O'REILLY"

G

et

Learning

PHP MySQL,

JavasScript,

Wi %
AN . .
o Robin N
, ////W/% oDIN NIXon
A

Wi

; i“il f

Jeil
A _l,'"’
KU



9

O'REILLY"

Learning PHP, MySQL, JavaScript, CSS & HTMLb5

Build interactive, data-driven websites with the potent combination of
open-source technologies and web standards, even if you only have basic
HTML knowledge. With this popular hands-on guide, you'll tackle dynamic
web programming with the help of today's core technologies: PHP, MySQL,
JavaScript, CSS, and HTML5.

Explore each technology separately and learn how to use them together—
and pick up valuable web programming practices along the way. At the end
of the book, you'll put everything together to build a fully functional social
networking site.

m Learn PHP essentials and the basics of object-oriented
programming

m Discover MySQL, from database structure to complex queries

m Create dynamic PHP web pages that integrate forms and other
HTML features

®m Manage cookies and sessions, and maintain a high level of
security

m Work with JavaScript fundamentals, from functions and event
handling to accessing the Document Object Model

m Use Ajax calls to turn your website into a highly dynamic
environment

m Pick up CSS basics for formatting and styling your pages

m Learn HTMLS5 features, including geolocation, audio, video, and
canvas

m Get up to speed on all of today's main web development
technologies

Robin Nixon, an IT journalist who's written hundreds of articles and several
books on computing, has developed numerous websites using open source
technologies, and is the developer who created the earliest pop-up windows.
Robin has worked with and written about computers since the early 1980s.

“This is a great beginner's
book that introduces
several crucial web
developer languages.
It's a quick-paced, easy-
to-read, information-
packed book that will
soon have you creating
dynamically driven web
sites, including a basic
social networking site.”

—Albert Wiersch
developer of CSE HTML Validator

WEB DEVELOPMENT

US $49.99 CAN $52.99
ISBN: 978-1-491-94946-7

IVHNVMIEI
TAERLCL Moo

81491

Twitter: @oreillymedia
facebook.com/oreilly



THIRD EDITION

Learning PHP, MySQL, JavaScript,
(SS & HTML5

Robin Nixon

Beijing + Cambridge + Farnham + Koln « Sebastopol + Tokyo [KOAx{=I|MA &



Learning PHP, MySQL, JavaScript, CSS & HTMLS5, Third Edition
by Robin Nixon

Copyright © 2014 Robin Nixon. All rights reserved.
Printed in the United States of America.
Published by O’'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Andy Oram Indexer: Lucie Haskins

Production Editor: Kristen Brown Cover Designer: Karen Montgomery
Copyeditor: Rachel Monaghan Interior Designer: David Futato
Proofreader: Jasmine Kwityn lllustrator: Rebecca Demarest

June 2014: Third Edition

Revision History for the Third Edition:
2014-05-19: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781491949467 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O'Reilly
Media, Inc. Learning PHP, MySQL, JavaScript, CSS & HTML5, the image of sugar gliders, and related trade
dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-491-94946-7
[LSI]



For Julie






Table of Contents

Preface. ..o Xxi
1. Introduction to DynamicWeb Content............ccvvviiiinniennnes 1
HTTP and HTML: Berners-Lee’s Basics 2
The Request/Response Procedure 2
The Benefits of PHP, MySQL, JavaScript, CSS, and HTML5 5
Using PHP 6
Using MySQL 7
Using JavaScript 8
Using CSS 9

And Then There's HTML5 10
The Apache Web Server 11
About Open Source 12
Bringing It All Together 12
Questions 14

2. Setting Up aDevelopmentServer..........cooovviiiiiiiiiiiieeneennns 15
What Is a WAMP, MAMP, or LAMP? 16
Installing a WAMP on Windows 16
Testing the Installation 28
Alternative WAMPs 31
Installing a MAMP on Mac OS X 31
Configuring MySQL 35
Ensuring MySQL Starts on Booting 36
Testing the Installation 36
Installing a LAMP on Linux 38
Working Remotely 38
Logging In 38
Using FTP 39




Using a Program Editor
Using an IDE
Questions

IntroductiontoPHP..........ooooiiiiii
Incorporating PHP Within HTML
This Book’s Examples
The Structure of PHP
Using Comments
Basic Syntax
Variables
Operators
Variable Assignment
Multiple-Line Commands
Variable Typing
Constants
Predefined Constants
The Difference Between the echo and print Commands
Functions
Variable Scope
Questions

Expressions and Control FlowinPHP............ccoiiiiiiiiiiiiiiiiiininnnn.
Expressions

TRUE or FALSE?

Literals and Variables
Operators

Operator Precedence

Associativity

Relational Operators
Conditionals

The if Statement

The else Statement

The elseif Statement

The switch Statement

The ? Operator
Looping

while Loops

do ... while Loops

for Loops

Breaking Out of a Loop

The continue Statement

40
41
43

45
45
47
48
48
49
50
55
57
60
62
63
64
64
65
66
71

73
73
73
75
76
77
78
80
84
84
85
87
88
91
92
93
94
95
97
98

vi

| Table of Contents



Implicit and Explicit Casting
PHP Dynamic Linking
Dynamic Linking in Action
Questions

. PHP Functionsand Objects.............cooviiiiiiinnnnnt,

PHP Functions
Defining a Function
Returning a Value
Returning an Array
Passing by Reference
Returning Global Variables
Recap of Variable Scope
Including and Requiring Files
The include Statement
Using include_once
Using require and require_once
PHP Version Compatibility
PHP Objects
Terminology
Declaring a Class
Creating an Object
Accessing Objects
Cloning Objects
Constructors
PHP 5 Destructors
Writing Methods
Static Methods in PHP 5
Declaring Properties
Declaring Constants
Property and Method Scope in PHP 5
Static Properties and Methods
Inheritance
Questions

PHPARAYS. oo e

Basic Access

Numerically Indexed Arrays

Associative Arrays

Assignment Using the array Keyword
The foreach ... as Loop
Multidimensional Arrays

98
99
100
101

103
104
106
106
108
108
110
111
111
111
112
112
113
113
114
115
116
116
118
119
120
120
121
122
122
123
124
125
129

131
131
131
133
134
135
137

Table of Contents

vii



Using Array Functions
is_array
count
sort
shuffle
explode
extract
compact
reset
end

Questions

Practical PHP. ...t eieeenens

Using printf
Precision Setting
String Padding
Using sprintf

Date and Time Functions
Date Constants
Using checkdate

File Handling
Checking Whether a File Exists
Creating a File
Reading from Files
Copying Files
Moving a File
Deleting a File
Updating Files
Locking Files for Multiple Accesses
Reading an Entire File
Uploading Files

System Calls

XHTML or HTML5?

Questions

IntroductiontoMySQL. ........coovviiiiiiiiiiiiiii i,

MySQL Basics

Summary of Database Terms

Accessing MySQL via the Command Line
Starting the Command-Line Interface

Using the Command-Line Interface
MySQL Commands

140
140
140
140
141
141
142
143
144
144
144

147
147
148
150
151
151
154
154
155
155
155
157
158
158
158
159
160
162
162
167
169
169

17
171
172
172
173
177
178

viii

| Table of Contents



10.

Data Types
Indexes
Creating an Index
Querying a MySQL Database
Joining Tables Together
Using Logical Operators
MySQL Functions
Accessing MySQL via phpMyAdmin
Using phpMyAdmin
Questions

Database Design

Primary Keys: The Keys to Relational Databases

Normalization
First Normal Form
Second Normal Form
Third Normal Form
When Not to Use Normalization
Relationships
One-to-One
One-to-Many
Many-to-Many
Databases and Anonymity
Transactions
Transaction Storage Engines
Using BEGIN
Using COMMIT
Using ROLLBACK
Using EXPLAIN
Backing Up and Restoring
Using mysgldump
Creating a Backup File
Restoring from a Backup File
Dumping Data in CSV Format
Planning Your Backups
Questions

Accessing MySQLUSINGPHP. ......ovuiiiiiiiii it iiiiiiiiienernnnaenns

Querying a MySQL Database with PHP
The Process
Creating a Login File

. Mastering MySQL. . ..o vuiiit ittt it ittt it ie it eaaeas

183
192
192
198
207
209
209
210
214
214

217
217
218
219
220
222
224
226
227
227
228
229
230
230
231
232
232
233
234
235
235
237
239
239
240
240

24
241
242
242

Table of Contents

| ix



1.

12.

Connecting to MySQL
A Practical Example
The $_POST Array
Deleting a Record
Displaying the Form
Querying the Database
Running the Program
Practical MySQL
Creating a Table
Describing a Table
Dropping a Table
Adding Data
Retrieving Data
Updating Data
Deleting Data
Using AUTO_INCREMENT
Performing Additional Queries
Preventing SQL Injection
Using Placeholders
Preventing HTML Injection
Questions

Using the mysqli Extension............ccovviiiiiiieiinnnenn..

Querying a MySQL Database with mysqli
Creating a Login File
Connecting to MySQL

A Practical Example

Using mysqli Procedurally

Questions

FormHandling..........oooiiiiiiiii i

Building Forms

Retrieving Submitted Data
register_globals: An Old Solution Hangs On
Default Values
Input Types
Sanitizing Input

An Example Program

What's New in HTML5?
The autocomplete Attribute
The autofocus Attribute
The placeholder Attribute

243
248
251
252
252
253
254
255
255
256
257
257
258
259
260
260
262
263
265
266
268

269
269
269
270
274
276
277

279
279
281
282
283
284
291
292
295
295
295
296

X

Table of Contents



The required Attribute 296

Override Attributes 296
The width and height Attributes 297
Features Awaiting Full Implementation 297
The form Attribute 297
The list Attribute 297
The min and max Attributes 298
The step Attribute 298
The color Input Type 298
The number and range Input Types 298
Date and time Pickers 298
Questions 299
. Cookies, Sessions, and Authentication. ........coviiviiiiiiiiiiieiienennenens 301
Using Cookies in PHP 301
Setting a Cookie 303
Accessing a Cookie 304
Destroying a Cookie 304
HTTP Authentication 304
Storing Usernames and Passwords 307
Salting 308
Using Sessions 312
Starting a Session 312
Ending a Session 315
Setting a Timeout 317
Session Security 317
Questions 320
. Exploring JavaScript. .. ..o erii e e 323
JavaScript and HTML Text 324
Using Scripts Within a Document Head 325
Older and Nonstandard Browsers 325
Including JavaScript Files 326
Debugging JavaScript Errors 327
Using Comments 329
Semicolons 329
Variables 330
String Variables 330
Numeric Variables 330
Arrays 331
Operators 332
Arithmetic Operators 332

Table of Contents |  xi



15.

16.

Assignment Operators
Comparison Operators
Logical Operators
Variable Incrementing and Decrementing
String Concatenation
Escaping Characters

Variable Typing

Functions

Global Variables

Local Variables

The Document Object Model
But It’s Not That Simple
Another Use for the $ Symbol
Using the DOM

Questions

Expressions and Control Flow in JavaScript.....................

Expressions
Literals and Variables
Operators
Operator Precedence
Associativity
Relational Operators
The with Statement
Using onerror
Using try ... catch
Conditionals
The if Statement
The else Statement
The switch statement
The ? Operator
Looping
while Loops
do ... while Loops
for Loops
Breaking Out of a Loop
The continue Statement
Explicit Casting
Questions

JavaScript Functions, Objects, and Arrays. .....................

JavaScript Functions

332
333
333
334
334
334
335
336
336
336
338
340
340
341
342

343
343
344
345
346
346
347
350
351
352
353
353
353
354
355
356
356
357
357
358
359
360
360

363
363

Xii

|  Table of Contents



17.

18.

19.

Defining a Function 363

The arguments Array 364
Returning a Value 365
Returning an Array 367
JavaScript Objects 368
Declaring a Class 368
Creating an Object 369
Accessing Objects 370
The prototype Keyword 370
JavaScript Arrays 372
Numeric Arrays 373
Associative Arrays 374
Multidimensional Arrays 375
Using Array Methods 376
Questions 380
JavaScript and PHP Validation and Error Handling. ..................ccooeenaatt. 381
Validating User Input with JavaScript 381
The validate.html Document (Part One) 382
The validate.html Document (Part Two) 384
Regular Expressions 387
388
Using Regular Expressions in JavaScript 395
Using Regular Expressions in PHP 396
Redisplaying a Form After PHP Validation 397
Questions 403
1T 12 - 405
What Is Ajax? 405
Using XMLHttpRequest 406
Your First Ajax Program 408
Using GET Instead of POST 413
Sending XML Requests 415
Using Frameworks for Ajax 420
Questions 421
Introduction to €SS, .....ooviii 423
Importing a Style Sheet 424
Importing CSS from Within HTML 424
Embedded Style Settings 425
Using IDs 425
Using Classes 425

Table of Contents |  xiii



Using Semicolons
CSS Rules
Multiple Assignments
Using Comments
Style Types
Default Styles
User Styles
External Style Sheets
Internal Styles
Inline Styles
CSS Selectors
The Type Selector
The Descendant Selector
The Child Selector
The ID Selector
The Class Selector
The Attribute Selector
The Universal Selector
Selecting by Group
The CSS Cascade
Style Sheet Creators
Style Sheet Methods
Style Sheet Selectors
Calculating Specificity
The Difference Between Div and Span Elements
Measurements
Fonts and Typography
font-family
font-style
font-size
font-weight
Managing Text Styles
Decoration
Spacing
Alignment
Transformation
Indenting
CSS Colors
Short Color Strings
Gradients
Positioning Elements
Absolute Positioning

426
426
426
427
428
428
428
429
429
430
430
430
430
431
432
433
434
434
435
435
436
436
437
437
439
440
442
442
443
443
444
444
445
445
446
446
446
447
447
448
449
449

Xiv

| Table of Contents



20.

Relative Positioning
Fixed Positioning

Pseudo-Classes

Shorthand Rules

The Box Model and Layout
Setting Margins
Applying Borders
Adjusting Padding
Object Contents

Questions

Advanced CSS With €853, . v vttt ettt ittt ittt eneeneneneenenennnns

Attribute Selectors

The A Operator

The $ Operator

The * Operator
The box-sizing Property
CSS3 Backgrounds

The background-clip Property
The background-origin Property
The background-size Property

Multiple Backgrounds
CSS3 Borders
The border-color Property
The border-radius Property
Box Shadows
Element Overflow
Multicolumn Layout
Colors and Opacity
HSL Colors
HSLA Colors
RGB Colors
RGBA Colors
The opacity Property
Text Effects
The text-shadow Property
The text-overflow Property
The word-wrap Property
Web Fonts
Google Web Fonts
Transformations
3D Transformations

450
450
452
454
454
455
457
458
459
459

461
461
462
462
463
463
463
464
465
466
467
469
469
469
472
473
473
475
475
476
476
477
477
477
477
478
479
479
480
481
483

Table of Contents

XV



21.

22,

Transitions
Properties to Transition
Transition Duration
Transition Delay
Transition Timing
Shorthand Syntax
Questions

Accessing (SS from JavaScript........covviiiiiiiiiiiiiiiinenne

Revisiting the getElementByld Function
The O function
The S Function
The C Function
Including the Functions
Accessing CSS Properties from JavaScript
Some Common Properties
Other Properties
Inline JavaScript
The this Keyword
Attaching Events to Objects in a Script
Attaching to Other Events
Adding New Elements
Removing Elements
Alternatives to Adding and Removing Elements
Using Interrupts
Using setTimeout
Canceling a Timeout
Using setInterval
Using Interrupts for Animation
Questions

Introductionto HTMLS. . e vieeii ettt ciieieneanes

The Canvas
Geolocation
Audio and Video
Forms

Local Storage
Web Workers
Web Applications
Microdata
Summary

483
484
484
484
485
485
487

489
489
489
490
491
492
493
494
495
497
497
498
499
500
501
502
503
503
504
504
506
508

509
510
511
513
514
515
515
515
516
516

Xvi

| Table of Contents



Questions 516

23. The HTML5 anvas. ......oooviiiiiiieii i 517
Creating and Accessing a Canvas 517
The toDataURL Function 519
Specifying an Image Type 521
The fillRect Method 521
The clearRect Method 521
The strokeRect Method 522
Combining These Commands 522
The createLinearGradient Method 523
The addColorStop Method in Detail 525
The createRadialGradient Method 526
Using Patterns for Fills 528
Writing Text to the Canvas 530
The strokeText Method 530
The textBaseLine Property 531
The font Property 531
The textAlign Property 531
The fillText Method 532
The measureText Method 533
Drawing Lines 533
The lineWidth Property 533
The lineCap and lineJoin Properties 533
The miterLimit Property 535
Using Paths 536
The moveTo and LineTo Methods 536
The stroke Method 537
The rect Method 537
Filling Areas 537
The clip Method 539
The isPointInPath Method 542
Working with Curves 543
The arc Method 543
The arcTo Method 546
The quadraticCurveTo Method 547
The bezierCurveTo Method 548
Manipulating Images 549
The drawImage Method 549
Resizing an Image 550
Selecting an Image Area 550
Copying from a Canvas 552

Table of Contents |  xvii



24,

25.

Adding Shadows
Editing at the Pixel Level
The getImageData Method
The data Array
The putImageData Method
The createImageData Method
Advanced Graphical Effects

The globalCompositeOperation Property

The globalAlpha Property
Transformations

The scale Method

The save and restore Methods

The rotate Method

The translate Method

The transform Method

The setTransform Method
Summary
Questions

HTML5 Audioand Video.........covvvvviiiiiiinennnnen

About Codecs
The <audio> Element
Supporting Non-HTML5 Browsers
The <video> Element

The Video Codecs

Supporting Older Browsers
Summary
Questions

Other HTMLS Features. ....oovvvvnvniieeneinenennenens

Geolocation and the GPS Service
Other Location Methods
Geolocation and HTML5
Local Storage

Using Local Storage

The localStorage Object
Web Workers
Offline Web Applications
Drag and Drop
Cross Document Messaging
Microdata
Other HTMLS5 Tags

552
554
554
555
557
557
558
558
561
561
561
562
562
564
565
567
567
567

569
570
571
573
574
575
578
580
580

581
581
582
583
586
587
587
589
591
593
595
598
601

xviii

| Table of Contents



26.

A. Solutions to the Chapter Questions

B. Online Resources

Summary
Questions

Bringing It All Together..................coett

Designing a Social Networking Site

On the Website
functions.php
The Functions
header.php
setup.php
index.php
signup.php

Checking for Username Availability

Logging In

checkuser.php

login.php

profile.php
Adding the “About Me” Text
Adding a Profile Image
Processing the Image
Displaying the Current Profile

members.php
Viewing a User’s Profile
Adding and Dropping Friends
Listing All Members

friends.php

messages.php

logout.php

styles.css

javascript.js

601
602

........................... 603

603
604
604
605
607
608
610
610
611
611
614
615
617
618
618
618
619
622
622
622
622
625
628
631
632
636

Table of Contents |  xix






Preface

The combination of PHP and MySQL is the most convenient approach to dynamic,
database-driven web design, holding its own in the face of challenges from integrated
frameworks—such as Ruby on Rails—that are harder to learn. Due to its open source
roots (unlike the competing Microsoft .NET Framework), it is free to implement and
is therefore an extremely popular option for web development.

Any would-be developer on a Unix/Linux or even a Windows/Apache platform will
need to master these technologies. And, combined with the partner technologies of
JavaScript, CSS,and HTML5, you will be able to create websites of the caliber of industry
standards like Facebook, Twitter, and Gmail.

Audience

This book is for people who wish to learn how to create effective and dynamic websites.
This may include webmasters or graphic designers who are already creating static web-
sites but wish to take their skills to the next level, as well as high school and college
students, recent graduates, and self-taught individuals.

In fact, anyone ready to learn the fundamentals behind the Web 2.0 technology known
as Ajax will obtain a thorough grounding in all of these core technologies: PHP, MySQL,
JavaScript, CSS, and HTMLS5.

Assumptions This Book Makes

This book assumes that you have a basic understanding of HTML and can at least put
together a simple, static website, but does not assume that you have any prior knowledge
of PHP, MySQL, JavaScript, CSS, or HTML5—although if you do, your progress through
the book will be even quicker.

XXi



Organization of This Book

The chapters in this book are written in a specific order, first introducing all of the core
technologies it covers and then walking you through their installation on a web devel-
opment server so that you will be ready to work through the examples.

In the first section, you will gain a grounding in the PHP programming language, cov-
ering the basics of syntax, arrays, functions, and object-oriented programming.

Then, with PHP under your belt, you will move on to an introduction to the MySQL
database system, where you will learn everything from how MySQL databases are struc-
tured to how to generate complex queries.

After that, you will learn how you can combine PHP and MySQL to start creating your
own dynamic web pages by integrating forms and other HTML features. Following that,
you will get down to the nitty-gritty practical aspects of PHP and MySQL development
by learning a variety of useful functions and how to manage cookies and sessions, as
well as how to maintain a high level of security.

In the next few chapters, you will gain a thorough grounding in JavaScript, from simple
functions and event handling to accessing the Document Object Model and in-browser
validation and error handling.

With an understanding of all three of these core technologies, you will then learn how
to make behind-the-scenes Ajax calls and turn your websites into highly dynamic en-
vironments.

Next, you'll spend two chapters learning all about using CSS to style and lay out your
web pages, before moving on to the final section on the new features built into HTMLS5,
including geolocation, audio, video, and the canvas. After this, you’ll put together ev-
erything you've learned in a complete set of programs that together constitute a fully
functional social networking website.

Along the way, you'll also find plenty of pointers and advice on good programming
practices and tips that could help you find and solve hard-to-detect programming er-
rors. There are also plenty of links to websites containing further details on the topics
covered.

Supporting Books

Once you have learned to develop using PHP, MySQL, JavaScript, CSS, and HTMLS5,
you will be ready to take your skills to the next level using the following O’Reilly refer-
ence books. To learn more about any of these titles, simply search the O’'Reilly website
or any good online book seller’s website:

xxii | Preface



o Dynamic HTML: The Definitive Reference by Danny Goodman
o PHP in a Nutshell by Paul Hudson

o MySQL in a Nutshell by Russell ].T. Dyer

o JavaScript: The Definitive Guide by David Flanagan

o CSS: The Definitive Guide by Eric A. Meyer

o HTML5: The Missing Manual by Matthew MacDonald

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text
Indicates menu titles, options, and buttons.

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities.

Constant width
Indicates command-line options, variables and other code elements, HTML tags,
macros, and the contents of files.

Constant width bold
Shows program output or highlighted sections of code that are being discussed in
the text.

Constant width italic
Shows text that should be replaced with user-supplied values.

This element signifies a tip, suggestion, or general note.

This element indicates a warning or caution.

Preface | xxiii



Using Code Examples

Supplemental material (code examples, exercises, etc.) is available at http://Ipmj.net.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you're reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Learning PHP, MySQL, JavaScript,
CSS & HTML5, Third Edition, by Robin Nixon. Copyright 2014 Robin Nixon,
978-1-4919-4946-7”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

We'd Like to Hear from You

Every example in this book has been tested on various platforms, but occasionally you
may encounter problems—for example, if you have a nonstandard installation or a
different version of PHP. The information in this book has also been verified at each
step of the production process. However, mistakes and oversights can occur and we will
gratefully receive details of any you find, as well as any suggestions you would like to
make for future editions. You can contact the author and editors at:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/lpmjch_3e.

There is also a companion website to this book at http://Ipmj.net, where you can down-
load all the examples from this book in a single zip file.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

xxiv | Preface



For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Safari® Books Online

Safari Books Online (www.safaribooksonline.com) is an on-

Safa Il  demand digital library that delivers expert content in both

Bocksonline book and video form from the world’s leading authors in
technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O'Reilly Media, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

Acknowledgments

I would like to once again thank my editor, Andy Oram, and everyone who worked so
hard on this book, including Albert Wiersch for his comprehensive technical review,
Kristen Brown for overseeing production, Rachel Monaghan for her copyediting, Jas-
mine Kwityn for proofreading, Robert Romano for his original illustrations, Rebecca
Demarest for her new illustrations, David Futato for interior design, Lucie Haskins for
creating the index, Karen Montgomery for the original sugar glider front cover design,
Randy Comer for the latest book cover, and everyone else too numerous to name who
submitted errata and offered suggestions for this new edition.

Preface | xxv






CHAPTER 1
Introduction to Dynamic Web Content

The World Wide Web is a constantly evolving network that has already traveled far
beyond its conception in the early 1990s, when it was created to solve a specific problem.
State-of-the-art experiments at CERN (the European Laboratory for Particle Physics—
now best known as the operator of the Large Hadron Collider) were producing incred-
ible amounts of data—so much that the data was proving unwieldy to distribute to the
participating scientists who were spread out across the world.

At this time, the Internet was already in place, with several hundred thousand computers
connected to it, so Tim Berners-Lee (a CERN fellow) devised a method of navigating
between them using a hyperlinking framework, which came to be known as Hypertext
Transfer Protocol, or HTTP. He also created a markup language called HTML, or
Hypertext Markup Language. To bring these together, he wrote the first web browser
and web server, tools that we now take for granted.

But back then, the concept was revolutionary. The most connectivity so far experienced
by at-home modem users was dialing up and connecting to a bulletin board that was
hosted by a single computer, where you could communicate and swap data only with
other users of that service. Consequently, you needed to be a member of many bulletin
board systems in order to effectively communicate electronically with your colleagues
and friends.

But Berners-Lee changed all that in one fell swoop, and by the mid-1990s, there were
three major graphical web browsers competing for the attention of five million users.
It soon became obvious, though, that something was missing. Yes, pages of text and
graphics with hyperlinks to take you to other pages was a brilliant concept, but the results
didn't reflect the instantaneous potential of computers and the Internet to meet the
particular needs of each user with dynamically changing content. Using the Web was a
very dry and plain experience, even if we did now have scrolling text and animated
GIFs!




Shopping carts, search engines, and social networks have clearly altered how we use the
Web. In this chapter, we'll take a brief look at the various components that make up the
Web, and the software that helps make it a rich and dynamic experience.

It is necessary to start using some acronyms more or less right away.
I have tried to clearly explain them before proceeding. But don't wor-
ry too much about what they stand for or what these names mean,
because the details will all become clear as you read on.

HTTP and HTML: Berners-Lee’s Basics

HTTP is a communication standard governing the requests and responses that take
place between the browser running on the end user’s computer and the web server. The
server’sjob is to accept a request from the client and attempt to reply to it in a meaningful
way, usually by serving up a requested web page—that’s why the term server is used. The
natural counterpart to a server is a client, so that term is applied both to the web browser
and the computer on which its running.

Between the client and the server there can be several other devices, such as routers,
proxies, gateways, and so on. They serve different roles in ensuring that the requests
and responses are correctly transferred between the client and server. Typically, they
use the Internet to send this information.

A web server can usually handle multiple simultaneous connections and—when not
communicating with a client—spends its time listening for an incoming connection.
When one arrives, the server sends back a response to confirm its receipt.

The Request/Response Procedure

At its most basic level, the request/response process consists of a web browser asking
the web server to send it a web page and the server sending back the page. The browser
then takes care of displaying the page (see Figure 1-1).

2 | Chapter 1: Introduction to Dynamic Web Content



Web The Web server Disk drive
browser Internet at server.com at server.com
1 User enters:
Httpelfervercom |
Look up IP
2 B address of
server.com
Request
3 server.com main
page using IP i
Receive
4 re uest for ..................
index page
Fetch
5 preesnsannsnennansd index.html
: from hard disk
6 Return the
H index page
7 Receive and
display page

Figure 1-1. The basic client/server request/response sequence

Each step in the request and response sequence is as follows:

You enter http://server.com into your browser’s address bar.

Your browser looks up the IP address for server.com.

Your browser issues a request for the home page at server.com.

The request crosses the Internet and arrives at the server.com web server.

The web server, having received the request, looks for the web page on its hard disk.

The web page is retrieved by the server and returned to the browser.

N e »he

Your browser displays the web page.

For an average web page, this process takes place once for each object within the page:
a graphic, an embedded video or Flash file, and even a CSS template.

In step 2, notice that the browser looked up the IP address of server.com. Every machine
attached to the Internet has an IP address—your computer included. But we generally
access web servers by name, such as google.com. As you probably know, the browser
consults an additional Internet service called the Domain Name Service (DNS) to find
its associated IP address and then uses it to communicate with the computer.

The Request/Response Procedure | 3




For dynamic web pages, the procedure is a little more involved, because it may bring
both PHP and MySQL into the mix (see Figure 1-2).

10

1

Web The Web PHP Disk MysaQL
browser Internet server processor drive database
Enter |
URL
Look up
.................. P
Request
main page
Receive
request
Fetch
page
Contains  |............... .
PHP
Process | e .
PHP
.................................... Execute
sqL
J— Receive
data
Return
page
Display

page

Figure 1-2. A dynamic client/server request/response sequence

Here are the steps for a dynamic client/server request/response sequence:

1
2
3.
4
5

. You enter http://server.com into your browser’s address bar.

. Your browser looks up the IP address for server.com.

Your browser issues a request to that address for the web server’s home page.

disk.

. The request crosses the Internet and arrives at the server.com web server.

. The web server, having received the request, fetches the home page from its hard

4

Chapter 1: Introduction to Dynamic Web Content



6. With the home page now in memory, the web server notices that it is a file incor-
porating PHP scripting and passes the page to the PHP interpreter.

7. The PHP interpreter executes the PHP code.

8. Some of the PHP contains MySQL statements, which the PHP interpreter now
passes to the MySQL database engine.

9. The MySQL database returns the results of the statements back to the PHP
interpreter.

10. The PHP interpreter returns the results of the executed PHP code, along with the
results from the MySQL database, to the web server.

11. The web server returns the page to the requesting client, which displays it.

Although it’s helpful to be aware of this process so that you know how the three elements
work together, in practice you don't really need to concern yourself with these details,
because they all happen automatically.

HTML pages returned to the browser in each example may well contain JavaScript,
which will be interpreted locally by the client, and which could initiate another request—
the same way embedded objects such as images would.

The Benefits of PHP, MySQL, JavaScript, CSS, and HTML5

At the start of this chapter, I introduced the world of Web 1.0, but it wasn't long before
the rush was on to create Web 1.1, with the development of such browser enhancements
as Java, JavaScript, JScript (Microsoft’s slight variant of JavaScript), and ActiveX. On the
server side, progress was being made on the Common Gateway Interface (CGI) using
scripting languages such as Perl (an alternative to the PHP language) and server-side
scripting—inserting the contents of one file (or the output of a system call) into another
one dynamically.

Once the dust had settled, three main technologies stood head and shoulders above the
others. Although Perl was still a popular scripting language with a strong following,
PHP’s simplicity and built-in links to the MySQL database program had earned it more
than double the number of users. And JavaScript, which had become an essential part
of the equation for dynamically manipulating CSS (Cascading Style Sheets) and HTML,
now took on the even more muscular task of handling the client side of the Ajax process.
Under Ajax, web pages perform data handling and send requests to web servers in the
background—without the web user being aware that this is going on.

No doubt the symbiotic nature of PHP and MySQL helped propel them both forward,
but what attracted developers to them in the first place? The simple answer has to be
the ease with which you can use them to quickly create dynamic elements on websites.
MySQL is a fast and powerful, yet easy-to-use, database system that offers just about

The Benefits of PHP, MySQL, JavaScript, €SS, and HTMLS | 5



anything a website would need in order to find and serve up data to browsers. When
PHP allies with MySQL to store and retrieve this data, you have the fundamental parts
required for the development of social networking sites and the beginnings of Web 2.0.

And when you bring JavaScript and CSS into the mix too, you have a recipe for building
highly dynamic and interactive websites.

Using PHP

With PHP, it’s a simple matter to embed dynamic activity in web pages. When you give
pages the .php extension, they have instant access to the scripting language. From a
developer’s point of view, all you have to do is write code such as the following:

<?php

echo " Today is " . date("l") . ". ";
?>

Here's the latest news.

The opening <?php tells the web server to allow the PHP program to interpret all the
following code up to the ?> tag. Outside of this construct, everything is sent to the client
asdirect HTML. So the textHere's the latest news. is simply output to the browser;
within the PHP tags, the built-in date function displays the current day of the week
according to the server’s system time.

The final output of the two parts looks like this:
Today is Wednesday. Here's the latest news.

PHP is a flexible language, and some people prefer to place the PHP construct directly
next to PHP code, like this:

Today is <?php echo date("l1"); ?>. Here's the latest news.

There are also other ways of formatting and outputting information, which I'll explain
in the chapters on PHP. The point is that with PHP, web developers have a scripting
language that, although not as fast as compiling your code in C or a similar language,
is incredibly speedy and also integrates seamlessly with HTML markup.

If you intend to enter the PHP examples in this book to work along
with me, you must remember to add <?php in front and ?> after them
to ensure that the PHP interpreter processes them. To facilitate this,
you may wish to prepare a file called example.php with those tags in
place.

Using PHP, you have unlimited control over your web server. Whether you need to
modify HTML on the fly, process a credit card, add user details to a database, or fetch

6 | Chapter 1: Introduction to Dynamic Web Content



information from a third-party website, you can do it all from within the same PHP
files in which the HTML itself resides.

Using MySQL

Of course, there’s not much point to being able to change HTML output dynamically
unless you also have a means to track the changes that users make as they use your
website. In the early days of the Web, many sites used “flat” text files to store data such
as usernames and passwords. But this approach could cause problems if the file wasn’t
correctly locked against corruption from multiple simultaneous accesses. Also, a flat file
can get only so big before it becomes unwieldy to manage—not to mention the difficulty
of trying to merge files and perform complex searches in any kind of reasonable time.

That's where relational databases with structured querying become essential. And
MySQL, being free to use and installed on vast numbers of Internet web servers, rises
superbly to the occasion. It is a robust and exceptionally fast database management
system that uses English-like commands.

The highest level of MySQL structure is a database, within which you can have one or
more tables that contain your data. For example, let’s suppose you are working on a table
called users, within which you have created columns for surname, firstname, and
email, and you now wish to add another user. One command that you might use to do
this is:

INSERT INTO users VALUES('Smith', 'John', 'jsmith@mysite.com');

Of course, as mentioned earlier, you will have issued other commands to create the
database and table and to set up all the correct fields, but the INSERT command here
shows how simple it can be to add new data to a database. The INSERT command is an
example of SQL (Structured Query Language), a language designed in the early 1970s
and reminiscent of one of the oldest programming languages, COBOL. It is well suited,
however, to database queries, which is why it is still in use after all this time.

It's equally easy to look up data. Let’s assume that you have an email address for a user
and need to look up that person’s name. To do this, you could issue a MySQL query such
as:

SELECT surname,firstname FROM users WHERE email='jsmith@mysite.com';

MySQL will then return Smith, John and any other pairs of names that may be asso-
ciated with that email address in the database.

As you'd expect, there’s quite a bit more that you can do with MySQL than just simple
INSERT and SELECT commands. For example, you can join multiple tables according to
various criteria, ask for results in a variety of orders, make partial matches when you
know only part of the string that you are searching for, return only the nth result, and
a lot more.

The Benefits of PHP, MySQL, JavaScript, CSS, and HTMLS | 7



Using PHP, you can make all these calls directly to MySQL without having to run the
MySQL program yourself or use its command-line interface. This means you can save
the results in arrays for processing and perform multiple lookups, each dependent on
the results returned from earlier ones, to drill right down to the item of data you need.

For even more power, as you'll see later, there are additional functions built right into
MySQL that you can call up for common operations and extra speed.

Using JavaScript

The oldest of the three core technologies in this book, JavaScript, was created to enable
scripting access to all the elements of an HTML document. In other words, it provides
a means for dynamic user interaction such as checking email address validity in input
forms, displaying prompts such as “Did you really mean that?”, and so on (note, however,
that it cannot be relied upon for security, which should always be performed on the web
server).

Combined with CSS (see the following section), JavaScript is the power behind dynamic
web pages that change in front of your eyes rather than when a new page is returned by
the server.

However, JavaScript can also be tricky to use, due to some major differences in the ways
different browser designers have chosen to implement it. This mainly came about when
some manufacturers tried to put additional functionality into their browsers at the ex-
pense of compatibility with their rivals.

Thankfully, the developers have mostly now come to their senses and have realized the
need for full compatibility with one another, so they don’t have to write multi-exception
code. But there remain millions of legacy browsers that will be in use for a good many
years to come. Luckily, there are solutions for the incompatibility problems, and later
in this book we’ll look at libraries and techniques that enable you to safely ignore these
differences.

For now, let’s take a quick look at how you can use basic JavaScript, accepted by all
browsers:

<script type="text/javascript"s

document.write("Today is " + Date() );

</script>
This code snippet tells the web browser to interpret everything within the script tags
as JavaScript, which the browser then does by writing the text Today 1is to the current
document, along with the date, by using the JavaScript function Date. The result will
look something like this:

Today is Sun Jan 01 2017 01:23:45

8 | Chapter 1: Introduction to Dynamic Web Content



Unless you need to specify an exact version of JavaScript, you can
normally omit the type="text/javascript" and just use <script>
to start the interpretation of the JavaScript.

As previously mentioned, JavaScript was originally developed to offer dynamic control
over the various elements within an HTML document, and that is still its main use. But
more and more, JavaScript is being used for Ajax. This is a term for the process of
accessing the web server in the background. (It originally meant “Asynchronous Java-
Script and XML,” but that phrase is already a bit outdated.)

Ajax is the main process behind what is now known as Web 2.0 (a term popularized by
Tim O’Reilly, the founder and CEO of this booK’s publishing company), in which web
pages have started to resemble standalone programs, because they don't have to be
reloaded in their entirety. Instead, a quick Ajax call can pull in and update a single
element on a web page, such as changing your photograph on a social networking site
or replacing a button that you click with the answer to a question. This subject is fully
covered in Chapter 18.

Using CSS

With the emergence of the CSS3 standard in recent years, CSS now offers a level of
dynamic interactivity previously supported only by JavaScript. For example, not only
can you style any HTML element to change its dimensions, colors, borders, spacing,
and so on, but now you can also add animated transitions and transformations to your
web pages, using only a few lines of CSS.

Using CSS can be as simple as inserting a few rules between <style>and </style> tags
in the head of a web page, like this:

<style>
p{
text-align:justify;
font-family:Helvetica;

}
</style>
These rules will change the default text alignment of the <p> tag so that paragraphs
contained in it will be fully justified and will use the Helvetica font.

As you'll learn in Chapter 19, there are many different ways you can lay out CSS rules,
and you can also include them directly within tags or save a set of rules to an external
filetobeloaded in separately. This flexibility not only lets you style your HTML precisely,
but it can also, for example, provide built-in hover functionality to animate objects as
the mouse passes over them. You will also learn how to access all of an element’s CSS
properties from JavaScript as well as HTML.

The Benefits of PHP, MySQL, JavaScript, €SS, and HTMLS | 9



And Then There’s HTML5

As useful as all these additions to the web standards became, they were not enough for
ever more ambitious developers. For example, there was still no simple way to manip-
ulate graphics in a web browser without resorting to plug-ins such as Flash. And the
same went for inserting audio and video into web pages. Plus, several annoying incon-
sistencies had crept into HTML during its evolution.

So, to clear all this up and take the Internet beyond Web 2.0 and into its next iteration,
a new standard for HTML was created to address all these shortcomings. It was called
HTMLS5 and it began development as long ago as 2004, when the first draft was drawn
up by the Mozilla Foundation and Opera Software (developers of two popular web
browsers). But it wasn’t until the start of 2013 that the final draft was submitted to the
World Wide Web Consortium (W3C), the international governing body for web
standards.

With nine years for it to develop, you might think that would be the end of the specifi-
cation, but that’s not how things work on the Internet. Although websites come and go
at great speed, the underlying software is developed slowly and carefully, and so the
stable recommendation for HTMLS5 is not expected until after this edition of the book
has been published—in late 2014. And then guess what? Work will move on to versions
5.1 and higher, beginning in 2015. It’s a never-ending cycle of development.

However, while HTML5.1 is planned to bring some handy improvements (mainly to
the canvas), basic HTMLS5 is the new standard web developers now need to work to,
and it will remain in place for many years to come. So learning everything you can about
it now will stand you in very good stead.

There’s actually a great deal of new stuff in HTML (and quite a few things that have been
changed or removed), but in summary, here’s what you get:

Markup
Including new elements such as <nav> and <footer>, and deprecated elements like
<font> and <centers>.

New APIs
For example, the <canvas> element for writing and drawing on a graphics canvas,
<audio> and <video> elements, offline web apps, microdata, and local storage.

Applications
Including two new rendering technologies: MathML (Math Markup Language) for
displaying mathematical formulae) and SVG (Scalable Vector Graphics) for creat-
ing graphical elements outside of the new <canvas> element. However, MathML
and SVG are somewhat specialist, and are so feature-packed they would need a book
of their own, so I don’t cover them here.

All these things (and more) are covered in detail starting in Chapter 22.

10 | Chapter 1: Introduction to Dynamic Web Content



One of the little things I like about the HTMLS5 specification is that
XHTML syntax is no longer required for self-closing elements. In the
past you could display a line break using the <br> element. Then, to
ensure future compatibility with XHTML (the planned replacement
for HTML that never happened), this was changed to <br />, in which
a closing / character was added (because all elements were expected
to include a closing tag featuring this character). But now things have
gone full circle, and you can use either version of these element types.
So, for the sake of brevity and fewer keystrokes, in this book I have
reverted to the former style of <br>, <hr>, and so on.

The Apache Web Server

In addition to PHP, MySQL, JavaScript, CSS, and HTMLS5, there’s actually a sixth hero
in the dynamic Web: the web server. In the case of this book, that means the Apache
web server. We've discussed a little of what a web server does during the HT TP server/
client exchange, but it actually does much more behind the scenes.

For example, Apache doesn't serve up just HTML files—it handles a wide range of files
from images and Flash files to MP3 audio files, RSS (Really Simple Syndication) feeds,
and so on. To do this, each element a web client encounters in an HTML page is also
requested from the server, which then serves it up.

Butthese objects don’t have to be static files such as GIF images. They can all be generated
by programs such as PHP scripts. That’s right: PHP can even create images and other
files for you, either on the fly or in advance to serve up later.

To do this, you normally have modules either precompiled into Apache or PHP or called
up at runtime. One such module is the GD (Graphics Draw) library, which PHP uses
to create and handle graphics.

Apachealso supports a huge range of modules of its own. In addition to the PHP module,
the most important for your purposes as a web programmer are the modules that handle
security. Other examples are the Rewrite module, which enables the web server to handle
a varying range of URL types and rewrite them to its own internal requirements, and
the Proxy module, which you can use to serve up often-requested pages from a cache
to ease the load on the server.

Later in the book, you'll see how to actually use some of these modules to enhance the
features provided by the three core technologies.

The Apache Web Server | 11



About Open Source

Whether the open source quality of these technologies is the reason they are so popular
has often been debated, but PHP, MySQL, and Apache are the three most commonly
used tools in their categories.

What can be said definitively, though, is that their being open source means that they
have been developed in the community by teams of programmers writing the features
they themselves want and need, with the original code available for all to see and change.
Bugs can be found and security breaches can be prevented before they happen.

There’s another benefit: all these programs are free to use. There’s no worrying about
having to purchase additional licenses if you have to scale up your website and add more
servers. And you don’t need to check the budget before deciding whether to upgrade to
the latest versions of these products.

Bringing It All Together

The real beauty of PHP, MySQL, JavaScript, CSS, and HTMLS5 is the wonderful way in
which they all work together to produce dynamic web content: PHP handles all the
main work on the web server, MySQL manages all the data, and the combination of CSS
and JavaScript looks after web page presentation. JavaScript can also talk with your PHP
code on the web server whenever it needs to update something (either on the server or
on the web page). And with the powerful new features in HTML5, such as the canvas,
audio and video, and geolocation, you can make your web pages highly dynamic, in-
teractive, and multimedia packed.

Without using program code, let’s summarize the contents of this chapter by looking at
the process of combining some of these technologies into an everyday Ajax feature that
many websites use: checking whether a desired username already exists on the site when
a user is signing up for a new account. A good example of this can be seen with Gmail
(see Figure 1-3).

12 | Chapter 1: Introduction to Dynamic Web Content



! __:' '-.l https://accounts.go... L~-acx '-.l Google Accounts > L | ﬁ:u\ ‘E'n? ‘:’
File Edit View Favorites Tools Help
Your Google Account is
more than just Gmail. Name -
Samuel Smith ‘E‘

Choose your username

samsmith Hamail.com |

Someone already has that username. Try another?
Available:  smithsamuel169 ss1676073

Create a password

®100% ~

Figure 1-3. Gmail uses Ajax to check the availability of usernames

The steps involved in this Ajax process would be similar to the following:

1.

The server outputs the HTML to create the web form, which asks for the necessary
details, such as username, first name, last name, and email address.

. At the same time, the server attaches some JavaScript to the HTML to monitor the
username input box and check for two things: (a) whether some text has been typed
into it, and (b) whether the input has been deselected because the user has clicked
on another input box.

. Once the text has been entered and the field deselected, in the background the
JavaScript code passes the username that was entered back to a PHP script on the
web server and awaits a response.

. The web server looks up the username and replies back to the JavaScript regarding
whether that name has already been taken.

. The JavaScript then places an indication next to the username input box to show

whether the name is one available to the user—perhaps a green checkmark or a red
cross graphic, along with some text.

If the username is not available and the user still submits the form, the JavaScript
interrupts the submission and reemphasizes (perhaps with a larger graphic and/or
an alert box) that the user needs to choose another username.

Optionally, an improved version of this process could even look at the username
requested by the user and suggest an alternative that is currently available.

Bringing It All Together | 13



All of this takes place quietly in the background and makes for a comfortable and
seamless user experience. Without Ajax, the entire form would have to be submitted to
the server, which would then send back HTML, highlighting any mistakes. It would be
a workable solution, but nowhere near as tidy or pleasurable as on-the-fly form field
processing.

Ajax can be used for a lot more than simple input verification and processing, though;
we'll explore many additional things that you can do with it in the Ajax chapters later
in this book.

In this chapter, you have read a good introduction to the core technologies of PHP,
MySQL, JavaScript, CSS, and HTMLS5 (as well as Apache), and have learned how they
work together. In Chapter 2, we’ll look athow you can install your own web development
server on which to practice everything that you will be learning.

Questions

1. What four components (at the minimum) are needed to create a fully dynamic web
page?

2. What does HTML stand for?

3. Why does the name MySQL contain the letters SQL?

4. PHP and JavaScript are both programming languages that generate dynamic results
for web pages. What is their main difference, and why would you use both of them?

5. What does CSS stand for?

6. List three major new elements introduced in HTMLS5.

7. If you encounter a bug (which is rare) in one of the open source tools, how do you
think you could get it fixed?

See “Chapter 1 Answers” on page 639 in Appendix A for the answers to these questions.

14 | Chapter 1: Introduction to Dynamic Web Content



CHAPTER 2
Setting Up a Development Server

If you wish to develop Internet applications but don’t have your own development server,
you will have to upload every modification you make to a server somewhere else on the
Web before you can test it.

Even on a fast broadband connection, this can still represent a significant slowdown in
development time. On a local computer, however, testing can be as easy as saving an
update (usually just a matter of clicking once on an icon) and then hitting the Refresh
button in your browser.

Another advantage of a development server is that you don’t have to worry about em-
barrassing errors or security problems while youre writing and testing, whereas you
need to be aware of what people may see or do with your application when it's on a
public website. It’s best to iron everything out while you're still on a home or small office
system, presumably protected by firewalls and other safeguards.

Once you have your own development server, you'll wonder how you ever managed
without one, and it’s easy to set one up. Just follow the steps in the following sections,
using the appropriate instructions for a PC, a Mac, or a Linux system.

In this chapter, we cover just the server side of the web experience, as described in
Chapter 1. But to test the results of your work—particularly when we start using Java-
Script, CSS, and HTMLS later in this book—you should also have an instance of every
major web browser running on some system convenient to you. Whenever possible, the
list of browsers should include at least Internet Explorer, Mozilla Firefox, Opera, Safari,
and Google Chrome.

If you plan to ensure your sites look good on mobile devices too, then you should also
try to arrange access to a wide range of Apple iOS and Google Android phones and
tablets.

15



What Is a WAMP, MAMP, or LAMP?

WAMP, MAMP, and LAMP are abbreviations for “Windows, Apache, MySQL, and
PHP “Mac, Apache, MySQL, and PHP,” and “Linux, Apache, MySQL, and PHP” These
abbreviations describe a fully functioning setup used for developing dynamic Internet
web pages.

WAMPs, MAMPs, and LAMPs come in the form of a package that binds the bundled
programs together so that you don’t have to install and set them up separately. This
means you can simply download and install a single program, and follow a few easy
prompts, to get your web development server up and running in the quickest time with
a minimum hassle.

During installation, several default settings are created for you. The security configu-
rations of such an installation will not be as tight as on a production web server, because
it is optimized for local use. For these reasons, you should never install such a setup as
a production server.

But for developing and testing websites and applications, one of these installations
should be entirely sufficient.

If you choose not to go the WAMP/MAMP/LAMP route for build-
ing your own development system, you should know that down-
loading and integrating the various parts yourself can be very time-
consuming and may require a lot of research in order to configure
everything fully. But if you already have all the components in-
stalled and integrated with one another, they should work with the
examples in this book.

Installing a WAMP on Windows

There are several available WAMP servers, each offering slightly different configura-
tions, but the best is probably Zend Server Free Edition, because it’s free and is from the
developers of PHP itself. You can download it at http://tinyurl.com/zendfree, as shown
in Figure 2-1.

16 | Chapter2: Setting Up a Development Server



Throughout this book, whenever there’s a long URL to type, I use the
TinyURL web address shortening service to save you time and re-
duce typos. For example, the URLs http://tinyurl.com/zendfree and
http://tinyurl.com/zenddocs are much shorter than the URLs that they
lead to:

o http://www.zend.com/en/products/server/free-edition

o http://files.zend.com/help/Zend-Server-6/zend-server.htm

Se rver Mobile and Web Application Platform » Free Downioad
What's New Webinars Get Started Free Edition Features Editions IBM i Requirements FAQ » Chat with Zend
» Contact Sales
H H N » Use in the Cloud
Start Your Project off Right with the Best Free
PHP Server
g DOCUMENTATION
Zend Server User Guide
- Zend Server Deployment
- Zend Server Page Cache
- Zend Server Job Queue
Zend Server Free Edition gives your app the edge
— the fastest PHP server around, ready to go with DOWNLOAD ﬂ&fﬁfiﬁmmmn
all the extensions and drivers you need, along with zendserver

advanced debugging tools N wire Paper
Application Leadership Today -
- DevOps: Agile Delivery for
Competitive Edge mores

E— - -
/@ Zend Server FrecEdition - x \ =
<« C' A [3 wwwzend.com/en/products/server/free-edition 92 =
BE@#E = Store Forums | My Account ' Signin =8 I§ L
" The PHP Compary
zend &, Downloads | B Newsletter () Support  E=Contact
Products Solutions Services Training Downloads Resources Store Company Support

Figure 2-1. You can download the Free Edition from the Zend website

I recommend that you always download the latest stable release (in this instance, it’s
6.3.0/PHP 5.5 for Windows). It will probably be listed first in the Download section of
the web page, which should display the correct installer for your computer out of Linux,

Windows OS X, and IBM i.

During the lifetime of this edition, some of the screens and options
shown in the following walkthrough may change. If so, just use your
common sense to proceed in as similar a manner as possible to the
sequence of actions described.

Installing a WAMP on Windows

| 17



Once youve downloaded the installer, run it to bring up the window shown in
Figure 2-2.

Zend Server Installer

server

Welcome to the Zend Server 6.3 Installer

The Inztallation wizard will install Zend Server on your computer.
To continue, click Mext.

Cancel

Figure 2-2. The main installation window of the installer

Click Next and accept the license agreement that follows to move on to the Setup Type
screen (see Figure 2-3), then select the Custom option so that the MySQL server can
also be installed.

18 | Chapter2: Setting Up a Development Server



Zend Server Installer

server

Setup Type
Select an installation method.

Click the type of setup vou prefer, then click Mest.

© Typical Frogram will be installed with the most commaon options.
Recommended for most users.

 Full All program features will be installed.
Fiequires an Internet connection in order to download third-party
components,

“f'ou may select the options you want to install. Recommended for
advanced users.

Fiequires an Intemet connection in order to download third-party
components,

Figure 2-3. Choose the Custom install option

When the Custom Setup window appears, scroll down the list of options to the bottom
and ensure that MySQL Server is checked, as shown in Figure 2-4, then click Next.

Installing a WAMP on Windows | 19



Zend Server Installer

server

Custom Setup

Select components to install

Only components with & marked checkbox will be installed. After installation rn the Installer again
to add components not selected thiz time.

D escriptiorn

Inztallz the MySOL
Eszential D atabaze Server

K . [wersion 5.5.23)
Zend Session Clustering

Zend Code Tracing
[[1Zend Java Bridge
& Zend Deployment
[ Informis
-w| Oracle OCI Driver
[T11BM DB2 RTCL [separate download)
ate oad]

-[1M5 SOL Mative Client [separate donload]

296.57 MB of space required on the C drive
17135954.74 MBE of zpace available on the C drive

Figure 2-4. Check MySQL Server before continuing

On the following screen (see Figure 2-5), even if you already have an IIS web server
installed, I recommend that you choose to install the Apache web server, because the
examples in this book are for Apache. Then click Next.

20 | Chapter2: Setting Up a Development Server



Zend Server Installer

server

Web Server
Select the type of Web Server to use and define where ta install Zend Server.

Select a'web Server

@ lnstall an Apache 2.2 25 Web Server

€ Configure existing 115 “Web Server
Mote: Microzoft 15 iz curently not installed.

If you weant to use 15, please install it and restart the Zend Server installation

Defing where to Install Zend Server.
Click Mext to approve or Browsze to change the location.

Destination Folder
’7% C:\Program Files [#86]\Zend', Browsze. .

Cancel

Figure 2-5. Install the Apache web server

Now accept the default values of 80 for the Web Server Port, and 10081 for the Zend

Server Interface Port (see Figure 2-6) and click Next.

If either of the ports offered states that it is occupied (generally this
will be because you have another web server running) and doesn't
allow you to use the defaults, then try a value of 8080 (or 8000) for
the Web Server Port, and 10082 for the Zend Server Interface Port.
You'll need to remember these values for later when you're access-
ing either web pages or the Zend server. For example, instead of
visiting localhost/index.htm in your web browser, you would use
localhost:8080/index.htm.

Installing a WAMP on Windows

21



Zend Server Installer

server

Apache Port Humber

Click Mest to use the default zettings or change the port values that your webzerver wil lizken
to and that the Administration Interface uzes respectively.

‘wheh Server Port:

Zend Server Interface Port: |Hoogt ak.

Cancel

Figure 2-6. Accept the default values offered for the ports

Once the ports have been assigned, you will reach the screen in Figure 2-7, where you
should click Install to start the installation.

22 | Chapter2: Setting Up a Development Server



Zend Server Installer

server

Installation Settings
Fieview pour zettings before installing Zend Server.

Click Install to begin instaling Zend Server with the following components:

-PHP 5.4.21

- Comman Extensions
- Additional Extensions
-- Zend O ptimizer+

-- Zend Debugger

- Zend Data Cache

-- Zend Page Cache

- Zend Monitar

- Zend Job Gueue

-- Zend Session Clustering
-- Zend Code Tracing
-- Zend Deployment

- Oracle OCI Driver

- MySGEL Server

<

Cancel

Figure 2-7. Now you are ready to click Install to proceed

During installation some extra files may be downloaded, so it may take a few minutes
for the programs to get set up. During installation you might also see a pop-up dialog
box from Windows Firewall. If so, accept the request to give it access. When the files
have been installed, you will be notified and prompted to start using the software by
clicking Finish. When you do so, your default browser will be opened with the page
shown in Figure 2-8, where, to continue, you must check the box to agree with the terms.

Installinga WAMP on Windows | 23



/' [ localhost:10081/ZendSery. X \

€« C M | [ localhost:10081/ZendServer/ el =

Launch Zend Server

Launch Type Zend Technologies Ltd.End-User License AgreementThis
End-User License Agreement (this "Agreement™) is a
legal contract between you, a3 either an individual
or & 3ingle business entity, and Zend Technologies
Ltd. and its affiliates ("Zend").

User Passwords

. READ THE TERMS AND CONDITICNS OF THIS AGREEMENT
Library Packages CAREFULLY BEFORE DOWNLOLDING, INSTALLING OR USING
ZEND' 5 FROFRIETARY SOFTWARE (THE "SOFTWARE™). THE
Summary SOFTWARE IS FURTHER DEFINED IN AN ORDER DOCUMENT (AN
“ORDER"), ENTERED INTC BETIWEEN YOU AND ZEND OR YOU
AND & ZEND RESELLER, WHICH SETS FORTH COMMERCIAL
TERMS APFPLICABLE TO YOUR FURCHASE OF THE SOFIWARE.

THE SOFTWARE IS COPYRIGHTED AND IT IS LICENSED IO ¥YOU
UNDER THIS AGREEMENT AND IS NOT S0LD IO YOU. BY
DOWNLOADING, INSTALLING CR USING THE SOFIWRRE CR
OBTRAINING & LICENSE EEY IO THE SOFIWRRE, CR BY
ENTERING INTO AN ORDER WHICH REFERENCES AND FROVIDES

# | have read and agree to the license agreement

Figure 2-8. You must agree to the terms in order to use the server

Next, you are asked how you will be using the server. I recommend that you select the
Development option for the purposes of working through the exercises in this book (see
Figure 2-9).

24 | Chapter2: Setting Up a Development Server



/' [ localhost:10081/ZendSery. X \

Launch Zend Server

License Agreement

User Passwords
Library Packages

Summary

€« C M | [ localhost:10081/ZendServer/ e

Select a working environment to launch Zend Server with optimized
system configuration settings.

* Development
Launch Zend Server with server and PHP settings optimized for a development
environment.

Production (Single Server)
Launch Zend Server with server and PHP settings optimized for a production
environment.

Production (Create or Join a Cluster)
Launch Zend Server with server and PHP settings optimized for a clustered
preduction environment.

Previous Next

Figure 2-9. Select the Development option

Now you are ready to set a password for the user admin (see Figure 2-10). You do not

need to enter a password for the user developer. Make sure you choose a password you

will remember and click Next. After the library packages show as deployed, click Next

again to proceed to the screen shown in Figure 2-11, where you can now click Launch
to finish installation. Note that the Cluster Configuration option may not appear on the

OS X version of the installer.

