

Practical Data Science with R
Nina Zumel and John Mount

Copyright
For online information and ordering of this and other Manning
books, please visit www.manning.com. The publisher offers
discounts on this book when ordered in quantity. For more
information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

©2014 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means
electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where
those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been
written, it is Manning’s policy to have the books we publish
printed on acid-free paper, and we exert our best efforts to that
end. Recognizing also our responsibility to conserve the
resources of our planet, Manning books are printed on paper
that is at least 15 percent recycled and processed without the
use of elemental chlorine.

Manning Publications Co.
20 Baldwin Road

Development editor: Cynthia Kane
Copyeditor: Benjamin Berg
Proofreader: Katie Tennant

http://www.manning.com

PO Box 261
Shelter Island, NY 11964

Typesetter: Dottie Marsico
Cover designer: Marija Tudor

ISBN 9781617291562

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – EBM – 19 18 17 16 15 14

Dedication

To our parents

Olive and Paul Zumel

Peggy and David Mount

Brief Table of Contents
Copyright

Brief Table of Contents

Table of Contents

Foreword

Preface

Acknowledgments

About this Book

About the Cover Illustration

1. Introduction to data science

Chapter 1. The data science process

Chapter 2. Loading data into R

Chapter 3. Exploring data

Chapter 4. Managing data

2. Modeling methods

Chapter 5. Choosing and evaluating models

Chapter 6. Memorization methods

Chapter 7. Linear and logistic regression

Chapter 8. Unsupervised methods

Chapter 9. Exploring advanced methods

3. Delivering results

Chapter 10. Documentation and deployment

Chapter 11. Producing effective presentations

Appendix A. Working with R and other tools

Appendix B. Important statistical concepts

Appendix C. More tools and ideas worth exploring

Bibliography

Index

List of Figures

List of Tables

List of Listings

Table of Contents
Copyright

Brief Table of Contents

Table of Contents

Foreword

Preface

Acknowledgments

About this Book

About the Cover Illustration

1. Introduction to data science

Chapter 1. The data science process

1.1. The roles in a data science project

1.1.1. Project roles

1.2. Stages of a data science project

1.2.1. Defining the goal

1.2.2. Data collection and management

1.2.3. Modeling

1.2.4. Model evaluation and critique

1.2.5. Presentation and documentation

1.2.6. Model deployment and maintenance

1.3. Setting expectations

1.3.1. Determining lower and upper bounds on model
performance

1.4. Summary

Chapter 2. Loading data into R

2.1. Working with data from files

2.1.1. Working with well-structured data from files or
URLs

2.1.2. Using R on less-structured data

2.2. Working with relational databases

2.2.1. A production-size example

2.2.2. Loading data from a database into R

2.2.3. Working with the PUMS data

2.3. Summary

Chapter 3. Exploring data

3.1. Using summary statistics to spot problems

3.1.1. Typical problems revealed by data summaries

3.2. Spotting problems using graphics and visualization

3.2.1. Visually checking distributions for a single variable

3.2.2. Visually checking relationships between two
variables

3.3. Summary

Chapter 4. Managing data

4.1. Cleaning data

4.1.1. Treating missing values (NAs)

4.1.2. Data transformations

4.2. Sampling for modeling and validation

4.2.1. Test and training splits

4.2.2. Creating a sample group column

4.2.3. Record grouping

4.2.4. Data provenance

4.3. Summary

2. Modeling methods

Chapter 5. Choosing and evaluating models

5.1. Mapping problems to machine learning tasks

5.1.1. Solving classification problems

5.1.2. Solving scoring problems

5.1.3. Working without known targets

5.1.4. Problem-to-method mapping

5.2. Evaluating models

5.2.1. Evaluating classification models

5.2.2. Evaluating scoring models

5.2.3. Evaluating probability models

5.2.4. Evaluating ranking models

5.2.5. Evaluating clustering models

5.3. Validating models

5.3.1. Identifying common model problems

5.3.2. Quantifying model soundness

5.3.3. Ensuring model quality

5.4. Summary

Chapter 6. Memorization methods

6.1. KDD and KDD Cup 2009

6.1.1. Getting started with KDD Cup 2009 data

6.2. Building single-variable models

6.2.1. Using categorical features

6.2.2. Using numeric features

6.2.3. Using cross-validation to estimate effects of
overfitting

6.3. Building models using many variables

6.3.1. Variable selection

6.3.2. Using decision trees

6.3.3. Using nearest neighbor methods

6.3.4. Using Naive Bayes

6.4. Summary

Chapter 7. Linear and logistic regression

7.1. Using linear regression

7.1.1. Understanding linear regression

7.1.2. Building a linear regression model

7.1.3. Making predictions

7.1.4. Finding relations and extracting advice

7.1.5. Reading the model summary and characterizing
coefficient quality

7.1.6. Linear regression takeaways

7.2. Using logistic regression

7.2.1. Understanding logistic regression

7.2.2. Building a logistic regression model

7.2.3. Making predictions

7.2.4. Finding relations and extracting advice from logistic
models

7.2.5. Reading the model summary and characterizing
coefficients

7.2.6. Logistic regression takeaways

7.3. Summary

Chapter 8. Unsupervised methods

8.1. Cluster analysis

8.1.1. Distances

8.1.2. Preparing the data

8.1.3. Hierarchical clustering with hclust()

8.1.4. The k-means algorithm

8.1.5. Assigning new points to clusters

8.1.6. Clustering takeaways

8.2. Association rules

8.2.1. Overview of association rules

8.2.2. The example problem

8.2.3. Mining association rules with the arules package

8.2.4. Association rule takeaways

8.3. Summary

Chapter 9. Exploring advanced methods

9.1. Using bagging and random forests to reduce training
variance

9.1.1. Using bagging to improve prediction

9.1.2. Using random forests to further improve prediction

9.1.3. Bagging and random forest takeaways

9.2. Using generalized additive models (GAMs) to learn
non-monotone relationships

9.2.1. Understanding GAMs

9.2.2. A one-dimensional regression example

9.2.3. Extracting the nonlinear relationships

9.2.4. Using GAM on actual data

9.2.5. Using GAM for logistic regression

9.2.6. GAM takeaways

9.3. Using kernel methods to increase data separation

9.3.1. Understanding kernel functions

9.3.2. Using an explicit kernel on a problem

9.3.3. Kernel takeaways

9.4. Using SVMs to model complicated decision boundaries

9.4.1. Understanding support vector machines

9.4.2. Trying an SVM on artificial example data

9.4.3. Using SVMs on real data

9.4.4. Support vector machine takeaways

9.5. Summary

3. Delivering results

Chapter 10. Documentation and deployment

10.1. The buzz dataset

10.2. Using knitr to produce milestone documentation

10.2.1. What is knitr?

10.2.2. knitr technical details

10.2.3. Using knitr to document the buzz data

10.3. Using comments and version control for running
documentation

10.3.1. Writing effective comments

10.3.2. Using version control to record history

10.3.3. Using version control to explore your project

10.3.4. Using version control to share work

10.4. Deploying models

10.4.1. Deploying models as R HTTP services

10.4.2. Deploying models by export

10.4.3. What to take away

10.5. Summary

Chapter 11. Producing effective presentations

11.1. Presenting your results to the project sponsor

11.1.1. Summarizing the project’s goals

11.1.2. Stating the project’s results

11.1.3. Filling in the details

11.1.4. Making recommendations and discussing future
work

11.1.5. Project sponsor presentation takeaways

11.2. Presenting your model to end users

11.2.1. Summarizing the project’s goals

11.2.2. Showing how the model fits the users’ workflow

11.2.3. Showing how to use the model

11.2.4. End user presentation takeaways

11.3. Presenting your work to other data scientists

11.3.1. Introducing the problem

11.3.2. Discussing related work

11.3.3. Discussing your approach

11.3.4. Discussing results and future work

11.3.5. Peer presentation takeaways

11.4. Summary

Appendix A. Working with R and other tools

A.1. Installing the tools

A.1.1. Installing R

A.1.2. The R package system

A.1.3. Installing Git

A.1.4. Installing RStudio

A.1.5. R resources

A.2. Starting with R

A.2.1. Primary features of R

A.2.2. Primary R data types

A.2.3. Loading data from HTTPS sources

A.3. Using databases with R

A.3.1. Acquiring the H2 database engine

A.3.2. Starting with SQuirreL SQL

A.3.3. Installing SQL Screwdriver

A.3.4. An example SQL data transformation task

A.3.5. How to think in SQL

Appendix B. Important statistical concepts

B.1. Distributions

B.1.1. Normal distribution

B.1.2. Summarizing R’s distribution naming conventions

B.1.3. Lognormal distribution

B.1.4. Binomial distribution

B.1.5. More R tools for distributions

B.2. Statistical theory

B.2.1. Statistical philosophy

B.2.2. A/B tests

B.2.3. Power of tests

B.2.4. Specialized statistical tests

B.3. Examples of the statistical view of data

B.3.1. Sampling bias

B.3.2. Omitted variable bias

Appendix C. More tools and ideas worth exploring

C.1. More tools

C.1.1. R itself

C.1.2. Other languages

C.1.3. Big data tools

C.2. More ideas

C.2.1. Adaptive learning

C.2.2. Statistical learning

C.2.3. Computer science machine learning

C.2.4. Bayesian methods

C.2.5. Statistics

C.2.6. Boosting

C.2.7. Time series

C.2.8. Domain knowledge

Bibliography

Index

List of Figures

List of Tables

List of Listings

Foreword
If you’re a beginning data scientist, or want to be one, Practical
Data Science with R (PDSwR) is the place to start. If you’re
already doing data science, PDSwR will fill in gaps in your
knowledge and even give you a fresh look at tools you use on a
daily basis—it did for me.

While there are many excellent books on statistics and modeling
with R, and a few good management books on applying data
science in your organization, this book is unique in that it
combines solid technical content with practical, down-to-earth
advice on how to practice the craft. I would expect no less from
Nina and John.

I first met John when he presented at an early Bay Area R
Users Group about his joys and frustrations with R. Since then,
Nina, John, and I have collaborated on a couple of projects for
my former employer. And John has presented early ideas from
PDSwR—both to the “big” group and our Berkeley R-Beginners
meetup. Based on his experience as a practicing data scientist,
John is outspoken and has strong views about how to do things.
PDSwR reflects Nina and John’s definite views on how to do
data science—what tools to use, the process to follow, the
important methods, and the importance of interpersonal
communications. There are no ambiguities in PDSwR.

This, as far as I’m concerned, is perfectly fine, especially since I
agree with 98% of their views. (My only quibble is around SQL
—but that’s more an issue of my upbringing than of
disagreement.) What their unambiguous writing means is that
you can focus on the craft and art of data science and not be
distracted by choices of which tools and methods to use. This
precision is what makes PDSwR practical. Let’s look at some

specifics.

Practical tool set: R is a given. In addition, RStudio is the IDE of
choice; I’ve been using RStudio since it came out. It has evolved
into a remarkable tool—integrated debugging is in the latest
version. The third major tool choice in PDSwR is Hadley
Wickham’s ggplot2. While R has traditionally included excellent
graphics and visualization tools, ggplot2 takes R visualization
to the next level. (My practical hint: take a close look at any of
Hadley’s R packages, or those of his students.) In addition to
those main tools, PDSwR introduces necessary secondary tools:
a proper SQL DBMS for larger datasets; Git and GitHub for
source code version control; and knitr for documentation
generation.

Practical datasets: The only way to learn data science is by
doing it. There’s a big leap from the typical teaching datasets to
the real world. PDSwR strikes a good balance between the need
for a practical (simple) dataset for learning and the messiness of
the real world. PDSwR walks you through how to explore a new
dataset to find problems in the data, cleaning and transforming
when necessary.

Practical human relations: Data science is all about solving real-
world problems for your client—either as a consultant or within
your organization. In either case, you’ll work with a
multifaceted group of people, each with their own motivations,
skills, and responsibilities. As practicing consultants, Nina and
John understand this well. PDSwR is unique in stressing the
importance of understanding these roles while working through
your data science project.

Practical modeling: The bulk of PDSwR is about modeling,
starting with an excellent overview of the modeling process,
including how to pick the modeling method to use and, when
done, gauge the model’s quality. The book walks you through

the most practical modeling methods you’re likely to need. The
theory behind each method is intuitively explained. A specific
example is worked through—the code and data are available on
the authors’ GitHub site. Most importantly, tricks and traps are
covered. Each section ends with practical takeaways.

In short, Practical Data Science with R is a unique and important
addition to any data scientist’s library.

JIM PORZAK

SENIOR DATA SCIENTIST AND COFOUNDER OF THE BAY AREA R USERS

GROUP

Preface
This is the book we wish we’d had when we were teaching
ourselves that collection of subjects and skills that has come to
be referred to as data science. It’s the book that we’d like to
hand out to our clients and peers. Its purpose is to explain the
relevant parts of statistics, computer science, and machine
learning that are crucial to data science.

Data science draws on tools from the empirical sciences,
statistics, reporting, analytics, visualization, business
intelligence, expert systems, machine learning, databases, data
warehousing, data mining, and big data. It’s because we have so
many tools that we need a discipline that covers them all. What
distinguishes data science itself from the tools and techniques is
the central goal of deploying effective decision-making models to
a production environment.

Our goal is to present data science from a pragmatic, practice-
oriented viewpoint. We’ve tried to achieve this by concentrating
on fully worked exercises on real data—altogether, this book
works through over 10 significant datasets. We feel that this
approach allows us to illustrate what we really want to teach
and to demonstrate all the preparatory steps necessary to any
real-world project.

Throughout our text, we discuss useful statistical and machine
learning concepts, include concrete code examples, and explore
partnering with and presenting to nonspecialists. We hope if
you don’t find one of these topics novel, that we’re able to
shine a light on one or two other topics that you may not have
thought about recently.

Acknowledgments
We wish to thank all the many reviewers, colleagues, and others
who have read and commented on our early chapter drafts,
especially Aaron Colcord, Aaron Schumacher, Ambikesh Jayal,
Bryce Darling, Dwight Barry, Fred Rahmanian, Hans Donner,
Jeelani Basha, Justin Fister, Dr. Kostas Passadis, Leo Polovets,
Marius Butuc, Nathanael Adams, Nezih Yigitbasi, Pablo Vaselli,
Peter Rabinovitch, Ravishankar Rajagopalan, Rodrigo Abreu,
Romit Singhai, Sampath Chaparala, and Zekai Otles. Their
comments, questions, and corrections have greatly improved
this book. Special thanks to George Gaines for his thorough
technical review of the manuscript shortly before it went into
production.

We especially would like to thank our development editor,
Cynthia Kane, for all her advice and patience as she shepherded
us through the writing process. The same thanks go to Benjamin
Berg, Katie Tennant, Kevin Sullivan, and all the other editors at
Manning who worked hard to smooth out the rough patches and
technical glitches in our text.

In addition, we’d like to thank our colleague David Steier,
Professors Anno Saxenian and Doug Tygar from UC Berkeley’s
School of Information Science, as well as all the other faculty
and instructors who have reached out to us about the possibility
of using this book as a teaching text.

We’d also like to thank Jim Porzak for inviting one of us (John
Mount) to speak at the Bay Area R Users Group, for being an
enthusiastic advocate of our book, and for contributing the
foreword. On days when we were tired and discouraged and
wondered why we had set ourselves to this task, his interest
helped remind us that there’s a need for what we’re offering and

for the way that we’re offering it. Without his encouragement,
completing this book would have been much harder.

About this Book
This book is about data science: a field that uses results from
statistics, machine learning, and computer science to create
predictive models. Because of the broad nature of data science,
it’s important to discuss it a bit and to outline the approach we
take in this book.

What is data science?

The statistician William S. Cleveland defined data science as an
interdisciplinary field larger than statistics itself. We define data
science as managing the process that can transform hypotheses
and data into actionable predictions. Typical predictive analytic
goals include predicting who will win an election, what products
will sell well together, which loans will default, or which
advertisements will be clicked on. The data scientist is
responsible for acquiring the data, managing the data, choosing
the modeling technique, writing the code, and verifying the
results.

Because data science draws on so many disciplines, it’s often a
“second calling.” Many of the best data scientists we meet
started as programmers, statisticians, business intelligence
analysts, or scientists. By adding a few more techniques to their
repertoire, they became excellent data scientists. That
observation drives this book: we introduce the practical skills
needed by the data scientist by concretely working through all
of the common project steps on real data. Some steps you’ll
know better than we do, some you’ll pick up quickly, and some
you may need to research further.

Much of the theoretical basis of data science comes from
statistics. But data science as we know it is strongly influenced

by technology and software engineering methodologies, and has
largely evolved in groups that are driven by computer science
and information technology. We can call out some of the
engineering flavor of data science by listing some famous
examples:

Amazon’s product recommendation systems
Google’s advertisement valuation systems
LinkedIn’s contact recommendation system
Twitter’s trending topics
Walmart’s consumer demand projection systems

These systems share a lot of features:

All of these systems are built off large datasets. That’s
not to say they’re all in the realm of big data. But none
of them could’ve been successful if they’d only used
small datasets. To manage the data, these systems
require concepts from computer science: database
theory, parallel programming theory, streaming data
techniques, and data warehousing.
Most of these systems are online or live. Rather than
producing a single report or analysis, the data science
team deploys a decision procedure or scoring procedure
to either directly make decisions or directly show
results to a large number of end users. The production
deployment is the last chance to get things right, as the
data scientist can’t always be around to explain defects.
All of these systems are allowed to make mistakes at
some non-negotiable rate.
None of these systems are concerned with cause.
They’re successful when they find useful correlations
and are not held to correctly sorting cause from effect.

This book teaches the principles and tools needed to build
systems like these. We teach the common tasks, steps, and tools
used to successfully deliver such projects. Our emphasis is on
the whole process—project management, working with others,
and presenting results to nonspecialists.

Roadmap

This book covers the following:

Managing the data science process itself. The data
scientist must have the ability to measure and track
their own project.
Applying many of the most powerful statistical and
machine learning techniques used in data science
projects. Think of this book as a series of explicitly
worked exercises in using the programming language R
to perform actual data science work.
Preparing presentations for the various stakeholders:
management, users, deployment team, and so on. You
must be able to explain your work in concrete terms to
mixed audiences with words in their common usage, not
in whatever technical definition is insisted on in a given
field. You can’t get away with just throwing data
science project results over the fence.

We’ve arranged the book topics in an order that we feel increases
understanding. The material is organized as follows.

Part 1 describes the basic goals and techniques of the data
science process, emphasizing collaboration and data.

Chapter 1 discusses how to work as a data scientist, and chapter
2 works through loading data into R and shows how to start
working with R.

Chapter 3 teaches what to first look for in data and the
important steps in characterizing and understanding data. Data
must be prepared for analysis, and data issues will need to be
corrected, so chapter 4 demonstrates how to handle those
things.

Part 2 moves from characterizing data to building effective
predictive models. Chapter 5 supplies a starting dictionary
mapping business needs to technical evaluation and modeling
techniques.

Chapter 6 teaches how to build models that rely on memorizing
training data. Memorization models are conceptually simple and
can be very effective. Chapter 7 moves on to models that have
an explicit additive structure. Such functional structure adds the
ability to usefully interpolate and extrapolate situations and to
identify important variables and effects.

Chapter 8 shows what to do in projects where there is no
labeled training data available. Advanced modeling methods that
increase prediction performance and fix specific modeling issues
are introduced in chapter 9.

Part 3 moves away from modeling and back to process. We
show how to deliver results. Chapter 10 demonstrates how to
manage, document, and deploy your models. You’ll learn how to
create effective presentations for different audiences in chapter
11.

The appendixes include additional technical details about R,
statistics, and more tools that are available. Appendix A shows
how to install R, get started working, and work with other tools
(such as SQL). Appendix B is a refresher on a few key
statistical ideas. Appendix C discusses additional tools and
research ideas. The bibliography supplies references and
opportunities for further study.

The material is organized in terms of goals and tasks, bringing in
tools as they’re needed. The topics in each chapter are discussed
in the context of a representative project with an associated
dataset. You’ll work through 10 substantial projects over the
course of this book. All the datasets referred to in this book are
at the book’s GitHub repository,
https://github.com/WinVector/zmPDSwR. You can download the
entire repository as a single zip file (one of GitHub’s services),
clone the repository to your machine, or copy individual files as
needed.

Audience

To work the examples in this book, you’ll need some familiarity
with R, statistics, and (for some examples) SQL databases. We
recommend you have some good introductory texts on hand.
You don’t need to be an expert in R, statistics, and SQL before
starting the book, but you should be comfortable tutoring
yourself on topics that we mention but can’t cover completely
in our book.

For R, we recommend R in Action, Second Edition, by Robert
Kabacoff (www.manning.com/kabacoff2/), along with the text’s
associated website, Quick-R (www.statmethods.net). For
statistics, we recommend Statistics, Fourth Edition by David
Freedman, Robert Pisani, and Roger Purves. For SQL, we
recommend SQL for Smarties, Fourth Edition by Joe Celko.

In general, here’s what we expect from our ideal reader:

An interest in working examples. By working through
the examples, you’ll learn at least one way to perform
all steps of a project. You must be willing to attempt
simple scripting and programming to get the full value
of this book. For each example we work, you should try

https://github.com/WinVector/zmPDSwR
http://www.manning.com/kabacoff2/
http://www.statmethods.net

variations and expect both some failures (where your
variations don’t work) and some successes (where your
variations outperform our example analyses).
Some familiarity with the R statistical system and the
will to write short scripts and programs in R. In
addition to Kabacoff, we recommend a few good books
in the bibliography. We work specific problems in R; to
understand what’s going on, you’ll need to run the
examples and read additional documentation to
understand variations of the commands we didn’t
demonstrate.
Some experience with basic statistical concepts such as
probabilities, means, standard deviations, and
significance. We introduce these concepts as needed,
but you may need to read additional references as we
work through examples. We define some terms and refer
to some topic references and blogs where appropriate.
But we expect you will have to perform some of your
own internet searches on certain topics.
A computer (OS X, Linux, or Windows) to install R
and other tools on, as well as internet access to
download tools and datasets. We strongly suggest
working through the examples, examining R help() on
various methods, and following up some of the
additional references.

