electionism
and Learning
in Projects

\Afe have introduced learning and selectionism as fundamental
| responses to the presence of unk unks, and we have demon-
strated how they work in projects. But up to now, we have presented
them in isolation of each other—we have not discussed under what
circumstances each approach may be more promising, nor have we
said anything about how they complement each other in a useful com-
bination.! These are, therefore, the two goals of this chapter: compar-
ing selectionism and learning, based on a priori identifiable project
characteristics, and demonstrating how they can be combined.

We remind the reader that we want to propose a priori choice crite-
ria for a combination of selectionism and learning, at the outset of the
project, before unk unks have been revealed. At the outset, we can only
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identify knowledge gaps, or the potential for unk unks, but not the unk unks
themselves. Therefore, the framework must be qualitative, a rough decision
guideline.

Selectionism and learning can be applied at the level of an entire project,
or at the level of subprojects, or at individual problems to be solved (we saw
this in the diagnosis of the startup company, Escend, in Chapter 4). Clearly,
selectionist trials of entire projects, even entire companies, are constantly
conducted by markets. For example, one engineering provider may com-
pete with proprietary technology, another with low-cost execution by “off-
shoring” the labor contracts, and a third may have access to attractive
financing structures. The market chooses which approach is most successful.
Competitors learn from one another by copying what works and avoiding
the mistakes that they see others make. This is the essence of competition.?
The same holds not only for projects but also for companies and their
strategies in general.

Venture capitalist companies also apply selectionism at the level of
entire startup projects. They take an explicit portfolio approach, looking
for tenfold returns and killing the startups that do not perform. For the
entire portfolio, returns of 20 to 40 percent are often achieved. It is not
unusual for a large VC to have several portfolio companies that pursue the
same target market. LLearning occurs when each startup evolves as it goes
through successive financing rounds, sometimes with substantial changes
in its business model.

Large technology companies (such as IBM, Xerox, AT&T, and Siemens)
have repeatedly tried to replicate the VC approach of project selectionism
inside their organizations. However, for economic and organizational rea-
sons, there are difficulties in applying VC-style selectionism to entire projects
within established organizations. By definition, selectionism means that
most of the trials are abandoned. In the eyes of controlling management,
abandoning projects is inevitably synonymous with failure and wasted
resources, and thus becomes increasingly difficult to justify when times are
tough. Compensation in large companies is geared toward continuity of
careers and fairness, while it varies much more in startups. VCs are focused
on financial returns and ruthlessly kill projects that do not appear to deliver.
In large companies, the continuity and strategic rationale of the business are
almost impossible to ignore. As a result, project cancellation is harder in
large organizations, which compromises the VC business model and, ulti-
mately, may compromise both financial returns and strategic rationale.?

This is felt not only by large companies but also by the VCs themselves—
their investments have turned increasingly to proven and more incremental
startups since the burst of the bubble in 2001. Independent of the economic
cycle, abandoning projects as trials is affordable only when the cost of each
trial is small relative to the overall portfolio.

Thus, many companies that execute major projects find that they cannot
apply selectionism at the level of entire projects alone but must also con-
sider selectionism at the subproject level, and learn within each subproject
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how to improve the chances of success. In complex and highly novel proj-
ects, we typically see a combination of both approaches: learning and selec-
tionism. Section 7.1 describes such a typical example. In Section 7.2, we
discuss principles of how selectionism and learning complement each
other, and how they might be combined. In Section 7.3, we reexamine the
Circored example to illustrate how our framework could have been applied
to this project. We present our conclusions in Section 7.4.

7.1 Selectionism and Learning at
Molecular Diagnostics*

The example is a European pharmaceutical startup company that raised
€7 million in 2002 to develop a new technology for a highly sensitive diag-
nostic of various diseases (the first round was intended to get the company
to the proof of concept milestone). The technology consisted of identifying
a modification of one of the four bases in DNA, cytosine, which may make
the gene in which this base is included dysfunctional (this kind of modifi-
cation of a base in a gene is called “DNA methylation”). Identifying a pos-
sible dysfunction in a gene via this marker is highly sensitive and can serve
as a powerful early indicator.”

Fortunately, management was well aware of the unforeseeable nature of
events that might hit them. They put several things in place to deal with unk
unks. First, they instituted a “strategic pot of money,” a (small) budget to
deal with unplanned events, “just enough so we can quickly hire an expert
or buy a license.”® This played a role analogous to Metal Resources Co.’s
residual uncertainty management described in Chapter 1.

The company also made explicit efforts to scan the market environment
and diagnose trends as well as uncertainty. They conducted weekly patent
screening and employed an academic advisory committee to learn about
new technologies and bounce ideas; the input from the advisory commit-
tee also helped them to chart the initial course. They also built up intensive
contacts with pharmaceutical companies and clinics to learn about poten-
tially interesting products and technologies. This diagnosis effort did not
come without cost—the patent screening alone cost them €400,000 per
year. The advisory committee and industry contacts were cheaper but cost
a lot of scarce management attention. It turned out that no patents forced
them to fundamentally change their plans; they bought a few patents but
essentially went on as planned.