Installing a WAMP on Windows

25




/' [ localhost:10081/ZendSery. X \

€« C M | [ localhost:10081/ZendServer/

Launch Zend Server
License Agreement

Launch Type i
Enter password for user ‘admin”:

Library Packages

Enter password for user "developer’ (Optional):
Summary

Previous

Next

Figure 2-10. Choose your password and enter it twice

26

Chapter 2: Setting Up a Development Server




/' [ localhost:10081/ZendSery. X \

€« C M | [ localhost:10081/ZendServer/

i
I}

Launch Zend Server
License Agreement

Launch Type

You have chosen to launch Zend Server with server and PHP settings

optimized for a development environment.
User Passwords

Library Packages

Admin password was set

Developer password was not set and user was disabled

To update your Zend Server license, visitthe Zend Online Store, and
enter the new license details on the License page under the
Administration tab.

Previous Launch

Figure 2-11. Click Submit to complete setup

After a short wait, your browser will show the Dashboard screen in Figure 2-12, which
is where you can administer the server.

Installing a WAMP on Windows | 27



l,-" [ Zend Server * W
- C f [ localhost:10081/ZendServer/Index/Index e =
Overview Applications Configurations Administration administrator  13:12
Dashboard | Events | Code Tracing | Job Queue | Sepverinfo | Logs
Overview System Health System Utilization Usage Statistics Mobile Usage Mobile Statistics

WELCOME TO ZEND SERVER

» Deploy an application to your site or » Define a caching rule - Speed-up

integrate your existing functioning recurring executions of PHP scripts

applications with the Zend Server in your application »
management user-interface »

Join Cluster - Associate your server
Configure monitering thresholds » with an existing clustered
environment »

i

Schedule a Recurring job - periodically
EEEIE 3 P SEE I e Install an example applicstion that includes customized menitoring
site response time » and caching rules, events, recurring jobs end statistical data

Figure 2-12. The Zend Server administration screen

You can return to this screen at any time by entering http://localhost:10081 into your
browser. Or, if you entered a value other than 10081 for the Zend Server Interface Port
(or 10088 on a Mac), then you can get to this screen by using that value after the colon
instead.

Testing the Installation

The first thing to do at this point is verify that everything is working correctly. To do
this, you are going to try to display the default web page, which will have been saved in
the server’s document root folder (see Figure 2-13). Enter either of the following two
URLs into the address bar of your browser:

localhost
127.0.0.1

28 | Chapter2: Setting Up a Development Server



= | O
. Zend Server Test Page x \R k)

€ - C #f [localhost <ol =

" The PHP Compary

zend

Zend Server Test Page

Zend Serveris now up and running on this server. Once content is added this message will

no longer be displayed.

If you are this server's administrator:

You can now add content to your Web servers document root. You can configure and control
your Zend Server installation through the Zend Server Administration Interface. Please refer

to the documentation or to your installation's README file for more information
Ifyou need help getting started with Zend Server, please visitthe on-line resources page

For more information about Zend Server you are welcome 1o visit us at www.zend.com

82013 Zend Technologies Ltd. All rights reserved,

Figure 2-13. How the home page should look by default

The word localhost is used in URLSs to specify the local computer, which will also respond
to the IP address of 127.0.0.1, so you can use either method of calling up the document
root of your web server.

If you chose a server port other than 80 during installation (e.g., 8080),
then you must place a colon followed by that value after either of the
preceding URLs (e.g., localhost:8080). You will have to do the same
for all example files in this book. For example, instead of the URL
localhost/example.php, you should enter localhost:8080/example.php
(or whatever value you chose).

The document root is the directory that contains the main web documents for a domain.
This is the one that is entered when a basic URL without a path is typed into a browser,
such as http://yahoo.com or, for your local server, http://localhost.

Installing a WAMP on Windows | 29



By default, Zend Server uses one of the following locations for this directory (the former
for 32-bit computers, and the latter for 64-bit):

C:/Program Files/Zend/Apache2/htdocs
C:/Program Files (x86)/Zend/Apache2/htdocs

If you are not sure whether your computer is 32-bit or 64-bit, try to
navigate to the first directory and, if it exists, you have a 32-bit ma-
chine. If not, open up the second directory because you have a 64-
bit computer. When they include spaces, older versions of Windows
may require you to place path and filenames in quotation marks, like
this:

cd "C:/Program Files/Zend/Apache2/htdocs"

To ensure that you have everything correctly configured, you should now create the
obligatory “Hello World” file. So create a small HTML file along the following lines
using Windows Notepad or any other program or text editor, but not a rich word pro-
cessor such as Microsoft Word (unless you save as plain text):

<html>
<head>
<title>A quick test</title>
</head>
<body>
Hello World!
</body>
</html>
Once you have typed this, save the file into the document root directory previously
discussed, using the filename test.htm. If you are using Notepad, make sure that the
“Save as type” box is changed from “Text Documents (*.txt)” to “All Files (*.*)”. Or, if
you prefer, you can save the file using the .html file extension; either is acceptable.

You can now call this page up in your browser by entering one of the following URLs
(according to the extension you used) in its address bar (see Figure 2-14):

http://localhost/test.htm
http://localhost/test.html

You should now have had a trouble-free installation, resulting in a fully working WAMP.
But if you encountered any difficulties, check out the comprehensive documentation at
http://tinyurl.com/zenddocs, which should sort out your problem.

30 | Chapter2: Setting Up a Development Server



[ 2 quick test %\
€« C A [ localhost/testhtm

Hello World!

Figure 2-14. Your first web page

Alternative WAMPs

When software is updated, it sometimes works differently than you'd expected, and bugs
can even be introduced. So if you encounter difficulties that you cannot resolve, you
may prefer to choose one of the various other solutions available on the Web instead.

You will still be able to make use of all the examples in this book, but you’ll have to follow
the instructions supplied with each WAMP, which may not be as easy to follow as the
preceding guide.

Here’s a selection of the best in my opinion:

o EasyPHP

« XAMPP

o« WAMPServer

o Glossword WAMP

Installing a MAMP on Mac 0S X

Zend Server Free Edition is also available on OS X, and you can download it from http://
tinyurl.com/zendfree, as shown in Figure 2-15.

I recommend that you always download the latest stable release (in this instance, it’s
6.3.0/PHP 5.5 for OS X). It will usually be listed first in the Download section of the web
page, which should display the correct installer for your computer out of Linux, Win-
dows, OS X, and IBM i. You may be asked to log in before you download, but you can
also click a link to get the file without logging in or registering, although you’ll miss out
on product update emails and other news.

Installing a MAMP on Mac0SX | 31



eoo Zend Server Free Trial - Zend.com P

@ @ | @ www.zend.com/en, products/server /downloads?src ndex ¢ | Reade ]
@ El: = Swore Foums | My Account | Signin | = E§ I
" The PHP Company
zend 2+, Downloads Bl Newsletter @ Support  EEdContact
Products Solutions Training D Ci F Company Store Support
Horme # Products / Zend Serwer / Downloads
Zend Server -
f— end's Downloads
at's New d
Z n erver Looking for PHP 6.2 LTS? Download older versions «
Wehinars
Get Started E N
O Linux &Y windows | e Mac OS X | @ IEM |
Free Edition
Featuras .
HNote: Zend Server for the Mac OS5 X platform is meant for development use only, not production use.
Editions
IBM i Product Version Format/Size Notes MD5 Checksum
Requirements
Fao Zend Server (PHP55) 630 (DMG) 287 11 MB Release Noles 1753261813246a2cd2df216abbi0689f
Zend Server in the Cloud 3
Zend Unlimited 3 Zend Server (PHP 5.4) 6.3.0 (DMG) 285 97 MB Release Notes  cdacT2093e0fdeat25810e8M01d8517
Zend Studio 3
Zend Developer Solution »
Zend Server (PHP53) 630 (DMG) 28317 MB Release Notes 13611b8d6ab0328e1ac542a7
Zend Developer Cloud >
Zend Guard 3

Figure 2-15. You can download the server from the Zend website

Once the installer is downloaded, double-click the .dmg file and wait for the download
to verify, and then you should see the window shown in Figure 2-16.

32 | Chapter2: Setting Up a Development Server



8 00 - Zend Server

zendserver

Double click to install Zend Server

v R

Figure 2-16. Double-click Zend Server to install it

Here you can double-click the README file for instructions, or double-click Zend
Server to open up the installation window shown in Figure 2-17.

Installinga MAMP on Mac0SX | 33



8 00 ® Install Zend Server [

Welcome to the Zend Server Installer "

The Installation Wizard will install Zend Server on your computer.
@ Introduction To start installing, click Continue.

@ Read Me

@ Destination Select
@ Installation Type
@ Installation

@ Summary

zendserver

Go Back | Continue |

Figure 2-17. The Zend Server installer

Now click Continue, read the instructions that are displayed, and then click Continue
again to reach the screen shown in Figure 2-18, where you can decide where to put the
installed software (the default being Macintosh HD). Click Install when you are ready,
and enter your password if prompted for it.

During installation, you may be asked whether you wish to install additional software.
If so, I recommend accepting everything offered to you by clicking the Install button.
Upon completion of the installation, you can click Close to close the installer.

Once the software is installed, locate the ZendServer program in your Applications
folder and double-click it to proceed with completing the setup. This will bring up a
page in your default web browser similar to that shown in Figure 2-8. Now follow the
prompts you are given (shown in Figure 2-8 through Figure 2-11), in which you must
accept the license agreement and choose a password before being taken to the main
dashboard, as shown earlier in Figure 2-12.

34 | Chapter2: Setting Up a Development Server



8 00 ® Install Zend Server [

Standard Install on “Macintosh HD" m
& Introduction
& Read Me This will take 882.9 ME of space on your
computer.

© Destination Select

Click Install to perform a standard installation of

HH s this software on the disk "Macintosh HD".

@ Installation

@ Summary

| Change Install Location... |

zendserver

| Customize | GoBack | | Install |

Figure 2-18. Choosing the destination for installation

Configuring MySQL

Unfortunately, the installer doesn’t set up the commands needed to be able to start, stop,
and restart the MySQL server, so youre going to have to do this manually by opening
the Terminal and entering the following command:

sudo nano /usr/local/zend/bin/zendctl.sh

After entering your password you will now be in the Nano text editor, so move the cursor
down a few lines using the down cursor key, and where you see the line that reads
MySQL_EN="false", change the word false to true.

Now scroll down some more until you find these two lines:

case $1 in
"start")

Below that, you’ll see an indented line that reads:
$0 start-apache %

Just after this line, insert a new one that reads as follows:
$0 start-MySQL %

This will allow MySQL to start, but now you need to scroll down a little more until you
get to the section that starts with:

"stop")

Installing a MAMP on Mac0SX | 35



Then below it, you'll see an indented line that reads:
S0 stop-apache %

Just after this line, insert a new one that reads as follows:
$0 stop-MySQL %

This will allow MySQL to be stopped. Now you can press Ctrl-X to exit from edit mode,
press the Y key when prompted to save the changes, and then press Return to save the
edited file.

Ensuring MySQL Starts on Booting

Unfortunately, there’s another edit you have to make so that MySQL will start when
your Mac does, and that’s to issue the following commands from the Terminal (sup-
plying your password in the relevant place if prompted for it):

cd /Library/StartupItems/ZendServer_init/

sudo rm zendctl.sh
sudo ln -s /usr/local/zend/bin/zendctl.sh ./

Your Mac is now configured, but MySQL has not yet been started, so now you must
issue the following command (along with password if prompted) after which you should
be all set to go:

sudo /Library/StartupItems/ZendServer_init/zendctl.sh restart

Testing the Installation

You can now test the installation by entering either of the following URLSs into your web
browser to call up the screen shown in Figure 2-13:

localhost:10088
127.0.0.1:10088

The word localhost specifies the local computer (which will also respond to the IP ad-
dress of 127.0.0.1). And the reason for having to enter :10088 is because many Mac
computers will already have a web server running, so this avoids any clash.

You must therefore remember to place :10088 after every localhost for all examples in
this book. So, for example, if the filename fest.php is being accessed, you would call it
up from the browser using the URL localhost:10088/test.php.

36 | Chapter2: Setting Up a Development Server



If you are sure that there isn’t another web server running on your
Mac, you can edit the configuration file at the following URL (ensur-
ing you have permission to do so), changing the command (at around
line 40) that reads Listen 10088 to Listen 80:

Jusr/local/zend/apache2/conf/httpd.conf

You will then need to restart the server by opening the Terminal utility
and issuing the following command (along with your password if
prompted), and you will then no longer need to add the :10088 to
local URLs:

sudo /usr/local/zend/bin/zendctl.sh restart

The page that gets displayed in the browser when you go to http://localhost or http://
localhost:10088 is the file index.html in the server’s document root (the directory that
contains the main web documents for a domain). This is the directory that is entered
when a basic URL without a path is typed into a browser, such as http://yahoo.com, or
in the case of your local web server, http://localhost, and so on.

By default, Zend Server on OS X uses the following as its document root folder:
Jusr/local/zend/apache2/htdocs

To ensure that you have everything correctly configured, you should now load a test
file. So create a small HTML file along the following lines using Windows TextEdit or
any other program or text editor (such as the popular TextWrangler), but not a rich
word processor like Microsoft Word (unless you save as plain text):

<html>
<head>
<title>A quick test</title>
</head>
<body>
Hello World!
</body>
</html>
Once you have typed this, save the file into the document root directory using the
filename test.htm. Or, if you prefer, use the .html file extension. You can now call this
page up in your browser by entering one of the following URLSs (according to the ex-
tension you saved with) in its address bar (see Figure 2-14):

http://localhost:10088/test.htm
http://localhost:10088/test.html

You should now have had a trouble-free installation, resulting in a fully working MAMP.
But if you encountered any difficulties, check out the comprehensive documentation at
http://tinyurl.com/zenddocs, which should sort out your problem.

Installinga MAMP on Mac0SX | 37



Installing a LAMP on Linux

This book is aimed mostly at PC and Mac users, but its contents will work equally well
on a Linux computer. However, there are dozens of popular flavors of Linux, and each
of them may require installing a LAMP in a slightly different way, so I can’t cover them
all in this book.

Nonetheless, many Linux versions come preinstalled with a web server and MySQL,
and the chances are that you may already be all set to go. To find out, try entering the
following into a browser and see whether you get a default document root web page:

http://localhost

If this works, you probably have the Apache server installed and may well also have
MySQL up and running too; check with your system administrator to be sure, though.

If you don't yet have a web server installed, however, there’s a version of Zend Server
Free Edition available that you can download at http://tinyurl.com/zendfree.

All the instructions and help you need are detailed on the Download page. Follow them
closely or use the provided scripts, and you should be able to work through all the
examples in this book.

Working Remotely

If you have access to a web server already configured with PHP and MySQL, you can
always use that for your web development. But unless you have a high-speed connection,
it is not always your best option. Developing locally allows you to test modifications
with little or no upload delay.

Accessing MySQL remotely may not be easy either. You may have to Telnet or SSH into
your server to manually create databases and set permissions from the command line.
Your web hosting company will advise you on how best to do this and provide you with
any password it has set for your MySQL access (as well as, of course, for getting into the
server in the first place).

Logging In

I recommend that, at minimum, Windows users should install a program such as
PuTTY for Telnet and SSH access (remember that SSH is much more secure than Tel-
net).

38 | Chapter2: Setting Up a Development Server



On a Mag, you already have SSH available. Just select the Applications folder, followed
by Utilities, and then launch Terminal. In the terminal window, log into a server using
SSH as follows:

ssh mylogin@server.com

where server.com is the name of the server you wish to log into and mylogin is the
username you will log in under. You will then be prompted for the correct password for
that username and, if you enter it correctly, you will be logged in.

Using FTP

To transfer files to and from your web server, you will need an FTP program. If you go
searching the Web for a good one, you’ll find so many that it could take you quite a
while to come across one with all the right features for you.

Nowadays I always recommend FireFTP, because of these advantages:

o Itisanadd-on for the Firefox web browser, and will therefore work on any platform
on which Firefox runs.

o Calling it up can be as simple as selecting a bookmark.

o Itis one of the fastest and easiest-to-use FTP programs that I have encountered.

You may say, “But I use only Microsoft Internet Explorer, and FireFTP
is not available for it,” but I would counter that if you are going to
develop web pages, you need a copy of each of the main browsers
installed on your PC anyway, as suggested at the start of this chapter.

To install FireFTP, visit http://fireftp.mozdev.org using Firefox and click on the Down-
load FireFTP link. It's about half a megabyte in size and installs very quickly. Once it’s
installed, restart Firefox; you can then access FireFTP from the Tools menu (see
Figure 2-19).

Another excellent FTP program is the open source FileZilla, available for Windows,
Linux, and Mac OS X 10.5 or newer.

Of course, if you already have an FTP program, all the better—stick with what you
know.

Working Remotely | 39



(@ robinnixan.com - FireFTP - Mozilla Firefox = )
File Edit View History Bookmarks Tools Help
@& 4 B (| & chrome/fireftp/content/fireftpaul - Google Pl
Dscomect. g Abon Togiaua Toc te
5 @ [wlpminet +| Browse [ @ [ fwwwilpminet ~| Change
4l lpmj.net “| | Name ~  Size Date ] 4l lpmjnet “| | Name ~  Size .. Date ]
FE10 _1.php 2KB .. Mar192011 - P10 _1php 2KB .. Marl9aoil (o
b _|10.php 4KB .. Mar192011 vom __|10.php 4KB .. Marl9 2011
ron2 | J11.php 2KB .. Mar192011 = | []1Lphp 2KB ... Marl9 2011
riE13 _12.php 2KB .. Mar192011 vEB __|12.php 2KB .. Marld 2011
vi1a [ J13.php 2KB .. Mar102011 = | [13.php 2KB .. Marld 2011
FEI15 l1dphe 2KB .. Mar102011 . y P15 [ |14.php 2KB .. Marld 2011
»316 =14 " 15.0hp 3KB .. Mar192011 r16 = _|15php 3KB .. Marl92011
=y 16.php 3KB .. Mar192011 vz _|16.php 3KB .. Mar192011
ros 17.php 2KB .. Mar192011 B = _|17.php 2KB ... Marl9 2011
riE19 _18.php 2KB .. Mar192011 YE __|18.php 2KB .. Marld 2011
v L )19.php 2KE .. Mar10 2011 E = ~ | L19.phe 2KB . Marld20ll =
=k | J2she 2KB .. Marl92011 ‘ : = | L12pnp 2KB .. Merld 201
v _ 20.,php 3KB .. Mar192011 v | 20.php 3KB .. Marl9 2011
vas _3.php 3KB .. Mar19 2011 = ras _|3.php 3KB .. Mar192011
r=6 [ 4.php 4KB .. Mar192011 i LJ4.php 4KB ... Marl9 2011
= _5.php 4KB .. Mar192011 = _|5php 4KB .. Marl92011
r8 [6.ohp IKB .. Mar102011 = [|6.php IKE .. Marld 2011
= [)7.0hp 4KB .. Dec32010 =0 [|7.php 4KB .. Marl9 2011
_bLie “| | la.php 4KB .. Mar192011 b T | Japhp 4KE .. Marl9 2011
| 3 e 2o waernamn T 4 \_ 1 r Oain 2¥B npee10om1
‘ 220 robinixan.com FTP server (Version 6.00LS) ready.
Log | Queue|
Local Listing: 62 object(s), 5.21 MB, Disk Space Available: 8.1 GB Binary
O x

Figure 2-19. FireFTP offers full FTP access from within Firefox

Using a Program Editor

Although a plain-text editor works for editing HTML, PHP, and JavaScript, there have
been some tremendous improvements in dedicated program editors, which now in-
corporate very handy features such as colored syntax highlighting. Today’s program
editors are smart and can show you where you have syntax errors before you even run
a program. Once you've used a modern editor, you'll wonder how you ever managed
without one.

There are a number of good programs available, but I have settled on Editra, because
it’s free and available on Mac, Windows, and Linux/Unix. You can download a copy by
visiting http://editra.org and selecting the Download link toward the top left of the page,
where you can also find the documentation for it.

Asyou can see from Figure 2-20, Editra highlights the syntax appropriately using colors
to help clarify what’s going on. What's more, you can place the cursor next to brackets
or braces and Editra will highlight the matching pair so that you can check whether you
have too many or too few. In fact, Editra offers a wealth of additional features, which
you will discover and enjoy as you use it.

40 | Chapter 2:Setting Up a Development Server



B3 *examples.php - file://C\Users\Robin'\Desktop\examples.php - Editra v0.6.99 E@Iﬂ
File Edit View Format Settings Tools Help

LEEEe ap 450 Ok

[ *examples.php > =
1753 Scontents = @file_get_contents($page): -
1754 if ('S$contents) return FALSE:

1755

1756 Schecksum = md5 (§contents) ;

1757

1758 if (file exists(Sdatafile))

1753 &8 {

1760 Srawfile = file_get,_cont,ent,s(Sda.ta.f:'lle],'

1761 Sdata = explode ("\n", rtrim($rawfile)): .
1762 $left = array map("PU_F1", §data); 4
1763 Sright = array_map("FU_F2", $data);

1764 Sexists = -1:

1765

1766 for (53 = 0 ; 53 < count($left) ; ++57)

1767 B {

1768 if ($left[$3] — Spage)

17639 E {

1770 Sexists = §3;

1771 if (Sright[§3j] = §checksum) return 0;

1772 [ }

1773 } i

4 | 1 3

PHP  cpl252 CRLF  Line: 1569 Column: 33

Figure 2-20. Program editors are superior to plain-text editors

Again, if you have a different preferred program editor, use that; it’s always a good idea
to use programs you're already familiar with.

Using an IDE

As good as dedicated program editors can be for your programming productivity, their
utility pales into insignificance when compared to integrated development environ-
ments (IDEs), which offer many additional features such as in-editor debugging and
program testing, as well as function descriptions and much more.

Figure 2-21 shows the popular phpDesigner IDE with a PHP program loaded into the
main frame, and the righthand Code Explorer listing the various classes, functions, and
variables that it uses.

When developing with an IDE, you can set breakpoints and then run all (or portions)
of your code, which will then stop at the breakpoints and provide you with information
about the program’s current state.

As an aid to learning programming, the examples in this book can be entered into an
IDE and run there and then, without the need to call up your web browser.

UsinganIDE | 41



& phpDesigner 8 - \WMAIN\Dacuments! i <com\WDC.php] ‘ = | Bl

* @ File Edit Find Goto Inset Format CSS JavaScript PHP Debug Project Tools Svn Git Highlighters View Window Help  Trial expires in 21 days -® X

Bl e 2 R Tl i S E MmN =
; - st @R TR ol VY EH CeEaELEBE - W)
| Bwecap |
Code Debug +  [3f Run ~ (3B Locshont + [ PHO + XHTML + €SS + JavaScript + x  Code Explorer 8x
2847 -
2848 i1f (Stecol || runcoons (W)
| 2843 1 W & Addertoce(Stable, $hmax, Shmax, $aaitl, fan
2850 ir ¢ - &] Ansgraminder(Swrd, $hiename)
z8s1 1f ¢ - & Autosackunks(sfkename)
2852 £ (2 & B8Code{sstring)
g i ™ &] BloddserByCockie(sacton, sharde, sexpre)
el W & Bypeascaptcha)
;;EE . - & CopsControl(stext, Styoe)
T S e line below to retuzm a URL to the chart image - &1 ChediCaptrha($captcha, $token, $ealtl, $salt2)
2832 - : (s & Chediinks(Spece, Stmeout, Sruntme)
2858 - & chosesession()
2860 Simage = imagecreatefrompng (Surl): (1 &] ConvertCumency(Samount, $from, $to)
zzal @ & ComerGif(iscomer, sborder, sbareund)
28€z fw = imagesx($izage); 0 & Conrmal(snumber)
pEes  3h = imagemy{Simage); N & &] CreateCaptcha(ssae, Siength, sfont, Sfolder, 52t
2864 1 2 = imagecreatetroecolor($w + $horder ¢ 2,
s n + Sborder * 2): - & CreateGoogieChart{3title, $tcolcr, $tsize, $type,
8 $por : -
2866 Sclr = imagecoloralloca W ﬁgea;:z(m‘:,;mn. Styps, soddiet) )
2267 hexdeo (substr (Shec ® eateSecson(shande, spass, $ame, semal
z883 bhexdec (substr () E - & CreateshortRL(Sur, Sredrect, Yen, $fic)
2868 hexdec (substr (5 (o &] CulGetCantents(sul, Secent)
2870 1magerilledractangle . 0, 0, $w + Sporder * 2, m aDVedotvbs((bath)
2801 $h + sLE;Je; * 2: )i o D e (1) & DisplayBingMap(siat, Scng, Swoam, Satyle, Sidth
2872 imagecopy (§ §ima » Sberdes, 0, 0, fw, SH): ®- & ErbedyouTubeideo(sid, swicth, shaght, shich,
2873 imagedestroy | wge) e
207 resurn Simagez: u g?;ﬂ:;w”ﬁ’w
2875 } @ _FNA(SF, 8t 55, Se.
2876 - & FetchFic Stream ($account)
2877 function CuzlGesContents(Surl, Ssgent) scipe 72 . @ & FetchihiPace(sentry)
E — i v Inc|Bc £F Fr @F 27 =c
Wirdows | anst n 2851:Cal 1 No project loaded \VamID

Figure 2-21. When you’re using an IDE such as phpDesigner, PHP development be-
comes much quicker and easier

There are several IDEs available for different platforms, most of which are commercial,
but there are some free ones too. Table 2-1 lists some of the most popular PHP IDEs,
along with their download URLs.

Choosing an IDE can be a very personal thing, so if you intend to use one, I advise you
to download a couple or more to try them out first; they all either have trial versions or
are free to use, so it won’t cost you anything.

Table 2-1. A selection of PHP IDEs

IDE Download URL Cost Win Mac Lin
Edipse PDT  http://eclipse.org/pdt/downloads/ Free
Komodo IDE  http://activestate.com/Products/komodo_ide ~ $245
NetBeans  htp://www.netbeans.org Free
phpDesigner  http://mpsoftware.dk 939 o O
PHPEdlipse  http://phpeclipse.de Free
PhpED http://nusphere.com $119 O
PHPEdit http://www.phpedit.com $119 o O
Zend Studio  http://zend.com/en/downloads $189

42 | (Chapter2:Setting Up a Development Server




You should take the time to install a program editor or IDE you are comfortable with
and you’ll then be ready to try out the examples in the coming chapters.

Armed with these tools, you are now ready to move on to Chapter 3, where we’ll start
exploring PHP in further depth and find out how to get HTML and PHP to work
together, as well as how the PHP language itself is structured. But before moving on, I
suggest you test your new knowledge with the following questions.

Questions

What is the difference between a WAMP, a MAMP, and a LAMP?
What do the IP address 127.0.0.1 and the URL http://localhost have in common?
What is the purpose of an FTP program?

Name the main disadvantage of working on a remote web server.

ok » =

Why is it better to use a program editor instead of a plain-text editor?

See “Chapter 2 Answers” on page 640 in Appendix A for the answers to these questions.

Questions | 43






CHAPTER 3
Introduction to PHP

In Chapter 1, I explained that PHP is the language that you use to make the server
generate dynamic output—output that is potentially different each time a browser re-
quests a page. In this chapter, you'll start learning this simple but powerful language; it
will be the topic of the following chapters up through Chapter 7.

I encourage you to develop your PHP code in one of the IDEs listed in Chapter 2. It will
help you catch typos and speed up learning tremendously in comparison to less feature-
rich editors.

Many of these development environments let you run the PHP code and see the output
discussed in this chapter. I'll also show you how to embed the PHP in an HTML file so
that you can see what the output looks like in a web page (the way your users will
ultimately see it). But that step, as thrilling as it may be at first, isn't really important at
this stage.

In production, your web pages will be a combination of PHP, HTML, and JavaScript,
and some MySQL statements laid out using CSS, and possibly utilizing various HTML5
elements. Furthermore, each page can lead to other pages to provide users with ways to
click through links and fill out forms. We can avoid all that complexity while learning
each language, though. Focus for now on just writing PHP code and making sure that
you get the output you expect—or at least that you understand the output you actually
get!

Incorporating PHP Within HTML

By default, PHP documents end with the extension .php. When a web server encounters
this extension in a requested file, it automatically passes it to the PHP processor. Of
course, web servers are highly configurable, and some web developers choose to force
files ending with .htm or .html to also get parsed by the PHP processor, usually because
they want to hide the fact that they are using PHP.

45



Your PHP program is responsible for passing back a clean file suitable for display in a
web browser. At its very simplest, a PHP document will output only HTML. To prove
this, you can take any normal HTML document such as an index.html file and save it
as index.php, and it will display identically to the original.

To trigger the PHP commands, you need to learn a new tag. The first part is:
<?php

The first thing you may notice is that the tag has not been closed. This is because entire
sections of PHP can be placed inside this tag, and they finish only when the closing part
is encountered, which looks like this:

7>
A small PHP “Hello World” program might look like Example 3-1.

Example 3-1. Invoking PHP

<?php
echo "Hello world";
7>

The way you use this tag is quite flexible. Some programmers open the tag at the start
of a document and close it right at the end, outputting any HTML directly from PHP
commands.

Others, however, choose to insert only the smallest possible fragments of PHP within
these tags wherever dynamic scripting is required, leaving the rest of the document in
standard HTML.

The latter type of programmer generally argues that their style of coding results in faster
code, while the former says that the speed increase is so minimal that it doesn't justify
the additional complexity of dropping in and out of PHP many times in a single
document.

As you learn more, you will surely discover your preferred style of PHP development,
but for the sake of making the examples in this book easier to follow, I have adopted the
approach of keeping the number of transfers between PHP and HTML to a minimum—
generally only once or twice in a document.

By the way, there is a slight variation to the PHP syntax. If you browse the Internet for

PHP examples, you may also encounter code where the opening and closing syntax
looks like this:

<?
echo "Hello world";
7>
Although it’s not as obvious that the PHP parser is being called, this is a valid, alternative
syntax that also usually works, but should be discouraged, as it is incompatible with

46 | Chapter 3:Introduction to PHP



XML and its use is now deprecated (meaning that it is no longer recommended and

could be removed in future versions).

This Book's Examples

If you have only PHP code in a file, you may omit the closing ?>. This
can be a good practice, as it will ensure that you have no excess
whitespace leaking from your PHP files (especially important when
you're writing object-oriented code).

To save you the time it would take to type them all in, all the examples from this book
have been archived onto the companion website, which you can download to your
computer by clicking the Download Examples link in the heading section (see

Figure 3-1).

/ ™ Leaming PHP, MySQL & ) %

_I:I-

€& = C A [ Ipmjnet/3rdedition/

Learning PHP, MySQL, JavaScript, CSS & HTML5
O REILLY*® 3rd Edition By Robin Nixon (O'Reilly 2014, ISBM 978-1491949467)

About | Buy Paperback / Kindle | Download Examples | Errata | (1st Ed / 2nd Ed)

| E

communication with 2 web server.

b b e
N T A R T ) R T AR YT

Find out for yourself why Learning PHP, MySQL, JavaScript, C5§ & HTMLS5 is the number-one best-selling
blockbuster that has been at the top of the charts for over five years worldwide, is the first result returned on
PHP by Amazon US, UK and Canada, the first foreign language title on PHP returned on European Amazon
websites, and in the top 10 foreign books on PHP on Amazon Japan and China!

Learning PHP, MySQL, JavaScript, C§5 & HTMLS5 will teach you how to create responsive, data-driven
websites with the central technologies of PHP, MySQL, JavaScript, CSS, & HTMLS - whether or not you know
how to program. This simple, streamlined guide explains how the powerful combination of PHP and MySQL
provides a painless way to build modern websites with dynamic data and user interaction. You'll also learn how
to add JavaScript to create rich Internet websites and applications, and how to use Ajax to handle background

Contents

. Introduction to Dynamic Web Content
. Setting Up a Development Server

« Introduction to PHP
Expressions and Control Flow in PHP

PHP Functions and Objects
PHP Arrays
Practical PHP

. Introduction to MySQL

. Mastering MySQL

. Accessing MySQL Using PHP
. Using the MySQLi Extension
. Form Handling

. Cookies, Sessions and Authentication
. Exploring JavaScript
. Expressions and Control Flow in JawvaScript

. JavaScript Functions, Objects and Arrays

. JavaScript and PHF Walidation and Error Handling
. Using AJAX
._Introduction to CSS

Figure 3-1. Viewing examples from this book at http://lpmj.net

In addition to having all the examples saved by chapter and example number (such as
example3-1.php), the archive also contains an extra folder called named_examples, in

This Book's Examples | 47



which you’ll find all the examples I suggest you save using a specific filename (such as
the upcoming Example 3-4, which should be saved as test1.php).

The Structure of PHP

We're going to cover quite a lot of ground in this section. It’s not too difficult, but I
recommend that you work your way through it carefully, as it sets the foundation for
everything else in this book. As always, there are some useful questions at the end of
the chapter that you can use to test how much you've learned.

Using Comments

There are two ways in which you can add comments to your PHP code. The first turns
a single line into a comment by preceding it with a pair of forward slashes, like this:

// This is a comment

This version of the comment feature is a great way to temporarily remove a line of code
from a program that is giving you errors. For example, you could use such a comment
to hide a debugging line of code until you need it, like this:

// echo "X equals $x";

You can also use this type of comment directly after a line of code to describe its action,
like this:

$x += 10; // Increment $x by 10

When you need multiple-line comments, there’s a second type of comment, which looks
like Example 3-2.

Example 3-2. A multiline comment

<?php

/* This is a section
of multiline comments
which will not be
interpreted */

7>

You can use the /* and */ pairs of characters to open and close comments almost
anywhere you like inside your code. Most, if not all, programmers use this construct to
temporarily comment out entire sections of code that do not work or that, for one reason
or another, they do not wish to be interpreted.

48 | Chapter 3:Introduction to PHP



A common error is to use /* and */ to comment out a large sec-
tion of code that already contains a commented-out section that uses
those characters. You can’t nest comments this way; the PHP inter-
preter won’t know where a comment ends and will display an error
message. However, if you use a program editor or IDE with syntax
highlighting, this type of error is easier to spot.

Basic Syntax

PHP is quite a simple language with roots in C and Perl, yet it looks more like Java. It
is also very flexible, but there are a few rules that you need to learn about its syntax and
structure.

Semicolons

You may have noticed in the previous examples that the PHP commands ended with a
semicolon, like this:

Sx += 10;

Probably the most common cause of errors you will encounter with PHP is forgetting
this semicolon. This causes PHP to treat multiple statements like one statement, which
it is unable to understand, prompting it to produce a Parse error message.

The $ symbol

The $ symbol has come to be used in many different ways by different programming
languages. For example, if you have ever written in the BASIC language, you will have
used the $ to terminate variable names to denote them as strings.

In PHP, however, you must place a $ in front of all variables. This is required to make
the PHP parser faster, as it instantly knows whenever it comes across a variable. Whether
your variables are numbers, strings, or arrays, they should all look something like those
in Example 3-3.

Example 3-3. Three different types of variable assignment

<?php

Smycounter = 1;

$mystring = "Hello";

$myarray = array("One", "Two", "Three");
7>

And really that’s pretty much all the syntax that you have to remember. Unlike languages
that are very strict about how you indent and lay out your code (e.g., Python), PHP
leaves you completely free to use (or not use) all the indenting and spacing you like. In
fact, sensible use of whitespace is generally encouraged (along with comprehensive

The Structure of PHP | 49



commenting) to help you understand your code when you come back to it. It also helps
other programmers when they have to maintain your code.

Variables

There’s a simple metaphor that will help you understand what PHP variables are all
about. Just think of them as little (or big) matchboxes! That’s right—matchboxes that
you've painted over and written names on.

String variables

Imagine you have a matchbox on which you have written the word username. You then
write Fred Smith on a piece of paper and place it into the box (see Figure 3-2). Well,
that’s the same process as assigning a string value to a variable, like this:

Susername = "Fred Smith";

Figure 3-2. You can think of variables as matchboxes containing items

The quotation marks indicate that “Fred Smith” is a string of characters. You must en-
close each string in either quotation marks or apostrophes (single quotes), although
there is a subtle difference between the two types of quote, which is explained later.
When you want to see what’s in the box, you open it, take the piece of paper out, and
read it. In PHP, doing so looks like this:

echo Susername;

Or you can assign it to another variable (photocopy the paper and place the copy in
another matchbox), like this:

Scurrent_user = $Susername;

50 | Chapter3:Introduction to PHP



If you are keen to start trying out PHP for yourself, you could try entering the examples
in this chapter into an IDE (as recommended at the end of Chapter 2) to see instant
results, or you could enter the code in Example 3-4 into a program editor and save it to
your server’s document root directory (also discussed in Chapter 2) as test1.php.

Example 3-4. Your first PHP program

<?php // testl.php
Susername = "Fred Smith";
echo Susername;
echo "<br>";
Scurrent_user = Susername;
echo Scurrent_user;

7>

Now you can call it up by entering the following into your browser’s address bar:

http://localhost/testl.php

If during installation of your web server (as detailed in Chapter 2)
you changed the port assigned to the server to anything other than
80, then you must place that port number within the URL in this and
all other examples in this book. So, for example, if you changed the
port to 8080, the preceding URL becomes:

http://localhost:8080/test1.php

I won’t mention this again, so just remember to use the port num-
ber if required when trying out any examples or writing your own
code.

The result of running this code should be two occurrences of the name “Fred Smith,”
the first of which is the result of the echo $username command, and the second of the
echo $current_user command.

Numeric variables

Variables don’t contain just strings—they can contain numbers, too. If we return to the
matchbox analogy, to store the number 17 in the variable $count, the equivalent would
be placing, say, 17 beads in a matchbox on which you have written the word count:

Scount = 17;

You could also use a floating-point number (containing a decimal point); the syntax is
the same:

Scount = 17.5;

The Structure of PHP | 51



To read the contents of the matchbox, you would simply open it and count the beads.
In PHP, you would assign the value of $count to another variable or perhaps just echo
it to the web browser.

Arrays

So what are arrays? Well, you can think of them as several matchboxes glued together.
For example, let’s say we want to store the player names for a five-person soccer team
inan array called $team. To do this, we could glue five matchboxes side by side and write

down the names of all the players on separate pieces of paper, placing one in each
matchbox.

Across the whole top of the matchbox assembly we would write the word team (see
Figure 3-3). The equivalent of this in PHP would be:

Steam = array('Bill', 'Mary', 'Mike', 'Chris', 'Anne');

<5

Figure 3-3. An array is like several matchboxes glued together

This syntax is more complicated than the ones I've explained so far. The array-building
code consists of the following construct:

array();
with five strings inside. Each string is enclosed in apostrophes.
If we then wanted to know who player 4 is, we could use this command:

echo $team[3]; // Displays the name Chris

52 | Chapter3:Introduction to PHP



The reason the previous statement has the number 3, not 4, is because the first element
of a PHP array is actually the zeroth element, so the player numbers will therefore be 0
through 4.

Two-dimensional arrays

There’s a lot more you can do with arrays. For example, instead of being single-
dimensional lines of matchboxes, they can be two-dimensional matrixes or can even
have three or more dimensions.

As an example of a two-dimensional array, let’s say we want to keep track of a game of
tic-tac-toe, which requires a data structure of nine cells arranged in a 3x3 square. To
represent this with matchboxes, imagine nine of them glued to each other in a matrix
of three rows by three columns (see Figure 3-4).

Figure 3-4. A multidimensional array simulated with matchboxes

You can now place a piece of paper with either an “x” or an “0” in the correct matchbox
for each move played. To do this in PHP code, you have to set up an array containing
three more arrays, as in Example 3-5, in which the array is set up with a game already
in progress.

Example 3-5. Defining a two-dimensional array

<?php
$oxo = array(array('x', ' ', 'o'),
array('o', 'o', 'x'),
array('x', 'o', ' '));
7>

The Structure of PHP | 53



Once again, we've moved up a step in complexity, but it’s easy to understand if you have
a grasp of the basic array syntax. There are three array() constructs nested inside the
outer array() construct.

To then return the third element in the second row of this array, you would use the
following PHP command, which will display an x:

echo $Soxo[1][2];

Remember that array indexes (pointers at elements within an array)
start from zero, not one, so the [1] in the previous command refers
to the second of the three arrays, and the [2] references the third
position within that array. It will return the contents of the match-
box three along and two down.

As mentioned, we can support arrays with even more dimensions by simply creating
more arrays within arrays. However, we will not be covering arrays of more than two
dimensions in this book.

And don’t worry if you're still having difficulty coming to grips with using arrays, as the
subject is explained in detail in Chapter 6.

Variable naming rules

When creating PHP variables, you must follow these four rules:

o Variable names must start with a letter of the alphabet or the _ (underscore)
character.

o Variable names can contain only the characters a-z, A-Z, 0-9, and _ (underscore).

o Variable names may not contain spaces. If a variable must comprise more than one
word, it should be separated with the _ (underscore) character (e.g., Suser_name).

o Variable names are case-sensitive. The variable $High_Score is not the same as the
variable Shigh_score.

To allow extended ASCII characters that include accents, PHP also
supports the bytes from 127 through 255 in variable names. But un-
less your code will be maintained only by programmers who are
familiar with those characters, it's probably best to avoid them, be-
cause programmers using English keyboards will have difficulty ac-
cessing them.

54 | Chapter3:Introduction to PHP



Operators

Operators are the mathematical, string, comparison, and logical commands such as
plus, minus, multiply, and divide. PHP looks a lot like plain arithmetic; for instance, the
following statement outputs 8:

echo 6 + 2;

Before moving on to learn what PHP can do for you, take a moment to learn about the
various operators it provides.

Arithmetic operators

Arithmetic operators do what you would expect. They are used to perform mathematics.
You can use them for the main four operations (plus, minus, multiply, and divide) as
well as to find a modulus (the remainder after a division) and to increment or decrement
a value (see Table 3-1).

Table 3-1. Arithmetic operators

Operator Description Example

+ Addition $i+1
- Subtraction $j-6
* Multiplication $j*11
/ Division $j/4a
% Modulus (division remainder) $3j %9
++ Increment ++$53
- Decrement --$3
Assignment operators

These operators are used to assign values to variables. They start with the very simple
=and move on to +=, -=, and so on (see Table 3-2). The operator += adds the value on
the right side to the variable on the left, instead of totally replacing the value on the left.
Thus, if Scount starts with the value 5, the statement:

Scount += 1;
sets Scount to 6, just like the more familiar assignment statement:
Scount = Scount + 1;

Strings have their own operator, the period (.), detailed in the section “String concat-
enation” on page 58.

The Structure of PHP | 55



Table 3-2. Assignment operators

Operator Example Equivalent to

= $3=15 $j = 15

+= $j+=5 $j =383 +5
-= $j-=3 $j =% -3
*= $j*=8 $j=9%j*8
/= $i/=16 $3 =33/ 16
.= $j.=%k 83 =57 . %k
%= $i%=4 $3j=351%4
Comparison operators

Comparison operators are generally used inside a construct such as an if statement in
which you need to compare two items. For example, you may wish to know whether a
variable you have been incrementing has reached a specific value, or whether another
variable is less than a set value, and so on (see Table 3-3).

Note the difference between =and ==. The first is an assignment operator, and the second
is a comparison operator. Even more advanced programmers can sometimes transpose
the two when coding hurriedly, so be careful.

Table 3-3. Comparison operators

Operator Description Example

= Is equal to $i==
1= Is not equal to $jt=21
> Is greater than $i>3

< Is less than $j<100
>= Is greater than orequal to  $j>=15
<= Is less than or equal to $j<=8

Logical operators

If you haven't used them before, logical operators may at first seem a little daunting. But
just think of them the way you would use logic in English. For example, you might say
to yourself, “If the time is later than 12 p.m. and earlier than 2 p.m., then have lunch.”
In PHP, the code for this might look something like the following (using military time):

if (Shour > 12 && Shour < 14) dolunch();

Here we have moved the set of instructions for actually going to lunch into a function
that we will have to create later called dolunch. The then of the statement is left out,
because it is implied and therefore unnecessary.

56 | Chapter3:Introduction to PHP



As the previous example shows, you generally use a logical operator to combine the
results of two of the comparison operators shown in the previous section. A logical
operator can also be input to another logical operator (“If the time is later than 12 p.m.
and earlier than 2 p.m., or if the smell of a roast is permeating the hallway and there are
plates on the table”). As a rule, if something has a TRUE or FALSE value, it can be input
to a logical operator. A logical operator takes two true-or-false inputs and produces a
true-or-false result.

Table 3-4 shows the logical operators.
Table 3-4. Logical operators

Operator Description Example

8& And $j == 38& Sk ==
and Low-precedenceand $j == 3and $k ==
I Or $3 < 51183 > 10
or Low-precedenceor  $j < Sor$j > 10
! Not ! ($j==%k)

xor Exclusive or $j xor $k

Note that && is usually interchangeable with and; the same is true for | | and or. But and
and or have a lower precedence, so in some cases, you may need extra parentheses to
force the required precedence. On the other hand, there are times when only and or or
is acceptable, as in the following statement, which uses an or operator (to be explained
in Chapter 10):

mysql_select_db($database) or die("Unable to select database");

The most unusual of these operators is xor, which stands for exclusive or and returns a
TRUE value if either value is TRUE, but a FALSE value if both inputs are TRUE or both inputs
are FALSE. To understand this, imagine that you want to concoct your own cleaner for
household items. Ammonia makes a good cleaner, and so does bleach, so you want your
cleaner to have one of these. But the cleaner must not have both, because the combi-
nation is hazardous. In PHP, you could represent this as:

$ingredient = Sammonia xor S$Sbleach;

In the example snippet, if either Sammonia or $bleach is TRUE, $ingredient will also be
set to TRUE. But if both are TRUE or both are FALSE, $ingredient will be set to FALSE.

Variable Assignment

The syntax to assign a value to a variable is always variable = value. Or, to reassign the
value to another variable, it is other variable = variable.

The Structure of PHP | 57



There are also a couple of other assignment operators that you will find useful. For
example, we've already seen:

Sx += 10;

which tells the PHP parser to add the value on the right (in this instance, the value 10)
to the variable $x. Likewise, we could subtract as follows:

Sy -= 10;

Variable incrementing and decrementing

Adding or subtracting 1 is such a common operation that PHP provides special oper-
ators for it. You can use one of the following in place of the += and -= operators:

++5X;
-=5y;

In conjunction with a test (an if statement), you could use the following code:
if (++$x == 10) echo S$x;

This tells PHP to first increment the value of $x and then test whether it has the value
10; if it does, output its value. But you can also require PHP to increment (or, in the
following example, decrement) a variable after it has tested the value, like this:

if ($y-- == 0) echo Sy;

which gives a subtly different result. Suppose $y starts out as 0 before the statement is
executed. The comparison will return a TRUE result, but Sy will be set to -1 after the
comparison is made. So what will the echo statement display: 0 or -1? Try to guess, and
then try out the statement in a PHP processor to confirm. Because this combination of
statements is confusing, it should be taken as just an educational example and not as a
guide to good programming style.

In short, whether a variable is incremented or decremented before or after testing de-
pends on whether the increment or decrement operator is placed before or after the
variable.

By the way, the correct answer to the previous question is that the echo statement will
display the result -1, because $y was decremented right after it was accessed in the if
statement, and before the echo statement.

String concatenation

String concatenation uses the period (.) to append one string of characters to another.
The simplest way to do this is as follows:

echo "You have . $msgs . " messages.";

Assuming that the variable $msgs is set to the value 5, the output from this line of code
will be:

58 | Chapter3:Introduction to PHP



You have 5 messages.

Just as you can add a value to a numeric variable with the += operator, you can append
one string to another using .= like this:

Sbulletin .= $Snewsflash;

In this case, if Sbulletin contains a news bulletin and $newsflash has a news flash, the
command appends the news flash to the news bulletin so that $bulletin now comprises
both strings of text.

String types

PHP supports two types of strings that are denoted by the type of quotation mark that
you use. If you wish to assign a literal string, preserving the exact contents, you should
use the single quotation mark (apostrophe) like this:

$info = 'Preface variables with a $ like this: $variable';

In this case, every character within the single-quoted string is assigned to $info. If you
had used double quotes, PHP would have attempted to evaluate Svariable as a variable.

On the other hand, when you want to include the value of a variable inside a string, you
do so by using double-quoted strings:

echo "This week $count people have viewed your profile";

As you will realize, this syntax also offers a simpler form of concatenation in which you
don’t need to use a period, or close and reopen quotes, to append one string to another.
This is called variable substitution, and you will notice some applications using it ex-
tensively and others not using it at all.

Escaping characters

Sometimes a string needs to contain characters with special meanings that might be
interpreted incorrectly. For example, the following line of code will not work, because
the second quotation mark encountered in the word spelling’s will tell the PHP parser
that the string end has been reached. Consequently, the rest of the line will be rejected
as an error:

Stext = 'My spelling's atroshus'; // Erroneous syntax

To correct this, you can add a backslash directly before the offending quotation mark
to tell PHP to treat the character literally and not to interpret it:

Stext = 'My spelling\'s still atroshus';

And you can perform this trick in almost all situations in which PHP would otherwise
return an error by trying to interpret a character. For example, the following double-
quoted string will be correctly assigned:

Stext = "She wrote upon it, \"Return to sender\".";

The Structure of PHP | 59



Additionally, you can use escape characters to insert various special characters into
strings such as tabs, newlines, and carriage returns. These are represented, as you might
guess, by \t, \n, and \r. Here is an example using tabs to lay out a heading; it is included
here merely to illustrate escapes, because in web pages there are always better ways to
do layout:

Sheading = "Date\tName\tPayment";

These special backslash-preceded characters work only in double-quoted strings. In
single-quoted strings, the preceding string would be displayed with the ugly \t sequen-
ces instead of tabs. Within single-quoted strings, only the escaped apostrophe (\') and
escaped backslash itself (\\) are recognized as escaped characters.

Multiple-Line Commands

There are times when you need to output quite a lot of text from PHP, and using several
echo (or print) statements would be time-consuming and messy. To overcome this,
PHP offers two conveniences. The first is just to put multiple lines between quotes, as
in Example 3-6. Variables can also be assigned, as in Example 3-7.

Example 3-6. A multiline string echo statement
<?php

$author = "Steve Ballmer";

echo "Developers, Developers, developers, developers, developers,
developers, developers, developers, developers!

- Sauthor.";
7>

Example 3-7. A multiline string assignment

<?php
Sauthor = "Bill Gates";

Stext = "Measuring programming progress by lines of code is like
measuring aircraft building progress by weight.

- $Sauthor.";
7>

PHP also offers a multiline sequence using the <<< operator—commonly referred to as
a here-document or heredoc—as a way of specifying a string literal, preserving the line
breaks and other whitespace (including indentation) in the text. Its use can be seen in
Example 3-8.

60 | Chapter3:Introduction to PHP



Example 3-8. Alternative multiline echo statement

<?php
Sauthor = "Brian W. Kernighan";

echo <<<_END

Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you are,
by definition, not smart enough to debug it.

- $Sauthor.
_END;

7>

This code tells PHP to output everything between the two _END tags as if it were a
double-quoted string (except that quotes in a heredoc do not need to be escaped). This
means it’s possible, for example, for a developer to write entire sections of HTML directly
into PHP code and then just replace specific dynamic parts with PHP variables.

It is important to remember that the closing _END; tag must appear right at the start of
a new line and it must be the only thing on that line—not even a comment is allowed
to be added after it (nor even a single space). Once you have closed a multiline block,
you are free to use the same tag name again.

Remember: using the <<<_END ... _END; heredoc construct, you
don’t have to add \n linefeed characters to send a linefeed—just press
Return and start a new line. Also, unlike either a double-quote- or
single-quote-delimited string, you are free to use all the single and
double quotes you like within a heredoc, without escaping them by
preceding them with a slash (\).

Example 3-9 shows how to use the same syntax to assign multiples lines to a variable.

Example 3-9. A multiline string variable assignment

<?php
$author = "Scott Adams";

$Sout = <<<_END

Normal people believe that if it ain't broke, don't fix it.
Engineers believe that if it ain't broke, it doesn't have enough
features yet.

- Sauthor.
_END;

7>

The Structure of PHP | 61



The variable $out will then be populated with the contents between the two tags. If you
were appending, rather than assigning, you could also have used .= in place of = to
append the string to $out.

Be careful not to place a semicolon directly after the first occurrence of _END, because
that would terminate the multiline block before it had even started and cause a Parse
error message. The only place for the semicolon is after the terminating _END tag,
although it is safe to use semicolons within the block as normal text characters.

By the way, the _END tag is simply one I chose for these examples because it is unlikely
to be used anywhere else in PHP code and is therefore unique. But you can use any tag
you like, such as _SECTION1 or _OUTPUT and so on. Also, to help differentiate tags such
as this from variables or functions, the general practice is to preface them with an
underscore, but you don’t have to use one if you choose not to.

Laying out text over multiple lines is usually just a convenience to
make your PHP code easier to read, because once it is displayed in a
web page, HTML formatting rules take over and whitespace is sup-
pressed (but Sauthor is still replaced with the variable’s value).

So, for example, if you load these multiline output examples into a
browser they will not display over several lines, because all browsers
treat newlines just like spaces. However, if you use the browser’s view
source feature, you will find that the newlines are correctly placed,
and the output does appear over several lines.

Variable Typing

PHP is a very loosely typed language. This means that variables do not have to be de-
clared before they are used, and that PHP always converts variables to the type required
by their context when they are accessed.

For example, you can create a multiple-digit number and extract the nth digit from it
simply by assuming it to be a string. In the following snippet of code, the numbers 12345
and 67890 are multiplied together, returning a result of 838102050, which is then placed
in the variable $number, as shown in Example 3-10.

Example 3-10. Automatic conversion from a number to a string

<?php
Snumber = 12345 * 67890;
echo substr($number, 3, 1);
7>

At the point of the assignment, $number is a numeric variable. But on the second line,
a call is placed to the PHP function substr, which asks for one character to be returned
from $number, starting at the fourth position (remembering that PHP offsets start from

62 | Chapter3:Introduction to PHP



zero). To do this, PHP turns $number into a nine-character string, so that substr can
access it and return the character, which in this case is 1.

The same goes for turning a string into a number, and so on. In Example 3-11, the
variable $pti is set to a string value, which is then automatically turned into a floating-
point number in the third line by the equation for calculating a circle’s area, which
outputs the value 78.5398175.

Example 3-11. Automatically converting a string to a number

<?php

$pi = "3.1415927";

Sradius = 5;

echo $pi * ($radius * $radius);
7>

In practice, what this all means is that you don’t have to worry too much about your
variable types. Just assign them values that make sense to you and PHP will convert
them if necessary. Then, when you want to retrieve values, just ask for them (e.g., with
an echo statement).

Constants

Constants are similar to variables, holding information to be accessed later, except that
they are what they sound like—constant. In other words, once you have defined one,
its value is set for the remainder of the program and cannot be altered.

One example of a use for a constant might be to hold the location of your server root
(the folder with the main files of your website). You would define such a constant like
this:

define("ROOT_LOCATION", "/usr/local/www/");

Then, to read the contents of the variable, you just refer to it like a regular variable (but
itisn't preceded by a dollar sign):

$directory = ROOT_LOCATION;

Now, whenever you need to run your PHP code on a different server with a different
folder configuration, you have only a single line of code to change.

The main two things you have to remember about constants are that
they must not be prefaced with a $ (as with regular variables), and
that you can define them only using the define function.

It is generally considered a good practice to use only uppercase for constant variable
names, especially if other people will also read your code.

The Structure of PHP | 63



Predefined Constants

PHP comes ready-made with dozens of predefined constants that you generally will be
unlikely to use as a beginner to PHP. However, there are a few—known as the magic
constants—that you will find useful. The names of the magic constants always have two
underscores at the beginning and two at the end, so that you won't accidentally try to
name one of your own constants with a name that is already taken. They are detailed
in Table 3-5. The concepts referred to in the table will be introduced in future chapters.

Table 3-5. PHP’s magic constants

Magic constant Description

_ LINE__ The current line number of the file.

__FILE__ The full path and filename of the file. If used inside an include, the name of the induded file is returned.
InPHP4.0.2, _ FILE__ always contains an absolute path with symbolic links resolved, whereas in older
versions it might contain a relative path under some circumstances.

__DIR__ The directory of the file. If used inside an include, the directory of the included file is returned. This is
equivalent to dirname(__FILE__). This directory name does not have a trailing slash unless it is the
root directory. (Added in PHP 5.3.0.)

__FUNCTION__  Thefunction name. (Added in PHP 4.3.0.) As of PHP 5, returns the function name as it was dedlared (case-
sensitive). In PHP 4, its value is always lowercase.

_ CLASS__ The class name. (Added in PHP 4.3.0.) As of PHP 5, returns the class name as it was declared (case-
sensitive). In PHP 4, its value is always lowercase.

__METHOD__ The class method name. (Added in PHP 5.0.0.) The method name is returned as it was declared (case-
sensitive).

_ NAMESPACE__  The name of the current namespace (case-sensitive). This constant is defined at compile time. (Added in
PHP 5.3.0.)

One handy use of these variables is for debugging purposes, when you need to insert a
line of code to see whether the program flow reaches it:

echo "This is line " . __LINE__ . " of file " . __FILE__;

This causes the current program line in the current file (including the path) being ex-
ecuted to be output to the web browser.

The Difference Between the echo and print Commands

So far, you have seen the echo command used in a number of different ways to output
text from the server to your browser. In some cases, a string literal has been output. In
others, strings have first been concatenated or variables have been evaluated. I've also
shown output spread over multiple lines.

But there is also an alternative to echo that you can use: print. The two commands are
quite similar, but print is a function-like construct that takes a single parameter and

64 | Chapter3:Introduction to PHP



has a return value (which is always 1), whereas echo is purely a PHP language construct.
Because both commands are constructs, neither requires the use of parentheses.

By and large, the echo command will be a tad faster than print in general text output,
because it doesn’t set a return value. On the other hand, because it isn’t implemented
like a function, echo cannot be used as part of a more complex expression, whereas
print can. Here’s an example to output whether the value of a variable is TRUE or FALSE
using print, something you could not perform in the same manner with echo, because
it would display a Parse error message:

$b ? print "TRUE" : print "FALSE";

The question mark is simply a way of interrogating whether variable $b is TRUE or
FALSE. Whichever command is on the left of the following colon is executed if $b is
TRUE, whereas the command to the right is executed if $b is FALSE.

Generally, though, the examples in this book use echo, and I recommend that you do
so as well until you reach such a point in your PHP development that you discover the
need for using print.

Functions

Functions are used to separate out sections of code that perform a particular task. For
example, maybe you often need to look up a date and return it in a certain format. That
would be a good example to turn into a function. The code doing it might be only three
lines long, but if you have to paste it into your program a dozen times, youre making
your program unnecessarily large and complex, unless you use a function. And if you
decide to change the data format later, putting it in a function means having to change
it in only one place.

Placingitinto a function not only shortens your source code and makes it more readable,
it also adds extra functionality (pun intended), because functions can be passed pa-
rameters to make them perform differently. They can also return values to the calling
code.

