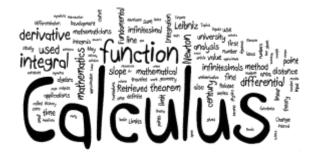
UNITED ARAB EMIRATES MINISTRY OF EDUCATION

الإمارات العربية المتحدة وزارة التربية والتعليم

Advanced Math 2019-2020

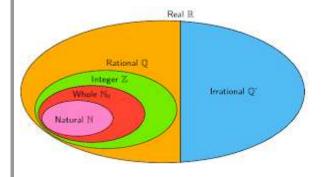
Grade 12 MATHS

Term 1



By / Mahmoud Manasra
www.facebook.com/manasra.math

Polynomials and Rational Functions



The Real Number System

 $N = \{1,2,3,...\}$ Natural Number $N_{\circ} = \{0,1,2,3,...\}$ Whole Number $\mathbb{Z} = \{...,-3,-2,-1,0,1,2,3,...\}$ Integer Number $\mathbb{Q} = \left\{\frac{a}{b}: a,b \in \mathbb{Z}, b \neq 0\right\}$ Rational Number

 $I = \overline{\mathbb{Q}}$ = Irrational Number

$$\mathbb{R} = \mathbb{Q} \cup I = \mathbb{Q} \cup \overline{\mathbb{Q}} = \text{Real Number } = (\infty, -\infty)$$

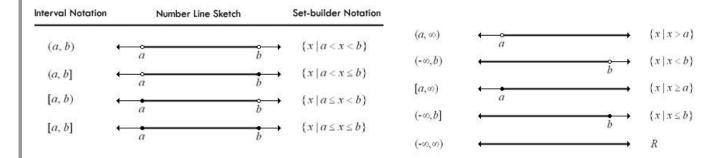
Intervals

For real numbers a and b, where a < b, we define the **closed interval** [a, b] to be the set of numbers between a and b, including a and b (the **endpoints**). That is,

$$[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}, \qquad a$$

Similarly, the **open interval** (a, b) is the set of numbers between a and b, but not including the endpoints a and b, that is,

$$(a,b) = \{x \in \mathbb{R} \mid a < x < b\}, \qquad a \qquad b$$



Solving Inequalities:

•
$$2x + 5 < 13$$

•
$$3-2x < 7$$

•
$$6 < 1 - 3x \le 10$$

$$-2 < 3x + 4 \le 10$$

$$\bullet \quad \frac{x-1}{x+2} \ge 0$$

$$\bullet \quad \frac{x+2}{x-4} \le 0$$

•
$$x^2 + x - 6 < 0$$

•
$$x^2 + 2x - 3 < 0$$

The **absolute value** of a real number x is $|x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$

Notice that for any real numbers a and b,

$$|a \cdot b| = |a| \cdot |b|$$

although

$$|a+b| \neq |a| + |b|,$$

$$|a+b| \le |a| + |b|.$$

Solving an Inequality Containing an Absolute Value

 $\bullet \quad |x-2| < 5$

 $\bullet \quad |x + 4| \le 7$

 $\bullet \quad |x-3| \ge 2$

 $\bullet \quad |2x + 8| > 6$

For $x_1 \neq x_2$, the **slope** of the straight line through the points (x_1, y_1) and (x_2, y_2) is the number

$$m = \frac{y_2 - y_1}{x_2 - x_1}. ag{1.5}$$

When $x_1 = x_2$ and $y_1 \neq y_2$, the line through (x_1, y_1) and (x_2, y_2) is **vertical** and the slope is undefined.

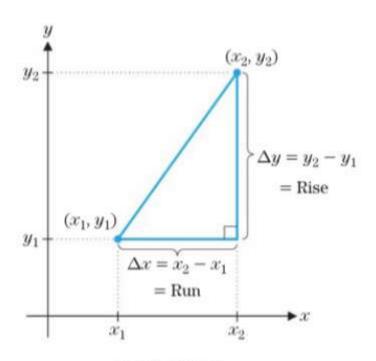


FIGURE 1.12a Slope

POINT-SLOPE FORM OF A LINE

$$y = m(x - x_0) + y_0. (1.7)$$

THEOREM 1.2

Two (nonvertical) lines are **parallel** if they have the same slope. Further, any two vertical lines are parallel. Two (nonvertical) lines of slope m_1 and m_2 are **perpendicular** whenever the product of their slopes is -1 (i.e., $m_1 \cdot m_2 = -1$). Also, any vertical line and any horizontal line are perpendicular.