The company used both trial-and-error learning and selectionist trials.
They foresaw trial and error from the beginning, albeit only within a well-
defined area: They were willing to experiment with the clinical indications
to be diagnosed; essentially, all autoimmune diseases (such as cancer, dia-
betes, etc.) were considered fair game. But the diagnosis technology was
fixed, namely, DNA methylation.

They conducted parallel trials by exploring several potential technolo-
gies to read DNA methylation patterns and narrowed them down to two.
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Some did not work, and among the remaining candidates, they used com-
parative tests. Again, these parallel trials were anything but cheap, costing
about €2 million per year.

On the market side, they talked to several potential partners to fund fur-
ther product development for each potential indication, although they
often asked for exclusive contracts. Across the parallel negotiations, learn-
ing was fostered: Some team members served on several teams, and they
systematically maintained intranet documentation of the lessons learned,
the test results, and the meeting protocols for each cooperation attempt.

Beyond its planned experimentation and residual risk management, the
company was twice forced to change its plans in a major unforeseen way.
First, they ran into a firm in the United States that worked in the same
area but had fewer resources. Each had two working methylation technolo-
gies, so they merged (formally, the European firm was the acquirer). Of the
four technologies, they picked the best two, one from each company.

The second major deviation from the plan was forced by a failure—they
had planned to form many clinical development and marketing partner-
ships, but these partnerships did not materialize. Therefore, the company
ended up in one big partnership with a major pharmaceutical company.

The project was successfully completed in mid-2004 with an IPO and
became an ongoing concern. In January 2005, the company reported suc-
cessfully passing a major clinical development milestone, identifying a bio-
marker that closely correlates with prostate cancer aggressiveness. This
concluded successful market identification for all five initial products in its
diagnostic collaboration with the pharmaceutical partner; it triggered an
undisclosed milestone payment from the partner.

The Molecular Diagnostics example illustrates how an overall project—
“get the startup from technology to proof of concept”—is broken down in
pieces, and how the pieces are attacked with a combination of established
PRM methods, selectionism, and learning, depending on the uncertainty,
complexity, and cost structure of each piece. The example also tells us that it
is beneficial to allow the pieces to feed off one another. The parallel partner-
ing trials shared information and lessons that helped each to negotiate better,
and learning and modifications were applied to each of the methylation
technology candidates as they evolved; indeed, after the merger, a different
final set emerged than could have been foreseen.

7.2 Choosing and Combining Selectionism
and Learning

As we already discussed in Chapter 6, Japanese consumer electronics com-
panies used a “product churning” strategy in the early 1990s. They intro-
duced scores of trial products into the market, “mutant products such as the
refrigerator with the built-in microwave oven, the ambidextrous refrigerator
whose doors could be opened from either the left or right, etc.”” The market
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determined the winners, and the losers were withdrawn. Many of these
products failed, but the survivors covered the market and produced new
niches. In this “Darwinian” selection, a trial is launched, the unk unks are
revealed, whether they stem from technologies or customer behavior, the
successes and failures of the trials are unambiguously observed, and then the
“losers” are culled from the “winners.”

The Japanese manufacturers could do this ex post selection because
they had developed the capability of producing product variants quickly
and cheaply, and their customers, at first, did not mind buying products
that were subsequently no longer available. However, eventually the
Japanese consumer electronics manufacturers were overwhelmed by the
cost of launching, and then servicing, so many trial products, and pulled
back from the approach in the mid- to late 1990s. Instead, they empha-
sized selection at the subproject level.

As the Darwinian selection of final products became too expensive,
they would, instead, pursue competition within the lab—that is, they
would not go through the expense of launching complete product alterna-
tives but would explore and select alternatives before they launched them.
This early selection was less expensive, but it had one major weakness
that the Darwinian selection did not have: incomplete information. In the
lab, not all unk unks will reveal themselves like they do in the market-
place. It is our task to explain how the interaction between unk unks and
complexity systematically influences the value of the information pro-
duced in a way that we can understand. Thus, we can offer a causal frame-
work and build understanding and intuition of how selectionism and
learning compare.

Figure 7.1 illustrates four canonical examples of learning and selection-
ism in projects: instructionalist, Darwinian, sequential, and exploratory.®
In the traditional PRM box, neither learning nor selectionism is used
extensively. This, in fact, is the standard contingency approach to project
management; the plan is followed, and preplanned contingencies are
implemented as foreseen uncertainties arise. We have already discussed the
Darwinian example. This is the pure selectionist strategy; projects are run
in parallel and allowed to compete, unk unks are revealed, and the best
project is chosen ex post. The sequential example is the pure learning strat-
egy. Parallel trials are not used, but the project is simply modified over time
as unk unks are revealed. The final example, the exploratory strategy, com-
bines both learning and selectionism. Parallel trials are conducted at the
subproject level, when competition amongst alternatives takes place early,
before unk unks have fully emerged, and are thus based on incomplete
information. These trials are then incorporated into the overall learning
strategy where the project is modified over time.

By comparing these canonical combinations of selectionism and learn-
ing, we will consider the differences in the coszs of applying each approach,
and the differences in the value of the information that each approach
tends to produce.
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The Four Basic Scenarios
of Learning and Selectionism
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Figure 7.1 Four canonical examples of learning and selectionism

7.2.1 Understanding the Cost of Darwinian
Selectionism and Sequential Learning

We start with the cost side because, with managers, this springs to mind
immediately—if parallel trials or repeated iterations are very expensive, they
are not affordable. Project managers have intuition about this comparison;
indeed, managers sometimes ask us, “How can you possibly afford to do
something multiple times in parallel? That’s too expensive,” not realizing
that selectionism can be done on a scale that may well be affordable.