What is not in this book?

This book is not an R manual. We use R to concretely
demonstrate the important steps of data science projects. We
teach enough R for you to work through the examples, but a
reader unfamiliar with R will want to refer to appendix A as well
as to the many excellent R books and tutorials already available.

This book is not a set of case studies. We emphasize

methodology and technique. Example data and code is given
only to make sure we’re giving concrete usable advice.

This book is not a big data book. We feel most significant data
science occurs at a database or file manageable scale (often larger
than memory, but still small enough to be easy to manage).
Valuable data that maps measured conditions to dependent
outcomes tends to be expensive to produce, and that tends to
bound its size. For some report generation, data mining, and
natural language processing, you’ll have to move into the area of
big data.

This is not a theoretical book. We don’t emphasize the absolute
rigorous theory of any one technique. The goal of data science is
to be flexible, have a number of good techniques available, and be
willing to research a technique more deeply if it appears to
apply to the problem at hand. We prefer R code notation over
beautifully typeset equations even in our text, as the R code can
be directly used.

This is not a machine learning tinkerer’s book. We emphasize
methods that are already implemented in R. For each method,
we work through the theory of operation and show where the
method excels. We usually don’t discuss how to implement
them (even when implementation is easy), as that information is
readily available.

Code conventions and downloads

This book is example driven. We supply prepared example data
at the GitHub repository
(https://github.com/WinVector/zmPDSwR), with R code and
links back to original sources. You can explore this repository
online or clone it onto your own machine. We also supply the
code to produce all results and almost all graphs found in the
book as a zip file

https://github.com/WinVector/zmPDSwR

(https://github.com/WinVector/zmPDSwR/raw/master/CodeExamples.zip
since copying code from the zip file can be easier than copying
and pasting from the book. You can also download the code
from the publisher’s website at
www.manning.com/PracticalDataSciencewithR.

We encourage you to try the example R code as you read the
text; even when we discuss fairly abstract aspects of data
science, we illustrate examples with concrete data and code.
Every chapter includes links to the specific dataset(s) that it
references.

In this book, code is set with a fixed-width font like this
to distinguish it from regular text. Concrete variables and values
are formatted similarly, whereas abstract math will be in italic
font like this. R is a mathematical language, so many phrases read
correctly in either font. In our examples, any prompts such as >
and $ are to be ignored. Inline results may be prefixed by R’s
comment character #.

Software and hardware requirements

To work through our examples, you’ll need some sort of
computer (Linux, OS X, or Windows) with software installed
(installation described in appendix A). All of the software we
recommend is fully cross-platform (Linux, OS X, or Windows),
freely available, and usually open source.

We suggest installing at least the following:

R itself: http://cran.r-project.org.
Various packages from CRAN (installed by R itself
using the install.packages() command and activated
using the library() command).
Git for version control: http://git-scm.com.

https://github.com/WinVector/zmPDSwR/raw/master/CodeExamples.zip
http://www.manning.com/PracticalDataSciencewithR
http://cran.r-project.org
http://git-scm.com

RStudio for an integrated editor, execution and graphing
environment—http://www.rstudio.com.
A bash shell for system commands. This is built-in for
Linux and OS X, and can be added to Windows by
installing Cygwin (http://www.cygwin.com). We don’t
write any scripts, so an experienced Windows shell user
can skip installing Cygwin if they’re able to translate
our bash commands into the appropriate Windows
commands.

Author Online

The purchase of Practical Data Science with R includes free
access to a private web forum run by Manning Publications,
where you can make comments about the book, ask technical
questions, and receive help from the authors and from other
users. To access the forum and subscribe to it, point your web
browser to www.manning.com/PracticalDataSciencewithR. This
page provides information on how to get on the forum once you
are registered, what kind of help is available, and the rules of
conduct on the forum.

Manning’s commitment to our readers is to provide a venue
where a meaningful dialogue between individual readers and
between readers and the authors can take place. It is not a
commitment to any specific amount of participation on the part
of the authors, whose contribution to the forum remains
voluntary (and unpaid). We suggest you try asking the authors
some challenging questions lest their interest stray!

The Author Online forum and the archives of previous
discussions will be accessible from the publisher’s website as
long as the book is in print.

About the authors

http://www.rstudio.com
http://www.cygwin.com
http://www.manning.com/PracticalDataSciencewithR

NINA ZUMEL has worked as a scientist at SRI International, an
independent, nonprofit research institute. She has worked as
chief scientist of a price optimization company and founded a
contract research company. Nina is now a principal consultant
at Win-Vector LLC. She can be reached at nzumel@win-
vector.com.

JOHN M OUNT has worked as a computational scientist in
biotechnology and as a stock trading algorithm designer, and has
managed a research team for Shopping.com. He is now a
principal consultant at Win-Vector LLC. John can be reached at
jmount@winvector.com.

About the Cover Illustration
The figure on the cover of Practical Data Science with R is
captioned “Habit of a Lady of China in 1703.” The illustration
is taken from Thomas Jefferys’ A Collection of the Dresses of
Different Nations, Ancient and Modern (four volumes), London,
published between 1757 and 1772. The title page states that
these are hand-colored copperplate engravings, heightened with
gum arabic. Thomas Jefferys (1719–1771) was called
“Geographer to King George III.” He was an English
cartographer who was the leading map supplier of his day. He
engraved and printed maps for government and other official
bodies and produced a wide range of commercial maps and
atlases, especially of North America. His work as a mapmaker
sparked an interest in local dress customs of the lands he
surveyed and mapped; they are brilliantly displayed in this
four-volume collection.

Fascination with faraway lands and travel for pleasure were
relatively new phenomena in the eighteenth century, and
collections such as this one were popular, introducing both the
tourist as well as the armchair traveler to the inhabitants of other
countries. The diversity of the drawings in Jeffreys’ volumes
speaks vividly of the uniqueness and individuality of the
world’s nations centuries ago. Dress codes have changed, and the
diversity by region and country, so rich at that time, has faded
away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have
traded a cultural and visual diversity for a more varied personal
life—or a more varied and interesting intellectual and technical
life.

At a time when it is hard to tell one computer book from
another, Manning celebrates the inventiveness and initiative of

the computer business with book covers based on the rich
diversity of national costumes three centuries ago, brought back
to life by Jeffreys’ pictures.

Part 1. Introduction to data science
In part 1, we concentrate on the most essential tasks in data
science: working with your partners, defining your problem, and
examining your data.

Chapter 1 covers the lifecycle of a typical data science project.
We look at the different roles and responsibilities of project
team members, the different stages of a typical project, and how
to define goals and set project expectations. This chapter serves
as an overview of the material that we cover in the rest of the
book and is organized in the same order as the topics that we
present.

Chapter 2 dives into the details of loading data into R from
various external formats and transforming the data into a format
suitable for analysis. It also discusses the most important R data
structure for a data scientist: the data frame. More details about
the R programming language are covered in appendix A.

Chapters 3 and 4 cover the data exploration and treatment that
you should do before proceeding to the modeling stage. In
chapter 3, we discuss some of the typical problems and issues
that you’ll encounter with your data and how to use summary
statistics and visualization to detect those issues. In chapter 4,
we discuss data treatments that will help you deal with the
problems and issues in your data. We also recommend some
habits and procedures that will help you better manage the data
throughout the different stages of the project.

On completing part 1, you’ll understand how to define a data
science project, and you’ll know how to load data into R and
prepare it for modeling and analysis.

Chapter 1. The data science process
This chapter covers

Defining data science project roles
Understanding the stages of a data science project
Setting expectations for a new data science project

The data scientist is responsible for guiding a data science
project from start to finish. Success in a data science project
comes not from access to any one exotic tool, but from having
quantifiable goals, good methodology, cross-discipline
interactions, and a repeatable workflow.

This chapter walks you through what a typical data science
project looks like: the kinds of problems you encounter, the
types of goals you should have, the tasks that you’re likely to
handle, and what sort of results are expected.

1.1. The roles in a data science project

Data science is not performed in a vacuum. It’s a collaborative
effort that draws on a number of roles, skills, and tools. Before
we talk about the process itself, let’s look at the roles that must
be filled in a successful project. Project management has been a
central concern of software engineering for a long time, so we
can look there for guidance. In defining the roles here, we’ve
borrowed some ideas from Fredrick Brooks’s The Mythical Man-
Month: Essays on Software Engineering (Addison-Wesley,
1995) “surgical team” perspective on software development and
also from the agile software development paradigm.

1.1.1. Project roles

Let’s look at a few recurring roles in a data science project in
table 1.1.

Table 1.1. Data science project roles and responsibilities

Role Responsibilities

Project sponsor Represents the business interests; champions the project

Client Represents end users’ interests; domain expert

Data scientist Sets and executes analy tic strategy ; communicates with sponsor and client

Data architect Manages data and data storage; sometimes manages data collection

Operations Manages infrastructure; deploys final project results

Sometimes these roles may overlap. Some roles—in particular
client, data architect, and operations—are often filled by people
who aren’t on the data science project team, but are key
collaborators.

Project sponsor

The most important role in a data science project is the project
sponsor. The sponsor is the person who wants the data science
result; generally they represent the business interests. The
sponsor is responsible for deciding whether the project is a
success or failure. The data scientist may fill the sponsor role
for their own project if they feel they know and can represent
the business needs, but that’s not the optimal arrangement. The
ideal sponsor meets the following condition: if they’re satisfied
with the project outcome, then the project is by definition a
success. Getting sponsor sign-off becomes the central organizing
goal of a data science project.

Keep the sponsor informed and involved

It’s critical to keep the sponsor informed and involved. Show
them plans, progress, and intermediate successes or failures in
terms they can understand. A good way to guarantee project

failure is to keep the sponsor in the dark.

To ensure sponsor sign-off, you must get clear goals from them
through directed interviews. You attempt to capture the
sponsor’s expressed goals as quantitative statements. An
example goal might be “Identify 90% of accounts that will go
into default at least two months before the first missed payment
with a false positive rate of no more than 25%.” This is a
precise goal that allows you to check in parallel if meeting the
goal is actually going to make business sense and whether you
have data and tools of sufficient quality to achieve the goal.

Client

While the sponsor is the role that represents the business
interest, the client is the role that represents the model’s end
users’ interests. Sometimes the sponsor and client roles may be
filled by the same person. Again, the data scientist may fill the
client role if they can weight business trade-offs, but this isn’t
ideal.

The client is more hands-on than the sponsor; they’re the
interface between the technical details of building a good model
and the day-to-day work process into which the model will be
deployed. They aren’t necessarily mathematically or
statistically sophisticated, but are familiar with the relevant
business processes and serve as the domain expert on the team.
In the loan application example that we discuss later in this
chapter, the client may be a loan officer or someone who
represents the interests of loan officers.

As with the sponsor, you should keep the client informed and
involved. Ideally you’d like to have regular meetings with them
to keep your efforts aligned with the needs of the end users.

Generally the client belongs to a different group in the
organization and has other responsibilities beyond your project.
Keep meetings focused, present results and progress in terms
they can understand, and take their critiques to heart. If the end
users can’t or won’t use your model, then the project isn’t a
success, in the long run.

Data scientist

The next role in a data science project is the data scientist, who’s
responsible for taking all necessary steps to make the project
succeed, including setting the project strategy and keeping the
client informed. They design the project steps, pick the data
sources, and pick the tools to be used. Since they pick the
techniques that will be tried, they have to be well informed
about statistics and machine learning. They’re also responsible
for project planning and tracking, though they may do this with
a project management partner.

At a more technical level, the data scientist also looks at the
data, performs statistical tests and procedures, applies machine
learning models, and evaluates results—the science portion of
data science.

Data architect

The data architect is responsible for all of the data and its
storage. Often this role is filled by someone outside of the data
science group, such as a database administrator or architect.
Data architects often manage data warehouses for many
different projects, and they may only be available for quick
consultation.

Operations

The operations role is critical both in acquiring data and
delivering the final results. The person filling this role usually

has operational responsibilities outside of the data science
group. For example, if you’re deploying a data science result
that affects how products are sorted on an online shopping site,
then the person responsible for running the site will have a lot to
say about how such a thing can be deployed. This person will
likely have constraints on response time, programming language,
or data size that you need to respect in deployment. The person
in the operations role may already be supporting your sponsor
or your client, so they’re often easy to find (though their time
may be already very much in demand).

1.2. Stages of a data science project

The ideal data science environment is one that encourages
feedback and iteration between the data scientist and all other
stakeholders. This is reflected in the lifecycle of a data science
project. Even though this book, like any other discussions of the
data science process, breaks up the cycle into distinct stages, in
reality the boundaries between the stages are fluid, and the
activities of one stage will often overlap those of other stages.
Often, you’ll loop back and forth between two or more stages
before moving forward in the overall process. This is shown in
figure 1.1.

Figure 1.1. The lifecycle of a data science project: loops within loops

Even after you complete a project and deploy a model, new

issues and questions can arise from seeing that model in action.
The end of one project may lead into a follow-up project.

Let’s look at the different stages shown in figure 1.1. As a real-
world example, suppose you’re working for a German bank.[1]

The bank feels that it’s losing too much money to bad loans and
wants to reduce its losses. This is where your data science team
comes in.

1 For this chapter, we use a credit dataset donated by Professor Dr. Hans Hofmann to
the UCI Machine Learning Repository in 1994. We’ve simplified some of the column
names for clarity. The dataset can be found at
http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data). We show how to
load this data and prepare it for analy sis in chapter 2. Note that the German currency
at the time of data collection was the deutsch mark (DM).

1.2.1. Defining the goal

The first task in a data science project is to define a measurable
and quantifiable goal. At this stage, learn all that you can about
the context of your project:

Why do the sponsors want the project in the first
place? What do they lack, and what do they need?
What are they doing to solve the problem now, and why
isn’t that good enough?
What resources will you need: what kind of data and
how much staff? Will you have domain experts to
collaborate with, and what are the computational
resources?
How do the project sponsors plan to deploy your
results? What are the constraints that have to be met for
successful deployment?

Let’s come back to our loan application example. The ultimate
business goal is to reduce the bank’s losses due to bad loans.
Your project sponsor envisions a tool to help loan officers more

http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)

accurately score loan applicants, and so reduce the number of
bad loans made. At the same time, it’s important that the loan
officers feel that they have final discretion on loan approvals.

Once you and the project sponsor and other stakeholders have
established preliminary answers to these questions, you and
they can start defining the precise goal of the project. The goal
should be specific and measurable, not “We want to get better at
finding bad loans,” but instead, “We want to reduce our rate of
loan charge-offs by at least 10%, using a model that predicts
which loan applicants are likely to default.”

A concrete goal begets concrete stopping conditions and
concrete acceptance criteria. The less specific the goal, the
likelier that the project will go unbounded, because no result will
be “good enough.” If you don’t know what you want to achieve,
you don’t know when to stop trying—or even what to try.
When the project eventually terminates—because either time or
resources run out—no one will be happy with the outcome.

This doesn’t mean that more exploratory projects aren’t needed
at times: “Is there something in the data that correlates to higher
defaults?” or “Should we think about reducing the kinds of loans
we give out? Which types might we eliminate?” In this situation,
you can still scope the project with concrete stopping
conditions, such as a time limit. The goal is then to come up
with candidate hypotheses. These hypotheses can then be
turned into concrete questions or goals for a full-scale modeling
project.

Once you have a good idea of the project’s goals, you can focus
on collecting data to meet those goals.

1.2.2. Data collection and management

This step encompasses identifying the data you need, exploring

it, and conditioning it to be suitable for analysis. This stage is
often the most time-consuming step in the process. It’s also one
of the most important:

What data is available to me?
Will it help me solve the problem?
Is it enough?
Is the data quality good enough?

Imagine that for your loan application problem, you’ve collected
a sample of representative loans from the last decade (excluding
home loans). Some of the loans have defaulted; most of them
(about 70%) have not. You’ve collected a variety of attributes
about each loan application, as listed in table 1.2.

Table 1.2. Loan data attributes

Status.of.existing.checking.account (at time of application)

Duration.in.month (loan length)

Credit.history

Purpose (car loan, student loan, etc.)

Credit.amount (loan amount)

Savings.Account.or.bonds (balance/amount)

Present.employment.since

Installment.rate.in.percentage.of.disposable.income

Personal.status.and.sex

Cosigners

Present.residence.since

Collateral (car, property, etc.)

Age.in.years

Other.installment.plans (other loans/lines of credit—the type)

Housing (own, rent, etc.)

Number.of.existing.credits.at.this.bank

Job (employment type)

Number.of.dependents

Telephone (do they have one)

Good.Loan (dependent variable)

In your data, Good.Loan takes on two possible values:
GoodLoan and BadLoan. For the purposes of this discussion,
assume that a GoodLoan was paid off, and a BadLoan defaulted.

As much as possible, try to use information that can be directly
measured, rather than information that is inferred from another
measurement. For example, you might be tempted to use income
as a variable, reasoning that a lower income implies more
difficulty paying off a loan. The ability to pay off a loan is more
directly measured by considering the size of the loan payments
relative to the borrower’s disposable income. This information
is more useful than income alone; you have it in your data as the
variable
Installment.rate.in.percentage.of.disposable.income.

This is the stage where you conduct initial exploration and
visualization of the data. You’ll also clean the data: repair data
errors and transform variables, as needed. In the process of
exploring and cleaning the data, you may discover that it isn’t
suitable for your problem, or that you need other types of
information as well. You may discover things in the data that
raise issues more important than the one you originally planned
to address. For example, the data in figure 1.2 seems
counterintuitive.

Figure 1.2. The fraction of defaulting loans by credit history category. The
dark region of each bar represents the fraction of loans in that category that
defaulted.

Why would some of the seemingly safe applicants (those who
repaid all credits to the bank) default at a higher rate than
seemingly riskier ones (those who had been delinquent in the
past)? After looking more carefully at the data and sharing
puzzling findings with other stakeholders and domain experts,
you realize that this sample is inherently biased: you only have
loans that were actually made (and therefore already accepted).
Overall, there are fewer risky-looking loans than safe-looking

ones in the data. The probable story is that risky-looking loans
were approved after a much stricter vetting process, a process
that perhaps the safe-looking loan applications could bypass.
This suggests that if your model is to be used downstream of
the current application approval process, credit history is no
longer a useful variable. It also suggests that even seemingly safe
loan applications should be more carefully scrutinized.

Discoveries like this may lead you and other stakeholders to
change or refine the project goals. In this case, you may decide
to concentrate on the seemingly safe loan applications. It’s
common to cycle back and forth between this stage and the
previous one, as well as between this stage and the modeling
stage, as you discover things in the data. We’ll cover data
exploration and management in depth in chapters 3 and 4.

1.2.3. Modeling

You finally get to statistics and machine learning during the
modeling, or analysis, stage. Here is where you try to extract
useful insights from the data in order to achieve your goals.
Since many modeling procedures make specific assumptions
about data distribution and relationships, there will be overlap
and back-and-forth between the modeling stage and the data
cleaning stage as you try to find the best way to represent the
data and the best form in which to model it.

The most common data science modeling tasks are these:

Classification— Deciding if something belongs to one
category or another
Scoring— Predicting or estimating a numeric value,
such as a price or probability
Ranking— Learning to order items by preferences
Clustering— Grouping items into most-similar groups

Finding relations— Finding correlations or potential
causes of effects seen in the data
Characterization— Very general plotting and report
generation from data

For each of these tasks, there are several different possible
approaches. We’ll cover some of the most common approaches
to the different tasks in this book.

The loan application problem is a classification problem: you
want to identify loan applicants who are likely to default. Three
common approaches in such cases are logistic regression, Naive
Bayes classifiers, and decision trees (we’ll cover these methods
in-depth in future chapters). You’ve been in conversation with
loan officers and others who would be using your model in the
field, so you know that they want to be able to understand the
chain of reasoning behind the model’s classification, and they
want an indication of how confident the model is in its decision:
is this applicant highly likely to default, or only somewhat
likely? Given the preceding desiderata, you decide that a
decision tree is most suitable. We’ll cover decision trees more
extensively in a future chapter, but for now the call in R is as
shown in the following listing (you can download data from
https://github.com/WinVector/zmPDSwR/tree/master/Statlog).[2]

2 In this chapter, for clarity of illustration we deliberately fit a small and shallow tree.

Listing 1.1. Building a decision tree

library('rpart')
load('GCDData.RData')
model <- rpart(Good.Loan ~
 Duration.in.month +
 Installment.rate.in.percentage.of.disposable.income +
 Credit.amount +
 Other.installment.plans,
 data=d,
 control=rpart.control(maxdepth=4),
 method="class")

Let’s suppose that you discover the model shown in figure 1.3.

https://github.com/WinVector/zmPDSwR/tree/master/Statlog

Figure 1.3. A decision tree model for f inding bad loan applications, with
conf idence scores

We’ll discuss general modeling strategies in chapter 5 and go into
details of specific modeling algorithms in part 2.

1.2.4. Model evaluation and critique

Once you have a model, you need to determine if it meets your
goals:

Is it accurate enough for your needs? Does it generalize
well?

Does it perform better than “the obvious guess”? Better
than whatever estimate you currently use?
Do the results of the model (coefficients, clusters, rules)
make sense in the context of the problem domain?

If you’ve answered “no” to any of these questions, it’s time to
loop back to the modeling step—or decide that the data doesn’t
support the goal you’re trying to achieve. No one likes negative
results, but understanding when you can’t meet your success
criteria with current resources will save you fruitless effort.
Your energy will be better spent on crafting success. This might
mean defining more realistic goals or gathering the additional data
or other resources that you need to achieve your original goals.