Find the Equation of the line

1) Passing through the points (2,-3), (5,9).

2) Find an equation of the line parallel to y = 3x - 2 and through the point (-1, 3).

3) Find an equation of the line perpendicular to y = -2x + 4 and intersecting the line at the point (1, 2).

In exercises 11–14, determine if the points are colinear.

In exercises 23-28, determine if the lines are parallel, perpendicular, or neither.

23.
$$y = 3(x - 1) + 2$$
 and $y = 3(x + 4) - 1$

24.
$$y = 2(x - 3) + 1$$
 and $y = 4(x - 3) + 1$

25.
$$y = -2(x+1) - 1$$
 and $y = \frac{1}{2}(x-2) + 3$

26.
$$y = 2x - 1$$
 and $y = -2x + 2$

27.
$$y = 3x + 1$$
 and $y = -\frac{1}{3}x + 2$

28.
$$x + 2y = 1$$
 and $2x + 4y = 3$

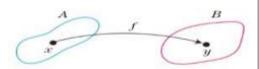
The Distance between two points $(x_1, y_1), (x_2, y_2)$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

In exercises 15-18, find (a) the distance between the points, (b) the slope of the line through the given points, and (c) an equation of the line through the points.

16.
$$(1, -2), (-1, -3)$$

Functions



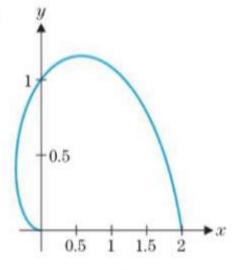
DEFINITION 1.3

A function f is a rule that assigns exactly one element y in a set B to each element x in a set A. In this case, we write y = f(x).

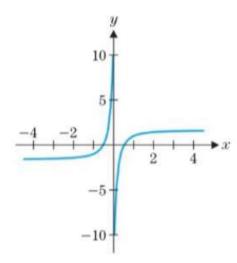
We call the set A the **domain** of f. The set of all values f(x) in B is called the range of f, written $\{y \mid y = f(x), \text{ for some } x \in A\}$. Unless explicitly stated otherwise, whenever a function f is given by a particular expression, the domain of f is the largest set of real numbers for which the expression is defined. We refer to x as the **independent variable** and to y as the **dependent variable**.

In exercises 35-38, use the vertical line test to determine whether the curve is the graph of a function.

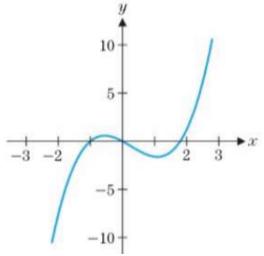
38.



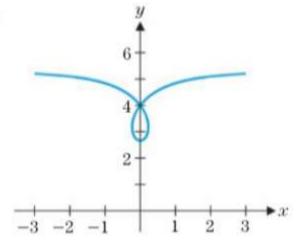
36.



35.



37.



A polynomial is any function that can be written in the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

where a_0 , a_1 , a_2 , a_n are real numbers (the **coefficients** of the polynomial) with $a_n \neq 0$ and $n \geq 0$ is an integer (the **degree** of the polynomial).

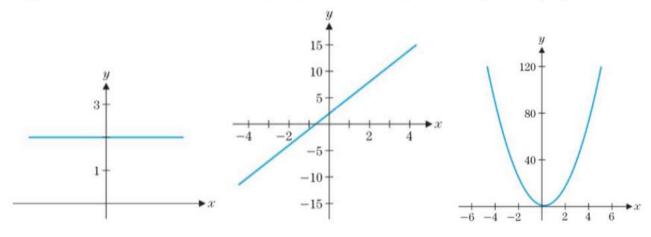
The following are all examples of polynomials:

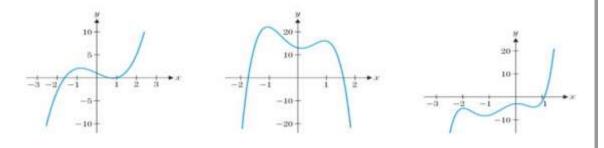
- f(x) = 2 (polynomial of degree 0 or **constant**),
- f(x) = 3x + 2 (polynomial of degree 1 or **linear** polynomial),
- $f(x) = 5x^2 2x + 2/3$ (polynomial of degree 2 or quadratic polynomial),
- $f(x) = x^3 2x + 1$ (polynomial of degree 3 or **cubic** polynomial),
- $f(x) = -6x^4 + 12x^2 3x + 13$ (polynomial of degree 4 or quartic polynomial),

and

Page - 8

 $f(x) = 2x^5 + 6x^4 - 8x^2 + x - 3$ (polynomial of degree 5 or **quintic** polynomial).