We saw in Darwinian selection that the value of the information is quite
good, as the unk unks are revealed in the harsh light of the marketplace,
but the costs of launching these products could be quite high. The costs
of Darwinian selection include the costs of pursuing multiple solution
candidates—which include the cost of personnel and material—and the
potential negative impact on the brand. Trials that “do not work”—and typ-
ically, most of the solution candidates do not work—may generate negative
reactions by the employees and customers involved with the products.

The cost of learning includes activities to identify unk unks, such as
experimentation, hiring experts to design experiments, or screening the
environment. Also included is the cost of running the iterations themselves,
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such as testing facilities, personnel and equipment, information leakage to
the outside, negative word of mouth if an iteration has a negative result, and
the delay from repeated iterations, such as deadlines missed and penalties
incurred, a seasonal window that is missed, or the project being outraced by
a competitor.

These costs are not to be found in a “universal handbook”; rather, they
depend on the organization’s capabilities. For organizations that do not
have the capabilities of trying out experimental solutions and incorporating
feedback from the environment, or that cannot run parallel solution teams,
the costs of either approach may well be prohibitive. Moreover, the costs are
not precisely known, because the precise nature of unk unks cannot be fore-
seen. Still, when differences in costs between selectionist trials and learning
over time can be estimated, they must play a role in the decision.

7.2.2 Value Comparison of Darwinian Selection
and Sequential Learning

In addition to, and separate from, the coszs of obtaining a problem solution,
we must consider the value of the solution found. Value refers to the qual-
ity or performance of the output achieved by the (sub) project, for exam-
ple, the quality of the technological solution developed, or the customer
response achieved by a new configuration. The value comparison may be
even more important than the cost comparison; we discuss it second only
because it is less familiar to project managers. They have intuition about
costs, but to date, there exists no framework for value comparison.

In this section, we first examine the “pure” case of Darwinian selection,
where unk unks are revealed in competition among final project outcomes,
the best of which is chosen ex post. We compare this to sequential learning,
where a project is changed over time in response to unk unks as they are
revealed. Comparing these two relatively pure examples will allow us to set
up the more typical situation where selectionism is conducted at the sub-
project level, where unk unks are not fully revealed.

Clearly, Darwinian selection will be favored whenever parallel trials are
cheap and/or delays are expensive (upper left box in Figure 7.1). Learning
is minimized within each project, and instead, speed and cost are empha-
sized. If time is all-important, and the organization has the resources, mul-
tiple projects are undertaken so as to increase the likelihood that at least
one will be a success. For example, the successful credit card company
Capital One uses parallel experimental products. It rapidly develops many
new ideas, tries them out in the marketplace, sees what works and what
doesn’t, backs the winners, and ruthlessly kills off the losers. In this way, it
generates more “hits” than its competitors.°

If, however, parallel trials are prohibitively expensive or ex post selection
is not possible, then sequential learning will be favored (lower right box in
Figure 7.1). For example, Internet browser development in the 1990s per-
mitted concept modifications until a short time before launch, enabled by
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fast prototyping of feature changes. Unk unks were to be expected more on
the market than on the technical side—browser use was emerging, and the
market was still learning how best to use it. The software kernel and archi-
tecture remained stable, but component reuse and quick prototypes allowed
the developers to customer-test a new version within a few weeks. Thus, time
delay costs were kept low. Parallel trials, in contrast, would have required
putting an entire additional team on the project, a very expensive proposition
in the face of scarce capacity, and releasing multiple versions of the product
onto the market simultaneously would have been confusing to the market.!°

But what happens when the cost situation is not so obviously in favor of
one or the other, or when either Darwinian selection or learning offers a
much higher value? In this case, we need to consider the value of informa-
tion obtained. As we stated previously, in Darwinian selection, the unk
unks are revealed and then the best alternative is selected. In this case, we
choose the trial based on complete information. But what about learning?
So far, we have taken the availability of full information about the emerged
unk unks for granted. But this is by no means always the case.

Let us first examine the value of selectionism and learning in the com-
plete information case (ex post selection after unk unks have emerged).
Figure 7.2 provides a simple illustration of a project performance landscape,
as was introduced in Figure 6.1. The landscape is reduced to two influence
factors, in order to allow for a three-dimensional graphical representation
(the third dimension being the performance, or quality, of a solution).!!

The left-hand picture shows a simple landscape with only one perfor-
mance peak, and the right-hand picture shows a complex landscape with
many peaks. In projects where complexity is relatively low (see Figure
7.2a), the performance landscape is more easily understood. As unk unks
are revealed, we can utilize this new information to change the project plan
such that project performance is likely to be improved. In other words, it is
relatively easy to chart an optimal path as unk unks emerge. As different
influence parameters do not interact, the team can make incremental
changes (one parameter at a time), first improving one and then the other.
Thus, information revealed early in the project tells us much about what to
do later in the project.