Returning to the loan application example, the first thing to
check is that the rules that the model discovered make sense.
Looking at figure 1.3, you don’t notice any obviously strange
rules, so you can go ahead and evaluate the model’s accuracy. A
good summary of classifier accuracy is the confusion matrix,
which tabulates actual classifications against predicted ones.[3]

3 Normally, we’d evaluate the model against a test set (data that wasn’t used to build
the model). In this example, for simplicity, we evaluate the model against the training
data (data that was used to build the model).

Listing 1.2. Plotting the confusion matrix

The model predicted loan status correctly 73% of the time—
better than chance (50%). In the original dataset, 30% of the
loans were bad, so guessing GoodLoan all the time would be 70%
accurate (though not very useful). So you know that the model
does better than random and somewhat better than obvious
guessing.

Overall accuracy is not enough. You want to know what kinds
of mistakes are being made. Is the model missing too many bad
loans, or is it marking too many good loans as bad? Recall
measures how many of the bad loans the model can actually
find. Precision measures how many of the loans identified as bad
really are bad. False positive rate measures how many of the
good loans are mistakenly identified as bad. Ideally, you want
the recall and the precision to be high, and the false positive rate
to be low. What constitutes “high enough” and “low enough” is
a decision that you make together with the other stakeholders.
Often, the right balance requires some trade-off between recall
and precision.

There are other measures of accuracy and other measures of the
quality of a model, as well. We’ll talk about model evaluation in
chapter 5.

1.2.5. Presentation and documentation

Once you have a model that meets your success criteria, you’ll
present your results to your project sponsor and other
stakeholders. You must also document the model for those in the
organization who are responsible for using, running, and
maintaining the model once it has been deployed.

Different audiences require different kinds of information.
Business-oriented audiences want to understand the impact of
your findings in terms of business metrics. In our loan example,
the most important thing to present to business audiences is
how your loan application model will reduce charge-offs (the
money that the bank loses to bad loans). Suppose your model
identified a set of bad loans that amounted to 22% of the total
money lost to defaults. Then your presentation or executive
summary should emphasize that the model can potentially
reduce the bank’s losses by that amount, as shown in figure 1.4.

Figure 1.4. Notional slide from an executive presentation

You also want to give this audience your most interesting
findings or recommendations, such as that new car loans are
much riskier than used car loans, or that most losses are tied to
bad car loans and bad equipment loans (assuming that the
audience didn’t already know these facts). Technical details of
the model won’t be as interesting to this audience, and you
should skip them or only present them at a high level.

A presentation for the model’s end users (the loan officers)
would instead emphasize how the model will help them do their
job better:

How should they interpret the model?
What does the model output look like?
If the model provides a trace of which rules in the
decision tree executed, how do they read that?
If the model provides a confidence score in addition to a
classification, how should they use the confidence
score?
When might they potentially overrule the model?

Presentations or documentation for operations staff should
emphasize the impact of your model on the resources that
they’re responsible for.

We’ll talk about the structure of presentations and
documentation for various audiences in part 3.

1.2.6. Model deployment and maintenance

Finally, the model is put into operation. In many organizations
this means the data scientist no longer has primary
responsibility for the day-to-day operation of the model. But
you still should ensure that the model will run smoothly and
won’t make disastrous unsupervised decisions. You also want to
make sure that the model can be updated as its environment
changes. And in many situations, the model will initially be
deployed in a small pilot program. The test might bring out
issues that you didn’t anticipate, and you may have to adjust
the model accordingly. We’ll discuss model deployment
considerations in chapter 10.

For example, you may find that loan officers frequently override

the model in certain situations because it contradicts their
intuition. Is their intuition wrong? Or is your model incomplete?
Or, in a more positive scenario, your model may perform so
successfully that the bank wants you to extend it to home loans
as well.

Before we dive deeper into the stages of the data science
lifecycle in the following chapters, let’s look at an important
aspect of the initial project design stage: setting expectations.

1.3. Setting expectations

Setting expectations is a crucial part of defining the project goals
and success criteria. The business-facing members of your team
(in particular, the project sponsor) probably already have an
idea of the performance required to meet business goals: for
example, the bank wants to reduce their losses from bad loans
by at least 10%. Before you get too deep into a project, you
should make sure that the resources you have are enough for
you to meet the business goals.

In this section, we discuss ways to estimate whether the data
you have available is good enough to potentially meet desired
accuracy goals. This is an example of the fluidity of the project
lifecycle stages. You get to know the data better during the
exploration and cleaning phase; after you have a sense of the
data, you can get a sense of whether the data is good enough to
meet desired performance thresholds. If it’s not, then you’ll
have to revisit the project design and goal-setting stage.

1.3.1. Determining lower and upper bounds on model
performance

Understanding how well a model should do for acceptable
performance and how well it can do given the available data are
both important when defining acceptance criteria.

The null model: a lower bound on performance

You can think of the null model as being “the obvious guess”
that your model must do better than. In situations where there’s
a working model or solution already in place that you’re trying
to improve, the null model is the existing solution. In situations
where there’s no existing model or solution, the null model is the
simplest possible model (for example, always guessing
GoodLoan, or always predicting the mean value of the output,
when you’re trying to predict a numerical value). The null model
represents the lower bound on model performance that you
should strive for.

In our loan application example, 70% of the loan applications in
the dataset turned out to be good loans. A model that labels all
loans as GoodLoan (in effect, using only the existing process to
classify loans) would be correct 70% of the time. So you know
that any actual model that you fit to the data should be better
than 70% accurate to be useful. Since this is the simplest
possible model, its error rate is called the base error rate.

How much better than 70% should you be? In statistics there’s
a procedure called hypothesis testing, or significance testing, that
tests whether your model is equivalent to a null model (in this
case, whether a new model is basically only as accurate as
guessing GoodLoan all the time). You want your model’s
accuracy to be “significantly better”—in statistical terms—than
70%. We’ll cover the details of significance testing in chapter 5.

Accuracy is not the only (or even the best) performance metric.
In our example, the null model would have zero recall in
identifying bad loans, which obviously is not what you want.
Generally if there is an existing model or process in place, you’d
like to have an idea of its precision, recall, and false positive
rates; if the purpose of your project is to improve the existing
process, then the current model must be unsatisfactory for at

least one of these metrics. This also helps you determine lower
bounds on desired performance.

The Bayes rate: an upper bound on model performance

The business-dictated performance goals will of course be higher
than the lower bounds discussed here. You should try to make
sure as early as possible that you have the data to meet your
goals.

One thing to look at is what statisticians call the unexplainable
variance: how much of the variation in your output can’t be
explained by your input variables. Let’s take a very simple
example: suppose you want to use the rule of thumb that loans
that equal more than 15% of the borrower’s disposable income
will default; otherwise, loans are good. You want to know if this
rule alone will meet your goal of predicting bad loans with at
least 85% accuracy. Let’s consider the two populations next.

Listing 1.3. Plotting the relation between disposable income and loan outcome

For the second population, you know that you can’t meet your
goals using only loan.as.pct.disposable.income. To build a more
accurate model, you’ll need additional input variables.

The limit on prediction accuracy due to unexplainable variance is
known as the Bayes rate. You can think of the Bayes rate as
describing the best accuracy you can achieve given your data. If
the Bayes rate doesn’t meet your business-dictated performance
goals, then you shouldn’t start the project without revisiting
your goals or finding additional data to improve your model.[4]

4 The Bayes rate gives the best possible accuracy, but the most accurate model
doesn’t always have the best possible precision or recall (though it may represent the
best trade-off of the two).

Exactly finding the Bayes rate is not always possible—if you
could always find the best possible model, then your job would
already be done. If all your variables are discrete (and you have a

lot of data), you can find the Bayes rate by building a lookup
table for all possible variable combinations. In other situations, a
nearest-neighbor classifier (we’ll discuss them in chapter 8) can
give you a good estimate of the Bayes rate, even though a
nearest-neighbor classifier may not be practical to deploy as an
actual production model. In any case, you should try to get
some idea of the limitations of your data early in the process, so
you know whether it’s adequate to meet your goals.

1.4. Summary

The data science process involves a lot of back-and-forth—
between the data scientist and other project stakeholders, and
between the different stages of the process. Along the way,
you’ll encounter surprises and stumbling blocks; this book will
teach you procedures for overcoming some of these hurdles. It’s
important to keep all the stakeholders informed and involved;
when the project ends, no one connected with it should be
surprised by the final results.

In the next chapters, we’ll look at the stages that follow project
design: loading, exploring, and managing the data. Chapter 2
covers a few basic ways to load the data into R, in a format
that’s convenient for analysis.

Key takeaways

A successful data science project involves more than
just statistics. It also requires a variety of roles to
represent business and client interests, as well as
operational concerns.
Make sure you have a clear, verifiable, quantifiable goal.
Make sure you’ve set realistic expectations for all
stakeholders.

Chapter 2. Loading data into R
This chapter covers

Understanding R’s data frame structure
Loading data into R from files and from relational
databases
Transforming data for analysis

If your experience has been like ours, many of your data science
projects start when someone points you toward a bunch of data
and you’re left to make sense of it. Your first thought may be to
use shell tools or spreadsheets to sort through it, but you
quickly realize that you’re taking more time tinkering with the
tools than actually analyzing the data. Luckily, there’s a better
way. In this chapter, we’ll demonstrate how to quickly load and
start working with data using R. Using R to transform data is
easy because R’s main data type (the data frame) is ideal for
working with structured data, and R has adapters that read data
from many common data formats. In this chapter, we’ll start
with small example datasets found in files and then move to
datasets from relational databases. By the end of the chapter,
you’ll be able to confidently use R to extract, transform, and
load data for analysis.[1]

1 We’ll demonstrate and comment on the R commands necessary to prepare the data,
but if you’re unfamiliar with programming in R, we recommend at least skimming
appendix A or consulting a good book on R such as R in Action, Second Edition (Robert
Kabacoff, Manning Publications (2014), http://mng.bz/ybS4). All the tools you need
are freely available and we provide instructions how to download and start working
with them in appendix A.

For our first example, let’s start with some example datasets
from files.

2.1. Working with data from files

http://mng.bz/ybS4

The most common ready-to-go data format is a family of tabular
formats called structured values. Most of the data you find will
be in (or nearly in) one of these formats. When you can read
such files into R, you can analyze data from an incredible range
of public and private data sources. In this section, we’ll work on
two examples of loading data from structured files, and one
example of loading data directly from a relational database. The
point is to get data quickly into R so we can then use R to
perform interesting analyses.

2.1.1. Working with well-structured data from files or URLs

The easiest data format to read is table-structured data with
headers. As shown in figure 2.1, this data is arranged in rows
and columns where the first row gives the column names. Each
column represents a different fact or measurement; each row
represents an instance or datum about which we know the set of
facts. A lot of public data is in this format, so being able to read
it opens up a lot of opportunities.

Figure 2.1. Car data viewed as a table

Before we load the German credit data that we used in the
previous chapter, let’s demonstrate the basic loading commands
with a simple data file from the University of California Irvine
Machine Learning Repository (http://archive.ics.uci.edu/ml/).
The UCI data files tend to come without headers, so to save
steps (and to keep it very basic, at this point) we’ve pre-
prepared our first data example from the UCI car dataset:

http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/machine-learning-databases/car/. Our
pre-prepared file is at http://win-vector.com/dfiles/car.data.csv
and looks like the following (details found at
https://github.com/WinVector/zmPDSwR/tree/master/UCICar):

Avoid “by hand” steps

We strongly encourage you to avoid performing any steps “by
hand” when importing data. It’s tempting to use an editor to add
a header line to a file, as we did in our example. A better strategy
is to write a script either outside R (using shell tools) or inside R
to perform any necessary reformatting. Automating these steps
greatly reduces the amount of trauma and work during the
inevitable data refresh.

Notice that this file is already structured like a spreadsheet with
easy-to-identify rows and columns. The data shown here is
claimed to be the details about recommendations on cars, but is
in fact made-up examples used to test some machine-learning
theories. Each (nonheader) row represents a review of a different
model of car. The columns represent facts about each car model.

http://archive.ics.uci.edu/ml/machine-learning-databases/car/
http://win-vector.com/dfiles/car.data.csv
https://github.com/WinVector/zmPDSwR/tree/master/UCICar

Most of the columns are objective measurements (purchase
cost, maintenance cost, number of doors, and so on) and the
final column “rating” is marked with the overall rating (vgood,
good, acc, and unacc). These sorts of explanations can’t be
found in the data but must be extracted from the documentation
found with the original data.

Loading well-structured data from f iles or URLs

Loading data of this type into R is a one-liner: we use the R
command read.table() and we’re done. If data were always in
this format, we’d meet all of the goals of this section and be
ready to move on to modeling with just the following code.

Listing 2.1. Reading the UCI car data

This loads the data and stores it in a new R data frame object
called uciCar. Data frames are R’s primary way of representing
data and are well worth learning to work with (as we discuss in
our appendixes). The read.table() command is powerful and
flexible; it can accept many different types of data separators
(commas, tabs, spaces, pipes, and others) and it has many
options for controlling quoting and escaping data.
read.table() can read from local files or remote URLs. If a
resource name ends with the .gz suffix, read.table() assumes
the file has been compressed in gzip style and will automatically
decompress it while reading.

Examining our data

Once we’ve loaded the data into R, we’ll want to examine it.
The commands to always try first are these:

class()— Tells you what type of R object you have. In
our case, class(uciCar) tells us the object uciCar is
of class data.frame.
help()— Gives you the documentation for a class. In
particular try help (class(uciCar)) or
help("data.frame").
summary()— Gives you a summary of almost any R
object. summary(uciCar) shows us a lot about the
distribution of the UCI car data.

For data frames, the command dim() is also important, as it
shows you how many rows and columns are in the data. We
show the results of a few of these steps next (steps are prefixed
by > and R results are shown after each step).

Listing 2.2. Exploring the car data

The summary() command shows us the distribution of each
variable in the dataset. For example, we know each car in the
dataset was declared to seat 2, 4 or more persons, and we know
there were 576 two-seater cars in the dataset. Already we’ve
learned a lot about our data, without having to spend a lot of
time setting pivot tables as we would have to in a spreadsheet.

Working with other data formats

.csv is not the only common data file format you’ll encounter.
Other formats include .tsv (tab-separated values), pipe-
separated files, Microsoft Excel workbooks, JSON data, and
XML. R’s built-in read.table() command can be made to read
most separated value formats. Many of the deeper data formats

have corresponding R packages:

XLS/XLSX—http://cran.r-project.org/doc/manuals/R-
data.html#Reading-Excel-spreadsheets
JSON—http://cran.r-
project.org/web/packages/rjson/index.html
XML—http://cran.r-
project.org/web/packages/XML/index.html
MongoDB—http://cran.r-
project.org/web/packages/rmongodb/index.html
SQL—http://cran.r-
project.org/web/packages/DBI/index.html

2.1.2. Using R on less-structured data

Data isn’t always available in a ready-to-go format. Data
curators often stop just short of producing a ready-to-go
machine-readable format. The German bank credit dataset
discussed in chapter 1 is an example of this. This data is stored
as tabular data without headers; it uses a cryptic encoding of
values that requires the dataset’s accompanying documentation
to untangle. This isn’t uncommon and is often due to habits or
limitations of other tools that commonly work with the data.
Instead of reformatting the data before we bring it into R, as we
did in the last example, we’ll now show how to reformat the
data using R. This is a much better practice, as we can save and
reuse the R commands needed to prepare the data.

Details of the German bank credit dataset can be found at
http://mng.bz/mZbu. We’ll show how to transform this data into
something meaningful using R. After these steps, you can
perform the analysis already demonstrated in chapter 1. As we
can see in our file excerpt, the data is an incomprehensible block
of codes with no meaningful explanations:

A11 6 A34 A43 1169 A65 A75 4 A93 A101 4 ...

http://cran.r-project.org/doc/manuals/R-data.html#Reading-Excel-spreadsheets
http://cran.r-project.org/web/packages/rjson/index.html
http://cran.r-project.org/web/packages/XML/index.html
http://cran.r-project.org/web/packages/rmongodb/index.html
http://cran.r-project.org/web/packages/DBI/index.html
http://mng.bz/mZbu

A12 48 A32 A43 5951 A61 A73 2 A92 A101 2 ...
A14 12 A34 A46 2096 A61 A74 2 A93 A101 3 ...
 ...

Transforming data in R

Data often needs a bit of transformation before it makes any
sense. In order to decrypt troublesome data, you need what’s
called the schema documentation or a data dictionary. In this
case, the included dataset description says the data is 20 input
columns followed by one result column. In this example, there’s
no header in the data file. The column definitions and the
meaning of the cryptic A-* codes are all in the accompanying
data documentation. Let’s start by loading the raw data into R.
We can either save the data to a file or let R load the data
directly from the URL. Start a copy of R or RStudio (see
appendix A) and type in the commands in the following listing.

Listing 2.3. Loading the credit dataset

d <- read.table(paste('http://archive.ics.uci.edu/ml/',
 'machine-learning-
databases/statlog/german/german.data',sep=''),
 stringsAsFactors=F,header=F)
print(d[1:3,])

Notice that this prints out the exact same three rows we saw in
the raw file with the addition of column names V1 through V21.
We can change the column names to something meaningful with
the command in the following listing.

Listing 2.4. Setting column names

colnames(d) <- c('Status.of.existing.checking.account',
 'Duration.in.month', 'Credit.history', 'Purpose',
 'Credit.amount', 'Savings account/bonds',
 'Present.employment.since',
 'Installment.rate.in.percentage.of.disposable.income',
 'Personal.status.and.sex', 'Other.debtors/guarantors',
 'Present.residence.since', 'Property', 'Age.in.years',
 'Other.installment.plans', 'Housing',
 'Number.of.existing.credits.at.this.bank', 'Job',
 'Number.of.people.being.liable.to.provide.maintenance.for',
 'Telephone', 'foreign.worker', 'Good.Loan')
d$Good.Loan <- as.factor(ifelse(d$Good.Loan==1,'GoodLoan','BadLoan'))
print(d[1:3,])

The c() command is R’s method to construct a vector. We
copied the names directly from the dataset documentation. By
assigning our vector of names into the data frame’s colnames()
slot, we’ve reset the data frame’s column names to something
sensible. We can find what slots and commands our data frame d
has available by typing help(class(d)).

The data documentation further tells us the column names, and
also has a dictionary of the meanings of all of the cryptic A-*
codes. For example, it says in column 4 (now called Purpose,
meaning the purpose of the loan) that the code A40 is a new car
loan, A41 is a used car loan, and so on. We copied 56 such codes
into an R list that looks like the next listing.

Listing 2.5. Building a map to interpret loan use codes

mapping <- list(
 'A40'='car (new)',
 'A41'='car (used)',
 'A42'='furniture/equipment',
 'A43'='radio/television',
 'A44'='domestic appliances',
 ...
)

Lists are R’s map structures

Lists are R’s map structures. They can map strings to arbitrary
objects. The important list operations [] and %in% are
vectorized. This means that, when applied to a vector of values,
they return a vector of results by performing one lookup per
entry.

With the mapping list defined, we can then use the following for
loop to convert values in each column that was of type
character from the original cryptic A-* codes into short level
descriptions taken directly from the data documentation. We, of
course, skip any such transform for columns that contain

numeric data.

Listing 2.6. Transforming the car data

We share the complete set of column preparations for this
dataset here:
https://github.com/WinVector/zmPDSwR/tree/master/Statlog/.
We encourage readers to download the data and try these steps
themselves.

Examining our new data

We can now easily examine the purpose of the first three loans
with the command print(d[1:3,'Purpose']). We can look at
the distribution of loan purpose with summary(d$Purpose) and
even start to investigate the relation of loan type to loan
outcome, as shown in the next listing.

Listing 2.7. Summary of Good.Loan and Purpose

> table(d$Purpose,d$Good.Loan)

 BadLoan GoodLoan
 business 34 63
 car (new) 89 145
 car (used) 17 86
 domestic appliances 4 8
 education 22 28
 furniture/equipment 58 123
 others 5 7
 radio/television 62 218
 repairs 8 14
 retraining 1 8

You should now be able to load data from files. But a lot of data
you want to work with isn’t in files; it’s in databases. So it’s
important that we work through how to load data from

https://github.com/WinVector/zmPDSwR/tree/master/Statlog/

databases directly into R.

2.2. Working with relational databases

In many production environments, the data you want lives in a
relational or SQL database, not in files. Public data is often in
files (as they are easier to share), but your most important client
data is often in databases. Relational databases scale easily to
the millions of records and supply important production
features such as parallelism, consistency, transactions, logging,
and audits. When you’re working with transaction data, you’re
likely to find it already stored in a relational database, as
relational databases excel at online transaction processing
(OLTP).

Often you can export the data into a structured file and use the
methods of our previous sections to then transfer the data into
R. But this is generally not the right way to do things. Exporting
from databases to files is often unreliable and idiosyncratic due
to variations in database tools and the typically poor job these
tools do when quoting and escaping characters that are confused
with field separators. Data in a database is often stored in what
is called a normalized form, which requires relational
preparations called joins before the data is ready for analysis.
Also, you often don’t want a dump of the entire database, but
instead wish to freely specify which columns and aggregations
you need during analysis.

The right way to work with data found in databases is to
connect R directly to the database, which is what we’ll
demonstrate in this section.

As a step of the demonstration, we’ll show how to load data
into a database. Knowing how to load data into a database is
useful for problems that need more sophisticated preparation
than we’ve so far discussed. Relational databases are the right

place for transformations such as joins or sampling. Let’s start
working with data in a database for our next example.

2.2.1. A production-size example

For our production-size example we’ll use the United States
Census 2011 national PUMS American Community Survey data
found at
www.census.gov/acs/www/data_documentation/pums_data/.
This is a remarkable set of data involving around 3 million
individuals and 1.5 million households. Each row contains over
200 facts about each individual or household (income,
employment, education, number of rooms, and so on). The data
has household cross-reference IDs so individuals can be joined
to the household they’re in. The size of the dataset is
interesting: a few gigabytes when zipped up. So it’s small
enough to store on a good network or thumb drive, but larger
than is convenient to work with on a laptop with R alone
(which is more comfortable when working in the range of
hundreds of thousands of rows).

