMP/LAMP route for
building your own development system, you should know that
downloading and integrating the various parts yourself can be very
time-consuming and may require a lot of research in order to con‐
figure everything fully. But if you already have all the components
installed and integrated with one another, they should work with
the examples in this book.

Installing AMPPS on Windows
There are several available WAMP servers, each offering slightly different configura‐
tions. Of the various open source and free options, one of the best is AMPPS. You can
download it by clicking the button on the website’s home page, shown in Figure 2-1.

I recommend that you always download the latest stable release (as I write this, it’s
3.8, which is about 128 MB in size). The various Windows, macOS, and Linux instal‐
lers are listed on the download page.

18 | Chapter 2: Setting Up a Development Server

http://ampps.com

Figure 2-1. The AMPPS website

During the lifetime of this edition, some of the screens and options
shown in the following walk-through may change. If so, just use
your common sense to proceed in as similar a manner as possible
to the sequence of actions described.

Once you’ve downloaded the installer, run it to bring up the window shown in
Figure 2-2. Before arriving at that window, though, if you use an antivirus program or
have User Account Control activated on Windows, you may first be shown one or
more advisory notices, and will have to click Yes and/or OK to continue with the
installation.

Click Next, after which you must accept the agreement. Click Next once again, and
then once more to move past the information screen. You will now need to confirm
the installation location. This will probably be suggested as something like the follow‐
ing, depending on the letter of your main hard drive, but you can change this if you
wish:

C:\Program Files (x86)\Ampps

Installing AMPPS on Windows | 19

Figure 2-2. The opening window of the installer

Once you have decided where to install AMPPS, click Next, choose a Start menu
folder name, and click Next again. You can choose which icons you wish to install, as
shown in Figure 2-3. On the screen that follows, click the Install button to start the
process.

Figure 2-3. Choose which icons to install

Installation will take a few minutes, after which you should see the completion screen
in Figure 2-4, and you can click Finish.

20 | Chapter 2: Setting Up a Development Server

Figure 2-4. AMPPS is now installed

The final thing you must do is install C++ Redistributable Visual Studio, if you
haven’t already. Visual Studio is an environment in which you’ll be doing develop‐
ment work. A window will pop up to prompt you, as shown in Figure 2-5. Click Yes
to start the installation or No if you are certain you already have it.

Figure 2-5. Install C++ Redistributable Visual Studio if you don’t already have it

If you choose to go ahead and install, you will have to agree to the terms and condi‐
tions in the pop-up window that appears, and then click Install. Installation of this
should be fairly fast. Click Close to finish.

Once AMPPS is installed, the control window shown in Figure 2-6 should appear at
the bottom right of your desktop. You can also call up this window using the AMPPS
application shortcut in the Start menu or on the desktop, if you allowed these icons to
be created.

Installing AMPPS on Windows | 21

Figure 2-6. The AMPPS control window

Before proceeding, I recommend you acquaint yourself with the AMPPS documenta‐
tion. Once you have digested this, should you still have an issue, there’s a Support link
at the bottom of the control window that will take you to the AMPPS website, where
you can open up a trouble ticket.

You may notice that the default version of PHP in AMPPS is 5.6. In
other sections of this book I detail some of the more important
changes in PHP 7. If you wish to try them out for yourself, click the
Options button (nine white boxes in a square) within the AMPPS
control window, and then select Change PHP Version, whereupon
a new menu will appear from which you can choose a version
between 5.6 and 7.1.

Testing the Installation
The first thing to do at this point is verify that everything is working correctly. To do
this, enter either of the following two URLs into the address bar of your browser:

localhost
127.0.0.1

22 | Chapter 2: Setting Up a Development Server

http://ampps.com/wiki
http://ampps.com/wiki

This will call up an introductory screen, where you will have the opportunity to
secure AMPPS by giving it a password (see Figure 2-7). I recommend you don’t check
the box and just click the Submit button to proceed without setting a password.

Figure 2-7. The initial security setup screen

Once this has been done you will be taken to the main control page at localhost/
ampps/ (from now on I will assume you are accessing AMPPS through localhost
rather than 127.0.0.1). From here you can configure and control all aspects of the
AMPPS stack, so make a note of this for future reference, or perhaps set a bookmark
in your browser.

Next, type the following to view the document root (described in the following sec‐
tion) of your new Apache web server:

localhost

This time, rather than seeing the initial screen about setting up security, you should
see something similar to Figure 2-8.

Installing AMPPS on Windows | 23

Figure 2-8. Viewing the document root

Accessing the Document Root (Windows)
The document root is the directory that contains the main web documents for a
domain. This directory is the one that the server uses when a basic URL without a
path is typed into a browser, such as http://yahoo.com or, for your local server, http://
localhost.

By default AMPPS will use the following location as the document root:

C:\Program Files (x86)\Ampps\www

To ensure that you have everything correctly configured, you should now create the
obligatory “Hello World” file. So, create a small HTML file along the following lines
using Windows Notepad or any other program or text editor, but not a rich word
processor such as Microsoft Word (unless you save as plain text):

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>A quick test</title>
 </head>
 <body>
 Hello World!
 </body>
</html>

Once you have typed this, save the file into the document root directory, using the
filename test.html. If you are using Notepad, make sure that the value in the “Save as
type” box is changed from “Text Documents (*.txt)” to “All Files (*.*)”.

24 | Chapter 2: Setting Up a Development Server

You can now call this page up in your browser by entering the following URL in its
address bar (see Figure 2-9):

localhost/test.html

Figure 2-9. Your first web page

Remember that serving a web page from the document root (or a
subfolder) is different from loading one into a web browser from
your computer’s filesystem. The former will ensure access to PHP,
MySQL, and all the features of a web server, while the latter will
simply load the file into the browser, which will do its best to dis‐
play it but will be unable to process any PHP or other server
instructions. So, you should generally run examples using the local‐
host preface from your browser’s address bar, unless you are certain
that the file doesn’t rely on web server functionality.

Alternative WAMPs
When software is updated, it sometimes works differently from how you expect, and
bugs can even be introduced. So, if you encounter difficulties that you cannot resolve
in AMPPS, you may prefer to choose one of the other solutions available on the web.

You will still be able to make use of all the examples in this book, but you’ll have to
follow the instructions supplied with each WAMP, which may not be as easy to follow
as the preceding guide.

Here’s a selection of some of the best, in my opinion:

• EasyPHP
• XAMPP
• WAMPServer
• Glossword WAMP

Installing AMPPS on Windows | 25

http://easyphp.org
http://apachefriends.org
http://wampserver.com/en
http://glossword.biz/glosswordwamp

Updates to AMPPS

Over the life of this edition of the book, it is very likely that the
developers of AMPPS will make improvements to the software, and
therefore the installation screens and method of use may evolve
over time, as may versions of Apache, PHP, or MySQL. So, please
don’t assume something is wrong if the screens and operation look
different. The AMPPS developers take every care to ensure it is
easy to use, so just follow any prompts given, and refer to the docu‐
mentation on the website.

Installing AMPPS on macOS
AMPPS is also available on macOS, and you can download it from the website, as
shown previously in Figure 2-1 (as I write, the current version is 3.8 and its size is
around 270 MB).

If your browser doesn’t open it automatically once it has downloaded, double-click
the .dmg file, and then drag the AMPPS folder over to your Applications folder (see
Figure 2-10).

Figure 2-10. Drag the AMPPS folder to Applications

Now open your Applications folder in the usual manner, and double-click the AMPPS
program. If your security settings prevent the file being opened, hold down the

26 | Chapter 2: Setting Up a Development Server

http://ampps.com
http://apachefriends.org

Control key and click the icon once. A new window will pop up asking if you are sure
you wish to open it. Click Open to do so. When the app starts you may have to enter
your macOS password to proceed.

Once AMPPS is up and running, a control window similar to the one shown in
Figure 2-6 will appear at the bottom left of your desktop.

You may notice that the default version of PHP in AMPPS is 5.6. In
other sections of this book I detail some of the more important
changes in PHP 7. If you wish to try them out for yourself, click the
Options button (nine white boxes in a square) within the AMPPS
control window, and then select Change PHP Version, whereupon
a new menu will appear in which you can choose a version between
5.6 and 7.1.

Accessing the Document Root (macOS)
By default, AMPPS will use the following location as the document root:

/Applications/Ampps/www

To ensure that you have everything correctly configured, you should now create the
obligatory “Hello World” file. So, create a small HTML file along the following lines
using the TextEdit program or any other program or text editor, but not a rich word
processor such as Microsoft Word (unless you save as plain text):

<html>
 <head>
 <title>A quick test</title>
 </head>
 <body>
 Hello World!
 </body>
</html>

Once you have typed this, save the file into the document root directory using the
filename test.html.

You can now call this page up in your browser by entering the following URL in its
address bar (to see a similar result to Figure 2-9):

localhost/test.html

Installing AMPPS on macOS | 27

Remember that serving a web page from the document root (or a
subfolder) is different from loading one into a web browser from
your computer’s filesystem. The former will ensure access to PHP,
MySQL, and all the features of a web server, while the latter will
simply load the file into the browser, which will do its best to dis‐
play it but will be unable to process any PHP or other server
instructions. So, you should generally run examples using the local‐
host preface from your browser’s address bar, unless you are certain
that the file doesn’t rely on web server functionality.

Installing a LAMP on Linux
This book is aimed mostly at PC and Mac users, but its contents will work equally
well on a Linux computer. However, there are dozens of popular flavors of Linux, and
each of them may require installing a LAMP in a slightly different way, so I can’t
cover them all in this book.

That said, many Linux versions come preinstalled with a web server and MySQL, and
the chances are that you may already be all set to go. To find out, try entering the
following into a browser and see whether you get a default document root web page:

localhost

If this works, you probably have the Apache server installed and may well have
MySQL up and running too; check with your system administrator to be sure.

If you don’t yet have a web server installed, however, there’s a version of AMPPS
available that you can download from the website.

Installation is similar to the sequence shown in the preceding section. If you need fur‐
ther assistance on using the software, please refer to the documentation.

Working Remotely
If you have access to a web server already configured with PHP and MySQL, you can
always use that for your web development. But unless you have a high-speed connec‐
tion, it is not always your best option. Developing locally allows you to test modifica‐
tions with little or no upload delay.

Accessing MySQL remotely may not be easy either. You should use the secure SSH
protocol to log into your server to manually create databases and set permissions
from the command line. Your web hosting company will advise you on how best to
do this and provide you with any password it has set for your MySQL access (as well
as, of course, for getting into the server in the first place). Unless you have no choice,
I recommend you do not use the insecure Telnet protocol to remotely log into any
server.

28 | Chapter 2: Setting Up a Development Server

http://apachefriends.org
http://ampps.com/wiki

Logging In
I recommend that, at minimum, Windows users should install a program such as
PuTTY, for Telnet and SSH access (remember that SSH is much more secure than
Telnet).

On a Mac, you already have SSH available. Just select the Applications folder, followed
by Utilities, and then launch Terminal. In the Terminal window, log in to a server
using SSH as follows:

ssh mylogin@server.com

where server.com is the name of the server you wish to log into and mylogin is the
username you will log in under. You will then be prompted for the correct password
for that username and, if you enter it correctly, you will be logged in.

Using FTP
To transfer files to and from your web server, you will need an FTP program. If you
go searching the web for a good one, you’ll find so many that it could take you quite a
while to come across one with all the right features for you.

My preferred FTP program is the open source FileZilla, for Windows, Linux, and
macOS 10.5 or newer (see Figure 2-11). Full instructions on how to use FileZilla are
available on the wiki.

Working Remotely | 29

http://putty.org
http://filezilla-project.org
http://wiki.filezilla-project.org

Figure 2-11. FileZilla is a full-featured FTP program

Of course, if you already have an FTP program, all the better—stick with what you
know.

Using a Program Editor
Although a plain-text editor works for editing HTML, PHP, and JavaScript, there
have been some tremendous improvements in dedicated program editors, which now
incorporate very handy features such as colored syntax highlighting. Today’s program
editors are smart and can show you where you have syntax errors before you even
run a program. Once you’ve used a modern editor, you’ll wonder how you ever man‐
aged without one.

There are a number of good programs available, but I have settled on Editra (see
Figure 2-12), because it’s free and available on macOS, Windows, and Linux/Unix,
and it suits the way I program. You can download a copy by visiting Editra’s website
and selecting the Download link at the top of the page, where you can also find a link
to the documentation. Everyone has different programming styles and preferences,
though, so if you don’t get on with it, there are plenty more program editors available
to choose from—or you may wish to go directly for an integrated development envi‐
ronment (IDE), as described in the following section.

30 | Chapter 2: Setting Up a Development Server

http://editra.org

Figure 2-12. Program editors (like Editra, pictured here) are superior to plain-text
editors

As you can see from Figure 2-12, Editra highlights the syntax appropriately, using
colors to help clarify what’s going on. What’s more, you can place the cursor next to
brackets or braces, and Editra will highlight the matching ones so that you can check
whether you have too many or too few. In fact, Editra does a lot more in addition,
which you will discover and enjoy as you use it.

Again, if you have a different preferred program editor, use that; it’s always a good
idea to use programs you’re already familiar with.

Using an IDE
As good as dedicated program editors can be for your programming productivity,
their utility pales into insignificance when compared to integrated development envi‐
ronments, which offer many additional features such as in-editor debugging and pro‐
gram testing, as well as function descriptions and much more.

Figure 2-13 shows the popular phpDesigner IDE with a PHP program loaded into the
main frame, and the righthand Code Explorer listing the various classes, functions,
and variables that it uses.

Using an IDE | 31

Figure 2-13. When you’re using an IDE such as phpDesigner, PHP development becomes
much quicker and easier

When developing with an IDE, you can set breakpoints and then run all (or portions)
of your code, which will stop at the breakpoints and provide you with information
about the program’s current state.

As an aid to learning programming, the examples in this book can be entered into an
IDE and run there and then, without the need to call up your web browser. There are
several IDEs available for different platforms, most of which are commercial, but
there are some free ones too. Table 2-1 lists some of the most popular PHP IDEs,
along with their download URLs.

Table 2-1. A selection of PHP IDEs

IDE Download URL Cost Win Mac Lin
Eclipse PDT http://eclipse.org/pdt/downloads/ Free ✓ ✓ ✓
Komodo IDE http://activestate.com/Products/komodo_ide $295 ✓ ✓ ✓
NetBeans http://www.netbeans.org Free ✓ ✓ ✓
phpDesigner http://mpsoftware.dk $39 ✓
PHPeclipse https://sourceforge.net/projects/phpeclipse/ Free ✓ ✓ ✓
PhpED http://nusphere.com $99 ✓ ✓
PHPEdit https://phpedit.en.softonic.com $117 ✓

32 | Chapter 2: Setting Up a Development Server

http://eclipse.org/pdt/downloads/
http://activestate.com/Products/komodo_ide
http://www.netbeans.org
http://mpsoftware.dk
https://sourceforge.net/projects/phpeclipse/
http://nusphere.com
https://phpedit.en.softonic.com

Choosing an IDE can be a very personal thing, so if you intend to use one, I advise
you to download a couple or more to try them out first; they all either have trial ver‐
sions or are free to use, so it won’t cost you anything.

You should take the time to install a program editor or IDE you are comfortable with
now; you’ll then be ready to try out the examples in the coming chapters.

Armed with these tools, you are now ready to move on to Chapter 3, where we’ll start
exploring PHP in further depth and find out how to get HTML and PHP to work
together, as well as how the PHP language itself is structured. But before moving on, I
suggest you test your new knowledge with the following questions.

Questions
1. What is the difference between a WAMP, a MAMP, and a LAMP?
2. What do the IP address 127.0.0.1 and the URL http://localhost have in common?
3. What is the purpose of an FTP program?
4. Name the main disadvantage of working on a remote web server.
5. Why is it better to use a program editor instead of a plain-text editor?

See “Chapter 2 Answers” on page 714 in Appendix A for the answers to these
questions.

Questions | 33

CHAPTER 3

Introduction to PHP

In Chapter 1, I explained that PHP is the language that you use to make the server
generate dynamic output—output that is potentially different each time a browser
requests a page. In this chapter, you’ll start learning this simple but powerful lan‐
guage; it will be the topic of the following chapters up through Chapter 7.

I encourage you to develop your PHP code using one of the IDEs listed in Chapter 2.
It will help you catch typos and speed up learning tremendously in comparison to a
less feature-rich editor.

Many of these development environments will let you run the PHP code and see the
output discussed in this chapter. I’ll also show you how to embed the PHP in an
HTML file so that you can see what the output looks like in a web page (the way your
users will ultimately see it). But that step, as thrilling as it may be at first, isn’t really
important at this stage.

In production, your web pages will be a combination of PHP, HTML, JavaScript, and
some MySQL statements laid out using CSS. Furthermore, each page can lead to
other pages to provide users with ways to click through links and fill out forms. We
can avoid all that complexity while learning each language, though. Focus for now on
just writing PHP code and making sure that you get the output you expect—or at
least that you understand the output you actually get!

Incorporating PHP Within HTML
By default, PHP documents end with the extension .php. When a web server encoun‐
ters this extension in a requested file, it automatically passes it to the PHP processor.
Of course, web servers are highly configurable, and some web developers choose to
force files ending with .htm or .html to also get parsed by the PHP processor, usually
because they want to hide their use of PHP.

35

Your PHP program is responsible for passing back a clean file suitable for display in a
web browser. At its very simplest, a PHP document will output only HTML. To prove
this, you can take any normal HTML document and save it as a PHP document (for
example, saving index.html as index.php), and it will display identically to the original.

To trigger the PHP commands, you need to learn a new tag. Here is the first part:

<?php

The first thing you may notice is that the tag has not been closed. This is because
entire sections of PHP can be placed inside this tag, and they finish only when the
closing part is encountered, which looks like this:

?>

A small PHP “Hello World” program might look like Example 3-1.

Example 3-1. Invoking PHP

<?php
 echo "Hello world";
?>

Use of this tag can be quite flexible. Some programmers open the tag at the start of a
document and close it right at the end, outputting any HTML directly from PHP
commands. Others, however, choose to insert only the smallest possible fragments of
PHP within these tags wherever dynamic scripting is required, leaving the rest of the
document in standard HTML.

The latter type of programmer generally argues that their style of coding results in
faster code, while the former says that the speed increase is so minimal that it doesn’t
justify the additional complexity of dropping in and out of PHP many times in a sin‐
gle document.

As you learn more, you will surely discover your preferred style of PHP development,
but for the sake of making the examples in this book easier to follow, I have adopted
the approach of keeping the number of transfers between PHP and HTML to a mini‐
mum—generally only once or twice in a document.

By the way, there is a slight variation to the PHP syntax. If you browse the internet for
PHP examples, you may also encounter code where the opening and closing syntax
looks like this:

<?
 echo "Hello world";
?>

Although it’s not as obvious that the PHP parser is being called, this is a valid, alter‐
native syntax that also usually works. But I discourage its use, as it is incompatible

36 | Chapter 3: Introduction to PHP

with XML and is now deprecated (meaning that it is no longer recommended and
support could be removed in future versions).

If you have only PHP code in a file, you may omit the closing ?>.
This can be a good practice, as it will ensure that you have no
excess whitespace leaking from your PHP files (especially impor‐
tant when you’re writing object-oriented code).

This Book’s Examples
To save you the time it would take to type them all in, all the examples from this book
have been archived onto the companion website. You can download the archive to
your computer by clicking the 5th Edition Examples link in the heading section (see
Figure 3-1).

Figure 3-1. Chapter examples are available for download on the book’s website

This Book’s Examples | 37

http://lpmj.net
http://lpmj.net/

In addition to listing all the examples by chapter and example number (such as
example3-1.php), the provided archive also contains an additional directory called
named_examples in which you’ll find all the examples I suggest you save using a spe‐
cific filename (such as the upcoming Example 3-4, which should be saved as
test1.php).

The Structure of PHP
We’re going to cover quite a lot of ground in this section. It’s not too difficult, but I
recommend that you work your way through it carefully, as it sets the foundation for
everything else in this book. As always, there are some useful questions at the end of
the chapter that you can use to test how much you’ve learned.

Using Comments
There are two ways in which you can add comments to your PHP code. The first
turns a single line into a comment by preceding it with a pair of forward slashes:

// This is a comment

This version of the comment feature is a great way to temporarily remove a line of
code from a program that is giving you errors. For example, you could use such a
comment to hide a debugging line of code until you need it, like this:

// echo "X equals $x";

You can also use this type of comment directly after a line of code to describe its
action, like this:

$x += 10; // Increment $x by 10

When you need multiple-line comments, there’s a second type of comment, which
looks like Example 3-2.

Example 3-2. A multiline comment

<?php
/* This is a section
 of multiline comments
 which will not be
 interpreted */
?>

You can use the /* and */ pairs of characters to open and close comments almost
anywhere you like inside your code. Most, if not all, programmers use this construct
to temporarily comment out entire sections of code that do not work or that, for one
reason or another, they do not wish to be interpreted.

38 | Chapter 3: Introduction to PHP

A common error is to use /* and */ to comment out a large section
of code that already contains a commented-out section that uses
those characters. You can’t nest comments this way; the PHP inter‐
preter won’t know where a comment ends and will display an error
message. However, if you use a program editor or IDE with syntax
highlighting, this type of error is easier to spot.

Basic Syntax
PHP is quite a simple language with roots in C and Perl, yet it looks more like Java. It
is also very flexible, but there are a few rules that you need to learn about its syntax
and structure.

Semicolons
You may have noticed in the previous examples that the PHP commands ended with
a semicolon, like this:

$x += 10;

Probably the most common cause of errors you will encounter with PHP is forgetting
this semicolon. This causes PHP to treat multiple statements like one statement,
which it is unable to understand, prompting it to produce a Parse error message.

The $ symbol

The $ symbol has come to be used in many different ways by different programming
languages. For example, in the BASIC language, it was used to terminate variable
names to denote them as strings.

In PHP, however, you must place a $ in front of all variables. This is required to make
the PHP parser faster, as it instantly knows whenever it comes across a variable.
Whether your variables are numbers, strings, or arrays, they should all look some‐
thing like those in Example 3-3.

Example 3-3. Three different types of variable assignment

<?php
 $mycounter = 1;
 $mystring = "Hello";
 $myarray = array("One", "Two", "Three");
?>

And really that’s pretty much all the syntax that you have to remember. Unlike lan‐
guages such as Python, which are very strict about how you indent and lay out your
code, PHP leaves you completely free to use (or not use) all the indenting and spacing
you like. In fact, sensible use of whitespace is generally encouraged (along with com‐

The Structure of PHP | 39

prehensive commenting) to help you understand your code when you come back to
it. It also helps other programmers when they have to maintain your code.

Variables
There’s a simple metaphor that will help you understand what PHP variables are all
about. Just think of them as little (or big) matchboxes! That’s right—matchboxes that
you’ve painted over and written names on.

String variables
Imagine you have a matchbox on which you have written the word username. You
then write Fred Smith on a piece of paper and place it into the box (see Figure 3-2).
Well, that’s the same process as assigning a string value to a variable, like this:

$username = "Fred Smith";

Figure 3-2. You can think of variables as matchboxes containing items

The quotation marks indicate that “Fred Smith” is a string of characters. You must
enclose each string in either quotation marks or apostrophes (single quotes),
although there is a subtle difference between the two types of quote, which is
explained later. When you want to see what’s in the box, you open it, take the piece of
paper out, and read it. In PHP, doing so looks like this (which displays the contents of
the variable to screen):

echo $username;

Or you can assign it to another variable (photocopy the paper and place the copy in
another matchbox), like this:

$current_user = $username;

40 | Chapter 3: Introduction to PHP

If you are keen to start trying out PHP for yourself, you could enter the examples in
this chapter into an IDE (as recommended at the end of Chapter 2) to see instant
results, or you could enter the code in Example 3-4 into a program editor and save it
to your server’s document root directory (also discussed in Chapter 2) as test1.php.

Example 3-4. Your first PHP program

<?php // test1.php
 $username = "Fred Smith";
 echo $username;
 echo "
";
 $current_user = $username;
 echo $current_user;
?>

Now you can call it up by entering the following into your browser’s address bar:

http://localhost/test1.php

In the unlikely event that during the installation of your web server
(as detailed in Chapter 2) you changed the port assigned to the
server to anything other than 80, then you must place that port
number within the URL in this and all other examples in this book.
So, for example, if you changed the port to 8080, the preceding
URL would become this:

http://localhost:8080/test1.php

I won’t mention this again, so just remember to use the port num‐
ber (if required) when trying examples or writing your own code.

The result of running this code should be two occurrences of the name Fred Smith,
the first of which is the result of the echo $username command and the second of the
echo $current_user command.

Numeric variables
Variables don’t have to contain just strings—they can contain numbers too. If we
return to the matchbox analogy, to store the number 17 in the variable $count, the
equivalent would be placing, say, 17 beads in a matchbox on which you have written
the word count:

$count = 17;

You could also use a floating-point number (containing a decimal point). The syntax
is the same:

$count = 17.5;

The Structure of PHP | 41

To see the contents of the matchbox, you would simply open it and count the beads.
In PHP, you would assign the value of $count to another variable or perhaps just echo
it to the web browser.

Arrays
So what are arrays? Well, you can think of them as several matchboxes glued together.
For example, let’s say we want to store the player names for a five-person soccer team
in an array called $team. To do this, we could glue five matchboxes side by side and
write down the names of all the players on separate pieces of paper, placing one in
each matchbox.

Across the top of the whole matchbox assembly we would write the word team (see
Figure 3-3). The equivalent of this in PHP would be the following:

$team = array('Bill', 'Mary', 'Mike', 'Chris', 'Anne');

Figure 3-3. An array is like several matchboxes glued together

This syntax is more complicated than the other examples you’ve seen so far. The
array-building code consists of the following construct:

array();

with five strings inside. Each string is enclosed in apostrophes, and strings must be
separated with commas.

If we then wanted to know who player 4 is, we could use this command:

echo $team[3]; // Displays the name Chris

42 | Chapter 3: Introduction to PHP

The reason the previous statement has the number 3, not 4, is because the first ele‐
ment of a PHP array is actually the zeroth element, so the player numbers will there‐
fore be 0 through 4.

Two-dimensional arrays
There’s a lot more you can do with arrays. For example, instead of being single-
dimensional lines of matchboxes, they can be two-dimensional matrixes or can even
have more dimensions.

As an example of a two-dimensional array, let’s say we want to keep track of a game of
tic-tac-toe, which requires a data structure of nine cells arranged in a 3 × 3 square. To
represent this with matchboxes, imagine nine of them glued to each other in a matrix
of three rows by three columns (see Figure 3-4).

Figure 3-4. A multidimensional array simulated with matchboxes

You can now place a piece of paper with either an x or an o on it in the correct match‐
box for each move played. To do this in PHP code, you have to set up an array con‐
taining three more arrays, as in Example 3-5, in which the array is set up with a game
already in progress.

Example 3-5. Defining a two-dimensional array

<?php
 $oxo = array(array('x', ' ', 'o'),
 array('o', 'o', 'x'),
 array('x', 'o', ' '));
?>

The Structure of PHP | 43

Once again, we’ve moved up a step in complexity, but it’s easy to understand if you
grasp the basic array syntax. There are three array() constructs nested inside the
outer array() construct. We’ve filled each row with an array consisting of just one
character: an x, an o, or a blank space. (We use a blank space so that all the cells will
be the same width when they are displayed.)

To then return the third element in the second row of this array, you would use the
following PHP command, which will display an x:

echo $oxo[1][2];

Remember that array indexes (pointers at elements within an
array) start from zero, not one, so the [1] in the previous com‐
mand refers to the second of the three arrays, and the [2] refer‐
ences the third position within that array. This command will
return the contents of the matchbox three along and two down.

As mentioned, we can support arrays with even more dimensions by simply creating
more arrays within arrays. However, we will not be covering arrays of more than two
dimensions in this book.

And don’t worry if you’re still having difficulty coming to grips with using arrays, as
the subject is explained in detail in Chapter 6.

Variable-naming rules
When creating PHP variables, you must follow these four rules:

• Variable names, after the dollar sign, must start with a letter of the alphabet or
the _ (underscore) character.

• Variable names can contain only the characters a-z, A-Z, 0-9, and _ (underscore).
• Variable names may not contain spaces. If a variable name must comprise more

than one word, a good idea is to separate the words with the _ (underscore) char‐
acter (e.g., $user_name).

• Variable names are case-sensitive. The variable $High_Score is not the same as
the variable $high_score.

To allow extended ASCII characters that include accents, PHP also
supports the bytes from 127 through 255 in variable names. But
unless your code will be maintained only by programmers who are
used to those characters, it’s probably best to avoid them, because
programmers using English keyboards will have difficulty access‐
ing them.

44 | Chapter 3: Introduction to PHP

Operators
Operators let you specify mathematical operations to perform, such as addition, sub‐
traction, multiplication, and division. But several other types of operators exist too,
such as the string, comparison, and logical operators. Math in PHP looks a lot like
plain arithmetic—for instance, the following statement outputs 8:

echo 6 + 2;

Before moving on to learn what PHP can do for you, take a moment to learn about
the various operators it provides.

Arithmetic operators
Arithmetic operators do what you would expect—they are used to perform mathe‐
matics. You can use them for the main four operations (add, subtract, multiply, and
divide) as well as to find a modulus (the remainder after a division) and to increment
or decrement a value (see Table 3-1).

Table 3-1. Arithmetic operators

Operator Description Example
+ Addition $j + 1
- Subtraction $j - 6
* Multiplication $j * 11
/ Division $j / 4
% Modulus (the remainder after a division is performed) $j % 9
++ Increment ++$j

-- Decrement --$j

** Exponentiation (or power) $j**2

Assignment operators

These operators assign values to variables. They start with the very simple = and
move on to +=, -=, and so on (see Table 3-2). The operator += adds the value on the
right side to the variable on the left, instead of totally replacing the value on the left.
Thus, if $count starts with the value 5, the statement:

$count += 1;

sets $count to 6, just like the more familiar assignment statement:

$count = $count + 1;

The Structure of PHP | 45

Table 3-2. Assignment operators

Operator Example Equivalent to
= $j = 15 $j = 15

+= $j += 5 $j = $j + 5

-= $j -= 3 $j = $j - 3

*= $j *= 8 $j = $j * 8

/= $j /= 16 $j = $j / 16

.= $j .= $k $j = $j . $k

%= $j %= 4 $j = $j % 4

Comparison operators

Comparison operators are generally used inside a construct such as an if statement
in which you need to compare two items. For example, you may wish to know
whether a variable you have been incrementing has reached a specific value, or
whether another variable is less than a set value, and so on (see Table 3-3).

Table 3-3. Comparison operators

Operator Description Example
== Is equal to $j == 4

!= Is not equal to $j != 21

> Is greater than $j > 3

< Is less than $j < 100

>= Is greater than or equal to $j >= 15

<= Is less than or equal to $j <= 8

<> Is not equal to to $j <> 23

=== Is identical to to $j === "987"

!== Is not identical to to $j !== "1.2e3"

Note the difference between = and ==. The first is an assignment operator, and the
second is a comparison operator. Even advanced programmers can sometimes mix
up the two when coding hurriedly, so be careful.

Logical operators
If you haven’t used them before, logical operators may at first seem a little daunting.
But just think of them the way you would use logic in English. For example, you
might say to yourself, “If the time is later than 12 p.m. and earlier than 2 p.m., have
lunch.” In PHP, the code for this might look something like the following (using mili‐
tary time):

if ($hour > 12 && $hour < 14) dolunch();

46 | Chapter 3: Introduction to PHP

Here we have moved the set of instructions for actually going to lunch into a function
that we will have to create later called dolunch.

As the previous example shows, you generally use a logical operator to combine the
results of two of the comparison operators shown in the previous section. A logical
operator can also be input to another logical operator: “If the time is later than 12
p.m. and earlier than 2 p.m., or if the smell of a roast is permeating the hallway and
there are plates on the table.” As a rule, if something has a TRUE or FALSE value, it can
be input to a logical operator. A logical operator takes two true or false inputs and
produces a true or false result.

Table 3-4 shows the logical operators.

Table 3-4. Logical operators

Operator Description Example
&& And $j == 3 && $k == 2

and Low-precedence and $j == 3 and $k == 2

|| Or $j < 5 || $j > 10

or Low-precedence or $j < 5 or $j > 10

! Not ! ($j == $k)

xor Exclusive or $j xor $k

Note that && is usually interchangeable with and; the same is true for || and or. How‐
ever, because and and or have a lower precedence you should avoid using them
except when they are the only option, as in the following statement, which must use
the or operator (|| cannot be used to force a second statement to execute if the first
fails):

$html = file_get_contents($site) or die("Cannot download from $site");

The most unusual of these operators is xor, which stands for exclusive or and returns
a TRUE value if either value is TRUE, but a FALSE value if both inputs are TRUE or both
inputs are FALSE. To understand this, imagine that you want to concoct your own
cleaner for household items. Ammonia makes a good cleaner, and so does bleach, so
you want your cleaner to have one of these. But the cleaner must not have both,
because the combination is hazardous. In PHP, you could represent this as follows:

$ingredient = $ammonia xor $bleach;

In this example, if either $ammonia or $bleach is TRUE, $ingredient will also be set to
TRUE. But if both are TRUE or both are FALSE, $ingredient will be set to FALSE.

The Structure of PHP | 47

Variable Assignment
The syntax to assign a value to a variable is always variable = value. Or, to reassign
the value to another variable, it is other_variable = variable.

There are also a couple of other assignment operators that you will find useful. For
example, we’ve already seen this:

$x += 10;

which tells the PHP parser to add the value on the right (in this instance, the value
10) to the variable $x. Likewise, we could subtract as follows:

$y -= 10;

Variable incrementing and decrementing
Adding or subtracting 1 is such a common operation that PHP provides special oper‐
ators for it. You can use one of the following in place of the += and -= operators:

++$x;
--$y;

In conjunction with a test (an if statement), you could use the following code:

if (++$x == 10) echo $x;

This tells PHP to first increment the value of $x and then to test whether it has the
value 10 and, if it does, to output its value. But you can also require PHP to increment
(or, as in the following example, decrement) a variable after it has tested the value,
like this:

if ($y-- == 0) echo $y;

which gives a subtly different result. Suppose $y starts out as 0 before the statement is
executed. The comparison will return a TRUE result, but $y will be set to –1 after the
comparison is made. So what will the echo statement display: 0 or –1? Try to guess,
and then try out the statement in a PHP processor to confirm. Because this combina‐
tion of statements is confusing, it should be taken as just an educational example and
not as a guide to good programming style.

In short, a variable is incremented or decremented before the test if the operator is
placed before the variable, whereas the variable is incremented or decremented after
the test if the operator is placed after the variable.

By the way, the correct answer to the previous question is that the echo statement will
display the result –1, because $y was decremented right after it was accessed in the if
statement, and before the echo statement.

48 | Chapter 3: Introduction to PHP

String concatenation
Concatenation is a somewhat arcane term for putting something after another thing.
So, string concatenation uses the period (.) to append one string of characters to
another. The simplest way to do this is as follows:

echo "You have " . $msgs . " messages.";

Assuming that the variable $msgs is set to the value 5, the output from this line of
code will be the following:

You have 5 messages.

Just as you can add a value to a numeric variable with the += operator, you can
append one string to another using .=, like this:

$bulletin .= $newsflash;

In this case, if $bulletin contains a news bulletin and $newsflash has a news flash,
the command appends the news flash to the news bulletin so that $bulletin now
comprises both strings of text.

String types
PHP supports two types of strings that are denoted by the type of quotation mark
that you use. If you wish to assign a literal string, preserving the exact contents, you
should use single quotation marks (apostrophes), like this:

$info = 'Preface variables with a $ like this: $variable';

In this case, every character within the single-quoted string is assigned to $info. If
you had used double quotes, PHP would have attempted to evaluate $variable as a
variable.

On the other hand, when you want to include the value of a variable inside a string,
you do so by using double-quoted strings:

echo "This week $count people have viewed your profile";

As you will realize, this syntax also offers a simpler option to concatenation in which
you don’t need to use a period, or close and reopen quotes, to append one string to
another. This is called variable substitution, and some programmers use it extensively
whereas others don’t use it at all.

Escaping characters
Sometimes a string needs to contain characters with special meanings that might be
interpreted incorrectly. For example, the following line of code will not work, because
the second quotation mark encountered in the word spelling’s will tell the PHP parser
that the string’s end has been reached. Consequently, the rest of the line will be rejec‐
ted as an error:

The Structure of PHP | 49

$text = 'My spelling's atroshus'; // Erroneous syntax

To correct this, you can add a backslash directly before the offending quotation mark
to tell PHP to treat the character literally and not to interpret it:

$text = 'My spelling\'s still atroshus';

And you can perform this trick in almost all situations in which PHP would other‐
wise return an error by trying to interpret a character. For example, the following
double-quoted string will be correctly assigned:

$text = "She wrote upon it, \"Return to sender\".";

Additionally, you can use escape characters to insert various special characters into
strings, such as tabs, newlines, and carriage returns. These are represented, as you
might guess, by \t, \n, and \r. Here is an example using tabs to lay out a heading—it
is included here merely to illustrate escapes, because in web pages there are always
better ways to do layout:

$heading = "Date\tName\tPayment";

These special backslash-preceded characters work only in double-quoted strings. In
single-quoted strings, the preceding string would be displayed with the ugly \t
sequences instead of tabs. Within single-quoted strings, only the escaped apostrophe
(\') and escaped backslash itself (\\) are recognized as escaped characters.

Multiple-Line Commands
There are times when you need to output quite a lot of text from PHP, and using sev‐
eral echo (or print) statements would be time-consuming and messy. To overcome
this, PHP offers two conveniences. The first is just to put multiple lines between
quotes, as in Example 3-6. Variables can also be assigned, as in Example 3-7.

Example 3-6. A multiline string echo statement

<?php
 $author = "Steve Ballmer";

 echo "Developers, developers, developers, developers, developers,
 developers, developers, developers, developers!

 - $author.";
?>

Example 3-7. A multiline string assignment

<?php
 $author = "Bill Gates";

50 | Chapter 3: Introduction to PHP

 $text = "Measuring programming progress by lines of code is like
 Measuring aircraft building progress by weight.

 - $author.";
?>

PHP also offers a multiline sequence using the <<< operator—commonly referred to
as a here-document or heredoc—as a way of specifying a string literal, preserving the
line breaks and other whitespace (including indentation) in the text. Its use can be
seen in Example 3-8.

Example 3-8. Alternative multiline echo statement

<?php
 $author = "Brian W. Kernighan";

 echo <<<_END
 Debugging is twice as hard as writing the code in the first place.
 Therefore, if you write the code as cleverly as possible, you are,
 by definition, not smart enough to debug it.

 - $author.
_END;
?>

This code tells PHP to output everything between the two _END tags as if it were a
double-quoted string (except that quotes in a heredoc do not need to be escaped).
This means it’s possible, for example, for a developer to write entire sections of
HTML directly into PHP code and then just replace specific dynamic parts with PHP
variables.

It is important to remember that the closing _END; must appear right at the start of a
new line and it must be the only thing on that line—not even a comment is allowed to
be added after it (nor even a single space). Once you have closed a multiline block,
you are free to use the same tag name again.

Remember: using the <<<_END..._END; heredoc construct, you
don’t have to add \n linefeed characters to send a linefeed—just
press Return and start a new line. Also, unlike in either a double-
quote- or single-quote-delimited string, you are free to use all the
single and double quotes you like within a heredoc, without escap‐
ing them by preceding them with a backslash (\).

Example 3-9 shows how to use the same syntax to assign multiple lines to a variable.

The Structure of PHP | 51

Example 3-9. A multiline string variable assignment

<?php
 $author = "Scott Adams";

 $out = <<<_END
 Normal people believe that if it ain't broke, don't fix it.
 Engineers believe that if it ain't broke, it doesn't have enough
 features yet.

 - $author.
_END;
echo $out;
?>

The variable $out will then be populated with the contents between the two tags. If
you were appending, rather than assigning, you could also have used .= in place of =
to append the string to $out.

Be careful not to place a semicolon directly after the first occurrence of _END, as that
would terminate the multiline block before it had even started and cause a Parse
error message. The only place for the semicolon is after the terminating _END tag,
although it is safe to use semicolons within the block as normal text characters.

By the way, the _END tag is simply one I chose for these examples because it is unlikely
to be used anywhere else in PHP code and is therefore unique. You can use any tag
you like, such as _SECTION1 or _OUTPUT and so on. Also, to help differentiate tags such
as this from variables or functions, the general practice is to preface them with an
underscore, but you don’t have to use one if you choose not to.

Laying out text over multiple lines is usually just a convenience to
make your PHP code easier to read, because once it is displayed in
a web page, HTML formatting rules take over and whitespace is
suppressed (but $author in our example will still be replaced with
the variable’s value).
So, for example, if you load these multiline output examples into a
browser, they will not display over several lines, because all brows‐
ers treat newlines just like spaces. However, if you use the browser’s
View Source feature, you will find that the newlines are correctly
placed, and that PHP preserved the line breaks.

Variable Typing
PHP is a very loosely typed language. This means that variables do not have to be
declared before they are used, and that PHP always converts variables to the type
required by their context when they are accessed.

52 | Chapter 3: Introduction to PHP

For example, you can create a multiple-digit number and extract the nth digit from it
simply by assuming it to be a string. In Example 3-10, the numbers 12345 and 67890
are multiplied together, returning a result of 838102050, which is then placed in the
variable $number.

Example 3-10. Automatic conversion from a number to a string

<?php
 $number = 12345 * 67890;
 echo substr($number, 3, 1);
?>

At the point of the assignment, $number is a numeric variable. But on the second line,
a call is placed to the PHP function substr, which asks for one character to be
returned from $number, starting at the fourth position (remember that PHP offsets
start from zero). To do this, PHP turns $number into a nine-character string, so that
substr can access it and return the character, which in this case is 1.

The same goes for turning a string into a number, and so on. In Example 3-11, the
variable $pi is set to a string value, which is then automatically turned into a floating-
point number in the third line by the equation for calculating a circle’s area, which
outputs the value 78.5398175.

Example 3-11. Automatically converting a string to a number

<?php
 $pi = "3.1415927";
 $radius = 5;
 echo $pi * ($radius * $radius);
?>

In practice, what this all means is that you don’t have to worry too much about your
variable types. Just assign them values that make sense to you, and PHP will convert
them if necessary. Then, when you want to retrieve values, just ask for them—for
example, with an echo statement.

Constants
Constants are similar to variables, holding information to be accessed later, except
that they are what they sound like—constant. In other words, once you have defined
one, its value is set for the remainder of the program and cannot be altered.

One example of a use for a constant is to hold the location of your server root (the
folder with the main files of your website). You would define such a constant like this:

define("ROOT_LOCATION", "/usr/local/www/");

The Structure of PHP | 53

Then, to read the contents of the variable, you just refer to it like a regular variable
(but it isn’t preceded by a dollar sign):

$directory = ROOT_LOCATION;

Now, whenever you need to run your PHP code on a different server with a different
folder configuration, you have only a single line of code to change.

The main two things you have to remember about constants are
that they must not be prefaced with a $ (unlike regular variables),
and that you can define them only using the define function.

It is generally considered a good practice to use only uppercase letters for constant
variable names, especially if other people will also read your code.

Predefined Constants
PHP comes ready-made with dozens of predefined constants that you won’t generally
use as a beginner. However, there are a few—known as the magic constants—that you
will find useful. The names of the magic constants always have two underscores at the
beginning and two at the end, so that you won’t accidentally try to name one of your
own constants with a name that is already taken. They are detailed in Table 3-5. The
concepts referred to in the table will be introduced in future chapters.

Table 3-5. PHP’s magic constants

Magic constant Description
__LINE__ The current line number of the file.
__FILE__ The full path and filename of the file. If used inside an include, the name of the included file is

returned. Some operating systems allow aliases for directories, called symbolic links; in __FILE__
these are always changed to the actual directories.

__DIR__ The directory of the file. (Added in PHP 5.3.0.) If used inside an include, the directory of the included
file is returned. This is equivalent to dirname(__FILE__). This directory name does not have a
trailing slash unless it is the root directory.

__FUNCTION__ The function name. (Added in PHP 4.3.0.) As of PHP 5, returns the function name as it was declared
(case-sensitive). In PHP 4, its value is always lowercase.

__CLASS__ The class name. (Added in PHP 4.3.0.) As of PHP 5, returns the class name as it was declared (case-
sensitive). In PHP 4, its value is always lowercased.

__METHOD__ The class method name. (Added in PHP 5.0.0.) The method name is returned as it was declared (case-
sensitive).

__NAMESPACE__ The name of the current namespace. (Added in PHP 5.3.0.) This constant is defined at compile time
(case-sensitive).

54 | Chapter 3: Introduction to PHP

One handy use of these variables is for debugging, when you need to insert a line of
code to see whether the program flow reaches it:

echo "This is line " . __LINE__ . " of file " . __FILE__;

This prints the current program line in the current file (including the path) to the
web browser.

The Difference Between the echo and print Commands
So far, you have seen the echo command used in a number of different ways to output
text from the server to your browser. In some cases, a string literal has been output.
In others, strings have first been concatenated or variables have been evaluated. I’ve
also shown output spread over multiple lines.

But there is an alternative to echo that you can use: print. The two commands are
quite similar, but print is a function-like construct that takes a single parameter and
has a return value (which is always 1), whereas echo is purely a PHP language con‐
struct. Since both commands are constructs, neither requires parentheses.

By and large, the echo command usually will be a tad faster than print, because it
doesn’t set a return value. On the other hand, because it isn’t implemented like a func‐
tion, echo cannot be used as part of a more complex expression, whereas print can.
Here’s an example to output whether the value of a variable is TRUE or FALSE using
print—something you could not perform in the same manner with echo, because it
would display a Parse error message:

$b ? print "TRUE" : print "FALSE";

The question mark is simply a way of interrogating whether variable $b is TRUE or
FALSE. Whichever command is on the left of the following colon is executed if $b is
TRUE, whereas the command to the right of the colon is executed if $b is FALSE.

Generally, though, the examples in this book use echo, and I recommend that you do
so as well until you reach such a point in your PHP development that you discover
the need for using print.

Functions
Functions separate sections of code that perform a particular task. For example,
maybe you often need to look up a date and return it in a certain format. That would
be a good example to turn into a function. The code doing it might be only three lines
long, but if you have to paste it into your program a dozen times, you’re making your
program unnecessarily large and complex if you don’t use a function. And if you
decide to change the date format later, putting it in a function means having to
change it in only one place.

The Structure of PHP | 55

Placing code into a function not only shortens your program and makes it more
readable, but also adds extra functionality (pun intended), because functions can be
passed parameters to make them perform differently. They can also return values to
the calling code.

To create a function, declare it in the manner shown in Example 3-12.

Example 3-12. A simple function declaration

<?php
 function longdate($timestamp)
 {
 return date("l F jS Y", $timestamp);
 }
?>

This function returns a date in the format Sunday May 2nd 2021. Any number of
parameters can be passed between the initial parentheses; we have chosen to accept
just one. The curly braces enclose all the code that is executed when you later call the
function. Note that the first letter within the date function call in this example is a
lowercase letter L, not to be confused with the number 1.

To output today’s date using this function, place the following call in your code:

echo longdate(time());

If you need to print out the date 17 days ago, you now just have to issue the following
call:

echo longdate(time() - 17 * 24 * 60 * 60);

which passes to longdate the current time less the number of seconds since 17 days
ago (17 days × 24 hours × 60 minutes × 60 seconds).

Functions can also accept multiple parameters and return multiple results, using
techniques that I’ll introduce over the following chapters.

Variable Scope
If you have a very long program, it’s quite possible that you could start to run out of
good variable names, but with PHP you can decide the scope of a variable. In other
words, you can, for example, tell it that you want the variable $temp to be used only
inside a particular function and to forget it was ever used when the function returns.
In fact, this is the default scope for PHP variables.

Alternatively, you could inform PHP that a variable is global in scope and thus can be
accessed by every other part of your program.

56 | Chapter 3: Introduction to PHP

Local variables
Local variables are variables that are created within, and can be accessed only by, a
function. They are generally temporary variables that are used to store partially pro‐
cessed results prior to the function’s return.

One set of local variables is the list of arguments to a function. In the previous sec‐
tion, we defined a function that accepted a parameter named $timestamp. This is
meaningful only in the body of the function; you can’t get or set its value outside the
function.

For another example of a local variable, take another look at the longdate function,
which is modified slightly in Example 3-13.

Example 3-13. An expanded version of the longdate function

<?php
 function longdate($timestamp)
 {
 $temp = date("l F jS Y", $timestamp);
 return "The date is $temp";
 }
?>

Here we have assigned the value returned by the date function to the temporary vari‐
able $temp, which is then inserted into the string returned by the function. As soon as
the function returns, the $temp variable and its contents disappear, as if they had
never been used at all.

Now, to see the effects of variable scope, let’s look at some similar code in
Example 3-14. Here $temp has been created before we call the longdate function.

Example 3-14. This attempt to access $temp in function longdate will fail

<?php
 $temp = "The date is ";
 echo longdate(time());

 function longdate($timestamp)
 {
 return $temp . date("l F jS Y", $timestamp);
 }
?>

However, because $temp was neither created within the longdate function nor passed
to it as a parameter, longdate cannot access it. Therefore, this code snippet outputs
only the date, not the preceding text. In fact, depending on how PHP is configured, it

The Structure of PHP | 57

may first display the error message Notice: Undefined variable: temp, something
you don’t want your users to see.

The reason for this is that, by default, variables created within a function are local to
that function, and variables created outside of any functions can be accessed only by
nonfunction code.

Some ways to repair Example 3-14 appear in Examples 3-15 and 3-16.

Example 3-15. Rewriting to refer to $temp within its local scope fixes the problem

<?php
 $temp = "The date is ";
 echo $temp . longdate(time());

 function longdate($timestamp)
 {
 return date("l F jS Y", $timestamp);
 }
?>

Example 3-15 moves the reference to $temp out of the function. The reference
appears in the same scope where the variable was defined.

Example 3-16. An alternative solution: passing $temp as an argument

<?php
 $temp = "The date is ";
 echo longdate($temp, time());

 function longdate($text, $timestamp)
 {
 return $text . date("l F jS Y", $timestamp);
 }
?>

The solution in Example 3-16 passes $temp to the longdate function as an extra argu‐
ment. longdate reads it into a temporary variable that it creates called $text and out‐
puts the desired result.

Forgetting the scope of a variable is a common programming error,
so remembering how variable scope works will help you debug
some quite obscure problems. Suffice it to say that unless you have
declared a variable otherwise, its scope is limited to being local:
either to the current function, or to the code outside of any func‐
tions, depending on whether it was first created or accessed inside
or outside a function.

58 | Chapter 3: Introduction to PHP

Global variables
There are cases when you need a variable to have global scope, because you want all
your code to be able to access it. Also, some data may be large and complex, and you
don’t want to keep passing it as arguments to functions.

To access variables from global scope, add the keyword global. Let’s assume that you
have a way of logging your users into your website and want all your code to know
whether it is interacting with a logged-in user or a guest. One way to do this is to use
the global keyword before a variable such as $is_logged_in:

global $is_logged_in;

Now your login function simply has to set that variable to 1 upon a successful login
attempt, or 0 upon failure. Because the scope of the variable is set to global, every line
of code in your program can access it.

You should use variables given global access with caution, though. I recommend that
you create them only when you absolutely cannot find another way of achieving the
result you desire. In general, programs that are broken into small parts and segrega‐
ted data are less buggy and easier to maintain. If you have a thousand-line program
(and some day you will) in which you discover that a global variable has the wrong
value at some point, how long will it take you to find the code that set it incorrectly?

Also, if you have too many variables with global scope, you run the risk of using one
of those names again locally, or at least thinking you have used it locally, when in fact
it has already been declared as global. All manner of strange bugs can arise from such
situations.

Sometimes I adopt the convention of making all variable names
that require global access uppercase (just as it’s recommended that
constants should be uppercase) so that I can see at a glance the
scope of a variable.

Static variables
In the section “Local variables” on page 57, I mentioned that the value of a local vari‐
able is wiped out when the function ends. If a function runs many times, it starts with
a fresh copy of the variable and the previous setting has no effect.

Here’s an interesting case. What if you have a local variable inside a function that you
don’t want any other parts of your code to have access to, but you would also like to
keep its value for the next time the function is called? Why? Perhaps because you
want a counter to track how many times a function is called. The solution is to
declare a static variable, as shown in Example 3-17.

The Structure of PHP | 59

Example 3-17. A function using a static variable

<?php
 function test()
 {
 static $count = 0;
 echo $count;
 $count++;
 }
?>

Here, the very first line of the function test creates a static variable called $count and
initializes it to a value of 0. The next line outputs the variable’s value; the final one
increments it.

The next time the function is called, because $count has already been declared, the
first line of the function is skipped. Then the previously incremented value of $count
is displayed before the variable is again incremented.

If you plan to use static variables, you should note that you cannot assign the result of
an expression in their definitions. They can be initialized only with predetermined
values (see Example 3-18).

Example 3-18. Allowed and disallowed static variable declarations

<?php
 static $int = 0; // Allowed
 static $int = 1+2; // Disallowed (will produce a parse error)
 static $int = sqrt(144); // Disallowed
?>

Superglobal variables
Starting with PHP 4.1.0, several predefined variables are available. These are known
as superglobal variables, which means that they are provided by the PHP environment
but are global within the program, accessible absolutely everywhere.

These superglobals contain lots of useful information about the currently running
program and its environment (see Table 3-6). They are structured as associative
arrays, a topic discussed in Chapter 6.

Table 3-6. PHP’s superglobal variables

Superglobal name Contents
$GLOBALS All variables that are currently defined in the global scope of the script. The variable names are the keys

of the array.
$_SERVER Information such as headers, paths, and locations of scripts. The entries in this array are created by the

web server, and there is no guarantee that every web server will provide any or all of these.

60 | Chapter 3: Introduction to PHP

Superglobal name Contents
$_GET Variables passed to the current script via the HTTP GET method.
$_POST Variables passed to the current script via the HTTP POST method.
$_FILES Items uploaded to the current script via the HTTP POST method.
$_COOKIE Variables passed to the current script via HTTP cookies.
$_SESSION Session variables available to the current script.
$_REQUEST Contents of information passed from the browser; by default, $_GET, $_POST, and $_COOKIE.
$_ENV Variables passed to the current script via the environment method.

All of the superglobals (except for $GLOBALS) are named with a single initial under‐
score and only capital letters; therefore, you should avoid naming your own variables
in this manner to avoid potential confusion.

To illustrate how you use them, let’s look at a common example. Among the many
nuggets of information supplied by superglobal variables is the URL of the page that
referred the user to the current web page. This referring page information can be
accessed like this:

$came_from = $_SERVER['HTTP_REFERER'];

It’s that simple. Oh, and if the user came straight to your web page, such as by typing
its URL directly into a browser, $came_from will be set to an empty string.

Superglobals and security
A word of caution is in order before you start using superglobal variables, because
they are often used by hackers trying to find exploits to break into your website.
What they do is load up $_POST, $_GET, or other superglobals with malicious code,
such as Unix or MySQL commands that can damage or display sensitive data if you
naïvely access them.

Therefore, you should always sanitize superglobals before using them. One way to do
this is via the PHP htmlentities function. It converts all characters into HTML enti‐
ties. For example, less-than and greater-than characters (< and >) are transformed
into the strings < and > so that they are rendered harmless, as are all quotes
and backslashes, and so on.

Therefore, a much better way to access $_SERVER (and other superglobals) is:

$came_from = htmlentities($_SERVER['HTTP_REFERER']);

Using the htmlentities function for sanitization is an important
practice in any circumstance where user or other third-party data is
being processed for output, not just with superglobals.

The Structure of PHP | 61

This chapter has provided you with a solid introduction to using PHP. In Chapter 4,
you’ll start using what you’ve learned to build expressions and control program
flow—in other words, do some actual programming.

But before moving on, I recommend that you test yourself with some (if not all) of
the following questions to ensure that you have fully digested the contents of this
chapter.

Questions
1. What tag is used to invoke PHP to start interpreting program code? And what is

the short form of the tag?
2. What are the two types of comment tags?
3. Which character must be placed at the end of every PHP statement?
4. Which symbol is used to preface all PHP variables?
5. What can a variable store?
6. What is the difference between $variable = 1 and $variable == 1?
7. Why do you suppose that an underscore is allowed in variable names

($current_user), whereas hyphens are not ($current-user)?
8. Are variable names case-sensitive?
9. Can you use spaces in variable names?

10. How do you convert one variable type to another (say, a string to a number)?
11. What is the difference between ++$j and $j++?
12. Are the operators && and and interchangeable?
13. How can you create a multiline echo or assignment?
14. Can you redefine a constant?
15. How do you escape a quotation mark?
16. What is the difference between the echo and print commands?
17. What is the purpose of functions?
18. How can you make a variable accessible to all parts of a PHP program?
19. If you generate data within a function, what are a couple of ways to convey the

data to the rest of the program?
20. What is the result of combining a string with a number?

See “Chapter 3 Answers” on page 714 in Appendix A for the answers to these
questions.

62 | Chapter 3: Introduction to PHP

CHAPTER 4

Expressions and Control Flow in PHP

The previous chapter introduced several topics in passing that this chapter covers
more fully, such as making choices (branching) and creating complex expressions. In
the previous chapter, I wanted to focus on the most basic syntax and operations in
PHP, but I couldn’t avoid touching on more advanced topics. Now I can fill in the
background that you need to use these powerful PHP features properly.

In this chapter, you will get a thorough grounding in how PHP programming works
in practice and how to control the flow of the program.

Expressions
Let’s start with the most fundamental part of any programming language: expressions.

An expression is a combination of values, variables, operators, and functions that
results in a value. It’s familiar to anyone who has taken high-school algebra. Here’s an
example:

y = 3 (|2x| + 4)

Which in PHP would be:

$y = 3 * (abs(2 * $x) + 4);

The value returned (y in this mathematical statement, or $y in the PHP) can be a
number, a string, or a Boolean value (named after George Boole, a 19th-century
English mathematician and philosopher). By now, you should be familiar with the
first two value types, but I’ll explain the third.

63

TRUE or FALSE?
A basic Boolean value can be either TRUE or FALSE. For example, the expression 20 >
9 (20 is greater than 9) is TRUE, and the expression 5 == 6 (5 is equal to 6) is FALSE.
(You can combine such operations using other classic Boolean operators such as AND,
OR, and XOR, which are covered later in this chapter.)

Note that I am using uppercase letters for the names TRUE and
FALSE. This is because they are predefined constants in PHP. You
can use the lowercase versions if you prefer, as they are also prede‐
fined. In fact, the lowercase versions are more stable, because PHP
does not allow you to redefine them; the uppercase ones may be
redefined, which is something you should bear in mind if you
import third-party code.

PHP doesn’t actually print the predefined constants if you ask it to do so as in
Example 4-1. For each line, the example prints out a letter followed by a colon and a
predefined constant. PHP arbitrarily assigns a numerical value of 1 to TRUE, so 1 is
displayed after a: when the example runs. Even more mysteriously, because b: evalu‐
ates to FALSE, it does not show any value. In PHP the constant FALSE is defined as
NULL, another predefined constant that denotes nothing.

Example 4-1. Outputting the values of TRUE and FALSE

<?php // test2.php
 echo "a: [" . TRUE . "]
";
 echo "b: [" . FALSE . "]
";
?>

The
 tags are there to create line breaks and thus separate the output into two
lines in HTML. Here is the output:

a: [1]
b: []

Turning to Boolean expressions, Example 4-2 shows some simple expressions: the
two I mentioned earlier, plus a couple more.

Example 4-2. Four simple Boolean expressions

<?php
 echo "a: [" . (20 > 9) . "]
";
 echo "b: [" . (5 == 6) . "]
";
 echo "c: [" . (1 == 0) . "]
";
 echo "d: [" . (1 == 1) . "]
";
?>

64 | Chapter 4: Expressions and Control Flow in PHP

The output from this code is:

a: [1]
b: []
c: []
d: [1]

By the way, in some languages FALSE may be defined as 0 or even –1, so it’s worth
checking on its definition in each language you use. Luckily, Boolean expressions are
usually buried in other code, so you don’t normally have to worry about what TRUE
and FALSE look like internally. In fact, even those names rarely appear in code.

Literals and Variables
These are the most basic elements of programming, and the building blocks of
expressions. A literal simply means something that evaluates to itself, such as the
number 73 or the string "Hello". A variable, which we’ve already seen has a name
beginning with a dollar sign, evaluates to the value that has been assigned to it. The
simplest expression is just a single literal or variable, because both return a value.

Example 4-3 shows three literals and two variables, all of which return values, albeit
of different types.

Example 4-3. Literals and variables

<?php
 $myname = "Brian";
 $myage = 37;

 echo "a: " . 73 . "
"; // Numeric literal
 echo "b: " . "Hello" . "
"; // String literal
 echo "c: " . FALSE . "
"; // Constant literal
 echo "d: " . $myname . "
"; // String variable
 echo "e: " . $myage . "
"; // Numeric variable
?>

And, as you’d expect, you see a return value from all of these with the exception of c:,
which evaluates to FALSE, returning nothing in the following output:

a: 73
b: Hello
c:
d: Brian
e: 37

In conjunction with operators, it’s possible to create more complex expressions that
evaluate to useful results.

Expressions | 65

Programmers combine expressions with other language constructs, such as the
assignment operators we saw earlier, to form statements. Example 4-4 shows two
statements. The first assigns the result of the expression 366 - $day_number to the
variable $days_to_new_year, and the second outputs a friendly message only if the
expression $days_to_new_year < 30 evaluates to TRUE.

Example 4-4. An expression and a statement

<?php
 $days_to_new_year = 366 - $day_number; // Expression

 if ($days_to_new_year < 30)
 {
 echo "Not long now till new year"; // Statement
 }
?>

Operators
PHP offers a lot of powerful operators of different types—arithmetic, string, logical,
assignment, comparison, and more (see Table 4-1).

Table 4-1. PHP operator types

Operator Description Example
Arithmetic Basic mathematics $a + $b

Array Array union $a + $b

Assignment Assign values $a = $b + 23

Bitwise Manipulate bits within bytes 12 ^ 9

Comparison Compare two values $a < $b

Execution Execute contents of backticks `ls -al`

Increment/decrement Add or subtract 1 $a++

Logical Boolean $a and $b

String Concatenation $a . $b

Each operator takes a different number of operands:

• Unary operators, such as incrementing ($a++) or negation (!$a), take a single
operand.

• Binary operators, which represent the bulk of PHP operators (including addition,
subtraction, multiplication, and division), take two operands.

66 | Chapter 4: Expressions and Control Flow in PHP

• The one ternary operator, which takes the form expr ? x : y, requires three
operands. It’s a terse, single-line if statement that returns x if m expr is TRUE and
y if expr is FALSE.

Operator Precedence
If all operators had the same precedence, they would be processed in the order in
which they are encountered. In fact, many operators do have the same precedence.
Take a look at Example 4-5.

Example 4-5. Three equivalent expressions

1 + 2 + 3 - 4 + 5
2 - 4 + 5 + 3 + 1
5 + 2 - 4 + 1 + 3

Here you will see that although the numbers (and their preceding operators) have
been moved around, the result of each expression is the value 7, because the plus and
minus operators have the same precedence. We can try the same thing with multipli‐
cation and division (see Example 4-6).

Example 4-6. Three expressions that are also equivalent

1 * 2 * 3 / 4 * 5
2 / 4 * 5 * 3 * 1
5 * 2 / 4 * 1 * 3

Here the resulting value is always 7.5. But things change when we mix operators with
different precedences in an expression, as in Example 4-7.

Example 4-7. Three expressions using operators of mixed precedence

1 + 2 * 3 - 4 * 5
2 - 4 * 5 * 3 + 1
5 + 2 - 4 + 1 * 3

If there were no operator precedence, these three expressions would evaluate to 25,
–29, and 12, respectively. But because multiplication and division take precedence
over addition and subtraction, the expressions are evaluated as if there were paren‐
theses around these parts of the expressions, just like mathematical notation (see
Example 4-8).

Operators | 67

Example 4-8. Three expressions showing implied parentheses

1 + (2 * 3) - (4 * 5)
2 - (4 * 5 * 3) + 1
5 + 2 - 4 + (1 * 3)

PHP evaluates the subexpressions within parentheses first to derive the semi-
completed expressions in Example 4-9.

Example 4-9. After evaluating the subexpressions in parentheses

1 + (6) - (20)
2 - (60) + 1
5 + 2 - 4 + (3)

The final results of these expressions are –13, –57, and 6, respectively (quite different
from the results of 25, –29, and 12 that we would have seen had there been no opera‐
tor precedence).

Of course, you can override the default operator precedence by inserting your own
parentheses and forcing whatever order you want (see Example 4-10).

Example 4-10. Forcing left-to-right evaluation

((1 + 2) * 3 - 4) * 5
(2 - 4) * 5 * 3 + 1
(5 + 2 - 4 + 1) * 3

With parentheses correctly inserted, we now see the values 25, –29, and 12, respec‐
tively.

Table 4-2 lists PHP’s operators in order of precedence from high to low.

Table 4-2. The precedence of PHP operators (high to low)

Operator(s) Type
() Parentheses
++ -- Increment/decrement
! Logical
* / % Arithmetic
+ - . Arithmetic and string
<< >> Bitwise
< <= > >= <> Comparison
== != === !== Comparison
& Bitwise (and references)
^ Bitwise

68 | Chapter 4: Expressions and Control Flow in PHP

Operator(s) Type
| Bitwise
&& Logical
|| Logical
? : Ternary
= += -= *= /= .= %= &= != ^= <<= >>= Assignment
and Logical
xor Logical
or Logical

The order in this table is not arbitrary, but carefully designed so that the most com‐
mon and intuitive precedences are the ones you can get without parentheses. For
instance, you can separate two comparisons with an and or or and get what you’d
expect.

Associativity
We’ve been looking at processing expressions from left to right, except where opera‐
tor precedence is in effect. But some operators require processing from right to left,
and this direction of processing is called the operator’s associativity. For some opera‐
tors, there is no associativity.

Associativity (as detailed in Table 4-3) becomes important in cases in which you do
not explicitly force precedence, so you need to be aware of the default actions of oper‐
ators.

Table 4-3. Operator associativity

Operator Description Associativity
< <= >= == != === !== <> Comparison None
! Logical NOT Right
~ Bitwise NOT Right
++ -- Increment and decrement Right
(int) Cast to an integer Right
(double) (float) (real) Cast to a floating-point number Right
(string) Cast to a string Right
(array) Cast to an array Right
(object) Cast to an object Right
@ Inhibit error reporting Right
= += -= *= /= Assignment Right
.= %= &= |= ^= <<= >>= Assignment Right
+ Addition and unary plus Left
- Subtraction and negation Left

Operators | 69

Operator Description Associativity
* Multiplication Left
/ Division Left
% Modulus Left
. String concatenation Left
<< >> & ^ | Bitwise Left
?: Ternary Left
|| && and or xor Logical Left
, Separator Left

For example, let’s take a look at the assignment operator in Example 4-11, where three
variables are all set to the value 0.

Example 4-11. A multiple-assignment statement

<?php
 $level = $score = $time = 0;
?>

This multiple assignment is possible only if the rightmost part of the expression is
evaluated first, and then processing continues in a right-to-left direction.

As a newcomer to PHP, you should avoid the potential pitfalls of
operator associativity by always nesting your subexpressions within
parentheses to force the order of evaluation. This will also help
other programmers who may have to maintain your code to under‐
stand what is happening.

Relational Operators
Relational operators answer questions such as “Does this variable have a value of
zero?” and “Which variable has a greater value?” These operators test two operands
and return a Boolean result of either TRUE or FALSE. There are three types of rela‐
tional operators: equality, comparison, and logical.

Equality

As we’ve already seen a few times in this chapter, the equality operator is == (two
equals signs). It is important not to confuse it with the = (single equals sign) assign‐
ment operator. In Example 4-12, the first statement assigns a value and the second
tests it for equality.

70 | Chapter 4: Expressions and Control Flow in PHP

Example 4-12. Assigning a value and testing for equality

<?php
 $month = "March";

 if ($month == "March") echo "It's springtime";
?>

As you see, by returning either TRUE or FALSE, the equality operator enables you to
test for conditions using, for example, an if statement. But that’s not the whole story,
because PHP is a loosely typed language. If the two operands of an equality expres‐
sion are of different types, PHP will convert them to whatever type makes the best
sense to it. A rarely used identity operator, which consists of three equals signs in a
row, can be used to compare items without doing conversion.

For example, any strings composed entirely of numbers will be converted to numbers
whenever compared with a number. In Example 4-13, $a and $b are two different
strings, and we would therefore expect neither of the if statements to output a result.

Example 4-13. The equality and identity operators

<?php
 $a = "1000";
 $b = "+1000";

 if ($a == $b) echo "1";
 if ($a === $b) echo "2";
?>

However, if you run the example, you will see that it outputs the number 1, which
means that the first if statement evaluated to TRUE. This is because both strings were
first converted to numbers, and 1000 is the same numerical value as +1000. In con‐
trast, the second if statement uses the identity operator, so it compares $a and $b as
strings, sees that they are different, and thus doesn’t output anything.

As with forcing operator precedence, whenever you have any doubt about how PHP
will convert operand types, you can use the identity operator to turn this behavior off.

In the same way that you can use the equality operator to test for operands being
equal, you can test for them not being equal using !=, the inequality operator. Take a
look at Example 4-14, which is a rewrite of Example 4-13, in which the equality and
identity operators have been replaced with their inverses.

Operators | 71

Example 4-14. The inequality and not-identical operators

<?php
 $a = "1000";
 $b = "+1000";

 if ($a != $b) echo "1";
 if ($a !== $b) echo "2";
?>

And, as you might expect, the first if statement does not output the number 1,
because the code is asking whether $a and $b are not equal to each other numerically.

Instead, this code outputs the number 2, because the second if statement is asking
whether $a and $b are not identical to each other in their actual string type, and the
answer is TRUE; they are not the same.

Comparison operators
Using comparison operators, you can test for more than just equality and inequality.
PHP also gives you > (is greater than), < (is less than), >= (is greater than or equal to),
and <= (is less than or equal to) to play with. Example 4-15 shows these in use.

Example 4-15. The four comparison operators

<?php
 $a = 2; $b = 3;

 if ($a > $b) echo "$a is greater than $b
";
 if ($a < $b) echo "$a is less than $b
";
 if ($a >= $b) echo "$a is greater than or equal to $b
";
 if ($a <= $b) echo "$a is less than or equal to $b
";
?>

In this example, where $a is 2 and $b is 3, the following is output:

2 is less than 3
2 is less than or equal to 3

Try this example yourself, altering the values of $a and $b, to see the results. Try set‐
ting them to the same value and see what happens.

Logical operators
Logical operators produce true or false results, and therefore are also known as
Boolean operators. There are four of them (see Table 4-4).

72 | Chapter 4: Expressions and Control Flow in PHP

Table 4-4. The logical operators

Logical operator Description
AND TRUE if both operands are TRUE
OR TRUE if either operand is TRUE
XOR TRUE if one of the two operands is TRUE
! (NOT) TRUE if the operand is FALSE, or FALSE if the operand is TRUE

You can see these operators used in Example 4-16. Note that the ! symbol is required
by PHP in place of NOT. Furthermore, the operators can be lower- or uppercase.

Example 4-16. The logical operators in use

<?php
 $a = 1; $b = 0;

 echo ($a AND $b) . "
";
 echo ($a or $b) . "
";
 echo ($a XOR $b) . "
";
 echo !$a . "
";
?>

Line by line, this example outputs nothing, 1, 1, and nothing, meaning that only the
second and third echo statements evaluate as TRUE. (Remember that NULL—or noth‐
ing—represents a value of FALSE.) This is because the AND statement requires both
operands to be TRUE if it is going to return a value of TRUE, while the fourth statement
performs a NOT on the value of $a, turning it from TRUE (a value of 1) to FALSE. If you
wish to experiment with this, try out the code, giving $a and $b varying values of 1
and 0.

When coding, remember that AND and OR have lower precedence
than the other versions of the operators, && and ||.

The OR operator can cause unintentional problems in if statements, because the sec‐
ond operand will not be evaluated if the first is evaluated as TRUE. In Example 4-17,
the function getnext will never be called if $finished has a value of 1.

Example 4-17. A statement using the OR operator

<?php
 if ($finished == 1 OR getnext() == 1) exit;
?>

Operators | 73

If you need getnext to be called at each if statement, you could rewrite the code as
has been done in Example 4-18.

Example 4-18. The if...OR statement modified to ensure calling of getnext

<?php
 $gn = getnext();

 if ($finished == 1 OR $gn == 1) exit;
?>

In this case, the code executes the getnext function and stores the value returned in
$gn before executing the if statement.

Another solution is to switch the two clauses to make sure that
getnext is executed, as it will then appear first in the expression.

Table 4-5 shows all the possible variations of using the logical operators. You should
also note that !TRUE equals FALSE, and !FALSE equals TRUE.

Table 4-5. All possible PHP logical expressions

Inputs Operators and results

a b AND OR XOR
TRUE TRUE TRUE TRUE FALSE

TRUE FALSE FALSE TRUE TRUE

FALSE TRUE FALSE TRUE TRUE

FALSE FALSE FALSE FALSE FALSE

Conditionals
Conditionals alter program flow. They enable you to ask questions about certain
things and respond to the answers you get in different ways. Conditionals are central
to creating dynamic web pages—the goal of using PHP in the first place—because
they make it easy to render different output each time a page is viewed.

I’ll present three basic conditionals in this section: the if statement, the switch state‐
ment, and the ? operator. In addition, looping conditionals (which we’ll get to
shortly) execute code over and over until a condition is met.

74 | Chapter 4: Expressions and Control Flow in PHP

The if Statement
One way of thinking about program flow is to imagine it as a single-lane highway that
you are driving along. It’s pretty much a straight line, but now and then you
encounter various signs telling you where to go.

In the case of an if statement, you could imagine coming across a detour sign that
you have to follow if a certain condition is TRUE. If so, you drive off and follow the
detour until you return to the main road and then continue on your way in your orig‐
inal direction. Or, if the condition isn’t TRUE, you ignore the detour and carry on driv‐
ing (see Figure 4-1).

Figure 4-1. Program flow is like a single-lane highway

The contents of the if condition can be any valid PHP expression, including tests for
equality, comparison expressions, tests for 0 and NULL, and even functions (either
built-in functions or ones that you write).

The actions to take when an if condition is TRUE are generally placed inside curly
braces ({ }). You can ignore the braces if you have only a single statement to execute,
but if you always use curly braces, you’ll avoid having to hunt down difficult-to-trace
bugs, such as when you add an extra line to a condition and it doesn’t get evaluated
due to the lack of braces.

Conditionals | 75

A notorious security vulnerability known as the “goto fail” bug
haunted the Secure Sockets Layer (SSL) code in Apple’s products
for many years because a programmer had forgotten the curly
braces around an if statement, causing a function to sometimes
report a successful connection when that may not actually have
always been the case. This allowed a malicious attacker to get a
secure certificate to be accepted when it should have been rejected.
If in doubt, place braces around your if statements.

Note that for brevity and clarity, however, many of the examples in this book ignore
this suggestion and omit the braces for single statements.

In Example 4-19, imagine that it is the end of the month and all your bills have been
paid, so you are performing some bank account maintenance.

Example 4-19. An if statement with curly braces

<?php
 if ($bank_balance < 100)
 {
 $money = 1000;
 $bank_balance += $money;
 }
?>

In this example, you are checking your balance to see whether it is less than $100 (or
whatever your currency is). If so, you pay yourself $1,000 and then add it to the bal‐
ance. (If only making money were that simple!)

If the bank balance is $100 or greater, the conditional statements are ignored and pro‐
gram flow skips to the next line (not shown).

In this book, opening curly braces generally start on a new line. Some people like to
place the first curly brace to the right of the conditional expression; others start a new
line with it. Either of these is fine, because PHP allows you to set out your whitespace
characters (spaces, newlines, and tabs) any way you choose. However, you will find
your code easier to read and debug if you indent each level of conditionals with a tab.

The else Statement
Sometimes when a conditional is not TRUE, you may not want to continue on to the
main program code immediately but might wish to do something else instead. This is
where the else statement comes in. With it, you can set up a second detour on your
highway, as in Figure 4-2.

76 | Chapter 4: Expressions and Control Flow in PHP

Figure 4-2. The highway now has an if detour and an else detour

With an if...else statement, the first conditional statement is executed if the condi‐
tion is TRUE. But if it’s FALSE, the second one is executed. One of the two choices must
be executed. Under no circumstance can both (or neither) be executed. Example 4-20
shows the use of the if...else structure.

Example 4-20. An if...else statement with curly braces

<?php
 if ($bank_balance < 100)
 {
 $money = 1000;
 $bank_balance += $money;
 }
 else
 {
 $savings += 50;
 $bank_balance -= 50;

Conditionals | 77

 }
?>

In this example, if you’ve ascertained that you have $100 or more in the bank the else
statement is executed, placing some of this money into your savings account.

As with if statements, if your else has only one conditional statement, you can opt
to leave out the curly braces. (Curly braces are always recommended, though. First,
they make the code easier to understand. Second, they let you easily add more state‐
ments to the branch later.)

The elseif Statement
There are also times when you want a number of different possibilities to occur, based
upon a sequence of conditions. You can achieve this using the elseif statement. As
you might imagine, it is like an else statement, except that you place a further condi‐
tional expression prior to the conditional code. In Example 4-21, you can see a com‐
plete if...elseif...else construct.

Example 4-21. An if...elseif...else statement with curly braces

<?php
 if ($bank_balance < 100)
 {
 $money = 1000;
 $bank_balance += $money;
 }
 elseif ($bank_balance > 200)
 {
 $savings += 100;
 $bank_balance -= 100;
 }
 else
 {
 $savings += 50;
 $bank_balance -= 50;
 }
?>

In the example, an elseif statement has been inserted between the if and else state‐
ments. It checks whether your bank balance exceeds $200 and, if so, decides that you
can afford to save $100 of it this month.

Although I’m starting to stretch the metaphor a bit too far, you can imagine this as a
multiway set of detours (see Figure 4-3).

78 | Chapter 4: Expressions and Control Flow in PHP

Figure 4-3. The highway with if, elseif, and else detours

An else statement closes either an if...else or an
if...elseif...else statement. You can leave out a final else if it
is not required, but you cannot have one before an elseif; neither
can you have an elseif before an if statement.

You may have as many elseif statements as you like. But as the number of elseif
statements increases, you would probably be better advised to consider a switch
statement if it fits your needs. We’ll look at that next.

The switch Statement
The switch statement is useful where one variable, or the result of an expression, can
have multiple values, each of which should trigger a different activity.

For example, consider a PHP-driven menu system that passes a single string to the
main menu code according to what the user requests. Let’s say the options are Home,

Conditionals | 79

About, News, Login, and Links, and we set the variable $page to one of these, accord‐
ing to the user’s input.

If we write the code for this using if...elseif...else, it might look like
Example 4-22.

Example 4-22. A multiple-line if...elseif...else statement

<?php
 if ($page == "Home") echo "You selected Home";
 elseif ($page == "About") echo "You selected About";
 elseif ($page == "News") echo "You selected News";
 elseif ($page == "Login") echo "You selected Login";
 elseif ($page == "Links") echo "You selected Links";
 else echo "Unrecognized selection";
?>

If we use a switch statement, the code might look like Example 4-23.

Example 4-23. A switch statement

<?php
 switch ($page)
 {
 case "Home":
 echo "You selected Home";
 break;
 case "About":
 echo "You selected About";
 break;
 case "News":
 echo "You selected News";
 break;
 case "Login":
 echo "You selected Login";
 break;
 case "Links":
 echo "You selected Links";
 break;
 }
?>

As you can see, $page is mentioned only once at the start of the switch statement.
Thereafter, the case command checks for matches. When one occurs, the matching
conditional statement is executed. Of course, in a real program you would have code
here to display or jump to a page, rather than simply telling the user what was
selected.

80 | Chapter 4: Expressions and Control Flow in PHP

With switch statements, you do not use curly braces inside case
commands. Instead, they commence with a colon and end with the
break statement. The entire list of cases in the switch statement is
enclosed in a set of curly braces, though.

Breaking out

If you wish to break out of the switch statement because a condition has been fulfil‐
led, use the break command. This command tells PHP to exit the switch and jump
to the following statement.

If you were to leave out the break commands in Example 4-23 and the case of Home
evaluated to be TRUE, all five cases would then be executed. Or, if $page had the value
News, all the case commands from then on would execute. This is deliberate and
allows for some advanced programming, but generally you should always remember
to issue a break command every time a set of case conditionals has finished execut‐
ing. In fact, leaving out the break statement is a common error.

Default action

A typical requirement in switch statements is to fall back on a default action if none
of the case conditions are met. For example, in the case of the menu code in
Example 4-23, you could add the code in Example 4-24 immediately before the final
curly brace.

Example 4-24. A default statement to add to Example 4-23

default:
 echo "Unrecognized selection";
 break;

This replicates the effect of the else statement in Example 4-22.

Although a break command is not required here because the default is the final sub-
statement and program flow will automatically continue to the closing curly brace,
should you decide to place the default statement higher up, it would definitely need
a break command to prevent program flow from dropping into the following state‐
ments. Generally, the safest practice is to always include the break command.

Alternative syntax

If you prefer, you may replace the first curly brace in a switch statement with a single
colon and the final curly brace with an endswitch command, as in Example 4-25.
However, this approach is not commonly used and is mentioned here only in case
you encounter it in third-party code.

Conditionals | 81

Example 4-25. Alternate switch statement syntax

<?php
 switch ($page):
 case "Home":
 echo "You selected Home";
 break;

 // etc

 case "Links":
 echo "You selected Links";
 break;
 endswitch;
?>

The ? Operator
One way of avoiding the verbosity of if and else statements is to use the more com‐
pact ternary operator, ?, which is unusual in that it takes three operands rather than
the typical two.

We briefly came across this in Chapter 3 in the discussion about the difference
between the print and echo statements as an example of an operator type that works
well with print but not echo.

The ? operator is passed an expression that it must evaluate, along with two state‐
ments to execute: one for when the expression evaluates to TRUE, the other for when it
is FALSE. Example 4-26 shows code we might use for writing a warning about the fuel
level of a car to its digital dashboard.

Example 4-26. Using the ? operator

<?php
 echo $fuel <= 1 ? "Fill tank now" : "There's enough fuel";
?>

In this statement, if there is one gallon or less of fuel (in other words, $fuel is set to 1
or less), the string Fill tank now is returned to the preceding echo statement.
Otherwise, the string There's enough fuel is returned. You can also assign the value
returned in a ? statement to a variable (see Example 4-27).

Example 4-27. Assigning a ? conditional result to a variable

<?php
 $enough = $fuel <= 1 ? FALSE : TRUE;
?>

82 | Chapter 4: Expressions and Control Flow in PHP

Here, $enough will be assigned the value TRUE only when there is more than a gallon
of fuel; otherwise, it is assigned the value FALSE.

If you find the ? operator confusing, you are free to stick to if statements, but you
should be familiar with the operator because you’ll see it in other people’s code. It can
be hard to read, because it often mixes multiple occurrences of the same variable. For
instance, code such as the following is quite popular:

$saved = $saved >= $new ? $saved : $new;

If you take it apart carefully, you can figure out what this code does:

$saved = // Set the value of $saved to...
 $saved >= $new // Check $saved against $new
 ? // Yes, comparison is true...
 $saved // ... so assign the current value of $saved
 : // No, comparison is false...
 $new; // ... so assign the value of $new

It’s a concise way to keep track of the largest value that you’ve seen as a program pro‐
gresses. You save the largest value in $saved and compare it to $new each time you get
a new value. Programmers familiar with the ? operator find it more convenient than
if statements for such short comparisons. When not used for writing compact code,
it is typically used to make some decision inline, such as when you are testing
whether a variable is set before passing it to a function.

Looping
One of the great things about computers is that they can repeat calculating tasks
quickly and tirelessly. Often you may want a program to repeat the same sequence of
code again and again until something happens, such as a user inputting a value or
reaching a natural end. PHP’s loop structures provide the perfect way to do this.

To picture how this works, look at Figure 4-4. It is much the same as the highway
metaphor used to illustrate if statements, except the detour also has a loop section
that—once a vehicle has entered it—can be exited only under the right program
conditions.

Looping | 83

Figure 4-4. Imagining a loop as part of a program highway layout

while Loops
Let’s turn the digital car dashboard in Example 4-26 into a loop that continuously
checks the fuel level as you drive, using a while loop (Example 4-28).

Example 4-28. A while loop

<?php
 $fuel = 10;

 while ($fuel > 1)
 {
 // Keep driving...
 echo "There's enough fuel";
 }
?>

Actually, you might prefer to keep a green light lit rather than output text, but the
point is that whatever positive indication you wish to make about the level of fuel is
placed inside the while loop. By the way, if you try this example for yourself, note
that it will keep printing the string until you click the Stop button in your browser.

As with if statements, you will notice that curly braces are
required to hold the statements inside the while statements, unless
there’s only one.

For another example of a while loop that displays the 12 times table, see
Example 4-29.

84 | Chapter 4: Expressions and Control Flow in PHP

Example 4-29. A while loop to print the 12 times table

<?php
 $count = 1;

 while ($count <= 12)
 {
 echo "$count times 12 is " . $count * 12 . "
";
 ++$count;
 }
?>

Here the variable $count is initialized to a value of 1, and then a while loop starts
with the comparative expression $count <= 12. This loop will continue executing
until the variable is greater than 12. The output from this code is as follows:

1 times 12 is 12
2 times 12 is 24
3 times 12 is 36
and so on...

Inside the loop, a string is printed along with the value of $count multiplied by 12.
For neatness, this is followed with a
 tag to force a new line. Then $count is
incremented, ready for the final curly brace that tells PHP to return to the start of the
loop.

At this point, $count is again tested to see whether it is greater than 12. It isn’t, but it
now has the value 2, and after another 11 times around the loop, it will have the value
13. When that happens, the code within the while loop is skipped and execution
passes to the code following the loop, which, in this case, is the end of the program.

If the ++$count statement (which could equally have been $count++) had not been
there, this loop would be like the first one in this section. It would never end, and
only the result of 1 * 12 would be printed over and over.

But there is a much neater way this loop can be written, which I think you will like.
Take a look at Example 4-30.

Example 4-30. A shortened version of Example 4-29

<?php
 $count = 0;

 while (++$count <= 12)
 echo "$count times 12 is " . $count * 12 . "
";
?>

In this example, it was possible to move the ++$count statement from the statements
inside the while loop into the conditional expression of the loop. What now happens

Looping | 85

is that PHP encounters the variable $count at the start of each iteration of the loop
and, noticing that it is prefaced with the increment operator, first increments the vari‐
able and only then compares it to the value 12. You can therefore see that $count now
has to be initialized to 0, not 1, because it is incremented as soon as the loop is
entered. If you keep the initialization at 1, only results between 2 and 12 will be out‐
put.

do...while Loops
A slight variation to the while loop is the do...while loop, used when you want a
block of code to be executed at least once and made conditional only after that.
Example 4-31 shows a modified version of the code for the 12 times table that uses
such a loop.

Example 4-31. A do...while loop for printing the 12 times table

<?php
 $count = 1;
 do
 echo "$count times 12 is " . $count * 12 . "
";
 while (++$count <= 12);
?>

Notice how we are back to initializing $count to 1 (rather than 0) because of the
loop’s echo statement being executed before we have an opportunity to increment the
variable. Other than that, though, the code looks pretty similar.

Of course, if you have more than a single statement inside a do...while loop,
remember to use curly braces, as in Example 4-32.

Example 4-32. Expanding Example 4-31 to use curly braces

<?php
 $count = 1;

 do {
 echo "$count times 12 is " . $count * 12;
 echo "
";
 } while (++$count <= 12);
?>

for Loops
The final kind of loop statement, the for loop, is also the most powerful, as it com‐
bines the abilities to set up variables as you enter the loop, test for conditions while
iterating loops, and modify variables after each iteration.

86 | Chapter 4: Expressions and Control Flow in PHP

Example 4-33 shows how to write the multiplication table program with a for loop.

Example 4-33. Outputting the 12 times table from a for loop

<?php
 for ($count = 1 ; $count <= 12 ; ++$count)
 echo "$count times 12 is " . $count * 12 . "
";
?>

See how the code has been reduced to a single for statement containing a single con‐
ditional statement? Here’s what is going on. Each for statement takes three parame‐
ters:

• An initialization expression
• A condition expression
• A modification expression

These are separated by semicolons like this: for (expr1 ; expr2 ; expr3). At the
start of the first iteration of the loop, the initialization expression is executed. In the
case of the times table code, $count is initialized to the value 1. Then, each time
around the loop, the condition expression (in this case, $count <= 12) is tested, and
the loop is entered only if the condition is TRUE. Finally, at the end of each iteration,
the modification expression is executed. In the case of the times table code, the vari‐
able $count is incremented.

All this structure neatly removes any requirement to place the controls for a loop
within its body, freeing it up just for the statements you want the loop to perform.

Remember to use curly braces with a for loop if it will contain more than one state‐
ment, as in Example 4-34.

Example 4-34. The for loop from Example 4-33 with added curly braces

<?php
 for ($count = 1 ; $count <= 12 ; ++$count)
 {
 echo "$count times 12 is " . $count * 12;
 echo "
";
 }
?>

Let’s compare when to use for and while loops. The for loop is explicitly designed
around a single value that changes on a regular basis. Usually you have a value that
increments, as when you are passed a list of user choices and want to process each
choice in turn. But you can transform the variable any way you like. A more complex

Looping | 87

form of the for statement even lets you perform multiple operations in each of the
three parameters:

for ($i = 1, $j = 1 ; $i + $j < 10 ; $i++ , $j++)
{
 // ...
}

That’s complicated and not recommended for first-time users, though. The key is to
distinguish commas from semicolons. The three parameters must be separated by
semicolons. Within each parameter, multiple statements can be separated by com‐
mas. Thus, in the previous example, the first and third parameters each contain two
statements:

$i = 1, $j = 1 // Initialize $i and $j
$i + $j < 10 // Terminating condition
$i++ , $j++ // Modify $i and $j at the end of each iteration

The main thing to take from this example is that you must separate the three parame‐
ter sections with semicolons, not commas (which should be used only to separate
statements within a parameter section).

So, when is a while statement more appropriate than a for statement? When your
condition doesn’t depend on a simple, regular change to a variable. For instance, if
you want to check for some special input or error and end the loop when it occurs,
use a while statement.

Breaking Out of a Loop
Just as you saw how to break out of a switch statement, you can also break out of a
for loop (or any loop) using the same break command. This step can be necessary
when, for example, one of your statements returns an error and the loop cannot con‐
tinue executing safely.

One case in which this might occur is when writing a file returns an error, possibly
because the disk is full (see Example 4-35).

Example 4-35. Writing a file using a for loop with error trapping

<?php
 $fp = fopen("text.txt", 'wb');

 for ($j = 0 ; $j < 100 ; ++$j)
 {
 $written = fwrite($fp, "data");

 if ($written == FALSE) break;
 }

88 | Chapter 4: Expressions and Control Flow in PHP

 fclose($fp);
?>

This is the most complicated piece of code that you have seen so far, but you’re ready
for it. We’ll look into the file-handling commands in a Chapter 7, but for now all you
need to know is that the first line opens the file text.txt for writing in binary mode,
and then returns a pointer to the file in the variable $fp, which is used later to refer to
the open file.

The loop then iterates 100 times (from 0 to 99), writing the string data to the file.
After each write, the variable $written is assigned a value by the fwrite function
representing the number of characters correctly written. But if there is an error, the
fwrite function assigns the value FALSE.

The behavior of fwrite makes it easy for the code to check the variable $written to
see whether it is set to FALSE and, if so, to break out of the loop to the following state‐
ment that closes the file.

If you are looking to improve the code, you can simplify the line:

if ($written == FALSE) break;

using the NOT operator, like this:

if (!$written) break;

In fact, the pair of inner loop statements can be shortened to a single statement:

if (!fwrite($fp, "data")) break;

In other words, you can eliminate the $written variable, because it existed only to
check the value returned from fwrite. You can instead test the return value directly.

The break command is even more powerful than you might think, because if you
have code nested more than one layer deep that you need to break out of, you can
follow the break command with a number to indicate how many levels to break out
of:

break 2;

The continue Statement
The continue statement is a little like a break statement, except that it instructs PHP
to stop processing the current iteration of the loop and move right to its next itera‐
tion. So, instead of breaking out of the whole loop, PHP exits only the current itera‐
tion.

This approach can be useful in cases where you know there is no point continuing
execution within the current loop and you want to save processor cycles or prevent
an error from occurring by moving right along to the next iteration of the loop. In

Looping | 89

Example 4-36, a continue statement is used to prevent a division-by-zero error from
being issued when the variable $j has a value of 0.

Example 4-36. Trapping division-by-zero errors using continue

<?php
 $j = 10;

 while ($j > -10)
 {
 $j--;

 if ($j == 0) continue;

 echo (10 / $j) . "
";
 }
?>

For all values of $j between 10 and –10, with the exception of 0, the result of calculat‐
ing 10 divided by $j is displayed. But for the case of $j being 0, the continue state‐
ment is issued and execution skips immediately to the next iteration of the loop.

Implicit and Explicit Casting
PHP is a loosely typed language that allows you to declare a variable and its type sim‐
ply by using it. It also automatically converts values from one type to another when‐
ever required. This is called implicit casting.

However, at times PHP’s implicit casting may not be what you want. In Example 4-37,
note that the inputs to the division are integers. By default, PHP converts the output
to floating point so it can give the most precise value—4.66 recurring.

Example 4-37. This expression returns a floating-point number

<?php
 $a = 56;
 $b = 12;
 $c = $a / $b;

 echo $c;
?>

But what if we had wanted $c to be an integer instead? There are various ways we
could achieve this, one of which is to force the result of $a / $b to be cast to an inte‐
ger value using the integer cast type (int), like this:

$c = (int) ($a / $b);

90 | Chapter 4: Expressions and Control Flow in PHP

This is called explicit casting. Note that in order to ensure that the value of the entire
expression is cast to an integer, we place the expression within parentheses.
Otherwise, only the variable $a would have been cast to an integer—a pointless exer‐
cise, as the division by $b would still have returned a floating-point number.

You can explicitly cast variables and literals to the types shown in Table 4-6.

Table 4-6. PHP’s cast types

Cast type Description
(int) (integer) Cast to an integer by dropping the decimal portion.
(bool) (boolean) Cast to a Boolean.
(float) (double) (real) Cast to a floating-point number.
(string) Cast to a string.
(array) Cast to an array.
(object) Cast to an object.

You can usually avoid having to use a cast by calling one of PHP’s
built-in functions. For example, to obtain an integer value, you
could use the intval function. As with some other sections in this
book, this section is here mainly to help you understand third-
party code that you may encounter.

PHP Dynamic Linking
Because PHP is a programming language, and the output from it can be completely
different for each user, it’s possible for an entire website to run from a single PHP web
page. Each time the user clicks on something, the details can be sent back to the same
web page, which decides what to do next according to the various cookies and/or
other session details it may have stored.

But although it is possible to build an entire website this way, it’s not recommended,
because your source code will grow and grow and start to become unwieldy, as it has
to account for every possible action a user could take.

Instead, it’s much more sensible to split your website development into different
parts. For example, one distinct process is signing up for a website, along with all the
checking this entails to validate an email address, determine whether a username is
already taken, and so on.

A second module might be one that logs users in before handing them off to the main
part of your website. Then you might have a messaging module with the facility for
users to leave comments, a module containing links and useful information, another
to allow uploading of images, and more.

PHP Dynamic Linking | 91

As long as you have created a way to track your user through your website by means
of cookies or session variables (both of which we’ll look at more closely in later
chapters), you can split up your website into sensible sections of PHP code, each one
self-contained, and therefore treat yourself to a much easier future, developing each
new feature and maintaining old ones. If you have a team, different people can work
on different modules, so that each programmer needs to learn just one part of the
program thoroughly.

Dynamic Linking in Action
One of the more popular PHP-driven applications on the web today is the blogging
platform WordPress (see Figure 4-5). As a blogger or a blog reader, you might not
realize it, but every major section has been given its own main PHP file, and a whole
raft of generic, shared functions have been placed in separate files that are included
by the main PHP pages as necessary.

Figure 4-5. The WordPress blogging platform’s dashboard

The whole platform is held together with behind-the-scenes session tracking, so that
you hardly know when you are transitioning from one subsection to another. There‐
fore, a web developer who wants to tweak WordPress can easily find the particular file
they need, modify it, and test and debug it without messing around with unconnec‐
ted parts of the program. Next time you use WordPress, keep an eye on your brows‐
er’s address bar, particularly if you are managing a blog, and you’ll notice some of the
different PHP files that it uses.

92 | Chapter 4: Expressions and Control Flow in PHP

This chapter has covered quite a lot of ground, and by now you should be able to put
together your own small PHP programs. But before you do, and before proceeding
with the following chapter on functions and objects, you may wish to test your new
knowledge by answering the following questions.

Questions
1. What actual underlying values are represented by TRUE and FALSE?
2. What are the simplest two forms of expressions?
3. What is the difference between unary, binary, and ternary operators?
4. What is the best way to force your own operator precedence?
5. What is meant by operator associativity?
6. When would you use the === (identity) operator?
7. Name the three conditional statement types.
8. What command can you use to skip the current iteration of a loop and move on

to the next one?
9. Why is a for loop more powerful than a while loop?

10. How do if and while statements interpret conditional expressions of different
data types?

See “Chapter 4 Answers” on page 716 in Appendix A for the answers to these
questions.

Questions | 93

CHAPTER 5

PHP Functions and Objects

The basic requirements of any programming language include somewhere to store
data, a means of directing program flow, and a few bits and pieces such as expression
evaluation, file management, and text output. PHP has all these, plus tools like else
and elseif to make life easier. But even with all these in your toolkit, programming
can be clumsy and tedious, especially if you have to rewrite portions of very similar
code each time you need them.

That’s where functions and objects come in. As you might guess, a function is a set of
statements that performs a particular function and—optionally—returns a value. You
can pull out a section of code that you have used more than once, place it into a func‐
tion, and call the function by name when you want the code.

Functions have many advantages over contiguous, inline code. For example, they:

• Involve less typing
• Reduce syntax and other programming errors
• Decrease the loading time of program files
• Decrease execution time, because each function is compiled only once, no matter

how often you call it
• Accept arguments and can therefore be used for general as well as specific cases

Objects take this concept a step further. An object incorporates one or more func‐
tions, and the data they use, into a single structure called a class.

In this chapter, you’ll learn all about using functions, from defining and calling them
to passing arguments back and forth. With that knowledge under your belt, you’ll
start creating functions and using them in your own objects (where they will be
referred to as methods).

95

It is now highly unusual (and definitely not recommended) to use
any version of PHP lower than 5.4. Therefore, this chapter assumes
that this release is the bare minimum version you will be working
with. Generally I would recommend version 5.6, or the new ver‐
sion 7.0 or 7.1 (there is no version 6). You can select any of these
from the AMPPS control panel, as described in Chapter 2.

PHP Functions
PHP comes with hundreds of ready-made, built-in functions, making it a very rich
language. To use a function, call it by name. For example, you can see the date func‐
tion in action here:

echo date("l"); // Displays the day of the week

The parentheses tell PHP that you’re referring to a function. Otherwise, it thinks
you’re referring to a constant.

Functions can take any number of arguments, including zero. For example, phpinfo,
as shown next, displays lots of information about the current installation of PHP and
requires no argument. The result of calling this function can be seen in Figure 5-1.

phpinfo();

Figure 5-1. The output of PHP’s built-in phpinfo function

96 | Chapter 5: PHP Functions and Objects

The phpinfo function is extremely useful for obtaining informa‐
tion about your current PHP installation, but that information
could also be very useful to potential hackers. Therefore, never
leave a call to this function in any web-ready code.

Some of the built-in functions that use one or more arguments appear in
Example 5-1.

Example 5-1. Three string functions

<?php
 echo strrev(" .dlrow olleH"); // Reverse string
 echo str_repeat("Hip ", 2); // Repeat string
 echo strtoupper("hooray!"); // String to uppercase
?>

This example uses three string functions to output the following text:

Hello world. Hip Hip HOORAY!

As you can see, the strrev function reversed the order of characters in the string,
str_repeat repeated the string "Hip " twice (as required by the second argument),
and strtoupper converted "hooray!" to uppercase.

Defining a Function
The general syntax for a function is as follows:

function function_name([parameter [, ...]])
{
 // Statements
}

The first line of the syntax indicates the following:

• A definition starts with the word function.
• A name follows, which must start with a letter or underscore, followed by any

number of letters, numbers, or underscores.
• The parentheses are required.
• One or more parameters, separated by commas, are optional (as indicated by the

square brackets).

Function names are case-insensitive, so all of the following strings can refer to the
print function: PRINT, Print, and PrInT.

PHP Functions | 97

The opening curly brace starts the statements that will execute when you call the
function; a matching curly brace must close it. These statements may include one or
more return statements, which force the function to cease execution and return to
the calling code. If a value is attached to the return statement, the calling code can
retrieve it, as we’ll see next.

Returning a Value
Let’s take a look at a simple function to convert a person’s full name to lowercase and
then capitalize the first letter of each part of the name.

We’ve already seen an example of PHP’s built-in strtoupper function in
Example 5-1. For our current function, we’ll use its counterpart, strtolower:

$lowered = strtolower("aNY # of Letters and Punctuation you WANT");

echo $lowered;

The output of this experiment is as follows:

any # of letters and punctuation you want

We don’t want names all lowercase, though; we want the first letter of each part of the
name capitalized. (We’re not going to deal with subtle cases such as Mary-Ann or Jo-
En-Lai for this example.) Luckily, PHP also provides a ucfirst function that sets the
first character of a string to uppercase:

$ucfixed = ucfirst("any # of letters and punctuation you want");

echo $ucfixed;

The output is as follows:

Any # of letters and punctuation you want

Now we can do our first bit of program design: to get a word with its initial letter
capitalized, we call strtolower on the string first, and then ucfirst. The way to do
this is to nest a call to strtolower within ucfirst. Let’s see why, because it’s impor‐
tant to understand the order in which code is evaluated.

Say you make a simple call to the print function:

print(5-8);

The expression 5-8 is evaluated first, and the output is –3. (As you saw in the previ‐
ous chapter, PHP converts the result to a string in order to display it.) If the expres‐
sion contains a function, that function is evaluated first as well:

print(abs(5-8));

PHP is doing several things in executing that short statement:

98 | Chapter 5: PHP Functions and Objects

1. Evaluate 5-8 to produce –3.
2. Use the abs function to turn –3 into 3.
3. Convert the result to a string and output it using the print function.

It all works because PHP evaluates each element from the inside out. The same proce‐
dure is in operation when we call the following:

ucfirst(strtolower("aNY # of Letters and Punctuation you WANT"))

PHP passes our string to strtolower and then to ucfirst, producing (as we’ve
already seen when we played with the functions separately):

Any # of letters and punctuation you want

Now let’s define a function (shown in Example 5-2) that takes three names and makes
each one lowercase, with an initial capital letter.

Example 5-2. Cleaning up a full name

<?php
 echo fix_names("WILLIAM", "henry", "gatES");

 function fix_names($n1, $n2, $n3)
 {
 $n1 = ucfirst(strtolower($n1));
 $n2 = ucfirst(strtolower($n2));
 $n3 = ucfirst(strtolower($n3));

 return $n1 . " " . $n2 . " " . $n3;
 }
?>

You may well find yourself writing this type of code, because users often leave their
Caps Lock key on, accidentally insert capital letters in the wrong places, and even for‐
get capitals altogether. The output from this example is shown here:

William Henry Gates

Returning an Array
We just saw a function returning a single value. There are also ways of getting multi‐
ple values from a function.

The first method is to return them within an array. As you saw in Chapter 3, an array
is like a bunch of variables stuck together in a row. Example 5-3 shows how you can
use an array to return function values.

PHP Functions | 99

Example 5-3. Returning multiple values in an array

<?php
 $names = fix_names("WILLIAM", "henry", "gatES");
 echo $names[0] . " " . $names[1] . " " . $names[2];

 function fix_names($n1, $n2, $n3)
 {
 $n1 = ucfirst(strtolower($n1));
 $n2 = ucfirst(strtolower($n2));
 $n3 = ucfirst(strtolower($n3));

 return array($n1, $n2, $n3);
 }
?>

This method has the benefit of keeping all three names separate, rather than concate‐
nating them into a single string, so you can refer to any user simply by first or last
name without having to extract either name from the returned string.

Passing Arguments by Reference
In PHP versions prior to 5.3, you used to be able to preface a variable with the &
symbol at the time of calling a function (for example, increment(&$myvar);) to tell
the parser to pass a reference to the variable, not the variable’s value. This granted a
function access to the variable (allowing different values to be written back to it).

Call-time pass-by-reference was deprecated in PHP 5.3 and
removed in PHP 5.4. You should therefore not use this feature
other than on legacy websites, and even there you are recom‐
mended to rewrite code that passes by reference, because it will halt
with a fatal error on newer versions of PHP.

However, within a function definition, you may continue to access arguments by ref‐
erence. This concept can be hard to get your head around, so let’s go back to the
matchbox metaphor from Chapter 3.

Imagine that, instead of taking a piece of paper out of a matchbox, reading it, copying
what’s on it onto another piece of paper, putting the original back, and passing the
copy to a function (phew!), you could simply attach a piece of thread to the original
piece of paper and pass one end of it to the function (see Figure 5-2).

100 | Chapter 5: PHP Functions and Objects

Figure 5-2. Imagining a reference as a thread attached to a variable

Now the function can follow the thread to find the data to be accessed. This avoids all
the overhead of creating a copy of the variable just for the function’s use. What’s
more, the function can now modify the variable’s value.

This means you can rewrite Example 5-3 to pass references to all the parameters, and
then the function can modify these directly (see Example 5-4).

Example 5-4. Passing values to a function by reference

<?php
 $a1 = "WILLIAM";
 $a2 = "henry";
 $a3 = "gatES";

 echo $a1 . " " . $a2 . " " . $a3 . "
";
 fix_names($a1, $a2, $a3);
 echo $a1 . " " . $a2 . " " . $a3;

 function fix_names(&$n1, &$n2, &$n3)
 {
 $n1 = ucfirst(strtolower($n1));
 $n2 = ucfirst(strtolower($n2));
 $n3 = ucfirst(strtolower($n3));
 }
?>

Rather than passing strings directly to the function, you first assign them to variables
and print them out to see their “before” values. Then you call the function as before,
but within the function definition you place a & symbol in front of each parameter to
be passed by reference.

PHP Functions | 101

Now the variables $n1, $n2, and $n3 are attached to “threads” that lead to the values of
$a1, $a2, and $a3. In other words, there is one group of values, but two sets of vari‐
able names are allowed to access them.

Therefore, the function fix_names only has to assign new values to $n1, $n2, and $n3
to update the values of $a1, $a2, and $a3. The output from this code is:

WILLIAM henry gatES
William Henry Gates

As you see, both of the echo statements use only the values of $a1, $a2, and $a3.

Returning Global Variables
The better way to give a function access to an externally created variable is by declar‐
ing it to have global access from within the function. The global keyword followed
by the variable name gives every part of your code full access to it (see Example 5-5).

Example 5-5. Returning values in global variables

<?php
 $a1 = "WILLIAM";
 $a2 = "henry";
 $a3 = "gatES";

 echo $a1 . " " . $a2 . " " . $a3 . "
";
 fix_names();
 echo $a1 . " " . $a2 . " " . $a3;

 function fix_names()
 {
 global $a1; $a1 = ucfirst(strtolower($a1));
 global $a2; $a2 = ucfirst(strtolower($a2));
 global $a3; $a3 = ucfirst(strtolower($a3));
 }
?>

Now you don’t have to pass parameters to the function, and it doesn’t have to accept
them. Once declared, these variables retain global access and are available to the rest
of your program, including its functions.

Recap of Variable Scope
A quick reminder of what you know from Chapter 3:

• Local variables are accessible just from the part of your code where you define
them. If they’re outside of a function, they can be accessed by all code outside of

102 | Chapter 5: PHP Functions and Objects

functions, classes, and so on. If a variable is inside a function, only that function
can access the variable, and its value is lost when the function returns.

• Global variables are accessible from all parts of your code.
• Static variables are accessible only within the function that declared them but

retain their value over multiple calls.

Including and Requiring Files
As you progress in your use of PHP programming, you are likely to start building a
library of functions that you think you will need again. You’ll also probably start
using libraries created by other programmers.

There’s no need to copy and paste these functions into your code. You can save them
in separate files and use commands to pull them in. There are two commands to per‐
form this action: include and require.

The include Statement
Using include, you can tell PHP to fetch a particular file and load all its contents. It’s
as if you pasted the included file into the current file at the insertion point.
Example 5-6 shows how you would include a file called library.php.

Example 5-6. Including a PHP file

<?php
 include "library.php";

 // Your code goes here
?>

Using include_once
Each time you issue the include directive, it includes the requested file again, even if
you’ve already inserted it. For instance, suppose that library.php contains a lot of use‐
ful functions, so you include it in your file, but you also include another library that
includes library.php. Through nesting, you’ve inadvertently included library.php
twice. This will produce error messages, because you’re trying to define the same con‐
stant or function multiple times. So, you should use include_once instead (see
Example 5-7).

Including and Requiring Files | 103

Example 5-7. Including a PHP file only once

<?php
 include_once "library.php";

 // Your code goes here
?>

Then, any further attempts to include the same file (with include or include_once)
will be ignored. To determine whether the requested file has already been executed,
the absolute file path is matched after all relative paths are resolved and the file is
found in your include path.

In general, it’s probably best to stick with include_once and ignore
the basic include statement. That way, you will never have the
problem of files being included multiple times.

Using require and require_once
A potential problem with include and include_once is that PHP will only attempt to
include the requested file. Program execution continues even if the file is not found.

When it is absolutely essential to include a file, require it. For the same reasons I
gave for using include_once, I recommend that you generally stick with
require_once whenever you need to require a file (see Example 5-8).

Example 5-8. Requiring a PHP file only once

<?php
 require_once "library.php";

 // Your code goes here
?>

PHP Version Compatibility
PHP is in an ongoing process of development, and there are multiple versions. If you
need to check whether a particular function is available to your code, you can use the
function_exists function, which checks all predefined and user-created functions.

Example 5-9 checks for array_combine, a function specific to PHP version 5.

104 | Chapter 5: PHP Functions and Objects

Example 5-9. Checking for a function’s existence

<?php
 if (function_exists("array_combine"))
 {
 echo "Function exists";
 }
 else
 {
 echo "Function does not exist - better write our own";
 }
?>

Using code such as this, you can take advantage of features in newer versions of PHP
and yet still have your code run on earlier versions, as long as you replicate any fea‐
tures that are missing. Your functions may be slower than the built-in ones, but at
least your code will be much more portable.

You can also use the phpversion function to determine which version of PHP your
code is running on. The returned result will be similar to the following, depending on
the version:

5.5.38

PHP Objects
In much the same way that functions represent a huge increase in programming
power over the early days of computing, where sometimes the best program naviga‐
tion available was a very basic GOTO or GOSUB statement, object-oriented programming
(OOP) takes the use of functions to a whole new level.

Once you get the hang of condensing reusable bits of code into functions, it’s not that
great a leap to consider bundling the functions and their data into objects.

Let’s take a social networking site that has many parts. One handles all user functions
—that is, code to enable new users to sign up and existing users to modify their
details. In standard PHP, you might create a few functions to handle this and embed
some calls to the MySQL database to keep track of all the users.

Imagine how much easier it would be to create an object to represent the current user.
To do this, you could create a class, perhaps called User, that would contain all the
code required for handling users and all the variables needed for manipulating the
data within the class. Then, whenever you need to manipulate a user’s data, you could
simply create a new object with the User class.

You could treat this new object as if it were the actual user. For example, you could
pass the object a name, password, and email address; ask it whether such a user
already exists; and, if not, have it create a new user with those attributes. You could

PHP Objects | 105

even have an instant messaging object, or one for managing whether two users are
friends.

Terminology
When creating a program to use objects, you need to design a composite of data and
code called a class. Each new object based on this class is called an instance (or occur‐
rence) of that class.

The data associated with an object is called its properties; the functions it uses are
called methods. In defining a class, you supply the names of its properties and the
code for its methods. See Figure 5-3 for a jukebox metaphor for an object. Think of
the CDs that it holds in the carousel as its properties; the method of playing them is
to press buttons on the front panel. There is also a slot for inserting coins (the
method used to activate the object), and the laser disc reader (the method used to
retrieve the music, or properties, from the CDs).

Figure 5-3. A jukebox: a great example of a self-contained object

When you’re creating objects, it is best to use encapsulation, or writing a class in such
a way that only its methods can be used to manipulate its properties. In other words,

106 | Chapter 5: PHP Functions and Objects

you deny outside code direct access to its data. The methods you supply are known as
the object’s interface.

This approach makes debugging easy: you have to fix faulty code only within a class.
Additionally, when you want to upgrade a program, if you have used proper encapsu‐
lation and maintained the same interface, you can simply develop new replacement
classes, debug them fully, and then swap them in for the old ones. If they don’t work,
you can swap the old ones back in to immediately fix the problem before further
debugging the new classes.

Once you have created a class, you may find that you need another class that is simi‐
lar to it but not quite the same. The quick and easy thing to do is to define a new class
using inheritance. When you do this, your new class has all the properties of the one
it has inherited from. The original class is now called the superclass, and the new one
is the subclass (or derived class).

In our jukebox example, if you invent a new jukebox that can play a video along with
the music, you can inherit all the properties and methods from the original jukebox
superclass and add some new properties (videos) and new methods (a movie player).

An excellent benefit of this system is that if you improve the speed or any other aspect
of the superclass, its subclasses will receive the same benefit.

Declaring a Class
Before you can use an object, you must define a class with the class keyword. Class
definitions contain the class name (which is case-sensitive), its properties, and its
methods. Example 5-10 defines the class User with two properties, which are $name
and $password (indicated by the public keyword—see “Property and Method Scope”
on page 114). It also creates a new instance (called $object) of this class.

Example 5-10. Declaring a class and examining an object

<?php
 $object = new User;
 print_r($object);

 class User
 {
 public $name, $password;

 function save_user()
 {
 echo "Save User code goes here";
 }
 }
?>

PHP Objects | 107

Here I have also used an invaluable function called print_r. It asks PHP to display
information about a variable in human-readable form. (The _r stands for human-
readable.) In the case of the new object $object, it displays the following:

User Object
(
 [name] =>
 [password] =>
)

However, a browser compresses all the whitespace, so the output in a browser is
slightly harder to read:

User Object ([name] => [password] =>)

In any case, the output says that $object is a user-defined object that has the proper‐
ties name and password.

Creating an Object
To create an object with a specified class, use the new keyword, like this: $object =
new Class. Here are a couple of ways in which we could do this:

$object = new User;
$temp = new User('name', 'password');

On the first line, we simply assign an object to the User class. In the second, we pass
parameters to the call.

A class may require or prohibit arguments; it may also allow arguments without
explicitly requiring them.

Accessing Objects
Let’s add a few lines to Example 5-10 and check the results. Example 5-11 extends the
previous code by setting object properties and calling a method.

Example 5-11. Creating and interacting with an object

<?php
 $object = new User;
 print_r($object); echo "
";

 $object->name = "Joe";
 $object->password = "mypass";
 print_r($object); echo "
";

 $object->save_user();

 class User

108 | Chapter 5: PHP Functions and Objects

 {
 public $name, $password;

 function save_user()
 {
 echo "Save User code goes here";
 }
 }
?>

As you can see, the syntax for accessing an object’s property is $object->property.
Likewise, you call a method like this: $object->method().

You should note that the example property and method do not have $ signs in front
of them. If you were to preface them with $ signs, the code would not work, as it
would try to reference the value inside a variable. For example, the expression
$object->$property would attempt to look up the value assigned to a variable
named $property (let’s say that value is the string brown) and then attempt to refer‐
ence the property $object->brown. If $property is undefined, an attempt to refer‐
ence $object->NULL would occur and cause an error.

When looked at using a browser’s View Source facility, the output from Example 5-11
is as follows:

User Object
(
 [name] =>
 [password] =>
)
User Object
(
 [name] => Joe
 [password] => mypass
)
Save User code goes here

Again, print_r shows its utility by providing the contents of $object before and
after property assignment. From now on, I’ll omit print_r statements, but if you are
working along with this book on your development server, you can put some in to see
exactly what is happening.

You can also see that the code in the method save_user was executed via the call to
that method. It printed the string reminding us to create some code.

You can place functions and class definitions anywhere in your
code, before or after statements that use them. Generally, though, it
is considered good practice to place them toward the end of a file.

PHP Objects | 109

Cloning Objects
Once you have created an object, it is passed by reference when you pass it as a
parameter. In the matchbox metaphor, this is like keeping several threads attached to
an object stored in a matchbox, so that you can follow any attached thread to access
it.

In other words, making object assignments does not copy objects in their entirety.
You’ll see how this works in Example 5-12, where we define a very simple User class
with no methods and only the property name.

Example 5-12. Copying an object?

<?php
 $object1 = new User();
 $object1->name = "Alice";
 $object2 = $object1;
 $object2->name = "Amy";

 echo "object1 name = " . $object1->name . "
";
 echo "object2 name = " . $object2->name;

 class User
 {
 public $name;
 }
?>

Here, we first create the object $object1 and assign the value Alice to the name prop‐
erty. Then we create $object2, assigning it the value of $object1, and assign the
value Amy just to the name property of $object2—or so we might think. But this code
outputs the following:

object1 name = Amy
object2 name = Amy

What has happened? Both $object1 and $object2 refer to the same object, so chang‐
ing the name property of $object2 to Amy also sets that property for $object1.

To avoid this confusion, you can use the clone operator, which creates a new instance
of the class and copies the property values from the original instance to the new
instance. Example 5-13 illustrates this usage.

Example 5-13. Cloning an object

<?php
 $object1 = new User();
 $object1->name = "Alice";

110 | Chapter 5: PHP Functions and Objects

 $object2 = clone $object1;
 $object2->name = "Amy";

 echo "object1 name = " . $object1->name . "
";
 echo "object2 name = " . $object2->name;

 class User
 {
 public $name;
 }
?>

Voilà! The output from this code is what we initially wanted:

object1 name = Alice
object2 name = Amy

Constructors
When creating a new object, you can pass a list of arguments to the class being called.
These are passed to a special method within the class, called the constructor, which
initializes various properties.

To do this you use the function name __construct (that is, construct preceded by
two underscore characters), as in Example 5-14.

Example 5-14. Creating a constructor method

<?php
 class User
 {
 function __construct($param1, $param2)
 {
 // Constructor statements go here
 public $username = "Guest";
 }
 }
?>

Destructors
You also have the ability to create destructor methods. This ability is useful when code
has made the last reference to an object or when a script reaches the end.
Example 5-15 shows how to create a destructor method. The destructor can do clean-
up such as releasing a connection to a database or some other resource that you
reserved within the class. Because you reserved the resource within the class, you
have to release it here, or it will stick around indefinitely. Many system-wide prob‐
lems are caused by programs reserving resources and forgetting to release them.

PHP Objects | 111

Example 5-15. Creating a destructor method

<?php
 class User
 {
 function __destruct()
 {
 // Destructor code goes here
 }
 }
?>

Writing Methods
As you have seen, declaring a method is similar to declaring a function, but there are
a few differences. For example, method names beginning with a double underscore
(__) are reserved, and you should not create any of this form.

You also have access to a special variable called $this, which can be used to access the
current object’s properties. To see how it works, take a look at Example 5-16, which
contains a different method from the User class definition called get_password.

Example 5-16. Using the variable $this in a method

<?php
 class User
 {
 public $name, $password;

 function get_password()
 {
 return $this->password;
 }
 }
?>

get_password uses the $this variable to access the current object and then return the
value of that object’s password property. Note how the preceding $ of the property
$password is omitted when we use the -> operator. Leaving the $ in place is a typical
error you may run into, particularly when you first use this feature.

Here’s how you would use the class defined in Example 5-16:

$object = new User;
$object->password = "secret";

echo $object->get_password();

This code prints the password secret.

112 | Chapter 5: PHP Functions and Objects

Declaring Properties
It is not necessary to explicitly declare properties within classes, as they can be
implicitly defined when first used. To illustrate this, in Example 5-17 the class User
has no properties and no methods but is legal code.

Example 5-17. Defining a property implicitly

<?php
 $object1 = new User();
 $object1->name = "Alice";

 echo $object1->name;

 class User {}
?>

This code correctly outputs the string Alice without a problem, because PHP implic‐
itly declares the property $object1->name for you. But this kind of programming can
lead to bugs that are infuriatingly difficult to discover, because name was declared
from outside the class.

To help yourself and anyone else who will maintain your code, I advise that you get
into the habit of always declaring your properties explicitly within classes. You’ll be
glad you did.

Also, when you declare a property within a class, you may assign a default value to it.
The value you use must be a constant and not the result of a function or expression.
Example 5-18 shows a few valid and invalid assignments.

Example 5-18. Valid and invalid property declarations

<?php
 class Test
 {
 public $name = "Paul Smith"; // Valid
 public $age = 42; // Valid
 public $time = time(); // Invalid - calls a function
 public $score = $level * 2; // Invalid - uses an expression
 }
?>

Declaring Constants
In the same way that you can create a global constant with the define function, you
can define constants inside classes. The generally accepted practice is to use upper‐
case letters to make them stand out, as in Example 5-19.

PHP Objects | 113

Example 5-19. Defining constants within a class

<?php
 Translate::lookup();

 class Translate
 {
 const ENGLISH = 0;
 const SPANISH = 1;
 const FRENCH = 2;
 const GERMAN = 3;
 // ...

 static function lookup()
 {
 echo self::SPANISH;
 }
 }
?>

You can reference constants directly, using the self keyword and double colon oper‐
ator. Note that this code calls the class directly, using the double colon operator at line
1, without creating an instance of it first. As you would expect, the value printed
when you run this code is 1.

Remember that once you define a constant, you can’t change it.

Property and Method Scope
PHP provides three keywords for controlling the scope of properties and methods
(members):

public

Public members can be referenced anywhere, including by other classes and
instances of the object. This is the default when variables are declared with the
var or public keywords, or when a variable is implicitly declared the first time it
is used. The keywords var and public are interchangeable because, although
deprecated, var is retained for compatibility with previous versions of PHP.
Methods are assumed to be public by default.

protected

These members can be referenced only by the object’s class methods and those of
any subclasses.

private

These members can be referenced only by methods within the same class—not
by subclasses.

114 | Chapter 5: PHP Functions and Objects

Here’s how to decide which you need to use:

• Use public when outside code should access this member and extending classes
should also inherit it.

• Use protected when outside code should not access this member but extending
classes should inherit it.

• Use private when outside code should not access this member and extending
classes also should not inherit it.

Example 5-20 illustrates the use of these keywords.

Example 5-20. Changing property and method scope

<?php
 class Example
 {
 var $name = "Michael"; // Same as public but deprecated
 public $age = 23; // Public property
 protected $usercount; // Protected property

 private function admin() // Private method
 {
 // Admin code goes here
 }
 }
?>

Static Methods
You can define a method as static, which means that it is called on a class, not on an
object. A static method has no access to any object properties and is created and
accessed as in Example 5-21.

Example 5-21. Creating and accessing a static method

<?php
 User::pwd_string();

 class User
 {
 static function pwd_string()
 {
 echo "Please enter your password";
 }
 }
?>

PHP Objects | 115

Note how we call the class itself, along with the static method, using a double colon
(also known as the scope resolution operator), not ->. Static functions are useful for
performing actions relating to the class itself, but not to specific instances of the class.
You can see another example of a static method in Example 5-19.

If you try to access $this->property, or other object properties
from within a static function, you will receive an error message.

Static Properties
Most data and methods apply to instances of a class. For example, in a User class, you
want to do such things as set a particular user’s password or check when the user has
been registered. These facts and operations apply separately to each user and there‐
fore use instance-specific properties and methods.

But occasionally you’ll want to maintain data about a whole class. For instance, to
report how many users are registered, you will store a variable that applies to the
whole User class. PHP provides static properties and methods for such data.

As shown briefly in Example 5-21, declaring members of a class static makes them
accessible without an instantiation of the class. A property declared static cannot be
directly accessed within an instance of a class, but a static method can.

Example 5-22 defines a class called Test with a static property and a public method.

Example 5-22. Defining a class with a static property

<?php
 $temp = new Test();

 echo "Test A: " . Test::$static_property . "
";
 echo "Test B: " . $temp->get_sp() . "
";
 echo "Test C: " . $temp->static_property . "
";

 class Test
 {
 static $static_property = "I'm static";

 function get_sp()
 {
 return self::$static_property;
 }
 }
?>

116 | Chapter 5: PHP Functions and Objects

When you run this code, it returns the following output:

Test A: I'm static
Test B: I'm static

Notice: Undefined property: Test::$static_property
Test C:

This example shows that the property $static_property could be directly referenced
from the class itself via the double colon operator in Test A. Also, Test B could obtain
its value by calling the get_sp method of the object $temp, created from class Test.
But Test C failed, because the static property $static_property was not accessible to
the object $temp.

Note how the method get_sp accesses $static_property using the keyword self.
This is how a static property or constant can be directly accessed within a class.

Inheritance
Once you have written a class, you can derive subclasses from it. This can save lots of
painstaking code rewriting: you can take a class similar to the one you need to write,
extend it to a subclass, and just modify the parts that are different. You achieve this
using the extends keyword.

In Example 5-23, the class Subscriber is declared a subclass of User by means of the
extends keyword.

Example 5-23. Inheriting and extending a class

<?php
 $object = new Subscriber;
 $object->name = "Fred";
 $object->password = "pword";
 $object->phone = "012 345 6789";
 $object->email = "fred@bloggs.com";
 $object->display();

 class User
 {
 public $name, $password;

 function save_user()
 {
 echo "Save User code goes here";
 }
 }

 class Subscriber extends User
 {

PHP Objects | 117

 public $phone, $email;

 function display()
 {
 echo "Name: " . $this->name . "
";
 echo "Pass: " . $this->password . "
";
 echo "Phone: " . $this->phone . "
";
 echo "Email: " . $this->email;
 }
 }
?>

The original User class has two properties, $name and $password, and a method to
save the current user to the database. Subscriber extends this class by adding an
additional two properties, $phone and $email, and includes a method of displaying
the properties of the current object using the variable $this, which refers to the cur‐
rent values of the object being accessed. The output from this code is as follows:

Name: Fred
Pass: pword
Phone: 012 345 6789
Email: fred@bloggs.com

The parent keyword
If you write a method in a subclass with the same name as one in its parent class, its
statements will override those of the parent class. Sometimes this is not the behavior
you want, and you need to access the parent’s method. To do this, you can use the
parent operator, as in Example 5-24.

Example 5-24. Overriding a method and using the parent operator

<?php
 $object = new Son;
 $object->test();
 $object->test2();

 class Dad
 {
 function test()
 {
 echo "[Class Dad] I am your Father
";
 }
 }

 class Son extends Dad
 {
 function test()
 {
 echo "[Class Son] I am Luke
";

118 | Chapter 5: PHP Functions and Objects

 }

 function test2()
 {
 parent::test();
 }
 }
?>

This code creates a class called Dad and a subclass called Son that inherits its proper‐
ties and methods, and then overrides the method test. Therefore, when line 2 calls
the method test, the new method is executed. The only way to execute the overrid‐
den test method in the Dad class is to use the parent operator, as shown in function
test2 of class Son. The code outputs the following:

[Class Son] I am Luke
[Class Dad] I am your Father

If you wish to ensure that your code calls a method from the current class, you can
use the self keyword, like this:

self::method();

Subclass constructors
When you extend a class and declare your own constructor, you should be aware that
PHP will not automatically call the constructor method of the parent class. If you
want to be certain that all initialization code is executed, subclasses should always call
the parent constructors, as in Example 5-25.

Example 5-25. Calling the parent class constructor

<?php
 $object = new Tiger();

 echo "Tigers have...
";
 echo "Fur: " . $object->fur . "
";
 echo "Stripes: " . $object->stripes;

 class Wildcat
 {
 public $fur; // Wildcats have fur

 function __construct()
 {
 $this->fur = "TRUE";
 }
 }

 class Tiger extends Wildcat

PHP Objects | 119

 {
 public $stripes; // Tigers have stripes

 function __construct()
 {
 parent::__construct(); // Call parent constructor first
 $this->stripes = "TRUE";
 }
 }
?>

This example takes advantage of inheritance in the typical manner. The Wildcat class
has created the property $fur, which we’d like to reuse, so we create the Tiger class to
inherit $fur and additionally create another property, $stripes. To verify that both
constructors have been called, the program outputs the following:

Tigers have...
Fur: TRUE
Stripes: TRUE

Final methods
When you wish to prevent a subclass from overriding a superclass method, you can
use the final keyword. Example 5-26 shows how.

Example 5-26. Creating a final method

<?php
 class User
 {
 final function copyright()
 {
 echo "This class was written by Joe Smith";
 }
 }
?>

Once you have digested the contents of this chapter, you should have a strong feel for
what PHP can do for you. You should be able to use functions with ease and, if you
wish, write object-oriented code. In Chapter 6, we’ll finish off our initial exploration
of PHP by looking at the workings of PHP arrays.

Questions
1. What is the main benefit of using a function?
2. How many values can a function return?
3. What is the difference between accessing a variable by name and by reference?

120 | Chapter 5: PHP Functions and Objects

4. What is the meaning of scope in PHP?
5. How can you incorporate one PHP file within another?
6. How is an object different from a function?
7. How do you create a new object in PHP?
8. What syntax would you use to create a subclass from an existing one?
9. How can you cause an object to be initialized when you create it?

10. Why is it a good idea to explicitly declare properties within a class?

See “Chapter 5 Answers” on page 716 in Appendix A for the answers to these
questions.

Questions | 121

CHAPTER 6

PHP Arrays

In Chapter 3, I gave a very brief introduction to PHP’s arrays—just enough for a little
taste of their power. In this chapter, I’ll show you many more things that you can do
with arrays, some of which—if you have ever used a strongly typed language such as
C—may surprise you with their elegance and simplicity.

Arrays are an example of what has made PHP so popular. Not only do they remove
the tedium of writing code to deal with complicated data structures, but they also
provide numerous ways to access data while remaining amazingly fast.

Basic Access
We’ve already looked at arrays as if they were clusters of matchboxes glued together.
Another way to think of an array is like a string of beads, with the beads representing
variables that can be numbers, strings, or even other arrays. They are like bead strings
because each element has its own location and (with the exception of the first and last
ones) each has other elements on either side.