To create a function, declare it in the manner shown in Example 3-12.

Example 3-12. A simple function declaration

<?php
function longdate($timestamp)

{
return date("l F jS Y", S$timestamp);

}

7>

This function takes a Unix timestamp (an integer number representing a date and time
based on the number of seconds since 00:00 a.m. on January 1, 1970) as its input and

The Structure of PHP | 65



then calls the PHP date function with the correct format string to return a date in the
format Tuesday May 2nd 2017. Any number of parameters can be passed between the
initial parentheses; we have chosen to accept just one. The curly braces enclose all the
code that is executed when you later call the function.

To output today’s date using this function, place the following call in your code:
echo longdate(time());

This call uses the built-in PHP time function to fetch the current Unix timestamp and
passes it to the new longdate function, which then returns the appropriate string to the
echo command for display. If you need to print out the date 17 days ago, you now just
have to issue the following call:

echo longdate(time() - 17 * 24 * 60 * 60);

which passes to longdate the current Unix timestamp less the number of seconds since
17 days ago (17 days x 24 hours x 60 minutes x 60 seconds).

Functions can also accept multiple parameters and return multiple results, using tech-
niques that I'll develop over the following chapters.

Variable Scope

If you have a very long program, it’s quite possible that you could start to run out of
good variable names, but with PHP you can decide the scope of a variable. In other
words, you can, for example, tell it that you want the variable $temp to be used only
inside a particular function and to forget it was ever used when the function returns. In
fact, this is the default scope for PHP variables.

Alternatively, you could inform PHP that a variable is global in scope and thus can be
accessed by every other part of your program.

Local variables

Local variables are variables that are created within, and can only be accessed by, a
function. They are generally temporary variables that are used to store partially pro-
cessed results prior to the function’s return.

One set of local variables is the list of arguments to a function. In the previous section,
we defined a function that accepted a parameter named $timestamp. This is meaningful
only in the body of the function; you can’t get or set its value outside the function.

For another example of a local variable, take another look at the longdate function,
which is modified slightly in Example 3-13.

66 | Chapter3:Introduction to PHP



Example 3-13. An expanded version of the longdate function

<?php
function longdate($timestamp)

{
Stemp = date("l F jS Y", Stimestamp);
return "The date is Stemp";

}

7>

Here we have assigned the value returned by the date function to the temporary variable
$temp, which is then inserted into the string returned by the function. As soon as the
function returns, the value of $temp is cleared, as if it had never been used at all.

Now, to see the effects of variable scope, lets look at some similar code in
Example 3-14. Here $temp has been created before we call the longdate function.

Example 3-14. This attempt to access $temp in function longdate will fail

<?php
Stemp = "The date is ";
echo longdate(time());

function longdate($timestamp)

{
return Stemp . date("l F jS Y", Stimestamp);

}

7>

However, because $temp was neither created within the longdate function nor passed
toitasa parameter, longdate cannot access it. Therefore, this code snippet outputs only
the date, not the preceding text. In fact, it will first display the error message Notice:
Undefined variable: temp.

The reason for this is that, by default, variables created within a function are local to
that function, and variables created outside of any functions can be accessed only by
non-function code.

Some ways to repair Example 3-14 appear in Examples 3-15 and 3-16.

Example 3-15. Rewriting to refer to $temp within its local scope fixes the problem

<?php
$temp = "The date is ";
echo Stemp . longdate(time());

function longdate($timestamp)

{
return date("l F jS Y", Stimestamp);

}

7>

The Structure of PHP | 67



Example 3-15 moves the reference to $temp out of the function. The reference appears
in the same scope where the variable was defined.

The solution in Example 3-16 passes $temp to the longdate function as an extra argu-
ment. longdatereadsitinto atemporary variable that it creates called $text and outputs
the desired result.

Example 3-16. An alternative solution: passing $temp as an argument

<?php
Stemp = "The date is ";
echo longdate($temp, time());

function longdate($text, S$timestamp)

{
return $text . date("l F jS Y", Stimestamp);

}

7>

Forgetting the scope of a variable is a common programming error,
so remembering how variable scope works will help you debug some
quite obscure problems. Suffice it to say that unless you have de-
clared a variable otherwise, its scope is limited to being local: either
to the current function, or to the code outside of any functions, de-
pending on whether it was first created or accessed inside or out-
side a function.

Global variables

There are cases when you need a variable to have global scope, because you want all
your code to be able to access it. Also, some data may be large and complex, and you
don’t want to keep passing it as arguments to functions.

To declare a variable as having global scope, use the keyword global. Let’s assume that
you have a way of logging your users into your website and want all your code to know
whether it is interacting with a logged-in user or a guest. One way to do this is to create
a global variable such as $is_logged_in:

global $is_logged_in;

Now your login function simply has to set that variable to 1 upon a successful login
attempt, or 0 upon its failure. Because the scope of the variable is global, every line of
code in your program can access it.

You should use global variables with caution, though. I recommend that you create them
only when you absolutely cannot find another way of achieving the result you desire.
In general, programs that are broken into small parts and segregated data are less buggy
and easier to maintain. If you have a thousand-line program (and some day you will)

68 | Chapter3:Introduction to PHP



in which you discover that a global variable has the wrong value at some point, how
long will it take you to find the code that set it incorrectly?

Also, if you have too many global variables, you run the risk of using one of those names
again locally, or at least thinking you have used it locally, when in fact it has already been
declared as global. All manner of strange bugs can arise from such situations.

Sometimes I adopt the convention of making all global variable names
uppercase (just as it's recommended that constants should be upper-
case) so that I can see at a glance the scope of a variable.

Static variables

In the section “Local variables” on page 66, I mentioned that the value of the variable is
wiped out when the function ends. If a function runs many times, it starts with a fresh
copy of the variable and the previous setting has no effect.

Here’s an interesting case. What if you have a local variable inside a function that you
don’t want any other parts of your code to have access to, but you would also like to
keep its value for the next time the function is called? Why? Perhaps because you want
a counter to track how many times a function is called. The solution is to declare a
static variable, as shown in Example 3-17.

Example 3-17. A function using a static variable

<?php
function test()

{
static Scount = 0;
echo Scount;
Scount++;

}

7>

Here the very first line of function test creates a static variable called $count and ini-
tializes it to a value of 0. The next line outputs the variable’s value; the final one incre-
ments it.

The next time the function is called, because $count has already been declared, the first
line of the function is skipped. Then the previously incremented value of $count is
displayed before the variable is again incremented.

If you plan to use static variables, you should note that you cannot assign the result of
an expression in their definitions. They can be initialized only with predetermined
values (see Example 3-18).

The Structure of PHP | 69



Example 3-18. Allowed and disallowed static variable declarations

<?php
static $int = 0; // Allowed
static $int = 1+2; // Disallowed (will produce a Parse error)

static $int
7>

sqrt(144); // Disallowed

Superglobal variables

Starting with PHP 4.1.0, several predefined variables are available. These are known as
superglobal variables, which means that they are provided by the PHP environment but
are global within the program, accessible absolutely everywhere.

These superglobals contain lots of useful information about the currently running pro-
gram and its environment (see Table 3-6). They are structured as associative arrays, a
topic discussed in Chapter 6.

Table 3-6. PHP’s superglobal variables

Superglobal name (Contents

$GLOBALS All variables that are currently defined in the global scope of the script. The variable names are the keys
of the aray.

$_SERVER Information such as headers, paths, and script locations. The entries in this array are created by the web
server, and there is no guarantee that every web server will provide any or all of these.

$_GET Variables passed to the current script via the HTTP GET method.

$_POST Variables passed to the current script via the HTTP POST method.

$_FILES Items uploaded to the current script via the HTTP POST method.

$_COOKIE Variables passed to the current script via HTTP cookies.

$_SESSION Session variables available to the current script.

$_REQUEST (ontents of information passed from the browser; by default, $_GET, $_POST, and $_COOKIE.

$_ENV Variables passed to the current script via the environment method.

All of the superglobals (except for $GLOBALS) are named with a single initial underscore
and only capital letters; therefore, you should avoid naming your own variables in this
manner to avoid potential confusion.

To illustrate how you use them, let’s look at a bit of information that many sites employ.
Among the many nuggets of information supplied by superglobal variables is the URL
of the page that referred the user to the current web page. This referring page informa-
tion can be accessed like this:

$came_from = $_SERVER[ 'HTTP_REFERER'];

It’s that simple. Oh, and if the user came straight to your web page, such as by typing its
URL directly into a browser, $came_from will be set to an empty string.

70 | Chapter3: Introduction to PHP



Superglobals and security

A word of caution is in order before you start using superglobal variables, because they
are often used by hackers trying to find exploits to break into your website. What they
do is load up $_POST, $_GET, or other superglobals with malicious code, such as Unix
or MySQL commands that can damage or display sensitive data if you naively access
them.

Therefore, you should always sanitize superglobals before using them. One way to do
this is viathe PHP htmlentities function. It convertsall characters into HTML entities.
For example, less-than and greater-than characters (< and >) are transformed into the
strings &lt; and &gt; so that they are rendered harmless, as are all quotes and back-
slashes, and so on.

Therefore, a much better way to access $_SERVER (and other superglobals) is:
$came_from = htmlentities($_SERVER[ 'HTTP_REFERER']);
Using the htmlentities function for sanitization is an important

practice in any circumstance where user or other third-party data is
being processed for output, not just with superglobals.

This chapter has provided you with a solid background in using PHP. In Chapter 4, we'll
start using what you've learned to build expressions and control program flow—in other
words, do some actual programming.

But before moving on, I recommend that you test yourself with some (if not all) of the
following questions to ensure that you have fully digested the contents of this chapter.

Questions

1. What tag is used to cause PHP to start interpreting program code? And what is the
short form of the tag?

What are the two types of comment tags?

Which character must be placed at the end of every PHP statement?
Which symbol is used to preface all PHP variables?

What can a variable store?

What is the difference between Svariable = 1 and $variable == 1?

N »N

Why do you suppose an underscore is allowed in variable names (e.g.,
$current_user) whereas hyphens are not (e.g., $current-user)?

8. Are variable names case-sensitive?

Questions | 71



9. Can you use spaces in variable names?
10. How do you convert one variable type to another (say, a string to a number)?
11. What is the difference between ++$j and $j++?
12. Are the operators & and and interchangeable?
13. How can you create a multiline echo or assignment?
14. Can you redefine a constant?
15. How do you escape a quotation mark?
16. What is the difference between the echo and print commands?
17. What is the purpose of functions?
18. How can you make a variable accessible to all parts of a PHP program?

19. Ifyou generate data within a function, what are a couple of ways to convey the data
to the rest of the program?

20. What is the result of combining a string with a number?

See “Chapter 3 Answers” on page 640 in Appendix A for the answers to these questions.

72 | Chapter3:Introduction to PHP



CHAPTER 4
Expressions and Control Flow in PHP

The previous chapter introduced several topics in passing that this chapter covers more
fully, such as making choices (branching) and creating complex expressions. In the
previous chapter, I wanted to focus on the most basic syntax and operations in PHP, but
I couldn’t avoid touching on more advanced topics. Now I can fill in the background
that you need to use these powerful PHP features properly.

In this chapter, you will get a thorough grounding in how PHP programming works in
practice and in how to control the flow of the program.

Expressions

Let’s start with the most fundamental part of any programming language: expressions.

An expression is a combination of values, variables, operators, and functions that results
in a value. It’s familiar to anyone who has taken high-school algebra:

y = 3(abs(2x) + 4)
which in PHP would be:
Sy = 3 * (abs(2 * $x) + 4);

The value returned (y, or $y in this case) can be a number, a string, or a Boolean value
(named after George Boole, a nineteenth-century English mathematician and philos-
opher). By now, you should be familiar with the first two value types, but I'll explain the
third.

TRUE or FALSE?

A basic Boolean value can be either TRUE or FALSE. For example, the expression “20 >
9” (20 is greater than 9) is TRUE, and the expression “5 == 6" (5 is equal to 6) is FALSE.

73



(You can combine Boolean operations using operators such as AND, OR, and XOR, which
are covered later in this chapter.)

Note that I am using uppercase letters for the names TRUE and FALSE.
This is because they are predefined constants in PHP. You can also
use the lowercase versions, if you prefer, as they are also predefined.
In fact, the lowercase versions are more stable, because PHP does not
allow you to redefine them; the uppercase ones may be redefined—
something you should bear in mind if you import third-party code.

Example 4-1 shows some simple expressions: the two I just mentioned, plus a couple
more. For each line, it prints out a letter between a and d, followed by a colon and the
result of the expressions. The <br> tag is there to create a line break and thus separate
the output into four lines in HTML.

Now that we are fully into the age of HTML5, and XHTML is no
longer being planned to supersede HTML, you do not need to use the
self-closing <br /> form of the <br> tag, or any void elements (ones
without closing tags), because the / is now optional. Therefore, I have
chosen to use the simpler style in this book. If you ever made HTML
non-void tags self-closing (such as <div />), they will not work in
HTML5 because the / will be ignored, and you will need to replace
them with, for example, <div> ... </div>. However, you must still
use the <br /> form of HTML syntax when using XHTML.

Example 4-1. Four simple Boolean expressions

<?php
echo "a: [" . (20 > 9) . "]<br>";
echo "b: [" . (5 ==6) . "]<br>";
echo "c: [" . (1 ==0) . "]<br>";
echo "d: [" . (1 ==1) . "]<br>";
7>

The output from this code is as follows:

: [1]

: [1

: [1

: [1]

Notice that both expressions a: and d: evaluate to TRUE, which has a value of 1. But b:
and c:, which evaluate to FALSE, do not show any value, because in PHP the constant
FALSE is defined as NULL, or nothing. To verify this for yourself, you could enter the code
in Example 4-2.

an oow

74 | Chapter4: Expressions and Control Flow in PHP



Example 4-2. Outputting the values of TRUE and FALSE

<?php // test2.php
echo "a: [" . TRUE . "]<br>";
echo "b: [" . FALSE . "J<br>";

7>

which outputs the following:

a: [1]
b: []

By the way, in some languages FALSE may be defined as @ or even -1, so its worth
checking on its definition in each language.

Literals and Variables

The simplest form of an expression is a literal, which simply means something that
evaluates to itself, such as the number 73 or the string "Hello". An expression could
also simply be a variable, which evaluates to the value that has been assigned to it. They
are both types of expressions, because they return a value.

Example 4-3 shows three literals and two variables, all of which return values, albeit of
different types.

Example 4-3. Literals and variables

<?php
$myname = "Brian";
Smyage = 37;
echo "a: " . 73 . "<br>"; // Numeric literal
echo "b: " . "Hello" . "<br>"; // String literal
echo "c: " . FALSE . "<br>"; // Constant literal
echo "d: " . $myname . "<br>"; // String variable
echo "e: " . $myage . "<br>"; // Numeric variable
7>

And, as you'd expect, you see a return value from all of these with the exception of c:,
which evaluates to FALSE, returning nothing in the following output:

73
Hello

Brian
37

D an oow
e ee ss es se

In conjunction with operators, it’s possible to create more complex expressions that
evaluate to useful results.

When you combine assignment or control-flow constructs with expressions, the result
is a statement. Example 4-4 shows one of each. The first assigns the result of the

Expressions | 75



expression 366 - $day_number to the variable $days_to_new_year, and the second
outputs a friendly message only if the expression $days_to_new_year < 30 evaluates
to TRUE.

Example 4-4. An expression and a statement

<?php
Sdays_to_new_year = 366 - Sday_number; // Expression

if ($Sdays_to_new_year < 30)
{

}

7>

echo "Not long now till new year"; // Statement

Operators

PHP offers a lot of powerful operators that range from arithmetic, string, and logical
operators to assignment, comparison, and more (see Table 4-1).

Table 4-1. PHP operator types

Operator Description Example
Arithmetic Basic mathematics $a + $b

Amay Array union $a + $b
Assignment Assign values $a = $b + 23
Bitwise Manipulate bits within bytes 12 ~ 9
Comparison Compare two values $a < $b
Execution Executes contents of back ticks “1s -al’
Increment/decrement  Add or subtract 1 Sa++

Logical Boolean $a and $b
String Concatenation $a . $b

Each operator takes a different number of operands:

o Unary operators, such as incrementing ($a++) or negation (-$a), which take a single
operand.

 Binary operators, which represent the bulk of PHP operators, including addition,
subtraction, multiplication, and division.

o One ternary operator, which takes the form ? x : y. It’s a terse, single-line if
statement that chooses between two expressions, depending on the result of a third
one.

76 | Chapter4: Expressions and Control Flow in PHP



Operator Precedence

If all operators had the same precedence, they would be processed in the order in which
they are encountered. In fact, many operators do have the same precedence, so let’s look
at a few in Example 4-5.

Example 4-5. Three equivalent expressions

1+2+3-4+5
2-4+5+3+1
5+42-4+1+3

Here you will see that although the numbers (and their preceding operators) have been
moved, the result of each expression is the value 7, because the plus and minus operators
have the same precedence. We can try the same thing with multiplication and division
(see Example 4-6).

Example 4-6. Three expressions that are also equivalent
1*%2%3/4%*5
2/4*5%3%1
5%2 [ 4%1%3

Here the resulting value is always 7. 5. But things change when we mix operators with
different precedencies in an expression, as in Example 4-7.

Example 4-7. Three expressions using operators of mixed precedence
1+2%3-4%5
2-4%5%34+1
5+42-4+1%*3

If there were no operator precedence, these three expressions would evaluate to 25, -29,
and 12, respectively. But because multiplication and division take precedence over ad-
dition and subtraction, there are implied parentheses around these parts of the expres-
sions, which would look like Example 4-8 if they were visible.

Example 4-8. Three expressions showing implied parentheses

1+ (2*3)-(4*5)
2-(4*5*3)+1
5+2 -4+ (1%*3)

Clearly, PHP must evaluate the subexpressions within parentheses first to derive the
semi-completed expressions in Example 4-9.

Example 4-9. After evaluating the subexpressions in parentheses

1+ (6) - (20)
2 - (60) + 1
5+2 -4+ (3)

Operators | 77



The final results of these expressions are -13, -57, and 6, respectively (quite different
from the results of 25, -29, and 12 that we would have seen had there been no operator
precedence).

Of course, you can override the default operator precedence by inserting your own
parentheses and forcing the original results that we would have seen had there been no
operator precedence (see Example 4-10).

Example 4-10. Forcing left-to-right evaluation

((1+2)*3-4)*5
(2-4)*5%3+1
(5+2-4+1)*3

With parentheses correctly inserted, we now see the values 25, -29, and 12, respectively.
Table 4-2 lists PHP’s operators in order of precedence from high to low.

Table 4-2. The precedence of PHP operators (high to low)

Operator(s) Type

O Parentheses

+ = Increment/decrement
! Logical

* /% Arithmetic

+ - Arithmetic and string
<< >> Bitwise

< <= > >= <> (Comparison

== I= === l== Comparison

& Bitwise (and references)
A Bitwise

| Bitwise

&& Logical

] Logical

?: Ternary

= 4= == %= /: o= %: &: !: Az <<= >>= ASSlgnment

and Logical

xor Logical

or Logical
Associativity

We’ve been looking at processing expressions from left to right, except where operator
precedence is in effect. But some operators require processing from right to left, and

78 | Chapter4: Expressions and Control Flow in PHP



this direction of processing is called the operator’s associativity. For some operators

there is no associativity.

Associativity becomes important in cases in which you do not explicitly force prece-
dence, so you need to be aware of the default actions of operators, as detailed in
Table 4-3, which lists operators and their associativity.

Table 4-3. Operator associativity

Operator Description

CLONE NEW (reate a new object

< <= >= == != === !== <> (omparison

! Logical NOT

~ Bitwise NOT

++ = Increment and decrement
(int) (ast to an integer

(double) (float) (real)
(string)

(array)

(object)

@

= 4= -= *= [=

= %= &= |= M= <<= >>=
+

*

/
%

<< >> & M|
?:
|| & and or xor

s

(ast to a floating-point number
(ast to a string

(ast to an array

(ast to an object

Inhibit error reporting
Assignment

Assignment

Addition and unary plus
Subtraction and negation
Multiplication

Division

Modulus

String concatenation
Bitwise

Ternary

Logical

Separator

Associativity

None
None
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left

For example, let’s take a look at the assignment operator in Example 4-11, where three
variables are all set to the value 0.

Example 4-11. A multiple-assignment statement

<?php

Slevel = $score = Stime = 0;

7>

Operators

79



This multiple assignment is possible only if the rightmost part of the expression is eval-
uated first and then processing continues in a right-to-left direction.

As a beginner to PHP, you should avoid the potential pitfalls of op-
erator associativity by always nesting your subexpressions within
parentheses to force the order of evaluation. This will also help oth-
er programmers who may have to maintain your code to under-
stand what is happening.

Relational Operators

Relational operators test two operands and return a Boolean result of either TRUE or
FALSE. There are three types of relational operators: equality, comparison, and logical.

Equality

As we've already encountered a few times in this chapter, the equality operator is ==
(two equals signs). It is important not to confuse it with the = (single equals sign) as-
signment operator. In Example 4-12, the first statement assigns a value and the second
tests it for equality.

Example 4-12. Assigning a value and testing for equality

<?php
Smonth = "March";

if (Smonth == "March") echo "It's springtime";
7>

As you see, by returning either TRUE or FALSE, the equality operator enables you to test
for conditions using, for example, an i1f statement. But that’s not the whole story, because
PHP is a loosely typed language. If the two operands of an equality expression are of
different types, PHP will convert them to whatever type makes best sense to it.

For example, any strings composed entirely of numbers will be converted to numbers
whenever compared with anumber. In Example 4-13, $aand $b are two different strings,
and we would therefore expect neither of the if statements to output a result.

Example 4-13. The equality and identity operators

<?php
Sa = "1000";
$b = "+1000";

if ($a == $b) echo "1";
if ($a === $b) echo "2";

7>

80 | Chapter4:Expressions and Control Flow in PHP



However, if you run the example, you will see that it outputs the number 1, which means
that the first 1f statement evaluated to TRUE. This is because both strings were first
converted to numbers, and 1000 is the same numerical value as +1000.

In contrast, the second if statement uses the identity operator—three equals signs in a
row—which prevents PHP from automatically converting types. $a and $b are therefore
compared as strings and are now found to be different, so nothing is output.

As with forcing operator precedence, whenever you have any doubt about how PHP
will convert operand types, you can use the identity operator to turn this behavior off.

In the same way that you can use the equality operator to test for operands being equal,
you can test for them not being equal using !=, the inequality operator. Take a look at
Example 4-14, which is a rewrite of Example 4-13 in which the equality and identity
operators have been replaced with their inverses.

Example 4-14. The inequality and not identical operators

<?php
$a = "1000";
Sb = "+1000";

if ($a != $b) echo "1";
if ($a !== $b) echo "2";

7>

And, as you might expect, the first if statement does not output the number 1, because
the code is asking whether $a and $b are not equal to each other numerically.

Instead, it outputs the number 2, because the second 1f statement is asking whether $a
and $b are not identical to each other in their present operand types, and the answer is
TRUE; they are not the same.

Comparison operators

Using comparison operators, you can test for more than just equality and inequality.
PHP also gives you > (is greater than), < (is less than), >= (is greater than or equal to),
and <= (is less than or equal to) to play with. Example 4-15 shows these operators in
use.

Example 4-15. The four comparison operators

<?php
$a = 2; $b = 3;

if ($a > $b) echo "$a is greater than $b<br>";
if (Sa < $b) echo "$a is less than $b<br>";
if (Sa >= $b) echo "$a is greater than or equal to $b<br>";
if ($a <= $b) echo "$a is less than or equal to S$Sb<br>";
7>

Operators | 81



In this example, where $a is 2 and $b is 3, the following is output:

2 is less than 3
2 is less than or equal to 3

Try this example yourself, altering the values of $a and $b, to see the results. Try setting
them to the same value and see what happens.
Logical operators

Logical operators produce true-or-false results, and therefore are also known as Boolean
operators. There are four of them (see Table 4-4).

Table 4-4. The logical operators

Logical operator Description

AND TRUE if both operands are TRUE

OR TRUE if either operand is TRUE

XOR TRUE if one of the two operands is TRUE

NOT TRUE if the operand is FALSE, or FALSE if the operand is TRUE

You can see these operators used in Example 4-16. Note that the ! symbol is required
by PHP in place of the word NOT. Furthermore, the operators can be lower- or uppercase.

Example 4-16. The logical operators in use

<?php
$a=1; $b =0;

echo ($a AND $b) . "<br>";

echo ($a or $b) . "<br>";

echo ($a XOR $b) . "<br>";

echo !Sa . "<br>";
7>

This example outputs NULL, 1, 1, NULL, meaning that only the second and third echo
statements evaluate as TRUE. (Remember that NULL—or nothing—represents a value of
FALSE.) This is because the AND statement requires both operands to be TRUE if it is going
to return a value of TRUE, while the fourth statement performs a NOT on the value of
$a, turning it from TRUE (a value of 1) to FALSE. If you wish to experiment with this, try
out the code, giving $a and $b varying values of 1 and 0.

When coding, remember to bear in mind that AND and OR have low-
er precedence than the other versions of the operators, & and | |. In
complex expressions, it may be safer to use & and | | for this reason.

82 | (Chapter4:Expressions and Control Flow in PHP



The OR operator can cause unintentional problems in if statements, because the second
operand will not be evaluated if the first is evaluated as TRUE. In Example 4-17, the
function getnext will never be called if $finished has a value of 1.

Example 4-17. A statement using the OR operator

<?php
if (Sfinished == 1 OR getnext() == 1) exit;

7>

If you need getnext to be called at each if statement, you could rewrite the code as has
been done in Example 4-18.
Example 4-18. The “if ... OR” statement modified to ensure calling of getnext

<?php
Sgn = getnext();

if (S$finished == 1 OR $gn == 1) exit;

7>

In this case, the code in function getnext will be executed and the value returned will
be stored in $gn before the if statement.

Another solution is to simply switch the two clauses to make sure that
getnext is executed, as it will then appear first in the expression.

Table 4-5 shows all the possible variations of using the logical operators. You should
also note that ! TRUE equals FALSE and !FALSE equals TRUE.

Table 4-5. All possible PHP logical expressions

Inputs Operators and results
a b AND  OR XOR
TRUE TRUE TRUE TRUE FALSE
TRUE FALSE FALSE TRUE TRUE
FALSE TRUE FALSE TRUE TRUE
FALSE FALSE FALSE FALSE FALSE

Operators | 83



Conditionals

Conditionals alter program flow. They enable you to ask questions about certain things
and respond to the answers you get in different ways. Conditionals are central to dy-
namic web pages—the goal of using PHP in the first place—because they make it easy
to create different output each time a page is viewed.

There are three types of non-looping conditionals: the i1f statement, the switch state-
ment, and the ? operator. By non-looping, I mean that the actions initiated by the state-
ment take place and program flow then moves on, whereas looping conditionals (which
we’ll get to shortly) execute code over and over until a condition has been met.

The if Statement

One way of thinking about program flow is to imagine it as a single-lane highway that
you are driving along. It’s pretty much a straight line, but now and then you encounter
various signs telling you where to go.

In the case of an if statement, you could imagine coming across a detour sign that you
have to follow if a certain condition is TRUE. If so, you drive off and follow the detour
until you return to where it started and then continue on your way in your original
direction. Or, if the condition isn't TRUE, you ignore the detour and carry on driving
(see Figure 4-1).

v

Program flow

if
statements

Figure 4-1. Program flow is like a single-lane highway

The contents of the if condition can be any valid PHP expression, including equality,
comparison, tests for @ and NULL, and even the values returned by functions (either built-
in functions or ones that you write).

84 | Chapter4: Expressions and Control Flow in PHP



The actions to take when an i1f condition is TRUE are generally placed inside curly braces,
{ }. However, you can ignore the braces if you have only a single statement to execute.
But if you always use curly braces, you’ll avoid having to hunt down difficult-to-trace
bugs, such as when you add an extra line to a condition and it doesn’t get evaluated due
to lack of braces. (Note that for space and clarity, many of the examples in this book
ignore this suggestion and omit the braces for single statements.)

In Example 4-19, imagine that it is the end of the month and all your bills have been
paid, so you are performing some bank account maintenance.

Example 4-19. An if statement with curly braces

<?php
if (Sbank_balance < 100)
{
$money = 1000;
$bank_balance += $money;

}

7>

In this example, you are checking your balance to see whether it is less than $100 (or
whatever your currency is). If so, you pay yourself $1,000 and then add it to the balance.
(If only making money were that simple!)

If the bank balance is $100 or greater, the conditional statements are ignored and pro-
gram flow skips to the next line (not shown).

In this book, opening curly braces generally start on a new line. Some people like to
place the first curly brace to the right of the conditional expression; others start a new
line with it. Either of these is fine, because PHP allows you to set out your whitespace
characters (spaces, newlines, and tabs) any way you choose. However, you will find your
code easier to read and debug if you indent each level of conditionals with a tab.

The else Statement

Sometimes when a conditional is not TRUE, you may not want to continue on to the
main program code immediately but might wish to do something else instead. This is
where the else statement comes in. With it, you can set up a second detour on your
highway, as in Figure 4-2.

Conditionals | 85



else
statements

Program flow - BETOUR| [ | | e

if
statements

Figure 4-2. The highway now has an if detour and an else detour

With an if ... else statement, the first conditional statement is executed if the con-
dition is TRUE. But if it’s FALSE, the second one is executed. One of the two choices must
be executed. Under no circumstance can both (or neither) be executed. Example 4-20
shows the use of the if ... else structure.

Example 4-20. An if ... else statement with curly braces

<?php
if ($bank_balance < 100)
{
$money = 1000;
$bank_balance += $money;
}
else
{
$savings += 50;
$bank_balance -= 50;
}
7>

86 | Chapter4: Expressions and Control Flow in PHP



In this example, now that you've ascertained that you have $100 or more in the bank,
the else statement is executed, by which you place some of this money into your savings
account.

As with if statements, if your else has only one conditional statement, you can opt to
leave out the curly braces. (Curly braces are always recommended, though. First, they
make the code easier to understand. Second, they let you easily add more statements to
the branch later.)

The elseif Statement

There are also times when you want a number of different possibilities to occur, based
upon a sequence of conditions. You can achieve this using the elseif statement. As you
might imagine, it is like an else statement, except that you place a further conditional
expression prior to the conditional code. In Example 4-21, you can see a complete
if ... elseif ... else construct.

Example 4-21. An if ... elseif ... else statement with curly braces
<?php
if ($bank_balance < 100)

{
$money = 1000;
$bank_balance += $money;

}
elseif ($bank_balance > 200)

{
$savings += 100;
$bank_balance -= 100;

}

else

{
$savings += 50;
$bank_balance -= 50;
}

7>

In the example, an elseif statement has been inserted between the 1f and else state-
ments. It checks whether your bank balance exceeds $200 and, if so, decides that you
can afford to save $100 of it this month.

Although I'm starting to stretch the metaphor a bit too far, you can imagine this as a
multi-way set of detours (see Figure 4-3).

Conditionals | 87



elseif
statements

else
statements

Program flow ------eeeeeeee PV

if
statements

Figure 4-3. The highway with if, elseif, and else detours

An else statement closes either an if ... elseoranif ... else
if ... else statement. You can leave out a final else if it is not
required, but you cannot have one before an elsetif; neither can you
have an elseif before an if statement.

You may have as many elseif statements as you like. But as the number of elseif
statements increases, you would probably be better advised to consider a switch state-
ment if it fits your needs. We'll look at that next.

The switch Statement

The switch statement is useful in cases in which one variable or the result of an ex-
pression can have multiple values, which should each trigger a different function.

For example, consider a PHP-driven menu system that passes a single string to the main
menu code according to what the user requests. Let’s say the options are Home, About,

88 | Chapter4: Expressions and Control Flow in PHP



News, Login, and Links, and we set the variable $page to one of these, according to the
user’s input.

If we write the code for this using if ... elseif ... else, it might look like
Example 4-22.

Example 4-22. A multiple-line if ... elseif ... statement

<?php
if ($page == "Home") echo "You selected Home";
elseif ($page == "About") echo "You selected About";
elseif ($page == "News") echo "You selected News";
elseif ($page == "Login") echo "You selected Login";
elseif ($page == "Links") echo "You selected Links";
7>

If we use a switch statement, the code might look like Example 4-23.

Example 4-23. A switch statement

<?php
switch ($page)
{
case "Home":
echo "You selected Home";
break;
case "About":
echo "You selected About";
break;
case "News":
echo "You selected News";
break;
case "Login":
echo "You selected Login";
break;
case "Links":
echo "You selected Links";
break;

}

7>

As you can see, $page is mentioned only once at the start of the switch statement.
Thereafter, the case command checks for matches. When one occurs, the matching
conditional statement is executed. Of course, in a real program you would have code
here to display or jump to a page, rather than simply telling the user what was selected.

With switch statements, you do not use curly braces inside case
commands. Instead, they commence with a colon and end with the
break statement. The entire list of cases in the switch statement is
enclosed in a set of curly braces, though.

Conditionals | 89



Breaking out

If you wish to break out of the switch statement because a condition has been fulfilled,
use the break command. This command tells PHP to break out of the switch and jump
to the following statement.

If you were to leave out the break commands in Example 4-23 and the case of Home
evaluated to be TRUE, all five cases would then be executed. Or if $page had the value
News, then all the case commands from then on would execute. This is deliberate and
allows for some advanced programming, but generally you should always remember to
issue a break command every time a set of case conditionals has finished executing. In
fact, leaving out the break statement is a common error.

Default action

A typical requirement in switch statements is to fall back on a default action if none of
the case conditions are met. For example, in the case of the menu code in
Example 4-23, you could add the code in Example 4-24 immediately before the final
curly brace.

Example 4-24. A default statement to add to Example 4-23

default:
echo "Unrecognized selection";
break;

Although a break command is not required here because the default is the final sub-
statement, and program flow will automatically continue to the closing curly brace,
should you decide to place the default statement higher up it would definitely need a
break command to prevent program flow from dropping into the following statements.
Generally, the safest practice is to always include the break command.

Alternative syntax

If you prefer, you may replace the first curly brace in a switch statement with a single
colon, and the final curly brace with an endswitch command, as in Example 4-25.
However, this approach is not commonly used and is mentioned here only in case you
encounter it in third-party code.

Example 4-25. Alternate switch statement syntax

<?php
switch ($page):
case "Home":
echo "You selected Home";
break;

// etc...

90 | Chapter4:Expressions and Control Flow in PHP



case "Links":
echo "You selected Links";
break;
endswitch;
7>

The ? Operator

One way of avoiding the verbosity of 1f and else statements is to use the more compact
ternary operator, ?, which is unusual in that it takes three operands rather than the
typical two.

We briefly came across this in Chapter 3 in the discussion about the difference between
the print and echo statements as an example of an operator type that works well with
print but not echo.

The ? operator is passed an expression that it must evaluate, along with two statements
to execute: one for when the expression evaluates to TRUE, the other for when it is FALSE.
Example 4-26 shows code we might use for writing a warning about the fuel level of a
car to its digital dashboard.

Example 4-26. Using the ? operator

<?php
echo $fuel <= 1 ? "Fill tank now" : "There's enough fuel";
?>

In this statement, if there is one gallon or less of fuel (i.e., if $fuelis set to 1 or less), the
string F111 tank nowisreturned to the preceding echo statement. Otherwise, the string
There's enough fuel is returned. You can also assign the value returned in a ? state-
ment to a variable (see Example 4-27).

Example 4-27. Assigning a ? conditional result to a variable

<?php
Senough = $fuel <= 1 ? FALSE : TRUE;

7>

Here $enough will be assigned the value TRUE only when there is more than a gallon of
fuel; otherwise, it is assigned the value FALSE.

If you find the ? operator confusing, you are free to stick to if statements, but you should
be familiar with it, because you'll see it in other people’s code. It can be hard to read,
because it often mixes multiple occurrences of the same variable. For instance, code
such as the following is quite popular:

Ssaved = $saved >= Snew ? S$saved : Snew;

If you take it apart carefully, you can figure out what this code does:

Conditionals | 91



$saved = // Set the value of $saved to...
$saved >= Snew // Check $saved against $new

? // Yes, comparison is true ...
$saved // ... so assign the current value of $saved
// No, comparison is false ...
Snew; // ... so assign the value of S$Snew

It’s a concise way to keep track of the largest value that you've seen as a program pro-
gresses. You save the largest value in $saved and compare it to $new each time you get
a new value. Programmers familiar with the ? operator find it more convenient than if
statements for such short comparisons. When not used for writing compact code, it is
typically used to make some decision inline, such as when you are testing whether a
variable is set before passing it to a function.

Looping

One of the great things about computers is that they can repeat calculating tasks quickly
and tirelessly. Often you may want a program to repeat the same sequence of code again
and again until something happens, such as a user inputting a value or reaching a natural
end. PHP’s various loop structures provide the perfect way to do this.

To picture how this works, take a look at Figure 4-4. It is much the same as the highway
metaphor used to illustrate i1f statements, except that the detour also has a loop section
that—once a vehicle has entered—can be exited only under the right program condi-
tions.

Program flow -y GEmmmm ] e

loop
statements

............ >

Figure 4-4. Imagining a loop as part of a program highway layout

92 | Chapter4: Expressions and Control Flow in PHP



while Loops

Let’s turn the digital car dashboard in Example 4-26 into a loop that continuously checks
the fuel level as you drive, using a while loop (Example 4-28).

Example 4-28. A while loop

<?php
Sfuel = 10;

while ($fuel > 1)
{
// Keep driving ...
echo "There's enough fuel";

}

7>

Actually, you might prefer to keep a green light lit rather than output text, but the point
is that whatever positive indication you wish to make about the level of fuel is placed
inside the while loop. By the way, if you try this example for yourself, note that it will
keep printing the string until you click the Stop button in your browser.

As with 1f statements, you will notice that curly braces are required
to hold the statements inside the while statements, unless there’s only
one.

For another example of a while loop that displays the 12 times table, see Example 4-29.

Example 4-29. A while loop to print the 12 times table

<?php
Scount = 1;

while ($count <= 12)
{

echo "$count times 12 is " . Scount * 12 . "<br>";
++$count;

}

7>

Here the variable $count is initialized to a value of 1, then a while loop is started with
the comparative expression $count <= 12. This loop will continue executing until the
variable is greater than 12. The output from this code is as follows:

1 times 12 is 12
2 times 12 is 24
3 times 12 is 36
and so on...

Looping | 93



Inside the loop, a string is printed along with the value of $count multiplied by 12. For
neatness, this is also followed with a <br> tag to force a new line. Then $count is in-
cremented, ready for the final curly brace that tells PHP to return to the start of the loop.

At this point, $count is again tested to see whether it is greater than 12. It isn’t, but it
now has the value 2, and after another 11 times around the loop, it will have the value
13. When that happens, the code within the while loop is skipped and execution passes
on to the code following the loop, which, in this case, is the end of the program.

Ifthe ++$count statement (which could equally have been $count++) had not been there,
this loop would be like the first one in this section. It would never end and only the
result of 1 * 12 would be printed over and over.

But there is a much neater way this loop can be written, which I think you will like. Take
a look at Example 4-30.

Example 4-30. A shortened version of Example 4-29

<?php
Scount = 0;

while (++$count <= 12)
echo "$count times 12 is " . Scount * 12 . "<br>";
?>

In this example, it was possible to remove the ++$count statement from inside the while
loop and place it directly into the conditional expression of the loop. What now happens
is that PHP encounters the variable $count at the start of each iteration of the loop and,
noticing that it is prefaced with the increment operator, first increments the variable
and only then compares it to the value 12. You can therefore see that Scount now has
to be initialized to 0, not 1, because it is incremented as soon as the loop is entered. If
you keep the initialization at 1, only results between 2 and 12 will be output.

do ... while Loops

A slight variation to the while loop is the do ... while loop, used when you want a
block of code to be executed at least once and made conditional only after that.
Example 4-31 shows a modified version of the code for the 12 times table that uses such
a loop.

Example 4-31. A do ... while loop for printing the times table for 12

<?php
Scount = 1;
do
echo "$count times 12 is " . Scount * 12 . "<br>";
while (++$count <= 12);
7>

94 | Chapter4: Expressions and Control Flow in PHP



Notice how we are back to initializing $count to 1 (rather than 0) because the code is
being executed immediately, without an opportunity to increment the variable. Other
than that, though, the code looks pretty similar.

Of course, if you have more than a single statement inside a do ... while loop, re-
member to use curly braces, as in Example 4-32.

Example 4-32. Expanding Example 4-31 to use curly braces

<?php
Scount = 1;

do {
echo "S$count times 12 is " . $count * 12;
echo "<br>";

} while (++Scount <= 12);

?>

for Loops

The final kind of loop statement, the for loop, is also the most powerful, as it combines
the abilities to set up variables as you enter the loop, test for conditions while iterating
loops, and modify variables after each iteration.

Example 4-33 shows how you could write the multiplication table program with a for
loop.

Example 4-33. Outputting the times table for 12 from a for loop

<?php
for (Scount = 1 ; S$count <= 12 ; ++$count)
echo "$count times 12 is " . Scount * 12 . "<br>";
7>

See how the entire code has been reduced to a single for statement containing a single
conditional statement? Here’s what is going on. Each for statement takes three
parameters:

« An initialization expression
o A condition expression

» A modification expression

These are separated by semicolons like this: for (expri1; expr2 ; expr3). At the start
of the first iteration of the loop, the initialization expression is executed. In the case of
the times table code, $count is initialized to the value 1. Then, each time around the
loop, the condition expression (in this case, $count <= 12) is tested, and the loop is
entered only if the condition is TRUE. Finally, at the end of each iteration, the modification

Looping | 95



expression is executed. In the case of the times table code, the variable $count is incre-
mented.

All this structure neatly removes any requirement to place the controls for aloop within
its body, freeing it up just for the statements you want the loop to perform.

Remember to use curly braces with a for loop if it will contain more than one statement,
as in Example 4-34.

Example 4-34. The for loop from Example 4-33 with added curly braces

<?php
for (Scount = 1 ; S$count <= 12 ; ++$count)
{
echo "$count times 12 is " . $count * 12;
echo "<br>";
}
7>

Let’s compare when to use for and while loops. The for loop is explicitly designed
around a single value that changes on a regular basis. Usually you have a value that
increments, as when you are passed a list of user choices and want to process each choice
in turn. But you can transform the variable any way you like. A more complex form of
the for statement even lets you perform multiple operations in each of the three
parameters:

for ($1 =1, $j =1 ; $1 + $j < 10 ; Si++ , $j++)
{

/] ...
}

That’s complicated and not recommended for first-time users. The key is to distinguish
commas from semicolons. The three parameters must be separated by semicolons.
Within each parameter, multiple statements can be separated by commas. Thus, in the
previous example, the first and third parameters each contain two statements:

$t =1, $ =1 // Initialize $i and $j

$1 + $j < 10 // Terminating condition
Si++ , Sj++ // Modify $i and $j at the end of each iteration

The main thing to take from this example is that you must separate the three parameter

sections with semicolons, not commas (which should be used only to separate state-
ments within a parameter section).

So, when is a while statement more appropriate than a for statement? When your
condition doesn’t depend on a simple, regular change to a variable. For instance, if you
want to check for some special input or error and end the loop when it occurs, use a
while statement.

96 | Chapter4: Expressions and Control Flow in PHP



Breaking Out of a Loop

Just as you saw how to break out of a switch statement, you can also break out of a for
loop using the same break command. This step can be necessary when, for example,
one of your statements returns an error and the loop cannot continue executing safely.

One case in which this might occur is when writing a file returns an error, possibly
because the disk is full (see Example 4-35).

Example 4-35. Writing a file using a for loop with error trapping

<?php
$fp = fopen("text.txt", 'wb');

for ($3 =0 ; $j < 100 ; ++53)
{
Swritten = fwrite($fp, "data");

if (Swritten == FALSE) break;
}

fclose($fp);

7>

This is the most complicated piece of code that you have seen so far, but youre ready
for it. We'll look into the file handling commands in a later chapter, but for now all you
need to know is that the first line opens the file text.txt for writing in binary mode, and
then returns a pointer to the file in the variable $fp, which is used later to refer to the
open file.

The loop then iterates 100 times (from 0 to 99) writing the string data to the file. After
each write, the variable Swritten isassigned a value by the fwrite function representing
the number of characters correctly written. But if there is an error, the fwrite function
assigns the value FALSE.

The behavior of fwrite makes it easy for the code to check the variable $written to see
whether it is set to FALSE and, if so, to break out of the loop to the following statement
closing the file.

If you are looking to improve the code, the line:
if (Swritten == FALSE) break;

can be simplified using the NOT operator, like this:
if (!'$Swritten) break;

In fact, the pair of inner loop statements can be shortened to the following single
statement:

if (!'fwrite($fp, "data")) break;

Looping | 97



The break command is even more powerful than you might think because if you have
code nested more than one layer deep that you need to break out of, you can follow the
break command with a number to indicate how many levels to break out of, like this:

break 2;

The continue Statement

The continue statement is a little like a break statement, except that it instructs PHP
to stop processing the current loop and to move right to its next iteration. So, instead
of breaking out of the whole loop, PHP exits only the current iteration.

This approach can be useful in cases where you know there is no point continuing
execution within the current loop and you want to save processor cycles or prevent an
error from occurring by moving right along to the next iteration of the loop. In
Example 4-36, a continue statement is used to prevent a division-by-zero error from
being issued when the variable $j has a value of 0.

Example 4-36. Trapping division-by-zero errors using continue

<?php
$j = 160;

while ($j > -10)
{
$3--3

if ($j == 0) continue;

echo (10 / $j) . "<br>";
}

?>

For all values of $Jj between 10 and -10, with the exception of 0, the result of calculating
10 divided by $j is displayed. But for the particular case of $j being 0, the continue
statement is issued and execution skips immediately to the next iteration of the loop.

Implicit and Explicit Casting

PHP is aloosely typed language that allows you to declare a variable and its type simply
by using it. It also automatically converts values from one type to another whenever
required. This is called implicit casting.

However, there may be times when PHP’s implicit casting is not what you want. In
Example 4-37, note that the inputs to the division are integers. By default, PHP converts
the output to floating point so it can give the most precise value—4.66 recurring.

98 | Chapter4: Expressions and Control Flow in PHP



Example 4-37. This expression returns a floating-point number

<?php
Sa
$b
Sc

56;
12;
$a / $b;

echo $c;
7>

But what if we had wanted $c to be an integer instead? There are various ways in which
we could achieve this, one of which is to force the result of $a/$b to be cast to an integer
value using the integer cast type (int), like this:

$c = (int) (Sa / $b);

This is called explicit casting. Note that in order to ensure that the value of the entire
expression is cast to an integer, we place the expression within parentheses. Otherwise,
only the variable $a would have been cast to an integer—a pointless exercise, as the
division by $b would still have returned a floating-point number.

You can explicitly cast to the types shown in Table 4-6, but you can
usually avoid having to use a cast by calling one of PHP’s built-in
functions. For example, to obtain an integer value, you could use the
intval function. As with some other sections in this book, this one
is mainly here to help you understand third-party code that you may
encounter.

Table 4-6. PHP’s cast types

Cast type Description

(int) (integer) (ast to an integer by dropping the decimal portion.
(bool) (boolean) (ast to a Boolean.

(float) (double) (real) (ast toafloating-point number.

(string) Cast to a string.

(array) (ast to an array.

(object) (ast to an object.

PHP Dynamic Linking

Because PHP is a programming language, and the output from it can be completely
different for each user, it’s possible for an entire website to run from a single PHP web
page. Each time the user clicks on something, the details can be sent back to the same
web page, which decides what to do next according to the various cookies and/or other
session details it may have stored.

PHP Dynamiclinking | 99



Although itis possible to build an entire website this way, it's not recommended, because
your source code will grow and grow and start to become unwieldy, as it has to account
for every possible action a user could take.

Instead, it's much more sensible to split your website development into different parts.
For example, one distinct process is signing up for a website, along with all the checking
this entails to validate an email address, determine whether a username is already taken,
and so on.

A second module might well be one for logging users in before handing them off to the
main part of your website. Then you might have a messaging module with the facility
for users to leave comments, a module containing links and useful information, another
to allow uploading of images, and more.

As long as you have created a way to track your user through your website by means of
cookies or session variables (both of which we’ll look at more closely in later chapters),
you can split up your website into sensible sections of PHP code, each one self-
contained, and therefore treat yourself to a much easier future developing each new
feature and maintaining old ones.

Dynamic Linking in Action

One of the more popular PHP-driven applications on the Web today is the blogging
platform WordPress (see Figure 4-5). As a blogger or a blog reader, you might not realize
it, but every major section has been given its own main PHP file, and a whole raft of
generic, shared functions have been placed in separate files that are included by the
main PHP pages as necessary.

The whole platform is held together with behind-the-scenes session tracking, so that
you hardly know when you are transitioning from one subsection to another. So, as a
web developer, if you want to tweak WordPress, it’s easy to find the particular file you
need, modify it, and test and debug it without messing around with unconnected parts
of the program.

Next time you use WordPress, keep an eye on your browser’s address bar, particularly
if you are managing a blog, and you'll notice some of the different PHP files that it uses.

100 | Chapter4: Expressions and Control Flow in PHP



el SVl http://robinnixon.com/thejourney/wp-ad 0 ~ B ¢ X ”L_‘_[ Dashboard « Yes, I Can! by ...

File Edit VYiew Favorites Tools Help

q
5 Posts Dashboard 2
Media Right Now QuickPress
Link ) :
¢ Links Content Discussion Title
Pages £
34 Posts 27 Comments Upload/insert (=] B0 J3 g3
LJ Comments 6 Pages 27 Approved Content 0
Appearance Q Categories O Pending 8
: . O Tags O Spam
%
£ Plugins @ Tegs
U Th T Ti th 6 Widget:
4 Users eme Twenty Ten wi idgets = =
You are using WordPress 3.2.1
‘H TR Update to 3.3 1
Settings
e Recent Drafts
{» Quick Cache Recent Comments
There are no drafts at the moment
From Gsbelusojr on Why you
should learn to lueid dream #
WordPress Blog
| think our subconscious can go
TR WD TTIES S An error has occurred; the feed is probably down
us, In some of my dreams, | was
Try again later.
able ...
< m | r

H100% -

Figure 4-5. The WordPress blogging platform is written in PHP

This chapter has covered quite a lot of ground, and by now you should be able to put
together your own small PHP programs. But before you do, and before proceeding with
the following chapter on functions and objects, you may wish to test your new knowl-
edge on the following questions.

Questions

What actual underlying values are represented by TRUE and FALSE?
What are the simplest two forms of expressions?

What is the difference between unary, binary, and ternary operators?
What is the best way to force your own operator precedence?

What is meant by operator associativity?

When would you use the === (identity) operator?

N e w e

Name the three conditional statement types.

Questions | 101



8. What command can you use to skip the current iteration of a loop and move on to
the next one?

9. Why is a for loop more powerful than a while loop?
10. How do if and while statements interpret conditional expressions of different data

types?

See “Chapter 4 Answers” on page 641 in Appendix A for the answers to these questions.

102 | Chapter4: Expressions and Control Flow in PHP



CHAPTER 5
PHP Functions and Objects

The basic requirements of any programming language include somewhere to store data,
a means of directing program flow, and a few bits and pieces such as expression evalu-
ation, file management, and text output. PHP has all these, plus tools like else and
elseif to make life easier. But even with all these in our toolkit, programming can be
clumsy and tedious, especially if you have to rewrite portions of very similar code each
time you need them.

That’s where functions and objects come in. As you might guess, a function is a set of
statements that performs a particular function and—optionally—returns a value. You
can pull out a section of code that you have used more than once, place it into a function,
and call the function by name when you want the code.

Functions have many advantages over contiguous, inline code. For example, they:

o Involve less typing
« Reduce syntax and other programming errors
o Decrease the loading time of program files

o Decrease execution time, because each function is compiled only once, no matter
how often you call it

o Accept arguments and can therefore be used for general as well as specific cases

Objects take this concept a step further. An object incorporates one or more functions,
and the data they use, into a single structure called a class.

In this chapter, you'll learn all about using functions, from defining and calling them
to passing arguments back and forth. With that knowledge under your belt, you'll start
creating functions and using them in your own objects (where they will be referred to
as methods).

103



PHP Functions

PHP comes with hundreds of ready-made, built-in functions, making it a very rich
language. To use a function, call it by name. For example, you can see the print function
in action here:

print("print is a pseudo-function");

The parentheses tell PHP that you're referring to a function. Otherwise, it thinks youre
referring to a constant. You may see a warning such as this:

Notice: Use of undefined constant fname - assumed 'fname'

followed by the text string fname, under the assumption that you must have wanted to
put a literal string in your code. (Things are even more confusing if there is actually a
constant named fname, in which case PHP uses its value.)

Strictly speaking, print is a pseudo-function, commonly called a
construct. The difference is that you can omit the parentheses, as
follows:

print "print doesn't require parentheses";

You do have to put parentheses after any other functions you call,
even if they’re empty (i.e., if youre not passing any argument to the
function).

Functions can take any number of arguments, including zero. For example, phpinfo, as
shown here, displays lots of information about the current installation of PHP and
requires no argument (the result of calling this function can be seen in Figure 5-1):

phpinfo();

The phpinfo function is extremely useful for obtaining information
about your current PHP installation, but that information could also
be very useful to potential hackers. Therefore, never leave a call to this
function in any web-ready code.

104 | Chapter5: PHP Functions and Objects



f .phpinfoﬂ x\:_‘
€& - C f [ localhost/info.php &l =

System Windows NT BOOTH 6.2 build 9200 (Unknown Windows version Home Premium Edition)
586

Build Date Mov 12 2013 18:08:14

Compiler MSVCE (Visual C++ 2008)

Architecture |x86

Configure cacript /nologo configure. js "—disable-phar” "—-disable-ipva™ "—-disabl " "—dizable-bcmath”
Command “—disable-calendar” "—dizable-odbc” "—disable-tokenizer” "—without-wddx” "—enable-debug-
pack” "—enable-cli-win32" "—enable-pdo” "—enable-xmlreader” "—enable-xmlwriter” "—enable-
cgi” "—with-php-build™ "—with-libxml|” "—with-pdo-sqlite” "—with-openss!” "—with-sqlite 3"

Server APl |CGliFastCGI

Virtual disabled
Directory
Support

Configuration | CWINDOWS
File (php.ini)
Path
Loaded C\Program Files (x86)\Zend\ZendServerietc\php.ini
Configuration
File

Figure 5-1. The output of PHP’s built-in phpinfo function

Some of the built-in functions that use one or more arguments appear in Example 5-1.

Example 5-1. Three string functions

<?php
echo strrev(" .dlrow olleH"); // Reverse string
echo str_repeat("Hip ", 2); // Repeat string
echo strtoupper("hooray!"); // String to uppercase
7>

This example uses three string functions to output the following text:
Hello world. Hip Hip HOORAY!

As you can see, the strrev function reversed the order of characters in the string,
str_repeat repeated the string "Hip " twice (as required by a second argument), and
strtoupper converted "hooray!" to uppercase.

PHP Functions | 105



Defining a Function
The general syntax for a function is:

function function_name([parameter [, ...]])

{
// Statements

}

I'll explain all the square brackets, in case you find them confusing. The first line of the
syntax indicates that:

o A definition starts with the word function.

o A name follows, which must start with a letter or underscore, followed by any
number of letters, numbers, or underscores.

o The parentheses are required.

o One or more parameters, separated by commas, are optional.

Function names are case-insensitive, so all of the following strings can refer to the print
function: PRINT, Print, and PrInT.

The opening curly brace starts the statements that will execute when you call the func-
tion; a matching curly brace must close it. These statements may include one or more
return statements, which force the function to cease execution and return to the calling
code. If a value is attached to the return statement, the calling code can retrieve it, as
we'll see next.

Returning a Value

Let’s take a look at a simple function to convert a person’s full name to lowercase and
then capitalize the first letter of each name.

We've already seen an example of PHP’s built-in strtoupper function in Example 5-1.
For our current function, we’ll use its counterpart, strtolower:

Slowered = strtolower("aNY # of Letters and Punctuation you WANT");echo $lowered;
The output of this experiment is:
any # of letters and punctuation you want

We don’t want names all lowercase, though; we want the first letter of each name capi-
talized. (We're not going to deal with subtle cases such as Mary-Ann or Jo-En-Lai for
this example.) Luckily, PHP also provides a ucfirst function that sets the first character
of a string to uppercase:

Sucfixed = ucfirst("any # of letters and punctuation you want");echo Sucfixed;

106 | Chapter5: PHP Functions and Objects



The output is:
Any # of letters and punctuation you want

Now we can do our first bit of program design: to get a word with its initial letter
capitalized, we call strtolower on a string first, and then ucfirst. The way to do this
is to nest a call to strtolower within ucfirst. Let’s see why, because it’s important to
understand the order in which code is evaluated.

If you make a simple call to the print function:
print(5-8);

The expression 5-8 is evaluated first, and the output is -3. (As you saw in the previous
chapter, PHP converts the result to a string in order to display it.) If the expression
contains a function, that function is evaluated first as well:

print(abs(5-8));

PHP is doing several things in executing that short statement:

1. Evaluate 5-8 to produce -3.
2. Use the abs function to turn -3 into 3.

3. Convert the result to a string and output it using the print function.

It all works, because PHP evaluates each element from the inside out. The same proce-
dure is in operation when we call the following:

ucfirst(strtolower("aNY # of Letters and Punctuation you WANT"))

PHP passes our string to strtolower and then to ucfirst, producing (as we've already
seen when we played with the functions separately):

Any # of letters and punctuation you want

Now let’s define a function (shown in Example 5-2) that takes three names and makes
each one lowercase with an initial capital letter.

Example 5-2. Cleaning up a full name

<?php
echo fix_names("WILLIAM", "henry", "gatES");

function fix_names($n1, $n2, $n3)
{
$nl = ucfirst(strtolower($nl));
$n2 = ucfirst(strtolower($n2));
$n3 = ucfirst(strtolower($n3));

return $n1 . " " . %n2 . " " . $n3;
}

7>

PHP Functions | 107



You may well find yourself writing this type of code, because users often leave their Caps
Lock key on, accidentally insert capital letters in the wrong places, and even forget
capitals altogether. The output from this example is:

William Henry Gates

Returning an Array

We just saw a function returning a single value. There are also ways of getting multiple
values from a function.

The first method is to return them within an array. As you saw in Chapter 3, an array
is like a bunch of variables stuck together in a row. Example 5-3 shows how you can use
an array to return function values.