Consider, for example, an engineering project where the team knows
that it will have to adjust the process recipe as well as fine-tune the com-
position of the final product to suit emerging, currently unknown, process
needs of the client.!? In a simple landscape, the team can first adjust the
process recipe parameters, and when they work well, adjust the final prod-
uct composition. The second change does not invalidate the recipe choice,
as Figure 7.2a shows.

However, in complex projects, new information may or may not be very
useful to us. The unk unks, as they are revealed, may be important to us, but
the project performance landscape is so complex that we cannot easily use
this new information to improve the path that we are currently executing.
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The best is planned after unk unks are revealed. The best is selected after unk unks are revealed.

Performance
Performance

a. Sequetial learning is favored in simple b. Darwinian selection is favored in
performance landscapes. performance landscapes.

Figure 7.2 Learning and selectionism in simple and complex landscapes

In our hypothetical engineering project, complexity means that the
process recipe and the composition of the outcome product interact. If the
team first chooses the best recipe and then changes the product composi-
tion, the recipe now is no longer appropriate and must be changed again.
Therefore, there are multiple performance peaks and valleys in Figure
7.2b; the best choice of one parameter changes with the value of the other.
In this case, having multiple selectionist trials and then simply choosing
the best one ex post, once all the unk unks have been revealed, offers bet-
ter value than learning and adjustment.

Complex projects favor Darwinian selection, provided the selection can
be made with complete information after the unk unks have emerged,
while simple performance landscapes will make sequential learning more
attractive. Thus, it is not surprising that well-studied engineering design
problems tend to follow more sequential iteration, while more complex
projects, like the search for new drug candidates, will yield more parallel
search.!?

However, as in the search for new drugs, ex post selection can be pro-
hibitively costly, as it requires completion of multiple projects. In such
cases, parallel search often takes place with selection performed early, at
the subproject level before the ultimate project performance is revealed,
and then the early “winners” are further refined through learning over
time. We discuss this case in the following section.

7.2.3 Exploratory Learning and the
Value of Partial Information
While the previous section examined the pure case of Darwinian selection,

in general, selection of multiple trials may be performed at several stages of
a project:
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A After design studies. For example, multiple car concept designs are
rendered in CAD models or clay. A concept is chosen based on the
“holistic impression” of experts. However, even this holistic impres-
sion may not be representative of the ultimate market reaction.
BMW found this out when the 7-series introduced in 2002 met a
hostile market reaction to the trunk design. This reaction was not
predicted after internal and customer tests, yet it forced the com-
pany to accelerate the mid-cycle face-lift of the car to 2005.

A After technology tests. Technology choice is often based on lab
tests that cannot incorporate all aspects of the real usage environ-
ment.!* Therefore, the chosen solution may later fail. For exam-
ple, a tire tread company developed process improvements in a
central R&D lab, with the aim of reducing wire breakage in the
multiple cold drawing manufacturing stages. It turned out that the
result of the technical change depended on the ambient tempera-
ture and air composition in the factory, which were not simulated
in the R&D lab. This ultimately prompted the company to move
technology tests into the factories, despite higher costs.!”

A After customer or client tests. In order to predict end-user reactions
as accurately as possible, many companies insist on testing project
decisions with the client or end customer. But even such checks
by the client are often inaccurate. Users’ reactions might not be
representative of their later behavior under real usage conditions,
even when only some aspects of the usage environment are not
correctly represented. Thus, client agreements often do not pre-
vent later disputes in complex projects, and market predictions
based on consumer feedback are notoriously unreliable. !¢

A Apfter launch. The opening example of product churning concerns
consumer electronics. The success of such products can be diag-
nosed quickly, within a few weeks after launch in a leading market
(such as Tokyo’s Akihabara district). This is not the case for prod-
ucts or projects with a longer life. In complex engineering projects
or complex consumer durable products (such as cars), success
may not be known until a significant part of the product’s life
cycle has passed, perhaps only several years after launch. Thus,
even after launch, the selection decision may yield only partial
information. Of course, one could delay selection even further,
but that is typically not affordable.

Returning to the pharmaceutical example of the previous section, the
cost structure of early lead molecule development in the pharmaceutical
industry is low, relative to later stage development. Thus, many lead
molecules are produced, and the promising ones are modified—that is,
“optimized”—to enhance their chemical reactivity to target binding sites,
and thus their potential pharmaceutical potency. This approach is a com-
bination of the two “pure” strategies discussed in the previous section.
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Releasing multiple trials of the same drug on the market to reveal unk
unks is simply not acceptable in the pharmaceutical industry. If unk unks
include death or other undesirable side effects, it is simply unacceptable to
have ex post selection after the unk unks have revealed themselves in the
death of patients—the costs are simply too high. In this case, the most
effective approach is to combine selectionism and learning in “test waves”
of parallel candidates that are narrowed down early and then optimized
over time before project completion (lower left box of Figure 7.1).

The problem, however, with early selection is that it yields only partial
information: Not all the unk unks will be revealed at the subproject level.
The critical question then becomes “What is the value of this partial infor-
mation?” Which conditions favor early selection and which do not? Recall
that the value of information is measured by the degree to which we can
improve project performance based on the information obtained. In the
previous section, we saw that the value of early information in sequential
learning depended on the complexity of the project. If a project is very
complex—that is, the performance landscape is as in Figure 7.2b—early
information is less valuable because it is difficult to use it to find the “best”
solution a priori. Charting an optimal course is simply too difficult, and in
this case, Darwinian selection is favored.