Some arrays are referenced by numeric indexes; others allow alphanumeric identifi‐
ers. Built-in functions let you sort them, add or remove sections, and walk through
them to handle each item through a special kind of loop. And by placing one or more
arrays inside another, you can create arrays of two, three, or any number of dimen‐
sions.

Numerically Indexed Arrays
Let’s assume that you’ve been tasked with creating a simple website for a local office
supply company and you’re currently working on the section devoted to paper. One
way to manage the various items of stock in this category would be to place them in a
numeric array. You can see the simplest way of doing so in Example 6-1.

123

Example 6-1. Adding items to an array

<?php
 $paper[] = "Copier";
 $paper[] = "Inkjet";
 $paper[] = "Laser";
 $paper[] = "Photo";

 print_r($paper);
?>

In this example, each time you assign a value to the array $paper, the first empty
location within that array is used to store the value, and a pointer internal to PHP is
incremented to point to the next free location, ready for future insertions. The famil‐
iar print_r function (which prints out the contents of a variable, array, or object) is
used to verify that the array has been correctly populated. It prints out the following:

Array
(
 [0] => Copier
 [1] => Inkjet
 [2] => Laser
 [3] => Photo
)

The previous code could also have been written as shown in Example 6-2, where the
exact location of each item within the array is specified. But, as you can see, that
approach requires extra typing and makes your code harder to maintain if you want
to insert supplies into or remove them from the array. So, unless you wish to specify a
different order, it’s usually better to simply let PHP handle the actual location num‐
bers.

Example 6-2. Adding items to an array using explicit locations

<?php
 $paper[0] = "Copier";
 $paper[1] = "Inkjet";
 $paper[2] = "Laser";
 $paper[3] = "Photo";

 print_r($paper);
?>

The output from these examples is identical, but you are not likely to use print_r in a
developed website, so Example 6-3 shows how you might print out the various types
of paper the website offers using a for loop.

124 | Chapter 6: PHP Arrays

Example 6-3. Adding items to an array and retrieving them

<?php
 $paper[] = "Copier";
 $paper[] = "Inkjet";
 $paper[] = "Laser";
 $paper[] = "Photo";

 for ($j = 0 ; $j < 4 ; ++$j)
 echo "$j: $paper[$j]
";
?>

This example prints out the following:

0: Copier
1: Inkjet
2: Laser
3: Photo

So far, you’ve seen a couple of ways in which you can add items to an array and one
way of referencing them. PHP offers many more, which I’ll get to shortly. But first,
we’ll look at another type of array.

Associative Arrays
Keeping track of array elements by index works just fine, but can require extra work
in terms of remembering which number refers to which product. It can also make
code hard for other programmers to follow.

This is where associative arrays come into their own. Using them, you can reference
the items in an array by name rather than by number. Example 6-4 expands on the
previous code by giving each element in the array an identifying name and a longer,
more explanatory string value.

Example 6-4. Adding items to an associative array and retrieving them

<?php
 $paper['copier'] = "Copier & Multipurpose";
 $paper['inkjet'] = "Inkjet Printer";
 $paper['laser'] = "Laser Printer";
 $paper['photo'] = "Photographic Paper";

 echo $paper['laser'];
?>

In place of a number (which doesn’t convey any useful information, aside from the
position of the item in the array), each item now has a unique name that you can use
to reference it elsewhere, as with the echo statement—which simply prints out Laser

Basic Access | 125

Printer. The names (copier, inkjet, and so on) are called indexes or keys, and the
items assigned to them (such as Laser Printer) are called values.

This very powerful feature of PHP is often used when you are extracting information
from XML and HTML. For example, an HTML parser such as those used by a search
engine could place all the elements of a web page into an associative array whose
names reflect the page’s structure:

$html['title'] = "My web page";
$html['body'] = "... body of web page ...";

The program would also probably break down all the links found within a page into
another array, and all the headings and subheadings into another. When you use
associative rather than numeric arrays, the code to refer to all of these items is easy to
write and debug.

Assignment Using the array Keyword
So far, you’ve seen how to assign values to arrays by just adding new items one at a
time. Whether you specify keys, specify numeric identifiers, or let PHP assign
numeric identifiers implicitly, this is a long-winded approach. A more compact and
faster assignment method uses the array keyword. Example 6-5 shows both a
numeric and an associative array assigned using this method.

Example 6-5. Adding items to an array using the array keyword

<?php
 $p1 = array("Copier", "Inkjet", "Laser", "Photo");

 echo "p1 element: " . $p1[2] . "
";

 $p2 = array('copier' => "Copier & Multipurpose",
 'inkjet' => "Inkjet Printer",
 'laser' => "Laser Printer",
 'photo' => "Photographic Paper");

 echo "p2 element: " . $p2['inkjet'] . "
";
?>

The first half of this snippet assigns the old, shortened product descriptions to the
array $p1. There are four items, so they will occupy slots 0 through 3. Therefore, the
echo statement prints out the following:

p1 element: Laser

The second half assigns associative identifiers and accompanying longer product
descriptions to the array $p2 using the format key => value. The use of => is similar
to the regular = assignment operator, except that you are assigning a value to an index

126 | Chapter 6: PHP Arrays

and not to a variable. The index is then inextricably linked with that value, unless it is
assigned a new value. The echo command therefore prints out this:

p2 element: Inkjet Printer

You can verify that $p1 and $p2 are different types of array, because both of the fol‐
lowing commands, when appended to the code, will cause an Undefined index or
Undefined offset error, as the array identifier for each is incorrect:

echo $p1['inkjet']; // Undefined index
echo $p2[3]; // Undefined offset

The foreach...as Loop
The creators of PHP have gone to great lengths to make the language easy to use. So,
not content with the loop structures already provided, they added another one espe‐
cially for arrays: the foreach...as loop. Using it, you can step through all the items
in an array, one at a time, and do something with them.

The process starts with the first item and ends with the last one, so you don’t even
have to know how many items there are in an array. Example 6-6 shows how
foreach...as can be used to rewrite Example 6-3.

Example 6-6. Walking through a numeric array using foreach...as

<?php
 $paper = array("Copier", "Inkjet", "Laser", "Photo");
 $j = 0;

 foreach($paper as $item)
 {
 echo "$j: $item
";
 ++$j;
 }
?>

When PHP encounters a foreach statement, it takes the first item of the array and
places it in the variable following the as keyword; and each time control flow returns
to the foreach, the next array element is placed in the as keyword. In this case, the
variable $item is set to each of the four values in turn in the array $paper. Once all
values have been used, execution of the loop ends. The output from this code is
exactly the same as in Example 6-3.

Now let’s see how foreach works with an associative array by taking a look at
Example 6-7, which is a rewrite of the second half of Example 6-5.

The foreach...as Loop | 127

Example 6-7. Walking through an associative array using foreach...as

<?php
 $paper = array('copier' => "Copier & Multipurpose",
 'inkjet' => "Inkjet Printer",
 'laser' => "Laser Printer",
 'photo' => "Photographic Paper");

 foreach($paper as $item => $description)
 echo "$item: $description
";
?>

Remember that associative arrays do not require numeric indexes, so the variable $j
is not used in this example. Instead, each item of the array $paper is fed into the key/
value pair of variables $item and $description, from which they are printed out.
The displayed result of this code is as follows:

copier: Copier & Multipurpose
inkjet: Inkjet Printer
laser: Laser Printer
photo: Photographic Paper

Aslist function an alternative syntax to foreach...as, you can use the list func‐
tion in conjunction with the each function, as in Example 6-8.

Example 6-8. Walking through an associative array using each and list

<?php
 $paper = array('copier' => "Copier & Multipurpose",
 'inkjet' => "Inkjet Printer",
 'laser' => "Laser Printer",
 'photo' => "Photographic Paper");

 while (list($item, $description) = each($paper))
 echo "$item: $description
";
?>

In this example, a while loop is set up and will continue looping until each returns a
value of FALSE. The each function acts like foreach: it returns an array containing a
key/value pair from the array $paper and then moves its built-in pointer to the next
pair in that array. When there are no more pairs to return, each returns FALSE.

The list function takes an array as its argument (in this case, the key/value pair
returned by the function each) and then assigns the values of the array to the vari‐
ables listed within parentheses.

You can see how list works a little more clearly in Example 6-9, where an array is
created out of the two strings Alice and Bob and then passed to the list function,
which assigns those strings as values to the variables $a and $b.

128 | Chapter 6: PHP Arrays

Example 6-9. Using the list function

<?php
 list($a, $b) = array('Alice', 'Bob');
 echo "a=$a b=$b";
?>

The output from this code is as follows:

a=Alice b=Bob

So, you can take your pick when walking through arrays. Use foreach...as to create
a loop that extracts values to the variable following the as, or use the each function
and create your own looping system.

Multidimensional Arrays
A simple design feature in PHP’s array syntax makes it possible to create arrays of
more than one dimension. In fact, they can be as many dimensions as you like
(although it’s a rare application that goes further than three).

That feature is the ability to include an entire array as a part of another one, and to be
able to keep doing so, just like the old rhyme: “Big fleas have little fleas upon their
backs to bite ’em. Little fleas have lesser fleas, add flea, ad infinitum.”

Let’s look at how this works by taking the associative array in the previous example
and extending it; see Example 6-10.

Example 6-10. Creating a multidimensional associative array

<?php
 $products = array(

 'paper' => array(

 'copier' => "Copier & Multipurpose",
 'inkjet' => "Inkjet Printer",
 'laser' => "Laser Printer",
 'photo' => "Photographic Paper"),

 'pens' => array(

 'ball' => "Ball Point",
 'hilite' => "Highlighters",
 'marker' => "Markers"),

 'misc' => array(

 'tape' => "Sticky Tape",
 'glue' => "Adhesives",

Multidimensional Arrays | 129

 'clips' => "Paperclips"
)
);

 echo "<pre>";

 foreach($products as $section => $items)
 foreach($items as $key => $value)
 echo "$section:\t$key\t($value)
";

 echo "</pre>";
?>

To make things clearer now that the code is starting to grow, I’ve renamed some of
the elements. For example, because the previous array $paper is now just a subsection
of a larger array, the main array is now called $products. Within this array, there are
three items—paper, pens, and misc—each of which contains another array with key/
value pairs.

If necessary, these subarrays could have contained even further arrays. For example,
under ball there might be many different types and colors of ballpoint pens available
in the online store. But for now, I’ve restricted the code to a depth of just two.

Once the array data has been assigned, I use a pair of nested foreach...as loops to
print out the various values. The outer loop extracts the main sections from the top
level of the array, and the inner loop extracts the key/value pairs for the categories
within each section.

As long as you remember that each level of the array works the same way (it’s a key/
value pair), you can easily write code to access any element at any level.

The echo statement makes use of the PHP escape character \t, which outputs a tab.
Although tabs are not normally significant to the web browser, I let them be used for
layout by using the <pre>...</pre> tags, which tell the web browser to format the
text as preformatted and monospaced, and not to ignore whitespace characters such
as tabs and line feeds. The output from this code looks like the following:

paper: copier (Copier & Multipurpose)
paper: inkjet (Inkjet Printer)
paper: laser (Laser Printer)
paper: photo (Photographic Paper)
pens: ball (Ball Point)
pens: hilite (Highlighters)
pens: marker (Markers)
misc: tape (Sticky Tape)
misc: glue (Adhesives)
misc: clips (Paperclips)

You can directly access a particular element of the array by using square brackets:

130 | Chapter 6: PHP Arrays

echo $products['misc']['glue'];

This outputs the value Adhesives.

You can also create numeric multidimensional arrays that are accessed directly by
indexes rather than by alphanumeric identifiers. Example 6-11 creates the board for a
chess game with the pieces in their starting positions.

Example 6-11. Creating a multidimensional numeric array

<?php
 $chessboard = array(
 array('r', 'n', 'b', 'q', 'k', 'b', 'n', 'r'),
 array('p', 'p', 'p', 'p', 'p', 'p', 'p', 'p'),
 array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
 array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
 array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
 array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
 array('P', 'P', 'P', 'P', 'P', 'P', 'P', 'P'),
 array('R', 'N', 'B', 'Q', 'K', 'B', 'N', 'R')
);

 echo "<pre>";

 foreach($chessboard as $row)
 {
 foreach ($row as $piece)
 echo "$piece ";

 echo "
";
 }

 echo "</pre>";
?>

In this example, the lowercase letters represent black pieces, and the uppercase white.
The key is r = rook, n = knight, b = bishop, k = king, q = queen, and p = pawn. Again,
a pair of nested foreach...as loops walks through the array and displays its con‐
tents. The outer loop processes each row into the variable $row, which itself is an
array, because the $chessboard array uses a subarray for each row. This loop has two
statements within it, so curly braces enclose them.

The inner loop then processes each square in a row, outputting the character
($piece) stored in it, followed by a space (to square up the printout). This loop has a
single statement, so curly braces are not required to enclose it. The <pre> and </pre>
tags ensure that the output displays correctly, like this:

r n b q k b n r
p p p p p p p p

Multidimensional Arrays | 131

P P P P P P P P
R N B Q K B N R

You can also directly access any element within this array by using square brackets:

echo $chessboard[7][3];

This statement outputs the uppercase letter Q, the eighth element down and the
fourth along (remember that array indexes start at 0, not 1).

Using Array Functions
You’ve already seen the list and each functions, but PHP comes with numerous
other functions for handling arrays. You can find the full list in the documentation.
However, some of these functions are so fundamental that it’s worth taking the time
to look at them here.

is_array
Arrays and variables share the same namespace. This means that you cannot have a
string variable called $fred and an array also called $fred. If you’re in doubt and
your code needs to check whether a variable is an array, you can use the is_array
function, like this:

echo (is_array($fred)) ? "Is an array" : "Is not an array";

Note that if $fred has not yet been assigned a value, an Undefined variable message
will be generated.

count
Although the each function and foreach...as loop structure are excellent ways to
walk through an array’s contents, sometimes you need to know exactly how many ele‐
ments there are in your array, particularly if you will be referencing them directly. To
count all the elements in the top level of an array, use a command such as this:

echo count($fred);

Should you wish to know how many elements there are altogether in a multidimen‐
sional array, you can use a statement such as the following:

echo count($fred, 1);

The second parameter is optional and sets the mode to use. It should be either 0 to
limit counting to only the top level, or 1 to force recursive counting of all subarray
elements too.

132 | Chapter 6: PHP Arrays

http://tinyurl.com/arraysinphp

sort
Sorting is so common that PHP provides a built-in function for it. In its simplest
form, you would use it like this:

sort($fred);

Unlike some other functions, sort will act directly on the supplied array rather than
returning a new array of sorted elements. It returns TRUE on success and FALSE on
error and also supports a few flags—the main two that you might wish to use force
items to be sorted either numerically or as strings, like this:

sort($fred, SORT_NUMERIC);
sort($fred, SORT_STRING);

You can also sort an array in reverse order using the rsort function, like this:

rsort($fred, SORT_NUMERIC);
rsort($fred, SORT_STRING);

shuffle
There may be times when you need the elements of an array to be put in random
order, such as when you’re creating a game of playing cards:

shuffle($cards);

Like sort, shuffle acts directly on the supplied array and returns TRUE on success or
FALSE on error.

explode
explode is a very useful function with which you can take a string containing several
items separated by a single character (or string of characters) and then place each of
these items into an array. One handy example is to split up a sentence into an array
containing all its words, as in Example 6-12.

Example 6-12. Exploding a string into an array using spaces

<?php
 $temp = explode(' ', "This is a sentence with seven words");
 print_r($temp);
?>

This example prints out the following (on a single line when viewed in a browser):

Array
(
 [0] => This
 [1] => is

Using Array Functions | 133

 [2] => a
 [3] => sentence
 [4] => with
 [5] => seven
 [6] => words
)

The first parameter, the delimiter, need not be a space or even a single character.
Example 6-13 shows a slight variation.

Example 6-13. Exploding a string delimited with *** into an array

<?php
 $temp = explode('***', "A***sentence***with***asterisks");
 print_r($temp);
?>

The code in Example 6-13 prints out the following:

Array
(
 [0] => A
 [1] => sentence
 [2] => with
 [3] => asterisks
)

extract
Sometimes it can be convenient to turn the key/value pairs from an array into PHP
variables. One such time might be when you are processing the $_GET or $_POST vari‐
ables sent to a PHP script by a form.

When a form is submitted over the web, the web server unpacks the variables into a
global array for the PHP script. If the variables were sent using the GET method, they
will be placed in an associative array called $_GET; if they were sent using POST, they
will be placed in an associative array called $_POST.

You could, of course, walk through such associative arrays in the manner shown in
the examples so far. However, sometimes you just want to store the values sent into
variables for later use. In this case, you can have PHP do the job automatically:

extract($_GET);

So, if the query string parameter q is sent to a PHP script along with the associated
value Hi there, a new variable called $q will be created and assigned that value.

Be careful with this approach, though, because if any extracted variables conflict with
ones that you have already defined, your existing values will be overwritten. To avoid

134 | Chapter 6: PHP Arrays

this possibility, you can use one of the many additional parameters available to this
function, like this:

extract($_GET, EXTR_PREFIX_ALL, 'fromget');

In this case, all the new variables will begin with the given prefix string followed by an
underscore, so $q will become $fromget_q. I strongly recommend that you use this
version of the function when handling the $_GET and $_POST arrays, or any other
array whose keys could be controlled by the user, because malicious users could sub‐
mit keys chosen deliberately to overwrite commonly used variable names and com‐
promise your website.

compact
At times you may want to use compact, the inverse of extract, to create an array
from variables and their values. Example 6-14 shows how you might use this func‐
tion.

Example 6-14. Using the compact function

<?php
 $fname = "Doctor";
 $sname = "Who";
 $planet = "Gallifrey";
 $system = "Gridlock";
 $constellation = "Kasterborous";

 $contact = compact('fname', 'sname', 'planet', 'system', 'constellation');

 print_r($contact);
?>

The result of running Example 6-14 is as follows:

Array
(
 [fname] => Doctor
 [sname] => Who
 [planet] => Gallifrey
 [system] => Gridlock
 [constellation] => Kasterborous
)

Note how compact requires the variable names to be supplied in quotes, not preceded
by a $ symbol. This is because compact is looking for a list of variable names, not
their values.

Another use of this function is for debugging, when you wish to quickly view several
variables and their values, as in Example 6-15.

Using Array Functions | 135

Example 6-15. Using compact to help with debugging

<?php
 $j = 23;
 $temp = "Hello";
 $address = "1 Old Street";
 $age = 61;

 print_r(compact(explode(' ', 'j temp address age')));
?>

This works by using the explode function to extract all the words from the string into
an array, which is then passed to the compact function, which in turn returns an array
to print_r, which finally shows its contents.

If you copy and paste the print_r line of code, you only need to alter the variables
named there for a quick printout of a group of variables’ values. In this example, the
output is shown here:

Array
(
 [j] => 23
 [temp] => Hello
 [address] => 1 Old Street
 [age] => 61
)

reset
When the foreach...as construct or the each function walks through an array, it
keeps an internal PHP pointer that makes a note of which element of the array it
should return next. If your code ever needs to return to the start of an array, you can
issue reset, which also returns the value of that element. Examples of how to use this
function are as follows:

reset($fred); // Throw away return value
$item = reset($fred); // Keep first element of the array in $item

end
As with reset, you can move PHP’s internal array pointer to the final element in an
array using the end function, which also returns the value of the element, and can be
used as in these examples:

end($fred);
$item = end($fred);

136 | Chapter 6: PHP Arrays

This chapter concludes your basic introduction to PHP, and you should now be able
to write quite complex programs using the skills you have learned. In the next chap‐
ter, we’ll look at using PHP for common, practical tasks.

Questions
1. What is the difference between a numeric and an associative array?
2. What is the main benefit of the array keyword?
3. What is the difference between foreach and each?
4. How can you create a multidimensional array?
5. How can you determine the number of elements in an array?
6. What is the purpose of the explode function?
7. How can you set PHP’s internal pointer into an array back to the first element of

the array?

See “Chapter 6 Answers” on page 717 in Appendix A for the answers to these ques‐
tions.

Questions | 137

CHAPTER 7

Practical PHP

The previous chapters went over the elements of the PHP language. This chapter
builds on your new programming skills to teach you how to perform some common
but important practical tasks. You will learn the best ways to handle strings in order
to achieve clear and concise code that displays in web browsers exactly how you want
it to, including advanced date and time management. You’ll also find out how to cre‐
ate and otherwise modify files, including those uploaded by users.

Using printf
You’ve already seen the print and echo functions, which simply output text to the
browser. But a much more powerful function, printf, controls the format of the out‐
put by letting you put special formatting characters in a string. For each formatting
character, printf expects you to pass an argument that it will display using that for‐
mat. For instance, the following example uses the %d conversion specifier to display
the value 3 in decimal:

printf("There are %d items in your basket", 3);

If you replace the %d with %b, the value 3 will be displayed in binary (11). Table 7-1
shows the conversion specifiers supported.

Table 7-1. The printf conversion specifiers

Specifier Conversion action on argument arg Example (for an arg of 123)
% Display a % character (no arg required) %

b Display arg as a binary integer 1111011

c Display ASCII character for arg {

d Display arg as a signed decimal integer 123

e Display arg using scientific notation 1.23000e+2

139

Specifier Conversion action on argument arg Example (for an arg of 123)
f Display arg as floating point 123.000000

o Display arg as an octal integer 173

s Display arg as a string 123

u Display arg as an unsigned decimal 123

x Display arg in lowercase hexadecimal 7b

X Display arg in uppercase hexadecimal 7B

You can have as many specifiers as you like in a printf function, as long as you pass a
matching number of arguments and as long as each specifier is prefaced by a % sym‐
bol. Therefore, the following code is valid, and will output "My name is Simon. I'm
33 years old, which is 21 in hexadecimal":

printf("My name is %s. I'm %d years old, which is %X in hexadecimal",
 'Simon', 33, 33);

If you leave out any arguments, you will receive a parse error informing you that a
right bracket,), was unexpectedly encountered.

A more practical example of printf sets colors in HTML using decimal values. For
example, suppose you know you want a color that has a triplet value of 65 red, 127
green, and 245 blue, but don’t want to convert this to hexadecimal yourself. Here’s an
easy solution:

printf("Hello", 65, 127, 245);

Check the format of the color specification between the apostrophes ('') carefully.
First comes the pound, or hash, sign (#) expected by the color specification. Then
come three %X format specifiers, one for each of your numbers. The resulting output
from this command is as follows:

Hello

Usually, you’ll find it convenient to use variables or expressions as arguments to
printf. For instance, if you stored values for your colors in the three variables $r, $g,
and $b, you could create a darker color with this:

printf("Hello", $r-20, $g-20, $b-20);

Precision Setting
Not only can you specify a conversion type, but you can also set the precision of the
displayed result. For example, amounts of currency are usually displayed with only
two digits of precision. However, after a calculation, a value may have a greater preci‐
sion than this, such as 123.42 / 12, which results in 10.285. To ensure that such values
are correctly stored internally, but displayed with only two digits of precision, you can
insert the string ".2" between the % symbol and the conversion specifier:

140 | Chapter 7: Practical PHP

printf("The result is: $%.2f", 123.42 / 12);

The output from this command is as follows:

The result is $10.29

But you actually have even more control than that, because you can also specify
whether to pad output with either zeros or spaces by prefacing the specifier with cer‐
tain values. Example 7-1 shows four possible combinations.

Example 7-1. Precision setting

<?php
 echo "<pre>"; // Enables viewing of the spaces

 // Pad to 15 spaces
 printf("The result is $%15f\n", 123.42 / 12);

 // Pad to 15 spaces, fill with zeros
 printf("The result is $%015f\n", 123.42 / 12);

 // Pad to 15 spaces, 2 decimal places precision
 printf("The result is $%15.2f\n", 123.42 / 12);

 // Pad to 15 spaces, 2 decimal places precision, fill with zeros
 printf("The result is $%015.2f\n", 123.42 / 12);

 // Pad to 15 spaces, 2 decimal places precision, fill with # symbol
 printf("The result is $%'#15.2f\n", 123.42 / 12);
?>

The output from this example looks like this:

The result is $ 10.285000
The result is $00000010.285000
The result is $ 10.29
The result is $000000000010.29
The result is $##########10.29

The way it works is simple if you go from right to left (see Table 7-2). Notice that:

• The rightmost character is the conversion specifier: in this case, f for floating
point.

• Just before the conversion specifier, if there is a period and a number together,
then the precision of the output is specified as the value of the number.

• Regardless of whether there’s a precision specifier, if there is a number, then that
represents the number of characters to which the output should be padded. In
the previous example, this is 15 characters. If the output is already equal to or
greater than the padding length, then this argument is ignored.

Using printf | 141

• The leftmost parameter allowed after the % symbol is a 0, which is ignored unless
a padding value has been set, in which case the output is padded with zeros
instead of spaces. If a pad character other than zero or a space is required, you
can use any one of your choice as long as you preface it with a single quotation
mark, like this: '#.

• On the left is the % symbol, which starts the conversion.

Table 7-2. Conversion specifier components

Start conversion Pad character Number of pad
characters

Display precision Conversion
specifier

Example

% 15 f 10.285000

% 0 15 .2 f 000000000010.29

% '# 15 .4 f ########10.2850

String Padding
You can also pad strings to required lengths (as you can with numbers), select differ‐
ent padding characters, and even choose between left and right justification.
Example 7-2 shows various examples.

Example 7-2. String padding

<?php
 echo "<pre>"; // Enables viewing of the spaces

 $h = 'Rasmus';

 printf("[%s]\n", $h); // Standard string output
 printf("[%12s]\n", $h); // Right justify with spaces to width 12
 printf("[%-12s]\n", $h); // Left justify with spaces
 printf("[%012s]\n", $h); // Pad with zeros
 printf("[%'#12s]\n\n", $h); // Use the custom padding character '#'

 $d = 'Rasmus Lerdorf'; // The original creator of PHP

 printf("[%12.8s]\n", $d); // Right justify, cutoff of 8 characters
 printf("[%-12.12s]\n", $d); // Left justify, cutoff of 12 characters
 printf("[%-'@12.10s]\n", $d); // Left justify, pad with '@', cutoff 10 chars
?>

Note how for purposes of layout in a web page, I’ve used the <pre> HTML tag to pre‐
serve all the spaces and the \n newline character after each of the lines to be dis‐
played. The output from this example is as follows:

142 | Chapter 7: Practical PHP

[Rasmus]
[Rasmus]
[Rasmus]
[000000Rasmus]
[######Rasmus]

[Rasmus L]
[Rasmus Lerdo]
[Rasmus Ler@@]

When you specify a padding value, strings of a length equal to or greater than that
value will be ignored, unless a cutoff value is given that shortens the strings back to
less than the padding value.

Table 7-3 shows the components available to string conversion specifiers.

Table 7-3. String conversion specifier components

Start conversion Left/right
justify

Padding
character

Number of pad
characters

Cutoff Conversion
specifier

Example
(using “Rasmus”)

% s [Rasmus]

% - 10 s [Rasmus]

% '# 8 .4 s [####Rasm]

Using sprintf
Often, you don’t want to output the result of a conversion but need it to use elsewhere
in your code. This is where the sprintf function comes in. With it, you can send the
output to another variable rather than to the browser.

You might use it to make a conversion, as in the following example, which returns the
hexadecimal string value for the RGB color group 65, 127, 245 in $hexstring:

$hexstring = sprintf("%X%X%X", 65, 127, 245);

Or you may wish to store output ready to display later on:

$out = sprintf("The result is: $%.2f", 123.42 / 12);
echo $out;

Date and Time Functions
To keep track of the date and time, PHP uses standard Unix timestamps, which are
simply the number of seconds since the start of January 1, 1970. To determine the
current timestamp, you can use the time function:

echo time();

Date and Time Functions | 143

Because the value is stored as seconds, to obtain the timestamp for this time next
week, you would use the following, which adds 7 days × 24 hours × 60 minutes × 60
seconds to the returned value:

echo time() + 7 * 24 * 60 * 60;

If you wish to create a timestamp for a given date, you can use the mktime function.
Its output is the timestamp 946684800 for the first second of the first minute of the
first hour of the first day of the year 2000:

echo mktime(0, 0, 0, 1, 1, 2000);

The parameters to pass are, in order from left to right:

• The number of the hour (0–23)
• The number of the minute (0–59)
• The number of seconds (0–59)
• The number of the month (1–12)
• The number of the day (1–31)
• The year (1970–2038, or 1901–2038 with PHP 5.1.0+ on 32-bit signed systems)

You may ask why you are limited to the years 1970 through 2038.
Well, it’s because the original developers of Unix chose the start of
the year 1970 as the base date that no programmer should need to
go before!
Luckily, as of version 5.1.0, PHP supports systems using a signed
32-bit integer for the timestamp, and dates from 1901 to 2038 are
allowed on them. However, that introduces a problem even worse
than the original one, because the Unix designers also decided that
nobody would still be using Unix after about 70 years or so and
therefore believed they could get away with storing the timestamp
as a 32-bit value—which will run out on January 19, 2038!
This will create what has come to be known as the Y2K38 bug
(much like the millennium bug, which was caused by storing years
as two-digit values, and which also had to be fixed). PHP intro‐
duced the DateTime class in version 5.2 to overcome this issue, but
it will work only on 64-bit architecture, which most computers will
be these days (but do check before you use it).

To display the date, use the date function, which supports a plethora of formatting
options enabling you to display the date any way you wish. The format is as follows:

date($format, $timestamp);

144 | Chapter 7: Practical PHP

The parameter $format should be a string containing formatting specifiers as detailed
in Table 7-4, and $timestamp should be a Unix timestamp. For the complete list of
specifiers, please see the documentation. The following command will output the cur‐
rent date and time in the format "Thursday July 6th, 2017 - 1:38pm":

echo date("l F jS, Y - g:ia", time());

Table 7-4. The major date function format specifiers

Format Description Returned value
Day specifiers
d Day of month, two digits, with leading zeros 01 to 31
D Day of the week, three letters Mon to Sun
j Day of month, no leading zeros 1 to 31
l Day of week, full names Sunday to Saturday
N Day of week, numeric, Monday to Sunday 1 to 7
S Suffix for day of month (useful with specifier j) st, nd, rd, or th
w Day of week, numeric, Sunday to Saturday 0 to 6
z Day of year 0 to 365
Week specifier
W Week number of year 01 to 52
Month specifiers
F Month name January to December
m Month number with leading zeros 01 to 12
M Month name, three letters Jan to Dec
n Month number, no leading zeros 1 to 12
t Number of days in given month 28 to 31
Year specifiers
L Leap year 1 = Yes, 0 = No
y Year, 2 digits 00 to 99
Y Year, 4 digits 0000 to 9999
Time specifiers
a Before or after midday, lowercase am or pm
A Before or after midday, uppercase AM or PM
g Hour of day, 12-hour format, no leading zeros 1 to 12
G Hour of day, 24-hour format, no leading zeros 0 to 23
h Hour of day, 12-hour format, with leading zeros 01 to 12
H Hour of day, 24-hour format, with leading zeros 00 to 23
i Minutes, with leading zeros 00 to 59
s Seconds, with leading zeros 00 to 59

Date and Time Functions | 145

http://php.net/manual/en/function.date.php

Date Constants
There are a number of useful constants that you can use with the date command to
return the date in specific formats. For example, date(DATE_RSS) returns the current
date and time in the valid format for an RSS feed. Some of the more commonly used
constants are as follows:

DATE_ATOM

This is the format for Atom feeds. The PHP format is "Y-m-d\TH:i:sP" and
example output is "2022-10-22T12:00:00+00:00".

DATE_COOKIE

This is the format for cookies set from a web server or JavaScript. The PHP for‐
mat is "l, d-M-y H:i:s T" and example output is "Wednesday, 26-Oct-22
12:00:00 UTC".

DATE_RSS

This is the format for RSS feeds. The PHP format is "D, d M Y H:i:s O" and
example output is "Wed, 26 Oct 2022 12:00:00 UTC".

DATE_W3C

This is the format for the World Wide Web Consortium. The PHP format is "Y-
m-d\TH:i:sP" and example output is "2022-10-26T12:00:00+00:00".

The complete list can be found in the documentation.

Using checkdate
You’ve seen how to display a valid date in a variety of formats. But how can you check
whether a user has submitted a valid date to your program? The answer is to pass the
month, day, and year to the checkdate function, which returns a value of TRUE if the
date is valid, or FALSE if it is not.

For example, if September 31 of any year is input, it will always be an invalid date.
Example 7-3 shows code that you could use for this. As it stands, it will find the given
date invalid.

Example 7-3. Checking for the validity of a date

<?php
 $month = 9; // September (only has 30 days)
 $day = 31; // 31st
 $year = 2022; // 2022

 if (checkdate($month, $day, $year)) echo "Date is valid";
 else echo "Date is invalid";
?>

146 | Chapter 7: Practical PHP

http://php.net/manual/en/class.datetime.php

File Handling
Powerful as it is, MySQL is not the only (or necessarily the best) way to store all data
on a web server. Sometimes it can be quicker and more convenient to directly access
files on the hard disk. Cases in which you might need to do this are when modifying
images such as uploaded user avatars, or with log files that you wish to process.

First, though, a note about file naming: if you are writing code that may be used on
various PHP installations, there is no way of knowing whether these systems are case-
sensitive. For example, Windows and macOS filenames are not case-sensitive, but
Linux and Unix ones are. Therefore, you should always assume that the system is
case-sensitive and stick to a convention such as all-lowercase filenames.

Checking Whether a File Exists
To determine whether a file already exists, you can use the file_exists function,
which returns either TRUE or FALSE and is used like this:

if (file_exists("testfile.txt")) echo "File exists";

Creating a File
At this point, testfile.txt doesn’t exist, so let’s create it and write a few lines to it. Type
Example 7-4 and save it as testfile.php.

Example 7-4. Creating a simple text file

<?php // testfile.php
 $fh = fopen("testfile.txt", 'w') or die("Failed to create file");

 $text = <<<_END
Line 1
Line 2
Line 3
_END;

 fwrite($fh, $text) or die("Could not write to file");
 fclose($fh);
 echo "File 'testfile.txt' written successfully";
?>

Should a program call the die function, the open file will be automatically closed as
part of terminating the program.

When you run this in a browser, all being well, you will receive the message File
'testfile.txt' written successfully. If you receive an error message, your hard
disk may be full or, more likely, you may not have permission to create or write to the

File Handling | 147

file, in which case you should modify the attributes of the destination folder accord‐
ing to your operating system. Otherwise, the file testfile.txt should now be residing in
the same folder in which you saved the testfile.php program. Try opening the file in a
text or program editor—the contents will look like this:

Line 1
Line 2
Line 3

This simple example shows the sequence that all file handling takes:

1. Always start by opening the file. You do this through a call to fopen.
2. Then you can call other functions; here we write to the file (fwrite), but you can

also read from an existing file (fread or fgets) and do other things.
3. Finish by closing the file (fclose). Although the program does this for you when

it ends, you should clean up by closing the file when you’re finished.

Every open file requires a file resource so that PHP can access and manage it. The
preceding example sets the variable $fh (which I chose to stand for file handle) to the
value returned by the fopen function. Thereafter, each file-handling function that
accesses the opened file, such as fwrite or fclose, must be passed $fh as a parameter
to identify the file being accessed. Don’t worry about the content of the $fh variable;
it’s a number PHP uses to refer to internal information about the file—you just pass
the variable to other functions.

Upon failure, FALSE will be returned by fopen. The previous example shows a simple
way to capture and respond to the failure: it calls the die function to end the program
and give the user an error message. A web application would never abort in this crude
way (you would create a web page with an error message instead), but this is fine for
our testing purposes.

Notice the second parameter to the fopen call. It is simply the character w, which tells
the function to open the file for writing. The function creates the file if it doesn’t
already exist. Be careful when playing around with these functions: if the file already
exists, the w mode parameter causes the fopen call to delete the old contents (even if
you don’t write anything new!).

There are several different mode parameters that can be used here, as detailed in
Table 7-5. The modes that include a + symbol are further explained in the section
“Updating Files” on page 151.

148 | Chapter 7: Practical PHP

Table 7-5. The supported fopen modes

Mode Action Description
'r' Read from file’s beginning Open for reading only; place the file pointer at the beginning of the file. Return

FALSE if the file doesn’t already exist.
'r+' Read from file’s beginning

and allow writing
Open for reading and writing; place the file pointer at the beginning of the file. Return
FALSE if the file doesn’t already exist.

'w' Write from file’s beginning
and truncate file

Open for writing only; place the file pointer at the beginning of the file and truncate
the file to zero length. If the file doesn’t exist, attempt to create it.

'w+' Write from file’s beginning,
truncate file, and allow
reading

Open for reading and writing; place the file pointer at the beginning of the file and
truncate the file to zero length. If the file doesn’t exist, attempt to create it.

'a' Append to file’s end Open for writing only; place the file pointer at the end of the file. If the file doesn’t
exist, attempt to create it.

'a+' Append to file’s end and
allow reading

Open for reading and writing; place the file pointer at the end of the file. If the file
doesn’t exist, attempt to create it.

Reading from Files
The easiest way to read from a text file is to grab a whole line through fgets (think of
the final s as standing for string), as in Example 7-5.

Example 7-5. Reading a file with fgets

<?php
 $fh = fopen("testfile.txt", 'r') or
 die("File does not exist or you lack permission to open it");

 $line = fgets($fh);
 fclose($fh);
 echo $line;
?>

If you created the file as shown in Example 7-4, you’ll get the first line:

Line 1

You can retrieve multiple lines or portions of lines through the fread function, as in
Example 7-6.

Example 7-6. Reading a file with fread

<?php
 $fh = fopen("testfile.txt", 'r') or
 die("File does not exist or you lack permission to open it");

 $text = fread($fh, 3);
 fclose($fh);

File Handling | 149

 echo $text;
?>

I’ve requested three characters in the fread call, so the program displays this:

Lin

The fread function is commonly used with binary data. If you use it on text data that
spans more than one line, remember to count newline characters.

Copying Files
Let’s try out the PHP copy function to create a clone of testfile.txt. Type Example 7-7,
save it as copyfile.php, and then call up the program in your browser.

Example 7-7. Copying a file

<?php // copyfile.php
 copy('testfile.txt', 'testfile2.txt') or die("Could not copy file");
 echo "File successfully copied to 'testfile2.txt'";
?>

If you check your folder again, you’ll see that you now have the new file testfile2.txt in
it. By the way, if you don’t want your programs to exit on a failed copy attempt, you
could try the alternate syntax in Example 7-8. This uses the ! (NOT) operator as a
quick and easy shorthand. Placed in front of an expression, it applies the NOT operator
to it, so the equivalent statement here in English would begin “If not able to copy...”

Example 7-8. Alternate syntax for copying a file

<?php // copyfile2.php
 if (!copy('testfile.txt', 'testfile2.txt')) echo "Could not copy file";
 else echo "File successfully copied to 'testfile2.txt'";
?>

Moving a File
To move a file, rename it with the rename function, as in Example 7-9.

Example 7-9. Moving a file

<?php // movefile.php
 if (!rename('testfile2.txt', 'testfile2.new'))
 echo "Could not rename file";
 else echo "File successfully renamed to 'testfile2.new'";
?>

150 | Chapter 7: Practical PHP

You can use the rename function on directories, too. To avoid any warning messages if
the original file doesn’t exist, you can call the file_exists function first to check.

Deleting a File
Deleting a file is just a matter of using the unlink function to remove it from the file‐
system, as in Example 7-10.

Example 7-10. Deleting a file

<?php // deletefile.php
 if (!unlink('testfile2.new')) echo "Could not delete file";
 else echo "File 'testfile2.new' successfully deleted";
?>

Whenever you access files on your hard disk directly, you must also
always ensure that it is impossible for your filesystem to be com‐
promised. For example, if you are deleting a file based on user
input, you must make absolutely certain it is a file that can be safely
deleted and that the user is allowed to delete it.

As with moving a file, a warning message will be displayed if the file doesn’t exist,
which you can avoid by using file_exists to first check for its existence before call‐
ing unlink.

Updating Files
Often, you will want to add more data to a saved file, which you can do in many ways.
You can use one of the append write modes (see Table 7-5), or you can simply open a
file for reading and writing with one of the other modes that supports writing, and
move the file pointer to the correct place within the file that you wish to write to or
read from.

The file pointer is the position within a file at which the next file access will take place,
whether it’s a read or a write. It is not the same as the file handle (as stored in the
variable $fh in Example 7-4), which contains details about the file being accessed.

You can see this in action by typing Example 7-11 and saving it as update.php. Then
call it up in your browser.

Example 7-11. Updating a file

<?php // update.php
 $fh = fopen("testfile.txt", 'r+') or die("Failed to open file");
 $text = fgets($fh);

File Handling | 151

 fseek($fh, 0, SEEK_END);
 fwrite($fh, "$text") or die("Could not write to file");
 fclose($fh);

 echo "File 'testfile.txt' successfully updated";
?>

This program opens testfile.txt for both reading and writing by setting the mode with
'r+', which puts the file pointer right at the start. It then uses the fgets function to
read in a single line from the file (up to the first line feed). After that, the fseek func‐
tion is called to move the file pointer right to the file end, at which point the line of
text that was extracted from the start of the file (stored in $text) is then appended to
the file’s end and the file is closed. The resulting file now looks like this:

Line 1
Line 2
Line 3
Line 1

The first line has successfully been copied and then appended to the file’s end.

As used here, in addition to the $fh file handle, the fseek function was passed two
other parameters, 0 and SEEK_END. SEEK_END tells the function to move the file
pointer to the end of the file, and 0 tells it how many positions it should then be
moved backward from that point. In the case of Example 7-11, a value of 0 is used
because the pointer is required to remain at the file’s end.

There are two other seek options available to the fseek function: SEEK_SET and
SEEK_CUR. The SEEK_SET option tells the function to set the file pointer to the exact
position given by the preceding parameter. Thus, the following example moves the
file pointer to position 18:

fseek($fh, 18, SEEK_SET);

SEEK_CUR sets the file pointer to the current position plus the value of the given offset.
Therefore, if the file pointer is currently at position 18, the following call will move it
to position 23:

fseek($fh, 5, SEEK_CUR);

Although this is not recommended unless you have very specific reasons for it, it is
even possible to use text files such as this (but with fixed line lengths) as simple flat
file databases. Your program can then use fseek to move back and forth within such
a file to retrieve, update, and add new records. You can also delete records by over‐
writing them with zero characters, and so on.

152 | Chapter 7: Practical PHP

Locking Files for Multiple Accesses
Web programs are often called by many users at the same time. If more than one per‐
son tries to write to a file simultaneously, it can become corrupted. And if one person
writes to it while another is reading from it, the file is all right, but the person reading
it can get odd results. To handle simultaneous users, you must use the file-locking
flock function. This function queues up all other requests to access a file until your
program releases the lock. So, whenever your programs use write access on files that
may be accessed concurrently by multiple users, you should also add file locking to
them, as in Example 7-12, which is an updated version of Example 7-11.

Example 7-12. Updating a file with file locking

<?php
 $fh = fopen("testfile.txt", 'r+') or die("Failed to open file");
 $text = fgets($fh);

 if (flock($fh, LOCK_EX))
 {
 fseek($fh, 0, SEEK_END);
 fwrite($fh, "$text") or die("Could not write to file");
 flock($fh, LOCK_UN);
 }

 fclose($fh);
 echo "File 'testfile.txt' successfully updated";
?>

There is a trick to file locking to preserve the best possible response time for your
website visitors: perform it directly before a change you make to a file, and then
unlock it immediately afterward. Having a file locked for any longer than this will
slow down your application unnecessarily. This is why the calls to flock in
Example 7-12 are directly before and after the fwrite call.

The first call to flock sets an exclusive file lock on the file referred to by $fh using the
LOCK_EX parameter:

flock($fh, LOCK_EX);

From this point onward, no other processes can write to (or even read from) the file
until you release the lock by using the LOCK_UN parameter, like this:

flock($fh, LOCK_UN);

As soon as the lock is released, other processes are again allowed access to the file.
This is one reason why you should reseek to the point you wish to access in a file each
time you need to read or write data—another process could have changed the file
since the last access.

File Handling | 153

However, did you notice that the call to request an exclusive lock is nested as part of
an if statement? This is because flock is not supported on all systems; thus, it is wise
to check whether you successfully secured a lock, just in case one could not be
obtained.

Something else you must consider is that flock is what is known as an advisory lock.
This means that it locks out only other processes that call the function. If you have
any code that goes right in and modifies files without implementing flock file lock‐
ing, it will always override the locking and could wreak havoc on your files.

By the way, implementing file locking and then accidentally leaving it out in one sec‐
tion of code can lead to an extremely hard-to-locate bug.

flock will not work on NFS and many other networked filesys‐
tems. Also, when using a multithreaded server like ISAPI, you may
not be able to rely on flock to protect files against other PHP
scripts running in parallel threads of the same server instance.
Additionally, flock is not supported on any system using the old
FAT filesystem, such as older versions of Windows.
If in doubt, you can try making a quick lock on a test file at the
start of a program to see whether you can obtain a lock on the file.
Don’t forget to unlock it (and maybe delete it if not needed) after
checking.
Also remember that any call to the die function automatically
unlocks a lock and closes the file as part of ending the program.

Reading an Entire File
A handy function for reading in an entire file without having to use file handles is
file_get_contents. It’s very easy to use, as you can see in Example 7-13.

Example 7-13. Using file_get_contents

<?php
 echo "<pre>"; // Enables display of line feeds
 echo file_get_contents("testfile.txt");
 echo "</pre>"; // Terminates <pre> tag
?>

But the function is actually a lot more useful than that, because you can also use it to
fetch a file from a server across the internet, as in Example 7-14, which requests the
HTML from the O’Reilly home page, and then displays it as if the user had surfed to
the page itself. The result will be similar to Figure 7-1.

154 | Chapter 7: Practical PHP

Example 7-14. Grabbing the O’Reilly home page

<?php
 echo file_get_contents("http://oreilly.com");
?>

Figure 7-1. The O’Reilly home page grabbed with file_get_contents

Uploading Files
Uploading files to a web server is a subject that seems daunting to many people, but it
actually couldn’t be much easier. All you need to do to upload a file from a form is
choose a special type of encoding called multipart/form-data, and your browser
will handle the rest. To see how this works, type the program in Example 7-15 and
save it as upload.php. When you run it, you’ll see a form in your browser that lets you
upload a file of your choice.

File Handling | 155

Example 7-15. Image uploader upload.php

<?php // upload.php
 echo <<<_END
 <html><head><title>PHP Form Upload</title></head><body>
 <form method='post' action='upload.php' enctype='multipart/form-data'>
 Select File: <input type='file' name='filename' size='10'>
 <input type='submit' value='Upload'>
 </form>
_END;

 if ($_FILES)
 {
 $name = $_FILES['filename']['name'];
 move_uploaded_file($_FILES['filename']['tmp_name'], $name);
 echo "Uploaded image '$name'
";
 }

 echo "</body></html>";
?>

Let’s examine this program a section at a time. The first line of the multiline echo
statement starts an HTML document, displays the title, and then starts the docu‐
ment’s body.

Next we come to the form, which selects the POST method of form submission, sets
the target for posted data to the program upload.php (the program itself), and tells
the web browser that the data posted should be encoded via the content type of multi
part/form-data.

With the form set up, the next lines display the prompt Select File: and then
request two inputs. The first request is for a file; it uses an input type of file, a name
of filename, and an input field with a width of 10 characters. The second requested
input is just a submit button that is given the label Upload (which replaces the default
button text of Submit Query). And then the form is closed.

This short program shows a common technique in web programming in which a sin‐
gle program is called twice: once when the user first visits a page, and again when the
user presses the submit button.

The PHP code to receive the uploaded data is fairly simple, because all uploaded files
are placed into the associative system array $_FILES. Therefore, a quick check to see
whether $_FILES contains anything is sufficient to determine whether the user has
uploaded a file. This is done with the statement if ($_FILES).

The first time the user visits the page, before uploading a file, $_FILES is empty, so the
program skips this block of code. When the user uploads a file, the program runs
again and discovers an element in the $_FILES array.

156 | Chapter 7: Practical PHP

Once the program realizes that a file was uploaded, the actual name, as read from the
uploading computer, is retrieved and placed into the variable $name. Now all that’s
necessary is to move the uploaded file from the temporary location in which PHP
stored it to a more permanent one. We do this using the move_uploaded_file func‐
tion, passing it the original name of the file, with which it is saved to the current
directory.

Finally, the uploaded image is displayed within an IMG tag, and the result should look
like Figure 7-2.

If you run this program and receive a warning message such as
Permission denied for the move_uploaded_file function call,
then you may not have the correct permissions set for the folder in
which the program is running.

Figure 7-2. Uploading an image as form data

Using $_FILES

Five things are stored in the $_FILES array when a file is uploaded, as shown in
Table 7-6 (where file is the file upload field name supplied by the submitting form).

File Handling | 157

Table 7-6. The contents of the $_FILES array

Array element Contents
$_FILES['file']['name'] The name of the uploaded file (e.g., smiley.jpg)
$_FILES['file']['type'] The content type of the file (e.g., image/jpeg)
$_FILES['file']['size'] The file’s size in bytes
$_FILES['file']['tmp_name'] The name of the temporary file stored on the server
$_FILES['file']['error'] The error code resulting from the file upload

Content types used to be known as MIME (Multipurpose Internet Mail Extension)
types, but because their use later expanded to the whole internet, now they are often
called internet media types. Table 7-7 shows some of the more frequently used types
that turn up in $_FILES['file']['type'].

Table 7-7. Some common internet media content types
application/pdf image/gif multipart/form-data text/xml

application/zip image/jpeg text/css video/mpeg

audio/mpeg image/png text/html video/mp4

audio/x-wav image/tiff text/plain video/quicktime

Validation
I hope it now goes without saying (although I’ll do so anyway) that form data valida‐
tion is of the utmost importance, due to the possibility of users attempting to hack
into your server.

In addition to maliciously formed input data, some of the things you also have to
check are whether a file was actually received and, if so, whether the right type of data
was sent.

Taking all these things into account, Example 7-16, upload2.php, is a more secure
rewrite of upload.php.

Example 7-16. A more secure version of upload.php

<?php // upload2.php
 echo <<<_END
 <html><head><title>PHP Form Upload</title></head><body>
 <form method='post' action='upload2.php' enctype='multipart/form-data'>
 Select a JPG, GIF, PNG or TIF File:
 <input type='file' name='filename' size='10'>
 <input type='submit' value='Upload'></form>
 _END;

 if ($_FILES)

158 | Chapter 7: Practical PHP

 {
 $name = $_FILES['filename']['name'];

 switch($_FILES['filename']['type'])
 {
 case 'image/jpeg': $ext = 'jpg'; break;
 case 'image/gif': $ext = 'gif'; break;
 case 'image/png': $ext = 'png'; break;
 case 'image/tiff': $ext = 'tif'; break;
 default: $ext = ''; break;
 }
 if ($ext)
 {
 $n = "image.$ext";
 move_uploaded_file($_FILES['filename']['tmp_name'], $n);
 echo "Uploaded image '$name' as '$n':
";
 echo "";
 }
 else echo "'$name' is not an accepted image file";
 }
 else echo "No image has been uploaded";

 echo "</body></html>";
?>

The non-HTML section of code has been expanded from the half-dozen lines of
Example 7-15 to more than 20 lines, starting at if ($_FILES).

As with the previous version, this if line checks whether any data was actually pos‐
ted, but there is now a matching else near the bottom of the program that echoes a
message to the screen when nothing has been uploaded.

Within the if statement, the variable $name is assigned the value of the filename as
retrieved from the uploading computer (just as before), but this time we won’t rely on
the user having sent us valid data. Instead, a switch statement checks the uploaded
content type against the four types of image this program supports. If a match is
made, the variable $ext is set to the three-letter file extension for that type. Should no
match be found, the file uploaded was not of an accepted type and the variable $ext is
set to the empty string "".

The next section of code then checks the variable $ext to see whether it contains a
string and, if so, creates a new filename called $n with the base name image and the
extension stored in $ext. This means that the program has full control over the name
of the file to be created, as it can be only one of image.jpg, image.gif, image.png, or
image.tif.

Safe in the knowledge that the program has not been compromised, the rest of the
PHP code is much the same as in the previous version. It moves the uploaded tempo‐

File Handling | 159

rary image to its new location and then displays it, while also displaying the old and
new image names.

Don’t worry about having to delete the temporary file that PHP
creates during the upload process, because if the file has not been
moved or renamed, it will be automatically removed when the pro‐
gram exits.

After the if statement, there is a matching else, which is executed only if an unsup‐
ported image type was uploaded (in which case it displays an appropriate error mes‐
sage).

When you write your own file-uploading routines, I strongly advise you to use a sim‐
ilar approach and have prechosen names and locations for uploaded files. That way,
no attempts to add pathnames and other malicious data to the variables you use can
get through. If this means that more than one user could end up having a file uploa‐
ded with the same name, you could prefix such files with their user’s usernames, or
save them to individually created folders for each user.

But if you must use a supplied filename, you should sanitize it by allowing only
alphanumeric characters and the period, which you can do with the following com‐
mand, using a regular expression (see Chapter 17) to perform a search and replace on
$name:

$name = preg_replace("/[^A-Za-z0-9.]/", "", $name);

This leaves only the characters A–Z, a–z, 0–9, and periods in the string $name, and
strips out everything else.

Even better, to ensure that your program will work on all systems, regardless of
whether they are case-sensitive or case-insensitive, you should probably use the fol‐
lowing command instead, which changes all uppercase characters to lowercase at the
same time:

$name = strtolower(ereg_replace("[^A-Za-z0-9.]", "", $name));

Sometimes you may encounter the media type of image/pjpeg,
which indicates a progressive JPEG, but you can safely add this to
your code as an alias of image/jpeg, like this:

case 'image/pjpeg':
case 'image/jpeg': $ext = 'jpg'; break;

160 | Chapter 7: Practical PHP

System Calls
Sometimes PHP will not have the function you need to perform a certain action, but
the operating system it is running on may. In such cases, you can use the exec system
call to do the job.

For example, to quickly view the contents of the current directory, you can use a pro‐
gram such as Example 7-17. If you are on a Windows system, it will run as is using
the Windows dir command. On Linux, Unix, or macOS, comment out or remove the
first line and uncomment the second to use the ls system command. You may wish
to type this program, save it as exec.php, and call it up in your browser.

Example 7-17. Executing a system command

<?php // exec.php
 $cmd = "dir"; // Windows
 // $cmd = "ls"; // Linux, Unix & Mac

 exec(escapeshellcmd($cmd), $output, $status);

 if ($status) echo "Exec command failed";
 else
 {
 echo "<pre>";
 foreach($output as $line) echo htmlspecialchars("$line\n");
 echo "</pre>";
 }
?>

The htmlspecialchars function is called to turn any special characters returned by
the system into ones that HTML can understand and properly display, neatening the
output. Depending on the system you are using, the result of running this program
will look something like this (from a Windows dir command):

Volume in drive C is Hard Disk
 Volume Serial Number is DC63-0E29

 Directory of C:\Program Files (x86)\Ampps\www

11/04/2018 11:58 <DIR> .
11/04/2018 11:58 <DIR> ..
28/01/2018 16:45 <DIR> 5th_edition_examples
08/01/2018 10:34 <DIR> cgi-bin
08/01/2018 10:34 <DIR> error
29/01/2018 16:18 1,150 favicon.ico
 1 File(s) 1,150 bytes
 5 Dir(s) 1,611,387,486,208 bytes free

exec takes three arguments:

System Calls | 161

• The command itself (in the previous case, $cmd)
• An array in which the system will put the output from the command (in the pre‐

vious case, $output)
• A variable to contain the returned status of the call (which, in the previous case,

is $status)

If you wish, you can omit the $output and $status parameters, but you will not
know the output created by the call or even whether it completed successfully.

You should also note the use of the escapeshellcmd function. It is a good habit to
always use this when issuing an exec call, because it sanitizes the command string,
preventing the execution of arbitrary commands, should you supply user input to the
call.

The system call functions are typically disabled on shared web
hosts, as they pose a security risk. You should always try to solve
your problems within PHP if you can, and go to the system directly
only if it is really necessary. Also, going to the system is relatively
slow, and you need to code two implementations if your applica‐
tion is expected to run on both Windows and Linux/Unix systems.

XHTML or HTML5?
Because XHTML documents need to be well formed, you can parse them using stan‐
dard XML parsers—unlike HTML, which requires a lenient HTML-specific parser
(which, thankfully, most popular web browsers are). For this reason, XHTML never
really caught on, and when the time came to devise a new standard, the World Wide
Web Consortium chose to support HTML5 rather than the newer XHTML2 stan‐
dard.

HTML5 has some of the features of both HTML4 and XHTML, but is much simpler
to use and less strict to validate—and, happily, there is now just a single document
type you need to place at the head of an HTML5 document (instead of the variety of
strict, transitional, and frameset types previously required):

<!DOCTYPE html>

Just the simple word html is sufficient to tell the browser that your web page is
designed for HTML5 and, because all the latest versions of the most popular browsers
have been supporting most of the HTML5 specification since 2011 or so, this docu‐
ment type is generally the only one you need, unless you choose to cater to older
browsers.

162 | Chapter 7: Practical PHP

For all intents and purposes, when writing HTML documents, web developers can
safely ignore the old XHTML document types and syntax (such as using

instead of the simpler
 tag). But if you find yourself having to cater to a very old
browser or an unusual application that relies on XHTML, then you can get more
information on how to do that at http://xhtml.com.

Questions
1. Which printf conversion specifier would you use to display a floating-point

number?
2. What printf statement could be used to take the input string "Happy Birthday"

and output the string "**Happy"?
3. To send the output from printf to a variable instead of to a browser, what alter‐

native function would you use?
4. How would you create a Unix timestamp for 7:11 a.m. on May 2, 2016?
5. Which file access mode would you use with fopen to open a file in write and read

mode, with the file truncated and the file pointer at the start?
6. What is the PHP command for deleting the file file.txt?
7. Which PHP function is used to read in an entire file in one go, even from across

the web?
8. Which PHP superglobal variable holds the details on uploaded files?
9. Which PHP function enables the running of system commands?

10. Which of the following tag styles is preferred in HTML5: <hr> or <hr />?

See “Chapter 7 Answers” on page 718 in Appendix A for the answers to these
questions.

Questions | 163

http://xhtml.com

CHAPTER 8

Introduction to MySQL

With well over 10 million installations, MySQL is probably the most popular database
management system for web servers. Developed in the mid-1990s, it’s now a mature
technology that powers many of today’s most-visited internet destinations.

One reason for its success must be that, like PHP, it’s free to use. But it’s also
extremely powerful and exceptionally fast—it can run on even the most basic of
hardware, and it hardly puts a dent in system resources.

MySQL is also highly scalable, which means that it can grow with your website (the
latest benchmarks are kept up to date online).

MySQL Basics
A database is a structured collection of records or data stored in a computer system
and organized in such a way that it can be quickly searched and information can be
rapidly retrieved.

The SQL in MySQL stands for Structured Query Language. This language is loosely
based on English and also used in other databases such as Oracle and Microsoft SQL
Server. It is designed to allow simple requests from a database via commands such as:

SELECT title FROM publications WHERE author = 'Charles Dickens';

A MySQL database contains one or more tables, each of which contains records or
rows. Within these rows are various columns or fields that contain the data itself.
Table 8-1 shows the contents of an example database of five publications detailing the
author, title, type, and year of publication.

165

http://mysql.com/why-mysql/benchmarks

Table 8-1. Example of a simple database

Author Title Type Year
Mark Twain The Adventures of Tom Sawyer Fiction 1876
Jane Austen Pride and Prejudice Fiction 1811
Charles Darwin The Origin of Species Non-fiction 1856
Charles Dickens The Old Curiosity Shop Fiction 1841
William Shakespeare Romeo and Juliet Play 1594

Each row in the table is the same as a row in a MySQL table, a column in the table
corresponds to a column in MySQL, and each element within a row is the same as a
MySQL field.

To uniquely identify this database, I’ll refer to it as the publications database in the
examples that follow. And, as you will have observed, all these publications are con‐
sidered to be classics of literature, so I’ll call the table within the database that holds
the details classics.

Summary of Database Terms
The main terms you need to acquaint yourself with for now are as follows:

Database
The overall container for a collection of MySQL data

Table
A subcontainer within a database that stores the actual data

Row
A single record within a table, which may contain several fields

Column
The name of a field within a row

I should note that I’m not trying to reproduce the precise terminology used in aca‐
demic literature about relational databases, but just to provide simple, everyday terms
to help you quickly grasp basic concepts and get started with a database.

Accessing MySQL via the Command Line
There are three main ways you can interact with MySQL: using a command line, via a
web interface such as phpMyAdmin, and through a programming language like PHP.
We’ll start doing the third of these in Chapter 10, but for now, let’s look at the first
two.

166 | Chapter 8: Introduction to MySQL

Starting the Command-Line Interface
The following sections describe relevant instructions for Windows, macOS, and
Linux.

Windows users
If you installed AMPPS (as explained in Chapter 2) in the usual way, you will be able
to access the MySQL executable from the following directory:

C:\Program Files (x86)\Ampps\mysql\bin

If you installed AMPPS in any other place, you will need to use that
directory instead.

By default, the initial MySQL user is root, and it will have a default password of mysql.
So, to enter MySQL’s command-line interface, select Start→Run, enter CMD into the
Run box, and press Return. This will call up a Windows command prompt. From
there, enter the following (making any appropriate changes as just discussed):

cd C:\"Program Files (x86)\Ampps\mysql\bin"
mysql -u root -pmysql

The first command changes to the MySQL directory, and the second tells MySQL to
log you in as user root, with the password mysql. You will now be logged into MySQL
and can start entering commands.

To be sure everything is working as it should be, enter the following—the results
should be similar to Figure 8-1:

SHOW databases;

Accessing MySQL via the Command Line | 167

Figure 8-1. Accessing MySQL from a Windows command prompt

You are now ready to move on to the next section, “Using the Command-Line Inter‐
face” on page 171.

macOS users
To proceed with this chapter, you should have installed AMPPS as detailed in Chap‐
ter 2. You should also have the web server running and the MySQL server started.

To enter the MySQL command-line interface, start the Terminal program (which
should be available in Finder→Utilities). Then call up the MySQL program, which
will have been installed in the directory /Applications/ampps/mysql/bin.

By default, the initial MySQL user is root, and it will have a password of mysql. So, to
start the program, type the following:

/Applications/ampps/mysql/bin/mysql -u root -pmysql

This command tells MySQL to log you in as user root using the password mysql. To
verify that all is well, type the following (Figure 8-2 should be the result):

SHOW databases;

168 | Chapter 8: Introduction to MySQL

Figure 8-2. Accessing MySQL from the macOS Terminal program

If you receive an error such as Can't connect to local MySQL server through
socket, you will need to first start the MySQL server as described in Chapter 2.

You should now be ready to move on to the next section, “Using the Command-Line
Interface” on page 171.

Linux users
On a system running a Unix-like operating system such as Linux, you will almost cer‐
tainly already have PHP and MySQL installed and running, and you will be able to
enter the examples in the next section (if not, you can follow the procedure outlined
in Chapter 2 to install AMPPS). First, you should type the following to log into your
MySQL system:

mysql -u root -p

This tells MySQL to log you in as the user root and to request your password. If you
have a password, enter it; otherwise, just press Return.

Once you are logged in, type the following to test the program—you should see
something like Figure 8-3 in response:

SHOW databases;

Accessing MySQL via the Command Line | 169

Figure 8-3. Accessing MySQL using Linux

If this procedure fails at any point, please refer to Chapter 2 to ensure that you have
MySQL properly installed. Otherwise, you should now be ready to move on to the
next section, “Using the Command-Line Interface” on page 171.

MySQL on a remote server
If you are accessing MySQL on a remote server, it will probably be a Linux/FreeBSD/
Unix type of box, and you should connect to it via the secure SSH protocol (avoid
using the insecure Telnet protocol at all costs). Once in there, you might find that
things are a little different, depending on how the system administrator has set the
server up—especially if it’s a shared hosting server. Therefore, you need to ensure that
you have been given access to MySQL and that you have your username and pass‐
word. Armed with these, you can then type the following, where username is the
name supplied:

mysql -u username -p

Enter your password when prompted. You can then try the following command,
which should result in something like Figure 8-3:

SHOW databases;

There may be other databases already created, and the test database may not be there.

Bear in mind also that system administrators have ultimate control over everything
and that you can encounter some unexpected setups. For example, you may find that
you are required to preface all database names that you create with a unique identify‐
ing string to ensure that your names do not conflict with those of databases created
by other users.

170 | Chapter 8: Introduction to MySQL

Therefore, if you have any problems, talk with your system administrator, who will
get you sorted out. Just let the sysadmin know that you need a username and
password. You should also ask for the ability to create new databases or, at a mini‐
mum, to have at least one database created for you ready to use. You can then create
all the tables you require within that database.

Using the Command-Line Interface
From here on out, it makes no difference whether you are using Windows, macOS, or
Linux to access MySQL directly, as all the commands used (and errors you may
receive) are identical.

The semicolon

Let’s start with the basics. Did you notice the semicolon (;) at the end of the SHOW
databases; command that you typed? The semicolon is used by MySQL to separate
or end commands. If you forget to enter it, MySQL will issue a prompt and wait for
you to do so. The required semicolon was made part of the syntax to let you enter
multiple-line commands, which can be convenient because some commands get quite
long. It also allows you to issue more than one command at a time by placing a semi‐
colon after each one. The interpreter gets them all in a batch when you press the
Enter (or Return) key and executes them in order.

It’s very common to receive a MySQL prompt instead of the results
of your command; it means that you forgot the final semicolon.
Just enter the semicolon and press the Enter key, and you’ll get
what you want.

There are six different prompts that MySQL may present you with (see Table 8-2), so
you will always know where you are during a multiline input.

Table 8-2. MySQL’s six command prompts

MySQL prompt Meaning
mysql> Ready and waiting for a command
-> Waiting for the next line of a command
'> Waiting for the next line of a string started with a single quote
"> Waiting for the next line of a string started with a double quote
`> Waiting for the next line of a string started with a backtick
/*> Waiting for the next line of a comment started with /*

Accessing MySQL via the Command Line | 171

Canceling a command
If you are partway through entering a command and decide you don’t wish to execute
it after all, whatever you do, don’t press Ctrl-C! That will close the program. Instead,
you can enter \c and press Return. Example 8-1 shows how to use the command.

Example 8-1. Canceling a line of input

meaningless gibberish to mysql \c

When you type that line, MySQL will ignore everything you typed and issue a new
prompt. Without the \c, it would have displayed an error message. Be careful,
though: if you have opened a string or comment, close it first before using the \c or
MySQL will think the \c is just part of the string. Example 8-2 shows the right way to
do this.

Example 8-2. Canceling input from inside a string

this is "meaningless gibberish to mysql" \c

Also note that using \c after a semicolon will not cancel the preceding command, as
it is then a new statement.

MySQL Commands
You’ve already seen the SHOW command, which lists tables, databases, and many other
items. The commands you’ll use most often are listed in Table 8-3.

Table 8-3. Common MySQL commands

Command Action
ALTER Alter a database or table
BACKUP Back up a table
\c Cancel input
CREATE Create a database
DELETE Delete a row from a table
DESCRIBE Describe a table’s columns
DROP Delete a database or table
EXIT (Ctrl-C) Exit
GRANT Change user privileges
HELP (\h, \?) Display help
INSERT Insert data
LOCK Lock table(s)
QUIT (\q) Same as EXIT

172 | Chapter 8: Introduction to MySQL

Command Action
RENAME Rename a table
SHOW List details about an object
SOURCE Execute a file
STATUS (\s) Display the current status
TRUNCATE Empty a table
UNLOCK Unlock table(s)
UPDATE Update an existing record
USE Use a database

I’ll cover most of these as we proceed, but first, you need to remember a couple of
points about MySQL commands:

• SQL commands and keywords are case-insensitive. CREATE, create, and CrEaTe
all mean the same thing. However, for the sake of clarity, you may prefer to use
uppercase.

• Table names are case-sensitive on Linux and macOS, but case-insensitive on
Windows. So, for the sake of portability, you should always choose a case and
stick to it. The recommended style is to use lowercase for table names.

Creating a database
If you are working on a remote server and have only a single user account and access
to a single database that was created for you, move on to the section “Creating a table”
on page 175. Otherwise, get the ball rolling by issuing the following command to cre‐
ate a new database called publications:

CREATE DATABASE publications;

A successful command will return a message that doesn’t mean much yet—Query OK,

1 row affected (0.00 sec)—but will make sense soon. Now that you’ve created
the database, you want to work with it, so issue the following command:

USE publications;

You should now see the message Database changed and will then be set to proceed
with the following examples.

Creating users
Now that you’ve seen how easy it is to use MySQL and created your first database, it’s
time to look at how you create users, as you probably won’t want to grant your PHP
scripts root access to MySQL—it could cause a real headache should you get hacked.

Accessing MySQL via the Command Line | 173

To create a user, issue the GRANT command, which takes the following form (don’t
type this in; it’s not an actual working command):

GRANT PRIVILEGES ON database.object TO 'username'@'hostname'
 IDENTIFIED BY 'password';

This should all look pretty straightforward, with the possible exception of the
database.object part, which refers to the database itself and the objects it contains,
such as tables (see Table 8-4).

Table 8-4. Example parameters for the GRANT command

Arguments Meaning
. All databases and all their objects
database.* Only the database called database and all its objects
database.object Only the database called database and its object called object

So, let’s create a user who can access just the new publications database and all its
objects, by entering the following (replacing the username jim and also the password
mypasswd with ones of your choosing):

GRANT ALL ON publications.* TO 'jim'@'localhost'
 IDENTIFIED BY 'mypasswd';

What this does is allow the user jim@localhost full access to the publications database
using the password mypasswd. You can test whether this step has worked by entering
quit to exit and then rerunning MySQL the way you did before, but instead of enter‐
ing -u root -p, type -u jim -p, or whatever username you created. See Table 8-5 for
the correct command for your operating system. Modify it as necessary if the mysql
client program is installed in a different directory on your system.

Table 8-5. Starting MySQL and logging in as jim@localhost

OS Example command
Windows C:\"Program Files (x86)\Ampps\mysql\bin\mysql" -u jim -p

macOS /Applications/ampps/mysql/bin/mysql -u jim -p

Linux mysql -u jim –p

All you have to do now is enter your password when prompted and you will be log‐
ged in. If you prefer, you can place your password immediately following the -p
(without any spaces) to avoid having to enter it when prompted, but this is consid‐
ered poor practice because if other people are logged into your system, there may be
ways for them to look at the command you entered and find out your password.

174 | Chapter 8: Introduction to MySQL

You can grant only privileges that you already have, and you must
also have the privilege to issue GRANT commands. There are a whole
range of privileges you can choose to grant if you are not granting
all privileges. For further details on the GRANT command and the
REVOKE command, which can remove privileges once granted, see
the documentation. Also be aware that if you create a new user but
do not specify an IDENTIFIED BY clause, the user will have no pass‐
word, a situation that is very insecure and should be avoided.

Creating a table

At this point, you should now be logged into MySQL with ALL privileges granted for
the database publications (or a database that was created for you), so you’re ready to
create your first table. Make sure the correct database is in use by typing the following
(replacing publications with the name of your database if it is different):

USE publications;

Now enter the command in Example 8-3 one line at a time.

Example 8-3. Creating a table called classics

CREATE TABLE classics (
 author VARCHAR(128),
 title VARCHAR(128),
 type VARCHAR(16),
 year CHAR(4)) ENGINE InnoDB;

The final two words in this command require a little explanation.
MySQL can process queries in many different ways internally, and
these different ways are supported by different engines. From ver‐
sion 5.6 onwards InnoDB is the default storage engine for MySQL,
and we use it here because it supports FULLTEXT searches. So long
as you have a relatively up-to-date version of MySQL, you can omit
the ENGINE InnoDB section of the command when creating a table,
but I have kept it in for now to emphasize that this is the engine
being used.
If you are running a version of MySQL prior to 5.6, the InnoDB
engine will not support FULLTEXT indexes, so you will have to
replace InnoDB in the command with MyISAM to indicate that you
want to use that engine (see “Creating a FULLTEXT index” on page
192).
InnoDB is generally more efficient and the recommended option.
If you installed the AMPPS stack as detailed in Chapter 2, you
should have at least version 5.6.35 of MySQL.

Accessing MySQL via the Command Line | 175

http://tinyurl.com/mysqlgrant

You could also issue the previous command on a single line, like
this:

CREATE TABLE classics (author VARCHAR(128), title
VARCHAR(128), type VARCHAR(16), year CHAR(4)) ENGINE
InnoDB;

But MySQL commands can be long and complicated, so I recom‐
mend using the format shown in Example 8-3 until you are com‐
fortable with longer ones.

MySQL should then issue the response Query OK, 0 rows affected, along with how
long it took to execute the command. If you see an error message instead, check your
syntax carefully. Every parenthesis and comma counts, and typing errors are easy to
make.

To check whether your new table has been created, type the following:

DESCRIBE classics;

All being well, you will see the sequence of commands and responses shown in
Example 8-4, where you should particularly note the table format displayed.

Example 8-4. A MySQL session: creating and checking a new table

mysql> USE publications;
Database changed
mysql> CREATE TABLE classics (
 -> author VARCHAR(128),
 -> title VARCHAR(128),
 -> type VARCHAR(16),
 -> year CHAR(4)) ENGINE InnoDB;
Query OK, 0 rows affected (0.03 sec)

mysql> DESCRIBE classics;
+--------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+--------------+------+-----+---------+-------+
author	varchar(128)	YES		NULL	
title	varchar(128)	YES		NULL	
type	varchar(16)	YES		NULL	
year	char(4)	YES		NULL	
+--------+--------------+------+-----+---------+-------+
4 rows in set (0.00 sec)

The DESCRIBE command is an invaluable debugging aid when you need to ensure that
you have correctly created a MySQL table. You can also use it to remind yourself
about a table’s field or column names and the types of data in each one. Let’s look at
each of the headings in detail:

176 | Chapter 8: Introduction to MySQL

Field

The name of each field or column within a table

Type

The type of data being stored in the field

Null

Whether the field is allowed to contain a value of NULL

Key

What type of key, if any, has been applied (keys or indexes in MySQL are quick
ways to look up and search for data)

Default

The default value that will be assigned to the field if no value is specified when a
new row is created

Extra

Additional information, such as whether a field is set to auto-increment

Data Types
In Example 8-3, you may have noticed that three of the table’s fields were given the
data type of VARCHAR, and one was given the type CHAR. The term VARCHAR stands for
VARiable length CHARacter string, and the command takes a numeric value that tells
MySQL the maximum length allowed for a string stored in this field.

Both CHAR and VARCHAR accept text strings and impose a limit on the size of the field.
The difference is that every string in a CHAR field has the specified size. If you put in a
smaller string, it is padded with spaces. A VARCHAR field does not pad the text; it lets
the size of the field vary to fit the text that is inserted. But VARCHAR requires a small
amount of overhead to keep track of the size of each value. So, CHAR is slightly more
efficient if the sizes are similar in all records, whereas VARCHAR is more efficient if
sizes can vary a lot and get large. In addition, the overhead causes access to VARCHAR
data to be slightly slower than to CHAR data.

Another feature of character and text columns, important for today’s global web
reach, is character sets. These assign particular binary values to particular characters.
The character set you use for English is obviously different from the one you’d use for
Russian. You can assign the character set to a character or text column when you cre‐
ate it.

VARCHAR is useful in our example, because it can accommodate author names and
titles of different lengths, while helping MySQL plan the size of the database and per‐
form lookups and searches more easily. Just be aware that if you ever attempt to

Accessing MySQL via the Command Line | 177

assign a string value longer than the length allowed, it will be truncated to the maxi‐
mum length declared in the table definition.

The year field, however, has predictable values, so instead of VARCHAR we use the
more efficient CHAR(4) data type. The parameter of 4 allows for 4 bytes of data, sup‐
porting all years from –999 to 9999; a byte comprises 8 bits and can have the values
00000000 through 11111111, which are 0 to 255 in decimal.

You could, of course, just store two-digit values for the year, but if your data is going
to still be needed in the following century, or may otherwise wrap around, it will have
to be sanitized first—think of the “millennium bug” that would have caused dates
beginning on January 1, 2000, to be treated as 1900 on many of the world’s biggest
computer installations.

I didn’t use the YEAR data type in the classics table because it sup‐
ports only the years 0000 and 1901 through 2155. This is because
MySQL stores the year in a single byte for reasons of efficiency, but
it means that only 256 years are available, and the publication years
of the titles in the classics table are well before 1901.

The CHAR data type

Table 8-6 lists the CHAR data types. Both types offer a parameter that sets the maxi‐
mum (or exact) length of the string allowed in the field. As the table shows, each type
has a built-in maximum number of bytes it can occupy.

Table 8-6. MySQL’s CHAR data types

Data type Bytes used Examples
CHAR(n) Exactly n (<= 255) CHAR(5) “Hello” uses 5 bytes

CHAR(57) “Goodbye” uses 57 bytes
VARCHAR(n) Up to n (<= 65535) VARCHAR(7) “Hello” uses 5 bytes

VARCHAR(100) “Goodbye” uses 7 bytes

The BINARY data type

The BINARY data types (see Table 8-7) store strings of bytes that do not have an associ‐
ated character set. For example, you might use the BINARY data type to store a GIF
image.

Table 8-7. MySQL’s BINARY data types

Data type Bytes used Examples
BINARY(n) Exactly n (<= 255) As CHAR but contains binary data
VARBINARY(n) Up to n (<= 65535) As VARCHAR but contains binary data

178 | Chapter 8: Introduction to MySQL

The TEXT data types

Character data can also be stored in one of the set of TEXT fields. The differences
between these fields and VARCHAR fields are small:

• Prior to version 5.0.3, MySQL would remove leading and trailing spaces from
VARCHAR fields.

• TEXT fields cannot have default values.
• MySQL indexes only the first n characters of a TEXT column (you specify n when

you create the index).

What this means is that VARCHAR is the better and faster data type to use if you need to
search the entire contents of a field. If you will never search more than a certain num‐
ber of leading characters in a field, you should probably use a TEXT data type (see
Table 8-8).

Table 8-8. MySQL’s TEXT data types

Data type Bytes used Attributes
TINYTEXT(n) Up to n (<= 255) Treated as a string with a character set
TEXT(n) Up to n (<= 65535) Treated as a string with a character set
MEDIUMTEXT(n) Up to n (<= 1.67e+7) Treated as a string with a character set
LONGTEXT(n) Up to n (<= 4.29e+9) Treated as a string with a character set

The data types that have smaller maximums are also more efficient; therefore, you
should use the one with the smallest maximum that you know is enough for any
string you will be storing in the field.

The BLOB data types

The term BLOB stands for Binar Large OBject, and therefore, as you would think, the
BLOB data type is most useful for binary data in excess of 65,536 bytes in size. The
main other difference between the BLOB and BINARY data types is that BLOBs cannot
have default values. The BLOB data types are listed in Table 8-9.

Table 8-9. MySQL’s BLOB data types

Data type Bytes used Attributes
TINYBLOB(n) Up to n (<= 255) Treated as binary data—no character set
BLOB(n) Up to n (<= 65535) Treated as binary data—no character set
MEDIUMBLOB(n) Up to n (<= 1.67e+7) Treated as binary data—no character set
LONGBLOB(n) Up to n (<= 4.29e+9) Treated as binary data—no character set

Accessing MySQL via the Command Line | 179

Numeric data types
MySQL supports various numeric data types, from a single byte up to double-
precision floating-point numbers. Although the most memory that a numeric field
can use up is 8 bytes, you are well advised to choose the smallest data type that will
adequately handle the largest value you expect. This will help keep your databases
small and quickly accessible.

Table 8-10 lists the numeric data types supported by MySQL and the ranges of values
they can contain. In case you are not acquainted with the terms, a signed number is
one with a possible range from a minus value, through 0, to a positive one; and an
unsigned number has a value ranging from 0 to a positive one. They can both hold the
same number of values; just picture a signed number as being shifted halfway to the
left so that half its values are negative and half are positive. Note that floating-point
values (of any precision) may only be signed.

Table 8-10. MySQL’s numeric data types

Data type Bytes
used

Minimum value Maximum value

Signed Unsigned Signed Unsigned
TINYINT 1 –128 0 127 255

SMALLINT 2 –32768 0 32767 65535

MEDIUMINT 3 –8.38e+6 0 8.38e+6 1.67e+7

INT / INTEGER 4 –2.15e+9 0 2.15e+9 4.29e+9

BIGINT 8 –9.22e+18 0 9.22e+18 1.84e+19

FLOAT 4 –3.40e+38 n/a 3.4e+38 n/a
DOUBLE / REAL 8 –1.80e+308 n/a 1.80e+308 n/a

To specify whether a data type is unsigned, use the UNSIGNED qualifier. The following
example creates a table called tablename with a field in it called fieldname of the data
type UNSIGNED INTEGER:

CREATE TABLE tablename (fieldname INT UNSIGNED);

When creating a numeric field, you can also pass an optional number as a parameter,
like this:

CREATE TABLE tablename (fieldname INT(4));

But you must remember that, unlike with the BINARY and CHAR data types, this
parameter does not indicate the number of bytes of storage to use. It may seem coun‐
terintuitive, but what the number actually represents is the display width of the data
in the field when it is retrieved. It is commonly used with the ZEROFILL qualifier, like
this:

CREATE TABLE tablename (fieldname INT(4) ZEROFILL);

180 | Chapter 8: Introduction to MySQL

What this does is cause any numbers with a width of less than four characters to be
padded with one or more zeros, sufficient to make the display width of the field four
characters long. When a field is already of the specified width or greater, no padding
takes place.

DATE and TIME types
The main remaining data types supported by MySQL relate to the date and time and
can be seen in Table 8-11.

Table 8-11. MySQL’s DATE and TIME data types

Data type Time/date format
DATETIME '0000-00-00 00:00:00'

DATE '0000-00-00'

TIMESTAMP '0000-00-00 00:00:00'

TIME '00:00:00'

YEAR 0000 (Only years 0000 and 1901–2155)

The DATETIME and TIMESTAMP data types display the same way. The main difference is
that TIMESTAMP has a very narrow range (from the years 1970 through 2037), whereas
DATETIME will hold just about any date you’re likely to specify, unless you’re interested
in ancient history or science fiction.

TIMESTAMP is useful, however, because you can let MySQL set the value for you. If you
don’t specify the value when adding a row, the current time is automatically inserted.
You can also have MySQL update a TIMESTAMP column each time you change a row.

The AUTO_INCREMENT attribute
Sometimes you need to ensure that every row in your database is guaranteed to be
unique. You could do this in your program by carefully checking the data you enter
and making sure that there is at least one value that differs in any two rows, but this
approach is error-prone and works only in certain circumstances. In the classics table,
for instance, an author may appear multiple times. Likewise, the year of publication
will also be frequently duplicated, and so on. It would be hard to guarantee that you
have no duplicate rows.

The general solution is to use an extra column just for this purpose. In a while, we’ll
look at using a publication’s ISBN (International Standard Book Number), but first I’d
like to introduce the AUTO_INCREMENT data type.

As its name implies, a column given this data type will set the value of its contents to
that of the column entry in the previously inserted row, plus 1. Example 8-5 shows
how to add a new column called id to the table classics with auto-incrementing.

Accessing MySQL via the Command Line | 181

Example 8-5. Adding the auto-incrementing column id

ALTER TABLE classics ADD id INT UNSIGNED NOT NULL AUTO_INCREMENT KEY;

This is your introduction to the ALTER command, which is very similar to CREATE.
ALTER operates on an existing table and can add, change, or delete columns. Our
example adds a column named id with the following characteristics:

INT UNSIGNED

Makes the column take an integer large enough for us to store more than 4 bil‐
lion records in the table.

NOT NULL

Ensures that every column has a value. Many programmers use NULL in a field to
indicate that it doesn’t have any value. But that would allow duplicates, which
would violate the whole reason for this column’s existence, so we disallow NULL
values.

AUTO_INCREMENT

Causes MySQL to set a unique value for this column in every row, as described
earlier. We don’t really have control over the value that this column will take in
each row, but we don’t care: all we care about is that we are guaranteed a unique
value.

KEY

An auto-increment column is useful as a key, because you will tend to search for
rows based on this column. This will be explained in the section “Indexes” on
page 187.

Each entry in the column id will now have a unique number, with the first starting at
1 and the others counting upward from there. And whenever a new row is inserted,
its id column will automatically be given the next number in the sequence.

Rather than applying the column retroactively, you could have included it by issuing
the CREATE command in a slightly different format. In that case, the command in
Example 8-3 would be replaced with Example 8-6. Check the final line in particular.

Example 8-6. Adding the auto-incrementing id column at table creation

CREATE TABLE classics (
 author VARCHAR(128),
 title VARCHAR(128),
 type VARCHAR(16),
 year CHAR(4),
 id INT UNSIGNED NOT NULL AUTO_INCREMENT KEY) ENGINE InnoDB;

182 | Chapter 8: Introduction to MySQL

If you wish to check whether the column has been added, use the following com‐
mand to view the table’s columns and data types:

DESCRIBE classics;

Now that we’ve finished with it, the id column is no longer needed, so if you created it
using Example 8-5, you should now remove the column using the command in
Example 8-7.

Example 8-7. Removing the id column

ALTER TABLE classics DROP id;

Adding data to a table

To add data to a table, use the INSERT command. Let’s see this in action by populating
the table classics with the data from Table 8-1, using one form of the INSERT com‐
mand repeatedly (Example 8-8).

Example 8-8. Populating the classics table

INSERT INTO classics(author, title, type, year)
 VALUES('Mark Twain','The Adventures of Tom Sawyer','Fiction','1876');
INSERT INTO classics(author, title, type, year)
 VALUES('Jane Austen','Pride and Prejudice','Fiction','1811');
INSERT INTO classics(author, title, type, year)
 VALUES('Charles Darwin','The Origin of Species','Non-Fiction','1856');
INSERT INTO classics(author, title, type, year)
 VALUES('Charles Dickens','The Old Curiosity Shop','Fiction','1841');
INSERT INTO classics(author, title, type, year)
 VALUES('William Shakespeare','Romeo and Juliet','Play','1594');

After every second line, you should see a Query OK message. Once all lines have been
entered, type the following command, which will display the table’s contents. The
result should look like Figure 8-4:

SELECT * FROM classics;

Accessing MySQL via the Command Line | 183

Figure 8-4. Populating the classics table and viewing its contents

Don’t worry about the SELECT command for now—we’ll come to it in the section
“Querying a MySQL Database” on page 193. Suffice it to say that, as typed, it will dis‐
play all the data you just entered.

Let’s go back and look at how we used the INSERT command. The first part, INSERT
INTO classics, tells MySQL where to insert the following data. Then, within paren‐
theses, the four column names are listed—author, title, type, and year—all separated
by commas. This tells MySQL that these are the fields into which the data is to be
inserted.

The second line of each INSERT command contains the keyword VALUES followed by
four strings within parentheses, separated by commas. This supplies MySQL with the
four values to be inserted into the four columns previously specified. (As always, my
choice of where to break the lines was arbitrary.)

Each item of data will be inserted into the corresponding column, in a one-to-one
correspondence. If you accidentally listed the columns in a different order from the
data, the data would go into the wrong columns. Also, the number of columns must
match the number of data items. (There are safer ways of using INSERT, which we’ll
see soon.)

Renaming a table
Renaming a table, like any other change to the structure or meta-information about a
table, is achieved via the ALTER command. So, for example, to change the name of the
table classics to pre1900, you would use the following command:

ALTER TABLE classics RENAME pre1900;

184 | Chapter 8: Introduction to MySQL

If you tried that command, you should revert the table name by entering the follow‐
ing, so that later examples in this chapter will work as printed:

ALTER TABLE pre1900 RENAME classics;

Changing the data type of a column

Changing a column’s data type also makes use of the ALTER command, this time in
conjunction with the MODIFY keyword. To change the data type of the column year
from CHAR(4) to SMALLINT (which requires only 2 bytes of storage and so will save
disk space), enter the following:

ALTER TABLE classics MODIFY year SMALLINT;

When you do this, if the conversion of data type makes sense to MySQL, it will auto‐
matically change the data while keeping the meaning. In this case, it will change each
string to a comparable integer, so long as the string is recognizable as referring to an
integer.

Adding a new column
Let’s suppose that you have created a table and populated it with plenty of data, only
to discover you need an additional column. Not to worry. Here’s how to add the new
column pages, which will be used to store the number of pages in a publication:

ALTER TABLE classics ADD pages SMALLINT UNSIGNED;

This adds the new column with the name pages using the UNSIGNED SMALLINT data
type, sufficient to hold a value of up to 65,535—hopefully that’s more than enough for
any book ever published!

And, if you ask MySQL to describe the updated table by using the DESCRIBE com‐
mand, as follows, you will see the change has been made (see Figure 8-5):

DESCRIBE classics;

Accessing MySQL via the Command Line | 185

Figure 8-5. Adding the new pages column and viewing the table

Renaming a column
Looking again at Figure 8-5, you may decide that having a column named type is con‐
fusing, because that is the name used by MySQL to identify data types. Again, no
problem—let’s change its name to category, like this:

ALTER TABLE classics CHANGE type category VARCHAR(16);

Note the addition of VARCHAR(16) on the end of this command. That’s because the
CHANGE keyword requires the data type to be specified, even if you don’t intend to
change it, and VARCHAR(16) was the data type specified when that column was ini‐
tially created as type.

Removing a column
Actually, upon reflection, you might decide that the page count column pages isn’t
actually all that useful for this particular database, so here’s how to remove that col‐
umn by using the DROP keyword:

ALTER TABLE classics DROP pages;

Remember that DROP is irreversible. You should always use it with
caution, because you could inadvertently delete entire tables (and
even databases) with it if you are not careful!

Deleting a table
Deleting a table is very easy indeed. But, because I don’t want you to have to reenter
all the data for the classics table, let’s quickly create a new table, verify its existence,

186 | Chapter 8: Introduction to MySQL

and then delete it. You can do this by typing the commands in Example 8-9. The
result of these four commands should look like Figure 8-6.

Example 8-9. Creating, viewing, and deleting a table

CREATE TABLE disposable(trash INT);
DESCRIBE disposable;
DROP TABLE disposable;
SHOW tables;

Figure 8-6. Creating, viewing, and deleting a table

Indexes
As things stand, the table classics works and can be searched without problem by
MySQL—until it grows to more than a couple of hundred rows. At that point, data‐
base accesses will get slower and slower with every new row added, because MySQL
has to search through every row whenever a query is issued. This is like searching
through every book in a library whenever you need to look something up.

Of course, you don’t have to search libraries that way, because they have either a card
index system or, most likely, a database of their own. And the same goes for MySQL,
because at the expense of a slight overhead in memory and disk space, you can create
a “card index” for a table that MySQL will use to conduct lightning-fast searches.

Creating an Index
The way to achieve fast searches is to add an index, either when creating a table or at
any time afterward. But the decision is not so simple. For example, there are different
index types, such as a regular INDEX, a PRIMARY KEY, or a FULLTEXT index. Also, you

Indexes | 187

must decide which columns require an index, a judgment that requires you to predict
whether you will be searching any of the data in each column. Indexes can get more
complicated too, because you can combine multiple columns in one index. And even
when you’ve decided that, you still have the option of reducing index size by limiting
the amount of each column to be indexed.

If we imagine the searches that may be made on the classics table, it becomes apparent
that all of the columns may need to be searched. However, if the pages column created
in the section “Adding a new column” on page 185 had not been deleted, it would
probably not have needed an index, as most people would be unlikely to search for
books by the number of pages they have. Anyway, go ahead and add an index to each
of the columns, using the commands in Example 8-10.

Example 8-10. Adding indexes to the classics table

ALTER TABLE classics ADD INDEX(author(20));
ALTER TABLE classics ADD INDEX(title(20));
ALTER TABLE classics ADD INDEX(category(4));
ALTER TABLE classics ADD INDEX(year);
DESCRIBE classics;

The first two commands create indexes on the author and title columns, limiting each
index to only the first 20 characters. For instance, when MySQL indexes the following
title:

The Adventures of Tom Sawyer

It will actually store in the index only the first 20 characters:

The Adventures of To

This is done to minimize the size of the index, and to optimize database access speed.
I chose 20 because it’s likely to be sufficient to ensure uniqueness for most strings in
these columns. If MySQL finds two indexes with the same contents, it will have to
waste time going to the table itself and checking the column that was indexed to find
out which rows really matched.

With the category column, currently only the first character is required to identify a
string as unique (F for Fiction, N for Non-fiction, and P for Play), but I chose an
index of four characters to allow for future categories that may share the first three
characters. You can also reindex this column later, when you have a more complete
set of categories. And finally, I set no limit to the year column’s index, because it has a
clearly defined length of four characters.

The results of issuing these commands (and a DESCRIBE command to confirm that
they worked) can be seen in Figure 8-7, which shows the key MUL for each column.
This key means that multiple occurrences of a value may occur within that column,

188 | Chapter 8: Introduction to MySQL

which is exactly what we want, as authors may appear many times, the same book
title could be used by multiple authors, and so on.

Figure 8-7. Adding indexes to the classics table

Using CREATE INDEX

An alternative to using ALTER TABLE to add an index is to use the CREATE INDEX com‐
mand. They are equivalent, except that CREATE INDEX cannot be used for creating a
PRIMARY KEY (see the section “Primary keys” on page 190). The format of this com‐
mand is shown in the second line of Example 8-11.

Example 8-11. These two commands are equivalent

ALTER TABLE classics ADD INDEX(author(20));
CREATE INDEX author ON classics (author(20));

Adding indexes when creating tables
You don’t have to wait until after creating a table to add indexes. In fact, doing so can
be time-consuming, as adding an index to a large table can take a very long time.
Therefore, let’s look at a command that creates the table classics with indexes already
in place.

Example 8-12 is a reworking of Example 8-3 in which the indexes are created at the
same time as the table. Note that to incorporate the modifications made in this chap‐
ter, this version uses the new column name category instead of type and sets the data
type of year to SMALLINT instead of CHAR(4). If you want to try it out without first
deleting your current classics table, change the word classics in line 1 to something
else like classics1, and then drop classics1 after you have finished with it.

Indexes | 189

Example 8-12. Creating the table classics with indexes

CREATE TABLE classics (
 author VARCHAR(128),
 title VARCHAR(128),
 category VARCHAR(16),
 year SMALLINT,
 INDEX(author(20)),
 INDEX(title(20)),
 INDEX(category(4)),
 INDEX(year)) ENGINE InnoDB;

Primary keys
So far, you’ve created the table classics and ensured that MySQL can search it quickly
by adding indexes, but there’s still something missing. All the publications in the table
can be searched, but there is no single unique key for each publication to enable
instant accessing of a row. The importance of having a key with a unique value for
each row will come up when we start to combine data from different tables.

The section “The AUTO_INCREMENT attribute” on page 181 briefly introduced the
idea of a primary key when creating the auto-incrementing column id, which could
have been used as a primary key for this table. However, I wanted to reserve that task
for a more appropriate column: the internationally recognized ISBN.

So let’s go ahead and create a new column for this key. Now, bearing in mind that
ISBNs are 13 characters long, you might think that the following command would do
the job:

ALTER TABLE classics ADD isbn CHAR(13) PRIMARY KEY;

But it doesn’t. If you try it, you’ll get the error Duplicate entry for key 1. The reason
is that the table is already populated with some data and this command is trying to
add a column with the value NULL to each row, which is not allowed, as all values
must be unique in any column having a primary key index. However, if there were no
data already in the table, this command would work just fine, as would adding the
primary key index upon table creation.

In our current situation, we have to be a bit sneaky and create the new column
without an index, populate it with data, and then add the index retrospectively using
the commands in Example 8-13. Luckily, each of the years is unique in the current set
of data, so we can use the year column to identify each row for updating. Note that
this example uses the UPDATE command and WHERE keyword, which are explained in
more detail in the section “Querying a MySQL Database” on page 193.

190 | Chapter 8: Introduction to MySQL

Example 8-13. Populating the isbn column with data and using a primary key

ALTER TABLE classics ADD isbn CHAR(13);
UPDATE classics SET isbn='9781598184891' WHERE year='1876';
UPDATE classics SET isbn='9780582506206' WHERE year='1811';
UPDATE classics SET isbn='9780517123201' WHERE year='1856';
UPDATE classics SET isbn='9780099533474' WHERE year='1841';
UPDATE classics SET isbn='9780192814968' WHERE year='1594';
ALTER TABLE classics ADD PRIMARY KEY(isbn);
DESCRIBE classics;

Once you have typed these commands, the results should look like Figure 8-8. Note
that the keywords PRIMARY KEY replace the keyword INDEX in the ALTER TABLE syntax
(compare Examples 8-10 and 8-13).

Figure 8-8. Retrospectively adding a primary key to the classics table

To have created a primary key when the table classics was created, you could have
used the commands in Example 8-14. Again, rename classics in line 1 to something
else if you wish to try this example, and then delete the test table afterward.

Example 8-14. Creating the table classics with a primary key

CREATE TABLE classics (
 author VARCHAR(128),
 title VARCHAR(128),
 category VARCHAR(16),
 year SMALLINT,
 isbn CHAR(13),
 INDEX(author(20)),
 INDEX(title(20)),
 INDEX(category(4)),

Indexes | 191

 INDEX(year),
 PRIMARY KEY (isbn)) ENGINE InnoDB;

Creating a FULLTEXT index

Unlike a regular index, MySQL’s FULLTEXT allows super-fast searches of entire col‐
umns of text. It stores every word in every data string in a special index that you can
search using “natural language,” in a similar manner to using a search engine.

It’s not strictly true that MySQL stores all the words in a FULLTEXT
index, because it has a built-in list of more than 500 words that it
chooses to ignore because they are so common that they aren’t very
helpful for searching anyway—so-called stopwords. This list
includes the, as, is, of, and so on. The list helps MySQL run much
more quickly when performing a FULLTEXT search and keeps data‐
base sizes down. Appendix C contains the full list of stopwords.

Here are some things that you should know about FULLTEXT indexes:

• Since MySQL 5.6, InnoDB tables can use FULLTEXT indexes, but prior to that
FULLTEXT indexes could be used only with MyISAM tables. If you need to convert
a table to MyISAM, you can usually use the MySQL command ALTER TABLE
tablename ENGINE = MyISAM;.

• FULLTEXT indexes can be created for CHAR, VARCHAR, and TEXT columns only.
• A FULLTEXT index definition can be given in the CREATE TABLE statement when a

table is created, or added later using ALTER TABLE (or CREATE INDEX).
• For large data sets, it is much faster to load your data into a table that has no
FULLTEXT index and then create the index than to load data into a table that has
an existing FULLTEXT index.

To create a FULLTEXT index, apply it to one or more records as in Example 8-15,
which adds a FULLTEXT index to the pair of columns author and title in the classics
table (this index is in addition to the ones already created and does not affect them).

Example 8-15. Adding a FULLTEXT index to the table classics

ALTER TABLE classics ADD FULLTEXT(author,title);

You can now perform FULLTEXT searches across this pair of columns. This feature
could really come into its own if you could now add the entire text of these publica‐
tions to the database (particularly as they’re out of copyright protection) and they
would be fully searchable. See the section “MATCH...AGAINST” on page 198 for a
description of searches using FULLTEXT.

192 | Chapter 8: Introduction to MySQL

If you find that MySQL is running slower than you think it should
be when accessing your database, the problem is usually related to
your indexes. Either you don’t have an index where you need one,
or the indexes are not optimally designed. Tweaking a table’s
indexes will often solve such a problem. Performance is beyond the
scope of this book, but in Chapter 9 I’ll give you a few tips so you
know what to look for.

Querying a MySQL Database
So far, we’ve created a MySQL database and tables, populated them with data, and
added indexes to make them fast to search. Now it’s time to look at how these
searches are performed, and the various commands and qualifiers available.

SELECT

As you saw in Figure 8-4, the SELECT command is used to extract data from a table. In
that section, I used its simplest form to select all data and display it—something you
will never want to do on anything but the smallest tables, because all the data will
scroll by at an unreadable pace. Alternatively, on Unix/Linux computers, you can tell
MySQL to page output a screen at a time by issuing the command:

pager less;

This pipes output to the less program. To restore standard output and turn paging
off, you can issue this command:

nopager;

Let’s now examine SELECT in more detail. The basic syntax is:

SELECT something FROM tablename;

The something can be an * (asterisk) as you saw before, which means every column,
or you can choose to select only certain columns. For instance, Example 8-16 shows
how to select just the author and title and just the title and isbn. The result of typing
these commands can be seen in Figure 8-9.

Example 8-16. Two different SELECT statements

SELECT author,title FROM classics;
SELECT title,isbn FROM classics;

Indexes | 193

Figure 8-9. The output from two different SELECT statements

SELECT COUNT

Another replacement for the something parameter is COUNT, which can be used in
many ways. In Example 8-17, it displays the number of rows in the table by passing *
as a parameter, which means all rows. As you’d expect, the result returned is 5, as
there are five publications in the table.

Example 8-17. Counting rows

SELECT COUNT(*) FROM classics;

SELECT DISTINCT

The DISTINCT qualifier (and its synonym DISTINCTROW) allows you to weed out multi‐
ple entries when they contain the same data. For instance, suppose that you want a
list of all authors in the table. If you select just the author column from a table con‐
taining multiple books by the same author, you’ll normally see a long list with the
same author names over and over. But by adding the DISTINCT keyword, you can
show each author just once. So, let’s test that out by adding another row that repeats
one of our existing authors (Example 8-18).

Example 8-18. Duplicating data

INSERT INTO classics(author, title, category, year, isbn)
 VALUES('Charles Dickens','Little Dorrit','Fiction','1857', '9780141439969');

Now that Charles Dickens appears twice in the table, we can compare the results of
using SELECT with and without the DISTINCT qualifier. Example 8-19 and Figure 8-10

194 | Chapter 8: Introduction to MySQL

show that the simple SELECT lists Dickens twice, and the command with the DISTINCT
qualifier shows him only once.

Example 8-19. With and without the DISTINCT qualifier

SELECT author FROM classics;
SELECT DISTINCT author FROM classics;

Figure 8-10. Selecting data with and without DISTINCT

DELETE

When you need to remove a row from a table, use the DELETE command. Its syntax is
similar to the SELECT command and allows you to narrow down the exact row or
rows to delete using qualifiers such as WHERE and LIMIT.

Now that you’ve seen the effects of the DISTINCT qualifier, if you typed Example 8-18,
you should remove Little Dorrit by entering the commands in Example 8-20.

Example 8-20. Removing the new entry

DELETE FROM classics WHERE title='Little Dorrit';

This example issues a DELETE command for all rows whose title column contains the
string Little Dorrit.

The WHERE keyword is very powerful, and important to enter correctly; an error could
lead a command to the wrong rows (or have no effect in cases where nothing matches
the WHERE clause). So now we’ll spend some time on that clause, which is the heart
and soul of SQL.

Indexes | 195

WHERE

The WHERE keyword enables you to narrow down queries by returning only those
where a certain expression is true. Example 8-20 returns only the rows where the col‐
umn exactly matches the string Little Dorrit, using the equality operator =.
Example 8-21 shows a couple more examples of using WHERE with =.

Example 8-21. Using the WHERE keyword

SELECT author,title FROM classics WHERE author="Mark Twain";
SELECT author,title FROM classics WHERE isbn="9781598184891";

Given our current table, the two commands in Example 8-21 display the same results.
But we could easily add more books by Mark Twain, in which case the first line would
display all the titles he wrote and the second line would continue (because we know
the ISBN is unique) to display The Adventures of Tom Sawyer. In other words,
searches using a unique key are more predictable, and you’ll see further evidence later
of the value of unique and primary keys.

You can also do pattern matching for your searches using the LIKE qualifier, which
allows searches on parts of strings. This qualifier should be used with a % character
before or after some text. When placed before a keyword, % means anything before.
After a keyword, it means anything after. Example 8-22 performs three different quer‐
ies, one for the start of a string, one for the end, and one for anywhere in a string.

Example 8-22. Using the LIKE qualifier

SELECT author,title FROM classics WHERE author LIKE "Charles%";
SELECT author,title FROM classics WHERE title LIKE "%Species";
SELECT author,title FROM classics WHERE title LIKE "%and%";

You can see the results of these commands in Figure 8-11. The first command out‐
puts the publications by both Charles Darwin and Charles Dickens because the LIKE
qualifier was set to return anything matching the string Charles followed by any
other text. Then just The Origin of Species is returned, because it’s the only row
whose column ends with the string Species. Last, both Pride and Prejudice and
Romeo and Juliet are returned, because they both matched the string and anywhere
in the column. The % will also match if there is nothing in the position it occupies; in
other words, it can match an empty string.

196 | Chapter 8: Introduction to MySQL

Figure 8-11. Using WHERE with the LIKE qualifier

LIMIT

The LIMIT qualifier enables you to choose how many rows to return in a query, and
where in the table to start returning them. When passed a single parameter, it tells
MySQL to start at the beginning of the results and just return the number of rows
given in that parameter. If you pass it two parameters, the first indicates the offset
from the start of the results where MySQL should start the display, and the second
indicates how many to return. You can think of the first parameter as saying, “Skip
this number of results at the start.”

Example 8-23 includes three commands. The first returns the first three rows from
the table. The second returns two rows starting at position 1 (skipping the first row).
The last command returns a single row starting at position 3 (skipping the first three
rows). Figure 8-12 shows the results of issuing these three commands.

Example 8-23. Limiting the number of results returned

SELECT author,title FROM classics LIMIT 3;
SELECT author,title FROM classics LIMIT 1,2;
SELECT author,title FROM classics LIMIT 3,1;

Be careful with the LIMIT keyword, because offsets start at 0, but
the number of rows to return starts at 1. So, LIMIT 1,3 means
return three rows starting from the second row. You could look at
the first argument as stating how many rows to skip, so that in
English the instruction would be “Return 3 rows, skipping the first
1.”

Indexes | 197

Figure 8-12. Restricting the rows returned with LIMIT

MATCH...AGAINST

The MATCH...AGAINST construct can be used on columns that have been given a FULL
TEXT index (see the section “Creating a FULLTEXT index” on page 192). With it, you
can make natural-language searches as you would in an internet search engine.
Unlike the use of WHERE...= or WHERE...LIKE, MATCH...AGAINST lets you enter multi‐
ple words in a search query and checks them against all words in the FULLTEXT col‐
umns. FULLTEXT indexes are case-insensitive, so it makes no difference what case is
used in your queries.

Assuming that you have added a FULLTEXT index to the author and title columns,
enter the three queries shown in Example 8-24. The first asks for any rows that con‐
tain the word and to be returned. Because and is a stopword, MySQL will ignore it
and the query will always produce an empty set—no matter what is stored in the col‐
umns. The second query asks for any rows that contain both of the words curiosity
and shop anywhere in them, in any order, to be returned. And the last query applies
the same kind of search for the words tom and sawyer. Figure 8-13 shows the results
of these queries.

Example 8-24. Using MATCH...AGAINST on FULLTEXT indexes

SELECT author,title FROM classics
 WHERE MATCH(author,title) AGAINST('and');
SELECT author,title FROM classics
 WHERE MATCH(author,title) AGAINST('curiosity shop');
SELECT author,title FROM classics
 WHERE MATCH(author,title) AGAINST('tom sawyer');

198 | Chapter 8: Introduction to MySQL

Figure 8-13. Using MATCH...AGAINST on FULLTEXT indexes

MATCH...AGAINST in Boolean mode

If you wish to give your MATCH...AGAINST queries even more power, use Boolean
mode. This changes the effect of the standard FULLTEXT query so that it searches for
any combination of search words, instead of requiring all search words to be in the
text. The presence of a single word in a column causes the search to return the row.

Boolean mode also allows you to preface search words with a + or - sign to indicate
whether they must be included or excluded. If normal Boolean mode says, “Any of
these words will do,” a plus sign means, “This word must be present; otherwise, don’t
return the row.” A minus sign means, “This word must not be present; its presence
disqualifies the row from being returned.”

Example 8-25 illustrates Boolean mode through two queries. The first asks for all
rows containing the word charles and not the word species to be returned. The second
uses double quotes to request that all rows containing the exact phrase origin of be
returned. Figure 8-14 shows the results of these queries.

Example 8-25. Using MATCH...AGAINST in Boolean mode

SELECT author,title FROM classics
 WHERE MATCH(author,title)
 AGAINST('+charles -species' IN BOOLEAN MODE);
SELECT author,title FROM classics
 WHERE MATCH(author,title)
 AGAINST('"origin of"' IN BOOLEAN MODE);

Indexes | 199

Figure 8-14. Using MATCH...AGAINST in Boolean mode

As you would expect, the first request returns only The Old Curiosity Shop by
Charles Dickens; any rows containing the word species have been excluded, so
Charles Darwin’s publication is ignored.

There is something of interest to note in the second query: the
stopword of is part of the search string, but it is still used by the
search because the double quotation marks override stopwords.

UPDATE...SET
This construct allows you to update the contents of a field. If you wish to change the
contents of one or more fields, you need to first narrow in on just the field or fields to
be changed, in much the same way you use the SELECT command. Example 8-26
shows the use of UPDATE...SET in two different ways. You can see the results in
Figure 8-15.

Example 8-26. Using UPDATE...SET

UPDATE classics SET author='Mark Twain (Samuel Langhorne Clemens)'
 WHERE author='Mark Twain';
UPDATE classics SET category='Classic Fiction'
 WHERE category='Fiction';

200 | Chapter 8: Introduction to MySQL

Figure 8-15. Updating columns in the classics table

In the first query, Mark Twain’s real name of Samuel Langhorne Clemens was
appended to his pen name in parentheses, which affected only one row. The second
query, however, affected three rows, because it changed all occurrences of the word
Fiction in the category column to the term Classic Fiction.

When performing an update, you can also make use of the qualifiers you have already
seen, such as LIMIT, and the following ORDER BY and GROUP BY keywords.

ORDER BY

ORDER BY sorts returned results by one or more columns in ascending or descending
order. Example 8-27 shows two such queries, the results of which can be seen in
Figure 8-16.

Example 8-27. Using ORDER BY

SELECT author,title FROM classics ORDER BY author;
SELECT author,title FROM classics ORDER BY title DESC;

Indexes | 201

Figure 8-16. Sorting the results of requests

As you can see, the first query returns the publications by author in ascending alpha‐
betical order (the default), and the second returns them by title in descending order.

If you wanted to sort all the rows by author and then by descending year of publica‐
tion (to view the most recent first), you would issue the following query:

SELECT author,title,year FROM classics ORDER BY author,year DESC;

This shows that each ascending and descending qualifier applies to a single column.
The DESC keyword applies only to the preceding column, year. Because you allow
author to use the default sort order, it is sorted in ascending order. You could also
have explicitly specified ascending order for that column, with the same results:

SELECT author,title,year FROM classics ORDER BY author ASC,year DESC;

GROUP BY

In a similar fashion to ORDER BY, you can group results returned from queries using
GROUP BY, which is good for retrieving information about a group of data. For exam‐
ple, if you want to know how many publications there are of each category in the
classics table, you can issue the following query:

SELECT category,COUNT(author) FROM classics GROUP BY category;

which returns the following output:

202 | Chapter 8: Introduction to MySQL

+-----------------+---------------+
| category | COUNT(author) |
+-----------------+---------------+
Classic Fiction	3
Non-Fiction	1
Play	1
+-----------------+---------------+
3 rows in set (0.00 sec)

Joining Tables Together
It is quite normal to maintain multiple tables within a database, each holding a differ‐
ent type of information. For example, consider the case of a customers table that needs
to be able to be cross-referenced with publications purchased from the classics table.
Enter the commands in Example 8-28 to create this new table and populate it with
three customers and their purchases. Figure 8-17 shows the result.

Example 8-28. Creating and populating the customers table

CREATE TABLE customers (
 name VARCHAR(128),
 isbn VARCHAR(13),
 PRIMARY KEY (isbn)) ENGINE InnoDB;
INSERT INTO customers(name,isbn)
 VALUES('Joe Bloggs','9780099533474');
INSERT INTO customers(name,isbn)
 VALUES('Mary Smith','9780582506206');
INSERT INTO customers(name,isbn)
 VALUES('Jack Wilson','9780517123201');
SELECT * FROM customers;

Figure 8-17. Creating the customers table

Indexes | 203

There’s also a shortcut for inserting multiple rows of data, as in
Example 8-28, in which you can replace the three separate INSERT
INTO queries with a single one listing the data to be inserted, sepa‐
rated by commas, like this:

INSERT INTO customers(name,isbn) VALUES
 ('Joe Bloggs','9780099533474'),
 ('Mary Smith','9780582506206'),
 ('Jack Wilson','9780517123201');

Of course, in a proper table containing customers’ details there would also be
addresses, phone numbers, email addresses, and so on, but they aren’t necessary for
this explanation. While creating the new table, you should have noticed that it has
something in common with the classics table: a column called isbn. Because it has the
same meaning in both tables (an ISBN refers to a book, and always the same book),
we can use this column to tie the two tables together into a single query, as in
Example 8-29.

Example 8-29. Joining two tables into a single SELECT

SELECT name,author,title FROM customers,classics
 WHERE customers.isbn=classics.isbn;

The result of this operation is the following:

+-------------+-----------------+------------------------+
| name | author | title |
+-------------+-----------------+------------------------+
Joe Bloggs	Charles Dickens	The Old Curiosity Shop
Mary Smith	Jane Austen	Pride and Prejudice
Jack Wilson	Charles Darwin	The Origin of Species
+-------------+-----------------+------------------------+
3 rows in set (0.00 sec)

See how this query has neatly linked the tables together to show the publications pur‐
chased from the classics table by the people in the customers table?

NATURAL JOIN

Using NATURAL JOIN, you can save yourself some typing and make queries a little
clearer. This kind of join takes two tables and automatically joins columns that have
the same name. So, to achieve the same results as from Example 8-29, you would
enter the following:

SELECT name,author,title FROM customers NATURAL JOIN classics;

204 | Chapter 8: Introduction to MySQL

JOIN...ON

If you wish to specify the column on which to join two tables, use the JOIN...ON
construct, as follows, to achieve results identical to those of Example 8-29:

SELECT name,author,title FROM customers
 JOIN classics ON customers.isbn=classics.isbn;

Using AS
You can also save yourself some typing and improve query readability by creating
aliases using the AS keyword. Simply follow a table name with AS and the alias to use.
The following code, therefore, is also identical in action to Example 8-29:

SELECT name,author,title from
 customers AS cust, classics AS class WHERE cust.isbn=class.isbn;

The result of this operation is the following:

+-------------+-----------------+------------------------+
| name | author | title |
+-------------+-----------------+------------------------+
Joe Bloggs	Charles Dickens	The Old Curiosity Shop
Mary Smith	Jane Austen	Pride and Prejudice
Jack Wilson	Charles Darwin	The Origin of Species
+-------------+-----------------+------------------------+
3 rows in set (0.00 sec)

You can also use AS to rename a column (whether or not joining tables), like this:

SELECT name AS customer FROM customers ORDER BY customer;

Which results in the following output:

+-------------+
| customer |
+-------------+
| Jack Wilson |
| Joe Bloggs |
| Mary Smith |
+-------------+
3 rows in set (0.00 sec)

Aliases can be particularly useful when you have long queries that reference the same
table names many times.

Using Logical Operators
You can also use the logical operators AND, OR, and NOT in your MySQL WHERE queries
to further narrow down your selections. Example 8-30 shows one instance of each,
but you can mix and match them in any way you need.

Indexes | 205

Example 8-30. Using logical operators

SELECT author,title FROM classics WHERE
 author LIKE "Charles%" AND author LIKE "%Darwin";
SELECT author,title FROM classics WHERE
 author LIKE "%Mark Twain%" OR author LIKE "%Samuel Langhorne Clemens%";
SELECT author,title FROM classics WHERE
 author LIKE "Charles%" AND author NOT LIKE "%Darwin";

I’ve chosen the first query because Charles Darwin might be listed in some rows by
his full name, Charles Robert Darwin. The query returns any publications for which
the author column starts with Charles and ends with Darwin. The second query
searches for publications written using either Mark Twain’s pen name or his real
name, Samuel Langhorne Clemens. The third query returns publications written by
authors with the first name Charles but not the surname Darwin.

MySQL Functions
You might wonder why anyone would want to use MySQL functions when PHP
comes with a whole bunch of powerful functions of its own. The answer is very sim‐
ple: the MySQL functions work on the data right there in the database. If you were to
use PHP, you would first have to extract raw data from MySQL, manipulate it, and
then perform the database query you wanted.

Having functions built into MySQL substantially reduces the time needed for per‐
forming complex queries, as well as their complexity. You can learn more about all
the available string and date/time functions from the documentation. However, to get
you started, Appendix D describes a subset of the most useful functions.

Accessing MySQL via phpMyAdmin
Although to use MySQL you have to learn these main commands and how they work,
once you understand them, it can be much quicker and simpler to use a program
such as phpMyAdmin to manage your databases and tables.

To do this, assuming you have installed AMPPS as described in Chapter 2, type the
following to open up the program (see Figure 8-18):

http://localhost/phpmyadmin

206 | Chapter 8: Introduction to MySQL

http://tinyurl.com/mysqlstrings
http://tinyurl.com/mysqldates

Figure 8-18. The phpMyAdmin main screen

In the lefthand pane of the main phpMyAdmin screen, you can click to select any
tables you wish to work with (although none will be available until created). You can
also click New to create a new database.

From here, you can perform all the main operations, such as creating new databases,
adding tables, creating indexes, and much more. To find out more about phpMyAd‐
min, consult the documentation.

If you worked with me through the examples in this chapter, congratulations—it has
been quite a long journey. You’ve come all the way from learning how to create a
MySQL database, through issuing complex queries that combine multiple tables, to
using Boolean operators and leveraging MySQL’s various qualifiers.

In the next chapter, we’ll start looking at how to approach efficient database design,
advanced SQL techniques, and MySQL functions and transactions.

Questions
1. What is the purpose of the semicolon in MySQL queries?
2. Which command would you use to view the available databases or tables?
3. How would you create a new MySQL user on the local host called newuser with a

password of newpass and with access to everything in the database newdatabase?
4. How can you view the structure of a table?

Questions | 207

https://docs.phpmyadmin.net

5. What is the purpose of a MySQL index?
6. What benefit does a FULLTEXT index provide?
7. What is a stopword?
8. Both SELECT DISTINCT and GROUP BY cause the display to show only one output

row for each value in a column, even if multiple rows contain that value. What
are the main differences between SELECT DISTINCT and GROUP BY?

9. Using the SELECT...WHERE construct, how would you return only rows contain‐
ing the word Langhorne somewhere in the author column of the classics table
used in this chapter?

10. What needs to be defined in two tables to make it possible for you to join them
together?

See “Chapter 8 Answers” on page 719 in Appendix A for the answers to these
questions.

208 | Chapter 8: Introduction to MySQL

CHAPTER 9

Mastering MySQL

Chapter 8 provided you with a good grounding in the practice of using relational
databases with the Structured Query Language. You’ve learned about creating data‐
bases and the tables they comprise, as well as inserting, looking up, changing, and
deleting data.

With that knowledge under your belt, we now need to look at how to design data‐
bases for maximum speed and efficiency. For example, how do you decide what data
to place in which table? Well, over the years, a number of guidelines have been devel‐
oped that—if you follow them—ensure that your databases will be efficient and capa‐
ble of growing as you feed them more and more data.

Database Design
It’s very important that you design a database correctly before you start to create it;
otherwise, you are almost certainly going to have to go back and change it by splitting
up some tables, merging others, and moving various columns about in order to ach‐
ieve sensible relationships that MySQL can easily use.

Sitting down with a sheet of paper and a pencil and writing down a selection of the
queries that you think you and your users are likely to ask is an excellent starting
point. In the case of an online bookstore’s database, some of your questions could be:

• How many authors, books, and customers are in the database?
• Which author wrote a certain book?
• Which books were written by a certain author?
• What is the most expensive book?
• What is the best-selling book?

209

• Which books have not sold this year?
• Which books did a certain customer buy?
• Which books have been purchased along with the same other books?

Of course, there are many more queries that you could make on such a database, but
even this small sample will begin to give you insights into how to lay out your tables.
For example, books and ISBNs can probably be combined into one table, because
they are closely linked (we’ll examine some of the subtleties later). In contrast, books
and customers should be in separate tables, because their connection is very loose. A
customer can buy any book, and even multiple copies of a book, yet a book can be
bought by many customers and be ignored by still more potential customers.

When you plan to do a lot of searches on something, it can often benefit by having its
own table. And when couplings between things are loose, it’s best to put them in sep‐
arate tables.

Taking into account those simple rules of thumb, we can guess we’ll need at least
three tables to accommodate all these queries:

Authors
There will be lots of searches for authors, many of whom have collaborated on
titles, and many of whom will be featured in collections. Listing all the informa‐
tion about each author together, linked to that author, will produce optimal
results for searches—hence an Authors table.

Books
Many books appear in different editions. Sometimes they change publisher and
sometimes they have the same titles as other, unrelated books. So, the links
between books and authors are complicated enough to call for a separate table.

Customers
It’s even more clear why customers should get their own table, as they are free to
purchase any book by any author.

Primary Keys: The Keys to Relational Databases
Using the power of relational databases, we can define information for each author,
book, and customer in just one place. Obviously, what interests us is the links
between them—such as who wrote each book and who purchased it—but we can
store that information just by making links between the three tables. I’ll show you the
basic principles, and then it just takes practice for it to feel natural.

The magic involves giving every author a unique identifier. We’ll do the same for
every book and for every customer. We saw the means of doing that in the previous
chapter: the primary key. For a book, it makes sense to use the ISBN, although you

210 | Chapter 9: Mastering MySQL

then have to deal with multiple editions that have different ISBNs. For authors and
customers, you can just assign arbitrary keys, which the AUTO_INCREMENT feature that
you saw in the last chapter makes easy.

In short, every table will be designed around some object that you’re likely to search
for a lot—an author, book, or customer, in this case—and that object will have a pri‐
mary key. Don’t choose a key that could possibly have the same value for different
objects. The ISBN is a rare case for which an industry has provided a primary key
that you can rely on to be unique for each product. Most of the time, you’ll create an
arbitrary key for this purpose, using AUTO_INCREMENT.

Normalization
The process of separating your data into tables and creating primary keys is called
normalization. Its main goal is to make sure each piece of information appears in the
database only once. Duplicating data is inefficient, because it makes databases larger
than they need to be and therefore slows access. More importantly, the presence of
duplicates creates a strong risk that you’ll update only one row of duplicated data,
creating inconsistencies in a database and potentially causing serious errors.

For example, if you list the titles of books in the Authors table as well as the Books
table, and you have to correct a typographic error in a title, you’ll have to search
through both tables and make sure you make the same change every place the title is
listed. It’s better to keep the title in one place and use the ISBN in other places.

But in the process of splitting a database into multiple tables, it’s important not to go
too far and create more tables than is necessary, which would also lead to inefficient
design and slower access.

Luckily, E. F. Codd, the inventor of the relational model, analyzed the concept of nor‐
malization and split it into three separate schemas called First, Second, and Third Nor‐
mal Form. If you modify a database to satisfy each of these forms in order, you will
ensure that your database is optimally balanced for fast access and minimum mem‐
ory and disk space usage.

To see how the normalization process works, let’s start with the rather monstrous
database in Table 9-1, which shows a single table containing all of the author names,
book titles, and (fictional) customer details. You could consider it a first attempt at a
table intended to keep track of which customers have ordered books. Obviously this
is an inefficient design, because data is duplicated all over the place (duplications are
highlighted), but it represents a starting point.

Normalization | 211

Table 9-1. A highly inefficient design for a database table

Author 1 Author 2 Title ISBN Price Customer
name

Customer address Purchase
date

David Sklar Adam
Trachtenberg

PHP Cookbook 0596101015 44.99 Emma
Brown

1565 Rainbow
Road, Los Angeles,
CA 90014

Mar 03 2009

Danny
Goodman

 Dynamic HTML 0596527403 59.99 Darren
Ryder

4758 Emily Drive,
Richmond, VA
23219

Dec 19
2008

Hugh E.
Williams

David Lane PHP and MySQL 0596005436 44.95 Earl B.
Thurston

862 Gregory Lane,
Frankfort, KY 40601

Jun 22 2009

David Sklar Adam
Trachtenberg

PHP Cookbook 0596101015 44.99 Darren
Ryder

4758 Emily Drive,
Richmond, VA
23219

Dec 19
2008

Rasmus
Lerdorf

Kevin Tatroe &
Peter
MacIntyre

Programming
PHP

0596006815 39.99 David Miller 3647 Cedar Lane,
Waltham, MA
02154

Jan 16 2009

In the following three sections, we will examine this database design, and you’ll see
how we can improve it by removing the various duplicate entries and splitting the
single table into multiple tables, each containing one type of data.

First Normal Form
For a database to satisfy the First Normal Form, it must fulfill three requirements:

• There should be no repeating columns containing the same kind of data.
• All columns should contain a single value.
• There should be a primary key to uniquely identify each row.

Looking at these requirements in order, you should notice straightaway that both the
Author 1 and Author 2 columns constitute repeating data types. So we already have a
target column for pulling into a separate table, as the repeated Author columns violate
Rule 1.

Second, there are three authors listed for the final book, Programming PHP. I’ve han‐
dled that by making Kevin Tatroe and Peter MacIntyre share the Author 2 column,
which violates Rule 2—yet another reason to transfer the Author details to a separate
table.

However, Rule 3 is satisfied, because the primary key of ISBN has already been cre‐
ated.

Table 9-2 shows the result of removing the Author columns from Table 9-1. Already it
looks a lot less cluttered, although there remain duplications that are highlighted.

212 | Chapter 9: Mastering MySQL

Table 9-2. The result of stripping the Author columns from Table 9-1

Title ISBN Price Customer name Customer address Purchase date
PHP Cookbook 0596101015 44.99 Emma Brown 1565 Rainbow Road, Los Angeles, CA 90014 Mar 03 2009
Dynamic HTML 0596527403 59.99 Darren Ryder 4758 Emily Drive, Richmond, VA 23219 Dec 19 2008
PHP and MySQL 0596005436 44.95 Earl B. Thurston 862 Gregory Lane, Frankfort, KY 40601 Jun 22 2009
PHP Cookbook 0596101015 44.99 Darren Ryder 4758 Emily Drive, Richmond, VA 23219 Dec 19 2008
Programming PHP 0596006815 39.99 David Miller 3647 Cedar Lane, Waltham, MA 02154 Jan 16 2009

The new Authors table shown in Table 9-3 is small and simple. It just lists the ISBN of
a title along with an author. If a title has more than one author, additional authors get
their own rows. At first, you may feel ill at ease with this table, because you can’t tell
which author wrote which book. But don’t worry: MySQL can quickly tell you. All
you have to do is tell it which book you want information for, and MySQL will use its
ISBN to search the Authors table in a matter of milliseconds.

Table 9-3. The new Authors table

ISBN Author
0596101015 David Sklar
0596101015 Adam Trachtenberg
0596527403 Danny Goodman
0596005436 Hugh E. Williams
0596005436 David Lane
0596006815 Rasmus Lerdorf
0596006815 Kevin Tatroe
0596006815 Peter MacIntyre

As I mentioned earlier, the ISBN will be the primary key for the Books table, when we
get around to creating that table. I mention that here in order to emphasize that the
ISBN is not, however, the primary key for the Authors table. In the real world, the
Authors table would deserve a primary key, too, so that each author would have a key
to uniquely identify them.

So, in the Authors table, ISBN is just a column that—for the purposes of speeding up
searches—we’ll probably make a key, but not the primary key. In fact, it cannot be the
primary key in this table, because it’s not unique: the same ISBN appears multiple
times whenever two or more authors have collaborated on a book.

Because we’ll use it to link authors to books in another table, this column is called a
foreign key.

Normalization | 213

Keys (also called indexes) have several purposes in MySQL. The
fundamental reason for defining a key is to make searches faster.
You’ve seen examples in Chapter 8 in which keys are used in WHERE
clauses for searching. But a key can also be useful to uniquely iden‐
tify an item. Thus, a unique key is often used as a primary key in
one table, and as a foreign key to link rows in that table to rows in
another table.

Second Normal Form
The First Normal Form deals with duplicate data (or redundancy) across multiple
columns. The Second Normal Form is all about redundancy across multiple rows. To
achieve Second Normal Form, your tables must already be in First Normal Form.
Once this has been done, you achieve Second Normal Form by identifying columns
whose data repeats in different places and then removing them to their own tables.

So, let’s look again at Table 9-2. Notice how Darren Ryder bought two books and
therefore his details are duplicated. This tells us that the Customer columns need to
be pulled into their own table. Table 9-4 shows the result of removing the Customer
columns from Table 9-2.

Table 9-4. The new Titles table

ISBN Title Price
0596101015 PHP Cookbook 44.99
0596527403 Dynamic HTML 59.99
0596005436 PHP and MySQL 44.95
0596006815 Programming PHP 39.99

As you can see, all that’s left in Table 9-4 are the ISBN, Title, and Price columns for
four unique books, so this now constitutes an efficient and self-contained table that
satisfies the requirements of both the First and Second Normal Forms. Along the way,
we’ve managed to reduce the information to data closely related to book titles. This
table could also include years of publication, page counts, numbers of reprints, and so
on, as these details are also closely related. The only rule is that we can’t put in any
column that could have multiple values for a single book, because then we’d have to
list the same book in multiple rows and would thus violate Second Normal Form.
Restoring an Author column, for instance, would violate this normalization.

However, looking at the extracted Customer columns, now in Table 9-5, we can see
that there’s still more normalization work to do, because Darren Ryder’s details are
still duplicated. And it could also be argued that First Normal Form Rule 2 (all col‐
umns should contain a single value) has not been properly complied with, because
the addresses really need to be broken into separate columns for Address, City, State,
and Zip.

214 | Chapter 9: Mastering MySQL

Table 9-5. The customer details from Table 9-2

ISBN Customer name Customer address Purchase date
0596101015 Emma Brown 1565 Rainbow Road, Los Angeles, CA 90014 Mar 03 2009
0596527403 Darren Ryder 4758 Emily Drive, Richmond, VA 23219 Dec 19 2008
0596005436 Earl B. Thurston 862 Gregory Lane, Frankfort, KY 40601 Jun 22 2009
0596101015 Darren Ryder 4758 Emily Drive, Richmond, VA 23219 Dec 19 2008
0596006815 David Miller 3647 Cedar Lane, Waltham, MA 02154 Jan 16 2009

What we have to do is split this table further to ensure that each customer’s details are
entered only once. Because the ISBN is not and cannot be used as a primary key to
identify customers (or authors), a new key must be created.