Example 5-3. Returning multiple values in an array

<?php
Snames = fix_names("WILLIAM", "henry", "gatES");
echo $names[0] . " " . $names[1] . " " . $Snames[2];

function fix_names($n1, $n2, $n3)

{
$n1 = ucfirst(strtolower(Sn1));
$n2 = ucfirst(strtolower($n2));
$n3 = ucfirst(strtolower(Sn3));

return array($ni, $n2, $n3);
}

7>

This method has the benefit of keeping all three names separate, rather than concate-
nating them into a single string, so you can refer to any user simply by first or last name,
without having to extract either name from the returned string.

Passing by Reference

In PHP, prefacing a variable with the & symbol tells the parser to pass a reference to the
variable’s value, not the value itself. This concept can be hard to get your head around,
so let’s go back to the matchbox metaphor from Chapter 3.

Imagine that, instead of taking a piece of paper out of a matchbox, reading it, copying
it to another piece of paper, putting the original back, and passing the copy to a function
(phew!), you simply attach a piece of thread to the original piece of paper and pass one
end of it to the function (see Figure 5-2).

108 | Chapter5: PHP Functions and Objects



function( ')

{
//Code..

Figure 5-2. Imagining a reference as a thread attached to a variable

Now the function can follow the thread to find the data to be accessed. This avoids all
the overhead of creating a copy of the variable just for the function’s use. What’s more,
the function can now modify the variable’s value.

This means you can rewrite Example 5-3 to pass references to all the parameters, and
then the function can modify these directly (see Example 5-4).

Example 5-4. Returning values from a function by reference

<?php
$al = "WILLIAM";
$a2 = "henry";
$a3 = "gatES";
echo $a1 . " " . $%a2 . " " . %a3 . "<br>";
fix_names($al, $a2, $a3);
echo $a1 . " " . %32 . " " . $a3;

function fix_names(&$n1, &$n2, &Sn3)
{

$n1 = ucfirst(strtolower(Sn1));
$n2 = ucfirst(strtolower($n2));
$n3 = ucfirst(strtolower(Sn3));
}

7>

Rather than passing strings directly to the function, you first assign them to variables
and print them out to see their “before” values. Then you call the function as before,
but put an & symbol in front of each parameter, which tells PHP to pass the variables’
references only.

PHP Functions | 109



Now the variables $n1, $n2, and $n3 are attached to “threads” that lead to the values of
$al, $a2, and $a3. In other words, there is one group of values, but two sets of variable
names are allowed to access them.

Therefore, the function fix_names only has to assign new values to $n1, $n2, and $n3
to update the values of $a1, $a2, and $a3. The output from this code is:

WILLIAM henry gatES
William Henry Gates

As you see, both of the echo statements use only the values of $a1, $a2, and $a3.
Be careful when passing values by reference. If you need to keep the

original values, make copies of your variables and then pass the
copies by reference.

Returning Global Variables

You can also give a function access to an externally created variable by declaring it a
global variable from within the function. The global keyword followed by the variable
name gives every part of your code full access to it (see Example 5-5).

Example 5-5. Returning values in global variables

<?php
$al = "WILLIAM";
$a2 = "henry";
$a3 = "gatES";
echo $a1 . " " . %32 . " " . %a3 . "<br>";
fix_names();
echo $a1 . " " . %32 . " " . $a3;

function fix_names()
{
global $a1; $al
global $a2; $a2
global $a3; $a3
}

7>

ucfirst(strtolower($al));
ucfirst(strtolower($a2));
ucfirst(strtolower($a3));

Now you don’t have to pass parameters to the function, and it doesn’t have to accept
them. Once declared, these variables remain global and available to the rest of your
program, including its functions.

110 | Chapter5: PHP Functions and Objects



In order to retain as much local scope as possible, you should try
returning arrays or using variables by association. Otherwise, you will
begin to lose some of the benefits of functions.

Recap of Variable Scope
A quick reminder of what you know from Chapter 3:

o Local variables are accessible just from the part of code where you define them. If
they’re outside of a function, they can be accessed by all code outside of functions,
classes, and so on. If a variable is inside a function, only that function can access
the variable, and its value is lost when the function returns.

o Global variables are accessible from all parts of your code.

o Static variables are accessible only within the function that declared them but retain
their value over multiple calls.

Including and Requiring Files

As you progress in your use of PHP programming, you are likely to start building a
library of functions that you think you will need again. You'll also probably start using
libraries created by other programmers.

There’s no need to copy and paste these functions into your code. You can save them in
separate files and use commands to pull them in. There are two types of commands to
perform this action: include and require.

The include Statement

Using include, you can tell PHP to fetch a particular file and load all its contents. It’s
as if you pasted the included file into the current file at the insertion point. Example 5-6
shows how you would include a file called library.php.

Example 5-6. Including a PHP file

<?php
include "library.php";

// Your code goes here
7>

Including and Requiring Files | 111



Using include_once

Each time you issue the include directive, it includes the requested file again, even if
you've already inserted it. For instance, suppose that library.php contains a lot of useful
functions, so you include it in your file, but also include another library that includes
library.php. Through nesting, you've inadvertently included library.php twice. This will
produce error messages, because you're trying to define the same constant or function
multiple times. So you should use include_once instead (see Example 5-7).

Example 5-7. Including a PHP file only once

<?php
include_once "library.php";

// Your code goes here
7>

Then, whenever another include or include_once is encountered, if it has already been
executed, it will be completely ignored. To determine whether the file has already been
executed, the absolute file path is matched after all relative paths are resolved and the
file is found in your include path.

In general, it’s probably best to stick with include_once and ignore
the basic include statement. That way, you will never have the prob-
lem of files being included multiple times.

Using require and require_once

A potential problem with include and include_once is that PHP will only attempt to
include the requested file. Program execution continues even if the file is not found.

When it is absolutely essential to include a file, require it. For the same reasons I gave
for using include_once, I recommend that you generally stick with require_once
whenever you need to require a file (see Example 5-8).

Example 5-8. Requiring a PHP file only once
<?php
require_once "library.php";

// Your code goes here
?>

112 | Chapter5: PHP Functions and Objects



PHP Version Compatibility

PHP is in an ongoing process of development, and there are multiple versions. If you
need to check whether a particular function is available to your code, you can use the
function_extists function, which checks all predefined and user-created functions.

Example 5-9 checks for the function array_combine, which is specific to PHP
version 5.

Example 5-9. Checking for a function’s existence

<?php
if (function_exists("array_combine"))

{

echo "Function exists";

}

else

{

echo "Function does not exist - better write our own";

}

7>

Using code such as this, you can take advantage of features in newer versions of PHP
and yet still have your code run on earlier versions, as long as you replicate any features
that are missing. Your functions may be slower than the built-in ones, but at least your
code will be much more portable.

You can also use the phpversion function to determine which version of PHP your code
isrunning on. The returned result will be similar to the following, depending on version:

5.4.21

PHP Objects

In much the same way that functions represent a huge increase in programming power
over the early days of computing, where sometimes the best program navigation avail-
able was a very basic GOTO or GOSUB statement, object-oriented programming (OOP)
takes the use of functions to a whole new level.

Once you get the hang of condensing reusable bits of code into functions, it’s not that
great a leap to consider bundling the functions and their data into objects.

Let’s take a social networking site that has many parts. One part handles all user func-
tions; that is, code to enable new users to sign up and existing users to modify their
details. In standard PHP, you might create a few functions to handle this and embed
some calls to the MySQL database to keep track of all the users.

Imagine how much easier it would be to create an object to represent the current user.
To do this, you could create a class, perhaps called User, that would contain all the code

PHP Version Compatibility | 113



required for handling users and all the variables needed for manipulating the data within
the class. Then, whenever you need to manipulate a user’s data, you could simply create
a new object with the User class.

You could treat this new object as if it were the actual user. For example, you could pass
the object a name, password, and email address; ask it whether such a user already exists;
and, if not, have it create a new user with those attributes. You could even have an instant
messaging object, or one for managing whether two users are friends.

Terminology

When creating a program to use objects, you need to design a composite of data and
code called a class. Each new object based on this class is called an instance (or occur-
rence) of that class.

The data associated with an object is called its properties; the functions it uses are called
methods. In defining a class, you supply the names of its properties and the code for its
methods. See Figure 5-3 for a jukebox metaphor for an object. Think of the CDs that it
holds in the carousel as its properties; the method of playing them is to press buttons
on the front panel. There is also the slot for inserting coins (the method used to activate
the object), and the laser disc reader (the method used to retrieve the music, or prop-
erties, from the CDs).

When you're creating objects, it is best to use encapsulation, or writing a class in such
a way that only its methods can be used to manipulate its properties. In other words,
you deny outside code direct access to its data. The methods you supply are known as
the object’s interface.

This approach makes debugging easy: you have to fix faulty code only within a class.
Additionally, when you want to upgrade a program, if you have used proper encapsu-
lation and maintained the same interface, you can simply develop new replacement
classes, debug them fully, and then swap them in for the old ones. If they don't work,
you can swap the old ones back in to immediately fix the problem before further de-
bugging the new classes.

Once you have created a class, you may find that you need another class that is similar
to it but not quite the same. The quick and easy thing to do is to define a new class using
inheritance. When you do this, your new class has all the properties of the one it has
inherited from. The original class is now called the superclass, and the new one is the
subclass (or derived class).

114 | Chapter5: PHP Functions and Objects



- e

LU AT e e " w Suin

Figure 5-3. A jukebox: a great example of a self-contained object

In our jukebox example, if you invent a new jukebox that can play a video along with
the music, you can inherit all the properties and methods from the original jukebox
superclass and add some new properties (videos) and new methods (a movie player).

An excellent benefit of this system is that if you improve the speed or any other aspect
of the superclass, its subclasses will receive the same benefit.

Declaring a Class

Before you can use an object, you must define a class with the class keyword. Class
definitions contain the class name (which is case-sensitive), its properties, and its meth-
ods. Example 5-10 defines the class User with two properties: $name and $password
(indicated by the public keyword—see “Property and Method Scope in PHP 5” on page
123). It also creates a new instance (called $Sobject) of this class.

Example 5-10. Declaring a class and examining an object

<?php
Sobject = new User;
print_r(Sobject);

PHP Objects | 115



class User

{

public $name, $password;

function save_user()

{

echo "Save User code goes here";
}
}

7>

Here I have also used an invaluable function called print_r. It asks PHP to display
information about a variable in human-readable form. The _r stands for “in human-
readable format” In the case of the new object Sobject, it prints the following:

User Object
(

[name] =>
[password] =>

)

However, a browser compresses all the whitespace, so the output in a browser is slightly
harder to read:

User Object ( [name] => [password] => )

In any case, the output says that $object is a user-defined object that has the properties
name and password.

Creating an Object

To create an object with a specified class, use the new keyword, like this: object = new
Class. Here are a couple of ways in which we could do this:

$Sobject = new User;
Stemp = new User('name', 'password');

On the first line, we simply assign an object to the User class. In the second, we pass
parameters to the call.

A class may require or prohibit arguments; it may also allow arguments, but not require
them.

Accessing Objects

Let’s add a few lines more to Example 5-10 and check the results. Example 5-11 extends
the previous code by setting object properties and calling a method.

116 | Chapter5: PHP Functions and Objects



Example 5-11. Creating and interacting with an object

<?php
Sobject = new User;
print_r(Sobject); echo "<br>";

$object->name = "Joe";
Sobject->password = "mypass";
print_r(Sobject); echo "<br>";

$object->save_user();

class User

{

public $name, Spassword;

function save_user()

{

echo "Save User code goes here";

}
}

?>

As you can see, the syntax for accessing an object’s property is Sobject->property.
Likewise, you call a method like this: Sobject->method().

You should note that the example property and method do not have $ signs in front of
them. If you were to preface them with $ signs, the code would not work, as it would
try to reference the value inside a variable. For example, the expression $object->
$property would attempt to look up the value assigned to a variable named $property
(let’s say that value is the string brown) and then attempt to reference the property
$object->brown. If $property is undefined, an attempt to reference $object->NULL
would occur and cause an error.

When looked at using a browser’s View Source facility, the output from Example 5-11
is:

User Object
(

[name] =>
[password] =>

)
User Object

(
[name] => Joe
[password] => mypass

)

Save User code goes here

Again, print_r shows its utility by providing the contents of $object before and after
property assignment. From now on, I'll omit print_r statements, but if you are working

PHP Objects | 117



along with this book on your development server, you can put some in to see exactly
what is happening.

You can also see that the code in the method save_user was executed via the call to that
method. It printed the string reminding us to create some code.

You can place functions and class definitions anywhere in your code,
before or after statements that use them. Generally, though, it is con-
sidered good practice to place them toward the end of a file.

Cloning Objects

Onceyouhave created an object, it is passed by reference when you pass it as a parameter.
In the matchbox metaphor, this is like keeping several threads attached to an object
stored in a matchbox, so that you can follow any attached thread to access it.

In other words, making object assignments does not copy objects in their entirety. You'll
see how this works in Example 5-12, where we define a very simple User class with no
methods and only the property name.

Example 5-12. Copying an object?

<?php
Sobject1 = new User();
Sobjectl->name = "Alice";
Sobject?2 = Sobjecti;
Sobject2->name = "Amy";

. Sobjectl->name . "<br>";
. $Sobject2->name;

echo "objectl name
echo "object2 name

class User

{

public $name;

}

?>

We've created the object $object1 and assigned the value Alice to the name property.
Then we create $Sobject2, assigning it the value of $object1, and assign the value Amy
just to the name property of Sobject2—or so we might think. But this code outputs the
following:

objectl name
object2 name

Amy
Amy

What has happened? Both $object1and $object2 refer to the same object, so changing
the name property of Sobject2 to Amy also sets that property for Sobject1.

118 | Chapter5: PHP Functions and Objects



To avoid this confusion, you can use the clone operator, which creates a new instance
ofthe class and copies the property values from the original instance to the new instance.
Example 5-13 illustrates this usage.

Example 5-13. Cloning an object

<?php
Sobjectl = new User();
Sobjectl->name = "Alice";
Sobject2 = clone $objectil;

Sobject2->name = "Amy";

echo "objectl name = " . $Sobjectl->name . "<br>";
echo "object2 name = " . Sobject2->name;

class User

{

public S$name;

}

7>

Voila! The output from this code is what we initially wanted:

lice
my

objectl name

= A
object2 name = A

Constructors

When creating a new object, you can pass a list of arguments to the class being called.
These are passed to a special method within the class, called the constructor, which
initializes various properties.

In the past, you would normally give this method the same name as the class, as in
Example 5-14.

Example 5-14. Creating a constructor method

<?php
class User

{

function User(Sparaml, Sparam2)
{
// Constructor statements go here
public $Susername = "Guest";
}
}

7>

However, PHP 5 provides a more logical approach to naming the constructor, which is
to use the function name __construct (i.e., construct preceded by two underscore
characters), as in Example 5-15.

PHP Objects | 119



Example 5-15. Creating a constructor method in PHP 5

<?php
class User
{
function __construct($parami, $param2)
{
// Constructor statements go here
public Susername = "Guest";
}
}
7>
PHP 5 Destructors

Also new in PHP 5 is the ability to create destructor methods. This ability is useful when
code has made the last reference to an object or when a script reaches the end.
Example 5-16 shows how to create a destructor method.

Example 5-16. Creating a destructor method in PHP 5

<?php
class User
{
function __destruct()
{
// Destructor code goes here
}
}
?>

Writing Methods

As you have seen, declaring a method is similar to declaring a function, but there are a
few differences. For example, method names beginning with a double underscore (__)
are reserved and you should not create any of this form.

You also have access to a special variable called $this, which can be used to access the
current object’s properties. To see how it works, take a look at Example 5-17, which
contains a different method from the User class definition called get_password.

Example 5-17. Using the variable $this in a method

<?php
class User

{

public $name, $password;

function get_password()

{

return $this->password;

120 | Chapter5: PHP Functions and Objects



}
3

7>

get_password uses the $this variable to access the current object and then return the
value of that objects password property. Note how the preceding $ of the property
$password is omitted when we use the -> operator. Leaving the $ in place is a typical
error you may run into, particularly when you first use this feature.

Here’s how you would use the class defined in Example 5-17:

Sobject new User;
Sobject->password = "secret";

echo Sobject->get_password();

This code prints the password secret.

Static Methods in PHP 5

If you are using PHP 5, you can also define a method as static, which means that it is
called on a class, not on an object. A static method has no access to any object properties
and is created and accessed as in Example 5-18.

Example 5-18. Creating and accessing a static method

<?php
User::pwd_string();

class User

{

static function pwd_string()

{

echo "Please enter your password";
}
}

?>

Note how we call the class itself, along with the static method, using a double colon (also
known as the scope resolution operator), not ->. Static functions are useful for perform-
ing actions relating to the class itself, but not to specific instances of the class. You can
see another example of a static method in Example 5-21.

If you try to access $this->property, or other object properties from
within a static function, you will receive an error message.

PHP Objects | 121



Declaring Properties

It is not necessary to explicitly declare properties within classes, as they can be implicitly
defined when first used. To illustrate this, in Example 5-19 the class User has no prop-
erties and no methods but is legal code.

Example 5-19. Defining a property implicitly

<?php
Sobjectl = new User();
Sobjectl->name = "Alice";

echo $Sobject1->name;

class User {}
7>

This code correctly outputs the string Alice without a problem, because PHP implicitly
declares the variable $object1->name for you. But this kind of programming can lead
to bugs that are infuriatingly difficult to discover, because name was declared from out-
side the class.

To help yourself and anyone else who will maintain your code, I advise that you get into
the habit of always declaring your properties explicitly within classes. You'll be glad you
did.

Also, when you declare a property within a class, you may assign a default value to it.
The value you use must be a constant and not the result of a function or expression.
Example 5-20 shows a few valid and invalid assignments.

Example 5-20. Valid and invalid property declarations

<?php
class Test
{
public S$name
public Sage
public Stime
public $score

3

7>

"Paul Smith"; // Valid

42; // Valid

time(); // Invalid - calls a function
Slevel * 2; // Invalid - uses an expression

Declaring Constants

In the same way that you can create a global constant with the define function, you can
define constants inside classes. The generally accepted practice is to use uppercase letters
to make them stand out, as in Example 5-21.

122 | Chapter5: PHP Functions and Objects



Example 5-21. Defining constants within a class

<?php
Translate::lookup();

class Translate
{
const ENGLISH
const SPANISH
const FRENCH
const GERMAN

/...

w N =, o
e we

.o

static function lookup()

{
echo self::SPANISH;

}
3

7>

You can reference constants directly, using the self keyword and double colon operator.
Note that this code calls the class directly, using the double colon operator at line 1,
without creating an instance of it first. As you would expect, the value printed when
you run this code is 1.

Remember that once you define a constant, you can't change it.

Property and Method Scope in PHP 5

PHP 5 provides three keywords for controlling the scope of properties and methods:

public
These properties are the default when you are declaring a variable using the var or
public keywords, or when a variable is implicitly declared the first time it is used.
The keywords var and public are interchangeable because, although deprecated,
var is retained for compatibility with previous versions of PHP. Methods are as-
sumed to be public by default.

protected
These properties and methods (members) can be referenced only by the object’s
class methods and those of any subclasses.

private
These members can be referenced only by methods within the same class—not by
subclasses.

PHP Objects | 123



Here’s how to decide which you need to use:

 Use public when outside code should access this member and extending classes
should also inherit it.

o Use protected when outside code should not access this member but extending
classes should inherit it.

« Use private when outside code should not access this member and extending
classes also should not inherit it.

Example 5-22 illustrates the use of these keywords.

Example 5-22. Changing property and method scope

<?php
class Example
{
var $name = "Michael"; // Same as public but deprecated
public Sage = 23; // Public property

protected Susercount; // Protected property

private function admin() // Private method

{

// Admin code goes here
}
}

?>

Static Properties and Methods

Most data and methods apply to instances of a class. For example, in a User class, you
want to do such things as set a particular user’s password or check when the user has
been registered. These facts and operations apply separately to each user and therefore
use instance-specific properties and methods.

But occasionally you'll want to maintain data about a whole class. For instance, to report
how many users are registered, you will store a variable that applies to the whole User
class. PHP provides static properties and methods for such data.

As shown briefly in Example 5-18, declaring members of a class static makes them
accessible without an instantiation of the class. A property declared static cannot be
directly accessed within an instance of a class, but a static method can.

Example 5-23 defines a class called Test with a static property and a public method.

124 | Chapter5: PHP Functions and Objects



Example 5-23. Defining a class with a static property

<?php
Stemp = new Test();

echo "Test A: " . Test::$static_property . "<br>";
echo "Test B: " . $temp->get_sp() . "<br>";
echo "Test C: " . $temp->static_property . "<br>";
class Test
{

static S$static_property = "I'm static";

function get_sp()
{

return self::Sstatic_property;
}
}

7>

When you run this code, it returns the following output:

Test A: I'm static
Test B: I'm static

Notice: Undefined property: Test::$static_property
Test C:

This example shows that the property $static_property could be directly referenced
from the class itself via the double colon operator in Test A. Also, Test B could obtain
its value by calling the get_sp method of the object $temp, created from class Test. But
Test C failed, because the static property $static_property was not accessible to the
object $temp.

Note how the method get_sp accesses $static_property using the keyword self. This
is the way in which a static property or constant can be directly accessed within a class.

Inheritance

Once you have written a class, you can derive subclasses from it. This can save lots of
painstaking code rewriting: you can take a class similar to the one you need to write,
extend it to a subclass, and just modify the parts that are different. You achieve this using
the extends operator.

In Example 5-24, the class Subscriber is declared a subclass of User by means of the
extends operator.

PHP Objects | 125



Example 5-24. Inheriting and extending a class

<?php
Sobject

Sobject->name
Sobject->password
Sobject->phone
Sobject->email

Sobject->display();

class User

{

new Subscriber;
"Fred";

"pword";

"012 345 6789";
"fred@bloggs.com";

public $name, $password;

function save_user()

{

echo "Save User code goes here";

}
}

class Subscriber extends User

{

public S$phone, S$email;

function display()

{
echo
echo
echo
echo
}
}

?>

"Name:
"Pass:
"Phone:
"Email:

. $this->name
. $this->password .
. $this->phone

. Sthis->email;

. "<br>";

"<br>";

. "<br>";

The original User class has two properties, $name and $password, and a method to save
the current user to the database. Subscriber extends this class by adding an additional
two properties, $phone and $ematil, and includes a method of displaying the properties
of the current object using the variable $this, which refers to the current values of the
object being accessed. The output from this code is:

Name:
Pass:
Phone:
Email:

Fred
pword

012 345 6789
fred@bloggs.com

The parent operator

If you write a method in a subclass with the same name as one in its parent class, its
statements will override those of the parent class. Sometimes this is not the behavior
you want and you need to access the parent’s method. To do this, you can use the parent
operator, as in Example 5-25.

126 | Chapter5: PHP Functions and Objects



Example 5-25. Overriding a method and using the parent operator
<?php

$object = new Son;

Sobject->test();

Sobject->test2();

class Dad

{

function test()

{

echo "[Class Dad] I am your Father<br>";
}
}

class Son extends Dad

{

function test()

{

echo "[Class Son] I am Luke<br>";

}

function test2()

{
parent::test();

}
3

?>

This code creates a class called Dad and then a subclass called Son that inherits its prop-
erties and methods, and then overrides the method test. Therefore, when line 2 calls
the method test, the new method is executed. The only way to execute the overridden
test method in the Dad class is to use the parent operator, as shown in function test2
of class Son. The code outputs the following:

[Class Son] I am Luke
[Class Dad] I am your Father

If you wish to ensure that your code calls a method from the current class, you can use
the self keyword, like this:

self::method();

Subclass constructors

When you extend a class and declare your own constructor, you should be aware that
PHP will not automatically call the constructor method of the parent class. If you want
to be certain that all initialization code is executed, subclasses should always call the
parent constructors, as in Example 5-26.

PHP Objects | 127



Example 5-26. Calling the parent class constructor

<?php
Sobject = new Tiger();

echo "Tigers have...<br>";
echo "Fur: " . S$object->fur . "<br>";
echo "Stripes: " . Sobject->stripes;

class Wildcat

{
public $fur; // Wildcats have fur

function __construct()

{
$this->fur = "TRUE";

}
3

class Tiger extends Wildcat

{

public S$stripes; // Tigers have stripes

function __construct()
{
parent::__construct(); // Call parent constructor first
Sthis->stripes = "TRUE";
}
}

7>

This example takes advantage of inheritance in the typical manner. The Wildcat class
has created the property $fur, which we’d like to reuse, so we create the Tiger class to
inherit $fur and additionally create another property, $stripes. To verify that both
constructors have been called, the program outputs the following:

Tigers have...

Fur: TRUE
Stripes: TRUE

Final methods

When you wish to prevent a subclass from overriding a superclass method, you can use
the final keyword. Example 5-27 shows how.

128 | Chapter5: PHP Functions and Objects



Example 5-27. Creating a final method

<?php
class User

{
final function copyright()

{

echo "This class was written by Joe Smith";
}
}

7>

Once you have digested the contents of this chapter, you should have a strong feel for
what PHP can do for you. You should be able to use functions with ease and, if you wish,
write object-oriented code. In Chapter 6, we'll finish off our initial exploration of PHP
by looking at the workings of PHP arrays.

Questions

What is the main benefit of using a function?

How many values can a function return?

What is the difference between accessing a variable by name and by reference?
What is the meaning of scope in PHP?

How can you incorporate one PHP file within another?

How is an object different from a function?

How do you create a new object in PHP?

What syntax would you use to create a subclass from an existing one?

¥ ® N o » N

How can you call an initializing piece of code when an object is created?

,_.
e

Why is it a good idea to explicitly declare properties within a class?

See “Chapter 5 Answers” on page 642 in Appendix A for the answers to these questions.

Questions | 129






CHAPTER 6
PHP Arrays

In Chapter 3, I gave a very brief introduction to PHP’s arrays—just enough for a little
taste of their power. In this chapter, I'll show you many more things that you can do
with arrays, some of which—if you have ever used a strongly typed language such as
C—may surprise you with their elegance and simplicity.

Arrays are an example of what has made PHP so popular. Not only do they remove the
tedium of writing code to deal with complicated data structures, they also provide nu-
merous ways to access data while remaining amazingly fast.

Basic Access

We've already looked at arrays as if they were clusters of matchboxes glued together.
Another way to think of an array is like a string of beads, with the beads representing
variables that can be numeric, string, or even other arrays. They are like bead strings,
because each element has its own location and (with the exception of the first and last
ones) each has other elements on either side.

Some arrays are referenced by numeric indices; others allow alphanumeric identifiers.
Built-in functions let you sort them, add or remove sections, and walk through them to
handle each item through a special kind of loop. And by placing one or more arrays
inside another, you can create arrays of two, three, or any number of dimensions.

Numerically Indexed Arrays

Lets assume that you've been tasked with creating a simple website for a local office
supply company and you’re currently working on the section devoted to paper. One way
to manage the various items of stock in this category would be to place them in a numeric
array. You can see the simplest way of doing so in Example 6-1.

131



Example 6-1. Adding items to an array

<?php
Spaper[] = "Copier";
$paper[] = "Inkjet";
Spaper[] = "Laser";
$paper[] = "Photo";

print_r(Spaper);

7>

In this example, each time you assign a value to the array $paper, the first empty location
within that array is used to store the value, and a pointer internal to PHP is incremented
to point to the next free location, ready for future insertions. The familiar print_r
function (which prints out the contents of a variable, array, or object) is used to verify
that the array has been correctly populated. It prints out the following:

Array

(
[0] => Copier
[1] => Inkjet
[2] => Laser
[3] => Photo
)

The previous code could also have been written as shown in Example 6-2, where the
exactlocation of each item within the array is specified. But, as you can see, that approach
requires extra typing and makes your code harder to maintain if you want to insert or
remove supplies from the array. So unless you wish to specify a different order, it’s usually
better to simply let PHP handle the actual location numbers.

Example 6-2. Adding items to an array using explicit locations

<?php
$paper[0] = "Copier";
Spaper[1] = "Inkjet";
$paper[2] = "Laser";
Spaper[3] = "Photo";

print_r(Spaper);

?>

The output from these examples is identical, but you are not likely to use print_rina
developed website, so Example 6-3 shows how you might print out the various types of
paper the website offers using a for loop.

132 | Chapter6: PHP Arrays



Example 6-3. Adding items to an array and retrieving them

<?php
Spaper[] = "Copier";
Spaper[] = "Inkjet";
Spaper[] = "Laser";
$paper[] = "Photo";

for (8] =0 ; $j <4 ; ++%3)
echo "$j: Spaper[$j]<br>";

7>

This example prints out the following:

Copier
Inkjet
Laser
Photo

W N R=Oo
oo ss es es

So far, you've seen a couple of ways in which you can add items to an array and one way
of referencing them, but PHP offers many more—which I'll get to shortly. But first, we’ll
look at another type of array.

Associative Arrays

Keeping track of array elements by index works just fine, but can require extra work in
terms of remembering which number refers to which product. It can also make code
hard for other programmers to follow.

This is where associative arrays come into their own. Using them, you can reference the
items in an array by name rather than by number. Example 6-4 expands on the previous
code by giving each element in the array an identifying name and a longer, more ex-
planatory string value.

Example 6-4. Adding items to an associative array and retrieving them

<?php
Spaper['copier'] = "Copier & Multipurpose";
Spaper['inkjet'] = "Inkjet Printer";
$paper['laser'] = "Laser Printer";
Spaper['photo'] = "Photographic Paper";

echo Spaper['laser'];
7>

In place of a number (which doesn’t convey any useful information, aside from the
position of the item in the array), each item now has a unique name that you can use to
reference it elsewhere, as with the echo statement—which simply prints out Laser
Printer. The names (copier, inkjet, etc.) are called indexes or keys and the items
assigned to them (such as “Laser Printer”) are called values.

BasicAccess | 133



This very powerful feature of PHP is often used when you are extracting information
from XML and HTML. For example, an HTML parser such as those used by a search
engine could place all the elements of a web page into an associative array whose names
reflect the page’s structure:

shtml['title'] = "My web page";

Shtml['body'] = "... body of web page ...";
The program would also probably break down all the links found within a page into
another array, and all the headings and subheadings into another. When you use asso-
ciative rather than numeric arrays, the code to refer to all of these items is easy to write
and debug.

Assignment Using the array Keyword

So far, you've seen how to assign values to arrays by just adding new items one at a time.
Whether you specify keys, specify numeric identifiers, or let PHP assign numeric iden-
tifiers implicitly, this is along-winded approach. A more compact and faster assignment
method uses the array keyword. Example 6-5 shows both a numeric and an associative
array assigned using this method.

Example 6-5. Adding items to an array using the array keyword

<?php
Spl = array("Copier", "Inkjet", "Laser", "Photo");

echo "p1 element: " . $p1[2] . "<br>";

$p2 = array('copier' => "Copier & Multipurpose",
'inkjet' => "Inkjet Printer",
'laser' => "Laser Printer",
'photo' => "Photographic Paper");

echo "p2 element: " . $p2['inkjet'] . "<br>";
?>

The first half of this snippet assigns the old, shortened product descriptions to the array
$pl. There are four items, so they will occupy slots 0 through 3. Therefore, the echo
statement prints out the following:

pl element: Laser

The second half assigns associative identifiers and accompanying longer product de-
scriptions to the array $p2 using the format index => value. The use of => is similar to
the regular = assignment operator, except that you are assigning a value to an index and
not to a variable. The index is then inextricably linked with that value, unless it is as-
signed a new value. The echo command therefore prints out:

p2 element: Inkjet Printer

134 | Chapter6: PHP Arrays



You can verify that $p1 and $p2 are different types of array, because both of the following
commands, when appended to the code, will cause an Undefined index or Undefined
of fset error, as the array identifier for each is incorrect:

echo $p1['inkjet']; // Undefined index
echo $p2[3]; // Undefined offset

The foreach ... as Loop

The creators of PHP have gone to great lengths to make the language easy to use. So,
not content with theloop structures already provided, they added another one especially
for arrays: the foreach ... asloop. Using it, you can step through all the items in an
array, one at a time, and do something with them.

The process starts with the first item and ends with the last one, so you don’t even have
to know how many items there are in an array.

Example 6-6 shows how foreach ... as can be used to rewrite Example 6-3.

Example 6-6. Walking through a numeric array using foreach ... as

<?php
Spaper = array("Copier", "Inkjet", "Laser", "Photo");
$j = 0;
foreach($paper as $item)
{
echo "$j: Sitem<br>";
++53;
}
7>

When PHP encounters a foreach statement, it takes the first item of the array and places
it in the variable following the as keyword; and each time control flow returns to the
foreach, the next array element is placed in the as keyword. In this case, the variable
$item is set to each of the four values in turn in the array $paper. Once all values have
been used, execution of the loop ends. The output from this code is exactly the same as
Example 6-3.

Now let’s see how foreach works with an associative array by taking a look at
Example 6-7, which is a rewrite of the second half of Example 6-5.

Example 6-7. Walking through an associative array using foreach ... as

<?php
Spaper = array('copier' => "Copier & Multipurpose",
'inkjet' => "Inkjet Printer",
'laser' => "Laser Printer",
'photo' => "Photographic Paper");

The foreach ...asLoop | 135



foreach(Spaper as $item => $description)
echo "$item: S$description<br>";
7>

Remember that associative arrays do not require numeric indexes, so the variable $j is
not used in this example. Instead, each item of the array $paper is fed into the key/value
pair of variables $item and $description, from which they are printed out. The dis-
played result of this code is as follows:

copier: Copier & Multipurpose

inkjet: Inkjet Printer

laser: Laser Printer
photo: Photographic Paper

As an alternative syntax to foreach ... as,you can use the list function in conjunc-
tion with the each function, as in Example 6-8.

Example 6-8. Walking through an associative array using each and list

<?php
Spaper = array('copier' => "Copier & Multipurpose",
'inkjet' => "Inkjet Printer",
'laser' => "Laser Printer",
'photo' => "Photographic Paper");

while (list($item, S$Sdescription) = each(Spaper))
echo "$item: S$Sdescription<br>";
7>

In this example, a while loop is set up and will continue looping until the each function
returns a value of FALSE. The each function acts like foreach: it returns an array con-
taining a key/value pair from the array $paper and then moves its built-in pointer to
the next pair in that array. When there are no more pairs to return, each returns FALSE.

The list function takes an array as its argument (in this case, the key/value pair returned
by the function each) and then assigns the values of the array to the variables listed
within parentheses.

You can see how list works a little more clearly in Example 6-9, where an array is
created out of the two strings Alice and Bob and then passed to the list function, which
assigns those strings as values to the variables $a and $b.

Example 6-9. Using the list function

<?php
1ist($Sa, $b) = array('Alice', 'Bob');
echo "a=$a b=$b";

7>

The output from this code is:

a=Alice b=Bob

136 | Chapter6: PHP Arrays



So you can take your pick when walking through arrays. Use foreach ... asto create
a loop that extracts values to the variable following the as, or use the each function and
create your own looping system.

Multidimensional Arrays

A simple design feature in PHP’s array syntax makes it possible to create arrays of more
than one dimension. In fact, they can be as many dimensions as you like (although it’s
a rare application that goes further than three).

That feature makes it possible to include an entire array as a part of another one, and
to be able to keep doing so, just like the old rhyme: “Big fleas have little fleas upon their
backs to bite em. Little fleas have lesser fleas, add flea, ad infinitum.”

Let’s look at how this works by taking the associative array in the previous example and
extending it; see Example 6-10.
Example 6-10. Creating a multidimensional associative array
<?php
$products = array(

'paper' => array(

'copier' => "Copier & Multipurpose",
'inkjet' => "Inkjet Printer",
'laser' => "Laser Printer",

'photo' => "Photographic Paper"),

'pens' => array(
'ball’ => "Ball Point",
'hilite' => "Highlighters",

'marker' => "Markers"),

'misc' => array(

'tape' => "Sticky Tape",
'glue’ => "Adhesives",
'clips' => "Paperclips"

)
);

echo "<pre>";
foreach(Sproducts as S$section => $items)

foreach($items as S$key => $value)
echo "$section:\tSkey\t($value)<br>";

Multidimensional Arrays | 137



echo "</pre>";
7>

To make things clearer now that the code is starting to grow, I've renamed some of the
elements. For example, because the previous array $Spaper is now just a subsection of a
larger array, the main array is now called $products. Within this array, there are three
items—paper, pens, and misc—each of which contains another array with key/value
pairs.

If necessary, these subarrays could have contained even further arrays. For example,
under ball there might be many different types and colors of ballpoint pens available
in the online store. But for now, I've restricted the code to a depth of just two.

Once the array data has been assigned, I use a pair of nested foreach ... asloopsto
print out the various values. The outer loop extracts the main sections from the top level
of the array, and the inner loop extracts the key/value pairs for the categories within
each section.

As long as you remember that each level of the array works the same way (it’s a key/
value pair), you can easily write code to access any element at any level.

The echo statement makes use of the PHP escape character \t, which outputs a tab.
Although tabs are not normally significant to the web browser, I let them be used for
layout by using the <pre> ... </pre> tags, which tell the web browser to format the
text as preformatted and monospaced, and not to ignore whitespace characters such as
tabs and line feeds. The output from this code looks like the following:

paper: copier (Copier & Multipurpose)

paper: 1inkjet (Inkjet Printer)

paper: laser (Laser Printer)

paper: photo (Photographic Paper)

pens: ball (Ball Point)

pens: hilite (Highlighters)

pens: marker (Markers)

misc:  tape (Sticky Tape)

misc: glue (Adhesives)

misc: clips (Paperclips)

You can directly access a particular element of the array using square brackets, like this:
echo $products['misc']['glue'];
which outputs the value Adhesives.

You can also create numeric multidimensional arrays that are accessed directly by in-
dexes rather than by alphanumeric identifiers. Example 6-11 creates the board for a
chess game with the pieces in their starting positions.

138 | Chapter6: PHP Arrays



Example 6-11. Creating a multidimensional numeric array

<?php
Schessboard = array(

array('r', 'n', 'b', 'q', 'k', 'b', 'n', 'r'),
array('p', 'p', 'p', 'P', P, P, P, TP,
array(" ', o, ottty
array(",",",",",",",' '),
array(" ', o,y
array(",",",",",",",' '),

array(YPl’ IP|’ IPI’ IPI’ lPI, IPI, IPI, IPI)’
array(lRl’ IN‘, IBI’ IQI, 'KI, IBI, 'NI, lRl)
)s

echo "<pre>";

foreach(Schessboard as $row)

{

foreach ($row as $piece)

echo "$piece ";

echo "<br>";

}

echo "</pre>";
7>

In this example, the lowercase letters represent black pieces and the uppercase white.
The key is r = rook, n = knight, b = bishop, k = king, q = queen, and p = pawn. Again,
apair of nested foreach ... asloopswalks through the array and displays its contents.
The outer loop processes each row into the variable $row, which itselfis an array, because
the $chessboard array uses a subarray for each row. This loop has two statements within
it, so curly braces enclose them.

The inner loop then processes each square in a row, outputting the character ($piece)
stored in it, followed by a space (to square up the printout). This loop has a single
statement, so curly braces are not required to enclose it. The <pre> and </pre> tags
ensure that the output displays correctly, like this:

rnbqkbnr
PPPPPPPP

PPPPPPPP
RNBQKBNR

You can also directly access any element within this array using square brackets, like
this:

echo $chessboard[7][3];

Multidimensional Arrays | 139



This statement outputs the uppercase letter Q, the eighth element down and the fourth
along (remembering that array indexes start at 0, not 1).

Using Array Functions

You've already seen the list and each functions, but PHP comes with numerous other
functions for handling arrays. The full listis at http://tinyurl.com/arraysinphp. However,
some of these functions are so fundamental that it's worth taking the time to look at
them here.

is_array

Arrays and variables share the same namespace. This means that you cannot have a
string variable called $fred and an array also called $fred. If youre in doubt and your
code needs to check whether a variable is an array, you can use the is_array function
like this:

echo (is_array($fred)) ? "Is an array" : "Is not an array";

Note that if $fred has not yet been assigned a value, an Undefined variable message
will be generated.

count

Although the each function and foreach ... as loop structure are excellent ways to
walk through an array’s contents, sometimes you need to know exactly how many ele-
ments there are in your array, particularly if you will be referencing them directly. To
count all the elements in the top level of an array, use a command such as the following:

echo count($fred);

Should you wish to know how many elements there are altogether in a multidimensional
array, you can use a statement such as:

echo count($fred, 1);

The second parameter is optional and sets the mode to use. It should be either a @ to
limit counting to only the top level, or 1 to force recursive counting of all subarray
elements too.

sort

Sorting is so common that PHP provides a built-in function. In its simplest form, you
would use it like this:

sort($fred);

140 | Chapter6: PHP Arrays



Unlike some other functions, sort will act directly on the supplied array rather than
returning a new array of sorted elements. Instead, it returns TRUE on success and FALSE
on error and also supports a few flags, but the main two that you might wish to use force
sorting to be made either numerically or as strings, like this:

sort(S$fred, SORT_NUMERIC);
sort($fred, SORT_STRING);

You can also sort an array in reverse order using the rsort function, like this:

rsort($fred, SORT_NUMERIC);
rsort($fred, SORT_STRING);

shuffle

There may be times when you need the elements of an array to be put in random order,
such as when you're creating a game of playing cards:

shuffle($cards);

Like sort, shuffle acts directly on the supplied array and returns TRUE on success or
FALSE on error.

explode

This is a very useful function with which you can take a string containing several items
separated by a single character (or string of characters) and then place each of these
items into an array. One handy example is to split up a sentence into an array containing
all its words, as in Example 6-12.

Example 6-12. Exploding a string into an array using spaces

<?php
Stemp = explode(' ', "This is a sentence with seven words");
print_r(Stemp);

7>

This example prints out the following (on a single line when viewed in a browser):

Array
(
[0] => This
[1] => is
[2] => a
[3] => sentence
[4] => with
[5] => seven
[6] => words

Using Array Functions | 141



The first parameter, the delimiter, need not be a space or even a single character.
Example 6-13 shows a slight variation.

Example 6-13. Exploding a string delimited with *** into an array

<?php
Stemp = explode('***'  "A***sentence***with***asterisks");
print_r(Stemp);

7>

The code in Example 6-13 prints out the following:

Array

(
[0] => A
[1] => sentence
[2] => with
[3] => asterisks

)

extract

Sometimes it can be convenient to turn the key/value pairs from an array into PHP
variables. One such time might be when you are processing the $_GET or $_POST vari-
ables as sent to a PHP script by a form.

When a form is submitted over the Web, the web server unpacks the variables into a
global array for the PHP script. If the variables were sent using the GET method, they
will be placed in an associative array called $_GET; if they were sent using POST, they will
be placed in an associative array called $_POST.

You could, of course, walk through such associative arrays in the manner shown in the
examples so far. However, sometimes you just want to store the values sent into variables
for later use. In this case, you can have PHP do the job automatically for you:

extract($_GET);

So, for example, if the query string parameter q is sent to a PHP script along with the
associated value Hl there, a new variable called $q will be created and assigned that
value.

Be careful with this approach, though, because if any extracted variables conflict with
ones that you have already defined, your existing values will be overwritten. To avoid
this possibility, you can use one of the many additional parameters available to this
function, like this:

extract($_GET, EXTR_PREFIX_ALL, 'fromget');

In this case, all the new variables will begin with the given prefix string followed by an
underscore, so $q will become $fromget_g. I strongly recommend that you use this
version of the function when handling the $_GET and $_POST arrays, or any other array

142 | Chapter 6: PHP Arrays



whose keys could be controlled by the user, because malicious users could submit keys
chosen deliberately to overwrite commonly used variable names and compromise your
website.

compact

There are also times when you want to use compact, the inverse of extract, to create
an array from variables and their values. Example 6-14 shows how you might use this
function.

Example 6-14. Using the compact function

<?php
Sfname = "Doctor";
Ssname = "Who";
Splanet = "Gallifrey";
Ssystem = "Gridlock";
Sconstellation = "Kasterborous";

Scontact = compact('fname', 'sname', 'planet', 'system', 'constellation');

print_r($contact);
7>

The result of running Example 6-14 is:

Array
(
[fname] => Doctor
[sname] => Who
[planet] => Gallifrey
[system] => Gridlock
[constellation] => Kasterborous

)

Note how compact requires the variable names to be supplied in quotes, not preceded
by a $ symbol. This is because compact is looking for a list of variable names.

Another use of this function is for debugging, when you wish to quickly view several
variables and their values, as in Example 6-15.

Example 6-15. Using compact to help with debugging

<?php
$3 = 23;
Stemp = "Hello";
$address = "1 0ld Street";
Sage = 61;

print_r(compact(explode("'
7>

, 'j temp address age')));

Using Array Functions | 143



This works by using the explode function to extract all the words from the string into
an array, which is then passed to the compact function, which in turn returns an array
to print_r, which finally shows its contents.

If you copy and paste the print_r line of code, you only need to alter the variables
named there for a quick printout of a group of variables’ values. In this example, the
output is:

Array
(
[i] => 23
[temp] => Hello
[address] => 1 0ld Street

[age] => 61
)
reset
When the foreach ... as construct or the each function walks through an array, it

keeps an internal PHP pointer that makes a note of which element of the array it should
return next. If your code ever needs to return to the start of an array, you can issue
reset, which also returns the value of that element. Examples of how to use this function
are:

reset($fred); // Throw away return value
Sitem = reset(Sfred); // Keep first element of the array in $item

end

As with reset, you can move PHP’ internal array pointer to the final element in an
array using the end function, which also returns the value of the element, and can be
used as in these examples:

end($fred);
Sitem = end($fred);

This chapter concludes your basic introduction to PHP, and you should now be able to
write quite complex programs using the skills you have learned. In the next chapter,
we’ll look at using PHP for common, practical tasks.

Questions

1. What is the difference between a numeric and an associative array?
2. What is the main benefit of the array keyword?

3. What is the difference between foreach and each?

4

. How can you create a multidimensional array?

144 | Chapter 6: PHP Arrays



5. How can you determine the number of elements in an array?
6. What is the purpose of the explode function?

7. How can you set PHP’s internal pointer into an array back to the first element of
the array?

See “Chapter 6 Answers” on page 643 in Appendix A for the answers to these questions.

Questions | 145






CHAPTER 7

Practical PHP

Previous chapters went over the elements of the PHP language. This chapter builds on
your new programming skills to teach you some common but important practical tasks.
You will learn the best ways to manage string handling to achieve clear and concise code
that displays in web browsers exactly how you want it to, including advanced date and
time management. You’ll also find out how to create and otherwise modify files, in-
cluding those uploaded by users.

Using printf

You've already seen the print and echo functions, which simply output text to the
browser. But a much more powerful function, printf, controls the format of the output
by letting you put special formatting characters in a string. For each formatting char-
acter, printf expects you to pass an argument that it will display using that format. For
instance, the following example uses the %d conversion specifier to display the value 3
in decimal:

printf("There are %d items in your basket", 3);

If you replace the %d with %b, the value 3 would be displayed in binary (11). Table 7-1
shows the conversion specifiers supported.

Table 7-1. The printf conversion specifiers

Spedfier Conversion action on argument arg Example (for an arg of 123)
% Display a % character (no arg is required). %

b Display arg as a binary integer. 1111011

c Display ASCII character for the arg. {

d Display arg as a signed decimal integer. 123

e Display arg using scientific notation. 1.23000e+2

147



Specifier Conversion action on argument arg Example (for an arg of 123)

f Display arg as floating point. 123.000000
o Display arg as an octal integer. 173
s Display arg as a string. 123
u Display arg as an unsigned decimal. 123
Display arg in lowercase hexadecimal. 7b
X Display arg in uppercase hexadecimal. 7B

You can have as many specifiers as you like in a printf function, as long as you pass a
matching number of arguments, and as long as each specifier is prefaced by a % symbol.
Therefore, the following code is valid, and will output "My name is Simon. I'm 33
years old, which is 21 in hexadecimal":

printf("My name is %s. I'm %d years old, which is %X in hexadecimal",
'Simon', 33, 33);
If you leave out any arguments, you will receive a parse error informing you that a right
bracket, ), was unexpectedly encountered.

A more practical example of printf sets colors in HTML using decimal. For example,
suppose you know you want a color that has a triplet value of 65 red, 127 green, and 245
blue, but don’t want to convert this to hexadecimal yourself. An easy solution is:

printf("<span style='color:#%X%X%X'>Hello</span>", 65, 127, 245);

Check the format of the color specification between the apostrophes (' ') carefully. First
comes the pound, or hash, sign (#) expected by the color specification. Then come three
%X format specifiers, one for each of your numbers. The resulting output from this
command is:

<span style='color:#417FF5'>Hello</span>

Usually, you'll find it convenient to use variables or expressions as arguments to
printf. For instance, if you stored values for your colors in the three variables $r, $g,
and $b, you could create a darker color with:

printf("<span style='color:#%X%X%X'>Hello</span>", $r-20, $g-20, $b-20);

Precision Setting

Not only can you specify a conversion type, you can also set the precision of the displayed
result. For example, amounts of currency are usually displayed with only two digits of
precision. However, after a calculation, a value may have a greater precision than this,
such as 123.42 / 12, which results in 10.285. To ensure that such values are correctly
stored internally, but displayed with only two digits of precision, you can insert the
string ".2" between the % symbol and the conversion specifier:

printf("The result is: $%.2f", 123.42 / 12);

148 | Chapter7:Practical PHP



The output from this command is:
The result is $10.29

But you actually have even more control than that, because you can also specify whether
to pad output with either zeros or spaces by prefacing the specifier with certain values.
Example 7-1 shows four possible combinations.

Example 7-1. Precision setting

<?php
echo

'<pre>"; // Enables viewing of the spaces

// Pad to 15 spaces
printf("The result is $%15f\n", 123.42 / 12);

// Pad to 15 spaces, fill with zeros
printf("The result is $%015f\n", 123.42 / 12);

// Pad to 15 spaces, 2 decimal places precision
printf("The result is $%15.2f\n", 123.42 / 12);

// Pad to 15 spaces, 2 decimal places precision, fill with zeros
printf("The result is $%015.2f\n", 123.42 / 12);

// Pad to 15 spaces, 2 decimal places precision, fill with # symbol
printf("The result is $%'#15.2f\n", 123.42 / 12);

7>

The output from this example looks like this:

The result is $ 10.285000
The result is $00000010.285000
The result is § 10.29

The result is $000000000010.29
The result is S####H#HHHHIH10.29

The way it works is simple if you go from right to left (see Table 7-2). Notice that:

o The rightmost character is the conversion specifier. In this case, it is f for floating
point.

o Just before the conversion specifier, if there is a period and a number together, then
the precision of the output is specified as the value of the number.

o Regardless of whether there’s a precision specifier, if there is a number, then that
represents the amount of characters to which the output should be padded. In the
previous example, this is 15 characters. If the output is already equal to or greater
than the padding length, then this argument is ignored.

o The leftmost parameter allowed after the % symbol is a 0, which is ignored unless a
padding value has been set, in which case the output is padded with zeros instead

Using printf | 149



of spaces. If a pad character other than zero or a space is required, you can use any
one of your choice as long as you preface it with a single quotation mark, like this:
'#.

o On the left is the % symbol, which starts the conversion.

Table 7-2. Conversion specifier components

Start conversion Pad character ~ Numberof pad  Display precision Conversion Examples
characters specifier
15 f 10.285000
15 .2 f 000000000010.29
‘# 15 .4 f HHHHERHEE0 . 2850

String Padding

You can also pad strings to required lengths (as you can with numbers), select different
padding characters, and even choose between left and right justification. Example 7-2
shows various examples.

Example 7-2. String padding

<?php
echo "<pre>"; // Enables viewing of the spaces
Sh = 'Rasmus’;
printf("[%s]\n", $h); // Standard string output
printf("[%12s]\n", $h); // Right justify with spaces to width 12
printf("[%-12s]\n", $h); // Left justify with spaces
printf("[%012s]\n", $h); // Zero padding

printf("[%'#12s]\n\n", $h); // Use the custom padding character '#'
$d = 'Rasmus Lerdorf'; // The original creator of PHP

printf("[%12.8s]\n", $d); // Right justify, cutoff of 8 characters
printf("[%-12.12s]\n", $d); // Left justify, cutoff of 12 characters
printf("[%-'@12.10s]\n", &d); // Left justify, pad '@', cutoff 10 chars

7>

Note how for purposes of layout in a web page, I've used the <pre> HTML tag to preserve
all the spaces and the \n newline character after each of the lines to be displayed. The
output from this example is as follows:

[Rasmus]

[ Rasmus]
[Rasmus ]
[000000Rasmus ]
[ ######Rasmus |

150 | Chapter7:Practical PHP



[ Rasmus L]
[Rasmus Lerdo]
[Rasmus Ler@@]

When you are specifying a padding value, if a string is already of equal or greater length
than that value it will be ignored, unless a cutoff value is given that shortens the string
back to less than the padding value.

Table 7-3 shows a breakdown of the components available to string conversion
specifiers.

Table 7-3. String conversion specifier components

Start Left/right Padding Number of pad  Cutoff  Conversion Examples (using
conversion justify character characters spedfier “Rasmus”)
% s [Rasmus]
% - 10 s [Rasmus ]
% '# 8 .4 s [####Rasm]

Using sprintf

Often, you don’t want to output the result of a conversion but need it to use elsewhere
in your code. This is where the sprintf function comes in. With it, you can send the
output to another variable rather than to the browser.

You might use it simply to make a conversion, as in the following example, which returns
the hexadecimal string value for the RGB color group 65, 127, 245 in $hexstring:

Shexstring = sprintf("%X%X%X", 65, 127, 245);
Or you may wish to store output ready to display later on:

Sout = sprintf("The result is: $%.2f", 123.42 / 12);
echo Sout;

Date and Time Functions

To keep track of the date and time, PHP uses standard Unix timestamps, which are
simply the number of seconds since the start of January 1, 1970. To determine the current
timestamp, you can use the time function:

echo time();

Because the value is stored as seconds, to obtain the timestamp for this time next week,
you would use the following, which adds 7 days times 24 hours times 60 minutes times
60 seconds to the returned value:

echo time() + 7 * 24 * 60 * 60;

Date and Time Functions | 151



If you wish to create a timestamp for a given date, you can use the mktime function. Its
output is the timestamp 946684800 for the first second of the first minute of the first
hour of the first day of the year 2000:

echo mktime(0, 0, 0, 1, 1, 2000);

The parameters to pass are, in order from left to right:

o The number of the hour (0-23)

o The number of the minute (0-59)

o The number of seconds (0-59)

o The number of the month (1-12)

o The number of the day (1-31)

o The year (1970-2038, or 1901-2038 with PHP 5.1.0+ on 32-bit signed systems)

You may ask why you are limited to the years 1970 through 2038.
Well, it’s because the original developers of Unix chose the start of the
year 1970 as the base date that no programmer should need to go
before! Luckily, because (as of version 5.1.0) PHP supports systems
using a signed 32-bit integer for the timestamp, dates from 1901 to
2038 are allowed on them. However, that introduces a problem even
worse than the original because the Unix designers also decided that
nobody would be using Unix after about 70 years or so, and there-
fore believed they could get away with storing the timestamp as a 32-
bit value—which will run out on January 19, 2038! This will create
what has come to be known as the Y2K38 bug (much like the mil-
lennium bug, which was caused by storing years as two-digit values,
and which also had to be fixed). PHP introduced the DateTime class
in version 5.2 to overcome this issue, but it will work only on 64-bit
architecture.

To display the date, use the date function, which supports a plethora of formatting
options, enabling you to display the date any way you could wish. The format is as
follows:

date(Sformat, $Stimestamp);

The parameter $format should be a string containing formatting specifiers as detailed
in Table 7-4, and $timestamp should be a Unix timestamp. For the complete list of
specifiers, see http://php.net/manual/en/function.date.php. The following command
will output the current date and time in the format "Thursday July 6th, 2017 -
1:38pm":

echo date("l F jS, Y - g:1a", time());

152 | Chapter7: Practical PHP



Table 7-4. The major date function format specifiers

Format Description

Returned value

Day specifiers
d Day of month, two digits, with leading zeros
D Day of the week, three letters
j Day of the month, no leading zeros
1 Day of week, full names
N Day of week, numeric, Monday to Sunday
S Suffix for day of month (useful with specifier j)
W Day of week, numeric, Sunday to Saturday
z Day of year
Week specifier
W Week number of year
Month specifiers
F Month name
m Month number with leading zeros
Month name, three letters
n Month number, no leading zeros
t Number of days in given month
Year specifiers
L Leap year
y Year, 2 digits
Y Year, 4 digits
Time specifiers
a Before or after midday, lowercase
A Before or after midday, uppercase
g Hour of day, 12-hour format, no leading zeros
G Hour of day, 24-hour format, no leading zeros
h Hour of day, 12-hour format, with leading zeros
H Hour of day, 24-hour format, with leading zeros
i Minutes, with leading zeros
s Seconds, with leading zeros

01to31

Mon to Sun

1to31

Sunday to Saturday
1to7

st,nd, rd, or th
0to6

010365

01to52

January to December
01to12

Janto Dec

1to12

281031

1=Yes,0=No
001099
0000 to 9999

am or pm
AM or PM
1to12

001023
01to12
001023
00 to 59
00 to 59

Date and Time Functions

153



Date Constants

There are a number of useful constants that you can use with the date command to
return the date in specific formats. For example, date(DATE_RSS) returns the current
date and time in the valid format for an RSS feed. Some of the more commonly used
constants are:

DATE_ATOM
This is the format for Atom feeds. The PHP format is "Y-m-d\TH:1:sP" and ex-
ample output is "2018-08-16T12:00:00+00:00".

DATE_COOKIE
This is the format for cookies set from a web server or JavaScript. The PHP format
is"l, d-M-y H:i:s T" and example output is "Thursday, 16-Aug-18 12:00:00
uTC".

DATE_RSS
This is the format for RSS feeds. The PHP formatis "D, d M Y H:i:s 0" and
example output is "Thu, 16 Aug 2018 12:00:00 UTC".

DATE_W3C
This is the format for the World Wide Web Consortium. The PHP format is "Y-m-
d\TH:1:sP" and example output is "2018-08-16T12:00:00+00:00".

The complete list can be found at http://php.net/manual/en/class.datetime.php.

Using checkdate

You've seen how to display a valid date in a variety of formats. But how can you check
whether a user has submitted a valid date to your program? The answer is to pass the
month, day, and year to the checkdate function, which returns a value of TRUE if the
date is valid, or FALSE if it is not.

For example, if February 30 of any year is input, it will always be an invalid date.
Example 7-3 shows code that you could use for this. As it stands, it will find the given
date invalid.

Example 7-3. Checking for the validity of a date

<?php
Smonth = 9; // September (only has 30 days)
Sday = 31; // 31st
Syear = 2018; // 2018

if (checkdate(Smonth, $day, $Syear)) echo "Date is valid";
else echo "Date is invalid";
7>

154 | Chapter7: Practical PHP



File Handling

Powerful as it is, MySQL is not the only (or necessarily the best) way to store all data on
a web server. Sometimes it can be quicker and more convenient to directly access files
on the hard disk. Cases in which you might need to do this are modifying images such
as uploaded user avatars, or log files that you wish to process.