In the case of early selection, where only partial information is revealed,
we have the exact opposite scenario: Selectionist trials will zoz be favored in
complex projects.!” This is precisely the most challenging situation for a
project team, and it is the situation in which selectionism gets into trouble:
If trial selection occurs before unk unks are revealed and the project is com-
plex, learning systematically promises a better solution than selectionism.

The reason, briefly, is that making wrong assumptions about an unknown
project influence “disturbs” a complex project more than a simple project.
Through the many interactions in a complex project, the error in one influ-
ence factor has wider repercussions and degrades the quality of the selection
choice. To understand this statement in more detail, let us return to the pro-
ject performance landscapes previously illustrated in Figures 6.1 and 7.2,
and now reproduced in Figure 7.3.

In Figure 7.3, in contrast to Figure 7.2, we now consider a situation
where one of the influence factors is an unk unk and is not revealed at the
time of selection. Coming back to the engineering project example that we
discussed along with Figure 7.2, let us suppose that the change in the
client’s process needs is not foreseeable, either to the client or to the team.
In other words, the team takes the process needs as given and does not
know that there is an influence that may take on different possible shapes,
which have an impact on the project. Rather, the team has an implicit
“default” assumption about the client’s process needs, an assumption that
is unconscious and nonarticulated. This default value is whatever value the
parameter takes in early client discussions, although the team is not con-
scious of it.!8
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Figure 7.3  Selectionism with unk unks in a simple and a complex project

We have discussed real examples of this already in this chapter. Take the
example of the tire manufacturer who was developing process improve-
ments in a central R&D lab with the aim of reducing wire breakage in the
multiple cold drawing manufacturing stage. It turned out that the result of
the technical change depended on the ambient temperature and air com-
position in the factory, which were not simulated in the R&D lab because
they were not known to be factors of performance by the team. Similarly,
customer preferences in simulated consumption environments might dif-
fer from their preferences in actual environments.

Thus, the team’s conscious project decisions, in our case the choice
among selectionist trials, happen in the “sub-landscape” of the line that
corresponds to the default value of the unk unk (in Figure 7.3, this is the
dashed line). The trials in the sub-landscape, each corresponding to one
decision along the known project influence variable, are marked in Figure
7.3, and one of them is selected as the best candidate.

Now, the problem of selectionism becomes clear. In the simple landscape
with only one peak, the parameters do not interact. Therefore, the ranking of
the trials is little changed when the true value of the client’s process needs
emerges (the solid sub-landscape line). The recipe choice is not invalidated
by the product composition, and thus, the quality of the selectionist choice is
high. In the complex landscape, however, the choice in the default-assump-
tion sub-landscape does not reveal the true best choice. When the true client
process needs emerge, the chosen recipe turns out to be inferior (the best
trial on the dotted line in Figure 7.3b is one of the worst on the solid line
that corresponds to the true client needs). That is, the value of the informa-
tion yielded from early selection may be of little value in complex projects.

Learning, in contrast, proceeds precisely on the premise that the project
keeps evolving, and a new choice is made, after information about the unk
unk becomes available. In learning, unk unks are sought out, knowledge gaps
are inventoried, and purposeful attempts are made to fill them. In learning,
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the project team seeks to discover and understand the unk unks. While learn-
ing may take more time, it may be more effective than early selection in com-
plex projects.

7.2.4 The PRM Contingency Planning Approach

If both selectionist trials and learning are costly, responding to unk unks
becomes very difficult. Both will have to be reduced, although their relative
emphasis may remain the same: fewer parallel trials, fewer test waves, and
thus, less assurance of a good solution. This means that no sufficiently
effective response to unk unks may be achievable, confronting the project
with an excessive danger of failure. This has an important implication: If
both selectionism and learning are too expensive to be affordable, manage-
ment should consider changing the project scope in order to avoid unk
unks, and thus the need for selectionism and learning. This can be done,
for example, by reducing functionality or using proven technologies.

One example of this is the development of the Boeing 777. Boeing
developed this plane in response to the Airbus 340, and development time
and cost were kept low by using previously proven technology compo-
nents. Thus, it was possible to develop only one technical solution into a
flying prototype; it was simply too expensive to build more than one plane
in parallel. In reaction to problems, the prototype was modified, rather
than building several models. However, time was very expensive, too, soO
testing could not go on indefinitely before the company started to earn
money. Thus, the first flying prototype was later sold commercially.'®

The development of the Concorde plane in the 1960s, in contrast,
entered much more novel technological terrain. Parallel trials were not
affordable (as in the case of the Boeing 777), but because of technical unk
unks, the value of time was given less priority than the challenge of getting
the plane right. As a result, the schedule slipped by four years due to testing
needs, which contributed significantly to a budget overrun from an initial
estimate of £135 million to £1.1 billion.?°

7.2.5 A Combined Choice Framework

We now have at our disposal a logic, a set of criteria by which to choose
from among the different approaches for each subproject: The decision
should be driven by cost structure and complexity. We summarize these
results in Figure 7.4.