Table 9-6 is the result of normalizing the Customers table into both First and Second
Normal Forms. Each customer now has a unique customer number called CustNo
that is the table’s primary key, and that will most likely have been created via
AUTO_INCREMENT. All the parts of customer addresses have also been separated into
distinct columns to make them easily searchable and updateable.

Table 9-6. The new Customers table

CustNo Name Address City State Zip
1 Emma Brown 1565 Rainbow Road Los Angeles CA 90014
2 Darren Ryder 4758 Emily Drive Richmond VA 23219
3 Earl B. Thurston 862 Gregory Lane Frankfort KY 40601
4 David Miller 3647 Cedar Lane Waltham MA 02154

At the same time, in order to normalize Table 9-6, we had to remove the information
on customer purchases, because otherwise, there would be multiple instances of cus‐
tomer details for each book purchased. Instead, the purchase data is now placed in a
new table called Purchases (see Table 9-7).

Table 9-7. The new Purchases table

CustNo ISBN Date
1 0596101015 Mar 03 2009
2 0596527403 Dec 19 2008
2 0596101015 Dec 19 2008
3 0596005436 Jun 22 2009
4 0596006815 Jan 16 2009

Here the CustNo column from Table 9-6 is reused as a key to tie the Customers and
Purchases tables together. Because the ISBN column is also repeated here, this table
can be linked with the Authors and Titles tables, too.

Normalization | 215

The CustNo column may be a useful key in the Purchases table, but it’s not a primary
key. A single customer can buy multiple books (and even multiple copies of one
book), so the CustNo column is not a primary key. In fact, the Purchases table has no
primary key. That’s all right, because we don’t expect to need to keep track of unique
purchases. If one customer buys two copies of the same book on the same day, we’ll
just allow two rows with the same information. For easy searching, we can define
both CustNo and ISBN as keys—just not as primary keys.

There are now four tables, one more than the three we had initially
assumed would be needed. We arrived at this decision through the
normalization process, by methodically following the First and Sec‐
ond Normal Form rules, which made it plain that a fourth table
called Purchases would also be required.

The tables we now have are Authors (Table 9-3), Titles (Table 9-4), Customers
(Table 9-6), and Purchases (Table 9-7), and we can link each table to any other using
either the CustNo or the ISBN key.

For example, to see which books Darren Ryder has purchased, you can look him up
in Table 9-6, the Customers table, where you will see his CustNo is 2. Armed with this
number, you can now go to Table 9-7, the Purchases table; looking at the ISBN col‐
umn here, you will see that he purchased titles 0596527403 and 0596101015 on
December 19, 2008. This looks like a lot of trouble for a human, but it’s not so hard
for MySQL.

To determine what these titles were, you can then refer to Table 9-4, the Titles table,
and see that the books he bought were Dynamic HTML and PHP Cookbook. Should
you wish to know the authors of these books, you could also use the ISBNs you just
looked up on Table 9-3, the Authors table, and you would see that ISBN 0596527403,
Dynamic HTML, was written by Danny Goodman, and that ISBN 0596101015, PHP
Cookbook, was written by David Sklar and Adam Trachtenberg.

Third Normal Form
Once you have a database that complies with both the First and Second Normal
Forms, it is in pretty good shape and you might not have to modify it any further.
However, if you wish to be very strict with your database, you can ensure that it
adheres to the Third Normal Form, which requires that data that is not directly depen‐
dent on the primary key but is dependent on another value in the table should also be
moved into separate tables, according to the dependence.

For example, in Table 9-6, the Customers table, it could be argued that the State, City,
and Zip keys are not directly related to each customer, because many other people will

216 | Chapter 9: Mastering MySQL

have the same details in their addresses, too. However, they are directly related to
each other, in that the Address relies on the City, and the City relies on the State.

Therefore, to satisfy Third Normal Form for Table 9-6, you would need to split it into
Tables 9–8 through 9–11.

Table 9-8. Third Normal Form Customers table

CustNo Name Address Zip
1 Emma Brown 1565 Rainbow Road 90014
2 Darren Ryder 4758 Emily Drive 23219
3 Earl B. Thurston 862 Gregory Lane 40601
4 David Miller 3647 Cedar Lane 02154

Table 9-9. Third Normal Form Zip codes table

Zip CityID
90014 1234
23219 5678
40601 4321
02154 8765

Table 9-10. Third Normal Form Cities table

CityID Name StateID
1234 Los Angeles 5
5678 Richmond 46
4321 Frankfort 17
8765 Waltham 21

Table 9-11. Third Normal Form States table

StateID Name Abbreviation
5 California CA
46 Virginia VA
17 Kentucky KY
21 Massachusetts MA

So, how would you use this set of four tables instead of the single Table 9-6? Well, you
would look up the Zip code in Table 9-8, and then find the matching CityID in
Table 9-9. Given this information, you could look up the city Name in Table 9-10 and
then also find the StateID, which you could use in Table 9-11 to look up the state’s
Name.

Although using the Third Normal Form in this way may seem like overkill, it can
have advantages. For example, take a look at Table 9-11, where it has been possible to

Normalization | 217

include both a state’s name and its two-letter abbreviation. It could also contain popu‐
lation details and other demographics, if you desired.

Table 9-10 could also contain even more localized demographics
that could be useful to you and/or your customers. By splitting up
these pieces of data, you can make it easier to maintain your data‐
base in the future, should it be necessary to add columns.

Deciding whether to use the Third Normal Form can be tricky. Your evaluation
should rest on what data you may need to add at a later date. If you are absolutely
certain that the name and address of a customer is all that you will ever require, you
probably will want to leave out this final normalization stage.

On the other hand, suppose you are writing a database for a large organization such
as the US Postal Service. What would you do if a city were to be renamed? With a
table such as Table 9-6, you would need to perform a global search-and-replace on
every instance of that city. But if you have your database set up according to the Third
Normal Form, you would have to change only a single entry in Table 9-10 for the
change to be reflected throughout the entire database.

Therefore, I suggest that you ask yourself two questions to help you decide whether
to perform a Third Normal Form normalization on any table:

• Is it likely that many new columns will need to be added to this table?
• Could any of this table’s fields require a global update at any point?

If either of the answers is yes, you should probably consider performing this final
stage of normalization.

When Not to Use Normalization
Now that you know all about normalization, I’m going to tell you why you should
throw these rules out of the window on high-traffic sites. That’s right—you should
never fully normalize your tables on sites that will cause MySQL to thrash.

Normalization requires spreading data across multiple tables, and this means making
multiple calls to MySQL for each query. On a very popular site, if you have normal‐
ized tables, your database access will slow down considerably once you get above a
few dozen concurrent users, because they will be creating hundreds of database
accesses between them. In fact, I would go so far as to say you should denormalize any
commonly looked-up data as much as you can.

You see, if you have data duplicated across your tables, you can substantially reduce
the number of additional requests that need to be made, because most of the data you

218 | Chapter 9: Mastering MySQL

want is available in each table. This means that you can simply add an extra column
to a query and that field will be available for all matching results.

Of course, you have to deal with the downsides previously mentioned, such as using
up large amounts of disk space, and ensuring that you update every single duplicate
copy of the data when it needs modifying.

Multiple updates can be computerized, though. MySQL provides a feature called trig‐
gers that make automatic changes to the database in response to changes you make.
(Triggers are, however, beyond the scope of this book.) Another way to propagate
redundant data is to set up a PHP program to run regularly and keep all copies in
sync. The program reads changes from a “master” table and updates all the others.
(You’ll see how to access MySQL from PHP in the next chapter.)

However, until you are very experienced with MySQL, I recommend that you fully
normalize all your tables (at least to First and Second Normal Form), as this will
instill the habit and put you in good stead. Only when you actually start to see
MySQL logjams should you consider looking at denormalization.

Relationships
MySQL is called a relational database management system because its tables store not
only data but the relationships among the data. There are three categories of relation‐
ships.

One-to-One
A one-to-one relationship is like a (traditional) marriage: each item has a relationship
to only one item of the other type. This is surprisingly rare. For instance, an author
can write multiple books, a book can have multiple authors, and even an address can
be associated with multiple customers. Perhaps the best example in this chapter so far
of a one-to-one relationship is the relationship between the name of a state and its
two-character abbreviation.

However, for the sake of argument, let’s assume that there can always be only one cus‐
tomer at any address. In such a case, the Customers–Addresses relationship in
Figure 9-1 is a one-to-one relationship: only one customer lives at each address, and
each address can have only one customer.

Relationships | 219

Figure 9-1. The Customers table, Table 9-8, split into two tables

Usually, when two items have a one-to-one relationship, you just include them as col‐
umns in the same table. There are two reasons for splitting them into separate tables:

• You want to be prepared in case the relationship changes later and is no longer
one-to-one.

• The table has a lot of columns, and you think that performance or maintenance
would be improved by splitting it.

Of course, when you build your own databases in the real world, you will have to cre‐
ate one-to-many Customer–Address relationships (one address, many customers).

One-to-Many
One-to-many (or many-to-one) relationships occur when one row in one table is
linked to many rows in another table. You have already seen how Table 9-8 would
take on a one-to-many relationship if multiple customers were allowed at the same
address, which is why it would have to be split up if that were the case.

So, looking at Table 9-8a within Figure 9-1, you can see that it shares a one-to-many
relationship with Table 9-7 because there is only one of each customer in Table 9-8a.
However Table 9-7, the Purchases table, can (and does) contain more than one pur‐
chase from a given customer. Therefore, one customer has a relationship with many
purchases.

You can see these two tables alongside each other in Figure 9-2, where the dashed
lines joining rows in each table start from a single row in the lefthand table but can
connect to more than one row in the righthand table. This one-to-many relationship
is also the preferred scheme to use when describing a many-to-one relationship, in
which case you would normally swap the left and right tables to view them as a one-
to-many relationship.

220 | Chapter 9: Mastering MySQL

Figure 9-2. Illustrating the relationship between two tables

To represent a one-to-many relationship in a relational database, create a table for the
“many” and a table for the “one.” The table for the “many” must contain a column
that lists the primary key from the “one” table. Thus, the Purchases table will contain a
column that lists the primary key of the customer.

Many-to-Many
In a many-to-many relationship, many rows in one table are linked to many rows in
another table. To create this relationship, add a third table containing the same key
column from each of the other tables. This third table contains nothing else, as its
sole purpose is to link up the other tables.

Table 9-12 is just such a table. It was extracted from Table 9-7, the Purchases table, but
omits the purchase date information. It contains a copy of the ISBN of every title
sold, along with the customer number of each purchaser.

Table 9-12. An intermediary table

Cust No ISBN
1 0596101015
2 0596527403
2 0596101015
3 0596005436
4 0596006815

With this intermediary table in place, you can traverse all the information in the data‐
base through a series of relations. You can take an address as a starting point and find
out the authors of any books purchased by the customer living at that address.

For example, let’s suppose that you want to find out about purchases in the 23219 zip
code. Look that zip code up in Table 9-8b, and you’ll find that customer number 2 has
bought at least one item from the database. At this point, you can use Table 9-8a to

Relationships | 221

find out that customer’s name, or use the new intermediary Table 9-12 to see the
book(s) purchased.

From here, you will find that two titles were purchased and can follow them back to
Table 9-4 to find the titles and prices of these books, or to Table 9-3 to see who the
authors were.

If it seems to you that this is really combining multiple one-to-many relationships,
then you are absolutely correct. To illustrate, Figure 9-3 brings three tables together.

Figure 9-3. Creating a many-to-many relationship via a third table

Follow any zip code in the lefthand table to the associated customer IDs. From there,
you can link to the middle table, which joins the left and right tables by linking cus‐
tomer IDs and ISBNs. Now all you have to do is follow an ISBN over to the righthand
table to see which book it relates to.

You can also use the intermediary table to work your way backward from book titles
to zip codes. The Titles table can tell you the ISBN, which you can use in the middle
table to find the ID numbers of customers who bought the book, and finally you can
use the Customers table to match the customer ID numbers to the customers’ zip
codes.

Databases and Anonymity
An interesting aspect of using relations is that you can accumulate a lot of informa‐
tion about some item—such as a customer—without actually knowing who that cus‐
tomer is. Note that in the previous example we went from customers’ zip codes to
customers’ purchases, and back again, without finding out the name of a customer.
Databases can be used to track people, but they can also be used to help preserve peo‐
ple’s privacy while still finding useful information.

222 | Chapter 9: Mastering MySQL

Transactions
In some applications, it is vitally important that a sequence of queries runs in the cor‐
rect order and that every single query successfully completes. For example, suppose
that you are creating a sequence of queries to transfer funds from one bank account
to another. You would not want either of the following events to occur:

• You add the funds to the second account, but when you try to subtract them
from the first account, the update fails, and now both accounts have the funds.

• You subtract the funds from the first bank account, but the update request to add
them to the second account fails, and the funds have disappeared into thin air.

As you can see, not only is the order of queries important in this type of transaction,
but it is also vital that all parts of the transaction complete successfully. But how can
you ensure this happens, because surely after a query has occurred, it cannot be
undone? Do you have to keep track of all parts of a transaction and then undo them
all one at a time if any one fails? The answer is absolutely not, because MySQL comes
with powerful transaction-handling features to cover just these types of eventualities.

In addition, transactions allow concurrent access to a database by many users or pro‐
grams at the same time. MySQL handles this seamlessly by ensuring that all transac‐
tions are queued and that users or programs take their turns and don’t tread on each
other’s toes.

Transaction Storage Engines
To be able to use MySQL’s transaction facility, you have to be using MySQL’s InnoDB
storage engine (which is the default from version 5.5 onward). If you are not sure
which version of MySQL your code will be running on, rather than assuming InnoDB
is the default engine you can force its use when creating a table, as follows.

Create a table of bank accounts by typing the commands in Example 9-1. (Remember
that to do this, you will need access to the MySQL command line, and must also have
already selected a suitable database in which to create this table.)

Example 9-1. Creating a transaction-ready table

CREATE TABLE accounts (
 number INT, balance FLOAT, PRIMARY KEY(number)
) ENGINE InnoDB;
DESCRIBE accounts;

The final line of this example displays the contents of the new table so you can ensure
that it was correctly created. The output from it should look like this:

Transactions | 223

+---------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+---------+------+-----+---------+-------+
| number | int(11) | NO | PRI | 0 | |
| balance | float | YES | | NULL | |
+---------+---------+------+-----+---------+-------+
2 rows in set (0.00 sec)

Now let’s create two rows within the table so that you can practice using transactions.
Type the commands in Example 9-2.

Example 9-2. Populating the accounts table

INSERT INTO accounts(number, balance) VALUES(12345, 1025.50);
INSERT INTO accounts(number, balance) VALUES(67890, 140.00);
SELECT * FROM accounts;

The third line displays the contents of the table to confirm that the rows were cor‐
rectly inserted. The output should look like this:

+--------+---------+
| number | balance |
+--------+---------+
| 12345 | 1025.5 |
| 67890 | 140 |
+--------+---------+
2 rows in set (0.00 sec)

With this table created and prepopulated, you are ready to start using transactions.

Using BEGIN
Transactions in MySQL start with either a BEGIN or a START TRANSACTION statement.
Type the commands in Example 9-3 to send a transaction to MySQL.

Example 9-3. A MySQL transaction

BEGIN;
UPDATE accounts SET balance=balance+25.11 WHERE number=12345;
COMMIT;
SELECT * FROM accounts;

The result of this transaction is displayed by the final line, and should look like this:

+--------+---------+
| number | balance |
+--------+---------+
| 12345 | 1050.61 |
| 67890 | 140 |
+--------+---------+
2 rows in set (0.00 sec)

224 | Chapter 9: Mastering MySQL

As you can see, the balance of account number 12345 was increased by 25.11 and is
now 1050.61. You may also have noticed the COMMIT command in Example 9-3, which
is explained next.

Using COMMIT
When you are satisfied that a series of queries in a transaction has successfully com‐
pleted, issue a COMMIT command to commit all the changes to the database. Until it
receives a COMMIT, MySQL considers all the changes you make to be merely tempo‐
rary. This feature gives you the opportunity to cancel a transaction by not sending a
COMMIT but issuing a ROLLBACK command instead.

Using ROLLBACK
Using the ROLLBACK command, you can tell MySQL to forget all the queries made
since the start of a transaction and to cancel the transaction. See this in action by
entering the funds transfer transaction in Example 9-4.

Example 9-4. A funds transfer transaction

BEGIN;
UPDATE accounts SET balance=balance-250 WHERE number=12345;
UPDATE accounts SET balance=balance+250 WHERE number=67890;
SELECT * FROM accounts;

Once you have entered these lines, you should see the following result:

+--------+---------+
| number | balance |
+--------+---------+
| 12345 | 800.61 |
| 67890 | 390 |
+--------+---------+
2 rows in set (0.00 sec)

The first bank account now has a value that is 250 less than before, and the second
has been incremented by 250; you have transferred a value of 250 between them. But
let’s assume that something went wrong and you wish to undo this transaction. All
you have to do is issue the commands in Example 9-5.

Example 9-5. Canceling a transaction using ROLLBACK

ROLLBACK;
SELECT * FROM accounts;

Transactions | 225

You should now see the following output, showing that the two accounts have had
their previous balances restored, due to the entire transaction being cancelled via the
ROLLBACK command:

+--------+---------+
| number | balance |
+--------+---------+
| 12345 | 1050.61 |
| 67890 | 140 |
+--------+---------+
2 rows in set (0.00 sec)

Using EXPLAIN
MySQL comes with a powerful tool for investigating how the queries you issue to it
are interpreted. Using EXPLAIN, you can get a snapshot of any query to find out
whether you could issue it in a better or more efficient way. Example 9-6 shows how
to use it with the accounts table you created earlier.

Example 9-6. Using the EXPLAIN command

EXPLAIN SELECT * FROM accounts WHERE number='12345';

The results of this EXPLAIN command should look like the following:

+--+-----------+--------+-----+-------------+-------+-------+-----+----+-----+
|id|select_type|table |type |possible_keys|key |key_len|ref |rows|Extra|
+--+-----------+--------+-----+-------------+-------+-------+-----+----+-----+
| 1|SIMPLE |accounts|const|PRIMARY |PRIMARY|4 |const| 1| |
+--+-----------+--------+-----+-------------+-------+-------+-----+----+-----+
1 row in set (0.00 sec)

The information that MySQL is giving you here is as follows:

select_type

The selection type is SIMPLE. If you were joining tables together, this would show
the join type.

table

The current table being queried is accounts.

type

The query type is const. From the least efficient to the most efficient type, the
possible values can be ALL, index, range, ref, eq_ref, const, system, and NULL.

possible_keys

There is a possible PRIMARY key, which means that accessing should be fast.

226 | Chapter 9: Mastering MySQL

key

The key actually used is PRIMARY. This is good.

key_len

The key length is 4. This is the number of bytes of the index that MySQL will use.

ref

The ref column displays which columns or constants are used with the key. In
this case, a constant key is being used.

rows

The number of rows that need to be searched by this query is 1. This is good.

Whenever you have a query that seems to be taking longer than you think it should
to execute, try using EXPLAIN to see where you can optimize it. You will discover
which keys (if any) are being used, their lengths, and so on, and will be able to adjust
your query or the design of your table(s) accordingly.

When you have finished experimenting with the temporary
accounts table, you may wish to remove it by entering the following
command:

DROP TABLE accounts;

Backing Up and Restoring
Whatever kind of data you are storing in your database, it must have some value to
you, even if it’s only the cost of the time required for reentering it should the hard
disk fail. Therefore, it’s important that you keep backups to protect your investment.
Also, there will be times when you have to migrate your database over to a new
server; the best way to do this is usually to back it up first. It is also important that
you test your backups from time to time to ensure that they are valid and will work if
they need to be used.

Thankfully, backing up and restoring MySQL data is easy with the mysqldump com‐
mand.

Using mysqldump
With mysqldump, you can dump a database or collection of databases into one or
more files containing all the instructions necessary to re-create all your tables and
repopulate them with your data. This command can also generate files in CSV
(comma-separated values) and other delimited text formats, or even in XML format.
Its main drawback is that you must make sure that no one writes to a table while
you’re backing it up. There are various ways to do this, but the easiest is to shut down

Backing Up and Restoring | 227

the MySQL server before running mysqldump and start up the server again after mysql
dump finishes.

Alternatively, you can lock the tables you are backing up before running mysqldump.
To lock tables for reading (as we want to read the data), from the MySQL command
line issue this command:

LOCK TABLES tablename1 READ, tablename2 READ ...

Then, to release the lock(s), enter the following:

UNLOCK TABLES;

By default, the output from mysqldump is simply printed out, but you can capture it in
a file through the > redirect symbol.

The basic format of the mysqldump command is shown here:

mysqldump -u user -ppassword database

However, before you can dump the contents of a database, you must make sure that
mysqldump is in your path, or else specify its location as part of your command.
Table 9-13 shows the likely locations of the program for the different installations and
operating systems covered in Chapter 2. If you have a different installation, it may be
in a slightly different location.

Table 9-13. Likely locations of mysqldump for different installations

Operating system and program Likely folder location
Windows AMPPS C:\Program Files (x86)\Ampps\mysql\bin
macOS AMPPS /Applications/ampps/mysql/bin
Linux AMPPS /Applications/ampps/mysql/bin

So, to dump the contents of the publications database that you created in Chapter 8 to
the screen, first exit MySQL and then enter the command in Example 9-7 (specifying
the full path to mysqldump if necessary).

Example 9-7. Dumping the publications database to screen

mysqldump -u user -ppassword publications

Make sure that you replace user and password with the correct details for your
installation of MySQL. If there is no password set for the user, you can omit that part
of the command, but the -u user part is mandatory unless you have root access
without a password and are executing as root (not recommended). The result of issu‐
ing this command will look something like Figure 9-4.

228 | Chapter 9: Mastering MySQL

Figure 9-4. Dumping the publications database to the screen

Creating a Backup File
Now that you have mysqldump working, and have verified it outputs correctly to the
screen, you can send the backup data directly to a file using the > redirect symbol.
Assuming that you wish to call the backup file publications.sql, type the command in
Example 9-8 (remembering to replace user and password with the correct details).

Example 9-8. Dumping the publications database to a file

mysqldump -u user –p password publications > publications.sql

The command in Example 9-8 stores the backup file into the cur‐
rent directory. If you need it to be saved elsewhere, you should
insert a file path before the filename. You must also ensure that the
directory you are backing up to has the right permissions set to
allow the file to be written.

If you echo the backup file to screen or load it into a text editor, you will see that it
comprises sequences of SQL commands such as the following:

DROP TABLE IF EXISTS 'classics';
CREATE TABLE 'classics' (
 'author' varchar(128) default NULL,
 'title' varchar(128) default NULL,
 'category' varchar(16) default NULL,
 'year' smallint(6) default NULL,
 'isbn' char(13) NOT NULL default '',
 PRIMARY KEY ('isbn'),
 KEY 'author' ('author'(20)),

Backing Up and Restoring | 229

 KEY 'title' ('title'(20)),
 KEY 'category' ('category'(4)),
 KEY 'year' ('year'),
 FULLTEXT KEY 'author_2' ('author','title')
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

This is smart code that can be used to restore a database from a backup, even if it
currently exists; it will first drop any tables that need to be re-created, thus avoiding
potential MySQL errors.

Backing up a single table
To back up only a single table from a database (such as the classics table from the
publications database), you should first lock the table from within the MySQL com‐
mand line, by issuing a command such as the following:

LOCK TABLES publications.classics READ;

This ensures that MySQL remains running for read purposes, but writes cannot be
made. Then, while keeping the MySQL command line open, use another terminal
window to issue the following command from the operating system command line:

mysqldump -u user -ppassword publications classics > classics.sql

You must now release the table lock by entering the following command from the
MySQL command line in the first terminal window, which unlocks all tables that
have been locked during the current session:

UNLOCK TABLES;

Backing up all tables
If you want to back up all your MySQL databases at once (including the system data‐
bases such as mysql), you can use a command such as the one in Example 9-9, which
would enable you to restore an entire MySQL database installation. Remember to use
locking where required.

Example 9-9. Dumping all the MySQL databases to file

mysqldump -u user -ppassword --all-databases > all_databases.sql

Of course, there’s a lot more than just a few lines of SQL code in
backed-up database files. I recommend that you take a few minutes
to examine a couple in order to familiarize yourself with the types
of commands that appear in backup files and how they work.

230 | Chapter 9: Mastering MySQL

Restoring from a Backup File
To perform a restore from a file, call the mysql executable, passing it the file to restore
from using the < symbol. So, to recover an entire database that you dumped using the
--all-databases option, use a command such as that in Example 9-10.

Example 9-10. Restoring an entire set of databases

mysql -u user -ppassword < all_databases.sql

To restore a single database, use the -D option followed by the name of the database,
as in Example 9-11, where the publications database is being restored from the backup
made in Example 9-8.

Example 9-11. Restoring the publications database

mysql -u user -ppassword -D publications < publications.sql

To restore a single table to a database, use a command such as that in Example 9-12,
where just the classics table is being restored to the publications database.

Example 9-12. Restoring the classics table to the publications database

mysql -u user -ppassword -D publications < classics.sql

Dumping Data in CSV Format
As previously mentioned, the mysqldump program is very flexible and supports vari‐
ous types of output, such as the CSV format, which you might use to import data into
a spreadsheet, among other purposes. Example 9-13 shows how you can dump the
data from the classics and customers tables in the publications database to the files clas‐
sics.txt and customers.txt in the folder c:/temp. On macOS or Linux systems, you
should modify the destination path to an existing folder.

Example 9-13. Dumping data to CSV-format files

mysqldump -u user -ppassword --no-create-info --tab=c:/temp
 --fields-terminated-by=',' publications

This command is quite long and is shown here wrapped over two lines, but you must
type it all as a single line. The result is the following:

Mark Twain (Samuel Langhorne Clemens)','The Adventures of Tom Sawyer',
 'Classic Fiction','1876','9781598184891
Jane Austen','Pride and Prejudice','Classic Fiction','1811','9780582506206
Charles Darwin','The Origin of Species','Non-Fiction','1856','9780517123201

Backing Up and Restoring | 231

Charles Dickens','The Old Curiosity Shop','Classic Fiction','1841','9780099533474
William Shakespeare','Romeo and Juliet','Play','1594','9780192814968

Mary Smith','9780582506206
Jack Wilson','9780517123201

Planning Your Backups
The golden rule to backing up is to do so as often as you find practical. The more
valuable the data, the more often you should back it up, and the more copies you
should make. If your database gets updated at least once a day, you should really back
it up on a daily basis. If, on the other hand, it is not updated very often, you could
probably get by with less frequent backups.

You should consider making multiple backups and storing them in
different locations. If you have several servers, it is a simple matter
to copy your backups between them. You would also be well
advised to make physical backups on removable hard disks, thumb
drives, CDs or DVDs, and so on, and to keep these in separate
locations—preferably somewhere like a fireproof safe.
It’s important to test restoring a database once in a while, too, to
make sure your backups are done correctly. You also want to be
familiar with restoring a database because you may have to do so
when you are stressed and in a hurry, such as after a power failure
that takes down the website. You can restore a database to a private
server and run a few SQL commands to make sure the data is as
you think it should be.

Once you’ve digested the contents of this chapter, you will be proficient in using both
PHP and MySQL; the next chapter will show you how to bring these two technologies
together.

Questions
1. What does the word relationship mean in reference to a relational database?
2. What is the term for the process of removing duplicate data and optimizing

tables?
3. What are the three rules of the First Normal Form?
4. How can you make a table satisfy the Second Normal Form?
5. What do you put in a column to tie together two tables that contain items having

a one-to-many relationship?
6. How can you create a database with a many-to-many relationship?

232 | Chapter 9: Mastering MySQL

7. What commands initiate and end a MySQL transaction?
8. What feature does MySQL provide to enable you to examine how a query will

work in detail?
9. What command would you use to back up the database publications to a file

called publications.sql?

See “Chapter 9 Answers” on page 719 in Appendix A for the answers to these
questions.

Questions | 233

CHAPTER 10

Accessing MySQL Using PHP

If you worked through the previous chapters, you’re proficient in using both MySQL
and PHP. In this chapter, you will learn how to integrate the two by using PHP’s built-
in functions to access MySQL.

Querying a MySQL Database with PHP
The reason for using PHP as an interface to MySQL is to format the results of SQL
queries in a form visible in a web page. As long as you can log into your MySQL
installation using your username and password, you can also do so from PHP.

However, instead of using MySQL’s command line to enter instructions and view out‐
put, you will create query strings that are passed to MySQL. When MySQL returns its
response, it will come as a data structure that PHP can recognize instead of the for‐
matted output you see when you work on the command line. Further PHP com‐
mands can retrieve the data and format it for the web page.

The Process
The process of using MySQL with PHP is as follows:

1. Connect to MySQL and select the database to use.
2. Prepare a query string.
3. Perform the query.
4. Retrieve the results and output them to a web page.
5. Repeat steps 2 to 4 until all desired data has been retrieved.
6. Disconnect from MySQL.

235

We’ll work through these steps in turn, but first it’s important to set up your login
details in a secure manner so people snooping around on your system have trouble
getting access to your database.

Creating a Login File
Most websites developed with PHP contain multiple program files that will require
access to MySQL and will thus need the login and password details. Therefore, it’s
sensible to create a single file to store these and then include that file wherever it’s
needed. Example 10-1 shows such a file, which I’ve called login.php.

Example 10-1. The login.php file

<?php // login.php
 $hn = 'localhost';
 $db = 'publications';
 $un = 'username';
 $pw = 'password';
?>

Type the example, replacing username and password with the values you use for your
MySQL database, and save it to the document root directory you set up in Chapter 2.
We’ll be making use of the file shortly.

The hostname localhost should work as long as you’re using a MySQL database on
your local system, and the database publications should work if you’re typing the
examples I’ve used so far.

The enclosing <?php and ?> tags are especially important for the login.php file in
Example 10-1, because they mean that the lines between can be interpreted only as
PHP code. If you were to leave them out and someone were to call up the file directly
from your website, it would display as text and reveal your secrets. But, with the tags
in place, all that person will see is a blank page. The file will correctly include your
other PHP files.

The $hn variable will tell PHP which computer to use when connecting to a database.
This is required because you can access MySQL databases on any computer connec‐
ted to your PHP installation, and that potentially includes any host anywhere on the
web. However, the examples in this chapter will be working on the local server. So, in
place of specifying a domain such as mysql.myserver.com, you can just use the word
localhost (or the IP address 127.0.0.1).

The database we’ll be using, $db, is the one called publications that we created in
Chapter 8 (if you’re using a different database—one provided by your server adminis‐
trator—you’ll have to modify login.php accordingly).

236 | Chapter 10: Accessing MySQL Using PHP

Another benefit of keeping these login details in a single place is
that you can change your password as frequently as you like and
there will be only one file to update when you do, no matter how
many PHP files access MySQL.

Connecting to a MySQL Database
Now that you have saved the login.php file, you can include it in any PHP files that
will need to access the database by using the require_once statement. This is prefera‐
ble to an include statement, as it will generate a fatal error if the file is not found—
and believe me, not finding the file containing the login details to your database is a
fatal error.

Also, using require_once instead of require means that the file will be read in only
when it has not previously been included, which prevents wasteful duplicate disk
accesses. Example 10-2 shows the code to use.

Example 10-2. Connecting to a MySQL server with mysqli

<?php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die("Fatal Error");
?>

This example creates a new object called $conn by calling a new instance of the
mysqli method, passing all the values retrieved from the login.php file. We achieve
error checking by referencing the $conn->connect_error property.

The -> operator indicates that the item on the right is a property or method of the
object on the left. In this case, if connect_error has a value, there was an error, so we
call the die function to terminate the program.

The $conn object is used in the following examples to access the MySQL database.

Querying a MySQL Database with PHP | 237

The die function is great when you are developing PHP code, but
of course you will want more user-friendly error messages on a
production server. In this case, you won’t abort your PHP program,
but will format a message that will be displayed when the program
exits normally—perhaps something like this:

function mysql_fatal_error()
{
 echo <<< _END
We are sorry, but it was not possible to complete
the requested task. The error message we got was:

 <p>Fatal Error</p>

Please click the back button on your browser
and try again. If you are still having problems,
please email
our administrator. Thank you.
_END;
}

You should also never be tempted to output the contents of any
error message received from MySQL. Rather than helping your
users, you could give away sensitive information to hackers such as
login details. Instead, just guide the user with information on how
to overcome their difficulty based on what the error message
reports to your code.

Building and executing a query
Sending a query to MySQL from PHP is as simple as including the relevant SQL in
the query method of a connection object. Example 10-3 shows you how to do this.

Example 10-3. Querying a database with mysqli

<?php
 $query = "SELECT * FROM classics";
 $result = $conn->query($query);
 if (!$result) die("Fatal Error");
?>

As you can see, the MySQL query looks just like what you would type directly at the
command line, except that there is no trailing semicolon, as none is needed when you
are accessing MySQL from PHP.

Here the variable $query is assigned a string containing the query to be made, and
then passed to the query method of the $conn object, which returns a result that we
place in the object $result. If $result is FALSE, there was a problem and the error

238 | Chapter 10: Accessing MySQL Using PHP

property of the connection object will contain the details, so the die function is called
to display that error.

All the data returned by MySQL is now stored in an easily interrogable format in the
$result object.

Fetching a result

Once you have an object returned in $result, you can use it to extract the data you
want, one item at a time, using the fetch_assoc method of the object. Example 10-4
combines and extends the previous examples into a program that you can run your‐
self to retrieve the results (as depicted in Figure 10-1). Type this script in and save it
using the filename query-mysqli.php, or download it from the companion website.

Example 10-4. Fetching results one cell at a time

<?php // query-mysqli.php
 require_once 'login.php';
 $connection = new mysqli($hn, $un, $pw, $db);

 if ($connection->connect_error) die("Fatal Error");

 $query = "SELECT * FROM classics";
 $result = $connection->query($query);

 if (!$result) die("Fatal Error");

 $rows = $result->num_rows;

 for ($j = 0 ; $j < $rows ; ++$j)
 {
 $result->data_seek($j);
 echo 'Author: ' .htmlspecialchars($result->fetch_assoc()['author']) .'
';
 $result->data_seek($j);
 echo 'Title: ' .htmlspecialchars($result->fetch_assoc()['title']) .'
';
 $result->data_seek($j);
 echo 'Category: '.htmlspecialchars($result->fetch_assoc()['category']).'
';
 $result->data_seek($j);
 echo 'Year: ' .htmlspecialchars($result->fetch_assoc()['year']) .'
';
 $result->data_seek($j);
 echo 'ISBN: ' .htmlspecialchars($result->fetch_assoc()['isbn']) .'

';
 }

 $result->close();
 $connection->close();
?>

Querying a MySQL Database with PHP | 239

http://lpmj.net

Figure 10-1. The output from the query-mysqli.php program in Example 10-4

Here, each time around the loop, we call the fetch_assoc method to retrieve the
value stored in each cell, and output the result using echo statements.

When displaying data in a browser the source of which was (or
may have been) user input, there’s always a risk of sneaky HTML
characters being embedded within it—even if you believe it to have
been previously sanitized—which could potentially be used for a
cross-site scripting (XSS) attack. The simple way to prevent this
possibility is to embed all such output within a call to the function
htmlspecialchars, which replaces all such characters with harm‐
less HTML entities. This technique was implemented in the pre‐
ceding example and will be used in many of the following
examples.

You will probably agree that all this multiple seeking and so forth is rather cumber‐
some, and that there ought to be a more efficient method of achieving the same
result. And, indeed, there is a better method, which is to extract a row at a time.

240 | Chapter 10: Accessing MySQL Using PHP

In Chapter 9, I talked about First, Second, and Third Normal Form.
You may have noticed that the classics table doesn’t satisfy these,
because both author and book details are included within the same
table. That’s because we created this table before encountering nor‐
malization. However, for the purposes of illustrating access to
MySQL from PHP, reusing this table avoids the hassle of typing in a
new set of test data, so we’ll stick with it for the time being.

Fetching a row

To fetch one row at a time, replace the for loop from Example 10-4 with the one
highlighted in bold in Example 10-5, and you will find that you get exactly the same
result that was displayed in Figure 10-1. You may wish to save this revised file using
the name fetchrow.php.

Example 10-5. Fetching results one row at a time

<?php // fetchrow.php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die("Fatal Error");

 $query = "SELECT * FROM classics";
 $result = $conn->query($query);
 if (!$result) die("Fatal Error");

 $rows = $result->num_rows;

 for ($j = 0 ; $j < $rows ; ++$j)
 {
 $row = $result->fetch_array(MYSQLI_ASSOC);

 echo 'Author: ' . htmlspecialchars($row['author']) . '
';
 echo 'Title: ' . htmlspecialchars($row['title']) . '
';
 echo 'Category: ' . htmlspecialchars($row['category']) . '
';
 echo 'Year: ' . htmlspecialchars($row['year']) . '
';
 echo 'ISBN: ' . htmlspecialchars($row['isbn']) . '

';
 }

 $result->close();
 $conn->close();
?>

In this modified code, only one-fifth of the interrogations of the $result object are
made (compared to the previous example), and only one seek into the object is made
in each iteration of the loop, because each row is fetched in its entirety via the
fetch_array method. This returns a single row of data as an array, which is then
assigned to the array $row.

Querying a MySQL Database with PHP | 241

The fetch_array method can return three types of array according to the value
passed to it:

MYSQLI_NUM

Numeric array. Each column appears in the array in the order in which you
defined it when you created (or altered) the table. In our case, the zeroth element
of the array contains the author column, element 1 contains the title column, and
so on.

MYSQLI_ASSOC

Associative array. Each key is the name of a column. Because items of data are
referenced by column name (rather than index number), use this option where
possible in your code to make debugging easier and help other programmers bet‐
ter manage your code.

MYSQLI_BOTH

Associative and numeric array.

Associative arrays are usually more useful than numeric ones because you can refer to
each column by name, such as $row['author'], instead of trying to remember where
it is in the column order. This script uses an associative array, leading us to pass
MYSQLI_ASSOC.

Closing a connection
PHP will eventually return the memory it has allocated for objects after you have fin‐
ished with the script, so in small scripts, you don’t usually need to worry about releas‐
ing memory yourself. However, if you’re allocating a lot of result objects or fetching
large amounts of data, it can be a good idea to free the memory you have been using
to prevent problems later in your script.

This becomes particularly important on higher-traffic pages, because the amount of
memory consumed in a session can rapidly grow. Therefore, note the calls to the
close methods of the objects $result and $conn in the preceding scripts, as soon as
each object is no longer needed, like this:

$result->close();
$conn->close();

Ideally, you should close each result object when you have finished
using it, and then close the connection object when your script will
not be accessing MySQL anymore. This best practice ensures that
resources are returned to the system as quickly as possible to keep
MySQL running optimally, and alleviates doubt over whether PHP
will return unused memory in time for when you next need it.

242 | Chapter 10: Accessing MySQL Using PHP

A Practical Example
It’s time to write our first example of inserting data in and deleting it from a MySQL
table using PHP. I recommend that you type Example 10-6 and save it to your web
development directory using the filename sqltest.php. You can see an example of the
program’s output in Figure 10-2.

Example 10-6 creates a standard HTML form. Chapter 11 explains
forms in detail, but in this chapter I take form handling for granted
and just deal with database interaction.

Example 10-6. Inserting and deleting using sqltest.php

<?php // sqltest.php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die("Fatal Error");

 if (isset($_POST['delete']) && isset($_POST['isbn']))
 {
 $isbn = get_post($conn, 'isbn');
 $query = "DELETE FROM classics WHERE isbn='$isbn'";
 $result = $conn->query($query);
 if (!$result) echo "DELETE failed

";
 }

 if (isset($_POST['author']) &&
 isset($_POST['title']) &&
 isset($_POST['category']) &&
 isset($_POST['year']) &&
 isset($_POST['isbn']))
 {
 $author = get_post($conn, 'author');
 $title = get_post($conn, 'title');
 $category = get_post($conn, 'category');
 $year = get_post($conn, 'year');
 $isbn = get_post($conn, 'isbn');
 $query = "INSERT INTO classics VALUES" .
 "('$author', '$title', '$category', '$year', '$isbn')";
 $result = $conn->query($query);
 if (!$result) echo "INSERT failed

";
 }

 echo <<<_END
 <form action="sqltest.php" method="post"><pre>
 Author <input type="text" name="author">
 Title <input type="text" name="title">
 Category <input type="text" name="category">

A Practical Example | 243

 Year <input type="text" name="year">
 ISBN <input type="text" name="isbn">
 <input type="submit" value="ADD RECORD">
 </pre></form>
_END;

 $query = "SELECT * FROM classics";
 $result = $conn->query($query);
 if (!$result) die ("Database access failed");

 $rows = $result->num_rows;

 for ($j = 0 ; $j < $rows ; ++$j)
 {
 $row = $result->fetch_array(MYSQLI_NUM);

 $r0 = htmlspecialchars($row[0]);
 $r1 = htmlspecialchars($row[1]);
 $r2 = htmlspecialchars($row[2]);
 $r3 = htmlspecialchars($row[3]);
 $r4 = htmlspecialchars($row[4]);

 echo <<<_END
 <pre>
 Author $r0
 Title $r1
 Category $r2
 Year $r3
 ISBN $r4
 </pre>
 <form action='sqltest.php' method='post'>
 <input type='hidden' name='delete' value='yes'>
 <input type='hidden' name='isbn' value='$r4'>
 <input type='submit' value='DELETE RECORD'></form>
_END;
 }

 $result->close();
 $conn->close();

 function get_post($conn, $var)
 {
 return $conn->real_escape_string($_POST[$var]);
 }
?>

244 | Chapter 10: Accessing MySQL Using PHP

Figure 10-2. The output from Example 10-6, sqltest.php

At over 80 lines of code, this program may appear daunting, but don’t worry—you’ve
already covered many of those lines in Example 10-5, and what the code does is
actually quite simple.

It first checks for any inputs that may have been made and then either inserts new
data into the table classics of the publications database or deletes a row from it,
according to the input supplied. Regardless of whether there was input, the program
then outputs all rows in the table to the browser. So, let’s see how it works.

The first section of new code starts by using the isset function to check whether val‐
ues for all the fields have been posted to the program. Upon confirmation, each line
within the if statement calls the function get_post, which appears at the end of the
program. This function has one small but critical job: fetching input from the
browser.

A Practical Example | 245

For reasons of clarity and brevity, and to explain things as simply as
possible, many of the following examples omit certain very sensible
security precautions that would have made them longer and possi‐
bly detract from explaining their function in the clearest manner.
Therefore, it is important that you don’t skip past the section later
in this chapter on preventing your database from being hacked
(“Preventing Hacking Attempts” on page 258), in which you will
learn about additional actions you can take with your code to
secure it.

The $_POST Array
I mentioned in an earlier chapter that a browser sends user input through either a
GET request or a POST request. The POST request is usually preferred (because it
avoids placing unsightly data in the browser’s address bar), and so we use it here. The
web server bundles up all of the user input (even if the form was filled out with a
hundred fields) and puts in into an array named $_POST.

$_POST is an associative array, which you encountered in Chapter 6. Depending on
whether a form has been set to use the POST or the GET method, either the $_POST
or the $_GET associative array will be populated with the form data. They can both be
read in exactly the same way.

Each field has an element in the array named after that field. So, if a form contains a
field named isbn, the $_POST array contains an element keyed by the word isbn. The
PHP program can read that field by referring to either $_POST['isbn'] or
$_POST["isbn"] (single and double quotes have the same effect in this case).

If the $_POST syntax still seems complex to you, rest assured that you can just use the
convention I’ve shown in Example 10-6, copy the user’s input to other variables, and
forget about $_POST after that. This is normal in PHP programs: they retrieve all the
fields from $_POST at the beginning of the program and then ignore it.

There is no reason to write to an element in the $_POST array. Its
only purpose is to communicate information from the browser to
the program, and you’re better off copying data to your own vari‐
ables before altering it.

So, back to the get_post function, which passes each item it retrieves through the
real_escape_string method of the connection object to escape any quotes that a
hacker may have inserted in order to break into or alter your database, like this:

246 | Chapter 10: Accessing MySQL Using PHP

function get_post($conn, $var)
{
 return $conn->real_escape_string($_POST[$var]);
}

Deleting a Record
Prior to checking whether new data has been posted, the program checks whether the
variable $_POST['delete'] has a value. If so, the user has clicked the DELETE
RECORD button to erase a record. In this case, the value of $isbn will also have been
posted.

As you’ll recall, the ISBN uniquely identifies each record. The HTML form appends
the ISBN to the DELETE FROM query string created in the variable $query, which is
then passed to the query method of the $conn object to issue it to MySQL.

If $_POST['delete'] is not set (and so there is no record to be deleted),
$_POST['author'] and other posted values are checked. If they have all been given
values, $query is set to an INSERT INTO command, followed by the five values to be
inserted. The string is then passed to the query method, which upon completion
returns either TRUE or FALSE. If FALSE is returned an error message is displayed, like
this:

if (!$result) echo "INSERT failed

";

Displaying the Form
Before displaying the little form (as shown in Figure 10-2), the program sanitizes
copies of the elements we will be outputting from the $row array into the variables
$r0 through $r4 by passing them to the htmlspecialchars function, to replace any
potentially dangerous HTML characters with harmless HTML entities.

Then the part of code that displays the output follows, using an echo

<<<_END..._END structure as seen in previous chapters, which outputs everything
between the _END tags.

A Practical Example | 247

Instead of using the echo command, the program could drop out
of PHP using ?>, issue the HTML, and then reenter PHP process‐
ing with <?php. Which style is used is a matter of programmer
preference, but I always recommend staying within PHP code, for
these reasons:

• It makes it very clear when you’re debugging (and also for
other users) that everything within a .php file is PHP code.
Therefore, there is no need to go hunting for dropouts to
HTML.

• When you wish to include a PHP variable directly within
HTML, you can just type it. If you had dropped back to
HTML, you would have had to temporarily reenter PHP pro‐
cessing, access the variable, and then drop back out again.

The HTML form section simply sets the form’s action to sqltest.php. This means that
when the form is submitted, the contents of the form fields will be sent to the file
sqltest.php, which is the program itself. The form is also set up to send the fields as a
POST rather than a GET request. This is because GET requests are appended to the
URL being submitted and can look messy in your browser. They also allow users to
easily modify submissions and try to hack your server (although that can also be
achieved with in-browser developer tools). Additionally, avoiding GET requests pre‐
vents too much information appearing in server log files. Therefore, whenever possi‐
ble, you should use POST submissions, which also have the benefit of revealing less
posted data.

Having output the form fields, the HTML displays a submit button with the name
ADD RECORD and closes the form. Note the <pre> and </pre> tags here, which
have been used to force a monospaced font that lines up all the inputs neatly. The car‐
riage returns at the end of each line are also output when inside <pre> tags.

Querying the Database
Next, the code returns to the familiar territory of Example 10-5, where a query is sent
to MySQL asking to see all the records in the classics table, like this:

$query = "SELECT * FROM classics";
$result = $conn->query($query);

After that, $rows is set to a value representing the number of rows in the table:

$rows = $result->num_rows;

Using the value in $rows, a for loop is then entered to display the contents of each
row. Then the program populates the array $row with a row of results by calling the

248 | Chapter 10: Accessing MySQL Using PHP

fetch_array method of $result, passing it the constant value MYSQLI_NUM, which
forces the return of a numeric (rather than associative) array, like this:

$row = $result->fetch_array(MYSQLI_NUM);

With the data in $row, it’s now a simple matter to display it within the heredoc echo
statement that follows, in which I have chosen to use a <pre> tag to line up the display
of each record in a pleasing manner.

After the display of each record, there is a second form that also posts to sqltest.php
(the program itself) but this time contains two hidden fields: delete and isbn. The
delete field is set to yes and isbn to the value held in $row[4], which contains the
ISBN for the record.

Then a submit button with the name DELETE RECORD is displayed, and the form is
closed. A curly brace then completes the for loop, which will continue until all
records have been displayed, at which time the $result and $conn object’s close
methods are closed to release resources back to PHP:

$result->close();
$conn->close();

Finally, you see the definition for the function get_post, which we’ve already looked
at. And that’s it—our first PHP program to manipulate a MySQL database. So, let’s
check out what it can do.

Once you have typed the program (and corrected any typing errors), try entering the
following data into the various input fields to add a new record for the book Moby
Dick to the database:

Herman Melville
Moby Dick
Fiction
1851
9780199535729

Running the Program
When you have submitted this data using the ADD RECORD button, scroll down to
the bottom of the web page to see the new addition. It should look like Figure 10-3.

A Practical Example | 249

Figure 10-3. The result of adding Moby Dick to the database

Now let’s look at how deleting a record works by creating a dummy record. Try enter‐
ing just the number 1 in each of the five fields and clicking the ADD RECORD but‐
ton. If you now scroll down, you’ll see a new record consisting just of 1s. Obviously,
this record isn’t useful in this table, so now click the DELETE RECORD button and
scroll down again to confirm that the record has been deleted.

Assuming that everything worked, you are now able to add and
delete records at will. Try doing this a few times, but leave the main
records in place (including the new one for Moby Dick), as we’ll be
using them later. You could also try adding the record with all 1s
again a couple of times and note the error message that you receive
the second time, indicating that there is already an ISBN with the
number 1.

Practical MySQL
You are now ready to look at some practical techniques that you can use in PHP to
access the MySQL database, including tasks such as creating and dropping tables;
inserting, updating, and deleting data; and protecting your database and website from

250 | Chapter 10: Accessing MySQL Using PHP

malicious users. Note that the following examples assume that you’ve already created
the login.php program discussed earlier in this chapter.

Creating a Table
Let’s assume that you are working for a wildlife park and need to create a database to
hold details about all the types of cats it houses. You are told that there are nine fami‐
lies of cats—Lion, Tiger, Jaguar, Leopard, Cougar, Cheetah, Lynx, Caracal, and
Domestic—so you’ll need a column for that. Then each cat has been given a name, so
that’s another column, and you also want to keep track of their ages, which is another.
Of course, you will probably need more columns later, perhaps to hold dietary
requirements, inoculations, and other details, but for now that’s enough to get going.
A unique identifier is also needed for each animal, so you also decide to create a col‐
umn for that called id.

Example 10-7 shows the code you might use to create a MySQL table to hold this
data, with the main query assignment in bold text.

Example 10-7. Creating a table called cats

<?php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die("Fatal Error");

 $query = "CREATE TABLE cats (
 id SMALLINT NOT NULL AUTO_INCREMENT,
 family VARCHAR(32) NOT NULL,
 name VARCHAR(32) NOT NULL,
 age TINYINT NOT NULL,
 PRIMARY KEY (id)
)";

 $result = $conn->query($query);
 if (!$result) die ("Database access failed");
?>

As you can see, the MySQL query looks just like what you would type directly at the
command line, except without the trailing semicolon.

Describing a Table
When you aren’t logged into the MySQL command line, here’s a handy piece of code
that you can use to verify that a table has been correctly created from inside a
browser. It simply issues the query DESCRIBE cats and then outputs an HTML table
with four headings—Column, Type, Null, and Key—underneath which all columns

Practical MySQL | 251

within the table are shown. To use it with other tables, simply replace the name cats
in the query with that of the new table (see Example 10-8).

Example 10-8. Describing the cats table

<?php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die("Fatal Error");

 $query = "DESCRIBE cats";
 $result = $conn->query($query);
 if (!$result) die ("Database access failed");

 $rows = $result->num_rows;

 echo "<table><tr><th>Column</th><th>Type</th><th>Null</th><th>Key</th></tr>";

 for ($j = 0 ; $j < $rows ; ++$j)
 {
 $row = $result->fetch_array(MYSQLI_NUM);

 echo "<tr>";
 for ($k = 0 ; $k < 4 ; ++$k)
 echo "<td>" . htmlspecialchars($row[$k]) . "</td>";
 echo "</tr>";
 }

 echo "</table>";
?>

The output from the program should look like this:

Column Type Null Key
id smallint(6) NO PRI
family varchar(32) NO
name varchar(32) NO
age tinyint(4) NO

Dropping a Table
Dropping a table is very easy to do and is therefore very dangerous, so be careful.
Example 10-9 shows the code that you need. However, I don’t recommend that you
try it until you have been through the other examples (up to “Performing Additional
Queries” on page 257), as it will drop the table cats and you’ll have to re-create it
using Example 10-7.

252 | Chapter 10: Accessing MySQL Using PHP

Example 10-9. Dropping the cats table

<?php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die("Fatal Error");

 $query = "DROP TABLE cats";
 $result = $conn->query($query);
 if (!$result) die ("Database access failed");
?>

Adding Data
Let’s add some data to the table now, using the code in Example 10-10.

Example 10-10. Adding data to the cats table

<?php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die("Fatal Error");

 $query = "INSERT INTO cats VALUES(NULL, 'Lion', 'Leo', 4)";
 $result = $conn->query($query);
 if (!$result) die ("Database access failed");
?>

You may wish to add a couple more items of data by modifying $query as follows and
calling up the program in your browser again:

$query = "INSERT INTO cats VALUES(NULL, 'Cougar', 'Growler', 2)";
$query = "INSERT INTO cats VALUES(NULL, 'Cheetah', 'Charly', 3)";

By the way, notice the NULL value passed as the first parameter? This is because the id
column is of type AUTO_INCREMENT, and MySQL will decide what value to assign
according to the next available number in sequence. So, we simply pass a NULL value,
which will be ignored.

Of course, the most efficient way to populate MySQL with data is to create an array
and insert the data with a single query.

Practical MySQL | 253

At this point in the book I am concentrating on showing you how
to directly insert data into MySQL (and providing some security
precautions to keep the process safe). However, later in this book
we’ll move on to a better method you can employ that involves
placeholders (see “Using Placeholders” on page 260), which make it
virtually impossible for users to inject malicious hacks into your
database. So, as you read this section, do understand that this is the
basics of how MySQL insertion works, and remember that we will
improve upon it later.

Retrieving Data
Now that some data has been entered into the cats table, Example 10-11 shows how
you can check that it was correctly inserted.

Example 10-11. Retrieving rows from the cats table

<?php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die("Fatal Error");

 $query = "SELECT * FROM cats";
 $result = $conn->query($query);
 if (!$result) die ("Database access failed");

 $rows = $result->num_rows;
 echo "<table><tr> <th>Id</th> <th>Family</th><th>Name</th><th>Age</th></tr>";

 for ($j = 0 ; $j < $rows ; ++$j)
 {
 $row = $result->fetch_array(MYSQLI_NUM);

 echo "<tr>";
 for ($k = 0 ; $k < 4 ; ++$k)
 echo "<td>" . htmlspecialchars($row[$k]) . "</td>";
 echo "</tr>";
 }

 echo "</table>";
?>

This code simply issues the MySQL query SELECT * FROM cats and then displays all
the rows returned. Its output is as follows:

Id Family Name Age
1 Lion Leo 4
2 Cougar Growler 2
3 Cheetah Charly 3

254 | Chapter 10: Accessing MySQL Using PHP

Here you can see that the id column has correctly auto-incremented.

Updating Data
Changing data that you have already inserted is also quite simple. Did you notice the
spelling of Charly for the cheetah’s name? Let’s correct that to Charlie, as in
Example 10-12.

Example 10-12. Renaming Charly the cheetah to Charlie

<?php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die("Fatal Error");

 $query = "UPDATE cats SET name='Charlie' WHERE name='Charly'";
 $result = $conn->query($query);
 if (!$result) die ("Database access failed");
?>

If you run Example 10-11 again, you’ll see that it now outputs the following:

Id Family Name Age
1 Lion Leo 4
2 Cougar Growler 2
3 Cheetah Charlie 3

Deleting Data
Growler the cougar has been transferred to another zoo, so it’s time to remove him
from the database; see Example 10-13.

Example 10-13. Removing Growler the cougar from the cats table

<?php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die("Fatal Error");

 $query = "DELETE FROM cats WHERE name='Growler'";
 $result = $conn->query($query);
 if (!$result) die ("Database access failed");
?>

This uses a standard DELETE FROM query, and when you run Example 10-11, you can
see that the row has been removed in the following output:

Practical MySQL | 255

Id Family Name Age
1 Lion Leo 4
3 Cheetah Charlie 3

Using AUTO_INCREMENT
When using AUTO_INCREMENT, you cannot know what value has been given to a col‐
umn before a row is inserted. Instead, if you need to know it, you must ask MySQL
afterward using the mysql_insert_id function. This need is common: for instance,
when you process a purchase, you might insert a new customer into a Customers table
and then refer to the newly created CustId when inserting a purchase into the Purcha‐
ses table.

Using AUTO_INCREMENT is recommended instead of selecting the
highest ID in the id column and incrementing it by one, because
concurrent queries could change the values in that column after the
highest value has been fetched and before the calculated value is
stored.

Example 10-10 can be rewritten as Example 10-14 to display this value after each
insert.

Example 10-14. Adding data to the cats table and reporting the insert ID

<?php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die("Fatal Error");

 $query = "INSERT INTO cats VALUES(NULL, 'Lynx', 'Stumpy', 5)";
 $result = $conn->query($query);
 if (!$result) die ("Database access failed");

 echo "The Insert ID was: " . $conn->insert_id;
?>

The contents of the table should now look like the following (note how the previous
id value of 2 is not reused, as this could cause complications in some instances):

Id Family Name Age
1 Lion Leo 4
3 Cheetah Charlie 3
4 Lynx Stumpy 5

256 | Chapter 10: Accessing MySQL Using PHP

Using insert IDs
It’s very common to insert data in multiple tables: a book followed by its author, a
customer followed by their purchase, and so on. When doing this with an auto-
increment column, you will need to retain the insert ID returned for storing in the
related table.

For example, let’s assume that these cats can be “adopted” by the public as a means of
raising funds, and that when a new cat is stored in the cats table, we also want to cre‐
ate a key to tie it to the animal’s adoptive owner. The code to do this is similar to that
in Example 10-14, except that the returned insert ID is stored in the variable
$insertID and is then used as part of the subsequent query:

$query = "INSERT INTO cats VALUES(NULL, 'Lynx', 'Stumpy', 5)";
$result = $conn->query($query);
$insertID = $conn->insert_id;

$query = "INSERT INTO owners VALUES($insertID, 'Ann', 'Smith')";
$result = $conn->query($query);

Now the cat is connected to its “owner” through the cat’s unique ID, which was cre‐
ated automatically by AUTO_INCREMENT.

Performing Additional Queries
Okay, that’s enough feline fun. To explore some slightly more complex queries, we
need to revert to using the customers and classics tables that you created in Chapter 8.
There will be two customers in the customers table; the classics table holds the details
of a few books. They also share a common column of ISBNs, called isbn, that you can
use to perform additional queries.

For example, to display all of the customers along with the titles and authors of the
books they have bought, you can use the code in Example 10-15.

Example 10-15. Performing a secondary query

<?php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die("Fatal Error");

 $query = "SELECT * FROM customers";
 $result = $conn->query($query);
 if (!$result) die ("Database access failed");

 $rows = $result->num_rows;

 for ($j = 0 ; $j < $rows ; ++$j)
 {

Practical MySQL | 257

 $row = $result->fetch_array(MYSQLI_NUM);
 echo htmlspecialchars($row[0]) . " purchased ISBN " .
 htmlspecialchars($row[1]) . ":
";

 $subquery = "SELECT * FROM classics WHERE isbn='$row[1]'";
 $subresult = $conn->query($subquery);
 if (!$subresult) die ("Database access failed");

 $subrow = $subresult->fetch_array(MYSQLI_NUM);
 echo " " . htmlspecialchars("'$subrow[1]'") . " by " .
 htmlspecialchars($subrow[0]) . "

";
 }
?>

This program uses an initial query to the customers table to look up all the customers
and then, given the ISBNs of the books each customer purchased, makes a new query
to the classics table to find out the title and author for each. The output from this code
should be similar to the following:

Joe Bloggs purchased ISBN 9780099533474:
 'The Old Curiosity Shop' by Charles Dickens

Jack Wilson purchased ISBN 9780517123201:
 'The Origin of Species' by Charles Darwin

Mary Smith purchased ISBN 9780582506206:
 'Pride and Prejudice' by Jane Austen

Of course, although it wouldn’t illustrate performing additional
queries, in this particular case you could also return the same
information using a NATURAL JOIN query (see Chapter 8), like this:

SELECT name,isbn,title,author FROM customers
 NATURAL JOIN classics;

Preventing Hacking Attempts
If you haven’t looked into it, you may find it hard to appreciate just how dangerous it
is to pass user input unchecked to MySQL. For example, suppose you have a simple
piece of code to verify a user, and it looks like this:

$user = $_POST['user'];
$pass = $_POST['pass'];
$query = "SELECT * FROM users WHERE user='$user' AND pass='$pass'";

At first glance, you might think this code is perfectly fine. If the user enters values of
fredsmith and mypass for $user and $pass, respectively, then the query string, as
passed to MySQL, will be as follows:

SELECT * FROM users WHERE user='fredsmith' AND pass='mypass'

258 | Chapter 10: Accessing MySQL Using PHP

This is all well and good, but what if someone enters the following for $user (and
doesn’t even enter anything for $pass)?

admin' #

Let’s look at the string that would be sent to MySQL:

SELECT * FROM users WHERE user='admin' #' AND pass=''

Do you see the problem there? An SQL injection attack has occurred. In MySQL, the #
symbol represents the start of a comment. Therefore, the user will be logged in as
admin (assuming there is a user admin), without having to enter a password. In the
following, the part of the query that will be executed is shown in bold; the rest will be
ignored.

SELECT * FROM users WHERE user='admin' #' AND pass=''

But you should count yourself very lucky if that’s all a malicious user does to you. At
least you might still be able to go into your application and undo any changes the user
makes as admin. But what about the case in which your application code removes a
user from the database? The code might look something like this:

$user = $_POST['user'];
$pass = $_POST['pass'];
$query = "DELETE FROM users WHERE user='$user' AND pass='$pass'";

Again, this looks quite normal at first glance, but what if someone entered the follow‐
ing for $user?

anything' OR 1=1 #

This would be interpreted by MySQL as follows:

DELETE FROM users WHERE user='anything' OR 1=1 #' AND pass=''

Ouch—that SQL query will always be TRUE, and therefore you’ve lost your whole
users database! So what can you do about this kind of attack?

Steps You Can Take
The first thing is not to rely on PHP’s built-in magic quotes, which automatically
escape any characters such as single and double quotes by prefacing them with a
backslash (\). Why? Because this feature can be turned off. Many programmers do so
in order to put their own security code in place, and there is no guarantee that this
hasn’t happened on the server you are working on. In fact, the feature was deprecated
as of PHP 5.3.0 and removed in PHP 5.4.0.

Instead, you should always use the real_escape_string method for all calls to
MySQL. Example 10-16 is a function you can use that will remove any magic quotes
added to a user-inputted string and then properly sanitize it for you.

Preventing Hacking Attempts | 259

Example 10-16. How to properly sanitize user input for MySQL

<?php
 function mysql_fix_string($conn, $string)
 {
 if (get_magic_quotes_gpc()) $string = stripslashes($string);
 return $conn->real_escape_string($string);
 }
?>

The get_magic_quotes_gpc function returns TRUE if magic quotes are active. In that
case, any slashes that have been added to a string have to be removed, or the
real_escape_string method could end up double-escaping some characters, creat‐
ing corrupted strings. Example 10-17 illustrates how you would incorporate
mysql_fix_string within your own code.

Example 10-17. How to safely access MySQL with user input

<?php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die("Fatal Error");

 $user = mysql_fix_string($conn, $_POST['user']);
 $pass = mysql_fix_string($conn, $_POST['pass']);
 $query = "SELECT * FROM users WHERE user='$user' AND pass='$pass'";

 // Etc.

 function mysql_fix_string($conn, $string)
 {
 if (get_magic_quotes_gpc()) $string = stripslashes($string);
 return $conn->real_escape_string($string);
 }
?>

These precautions are becoming less important, however, because
there’s a much easier and safer way to access MySQL, which obvi‐
ates the need for these types of functions—the use of placeholders,
explained next.

Using Placeholders
All the methods you have seen so far work with MySQL but had security implica‐
tions, with strings constantly requiring escaping to prevent security risks. So, now
that you know the basics, let me introduce the best and recommended way to interact
with MySQL, which is pretty much bulletproof in terms of security. Once you have

260 | Chapter 10: Accessing MySQL Using PHP

read this section, you should no longer use direct inserting of data into MySQL
(though it was important to show you how to do this), but should always use place‐
holders instead.

So what are placeholders? They are positions within prepared statements in which
data is transferred directly to the database, without the possibility of user-submitted
(or other) data being interpreted as MySQL statements (and the potential for hacking
that could then result).

The technology works by requiring you to first prepare the statement you wish to be
executed in MySQL, but leave all the parts of the statement that refer to data as simple
question marks.

In plain MySQL, prepared statements look like Example 10-18.

Example 10-18. MySQL placeholders

PREPARE statement FROM "INSERT INTO classics VALUES(?,?,?,?,?)";

SET @author = "Emily Brontë",
 @title = "Wuthering Heights",
 @category = "Classic Fiction",
 @year = "1847",
 @isbn = "9780553212587";

EXECUTE statement USING @author,@title,@category,@year,@isbn;
DEALLOCATE PREPARE statement;

This can be cumbersome to submit to MySQL, so the mysqli extension makes han‐
dling placeholders easier for you with a ready-made method called prepare, which
you call like this:

$stmt = $conn->prepare('INSERT INTO classics VALUES(?,?,?,?,?)');

The object $stmt (which is shorthand for statement) returned by this method is then
used for sending the data to the server in place of the question marks. Its first use is to
bind some PHP variables to each of the question marks (the placeholder parameters)
in turn, like this:

$stmt->bind_param('sssss', $author, $title, $category, $year, $isbn);

The first argument to bind_param is a string representing the type of each of the
arguments in turn. In this case, it comprises five s characters, representing strings,
but any combination of types can be specified here, out of the following:

• i: The data is an integer.
• d: The data is a double.
• s: The data is a string.

Preventing Hacking Attempts | 261

• b: The data is a BLOB (and will be sent in packets).

With the variables bound to the prepared statement, it is now necessary to populate
these variables with the data to be passed to MySQL, like this:

$author = 'Emily Brontë';
$title = 'Wuthering Heights';
$category = 'Classic Fiction';
$year = '1847';
$isbn = '9780553212587';

At this point, PHP has everything it needs in order to execute the prepared statement,
so you can issue the following command, which calls the execute method of the
$stmt object created earlier:

$stmt->execute();

Before going any further, it makes sense to verify whether the command was executed
successfully. Here’s how you can do that by checking the affected_rows property of
$stmt:

printf("%d Row inserted.\n", $stmt->affected_rows);

In this case, the output should indicate that one row was inserted.

Once you are happy that the statement executed successfully (or you have dealt with
any errors), you can close the $stmt object, like this:

$stmt->close();

and finally close the $conn object (assuming you have finished with it too), like this:

$conn->close();

When you put all this together, the result is Example 10-19.

Example 10-19. Issuing prepared statements

<?php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die("Fatal Error");

 $stmt = $conn->prepare('INSERT INTO classics VALUES(?,?,?,?,?)');
 $stmt->bind_param('sssss', $author, $title, $category, $year, $isbn);

 $author = 'Emily Brontë';
 $title = 'Wuthering Heights';
 $category = 'Classic Fiction';
 $year = '1847';
 $isbn = '9780553212587';

 $stmt->execute();

262 | Chapter 10: Accessing MySQL Using PHP

 printf("%d Row inserted.\n", $stmt->affected_rows);
 $stmt->close();
 $conn->close();
?>

Every time you are able to use prepared statements in place of nonprepared ones, you
will be closing a potential security hole, so it’s worth spending some time getting to
know how to use them.

Preventing HTML Injection
There’s another type of injection you need to concern yourself about—not for the
safety of your own websites, but for your users’ privacy and protection. That’s cross-
site scripting, also referred to as an XSS attack.

This occurs when you allow HTML or, more often, JavaScript code to be input by a
user and then displayed by your website. One place this is common is in a comment
form. What happens most often is that a malicious user will try to write code that
steals cookies from your site’s users, which sometimes even allows them to discover
username and password pairs if those are poorly handled, or other information that
could enable session hijacking (in which a user’s login is taken over by a hacker, who
could then take over that person’s account!). Or the malicious user might launch an
attack to download a Trojan onto a user’s computer.

But preventing this is as simple as calling the htmlentities function, which strips
out all HTML markup and replaces it with a form that displays the characters, but
does not allow a browser to act on them. For example, consider this HTML:

<script src='http://x.com/hack.js'>
</script><script>hack();</script>

This code loads in a JavaScript program and then executes malicious functions. But if
it is first passed through htmlentities, it will be turned into the following totally
harmless string:

<script src='http://x.com/hack.js'> </script>
<script>hack();</script>

Therefore, if you are ever going to display anything that your users enter, either
immediately or after storing it in a database, you need to first sanitize it using the
htmlentities function. To do this, I recommend that you create a new function, like
the first one in Example 10-20, which can sanitize for both SQL and XSS injections.

Example 10-20. Functions for preventing both SQL and XSS injection attacks

<?php
 function mysql_entities_fix_string($conn, $string)
 {

Preventing Hacking Attempts | 263

 return htmlentities(mysql_fix_string($conn, $string));
 }

 function mysql_fix_string($conn, $string)
 {
 if (get_magic_quotes_gpc()) $string = stripslashes($string);
 return $conn->real_escape_string($string);
 }
?>

The mysql_entities_fix_string function first calls mysql_fix_string and then
passes the result through htmlentities before returning the fully sanitized string. To
use either of these functions, you must already have an active connection object open
to a MySQL database.

Example 10-21 shows the new “higher protection” version of Example 10-17.

Example 10-21. How to safely access MySQL and prevent XSS attacks

<?php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die("Fatal Error");

 $user = mysql_entities_fix_string($conn, $_POST['user']);
 $pass = mysql_entities_fix_string($conn, $_POST['pass']);
 $query = "SELECT * FROM users WHERE user='$user' AND pass='$pass'";

 // Etc.

 function mysql_entities_fix_string($conn, $string)
 {
 return htmlentities(mysql_fix_string($conn, $string));
 }

 function mysql_fix_string($conn, $string)
 {
 if (get_magic_quotes_gpc()) $string = stripslashes($string);
 return $conn->real_escape_string($string);
 }
?>

Using mysqli Procedurally
If you prefer, there is an alternative set of functions you can use to access mysqli in a
procedural (rather than object-oriented) manner.

So, instead of creating a $conn object like this:

$conn = new mysqli($hn, $un, $pw, $db);

264 | Chapter 10: Accessing MySQL Using PHP

You can use the following:

$link = mysqli_connect($hn, $un, $pw, $db);

To check that the connection has been made and handle it, you could use code such
as this:

if (mysqli_connect_errno()) die("Fatal Error");

And to make a MySQL query, you would use code such as the following:

$result = mysqli_query($link, "SELECT * FROM classics");

Upon return, $result will contain the data. You can find out the number of rows
returned as follows:

$rows = mysqli_num_rows($result);

An integer is returned in $rows. You can fetch the actual data one row at a time in the
following way, which returns a numeric array:

$row = mysqli_fetch_array($result, MYSQLI_NUM);

In this instance, $row[0] will contain the first column of data, $row[1] the second,
and so on. As described in “Fetching a row” on page 241, rows can also be returned as
associative arrays or as both types, depending on the value passed in the second argu‐
ment.

When you need to know the insert ID of an insert operation, you can always call the
mysqli_insert_id function, like this:

$insertID = mysqli_insert_id($result);

Escaping strings procedurally with mysqli is as easy as using the following:

$escaped = mysqli_real_escape_string($link, $val);

And preparing a statement with mysqli is as simple as this:

$stmt = mysqli_prepare($link, 'INSERT INTO classics VALUES(?,?,?,?,?)');

To bind variables to the prepared statement, you would then use the following:

mysqli_stmt_bind_param($stmt, 'sssss', $author, $title, $category, $year, $isbn);

And to execute the prepared statement after assigning the variables with the required
values, you would issue this call:

mysqli_stmt_execute($stmt);

To close a statement, issue the following command:

mysqli_stmt_close($stmt);

And to close the connection to MySQL, enter this command:

mysqli_close($link);

Using mysqli Procedurally | 265

Check out for the documentation in the PHP Manual for complete
details on using prepared statements, procedurally or otherwise,
and for more advice on all aspects of mysqli.

Now that you have learned how to integrate PHP with MySQL in several different
ways, the next chapter moves on to creating user-friendly forms and dealing with the
data submitted from them.

Questions
1. How do you connect to a MySQL database using mysqli?
2. How do you submit a query to MySQL using mysqli?
3. How can you retrieve a string containing an error message when a mysqli error

occurs?
4. How can you determine the number of rows returned by a mysqli query?
5. How can you retrieve a particular row of data from a set of mysqli results?
6. Which mysqli method can be used to properly escape user input to prevent code

injection?
7. What negative effects can happen if you do not close the objects created by

mysqli methods?

See “Chapter 10 Answers” on page 720 in Appendix A for the answers to these
questions.

266 | Chapter 10: Accessing MySQL Using PHP

http://tinyurl.com/mysqlistmt
http://tinyurl.com/usingmysqli

CHAPTER 11

Form Handling

The main way that website users interact with PHP and MySQL is through HTML
forms. These were introduced very early on in the development of the World Wide
Web, in 1993—even before the advent of ecommerce—and have remained a mainstay
ever since, due to their simplicity and ease of use.

Of course, enhancements have been made over the years to add extra functionality to
HTML form handling, so this chapter will bring you up to speed on the state of the
art and show you the best ways to implement forms for good usability and security.
Plus, as you will see a little later on, the HTML5 specification has further improved
the use of forms.

Building Forms
Handling forms is a multipart process. First is the creation of a form into which a
user can enter the required details. This data is then sent to the web server, where it is
interpreted, often with some error checking. If the PHP code identifies one or more
fields that require reentering, the form may be redisplayed with an error message.
When the code is satisfied with the accuracy of the input, it takes some action that
usually involves the database, such as entering details about a purchase.

To build a form, you must have at least the following elements:

• An opening <form> and closing </form> tag
• A submission type specifying either a GET or POST method
• One or more input fields
• The destination URL to which the form data is to be submitted

267

Example 11-1 shows a very simple form created with PHP, which you should type in
and save as formtest.php.

Example 11-1. formtest.php—a simple PHP form handler

<?php // formtest.php
 echo <<<_END
 <html>
 <head>
 <title>Form Test</title>
 </head>
 <body>
 <form method="post" action="formtest.php">
 What is your name?
 <input type="text" name="name">
 <input type="submit">
 </form>
 </body>
 </html>
_END;
?>

The first thing to notice about this example is that, as you have already seen in this
book, rather than dropping in and out of PHP code, the echo <<<_END..._END con‐
struct is used whenever multiline HTML must be output.

Inside of this multiline output is some standard code for commencing an HTML
document, displaying its title, and starting the body of the document. This is followed
by the form, which is set to send its data using the POST method to the PHP program
formtest.php, which is the name of the program itself.

The rest of the program just closes all the items it opened: the form, the body of the
HTML document, and the PHP echo <<<_END statement. The result of opening this
program in a web browser is shown in Figure 11-1.

Figure 11-1. The result of opening formtest.php in a web browser

268 | Chapter 11: Form Handling

Retrieving Submitted Data
Example 11-1 is only one part of the multipart form-handling process. If you enter a
name and click the Submit Query button, absolutely nothing will happen other than
the form being redisplayed. So now it’s time to add some PHP code to process the
data submitted by the form.

Example 11-2 expands on the previous program to include data processing. Type it or
modify formtest.php by adding in the new lines, save it as formtest2.php, and try the
program for yourself. The result of running this program and entering a name is
shown in Figure 11-2.

Example 11-2. Updated version of formtest.php

<?php // formtest2.php
 if (isset($_POST['name'])) $name = $_POST['name'];
 else $name = "(Not entered)";

 echo <<<_END
 <html>
 <head>
 <title>Form Test</title>
 </head>
 <body>
 Your name is: $name

 <form method="post" action="formtest2.php">
 What is your name?
 <input type="text" name="name">
 <input type="submit">
 </form>
 </body>
 </html>
_END;
?>

Figure 11-2. formtest.php with data handling

Retrieving Submitted Data | 269

The only changes are a couple of lines at the start that check the name field of the
$_POST associative array and echo it back to the user. Chapter 10 introduced the
$_POST associative array, which contains an element for each field in an HTML form.
In Example 11-2, the input name used was name and the form method was POST, so
element name of the $_POST array contains the value in $_POST['name'].

The PHP isset function is used to test whether $_POST['name'] has been assigned a
value. If nothing was posted, the program assigns the value (Not entered); other‐
wise, it stores the value that was entered. Then a single line has been added after the
<body> statement to display that value, which is stored in $name.

Default Values
Sometimes it’s convenient to offer your site visitors a default value in a web form. For
example, suppose you put up a loan repayment calculator widget on a real estate web‐
site. It could make sense to enter default values of, say, 25 years and 6 percent interest,
so that the user can simply type either the principal sum to borrow or the amount
that they can afford to pay each month.

In this case, the HTML for those two values would be something like Example 11-3.

Example 11-3. Setting default values

<form method="post" action="calc.php"><pre>
 Loan Amount <input type="text" name="principle">
Monthly Repayment <input type="text" name="monthly">
 Number of Years <input type="text" name="years" value="25">
 Interest Rate <input type="text" name="rate" value="6">
 <input type="submit">
</pre></form>

If you wish to try this (and the other HTML code samples), type it
and save it with an .html (or .htm) file extension, such as test.html
(or test.htm), and then load that file into your browser.

Take a look at the third and fourth inputs. By populating the value attribute, you dis‐
play a default value in the field, which the users can then change if they wish. With
sensible default values, you can often make your web forms more user-friendly by
minimizing unnecessary typing. The result of the previous code looks like
Figure 11-3. Of course, this was created to illustrate default values and, because the
program calc.php has not been written, the form will not do anything if submitted.

270 | Chapter 11: Form Handling

Figure 11-3. Using default values for selected form fields

Default values are also used for hidden fields if you want to pass extra information
from your web page to your program, in addition to what users enter. We’ll look at
hidden fields later in this chapter.

Input Types
HTML forms are very versatile and allow you to submit a wide range of input types,
from text boxes and text areas to checkboxes, radio buttons, and more.

Text boxes
The input type you will probably use most often is the text box. It accepts a wide
range of alphanumeric text and other characters in a single-line box. The general for‐
mat of a text box input is as follows:

<input type="text" name="name" size="size" maxlength="length" value="value">

We’ve already covered the name and value attributes, but two more are introduced
here: size and maxlength. The size attribute specifies the width of the box (in char‐
acters of the current font) as it should appear on the screen, and maxlength specifies
the maximum number of characters that a user is allowed to enter into the field.

The only required attributes are type, which tells the web browser what type of input
to expect, and name, for giving the input a name that will be used to process the field
upon receipt of the submitted form.

Text areas
When you need to accept input of more than a short line of text, use a text area. This
is similar to a text box, but, because it allows multiple lines, it has some different
attributes. Its general format looks like this:

<textarea name="name" cols="width" rows="height" wrap="type">
</textarea>

Retrieving Submitted Data | 271

The first thing to notice is that <textarea> has its own tag and is not a subtype of the
<input> tag. It therefore requires a closing </textarea> to end input.

Instead of a default attribute, if you have default text to display, you must put it before
the closing </textarea>, and it will then be displayed and be editable by the user:

<textarea name="name" cols="width" rows="height" wrap="type">
 This is some default text.
</textarea>

To control the width and height, use the cols and rows attributes. Both use the char‐
acter spacing of the current font to determine the size of the area. If you omit these
values, a default input box will be created that will vary in dimensions depending on
the browser used, so you should always define them to be certain about how your
form will appear.

Last, you can control how the text entered into the box will wrap (and how any such
wrapping will be sent to the server) using the wrap attribute. Table 11-1 shows the
wrap types available. If you leave out the wrap attribute, soft wrapping is used.

Table 11-1. The wrap types available in a <textarea> input

Type Action
off Text does not wrap, and lines appear exactly as the user types them.
soft Text wraps but is sent to the server as one long string without carriage returns and line feeds.
hard Text wraps and is sent to the server in wrapped format with soft returns and line feeds.

Checkboxes
When you want to offer a number of different options to a user, from which they can
select one or more items, checkboxes are the way to go. Here is the format to use:

<input type="checkbox" name="name" value="value" checked="checked">

By default, checkboxes are square. If you include the checked attribute, the box is
already checked when the browser is displayed. The string you assign to the attribute
should be either a pair of double or single quotes or the value "checked", or there
should be no value assigned (just checked). If you don’t include the attribute, the box
is shown unchecked. Here is an example of creating an unchecked box:

I Agree <input type="checkbox" name="agree">

If the user doesn’t check the box, no value will be submitted. But if they do, a value of
"on" will be submitted for the field named agree. If you prefer to have your own
value submitted instead of the word on (such as the number 1), you could use the
following syntax:

I Agree <input type="checkbox" name="agree" value="1">

272 | Chapter 11: Form Handling

On the other hand, if you wish to offer a newsletter to your readers when submitting
a form, you might want to have the checkbox already checked as the default value:

Subscribe? <input type="checkbox" name="news" checked="checked">

If you want to allow groups of items to be selected at one time, assign them all the
same name. However, only the last item checked will be submitted, unless you pass
an array as the name. For example, Example 11-4 allows the user to select their favor‐
ite ice creams (see Figure 11-4 for how it displays in a browser).

Example 11-4. Offering multiple checkbox choices

 Vanilla <input type="checkbox" name="ice" value="Vanilla">
 Chocolate <input type="checkbox" name="ice" value="Chocolate">
Strawberry <input type="checkbox" name="ice" value="Strawberry">

Figure 11-4. Using checkboxes to make quick selections

If only one of the checkboxes is selected, such as the second one, only that item will
be submitted (the field named ice would be assigned the value "Chocolate"). But if
two or more are selected, only the last value will be submitted, with prior values being
ignored.

If you want exclusive behavior—so that only one item can be submitted—then you
should use radio buttons instead (see the next section). Otherwise, to allow multiple
submissions, you have to slightly alter the HTML, as in Example 11-5 (note the addi‐
tion of the square brackets, [], following the values of ice).

Example 11-5. Submitting multiple values with an array

 Vanilla <input type="checkbox" name="ice[]" value="Vanilla">
 Chocolate <input type="checkbox" name="ice[]" value="Chocolate">
Strawberry <input type="checkbox" name="ice[]" value="Strawberry">

Now when the form is submitted, if any of these items have been checked an array
called ice will be submitted that contains all the selected values. You can extract
either the single submitted value or the array of values to a variable like this:

Retrieving Submitted Data | 273

$ice = $_POST['ice'];

If the field ice has been posted as a single value, $ice will be a single string, such as
"Strawberry". But if ice was defined in the form as an array (like in Example 11-5),
$ice will be an array, and its number of elements will be the number of values sub‐
mitted. Table 11-2 shows the seven possible sets of values that could be submitted by
this HTML for one, two, or all three selections. In each case, an array of one, two, or
three items is created.

Table 11-2. The seven possible sets of values for the array $ice

One value submitted Two values submitted Three values submitted
$ice[0] => Vanilla

$ice[0] => Chocolate

$ice[0] => Strawberry

$ice[0] => Vanilla
$ice[1] => Chocolate

$ice[0] => Vanilla
$ice[1] => Strawberry

$ice[0] => Chocolate
$ice[1] => Strawberry

$ice[0] => Vanilla
$ice[1] => Chocolate
$ice[2] => Strawberry

If $ice is an array, the PHP code to display its contents is quite simple and might look
like this:

foreach($ice as $item) echo "$item
";

This uses the standard PHP foreach construct to iterate through the array $ice and
pass each element’s value into the variable $item, which is then displayed via the echo
command. The
 is just an HTML formatting device to force a new line after each
flavor in the display.

Radio buttons
Radio buttons are named after the push-in preset buttons found on many older
radios, where any previously depressed button pops back up when another is pressed.
They are used when you want only a single value to be returned from a selection of
two or more options. All the buttons in a group must use the same name and,
because only a single value is returned, you do not have to pass an array.

For example, if your website offers a choice of delivery times for items purchased
from your store, you might use HTML like that in Example 11-6 (see Figure 11-5 to
see how it displays). By default, radio buttons are round.

Example 11-6. Using radio buttons

8am-Noon<input type="radio" name="time" value="1">
Noon-4pm<input type="radio" name="time" value="2" checked="checked">
 4pm-8pm<input type="radio" name="time" value="3">

274 | Chapter 11: Form Handling

Figure 11-5. Selecting a single value with radio buttons

Here, the second option of Noon–4pm has been selected by default. This default
choice ensures that at least one delivery time will be chosen by the user, which they
can change to one of the other two options if they prefer. Had one of the items not
been already checked, the user might forget to select an option, and no value would
be submitted at all for the delivery time.

Hidden fields
Sometimes it is convenient to have hidden form fields so that you can keep track of
the state of form entry. For example, you might wish to know whether a form has
already been submitted. You can achieve this by adding some HTML in your PHP
code, such as the following:

echo '<input type="hidden" name="submitted" value="yes">'

This is a simple PHP echo statement that adds an input field to the HTML form. Let’s
assume the form was created outside the program and displayed to the user. The first
time the PHP program receives the input, this line of code has not run, so there will
be no field named submitted. The PHP program re-creates the form, adding the
input field. So when the visitor resubmits the form, the PHP program receives it with
the submitted field set to "yes". The code can simply check whether the field is
present:

if (isset($_POST['submitted']))
{...

Hidden fields can also be useful for storing other details, such as a session ID string
that you might create to identify a user, and so on.

Never treat hidden fields as secure—because they are not. Someone
could easily view the HTML containing them by using a browser’s
View Source feature. A malicious attacker could also craft a post
that removes, adds, or changes a hidden field.

Retrieving Submitted Data | 275

<select>

The <select> tag lets you create a drop-down list of options, offering either single or
multiple selections. It conforms to the following syntax:

<select name="name" size="size" multiple="multiple">

The attribute size is the number of lines to display. Clicking on the display causes a
list to drop down, showing all the options. If you use the multiple attribute, a user
can select multiple options from the list by pressing the Ctrl key when clicking. So, to
ask a user for their favorite vegetable from a choice of five, you might use HTML like
that in Example 11-7, which offers a single selection.

Example 11-7. Using <select>

Vegetables
<select name="veg" size="1">
 <option value="Peas">Peas</option>
 <option value="Beans">Beans</option>
 <option value="Carrots">Carrots</option>
 <option value="Cabbage">Cabbage</option>
 <option value="Broccoli">Broccoli</option>
</select>

This HTML offers five choices, with the first one, Peas, preselected (due to it being
the first item). Figure 11-6 shows the output where the list has been clicked to drop it
down, and the option Carrots has been highlighted. If you want to have a different
default option offered first (such as Beans), use the selected attribute, like this:

<option selected="selected" value="Beans">Beans</option>

Figure 11-6. Creating a drop-down list with <select>

You can also allow users to select more than one item, as in Example 11-8.

276 | Chapter 11: Form Handling

Example 11-8. Using <select> with the multiple attribute

Vegetables
<select name="veg" size="5" multiple="multiple">
 <option value="Peas">Peas</option>
 <option value="Beans">Beans</option>
 <option value="Carrots">Carrots</option>
 <option value="Cabbage">Cabbage</option>
 <option value="Broccoli">Broccoli</option>
</select>

This HTML is not very different; the size has been changed to "5" and the attribute
multiple has been added. But, as you can see from Figure 11-7, it is now possible for
the user to select more than one option by using the Ctrl key when clicking. You can
leave out the size attribute if you wish, and the output will be the same; however,
with a larger list the drop-down box may display more items, so I recommend that
you pick a suitable number of rows and stick with it. I also recommend not using
multiple select boxes smaller than two rows in height—some browsers may not cor‐
rectly display the scroll bars needed to access them.

Figure 11-7. Using a <select> with the multiple attribute

You can also use the selected attribute within a multiple select and can, in fact, have
more than one option preselected if you wish.

Labels

You can provide an even better user experience by utilizing the <label> tag. With it,
you can surround a form element, making it selectable by clicking any visible part
contained between the opening and closing <label> tags.

For example, going back to the example of choosing a delivery time, you could allow
the user to click the radio button itself and the associated text, like this:

<label>8am-Noon<input type="radio" name="time" value="1"></label>

Retrieving Submitted Data | 277

The text will not be underlined like a hyperlink when you do this, but as the mouse
pointer passes over it will change to an arrow instead of a text cursor, indicating that
the whole item is clickable.

The submit button
To match the type of form being submitted, you can change the text of the submit
button to anything you like by using the value attribute, like this:

<input type="submit" value="Search">

You can also replace the standard text button with a graphic image of your choice,
using HTML such as this:

<input type="image" name="submit" src="image.gif">

Sanitizing Input
Now we return to PHP programming. It can never be emphasized enough that han‐
dling user data is a security minefield, and that it is essential to learn to treat all such
data with the utmost caution from the word go. It’s actually not that difficult to sani‐
tize user input from potential hacking attempts, but it must be done.

The first thing to remember is that regardless of what constraints you have placed in
an HTML form to limit the types and sizes of inputs, it is a trivial matter for a hacker
to use their browser’s View Source feature to extract the form and modify it to pro‐
vide malicious input to your website.

Therefore, you must never trust any variable that you fetch from either the $_GET or
$_POST arrays until you have sanitized it. If you don’t, users may try to inject Java‐
Script into the data to interfere with your site’s operation, or even attempt to add
MySQL commands to compromise your database.

So, instead of just using code such as the following when reading in user input:

$variable = $_POST['user_input'];

you should also use one or more of the following lines of code. For example, to pre‐
vent escape characters from being injected into a string that will be presented to
MySQL, use the following. Remember that this function takes into account the cur‐
rent character set of a MySQL connection, so it must be used with a mysqli connec‐
tion object (in this instance, $connection), as discussed in Chapter 10:

$variable = $connection->real_escape_string($variable);

278 | Chapter 11: Form Handling

Remember that the safest way to secure MySQL from hacking
attempts is to use placeholders and prepared statements, as
described in Chapter 10. If you do so for all accesses to MySQL, it
becomes unnecessary to escape data being transferred into or out
of the database. You will, however, still need to sanitize input when
including it within HTML.

To get rid of unwanted slashes, you should first check whether PHP’s magic quotes
feature is enabled (which will escape quotes by adding slashes), and if so call the
stripslashes function like this:

if (get_magic_quotes_gpc())
 $variable = stripslashes($variable);

And to remove any HTML from a string, use the following:

$variable = htmlentities($variable);

For example, this would change a string of interpretable HTML code like hi
into hi, which then displays as text, and won’t be interpreted as
HTML tags.

Finally, if you wish to strip HTML entirely from an input, use the following (but
ensure you use it before calling htmlentities, which replaces any angle brackets
used as part of HTML tags):

$variable = strip_tags($variable);

In fact, until you know exactly what sanitization you require for a program,
Example 11-9 shows a pair of functions that brings all these checks together to pro‐
vide a very good level of security.

Example 11-9. The sanitizeString and sanitizeMySQL functions

<?php
 function sanitizeString($var)
 {
 if (get_magic_quotes_gpc())
 $var = stripslashes($var);
 $var = strip_tags($var);
 $var = htmlentities($var);
 return $var;
 }

 function sanitizeMySQL($connection, $var)
 {
 $var = $connection->real_escape_string($var);
 $var = sanitizeString($var);
 return $var;

Retrieving Submitted Data | 279

 }
?>

Add this code to the end of your PHP programs, and you can then call it for each user
input to sanitize, like this:

$var = sanitizeString($_POST['user_input']);

Or, when you have an open MySQL connection and a mysqli connection object (in
this case, called $connection):

$var = sanitizeMySQL($connection, $_POST['user_input']);

If you are using the procedural version of the mysqli extension,
you will need to modify the sanitizeMySQL function to call the
mysqli_real_escape_string function, like this (in which case
$connection will then be a handle, not an object):

$var = mysqli_real_escape_string($connection, $var);

An Example Program
Let’s look at how a real-life PHP program integrates with an HTML form by creating
the program convert.php listed in Example 11-10. Type it as shown and try it for
yourself.

Example 11-10. A program to convert values between Fahrenheit and Celsius

<?php // convert.php
 $f = $c = '';

 if (isset($_POST['f'])) $f = sanitizeString($_POST['f']);
 if (isset($_POST['c'])) $c = sanitizeString($_POST['c']);

 if (is_numeric($f))
 {
 $c = intval((5 / 9) * ($f - 32));
 $out = "$f °f equals $c °c";
 }
 elseif(is_numeric($c))
 {
 $f = intval((9 / 5) * $c + 32);
 $out = "$c °c equals $f °f";
 }
 else $out = "";

 echo <<<_END
<html>
 <head>
 <title>Temperature Converter</title>

280 | Chapter 11: Form Handling

 </head>
 <body>
 <pre>
 Enter either Fahrenheit or Celsius and click on Convert

 $out
 <form method="post" action="">
 Fahrenheit <input type="text" name="f" size="7">
 Celsius <input type="text" name="c" size="7">
 <input type="submit" value="Convert">
 </form>
 </pre>
 </body>
</html>
_END;

 function sanitizeString($var)
 {
 if (get_magic_quotes_gpc())
 $var = stripslashes($var);
 $var = strip_tags($var);
 $var = htmlentities($var);
 return $var;
 }
?>

When you call up convert.php in a browser, the result should look something like
Figure 11-8.

Figure 11-8. The temperature conversion program in action

To break the program down, the first line initializes the variables $c and $f in case
they do not get posted to the program. The next two lines fetch the values of either
the field named f or the one named c, for an input Fahrenheit or Celsius value. If the
user inputs both, the Celsius is simply ignored and the Fahrenheit value is converted.
As a security measure, the new function sanitizeString from Example 11-9 is also
used.

An Example Program | 281

So, having either submitted values or empty strings in both $f and $c, the next por‐
tion of code constitutes an if...elseif...else structure that first tests whether $f
has a numeric value. If not, it checks $c; if $c does not have a numeric value either,
the variable $out is set to the empty string (more on that in a moment).

If $f is found to have a numeric value, the variable $c is assigned a simple mathemati‐
cal expression that converts the value of $f from Fahrenheit to Celsius. The formula
used is Celsius = (5 / 9) × (Fahrenheit – 32). The variable $out is then set to a mes‐
sage string explaining the conversion.

On the other hand, if $c is found to have a numeric value, a complementary opera‐
tion is performed to convert the value of $c from Celsius to Fahrenheit and assign the
result to $f. The formula used is Fahrenheit = (9 / 5) × Celsius + 32. As with the pre‐
vious section, the string $out is then set to contain a message about the conversion.

In both conversions, the PHP intval function is called to convert the result of the
conversion to an integer value. It’s not necessary, but looks better.

With all the arithmetic done, the program now outputs the HTML, which starts with
the basic head and title and then contains some introductory text before displaying
the value of $out. If no temperature conversion was made, $out will have a value of
NULL and nothing will be displayed, which is exactly what we want when the form
hasn’t yet been submitted. But if a conversion was made, $out contains the result,
which is displayed.

After this, we come to the form, which is set to submit using the POST method to the
program itself (represented by a pair of double quotation marks, so that the file can
be saved with any name). Within the form, there are two inputs for either a Fahren‐
heit or a Celsius value to be entered. A submit button with the text Convert is then
displayed, and the form is closed.

After outputting the HTML to close the document, we come finally to the function
sanitizeString from Example 11-9. Try playing with the example by inputting dif‐
ferent values into the fields; for a bit of fun, can you find a value for which Fahrenheit
and Celsius are the same?

All the examples in this chapter have used the POST method to
send form data. I recommend this, as it’s the neatest and most
secure method. However, the forms can easily be changed to use
the GET method, as long as values are fetched from the $_GET array
instead of the $_POST array. Reasons to do this might include mak‐
ing the result of a search bookmarkable or directly linkable from
another page.

282 | Chapter 11: Form Handling

HTML5 Enhancements
With HTML5, developers can draw on a number of useful enhancements to form
handling to make using forms easier than ever, including new attributes; color, date,
and time pickers; and new input types—although some of these features are not yet
implemented across all major browsers.

The autocomplete Attribute
You can apply the autocomplete attribute to the <form> element, or to any of the
color, date, email, password, range, search, tel, text, or url types of the <input>
element.

With autocomplete enabled, previous user inputs are recalled and automatically
entered into fields as suggestions. You can also disable this feature by turning auto‐
complete off. Here’s how to turn autocomplete on for an entire form but disable it for
specific fields (highlighted in bold):

<form action='myform.php' method='post' autocomplete='on'>
 <input type='text' name='username'>
 <input type='password' name='password' autocomplete='off'>
</form>

The autofocus Attribute
The autofocus attribute gives immediate focus to an element when a page loads. It
can be applied to any <input>, <textarea>, or <button> element, like this:

<input type='text' name='query' autofocus='autofocus'>

Browsers that use touch interfaces (such as Android, iOS, or Win‐
dows Phone) usually ignore the autofocus attribute, leaving it to
the user to tap on a field to give it focus; otherwise, the zooming,
focusing, and pop-up keyboards this attribute would generate
could quickly become very annoying.

Because this feature will cause the focus to move into an input element, the Backspace
key will no longer take the user back a web page (although Alt-Left arrow and Alt-
Right arrow will still move backward and forward within the browsing history).

The placeholder Attribute
The placeholder attribute lets you place into any blank input field a helpful hint to
explain to users what they should enter. You use it like this:

<input type='text' name='name' size='50' placeholder='First & Last name'>

HTML5 Enhancements | 283

The input field will display the placeholder text as a prompt until the user starts typ‐
ing, at which point the placeholder will disappear.

The required Attribute
The required attribute ensures that a field has been completed before a form is sub‐
mitted. Use it like this:

<input type='text' name='creditcard' required='required'>

When the browser detects an attempted form submission where there’s an uncomple‐
ted required input, a message is displayed, prompting the user to complete the field.

Override Attributes
With override attributes, you can override form settings on an element-by-element
basis. So, for example, using the formaction attribute, you can specify that a submit
button should submit a form to a different URL from the one specified in the form
itself, like the following (in which the default and overridden action URLs are bold):

<form action='url1.php' method='post'>
 <input type='text' name='field'>
 <input type='submit' formaction='url2.php'>
</form>

HTML5 also brings support for the formenctype, formmethod, formnovalidate, and
formtarget override attributes, which you can use in exactly the same manner as
formaction to override one of these settings.

The width and height Attributes
Using these new attributes, you can alter the dimensions of an input image, like this:

<input type='image' src='picture.png' width='120' height='80'>

The min and max Attributes
With the min and max attributes, you can specify minimum and maximum values for
inputs. You use the attributes like this:

<input type='time' name='alarm' value='07:00' min='05:00' max='09:00'>

The browser will then either offer up and down selectors for the range of values
allowed, or simply disallow values outside of that range.

The step Attribute
Often used with min and max, the step attribute supports stepping through number
or date values, like this:

284 | Chapter 11: Form Handling

<input type='time' name='meeting' value='12:00'
 min='09:00' max='16:00' step='3600'>

When you are stepping through date or time values, each unit represents 1 second.

The form Attribute
With HTML5, you no longer have to place <input> elements within <form> elements,
because you can specify the form to which an input applies by supplying a form
attribute. The following code shows a form being created, but with its input outside
of the <form> and </form> tags:

<form action='myscript.php' method='post' id='form1'>
</form>

<input type='text' name='username' form='form1'>

To do this, you must give the form an ID using the id attribute, and refer to this ID in
the form attribute of the input element. This is most useful for adding hidden input
fields, because you can’t control how the field is laid out inside the form, or for using
JavaScript to modify forms and inputs on the fly.

The list Attribute
HTML5 supports attaching lists to inputs to enable users to easily select from a pre‐
defined list, which you can use like this:

Select destination:
<input type='url' name='site' list='links'>

<datalist id='links'>
 <option label='Google' value='http://google.com'>
 <option label='Yahoo!' value='http://yahoo.com'>
 <option label='Bing' value='http://bing.com'>
 <option label='Ask' value='http://ask.com'>
</datalist>

The color Input Type
The color input type calls up a color picker so that you can simply click the color of
your choice. You use it like this:

Choose a color <input type='color' name='color'>

The number and range Input Types
The number and range input types restrict input to a number, and optionally also
specify an allowed range like this:

HTML5 Enhancements | 285

<input type='number' name='age'>
<input type='range' name='num' min='0' max='100' value='50' step='1'>

Date and Time Pickers
When you choose an input type of date, month, week, time, datetime, or datetime-
local, a picker will pop up on supported browsers from which the user can make a
selection, like this one, which inputs the time:

<input type='time' name='time' value='12:34'>

The next chapter will show you how to use cookies and authentication to store users’
preferences and keep them logged in, and how to maintain a complete user session.

Questions
1. You can submit form data using either the POST or the GET method. Which

associative arrays are used to pass this data to PHP?
2. What is the difference between a text box and a text area?
3. If a form has to offer three choices to a user, each of which is mutually exclusive

so that only one of the three can be selected, which input type would you use,
given a choice between checkboxes and radio buttons?

4. How can you submit a group of selections from a web form using a single field
name?

5. How can you submit a form field without displaying it in the browser?
6. Which HTML tag is used to encapsulate a form element and supporting text or

graphics, making the entire unit selectable with a mouse-click?
7. Which PHP function converts HTML into a format that can be displayed but will

not be interpreted as HTML by a browser?
8. What form attribute can be used to help users complete input fields?
9. How can you ensure that an input is completed before a form gets submitted?

See “Chapter 11 Answers” on page 721 in Appendix A for the answers to these
questions.

286 | Chapter 11: Form Handling

CHAPTER 12

Cookies, Sessions, and Authentication

As your web projects grow larger and more complicated, you will find an increasing
need to keep track of your users. Even if you aren’t offering logins and passwords, you
will still often need to store details about a user’s current session and possibly also
recognize them when they return to your site.

Several technologies support this kind of interaction, ranging from simple browser
cookies to session handling and HTTP authentication. Between them, they offer the
opportunity for you to configure your site to your users’ preferences and ensure a
smooth and enjoyable transition through it.

Using Cookies in PHP
A cookie is an item of data that a web server saves to your computer’s hard disk via a
web browser. It can contain almost any alphanumeric information (as long as it’s
under 4 KB) and can be retrieved from your computer and returned to the server.
Common uses include session tracking, maintaining data across multiple visits, hold‐
ing shopping cart contents, storing login details, and more.

Because of their privacy implications, cookies can be read only from the issuing
domain. In other words, if a cookie is issued by, for example, oreilly.com, it can be
retrieved only by a web server using that domain. This prevents other websites from
gaining access to details for which they are not authorized.

Because of the way the internet works, multiple elements on a web page can be
embedded from multiple domains, each of which can issue its own cookies. When
this happens, they are referred to as third-party cookies. Most commonly, these are
created by advertising companies in order to track users across multiple websites.

287

Because of this, most browsers allow users to turn cookies off either for the current
server’s domain, third-party servers, or both. Fortunately, most people who disable
cookies do so only for third-party websites.

Cookies are exchanged during the transfer of headers, before the actual HTML of a
web page is sent, and it is impossible to send a cookie once any HTML has been
transferred. Therefore, careful planning of cookie usage is important. Figure 12-1
illustrates a typical request and response dialog between a web browser and web
server passing cookies.

Figure 12-1. A browser/server request/response dialog with cookies

This exchange shows a browser receiving two pages:

1. The browser issues a request to retrieve the main page, index.html, at the website
http://www.webserver.com. The first header specifies the file, and the second
header specifies the server.

2. When the web server at webserver.com receives this pair of headers, it returns
some of its own. The second header defines the type of content to be sent (text/
html), and the third one sends a cookie of the name name and with the value
value. Only then are the contents of the web page transferred.

3. Once the browser has received the cookie, it will then return it with every future
request made to the issuing server until the cookie expires or is deleted. So, when
the browser requests the new page /news.html, it also returns the cookie name
with the value value.

288 | Chapter 12: Cookies, Sessions, and Authentication

4. Because the cookie has already been set, when the server receives the request to
send /news.html, it does not have to resend the cookie, but just returns the
requested page.

It is easy to edit cookies directly from within the browser by using
built-in developer tools, or extensions. Therefore, because users
can change cookie values, you should not put key information such
as usernames in a cookie, or you face the possibility of having your
website manipulated in ways you are not expecting. Cookies are
best used for storing data such as language or currency settings.

Setting a Cookie
Setting a cookie in PHP is a simple matter. As long as no HTML has yet been trans‐
ferred, you can call the setcookie function, which has the following syntax (see
Table 12-1):

setcookie(name, value, expire, path, domain, secure, httponly);

Table 12-1. The setcookie parameters

Parameter Description Example
name The name of the cookie. This is the name that your server will use to access the

cookie on subsequent browser requests.
location

value The value of the cookie, or the cookie’s contents. This can contain up to 4 KB of
alphanumeric text.

USA

expire (Optional.) The Unix timestamp of the expiration date. Generally, you will probably
use time() plus a number of seconds. If not set, the cookie expires when the
browser closes.

time() + 2592000

path (Optional.) The path of the cookie on the server. If this is a / (forward slash), the
cookie is available over the entire domain, such as www.webserver.com. If it is a
subdirectory, the cookie is available only within that subdirectory. The default is
the current directory that the cookie is being set in, and this is the setting you will
normally use.

/

domain (Optional.) The internet domain of the cookie. If this is webserver.com, the cookie is
available to all of webserver.com and its subdomains, such as www.webserver.com
and images.webserver.com. If it is images.webserver.com, the cookie is available
only to images.webserver.com and its subdomains, such as
sub.images.webserver.com, but not, say, to www.webserver.com.

webserver.com

secure (Optional.) Whether the cookie must use a secure connection (https://). If this value
is TRUE, the cookie can be transferred only across a secure connection. The default
is FALSE.

FALSE

httponly (Optional; implemented since PHP version 5.2.0.) Whether the cookie must use the
HTTP protocol. If this value is TRUE, scripting languages such as JavaScript cannot
access the cookie. (Not supported in all browsers.) The default is FALSE.

FALSE

Using Cookies in PHP | 289

So, to create a cookie with the name location and the value USA that is accessible
across the entire web server on the current domain, and will be removed from the
browser’s cache in seven days, use the following:

setcookie('location', 'USA', time() + 60 * 60 * 24 * 7, '/');

Accessing a Cookie
Reading the value of a cookie is as simple as accessing the $_COOKIE system array. For
example, if you wish to see whether the current browser has the cookie called
location already stored and, if so, to read its value, use the following:

if (isset($_COOKIE['location'])) $location = $_COOKIE['location'];

Note that you can read a cookie back only after it has been sent to a web browser.
This means that when you issue a cookie, you cannot read it in again until the
browser reloads the page (or another with access to the cookie) from your website
and passes the cookie back to the server in the process.

Destroying a Cookie
To delete a cookie, you must issue it again and set a date in the past. It is important
for all parameters in your new setcookie call except the timestamp to be identical to
the parameters when the cookie was first issued; otherwise, the deletion will fail.
Therefore, to delete the cookie created earlier, you would use the following:

setcookie('location', 'USA', time() - 2592000, '/');

As long as the time given is in the past, the cookie should be deleted. However, I have
used a time of 2,592,000 seconds (one month) in the past in case the client computer’s
date and time are not correctly set. You may also provide an empty string for the
cookie value (or a value of FALSE), and PHP will automatically set its time in the past
for you.

HTTP Authentication
HTTP authentication uses the web server to manage users and passwords for the
application. It’s adequate for simple applications that ask users to log in, although
most applications will have specialized needs or more stringent security requirements
that call for other techniques.

To use HTTP authentication, PHP sends a header request asking to start an authenti‐
cation dialog with the browser. The server must have this feature turned on in order
for it to work, but because it’s so common, your server is likely to offer the feature.

290 | Chapter 12: Cookies, Sessions, and Authentication

Although it is usually installed with Apache, the HTTP authentica‐
tion module may not necessarily be installed on the server you use.
So, attempting to run these examples may generate an error telling
you that the feature is not enabled, in which case you must either
install the module and change the configuration file to load it, or
ask your system administrator to do these fixes.

After entering your URL into the browser or visiting the page via a link, the user will
see an “Authentication Required” prompt pop up, requesting two fields: User Name
and Password (Figure 12-2 shows how this looks in Firefox).

Figure 12-2. An HTTP authentication login prompt

Example 12-1 shows the code to make this happen.

Example 12-1. PHP authentication

<?php
 if (isset($_SERVER['PHP_AUTH_USER']) &&
 isset($_SERVER['PHP_AUTH_PW']))
 {
 echo "Welcome User: " . htmlspecialchars($_SERVER['PHP_AUTH_USER']) .
 " Password: " . htmlspecialchars($_SERVER['PHP_AUTH_PW']);
 }
 else
 {
 header('WWW-Authenticate: Basic realm="Restricted Area"');
 header('HTTP/1.0 401 Unauthorized');
 die("Please enter your username and password");
 }
?>

HTTP Authentication | 291

The first thing the program does is look for two particular array values:
$_SERVER['PHP_AUTH_USER'] and $_SERVER['PHP_AUTH_PW']. If they both exist, they
represent the username and password entered by a user into an authentication
prompt.

Notice that when being displayed to the screen, the values that have
been returned in the $_SERVER array are first processed through the
htmlspecialchars function. This is because these values have been
entered by the user and therefore cannot be trusted, as a hacker
could make a cross-site scripting attempt by adding HTML charac‐
ters and other symbols to the input. htmlspecialchars translates
any such input into harmless HTML entities.

If either value does not exist, the user has not yet been authenticated and you display
the prompt in Figure 12-2 by issuing the following header, where Basic realm is the
name of the section that is protected and appears as part of the pop-up prompt:

WWW-Authenticate: Basic realm="Restricted Area"

If the user fills out the fields, the PHP program runs again from the top. But if the
user clicks the Cancel button, the program proceeds to the following two lines, which
send the following header and an error message:

HTTP/1.0 401 Unauthorized

The die statement causes the text “Please enter your username and password” to be
displayed (see Figure 12-3).

Figure 12-3. The result of clicking the Cancel button

292 | Chapter 12: Cookies, Sessions, and Authentication

Once a user has been authenticated, you will not be able to get the
authentication dialog to pop up again unless the user closes and
reopens all browser windows, because the web browser will keep
returning the same username and password to PHP. You may need
to close and reopen your browser a few times as you work through
this section and try different things out. The easiest way to do this
is to open up a new private or anonymous window to run these
examples, so you won’t need to close the entire browser.

Now let’s check for a valid username and password. The code in Example 12-1 doesn’t
require you to change much to add this check, other than modifying the previous
welcome message code to test for a correct username and password, and then issuing
a welcome message. A failed authentication causes an error message to be sent (see
Example 12-2).

Example 12-2. PHP authentication with input checking

<?php
 $username = 'admin';
 $password = 'letmein';

 if (isset($_SERVER['PHP_AUTH_USER']) &&
 isset($_SERVER['PHP_AUTH_PW']))
 {
 if ($_SERVER['PHP_AUTH_USER'] === $username &&
 $_SERVER['PHP_AUTH_PW'] === $password)
 echo "You are now logged in";
 else die("Invalid username/password combination");
 }
 else
 {
 header('WWW-Authenticate: Basic realm="Restricted Area"');
 header('HTTP/1.0 401 Unauthorized');
 die ("Please enter your username and password");
 }
?>

When comparing usernames and passwords the === (identity) operator is used,
rather than the == (equals) operator. This is because we are checking whether the two
values match exactly. For example, '0e123' == '0e456', and this is not a suitable
match for either username or password purposes.

A mechanism is now in place to authenticate users, but only for a single username
and password. Also, the password appears in clear text within the PHP file, and if
someone managed to hack into your server, they would instantly know it. So, let’s
look at a better way to handle usernames and passwords.

HTTP Authentication | 293

Storing Usernames and Passwords
Obviously, MySQL is the natural way to store usernames and passwords. But again,
we don’t want to store the passwords as clear text, because our website could be com‐
promised if the database were accessed by a hacker. Instead, we’ll use a neat trick
called a one-way function.

This type of function is easy to use and converts a string of text into a seemingly ran‐
dom string. Because of their one-way nature, such functions are impossible to
reverse, so their output can be safely stored in a database—and anyone who steals it
will be none the wiser as to the passwords used.

In previous editions of this book, I recommended using the MD5 hashing algorithm
for your data security. Time marches on, however, and now MD5 is considered easily
hackable and therefore unsafe. Indeed, even its previously recommended replace‐
ment of SHA-1 can apparently be hacked.

So, now that PHP 5.5 is pretty much the minimum standard everywhere, I have
moved on to using its in-built hashing function, which is vastly more secure and han‐
dles everything for you in a neat fashion.

Previously, to store a password securely, you would have needed to salt the password,
which is a term for adding extra characters to a password that the user did not enter
(to further obscure it). You then needed to run the result of that through a one-way
function to turn it into a seemingly random set of characters, which used to be hard
to crack.

For example, code such as the following (which is now very insecure, because
modern graphics processing units have such speed and power):

echo hash('ripemd128', 'saltstringmypassword');

would display this value:

9eb8eb0584f82e5d505489e6928741e7

Remember that this is not a recommended method you should ever use. Treat this as
an example of what not to do, as it is very insecure. Instead, please read on.

Using password_hash
From version 5.5 of PHP, there’s a far better way to create salted password hashes: the
password_hash function. Supply PASSWORD_DEFAULT as its second (required) argu‐
ment to ask the function to select the most secure hashing function currently avail‐
able. password_hash will also choose a random salt for every password. (Don’t be
tempted to add any more salting of your own, as this could compromise the algo‐
rithm’s security.) So, the following code:

echo password_hash("mypassword", PASSWORD_DEFAULT);

294 | Chapter 12: Cookies, Sessions, and Authentication

will return a string such as the following, which includes the salt and all information
required for the password to be verified:

$2y$10$k0YljbC2dmmCq8WKGf8oteBGiXlM9Zx0ss4PEtb5kz22EoIkXBtbG

If you are letting PHP choose the hashing algorithm for you, you
should allow for the returned hash to expand in size over time as
better security is implemented. The developers of PHP recommend
that you store hashes in a database field that can expand to at least
255 characters (even though 60–72 is the average length right
now). Should you wish, you can manually select the BCRYPT algo‐
rithm to guarantee a hash string of only 60 characters, by supplying
the constant PASSWORD_BCRYPT as the second argument to the func‐
tion. However, I don’t recommend this unless you have a very good
reason.

You can supply options (in the form of an optional third argument) to further tailor
how hashes are calculated, such as the cost or amount of processor time to allocate to
the hashing (more time means more security, but a slower server). The cost has a
default value of 10, which is the minimum you should use with BCRYPT.

However, I don’t want to confuse you with more information than you need to be
able to store password hashes securely with the minimum of fuss, so please refer to
the documentation if you’d like more details on the available options. You can even
choose your own salts (although this is deprecated from PHP 7.0 onward, as it’s not
considered that secure—so don’t be tempted).

Using password_verify

To verify that a password matches a hash, use the password_verify function, passing
it the password string a user has just entered, and the stored hash value for that user’s
password (generally retrieved from your database).

So, assuming your user had previously entered the (very insecure) password of
mypassword, and you now have their password’s hash string (from when the user cre‐
ated their password) stored in the variable $hash, you could verify that they match
like this:

if (password_verify("mypassword", $hash))
 echo "Valid";

If the correct password for the hash has been supplied, password_verify returns the
value TRUE, so this if statement will display the word “Valid.” If it doesn’t match, then
FALSE is returned and you can ask the user to try again.

HTTP Authentication | 295

http://php.net/password-hash

An Example Program
Let’s see how these functions work together when combined with MySQL. First you
need to create a new table to store password hashes, so type in the program in
Example 12-3 and save it as setupusers.php (or download it from the companion web‐
site), and then open it in your browser.

Example 12-3. Creating a users table and adding two accounts

<?php // setupusers.php
 require_once 'login.php';
 $connection = new mysqli($hn, $un, $pw, $db);

 if ($connection->connect_error) die("Fatal Error");

 $query = "CREATE TABLE users (
 forename VARCHAR(32) NOT NULL,
 surname VARCHAR(32) NOT NULL,
 username VARCHAR(32) NOT NULL UNIQUE,
 password VARCHAR(255) NOT NULL
)";

 $result = $connection->query($query);
 if (!$result) die("Fatal Error");

 $forename = 'Bill';
 $surname = 'Smith';
 $username = 'bsmith';
 $password = 'mysecret';
 $hash = password_hash($password, PASSWORD_DEFAULT);

 add_user($connection, $forename, $surname, $username, $hash);

 $forename = 'Pauline';
 $surname = 'Jones';
 $username = 'pjones';
 $password = 'acrobat';
 $hash = password_hash($password, PASSWORD_DEFAULT);

 add_user($connection, $forename, $surname, $username, $hash);

 function add_user($connection, $fn, $sn, $un, $pw)
 {
 $stmt = $connection->prepare('INSERT INTO users VALUES(?,?,?,?)');
 $stmt->bind_param('ssss', $fn, $sn, $un, $pw);
 $stmt->execute();
 $stmt->close();
 }
?>

296 | Chapter 12: Cookies, Sessions, and Authentication

http://lpmj.net
http://lpmj.net

This program will create the table users within your publications database (or
whichever database you set up for the login.php file in Chapter 10). In this table, it
will create two users: Bill Smith and Pauline Jones. They have the usernames and
passwords of bsmith/mysecret and pjones/acrobat, respectively.

Using the data in this table, we can now modify Example 12-2 to properly authenti‐
cate users, and Example 12-4 shows the code needed to do this. Type it in or down‐
load it from the companion website, then make sure it is saved as authenticate.php,
and call it up in your browser.

Example 12-4. PHP authentication using MySQL

<?php // authenticate.php
 require_once 'login.php';
 $connection = new mysqli($hn, $un, $pw, $db);

 if ($connection->connect_error) die("Fatal Error");

 if (isset($_SERVER['PHP_AUTH_USER']) &&
 isset($_SERVER['PHP_AUTH_PW']))
 {
 $un_temp = mysql_entities_fix_string($connection, $_SERVER['PHP_AUTH_USER']);
 $pw_temp = mysql_entities_fix_string($connection, $_SERVER['PHP_AUTH_PW']);
 $query = "SELECT * FROM users WHERE username='$un_temp'";
 $result = $connection->query($query);

 if (!$result) die("User not found");
 elseif ($result->num_rows)
 {
 $row = $result->fetch_array(MYSQLI_NUM);

 $result->close();

 if (password_verify($pw_temp, $row[3])) echo
 htmlspecialchars("$row[0] $row[1] :
 Hi $row[0], you are now logged in as '$row[2]'");
 else die("Invalid username/password combination");
 }
 else die("Invalid username/password combination");
 }
 else
 {
 header('WWW-Authenticate: Basic realm="Restricted Area"');
 header('HTTP/1.0 401 Unauthorized');
 die ("Please enter your username and password");
 }

 $connection->close();

 function mysql_entities_fix_string($connection, $string)

HTTP Authentication | 297

 {
 return htmlentities(mysql_fix_string($connection, $string));
 }

 function mysql_fix_string($connection, $string)
 {
 if (get_magic_quotes_gpc()) $string = stripslashes($string);
 return $connection->real_escape_string($string);
 }
?>

Using HTTP authentication will impose approximately an 80 ms
penalty when using password_verify with passwords hashed with
BCRYPT, with the default cost of 10. This slowdown serves as a
barrier for attackers to prevent them from trying to crack the pass‐
words at maximum speed. Therefore, HTTP authentication is not a
good solution on very busy sites, where you will probably prefer to
use sessions (see the next section).

As you might expect at this point in the book, some of these examples are starting to
get quite a bit longer. But don’t be put off. The final 10 lines are simply from
Example 10-21 in Chapter 10. They are there to sanitize the user input—very impor‐
tant.

The only lines to really concern yourself with at this point are the ones highlighted in
bold. They start with the assigning of two variables, $un_temp and $pw_temp, using
the submitted username and password. Next, a query is issued to MySQL to look up
the user $un_temp and, if a result is returned, to assign the first row to $row. Because
usernames are unique, there will be only one row.

Now all that’s necessary is to check the hash value stored in the database, which hap‐
pens to be in the fourth column—column 3 when you start from 0. $row[3] contains
the previous hash value calculated with password_hash when the user created their
password.

If the hash and the password just supplied by the user verify, password_verify will
return TRUE and a friendly welcome string will be output, calling the user by their first
name (see Figure 12-4). Otherwise, an error message is displayed.

You can try this out for yourself by calling up the program in your browser and enter‐
ing a username of bsmith and password of mysecret (or pjones and acrobat), the
values that were saved in the database by Example 12-3.

298 | Chapter 12: Cookies, Sessions, and Authentication

Figure 12-4. Bill Smith has now been authenticated

By sanitizing input immediately after it is encountered, you will
block any malicious HTML, JavaScript, or MySQL attacks before
they can get any further, and you will not have to sanitize this data
again. If a user has characters such as < or & in their password (for
example), these will be expanded to < or & by the htmlenti
ties function—but as long as your code allows for strings that may
end up larger than the provided input width, and as long as you
always run passwords through this sanitization, you’ll be just fine.

Using Sessions
Because your program can’t tell what variables were set in other programs—or even
what values the same program set the previous time it ran—you’ll sometimes want to
track what your users are doing from one web page to another. You can do this by
setting hidden fields in a form, as seen in Chapter 10, and checking the values of the
fields after the form is submitted, but PHP provides a much more powerful, more
secure, and simpler solution in the form of sessions. These are groups of variables that
are stored on the server but relate only to the current user. To ensure that the right
variables are applied to the right users, PHP saves a cookie in the users’ web browsers
to uniquely identify them.

This cookie has meaning only to the web server and cannot be used to ascertain any
information about a user. You might ask about those users who have cookies turned
off. Well, in this day and age, anyone with cookies disabled should not expect to have
the best browsing experience, and if you find them disabled you should probably
inform such a user that they require cookies enabled if they wish to fully benefit from
your site, rather than trying to find ways around the use of cookies, which could cre‐
ate security issues.

Starting a Session
Starting a session requires calling the PHP function session_start before any
HTML has been output, similarly to how cookies are sent during header exchanges.

Using Sessions | 299

Then, to begin saving session variables, you just assign them as part of the $_SESSION
array, like this:

$_SESSION['variable'] = $value;

They can then be read back just as easily in later program runs, like this:

$variable = $_SESSION['variable'];

Now assume that you have an application that always needs access to the first name
and last name of each user, as stored in the table users, which you should have created
a little earlier. Let’s further modify authenticate.php from Example 12-4 to set up a
session once a user has been authenticated.

Example 12-5 shows the changes needed. The only difference is the content of the if
(password_verify($pw_temp, $row[3])) section, which we now start by opening a
session and saving these variables into it. Type this program (or modify
Example 12-4) and save it as authenticate2.php. But don’t run it in your browser yet,
as you will also need to create a second program in a moment.

Example 12-5. Setting a session after successful authentication

<?php // authenticate2.php
 require_once 'login.php';
 $connection = new mysqli($hn, $un, $pw, $db);

 if ($connection->connect_error) die("Fatal Error");

 if (isset($_SERVER['PHP_AUTH_USER']) &&
 isset($_SERVER['PHP_AUTH_PW']))
 {
 $un_temp = mysql_entities_fix_string($connection, $_SERVER['PHP_AUTH_USER']);
 $pw_temp = mysql_entities_fix_string($connection, $_SERVER['PHP_AUTH_PW']);
 $query = "SELECT * FROM users WHERE username='$un_temp'";
 $result = $connection->query($query);

 if (!$result) die("User not found");
 elseif ($result->num_rows)
 {
 $row = $result->fetch_array(MYSQLI_NUM);

 $result->close();

 if (password_verify($pw_temp, $row[3]))
 {
 session_start();
 $_SESSION['forename'] = $row[0];
 $_SESSION['surname'] = $row[1];
 echo htmlspecialchars("$row[0] $row[1] : Hi $row[0],
 you are now logged in as '$row[2]'");
 die ("<p>Click here to continue</p>");

300 | Chapter 12: Cookies, Sessions, and Authentication

 }
 else die("Invalid username/password combination");
 }
 else die("Invalid username/password combination");
 }
 else
 {
 header('WWW-Authenticate: Basic realm="Restricted Area"');
 header('HTTP/1.0 401 Unauthorized');
 die ("Please enter your username and password");
 }

 $connection->close();

 function mysql_entities_fix_string($connection, $string)
 {
 return htmlentities(mysql_fix_string($connection, $string));
 }

 function mysql_fix_string($connection, $string)
 {
 if (get_magic_quotes_gpc()) $string = stripslashes($string);
 return $connection->real_escape_string($string);
 }
?>

One other addition to the program is the “Click here to continue” link with a destina‐
tion URL of continue.php. This will be used to illustrate how the session will transfer
to another program or PHP web page. So, create continue.php by typing the program
in Example 12-6 and saving it.

Example 12-6. Retrieving session variables

<?php // continue.php
 session_start();

 if (isset($_SESSION['forename']))
 {
 $forename = htmlspecialchars($_SESSION['forename']);
 $surname = htmlspecialchars($_SESSION['surname']);

 echo "Welcome back $forename.

 Your full name is $forename $surname.
";
 }
 else echo "Please click here to log in.";
?>

Now you are ready to call up authenticate2.php into your browser. Enter a username
of bsmith and password of mysecret (or pjones and acrobat) when prompted, and

Using Sessions | 301

click the link to load in continue.php. When your browser calls it up, the result should
be something like Figure 12-5.

Figure 12-5. Maintaining user data with sessions

Sessions neatly confine to a single program the extensive code required to authenti‐
cate and log in a user. Once a user has been authenticated, and you have created a
session, your program code becomes very simple indeed. You need only call up
session_start and look in $_SESSION for any variables to which you need access.

In Example 12-6, a quick test of whether $_SESSION['forename'] has a value is
enough to let you know that the current user is authenticated, because session vari‐
ables are stored on the server (unlike cookies, which are stored in the web browser)
and can therefore be trusted.

If $_SESSION['forename'] has not been assigned a value, no session is active, so the
last line of code in Example 12-6 directs users to the login page at authenticate2.php.

Ending a Session
When the time comes to end a session, usually when a user requests to log out from
your site, you can use the session_destroy function, as in Example 12-7. This exam‐
ple provides a useful function for totally destroying a session, logging a user out, and
unsetting all session variables.

Example 12-7. A handy function to destroy a session and its data

<?php
 function destroy_session_and_data()
 {
 session_start();
 $_SESSION = array();
 setcookie(session_name(), '', time() - 2592000, '/');
 session_destroy();
 }
?>

302 | Chapter 12: Cookies, Sessions, and Authentication

To see this in action, you could modify continue.php as in Example 12-8.

Example 12-8. Retrieving session variables and then destroying the session

<?php
 session_start();

 if (isset($_SESSION['username']))
 {
 $forename = $_SESSION['forename'];
 $surname = $_SESSION['surname'];

 destroy_session_and_data();

 echo htmlspecialchars("Welcome back $forename.

 Your full name is $forename $surname.");

 }
 else echo "Please click here to log in.";

 function destroy_session_and_data()
 {
 $_SESSION = array();
 setcookie(session_name(), '', time() - 2592000, '/');
 session_destroy();
 }
?>

The first time you navigate from authenticate2.php to continue.php, it will display all
the session variables. But, because of the call to destroy_session_and_data, if you
then click your browser’s Reload button, the session will have been destroyed and
you’ll be prompted to return to the login page.

Setting a Timeout
There are other times when you might wish to close a user’s session yourself, such as
when the user has forgotten or neglected to log out, and you want the program to do
so for them for their own security. You do this by setting the timeout after which a
logout will automatically occur if there has been no activity.

To do this, use the ini_set function as follows. This example sets the timeout to
exactly one day:

ini_set('session.gc_maxlifetime', 60 * 60 * 24);

If you wish to know what the current timeout period is, you can display it using the
following:

echo ini_get('session.gc_maxlifetime');

Using Sessions | 303

Session Security
Although I mentioned that once you had authenticated a user and set up a session,
you could safely assume that the session variables were trustworthy, this isn’t exactly
the case. The reason is that it’s possible to use packet sniffing (sampling of data) to
discover session IDs passing across a network. Additionally, if the session ID is passed
in the GET part of a URL, it might appear in external site server logs.

The only truly secure way of preventing these from being discovered is to implement
Transport Layer Security (TLS, the more secure successor to the Secure Sockets Layer,
or SSL) and run HTTPS instead of HTTP web pages. That’s beyond the scope of this
book, although you may like to take a look at the Apache documentation for details
on setting up a secure web server.

Preventing session hijacking
When SSL is not a possibility, you can further authenticate users by storing their IP
addresses along with their other details by adding a line such as the following when
you store their sessions:

$_SESSION['ip'] = $_SERVER['REMOTE_ADDR'];

Then, as an extra check, whenever any page loads and a session is available, perform
the following check. It calls the function different_user if the stored IP address
doesn’t match the current one:

if ($_SESSION['ip'] != $_SERVER['REMOTE_ADDR']) different_user();

What code you place in your different_user function is up to you. I recommend
that you either delete the current session and ask the user to log in again due to a
technical error or, if you have their email address, email them a link to confirm their
identity, which will enable them to retain all the data in the session.

Of course, you need to be aware that users on the same proxy server, or sharing the
same IP address on a home or business network, will have the same IP address.
Again, if this is a problem for you, use HTTPS. You can also store a copy of the
browser user agent string (a string that developers put in their browsers to identify
them by type and version), which might also distinguish users due to the wide variety
of browser types, versions, and computer platforms in use (although this is not a per‐
fect solution, and the string will change if the browser auto-updates). Use the follow‐
ing to store the user agent:

$_SESSION['ua'] = $_SERVER['HTTP_USER_AGENT'];

And use this to compare the current user-agent string with the saved one:

if ($_SESSION['ua'] != $_SERVER['HTTP_USER_AGENT']) different_user();

304 | Chapter 12: Cookies, Sessions, and Authentication

http://tinyurl.com/apachetls

Or, better still, combine the two checks like this and save the combination as a hash
hexadecimal string:

$_SESSION['check'] = hash('ripemd128', $_SERVER['REMOTE_ADDR'] .
 $_SERVER['HTTP_USER_AGENT']);

And use this to compare the current and stored strings:

if ($_SESSION['check'] != hash('ripemd128', $_SERVER['REMOTE_ADDR'] .
 $_SERVER['HTTP_USER_AGENT'])) different_user();

Preventing session fixation
Session fixation happens when a malicious third party obtains a valid session ID
(which could be server-generated) and makes the user authenticate themselves with
that session ID, instead of authenticating with their own. It can happen when an
attacker takes advantage of the ability to pass a session ID in the Get part of a URL,
like this:

http://yourserver.com/authenticate.php?PHPSESSID=123456789

In this example, the made-up session ID of 123456789 is being passed to the server.
Now, consider Example 12-9, which is susceptible to session fixation. To see how, type
it and save it as sessiontest.php.