First, though, a note about file naming: if you are writing code that may be used on
various PHP installations, there is no way of knowing whether these systems are case-
sensitive. For example, Windows and Mac OS X filenames are not case-sensitive, but
Linux and Unix ones are. Therefore, you should always assume that the system is case-
sensitive and stick to a convention such as all lowercase filenames.

Checking Whether a File Exists

To determine whether a file already exists, you can use the file_exists function, which
returns either TRUE or FALSE, and is used like this:

if (file_exists("testfile.txt")) echo "File exists";

Creating a File

At this point, festfile.txt doesn't exist, so let’s create it and write a few lines to it. Type
Example 7-4 and save it as testfile.php.

Example 7-4. Creating a simple text file

<?php // testfile.php
S$fh = fopen("testfile.txt", 'w') or die("Failed to create file");

Stext = <<<_END
Line 1
Line 2
Line 3
_END;

fwrite($fh, Stext) or die("Could not write to file");
fclose($fh);
echo "File 'testfile.txt' written successfully";

7>

When you run this in a browser, all being well, you will receive the message File 'test
file.txt' written successfully. If you receive an error message, your hard disk
may be full or, more likely, you may not have permission to create or write to the file,
in which case you should modify the attributes of the destination folder according to
your operating system. Otherwise, the file testfile.txt should now be residing in the same

FileHandling | 155



folder in which you saved the festfile.php program. Try opening the file in a text or
program editor—the contents will look like this:

Line 1
Line 2
Line 3

This simple example shows the sequence that all file handling takes:

1. Always start by opening the file. You do this through a call to fopen.

2. Then you can call other functions; here we write to the file (fwrite), but you can
also read from an existing file (fread or fgets) and do other things.

3. Finish by closing the file (fclose). Although the program does this for you when
it ends, you should clean up after yourself by closing the file when you’re finished.

Every open file requires a file resource so that PHP can access and manage it. The
preceding example sets the variable $fh (which I chose to stand for file handle) to the
value returned by the fopen function. Thereafter, each file handling function that ac-
cesses the opened file, such as furite or fclose, must be passed $fh as a parameter to
identify the file being accessed. Don’t worry about the content of the $fh variable; it’s a
number PHP uses to refer to internal information about the file—you just pass the
variable to other functions.

Upon failure, FALSE will be returned by fopen. The previous example shows a simple
way to capture and respond to the failure: it calls the die function to end the program
and give the user an error message. A web application would never abort in this crude
way (you would create a web page with an error message instead), but this is fine for
our testing purposes.

Notice the second parameter to the fopen call. It is simply the character w, which tells
the function to open the file for writing. The function creates the file if it doesn’t already
exist. Be careful when playing around with these functions: if the file already exists, the
w mode parameter causes the fopen call to delete the old contents (even if you don’t
write anything new!).

There are several different mode parameters that can be used here, as detailed in
Table 7-5.

Table 7-5. The supported fopen modes

Mode Action Description

'r' Read from file start. Open for reading only; place the file pointer at the beginning of the file. Retum FALSE
if the file doesn't already exist.

r+' Read from file start and Open for reading and writing; place the file pointer at the beginning of the file. Return
allow writing. FALSE if the file doesn't already exist.

156 | Chapter7:Practical PHP



Mode Action Description
'w'  Write from file start and Open for writing only; place the file pointer at the beginning of the file and truncate the

truncate file. file to zero length. If the file doesn't exist, attempt to create it.
‘w+'  Write from file start, Open for reading and writing; place the file pointer at the beginning of the file and truncate
truncate file, and allow the file to zero length. If the file doesn't exist, attempt to create it.
reading.
'a'  Append to file end. Open for writing only; place the file pointer at the end of the file. If the file doesn't exist,

attempt to create it.

a+' Appendtofileendandallow Open forreading and writing; place the file pointer at the end of the file. If the file doesn't
reading. exist, attempt to create it.

Reading from Files

The easiest way to read from a text file is to grab a whole line through fgets (think of
the final s as standing for string), as in Example 7-5.

Example 7-5. Reading a file with fgets

<?php
$fh = fopen("testfile.txt", 'r') or
die("File does not exist or you lack permission to open it");

$line = fgets($fh);
fclose($fh);
echo $line;

7>

If you created the file as shown in Example 7-4, you’ll get the first line:

Line 1
Or you can retrieve multiple lines or portions of lines through the fread function, as
in Example 7-6.

Example 7-6. Reading a file with fread

<?php
$fh = fopen("testfile.txt", 'r') or
die("File does not exist or you lack permission to open it");

Stext = fread($fh, 3);
fclose($fh);
echo Stext;

7>

I've requested three characters in the fread call, so the program displays the following:
Lin

The fread function is commonly used with binary data. But if you use it on text data

that spans more than one line, remember to count newline characters.

FileHandling | 157



Copying Files

Let’s try out the PHP copy function to create a clone of testfile.txt. Type in Example 7-7
and save it as copyfile.php, and then call up the program in your browser.

Example 7-7. Copying a file

<?php // copyfile.php
copy('testfile.txt', 'testfile2.txt') or die("Could not copy file");

echo "File successfully copied to 'testfile2.txt'";
7>

If you check your folder again, you’ll see that you now have the new file testfile2.txt in
it. By the way, if you don’t want your programs to exit on a failed copy attempt, you
could try the alternate syntax in Example 7-8.

Example 7-8. Alternate syntax for copying a file

<?php // copyfile2.php
if (!copy('testfile.txt', 'testfile2.txt')) echo "Could not copy file";
else echo "File successfully copied to 'testfile2.txt'";

7>

Moving a File
To move a file, rename it with the rename function, as in Example 7-9.

Example 7-9. Moving a file

<?php // movefile.php
if (!rename('testfile2.txt', 'testfile2.new'))
echo "Could not rename file";
else echo "File successfully renamed to 'testfile2.new'";
7>

You can use the rename function on directories, too. To avoid any warning messages, if
the original file doesn’t exist, you can call the file_exists function first to check.

Deleting a File

Deleting a file is just a matter of using the unlink function to remove it from the file-
system, as in Example 7-10.

Example 7-10. Deleting a file

<?php // deletefile.php
if (lunlink('testfile2.new')) echo "Could not delete file";
else echo "File 'testfile2.new' successfully deleted";

7>

158 | Chapter7: Practical PHP



Whenever you access files on your hard disk directly, you must also
always ensure that it is impossible for your filesystem to be compro-
mised. For example, if you are deleting a file based on user input,
you must make absolutely certain it is a file that can be safely de-
leted and that the user is allowed to delete it.

As with moving a file, a warning message will be displayed if the file doesn't exist, which
you can avoid by using file_exists to first check for its existence before calling unlink.

Updating Files

Often, you will want to add more data to a saved file, which you can do in many ways.
You can use one of the append write modes (see Table 7-5), or you can simply open a
file for reading and writing with one of the other modes that supports writing, and move
the file pointer to the correct place within the file that you wish to write to or read from.

The file pointer is the position within a file at which the next file access will take place,
whether it’s a read or a write. It is not the same as the file handle (as stored in the variable
$fh in Example 7-4), which contains details about the file being accessed.

You can see this in action by typing Example 7-11 and saving it as update.php. Then call
it up in your browser.

Example 7-11. Updating a file

<?php // update.php
$fh = fopen("testfile.txt", 'r+') or die("Failed to open file");
Stext = fgets($fh);

fseek($fh, 0, SEEK_END);
fwrite($fh, "Stext") or die("Could not write to file");
fclose($fh);

echo "File 'testfile.txt' successfully updated";
7>

This program opens festfile.txt for both reading and writing by setting the mode with
'r+', which puts the file pointer right at the start. It then uses the fgets function to
read in a single line from the file (up to the first line feed). After that, the fseek function
is called to move the file pointer right to the file end, at which point the line of text that
was extracted from the start of the file (stored in $text) is then appended to file’s end
and the file is closed. The resulting file now looks like this:

Line 1
Line 2
Line 3
Line 1

FileHandling | 159



The first line has successfully been copied and then appended to the file’s end.

Asused here, in addition to the $fh file handle, the fseek function was passed two other
parameters, @ and SEEK_END. SEEK_END tells the function to move the file pointer to the
end of the file and 0 tells it how many positions it should then be moved backward from
that point. In the case of Example 7-11, a value of 0 is used, because the pointer is required
to remain at the file’s end.

There are two other seek options available to the fseek function: SEEK_SET and
SEEK_CUR. The SEEK_SET option tells the function to set the file pointer to the exact
position given by the preceding parameter. Thus, the following example moves the file
pointer to position 18:

fseek($fh, 18, SEEK_SET);

SEEK_CUR sets the file pointer to the current position plus the value of the given offset.
Therefore, if the file pointer is currently at position 18, the following call will move it
to position 23:

fseek($fh, 5, SEEK_CUR);

Although this is not recommended unless you have very specific reasons for it, it is even
possible to use text files such as this (but with fixed line lengths) as simple flat file
databases. Your program can then use fseek to move back and forth within such a file
to retrieve, update, and add new records. You can also delete records by overwriting
them with zero characters, and so on.

Locking Files for Multiple Accesses

Web programs are often called by many users at the same time. If more than one person
tries to write to a file simultaneously, it can become corrupted. And if one person writes
to it while another is reading from it, the file is all right but the person reading it can
get odd results. To handle simultaneous users, you must use the file locking flock
function. This function queues up all other requests to access a file until your program
releases the lock. So, whenever your programs use write access on files that may be
accessed concurrently by multiple users, you should also add file locking to them, as in
Example 7-12, which is an updated version of Example 7-11.

Example 7-12. Updating a file with file locking

<?php
Sfh = fopen("testfile.txt", 'r+') or die("Failed to open file");
Stext = fgets($fh);

if (flock($fh, LOCK_EX))

{
fseek($fh, 0, SEEK_END);
fwrite($fh, "Stext") or die("Could not write to file");
flock($fh, LOCK_UN);

160 | Chapter7: Practical PHP



}

fclose($fh);
echo "File 'testfile.txt' successfully updated";
7>

Thereisatrick to file locking to preserve the best possible response time for your website
visitors: perform it directly before a change you make to a file, and then unlock it im-
mediately afterward. Having a file locked for any longer than this will slow down your
application unnecessarily. This is why the calls to flock in Example 7-12 are directly
before and after the fwrite call.

The first call to flock sets an exclusive file lock on the file referred to by $fh using the
LOCK_EX parameter:

flock($fh, LOCK_EX);

From this point onward, no other processes can write to (or even read from) the file
until you release the lock by using the LOCK_UN parameter, like this:

flock($fh, LOCK_UN);

As soon as the lock is released, other processes are again allowed access to the file. This
is one reason why you should reseek to the point you wish to access in a file each time
you need to read or write data, because another process could have changed the file
since the last access.

However, did you notice that the call to request an exclusive lock is nested as part of an
if statement? This is because flock is not supported on all systems; thus, it is wise to
check whether you successfully secured a lock, just in case one could not be obtained.

Something else you must consider is that flock is what is known as an advisory lock.
This means that it locks out only other processes that call the function. If you have any
code that goes right in and modifies files without implementing flock file locking, it
will always override the locking and could wreak havoc on your files.

By the way, implementing file locking and then accidentally leaving it out in one section
of code can lead to an extremely hard-to-locate bug.

flock will not work on NFS and many other networked filesystems.
Also, when using a multithreaded server like ISAPI, you may not be
able to rely on flock to protect files against other PHP scripts run-
ning in parallel threads of the same server instance. Additionally,
flock is not supported on any system using the old FAT filesystem
(such as older versions of Windows).

FileHandling | 161



Reading an Entire File

A handy function for reading in an entire file without having to use file handles is
file_get_contents. It’s very easy to use, as you can see in Example 7-13.

Example 7-13. Using file_get contents

<?php
echo "<pre>"; // Enables display of line feeds
echo file_get_contents("testfile.txt");
echo "</pre>"; // Terminates pre tag

7>

But the function is actually a lot more useful than that, because you can also use it to
fetch a file from a server across the Internet, as in Example 7-14, which requests the
HTML from the O’Reilly home page, and then displays it as if the user had surfed to the
page itself. The result will be similar to Figure 7-1.

Example 7-14. Grabbing the O’Reilly home page

<?php
echo file_get_contents("http://oreilly.com");
7>

————————eeeeeeey - (O -
/8 OReily Medi - Technole x |\
« C A [ oreilly.com 92 =
O. R E I L LY@ Your Account
& Shopping Cart
Home Shop Books & Videos Blogs Safari Books Online Conferences IT Courses & Certificates L J | ] B
Fopular Topics: Programming  JavaScript  iPhone | Android | Python | Head First  HTMLS & CSS  Microsoft  Java Perl | Linux
Search Search
S erch rge Y r D il . Shop 7000+ titles from
up a g ou a y s publishers you trust,
. ! o Ny i including: O'Reilly Media,
Programming Workflow > g Wiy, Microsot Press
i No Starch, SitePoint, Wrox.
For one week only, SAVE 50% on ebooks and \l;.lgw and more. o
videos to help you become a more productive . 1ce0 .
Py P ) Mac OSX = Start Browsing
developer on the Mac OS X platform. It's all you o Productivity
need to see your productivity soar. i85 Tips for Developers
R Ebook Deals of the Day
Matthew McCullough
im Bora ncl laarnina Andraid-

Figure 7-1. The O’Reilly home page grabbed with file_get contents

Uploading Files

Uploading files to a web server is a subject that seems daunting to many people, but it
actually couldn’t be much easier. All you need to do to upload a file from a form is choose

162 | Chapter7: Practical PHP



a special type of encoding called multipart/form-data, and your browser will handle the
rest. To see how this works, type the program in Example 7-15 and save it as upload.php.
When you run it, you'll see a form in your browser that lets you upload a file of your
choice.

Example 7-15. Image uploader upload.php

<?php // upload.php
echo <<<_END

<html><head><title>PHP Form Upload</title></head><body>
<form method='post' action='upload.php' enctype='multipart/form-data'>
Select File: <input type='file' name='filename' size='10'>
<input type='submit' value='Upload'>
</form>

_END;

if ($_FILES)

{
Sname = $_FILES['filename']['name'];
move_uploaded_file($_FILES['filename']['tmp_name'], $name);
echo "Uploaded image 'Sname'<br><img src='Sname's";

}

echo "</body></html>";

7>

Let’s examine this program a section at a time. The first line of the multiline echo
statement starts an HTML document, displays the title, and then starts the document’s

body.

Next we come to the form that selects the POST method of form submission, sets the
target for posted data to the program upload.php (the program itself), and tells the web
browser that the data posted should be encoded via the content type of multipart/
form-data.

With the form set up, the next lines display the prompt “Select File:” and then request
two inputs. The first request is for a file; it uses an input type of file, a name of
filename, and an input field with a width of 10 characters.

The second requested input is just a Submit button that is given the label Upload (which
replaces the default button text of Submit Query). And then the form is closed.

This short program shows a common technique in web programming in which a single
program is called twice: once when the user first visits a page, and again when the user
presses the Submit button.

The PHP code to receive the uploaded data is fairly simple, because all uploaded files
are placed into the associative system array $_FILES. Therefore, a quick check to see

FileHandling | 163



whether $_FILES contains anything is sufficient to determine whether the user has up-
loaded a file. This is done with the statement i1f ($_FILES).

The first time the user visits the page, before uploading a file, $_FILES is empty, so the
program skips this block of code. When the user uploads a file, the program runs again
and discovers an element in the $_FILES array.

Once the program realizes that a file was uploaded, the actual name, as read from the
uploading computer, is retrieved and placed into the variable $name. Now all that’s nec-
essary is to move the file from the temporary location in which PHP stored the uploaded
file to a more permanent one. We do this using the move_uploaded_file function,
passing it the original name of the file, with which it is saved to the current directory.

Finally, the uploaded image is displayed within an IMG tag, and the result should look
like Figure 7-2.

If you run this program and then receive warning messages such as

Permission denied for the move_uploaded_file function call, then

you may not have the correct permissions set for the folder in which
4 the program is running.

[@ PHP Form Upload - Mozilla Firefox (=] B ]

File Edit View History Bookmarks Tools Help

- L] | |http:fflocalhosb"upload.php w '|

Seec Fie | :

Uploaded i:_nage 'smiley jpg’

»

m

Done @ (= @ @

Figure 7-2. Uploading an image as form data

Using $_FILES

Five things are stored in the $_FILES array when a file is uploaded, as shown in Table 7-6
(where fileis the file upload field name supplied by the submitting form).

164 | Chapter7: Practical PHP



Table 7-6. The contents of the $_FILES array

Array element Contents

$_FILES['file']['name'] The name of the uploaded file (e.g., smiley.jpg)
$_FILES['file']['type'] The content type of the file (e.q., image/jpeg)
$_FILES['file']['size'] The file's size in bytes

$_FILES['file']['tmp_name'] Thename of the temporary file stored on the server
$_FILES['file']['error'] The error code resulting from the file upload

Content types used to be known as MIME (Multipurpose Internet Mail Extension) types,
but because their use later expanded to the whole Internet, now they are often called
Internet media types. Table 7-7 shows some of the more frequently used types that turn
up in $_FILES['file']['type'l.

Table 7-7. Some common Internet media content types

application/pdf image/gif multipart/form-data text/xml

application/zip 1image/jpeg text/css video/mpeg
audio/mpeg image/png text/html video/mp4
audio/x-wav image/tiff text/plain video/quicktime
Validation

I hope it now goes without saying (although I'll do so anyway) that form data validation
is of the utmost importance, due to the possibility of users attempting to hack into your
server.

In addition to maliciously formed input data, some of the things you also have to check
are whether a file was actually received and, if so, whether the right type of data was
sent.

Taking all this into account, Example 7-16, upload2.php, is a rewrite of upload.php.

Example 7-16. A more secure version of upload.php

<?php // upload2.php

echo <<<_END
<html><head><title>PHP Form Upload</title></head><body>
<form method="'post' action='upload2.php' enctype='multipart/form-data'>
Select a JPG, GIF, PNG or TIF File:
<input type='file' name='filename' size='10'>
<input type='submit' value='Upload'></form>

END;

if ($_FILES)

{
S$name = $_FILES['filename']['name'];

FileHandling | 165



switch(S_FILES['filename']['type'])

{
case 'image/jpeg': $Sext = 'jpg'; break;
case 'image/gif': $ext = 'gif'; break;
case 'image/png': S$ext = 'png'; break;
case 'image/tiff': Sext = 'tif'; break;
default: Sext = ''; break;

}

if (Sext)

{
Sn = "image.Sext";

move_uploaded_file($_FILES['filename']['tmp_name'], $n);
echo "Uploaded image '$name' as '$n':<br>";
echo "<img src='$n'>";

}

else echo "'Sname' is not an accepted image file";

}

else echo "No image has been uploaded";

echo "</body></html>";

7>

The non-HTML section of code has been expanded from the half-dozen lines of
Example 7-15 to more than 20 lines, starting at 1f ($_FILES).

As with the previous version, this if line checks whether any data was actually posted,
but there is now a matching else near the bottom of the program that echoes a message
to screen when nothing has been uploaded.

Within the if statement, the variable $name is assigned the value of the filename as
retrieved from the uploading computer (just as before), but this time we won't rely on
the user having sent us valid data. Instead, a switch statement is used to check the
uploaded content type against the four types of image this program supports. If a match
is made, the variable $ext is set to the three-letter file extension for that type. Should
no match be found, the file uploaded was not of an accepted type and the variable $ext

is set to the empty string "".

The next section of code then checks the variable $ext to see whether it contains a string
and, if so, creates a new filename called $n with the base name image and the extension
stored in $ext. This means that the program is in full control over the name of the file
to be created, as it can be only one of image.jpg, image.gif, image.png, or image.tif.

Safe in the knowledge that the program has not been compromised, the rest of the PHP
code is much the same as in the previous version. It moves the uploaded temporary
image to its new location and then displays it, while also displaying the old and new
image names.

166 | Chapter7: Practical PHP



Don’t worry about having to delete the temporary file that PHP cre-
ates during the upload process, because if the file has not been moved
or renamed, it will be automatically removed when the program exits.

After the 1f statement there is a matching else, which is executed only ifan unsupported
image type was uploaded, in which case it displays an appropriate error message.

When you write your own file uploading routines, I strongly advise you to use a similar
approach and have pre-chosen names and locations for uploaded files. That way, no
attempts to add pathnames and other malicious data to the variables you use can get
through. If this means that more than one user could end up having a file uploaded with
the same name, you could prefix such files with their user’s name, or save them to
individually created folders for each user.

But if you must use a supplied filename, you should sanitize it by allowing only alpha-
numeric characters and the period, which you can do with the following command,
using a regular expression (see Chapter 17) to perform a search and replace on $name:

$name = preg_replace("/[~A-Za-z0-9.]/", "", $name);

This leaves only the characters A-Z, a-z, 0-9, and periods in the string $name, and strips
out everything else.

Even better, to ensure that your program will work on all systems, regardless of whether
they are case-sensitive or case-insensitive, you should probably use the following com-
mand instead, which changes all uppercase characters to lowercase at the same time:

$name = strtolower(ereg_replace("[”*A-Za-z0-9.]1", , Sname));

Sometimes you may encounter the media type of image/pjpeg, which
indicates a progressive JPEG, but you can safely add this to your code
as an alias of image/jpeg, like this:

case 'image/pjpeg':
case 'image/jpeg': Sext = 'jpg'; break;

System Calls

Sometimes PHP will not have the function you need to perform a certain action, but
the operating system it is running on may. In such cases, you can use the exec system
call to do the job.

For example, to quickly view the contents of the current directory, you can use a program
such as Example 7-17. If you are on a Windows system, it will run as is using the
Windows dir command. On Linux, Unix, or Mac OS X, comment out or remove the

System(alls | 167



first line and uncomment the second to use the 1s system command. You may wish to
type this program, save it as exec.php, and call it up in your browser.

Example 7-17. Executing a system command

<?php // exec.php
Scmd = "dir"; // Windows
// $cmd = "ls"; // Linux, Unix & Mac

exec(escapeshellemd($cmd), Soutput, Sstatus);

if ($status) echo "Exec command failed";
else

{
echo "<pre>";
foreach($Soutput as $line) echo htmlspecialchars("$line\n");
echo "</pre>";
7>

The htmlspecialchars function is called to turn any special characters returned by the
system into ones that HTML can understand and properly display, neatening the output.
Depending on the system you are using, the result of running this program will look
something like this (from a Windows dir command):

Volume in drive C is Hard Disk
Volume Serial Number is DC63-0QE29

Directory of C:\Program Files (x86)\Zend\Apache2\htdocs
09/02/2014 12:03 <DIR>

09/02/2014 12:03  <DIR> ..
28/04/2013 08:30 5,336 chars.php

12/02/2012 13:08 1,406 favicon.ico
20/01/2014 12:52 4,202 index.html
09/02/2014 11:49 76 info.php
21/03/2013 09:52 110 test.htm
01/04/2013 13:06 182,459 test.php

6 File(s) 193,589 bytes

9 Dir(s) 1,811,290,472,448 bytes free

exec takes three arguments:

o The command itself (in the previous case, $cmd)

 Anarrayin which the system will put the output from the command (in the previous
case, Soutput)

o A variable to contain the returned status of the call (in the previous case, $status)

If you wish, you can omit the $output and $status parameters, but you will not know
the output created by the call or even whether it completed successfully.

168 | Chapter7: Practical PHP



You should also note the use of the escapeshellcmd function. Itis a good habit to always
use this when issuing an exec call, because it sanitizes the command string, preventing
the execution of arbitrary commands, should you supply user input to the call.

The system calling functions are typically disabled on shared web
hosts, as they pose a security risk. You should always try to solve your
problems within PHP if you can, and go to the system directly only
if it is really necessary. Also, going to the system is relatively slow
and you need to code two implementations if your application is
expected to run on both Windows and Linux/Unix systems.

XHTML or HTML5?

Because XHTML documents need to be well formed, you can parse them using standard
XML parsers—unlike HTML, which requires a lenient HTML-specific parser. For this
reason, XHTML never really caught on, and when the time came to devise a new stan-
dard, the World Wide Web Consortium chose to support HTML5 rather than the newer
XHTML2 standard.

HTMLS5 has some of the features of both HTML4 and XHTML, but is much simpler to
use and less strict to validate and, happily, there is now just a single document type you
need to place at the head of an HTML5 document (instead of the variety of strict, tran-
sitional, and frameset types previously required), namely:

<!DOCTYPE html>

Just the simple word html is sufficient to tell the browser that your web page is designed
for HTMLS5 and, because all the latest versions of the most popular browsers have been
supporting most of the HTML5 specification since 2011 or so, this document type is
generally the only one you need, unless you choose to cater to older browsers.

For all intents and purposes, when writing HTML documents, web developers can safely
ignore the old XHTML document types and syntax (such as using <br /> instead of the
simpler <br> tag). But if you find yourself having to cater to a very old browser or an
unusual application that relies on XHTML, then you can get more information on how
to do that at http://xhtml.com.

Questions

1. Which printf conversion specifier would you use to display a floating-point
number?

2. What printf statement could be used to take the input string "Happy Birthday"
and output the string "**Happy"?

XHTMLor HTMLS? | 169



. Tosend the output from printf toavariableinstead of to abrowser, what alternative

function would you use?

How would you create a Unix timestamp for 7:11 a.m. on May 2, 2016?

5. Which file access mode would you use with fopen to open a file in write and read

mode, with the file truncated and the file pointer at the start?
What is the PHP command for deleting the file file.txt?

Which PHP function is used to read in an entire file in one go, even from across
the Web?

. Which PHP superglobal variable holds the details on uploaded files?
. Which PHP function enables the running of system commands?
10.

Which of the following tag styles is preferred in HTML5: <hr> or <hr />?

See “Chapter 7 Answers” on page 643 in Appendix A for the answers to these questions.

170

| Chapter7: Practical PHP



CHAPTER 8
Introduction to MySQL

With well over 10 million installations, MySQL is probably the most popular database
management system for web servers. Developed in the mid-1990s, it's now a mature
technology that powers many of today’s most-visited Internet destinations.

One reason for its success must be the fact that, like PHP, it’s free to use. But it’s also
extremely powerful and exceptionally fast—it can run on even the most basic of hard-
ware, and it hardly puts a dent in system resources.

MySQL is also highly scalable, which means that it can grow with your website (for the
latest benchmarks, see http://mysql.com/why-mysql/benchmarks).

MySQL Basics

A database is a structured collection of records or data stored in a computer system and
organized in such a way that it can be quickly searched and information can be rapidly
retrieved.

The SQL in MySQL stands for Structured Query Language. This language is loosely
based on English and also used in other databases such as Oracle and Microsoft SQL
Server. It is designed to allow simple requests from a database via commands such as:

SELECT title FROM publications WHERE author = 'Charles Dickens';

A MySQL database contains one or more tables, each of which contains records or
rows. Within these rows are various columns or fields that contain the data itself.
Table 8-1 shows the contents of an example database of five publications detailing the
author, title, type, and year of publication.

7m



Table 8-1. Example of a simple database

Author Title Type Year
Mark Twain The Adventures of Tom Sawyer  Fiction 1876
Jane Austen Pride and Prejudice Fiction 181
Charles Darwin The Origin of Species Non-Fiction 1856
Charles Dickens The 0ld Curiosity Shop Fiction 1841
William Shakespeare  Romeo and Juliet Play 1594

Each row in the table is the same as a row in a MySQL table, and each element within
arow is the same as a MySQL field.

To uniquely identify this database, I'll refer to it as the publications database in the
examples that follow. And, as you will have observed, all these publications are consid-
ered to be classics of literature, so I'll call the table within the database that holds the
details classics.

Summary of Database Terms

The main terms you need to acquaint yourself with for now are:

Database
The overall container for a collection of MySQL data

Table
A subcontainer within a database that stores the actual data

Row
A single record within a table, which may contain several fields

Column
The name of a field within a row

Ishould note that I'm not trying to reproduce the precise terminology used in academic
literature about relational databases, but just to provide simple, everyday terms to help
you quickly grasp basic concepts and get started with a database.

Accessing MySQL via the Command Line

There are three main ways in which you can interact with MySQL: using a command
line, via a web interface such as phpMyAdmin, and through a programming language
like PHP. We'll start doing the third of these in Chapter 10, but for now, let’s look at the
first two.

172 | Chapter 8: Introduction to MySQL



Starting the Command-Line Interface

The following sections describe relevant instructions for Windows, OS X, and Linux.

Windows users

If you installed the Zend Server Free Edition WAMP (as explained in Chapter 2), you
will be able to access the MySQL executable from one of the following directories (the
first on 32-bit computers, and the second on 64-bit machines):

C:\Program Files\Zend\MySQL55\bin
C:\Program Files (x86)\Zend\MySQL55\bin

If you installed Zend Server in a place other than \Program Files (or
\Program Files (x86)), you will need to use that directory instead.

By default, the initial MySQL user will be root and will not have had a password set.
Seeing as this is a development server that only you should be able to access, we won’t
worry about creating one yet.

So, to enter MySQLs command-line interface, select Start—>Run, enter CMD into the Run
box, and press Return. This will call up a Windows Command Prompt. From there,
enter one of the following (making any appropriate changes as just discussed):

"C:\Program Files\Zend\MySQL55\bin\mysql" -u root
"C:\Program Files (x86)\Zend\MySQL55\bin\mysql" -u root

Note the quotation marks surrounding the path and filename. These
are present because the name contains spaces, which the Command
Prompt doesn’t correctly interpret, and the quotation marks group
the parts of the filename into a single string for the command pro-
gram to understand.

This command tells MySQL to log you in as user root, without a password. You will now
be logged into MySQL and can start entering commands. So, to be sure everything is
working as it should be, enter the following (the results should look similar to the output
shown in Figure 8-1):

SHOW databases;

Accessing MySQL via the Command Line | 173



BN C\Windows\system32\cmd.exe | = | (S -

Microsoft Windows [Version 6.8.686811
Copyright (c) 2886 Microsoft Corporation. All rights reserved.

C:sUsers“\Robin>'"Program Files“EasyPHP 2.8blmysglsbin“mysgl" —u root
llelcome to the MySQL monitor. Commands end with ; or “g.

Type ‘help;’ or '“h’ for help. Type '“c’ to clear the buffer.

mysgql> show databases;
+-

Figure 8-1. Accessing MySQL from a Windows Command Prompt

If this has not worked and you get an error, make sure that you have correctly installed
MySQL along with Zend Server (as described in Chapter 2). Otherwise, you are ready
to move on to the next section, “Using the Command-Line Interface” on page 177.

0S X users

To proceed with this chapter, you should have installed Zend Server as detailed in
Chapter 2. You should also have the web server already running and the MySQL server
started.

To enter the MySQL command-line interface, start the Terminal program (which should
be available in Finder—Utilities). Then call up the MySQL program, which will have
been installed in the directory /usr/local/zend/mysql/bin.

By default, the initial MySQL user is root, and it will have a password of root too. So, to
start the program, type the following:

Jusr/local/zend/mysql/bin/mysql -u root

This command tells MySQL to log you in as user root and not to request your password.
To verify that all is well, type the following (the result should look like the output shown
in Figure 8-2):

SHOW databases;

174 | Chapter8: Introduction to MySQL



800 [_|zend — mysq|.client — 85x24 e

iMac:zend robin$ show databases;

—-bash: show: command not found

iMac:zend robin$ fusr/local/zend/mysgl/bin/mysgl -u root
Welcome to the MyS0L monitor. Commands end with ; or \g.
Your MyS0L connection id is 2

Server version: 5.1.54 MySQL Community Server (GPL)

Copyright (c) 20888, 2018, Oracle and/or its affiliates. ALl rights reserved.
This software comes with ABSOLUTELY MNO WARRANTY. This is free software,

and you are welcome to modify and redistribute it under the GPL v2 license
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysgl> show databases;

| Database |

| information_schema |
| mysgl |
| test |

3 rows in set (0.0@ sec)

mysgl= I

Figure 8-2. Accessing MySQL from the OS X Terminal program

If you receive an error such as Can't connect to local MySQL server through
socket, you haven't started up the MySQL server, so make sure you followed the advice
in Chapter 2 about configuring MySQL to start when OS X starts.

You should now be ready to move on to the next section, “Using the Command-Line
Interface” on page 177.

Linux users

On a system running a Unix-like operating system such as Linux, you will almost cer-
tainly already have PHP and MySQL installed and running, and you will be able to enter
the examples in the next section. But first you should type the following to log into your
MySQL system:

mysql -u root -p

This tells MySQL to log you in as the user root and to request your password. If you
have a password, enter it; otherwise, just press Return.

Onceyouarelogged in, type the following to test the program (you should see something
like Figure 8-3 in response):

SHOW databases;

Accessing MySQL via the Command Line | 175



Figure 8-3. Accessing MySQL using Linux

If this procedure fails at any point, refer to the section “Installing a LAMP on Linux”
on page 38 in Chapter 2 to ensure that you have MySQL properly installed. Otherwise,
you should now be ready to move on to the next section, “Using the Command-Line
Interface” on page 177.

MySQL on a remote server

If you are accessing MySQL on a remote server, you should Telnet (or preferably, for
security, use SSH) into the remote machine, which will probably be a Linux/FreeBSD/
Unix type of box. Once in there, you might find that things are a little different, de-
pending on how the system administrator has set the server up, especially if it’s a shared
hosting server. Therefore, you need to ensure that you have been given access to MySQL
and that you have your username and password. Armed with these, you can then type
the following, where username is the name supplied:

mysql -u username -p

Enter your password when prompted. You can then try the following command, which
should result in something like Figure 8-3:

SHOW databases;
There may be other databases already created, and the test database may not be there.

Bear in mind also that system administrators have ultimate control over everything and
that you can encounter some unexpected setups. For example, you may find that you
are required to preface all database names that you create with a unique identifying
string to ensure that you do not conflict with databases created by other users.

176 | Chapter8: Introduction to MySQL



Therefore, if you have any problems, talk with your system administrator, who will get
you sorted out. Just let the sysadmin know that you need a username and password.
You should also ask for the ability to create new databases or, at a minimum, to have at
least one database created for you ready to use. You can then create all the tables you
require within that database.

Using the Command-Line Interface

From here on out, it makes no difference whether you are using Windows, Mac OS X,
or Linux to access MySQL directly, as all the commands used (and errors you may
receive) are identical.

The semicolon

Let’s start with the basics. Did you notice the semicolon (;) at the end of the SHOW
databases; command that you typed? The semicolon is used by MySQL to separate or
end commands. If you forget to enter it, MySQL will issue a prompt and wait for you
to do so. The required semicolon was made part of the syntax to let you enter multiple-
line commands, which can be convenient because some commands get quite long. It
also allows you to issue more than one command at a time by placing a semicolon after
each one. The interpreter gets them all in a batch when you press the Enter (or Return)
key and executes them in order.

It’s very common to receive a MySQL prompt instead of the results
of your command; it means that you forgot the final semicolon. Just
enter the semicolon and press the Enter key, to get what you want.

There are six different prompts that MySQL may present you with (see Table 8-2), so
you will always know where you are during a multiline input.

Table 8-2. MySQL’s six command prompts

MySQL prompt  Meaning
mysql> Ready and waiting for a command

-> Waiting for the next line of a command

> Waiting for the next line of a string started with a single quote

> Waiting for the next line of a string started with a double quote
Waiting for the next line of a string started with a backtick
/*> Waiting for the next line of a comment started with /*

v

Accessing MySQL via the Command Line | 177



Canceling a command

If you are partway through entering a command and decide you don’t wish to execute
it after all, whatever you do don’t press Control-C! That will close the program. Instead,
you can enter \c and press Return. Example 8-1 shows how to use it.

Example 8-1. Canceling a line of input

meaningless gibberish to mysql \c

When you enter that line, MySQL will ignore everything you typed and issue a new
prompt. Without the \c, it would have displayed an error message. Be careful, though:
ifyou have opened a string or comment, close it first before using the \c or MySQL will
think the \c is just part of the string. Example 8-2 shows the right way to do this.

Example 8-2. Canceling input from inside a string

this is "meaningless gibberish to mysql" \c

Also note that using \c after a semicolon will not work, as it is then a new statement.

MySQL Commands

You've already seen the SHOW command, which lists tables, databases, and many other
items. The commands you’ll probably use most often are listed in Table 8-3.

Table 8-3. A selection of common MySQL commands

Command Action

ALTER Alter a database or table
BACKUP Backup a table

\c (ancel input

CREATE (reate a database
DELETE Delete a row from a table
DESCRIBE Describe a table’s columns
DROP Delete a database or table

EXIT (CTRL-C) Exit

GRANT (Change user privileges
HELP (\h, \?) Display help

INSERT Insert data

LOCK Lock table(s)

QUIT (\q) Same as EXIT

RENAME Rename a table

SHOW List details about an object
SOURCE Execute a file

178 | Chapter 8: Introduction to MySQL



STATUS (\s) Display the current status

TRUNCATE Empty a table

UNLOCK Unlock table(s)

UPDATE Update an existing record
USE Use a database

I'll cover most of these as we proceed, but first, you need to remember a couple of points
about MySQL commands:

¢ SQL commands and keywords are case-insensitive. CREATE, create, and CrEaTe all
mean the same thing. However, for the sake of clarity, the recommended style is to
use uppercase.

« Table names are case-sensitive on Linux and OS X, but case-insensitive on Win-
dows. So for portability purposes, you should always choose a case and stick to it.
The recommended style is to use lowercase for tables.

Creating a database

If you are working on a remote server and have only a single user account and access
to a single database that was created for you, move on to the section “Creating a table”
on page 181. Otherwise, get the ball rolling by issuing the following command to create a
new database called publications:

CREATE DATABASE publications;

A successful command will return a message that doesn’t mean much yet—Query 0K,
1 row affected (0.00 sec)—but will make sense soon. Now that you've created the
database, you want to work with it, so issue:

USE publications;

You should now see the message Database changed and will then be set to proceed with
the following examples.

Creating users

Now that you've seen how easy it is to use MySQL, and created your first database, it’s
time to look at how you create users, as you probably won’t want to grant your PHP
scripts root access to MySQL; it could cause a real headache should you get hacked.

To create a user, issue the GRANT command, which takes the following form (don’t type
this in; it’s not an actual working command):

GRANT PRIVILEGES ON database.object TO 'username'@'hostname’
IDENTIFIED BY 'password';

Accessing MySQL via the Command Line | 179



All this should be pretty straightforward, with the possible exception of the data
base.object part, which refers to the database itself and the objects it contains, such
as tables (see Table 8-4).

Table 8-4. Example parameters for the GRANT command

Arguments Meaning

* % All databases and all their objects
database.* Only the database called database and all its objects
database.object Onlythe database called database and its object called object

Solet’s create a user who can access just the new publications database and all its objects,
by entering the following (replacing the username jim and the password mypasswd with
ones of your choosing):

GRANT ALL ON publications.* TO 'jim'@'localhost' IDENTIFIED BY 'mypasswd';

What this does is allow the user jim@localhost full access to the publications database
using the password mypasswd. You can test whether this step has worked by entering
quit to exit and then rerunning MySQL the way you did before, but instead of entering
-u root -p, type -u jim -p, or whatever username you created. See Table 8-5 for the
correct command for your operating system. Modify it as necessary if the mysgl client
program is installed in a different directory on your system.

Table 8-5. Starting MySQL and logging in as jim@localhost

0S Example command
Windows "C:\Program Files\Zend\MySQL55\bin\mysql" -u jim -p
MacOSX /Applications/MAMP/Library/bin/mysql -u jim -p

Linux mysql -u jim -p

All you have to do now is enter your password when prompted and you will be logged
in. By the way; if you prefer, you can place your password immediately following the -p
(without any spaces) to avoid having to enter it when prompted. But this is considered
a poor practice, because if other people are logged into your system, there may be ways
for them to look at the command you entered and find out your password.

180 | Chapter 8: Introduction to MySQL



You can grant only privileges that you already have, and you must also
have the privilege to issue GRANT commands. There is a whole range
of privileges you can choose to grant if you are not granting all priv-
ileges. For further details, visit http://tinyurl.com/mysqlgrant, which
also covers the REVOKE command, which can remove privileges once
granted.

Also be aware that if you create a new user but do not specify an
IDENTIFIED BY clause, the user will have no password, a situation that
is very insecure and should be avoided.

Creating a table

At this point, you should now be logged into MySQL with ALL privileges granted for the
database publications (or a database that was created for you), so you're ready to create
your first table. Make sure the correct database is in use by typing the following (re-
placing publications with the name of your database if it is different):

USE publications;

Now enter the commands in Example 8-3 one line at a time.

Example 8-3. Creating a table called classics

CREATE TABLE classics (
author VARCHAR(128),

title VARCHAR(128),

type VARCHAR(16),

year CHAR(4)) ENGINE MyISAM;

You could also issue this command on a single line like this:

CREATE TABLE classics (author VARCHAR(128), title VARCHAR(128),
type VARCHAR(16), year CHAR(4)) ENGINE MyISAM;

but MySQL commands can be long and complicated, so I recom-
mend one line per instruction until you are comfortable with longer
lines.

MySQL should then issue the response Query OK, 0 rows affected, along with how
long it took to execute the command. If you see an error message instead, check your
syntax carefully. Every parenthesis and comma counts, and typing errors are easy to
make. In case you are wondering, the ENGINE MyISAM tells MySQL the type of database
engine to use for this table.

To check whether your new table has been created, type:

DESCRIBE classics;

Accessing MySQL via the Command Line | 181



All being well, you will see the sequence of commands and responses shown in
Example 8-4, where you should particularly note the table format displayed.

Example 8-4. A MySQL session: creating and checking a new table

mysql> USE publications;
Database changed
mysql> CREATE TABLE classics (
-> author VARCHAR(128),
-> title VARCHAR(128),
-> type VARCHAR(16),
-> year CHAR(4)) ENGINE MyISAM;
Query OK, 0 rows affected (0.03 sec)

mysql> DESCRIBE classics;

dmmmmmma- T e = Hemmmmmma- Hmmmmmn +
| Field | Type | Null | Key | Default | Extra |
dmmmmmma- T mmmme- e Hommmmmma- Hmmmmmn +
| author | varchar(128) | YES | | NULL | |
| title | varchar(128) | YES | | NULL | |
| type | varchar(16) | YES | | NULL | |
| year | char(4) | YES | | NULL | |
dmmmmmmae Hommmmmmmamaeas - emm- Hommmmmaae Hmmmmmee +

4 rows in set (0.00 sec)

The DESCRIBE command is an invaluable debugging aid when you need to ensure that
you have correctly created a MySQL table. You can also use it to remind yourself about
a table’s field or column names and the types of data in each one. Let’s look at each of
the headings in detail:

Field
The name of each field or column within a table.

Type
The type of data being stored in the field.

Null
Whether a field is allowed to contain a value of NULL.

Key
MySQL supports keys or indexes, which are quick ways to look up and search for
data. The Key heading shows what type of key (if any) has been applied.

Default
The default value that will be assigned to the field if no value is specified when a
new row is created.

Extra
Additional information, such as whether a field is set to auto-increment.

182 | Chapter 8: Introduction to MySQL



Data Types

In Example 8-3, you may have noticed that three of the table’s fields were given the data
type of VARCHAR, and one was given the type CHAR. The term VARCHAR stands for VARiable
length CHARacter string, and the command takes a numeric value that tells MySQL the
maximum length allowed for a string stored in this field.

This data type is very useful, as MySQL can then plan the size of databases and perform
lookups and searches more easily. The downside is that if you ever attempt to assign a
string value longer than the length allowed, it will be truncated to the maximum length
declared in the table definition.

The year field, however, has more predictable values, so instead of VARCHAR we use the
more efficient CHAR(4) data type. The parameter of 4 allows for four bytes of data,
supporting all years from —999 to 9999; a byte comprises 8 bits and can have the values
00000000 through 11111111, which are 0 to 255 in decimal.

You could, of course, just store two-digit values for the year, but if your data is going to
still be needed in the following century, or may otherwise wrap around, it will have to
be sanitized first—much like the “millennium bug” that would have caused dates be-
ginning on January 1, 2000, to be treated as 1900 on many of the world’s biggest com-
puter installations.

The reason I didn’t use the YEAR data type in the classics table is because
it supports only the year 0000, and years 1901 through 2155. This is
because MySQL stores the year in a single byte for reasons of effi-
ciency, but it also means that only 256 years are available, and the
publication years of the titles in the classics table are well before this.

Both CHAR and VARCHAR accept text strings and impose a limit on the size of the field.
The difference is that every string in a CHAR field has the specified size. If you put in a
smaller string, it is padded with spaces. A VARCHAR field does not pad the text; it lets the
size of the field vary to fit the text that is inserted. But VARCHAR requires a small amount
of overhead to keep track of the size of each value. So CHAR is slightly more efficient if
the sizes are similar in all records, whereas VARCHAR is more efficient if sizes can vary a
lot and get large. In addition, the overhead causes access to VARCHAR data to be slightly
slower than to CHAR data.

The CHAR data type

Table 8-6 lists the CHAR data types. All these types offer a parameter that sets the maxi-
mum (or exact) length of the string allowed in the field. As the table shows, each type
has a built-in maximum number of bytes it can occupy.

Accessing MySQL via the Command Line | 183



Table 8-6. MySQL’s CHAR data types

Data type Bytes used Examples
CHAR(n) exactly n(<256) CHAR(5S) “Hello” uses 5 bytes
CHAR(57) “Goodbye” uses 57 bytes

VARCHAR(n) upton(<65536) VARCHAR(7) “Morning” uses 7 bytes
VARCHAR(100) “Night” uses 5 bytes

The BINARY data type

TheBINARY data type is used for storing strings of full bytes that do not have an associated
character set. For example, you might use the BINARY data type to store a GIF image (see
Table 8-7).

Table 8-7. MySQL’s BINARY data types

Data type Bytes used Examples
BINARY(n) or BYTE(n) exactly n(<256) As CHAR but contains binary data
VARBINARY(n) up to n (< 65,536) As VARCHAR but for binary data

The TEXT and VARCHAR data types
The differences between TEXT and VARCHAR are small:
o Prior to version 5.0.3, MySQL would remove leading and trailing spaces from
VARCHAR fields.
o TEXT fields cannot have default values.
« MySQL indexes only the first n characters of a TEXT column (you specify n when

you create the index).

What this means is that VARCHAR is the better and faster data type to use if you need to
search the entire contents of a field. If you will never search more than a certain number
of leading characters in a field, you should probably use a TEXT data type (see Table 8-8).

Table 8-8. MySQL’s TEXT data types

Data type Bytes used Attributes
TINYTEXT(n)  upton(<256) Treated as a string with a character set
TEXT(n) upton(<65536) Treated as a string with a character set

MEDIUMTEXT(n) upton(<1.67e+7) Treated as astring with a character set
LONGTEXT(n)  upton(<4.29e+9) Treated as a string with a character set

The BLOB data type

The term BLOB stands for Binary Large OBject and therefore, as you would think, the
BLOB data type is most useful for binary data in excess of 65,536 bytes in size. The main

184 | Chapter 8: Introduction to MySQL



other difference between the BLOB and BINARY data types is that BLOBs cannot have
default values (see Table 8-9).

Table 8-9. MySQL’s BLOB data types

Data type Bytes used Attributes
TINYBLOB(n) up to n (< 256) Treated as binary data—no character set
BLOB(n) up to n (<=65,536) Treated as binary data—no character set

MEDIUMBLOB(n) upton(< 1.67e+7) Treated as binary data—no character set
LONGBLOB(n)  upton(<4.29e+9) Treated as binary data—no character set

Numeric data types

MySQL supports various numeric data types from a single byte up to double-precision
floating-point numbers. Although the most memory that a numeric field can use up is
8 bytes, you are well advised to choose the smallest data type that will adequately handle
the largest value you expect. Your databases will be small and quickly accessible.

Table 8-10 lists the numeric data types supported by MySQL and the ranges of values
they can contain. In case you are not acquainted with the terms, a signed number is one
with a possible range from a minus value, through 0, to a positive one, and an unsigned
one has a value ranging from 0 to a positive one. They can both hold the same number
of values; just picture a signed number as being shifted halfway to the left so that half
its values are negative and half are positive. Note that floating-point values (of any
precision) may only be signed.

Table 8-10. MySQL’s numeric data types

Data type Bytes Minimum value Maximum value
used  Gioned Unsigned Signed  Unsigned
TINYINT 1 —128 0 127 255
SMALLINT 2 —32,768 0 32,761 65,535
MEDIUMINT 3 —838e+6 0 838e+6  1.67e+7
INT or INTEGER 4 —215%+9 0 215+9  4.29e+9
BIGINT 8 —922e+18 0 9.22e+18  1.84e+19
FLOAT 4 —3.40e+38 n/a 3.40e+38 n/a
DOUBLE orREAL 8 —1.80e+308 n/a 1.80e+308 n/a

To specify whether a data type is signed or unsigned, use the UNSIGNED qualifier. The
following example creates a table called tablename with a field in it called fieldname of
the data type UNSIGNED INTEGER:

CREATE TABLE tablename (fieldname INT UNSIGNED);

Accessing MySQL via the Command Line | 185



When creating a numeric field, you can also pass an optional number as a parameter,
like this:

CREATE TABLE tablename (fieldname INT(4));

But you must remember that, unlike BINARY and CHAR data types, this parameter does
not indicate the number of bytes of storage to use. It may seem counterintuitive, but
what the number actually represents is the display width of the data in the field when it
is retrieved. It is commonly used with the ZEROFILL qualifier like this:

CREATE TABLE tablename (fieldname INT(4) ZEROFILL);

What this does is cause any numbers with a width of less than four characters to be
padded with one or more zeros, sufficient to make the display width of the field four
characters long. When a field is already of the specified width or greater, no padding
takes place.

DATE and TIME

The main remaining data types supported by MySQL relate to the date and time and
can be seen in Table 8-11.

Table 8-11. MySQL’s DATE and TIME data types

Datatype  Time/date format

DATETIME '0000-00-00 00:00:00'

DATE '0000-00-00"

TIMESTAMP '0000-00-00 00:00:00'

TIME '00:00:00"

YEAR 0000 (Only years 0000 and 1901-2155)

The DATETIME and TIMESTAMP data types display the same way. The main difference is
that TIMESTAMP has a very narrow range (from the years 1970 through 2037), whereas
DATETIME will hold just about any date you're likely to specify, unless you're interested
in ancient history or science fiction.

TIMESTAMP is useful, however, because you can let MySQL set the value for you. If you
don’t specify the value when adding a row, the current time is automatically inserted.
You can also have MySQL update a TIMESTAMP column each time you change a row.

The AUTO_INCREMENT data type

Sometimes you need to ensure that every row in your database is guaranteed to be
unique. You could do this in your program by carefully checking the data you enter and
making sure that there is at least one value that differs in any two rows, but this approach
is error-prone and works only in certain circumstances. In the classics table, for instance,
an author may appear multiple times. Likewise, the year of publication will also be

186 | (Chapter 8: Introduction to MySQL



frequently duplicated, and so on. It would be hard to guarantee that you have no du-
plicate rows.

The general solution is to use an extra column just for this purpose. In a while, we’ll
look at using a publication’s ISBN (International Standard Book Number), but first I'd
like to introduce the AUTO_INCREMENT data type.

As its name implies, a column given this data type will set the value of its contents to
that of the column entry in the previously inserted row, plus 1. Example 8-5 shows how
to add a new column called id to the table classics with auto-incrementing.

Example 8-5. Adding the auto-incrementing column id

ALTER TABLE classics ADD id INT UNSIGNED NOT NULL AUTO_INCREMENT KEY;

This is your introduction to the ALTER command, which is very similar to the CREATE
command. ALTER operates on an existing table, and can add, change, or delete columns.
Our example adds a column named id with the following characteristics:

INT UNSIGNED
Makes the column take an integer large enough for you to store more than 4 billion
records in the table.

NOT NULL
Ensures that every column has a value. Many programmers use NULL in a field to
indicate that the field doesn’t have any value. But that would allow duplicates, which
would violate the whole reason for this column’s existence. So we disallow NULL
values.

AUTO_INCREMENT
Causes MySQL to set a unique value for this column in every row, as described
earlier. We don't really have control over the value that this column will take in each
row, but we don’t care: all we care about is that we are guaranteed a unique value.

KEY
An auto-increment column is useful as a key, because you will tend to search for
rows based on this column, as explained in the section “Indexes” on page 192.

Each entry in the column id will now have a unique number, with the first starting at 1
and the others counting upward from there. And whenever a new row is inserted, its id
column will automatically be given the next number in sequence.

Rather than applying the column retroactively, you could have included it by issuing
the CREATE command in slightly different format. In that case, the command in
Example 8-3 would be replaced with Example 8-6. Check the final line in particular.

Accessing MySQL via the Command Line | 187



Example 8-6. Adding the auto-incrementing id column at table creation

CREATE TABLE classics (

author VARCHAR(128),

title VARCHAR(128),

type VARCHAR(16),

year CHAR(4),

id INT UNSIGNED NOT NULL AUTO_INCREMENT KEY) ENGINE MyISAM;

If you wish to check whether the column has been added, use the following command
to view the table’s columns and data types:

DESCRIBE classics;

Now that we’ve finished with it, the id column is no longer needed, so if you created it
using Example 8-5, you should now remove the column using the command in
Example 8-7.

Example 8-7. Removing the id column

ALTER TABLE classics DROP 1id;

Adding data to a table

To add data to a table, use the INSERT command. Let’s see this in action by populating
the table classics with the data from Table 8-1, using one form of the INSERT command
repeatedly (Example 8-8).

Example 8-8. Populating the classics table

INSERT INTO classics(author, title, type, year)

VALUES('Mark Twain','The Adventures of Tom Sawyer','Fiction',b'1876');
INSERT INTO classics(author, title, type, year)

VALUES('Jane Austen','Pride and Prejudice','Fiction','1811');

INSERT INTO classics(author, title, type, year)

VALUES('Charles Darwin','The Origin of Species','Non-Fiction','1856');
INSERT INTO classics(author, title, type, year)

VALUES('Charles Dickens','The 0ld Curiosity Shop','Fiction','1841');
INSERT INTO classics(author, title, type, year)

VALUES('William Shakespeare','Romeo and Juliet','Play','1594');

After every second line, you should see a Query OK message. Once all lines have been
entered, type the following command, which will display the table’s contents (the result
should look like Figure 8-4):

SELECT * FROM classics;

Don’'t worry about the SELECT command for now—we’ll come to it in the section
“Querying a MySQL Database” on page 198. Suffice it to say that, as typed, it will display
all the data you just entered.

188 | Chapter 8: Introduction to MySQL



BN C\Windows\system32\cmd.exe | = | (S -

mysgl> INSERT INTO clas s{author,. title, type. year)
—>» UALUES<’ Charles Darwin’.’'The Origin of Species’.’Non—-Fiction’,’185%6°>;
Query OK. 1 row affected (B.88 sec)

mysgl> INSERT INTO classics{author, title. type, yeard
—>» UALUES<’ Charles Dickens’.'The 0ld Curiosity Shop’.’'Fiction’.’1841'3;
Query OK. 1 row affected (B.88 sec)

mysgl> INSERT INTO classics{author,. title. type,. yeard
—>» UALUES¢'William Shakespeare’,.’Romeo and Juliet’.’Play’.’1594°>;
Query OK. 1 row affected (B.B0 sec)

mysgl> SELECT »* FROM cl.
+

Mark Twain The Adventures of Tom Sawyer
i Jane Austen Pride and Prejudice Fiction
Darwin The Origin of Species Hon—Fiction
Dicke The 01d Curiosity Shop Fiction
Romeo and Ju

Figure 8-4. Populating the classics table and viewing its contents

Let’s go back and look at how we used the INSERT command. The first part, INSERT INTO
classics, tells MySQL where to insert the following data. Then, within parentheses,
the four column names are listed—author, title, type, and year—all separated by com-
mas. This tells MySQL that these are the fields into which the data is to be inserted.

The second line of each INSERT command contains the keyword VALUES followed by
four strings within parentheses, and separated by commas. This supplies MySQL with
the four values to be inserted into the four columns previously specified. (As always,
my choice of where to break the lines was arbitrary.)

Each item of data will be inserted into the corresponding column, in a one-to-one cor-
respondence. If you accidentally listed the columns in a different order from the data,
the data would go into the wrong columns. And the number of columns must match
the number of data items.

Renaming a table

Renaming a table, like any other change to the structure or meta information about a
table, is achieved via the ALTER command. So, for example, to change the name of table
classics to pre1900, use the following command:

ALTER TABLE classics RENAME pre1900;

If you tried that command, you should revert the table name by entering the following,
so that later examples in this chapter will work as printed:

ALTER TABLE pre1900 RENAME classics;

Accessing MySQL via the Command Line | 189



Changing the data type of a column

Changing a column’s data type also makes use of the ALTER command, this time in
conjunction with the MODIFY keyword. So to change the data type of column year from
CHAR(4) to SMALLINT (which requires only two bytes of storage and so will save disk
space), enter the following:

ALTER TABLE classics MODIFY year SMALLINT;

When you do this, if the conversion of data type makes sense to MySQL, it will auto-
matically change the data while keeping the meaning. In this case, it will change each
string to a comparable integer, and so on, as the string is recognizable as referring to an
integer.

Adding a new column

Let’s suppose that you have created a table and populated it with plenty of data, only to
discover you need an additional column. Not to worry. Here’s how to add the new
column pages, which will be used to store the number of pages in a publication:

ALTER TABLE classics ADD pages SMALLINT UNSIGNED;

This adds the new column with the name pages using the UNSIGNED SMALLINT data type,
sufficient to hold a value of up to 65,535—hopefully that’s more than enough for any
book ever published!

And, if you ask MySQL to describe the updated table using the DESCRIBE command, as
follows, you will see the change has been made (see Figure 8-5):

DESCRIBE classics;

BN C\Windows\system32\cmd.exe | = | (S -

i varchar{i128>
varchar(128>
varchar{(i6)

mallint{6>

+ommmm———
+ommmm———

set (B.81 sec)

mys=gl> ALTER TABLE classics ADD pages SMALLINT
Query OK. 5 rows affected (B.82 sec)
[Records: 5 Duplicates: @ Warnings: 8

ysql> DESCRIBE classics;
i

varchar(128>
varchar(128>
varchar{(i6)
smallint{6>
mallint{5> wunsigned

b omm e ————

b omm e m————
b omm e m————
b omm e m————

Figure 8-5. Adding the new pages column and viewing the table

190 | Chapter8: Introduction to MySQL



Renaming a column

Looking again at Figure 8-5, you may decide that having a column named type can be
confusing, because that is the name used by MySQL to identify data types. Again, no
problem—Ilet’s change its name to category, like this:

ALTER TABLE classics CHANGE type category VARCHAR(16);

Note the addition of VARCHAR(16) on the end of this command. That’s because the
CHANGE keyword requires the data type to be specified, even if you don’t intend to change
it, and VARCHAR(16) was the data type specified when that column was initially created

as type.