This size—millions of rows—is the sweet spot for relational
database or SQL-assisted analysis on a single machine. We’re
not yet forced to move into a MapReduce or database cluster to
do our work, but we do want to use a database for some of the
initial data handling. We’ll work through all of the steps for
acquiring this data and preparing it for analysis in R.

Curating the data

A hard rule of data science is that you must be able to reproduce
your results. At the very least, be able to repeat your own
successful work through your recorded steps and without
depending on a stash of intermediate results. Everything must
either have directions on how to produce it or clear
documentation on where it came from. We call this the “no alien

http://www.census.gov/acs/www/data_documentation/pums_data/

artifacts” discipline. For example, when we said we’re using
PUMS American Community Survey data, this statement isn’t
precise enough for anybody to know what data we specifically
mean. Our actual notebook entry (which we keep online, so we
can search it) on the PUMS data is as shown in the next listing.

Listing 2.8. PUMS data provenance documentation

Keep notes

A big part of being a data scientist is being able to defend your
results and repeat your work. We strongly advise keeping a
notebook. We also strongly advise keeping all of your scripts
and code under version control, as we discuss in appendix A.
You absolutely need to be able to answer exactly what code and
which data were used to build the results you presented last
week.

Staging the data into a database

Structured data at a scale of millions of rows is best handled in a
database. You can try to work with text-processing tools, but a
database is much better at representing the fact that your data is
arranged in both rows and columns (not just lines of text).

We’ll use three database tools in this example: the serverless
database engine H2, the database loading tool SQL Screwdriver,
and the database browser SQuirreL SQL. All of these are Java-
based, run on many platforms, and are open source. We describe
how to download and start working with all of them in appendix
A.[2]

2 Other easy way s to use SQL in R include the sqldf and RSQLite packages.

If you have a database such as MySQL or PostgreSQL already
available, we recommend using one of them instead of using H2.
[3] To use your own database, you’ll need to know enough of
your database driver and connection information to build a
JDBC connection. If using H2, you’ll only need to download
the H2 driver as described in appendix A, pick a file path to
store your results, and pick a username and password (both are
set on first use, so there are no administrative steps). H2 is a
serverless zero-install relational database that supports queries

in SQL. It’s powerful enough to work on PUMS data and easy
to use. We show how to get H2 running in appendix A.

3 If y ou have access to a parallelized SQL database such as Greenplum, we strongly
suggest using it to perform aggregation and preparation steps on y our big data. Being
able to write standard SQL queries and have them finish quickly at big data scale can
be game-changing.

We’ll use the Java-based tool SQL Screwdriver to load the
PUMS data into our database. We first copy our database
credentials into a Java properties XML file.

Listing 2.9. SQL Screwdriver XML conf iguration f ile

We’ll then use Java at the command line to load the data. To load
the four files containing the two tables, run the commands in the

following listing.

Listing 2.10. Loading data with SQL Screwdriver

SQL Screwdriver infers data types by scanning the file and
creates new tables in your database. It then populates these
tables with the data. SQL Screwdriver also adds four additional
“provenance” columns when loading your data. These columns
are ORIGINSERTTIME, ORIGFILENAME,
ORIGFILEROWNUMBER, and ORIGRANDGROUP. The
first three fields record when you ran the data load, what
filename the row came from, and what line the row came from.
The ORIGRANDGROUP is a pseudo-random integer
distributed uniformly from 0 through 999, designed to make
repeatable sampling plans easy to implement. You should get in
the habit of having annotations and keeping notes at each step of
the process.

We can now use a database browser like SQuirreL SQL to

examine this data. We start up SQuirreL SQL and copy the
connection details from our XML file into a database alias, as
shown in appendix A. We’re then ready to type SQL commands
into the execution window. A couple of commands you can try
are SELECT COUNT(1) FROM hus and SELECT COUNT(1) FROM
pus, which will tell you that the hus table has 1,485,292 rows
and the pus table has 3,112,017 rows. Each of the tables has
over 200 columns, and there are over a billion cells of data in
these two tables. We can actually do a lot more. In addition to
the SQL execution panel, SQuirreL SQL has an Objects panel
that allows graphical exploration of database table definitions.
Figure 2.2 shows some of the columns in the hus table.

Figure 2.2. SQuirreL SQL table explorer

Now we can view our data as a table (as we would in a
spreadsheet). We can now examine, aggregate, and summarize
our data using the SQuirreL SQL database browser. Figure 2.3
shows a few example rows and columns from the household
data table.

Figure 2.3. Browsing PUMS data using SQuirreL SQL

2.2.2. Loading data from a database into R

To load data from a database, we use a database connector. Then
we can directly issue SQL queries from R. SQL is the most
common database query language and allows us to specify
arbitrary joins and aggregations. SQL is called a declarative
language (as opposed to a procedural language) because in SQL
we specify what relations we would like our data sample to
have, not how to compute them. For our example, we load a
sample of the household data from the hus table and the rows
from the person table (pus) that are associated with those
households.[4]

4 Producing composite records that represent matches between one or more tables (in
our case hus and pus) is usually done with what is called a join. For this example, we
use an even more efficient pattern called a sub-select that uses the keyword in.

Listing 2.11. Loading data into R from a relational database

And we’re in business; the data has been unpacked from the
Census-supplied .csv files into our database and a useful sample
has been loaded into R for analysis. We have actually
accomplished a lot. Generating, as we have, a uniform sample of
households and matching people would be tedious using shell
tools. It’s exactly what SQL databases are designed to do well.

Don’t be too proud to sample

Many data scientists spend too much time adapting algorithms
to work directly with big data. Often this is wasted effort, as for
many model types you would get almost exactly the same
results on a reasonably sized data sample. You only need to
work with “all of your data” when what you’re modeling isn’t
well served by sampling, such as when characterizing rare events

or performing bulk calculations over social networks.

Note that this data is still in some sense large (out of the range
where using spreadsheets is actually reasonable). Using
dim(dhus) and dim(dpus), we see that our household sample
has 2,982 rows and 210 columns, and the people sample has
6,279 rows and 288 columns. All of these columns are defined in
the Census documentation.

2.2.3. Working with the PUMS data

Remember that the whole point of loading data (even from a
database) into R is to facilitate modeling and analysis. Data
analysts should always have their “hands in the data” and
always take a quick look at their data after loading it. If you’re
not willing to work with the data, you shouldn’t bother loading
it into R. To emphasize analysis, we’ll demonstrate how to
perform a quick examination of the PUMS data.

Loading and conditioning the PUMS data

Each row of PUMS data represents a single anonymized person
or household. Personal data recorded includes occupation, level
of education, personal income, and many other demographics
variables. To load our prepared data frame, download
phsample.Rdata from
https://github.com/WinVector/zmPDSwR/tree/master/PUMS and
run the following command in R: load('phsample.RData').

Our example problem will be to predict income (represented in
US dollars in the field PINCP) using the following variables:

Age— An integer found in column AGEP.
Employment class— Examples: for-profit company,

https://github.com/WinVector/zmPDSwR/tree/master/PUMS

nonprofit company, ... found in column COW.
Education level— Examples: no high school diploma,
high school, college, and so on, found in column SCHL.
Sex of worker— Found in column SEX.

We don’t want to concentrate too much on this data; our goal is
only to illustrate the modeling procedure. Conclusions are very
dependent on choices of data conditioning (what subset of the
data you use) and data coding (how you map records to
informative symbols). This is why empirical scientific papers
have a mandatory “materials and methods” section describing
how data was chosen and prepared. Our data treatment is to
select a subset of “typical full-time workers” by restricting the
subset to data that meets all of the following conditions:

Workers self-described as full-time employees
Workers reporting at least 40 hours a week of activity
Workers 20–50 years of age
Workers with an annual income between $1,000 and
$250,000 dollars

The following listing shows the code to limit to our desired
subset of the data.

Listing 2.12. Selecting a subset of the Census data

Recoding the data

Before we work with the data, we’ll recode some of the
variables for readability. In particular, we want to recode
variables that are enumerated integers into meaningful factor-

level names, but for readability and to prevent accidentally
treating such variables as mere numeric values. Listing 2.13
shows the typical steps needed to perform a useful recoding.

Listing 2.13. Recoding variables

The data preparation is making use of R’s vectorized lookup
operator []. For details on this or any other R commands, we
suggest using the R help() command and appendix A (for help
with [], type help('[')).

The standard trick to work with variables that take on a small
number of string values is to reencode them into what’s called a
factor as we’ve done with the as.factor() command. A factor
is a list of all possible values of the variable (possible values are
called levels), and each level works (under the covers) as an
indicator variable. An indicator is a variable with a value of 1
(one) when a condition we’re interested in is true, and 0 (zero)
otherwise. Indicators are a useful encoding trick. For example,
SCHL is reencoded as 8 indicators with the names shown in
figure 7.6 in chapter 7, plus the undisplayed level “no high
school diploma.” Each indicator takes a value of 0, except when
the SCHL variable has a value equal to the indicator’s name.
When the SCHL variable matches the indicator name, the
indicator is set to 1 to indicate the match. Figure 2.4 illustrates
the process. SEX and COW underwent similar transformations.

Figure 2.4. Strings encoded as indicators

Examining the PUMS data

At this point, we’re ready to do some science, or at least start
looking at the data. For example, we can quickly tabulate the
distribution of category of work.

Listing 2.14. Summarizing the classif ications of work

> summary(dtrain$COW)
Employee of a private for-
profit Federal government employee
 423 21
 Local government employee Private not-for-
profit employee
 39 55
 Self-employed incorporated Self-
employed not incorporated
 17 16
 State government employee
 24

Watch out for NAs

R’s representation for blank or missing data is NA. Unfortunately
a lot of R commands quietly skip NAs without warning. The
command table(dpus$COW,useNA='always') will show NAs
much like summary(dpus$COW) does.

We’ll return to the Census example and demonstrate more
sophisticated modeling techniques in chapter 7.

2.3. Summary

In this chapter, we’ve shown how to extract, transform, and load
data for analysis. For smaller datasets we perform the
transformations in R, and for larger datasets we advise using a
SQL database. In either case we save all of the transformation
steps as code (either in SQL or in R) that can be reused in the
event of a data refresh. The whole purpose of this chapter is to
prepare for the actual interesting work in our next chapters:
exploring, managing, and correcting data.

The whole point of loading data into R is so we can start to
work with it: explore, examine, summarize, and plot it. In
chapter 3, we’ll demonstrate how to characterize your data
through summaries, exploration, and graphing. These are key
steps early in any modeling effort because it is through these
steps that you learn the actual details and nature of the problem
you’re hoping to model.

Key takeaways

Data frames are your friend.
Use read_table() to load small, structured datasets
into R.
You can use a package like RJDBC to load data into R
from relational databases, and to transform or aggregate
the data before loading using SQL.
Always document data provenance.

Chapter 3. Exploring data
This chapter covers

Using summary statistics to explore data
Exploring data using visualization
Finding problems and issues during data exploration

In the last two chapters, you learned how to set the scope and
goal of a data science project, and how to load your data into R.
In this chapter, we’ll start to get our hands into the data.

Suppose your goal is to build a model to predict which of your
customers don’t have health insurance; perhaps you want to
market inexpensive health insurance packages to them. You’ve
collected a dataset of customers whose health insurance status
you know. You’ve also identified some customer properties that
you believe help predict the probability of insurance coverage:
age, employment status, income, information about residence
and vehicles, and so on. You’ve put all your data into a single
data frame called custdata that you’ve input into R.[1] Now
you’re ready to start building the model to identify the
customers you’re interested in.

1 We have a copy of this sy nthetic dataset available for download from
https://github.com/WinVector/zmPDSwR/tree/master/Custdata, and once saved, y ou
can load it into R with the command custdata <-
read.table('custdata.tsv',header=T,sep='\t').

It’s tempting to dive right into the modeling step without
looking very hard at the dataset first, especially when you have
a lot of data. Resist the temptation. No dataset is perfect: you’ll
be missing information about some of your customers, and
you’ll have incorrect data about others. Some data fields will be
dirty and inconsistent. If you don’t take the time to examine the

https://github.com/WinVector/zmPDSwR/tree/master/Custdata

data before you start to model, you may find yourself redoing
your work repeatedly as you discover bad data fields or
variables that need to be transformed before modeling. In the
worst case, you’ll build a model that returns incorrect
predictions—and you won’t be sure why. By addressing data
issues early, you can save yourself some unnecessary work, and
a lot of headaches!

You’d also like to get a sense of who your customers are: Are
they young, middle-aged, or seniors? How affluent are they?
Where do they live? Knowing the answers to these questions
can help you build a better model, because you’ll have a more
specific idea of what information predicts the probability of
insurance coverage more accurately.

In this chapter, we’ll demonstrate some ways to get to know
your data, and discuss some of the potential issues that you’re
looking for as you explore. Data exploration uses a combination
of summary statistics—means and medians, variances, and
counts—and visualization, or graphs of the data. You can spot
some problems just by using summary statistics; other
problems are easier to find visually.

Organizing data for analysis

For most of this book, we’ll assume that the data you’re
analyzing is in a single data frame. This is not how that data is
usually stored. In a database, for example, data is usually stored
in normalized form to reduce redundancy: information about a
single customer is spread across many small tables. In log data,
data about a single customer can be spread across many log
entries, or sessions. These formats make it easy to add (or in the
case of a database, modify) data, but are not optimal for
analysis. You can often join all the data you need into a single
table in the database using SQL, but in appendix A we’ll discuss

commands like join that you can use within R to further
consolidate data.

3.1. Using summary statistics to spot problems

In R, you’ll typically use the summary command to take your
first look at the data.

Listing 3.1. The summary() command

The summary command on a data frame reports a variety of
summary statistics on the numerical columns of the data frame,
and count statistics on any categorical columns (if the categorical
columns have already been read in as factors[2]). You can also

ask for summary statistics on specific numerical columns by
using the commands mean, variance, median, min, max, and
quantile (which will return the quartiles of the data by
default).

2 Categorical variables are of class factor in R. They can be represented as strings
(class character), and some analy tical functions will automatically convert string
variables to factor variables. To get a summary of a variable, it needs to be a factor.

As you see from listing 3.1, the summary of the data helps you
quickly spot potential problems, like missing data or unlikely
values. You also get a rough idea of how categorical data is
distributed. Let’s go into more detail about the typical problems
that you can spot using the summary.

3.1.1. Typical problems revealed by data summaries

At this stage, you’re looking for several common issues: missing
values, invalid values and outliers, and data ranges that are too
wide or too narrow. Let’s address each of these issues in detail.

Missing values

A few missing values may not really be a problem, but if a
particular data field is largely unpopulated, it shouldn’t be used
as an input without some repair (as we’ll discuss in chapter 4,
section 4.1.1). In R, for example, many modeling algorithms will,
by default, quietly drop rows with missing values. As you see
in listing 3.2, all the missing values in the is.employed variable
could cause R to quietly ignore nearly a third of the data.

Listing 3.2. Will the variable is.employed be useful for modeling?

If a particular data field is largely unpopulated, it’s worth trying
to determine why; sometimes the fact that a value is missing is
informative in and of itself. For example, why is the
is.employed variable missing so many values? There are many
possible reasons, as we noted in listing 3.2.

Whatever the reason for missing data, you must decide on the
most appropriate action. Do you include a variable with missing
values in your model, or not? If you decide to include it, do you
drop all the rows where this field is missing, or do you convert
the missing values to 0 or to an additional category? We’ll
discuss ways to treat missing data in chapter 4. In this example,

you might decide to drop the data rows where you’re missing
data about housing or vehicles, since there aren’t many of them.
You probably don’t want to throw out the data where you’re
missing employment information, but instead treat the NAs as a
third employment category. You will likely encounter missing
values when model scoring, so you should deal with them during
model training.

Invalid values and outliers

Even when a column or variable isn’t missing any values, you
still want to check that the values that you do have make sense.
Do you have any invalid values or outliers? Examples of invalid
values include negative values in what should be a non-negative
numeric data field (like age or income), or text where you expect
numbers. Outliers are data points that fall well out of the range
of where you expect the data to be. Can you spot the outliers
and invalid values in listing 3.3?

Listing 3.3. Examples of invalid values and outliers

Often, invalid values are simply bad data input. Negative
numbers in a field like age, however, could be a sentinel value to
designate “unknown.” Outliers might also be data errors or
sentinel values. Or they might be valid but unusual data points
—people do occasionally live past 100.

As with missing values, you must decide the most appropriate
action: drop the data field, drop the data points where this field
is bad, or convert the bad data to a useful value. Even if you feel
certain outliers are valid data, you might still want to omit them
from model construction (and also collar allowed prediction
range), since the usual achievable goal of modeling is to predict
the typical case correctly.

Data range

You also want to pay attention to how much the values in the
data vary. If you believe that age or income helps to predict the
probability of health insurance coverage, then you should make
sure there is enough variation in the age and income of your
customers for you to see the relationships. Let’s look at income
again, in listing 3.4. Is the data range wide? Is it narrow?

Listing 3.4. Looking at the data range of a variable

Even ignoring negative income, the income variable in listing 3.4
ranges from zero to over half a million dollars. That’s pretty
wide (though typical for income). Data that ranges over several
orders of magnitude like this can be a problem for some
modeling methods. We’ll talk about mitigating data range issues
when we talk about logarithmic transformations in chapter 4.

Data can be too narrow, too. Suppose all your customers are
between the ages of 50 and 55. It’s a good bet that age range
wouldn’t be a very good predictor of the probability of health
insurance coverage for that population, since it doesn’t vary
much at all.

How narrow is “too narrow” a data range?

Of course, the term narrow is relative. If we were predicting the
ability to read for children between the ages of 5 and 10, then
age probably is a useful variable as-is. For data including adult
ages, you may want to transform or bin ages in some way, as
you don’t expect a significant change in reading ability between
ages 40 and 50. You should rely on information about the
problem domain to judge if the data range is narrow, but a rough
rule of thumb is the ratio of the standard deviation to the mean.
If that ratio is very small, then the data isn’t varying much.

We’ll revisit data range in section 3.2, when we talk about
examining data graphically.

One factor that determines apparent data range is the unit of
measurement. To take a nontechnical example, we measure the
ages of babies and toddlers in weeks or in months, because
developmental changes happen at that time scale for very young
children. Suppose we measured babies’ ages in years. It might
appear numerically that there isn’t much difference between a
one-year-old and a two-year-old. In reality, there’s a dramatic
difference, as any parent can tell you! Units can present
potential issues in a dataset for another reason, as well.

Units

Does the income data in listing 3.5 represent hourly wages, or

yearly wages in units of $1000? As a matter of fact, it’s the
latter, but what if you thought it was the former? You might not
notice the error during the modeling stage, but down the line
someone will start inputting hourly wage data into the model
and get back bad predictions in return.

Listing 3.5. Checking units can prevent inaccurate results later

Are time intervals measured in days, hours, minutes, or
milliseconds? Are speeds in kilometers per second, miles per
hour, or knots? Are monetary amounts in dollars, thousands of
dollars, or 1/100 of a penny (a customary practice in finance,
where calculations are often done in fixed-point arithmetic)?
This is actually something that you’ll catch by checking data
definitions in data dictionaries or documentation, rather than in
the summary statistics; the difference between hourly wage data
and annual salary in units of $1000 may not look that obvious at
a casual glance. But it’s still something to keep in mind while
looking over the value ranges of your variables, because often
you can spot when measurements are in unexpected units.
Automobile speeds in knots look a lot different than they do in
miles per hour.

3.2. Spotting problems using graphics and
visualization

As you’ve seen, you can spot plenty of problems just by
looking over the data summaries. For other properties of the

data, pictures are better than text.

We cannot expect a small number of numerical values
[summary statistics] to consistently convey the wealth of
information that exists in data. Numerical reduction
methods do not retain the information in the data.

William Cleveland The Elements of Graphing Data

Figure 3.1 shows a plot of how customer ages are distributed.
We’ll talk about what the y-axis of the graph means later; for
right now, just know that the height of the graph corresponds to
how many customers in the population are of that age. As you
can see, information like the peak age of the distribution, the
existence of subpopulations, and the presence of outliers is
easier to absorb visually than it is to determine textually.

Figure 3.1. Some information is easier to read from a graph, and some from
a summary.

The use of graphics to examine data is called visualization. We
try to follow William Cleveland’s principles for scientific
visualization. Details of specific plots aside, the key points of
Cleveland’s philosophy are these:

A graphic should display as much information as it can,
with the lowest possible cognitive strain to the viewer.
Strive for clarity. Make the data stand out. Specific tips

for increasing clarity include

Avoid too many superimposed elements, such
as too many curves in the same graphing space.
Find the right aspect ratio and scaling to
properly bring out the details of the data.
Avoid having the data all skewed to one side or
the other of your graph.

Visualization is an iterative process. Its purpose is to
answer questions about the data.

During the visualization stage, you graph the data, learn what
you can, and then regraph the data to answer the questions that
arise from your previous graphic. Different graphics are best
suited for answering different questions. We’ll look at some of
them in this section.

In this book, we use ggplot2 to demonstrate the visualizations
and graphics; of course, other R visualization packages can
produce similar graphics.

A note on ggplot2

The theme of this section is how to use visualization to explore
your data, not how to use ggplot2. We chose ggplot2 because
it excels at combining multiple graphical elements together, but
its syntax can take some getting used to. The key points to
understand when looking at our code snippets are these:

Graphs in ggplot2 can only be defined on data frames.
The variables in a graph—the x variable, the y variable,
the variables that define the color or the size of the
points—are called aesthetics, and are declared by using
the aes function.
The ggplot() function declares the graph object. The

arguments to ggplot() can include the data frame of
interest and the aesthetics. The ggplot() function
doesn’t of itself produce a visualization; visualizations
are produced by layers.
Layers produce the plots and plot transformations and
are added to a given graph object using the + operator.
Each layer can also take a data frame and aesthetics as
arguments, in addition to plot-specific parameters.
Examples of layers are geom_point (for a scatter plot)
or geom_line (for a line plot).

