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Abstract 
Carbon anodes are a major part of the cost of primary aluminum 
production. The focus of the industry is to minimize the 
consumption of anodes by improving their quality. Therefore, the 
determination of the impact of quality of raw materials as well as 
process parameters on baked anode properties is important. The 
plants have a large data base which, upon appropriate 
analysis, could help maintain or improve the anode quality. 
However, it is complex and difficult to analyze these data using 
conventional methods. The artificial neural network (ANN) is a 
mathematical tool that can handle such complex data. In this 
work, Matlab software was used to develop a number of ANN 
models. Using published data, linear multi-variable analysis and 
ANN were applied to assess the advantages of custom 
multilayered feed-forward ANN. Results are presented which 
show a number of industrial applications. 

Introduction 
The carbon anodes constitute a significant part of the cost of the 
primary aluminum production. The variations in quality of raw 
materials such as calcined petroleum coke, coal tar pitch, recycled 
butts, green rejects etc. and operating conditions during different 
processes such as mixing, baking, cooling etc. affect the quality of 
baked anodes to a great extent. This, in turn, affects the anode 
consumption in the electrolytic bath. The goal of the industry is to 
produce better quality anodes in spite of the variations in raw 
materials and process conditions. This would have been easy if 
there was some distinct mathematical relationship between the 
input parameters and the properties of the baked anode. But, in 
reality, this relationship does not exist and the control of 
production is usually based on experience and intuition [1]. 
However, the plants usually maintain a large database. Although 
the data is complex, the proper analysis of these data can deliver 
significant information that can be used to control and improve 
the quality of anodes. The complexity of the data makes it 
difficult to be analyzed by conventional analytical tools. 

The linear multi-variable analysis and the nonlinear regression 
analysis are important tools for analyzing the relationship between 
multiple input parameters and an output parameter. 

For the linear multi-variable analysis, the dependence of the 
output parameter on the input parameters should ideally be linear. 
However, in real cases, it is hard to get a linear relationship for 
each and every parameter. The regression analysis can handle 
nonlinear relationships, but it is necessary to assume some 
mathematical relationship between the input and the output 
parameters. In case of anodes, the relationships between the 
parameters are highly complex and hard to generalize. Thus, it is 
difficult to apply those conventional methods in the case of anode 
quality control during production. 

The limitations of regression techniques and differential equations 
have led researchers to explore alternative models. Thus, research 
on ANN [2] has become popular. Artificial neural networks 
(ANNs) have been increasingly used as a model for engineering, 
environmental, and other applications. ANN has earned popularity 
because of its ability to handle complex nonlinear functions. The 
concept of ANN was first introduced by McCulloch and Pitts in 
1943 [3]. ANNs bear similarity with biological neurons and their 
interaction with each other in the brain. 

There are different ANN models such as perceptron [3], feed-
forward [4], recurrent [5], radial basis function neural networks 
[6,7,8], etc. 

The feed-forward neural network (FNN), also known as the multi-
layer perceptron (MLP) [9] is the most widely used ANN model. 
A feed-forward network typically consists of three layers of 
neurons, namely, an input layer, a hidden layer, and an output 
layer. The network sends information sequentially from the input 
layer to the output layer. 

With the advent of the back-propagation algorithm in 1980s, ANN 
has started to gain its popularity. The back-propagation algorithm 
made the training of an ANN model easier using experimental 
data. The parameters of the network are updated during each pass 
of the training with respect to the network's prediction error [10]. 

ANN is now used to solve problems previously thought to be 
impossible or very difficult with traditional methods [11]. There 
are many reasons behind the success of ANN. The structure of an 
ANN is generally flexible and robust. Unlike regression, it does 
not require a specific equation based on the system to relate the 
input and output variables. The general structure of an ANN can 
be applied to practically any system [12]. Also, ANN can handle 
situations when outliers exist in the data [13]. White et al. [14] 
described a feed-forward neural network with a sigmoid hidden 
layer as a universal function approximator. As a result, the 
artificial neural networks have been viewed as a powerful tool for 
predictions. 

The major problem or limitation of ANN is in its development 
phase. Presently, there is no formal rule available for developing 
networks [15]. Thus, the development of a suitable ANN model is 
often time consuming [16]. 

Different researchers have tried to introduce rules to reduce the 
time on trial and error. According to Sarle [17], the design of an 
ANN depends on a number of variables such as the size of the 
training data set, the number of input and output variables, the 
complexity of the underlying function, the amount of noise in the 
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target variables, and the activation function used. A number of 
rules of thumb have been proposed [4,18,19], but these rules 
always try to over-simplify the problem and thus can lead to poor 
network performance. 