Example 12-9. A session susceptible to session fixation

<?php // sessiontest.php
 session_start();

 if (!isset($_SESSION['count'])) $_SESSION['count'] = 0;
 else ++$_SESSION['count'];

 echo $_SESSION['count'];
?>

Once it’s saved, call it up in your browser using the following URL (prefacing it with
the correct pathname, such as http://localhost):

sessiontest.php?PHPSESSID=1234

Press Reload a few times, and you’ll see the counter increase. Now try browsing to:

sessiontest.php?PHPSESSID=5678

Press Reload a few times here, and you should see it count up again from 0. Leave the
counter on a different number from the first URL, go back to the first URL, and see
how the number changes back. You have created two different sessions of your own
choosing here, and you could easily create as many as you needed.

Using Sessions | 305

The reason this approach is so dangerous is that a malicious attacker could try to dis‐
tribute these types of URLs to unsuspecting users, and if any of them followed these
links, the attacker would be able to come back and take over any sessions that had not
been deleted or expired!

To prevent this, change the session ID using session_regenerate_id as soon as you
can. This function keeps all current session variable values, but replaces the session
ID with a new one that an attacker cannot know.

To do this, check for a special session variable that you arbitrarily invent. If it doesn’t
exist, you know that this is a new session, so you simply change the session ID and set
the special session variable to note the change.

Example 12-10 shows how the code to do this might look, using the session variable
initiated.

Example 12-10. Session regeneration

<?php
 session_start();

 if (!isset($_SESSION['initiated']))
 {
 session_regenerate_id();
 $_SESSION['initiated'] = 1;
 }

 if (!isset($_SESSION['count'])) $_SESSION['count'] = 0;
 else ++$_SESSION['count'];

 echo $_SESSION['count'];
?>

This way, an attacker can come back to your site using any of the session IDs that
they generated, but none of them will call up another user’s session, as they will all
have been replaced with regenerated IDs.

Forcing cookie-only sessions
If you are prepared to require your users to enable cookies on your website, you can
use the ini_set function, like this:

ini_set('session.use_only_cookies', 1);

With that setting, the ?PHPSESSID= trick will be completely ignored. If you use this
security measure, I also recommend that you inform your users that your site
requires cookies (but only if the user has cookies disabled), so they know what’s
wrong if they don’t get the results they want.

306 | Chapter 12: Cookies, Sessions, and Authentication

Using a shared server
On a server shared with other accounts, you will not want to have all your session
data saved into the same directory as theirs. Instead, you should choose a directory to
which only your account has access (and that is not web-visible) to store your ses‐
sions, by placing an ini_set call near the start of your program, like this:

ini_set('session.save_path', '/home/user/myaccount/sessions');

The configuration option will keep this new value only during the program’s execu‐
tion, and the original configuration will be restored at the program’s ending.

This sessions folder can fill up quickly; you may wish to periodically clear out older
sessions according to how busy your server gets. The more it’s used, the less time you
will want to keep a session stored.

Remember that your websites can and will be subject to hacking
attempts. There are automated bots running riot around the inter‐
net, trying to find sites vulnerable to exploits. So whatever you do,
whenever you are handling data that is not 100 percent generated
within your own program, you should always treat it with the
utmost caution.

At this point, you should now have a very good grasp of both PHP and MySQL, so in
the next chapter it’s time to introduce the third major technology covered by this
book, JavaScript.

Questions
1. Why must a cookie be transferred at the start of a program?
2. Which PHP function stores a cookie in a web browser?
3. How can you destroy a cookie?
4. Where are the username and password stored in a PHP program when you are

using HTTP authentication?
5. Why is the password_hash function a powerful security measure?
6. What is meant by salting a string?
7. What is a PHP session?
8. How do you initiate a PHP session?
9. What is session hijacking?

10. What is session fixation?

See “Chapter 12 Answers” on page 722 in Appendix A for the answers to these .

Questions | 307

CHAPTER 13

Exploring JavaScript

JavaScript brings a dynamic functionality to your websites. Every time you see some‐
thing pop up when you mouse over an item in the browser, or see new text, colors, or
images appear on the page in front of your eyes, or grab an object on the page and
drag it to a new location—all those things are done through JavaScript. It offers
effects that are not otherwise possible, because it runs inside the browser and has
direct access to all the elements in a web document.

JavaScript first appeared in the Netscape Navigator browser in 1995, coinciding with
the addition of support for Java technology in the browser. Because of the initial
incorrect impression that JavaScript was a spin-off of Java, there has been some long-
term confusion over their relationship. However, the naming was just a marketing
ploy to help the new scripting language benefit from the popularity of the Java pro‐
gramming language.

JavaScript gained new power when the HTML elements of the web page got a more
formal, structured definition in what is called the Document Object Model (DOM).
The DOM makes it relatively easy to add a new paragraph or focus on a piece of text
and change it.

Because both JavaScript and PHP support much of the structured programming syn‐
tax used by the C programming language, they look very similar to each other. They
are both fairly high-level languages, too; for instance, they are weakly typed, so it’s
easy to change a variable to a new type just by using it in a new context.

Now that you have learned PHP, you should find JavaScript even easier. And you’ll be
glad you did, because it’s at the heart of the asynchronous communication technology
that provides the fluid web frontends that (along with HTML5 features) savvy web
users expect these days.

309

JavaScript and HTML Text
JavaScript is a client-side scripting language that runs entirely inside the web
browser. To call it up, you place it between opening <script> and closing </script>
HTML tags. A typical HTML 4.01 “Hello World” document using JavaScript might
look like Example 13-1.

Example 13-1. “Hello World” displayed using JavaScript

<html>
 <head><title>Hello World</title></head>
 <body>
 <script type="text/javascript">
 document.write("Hello World")
 </script>
 <noscript>
 Your browser doesn't support or has disabled JavaScript
 </noscript>
 </body>
</html>

You may have seen web pages that use the HTML tag <script
language="javascript">, but that usage has now been deprecated.
This example uses the more recent and preferred <script

type="text/javascript">, or you can just use <script> on its
own if you like.

Within the <script> tags is a single line of JavaScript code that uses its equivalent of
the PHP echo or print commands, document.write. As you’d expect, it simply out‐
puts the supplied string to the current document, where it is displayed.

You may also have noticed that, unlike with PHP, there is no trailing semicolon (;).
This is because a newline serves the same purpose as a semicolon in JavaScript. How‐
ever, if you wish to have more than one statement on a single line, you do need to
place a semicolon after each command except the last one. Of course, if you wish, you
can add a semicolon to the end of every statement, and your JavaScript will work fine.

The other thing to note in this example is the <noscript> and </noscript> pair of
tags. These are used when you wish to offer alternative HTML to users whose brows‐
ers do not support JavaScript or who have it disabled. Using these tags is up to you, as
they are not required, but you really ought to use them because it’s usually not that
difficult to provide static HTML alternatives to the operations you provide using
JavaScript. However, the remaining examples in this book will omit <noscript> tags,
because we’re focusing on what you can do with JavaScript, not what you can do
without it.

310 | Chapter 13: Exploring JavaScript

When Example 13-1 is loaded, a web browser with JavaScript enabled will output the
following (see Figure 13-1):

Hello World

Figure 13-1. JavaScript, enabled and working

A browser with JavaScript disabled will display this message (see Figure 13-2):

Your browser doesn't support or has disabled JavaScript

Figure 13-2. JavaScript has been disabled

Using Scripts Within a Document Head
In addition to placing a script within the body of a document, you can put it in the
<head> section, which is the ideal place if you wish to execute a script when a page
loads. If you place critical code and functions there, you can also ensure that they are
ready to use immediately by any other script sections in the document that rely on
them.

Another reason for placing a script in the document head is to enable JavaScript to
write things such as meta tags into the <head> section, because the location of your
script is the part of the document it writes to by default.

Older and Nonstandard Browsers
If you need to support browsers that do not offer scripting (very unlikely in this day
and age), you will need to use the HTML comment tags (<!-- and -->) to prevent
them from encountering script code that they should not see. Example 13-2 shows
how you add them to your script code.

JavaScript and HTML Text | 311

Example 13-2. The “Hello World” example modified for non-JavaScript browsers

<html>
 <head><title>Hello World</title></head>
 <body>
 <script type="text/javascript"><!--
 document.write("Hello World")
 // -->
 </script>
 </body>
</html>

Here an opening HTML comment tag (<!--) has been added directly after the open‐
ing <script> statement and a closing comment tag (// -->) has been added directly
before the script is closed with </script>.

The double forward slash (//) is used by JavaScript to indicate that the rest of the line
is a comment. It is there so that browsers that do support JavaScript will ignore the
following -->, but non-JavaScript browsers will ignore the preceding // and act on
the --> by closing the HTML comment.

Although the solution is a little convoluted, all you really need to remember is to use
the two following lines to enclose your JavaScript when you wish to support very old
or nonstandard browsers:

<script type="text/javascript"><!--
 (Your JavaScript goes here...)
// -->
</script>

However, the use of these comments is unnecessary for any browser released over the
past several years.

There are a couple of other scripting languages you should know
about. These include Microsoft’s VBScript, which is based on the
Visual Basic programming language, and Tcl, a rapid prototyping
language. They are called up in a similar way to JavaScript, except
they use types of text/vbscript and text/tcl, respectively.
VBScript works only in Internet Explorer up to version 10, after
which it was deprecated; use of it in other browsers requires a plug-
in. Tcl always needs a plug-in. Both should be considered nonstan‐
dard, and neither is covered in this book.

Including JavaScript Files
In addition to writing JavaScript code directly in HTML documents, you can include
files of JavaScript code either from your website or from anywhere on the internet.
The syntax for this is as follows:

312 | Chapter 13: Exploring JavaScript

<script type="text/javascript" src="script.js"></script>

Or, to pull a file in from the internet, use this:

<script type="text/javascript" src="http://someserver.com/script.js">
</script>

As for the script files themselves, they must not include any <script> or </script>
tags, because they are unnecessary: the browser already knows that a JavaScript file is
being loaded. Putting them in the JavaScript files will cause an error.

Including script files is the preferred way for you to use third-party JavaScript files on
your website.

It is possible to leave out the type="text/javascript" parameter;
all modern browsers default to assuming that the script contains
JavaScript.

Debugging JavaScript Errors
When you’re learning JavaScript, it’s important to be able to track typing or other
coding errors. Unlike PHP, which displays error messages in the browser, JavaScript
handles error messages in a way that changes according to the browser used.
Table 13-1 lists how to access JavaScript error messages in the most commonly used
browsers.

Table 13-1. Accessing JavaScript error messages in different browsers

Browser How to access JavaScript error messages
Apple Safari Safari does not have an Error Console enabled by default, but you can turn it on by

selecting Safari → Preferences → Advanced → “Show Developer menu in menu bar.”
However, you may prefer to use the Firebug Lite JavaScript module, which many people
find easier to use.

Google Chrome Press Ctrl-Shift-J on a PC, or Command-Shift-J on a Mac.
Microsoft Internet Explorer & Edge Press F12 to call up the DevTools Console.
Mozilla Firefox Press Ctrl-Shift-J on a PC, or Command-Shift-J on a Mac.
Opera Select Tools → Advanced → Error Console.

Each of these consoles is quite different, so please refer to the browser developers’
documentation on their websites for full details on using them.

JavaScript and HTML Text | 313

https://getfirebug.com/firebuglite

Using Comments
Because of their shared inheritance from the C programming language, PHP and
JavaScript have many similarities, one of which is commenting. First, there’s the
single-line comment, like this:

// This is a comment

This style uses a pair of forward slash characters (//) to inform JavaScript that every‐
thing that follows is to be ignored. You also have multiline comments, like this:

/* This is a section
 of multiline comments
 that will not be
 interpreted */

You start a multiline comment with the sequence /* and end it with */. Just remem‐
ber that you cannot nest multiline comments, so make sure that you don’t comment
out large sections of code that already contain multiline comments.

Semicolons
Unlike PHP, JavaScript generally does not require semicolons if you have only one
statement on a line. Therefore, the following is valid:

x += 10

However, when you wish to place more than one statement on a line, you must sepa‐
rate them with semicolons, like this:

x += 10; y -= 5; z = 0

You can normally leave the final semicolon off, because the newline terminates the
final statement.

There are exceptions to the semicolon rule. If you write JavaScript
bookmarklets, or end a statement with a variable or function refer‐
ence, and the first character of the line below is a left parenthesis or
bracket, you must remember to append a semicolon or the Java‐
Script will fail. So, when in doubt, use a semicolon.

Variables
No particular character identifies a variable in JavaScript as the dollar sign does in
PHP. Instead, variables use the following naming rules:

• A variable may include only the letters a-z, A-Z, 0-9, the $ symbol, and the
underscore (_).

314 | Chapter 13: Exploring JavaScript

• No other characters, such as spaces or punctuation, are allowed in a variable
name.

• The first character of a variable name can be only a-z, A-Z, $, or _ (no numbers).
• Names are case-sensitive. Count, count, and COUNT are all different variables.
• There is no set limit on variable name lengths.

And yes, you’re right: a $ is there in that list of allowed characters. It is allowed by
JavaScript and may be the first character of a variable or function name. Although I
don’t recommend keeping the $ characters, this rule lets you port a lot of PHP code
more quickly to JavaScript.

String Variables
JavaScript string variables should be enclosed in either single or double quotation
marks, like this:

greeting = "Hello there"
warning = 'Be careful'

You may include a single quote within a double-quoted string or a double quote
within a single-quoted string. But you must escape a quote of the same type by using
the backslash character, like this:

greeting = "\"Hello there\" is a greeting"
warning = '\'Be careful\' is a warning'

To read from a string variable, you can assign it to another one, like this:

newstring = oldstring

or you can use it in a function, like this:

status = "All systems are working"
document.write(status)

Numeric Variables
Creating a numeric variable is as simple as assigning a value, like these examples:

count = 42
temperature = 98.4

Like strings, numeric variables can be read from and used in expressions and func‐
tions.

Variables | 315

Arrays
JavaScript arrays are also very similar to those in PHP, in that an array can contain
string or numeric data, as well as other arrays. To assign values to an array, use the
following syntax (which in this case creates an array of strings):

toys = ['bat', 'ball', 'whistle', 'puzzle', 'doll']

To create a multidimensional array, nest smaller arrays within a larger one. So, to cre‐
ate a two-dimensional array containing the colors of a single face of a scrambled
Rubik’s Cube (where the colors red, green, orange, yellow, blue, and white are repre‐
sented by their capitalized initial letters), you could use the following code:

face =
[
 ['R', 'G', 'Y'],
 ['W', 'R', 'O'],
 ['Y', 'W', 'G']
]

The previous example has been formatted to make it obvious what is going on, but it
could also be written like this:

face = [['R', 'G', 'Y'], ['W', 'R', 'O'], ['Y', 'W', 'G']]

or even like this:

top = ['R', 'G', 'Y']
mid = ['W', 'R', 'O']
bot = ['Y', 'W', 'G']

face = [top, mid, bot]

To access the element two down and three along in this matrix, you would use the
following (because array elements start at position 0):

document.write(face[1][2])

This statement will output the letter O for orange.

JavaScript arrays are powerful storage structures, so Chapter 15 dis‐
cusses them in much greater depth.

Operators
Operators in JavaScript, as in PHP, can involve mathematics, changes to strings, and
comparison and logical operations (and, or, etc.). JavaScript mathematical operators
look a lot like plain arithmetic—for instance, the following statement outputs 15:

316 | Chapter 13: Exploring JavaScript

document.write(13 + 2)

The following sections teach you about the various operators.

Arithmetic Operators
Arithmetic operators are used to perform mathematics. You can use them for the main
four operations (addition, subtraction, multiplication, and division) as well as to find
the modulus (the remainder after a division) and to increment or decrement a value
(see Table 13-2).

Table 13-2. Arithmetic operators

Operator Description Example
+ Addition j + 12

- Subtraction j - 22

* Multiplication j * 7

/ Division j / 3.13

% Modulus (division remainder) j % 6

++ Increment ++j

-- Decrement --j

Assignment Operators
The assignment operators are used to assign values to variables. They start with the
very simple =, and move on to +=, -=, and so on. The operator += adds the value on
the right side to the variable on the left, instead of totally replacing the value on the
left. Thus, if count starts with the value 6, the statement:

count += 1

sets count to 7, just like the more familiar assignment statement:

count = count + 1

Table 13-3 lists the various assignment operators available.

Table 13-3. Assignment operators

Operator Example Equivalent to
= j = 99 j = 99

+= j += 2 j = j + 2

+= j += 'string' j = j + 'string'

-= j -= 12 j = j - 12

*= j *= 2 j = j * 2

/= j /= 6 j = j / 6

%= j %= 7 j = j % 7

Operators | 317

Comparison Operators
Comparison operators are generally used inside a construct such as an if statement,
where you need to compare two items. For example, you may wish to know whether a
variable you have been incrementing has reached a specific value, or whether another
variable is less than a set value, and so on (see Table 13-4).

Table 13-4. Comparison operators

Operator Description Example
== Is equal to j == 42

!= Is not equal to j != 17

> Is greater than j > 0

< Is less than j < 100

>= Is greater than or equal to j >= 23

<= Is less than or equal to j <= 13

=== Is equal to (and of the same type) j === 56

!== Is not equal to (and of the same type) j !== '1'

Logical Operators
Unlike PHP, JavaScript’s logical operators do not include and and or equivalents to &&
and ||, and there is no xor operator (see Table 13-5).

Table 13-5. Logical operators

Operator Description Example
&& And j == 1 && k == 2

|| Or j < 100 || j > 0

! Not ! (j == k)

Incrementing, Decrementing, and Shorthand Assignment
The following forms of post- and pre-incrementing and decrementing you learned to
use in PHP are also supported by JavaScript, as are shorthand assignment operators:

++x
--y
x += 22
y -= 3

String Concatenation
JavaScript handles string concatenation slightly differently from PHP. Instead of the .
(period) operator, it uses the plus sign (+), like this:

318 | Chapter 13: Exploring JavaScript

document.write("You have " + messages + " messages.")

Assuming that the variable messages is set to the value 3, the output from this line of
code will be as follows:

You have 3 messages.

Just as you can add a value to a numeric variable with the += operator, you can also
append one string to another the same way:

name = "James"
name += " Dean"

Escape Characters
Escape characters, which you’ve seen used to insert quotation marks in strings, can
also be used to insert various special characters such as tabs, newlines, and carriage
returns. Here is an example using tabs to lay out a heading—it is included here
merely to illustrate escapes, because in web pages, there are better ways to do layout:

heading = "Name\tAge\tLocation"

Table 13-6 details the escape characters available.

Table 13-6. JavaScript’s escape characters

Character Meaning
\b Backspace
\f Form feed
\n Newline
\r Carriage return
\t Tab
\' Single quote (or apostrophe)
\" Double quote
\\ Backslash
\XXX An octal number between 000 and 377 that represents the Latin-1 character equivalent (such as \251 for the

© symbol)
\xXX A hexadecimal number between 00 and FF that represents the Latin-1 character equivalent (such as \xA9 for

the © symbol)
\uXXXX A hexadecimal number between 0000 and FFFF that represents the Unicode character equivalent (such as

\u00A9 for the © symbol)

Variable Typing
Like PHP, JavaScript is a very loosely typed language; the type of a variable is deter‐
mined only when a value is assigned and can change as the variable appears in differ‐

Variable Typing | 319

ent contexts. Usually, you don’t have to worry about the type; JavaScript figures out
what you want and just does it.

Take a look at Example 13-3, in which:

1. The variable n is assigned the string value '838102050'. The next line prints out
its value, and the typeof operator is used to look up the type.

2. n is given the value returned when the numbers 12345 and 67890 are multiplied
together. This value is also 838102050, but it is a number, not a string. The type of
the variable is then looked up and displayed.

3. Some text is appended to the number n and the result is displayed.

Example 13-3. Setting a variable’s type by assignment

<script>
 n = '838102050' // Set 'n' to a string
 document.write('n = ' + n + ', and is a ' + typeof n + '
')

 n = 12345 * 67890; // Set 'n' to a number
 document.write('n = ' + n + ', and is a ' + typeof n + '
')

 n += ' plus some text' // Change 'n' from a number to a string
 document.write('n = ' + n + ', and is a ' + typeof n + '
')
</script>

The output from this script looks like this:

n = 838102050, and is a string
n = 838102050, and is a number
n = 838102050 plus some text, and is a string

If there is ever any doubt about the type of a variable, or you need to ensure that a
variable has a particular type, you can force it to that type by using statements such as
the following (which respectively turn a string into a number and a number into a
string):

n = "123"
n *= 1 // Convert 'n' into a number

n = 123
n += "" // Convert 'n' into a string

Or, of course, you can always look up a variable’s type by using the typeof operator.

320 | Chapter 13: Exploring JavaScript

Functions
As with PHP, JavaScript functions are used to separate out sections of code that per‐
form a particular task. To create a function, declare it in the manner shown in
Example 13-4.

Example 13-4. A simple function declaration

<script>
 function product(a, b)
 {
 return a*b
 }
</script>

This function takes the two parameters passed, multiplies them together, and returns
the product.

Global Variables
Global variables are ones defined outside of any functions (or defined within func‐
tions, but without the var keyword). They can be defined in the following ways:

 a = 123 // Global scope
var b = 456 // Global scope
if (a == 123) var c = 789 // Global scope

Regardless of whether you are using the var keyword, as long as a variable is defined
outside of a function, it is global in scope. This means that every part of a script can
have access to it.

Local Variables
Parameters passed to a function automatically have local scope; that is, they can be
referenced only from within that function. However, there is one exception. Arrays
are passed to a function by reference, so if you modify any elements in an array
parameter, the elements of the original array will be modified.

To define a local variable that has scope only within the current function, and has not
been passed as a parameter, use the var keyword. Example 13-5 shows a function that
creates one variable with global scope and two with local scope.

Example 13-5. A function creating variables with global and local scope

<script>
 function test()

Functions | 321

 {
 a = 123 // Global scope
 var b = 456 // Local scope
 if (a == 123) var c = 789 // Local scope
 }
</script>

To test whether scope setting has worked in PHP, we can use the isset function. But
in JavaScript there is no such function, so Example 13-6 makes use of the typeof
operator, which returns the string undefined when a variable is not defined.

Example 13-6. Checking the scope of the variables defined in the function test

<script>
 test()

 if (typeof a != 'undefined') document.write('a = "' + a + '"
')
 if (typeof b != 'undefined') document.write('b = "' + b + '"
')
 if (typeof c != 'undefined') document.write('c = "' + c + '"
')

 function test()
 {
 a = 123
 var b = 456

 if (a == 123) var c = 789
 }
</script>

The output from this script is the following single line:

a = "123"

This shows that only the variable a was given global scope, which is exactly what we
would expect, since the variables b and c were given local scope by being prefaced
with the var keyword.

If your browser issues a warning about b being undefined, the warning is correct but
can be ignored.

The Document Object Model
The designers of JavaScript were very smart. Rather than just creating yet another
scripting language (which would have still been a pretty good improvement at the
time), they had the vision to build it around the already-existing HTML Document
Object Model. This breaks down the parts of an HTML document into discrete
objects, each with its own properties and methods and each subject to JavaScript’s con‐
trol.

322 | Chapter 13: Exploring JavaScript

JavaScript separates objects, properties, and methods by using a period (one good
reason why + is the string concatenation operator in JavaScript, rather than the
period). For example, let’s consider a business card as an object we’ll call card. This
object contains properties such as a name, address, phone number, and so on. In the
syntax of JavaScript, these properties would look like this:

card.name
card.phone
card.address

Its methods are functions that retrieve, change, and otherwise act on the properties.
For instance, to invoke a method that displays the properties of the object card, you
might use syntax such as this:

card.display()

Have a look at some of the earlier examples in this chapter and notice where the state‐
ment document.write is used. Now that you understand how JavaScript is based
around objects, you will see that write is actually a method of the document object.

Within JavaScript, there is a hierarchy of parent and child objects, which is what is
known as the Document Object Model (see Figure 13-3).

Figure 13-3. Example of DOM object hierarchy

The figure uses HTML tags that you are already familiar with to illustrate the parent/
child relationship between the various objects in a document. For example, a URL
within a link is part of the body of an HTML document. In JavaScript, it is referenced
like this:

url = document.links.linkname.href

Notice how this follows the central column down. The first part, document, refers to
the <html> and <body> tags; links.linkname refers to the <a> tag and href to the
href attribute.

The Document Object Model | 323

Let’s turn this into some HTML and a script to read a link’s properties. Type
Example 13-7 and save it as linktest.html; then call it up in your browser.

Example 13-7. Reading a link URL with JavaScript

<html>
 <head>
 <title>Link Test</title>
 </head>
 <body>
 Click me

 <script>
 url = document.links.mylink.href
 document.write('The URL is ' + url)
 </script>
 </body>
</html>

Note the short form of the <script> tags, where I have omitted the parameter
type="text/JavaScript" to save you some typing. If you wish, just for the purposes
of testing this (and other examples), you could also omit everything outside of the
<script> and </script> tags. The output from this example is as follows:

Click me
The URL is http://mysite.com

The second line of output comes from the document.write method. Notice how the
code follows the document tree down from document to links to mylink (the id
given to the link) to href (the URL destination value).

There is also a short form that works equally well, which starts with the value in the
id attribute: mylink.href. So, you can replace this:

url = document.links.mylink.href

with the following:

url = mylink.href

Another Use for the $ Symbol
As mentioned earlier, the $ symbol is allowed in JavaScript variable and function
names. Because of this, you may sometimes encounter strange-looking code like this:

url = $('mylink').href

Some enterprising programmers have decided that the getElementById function is so
prevalent in JavaScript that they have written a function to replace it called $, like in
jQuery (although jQuery uses the $ for much more than that—see Chapter 21), as
shown in Example 13-8.

324 | Chapter 13: Exploring JavaScript

Example 13-8. A replacement function for the getElementById method

<script>
 function $(id)
 {
 return document.getElementById(id)
 }
</script>

Therefore, as long as you have included the $ function in your code, syntax such as
this:

$('mylink').href

can replace code such as this:

document.getElementById('mylink').href

Using the DOM
The links object is actually an array of URLs, so the mylink URL in Example 13-7
can also be safely referred to in all browsers in the following way (because it’s the first,
and only, link):

url = document.links[0].href

If you want to know how many links there are in an entire document, you can query
the length property of the links object like this:

numlinks = document.links.length

You can extract and display all links in a document like this:

for (j=0 ; j < document.links.length ; ++j)
 document.write(document.links[j].href + '
')

The length of something is a property of every array, and many objects as well. For
example, the number of items in your browser’s web history can be queried like this:

document.write(history.length)

To stop websites from snooping on your browsing history, the history object stores
only the number of sites in the array: you cannot read from or write to these values.
But you can replace the current page with one from the history, if you know what
position it has within the history. This can be very useful in cases in which you know
that certain pages in the history came from your site, or you simply wish to send the
browser back one or more pages, which you do with the go method of the history
object. For example, to send the browser back three pages, issue the following com‐
mand:

history.go(-3)

The Document Object Model | 325

You can also use the following methods to move back or forward a page at a time:

history.back()
history.forward()

In a similar manner, you can replace the currently loaded URL with one of your
choosing, like this:

document.location.href = 'http://google.com'

Of course, there’s a whole lot more to the DOM than reading and modifying links. As
you progress through the following chapters on JavaScript, you’ll become quite famil‐
iar with the DOM and how to access it.

About document.write
When teaching programming it’s necessary to have a quick and easy way to display
the results of expressions. In PHP (for example) there are the echo and print state‐
ments, which simply send text to the browser, so that’s easy. In JavaScript, though,
there are the following alternatives.

Using console.log
The console.log function will output the result of any value or expression passed to
it in the console of the current browser. This is a special mode with a frame or win‐
dow separate to the browser window, and in which errors and other messages can be
made to display. While great for experienced programmers, it is not ideal for begin‐
ners because calling up the console is done differently in all browsers, it works differ‐
ently in all browsers, and the output is not near the web content in the browser.

Using alert
The alert function displays values or expressions passed to it in a pop-up window,
which requires you to click a button to close. Clearly this can become quite irritating
very quickly, and it has the downside of displaying only the current message—previ‐
ous ones are erased.

Writing into Elements
It is possible to write directly into the text of an HTML element, which is a fairly ele‐
gant solution (and the best one for production websites)—except that for this book
every example would require such an element to be created, and some lines of Java‐
Script code to access it. This gets in the way of teaching the core of an example and
would make the code look overly cumbersome and confusing.

326 | Chapter 13: Exploring JavaScript

Using document.write
The document.write function writes a value or expression at the current browser
location, and is therefore the perfect choice for quickly displaying results. It keeps all
the examples short and sweet, by placing the output right there in the browser next to
the web content and code.

You may, however, have heard that this function is regarded as unsafe by some devel‐
opers, because when you call it after a web page is fully loaded, it will overwrite the
current document. While this is correct, it doesn’t apply to any of the examples in this
book, because they all use document.write the way it was originally intended: as part
of the page creation process, calling it only before the page has completed loading
and displaying.

However, although I use document.write in this way for simple examples, I never use
it in production code (except in the very rarest of circumstances where it actually is
necessary). Instead, I almost always use the preceding option of writing directly into a
specially prepared element, as per the more complex examples in Chapter 17 onward
(which access the innerHTML property of elements for program output).

So, please remember that where you see document.write being called in this book, it
is there only to simplify an example, and I recommend that you also use the function
only in this same way—for obtaining quick test results.

With that caveat explained, in the following chapter we’ll continue our exploration of
JavaScript by looking at how to control program flow and write expressions.

Questions
1. Which tags do you use to enclose JavaScript code?
2. By default, to which part of a document will JavaScript code output?
3. How can you include JavaScript code from another source in your documents?
4. Which JavaScript function is the equivalent of echo or print in PHP?
5. How can you create a comment in JavaScript?
6. What is the JavaScript string concatenation operator?
7. Which keyword can you use within a JavaScript function to define a variable that

has local scope?
8. Give two cross-browser methods to display the URL assigned to the link with an

id of thislink.
9. Which two JavaScript commands will make the browser load the previous page

in its history array?
10. What JavaScript command would you use to replace the current document with

the main page at the oreilly.com website?

Questions | 327

See “Chapter 13 Answers” on page 723 in Appendix A for the answers to these
questions.

328 | Chapter 13: Exploring JavaScript

CHAPTER 14

Expressions and Control Flow in JavaScript

In the previous chapter, I introduced the basics of JavaScript and the DOM. Now it’s
time to look at how to construct complex expressions in JavaScript and how to con‐
trol the program flow of your scripts by using conditional statements.

Expressions
JavaScript expressions are very similar to those in PHP. As you learned in Chapter 4,
an expression is a combination of values, variables, operators, and functions that
results in a value; the result can be a number, a string, or a Boolean value (which eval‐
uates to either true or false).

Example 14-1 shows some simple expressions. For each line, it prints out a letter
between a and d, followed by a colon and the result of the expressions. The
 tag is
there to create a line break and separate the output into four lines (remember that
both
 and
 are acceptable in HTML5, so I chose to use the former style for
brevity).

Example 14-1. Four simple Boolean expressions

<script>
 document.write("a: " + (42 > 3) + "
")
 document.write("b: " + (91 < 4) + "
")
 document.write("c: " + (8 == 2) + "
")
 document.write("d: " + (4 < 17) + "
")
</script>

The output from this code is as follows:

a: true
b: false

329

c: false
d: true

Notice that both expressions a: and d: evaluate to true, but b: and c: evaluate to
false. Unlike PHP (which would print the number 1 and nothing, respectively), the
actual strings true and false are displayed.

In JavaScript, when you are checking whether a value is true or false, all values eval‐
uate to true except the following, which evaluate to false: the string false itself, 0,
–0, the empty string, null, undefined, and NaN (Not a Number, a computer engineer‐
ing concept for the result of an illegal floating-point operation such as division by
zero).

Note how I am referring to true and false in lowercase. This is because, unlike in
PHP, these values must be in lowercase in JavaScript. Therefore, only the first of the
two following statements will display, printing the lowercase word true, because the
second will cause a 'TRUE' is not defined error:

if (1 == true) document.write('true') // True
if (1 == TRUE) document.write('TRUE') // Will cause an error

Remember that any code snippets you wish to type and try for
yourself in an HTML file need to be enclosed within <script> and
</script> tags.

Literals and Variables
The simplest form of an expression is a literal, which means something that evaluates
to itself, such as the number 22 or the string Press Enter. An expression could also
be a variable, which evaluates to the value that has been assigned to it. They are both
types of expressions, because they return a value.

Example 14-2 shows three different literals and two variables, all of which return val‐
ues, albeit of different types.

Example 14-2. Five types of literals

<script>
 myname = "Peter"
 myage = 24
 document.write("a: " + 42 + "
") // Numeric literal
 document.write("b: " + "Hi" + "
") // String literal
 document.write("c: " + true + "
") // Constant literal
 document.write("d: " + myname + "
") // String variable
 document.write("e: " + myage + "
") // Numeric variable
</script>

330 | Chapter 14: Expressions and Control Flow in JavaScript

And, as you’d expect, you see a return value from all of these in the following output:

a: 42
b: Hi
c: true
d: Peter
e: 24

Operators let you create more complex expressions that evaluate to useful results.
When you combine assignment or control-flow constructs with expressions, the
result is a statement.

Example 14-3 shows one of each. The first assigns the result of the expression 366 -
day_number to the variable days_to_new_year, and the second outputs a friendly
message only if the expression days_to_new_year < 30 evaluates to true.

Example 14-3. Two simple JavaScript statements

<script>
 days_to_new_year = 366 - day_number;
 if (days_to_new_year < 30) document.write("It's nearly New Year")
</script>

Operators
JavaScript offers a lot of powerful operators, ranging from arithmetic, string, and log‐
ical operators to assignment, comparison, and more (see Table 14-1).

Table 14-1. JavaScript operator types

Operator Description Example
Arithmetic Basic mathematics a + b

Array Array manipulation a + b

Assignment Assign values a = b + 23

Bitwise Manipulate bits within bytes 12 ^ 9

Comparison Compare two values a < b

Increment/decrement Add or subtract one a++

Logical Boolean a && b

String Concatenation a + 'string'

Each operator takes a different number of operands:

• Unary operators, such as incrementing (a++) or negation (-a), take a single
operand.

• Binary operators, which represent the bulk of JavaScript operators—including
addition, subtraction, multiplication, and division—take two operands.

Operators | 331

• The one ternary operator, which takes the form ? x : y, requires three
operands. It’s a terse single-line if statement that chooses between two expres‐
sions depending on a third one.

Operator Precedence
Like PHP, JavaScript utilizes operator precedence, in which some operators in an
expression are processed before others and are therefore evaluated first. Table 14-2
lists JavaScript’s operators and their precedences.

Table 14-2. Precedence of JavaScript operators (high to low)

Operator(s) Type(s)
() [] . Parentheses, call, and member
++ -- Increment/decrement
+ - ~ ! Unary, bitwise, and logical
* / % Arithmetic
+ - Arithmetic and string
<< >> >>> Bitwise
< > <= >= Comparison
== != === !== Comparison
& ^ | Bitwise
&& Logical
|| Logical
? : Ternary
= += -= *= /= %= Assignment
<<= >>= >>>= &= ^= |= Assignment
, Separator

Associativity
Most JavaScript operators are processed in order from left to right in an equation. But
some operators require processing from right to left instead. The direction of pro‐
cessing is called the operator’s associativity.

This associativity becomes important where you do not explicitly force precedence.
For example, look at the following assignment operators, by which three variables are
all set to the value 0:

level = score = time = 0

This multiple assignment is possible only because the rightmost part of the expres‐
sion is evaluated first and then processing continues in a right-to-left direction.
Table 14-3 lists the JavaScript operators and their associativity.

332 | Chapter 14: Expressions and Control Flow in JavaScript

Table 14-3. Operators and associativity

Operator Description Associativity
++ -- Increment and decrement None
new Create a new object Right
+ - ~ ! Unary and bitwise Right
?: Ternary Right
= *= /= %= += -= Assignment Right
<<= >>= >>>= &= ^= |= Assignment Right
, Separator Left
+ - * / % Arithmetic Left
<< >> >>> Bitwise Left
< <= > >= == != === !== Arithmetic Left

Relational Operators
Relational operators test two operands and return a Boolean result of either true or
false. There are three types of relational operators: equality, comparison, and logical.

Equality operators

The equality operator is == (which should not be confused with the = assignment
operator). In Example 14-4, the first statement assigns a value, and the second tests it
for equality. As it stands, nothing will be printed out, because month is assigned the
string value July, and therefore the check for it having a value of October will fail.

Example 14-4. Assigning a value and testing for equality

<script>
 month = "July"
 if (month == "October") document.write("It's the Fall")
</script>

If the two operands of an equality expression are of different types, JavaScript will
convert them to whatever type makes best sense to it. For example, any strings com‐
posed entirely of numbers will be converted to numbers whenever compared with a
number. In Example 14-5, a and b are two different values (one is a number and the
other is a string), and we would therefore normally expect neither of the if state‐
ments to output a result.

Example 14-5. The equality and identity operators

<script>
 a = 3.1415927
 b = "3.1415927"

Operators | 333

 if (a == b) document.write("1")
 if (a === b) document.write("2")
</script>

However, if you run the example, you will see that it outputs the number 1, which
means that the first if statement evaluated to true. This is because the string value of
b was first temporarily converted to a number, and therefore both halves of the equa‐
tion had a numerical value of 3.1415927.

In contrast, the second if statement uses the identity operator, three equals signs in a
row, which prevents JavaScript from automatically converting types. a and b are
therefore found to be different, so nothing is output.

As with forcing operator precedence, whenever you’re in doubt about how JavaScript
will convert operand types, you can use the identity operator to turn this behavior off.

Comparison operators
Using comparison operators, you can test for more than just equality and inequality.
JavaScript also gives you > (is greater than), < (is less than), >= (is greater than or
equal to), and <= (is less than or equal to) to play with. Example 14-6 shows these
operators in use.

Example 14-6. The four comparison operators

<script>
 a = 7; b = 11
 if (a > b) document.write("a is greater than b
")
 if (a < b) document.write("a is less than b
")
 if (a >= b) document.write("a is greater than or equal to b
")
 if (a <= b) document.write("a is less than or equal to b
")
</script>

In this example, where a is 7 and b is 11, the following is output (because 7 is less than
11, and also less than or equal to 11):

a is less than b
a is less than or equal to b

Logical operators
Logical operators produce true or false results, and are also known as Boolean opera‐
tors. There are three of them in JavaScript (see Table 14-4).

334 | Chapter 14: Expressions and Control Flow in JavaScript

Table 14-4. JavaScript’s logical operators

Logical operator Description
&& (and) true if both operands are true
|| (or) true if either operand is true
! (not) true if the operand is false, or false if the operand is true

You can see how these can be used in Example 14-7, which outputs 0, 1, and true.

Example 14-7. The logical operators in use

<script>
 a = 1; b = 0
 document.write((a && b) + "
")
 document.write((a || b) + "
")
 document.write((!b) + "
")
</script>

The && statement requires both operands to be true in order to return a value of
true, the || statement will be true if either value is true, and the third statement
performs a NOT on the value of b, turning it from 0 into a value of true.

The || operator can cause unintentional problems, because the second operand will
not be evaluated if the first is evaluated as true. In Example 14-8, the getnext func‐
tion will never be called if finished has a value of 1.

Example 14-8. A statement using the || operator

<script>
 if (finished == 1 || getnext() == 1) done = 1
</script>

If you need getnext to be called at each if statement, you should rewrite the code as
shown in Example 14-9.

Example 14-9. The if...or statement modified to ensure calling of getnext

<script>
 gn = getnext()
 if (finished == 1 OR gn == 1) done = 1;
</script>

In this case, the code in the function getnext will be executed and its return value
stored in gn before the if statement.

Operators | 335

Table 14-5 shows all the possible variations of using the logical operators. You should
also note that !true equals false, and !false equals true.

Table 14-5. All possible logical expressions

Inputs Operators and results

a b && ||

true true true true

true false false true

false true false true

false false false false

The with Statement
The with statement is not one that you’ve seen in the earlier chapters on PHP, because
it’s exclusive to JavaScript. With it (if you see what I mean), you can simplify some
types of JavaScript statements by reducing many references to an object to just one
reference. References to properties and methods within the with block are assumed
to apply to that object.

For example, take the code in Example 14-10, in which the document.write function
never references the variable string by name.

Example 14-10. Using the with statement

<script>
 string = "The quick brown fox jumps over the lazy dog"

 with (string)
 {
 document.write("The string is " + length + " characters
")
 document.write("In upper case it's: " + toUpperCase())
 }
</script>

Even though string is never directly referenced by document.write, this code still
manages to output the following:

The string is 43 characters
In upper case it's: THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

This is how the code works: the JavaScript interpreter recognizes that the length
property and toUpperCase method have to be applied to some object. Because they
stand alone, the interpreter assumes they apply to the string object that you specified
in the with statement.

336 | Chapter 14: Expressions and Control Flow in JavaScript

Using onerror
There are more constructs not available in PHP. Using either the onerror event or a
combination of the try and catch keywords, you can catch JavaScript errors and deal
with them yourself.

Events are actions that can be detected by JavaScript. Every element on a web page has
certain events that can trigger JavaScript functions. For example, the onclick event of
a button element can be set to call a function and make it run whenever a user clicks
the button.

Example 14-11 illustrates how to use the onerror event.

Example 14-11. A script employing the onerror event

<script>
 onerror = errorHandler
 document.writ("Welcome to this website") // Deliberate error

 function errorHandler(message, url, line)
 {
 out = "Sorry, an error was encountered.\n\n";
 out += "Error: " + message + "\n";
 out += "URL: " + url + "\n";
 out += "Line: " + line + "\n\n";
 out += "Click OK to continue.\n\n";
 alert(out);
 return true;
 }
</script>

The first line of this script tells the error event to use the new errorHandler function
from now onward. This function takes three parameters—a message, a url, and a
line number—so it’s a simple matter to display all these in an alert pop-up.

Then, to test the new function, we deliberately place a syntax error in the code with a
call to document.writ instead of document.write (the final e is missing). Figure 14-1
shows the result of running this script in a browser. Using onerror this way can also
be quite useful during the debugging process.

Using onerror | 337

Figure 14-1. Using the onerror event with an alert method pop-up

Using try...catch
The try and catch keywords are more standard and more flexible than the onerror
technique shown in the previous section. These keywords let you trap errors for a
selected section of code, rather than all scripts in a document. However, they do not
catch syntax errors, for which you need onerror.

The try...catch construct is supported by all major browsers and is handy when
you want to catch a certain condition that you are aware could occur in a specific part
of your code.

For example, in Chapter 17 we’ll be exploring Ajax techniques that make use of the
XMLHttpRequest object. Therefore, we can use try and catch to trap this case and do
something else if the function is not available. Example 14-12 shows how.

Example 14-12. Trapping an error with try and catch

<script>
 try
 {
 request = new XMLHTTPRequest()
 }
 catch(err)
 {
 // Use a different method to create an XMLHTTPRequest object
 }
</script>

I won’t go into how we implement the missing object in Internet Explorer here, but
you can see how the system works. There’s also another keyword associated with try

338 | Chapter 14: Expressions and Control Flow in JavaScript

and catch called finally that is always executed, regardless of whether an error
occurs in the try clause. To use it, just add something like the following statements
after a catch statement:

finally
{
 alert("The 'try' clause was encountered")
}

Conditionals
Conditionals alter program flow. They enable you to ask questions about certain
things and respond to the answers you get in different ways. There are three types of
nonlooping conditionals: the if statement, the switch statement, and the ? operator.

The if Statement
Several examples in this chapter have already made use of if statements. The code
within such a statement is executed only if the given expression evaluates to true.
Multiline if statements require curly braces around them, but as in PHP, you can
omit the braces for single statements. Therefore, the following statements are valid:

if (a > 100)
{
 b=2
 document.write("a is greater than 100")
}

if (b == 10) document.write("b is equal to 10")

The else Statement
When a condition has not been met, you can execute an alternative by using an else
statement, like this:

if (a > 100)
{
 document.write("a is greater than 100")
}
else
{
 document.write("a is less than or equal to 100")
}

Unlike PHP, JavaScript has no elseif statement, but that’s not a problem because you
can use an else followed by another if to form the equivalent of an elseif state‐
ment, like this:

Conditionals | 339

if (a > 100)
{
 document.write("a is greater than 100")
}
else if(a < 100)
{
 document.write("a is less than 100")
}
else
{
 document.write("a is equal to 100")
}

As you can see, you can use another else after the new if, which could equally be
followed by another if statement, and so on. Although I have shown braces on the
statements, because each is a single line, the whole previous example could be written
as follows:

if (a > 100) document.write("a is greater than 100")
else if(a < 100) document.write("a is less than 100")
else document.write("a is equal to 100")

The switch Statement
The switch statement is useful when one variable or the result of an expression can
have multiple values, and you want to perform a different function for each value.

For example, the following code takes the PHP menu system we put together in
Chapter 4 and converts it to JavaScript. It works by passing a single string to the main
menu code according to what the user requests. Let’s say the options are Home,
About, News, Login, and Links, and we set the variable page to one of these according
to the user’s input.

The code for this written using if...else if... might look like Example 14-13.

Example 14-13. A multiline if...else if... statement

<script>
 if (page == "Home") document.write("You selected Home")
 else if (page == "About") document.write("You selected About")
 else if (page == "News") document.write("You selected News")
 else if (page == "Login") document.write("You selected Login")
 else if (page == "Links") document.write("You selected Links")
</script>

But using a switch construct, the code could look like Example 14-14.

340 | Chapter 14: Expressions and Control Flow in JavaScript

Example 14-14. A switch construct

<script>
 switch (page)
 {
 case "Home":
 document.write("You selected Home")
 break
 case "About":
 document.write("You selected About")
 break
 case "News":
 document.write("You selected News")
 break
 case "Login":
 document.write("You selected Login")
 break
 case "Links":
 document.write("You selected Links")
 break
 }
</script>

The variable page is mentioned only once at the start of the switch statement. There‐
after, the case command checks for matches. When one occurs, the matching condi‐
tional statement is executed. Of course, a real program would have code here to
display or jump to a page, rather than simply telling the user what was selected.

You may also supply multiple cases for a single action. For example:
switch (heroName)
{
 case "Superman":
 case "Batman":
 case "Wonder Woman":
 document.write("Justice League")
 break
 case "Iron Man":
 case "Captain America":
 case "Spiderman":
 document.write("The Avengers")
 break
}

Breaking out

As you can see in Example 14-14, just as with PHP, the break command allows your
code to break out of the switch statement once a condition has been satisfied.
Remember to include the break unless you want to continue executing the statements
under the next case.

Conditionals | 341

Default action

When no condition is satisfied, you can specify a default action for a switch state‐
ment by using the default keyword. Example 14-15 shows a code snippet that could
be inserted into Example 14-14.

Example 14-15. A default statement to add to Example 14-14

default:
 document.write("Unrecognized selection")
 break

The ? Operator
The ternary operator (?), combined with the : character, provides a quick way of
doing if...else tests. With it you can write an expression to evaluate, and then fol‐
low it with a ? symbol and the code to execute if the expression is true. After that,
place a : and the code to execute if the expression evaluates to false.

Example 14-16 shows the ternary operator being used to print out whether the vari‐
able a is less than or equal to 5, and prints something either way.

Example 14-16. Using the ternary operator

<script>
 document.write(
 a <= 5 ?
 "a is less than or equal to 5" :
 "a is greater than 5"
)
</script>

The statement has been broken up into several lines for clarity, but you would be
more likely to use such a statement on a single line, in this manner:

size = a <= 5 ? "short" : "long"

Looping
Again, you will find many close similarities between JavaScript and PHP when it
comes to looping. Both languages support while, do...while, and for loops.

while Loops
A JavaScript while loop first checks the value of an expression and starts executing
the statements within the loop only if that expression is true. If it is false, execution
skips over to the next JavaScript statement (if any).

342 | Chapter 14: Expressions and Control Flow in JavaScript

Upon completing an iteration of the loop, the expression is again tested to see if it is
true, and the process continues until such a time as the expression evaluates to false
or until execution is otherwise halted. Example 14-17 shows such a loop.

Example 14-17. A while loop

<script>
 counter=0

 while (counter < 5)
 {
 document.write("Counter: " + counter + "
")
 ++counter
 }
</script>

This script outputs the following:

Counter: 0
Counter: 1
Counter: 2
Counter: 3
Counter: 4

If the variable counter were not incremented within the loop, it is
quite possible that some browsers could become unresponsive due
to a never-ending loop, and the page may not even be easy to ter‐
minate with Escape or the Stop button. So, be careful with your
JavaScript loops.

do...while Loops
When you require a loop to iterate at least once before any tests are made, use a
do...while loop, which is similar to a while loop, except that the test expression is
checked only after each iteration of the loop. So, to output the first seven results in
the 7 times table, you could use code such as that in Example 14-18.

Example 14-18. A do...while loop

<script>
 count = 1

 do
 {
 document.write(count + " times 7 is " + count * 7 + "
")
 } while (++count <= 7)
</script>

Looping | 343

As you might expect, this loop outputs the following:

1 times 7 is 7
2 times 7 is 14
3 times 7 is 21
4 times 7 is 28
5 times 7 is 35
6 times 7 is 42
7 times 7 is 49

for Loops
A for loop combines the best of all worlds into a single looping construct that allows
you to pass three parameters for each statement:

• An initialization expression
• A condition expression
• A modification expression

These are separated by semicolons, like this: for (expr1 ; expr2 ; expr3). The ini‐
tialization expression is executed at the start of the first iteration of the loop. In the
case of the code for the multiplication table for 7, count would be initialized to the
value 1. Then, each time around the loop, the condition expression (in this case,
count <= 7) is tested, and the loop is entered only if the condition is true. Finally, at
the end of each iteration, the modification expression is executed. In the case of the
multiplication table for 7, the variable count is incremented. Example 14-19 shows
what the code would look like.

Example 14-19. Using a for loop

<script>
 for (count = 1 ; count <= 7 ; ++count)
 {
 document.write(count + "times 7 is " + count * 7 + "
");
 }
</script>

As in PHP, you can assign multiple variables in the first parameter of a for loop by
separating them with a comma, like this:

for (i = 1, j = 1 ; i < 10 ; i++)

Likewise, you can perform multiple modifications in the last parameter, like this:

for (i = 1 ; i < 10 ; i++, --j)

Or you can do both at the same time:

for (i = 1, j = 1 ; i < 10 ; i++, --j)

344 | Chapter 14: Expressions and Control Flow in JavaScript

Breaking Out of a Loop
The break command, which you’ll recall is important inside a switch statement, is
also available within for loops. You might need to use this, for example, when search‐
ing for a match of some kind. Once the match is found, you know that continuing to
search will only waste time and make your visitor wait. Example 14-20 shows how to
use the break command.

Example 14-20. Using the break command in a for loop

<script>
 haystack = new Array()
 haystack[17] = "Needle"

 for (j = 0 ; j < 20 ; ++j)
 {
 if (haystack[j] == "Needle")
 {
 document.write("
- Found at location " + j)
 break
 }
 else document.write(j + ", ")
 }
</script>

This script outputs the following:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
- Found at location 17

The continue Statement
Sometimes you don’t want to entirely exit from a loop, but instead wish to skip the
remaining statements just for this iteration of the loop. In such cases, you can use the
continue command. Example 14-21 shows this in use.

Example 14-21. Using the continue command in a for loop

<script>
 haystack = new Array()
 haystack[4] = "Needle"
 haystack[11] = "Needle"
 haystack[17] = "Needle"

 for (j = 0 ; j < 20 ; ++j)
 {
 if (haystack[j] == "Needle")
 {
 document.write("
- Found at location " + j + "
")

Looping | 345

 continue
 }

 document.write(j + ", ")
 }
</script>

Notice how the second document.write call does not have to be enclosed in an else
statement (as it did before), because the continue command will skip it if a match has
been found. The output from this script is as follows:

0, 1, 2, 3,
- Found at location 4
5, 6, 7, 8, 9, 10,
- Found at location 11
12, 13, 14, 15, 16,
- Found at location 17
18, 19,

Explicit Casting
Unlike PHP, JavaScript has no explicit casting of types such as (int) or (float).
Instead, when you need a value to be of a certain type, use one of JavaScript’s built-in
functions, shown in Table 14-6.

Table 14-6. JavaScript’s type-changing functions

Change to type Function to use
Int, Integer parseInt()

Bool, Boolean Boolean()

Float, Double, Real parseFloat()

String String()

Array split()

So, for example, to change a floating-point number to an integer, you could use code
such as the following (which displays the value 3):

n = 3.1415927
i = parseInt(n)
document.write(i)

Or you can use the compound form:

document.write(parseInt(3.1415927))

That’s it for control flow and expressions. The next chapter focuses on the use of
functions, objects, and arrays in JavaScript.

346 | Chapter 14: Expressions and Control Flow in JavaScript

Questions
1. How are Boolean values handled differently by PHP and JavaScript?
2. What characters are used to define a JavaScript variable name?
3. What is the difference between unary, binary, and ternary operators?
4. What is the best way to force your own operator precedence?
5. When would you use the === (identity) operator?
6. What are the simplest two forms of expressions?
7. Name the three conditional statement types.
8. How do if and while statements interpret conditional expressions of different

data types?
9. Why is a for loop more powerful than a while loop?

10. What is the purpose of the with statement?

See “Chapter 14 Answers” on page 723 in Appendix A for the answers to these
questions.

Questions | 347

CHAPTER 15

JavaScript Functions, Objects, and Arrays

Just like PHP, JavaScript offers access to functions and objects. In fact, JavaScript is
actually based on objects, because—as you’ve seen—it has to access the DOM, which
makes every element of an HTML document available to manipulate as an object.

The usage and syntax are also quite similar to those of PHP, so you should feel right at
home as I take you through using functions and objects in JavaScript, as well as
through an in-depth exploration of array handling.

JavaScript Functions
In addition to having access to dozens of built-in functions (or methods), such as
write, which you have already seen being used in document.write, you can easily
create your own functions. Whenever you have a relatively complex piece of code that
is likely to be reused, you have a candidate for a function.

Defining a Function
The general syntax for a function is shown here:

function function_name([parameter [, ...]])
{
 statements
}

The first line of the syntax indicates the following:

• A definition starts with the word function.
• A name follows that must start with a letter or underscore, followed by any num‐

ber of letters, digits, dollar signs, or underscores.
• The parentheses are required.

349

• One or more parameters, separated by commas, are optional (indicated by the
square brackets, which are not part of the function syntax).

Function names are case-sensitive, so all of the following strings refer to different
functions: getInput, GETINPUT, and getinput.

In JavaScript there is a general naming convention for functions: the first letter of
each word in a name is capitalized, except for the very first letter, which is lowercase.
Therefore, of the previous examples, getInput would be the preferred name used by
most programmers. This convention is commonly referred to as bumpyCaps, bumpy‐
Case, or camelCase.

The opening curly brace starts the statements that will execute when you call the
function; a matching curly brace must close it. These statements may include one or
more return statements, which force the function to cease execution and return to
the calling code. If a value is attached to the return statement, the calling code can
retrieve it.

The arguments array

The arguments array is a member of every function. With it, you can determine the
number of variables passed to a function and what they are. Take the example of a
function called displayItems. Example 15-1 shows one way of writing it.

Example 15-1. Defining a function

<script>
 displayItems("Dog", "Cat", "Pony", "Hamster", "Tortoise")

 function displayItems(v1, v2, v3, v4, v5)
 {
 document.write(v1 + "
")
 document.write(v2 + "
")
 document.write(v3 + "
")
 document.write(v4 + "
")
 document.write(v5 + "
")
 }
</script>

When you call up this script in your browser, it will display the following:

Dog
Cat
Pony
Hamster
Tortoise

350 | Chapter 15: JavaScript Functions, Objects, and Arrays

All of this is fine, but what if you wanted to pass more than five items to the function?
Also, reusing the document.write call multiple times instead of employing a loop is
wasteful programming. Luckily, the arguments array gives you the flexibility to han‐
dle a variable number of arguments. Example 15-2 shows how you can use it to
rewrite the previous example in a much more efficient manner.

Example 15-2. Modifying the function to use the arguments array

<script>
 function displayItems()
 {
 for (j = 0 ; j < displayItems.arguments.length ; ++j)
 document.write(displayItems.arguments[j] + "
")
 }
</script>

Note the use of the length property, which you already encountered in the previous
chapter, and also how I reference the array displayItems.arguments using the vari‐
able j as an offset into it. I also chose to keep the function short and sweet by not
surrounding the contents of the for loop in curly braces, as it contains only a single
statement. Remember that the loop must stop when j is one less than length, not
equal to length.

Using this technique, you now have a function that can take as many (or as few) argu‐
ments as you like and act on each argument as you desire.

Returning a Value
Functions are not used just to display things. In fact, they are mostly used to perform
calculations or data manipulations and then return a result. The function fixNames in
Example 15-3 uses the arguments array (discussed in the previous section) to take a
series of strings passed to it and return them as a single string. The “fix” it performs is
to convert every character in the arguments to lowercase except for the first character
of each argument, which is set to a capital letter.

Example 15-3. Cleaning up a full name

<script>
 document.write(fixNames("the", "DALLAS", "CowBoys"))

 function fixNames()
 {
 var s = ""

 for (j = 0 ; j < fixNames.arguments.length ; ++j)
 s += fixNames.arguments[j].charAt(0).toUpperCase() +

JavaScript Functions | 351

 fixNames.arguments[j].substr(1).toLowerCase() + " "

 return s.substr(0, s.length-1)
 }
</script>

When called with the parameters the, DALLAS, and CowBoys, for example, the func‐
tion returns the string The Dallas Cowboys. Let’s walk through the function.

It first initializes the temporary (and local) variable s to the empty string. Then a for
loop iterates through each of the passed parameters, isolating the parameter’s first
character using the charAt method and converting it to uppercase with the toUpper
Case method. The various methods shown in this example are all built into JavaScript
and available by default.

Then the substr method is used to fetch the rest of each string, which is converted to
lowercase via the toLowerCase method. A fuller version of the substr method here
would specify how many characters are part of the substring as a second argument:

substr(1, (arguments[j].length) - 1)

In other words, this substr method says, “Start with the character at position 1 (the
second character) and return the rest of the string (the length minus one).” As a nice
touch, though, the substr method assumes that you want the rest of the string if you
omit the second argument.

After the whole argument is converted to our desired case, a space character is added
to the end and the result is appended to the temporary variable s.

Finally, the substr method is used again to return the contents of the variable s,
except for the final space—which is unwanted. We remove this by using substr to
return the string up to, but not including, the final character.

This example is particularly interesting in that it illustrates the use of multiple proper‐
ties and methods in a single expression. For example:

fixNames.arguments[j].substr(1).toLowerCase()

You have to interpret the statement by mentally dividing it into parts at the periods.
JavaScript evaluates these elements of the statement from left to right as follows:

1. Start with the name of the function itself: fixNames.
2. Extract element j from the array arguments representing fixNames arguments.
3. Invoke substr with a parameter of 1 to the extracted element. This passes all but

the first character to the next section of the expression.
4. Apply the method toLowerCase to the string that has been passed thus far.

352 | Chapter 15: JavaScript Functions, Objects, and Arrays

This practice is often referred to as method chaining. So, for example, if the string
mixedCASE is passed to the example expression, it will go through the following trans‐
formations:

mixedCASE
ixedCASE
ixedcase

In other words, fixNames.arguments[j] produces “mixedCASE”, then substr(1)
takes “mixedCASE” and produces “ixedCASE”, and finally toLowerCase() takes
“ixedCASE” and produces “ixedcase”.

One final reminder: the s variable created inside the function is local, and therefore
cannot be accessed outside the function. By returning s in the return statement, we
made its value available to the caller, which could store or use it any way it wanted.
But s itself disappears at the end of the function. Although we could make a function
operate on global variables (and sometimes that’s necessary), it’s much better to just
return the values you want to preserve and let JavaScript clean up all the other vari‐
ables used by the function.

Returning an Array
In Example 15-3, the function returned only one parameter—but what if you need to
return multiple parameters? You can do this by returning an array, as in
Example 15-4.

Example 15-4. Returning an array of values

<script>
 words = fixNames("the", "DALLAS", "CowBoys")

 for (j = 0 ; j < words.length ; ++j)
 document.write(words[j] + "
")

 function fixNames()
 {
 var s = new Array()

 for (j = 0 ; j < fixNames.arguments.length ; ++j)
 s[j] = fixNames.arguments[j].charAt(0).toUpperCase() +
 fixNames.arguments[j].substr(1).toLowerCase()

 return s
}
</script>

JavaScript Functions | 353

Here the variable words is automatically defined as an array and populated with the
returned result of a call to the function fixNames. Then a for loop iterates through
the array and displays each member.

As for the fixNames function, it’s almost identical to Example 15-3, except that the
variable s is now an array; after each word has been processed it is stored as an ele‐
ment of this array, which is returned by the return statement.

This function enables the extraction of individual parameters from its returned val‐
ues, like the following (the output from which is simply The Cowboys):

words = fixNames("the", "DALLAS", "CowBoys")
document.write(words[0] + " " + words[2])

JavaScript Objects
A JavaScript object is a step up from a variable, which can contain only one value at a
time. In contrast, objects can contain multiple values and even functions. An object
groups data together with the functions needed to manipulate it.

Declaring a Class
When creating a script to use objects, you need to design a composite of data and
code called a class. Each new object based on this class is called an instance (or occur‐
rence) of that class. As you’ve already seen, the data associated with an object is called
its properties, while the functions it uses are called methods.

Let’s look at how to declare the class for an object called User that will contain details
about the current user. To create the class, just write a function named after the class.
This function can accept arguments (I’ll show later how it’s invoked) and can create
properties and methods for objects in that class. The function is called a constructor.

Example 15-5 shows a constructor for the class User with three properties: forename,
username, and password. The class also defines the method showUser.

Example 15-5. Declaring the User class and its method

<script>
 function User(forename, username, password)
 {
 this.forename = forename
 this.username = username
 this.password = password

 this.showUser = function()
 {
 document.write("Forename: " + this.forename + "
")

354 | Chapter 15: JavaScript Functions, Objects, and Arrays

 document.write("Username: " + this.username + "
")
 document.write("Password: " + this.password + "
")
 }
 }
</script>

The function is different from other functions we’ve seen so far in several ways:

• Each time the function is called, it creates a new object. Thus, you can call the
same function over and over with different arguments to create users with differ‐
ent forenames, for example.

• The function refers to an object named this, which refers to the instance being
created. As the example shows, the object uses the name this to set its own prop‐
erties, which will be different from one User to another.

• A new function named showUser is created within the function. The syntax
shown here is new and rather complicated, but its purpose is to tie showUser to
the User class. Thus, showUser comes into being as a method of the User class.

The naming convention I have used is to keep all properties in lowercase and to use at
least one uppercase character in method names, following the bumpyCaps conven‐
tion mentioned earlier in the chapter.

Example 15-5 follows the recommended way to write a class constructor, which is to
include methods in the constructor function. However, you can also refer to func‐
tions defined outside the constructor, as in Example 15-6.

Example 15-6. Separately defining a class and method

<script>
 function User(forename, username, password)
 {
 this.forename = forename
 this.username = username
 this.password = password
 this.showUser = showUser
 }

 function showUser()
 {
 document.write("Forename: " + this.forename + "
")
 document.write("Username: " + this.username + "
")
 document.write("Password: " + this.password + "
")
 }
</script>

I show you this form because you are certain to encounter it when perusing other
programmers’ code.

JavaScript Objects | 355

Creating an Object
To create an instance of the class User, you can use a statement such as the following:

details = new User("Wolfgang", "w.a.mozart", "composer")

Or you can create an empty object, like this:

details = new User()

and then populate it later, like this:

details.forename = "Wolfgang"
details.username = "w.a.mozart"
details.password = "composer"

You can also add new properties to an object, like this:

details.greeting = "Hello"

You can verify that adding such new properties works with the following statement:

document.write(details.greeting)

Accessing Objects
To access an object, you can refer to its properties, as in the following two unrelated
example statements:

name = details.forename
if (details.username == "Admin") loginAsAdmin()

So, to access the showUser method of an object of class User, you would use the fol‐
lowing syntax, in which the object details has already been created and populated
with data:

details.showUser()

Assuming the data supplied earlier, this code would display the following:

Forename: Wolfgang
Username: w.a.mozart
Password: composer

The prototype Keyword
The prototype keyword can save you a lot of memory. In the User class, every
instance will contain the three properties and the method. Therefore, if you have
1,000 of these objects in memory, the method showUser will also be replicated 1,000
times. However, because the method is identical in every case, you can specify that
new objects should refer to a single instance of the method instead of creating a copy
of it. So, instead of using the following in a class constructor:

this.showUser = function()

356 | Chapter 15: JavaScript Functions, Objects, and Arrays

you could replace it with this:

User.prototype.showUser = function()

Example 15-7 shows what the new constructor would look like.

Example 15-7. Declaring a class using the prototype keyword for a method

<script>
 function User(forename, username, password)
 {
 this.forename = forename
 this.username = username
 this.password = password

 User.prototype.showUser = function()
 {
 document.write("Forename: " + this.forename + "
")
 document.write("Username: " + this.username + "
")
 document.write("Password: " + this.password + "
")
 }
 }
</script>

This works because all functions have a prototype property, designed to hold proper‐
ties and methods that are not replicated in any objects created from a class. Instead,
they are passed to its objects by reference.

This means that you can add a prototype property or method at any time, and all
objects (even those already created) will inherit it, as the following statements illus‐
trate:

User.prototype.greeting = "Hello"
document.write(details.greeting)

The first statement adds the prototype property of greeting with a value of Hello to
the class User. In the second line, the object details, which has already been created,
correctly displays this new property.

You can also add to or modify methods in a class, as the following statements illus‐
trate:

User.prototype.showUser = function()
{
 document.write("Name " + this.forename +
 " User " + this.username +
 " Pass " + this.password)
}

details.showUser()

JavaScript Objects | 357

You might add these lines to your script in a conditional statement (such as if), so
they run if user activities cause you to decide you need a different showUser method.
After these lines run, even if the object details has been created already, further calls
to details.showUser will run the new function. The old definition of showUser has
been erased.

Static methods and properties
When reading about PHP objects, you learned that classes can have static properties
and methods as well as properties and methods associated with a particular instance
of a class. JavaScript also supports static properties and methods, which you can con‐
veniently store and retrieve from the class’s prototype. Thus, the following state‐
ments set and read a static string from User:

User.prototype.greeting = "Hello"
document.write(User.prototype.greeting)

Extending JavaScript objects

The prototype keyword even lets you add functionality to a built-in object. For
example, suppose that you would like to add the ability to replace all spaces in a string
with nonbreaking spaces in order to prevent it from wrapping around. You can do
this by adding a prototype method to JavaScript’s default String object definition,
like this:

String.prototype.nbsp = function()
{
 return this.replace(/ /g, ' ')
}

Here the replace method is used with a regular expression to find and replace all sin‐
gle spaces with the string .

If you are not already familiar with regular expressions, they are a
handy means of extracting information from or manipulating
strings, and are fully explained in Chapter 16. Suffice it to say that
for now, you can copy and paste the preceding examples and they
will work as described, illustrating the power of extending Java‐
Script String objects.

If you then enter the following command:

document.write("The quick brown fox".nbsp())

it will output the string The quick brown fox. Or here’s a method
you can add that will trim leading and trailing spaces from a string (once again using
a regular expression):

358 | Chapter 15: JavaScript Functions, Objects, and Arrays

String.prototype.trim = function()
{
 return this.replace(/^\s+|\s+$/g, '')
}

If you issue the following statement, the output will be the string Please trim me
(with the leading and trailing spaces removed):

document.write(" Please trim me ".trim())

If we break down the expression into its component parts, the two / characters mark
the start and end of the expression, and the final g specifies a global search. Inside the
expression, the ^\s+ part searches for one or more whitespace characters appearing at
the start of the search string, while the \s+$ part searches for one or more whitespace
characters at the end of the search string. The | character in the middle acts to sepa‐
rate the alternatives.

The result is that when either of these expressions matches, the match is replaced
with the empty string, thus returning a trimmed version of the string without any
leading or trailing whitespace.

There is debate about whether extending objects is good or bad
practice. Some programmers say that should an object later be
extended to officially offer the functionality you have added, it
could be implemented another way, or do something quite differ‐
ent to your extension, which could then cause a conflict. However,
other programmers, such as the inventor of JavaScript, say that this
is a perfectly acceptable practice. My take is to agree with the latter,
but in production code to choose extension names that are most
unlikely to ever be officially used. So, for example, the trim exten‐
sion could be renamed as mytrim, and the supporting code might
more safely be written as:

String.prototype.mytrim = function()
{
 return this.replace(/^\s+|\s+$/g, '')
}

JavaScript Arrays
Array handling in JavaScript is very similar to in PHP, although the syntax is a little
different. Nevertheless, given all you have already learned about arrays, this section
should be relatively straightforward for you.

JavaScript Arrays | 359

Numeric Arrays
To create a new array, use the following syntax:

arrayname = new Array()

Or you can use the shorthand form, as follows:

arrayname = []

Assigning element values
In PHP, you could add a new element to an array by simply assigning it without spec‐
ifying the element offset, like this:

$arrayname[] = "Element 1";
$arrayname[] = "Element 2";

But in JavaScript you use the push method to achieve the same thing, like this:

arrayname.push("Element 1")
arrayname.push("Element 2")

This allows you to keep adding items to an array without having to keep track of the
number of items. When you need to know how many elements are in an array, you
can use the length property, like this:

document.write(arrayname.length)

Alternatively, if you wish to keep track of the element locations yourself and place
them in specific locations, you can use syntax such as this:

arrayname[0] = "Element 1"
arrayname[1] = "Element 2"

Example 15-8 shows a simple script that creates an array, loads it with some values,
and then displays them.

Example 15-8. Creating, building, and printing an array

<script>
 numbers = []
 numbers.push("One")
 numbers.push("Two")
 numbers.push("Three")

 for (j = 0 ; j < numbers.length ; ++j)
 document.write("Element " + j + " = " + numbers[j] + "
")
</script>

The output from this script is as follows:

360 | Chapter 15: JavaScript Functions, Objects, and Arrays

Element 0 = One
Element 1 = Two
Element 2 = Three

Assignment using the array keyword

You can also create an array together with some initial elements by using the Array
keyword, like this:

numbers = Array("One", "Two", "Three")

There is nothing stopping you from adding more elements afterward as well.

You’ve now seen a couple of ways you can add items to an array, and one way of refer‐
encing them. JavaScript offers many more, which I’ll get to shortly—but first, we’ll
look at another type of array.

Associative Arrays
An associative array is one in which the elements are referenced by name rather than
by an integer offset. However, JavaScript doesn’t support such things. Instead, we can
achieve the same result by creating an object with properties that will act the same
way.

So, to create an “associative array,” define a block of elements within curly braces. For
each element, place the key on the left and the contents on the right of a colon (:).
Example 15-9 shows how you might create an associative array to hold the contents
of the “balls” section of an online sports equipment retailer.

Example 15-9. Creating and displaying an associative array

<script>
 balls = {"golf": "Golf balls, 6",
 "tennis": "Tennis balls, 3",
 "soccer": "Soccer ball, 1",
 "ping": "Ping Pong balls, 1 doz"}

 for (ball in balls)
 document.write(ball + " = " + balls[ball] + "
")
</script>

To verify that the array has been correctly created and populated, I have used another
kind of for loop using the in keyword. This creates a new variable to use only within
the array (ball, in this example) and iterates through all elements of the array to the
right of the in keyword (balls, in this example). The loop acts on each element of
balls, placing the key value into ball.

JavaScript Arrays | 361

Using this key value stored in ball, you can also get the value of the current element
of balls. The result of calling up the example script in a browser is as follows:

golf = Golf balls, 6
tennis = Tennis balls, 3
soccer = Soccer ball, 1
ping = Ping Pong balls, 1 doz

To get a specific element of an associative array, you can specify a key explicitly, in the
following manner (in this case, outputting the value Soccer ball, 1):

document.write(balls['soccer'])

Multidimensional Arrays
To create a multidimensional array in JavaScript, just place arrays inside other arrays.
For example, to create an array to hold the details of a two-dimensional checkerboard
(8 × 8 squares), you could use the code in Example 15-10.

Example 15-10. Creating a multidimensional numeric array

<script>
 checkerboard = Array(
 Array(' ', 'o', ' ', 'o', ' ', 'o', ' ', 'o'),
 Array('o', ' ', 'o', ' ', 'o', ' ', 'o', ' '),
 Array(' ', 'o', ' ', 'o', ' ', 'o', ' ', 'o'),
 Array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
 Array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
 Array('O', ' ', 'O', ' ', 'O', ' ', 'O', ' '),
 Array(' ', 'O', ' ', 'O', ' ', 'O', ' ', 'O'),
 Array('O', ' ', 'O', ' ', 'O', ' ', 'O', ' '))

 document.write("<pre>")

 for (j = 0 ; j < 8 ; ++j)
 {
 for (k = 0 ; k < 8 ; ++k)
 document.write(checkerboard[j][k] + " ")

 document.write("
")
 }

 document.write("</pre>")
</script>

In this example, the lowercase letters represent black pieces, and the uppercase white.
A pair of nested for loops walks through the array and displays its contents.

The outer loop contains two statements, so curly braces enclose them. The inner loop
then processes each square in a row, outputting the character at location [j][k],

362 | Chapter 15: JavaScript Functions, Objects, and Arrays

followed by a space (to square up the printout). This loop contains a single statement,
so curly braces are not required to enclose it. The <pre> and </pre> tags ensure that
the output displays correctly, like this:

 o o o o
o o o o
 o o o o

O O O O
 O O O O
O O O O

You can also directly access any element within this array by using square brackets:

document.write(checkerboard[7][2])

This statement outputs the uppercase letter O, the eighth element down and the third
along—remember that array indexes start at 0, not 1.

Using Array Methods
Given the power of arrays, JavaScript comes ready-made with a number of methods
for manipulating them and their data. Here is a selection of the most useful ones.

some
When you need to know whether at least one array element matches a certain crite‐
rion, you can use the some function, which will test all the elements and automatically
stop and return the required value as soon as one matches. This saves you from hav‐
ing to write your own code to perform such searches, like this:

function isBiggerThan10(element, index, array)
{
 return element > 10
}

result = [2, 5, 8, 1, 4].some(isBiggerThan10); // result will be false
result = [12, 5, 8, 1, 4].some(isBiggerThan10); // result will be true

indexOf

To find out where an element can be found in an array you can call the indexOf func‐
tion on the array, which will return the offset of the located element (starting from 0),
or -1 if it is not found. For example, the following gives offset the value 2:

animals = ['cat', 'dog', 'cow', 'horse', 'elephant']
offset = animals.indexOf('cow')

JavaScript Arrays | 363

concat

The concat method concatenates two arrays, or a series of values within an array. For
example, the following code outputs Banana,Grape,Carrot,Cabbage:

fruit = ["Banana", "Grape"]
veg = ["Carrot", "Cabbage"]

document.write(fruit.concat(veg))

You can specify multiple arrays as arguments, in which case concat adds all their ele‐
ments in the order that the arrays are specified.

Here’s another way to use concat. This time, plain values are concatenated with the
array pets, which outputs Cat,Dog,Fish,Rabbit,Hamster:

pets = ["Cat", "Dog", "Fish"]
more_pets = pets.concat("Rabbit", "Hamster")

document.write(more_pets)

forEach

The forEach method in JavaScript is another way of achieving functionality similar to
the PHP foreach keyword. To use it, you pass it the name of a function, which will be
called for each element within the array. Example 15-11 shows how.

Example 15-11. Using the forEach method

<script>
 pets = ["Cat", "Dog", "Rabbit", "Hamster"]
 pets.forEach(output)

 function output(element, index, array)
 {
 document.write("Element at index " + index + " has the value " +
 element + "
")
 }
</script>

In this case, the function passed to forEach is called output. It takes three parame‐
ters: the element, its index, and the array. These can be used as required by your
function. This example displays just the element and index values using the function
document.write.

Once an array has been populated, the method is called like this:

pets.forEach(output)

This is the output:

364 | Chapter 15: JavaScript Functions, Objects, and Arrays

Element at index 0 has the value Cat
Element at index 1 has the value Dog
Element at index 2 has the value Rabbit
Element at index 3 has the value Hamster

join

With the join method, you can convert all the values in an array to strings and then
join them together into one large string, placing an optional separator between them.
Example 15-12 shows three ways of using this method.

Example 15-12. Using the join method

<script>
 pets = ["Cat", "Dog", "Rabbit", "Hamster"]

 document.write(pets.join() + "
")
 document.write(pets.join(' ') + "
")
 document.write(pets.join(' : ') + "
")
</script>

Without a parameter, join uses a comma to separate the elements; otherwise, the
string passed to join is inserted between each element. The output of Example 15-12
looks like this:

Cat,Dog,Rabbit,Hamster
Cat Dog Rabbit Hamster
Cat : Dog : Rabbit : Hamster

push and pop

You already saw how the push method can be used to insert a value into an array. The
inverse method is pop. It deletes the most recently inserted element from an array and
returns it. Example 15-13 shows an example of its use.

Example 15-13. Using the push and pop methods

<script>
 sports = ["Football", "Tennis", "Baseball"]
 document.write("Start = " + sports + "
")

 sports.push("Hockey")
 document.write("After Push = " + sports + "
")

 removed = sports.pop()
 document.write("After Pop = " + sports + "
")
 document.write("Removed = " + removed + "
")
</script>

JavaScript Arrays | 365

The three main statements of this script are shown in bold type. First, the script cre‐
ates an array called sports with three elements and then pushes a fourth element into
the array. After that, it pops that element back off. In the process, the various current
values are displayed via document.write. The script outputs the following:

Start = Football,Tennis,Baseball
After Push = Football,Tennis,Baseball,Hockey
After Pop = Football,Tennis,Baseball
Removed = Hockey

The push and pop functions are useful in situations where you need to divert from
some activity to do another, and then return. For example, let’s suppose you want to
put off some activities until later, while you get on with something more important
now. This often happens in real life when we’re going through “todo” lists, so let’s
emulate that in code, with tasks number 2 and 5 in a list of 6 items being granted pri‐
ority status, as in Example 15-14.

Example 15-14. Using push and pop inside and outside of a loop

<script>
 numbers = []

 for (j=1 ; j<6 ; ++j)
 {
 if (j == 2 || j == 5)
 {
 document.write("Processing 'todo' #" + j + "
")
 }
 else
 {
 document.write("Putting off 'todo' #" + j + " until later
")
 numbers.push(j)
 }
 }

 document.write("
Finished processing the priority tasks.")
 document.write("
Commencing stored tasks, most recent first.

")

 document.write("Now processing 'todo' #" + numbers.pop() + "
")
 document.write("Now processing 'todo' #" + numbers.pop() + "
")
 document.write("Now processing 'todo' #" + numbers.pop() + "
")
</script>

Of course, nothing is actually getting processed here, just text being output to the
browser, but you get the idea. The output from this example is as follows:

Putting off 'todo' #1 until later
Processing 'todo' #2
Putting off 'todo' #3 until later
Putting off 'todo' #4 until later

366 | Chapter 15: JavaScript Functions, Objects, and Arrays

Processing 'todo' #5

Finished processing the priority tasks.
Commencing stored tasks, most recent first.

Now processing 'todo' #4
Now processing 'todo' #3
Now processing 'todo' #1

Using reverse

The reverse method simply reverses the order of all elements in an array.
Example 15-15 shows this in action.

Example 15-15. Using the reverse method

<script>
 sports = ["Football", "Tennis", "Baseball", "Hockey"]
 sports.reverse()
 document.write(sports)
</script>

The original array is modified, and the output from this script is as follows:

Hockey,Baseball,Tennis,Football

sort

With the sort method, you can place all the elements of an array in alphabetical or
other order, depending on the parameters used. Example 15-16 shows four types of
sort.

Example 15-16. Using the sort method

<script>
 // Alphabetical sort
 sports = ["Football", "Tennis", "Baseball", "Hockey"]
 sports.sort()
 document.write(sports + "
")

 // Reverse alphabetical sort
 sports = ["Football", "Tennis", "Baseball", "Hockey"]
 sports.sort().reverse()
 document.write(sports + "
")

 // Ascending numeric sort
 numbers = [7, 23, 6, 74]
 numbers.sort(function(a,b){return a - b})
 document.write(numbers + "
")

JavaScript Arrays | 367

 // Descending numeric sort
 numbers = [7, 23, 6, 74]
 numbers.sort(function(a,b){return b - a})
 document.write(numbers + "
")
</script>

The first of the four example sections uses the default sort method to perform an
alphabetical sort, while the second uses the default sort and then applies the reverse
method to get a reverse alphabetical sort.

The third and fourth sections are a little more complicated; they use a function to
compare the relationships between a and b. The function doesn’t have a name,
because it’s used only in the sort. You have already seen the function named function
used to create an anonymous function; we used it to define a method in a class (the
showUser method).

Here, function creates an anonymous function meeting the needs of the sort
method. If the function returns a value greater than zero, the sort assumes that b
comes before a. If the function returns a value less than zero, the sort assumes that a
comes before b. The sort runs this function across all the values in the array to deter‐
mine their order. (Of course, if a and b have the same value, the function returns zero
and it doesn’t matter which value is first.)

By manipulating the value returned (a - b in contrast to b - a), the third and fourth
sections of Example 15-16 choose between an ascending numerical sort and a descend‐
ing numerical sort.

And, believe it or not, this represents the end of your introduction to JavaScript. You
should now have a core knowledge of the three main technologies covered in this
book. The next chapter will look at some advanced techniques used across these tech‐
nologies, such as pattern matching and input validation.

Questions
1. Are JavaScript functions and variable names case-sensitive or case-insensitive?
2. How can you write a function that accepts and processes an unlimited number of

parameters?
3. Name a way to return multiple values from a function.
4. When you’re defining a class, what keyword do you use to refer to the current

object?
5. Do all the methods of a class have to be defined within the class definition?
6. What keyword is used to create an object?

368 | Chapter 15: JavaScript Functions, Objects, and Arrays

7. How can you make a property or method available to all objects in a class
without replicating the property or method within the object?

8. How can you create a multidimensional array?
9. What syntax is used to create an associative array?

10. Write a statement to sort an array of numbers in descending numerical order.

See “Chapter 15 Answers” on page 724 in Appendix A for the answers to these
questions.

Questions | 369

CHAPTER 16

JavaScript and PHP Validation
and Error Handling

With your solid foundation in both PHP and JavaScript, it’s time to bring these tech‐
nologies together to create web forms that are as user-friendly as possible.

We’ll be using PHP to create the forms and JavaScript to perform client-side valida‐
tion to ensure that the data is as complete and correct as it can be before it is submit‐
ted. Final validation of the input will then be done by PHP, which will, if necessary,
present the form again to the user for further modification.

In the process, this chapter will cover validation and regular expressions in both Java‐
Script and PHP.

Validating User Input with JavaScript
JavaScript validation should be considered an assistance more to your users than to
your websites because, as I have already stressed many times, you cannot trust any
data submitted to your server, even if it has supposedly been validated with Java‐
Script. This is because hackers can quite easily simulate your web forms and submit
any data of their choosing.

Another reason you cannot rely on JavaScript to perform all your input validation is
that some users disable JavaScript, or use browsers that don’t support it.

So, the best types of validation to do in JavaScript are checking that fields have con‐
tent if they are not to be left empty, ensuring that email addresses conform to the
proper format, and ensuring that values entered are within expected bounds.

371

The validate.html Document (Part 1)
Let’s begin with a general signup form, common on most sites that offer memberships
or user registration. The inputs requested will be forename, surname, username, pass‐
word, age, and email address. Example 16-1 provides a good template for such a form.

Example 16-1. A form with JavaScript validation (part 1)

<!DOCTYPE html>
<html>
 <head>
 <title>An Example Form</title>
 <style>
 .signup {
 border:1px solid #999999;
 font: normal 14px helvetica;
 color: #444444;
 }
 </style>
 <script>
 function validate(form)
 {
 fail = validateForename(form.forename.value)
 fail += validateSurname(form.surname.value)
 fail += validateUsername(form.username.value)
 fail += validatePassword(form.password.value)
 fail += validateAge(form.age.value)
 fail += validateEmail(form.email.value)

 if (fail == "") return true
 else { alert(fail); return false }
 }
 </script>
 </head>
 <body>
 <table class="signup" border="0" cellpadding="2"
 cellspacing="5" bgcolor="#eeeeee">
 <th colspan="2" align="center">Signup Form</th>
 <form method="post" action="adduser.php" onsubmit="return validate(this)">
 <tr><td>Forename</td>
 <td><input type="text" maxlength="32" name="forename"></td></tr>
 <tr><td>Surname</td>
 <td><input type="text" maxlength="32" name="surname"></td></tr>
 <tr><td>Username</td>
 <td><input type="text" maxlength="16" name="username"></td></tr>
 <tr><td>Password</td>
 <td><input type="text" maxlength="12" name="password"></td></tr>
 <tr><td>Age</td>
 <td><input type="text" maxlength="3" name="age"></td></tr>
 <tr><td>Email</td>
 <td><input type="text" maxlength="64" name="email"></td></tr>

372 | Chapter 16: JavaScript and PHP Validation and Error Handling

 <tr><td colspan="2" align="center"><input type="submit"
 value="Signup"></td></tr>
 </form>
 </table>
 </body>
</html>

As it stands, this form will display correctly but will not self-validate, because the
main validation functions have not yet been added. Even so, save it as validate.html,
and when you call it up in your browser, it will look like Figure 16-1.

Figure 16-1. The output from Example 16-1

Let’s look at how this document is made up. The first few lines set up the document
and use a little CSS to make the form look a little less plain. The parts of the docu‐
ment related to JavaScript come next and are shown in bold.

Between the <script> and </script> tags lies a single function called validate that
itself calls up six other functions to validate each of the form’s input fields. We’ll get to
these functions shortly. For now I’ll just explain that they return either an empty
string if a field validates, or an error message if it fails. If there are any errors, the final
line of the script pops up an alert box to display them.

Upon passing validation, the validate function returns a value of true; otherwise, it
returns false. The return values from validate are important, because if it returns
false, the form is prevented from being submitted. This allows the user to close the
alert pop-up and make changes. If true is returned, no errors were encountered in
the form’s fields and so the form is submitted.

Validating User Input with JavaScript | 373

The second part of this example features the HTML for the form, with each field and
its name placed within its own row of a table. This is pretty straightforward HTML,
with the exception of the onSubmit="return validate(this)" statement within the
opening <form> tag. Using onSubmit, you can cause a function of your choice to be
called when a form is submitted. That function can perform some checking and
return a value of either true or false to signify whether the form should be allowed
to be submitted.

The this parameter is the current object (i.e., this form) and is passed to the
validate function just discussed. The validate function receives this parameter as
the object form.

As you can see, the only JavaScript used within the form’s HTML is the call to return
buried in the onSubmit attribute. Browsers with JavaScript disabled or not available
will simply ignore the onSubmit attribute, and the HTML will display just fine.

The validate.html Document (Part 2)
Now we come to Example 16-2, a set of six functions that do the actual form-field
validation. I suggest that you type all of this second part and save it in the
<script>...</script> section of Example 16-1, which you should already have
saved as validate.html.

Example 16-2. A form with JavaScript validation (part 2)

function validateForename(field)
{
 return (field == "") ? "No Forename was entered.\n" : ""
}

function validateSurname(field)
{
 return (field == "") ? "No Surname was entered.\n" : ""
}

function validateUsername(field)
{
 if (field == "") return "No Username was entered.\n"
 else if (field.length < 5)
 return "Usernames must be at least 5 characters.\n"
 else if (/[^a-zA-Z0-9_-]/.test(field))
 return "Only a-z, A-Z, 0-9, - and _ allowed in Usernames.\n"
 return ""
}

function validatePassword(field)
{
 if (field == "") return "No Password was entered.\n"

374 | Chapter 16: JavaScript and PHP Validation and Error Handling

 else if (field.length < 6)
 return "Passwords must be at least 6 characters.\n"
 else if (!/[a-z]/.test(field) || ! /[A-Z]/.test(field) ||
 !/[0-9]/.test(field))
 return "Passwords require one each of a-z, A-Z and 0-9.\n"
 return ""
}

function validateAge(field)
{
 if (field == "" || isNaN(field)) return "No Age was entered.\n"
 else if (field < 18 || field > 110)
 return "Age must be between 18 and 110.\n"
 return ""
}

function validateEmail(field)
{
 if (field == "") return "No Email was entered.\n"
 else if (!((field.indexOf(".") > 0) &&
 (field.indexOf("@") > 0)) ||
 /[^a-zA-Z0-9.@_-]/.test(field))
 return "The Email address is invalid.\n"
 return ""
}

We’ll go through each of these functions in turn, starting with validateForename, so
you can see how validation works.

Validating the forename

validateForename is quite a short function that accepts the parameter field, which
is the value of the forename passed to it by the validate function.

If this value is the empty string, an error message is returned; otherwise, an empty
string is returned to signify that no error was encountered.

If the user entered spaces in this field, it would be accepted by validateForename,
even though it’s empty for all intents and purposes. You can fix this by adding an
extra statement to trim whitespace from the field before checking whether it’s empty,
use a regular expression to make sure there’s something besides whitespace in the
field, or—as I do here—just let the user make the mistake and allow the PHP pro‐
gram to catch it on the server.

Validating the surname

The validateSurname function is almost identical to validateForename in that an
error is returned only if the surname supplied was an empty string. I chose not to

Validating User Input with JavaScript | 375

limit the characters allowed in either of the name fields to allow for possibilities such
as non-English and accented characters.

Validating the username

The validateUsername function is a little more interesting, because it has a more
complicated job. It has to allow through only the characters a-z, A-Z, 0-9, _ and -,
and ensure that usernames are at least five characters long.

The if...else statements commence by returning an error if field has not been
filled in. If it’s not the empty string, but is fewer than five characters in length,
another error message is returned.

Then the JavaScript test function is called, passing a regular expression (which
matches any character that is not one of those allowed) to be matched against field
(see “Regular Expressions” on page 377). If even one character that isn’t one of the
acceptable characters is encountered, the test function returns true, and so
validateUser returns an error string.

Validating the password

Similar techniques are used in the validatePassword function. First the function
checks whether field is empty, and if it is, it returns an error. Next, an error message
is returned if the password is shorter than six characters.

One of the requirements we’re imposing on passwords is that they must have at least
one each of a lowercase, uppercase, and numerical character, so the test function is
called three times, once for each of these cases. If any one of these calls returns false,
one of the requirements was not met and so an error message is returned. Otherwise,
the empty string is returned to signify that the password was OK.

Validating the age

validateAge returns an error message if field is not a number (determined by a call
to the isNaN function), or if the age entered is lower than 18 or greater than 110. Your
applications may well have different or no age requirements. Again, upon successful
validation, the empty string is returned.

Validating the email
In the last and most complicated example, the email address is validated with
validateEmail. After checking whether anything was actually entered, and returning
an error message if it wasn’t, the function calls the JavaScript indexOf function twice.
The first time a check is made to ensure there is a period (.) somewhere after the first
character of the field, and the second checks that an @ symbol appears somewhere
after the first character.

376 | Chapter 16: JavaScript and PHP Validation and Error Handling

If those two checks are satisfied, the test function is called to see whether any disal‐
lowed characters appear in the field. If any of these tests fail, an error message is
returned. The allowed characters in an email address are uppercase and lowercase let‐
ters, numbers, and the _, -, period, and @ characters, as detailed in the regular expres‐
sion passed to the test method. If no errors are found, the empty string is returned
to indicate successful validation. On the last line, the script and document are closed.

Figure 16-2 shows the result of the user clicking the Signup button without having
completed any fields.

Figure 16-2. JavaScript form validation in action

Using a separate JavaScript file
Of course, because they are generic in construction and could apply to many types of
validations you might require, these six functions make ideal candidates for moving
out into a separate JavaScript file. You could name the file something like vali‐
date_functions.js and include it right after the initial script section in Example 16-1,
using the following statement:

<script src="validate_functions.js"></script>

Regular Expressions
Let’s look a little more closely at the pattern matching we have been doing. We’ve
achieved it using regular expressions, which are supported by both JavaScript and
PHP. They make it possible to construct the most powerful of pattern-matching algo‐
rithms within a single expression.

Regular Expressions | 377

Matching Through Metacharacters
Every regular expression must be enclosed in slashes. Within these slashes, certain
characters have special meanings; they are called metacharacters. For instance, an
asterisk (*) has a meaning similar to what you have seen if you’ve used a shell or Win‐
dows command prompt (but not quite the same). An asterisk means, “The text you’re
trying to match may have any number of the preceding characters—or none at all.”

For instance, let’s say you’re looking for the name Le Guin and know that someone
might spell it with or without a space. Because the text is laid out strangely (for
instance, someone may have inserted extra spaces to right-justify lines), you could
have to search for a line such as this:

The difficulty of classifying Le Guin's works

So you need to match LeGuin, as well as Le and Guin separated by any number of
spaces. The solution is to follow a space with an asterisk:

/Le *Guin/

There’s a lot more than the name Le Guin in the line, but that’s OK. As long as the
regular expression matches some part of the line, the test function returns a true
value. What if it’s important to make sure the line contains nothing but Le Guin? I’ll
show you how to ensure that later.

Suppose that you know there is always at least one space. In that case, you could use
the plus sign (+), because it requires at least one of the preceding characters to be
present:

/Le +Guin/

Fuzzy Character Matching
The dot (.) is particularly useful, because it can match anything except a newline.
Suppose that you are looking for HTML tags, which start with < and end with >. A
simple way to do so is shown here:

/<.*>/

The dot matches any character, and the * expands it to match zero or more charac‐
ters, so this is saying, “Match anything that lies between < and >, even if there’s noth‐
ing.” You will match <>, ,
, and so on. But if you don’t want to match the
empty case, <>, you should use + instead of *, like this:

/<.+>/

The plus sign expands the dot to match one or more characters, saying, “Match any‐
thing that lies between < and > as long as there’s at least one character between them.”
You will match and , <h1> and </h1>, and tags with attributes, such as this:

378 | Chapter 16: JavaScript and PHP Validation and Error Handling

Unfortunately, the plus sign keeps on matching up to the last > on the line, so you
might end up with this:

<h1>Introduction</h1>

A lot more than one tag! I’ll show a better solution later in this section.

If you use the dot on its own between the angle brackets, without
following it with either a + or *, then it matches a single character;
you will match and <i> but not or <textarea>.

If you want to match the dot character itself (.), you have to escape it by placing a
backslash (\) before it, because otherwise it’s a metacharacter and matches anything.
As an example, suppose you want to match the floating-point number 5.0. The regu‐
lar expression is as follows:

/5\.0/

The backslash can escape any metacharacter, including another backslash (in case
you’re trying to match a backslash in text). However, to make things a bit confusing,
you’ll see later how backslashes sometimes give the following character a special
meaning.

We just matched a floating-point number. But perhaps you want to match 5. as well
as 5.0, because both mean the same thing as a floating-point number. You also want
to match 5.00, 5.000, and so forth—any number of zeros is allowed. You can do this
by adding an asterisk, as you’ve seen:

/5\.0*/

Grouping Through Parentheses
Suppose you want to match powers of increments of units, such as kilo, mega, giga,
and tera. In other words, you want all the following to match:

1,000
1,000,000
1,000,000,000
1,000,000,000,000
...

The plus sign works here, too, but you need to group the string ,000 so the plus sign
matches the whole thing. The regular expression is as follows:

/1(,000)+ /

Regular Expressions | 379

The parentheses mean “treat this as a group when you apply something such as a plus
sign.” 1,00,000 and 1,000,00 won’t match because the text must have a 1 followed by
one or more complete groups of a comma followed by three zeros.

The space after the + character indicates that the match must end when a space is
encountered. Without it, 1,000,00 would incorrectly match because only the first
1,000 would be taken into account, and the remaining ,00 would be ignored. Requir‐
ing a space afterward ensures that matching will continue right through to the end of
a number.

Character Classes
Sometimes you want to match something fuzzy, but not so broad that you want to use
a dot. Fuzziness is the great strength of regular expressions: they allow you to be as
precise or vague as you want.

One of the key features supporting fuzzy matching is the pair of square brackets, [].
It matches a single character, like a dot, but inside the brackets you put a list of things
that can match. If any of those characters appears, the text matches. For instance, if
you wanted to match both the American spelling gray and the British spelling grey,
you could specify the following:

/gr[ae]y/

After the gr in the text you’re matching, there can be either an a or an e. But there
must be only one of them: whatever you put inside the brackets matches exactly one
character. The group of characters inside the brackets is called a character class.

Indicating a Range
Inside the brackets, you can use a hyphen (-) to indicate a range. One very common
task is matching a single digit, which you can do with a range as follows:

/[0-9]/

Digits are such a common item in regular expressions that a single character is pro‐
vided to represent them: \d. You can use it in place of the bracketed regular expres‐
sion to match a digit:

/\d/

Negation
One other important feature of the square brackets is negation of a character class.
You can turn the whole character class on its head by placing a caret (^) after the
opening bracket. Here it means, “Match any characters except the following.” So let’s
say you want to find instances of Yahoo that lack the following exclamation point.

380 | Chapter 16: JavaScript and PHP Validation and Error Handling

(The name of the company officially contains an exclamation point!) You could do it
as follows:

/Yahoo[^!]/

The character class consists of a single character—an exclamation point—but it is
inverted by the preceding ^. This is actually not a great solution to the problem—for
instance, it fails if Yahoo is at the end of the line, because then it’s not followed by
anything, whereas the brackets must match a character. A better solution involves
negative lookahead (matching something that is not followed by anything else), but
that’s beyond the scope of this book.

Some More Complicated Examples
With an understanding of character classes and negation, you’re ready now to see a
better solution to the problem of matching an HTML tag. This solution avoids going
past the end of a single tag, but still matches tags such as and as well as
tags with attributes such as this:

Here is one solution:

/<[^>]+>/

That regular expression may look like I just dropped my teacup on the keyboard, but
it is perfectly valid and very useful. Let’s break it apart. Figure 16-3 shows the various
elements, which I’ll describe one by one.

Figure 16-3. Breakdown of a typical regular expression

The elements are as follows:

/

Opening slash that indicates this is a regular expression.

<

Opening bracket of an HTML tag. This is matched exactly; it’s not a metachar‐
acter.

[^>]

Character class. The embedded ^> means “match anything except a closing angle
bracket.”

Regular Expressions | 381

+

Allows any number of characters to match the previous [^>], as long as there is
at least one of them.

>

Closing bracket of an HTML tag. This is matched exactly.

/

Closing slash that indicates the end of the regular expression.

Another solution to the problem of matching HTML tags is to use
a nongreedy operation. By default, pattern matching is greedy,
returning the longest match possible. Nongreedy (or lazy) match‐
ing finds the shortest possible match. Its use is beyond the scope of
this book, but there are more details on the JavaScript.info website.

We are going to look now at one of the expressions from Example 16-1, where the
validateUsername function is used:

/[^a-zA-Z0-9_-]/

Figure 16-4 shows the various elements.

Figure 16-4. Breakdown of the validateUsername regular expression

Let’s look at these elements in detail:

/

Opening slash that indicates this is a regular expression.

[

Opening bracket that starts a character class.

^

Negation character: inverts everything else between the brackets.

382 | Chapter 16: JavaScript and PHP Validation and Error Handling

https://javascript.info/regexp-greedy-and-lazy

a-z

Represents any lowercase letter.

A-Z

Represents any uppercase letter.

0-9

Represents any digit.

_

An underscore.

-

A dash.

]

Closing bracket that ends a character class.

/

Closing slash that indicates the end of the regular expression.

There are two other important metacharacters. They “anchor” a regular expression by
requiring that it appear in a particular place. If a caret (^) appears at the beginning of
the regular expression, the expression has to appear at the beginning of a line of text;
otherwise, it doesn’t match. Similarly, if a dollar sign ($) appears at the end of the reg‐
ular expression, the expression has to appear at the end of a line of text.

It may be somewhat confusing that ^ can mean “negate the charac‐
ter class” inside square brackets and “match the beginning of the
line” if it’s at the beginning of the regular expression. Unfortunately,
the same character is used for two different things, so take care
when using it.

We’ll finish our exploration of regular expression basics by answering a question
raised earlier: suppose you want to make sure there is nothing extra on a line besides
the regular expression? What if you want a line that has “Le Guin” and nothing else?
We can do that by amending the earlier regular expression to anchor the two ends:

/^Le *Guin$/

Summary of Metacharacters
Table 16-1 shows the metacharacters available in regular expressions.

Regular Expressions | 383

Table 16-1. Regular expression metacharacters

Metacharacters Description
/ Begins and ends the regular expression
. Matches any single character except the newline
element* Matches element zero or more times
element+ Matches element one or more times
element? Matches element zero or one times
[characters] Matches a character out of those contained within the brackets
[^characters] Matches a single character that is not contained within the brackets
(regex) Treats the regex as a group for counting or a following *, +, or ?
left|right Matches either left or right
[l-r] Matches a range of characters between l and r
^ Requires match to be at the string’s start
$ Requires match to be at the string’s end
\b Matches a word boundary
\B Matches where there is not a word boundary
\d Matches a single digit
\D Matches a single nondigit
\n Matches a newline character
\s Matches a whitespace character
\S Matches a nonwhitespace character
\t Matches a tab character
\w Matches a word character (a-z, A-Z, 0-9, and _)
\W Matches a nonword character (anything but a-z, A-Z, 0-9, and _)
\x Matches x (useful if x is a metacharacter, but you really want x)
{n} Matches exactly n times
{n,} Matches n times or more
{min,max} Matches at least min and at most max times

Provided with this table, and looking again at the expression /[^a-zA-Z0-9_]/, you
can see that it could easily be shortened to /[^\w]/ because the single metacharacter
\w (with a lowercase w) specifies the characters a-z, A-Z, 0-9, and _.

In fact, we can be cleverer than that, because the metacharacter \W (with an uppercase
W) specifies all characters except for a-z, A-Z, 0-9, and _. Therefore, we could also
drop the ^ metacharacter and simply use /[\W]/ for the expression, or even go a step
further and drop the square brackets, as in /\W/, because it’s single character.

To give you more ideas of how this all works, Table 16-2 shows a range of expressions
and the patterns they match.

384 | Chapter 16: JavaScript and PHP Validation and Error Handling

Table 16-2. Some example regular expressions

Example Matches
r The first r in The quick brown
rec[ei][ei]ve Either of receive or recieve (but also receeve or reciive)
rec[ei]{2}ve Either of receive or recieve (but also receeve or reciive)
rec(ei|ie)ve Either of receive or recieve (but not receeve or reciive)
cat The word cat in I like cats and dogs
cat|dog The word cat in I like cats and dogs (matches either cat or dog, whichever is encountered first)
\. . (the \ is necessary because . is a metacharacter)
5\.0* 5., 5.0, 5.00, 5.000, etc.
[a-f] Any of the characters a, b, c, d, e, or f
cats$ Only the final cats in My cats are friendly cats
^my Only the first my in my cats are my pets
\d{2,3} Any two- or three-digit number (00 through 999)
7(,000)+ 7,000; 7,000,000; 7,000,000,000; 7,000,000,000,000; etc.
[\w]+ Any word of one or more characters
[\w]{5} Any five-letter word

General Modifiers
Some additional modifiers are available for regular expressions:

• /g enables global matching. When using a replace function, specify this modifier
to replace all matches, rather than only the first one.

• /i makes the regular expression match case-insensitive. Thus, instead of /[a-zA-
Z]/, you could specify /[a-z]/i or /[A-Z]/i.

• /m enables multiline mode, in which the caret (^) and dollar sign ($) match
before and after any newlines in the subject string. Normally, in a multiline
string, ^ matches only at the start of the string, and $ matches only at the end of
the string.

For example, the expression /cats/g will match both occurrences of the word cats in
the sentence I like cats, and cats like me. Similarly, /dogs/gi will match both occur‐
rences of the word dogs (Dogs and dogs) in the sentence Dogs like other dogs, because
you can use these specifiers together.

Using Regular Expressions in JavaScript
In JavaScript, you will use regular expressions mostly in two methods: test (which
you have already seen) and replace. Whereas test just tells you whether its argu‐
ment matches the regular expression, replace takes a second parameter: the string to

Regular Expressions | 385

replace the text that matches. Like most functions, replace generates a new string as
a return value; it does not change the input.

To compare the two methods, the following statement just returns true to let us
know that the word cats appears at least once somewhere within the string:

document.write(/cats/i.test("Cats are funny. I like cats."))

But the following statement replaces both occurrences of the word cats with the word
dogs, printing the result. The search has to be global (/g) to find all occurrences, and
case-insensitive (/i) to find the capitalized Cats:

document.write("Cats are friendly. I like cats.".replace(/cats/gi,"dogs"))

If you try out the statement, you’ll see a limitation of replace: because it replaces text
with exactly the string you tell it to use, the first word Cats is replaced by dogs instead
of Dogs.

Using Regular Expressions in PHP
The most common regular expression functions that you are likely to use in PHP are
preg_match, preg_match_all, and preg_replace.

To test whether the word cats appears anywhere within a string, in any combination
of upper- and lowercase, you could use preg_match like this:

$n = preg_match("/cats/i", "Cats are crazy. I like cats.");

Because PHP uses 1 for TRUE and 0 for FALSE, the preceding statement sets $n to 1.
The first argument is the regular expression, and the second is the text to match. But
preg_match is actually a good deal more powerful and complicated, because it takes a
third argument that shows what text matched:

$n = preg_match("/cats/i", "Cats are curious. I like cats.", $match);
echo "$n Matches: $match[0]";

The third argument is an array (here, given the name $match). The function puts the
matching text into the first element, so if the match is successful, you can find the text
that matched in $match[0]. In this example, the output lets us know that the matched
text was capitalized:

1 Matches: Cats

If you wish to locate all matches, you use the preg_match_all function, like this:

$n = preg_match_all("/cats/i", "Cats are strange. I like cats.", $match);
echo "$n Matches: ";
for ($j=0 ; $j < $n ; ++$j) echo $match[0][$j]." ";

386 | Chapter 16: JavaScript and PHP Validation and Error Handling

As before, $match is passed to the function and the element $match[0] is assigned the
matches made, but this time as a subarray. To display the subarray, this example iter‐
ates through it with a for loop.

When you want to replace part of a string, you can use preg_replace as shown here.
This example replaces all occurrences of the word cats with the word dogs, regardless
of case:

echo preg_replace("/cats/i", "dogs", "Cats are furry. I like cats.");

The subject of regular expressions is a large one, and entire books
have been written about it. If you would like further information, I
suggest the Wikipedia entry, or Regular-Expressions.info.

Redisplaying a Form After PHP Validation
OK, back to form validation. So far we’ve created the HTML document validate.html,
which will post through to the PHP program adduser.php, but only if JavaScript vali‐
dates the fields or if JavaScript is disabled or unavailable.

So now it’s time to create adduser.php to receive the posted form, perform its own val‐
idation, and then present the form again to the visitor if the validation fails.
Example 16-3 contains the code that you should type and save (or download from the
companion website).

Example 16-3. The adduser.php program

<?php // adduser.php

 // The PHP code

 $forename = $surname = $username = $password = $age = $email = "";

 if (isset($_POST['forename']))
 $forename = fix_string($_POST['forename']);
 if (isset($_POST['surname']))
 $surname = fix_string($_POST['surname']);
 if (isset($_POST['username']))
 $username = fix_string($_POST['username']);
 if (isset($_POST['password']))
 $password = fix_string($_POST['password']);
 if (isset($_POST['age']))
 $age = fix_string($_POST['age']);
 if (isset($_POST['email']))
 $email = fix_string($_POST['email']);

Redisplaying a Form After PHP Validation | 387

http://bit.ly/regex-wiki
https://www.regular-expressions.info

 $fail = validate_forename($forename);
 $fail .= validate_surname($surname);
 $fail .= validate_username($username);
 $fail .= validate_password($password);
 $fail .= validate_age($age);
 $fail .= validate_email($email);

 echo "<!DOCTYPE html>\n<html><head><title>An Example Form</title>";

 if ($fail == "")
 {
 echo "</head><body>Form data successfully validated:
 $forename, $surname, $username, $password, $age, $email.</body></html>";

 // This is where you would enter the posted fields into a database,
 // preferably using hash encryption for the password.

 exit;
 }

 echo <<<_END

 <!-- The HTML/JavaScript section -->

 <style>
 .signup {
 border: 1px solid #999999;
 font: normal 14px helvetica; color:#444444;
 }
 </style>

 <script>
 function validate(form)
 {
 fail = validateForename(form.forename.value)
 fail += validateSurname(form.surname.value)
 fail += validateUsername(form.username.value)
 fail += validatePassword(form.password.value)
 fail += validateAge(form.age.value)
 fail += validateEmail(form.email.value)

 if (fail == "") return true
 else { alert(fail); return false }
 }

 function validateForename(field)
 {
 return (field == "") ? "No Forename was entered.\\n" : ""
 }

 function validateSurname(field)
 {

388 | Chapter 16: JavaScript and PHP Validation and Error Handling

 return (field == "") ? "No Surname was entered.\\n" : ""
 }

 function validateUsername(field)
 {
 if (field == "") return "No Username was entered.\\n"
 else if (field.length < 5)
 return "Usernames must be at least 5 characters.\\n"
 else if (/[^a-zA-Z0-9_-]/.test(field))
 return "Only a-z, A-Z, 0-9, - and _ allowed in Usernames.\\n"
 return ""
 }

 function validatePassword(field)
 {
 if (field == "") return "No Password was entered.\\n"
 else if (field.length < 6)
 return "Passwords must be at least 6 characters.\\n"
 else if (!/[a-z]/.test(field) || ! /[A-Z]/.test(field) ||
 !/[0-9]/.test(field))
 return "Passwords require one each of a-z, A-Z and 0-9.\\n"
 return ""
 }

 function validateAge(field)
 {
 if (isNaN(field)) return "No Age was entered.\\n"
 else if (field < 18 || field > 110)
 return "Age must be between 18 and 110.\\n"
 return ""
 }

 function validateEmail(field)
 {
 if (field == "") return "No Email was entered.\\n"
 else if (!((field.indexOf(".") > 0) &&
 (field.indexOf("@") > 0)) ||
 /[^a-zA-Z0-9.@_-]/.test(field))
 return "The Email address is invalid.\\n"
 return ""
 }
 </script>
 </head>
 <body>

 <table border="0" cellpadding="2" cellspacing="5" bgcolor="#eeeeee">
 <th colspan="2" align="center">Signup Form</th>

 <tr><td colspan="2">Sorry, the following errors were found

 in your form: <p><i>$fail</i></p>
 </td></tr>

Redisplaying a Form After PHP Validation | 389

 <form method="post" action="adduser.php" onSubmit="return validate(this)">
 <tr><td>Forename</td>
 <td><input type="text" maxlength="32" name="forename" value="$forename">
 </td></tr><tr><td>Surname</td>
 <td><input type="text" maxlength="32" name="surname" value="$surname">
 </td></tr><tr><td>Username</td>
 <td><input type="text" maxlength="16" name="username" value="$username">
 </td></tr><tr><td>Password</td>
 <td><input type="text" maxlength="12" name="password" value="$password">
 </td></tr><tr><td>Age</td>
 <td><input type="text" maxlength="3" name="age" value="$age">
 </td></tr><tr><td>Email</td>
 <td><input type="text" maxlength="64" name="email" value="$email">
 </td></tr><tr><td colspan="2" align="center"><input type="submit"
 value="Signup"></td></tr>
 </form>
 </table>
 </body>
</html>

_END;

 // The PHP functions

 function validate_forename($field)
 {
 return ($field == "") ? "No Forename was entered
": "";
 }

 function validate_surname($field)
 {
 return($field == "") ? "No Surname was entered
" : "";
 }

 function validate_username($field)
 {
 if ($field == "") return "No Username was entered
";
 else if (strlen($field) < 5)
 return "Usernames must be at least 5 characters
";
 else if (preg_match("/[^a-zA-Z0-9_-]/", $field))
 return "Only letters, numbers, - and _ in usernames
";
 return "";
 }

 function validate_password($field)
 {
 if ($field == "") return "No Password was entered
";
 else if (strlen($field) < 6)
 return "Passwords must be at least 6 characters
";
 else if (!preg_match("/[a-z]/", $field) ||
 !preg_match("/[A-Z]/", $field) ||
 !preg_match("/[0-9]/", $field))

390 | Chapter 16: JavaScript and PHP Validation and Error Handling

 return "Passwords require 1 each of a-z, A-Z and 0-9
";
 return "";
 }

 function validate_age($field)
 {
 if ($field == "") return "No Age was entered
";
 else if ($field < 18 || $field > 110)
 return "Age must be between 18 and 110
";
 return "";
 }

 function validate_email($field)
 {
 if ($field == "") return "No Email was entered
";
 else if (!((strpos($field, ".") > 0) &&
 (strpos($field, "@") > 0)) ||
 preg_match("/[^a-zA-Z0-9.@_-]/", $field))
 return "The Email address is invalid
";
 return "";
 }

 function fix_string($string)
 {
 if (get_magic_quotes_gpc()) $string = stripslashes($string);
 return htmlentities ($string);
 }
?>

In this example, all input is sanitized prior to use—even passwords,
which, since they may contain characters used to format HTML,
will be changed into HTML entities. For example, & will become
&, < will become <, and so on. If you will be using a hash
function to store encrypted passwords, this will not be an issue as
long as when you later check the password entered it is sanitized in
the same way, so that the same inputs will be compared.

The result of submitting the form with JavaScript disabled (and two fields incorrectly
completed) is shown in Figure 16-5.

Redisplaying a Form After PHP Validation | 391

Figure 16-5. The form as represented after PHP validation fails

I have put the PHP section of this code (and changes to the HTML section) in a bold
typeface so that you can more clearly see the difference between this and Examples
16-1 and 16-2.

If you browsed through this example (or typed it in or downloaded it from the book’s
companion website), you’ll have seen that the PHP code is almost a clone of the Java‐
Script code; the same regular expressions are used to validate each field in very simi‐
lar functions.

But there are a couple of things to note. First, the fix_string function (right at the
end) is used to sanitize each field and prevent any attempts at code injection from
succeeding.

Also, you will see that the HTML from Example 16-1 has been repeated in the PHP
code within an <<<_END..._END; structure, displaying the form with the values that
the visitor entered the previous time. You do this by simply adding an extra value
parameter to each <input> tag (such as value="$forename"). This courtesy is highly
recommended so that the user only has to edit the previously entered values, and
doesn’t have to type the values in the fields all over again.

392 | Chapter 16: JavaScript and PHP Validation and Error Handling

http://lpmj.net
http://lpmj.net

In the real world, you probably wouldn’t start with an HTML form
such as the one in Example 16-1. Instead, you’d be more likely to go
straight ahead and write the PHP program in Example 16-3, which
incorporates all the HTML. And, of course, you’d also need to
make a minor tweak for the case when it’s the first time the pro‐
gram is called up, to prevent it from displaying errors when all the
fields are empty. You also might drop the six JavaScript functions
into their own .js file for separate inclusion, as mentioned in “Using
a separate JavaScript file” on page 377.

Now that you’ve seen how to bring PHP, HTML, and JavaScript together, the next
chapter will introduce Ajax (Asynchronous JavaScript and XML), which uses Java‐
Script calls to the server in the background to seamlessly update portions of a web
page, without having to resubmit the entire page to the web server.

Questions
1. What JavaScript method can you use to send a form for validation prior to sub‐

mitting it?
2. What JavaScript method is used to match a string against a regular expression?
3. Write a regular expression to match any characters that are not in a word, as

defined by regular expression syntax.
4. Write a regular expression to match either of the words fox or fix.
5. Write a regular expression to match any single word followed by any nonword

character.
6. Using regular expressions, write a JavaScript function to test whether the word

fox exists in the string The quick brown fox.
7. Using regular expressions, write a PHP function to replace all occurrences of the

word the in The cow jumps over the moon with the word my.
8. What HTML attribute is used to precomplete form fields with a value?

See “Chapter 16 Answers” on page 725 in Appendix A for the answers to these
questions.

Questions | 393

CHAPTER 17

Using Asynchronous Communication

The term Ajax was first coined in 2005. It stands for Asynchronous JavaScript and
XML, which, in simple terms, means using a set of methods built into JavaScript to
transfer data between the browser and a server in the background. This term has now
been mostly abandoned in favor of simply talking about asynchronous communica‐
tion.

An excellent example of this technology is Google Maps (see Figure 17-1), in which
new sections of a map are downloaded from the server when needed, without requir‐
ing a page refresh.

Using asynchronous communication not only substantially reduces the amount of
data that must be sent back and forth, but also makes web pages seamlessly dynamic
—allowing them to behave more like self-contained applications. The results are a
much improved user interface and better responsiveness.

395

Figure 17-1. Google Maps is an excellent example of asynchronous communication

What Is Asynchronous Communication?
Asynchronous communication as used today had its beginning with the release of
Internet Explorer 5 in 1999, which introduced a new ActiveX object, XMLHttpRe
quest. ActiveX is Microsoft’s technology for signing plug-ins that install additional
software on your computer. Other browser developers later followed suit, but rather
than using ActiveX, they all implemented the feature as a native part of the JavaScript
interpreter.

However, even before then, an early form of the technology had already surfaced that
used hidden frames on a page that interacted with the server in the background. Chat
rooms were early adopters, using it to poll for and display new message posts without
requiring page reloads.

So, let’s see how to implement asynchronous communication by using JavaScript.

Using XMLHttpRequest
Because of the differences between browser implementations of XMLHttpRequest, you
must create a special function in order to ensure that your code will work in all major
browsers.

To do this, you must understand the three ways of creating an XMLHttpRequest
object:

396 | Chapter 17: Using Asynchronous Communication

• IE 5: request = new ActiveXObject("Microsoft.XMLHTTP")
• IE 6+: request = new ActiveXObject("Msxml2.XMLHTTP")
• All others: request = new XMLHttpRequest()

This is the case because Microsoft chose to implement a change with the release of
Internet Explorer 6, while all other browsers use a slightly different method. There‐
fore, the code in Example 17-1 will work for all major browsers released over the last
few years.

Example 17-1. A cross-browser asynchronous function

<script>
 function asyncRequest()
 {
 try // Non-IE browser?
 { // Yes
 var request = new XMLHttpRequest()
 }
 catch(e1)
 {
 try // IE 6+?
 { // Yes
 request = new ActiveXObject("Msxml2.XMLHTTP")
 }
 catch(e2)
 {
 try // IE 5?
 { // Yes
 request = new ActiveXObject("Microsoft.XMLHTTP")
 }
 catch(e3) // There is no asynchronous support
 {
 request = false
 }
 }
 }
 return request
 }
</script>

You may remember the introduction to error handling in Chapter 14, using the
try...catch construct. Example 17-1 is a perfect illustration of its utility, because it
uses the try keyword to execute the non-IE command and, upon success, jumps on
to the final return statement, where the new object is returned.

Otherwise, a catch traps the error, and the subsequent command is executed. Again,
upon success, the new object is returned; otherwise, the final of the three commands

Using XMLHttpRequest | 397

is tried. If that attempt fails, then the browser doesn’t support asynchronous commu‐
nication and the request object is set to false; otherwise, the object is returned. So
there you have it: a cross-browser request function that you may wish to add to your
library of useful JavaScript functions.

OK, so now you have a means of creating an XMLHttpRequest object, but what can
you do with these objects? Well, each one comes with a set of properties (variables)
and methods (functions), which are detailed in Tables 17-1 and 17-2.

Table 17-1. An XMLHttpRequest object’s properties

Property Description
onreadystatechange Specifies an event-handling function to be called whenever the readyState property of an

object changes.
readyState An integer property that reports on the status of a request. It can have any of these values: 0 =

Uninitialized, 1 = Loading, 2 = Loaded, 3 = Interactive, or 4 = Completed.
responseText The data returned by the server in text format.
responseXML The data returned by the server in XML format.
status The HTTP status code returned by the server.
statusText The HTTP status text returned by the server.

Table 17-2. An XMLHttpRequest object’s methods

Method Description
abort() Aborts the current request
getAllResponseHeaders() Returns all headers as a string
getResponseHeader(param) Returns the value of param as a string
open('method', 'url', 'async') Specifies the HTTP method to use (GET or POST), the target URL, and

whether the request should be handled asynchronously (true or
false)

send(data) Sends data to the target server using the specified HTTP method
setRequestHeader('param', 'value') Sets a header with a parameter/value pair

These properties and methods give you control over what data you send to the server
and receive back, as well as a choice of send and receive methods. For example, you
can choose whether to request data in plain text (which could include HTML and
other tags) or in XML format. You can also decide whether you wish to use the POST
or GET method to send to the server.

Let’s look at the POST method first by creating a very simple pair of documents: a
combination of HTML and JavaScript, and a PHP program to interact asynchro‐
nously with the first file. With a few lines of JavaScript, they request a web document
from a third-party web server, which is then returned to the browser by your server
and placed within a section of the current document.

398 | Chapter 17: Using Asynchronous Communication

Your First Asynchronous Program
Type and save the code in Example 17-2 as urlpost.html, but don’t load it into your
browser yet.

Example 17-2. urlpost.html

<!DOCTYPE html>
<html> <!-- urlpost.html -->
 <head>
 <title>Asynchronous Communication Example</title>
 </head>
 <body style='text-align:center'>
 <h1>Loading a web page into a DIV</h1>
 <div id='info'>This sentence will be replaced</div>

 <script>
 params = "url=news.com"
 request = new asyncRequest()

 request.open("POST", "urlpost.php", true)
 request.setRequestHeader("Content-type",
 "application/x-www-form-urlencoded")
 request.setRequestHeader("Content-length", params.length)
 request.setRequestHeader("Connection", "close")

 request.onreadystatechange = function()
 {
 if (this.readyState == 4)
 {
 if (this.status == 200)
 {
 if (this.responseText != null)
 {
 document.getElementById('info').innerHTML =
 this.responseText
 }
 else alert("Communication error: No data received")
 }
 else alert("Communication error: " + this.statusText)
 }
 }

 request.send(params)

 function asyncRequest()
 {
 try
 {
 var request = new XMLHttpRequest()
 }

Using XMLHttpRequest | 399

 catch(e1)
 {
 try
 {
 request = new ActiveXObject("Msxml2.XMLHTTP")
 }
 catch(e2)
 {
 try
 {
 request = new ActiveXObject("Microsoft.XMLHTTP")
 }
 catch(e3)
 {
 request = false
 }
 }
 }
 return request
 }
 </script>
 </body>
</html>

Let’s go through this document and look at what it does, starting with the first six
lines, which simply set up an HTML document and display a heading. The next line
creates a <div> with the ID info, containing the text This sentence will be
replaced by default. Later on, the text returned from the call will be inserted here.

The next six lines are required for making an HTTP POST request. The first sets the
variable params to a parameter=value pair, which is what we’ll send to the server.
Then the object request is created. After this, the open method is called to set the
object to make a POST request to urlpost.php in asynchronous mode. The last three
lines in this group set up headers that are required for the receiving server to know
that a POST request is coming.

The readyState property

Now we get to the nitty-gritty of an asynchronous call, which all hangs on the ready
State property. This allows the browser to keep accepting user input and changing
the screen, while our program sets the onreadystatechange property to call a func‐
tion of our choice each time readyState changes. In this case, a nameless (or anony‐
mous) inline function has been used, as opposed to a separate, named function. This
type of function is known as a callback function, as it is called back each time ready
State changes.

The syntax to set up the callback function using an inline, anonymous function is as
follows:

400 | Chapter 17: Using Asynchronous Communication

request.onreadystatechange = function()
{
 if (this.readyState == 4)
 {
 // do something
 }
}

If you wish to use a separate, named function, the syntax is slightly different:

request.onreadystatechange = asyncCallback

function asyncCallback()
{
 if (this.readyState == 4)
 {
 // do something
 }
}

Looking at Table 17-1, you’ll see that readyState can have five values. But only one
concerns us: the value 4, which represents a completed call. Therefore, each time the
new function gets called, it returns without doing anything until readyState has a
value of 4. When our function detects that value, it next inspects the status of the
call to ensure it has a value of 200, which means that the call succeeded. If it’s not 200,
an alert pop-up displays the error message contained in statusText.

You will notice that all of these object properties are referenced
using this.readyState, this.status, and so on, rather than the
object’s current name, request, as in request.readyState or
request.status. This is so that you can easily copy and paste the
code and it will work with any object name, because the this key‐
word always refers to the current object.

So, having ascertained that the readyState is 4 and the status is 200, we test the
responseText value to see whether it contains a value. If not, an error message is dis‐
played in an alert box. Otherwise, the inner HTML of the <div> is assigned the value
of responseText, like this:

document.getElementById('info').innerHTML = this.responseText

In this line, the element info is referenced via the getElementById method, and then
its innerHTML property is assigned the value that was returned by the call. The effect
is that this element of the web page changes, while everything else remains the same.

After all this setting up and preparation, the asynchronous request is finally sent to
the server via the following command, which passes the parameters already defined
in the variable params:

Using XMLHttpRequest | 401

request.send(params)

After that, all the preceding code is activated each time readyState changes.

The remainder of the document is the asyncRequest function from Example 17-1,
and the closing </script> and HTML tags.

The server half of the asynchronous process
Now we get to the PHP half of the equation, which you can see in Example 17-3. Type
this code and save it as urlpost.php.

Example 17-3. urlpost.php

<?php // urlpost.php
 if (isset($_POST['url']))
 {
 echo file_get_contents('http://' . SanitizeString($_POST['url']));
 }

 function SanitizeString($var)
 {
 $var = strip_tags($var);
 $var = htmlentities($var);
 return stripslashes($var);
 }
?>

As you can see, this is short and sweet, and also makes use of the ever-important
SanitizeString function, as should be done with all posted data. In this instance,
unsanitized data could result in the user inserting JavaScript and gaining an advan‐
tage over your code.

This program uses the file_get_contents PHP function to load in the web page at
the URL supplied to it in the variable $_POST['url']. The file_get_contents func‐
tion is versatile in that it loads in the entire contents of a file or web page from either
a local or a remote server; it even takes into account moved pages and other redirects.

Once you have typed the program, you are ready to call up urlpost.html in your web
browser, and after a few seconds you should see the contents of the news.com front
page loaded into the <div> that we created for that purpose. It won’t be as fast as
directly loading the web page, because it is transferred twice: once to the server and
again from the server to your browser. The result should look like Figure 17-2.

402 | Chapter 17: Using Asynchronous Communication

Figure 17-2. The news.com front page has been loaded into a div element

Not only have we succeeded in making an asynchronous call and having a response
returned to JavaScript, but we’ve also harnessed the power of PHP to merge in a
totally unrelated web object. Incidentally, if we had tried to find a way to asynchro‐
nously fetch this web page directly (without recourse to the PHP server-side module),
we wouldn’t have succeeded, because there are security blocks preventing cross-
domain asynchronous communication. So, this example also illustrates a handy solu‐
tion to a practical problem.

Using GET Instead of POST
As when you submit any data from a form, you have the option of submitting your
data in the form of GET requests, and you will save a few lines of code if you do so.
However, there is a downside: some browsers may cache GET requests, whereas
POST requests will never be cached. You don’t want to cache a request, because the
browser will just redisplay what it got the last time instead of going to the server for
fresh input. The solution to this is to use a workaround that adds a random parame‐
ter to each request, ensuring that each URL requested is unique.

Example 17-4 shows how you would achieve the same result as with Example 17-2,
but using a GET request instead of POST.

Using XMLHttpRequest | 403

Example 17-4. urlget.html

<!DOCTYPE html>
<html> <!-- urlget.html -->
 <head>
 <title>Asynchronous Communication Example</title>
 </head>
 <body style='text-align:center'>
 <h1>Loading a web page into a DIV</h1>
 <div id='info'>This sentence will be replaced</div>

 <script>
 nocache = "&nocache=" + Math.random() * 1000000
 request = new asyncRequest()
 request.open("GET", "urlget.php?url=news.com" + nocache, true)

 request.onreadystatechange = function()
 {
 if (this.readyState == 4)
 {
 if (this.status == 200)
 {
 if (this.responseText != null)
 {
 document.getElementById('info').innerHTML =
 this.responseText
 }
 else alert("Communication error: No data received")
 }
 else alert("Communication error: " + this.statusText)
 }
 }

 request.send(null)

 function asyncRequest()
 {
 try
 {
 var request = new XMLHttpRequest()
 }
 catch(e1)
 {
 try
 {
 request = new ActiveXObject("Msxml2.XMLHTTP")
 }
 catch(e2)
 {
 try
 {
 request = new ActiveXObject("Microsoft.XMLHTTP")

404 | Chapter 17: Using Asynchronous Communication

 }
 catch(e3)
 {
 request = false
 }
 }
 }
 return request
 }
 </script>
 </body>
</html>

The differences to note between the two documents are highlighted in bold, and
described as follows:

• It is not necessary to send headers for a GET request.
• We call the open method using a GET request, supplying a URL with a string

comprising a ? symbol followed by the parameter/value pair url=news.com.
• We start a second parameter/value pair using an & symbol, and then set the value

of the parameter nocache to a random value between 0 and 1 million. This is
done to ensure that each URL requested is different, and therefore that no
requests will be cached.

• The call to send now contains only a parameter of null, as no parameters are
being passed via a POST request. Note that leaving the parameter out is not an
option, as it would result in an error.

To accompany this new document, the PHP program must be modified to respond to
a GET request, as in Example 17-5, urlget.php.

Example 17-5. urlget.php

<?php
 if (isset($_GET['url']))
 {
 echo file_get_contents("http://".sanitizeString($_GET['url']));
 }

 function sanitizeString($var)
 {
 $var = strip_tags($var);
 $var = htmlentities($var);
 return stripslashes($var);
 }
?>

Using XMLHttpRequest | 405

The only difference between this and Example 17-3 is that the references to $_POST
have been replaced with $_GET. The end result of calling up urlget.html in your
browser is identical to loading urlpost.html.

Sending XML Requests
Although the objects we’ve been creating are called XMLHttpRequest objects, so far we
have made absolutely no use of XML. As you have seen, we have been able to asyn‐
chronously request an entire HTML document, but we could equally have asked for a
text page, a string or number, or even spreadsheet data.

So, let’s modify the previous example document and PHP program to fetch some
XML data. To do this, first take a look at the PHP program, xmlget.php, shown in
Example 17-6.