This syntax will become clearer in the examples that follow. For
more information, we recommend Hadley Wickham’s reference
site http://ggplot2.org, which has pointers to online
documentation, as well as to Dr. Wickham’s ggplot2: Elegant
Graphics for Data Analysis (Use R!) (Springer, 2009).

In the next two sections, we’ll show how to use pictures and
graphs to identify data characteristics and issues. In section
3.2.2, we’ll look at visualizations for two variables. But let’s
start by looking at visualizations for single variables.

3.2.1. Visually checking distributions for a single variable

The visualizations in this section help you answer questions like
these:

What is the peak value of the distribution?
How many peaks are there in the distribution
(unimodality versus bimodality)?
How normal (or lognormal) is the data? We’ll discuss
normal and lognormal distributions in appendix B.
How much does the data vary? Is it concentrated in a

http://ggplot2.org

certain interval or in a certain category?

One of the things that’s easier to grasp visually is the shape of
the data distribution. Except for the blip to the right, the graph
in figure 3.1 (which we’ve reproduced as the gray curve in figure
3.2) is almost shaped like the normal distribution (see appendix
B). As that appendix explains, many summary statistics assume
that the data is approximately normal in distribution (at least for
continuous variables), so you want to verify whether this is the
case.

Figure 3.2. A unimodal distribution (gray) can usually be modeled as coming
from a single population of users. With a bimodal distribution (black), your
data of ten comes from two populations of users.

You can also see that the gray curve in figure 3.2 has only one
peak, or that it’s unimodal. This is another property that you
want to check in your data.

Why? Because (roughly speaking), a unimodal distribution
corresponds to one population of subjects. For the gray curve in
figure 3.2, the mean customer age is about 52, and 50% of the
customers are between 38 and 64 (the first and third quartiles).

So you can say that a “typical” customer is middle-aged and
probably possesses many of the demographic qualities of a
middle-aged person—though of course you have to verify that
with your actual customer information.

The black curve in figure 3.2 shows what can happen when you
have two peaks, or a bimodal distribution. (A distribution with
more than two peaks is multimodal.) This set of customers has
about the same mean age as the customers represented by the
gray curve—but a 50-year-old is hardly a “typical” customer!
This (admittedly exaggerated) example corresponds to two
populations of customers: a fairly young population mostly in
their 20s and 30s, and an older population mostly in their 70s.
These two populations probably have very different behavior
patterns, and if you want to model whether a customer
probably has health insurance or not, it wouldn’t be a bad idea
to model the two populations separately—especially if you’re
using linear or logistic regression.

The histogram and the density plot are two visualizations that
help you quickly examine the distribution of a numerical
variable. Figures 3.1 and 3.2 are density plots. Whether you use
histograms or density plots is largely a matter of taste. We tend
to prefer density plots, but histograms are easier to explain to
less quantitatively-minded audiences.

Histograms

A basic histogram bins a variable into fixed-width buckets and
returns the number of data points that falls into each bucket. For
example, you could group your customers by age range, in
intervals of five years: 20–25, 25–30, 30–35, and so on.
Customers at a boundary age would go into the higher bucket:
25-year-olds go into the 25–30 bucket. For each bucket, you
then count how many customers are in that bucket. The
resulting histogram is shown in figure 3.3.

Figure 3.3. A histogram tells you where your data is concentrated. It also
visually highlights outliers and anomalies.

You create the histogram in figure 3.3 in ggplot2 with the
geom_histogram layer.

Listing 3.6. Plotting a histogram

The primary disadvantage of histograms is that you must decide
ahead of time how wide the buckets are. If the buckets are too
wide, you can lose information about the shape of the
distribution. If the buckets are too narrow, the histogram can
look too noisy to read easily. An alternative visualization is the
density plot.

Density plots

You can think of a density plot as a “continuous histogram” of a
variable, except the area under the density plot is equal to 1. A
point on a density plot corresponds to the fraction of data (or
the percentage of data, divided by 100) that takes on a particular
value. This fraction is usually very small. When you look at a
density plot, you’re more interested in the overall shape of the
curve than in the actual values on the y-axis. You’ve seen the
density plot of age; figure 3.4 shows the density plot of income.
You produce figure 3.4 with the geom_density layer, as shown
in the following listing.

Figure 3.4. Density plots show where data is concentrated. This plot also
highlights a population of higher-income customers.

Listing 3.7. Producing a density plot

When the data range is very wide and the mass of the
distribution is heavily concentrated to one side, like the

distribution in figure 3.4, it’s difficult to see the details of its
shape. For instance, it’s hard to tell the exact value where the
income distribution has its peak. If the data is non-negative, then
one way to bring out more detail is to plot the distribution on a
logarithmic scale, as shown in figure 3.5. This is equivalent to
plotting the density plot of log10(income).

Figure 3.5. The density plot of income on a log10 scale highlights details of
the income distribution that are harder to see in a regular density plot.

In ggplot2, you can plot figure 3.5 with the geom_density and
scale_x_log10 layers, such as in the next listing.

Listing 3.8. Creating a log-scaled density plot

When you issued the preceding command, you also got back a
warning message:

Warning messages:
1: In scale$trans$trans(x) : NaNs produced
2: Removed 79 rows containing non-
finite values (stat_density).

This tells you that ggplot2 ignored the zero- and negative-
valued rows (since log(0) = Infinity), and that there were
79 such rows. Keep that in mind when evaluating the graph.

In log space, income is distributed as something that looks like a
“normalish” distribution, as will be discussed in appendix B. It’s
not exactly a normal distribution (in fact, it appears to be at
least two normal distributions mixed together).

When should you use a logarithmic scale?

You should use a logarithmic scale when percent change, or
change in orders of magnitude, is more important than changes in
absolute units. You should also use a log scale to better visualize
data that is heavily skewed.

For example, in income data, a difference in income of five

thousand dollars means something very different in a population
where the incomes tend to fall in the tens of thousands of dollars
than it does in populations where income falls in the hundreds
of thousands or millions of dollars. In other words, what
constitutes a “significant difference” depends on the order of
magnitude of the incomes you’re looking at. Similarly, in a
population like that in figure 3.5, a few people with very high
income will cause the majority of the data to be compressed into
a relatively small area of the graph. For both those reasons,
plotting the income distribution on a logarithmic scale is a good
idea.

Bar charts

A bar chart is a histogram for discrete data: it records the
frequency of every value of a categorical variable. Figure 3.6
shows the distribution of marital status in your customer
dataset. If you believe that marital status helps predict the
probability of health insurance coverage, then you want to check
that you have enough customers with different marital statuses
to help you discover the relationship between being married (or
not) and having health insurance.

Figure 3.6. Bar charts show the distribution of categorical variables.

The ggplot2 command to produce figure 3.6 uses geom_bar:

ggplot(custdata) + geom_bar(aes(x=marital.stat), fill="gray")

This graph doesn’t really show any more information than
summary(custdata$marital .stat) would show, although
some people find the graph easier to absorb than the text. Bar
charts are most useful when the number of possible values is
fairly large, like state of residence. In this situation, we often

find that a horizontal graph is more legible than a vertical graph.

The ggplot2 command to produce figure 3.7 is shown in the
next listing.

Figure 3.7. A horizontal bar chart can be easier to read when there are several
categories with long names.

Listing 3.9. Producing a horizontal bar chart

Cleveland[3] recommends that the data in a bar chart (or in a dot
plot, Cleveland’s preferred visualization in this instance) be
sorted, to more efficiently extract insight from the data. This is
shown in figure 3.8.

3 See William S. Cleveland, The Elements of Graphing Data, Hobart Press, 1994.

Figure 3.8. Sorting the bar chart by count makes it even easier to read.

This visualization requires a bit more manipulation, at least in
ggplot2, because by default, ggplot2 will plot the categories of
a factor variable in alphabetical order. To change this, we have to
manually specify the order of the categories—in the factor
variable, not in ggplot2.

Listing 3.10. Producing a bar chart with sorted categories

Before we move on to visualizations for two variables, in table
3.1 we’ll summarize the visualizations that we’ve discussed in
this section.

Table 3.1. Visualizations for one variable

Graph type Uses

Histogram or
density plot

Examines data range Checks number of modes Checks if distribution is
normal/lognormal Checks for anomalies and outliers

Bar chart Compares relative or absolute frequencies of the values of a categorical
variable

3.2.2. Visually checking relationships between two
variables

In addition to examining variables in isolation, you’ll often want
to look at the relationship between two variables. For example,
you might want to answer questions like these:

Is there a relationship between the two inputs age and
income in my data?
What kind of relationship, and how strong?
Is there a relationship between the input marital status

and the output health insurance? How strong?

You’ll precisely quantify these relationships during the modeling
phase, but exploring them now gives you a feel for the data and
helps you determine which variables are the best candidates to
include in a model.

First, let’s consider the relationship between two continuous
variables. The most obvious way (though not always the best)
is the line plot.

Line plots

Line plots work best when the relationship between two
variables is relatively clean: each x value has a unique (or nearly
unique) y value, as in figure 3.9. You plot figure 3.9 with
geom_line.

Figure 3.9. Example of a line plot

Listing 3.11. Producing a line plot

When the data is not so cleanly related, line plots aren’t as

useful; you’ll want to use the scatter plot instead, as you’ll see
in the next section.

Scatter plots and smoothing curves

You’d expect there to be a relationship between age and health
insurance, and also a relationship between income and health
insurance. But what is the relationship between age and income?
If they track each other perfectly, then you might not want to
use both variables in a model for health insurance. The
appropriate summary statistic is the correlation, which we
compute on a safe subset of our data.

Listing 3.12. Examining the correlation between age and income

The negative correlation is surprising, since you’d expect that
income should increase as people get older. A visualization gives
you more insight into what’s going on than a single number can.
Let’s try a scatter plot first; you plot figure 3.10 with
geom_point:

Figure 3.10. A scatter plot of income versus age

ggplot(custdata2, aes(x=age, y=income)) +
 geom_point() + ylim(0, 200000)

The relationship between age and income isn’t easy to see. You
can try to make the relationship clearer by also plotting a linear
fit through the data, as shown in figure 3.11.

Figure 3.11. A scatter plot of income versus age, with a linear f it

You plot figure 3.11 using the stat_smooth layer:[4]

4 The stat lay ers in ggplot2 are the layers that perform transformations on the data.
They ’re usually called under the covers by the geom layers. Sometimes y ou have to
call them directly, to access parameters that aren’t accessible from the geom lay ers.
In this case, the default smoothing curve used geom_smooth, which is a loess curve,
as you’ll see shortly. To plot a linear fit we must call stat_smooth directly.

ggplot(custdata2, aes(x=age, y=income)) + geom_point() +
 stat_smooth(method="lm") +
 ylim(0, 200000)

In this case, the linear fit doesn’t really capture the shape of the
data. You can better capture the shape by instead plotting a
smoothing curve through the data, as shown in figure 3.12.

Figure 3.12. A scatter plot of income versus age, with a smoothing curve

In R, smoothing curves are fit using the loess (or lowess)
functions, which calculate smoothed local linear fits of the data.
In ggplot2, you can plot a smoothing curve to the data by using

geom_smooth:

ggplot(custdata2, aes(x=age, y=income)) +
 geom_point() + geom_smooth() +
 ylim(0, 200000)

A scatter plot with a smoothing curve also makes a good
visualization of the relationship between a continuous variable
and a Boolean. Suppose you’re considering using age as an input
to your health insurance model. You might want to plot health
insurance coverage as a function of age, as shown in figure 3.13.
This will show you that the probability of having health
insurance increases as customer age increases.

Figure 3.13. Distribution of customers with health insurance, as a function of
age

You plot figure 3.13 with the command shown in the next
listing.

Listing 3.13. Plotting the distribution of health.ins as a function of age

In our health insurance examples, the dataset is small enough
that the scatter plots that you’ve created are still legible. If the
dataset were a hundred times bigger, there would be so many
points that they would begin to plot on top of each other; the
scatter plot would turn into an illegible smear. In high-volume
situations like this, try an aggregated plot, like a hexbin plot.

Hexbin plots

A hexbin plot is like a two-dimensional histogram. The data is
divided into bins, and the number of data points in each bin is
represented by color or shading. Let’s go back to the income
versus age example. Figure 3.14 shows a hexbin plot of the data.
Note how the smoothing curve traces out the shape formed by
the densest region of data.

Figure 3.14. Hexbin plot of income versus age, with a smoothing curve
superimposed in white

To make a hexbin plot in R, you must have the hexbin package
installed. We’ll discuss how to install R packages in appendix A.
Once hexbin is installed and the library loaded, you create the
plots using the geom_hex layer.

Listing 3.14. Producing a hexbin plot

In this section and the previous section, we’ve looked at plots
where at least one of the variables is numerical. But in our health
insurance example, the output is categorical, and so are many of
the input variables. Next we’ll look at ways to visualize the
relationship between two categorical variables.

Bar charts for two categorical variables

Let’s examine the relationship between marital status and the
probability of health insurance coverage. The most
straightforward way to visualize this is with a stacked bar
chart, as shown in figure 3.15.

Figure 3.15. Health insurance versus marital status: stacked bar chart

Some people prefer the side-by-side bar chart, shown in figure
3.16, which makes it easier to compare the number of both
insured and uninsured across categories.

Figure 3.16. Health insurance versus marital status: side-by-side bar chart

The main shortcoming of both the stacked and side-by-side bar
charts is that you can’t easily compare the ratios of insured to
uninsured across categories, especially for rare categories like
Widowed. You can use what ggplot2 calls a filled bar chart to
plot a visualization of the ratios directly, as in figure 3.17.

Figure 3.17. Health insurance versus marital status: f illed bar chart

The filled bar chart makes it obvious that divorced customers are
slightly more likely to be uninsured than married ones. But
you’ve lost the information that being widowed, though highly
predictive of insurance coverage, is a rare category.

Which bar chart you use depends on what information is most
important for you to convey. The ggplot2 commands for each
of these plots are given next. Note the use of the fill aesthetic;
this tells ggplot2 to color (fill) the bars according to the value
of the variable health.ins. The position argument to geom_bar

specifies the bar chart style.

Listing 3.15. Specifying dif ferent styles of bar chart

To get a simultaneous sense of both the population in each
category and the ratio of insured to uninsured, you can add
what’s called a rug to the filled bar chart. A rug is a series of
ticks or points on the x-axis, one tick per datum. The rug is
dense where you have a lot of data, and sparse where you have
little data. This is shown in figure 3.18. You generate this graph
by adding a geom_point layer to the graph.

Figure 3.18. Health insurance versus marital status: f illed bar chart with rug

Listing 3.16. Plotting data with a rug

In the preceding examples, one of the variables was binary; the
same plots can be applied to two variables that each have
several categories, but the results are harder to read. Suppose
you’re interested in the distribution of marriage status across
housing types. Some find the side-by-side bar chart easiest to
read in this situation, but it’s not perfect, as you see in figure
3.19.

Figure 3.19. Distribution of marital status by housing type: side-by-side bar
chart

A graph like figure 3.19 gets cluttered if either of the variables
has a large number of categories. A better alternative is to break
the distributions into different graphs, one for each housing
type. In ggplot2 this is called faceting the graph, and you use
the facet_wrap layer. The result is in figure 3.20.

Figure 3.20. Distribution of marital status by housing type: faceted side-by-
side bar chart

The code for figures 3.19 and 3.20 looks like the next listing.

Listing 3.17. Plotting a bar chart with and without facets

Table 3.2 summarizes the visualizations for two variables that
we’ve covered.

Table 3.2. Visualizations for two variables

Graph
type

Uses

Line plot Shows the relationship between two continuous variables. Best when that
relationship is functional, or nearly so.

Scatter
plot

Shows the relationship between two continuous variables. Best when the
relationship is too loose or cloud-like to be easily seen on a line plot.

Smoothing
curve

Shows underly ing “average” relationship, or trend, between two continuous
variables. Can also be used to show the relationship between a continuous and a
binary or Boolean variable: the fraction of true values of the discrete variable as
a function of the continuous variable.

Hexbin
plot

Shows the relationship between two continuous variables when the data is very
dense.

Stacked
bar chart

Shows the relationship between two categorical variables (var1 and var2).
Highlights the frequencies of each value of var1.

Side-by -
side bar
chart

Shows the relationship between two categorical variables (var1 and var2). Good
for comparing the frequencies of each value of var2 across the values of var1.
Works best when var2 is binary.

Filled bar
chart

Shows the relationship between two categorical variables (var1 and var2). Good
for comparing the relative frequencies of each value of var2 within each value
of var1. Works best when var2 is binary.

Bar chart
with
faceting

Shows the relationship between two categorical variables (var1 and var2). Best
for comparing the relative frequencies of each value of var2 within each value
of var1 when var2 takes on more than two values.

There are many other variations and visualizations you could
use to explore the data; the preceding set covers some of the
most useful and basic graphs. You should try different kinds of
graphs to get different insights from the data. It’s an interactive
process. One graph will raise questions that you can try to
answer by replotting the data again, with a different
visualization.

Eventually, you’ll explore your data enough to get a sense of it
and to spot most major problems and issues. In the next chapter,
we’ll discuss some ways to address common problems that you
may discover in the data.

3.3. Summary

At this point, you’ve gotten a feel for your data. You’ve
explored it through summaries and visualizations; you now have
a sense of the quality of your data, and of the relationships
among your variables. You’ve caught and are ready to correct
several kinds of data issues—although you’ll likely run into
more issues as you progress.

Maybe some of the things you’ve discovered have led you to
reevaluate the question you’re trying to answer, or to modify
your goals. Maybe you’ve decided that you need more or
different types of data to achieve your goals. This is all good.
As we mentioned in the previous chapter, the data science
process is made of loops within loops. The data exploration and
data cleaning stages (we’ll discuss cleaning in the next chapter)
are two of the more time-consuming—and also the most
important—stages of the process. Without good data, you can’t

build good models. Time you spend here is time you don’t
waste elsewhere.

In the next chapter, we’ll talk about fixing the issues that you’ve
discovered in the data.

Key takeaways

Take the time to examine your data before diving into
the modeling.
The summary command helps you spot issues with data
range, units, data type, and missing or invalid values.
Visualization additionally gives you a sense of data
distribution and relationships among variables.
Visualization is an iterative process and helps answer
questions about the data. Time spent here is time not
wasted during the modeling process.

Chapter 4. Managing data
This chapter covers

Fixing data quality problems
Organizing your data for the modeling process

In chapter 3, you learned how to explore your data and to
identify common data issues. In this chapter, you’ll see how to
fix the data issues that you’ve discovered. After that, we’ll talk
about organizing the data for the modeling process.[1]

1 For all of the examples in this chapter, we’ll use sy nthetic customer data (mostly
derived from US Census data) with specifically introduced flaws. The data can be
loaded by saving the file exampleData.rData from
https://github.com/WinVector/zmPDSwR/tree/master/Custdata and then running
load("exampleData.rData") in R.

4.1. Cleaning data

In this section, we’ll address issues that you discovered during
the data exploration/visualization phase. First you’ll see how to
treat missing values. Then we’ll discuss some common data
transformations and when they’re appropriate: converting
continuous variables to discrete; normalization and rescaling; and
logarithmic transformations.

4.1.1. Treating missing values (NAs)

Let’s take another look at some of the variables with missing
values in our customer dataset from the previous chapter. We’ve
reproduced the summary in figure 4.1.

Figure 4.1. Variables with missing values

https://github.com/WinVector/zmPDSwR/tree/master/Custdata

Fundamentally, there are two things you can do with these
variables: drop the rows with missing values, or convert the
missing values to a meaningful value.

To Drop or not to Drop?

Remember that we have a dataset of 1,000 customers; 56
missing values represents about 6% of the data. That’s not
trivial, but it’s not huge, either. The fact that three variables are

all missing exactly 56 values suggests that it’s the same 56
customers in each case. That’s easy enough to check.

Listing 4.1. Checking locations of missing data

Because the missing data represents a fairly small fraction of the
dataset, it’s probably safe just to drop these customers from
your analysis. But what about the variable is.employed? Here
you’re missing data from a third of the customers. What do you
do then?

Missing data in categorical variables

The most straightforward solution is just to create a new
category for the variable, called missing.

Listing 4.2. Remapping NA to a level

Practically speaking, this is exactly equivalent to what we had
before; but remember that most analysis functions in R (and in a
great many other statistical languages and packages) will, by
default, drop rows with missing data. Changing each NA (which
is R’s code for missing values) to the token missing (which is
people-code for missing values) will prevent that.

The preceding fix will get the job done, but as a data scientist,
you ought to be interested in why so many customers are
missing this information. It could just be bad record-keeping, but
it could be semantic, as well. In this case, the format of the data
(using the same row type for all customers) hints that the NA
actually encodes that the customer is not in the active
workforce: they are a homemaker, a student, retired, or
otherwise not seeking paid employment. Assuming that you
don’t want to differentiate between retirees, students, and so on,
naming the category appropriately will make it easier to
interpret the model that you build down the line—both for you
and for others:

custdata$is.employed.fix <- ifelse(is.na(custdata$is.employed),
 "not in active workforce",
 ifelse(custdata$is.employed==T,
 "employed",

 "not employed"))

If you did want to differentiate retirees from students and so on,
you’d need additional data to make the correct assignments.

Why a new variable?

You’ll notice that we created a new variable called
is.employed.fix, rather than simply replacing is.employed.
This is a matter of taste. We prefer to have the original variable
on hand, in case we second-guess our data cleaning and want to
redo it. This is mostly a problem when the data cleaning
involves a complicated transformation, like determining which
customers are retirees and which ones are students. On the other
hand, having two variables about employment in your data
frame leaves you open to accidentally using the wrong one. Both
choices have advantages and disadvantages.

Missing values in categorical variables are a relatively
straightforward case to work through. What about numeric data?

Missing values in numeric data

Suppose your income variable is missing substantial data:

> summary(custdata$Income)

 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
 0 25000 45000 66200 82000 615000 328

You believe that income is still an important predictor of the
probability of health insurance coverage, so you still want to use
the variable. What do you do?