Any function that can be written in the form

$$f(x) = \frac{p(x)}{q(x)},$$

where p and q are polynomials, is called a **rational** function.

EXAMPLE 1.18 A Sample Rational Function

Find the domain of the function

$$f(x) = \frac{x^2 + 7x - 11}{x^2 - 4}.$$

EXAMPLE 1.19 Finding the Domain of a Function Involving a Square Root or a Cube Root

Find the domains of $f(x) = \sqrt{x^2 - 4}$ and $g(x) = \sqrt[3]{x^2 - 4}$.

THEOREM 1.3

A polynomial of degree n has at most n distinct zeros.

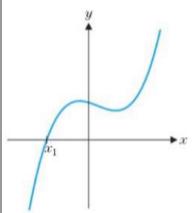


FIGURE 1.23a One zero

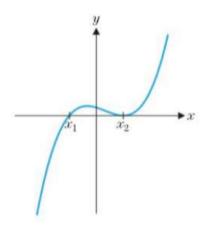


FIGURE 1.23b Two zeros

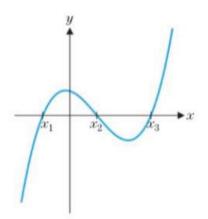


FIGURE 1.23c Three zeros

THEOREM 1.4 (Factor Theorem)

For any polynomial function f, f(a) = 0 if and only if (x - a) is a factor of f(x).

In exercises 39-42, identify the given function as polynomial, rational, both or neither.

39.
$$f(x) = x^3 - 4x + 1$$

41.
$$f(x) = \frac{x^2 + 2x - 1}{x + 1}$$
 42. $f(x) = \sqrt{x^2 + 1}$

39.
$$f(x) = x^3 - 4x + 1$$
 40. $f(x) = \frac{x^3 + 4x - 1}{x^4 - 1}$

42.
$$f(x) = \sqrt{x^2 + 1}$$

In exercises 43-48, find the domain of the function.

43.
$$f(x) = \sqrt{x+2}$$

45
$$f(x) = \sqrt{x^2 - x - 6}$$

47.
$$f(x) = \frac{4}{x^2 - 1}$$

44.
$$f(x) = \sqrt[3]{x-1}$$

45.
$$f(x) = \frac{\sqrt{x^2 - x - 6}}{x - 5}$$
 46. $f(x) = \frac{\sqrt{x^2 - 4}}{\sqrt{9 - x^2}}$

48.
$$f(x) = \frac{4x}{x^2 + 2x - 6}$$

In exercises 65-72, factor and/or use the quadratic formula to find all zeros of the given function.

65.
$$f(x) = x^2 - 4x + 3$$
 66. $f(x) = x^2 + x - 12$

66.
$$f(x) = x^2 + x - 12$$

67.
$$f(x) = x^2 - 4x + 2$$
 68. $f(x) = 2x^2 + 4x - 1$

68.
$$f(x) = 2x^2 + 4x - 1$$

69.
$$f(x) = x^3 - 3x^2 + 2x$$

69.
$$f(x) = x^3 - 3x^2 + 2x$$
 70. $f(x) = x^3 - 2x^2 - x + 2$

In exercises 73 and 74, find all points of intersection.

73.
$$y = x^2 + 2x + 3$$
 and $y = x + 5$

74.
$$y = x^2 + 4x - 2$$
 and $y = 2x^2 + x - 6$

$$y = 2x^2 + x - \epsilon$$

In exercises 59-64, find all intercepts of the given graph.

59.
$$y = x^2 - 2x - 8$$

60.
$$y = x^2 + 4x + 4$$

61.
$$y = x^3 - 8$$

62.
$$y = x^3 - 3x^2 + 3x - 1$$

63.
$$y = \frac{x^2 - 4}{x + 1}$$

64.
$$y = \frac{2x-1}{x^2-4}$$