Example 17-6. xmlget.php

<?php
 if (isset($_GET['url']))
 {
 header('Content-Type: text/xml');
 echo file_get_contents("http://".sanitizeString($_GET['url']));
 }

 function sanitizeString($var)
 {
 $var = strip_tags($var);
 $var = htmlentities($var);
 return stripslashes($var);
 }
?>

This program has been very slightly modified (shown in bold highlighting) to output
the correct XML header before returning a fetched document. No checking is done
here, as it is assumed that the calling code will request an actual XML document.

Now on to the HTML document, xmlget.html, shown in Example 17-7.

Example 17-7. xmlget.html

<!DOCTYPE html>
<html> <!-- xmlget.html -->
 <head>
 <title>Asynchronous Communication Example</title>
 </head>
 <body>
 <h1>Loading XML data into a DIV</h1>
 <div id='info'>This sentence will be replaced</div>

406 | Chapter 17: Using Asynchronous Communication

 <script>
 nocache = "&nocache=" + Math.random() * 1000000
 url = "rss.news.yahoo.com/rss/topstories"
 out = "";

 request = new asyncRequest()
 request.open("GET", "xmlget.php?url=" + url + nocache, true)

 request.onreadystatechange = function()
 {
 if (this.readyState == 4)
 {
 if (this.status == 200)
 {
 if (this.responseText != null)
 {
 titles = this.responseXML.getElementsByTagName('title')

 for (j = 0 ; j < titles.length ; ++j)
 {
 out += titles[j].childNodes[0].nodeValue + '
'
 }
 document.getElementById('info').innerHTML = out
 }
 else alert("Communication error: No data received")
 }
 else alert("Communication error: " + this.statusText)
 }
 }

 request.send(null)

 function asyncRequest()
 {
 try
 {
 var request = new XMLHttpRequest()
 }
 catch(e1)
 {
 try
 {
 request = new ActiveXObject("Msxml2.XMLHTTP")
 }
 catch(e2)
 {
 try
 {
 request = new ActiveXObject("Microsoft.XMLHTTP")
 }
 catch(e3)

Using XMLHttpRequest | 407

 {
 request = false
 }
 }
 }
 return request
 }
 </script>
 </body>
</html>

Again, the differences have been highlighted in bold. As you can see, this code is sub‐
stantially similar to the previous versions, except that the URL now being requested,
rss.news.yahoo.com/rss/topstories, contains an XML document, the Yahoo! News Top
Stories feed.

The other big change is the use of the responseXML property, which replaces the
responseText property. Whenever a server returns XML data, responseXML will con‐
tain the XML returned.

However, responseXML doesn’t simply contain a string of XML text: it is actually a
complete XML document object that we can examine and parse using DOM tree
methods and properties. This means it is accessible, for example, by the JavaScript
getElementsByTagName method.

About XML
An XML document will generally take the form of the RSS feed shown in
Example 17-8. However, the beauty of XML is that we can store this type of structure
internally in a DOM tree (see Figure 17-3) to make it quickly searchable.

Example 17-8. An XML document

<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0">
 <channel>
 <title>RSS Feed</title>
 <link>http://website.com</link>
 <description>website.com's RSS Feed</description>
 <pubDate>Mon, 11 May 2020 00:00:00 GMT</pubDate>
 <item>
 <title>Headline</title>
 <guid>http://website.com/headline</guid>
 <description>This is a headline</description>
 </item>
 <item>
 <title>Headline 2</title>
 <guid>http://website.com/headline2</guid>
 <description>The 2nd headline</description>

408 | Chapter 17: Using Asynchronous Communication

 </item>
 </channel>
</rss>

Figure 17-3. The DOM tree of Example 17-8

Then, using the getElementsByTagName method, we can quickly extract the values
associated with various tags without a lot of string searching. This is exactly what we
do in Example 17-7, where the following command is issued:

titles = this.responseXML.getElementsByTagName('title')

This single command has the effect of placing all the values of the <title> elements
into the array titles. From there, it is a simple matter to extract them with the fol‐
lowing expression (where j has been assigned to an integer that represents the title to
access):

titles[j].childNodes[0].nodeValue

All the titles are then appended to the string variable out, and once they’ve all been
processed, the result is inserted into the empty <div> at the document start. When
you call up xmlget.html in your browser, the result will be something like Figure 17-4.

Using XMLHttpRequest | 409

Figure 17-4. Asynchronously fetching a Yahoo! XML news feed

To recap, each entity such as title is a node, and so, for example,
the title text is considered a node inside the title. But even after you
get the child node, you have to ask for it as text, which is the pur‐
pose of .nodeValue. Also, as with all form data, remember that you
can use either the POST or the GET method when requesting XML
data; your choice will make little difference to the result.

Why use XML?
You may ask why you would use XML other than for fetching XML documents such
as RSS feeds. Well, the simple answer is that you don’t have to, but if you wish to pass
structured data back to your applications, it could be a real pain to send a simple,
unorganized jumble of text that would need complicated processing in JavaScript.

Instead, you can create an XML document and pass that back to the calling function,
which will automatically place it into a DOM tree, as easily accessible as the HTML
DOM object with which you are now familiar.

These days programmers are more likely to use JavaScript Object Notation (JSON) as
their preferred data-interchange format, as it’s a simple subset of JavaScript.

410 | Chapter 17: Using Asynchronous Communication

http://json.org

Using Frameworks for Asynchronous Communication
Now that you know how to code your own asynchronous routines, you might like to
investigate some of the free frameworks that are available to make it even easier, and
which offer many more advanced features. In particular, I would suggest you check
out jQuery, probably the most commonly used framework, which I introduce in
Chapter 21. In the following chapter, though, we’ll look at how to apply styling to
your websites with CSS.

Questions
1. Why is it necessary to write a function for creating new XMLHttpRequest objects?
2. What is the purpose of the try...catch construct?
3. How many properties and how many methods does an XMLHttpRequest object

have?
4. How can you tell when an asynchronous call has completed?
5. How do you know whether an asynchronous call completed successfully?
6. What XMLHttpRequest object property returns an asynchronous call’s text

response?
7. What XMLHttpRequest object property returns an asynchronous call’s XML

response?
8. How can you specify a callback function to handle asynchronous responses?
9. What XMLHttpRequest method is used to initiate an asynchronous request?

10. What are the main differences between an asynchronous GET and POST request?

See “Chapter 17 Answers” on page 726 in Appendix A for the answers to these
questions.

Questions | 411

CHAPTER 18

Introduction to CSS

Using Cascading Style Sheets (CSS), you can apply styles to your web pages to make
them look exactly how you want. This works because CSS is connected to the Docu‐
ment Object Model (DOM), which I explained in Chapter 13.

With CSS and its integration with the DOM, you can quickly and easily restyle any
element. For example, if you don’t like the default look of the <h1>, <h2>, and other
heading tags, you can assign new styles to override the default settings for the font
family and size used, or whether bold or italics should be set, and many more proper‐
ties too.

One way you can add styling to a web page is by inserting the required statements
into the head of the page, between the <head> and </head> tags. So, to change the
style of the <h1> tag, you might use the following code (I’ll explain the syntax later):

<style>
 h1 { color:red; font-size:3em; font-family:Arial; }
</style>

Within an HTML page, this might look like Example 18-1 (see Figure 18-1), which,
like all the examples in this chapter, uses the standard HTML5 DOCTYPE declaration.

Example 18-1. A simple HTML page

<!DOCTYPE html>
<html>
 <head>
 <title>Hello World</title>
 <style>
 h1 { color:red; font-size:3em; font-family:Arial; }
 </style>
 </head>
 <body>

413

 <h1>Hello there</h1>
 </body>
</html>

Figure 18-1. Styling a tag, with the original style shown in the inset

Importing a Stylesheet
When you wish to style a whole site, rather than a single page, a better way to manage
stylesheets is to move them completely out of your web pages into separate files, and
then import the ones you need. This lets you apply different stylesheets for different
layouts (such as web and print), without changing the HTML.

There are a couple of different ways you can achieve this. The first is to use the CSS
@import directive, like this:

<style>
 @import url('styles.css');
</style>

This statement tells the browser to fetch a stylesheet with the name styles.css. The
@import command is quite flexible because you can put it in a stylesheet, so style‐
sheets can pull in other stylesheets, and so on. Just make sure that there are no
<style> or </style> tags in any of your external stylesheets, or they will not work.

Importing CSS from Within HTML
You can also include a stylesheet with the HTML <link> tag, like this:

<link rel='stylesheet' href='styles.css'>

This has the exact same effect as the @import directive, except that <link> is an
HTML-only tag and is not a valid style directive, so it cannot be used from within one
stylesheet to pull in another, and also cannot be placed within a pair of
<style>...</style> tags.

414 | Chapter 18: Introduction to CSS

Just as you can use multiple @import directives within your CSS to include multiple
external stylesheets, you can also use as many <link> elements as you like in your
HTML.

Embedded Style Settings
There’s also nothing stopping you from individually setting or overriding certain
styles for the current page on a case-by-case basis by inserting style declarations
directly within HTML, like this (which results in italic, blue text within the tags):

<div style='font-style:italic; color:blue;'>Hello there</div>

But this should be reserved only for the most exceptional circumstances, as it breaks
the separation of content and presentation.

Using IDs
A better solution for setting the style of an element is to assign an ID to it in the
HTML, like this:

<div id='welcome'>Hello there</div>

This states that the contents of the <div> with the ID welcome should have applied to
them the style defined in the welcome style setting. The matching CSS statement for
this might look like the following:

#welcome { font-style:italic; color:blue; }

Note the use of the # symbol, which specifies that only the ID with
the name welcome should be styled with this statement.

Using Classes
The value of an id element must be unique within the web page, because that’s what
lets it serve as an identifier. If you would like to apply the same style to many ele‐
ments, you do not have to give each one a different ID because you can specify a class
to manage them all, like this:

<div class='welcome'>Hello</div>

This states that the contents of this element (and any others that use the class) should
have applied to them the style defined in the welcome class. Once a class is applied,
you can use the following rule, either in the page header or within an external style‐
sheet, for setting the styles for the class:

Using IDs | 415

.welcome { font-style:italic; color:blue; }

Instead of the # symbol, which is reserved for IDs, class statements are prefaced with
a . (period).

Using Semicolons
In CSS, semicolons are used to separate multiple CSS statements on the same line.
But if there is only one statement in a rule (or in an inline style setting within an
HTML tag), you can omit the semicolon, as you can for the final statement in a
group.

However, to avoid hard-to-find CSS errors, you may prefer to always use a semicolon
after every CSS setting. You can then copy and paste them, and otherwise modify
properties, without worrying about removing semicolons where they aren’t strictly
necessary or having to add them where they are required.

CSS Rules
Each statement in a CSS rule starts with a selector, which is the item to which the rule
will be applied. For example, in this assignment, h1 is the selector being given a font
size 240 percent larger than the default:

h1 { font-size:240%; }

font-size is a property. Providing a value of 240% to the font-size property of the
selector ensures that the contents of all <h1>...</h1> pairs of tags will be displayed at
a font size that is 240 percent of the default size. All changes in rules must be within
the { and } symbols that follow the selector. In font-size:240%; the part before the :
(colon) is the property, while the remainder is the value applied to it.

Last comes a ; (semicolon) to end the statement. In this instance, because font-size
is the last property in the rule, the semicolon is not required (but it would be if
another assignment were to follow).

Multiple Assignments
You can create multiple style declarations in a couple of different ways. First, you can
concatenate them on the same line, like this:

h1 { font-size:240%; color:blue; }

This adds a second assignment that changes the color of all <h1> headings to blue.
You can also place the assignments one per line, like the following:

h1 { font-size:240%;
color:blue; }

416 | Chapter 18: Introduction to CSS

Or you can space out the assignments a little more, so that they line up below each
other in a column at the colons, like this:

h1 {
 font-size:240%;
 color :blue;
}

This way, you can easily see where each new set of rules begins, because the selector is
always in the first column, and the assignments that follow are neatly lined up with all
property values starting at the same horizontal offset. In the preceding examples, the
final semicolon is unnecessary, but should you ever want to concatenate any such
groups of statements into a single line, it is very quick to do with all the semicolons
already in place.

You can specify the same selector as many times as you want, and CSS combines all
the properties. So, the previous example could also be specified as follows:

h1 { font-size: 240%; }
h1 { color : blue; }

There is no right or wrong way to lay out your CSS, but I recom‐
mend that you at least try to keep each block of CSS consistent with
itself in terms of visual layout, so that other people can take it in at
a glance.

What if you specified the same property to the same selector twice?

h1 { color : red; }
h1 { color : blue; }

The last value specified—in this case, blue—would apply. In a single file, repeating the
same property for the same selector would be pointless, but such repetition happens
frequently in real-life web pages when multiple stylesheets are applied. It’s one of the
valuable features of CSS, and where the term cascading comes from.

Using Comments
It is a good idea to comment your CSS rules, even if you describe only the main
groups of statements rather than all or most of them. Do this by placing a comment
within a pair of /*...*/ tags, like this:

/* This is a CSS comment */

You can extend a comment over many lines, like this:

CSS Rules | 417

/*
 A multi-
 line
 comment
*/

When using multiline comments, note that you cannot nest single-
line (or any other) comments within them. Doing so can lead to
unpredictable errors.

Style Types
There are a number of different style types, ranging from the default styles set up by
your browser (and any user styles you may have applied in your browser to override
its defaults), through inline or embedded styles, to external stylesheets. The styles
defined in each type have a hierarchy of precedence, from low to high.

We’ll talk more about the Cascading part of Cascading Style Sheets, which is
explained in “The CSS Cascade” on page 425. But before we go into the details, it
helps to first have a brief introduction.

Default Styles
The lowest level of style precedence is the default styling applied by a web browser.
These styles are created as a fallback for when a web page doesn’t have any styles, and
they are intended to be a generic set of styles that will display reasonably well in most
instances.

Pre-CSS, these were the only styles applied to a document, and only a handful of
them could be changed by a web page (such as font face, color, and a few element
sizing arguments).

User Styles
User styles have the next highest precedence. They are supported by most modern
browsers but are implemented differently by each, so the easiest way for you to create
your own preferred browsing styles these days is to use a plug-in such as Stylish. This
is available for most popular browsers, except for the Microsoft Internet Explorer and
Edge browsers, with which you must load your own user stylesheet from the Internet
Options menu.

If you would like to learn how to create your own default styles for browsing, enter
your browser’s name followed by “user styles” in a search engine (for example, “Fire‐

418 | Chapter 18: Introduction to CSS

http://userstyles.org

fox user styles” or “Opera user styles”). Figure 18-2 shows a user stylesheet being
applied to Internet Explorer.

Figure 18-2. Applying a user stylesheet to Internet Explorer

If a user style is assigned that has already been defined as a browser default, it will
override the browser’s default setting. Any styles not defined in a user stylesheet will
retain their default values as set up in the browser.

External Stylesheets
The next type of styles are those assigned in an external stylesheet. These settings will
override any assigned either by the user or by the browser. External stylesheets are the
recommended way to create your styles because you can produce different stylesheets
for different purposes, such as styling for general web use, for viewing on a mobile
browser with a smaller screen, for printing purposes, and so on. Just apply the one
needed for each type of media when you create the web page.

Internal Styles
Then there are internal styles, which you create within <style>...</style> tags, and
which take precedence over all the preceding style types. At this point, though, you

Style Types | 419

are beginning to break the separation between styling and content, as any external
stylesheets loaded in at the same time will have a lower precedence.

Inline Styles
Finally, inline styles are where you assign a property directly to an element. They have
the highest precedence of any style type, and are used like this:

Visit Google

In this example, the link specified will be displayed in green, regardless of any default
or other color settings applied by any other type of stylesheet, whether directly to this
link or generically for all links.

When you use this type of styling, you are breaking the separation
between layout and content; therefore, it is recommended that you
do so only when you have a very good reason.

CSS Selectors
The means by which you access one or more elements is called selection, and the part
of a CSS rule that does this is known as a selector. As you might expect, there are
many varieties of selector.

The Type Selector
The type selector works on types of HTML elements such as <p> or <i>. For example,
the following rule will ensure that all text within <p>...</p> tags is fully justified:

p { text-align:justify; }

The Descendant Selector
Descendant selectors let you apply styles to elements that are contained within other
elements. For example, the following rule sets all text within ... tags to red,
but only if those tags occur within <p>...</p> tags (like this: <p>Hello
there</p>):

p b { color:red; }

Descendant selectors can continue nesting indefinitely, so the following is a perfectly
valid rule to make the text blue within bold text, inside a list element of an unordered
list:

ul li b { color:blue; }

420 | Chapter 18: Introduction to CSS

As a practical example, suppose you want to use a different numbering system for an
ordered list that is nested within another ordered list. You can achieve this in the fol‐
lowing way, which will replace the default numeric numbering (starting from 1) with
lowercase letters (starting from a):

<!DOCTYPE html>
<html>
 <head>
 <style>
 ol ol { list-style-type:lower-alpha; }
 </style>
 </head>
 <body>

 One
 Two
 Three

 One
 Two
 Three

 </body>
</html>

The result of loading this HTML into a web browser is as follows, in which you can
see that the second list of elements displays differently:

1. One
2. Two
3. Three
 a. One
 b. Two
 c. Three

The Child Selector
The child selector is similar to the descendant selector but is more restrictive about
when the style will be applied, by selecting only those elements that are direct chil‐
dren of another element. For example, the following code uses a descendant selector
that will change any bold text within a paragraph to red, even if the bold text is itself
within a section of italic text (like this <p><i>Hello there</i></p>):

p b { color:red; }

In this instance, the word Hello displays in red. However, when this more general
type of behavior is not required, a child selector can be used to narrow the scope of
the selector. For example, the following rule inserts a greater-than sign (>) to create a

CSS Selectors | 421

child selector, which sets bold text to red only if the element is a direct child of a para‐
graph, and is not itself contained within another element:

p > b { color:red; }

Now Hello will not change color because is not a direct child of <p>.

For a practical example, suppose you wish to make bold only those elements
that are direct children of elements. You can achieve this as follows, where the
 elements that are direct children of elements are not made bold:

<!DOCTYPE html>
<html>
 <head>
 <style>
 ol > li { font-weight:bold; }
 </style>
 </head>
 <body>

 One
 Two
 Three

 One
 Two
 Three

 </body>
</html>

The result of loading this HTML into a browser will be as follows:

1. One
2. Two
3. Three

 • One
 • Two
 • Three

The ID Selector
If you give an element an ID name (like this: <div id='mydiv'>), you can directly
access it from CSS in the following way, which changes all text in the element to italic:

#mydiv { font-style:italic; }

Each ID can be used only once within a document, so only the first occurrence found
will receive the new property value assigned by a CSS rule. But in CSS you can

422 | Chapter 18: Introduction to CSS

directly reference any IDs that have the same name, as long as they occur within dif‐
ferent element types, like this:

<div id='myid'>Hello</div> Hello

Because IDs normally apply only to unique elements, the following rule will apply an
underline to only the first occurrence of myid:

#myid { text-decoration:underline; }

However, you can ensure that CSS applies the rule to both occurrences like this:

span#myid { text-decoration:underline; }
div#myid { text-decoration:underline; }

Or more succinctly, like this (see “Selecting by Group” on page 425):

span#myid, div#myid { text-decoration:underline; }

I don’t recommend using this form of selection because it raises
barriers to the use of JavaScript. Any JavaScript that also must
access these elements cannot easily do so because the commonly
used getElementById function will return only the first occur‐
rence. To reference any other instances, a program would have to
search through the whole list of elements in the document—a
trickier task to undertake. So, it’s generally better to always use
unique ID names.

The Class Selector
When you want to share the same styling among a number of elements in a page, you
can assign them all the same class name (like this:). Then
create a single rule to modify all those elements at once, as in the following rule,
which creates a 10-pixel left margin offset for all elements using the class:

.myclass { margin-left:10px; }

In modern browsers, you can have HTML elements use more than one class by sepa‐
rating the class names with spaces, like this: <span class='class1 class2

class3'>. Remember, though, that some very old browsers allow only a single class
name in a class argument.

You can narrow the scope of action of a class by specifying the types of elements to
which it should apply. For example, the following rule applies the setting only to
paragraphs that use the class main:

p.main { text-indent:30px; }

CSS Selectors | 423

In this example, only paragraphs using the class main (like this: <p class="main">)
will receive the new property value. Any other element types that may try to use the
class (such as <div class="main">) will not be affected by this rule.

The Attribute Selector
Many HTML tags support attributes, and using this type of selector can save you
from having to use IDs and classes to refer to them. For example, you can directly
reference attributes in the following manner, which sets all elements with the
attribute type="submit" to a width of 100 pixels:

[type="submit"] { width:100px; }

If you wish to narrow down the scope of the selector to, for example, only <form>
input elements with that attribute type, you could use the following rule instead:

form input[type="submit"] { width:100px; }

Attribute selectors also work on IDs and classes, so for example,
[class~="classname"] works exactly like the class selector .class
name (except that the latter has a higher precedence). Likewise,
[id="idname"] is equivalent to using the ID selector #idname. The
class and ID selectors prefaced by # and . can therefore be viewed
as shorthand for attribute selectors, but with a higher precedence.
The ~= operator matches an attribute even if it is one of a space-
separated group of attributes.

The Universal Selector
The * wildcard or universal selector matches any element, so the following rule will
make a complete mess of a document by giving a green border to all of its elements:

* { border:1px solid green; }

It’s therefore unlikely that you will use the * on its own, but as part of a compound
rule it can be very powerful. For example, the following rule will apply the same styl‐
ing as the preceding one, but only to all paragraphs that are subelements of the ele‐
ment with the ID boxout, and only as long as they are not direct children:

#boxout * p {border:1px solid green; }

Let’s look at what’s going on here. The first selector following #boxout is a * symbol,
so it refers to any element within the boxout object. The following p selector then
narrows down the selection focus by changing the selector to apply only to para‐
graphs (as defined by the p) that are subelements of elements returned by the * selec‐
tor. Therefore, this CSS rule performs the following actions (in which I use the terms
object and element interchangeably):

424 | Chapter 18: Introduction to CSS

1. Find the object with the ID of boxout.
2. Find all subelements of the object returned in step 1.
3. Find all p subelements of the objects returned in step 2 and, since this is the final

selector in the group, also find all p sub- and sub-subelements (and so on) of the
objects returned in step 2.

4. Apply the styles within the { and } characters to the objects returned in step 3.

The net result of this is that the green border is applied only to paragraphs that are
grandchildren (or great-grandchildren, and so on) of the main element.

Selecting by Group
Using CSS, you can apply a rule to more than one element, class, or any other type of
selector at the same time by separating the selectors with commas. So, for example,
the following rule will place a dotted orange line underneath all paragraphs, the ele‐
ment with the ID of idname, and all elements that use the class classname:

p, #idname, .classname { border-bottom:1px dotted orange; }

Figure 18-3 shows various selectors in use, with the rules applied to them alongside.

Figure 18-3. Some HTML and the CSS rules used by it

The CSS Cascade
As already briefly discussed, one of the most fundamental things about CSS proper‐
ties is that they cascade—hence the name Cascading Style Sheets. But what does this
mean?

The CSS Cascade | 425

Cascading is a method used to resolve potential conflicts between the various types of
stylesheet a browser supports, and apply them in order of precedence by who created
them, the method used to create the style, and the types of properties selected.

Stylesheet Creators
There are three main types of stylesheet supported by all modern browsers. In order
of precedence from high to low, they are as follows:

1. Those created by a document’s author
2. Those created by the user
3. Those created by the browser

These three sets of stylesheets are processed in reverse order. First, the defaults in the
web browser are applied to the document. Without these defaults, web pages that
don’t use stylesheets would look terrible. They include the font face, size, and color;
element spacing; table borders and spacing; and all the other reasonable standards a
user would expect.

Next, if the user has created any styles to use instead of the standard ones, these are
applied, replacing any of the browser’s default styles that may conflict.

Last, any styles created by the current document’s author are applied, replacing any
that have been created either as browser defaults or by the user.

Stylesheet Methods
Stylesheets can be created via three different methods. In order of precedence from
high to low, they are as follows:

1. As inline styles
2. In an embedded stylesheet
3. In an external stylesheet

Again, these methods of stylesheet creation are applied in reverse order of prece‐
dence. Therefore, all external stylesheets are processed first, and their styles are
applied to the document.

Next, any embedded styles (within <style>...</style> tags) are processed, and any
that conflict with external rules are given precedence and will override them.

Last, any styles applied directly to an element as an inline style (such as <div
style="...">...</div>) are given the highest precedence, and override all previ‐
ously assigned properties.

426 | Chapter 18: Introduction to CSS

Stylesheet Selectors
There are three different ways of selecting elements to be styled. Going from highest
to lowest order of precedence, they are as follows:

1. Referencing by individual ID or attribute selector
2. Referencing in groups by class
3. Referencing by element tags (such as <p> or)

Selectors are processed according to the number and types of elements affected by a
rule, which is a little different from the previous two methods for resolving conflicts.
This is because rules do not have to apply only to one type of selector at a time, and
may reference many different selectors.

Therefore, we need a method to determine the precedence of rules that can contain
any combination of selectors. CSS does this by calculating the specificity of each rule
by ordering them from the widest to narrowest scope of action.

Calculating specificity
We calculate the specificity of a rule by creating three-part numbers based on the
selector types in the preceding numbered list. These compound numbers start off
looking like [0,0,0]. When processing a rule, each selector that references an ID
increments the first number by 1, so that the compound number would become
[1,0,0].

Let’s look at the following rule, which has seven references. Three of them are to the
IDs #heading, #main, and #menu, so the compound number becomes [3,0,0]:

#heading #main #menu .text .quote p span {
 // Rules go here;
}

Then the number of classes in the selector is placed in the second part of the com‐
pound number. In this example, there are two of them (.text and .quote), so the
compound number becomes [3,2,0].

Finally, all selectors that reference element tags are counted, and this number is
placed in the last part of the compound number. In the example, there are two (p and
span), so the final compound number becomes [3,2,2].

This is all that is needed to compare this rule’s specificity with that of another. In cases
such as this one where there are nine or fewer of each type in a compound number,
you can convert it directly to a decimal number, which in this case is 322. Rules with a
lower number than this will have lower precedence, and those with a higher number

The CSS Cascade | 427

will have greater precedence. Where two rules share the same value, the most recently
applied one wins.

For example, suppose we also have the following rule:

#heading #main .text .quote .news p span {
 // Rules go here;
}

Here, although seven elements are also referenced, there are now only two ID refer‐
ences but three class references, which results in the compound number [2,3,2].
Since 322 is greater than 232, the former example has precedence over the latter.

Using a different number base. Where there are more than nine of a type in a com‐
pound number, you have to work in a higher number base. For example, you can’t
convert the compound number [11,7,19] to decimal by simply concatenating the
three parts. Instead, you must convert the number to a higher base, such as base 20
(or higher if there are more than 19 of any type).

To do this, multiply the three parts out and add the results like this, starting with the
rightmost number and working left:

 20 × 19 = 380
 20×20 × 7 = 2800
 20×20×20 × 11 = 88000
Total in decimal = 91180

On the left, replace the values of 20 with the base you are using, as needed. Once all of
the compound numbers of a set of rules are converted from this base to decimal, it is
easy to determine the specificity, and therefore the precedence, of each.

Thankfully, the CSS processor handles all of this for you, but knowing how it works
helps you to properly construct rules and understand what precedence they will have.

If all this precedence calculation sounds rather complicated, you’ll
be pleased to know that in most cases you can usually get by with
this simple rule of thumb: in general, the fewer elements there are
to be modified, and the more specific they are, the greater the
precedence that is given to a rule.

Some rules are more equal than others. Where two or more style rules are exactly equiv‐
alent, only the most recently processed rule will take precedence. However, you can
force a rule to a higher precedence than other equivalent rules by using the !impor
tant declaration, like this:

p { color:#ff0000 !important; }

428 | Chapter 18: Introduction to CSS

When you do this, all previous equivalent settings are overridden (even ones
using !important), and any equivalent rules that are processed later will be ignored.
So, for example, the second of the two following rules would normally take prece‐
dence, but because of the use of !important in the prior assignment, the second one
is ignored:

p { color:#ff0000 !important; }
p { color:#ffff00 }

User stylesheets can be created for specifying default browser styles,
and they may use the !important declaration, in which case the
user’s style setting will take precedence over the same properties
specified in the current web page. However, on very old browsers
using CSS1, this feature isn’t supported. You should also note that
non-!important user style settings will be overwritten by
any !important styles in web pages.

The Difference Between div and span Elements
Both <div> and elements are types of containers, but with some different
qualities. By default, a <div> element has infinite width (at least to the browser edge),
which you can see by applying a border to one, like this:

<div style="border:1px solid green;">Hello</div>

A element, however, is only as wide as the text it contains. Therefore, the fol‐
lowing line of HTML creates a border only around the word Hello, which does not
extend to the righthand edge of the browser:

Hello

Also, elements follow text or other objects as they wrap around them, and can
therefore have complicated borders. For example, in Example 18-2, I used CSS to
make the background of all <div> elements yellow, to make all elements cyan,
and to add a border to both, before then creating a few example and <div>
sections.

Example 18-2. <div> and example

<!DOCTYPE html>
<html>
 <head>
 <title>Div and span example</title>
 <style>
 div, span { border :1px solid black; }
 div { background-color:yellow; }
 span { background-color:cyan; }

The Difference Between div and span Elements | 429

 </style>
 </head>
 <body>
 <div>This text is within a div tag</div>
 This isn't. <div>And this is again.</div>

 This text is inside a span tag.
 This isn't. And this is again.

 <div>This is a larger amount of text in a div that wraps around
 to the next line of the browser</div>

 This is a larger amount of text in a span that wraps around
 to the next line of the browser
 </body>
</html>

Figure 18-4 shows what this example looks like in a web browser. Although it appears
only in shades of gray in the printed book, the figure clearly shows how <div> ele‐
ments extend to the righthand edge of the browser window and force the following
content to appear at the start of the first available position below them.

Figure 18-4. A variety of elements of differing width

The figure also shows how elements keep to themselves and take up only the
space required to hold their content, without forcing subsequent content to appear
below them.

Additionally, in the bottom two examples in the figure you can see that when <div>
elements wrap at the screen’s edge, they retain a rectangular shape, whereas
elements simply follow the flow of the text (or other content) they contain.

430 | Chapter 18: Introduction to CSS

Since <div> elements can only be rectangular, they are better suited
for containing objects such as images, boxouts, quotations, and so
on, whereas tags are best used for holding text or other
attributes that are placed one after another inline, and which
should flow from left to right (or right to left in some languages).

Measurements
CSS supports an impressive range of units of measurement, enabling you to tailor
your web pages precisely to specific values, or by relative dimensions. The ones I gen‐
erally use (and believe you will also find the most useful) are pixels, points, ems, and
percent, but here’s the complete list:

Pixels
The size of a pixel varies according to the dimensions and pixel depth of the
user’s screen. One pixel equals the width/height of a single dot on the screen, and
so this measurement is best suited to screens rather than print. For example:

.classname { margin:5px; }

Points
A point is equivalent in size to 1/72 of an inch. The measurement comes from a
print design background and is best suited for that medium, but is also com‐
monly used for on-screen display. For example:

.classname { font-size:14pt; }

Inches
An inch is the equivalent of 72 points and is also a measurement type best suited
for print. For example:

.classname { width:3in; }

Centimeters
Centimeters are another unit of measurement best suited for print. One centime‐
ter is a little over 28 points. For example:

.classname { height:2cm; }

Millimeters
A millimeter is 1/10 of a centimeter (or almost 3 points). Millimeters are another
measure best suited to print. For example:

.classname { font-size:5mm; }

Picas
A pica is another print typographic measurement, which is equivalent to 12
points. For example:

Measurements | 431

.classname { font-size:1pc; }

Ems
An em is equal to the current font size and is therefore one of the more useful
measurements for CSS since it is used to describe relative dimensions. For exam‐
ple:

.classname { font-size:2em; }

Exs
An ex is also related to the current font size; it is equivalent to the height of a
lowercase letter x. This is a less popular unit of measurement that is most often
used as a good approximation for helping to set the width of a box that will con‐
tain some text. For example:

.classname { width:20ex; }

Percent
This unit is related to the em in that it is exactly 100 times greater (when used on
a font). Whereas 1 em equals the current font size, the same size is 100 in percent.
When not relating to a font, this unit is relative to the size of the container of the
property being accessed. For example:

.classname { height:120%; }

Figure 18-5 shows each of these measurement types in turn being used to display text
in almost identical sizes.

Figure 18-5. Different measurements that display almost the same

432 | Chapter 18: Introduction to CSS

Fonts and Typography
You can change four main font properties using CSS: font-family, font-style,
font-size, and font-weight. Between them, you can fine-tune the way text displays
in your web pages and/or when printed.

font-family
The font-family property assigns the font to use. Here you can list a variety of fonts
in order of preference from left to right, so that styling can fall back gracefully when
the user doesn’t have the preferred font installed. For example, to set the default font
for paragraphs, you might use a CSS rule such as this:

p { font-family:Verdana, Arial, Helvetica, sans-serif; }

Where a font name is made up of two or more words, you must enclose the name in
quotation marks, like this:

p { font-family:"Times New Roman", Georgia, serif; }

Because they should be available in virtually all web browsers and
operating systems, the safest font families to use on a web page are
Arial, Helvetica, Times New Roman, Times, Courier New, and Cou‐
rier. The Verdana, Georgia, Comic Sans MS, Trebuchet MS, Arial
Black, and Impact fonts are safe for Mac and PC use, but may not
be installed on other operating systems such as Linux. Other com‐
mon but less safe fonts are Palatino, Garamond, Bookman, and
Avant Garde. If you use one of the less safe fonts, make sure you
offer fallbacks of one or more safer fonts in your CSS so that your
web pages will degrade gracefully on browsers without your prefer‐
red fonts.

Figure 18-6 shows these two sets of CSS rules being applied.

Figure 18-6. Selecting font families

Fonts and Typography | 433

font-style
With the font-style property, you can choose to display a font normally, in italics,
or obliquely. The following rules create three classes (normal, italic, and oblique)
that can be applied to elements to create these effects:

.normal { font-style:normal; }

.italic { font-style:italic; }

.oblique { font-style:oblique; }

font-size
As described in the earlier section on measurements, there are a large number of ways
you can change a font’s size. But these all boil down to two main types: fixed and rela‐
tive. A fixed setting looks like the following rule, which sets the default paragraph
font size to 14 points:

p { font-size:14pt; }

Alternatively, you may wish to work with the current default font size, using it to style
various types of text such as headings. In the following rules, relative sizes of some
headers are defined, with the <h4> tag starting off 20 percent bigger than the default,
and with each greater size another 40 percent larger than the previous one:

h1 { font-size:240%; }
h2 { font-size:200%; }
h3 { font-size:160%; }
h4 { font-size:120%; }

Figure 18-7 shows a selection of font sizes in use.

Figure 18-7. Setting four heading sizes and the default paragraph size

434 | Chapter 18: Introduction to CSS

font-weight
Using the font-weight property, you can choose how boldly to display a font. It sup‐
ports a number of values, but the main ones you will use are likely to be normal and
bold, like this:

.bold { font-weight:bold; }

Managing Text Styles
Regardless of the font in use, you can further modify the way text displays by altering
its decoration, spacing, and alignment. There is a crossover between the text and font
properties, though, in that effects such as italics or bold text are achieved via the
font-style and font-weight properties, while others such as underlining require
the text-decoration property.

Decoration
With the text-decoration property, you can apply effects to text such as underline,
line-through, overline, and blink. The following rule creates a new class called
over that applies overlines to text (the weight of over, under, and through lines will
match that of the font):

.over { text-decoration:overline; }

In Figure 18-8 you can see a selection of font styles, weights, and decorations.

Figure 18-8. Examples of the styles and decoration rules available

Managing Text Styles | 435

Spacing
A number of different properties allow you to modify line, word, and letter spacing.
For example, the following rules change the line spacing for paragraphs by modifying
the line-height property to be 25 percent greater, set the word-spacing property to
30 pixels, and set letter-spacing to 3 pixels:

p {
 line-height :125%;
 word-spacing :30px;
 letter-spacing:3px;
}

You can equally choose to use a percentage value with word-spacing or letter-
spacing to decrease or increase the default amount of space applied to a font by using
values less than or greater than 100%, which will work with proportional and non-
proportional fonts.

Alignment
There are four types of text alignment available in CSS: left, right, center, and
justify. In the following rule, the default paragraph text is set to full justification:

p { text-align:justify; }

Transformation
There are four properties available for transforming your text: none, capitalize,
uppercase, and lowercase. The following rule creates a class called upper that will
ensure that all text is displayed in uppercase when it is used:

.upper { text-transform:uppercase; }

Indenting
Using the text-indent property, you can indent the first line of a block of text by a
specified amount. The following rule indents the first line of every paragraph by 20
pixels, although a different unit of measurement or a percent increase could also be
applied:

p { text-indent:20px; }

In Figure 18-9 the following rules have been applied to a section of text:

p { line-height :150%;
 word-spacing :10px;
 letter-spacing:1px;
}
.justify { text-align :justify; }

436 | Chapter 18: Introduction to CSS

.uppercase { text-transform:uppercase; }

.indent { text-indent :20px; }

Figure 18-9. Indenting, uppercase, and spacing rules being applied

CSS Colors
You can apply colors to the foreground and background of text and objects by using
the color and background-color properties (or by supplying a single argument to
the background property). The colors specified can be one of the named colors (such
as red or blue), colors created from hexadecimal RGB triplets (such as #ff0000 or
#0000ff), or colors created using the rgb CSS function.

The standard 16 color names as defined by the W3C standards organization are aqua,
black, blue, fuchsia, gray, green, lime, maroon, navy, olive, purple, red, silver,
teal, white, and yellow. The following rule uses one of these names to set the back‐
ground color for an object with the ID of object:

#object { background-color:silver; }

In this rule, the foreground color of text in all <div> elements is set to yellow (because
on a computer display, hexadecimal levels of ff red, plus ff green, plus 00 blue create
the color yellow):

div { color:#ffff00; }

Or, if you don’t wish to work in hexadecimal, you can specify your color triplets by
using the rgb function, as in the following rule, which changes the background color
of the current document to aqua:

body { background-color:rgb(0, 255, 255); }

CSS Colors | 437

http://www.w3.org

If you prefer not to work in ranges of 256 levels per color, you can
use percentages in the rgb function instead, with values from 0 to
100 ranging from the lowest (0) amount of a primary color through
to the highest (100), like this: rgb(58%, 95%, 74%). You can also
use floating-point values for even finer color control, like this:
rgb(23.4%, 67.6%, 15.5%).

Short Color Strings
There is also a short form of the hex digit string in which only the first of each 2-byte
pair is used for each color. For example, instead of assigning the color #fe4692, you
use #f49, omitting the second hex digit from each pair, which equates to a color value
of #ff4499.

This results in almost the same color and is useful where exact colors are not
required. The difference between a 6-digit and 3-digit string is that the former sup‐
ports 16 million different colors, while the latter supports 4,000.

Wherever you intend to use a color such as #883366, this is the direct equivalent of
#836 (since the repeated digits are implied by the shorter version), and you can use
either string to create the exact same color.

Gradients
In place of using a solid background color, you can choose to apply a gradient, which
will then automatically flow from a given initial color to a final color of your choice.
It is best used in conjunction with a simple color rule so that browsers that don’t sup‐
port gradients will at least display a solid color.

Example 18-3 uses a rule to display an orange gradient (or simply plain orange on
nonsupporting browsers), as shown in the middle section of Figure 18-10.

Example 18-3. Creating a linear gradient

<!DOCTYPE html>
<html>
 <head>
 <title>Creating a linear gradient</title>
 <style>
 .orangegrad {
 background:orange;
 background:linear-gradient(top, #fb0, #f50);
 background:-moz-linear-gradient(top, #fb0, #f50);
 background:-webkit-linear-gradient(top, #fb0, #f50);
 background:-o-linear-gradient(top, #fb0, #f50);
 background:-ms-linear-gradient(top, #fb0, #f50); }
 </style>

438 | Chapter 18: Introduction to CSS

 </head>
 <body>
 <div class='orangegrad'>Black text

 on an orange
linear gradient</div>
 </body>
</html>

Figure 18-10. A solid background color, a linear gradient, and a radial gradient

As shown in the preceding example, many CSS rules require
browser-specific prefixes such as -moz-, -webkit-, -o-, and -ms-
(for Mozilla-based browsers such as Firefox; WebKit-based brows‐
ers such as Apple Safari, Google Chrome, and the iOS and Android
browsers; and the Opera and Microsoft browsers, respectively).
The Can I use... website lists the major CSS rules and attributes,
and whether browser-specific versions are required. If in doubt,
include all the browser-specific prefixes as well as the standard rule
name and your styles should apply correctly on all browsers (that
support the rules you are using).

To create a gradient, choose where it will begin out of top, bottom, left, right, and
center (or any combination, such as top left or center right), enter the start and
end colors you require, and then apply either the linear-gradient or radial-
gradient rule, making sure you also supply rules for all browsers you are targeting.

You can also use more than just a start and end color by supplying what are termed
stop colors in between as additional arguments. For example, if five arguments are
supplied, each argument will control the color change over a fifth of the area, deter‐
mined by its location in the argument list.

In addition to gradients you can also apply transparency to CSS objects, as detailed in
Chapter 19.

CSS Colors | 439

http://caniuse.com

Positioning Elements
Elements within a web page fall where they are placed in the document, but you can
move them about by changing an element’s position property from the default of
static to one of absolute, relative, sticky, or fixed.

Absolute Positioning
An element with absolute positioning is removed from the document, and any other
elements that are capable will flow into its released space. You can then position the
object anywhere you like within the document by using the top, right, bottom, and
left properties.

So, for example, to move an object with the ID of object to the absolute location of
100 pixels down from the document start and 200 pixels in from the left, you would
apply the following rules to it (you can also use any of the other units of measurement
supported by CSS):

#object {
 position:absolute;
 top :100px;
 left :200px;
}

The object will rest either on top of or behind other elements that it overlaps, depend‐
ing on the value assigned to the z-index property (which works only on positioned
elements). The default z-index value of an element is auto, where the browser will
work it out for you. Alternatively, you can give the property an integer value (which
may be negative), like this:

#object {
 position:absolute;
 top :100px;
 left :200px;
 z-index:100;
}

Objects then appear in order from the lowest to highest z-index level, with higher
values displaying on top of lower ones.

Relative Positioning
Likewise, you can move the object relative to the location it would occupy in the nor‐
mal document flow. So, for example, to move object 10 pixels down and 10 pixels to
the right of its normal location, you would use the following rules:

#object {
 position:relative;

440 | Chapter 18: Introduction to CSS

 top :10px;
 left :10px;
}

Fixed Positioning
The final position property setting lets you move an object to an absolute location,
but only within the current browser viewport. Then, when the document is scrolled,
the object remains exactly where it has been placed, with the main document scroll‐
ing beneath it—a great way to create dock bars and other similar devices. To fix the
object to the top-left corner of the browser window, use the following rules:

#object {
 position:fixed;
 top :0px;
 left :0px;
}

Example 18-4 demonstrates applying different positioning values to objects on a
page.

Example 18-4. Applying different positioning values

<!DOCTYPE html>
<html>
 <head>
 <title>Positioning</title>
 <style>
 #container {
 position :absolute;
 top :50px;
 left :0px;
 }
 #object1 {
 position :absolute;
 background:pink;
 width :100px;
 height :100px;
 top :0px;
 left :0px;
 }
 #object2 {
 position :relative;
 background:lightgreen;
 width :100px;
 height :100px;
 top :0px;
 left :110px;
 }
 #object3 {
 position :fixed;

Positioning Elements | 441

 background:yellow;
 width :100px;
 height :100px;
 top :50px;
 left :220px;
 }
 </style>
 </head>
 <body>

 <div id='container'>
 <div id='object1'>Absolute Positioning</div>
 <div id='object2'>Relative Positioning</div>
 <div id='object3'>Fixed Positioning</div>
 </div>
 </body>
</html>

In Figure 18-11, Example 18-4 has been loaded into a browser, and the browser win‐
dow has been reduced in width and height so that you must scroll down to see all of
the web page.

Figure 18-11. Using different positioning values

When this is done, it is immediately obvious that the element with fixed positioning
(object3) remains in place even through scrolling. You can also see that the container
element (with the name container) has absolute positioning and is located exactly at
50 pixels down, with 0 pixels horizontal offset, so that object1 (which has absolute
positioning within container) appears at that location. Meanwhile, object2 has rela‐
tive positioning and so is offset from the left margin of container by 110 pixels, to
line up alongside object1 .

In the figure, object3, even though it appears within the container element in the
HTML, has fixed positioning and therefore is actually totally independent from the
other objects and not constricted to stay within the bounds of container. It is set to
initially line up alongside object1 and object2, but has stayed put while the others
have been scrolled up the page, and now appears offset below them.

442 | Chapter 18: Introduction to CSS

Pseudoclasses
A number of selectors and classes are used only within a stylesheet and do not have
any matching tags or attributes within HTML. Their task is to classify elements using
characteristics other than their name, attributes, or content—that is, characteristics
that cannot be deduced from the document tree. These include pseudoclasses such as
link and visited. There are also pseudoelements that make a selection, which may
consist of partial elements such as first-line or first-letter.

Pseudoclasses and pseudoelements are separated by a : (colon) character. For exam‐
ple, to create a class called bigfirst for emphasizing the first letter of an element,
you would use a rule such as the following:

.bigfirst:first-letter {
 font-size:400%;
 float :left;
}

When the bigfirst class is applied to an element, the first letter will be displayed
much enlarged, with the remaining text shown at normal size, neatly flowing around
it (due to the float property) as if the first letter were an image or other object. Pseu‐
doclasses include hover, link, active, and visited, all of which are mostly useful for
applying to anchor elements—as in the following rules, which set the default color of
all links to blue, and that of links that have already been visited to light blue:

a:link { color:blue; }
a:visited { color:lightblue; }

The following rules are interesting in that they use the hover pseudoclass so that they
are applied only when the mouse pointer is positioned over the element. In this
example, they change the link to white text on a red background, providing a
dynamic effect you would normally expect only from using JavaScript code:

a:hover {
 color :white;
 background:red;
}

Here I have used the background property with a single argument, instead of the
longer background-color property.

The active pseudoclass is also dynamic in that it effects a change to a link during the
time between the mouse button being clicked and released, as with this rule, which
changes the link color to dark blue:

a:active { color:darkblue; }

Another interesting dynamic pseudoclass is focus, which is applied only when an ele‐
ment is given focus by the user selecting it with the keyboard or mouse. The follow‐

Pseudoclasses | 443

ing rule uses the universal selector to always place a mid-gray, dotted, 2-pixel border
around the currently focused object:

*:focus { border:2px dotted #888888; }

This discussion applies to traditional web development, not devel‐
opment for mobile/touch devices. We’ll focus more on that topic in
Chapter 22, where we look at jQuery Mobile.

Example 18-5 displays two links and an input field, as shown in Figure 18-12. The
first link shows up as gray since it has already been visited in this browser, but the
second link has not and displays in blue. The Tab key has been pressed, and the focus
of input is now the input field, so its background has changed to yellow. When either
link is clicked, it will display in purple, and when hovered over, it will appear red.

Example 18-5. Link and focus pseudoclasses

<!DOCTYPE html>
<html>
 <head>
 <title>Pseudoclasses</title>
 <style>
 a:link { color:blue; }
 a:visited { color:gray; }
 a:hover { color:red; }
 a:active { color:purple; }
 *:focus { background:yellow; }
 </style>
 </head>
 <body>
 Link to Google'

 Link to nowhere'

 <input type='text'>
 </body>
</html>

444 | Chapter 18: Introduction to CSS

Figure 18-12. Pseudoclasses applied to a selection of elements

Other pseudoclasses are also available; for more information, see the HTML Dog
“Pseudo Classes” tutorial.

Beware of applying the focus pseudoclass to the universal selector,
*, as shown in this example; Internet Explorer regards an unfo‐
cused document as having focus applied to the entire web page,
and (in this instance) the whole page will turn yellow until Tab is
pressed or focus is otherwise applied to one of the page’s elements.

Shorthand Rules
To save space, groups of related CSS properties can be concatenated into a single
shorthand assignment. For example, I have already used the shorthand for creating a
border a few times, as in the focus rule in the previous section:

*:focus { border:2px dotted #ff8800; }

This is actually a shorthand concatenation of the following rule set:

*:focus {
 border-width:2px;
 border-style:dotted;
 border-color:#ff8800;
}

When using a shorthand rule, you need only apply the properties up to the point
where you wish to change values. So, you could use the following to set only a bor‐
der’s width and style, choosing not to set its color:

*:focus { border:2px dotted; }

Shorthand Rules | 445

https://htmldog.com/guides/css/intermediate/pseudoclasses/
https://htmldog.com/guides/css/intermediate/pseudoclasses/

The order in which the properties are placed in a shorthand rule
can be important, and misplacing them is a common way to get
unexpected results. Since there are far too many to detail in this
chapter, if you wish to use shorthand CSS, you will need to look up
the default properties and their order of application using a CSS
manual or search engine. To get you started, I recommend reading
Trenton Moss’s article on the topic.

The Box Model and Layout
The CSS properties affecting the layout of a page are based around the box model, a
nested set of properties surrounding an element. Virtually all elements have (or can
have) these properties, including the document body, whose margin you can (for
example) remove with the following rule:

body { margin:0px; }

The box model of an object starts at the outside, with the object’s margin. Inside this
is the border, then there is padding between the border and the inner contents, and
finally you have the object’s contents.

Once you have the hang of the box model, you will be well on your way to creating
professionally laid-out pages, since these properties alone will make up much of your
page styling.

Setting Margins
The margin is the outermost level of the box model. It separates elements from each
other, and its use is quite smart. For example, assume you give a number of elements
a default margin of 10 pixels around each. This is the amount of space you would like
to appear between two elements positioned one below the other—but if they each
have a margin of 10 pixels, won’t the result be a gap of 20 pixels?

In fact, CSS overcomes this potential issue: when two elements with margins defined
are positioned directly one after the other, only the larger of the two margins is used
to separate them. If both margins are the same width, just one of the widths is used.
This way, you are much more likely to get the result you want. But you should note
that the margins of absolutely positioned or inline elements do not collapse in this
way.

The margins of an element can be changed en masse with the margin property, or
individually with margin-left, margin-top, margin-right, and margin-bottom.
When setting the margin property, you can supply one, two, three, or four arguments,
which have the effects commented in the following rules:

/* Set all margins to 1 pixel */
margin:1px;

446 | Chapter 18: Introduction to CSS

https://www.webcredible.com/blog/css-shorthand-properties/

/* Set top and bottom to 1 pixel, and left and right to 2 */
margin:1px 2px;

/* Set top to 1 pixel, left and right to 2, and bottom to 3 */
margin:1px 2px 3px;

/* Set top to 1 pixel, right to 2, bottom to 3, and left to 4 */
margin:1px 2px 3px 4px;

In Example 18-6, a margin property rule (highlighted in bold) is applied to a square
element that has been placed inside a table element. Figure 18-13 shows this exam‐
ple loaded into a browser. The table has been given no dimensions, so it will simply
wrap as closely around the inner <div> element as it can. As a consequence, there is a
margin of 10 pixels above it, 20 pixels to its right, 30 pixels below it, and 40 pixels to
its left.

Example 18-6. How margins are applied

<!DOCTYPE html>
<html>
 <head>
 <title>CSS Margins</title>
 <style>
 #object1 {
 background :lightgreen;
 border-style:solid;
 border-width:1px;
 font-family :"Courier New";
 font-size :9px;
 width :100px;
 height :100px;
 padding :5px;
 margin :10px 20px 30px 40px;
 }
 table {
 padding :0;
 border :1px solid black;
 background :cyan;
 }
 </style>
 </head>
 <body>
 <table>
 <tr>
 <td>
 <div id='object1'>margin:
10px 20px 30px 40px;</div>
 </td>
 </tr>
 </table>

The Box Model and Layout | 447

 </body>
</html>

Figure 18-13. The outer table expands according to the margin widths

Applying Borders
The border level of the box model is similar to the margin, except that there is no
collapsing. It is the next level as we move into the box model. The main properties
used to modify borders are border, border-left, border-top, border-right, and
border-bottom, and each of these can have other subproperties added as suffixes,
such as -color, -style, and -width.

The four ways of accessing individual property settings used for the margin property
also apply with the border-width property, so all the following are valid rules:

/* All borders */
border-width:1px;

/* Top/bottom and left/right */
border-width:1px 5px;

/* Top, left/right, and bottom */
border-width:1px 5px 10px;

/* Top, right, bottom, and left */
border-width:1px 5px 10px 15px;

Figure 18-14 shows each of these rules applied in turn to a group of square elements.
In the first one, you can clearly see that all borders have a width of 1 pixel. The sec‐
ond element, however, has a top and bottom border width of 1 pixel, while its side
borders are each 5 pixels wide. The third element has a 1-pixel-wide top border, while
its sides are 5 pixels wide and its bottom is 10 pixels wide. The fourth element has a 1-
pixel top border width, a 5-pixel right border width, a 10-pixel bottom border width,
and a 15-pixel left border width.

448 | Chapter 18: Introduction to CSS

Figure 18-14. Applying long- and shorthand border rule values

The final element, under the previous ones, doesn’t use the shorthand rules; instead,
it sets each of the border widths separately. As you can see, it takes a lot more typing
to achieve the same result.

Adjusting Padding
The deepest of the box model levels (other than the contents of an element) is the
padding, which is applied inside any borders and/or margins. The main properties
used to modify padding are padding, padding-left, padding-top, padding-right,
and padding-bottom.

The four ways of accessing individual property settings used for the margin and bor
der properties also apply with the padding property, so all the following are valid
rules:

/* All padding */
padding:1px;

/* Top/bottom and left/right */
padding:1px 2px;

/* Top, left/right, and bottom */
padding:1px 2px 3px;

/* Top, right, bottom, and left */
padding:1px 2px 3px 4px;

Figure 18-15 shows the padding rule (shown in bold) in Example 18-7 applied to
some text within a table cell (as defined by the rule display:table-cell;, which
makes the encapsulating <div> element display like a table cell), which has been given

The Box Model and Layout | 449

no dimensions so it will simply wrap as closely around the text as it can. As a conse‐
quence, there is padding of 10 pixels above the inner element, 20 pixels to its right, 30
pixels below it, and 40 pixels to its left.

Example 18-7. Applying padding

<!DOCTYPE html>
<html>
 <head>
 <title>CSS Padding</title>
 <style>
 #object1 {
 border-style:solid;
 border-width:1px;
 background :orange;
 color :darkred;
 font-family :Arial;
 font-size :12px;
 text-align :justify;
 display :table-cell;
 width :148px;
 padding :10px 20px 30px 40px; }
 </style>
 </head>
 <body>
 <div id='object1'>To be, or not to be that is the question:
 Whether 'tis Nobler in the mind to suffer
 The Slings and Arrows of outrageous Fortune,
 Or to take Arms against a Sea of troubles,
 And by opposing end them.</div>
 </body>
</html>

Figure 18-15. Applying different padding values to an object

450 | Chapter 18: Introduction to CSS

Object Contents
Finally, deep within the box model levels, at its center, lies an element that can be
styled in all the ways discussed in this chapter. As you now know, this element can
(and usually will) contain further subelements, which in turn may contain sub-
subelements, and so on, each with its own styling and box model settings.

Questions
1. Which directive do you use to import one stylesheet into another (or the <style>

section of some HTML)?
2. What HTML tag can you use to import a stylesheet into a document?
3. Which HTML tag attribute is used to directly embed a style into an element?
4. What is the difference between a CSS ID and a CSS class?
5. Which characters are used to prefix (a) IDs and (b) class names in a CSS rule?
6. In CSS rules, what is the purpose of the semicolon?
7. How can you add a comment to a stylesheet?
8. Which character is used by CSS to represent any element?
9. How can you select a group of different elements and/or element types in CSS?

10. Given a pair of CSS rules with equal precedence, how can you make one have
greater precedence than the other?

See “Chapter 18 Answers” on page 727 in Appendix A for the answers to these
questions.

Questions | 451

CHAPTER 19

Advanced CSS with CSS3

The first implementation of CSS was drawn up in 1996, and released in 1999; it has
been supported by all browser releases since 2001. The standard for this version
(CSS1) was revised in 2008. Then, beginning in 1998, developers began drawing up
the second specification (CSS2); its standard was completed in 2007 and revised in
2009.

Development for the CSS3 specification commenced in 2001, with some features
being proposed in 2009, and the latest recommendations being included as recently
as 2016.

A CSS4 is already being proposed by the CSS working group, although this is not a
major leap forward. Rather, it’s simply a development of one part of CSS—the selec‐
tors—and its contents are beyond the scope of this book, given that the first draft dis‐
cussion documents are only just being published as I write this edition.

Thankfully, though, the CSS working group publishes regular snapshots of the CSS
modules that it considers stable. So far, four such best-current-practices documents
have been published as Notes, with the most recent being in 2017. This is the best
place to gauge the current state of play in the world of CSS.

In this chapter, I’ll take you through the most important CSS3 features that have been
adopted by the major browsers, many of which provide functionality that hitherto
could be attained only with JavaScript.

I recommend using CSS3 to implement dynamic features where you can, instead of
JavaScript. The features provided by CSS make document attributes part of the docu‐
ment itself, instead of being tacked on through JavaScript. Making them part of the
document is a cleaner design.

453

https://drafts.csswg.org/selectors-4/
https://drafts.csswg.org/selectors-4/
https://www.w3.org/TR/css-2017/

It has to be said that there’s an awful lot to CSS, and browsers
implement the various features differently (if at all). Therefore, I
recommend that whenever you wish to ensure that the CSS you are
creating will work in all browsers, you first take a look at the Can I
use... website. It maintains a record of what features are available in
which browsers, so it will always be more up-to-date than this
book, which sees a new edition only every couple of years or so—
and CSS can move a long way in that time.

Attribute Selectors
In the previous chapter, I detailed the various CSS attribute selectors, which I will
now quickly recap. Selectors are used in CSS to match HTML elements, and there are
10 different types, as listed in Table 19-1.

Table 19-1. CSS selectors, pseudoclasses, and pseudoelements

Selector type Example
Universal selector * { color:#555; }

Type selectors b { color:red; }

Class selectors .classname { color:blue; }

ID selectors #id { background:cyan; }

Descendant selectors span em { color:green; }

Child selectors div > em { background:lime; }

Adjacent sibling selectors i + b { color:gray; }

Attribute selectors a[href='info.htm'] { color:red; }

Pseudoclasses a:hover { font-weight:bold; }

Pseudoelements P::first-letter { font-size:300%; }

The CSS3 designers decided that most of these selectors worked just fine the way they
were, but three enhancements have been made so that you can more easily match ele‐
ments based on the contents of their attributes. The following sections examine these.

Matching Parts of Strings
In CSS2 you can use a selector such as a[href='info.htm'] to match the string
info.htm when found in an href attribute, but there’s no way to match only a portion
of a string. CSS3 comes to the rescue with three new operators: ^, $, and *. If one
directly precedes the = symbol, you can match the start, end, or any part of a string,
respectively.

454 | Chapter 19: Advanced CSS with CSS3

http://caniuse.com
http://caniuse.com

The ^= operator
This operator matches at the start of a string. So, for example, the following will
match any href attribute whose value begins with the string http://website:

a[href^='http://website']

Therefore, the following element will match:

But this will not:

The $= operator
To match only at the end of a string, you can use a selector such as the following,
which will match any img tag whose src attribute ends with .png:

img[src$='.png']

For example, the following will match:

But this will not:

The *= operator
To match any substring anywhere in the attribute, you can use a selector such as the
following, which finds any links on a page that have the string google anywhere
within them:

a[href*='google']

For example, the HTML segment will match, while
the segment will not.

The box-sizing Property
The W3C box model specifies that the width and height of an object should refer only
to the dimensions of an element’s content, ignoring any padding or border. But some
web designers have expressed a desire to specify dimensions that refer to an entire
element, including any padding and border.

To provide this feature, CSS3 lets you choose the box model you wish to use with the
box-sizing property. For example, to use the total width and height of an object
including padding and borders, use this declaration:

box-sizing:border-box;

The box-sizing Property | 455

Or, to have an object’s width and height refer only to its content, use this declaration
(the default):

box-sizing:content-box;

CSS3 Backgrounds
CSS3 provides two new properties: background-clip and background-origin.
Between them, you can specify where a background should start within an element,
and how to clip the background so that it doesn’t appear in parts of the box model
where you don’t want it to.

To accomplish this, both properties support the following values:

border-box

Refers to the outer edge of the border

padding-box

Refers to the outer edge of the padding area

content-box

Refers to the outer edge of the content area

The background-clip Property
The background-clip property specifies whether the background should be ignored
(clipped) if it appears within either the border or padding area of an element. For
example, the following declaration states that the background may display in all parts
of an element, all the way to the outer edge of the border:

background-clip:border-box;

To keep the background from appearing within the border area of an element, you
can restrict it to only the section of an element inside the outer edge of its padding
area, like this:

background-clip:padding-box;

Or to restrict the background to display only within the content area of an element,
use this declaration:

background-clip:content-box;

Figure 19-1 shows three rows of elements displayed in the Safari web browser, in
which the first row uses border-box for the background-clip property, the second
uses padding-box, and the third uses content-box.

456 | Chapter 19: Advanced CSS with CSS3

Figure 19-1. Different ways of combining CSS3 background properties

In the first row, the inner box (an image file that has been loaded into the top left of
the element, with repeating disabled) is allowed to display anywhere in the element.
You can also clearly see it displayed in the border area of the first box because the
border has been set to dotted.

In the second row, neither the background image nor the background shading dis‐
plays in the border area, because they have been clipped to the padding area with a
background-clip property value of padding-box.

CSS3 Backgrounds | 457

Then, in the third row, both the background shading and the image have been clip‐
ped to display only within the inner content area of each element (shown inside a
light-colored, dotted box), using a background-clip property of content-box.

The background-origin Property
With the background-origin property, you can control where a background image
will be located by specifying where the top left of the image should start. For example,
the following declaration states that the background image’s origin should be the top-
left corner of the outer edge of the border:

background-origin:border-box;

To set the origin of an image to the top-left outer corner of the padding area, use this
declaration:

background-origin:padding-box;

Or to set the origin of an image to the top-left corner of an element’s inner content
section, use this declaration:

background-origin:content-box;

Looking again at Figure 19-1, you can see in each row the first box uses a
background-origin property of border-box, the second uses padding-box, and the
third uses content-box. Consequently, in each row the smaller inner box displays at
the top left of the border in the first box, the top left of the padding in the second, and
the top left of the content in the third box.

The only differences to note between the rows, with regard to the
origins of the inner box in Figure 19-1, are that in rows 2 and 3 the
inner box is clipped to the padding and content areas, respectively;
therefore, outside these areas no portion of the box is displayed.

The background-size Property
In the same way that you can specify the width and height of an image when used in
the tag, you can now also do so for background images in the latest versions of
all browsers.

You apply the property as follows (where ww is the width and hh is the height):

background-size:wwpx hhpx;

If you prefer, you can use only one argument, and then both dimensions will be set to
that value. Also, if you apply this property to a block-level element such as a <div>
(rather than one that is inline, such as a), you can specify the width and/or
height as a percentage, instead of a fixed value.

458 | Chapter 19: Advanced CSS with CSS3

Using the auto Value
If you wish to scale only one dimension of a background image, and then have the
other one scale automatically to retain the same proportions, you can use the value
auto for the other dimension, like this:

background-size:100px auto;

This sets the width to 100 pixels, and the height to a value proportionate to the
increase or decrease in width.

Different browsers may require different versions of the various
background property names, so please refer to the Can I use... web‐
site when using them to ensure you are applying all the versions
required for the browsers you are targeting.

Multiple Backgrounds
With CSS3 you can attach multiple backgrounds to an element, each of which can use
the previously discussed CSS3 background properties. Figure 19-2 shows an example
of this; eight different images have been assigned to the background, to create the
four corners and four edges of the certificate border.

To display multiple background images in a single CSS declaration, separate them
with commas. Example 19-1 shows the HTML and CSS used to create the back‐
ground in Figure 19-2.

Example 19-1. Using multiple images in a background

<!DOCTYPE html>
<html> <!-- backgroundimages.html -->
 <head>
 <title>CSS3 Multiple Backgrounds Example</title>
 <style>
 .border {
 font-family:'Times New Roman';
 font-style :italic;
 font-size :170%;
 text-align :center;
 padding :60px;
 width :350px;
 height :500px;
 background :url('b1.gif') top left no-repeat,
 url('b2.gif') top right no-repeat,
 url('b3.gif') bottom left no-repeat,
 url('b4.gif') bottom right no-repeat,
 url('ba.gif') top repeat-x,
 url('bb.gif') left repeat-y,

CSS3 Backgrounds | 459

http://caniuse.com
http://caniuse.com

 url('bc.gif') right repeat-y,
 url('bd.gif') bottom repeat-x
 }
 </style>
 </head>
 <body>
 <div class='border'>
 <h1>Employee of the month</h1>
 <h2>Awarded To:</h2>
 <h3>__________________</h3>
 <h2>Date:</h2>
 <h3>___/___/_____</h3>
 </div>
 </body>
</html>

Figure 19-2. A background created with multiple images

460 | Chapter 19: Advanced CSS with CSS3

Looking at the CSS section, you see that the first four lines of the background declara‐
tion place the corner images into the four corners of the element, and the final four
place the edge images, which are handled last because the order of priority for back‐
ground images goes from top to bottom. In other words, where they overlap, addi‐
tional background images will appear behind already placed images. If the GIFs were
in the reverse order, the repeating edge images would display on top of the corners,
which would be incorrect.

Using this CSS, you can resize the containing element to any
dimensions, and the border will always correctly resize to fit, which
is much easier than using tables or multiple elements for the same
effect.

CSS3 Borders
CSS3 also brings a lot more flexibility to the way borders can be presented, by allow‐
ing you to independently change the colors of all four border edges, to display images
for the edges and corners, to provide a radius value for applying rounded corners to
borders, and to place box shadows underneath elements.

The border-color Property
There are two ways you can apply colors to a border. First, you can pass a single color
to the property, as follows:

border-color:#888;

This property sets all the borders of an element to mid-gray. You can also set border
colors individually, like this (which sets the border colors to various shades of gray):

border-top-color :#000;
border-left-color :#444;
border-right-color :#888;
border-bottom-color:#ccc;

Or you can set all the colors individually with a single declaration, as follows:

border-color:#f00 #0f0 #880 #00f;

This declaration sets the top border color to #f00, the right one to #0f0, the bottom
one to #880, and the left one to #00f (red, green, orange, and blue, respectively). You
can also use color names for the arguments.

The border-radius Property
Prior to CSS3, talented web developers came up with numerous tweaks and fixes in
order to achieve rounded borders, generally using <table> or <div> tags.

CSS3 Borders | 461

But now adding rounded borders to an element is really simple, and it works in the
latest versions of all major browsers, as shown in Figure 19-3, in which a 10-pixel
border is displayed in different ways. Example 19-2 shows the HTML for this.

Example 19-2. The border-radius property

<!DOCTYPE html>
<html> <!-- borderradius.html -->
 <head>
 <title>CSS3 Border Radius Examples</title>
 <style>
 .box {
 margin-bottom:10px;
 font-family :'Courier New', monospace;
 font-size :12pt;
 text-align :center;
 padding :10px;
 width :380px;
 height :75px;
 border :10px solid #006;
 }
 .b1 {
 -moz-border-radius :40px;
 -webkit-border-radius:40px;
 border-radius :40px;
 }
 .b2 {
 -moz-border-radius :40px 40px 20px 20px;
 -webkit-border-radius:40px 40px 20px 20px;
 border-radius :40px 40px 20px 20px;
 }
 .b3 {
 -moz-border-radius-topleft :20px;
 -moz-border-radius-topright :40px;
 -moz-border-radius-bottomleft :60px;
 -moz-border-radius-bottomright :80px;
 -webkit-border-top-left-radius :20px;
 -webkit-border-top-right-radius :40px;
 -webkit-border-bottom-left-radius :60px;
 -webkit-border-bottom-right-radius:80px;
 border-top-left-radius :20px;
 border-top-right-radius :40px;
 border-bottom-left-radius :60px;
 border-bottom-right-radius :80px;
 }
 .b4 {
 -moz-border-radius-topleft :40px 20px;
 -moz-border-radius-topright :40px 20px;
 -moz-border-radius-bottomleft :20px 40px;
 -moz-border-radius-bottomright :20px 40px;
 -webkit-border-top-left-radius :40px 20px;

462 | Chapter 19: Advanced CSS with CSS3

 -webkit-border-top-right-radius :40px 20px;
 -webkit-border-bottom-left-radius :20px 40px;
 -webkit-border-bottom-right-radius:20px 40px;
 border-top-left-radius :40px 20px;
 border-top-right-radius :40px 20px;
 border-bottom-left-radius :20px 40px;
 border-bottom-right-radius :20px 40px;
 }
 </style>
 </head>
 <body>
 <div class='box b1'>
 border-radius:40px;
 </div>

 <div class='box b2'>
 border-radius:40px 40px 20px 20px;
 </div>

 <div class='box b3'>
 border-top-left-radius :20px;

 border-top-right-radius :40px;

 border-bottom-left-radius :60px;

 border-bottom-right-radius:80px;
 </div>

 <div class='box b4'>
 border-top-left-radius :40px 20px;

 border-top-right-radius :40px 20px;

 border-bottom-left-radius :20px 40px;

 border-bottom-right-radius:20px 40px;
 </div>
 </body>
</html>

CSS3 Borders | 463

Figure 19-3. Mixing and matching various border radius properties

So, for example, to create a rounded border with a radius of 20 pixels, you could sim‐
ply use the following declaration:

border-radius:20px;

Although most browsers will work fine with border radius proper‐
ties (including IE), some current (and many older) versions of the
major browsers use different property names. So, if you wish to
support them all, you will need to also use the relevant browser-
specific prefixes for them, such as -moz- and -webkit-. To ensure
that Example 19-2 works in all browsers, I have included all the
required prefixes.

You can specify a separate radius for each of the four corners, like this (applied in a
clockwise direction starting from the top-left corner):

border-radius:10px 20px 30px 40px;

464 | Chapter 19: Advanced CSS with CSS3

If you prefer, you can also address each corner of an element individually, like this:

border-top-left-radius :20px;
border-top-right-radius :40px;
border-bottom-left-radius :60px;
border-bottom-right-radius:80px;

And, when referencing individual corners, you can supply two arguments to choose a
different vertical and horizontal radius (giving more interesting and subtle borders),
like this:

border-top-left-radius :40px 20px;
border-top-right-radius :40px 20px;
border-bottom-left-radius :20px 40px;
border-bottom-right-radius:20px 40px;

The first argument is the horizontal and the second is the vertical radius.

Box Shadows
To apply a box shadow, specify a horizontal and vertical offset from the object, the
amount of blurring to add to the shadow, and the color to use, like this:

box-shadow:15px 15px 10px #888;

The two instances of 15px specify the vertical and horizontal offset from the element,
and these values can be negative, zero, or positive. The 10px specifies the amount of
blurring, with smaller values resulting in less blurring, and the #888 is the color for
the shadow, which can be any valid color value. The result of this declaration can be
seen in Figure 19-4.

Figure 19-4. A box shadow displayed under an element

Box Shadows | 465

Also use the WebKit (-webkit-) and Mozilla (-moz-) prefixes to
this property for those browsers, to ensure compatibility with all
recent versions.

Element Overflow
In CSS2, you can indicate what to do when one element is too large to be fully con‐
tained by its parent by setting the overflow property to hidden, visible, scroll, or
auto. But with CSS3, you can now separately apply these values in the horizontal or
vertical directions, too, as with these example declarations:

overflow-x:hidden;
overflow-x:visible;
overflow-y:auto;
overflow-y:scroll;

Multicolumn Layout
One of the features most requested by web developers is multiple columns, and this
has finally been realized in CSS3, with Internet Explorer 10 being the last major
browser to adopt it.

Now, flowing text over multiple columns is as easy as specifying the number of col‐
umns and then (optionally) choosing the spacing between them and the type of
dividing line (if any), as shown in Figure 19-5 (created with Example 19-3).

Figure 19-5. Flowing text in multiple columns

Example 19-3. Using CSS to create multiple columns

<!DOCTYPE html>
<html> <!-- multiplecolumns.html -->

466 | Chapter 19: Advanced CSS with CSS3

 <head>
 <title>Multiple Columns</title>
 <style>
 .columns {
 text-align :justify;
 font-size :16pt;
 -moz-column-count :3;
 -moz-column-gap :1em;
 -moz-column-rule :1px solid black;
 -webkit-column-count:3;
 -webkit-column-gap :1em;
 -webkit-column-rule :1px solid black;
 column-count :3;
 column-gap :1em;
 column-rule :1px solid black;
 }
 </style>
 </head>
 <body>
 <div class='columns'>
 Now is the winter of our discontent
 Made glorious summer by this sun of York;
 And all the clouds that lour'd upon our house
 In the deep bosom of the ocean buried.
 Now are our brows bound with victorious wreaths;
 Our bruised arms hung up for monuments;
 Our stern alarums changed to merry meetings,
 Our dreadful marches to delightful measures.
 Grim-visaged war hath smooth'd his wrinkled front;
 And now, instead of mounting barded steeds
 To fright the souls of fearful adversaries,
 He capers nimbly in a lady's chamber
 To the lascivious pleasing of a lute.
 </div>
 </body>
</html>

Within the .columns class, the first two lines simply tell the browser to right-justify
the text and to set it to a font size of 16pt. These declarations aren’t needed for multi‐
ple columns, but they improve the text display. The remaining lines set up the ele‐
ment so that, within it, text will flow over three columns, with a gap of 1em between
the columns and with a single-pixel border down the middle of each gap.

In Example 19-3, Mozilla- and WebKit-based browsers may require
their browser-specific prefixes to the declarations.

Multicolumn Layout | 467

Colors and Opacity
The ways in which you can define colors have been greatly expanded with CSS3, and
you can now also use CSS functions to apply colors in the common formats RGB
(red, green, and blue), RGBA (red, green, blue, and alpha), HSL (hue, saturation, and
luminance), and HSLA (hue, saturation, luminance, and alpha). The alpha value
specifies a color’s transparency, which allows underlying elements to show through.

HSL Colors
To define a color with the hsl function, you must first choose a value for the hue
between 0 and 359 from a color wheel. Any higher color numbers simply wrap
around to the beginning again, so the value of 0 is red, and so are the values 360 and
720.

In a color wheel, the primary colors of red, green, and blue are separated by 120
degrees, so that pure red is 0, green is 120, and blue is 240. The numbers between
these values represent shades comprising different proportions of the primary colors
on either side.

Next you need the saturation level, which is a value between 0 and 100 percent. This
specifies how washed out or vibrant a color will appear. The saturation values com‐
mence in the center of the wheel with a mid-gray color (a saturation of 0 percent) and
then become more and more vivid as they progress to the outer edge (a saturation of
100 percent).

All that’s left then is for you to decide how bright you want the color to be, by choos‐
ing a luminance value of between 0 and 100 percent. A value of 50% for the luminance
gives the fullest, brightest color; decreasing the value (down to a minimum of 0%)
darkens the color until it displays as black; and increasing the value (up to a maxi‐
mum of 100%) lightens the color until it shows as white. You can visualize this as if
you are mixing levels of either black or white into the color.

Therefore, for example, to choose a fully saturated yellow color with standard percent
brightness, you would use a declaration such as this:

color:hsl(60, 100%, 50%);

Or, for a darker blue color, you might use a declaration such as this:

color:hsl(240, 100%, 40%);

You can also use this (and all other CSS color functions) with any property that
expects a color, such as background-color and so on.

468 | Chapter 19: Advanced CSS with CSS3

HSLA Colors
To provide even further control over how colors will appear, you can use the hsla
function, supplying it with a fourth (alpha) level for a color, which is a floating-point
value between 0 and 1. A value of 0 specifies that the color is totally transparent, while
1 means it is fully opaque.

Here’s how you would choose a fully saturated yellow color with standard brightness
and 30 percent opacity:

color:hsla(60, 100%, 50%, 0.3);

Or, for a fully saturated but lighter blue color with 82 percent opacity, you might use
this declaration:

color:hsla(240, 100%, 60%, 0.82);

RGB Colors
You will probably be more familiar with the RGB system of selecting a color, as it’s
similar to the #nnnnnn and #nnn color formats. For example, to apply a yellow color to
a property, you can use either of the following declarations (the first supporting 16
million colors, and the second supporting 4,000):

color:#ffff00;
color:#ff0;

You can also use the CSS rgb function to achieve the same result, but with decimal
numbers instead of hexadecimal (where 255 decimal is ff hexadecimal):

color:rgb(255, 255, 0);

But even better than that, you don’t even have to think in amounts of up to 256 any‐
more, because you can specify percentage values, like this:

color:rgb(100%, 100%, 0);

In fact, you can now get very close to a desired color by simply thinking about its
primary colors. For example, green and blue make cyan, so to create a color close to
cyan, but with more blue in it than green, you could make a good first guess at 0%
red, 40% green, and 60% blue, and try a declaration such as this:

color:rgb(0%, 40%, 60%);

RGBA Colors
As with the hsla function, the rgba function supports a fourth alpha argument, so
you can, for example, apply the previous cyan-like color with an opacity of 40 percent
by using a declaration such as this:

color:rgba(0%, 40%, 60%, 0.4);

Colors and Opacity | 469

The opacity Property
The opacity property provides the same alpha control as the hsla and rgba
functions, but lets you modify an object’s opacity (or transparency if you prefer) sepa‐
rately from its color.

To use it, apply a declaration such as the following to an element (which in this exam‐
ple sets the opacity to 25 percent, or 75 percent transparent):

opacity:0.25;

WebKit- and Mozilla-based browsers require browser-specific pre‐
fixes to this property. And for backward compatibility with releases
of Internet Explorer prior to version 9, you should add the follow‐
ing declaration (in which the opacity value is multiplied by 100):

filter:alpha(opacity='25');

Text Effects
A number of new effects can now be applied to text with the help of CSS3, including
text shadows, text overlapping, and word wrapping.

The text-shadow Property
The text-shadow property is similar to the box-shadow property and takes the same
set of arguments: a horizontal and vertical offset, an amount for the blurring, and the
color to use. For example, the following declaration offsets the shadow by 3 pixels
both horizontally and vertically, and displays the shadow in dark gray, with a blurring
of 4 pixels:

text-shadow:3px 3px 4px #444;

The result of this declaration looks like Figure 19-6, and works in all recent versions
of all major browsers (but not IE 9 or lower).

Figure 19-6. Applying a shadow to text

The text-overflow Property
When using any of the CSS overflow properties with a value of hidden, you can also
use the text-overflow property to place an ellipsis (three dots) just before the cutoff
to indicate that some text has been truncated, like this:

text-overflow:ellipsis;

470 | Chapter 19: Advanced CSS with CSS3

Without this property, when the text “To be, or not to be. That is the question.” is
truncated, the result will look like Figure 19-7; with the declaration applied, however,
the result is like Figure 19-8.

Figure 19-7. The text is automatically truncated

Figure 19-8. Instead of being cut off, the text trails off using an ellipsis

For this to work, three things are required:

• The element should have an overflow property that is not visible, such as
overflow:hidden.

• The element must have the white-space:nowrap property set to constrain the
text.

• The width of the element must be less than that of the text to truncate.

The word-wrap Property
When you have a really long word that is wider than the element containing it, it will
either overflow or be truncated. But as an alternative to using the text-overflow
property and truncating text, you can use the word-wrap property with a value of
break-word to wrap long lines, like this:

word-wrap:break-word;

For example, in Figure 19-9 the word Honorificabilitudinitatibus is too wide for the
containing box (whose righthand edge is shown as a solid vertical line between the
letters t and a) and, because no overflow properties have been applied, it has over‐
flowed its bounds.

Figure 19-9. The word is too wide for its container and has overflowed

Text Effects | 471

But in Figure 19-10, the word-wrap property of the element has been assigned a value
of break-word, so the word has neatly wrapped around to the next line.

Figure 19-10. The word now wraps at the righthand edge

Web Fonts
The use of CSS3 web fonts vastly increases the typography available to web designers
by allowing fonts to be loaded in and displayed from across the web, not just from the
user’s computer. To achieve this, declare a web font by using @font-face, like this:

@font-face
{
 font-family:FontName;
 src:url('FontName.otf');
}

The url function requires a value containing the path or URL of a font. On most
browsers, you can use either TrueType (.ttf) or OpenType (.otf) fonts, but Internet
Explorer restricts you to TrueType fonts that have been converted to Embedded Open
Type (.eot).

To tell the browser the type of font, you can use the format function, like this for
OpenType fonts:

@font-face
{
 font-family:FontName;
 src:url('FontName.otf') format('opentype');
}

Or this for TrueType fonts:

@font-face
{
 font-family:FontName;
 src:url('FontName.ttf') format('truetype');
}

However, because Internet Explorer accepts only EOT fonts, it ignores @font-face
declarations that contain the format function.

472 | Chapter 19: Advanced CSS with CSS3

Google Web Fonts
One of the best ways to use web fonts is to load them in for free from Google’s
servers. To find out more about this, check out the Google Fonts website, seen in
Figure 19-11, where you can get access to over 848 font families, and counting!

Figure 19-11. It’s easy to include Google’s web fonts

To show you how easy it is to use one of these fonts, here’s how you load a Google
font (in this case, Lobster) into your HTML for use in <h1> headings:

<!DOCTYPE html>
<html>
 <head>
 <style>
 h1 { font-family:'Lobster', arial, serif; }
 </style>
 <link href='http://fonts.googleapis.com/css?family=Lobster'
 rel='stylesheet'>
 </head>
 <body>

Web Fonts | 473

http://google.com/fonts

 <h1>Hello</h1>
 </body>
</html>

When you select a font from the website, Google provides the <link> tag to copy and
paste into the <head> of your web page.

Transformations
Using transformations, you can skew, rotate, stretch, and squash elements in any of
up to three dimensions (yes, 3D is supported, but only in WebKit-based browsers for
now). This makes it easy to create great effects by stepping out of the uniform rectan‐
gular layout of <div> and other elements, because now they can be shown at a variety
of angles and in many different forms.

To perform a transformation, use the transform property (which unfortunately has
browser-specific prefixes for Mozilla, WebKit, Opera, and Microsoft browsers, so
once again you’ll need to refer to http://caniuse.com).

You can apply various properties to the transform property, starting with the value
none, which resets an object to a nontransformed state:

transform:none;

You can supply one or more of the following functions to the transform property:

matrix

Transforms an object by applying a matrix of values to it

translate

Moves an element’s origin

scale

Scales an object

rotate

Rotates an object

skew

Skews an object

The only one of these that may cause you to scratch your head is skew. With this
function, one coordinate is displaced in one direction in proportion to its distance
from a coordinate plane or axis. So, a rectangle, for example, is transformed into a
parallelogram when skewed.

There are also single versions of many of these functions, such as translateX,
scaleY, and so on.

474 | Chapter 19: Advanced CSS with CSS3

http://caniuse.com

So, for example, to rotate an element clockwise by 45 degrees, you could apply this
declaration to it:

transform:rotate(45deg);

At the same time, you could enlarge this object, as in the following declaration, which
enlarges its width by 1.5 times and its height by 2 times and then performs the rota‐
tion. Figure 19-12 shows an object before the transformations are applied, and then
afterward:

transform:scale(1.5, 2) rotate(45deg);

Figure 19-12. An object before and after transformation

3D Transformations
You can also transform objects in three dimensions by using the following CSS3 3D
transformation features:

perspective

Releases an element from 2D space and creates a third dimension within which it
can move. Required to work with 3D CSS functions.

transform-origin

Exploits perspective, setting the location at which all lines converge to a single
point.

translate3d

Moves an element to another location in its 3D space.

scale3d

Rescales one or more dimensions.

rotate3d

Rotates an element around any of the x-, y-, and z-axes.

Transformations | 475

Figure 19-13 shows a 2D object that has been rotated in 3D space with a CSS rule
such as the following:

transform:perspective(200px) rotateX(10deg) rotateY(20deg) rotateZ(30deg);

Figure 19-13. A figure rotated in 3D space

For more information, please refer to David DeSandro’s “An Introduction to CSS 3-D
Transforms” tutorial.

Transitions
Also appearing in all the latest versions of the major browsers (including Internet
Explorer 10, but not lower versions) is a dynamic new feature called transitions. These
specify an animation effect you want to occur when an element is transformed, and
the browser will automatically take care of all the in-between frames for you.

There are four properties you should supply in order to set up a transition, as follows:

transition-property :property;
transition-duration :time;
transition-delay :time;
transition-timing-function:type;

You must preface these properties with the relevant browser pre‐
fixes for Mozilla, WebKit, Opera, and Microsoft browsers.

Properties to Transition
Transitions have properties such as height and border-color. Specify the properties
you want to change in the CSS property named transition-property. (I’m using the
word property here in two different ways: for a CSS property, and for the transition

476 | Chapter 19: Advanced CSS with CSS3

http://tinyurl.com/3dcsstransforms
http://tinyurl.com/3dcsstransforms

properties it sets.) You can include multiple properties by separating them with com‐
mas, like this:

transition-property:width, height, opacity;

Or, if you want absolutely everything about an element to transition (including col‐
ors), use the value all, like this:

transition-property:all;

Transition Duration
The transition-duration property requires a value of 0 seconds or greater, like the
following, which specifies that the transition should take 1.25 seconds to complete:

transition-duration:1.25s;

Transition Delay
If the transition-delay property is given a value greater than 0 seconds (the
default), it introduces a delay between the initial display of the element and the begin‐
ning of the transition. The following starts the transition after a 0.1-second delay:

transition-delay:0.1s;

If the transition-delay property is given a value of less than 0 seconds (in other
words, a negative value), the transition will execute the moment the property is
changed, but will appear to have begun execution at the specified offset, partway
through its cycle.

Transition Timing
The transition-timing function property requires one of the following values:

ease

Start slowly, get faster, and then end slowly.

linear

Transition at constant speed.

ease-in

Start slowly, and then go quickly until finished.

ease-out

Start quickly, stay fast until near the end, and then end slowly.

ease-in-out

Start slowly, go fast, and then end slowly.

Transitions | 477

Using any of the values containing the word ease ensures that the transition looks
extra fluid and natural, unlike a linear transition that somehow seems more mechani‐
cal. And if these aren’t sufficiently varied for you, you can also create your own transi‐
tions using the cubic-bezier function.

For example, following are the declarations used to create the preceding five transi‐
tion types, illustrating how you can easily create your own:

transition-timing-function:cubic-bezier(0.25, 0.1, 0.25, 1);
transition-timing-function:cubic-bezier(0, 0, 1, 1);
transition-timing-function:cubic-bezier(0.42, 0, 1, 1);
transition-timing-function:cubic-bezier(0, 0, 0.58, 1);
transition-timing-function:cubic-bezier(0.42, 0, 0.58, 1);

Shorthand Syntax
You may find it easier to use the shorthand version of this property and include all
the values in a single declaration like the following, which will transition all proper‐
ties in a linear fashion, over a period of 0.3 seconds, after an initial (optional) delay of
0.2 seconds:

transition:all .3s linear .2s;

Doing so will save you the trouble of entering many very similar declarations, partic‐
ularly if you are supporting all the major browser prefixes.

Example 19-4 illustrates how you might use transitions and transformations together.
The CSS creates a square, orange element with some text in it, and a hover pseudo‐
class specifying that when the mouse passes over the object, it should rotate by 180
degrees and change from orange to yellow (see Figure 19-14).

Example 19-4. A transition on hover effect

<!DOCTYPE html>
<html>
 <head>
 <title>Transitioning on hover</title>
 <style>
 #square {
 position :absolute;
 top :50px;
 left :50px;
 width :100px;
 height :100px;
 padding :2px;
 text-align :center;
 border-width :1px;
 border-style :solid;
 background :orange;
 transition :all .8s ease-in-out;

478 | Chapter 19: Advanced CSS with CSS3

 -moz-transition :all .8s ease-in-out;
 -webkit-transition:all .8s ease-in-out;
 -o-transition :all .8s ease-in-out;
 -ms-transition :all .8s ease-in-out;
 }
 #square:hover {
 background :yellow;
 -moz-transform :rotate(180deg);
 -webkit-transform :rotate(180deg);
 -o-transform :rotate(180deg);
 -ms-transform :rotate(180deg);
 transform :rotate(180deg);
 }
 </style>
 </head>
 <body>
 <div id='square'>
 Square shape

 created using

 a simple div

 element with

 a 1px border
 </div>
 </body>
</html>

Figure 19-14. The object rotates and changes color when hovered over

The sample code caters to all browsers by providing browser-specific versions of the
declarations. In all the latest browsers (including IE 10 or higher), the object will
rotate clockwise when hovered over, while slowly changing from orange to yellow.

CSS transitions are smart in that when they are canceled, they smoothly return to
their original value. So, if you move the mouse away before the transition has comple‐
ted, it will instantly reverse and transition back to its initial state.

Transitions | 479

Questions
1. What do the CSS3 attribute selector operators ^=, $=, and *= do?
2. What property do you use to specify the size of a background image?
3. With which property can you specify the radius of a border?
4. How can you flow text over multiple columns?
5. Name the four functions with which you can specify CSS colors.
6. How would you create a gray shadow under some text, offset diagonally to the

bottom right by 5 pixels, with a blurring of 3 pixels?
7. How can you indicate with an ellipsis that text is truncated?
8. How can you include a Google web font in a web page?
9. What CSS declaration would you use to rotate an object by 90 degrees?

10. How do you set up a transition on an object so that when any of its properties are
changed, the change will transition immediately in a linear fashion over the
course of half a second?

See “Chapter 19 Answers” on page 727 in Appendix A for the answers to these
questions.

480 | Chapter 19: Advanced CSS with CSS3

CHAPTER 20

Accessing CSS from JavaScript

With a good understanding of the DOM and CSS now under your belt, you’ll learn in
this chapter how to access both the DOM and CSS directly from JavaScript, enabling
you to create highly dynamic and responsive websites.

I’ll also show you how to use interrupts so you can create animations or provide any
code that must continue running (such as a clock). Finally, I’ll explain how you can
add new elements to or remove existing ones from the DOM so you don’t have to
precreate elements in HTML just in case JavaScript may need to access them later.

Revisiting the getElementById Function
To help with the examples in the rest of this book, I would like to provide an
enhanced version of the getElementById function, for handling DOM elements and
CSS styles quickly and efficiently, without the need for including a framework such as
jQuery.

However, to avoid conflicting with frameworks that use the $ character, I’ll use the
uppercase O, because it’s the first letter of Object, which is what will be returned when
the function is called (the object represented by the ID passed to the function).

The O function
Here’s what the bare-bones O function looks like:

function O(i)
{
 return document.getElementById(i)
}

481

This alone saves 22 characters of typing each time it’s called. But I’ve chosen to extend
the function a little by allowing either an ID name or an object to be passed to the
function, as shown in the complete version in Example 20-1.

Example 20-1. The O function

function O(i)
{
 return typeof i == 'object' ? i : document.getElementById(i)
}

If an object is passed to the function, it just returns that object back again. Otherwise,
it assumes that an ID has been passed and returns the object to which the ID refers.

But why on Earth would I want to add this first statement, which simply returns the
object passed to it?

The S Function
The answer to this question becomes clear when you look at a partner function called
S, which gives you easy access to the style (or CSS) properties of an object, as shown
in Example 20-2.

Example 20-2. The S function

function S(i)
{
 return O(i).style
}

The S in this function name is the first letter of Style, and the function performs the
task of returning the style property (or subobject) of the element referred to. Because
the embedded O function accepts either an ID or an object, you can pass either an ID
or an object to S as well.

Let’s look at what’s going on here by taking a <div> element with the ID of myobj and
setting its text color to green, like this:

<div id='myobj'>Some text</div>

<script>
 O('myobj').style.color = 'green'
</script>

The preceding code will do the job, but it’s much simpler to call the new S function,
like this:

S('myobj').color = 'green'

482 | Chapter 20: Accessing CSS from JavaScript

Now consider the case in which the object returned by calling O is stored in, for
example, an object called fred, like this:

fred = O('myobj')

Because of the way the S function works, we can still call it to change the text color to
green, like this:

S(fred).color = 'green'

This means that whether you wish to access an object directly or via its ID, you can
do so by passing it to either the O or S function as required. Just remember that when
you pass an object (rather than an ID), you must not place it in quotation marks.

The C Function
So far I’ve provided you with two simple functions that make it easy for you to access
any element on a web page, and any style property of an element. Sometimes, though,
you will want to access more than one element at a time. You can do this by assigning
a CSS class name to each such element, like in these examples, which both employ the
class myclass:

<div class='myclass'>Div contents</div>
<p class='myclass'>Paragraph contents</p>

If you want to access all elements on a page that use a particular class, you can use the
C function (for the first letter of Class), shown in Example 20-3, to return an array
containing all the objects that match the class name provided.

Example 20-3. The C function

function C(i)
{
 return document.getElementsByClassName(i)
}

To use this function, simply call it as follows, saving the returned array so that you
can access each of the elements individually as required or (more likely to be the case)
en masse via a loop:

myarray = C('myclass')

Now you can do whatever you like with the objects returned, such as (for example)
setting their textDecoration style property to underline, as follows:

for (i = 0 ; i < myarray.length ; ++i)
 S(myarray[i]).textDecoration = 'underline'

This code iterates through the objects in myarray[] and then uses the S function to
reference each one’s style property, setting its textDecoration property to underline.

Revisiting the getElementById Function | 483

Including the Functions
I use the O and S functions in the examples for the remainder of this chapter, as they
make the code shorter and easier to follow. Therefore, I have saved them in the file
OSC.js (along with the C function, which I think you’ll find extremely useful) in the
Chapter 20 folder of the accompanying archive of examples, freely downloadable
from the book’s companion website.

You can include these functions in any web page by using the following statement—
preferably in its <head> section, anywhere before any script that relies on calling
them:

<script src='OSC.js'></script>

The contents of OSC.js are shown in Example 20-4, where everything is neatened into
just three lines.

Example 20-4. The OSC.js file

function O(i) { return typeof i == 'object' ? i : document.getElementById(i) }
function S(i) { return O(i).style }
function C(i) { return document.getElementsByClassName(i) }

Accessing CSS Properties from JavaScript
The textDecoration property I used in an earlier example represents a CSS property
that is normally hyphenated like this: text-decoration. But since JavaScript reserves
the hyphen character for use as a mathematical operator, whenever you access a
hyphenated CSS property, you must omit the hyphen and set the character immedi‐
ately following it to uppercase.

Another example of this is the font-size property, which is referenced in JavaScript
as fontSize when placed after a period operator, like this:

myobject.fontSize = '16pt'

An alternative to this is to be more long-winded and use the setAttribute function,
which does support (and in fact requires) standard CSS property names, like this:

myobject.setAttribute('style', 'font-size:16pt')

Some older versions of Microsoft Internet Explorer are picky in
certain instances about using the JavaScript-style CSS property
names when applying the browser-specific -ms- prefixed versions
of the rules. If you encounter this, use the setAttribute function
and you should be all right.

484 | Chapter 20: Accessing CSS from JavaScript

http://lpmj.net

Some Common Properties
Using JavaScript, you can modify any property of any element in a web document, in
a similar manner to using CSS. I’ve already shown you how to access CSS properties
using either the JavaScript short form or the setAttribute function to use exact CSS
property names, so I won’t bore you by detailing all of the hundreds of properties.
Rather, I’d like to show you how to access just a few of the CSS properties as an over‐
view of some of the things you can do.

First, then, let’s look at modifying a few CSS properties from JavaScript using
Example 20-5, which loads in the three earlier functions, creates a <div> element, and
then issues JavaScript statements within a <script> section of HTML to modify some
of its attributes (see Figure 20-1).

Example 20-5. Accessing CSS properties from JavaScript

<!DOCTYPE html>
<html>
 <head>
 <title>Accessing CSS Properties</title>
 <script src='OSC.js'></script>
 </head>
 <body>
 <div id='object'>Div Object</div>

 <script>
 S('object').border = 'solid 1px red'
 S('object').width = '100px'
 S('object').height = '100px'
 S('object').background = '#eee'
 S('object').color = 'blue'
 S('object').fontSize = '15pt'
 S('object').fontFamily = 'Helvetica'
 S('object').fontStyle = 'italic'
 </script>
 </body>
</html>

Accessing CSS Properties from JavaScript | 485

Figure 20-1. Modifying styles from JavaScript

You gain nothing by modifying properties like this, because you could just as easily
have included some CSS directly, but shortly we’ll be modifying properties in
response to user interaction—and then you’ll see the real power of combining Java‐
Script and CSS.

Other Properties
JavaScript also opens up access to a very wide range of other properties, such as the
width and height of the browser window and of any pop-up or in-browser windows
or frames, plus handy information such as the parent window (if there is one) and the
history of URLs visited in this session.

All these properties are accessed from the window object via the period operator (for
example, window.name), and Table 20-1 lists them all, along with descriptions of each.

Table 20-1. The window properties

Property Description
closed Returns a Boolean value indicating whether a window has been closed or not
defaultStatus Sets or returns the default text in the status bar of a window
document Returns the document object for the window
frameElement Returns the iframe element in which the current window is inserted
frames Returns an array of all the frames and iframes in the window
history Returns the history object for the window
innerHeight Sets or returns the inner height of a window’s content area
innerWidth Sets or returns the inner width of a window’s content area
length Returns the number of frames and iframes in a window
localStorage Allows saving of key/value pairs in a web browser
location Returns the location object for the window

486 | Chapter 20: Accessing CSS from JavaScript

Property Description
name Sets or returns the name of a window
navigator Returns the navigator object for the window
opener Returns a reference to the window that created the window
outerHeight Sets or returns the outer height of a window, including tool- and scrollbars
outerWidth Sets or returns the outer width of a window, including tool- and scrollbars
pageXOffset Returns the number of pixels the document has been scrolled horizontally from the left of the window
pageYOffset Returns the number of pixels the document has been scrolled vertically from the top of the window
parent Returns the parent window of a window
screen Returns the screen object for the window
screenLeft Returns the x coordinate of the window relative to the screen
screenTop Returns the y coordinate of the window relative to the screen
screenX Returns the x coordinate of the window relative to the screen
screenY Returns the y coordinate of the window relative to the screen
sessionStorage Allows saving of key/value pairs in a web browser
self Returns the current window
status Sets or returns the text in the status bar of a window
top Returns the top browser window

There are a few points to note about some of these properties:

• The defaultStatus and status properties can be set only if users have modified
their browsers to allow it (very unlikely).

• The history object cannot be read from (so you cannot see where your visitors
have been surfing). But it supports the length property to determine how long
the history is, and the back, forward, and go methods to navigate to specific
pages in the history.

• When you need to know how much space there is available in a current window
of the web browser, just read the values in window.innerHeight and
window.innerWidth. I often use these values for centering in-browser pop-up
alert or “confirm dialog” windows.

• The screen object supports the read-only properties availHeight, availWidth,
colorDepth, height, pixelDepth, and width, and is therefore great for determin‐
ing information about the user’s display.

• Mozilla Firefox does not support the screenLeft and screenTop properties. For
that browser, use screenX and screenY instead.

Accessing CSS Properties from JavaScript | 487

Many of these properties can be invaluable when you’re targeting
mobile phones and tablet devices, as they will tell you exactly how
much screen space you have to work with, the type of browser
being used, and more.

These few items of information will get you started and provide you with an idea of
the many new and interesting things you can do with JavaScript. There are far more
properties and methods available than can be covered in this chapter, but now that
you know how to access and use properties, all you need is a resource listing them all.
I recommend that you check out JavaScript Kit’s DOM Reference as a good starting
point.

Inline JavaScript
Using <script> tags isn’t the only way you can execute JavaScript statements; you can
also access JavaScript from within HTML tags, which makes for great dynamic inter‐
activity. For example, to add a quick effect when the mouse passes over an object, you
can use code such as that in the tag in Example 20-6, which displays an apple
by default, but replaces it with an orange when the mouse passes over the object and
restores the apple again when the mouse leaves.

Example 20-6. Using inline JavaScript

<!DOCTYPE html>
<html>
 <head>
 <title>Inline JavaScript</title>
 </head>
 <body>
 <img src='apple.png'
 onmouseover="this.src='orange.png'"
 onmouseout="this.src='apple.png'">
 </body>
</html>

The this Keyword
In the preceding example, you see the this keyword in use. It tells the JavaScript to
operate on the calling object, namely the tag. You can see the result in
Figure 20-2, where the mouse has yet to pass over the apple.

488 | Chapter 20: Accessing CSS from JavaScript

http://www.javascriptkit.com/domref/index.shtml

Figure 20-2. Inline mouse hover JavaScript example

When supplied from an inline JavaScript call, the this keyword
represents the calling object. When used in class methods, it repre‐
sents an object to which the method applies.

Attaching Events to Objects in a Script
The preceding code is the equivalent of providing an ID to the tag and then
attaching the actions to the tag’s mouse events, like in Example 20-7.

Example 20-7. Non-inline JavaScript

<!DOCTYPE html>
<html>
 <head>
 <title>Non-inline JavaScript</title>
 <script src='OSC.js'></script>
 </head>
 <body>

 <script>
 O('object').onmouseover = function() { this.src = 'orange.png' }
 O('object').onmouseout = function() { this.src = 'apple.png' }
 </script>
 </body>
</html>

In the HTML section, this example gives the element an ID of object, and it
then proceeds to manipulate it separately in the JavaScript section by attaching
anonymous functions to each event.

Inline JavaScript | 489

Attaching to Other Events
Whether you’re using inline or separate JavaScript, there are several events to which
you can attach actions, providing a wealth of additional features you can offer your
users. Table 20-2 lists these events and details when they will be triggered.

Table 20-2. Events and when they are triggered

Event Occurs
onabort When an image’s loading is stopped before completion
onblur When an element loses focusa

onchange When any part of a form has changed
onclick When an object is clicked
ondblclick When an object is double-clicked
onerror When a JavaScript error is encountered
onfocus When an element gets focus
onkeydown When a key is being pressed (including Shift, Alt, Ctrl, and Esc)
onkeypress When a key is being pressed (not including Shift, Alt, Ctrl, and Esc)
onkeyup When a key is released
onload When an object has loaded
onmousedown When the mouse button is pressed over an element
onmousemove When the mouse is moved over an element
onmouseout When the mouse leaves an element
onmouseover When the mouse passes over an element from outside it
onmouseup When the mouse button is released
onreset When a form is reset
onresize When the browser is resized
onscroll When the document is scrolled
onselect When some text is selected
onsubmit When a form is submitted
onunload When a document is removed
a An element that has focus is one that has been clicked or otherwise entered into, such as an input field.

Make sure you attach events to objects that make sense. For exam‐
ple, an object that is not a form will not respond to the onsubmit
event.

490 | Chapter 20: Accessing CSS from JavaScript

Adding New Elements
With JavaScript, you are not limited to manipulating the elements and objects sup‐
plied to a document in its HTML. In fact, you can create objects at will by inserting
them into the DOM.

For example, suppose you need a new <div> element. Example 20-8 shows one way
you can add it to a web page.

Example 20-8. Inserting an element into the DOM

<!DOCTYPE html>
<html>
 <head>
 <title>Adding Elements</title>
 <script src='OSC.js'></script>
 </head>
 <body>
 This is a document with only this text in it.

 <script>
 alert('Click OK to add an element')

 newdiv = document.createElement('div')
 newdiv.id = 'NewDiv'
 document.body.appendChild(newdiv)

 S(newdiv).border = 'solid 1px red'
 S(newdiv).width = '100px'
 S(newdiv).height = '100px'
 newdiv.innerHTML = "I'm a new object inserted in the DOM"
 tmp = newdiv.offsetTop

 alert('Click OK to remove the element')
 pnode = newdiv.parentNode
 pnode.removeChild(newdiv)
 tmp = pnode.offsetTop
 </script>
 </body>
</html>

Figure 20-3 shows this code being used to add a new <div> element to a web docu‐
ment. First, the new element is created with createElement; then the appendChild
function is called, and the element gets inserted into the DOM.

Adding New Elements | 491

Figure 20-3. Inserting a new element into the DOM

After this, various properties are assigned to the element, including some text for its
inner HTML. And then, in order to make sure the new element is instantly revealed,
its offsetTop property is read into the throwaway variable tmp. This forces a DOM
refresh and makes the element display in any browser that might otherwise delay
before doing so—particularly Internet Explorer.

This new element that’s created is exactly the same as if it had been included in the
original HTML, and has all the same properties and methods available.

I sometimes use the technique of creating new elements when I
want to create in-browser pop-up windows, because it doesn’t rely
on there being a spare <div> element available in the DOM.

Removing Elements
You can also remove elements from the DOM, including ones that you didn’t insert
using JavaScript; it’s even easier than adding an element. It works like this, assuming
the element to remove is in the object element:

element.parentNode.removeChild(element)

This code accesses the element’s parentNode object so that it can remove the element
from that node. Then it calls the removeChild method on that parent object, passing
the object to be removed. However, to ensure the DOM instantly refreshes in all
browsers, you may prefer to replace the preceding single statement with something
like this:

pnode = element.parentNode
pnode.removeChild(element)
tmp = pnode.offsetTop

492 | Chapter 20: Accessing CSS from JavaScript

The first statement makes a copy of element.parentNode (the parent element of the
object) in pnode. The third statement (after the child element is removed in the sec‐
ond statement) looks up the parent objects’ offsetTop property (using the throw‐
away variable tmp), to ensure that the DOM is fully refreshed.

Alternatives to Adding and Removing Elements
Inserting an element is intended for adding totally new objects into a web page. But if
all you intend to do is hide and reveal objects according to an onmouseover or other
event, don’t forget that there are a couple of CSS properties you can use for this pur‐
pose, without taking such drastic measures as creating and deleting DOM elements.

For example, when you want to make an element invisible but leave it in place (and
with all the elements surrounding it remaining in their positions), you can simply set
the object’s visibility property to hidden, like this:

myobject.visibility = 'hidden'

And to redisplay the object, you can use the following:

myobject.visibility = 'visible'

You can also collapse an element down to occupy zero width and height (with all the
objects around it filling in the freed-up space), like this:

myobject.display = 'none'

To then restore the element to its original dimensions, you would use the following:

myobject.display = 'block'

And, of course, there’s always the innerHTML property, with which you can change the
HTML applied to an element, like this, for example:

mylement.innerHTML = 'Replacement HTML'

Or, to use the O function I outlined earlier:

O('someid').innerHTML = 'New contents'

Or you can make an element seem to disappear, like this:

O('someid').innerHTML = ''

Don’t forget the other useful CSS properties you can access from
JavaScript, such as opacity for setting the visibility of an object to
somewhere between visible and invisible, or width and height for
resizing an object. And, of course, using the position property
with values of absolute, static, fixed, sticky, or relative, you
can even locate an object anywhere in (or outside) the browser
window that you like.

Adding New Elements | 493

Using Interrupts
JavaScript provides access to interrupts, a method by which you can ask the browser
to call your code after a set period of time, or even to keep calling it at specified inter‐
vals. This gives you a means of handling background tasks such as asynchronous
communications, or even things like animating web elements.

There are two types of interrupt: setTimeout and setInterval, which have accompa‐
nying clearTimeout and clearInterval functions for turning them off again.

Using setTimeout
When you call setTimeout, you pass it some JavaScript code or the name of a func‐
tion, and a value in milliseconds representing how long to wait before the code
should be executed, like this:

setTimeout(dothis, 5000)

Your dothis function might look like this:

function dothis()
{
 alert('This is your wakeup alert!');
}

In case you’re wondering, you cannot simply specify alert() (with
empty parentheses) as a function to be called by setTimeout,
because the function would be executed immediately. Only when
you provide a function name without parentheses (for example,
alert) can you safely pass the function name so that its code will
be executed only when the timeout occurs.

Passing a string
When you need to provide an argument to a function, you can also pass a string value
to the setTimeout function, which will not be executed until the correct time. For
example:

setTimeout("alert('Hello!')", 5000)

In fact, you can provide as many lines of JavaScript code as you like if you place a
semicolon after each statement, like this:

setTimeout("document.write('Starting'); alert('Hello!')", 5000)

494 | Chapter 20: Accessing CSS from JavaScript

Repeating timeouts
One technique some programmers use to provide repeating interrupts is to call the
setTimeout function from the code called by it, as in the following example, which
will initiate a never-ending loop of alert windows:

setTimeout(dothis, 5000)

function dothis()
{
 setTimeout(dothis, 5000)
 alert('I am annoying!')
}

Now the alert will pop up every five seconds. I don’t recommend you run this actual
example (even as a test), or you’ll probably have to close your browser to stop it!

Another option is to use the setInterval function, as described
shortly.

Canceling a Timeout
Once a timeout has been set up, you can cancel it if you previously saved the value
returned from the initial call to setTimeout, like this:

handle = setTimeout(dothis, 5000)

Armed with the value in handle, you can now cancel the interrupt at any point up
until its due time, like this:

clearTimeout(handle)

When you do this, the interrupt is completely forgotten, and the code assigned to it
will not get executed.

Using setInterval
An easier way to set up regular interrupts is to use the setInterval function. It works
in the same way as setTimeout, except that having popped up after the interval you
specify in milliseconds, it will do so again after that interval again passes, and so on
forever, unless you cancel it.

Example 20-9 uses this function to display a simple clock in the browser, as shown in
Figure 20-4.

Using Interrupts | 495

Example 20-9. A clock created using interrupts

<!DOCTYPE html>
<html>
 <head>
 <title>Using setInterval</title>
 <script src='OSC.js'></script>
 </head>
 <body>
 The time is: 00:00:00

 <script>
 setInterval("showtime(O('time'))", 1000)

 function showtime(object)
 {
 var date = new Date()
 object.innerHTML = date.toTimeString().substr(0,8)
 }
 </script>
 </body>
</html>

Figure 20-4. Maintaining the correct time with interrupts

Every time ShowTime is called, it sets the object date to the current date and time with
a call to Date:

var date = new Date()

Then the innerHTML property of the object passed to showtime (namely, object) is set
to the current time in hours, minutes, and seconds, as determined by a call to the
function toTimeString. This returns a string such as 09:57:17 UTC+0530, which is
then truncated to just the first eight characters with a call to the substr function:

object.innerHTML = date.toTimeString().substr(0,8)

Using the function

To use this function, you first have to create an object whose innerHTML property will
be used for displaying the time, like with this HTML:

496 | Chapter 20: Accessing CSS from JavaScript

The time is: 00:00:00

Then, from a <script> section of code, call the setInterval function like this:

setInterval("showtime(O('time'))", 1000)

The script then passes a string to setInterval containing the following statement,
which is set to execute once a second (every 1,000 milliseconds):

showtime(O('time'))

In the rare situation where somebody has disabled JavaScript (which people some‐
times do for security reasons), your JavaScript will not run and the user will just see
the original 00:00:00.

Canceling an interval
To stop a repeating interval, when you first set up the interval with a call to the func‐
tion setInterval, you must make a note of the interval’s handle, like this:

handle = setInterval("showtime(O('time'))", 1000)

Now you can stop the clock at any time by issuing the following call:

clearInterval(handle)

You can even set up a timer to stop the clock after a certain amount of time, like this:

setTimeout("clearInterval(handle)", 10000)

This statement will issue an interrupt in 10 seconds that will clear the repeating
intervals.

Using Interrupts for Animation
By combining a few CSS properties with a repeating interrupt, you can produce all
manner of animations and effects.

For example, the code in Example 20-10 moves a square shape across the top of the
browser window, all the time ballooning in size, as shown in Figure 20-5; when LEFT
is reset to 0, the animation restarts.

Example 20-10. A simple animation

<!DOCTYPE html>
<html>
 <head>
 <title>Simple Animation</title>
 <script src='OSC.js'></script>
 <style>
 #box {
 position :absolute;

Using Interrupts | 497

 background:orange;
 border :1px solid red;
 }
 </style>
 </head>
 <body>
 <div id='box'></div>

 <script>
 SIZE = LEFT = 0

 setInterval(animate, 30)

 function animate()
 {
 SIZE += 10
 LEFT += 3

 if (SIZE == 200) SIZE = 0
 if (LEFT == 600) LEFT = 0

 S('box').width = SIZE + 'px'
 S('box').height = SIZE + 'px'
 S('box').left = LEFT + 'px'
 }
 </script>
 </body>
</html>

Figure 20-5. This object slides in from the left while changing size

In the <head> section of the document, the box object is set to a background color of
orange with a border value of 1px solid red, and its position property is set to
absolute so that the animation code that follows can position it in the precise ways
you want.

498 | Chapter 20: Accessing CSS from JavaScript

Then, in the animate function, the global variables SIZE and LEFT are continuously
updated and applied to the width, height, and left style attributes of the box object
(with 'px' added after each to specify that the values are in pixels), thus animating it
at a frequency of once every 30 milliseconds. This results in an animation rate of
33.33 frames per second (1,000/30 milliseconds).

Questions
1. What are the O, S, and C functions provided to do?
2. Name two ways to modify a CSS attribute of an object.
3. Which properties provide the width and height available in a browser window?
4. How can you make something happen when the mouse passes both over and out

of an object?
5. Which JavaScript function creates new elements, and which appends them to the

DOM?
6. How can you make an element (a) invisible and (b) collapse to zero dimensions?
7. Which function creates a single event at a future time?
8. Which function sets up repeating events at set intervals?
9. How can you release an element from its location in a web page to enable it to be

moved around?
10. What delay between events should you set (in milliseconds) to achieve an anima‐

tion rate of 50 frames per second?

See “Chapter 20 Answers” on page 728 in Appendix A for the answers to these
questions.

Questions | 499

CHAPTER 21

Introduction to jQuery

Powerful and flexible as JavaScript is, with its plethora of built-in functions, you still
need additional layers of code for simple things that cannot be achieved natively or
with CSS, such as animations, event handling, and asynchronous communication.

What’s more, as a consequence of the various browser wars over the years, frustrating
and annoying browser incompatibilities have come and gone, rearing their heads at
different times on different platforms and programs.

As a result, ensuring your web pages look the same on all devices can sometimes be
achieved only through tedious JavaScript code that accounts for all the discrepancies
across the range of browsers and versions released over recent years. In a word—
nightmare.

To fill these gaps, a number of libraries of functions (many of which also provide easy
hooks into the DOM) have been developed to minimize the differences between
browsers and to facilitate asynchronous communication and event and animation
handling. These include the likes of AngularJS, jQuery, MooTools, Prototype,
script.aculo.us, and YUI (among many others).

Why jQuery?
There’s room to cover only one library in this book, however, so I have opted for the
most widely used: jQuery, which is now installed on over 73 percent of all websites,
according to W3Techs, and (as far as I can tell from their graphs) is more used than
all its major competitors combined. Incidentally, if you ever want to see how the vari‐
ous libraries stack up at any point, search for javascript at SimilarTech’s website.

With jQuery, not only do you get a very high level of cross-browser compatibility
(yes, even including Internet Explorer), but you also have quick and easy access to

501

http://w3techs.com
http://www.similartech.com

HTML and DOM manipulation, special functions to interact directly with CSS, the
ability to control events, powerful tools to create professional effects and animations,
and functions for conducting asynchronous communications with the web server.
jQuery is also the base for a wide range of plug-ins and other utilities.

Of course, you don’t need to use jQuery, and some programming purists would never
touch a library, preferring to create their own bespoke collections of functions (and
there can be good reasons for this, such as not having to wait on others to correct
bugs you find, implementing your own security features, and so on). But jQuery has
definitely stood the test of time, and if you would like to take advantage of its gentle
learning curve and be developing quality web pages as quickly as possible, this chap‐
ter will show how you can get started using it.

Including jQuery
There are two ways to include jQuery in your web pages. You can go to the download
page, download the version you need, upload it to your web server, and reference it
from a script tag in your HTML files. Or you can take advantage of a free content
delivery network (CDN) and simply link to the version you require.

jQuery is released under the terms of the MIT license, which places
almost no restrictions on what you can do with it. You are free to
use any jQuery project in any other project (even commercial
projects) as long as the copyright header is left intact.

Choosing the Right Version
Before deciding whether to download and host jQuery directly or to use a CDN, you
must pick a version of jQuery. In most cases this is straightforward, because you’ll
simply opt for the latest release. However, if you are targeting particular browsers, or
if you are maintaining a legacy website that relies on a particular version of jQuery,
the latest one may not be right for you.

Unlike most software, where you simply download and install the newest available
version, jQuery has evolved over time to take account of the changing dynamics in
the market of differing browser versions, with different features and bugs.

At the same time, improvements to jQuery have been made that might make newer
versions operate differently on sites that have been specially tailored to a particular
version (and the quirks surrounding it).

Of course, each newer version is an improvement over the previous one, and is more
and more likely to cover all the bases. But where identical operation is critical for a

502 | Chapter 21: Introduction to jQuery

https://code.jquery.com/jquery/
https://code.jquery.com/jquery/

website, until you have fully tested a new version, it is often best to stick with an ear‐
lier one.

Different flavors of jQuery
There are now three branches of jQuery, called 1.x, 2.x, and 3.x, each designed for
different environments.

Version 1.x was the first stable release of jQuery. This release supports older web
browsers that aren’t even supported by their respective developers any longer. If you
expect a large amount of visitors with older web browsers, this is the version to go for
(as I write, version 1.12 is probably the best).

Version 2.x dropped support for Internet Explorer 6–8 to increase jQuery’s overall
performance and reduce the library’s file size. It is faster and smaller than version 1.x,
but doesn’t support older web browsers. Since Microsoft dropped support for Win‐
dows XP, it may be safe to assume that your visitors will be using a browser compati‐
ble with version 2.x, unless you know otherwise.

Generally speaking, each new version of jQuery supports these browser versions:

• Chrome: (Current – 1) and Current
• Edge: (Current – 1) and Current
• Firefox: (Current – 1) and Current
• Internet Explorer: 9+
• Safari: (Current – 1) and Current
• Opera: Current

If you need to support older browsers like Internet Explorer 6–8, Opera 12.1x, or
Safari 5.1+, the jQuery developers recommend using version 1.12. For full details on
the different versions supported, please refer to the website. In this edition of the
book I have settled on version 3.2.1.

Compressed or editable
You also must decide whether to use a version of jQuery that has been minified (com‐
pressed in size to minimize bandwidth and decrease loading time) or an uncom‐
pressed version (perhaps because you want to make an edit to it yourself—which you
are fully entitled to do). Generally, a minified version is best, but most web servers
support gzip for on-the-fly compression and decompression, so this is becoming less
important (although minification does remove comments too).

Including jQuery | 503

http://jquery.com/browser-support/

Downloading
The most recent released version of jQuery is available in both uncompressed and
minified forms on the download page. You can also find all of the past releases on the
jQuery CDN. The slim versions of jQuery that appear on the download page omit the
asynchronous communication functions to save on space, so you should avoid these
if you wish to make use of any AJAX functionality using jQuery.

All you need to do is choose the version you need, right-click the link displayed
alongside it, and save it to your hard disk. From there, you can upload it to your web
server and then include it within <script> tags, like this (for the minified version of
release 3.2.1):

<script src='http://myserver.com/jquery-3.2.1.min.js'></script>

If you have never used jQuery before (and have no special require‐
ments), then just download the latest minified version, or link to it
via a CDN, as described in the following section.

Using a Content Delivery Network
Several CDNs support jQuery. If you use one of them, you can save yourself the
hassle of having to download new versions and then upload them to your server by
simply linking directly to the URLs supplied by these networks.

Not only that, but they provide this service free of charge, and usually on high-
capacity backbones that are probably the fastest in the world. Additionally, CDNs
usually hold their content in a number of different geographic locations and then
supply the required file from the server closest to a surfer, ensuring the quickest pos‐
sible delivery.

Overall, if you don’t need to modify the jQuery source code (requiring you to host it
on your own web servers), and your users are certain to have a live internet connec‐
tion, using a CDN is probably the way to go. And it’s very easy. All you need to know
is the filename you wish to access and the root folder the CDN is using. For example,
all current and previous versions can be accessed though the CDN that jQuery uses,
like this:

<script src='http://code.jquery.com/jquery-3.2.1.min.js'></script>

The base directory is at http://code.jquery.com/, and you simply follow this with the
name of the file you need to include (in this case, jquery-3.2.1.min.js).

Both Microsoft and Google offer jQuery on their networks, so you can also include it
in either of the following ways:

504 | Chapter 21: Introduction to jQuery

http://jquery.com/download
https://code.jquery.com/jquery/

<script src='http://ajax.aspnetcdn.com/ajax/jQuery/jquery-3.2.1.min.js'></script>
<script src='http://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js'>
</script>

In the case of the Microsoft CDN (aspnetcdn.com), you should begin the URL with
the base directory of ajax.aspnetcdn.com/ajax/jQuery/, and then follow that with the
filename you require.

For Google, however, you must split the filename (for example, jquery-3.2.1.min.js)
into a folder and filename (like this: 3.2.1/jquery.min.js). Then precede that with
ajax.googleapis.com/ajax/libs/jquery/.

An added benefit of using a CDN is that most other websites also
do this, so jQuery may well already be cached in the user’s browser
and might not even require redelivery. With 73 percent or more of
websites using jQuery, this can be a lot of valuable bandwidth and
time saved.

Customizing jQuery
If it’s absolutely critical that you keep the amount of data downloaded by a web page
to the minimum, then you may still be able to use jQuery by making a special build of
it that includes only the features your website will be using. You won’t be able to rely
on a CDN to deliver it, but in this circumstance you probably weren’t planning on
using one anyway.

To create your own custom build of jQuery, try jQuery Builder. Simply check the
boxes you want and uncheck those that you don’t. The bespoke version of jQuery will
then be loaded into a separate tab or window, from where you can copy and paste it
as required.

jQuery Syntax
The most striking thing about jQuery to people who are new to it is the $ symbol,
which acts as the jQuery factory method. It was chosen because the symbol is legal in
JavaScript, is short, and is different from customary variable, object, or function/
method names.

This symbol takes the place of making a call to the jQuery function (which you can
also do if you wish). The idea is to keep your code short and sweet, and to save on
unnecessary extra typing each time you access jQuery. It also immediately shows
other developers new to your code that jQuery (or a similar library) is in use.

jQuery Syntax | 505

http://projects.jga.me/jquery-builder

A Simple Example
At its simplest, you access jQuery by typing a $ symbol, followed by a selector in
parentheses, and then a period and a method to apply to the selected element(s).

For example, to change the font family of all paragraphs to monospace, you could use
this statement:

$('p').css('font-family', 'monospace')

Or to add a border to a <code> element, you could use this:

$('code').css('border', '1px solid #aaa')

Let’s look at that as part of a complete example (see Example 21-1, where the jQuery
parts are highlighted in bold).

Example 21-1. A simple jQuery example

<!DOCTYPE html>
<html>
 <head>
 <title>First jQuery Example</title>
 <script src='jquery-3.2.1.min.js'></script>
 </head>
 <body>
 The jQuery library uses either the <code>$()</code>
 or <code>jQuery()</code> function names.
 <script>
 $('code').css('border', '1px solid #aaa')
 </script>
 </body>
</html>

When you load this example into a browser, the result will be similar to Figure 21-1.
Of course, this particular instruction simply replicates what you can do with normal
CSS, but the idea is to illustrate jQuery syntax, so I’m keeping things simple for now.

Another way of issuing this command is by calling the jQuery
function (which works in the same way as $), like this:
jQuery('code').css('border', '1px solid #aaa')

506 | Chapter 21: Introduction to jQuery

Figure 21-1. Modifying elements with jQuery

Avoiding Library Conflicts
If you use other libraries alongside jQuery, you may find that they define their own $
functions. To resolve this issue, you can call the noConflict method on the symbol,
which releases control so that the other library can take over, like this:

$.noConflict()

Once you do this, to access jQuery thereafter, you must call the jQuery function. Or
you can replace use of the $ symbol with an object name of your choice, like this:

jq = $.noConflict()

Now you can use the keyword jq to call jQuery, wherever you had previously used $.

To distinguish and keep track of jQuery objects separately from
standard element objects, some developers prefix a $ to any object
created with jQuery (so that they end up looking like PHP vari‐
ables!).

Selectors
Now that you’ve seen how easy it is to include jQuery in a web page and access its
features, let’s move on to looking at its selectors, which (I’m sure you’ll be pleased to
learn) work in exactly the same way as in CSS. In fact, selectors are at the heart of
how most of jQuery operates.

All you have to do is think about how you would style one or more elements using
CSS, and then you can use the same selector(s) to apply jQuery operations on these
selected elements. This means you can make use of element selectors, ID selectors,
class selectors, and any combinations thereof.

Selectors | 507

The css Method
To explain jQuery’s use of selectors, let’s first look at one of the more fundamental
jQuery methods, css, with which you can dynamically alter any CSS property. It takes
two arguments, the property name to be accessed and a value to be applied, like this:

css('font-family', 'Arial')

As you will see in the following sections, you cannot use this method on its own; you
must append it to a jQuery selector, which will select one or more elements whose
properties should be changed by the method. The following, which sets the content of
all <p> elements to display with full justification, is an example:

$('p').css('text-align', 'justify')

You can also use the css method to return (rather than set) a computed value by sup‐
plying only a property name (and no second argument). In this case, the value of the
first element that matches the selector is returned. For example, the following will
return the text color of the element with the ID of elem, as an rgb method:

color = $('#elem').css('color')

Remember that the value returned is the computed value. In other words, jQuery will
compute and return the value as used by the browser at the moment the method is
called, not the original value that may have been assigned to the property via a style‐
sheet or in any other way.

So, if the text color is blue (for example), the value assigned to the variable color in
the preceding statement will be rgb(0, 0, 255), even if the color was originally set
with the color name blue, or the hex strings #00f or #0000ff. This computed value,
though, will always be in a form that can be assigned back to the element (or any
other element) via the second argument of the css method.

Be wary of any computed dimensions returned by this method
because, depending on the current box-sizing setting (see Chap‐
ter 19), they may or may not necessarily be what you expect. When
you need to get or set widths and heights without consideration for
box-sizing, you should use the width and height methods (and
their siblings), as described in the section “Modifying Dimensions”
on page 537.

The Element Selector
To select an element to be manipulated by jQuery, just list its name within the paren‐
theses following the $ symbol (or jQuery function name). For example, if you wanted
to change the background color of all <blockquote> elements, you could use a state‐
ment such as the following:

508 | Chapter 21: Introduction to jQuery

$('blockquote').css('background', 'lime')

The ID Selector
You can also refer to elements by their IDs if you place a # character in front of the ID
name. So, to add a border to the element with the ID of advert (for example), you
could use this:

$('#advert').css('border', '3px dashed red')

The Class Selector
And you can manipulate groups of elements according to the class they use. For
example, to underline all elements that use the class new, you could use this:

$('.new').css('text-decoration', 'underline')

Combining Selectors
Just as with CSS, you may combine selectors into a single jQuery selection using com‐
mas, as with the following example:

$('blockquote, #advert, .new').css('font-weight', 'bold')

Example 21-2 brings all these types of selectors together into a single example (with
the jQuery statements shown in bold), the result of which you can see in Figure 21-2.

Example 21-2. Using jQuery with different selectors

<!DOCTYPE html>
<html>
 <head>
 <title>Second jQuery Example</title>
 <script src='jquery-3.2.1.min.js'></script>
 </head>
 <body>
 <blockquote>Powerful and flexible as JavaScript is, with a plethora of
 built-in functions, it is still necessary to use additional code for
 simple things that cannot be achieved natively or with CSS, such as
 animations, event handling, and asynchronous communication.</blockquote>
 <div id='advert'>This is an ad</div>
 <p>This is my new website</p>
 <script>
 $('blockquote').css('background', 'lime')
 $('#advert').css('border', '3px dashed red')
 $('.new').css('text-decoration', 'underline')
 $('blockquote, #advert, .new').css('font-weight', 'bold')
 </script>
 </body>
</html>

Selectors | 509

Figure 21-2. Manipulating multiple elements

Handling Events
If all jQuery could do was alter CSS styles, it wouldn’t be a great deal of help—but of
course, it can do far more than that. Let’s further investigate by seeing how it handles
events.

As you will recall, most events are triggered by user interaction: when a mouse passes
over an element, the mouse button is clicked, or a key is pressed. But there are also
other events that can be triggered, such as when a document completes loading.

With jQuery, it’s a simple matter to attach your own code to these events in a safe way
that doesn’t block other code from also gaining access to these events. For example,
here’s how to get jQuery to respond to an element being clicked:

$('#clickme').click(function()
{
 $('#result').html('You clicked the button!')
})

When the element with the ID of clickme is clicked, the innerHTML property of the
element with the ID of result is updated via the jQuery html function.

jQuery objects (created with either the $ or jQuery methods) are
not the same as JavaScript objects created with getElementById. In
plain JavaScript, you can use a statement like object =

document.getElementById('result') followed by (for example)
object.innerHTML = 'something'. But in the preceding example,
$('#result').innerHTML would not work, because innerHTML is
not a property of a jQuery object—hence the use of the jQuery
method html to achieve the required result.

510 | Chapter 21: Introduction to jQuery

Example 21-3 fleshes out the idea; you can see it running in Figure 21-3.

Example 21-3. Processing an event

<!DOCTYPE html>
<html>
 <head>
 <title>jQuery Events</title>
 <script src='jquery-3.2.1.min.js'></script>
 </head>
 <body>
 <button id='clickme'>Click Me</button>
 <p id='result'>I am a paragraph</p>
 <script>
 $('#clickme').click(function()
 {
 $('#result').html('You clicked the button!')
 })
 </script>
 </body>
</html>

Figure 21-3. Processing a click event

When accessing an event with jQuery, omit the on prefix that you
would use in standard JavaScript. So, for example, the onmouseover
event name becomes the mouseover function in jQuery, onclick
becomes click, and so on.

Waiting Until the Document Is Ready
Since jQuery is so closely related to the DOM in what it lets you achieve, more often
than not you will need to wait until a web page has loaded before manipulating parts
of it. Without jQuery, this can be achieved with the onload event, but there’s a more
efficient, cross-browser jQuery method called ready that you can call to enable it at
the earliest possible moment (even sooner than with onload). This means jQuery can

Waiting Until the Document Is Ready | 511

get working on a page that much more quickly, and user-unfriendly delays are mini‐
mized.

To make use of this feature, place your jQuery code within the following structure:

$('document').ready(function()
{
 // Your code goes here
})

The code will wait there until the document is ready, and only then will it be called by
the ready method. In fact, there’s a shorter version you can use that takes even less
typing, as shown in Example 21-4.

Example 21-4. The smallest jQuery “ready” code encapsulation function

$(function()
{
 // Your code goes here
})

If you get used to encapsulating your jQuery statements in one of these two struc‐
tures, you won’t encounter the types of errors that can be generated by trying to
access the DOM too soon.