When values are missing randomly

You might believe that the data is missing because of a faulty

sensor—in other words, the data collection failed at random. In
this case, you can replace the missing values with the expected,
or mean, income:

Assuming that the customers with missing income are
distributed the same way as the others, this estimate will be
correct on average, and you’ll be about as likely to have
overestimated customer income as underestimated it. It’s also an
easy fix to implement.

This estimate can be improved when you remember that income
is related to other variables in your data—for instance, you
know from your data exploration in the previous chapter that
there’s a relationship between age and income. There might be a
relationship between state of residence or marital status and
income, as well. If you have this information, you can use it.

Note that the method of imputing a missing value of an input
variable based on the other input variables can be applied to
categorical data, as well. The text R in Action, Second Edition
(Robert Kabacoff, 2014, http://mng.bz/ybS4) includes an
extensive discussion of several methods available in R.

It’s important to remember that replacing missing values by the
mean, as well as many more sophisticated methods for imputing
missing values, assumes that the customers with missing income
are in some sense random (the “faulty sensor” situation). It’s
possible that the customers with missing income data are

http://mng.bz/ybS4

systematically different from the others. For instance, it could be
the case that the customers with missing income information
truly have no income—because they’re not in the active
workforce. If this is so, then “filling in” their income information
by using one of the preceding methods is the wrong thing to do.
In this situation, there are two transformations you can try.

When values are missing systematically

One thing you can do is to convert the numeric data into
categorical data, and then use the methods that we discussed
previously. In this case, you would divide the income into some
income categories of interest, such as “below $10,000,” or “from
$100,000 to $250,000” using the cut() function, and then treat
the NAs as we did when working with missing categorical values.

Listing 4.3. Converting missing numeric data to a level

This grouping approach can work well, especially if the
relationship between income and insurance is nonmonotonic (the
likelihood of having insurance doesn’t strictly increase or
decrease with income). It does require that you select good cuts,
and it’s a less concise representation of income than a numeric
variable.

You could also replace all the NAs with zero income—but the
data already has customers with zero income. Those zeros could

be from the same mechanism as the NAs (customers not in the
active workforce), or they could come from another mechanism
—for example, customers who have been unemployed the entire
year. A trick that has worked well for us is to replace the NAs
with zeros and add an additional variable (we call it a masking
variable) to keep track of which data points have been altered.

Listing 4.4. Tracking original NAs with an extra categorical variable

You give both variables, missingIncome and Income.fix, to
the modeling algorithm, and it can determine how to best use the
information to make predictions. Note that if the missing values
really are missing randomly, then the masking variable will
basically pick up the variable’s mean value (at least in regression
models).

In summary, to properly handle missing data you need to know
why the data is missing in the first place. If you don’t know
whether the missing values are random or systematic, we
recommend assuming that the difference is systematic, rather
than trying to impute values to the variables based on the faulty
sensor assumption.

In addition to fixing missing data, there are other ways that you
can transform the data to address issues that you found during
the exploration phase. In the next section, we’ll examine some
common transformations.

4.1.2. Data transformations

The purpose of data transformation is to make data easier to
model—and easier to understand. For example, the cost of living
will vary from state to state, so what would be a high salary in
one region could be barely enough to scrape by in another. If
you want to use income as an input to your insurance model, it
might be more meaningful to normalize a customer’s income by
the typical income in the area where they live. The next listing is
an example of a relatively simple (and common) transformation.

Listing 4.5. Normalizing income by state

The need for data transformation can also depend on which
modeling method you plan to use. For linear and logistic
regression, for example, you ideally want to make sure that the
relationship between input variables and output variable is
approximately linear, and that the output variable is constant
variance (the variance of the output variable is independent of

the input variables). You may need to transform some of your
input variables to better meet these assumptions.

In this section, we’ll look at some useful data transformations
and when to use them: converting continuous variables to
discrete; normalizing variables; and log transformations.

Converting continuous variables to discrete

For some continuous variables, their exact value matters less
than whether they fall into a certain range. For example, you
may notice that customers with incomes less than $20,000 have
different health insurance patterns than customers with higher
incomes. Or you may notice that customers younger than 25
and older than 65 have high probabilities of insurance coverage,
because they tend to be on their parents’ coverage or on a
retirement plan, respectively, whereas customers between those
ages have a different pattern.

In these cases, you might want to convert the continuous age
and income variables into ranges, or discrete variables.
Discretizing continuous variables is useful when the relationship
between input and output isn’t linear, but you’re using a
modeling technique that assumes it is, like regression (see figure
4.2).

Figure 4.2. Health insurance coverage versus income (log10 scale)

Looking at figure 4.2, you see that you can replace the income
variable with a Boolean variable that indicates whether income is
less than $20,000:

> custdata$income.lt.20K <- custdata$income < 20000
> summary(custdata$income.lt.20K)
 Mode FALSE TRUE NA's
logical 678 322 0

If you want more than a simple threshold (as in the age
example), you can use the cut() function, as you saw in the

section “When values are missing systematically.”

Listing 4.6. Converting age into ranges

Even when you do decide not to discretize a numeric variable,
you may still need to transform it to better bring out the
relationship between it and other variables. You saw this in the
example that introduced this section, where we normalized
income by the regional median income. In the next section, we’ll
talk about normalization and rescaling.

Normalization and rescaling

Normalization is useful when absolute quantities are less
meaningful than relative ones. We’ve already seen an example of
normalizing income relative to another meaningful quantity
(median income). In that case, the meaningful quantity was
external (came from the analyst’s domain knowledge); but it can
also be internal (derived from the data itself).

For example, you might be less interested in a customer’s
absolute age than you are in how old or young they are relative
to a “typical” customer. Let’s take the mean age of your
customers to be the typical age. You can normalize by that, as
shown in the following listing.

Listing 4.7. Centering on mean age

> summary(custdata$age)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.0 38.0 50.0 51.7 64.0 146.7
> meanage <- mean(custdata$age)

> custdata$age.normalized <- custdata$age/meanage
> summary(custdata$age.normalized)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.0000 0.7350 0.9671 1.0000 1.2380 2.8370

A value for age.normalized that is much less than 1 signifies
an unusually young customer; much greater than 1 signifies an
unusually old customer. But what constitutes “much less” or
“much greater” than 1? That depends on how wide an age
spread your customers tend to have. See figure 4.3 for an
example.

Figure 4.3. Is a 35-year-old young?

The typical age spread of your customers is summarized in the
standard deviation. You can rescale your data by using the
standard deviation as a unit of distance. A customer who is
within one standard deviation of the mean is not much older or
younger than typical. A customer who is more than one or two
standard deviations from the mean can be considered much older,
or much younger.

Listing 4.8. Summarizing age

Now, values less than -1 signify customers younger than
typical; values greater than 1 signify customers older than
typical.

Normalizing by mean and standard deviation is most meaningful
when the data distribution is roughly symmetric. Next, we’ll
look at a transformation that can make some distributions more
symmetric.

Log transformations for skewed and wide distributions

Monetary amounts—incomes, customer value, account, or
purchase sizes—are some of the most commonly encountered
sources of skewed distributions in data science applications. In
fact, as we discuss in appendix B, monetary amounts are often
lognormally distributed—the log of the data is normally
distributed. This leads us to the idea that taking the log of the
data can restore symmetry to it. We demonstrate this in figure
4.4.

Figure 4.4. A nearly lognormal distribution and its log

A technicality

The common interpretation of standard deviation as a unit of
distance implicitly assumes that the data is distributed normally.
For a normal distribution, roughly two-thirds of the data (about
68%) is within plus/minus one standard deviation from the
mean. About 95% of the data is within plus/minus two standard
deviations from the mean. In figure 4.3, a 35-year-old is (just

barely) within one standard deviation from the mean in
population1, but more than two standard deviations from the
mean in population2.

You can still use this transformation if the data isn’t normally
distributed, but the standard deviation is most meaningful as a
unit of distance if the data is unimodal and roughly symmetric
around the mean.

For the purposes of modeling, which logarithm you use—natural
logarithm, log base 10, or log base 2—is generally not critical. In
regression, for example, the choice of logarithm affects the
magnitude of the coefficient that corresponds to the logged
variable, but it doesn’t affect the value of the outcome. We like
to use log base 10 for monetary amounts, because orders of ten
seem natural for money: $100, $1000, $10,000, and so on. The
transformed data is easy to read.

An aside on graphing

Notice that the bottom panel of figure 4.4 has the same shape as
figure 3.5. The difference between using the ggplot layer
scale_x_log10 on a density plot of income and plotting a
density plot of log10(income) is primarily axis labeling. Using
scale_x_log10 will label the x-axis in dollars amounts, rather
than in logs.

It’s also generally a good idea to log transform data with values
that range over several orders of magnitude—first, because
modeling techniques often have a difficult time with very wide
data ranges; and second, because such data often comes from
multiplicative processes, so log units are in some sense more

natural.

For example, when you’re studying weight loss, the natural unit
is often pounds or kilograms. If you weigh 150 pounds and your
friend weighs 200, you’re both equally active, and you both go
on the exact same restricted-calorie diet, then you’ll probably
both lose about the same number of pounds—in other words,
how much weight you lose doesn’t (to first order) depend on
how much you weighed in the first place, only on calorie intake.
This is an additive process.

On the other hand, if management gives everyone in the
department a raise, it probably isn’t giving everyone $5,000
extra. Instead, everyone gets a 2% raise: how much extra money
ends up in your paycheck depends on your initial salary. This is
a multiplicative process, and the natural unit of measurement is
percentage, not absolute dollars. Other examples of
multiplicative processes: a change to an online retail site
increases conversion (purchases) for each item by 2% (not by
exactly two purchases); a change to a restaurant menu increases
patronage every night by 5% (not by exactly five customers
every night). When the process is multiplicative, log
transforming the process data can make modeling easier.

Of course, taking the logarithm only works if the data is non-
negative. There are other transforms, such as arcsinh, that you
can use to decrease data range if you have zero or negative
values. We don’t always use arcsinh, because we don’t find the
values of the transformed data to be meaningful. In applications
where the skewed data is monetary (like account balances or
customer value), we instead use what we call a signed logarithm.
A signed logarithm takes the logarithm of the absolute value of
the variable and multiplies by the appropriate sign. Values
strictly between -1 and 1 are mapped to zero. The difference
between log and signed log is shown in figure 4.5.

Figure 4.5. Signed log lets you visualize non-positive data on a logarithmic
scale.

Here’s how to calculate signed log base 10, in R:

signedlog10 <- function(x) {
 ifelse(abs(x) <= 1, 0, sign(x)*log10(abs(x)))
}

Clearly this isn’t useful if values below unit magnitude are

important. But with many monetary variables (in US currency),
values less than a dollar aren’t much different from zero (or
one), for all practical purposes. So, for example, mapping
account balances that are less than or equal to $1 (the equivalent
of every account always having a minimum balance of one
dollar) is probably okay.[2]

2 There are methods other than capping to deal with signed logarithms, such as the
arcsinh function (see http://mng.bz/ZWQa), but they also distort data near zero and
make almost any data appear to be bimodal.

Once you’ve got the data suitably cleaned and transformed,
you’re almost ready to start the modeling stage. Before we get
there, we have one more step.

4.2. Sampling for modeling and validation

Sampling is the process of selecting a subset of a population to
represent the whole, during analysis and modeling. In the current
era of big datasets, some people argue that computational power
and modern algorithms let us analyze the entire large dataset
without the need to sample.

We can certainly analyze larger datasets than we could before,
but sampling is a necessary task for other reasons. When you’re
in the middle of developing or refining a modeling procedure, it’s
easier to test and debug the code on small subsamples before
training the model on the entire dataset. Visualization can be
easier with a subsample of the data; ggplot runs faster on
smaller datasets, and too much data will often obscure the
patterns in a graph, as we mentioned in chapter 3. And often it’s
not feasible to use your entire customer base to train a model.

It’s important that the dataset that you do use is an accurate
representation of your population as a whole. For example,
your customers might come from all over the United States.
When you collect your custdata dataset, it might be tempting

http://mng.bz/ZWQa

to use all the customers from one state, say Connecticut, to train
the model. But if you plan to use the model to make predictions
about customers all over the country, it’s a good idea to pick
customers randomly from all the states, because what predicts
health insurance coverage for Texas customers might be different
from what predicts health insurance coverage in Connecticut.
This might not always be possible (perhaps only your
Connecticut and Massachusetts branches currently collect the
customer health insurance information), but the shortcomings of
using a nonrepresentative dataset should be kept in mind.

The other reason to sample your data is to create test and
training splits.

4.2.1. Test and training splits

When you’re building a model to make predictions, like our
model to predict the probability of health insurance coverage,
you need data to build the model. You also need data to test
whether the model makes correct predictions on new data. The
first set is called the training set, and the second set is called the
test (or hold-out) set.

The training set is the data that you feed to the model-building
algorithm—regression, decision trees, and so on—so that the
algorithm can set the correct parameters to best predict the
outcome variable. The test set is the data that you feed into the
resulting model, to verify that the model’s predictions are
accurate. We’ll go into detail about the kinds of modeling issues
that you can detect by using hold-out data in chapter 5. For
now, we’ll just get our data ready for doing hold-out
experiments at a later stage.

Many writers recommend train/calibration/test splits, which is
also good advice. Our philosophy is this: split the data into
train/test early, don’t look at test until final evaluation, and if

you need calibration data, resplit it from your training subset.

4.2.2. Creating a sample group column

A convenient way to manage random sampling is to add a
sample group column to the data frame. The sample group
column contains a number generated uniformly from zero to one,
using the runif function. You can draw a random sample of
arbitrary size from the data frame by using the appropriate
threshold on the sample group column.

For example, once you’ve labeled all the rows of your data
frame with your sample group column (let’s call it gp), then the
set of all rows such that gp < 0.4 will be about four-tenths, or
40%, of the data. The set of all rows where gp is between 0.55
and 0.70 is about 15% of the data (0.7 - 0.55 = 0.15). So
you can repeatably generate a random sample of the data of any
size by using gp.

Listing 4.9. Splitting into test and training using a random group mark

R also has a function called sample that draws a random sample
(a uniform random sample, by default) from a data frame. Why
not just use sample to draw training and test sets? You could,
but using a sample group column guarantees that you’ll draw the
same sample group every time. This reproducible sampling is
convenient when you’re debugging code. In many cases, code
will crash because of a corner case that you forgot to guard

against. This corner case might show up in your random sample.
If you’re using a different random input sample every time you
run the code, you won’t know if you will tickle the bug again.
This makes it hard to track down and fix errors.

You also want repeatable input samples for what software
engineers call regression testing (not to be confused with
statistical regression). In other words, when you make changes
to a model or to your data treatment, you want to make sure
you don’t break what was already working. If model version 1
was giving “the right answer” for a certain input set, you want
to make sure that model version 2 does so also.

Reproducible sampling is not just a trick for R

If your data is in a database or other external store, and you only
want to pull a subset of the data into R for analysis, you can
draw a reproducible random sample by generating a sample
group column in an appropriate table in the database, using the
SQL command RAND .

4.2.3. Record grouping

One caveat is that the preceding trick works if every object of
interest (every customer, in this case) corresponds to a unique
row. But what if you’re interested less in which customers don’t
have health insurance, and more about which households have
uninsured members? If you’re modeling a question at the
household level rather than the customer level, then every
member of a household should be in the same group (test or
training). In other words, the random sampling also has to be at
the household level.

Suppose your customers are marked both by a household ID
and a customer ID (so the unique ID for a customer is the
combination (household_id, cust_id). This is shown in figure
4.6. We want to split the households into a training set and a
test set. The next listing shows one way to generate an
appropriate sample group column.

Figure 4.6. Example of dataset with customers and households

Listing 4.10. Ensuring test/train split doesn’t split inside a household

The resulting sample group column is shown in figure 4.7. Now
we can generate the test and training sets as before. This time,
however, the threshold 0.1 doesn’t represent 10% of the data
rows, but 10% of the households (which may be more or less
than 10% of the data, depending on the sizes of the households).

Figure 4.7. Example of dataset with customers and households

4.2.4. Data provenance

You’ll also want to add a column (or columns) to record data
provenance: when your dataset was collected, perhaps what
version of your data cleaning procedure was used on the data
before modeling, and so on. This is akin to version control for
data. It’s handy information to have, to make sure that you’re
comparing apples to apples when you’re in the process of
improving your model, or comparing different models or
different versions of a model.

4.3. Summary

At some point, you’ll have data quality that is as good as you
can make it. You’ve fixed problems with missing data and
performed any needed transformations. You’re ready to go on to
the modeling stage.

Remember, though, that data science is an iterative process. You
may discover during the modeling process that you have to do
additional data cleaning or transformation. You may have to go
back even further and collect different types of data. That’s why
we recommend adding columns for sample groups and data
provenance to your datasets (and later, to the models and model
output), so you can keep track of the data management steps as
the data and the models evolve.

In the part 2 of the book, we’ll talk about the process of
building and evaluating models to meet your stated objectives.

Key takeaways

What you do with missing values depends on how
many there are, and whether they’re missing randomly
or systematically.
When in doubt, assume that missing values are missing
systematically.
Appropriate data transformations can make the data
easier to understand and easier to model.
Normalization and rescaling are important when relative
changes are more important than absolute ones.
Data provenance records help reduce errors as you
iterate over data collection, data treatment, and
modeling.

Part 2. Modeling methods
In part 1, we discussed the initial stages of a data science
project. After you’ve defined more precisely the questions you
want to answer and the scope of the problem you want to solve,
it’s time to analyze the data and find the answers. In part 2, we
work with powerful modeling methods from statistics and
machine learning.

Chapter 5 covers how to identify appropriate modeling methods
to address your specific business problem. It also discusses how
to evaluate the quality and effectiveness of models that you or
others have discovered. The remaining chapters in part 2 cover
specific modeling techniques.

Chapter 6 covers what we call memorization-based techniques.
These methods make predictions based primarily on summary
statistics of your data. We cover lookup tables, nearest-neighbor
methods, Naive Bayes classification, and decision trees. Chapter
7 covers methods that fit simple functions with additive
functional structure: linear and logistic regression. These two
methods not only make predictions, but also provide you with
information about the relationship between the input variables
and the outcome.

Chapter 8 covers unsupervised methods: clustering and
association rule mining. Unsupervised methods don’t make
explicit outcome predictions; they discover relationships and
hidden structure in the data. Chapter 9 touches on some more
advanced modeling algorithms. We discuss bagged decision trees
and random forests, generalized additive models, kernels, and
support vector machines.

We work through every method that we cover with a specific
data science problem, and a nontrivial dataset. In each chapter,

we also discuss additional model evaluation procedures that are
specific to the methods that we cover.

On completing part 2, you’ll be familiar with the most popular
modeling methods, and you’ll have a sense of which methods are
most appropriate for answering different types of questions.

Chapter 5. Choosing and evaluating
models
This chapter covers

Mapping business problems to machine learning tasks
Evaluating model quality
Validating model soundness

As a data scientist, your ultimate goal is to solve a concrete
business problem: increase look-to-buy ratio, identify fraudulent
transactions, predict and manage the losses of a loan portfolio,
and so on. Many different statistical modeling methods can be
used to solve any given problem. Each statistical method will
have its advantages and disadvantages for a given business goal
and business constraints. This chapter presents an outline of the
most common machine learning and statistical methods used in
data science.

To make progress, you must be able to measure model quality
during training and also ensure that your model will work as well
in the production environment as it did on your training data. In
general, we’ll call these two tasks model evaluation and model
validation. To prepare for these statistical tests, we always split
our data into training data and test data, as illustrated in figure
5.1.

Figure 5.1. Schematic model construction and evaluation

We define model evaluation as quantifying the performance of a
model. To do this we must find a measure of model performance
that’s appropriate to both the original business goal and the
chosen modeling technique. For example, if we’re predicting
who would default on loans, we have a classification task, and
measures like precision and recall are appropriate. If we instead
are predicting revenue lost to defaulting loans, we have a scoring
task, and measures like root mean square error (RMSE) are
appropriate. The point is this: there are a number of measures
the data scientist should be familiar with.

We define model validation as the generation of an assurance that
the model will work in production as well as it worked during
training. It is a disaster to build a model that works great on the
original training data and then performs poorly when used in
production. The biggest cause of model validation failures is not

having enough training data to represent the variety of what may
later be encountered in production. For example, training a loan
default model only on people who repaid their loans might score
well on a simple evaluation (“predicts no defaults and is 100%
accurate!”) but would obviously not be a good model to put into
production. Validation techniques attempt to quantify this type
of risk before you put a model into production.

5.1. Mapping problems to machine learning tasks

Your task is to map a business problem to a good machine
learning method. To use a real-world situation, let’s suppose
that you’re a data scientist at an online retail company. There
are a number of business problems that your team might be
called on to address:

Predicting what customers might buy, based on past
transactions
Identifying fraudulent transactions
Determining price elasticity (the rate at which a price
increase will decrease sales, and vice versa) of various
products or product classes
Determining the best way to present product listings
when a customer searches for an item
Customer segmentation: grouping customers with
similar purchasing behavior
AdWord valuation: how much the company should
spend to buy certain AdWords on search engines
Evaluating marketing campaigns
Organizing new products into a product catalog

Your intended uses of the model have a big influence on what
methods you should use. If you want to know how small
variations in input variables affect outcome, then you likely
want to use a regression method. If you want to know what

single variable drives most of a categorization, then decision
trees might be a good choice. Also, each business problem
suggests a statistical approach to try. If you’re trying to predict
scores, some sort of regression is likely a good choice; if you’re
trying to predict categories, then something like random forests
is probably a good choice.

5.1.1. Solving classification problems

Suppose your task is to automate the assignment of new
products to your company’s product categories, as shown in
figure 5.2. This can be more complicated than it sounds.
Products that come from different sources may have their own
product classification that doesn’t coincide with the one that
you use on your retail site, or they may come without any
classification at all. Many large online retailers use teams of
human taggers to hand-categorize their products. This is not
only labor-intensive, but inconsistent and error-prone.
Automation is an attractive option; it’s labor-saving, and can
improve the quality of the retail site.