When the costs of learning and delay are high, relative to parallel trials,
and project complexity is high (upper left-hand box of Figure 7.4), ex post
Darwinian selection is favored. Because of the complexity, sequential learn-
ing will be lengthy and difficult because causal connections are more ambigu-
ous and harder to identify among the multiple simultaneous interactions. On
the other hand, early selectionist trials may not yield any valuable information
(see Figure 7.3). Therefore, selection can only be accomplished late.
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Figure 7.4 Value comparison of learning and selectionism
with complexity and relative cost differences

When project complexity is low and the costs of parallel trials are high
(lower right-hand box of Figure 7.4), sequential learning is favored. Here,
it is better to pursue a single project and to chart a new course as unk unks
are revealed, or, depending on the costs of trials with early selection, to
combine selectionism and learning. Early trials are selected and then
improved upon over time.

When complexity is low and the costs of learning and delay are high
(lower left-hand box of Figure 7.4), a combination of early selection and
learning is favored. If time is critical, and depending on the relative cost
differences between ex post and early trials, Darwinian selection may be
preferred if the organization has the resources to complete parallel proj-
ects. As our discussion at the beginning of Section 7.2.3 suggests, late
selection (after unk unks have emerged) may be very expensive, as it may
require full-scale operation at the client, or a full market introduction in
the case of an innovation project. In the case discussed here, complexity is
low, so early selection is capable of identifying the best trials.

When complexity is high and the costs of selectionism are high (upper
right-hand box of Figure 7.4), sequential learning, although difficult in
this case, may be favored. Alternatively, one could attempt to reduce the
complexity of the project.

One way to reduce project complexity is by reducing the level of inter-
action among subprojects, at the level of system components, of project
tasks or of relationships (see Chapter 4, Figure 4.4). The more modular a
project, the less various subprojects interact with one other, and thus, the
less complex the overall project. As we have seen, complexity has a big
impact on the value of information obtained, either early information in
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sequential learning or partial information from early selection. If we can
reduce the overall project complexity, it improves our ability to do both
learning and selectionism.

It is helpful to classify project interactions within three categories: inte-
grated, sequential, and modular. Figure 7.5 illustrates the design structure
matrix for each of these three types. As was discussed in Chapter 4, the
design structure matrix indicates the presence of interactions among system
components, project tasks, and parties involved. To keep this discussion
simple, Figure 7.5 shows only the tasks.
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Figure 7.5 Task dependency matrices for integrated, sequential,
and modular project architectures
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In all three examples (Figure 7.5a—c), tasks A to M are interdepen-
dent—they are integrated—and thus are good candidates for a “subproj-
ect.” We see four such subprojects in all three examples. However, in the
integrated case (Figure 7.5a), subprojects are also interdependent. For
example, task A depends on task Q, and task Q depends on task A, even
though they are in separate subprojects. In the sequential case (Figure
7.5b), subproject dependency only goes one way. For example, task Q
depends on task A, but task A does not depend on task Q. In the modular
case (Figure 7.5c¢), subprojects do not interact. They can be optimized sep-
arately and carried out in parallel, and unk unks affecting one are not likely
to affect the other (unless the project structure itself is unknown).

In an integrated project architecture (Figure 7.5a), subprojects depend
on other subprojects in a complicated way. Project performance depends
on a complicated interaction of the various characteristics of each subproj-
ect. Thus, the overall project can be said to be very complex. In this case,
one will have to either do sequential learning or ex post Darwinian selec-
tion at the level of the entire project, depending on the relative cost and
delay trade-offs.

In a sequential project architecture (Figure 7.5b), because dependency
is one way, early selection can be used at the subproject level as long as one
proceeds sequentially from one subproject to the other. Thus, a combina-
tion of early selection and learning may work well in such an instance.

The “best” case, of course, is a modular project architecture (Figure
7.5¢). Here, subprojects do not interact (much), and one is free to conduct
early selection on the various subprojects independently of one another.
The real challenge here is then to coordinate the various subprojects so
that the overall project can be completed on time.

We put this designation of “best” in quotation marks because it repre-
sents the view of the project manager. Modularization of a project is often
not possible, or only possible by reducing performance of the system that
is produced, for example, in terms of size (to make system components
separate and noninteracting), in terms of tasks (building buffers into the
schedule so that tasks do not happen at the same time and cannot interfere
with one another), or in terms of organization (e.g., giving subteams extra
resources so they do not need to compete for the same scarce experts or
facilities). Because of these trade-offs, determining the system architecture
of what is built during the project is usually beyond the scope of the project
team. The architecture must be set by senior management in consideration
of other projects and business objectives. We will return to the role of
senior management in Part IV of the book.

7.3 Reexamining the Circored Project with

This New Framework

The Circored project (described in Chapter 2) underestimated the unfore-
seeable nature of uncertainty and did not compile uncertainty profiles for
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the subprojects. As a consequence, the project suffered from delays, bud-
get overruns, and damaged careers. How would our selectionism and
learning decision framework have helped them?

Let us attempt to apply our decision framework. We do so somewhat
speculatively because the relative costs of selectionism and learning were
never analyzed; we have to estimate them roughly, in hindsight. Still, the
analysis suggests some useful changes in how the project could have been
managed.