Removing a column

Actually, upon reflection, you might decide that the page count column pages isn't ac-
tually all that useful for this particular database, so here’s how to remove that column
using the DROP keyword:

ALTER TABLE classics DROP pages;
Remember that DROP is irreversible and you should always use it with

caution, because you could inadvertently delete entire tables (and
even databases) with it if you are not careful!

Deleting a table

Deleting a table is very easy indeed. But, because I don’t want you to have to reenter all
the data for the classics table, let’s quickly create a new table, verify its existence, and
then delete it by typing the commands in Example 8-9. The result of these four com-
mands should look like Figure 8-6.

Example 8-9. Creating, viewing, and deleting a table

CREATE TABLE disposable(trash INT);
DESCRIBE disposable;

DROP TABLE disposable;

SHOW tables;

Accessing MySQL via the Command Line | 191



BN C\Windows\system32\cmd.exe | = | (S -
i row in set (B.B8 secl

my=gl> CREATE TABLE disposable{trash INI>;
Query OK. B rows affected (B.81 sec)

+
i row in set (B.81 sec)

mysgl> DROF TABLE disposahble;
Query OK. B rows affected (B.88 sec)

Figure 8-6. Creating, viewing, and deleting a table

Indexes

As things stand, the table classics works and can be searched without problem by
MySQL—until it grows to more than a couple of hundred rows, that is. At that point,
database accesses will get slower and slower with every new row added, because MySQL
has to search through every row whenever a query is issued. This is like searching
through every book in a library whenever you need to look something up.

Of course, you don’t have to search libraries that way, because they have either a card
index system or, most likely, a database of their own. And the same goes for MySQL,
because at the expense of a slight overhead in memory and disk space, you can create a
“card index” for a table that MySQL will use to conduct lightning-fast searches.

Creating an Index

The way to achieve fast searches is to add an index, either when creating a table or at
any time afterward. But the decision is not so simple. For example, there are different
index types such as a regular INDEX, PRIMARY KEY, and FULLTEXT. Also, you must decide
which columns require an index, a judgment that requires you to predict whether you
will be searching any of the data in that column. Indexes can also get complicated,
because you can combine multiple columns in one index. And even when you've decided
that, you still have the option of reducing index size by limiting the amount of each
column to be indexed.

192 | Chapter8: Introduction to MySQL



If we imagine the searches that may be made on the classics table, it becomes apparent
that all of the columns may need to be searched. However, if the pages column created
in the section “Adding a new column” on page 190 had not been deleted, it would prob-
ably not have needed an index, as most people would be unlikely to search for books by
the number of pages they have. Anyway, go ahead and add an index to each of the
columns, using the commands in Example 8-10.

Example 8-10. Adding indexes to the classics table

ALTER TABLE classics ADD INDEX(author(20));
ALTER TABLE classics ADD INDEX(title(20));
ALTER TABLE classics ADD INDEX(category(4));
ALTER TABLE classics ADD INDEX(year);
DESCRIBE classics;

The first two commands create indexes on both the author and title columns, limiting
each index to only the first 20 characters. For instance, when MySQL indexes the fol-
lowing title:

The Adventures of Tom Sawyer
It will actually store in the index only the first 20 characters:
The Adventures of To

This is done to minimize the size of the index, and to optimize database access speed.
I chose 20 because it’s likely to be sufficient to ensure uniqueness for most strings in
these columns. If MySQL finds two indexes with the same contents, it will have to waste
time going to the table itself and checking the column that was indexed to find out which
rows really matched.

With the category column, currently only the first character is required to identify a
string as unique (F for Fiction, N for Non-Fiction, and P for Play), but I chose an index
of four characters to allow for future category types that may be unique only after four
characters. You can also re-index this column later, when you have a more complete set
of categories. And finally, I set no limit to the year column’s index, because it’s an integer,
not a string.

The results of issuing these commands (and a DESCRIBE command to confirm that they
worked) can be seen in Figure 8-7, which shows the key MUL for each column. This key
means that multiple occurrences of a value may occur within that column, which is
exactly what we want, as authors may appear many times, the same book title could be
used by multiple authors, and so on.

Indexes | 193



BN C\Windows\system32\cmd.exe | = | (S -

mysgl> ALTER TABLE classics ADD INDEX(title(28>>;
Query OK. 5 rows affected (B.82 sec)
[Records: 5 Duplicates: @ Warnings: 8

my=gl> ALTER TABLE classics ADD INDER(category{4l);
Query OK. 5 rows affected (B.B83 sec)
[Records: 5 Duplicates: @ Warnings: 8

mys=gl> ALTER TABLE classics ADD INDEX{year>;
Query 0K, 5 rows affected (B.B6 sec)
[Records: 5 Duplicates: @ Warnings: 8

mysql> DESCRIBE classics;
+- +

———————————————————————— ——

Default

+ +
1 1
i i
I I
i i
1 1
i i
I I
i i
+ +

varchar(128>
varchar(128>
category varchar{i6>
LEVY smallint{6>

b omm e ==

Figure 8-7. Adding indexes to the classics table

Using CREATE INDEX

An alternative to using ALTER TABLE to add an index is to use the CREATE INDEX com-
mand. They are equivalent, except that CREATE INDEX cannotbe used to create a PRIMARY
KEY (see the section “Primary keys” on page 195). The format of this command is shown
in the second line of Example 8-11.

Example 8-11. These two commands are equivalent

ALTER TABLE classics ADD INDEX(author(20));
CREATE INDEX author ON classics (author(20));

Adding indexes when creating tables

You don’t have to wait until after creating a table to add indexes. In fact, doing so can
be time consuming, as adding an index to a large table can take a very long time. There-
fore, let’s look at a command that creates the table classics with indexes already in place.

Example 8-12 is a reworking of Example 8-3 in which the indexes are created at the
same time as the table. Note that to incorporate the modifications made in this chapter,
this version uses the new column name category instead of type and sets the data type
of year to SMALLINT instead of CHAR(4). If you want to try it out without first deleting
your current classics table, change the word classics in line 1 to something else like
classics1, then drop classics1 after you have finished with it.

Example 8-12. Creating the table classics with indexes

CREATE TABLE classics (
author VARCHAR(128),
title VARCHAR(128),
category VARCHAR(16),
year SMALLINT,

194 | Chapter8: Introduction to MySQL



INDEX(author(20)),
INDEX(title(20)),
INDEX(category(4)),
INDEX(year)) ENGINE MyISAM;

Primary keys

So far, you've created the table classics and ensured that MySQL can search it quickly
by adding indexes, but there’s still something missing. All the publications in the table
can be searched, but there is no single unique key for each publication to enable instant
accessing of a row. The importance of having a key with a unique value for each row
will come up when we start to combine data from different tables.

The section “The AUTO_INCREMENT data type” on page 186 briefly introduced the
idea of a primary key when creating the auto-incrementing column id, which could
have been used as a primary key for this table. However, I wanted to reserve that task
for a more appropriate column: the internationally recognized ISBN number.

Solet’s go ahead and create a new column for this key. Now, bearing in mind that ISBNs
are 13 characters long, you might think that the following command would do the job:

ALTER TABLE classics ADD isbn CHAR(13) PRIMARY KEY;

But it doesn’t. If you try it, you'll get the error Duplicate entry for key 1. The reason
is that the table is already populated with some data and this command is trying to add
a column with the value NULL to each row, which is not allowed, as all values must be
unique in any column having a primarykey index. However, if there were no data already
in the table, this command would work just fine, as would adding the primary key index
upon table creation.

In our current situation, we have to be a bit sneaky and create the new column without
an index, populate it with data, and then add the index retrospectively using the com-
mands in Example 8-13. Luckily, each of the years is unique in the current set of data,
so we can use the year column to identify each row for updating. Note that this example
uses the UPDATE and WHERE keywords, which are explained in more detail in the section
“Querying a MySQL Database” on page 198.

Example 8-13. Populating the isbn column with data and using a primary key

ALTER TABLE classics ADD isbn CHAR(13);

UPDATE classics SET isbn='9781598184891' WHERE year='1876";
UPDATE classics SET isbn='9780582506206' WHERE year='1811"';
UPDATE classics SET isbn='9780517123201' WHERE year='1856";
UPDATE classics SET isbn='9780099533474' WHERE year='1841"';
UPDATE classics SET isbn='9780192814968' WHERE year='1594';
ALTER TABLE classics ADD PRIMARY KEY(isbn);

DESCRIBE classics;

Indexes | 195



Once you have typed these commands, the results should look like Figure 8-8. Note that
the keywords PRIMARY KEY replace the keyword INDEX in the ALTER TABLE syntax
(compare Examples 8-10 and 8-13).

BN C\Windows\system32\cmd.exe | = | (S -
mysgl> UPDATE classics SET ishn='978AB99533474' WHERE year='1841’;

Query 0K, 1 row affected (B.88 sec)
Rows matched: 1 Changed: 1 Warnings: 8

mysgl> UPDATE classics SET isbhn='9788192814968°' WHERE year='1594’;
Query 0K, 1 row affected (B.88 sec)
Rows matched: 1 Changed: 1 Warnings: 8

mysgl> ALTER TABLE classics ADD PRIMARY KEY <(ishn>;
Query OK. 5 rows affected (B.82 sec)
[Records: 5 Duplicates: @ Warnings: 8

mysgl> DESCRIBE cla:
+-

—————————— —

Default

author

title C

category varchar{i6>

year smallint{6>
hi char{i13>

b ommmmm————
b ommmmm————
b ommmmm————

rows in set (B.81 sec)

Figure 8-8. Retrospectively adding a primary key to the classics table

To have created a primary key when the table classics was created, you could have used
the commands in Example 8-14. Again, rename classics in line 1 to something else if
you wish to try this example for yourself, and then delete the test table afterward.

Example 8-14. Creating the table classics with a primary key

CREATE TABLE classics (
author VARCHAR(128),
title VARCHAR(128),
category VARCHAR(16),
year SMALLINT,
isbn CHAR(13),
INDEX(author(20)),
INDEX(title(20)),
INDEX(category(4)),
INDEX(year),

PRIMARY KEY (isbn)) ENGINE MyISAM;

Creating a FULLTEXT index

Unlike a regular index, MySQLSs FULLTEXT allows super-fast searches of entire columns
of text. It stores every word in every data string in a special index that you can search
using “natural language,” in a similar manner to using a search engine.

196 | Chapter8: Introduction to MySQL



Actually, it’s not strictly true that MySQL stores all the words in a
FULLTEXT index, because it has a built-in list of more than 500 words
that it chooses to ignore because they are so common that they aren’t
very helpful for searching anyway. This list, called stopwords, in-
cludes the, as, is, of, and so on. The list helps MySQL run much more
quickly when performing a FULLTEXT search and keeps database sizes
down. Appendix C contains the full list of stopwords.

Here are some things that you should know about FULLTEXT indexes:

o FULLTEXT indexes can be used only with MyISAM tables, the type used by MySQLs
default storage engine (MySQL supports at least 10 different storage engines). If
you need to convert a table to MyISAM, you can usually use the MySQL command
ALTER TABLE tablename ENGINE = MyISAM;.

o FULLTEXT indexes can be created for CHAR, VARCHAR, and TEXT columns only.

o A FULLTEXT index definition can be given in the CREATE TABLE statement when a
table is created, or added later using ALTER TABLE (or CREATE INDEX).

o Forlarge data sets, itis much faster toload your data into a table thathas no FULLTEXT
index and then create the index than to load data into a table that has an existing
FULLTEXT index.

To create a FULLTEXT index, apply it to one or more records as in Example 8-15, which
adds a FULLTEXT index to the pair of columns author and title in the table classics (this
index is in addition to the ones already created and does not affect them).

Example 8-15. Adding a FULLTEXT index to the table classics

ALTER TABLE classics ADD FULLTEXT(author,title);

You can now perform FULLTEXT searches across this pair of columns. This feature could
really come into its own if you could now add the entire text of these publications to
the database (particularly as they’re out of copyright protection) and they would be fully
searchable. See the section “MATCH ... AGAINST” on page 202 for a description of
searches using FULLTEXT.

If you find that MySQL is running slower than you think it should be
when accessing your database, the problem is usually related to your
indexes. Either you don't have an index where you need one, or the
indexes are not optimally designed. Tweaking a table’s indexes will
often solve such a problem. Performance is beyond the scope of this
book, but in Chapter 9 I give you a few tips so you know what to look
for.

Indexes | 197



Querying a MySQL Database

So far, we've created a MySQL database and tables, populated them with data, and added
indexes to make them fast to search. Now it’s time to look at how these searches are
performed, and the various commands and qualifiers available.

SELECT

As you saw in Figure 8-4, the SELECT command is used to extract data from a table. In
that section, I used its simplest form to select all data and display it—something you
will never want to do on anything but the smallest tables, because all the data will scroll
by at an unreadable pace. Let’s now examine SELECT in more detail.

The basic syntax is:
SELECT something FROM tablename;

The something can be an * (asterisk) as you saw before, which means “every column,”
or you can choose to select only certain columns. For instance, Example 8-16 shows
how to select just the author and title and just the title and isbn. The result of typing
these commands can be seen in Figure 8-9.

Example 8-16. Two different SELECT statements

SELECT author,title FROM classics;
SELECT title,isbn FROM classics;

BN C\Windows\system32\cmd.exe | = | (S -

The Adventures of Tom Sawyer
Jane Austen Pride and Prejudice
Charles Darwin The Origin of Species
Dickens The 01d Curiosity Shop
Romeo and Juliet
+

5 rows in set (B.88 sec)

mysql> SELECT title.ishn FROM clas

ide and Prejudice 788582506286
he Origin of Species 788517123281
he 01d Curiosity Shop 788099533474
Romeo and Juliet 788192814968
+-

Figure 8-9. The output from two different SELECT statements

SELECT COUNT

Another replacement for the something parameter is COUNT, which can be used in many
ways. In Example 8-17, it displays the number of rows in the table by passing * as a

198 | Chapter8: Introduction to MySQL



parameter, which means “all rows.” As you'd expect, the result returned is 5, as there are
five publications in the table.

Example 8-17. Counting rows

SELECT COUNT(*) FROM classics;

SELECT DISTINCT

This qualifier (and its synonym DISTINCTROW) allows you to weed out multiple entries
when they contain the same data. For instance, suppose that you want a list of all authors
in the table. If you select just the author column from a table containing multiple books
by the same author, you'll normally see a long list with same author names over and
over. But by adding the DISTINCT keyword, you can show each author just once. So let’s
test that out by adding another row that repeats one of our existing authors
(Example 8-18).

Example 8-18. Duplicating data

INSERT INTO classics(author, title, category, year, isbn)

VALUES('Charles Dickens','Little Dorrit','Fiction','1857', '9780141439969');

Now that Charles Dickens appears twice in the table, we can compare the results of
using SELECT with and without the DISTINCT qualifier. Example 8-19 and Figure 8-10
show that the simple SELECT lists Dickens twice, and the command with the DISTINCT
qualifier shows him only once.

Example 8-19. With and without the DISTINCT qualifier

SELECT author FROM classics;
SELECT DISTINCT author FROM classics;

BN C\Windows\system32\cmd.exe | = | (S -

111
Darwin
Dickens
Dickens
Shakespeare
+

+
H
5

mysgl> _

Figure 8-10. Selecting data with and without DISTINCT

Indexes | 199



DELETE

When you need to remove a row from a table, use the DELETE command. Its syntax is
similar to the SELECT command and allows you to narrow down the exact row or rows
to delete using qualifiers such as WHERE and LIMIT.

Now that youve seen the effects of the DISTINCT qualifier, if you entered
Example 8-18, you should remove Little Dorrit by entering the commands in
Example 8-20.

Example 8-20. Removing the new entry
DELETE FROM classics WHERE title='Little Dorrit';

This example issues a DELETE command for all rows whose title column contains the
string Little Dorrit.

The WHERE keyword is very powerful, and important to enter correctly; an error could
lead a command to the wrong rows (or have no effect in cases where nothing matches
the WHERE clause). So now we’ll spend some time on that clause, which is the heart and
soul of SQL.

WHERE

The WHERE keyword enables you to narrow down queries by returning only those where
a certain expression is true. Example 8-20 returns only the rows where the column
exactly matches the string Little Dorrit, using the equality operator =. Example 8-21
shows a couple more examples of using WHERE with =.

Example 8-21. Using the WHERE keyword

SELECT author,title FROM classics WHERE author="Mark Twain";
SELECT author,title FROM classics WHERE isbn="9781598184891 ";

Given our current table, the two commands in Example 8-21 display the same results.
But we could easily add more books by Mark Twain, in which case the first line would
display all titles he wrote and the second line would continue (because we know the
ISBN is unique) to display The Adventures of Tom Sawyer.In other words, searches
using a unique key are more predictable, and you'll see further evidence later of the
value of unique and primary keys.

You can also do pattern matching for your searches using the LIKE qualifier, which
allows searches on parts of strings. This qualifier should be used with a % character
before or after some text. When placed before a keyword, % means “anything before”
and after a keyword it means “anything after” Example 8-22 performs three different
queries, one for the start of a string, one for the end, and one for anywhere in a string.
You can see the results of these commands in Figure 8-11.

200 | Chapter8: Introduction to MySQL



Example 8-22. Using the LIKE qualifier

SELECT author,title FROM classics WHERE author LIKE "Charles%";
SELECT author,title FROM classics WHERE title LIKE "%Species";
SELECT author,title FROM classics WHERE title LIKE "%and%";

m C:AWindon -.s\systemSZ\cmd exe | = | (S -
WHERE author LIKE “Charlesx“;
—+

Charles Darwin he Origin of Species
Charles Dicke he 01d Curiosity Shop
+

'.JHERE title LIKE "xSpecies';

H

+
H

+

“zandz';

2 rows in set (H.8H .,ec)

Figure 8-11. Using WHERE with the LIKE qualifier

The first command outputs the publications by both Charles Darwin and Charles
Dickens because the LIKE qualifier was set to return anything matching the string
Charles followed by any other text. Then just The Origin of Species is returned,
because it’s the only row whose column ends with the string Species. Last, both Pride
and Prejudice and Romeo and Juliet are returned, because they both matched the
string and anywhere in the column.

The % will also match if there is nothing in the position it occupies; in other words, it
can match an empty string.

LIMIT

The LIMIT qualifier enables you to choose how many rows to return in a query, and
where in the table to start returning them. When passed a single parameter, it tells
MySQL to start at the beginning of the results and just return the number of rows given
in that parameter. If you pass it two parameters, the first indicates the offset from the
start of the results where MySQL should start the display, and the second indicates how
many to return. You can think of the first parameter as saying, “Skip this number of
results at the start”

Example 8-23 includes three commands. The first returns the first three rows from the
table. The second returns two rows starting at position 1 (skipping the first row). The

Indexes | 201



last command returns a single row starting at position 3 (skipping the first three rows).
Figure 8-12 shows the results of issuing these three commands.

Example 8-23. Limiting the number of results returned

SELECT author,title FROM classics LIMIT 3;
SELECT author,title FROM classics LIMIT 1,2;
SELECT author,title FROM classics LIMIT 3,1;

BN C\Windows\system32\cmd.exe | = | (S -
sgl> SELECT author.title FROM c ics LIMIT 3;
+

________________ il
I author

of Tom Sawyer
Pride and Prejudice
The Origin of Species
+

Figure 8-12. Restricting the rows returned with LIMIT

Be careful with the LIMIT keyword, because offsets start at 0, but the
number of rows to return starts at 1. So LIMIT 1,3 means return
three rows starting from the second row.

MATCH ... AGAINST

The MATCH ... AGAINST construct can be used on columns that have been given a
FULLTEXT index (see the section “Creating a FULLTEXT index” on page 196). With it,
you can make natural-language searches as you would in an Internet search engine.
Unlike the use of WHERE ... =orWHERE ... LIKE, MATCH ... AGAINST lets you enter
multiple words in a search query and checks them against all words in the FULLTEXT
columns. FULLTEXT indexes are case-insensitive, so it makes no difference what case is
used in your queries.

Assuming that you have added a FULLTEXT index to the author and title columns, enter
the three queries shown in Example 8-24. The first asks for any of these columns that
contain the word and to be returned. Because and is a stopword, MySQL will ignore it
and the query will always produce an empty set—no matter what is stored in the

202 | Chapter 8: Introduction to MySQL



columns. The second query asks for any rows that contain both of the words old and
shop anywhere in them, in any order, to be returned. And the last query applies the same
kind of search for the words tom and sawyer. Figure 8-13 shows the results of these
queries.

Example 8-24. Using MATCH ... AGAINST on FULLTEXT indexes

SELECT author,title FROM classics

WHERE MATCH(author,title) AGAINST('and');

SELECT author,title FROM classics

WHERE MATCH(author,title) AGAINST('old shop');
SELECT author,title FROM classics

WHERE MATCH(author,title) AGAINST('tom sawyer');

BN C\Windows\system32\cmd.exe | = | (S -

mysgl>
mysgl>
mysgl> SELECT author.title FROM classics
—> WHERE MATCH<author,.title> AGAINSTC’ and’>;
Empty set (A.B0 sec)

mysql> SELECT author,.title FROM classics
—>» WHERE MATCH{author.title> AGAINST<’old shop’>;

author

—
H

—
row in set (B.88 sec)

Figure 8-13. Using MATCH ... AGAINST on a FULLTEXT index

MATCH ... AGAINST ... IN BOOLEAN MODE

If you wish to give your MATCH ... AGAINST queries even more power, use Boolean
mode. This changes the effect of the standard FULLTEXT query so that it searches for any
combination of search words, instead of requiring all search words to be in the text. The
presence of a single word in a column causes the search to return the row.

Boolean mode also allows you to preface search words with a + or - sign to indicate
whether they must be included or excluded. If normal Boolean mode says, “Any of these
words will do,” a plus sign means “This word must be present; otherwise, don't return
the row” A minus sign means “This word must not be present; its presence disqualifies
the row from being returned.

Example 8-25 illustrates Boolean mode through two queries. The first asks for all rows
containing the word charles and not the word species to be returned. The second uses

Indexes | 203



double quotes to request that all rows containing the exact phrase origin of be returned.
Figure 8-14 shows the results of these queries.

Example 8-25. Using MATCH ... AGAINST ... IN BOOLEAN MODE

SELECT author,title FROM classics

WHERE MATCH(author,title)

AGAINST('+charles -species' IN BOOLEAN MODE);
SELECT author,title FROM classics

WHERE MATCH(author,title)

AGAINST('"origin of"' IN BOOLEAN MODE);

BN C\Windows\system32\cmd.exe | = | (S -

mysgl>
mysgl>
mysgl>
mysgl>
mysgl> SELECT author.title FROM classics
—> WHERE MATCHCauthor.titlel
' HGHINST(‘+cha1 —spec1es‘ IN BOOLERN MODE> ;

Figure 8-14. Using MATCH ... AGAINST ... IN BOOLEAN MODE

Asyouwould expect, the first request returns only The 0ld Curiosity Shop by Charles
Dickens, because any rows containing the word species have been excluded, so Charles
Darwin’s publication is ignored.

There is something of interest to note in the second query: the stop-
word of is part of the search string, but is still used by the search
because the double quotation marks override stopwords.

UPDATE ... SET

This construct allows you to update the contents of a field. If you wish to change the
contents of one or more fields, you need to first narrow in on just the field or fields to
be changed, in much the same way you use the SELECT command. Example 8-26 shows
the use of UPDATE ... SET in two different ways. You can see the results in Figure 8-15.

204 | Chapter 8: Introduction to MySQL



Example 8-26. Using UPDATE ... SET

UPDATE classics SET author='Mark Twain (Samuel Langhorne Clemens)'
WHERE author='Mark Twain';

UPDATE classics SET category='Classic Fiction'

WHERE category="'Fiction';

BN C\Windows\system32\cmd.exe | = | (S -
mysgl>

my=gl> UPDATE classics SET author='Mark Twain <(Samuel Langhorne Clemens>’
—» WHERE author='Mark Twain’;

Query 0K, 1 row affected (B.88 sec)

Rows matched: 1 Changed: 1 Warnings: 8

my=gl> UPDATE classics SET category='Classic Fiction’
—» WHERE category='Fiction';

Query OK. 3 rows affected (B.08 sec)

Rows matched: 3 Changed: 3 Warnings: 8

1> SELECT author.category FROM cla:

i Mark Twain (Samuel Langhorne Clemens>

i Jane Austen
Darwin
Dicke
Shakespeare

in set (B.88 sec)

Figure 8-15. Updating columns in the classics table

In the first query, Mark Twain’s real name of Samuel Langhorne Clemens was appended
to his pen name in brackets, which affected only one row. The second query, however,
affected three rows, because it changed all occurrences of the word Fiction in the cate-
gory column to the term Classic Fiction.

When performing an update, you can also make use of the qualifiers you have already
seen, such as LIMIT, and the following ORDER BY and GROUP BY keywords.
ORDER BY

ORDER BY sorts returned results by one or more columns in ascending or descending
order. Example 8-27 shows two such queries, the results of which can be seen in
Figure 8-16.

Example 8-27. Using ORDER BY

SELECT author,title FROM classics ORDER BY author;
SELECT author,title FROM classics ORDER BY title DESC;

Indexes | 205



C\Windows\system32\cmd.exe |ﬂlﬁ

Charles Darwin

Charles Dickens

Jane Austen

Mark Twain (Samuel Langhorne Clemens)
William Shakespeare

The Origin of Species

The 01d Curiosity Shop

Pride and Prejudice

The Adventuresz of Tom Sawyer
Romeo and Juliet
______________________________ +

[repereppp——r——— |

b omm e m————

ORDER BY title DESC;

I author title

Charles Darwin The Origin of Species
Charles Dickens The 01d Curiosity Shop
rk Twain <(Samuel Langhorne Clemens) The Adventures of Tom Sawyer
i Shakespeare Romeo and Juliet
Pride and Prejudice H
___________________________________________________________ +

in set (B.82 sec)

Figure 8-16. Sorting the results of requests

As you can see, the first query returns the publications by author in ascending alpha-
betical order (the default), and the second returns them by title in descending order.

If you wanted to sort all the rows by author and then by descending year of publication
(to view the most recent first), you would issue the following query:

SELECT author,title,year FROM classics ORDER BY author,year DESC;

This shows that each ascending and descending qualifier applies to a single column.
The DESC keyword applies only to the preceding column, year. Because you allow au-
thor to use the default sort order, it is sorted in ascending order. You could also have
explicitly specified ascending order for that column, with the same results:

SELECT author,title,year FROM classics ORDER BY author ASC,year DESC;

GROUP BY

In a similar fashion to ORDER BY, you can group results returned from queries using
GROUP BY, which is good for retrieving information about a group of data. For example,
if you want to know how many publications there are of each category in the classics
table, you can issue the following query:

SELECT category,COUNT(author) FROM classics GROUP BY category;

which returns the following output:

206 | Chapter 8: Introduction to MySQL



D LG EE T LR +

| category | COUNT(author) |
Fmmmmmm e e Fommmmmmmmmmmmn +
| Classic Fiction | 3
| Non-Fiction | 1]
| Play | 1|
Fmmmmmm e e Fommmmmmmmmmmmn +

3 rows in set (0.00 sec)

Joining Tables Together

It is quite normal to maintain multiple tables within a database, each holding a different
type of information. For example, consider the case of a customers table that needs to
be able to be cross-referenced with publications purchased from the classics table. Enter
the commands in Example 8-28 to create this new table and populate it with three
customers and their purchases. Figure 8-17 shows the result.

Example 8-28. Creating and populating the customers table

CREATE TABLE customers (

name VARCHAR(128),

isbn VARCHAR(13),

PRIMARY KEY (isbn)) ENGINE MyISAM;
INSERT INTO customers(name,isbn)
VALUES( 'Joe Bloggs', '9780099533474"');
INSERT INTO customers(name,isbn)
VALUES('Mary Smith','9780582506206"');
INSERT INTO customers(name,isbn)
VALUES('Jack Wilson','9780517123201"');
SELECT * FROM customers;

BN C\Windows\system32\cmd.exe | = | (S -

mysgl> CREATE TABLE customers ¢
—> name UARCHARC128>,
—> isbn UARCHARC128>,
—> PRIMARY KEY (ishn)>;
Query OK. B rows affected (B.82 sec)

mysgl> INSERT INTO customers{name.isbhn)
—» VUALUES<'Joe Bloggs’'.'9?788099533474'>;
Query OK. 1 row affected (B.B2 sec)

mysgl> INSERT INTO customers{name.isbhn)
—>» VUALUES<'Mary Smith’.’97865825686206° >;
Query OK. 1 row affected (B.B8 sec)

mysgl> INSERT INTO customers{name.isbhn)
—>» UALUES<'Jack Wilson’,.’'97885171232681°>;
Query 0K, 1 row affected (B.B8 sec)

my=gl> SELECT FROM custome
+-

_____________ [P ——

Joe Bloggs | 2788099533474
Mary Smith | 2780582586206
Jack Wilson | 2780517123261

Figure 8-17. Creating the customers table

Indexes | 207



There’s also a shortcut for inserting multiple rows of data, as in Ex-
ample 8-28, in which you can replace the three separate INSERT INTO
queries with a single one listing the data to be inserted, separated by
commas, like this:

INSERT INTO customers(name,isbn) VALUES
('Joe Bloggs','9780099533474'),
('Mary Smith','9780582506206'),
('Jack Wilson','9780517123201');

Of course, in a proper table containing customers’ details there would also be addresses,
phone numbers, email addresses, and so on, but they aren’t necessary for this explan-
ation. While creating the new table, you should have noticed that it has something in
common with the classics table: a column called isbn. Because it has the same meaning
in both tables (an ISBN refers to a book, and always the same book), we can use this
column to tie the two tables together into a single query, as in Example 8-29.

Example 8-29. Joining two tables into a single SELECT

SELECT name,author,title from customers,classics
WHERE customers.isbn=classics.isbn;

The result of this operation is the following:

| Joe Bloggs | Charles Dickens | The 0ld Curiosity Shop |
| Mary Smith | Jane Austen | Pride and Prejudice |
| Jack Wilson | Charles Darwin | The Origin of Species |
Fmmmmmmmmm e e e e L L LT T +
3 rows in set (0.00 sec)

See how this query has neatly tied both tables together to show the publications pur-
chased from the classics table by the people in the customers table?

NATURAL JOIN

Using NATURAL JOIN, you can save yourself some typing and make queries a little clearer.
This kind of join takes two tables and automatically joins columns that have the same
name. So, to achieve the same results as from Example 8-29, you would enter:

SELECT name,author,title FROM customers NATURAL JOIN classics;

JOIN...ON

If you wish to specify the column on which to join two tables, use the JOIN ... ON
construct, as follows, to achieve results identical to those of Example 8-29:

SELECT name,author,title FROM customers
JOIN classics ON customers.isbn=classics.isbn;

208 | Chapter8: Introduction to MySQL



Using AS

You can also save yourself some typing and improve query readability by creating aliases
using the AS keyword. Follow a table name with AS and the alias to use. The following
code, therefore, is also identical in action to Example 8-29. Aliases can be particularly
useful when you have long queries that reference the same table names many times.

SELECT name,author,title from
customers AS cust, classics AS class
WHERE cust.isbn=class.isbn;

The result of this operation is the following:

| Joe Bloggs | Charles Dickens | The 0ld Curiosity Shop |
| Mary Smith | Jane Austen | Pride and Prejudice |
| Jack Wilson | Charles Darwin | The Origin of Species |
Fommmmmmm——aa Fommmmmmmmm————ae $mmmmmmmmmmeeemmeee——a—a- +
3 rows in set (0.00 sec)

Using Logical Operators

You can also use the logical operators AND, OR, and NOT in your MySQL WHERE queries to
further narrow down your selections. Example 8-30 shows one instance of each, but
you can mix and match them in any way you need.

Example 8-30. Using logical operators

SELECT author,title FROM classics WHERE

author LIKE "Charles%" AND author LIKE "%Darwin";

SELECT author,title FROM classics WHERE

author LIKE "%Mark Twain%" OR author LIKE "%Samuel Langhorne Clemens%";
SELECT author,title FROM classics WHERE

author LIKE "Charles%" AND author NOT LIKE "%Darwin";

I've chosen the first query, because Charles Darwin might be listed in some rows by his
full name, Charles Robert Darwin. Thus, the query returns publications as long as the
author column starts with Charles and ends with Darwin. The second query searches
for publications written using either Mark Twain’s pen name or his real name, Samuel
Langhorne Clemens. The third query returns publications written by authors with the
first name Charles but not the surname Darwin.

MySQL Functions

You might wonder why anyone would want to use MySQL functions when PHP comes
with a whole bunch of powerful functions of its own. The answer is very simple: the
MySQL functions work on the data right there in the database. If you were to use PHP,

MySQL Functions | 209



you would first have to extract raw data from MySQL, manipulate it, and then perform
the database query you first wanted.

Having functions built into MySQL substantially reduces the time needed for perform-
ing complex queries, as well as their complexity. If you wish to learn more about the
available string and date/time functions, you can visit the following URLs:

o http://tinyurl.com/mysqlstrings
o http://tinyurl.com/mysqldates

However, to get you started, Appendix D describes a subset containing the most useful
of these functions.

Accessing MySQL via phpMyAdmin

Although to use MySQL you have to learn these main commands and how they work,
once you understand them, it can be much quicker and simpler to use a program such
as phpMyAdmin to manage your databases and tables.

However, you will need to install phpMyAdmin before you can use it. To do this, call
up the Zend UI by entering the following into your browser, and log in (as shown in
Figure 8-18):

http://localhost:10081/ZendServer/

[ Zend Server x \

« C M [ localhost:10081/ZendServer/ ]

Overview Applications Configurations Administration

Dashboard Events Code Tracing Job Queue Server Info Logs

Deploy an example application that i Use Zend Server at every st
includes monitoring and caching rules, delivery cycle to bring your
events, recurring jobs, and more... from development to produg
flexibility, reducing risk and |

DEPLOY NOW

J7IN

MyAEmIn

Figure 8-18. The Zend Dashboard

210 | Chapter8: Introduction to MySQL



Now click on the left and right arrows to the right of the DEPLOY SAMPLE APPS
section until you see the phpMyAdmin logo and click it to initiate the download; then
click Next when you’re finished. Click Next again, after you have viewed the README
information, to call up the Application Details screen (see Figure 8-19).

_I:I-

&« C A [ localhost:10081/ZendServer/ o7 =

),,-" [ Zend Server x \ Y

Overview Applications Configura

Deploy Application

Application Download Enter the Application Details

LETLE Define the application details and the way the application is accessed.
Application  phpMyAdmin
License Agreement

Version 409
Prerequisites Validation

Display Name 1 .
User Parameters phpMyAdmin

Deployment Summary Virtual Host v | Add New
Path phpmyadmin

URL  http:///phpmyadmin

Previous Next

Figure 8-19. Configuring phpMyAdmin for Zend

Here you should probably accept the defaults for Display Name and Virtual Host, but
will need to specify a directory name for phpMyAdmin in order to keep it away from
your document root files. I have entered the name phpmyadmin (all in lowercase so that
I won't have to enter any capital letters whenever I type the URL to call it up).

Continue clicking Next and accepting any license agreements until you get to the screen
in Figure 8-20. Here you should select the “Use HTTP (Apache) Basic Authentication?”
checkbox and supply a login and password. The default login is DBadmin, but I have
chosen to use simply admin; your login and password are up to you. Unless you have
configured them differently, you can probably leave the IP, Port, Database User, and
Password as displayed.

Accessing MySQL via phpMyAdmin | 211



),,-" [ Zend Server x \ Y

&« C # [ localhost:10081/ZendServer/Deployment o7 =

Applications

|!

Deploy Application

A
A Application Upload Enter the User Parameters
s ¢
Ul Application Details PR . ; - A by perv
tH The user parameters are required by the application package and will be used by the
i deployed application.
=== License Agreement —1
\
WSS  prerequisites Validation Use HTTP (Apache) Basic Authentication? ¥ =
9
[ HTTP (Apache) Authentication Login Iadmin il
o
Deployment Summary
Nd HTTP (Apache) Authentication Password Imypﬂssword
MySQL Server Hostname or IP |12?.U.U.1
My SQL Server TCP Port |3305
MySQL Server/Database User Imot
My SQL Server/Database Password I
Cancel Previous Next

Figure 8-20. Entering phpMyAdmin user parameters

Now click Next, review the summary displayed, and when ready, click the Deploy but-
ton. After a few seconds, you should see that the application was successfully deployed,
at which point you’ll be ready to access phpMyAdmin by entering the following into
your browser:

http://localhost/phpmyadmin

This will bring up the dialog shown in Figure 8-21, where you should enter your user-
name and password before clicking the Log In button.

212 | Chapter8: Introduction to MySQL



_I:I-

7 Zend Server x \K "3

€ 2> X fi [Jlocalhost/phpmyadmin w7l =
= - . x -
Authentication Required Applicat
Librari
— The server http://localhost:80 requires a username and e —m
Applicati password, The server says: PMA Restricted Area,
Zend Seny aged applic:
tuhf?::{i User Name:  admin eD]nS izigEL
Password: |""‘"""""""1 |
Want to end to upgr
Total: 1 @ enver
1| Name | Log In | | Cancel |
@ phphy
[ ]

Figure 8-21. Logging into phpMyAdmin

Your browser should now look like Figure 8-22, and you’re ready to use phpMyAdmin
in place of the MySQL command line.

- D-
4l localhost / 127.0.0.1 | phpl % \,

€ = C A [ localhost/phpmyadmin/#PMAURL-O:index.php?db=8&table=&server=1&target=&lang=en&collation_connection=utfg_gi Ty =

phpMyAdmin |—B& 0.0.1-130

ABOO @ (4 Databases =[] SQL (g Status =7 Users [ Export =} Import #° Settings Il Replication | = More

_REEEN tables) . ¥ .

: ) General Settings Database server

Server connection collation () : + Senver 127.0.0.1via TCPAP
« Server type: MySQL

_schema « Server version: 5.5.23 - MySQL Community
Server (GPL)

el
| publications
test Appearance Settings + Protocol version: 10
+ User: root@localhost
« Server charset: UTF-8 Unicode (utf8) d
Pyr—
Web server
« Apache/2.2.25 (Win32) mod_ssl/2.2.25

o More ssitings OpenSSL/0.9.8y
« Database client version: libmysgl - mysqind
5.0.10 - 20111026 - $id:
e707c415db32080b3752b232487a435ee0372157|
%
+ PHP extension: mysql @

) informatien_schema
) mysql

Figure 8-22. The phpMyAdmin main screen

Accessing MySQL via phpMyAdmin | 213



Full details on this installation process are on the Zend website at the
following (shortened) URL: http://tinyurl.com/installpma.

Using phpMyAdmin

In the lefthand pane of the main phpMyAdmin screen, you can click on the drop-down
menu that says “(Databases)” to select any database you wish to work with. This will
open the database and display its tables.

From here you can perform all the main operations, such as creating new databases,
adding tables, creating indexes, and much more. To read the supporting documentation
for phpMyAdmin, visit https://docs.phpmyadmin.net.

If you worked with me through the examples in this chapter, congratulations—it’s been
quite a long journey. You've come all the way from learning how to create a MySQL
database through issuing complex queries that combine multiple tables, to using
Boolean operators and leveraging MySQLSs various qualifiers.

In the next chapter, we'll start looking at how to approach efficient database design,
advanced SQL techniques, and MySQL functions and transactions.

Questions

1. What is the purpose of the semicolon in MySQL queries?

2. Which command would you use to view the available databases or tables?

et

How would you create a new MySQL user on the local host called newuser with a
password of newpass and with access to everything in the database newdatabase?

How can you view the structure of a table?
What is the purpose of a MySQL index?
What benefit does a FULLTEXT index provide?
What is a stopword?

Both SELECT DISTINCT and GROUP BY cause the display to show only one output
row for each value in a column, even if multiple rows contain that value. What are
the main differences between SELECT DISTINCT and GROUP BY?

® N N e

214 | Chapter8: Introduction to MySQL



9. Using the SELECT ... WHERE construct, how would you return only rows contain-
ing the word Langhorne somewhere in the author column of the classics table used
in this chapter?

10. What needs to be defined in two tables to make it possible for you to join them
together?

See “Chapter 8 Answers” on page 644 in Appendix A for the answers to these questions.

Questions | 215






CHAPTER 9
Mastering MySQL

Chapter 8 provided you with a good grounding in the practice of using relational
databases with structured query language. You've learned about creating databases and
the tables they comprise, as well as inserting, looking up, changing, and deleting data.

With that knowledge under your belt, we now need to look at how to design databases
for maximum speed and efficiency. For example, how do you decide what data to place
in which table? Well, over the years, a number of guidelines have been developed that—
if you follow them—ensure your databases will be efficient and capable of growing as
you feed them more and more data.

Database Design

It's very important that you design a database correctly before you start to create it;
otherwise, you are almost certainly going to have to go back and change it by splitting
up some tables, merging others, and moving various columns about in order to achieve
sensible relationships that MySQL can easily use.

Sitting down with a sheet of paper and a pencil and writing down a selection of the
queries that you think you and your users are likely to ask is an excellent starting point.
In the case of an online bookstore’s database, some of your questions could be:

o How many authors, books, and customers are in the database?
« Which author wrote a certain book?

o Which books were written by a certain author?

o What is the most expensive book?

o What is the best-selling book?

o Which books have not sold this year?

217



o Which books did a certain customer buy?

o Which books have been purchased together?

Of course, there are many more queries that you could make on such a database, but
even this small sample will begin to give you insights into how to lay out your tables.
For example, books and ISBNs can probably be combined into one table, because they
are closely linked (we’ll examine some of the subtleties later). In contrast, books and
customers should be in separate tables, because their connection is very loose. A cus-
tomer can buy any book, and even multiple copies of a book, yet a book can be bought
by many customers and be ignored by still more potential customers.

When you plan to do a lot of searches on something, it can often benefit by having its
own table. And when couplings between things are loose, it’s best to put them in separate
tables.

Taking into account those simple rules of thumb, we can guess we’ll need at least three
tables to accommodate all these queries:

Authors
There will be lots of searches for authors, many of whom have collaborated on titles,
and many of whom will be featured in collections. Listing all the information about
each author together, linked to that author, will produce optimal results for
searches—hence an authors table.

Books
Many books appear in different editions. Sometimes they change publisher and
sometimes they have the same titles as other, unrelated books. So the links between
books and authors are complicated enough to call for a separate table.

Customers
It's even more clear why customers should get their own table, as they are free to
purchase any book by any author.

Primary Keys: The Keys to Relational Databases

Using the power of relational databases, we can define information for each author,
book, and customer in just one place. Obviously, what interests us is the links between
them—such as who wrote each book and who purchased it—but we can store that
information just by making links between the three tables. I'll show you the basic prin-
ciples, and then it just takes practice for it to feel natural.

The magic involves giving every author a unique identifier. Do the same for every book
and for every customer. We saw the means of doing that in the previous chapter: the
primary key. For a book, it makes sense to use the ISBN, although you then have to deal
with multiple editions that have different ISBNs. For authors and customers, you can

218 | Chapter9: Mastering MySQL



just assign arbitrary keys, which the AUTO_INCREMENT feature that you saw in the last
chapter makes easy.

In short, every table will be designed around some object that you're likely to search for
a lot—an author, book, or customer, in this case—and that object will have a primary
key. Don't choose a key that could possibly have the same value for different objects.
The ISBN is a rare case for which an industry has provided a primary key that you can
rely on to be unique for each product. Most of the time, you'll create an arbitrary key
for this purpose, using AUTO_INCREMENT.

Normalization

The process of separating your data into tables and creating primary keys is called
normalization. Its main goal is to make sure each piece of information appears in the
database only once. Duplicating data is very inefficient, because it makes databases
larger than they need to be and therefore slows down access. But, more importantly, the
presence of duplicates creates a strong risk that you’ll update only one row of duplicated
data, creating inconsistencies in a database and potentially causing serious errors.

Thus, if you list the titles of books in the authors table as well as the books table, and you
have to correct a typographic error in a title, you’ll have to search through both tables
and make sure you make the same change every place the title is listed. It’s better to keep
the title in one place and use the ISBN in other places.

But in the process of splitting a database into multiple tables, it's important not to go
too far and create more tables than is necessary, which would also lead to inefficient
design and slower access.

Luckily, E. E Codd, the inventor of the relational model, analyzed the concept of nor-
malization and splititinto three separate schemas called First, Second, and Third Normal
Form. If you modify a database to satisfy each of these forms in order, you will ensure
that your database is optimally balanced for fast access, and minimum memory and
disk space usage.

To see how the normalization process works, let’s start with the rather monstrous
database in Table 9-1, which shows a single table containing all of the author names,
book titles, and (fictional) customer details. You could consider it a first attempt at a
table intended to keep track of which customers have ordered books. Obviously this is
inefficient design, because data is duplicated all over the place (duplications are high-
lighted), but it represents a starting point.

Normalization | 219



Table 9-1. A highly inefficient design for a database table

Author 1 Author 2 Title ISBN Pricc  (Customer  CustomerAddress Purchase
$US  Name Date
David Sklar ~ Adam PHP (ookbook 0596101015 44.99 Emma 1565 Rainbow Mar 03
Trachtenberg Brown Road, Los Angeles, 2009
(A 90014
Danny Dynamic HTML ~ 0596527403 59.99  Darren 4758 Emily Drive, Dec192008
Goodman Ryder Richmond, VA
23219
Hugh E David Lane PHP 0596005436 44.95  Earl B. 862 Gregory Lane,  Jun 22
Williams and MySQL Thurston Frankfort, KY 2009
40601
David Sklar ~ Adam PHP Cookbook 0596101015 44.99  Darren 4758 Emily Drive, Dec192008
Trachtenberg Ryder Richmond, VA
23219
Rasmus Kevin Tatroe & Programming 0596006815 39.99  David Miller 3647 Cedar Lane,  Jan 16
Lerdorf Peter Macintyre PHP Waltham, MA 2009
02154

In the following three sections, we will examine this database design, and you’ll see how
we can improve it by removing the various duplicate entries and splitting the single
table into multiple tables, each containing one type of data.

First Normal Form

For a database to satisfy the First Normal Form, it must fulfill three requirements:

o There should be no repeating columns containing the same kind of data.
o All columns should contain a single value.

o There should be a primary key to uniquely identify each row.

Looking at these requirements in order, you should notice straightaway that the Author 1
and Author 2 columns constitute repeating data types. So we already have a target col-
umn for pulling into a separate table, as the repeated Author columns violate Rule 1.

Second, there are three authorslisted for the final book, Programming PHP.T've handled
that by making Kevin Tatroe and Peter MacIntyre share the Author 2 column, which
violates Rule 2—yet another reason to transfer the Author details to a separate table.

However, Rule 3 is satisfied, because the primary key of ISBN has already been created.

Table 9-2 shows the result of removing the Authors columns from Table 9-1. Already it
looks a lot less cluttered, although there remain duplications that are highlighted.

220 | Chapter9: Mastering MySQL



Table 9-2. The result of stripping the Authors columns from Table 9-1
Title ISBN Price Customer Customer Address Purchase Date
$US Name
PHP Cookbook 0596101015 44.99  EmmaBrown 1565 Rainbow Road, Los Angeles, CA 90014 Mar 03 2009
Dynamic HTML 0596527403 59.99  Darren Ryder 4758 Emily Drive, Richmond, VA 23219  Dec 19 2008
PHPand MySQL 0596005436 44.95  Earl B. Thurston 862 Gregory Lane, Frankfort, KY 40601 Jun 22 2009
PHP (ookbook 0596101015 44.99  Darren Ryder 4758 Emily Drive, Richmond, VA 23219  Dec 19 2008
Programming PHP 0596006815 39.99  David Miller 3647 Cedar Lane, Waltham, MA 02154 Jan 16 2009

The new Authors table shown in Table 9-3 is small and simple. It just lists the ISBN of
a title along with an author. If a title has more than one author, additional authors get
their own rows. At first, you may feel ill at ease with this table, because you can't tell
which author wrote which book. But don’t worry: MySQL can quickly tell you. All you
have to do is tell it which book you want information for, and MySQL will use its ISBN
to search the Authors table in a matter of milliseconds.

Table 9-3. The new Authors table

ISBN Author
0596101015  David Sklar
0596101015  Adam Trachtenberg
0596527403  Danny Goodman
0596005436 Hugh E Williams
0596005436 David Lane
0596006815  Rasmus Lerdorf
0596006815  Kevin Tatroe
0596006815  Peter MacIntyre

As I mentioned earlier, the ISBN will be the primary key for the Books table, when we
get around to creating that table. I mention that here in order to emphasize that the
ISBN is not, however, the primary key for the Authors table. In the real world, the
Authors table would deserve a primary key, too, so that each author would have a key
to uniquely identify him or her.

So, in the Authors table, the ISBN is just a column for which—for the purposes of
speeding up searches—we’ll probably make a key, but not the primary key. In fact, it
cannot be the primary key in this table, because it’s not unique: the same ISBN appears
multiple times whenever two or more authors have collaborated on a book.

Because we’ll use it to link authors to books in another table, this column is called a
foreign key.

Normalization | 221



Keys (also called indexes) have several purposes in MySQL. The fun-
damental reason for defining a key is to make searches faster. You've
seen examples in Chapter 8 in which keys are used in WHERE clauses
for searching. But a key can also be useful to uniquely identify an item.
Thus, a unique key is often used as a primary key in one table, and as
a foreign key to link rows in that table to rows in another table.

Second Normal Form

The First Normal Form deals with duplicate data (or redundancy) across multiple col-
umns. The Second Normal Form is all about redundancy across multiple rows. In order
to achieve Second Normal Form, your tables must already be in First Normal Form.
Once this has been done, we achieve Second Normal Form by identifying columns
whose data repeats in different places and then removing them to their own tables.

Solet’slook again at Table 9-2. Notice how Darren Ryder bought two books and therefore
his details are duplicated. This tells us that the Customer columns need to be pulled into
their own tables. Table 9-4 shows the result of removing the Customer columns from
Table 9-2.

Table 9-4. The new Titles table

0596101015  PHP Cookbook 44.99
0596527403 DynamicHTML ~ 59.99
0596005436 PHPand MySQL ~ 44.95
0596006815  Programming PHP  39.99

Asyou can see, all that’s left in Table 9-4 are the ISBN, Title, and Price columns for four
unique books, so this now constitutes an efficient and self-contained table that satisfies
the requirements of both the First and Second Normal Forms. Along the way, we’ve
managed to reduce the information to data closely related to book titles. This table could
also include years of publication, page counts, numbers of reprints, and so on, as these
details are also closely related. The only rule is that we can’t put in any column that could
have multiple values for a single book, because then we’d have to list the same book in
multiple rows and would thus violate Second Normal Form. Restoring an Author col-
umn, for instance, would violate this normalization.

However, looking at the extracted Customer columns, now in Table 9-5, we can see that
there’s still more normalization work to do, because Darren Ryder’s details are still du-
plicated. And it could also be argued that First Normal Form Rule 2 (all columns should
contain a single value) has not been properly complied with, because the addresses really
need to be broken into separate columns for Address, City, State, and Zip code.

222 | Chapter9: Mastering MySQL



Table 9-5. The Customer details from Table 9-2

ISBN Customer Name Customer Address Purchase Date
0596101015 Emma Brown 1565 Rainbow Road, Los Angeles, CA 90014  Mar 03 2009
0596527403  Darren Ryder 4758 Emily Drive, Richmond, VA 23219 Dec 19 2008
0596005436 Earl B. Thurston 862 Gregory Lane, Frankfort, KY 40601 Jun 22 2009
0596101015  Darren Ryder 4758 Emily Drive, Richmond, VA 23219 Dec 19 2008
0596006815  David Miller 3647 Cedar Lane, Waltham, MA 02154 Jan 16 2009

What we have to do is split this table further to ensure that each customer’s details are
entered only once. Because the ISBN is not and cannot be used as a primary key to
identify customers (or authors), a new key must be created.

Table 9-6 is the result of normalizing the Customers table into both First and Second
Normal Forms. Each customer now has a unique customer number called CustNo,
which is the table’s primary key and will most likely have been created via AUTO_INCRE
MENT. All the parts of customer addresses have also been separated into distinct columns
to make them easily searchable and updateable.

Table 9-6. The new Customers table

CustNo Name Address City State Zip

1 Emma Brown 1565 Rainbow Road Los Angeles CA 90014
2 Darren Ryder ~ 4758 Emily Drive ~ Richmond VA 23219
3 Earl B. Thurston 862 Gregory Lane  Frankfort ~ KY 40601
4 David Miller 3647 Cedar Lane ~ Waltham  MA 02154

At the same time, in order to normalize Table 9-6, we had to remove the information
on customer purchases, because otherwise, there would be multiple instances of cus-
tomer details for each book purchased. Instead, the purchase data is now placed in a
new table called Purchases (see Table 9-7).

Table 9-7. The new Purchases table

CustNo ISBN Date

1 0596101015  Mar 03 2009
0596527403  Dec 19 2008
0596101015  Dec 19 2008
0596005436 Jun 22 2009
0596006815 Jan 16 2009

W

Here the CustNo column from Table 9-6 is reused as a key to tie both the Customers and
the Purchases tables together. Because the ISBN column is also repeated here, this table
can be linked with either of the Authors or the Titles tables, too.

Normalization | 223



The CustNo column can be a useful key in the Purchases table, but it’s not a primary
key. A single customer can buy multiple books (and even multiple copies of one book),
so the CustNo column is not a primary key. In fact, the Purchases table has no primary
key. That’s all right, because we don’t expect to need to keep track of unique purchases.
If one customer buys two copies of the same book on the same day, we’ll just allow two
rows with the same information. For easy searching, we can define both CustNo and
ISBN as keys—just not as primary keys.

There are now four tables, one more than the three we had initially
assumed would be needed. We arrived at this decision through the
normalization processes, by methodically following the First and
Second Normal Form rules, which made it plain that a fourth table
called Purchases would also be required.

The tables we now have are Authors (Table 9-3), Titles (Table 9-4), Customers
(Table 9-6), and Purchases (Table 9-7), and we can link each table to any other using
either the CustNo or the ISBN keys.

For example, to see which books Darren Ryder has purchased, you can look him up in
Table 9-6, the Customers table, where you will see his CustNo is 2. Armed with this
number, you can now go to Table 9-7, the Purchases table; looking at the ISBN column
here, you will see that he purchased titles 0596527403 and 0596101015 on December
19, 2008. This looks like a lot of trouble for a human, but it’s not so hard for MySQL.

To determine what these titles were, you can then refer to Table 9-4, the Titles table, and
see that the books he bought were Dynamic HTML and PHP Cookbook. Should you
wish to know the authors of these books, you could also use the ISBNs you just looked
up on Table 9-3, the Authors table, and you would see that ISBN 0596527403, Dynamic
HTML, was written by Danny Goodman, and that ISBN 0596101015, PHP Cookbook,
was written by David Sklar and Adam Trachtenberg.

Third Normal Form

Once you have a database that complies with both the First and Second Normal Forms,
it is in pretty good shape and you might not have to modify it any further. However, if
you wish to be very strict with your database, you can ensure that it adheres to the Third
Normal Form, which requires that data that is not directly dependent on the primary
key but is dependent on another value in the table should also be moved into separate
tables, according to the dependence.

For example, in Table 9-6, the Customers table, it could be argued that the State, City,
and Zip code keys are not directly related to each customer, because many other people
will have the same details in their addresses, too. However, they are directly related to
each other, in that the street Address relies on the City, and the City relies on the State.

224 | Chapter9: Mastering MySQL



Therefore, to satisfy Third Normal Form for Table 9-6, you would need to split it into
Tables 9-8 through 9-11.

Table 9-8. Third Normal Form Customers table

CustNo Name Address Zip

1 Emma Brown 1565 Rainbow Road 90014
2 Darren Ryder 4758 Emily Drive 23219
3 Earl B. Thurston 862 Gregory Lane 40601
4 David Miller 3647 Cedar Lane 02154

Table 9-9. Third Normal Form Zip codes table
90014 1234
23219 5678
40601 4321
02154 8765

Table 9-10. Third Normal Form Cities table

(itylD Name StatelD

1234  LosAngeles 5

5678  Richmond 46
821 Fankfort 17
8765 Waltham 21

Table 9-11. Third Normal Form States table

StatelD Name Abbreviation

5 California (A
46 Virginia VA
17 Kentucky KY
2 Massachusetts MA

So, how would you use this set of four tables instead of the single Table 9-62 Well, you
would look up the Zip code in Table 9-8, then find the matching CityID in Table 9-9.
Given this information, you could then look up the city Name in Table 9-10 and then
also find the StateID, which you could use in Table 9-11 to look up the State’s Name.

Although using the Third Normal Form in this way may seem like overkill, it can have
advantages. For example, take alook at Table 9-11, where it has been possible to include
both a state’s name and its two-letter abbreviation. It could also contain population
details and other demographics, if you desired.

Normalization | 225



Table 9-10 could also contain even more localized demographics that
could be useful to you and/or your customers. By splitting up these
pieces of data, you can make it easier to maintain your database in
the future, should it be necessary to add columns.

Deciding whether to use the Third Normal Form can be tricky. Your evaluation should
rest on what data you may need to add at a later date. If you are absolutely certain that
the name and address of a customer is all that you will ever require, you probably will
want to leave out this final normalization stage.

On the other hand, suppose you are writing a database for a large organization such as
the U.S. Postal Service. What would you do if a city were to be renamed? With a table
such as Table 9-6, you would need to perform a global search and replace on every
instance of that city. But if you have your database set up according to the Third Normal
Form, you would have to change only a single entry in Table 9-10 for the change to be
reflected throughout the entire database.

Therefore, I suggest that you ask yourself two questions to help you decide whether to
perform a Third Normal Form normalization on any table:

« Is it likely that many new columns will need to be added to this table?
« Could any of this table’s fields require a global update at any point?

If either of the answers is yes, you should probably consider performing this final stage
of normalization.

When Not to Use Normalization

Now that you know all about normalization, I'm going to tell you why you should throw
these rules out of the window on high-traffic sites. That’s right—you should never fully
normalize your tables on sites that will cause MySQL to thrash.

Normalization requires spreading data across multiple tables, and this means making
multiple calls to MySQL for each query. On a very popular site, if you have normalized
tables, your database access will slow down considerably once you get above a few dozen
concurrent users, because they will be creating hundreds of database accesses between
them. In fact, I would go so far as to say you should denormalize any commonly looked-
up data as much as you can.

226 | Chapter9: Mastering MySQL



You see, if you have data duplicated across your tables, you can substantially reduce the
number of additional requests that need to be made, because most of the data you want
is available in each table. This means that you can simply add an extra column to a query
and that field will be available for all matching results.