Figure 5.2. Assigning products to product categories

Product categorization based on product attributes and/or text
descriptions of the product is an example of classification:
deciding how to assign (known) labels to an object.
Classification itself is an example of what is called supervised
learning: in order to learn how to classify objects, you need a
dataset of objects that have already been classified (called the
training set). Building training data is the major expense for most

classification tasks, especially text-related ones. Table 5.1 lists
some of the more common effective classification methods.

Table 5.1. Some common classif ication methods

Method Description

Naive
Bayes

Naive Bayes classifiers are especially useful for problems with many input
variables, categorical input variables with a very large number of possible
values, and text classification. Naive Bayes would be a good first attempt at
solving the product categorization problem.

Decision
trees

Decision trees (discussed in section 6.3.2) are useful when input variables
interact with the output in “if-then” kinds of ways (such as IF age > 65, THEN
has.health.insurance=T). They are also suitable when inputs have an AND
relationship to each other (such as IF age < 25 AND student=T, THEN...) or
when input variables are redundant or correlated. The decision rules that come
from a decision tree are in principle easier for nontechnical users to understand
than the decision processes that come from other classifiers. In section 6.3.2,
we’ll discuss an important extension of decision trees: random forests.

Logistic
regression

Logistic regression is appropriate when you want to estimate class probabilities
(the probability that an object is in a given class) in addition to class assignments.
[a] An example use of a logistic regression–based classifier is estimating the
probability of fraud in credit card purchases. Logistic regression is also a good
choice when you want an idea of the relative impact of different input variables
on the output. For example, you might find out that a $100 increase in
transaction size increases the odds that the transaction is fraud by 2%, all else
being equal.

Support
vector
machines

Support vector machines (SVMs) are useful when there are very many input
variables or when input variables interact with the outcome or with each other in
complicated (nonlinear) ways. SVMs make fewer assumptions about variable
distribution than do many other methods, which makes them especially useful
when the training data isn’t completely representative of the way the data is
distributed in production.

a . Strictly speaking, logistic regression is scoring (covered in the next section). To turn
a scoring algorithm into a classifier requires a threshold. For scores higher than the
threshold, assign one label; for lower scores, assign an alternative label.

Multicategory vs. two-category classification

Product classification is an example of multicategory or
multinomial classification. Most classification problems and
most classification algorithms are specialized for two-category,
or binomial, classification. There are tricks to using binary
classifiers to solve multicategory problems (for example,

building one classifier for each category, called a “one versus
rest” classifier). But in most cases it’s worth the effort to find a
suitable multiple-category implementation, as they tend to work
better than multiple binary classifiers (for example, using the
package mlogit instead of the base method glm() for logistic
regression).

5.1.2. Solving scoring problems

For a scoring example, suppose that your task is to help
evaluate how different marketing campaigns can increase
valuable traffic to the website. The goal is not only to bring
more people to the site, but to bring more people who buy.
You’re looking at a number of different factors: the
communication channel (ads on websites, YouTube videos, print
media, email, and so on); the traffic source (Facebook, Google,
radio stations, and so on); the demographic targeted; the time of
year; and so on.

Predicting the increase in sales from a particular marketing
campaign is an example of regression, or scoring. Fraud
detection can be considered scoring, too, if you’re trying to
estimate the probability that a given transaction is a fraudulent
one (rather than just returning a yes/no answer). This is shown
in figure 5.3. Scoring is also an instance of supervised learning.

Figure 5.3. Notional example of determining the probability that a
transaction is fraudulent

Common scoring methods

We’ll cover the following two general scoring methods in more
detail in later chapters.

Linear regression

Linear regression builds a model such that the predicted
numerical output is a linear additive function of the inputs. This

can be a very effective approximation, even when the underlying
situation is in fact nonlinear. The resulting model also gives an
indication of the relative impact of each input variable on the
output. Linear regression is often a good first model to try when
trying to predict a numeric value.

Logistic regression

Logistic regression always predicts a value between 0 and 1,
making it suitable for predicting probabilities (when the
observed outcome is a categorical value) and rates (when the
observed outcome is a rate or ratio). As we mentioned, logistic
regression is an appropriate approach to the fraud detection
problem, if what you want to estimate is the probability that a
given transaction is fraudulent or legitimate.

5.1.3. Working without known targets

The preceding methods require that you have a training dataset
of situations with known outcomes. In some situations, there’s
not (yet) a specific outcome that you want to predict. Instead,
you may be looking for patterns and relationships in the data
that will help you understand your customers or your business
better.

These situations correspond to a class of approaches called
unsupervised learning: rather than predicting outputs based on
inputs, the objective of unsupervised learning is to discover
similarities and relationships in the data. Some common
clustering methods include these:

K-means clustering
Apriori algorithm for finding association rules
Nearest neighbor

But these methods make more sense when we provide some

context and explain their use, as we do next.

When to use basic clustering

Suppose you want to segment your customers into general
categories of people with similar buying patterns. You might not
know in advance what these groups should be.

This problem is a good candidate for k-means clustering. K-
means clustering is one way to sort the data into groups such
that members of a cluster are more similar to each other than
they are to members of other clusters.

Suppose that you find (as in figure 5.4) that your customers
cluster into those with young children, who make more family-
oriented purchases, and those with no children or with adult
children, who make more leisure- and social-activity-related
purchases. Once you have assigned a customer into one of those
clusters, you can make general statements about their behavior.
For example, a customer in the with-young-children cluster is
likely to respond more favorably to a promotion on attractive
but durable glassware than to a promotion on fine crystal wine
glasses.

Figure 5.4. Notional example of clustering your customers by purchase
pattern and purchase amount

When to use association rules

You might be interested in directly determining which products
tend to be purchased together. For example, you might find that
bathing suits and sunglasses are frequently purchased at the
same time, or that people who purchase certain cult movies, like
Repo Man, will often buy the movie soundtrack at the same
time.

This is a good application for association rules (or even
recommendation systems). You can mine useful product
recommendations: whenever you observe that someone has put
a bathing suit into their shopping cart, you can recommend
suntan lotion, as well. This is shown in figure 5.5. We’ll cover
the Apriori algorithm for discovering association rules in section
8.2.

Figure 5.5. Notional example of f inding purchase patterns in your data

When to use nearest neighbor methods

Another way to make product recommendations is to find
similarities in people (figure 5.6). For example, to make a movie
recommendation to customer JaneB, you might look for the

three customers whose movie rental histories are the most like
hers. Any movies that those three people rented, but JaneB has
not, are potentially useful recommendations for her.

Figure 5.6. Look to the customers with similar movie-watching patterns as
JaneB for her movie recommendations.

This can be solved with nearest neighbor (or k-nearest neighbor
methods, with K = 3). Nearest neighbor algorithms predict
something about a data point p (like a customer’s future
purchases) based on the data point or points that are most
similar to p. We’ll cover the nearest neighbor approach in section
6.3.3.

5.1.4. Problem-to-method mapping

Table 5.2 maps some typical business problems to their
corresponding machine learning task, and to some typical
algorithms to tackle each task.

Table 5.2. From problem to approach

Example tasks Machine learning
terminology

Typical algorithms

Identify ing spam email Sorting products in a
product catalog Identify ing loans that are about
to default Assigning customers to customer
clusters

Classification:
assigning known
labels to objects

Decision trees
Naive Bayes
Logistic regression
(with a threshold)
Support vector
machines

Predicting the value of AdWords Estimating the
probability that a loan will default Predicting
how much a marketing campaign will increase
traffic or sales

Regression: predicting
or forecasting
numerical values

Linear regression
Logistic regression

Finding products that are purchased together
Identify ing web pages that are often visited in
the same session Identify ing successful (much-
clicked) combinations of web pages and
AdWords

Association rules:
finding objects that
tend to appear in the
data together

Apriori

Identify ing groups of customers with the same
buy ing patterns Identify ing groups of products
that are popular in the same regions or with the
same customer clusters Identify ing news items
that are all discussing similar events

Clustering: finding
groups of objects that
are more similar to
each other than to
objects in other
groups

K-means

Making product recommendations for a
customer based on the purchases of other
similar customers Predicting the final price of
an auction item based on the final prices of
similar products that have been auctioned in the
past

Nearest neighbor:
predicting a property
of a datum based on
the datum or data that
are most similar to it

Nearest neighbor

Notice that some problems show up multiple times in the table.
Our mapping isn’t hard-and-fast; any problem can be
approached through a variety of mindsets, with a variety of
algorithms. We’re merely listing some common mappings and
approaches to typical business problems. Generally, these
should be among the first approaches to consider for a given
problem; if they don’t perform well, then you’ll want to

research other approaches, or get creative with data
representation and with variations of common algorithms.

Prediction vs. forecasting

In everyday language, we tend to use the terms prediction and
forecasting interchangeably. Technically, to predict is to pick an
outcome, such as “It will rain tomorrow,” and to forecast is to
assign a probability: “There’s an 80% chance it will rain
tomorrow.” For unbalanced class applications (such as
predicting credit default), the difference is important. Consider
the case of modeling loan defaults, and assume the overall
default rate is 5%. Identifying a group that has a 30% default
rate is an inaccurate prediction (you don’t know who in the
group will default, and most people in the group won’t default),
but potentially a very useful forecast (this group defaults at six
times the overall rate).

5.2. Evaluating models

When building a model, the first thing to check is if the model
even works on the data it was trained from. In this section, we
do this by introducing quantitative measures of model
performance. From an evaluation point of view, we group model
types this way:

Classification
Scoring
Probability estimation
Ranking
Clustering

For most model evaluations, we just want to compute one or

two summary scores that tell us if the model is effective. To
decide if a given score is high or low, we have to appeal to a few
ideal models: a null model (which tells us what low performance
looks like), a Bayes rate model (which tells us what high
performance looks like), and the best single-variable model
(which tells us what a simple model can achieve). We outline the
concepts in table 5.3.

Table 5.3. Ideal models to calibrate against

Ideal
model

Purpose

Null
model

A null model is the best model of a very simple form y ou’re try ing to outperform.
The two most typical null model choices are a model that is a single constant
(returns the same answer for all situations) or a model that is independent (doesn’t
record any important relation or interaction between inputs and outputs). We use
null models to lower-bound desired performance, so we usually compare to a best
null model. For example, in a categorical problem, the null model would always
return the most popular category (as this is the easy guess that is least often
wrong); for a score model, the null model is often the average of all the outcomes
(as this has the least square deviation from all of the outcomes); and so on. The
idea is this: if y ou’re not out-performing the null model, you’re not delivering
value. Note that it can be hard to do as good as the best null model, because even
though the null model is simple, it’s privileged to know the overall distribution of the
items it will be quizzed on. We always assume the null model we’re comparing to
is the best of all possible null models.

Bayes
rate
model

A Bay es rate model (also sometimes called a saturated model) is a best possible
model given the data at hand. The Bay es rate model is the perfect model and it
only makes mistakes when there are multiple examples with the exact same set of
known facts (same xs) but different outcomes (different ys). It isn’t always
practical to construct the Bayes rate model, but we invoke it as an upper bound on
a model evaluation score. If we feel our model is performing significantly above
the null model rate and is approaching the Bayes rate, then we can stop tuning.
When we have a lot of data and very few modeling features, we can estimate the
Bay es error rate. Another way to estimate the Bayes rate is to ask several
different people to score the same small sample of your data; the found
inconsistency rate can be an estimate of the Bayes rate.[a]

Single-
variable
models

We also suggest comparing any complicated model against the best single-
variable model y ou have available (see section 6.2 for how to convert single
variables into single-variable models). A complicated model can’t be justified if it
doesn’t outperform the best single-variable model available from your training
data. Also, business analy sts have many tools for building effective single-variable
models (such as pivot tables), so if your client is an analy st, they ’re likely looking
for performance above this level.

a There are a few machine learning magic methods that can introduce new synthetic
features and in fact alter the Bay es rate. Typically, this is done by adding higher-order
terms, interaction terms, or kernelizing.

In this section, we’ll present the standard measures of model
quality, which are useful in model construction. In all cases, we
suggest that in addition to the standard model quality
assessments you try to design your own custom “business-
oriented loss function” with your project sponsor or client.
Usually this is as simple as assigning a notional dollar value to
each outcome and then seeing how your model performs under
that criterion. Let’s start with how to evaluate classification
models and then continue from there.

5.2.1. Evaluating classification models

A classification model places examples into two or more
categories. The most common measure of classifier quality is
accuracy. For measuring classifier performance, we’ll first
introduce the incredibly useful tool called the confusion matrix
and show how it can be used to calculate many important
evaluation scores. The first score we’ll discuss is accuracy, and
then we’ll move on to better and more detailed measures such as
precision and recall.

Let’s use the example of classifying email into spam (email we in
no way want) and non-spam (email we want). A ready-to-go
example (with a good description) is the Spambase dataset
(http://mng.bz/e8Rh). Each row of this dataset is a set of
features measured for a specific email and an additional column
telling whether the mail was spam (unwanted) or non-spam
(wanted). We’ll quickly build a spam classification model so we
have results to evaluate. To do this, download the file
Spambase/spamD.tsv from the book’s GitHub site
(https://github.com/WinVector/zmPDSwR/tree/master/Spambase)
and then perform the steps shown in the following listing.

Listing 5.1. Building and applying a logistic regression spam model

http://mng.bz/e8Rh
https://github.com/WinVector/zmPDSwR/tree/master/Spambase

spamD <- read.table('spamD.tsv',header=T,sep='\t')
spamTrain <- subset(spamD,spamD$rgroup>=10)
spamTest <- subset(spamD,spamD$rgroup<10)
spamVars <- setdiff(colnames(spamD),list('rgroup','spam'))
spamFormula <- as.formula(paste('spam=="spam"',
 paste(spamVars,collapse=' + '),sep=' ~ '))
spamModel <- glm(spamFormula,family=binomial(link='logit'),

 data=spamTrain)
spamTrain$pred <- predict(spamModel,newdata=spamTrain,
 type='response')
spamTest$pred <- predict(spamModel,newdata=spamTest,
 type='response')
print(with(spamTest,table(y=spam,glmPred=pred>0.5)))
glmPred
y FALSE TRUE
non-spam 264 14
spam 22 158

A sample of the results of our simple spam classifier is shown in
the next listing.

Listing 5.2. Spam classif ications

> sample <- spamTest[c(7,35,224,327),c('spam','pred')]
> print(sample)
 spam pred
115 spam 0.9903246227
361 spam 0.4800498077
2300 non-spam 0.0006846551
3428 non-spam 0.0001434345

The confusion matrix

The absolute most interesting summary of classifier
performance is the confusion matrix. This matrix is just a table
that summarizes the classifier’s predictions against the actual
known data categories.

The confusion matrix is a table counting how often each
combination of known outcomes (the truth) occurred in
combination with each prediction type. For our email spam
example, the confusion matrix is given by the following R
command.

Listing 5.3. Spam confusion matrix

> cM <- table(truth=spamTest$spam,prediction=spamTest$pred>0.5)
> print(cM)
 prediction
truth FALSE TRUE

 non-spam 264 14
 spam 22 158

Using this summary, we can now start to judge the performance
of the model. In a two-by-two confusion matrix, every cell has a
special name, as illustrated in table 5.4.

Table 5.4. Standard two-by-two confusion matrix

Prediction=NEGATIVE Prediction=POSITIVE

Truth mark=NOT IN
CATEGORY

True negatives (TN)
cM[1,1]=264

False positives (FP)
cM[1,2]=14

Truth mark=IN CATEGORY False negatives (FN)
cM[2,1]=22

True positives (TP)
cM[2,2]=158

Changing a score to a classif ication

Note that we converted the numerical prediction score into a
decision by checking if the score was above or below 0.5. For
some scoring models (like logistic regression) the 0.5 score is
likely a high accuracy value. However, accuracy isn’t always the
end goal, and for unbalanced training data the 0.5 threshold
won’t be good. Picking thresholds other than 0.5 can allow the
data scientist to trade precision for recall (two terms that we’ll
define later in this chapter). You can start at 0.5, but consider
trying other thresholds and looking at the ROC curve.

Most of the performance measures of a classifier can be read off
the entries of this confusion matrix. We start with the most
common measure: accuracy.

Accuracy

Accuracy is by far the most widely known measure of classifier
performance. For a classifier, accuracy is defined as the number
of items categorized correctly divided by the total number of
items. It’s simply what fraction of the time the classifier is

correct. At the very least, you want a classifier to be accurate. In
terms of our confusion matrix, accuracy is
(TP+TN)/(TP+FP+TN+FN)=(cM[1,1]+cM[2,2])/sum(cM) or
92% accurate. The error of around 8% is unacceptably high for a
spam filter, but good for illustrating different sorts of model
evaluation criteria.

Categorization accuracy isn’t the same as numeric accuracy

It’s important to not confuse accuracy used in a classification
sense with accuracy used in a numeric sense (as in ISO 5725,
which defines score-based accuracy as a numeric quantity that
can be decomposed into numeric versions of trueness and
precision). These are, unfortunately, two different meanings of
the word.

Before we move on, we’d like to share the confusion matrix of a
good spam filter. In the next listing we create the confusion
matrix for the Akismet comment spam filter from the Win-
Vector blog.

Listing 5.4. Entering data by hand

> t <- as.table(matrix(data=c(288-1,17,1,13882-
17),nrow=2,ncol=2))
> rownames(t) <- rownames(cM)
> colnames(t) <- colnames(cM)
> print(t)
 FALSE TRUE
non-spam 287 1
spam 17 13865

Because the Akismet filter uses link destination clues and
determination from other websites (in addition to text features),
it achieves a more acceptable accuracy of
(t[1,1]+t[2,2])/sum(t), or over 99.87%. More importantly,
Akismet seems to have suppressed fewer good comments. Our
next section on precision and recall will help quantify this

distinction.

Accuracy is an inappropriate measure for unbalanced classes

Suppose we have a situation where we have a rare event (say,
severe complications during childbirth). If the event we’re trying
to predict is rare (say, around 1% of the population), the null
model—the rare event never happens—is very accurate. The
null model is in fact more accurate than a useful (but not perfect
model) that identifies 5% of the population as being “at risk”
and captures all of the bad events in the 5%. This is not any sort
of paradox. It’s just that accuracy is not a good measure for
events that have unbalanced distribution or unbalanced costs
(different costs of “type 1” and “type 2” errors).

Precision and recall

Another evaluation measure used by machine learning
researchers is a pair of numbers called precision and recall.
These terms come from the field of information retrieval and are
defined as follows. Precision is what fraction of the items the
classifier flags as being in the class actually are in the class. So
precision is TP/(TP+FP), which is
cM[2,2]/(cM[2,2]+cM[1,2]), or about 0.92 (it is only a
coincidence that this is so close to the accuracy number we
reported earlier). Again, precision is how often a positive
indication turns out to be correct. It’s important to remember
that precision is a function of the combination of the classifier
and the dataset. It doesn’t make sense to ask how precise a
classifier is in isolation; it’s only sensible to ask how precise a
classifier is for a given dataset.

In our email spam example, 93% precision means 7% of what
was flagged as spam was in fact not spam. This is an

unacceptable rate for losing possibly important messages.
Akismet, on the other hand, had a precision of
t[2,2]/(t[2,2]+t[1,2]), or over 99.99%, so in addition to
having high accuracy, Akismet has even higher precision (very
important in a spam filtering application).

The companion score to precision is recall. Recall is what
fraction of the things that are in the class are detected by the
classifier, or TP/(TP+FN)=cM[2,2]/(cM[2,2]+cM[2,1]). For
our email spam example this is 88%, and for the Akismet
example it is 99.87%. In both cases most spam is in fact tagged
(we have high recall) and precision is emphasized over recall
(which is appropriate for a spam filtering application).

It’s important to remember this: precision is a measure of
confirmation (when the classifier indicates positive, how often it
is in fact correct), and recall is a measure of utility (how much
the classifier finds of what there actually is to find). Precision
and recall tend to be relevant to business needs and are good
measures to discuss with your project sponsor and client.

F1

The F1 score is a useful combination of precision and recall. If
either precision or recall is very small, then F1 is also very
small. F1 is defined as
2*precision*recall/(precision+recall). So our email
spam example with 0.93 precision and 0.88 recall has an F1
score of 0.90. The idea is that a classifier that improves
precision or recall by sacrificing a lot of the complementary
measure will have a lower F1.

Sensitivity and specif icity

Scientists and doctors tend to use a pair of measures called
sensitivity and specificity.

Sensitivity is also called the true positive rate and is exactly equal
to recall. Specificity is also called the true negative rate and is
equal to TN/(TN+FP)=cM[1,1]/(cM[1,1] +cM[1,2]) or about
95%. Both sensitivity and specificity are measures of effect:
what fraction of class members are identified as positive and
what fraction of non-class members are identified as negative.

An important property of sensitivity and specificity is this: if
you flip your labels (switch from spam being the class you’re
trying to identify to non-spam being the class you’re trying to
identify), you just switch sensitivity and specificity. Also, any
of the so-called null classifiers (classifiers that always say
positive or always say negative) always return a zero score on
either sensitivity or specificity. So useless classifiers always
score poorly on at least one of these measures. Finally, unlike
precision and accuracy, sensitivity and specificity each only
involve entries from a single row of table 5.4. So they’re
independent of the population distribution (which means
they’re good for some applications and poor for others).

Common classif ication performance measures

Table 5.5 summarizes the behavior of both the email spam
example and the Akismet example under the common measures
we’ve discussed.