Alternatively, another approach is to always place your JavaScript at
the end of every HTML page, so that it is executed only after the
entire document has loaded. There is a secondary advantage too, in
that this ensures the web page contents get priority with loading—
thus, you may well see improvements in user experience.
The only time end-of-page scripts may not be a good idea is if a
document could appear to be ready when it isn’t, or if all external
stylesheets have not yet loaded (which can really be identified only
by testing), causing users to think they can interact with it before
your script is ready. In such cases, implement the ready function
and all will be well. In fact, if in doubt, place your script at the page
end and place its jQuery calls within the ready function, and you’ll
get the best of both worlds.

Event Functions and Properties
You’ve just seen the ready event method, but you can access several dozen jQuery
event methods and associated properties (far too many to detail here). However, the
following are some of the ones that are more commonly used, and they’ll get you
started for most projects. For a comprehensive summary of all available events, please
see the documentation.

512 | Chapter 21: Introduction to jQuery

http://api.jquery.com/category/events

The blur and focus Events
The blur event triggers when focus is removed from an element, causing it to blur,
and is a good partner for the focus event. The blur and focus methods can be used
to add a handler to the event. They will trigger the event if you omit any arguments
from the method’s parentheses.

In Example 21-5, there are four input fields. The first is given immediate focus with a
quick call to the focus method, applying it to the element with the ID of first. Then
a pair of handlers is added to all input elements. The focus handler sets their back‐
ground to yellow when focus is given, and the blur handler sets their background to
light gray when focus is removed (or blurred).

Example 21-5. Using the focus and blur events

<!DOCTYPE html>
<html>
 <head>
 <title>Events: blur</title>
 <script src='jquery-3.2.1.min.js'></script>
 </head>
 <body>
 <h2>Click in and out of these fields</h2>
 <input id='first'> <input> <input> <input>
 <script>
 $('#first').focus()
 $('input').focus(function() { $(this).css('background', '#ff0') })
 $('input') .blur(function() { $(this).css('background', '#aaa') })
 </script>
 </body>
</html>

You are allowed to include whitespace characters between the clos‐
ing parenthesis of a method and the period operator used to attach
another method to it (and after the period too, if you like), as in the
previous example where I have right-aligned the blur event name
under focus, to help the rest of the statements also line up in col‐
umns.

In Figure 21-4, you can see how this code gives any input fields that have ever had
focus a light gray background color. If one currently has focus, its background color is
set to yellow, while unvisited fields remain with a white background color.

Event Functions and Properties | 513

Figure 21-4. Attaching event handlers to the blur and focus events

The this Keyword
This example also serves to illustrate the use of the this keyword. When an event is
called, the element on which it was triggered is passed in the object this, which can
then be given to the $ method for processing. Or, since this is a standard JavaScript
object (and not a jQuery object), it can be used as such. So, if you prefer, you could
replace this:

$(this).css('background', '#ff0')

with this:

this.style.background = '#ff0'

The click and dblclick Events
You saw the click event a little earlier, but there’s an event for handling double-clicks
too. To use either, attach the event’s method to a jQuery selection, and for its argu‐
ment provide a jQuery method to invoke when the event triggers, like this:

$('.myclass') .click(function() { $(this).slideUp() })
$('.myclass').dblclick(function() { $(this).hide() })

Here I have opted to use inline anonymous functions, but you can use named ones
instead if you like (just remember to supply only the name of the function, without
parentheses, or it will be called at the wrong time). The this object will pass through
as expected and be made available to the named function, like this:

$('.myclass').click(doslide)

function doslide()
{
 $(this).slideUp()
}

The slideUp and hide methods are detailed in the section “Special Effects” on page
523. For now, though, just try running Example 21-6 and either clicking or double-

514 | Chapter 21: Introduction to jQuery

clicking the buttons to see how they sometimes disappear with an animation (using
slideUp) and sometimes just vanish (using hide), as shown in Figure 21-5.

Example 21-6. Attaching to the click and dblclick events

<!DOCTYPE html>
<html>
 <head>
 <title>Events: click & dblclick</title>
 <script src='jquery-3.2.1.min.js'></script>
 </head>
 <body>
 <h2>Click and double click the buttons</h2>
 <button class='myclass'>Button 1</button>
 <button class='myclass'>Button 2</button>
 <button class='myclass'>Button 3</button>
 <button class='myclass'>Button 4</button>
 <button class='myclass'>Button 5</button>
 <script>
 $('.myclass').click(function() { $(this).slideUp() })
 $('.myclass').dblclick(function() { $(this).hide() })
 </script>
 </body>
</html>

Figure 21-5. Button 3 has been clicked once and is sliding up

The keypress Event
From time to time, you’ll need better control over user keyboard interaction, particu‐
larly when processing complex forms or when writing games. For cases such as these,
you can use the keypress method, which can be attached to anything that accepts
keyboard input, such as an input field or even the document itself.

In Example 21-7, the method has been attached to the document in order to intercept
all key presses. The result of running it can be seen in Figure 21-6.

Event Functions and Properties | 515

Example 21-7. Intercepting key presses

<!DOCTYPE html>
<html>
 <head>
 <title>Events: keypress</title>
 <script src='jquery-3.2.1.min.js'></script>
 </head>
 <body>
 <h2>Press some keys</h2>
 <div id='result'></div>
 <script>
 $(document).keypress(function(event)
 {
 key = String.fromCharCode(event.which)

 if (key >= 'a' && key <= 'z' ||
 key >= 'A' && key <= 'Z' ||
 key >= '0' && key <= '9')
 {
 $('#result').html('You pressed: ' + key)
 event.preventDefault()
 }
 })
 </script>
 </body>
</html>

Figure 21-6. Processing key presses from the keyboard

There are a few things of note in this example that you will need to bear in mind
when writing your own keyboard handlers. For example, because browsers return
differing values for this event, the which property of the event object is normalized
by jQuery to return the same character codes across all browsers. So, this is where to
look for which key was pressed.

Being a character code, though, the value in which is a number. You can turn it into a
single-letter string by passing it through String.fromCharCode. You don’t have to do

516 | Chapter 21: Introduction to jQuery

this, because you can easily respond to ASCII values in your code, but this method is
useful when you need to work with characters.

Within the if block, when a key press is recognized, the example code inserts a sim‐
ple statement to that effect into the innerHTML property of the <div> element with the
ID of result.

This is a good example of where the document.write function
should not be used, because the document will have already fully
loaded by the time the user presses a key. If document.write were
called to display the information at this time, it would erase the
current document. Writing into the HTML of an element instead is
a perfect, nondestructive means of supplying user feedback, as
explained in “About document.write” on page 326 in Chapter 13.

Considerate Programming
When you are anticipating user input, you should decide which values you will
respond to and then ignore all others, just in case another event handler needs access
to them. This is considerate practice for any other utilities (and the main browser
itself) that may also be running. For example, in the preceding example I have chosen
to accept only the characters a–z, A–Z, and 0–9, ignoring all others.

There are two ways you can pass keyboard interrupts on to (or deny them from)
other handlers. First, do nothing; when your code exits, other handlers will also see
and be able to react to the same key presses. This can cause confusion, though, if mul‐
tiple actions occur from a single key press.

Alternatively, when you don’t want the event to trigger any other handlers, you can
make a call to the preventDefault method of event, which then keeps the event
from “bubbling up” to other handlers.

Be careful where you place your call to preventDefault—if it’s out‐
side the part of the code in which you process the key presses, it
will prevent all other keyboard events from bubbling up, and you
may lock the user out of the browser (or at least out of using cer‐
tain features).

The mousemove Event
Some of the most commonly intercepted events are for mouse handling. I’ve already
covered mouse button clicks, but now let’s take a look at attaching to mouse move‐
ment events.

Event Functions and Properties | 517

It’s time, I think, for a slightly more interesting example, so in Example 21-8 I have
put together a rudimentary drawing program using jQuery in conjunction with an
HTML5 canvas. Although the canvas is not fully explained until Chapter 24, don’t
worry because the code is very simple.

Example 21-8. Intercepting mouse movement and mouse key events

<!DOCTYPE html>
<html>
 <head>
 <title>Events: Mouse Handling</title>
 <script src='jquery-3.2.1.min.js'></script>
 <style>
 #pad {
 background:#def;
 border :1px solid #aaa;
 }
 </style>
 </head>
 <body>
 <canvas id='pad' width='480' height='320'></canvas>
 <script>
 canvas = $('#pad')[0]
 context = canvas.getContext("2d")
 pendown = false

 $('#pad').mousemove(function(event)
 {
 var xpos = event.pageX - canvas.offsetLeft
 var ypos = event.pageY - canvas.offsetTop

 if (pendown) context.lineTo(xpos, ypos)
 else context.moveTo(xpos, ypos)

 context.stroke()
 })

 $('#pad').mousedown(function() { pendown = true })
 $('#pad') .mouseup(function() { pendown = false })
 </script>
 </body>
</html>

In Figure 21-7, you can see how this fairly simple set of instructions can be used to
create line drawings (well, if you have artistic ability, that is :). Here’s how it works.
First, the program creates a canvas object by referencing the first (or zeroth) element
of the jQuery selector, like this:

canvas = $('#pad')[0]

518 | Chapter 21: Introduction to jQuery

Figure 21-7. Capturing mouse movement and mouse key events

This is one way you can quickly take a jQuery object and extract a standard JavaScript
element object. Another would be to use the get method, like this:

canvas = $('#pad').get(0)

The two are interchangeable, but get has the edge because, without any argument
passed, it will return all the element node objects from a jQuery object as an array.

Anyway, as you’ll learn in Chapter 24, the canvas will be written to using a special
context object, which is now created:

context = canvas.getContext("2d")

There’s one more thing to initialize, which is a Boolean variable called pendown to
track the status of the mouse button (initially false because the pen is up):

pendown = false

After this, the canvas (with the ID of pad) has its mousemove event intercepted by the
anonymous function that follows, within which three sets of things happen:

$('#pad').mousemove(function(event)
{
 ...
})

First, the xpos and ypos local variables (local because of the var keywords) are
assigned values representing the position of the mouse within the canvas area.

Event Functions and Properties | 519

These values are taken from the jQuery pageX and pageY properties, which refer to
the mouse pointer’s offset from the top-lefthand corner of the containing document.
Therefore, since the canvas is itself offset slightly from that location, the canvas offset
values (in offsetLeft and offsetTop) are subtracted from pageX and pageY:

var xpos = event.pageX - canvas.offsetLeft
var ypos = event.pageY - canvas.offsetTop

Now that we know where the mouse pointer is in relation to the canvas, the next pair
of lines tests the value of pendown. If it is true, we know that the mouse button is
being pressed, so a lineTo call is made to draw a line to the current location. Other‐
wise, the pen is up, and so moveTo is called to simply update the current location:

if (pendown) context.lineTo(xpos, ypos)
else context.moveTo(xpos, ypos)

Then the stroke method is called to apply whichever drawing command was just
made to the canvas. These five lines are all that is needed to handle drawing, but it’s
still necessary to track the mouse button state, so the final two lines of code intercept
the mousedown and mouseup events, setting pendown to true when the mouse button is
pressed and false when it’s released:

$('#pad').mousedown(function() { pendown = true })
$('#pad') .mouseup(function() { pendown = false })

In this example, you see the combination of three different event handlers working
together to create a simple utility, using both local variables for internal expressions
and global variables where an object or the state of something must be made available
across multiple functions.

Other Mouse Events
The mouseenter and mouseleave events trigger whenever the mouse passes into an
element or leaves it. No position values are supplied because the functions assume
you simply want to make a Boolean decision about what to do when one of these
events is triggered.

In Example 21-9, a pair of anonymous functions is attached to these events, altering
the HTML of an element accordingly, as shown in Figure 21-8.

Example 21-9. Detecting the mouse entering and leaving an element

<!DOCTYPE html>
<html>
 <head>
 <title>Events: Further Mouse Handling</title>
 <script src='jquery-3.2.1.min.js'></script>
 </head>

520 | Chapter 21: Introduction to jQuery

 <body>
 <h2 id='test'>Pass the mouse over me</h2>
 <script>
 $('#test').mouseenter(function() { $(this).html('Hey, stop tickling!') })
 $('#test').mouseleave(function() { $(this).html('Where did you go?') })
 </script>
 </body>
</html>

Figure 21-8. Detecting when the mouse enters and leaves an element

When the mouse enters the bounds of the selected element, that element’s innerHTML
property is updated (with a call to html). Then, when the mouse leaves again, a fur‐
ther update is made to the element’s HTML.

Alternative Mouse Methods
A number of other jQuery mouse event functions are available to cover a wide range
of circumstances, all of which are detailed in the mouse events documentation. For
example, you can use the following alternative mouseover and mouseout methods to
achieve similar results to the code in the preceding section:

$('#test').mouseover(function() { $(this).html('Cut it out!') })
$('#test') .mouseout(function() { $(this).html('Try it this time...') })

Or you could use the hover method to bind two handlers with a single function call,
like this:

$('#test').hover(function() { $(this).html('Cut it out!') },
 function() { $(this).html('Try it this time...') })

If you are planning on creating mouseover and mouseout combined effects, clearly the
hover method is the logical function to choose—but there’s also another way you can
achieve the same result, which is chaining (explained in the section “Method chain‐
ing” on page 531), using code like this:

$('#test').mouseover(function() { $(this).html('Cut it out!') })
 .mouseout(function() { $(this).html('Try it this time...') })

Here the period operator at the start of the second statement attaches it to the first,
creating a chain of methods.

Event Functions and Properties | 521

http://api.jquery.com/category/events/mouse-events

The preceding examples show how to capture mouse click, mouse
movement, and keyboard events, and therefore they are mostly
suitable for desktop environments—which is what jQuery is pri‐
marily targeted at. However, there is a version of jQuery for mobile
devices that provides all the touch-handling event control you
could wish for (and much more), called jQuery Mobile. We’ll take a
closer look at this in the next chapter.

The submit Event
When a form is submitted, you may want to perform some error checking on the
data entered before it gets sent to the server. One way to do this is to intercept the
submit event of the form, as in Example 21-10. Figure 21-9 shows the result of load‐
ing this document and then submitting the form with one or more fields left empty.

Example 21-10. Intercepting the submit event of a form

<!DOCTYPE html>
<html>
 <head>
 <title>Events: submit</title>
 <script src='jquery-3.2.1.min.js'></script>
 </head>
 <body>
 <form id='form'>
 First name: <input id='fname' type='text' name='fname'>

 Last name: <input id='lname' type='text' name='lname'>

 <input type='submit'>
 </form>
 <script>
 $('#form').submit(function()
 {
 if ($('#fname').val() == '' ||
 $('#lname').val() == '')
 {
 alert('Please enter both names')
 return false
 }
 })
 </script>
 </body>
</html>

522 | Chapter 21: Introduction to jQuery

http://jquerymobile.com

Figure 21-9. Checking user input upon submission

The key parts of this example are where the event is attached to an anonymous func‐
tion, like this:

$('#form').submit(function()

and where the values of the two input fields are tested for being empty:

if ($('#fname').val() == '' ||
 $('#lname').val() == '')

Here the jQuery val method is used to retrieve the value in the value property of
each field. This is neater than using $('#fname')[0] (as in Example 21-8) to get
access to the DOM object and then appending value to it to read the field’s value, like
this: $('#fname')[0].value.

In this example, by returning the value false if one or more fields are empty, the if
test cancels the normal submission process. To enable the submission to proceed, you
can return true, or just not return anything.

Special Effects
jQuery really begins to come into its own when processing special effects. Although
you can use CSS3 transitions, they are not so easy to manage dynamically from Java‐
Script—but with jQuery it really is as simple as selecting one or more elements and
then applying one or more effects to them.

The core effects available are hiding and showing, fading in and out, sliding, and ani‐
mations. These can be used singly, together in synchronization, or in sequence. They
also support the use of callbacks, which are functions or methods that get called only
once an operation has completed.

Special Effects | 523

The following sections describe some of the more useful jQuery effects, each of which
supports up to three arguments, as follows:

Duration
When a duration value is supplied, the effect will take place over the assigned
time, which can be a value in milliseconds, or the strings fast or slow.

Easing
There are only two easing options in the jQuery library, swing and linear. The
default is swing, which gives a more natural effect than linear. For more easing
options, you can check out plug-ins like jQuery UI.

Callback
If you supply a callback function, it will be called after the effect method com‐
pletes.

This means that when no arguments are given, the method is called immediately
without being placed in the animation queue.

So, for example, you can call the hide method in a variety of ways, such as these:

$('#object').hide()
$('#object').hide(1000)
$('#object').hide('fast')
$('#object').hide('linear')
$('#object').hide('slow', 'linear')
$('#object').hide(myfunction)
$('#object').hide(333, myfunction)
$('#object').hide(200, 'linear', function() { alert('Finished!') })

As you’ll see in the section “Method chaining” on page 531, you can attach function
calls (with arguments) to each other and they will then be animated in turn, like in
the following example, which will hide and then reveal an element:

$('#object').hide(1000).show(1000)

Other less commonly used arguments are also supported by many of these methods,
and you can get full details on them (and all the other supported effects methods) by
visiting the documentation on effects.

Hiding and Showing
Probably the simplest effect is to hide and show elements in response to user interac‐
tion. As described in the previous section, you can provide no arguments or a variety
of arguments to the hide and show methods. By default, when none are supplied, the
result is to instantly hide or reveal an element.

When arguments are supplied, these two methods modify the width, height, and
opacity properties of an element simultaneously, until they reach 0 for hide or their

524 | Chapter 21: Introduction to jQuery

http://jqueryui.com/easing/
http://api.jquery.com/category/effects

original values for show. The hide function sets the display property of the element
to none when it is fully hidden, and the show function reassigns its previous value to it
once the element is fully restored.

Example 21-11 lets you try hide and show for yourself (as shown in Figure 21-10).

Example 21-11. Hiding and showing an element

<!DOCTYPE html>
<html>
 <head>
 <title>Effects: hide & show</title>
 <script src='jquery-3.2.1.min.js'></script>
 </head>
 <body>
 <button id='hide'>Hide</button>
 <button id='show'>Show</button>
 <p id='text'>Click the Hide and Show buttons</p>
 <script>
 $('#hide').click(function() { $('#text').hide('slow', 'linear') })
 $('#show').click(function() { $('#text').show('slow', 'linear') })
 </script>
 </body>
</html>

Figure 21-10. The element is in the process of being revealed

The toggle Method
As an alternative to calling both the hide and show methods, you can use the toggle
method, which enables you to replace the previous example with Example 21-12.

Example 21-12. Using the toggle method

<!DOCTYPE html>
<html>
 <head>
 <title>Effects: toggle</title>
 <script src='jquery-3.2.1.min.js'></script>

Special Effects | 525

 </head>
 <body>
 <button id='toggle'>Toggle</button>
 <p id='text'>Click the Toggle button</p>
 <script>
 $('#toggle').click(function() { $('#text').toggle('slow', 'linear') })
 </script>
 </body>
</html>

The toggle method takes the same arguments as hide and show but keeps track of
the state of the element internally so that it knows whether to hide or show it.

There are four main jQuery methods that set either one state or
another, and which offer toggling versions to simplify coding. In
addition to toggle, there’s fadeToggle, slideToggle, and
toggleClass, all described in this chapter.

Fading In and Out
Four methods manage fades: fadeIn, fadeOut, fadeToggle, and fadeTo. You should
be getting the idea of how jQuery works by now, and realize that the first three are
similar to show, hide, and toggle, respectively. The last one, though, is a little differ‐
ent in that it lets you specify an opacity value to which an element (or elements)
should be faded, between 0 and 1.

Example 21-13 provides four buttons with which to try out each of these methods, as
shown in Figure 21-11.

Example 21-13. The four fade methods

<!DOCTYPE html>
<html>
 <head>
 <title>Effects: Fading</title>
 <script src='jquery-3.2.1.min.js'></script>
 </head>
 <body>
 <button id='fadeout'>fadeOut</button>
 <button id='fadein'>fadeIn</button>
 <button id='fadetoggle'>fadeToggle</button>
 <button id='fadeto'>fadeTo</button>
 <p id='text'>Click the buttons above</p>
 <script>
 $('#fadeout') .click(function() { $('#text').fadeOut('slow') })
 $('#fadein') .click(function() { $('#text').fadeIn('slow') })
 $('#fadetoggle').click(function() { $('#text').fadeToggle('slow') })
 $('#fadeto') .click(function() { $('#text').fadeTo('slow', 0.5) })

526 | Chapter 21: Introduction to jQuery

 </script>
 </body>
</html>

Figure 21-11. The text has been faded to 50 percent opacity

Sliding Elements Up and Down
Another way to make elements disappear and reappear is to alter their height over
time to make them appear to slide up and down. There are three jQuery methods to
do this: slideDown, slideUp, and slideToggle. They work in a similar way to the
previous functions, as coded in Example 21-14 and shown in Figure 21-12.

Example 21-14. Using the slide methods

<!DOCTYPE html>
<html>
 <head>
 <title>Effects: Sliding</title>
 <script src='jquery-3.2.1.min.js'></script>
 </head>
 <body>
 <button id='slideup'>slideUp</button>
 <button id='slidedown'>slideDown</button>
 <button id='slidetoggle'>slideToggle</button>
 <div id='para' style='background:#def'>
 <h2>From A Tale of Two Cities - By Charles Dickens</h2>
 <p>It was the best of times, it was the worst of times, it was the age of
 wisdom, it was the age of foolishness, it was the epoch of belief, it was
 the epoch of incredulity, it was the season of Light, it was the season of
 Darkness, it was the spring of hope, it was the winter of despair, we had
 everything before us, we had nothing before us, we were all going direct to
 Heaven, we were all going direct the other way - in short, the period was so
 far like the present period, that some of its noisiest authorities insisted
 on its being received, for good or for evil, in the superlative degree of
 comparison only</p>
 </div>
 <script>
 $('#slideup') .click(function() { $('#para').slideUp('slow') })
 $('#slidedown') .click(function() { $('#para').slideDown('slow') })

Special Effects | 527

 $('#slidetoggle').click(function() { $('#para').slideToggle('slow') })
 </script>
 </body>
</html>

Figure 21-12. The paragraph is sliding up

These methods work well when you have menus and submenus that you want to
open up or close dynamically, according to the sections clicked by the user.

Animations
Now we can really start to have some fun by actually moving elements around in the
browser. To do this, though, because the default value of static will not allow them
to move, you must remember to first give your elements’ position properties the val‐
ues of relative, fixed, or absolute.

To animate an element, all you do is supply a list of CSS properties (excluding colors)
to the animate method. Unlike the previous effects methods, animate requires this
list of properties first, and then you can supply any duration, easing, and callback
arguments you need.

So, for example, to animate a bouncing ball, you could use code such as that in
Example 21-15 (which displays like Figure 21-13).

528 | Chapter 21: Introduction to jQuery

Example 21-15. Creating a bouncing ball animation

<!DOCTYPE html>
<html>
 <head>
 <title>Effects: Animation</title>
 <script src='jquery-3.2.1.min.js'></script>
 <style>
 #ball {
 position :relative;
 }
 #box {
 width :640px;
 height :480px;
 background:green;
 border :1px solid #444;
 }
 </style>
 </head>
 <body>
 <div id='box'>

 </div>
 <script>
 bounce()

 function bounce()
 {
 $('#ball')
 .animate({ left:'270px', top :'380px' }, 'slow', 'linear')
 .animate({ left:'540px', top :'190px' }, 'slow', 'linear')
 .animate({ left:'270px', top :'0px' }, 'slow', 'linear')
 .animate({ left:'0px', top :'190px' }, 'slow', 'linear')
 }
 </script>
 </body>
</html>

Special Effects | 529

Figure 21-13. The ball is bouncing around in the browser

In the <style> section of this example, the position property of the ball is set rela‐
tive to its container, which is a <div> element that has been given a border and a
green background.

Then the <script> section features a function called bounce, which concatenates four
calls to animate. Notice how the names of the properties to animate (left and top in
this example) are supplied without quotation marks and are separated from the val‐
ues to which they should be changed (such as '270px') with colons—in other words,
in the form of associative arrays.

You can also supply relative values in place of absolute ones by using the += and -=
operators. So, for example, the following will animate the ball to the right and up by
50 pixels relative to its current position:

.animate({ left:'+=50px', top:'-=50px' }, 'slow', 'linear')

And you can even use the string values of hide, show, and toggle to update a prop‐
erty, like this:

.animate({ height:'hide', width:'toggle' }, 'slow', 'linear')

530 | Chapter 21: Introduction to jQuery

If you wish to modify any hyphenated CSS properties and they’re
not being passed within quotation marks (as with height and
width in the previous example), you must convert their names to
camelCase by removing the hyphens and capitalizing the letter fol‐
lowing. For example, to animate the left-margin property of an
element, you would supply the name of leftMargin. However,
when supplying a hyphenated property name within a string—for
example, css('font-weight', 'bold'), you shouldn’t convert it
to camelCase.

Method chaining
Because of the way that method chaining works, when jQuery methods have been
given arguments, they will run sequentially. So, each of these methods is called only
after the previous one has finished animating. Any methods you call without argu‐
ments, however, will run immediately and quickly, without animation.

When you load Example 21-15 into a web browser, the animation is kicked off (so to
speak) with a single call to bounce, causing the ball to bounce off the bottom, right,
and top edges of its container, and then come to rest back at the middle of the left-
hand edge. Looking again at the bounce function in this example, you can see there
are four chained calls to the animate function.

Using callbacks
As it stands, the preceding example stops after four animations, but you can use a
callback function to make the animation start over again every time it completes.
This is why I chose to place the animation in a named function.

With the animation in the bounce function, it is necessary only to add that name as a
callback to the fourth animation in the group in order to make the animation repeat
forever, as shown in bold here:

.animate({ left:'0px', top :'190px' }, 'slow', 'linear', bounce)

Using the animate method, you can animate many CSS properties, with the notable
exception of colors. However, even color animation is possible with the addition of
the jQuery UI add-in, which provides the facility to create very eye-pleasing color-
changing effects (plus many more goodies). Please refer to the jQuery UI page for
details.

Stopping Animations
There are several methods available for cutting off animations midway through, or
ending a chain of animations. For example, clearQueue can empty all stored anima‐
tions from the queue, stop can immediately stop any animation currently in pro‐

Special Effects | 531

http://jqueryui.com

gress, and finish will stop the currently running animation and remove any that are
queued.

Let’s turn the previous example into a sort of game by making the ball clickable, such
that when the click event triggers, the animation will cease. To do this, all that’s
required is to add the following single line of code underneath the bounce function:

$('#ball').click(function() { $(this).finish() })

If you successfully manage to click the ball, the finish method will stop the current
animation, empty the queue, and ignore any callbacks—in other words, the ball will
come to rest.

For more information on managing jQuery queues, check out the documentation for
the queue method, where you’ll also learn how to directly manipulate the contents of
queues to get exactly the effects you need.

Manipulating the DOM
Because jQuery is so tightly linked with the DOM, of necessity the examples in this
chapter have already utilized some of its DOM-accessing methods, such as html and
val. But let’s now look at all the DOM methods in detail to discover exactly what you
can get access to with jQuery, and how.

In Example 21-3, you saw how to use the html method to change the innerHTML
property of an element. This method can be used either to set the HTML or retrieve it
from an HTML document. Example 21-16 (with the jQuery highlighted in bold)
shows how to retrieve the HTML content of an element (as shown in Figure 21-14).

Example 21-16. Displaying the HTML of an element using an alert window

<!DOCTYPE html>
<html>
 <head>
 <title>The DOM: html & text</title>
 <script src='jquery-3.2.1.min.js'></script>
 </head>
 <body>
 <h2>Example Document</h2>
 <p id='intro'>This is an example document</p>
 <script>
 alert($('#intro').html())
 </script>
 </body>
</html>

532 | Chapter 21: Introduction to jQuery

http://api.jquery.com/queue
http://api.jquery.com/queue

Figure 21-14. Retrieving and displaying the HTML of an element

When you issue this method without arguments, the result is to read rather than set
the HTML of the element.

The Difference Between the text and html Methods
When you are working with XML documents, you cannot use the html method
because it simply won’t work (it’s designed for use only with HTML). But you can use
the text method to achieve a similar result (in XML or HTML documents), like this:

text = $('#intro').text()

The difference between the two is quite simply that html treats the content as HTML
and text treats it as text. So, for example, let’s assume you wish to assign the follow‐
ing string to an element:

Visit Google

If you assign it to an HTML element using the html method, the DOM will be upda‐
ted with the new <a> element and the link will become clickable. But if you do so to
either an XML or HTML document using the text method, that string will first be
escaped into text (for example, by converting HTML characters such as < into the
< entity, and so on), and then inserted into the element—no element is added to
the DOM.

The val and attr Methods
There are a couple more methods for interacting with the content of elements. First,
you can set and get the value of an input element with the val method, as illustrated
in Example 21-10, in which the first and last name fields are read. To set a value, sim‐
ply provide it as an argument to the method, like this:

$('#password').val('mypass123')

Manipulating the DOM | 533

With the attr method, you can get and set the attributes of elements, as shown in
Example 21-17, in which a link to the Google website has been completely replaced
with one to Yahoo!

Example 21-17. Modifying attributes with the attr method

<!DOCTYPE html>
<html>
 <head>
 <title>The DOM: attr</title>
 <script src='jquery-3.2.1.min.js'></script>
 </head>
 <body>
 <h2>Example Document</h2>
 <p>Visit Google</p>
 <script>
 $('#link').text('Visit Yahoo!')
 $('#link').attr({ href :'http://yahoo.com', title:'Yahoo!' })
 alert('The new HTML is:\n' + $('p').html())
 </script>
 </body>
</html>

The first jQuery statement uses the text method to change the text inside the <a>
element, and the second one changes the href and title attribute values to match by
supplying the data in the form of an associative array. The third statement displays
the changed element’s contents in an alert window by first retrieving it with the html
method, as shown in Figure 21-15.

Figure 21-15. The link has now been completely modified

You can also read the value of an attribute like this:

url = $('#link').attr('href')

534 | Chapter 21: Introduction to jQuery

Adding and Removing Elements
While it is possible to insert elements into the DOM using the html method, this is
suitable only for creating child elements of a particular element. Therefore, jQuery
provides a number of methods for manipulating any part of the DOM.

These methods are append, prepend, after, before, remove, and empty. An example
of each appears in Example 21-18.

Example 21-18. Adding and removing elements

<!DOCTYPE html>
<html>
 <head>
 <title>Modifying The DOM</title>
 <script src='jquery-3.2.1.min.js'></script>
 </head>
 <body>
 <h2>Example Document</h2>
 Visit Google
 <code>
 This is a code section
 </code>
 <p>
 <button id='a'>Remove the image</button>
 <button id='b'>Empty the quote</button>
 </p>

 <blockquote id='quote' style='border:1px dotted #444; height:20px;'>
 test
 </blockquote>
 <script>
 $('a').prepend('Link: ')
 $("[href^='http']").append(" ")
 $('code').before('<hr>').after('<hr>')
 $('#a').click(function() { $('#ball').remove() })
 $('#b').click(function() { $('#quote').empty() })
 </script>
 </body>
</html>

In Figure 21-16, you can see the result of applying the prepend, append, before, and
after methods to some elements.

Manipulating the DOM | 535

Figure 21-16. A document with a variety of elements

The prepend method has been used to insert the string Link: before the inner text or
HTML of all <a> elements, like this:

$('a').prepend('Link: ')

Then an attribute selector is used to select all elements that have an href attribute
starting with http. The string http appearing at the beginning of the URL (because of
the ^= operator) denotes links that are not relative and therefore are absolute. In these
cases, an external link icon is appended to the end of the inner text or HTML of all
matching elements, like this:

$("[href^='http']").append(" ")

The ^= operator is how only the start of the string is matched. If
just the = operator were used, only entire strings that matched
would be selected. CSS selectors are covered in detail in Chapters
18 and 19.

Next, using chained methods, the before and after methods are employed to place
sibling elements either before or after another one. In this instance, I have chosen to
place an <hr> element both before and after <code> elements, like this:

$('code').before('<hr>').after('<hr>')

536 | Chapter 21: Introduction to jQuery

Then I added a little user interaction with a couple of buttons. When clicked, using
the remove method, the first button removes the element containing the ball,
like this:

$('#a').click(function() { $('#ball').remove() })

The image is now no longer in the DOM, which you can verify if
you highlight the browser window’s contents, right-click, and
choose Inspect Element in most major desktop browsers, or press
F12 in Internet Explorer.

Finally, the empty method is applied to the <blockquote> element when the second
button is clicked, like this:

$('#b').click(function() { $('#quote').empty() })

This empties out the element’s contents but leaves the element in the DOM.

Dynamically Applying Classes
Sometimes it can be convenient to change the class applied to an element, or maybe
just add a class to an element or remove it from one. For example, suppose you have a
class called read that you use to style blog posts that have been read. Using the add
Class method, it’s a simple matter to add a class to that post, like this:

$('#post23').addClass('read')

You can add more than one class at a time by separating them with spaces, like this:

$('#post23').addClass('read liked')

But what if a reader chooses to mark a post as unread again, perhaps to be reminded
to read it again later? In this case, all you need to do is use removeClass, like this:

$('#post23').removeClass('read')

All other classes that the post uses remain unaffected when you do this.

Where you are supporting the ability of a class to be continuously added or removed,
however, you might find it simpler to use the toggleClass method, like this:

$('#post23').toggleClass('read')

Now, if the post doesn’t already use the class, it is added; otherwise, it is removed.

Modifying Dimensions
Working with dimensions is always a tricky web development task because different
browsers tend to utilize slightly differing values. One of jQuery’s big strengths, there‐

Dynamically Applying Classes | 537

fore, is that it does a great job of normalizing these types of values, so that your pages
will look how you intend them to appear in all major browsers.

There are three types of dimensions: element width and height, inner width and
height, and outer width and height. Let’s look at these in turn.

The width and height Methods
Both the width and height methods can get the width or height of the first element
that matches a selector, or set the width or height of all matching elements. For exam‐
ple, to get the width of an element with the ID of elem, you could use this statement:

width = $('#elem').width()

The value returned to the variable width is a plain numeric value, which is different
from returning the CSS value from a call to the css method, as in the following
example, which would return (for example) 230px rather than just the number 230:

width = $('#elem').css('width')

You can also obtain the width of either the current window or the document, like this:

width = $(window).width()
width = $(document).width()

When you pass the window or document objects to jQuery, you can‐
not fetch their width or height with the css method. Instead, you
must use the width or height methods.

The value returned is independent of the box-sizing setting (see Chapter 19). If you
need to take box-sizing into account, use the css method with an argument of
width instead, like this (but remember to remove from the returned value the px that
will be added after the numeric part, if you intend to work with the values returned):

width = $('#elem').css('width')

Setting values is just as easy. For example, to set all elements that use the class box to
100 × 100 pixels, you could use this statement:

$('.box').width(100).height(100)

Example 21-19 combines these actions into a single program that displays as
Figure 21-17.

Example 21-19. Getting and setting element dimensions

<!DOCTYPE html>
<html>

538 | Chapter 21: Introduction to jQuery

 <head>
 <title>Dimensions</title>
 <script src='jquery-3.2.1.min.js'></script>
 </head>
 <body>
 <p>
 <button id='getdoc'>Get document width</button>
 <button id='getwin'>Get window width</button>
 <button id='getdiv'>Get div width</button>
 <button id='setdiv'>Set div width to 150 pixels</button>
 </p>
 <div id='result' style='width:300px; height:50px; background:#def;'></div>
 <script>
 $('#getdoc').click(function()
 {
 $('#result').html('Document width: ' + $(document).width())
 })

 $('#getwin').click(function()
 {
 $('#result').html('Window width: ' + $(window).width())
 })

 $('#getdiv').click(function()
 {
 $('#result').html('Div width: ' + $('#result').width())
 })

 $('#setdiv').click(function()
 {
 $('#result').width(150)
 $('#result').html('Div width: ' + $('#result').width())
 })
 </script>
 </body>
</html>

Figure 21-17. Getting and setting element dimensions

Modifying Dimensions | 539

At the start of the <body>, there are four buttons: three for reporting the widths of the
document, window, and a <div> element that appears just below the buttons; and one
to set the <div>’s width to a new value. In the <script> section, there are four jQuery
statements, the first three of which simply fetch the widths of the objects given and
then report these values by writing into the HTML of the <div>.

The final statement has two parts: the first reduces the width of the <div> element to
150 pixels, and the second displays the new width value within the <div> by fetching
it using the width method, to ensure the computed value is displayed.

When the page has been zoomed (either in or out) by the user, this
event is not noted in any major browser, in any way that JavaScript
can reliably detect. Therefore, jQuery cannot take zooming into
account when it applies or returns dimensional values, so it is pos‐
sible to get unexpected results in this circumstance.

The innerWidth and innerHeight Methods
It’s often necessary to also take borders, padding, and other properties into account
when working with dimensions. For these purposes, you can use the innerWidth and
innerHeight methods to return the width and height of the first element that
matches the selector, including the padding but not including any border.

For example, the following returns the innerWidth of the element with an ID of elem,
including padding:

iwidth = $('#elem').innerWidth()

The outerWidth and OuterHeight Methods
To return the dimensions of an element including both padding and border, you can
call the outerWidth and outerHeight methods, like this:

owidth = $('#elem').outerWidth()

If you wish to also include any margin in the returned value, you can pass the value of
true when you call either of these methods, like this:

owidth = $('#elem').outerWidth(true)

The values returned for any of the inner... or outer... methods
are not necessarily integers and may be fractional in some cases.
User page zooming is not detected by these methods, and you can‐
not use these methods on window or document objects—for those,
use the width or height methods instead.

540 | Chapter 21: Introduction to jQuery

DOM Traversal
If you refer back to the section on the Document Object Model in Chapter 13, you’ll
recall that all web pages are constructed in much the same way as extended families.
There are parent and child objects, siblings, grandparents, grandchildren, and even
element relationships that could be referred to as cousins, aunts, and so forth. For
example, in the following snippet, the elements are children of the element,
which, in turn, is parent to the elements:

 Item 1
 Item 2
 Item 3

And, like in families, there are multiple ways you can refer to HTML elements, such
as with absolute specifications, or by starting at the window level and moving on
down (also known as traversing the DOM). You can also use the relationship between
one element and another to refer to elements. Really, it’s a matter of what makes sense
for your particular project—for example, if you want a web page to be as self-
contained as possible so that you have a better chance of cutting and pasting elements
into other web documents without having to change the pasted HTML to match that
of the destination. Whatever you choose, though, jQuery offers a wide range of func‐
tions to help you accurately address elements.

Parent Elements
To refer to an element’s direct parent, use the parent method like this:

my_parent = $('#elem').parent()

Whatever type of element elem may be, the my_parent object now contains a jQuery
object that refers to its parent element. In fact, since selectors can refer to multiple
elements, this call actually returns an object that refers to a list of parent elements
(although the list can have only one item), one for each matching element.

Since a parent may have many children, you might wonder whether more elements
can be returned by this method than there are parents. Take the preceding snippet
with three elements. If we do this:

my_parent = $('li').parent()

will three parent elements be returned (because three matches will be made), even
though there is just a single parent? The answer is no, because jQuery is smart
enough to recognize all duplicates and filter them out. To verify this, if you ask for the
number of elements returned like this, the result will be 1:

alert($('li').parent().length)

DOM Traversal | 541

Let’s now make something happen when the selector matches, such as changing the
font-weight property of the parent element in the previous snippet to bold, like this:

$('li').parent().css('font-weight', 'bold')

Using a filter

Optionally, a selector can be passed to parent to filter out which of the parents
should reflect the desired changes. To illustrate, Example 21-20 has three small lists
and a couple of jQuery statements.

Example 21-20. Accessing parent elements

<!DOCTYPE html>
<html>
 <head>
 <title>DOM Traversal: Parent</title>
 <script src='jquery-3.2.1.min.js'></script>
 </head>
 <body>

 Item 1
 Item 2
 Item 3

 <ul class='memo'>
 Item 1
 Item 2
 Item 3

 Item 1
 Item 2
 Item 3

 <script>
 $('li').parent() .css('font-weight', 'bold')
 $('li').parent('.memo').css('list-style-type', 'circle')
 </script>
 </body>
</html>

The three lists are all the same, except that the middle one’s element uses a class
of memo. In the <script> section, the first statement applies a value of bold to the
font-weight property of all parents of elements. In this instance, it causes all
the elements to display in bold.

The second statement is similar, but also passes the class name memo to the parent
method, so that only that parent will be selected. Then the css method is called to set

542 | Chapter 21: Introduction to jQuery

the list-style-type property of the selected list to circle. Figure 21-18 shows the
effect of these two statements.

Figure 21-18. Accessing parent elements with and without filters

Selecting all ancestor elements
We’ve just seen how to select direct parents of elements, but you can also select ances‐
tors, all the way back to the <html> root element, by using the parents method. But
why might you want to do this? Well, how about wanting to access the first <div>
element up the ancestry chain in order to style it according to something dynamic
that has gone on further down the chain?

This type of selection may be slightly too advanced for any purpose you can think of
right now, but you’ll be pleased it’s there when you need it, and here’s how you might
proceed:

$('#elem').parents('div').css('background', 'yellow')

Actually, that may not be exactly what you want, because it will select all <div> ele‐
ments in the ancestry chain, and there may be others further up that you don’t want
to style. So, for this type of eventuality, you can further filter the selection by using the
parentsUntil method instead.

The parentsUntil method traverses up the ancestry chain in the same way as
parents, but stops at the first element that matches the selection filter (in this case, it’s
a <div> element), so you can use it in the same way as the preceding statement, cer‐
tain in the knowledge that you will select only the closest matching element you want:

$('#elem').parentsUntil('div').css('background', 'yellow')

To illustrate the difference between these two methods, take a look at Example 21-21,
which contains two sets of nested elements, both of which are within one parent

DOM Traversal | 543

<div> element. The <script> section calls one example each of the parents and
parentsUntil methods.

Example 21-21. Using the parents and parentsUntil methods

<!DOCTYPE html>
<html>
 <head>
 <title>DOM Traversal: Parents</title>
 <script src='jquery-3.2.1.min.js'></script>
 </head>
 <body>
 <div>
 <div>
 <section>
 <blockquote>

 Item 1
 <li id='elem'>Item 2
 Item 3

 </blockquote>
 </section>
 </div>
 <div>
 <section>
 <blockquote>

 Item 1
 Item 2
 Item 3

 </blockquote>
 </section>
 </div>
 </div>
 <script>
 $('#elem').parents('div') .css('background', 'yellow')
 $('#elem').parentsUntil('div').css('text-decoration', 'underline')
 </script>
 </body>
</html>

If you take a look at Figure 21-19, you’ll see that the first jQuery statement has set the
background color of all the contents to yellow. This is because the ancestry tree has
been traversed all the way up to the <html> element using the parents method, and
both <div> elements encountered on the way up the tree have been selected (the one
containing the list with the element—highlighted in bold—with the ID of elem,
and its parent <div>, which contains both sets of nested elements).

544 | Chapter 21: Introduction to jQuery

Figure 21-19. Comparing the parents and parentsUntil methods

However, the second statement uses parentsUntil so that the selection stops at the
first <div> element encountered. This means that when the underline styling is
applied, it is applied only to the closest parent <div> that contains the element
with the ID of elem. The outer <div> is not reached, and because it doesn’t get styled,
the second list isn’t underlined.

Child Elements
To access the children of an element, use the children method, like this:

my_children = $('#elem').children()

Like the parent method, this goes down only one level and returns a list of zero, one,
or more matching selections. You can also pass a filter argument to it to select
between the children, like this:

li_children = $('#elem').children('li')

Here only children that are elements will be selected.

To delve deeper down the generations, you need to use the find method, which is the
inverse of parents, like this:

li_descendants = $('#elem').find('li')

However, unlike with parents, you must provide a filter selector to the find method.
If you need to select all descendants, you can use the universal selector, like this:

all_descendants = $('#elem').find('*')

Sibling Elements
When it comes to selecting siblings, there’s an even wider range of methods available,
starting with siblings.

DOM Traversal | 545

The siblings method will return all the matching elements that are children of the
same parent, except for the element used for selecting. So, taking the example of the
following snippet, if you look up the siblings of the element with the ID of two,
it will return only the first and third elements:

 Item 1
 <li id='two'>Item 2
 Item 3

For example, the following statement will cause the first and third sibling elements to
be bold:

$('#two').siblings().css('font-weight', 'bold')

You can also use a filter in the siblings method to further narrow down the siblings
returned. For example, to select only those siblings that use the class new, you might
use a statement such as this:

$('#two').siblings('.new').css('font-weight', 'bold')

Example 21-22 (liberally whitespaced to line up the attributes in columns) displays an
unordered list of seven items, of which four use the class new. The second item also
has the ID of two.

Example 21-22. Selecting and filtering sibling elements

<!DOCTYPE html>
<html>
 <head>
 <title>DOM Traversal: Siblings</title>
 <script src='jquery-3.2.1.min.js'></script>
 </head>
 <body>

 <li class='new'>Item 1
 <li id='two' class='new'>Item 2
 Item 3
 <li class='new'>Item 4
 <li class='new'>Item 5
 Item 6
 Item 7

 <script>
 $('#two').siblings('.new').css('font-weight', 'bold')
 </script>
 </body>
</html>

546 | Chapter 21: Introduction to jQuery

When loaded into a browser, the jQuery statement results in Figure 21-20, in which
only Item 1, Item 4, and Item 5 are in bold, even though Item 2 also uses the class new
(because the method is called on that element, and so it is excluded from the selec‐
tion).

Figure 21-20. Selecting sibling elements

Since the siblings method omits the element on which it is called
(which I will refer to as the callee), it cannot be used to select from
all children of a parent element. However, to achieve that with the
preceding example, you could use a statement such as the follow‐
ing, which will return all siblings (including the callee) that use the
class new:

$('#two').parent().children('.new')
.css('font-weight', 'bold')

You can alternatively add the addBack method to the selection to
achieve the same result, like this:

$('#two').siblings('.new').addBack()
.css('font-weight', 'bold')

Selecting the Next and Previous Elements
When you need finer control over the selection of siblings, you can further narrow
down the elements returned using the next and prev methods and their extended
versions. For example, to refer to the element immediately following a selector, you
can use a statement such as this (which sets the matched element(s) to display in
bold):

$('#new').next().css('font-weight', 'bold')

In the case of the following liberally whitespaced snippet, for example, the third item
has the ID new, and therefore the fourth item is returned:

DOM Traversal | 547

 Item 1
 Item 2
 <li id='new'>Item 3
 Item 4
 Item 5

So far, so simple. But what if you would like to reference all the siblings following a
particular element? Well, you can do that with the nextAll method, like this (which
in the preceding snippet would style the last two items):

$('#new').nextAll().css('font-weight', 'bold')

When calling nextAll, you can also supply a filter to select from the elements that are
matched, such as in the following example, which will style only the following sib‐
lings that use the class info (in the previous snippet, however, there are no elements
that use that class, so the statement will do nothing):

$('#new').nextAll('.info').css('font-weight', 'bold')

Or consider the case of this snippet, in which one item has the ID new and another
has the ID old:

 Item 1
 <li id='new'>Item 2
 Item 3
 <li id='old'>Item 4
 Item 5

Now it’s possible to select only those siblings following the one with the ID of new, up
to (but not including) the one with the ID of old, like this (in which just the third
item will be styled):

$('#new').nextUntil('#old').css('font-weight', 'bold')

If no argument is supplied to nextUntil, it behaves exactly like nextAll, returning all
the following siblings. You can also supply a second argument to nextUntil to act as
a filter for selecting from the elements that are matched by it, like this:

$('#new').nextUntil('#old', '.info').css('font-weight', 'bold')

In this statement, only those elements that use the class info will be styled, which in
the case of the preceding snippet is none of them, so no action will be taken.

You can do exactly the same, working backward through groups of siblings, by using
the prev, prevAll, and prevUntil methods.

548 | Chapter 21: Introduction to jQuery

Traversing jQuery Selections
In addition to traversing the DOM, once you have returned a set of elements as a
jQuery selection you can also traverse those elements, choosing which ones to act on.

For example, to style just the first element returned by a selection, you can use the
first method, like this (to set the first list item in the first unordered list to display
underlined):

$('ul>li').first().css('text-decoration', 'underline')

Or you can choose to style only the last item by using the last method, like this:

$('ul>li').last().css('font-style', 'italic')

Or, to access an element by index (starting from 0), you can use the eq method, like
this (which styles the second item in the list, because numbering starts at 0):

$('ul>li').eq(1).css('font-weight', 'bold')

You can also apply a filter to a selection using the filter method, like this (which
changes the background color of every other element starting with the first, element
0):

$('ul>li').filter(':even').css('background', 'cyan')

Remember that when you are indexing into jQuery selections, the
first element is the zeroth. So, for example, when you use the selec‐
tor :even in this manner, elements 1, 3, 5, and so on will be
selected (not 2, 4, 6, etc.).

To exclude one or more elements you can apply the not method, like this (where ele‐
ments that don’t use the ID new are styled in blue):

$('ul>li').not('#new').css('color', 'blue')

You can also select an element depending on what descendants it has. To select only
elements that have descendant elements, for example, you could use this state‐
ment, to place a line through those that match:

$('ul>li').has('ol').css('text-decoration', 'line-through')

Example 21-23 brings all these together to style an unordered list, one of whose ele‐
ments also contains an ordered list.

Example 21-23. Traversing a jQuery selection

<!DOCTYPE html>
<html>
 <head>

DOM Traversal | 549

 <title>Selection Traversal</title>
 <script src='jquery-3.2.1.min.js'></script>
 </head>
 <body>

 Item 1
 Item 2
 <li id='new'>Item 3
 Item 4
 <ol type='a'>
 Item 4a
 Item 4b

 Item 5

 <script>
 $('ul>li').first() .css('text-decoration', 'underline')
 $('ul>li').last() .css('font-style', 'italic')
 $('ul>li').eq(1) .css('font-weight', 'bold')
 $('ul>li').filter(':even').css('background', 'cyan')
 $('ul>li').not('#new') .css('color', 'blue')
 $('ul>li').has('ol') .css('text-decoration', 'line-through')
 </script>
 </body>
</html>

As you will see from studying Figure 21-21, every element in each list has been styled
by one or more of the jQuery statements.

Figure 21-21. Uniquely addressing elements in a jQuery selection

The is Method
There is also a jQuery selector that returns a Boolean value for use in plain JavaScript:
the is method. Unlike the jQuery filtering methods shown in earlier sections, this
function doesn’t create a new jQuery object that can then have other methods

550 | Chapter 21: Introduction to jQuery

appended to it, or that can then be further filtered. Instead, it returns just true or
false, making the method most suitable for use in conditional statements.

Example 21-24 uses the is method attached to a call to parent in an event handler
for a set of buttons. When any button is clicked, the handler is called, and the is
method returns a value of true or false when asked whether the parent element is a
<div> (Figure 21-22).

Example 21-24. Reporting the parent element with is

<!DOCTYPE html>
<html>
 <head>
 <title>Using is</title>
 <script src='jquery-3.2.1.min.js'></script>
 </head>
 <body>
 <div><button>Button in a div</button></div>
 <div><button>Button in a div</button></div>
 <button>Button in a span</button>
 <div><button>Button in a div</button></div>
 <button>Button in a span</button>
 <p id='info'></p>
 <script>
 $('button').click(function()
 {
 var elem = ''

 if ($(this).parent().is('div')) elem = 'div'
 else elem = 'span'

 $('#info').html('You clicked a ' + elem)
 })
 </script>
 </body>
</html>

DOM Traversal | 551

Figure 21-22. Using the is method to report the parent element

Using jQuery Without Selectors
A couple of jQuery methods are provided for use with standard JavaScript objects,
rendering their handling a lot simpler. These are $.each and $.map, which are similar
but have subtle differences.

The $.each Method
Using $.each, you can iterate through arrays or array-like objects by simply attaching
a function to be called for each iteration. Example 21-25 shows an array of pet names
and types (called pets), from which another array (called guineapigs) needs to be
extracted, containing only the names of the guinea pigs.

Example 21-25. Calling the $.each method

<!DOCTYPE html>
<html>
 <head>
 <title>Using each</title>
 <script src='jquery-3.2.1.min.js'></script>
 </head>
 <body>
 <div id='info'></div>
 <script>
 pets =
 {
 Scratchy : 'Guinea Pig',
 Squeeky : 'Guinea Pig',
 Fluffy : 'Rabbit',
 Thumper : 'Rabbit',
 Snoopy : 'Dog',
 Tiddles : 'Cat'

552 | Chapter 21: Introduction to jQuery

 }

 guineapigs = []

 $.each(pets, function(name, type)
 {
 if (type == 'Guinea Pig') guineapigs.push(name)
 })

 $('#info').html('The guinea pig names are: ' + guineapigs.join(' & '))
 </script>
 </body>
</html>

To do this, the $.each method is passed the array, along with an anonymous function
to process it. The function takes two arguments, the index into the array (called name)
and the contents of each element (called type).

The value in type is then tested to see whether it is Guinea Pig, and if so, the value in
name is pushed onto the guineapigs array. Upon completion, the code displays the
contents of the guineapigs array by writing them into the <div> element with the ID
of info. To separate the items in the array, the JavaScript join method is used with
the & symbol as a separator. The result of loading this example into a browser is sim‐
ply to display the text “The guinea pig names are: Scratchy & Squeeky.”

The $.map Method
Another way to achieve this is with the $.map method, which returns all the values
that your function returns in an array.

This function saves you the trouble of creating an array, as we had to in the preceding
example. Instead, you can create and populate the array at the same time, by assign‐
ing the array returned by $.map to a variable, like this (the end result being the same
but with less code):

guineapigs = $.map(pets, function(type, name)
{
 if (type == 'Guinea Pig') return name
})

Watch out when you change between using the $.each and $.map
methods, because $.each passes arguments to the function in the
order index, value, but map uses the order value, index. This is why
the two arguments are swapped in the preceding $.map example.

Using jQuery Without Selectors | 553

Using Asynchronous Communication
In Chapter 17, I showed in detail how to implement asynchronous communications
between JavaScript in a browser and PHP running on a web server. I also provided
some handy and compact functions you can call to simplify the process.

But if you have jQuery loaded, you can use its asynchronous functionality instead, if
you prefer—it works in a very similar way, in that you choose whether to make a
POST or a GET request, and then take it from there.

Using the POST Method
Example 21-26 (which loads the Amazon Mobile website into a <div> element) is the
direct jQuery equivalent to Example 17-2, but since all the asynchronous communi‐
cation–handling code is tidied away in the jQuery library file, it’s much shorter. It
requires just a single call to the $.post method, passing it the following three items:

• The URL of a PHP program on the server to access
• The data to pass to that URL
• An anonymous function to process the returned data

Example 21-26. Sending a POST asynchronous request

<!DOCTYPE html>
<html> <!-- jqueryasyncpost.htm -->
 <head>
 <title>jQuery Asynchronous Post</title>
 <script src='jquery-3.2.1.min.js'></script>
 </head>
 <body style='text-align:center'>
 <h1>Loading a web page into a DIV</h1>
 <div id='info'>This sentence will be replaced</div>

 <script>
 $.post('urlpost.php', { url : 'amazon.com/gp/aw' }, function(data)
 {
 $('#info').html(data)
 })
 </script>
 </body>
</html>

The urlpost.php program remains unchanged from Example 17-3, because this exam‐
ple and Example 17-2 are interchangeable.

554 | Chapter 21: Introduction to jQuery

Using the GET Method
Communicating asynchronously using the GET method is just as easy, requiring only
the following two arguments:

• The URL of a PHP program on the server to access (including a query string
containing the data to pass to it)

• An anonymous function to process the returned data

Example 21-27 is therefore the jQuery equivalent to Example 17-4.

Example 21-27. Sending a GET asynchronous request

<!DOCTYPE html>
<html> <!-- jqueryasyncget.htm -->
 <head>
 <title>jQuery Asynchronous GET</title>
 <script src='jquery-3.2.1.min.js'></script>
 </head>
 <body style='text-align:center'>
 <h1>Loading a web page into a DIV</h1>
 <div id='info'>This sentence will be replaced</div>

 <script>
 $.get('urlget.php?url=amazon.com/gp/aw', function(data)
 {
 $('#info').html(data)
 })
 </script>
 </body>
</html>

The urlget.php program remains unchanged from Example 17-5, because this exam‐
ple and Example 17-4 are interchangeable.

Remember that the security restrictions of asynchronous commu‐
nication require that the communication takes place with the same
server that supplied the main web document. You must also use a
web server for asynchronous communication, not a local filesys‐
tem. These examples are therefore best tested with a production or
development server, as described in Chapter 2.

Plug-ins
There’s room in this chapter to cover only the core jQuery library, and while that’s
more than enough for a beginner to accomplish a lot, the time will come when you’ll
find you need even more features and functionality. Thankfully, other jQuery projects

Plug-ins | 555

can help you there, because a range of official and third-party plug-ins are now avail‐
able to provide just about any features you can imagine.

jQuery User Interface
First, there’s the jQuery User Interface plug-in, known as jQuery UI, which takes over
directly where jQuery leaves off. With it, you can add dragging and dropping, resiz‐
ing, and sorting methods to your web pages, as well as more animations and effects,
animated color transitions, and more easing effects. It also provides a bunch of widg‐
ets to create menus and other features such as accordions, buttons, pickers, progress
bars, sliders, spinners, tabs, tooltips, and much more.

If you want to see some demos before deciding whether to download it, check out the
jQuery UI Demos page.

The whole package is under 400 KB zipped and is usable with almost no restrictions
(just the very generous MIT license).

Other Plug-ins
The jQuery Plugin Registry brings together a wide variety of free, ready-made plug-
ins to jQuery from numerous developers. These include plug-ins for form handling
and verification, slideshows, responsive layout, image manipulation, additional ani‐
mations, and much more.

If you are using jQuery and developing for mobile browsers, you
will also want to take a look at jQuery Mobile (see Chapter 22),
which offers sophisticated, touch-optimized ways to navigate the
wide range of different types of mobile hard- and software, to pro‐
vide the best possible user experience.

You’ve come a long way in this chapter, learning material that sometimes takes up
entire books. I hope you’ve found everything clear, though, because jQuery is very
easy to learn and use. Please take a moment now to peruse Appendix E, which lists all
the main jQuery objects, events, and methods, and should serve as a handy reference.
If you need any other information, check out the jQuery website.

Questions
1. What is the symbol commonly used as the factory method for creating jQuery

objects, and what is the alternative method name?
2. How would you link to the minified release 3.2.1 of jQuery from the Google

CDN?

556 | Chapter 21: Introduction to jQuery

http://jqueryui.com
http://jqueryui.com/demos
http://plugins.jquery.com
http://jquery.com

3. What types of argument does the jQuery factory method accept?
4. With which jQuery method can you get or set a CSS property value?
5. What statement would you use to attach a method to the click event of an ele‐

ment with the ID of elem, to make it slowly hide?
6. What element property must you modify in order to allow it to be animated, and

what are the acceptable values?
7. How can you cause several methods to run at once (or sequentially, in the case of

animations)?
8. How can you retrieve an element node object from a jQuery selection object?
9. What statement would set the sibling element immediately preceding one with

the ID of news to display in bold?
10. With which method can you make a jQuery asynchronous GET request?

See “Chapter 21 Answers” on page 729 in Appendix A for the answers to these
questions.

Questions | 557

CHAPTER 22

Introduction to jQuery Mobile

Now that you’ve realized the time you can save and the tremendous power you can
harness from jQuery, as discussed in Chapter 21, I think you’ll be delighted to learn
that you can do even more with the jQuery Mobile library.

Created to complement jQuery, jQuery Mobile requires you to include both jQuery
and jQuery Mobile in a web page (along with a CSS file and accompanying images
you will also need) in order to transform it into a fully interactive experience when
viewed on phones and other mobile devices.

The jQuery Mobile library enables you to adapt ordinary web pages to become
mobile web pages using a technique called “progressive enhancement” (in which
basic browser features are made to display well first, and then more and more func‐
tionality is added when more capability is encountered within a browser). It also fea‐
tures what is called “responsive web design” (in which web pages render well on a
variety of devices and window or screen sizes).

The point of this chapter isn’t to teach you absolutely everything there is to know
about jQuery Mobile—that could take up a whole book in itself! Rather, I want to
give you enough information to let you refashion any not-too-large set of web pages
into a coherent, fast, and good-looking web app, with all the page slides and other
transitions you would expect from a modern touch device, as well as bigger and
easier-to-use icons, input fields, and other enhanced aspects of input and navigation.

To this end, I introduce just a few of the main features of jQuery Mobile that will let
you get up and running with a clean and workable solution that runs well on both
desktop and mobile platforms. Along the way, I point out a few pitfalls that you may
face when adapting web pages to mobile this way, and how to avoid them. Once
you’ve mastered using jQuery Mobile, you’ll then find it a simple matter to peruse the
online documentation to find just the features you need for your own projects.

559

In addition to progressively enhancing the way your HTML dis‐
plays, depending on the capabilities of the browser in which it finds
itself running, jQuery Mobile also progressively enhances regular
HTML markup based on the tags used and a set of custom data
attributes. Some elements are automatically enhanced without the
need for any data attributes (for example, select elements are
automatically upgraded to menus), while other elements require
the presence of a data attribute in order to be enhanced. The full
list of supported data attributes can be viewed in the API docu‐
mentation.

Including jQuery Mobile
There are two ways to include jQuery Mobile in your web pages. First, you can go to
the download page, choose the version you need, download the files to your web
server (including the stylesheet and accompanying images that go with the library),
and serve them up from there.

For example, if you have downloaded jQuery Mobile 1.4.5 (the current version as I
write) and its CSS file to the document root of your server, you could include them—
and the accompanying jQuery JavaScript, which must be version 2.2.4 as I write,
because jQuery Mobile doesn’t yet support version 3 (although jQuery Mobile 1.5 is
planned to support jQuery 3)—in a web page like this:

<link href="http://myserver.com/jquery.mobile-1.4.5.min.css" rel="stylesheet">
<script src='http://myserver.com/jquery-2.2.4.min.js'></script>
<script src='http://myserver.com/jquery.mobile-1.4.5.min.js'></script>

Or, as with jQuery, you can take advantage of a free content delivery network (CDN)
and simply link to the version(s) you require. There are three main CDNs to choose
from (Max CDN, Google CDN, and Microsoft CDN), and you can retrieve the files
you need from them in the following ways:

<!-- Retrieving jQuery & Mobile via Max CDN -->
<link rel="stylesheet"
 href="http://code.jquery.com/mobile/1.4.5/jquery.mobile-1.4.5.min.css">
<script src="http://code.jquery.com/jquery-2.2.4.min.js"></script>
<script src="http://code.jquery.com/mobile/1.4.5/jquery.mobile-1.4.5.min.js">
</script>

<!-- Retrieving jQuery & Mobile via Google CDN -->
<link rel="stylesheet" href=
 "http://ajax.googleapis.com/ajax/libs/jquerymobile/1.4.5/jquery.mobile.min.css">
<script src=
"http://ajax.googleapis.com/ajax/libs/jquery/2.2.4/jquery.min.js"></script>
<script src=
"http://ajax.googleapis.com/ajax/libs/jquerymobile/1.4.5/jquery.mobile.min.js">
</script>

560 | Chapter 22: Introduction to jQuery Mobile

http://api.jquerymobile.com/data-attribute/
http://api.jquerymobile.com/data-attribute/
http://jquerymobile.com/download/

<!-- Retrieving jQuery & Mobile via Microsoft CDN -->
<link rel="stylesheet" href=
 "http://ajax.aspnetcdn.com/ajax/jquery.mobile/1.4.5/jquery.mobile-1.4.5.min.css">
<script src=
"http://ajax.aspnetcdn.com/ajax/jQuery/jquery-2.2.4.min.js"></script>
<script src=
"http://ajax.aspnetcdn.com/ajax/jquery.mobile/1.4.5/jquery.mobile-1.4.5.min.js">
</script>

You will probably want to place one set of these statements within the <head> section
of a page.

To ensure you can use these examples when offline, I have down‐
loaded all the required jQuery files and included them along with
the archive of example files, which you may freely download from
the book’s companion website. Therefore, all these examples show
the files being served locally.

Getting Started
Let’s dive right in by seeing what a jQuery Mobile web page will generally look like,
with Example 22-1. It’s really quite simple, and if you give it a quick once-over, it will
help the rest of this chapter to fall quickly into place.

Example 22-1. A jQuery Mobile single page template

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>Single page template</title>
 <link rel="stylesheet" href="jquery.mobile-1.4.5.min.css">
 <script src="jquery-2.2.4.min.js"></script>
 <script src="jquery.mobile-1.4.5.min.js"></script>
 </head>
 <body>
 <div data-role="page">
 <div data-role="header">
 <h1>Single page</h1>
 </div>
 <div data-role="content">
 <p>This is a single page boilerplate template</p>
 </div>
 <div data-role="footer">
 <h4>Footer content</h4>
 </div>
 </div>

Getting Started | 561

http://lpmj.net

 </body>
</html>

Upon examining the previous example, you’ll see that it starts with the standard
HTML5 elements you would expect. The first unusual item you may notice is in the
<head> section, namely the viewport setting within the <meta> tag. This line tells
mobile browsers to set the width of the displayed document to that of the web
browser, and to start off without the document zoomed either in or out. When dis‐
played in a browser, the page looks like Figure 22-1.

Figure 22-1. Displaying the jQuery Mobile single page template

After specifying a page title, the CSS for jQuery Mobile is loaded, followed by the
jQuery 2.2.4 library and the jQuery Mobile 1.4.5 library. As explained in “Including
jQuery Mobile” on page 560, these can all be downloaded from a CDN if you prefer.

The examples accompanying this chapter contain a folder called
images, which contains all the icons and other images required by
the CSS. If you use a CDN to download the CSS and JavaScript
library files, you may not need to include this folder in your own
projects, as the CDN’s own images folder should be used instead.

Moving on to the <body> section, you’ll note that the main web page is contained
within a <div> element, which bears the jQuery Mobile data-role property value of
page and consists of three further <div> elements for the page’s header, content, and
footer, each with data-role properties to match.

562 | Chapter 22: Introduction to jQuery Mobile

And there you have the basic structure of a jQuery Mobile web page. When you link
between pages, new ones will be loaded in and added to the DOM using asynchro‐
nous communication. Once loaded, the page can then be transitioned into view in
any number of ways, including instant replace, fade, dissolve, slide, and so on.

Due to the asynchronous loading of web pages, you should always
test your jQuery Mobile code on a web server rather than a local
filesystem. This is because a web server knows how to handle the
asynchronous loading of web pages, which is necessary for com‐
munication to work correctly.

Linking Pages
With jQuery Mobile you can link to pages in the normal way, and it will automati‐
cally handle these page requests asynchronously (where possible) to ensure that any
transitions you have selected will be applied.

This allows you to focus on simply creating your web pages and let jQuery Mobile
deal with making them look good and display quickly and professionally.

To enable animated page transitions, all links that point to an external page will be
loaded asynchronously. jQuery Mobile achieves this by transforming all <a href...>
links into asynchronous communication (also known as Ajax) requests, and then dis‐
playing a loading spinner while the requests are made.

The way jQuery Mobile achieves its page transitions when you
click a link is via “hijacking” clicks by accessing the event.prevent
Default event and then providing its special jQuery Mobile code.

If the request is successful, the new page content is added to the DOM, and the
selected new page is then animated into view, using either a default page transition or
one of your choosing.

Should the asynchronous request fail, a small and unobtrusive error message will
briefly appear to let you know, but will not interfere with the navigational flow.

Linking Synchronously
Links that point to other domains or that have rel="external", data-ajax="false",
or target attributes will be loaded synchronously, causing a full page refresh with no
animated transition.

Linking Pages | 563

Both rel="external" and data-ajax="false" have the same effect, but the former is
intended for linking to another site or domain, while the latter is useful for prevent‐
ing any page from being loaded asynchronously.

Because of security restrictions, jQuery Mobile loads pages from all external domains
synchronously.

You will need to disable asynchronous page loading when using
HTML file upload, because this way of fetching a web page con‐
flicts with jQuery Mobile’s ability to receive an uploaded file. For
this particular case, the best course is probably to place a data-
ajax="false" attribute in the <form> element, like this:

<form data-ajax='false' method='post'
 action='dest_file' enctype='multipart/form-data'>

Linking Within a Multipage Document
A single HTML document can contain one or many pages. The latter involves stack‐
ing multiple <div> elements with a data-role of page. This allows you to build a
small site or application within a single HTML document; jQuery Mobile will simply
display the first page it finds in the source order when the page loads.

If a link in a multipage document points to an anchor (such as #page2), the frame‐
work will look for a page wrapper <div> with a data-role attribute of page and the
given id (id="page2"). If found, it will transition the new page into view.

Users can seamlessly navigate between all types of web pages (whether internal, local,
or external) in jQuery Mobile. All will look the same to the end user, except that
external pages will display the Ajax spinner while loading. In all situations, jQuery
Mobile updates the page’s URL hash to enable Back button support. This also means
that jQuery Mobile pages are indexable by search engines, and not walled off some‐
where in a native app.

When linking from a mobile page that was loaded asynchronously
to one that contains multiple internal pages, you must add either
rel="external" or data-ajax="false" to the link in order to
force a full page reload, clearing out the asynchronous hash from
the URL. Asynchronous pages use the hash (#) to track their his‐
tory, while multiple internal pages use this symbol to indicate inter‐
nal pages.

564 | Chapter 22: Introduction to jQuery Mobile

Page Transitions
By using CSS transitions, jQuery Mobile can apply effects to any page link or form
submission, as long as asynchronous navigation is being used (the default).

To apply a transition, you use the data-transition attribute within an <a> or
<form> tag, like this:

<a data-transition="slide" href="destination.html">Click me

This attribute supports the values fade (the default since version 1.1), pop, flip,
turn, flow, slidefade, slide (the default prior to version 1.1), slideup, slidedown,
and none.

For example, the value slide causes the new page to slide in from the right, with the
current one sliding off to the left at the same time. The other values are similarly
obvious in their effect.

Loading a page as a dialog

You can display a new page as a dialog window using the data-rel attribute with a
value of dialog, like this:

<a data-rel="dialog" href="dialog.html">Open dialog

Example 22-2 demonstrates how to apply the various page transitions to both page
loads and dialogs, loading the jQuery libraries locally rather than via a CDN. It con‐
sists of a bare-bones table with two columns, the first for loading a dialog and the
other for loading a new page. Each of the available transition types is listed. To dis‐
play the links as buttons, I’ve supplied the data-role attribute of each a value of but
ton (buttons are covered in “Styling Buttons” on page 568).

Example 22-2. jQuery Mobile page transitions

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>Page Transitions</title>
 <link rel="stylesheet" href="jquery.mobile-1.4.5.min.css">
 <script src="jquery-2.2.4.min.js"></script>
 <script src="jquery.mobile-1.4.5.min.js"></script>
 </head>
 <body>
 <div data-role="page">
 <div data-role="header">
 <h1>jQuery Mobile Page Transitions</h1>
 </div>

Linking Pages | 565

 <div data-role="content"><table>
 <tr><th><h3>fade</h3></th>
 <td><a href="page-template.html" data-rel="dialog"
 data-transition="fade" data-role='button'>dialog</td>
 <td><a href="page-template.html" data-transition="fade"
 data-role='button'>page</td>
 </tr><tr><th><h3>pop</h3></th>
 <td><a href="page-template.html" data-rel="dialog"
 data-transition="pop" data-role='button'>dialog</td>
 <td><a href="page-template.html" data-transition="pop"
 data-role='button'>page</td>
 </tr><tr><th><h3>flip</h3></th>
 <td><a href="page-template.html" data-rel="dialog"
 data-transition="flip" data-role='button'>dialog</td>
 <td><a href="page-template.html" data-transition="flip"
 data-role='button'>page</td>
 </tr><tr><th><h3>turn</h3></th>
 <td><a href="page-template.html" data-rel="dialog"
 data-transition="turn" data-role='button'>dialog</td>
 <td><a href="page-template.html" data-transition="turn"
 data-role='button'>page</td>
 </tr><tr><th><h3>flow</h3></th>
 <td><a href="page-template.html" data-rel="dialog"
 data-transition="flow" data-role='button'>dialog</td>
 <td><a href="page-template.html" data-transition="flow"
 data-role='button'>page</td>
 </tr><tr><th><h3>slidefade</h3></th>
 <td><a href="page-template.html" data-rel="dialog"
 data-transition="slidefade" data-role='button'>dialog</td>
 <td><a href="page-template.html" data-transition="slidefade"
 data-role='button'>page</td>
 </tr><tr><th><h3>slide</h3></th>
 <td><a href="page-template.html" data-rel="dialog"
 data-transition="slide" data-role='button'>dialog</td>
 <td><a href="page-template.html" data-transition="slide"
 data-role='button'>page</td>
 </tr><tr><th><h3>slideup</h3></th>
 <td><a href="page-template.html" data-rel="dialog"
 data-transition="slideup" data-role='button'>dialog</td>
 <td><a href="page-template.html" data-transition="slideup"
 data-role='button'>page</td>
 </tr><tr><th><h3>slidedown</h3></th>
 <td><a href="page-template.html" data-rel="dialog"
 data-transition="slidedown" data-role='button'>dialog</td>
 <td><a href="page-template.html" data-transition="slidedown"
 data-role='button'>page</td>
 </tr><tr><th><h3>none</h3></th>
 <td><a href="page-template.html" data-rel="dialog"
 data-transition="none" data-role='button'>dialog</td>
 <td><a href="page-template.html" data-transition="none"
 data-role='button'>page</td></tr></table>
 </div>

566 | Chapter 22: Introduction to jQuery Mobile

 <div data-role="footer">
 <h4>Official Demo</h4>
 </div>
 </div>
 </body>
</html>

Figure 22-2 shows the result of loading this example (saved using the filename page-
template.html) into a browser, and Figure 22-3 demonstrates a flip transition in
action. Incidentally, if you follow the link in the footer of the example it will take you
to the official demo site, where you can explore these effects in greater detail.

Figure 22-2. Applying transitions to pages and dialogs

Linking Pages | 567

http://demos.jquerymobile.com/1.4.4/transitions/

Figure 22-3. A flip transition in progress

Styling Buttons
You can easily display a simple link as a button without adding your own CSS. All you
need to do is provide the value button to an element’s data-role attribute, like this:

<a data-role="button" href="news.html">Latest news

568 | Chapter 22: Introduction to jQuery Mobile

You can decide whether to have such a button expand to the full width of the window
(the default), like a <div> element, or opt to make the button display inline, like a
 element. To display the button inline, supply the value true to the data-
inline attribute, like this:

<a data-role="button" data-inline="true" href="news.html">Latest news

And whether you create a button from a link or use one from a form, you can modify
the way it displays by choosing between rounded corners (the default) or straight cor‐
ners, and make it shadowed (the default) or non-shadowed. Turn these features off by
supplying a value of false to the data-corners and data-shadow attributes, respec‐
tively, like this:

<a data-role="button" data-inline="true" data-corners="false"
 data-shadow="false" href="news.html">Latest news

What’s more, you can even choose to add icons to your buttons with the data-icon
attribute, like this:

<a data-role="button" data-inline="true" data-icon="home"
 href="home.html">Home page

There are over 50 ready-made icons to choose from. They are all created using a pow‐
erful graphical language called Scalable Vector Graphics (SVG), and they fall back to
PNG for devices that don’t support SVG, making the icons look great on Retina dis‐
plays. Take a look at the Icons demo to see what’s available.

Icons appear to the left of button text by default, but you can choose to place them to
the right, above, or below the text, or to remove any text by applying the values
right, top, bottom, or notext to the data-iconpos attribute, like this:

<a data-role="button" data-inline="true" data-icon="home"
 data-iconpos="right" href="home.html">Home page

If you choose not to display any button text, the icon displayed will be round by
default.

Finally in this brief roundup of button styling, you can choose to display smaller but‐
tons (including the button text) by supplying a value of true to the data-mini
attribute, like this:

<a data-role="button" data-inline="true" data-icon="home"
 data-mini="true" href="home.html">Home page

Example 22-3 demonstrates a selection of buttons being created with a variety of
these button styles (with no href attributes for brevity), as shown in Figure 22-4.

Styling Buttons | 569

http://tinyurl.com/jqmicons

Example 22-3. A variety of button elements

<a data-role="button">Default
<a data-role="button" data-inline="true">In-line
<a data-role="button" data-inline="true"
 data-corners="false">Squared corners
<a data-role="button" data-inline="true"
 data-shadow="false">Unshadowed
<a data-role="button" data-inline="true" data-corners="false"
 data-shadow="false">Both

<a data-role="button" data-inline="true"
 data-icon="home">Left icon
<a data-role="button" data-inline="true" data-icon="home"
 data-iconpos="right">Right icon
<a data-role="button" data-inline="true" data-icon="home"
 data-iconpos="top">Top icon
<a data-role="button" data-inline="true" data-icon="home"
 data-iconpos="bottom">Bottom icon

<a data-role="button" data-mini="true">Default Mini

Figure 22-4. An assortment of button styles

There’s actually a great deal more styling you can do with buttons, and you can get all
the details you need in the Buttons demo. But for now, this introduction will stand
you in good stead.

570 | Chapter 22: Introduction to jQuery Mobile

http://tinyurl.com/jqmbuttons

List Handling
When it comes to list handling, jQuery Mobile really makes things easy for you with
a wide range of easy-to-use features, all of which you can access by supplying a value
of listview to the data-role attribute of a or element.

So, for example, to create a simple unordered list, you could use code such as this:

<ul data-role="listview">
 Brocolli
 Carrots
 Lettuce

For an ordered list, simply replace the opening and closing tags with , and
the list will be numbered.

Any links within a list will automatically have an arrow icon embedded and be dis‐
played as buttons. You can also inset a list, to mix it with other content on a page, by
giving the data-inset attribute a value of true.

Example 22-4 demonstrates how these various features work in practice; the result is
displayed in Figure 22-5.

Example 22-4. A selection of lists

<ul data-role="listview">
 An
 Unordered
 List

<ol data-role="listview">
 An
 Ordered
 List

<ul data-role="listview" data-inset="true">
 An
 Inset Unordered
 List

<ul data-role="listview" data-inset="true">
 An
 Inset Unordered
 Linked List

List Handling | 571

Figure 22-5. Ordered and unordered plain and inset lists

Filterable Lists
You can make lists filterable by setting the data-filter attribute to true, which will
place a search box above the list and, as the user types, will automatically remove
from view any list elements that do not match the search term being entered. You can
also set data-filter-reveal to true so that no fields are displayed until at least one
character of filter input has been entered, and only those fields that match the input
are then displayed.

572 | Chapter 22: Introduction to jQuery Mobile

Example 22-5 demonstrates the use of these two types of filtered lists, which differ
only by the addition of data-filter-reveal="true" to the latter.

Example 22-5. Filtered and filter-reveal lists

<ul data-role="listview" data-filter="true"
 data-filter-placeholder="Search big cats..." data-inset="true">
 Cheetah
 Cougar
 Jaguar
 Leopard
 Lion
 Snow Leopard
 Tiger

<ul data-role="listview" data-filter="true" data-filter-reveal="true"
 data-filter-placeholder="Search big cats..." data-inset="true">
 Cheetah
 Cougar
 Jaguar
 Leopard
 Lion
 Snow Leopard
 Tiger

Note the use of the data-filter-placeholder attribute to offer a prompt to the user
when the input field is blank.

In Figure 22-6 you can see how the former list type has had the letter a entered into
the filter field, so only those fields that have an a in them are currently displayed,
while none of the fields in the second list are shown because nothing has yet been
entered into the filter field.

List Handling | 573

Figure 22-6. Displaying a filtered and a filter-reveal list

List Dividers
To enhance the way lists are displayed, you can also place manual or automatic divid‐
ers within them. You create manual list dividers by supplying a list element with a
data-role attribute value of list-divider, as shown in Example 22-6, which dis‐
plays as Figure 22-7.

Example 22-6. Manual list dividers

<ul data-role="listview" data-inset="true">
 <li data-role="list-divider">Big Cats
 Cheetah
 Cougar
 Jaguar
 Lion
 Snow Leopard
 <li data-role="list-divider">Big Dogs
 Bloodhound
 Doberman Pinscher
 Great Dane
 Mastiff

574 | Chapter 22: Introduction to jQuery Mobile

 Rottweiler

Figure 22-7. The list is divided into categories

To let jQuery Mobile determine the division in a convenient way, you can supply the
value true to the data-autodividers attribute, as in Example 22-7, which divides the
fields alphabetically and displays as Figure 22-8.

Example 22-7. Using autodividers

<ul data-role="listview" data-inset="true" data-autodividers="true">
 Cheetah
 Cougar

List Handling | 575

 Jaguar
 Leopard
 Lion
 Snow Leopard
 Tiger

Figure 22-8. Automatically dividing a list alphabetically

As with buttons (see “Styling Buttons” on page 568), you can also add icons to linked
list fields using the data-icon attribute along with a value representing the icon to
display, like this:

<li data-icon="gear">Settings

576 | Chapter 22: Introduction to jQuery Mobile

In this example, the default right angle bracket of a linked list will be replaced with
the icon you select (in this case, a gear icon).

In addition to all these great features, you can also add icons and thumbnails within
list fields and they will be scaled to look good when displayed. For details on how to
do this and on many other list features, please refer to the official documentation.

What Next?
As I mentioned at the start, the purpose of this chapter has been to get you up to
speed quickly with jQuery Mobile, so that you can easily repackage websites into web
apps that look good on all devices, whether desktop or mobile.

To this end, I have introduced only jQuery Mobile’s very best and most important
features, so I’ve really only scratched the surface of what you can do with it. For
example, there’s a tremendous variety of ways you can enhance and make forms work
well on mobile devices. You can build responsive tables, create collapsible content,
invoke pop-ups, design your own themes, and much more.

You may be interested to learn that you can use jQuery Mobile in
conjunction with a product by Adobe called PhoneGap to build
standalone apps for Android and iOS. It’s not entirely straightfor‐
ward, and doing so is outside the remit of this book to explain, but
most of the hard work has already been done for you by the jQuery
and PhoneGap teams. For more information, please refer to the
jQuery Mobile guide to building PhoneGap apps.

Once you’ve got the hang of everything in this chapter, if you would like to see what
else jQuery Mobile can do for you, I recommend you check out the official demos
and documentation on the website.

Also, the example social networking app in Chapter 27 applies many of these features
in a close-to-real-world scenario, and is a great way to really see how you can mobile
up your web pages. Before we get to that, though, in the following chapters we’ll turn
our gaze to all the goodies available in HTML5.

Questions
1. Name a couple of major benefits and one downside to using a CDN for deliver‐

ing jQuery Mobile to a web browser.
2. What HTML would you use to define a page of content to jQuery Mobile?
3. What are the three main parts that make up a jQuery page, and how are they

denoted?

What Next? | 577

http://tinyurl.com/jqmlists
https://phonegap.com
http://bit.ly/2HHx1zR
http://demos.jquerymobile.com

4. How can you put more than one jQuery Mobile page within an HTML docu‐
ment?

5. How can you prevent a web page from being loaded asynchronously?
6. How would you set the page transition of an anchor to flip, rather than using the

default of fade?
7. How can you load a page so that it displays as a dialog rather than a web page?
8. How can you easily make an anchor link display as a button?
9. How can you make a jQuery Mobile element display inline like a element,

rather than full width like a <div>?
10. How can you add an icon to a button?

See “Chapter 22 Answers” on page 730 in Appendix A for the answers to these
questions.

578 | Chapter 22: Introduction to jQuery Mobile

CHAPTER 23

Introduction to HTML5

HTML5 represents a substantial leap forward in web design, layout, and usability. It
provides a simple way to manipulate graphics in a web browser without resorting to
plug-ins such as Flash, offers methods to insert audio and video into web pages (again
without plug-ins), and irons out several annoying inconsistencies that crept into
HTML during its evolution.

In addition, HTML5 includes numerous other enhancements such as geolocation
handling, web workers to manage background tasks, improved form handling, and
access to bundles of local storage (far in excess of the limited capabilities of cookies).

What’s interesting about HTML5, though, is that it has been an ongoing evolution, in
which browsers have adopted different features at different times. Fortunately, all the
biggest and most popular HTML5 additions are now supported by all major browsers
(those with more than 1 percent or so of the market, such as Chrome, Internet
Explorer, Edge, Firefox, Safari, Opera, and the Android and iOS browsers).

The Canvas
Originally introduced by Apple for the WebKit rendering engine (which had itself
originated in the KDE HTML layout engine) for its Safari browser (and now also
implemented in the iOS, Android, Kindle, Chrome, BlackBerry, Opera, and Tizen
browsers), the canvas element enables us to draw graphics in a web page without hav‐
ing to rely on a plug-in such as Java or Flash. After being standardized, the canvas
was adopted by all other browsers and is now a mainstay of modern web develop‐
ment.

Like other HTML elements, a canvas is simply an element within a web page with
defined dimensions, and within which you can use JavaScript to insert content—in
this case, to draw graphics. You create a canvas by using the <canvas> tag, to which

579

you must assign an ID so that JavaScript will know which canvas it is accessing (as
you can have more than one canvas on a page).

In Example 23-1 I’ve created a canvas element, with the ID mycanvas, that contains
some text that is displayed only in browsers that don’t support the canvas. Beneath
this there is a section of JavaScript that draws the Japanese flag on the canvas (as
shown in Figure 23-1).

Example 23-1. Using the HTML5 canvas element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Canvas</title>
 <script src='OSC.js'></script>
 </head>
 <body>
 <canvas id='mycanvas' width='320' height='240'>
 This is a canvas element given the ID <i>mycanvas</i>
 This text is visible only in non-HTML5 browsers
 </canvas>

 <script>
 canvas = O('mycanvas')
 context = canvas.getContext('2d')
 context.fillStyle = 'red'
 S(canvas).border = '1px solid black'

 context.beginPath()
 context.moveTo(160, 120)
 context.arc(160, 120, 70, 0, Math.PI * 2, false)
 context.closePath()
 context.fill()
 </script>
 </body>
</html>

580 | Chapter 23: Introduction to HTML5

Figure 23-1. Drawing the Japanese flag using an HTML5 canvas

At this point, it’s not necessary to detail exactly what is going on—I explain that in
Chapter 24—but you should already see that using the canvas is not hard, although it
does require learning a few new JavaScript functions. Note that this example draws on
the OSC.js set of functions from Chapter 20 to help keep the code neat and compact.

Geolocation
Using geolocation, your browser can return information to a web server about your
location. This information can come from a GPS chip in the computer or mobile
device you’re using, from your IP address, or from analysis of nearby WiFi hotspots.
For security purposes, the user is always in control and can refuse to provide this
information on a one-off basis, or can enable settings to either permanently block or
allow access to this data from one or all websites.

There are numerous uses for this technology, including giving you turn-by-turn navi‐
gation; providing local maps; notifying you of nearby restaurants, WiFi hotspots, or
other places; letting you know which friends are near you; directing you to the near‐
est gas station; and more.

Example 23-2 will display a Google map of the user’s location, as long as the browser
supports geolocation and the user grants access to location data (as shown in
Figure 23-2). Otherwise, it will display an error.

Example 23-2. Displaying a map of the user’s location

<!DOCTYPE html>
<html>
 <head>

Geolocation | 581

 <title>Geolocation Example</title>
 </head>
 <body>
 <script>
 if (typeof navigator.geolocation == 'undefined')
 alert("Geolocation not supported.")
 else
 navigator.geolocation.getCurrentPosition(granted, denied)

 function granted(position)
 {
 var lat = position.coords.latitude
 var lon = position.coords.longitude

 alert("Permission Granted. You are at location:\n\n"
 + lat + ", " + lon +
 "\n\nClick 'OK' to load Google Maps with your location")

 window.location.replace("https://www.google.com/maps/@"
 + lat + "," + lon + ",14z")
 }

 function denied(error)
 {
 var message

 switch(error.code)
 {
 case 1: message = 'Permission Denied'; break;
 case 2: message = 'Position Unavailable'; break;
 case 3: message = 'Operation Timed Out'; break;
 case 4: message = 'Unknown Error'; break;
 }

 alert("Geolocation Error: " + message)
 }
 </script>
 </body>
</html>

582 | Chapter 23: Introduction to HTML5

Figure 23-2. The user’s location has been used to display a map

Again, here is not the place to describe how this all works; I will detail that in Chap‐
ter 26. For now, though, this example serves to show you how easy managing geolo‐
cation can be.

Audio and Video
Another great addition to HTML5 is support for in-browser audio and video. While
playing these types of media can be a little complicated due to the variety of encoding
types and licenses, the <audio> and <video> elements provide the flexibility you need
to display the types of media you have available.

In Example 23-3, the same video file has been encoded in different formats to ensure
that all major browsers are accounted for. Browsers will simply select the first type
they recognize and play it, as shown in Figure 23-3.

Audio and Video | 583

Example 23-3. Playing a video with HTML5

<!DOCTYPE html>
<html>
 <head>
 <title>HTML5 Video</title>
 </head>
 <body>
 <video width='560' height='320' controls>
 <source src='movie.mp4' type='video/mp4'>
 <source src='movie.webm' type='video/webm'>
 <source src='movie.ogv' type='video/ogg'>
 </video>
 </body>
</html>

Figure 23-3. Displaying video using HTML5

Inserting audio into a web page is just as easy, as you will discover in Chapter 25.

Forms
As you already saw in Chapter 11, HTML5 forms are in the process of being
enhanced, but support across all browsers remains patchy. What you can safely use
today has been detailed in Chapter 11.

584 | Chapter 23: Introduction to HTML5

Local Storage
With local storage, the amount and complexity of data you can save on a local device
is substantially increased from the meager space provided by cookies. This opens up
the possibility of using web apps to work on documents offline and then syncing
them with the web server only when an internet connection is available. It also raises
the prospect of storing small databases locally for access with WebSQL, perhaps for
keeping a copy of your music collection’s details, or all your personal statistics as part
of a diet or weight loss plan, for example. In Chapter 26, I show you how to make the
most of this new facility in your web projects.

Web Workers
It has been possible to run interrupt-driven applications in the background using
JavaScript for many years, but only through a clumsy and inefficient process. It makes
much more sense to let the underlying browser technology run background tasks on
your behalf, which it can do far more quickly than you can by continuously interrupt‐
ing the browser to check how things are going.

Instead, with web workers you set everything up and pass your code to the web
browser, which then runs it. When anything significant occurs, your code simply has
to notify the browser, which then reports back to your main code. In the meantime,
your web page can be doing nothing or a number of other tasks, and can forget about
the background task until it makes itself known.

In Chapter 26, I demonstrate how you can use web workers to create a simple clock
and to calculate prime numbers.

Microdata
In Chapter 26, I also show how you can mark up your code with microdata to make it
totally understandable to any browser or other technology that needs to access it.
Microdata is sure to become more and more important to search engine optimization
too, so it’s important that you begin to incorporate it or at least understand what
information it can provide about your websites.

As you can see, there’s quite a lot to HTML5—many people have waited a long time
for these goodies, but they’re finally here. Starting with the canvas, the following few
chapters will explain these features to you in glorious detail, so you can be up and
running with them, and enhancing your websites, in no time.

Local Storage | 585

Questions
1. What new HTML5 element enables drawing of graphics in web pages?
2. What programming language is required to access many of the advanced

HTML5 features?
3. Which HTML5 tags would you use to incorporate audio and video in a web

page?
4. What feature is new in HTML5 and offers greater capability than cookies?
5. Which HTML5 technology supports running background JavaScript tasks?

See “Chapter 23 Answers” on page 731 in Appendix A for the answers to these
questions.

586 | Chapter 23: Introduction to HTML5

CHAPTER 24

The HTML5 Canvas

Although the collective term given to the new web technologies is HTML5, they are
not all simply HTML tags and properties. Such is the case with the canvas element.
Yes, you create a canvas by using the <canvas> tag, and maybe supply a width and
height, and can modify it a little with CSS, but to actually write to (or read from) a
canvas, you must use JavaScript.

Thankfully, the JavaScript you need to learn is minimal and very easy to implement,
plus I’ve already provided you with a set of three ready-made functions in Chapter 20
(in the file OSC.js) to make accessing objects such as the canvas even more straight‐
forward. So, let’s dive right in and start using the new <canvas> tag.

Creating and Accessing a Canvas
In Chapter 23, I showed you how to draw a simple circle to display the Japanese flag,
as in Example 24-1. Let’s now look at what exactly is going on here.

Example 24-1. Displaying the Japanese flag by using a canvas

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Canvas</title>
 <script src='OSC.js'></script>
 </head>
 <body>
 <canvas id='mycanvas' width='320' height='240'>
 This is a canvas element given the ID <i>mycanvas</i>
 This text is only visible in non-HTML5 browsers
 </canvas>

587

 <script>
 canvas = O('mycanvas')
 context = canvas.getContext('2d')
 context.fillStyle = 'red'
 S(canvas).border = '1px solid black'

 context.beginPath()
 context.moveTo(160, 120)
 context.arc(160, 120, 70, 0, Math.PI * 2, false)
 context.closePath()
 context.fill()
 </script>
 </body>
</html>

First, the <!DOCTYPE html> declaration tells the browser that the document will use
HTML5. After this, a title is displayed and the three functions in the OSC.js file are
loaded in.

The body of the document defines a canvas element, gives it an ID of mycanvas, and
gives it a width and height of 320 × 240 pixels. The text of the canvas, as explained in
the previous chapter, will not appear in browsers that support the canvas element, but
will appear in older browsers that don’t.

This is followed by a section of JavaScript that styles and draws on the canvas. We
begin by creating a canvas object by calling the O function on the canvas element. As
you will recall, this calls the document.getElementById function, and is therefore a
much shorter way of referencing the element.

This is all stuff you’ve seen before, but next comes something new:

context = canvas.getContext('2d')

This command calls the getContext method of the new canvas object just created,
requesting two-dimensional access to the canvas by passing the value 2d.

If you want to display 3D on a canvas, you can either do the math
yourself and “fake” it in 2D, or you can use WebGL (which is based
on OpenGL ES), in which case you would create a context for it by
calling canvas.getContext('webgl'). There’s no room to cover
the subject any further here, but you can find a great tutorial on the
WEBGL Tutorials site. Alternatively, check out the Three.js Java‐
Script library of 3D functions, which also uses WebGL.

Armed with this context in the object context, we prime the subsequent drawing
commands by setting the fillStyle property of context to the value red:

context.fillStyle = 'red'

588 | Chapter 24: The HTML5 Canvas

http://www.webgltutorials.org
https://threejs.org

Then the S function is called to set the border property of the canvas to a 1-pixel,
solid black line to outline the flag image:

S(canvas).border = '1px solid black'

With everything prepared, a path is opened on the context and the drawing position
is moved to the location (160,120):

context.beginPath()
context.moveTo(160, 120)

After that, an arc is drawn centered on that coordinate, with a radius of 70 pixels,
beginning at an angle of 0 degrees (which is the righthand edge of the circle as you
look at it) and continuing all the way around the circle in radians as determined by a
value of 2 × π:

context.arc(160, 120, 70, 0, Math.PI * 2, false)

The final value of false indicates a clockwise direction for drawing the arc; a value of
true would indicate that the drawing should occur in a counterclockwise direction.

Finally, we close and fill the path, using the preselected value in the fillStyle prop‐
erty that we set to red a few lines earlier:

context.closePath()
context.fill()

The result of loading this document into a web browser looks like Figure 23-1 in the
previous chapter.

The toDataURL Function
After you have created an image in a canvas, you will sometimes want to make a copy
of it, perhaps to repeat elsewhere on a web page, for animation purposes, to save to
local storage, or to upload to a web server. This is particularly handy since users can‐
not use drag and drop to save a canvas image.

To illustrate how you do this, I have added a few lines of code to the previous example
in Example 24-2 (highlighted in bold). These create a new element with the ID
myimage, give it a solid black border, and then copy the canvas image into the
element (see Figure 24-1).

Example 24-2. Copying a canvas image

<!DOCTYPE html>
<html>
 <head>
 <title>Copying a Canvas</title>
 <script src='OSC.js'></script>
 </head>

Creating and Accessing a Canvas | 589

 <body>
 <canvas id='mycanvas' width='320' height='240'>
 This is a canvas element given the ID <i>mycanvas</i>
 This text is only visible in non-HTML5 browsers
 </canvas>

 <script>
 canvas = O('mycanvas')
 context = canvas.getContext('2d')
 context.fillStyle = 'red'
 S(canvas).border = '1px solid black'

 context.beginPath()
 context.moveTo(160, 120)
 context.arc(160, 120, 70, 0, Math.PI * 2, false)
 context.closePath()
 context.fill()

 S('myimage').border = '1px solid black'
 O('myimage').src = canvas.toDataURL()
 </script>
 </body>
</html>

Figure 24-1. The image on the right is copied from the lefthand canvas

If you try this code for yourself, you will notice that although you cannot drag and
drop the lefthand canvas image, you can do so with the righthand picture, which you
could also save to local storage or upload to a web server using the right JavaScript
(and PHP on the server end).

590 | Chapter 24: The HTML5 Canvas

Specifying an Image Type
When creating an image from a canvas, you can specify the type of image you want as
either JPEG (.jpg or .jpeg files) or PNG (.png files). The default is PNG (image/png),
but should you prefer JPEG, you can alter the call to toDataURL. At the same time,
you can also specify the amount of compression to use, between 0 (for lowest quality)
and 1 (for highest quality). The following uses a compression value of 0.4, and
should generate a reasonably good-looking image at a fairly low file size:

O('myimage').src = canvas.toDataURL('image/jpeg', 0.4)

Remember that the toDataURL method applies to a canvas object,
not to any context created from that object.

Now that you know how to create canvas images and then copy or otherwise use
them, it’s time to look at the drawing commands available, starting with rectangles.

The fillRect Method
There are two different methods you can call for drawing rectangles, the first of
which is fillRect. To use it, you simply supply the top-left coordinates of your rec‐
tangle, followed by the width and height in pixels, like this:

context.fillRect(20, 20, 600, 200)

By default, the rectangle will be filled with black, but you can use any other color you
like by first issuing a command such as the following, where the argument can be any
acceptable CSS color, name, or value:

context.fillStyle = 'blue'

The clearRect Method
You can also draw a rectangle in which all the color values (red, green, blue, and
alpha transparency) have been set to 0, like in the following example, which uses the
same order of coordinates and width and height arguments:

context.clearRect(40, 40, 560, 160)

Once the clearRect method is applied, the new clear rectangle will strip all color
from the area it covers, leaving only any underlying CSS color that has been applied
to the canvas element.

Creating and Accessing a Canvas | 591

The strokeRect Method
When you want only an outlined rectangle, you can use a command such as the fol‐
lowing, which will use the default of black or the currently selected stroke color:

context.strokeRect(60, 60, 520, 120)

To change the color used, you can first issue a command such as the following, sup‐
plying any valid CSS color argument:

context.strokeStyle = 'green'

Combining These Commands
In Example 24-3, the preceding rectangle-drawing commands have been combined to
display the image shown in Figure 24-2.

Example 24-3. Drawing several rectangles

<!DOCTYPE html>
<html>
 <head>
 <title>Drawing Rectangles</title>
 <script src='OSC.js'></script>
 </head>
 <body>
 <canvas id='mycanvas' width='640' height='240'></canvas>

 <script>
 canvas = O('mycanvas')
 context = canvas.getContext('2d')
 S(canvas).background = 'lightblue'
 context.fillStyle = 'blue'
 context.strokeStyle = 'green'

 context.fillRect(20, 20, 600, 200)
 context.clearRect(40, 40, 560, 160)
 context.strokeRect(60, 60, 520, 120)
 </script>
 </body>
</html>

592 | Chapter 24: The HTML5 Canvas

Figure 24-2. Drawing concentric rectangles

Later in this chapter, you’ll see how you can further modify the output by changing
stroke types and widths—but first, let’s turn to modifying fills by applying gradients
(which were introduced in “Gradients” on page 438 as part of CSS).

The createLinearGradient Method
There are a couple of ways to apply a gradient to a fill, but the simplest is with the
createLinearGradient method. You specify start and end x and y coordinates rela‐
tive to the canvas (not the object being filled). This allows for greater subtlety. For
example, you can specify that a gradient begin at the far left and end at the far right of
a canvas, but apply it only within the area defined in a fill command, as shown in
Example 24-4.

Example 24-4. Applying a gradient fill

gradient = context.createLinearGradient(0, 80, 640,80)
gradient.addColorStop(0, 'white')
gradient.addColorStop(1, 'black')
context.fillStyle = gradient
context.fillRect(80, 80, 480,80)

For brevity and clarity in this and many of the following examples,
only salient lines of code are shown. Complete examples with the
surrounding HTML, setup, and other sections of code are available
to freely download from the companion website.

Creating and Accessing a Canvas | 593

http://lpmj.net

In this example, we create a gradient fill object named gradient by making a call to
the createLinearGradient method of the context object. The start position of (0,80)
is halfway down the lefthand canvas edge, while the end of (640,80) is halfway down
the righthand edge.

To create your gradient, determine the direction in which you want it to flow and
then locate two points to represent the start and end. No matter what values you sup‐
ply for these points, the gradient will smoothly transition in the direction given, even
if the points are outside the fill area.

Next, a couple of color stops are provided to specify that the very first color of the
gradient is white, and the final color is black. The gradient will then transition
smoothly between these colors across the canvas from left to right.

With the gradient object now ready, it is applied to the fillStyle property of the
context object, so that the final fillRect call can use it. In this call, the fill is applied
only in a central rectangular area of the canvas, so although the gradient goes from
the far left to the far right of the canvas, the portion of it shown is only from 80 pixels
in and down from the top-left corner, to a width of 480 and depth of 80 pixels. The
result (when added to the previous example code) looks like Figure 24-3.

Figure 24-3. The central rectangle has a horizontal gradient fill

By specifying different start and end coordinates for a gradient, you can make it slant
in any direction, as demonstrated with Example 24-5 and shown in Figure 24-4.

Example 24-5. A variety of gradients at different angles and colors

gradient = context.createLinearGradient(0, 0, 160, 0)
gradient.addColorStop(0, 'white')
gradient.addColorStop(1, 'black')

594 | Chapter 24: The HTML5 Canvas

context.fillStyle = gradient
context.fillRect(20, 20, 135, 200)

gradient = context.createLinearGradient(0, 0, 0, 240)
gradient.addColorStop(0, 'yellow')
gradient.addColorStop(1, 'red')
context.fillStyle = gradient
context.fillRect(175, 20, 135, 200)

gradient = context.createLinearGradient(320, 0, 480, 240)
gradient.addColorStop(0, 'green')
gradient.addColorStop(1, 'purple')
context.fillStyle = gradient
context.fillRect(330, 20, 135, 200)

gradient = context.createLinearGradient(480, 240, 640, 0)
gradient.addColorStop(0, 'orange')
gradient.addColorStop(1, 'magenta')
context.fillStyle = gradient
context.fillRect(485, 20, 135, 200)

Figure 24-4. A range of different linear gradients

In this example, I chose to place the gradients directly on top of the areas to be filled
in order to more clearly show the maximum variation in color from start to end.

The addColorStop Method in Detail
You can use as many color stops in a gradient as you like, not just the two start and
end colors used so far in these examples. This makes it possible to clearly describe
almost any type of gradient effect you can imagine. To do this, you must specify the
percent of the gradient that each color should take up, by allocating a floating-point

Creating and Accessing a Canvas | 595

start position along the gradient range between 0 and 1. You do not enter a color’s
end position, because it is deduced from the start position of the next color stop, or
the gradient end if the position is the last one you specify.

In the preceding examples, only the two start and end values were chosen, but to cre‐
ate a rainbow effect, you could set up your color stops as shown in Example 24-6
(displayed in Figure 24-5).

Example 24-6. Adding multiple color stops

gradient.addColorStop(0.00, 'red')
gradient.addColorStop(0.14, 'orange')
gradient.addColorStop(0.28, 'yellow')
gradient.addColorStop(0.42, 'green')
gradient.addColorStop(0.56, 'blue')
gradient.addColorStop(0.70, 'indigo')
gradient.addColorStop(0.84, 'violet')

Figure 24-5. A rainbow effect with seven stop colors

In Example 24-6, all the colors are spaced roughly equidistantly (with each color
given 14 percent of the gradient, and the final one 16), but you don’t have to stick to
that; you can squish several colors near each other, while spacing others out. It’s
entirely up to you as to how many colors you use and where in the gradient they start
and end.

The createRadialGradient Method
You aren’t restricted to only linear gradients in HTML; you can create radial gradients
on a canvas too. It’s a little more complex than with a linear gradient, but not much
more so.

596 | Chapter 24: The HTML5 Canvas

What you need to do is pass the center location as a pair of x and y coordinates, along
with a radius in pixels. These are used as the start of the gradient and outer circum‐
ference, respectively. Then you also pass another set of coordinates and a radius to
specify the end of the gradient.

So, for example, to create a gradient that simply starts at the center of a circle and
then expands out, you could issue a command such as the one in Example 24-7 (dis‐
played in Figure 24-6). The coordinates for the start and end are the same, but the
radius is 0 for the start and encompasses the entire gradient for the end.

Example 24-7. Creating a radial gradient

gradient = context.createRadialGradient(320, 120, 0, 320, 120, 320)

Figure 24-6. A centered radial gradient

Or you can be fancy and move the location of the start and end of a radial gradient, as
in Example 24-8 (and displayed in Figure 24-7), which starts centered on location
(0,120) with a radius of 0 pixels, and ends centered at (480,120) with a radius of 480
pixels.

Example 24-8. Stretching a radial gradient

gradient = context.createRadialGradient(0, 120, 0, 480, 120, 480)

Creating and Accessing a Canvas | 597

Figure 24-7. A stretched radial gradient

By manipulating the figures supplied to this method, you can cre‐
ate a wide range of weird and wonderful effects—try it for yourself
with the supplied examples.

Using Patterns for Fills
In a similar manner to gradient fills, you can also apply an image as a fill pattern. This
can be an image anywhere in the current document, or even one created from a can‐
vas via the toDataURL method (explained earlier in this chapter).

Example 24-9 loads a 100 × 100–pixel image (the yin-yang symbol) into the new
image object image. The following statement attaches to the onload event a function
that creates a repeating pattern for the fillStyle property of the context. This is then
used to fill a 600 × 200–pixel area within the canvas, as shown in Figure 24-8.

Example 24-9. Using an image for a pattern fill

image = new Image()
image.src = 'image.png'

image.onload = function()
{
 pattern = context.createPattern(image, 'repeat')
 context.fillStyle = pattern
 context.fillRect(20, 20, 600, 200)
}

598 | Chapter 24: The HTML5 Canvas

Figure 24-8. Tiling an image by using it as a pattern fill

We create the pattern by using the createPattern method, which also supports non‐
repeating patterns, or ones that just repeat in the x- or y-axes. We achieve this by
passing one of the following values to it as the second argument, after the image to
use:

repeat

Repeat the image both vertically and horizontally.

repeat-x

Repeat the image horizontally.

repeat-y

Repeat the image vertically.

no-repeat

Do not repeat the image.

The fill pattern is based on the entire canvas area, so where the fill command is set to
apply only to a smaller area within the canvas, the images appear cut off at the top
and left.

If the onload event had not been used in this example and, instead,
the code was simply executed as soon as encountered, the image
might not have already loaded by the time the web page was dis‐
played and might not appear in the display. Attaching to this event
ensures that the image is available for use in the canvas, because the
event triggers only upon successful loading of an image.

Creating and Accessing a Canvas | 599

Writing Text to the Canvas
As you would expect from a set of graphics features, writing to the canvas with text is
fully supported with a variety of font, alignment, and fill methods. But why would
you want to write text to the canvas when there’s already such good support for web
fonts in CSS these days?

Well, suppose you wish to display a graph or table with graphical elements. You’ll
surely also want to label parts of it. What’s more, using the available commands, you
can produce much more than simply a colored font. So, let’s start by assuming you’ve
been tasked to create a header for a website on basket weaving, called WickerpediA
(actually there’s already one of these, but let’s go ahead anyway).

To start with, you need to select a suitable font and size it appropriately, perhaps as in
Example 24-10, in which a font style of bold, a size of 140 pixels, and a typeface of
Times have been selected. Also, the textBaseline property has been set to top so that
the strokeText method can pass coordinates of (0,0) for the top-left origin of the
text, placing it at the top left of the canvas. Figure 24-9 shows what this looks like.

Example 24-10. Writing text to the canvas

context.font = 'bold 140px Times'
context.textBaseline = 'top'
context.strokeText('WickerpediA', 0, 0)

Figure 24-9. The text has been written to the canvas

The strokeText Method
To write text to the canvas, you send the text string and a pair of coordinates to the
strokeText method, like this:

context.strokeText('WickerpediA', 0, 0)

The x and y coordinates supplied will be used as a relative reference by the textBase
Line and textAlign properties.

600 | Chapter 24: The HTML5 Canvas

This method—using line drawing—is only one way of drawing text to the canvas. So,
in addition to all the following properties that affect text, line-drawing properties
such as lineWidth (detailed later in this chapter) will also affect how text displays.

The textBaseLine Property
The textBaseLine property can be given any of the following values:

top

Aligns to the top of the text

middle

Aligns to the middle of the text

alphabetic

Aligns to the alphabetic baseline of the text

bottom

Aligns to the bottom of the text

The font Property
The font style can be any of bold, italic, or normal (the default), or a combination
of italic bold, and the size values can be specified in em, ex, px, %, in, cm, mm, pt, or
pc measures, just as with CSS. The font should be one available to the current
browser, which generally means one of Helvetica, Impact, Courier, Times, or Arial,
or you can choose the default Serif or Sans-serif font of the user’s system. If you’re
confident that another font you want to use will be available to the browser, you can
specify that, too, but it’s a good idea to include at least one of the more common or
default options after it so styling can fall back gracefully if the user doesn’t have your
preferred font installed.

If you want to use a font such as Times New Roman, which incorpo‐
rates spaces in its name, you should change the relevant line to
something like this, in which the outer quotes are different from
the ones surrounding the font name:

context.font = 'bold 140px "Times New Roman"'

The textAlign Property
In addition to choosing how to align your text vertically, you can specify horizontal
alignment by giving the textAlign property one of the following values:

Writing Text to the Canvas | 601

start

Aligns the text to the left if the document direction is left to right, or otherwise to
the right. This is the default setting.

end

Aligns the text to the right if the document direction is left to right, or otherwise
to the left.

left

Aligns the text to the left.

right

Aligns the text to the right.

center

Centers the text.

You use the property like this:

context.textAlign = 'center'

In the case of the current example, you need the text left-aligned so that it butts up
neatly to the edge of the canvas, so the textAlign property is not used, and therefore
the default left alignment occurs.

The fillText Method
You can also choose to use a fill property to fill in canvas text, which can be any of a
solid color, a linear or radial gradient, or a pattern fill. Let’s try a pattern fill for our
heading based on the texture of a wicker basket, as in Example 24-11, the result of
which is shown in Figure 24-10.

Example 24-11. Filling in the text with a pattern

image = new Image()
image.src = 'wicker.jpg'

image.onload = function()
{
 pattern = context.createPattern(image, 'repeat')
 context.fillStyle = pattern
 context.fillText('WickerpediA', 0, 0)
 context.strokeText('WickerpediA', 0, 0)
}

602 | Chapter 24: The HTML5 Canvas

Figure 24-10. The text now has a pattern fill

For good measure, I also kept the strokeText call in this example to ensure a black
outline to the text; without it, there wasn’t enough definition at the edges.

A wide variety of other fill types or patterns can also be used here, and the simplicity
of the canvas makes it easy to experiment. What’s more, if you wish, once you have
the heading just right, you can also choose to save a copy by issuing a call toDataURL,
as detailed earlier in the chapter. Then you can use the image as a logo for uploading
to other sites, for example.

The measureText Method
When working with canvas text, you may sometimes need to know how much space
it will occupy so that you can best position it. You can achieve this with the measure
Text method, as follows (assuming all the various text properties have already been
defined at this point):

metrics = context.measureText('WickerpediA')
width = metrics.width

Since the height of the text in pixels is equal to the font size in points when the font is
defined, the metrics object doesn’t provide a height metric.

Drawing Lines
The canvas provides a plethora of line-drawing functions to cater to almost every
need, including choices of lines, line caps and joins, and paths and curves of all types.
But let’s start with a property I touched on in the previous section, on writing text to
the canvas.

Drawing Lines | 603

The lineWidth Property
All the canvas methods that draw with lines make use of several line properties, one
of the most important being lineWidth. Using it is as simple as specifying a line
width in pixels, like this, which sets the width to 3 pixels:

context.lineWidth = 3

The lineCap and lineJoin Properties
When lines you draw come to an end and they are more than a pixel wide, you can
choose how this line cap (as it is called) should appear by using the lineCap property,
which can have the values butt (thedefault), round, or square. For example:

context.lineCap = 'round'

Also, when you are joining lines together that are wider than a single pixel, it is
important to specify exactly how they should meet. You achieve this with the line
Join property, which can have values of round, bevel, or miter (the default), like this:

context.lineJoin = 'bevel'

Example 24-12 (shown here in full since it’s a little more complicated) applies all three
values of each property in combination, creating the result you’ll see in Figure 24-11.
The beginPath, closePath, moveTo, and lineTo methods used by this example are
explained next.

Example 24-12. Displaying combinations of line caps and joins

<!DOCTYPE html>
<html>
 <head>
 <title>Drawing Lines</title>
 <script src='OSC.js'></script>
 </head>
 <body>
 <canvas id='mycanvas' width='535' height='360'></canvas>

 <script>
 canvas = O('mycanvas')
 context = canvas.getContext('2d')
 S(canvas).background = 'lightblue'
 context.fillStyle = 'red'
 context.font = 'bold 13pt Courier'
 context.strokeStyle = 'blue'
 context.textBaseline = 'top'
 context.textAlign = 'center'
 context.lineWidth = 20
 caps = [' butt', ' round', 'square']
 joins = [' round', ' bevel', ' miter']

604 | Chapter 24: The HTML5 Canvas

 for (j = 0 ; j < 3 ; ++j)
 {
 for (k = 0 ; k < 3 ; ++k)
 {
 context.lineCap = caps[j]
 context.lineJoin = joins[k]

 context.fillText(' cap:' + caps[j], 88 + j * 180, 45 + k * 120)
 context.fillText('join:' + joins[k], 88 + j * 180, 65 + k * 120)

 context.beginPath()
 context.moveTo(20 + j * 180, 100 + k * 120)
 context.lineTo(20 + j * 180, 20 + k * 120)
 context.lineTo(155 + j * 180, 20 + k * 120)
 context.lineTo(155 + j * 180, 100 + k * 120)
 context.stroke()
 context.closePath()
 }
 }
 </script>
 </body>
</html>

This code sets up a few properties and then nests a pair of loops: one for the line caps
and one for the joins. Inside the central loop, the current values for the lineCap and
lineJoin properties are first set, and then displayed in the canvas with the fillText
method.

Using these settings, the code then draws 9 shapes with a 20-pixel-wide line, each of
which has a different combination of line cap and join settings, as shown in
Figure 24-11.

Drawing Lines | 605

Figure 24-11. All the combinations of line caps and joins

As you can see, butted line caps are short, square ones are longer, and the round ones
are somewhere between the two. Rounded line joins are curved, beveled ones are cut
across the corner, and mitered ones have sharp corners. Line joins also apply to joins
at angles other than 90 degrees.

The miterLimit Property
If you find that your mitered joins get cut off too short, you can extend them by using
the miterLimit property, like this:

context.miterLimit = 15

The default value is 10, so you can reduce the miter limit too. If miterLimit is not set
to a sufficiently large value for a miter, then sharply mitered joins will simply bevel
instead. So, if you are having trouble with your pointed miters, simply increase the
value you supply for miterLimit until the miter displays.

Using Paths
The previous example made use of two methods to set up paths for the line-drawing
methods to follow. The beginPath method sets the start of a path, and closePath sets
the end. Inside each path, you can then use various methods for moving the location

606 | Chapter 24: The HTML5 Canvas

of drawing and for creating lines, curves, and other shapes. Let’s examine the relevant
section from Example 24-12, simplified to create just a single instance of the pattern:

context.beginPath()
context.moveTo(20, 100)
context.lineTo(20, 20)
context.lineTo(155, 20)
context.lineTo(155,100)
context.stroke()
context.closePath()

In this code snippet, a path is started in the first line, and then the drawing location is
moved to a position 20 pixels across and 100 down from the top-left corner of the
canvas, using a call to the moveTo method.

This is followed by three calls to lineTo, which draw three lines, first upward to the
location (20,20), then to the right to (155,20), and then down again to (155,100).
Once this path has been set out, the stroke method is called to lay it down, and
finally the path is closed because it’s no longer needed.

It is essential to close paths as soon as you finish with them; other‐
wise, you can get some very unexpected results when using multi‐
ple paths.

The moveTo and lineTo Methods
The moveTo and lineTo methods both take simple x and y coordinates as their argu‐
ments, with the difference being that moveTo picks up an imaginary pen from the cur‐
rent location and then moves it to a new one, while lineTo draws a line from the
current location of the imaginary pen to the new one specified. Or, at least, a line will
be drawn if the stroke method is called, but not otherwise. So let’s just say that
lineTo creates a potential drawn line, but it could equally be part of the outline for a
fill area, for example.

The stroke Method
The stroke method has the job of actually drawing all the lines created so far in a
path onto the canvas. If it is issued from inside an unclosed path, this has the effect of
immediately drawing everything up to the most recent imaginary pen location.

However, if you close a path and then issue a call to stroke, it has the effect of also
joining a path from the current location back to the start location, which in this
example would turn the shapes into rectangles (which we don’t want because we need
to see the line caps as well as joins).

Using Paths | 607

This joining effect on closing a path is required (as you will see a
little later) to get paths ready for any fill methods you want to use
on them; otherwise, the graphics you use for a fill might overflow
the bounds of the path.

The rect Method
Should it have been necessary to create four-sided rectangles instead of the three-
sided shapes in the preceding example (and you didn’t wish to close the path yet),
another lineTo call could have been issued to join everything up, like this (highligh‐
ted in bold):

context.beginPath()
context.moveTo(20, 100)
context.lineTo(20, 20)
context.lineTo(155, 20)
context.lineTo(155, 100)
context.lineTo(20, 100)
context.closePath()

But there’s a much simpler way to draw outlined rectangles, which is with the rect
method, like this:

rect(20, 20, 155, 100)

In just a single call, this command takes two pairs of x and y coordinates and draws a
rectangle with its top-left corner at location (20,20) and bottom-right corner at
(155,100).

Filling Areas
Using paths, you can create complicated areas that can also be filled in with solid, gra‐
dient, or pattern fills. In Example 24-13, some basic trigonometry is used to create a
complex star pattern. I won’t detail how the math works because that’s not important
to the example (although if you want to play with the code, try changing the values
assigned to points, and the scale1 and scale2 variables, for different effects).

Example 24-13. Filling in a complex path

<!DOCTYPE html>
<html>
 <head>
 <title>Filling a Path</title>
 <script src='OSC.js'></script>
 </head>
 <body>
 <canvas id='mycanvas' width='320' height='320'></canvas>

608 | Chapter 24: The HTML5 Canvas

 <script>
 canvas = O('mycanvas')
 context = canvas.getContext('2d')
 S(canvas).background = 'lightblue'
 context.strokeStyle = 'orange'
 context.fillStyle = 'yellow'

 orig = 160
 points = 21
 dist = Math.PI / points * 2
 scale1 = 150
 scale2 = 80

 context.beginPath()

 for (j = 0 ; j < points ; ++j)
 {
 x = Math.sin(j * dist)
 y = Math.cos(j * dist)
 context.lineTo(orig + x * scale1, orig + y * scale1)
 context.lineTo(orig + x * scale2, orig + y * scale2)
 }

 context.closePath()
 context.stroke()
 context.fill()
 </script>
 </body>
</html>

All you really need to look at are the lines highlighted in bold, in which a path is
started, a pair of lineTo calls defines the shape, the path is closed, and then the
stroke and fill methods are used to draw the shape outline in orange and fill it in
with yellow (as shown in Figure 24-12).

Filling Areas | 609

Figure 24-12. Drawing and filling in a complex path

With paths, it’s possible to create as complex an object as you like,
either using formulae or loops (as in this example), or simply with
a long string of moveTo and/or lineTo or other calls.

The clip Method
Sometimes when you are building a path, you may want to ignore sections of the can‐
vas (perhaps if you are drawing partly “behind” another object, and want only the
visible part to display). You can achieve this using the clip method, which creates a
boundary outside of which stroke, fill, or other methods will not have any effect.

To illustrate this, Example 24-14 creates an effect similar to window blinds by moving
the imaginary pen pointer to the lefthand edge, then drawing a lineTo over to the
righthand edge, another down by 30 pixels, and then another back to the lefthand
edge, and so on. This creates a sort of snaking pattern in which a series of 30-pixel-
deep, horizontal bars are drawn on the canvas, as shown in Figure 24-13.

Example 24-14. Creating a clip area

context.beginPath()

for (j = 0 ; j < 10 ; ++j)
{

610 | Chapter 24: The HTML5 Canvas

 context.moveTo(20, j * 48)
 context.lineTo(620, j * 48)
 context.lineTo(620, j * 48 + 30)
 context.lineTo(20, j * 48 + 30)
}

context.stroke()
context.closePath()

Figure 24-13. A path of horizontal bars

To turn this example into a clipped area of the canvas, you simply need to replace the
call to stroke (highlighted in bold in the example) with one to clip, like this:

context.clip()

Now the outline of the bars won’t be seen, but a clipping area that consists of all the
individual bars will be in place. To illustrate this, Example 24-15 makes this method
substitution and then adds to the previous example by drawing on the canvas a sim‐
ple picture of green grass below a blue sky containing a shining sun (modified from
Example 24-12), with the changes highlighted in bold and the result shown in
Figure 24-14.

The clip Method | 611

Example 24-15. Drawing within the clipped area’s bounds

context.fillStyle = 'white'
context.strokeRect(20, 20, 600, 440) // Black border
context.fillRect(20, 20, 600, 440) // White background

context.beginPath()

for (j = 0 ; j < 10 ; ++j)
{
 context.moveTo(20, j * 48)
 context.lineTo(620, j * 48)
 context.lineTo(620, j * 48 + 30)
 context.lineTo(20, j * 48 + 30)
}

context.clip()
context.closePath()

context.fillStyle = 'blue' // Blue sky
context.fillRect(20, 20, 600, 320)
context.fillStyle = 'green' // Green grass
context.fillRect(20, 320, 600, 140)
context.strokeStyle = 'orange'
context.fillStyle = 'yellow'

orig = 170
points = 21
dist = Math.PI / points * 2
scale1 = 130
scale2 = 80

context.beginPath()

for (j = 0 ; j < points ; ++j)
{
 x = Math.sin(j * dist)
 y = Math.cos(j * dist)
 context.lineTo(orig + x * scale1, orig + y * scale1)
 context.lineTo(orig + x * scale2, orig + y * scale2)
}

context.closePath()
context.stroke() // Sun outline
context.fill() // Sun fill

612 | Chapter 24: The HTML5 Canvas

Figure 24-14. Drawing occurs only within the allowed clipped area

OK, we’re not going to win any competitions here, but you can see how powerful clip‐
ping can be when used effectively.

The isPointInPath Method
Sometimes you need to know whether a particular point lies in a path you’ve con‐
structed. However, you will probably want to use this function only if you’re quite
proficient with JavaScript and with writing fairly complex programs, and you’ll gen‐
erally call it as part of a conditional if statement, like this:

if (context.isPointInPath(23, 87))
{
 // Do something here
}

The first argument to the call is the location’s x coordinate and the second is the loca‐
tion’s y coordinate. If the location specified lies along any of the points in the path, the
method returns the value true, so the contents of the if statement are executed.

The isPointInPath Method | 613

Otherwise, the value false is returned, and the contents of the if statement don’t get
executed.

A perfect use for the isPointInPath method is for creating games
using the canvas in which you wish to check for a missile hitting a
target, a ball hitting a wall or bat, or similar boundary conditions.

Working with Curves
In addition to straight paths, you can create an almost infinite variety of curved paths
with a selection of different methods, ranging from simple arcs and circles to complex
quadratic and Bézier curves.

Actually, you don’t need to use paths to create many lines, rectangles, and curves,
because you can draw them directly by simply calling their methods. But using paths
gives you more precise control, so I tend to almost always draw on the canvas within
defined paths, as with the following examples.

The arc Method
The arc method requires you to pass it the x and y location of the center of the arc,
and the radius in pixels. In addition to these values, you need to pass a pair of radian
offsets and you can optionally include a direction, like this:

context.arc(55, 85, 45, 0, Math.PI / 2, false)

Since the default direction is clockwise (a value of false), this can be omitted, or you
can change it to true to draw the arc in a counterclockwise direction.

Example 24-16 creates three sets of four arcs, the first two sets in a clockwise direc‐
tion and the third set in a counterclockwise direction. Additionally, the first set of
four arcs has its paths closed before the stroke method is called, so the start and end
points are joined up, whereas the other two sets of arcs are drawn before the path is
closed, so they are not joined up.

Example 24-16. Drawing a variety of arcs

context.strokeStyle = 'blue'
arcs =
[
 Math.PI,
 Math.PI * 2,
 Math.PI / 2,
 Math.PI / 180 * 59
]

614 | Chapter 24: The HTML5 Canvas

for (j = 0 ; j < 4 ; ++j)
{
 context.beginPath()
 context.arc(80 + j * 160, 80, 70, 0, arcs[j])
 context.closePath()
 context.stroke()
}

context.strokeStyle = 'red'

for (j = 0 ; j < 4 ; ++j)
{
 context.beginPath()
 context.arc(80 + j * 160, 240, 70, 0, arcs[j])
 context.stroke()
 context.closePath()
}

context.strokeStyle = 'green'

for (j = 0 ; j < 4 ; ++j)
{
 context.beginPath()
 context.arc(80 + j * 160, 400, 70, 0, arcs[j], true)
 context.stroke()
 context.closePath()
}

To create shorter code, I drew all the arcs using loops, so that the length of each arc is
stored in the array arcs. These values are in radians, and since a radian is equivalent
to 180 ÷ π (π being the ratio of a circle’s circumference to its diameter, or approxi‐
mately 3.1415927), they evaluate as follows:

Math.PI

Equivalent to 180 degrees

Math.PI * 2

Equivalent to 360 degrees

Math.PI / 2

Equivalent to 90 degrees

Math.PI / 180 * 59

Equivalent to 59 degrees

Figure 24-15 shows the three rows of arcs and illustrates both the use of the direction
argument true in the final set, and the importance of carefully choosing where you
close paths depending on whether you want to draw a line connecting the start and
end points.

Working with Curves | 615

Figure 24-15. A variety of arc types

If you prefer to work with degrees instead of radians, you could
create a new Math library function, like this:

Math.degreesToRadians = function(degrees)
{
 return degrees * Math.PI / 180
}

And then replace the array-creating code, starting at the second
line of Example 24-16, with the following:

arcs =
[
 Math.degreesToRadians(180),
 Math.degreesToRadians(360),
 Math.degreesToRadians(90),
 Math.degreesToRadians(59)
]

616 | Chapter 24: The HTML5 Canvas

The arcTo Method
Rather than creating a whole arc at once, you can choose to arc from the current loca‐
tion in the path to another one, like in the following call to arcTo (which simply
requires two pairs of x and y coordinates and a radius):

context.arcTo(100, 100, 200, 200, 100)

The locations you pass to the method represent the points where imaginary tangent
lines touch the circumference of the arc at its start and end points.

To illustrate how this works, Example 24-17 draws eight different arcs with radii from
0 up to 280 pixels. Each time around the loop, a new path is created with a start point
at location (20,20). Then an arc is drawn using imaginary tangent lines from that
location to position (240,240), and from there to location (460,20). In this instance, it
defines a pair of tangents at 90 degrees to each other, in a V shape.

Example 24-17. Drawing eight arcs of different radii

for (j = 0 ; j <= 280 ; j += 40)
{
 context.beginPath()
 context.moveTo(20, 20)
 context.arcTo(240, 240, 460, 20, j)
 context.lineTo(460, 20)
 context.stroke()
 context.closePath()
}

The arcTo method draws only up to the point at which the arc touches the second
imaginary tangent. So, after each call to arcTo, the lineTo method creates the
remainder of the line from wherever arcTo left off to location (460,20). Then the
result is drawn to the canvas with a call to stroke, and the path is closed.

As you can see in Figure 24-16, when arcTo is called with a radius value of 0, it cre‐
ates a sharp join. In this case, it’s a right angle (but if the two imaginary tangents are
at other angles to each other, the join will be at that angle). Then, as the radius increa‐
ses in size, you can see the arcs getting larger and larger.

Working with Curves | 617

Figure 24-16. Drawing arcs of different radii

Essentially, what you can best use arcTo for is to curve from one section of drawing to
another, following an arc based on the previous and subsequent positions, as if they
were tangential to the arc to be created. If this sounds complicated, don’t worry: you’ll
soon get the hang of it and find it’s actually a handy and logical way to draw arcs.

The quadraticCurveTo Method
Useful as arcs are, they are only one type of curve and can be limiting for more-
complex designs. But have no fear: there are still more ways to draw curves, such as
the quadraticCurveTo method. Using this method, you can place an imaginary
attractor near to (or far from) a curve to pull it in that direction, in a similar way to
the path of an object in space being pulled by the gravity of the planets and stars it
passes. Unlike with gravity, though, the farther away the attractor is, the more it pulls!

Example 24-18 contains six calls to this method, creating the path for a fluffy cloud,
which is then filled in white. Figure 24-17 illustrates how the angles of the dashed line
outside the cloud represent the attractor points applied to each curve.

Example 24-18. Drawing a cloud with quadratic curves

context.beginPath()
context.moveTo(180, 60)
context.quadraticCurveTo(240, 0, 300, 60)
context.quadraticCurveTo(460, 30, 420, 100)
context.quadraticCurveTo(480, 210, 340, 170)
context.quadraticCurveTo(240, 240, 200, 170)
context.quadraticCurveTo(100, 200, 140, 130)
context.quadraticCurveTo(40, 40, 180, 60)
context.fillStyle = 'white'

618 | Chapter 24: The HTML5 Canvas

context.fill()
context.closePath()

Figure 24-17. Drawing with quadratic curves

Incidentally, to achieve the dotted line around the cloud in this
image, I used the stroke method in conjunction with the setLine
Dash method, which takes a list representing the dash and space
lengths. In this instance, I used setLineDash([2, 3]), but you can
create dash lines as complicated as you like, such as setLine
Dash([1, 2, 1, 3, 5, 1, 2, 4]). I haven’t documented this fea‐
ture because it has been implemented only in IE, Opera, and
Chrome so far. Fingers crossed that it’ll be added to the other
browsers soon, though, as it will be a great enhancement for creat‐
ing contours and boundaries for mapping purposes, for example.