We define as subprojects the major components of the facility (preheater,
bucket elevator and lock hoppers, CFB reactor, SFB reactor, discharge, bri-
quetting), the novel materials, system integration (process control and
ramp-up), and marketing (as the product had novel aspects that the cus-
tomers did not understand). Drawing up uncertainty profiles suggests that
the preheater, the bucket elevator and lock hoppers, and the briquetting
machines used established technology and were not affected by unknown
material properties, so they were not affected by unk unks. We can leave
them out of the analysis. Entering the other subprojects, the ones affected by
unk unks, into the framework of Figure 7.4 produces Figure 7.6.

Using selectionism for the facility as a whole was simply out of the ques-
tion, as a planned construction cost of $165 million was too expensive.
However, selectionism could well have been applied at the level of some of
the ducts and valves made of novel materials. For example, the ducts from
composites could have been ordered in two versions, to test and compare
them; this would also have allowed the team to react faster when the duct
broke and caused a long delay. Similarly, the valve that let hydrogen gas
shoot through could have been tried in two different configurations to test
for tightness and internal sticking. Double ordering would not have been
expensive, as the materials themselves are but a fraction of handling, design,
and partner negotiation efforts.

Relative Cost

Learning and delay Parallel trials
more expensive more expensive
Darwinian Sequential learning/
(Ex post selection) reduce comp]exity

® Marketing e System
Integration

High complexity
(many interactions)

Exploratory Sequential learning
(Early selection and learning)
¢ CFB reactor
¢ SFB reactor

¢ Novel material
ovel materials « Discharge

Low complexity
(few interactions)

Figure 7.6 Possible learning and selectionism in the Circored subprojects
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For the huge reactors and the discharge system, selectionism was, again,
too expensive. There was no choice other than to try them out and modify
them as the process properties emerged (for example, the walls in the SFB
reactor to control retention time). However, once the team had realized
that experimentation and learning would be necessary, they could have
organized the experimentation very differently: They could have tested the
three system components n parallel, feeding each with partially processed
material. The runs would have been explicitly designed as experiments, not
as the production runs that the team attempted almost from the begin-
ning. In this way, the bugs and the verification could have been worked out
much faster, with less frustration, and without the need to perform the
fundamental verification test of the process in the summer of 2000.

System integration, that is, process control and ramp-up, were highly
complex and unpredictable, as the chemical process was new, and hun-
dreds of system parameters interacted in the ore conversion and the prop-
erties of the briquetted iron. Moreover, the system behavior could not be
simulated beforehand with a sufficient degree of realism (although CAL
did develop the process control software, which, after calibration under
real operating conditions, was then capable of automated operation). In
other words, high-fidelity tests were not available. Moreover, pursuing two
parallel process control systems would have been very expensive. Thus, a
sequential learning approach was unavoidable. The Lurgi engineers under-
stood this intuitively and approached the ramp-up slowly and deliberately,
but this caused some tension and debate with the Cliffs engineers.

Finally, the market introduction of the Circored HBI was also plagued
by unk unks because the customers did not understand the product (remem-
ber, for example, the fear that residual hydrogen traces would make the bri-
quettes dangerous, or the skepticism over the 2 percent carbon content,
which was really a plus for the customers). Again, this was quite complex
because customers interacted by word of mouth, and because the HBI
entered as an ingredient into a complex steelmaking process. Thus, some
experimentation and learning in the customer approach was certainly
needed. However, it would have been quite cheap to prepare several adver-
tising leaflets and several “customer briefing story templates” in parallel,
trying out on the way that might work best. As the marketing approach was
relatively independent of the other activities, a more ex post selection
approach would have worked, although in reality, a combination of selec-
tionism and learning would have been needed.

With such an explicit management of unk unks, choosing an appropri-
ate approach, subproject by subproject, the project would have proceeded
faster and more successfully. The same unk unks would have affected the
team as before, but they would have been handled more quickly, in a more
focused way, and with more confidence. Had the facility operated for two
years before the 9/11 price decay, it would have already been established
as a success, and the historic price drop would not have caused the same
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fundamental questioning. And quite importantly, the project would have
felr different to the project team and to the supervising management; all the
bad surprises would not have been interpreted, even if unconsciously, as
incompetence on the project manager’s side, but as normal aspects of
building a first-of-a-kind facility.

7.4 Conclusion

We have argued in this chapter that our decision framework of how to
choose between selectionism and learning for subprojects can help project
managers to plan and execute their project better. In other words, we have
proposed a “decision method” that allows the project team to estimate
costs and value of selectionism and learning a priori, and then make a bet-
ter choice of project approach than without the method.

We mentioned several times that project managers may not know the
costs of coping with unk unks through learning or selectionism, or the pre-
cise value created by these strategies, but that they have a good feel for it.
What we noticed is that managers often take decisions to cope with unk
unks based on their intuition. How does this square with our proposal of a
decision method? An additional use of our framework is to examine the
popular rules of thumb, or intuition expressed by project management pro-
fessionals. Intuition is automated experience that is no longer open to intro-
spection. Intuition is very important for making the entire myriad of snap
decisions during the day, for which one has no time to thoroughly deliber-
ate. But intuition is also dangerous because it is based on one’s own track
record, which may not be appropriate for the problem in hand right now.