In spite of various applications of ANN, a few works have been 
published regarding the application of ANN to predict carbon 
anode properties. Though carbon anodes are at the heart of 
primary aluminum production and account for a significant part of 
the production cost, yet regarding maintenance of anode quality, 
not many studies have been reported in literature related to 
application of ANN. Berezin et al. [1] developed a perceptron 
based artificial neural network to maintain anode quality at OKSA 
aluminum plant in Russia. The ANN model could predict and 
adjust variations in the production process with changes in the 
quality and quantity of raw materials. 

In this article, a comparison of an artificial neural network with 
the linear multi-variable analysis and the regression analysis in 
terms of their prediction capability will be presented. 

Method 
In this study, published data from the thesis of Chmelar [20] have 
been used for the analysis. He studied different formulations of 
anodes using 4 different cokes and 1 pitch. He also studied the 
physical and chemical properties of the raw materials, and some 
properties of the baked anodes were measured. Table 1, shown on 
the last page, summarizes all the 19 independent input parameters 
for 36 samples. Table 2 summarizes baked anode density, specific 
electrical resistivity, and Young's modulus for the baked anode 
samples. All three properties for 4 samples (4, 17, 30, and 32) 
were predicted using the corresponding input parameters by 
applying the feed-forward artificial neural network, the linear 
multivariable analysis and the generalized regression neural 
network. Those 4 samples were not used while optimizing the 
parameters by any of the methods. The remaining 32 data were 
used for calculating the parameters or to train the network. 

The basic concept behind the linear multi-variable analysis is to 
express a property Y of the anode as a linear function of different 
independent parameters (X1; X2 XN), i.e., 

γ=ΣΑ<χ< 
(1) 

If N is the total number of independent variables, M is the total 
number of experimental observations, then the input matrix B will 
take the following form: 

B 
'1,2 

J N,M 
(2) 

where, Zy denotes the value of input parameter i for observation 
number j . For M observations, the matrix for the property Y of the 
anode is represented as: 

C 

K , 
(3) 

where, Kj denotes value of anode property Y at observation 
number j . If P is the matrix of coefficients, 

P 

A„ 

then, P = (BTBylC 

Table 2: Properties of baked anode samples 

(4) 

(5) 

Sample No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

BAD (g/cc) 
1.45 
1.47 
1.43 
1.35 
1.36 
1.33 
1.39 
1.43 
1.41 
1.38 
1.41 
1.38 
1.395 
1.489 
1.45 
1.374 
1.4 

1.378 
1.39 
1.42 
1.395 
1.42 
1.5 

1.481 
1.429 
1.493 
1.47 
1.345 
1.378 
1.356 
1.41 
1.44 
1.42 
1.405 
1.499 
1.475 

SER (μΩιη) 
77.3375 

72.56 
72.9 
66.8 

65.325 
65.9 
69.5 
66.67 
67.5 
79.5 
67.9 
68.9 

86.175 
76.66 
76.85 
65.28 
64.5 
66 

69.1 
65.7 
68.5 
73.8 
66.9 
68 

79.5 
74.9 
77.6 
71.8 
67.5 
68.4 
66.66 
64.78 
65.8 
70.5 
65.4 
66.4 

Y M (GPa) 
5.2 
5.9 
5.9 
6.6 
6.5 
6.9 
6.9 
6.7 
6.1 
5.6 
5.7 
4.7 
4.1 
5.1 
5.4 
6.8 
6.7 
6.5 
6.8 
6.6 
6 

6.1 
6 

5.5 
5.5 
4.8 
4.4 
6.1 
5.5 
5.3 
6.3 
6.5 
6 

6.1 
5.8 
5.3 
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The 32 data mentioned earlier were used to calculate the 
coefficients. For the prediction of an output property, each input 
parameter was multiplied by the corresponding coefficient and the 
sum represented the predicted value of the property. Both the 
regression analysis and the artificial neural network model were 
done using Matlab 7.2. 

Matlab provides a built-in function 'newgrnn' for generalized 
regression neural networks [21,22]. It is a radial basis network 
that is often used for function approximation. The advantage of 
the method is that it can be designed very quickly. The method 
falls into the category of probabilistic neural networks. The 
normal distribution function is used as the probability density 
function. Each training sample is used as the mean of a normal 
distribution. The Euclidian distance between the training sample 
and the point of prediction, is used to estimate the position of 
prediction. 

The 32 data for training were used to train the network, and the 
trained network was used to predict the values for the four test 
data set. 

Two customized feed-forward neural network models with back-
propagation training were tried using Matlab. They are the feed-
forward back-propagation and cascade feed-forward back-
propagation networks. For both networks, one input layer, two 
hidden layers, and one output layer were selected. 