The bezierCurveTo Method
If you still don’t find quadratic curves flexible enough for your needs, how about hav‐
ing access to two attractors for each curve? Using the bezierCurveTo method you can
do just that, as in Example 24-19, where a curve is created between location (24,20)
and (240,220), but with invisible attractors off the canvas (in this case) at locations
(720,480) and (–240,–240). Figure 24-18 shows how this curve gets warped.

Example 24-19. Creating a Bézier curve with two attractors

context.beginPath()
context.moveTo(240, 20)
context.bezierCurveTo(720, 480, -240, -240, 240, 220)

Working with Curves | 619

context.stroke()
context.closePath()

Figure 24-18. A Bézier curve with two attractors

Attractors do not need to be at opposite sides of a canvas; you can place them any‐
where, and when they are near each other, they will exert a combined pull (rather
than opposing pulls, as in the preceding example). Using these various types of curve
methods, it’s possible for you to draw every type of curve you could ever need.

Manipulating Images
Not only can you draw and write on the canvas with graphical methods, but you can
also place images on or extract them from a canvas. And you’re not limited to simple
copy-and-paste commands, because you can stretch and distort images when reading
or writing them, and also have full control over compositing and shadow effects.

The drawImage Method
Using the drawImage method, you can take an image object that was loaded from a
website, uploaded to a server, or even extracted from a canvas, and draw it onto a
canvas. The method supports a wide variety of arguments, many of which are
optional, but at its simplest you call drawImage as follows, passing just the image and
a pair of x and y coordinates:

context.drawImage(myimage, 20, 20)

This command draws the image contained in the myimage object onto the canvas with
the context of context, with its top-left corner at location (20,20).

620 | Chapter 24: The HTML5 Canvas

To ensure that an image has been loaded before you use it, best
practice is to enclose your image-handling code within a function
that is triggered only upon image load, like this:

myimage = new Image()
myimage.src = 'image.gif'

myimage.onload = function()
{
 context.drawImage(myimage, 20, 20)
}

Resizing an Image
If you need to resize an image when it is placed on the canvas, add a second pair of
arguments to the call representing the width and height you require, like this (high‐
lighted in bold):

context.drawImage(myimage, 140, 20, 220, 220)
context.drawImage(myimage, 380, 20, 80, 220)

Here the image is placed at two locations: the first is at (140,20), where the image is
enlarged (from a 100-pixel square to a 220-pixel square), while the second goes to
location (380,20) with the image being squashed horizontally and expanded vertically,
to a width and height of 80 × 220 pixels.

Selecting an Image Area
You’re not stuck having to use an entire image; it’s also possible to choose an area
within an image when using drawImage. This can be handy, for example, if you wish
to place all the graphical images you intend to use in a single image file, and then just
grab the sections of the image that you need. This is a trick developers often use to
speed up page loading and decrease server hits.

It’s a little trickier to do this, though, because rather than adding more arguments at
the end of the list for this method, when extracting a portion of an image, you must
place those arguments first.

So, for example, to place an image at location (20,140), you might issue this com‐
mand:

context.drawImage(myimage, 20, 140)

And to give it a width and height of 100 × 100 pixels, you would modify the call like
this (highlighted in bold):

context.drawImage(myimage, 20, 140, 100, 100)

Manipulating Images | 621

But to grab (or crop) just a 40 × 40–pixel subsection (for example), with its top-left
corner at location (30,30) of the image, you would call the method like this (with the
new arguments in bold):

context.drawImage(myimage, 30, 30, 40, 40, 20, 140)

And to resize the grabbed portion to 100 pixels square, you would use the following:

context.drawImage(myimage, 30, 30, 40, 40, 20, 140, 100, 100)

I find this very confusing and cannot think of a logical reason for
why this method works this way. But since it does, I’m afraid there’s
nothing you can do other than force yourself to remember which
arguments go where under which conditions.

Example 24-20 uses a variety of calls to the drawImage method to obtain the result
shown in Figure 24-19. To make things clearer, I have spaced out the arguments so
that the values in each column provide the same information.

Example 24-20. Various ways of drawing an image on the canvas

myimage = new Image()
myimage.src = 'image.png'

myimage.onload = function()
{
 context.drawImage(myimage, 20, 20)
 context.drawImage(myimage, 140, 20, 220, 220)
 context.drawImage(myimage, 380, 20, 80, 220)
 context.drawImage(myimage, 30, 30, 40, 40, 20, 140, 100, 100)
}

622 | Chapter 24: The HTML5 Canvas

Figure 24-19. Drawing images to a canvas with resizing and cropping

Copying from a Canvas
You can also use a canvas as a source image for drawing to the same (or another) can‐
vas. Just supply the canvas object’s name in place of an image object, and use all the
remaining arguments in the same way as you would with an image.

Adding Shadows
When you draw an image (or image section), or, indeed, anything else on the canvas,
you can also place a shadow under it by setting one or more of the following proper‐
ties:

shadowOffsetX

The horizontal offset in pixels by which the shadow should be shifted to the right
(or to the left if the value is negative).

shadowOffsetY

The vertical offset in pixels by which the shadow should be shifted down (or up if
the value is negative).

shadowBlur

The number of pixels over which to blur the shadow’s outline.

shadowColor

The base color to use for the shadow. If a blur is in use, this color will blend with
the background in the blurred area.

Manipulating Images | 623

These properties can apply to text and lines as well as solid images, as demonstrated
in Example 24-21, in which some text, an image, and an object created using a path
all have shadows added to them. In Figure 24-20, you can see the shadows intelli‐
gently flow around the visible portions of images, not just their rectangular bound‐
aries.

Example 24-21. Applying shadows when drawing on the canvas

myimage = new Image()
myimage.src = 'apple.png'

orig = 95
points = 21
dist = Math.PI / points * 2
scale1 = 75
scale2 = 50

myimage.onload = function()
{
 context.beginPath()

 for (j = 0 ; j < points ; ++j)
 {
 x = Math.sin(j * dist)
 y = Math.cos(j * dist)
 context.lineTo(orig + x * scale1, orig + y * scale1)
 context.lineTo(orig + x * scale2, orig + y * scale2)
 }

 context.closePath()

 context.shadowOffsetX = 5
 context.shadowOffsetY = 5
 context.shadowBlur = 6
 context.shadowColor = '#444'
 context.fillStyle = 'red'
 context.stroke()
 context.fill()

 context.shadowOffsetX = 2
 context.shadowOffsetY = 2
 context.shadowBlur = 3
 context.shadowColor = 'yellow'
 context.font = 'bold 36pt Times'
 context.textBaseline = 'top'
 context.fillStyle = 'green'
 context.fillText('Sale now on!', 200, 5)

 context.shadowOffsetX = 3
 context.shadowOffsetY = 3

624 | Chapter 24: The HTML5 Canvas

 context.shadowBlur = 5
 context.shadowColor = 'black'
 context.drawImage(myimage, 245, 45)
}

Figure 24-20. Shadows under different types of drawing objects

Editing at the Pixel Level
Not only does the HTML5 canvas provide you with a powerful range of drawing
methods, it also lets you get your hands dirty and work under the hood directly at the
pixel level with a trio of powerful methods.

The getImageData Method
With the getImageData method, you can grab a portion (or all) of a canvas so that
you can alter the retrieved data in any way you like, and then save it back or else‐
where in the canvas (or to another canvas).

To illustrate how this works, Example 24-22 first loads in a ready-made image and
draws it onto a canvas. Then the canvas data is read back into an object called idata,
where all the colors are averaged together to change each pixel to grayscale and then
tweaked a little to shift each color toward sepia, as shown in Figure 24-21. The fol‐
lowing section explains the data array of pixels, and what happens when the value 50
is added to or subtracted from an element of the array.

Example 24-22. Manipulating image data

myimage = new Image()
myimage.src = 'photo.jpg'

myimage.onload = function()
{

Editing at the Pixel Level | 625

 context.drawImage(myimage, 0, 0)
 idata = context.getImageData(0, 0, myimage.width, myimage.height)

 for (y = 0 ; y < myimage.height ; ++y)
 {
 pos = y * myimage.width * 4

 for (x = 0 ; x < myimage.width ; ++x)
 {
 average =
 (
 idata.data[pos] +
 idata.data[pos + 1] +
 idata.data[pos + 2]
) / 3

 idata.data[pos] = average + 50
 idata.data[pos + 1] = average
 idata.data[pos + 2] = average - 50
 pos += 4;
 }
 }
 context.putImageData(idata, 320, 0)
}

Figure 24-21. Converting an image to sepia (only a minor difference will be seen when
this figure is viewed in grayscale)

The data array

This image manipulation works thanks to the data array, which is a property of the
idata object returned by the call to getImageData. This method returns an array
containing all the pixel data for the selected area in its component parts of red, green,
blue, and alpha transparency. Therefore, four items of data are used to store each col‐
ored pixel.

626 | Chapter 24: The HTML5 Canvas

All the data is stored sequentially in the data array, such that the value for red is fol‐
lowed by that for blue, then green, and then alpha; then, the next item in the array is
the red value for the following pixel, and so on. So, you’ll have the following for the
pixel at location (0,0):

idata.data[0] // Red level
idata.data[1] // Green level
idata.data[2] // Blue level
idata.data[3] // Alpha level

Location (1,0) then follows, like this:

idata.data[4] // Red level
idata.data[5] // Green level
idata.data[6] // Blue level
idata.data[7] // Alpha level

In this image, everything continues in the same fashion until the rightmost pixel of
the image in row 0—which is the 320th pixel, at location (319,0)—is reached. At that
point, the value 319 is multiplied by 4 (the number of items of data in each pixel) to
arrive at the following array elements, which contain this pixel’s data:

idata.data[1276] // Red level
idata.data[1277] // Green level
idata.data[1278] // Blue level
idata.data[1279] // Alpha level

This causes the data pointer to move all the way back to the first column of the image,
but this time of row 1, at location (0,1) which (because each row in this image is 320
pixels wide) is at an offset of (0 × 4) + (1 × 320 × 4), or 1,280:

idata.data[1280] // Red level
idata.data[1281] // Green level
idata.data[1282] // Blue level
idata.data[1283] // Alpha level

So, if the image data is stored in idata, the image width in w, and the pixel location to
access in x and y, the key formulae to use when directly accessing image data are:

red = idata.data[x * 4 + y * w * 4]
green = idata.data[x * 4 + y * w * 4 + 1]
blue = idata.data[x * 4 + y * w * 4 + 2]
alpha = idata.data[x * 4 + y * w * 4 + 3]

Using this knowledge, we create the sepia effect in Figure 24-12 by taking just the red,
blue, and green components of each pixel and averaging them, like this (where pos is
a variable pointer to the location in the array of the current pixel):

average =
(
 idata.data[pos] +
 idata.data[pos + 1] +

Editing at the Pixel Level | 627

 idata.data[pos + 2]
) / 3

With average now containing the average color value (which we attain by adding all
the pixel values and dividing by 3), this value is written back to all colors of the pixel,
but with the red boosted by a value of 50, and the blue reduced by the same amount:

idata.data[pos] = average + 50
idata.data[pos + 1] = average
idata.data[pos + 2] = average - 50

The result is to increase the red and reduce the blue level of each pixel (of what would
otherwise now become a monochrome image, if only the average value were written
back to these colors), giving it a sepia cast.

If you’re interested in performing more advanced image manipula‐
tions, you may wish to refer to Halfpap or HTML5 Rocks, which
both cover using convolution on an HTML5 canvas in detail.

The putImageData Method
When you’ve modified the image data array to your requirements, all you need to do
to write it to the canvas, as shown in the previous example, is call the putImageData
method, passing it the idata object and the coordinates of the top-left corner at
which it should appear. The call shown earlier places the modified copy of the image
to the right of the original:

context.putImageData(idata, 320, 0)

If you wish to modify only part of a canvas, you don’t have to grab
the entire canvas; just fetch a section containing the area in which
you are interested. And neither do you have to write back image
data to the location from where you got it; image data can be writ‐
ten to any part of a canvas.

The createImageData Method
You don’t have to create an object directly from a canvas; you can also create a new
one with blank data by calling the createImageData method. The following example
creates an object with a width of 320 and height of 240 pixels:

idata = createImageData(320, 240)

Alternatively, you can create a new object from an existing object, like this:

newimagedataobject = createImageData(imagedata)

628 | Chapter 24: The HTML5 Canvas

http://tinyurl.com/convolut1
http://tinyurl.com/convolut2

It’s then up to you how you add pixel data to these objects or otherwise modify them,
how you paste them onto the canvas or create other objects from them, and so on.

Advanced Graphical Effects
Among the more advanced features available on the HTML5 canvas are the ability to
assign various compositing and transparency effects, as well as to apply powerful
transformations such as scaling, stretching, and rotating.

The globalCompositeOperation Property
There are 12 different methods available to fine-tune the way you place an object on
the canvas, taking into account existing and future objects. These are called composit‐
ing options, and they are applied like this:

context.globalCompositeOperationProperty = 'source-over'

The compositing types are as follows:

source-over

The default. The source image is copied over the destination image.

source-in

Only parts of the source image that will appear within the destination are shown,
and the destination image is removed. Any alpha transparency in the source
image causes the destination under it to be removed.

source-out

Only parts of the source image that do not appear within the destination are
shown, and the destination image is removed. Any alpha transparency in the
source image causes the destination under it to be removed.

source-atop

The source image is displayed where it overlays the destination. The destination
image is displayed where the destination image is opaque and the source image is
transparent. Other regions are transparent.

destination-over

The source image is drawn under the destination image.

destination-in

The destination image displays where the source and destination image overlap,
but not in any areas of source image transparency. The source image does not
display.

Advanced Graphical Effects | 629

destination-out

Only those parts of the destination outside of the source image’s nontransparent
sections are shown. The source image does not display.

destination-atop

The source image displays where the destination is not displayed. Where the des‐
tination and source overlap, the destination image is displayed. Any transparency
in the source image prevents that area of the destination image being shown.

lighter

The sum of the source and destination is applied such that where they do not
overlap, they display as normal; where they do overlap, the sum of both images is
shown but lightened.

darker

The sum of the source and destination is applied such that where they do not
overlap, they display as normal; where they do overlap, the sum of both images is
shown but darkened.

copy

The source image is copied over the destination. Any transparent area of the
source causes any destination that it overlaps to not display.

xor

Where the source and destination images do not overlap, they display as normal.
Where they do overlap, their color values are exclusive-ored.

Example 24-23 illustrates the effect of all of these compositing types by creating 12
different canvases, each with two objects (a filled circle and the yin-yang image) offset
from each other but overlapping.

Example 24-23. Using all 12 types of compositing effects

image = new Image()
image.src = 'image.png'

image.onload = function()
{
 types =
 [
 'source-over', 'source-in', 'source-out',
 'source-atop', 'destination-over', 'destination-in',
 'destination-out', 'destination-atop', 'lighter',
 'darker', 'copy', 'xor'
]

 for (j = 0 ; j < 12 ; ++j)
 {

630 | Chapter 24: The HTML5 Canvas

 canvas = O('c' + (j + 1))
 context = canvas.getContext('2d')
 S(canvas).background = 'lightblue'
 context.fillStyle = 'red'

 context.arc(50, 50, 50, 0, Math.PI * 2, false)
 context.fill()
 context.globalCompositeOperation = types[j]
 context.drawImage(image, 20, 20, 100, 100)
 }
}

As with some other examples in this chapter, this example (down‐
loadable from the companion website) includes some HTML
and/or CSS to enhance the display, which isn’t shown here because
it’s not essential to the program’s operation.

This program uses a for loop to iterate through each compositing type, as stored in
the array types. Each time around the loop, a new context is created on the next of
the 12 canvas elements already created in some earlier HTML (not shown), with the
IDs of c1 through c12.

In each canvas, a 100-pixel-diameter red circle is first placed at the top left, and then
the compositing type is selected and the yin-yang image is placed over the circle but
offset to the right and down by 20 pixels. Figure 24-22 shows the results of each type
in action. As you can see, it’s possible to achieve a wide variety of effects.

Advanced Graphical Effects | 631

Figure 24-22. The 12 compositing effects in action

The globalAlpha Property
When drawing on the canvas, you can specify the amount of transparency to apply
using the globalAlpha property, which supports values from 0 (fully transparent) to
1 (fully opaque). The following command sets the alpha to a value of 0.9, such that
future draw operations will be 90 percent opaque (or 10 percent transparent):

context.globalAlpha = 0.9

This property can be used with all other properties, including the compositing
options.

Transformations
The canvas supports four functions for applying transformations to elements when
drawing them to the HTML5 canvas: scale, rotate, translate, and transform.
They can be used alone, or together to produce even more interesting effects.

632 | Chapter 24: The HTML5 Canvas

The scale Method
You can scale future drawing operations by first calling the scale method. This
method takes horizontal and vertical scaling factors, which can be negative, zero, or
positive.

In Example 24-24 the yin-yang image is drawn to the canvas at its original size of 100
× 100 pixels. Then scaling of three times horizontally and two times vertically is
applied, and the drawImage function is called again to place the stretched image next
to the original. Finally, scaling is reapplied with values of 0.33 and 0.5 to restore
everything back to normal, and the image is once more drawn, this time below the
original. Figure 24-23 shows the result.

Example 24-24. Scaling up and down in size

context.drawImage(myimage, 0, 0)
context.scale(3, 2)
context.drawImage(myimage, 40, 0)
context.scale(.33, .5)
context.drawImage(myimage, 0, 100)

Figure 24-23. Scaling an image up and then down again

If you look carefully, you may notice that the copy image under the original is a little
bit fuzzy due to the scaling up and then down.

By using negative values for one or more scaling parameters, you can reverse an ele‐
ment in either the horizontal or vertical direction (or both), at the same time as (or
instead of) scaling. For example, the following flips the context to create a mirror
image:

context.scale(-1, 1)

Transformations | 633

The save and restore Methods
If you need to use several scaling operations on different drawing elements, not only
can you introduce fuzziness into the results, but it can be very time-consuming to cal‐
culate that a three-times upward scaling requires a 0.33 value to scale back down
again (and a two-times upscale requires a value of 0.5 to reverse).

For this reason, you can call save to save the current context before issuing a scale
call, and later return scaling back to normal by issuing a restore call. Check out the
following, which can replace the code in Example 24-24:

context.drawImage(myimage, 0, 0)
context.save()
context.scale(3, 2)
context.drawImage(myimage, 40, 0)
context.restore()
context.drawImage(myimage, 0, 100)

The save and restore methods are very powerful because they don’t just apply to
image scaling. In fact, they apply across all the following properties, and can therefore
be used at any time to save the current properties and then restore them later: fill
Style, font, globalAlpha, globalCompositeOperation, lineCap, lineJoin, line
Width, miterLimit, shadowBlur, shadowColor, shadowOffsetX, shadowOffsetY,
strokeStyle, textAlign, and textBaseline. The properties of all four transforma‐
tion methods are also managed by save and restore: scale, rotate, translate, and
transform.

The rotate Method
Using the rotate method, you can choose the angle at which to apply an object (or
any of the drawing methods) to the canvas. The angle is specified in radians, which
are the same as 180 / π, or about 57 degrees, each.

Rotation takes place around the canvas origin, which, by default, is its top-left corner
(but as you’ll see shortly, this can be changed). Example 24-25 displays the yin-yang
image four times, rotating each consecutive image by Math.PI / 25 radians.

Example 24-25. Rotating an image

for (j = 0 ; j < 4 ; ++j)
{
 context.drawImage(myimage, 20 + j * 120 , 20)
 context.rotate(Math.PI / 25)
}

As you can see in Figure 24-24, the result may not be quite what you expect, because
the image hasn’t been rotated about itself. Rather, the rotations have taken place

634 | Chapter 24: The HTML5 Canvas

around the canvas origin at location (0,0). What’s more, each new rotation has com‐
pounded the previous one. However, to correct for these things, you can always use
the translate method in conjunction with the save and restore methods.

Figure 24-24. An image at four different rotations

Radians are a sensible unit of measurement because there are π × 2
radians in a complete circle. So, π radians is a half circle, π ÷ 2 radi‐
ans is a quarter circle, π ÷ 2 × 3 (or π × 1.5) radians is three-
quarters of a circle, and so on. To save having to remember the
value of π, you can always refer to the value in Math.PI.

The translate Method
To change the origin of a rotation, you can call the translate method to shift it to
somewhere else. The destination can be anywhere inside (or outside) the canvas. Usu‐
ally, you specify a point somewhere within the destination location of the object (typi‐
cally its center).

Example 24-26 performs this translation prior to each call to rotate, now resulting in
the effect that was probably intended by the previous example. Additionally, the save
and restore methods are called before and after each operation to ensure that each
rotation is applied independently, not compounded on the previous one.

Example 24-26. Rotating objects in place

w = myimage.width
h = myimage.height

Transformations | 635

for (j = 0 ; j < 4 ; ++j)
{
 context.save()
 context.translate(20 + w / 2 + j * (w + 20), 20 + h / 2)
 context.rotate(Math.PI / 5 * j)
 context.drawImage(myimage, -(w / 2), -(h / 2))
 context.restore()
}

In this example, before each rotation the context is saved and the origin is translated
to a point exactly in the center of where each image will be drawn. We then issue the
rotation and draw the image up and to the left of the new origin by supplying nega‐
tive values, such that its center matches the origin point. The result of this is shown in
Figure 24-25.

Figure 24-25. Rotating images in place

To recap: when you wish to rotate or transform (described next) an object in place,
you should perform the following actions:

1. Save the context.
2. Translate the canvas origin to the center of where the object is to be placed.
3. Issue the rotation or transformation instruction.
4. Draw the object with any drawing method supported, using a negative destina‐

tion location point half the object’s width to the left, and half its height upward.
5. Restore the context to revert the origin.

The transform Method
When you’ve exhausted all the other canvas features and still can’t manipulate objects
in just the way you need, it’s time to turn to the transform method. With it, you can
apply a transformation matrix to the objects you draw to the canvas, giving you a

636 | Chapter 24: The HTML5 Canvas

multitude of possibilities and powerful features that can combine scaling and rotating
in a single instruction.

The transformation matrix used by this method is a 3 × 3 matrix of 9 values, but only
6 of these are supplied externally to the transform method. So, rather than explain
how this matrix multiplication works, I only need to explain the effects of its six argu‐
ments, which, in order, are as follows (the order may be a little counter-intuitive):

1. Horizontal scale
2. Horizontal skew
3. Vertical skew
4. Vertical scale
5. Horizontal translate
6. Vertical translate

You can apply these values in many ways—for example, by emulating the scale
method from Example 24-24 by replacing this call:

context.scale(3, 2)

with the following:

context.transform(3, 0, 0, 2, 0, 0)

In the same way, you can replace this call from Example 24-26:

context.translate(20 + w / 2 + j * (w + 20), 20 + h / 2)

with the following:

context.transform(1, 0, 0, 1, 20 + w / 2 + j * (w + 20), 20 + h / 2)

Note how the horizontal and vertical scaling arguments are given
values of 1 to ensure a 1:1 result, while the skew values are 0 to pre‐
vent the result from being skewed.

You could even combine the previous two lines of code to get a translation and scale
at the same time, like this:

context.transform(3, 0, 0, 2, 20 + w / 2 + j * (w + 20), 20 + h / 2)

As you might expect, the skew arguments slant an element in the direction specified
—for example, creating a rhombus from a square.

As another example of skew, Example 24-27 draws the yin-yang image on the canvas,
followed by a skewed copy created with the transform method. The skew value can

Transformations | 637

be any negative, zero, or positive amount, but I chose a horizontal value of 1, which
has skewed the bottom of the image by one image width to the right, and pulled
everything else along with it proportionally (see Figure 24-26).

Example 24-27. Creating an original and skewed image

context.drawImage(myimage, 20, 20)
context.transform(1, 0, 1, 1, 0, 0)
context.drawImage(myimage, 140, 20)

Figure 24-26. Horizontally skewing an object to the right

You can even rotate an object with transform by supplying one
negative and one opposite positive skew value. But beware: when
you do this, you’ll modify the size of an element, and will therefore
also need to adjust the scale arguments at the same time. Plus,
you’ll need to remember to translate the origin. Thus, I recom‐
mend sticking with the rotate method for this until you are fully
experienced with using transform.

The setTransform Method
As an alternative to using the save and restore methods, you can set an absolute
transform, which has the effect of resetting the transformation matrix and then
applying the supplied values. Use the setTransform method just like transform, as in
this example (which applies a horizontal positive skew with the value 1):

context.setTransform(1, 0, 1, 1, 0, 0)

To learn more about transformation matrixes, see the Wikipedia
article.

638 | Chapter 24: The HTML5 Canvas

http://tinyurl.com/transform-matrix
http://tinyurl.com/transform-matrix

The HTML5 canvas is a tremendous asset for web developers to make bigger, better,
and more professional and compelling websites. In the following chapter, we’ll take a
look at two other great HTML5 features: in-browser, plug-in-free audio and video.

Questions
1. How do you create a canvas element in HTML?
2. How do you give JavaScript access to a canvas element?
3. How do you start and finish the creation of a canvas path?
4. What method can you use to extract data from a canvas into an image?
5. How can you create gradient fills of more than two colors?
6. How can you adjust the width of lines when drawing?
7. Which method would you use to specify a section of a canvas such that future

drawing takes place only within that area?
8. How can you draw a complex curve with two imaginary attractors?
9. How many items of data per pixel are returned by the getImageData method?

10. Which two parameters to the transform method apply to scaling operations?

See “Chapter 24 Answers” on page 732 in Appendix A for the answers to these
questions.

Questions | 639

CHAPTER 25

HTML5 Audio and Video

One of the biggest driving forces behind the growth of the internet has been the insa‐
tiable demand from users for ever more multimedia in the form of audio and video.
Initially, bandwidth was so precious that there was no such thing as live streaming,
and it could take minutes or even hours to download an audio track, let alone a video.

The high cost of bandwidth and limited availability of fast modems drove the devel‐
opment of faster and more efficient compression algorithms, such as MP3 audio and
MPEG video, but even then the only way to download files in any reasonable length
of time was to drastically reduce their quality.

One of my earlier internet projects, back in 1997, was the UK’s first online radio sta‐
tion licensed by the music authorities. Actually, it was more of a podcast (before the
term was coined) because we made a daily half-hour show and then compressed it
down to 8-bit, 11 KHz mono using an algorithm originally developed for telephony,
and it sounded like phone quality, or worse. Still, we quickly gained thousands of lis‐
teners who would download the show and then listen to it as they surfed to the sites
discussed in it by means of a pop-up browser window containing a plug-in.

Thankfully for us, and everyone publishing multimedia, it soon became possible to
offer greater audio and video quality, but still only by asking the user to download
and install a plug-in player. Flash became the most popular of these players, after
beating rivals such as RealAudio, but it gained a bad reputation as the cause of many a
browser crash, and constantly required upgrading when new versions were released.

So, it was generally agreed that the way ahead was to come up with some web stand‐
ards for supporting multimedia directly within the browser. Of course, browser
developers such as Microsoft and Google had differing visions of what these stand‐
ards should look like, but when the dust settled, they had agreed on a subset of file

641

types that all browsers should play natively, and these were introduced into the
HTML5 specification.

Finally, it is possible (as long as you encode your audio and video in a few different
formats) to upload multimedia to a web server, place a couple of HTML tags in a web
page, and play the media on any major desktop browser, smartphone, or tablet
device, without the user having to download a plug-in or make any other changes.

There are still a lot of older browsers out there, so Flash remains
important to support them. In this chapter, I show you how to add
code to use Flash as a backup to HTML5 audio and video, to cover
as many hardware and software combinations as possible.

About Codecs
The term codec stands for encoder/decoder. It describes the functionality provided by
software that encodes and decodes media such as audio and video. In HTML5 there
are a number of different sets of codecs available, depending on the browser used.

One complication around audio and video, which rarely applies to graphics and other
traditional web content, is the licensing carried by the formats and codecs. Many for‐
mats and codecs are provided for a fee, because they were developed by a single com‐
pany or consortium of companies that chose a proprietary license. Some free and
open source browsers don’t support the most popular formats and codecs because it
is unfeasible to pay for them, or because the developers oppose proprietary licenses in
principle. Because copyright laws vary from country to country and because licenses
are hard to enforce, the codecs can usually be found on the web for no cost, but they
might technically be illegal to use where you live.

Following are the codecs supported by the HTML5 <audio> tag (and also when audio
is attached to HTML5 video):

AAC
This audio codec, which stands for Advanced Audio Encoding, is used by Apple’s
iTunes store and is a proprietary patented technology supported by Apple, Goo‐
gle, and Microsoft. It generally uses the .aac file extension. Its MIME type is
audio/aac.

MP3
This audio codec, which stands for MPEG Audio Layer 3, has been available for
many years. Although the term is often (incorrectly) used to refer to any type of
digital audio, it is a proprietary patented technology that is supported by Apple,
Google, Mozilla Firefox, and Microsoft. The file extension it uses is .mp3. Its
mime type is audio/mpeg.

642 | Chapter 25: HTML5 Audio and Video

PCM
This audio codec, which stands for Pulse Coded Modulation, stores the full data
as encoded by an analog-to-digital converter, and is the format used for storing
data on audio CDs. Because it does not use compression, it is called a lossless
codec and its files are generally many times larger than AAC or MP3 files. It is
supported by Apple, Mozilla Firefox, Microsoft, and Opera. Usually this type of
file has the extension .wav. Its MIME type is audio/wav, but you may also see
audio/wave.

Vorbis
Sometimes referred to as Ogg Vorbis—because it generally uses the .ogg file
extension—this audio codec is unencumbered by patents and free of royalty pay‐
ments. It is supported by Google, Mozilla Firefox, and Opera. Its MIME type is
audio/ogg, or sometimes audio/oga.

The following list summarizes the major operating systems and browsers, along with
the audio types their latest versions support:

• Apple iOS: AAC, MP3, PCM
• Apple Safari: AAC, MP3, PCM
• Google Android: 2.3+ AAC, MP3, Vorbis
• Google Chrome: AAC, MP3, Vorbis
• Microsoft Internet Explorer: AAC, MP3, PCM
• Microsoft Edge: AAC, MP3, PCM
• Mozilla Firefox: MP3, PCM, Vorbis
• Opera: PCM, Vorbis

The outcome of these different levels of codec support is that you always need at least
two versions of each audio file to ensure it will play on all platforms. These could be
PCM and AAC, PCM and MP3, PCM and Vorbis, AAC and Vorbis, or MP3 and Vor‐
bis.

The <audio> Element
To cater to all platforms, you need to record or convert your content using multiple
codecs and then list them all within <audio> and </audio> tags, as in Example 25-1.
The nested <source> tags then contain the various media you wish to offer to a
browser. Because the controls attribute is supplied, the result looks like Figure 25-1.

The <audio> Element | 643

Example 25-1. Embedding three different types of audio files

<audio controls>
 <source src='audio.m4a' type='audio/aac'>
 <source src='audio.mp3' type='audio/mp3'>
 <source src='audio.ogg' type='audio/ogg'>
</audio>

Figure 25-1. Playing an audio file

In this example I included three different audio types, because that’s perfectly accepta‐
ble, and can be a good idea if you wish to ensure that each browser can locate its pre‐
ferred format rather than just one it knows how to handle. However, you can drop
either (but not both) of the MP3 or the AAC files and still be confident that the exam‐
ple will play on all platforms.

The <audio> element and its partner <source> tag support several attributes:

autoplay

Causes the audio to start playing as soon as it is ready

controls

Causes the control panel to be displayed

loop

Sets the audio to play over and over

preload

Causes the audio to begin loading even before the user selects Play

src

Specifies the source location of an audio file

type

Specifies the codec used in creating the audio

If you don’t supply the controls attribute to the <audio> tag, and don’t use the auto
play attribute either, the sound will not play and there won’t be a Play button for the

644 | Chapter 25: HTML5 Audio and Video

user to click to start playback. This would leave you no option other than to offer this
functionality in JavaScript, as in Example 25-2 (with the additional code required
highlighted in bold), which provides the ability to play and pause the audio, as shown
in Figure 25-2.

Example 25-2. Playing audio using JavaScript

<!DOCTYPE html>
<html>
 <head>
 <title>Playing Audio with JavaScript</title>
 <script src='OSC.js'></script>
 </head>
 <body>
 <audio id='myaudio'>
 <source src='audio.m4a' type='audio/aac'>
 <source src='audio.mp3' type='audio/mp3'>
 <source src='audio.ogg' type='audio/ogg'>
 </audio>

 <button onclick='playaudio()'>Play Audio</button>
 <button onclick='pauseaudio()'>Pause Audio</button>

 <script>
 function playaudio()
 {
 O('myaudio').play()
 }
 function pauseaudio()
 {
 O('myaudio').pause()
 }
 </script>
 </body>
</html>

Figure 25-2. HTML5 audio can be controlled with JavaScript

This works by calling the play or pause methods of the myaudio element when the
buttons are clicked.

The <audio> Element | 645

Supporting Non-HTML5 Browsers
In very rare cases (such as when developing web pages for in-house intranets that are
using older browsers), it may be necessary for you to fall back to Flash for handling
audio. Example 25-3 shows how you can do this using a Flash plug-in called audio‐
player.swf that’s available, along with all the examples, in the archive file on the book’s
companion website. The code to add is highlighted in bold.

Example 25-3. Providing a Flash fallback for non-HTML5 browsers

<audio controls>
 <object type="application/x-shockwave-flash"
 data="audioplayer.swf" width="300" height="30">
 <param name="FlashVars"
 value="mp3=audio.mp3&showstop=1&showvolume=1">
 </object>

 <source src='audio.m4a' type='audio/aac'>
 <source src='audio.mp3' type='audio/mp3'>
 <source src='audio.ogg' type='audio/ogg'>
</audio>

Here we take advantage of the fact that non-HTML5 browsers read and act on any‐
thing inside the <audio> tag (other than the <source> elements, which are ignored).
Therefore, by placing an <object> element there that calls up a Flash player, we
ensure that any non-HTML5 browsers will at least have a chance of playing the audio,
as long as they have Flash installed, as shown in Figure 25-3.

Figure 25-3. The Flash audio player has been loaded

The particular audio player used in this example, audioplayer.swf, takes the following
arguments and values to the FlashVars attribute of the <param> element:

mp3

The URL of an MP3 audio file.

646 | Chapter 25: HTML5 Audio and Video

http://lpmj.net

showstop

If 1, the display shows the Stop button; otherwise, it is not displayed.

showvolume

If 1, the display shows the volume bar; otherwise, it is not displayed.

As with many elements, you can easily resize the object to (for example) 300 × 30 pix‐
els by providing these values to its width and height attributes.

The <video> Element
Playing video in HTML5 is quite similar to audio; you just use the <video> tag and
provide <source> elements for the media you are offering. Example 25-4 shows how
to do this with three different video codec types, as displayed in Figure 25-4.

Example 25-4. Playing HTML5 video

<video width='560' height='320' controls>
 <source src='movie.mp4' type='video/mp4'>
 <source src='movie.webm' type='video/webm'>
 <source src='movie.ogv' type='video/ogg'>
</video>

Figure 25-4. Playing HTML5 video

The <video> Element | 647

The Video Codecs
As with audio, there are a number of video codecs available, with differing support
across multiple browsers. These codecs come in different containers, as follows:

MP4
A license-encumbered, multimedia container format standard specified as a part
of MPEG-4, supported by Apple, Microsoft, and to a lesser extent Google (which
has its own WebM container format). Its MIME type is video/mp4.

Ogg
A free, open container format maintained by the Xiph.Org Foundation. The crea‐
tors of the Ogg format state that it is unrestricted by software patents and is
designed to provide for efficient streaming and manipulation of high-quality dig‐
ital multimedia. Its MIME type is video/ogg, or sometimes video/ogv.

WebM
An audio-video format designed to provide a royalty-free, open video compres‐
sion format for use with HTML5 video. The project’s development is sponsored
by Google. There are two versions: VP8 and the newer VP9. Its MIME type is
video/webm.

These may then contain one of the following video codecs:

H.264
A patented, proprietary video codec that can be played back for free by the end
user, but which may incur royalty fees for all parts of the encoding and transmis‐
sion process. At the time of writing, all of the Apple, Google, Mozilla Firefox, and
Microsoft browsers support this codec, while Opera (the remaining major
browser) doesn’t.

Theora
A video codec that is unencumbered by patents and free of royalty payments at
all levels of encoding, transmission, and playback. This codec is supported by
Google, Mozilla Firefox, and Opera.

VP8
A video codec that is similar to Theora but is owned by Google, which has pub‐
lished it as open source, making it royalty-free. It is supported by Google, Mozilla
Firefox, and Opera.

VP9
The same as VP8 but more powerful, using half the bitrate.

The following list details the major operating systems and browsers, along with the
video types their latest versions support:

648 | Chapter 25: HTML5 Audio and Video

• Apple iOS: MP4/H.264
• Apple Safari: MP4/H.264
• Google Android: MP4, Ogg, WebM/H.264, Theora, VP8
• Google Chrome: MP4, Ogg, WebM/H.264, Theora, VP8, VP9
• Microsoft Internet Explorer: MP4/H.264
• Microsoft Edge: MP4/H.264, WebM/H.264
• Mozilla Firefox: MP4, Ogg, WebM/H.264, Theora, VP8, VP9
• Opera: Ogg, WebM/Theora, VP8

Looking at this list, it’s clear that MP4/H.264 is almost unanimously supported,
except by the Opera browser. So, to reach over 96% of users, you only need to supply
your video using that one file type. But for maximum viewing, you really ought to
encode in Ogg/Theora or Ogg/VP8 as well.

Therefore, the movie.webm file in Example 25-4 isn’t strictly needed, but it shows how
you can add all the different file types you like, to give browsers the opportunity to
play back the formats they prefer.

The <video> element and accompanying <source> tag support the following
attributes:

autoplay

Causes the video to start playing as soon as it is ready

controls

Causes the control panel to be displayed

height

Specifies the height at which to display the video

loop

Sets the video to play over and over

muted

Mutes the audio output

poster

Lets you choose an image to display where the video will play

preload

Causes the video to begin loading before the user selects Play

src

Specifies the source location of a video file

The <video> Element | 649

type

Specifies the codec used in creating the video

width

Specifies the width at which to display the video

If you wish to control video playback from JavaScript, you can do so using code such
as that in Example 25-5 (with the additional code required highlighted in bold), with
the results shown in Figure 25-5.

Example 25-5. Controlling video playback from JavaScript

<!DOCTYPE html>
<html>
 <head>
 <title>Playing Video with JavaScript</title>
 <script src='OSC.js'></script>
 </head>
 <body>
 <video id='myvideo' width='560' height='320'>
 <source src='movie.mp4' type='video/mp4'>
 <source src='movie.webm' type='video/webm'>
 <source src='movie.ogv' type='video/ogg'>
 </video>

 <button onclick='playvideo()'>Play Video</button>
 <button onclick='pausevideo()'>Pause Video</button>

 <script>
 function playvideo()
 {
 O('myvideo').play()
 }
 function pausevideo()
 {
 O('myvideo').pause()
 }
 </script>
 </body>
</html>

650 | Chapter 25: HTML5 Audio and Video

Figure 25-5. JavaScript is being used to control the video

This code is just like that for controlling audio from JavaScript. Simply call the play
and/or pause methods of the myvideo object to play and pause the video.

Supporting Older Browsers
If you find yourself having to develop for non-HTML5–capable browsers,
Example 25-6 shows you how to do this (highlighted in bold) using the flowplayer.swf
file (included with the example archive available on the book’s companion website).
Figure 25-6 shows how it displays in a browser that doesn’t support HTML5 video.

Example 25-6. Providing Flash as a fallback video player

<video width='560' height='320' controls>
 <object width='560' height='320'
 type='application/x-shockwave-flash'
 data='flowplayer.swf'>
 <param name='movie' value='flowplayer.swf'>
 <param name='flashvars'
 value='config={"clip": {
 "url": "movie.mp4",
 "autoPlay":false, "autoBuffering":true}}'>
 </object>

 <source src='movie.mp4' type='video/mp4'>
 <source src='movie.webm' type='video/webm'>

The <video> Element | 651

http://lpmj.net

 <source src='movie.ogv' type='video/ogg'>
</video>

Figure 25-6. Flash provides a handy fallback for non-HTML5 browsers

This Flash video player is particular about security; it won’t play videos from a local
filesystem, only from a web server, so I have supplied a file on the book’s companion
website for this example to play.

Here are the arguments to supply to the flashvars attribute of the <param> element:

url

A URL of an .mp4 file to play (must be on a web server)

autoPlay

If true, plays automatically; otherwise, waits for the Play button to be clicked

autoBuffering

If true, in order to minimize buffering later on with slow connections, preloads
the video sufficiently for the available bandwidth before it starts playing

For more information on the Flash flowplayer program (and an
HTML5 version), check out flowplayer.org.

652 | Chapter 25: HTML5 Audio and Video

http://lpmj.net/video.mp4
http://lpmj.net/video.mp4
http://flowplayer.org

Using the information in this chapter, you will be able to embed any audio and video
you like on almost all browsers and platforms without worrying about whether users
may or may not be able to play it.

In the following chapter, I’ll demonstrate the use of a number of other HTML5 fea‐
tures, including geolocation and local storage.

Questions
1. Which two HTML element tags are used to insert audio and video into an

HTML5 document?
2. How many audio codecs should you use to guarantee maximum playability on all

platforms?
3. Which methods can you call to play and pause HTML5 media playback?
4. How can you support media playback in a non-HTML5 browser?
5. Which two video codecs should you use to guarantee maximum playability on all

platforms?

See “Chapter 25 Answers” on page 733 in Appendix A for the answers to these
questions.

Questions | 653

CHAPTER 26

Other HTML5 Features

In this final chapter on HTML5, I explain how to use geolocation and local storage,
and demonstrate the use of in-browser dragging and dropping.

Strictly speaking, most of these features (like much of HTML5) aren’t really exten‐
sions to HTML, because you access them with JavaScript rather than with HTML
markup. They are simply technologies that are being embraced by browser develop‐
ers, and have been given the handy umbrella name of HTML5.

This means, though, that you need to have fully understood the JavaScript tutorial in
this book in order to use them properly. That said, once you get the hang of them,
you’ll wonder how you ever did without these powerful new features.

Geolocation and the GPS Service
The Global Positioning System (GPS) service consists of multiple satellites orbiting
the Earth whose positions are very precisely known. When a GPS-enabled device
tunes into them, the different times at which signals from these various satellites
arrive enable the device to quite accurately determine where it is; because the speed of
light (and therefore radio waves) is a known constant, the time it takes a signal to get
from a satellite to a GPS device indicates the satellite’s distance.

By noting the different times at which signals arrive from different satellites, which
are in precisely known orbital locations at any one time, a simple triangulation calcu‐
lation gives the device its position relative to the satellites within a few meters or less.

Many mobile devices, such as phones and tablets, have GPS chips and can provide
this information. But some don’t, others have them turned off, and others may be
used indoors where they are shielded from the GPS satellites and therefore cannot

655

receive any signals. In these cases, additional techniques may be used to attempt to
determine the device’s location.

I should also caution you to consider the privacy implications of
geolocation, especially if the coordinates are transmitted back to
the server as part of an application’s function. Any application that
has geolocation functionality should have an explicit privacy policy.
Oh, and by the way, technically geolocation is not actually in the
HTML5 standard. In fact it’s a standalone feature defined by the
W3C/WHATWG, but most people think of it as part of HTML5.

Other Location Methods
If your device has mobile phone hardware but no GPS chip, it may attempt to trian‐
gulate its location by checking the timing of signals received from the various com‐
munication towers with which it can communicate (and whose positions are very
precisely known). If there are a few towers, this can get almost as close to your loca‐
tion as GPS. But where there’s only a single tower, the signal strength can be used to
determine a rough radius around the tower, and the circle it creates represents the
area in which you are likely to be located. This could place you anywhere within a
mile or two of your actual location, down to within a few tens of meters.

Failing that, there may be WiFi access points whose positions are known within range
of your device, and since all access points have a unique identifying address called a
Media Access Control (MAC) address, a reasonably good approximation of your
location can be obtained, perhaps to within a street or two. This is the type of infor‐
mation that Google Street View vehicles have been collecting (some of which it has
since been made to discard due to potential breaches of data privacy rights).

And if that fails, the Internet Protocol (IP) address used by your device can be quer‐
ied and used as a rough indicator of your location. Often, though, this provides only
the location of a major switch belonging to your internet provider, which could be
dozens or even hundreds of miles away. But at the very least, your IP address can
(usually) narrow down the country and sometimes the region you are in.

656 | Chapter 26: Other HTML5 Features

IP addresses are commonly used by media companies for restrict‐
ing playback of their content by territory. However, it’s a simple
matter to set up proxy servers that use a forwarding IP address (in
the territory that is blocking outside access) to fetch and pass con‐
tent through the blockade directly to a “foreign” browser. Proxy
servers are also often employed to disguise a user’s real IP address
or bypass censorship restrictions, and can be shared across many
users on a WiFi hotspot (for example). Therefore, if you locate
someone by IP address, you can’t be completely sure that you have
identified the right location, or even country, and should treat this
information as only a best guess.

Geolocation and HTML5
In Chapter 23, I briefly introduced HTML5 geolocation. Now it’s time to look at it in
depth, starting with the example I gave you before, shown again in Example 26-1.

Example 26-1. Displaying a map of your current location

<!DOCTYPE html>
<html>
 <head>
 <title>Geolocation Example</title>
 </head>
 <body>
 <script>
 if (typeof navigator.geolocation == 'undefined')
 alert("Geolocation not supported.")
 else
 navigator.geolocation.getCurrentPosition(granted, denied)

 function granted(position)
 {
 var lat = position.coords.latitude
 var lon = position.coords.longitude

 alert("Permission Granted. You are at location:\n\n"
 + lat + ", " + lon +
 "\n\nClick 'OK' to load Google Maps with your location")

 window.location.replace("https://www.google.com/maps/@"
 + lat + "," + lon + ",8z")
 }

 function denied(error)
 {
 var message

 switch(error.code)

Geolocation and HTML5 | 657

 {
 case 1: message = 'Permission Denied'; break;
 case 2: message = 'Position Unavailable'; break;
 case 3: message = 'Operation Timed Out'; break;
 case 4: message = 'Unknown Error'; break;
 }

 alert("Geolocation Error: " + message)
 }
 </script>
 </body>
</html>

Let’s walk through this code and see how it works, starting with the <head> section,
which displays a title. The <body> of the document is made up entirely of JavaScript,
which immediately starts by interrogating the navigator.geolocation property. If
the value returned is undefined, then geolocation is not supported by the browser
and an error alert window is popped up.

Otherwise, we call the getCurrentPosition method of the property, passing it the
names of two functions: granted and denied (remember that by passing only the
function names, we pass the actual function code, not the result of calling the func‐
tion, which would be the case if the function names had parentheses attached):

navigator.geolocation.getCurrentPosition(granted, denied)

These functions appear later in the script and are for handling the two possibilities of
permission to provide the user’s location data: granted or denied.

The granted function comes first and is entered only if the data can be accessed. If so,
the variables lat and long are given the values returned by the geolocation routines
in the browser.

An alert window is then popped up containing details about the user’s current loca‐
tion. When they click OK, the alert is closed and the current web page is replaced by
one at Google Maps. It’s passed the latitude and longitude returned from the geoloca‐
tion call, using a zoom setting of 8. You can set a different zoom level by changing the
value 8z to another numeric value followed by a z, at the end of the
window.location.replace call.

Displaying the map is achieved with a call to window.location.replace. The result
looks like Figure 26-1.

658 | Chapter 26: Other HTML5 Features

Figure 26-1. An interactive map of the user’s location is displayed

If permission is denied (or there is another issue), an error message is displayed by
the denied function, which pops up its own alert window to inform the user of the
error:

switch(error.code)
{
 case 1: message = 'Permission Denied'; break;
 case 2: message = 'Position Unavailable'; break;
 case 3: message = 'Operation Timed Out'; break;
 case 4: message = 'Unknown Error'; break;
}

alert("Geolocation Error: " + message)

Geolocation and HTML5 | 659

When a browser requests geolocation data from the host, it will
prompt the user for permission. The user can grant or deny per‐
mission. Denial results in the Permission Denied state, Position
Unavailable results when the user grants permission but the host
system cannot determine their location, and Timeout happens
when the user grants permission and the host attempts to get their
location, but the request times out.
There’s also another error condition in which some platform and
browser combinations allow the user to dismiss the permission
request dialog without either granting or denying permission. This
results in the application “hanging” while waiting for a callback to
occur.

In previous editions of this book I used to call the Google Maps API to embed a map
directly within the web page, but the service now requires a unique API key which
you must apply for yourself, and usage over a certain amount can incur a fee. This is
why the example now simply generates a Google Maps link. If you’d like to embed
Google Maps in your web pages and web apps, everything you need to know is on the
website. Of course, there are also many other mapping options, such as Bing Maps
and OpenStreetMap, that have APIs you can access.

Local Storage
Cookies are an essential part of the modern internet, because they enable websites to
save on each user’s machine small snippets of information that can be used for track‐
ing purposes. This isn’t as ominous as it sounds, because most of the tracking going
on helps web surfers by saving usernames and passwords, keeping them logged into
websites and social networks such as Twitter, Facebook, and more.

Cookies can also locally save your preferences for the way you access a website (rather
than having those settings stored on the website’s server), or can be used to keep track
of a shopping cart as you build up an order on an ecommerce website.

But yes, they can also be used more aggressively to track the websites you frequent
and gain a picture of your interests to try to target advertising more effectively. That’s
why the European Union now “requires prior informed consent for storage or for
access to information stored on a user’s terminal equipment.”

But, as a web developer, think how useful it might be to keep data on users’ devices,
especially if you have a small budget for computer servers and disk space. For exam‐
ple, you could create in-browser web apps and services for editing word processing
documents, spreadsheets, and graphic images, saving all this data offsite on users’
computers and keeping your server purchasing budget as low as possible.

660 | Chapter 26: Other HTML5 Features

https://developers.google.com/maps/
https://www.bing.com/maps
https://www.openstreetmap.org
http://ec.europa.eu/ipg/basics/legal/cookies/index_en.htm

And from the user’s point of view, think about how much faster a document can be
loaded up locally than from across the web, especially on a slow connection. Plus,
there’s more security if you know that a website is not storing copies of your docu‐
ments. Of course, you can never guarantee that a website or web app is totally secure,
and should never work on highly sensitive documents using software (or hardware)
that can go online. But for minimally private documents such as family photographs,
you might feel more comfortable using a web app that saves locally than one that
saves files to an external server.

Using Local Storage
The biggest problem with using cookies for local storage is that each cookie can save
only a maximum of 4 KB of data. Cookies also have to be passed back and forth on
every page reload. And, unless your server uses Transport Layer Security (TLS)
encryption—the more secure successor to the Secure Sockets Layer (SSL)—each time
a cookie is transmitted, it travels in the clear.

But with HTML5, you have access to a much larger local storage space (typically
between 5 MB and 10 MB per domain, depending on the browser) that persists over
page loads and between website visits (and even after powering a computer down and
back up again). Also, the local storage data is not sent to the server on each page load.

Local storage data is handled through key/value pairs. The key is the name assigned
for referencing the data, and the value can hold any type of data, but it is saved as a
string. All data is unique to the current domain, and for security reasons any local
storage created by websites with different domains is separate from the current local
storage, and is not accessible by any domain other than the one that stored the data.

The localStorage Object
You gain access to local storage by means of the localStorage object. To test whether
this object is available, query its type to check whether or not it has been defined, like
this:

if (typeof localStorage == 'undefined')
{
 // Local storage is not available—tell the user and quit.
 // Or maybe offer to save data on the web server instead?
}

How you handle the lack of local storage being available will depend on what you
intend to use it for, so the code you place inside the if statement will be up to you.

Once you’ve ascertained that local storage is available, you can start making use of it
with the setItem and getItem methods of the localStorage object, like this:

Local Storage | 661

localStorage.setItem('loc', 'USA')
localStorage.setItem('lan', 'English')

To later retrieve this data, pass the keys to the getItem method, like this:

loc = localStorage.getItem('loc')
lan = localStorage.getItem('lan')

Unlike saving and reading cookies, you can call these methods at any time you like,
not simply before any headers have been sent by the web server. The saved values will
remain in local storage until erased in the following manner:

localStorage.removeItem('loc')
localStorage.removeItem('lan')

Or, you can totally wipe the local storage for the current domain by calling the clear
method, like this:

localStorage.clear()

Example 26-2 combines the preceding examples into a single document that displays
the current values of the two keys in a pop-up alert message, which initially will be
null. Then the keys and values are saved to local storage, retrieved, and redisplayed,
this time having assigned values. Finally, the keys are removed and then an attempt at
retrieving these values is again made, but the returned values are once again null.
Figure 26-2 shows the second of these three alert messages.

Example 26-2. Getting, setting, and removing local storage data

<!DOCTYPE html>
<html>
 <head>
 <title>Local Storage</title>
 </head>
 <body>
 <script>
 if (typeof localStorage == 'undefined')
 {
 alert("Local storage is not available")
 }
 else
 {
 loc = localStorage.getItem('loc')
 lan = localStorage.getItem('lan')
 alert("The current values of 'loc' and 'lan' are\n\n" +
 loc + " / " + lan + "\n\nClick OK to assign values")

 localStorage.setItem('loc', 'USA')
 localStorage.setItem('lan', 'English')
 loc = localStorage.getItem('loc')
 lan = localStorage.getItem('lan')

662 | Chapter 26: Other HTML5 Features

 alert("The current values of 'loc' and 'lan' are\n\n" +
 loc + " / " + lan + "\n\nClick OK to clear values")

 localStorage.removeItem('loc')
 localStorage.removeItem('lan')
 loc = localStorage.getItem('loc')
 lan = localStorage.getItem('lan')
 alert("The current values of 'loc' and 'lan' are\n\n" +
 loc + " / " + lan)
 }
 </script>
 </body>
</html>

Figure 26-2. Two keys and their values are read from local storage

In local storage you can include virtually any and all data, and as
many key/value pairs as you like, up to the available storage limit
for your domain.

Web Workers
Web workers run background jobs and are useful for calculations that take a long time
and should not be allowed to hold the user back from doing other things. To use a
web worker, you can create sections of JavaScript code that will run in the back‐
ground. This code doesn’t have to set up and monitor interrupts, as jobs have to do in
some asynchronous systems. Instead, whenever it has something to report, your
background process communicates with the main JavaScript through the use of an
event.

Web Workers | 663

This means the JavaScript interpreter gets to decide how to allocate time slices most
efficiently, and your code only needs to worry about communicating with the back‐
ground task whenever there’s information to convey.

Example 26-3 shows how you can set up web workers to perform a repetitive task in
the background—in this instance, calculating prime numbers.

Example 26-3. Setting up and communicating with a web worker

<!DOCTYPE html>
<html>
 <head>
 <title>Web Workers</title>
 <script src='OSC.js'></script>
 </head>
 <body>
 Current highest prime number:
 0

 <script>
 if (!!window.Worker)
 {
 var worker = new Worker('worker.js')

 worker.onmessage = function (event)
 {
 O('result').innerText = event.data;
 }
 }
 else
 {
 alert("Web workers not supported")
 }
 </script>
 </body>
</html>

This example first creates a element with the ID of result in which output
from the web worker will be placed. Then, in the <script> section, window.Worker is
tested via a !! pair of not operators. This has the effect of returning a Boolean value
of true if the Worker method exists, and false otherwise. If it is not true, a message
is displayed in the else section, alerting us that web workers are not available.

Otherwise, the program creates a new worker object by calling Worker, passing it the
filename worker.js. Then the onmessage event of the new worker object is attached to
an anonymous function that places any message passed to it by worker.js into the
innerText property of the previously created element.

664 | Chapter 26: Other HTML5 Features

The web worker itself is saved in the file worker.js, whose contents are shown in
Example 26-4.

Example 26-4. The worker.js web worker

var n = 1

search: while (true)
{
 n += 1

 for (var i = 2; i <= Math.sqrt(n); i += 1)
 {
 if (n % i == 0) continue search
 }

 postMessage(n)
}

This file assigns the value 1 to the variable n. It then loops continuously, incrementing
n and checking it for primality by a brute-force method of testing all values from 1 to
the square root of n to see whether they divide exactly into n, with no remainder.
Should a factor be found, the continue command stops the brute-force attack imme‐
diately because the number is not prime, and starts processing at the next higher
value of n.

But if all possible factors are tested and none result in a zero remainder, n must be
prime, so its value is passed to postMessage, which sends a message back to the
onmessage event of the object that set up this web worker.

The result looks like the following:

Current highest prime number: 30477191

To stop a web worker from running, issue a call to the terminate method of the
worker object, like this:

worker.terminate()

If you wish to stop this particular example from running, you can
enter the following into your browser’s address bar:

javascript:worker.terminate()

Also note that due to the way Chrome handles security, you cannot
use web workers on a filesystem, only from a web server (or run‐
ning the files from localhost on a development server such as
AMPPS, detailed in Chapter 2).

Web Workers | 665

Web workers do have some security limitations that you should be aware of:

• Web workers run in their own independent JavaScript context, and have no
direct access to anything in any other execution context, including the main Java‐
Script thread or other web workers.

• Communication between web worker contexts is done via web messaging (post
Message).

• Because web workers have no access to the main JavaScript context, they cannot
modify the DOM. The only DOM methods available to web workers are atob,
btoa, clearInterval, clearTimeout, dump, setInterval, and setTimeout.

• Web workers are bound by the same-origin policy, so you can’t load a web
worker from a different origin than the original script without going through a
cross-site methodology.

Drag and Drop
You can easily support dragging and dropping of objects on a web page by setting up
event handlers for the ondragstart, ondragover, and ondrop events, as in
Example 26-5.

Example 26-5. Dragging and dropping objects

<!DOCTYPE HTML>
<html>
 <head>
 <title>Drag and Drop</title>
 <script src='OSC.js'></script>
 <style>
 #dest {
 background:lightblue;
 border :1px solid #444;
 width :320px;
 height :100px;
 padding :10px;
 }
 </style>
 </head>
 <body>
 <div id='dest' ondrop='drop(event)' ondragover='allow(event)'></div>

 Drag the image below into the above element

666 | Chapter 26: Other HTML5 Features

 <script>
 function allow(event)
 {
 event.preventDefault()
 }

 function drag(event)
 {
 event.dataTransfer.setData('image/png', event.target.id)
 }

 function drop(event)
 {
 event.preventDefault()
 var data=event.dataTransfer.getData('image/png')
 event.target.appendChild(O(data))
 }
 </script>
 </body>
</html>

After setting up the HTML, providing a title, and loading in the OSC.js file, this docu‐
ment styles the <div> element with the ID of dest, giving it a background color, bor‐
der, set dimensions, and padding.

Then, the <body> section creates the <div> element and attaches the event handler
functions drop and allow to the ondrop and ondragover events of the <div>. After
this there’s some text, and then three images with their draggable properties set to
true. The drag function is attached to the ondragstart event of each.

In the <script> section, the allow event handler function simply prevents the default
action for dragging (which is to disallow it), while the drag event handler function
calls the setData method of the dataTransfer object of the event, passing it the
MIME type image/png and the target.id of the event (which is the object being
dragged). The dataTransfer object holds the data that is being dragged during a
drag-and-drop operation.

Finally, the drop event handler function also intercepts its default action so that drop‐
ping is allowed, and then it fetches the contents of the object being dragged from the
dataTransfer object, passing it the MIME type of the object. Then the dropped data
is appended to the target (which is the dest <div>) via its appendChild method.

If you try this example for yourself, you’ll be able to drag and drop the images into
the <div> element, where they will stay, as shown in Figure 26-3. The images cannot
be dropped elsewhere, only into elements with drop and allow event handlers
attached.

Drag and Drop | 667

Figure 26-3. Two images have been dragged and dropped

Other events you can attach to include ondragenter (to run when a drag operation
enters an element), ondragleave (to run when one leaves an element), and ondragend
(to run when a dragging operation ends), which you can use, for example, to modify
the cursor during these operations.

Cross-Document Messaging
You’ve already seen messaging in use a little earlier, in the web worker section. I didn’t
go into any details, however, as it wasn’t the core topic being discussed, and the mes‐
sage was being posted only to the same document anyway. But for obvious security
reasons, cross-document messaging does need to be applied with caution, so you
need to fully understand its workings if you plan to use it.

Before HTML5, browser developers disallowed cross-document scripting, but in
addition to blocking potential attack sites, this prevented communication between
legitimate pages. Document interaction of any kind generally had to occur through
Ajax and a third-party web server, which was cumbersome and fiddly to build and
maintain.

But web messaging now allows scripts to interact across these boundaries by using
some sensible security restraints to prevent malicious hacking attempts. It is achieved
through use of the postMessage method, allowing plain-text messages to be sent
from one domain to another, always within a single browser.

668 | Chapter 26: Other HTML5 Features

This requires that JavaScript first obtain the window object of the receiving document,
letting messages post to a variety of other windows, frames, or iframes directly related
to the sender’s document. The received message event has the following attributes:

data

The incoming message

origin

The origin of the sender document, including the scheme, hostname, and port

source

The source window of the sender document

The code to send messages is just a single instruction, in which you pass the message
to be sent and the domain to which it applies, as in Example 26-6.

Example 26-6. Sending web messages to an iframe

<!DOCTYPE HTML>
<html>
 <head>
 <title>Web Messaging (a)</title>
 <script src='OSC.js'></script>
 </head>
 <body>
 <iframe id='frame' src='example26-11.html' width='360' height='75'></iframe>

 <script>
 count = 1

 setInterval(function()
 {
 O('frame').contentWindow.postMessage('Message ' + count++, '*')
 }, 1000)
 </script>
 </body>
</html>

Here the usual use is made of the OSC.js file to pull in the O function, and then an
<iframe> element with the ID of frame is created, which loads in Example 26-7.
Then, within the <script> section, the variable count is initialized to 1 and a repeat‐
ing interval is set up to occur every second to post the string 'Message ' (using the
postMessage method) along with the current value of count, which is then incremen‐
ted. The postMessage call is attached to the contentWindow property of the iframe
object, not the iframe object itself. This is important because web messaging requires
posts to be made to a window, not to an object within a window.

Cross-Document Messaging | 669

Example 26-7. Receiving messages from another document

<!DOCTYPE HTML>
<html>
 <head>
 <title>Web Messaging (b)</title>
 <style>
 #output {
 font-family:"Courier New";
 white-space:pre;
 }
 </style>
 <script src='OSC.js'></script>
 </head>
 <body>
 <div id='output'>Received messages will display here</div>

 <script>
 window.onmessage = function(event)
 {
 O('output').innerHTML =
 'Origin: ' + event.origin + '
' +
 'Source: ' + event.source + '
' +
 'Data: ' + event.data
 }
 </script>
 </body>
</html>

This example sets up a little styling to make the output clearer, and then creates a
<div> element with the ID output, in which the contents of received messages will be
placed. The <script> section contains a single anonymous function attached to the
onmessage event of the window. In this function, the event.origin, event.source,
and event.data property values are then displayed, as shown in Figure 26-4.

Figure 26-4. The iframe has so far received 29 messages

Web messaging works only across domains, so you cannot test it by loading files in
from a filesystem; you must use a web server. As you can see from Figure 26-4, the

670 | Chapter 26: Other HTML5 Features

origin is http://localhost because these examples are running on a local development
server. The source is the window object, and the current message value is Message 29.

At the moment, Example 26-6 is not at all secure because the domain value passed to
postMessage is the wildcard *:

O('frame').contentWindow.postMessage('Message ' + count++, '*')

To direct messages only to documents originating from a particular domain, you can
change this parameter. In the current case, a value of http://localhost would
ensure that only documents loaded from the local server will be sent any messages:

O('frame').contentWindow.postMessage('Message ' + count++, 'http://localhost')

Likewise, as it stands, the listener program displays any and all messages it receives.
This is also not a very secure state of affairs, because malicious documents also
present in the browser can attempt to send messages that unwary listener code in
other documents might otherwise access. Therefore, you can restrict the messages
your listeners react to by using an if statement, like this:

window.onmessage = function(event)
{
 if (event.origin) == 'http://localhost')
 {
 O('output').innerHTML =
 'Origin: ' + event.origin + '
' +
 'Source: ' + event.source + '
' +
 'Data: ' + event.data
 }
}

If you always use the proper domain for the site you are working
with, your web messaging communications will be more secure.
However, be aware that since messages are sent in the clear, there
may be insecurities in some browsers or browser plug-ins that
might make this kind of communication insecure. One way to
boost your security, then, is to use an obfuscation or encryption
scheme for all your web messages, and also consider introducing
two-way communication protocols to verify each message as being
authentic.

Normally, you won’t alert the user to the origin or source values, and will simply
make use of them for security checking. These examples, however, display those val‐
ues to help you experiment with web messaging and see what is going on. Instead of
using iframes, documents in pop-up windows and other tabs may also talk to each
other using this method.

Cross-Document Messaging | 671

Microdata Is No More

In previous editions of this book I showed you how to use an inter‐
esting new HTML5 feature called Microdata, a subset of HTML
designed to provide metadata to a document in order to make the
different data elements within it have extra meaning to software
and search engines such as Google.
However, time passes, and rather than more and more browsers
adopting it, both Google and Apple have withdrawn support for
this functionality and it has since been dropped from the main
HTML5 specification at the W3C.
Therefore, I no longer recommend you mark up any code with
Microdata, as it looks pretty much extinct, or very near to it, and
even if the Google and Bing web spiders still use any of this infor‐
mation, they probably won’t for much longer.

Other HTML5 Tags
A number of other new HTML5 tags are being adopted by the major browsers,
including <article>, <aside>, <details>, <figcaption>, <figure>, <footer>,
<header>, <hgroup>, <mark>, <menuitem>, <meter>, <nav>, <output>, <progress>,
<rp>, <rt>, <ruby>, <section>, <summary>, <time>, and <wbr>. You can get more
information on these and all other HTML5 tags from the W3C’s HTML language ref‐
erence (check out the elements sporting a NEW icon).

This concludes your introduction to HTML5. You now have a number of powerful
new features with which to make even more dynamic and compelling websites. In the
final chapter, I’ll show you how you can bring all the different technologies in this
book together to create a mini–social networking site.

Questions
1. What method do you call to request geolocation data from a web browser?
2. How can you determine whether a browser supports local storage?
3. What method can you call to erase all local storage data for the current domain?
4. What is the best way for web workers to communicate with a main program?
5. How can you stop a web worker from running?
6. To support drag-and-drop operations, how can you prevent the default action of

disallowing dragging and dropping for these events?
7. How can you make cross-document messaging more secure?

672 | Chapter 26: Other HTML5 Features

http://bit.ly/2I6CkrP
http://bit.ly/2I6CkrP

See “Chapter 26 Answers” on page 733 in Appendix A for the answers to these
questions.

Questions | 673

CHAPTER 27

Bringing It All Together

Now that you’ve reached the end of this book, your first milestone along the path of
the hows, whys, and wherefores of dynamic web programming, I want to leave you
with a real example that you can sink your teeth into. In fact, it’s a collection of exam‐
ples, because I’ve put together a simple social networking project comprising all the
main features you’d expect from such a site, or more to the point, such a web app.

Across the various files, there are examples of MySQL table creation and database
access, CSS stylesheets, file inclusion, session control, DOM access, asynchronous
calls, event and error handling, file uploading, image manipulation, the HTML5 can‐
vas, and a whole lot more.

Each example file is complete and self-contained, yet works with all the others to
build a fully working social networking site, even including a stylesheet you can mod‐
ify to completely change the look and feel of the project. Being small and light, the
end product is particularly usable on mobile platforms such as a smartphone or tab‐
let, but will run equally well on a full-size desktop computer.

And you should find that, by utilizing the power of both jQuery and jQuery Mobile,
the code runs fast, is easy to use, adapts itself well to all environments, and looks
good.

That said, I have tried to keep this code as slimmed-down as possible to keep it easy
to follow. Consequently, there’s a great deal of improvement that could be made to it,
such as enhancing security by storing hashes instead of unencrypted passwords, and
smoother handling of some of the transitions between being logged on and off—but
let’s leave those as the proverbial exercises for the reader, particularly since there are
no questions at the end of this chapter!

675

I leave it up to you to take any pieces of this code you think you can use and expand
on them for your own purposes. Perhaps you may even wish to build on these files to
create a social networking site of your own.

Designing a Social Networking App
Before writing any code, I sat down and came up with several things that I decided
were essential to such an app. These included the following:

• A signup process
• A login form
• A logout facility
• Session control
• User profiles with uploaded thumbnails
• A member directory
• Adding members as friends
• Public and private messaging between members
• Styling the project

I decided to name the project Robin’s Nest; if you use this code, you will need to mod‐
ify the name and logo in the index.php and header.php files.

On the Website
All the examples in this chapter can be found on the book’s companion website.
Clicking the “5th Edition Examples” link at the top of the page will download an
archive file, which you should extract to a suitable location on your computer.

Of particular interest to this chapter, within the ZIP file you’ll find a folder called
robinsnest, in which all the following examples have been saved with the correct file‐
names required by this sample application. This means you can easily copy them all
to your web development folder to try them out.

functions.php
Let’s jump right into the project, starting with Example 27-1, functions.php, the
include file for the main functions. This file contains a little more than just the func‐
tions, though, because I have added the database login details here instead of using
yet another separate file. The first four lines of code define the host and name of the
database to use, as well as the username and password.

676 | Chapter 27: Bringing It All Together

http://lpmj.net

By default the MySQL username is set to robinsnest, and the database used by the pro‐
gram is also called robinsnest. It doesn’t matter what the MySQL username is, as long
as it already exists, and the same goes for the database name. Chapter 8 provides
detailed instructions on how to create a new user and/or database. Essentially,
though, from a MySQL command prompt you can create a new database called rob‐
insnest (if you have the privileges to do so) like this:

CREATE DATABASE robinsnest;

Then (also assuming you have the privileges to do so) you can create a user called
robinsnest capable of accessing this database like this:

GRANT ALL ON robinsnest.* TO 'robinsnest'@'localhost'
 IDENTIFIED BY 'rnpassword';

Obviously you would use a much more secure password for this user than rnpass‐
word, but for the sake of simplicity, this is the password used in these examples—just
make sure you change it if you use any of this code on a production site (or, as I men‐
tioned, you can use a pre-existing username and database).

Given the correct values, the subsequent two lines in the file will open a connection
to MySQL and select the database.

The Functions
The project uses five main functions:

createTable

Checks whether a table already exists and, if not, creates it

queryMysql

Issues a query to MySQL, outputting an error message if it fails

destroySession

Destroys a PHP session and clears its data to log users out

sanitizeString

Removes potentially malicious code or tags from user input

showProfile

Displays the user’s image and “about me” message if they have one

The behavior of all of these should be obvious to you by now, with the possible excep‐
tion of showProfile, which looks for an image of the name <user.jpg> (where <user>
is the username of the current user) and, if it finds it, displays it. It also displays any
“about me” text the user may have saved.

I have ensured that error handling is in place for all the functions that need it, so that
they can catch any typographical or other errors you may introduce and generate

functions.php | 677

error messages. However, if you use any of this code on a production server, you will
probably want to provide your own error-handling routines to make the code more
user-friendly.

So, type in Example 27-1 and save it as functions.php (or download it from the com‐
panion website), and you’ll be ready to move on to the next section.

Example 27-1. functions.php

<?php
 $dbhost = 'localhost'; // Unlikely to require changing
 $dbname = 'robinsnest'; // Modify these...
 $dbuser = 'robinsnest'; // ...variables according
 $dbpass = 'rnpassword'; // ...to your installation

 $connection = new mysqli($dbhost, $dbuser, $dbpass, $dbname);
 if ($connection->connect_error) die("Fatal Error");

 function createTable($name, $query)
 {
 queryMysql("CREATE TABLE IF NOT EXISTS $name($query)");
 echo "Table '$name' created or already exists.
";
 }

 function queryMysql($query)
 {
 global $connection;
 $result = $connection->query($query);
 if (!$result) die("Fatal Error");
 return $result;
 }

 function destroySession()
 {
 $_SESSION=array();

 if (session_id() != "" || isset($_COOKIE[session_name()]))
 setcookie(session_name(), '', time()-2592000, '/');

 session_destroy();
 }

 function sanitizeString($var)
 {
 global $connection;
 $var = strip_tags($var);
 $var = htmlentities($var);
 if (get_magic_quotes_gpc())
 $var = stripslashes($var);
 return $connection->real_escape_string($var);
 }

678 | Chapter 27: Bringing It All Together

 function showProfile($user)
 {
 if (file_exists("$user.jpg"))
 echo "";

 $result = queryMysql("SELECT * FROM profiles WHERE user='$user'");

 if ($result->num_rows)
 {
 $row = $result->fetch_array(MYSQLI_ASSOC);
 echo stripslashes($row['text']) . "<br style='clear:left;'>
";
 }
 else echo "<p>Nothing to see here, yet</p>
";
 }
?>

If you’ve read a previous edition of this book, in which these exam‐
ples used the old mysql extension, you should note that in order to
reference the MySQL database using mysqli, you must apply the
global keyword in the queryMysql and sanitizeString functions,
to allow them to use the value in $connection.

header.php
For uniformity, each page of the project needs to have access to the same set of fea‐
tures. Therefore, I placed these things in Example 27-2, header.php. This is the file
that is actually included by the other files. It includes functions.php. This means that
only a single require_once is needed in each file.

header.php starts by calling the function session_start. As you’ll recall from Chap‐
ter 12, this sets up a session that will remember certain values we want stored across
different PHP files. In other words, it represents a visit by a user to the site, and it can
time out if the user ignores the site for a period of time.

With the session started, the program then outputs the HTML needed to set up each
web page, including loading stylesheets and the various JavaScript libraries required.
After this the file of functions (functions.php) is included, and the default string of
“Welcome Guest” is assigned to $userstr.

Next the code checks whether the session variable user is currently assigned a value.
If so, a user has already logged in, so the variable $loggedin is set to TRUE and the
username is retrieved from the session variable user into the PHP variable $user,
with $userstr updated appropriately. If the user has not yet logged in, then
$loggedin is set to FALSE.

header.php | 679

Next, some HTML is output welcoming the user (or guest if not yet logged in), and
the <div> elements required by jQuery Mobile for the page’s header and content sec‐
tions are output.

After this, using the value of $loggedin, an if block displays one of two sets of
menus. The non-logged-in set simply offers options of Home, Sign Up, and Log In,
whereas the logged-in version offers full access to the app’s features. The buttons are
styled using jQuery Mobile notation, such as data-role='button' to display an ele‐
ment as a button, data-inline='true' to display elements inline (like a ele‐
ment), and data-transition="slide" to make new pages slide into view when
clicked, as described in Chapter 22.

The additional styling applied to this file is in the file styles.css (Example 27-13,
detailed at the end of this chapter).

Example 27-2. header.php

<?php //
 session_start();

echo <<<_INIT
<!DOCTYPE html>
<html>
 <head>
 <meta charset='utf-8'>
 <meta name='viewport' content='width=device-width, initial-scale=1'>
 <link rel='stylesheet' href='jquery.mobile-1.4.5.min.css'>
 <link rel='stylesheet' href='styles.css'>
 <script src='javascript.js'></script>
 <script src='jquery-2.2.4.min.js'></script>
 <script src='jquery.mobile-1.4.5.min.js'></script>

_INIT;

 require_once 'functions.php';

 $userstr = 'Welcome Guest';

 if (isset($_SESSION['user']))
 {
 $user = $_SESSION['user'];
 $loggedin = TRUE;
 $userstr = "Logged in as: $user";
 }
 else $loggedin = FALSE;

echo <<<_MAIN
 <title>Robin's Nest: $userstr</title>
 </head>

680 | Chapter 27: Bringing It All Together

 <body>
 <div data-role='page'>
 <div data-role='header'>
 <div id='logo'
 class='center'>Rbin's Nest</div>
 <div class='username'>$userstr</div>
 </div>
 <div data-role='content'>

_MAIN;

 if ($loggedin)
 {
echo <<<_LOGGEDIN
 <div class='center'>
 <a data-role='button' data-inline='true' data-icon='home'
 data-transition="slide" href='members.php?view=$user'>Home
 <a data-role='button' data-inline='true'
 data-transition="slide" href='members.php'>Members
 <a data-role='button' data-inline='true'
 data-transition="slide" href='friends.php'>Friends
 <a data-role='button' data-inline='true'
 data-transition="slide" href='messages.php'>Messages
 <a data-role='button' data-inline='true'
 data-transition="slide" href='profile.php'>Edit Profile
 <a data-role='button' data-inline='true'
 data-transition="slide" href='logout.php'>Log out
 </div>

_LOGGEDIN;
 }
 else
 {
echo <<<_GUEST
 <div class='center'>
 <a data-role='button' data-inline='true' data-icon='home'
 data-transition='slide' href='index.php'>Home
 <a data-role='button' data-inline='true' data-icon='plus'
 data-transition="slide" href='signup.php'>Sign Up
 <a data-role='button' data-inline='true' data-icon='check'
 data-transition="slide" href='login.php'>Log In
 </div>
 <p class='info'>(You must be logged in to use this app)</p>

_GUEST;
 }
?>

header.php | 681

setup.php
With the pair of included files written, it’s now time to set up the MySQL tables they
will use. We do this with Example 27-3, setup.php, which you should type and load
into your browser before calling up any other files; otherwise, you’ll get numerous
MySQL errors.

The tables created are short and sweet, and have the following names and columns:

• members: username user (indexed), password pass
• messages: ID id (indexed), author auth (indexed), recipient recip, message type

pm, message message
• friends: username user (indexed), friend’s username friend
• profiles: username user (indexed), “about me” text

Because the createTable function first checks whether a table already exists, this
program can be safely called multiple times without generating any errors.

It is very likely that you will need to add many more columns to these tables if you
choose to expand this project. If so, bear in mind that you may need to issue a
MySQL DROP TABLE command before re-creating a table.

Example 27-3. setup.php

<!DOCTYPE html>
<html>
 <head>
 <title>Setting up database</title>
 </head>
 <body>

 <h3>Setting up...</h3>

<?php
 require_once 'functions.php';

 createTable('members',
 'user VARCHAR(16),
 pass VARCHAR(16),
 INDEX(user(6))');

 createTable('messages',
 'id INT UNSIGNED AUTO_INCREMENT PRIMARY KEY,
 auth VARCHAR(16),
 recip VARCHAR(16),
 pm CHAR(1),
 time INT UNSIGNED,

682 | Chapter 27: Bringing It All Together

 message VARCHAR(4096),
 INDEX(auth(6)),
 INDEX(recip(6))');

 createTable('friends',
 'user VARCHAR(16),
 friend VARCHAR(16),
 INDEX(user(6)),
 INDEX(friend(6))');

 createTable('profiles',
 'user VARCHAR(16),
 text VARCHAR(4096),
 INDEX(user(6))');
?>

...done.
 </body>
</html>

For this example to work, you must first ensure that you have
already created the database specified in the variable $dbname in
Example 27-1, and also have granted access to it by the user given
the name in $dbuser, with the password in $dbpass.

index.php
This file is trivial, but necessary nonetheless to give the project a home page. All it
does is display a simple welcome message. In a finished application, this would be
where you sell the virtues of your site to encourage signups.

Incidentally, seeing as we have already set up all the MySQL tables and created the
included files, you can now load Example 27-4, index.php, into your browser to get
your first peek at the new application. It should look like Figure 27-1.

Example 27-4. index.php

<?php
 session_start();
 require_once 'header.php';

 echo "<div class='center'>Welcome to Robin's Nest,";

 if ($loggedin) echo " $user, you are logged in";
 else echo ' please sign up or log in';

 echo <<<_END
 </div>

index.php | 683

 </div>
 <div data-role="footer">
 <h4>Web App from <i><a href='http://lpmj.net/5thedition'
 target='_blank'>Learning PHP MySQL & JavaScript Ed. 5</i></h4>
 </div>
 </body>
</html>
_END;
?>

Figure 27-1. The main page of the app

signup.php
Now we need a module to enable users to join our new social network, and that’s
Example 27-5, signup.php. This is a slightly longer program, but you’ve seen all its
parts before.

684 | Chapter 27: Bringing It All Together

Let’s start by looking at the end block of HTML. This is a simple form that allows a
username and password to be entered. But note the use of the empty given the
id of info. This will be the destination of the asynchronous call in this program that
checks whether a desired username is available. See Chapter 17 for a complete
description of how this works.

Checking for Username Availability
Now go back to the program start and you’ll see a block of JavaScript that starts with
the function checkUser. This is called by the JavaScript onBlur event when focus is
removed from the username field of the form. First it sets the contents of the I
mentioned (with the id of info) to an empty string, which clears it in case it previ‐
ously had a value.

Next a request is made to the program checkuser.php, which reports whether the user‐
name user is available. The returned result of the asynchronous call (performed
using jQuery), a friendly message, is then placed in the info .

After the JavaScript section comes some PHP code that you should recognize from
the discussion of form validation in Chapter 16. This section also uses the
sanitizeString function to remove potentially malicious characters before looking
up the username in the database and, if it’s not already taken, inserting the new user‐
name $user and password $pass.

Logging In
Upon successfully signing up, the user is then prompted to log in. A more fluid
response at this point might be to automatically log in a newly created user, but
because I don’t want to overly complicate the code, I have kept the signup and login
modules separate. You can easily implement this if you want to, however.

This file uses the CSS class fieldname to arrange the form fields, aligning them neatly
under each other in columns. When loaded into a browser (and in conjunction with
checkuser.php, shown later), this program will look like Figure 27-2, where you can
see that the asynchronous call has identified that the username Robin is available. If
you would like the password field to show only asterisks, change its type from text to
password.

signup.php | 685

Figure 27-2. The signup page

Example 27-5. signup.php

<?php
 require_once 'header.php';

echo <<<_END
 <script>
 function checkUser(user)
 {
 if (user.value == '')
 {
 $('#used').html(' ')
 return
 }

 $.post
 (

686 | Chapter 27: Bringing It All Together

 'checkuser.php',
 { user : user.value },
 function(data)
 {
 $('#used').html(data)
 }
)
 }
 </script>
_END;

 $error = $user = $pass = "";
 if (isset($_SESSION['user'])) destroySession();

 if (isset($_POST['user']))
 {
 $user = sanitizeString($_POST['user']);
 $pass = sanitizeString($_POST['pass']);

 if ($user == "" || $pass == "")
 $error = 'Not all fields were entered

';
 else
 {
 $result = queryMysql("SELECT * FROM members WHERE user='$user'");

 if ($result->num_rows)
 $error = 'That username already exists

';
 else
 {
 queryMysql("INSERT INTO members VALUES('$user', '$pass')");
 die('<h4>Account created</h4>Please log in.</div></body></html>');
 }
 }
 }

echo <<<_END
 <form method='post' action='signup.php'>$error
 <div data-role='fieldcontain'>
 <label></label>
 Please enter your details to sign up
 </div>
 <div data-role='fieldcontain'>
 <label>Username</label>
 <input type='text' maxlength='16' name='user' value='$user'
 onBlur='checkUser(this)'>
 <label></label><div id='used'> </div>
 </div>
 <div data-role='fieldcontain'>
 <label>Password</label>
 <input type='text' maxlength='16' name='pass' value='$pass'>
 </div>
 <div data-role='fieldcontain'>

signup.php | 687

 <label></label>
 <input data-transition='slide' type='submit' value='Sign Up'>
 </div>
 </div>
 </body>
</html>
_END;
?>

On a production server. I wouldn’t recommend storing user pass‐
words in the clear, as I’ve done here for reasons of space and sim‐
plicity. Instead, you should salt them and store them as one-way
hash strings. See Chapter 12 for more details on how to do this.

checkuser.php
To go with signup.php, here’s Example 27-6, checkuser.php, which looks up a username
in the database and returns a string indicating whether it has already been taken.
Because it relies on the functions sanitizeString and queryMysql, the program first
includes the file functions.php.

Then, if the $_POST variable user has a value, the function looks it up in the database
and, depending on whether it exists as a username, outputs either “Sorry, the user‐
name ‘user’ is taken” or “The username ‘user’ is available.” Just checking the function
mysql_num_rows against the result is sufficient for this, as it will return 0 if the name
is not found, or 1 if it is found.

The HTML entities ✘ and ✔ are also used to preface the string with
either a cross or a checkmark, and the string will be displayed in either red for the
class taken or green for the class available, as defined in styles.css, shown later in
this chapter.

Example 27-6. checkuser.php

<?php
 require_once 'functions.php';

 if (isset($_POST['user']))
 {
 $user = sanitizeString($_POST['user']);
 $result = queryMysql("SELECT * FROM members WHERE user='$user'");

 if ($result->num_rows)
 echo " ✘ " .
 "The username '$user' is taken";
 else
 echo " ✔ " .

688 | Chapter 27: Bringing It All Together

 "The username '$user' is available";
 }
?>

login.php
With users now able to sign up on the site, Example 27-7, login.php, provides the code
needed to let them log in. Like the signup page, it features a simple HTML form and
some basic error checking, as well as using sanitizeString before querying the
MySQL database.

The main thing to note here is that, upon successful verification of the username and
password, the session variables user and pass are given the username and password
values. As long as the current session remains active, these variables will be accessible
by all the programs in the project, allowing them to automatically provide access to
logged-in users.

You may be interested in the use of the die function upon successfully logging in.
This is there because it combines an echo and an exit command in one, thus saving a
line of code. For styling, this (like most of the files) applies the class main to indent
the content from the lefthand edge.

When you call this program up in your browser, it should look like Figure 27-3. Note
how the input type of password has been used here to mask the password with aster‐
isks to prevent it from being viewed by anyone looking over the user’s shoulder.

Example 27-7. login.php

 <?php
 require_once 'header.php';
 $error = $user = $pass = "";

 if (isset($_POST['user']))
 {
 $user = sanitizeString($_POST['user']);
 $pass = sanitizeString($_POST['pass']);

 if ($user == "" || $pass == "")
 $error = 'Not all fields were entered';
 else
 {
 $result = queryMySQL("SELECT user,pass FROM members
 WHERE user='$user' AND pass='$pass'");

 if ($result->num_rows == 0)
 {
 $error = "Invalid login attempt";
 }

login.php | 689

 else
 {
 $_SESSION['user'] = $user;
 $_SESSION['pass'] = $pass;
 die("You are now logged in. Please <a data-transition='slide'
 href='members.php?view=$user'>click here to continue.</div>
 </body></html>");
 }
 }
 }

echo <<<_END
 <form method='post' action='login.php'>
 <div data-role='fieldcontain'>
 <label></label>
 $error
 </div>
 <div data-role='fieldcontain'>
 <label></label>
 Please enter your details to log in
 </div>
 <div data-role='fieldcontain'>
 <label>Username</label>
 <input type='text' maxlength='16' name='user' value='$user'>
 </div>
 <div data-role='fieldcontain'>
 <label>Password</label>
 <input type='password' maxlength='16' name='pass' value='$pass'>
 </div>
 <div data-role='fieldcontain'>
 <label></label>
 <input data-transition='slide' type='submit' value='Login'>
 </div>
 </form>
 </div>
 </body>
</html>
_END;
?>

690 | Chapter 27: Bringing It All Together

Figure 27-3. The login page

profile.php
One of the first things that new users may want to do after signing up and logging in
is to create a profile, which can be done via Example 27-8, profile.php. I think you’ll
find some interesting code here, such as routines to upload, resize, and sharpen
images.

Let’s start by looking at the main HTML at the end of the code. This is like the forms
you’ve just seen, but this time it has the parameter enctype='multipart/form-data'.
This allows us to send more than one type of data at a time, enabling the posting of
an image as well as some text. There’s also an input type of file, which creates a
Browse button that a user can press to select a file to be uploaded.

profile.php | 691

When the form is submitted, the code at the start of the program is executed. The
first thing it does is ensure that a user is logged in before allowing program execution
to proceed. Only then is the page heading displayed.

As described in Chapter 22, due to the way that jQuery Mobile uses
asynchronous communication, it is not possible to upload files
from HTML using it, unless you disable that feature by adding an
attribute to the <form> element of data-ajax='false'. This will
allow HTML file upload to proceed as normal, but you will lose the
ability to perform page change animations.

Adding the “About Me” Text
Next, the $_POST variable text is checked to see whether some text was posted to the
program. If so, it is sanitized and all long whitespace sequences (including carriage
returns and line feeds) are replaced with single spaces. This function incorporates a
double security check, ensuring that the user actually exists in the database and that
no attempt at hacking can succeed before inserting this text into the database, where
it will become the user’s “about me” details.

If no text was posted, the database is queried to see whether any text already exists in
order to prepopulate the <textarea> for the user to edit it.

Adding a Profile Image
Next we move on to the section where the $_FILES system variable is checked to see
whether an image has been uploaded. If so, a string variable called $saveto is created,
based on the user’s username followed by the extension .jpg. For example, a user
called Jill will cause $saveto to have the value Jill.jpg. This is the file where the uploa‐
ded image will be saved for use in the user’s profile.

Following this, the uploaded image type is examined and is accepted only if it is
a .jpeg, .png, or .gif image. Upon success, the variable $src is populated with the
uploaded image using one of the imagecreatefrom functions, according to the image
type uploaded. The image is now in a raw format that PHP can process. If the image
is not of an allowed type, the flag $typeok is set to FALSE, preventing the final section
of image upload code from being processed.

Processing the Image
First, we store the image’s dimensions in $w and $h using the following statement,
which is a quick way of assigning values from an array to separate variables:

list($w, $h) = getimagesize($saveto);

692 | Chapter 27: Bringing It All Together

Then, using the value of $max (which is set to 100), we calculate new dimensions that
will result in a new image of the same ratio, but with no dimension greater than 100
pixels. This results in giving the variables $tw and $th the new values needed. If you
want smaller or larger thumbnails, simply change the value of $max accordingly.

Next, the function imagecreatetruecolor is called to create a new, blank canvas $tw
wide and $th high in $tmp. Then imagecopyresampled is called to resample the image
from $src to the new $tmp. Sometimes resampling images can result in a slightly
blurred copy, so the next piece of code uses the imageconvolution function to
sharpen the image up a bit.

Finally, the image is saved as a .jpeg file in the location defined by the variable
$saveto, after which we remove both the original and the resized image canvases
from memory using the imagedestroy function, returning the memory that was
used.

Displaying the Current Profile
Last but not least, so that the user can see what the current profile looks like before
editing it, the showProfile function from functions.php is called prior to outputting
the form HTML. If no profile exists yet, nothing will be displayed.

When a profile image is displayed, CSS is applied to it to provide a border, a shadow,
and a margin to its right, to separate the profile text from the image. The result of
loading Example 27-8 into a browser is shown in Figure 27-4, where you can see that
the <textarea> has been prepopulated with the “about me” text.

Example 27-8. profile.php

<?php
 require_once 'header.php';

 if (!$loggedin) die("</div></body></html>");

 echo "<h3>Your Profile</h3>";

 $result = queryMysql("SELECT * FROM profiles WHERE user='$user'");

 if (isset($_POST['text']))
 {
 $text = sanitizeString($_POST['text']);
 $text = preg_replace('/\s\s+/', ' ', $text);

 if ($result->num_rows)
 queryMysql("UPDATE profiles SET text='$text' where user='$user'");
 else queryMysql("INSERT INTO profiles VALUES('$user', '$text')");
 }

profile.php | 693

 else
 {
 if ($result->num_rows)
 {
 $row = $result->fetch_array(MYSQLI_ASSOC);
 $text = stripslashes($row['text']);
 }
 else $text = "";
 }

 $text = stripslashes(preg_replace('/\s\s+/', ' ', $text));

 if (isset($_FILES['image']['name']))
 {
 $saveto = "$user.jpg";
 move_uploaded_file($_FILES['image']['tmp_name'], $saveto);
 $typeok = TRUE;

 switch($_FILES['image']['type'])
 {
 case "image/gif": $src = imagecreatefromgif($saveto); break;
 case "image/jpeg": // Both regular and progressive jpegs
 case "image/pjpeg": $src = imagecreatefromjpeg($saveto); break;
 case "image/png": $src = imagecreatefrompng($saveto); break;
 default: $typeok = FALSE; break;
 }

 if ($typeok)
 {
 list($w, $h) = getimagesize($saveto);

 $max = 100;
 $tw = $w;
 $th = $h;

 if ($w > $h && $max < $w)
 {
 $th = $max / $w * $h;
 $tw = $max;
 }
 elseif ($h > $w && $max < $h)
 {
 $tw = $max / $h * $w;
 $th = $max;
 }
 elseif ($max < $w)
 {
 $tw = $th = $max;
 }

 $tmp = imagecreatetruecolor($tw, $th);
 imagecopyresampled($tmp, $src, 0, 0, 0, 0, $tw, $th, $w, $h);

694 | Chapter 27: Bringing It All Together

 imageconvolution($tmp, array(array(-1, -1, -1),
 array(-1, 16, -1), array(-1, -1, -1)), 8, 0);
 imagejpeg($tmp, $saveto);
 imagedestroy($tmp);
 imagedestroy($src);
 }
 }

 showProfile($user);

echo <<<_END
 <form data-ajax='false' method='post'
 action='profile.php' enctype='multipart/form-data'>
 <h3>Enter or edit your details and/or upload an image</h3>
 <textarea name='text'>$text</textarea>

 Image: <input type='file' name='image' size='14'>
 <input type='submit' value='Save Profile'>
 </form>
 </div>

 </body>
</html>
_END;
?>

profile.php | 695

Figure 27-4. Editing a user profile

members.php
Using Example 27-9, members.php, your users will be able to find other members and
choose to add them as friends (or drop them if they are already friends). This pro‐
gram has two modes. The first lists all members and their relationships to you, and
the second shows a user’s profile.

Viewing a User’s Profile
The code for the latter mode comes first, where a test is made for the variable view,
retrieved from the $_GET array. If it exists, a user wants to view someone’s profile, so
the program does that using the showProfile function, along with providing a couple
of links to the user’s friends and messages.

696 | Chapter 27: Bringing It All Together

Adding and Dropping Friends
After that, the two $.GET variables add and remove are tested. If one or the other has a
value, it will be the username of a user to either add or drop as a friend. We achieve
this by looking up the user in the MySQL friends table and either inserting the user‐
name or removing it from the table.

And, of course, every posted variable is first passed through sanitizeString to
ensure that it is safe to use with MySQL.

Listing All Members
The final section of code issues a SQL query to list all usernames. The code places the
number returned in the variable $num before outputting the page heading.

A for loop then iterates through each and every member, fetching their details and
then looking them up in the friends table to see if they are either being followed by or
following the user. If someone is both a follower and a followee, they are classed as a
mutual friend.

The variable $t1 is nonzero when the user is following another member, and $t2 is
nonzero when another member is following the user. Depending on these values, text
is displayed after each username, showing the relationship (if any) to the current user.

Icons are also displayed to show the relationships. A double-pointing arrow means
that the users are mutual friends, a left-pointing arrow indicates the user is following
another member, and a right-pointing arrow indicates that another member is fol‐
lowing the user.

Finally, depending on whether the user is following another member, a link is pro‐
vided to either add or drop that member as a friend.

When you call Example 27-9 up in a browser, it will look like Figure 27-5. Note how
the user is invited to “follow” a nonfollowing member, but if the member is already
following the user, a “recip” link to reciprocate the friendship is offered. In the case of
a user already following another member, the user can select “drop” to end the follow‐
ing.

members.php | 697

Figure 27-5. Using the members module

Example 27-9. members.php

<?php
 require_once 'header.php';

 if (!$loggedin) die("</div></body></html>");

 if (isset($_GET['view']))
 {
 $view = sanitizeString($_GET['view']);

 if ($view == $user) $name = "Your";
 else $name = "$view's";

 echo "<h3>$name Profile</h3>";

698 | Chapter 27: Bringing It All Together

 showProfile($view);
 echo "<a class='button' data-transition='slide'
 href='messages.php?view=$view'>View $name messages";
 die("</div></body></html>");
 }

 if (isset($_GET['add']))
 {
 $add = sanitizeString($_GET['add']);

 $result = queryMysql("SELECT * FROM friends
 WHERE user='$add' AND friend='$user'");
 if (!$result->num_rows)
 queryMysql("INSERT INTO friends VALUES ('$add', '$user')");
 }
 elseif (isset($_GET['remove']))
 {
 $remove = sanitizeString($_GET['remove']);
 queryMysql("DELETE FROM friends WHERE user='$remove' AND friend='$user'");
 }

 $result = queryMysql("SELECT user FROM members ORDER BY user");
 $num = $result->num_rows;

 echo "<h3>Other Members</h3>";

 for ($j = 0 ; $j < $num ; ++$j)
 {
 $row = $result->fetch_array(MYSQLI_ASSOC);
 if ($row['user'] == $user) continue;

 echo "<a data-transition='slide' href='members.php?view=" .
 $row['user'] . "'>" . $row['user'] . "";
 $follow = "follow";

 $result1 = queryMysql("SELECT * FROM friends WHERE
 user='" . $row['user'] . "' AND friend='$user'");
 $t1 = $result1->num_rows;
 $result1 = queryMysql("SELECT * FROM friends WHERE
 user='$user' AND friend='" . $row['user'] . "'");
 $t2 = $result1->num_rows;

 if (($t1 + $t2) > 1) echo " ↔ is a mutual friend";
 elseif ($t1) echo " ← you are following";
 elseif ($t2) { echo " → is following you";
 $follow = "recip"; }

 if (!$t1) echo " [<a data-transition='slide'
 href='members.php?add=" . $row['user'] . "'>$follow]";
 else echo " [<a data-transition='slide'
 href='members.php?remove=" . $row['user'] . "'>drop]";
 }

members.php | 699

?>
 </div>
 </body>
</html>

On a production server, there could be thousands or even hun‐
dreds of thousands of users, so you would probably substantially
modify this program to include support for searching the “about
me” text, paging the output a screen at a time, and so on.

friends.php
The module that shows a user’s friends and followers is Example 27-10, friends.php.
This interrogates the friends table just like the members.php program, but only for a
single user. It then shows all of that user’s mutual friends and followers along with the
people they are following.

All the followers are saved into an array called $followers, and all the people being
followed are placed in an array called $following. Then a neat piece of code is used
to extract all of those who are both following and followed by the user, like this:

$mutual = array_intersect($followers, $following);

The array_intersect function extracts all members common to both arrays and
returns a new array containing only those people. This array is then stored in
$mutual. Now it’s possible to use the array_diff function for each of the $followers
and $following arrays to keep only those people who are not mutual friends, like
this:

$followers = array_diff($followers, $mutual);
$following = array_diff($following, $mutual);

This results in the array $mutual containing only mutual friends, $followers con‐
taining only followers (and no mutual friends), and $following containing only peo‐
ple being followed (and no mutual friends).

Now that we’re armed with these arrays, it’s a simple matter to separately display each
category of members, as can be seen in Figure 27-6. The PHP sizeof function
returns the number of elements in an array; here I use it just to trigger code when the
size is nonzero (that is, when friends of that type exist). Note how, by using the vari‐
ables $name1, $name2, and $name3 in the relevant places, the code can tell when you’re
looking at your own friends list, using the words Your and You are, instead of simply
displaying the username. The commented line can be uncommented if you wish to
display the user’s profile information on this screen.

700 | Chapter 27: Bringing It All Together

Example 27-10. friends.php

<?php
 require_once 'header.php';

 if (!$loggedin) die("</div></body></html>");

 if (isset($_GET['view'])) $view = sanitizeString($_GET['view']);
 else $view = $user;

 if ($view == $user)
 {
 $name1 = $name2 = "Your";
 $name3 = "You are";
 }
 else
 {
 $name1 = "<a data-transition='slide'
 href='members.php?view=$view'>$view's";
 $name2 = "$view's";
 $name3 = "$view is";
 }

 // Uncomment this line if you wish the user’s profile to show here
 // showProfile($view);

 $followers = array();
 $following = array();

 $result = queryMysql("SELECT * FROM friends WHERE user='$view'");
 $num = $result->num_rows;

 for ($j = 0 ; $j < $num ; ++$j)
 {
 $row = $result->fetch_array(MYSQLI_ASSOC);
 $followers[$j] = $row['friend'];
 }

 $result = queryMysql("SELECT * FROM friends WHERE friend='$view'");
 $num = $result->num_rows;

 for ($j = 0 ; $j < $num ; ++$j)
 {
 $row = $result->fetch_array(MYSQLI_ASSOC);
 $following[$j] = $row['user'];
 }

 $mutual = array_intersect($followers, $following);
 $followers = array_diff($followers, $mutual);
 $following = array_diff($following, $mutual);
 $friends = FALSE;

friends.php | 701

 echo "
";

 if (sizeof($mutual))
 {
 echo "$name2 mutual friends";
 foreach($mutual as $friend)
 echo "<a data-transition='slide'
 href='members.php?view=$friend'>$friend";
 echo "";
 $friends = TRUE;
 }

 if (sizeof($followers))
 {
 echo "$name2 followers";
 foreach($followers as $friend)
 echo "<a data-transition='slide'
 href='members.php?view=$friend'>$friend";
 echo "";
 $friends = TRUE;
 }

 if (sizeof($following))
 {
 echo "$name3 following";
 foreach($following as $friend)
 echo "<a data-transition='slide'
 href='members.php?view=$friend'>$friend";
 echo "";
 $friends = TRUE;
 }

 if (!$friends) echo "
You don't have any friends yet.

";

 echo "<a data-role='button' data-transition='slide'
 href='messages.php?view=$view'>View $name2 messages";
?>
 </div>
 </body>
</html>

702 | Chapter 27: Bringing It All Together

Figure 27-6. Displaying a user’s friends and followers

messages.php
The last of the main modules is Example 27-11, messages.php. The program starts by
checking whether a message has been posted in the variable text. If so, it is inserted
into the messages table. At the same time, the value of pm is also stored. This indicates
whether a message is private or public. A 0 represents a public message, and 1 is
private.

Next, the user’s profile and a form for entering a message are displayed, along with
radio buttons to choose between a private or public message. After this, all the mes‐
sages are shown, depending on whether they are private or public. If they are public,
all users can see them, but private messages are visible only to the sender and recipi‐

messages.php | 703

ent. This is all handled by a couple of queries to the MySQL database. Additionally,
when a message is private, it is introduced by the word whispered and shown in italic.

Finally, the program displays a couple of links to refresh the messages (in case
another user has posted one in the meantime) and to view the user’s friends. The trick
using the variables $name1 and $name2 is again used so that when you view your own
profile, the word Your is displayed instead of the username.

Example 27-11. messages.php

 require_once 'header.php';

 if (!$loggedin) die("</div></body></html>");

 if (isset($_GET['view'])) $view = sanitizeString($_GET['view']);
 else $view = $user;

 if (isset($_POST['text']))
 {
 $text = sanitizeString($_POST['text']);

 if ($text != "")
 {
 $pm = substr(sanitizeString($_POST['pm']),0,1);
 $time = time();
 queryMysql("INSERT INTO messages VALUES(NULL, '$user',
 '$view', '$pm', $time, '$text')");
 }
 }

 if ($view != "")
 {
 if ($view == $user) $name1 = $name2 = "Your";
 else
 {
 $name1 = "$view's";
 $name2 = "$view's";
 }

 echo "<h3>$name1 Messages</h3>";
 showProfile($view);

 echo <<<_END
 <form method='post' action='messages.php?view=$view'>
 <fieldset data-role="controlgroup" data-type="horizontal">
 <legend>Type here to leave a message</legend>
 <input type='radio' name='pm' id='public' value='0' checked='checked'>
 <label for="public">Public</label>
 <input type='radio' name='pm' id='private' value='1'>
 <label for="private">Private</label>
 </fieldset>

704 | Chapter 27: Bringing It All Together

 <textarea name='text'></textarea>
 <input data-transition='slide' type='submit' value='Post Message'>
 </form>

_END;

 date_default_timezone_set('UTC');

 if (isset($_GET['erase']))
 {
 $erase = sanitizeString($_GET['erase']);
 queryMysql("DELETE FROM messages WHERE id=$erase AND recip='$user'");
 }

 $query = "SELECT * FROM messages WHERE recip='$view' ORDER BY time DESC";
 $result = queryMysql($query);
 $num = $result->num_rows;

 for ($j = 0 ; $j < $num ; ++$j)
 {
 $row = $result->fetch_array(MYSQLI_ASSOC);

 if ($row['pm'] == 0 || $row['auth'] == $user ||
 $row['recip'] == $user)
 {
 echo date('M jS \'y g:ia:', $row['time']);
 echo " <a href='messages.php?view=" . $row['auth'] .
 "'>" . $row['auth']. " ";

 if ($row['pm'] == 0)
 echo "wrote: "" . $row['message'] . "" ";
 else
 echo "whispered: "" .
 $row['message']. "" ";

 if ($row['recip'] == $user)
 echo "[<a href='messages.php?view=$view" .
 "&erase=" . $row['id'] . "'>erase]";

 echo "
";
 }
 }
 }

 if (!$num)
 echo "
No messages yet

";

 echo "
<a data-role='button'
 href='messages.php?view=$view'>Refresh messages";
?>
 </div>

 </body>
</html>

messages.php | 705

You can see the result of viewing this program with a browser in Figure 27-7. Note
how users viewing their own messages are provided with links to erase any they don’t
want to keep. Also of note is how jQuery Mobile’s styling of radio buttons has been
implemented for selecting between sending a private or a public message. How this
works is explained in Chapter 22.

Figure 27-7. The messaging module

logout.php
The final ingredient in our social networking recipe is Example 27-12, logout.php, the
logout page that closes a session and deletes any associated data and cookies. The
result of calling up this program is shown in Figure 27-8, where the user is now asked
to click a link that will take them to the not logged-in home page and remove the
logged-in links from the top of the screen. Of course, you could write a JavaScript or

706 | Chapter 27: Bringing It All Together

PHP redirect to do this (probably a good idea if you wish to keep logout looking
clean).

Figure 27-8. The logout page

Example 27-12. logout.php

<?php
 require_once 'header.php';

 if (isset($_SESSION['user']))
 {
 destroySession();
 echo "
<div class='center'>You have been logged out. Please
 <a data-transition='slide' href='index.php'>click here
 to refresh the screen.</div>";
 }

logout.php | 707

 else echo "<div class='center'>You cannot log out because
 you are not logged in</div>";
?>
 </div>
 </body>
</html>

styles.css
The stylesheet used for this project is shown in Example 27-13. There are a number of
sets of declarations, as follows:

*

Sets the default font family and size for the project using the universal selector.

body

Sets the width of the project window, centers it horizontally, specifies a back‐
ground color, and gives it a border.

html

Sets the background color of the HTML section.

img

Gives all images a border, a shadow, and a righthand margin.

.username

Centers the username, and chooses the font family, size, color, background, and
padding with which to display it.

.info

This class is used for displaying important information. It sets a background and
foreground text color, applies a border and padding, and indents elements that
employ it.

.center

This class is used for centering the contents of a <div> element.

.subhead

This class emphasizes sections of text.

.taken, .available, .error, and .whisper
These declarations set the colors and font styles to be used for displaying differ‐
ent types of information.

#logo

Styles the logo text as a fallback in case a non-HTML5 browser is in use and the
canvas logo doesn’t get created.

708 | Chapter 27: Bringing It All Together

#robin

Aligns the image of the robin in the page title.

#used

Ensures the element that is populated by the checkuser.php asynchronous call if a
username is already taken is not too close to the field above it.

Example 27-13. styles.css

* {
 font-family:verdana,sans-serif;
 font-size :14pt;
}

body {
 width :700px;
 margin :20px auto;
 background:#f8f8f8;
 border :1px solid #888;
}

html {
 background:#fff
}

img {
 border :1px solid black;
 margin-right :15px;
 -moz-box-shadow :2px 2px 2px #888;
 -webkit-box-shadow:2px 2px 2px #888;
 box-shadow :2px 2px 2px #888;
}

.username {
 text-align :center;
 background :#eb8;
 color :#40d;
 font-family:helvetica;
 font-size :20pt;
 padding :4px;
}

.info {
 font-style :italic;
 margin :40px 0px;
 text-align :center;
}

.center {
 text-align:center;
}

styles.css | 709

.subhead {
 font-weight:bold;
}

.taken, .error {
 color:red;
}

.available {
 color:green;
}

.whisper {
 font-style:italic;
 color :#006600;
}

#logo {
 font-family:Georgia;
 font-weight:bold;
 font-style :italic;
 font-size :97px;
 color :red;
 }

#robin {
 position :relative;
 border :0px;
 margin-left :-6px;
 margin-right :0px;
 top :17px;
 -moz-box-shadow :0px 0px 0px;
 -webkit-box-shadow:0px 0px 0px;
 box-shadow :0px 0px 0px;
}

#used {
 margin-top:50px;
}

javascript.js
Finally, there’s the JavaScript file (see Example 27-14), which contains the O, S, and C
functions used throughout this book.

Example 27-14. javascript.js

function O(i)
{

710 | Chapter 27: Bringing It All Together

 return typeof i == 'object' ? i : document.getElementById(i)
}

function S(i)
{
 return O(i).style
}

function C(i)
{
 return document.getElementsByClassName(i)
}

And that, as they say, is that. If you write anything based on this code or any other
examples in this book, or have gained in any other way from it, then I am glad to have
been of help and thank you for reading this book.

But before you go and try out your newly learned skills on the web at large, please
browse through the appendixes that follow, as there’s a lot of additional information
there you should find useful.

javascript.js | 711

APPENDIX A

Solutions to the Chapter Questions

Chapter 1 Answers
1. A web server (such as Apache), a server-side scripting language (PHP), a data‐

base (MySQL), and a client-side scripting language (JavaScript).

2. HyperText Markup Language: the web page itself, including text and markup
tags.

3. Like nearly all database engines, MySQL accepts commands in Structured
Query Language (SQL). SQL is the way that every user (including a PHP pro‐
gram) communicates with MySQL.

4. PHP runs on the server, whereas JavaScript runs on the client. PHP can com‐
municate with the database to store and retrieve data, but it can’t alter the
user’s web page quickly and dynamically. JavaScript has the opposite benefits
and drawbacks.

5. Cascading Style Sheets: styling and layout rules applied to the elements in an
HTML document.

6. Probably the most interesting new elements in HTML5 are <audio>, <video>,
and <canvas>, although there are many others, such as <article>, <summary>,
<footer>, and more.

7. Some of these technologies are controlled by companies that accept bug
reports and fix the errors like any software company. But open source software
also depends on a community, so your bug report may be handled by any user
who understands the code well enough. You may someday fix bugs in an open
source tool yourself.

713

8. It allows developers to concentrate on building the core functionality of a web‐
site or web app, passing on to the framework the task of making sure it always
looks and runs its best, regardless of the platform (whether Linux, macOS,
Windows, iOS, or Android), the dimensions of the screen, or the browser it
finds itself running on.

Chapter 2 Answers
1. WAMP stands for Windows, Apache, MySQL, and PHP. The M in MAMP

stands for Mac instead of Windows, and the L in LAMP stands for Linux. They
all refer to a complete solution for hosting dynamic web pages.

2. Both 127.0.0.1 and http://localhost are ways of referring to the local computer.
When a WAMP or MAMP is properly configured, you can type either into a
browser’s address bar to call up the default page on the local server.

3. FTP stands for File Transfer Protocol. An FTP program is used to transfer files
back and forth between a client and a server.

4. It is necessary to FTP files to a remote server in order to update them, which
can substantially increase development time if this action is carried out many
times in a session.

5. Dedicated program editors are smart and can highlight problems in your code
before you even run it.

Chapter 3 Answers
1. The tag used is <?php...?>. It can be shortened to <?...?>, but that is not rec‐

ommended practice.

2. You can use // for a single-line comment or /*...*/ to span multiple lines.

3. All PHP statements must end with a semicolon (;).

4. With the exception of constants, all PHP variables must begin with $.

5. A variable holds a value that can be a string, a number, or other data.

6. $variable = 1 is an assignment statement, whereas the == in $variable == 1
is a comparison operator. Use $variable = 1 to set the value of $variable.
Use $variable == 1 to find out later in the program whether $variable
equals 1. If you mistakenly use $variable = 1 where you meant to do a com‐
parison, it will do two things you probably don’t want: set $variable to 1 and
return a true value all the time, no matter what its previous value was.

714 | Appendix A: Solutions to the Chapter Questions

7. In PHP, the hyphen is reserved for the subtraction, decrement, and negation
operators. A construct like $current-user would be harder to interpret if
hyphens were also allowed in variable names, and in any case would lead pro‐
grams to be ambiguous.

8. Yes, variable names are case-sensitive. $This_Variable is not the same as
$this_variable.

9. You cannot use spaces in variable names, as this would confuse the PHP
parser. Instead, try using the _ (underscore).

10. To convert one variable type to another, reference it and PHP will automati‐
cally convert it for you.

11. There is no difference between ++$j and $j++ unless the value of $j is being
tested, assigned to another variable, or passed as a parameter to a function. In
such cases, ++$j increments $j before the test or other operation is performed,
whereas $j++ performs the operation and then increments $j.

12. Generally, the operators && and and are interchangeable except where prece‐
dence is important, in which case && has a high precedence, while and has a
low one.

13. You can use multiple lines within quotations marks or the <<<_END..._END;
construct to create a multiline echo or assignment. In the latter case, the clos‐
ing tag must be on a line by itself with nothing before or after it.

14. You cannot redefine constants because, by definition, once defined they retain
their value until the program terminates.

15. You can use \' or \" to escape either a single or double quote.

16. The echo and print commands are similar in that they are both constructs,
except that print behaves like a PHP function and takes a single argument,
while echo can take multiple arguments.

17. The purpose of functions is to separate discrete sections of code into their own
self-contained sections that can be referenced by a single function name.

18. You can make a variable accessible to all parts of a PHP program by declaring
it as global.

19. If you generate data within a function, you can convey the data to the rest of
the program by returning a value or modifying a global variable.

20. When you combine a string with a number, the result is another string.

Solutions to the Chapter Questions | 715

Chapter 4 Answers
1. In PHP, TRUE represents the value 1, and FALSE represents NULL, which can be

thought of as “nothing” and is output as the empty string.

2. The simplest forms of expressions are literals (such as numbers and strings)
and variables, which simply evaluate to themselves.

3. The difference between unary, binary, and ternary operators is the number of
operands each requires (one, two, and three, respectively).

4. The best way to force your own operator precedence is to place parentheses
around subexpressions to which you wish to give high precedence.

5. Operator associativity refers to the direction of processing (left to right, or
right to left).

6. You use the identity operator when you wish to bypass PHP’s automatic
operand type changing (also called type casting).

7. The three conditional statement types are if, switch, and the ?: operator.

8. To skip the current iteration of a loop and move on to the next one, use a
continue statement.

9. Loops using for statements are more powerful than while loops because they
support two additional parameters to control the loop handling.

10. Most conditional expressions in if and while statements are literals (or Boo‐
leans) and therefore trigger execution when they evaluate to TRUE. Numeric
expressions trigger execution when they evaluate to a nonzero value. String
expressions trigger execution when they evaluate to a nonempty string. A NULL
value is evaluated as false and therefore does not trigger execution.

Chapter 5 Answers
1. Using functions avoids the need to copy or rewrite similar code sections many

times over by combining sets of statements so that they can be called by a sim‐
ple name.

2. By default, a function can return a single value. But by utilizing arrays, refer‐
ences, and global variables, it can return any number of values.

3. When you reference a variable by name, such as by assigning its value to
another variable or by passing its value to a function, its value is copied. The
original does not change when the copy is changed. But if you reference a vari‐

716 | Appendix A: Solutions to the Chapter Questions

able, only a pointer (or reference) to its value is used, so that a single value is
referenced by more than one name. Changing the value of the reference will
change the original as well.

4. Scope refers to which parts of a program can access a variable. For example, a
variable of global scope can be accessed by all parts of a PHP program.

5. To incorporate one file within another, you can use the include or require
directives, or their safer variants, include_once and require_once.

6. A function is a set of statements referenced by a name that can receive and
return values. An object may contain zero or many functions (which are then
called methods) as well as variables (which are called properties), all combined
in a single unit.

7. To create a new object in PHP, use the new keyword like this:

$object = new Class;

8. To create a subclass, use the extends keyword with syntax such as this:

class Subclass extends Parentclass ...

9. To cause an object to be initialized when you create it, you can call a piece of
initializing code by creating a constructor method called __construct within
the class, and place your code there.

10. Explicitly declaring properties within a class is unnecessary, as they will be
implicitly declared upon first use. But it is considered good practice as it helps
with code readability and debugging, and is especially useful to other people
who may have to maintain your code.

Chapter 6 Answers
1. A numeric array can be indexed numerically using numbers or numeric vari‐

ables. An associative array uses alphanumeric identifiers to index elements.

2. The main benefit of the array keyword is that it enables you to assign several
values at a time to an array without repeating the array name.

3. Both the each function and the foreach...as loop construct return elements
from an array; both start at the beginning and increment a pointer to make
sure the next element is returned by the following call or iteration, and both
return FALSE when the end of the array is reached. The difference is that the
each function returns a single element, so it is usually wrapped in a loop. The
foreach...as construct is already a loop, executing repeatedly until the array
is exhausted or you explicitly break out of the loop.

Solutions to the Chapter Questions | 717

4. To create a multidimensional array, you need to assign additional arrays to ele‐
ments of the main array.

5. You can use the count function to count the number of elements in an array.

6. The purpose of the explode function is to extract sections from a string that
are separated by an identifier, such as extracting words separated by spaces
within a sentence.

7. To reset PHP’s internal pointer into an array back to the first element, call the
reset function.

Chapter 7 Answers
1. The conversion specifier you would use to display a floating-point number is

%f.

2. To take the input string "Happy Birthday" and output the string "**Happy",
you could use a printf statement such as this:

printf("%'*7.5s", "Happy Birthday");

3. To send the output from printf to a variable instead of to a browser, you
would use sprintf instead.

4. To create a Unix timestamp for 7:11 a.m. on May 2nd, 2016, you could use the
following command:

$timestamp = mktime(7, 11, 0, 5, 2, 2016);

5. You would use the w+ file access mode with fopen to open a file in write and
read mode, with the file truncated and the file pointer at the start.

6. The PHP command for deleting the file file.txt is as follows:

unlink('file.txt');

7. The PHP function file_get_contents is used to read in an entire file in one
go. It will also read a file from across the internet if provided with a URL.

8. The PHP superglobal associative array $_FILES contains the details about
uploaded files.

9. The PHP exec function enables the running of system commands.

10. In HTML5, you can use either the XHTML style of tag (such as <hr />) or the
standard HTML4 style (such as <hr>). It’s entirely up to you or your company’s
coding style.

718 | Appendix A: Solutions to the Chapter Questions

Chapter 8 Answers
1. The semicolon in MySQL separates or ends commands. If you forget to enter

it, MySQL will issue a prompt and wait for you to enter it.

2. To see the available databases, type SHOW databases. To see tables within a
database that you are using, type SHOW tables. (These commands are case-
insensitive.)

3. To create this new user, use the GRANT command like this:

GRANT PRIVILEGES ON newdatabase.* TO 'newuser'@'localhost'
 IDENTIFIED BY 'newpassword';

4. To view the structure of a table, type DESCRIBE tablename.

5. The purpose of a MySQL index is to substantially decrease database access
times by adding some metadata to the table about one or more key columns,
which can then be quickly searched to locate rows within a table.

6. A FULLTEXT index enables natural-language queries to find keywords, wher‐
ever they are in the FULLTEXT column(s), in much the same way as using a
search engine.

7. A stopword is a word that is so common that it is considered not worth includ‐
ing in a FULLTEXT index or using in searches. However, it is included in
searches when it is part of a larger string bounded by double quotes.

8. SELECT DISTINCT essentially affects only the display, choosing a single row and
eliminating all the duplicates. GROUP BY does not eliminate rows, but combines
all the rows that have the same value in the column. Therefore, GROUP BY is
useful for performing an operation such as COUNT on groups of rows. SELECT
DISTINCT is not useful for that purpose.

9. To return only those rows containing the word Langhorne somewhere in the
column author of the table classics, use a command such as this:

SELECT * FROM classics WHERE author LIKE "%Langhorne%";

10. When you’re joining two tables together they must share at least one common
column, such as an ID number or, as in the case of the classics and customers
tables, the isbn column.

Chapter 9 Answers
1. The term relationship refers to the connection between two pieces of data that

have some association, such as a book and its author, or a book and the cus‐

Solutions to the Chapter Questions | 719

tomer who bought the book. A relational database such as MySQL specializes
in storing and retrieving such relations.

2. The process of removing duplicate data and optimizing tables is called normal‐
ization.

3. The three rules of First Normal Form are as follows:

• There should be no repeating columns containing the same kind of data.
• All columns should contain a single value.
• There should be a primary key to uniquely identify each row.

4. To satisfy Second Normal Form, columns whose data repeats across multiple
rows should be removed to their own tables.

5. In a one-to-many relationship, the primary key from the table on the “one”
side must be added as a separate column (a foreign key) to the table on the
“many” side.

6. To create a database with a many-to-many relationship, you create an interme‐
diary table containing keys from two other tables. The other tables can then
reference each other via the third.

7. To initiate a MySQL transaction, use the BEGIN or START TRANSACTION com‐
mand. To terminate a transaction and cancel all actions, issue a ROLLBACK com‐
mand. To terminate a transaction and commit all actions, issue a COMMIT
command.

8. To examine how a query will work in detail, you can use the EXPLAIN com‐
mand.

9. To back up the database publications to a file called publications.sql, you would
use a command such as:

mysqldump -u user -ppassword publications > publications.sql

Chapter 10 Answers
1. To connect to a MySQL database with mysqli, call the mysqli method, passing

the hostname, username, password, and database. A connection object will be
returned on success.

2. To submit a query to MySQL using mysqli, ensure you have first created a
connection object to a database and then call its query method, passing the
query string.

720 | Appendix A: Solutions to the Chapter Questions

3. When a mysqli error occurs, the error property of the connection object con‐
tains the error message. If the error was in connecting to the database, the
connect_error property will contain the error message.

4. To determine the number of rows returned by a mysqli query, use the
num_rows property of the result object.

5. To retrieve a specific row from a set of mysqli results, call the data_seek
method of the result object, passing it the row number (starting from 0); then
call fetch_array or another retrieval method to obtain the required data. This
is not required if fetching all results.

6. To escape special characters in strings, you can call the real_escape_string
method of a mysqli connection object, passing it the string to be escaped. Of
course, for security, using prepared statements will serve you best.

7. If you neglect to properly close objects created with mysqli methods, your pro‐
grams carry the risk of running out of memory, especially on high-traffic web‐
sites. If there’s a program flow logic error in your code, closing objects also
ensures you won’t accidentally access old results.

Chapter 11 Answers
1. The associative arrays used to pass submitted form data to PHP are $_GET for

the GET method and $_POST for the POST method.

2. The difference between a text box and a text area is that although they both
accept text for form input, a text box is a single line, whereas a text area can be
multiple lines and include word wrapping.

3. To offer three mutually exclusive choices in a web form, you should use radio
buttons, because checkboxes allow multiple selections.

4. You can submit a group of selections from a web form using a single field
name by using an array name with square brackets, such as choices[], instead
of a regular field name. Each value is then placed into the array, whose length
will be the number of elements submitted.

5. To submit a form field without the user seeing it, place it in a hidden field
using the attribute type="hidden".

6. You can encapsulate a form element and supporting text or graphics, making
the entire unit selectable with a mouse click, by using the <label> and
</label> tags.

Solutions to the Chapter Questions | 721

7. To convert HTML into a format that can be displayed but will not be inter‐
preted as HTML by a browser, use the PHP htmlentities function.

8. You can help users complete fields with data they may have submitted else‐
where by using the autocomplete attribute, which prompts the user with pos‐
sible values.

9. To ensure that a form is not submitted with missing data, you can apply the
required attribute to essential inputs.

Chapter 12 Answers
1. Cookies should be transferred before a web page’s HTML because they are sent

as part of the headers.

2. To store a cookie in a web browser, use the set_cookie function.

3. To destroy a cookie, reissue it with set_cookie, but set its expiration date in
the past.

4. Using HTTP authentication, the username and password are stored in
$_SERVER['PHP_AUTH_USER'] and $_SERVER['PHP_AUTH_PW'].

5. The password_hash function is a powerful security measure because it is a
one-way function that converts a string to a long hexadecimal string of num‐
bers that cannot be converted back, and is therefore very hard to crack as long
as strong passwords are required from users (for example, at least 8 characters
in length, including randomly placed numbers and punctuation marks).

6. When a string is salted, extra characters known only by the programmer are
added to it before hash conversion (this should be left up to PHP to handle for
you). This ensures that users with the same password will not have the same
hash, and prevents the use of precomputed hash tables.

7. A PHP session is a group of variables unique to the current user, passed along
with successive requests so that the variables remain available as the user visits
different pages.

8. To initiate a PHP session, use the session_start function.

9. Session hijacking is where a hacker somehow discovers an existing session ID
and attempts to take it over.

10. Session fixation is when an attacker attempts to force a user to log in using the
wrong session ID, thus compromising the connection’s security.

722 | Appendix A: Solutions to the Chapter Questions

Chapter 13 Answers
1. To enclose JavaScript code, you use <script> and </script> tags.

2. By default, JavaScript code will output to the part of the document in which it
resides. If it’s in the head, it will output to the head; if in the body, it outputs to
the body.

3. You can include JavaScript code from other files in your documents by either
copying and pasting them or, more commonly, including them as part of a
<script src='filename.js'> tag.

4. The equivalent of the echo and print commands used in PHP is the JavaScript
document.write function (or method).

5. To create a comment in JavaScript, preface it with // for a single-line comment
or surround it with /* and */ for a multiline comment.

6. The JavaScript string concatenation operator is the + symbol.

7. Within a JavaScript function, you can define a variable that has local scope by
preceding it with the var keyword upon first assignment.

8. To display the URL assigned to the link with an id of thislink in all main
browsers, you can use the two following commands:

document.write(document.getElementById('thislink').href)
document.write(thislink.href)

9. The commands to change to the previous page in the browser’s history array
are:

history.back()
history.go(-1)

10. To replace the current document with the main page at the oreilly.com website,
you could use the following command:

document.location.href = 'http://oreilly.com'

Chapter 14 Answers
1. The most noticeable difference between Boolean values in PHP and JavaScript

is that PHP recognizes the keywords TRUE, true, FALSE, and false, whereas
only true and false are supported in JavaScript. Additionally, in PHP, TRUE
has a value of 1, and FALSE is NULL; in JavaScript they are represented by true
and false, which can be returned as string values.

Solutions to the Chapter Questions | 723

2. Unlike PHP, no character is used (such as $) to define a JavaScript variable
name. JavaScript variable names can start with and contain uppercase and low‐
ercase letters as well as underscores; names can also include digits, but not as
the first character.

3. The difference between unary, binary, and ternary operators is the number of
operands each requires (one, two, and three, respectively).

4. The best way to force your own operator precedence is to surround the parts of
an expression to be evaluated first with parentheses.

5. You use the identity operator when you wish to bypass JavaScript’s automatic
operand type changing.

6. The simplest forms of expressions are literals (such as numbers and strings)
and variables, which simply evaluate to themselves.

7. The three conditional statement types are if, switch, and the ?: operator.

8. Most conditional expressions in if and while statements are literals or Boo‐
leans and therefore trigger execution when they evaluate to true. Numeric
expressions trigger execution when they evaluate to a nonzero value. String
expressions trigger execution when they evaluate to a nonempty string. A NULL
value is evaluated as false and therefore does not trigger execution.

9. Loops using for statements are more powerful than while loops because they
support two additional parameters to control loop handling.

10. The with statement takes an object as its parameter. Using it, you specify an
object once; then, for each statement within the with block, that object is
assumed.

Chapter 15 Answers
1. JavaScript functions and variable name are case-sensitive. The variables Count,

count, and COUNT are all different.

2. To write a function that accepts and processes an unlimited number of param‐
eters, access parameters through the arguments array, which is a member of all
functions.

3. One way to return multiple values from a function is to place them all inside
an array and return the array.

4. When defining a class, use the this keyword to refer to the current object.

724 | Appendix A: Solutions to the Chapter Questions

5. The methods of a class do not have to be defined within the class definition. If
a method is defined outside the constructor, the method name must be
assigned to the this object within the class definition.

6. New objects are created via the new keyword.

7. You can make a property or method available to all objects in a class without
replicating it within the object by using the prototype keyword to create a sin‐
gle instance, which is then passed by reference to all the objects in the class.

8. To create a multidimensional array, place subarrays inside the main array.

9. The syntax you would use to create an associative array is key : value, within
curly braces, as in the following:

assocarray =
{
 "forename" : "Paul",
 "surname" : "McCartney",
 "group" : "The Beatles"
}

10. A statement to sort an array of numbers into descending numerical order
would look like this:

numbers.sort(function(a, b){ return b – a })

Chapter 16 Answers
1. You can send a form for validation prior to submitting it by adding the Java‐

Script onsubmit attribute to the <form> tag. Make sure that your function
returns true if the form is to be submitted, and false otherwise.

2. To match a string against a regular expression in JavaScript, use the test
method.

3. Regular expressions to match characters not in a word could be any
of /[^\w]/, /[\W]/, /^\w/, /\W/ /[^a-zA-Z0-9_]/, and so on.

4. A regular expression to match either of the words fox or fix could be /f[oi]x/.

5. A regular expression to match any single word followed by any nonword char‐
acter could be /\w+\W/g.

6. A JavaScript function using regular expressions to test whether the word fox
exists in the string The quick brown fox could be as follows:

document.write(/fox/.test("The quick brown fox"))

Solutions to the Chapter Questions | 725

7. A PHP function using a regular expression to replace all occurrences of the
word the in The cow jumps over the moon with the word my could be as fol‐
lows:

$s=preg_replace("/the/i", "my", "The cow jumps over the moon");

8. The HTML attribute used to precomplete form fields with a value is value,
which is placed within an <input> tag and takes the form value="value".

Chapter 17 Answers
1. It’s necessary to write a function for creating new XMLHttpRequest objects

because Microsoft browsers use two different methods of creating them, while
all other major browsers use a third. By writing a function to test the browser
in use, you can ensure that your code will work on all major browsers.

2. The purpose of the try...catch construct is to set an error trap for the code
inside the try statement. If the code causes an error, the catch section will be
executed instead of a general error being issued.

3. An XMLHttpRequest object has six properties and six methods (see Tables 17-1
and 17-2).

4. You can tell that an asynchronous call has completed when the readyState
property of an object has a value of 4.

5. When an asynchronous call successfully completes, the object’s status prop‐
erty will have a value of 200.

6. The responseText property of an XMLHttpRequest object contains the value
returned by a successful asynchronous call.

7. The responseXML property of an XMLHttpRequest object contains a DOM tree
created from the XML returned by a successful asynchronous call.