The CEO of a venture capital (VC) investment firm, in a conversation
with us, gave the following rule of thumb: “If you come to me with a busi-
ness idea and want money, don’t propose selectionism early, in the tech-
nology development stage. I expect you to have the technology nailed
down. If you tell me you want to try several technologies in parallel, I won’t
give you a penny. But later, in the marketing stage, I can see selectionism
making sense to test out several market approaches in parallel.”

We do not want to second-guess an experienced VC who knows what he
is talking about. It is still useful to know under what circumstances this rule
of thumb would hold, according to our framework. Prescribing learning
(and not selectionism) early, at the technology stage, makes sense if the
startup (1) is still susceptible to major unk unks, and (2) the situation is
complex because technology system elements and market system elements
all interact, if nothing is yet determined and frozen. If it is also true that the
technology candidates cannot be fully tested for performance, we are in the
lower right-hand box of Figure 7.4, and our framework concurs that learn-
ing is preferable. On the other hand, if the startup could find a way of
testing the technology performance realistically with customers, the answer
might well be different.

159
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The second part of the VC’s intuition is that selectionism makes more
sense during the market introduction stage. Indeed, at that point, com-
plexity and unk unks should be reduced, and so selectionism is more
promising (provided, of course, several market approaches can be made at
reasonable cost).

Another example of intuition, or a generalization from a small number
of examples, is the conclusion in Miller and Lessard’s study of major proj-
ects, which states that large-scale multiyear projects have no choice other
than evolving over time. Again, this is consistent with our framework: Such
projects combine major unk unks and complexity, so learning promises
higher value than selectionism.?!

The point of this discussion is not to second-guess project professionals.
We are trying to demonstrate that when a project manager enters a novel
project, where it is not known what should be expected, it is worth making
one’s intuition (the principles that one takes for granted, “this is how it’s
done, of course”) explicit, and then to question the intuition. Our framework
gives the project manager a tool to do that questioning: Where do we have
gaps in our knowledge, and thus the potential for unk unks? What do par-
allel trials cost versus the delay in sequential learning? How high is the
complexity of the subprojects and their interactions with one another?
Where can we test our solution candidates right away, and where can we
not? Can [ interpret my intuition in terms of the choice between risk iden-
tification and management, selectionism and learning? Does it make sense
in the light of the trade-offs?

Our framework gives an operational and conceptually sound rule of how
the choices should be made. Part II of this book dealt with the conceptual
tools we have in order to understand the conceptual possibilities of dealing
with unk unks. Making the choice in a real project team is, of course, a
more complicated matter. Solving the managerial challenges of dealing with
unk unks in real projects and real surrounding organizations is addressed in
Part III.
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Endnotes

1. This reflects the current state of knowledge. Although project management
experts have discussed selectionism and learning, as we have summarized in
Chapters 4 and 5, we are not aware of a framework of how the two approaches
compare or combine.

2. Dorothy Leonard-Barton (1995, p. 207) called this vicarious learning: “Wait
and let the pioneers get the arrows in their backs and learn from their mis-
takes.” For example, IBM, Motorola, and Compaq delayed introductions of
PDA (personal digital assistant) products in 1993 in the light of extreme
uncertainty about what the market wanted.

3. For further discussion on this, see Watts 2001, and Chesbrough and
Socolof 2000.

4. This example is based on Sommer 2004. The name of the company has been
changed to protect confidentiality.

5. The process was designed to discover changes between healthy and cancerous
cells. Methylation is a natural epigenetic process that occurs when a methyl
group binds to one of DNA’s four bases, cytosine. The presence of methyla-
tion is responsible for controlling the activity of genes by turning them off,
like a switch, when not needed. By measuring the differences in the methyla-
tion patterns between healthy and diseased tissue, a change in gene activity
that could trigger diseases such as cancer is detected. The company had
developed an industrial process that was able to read and interpret these
methylation patterns.

6. Source: company interview.

7. The story of product churning and its demise is told in Stalk and Webber
1993.The quote is on p. 95.

8. Figure 7.1 is based on Loch, Terwiesch, and Thomke 2001, and on Sommer
and Loch 2004.

9. This is reported in Beinhocker 1999.
10. This is described in Iansiti and McCormack 1996.

11. The conclusions are the same if we have many influence variables; for a full
discussion, see Sommer and Loch 2004.

12. “Unknown” here means that the needs are currently unknown also to the
client, so questioning them won’t resolve the uncertainty.

13. See Loch, Terwiesch, and Thomke, 2001.
14. Thomke 2003, pp. 101, 119, refers to the accuracy of tests as fidelity.
15. For details, see Lapré et al. 2000, pp. 603 and 607.

16. See, for example, “purchase prediction adjustments” from stated consumer
intentions voiced in surveys, reported in Chapter 8 of Ulrich and Eppinger
2004.

17. This discussion is based on Sommer and Loch 2004. A detailed analysis of
this situation can be found there.
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18. Note that we are even making the optimistic assumption that the team cor-
rectly determines the original lab value of the unk unk, here, the client’s
process needs. If the team does not even listen or conducts the early investiga-
tion incorrectly, the assumed unk unk value is, in effect, random.

19. The design of the Boeing 777 did not pose high unforeseen uncertainty; the
development was highly complex but fundamentally well understood; see
Sabbagh 1996.

20. See Morris and Hough 1987; see also Kharbanda and Stallworthy 1984.
21. See Miller and Lessard 2000.
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