Of course, you have to deal with the downsides previously mentioned, such as using up
large amounts of disk space, and ensuring that you update every single duplicate copy
of data when one of them needs modifying.

Multiple updates can be computerized, though. MySQL provides a feature called trig-
gers that make automatic changes to the database in response to changes you make.
(Triggers are, however, beyond the scope of this book.) Another way to propagate re-
dundant data is to set up a PHP program to run regularly and keep all copies in sync.
The program reads changes from a “master” table and updates all the others. (You'll see
how to access MySQL from PHP in the next chapter.)

However, until you are very experienced with MySQL, I recommend that you fully
normalize all your tables (at least to First and Second Normal Form), as this will instill
the habit and put you in good stead. Only when you actually start to see MySQL logjams
should you consider looking at denormalization.

Relationships

MySQL is called a relational database management system because its tables store not
only data, but the relationships among the data. There are three categories of relation-
ships.

One-to-One

A one-to-one relationship is like a (traditional) marriage: each item has a relationship
to only one item of the other type. This is surprisingly rare. For instance, an author can
write multiple books, a book can have multiple authors, and even an address can be
associated with multiple customers. Perhaps the best example in this chapter so far of
a one-to-one relationship is the relationship between the name of a state and its two-
character abbreviation.

However, for the sake of argument, let’s assume that there can only ever be one customer
at any address. In such a case, the Customers—Addresses relationship in Figure 9-1is a
one-to-one relationship: only one customer lives at each address, and each address can
have only one customer.

Relationships | 227



Table 9-8a (Customers) Table 9-8b (Addresses)
CustNo Name Address Zip
1 EmmaBrown ----—------—-—---1565 Rainbow Road 90014
2 Darren Ryder 4758 Emily Drive 23219
3 EarlB. Thurston -~ ------—-~-----862 Gregory Lane 40601
4 David Miller-----------=----=----—---3647 Cedar Lane 02154

Figure 9-1. The Customers table, Table 9-8, split into two tables

Usually, when two items have a one-to-one relationship, you just include them as col-
umns in the same table. There are two reasons for splitting them into separate tables:

» You want to be prepared in case the relationship changes later.

o The table has a lot of columns and you think that performance or maintenance
would be improved by splitting it.

Of course, when you come to build your own databases in the real world, you will have
to create one-to-many Customer—Address relationships (one address, many custom-
ers).

One-to-Many

One-to-many (or many-to-one) relationships occur when one row in one table is linked
to many rows in another table. You have already seen how Table 9-8 would take on a
one-to-many relationship if multiple customers were allowed at the same address, which
is why it would have to be split up if that were the case.

So, looking at Table 9-8a within Figure 9-1, you can see that it shares a one-to-many
relationship with Table 9-7 because there is only one of each customer in Table 9-8a.
However Table 9-7, the Purchases table, can (and does) contain more than one purchase
from customers. Therefore one customer has a relationship with many purchases.

You can see these two tables alongside each other in Figure 9-2, where the dashed lines
joining rows in each table start from a single row in the lefthand table but can connect
to more than one row on the righthand table. This one-to-many relationship is also the
preferred scheme to use when describing a many-to-one relationship, in which case you
would normally swap the left and right tables to view them as a one-to-many relation-
ship.

228 | Chapter9: Mastering MySQL



Table 9-8a (Customers) Table 9-7. (Purchases)
CustNo  Name CustNo  ISBN Date
1 Emma Brown e ] 0596101015 Mar 03 2009
2 Darren Ryder -y~ 2 0596527403 Dec 192008
S 2 0596101015 Dec 192008
3 Earl B.Thurston -—-------—-------- 3 0596005436  Jun 222009
4 David Miller----------==---== == 4 0596006815  Jan 162009

Figure 9-2. Illustrating the relationship between two tables

Many-to-Many

In a many-to-many relationship, many rows in one table are linked to many rows in
another table. To create this relationship, add a third table containing the same key
column from each of the other tables. This third table contains nothing else, as its sole
purpose is to link up the other tables.

Table 9-12 is just such a table. It was extracted from Table 9-7, the Purchases table, but
omits the purchase date information. It contains a copy of the ISBN of every title sold,
along with the customer number of each purchaser.

Table 9-12. An intermediary table

Customer ISBN

1 0596101015
2 0596527403
2 0596101015
3 0596005436
4 0596006815

With this intermediary table in place, you can traverse all the information in the database
through a series of relations. You can take an address as a starting point and find out
the authors of any books purchased by the customer living at that address.

For example, let’s suppose that you want to find out about purchases in the 23219 zip
code. Look that zip code up in Table 9-8b, and you’ll find that customer number 2 has
bought at least one item from the database. At this point, you can use Table 9-8a to find
outhis orher name, or use the new intermediary Table 9-12 to see the book(s) purchased.

From here, you will find that two titles were purchased and can follow them back to
Table 9-4 to find the titles and prices of these books, or to Table 9-3 to see who the
authors were.

Relationships | 229



Ifit seems to you that this is really combining multiple one-to-many relationships, then
you are absolutely correct. To illustrate, Figure 9-3 brings three tables together.

Columns from Intermediary Columns from
Table 9-8b Table 9-12 Table 9-4
(Customers) (Customer/ISBN) (Titles)
Zip Cust. CustNo  ISBN ISBN Title
90014 1o 1 0596101015 -y 0596101015 PHP Cookbook
pE7) LR J— 0596101015 !

L 2 0596527403 oo 0596527403  Dynamic HTML
40601 3o 3 0596005436 - —crrrremv 0596005436  PHP and MySQL
02154 4 4 0596006815 - 0596006815 Programming PHP

Figure 9-3. Creating a many-to-many relationship via a third table

Follow any zip code in the lefthand table to associated customer IDs. From there, you
can link to the middle table, which joins the left and right tables by linking customer
IDs and ISBNs. Now all you have to do is follow an ISBN over to the righthand table to
see which book it relates to.

You can also use the intermediary table to work your way backward from book titles to
zip codes. The Titles table can tell you the ISBN, which you can use in the middle table
to find ID numbers of customers who bought the books, and finally, the Customers table
matches the customer ID numbers to the customers’ zip codes.

Databases and Anonymity

An interesting aspect of using relations is that you can accumulate a lot of information
about some item—such as a customer—without actually knowing who that customer
is. Note that in the previous example we went from customers’ zip codes to customers’
purchases, and back again, without finding out the name of a customer. Databases can
be used to track people, but they can also be used to help preserve people’s privacy while
still finding useful information.

Transactions

In some applications, it is vitally important that a sequence of queries runs in the correct
order and that every single query successfully completes. For example, suppose that you
are creating a sequence of queries to transfer funds from one bank account to another.
You would not want either of the following events to occur:

230 | Chapter9: Mastering MySQL



« You add the funds to the second account, but when you try to subtract them from
the first account the update fails, and now both accounts have the funds.

 You subtract the funds from the first bank account, but the update request to add
them to the second account fails, and the funds have now disappeared into thin air.

As you can see, not only is the order of queries important in this type of transaction,
but it is also vital that all parts of the transaction complete successfully. But how can
you ensure this happens, because surely after a query has occurred, it cannot be undone?
Do you have to keep track of all parts of a transaction and then undo them all one at a
time if any one fails? The answer is absolutely not, because MySQL comes with powerful
transaction handling features to cover just these types of eventualities.

In addition, transactions allow concurrent access to a database by many users or pro-
grams at the same time. MySQL handles this seamlessly by ensuring that all transactions
are queued and that users or programs take their turns and don’t tread on each other’s
toes.

Transaction Storage Engines

To be able to use MySQLs transaction facility, you have to be using MySQLs InnoDB
storage engine. This is easy to do, as it’s simply another parameter that you use when
creating a table. So go ahead and create a table of bank accounts by typing the commands
in Example 9-1. (Remember that to do this you will need access to the MySQL command
line, and must also have already selected a suitable database in which to create this table.)

Example 9-1. Creating a transaction-ready table

CREATE TABLE accounts (

number INT, balance FLOAT, PRIMARY KEY(number)
) ENGINE InnoDB;

DESCRIBE accounts;

The final line of this example displays the contents of the new table so you can ensure
that it was correctly created. The output from it should look like this:

Fmmmmmmaan Fmmmmmmman Fmmmm-- Fmmm-- Femmmmmmma- Femmmmmmn +
| Field | Type | Null | Key | Default | Extra |
Fmmmmmmaan Fmmmmmmman Fmmmm-- Fmmm-- Femmmmmmma- Femmmmmmn +
| number | int(11) | NO | PRI | © | |
| balance | float | YES | | NULL | |
L e Fommmmm- Fmmm-- mmmmmmmma Fmmmmm-- +

2 rows in set (0.00 sec)

Now let’s create two rows within the table so that you can practice using transactions.
Enter the commands in Example 9-2.

Transactions | 231



Example 9-2. Populating the accounts table

INSERT INTO accounts(number, balance) VALUES(12345, 1025.50);
INSERT INTO accounts(number, balance) VALUES(67890, 140.00);
SELECT * FROM accounts;

The third line displays the contents of the table to confirm that the rows were correctly
inserted. The output should look like this:

Fommmmm- mmmmmmmma +
| number | balance |
Fommmmm- mmmmmmmma +
| 12345 | 1025.5 |
| 67890 | 140 |
Fmmmmmaaa Femmmmmaaa- +
2 rows in set (0.00 sec)

With this table created and prepopulated, you are now ready to start using transactions.

Using BEGIN

Transactions in MySQL start with either a BEGIN or a START TRANSACTION statement.
Type the commands in Example 9-3 to send a transaction to MySQL.

Example 9-3. A MySQL transaction

BEGIN;

UPDATE accounts SET balance=balance+25.11 WHERE number=12345;
COMMIT;

SELECT * FROM accounts;

The result of this transaction is displayed by the final line, and should look like this:

Fommmmma- dmmmmmmmma +
| number | balance |
Fommmmma- dmmmmmmmma +
| 12345 | 1050.61 |
| 67890 | 140 |
Fmmmmmmam Femmmmmmma- +
2 rows in set (0.00 sec)

Asyou can see, the balance of account number 12345 was increased by 25.11 and is now
1050.61. You may also have noticed the COMMIT command in Example 9-3, which is
explained next.

Using COMMIT

When you are satisfied that a series of queries in a transaction has successfully com-
pleted, issue a COMMIT command to commit all the changes to the database. Until it
receives a COMMIT, MySQL considers all the changes you make to be merely temporary.

232 | Chapter9: Mastering MySQL



This feature gives you the opportunity to cancel a transaction by not sending a COMMIT
but by issuing a ROLLBACK command instead.

Using ROLLBACK

Using the ROLLBACK command, you can tell MySQL to forget all the queries made since
the start of a transaction and to end the transaction. See this in action by entering the
funds transfer transaction in Example 9-4.

Example 9-4. A funds transfer transaction

BEGIN;

UPDATE accounts SET balance=balance-250 WHERE number=12345;
UPDATE accounts SET balance=balance+250 WHERE number=67890;
SELECT * FROM accounts;

Once you have entered these lines, you should see the following result:

Fommmmm- Fmmmmmmmaa +
| number | balance |
Fommmmm- Fmmmmmmmaa +
| 12345 | 800.61 |
| 67890 | 390 |
dommmmma Hommmmmmae +
2 rows in set (0.00 sec)

The first bank account now has a value that is 250 less than before, and the second has
been incremented by 250; you have transferred a value of 250 between them. But let’s
assume that something went wrong and you wish to undo this transaction. All you have
to do is issue the commands in Example 9-5.

Example 9-5. Canceling a transaction using ROLLBACK

ROLLBACK;
SELECT * FROM accounts;

You should now see the following output, showing that the two accounts have had their
previous balances restored, due to the entire transaction being canceled via the ROLL
BACK command:

Fmmmmmmaa Femmmmmmma- +
| number | balance |
Fmmmmmmaa Femmmmmmma- +
| 12345 | 1050.61 |
| 67890 | 140 |
Fommmmm- Fmmmmmmmma +
2 rows in set (0.00 sec)

Transactions | 233



Using EXPLAIN

MySQL comes with a powerful tool for investigating how the queries you issue to it are
interpreted. Using EXPLAIN, you can get a snapshot of any query to find out whether
you could issue it in a better or more efficient way. Example 9-6 shows how to use it
with the accounts table you created earlier.

Example 9-6. Using the EXPLAIN command

EXPLAIN SELECT * FROM accounts WHERE number='12345";

The results of this EXPLAIN command should look like the following:

L e e LT LEEEEE T LT Fmmmmmmmmmmm Fmmmmmmm Fmmmmmmm te===== EEEEEE P +
|id|select_type|table | type |possible_keys|key |key_len|ref |rows|Extra]
L e e LT LEEEEE T LT Fmmmmmmmmmmm Fmmmmmmm Fmmmmmmm te===== EEEEEE P +
| 1|SIMPLE |accounts|const|PRIMARY | PRIMARY | 4 | const| 1] |
L e e T T LEEEEE T LT Fmmmmmmmmmmmm EEEEEEE T Fmmmmmmm t===== EEEEEE P +

1 row in set (0.00 sec)
The information that MySQL is giving you here is as follows:

select_type
The selection type is SIMPLE. If you were joining tables together, this would show
the join type.

table
The current table being queried is accounts.

type
The query type is const. From worst to best, the possible values can be ALL, index,
range, ref, eq_ref, const, system, and NULL.

possible_keys
There is a possible PRIMARY key, which means that accessing should be fast.

key
The key actually used is PRIMARY. This is good.

key_len
The key length is 4. This is the number of bytes of the index that MySQL will use.

ref
The ref column displays which columns or constants are used with the key. In this
case, a constant key is being used.

rows
The number of rows that needs to be searched by this query is 1. This is good.

234 | Chapter9: Mastering MySQL



Whenever you have a query that seems to be taking longer than you think it should to
execute, try using EXPLAIN to see where you can optimize it. You will discover which
keys (if any) are being used, their lengths, and so on, and will be able to adjust your
query or the design of your table(s) accordingly.

When you have finished experimenting with the temporary ac-
counts table, you may wish to remove it by entering the following
command:

DROP TABLE accounts;

Backing Up and Restoring

Whatever kind of data you are storing in your database, it must have some value to you,
even if it’s only the cost of the time required for reentering it should the hard disk fail.
Therefore, it's important that you keep backups to protect your investment. Also, there
will be times when you have to migrate your database over to a new server; the best way
to do this is usually to back it up first. It is also important that you test your backups
from time to time to ensure that they are valid and will work if they need to be used.

Thankfully, backing up and restoring MySQL data is easy with the mysqldump command.

Using mysqldump

With mysqldump, you can dump a database or collection of databases into one or more
files containing all the instructions necessary to re-create all your tables and repopulate
them with your data. It can also generate files in CSV (Comma-Separated Values) and
other delimited text formats, or even in XML format. Its main drawback is that you must
make sure that no one writes to a table while youre backing it up. There are various
ways to do this, but the easiest is to shut down the MySQL server before mysqldump and
start up the server again after mysqldump finishes.

Or you can lock the tables you are backing up before running mysqldump. To lock tables
for reading (as we want to read the data), issue the following command from the MySQL
command line:

LOCK TABLES tablenamel READ, tablename2 READ ...
Then, to release the lock(s), enter:
UNLOCK TABLES;

By default, the output from mysqldump is simply printed out, but you can capture it in
a file through the > redirect symbol.

Backing Up and Restoring | 235



The basic format of the mysqldump command is:
mysqldump -u user -ppassword database

However, before you can dump the contents of a database, you must make sure that
mysqldump is in your path, or that you specify its location as part of your command.
Table 9-13 shows the likely locations of the program for the different installations and
operating systems covered in Chapter 2. If you have a different installation, it may be
in a slightly different location.

If you are using OS X with mysqldump and receive the error 2002:
Can't connect to local MySQL server through socket '/tmp/
mysql.sock' (2) when trying to connect, you may be able to
remedy this by issuing the following instruction:

1n -s Jusr/local/zend/mysql/tmp/mysql.sock /tmp/mysql.sock

Table 9-13. Likely locations of mysqldump for different installations

Operating System & Program Likely folder location

Windows 32-bit Zend Server C:\Program Files\Zend\MySQL55\bin
Windows 64-bit Zend Server ~ C:\Program Files (x86)\Zend\MySQL55\bin

0S X Zend Server /usr/local/zend/mysql/bin
Linux Zend Server /usr/local/zend/mysql/bin

So, to dump the contents of the publications database that you created in Chapter 8 to
the screen, enter mysqldump (or the full path if necessary) and the command in
Example 9-7.

Example 9-7. Dumping the publications database to screen

mysqldump -u user -ppassword publications

Make sure that you replace user and password with the correct details for your instal-
lation of MySQL. If there is no password set for the user, you can omit that part of the
command, but the -u user part is mandatory—unless you have root access without a
password and are executing as root (not recommended). The result of issuing this com-
mand will look something like Figure 9-4.

236 | Chapter9: Mastering MySQL



BN C\Windows\system32\cmd.exe | = [ B[] |
> ENGINE=MyISAM DEFAULT CHARSET=latini;

—— Dumping data for table ‘customers’

LOCK TABLES ‘customers’® WRITE;

%t 40000 ALTER TABLE ‘customers' DISABLE KEYS #=-;

INSERT INTO ‘customers’ UALUES {’Mary Smith’.’9788582586206°'>, ¢’ Jack Wilson’.'97|
BA517123201° >;

%4000 ALTER TABLE ‘customers’ ENABLE KEYS =/;

UNLOCK THE%ES;

T TIME_ZONE=EOLD_TIME_ZONE =3

%4 481 @1 SQL_MODE=FOLD_SQL_MODE =/;

s FOREIGN_KEY_CHECKS =BOLD_FOREIGH_KEY_CHECKS =3

s UNIQUE_CHECKS =BOLD_UNIQUE_CHECKS =/;

s _SET_¢ @OLD_CHARACTER_SET_CLIENT =/;

s OLD_CHARACTER_SET_RESULTS =3
s _| LD_COLLATION_CONNECTION #=-;

s SQL_NOTES=ROLD_SQL_NOTES #=-;

—— Dump completed on 2088-12-28 11:18:48

Figure 9-4. Dumping the publications database to screen

Creating a Backup File

Now that you have mysqldump working, and have verified it outputs correctly to the
screen, you can send the backup data directly to a file using the > redirect symbol.
Assuming that you wish to call the backup file publications.sql, type the command in
Example 9-8 (remembering to replace user and password with the correct details).

Example 9-8. Dumping the publications database to file

mysqldump -u user -ppassword publications > publications.sql

The command in Example 9-8 stores the backup file into the cur-
rent directory. If you need it to be saved elsewhere, you should in-
sert a file path before the filename. You must also ensure that the
directory you are backing up to has the right permissions set to al-
low the file to be written.

If you echo the backup file to screen or load it into a text editor, you will see that it
comprises sequences of SQL commands such as the following:

DROP TABLE IF EXISTS ‘classics’;
CREATE TABLE ‘classics’ (
“author' varchar(128) default NULL,
“title’ varchar(128) default NULL,
‘category’ varchar(16) default NULL,
‘year' smallint(6) default NULL,
‘isbn’ char(13) NOT NULL default '',
PRIMARY KEY ('isbn‘),
KEY ‘author®™ (‘author'(20)),
KEY ‘title’ ('title'(20)),

Backing Up and Restoring | 237



KEY ‘category’ (‘category'(4)),

KEY ‘year® (‘year'),

FULLTEXT KEY ‘author_2' (‘author’, title’)
) ENGINE=MyISAM DEFAULT CHARSET=latini1;

This is smart code that can be used to restore a database from a backup, even if it
currently exists, because it will first drop any tables that need to be re-created, thus
avoiding potential MySQL errors.

Backing up a single table

To back up only a single table from a database (such as the classics table from the
publications database), you should first lock the table from within the MySQL command
line, by issuing a command such as the following:

LOCK TABLES publications.classics READ;

This ensures that MySQL remains running for read purposes, but writes cannot be
made. Then, while keeping the MySQL command line open, use another terminal win-
dow to issue the following command from the operating system command line:

mysqldump -u user -ppassword publications classics > classics.sql

You must now release the table lock by entering the following command from the
MySQL command line in the first terminal window, which unlocks all tables that have
been locked during the current session:

UNLOCK TABLES;

Backing up all tables

If you want to back up all your MySQL databases at once (including the system databases
such as mysql), you can use a command such as the one in Example 9-9, which would
enable you to restore an entire MySQL database installation. Remember to use locking
where required.

Example 9-9. Dumping all the MySQL databases to file

mysqldump -u user -ppassword --all-databases > all_databases.sql

Of course, there’s a lot more than just a few lines of SQL code in
backed-up database files. I reccommend that you take a few minutes
to examine a couple in order to familiarize yourself with the types of
commands that appear in backup files and how they work.

238 | Chapter9: Mastering MySQL



Restoring from a Backup File

To perform a restore from a file, call the mysql executable, passing it the file to restore
from using the < symbol. So, to recover an entire database that you dumped using the
--all-databases option, use a command such as that in Example 9-10.

Example 9-10. Restoring an entire set of databases

mysql -u user -ppassword < all_databases.sql

To restore a single database, use the -D option followed by the name of the database, as
in Example 9-11, where the publications database is being restored from the backup
made in Example 9-8.

Example 9-11. Restoring the publications database

mysql -u user -ppassword -D publications < publications.sql

To restore a single table to a database, use a command such as that in Example 9-12,
where just the classics table is being restored to the publications database.

Example 9-12. Restoring the classics table to the publications database

mysql -u user -ppassword -D publications < classics.sql

Dumping Data in CSV Format

As previously mentioned, the mysqldump program is very flexible and supports various
types of output, such as the CSV format. Example 9-13 shows how you can dump the
data from the classics and customers tables in the publications database to the files
classics.txt and customers.txt in the folder c:/temp. By default, on Zend Server the user
should be root and no password is used. On OS X or Linux systems, you should modify
the destination path to an existing folder.

Example 9-13. Dumping data to CSV format files

mysqldump -u user -ppassword --no-create-info --tab=c:/temp

[}

--fields-terminated-by="',"' publications

This command is quite long and is shown here wrapped over several lines, but you must
type it all as a single line. The result is the following:

Mark Twain (Samuel Langhorne Clemens)','The Adventures

of Tom Sawyer','Classic Fiction','1876','9781598184891

Jane Austen', 'Pride and Prejudice', 'Classic Fiction','1811','9780582506206
Charles Darwin','The Origin of Species','Non-Fiction','1856','9780517123201
Charles Dickens','The 0ld Curiosity Shop','Classic Fiction','1841','9780099533474
William Shakespeare', 'Romeo and Juliet','Play','1594','9780192814968

Mary Smith','9780582506206
Jack Wilson','9780517123201

Backing Up and Restoring | 239



Planning Your Backups

The golden rule to backing up is to do so as often as you find practical. The more valuable
the data, the more often you should back it up, and the more copies you should make.
If your database gets updated at least once a day, you should really back it up on a daily
basis. If, on the other hand, it is not updated very often, you could probably get by with
less frequent backups.

You should also consider making multiple backups and storing them
in different locations. If you have several servers, it is a simple mat-
ter to copy your backups between them. You would also be well ad-
vised to make physical backups of removable hard disks, thumb
drives, CDs or DVDs, and so on, and to keep these in separate loca-
tions—preferably somewhere like a fireproof safe.

Once you've digested the contents of this chapter, you will be proficient in using both
PHP and MySQL; the next chapter will show you how to bring these two technologies
together.

Questions

. What does the word relationship mean in reference to a relational database?
. What is the term for the process of removing duplicate data and optimizing tables?
. What are the three rules of the First Normal Form?

. How can you make a table satisfy the Second Normal Form?

[ B O

. What do you put in a column to tie together two tables that contain items having
a one-to-many relationship?

(=)}

. How can you create a database with a many-to-many relationship?
7. What commands initiate and end a MySQL transaction?

8. What feature does MySQL provide to enable you to examine how a query will work
in detail?

9. What command would you use to back up the database publications to a file called
publications.sql?

See “Chapter 9 Answers” on page 645 in Appendix A for the answers to these questions.

240 | Chapter9: Mastering MySQL



CHAPTER 10
Accessing MySQL Using PHP

If you worked through the previous chapters, you're proficient in using both MySQL
and PHP. In this chapter, you will learn how to integrate the two by using PHP’s built-
in functions to access MySQL.

Querying a MySQL Database with PHP

The reason for using PHP as an interface to MySQL is to format the results of SQL
queries in a form visible in a web page. As long as you can log into your MySQL instal-
lation using your username and password, you can also do so from PHP. However,
instead of using MySQLs command line to enter instructions and view output, you will
create query strings that are passed to MySQL. When MySQL returns its response, it
will come as a data structure that PHP can recognize instead of the formatted output
you see when you work on the command line. Further PHP commands can retrieve the
data and format it for the web page.

To get you started, in this chapter I use the standard, procedural mysql
function calls, so that you’ll be up and running quickly, and able to
maintain older PHP code. However, the new object-oriented mysqli
functions (the 1 stands for improved) are becoming the
recommended way to interface with MySQL from PHP, so in the
following chapter I'll show you how to use these too (or instead,
because the old functions have become deprecated and could be re-
moved from PHP at some point).

241



The Process
The process of using MySQL with PHP is:

Connect to MySQL.

Select the database to use.

Build a query string.

Perform the query.

Retrieve the results and output them to a web page.

Repeat Steps 3 to 5 until all desired data has been retrieved.

Nk » N

Disconnect from MySQL.

We'll work through these sections in turn, but first it's important to set up your login
details in a secure manner so people snooping around on your system have trouble
getting access to your database.

Creating a Login File

Most websites developed with PHP contain multiple program files that will require
access to MySQL and will thus need the login and password details. Therefore, it’s sen-
sible to create a single file to store these and then include that file wherever it's needed.
Example 10-1 shows such a file, which I've called login.php. Type the example, replacing
placeholder values (such as username) with the actual values you use for your MySQL
database, and save it to the web development directory you set up in Chapter 2. We'll
be making use of the file shortly. The hostname localhost should work aslong as you're
using a MySQL database on your local system, and the database publications should
work if youre typing the examples I've used so far.

Example 10-1. The login.php file

<?php // login.php
$db_hostname = 'localhost';
$db_database 'publications';
$db_username = 'username';
$db_password 'password';

7>

The enclosing <?php and ?> tags are especially important for the login.php file in
Example 10-1, because they mean that the lines between can be interpreted only as PHP
code. If you were to leave them out and someone were to call up the file directly from
your website, it would display as text and reveal your secrets. But, with the tags in place,
all that person will see is a blank page. The file will correctly include in your other PHP
files.

242 | Chapter 10: Accessing MySQL Using PHP



The $db_hostname variable will tell PHP which computer to use when connecting to a
database. This is required, because you can access MySQL databases on any computer
connected to your PHP installation, and that potentially includes any host anywhere on
the Web. However, the examples in this chapter will be working on the local server. So,
in place of specifying a domain such as mysgl.myserver.com, you can just use the word
localhost (or the IP address 127.0.0.1).

The database we’ll be using, $db_database, is the one called publications, which you
probably created in Chapter 8, or the one you were provided with by your server ad-
ministrator (in which case you have to modify login.php accordingly).

The variables $db_username and $db_password should be set to the username and
password that you have been using with MySQL.

Another benefit of keeping these login details in a single place is that
you can change your password as frequently as you like and there will
be only one file to update when you do, no matter how many PHP
files access MySQL.

Connecting to MySQL

Now that you have the login.php file saved, you can include it in any PHP files that will
need to access the database by using the require_once statement. This is preferable to
an include statement, as it will generate a fatal error if the file is not found. And believe
me, not finding the file containing the login details to your database is a fatal error.

Also, using require_once instead of require means that the file will be read in only
when it has not previously been included, which prevents wasteful duplicate disk ac-
cesses. Example 10-2 shows the code to use.

Example 10-2. Connecting to a MySQL server

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);

if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());

7>

This example runs PHP’s mysql_connect function, which requires three parameters:
the hostname, username, and password of a MySQL server. Upon success it returns an
identifier to the server; otherwise, FALSE is returned. Notice that the second line uses
an if statement with the die function, which does what it sounds like and quits from
PHP with an error message if $db_server is not TRUE.

Querying a MySQL Database with PHP | 243



The die message explains that it was not possible to connect to the MySQL database,
and—to help identify why this happened—includes a call to the mysql_error function.
This function outputs the error text from the last called MySQL function.

The database server pointer $db_server will be used in some of the following examples
to identify the MySQL server to be queried. By using identifiers this way, we can connect
to and access multiple MySQL servers from a single PHP program.

The die function is great for when you are developing PHP code, but
of course you will want more user-friendly error messages on a pro-
duction server. In this case you won't abort your PHP program, but
format a message that will be displayed when the program exits nor-
mally, such as:

function mysql_fatal_error($msg)
{
$msg2 = mysql_error();
echo <<< _END
We are sorry, but it was not possible to complete
the requested task. The error message we got was:

<p>Smsg: $msg2</p>

Please click the back button on your browser

and try again. If you are still having problems,
please <a href="mailto:admin@server.com">email
our administrator</a>. Thank you.

_END;

}

Selecting a database

Having successfully connected to MySQL, you are now ready to select the database that
you will be using. Example 10-3 shows how to do this.

Example 10-3. Selecting a database

<?php
mysql_select_db($db_database)
or die("Unable to select database:

. mysql_error());

7>

The command to select the database is mysql_select_db. Pass it the name of the data-
base you want and the server to which you connected. As with the previous example, a
die statement has been included to provide an error message and explanation, should
the selection fail—the only difference being that there is no need to retain the return
value from the mysql_select_db function, as it simply returns either TRUE or FALSE.
Therefore the PHP or statement was used, which means “if the previous command
failed, do the following” Note that for the or to work, there must be no semicolon at
the end of the first line of code.

244 | Chapter 10: Accessing MySQL Using PHP



Building and executing a query

Sending a query to MySQL from PHP is as simple as issuing it using the mysql_query
function. Example 10-4 shows you how to use it.

Example 10-4. Querying a database

<?php
Squery = "SELECT * FROM classics";
Sresult = mysql_query(S$query);

if (!Sresult) die ("Database access failed: . mysql_error());

7>

First, the variable $query is set to the query to be made. In this case, it is asking to see
all rows in the table classics. Note that, unlike with MySQLs command line, no semicolon
is required at the tail of the query, because the mysql_query function is used to issue a
complete query; it cannot be used for queries sent in multiple parts, one at a time.
Therefore, MySQL knows the query is complete and doesn’t look for a semicolon.

This function returns a result that we place in the variable $result. Having used MySQL
at the command line, you might think that the contents of $result will be the same as
the result returned from a command-line query, with horizontal and vertical lines, and
so on. However, this is not the case with the result returned to PHP. Instead, upon
success, $result will contain a resource that can be used to extract the results of the
query. You'll see how to extract the data in the next section. Upon failure, $Sresult
contains FALSE. So the example finishes by checking $Sresult. If it’s FALSE, it means that
there was an error, and the die command is executed.

Fetching a result

Once you have a resource returned from a mysql_query function, you can use it to
retrieve the data you want. The simplest way to do this is to fetch the cells you want,
one at a time, using the mysql_result function. Example 10-5 combines and extends
the previous examples into a program that you can type and run yourself to retrieve the
returned results. I suggest that you save it in the same folder as login.php and give it the
name query.php.

Example 10-5. Fetching results one cell at a time

<?php // query.php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);

if (!Sdb_server) die("Unable to connect to MySQL: " . mysql_error());

mysql_select_db($db_database)
or die("Unable to select database:

. mysql_error());

Querying a MySQL Database with PHP | 245



Squery = "SELECT * FROM classics";
$result = mysql_query(Squery);

if (!Sresult) die ("Database access failed: . mysql_error());
Srows = mysql_num_rows($result);

for ($3 = 0 ; $j < $rows ; ++$3)
{

echo 'Author: ' . mysql_result($result,$j, 'author') . '<br>';

echo 'Title: ' . mysql_result(Sresult,$], 'title') . '<br>';

echo 'Category: ' . mysql_result($result,$j, 'category') . '<br>';

echo 'Year: ' . mysql_result(Sresult,$]j, 'year') . '<br>';

echo 'ISBN: ' . mysql_result($result,$j, 'isbn') . '<br><br>';
}

7>

The final 10 lines of code are the new ones, so let’s look at them. They start by setting
the variable $rows to the value returned by a call to mysql_num_rows. This function
reports the number of rows returned by a query.

Armed with the row count, we enter a for loop that extracts each cell of data from each
row using the mysql_result function. The parameters supplied to this function are the
resource $result, which was returned by mysql_gquery, the row number $j, and the
name of the column from which to extract the data.

The results from each call to mysql_result are then incorporated within echo state-
ments to display one field per line, with an additional line feed between rows. Figure 10-1
shows the result of running this program.

Asyoumayrecall, we populated the classics table with five rows in Chapter 8,and indeed,
five rows of data are returned by query.php. But, as it stands, this code is actually ex-
tremely inefficient and slow, because a total of 25 calls are made to the function
mysql_result in order to retrieve all the data, a single cell at a time. Luckily, there is a
much better way of retrieving the data, which is getting a single row at a time using the
mysql_fetch_row function.

In Chapter 9, I talked about First, Second, and Third Normal Form,
so you may have now noticed that the classics table doesn’t satisfy
these, because both author and book details are included within the
same table. That’s because we created this table before encountering
normalization. However, for the purposes of illustrating access to
MySQL from PHP, reusing this table avoids the hassle of typing in a
new set of test data, so we'll stick with it for the time being.

246 | Chapter 10: Accessing MySQL Using PHP



[@ Mosilla Firefox

| (e

File Edit View History Bookmarks Tools Help
2 c ﬁ o . |\|_‘ http://localhost/query.php

Author: Mark Twain (Samuel Langhorne Clemens)
Title: The Adventures of Tom Sawyer

Category: Classic Fiction

Year: 1876

ISBN: 9781598184891

Author: Jane Austen
Title: Pride and Prejudice
Category: Classic Fiction
Year: 1811

ISBN: 9780582506206

Author: Charles Darwin
Title: The Origin of Species
Category: Non-Fiction
Year: 1856

ISBN: 9780517123201

Author: Charles Dickens
Title: The Old Curiosity Shop
Category: Classic Fiction
Year: 1841

ISBN: 9780099533474

Author: William Shakespeare

17 | |[Gl-| Google bk

»

mn

Done

Co 6@

Figure 10-1. The output from the query.php program in Example 10-5

Fetching a row

It was important to show how you can fetch a single cell of data from MySQL, but now
let’s look at a much more efficient method. Replace the for loop of query.php (in
Example 10-5) with the new loop in Example 10-6, and you will find that you get exactly

the same result that was displayed in Figure 10-1.

Example 10-6. Replacement for loop for fetching results one row at a time

<?php
for ($3 = 0 ;5 $J < Srows ; ++$])
{
Srow = mysql_fetch_row($result);
echo 'Author: ' . Srow[0] . '<br>';
echo 'Title: ' Srow[1] . '<br>';
echo 'Category: ' . Srow[2] . '<br>';
echo 'Year: ' . Srow[3] . '<br>';
echo 'ISBN: ' . Srow[4] . '<br><br>';
}
7>

Querying a MySQL Database with PHP | 247



In this modified code, only one-fifth of the calls are made to a MySQL-calling function
(a full 80% less), because each row is fetched in its entirety via the mysql_fetch_row
function. This returns a single row of data in an array, which is then assigned to the
variable $row.

All that’s necessary, then, is to reference each element of the array $row in turn (starting
at an offset of 0). Therefore $row[0] contains the Author data, $row[1] the Title, and
so on, because each column is placed in the array in the order in which it appears in the
MySQL table. Also, by using mysql_fetch_row instead of mysql_result, you use sub-
stantially less PHP code and achieve much faster execution time, due to simply refer-
encing each item of data by offset rather than by name.

Closing a connection

When you have finished using a database, you should close the connection. You do so
by issuing the command in Example 10-7.

Example 10-7. Closing a MySQL server connection

<?php
mysql_close($db_server);
7>

We have to pass the identifier returned by mysql_connect back in Example 10-2, which
we stored in the variable $db_server.

All database connections are automatically closed when PHP exits, so
it doesn’t matter that the connection wasn’t closed in Example 10-5.
But in longer programs, where you may continually open and close
database connections, you are strongly advised to close each one as
soon as you're finished accessing it.

A Practical Example

It's time to write our first example of inserting data in and deleting it from a MySQL
table using PHP. I recommend that you type Example 10-8 and save it to your web
development directory using the filename sqltest.php. You can see an example of the
program’s output in Figure 10-2.

Example 10-8 creates a standard HTML form. Chapter 12 explains
forms in detail, but in this chapter I take form handling for granted
and just deal with database interaction.

248 | Chapter 10: Accessing MySQL Using PHP



Example 10-8. Inserting and deleting using sqltest.php

<?php // sqltest.php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);

if (!S$db_server) die("Unable to connect to MySQL: " . mysqgl_error());

mysql_select_db(Sdb_database, $db_server)
or die("Unable to select database: " . mysql_error());

if (isset($_POST['delete']) && isset($_POST['isbn']))
{
$isbn
Squery

get_post('isbn');
"DELETE FROM classics WHERE isbn='$isbn'";

if (!mysql_query($query, $db_server))
echo "DELETE failed: $query<br>" .
mysql_error() . "<br><br>";

3

if (isset($_POST['author']) &&
isset($_POST['title']) &&
isset($_POST[ 'category']) &&
isset($_POST['year']) &&
isset($_POST['isbn']))

Sauthor get_post('author');
Stitle = get_post('title');
Scategory = get_post('category');
Syear get_post('year');
$isbn get_post('isbn');

Squery = "INSERT INTO classics VALUES" .
"('Sauthor', 'Stitle', 'Scategory', 'Syear', '$Sisbn')";

if (!mysql_query($query, $db_server))
echo "INSERT failed: $query<br>" .
mysql_error() . "<br><br>";

3

echo <<<_END
<form action="sqltest.php" method="post"><pre>
Author <input type="text" name="author">
Title <input type="text" name="title">
Category <input type="text" name="category">
Year <input type="text" name="year">
ISBN <input type="text" name="isbn">
<input type="submit" value="ADD RECORD">

</pre></form>
_END;
$query = "SELECT * FROM classics";

APractical Example | 249



$result = mysql_query(Squery);

if (!Sresult) die ("Database access failed: . mysql_error());

Srows = mysqgl_num_rows($result);

for (8 = 0 ; $j < Srows ; ++$3)
{
Srow = mysql_fetch_row($result);
echo <<<_END
<pre>
Author $row[0]
Title Srow[1]
Category Srow[2]
Year $row[3]
ISBN Srow[4]
</pre>
<form action="sqltest.php" method="post">
<input type="hidden" name="delete" value="yes">
<input type="hidden" name="isbn" value="S$row[4]">
<input type="submit" value="DELETE RECORD"></form>
_END;
}

mysql_close($db_server);

function get_post(Svar)

{
return mysql_real_escape_string($_POST[Svar]);

}

?>

At over 80 lines of code, this program may appear daunting, but don’t worry—you’ve
already covered many of them in Example 10-5, and what the code does is actually quite
simple.

It first checks for any inputs that may have been made and then either inserts new data
into the table classics of the publications database or deletes a row from it, according to
the input supplied. Regardless of whether there was input, the program then outputs
all rows in the table to the browser. So let’s see how it works.

The first section of new code starts by using the isset function to check whether values
for all the fields have been posted to the program. Upon confirmation, each of the lines
within the if statement calls the function get_post, which appears at the end of the
program. This function has one small but critical job: fetching the input from the
browser.

250 | Chapter 10: Accessing MySQL Using PHP



[@ Mosilla Firefox g e
File Edit View History Bookmarks Tools Help

F ﬁ EL |\|_‘ http://localhost/sqltest.php P gl v Google yel
o
Author B
Title
Category
Year
ISEN =
Author Mark Twain (Samuel Langhorne Clemens)
Title The Adventures of Tom Sawyer
Category Classzic Fiction

Year 1876 =
ISBN 9781598184891

DELETE RECORD

Author Jane Austen
Title Pride and Prejudice
Category Classic Fiction
Year 1811
ISEN 9780582506206

DELETE RECORD

Author Charles Darwin
Title The Origin of Species
Category Non-Fiction
Year 1856

Done @ o B @

Figure 10-2. The output from Example 10-8, sqltest.php

The $_POST Array

I mentioned in an earlier chapter that a browser sends user input through either a GET
request or a POST request. The POST request is usually preferred, and we use it here. The
web server bundles up all of the user input (even if the form was filled out with a hundred
fields) and puts in into an array named $_POST.

$_POST is an associative array, which you encountered in Chapter 6. Depending on
whether a form has been set to use the POST or the GET method, either the $_POST or the
$_GET associative array will be populated with the form data. They can both be read in
exactly the same way.

Each field has an element in the array named after that field. So, if a form contained a
field named isbn, the $_POST array contains an element keyed by the word isbn. The
PHP program can read that field by referring to either $_POST['isbn'] or
$_POST["isbn"] (single and double quotes have the same effect in this case).

If the $_POST syntax still seems complex to you, rest assured that you can just use the
convention I've shown in Example 10-8, copy the user’s input to other variables, and

APractical Example | 251



forget about $_POST after that. This is normal in PHP programs: they retrieve all the
fields from $_POST at the beginning of the program and then ignore it.

There is no reason to write to an element in the $_POST array. Its only
purpose is to communicate information from the browser to the pro-
gram, and you're better off copying data to your own variables be-
fore altering it.

So, back to the get_post function: it passes each item it retrieves through the
mysql_real_escape_string function to strip out any characters that a hacker may have
inserted in order to break into or alter your database.

Deleting a Record

Prior to checking whether new data has been posted, the program checks whether the
variable $_POST[ 'delete'] has a value. If so, the user has clicked on the DELETE
RECORD button to erase a record. In this case, the value of $isbn will also have been
posted.

As you’'ll recall, the ISBN uniquely identifies each record. The HTML form appends the
ISBN to the DELETE FROM query string created in the variable $query, which is then
passed to the mysql_query function to issue it to MySQL. mysql_query returns either
TRUE or FALSE, and FALSE causes an error message to be displayed explaining what went
wrong.

If $_POST['delete']) is not set (and there is therefore no record to be deleted),
$_POST[ 'author']) and other posted values are checked. If they have all been given
values, then $query is set to an INSERT INTO command, followed by the five values to
beinserted. The variable is then passed tomysql_query, which upon completion returns
either TRUE or FALSE. If FALSE is returned, an error message is displayed.

Displaying the Form

Next we get to the part of code that displays the little form at the top of Figure 10-2. You
should recall the echo <<<_END structure from previous chapters, which outputs ev-
erything between the _END tags.

252 | Chapter 10: Accessing MySQL Using PHP



Instead of the echo command, the program could also drop out of
PHP using ?>, issue the HTML, and then reenter PHP processing with
<?php. Whichever style used is a matter of programmer preference,
but I always recommend staying within PHP code for these reasons:

o It makes it very clear when debugging (and also for other users)
that everything within a .php file is PHP code. Therefore, there
is no need to go hunting for dropouts to HTML.

o When you wish to include a PHP variable directly within HTML,
you can just type it. If you had dropped back to HTML, you
would have had to temporarily reenter PHP processing, output
the variable, and then drop back out again.

The HTML form section simply sets the form’s action to sgltest.php. This means that
when the form is submitted, the contents of the form fields will be sent to the file
sqltest.php, which is the program itself. The form is also set up to send the fields as a
POST rather than a GET request. This is because GET requests are appended to the URL
being submitted to and can look messy in your browser. They also allow users to easily
modify submissions and try to hack your server. Therefore, whenever possible, you
should use POST submissions, which also have the benefit of hiding the posted data from
view.

Having output the form fields, the HTML displays a Submit button with the name ADD
RECORD and closes the form. Note the use of the <pre> and </pre> tags here, which
have been used to force a monospaced font and allow all the inputs to line up neatly.
The carriage returns at the end of each line are also output when inside <pre> tags.

Querying the Database

Next, the code returns to the familiar territory of Example 10-5 where, in the following
four lines of code, a query is sent to MySQL asking to see all the records in the classics
table. After that, $rows is set to a value representing the number of rows in the table and
a for loop is entered to display the contents of each row.

I have altered the next bit of code to simplify things. Instead of using the <br> tags for
line feeds in Example 10-5, I have chosen to use a <pre> tag to line up the display of
each record in a pleasing manner.

After the display of each record, there is a second form that also posts to sqltest.php (the
program itself) but this time contains two hidden fields: delete and isbn. The delete
field is set to “yes” and isbn to the value held in $row[4], which contains the ISBN for
the record. Then a Submit button with the name DELETE RECORD is displayed and
the form is closed. A curly brace then completes the for loop, which will continue until
all records have been displayed.

APractical Example | 253



Finally, you see the definition for the function get_post, which we’ve already looked
at. And that’s it—our first PHP program to manipulate a MySQL database. So, let’s check
out what it can do.

Once you have typed the program (and corrected any typing errors), try entering the
following data into the various input fields to add a new record for the book Moby
Dick to the database:

Herman Melville

Moby Dick

Fiction

1851

9780199535729

Running the Program

When you have submitted this data using the ADD RECORD button, scroll down to
the bottom of the web page to see the new addition. It should look like Figure 10-3.

[@ Mozila Firefox = [ B [

File Edit View History Bookmarks Tools Help

@ - C o [§ (O
LATEgOryY NON-EF1CTion

Year 1856

ISEN 9780517123201

DELETE RECORD

Zuthor Charles Dickens
Title The 0ld Curios=ity Shop
Category Classic Fiction
Year 1841
ISBN 9780099533474

DELETE RECORD

Author William Shakespeare
Title Romeo and Juliet
Category Play
Year 1594
ISEN 9780192814968

DELETE RECORD

Author Herman Melville
Title Moby Dick
Category Fiction
Year 1851
ISEN 9780199535729

DELETE RECORD
Done @ & @ @

http://localhost/sqltest.php - ' Google P

-

m

Figure 10-3. The result of adding Moby Dick to the database

254 | Chapter 10: Accessing MySQL Using PHP



Now lets look at how deleting a record works by creating a dummy record. So try
entering just the number 1 in each of the five fields and click on the ADD RECORD
button. If you now scroll down, you’ll see a new record consisting just of 1s. Obviously
this record isn't useful in this table, so now click on the DELETE RECORD button and
scroll down again to confirm that the record has been deleted.

Assuming that everything worked, you are now able to add and de-
lete records at will. Try doing this a few times, but leave the main
records in place (including the new one for Moby Dick), as we’ll be
using them later. You could also try adding the record with all 1s again
a couple of times and note the error message that you receive the
second time, indicating that there is already an ISBN with the num-
ber 1.

Practical MySQL

You are now ready to look at some practical techniques that you can use in PHP to access
the MySQL database, including tasks such as creating and dropping tables; inserting,
updating, and deleting data; and protecting your database and website from malicious
users. Note that the following examples assume that you've created the login.php pro-
gram discussed earlier in this chapter.

Creating a Table

Let’s assume you are working for a wildlife park and need to create a database to hold
details about all the types of cats it houses. You are told that there are nine families of
cats—Lion, Tiger, Jaguar, Leopard, Cougar, Cheetah, Lynx, Caracal, and Domestic—so
you’ll need a column for that. Then each cat has been given a name, so that’s another
column, and you also want to keep track of their ages, which is another. Of course, you
will probably need more columns later, perhaps to hold dietary requirements, inocu-
lations, and other details, but for now that’s enough to get going. A unique identifier is
also needed for each animal, so you also decide to create a column for that called id.

Example 10-9 shows the code you might use to create a MySQL table to hold this data,
with the main query assignment in bold text.

Example 10-9. Creating a table called cats

<?php
require_once 'login.php';
Sdb_server = mysql_connect($db_hostname, $db_username, $db_password);

if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());

mysql_select_db(Sdb_database)
or die("Unable to select database:

. mysql_error());

Practical MySQL | 255



$query = "CREATE TABLE cats (
id SMALLINT NOT NULL AUTO_INCREMENT,
family VARCHAR(32) NOT NULL,
name VARCHAR(32) NOT NULL,
age TINYINT NOT NULL,
PRIMARY KEY (id)
"

$result = mysql_query($query);

if (!Sresult) die ("Database access failed: . mysql_error());

7>

Asyou can see, the MySQL query looks pretty similar to how you would type it directly
in the command line, except that there is no trailing semicolon, as none is needed when
you are accessing MySQL from PHP.

Describing a Table

When you aren’t logged into the MySQL command line, here’s a handy piece of code
that you can use to verify that a table has been correctly created from inside a browser.
It simply issues the query DESCRIBE cats and then outputs an HTML table with four
headings—Column, Type, Null, and Key—underneath which all columns within the
table are shown. To use it with other tables, simply replace the name cats in the query
with that of the new table (see Example 10-10).

Example 10-10. Describing the table cats

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);

if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());

mysql_select_db($db_database)
or die("Unable to select database:

. mysql_error());

"DESCRIBE cats";
mysql_query($query);

Squery
$result

if (!$result) die ("Database access failed: . mysql_error());

$rows = mysql_num_rows(Sresult);

echo "<table><tr><th>Column</th><th>Type</th><th>Null</th><th>Key</th></tr>";
for (83 = 0 ;5 $J < Srows ; ++3])

{

Srow = mysql_fetch_row($result);
echo "<tr>";

256 | Chapter 10: Accessing MySQL Using PHP



for (Sk = 0 ; Sk < 4 ; ++5k)
echo "<td>$row[$k]</td>";

echo "</tr>";

3

echo "</table>";
7>

The output from the program should look like this:

Column Type Null Key
id smallint(6) NO PRI
family varchar(32) NO
name varchar(32) NO
age tinyint(4) NO

Dropping a Table

Dropping a table is very easy to do and is therefore very dangerous, so be careful.
Example 10-11 shows the code that you need. However, I don’t recommend that you
try it until you have been through the other examples, as it will drop the table cats and

you'll have to re-create it using Example 10-9.

Example 10-11. Dropping the table cats

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);

if (!S$db_server) die("Unable to connect to MySQL: " . mysql_error());

mysql_select_db(Sdb_database)
or die("Unable to select database:

. mysql_error());

$query = "DROP TABLE cats";
Sresult = mysql_query($query);

if (!Sresult) die ("Database access failed:
7>

Adding Data

Let’s add some data to the table using the code in Example 10-12.

. mysql_error());

Example 10-12. Adding data to table cats

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);

Practical MySQL

257



if (!S$db_server) die("Unable to connect to MySQL: " . mysql_error());

mysql_select_db(Sdb_database)
or die("Unable to select database:

. mysql_error());

"INSERT INTO cats VALUES(NULL, 'Lion', 'Leo', 4)";
mysql_query($query);

Squery
Sresult

if (!Sresult) die ("Database access failed: . mysql_error());

7>
You may wish to add a couple more items of data by modifying $query as follows and
calling up the program in your browser again:

$query = "INSERT INTO cats VALUES(NULL, 'Cougar', 'Growler', 2)";
Squery = "INSERT INTO cats VALUES(NULL, 'Cheetah', 'Charly', 3)";

By the way, notice the NULL value passed as the first parameter? This is because the id
column is of type AUTO_INCREMENT, and MySQL will decide what value to assign ac-
cording to the next available number in sequence, so we simply pass a NULL value, which
will be ignored.

Of course, the most efficient way to populate MySQL with data is to create an array and
insert the data with a single query.

Retrieving Data

Now that some data has been entered into the cats table, Example 10-13 shows how you
can check that it was correctly inserted.

Example 10-13. Retrieving rows from the cats table

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);

if (!Sdb_server) die("Unable to connect to MySQL: " . mysql_error());

mysql_select_db($db_database)
or die("Unable to select database:

. mysql_error());

Squery = "SELECT * FROM cats";
Sresult = mysql_query($query);

if (!Sresult) die ("Database access failed: . mysql_error());
Srows = mysql_num_rows(Sresult);

echo "<table><tr> <th>Id</th> <th>Family</th><th>Name</th><th>Age</th></tr>";

for ($3 = 0 ; $j < $rows ; ++$3)
{

258 | Chapter 10: Accessing MySQL Using PHP



$row = mysql_fetch_row(Sresult);
echo "<tr>";

for (Sk = 0 ; Sk < 4 ; ++Sk)
echo "<td>$row[$k]</td>";

echo "</tr>";

3

echo "</table>";
7>

This code simply issues the MySQL query SELECT * FROM cats and then displays all
the rows returned. Its output is as follows:

Id Family Name Age
1 Lion Leo 4
2 Cougar Growler 2
3 Cheetah Charly 3

Here you can see that the id column has correctly auto-incremented.

Updating Data

Changing data that you have already inserted is also quite simple. Did you notice the
spelling of Charly for the cheetah’s name? Let’s correct that to Charlie, as in
Example 10-14.

Example 10-14. Renaming Charly the cheetah to Charlie

<?php
require_once 'login.php';
Sdb_server = mysql_connect($db_hostname, $db_username, $db_password);

if (!S$db_server) die("Unable to connect to MySQL: " . mysql_error());

mysql_select_db(Sdb_database)
or die("Unable to select database:

. mysql_error());

Squery = "UPDATE cats SET name='Charlie' WHERE name='Charly'";
$result = mysql_query(Squery);

if (!Sresult) die ("Database access failed:
7>

. mysql_error());

If you run Example 10-13 again, you'll see that it now outputs the following:

Id Family Name Age
1 Lion Leo 4
2 Cougar Growler 2
3 Cheetah Charlie 3

Practical MySQL | 259



Deleting Data

Growler the cougar has been transferred to another zoo, so it’s time to remove him from
the database; see Example 10-15.

Example 10-15. Removing Growler the cougar from the cats table

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);

if (!S$db_server) die("Unable to connect to MySQL: " . mysql_error());

mysql_select_db(Sdb_database)
or die("Unable to select database:

. mysql_error());

Squery "DELETE FROM cats WHERE name='Growler'";
$result = mysql_query(Squery);

if (!Sresult) die ("Database access failed:
?>

. mysql_error());

This uses a standard DELETE FROM query, and when you run Example 10-13, you can
see that the row has been removed in the following output:

Id Family Name Age
1 Lion Leo 4
3 Cheetah Charlie 3

Using AUTO_INCREMENT

When using AUTO_INCREMENT, you cannot know what value has been given to a column
before a row is inserted. Instead, if you need to know it, you must ask MySQL afterward
using the mysql_insert_1id function. This need is common: for instance, when you
process a purchase, you might insert a new customer into a Customers table and then
refer to the newly created CustId when inserting a purchase into the purchase table.

Example 10-12 can be rewritten as Example 10-16 to display this value after each insert.

Example 10-16. Adding data to table cats and reporting the insertion id

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);

if (!S$db_server) die("Unable to connect to MySQL: " . mysql_error());

mysql_select_db(Sdb_database)
or die("Unable to select database:

. mysql_error());

Squery = "INSERT INTO cats VALUES(NULL, 'Lynx', 'Stumpy', 5)";
Sresult = mysql_query(S$Squery);

260 | Chapter 10: Accessing MySQL Using PHP



echo "The Insert Id was: . mysql_1insert_1id();

if (!Sresult) die ("Database access failed: . mysql_error());

7>

The contents of the table should now look like the following (note how the previous id
value of 2 is not reused, as this could cause complications in some instances):

Id Family Name Age
1 Lion Leo 4
3 Cheetah Charlie 3
4 Lynx Stumpy 5

Using insert IDs

It’s very common to insert data in multiple tables: a book followed by its author, or a
customer followed by his purchase, and so on. When doing this with an auto-increment
column, you will need to retain the insert ID returned for storing in the related table.

For example, let’s assume that these cats can be “adopted” by the public as a means of
raising funds, and that when a new cat is stored in the cats table, we also want to create
a key to tie it to the animal’s adoptive owner. The code to do this is similar to that in
Example 10-16, except that the returned insert ID is stored in the variable $insertID,
and is then used as part of the subsequent query:

Squery "INSERT INTO cats VALUES(NULL, 'Lynx', 'Stumpy', 5)";

$result = mysql_query(Squery);
$insertID = mysql_insert_id();

Squery "INSERT INTO owners VALUES($insertID, 'Ann', 'Smith')";
S$result = mysql_query($query);

Now the cat is connected to its “owner” through the cat’s unique ID, which was created
automatically by AUTO_INCREMENT.

Using locks

A completely safe procedure for linking tables through the insert ID is to use locks (or
transactions, as described in Chapter 9). It can slow down response time a bit when
there are many people submitting data to the same table, but it can also be worth it. The
sequence is:

. Lock the first table (e.g., cats).
. Insert data into the first table.

1
2
3. Retrieve the unique ID from the first table through mysql_insert_id.
4. Unlock the first table.

Practical MySQL | 261



5. Insert data into the second table.

You can safely release the lock before inserting data into the second table, because the
insert ID has been retrieved and is stored in a program variable. You could also use a
transaction instead of locking, but that slows down the MySQL server even more.

Performing Additional Queries

OK, that’s enough feline fun. To explore some slightly more complex queries, we need
to revert to using the customers and classics tables that you created in Chapter 8. There
will be two customers in the customers table; the classics table holds the details of a few
books. They also share a common column of ISBNS, called isbn, that we can use to
perform additional queries.

For example, to display all of the customers along with the titles and authors of the books
they have bought, you can use the code in Example 10-17.

Example 10-17. Performing a secondary query

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);

if (!Sdb_server) die("Unable to connect to MySQL: " . mysql_error());

mysql_select_db(Sdb_database)
or die("Unable to select database:

. mysql_error());

$query = "SELECT * FROM customers";
Sresult = mysql_query($Squery);

if (!Sresult) die ("Database access failed: . mysql_error());

Srows = mysql_num_rows(Sresult);

for ($j = 0 ; $j < Srows ; ++$3)
{
S$row = mysql_fetch_row(Sresult);
echo "$row[0@] purchased ISBN Srow[1]:<br>";

$subquery
$subresult

"SELECT * FROM classics WHERE isbn='Srow[1]'";
mysql_query($subquery);

if (!$subresult) die ("Database access failed: . mysql_error());
$subrow = mysql_fetch_row($subresult);

echo " 'Ssubrow[1]' by $subrow[Q]<br>";

262 | Chapter 10: Accessing MySQL Using PHP



This program uses an initial query to the customers table to look up all the customers
and then, given the ISBN of the book each customer purchased, makes a new query to
the classics table to find out the title and author for each. The output from this code
should be as follows:

Mary Smith purchased ISBN 9780582506206:
'Pride and Prejudice' by Jane Austen

Jack Wilson purchased ISBN 9780517123201:
'The Origin of Species' by Charles Darwin

Of course, although it wouldn’t illustrate performing additional quer-
ies, in this particular case you could also return the same informa-
tion using a NATURAL JOIN query (see Chapter 8), like this:

SELECT name,isbn,title,author FROM customers
NATURAL JOIN classics;

Preventing SQL Injection

It may be hard to understand just how dangerous it is to pass user input unchecked to
MySQL. For example, suppose you have a simple piece of code to verify a user, and it
looks like this:

Suser = $_POST['user'];
$pass = $_POST['pass'];
Squery = "SELECT * FROM users WHERE user='S$user' AND pass='S$pass'";

At first glance, you might think this code is perfectly fine. If the user enters values of
fredsmithandmypass for $user and $pass, respectively, then the query string, as passed
to MySQL, will be as follows:

SELECT * FROM users WHERE user='fredsmith' AND pass='mypass'

Thisis all well and good, but what if someone enters the following for $user (and doesn’t
even enter anything for $pass)?

admin' #
Let’s look at the string that would be sent to MySQL:
SELECT * FROM users WHERE user='admin' #' AND pass=''

Do you see the problem there? In MySQL, the # symbol represents the start of a com-
ment. Therefore, the user will be logged in as admin (assuming there is a user admin),
without having to enter a password. In the following, the part of the query that will be
executed is shown in bold; the rest will be ignored.