8. To specify a callback function to handle asynchronous responses, assign the
function name to the XMLHttpRequest object’s onreadystatechange property.
You can also use an unnamed, inline function.

9. To initiate an asynchronous request, an XMLHTTPRequest object’s send method
is called.

10. The main differences between asynchronous GET and POST requests are that
GET requests append the data to the URL rather than passing it as a parameter
of the send method, while POST requests pass the data as a parameter of the
send method and require the correct form headers to be sent first.

726 | Appendix A: Solutions to the Chapter Questions

Chapter 18 Answers
1. To import one stylesheet into another, you use the @import directive, like this:

@import url('styles.css');

2. To import a stylesheet into a document, you can use the HTML <link> tag:

<link rel='stylesheet' href='styles.css'>

3. To directly embed a style into an element, use the style attribute, like this:

<div style='color:blue;'>

4. The difference between a CSS ID and a CSS class is that an ID is applied to
only a single element, whereas a class can be applied to many elements.

5. In a CSS declaration, ID names are prefixed with a # character (e.g., #myid)
and class names with a . character (e.g., .myclass).

6. In CSS, the semicolon (;) is used as a separator between declarations.

7. To add a comment to a stylesheet, you enclose it between /* and */ opening
and closing comment markers.

8. In CSS, you can match any element using the * universal selector.

9. To select a group of different elements and/or element types in CSS, you place
a comma between each element, ID, or class.

10. Given a pair of CSS declarations with equal precedence, to make one have
greater precedence over the other, you append the !important declaration to
it, like this:

p { color:#ff0000 !important; }

Chapter 19 Answers
1. The CSS3 operators ^=, $=, and *= match the start, end, or any portion of a

string, respectively.

2. The property you use to specify the size of a background image is background-
size, like this:

background-size:800px 600px;

3. You can specify the radius of a border using the border-radius property:

border-radius:20px;

Solutions to the Chapter Questions | 727

4. To flow text over multiple columns, use the column-count, column-gap, and
column-rule properties (or their browser-specific variants), like this:

column-count:3;
 column-gap :1em;
 column-rule :1px solid black;

5. The four functions with which you can specify CSS colors are hsl, hsla, rgb,
and rgba. For example:

color:rgba(0%,60%,40%,0.4);

6. To create a gray shadow under some text, offset diagonally to the bottom right
by 5 pixels, with a blurring of 3 pixels, use this declaration:

text-shadow:5px 5px 3px #888;

7. You can indicate that text is truncated with an ellipsis by using this declaration:

text-overflow:ellipsis;

8. To include a Google web font such as Lobster in a web page, first select it from
http://fonts.google.com, then copy the provided <link> tag into the <head> of
your HTML document. It will look something like this:

<link href='http://fonts.googleapis.com/css?family=Lobster'
 rel='stylesheet'>

You can then refer to the font in a CSS declaration such as this:

h1 { font-family:'Lobster', arial, serif; }

9. The CSS declaration you would use to rotate an object by 90 degrees is:

transform:rotate(90deg);

10. To set up a transition on an object so that when any of its properties are
changed, the change will transition immediately in a linear fashion over the
course of half a second, use this declaration:

transition:all .5s linear;

Chapter 20 Answers
1. The O function returns an object by its ID, the S function returns the style

property of an object, and the C function returns an array of all objects that
access a given class.

2. You can modify a CSS attribute of an object using the setAttribute function,
like this:

myobject.setAttribute('font-size', '16pt')

728 | Appendix A: Solutions to the Chapter Questions

http://fonts.google.com

You can also (usually) modify an attribute directly (using slightly modified
property names where required), like this:

myobject.fontSize = '16pt'

3. The properties that provide the width and height available in a browser win‐
dow are window.innerHeight and window.innerWidth.

4. To make something happen when the mouse passes over and out of an object,
attach to the onmouseover and onmouseout events.

5. To create a new element, use code such as this:

elem = document.createElement('span')

To add the new element to the DOM, use code such as this:

document.body.appendChild(elem)

6. To make an element invisible, set its visibility property to hidden (set it to
visible to restore it again). To collapse an element’s dimensions to zero, set its
display property to none (setting this property to block is one way to restore
it to its original dimensions).

7. To set up a single event at a future time, call the setTimeout function, passing
it the code or function name to execute and the time delay in milliseconds.

8. To set up repeating events at regular intervals, use the setInterval function,
passing it the code or function name to execute and the time delay between
repeats in milliseconds.

9. To release an element from its location in a web page to enable it to be moved
around, set its position property to relative, absolute, or fixed. To restore
it to its original place, set the property to static.

10. To achieve an animation rate of 50 frames per second, you should set a delay
between interrupts of 20 milliseconds. To calculate this value, divide 1,000
milliseconds by the desired frame rate.

Chapter 21 Answers
1. The symbol commonly used as the factory method for creating jQuery objects

is $. Alternatively, you can use the method name jQuery.

2. To link to minified release 3.2.1 of jQuery from the Google CDN, you could
use HTML such as this:

<script src='http://ajax.googleapis.com/ajax/libs/jquery/
3.2.1/jquery.min.js'></script>

Solutions to the Chapter Questions | 729

3. The jQuery $ factory method accepts CSS selectors in order to build a jQuery
object of matching elements.

4. To get a CSS property value, use the css method, supplying just a property
name. To set the property’s value, supply a property name and a value to the
method.

5. To attach a method to the element elem’s click event to make it slowly hide,
you could use code such as the following:

$('#elem').click(function() { $(this).hide('slow') })

6. In order to be able to animate an element, you must assign a value of fixed,
relative, or absolute to its position property.

7. You can run methods at once (or sequentially if animations) by chaining them
together with periods, like this:

$('#elem').css('color', 'blue').css('background',
 'yellow').slideUp('slow')

8. To retrieve an element node object from a jQuery selection object, you can
index it with square brackets, like this:

$('#elem')[0]

or use the get method, like this:

$('#elem').get(0)

9. To display the sibling element immediately preceding one with the ID of news
in bold, you could use this statement:

$('#news').prev().css('font-weight', 'bold')

10. You can make a jQuery asynchronous GET request using the $.get method,
like this:

$.get('http://server.com/ajax.php?do=this', function(data) {
alert('The server said: ' + data) })

Chapter 22 Answers
1. Using a CDN to deliver files means you do not have to rely on your own (or

your client’s) bandwidth, which can save money. Additionally, you can speed
up the user’s experience because, once a browser has downloaded a file, the
same version can be reloaded locally from the cache. A downside is that your
web page or web app may not run locally if the user’s browser is not connected
to the internet at the time.

730 | Appendix A: Solutions to the Chapter Questions

2. To define a page of content to jQuery Mobile, you should enclose it within a
<div> element with a data-role attribute of page.

3. The three main parts of a jQuery page are its header, content, and footer. To
denote these, you place them within <div> elements that respectively have
their data-role attributes assigned the values header, content, and footer.
These three elements must be children of the parent <div> discussed in Ques‐
tion 2.

4. To put multiple jQuery Mobile pages within a single HTML document you can
include multiple parent <div> elements with a data-role attribute of page,
each containing the three child <div>s discussed in Question 3. To link
between these pages, you should assign each of these elements a unique id
(such as id="news"), which can then be referenced from anywhere within the
HTML document using an anchor such as .

5. To prevent a web page from being loaded asynchronously you can either give
the anchor’s or form’s data-ajax property a value of false, give its rel
attribute a value of external, or supply a value to its target attribute.

6. To set the page transition of an anchor to flip, give its data-transition
attribute a value of flip (or you can use any other of the supported values for
the other available transition effects; for example, data-transition="pop").

7. You can load a page so that it displays as a dialog by giving its data-rel
attribute a value of dialog.

8. To make an anchor link display as a button, give its data-role attribute a value
of button.

9. To make a jQuery Mobile element display inline, you give its data-inline
attribute a value of true.

10. To add an icon to a button, supply the name of a known jQuery Mobile icon as
a value to its data-icon attribute; for example, data-icon="gear".

Chapter 23 Answers
1. The new HTML5 element for drawing graphics in a web page is the canvas ele‐

ment, created with the <canvas> tag.

2. You need to use JavaScript to access many of the new HTML5 features, such as
the canvas and geolocation.

3. To incorporate audio or video in a web page, use the <audio> or <video> tags.

Solutions to the Chapter Questions | 731

4. In HTML5, local storage offers far greater access to local user space than cook‐
ies, which are limited in the amount of data they can hold.

5. In HTML5, you can set up web workers to carry out background tasks for you.
These workers are simply sections of JavaScript code.

Chapter 24 Answers
1. To create a canvas element in HTML, use the <canvas> tag and specify an ID

that JavaScript can use to access it, like this:

<canvas id='mycanvas'>

2. To give JavaScript access to a canvas element, ensure the element has been
given an ID such as mycanvas, and then use the document.getElementdById
function (or the O function from the OSC.js file supplied with the examples
archive on the companion website) to return an object to the element. Finally,
call getContext on the object to retrieve a 2D context to the canvas, like this:

canvas = document.getElementById('mycanvas')
context = canvas.getContext('2d')

3. To start a canvas path, issue the beginPath method on the context. After creat‐
ing a path, you close it by issuing closePath on the context, like this:

context.beginPath()
 // Path creation commands go here
context.closePath()

4. You can extract the data from a canvas using the toDataURL method, which
can then be assigned to the src property of an image object, like this:

image.src = canvas.toDataURL()

5. To create a gradient fill (either radial or linear) with more than two colors,
specify all the colors required as stop colors assigned to a gradient object you
have already created, and assign them each a starting point as a percent value
of the complete gradient (between 0 and 1), like this:

gradient.addColorStop(0, 'green')
gradient.addColorStop(0.3, 'red')
gradient.addColorStop(0,79, 'orange')
gradient.addColorStop(1, 'brown')

6. To adjust the width of drawn lines, assign a value to the lineWidth property of
the context, like this:

context.lineWidth = 5

732 | Appendix A: Solutions to the Chapter Questions

7. To ensure that future drawing takes place only within a certain area, you can
create a path and then call the clip method.

8. A complex curve with two imaginary attractors is called a Bézier curve. To cre‐
ate one, call the bezierCurveTo method, supplying two pairs of x and y coordi‐
nates for the attractors, followed by another pair for the end point of the curve.
A curve is then created from the current drawing location to the destination.

9. The getImageData method returns an array containing the pixel data for the
specified area, with the elements consecutively containing the red, green, blue,
and alpha pixel values, so four items of data are returned per pixel.

10. The transform method takes six arguments (or parameters), which are, in
order, horizontal scale, horizontal skew, vertical skew, vertical scale, horizontal
translate, and vertical translate. Therefore, the arguments that apply to scaling
are the first and fourth in the list.

Chapter 25 Answers
1. To insert audio and video into an HTML5 document, use the <audio> and

<video> tags.

2. To guarantee maximum audio playability on all platforms, you should use at
least two codecs: PCM and any of the others, or Vorbis and any of the others.

3. To play and pause HTML5 media playback, you can call the play and pause
methods of an <audio> or <video> element.

4. To support media playback in a non-HTML5 browser, you can embed a Flash
audio or video player inside any <audio> or <video> element, which will be
activated if HTML5 media playing is not supported.

5. To guarantee maximum video playability on all platforms, you should use the
MP4/H.264 codec, and the Ogg/Theora or VP8 codec to support the Opera
browser.

Chapter 26 Answers
1. To request geolocation data from a web browser, you call the following

method, passing the names of two functions you have written for handling
access to or denial of the data:

navigator.geolocation.getCurrentPosition(granted, denied)

Solutions to the Chapter Questions | 733

2. To determine whether a browser supports local storage, test the typeof prop‐
erty of the localStorage object, like this:

if (typeof localStorage == 'undefined')
 // Local storage is not available}

3. To erase all local storage data for the current domain, you can call the local
Storage.clear method.

4. The easiest way for a web worker to communicate with a main program is by
using the postMessage method to send information. The program attaches to
the web worker’s onmessage event to retrieve it.

5. To stop a web worker from running, issue a call to the terminate method of
the worker object, like this: worker.terminate().

6. You can prevent the default action of disallowing dragging and dropping for
the events that handle these operations by issuing a call to the event object’s
preventDefault method in your ondragover and ondrop event handlers.

7. To make cross-document messaging more secure, you should always supply a
domain identifier when posting messages, like this:

postMessage(message, 'http://mydomain.com')

And check for that identifier when receiving them, like this:

if (event.origin) != 'http://mydomain.com') // Disallow

You can also encrypt or obscure communications to discourage injection or
eavesdropping.

734 | Appendix A: Solutions to the Chapter Questions

APPENDIX B

Online Resources

This appendix lists useful websites where you can get the material used in this book,
and other resources that will enhance your web programs.

PHP Resource Sites
• http://ampps.com
• http://codewalkers.com
• http://easyphp.org
• http://forums.devshed.com
• http://hotscripts.com/category/php/
• http://htmlgoodies.com/beyond/php/
• http://php.net
• http://phpbuilder.com
• http://phpfreaks.com
• http://phpunit.de
• http://w3schools.com/php/
• http://zend.com

MySQL Resource Sites
• http://launchpad.net/mysql
• http://mysql.com

735

http://ampps.com
http://codewalkers.com
http://easyphp.org
http://forums.devshed.com
http://hotscripts.com/category/php/
http://htmlgoodies.com/beyond/php/
http://php.net
http://phpbuilder.com
http://phpfreaks.com
http://phpunit.de
http://w3schools.com/php/
http://zend.com
http://launchpad.net/mysql
http://mysql.com

• http://php.net/mysql
• http://planetmysql.org
• http://w3schools.com/PHP/php_mysql_i

JavaScript Resource Sites
• http://developer.mozilla.org/en/JavaScript
• http://dynamicdrive.com
• http://javascript.about.com
• http://javascript.com
• http://javascriptkit.com
• http://w3schools.com/JS
• http://webreference.com/js

CSS Resource Sites
• http://cssbasics.com
• http://css-discuss.incutio.com/wiki/Print_Stylesheets
• http://freehtmlvalidator.com
• http://quirksmode.org/css/quirksmode.html

HTML5 Resource Sites
• http://caniuse.com
• http://html5demos.com
• http://html5doctor.com
• http://html5readiness.com
• http://html5test.com
• http://htmlvalidator.com
• http://modernizr.com

736 | Appendix B: Online Resources

http://php.net/mysql
http://planetmysql.org
http://w3schools.com/PHP/php_mysql_intro.asp
http://developer.mozilla.org/en/JavaScript
http://dynamicdrive.com
http://javascript.about.com
http://javascript.com
http://javascriptkit.com
http://w3schools.com/JS
http://webreference.com/js
http://cssbasics.com
http://css-discuss.incutio.com/wiki/Print_Stylesheets
http://freehtmlvalidator.com
http://quirksmode.org/css/quirksmode.html
http://caniuse.com
http://html5demos.com
http://html5doctor.com
http://html5readiness.com
http://html5test.com
http://htmlvalidator.com
http://modernizr.com

Asynchronous Communication Resource Sites
• http://ajax.asp.net
• http://ajaxian.com
• http://developer.mozilla.org/en/AJAX
• http://dojotoolkit.org
• http://jquery.com
• http://jquerymobile.com
• http://mootools.net
• http://openjs.com
• http://prototypejs.org

Miscellaneous Resource Sites
• http://apachefriends.org
• http://easyphp.org
• http://eclipse.org
• http://editra.org
• http://mamp.info/en
• http://programmingforums.org
• http://putty.org
• http://sourceforge.net/projects/glossword

Online Resources | 737

http://ajax.asp.net
http://ajaxian.com
http://developer.mozilla.org/en/AJAX
http://dojotoolkit.org
http://jquery.com
http://jquerymobile.com
http://mootools.net
http://openjs.com
http://prototypejs.org
http://apachefriends.org
http://easyphp.org
http://eclipse.org
http://editra.org
http://mamp.info/en
http://programmingforums.org
http://putty.org
http://sourceforge.net/projects/glossword

APPENDIX C

MySQL’s FULLTEXT Stopwords

This appendix contains the more than 500 stopwords referred to in the section “Cre‐
ating a FULLTEXT index” on page 192 in Chapter 8. Stopwords are words that are
considered so common as to not be worth searching for, or storing, in a FULLTEXT
index. Theoretically, ignoring these words makes little difference to the results of
most FULLTEXT searches, but makes MySQL databases considerably smaller and more
efficient. The words are shown here in lowercase but apply to uppercase and mixed-
case versions, too:

A
a’s, able, about, above, according, accordingly, across, actually, after, afterwards,
again, against, ain’t, all, allow, allows, almost, alone, along, already, also, although,
always, am, among, amongst, an, and, another, any, anybody, anyhow, anyone,
anything, anyway, anyways, anywhere, apart, appear, appreciate, appropriate, are,
aren’t, around, as, aside, ask, asking, associated, at, available, away, awfully

B
be, became, because, become, becomes, becoming, been, before, beforehand, behind,
being, believe, below, beside, besides, best, better, between, beyond, both, brief, but,
by

C
c’mon, c’s, came, can, can’t, cannot, cant, cause, causes, certain, certainly, changes,
clearly, co, com, come, comes, concerning, consequently, consider, considering, con‐
tain, containing, contains, corresponding, could, couldn’t, course, currently

D
definitely, described, despite, did, didn’t, different, do, does, doesn’t, doing, don’t,
done, down, downwards, during

739

E
each, edu, eg, eight, either, else, elsewhere, enough, entirely, especially, et, etc, even,
ever, every, everybody, everyone, everything, everywhere, ex, exactly, example,
except

F
far, few, fifth, first, five, followed, following, follows, for, former, formerly, forth,
four, from, further, furthermore

G
get, gets, getting, given, gives, go, goes, going, gone, got, gotten, greetings

H
had, hadn’t, happens, hardly, has, hasn’t, have, haven’t, having, he, he’s, hello, help,
hence, her, here, here’s, hereafter, hereby, herein, hereupon, hers, herself, hi, him,
himself, his, hither, hopefully, how, howbeit, however

I
i’d, i’ll, i’m, i’ve, ie, if, ignored, immediate, in, inasmuch, inc, indeed, indicate, indi‐
cated, indicates, inner, insofar, instead, into, inward, is, isn’t, it, it’d, it’ll, it’s, its, itself

J
just

K
keep, keeps, kept, know, knows, known

L
last, lately, later, latter, latterly, least, less, lest, let, let’s, like, liked, likely, little, look,
looking, looks, ltd

M
mainly, many, may, maybe, me, mean, meanwhile, merely, might, more, moreover,
most, mostly, much, must, my, myself

N
name, namely, nd, near, nearly, necessary, need, needs, neither, never, nevertheless,
new, next, nine, no, nobody, non, none, noone, nor, normally, not, nothing, novel,
now, nowhere

O
obviously, of, off, often, oh, ok, okay, old, on, once, one, ones, only, onto, or, other,
others, otherwise, ought, our, ours, ourselves, out, outside, over, overall, own

P
particular, particularly, per, perhaps, placed, please, plus, possible, presumably,
probably, provides

740 | Appendix C: MySQL’s FULLTEXT Stopwords

Q
que, quite, qv

R
rather, rd, re, really, reasonably, regarding, regardless, regards, relatively, respec‐
tively, right

S
said, same, saw, say, saying, says, second, secondly, see, seeing, seem, seemed, seem‐
ing, seems, seen, self, selves, sensible, sent, serious, seriously, seven, several, shall,
she, should, shouldn’t, since, six, so, some, somebody, somehow, someone, some‐
thing, sometime, sometimes, somewhat, somewhere, soon, sorry, specified, specify,
specifying, still, sub, such, sup, sure

T
t’s, take, taken, tell, tends, th, than, thank, thanks, thanx, that, that’s, thats, the,
their, theirs, them, themselves, then, thence, there, there’s, thereafter, thereby, there‐
fore, therein, theres, thereupon, these, they, they’d, they’ll, they’re, they’ve, think,
third, this, thorough, thoroughly, those, though, three, through, throughout, thru,
thus, to, together, too, took, toward, towards, tried, tries, truly, try, trying, twice,
two

U
un, under, unfortunately, unless, unlikely, until, unto, up, upon, us, use, used, use‐
ful, uses, using, usually

V
value, various, very, via, viz, vs

W
want, wants, was, wasn’t, way, we, we’d, we’ll, we’re, we’ve, welcome, well, went,
were, weren’t, what, what’s, whatever, when, whence, whenever, where, where’s,
whereafter, whereas, whereby, wherein, whereupon, wherever, whether, which,
while, whither, who, who’s, whoever, whole, whom, whose, why, will, willing, wish,
with, within, without, won’t, wonder, would, would, wouldn’t

Y
yes, yet, you, you’d, you’ll, you’re, you’ve, your, yours, yourself, yourselves

Z
zero

MySQL’s FULLTEXT Stopwords | 741

APPENDIX D

MySQL Functions

MySQL’s built-in functions substantially reduce the speed of complex queries, as well
as their complexity. If you wish to learn more about the available functions, you can
check out the documentation for the following:

• String functions
• Date and time functions

But, for easy reference, here are some of the most commonly used MySQL functions.

String Functions
The following is a selection of the most commonly encountered string manipulation
functions:

CONCAT(str1, str2, ...)
Returns the result of combining str1, str2, and any other parameters (or NULL if
any argument is NULL). If any of the arguments are binary, the result is a binary
string; otherwise, the result is a nonbinary string. For instance, the following
code returns the string "MySQL":

SELECT CONCAT('My', 'S', 'QL');

CONCAT_WS(separator, str1, str2, ...)
Works in the same way as CONCAT, except it inserts a separator between the items
being concatenated. If the separator is NULL, the result will be NULL, but NULL val‐
ues can be used as other arguments, which will then be skipped. The following
code returns the string "Truman,Harry,S":

SELECT CONCAT_WS(',', 'Truman', 'Harry', 'S');

743

http://tinyurl.com/phpstringfuncs
http://tinyurl.com/phpdateandtime

LEFT(str, len)
Returns the leftmost len characters from the string str (or NULL if any argument
is NULL). The following code returns the string "Chris":

SELECT LEFT('Christopher Columbus', '5');

RIGHT(str, len)
Returns the rightmost len characters from the string str (or NULL if any argu‐
ment is NULL). The following code returns the string "Columbus":

SELECT RIGHT('Christopher Columbus', '8');

MID(str, pos, len)
Returns up to len characters from the string str starting at position pos. If len is
omitted, all characters up to the end of the string are returned. You may use a
negative value for pos, in which case it represents the character pos places from
the end of the string. The first position in the string is 1. The following code
returns the string "stop":

SELECT MID('Christopher Columbus', '5', '4');

LENGTH(str)

Returns the length in bytes of the string str. Note that multibyte characters
count as multiple bytes. If you need to know the actual number of characters in a
string, use the CHAR_LENGTH function. The following code returns the value 15:

SELECT LENGTH('Mark Zuckerberg');

LPAD(str, len, padstr)
Returns the string str padded to a length of len characters by prepending the
string with padstr characters. If str is longer than len, the string returned will
be truncated to len characters. The following example code returns these strings:

 January
 February
 March
 April
 May

Notice how all the strings have been padded to be eight characters long:

SELECT LPAD('January', '8', ' ');
SELECT LPAD('February', '8', ' ');
SELECT LPAD('March', '8', ' ');
SELECT LPAD('April', '8', ' ');
SELECT LPAD('May', '8', ' ');

744 | Appendix D: MySQL Functions

RPAD

Works the same as the LPAD function, except that the padding takes place on the
right of the returned string. The following code returns the string "Hi!!!":

SELECT RPAD('Hi', '5', '!');

LOCATE(substr, str, pos)
Returns the position of the first occurrence of substr in the string str. If the
parameter pos is passed, the search begins at position pos. If substr is not found
in str, a value of 0 is returned. The following code returns the values 5 and 11,
because the first function call returns the first encounter of the word unit, while
the second one only starts to search at the seventh character, and so returns the
second instance:

SELECT LOCATE('unit', 'Community unit');
SELECT LOCATE('unit', 'Community unit' 7);

LOWER(str)

Returns the string str with all the characters changed to lowercase (the inverse of
UPPER). The following code returns the string "queen elizabeth ii":

SELECT LOWER('Queen Elizabeth II');

UPPER(str)

Returns the string str with all the characters changed to uppercase (the inverse
of LOWER). The following code returns the string "I CAN'T HELP SHOUTING":

SELECT UPPER("I can't help shouting");

QUOTE(str)

Returns a quoted string that can be used as a properly escaped value in a SQL
statement. The returned string is enclosed in single quotes with all instances of
single quotes, backslashes, the ASCII NUL character, and Ctrl-Z preceded by a
backslash. If the argument str is NULL, the return value is the word NULL without
enclosing quotes. The example code returns the following string:

'I\'m hungry'

Note how the ' symbol has been replaced with \'.

SELECT QUOTE("I'm hungry");

REPEAT(str, count)
Returns a string comprising count copies of the string str, or, if count is less
than 1, an empty string. If either parameter is NULL, the function returns NULL.
The following code returns the strings "Ho Ho Ho" and "Merry Christmas":

SELECT REPEAT('Ho ', 3), 'Merry Christmas';

MySQL Functions | 745

REPLACE(str, from, to)
Returns the string str with all occurrences of the string from replaced with the
string to. The search and replace is case-sensitive when searching for from. The
following code returns the string "Cheeseburger and Soda":

SELECT REPLACE('Cheeseburger and Fries', 'Fries', 'Soda');

TRIM([specifier remove FROM] str)
Returns the string str with all prefixes and/or suffixes removed. The specifier
can be one of BOTH, LEADING, or TRAILING. If no specifier is supplied, BOTH is
assumed. The remove string is optional; if it’s omitted, spaces are removed. The
following code returns the strings "No Padding" and "Hello__":

SELECT TRIM(' No Padding ');
SELECT TRIM(LEADING '_' FROM '__Hello__');

LTRIM(str)
Returns the string str with any leading spaces removed. The following code
returns the string "No Padding ":

SELECT LTRIM(' No Padding ');

RTRIM(str)

Returns the string str with any trailing spaces removed. The following code
returns the string " No Padding":

SELECT RTRIM(' No Padding ');

Date Functions
Dates are an important part of most databases. The date must be recorded when
financial transactions take place, expiry dates of credit cards need to be noted for
repeat billing purposes, and so on. So, as you might expect, MySQL comes with a
wide variety of functions to make handling dates a breeze. Here are some of the most
important:

CURDATE()

Returns the current date in YYYY-MM-DD or YYYMMDD format, depending
on whether the function is used in a numeric or string context. On the date May
2, 2018, the following code returns the values 2018-05-02 and 20180502:

SELECT CURDATE();
SELECT CURDATE() + 0;

DATE(expr)

Extracts the date part of the date or a DATETIME expression expr. The following
code returns the value 1961-05-02:

746 | Appendix D: MySQL Functions

SELECT DATE('1961-05-02 14:56:23');

DATE_ADD(date, INTERVAL expr unit)
Returns the result of adding the expression expr using units unit to the date.
The date argument is the starting date or DATETIME value, and expr may start
with a - symbol for negative intervals. Table D-1 shows the interval types sup‐
ported and the expected expr values. Note the examples in this table that show
where it is necessary to surround the expr value with quotes for MySQL to cor‐
rectly interpret them. If you are ever in doubt, adding the quotes will always
work.

Table D-1. Expected expr values
Type Expected expr value Example
MICROSECOND MICROSECONDS 111111

SECOND SECONDS 11

MINUTE MINUTES 11

HOUR HOURS 11

DAY DAYS 11

WEEK WEEKS 11

MONTH MONTHS 11

QUARTER QUARTERS 1

YEAR YEARS 11

SECOND_MICROSECOND 'SECONDS.MICROSECONDS' 11.22

MINUTE_MICROSECOND 'MINUTES.MICROSECONDS' 11.22

MINUTE_SECOND 'MINUTES:SECONDS' '11:22'

HOUR_MICROSECOND 'HOURS.MICROSECONDS' 11.22

HOUR_SECOND 'HOURS:MINUTES:SECONDS' '11:22:33'

HOUR_MINUTE 'HOURS:MINUTES' '11:22'

DAY_MICROSECOND 'DAYS.MICROSECONDS' 11.22

DAY_SECOND 'DAYS HOURS:MINUTES:SECONDS' '11 22:33:44'

DAY_MINUTE 'DAYS HOURS:MINUTES' '11 22:33'

DAY_HOUR 'DAYS HOURS' '11 22'

YEAR_MONTH 'YEARS-MONTHS' '11-2'

You can also use the DATE_SUB function to subtract date intervals. However, it’s
not actually necessary for you to use the DATE_ADD or DATE_SUB functions, as you
can use date arithmetic directly in MySQL. The following code:

SELECT DATE_ADD('1975-01-01', INTERVAL 77 DAY);
SELECT DATE_SUB('1982-07-04', INTERVAL '3-11' YEAR_MONTH);
SELECT '2018-12-31 23:59:59' + INTERVAL 1 SECOND;
SELECT '2000-01-01' - INTERVAL 1 SECOND;

MySQL Functions | 747

returns the following values:

1975-03-19
1978-08-04
2019-01-01 00:00:00
1999-12-31 23:59:59

Notice how the last two commands use date arithmetic directly without recourse
to functions.

DATE_FORMAT(date, format)
This returns the date value formatted according to the format string. Table D-2
shows the specifiers that can be used in the format string. Note that the % charac‐
ter is required before each specifier, as shown. The following code returns the
given date and time as Friday May 4th 2018 03:02 AM:

SELECT DATE_FORMAT('2018-05-04 03:02:01', '%W %M %D %Y %h:%i %p');

Table D-2. DATE_FORMAT specifiers
Specifier Description
%a Abbreviated weekday name (Sun–Sat)
%b Abbreviated month name (Jan–Dec)
%c Month, numeric (0–12)
%D Day of the month with English suffix (0th, 1st, 2nd, 3rd, ...)
%d Day of the month, numeric (00–31)
%e Day of the month, numeric (0–31)
%f Microseconds (000000–999999)
%H Hour, two digits (00–23)
%h Hour, two digits (01–12)
%I Hour (01–12)
%i Minutes, numeric, two digits (00–59)
%j Day of year (001–366)
%k Hour (0–23)
%l Hour (1–12)
%M Month name (January–December)
%m Month, numeric, two digits (00–12)
%p AM or PM
%r Time, 12-hour (hh:mm:ss followed by AM or PM)
%S Seconds, two digits (00–59)
%s Seconds, two digits (00–59)
%T Time, 24-hour (hh:mm:ss)
%U Week (00–53), where Sunday is the first day of the week
%u Week (00–53), where Monday is the first day of the week
%V Week (01–53), where Sunday is the first day of the week; used with %X

748 | Appendix D: MySQL Functions

Specifier Description
%v Week (01–53), where Monday is the first day of the week; used with %x
%W Weekday name (Sunday–Saturday)
%w Day of the week (0=Sunday–6=Saturday)
%X Year for the week where Sunday is the first day of the week, numeric, four digits; used with %V
%x Year for the week where Monday is the first day of the week, numeric, four digits; used with %v
%Y Year, numeric, four digits
%y Year, numeric, two digits
%% A literal % character

DAY(date)

Returns the day of the month for date, in the range 1 to 31, or 0 for dates that
have a zero day part, such as 0000-00-00 or 2018-00-00. You can also use the
function DAYOFMONTH to return the same value. The following code returns the
value 3:

SELECT DAY('2018-02-03');

DAYNAME(date)

Returns the name of the weekday for date. The following code returns the string
"Saturday":

SELECT DAYNAME('2018-02-03');

DAYOFWEEK(date)

Returns the weekday index for date, from 1 for Sunday through 7 for Saturday.
The following code returns the value 7:

SELECT DAYOFWEEK('2018-02-03');

DAYOFYEAR(date)

Returns the day of the year for date, in the range 1 to 366. The following code
returns the value 34:

SELECT DAYOFYEAR('2018-02-03');

LAST_DAY(date)

Returns the last day of the month for the given DATETIME value date. If the argu‐
ment is invalid, it returns NULL. The following code:

SELECT LAST_DAY('2018-02-03');
SELECT LAST_DAY('2018-03-11');
SELECT LAST_DAY('2018-04-26');

returns the following values:

MySQL Functions | 749

2018-02-28
2018-03-31
2018-04-30

MAKEDATE(year, dayofyear)
Returns a date given year and dayofyear values. If dayofyear is 0, the result is
NULL. The following code returns the date 2016-10-01:

SELECT MAKEDATE(2018,274);

MONTH(date)

Returns the month for date, in the range 1 through 12 for January through
December. Dates that have a zero month part, such as 0000-00-00 or
2016-00-00, return 0. The following code returns the value 7:

SELECT MONTH('2018-07-11');

MONTHNAME(date)

Returns the full name of the month for date. The following code returns the
string "July":

SELECT MONTHNAME('2018-07-11');

SYSDATE()

Returns the current date and time as a value in either YYY-MM-DD HH:MM:SS
or YYYMMDDHHMMSS format, depending on whether the function is used in
a string or numeric context. The function NOW works in a similar manner, except
that it returns the time and date only at the start of the current statement,
whereas SYSDATE returns the time and date at the exact moment the function
itself is called. On December 19, 2018, at 19:11:13, this code returns the values
2018-12-19 19:11:13 and 20181219191113:

SELECT SYSDATE();
SELECT SYSDATE() + 0;

YEAR(date)

Returns the year for date, in the range 1000 to 9999, or 0 if date is 0000-00-00.
The following code returns the year 1999:

SELECT YEAR('1999-08-07');

WEEK(date [, mode])
Returns the week number for date. If passed the optional mode parameter, the
week number returned will be modified according to Table D-3. You can also use
the function WEEKOFYEAR, which is equivalent to using the WEEK function with a
mode of 3. The following code returns the week number 14:

SELECT WEEK('2018-04-04', 1);

750 | Appendix D: MySQL Functions

Table D-3. The modes supported by the WEEK function
Mode First day of week Range Where week 1 is the first week...
0 Sunday 0–52 With a Sunday in this year
1 Monday 0–52 With more than three days this year
2 Sunday 1–52 With a Sunday in this year
3 Monday 1–52 With more than three days this year
4 Sunday 0–52 With more than three days this year
5 Monday 0–52 With a Monday in this year
6 Sunday 1–52 With more than three days this year
7 Monday 1–52 With a Monday in this year

WEEKDAY(date)

Returns the weekday index for date, from 0 through 6 for Monday through Sun‐
day. The following code returns the value 2:

SELECT WEEKDAY('2018-04-04');

Time Functions
Sometimes you need to work with the time, rather than the date, and MySQL pro‐
vides plenty of functions for you to do so. Here are some of the most commonly
encountered time functions:

CURTIME(fsp)

Returns the current time (in the user’s time zone) in HH:MM:SS or HHMMSS
format, depending on whether the function is used in a string or numeric con‐
text. If the optional fsp argument is supplied, with a value in the range of 0 to 6,
the return value includes a fractional seconds part of that many digits. When the
current time is 11:56:23, the following code returns the values 11:56:23 and
115623.000000:

SELECT CURTIME();
SELECT CURTIME() + 0;

HOUR(time)

Returns the hour for time. The following code returns the value 11:

SELECT HOUR('11:56:23');

MINUTE(time)

Returns the minute for time. The following code returns the value 56:

SELECT MINUTE('11:56:23');

SECOND(time)

Returns the second for time. The following code returns the value 23:

MySQL Functions | 751

SELECT SECOND('11:56:23');

MAKETIME(hour, minute, second)
Returns a time value calculated from the hour, minute, and second arguments.
The following code returns the time 11:56:23:

SELECT MAKETIME(11, 56, 23);

TIMEDIFF(expr1, expr2)
Returns the difference between expr1 and expr2 (expr1 – expr2) as a time value.
Both expr1 and expr2 must be TIME or DATETIME expressions of the same type.
The following code returns the value 01:37:38:

SELECT TIMEDIFF('2000-01-01 01:02:03', '1999-12-31 23:24:25');

UNIX_TIMESTAMP([date])

Returns the number of seconds since 1970-01-01 00:00:00 UTC as an unsigned
integer, if called without the optional date argument. If the date parameter is
passed, the value returned is the number of seconds from the 1970 start date until
the given date. This command will not return the same value for everyone,
because the date given to it is interpreted as a local time (given in the user’s time
zone). The following code will return the value 946684800 (the number of sec‐
onds up to the start of the new millennium) followed by a TIMESTAMP represent‐
ing the current Unix time at the moment you run it:

SELECT UNIX_TIMESTAMP('2000-01-01');
SELECT UNIX_TIMESTAMP();

FROM_UNIXTIME(unix_timestamp [, format])
Returns the unix_timestamp parameter as either a string in YYY-MM-DD
HH:MM:SS format or a floating-point number in YYYYMMDDHHMMSS for‐
mat, depending on whether the function is used in a string or numeric context. If
the optional format parameter is provided, the result is formatted according to
the specifiers in Table D-2. The precise value returned will depend on the user’s
local time. The following code returns the strings "2000-01-01 00:00:00" and
"Saturday January 1st 2000 12:00 AM":

SELECT FROM_UNIXTIME(946684800);
SELECT FROM_UNIXTIME(946684800, '%W %M %D %Y %h:%i %p');

752 | Appendix D: MySQL Functions

APPENDIX E

jQuery Selectors, Objects, and Methods

Chapter 21 gives you a good grounding in using the jQuery JavaScript library. To help
you use jQuery to the fullest, here’s a comprehensive list of the selectors, objects, and
methods it uses. There wasn’t room to introduce all of them in this book, but you
should now know enough to be able to use them correctly.

Please bear in mind, though, that sometimes new features are added, bugs are fixed,
and other features are deprecated or removed. You can keep up to date with the latest
developments, information on deprecated or removed features (not detailed here),
and newer releases of jQuery on the jQuery website and in the API documentation.

jQuery Selectors
('*')

Selects all elements.

('element')

Selects all elements with the given tag name.

('#id')

Selects a single element with the given ID.

('.class')

Selects all elements with the given class.

('selector1, selector2, ...selectorN')

Selects the combined results of all the specified selectors.

('ancestor descendant')

Selects all elements that are descendants of the given ancestor.

753

http://jquery.com
http://api.jquery.com

('prev + next')

Selects all elements matching next that are immediately preceded by a sibling
prev.

('prev ~ siblings')

Selects all sibling elements that follow the prev element, have the same parent,
and match the filtering siblings selector.

('parent > child')

Selects all direct child elements specified by child of elements specified by
parent.

[name]

Selects elements that have the specified attribute name, with any value.

[name|='value']

Selects elements that have the specified attribute name with a value either equal
to a given string or starting with that string followed by a hyphen (-).

[name*='value']

Selects elements that have the specified attribute name with a value containing a
given substring.

[name~='value']

Selects elements that have the specified attribute name with a value containing a
given word, delimited by spaces.

[name$='value']

Selects elements that have the specified attribute name with a value ending
exactly with a given string. The comparison is case-sensitive.

[name='value']

Selects elements that have the specified attribute name with a value exactly equal
to a certain value.

[name!='value']

Selects elements that either don’t have the specified attribute name, or do have the
specified attribute but not with a certain value.

[name^='value']

Selects elements that have the specified attribute name with a value beginning
exactly with a given string.

[name='value'][name2='value2']

Matches elements that match all of the specified attribute filters.

754 | Appendix E: jQuery Selectors, Objects, and Methods

:animated

Selects all elements that are in the progress of an animation at the time the selec‐
tor is run.

:button

Selects all elements of type button.

:checkbox

Selects all elements of type checkbox.

:checked

Matches all elements that are checked or selected.

:contains(text)

Selects all elements that contain the specified text.

:disabled

Selects all elements that are disabled.

:empty

Selects all elements that have no children (including text nodes).

:enabled

Selects all elements that are enabled.

:eq(n)

Selects the element at index n within the matched set.

:even

Selects even elements, zero-indexed. See also :odd.

:file

Selects all elements of type file.

:first-child

Selects all elements that are the first child of their parent.

:first-of-type

Selects all elements that are the first among siblings of the same element name.

:first

Selects the first matched element.

:focus

Selects an element if it is currently focused.

:gt(index)

Selects all elements at an index greater than index within the matched set.

jQuery Selectors, Objects, and Methods | 755

:has(selector)

Selects elements that contain at least one element that matches the specified
selector.

:header

Selects all elements that are headers, like h1, h2, h3, and so on.

:hidden

Selects all elements that are hidden.

:image

Selects all elements of type image.

:input

Selects all input, textarea, select, and button elements.

:lang(language)

Selects all elements of the specified language.

:last-child

Selects all elements that are the last child of their parent.

:last-of-type

Selects all elements that are the last among siblings of the same element name.

:last

Selects the last matched element.

:lt(index)

Selects all elements at an index less than index within the matched set.

:not(selector)

Selects all elements that do not match the given selector.

:nth-child(n)

Selects all elements that are the nth child of their parent.

:nth-last-child(n)

Selects all elements that are the nth child of their parent, counting from the last
element to the first.

:nth-last-of-type(n)

Selects all elements that are the nth child of their parent in relation to siblings
with the same element name, counting from the last element to the first.

756 | Appendix E: jQuery Selectors, Objects, and Methods

:nth-of-type(n)

Selects all elements that are the nth child of their parent in relation to siblings
with the same element name.

:odd

Selects odd elements, zero-indexed. See also :even.

:only-child

Selects all elements that are the only child of their parent.

:only-of-type

Selects all elements that have no siblings with the same element name.

:parent

Selects all elements that have at least one child node (either an element or text).

:password

Selects all elements of type password.

:radio

Selects all elements of type radio.

:reset

Selects all elements of type reset.

:root

Selects the element that is the root of the document.

:selected

Selects all elements that are marked as selected within the web page.

:submit

Selects all elements of type submit.

:target

Selects the target element indicated by the fragment identifier of the document’s
URI.

:text

Selects all elements of type text.

:visible

Selects all elements that are visible.

jQuery Selectors, Objects, and Methods | 757

jQuery Objects
event.currentTarget

The current DOM element within the event-bubbling phase.

event.data

An optional object of data passed to an event method when the current executing
handler is bound.

event.delegateTarget

The element where the currently called jQuery event handler was attached.

event.metaKey

An indicator of whether the META key was pressed when the event fired.

event.namespace

The namespace specified when the event was triggered.

event.pageX

The mouse position relative to the left edge of the document.

event.pageY

The mouse position relative to the top edge of the document.

event.relatedTarget

The other DOM element involved in the event, if any.

event.result

The last value returned by an event handler that was triggered by this event,
unless the value was undefined.

event.target

The DOM element that initiated the event.

event.timeStamp

The difference in milliseconds between the time the browser created the event
and January 1, 1970.

event.type

A description of the event.

event.which

The specific key or button that was pressed, for key or mouse events.

.jquery

A string containing the jQuery version number.

758 | Appendix E: jQuery Selectors, Objects, and Methods

jQuery.cssHooks

Hooks directly into jQuery to override how particular CSS properties are
retrieved or set, normalize CSS property naming, or create custom properties.

jQuery.cssNumber

Contains all the CSS properties that can be used without a unit. The css method
uses this to see if it may append px to unitless values.

jQuery.ready

A Promise-like object (or “thenable” that resolves when the document is ready.

jQuery.fx.off

Globally disables all animations.

.length

The number of elements in the jQuery object.

jQuery Methods
$

Returns a collection of matched elements either found in the DOM based on the
passed argument(s) or created by passing an HTML string.

add

Adds elements to the set of matched elements.

addBack

Adds the previous set of elements on the stack to the current set, optionally fil‐
tered by a selector.

addClass

Adds the specified class(es) to each of the set of matched elements.

after

Inserts content, specified by the parameter, after each element in the set of
matched elements.

ajaxComplete

Registers a handler to be called when Ajax requests complete.

ajaxError

Registers a handler to be called when Ajax requests complete with an error.

ajaxSend

Attaches a function to be executed before an Ajax request is sent.

jQuery Selectors, Objects, and Methods | 759

ajaxStart

Registers a handler to be called when the first Ajax request begins.

ajaxStop

Registers a handler to be called when all Ajax requests have completed.

ajaxSuccess

Attaches a function to be executed whenever an Ajax request completes success‐
fully.

animate

Performs a custom animation of a set of CSS properties.

append

Inserts content, specified by the parameter, to the end of each element in the set
of matched elements.

appendTo

Inserts every element in the set of matched elements to the end of the target.

attr

Gets the value of an attribute for the first element in the set of matched elements
or (when specified along with a value) sets one or more attributes for every
matched element.

before

Inserts content, specified by the parameter, before each element in the set of
matched elements.

blur

Binds an event handler to the blur JavaScript event, or triggers that event on an
element.

callbacks.add

Adds a callback or a collection of callbacks to a callback list.

callbacks.disable

Disables a callback list from doing anything more.

callbacks.disabled

Determines whether the callback list has been disabled.

callbacks.empty

Removes all of the callbacks from a list.

callbacks.fire

Calls all of the callbacks with the given arguments.

760 | Appendix E: jQuery Selectors, Objects, and Methods

callbacks.fired

Determines whether the callbacks have already been called at least once.

callbacks.fireWith

Calls all the callbacks in a list with the given context and arguments.

callbacks.has

Determines whether a list has any callbacks attached, or (if a callback is provided
as an argument) whether the supplied callback is in the list.

callbacks.lock

Locks a callback list in its current state.

callbacks.locked

Determines whether the callback list has been locked.

callbacks.remove

Removes a callback or a collection of callbacks from a callback list.

change

Binds an event handler to the change JavaScript event, or (when issued without
an argument) triggers that event on an element.

children

Gets the children of each element in the set of matched elements, optionally fil‐
tered by a selector.

clearQueue

Removes from the queue all items that have not yet been run.

click

Binds an event handler to the click JavaScript event, or (when issued without an
argument) triggers that event on an element.

clone

Creates a deep copy of the set of matched elements.

closest

For each element in the set, gets the first element that matches the selector by
testing the element itself and traversing up through its ancestors in the DOM
tree.

contents

Gets the children of each element in the set of matched elements, including text
and comment nodes.

jQuery Selectors, Objects, and Methods | 761

contextmenu

Binds an event handler to the contextmenu JavaScript event, or (when issued
without an argument) triggers that event on an element.

css

Gets the value of a style property for the first element in the set of matched ele‐
ments, or (when issued with an additional argument) sets one or more CSS prop‐
erties for every matched element.

data

Stores arbitrary data associated with the matched elements, or (when issued
without an argument) returns the value at the named data store for the first ele‐
ment in the set of matched elements.

dblclick

Binds an event handler to the dblclick JavaScript event, or (when issued without
an argument) triggers that event on an element.

deferred.always

Adds handlers to be called when the Deferred object is either resolved or rejec‐
ted.

deferred.catch

Adds handlers to be called when the Deferred object is rejected.

deferred.done

Adds handlers to be called when the Deferred object is resolved.

deferred.fail

Adds handlers to be called when the Deferred object is rejected.

deferred.notify

Calls progressCallbacks on a Deferred object with the given arguments.

deferred.notifyWith

Calls the progressCallbacks on a Deferred object with the given context and
arguments.

deferred.progress

Adds handlers to be called when the Deferred object generates progress notifica‐
tions.

deferred.promise

Returns a Deferred object’s Promise object.

762 | Appendix E: jQuery Selectors, Objects, and Methods

deferred.reject

Rejects a Deferred object and calls any failCallbacks with the given arguments.

deferred.rejectWith

Rejects a Deferred object and calls any failCallbacks with the given context
and arguments.

deferred.resolve

Resolves a Deferred object and calls any doneCallbacks with the given argu‐
ments.

deferred.resolveWith

Resolves a Deferred object and calls any doneCallbacks with the given context
and arguments.

deferred.state

Determines the current state of a Deferred object.

deferred.then

Adds handlers to be called when the Deferred object is resolved, rejected, or still
in progress.

delay

Sets a timer to delay execution of subsequent items in the queue.

dequeue

Executes the next function on the queue for the matched elements.

detach

Removes the set of matched elements from the DOM.

each

Iterates over a jQuery object, executing a function for each matched element.

empty

Removes all child nodes of the set of matched elements from the DOM.

end

Ends the most recent filtering operation in the current chain and returns the set
of matched elements to its previous state.

eq

Reduces the set of matched elements to the one at the specified index.

event.isDefaultPrevented

Determines whether preventDefault was ever called on this event object.

jQuery Selectors, Objects, and Methods | 763

event.isImmediatePropagationStopped

Determines whether stopImmediatePropagation was ever called on this event
object.

event.isPropagationStopped

Determines whether stopPropagation was ever called on this event object.

event.preventDefault

Prevents the default action of the event from being triggered.

event.stopImmediatePropagation

Keeps the rest of the handlers from being executed and prevents the event from
bubbling up the DOM tree.

event.stopPropagation

Stops the event from bubbling up the DOM tree, preventing any parent handlers
from being notified of the event.

fadeIn

Displays the matched elements by fading them to opaque.

fadeOut

Hides the matched elements by fading them to transparent.

fadeTo

Adjusts the opacity of the matched elements.

fadeToggle

Displays or hides the matched elements by animating their opacity.

filter

Reduces the set of matched elements to those that match the selector or pass the
function’s test.

find

Gets the descendants of each element in the current set of matched elements, fil‐
tered by a selector, jQuery object, or element.

finish

Stops the currently running animation, removes all queued animations, and
completes all animations for the matched elements.

first

Reduces the set of matched elements to the first in the set.

764 | Appendix E: jQuery Selectors, Objects, and Methods

focus

Binds an event handler to the focus JavaScript event, or (when issued without an
argument) triggers that event on an element.

focusin

Binds an event handler to the focusin JavaScript event.

focusout

Binds an event handler to the focusout JavaScript event.

get

Retrieves the DOM elements matched by the jQuery object.

has

Reduces the set of matched elements to those that have a descendant that
matches the selector or DOM element.

hasClass

Determines whether any matched elements are assigned the given class.

height

Gets the current computed height for the first element in the set of matched ele‐
ments, or (when issued with another argument) sets the height of every matched
element.

hide

Hides the matched elements.

hover

Binds one or two handlers to the matched elements, to be executed when the
mouse pointer enters and leaves the elements.

html

Gets the HTML contents of the first element in the set of matched elements, or
(when issued with another argument) sets the HTML contents of every matched
element.

index

Searches for a given element from among the matched elements.

innerHeight

Gets the current computed height for the first element in the set of matched ele‐
ments (including padding but not border), or (when issued with another argu‐
ment) sets the inner height of every matched element.

jQuery Selectors, Objects, and Methods | 765

innerWidth

Gets the current computed inner width (including padding but not border) for
the first element in the set of matched elements, or (when issued with another
argument) sets the inner width of every matched element.

insertAfter

Inserts every element in the set of matched elements after the target.

insertBefore

Inserts every element in the set of matched elements before the target.

is

Checks the current matched set of elements against a selector, element, or jQuery
object and returns true if at least one of these elements matches the given argu‐
ments.

jQuery

Returns a collection of matched elements either found in the DOM based on
passed argument(s) or created by passing an HTML string.

jQuery.ajax

Performs an asynchronous HTTP (Ajax) request.

jQuery.ajaxPrefilter

Handles custom Ajax options or modifies existing options before each request is
sent and before they are processed by $.ajax.

jQuery.ajaxSetup

Sets default values for future Ajax requests. Its use is not recommended.

jQuery.ajaxTransport

Creates an object that handles the actual transmission of Ajax data.

jQuery.Callbacks

A multipurpose callback list object that provides a powerful way to manage call‐
back lists.

jQuery.contains

Determines whether a DOM element is a descendant of another DOM element.

jQuery.data

Stores arbitrary data associated with the specified element and/or returns the
value that was set.

766 | Appendix E: jQuery Selectors, Objects, and Methods

jQuery.Deferred

A constructor function that returns a chainable utility object with methods to
register multiple callbacks into callback queues, invoke callback queues, and relay
the success or failure state of any synchronous or asynchronous function.

jQuery.dequeue

Executes the next function on the queue for the matched element.

jQuery.each

A generic iterator function that can be used to seamlessly iterate over both
objects and arrays. Arrays and array-like objects with a length property (such as
a function’s arguments object) are iterated by numeric index, from 0 to length –
1. Other objects are iterated via their named properties.

jQuery.error

Takes a string and throws an exception containing it.

jQuery.escapeSelector

Escapes any character that has a special meaning in a CSS selector.

jQuery.extend

Merges the contents of two or more objects together into the first object.

jQuery.fn.extend

Merges the contents of an object onto the jQuery prototype to provide new
jQuery instance methods.

jQuery.get

Loads data from the server using an HTTP GET request.

jQuery.getJSON

Loads JSON-encoded data from the server using a GET HTTP request.

jQuery.getScript

Loads a JavaScript file from the server using a GET HTTP request, and then exe‐
cutes it.

jQuery.globalEval

Executes some JavaScript code globally.

jQuery.grep

Finds the elements of an array that satisfy a filter function. The original array is
not affected.

jQuery.hasData

Determines whether an element has jQuery data associated with it.

jQuery Selectors, Objects, and Methods | 767

jQuery.holdReady

Holds or releases the execution of jQuery’s ready event.

jQuery.htmlPrefilter

Modifies and filters HTML strings passed through jQuery manipulation meth‐
ods.

jQuery.inArray

Searches for a specified value within an array and returns its index (or -1 if not
found).

jQuery.isArray

Determines whether the argument is an array.

jQuery.isEmptyObject

Determines whether an object is empty (contains no enumerable properties).

jQuery.isFunction

Determines whether the argument passed is a JavaScript function object.

jQuery.isNumeric

Determines whether the argument passed is a JavaScript number.

jQuery.isPlainObject

Determines whether an object is a plain object (created using {} or new Object).

jQuery.isWindow

Determines whether the argument is a window.

jQuery.isXMLDoc

Determines whether a DOM node is within an XML document (or is an XML
document).

jQuery.makeArray

Converts an array-like object into a true JavaScript array.

jQuery.map

Translates all items in an array or object to a new array of items.

jQuery.merge

Merges the contents of two arrays together into the first array.

jQuery.noConflict

Relinquishes jQuery’s control of the $ variable name.

jQuery.noop

An empty function.

768 | Appendix E: jQuery Selectors, Objects, and Methods

jQuery.now

Returns a number representing the current time.

jQuery.param

Creates a serialized representation of an array or object, suitable for use in a URL
query string or Ajax request.

jQuery.parseHTML

Parses a string into an array of DOM nodes.

jQuery.parseJSON

Takes a well-formed JSON string and returns the resulting JavaScript object.

jQuery.parseXML

Parses a string into an XML document.

jQuery.post

Loads data from the server using an HTTP POST request.

jQuery.proxy

Takes a function and returns a new one that will always have a particular context.

jQuery.queue

Shows or (when issued with another argument) manipulates the queue of func‐
tions to be executed on the matched element.

jQuery.readyException

Handles errors thrown synchronously in functions wrapped in jQuery.

jQuery.removeData

Removes a previously stored piece of data.

jQuery.speed

Creates an object containing a set of properties ready to be used in the definition
of custom animations.

jQuery.trim

Removes the whitespace from the beginning and end of a string.

jQuery.type

Determines the internal JavaScript class of an object.

jQuery.uniqueSort

Sorts an array of DOM elements in place, with the duplicates removed. This
works only on arrays of DOM elements, not strings or numbers.

jQuery Selectors, Objects, and Methods | 769

jQuery.when

Provides a way to execute callback functions based on zero or more objects, usu‐
ally Deferred objects that represent asynchronous events.

keydown

Binds an event handler to the keydown JavaScript event, or (when issued without
an argument) triggers that event on an element.

keypress

Binds an event handler to the keypress JavaScript event, or (when issued without
an argument) triggers that event on an element.

keyup

Binds an event handler to the keyup JavaScript event, or (when issued without an
argument) triggers that event on an element.

last

Reduces the set of matched elements to the final one in the set.

load

Loads data from the server and places the returned HTML into the matched ele‐
ment.

map

Passes each element in the current matched set through a function, producing a
new jQuery object containing the return values.

mousedown

Binds an event handler to the mousedown JavaScript event, or (when issued
without an argument) triggers that event on an element.

mouseenter

Binds an event handler to be fired when the mouse enters an element, or (when
issued without an argument) triggers that handler on an element.

mouseleave

Binds an event handler to be fired when the mouse leaves an element, or (when
issued without an argument) triggers that handler on an element.

mousemove

Binds an event handler to the mousemove JavaScript event, or (when issued
without an argument) triggers that event on an element.

mouseout

Binds an event handler to the mouseout JavaScript event, or (when issued without
an argument) triggers that event on an element.

770 | Appendix E: jQuery Selectors, Objects, and Methods

mouseover

Binds an event handler to the mouseover JavaScript event, or (when issued
without an argument) triggers that event on an element.

mouseup

Binds an event handler to the mouseup JavaScript event, or (when issued without
an argument) triggers that event on an element.

next

Gets the immediately following sibling of each element in the set of matched ele‐
ments. If a selector is provided, it retrieves the next sibling only if it matches that
selector.

nextAll

Gets all following siblings of each element in the set of matched elements,
optionally filtered by a selector.

nextUntil

Gets all following siblings of each element up to but not including the element
matched by the selector, DOM node, or jQuery object passed.

not

Removes elements from the set of matched elements.

off

Removes an event handler.

offset

Gets the current coordinates of the first element, or (when issued with an argu‐
ment) sets the coordinates of every element in the set of matched elements, rela‐
tive to the document.

offsetParent

Gets the closest ancestor element that is positioned.

on

Attaches an event handler function for one or more events to the selected ele‐
ments.

one

Attaches a handler to an event for the elements. The handler is executed at most
once per element per event type.

outerHeight

Gets the current computed height for the first element in the set of matched ele‐
ments, including padding, border, and optionally margin.

jQuery Selectors, Objects, and Methods | 771

outerWidth

Gets the current computed width for the first element in the set of matched ele‐
ments, including padding, border, and optionally margin.

parent

Gets the parent of each element in the current set of matched elements, option‐
ally filtered by a selector.

parents

Gets the ancestors of each element in the current set of matched elements,
optionally filtered by a selector.

parentsUntil

Gets the ancestors of each element in the current set of matched elements, up to
but not including the element matched by the selector, DOM node, or jQuery
object.

position

Gets the current coordinates of the first element in the set of matched elements,
relative to the offset parent.

prepend

Adds content, specified by the parameter, to the beginning of each element in the
set of matched elements.

prependTo

Inserts every element in the set of matched elements to the beginning of the tar‐
get.

prev

Gets the immediately preceding sibling of each element in the set of matched ele‐
ments, optionally filtered by a selector.

prevAll

Gets all preceding siblings of each element in the set of matched elements,
optionally filtered by a selector.

prevUntil

Gets all preceding siblings of each element up to but not including the element
matched by the selector, DOM node, or jQuery object.

promise

Returns a Promise object to observe when all actions of a certain type bound to
the collection, queued or not, have finished.

772 | Appendix E: jQuery Selectors, Objects, and Methods

prop

Gets the value of a property for the first element in the set of matched elements,
or (when issued with another argument) sets one or more properties for every
matched element.

pushStack

Adds a collection of DOM elements onto the jQuery stack.

queue

Shows or (when issued with another argument) manipulates the queue of func‐
tions to be executed on the matched elements.

ready

Specifies a function to execute when the DOM is fully loaded.

remove

Removes the set of matched elements from the DOM.

removeAttr

Removes an attribute from each element in the set of matched elements.

removeClass

Removes a single class, multiple classes, or all classes from each element in the set
of matched elements.

removeData

Removes a previously stored piece of data.

removeProp

Removes a property for the set of matched elements.

replaceAll

Replaces each target element with the set of matched elements.

replaceWith

Replaces each element in the set of matched elements with the provided new
content and returns the set of elements that was removed.

resize

Binds an event handler to the resize JavaScript event, or (when issued without
an argument) triggers that event on an element.

scroll

Binds an event handler to the scroll JavaScript event, or (when issued without
an argument) triggers that event on an element.

jQuery Selectors, Objects, and Methods | 773

scrollLeft

Gets the current horizontal position of the scroll bar for the first element in the
set of matched elements, or (when issued with an argument) sets the horizontal
position of the scroll bar for every matched element.

scrollTop

Gets the current vertical position of the scroll bar for the first element in the set
of matched elements, or (when issued with an argument) sets the vertical posi‐
tion of the scroll bar for every matched element.

select

Binds an event handler to the select JavaScript event, or (when issued without
an argument) triggers that event on an element.

serialize

Encodes a set of form elements as a string for submission.

serializeArray

Encodes a set of form elements as an array of names and values.

show

Displays the matched elements.

siblings

Gets the siblings of each element in the set of matched elements, optionally fil‐
tered by a selector.

slice

Reduces the set of matched elements to a subset specified by a range of indices.

slideDown

Displays the matched elements with a sliding motion.

slideToggle

Displays or hides the matched elements with a sliding motion.

slideUp

Hides the matched elements with a sliding motion.

stop

Stops the currently running animation on the matched elements.

submit

Binds an event handler to the submit JavaScript event, or (when issued without
an argument) triggers that event on an element.

774 | Appendix E: jQuery Selectors, Objects, and Methods

text

Gets the combined text contents of each element in the set of matched elements,
including their descendants, or (when issued with an argument) sets the text con‐
tents of the matched elements.

toArray

Retrieves all the elements contained in the jQuery set, as an array.

toggle

Displays or hides the matched elements.

toggleClass

Adds or removes one or more classes from each element in the set of matched
elements, depending on either the class’s presence or the value of the state argu‐
ment.

trigger

Executes all handlers and behaviors attached to the matched elements for the
given event type.

triggerHandler

Executes all handlers attached to an element for an event.

unwrap

Removes the parents of the set of matched elements from the DOM, leaving the
matched elements in their place.

val

Gets the current value of the first element in the set of matched elements, or
(when issued with an argument) sets the value of every matched element.

width

Gets the current computed width for the first element in the set of matched ele‐
ments, or (when issued with an argument) sets the width of every matched ele‐
ment.

wrap

Wraps an HTML structure around each element in the set of matched elements.

wrapAll

Wraps an HTML structure around all elements in the set of matched elements.

wrapInner

Wraps an HTML structure around the content of each element in the set of
matched elements.

jQuery Selectors, Objects, and Methods | 775

Index

Symbols
! (Not) logical operator

in JavaScript, 318, 334
in PHP, 47, 68, 72

!= (inequality) operator
in JavaScript, 318
in PHP, 46, 68

!== (not identical) operator
in JavaScript, 318
in PHP, 46, 68

" (quotation marks, double)
escaping in JavaScript, 319
in JavaScript strings, 315
in PHP heredocs, 51
in PHP multi-line commands, 50
in PHP strings, 49

$ () function
in JavaScript, 324
in jQuery, 508

$ (dollar) symbol
in JavaScript, 324
in jQuery, 505-507
in PHP, 39, 54, 109

$.each method, 552
$.map method, 553
$= (attribute selector) operator, 455
$GLOBALS variable, 60
$this variable (PHP), 112
$_POST arrays, 246
% (modulus) operator

in JavaScript, 317, 332
in PHP, 45, 68

%= (modulus and assignment) operator
in JavaScript, 317

in PHP, 45
& (ampersand), prefacing PHP variables, 100
& (And) bitwise operator

in JavaScript, 332
in PHP, 69

&& (And) logical operator
in JavaScript, 318, 334
in PHP, 47, 68, 72

&= (bitwise AND and assignment) operator
in JavaScript, 332
in PHP, 69

' (quotation marks, single)
escaping in JavaScript, 319
in JavaScript strings, 315
in PHP heredocs, 51
in PHP strings, 49

() (parentheses)
casting operators in PHP, 91
in functions in PHP, 96
in regular expressions, 379
operator precedence and, 68

* (asterisk)
in MySQL, 193
in regular expressions, 378
showing instead of password, 685, 689
wildcard/universal selector in CSS, 424

* (multiplication) operator
in JavaScript, 317
in PHP, 45, 68

** (exponentiation) operator, in PHP, 45
*/ character, 38
*= (attribute selector) operator, 455
*= (multiplication and assignment) operator

in JavaScript, 317

777

in PHP, 45
+ (addition) operator

in JavaScript, 317
in PHP, 45, 68

+ (string concatenation) operator in JavaScript,
318

++ (increment) operator
in JavaScript, 318
in PHP, 45, 68

+= (addition and assignment) operator
in JavaScript, 317
in jQuery, 530
in PHP, 45

, (comma)
in JavaScript, 344
in PHP, 88

- (hyphen), in regular expressions, 380
- (minus sign)

unary operator in JavaScript, 332
unary operator in PHP, 69

- (subtraction) operator
in JavaScript, 317
in PHP, 45, 68, 69

-- (decrement) operator
in JavaScript, 318
in PHP, 45, 68

-= (subtraction and assignment) operator
in JavaScript, 317
in jQuery, 530
in PHP, 45

-> operator, 112, 237
. (dot)

in regular expressions, 378
prefacing CSS class statements, 416

... (ellipsis), indicating truncated text, 470

.= (concatenation assignment) operator (PHP),
45, 49, 68

/ (division) operator
in JavaScript, 317
in PHP, 45, 68

/ (forward slash)
/* and */ in multiline comments, 38
/**/ in CSS comments, 417
// in JavaScript comments, 312
in regular expressions, 378

/* character, 38
/= (division and assignment) operator

in JavaScript, 317
in PHP, 45, 68

3D transformations, 475
: (colon) character

in CSS, 416
in PHP, 64

:: (scope resolution) operator, 116
; (semicolons)

in CSS, 416
in JavaScript, 310, 314
in MySQL, 171
in PHP, 39, 87

< (less than) operator
in JavaScript, 318, 334
in PHP, 46, 68, 72

<< (bitwise left shift) operator
in JavaScript, 332
in PHP, 68

<<< (heredoc) operator (PHP), 51
<<= (bitwise left shift and assignment) operator

in JavaScript, 332
in PHP, 69

<= (less than or equal to) operator
in JavaScript, 318, 334
in PHP, 46, 68, 72

<> (not equal) operator (PHP), 46, 68
<?php?> tag, 36
= (assignment) operator

in JavaScript, 317
in PHP, 45
not confusing with == operator, 46, 70

== (equality) operator
in JavaScript, 318, 333
in PHP, 46, 68, 70, 293
not confusing with = operator, 46

=== (identity) operator
in JavaScript, 318, 333
in PHP, 46, 68, 293

=> operator (PHP), assigning value to array
index, 126

> (greater than) operator
in JavaScript, 318, 334
in PHP, 46, 68, 72

>= (greater than or equal to) operator
in JavaScript, 318, 334
in PHP, 46, 68, 72

>> (bitwise right shift) operator
in JavaScript, 332
in PHP, 69

>>= (bitwise right shift and assignment) opera‐
tor

778 | Index

in JavaScript, 332
in PHP, 69

>>>= (zero-fill right shift) bitwise operator in
JavaScript, 332

? operator (PHP), 82
?: (ternary) operator

in JavaScript, 342
in PHP, 67, 68, 82

@ (error control) operator (PHP), 69
[] (square brackets)

accessing array elements, 130, 363
in fuzzy matching, 380
in PHP function definitions, 97
in regular expressions, 380
negation of character class with, 380
precedence in JavaScript, 332

\ (backslash)
in JavaScript strings, 319
in PHP strings, 49
in regular expressions, 379

\c (cancel in MySQL), 172
\n (newline) character, 50, 319
\r (carriage return) character, 50, 319
\t (tab) character, 50, 130, 319
^ (bitwise xor) operator

in JavaScript, 331
in PHP, 69

^ (caret), in regular expressions, 380
^= (attribute selector) operator, 455
^= (bitwise XOR and assignment) operator

in JavaScript, 332
in PHP, 69

__ (double underscore), 54, 112
{ } (curly braces)

in for loops in PHP, 87
in functions in PHP, 98
in if statements in PHP, 75
in while statements in PHP, 84

| (Or) bitwise operator
in JavaScript, 332
in PHP, 69

|= (bitwise OR and assignment) operator
in JavaScript, 332
in PHP, 69

|| (Or) logical operator
in JavaScript, 318, 334
in PHP, 47, 68, 72

A
AAC (Advanced Audio Encoding), 642
acknowledgments, xxvii
ActiveX technology, 396
addColorStop method (HTML5), 595
addition (+) operator

in JavaScript, 317
in PHP, 45, 68

advisory locks, 154
after method (jQuery), 535
Ajax (Asynchronous JavaScript and XML), 395

(see also asynchronous communication)
alert function (JavaScript), 326
alignment, of text, 435
ALTER command (MySQL), 182-192

adding new columns, 185
changing column data types, 185
overview of, 182
removing columns, 186
renaming columns, 186
renaming tables, 184

AMPPS server
alternatives to, 25
documentation, 22
evolution of, 26
macOS installation, 26-28
MySQL access, 167-170
PHP version selection, 22, 27, 96
Windows installation, 18-25

ancestor elements, selecting all, 543
And (&&) logical operator

in JavaScript, 318, 334
in PHP, 47, 68, 72

and (low-precedence) logical operator (PHP),
47, 68

animation
using interrupts for, 497-499
using jQuery, 528-532

Apache web server
benefits of, 11
documentation, 304
in WAMPs, MAMPs, and LAMPs, 18

arc method (HTML5), 614
arcTo method (HTML5), 617
arguments array, in JavaScript, 350
arguments, in PHP, 96, 100
arithmetic operators

in JavaScript, 317
in PHP, 45, 66, 68

Index | 779

Array keyword (JavaScript), 361
array keyword (PHP), 126
arrays (JavaScript)

array methods, 363
assigning values to, 316
associative, 361
multidimensional, 362
numeric, 360
returning arrays with functions, 353

arrays (PHP)
array functions, 132-137
assignment using array keyword, 126
associative, 125
basics of, 42
benefits of, 123
foreach...as loops, 127
multidimensional, 129
numerically indexed, 123
returning values from functions in, 99
two-dimensional, 43

array_combine function (PHP), 104
AS keyword (MySQL), 205
assignment

array element values in JavaScript, 360
multiline string assignment in PHP, 50
multiple-assignment statements, 70
setting variable type by in JavaScript, 317
shorthand assignment of CSS properties,

445
string variables in JavaScript, 315
using Array keyword in JavaScript, 361
using array keyword in PHP, 126

assignment operators
in JavaScript, 317
in PHP, 45, 66, 68, 70

associative arrays
in JavaScript, 361
in PHP, 125

associativity, 69, 332
asterisk (*)

in MySQL, 193
in regular expressions, 378
showing instead of password, 685, 689
wildcard/universal selector in CSS, 424

asynchronous communication
Ajax and, 395
benefits of, 9
defined, 396
Google Maps example, 395

implementation with XMLHttpRequest,
396-411

jQuery and, 554
libraries facilitating, 501
online resources, 737
role of modern technology in, 13

Atom feeds, 146
attr method (jQuery), 533
attribute selectors (CSS), 424, 454
audio (HTML5)

<audio> element, 643
codecs (encoders/decoders), 642
history of delivery formats, 641
supporting non-HTML5 browsers, 646

authentication (HTTP), 290-299
autocomplete attribute, 283
autofocus attribute, 283
AUTO_INCREMENT data type (MySQL), 181,

256

B
backgrounds (see under CSS; CSS3)
backslash (\)

in JavaScript strings, 319
in PHP strings, 49
in regular expressions, 379

BCRYPT algorithm, 295, 298
BEGIN statement (MySQL), 224
Berners-Lee, Tim, 1
bezierCurveTo method (HTML5), 619
BINARY data type (MySQL), 178
binary operators, 66
bitwise left shift (<<) operator

in JavaScript, 332
in PHP, 68

bitwise left shift and assignment (<<=) operator
in JavaScript, 332
in PHP, 69

bitwise operators
in JavaScript, 332
in PHP, 68

bitwise OR and assignment (|=) operator
in JavaScript, 332
in PHP, 69

bitwise right shift (>>) operator
in JavaScript, 332
in PHP, 69

bitwise xor (^) operator
in JavaScript, 331

780 | Index

in PHP, 69
bitwise XOR and assignment (^=) operator

in JavaScript, 332
in PHP, 69

BLOB data types (MySQL), 179
Boolean expressions

in JavaScript, 329
in PHP, 64

Boolean operators, 334
Boolean values, 63, 70
borders, applying using CSS

adjusting padding, 449
box model and layout, 446
box-sizing property and, 455
CSS3 backgrounds and, 456-461
CSS3 borders, 461-465
<div> vs. elements, 429
properties controlling, 448
shorthand rule for, 445
using universal selector, 424

box model (CSS)
adjusting padding, 449
applying borders, 448
setting margins, 446

break command
in JavaScript looping, 345
in PHP looping, 88
in PHP switch statements, 81

browsers
audio types supported by, 643
common HTML tags in use, 672
cross-browser compatibility, 501
debugging JavaScript errors, 313
support for HTML5, 579
supporting older/nonstandard, 311, 646,

651
video types supported by, 648
window properties in CSS, 486-488

bumpyCaps/bumpyCase, 350
<button> element, 283

C
C++ Redistributable Visual Studio, 21
call-time pass-by-reference, 100
callback functions

animation using, 531
defined, 400

camelCase, 350
canvas (HTML5)

benefits of, 579
clip method, 610
creating and accessing, 587-599
drawing lines, 603-606
editing at pixel level, 625-629
filing areas, 608
graphical effects, 629-632
isPointInPath method, 613
manipulating images, 620-625
transformations, 632-639
using paths, 606-608
working with curves, 614-620
writing text to, 600-603

caret (^), in regular expressions, 380
carriage return (\r) character, 50, 319
Cascading Style Sheets (see CSS (Cascading

Style Sheets))
case command

in JavaScript, 341
in PHP, 80

casting
explicit in JavaScript, 346
implicit/explicit in PHP, 90
operators in PHP, 69

CDNs (content delivery networks), 502
CHANGE keyword (MySQL), 186
CHAR data type (MySQL), 177
character sets, 177
charAt method (JavaScript), 352
checkboxes, 272-274
checkdate function (PHP), 146
child elements, accessing, 545
class keyword (PHP), 107
__CLASS__ constant, 54
classes

dynamic application of in jQuery, 537
in JavaScript, 354
in PHP, 106-108

clearInterval function (JavaScript), 494
clearQue method (jQuery), 531
clearRect method (HTML5), 591
clients

request/response procedure, 2-5
role in internet communications, 2

clone operator, 110
code examples, obtaining and using, 7, 37, 41,

484, 676
codecs (encoders/decoders)

purpose of, 642

Index | 781

supported by <audio> tag, 642
supported by <video> tag, 648

colon (:) character
in CSS, 416
in PHP, 64

color input type, 285
colors

in CSS, 437-439
in CSS3, 468
in forms, 283, 285
in HTML, 140, 143

columns
defined, 165, 165
working with in MySQL, 185-186

comma (,)
in JavaScript, 344
in PHP, 88

commands
in MySQL, 171-177
multiple-line (PHP), 50-52

comments
in CSS, 417
in JavaScript, 314
in PHP, 38

COMMIT command (MySQL), 225
Common Gateway Interface (CGI), 5
compact function (PHP), 135
companion website, 37
comparison operators

in JavaScript, 318, 334
in PHP, 46, 66, 68, 72

concat method (JavaScript), 364
concatenation, 49, 318
conditionals (JavaScript)

? operator, 342
else statements, 339
if statements, 339
switch statements, 340

conditionals (PHP)
? operator, 82
else statements, 76
elseif statements, 78
if statements, 75
switch statements, 79-81

console.log function (JavaScript), 326
constants (PHP), 53-55, 64, 113, 146
constructors

in JavaScript, 354
in PHP, 111, 119

content types, 158
continue statements

in JavaScript, 345
in PHP, 89

control flow (see flow control)
$_COOKIE variable, 61, 290
cookies

accessing, 290
alerting users to, 299
date constants in PHP, 146
defined, 287
destroying, 290
vs. local storage, 660
request/response procedure, 288
requiring, 306
setting in PHP, 289
third-party cookies, 287

copy function (PHP), 150
count function (PHP), 132
COUNT parameter (MySQL), 194
CREATE INDEX command (MySQL), 189
createImageData method (HTML5), 628
createLinearGradient method (HTML5), 593
createRadialGradient method (HTML5), 596
cross-document messaging, 668-671
cross-site scripting, 240, 263
CSS (Cascading Style Sheets) (see also CSS3)

benefits of, 5-10, 413
box model and layout using, 446-451
browser compatibility and, 453
cascade precedence, 425-429
classes, 415
comments in, 417
CSS rules, 416-418
CSS selectors, 420-425
<div> vs. elements, 429
element IDs, 415
fonts and typography supported by, 433-435
importing stylesheets, 414
JavaScript access to CSS properties, 484-499
managing colors and gradients, 437-439
managing text styles, 435-436
measurements supported by, 431
online resources, 736
positioning elements with, 440-442
pseudoclasses and, 443-445
purpose of, 413
semicolons in, 416
shorthand rules, 445

782 | Index

social networking app example, 708-710
style types, 418-420
versions of, 453

CSS3
attribute selectors, 454
background properties, 456-461
border properties, 461-465
box shadow effect, 465
box-sizing property, 455
browser compatibility and, 453
colors and opacity, 468-470
element overflow declarations, 466
history of, 453
vs. JavaScript, 453
multicolumn layout, 466-467
text effects, 470-472
transformations, 474-476
transitions, 476-479
web fonts, 472-474

CSV format, dumping data in, 231
curly braces ({ })

in for loops in PHP, 87
in functions in PHP, 98
in if statements in PHP, 75
in while statements in PHP, 84

currency conversion, 140
curves, working with on canvas, 614-620

D
data types (MySQL)

AUTO_INCREMENT data type, 181
BINARY, 178
BLOB, 179
CHAR, 177
DATE and TIME, 181
numeric, 180
TEXT data types, 179
VARCHAR, 177

database queries (see also MySQL; databases)
AUTO_INCREMENT, 256
building/executing, 238
closing connections, 242
example of, 243-250
fetching results, 239
fetching rows, 241
hacking prevention, 258-266
login file creation, 236
MySQL database connection, 237-242
mysqli procedural use, 264-266

process of, 235
secondary queries, 257
table creation, 251
tables, adding data to, 253
tables, deleting data in, 255
tables, describing, 251
tables, dropping, 252
tables, retrieving data from, 254
tables, updating data in, 255

databases (see also MySQL; database queries)
anonymity and, 222
backup and restore for, 227-232
defined, 165
design considerations, 209
normalization process, 211-219
primary keys in, 210
relationships in, 219-222
terminology surrounding, 166
transactions in, 223-227

DATE and TIME data types (MySQL), 181
date and time functions (PHP)

checkdate function, 146
date constants, 146
date function, 144
date function format specifiers, 145
determining current timestamp, 143

date functions (MySQL)
CURDATE(), 746
DATE(expr), 746
DATE_ADD(date, INTERVAL expr unit),

747
DATE_FORMAT(date, format), 748
DATE_SUB, 747
DAY(date), 749
DAYNAME(date), 749
DAYOFWEEK(date), 749
DAYOFYEAR(date), 749
expected epr values, 747
LAST_DAY(date), 749
MAKEDATE(year, dayofyear), 750
MONTH(date), 750
MONTHNAME(date), 750
SYSDATE(), 750
WEEK(date [, mode]), 750
WEEKDAY(date), 751
YEAR(date), 750

date pickers, in forms, 286
DateTime class (PHP), 144
debugging

Index | 783

JavaScript errors, 313
PHP magic constants, 55

decrement (--) operator
in JavaScript, 318
in PHP, 45, 68

define function (PHP), 54, 113
DELETE command (MySQL), 195
derived classes, 107
DESC keyword (MySQL), 202
DESCRIBE command (MySQL), 176, 185, 188
destructors (PHP), 111
development server setup

AMPPS installation on macOS, 26-28
AMPPS installation on Windows, 18-25
bundled programming packages, 18
IDEs (integrated development environ‐

ments), 31
program editors, 30
recommended browsers, 17
remote access, 28-30, 170
role of development servers, 17

die function (PHP), 147, 237, 292
different_user function (PHP), 304
__DIR__ constant, 54
DISTINCT parameter (MySQL), 194
division (/) operator

in JavaScript, 317
in PHP, 45, 68

do...while loops
in JavaScript, 343
in PHP, 86

DOCTYPE declaration, 413
document root

accessing AMPPS on macOS, 27
accessing AMPPS on Windows, 24

document.write function (JavaScript), 310, 326
dollar symbol ($)

in JavaScript, 324
in PHP, 39, 54, 109

DOM (Document Object Model) (see also CSS
(Cascading Style Sheets))
adding elements to, 491, 535
alternatives to adding/removing elements

from, 493
JavaScript access to CSS properties, 484-499
JavaScript and, 322-326
manipulating with jQuery, 532-537
removing elements from, 492, 535
traversing with jQuery, 541-552

XML documents and, 408-410
dot (.)

in regular expressions, 378
prefacing CSS class statements, 416

drag and drop feature, 666
drawImage method (HTML5), 620, 622
DROP keyword (MySQL), 186
drop-down lists, 276
dynamic linking (PHP), 91-93
dynamic web design

Apache web server and, 11
asynchronous communication, 13
basic web operations, 2
benefits of modern technologies, 5-10
early history, 1
HTML5 and, 10
open source technologies and, 12
request/response procedure, 2-5
responsive design, 12

E
each function (PHP), 128
ease functions (CSS), 477
echo statements (PHP)

in arrays, 130
vs. print command, 55
using operators, 48

editors, 24, 27, 30
Editra, 30
element overflow declarations, 466
ellipsis (...), indicating truncated text, 470
else statements

in JavaScript, 339
in PHP, 76

elseif statements (PHP), 78
email addresses, validating on forms, 376
encapsulation, 106
end function (PHP), 136
_END..._END tags (PHP), 51
end-of-page scripts, 512
endswitch command (PHP), 81
$_ENV variable, 61
equality (==) operator

in JavaScript, 318, 333
in PHP, 46, 68, 70, 293

error control (@) operator (PHP), 69
error handling

JavaScript errors, 313
parse error messages in PHP, 39

784 | Index

escape characters
in JavaScript, 319
in PHP, 49, 259

escapeshellcmd function (PHP), 162
event functions and properties (jQuery)

blur and focus, 513
click and dblclick, 514
documentation, 512
keypress, 515-517
mouse events, 517-522
passing keyboard interrupts, 517
submit, 522
this keyword, 514

event handling in jQuery, 510
events (JavaScript)

attaching to objects in scripts, 489
attaching to other events, 490

exclusive or (xor) logical operator (PHP), 47, 68
exec system call (PHP), 161-162
execution operators (PHP), 66
EXPLAIN command (MySQL), 226
explicit casting (JavaScript), 346
explicit casting (PHP), 90
explode function (PHP), 133
exponentiation (**) operator, in PHP, 45
expressions

in JavaScript, 329
in PHP, 63-66

extends keyword (PHP), 117
extract function (PHP), 134

F
fade effects, 526
fetch_array method, 242
fetch_assoc method, 239
fgets function (PHP), 149
file handling (PHP)

copying files, 150
deleting files, 151
file creation, 147
file pointers and file handles, 151
file_exists function, 147
fopen modes, 148
form data validation, 158
including/requiring files, 103
locking files for multiple accesses, 153
moving files, 150
naming rules, 147
reading files in total, 154

reading from files, 149
sequence of, 148
updating files, 151
uploading files, 155-160

__FILE__ constant, 54
$_FILES array (PHP), 157
$_FILES variable, 61
file_exists function (PHP), 147
file_get_contents (PHP), 154
fillRect method (HTML5), 591
fillText method (HTML5), 602
final keyword (PHP), 120
Flash, 646
flock function (PHP), 153
flow control (JavaScript)

conditionals, 339-342
explicit casting, 346
expressions, 329
literals and variables, 330
looping, 342-346
onerror events, 337
operators, 331-336
try...catch construct, 338
with statements, 336

flow control (PHP)
conditionals, 74-83
dynamic linking in action, 92
dynamic linking in PHP, 91
expressions, 63-66
implicit and explicit casting, 90
looping, 83-90
operators, 66-74

font property (HTML5), 601
fonts

fonts and typography, 433
text effects, 470
text styles, 435
web fonts, 472

fopen function (PHP), 148
for loops

in JavaScript, 344
in PHP, 86

forEach method (JavaScript), 364
foreach...as loops (PHP), 127
form attribute, 285
form data validation, 158 (see also file han‐

dling)
form handling

autocompleting fields, 283

Index | 785

building forms, 267
checkboxes, 272-274
color selection, 285
date/time pickers, 286
drop-down lists, 276
example program, 280-282
helpful hints, adding, 283
hidden fields, 275
immediate element focus, 283
input image dimensions, 284
interacting with entire element, 277
overriding form settings, 284
radio buttons, 274
required fields, 284
restricting input to numbers/ranges, 285
retrieving submitted data, 269
sanitizing input, 278-280
specifying form to which input applies, 285
specifying min/max input values, 284
stepping through number values, 284
submit button text and graphics, 278
supplying default values, 270
supplying lists, 285
text areas, 271
text boxes, 271

formaction attribute, 284
forward slash (/)

/* and */ in multiline comments in PHP, 38
/**/ in CSS comments, 417
// in JavaScript comments, 312
in regular expressions, 378

fread function (PHP), 149
fseek function (PHP), 152
FTP (File Transfer Protocol), 29
FULLTEXT indexes (MySQL), 192, 739-741
__FUNCTION__ constant, 54
functions (JavaScript)

creating, 321
defining, 349
returning arrays, 353
returning values, 351

functions (MySQL)
benefits of, 206
date functions, 746-751
string functions, 743-746
time functions, 751-752

functions (PHP)
advantages of, 95
arguments accepted by, 96

array functions, 132-137
basics of, 55
defining, 97
including and requiring files, 103
naming rules, 97
nesting for execution order, 98
passing arguments by reference, 100
purpose of, 95
returning arrays from, 99
returning global variables, 102
returning values from, 98
social networking app example, 676-679
using (calling), 96
variable scope, 102
version compatibility and, 104

function_exists function (PHP), 104
fuzzy character matching, 378

G
geolocation, 581-583, 655, 657
$_GET array, 246
GET method (HTTP)

asynchronous communication and, 403-406
jQuery and, 555

$_GET variable, 61
getCurrentPosition method, 658
getElementById function

C function, 483
enhanced version of, 481
including functions in web pages, 484
O function, 481
S function, 482

getElementsByTagName method, 409
getImageData method (HTML5), 625
get_magic_quotes_gpc function (PHP), 260
get_password method (PHP), 112
Global Positioning System (GPS), 655
global variables

in JavaScript, 321
in PHP, 102
in PHP), 59

globalAlpha property (HTML5), 632
globalCompositeOperation property (HTML5),

629
Google Maps, 395, 658, 660
Google web fonts, 473
goto fail bug, 76
gradients, 438-439
GRANT command (MySQL), 174

786 | Index

granted function, 658
graphical effects, 629-632 (see also canvas

(HTML))
greater than (>) operator

in JavaScript, 318, 334
in PHP, 46, 68, 72

greater than or equal to (>=) operator
in JavaScript, 318, 334
in PHP, 46, 68, 72

GROUP BY keyword (MySQL), 202

H
height attribute, 284
height method (jQuery), 538
heredoc (<<<) operator (PHP), 51
hidden fields, 275
hsl function (CSS), 468
hsla function (CSS), 469
HTML (Hypertext Markup Language) (see also

form handling)
accessing JavaScript from within, 488
basics of, 2
converting characters to, 61
HTML comment tags, 311
incorporating with JavaScript, 310-313
incorporating with PHP, 35
origins of, 1
setting colors with printf, 140

HTML forms (see form handling)
HTML injection, 263
html method (jQuery), 533
HTML5

audio and video support, 583, 641-653
benefits of, 579
browser support for, 579
canvas element, 579-581 (see also canvas

element (HTML5))
common tags in use, 672
cross-document messaging, 668-671
development of, 10
drag and drop feature, 666
form handling enhancements, 283-286
geolocation, 581-583
geolocation and GPS service, 655
geolocation and HTML5, 657
local storage enhancements, 585, 660-663
microdata mark up, 585, 672
online resources, 736
other location methods, 656

supporting older/nonstandard, 646, 651
web workers in, 585, 663-666
XHTML syntax and, 11, 162

htmlentities function (PHP), 61, 263, 279
htmlspecialchars function (PHP), 161, 240, 247,

292
HTTP (Hypertext Transfer Protocol)

basics of, 2
GET method, 246, 403-406
origins of, 1
POST method, 246, 268, 282, 403-406

HTTP authentication, 290-299
example program, 296-299
HTTP authentication module, 291-293
purpose of, 290
storing usernames and passwords, 294

human-readable data, 108
hyphen (-), in regular expressions, 380

I
identity (===) operator

in JavaScript, 318, 333
in PHP, 46, 68, 293

IDEs (integrated development environments),
31, 35

if statements (JavaScript), 339
if statements (PHP)

flow control using, 75
using operators, 48

if...else if... construct (JavaScript), 340
if...else statement (PHP), 77
if...elseif...else construct (PHP), 78
image types, in HTML5, 591
images

adding profile images, 692
drag and drop feature, 666
editing at pixel level, 625
manipulating with canvas, 620-625

implicit casting (PHP), 90
!important declaration, 428
include statement (PHP), 103, 237
include_once statement (PHP), 103
increment (++) operator

in JavaScript, 318
in PHP, 45, 68

indexes (MySQL)
creating, 187-193
joining tables together, 203-205
purpose of, 187

Index | 787

querying databases, 193-202
using logical operators, 205

indexOf function (JavaScript), 363
inequality (!=) operator

in JavaScript, 318
in PHP, 46, 68

inheritance, 107, 117-120
ini_set function (PHP), 306
inline JavaScript, 488
inline styles (CSS), 420
innerHeight method (jQuery), 540
innerWidth method (jQuery), 540
InnoDB, 175
<input> element, 283
INSERT command (MySQL), 184
instances, 106, 354
interfaces, 106
internet media types, 158
Internet Protocol (IP) addresses, 656
interrupts

animation with, 497-499
canceling intervals, 497
canceling timeouts, 495
passing keyboard interrupts, 517
purpose of, 494
using setInterval, 495
using setTimeout, 494

is method (jQuery), 550
isPointInPath method (HTML5), 613
is_array function (PHP), 132

J
JavaScript

arrays in, 359-368
asynchronous communication using,

396-411
benefits of, 5-10, 309
comments in, 314
CSS properties access from, 484-499
vs. CSS3, 453
debugging errors, 313
Document Object Model and, 322-326
document.write function, 326
flow control in, 329-346
functions in, 321, 349-354
global variables in, 321
history of, 309
HTML text and, 310-313
inline access, 488

local variables, 321
objects in, 354-359
online resources, 736
operators in, 316-319
regular expressions in, 385
semicolons in, 314
validating user input with, 371-393
variable typing in, 319-320
variables in, 314-315

JavaScript Object Notation (JSON), 410
join method (JavaScript), 365
JOIN...ON construct (MySQL), 205
jQuery (see also jQuery mobile)

asynchronous communication using, 554
avoiding library conflicts, 507
benefits of, 501
comprehensive list of methods in, 759-775
comprehensive list of objects in, 758
customizing, 505
documentation, 753
DOM manipulation using, 532-537
DOM traversal, 541-552
dynamic application of classes, 537
event functions and properties, 512-523
event handling, 510
including in web pages, 502-505
modifying dimensions on web pages,

537-540
obtaining, 504-505
Plugin Registry, 556
ready method, 511
resources for using, 753
selectors, 507-510, 753-757
special effect processing, 523-532
syntax, 505-507
User Interface plug-in, 556
using without selectors, 552
version selection, 502-503

jQuery function, 505, 506, 507, 508
jQuery Mobile (see also jQuery)

benefits of, 559
example web page, 561-563
including in web pages, 560
linking pages, 563-564
list handling, 571-577
page transitions, 565-568
PhoneGap and, 577
progressive enhancement with, 559
styling buttons, 568-570

788 | Index

justification, right or left, 142

K
key/value pairs

associative arrays in PHP, 128
local storage and, 661

keypress events, 515
keys (MySQL), 210

L
<label> tags, 277
LAMP (Linux, Apache, MySQL, and PHP), 18,

28
layout (see under CSS; CSS3)
less than (<) operator

in JavaScript, 318, 334
in PHP, 46, 68, 72

less than or equal to (<=) operator
in JavaScript, 318, 334
in PHP, 46, 68, 72

LIMIT keyword (MySQL), 197
__LINE__ constant, 54
lineCap property (HTML5), 604
lineJoin property (HTML5), 604
lines, drawing on canvas, 603-606
lineTo method (HTML5), 607
lineWidth property (HTML5), 604
links

displaying as buttons in jQuery Mobile, 568
dynamic linking in PHP, 91-93
linking pages in jQuery Mobile, 563

list attribute, 285
list function (PHP), 128
literals

in JavaScript, 330
in PHP, 65, 91

local storage
vs. cookies, 660
HTML enhancements to, 585
localStorage object, 661-663

local variables (JavaScript), 321
local variables (PHP), 57, 102
logical operators

in JavaScript, 318, 334
in MySQL, 205
in PHP, 46, 66, 68, 72

looping (JavaScript)
breaking out of loops, 345
continue statements, 345

do...while loops, 343
for loops, 344
while loops, 342

looping (PHP)
basics of, 83
breaking out of loops, 88
continue statements, 89
do...while loops, 86
for loops, 86
foreach...as loops, 127
while loops, 84

M
magic constants, 54
magic quotes feature (PHP), 259, 279
MAMP (Mac, Apache, MySQL, and PHP), 18
many-to-many relationship, 221
margins, setting, 446
MariaDB, 6
MATCH...AGAINST construct (MySQL), 198
max attribute, 284
MD5 hashing algorithm, 294
measureText method (HTML5), 603
Media Access Control (MAC) addresses, 656
messaging, cross-document, 668-671
metacharacters, in regular expressions, 378, 383
method chaining, 353, 531
__METHOD__ constant, 54
methods

in JavaScript, 352, 363
in jQuery, 759-775
in PHP, 106, 112, 114

microdata, 585, 672
MIME (Multipurpose Internet Mail Extension),

158
min attribute, 284
minus sign (-)

unary operator in JavaScript, 332
unary operator in PHP, 69

miterLimit property (HTML5), 606
mktime function (PHP), 144
MODIFY keyword (MySQL), 185
modulus (%) operator

in JavaScript, 317
in PHP, 45, 68

modulus and assignment (%=) operator
in JavaScript, 317
in PHP, 45

mouse events, 517-522

Index | 789

moveTo method (HTML5), 607
MP3 (MPEG Audio Player 3), 642
MP4 format, 648
multidimensional arrays

in JavaScript, 362
in PHP, 129

multiple-line comments, 38
multiplication (*) operator

in JavaScript, 317
in PHP, 45, 68

MySQL
anonymity and, 222
AUTO_INCREMENT, 256
backup and restore in, 227-232
basics of, 165
benefits of, xxiii, 5-10, 165
built-in functions, 206, 743-752
cancelling commands in, 172
command prompts, 171
command-line access by OS type, 166-171
command-line interface use, 171
common commands, 172
data types, 177-183
database creation, 173
database design considerations, 209
database queries with PHP, 235-266
database terms, 166
default storage engine for, 175, 223
displaying HTML form, 247
EXPLAIN command, 226
FULLTEXT stopwords, 739-741
multiple-line commands, 171
normalization process, 211-219
online resources, 735
phpMyAdmin access, 206
placeholders and, 260-263
$_POST arrays, 246
primary keys in, 210
relationships in, 219-222
remote access, 28, 170
stopwords in, 192
table creation, 175, 251
tables, adding data to, 183, 253
tables, backup and restore, 227-232
tables, deleting, 186
tables, deleting data in, 247, 255
tables, describing, 251
tables, dropping, 252
tables, joining, 203-205

tables, renaming, 184
tables, retrieving data from, 254
tables, updating data in, 255
transactions in, 223-227
user creation, 173
working with columns, 185-186
working with indexes, 187-206

mysqldump command, 227-232
mysqli method, 237
mysql_insert_id function, 257

N
names and naming

constants in PHP, 54
files in PHP, 147
functions in PHP, 97
SQL commands, 173
tables, 173
variables in JavaScript, 314
variables in PHP, 44

__NAMESPACE__, 54
NATURAL JOIN keyword (MySQL), 204
newline (\n) character, 50, 319
noConflict method (jQuery), 507
normalization process

appropriate use of, 218
First Normal Form, 212
goal of, 211
schemas for, 211
Second Normal Form, 214-216
Third Normal Form, 216

Not (!) logical operator
in JavaScript, 318, 334
in PHP, 47, 68, 72

not equal (<>) operator (PHP), 46, 68
not identical (!==) operator

in JavaScript, 318
in PHP, 46, 68

NULL value, 64
number input type, 285
numeric arrays

in JavaScript, 360
in PHP, 123

numeric data types (MySQL), 180
numeric variables

in JavaScript, 315
in PHP, 41

790 | Index

O
object-oriented programming (OOP), 105
objects (JavaScript)

accessing, 356
creating, 356
declaring classes, 354
extending, 358
prototype keyword, 356

objects (jQuery), 758
objects (PHP)

accessing, 108
basics of, 105
cloning, 110
constructors, 111, 119
creating, 108
declaring classes, 107
declaring constants, 113
declaring properties, 113
destructors, 111
inheritance, 117-120
property and method scope, 114
purpose of, 95
static methods, 115
static properties, 116
terminology surrounding, 106
writing methods, 112

occurrences, 106, 354
Ogg format, 648
Ogg Vorbis, 643
one-to-many relationship, 220
one-to-one relationship, 219
one-way function, 294
onerror events, 337
online resources, 735-737
opacity property (CSS), 470
open source technologies, 12
operands, 66
operating systems

audio types supported by, 643
video types supported by, 648

operators (JavaScript)
arithmetic, 317
assignment, 317
associativity, 332
comparison, 318, 334
escape characters, 319
in JavaScript, 317
increment, decrement, shorthand, 318
logical, 318, 334, 334

precedence of, 332
relational, 333
string concatenation, 318
types of, 331

operators (PHP)
arithmetic, 45
assignment, 45
associativity of, 69
basics of, 45
comparison, 46
logical, 46
overview of types, 66
precedence of, 67-69
relational operators, 70-74

or (low precedence) logical operator (PHP), 47,
68

Or (|) bitwise operator
in JavaScript, 332
in PHP, 69

Or (||) logical operator
in JavaScript, 318, 334
in PHP, 47, 68, 72

ORDER BY keyword (MySQL), 201
OuterHeight Method (jQuery), 540
outerWidth method (jQuery), 540
override attributes, 284

P
packet sniffing, 304
parent elements

filtering, 542
referring to, 541
selecting all ancestor elements, 543

parent keyword (PHP), 118
parent method (jQuery), 541
parentheses (())

casting operators in PHP, 91
in functions in PHP, 96
in regular expressions, 379
operator precedence and, 68

parse error messages (PHP), 39
pass-by-reference feature, 100
password property, 112
passwords

BCRYPT algorithm for, 295, 298
example program using, 296
HTTP authentication and, 290
password_hash function, 294
password_verify function, 295, 298

Index | 791

salting, 294
showing asterisks instead of, 685
storing, 294
validating, 292
validating for form input, 293

password_hash function (PHP), 294
password_verify function (PHP), 295
paths, using on canvas, 606-608
PCM (Pulse Coded Modulation), 643
PhoneGap, 577
PHP programming language

arrays in, 42, 123-137
asynchronous communication using, 402
basic syntax, 39
benefits of, xxiii, 5-10
code examples, obtaining and using, 37
comments, 38
constants in, 53
constants, predefined, 54, 64
cookies and, 287-290
database queries to MySQL, 235-266
date and time functions, 143-146
echo vs. print commands, 55
file handling, 147-160
flow control in, 63-93
functions in, 55, 95-105
IDEs (integrated development environ‐

ments), 31, 35
incorporating with HTML, 35
magic quotes feature, 259, 279
multiple-line commands, 50-52
objects in, 105-120
online resources, 735
operators in, 45-47
printf function, 139-143
regular expressions in, 386
social networking app example, 675-711
system calls, 161-162
variable assignment, 48-50
variable typing, 52
variables in, 40-44
version compatibility, 104
version selection, 96
XHTML vs. HTML5, 162

<?php?> tag, 36
phpDesigner IDE, 31
phpinfo function, 97
phpMyAdmin, accessing MySQL via, 206
phpversion function, 105

placeholder attribute, 283
placeholders (MySQL), 260-263
plain text editors, 30
pop method (JavaScript), 365
port assignment, 41
$_POST Array (PHP), 246
POST method (HTTP)

asynchronous communication and, 403-406
in form handling, 268, 282
jQuery and, 554

$_POST variable, 61
precedence, 67, 332
prepend method (jQuery), 536
primary keys, 190, 210
print command (PHP), 55, 98
printf function (PHP)

conversion specifier components, 142
precision setting, 140-142
vs. print and echo functions, 139
printf conversion specifiers, 139
sprintf function, 143
string conversion specifier components, 143
string padding, 142-143

print_r function (PHP), 108
privacy policies, 656
private keyword (PHP), 114
program editors, 30
progressive enhancement, 559
properties (CSS)

accessing from JavaScript, 481-490
animating using jQuery, 524-532
applying, 416
font properties, 433
shorthand assignment of, 445

properties (JavaScript)
defined, 354
static, 358

properties (PHP)
declaring, 113
defined, 106
scope of, 114

protected keyword (PHP), 114
prototype keyword (JavaScript), 356
public keyword (PHP), 114
push method (JavaScript), 360, 365
putImageData method (HTML5), 628

Q
querying databases (see database queries)

792 | Index

quotation marks, double (")
escaping in JavaScript, 319
in JavaScript strings, 315
in PHP heredocs, 51
in PHP multi-line commands, 50
in PHP strings, 49

quotation marks, single (')
escaping in JavaScript, 319
in JavaScript strings, 315
in PHP heredocs, 51
in PHP strings, 49

R
radio buttons, 274
range input type, 285
ready method (jQuery), 511
readyState property, 400-402
real_escape_string method (PHP), 259
records, defined, 165 (see also MySQL)
rect method (HTML5), 608
rectangles, drawing in canvas, 591-593
regular expressions

character classes, 380
examples of using, 381
fuzzy character matching, 378
general modifiers, 385
grouping through parentheses, 379
indicating ranges, 380
metacharacter matching, 378
metacharacter summary, 383
negation, 380
using in JavaScript, 385
using in PHP, 386

relational operators (JavaScript)
comparison, 334
equality, 333
logical, 334

relational operators (PHP)
comparison operators, 72
equality, 70
logical operators, 72

relationships, in databases
many-to-many, 221
one-to-many, 220
one-to-one relationship, 219

rename function (PHP), 150
$_REQUEST variable, 61
request/response procedure, 2-5
require statement (PHP), 104, 237

required attribute, 284
require_once statement (PHP), 104, 237
reset function (PHP), 136
restore method (HTML5), 634
return statements

in JavaScript, 350
in PHP, 98

reverse method (JavaScript), 367
rgb function (CSS), 469
rgba function (CSS), 469
ROLLBACK command (MySQL), 225
rotate method (HTML5), 634
rows, defined, 165 (see also MySQL)
RSS feeds, 146

S
salting passwords, 294
sanitization, 61, 278-280
sanitizeMySQL function (PHP), 279
sanitizeString function (PHP), 279
save method (HTML5), 634
scale method (HTML5), 633
scope

property/method scope in PHP, 114
variable scope in JavaScript, 321-322
variable scope in PHP, 56-62, 102

scope resolution (::) operator, 116
<script type="text/javascript"> tag, 313
Secure Sockets Layer (SSL), 304
security issues

bundled programming packages, 18
cookies, 289, 661
curly braces ({ }), 76
database hacking prevention, 240, 258-266
goto fail bug, 76
hidden fields, 275
HTML injection prevention, 263
HTTP authentication, 290-299
JavaScript validation, 371
magic quotes feature, 259, 279
phpinfo function, 97
privacy implications of geolocation, 656
sanitizing form input, 278-280
sessions, 304-307
superglobal variables, 61
Y2K38 bug, 144

SELECT command (MySQL), 193
SELECT COUNT command (MySQL), 194
SELECT DISTINCT command (MySQL), 194

Index | 793

<select> tags, 276
selectors (CSS)

attribute, 424
child, 421
class, 423
defined, 416
descendant, 420
ID, 422
overview of, 454
selecting by group, 425
type, 420
universal, 424

selectors (jQuery)
class selector, 509
combining, 509
comprehensive list of, 753-757
css method, 508
element selector, 508
ID selector, 509
using, 507

self keyword (PHP), 114
semicolons (;)

in CSS, 416
in JavaScript, 310, 314
in MySQL, 171
in PHP, 39, 87

$_SERVER variable, 60
servers

development server setup, 17-33
production server security, 18
request/response procedure, 2-5
role in asynchronous communication, 402
role in internet communications, 2
shared, 307

session fixation, 305
$_SESSION variable, 61
sessions

ending, 302
purpose of, 299
security issues, 304-307
starting, 299-302
timeouts for, 303

session_regenerate_id function (PHP), 306
setcookie function (PHP), 289
setTransform method (HTML5), 638
SHA-1 algorithm, 294
shared servers, 307
SHOW command (MySQL), 167
shuffle function (PHP), 133

sibling elements, selecting, 545
signed numbers, 180
social networking app example

checkuser.php file, 688
code examples, obtaining and using, 676
design considerations, 676
friends.php file, 700-703
functions.php file, 676-679
header.php file, 679-682
index.php file, 683
javascript.js file, 710
login.php file, 689-691
logout.php file, 706-708
members.php file, 696-700
messages.php file, 703-706
overview of, 675
profile.php file, 691-696
setup.php file, 682
signup.php file, 684-688
styles.css file, 708-710

some function (JavaScript), 363
sort function (PHP), 133
sort method (JavaScript), 367
<source> tags, 643
special characters, 50, 319
special effect processing (jQuery)

animations, 528-532
arguments supported, 524
core effects, 523
fade methods, 526
hiding and showing elements, 524
slide methods, 527
toggle method, 525

sprintf function (PHP), 143
SQL (Structured Query Language), 165
square brackets ([])

accessing array elements, 130, 363
in fuzzy matching, 380
in PHP function definitions, 97
in regular expressions, 380
negation of character class with, 380
precedence in JavaScript, 332

START TRANSACTION statement (MySQL),
224

statements, in PHP, 66, 75-81
static methods

in JavaScript, 358
in PHP, 115

static properties

794 | Index

in JavaScript, 358
in PHP, 116

static variables (PHP), 59, 103
step attribute, 284
stopwords, 192
string functions (MySQL)

CONCAT(str1, str2, ...), 743
CONCAT_WS(separator, str1, str2, ...), 743
LEFT(str, len), 744
LENGTH(str), 744
LOCATE(substr, str, pos), 745
LOWER(str), 745
LPAD(str, len, padstr), 744
LTRIM(str), 746
MID(str, pos, len), 744
QUOTE(str), 745
REPEAT(str, count), 745
REPLACE(str, from, to), 746
RIGHT(str, len), 744
RPAD, 745
RTRIM(str), 746
TRIM([specifier remove FROM] str), 746
UPPER(str), 745

string variables (JavaScript), 315
string variables (PHP), 40
strings (JavaScript)

concatenation of, 318
escaping characters in, 319
special characters in, 319

strings (PHP)
concatenation of, 49
escaping characters in, 49
multiple-line commands, 50-52
special characters in, 50
string padding, 142-143
types of, 49

stripslashes function (PHP), 279
stroke method (HTML5), 607
strokeRect method (HTML5), 592
strokeText method (HTML5), 600
strrev function (PHP), 97
strtolower function (PHP), 98
strtoupper function (PHP), 97
style types (CSS), 418-420
stylesheets (see CSS (Cascading Style Sheets))
subclasses, 107
substr method (JavaScript), 352
subtraction (-) operator

in JavaScript, 317

in PHP, 45, 68, 69
superclasses, 107
superglobal variables (PHP), 60
switch statements

in JavaScript, 340
in PHP, 79-81

syntax (jQuery), 505-507
syntax (PHP), 39
system calls (PHP), 161-162

T
tab (\t) character, 50, 130, 319
tables (see also MySQL)

adding data to, 183, 253
backup and restore, 227
defined, 165
deleting, 186
deleting data, 247, 255
describing, 251
dropping, 252
joining, 203-205
naming rules, 173
renaming, 184
retrieving data, 254
updating data, 255

Tcl rapid prototyping language, 312
ternary (?:) operator

in JavaScript, 342
in PHP, 67, 68, 82

text boxes, 271
TEXT data types (MySQL), 179
text handling

fonts and typography, 433
text effects, 470
text styles, 435

text method (jQuery), 533
text, writing to canvas, 600-603
text-overflow property (CSS), 470
textAlign property (HTML5), 601
<textarea> element, 283
textBaseLine property (HTML5), 601
third-party cookies, 287
this keyword (JavaScript), 488
this keyword (jQuery), 514
TIME and DATE data types (MySQL), 181
time function (PHP), 143
time functions (MySQL)

CURTIME(fsp), 751

Index | 795

FROM_UNIXTIME(unix_timestamp [, for‐
mat]), 752

HOUR(time), 751
MAKETIME(hour, minute, second), 752
MINUTE(time), 751
SECOND(time), 751
TIMEDIFF(expr1, expr2), 752
UNIX_TIMESTAMP([date]), 752

time pickers, in forms, 286
timestamps, determining current, 143
toDataURL function (HTML5), 589
transform method (HTML5), 636
transformations

in canvas, 632-639
using CSS, 474

transitions (see under CSS; CSS3)
translate method (HTML5), 635
Transport Layer Security (TLS), 304
traversing jQuery selections, 549
traversing the DOM, 541-552
TRUE/FALSE values, 64, 70
try...catch construct (JavaScript), 338
two-dimensional arrays, 43
typeof operator (JavaScript), 322
typographical conventions, xxv

U
ucfirst function (PHP), 98
unary operators, 66
underscore, double (__), 54, 112
unlink function (PHP), 151
unsigned numbers, 180
UPDATE...SET construct (MySQL), 200
uploading files, 155-160
user preferences, configuring, 287
usernames

checking availability of, 292
checking validity of, 293
comparing, 293
cookies and, 289
storing, 294
validating for form input, 376, 382

V
val method (jQuery), 533
validation (see also regular expressions)

form data using JavaScript, 372-377
form data validation using PHP, 158
redisplaying forms following, 387

security issues surrounding, 371
VALUES keyword (MySQL), 184
VARCHAR data type (MySQL), 177
variable substitution, 49
variables (JavaScript)

arrays, 316, 321
global, 321
literals and, 330
local, 321
naming rules, 314
numeric, 315
string, 315
variable typing, 319-320

variables (PHP)
assignment, 48-50
explicit casting of, 91
flow control and, 65
global, 59, 102
incrementing and decrementing, 48
local, 57, 102
multiple-line commands, 51
naming rules, 44
numeric, 41
scope of, 56, 102
static, 59, 103
string, 40
superglobal, 60
typing, 52

VBScript, 312
video (HTML5)

<video> element, 647
history of delivery formats, 641
supporting non-HTML5 browsers, 651
video codecs, 648

<video> element, 647-651
Visual Studio, 21
Vorbis, 643

W
WAMP (Windows, Apache, MySQL, and PHP),

18, 25
web fonts, 472
web workers, 585, 663-666
WebGL, 588
WebM format, 648
WHERE keyword (MySQL), 196
while loops

in JavaScript, 342
in PHP, 84

796 | Index

whitespace
avoiding, 37
preserving, 51

width attribute, 284
width method (jQuery), 538
window properties, 486-488
with statements (JavaScript), 336
WordPress, 92
World Wide Web Consortium, 146

X
XHTML syntax, 11, 162
XML documents, 408-410, 533
XMLHttpRequest

asynchronous program using, 399-403

creating XMLHttpRequest objects, 396-398
frameworks for, 411
history of, 396
sending XML requests, 406-410
using GET instead of POST, 403-406

xor (exclusive or) logical operator (PHP), 47, 68
XSS attacks, 240, 263

Y
Y2K38 bug, 144
YEAR data type, 178

Z
ZEROFILL qualifier, 180

Index | 797

About the Author
Robin Nixon has 40 years of experience with writing software and developing web‐
sites and apps. He also has an extensive history of writing about computers and tech‐
nology, with a portfolio of over 500 published magazine articles and over 30 books,
many of which have been translated into other languages. In addition, he is a prolific
internet video course instructor.

As well as IT, his interests include psychology and motivation (which he also writes
about), artificial intelligence research, many types of music (both playing and listen‐
ing to), playing and creating board games, studying philosophy and culture, and
enjoying good food and drink.

Robin lives on the southeast coast of England with his five children and wife, Julie (a
trained nurse and university lecturer). Between them they also foster three disabled
children. Robin maintains a Facebook page where he keeps up to date with the latest
web technologies.

Colophon
The animals on the cover of Learning PHP, MySQL, & JavaScript are sugar gliders
(Petaurus breviceps). Sugar gliders are small, gray-furred creatures that grow to an
adult length of 6 to 7.5 inches. Their tails, which are distinguished by a black tip, are
usually as long as their bodies. Membranes extend between their wrists and ankles
and provide an aerodynamic surface that helps them glide between trees.

Sugar gliders are native to Australia and Tasmania. They prefer to live in the hollow
parts of eucalyptus and other types of large trees with several other adult sugar gliders
and their own children.

Though sugar gliders reside in groups and defend their territory together, they don’t
always live in harmony. One male will assert his dominance by marking the group’s
territory with his saliva and then by marking all group members with a distinctive
scent produced from his forehead and chest glands. This ensures that members of the
group will know when an outsider approaches; group members will fight off any
sugar glider not bearing their scent. However, a sugar glider group will welcome and
mark an outsider if one of their adult males dies (the group will typically replace a
deceased adult female with one of their own female offspring).

Sugar gliders make popular pets because of their inquisitive, playful natures, and
because many think they are cute. But there are disadvantages to keeping sugar glid‐
ers as pets: as they are exotic animals, sugar gliders need specialized, complicated
diets consisting of items such as crickets, a variety of fruits and vegetables, and meal‐
worms; healthy housing requires a cage or space no less than the size of an aviary;

http://facebook.com/learning2program

their distinctive scents can be bothersome to humans; as they are nocturnal creatures,
they will bark, hiss, run, and glide all night long; it’s not uncommon for them to lose
control of their bowels while playing or eating; and in some states and countries, it is
illegal to own sugar gliders as household pets.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Dover’s Animals. The cover fonts are URW Typewriter and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Audience
	Assumptions This Book Makes
	Organization of This Book
	Supporting Books
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction to Dynamic Web Content
	HTTP and HTML: Berners-Lee’s Basics
	The Request/Response Procedure
	The Benefits of PHP, MySQL, JavaScript, CSS, and HTML5
	MariaDB: The MySQL Clone
	Using PHP
	Using MySQL
	Using JavaScript
	Using CSS

	And Then There’s HTML5
	The Apache Web Server
	Handling Mobile Devices
	About Open Source
	Bringing It All Together
	Questions

	Chapter 2. Setting Up a Development Server
	What Is a WAMP, MAMP, or LAMP?
	Installing AMPPS on Windows
	Testing the Installation
	Accessing the Document Root (Windows)
	Alternative WAMPs

	Installing AMPPS on macOS
	Accessing the Document Root (macOS)

	Installing a LAMP on Linux
	Working Remotely
	Logging In
	Using FTP

	Using a Program Editor
	Using an IDE
	Questions

	Chapter 3. Introduction to PHP
	Incorporating PHP Within HTML
	This Book’s Examples
	The Structure of PHP
	Using Comments
	Basic Syntax
	Variables
	Operators
	Variable Assignment
	Multiple-Line Commands
	Variable Typing
	Constants
	Predefined Constants
	The Difference Between the echo and print Commands
	Functions
	Variable Scope

	Questions

	Chapter 4. Expressions and Control Flow in PHP
	Expressions
	TRUE or FALSE?
	Literals and Variables

	Operators
	Operator Precedence
	Associativity
	Relational Operators

	Conditionals
	The if Statement
	The else Statement
	The elseif Statement
	The switch Statement
	The ? Operator

	Looping
	while Loops
	do...while Loops
	for Loops
	Breaking Out of a Loop
	The continue Statement

	Implicit and Explicit Casting
	PHP Dynamic Linking
	Dynamic Linking in Action
	Questions

	Chapter 5. PHP Functions and Objects
	PHP Functions
	Defining a Function
	Returning a Value
	Returning an Array
	Passing Arguments by Reference
	Returning Global Variables
	Recap of Variable Scope

	Including and Requiring Files
	The include Statement
	Using include_once
	Using require and require_once

	PHP Version Compatibility
	PHP Objects
	Terminology
	Declaring a Class
	Creating an Object
	Accessing Objects
	Cloning Objects
	Constructors
	Destructors
	Writing Methods
	Declaring Properties
	Declaring Constants
	Property and Method Scope
	Static Methods
	Static Properties
	Inheritance

	Questions

	Chapter 6. PHP Arrays
	Basic Access
	Numerically Indexed Arrays
	Associative Arrays
	Assignment Using the array Keyword

	The foreach...as Loop
	Multidimensional Arrays
	Using Array Functions
	is_array
	count
	sort
	shuffle
	explode
	extract
	compact
	reset
	end

	Questions

	Chapter 7. Practical PHP
	Using printf
	Precision Setting
	String Padding
	Using sprintf

	Date and Time Functions
	Date Constants
	Using checkdate

	File Handling
	Checking Whether a File Exists
	Creating a File
	Reading from Files
	Copying Files
	Moving a File
	Deleting a File
	Updating Files
	Locking Files for Multiple Accesses
	Reading an Entire File
	Uploading Files

	System Calls
	XHTML or HTML5?
	Questions

	Chapter 8. Introduction to MySQL
	MySQL Basics
	Summary of Database Terms
	Accessing MySQL via the Command Line
	Starting the Command-Line Interface
	Using the Command-Line Interface
	MySQL Commands
	Data Types

	Indexes
	Creating an Index
	Querying a MySQL Database
	Joining Tables Together
	Using Logical Operators

	MySQL Functions
	Accessing MySQL via phpMyAdmin
	Questions

	Chapter 9. Mastering MySQL
	Database Design
	Primary Keys: The Keys to Relational Databases

	Normalization
	First Normal Form
	Second Normal Form
	Third Normal Form
	When Not to Use Normalization

	Relationships
	One-to-One
	One-to-Many
	Many-to-Many
	Databases and Anonymity

	Transactions
	Transaction Storage Engines
	Using BEGIN
	Using COMMIT
	Using ROLLBACK

	Using EXPLAIN
	Backing Up and Restoring
	Using mysqldump
	Creating a Backup File
	Restoring from a Backup File
	Dumping Data in CSV Format
	Planning Your Backups

	Questions

	Chapter 10. Accessing MySQL Using PHP
	Querying a MySQL Database with PHP
	The Process
	Creating a Login File
	Connecting to a MySQL Database

	A Practical Example
	The $_POST Array
	Deleting a Record
	Displaying the Form
	Querying the Database
	Running the Program

	Practical MySQL
	Creating a Table
	Describing a Table
	Dropping a Table
	Adding Data
	Retrieving Data
	Updating Data
	Deleting Data
	Using AUTO_INCREMENT
	Performing Additional Queries

	Preventing Hacking Attempts
	Steps You Can Take
	Using Placeholders
	Preventing HTML Injection

	Using mysqli Procedurally
	Questions

	Chapter 11. Form Handling
	Building Forms
	Retrieving Submitted Data
	Default Values
	Input Types
	Sanitizing Input

	An Example Program
	HTML5 Enhancements
	The autocomplete Attribute
	The autofocus Attribute
	The placeholder Attribute
	The required Attribute
	Override Attributes
	The width and height Attributes
	The min and max Attributes
	The step Attribute
	The form Attribute
	The list Attribute
	The color Input Type
	The number and range Input Types
	Date and Time Pickers

	Questions

	Chapter 12. Cookies, Sessions, and Authentication
	Using Cookies in PHP
	Setting a Cookie
	Accessing a Cookie
	Destroying a Cookie

	HTTP Authentication
	Storing Usernames and Passwords
	An Example Program

	Using Sessions
	Starting a Session
	Ending a Session
	Setting a Timeout
	Session Security

	Questions

	Chapter 13. Exploring JavaScript
	JavaScript and HTML Text
	Using Scripts Within a Document Head
	Older and Nonstandard Browsers
	Including JavaScript Files
	Debugging JavaScript Errors

	Using Comments
	Semicolons
	Variables
	String Variables
	Numeric Variables
	Arrays

	Operators
	Arithmetic Operators
	Assignment Operators
	Comparison Operators
	Logical Operators
	Incrementing, Decrementing, and Shorthand Assignment
	String Concatenation
	Escape Characters

	Variable Typing
	Functions
	Global Variables
	Local Variables
	The Document Object Model
	Another Use for the $ Symbol
	Using the DOM

	About document.write
	Using console.log
	Using alert
	Writing into Elements
	Using document.write

	Questions

	Chapter 14. Expressions and Control Flow in JavaScript
	Expressions
	Literals and Variables
	Operators
	Operator Precedence
	Associativity
	Relational Operators

	The with Statement
	Using onerror
	Using try...catch
	Conditionals
	The if Statement
	The else Statement
	The switch Statement
	The ? Operator

	Looping
	while Loops
	do...while Loops
	for Loops
	Breaking Out of a Loop
	The continue Statement

	Explicit Casting
	Questions

	Chapter 15. JavaScript Functions, Objects, and Arrays
	JavaScript Functions
	Defining a Function
	Returning a Value
	Returning an Array

	JavaScript Objects
	Declaring a Class
	Creating an Object
	Accessing Objects
	The prototype Keyword

	JavaScript Arrays
	Numeric Arrays
	Associative Arrays
	Multidimensional Arrays
	Using Array Methods

	Questions

	Chapter 16. JavaScript and PHP Validation and Error Handling
	Validating User Input with JavaScript
	The validate.html Document (Part 1)
	The validate.html Document (Part 2)

	Regular Expressions
	Matching Through Metacharacters
	Fuzzy Character Matching
	Grouping Through Parentheses
	Character Classes
	Indicating a Range
	Negation
	Some More Complicated Examples
	Summary of Metacharacters
	General Modifiers
	Using Regular Expressions in JavaScript
	Using Regular Expressions in PHP

	Redisplaying a Form After PHP Validation
	Questions

	Chapter 17. Using Asynchronous Communication
	What Is Asynchronous Communication?
	Using XMLHttpRequest
	Your First Asynchronous Program
	Using GET Instead of POST
	Sending XML Requests
	Using Frameworks for Asynchronous Communication

	Questions

	Chapter 18. Introduction to CSS
	Importing a Stylesheet
	Importing CSS from Within HTML
	Embedded Style Settings

	Using IDs
	Using Classes
	Using Semicolons
	CSS Rules
	Multiple Assignments
	Using Comments

	Style Types
	Default Styles
	User Styles
	External Stylesheets
	Internal Styles
	Inline Styles

	CSS Selectors
	The Type Selector
	The Descendant Selector
	The Child Selector
	The ID Selector
	The Class Selector
	The Attribute Selector
	The Universal Selector
	Selecting by Group

	The CSS Cascade
	Stylesheet Creators
	Stylesheet Methods
	Stylesheet Selectors

	The Difference Between div and span Elements
	Measurements
	Fonts and Typography
	font-family
	font-style
	font-size
	font-weight

	Managing Text Styles
	Decoration
	Spacing
	Alignment
	Transformation
	Indenting

	CSS Colors
	Short Color Strings
	Gradients

	Positioning Elements
	Absolute Positioning
	Relative Positioning
	Fixed Positioning

	Pseudoclasses
	Shorthand Rules
	The Box Model and Layout
	Setting Margins
	Applying Borders
	Adjusting Padding
	Object Contents

	Questions

	Chapter 19. Advanced CSS with CSS3
	Attribute Selectors
	Matching Parts of Strings

	The box-sizing Property
	CSS3 Backgrounds
	The background-clip Property
	The background-origin Property
	The background-size Property
	Using the auto Value
	Multiple Backgrounds

	CSS3 Borders
	The border-color Property
	The border-radius Property

	Box Shadows
	Element Overflow
	Multicolumn Layout
	Colors and Opacity
	HSL Colors
	HSLA Colors
	RGB Colors
	RGBA Colors
	The opacity Property

	Text Effects
	The text-shadow Property
	The text-overflow Property
	The word-wrap Property

	Web Fonts
	Google Web Fonts

	Transformations
	3D Transformations

	Transitions
	Properties to Transition
	Transition Duration
	Transition Delay
	Transition Timing
	Shorthand Syntax

	Questions

	Chapter 20. Accessing CSS from JavaScript
	Revisiting the getElementById Function
	The O function
	The S Function
	The C Function
	Including the Functions

	Accessing CSS Properties from JavaScript
	Some Common Properties
	Other Properties

	Inline JavaScript
	The this Keyword
	Attaching Events to Objects in a Script
	Attaching to Other Events

	Adding New Elements
	Removing Elements
	Alternatives to Adding and Removing Elements

	Using Interrupts
	Using setTimeout
	Canceling a Timeout
	Using setInterval
	Using Interrupts for Animation

	Questions

	Chapter 21. Introduction to jQuery
	Why jQuery?
	Including jQuery
	Choosing the Right Version
	Downloading
	Using a Content Delivery Network
	Customizing jQuery

	jQuery Syntax
	A Simple Example
	Avoiding Library Conflicts

	Selectors
	The css Method
	The Element Selector
	The ID Selector
	The Class Selector
	Combining Selectors

	Handling Events
	Waiting Until the Document Is Ready
	Event Functions and Properties
	The blur and focus Events
	The this Keyword
	The click and dblclick Events
	The keypress Event
	Considerate Programming
	The mousemove Event
	Other Mouse Events
	Alternative Mouse Methods
	The submit Event

	Special Effects
	Hiding and Showing
	The toggle Method
	Fading In and Out
	Sliding Elements Up and Down
	Animations
	Stopping Animations

	Manipulating the DOM
	The Difference Between the text and html Methods
	The val and attr Methods
	Adding and Removing Elements

	Dynamically Applying Classes
	Modifying Dimensions
	The width and height Methods
	The innerWidth and innerHeight Methods
	The outerWidth and OuterHeight Methods

	DOM Traversal
	Parent Elements
	Child Elements
	Sibling Elements
	Selecting the Next and Previous Elements
	Traversing jQuery Selections
	The is Method

	Using jQuery Without Selectors
	The $.each Method
	The $.map Method

	Using Asynchronous Communication
	Using the POST Method
	Using the GET Method

	Plug-ins
	jQuery User Interface
	Other Plug-ins

	Questions

	Chapter 22. Introduction to jQuery Mobile
	Including jQuery Mobile
	Getting Started
	Linking Pages
	Linking Synchronously
	Linking Within a Multipage Document
	Page Transitions

	Styling Buttons
	List Handling
	Filterable Lists
	List Dividers

	What Next?
	Questions

	Chapter 23. Introduction to HTML5
	The Canvas
	Geolocation
	Audio and Video
	Forms
	Local Storage
	Web Workers
	Microdata
	Questions

	Chapter 24. The HTML5 Canvas
	Creating and Accessing a Canvas
	The toDataURL Function
	Specifying an Image Type
	The fillRect Method
	The clearRect Method
	The strokeRect Method
	Combining These Commands
	The createLinearGradient Method
	The addColorStop Method in Detail
	The createRadialGradient Method
	Using Patterns for Fills

	Writing Text to the Canvas
	The strokeText Method
	The textBaseLine Property
	The font Property
	The textAlign Property
	The fillText Method
	The measureText Method

	Drawing Lines
	The lineWidth Property
	The lineCap and lineJoin Properties
	The miterLimit Property

	Using Paths
	The moveTo and lineTo Methods
	The stroke Method
	The rect Method

	Filling Areas
	The clip Method
	The isPointInPath Method
	Working with Curves
	The arc Method
	The arcTo Method
	The quadraticCurveTo Method
	The bezierCurveTo Method

	Manipulating Images
	The drawImage Method
	Resizing an Image
	Selecting an Image Area
	Copying from a Canvas
	Adding Shadows

	Editing at the Pixel Level
	The getImageData Method
	The putImageData Method
	The createImageData Method

	Advanced Graphical Effects
	The globalCompositeOperation Property
	The globalAlpha Property

	Transformations
	The scale Method
	The save and restore Methods
	The rotate Method
	The translate Method
	The transform Method
	The setTransform Method

	Questions

	Chapter 25. HTML5 Audio and Video
	About Codecs
	The <audio> Element
	Supporting Non-HTML5 Browsers
	The <video> Element
	The Video Codecs
	Supporting Older Browsers

	Questions

	Chapter 26. Other HTML5 Features
	Geolocation and the GPS Service
	Other Location Methods
	Geolocation and HTML5
	Local Storage
	Using Local Storage
	The localStorage Object

	Web Workers
	Drag and Drop
	Cross-Document Messaging
	Other HTML5 Tags
	Questions

	Chapter 27. Bringing It All Together
	Designing a Social Networking App
	On the Website
	functions.php
	The Functions

	header.php
	setup.php
	index.php
	signup.php
	Checking for Username Availability
	Logging In

	checkuser.php
	login.php
	profile.php
	Adding the “About Me” Text
	Adding a Profile Image
	Processing the Image
	Displaying the Current Profile

	members.php
	Viewing a User’s Profile
	Adding and Dropping Friends
	Listing All Members

	friends.php
	messages.php
	logout.php
	styles.css
	javascript.js

	Appendix A. Solutions to the Chapter Questions
	Chapter 1 Answers
	Chapter 2 Answers
	Chapter 3 Answers
	Chapter 4 Answers
	Chapter 5 Answers
	Chapter 6 Answers
	Chapter 7 Answers
	Chapter 8 Answers
	Chapter 9 Answers
	Chapter 10 Answers
	Chapter 11 Answers
	Chapter 12 Answers
	Chapter 13 Answers
	Chapter 14 Answers
	Chapter 15 Answers
	Chapter 16 Answers
	Chapter 17 Answers
	Chapter 18 Answers
	Chapter 19 Answers
	Chapter 20 Answers
	Chapter 21 Answers
	Chapter 22 Answers
	Chapter 23 Answers
	Chapter 24 Answers
	Chapter 25 Answers
	Chapter 26 Answers

	Appendix B. Online Resources
	PHP Resource Sites
	MySQL Resource Sites
	JavaScript Resource Sites
	CSS Resource Sites
	HTML5 Resource Sites
	Asynchronous Communication Resource Sites
	Miscellaneous Resource Sites

	Appendix C. MySQL’s FULLTEXT Stopwords
	Appendix D. MySQL Functions
	String Functions
	Date Functions
	Time Functions

	Appendix E. jQuery Selectors, Objects, and Methods
	jQuery Selectors
	jQuery Objects
	jQuery Methods

	Index
	About the Author
	Colophon