Various transfer functions such as logsig, tansig, purelin were 
associated with the hidden layers. The logsig function can be 
represented as logsig(n) = 1 / (1 + exp(-n)). Similarly, tansig 
function can be represented as tansig(n) = 2/(l+exp(-2*n))-l. 
Purelin is a linear function represented as purelin(n) = n. The 
transfer functions process the input to a layer such that the output 
can be easily classified into groups of similar data, which is 
important for an efficient prediction. 

Initially, some random weights were associated with the 
normalized input parameters. The training of a neural network 
means the identification of optimum values of the weights 
associated with the input parameters. The training of the network 
was done using trainlm, trainbfg, and traingdm back-propagation 
functions. Those functions were based on Levenberg-Marquardt, 
BFGS (Broyden, Fletcher, Goldfarb, and Shanno) update of quasi 
Newton, and gradient descent with momentum back-propagation 
algorithms, respectively. The maximum number of iterations for 
training (epoch) was set to 1000. The weights were varied during 
each iteration based on the gradient descent learning algorithms 
(learngd and learngdm) and a learning rate of 0.05 and momentum 
of learning of 0.9. 

The networks were trained based on the measurement of error in 
prediction. The errors were measured in terms of mean squared 
error (mse) and mean average error (mae). The 32 data set were 
used for the training of the neural network. The trained network 
was used to predict the properties of the baked anode for the four 
test data sets. 

For all three cases, the predicted values were plotted against the 
published results for the four test data sets. The coefficient of 
determination for linear regression for each graph was used as the 
criteria for the quality of prediction. The closer the value of the 
coefficient of determination to unity is, the better the ability of 
prediction is. 

Results and discussions 

Figures 1, 2, and 3 show the correlation between the published 
and predicted values for electrical resistivity, Young's modulus 
and baked anode density, respectively. The figures show that the 
coefficients of determination are the smallest (0.093, 0.332, and 
0.604 for electrical resistivity, Young's modulus, and baked anode 
density, respectively) in the case of linear multivariable analysis. 
The values for the coefficients of determination are medium 
(0.392, 0.846, and 0.816 for electrical resistivity, Young's 
modulus, and baked anode density, respectively) in the case of 
regression analysis. The values are highest (0.966, 0.989, and 
0.947 for electrical resistivity, Young's modulus, and baked anode 
density, respectively) in the case of feed-forward ANN. For the 
feed-forward ANN, the configurations were different for the three 
cases. Table 3 lists the important parameters for the ANN models. 

Published etect rïcal resistivity, μ ί ΐ ι ι ι 

Figure 1 : Predicted and published values of electrical resistivity 

EVbliyhrti YoLjft£ \ rvoit-.ituy OP* 

Figure 2: Predicted and published values of Young's modulus 
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Figure 3: Predicted and published values of baked anode density 

Table 3: Parameters for feed-forward neural network models used 
for prediction 

Transfer 
function 

Initialization 

Property 

Network 

Layer 1 

Layer2 

Training 
function 

Learning 
algorithm 

Error check 

Function 

Seed for 
rands 

function 

Electrical 
Resistivity 

newcf 

logsig 

purelin 

trainlm 

learngdm 

mse 

rands 

4 

Young's 
Modulus 

newcf 

logsig 

tansig 

trainlm 

learngd 

mae 

rands 

7 

Baked 
Anode 
Density 

newff 

logsig 

purelin 

trainlm 

learngd 

mae 

rands 

10 

Thus it can be seen that the customized feed-forward neural 
network model with back-propagation training was able to predict 
the output for the test data set better than the linear multivariable 
and regression analyses. The average percent errors in prediction 
are 0.8, 1.6, and 0.6 for electrical resistivity, Young's modulus, 
and baked anode density, respectively. 

In the production of anodes, there are numerous parameters that 
can influence the baked anode properties. Industries often 
maintain information about the input parameters and the output 
properties. These huge data can be utilized to train ANN. The 
industrial data is highly nonlinear in nature, and there is no 
mathematical relation available between those data. In such a 
situation, ANN has immense potential in quality control during 
anode production. In the case of variations in the properties of raw 
materials and processing parameters, ANN can predict the 
property of baked anode even before baking. In the case of 
variations in process parameters during the manufacturing of 
baked anodes, ANN could indicate the necessary changes in other 
process parameters to maintain the quality of baked anodes. 

Conclusions 

The artificial neural network is an important tool for the 
prediction of anode properties. It can become an important tool 
for the quality control of anodes. The major advantage of ANN 
over the other methods is that it can efficiently handle highly 
nonlinear data with noises where there is no existing mathematical 
relationship. It is true that the development of an efficient ANN 
model is time consuming because it needs lot of trials and errors; 
but once it is developed, it can predict results for which no 
experimental data is available. For the training of an ANN, 
availability of large sets of data is important; but this is generally 
not a limitation in the case of industries. ANN, with its power of 
artificial intelligence, can save time and money for the aluminum 
industry. 
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