SELECT * FROM users WHERE user='admin' #' AND pass='"'

But you should count yourself very lucky if that’s all a malicious user does to you. At
least you might still be able to go into your application and undo any changes the user

Practical MySQL | 263



makes as admin. But what about the case in which your application code removes a user
from the database? The code might look something like this:

Suser = $_POST['user'];
$pass = $_POST['pass'];
$query = "DELETE FROM users WHERE user='S$user' AND pass='Spass'";

Again, this looks quite normal at first glance, but what if someone entered the following
for Suser?

anything' OR 1=1 #
This would be interpreted by MySQL as:
DELETE FROM users WHERE user='anything' OR 1=1 #' AND pass="'

Ouch—that SQL query will always be TRUE and therefore you've lost your whole users
database! So what can you do about this kind of attack?

Well, the first thing is not to rely on PHP’s built-in magic quotes, which automatically
escape any characters such as single and double quotes by prefacing them with a back-
slash (\). Why? Because this feature can be turned off; many programmers do so in
order to put their own security code in place. So there is no guarantee that this hasn’t
happened on the server you are working on. In fact, the feature was deprecated as of
PHP 5.3.0 and has been removed in PHP 6.0.0.

Instead, you should always use the function mysql_real_escape_string for all calls to
MySQL. Example 10-18 is a function you can use that will remove any magic quotes
added to a user-inputted string and then properly sanitize it for you.

Example 10-18. How to properly sanitize user input for MySQL

<?php
function mysql_fix_string($string)
{
if (get_magic_quotes_gpc()) $string = stripslashes($string);
return mysql_real_escape_string($string);

}

7>

The get_magic_quotes_gpc function returns TRUE if magic quotes are active. In that
case, any slashes that have been added to a string have to be removed, or the function
mysql_real_escape_string could end up double-escaping some characters, creating
corrupted strings. Example 10-19 illustrates how you would incorporate
mysql_fix_string within your own code.

Example 10-19. How to safely access MySQL with user input

<?php
Suser = mysql_fix_string($_POST['user']);
Spass = mysql_fix_string($_POST['pass']);
$query = "SELECT * FROM users WHERE user='$user' AND pass='Spass'";

264 | Chapter 10: Accessing MySQL Using PHP



function mysql_fix_string($string)

{
if (get_magic_quotes_gpc()) $string = stripslashes(Sstring);
return mysql_real_escape_string($string);

3

7>

Remember that you can use mysql_real_escape_string only when
a MySQL database is actively open; otherwise, an error will occur.

Using Placeholders

Another way—this one virtually bulletproof—to prevent SQL injections is to use a fea-
ture called placeholders. The idea is to predefine a query using ? characters where the
data will appear. Then, instead of calling a MySQL query directly, you call the predefined
one, passing the data to it. This has the effect of ensuring that every item of data entered
is inserted directly into the database and cannot be interpreted as SQL queries. In other
words, SQL injections become impossible.

The sequence of queries to execute when using MySQLs command line would be like
that in Example 10-20.

Example 10-20. Using placeholders
PREPARE statement FROM "INSERT INTO classics VALUES(?,?,?,?,2)";

SET @author = "Emily Bronté",
@title = "Wuthering Heights",
@category = "Classic Fiction",
@year = "1847",

@isbn = "9780553212587";

EXECUTE statement USING @author,@title,@category,@year,@isbn;
DEALLOCATE PREPARE statement;

The first command prepares a statement called statement for inserting data into the
classics table. As you can see, in place of values or variables for the data to insert, the
statement contains a series of ? characters. These are the placeholders.

The next five lines assign values to MySQL variables according to the data to be inserted.
Then the predefined statement is executed, passing these variables as parameters. Fi-
nally, the statement is removed, in order to return the resources it was using.

Practical MySQL | 265



In PHP, the code for this procedure looks like Example 10-21 (assuming that you have
created login.php with the correct details to access the database).

Example 10-21. Using placeholders with PHP

<?php
require 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);

if (!S$db_server) die("Unable to connect to MySQL: " . mysql_error());

mysql_select_db(Sdb_database)
or die("Unable to select database:

. mysql_error());

Squery = 'PREPARE statement FROM "INSERT INTO classics VALUES(?,?,?,?2,2)"';
mysql_query($query);

Squery = 'SET @author = "Emily Bronté",'
'@title = "Wuthering Heights",
'@category = "Classic Fiction",' .
'@year = "1847",' .

'@isbn = "9780553212587"';
mysql_query(S$query);

Squery = 'EXECUTE statement USING @author,@title,@category,@year,@isbn';
mysql_query($query);

Squery = 'DEALLOCATE PREPARE statement';

mysql_query($query);
7>

Once you have prepared a statement, until you deallocate it you can use it as often as
you wish. Such statements are commonly used within a loop to quickly insert data into
a database by assigning values to the MySQL variables and then executing the statement.
This approach is more efficient than creating the entire statement from scratch on each
pass through the loop.

Preventing HTML Injection

There’s another type of injection you need to concern yourself about—not for the safety
of your own websites, but for your users’ privacy and protection. That’s cross-site script-
ing, also referred to as XSS.

This occurs when you allow HTML, or more often JavaScript code, to be input by a user
and then displayed back by your website. One place this is common is in a comment
form. What happens most often is that a malicious user will try to write code that steals
cookies from your site’s users, allowing him or her to discover username and password
pairs or other information. Even worse, the malicious user might launch an attack to
download a Trojan onto a user’s computer.

266 | Chapter 10: Accessing MySQL Using PHP



But preventing this is as simple as calling the htmlentities function, which strips out
all HTML markup codes and replaces them with a form that displays the characters,
but does not allow a browser to act on them. For example, consider the following HTML:

<script src='http://x.com/hack.js'>
</script><script>hack();</script>

This code loads in a JavaScript program and then executes malicious functions. But if
it is first passed through htmlentities, it will be turned into the following, totally
harmless string:

&lt;script src="http://x.com/hack.js'&gt;
&lt; /script&gt;&Llt;script&gt;hack();&lt;/script&gt;

Therefore, if you are ever going to display anything that your users enter, either imme-
diately or after storing it in a database, you need to first sanitize it with htmlentities.
To do this, I recommend that you create a new function, like the first one in
Example 10-22, which can sanitize for both SQL and XSS injections.

Example 10-22. Functions for preventing both SQL and XSS injection attacks
<?php
function mysql_entities_fix_string($string)

{
return htmlentities(mysql_fix_string($string));

}

function mysql_fix_string($string)

{
if (get_magic_quotes_gpc()) $string = stripslashes($string);
return mysql_real_escape_string($string);

}

7>

The mysql_entities_fix_string function first calls mysql_fix_string and then
passes the result through htmlentities before returning the fully sanitized string.
Example 10-23 shows your new “ultimate protection” version of Example 10-19.

Example 10-23. How to safely access MySQL and prevent XSS attacks

<?php
Suser = mysql_entities_fix_string($_POST['user']);
S$pass = mysql_entities_fix_string($_POST['pass']);
Squery = "SELECT * FROM users WHERE user='Suser' AND pass='$pass'";

function mysql_entities_fix_string($string)

{
return htmlentities(mysql_fix_string($string));

}

function mysql_fix_string($string)

{

Practical MySQL | 267



if (get_magic_quotes_gpc()) $string = stripslashes($string);
return mysql_real_escape_string($string);

}

?>

Now that you have learned how to integrate PHP with MySQL and avoid malicious user
input, the next chapter will explain how to use the improved MySQL1 extension for your
MySQL queries.

Questions

1. What is the standard PHP function for connecting to a MySQL database?

2. When is the mysql_result function not optimal?

3. Give one reason why using the POST form method is usually better than GET.
4

. How can you determine the most recently entered value of an AUTO_INCREMENT
column?

5. Which PHP function escapes a string, making it suitable for use with MySQL?

6. Which function can be used to prevent XSS injection attacks?

See “Chapter 10 Answers” on page 646 in Appendix A for the answers to these questions.

268 | Chapter 10: Accessing MySQL Using PHP



CHAPTER 11
Using the mysqli Extension

Now that you understand how to access a MySQL database using PHP and the proce-
dural mysql extensions, it's time to learn how to do this with the improved mysqli
extension. This is an object-oriented system, but there is a procedural version available
if you prefer, and I'll show you how to use both.

Querying a MySQL Database with mysqli

In this chapter, I replicate a number of the previous one’s examples, but rewrite them
tousemysqli. This should serve as an excellent example of how you can bring any legacy
code you encounter up-to-date.

Creating a Login File

Creating a login file is no different with mysqli than before, so it will look something
like Example 11-1.

Example 11-1. The login.php file
<?php // login.php
Sdb_hostname = 'localhost';
$db_database = 'publications';
$db_username = 'username';

$db_password 'password";
?>

As in the previous chapter, the database we’ll be using is the one called publications, and
the variables $db_username and $db_password should be set to the username and pass-
word that you have been using with MySQL.

269



Connecting to MySQL

With the login.php file saved, you access the database with the require_once statement,
and connect to the server in the manner shown in Example 11-2.

Example 11-2. Connecting to a MySQL server with mysqli
<?php
require_once 'login.php';
Sconnection = new mysqli($db_hostname, $db_username, $db_password, $db_database);

if (Sconnection->connect_error) die($connection->connect_error)
7>

This example creates a new object called $connection by calling the mysqli method
with all the values retrieved from login.php. Note the improved error checking, which
we achieve by referencing the $connection->connect_error property. If it is TRUE, we
call the die function and display details explaining the error. The connect_error prop-
erty of $connection contains a string detailing the connection error.

The $connection object will be used in the following examples to access the MySQL
database.

Building and executing a query

Sending a query to MySQL from PHP with mysql{i is as simple as issuing it using the
query method. Example 11-3 shows you how to use it.

Example 11-3. Querying a database with mysqli

<?php
Squery = "SELECT * FROM classics";
Sresult = $connection->query(Squery);

if (!Sresult) die(S$connection->error);
7>

As in Chapter 10, the variable $query is set to the query to be made, but here this value
is passed to the query method of the $connection object, which returns a result that
we place in the object $result. We've done everything we need with $connection and
turn to $result to enjoy what has been returned from the connection. The $result will
be FALSE if there was an error; otherwise, it will be an object that can be accessed. The
error property of $connection contains a string detailing any error.

Fetching a result

Once you have an object returned in $result, you can use it to retrieve the data you
want, one item at a time, using the fetch_assoc method of the object. Example 11-4
combines and extends the previous examples into a program that you can type and run

270 | Chapter 11: Using the mysqli Extension



yourself to retrieve these results (as depicted in Figure 11-1). I suggest that you save this
script using the filename query-mysqli.php.
Example 11-4. Fetching results with mysqli, one cell at a time
<?php // query-mysqli.php
require_once 'login.php';

Sconnection =
new mysqli($db_hostname, $db_username, $db_password, $db_database);

if ($connection->connect_error) die($connection->connect_error)

Squery "SELECT * FROM classics";
Sresult = $connection->query(Squery);

if (!Sresult) die(Sconnection->error);
Srows = $result->num_rows;

for ($j = 0 ; $j < $rows ; ++$3)

{
$result->data_seek($3);
echo 'Author: ' . $result->fetch_assoc()['author'] . '<br>';
S$result->data_seek($3);
echo 'Title: ' . $result->fetch_assoc()['title'] . '<br>';
S$result->data_seek($3);
echo 'Category: ' . Sresult->fetch_assoc()['category'] . '<br>';
S$result->data_seek($3);
echo 'Year: ' . $result->fetch_assoc()['year'] . '<br>';
Sresult->data_seek($3);
echo 'ISBN: ' . $result->fetch_assoc()['isbn'] . '<br><br>';
}

Sresult->close();
Sconnection->close();
7>

Here, to seek to the correct row each time around the loop, we call the data_seek method
of $result before fetching each item of data. Then we call the fetch_assoc method to
retrieve the value stored in each cell, and output the result using echo commands.

You will probably agree that all this data seeking is rather cumbersome and that there
ought to be a more efficient method of achieving the same result. And, indeed, there is
a better method, which is to extract a row at a time.

Querying a MySQL Database with mysqli | 271



. localhost//ch11/example’ .\\
J

[ o C A [ localhost//ch11/example11-4.php el =

Author: Mark Twain (Samuel Langhorne Clemens)
Title: The Adventures of Tom Sawver

Category: Classic Fiction

Year: 1876

ISBN: 9781598184891

Author: Jane Austen
Title: Pride and Prejudice
Category: Classic Fiction
Year: 1811

ISBN: 9780582506206

Author: Charles Darwin
Title: The Origin of Species
Category: Non-Fiction
Year: 1856

ISBN: 9780517123201

Author: Charles Dickens
Title: The Old Curiosity Shop
Category: Classic Fiction
Year: 1841

ISBIN: 9780099533474

Figure 11-1. The result of running Example 11-4

Fetching a row

To fetch one row at a time, replace the for loop from Example 11-4 with the one high-
lighted in bold in Example 11-5, and you will find that you get exactly the same result
that was displayed in Figure 11-1. You may wish to save this revised file as fetchrow-

mysqli.php.
Example 11-5. Fetching results with mysqli, one row at a time

<?php //fetchrow-mysqli.php
require_once 'login.php';
$connection =
new mysqli($db_hostname, $db_username, $db_password, $db_database);
if ($connection->connect_error) die(Sconnection->connect_error);

Squery = "SELECT * FROM classics";
$result = $connection->query(Squery);

if (!Sresult) die(S$connection->error);

$rows = $Sresult->num_rows;

272 | Chapter 11: Using the mysqli Extension



for ($j = 0 ; $j < $rows ; ++$j)
{
$result->data_seek($j);
Srow = Sresult->fetch_array(MYSQLI_ASSOC);

echo 'Author: ' . $row[ 'author'] . '<br>';
echo 'Title: ' . $row[ 'title'] . '<br>';
echo 'Category: ' . Srow['category'] . '<br>';
echo 'Year: ' . $row[ 'year'] . '<br>';
echo "ISBN: ' . $row['isbn'] . '<br><br>';

}

Sresult->close();
$Sconnection->close();
7>

In this modified code, only one-fifth of the interrogations of the $result object are
made, and only one seek into the object is made in each iteration of the loop, because
each row is fetched in its entirety via the fetch_array method. This returns a single
row of data as an array, which is then assigned to the array $row.

The fetch_array method can return three types of array according to the value passed
to it:

MYSQLI_NUM
Numeric array. Each column appears in the array in the order in which you defined
it when you created (or altered) the table. In our case, the zeroth element of the
array contains the Author column, element 1 contains the Title, and so on.

MYSQLI_ASSOC
Associative array. Each key is the name of a column. Because items of data are
referenced by column name (rather than index number), use this option where
possible in your code to make debugging easier and help other programmers better
manage your code.

MYSQLI_BOTH
Associative and numeric array.

Associative arrays are usually more useful than numeric ones because you can refer to
each column by name, such as $row[ 'author'], instead of trying to remember where
it is in the column order. So this script uses an associative array, leading us to pass
MYSQLI_ASSOC.

Closing a connection

PHP will eventually return the memory it has allocated for objects after you have fin-
ished with the script, so in small scripts, you don’t usually need to worry about releasing
memory yourself. However, if you're allocating a lot of result objects or fetching large

Querying a MySQL Database with mysqli | 273



amounts of data, it can be a good idea to free the memory you have been using to prevent
problems later in your script.

This becomes particularly important on higher traffic pages, because the amount of
memory consumed in a session can rapidly grow. Therefore, note the calls to the close
methods of the objects $result and $connection in the preceding scripts, as soon as
each object is no longer needed.

Ideally, you should close each result object when you have finished using it, and then
close the connection object when your script will not be accessing MySQL anymore.
This best practice ensures that resources are returned to the system as quickly as possible
to keep MySQL running optimally, and alleviates doubt over whether PHP will return
unused memory in time for when you next need it.

A Practical Example

Now let’s rewrite the procedural sqltest.php program from the previous chapter using
mysqli. The conversion is pretty straightforward, as you can see in Example 11-6 (which
you should save as mysqlitest.php if you intend to test it, because it continuously calls
itself).

Example 11-6. Inserting and deleting using mysqlitest.php

<?php // mysqlitest.php
require_once 'login.php';
Sconnection =
new mysqli($db_hostname, $db_username, $db_password, $db_database);

if (Sconnection->connect_error) die($connection->connect_error);

if (isset($_POST['delete']) && isset($_POST['isbn']))
{
$isbn get_post($connection, 'isbn');
Squery "DELETE FROM classics WHERE isbn='$isbn'";
Sresult = S$connection->query(Squery);

if (!$result) echo "DELETE failed: $query<br>" .
Sconnection->error . "<br><br>";

}

if (isset($_POST['author']) &&
isset($_POST['title']) &&
isset($_POST[ 'category']) &&
isset($_POST[ 'year']) &&
isset($_POST['isbn']))
{
Sauthor get_post(Sconnection, 'author');
Stitle = get_post(S$connection, 'title');
$category = get_post(Sconnection, 'category');

274 | Chapter 11: Using the mysqli Extension



get_post(Sconnection, 'year');
$isbn get_post($connection, 'isbn');
Squery "INSERT INTO classics VALUES"
"('Sauthor', 'Stitle', 'Scategory', 'Syear', 'Sisbn')";
$result = Sconnection->query($query);

Syear

if (!Sresult) echo "INSERT failed: $query<br>" .
Sconnection->error . "<br><br>";

}

echo <<<_END
<form action="mysqlitest.php" method="post"><pre>
Author <input type="text" name="author">
Title <input type="text" name="title">
Category <input type="text" name="category">
Year <input type="text" name="year"s>
ISBN <input type="text" name="isbn">
<input type="submit" value="ADD RECORD">

</pre></form>
_END;
Squery = "SELECT * FROM classics";

Sresult = $connection->query(Squery);

if (!Sresult) die ("Database access failed: . $connection->error);

Srows = $result->num_rows;

for ($3 = 0 ; $3 < Srows ; ++33)
{
Sresult->data_seek($3);
Srow = Sresult->fetch_array(MYSQLI_NUM);

echo <<<_END
<pre>
Author $row[0]
Title Srow[1]
Category S$row[2]
Year $row[3]
ISBN $row[4]
</pre>
<form action="mysqlitest.php" method="post">
<input type="hidden" name="delete" value="yes">
<input type="hidden" name="isbn" value="$row[4]">
<input type="submit" value="DELETE RECORD"></form>
_END;
}

Sresult->close();
Sconnection->close();

function get_post($connection, $var)

APractical Example | 275



{

return $connection->real_escape_string($_POST[$var]);

}

?>

How this code works is explained in Chapter 10, so all we need to examine here are the
differences between Examples 10-8 and 11-6. Let’s work through them in order.

The first couple of lines pull in the code from login.php and create a Sconnection object
to gain access to the database. Then there’s the code for deleting an entry, which simply
issues a DELETE command to the $connection object using the query method, and
returns an error message if there’s a problem.

Then, if new data has been posted to the program, it issues an INSERT command, again
on the $connection object using the query method. In both instances, the $result
object is given the result of this operation, which should be either TRUE or FALSE.

The final main part of the program deals with extracting data from the database and
displaying it using the data_seek and fetch_array methods of the $result object.
Unlike Example 11-5, however, in which an associative array was returned, here the
fetch_array method is given the value MYSQLI_NUM so that a numeric array is returned;
accordingly, the cells are referenced numerically (e.g., $row[0] for the author). The
results are then displayed in each iteration of the loop, and finally the result object and
connection are closed.

The function get_post hasalso been modified here to use the new real_escape_string
method of a connection object, so now two values are passed to it (the connection and
the string value).

Using mysqli Procedurally

If you prefer, there is an alternative set of functions you can use to access mysqli in a
procedural (rather than object-oriented) manner.

So, instead of creating a Sconnection object like this:

Sconnection = new mysqli($db_hostname, $db_username, $db_password, $db_database);
You can use the following:

$link = mysqli_connect($db_hostname, $db_username, $db_password, $db_database);

To check that the connection has been made and handle it, you could use code such as
this:

if (mysqli_connect_errno()) die(mysqli_connect_error());

276 | Chapter 11: Using the mysqli Extension



And to make a MySQL query, you would use code such as the following:
$result = mysqli_query(Slink, "SELECT * FROM classics");

Upon return, $result will contain the data. You can find out the number of rows re-
turned as follows:

Srows = mysqli_num_rows($result));

An integer is returned in $rows. You can fetch the actual data one row at a time in the
following way, which returns a numeric array:

$row = mysqli_fetch_array($result, MYSQLI_NUM);

In this instance, $row[ 0] will contain the first column of data, $row[ 1] the second, and
so on. As described in Example 11-5, rows can also be returned as associative arrays or
as both types, depending on the value passed in the second argument.

Escaping strings procedurally with mysqli is as easy as using the following:

Sescaped = mysqli_real_escape_string($link, $val);
For full details on using mysqli procedurally (and all other aspects of mysqli), visit
http://tinyurl.com/usingmysqli.

Now that you have learned how to integrate PHP with MySQL in several different ways,
the next chapter moves on to creating user-friendly forms and dealing with the data
submitted from them.

Questions

1. How do you connect to a MySQL database using mysqli?
2. How do you submit a query to MySQL using mysqli?

3. How can you retrieve a string containing an error message when a mysqli error
occurs?

4. How can you determine the number of rows returned by a mysqli query?
5. How can you retrieve a particular row of data from a set of mysqli results?

6. Which mysqli method can be used to properly escape user input to prevent code
injection?

7. What negative effects can happen if you do not close the objects created by mysqli
methods?

See “Chapter 11 Answers” on page 646 in Appendix A for the answers to these questions.

Questions | 277






CHAPTER 12
Form Handling

The main way that website users interact with PHP and MySQL is through the use of
HTML forms. These were introduced very early on in the development of the World
Wide Web in 1993—even before the advent of ecommerce—and have remained a
mainstay ever since, due to their simplicity and ease of use.

Of course, enhancements have been made over the years to add extra functionality to
HTML form handling, so this chapter will bring you up to speed on state-of-the-art
form handling and show you the best ways to implement forms for good usability and
security. Plus, as you will see a little later on, the HTML5 specification has further im-
proved the use of forms.

Building Forms

Handling forms is a multipart process. First a form is created, into which a user can
enter the required details. This data is then sent to the web server, where it is interpreted,
often with some error checking. Ifthe PHP code identifies one or more fields that require
reentering, the form may be redisplayed with an error message. When the code is sat-
isfied with the accuracy of the input, it takes some action that usually involves the
database, such as entering details about a purchase.

To build a form, you must have at least the following elements:

o An opening <form> and closing </form> tag
o A submission type specifying either a GET or POST method
o One or more input fields

o The destination URL to which the form data is to be submitted

Example 12-1 shows a very simple form created with PHP. Type it and save it as

formtest.php.

279



Example 12-1. formtest.php—a simple PHP form handler

<?php // formtest.php
echo <<<_END
<html>
<head>
<title>Form Test</title>
</head>
<body>
<form method="post" action="formtest.php">
What is your name?
<input type="text" name="name">
<input type="submit">
</form>
</body>
</html>
_END;
7>

The first thing to notice about this example is that, as you have already seen in this book,
rather than dropping in and out of PHP code, the echo <<<_END ... _END construct is
used whenever multiline HTML must be output.

Inside of this multiline output is some standard code for commencing an HTML docu-
ment, displaying its title, and starting the body of the document. This is followed by the
form, which is set to send its data using the POST method to the PHP program
formtest.php, which is the name of the program itself.

The rest of the program just closes all the items it opened: the form, the body of the
HTML document, and the PHP echo <<<_END statement. The result of opening this
program in a web browser is shown in Figure 12-1.

r@ Form Test - Mozilla Firefox =NAEE X
File Edit View History Bookmarks Tools Help
@ C % o (o
What is your name? Submit Query
Done [oPBSCTNN o N )

Figure 12-1. The result of opening formtest.php in a web browser

280 | Chapter 12: Form Handling



Retrieving Submitted Data

Example 12-1 is only one part of the multipart form handling process. If you enter a
name and click the Submit Query button, absolutely nothing will happen other than
the form being redisplayed. So now it’s time to add some PHP code to process the data
submitted by the form.

Example 12-2 expands on the previous program to include data processing. Type it or
modify formtest.php by adding in the new lines, save it as formtest2.php, and try the
program for yourself. The result of running this program and entering a name is shown
in Figure 12-2.

Example 12-2. Updated version of formtest.php

<?php // formtest2.php
if (isset($_POST['name'])) $name = $_POST['name'];
else Sname = "(Not entered)";

echo <<<_END
<html>
<head>
<title>Form Test</title>
</head>
<body>
Your name is: $name<br>
<form method="post" action="formtest2.php">
What is your name?
<input type="text" name="name">
<input type="submit">
</form>
</body>
</html>
_END;
7>

The only changes are a couple of lines at the start that check the $_POST associative array
for the field name having been submitted. Chapter 10 introduced the $_POST associative
array, which contains an element for each field in an HTML form. In Example 12-2, the
input name used was name and the form method was POST, so element name of the
$_POST array contains the value in $_POST[ 'name'].

The PHP 1isset function is used to test whether $_POST[ 'name'] has been assigned a
value. If nothing was posted, the program assigns the value (Not entered); otherwise,
it stores the value that was entered. Then a single line has been added after the <body>
statement to display that value, which is stored in $name.

Retrieving Submitted Data | 281



r@ Form Test - Mozilla Firefox =NAEE X
File Edit View History Bookmarks Tools Help

r L] '\._. formtest.php w ot

Your name is: Cary Grant

What is your name? Submit Query
Done @ [ @ @

Figure 12-2. formtest.php with data handling

Notice how the <input> elements in this example do not use the />
form of self-closing, because in the new world of HTMLS5 this style is
optional (and it was never actually required in HTML4 anyways; it was
recommended purely because XHTML was planned to supersede
HTML at some point—but this never happened). I'm always in fa-
vor of less work when programming, so I no longer use these char-
acters except for actual XHTML (where this type of closing remains
necessary), saving both a space and a slash for every self-closing tag.

register_globals: An Old Solution Hangs On

Before security became such a big issue, the default behavior of PHP was to assign the
$_POST and $_GET arrays directly to PHP variables. For example, there would be no need
to use the instruction $name=$_POST[ 'name']; because $name would already be given
that value automatically by PHP at the program start!

Initially (prior to version 4.2.0 of PHP), this seemed a very useful idea that saved a lot
of extra code writing, but this practice has now been discontinued and the feature is
disabled by default. Should you find register_globals enabled on a production web
server for which you are developing, you should urgently ask your server administrator
to disable it.

So why disable register_globals? It enables anyone to enter a GET input on the tail of
a URL, like this: http://myserver.com?override=1.1f your code were ever to use the vari-
able Soverride and you forgot to initialize it (e.g., through $override=0;), the program
could be compromised by such an exploit.

In fact, because many installations on the Web still have this gaping hole, I advise you
to always initialize every variable you use, just in case your code will ever run on such
a system. Initialization is also good programming practice, because you can comment
each initialization to remind yourself and other programmers what each variable is for.

282 | Chapter 12: Form Handling



If you find yourself maintaining code that seems to assume values for
certain variables for no apparent reason, you can make an educated
guess that the programmer wrote the code using register_globals,
and that these values are intended to be extracted from a POST or GET.
If so, I recommend that you rewrite the code to load these variables
explicitly from the correct $_POST or $_GET array.

Default Values

Sometimes it’s convenient to offer your site visitors a default value in a web form. For
example, suppose you put up aloan repayment calculator widget on a real estate website.
It could make sense to enter default values of, say, 25 years and 6% interest, so that the
user can simply type either the principle sum to borrow or the amount that she can
afford to pay each month.

In this case, the HTML for those two values would be something like Example 12-3.

Example 12-3. Setting default values

<form method="post" action="calc.php"><pre>
Loan Amount <input type="text" name="principle">
Monthly Repayment <input type="text" name="monthly">
Number of Years <input type="text" name="years" value="25">
Interest Rate <input type="text" name="rate" value="6">
<input type="submit">
</pre></form>

If you wish to try this (and the other HTML code samples), save it
with an .html (or .htm) file extension, such as test.html (or test.htm),
and then load that file into your browser.

Take alook at the third and fourth inputs. By populating the value attribute, you display
a default value in the field, which the users can then change if they wish. With sensible
default values, you can often make your web forms more user-friendly by minimizing
unnecessary typing. The result of the previous code looks like Figure 12-3. Of course,
this was created just to illustrate default values and, because the program calc.php has
not been written, the form will not do anything if submitted.

Default values are also used for hidden fields if you want to pass extra information from
your web page to your program, in addition to what users enter. We'll look at hidden
fields later in this chapter.

Retrieving Submitted Data | 283



[@ Mozilla Firefox = [ ) [
File Edit View History Bookmarks Tools Help

r c Q '\,_, formtest.htm b

Loan Amount

Monthly Repayment
Number of Years 25

Interest Rate 6

Submit Query
Done @ [ @ @

Figure 12-3. Using default values for selected form fields

Input Types

HTML forms are very versatile and allow you to submit a wide range of input types,
from text boxes and text areas to checkboxes, radio buttons, and more.

Text boxes

The input type you will probably use most often is the text box. It accepts a wide range
of alphanumeric text and other characters in a single-line box. The general format of a
text box input is:

<input type="text" name="name" size="size" maxlength="length" value="value">

We've already covered the name and value attributes, but two more are introduced here:
size and maxlength. The size attribute specifies the width of the box (in characters of
the current font) as it should appear on the screen, and maxlength specifies the maxi-
mum number of characters that a user is allowed to enter into the field.

The only required attributes are type, which tells the web browser what type of input
to expect, and name, for giving the input a name that will be used to process the field
upon receipt of the submitted form.

Text areas

When you need to accept input of more than a short line of text, use a text area. This is
similar to a text box, but, because it allows multiple lines, it has some different attributes.
Its general format looks like this:

<textarea name="name" cols="width" rows="height" wrap="type">
</textarea>

The first thing to notice is that <textarea> has its own tag and is not a subtype of the
<input> tag. It therefore requires a closing </textarea> to end input.

284 | Chapter 12: Form Handling



Instead of a default attribute, if you have default text to display, you must put it before
the closing </textarea>, and it will then be displayed and be editable by the user, like
this:

<textarea name="name" cols="width" rows="height" wrap="type">

This is some default text.

</textarea>
To control the width and height, use the cols and rows attributes. Both use the character
spacing of the current font to determine the size of the area. If you omit these values, a
default input box will be created that will vary in dimensions depending on the browser
used, so you should always define them to be certain about how your form will appear.

Lastly, you can control how the text entered into the box will wrap (and how any such
wrapping will be sent to the server) using the wrap attribute. Table 12-1 shows the wrap
types available. If you leave out the wrap attribute, soft wrapping is used.

Table 12-1. The wrap types available in a textarea input
off  Text does not wrap and lines appear exactly as the user types them.
soft Text wraps but is sent to the server as one long string without carriage returns and line feeds.

hard Text wraps and is sent to the server in wrapped format with soft returns and line feeds.

Checkboxes

When you want to offer a number of different options to a user, from which he can
select one or more items, checkboxes are the way to go. The format to use is:

<input type="checkbox" name="name" value="value" checked="checked">

If you include the checked attribute, the box is already checked when the browser is
displayed. The string you assign to the attribute should be either a double quote or the
value "checked", or there should be no value assigned. If you don't include the attribute,
the box is shown unchecked. Here is an example of creating an unchecked box:

I Agree <input type="checkbox" name="agree">

If the user doesn’t check the box, no value will be submitted. But if he does, a value of
"on" will be submitted for the field named agree. If you prefer to have your own value
submitted instead of the word on (such as the number 1), you could use the following
syntax:

I Agree <input type="checkbox" name="agree" value="1">

On the other hand, if you wish to offer a newsletter to your readers when submitting a
form, you might want to have the checkbox already checked as the default value:

Subscribe? <input type="checkbox" name="news" checked="checked">

Retrieving Submitted Data | 285



If you want to allow groups of items to be selected at one time, assign them all the same
name. However, only the last item checked will be submitted, unless you pass an array
as the name. For example, Example 12-4 allows the user to select his favorite ice creams
(see Figure 12-4 for how it displays in a browser).

Example 12-4. Offering multiple checkbox choices

Vanilla <input type="checkbox" name="ice" value="Vanilla">
Chocolate <input type="checkbox" name="ice" value="Chocolate">
Strawberry <input type="checkbox" name="ice" value="Strawberry"s>

[@ Mozilla Firefox = [ ) [
File Edit View History Bookmarks Tools Help

r c Q '\,_, formtest.htm b

Vanilla [| Chocolate Strawberry

Done @ [ @ @

Figure 12-4. Using checkboxes to make quick selections

If only one of the checkboxes is selected, such as the second one, only that item will be
submitted (the field named ice would be assigned the value "Chocolate"). But if two
or more are selected, only the last value will be submitted, with prior values being ig-
nored.

If you want exclusive behavior—so that only one item can be submitted—then you
should use radio buttons (see the next section), but to allow multiple submissions, you
have to slightly alter the HTML, as in Example 12-5 (note the addition of the square
brackets, [ ], following the values of ice).

Example 12-5. Submitting multiple values with an array

Vanilla <input type="checkbox" name="ice[]" value="vanilla">
Chocolate <input type="checkbox" name="ice[]" value="Chocolate">
Strawberry <input type="checkbox" name="ice[]" value="Strawberry"s>

Now, when the form is submitted, if any of these items have been checked, an array
called ice will be submitted that contains any and all values. In each case, you can extract
either the single submitted value, or the array of values, to a variable like this:

$ice = $_POST['ice'];

If the field ice has been posted as a single value, $ice will be a single string, such as
"Strawberry". But if ice was defined in the form as an array (like Example 12-5), $ice
will be an array, and its number of elements will be the number of values submitted.
Table 12-2 shows the seven possible sets of values that could be submitted by this HTML

286 | Chapter 12: Form Handling



for one, two, or all three selections. In each case, an array of one, two, or three items is
created.

Table 12-2. The seven possible sets of values for the array $ice

One value submitted Two values submitted Three values submitted
$ice[0] => Vanilla $ice[0] => Vanilla $ice[0] => Vanilla
$ice[1] => Chocolate $ice[1] => Chocolate
$ice[0] => Chocolate $ice[2] => Strawberry
$ice[0] => Vanilla
$ice[0] => Strawberry $ice[1] => Strawberry

$ice[0] => Chocolate
$ice[1] => Strawberry

If $ice is an array, the PHP code to display its contents is quite simple and might look
like this:

foreach($ice as $item) echo "$item<br>";

This uses the standard PHP foreach construct to iterate through the array $ice and
pass each element’s value into the variable $item, which is then displayed via the echo
command. The <br> is just an HTML formatting device to force a new line after each
flavor in the display. By default, checkboxes are square.

Radio buttons

Radio buttons are named after the push-in preset buttons found on many older radios,
where any previously depressed button pops back up when another is pressed. They are
used when you want only a single value to be returned from a selection of two or more
options. All the buttons in a group must use the same name and, because only a single
value is returned, you do not have to pass an array.

For example, if your website offers a choice of delivery times for items purchased from
your store, you might use HTML like that in Example 12-6 (see Figure 12-5 to see how
it displays).

Example 12-6. Using radio buttons

8am-Noon<input type="radio" name="time" value="1">
Noon-4pm<input type="radio" name="time" value="2" checked="checked">
4pm-8pm<input type="radio" name="time" value="3">

Here, the second option of Noon-4pm has been selected by default. This default choice
ensures that at least one delivery time will be chosen by the user, which can be changed
to one of the other two options if preferred. Had one of the items not been already
checked, the user might forget to select an option, and no value would be submitted at
all for the delivery time. By default, radio buttons are round.

Retrieving Submitted Data | 287



[@ Mozilla Firefox = [ ) [
File Edit View History Bookmarks Tools Help

r c Q '\,_, formtest.htm b

8am-Noon ©' Noon-4pm @ 4pm-8pm ©

Done @ <) @

Figure 12-5. Selecting a single value with radio buttons

Hidden fields

Sometimes it is convenient to have hidden form fields so that you can keep track of the
state of form entry. For example, you might wish to know whether a form has already
been submitted. You can achieve this by adding some HTML in your PHP code, such
as the following:

echo '<input type="hidden" name="submitted" value="yes">'

This is a simple PHP echo statement that adds an input field to the HTML form. Let’s
assume the form was created outside the program and displayed to the user. The first
time the PHP program receives the input, this line of code has not run, so there will be
no field named submitted. The PHP program re-creates the form, adding the input
field. So when the visitor resubmits the form, the PHP program receives it with the
submitted field set to "yes". The code can simply check whether the field is present:

if (isset($_POST['submitted']))
{...

Hidden fields can also be useful for storing other details, such as a session ID string that
you might create to identify a user, and so on.

Never treat hidden fields as secure—because they are not. Some-
one could easily view the HTML containing them using a brows-
er’s View Source feature.

<select>

The <select> tag lets you create a drop-down list of options, offering either single or
multiple selections. It conforms to the following syntax:

<select name="name" size="size" multiple="multiple">

The attribute size is the number of lines to display. Clicking on the display causes a list
to drop down showingall the options. If you use the multiple attribute, a user can select
multiple options from the list by pressing the Ctrl key when clicking. So to ask a user

288 | Chapter 12: Form Handling



for his or her favorite vegetable from a choice of five, you might use HTML as in
Example 12-7, which offers a single selection.

Example 12-7. Using select

Vegetables
<select name="veg" size="1">
<option value="Peas">Peas</option>
<option value="Beans'">Beans</option>
<option value="Carrots">Carrots</option>
<option value="Cabbage">Cabbage</option>
<option value="Broccoli">Broccoli</option>
</select>

[@ Mozilla Firefox = [ ) [
File Edit View History Bookmarks Tools Help

r c Q '\,_, formtest.htm b

Cabbage
Broccaoli
Loroccolr |
o> @@

Done

Figure 12-6. Creating a drop-down list with select

This HTML offers five choices, with the first one, Peas, preselected (due to it being the
first item). Figure 12-6 shows the output where the list has been clicked on to drop it
down, and the option Carrotshas been highlighted. If you want to have a different default
option offered first (such as Beans), use the <selected> tag, like this:

<option selected="selected" value="Beans'">Beans</option>

You can also allow users to select more than one item, as in Example 12-8.

Example 12-8. Using select with the multiple attribute

Vegetables
<select name="veg" size="5" multiple="multiple">
<option value="Peas">Peas</option>
<option value="Beans">Beans</option>
<option value="Carrots">Carrots</option>
<option value="Cabbage">Cabbage</option>
<option value="Broccoli">Broccoli</option>
</select>

This HTML is not very different; only the size has been changed to "5" and the attribute
multiple has been added. But, as you can see from Figure 12-7, it is now possible to
select more than one option by using the Ctrl key when clicking. You can leave out the

Retrieving Submitted Data | 289



size attribute if you wish, and the output will be the same; however, with a larger list,
the drop-down box might take up too much screen space, so I recommend that you pick
a suitable number of rows and stick with it. I also recommend against multiple select
boxes smaller than two rows in height—some browsers may not correctly display the
scroll bars needed to access it.

[@ Mozilla Firefox = [ ) [
File Edit View History Bookmarks Tools Help
kv c Q '\ || | formtest.htm b

Vegetables | Broccoli
Done [oPBSCTNN o N )

Figure 12-7. Using a select with the multiple attribute

You can also use the selected attribute within a multiple select and can, in fact, have
more than one option preselected if you wish.

Labels

You can provide an even better user experience by utilizing the <label> tag. With it,
you can surround a form element, making it selectable by clicking any visible part con-
tained between the opening and closing <label> tags.

For example, going back to the example of choosing a delivery time, you could allow
the user to click on the radio button itself and the associated text, like this:

<label>8am-Noon<input type="radio" name="time" value="1"></label>

The text will not be underlined like a hyperlink when you do this, but as the mouse
passes over, it will change to an arrow instead of a text cursor, indicating that the whole
item is clickable.

The submit button

To match the type of form being submitted, you can change the text of the submit button
to anything you like by using the value attribute, like this:

<input type="submit" value="Search">

You can also replace the standard text button with a graphic image of your choice, using
HTML such as this:

<input type="image" name="submit" src="image.gif">

290 | Chapter 12: Form Handling



Sanitizing Input

Now we return to PHP programming. It can never be emphasized enough that handling
user data is a security minefield, and that it is essential to learn to treat all such data with
utmost caution from the word go. It’s actually not that difficult to sanitize user input
from potential hacking attempts, but it must be done.

The first thing to remember is that regardless of what constraints you have placed in an
HTML form to limit the types and sizes of inputs, it is a trivial matter for a hacker to
use a browser’s View Source feature to extract the form and modify it to provide mali-
cious input to your website.

Therefore, you must never trust any variable that you fetch from either the $_GET or
$_POST arrays until you have processed it. If you don’t, users may try to inject JavaScript
into the data to interfere with your site’s operation, or even attempt to add MySQL
commands to compromise your database.

Therefore, instead of just using code such as the following when reading in user input:
$variable = $_POST['user_input'];

you should also use one or more of the following lines of code. For example, to prevent
escape characters from being injected into a string that will be presented to MySQL, use
the following. Remember that this function takes into account the current character set
of a MySQL connection, so it must be used with a mysqli connection object (in this
instance, $connection), as discussed in Chapter 11.

Svariable = $connection->real_escape_string($variable);
To get rid of unwanted slashes, use:
Svariable = stripslashes($variable);
And to remove any HTML from a string, use the following:
Svariable = htmlentities($variable);

For example, this would change a string of interpretable HTML code like <b>hi</b>
into &lt;b&gt;hi&lt; /b&gt;, which displaysastext,and won't be interpreted as HTML
tags.

Finally, if you wish to strip HTML entirely from an input, use the following:
Svariable = strip_tags(Svariable);

In fact, until you know exactly what sanitization you require for a program,
Example 12-9 shows a pair of functions that brings all these checks together to provide
a very good level of security.

Retrieving Submitted Data | 291



Example 12-9. The sanitizeString and sanitizeMySQL functions

<?php
function sanitizeString(S$var)
{
$var = stripslashes($var);
Svar = htmlentities($var);
$var = strip_tags($var);
return $var;

3

function sanitizeMySQL(Sconnection, $var)

{ // Using the mysqli extension
$var = Sconnection->real_escape_string($var);
$var = sanitizeString($var);
return $var;

}

7>
Add this code to the end of your PHP programs, and you can then call it for each user
input to sanitize, like this:

$var = sanitizeString($_POST['user_input']);

Or, when you have an open MySQL connection, and a mysqli connection object (in
this case, called $connection):

Svar = sanitizeMySQL(S$connection, $_POST['user_input']);

If you use the procedural version of the mysqli extension, you will
need to modify sanitizeMySQL to call the mysqli_real_es
cape_string function, like this (in which case $connection will then
be a handle, not an object):

Svar = mysqli_real_escape_string(Sconnection, $var);

An Example Program

So let’s look at how a real life PHP program integrates with an HTML form by creating
the program convert.php listed in Example 12-10. Enter it as shown and try it for your-
self.

Example 12-10. A program to convert values between Fahrenheit and Celsius
<?php // convert.php
$F=sc= '

if (isset($_POST['f'])) $f
if (isset($_POST['c'])) $c

sanitizeString($_POST['f']);
sanitizeString($_POST['c']);

if ($F 1= 1)

292 | Chapter 12: Form Handling



{
$c = intval((5 / 9) * ($f - 32));
Sout = "$f °f equals $c °c";

}

elseif(Sc !'= '")

{
$f = intval((9 / 5) * $c + 32);
Sout = "$c °c equals $f °f";

}

else Sout = "";

echo <<<_END
<html>
<head>
<title>Temperature Converter</title>
</head>
<body>
<pre>
Enter either Fahrenheit or Celsius and click on Convert

<b>$out</b>
<form method="post" action="convert.php">
Fahrenheit <input type="text" name="f" size="7">
Celsius <input type="text" name="c" size="7">
<input type="submit" value="Convert">
</form>
</pre>
</body>
</html>
_END;

function sanitizeString(S$var)

{
Svar = stripslashes($var);
S$var = htmlentities(S$var);
Svar = strip_tags($var);
return $var;
}
7>

When you call up convert.php in a browser, the result should look something like
Figure 12-8.

To break the program down, the first line initializes the variables $c and $f in case they
do not get posted to the program. The next two lines fetch the values of either the field
named f or the one named c, for an input Fahrenheit or Celsius value. If the user inputs
both, the Celsius is simply ignored and the Fahrenheit value is converted. As a security
measure, the new function sanitizeString from Example 12-9 is also used.

An Example Program | 293



r@ Temperature Converter - Mozilla Firefox =ANCE X
File Edit View History Bookmarks Tools Help

@ - L] '._. convert.php w ot

Enter either Farhenheit or Celsius and click on Convert

21 "c egmals 69 °f

Fahrenheit
Celsius 21

Done @ [ @ @

Figure 12-8. The temperature conversion program in action

So, having either submitted values or empty strings in both $f and $c, the next portion
of code constitutes an if ... elseif ... else structure that first tests whether $f
has a value. If not, it checks $c; otherwise, the variable $out is set to the empty string
(more on that in a moment).

If $f is found to have a value, the variable $c is assigned a simple mathematical expres-
sion that converts the value of $f from Fahrenheit to Celsius. The formula used is Celsius
=(5+9) x (Fahrenheit - 32). The variable Sout is then set to a message string explaining
the conversion.

On the other hand, if $c is found to have a value, a complementary operation is per-
formed to convert the value of $c from Celsius to Fahrenheit and assign the result to
$f. The formula used is Fahrenheit = (9 + 5) x Celsius + 32. As with the previous section,
the string $out is then set to contain a message about the conversion.

In both conversions, the PHP intval function is called to convert the result of the
conversion to an integer value. It's not necessary, but looks better.

With all the arithmetic done, the program now outputs the HTML, which starts with
the basic head and title and then contains some introductory text before displaying the
value of $out. If no temperature conversion was made, $Sout will have a value of NULL
and nothing will be displayed, which is exactly what we want when the form hasn't yet
been submitted. But if a conversion was made, Sout contains the result, which is dis-
played.

After this, we come to the form, which is set to submit using the POST method to the
file convert.php (the program itself). Within the form, there are two inputs for either a
Fahrenheit or Celsius value to be entered. A submit button with the text Convert is then
displayed, and the form is closed.

After outputting the HTML to close the document, we come finally to the function
sanitizeString from Example 12-9. Try playing with the example by inputting

294 | Chapter 12: Form Handling



different values into the fields; for a bit of fun, can you find a value for which Fahrenheit
and Celsius are the same?

All the examples in this chapter have used the POST method to send
form data. I recommend this, as it’s the neatest and most secure
method. However, the forms can easily be changed to use the GET
method, as long as values are fetched from the $_GET array instead of
the $_POST array. Reasons to do this might include making the re-
sult of a search bookmarkable or directly linkable from another page.

What's New in HTML5?

With HTMLS5, developers can draw on a number of useful enhancements to form han-
dling to make using forms easier than ever, including new attributes; color, date, and
time pickers; and new input types—although some of these features are not yet im-
planted across all major browsers. The following new features, however, will work on
all browsers.

The autocomplete Attribute

You can apply the autocomplete attribute to either the <form> element, or to any of the
color, date, email, password, range, search, tel, text, or url types of the <input>
element.

With autocomplete enabled, previous user inputs are recalled and automatically entered
into fields as suggestions. You can also disable this feature by turning autocomplete off.
Here’s how to turn autocomplete on for an entire form but disable it for specific fields

(highlighted in bold):

<form action="myform.php' method='post' autocomplete='on'>

<input type='text' name='username'>
<input type='password' name='password' autocomplete='off'>
</form>

The autofocus Attribute

The autofocus attribute gives immediate focus to an element when a page loads. It can
be applied to any <input>, <textarea>, or <button> element, like this:

<input type='text' name='query' autofocus='autofocus'>

Browsers that use touch interfaces (such as Android, iOS, or Win-
dows Phone) usually ignore the autofocus attribute, leaving it to the
user to tap on a field to give it focus; otherwise, the zoom in, focus-
ing, and pop-up keyboards this attribute would generate could quick-
ly become very annoying.

What's New in HTMLS? | 295



Because this feature will cause the focus to move in to an input element, the backspace
key will no longer take the user back a web page (although Alt-Left and Alt-Right will
still move backward and forward within the browsing history).

The placeholder Attribute

The placeholder attribute lets you place into any blank input field a helpful hint to
explain to users what they should enter. You use it like this:

<input type='text' name='name' size='50' placeholder='First & Last name'>

The input field will display the placeholder text as a prompt until the user starts typing,
at which point the placeholder will disappear.

The required Attribute

The required attribute is used to ensure that a field has been completed before a form
is submitted. You use it like this:

<input type='text' name='creditcard' required='required'>

Ifthe browser detects attempted form submission with an uncompleted required input,
a message is displayed prompting the user to complete the field.

Override Attributes

With override attributes, you can override form settings on an element-by-element
basis. So, for example, using the formaction attribute you can specify that a submit
button should submit a form to a different URL than is specified in the form itself, like
the following (in which the default and overridden action URLSs are shown in bold):

<form action='"urll.php' method='post'>

<input type='text' name='field'>

<input type='submit' formaction='url2.php'>
</form>

HTML5 also brings support for the formenctype, formmethod, formnovalidate, and

formtarget override attributes, which can be used in the same manner as formac
tion to override one of these settings.

The form overrides have been supported in most major browsers for
a few years, but have only been featured in Internet Explorer since
version 10.

296 | Chapter 12: Form Handling



The width and height Attributes

Using these new attributes, you can alter the dimensions of an input image, like this:

<input type='image' src='picture.png' width='120"' height="'80"'>

Features Awaiting Full Implementation

Because HTMLS5 is still in its early days (even though it’s been around for many years),
browser developers have been implementing features according to their own schedules,
so many parts of the specification are available only on some browsers. However, during
the life of this edition more and more of them will become available across the board,
so it’s worth mentioning whats coming here so that you’ll be ready to use them sooner
rather than later.

The form Attribute

With HTMLS5, you no longer have to place <input> elements within <form> elements,
because you can specify the form to which an input applies by supplying a formattribute.
The following code shows a form being created, but with its input outside of the <form>
and </form> tags:

<form action='myscript.php' method='post' id='formi'>
</form>

<input type='text' name='username' form='formi'>

To do this, you must give the form an ID using the id attribute, and this is the ID to
which the form attribute of an input element must refer.

At the time of writing, this attribute is unsupported by Internet Explorer.

The list Attribute

HTMLS5 supports attaching lists to inputs to enable users to easily select from a prede-
fined list. But, at the time of writing, only Firefox, Chrome, Opera, and IE support the
listattribute. Nevertheless, once Safari picks it up, it will be a very handy feature, which
you’'ll be able to use like this:

Select destination:
<input type='url' name='site' list='links'>

<datalist id='links'>
<option label='Google' value='http://google.com'>
<option label='Yahoo!' value='http://yahoo.com'>
<option label='Bing' value='http://bing.com'>
<option label='Ask' value="http://ask.com'>
</datalist>

Features Awaiting Full Inplementation | 297



The min and max Attributes

With the min and max attributes you can specify minimum and maximum values for
inputs, but currently not in Firefox or IE. You use the attributes like this:

<input type='time' name='alarm' value='07:00' min='05:00"' max='09:00"'>

The browser will then either offer up and down selectors for the range of values allowed,
or simply disallow values outside of that range. In tests, however, I have found this
attribute to be flaky in some implementations, and suggest you fully test before imple-
menting this feature, even when it is available on all browsers.

The step Attribute

Often used with min and max, the step attribute supports stepping through number or
date values, like this:

<input type='time' name='meeting' value='12:00'
min='09:00"' max='16:00"' step='3600'>

When you are stepping through date or time values, each unit represents one second.
This attribute is not yet supported by Firefox or IE.

The color Input Type

The color input type calls up a color picker so that you can simply click on the color of
your choice. You use it like this:

Choose a color <input type='color' name='color'>

Neither Firefox nor IE supports this input type at the time of writing.

The number and range Input Types

The number and range input types restrict input to either a number or a number within
a specified range, like this:

<input type='number' name='age'>
<input type='range' name='num' min='0' max='100' value='50' step='1'>

Firefox does not appear to support the number input type at the time of writing.

Date and time Pickers

When you choose an input type of date, month, week, time, datetime, or datetime-
local, a picker will pop up on supported browsers from which the user can make a
selection, like this one, which inputs the time:

<input type='time' name='time' value='12:34'>

298 | Chapter 12: Form Handling



However, without support from IE or Firefox, these pickers are probably not worth
using in your web pages yet.

There are a few other form-related enhancements to HTMLS5 that are still under de-
velopment, and you can keep abreast of them at http://tinyurl.com/h5forms.

The next chapter will show you how to use cookies and authentication to store users’
preferences and keep them logged in, and how to maintain a complete user session.

Questions

1.

You can submit form data using either the POST or the GET method. Which asso-
ciative arrays are used to pass this data to PHP?

. What is register_globals, and why is it a bad idea?

3. What is the difference between a text box and a text area?

If a form has to offer three choices to a user, each of which is mutually exclusive so
that only one of the three can be selected, which input type would you use, given a
choice between checkboxes and radio buttons?

. How can you submit a group of selections from a web form using a single field

name?

6. How can you submit a form field without displaying it in the browser?

7. Which HTML tag is used to encapsulate a form element and supporting text or

graphics, making the entire unit selectable with a mouse-click?

. Which PHP function converts HTML into a format that can be displayed but will

not be interpreted as HTML by a browser?

. What form attribute can be used to help users complete input fields?
10.

How can you ensure that an input is completed before a form gets submitted?

See “Chapter 12 Answers” on page 647 in Appendix A for the answers to these questions.

Questions | 299






CHAPTER 13
Cookies, Sessions, and Authentication

As your web projects grow larger and more complicated, you will find an increasing
need to keep track of your users. Even if you aren’t offering logins and passwords, you
will still often need to store details about a user’s current session and possibly also rec-
ognize people when they return to your site.

Several technologies support this kind of interaction, ranging from simple browser
cookies to session handling and HTTP authentication. Between them, they offer the
opportunity for you to configure your site to your users preferences and ensure a
smooth and enjoyable transition through it.

Using Cookies in PHP

A cookie is an item of data that a web server saves to your computer’s hard disk via a
web browser. It can contain almost any alphanumeric information (as long as it’s under
4 KB) and can be retrieved from your computer and returned to the server. Common
uses include session tracking, maintaining data across multiple visits, holding shopping
cart contents, storing login details, and more.

Because of their privacy implications, cookies can be read only from the issuing domain.
In other words, if a cookie is issued by, for example, oreilly.com, it can be retrieved only
by a web server using that domain. This prevents other websites from gaining access to
details for which they are not authorized.

Due to the way the Internet works, multiple elements on a web page can be embedded
from multiple domains, each of which can issue its own cookies. When this happens,
they are referred to as third-party cookies. Most commonly, these are created by adver-
tising companies in order to track users across multiple websites.

301



Because of this, most browsers allow users to turn cookies off either for the current
server’s domain, third-party servers, or both. Fortunately, most people who disable
cookies do so only for third-party websites.

Cookies are exchanged during the transfer of headers, before the actual HTML of a web
page is sent, and it is impossible to send a cookie once any HTML has been transferred.
Therefore, careful planning of cookie usage is important. Figure 13-1 illustrates a typical
request and response dialog between a web browser and web server passing cookies.

Web browser request headers Headers returned by webserver.com

GET /index.html
1| HTTP/1.1 Host: [
www.webserver.com i

HTTP/1.1 200 OK

5 | Content-type: text/html
Set-Cookie: name=value

..Contents of web page

GET /news.html HTTP/1.1
3 | Host: www.webserver.com [ :
Cookie: name=value i

HTTP/1.1 200 OK
4 | Content-type: text/html
..Contents of web page

Figure 13-1. A browser/server request/response dialog with cookies

This exchange shows a browser receiving two pages:

1. The browser issues a request to retrieve the main page, index.html, at the website
http://www.webserver.com. The first header specifies the file, and the second header
specifies the server.

2. When the web server at webserver.com receives this pair of headers, it returns some
of its own. The second header defines the type of content to be sent (text/html), and
the third one sends a cookie of the name name and with the value value. Only then
are the contents of the web page transferred.

3. Once the browser has received the cookie, it will then return it with every future
request made to the issuing server until the cookie expires or is deleted. So, when
the browser requests the new page /news.html, it also returns the cookie name with
the value value.

302 | Chapter 13: Cookies, Sessions, and Authentication



4. Because the cookie has already been set, when the server receives the request to
send /news.html, it does not have to resend the cookie, but just returns the requested

page.

Setting a Cookie

Setting a cookie in PHP isa simple matter. Aslong as no HTML has yet been transferred,
you can call the setcookie function, which has the following syntax (see Table 13-1):

setcookie(name, value, expire, path, domain, secure, httponly);

Table 13-1. The setcookie parameters

Parameter  Description Example

name The name of the cookie. This is the name that your server will use to access the cookie username
on subsequent browser requests.

value The value of the cookie, or the cookie’s contents. This can contain up to 4 KB of Hannah
alphanumeric text.

expire  (Optional.) Unix timestamp of the expiration date. Generally, you will probably use ~ time() + 2592000
time() plus a number of seconds. If not set, the cookie expires when the browser
dloses.

path (Optional.) The path of the cookie on the server. If thisis a / (forward slash), the cookie /
is available over the entire domain, such as www.webserver.com. If it is a subdirectory,
the cookie s available only within that subdirectory. The default is the current directory
that the cookie is being set in, and this is the setting you will normally use.

domain  (Optional.) The Internet domain of the cookie. If this is .webserver.com, the cookieis ~ .webserver.com
available to all 