Table 5.5. Example classif ier performance measures

Measure Formula Email spam example Akismet spam example

Accuracy (TP+TN)/(TP+FP+TN+FN) 0.9214 0.9987

Precision TP/(TP+FP) 0.9187 0.9999

Recall TP/(TP+FN) 0.8778 0.9988

Sensitivity TP/(TP+FN) 0.8778 0.9988

Specificity TN/(TN+FP) 0.9496 0.9965

All of these formulas can seem confusing, and the best way to
think about them is to shade in various cells in table 5.4. If your

denominator cells shade in a column, then you’re measuring a
confirmation of some sort (how often the classifier’s decision is
correct). If your denominator cells shade in a row, then you’re
measuring effectiveness (how much of a given class is detected
by a the classifier). The main idea is to use these standard scores
and then work with your client and sponsor to see what most
models their business needs. For each score, you should ask
them if they need that score to be high and then run a quick
thought experiment with them to confirm you’ve gotten their
business need. You should then be able to write a project goal in
terms of a minimum bound on a pair of these measures. Table
5.6 shows a typical business need and an example follow-up
question for each measure.

Table 5.6. Classif ier performance measures business stories

Measure Typical business
need

Follow-up question

Accuracy
“We need most of
our decisions to be
correct.”

“Can we tolerate being wrong 5% of the time? And do
users see mistakes like spam marked as non-spam or non-
spam marked as spam as being equivalent?”

Precision

“Most of what we
marked as spam
had darn well better
be spam.”

“That would guarantee that most of what is in the spam
folder is in fact spam, but it isn’t the best way to measure
what fraction of the user’s legitimate email is lost. We
could cheat on this goal by sending all our users a bunch of
easy -to-identify spam that we correctly identify. May be
we really want good specificity.”

Recall

“We want to cut
down on the
amount of spam a
user sees by a
factor of 10
(eliminate 90% of
the spam).”

“If 10% of the spam gets through, will the user see mostly
non-spam mail or mostly spam? Will this result in a good
user experience?”

Sensitivity

“We have to cut a
lot of spam,
otherwise the user
won’t see a
benefit.”

“If we cut spam down to 1% of what it is now, would that
be a good user experience?”

Specificity

“We must be at
least three nines on
legitimate email;
the user must see at
least 99.9% of their
non-spam email.”

“Will the user tolerate missing 0.1% of their legitimate
email, and should we keep a spam folder the user can look
at?”

One conclusion for this dialogue process on spam classification
would be to recommend writing the business goals as
maximizing sensitivity while maintaining a specificity of at least
0.999.

5.2.2. Evaluating scoring models

Evaluating models that assign scores can be a somewhat visual
task. The main concept is looking at what is called the residuals
or the difference between our predictions f(x[i,]) and actual
outcomes y[i]. Figure 5.7 illustrates the concept.

Figure 5.7. Scoring residuals

The data and graph in figure 5.7 were produced by the R
commands in the following listing.

Listing 5.5. Plotting residuals

d <- data.frame(y=(1:10)^2,x=1:10)

model <- lm(y~x,data=d)
d$prediction <- predict(model,newdata=d)
library('ggplot2')
ggplot(data=d) + geom_point(aes(x=x,y=y)) +
 geom_line(aes(x=x,y=prediction),color='blue') +
 geom_segment(aes(x=x,y=prediction,yend=y,xend=x)) +
 scale_y_continuous('')

Root mean square error

The most common goodness-of-fit measure is called root mean
square error (RMSE). This is the square root of the average
square of the difference between our prediction and actual
values. Think of it as being like a standard deviation: how much
your prediction is typically off. In our case, the RMSE is
sqrt(mean((d$prediction-d$y)^2)), or about 7.27. The
RMSE is in the same units as your y-values are, so if your y-
units are pounds, your RMSE is in pounds. RMSE is a good
measure, because it is often what the fitting algorithms you’re
using are explicitly trying to minimize. A good RMSE business
goal would be “We want the RMSE on account valuation to be
under $1,000 per account.”

Most RMSE calculations (including ours) don’t include any bias
correction for sample size or model complexity, though you’ll
see adjusted RMSE in chapter 7.

R-squared

Another important measure of fit is called R-squared (or R2, or
the coefficient of determination). It’s defined as 1.0 minus how
much unexplained variance your model leaves (measured relative
to a null model of just using the average y as a prediction). In our
case, the R-squared is 1-sum((d$prediction-

d$y)^2)/sum((mean(d$y)-d$y)^2), or 0.95. R-squared is
dimensionless (it’s not the units of what you’re trying to
predict), and the best possible R-squared is 1.0 (with near-zero
or negative R-squared being horrible). R-squared can be thought
of as what fraction of the y variation is explained by the model.

For linear regression (with appropriate bias corrections), this
interpretation is fairly clear. Some other models (like logistic
regression) use deviance to report an analogous quantity called
pseudo R-squared.

Under certain circumstances, R-squared is equal to the square of
another measure called the correlation (or Pearson product-
moment correlation coefficient; see http://mng.bz/ndYf). R-
squared can be derived from RMSE plus a few facts about the
data (so R-squared can be thought of as a normalized version of
RMSE). A good R-squared business goal would be “We want
the model to explain 70% of account value.”

However, R-squared is not always the best business-oriented
metric. For example, it’s hard to tell what a 10% reduction of
RMSE would mean in relation to the Netflix Prize. But it would
be easy to map the number of ranking errors and amount of
suggestion diversity to actual Netflix business benefits.

Correlation

Correlation is very helpful in checking if variables are
potentially useful in a model. Be advised that there are at least
three calculations that go by the name of correlation: Pearson,
Spearman, and Kendall (see help(cor)). The Pearson
coefficient checks for linear relations, the Spearman coefficient
checks for rank or ordered relations, and the Kendall coefficient
checks for degree of voting agreement. Each of these coefficients
performs a progressively more drastic transform than the one
before and has well-known direct significance tests (see
help(cor.test)).

Don’t use correlation to evaluate model quality in production

It’s tempting to use correlation to measure model quality, but we
advise against it. The problem is this: correlation ignores shifts

http://mng.bz/ndYf

and scaling factors. So correlation is actually computing if there
is any shift and rescaling of your predictor that is a good
predictor. This isn’t a problem for training data (as these
predictions tend to not have a systematic bias in shift or scaling
by design) but can mask systematic errors that may arise when a
model is used in production.

Absolute error

For many applications (especially those involving predicting
monetary amounts), measures such as absolute error
(sum(abs(d$prediction-d$y))), mean absolute error
(sum(abs(d$prediction-d$y))/length(d$y)), and relative
absolute error (sum(abs(d$prediction-
d$y))/sum(abs(d$y))) are tempting measures. It does make
sense to check and report these measures, but it’s usually not
advisable to make these measures the project goal or to attempt
to directly optimize them. This is because absolute error
measures tend not to “get aggregates right” or “roll up
reasonably” as most of the squared errors do.

As an example, consider an online advertising company with
three advertisement purchases returning $0, $0, and $25
respectively. Suppose our modeling task is as simple as picking
a single summary value not too far from the original three prices.
The price minimizing absolute error is the median, which is $0,
yielding an absolute error of sum(abs(c(0,0,25)-20)), or $25.
The price minimizing square error is the mean, which is $8.33
(which has a worse absolute error of $33.33). However the
median price of $0 misleadingly values the entire campaign at
$0. One great advantage of the mean is this: aggregating a mean
prediction gives an unbiased prediction of the aggregate in
question. It is often an unstated project need that various totals
or roll-ups of the predicted amounts be close to the roll-ups of
the unknown values to be predicted. For monetary applications,

predicting the totals or aggregates accurately is often more
important than getting individual values right. In fact, most
statistical modeling techniques are designed for regression,
which is the unbiased prediction of means or expected values.

5.2.3. Evaluating probability models

Probability models are useful for both classification and scoring
tasks. Probability models are models that both decide if an item
is in a given class and return an estimated probability (or
confidence) of the item being in the class. The modeling
techniques of logistic regression and decision trees are fairly
famous for being able to return good probability estimates. Such
models can be evaluated on their final decisions, as we’ve
already shown in section 5.2.1, but they can also be evaluated in
terms of their estimated probabilities. We’ll continue the
example from section 5.2.1 in this vein. In our opinion, most of
the measures for probability models are very technical and very
good at comparing the qualities of different models on the same
dataset. But these criteria aren’t easy to precisely translate into
businesses needs. So we recommend tracking them, but not
using them with your project sponsor or client.

When thinking about probability models, it’s useful to construct
a double density plot (illustrated in figure 5.8).

Figure 5.8. Distribution of score broken up by known classes

Listing 5.6. Making a double density plot

ggplot(data=spamTest) +
 geom_density(aes(x=pred,color=spam,linetype=spam))

Figure 5.8 is particularly useful at picking and explaining
classifier thresholds. It also illustrates what we’re going to try to
check when evaluating estimated probability models: examples
in the class should mostly have high scores and examples not in
the class should mostly have low scores.

The receiver operating characteristic curve

The receiver operating characteristic curve (or ROC curve) is a
popular alternative to the double density plot. For each different
classifier we’d get by picking a different score threshold
between positive and negative determination, we plot both the
true positive rate and the false positive rate. This curve
represents every possible trade-off between sensitivity and
specificity that is available for this classifier. The steps to
produced the ROC plot in figure 5.9 are shown in the next
listing. In the last line, we compute the AUC or area under the
curve, which is 1.0 for perfect classifiers and 0.5 for classifiers
that do no better than random guesses.

Figure 5.9. ROC curve for the email spam example

Listing 5.7. Plotting the receiver operating characteristic curve

library('ROCR')

eval <- prediction(spamTest$pred,spamTest$spam)
plot(performance(eval,"tpr","fpr"))
print(attributes(performance(eval,'auc'))$y.values[[1]])
[1] 0.9660072

We’re not big fans of the AUC; many of its claimed
interpretations are either incorrect (see http://mng.bz/Zugx) or
not relevant to actual business questions.[1] But working around
the ROC curve with your project client is a good way to explore
possible project goal trade-offs.

1 See D. J. Hand, “Measuring classifier performance: a coherent alternative to the
area under the ROC curve,” Machine Learning, 2009, 77(1), pp. 103-123.

Log likelihood

An important evaluation of an estimated probability is the log
likelihood. The log likelihood is the logarithm of the product of
the probability the model assigned to each example.[2] For a
spam email with an estimated likelihood of 0.9 of being spam,
the log likelihood is log(0.9); for a non-spam email, the same
score of 0.9 is a log likelihood of log(1-0.9) (or just the log of
0.1, which was the estimated probability of not being spam).
The principle is this: if the model is a good explanation, then the
data should look likely (not implausible) under the model. The
following listing shows how the log likelihood of our example is
derived.

2 The traditional way of calculating the log likelihood is to compute the sum of the
logarithms of the probabilities the model assigns to each example.

Listing 5.8. Calculating log likelihood

> sum(ifelse(spamTest$spam=='spam',
 log(spamTest$pred),
 log(1-spamTest$pred)))
[1] -134.9478
> sum(ifelse(spamTest$spam=='spam',
 log(spamTest$pred),
 log(1-spamTest$pred)))/dim(spamTest)[[1]]
[1] -0.2946458

The first term (-134.9478) is the model log likelihood the model

http://mng.bz/Zugx

assigns to the test data. This number will always be negative,
and is better as we get closer to 0. The second expression is the
log likelihood rescaled by the number of data points to give us a
rough average surprise per data point. Now a good null model in
this case would be always returning the probability of 180/458
(the number of known spam emails over the total number of
emails as the best single-number estimate of the chance of
spam). This null model gives the log likelihood shown in the
next listing.

Listing 5.9. Computing the null model’s log likelihood

> pNull <- sum(ifelse(spamTest$spam=='spam',1,0))/dim(spamTest)
[[1]]
> sum(ifelse(spamTest$spam=='spam',1,0))*log(pNull) +
 sum(ifelse(spamTest$spam=='spam',0,1))*log(1-pNull)
[1] -306.8952

The spam model assigns a log likelihood of -134.9478, which is
much better than the null model’s -306.8952.

Deviance

Another common measure when fitting probability models is the
deviance. The deviance is defined as -2*(logLikelihood-S),
where S is a technical constant called “the log likelihood of the
saturated model.” The lower the residual deviance, the better the
model. In most cases, the saturated model is a perfect model that
returns probability 1 for items in the class and probability 0 for
items not in the class (so S=0). We’re most concerned with
differences of deviance, such as the difference between the null
deviance and the model deviance (and in the case of our example,
the Ss cancels out). In our case, this difference is -2*

(-306.8952-S) - -2*(-134.9478-S)=344.9. With S=0 the
deviance can be used to calculate a pseudo R-squared (see
http://mng.bz/j338). Think of the null deviance as how much
variation there is to explain, and the model deviance as how
much was left unexplained by the model. So in this case, our

http://mng.bz/j338

pseudo R-squared is 1 - (-2*(-134.9478-S))/(-2*

(-306.8952-S)) =0.56 (good, but not great).

AIC

An important variant of deviance is the Akaike information
criterion (AIC). This is equivalent to deviance +

2*numberOfParameters used in the model used to make the
prediction. Thus, AIC is deviance penalized for model
complexity. A nice trick is to do as the Bayesians do: use
Bayesian information criterion (BIC) (instead of AIC) where an
empirical estimate of the model complexity (such as
2*2^entropy, instead of 2*numberOfParameters) is used as
the penalty. The AIC is useful for comparing models with
different measures of complexity and variables with differing
number of levels.[3]

3 Rigorously balancing model quality and model complexity is a deep problem.

Entropy

Entropy is a fairly technical measure of information or surprise,
and is measured in a unit called bits. If p is a vector containing
the probability of each possible outcome, then the entropy of
the outcomes is calculated as sum(-p*log(p,2)) (with the
convention that 0*log(0) = 0). As entropy measures surprise,
you want what’s called the conditional entropy of your model to
be appreciably lower than the original entropy. The conditional
entropy is a measure that gives an indication of how good the
prediction is on different categories, tempered by how often it
predicts different categories. In terms of our confusion matrix
cM, we can calculate the original entropy and conditional (or
residual) entropy as shown next.

Listing 5.10. Calculating entropy and conditional entropy

We see the initial entropy is 0.9667 bits per example (so a lot of
surprise is present), and the conditional entropy is only 0.397
bits per example.

5.2.4. Evaluating ranking models

Ranking models are models that, given a set of examples, sort
the rows or (equivalently) assign ranks to the rows. Ranking
models are often trained by converting groups of examples into
many pair-wise decisions (statements like “a is before b”). You
can then apply the criteria for evaluating classifiers to quantify
the quality of your ranking function. Two other standard
measures of a ranking model are Spearman’s rank correlation
coefficient (treating assigned rank as a numeric score) and the
data mining concept of lift (treating ranking as sorting; see
http://mng.bz/1LBl). Ranking evaluation is well handled by
business-driven ad hoc methods, so we won’t spend any more
time on this issue.

5.2.5. Evaluating clustering models

http://mng.bz/1LBl

Clustering models are hard to evaluate because they’re
unsupervised: the clusters that items are assigned to are
generated by the modeling procedure, not supplied in a series of
annotated examples. Evaluation is largely checking observable
summaries about the clustering. As a quick example, we’ll
demonstrate evaluating division of 100 random points in a plane
into five clusters. We generate our example data and proposed k-
means-based clustering in the next listing.

Listing 5.11. Clustering random data in the plane

set.seed(32297)
d <- data.frame(x=runif(100),y=runif(100))
clus <- kmeans(d,centers=5)
d$cluster <- clus$cluster

Because our example is two-dimensional, it’s easy to visualize,
so we can use the following commands to generate figure 5.10,
which we can refer to when thinking about clustering quality.

Figure 5.10. Clustering example

Listing 5.12. Plotting our clusters

library('ggplot2'); library('grDevices')
h <- do.call(rbind,
 lapply(unique(clus$cluster),
 function(c) { f <- subset(d,cluster==c); f[chull(f),]}))
ggplot() +
 geom_text(data=d,aes(label=cluster,x=x,y=y,
 color=cluster),size=3) +
 geom_polygon(data=h,aes(x=x,y=y,group=cluster,fill=as.factor(cluster)),
 alpha=0.4,linetype=0) +
 theme(legend.position = "none")

The first qualitative metrics are how many clusters you have
(sometimes chosen by the user, sometimes chosen by the
algorithm) and the number of items in each cluster. This is
quickly calculated by the table command.

Listing 5.13. Calculating the size of each cluster

> table(d$cluster)

 1 2 3 4 5
10 27 18 17 28

We see we have five clusters, each with 10–28 points. Two
things to look out for are hair clusters (clusters with very few
points) and waste clusters (clusters with a very large number of
points). Both of these are usually not useful—hair clusters are
essentially individual examples, and items in waste clusters
usually have little in common.

Intra-cluster distances versus cross-cluster distances

A desirable feature in clusters is for them to be compact in
whatever distance scheme you used to define them. The
traditional measure of this is comparing the typical distance
between two items in the same cluster to the typical distance
between two items from different clusters. We can produce a
table of all these distance facts as shown in the following listing.

Listing 5.14. Calculating the typical distance between items in every pair of
clusters

> library('reshape2')
> n <- dim(d)[[1]]
> pairs <- data.frame(

 ca = as.vector(outer(1:n,1:n,function(a,b) d[a,'cluster'])),
 cb = as.vector(outer(1:n,1:n,function(a,b) d[b,'cluster'])),
 dist = as.vector(outer(1:n,1:n,function(a,b)
 sqrt((d[a,'x']-d[b,'x'])^2 + (d[a,'y']-
d[b,'y'])^2)))
)
> dcast(pairs,ca~cb,value.var='dist',mean)
 ca 1 2 3 4 5
1 1 0.1478480 0.6524103 0.3780785 0.4404508 0.7544134
2 2 0.6524103 0.2794181 0.5551967 0.4990632 0.5165320
3 3 0.3780785 0.5551967 0.2031272 0.6122986 0.4656730
4 4 0.4404508 0.4990632 0.6122986 0.2048268 0.8365336
5 5 0.7544134 0.5165320 0.4656730 0.8365336 0.2221314

The resulting table gives the mean distance from points in one
cluster to points in another. For example, the mean distance
between points in cluster 3 is given in the [3,3] position of the
table and is 0.2031272. What we are looking for is intra-cluster
distances (the diagonal elements of the table) to be smaller than
inter-cluster distances (the off-diagonal elements of the table).

Treating clusters as classif ications or scores

Distance metrics are good for checking the performance of
clustering algorithms, but they don’t always translate to
business needs. When sharing a clustering with your project
sponsor or client, we advise treating the cluster assignment as if
it were a classification. For each cluster label, generate an
outcome assigned to the cluster (such as all email in the cluster is
marked as spam/non-spam, or all accounts in the cluster are
treated as having a revenue value equal to the mean revenue
value in the cluster). Then use either the classifier or scoring
model evaluation ideas to evaluate the value of the clustering.
This scheme works best if the column you’re considering
outcome (such as spam/non-spam or revenue value of the
account) was not used as one of the dimensions in constructing
the clustering.

5.3. Validating models

We’ve discussed how to choose a modeling technique and
evaluate the performance of the model on training data. At this
point your biggest worry should be the validity of your model:
will it show similar quality on new data in production? We call
the testing of a model on new data (or a simulation of new data
from our test set) model validation. The following sections
discuss the main problems we try to identify.

5.3.1. Identifying common model problems

Table 5.7 lists some common modeling problems you may
encounter.

Table 5.7. Common model problems

Problem Description

Bias Systematic error in the model, such as always underpredicting.

Variance
Undesirable (but non-systematic) distance between predictions and actual
values. Often due to oversensitivity of the model training procedure to
small variations in the distribution of training data.

Overfit

Features of the model that arise from relations that are in the training data,
but not representative of the general population. Overfit can usually be
reduced by acquiring more training data and by techniques like
regularization and bagging.

Nonsignificance
A model that appears to show an important relation when in fact the
relation may not hold in the general population, or equally good
predictions can be made without the relation.

Overf itting

A lot of modeling problems are related to overfitting. Looking
for signs of overfit is a good first step in diagnosing models.

An overfit model looks great on the training data and performs
poorly on new data. A model’s prediction error on the data that
it trained from is called training error. A model’s prediction
error on new data is called generalization error. Usually, training
error will be smaller than generalization error (no big surprise).
Ideally, though, the two error rates should be close. If
generalization error is large, then your model has probably

overfit—it’s memorized the training data instead of discovering
generalizable rules or patterns. You want to avoid overfitting by
preferring (as long as possible) simpler models, which do in fact
tend to generalize better.[4] In this section, we’re not just
evaluating a single model, we’re evaluating your data and work
procedures. Figure 5.11 shows the typical appearance of a
reasonable model and an overfit model.

4 Other techniques to prevent overfitting include regularization (preferring small
effects from model variables) and bagging (averaging different models to reduce
variance).

Figure 5.11. A notional illustration of overf itting

An overly complicated and overfit model is bad for at least two
reasons. First, an overfit model may be much more complicated
than anything useful. For example, the extra wiggles in the
overfit part of figure 5.11 could make optimizing with respect to
x needlessly difficult. Also, as we mentioned, overfit models
tend to be less accurate in production than during training, which
is embarrassing.

5.3.2. Quantifying model soundness

It’s important that you know, quantify, and share how sound
your model is. Evaluating a model only on the data used to
construct it is favorably biased: models tend to look good on the
data they were built from. Also, a single evaluation of model
performance gives only a point estimate of performance. You
need a good characterization of how much potential variation
there is in your model production and measurement procedure,
and how well your model is likely to perform on future data. We
see these questions as being fundamentally frequentist concerns
because they’re questions about how model behavior changes
under variations in data. The formal statistical term closest to
these business questions is significance, and we’ll abuse
notation and call what we’re doing significance testing.[5] In this
section, we’ll discuss some testing procedures, but postpone
demonstrating implementation until later in this book.

5 A lot of what we’re doing is in fact significance testing. We just re-derive it in small
steps to make sure we keep our testing strategy linked in an explainable way to our
original business goals.

Frequentist and Bayesian inference

Following Efron,[6] there are at least two fundamental ways of
thinking about inference: frequentist and Bayesian (there are
more; for example, Fisherian and information theoretic). In
frequentist inference, we assume there is a single unknown fixed
quantity (be it a parameter, model, or prediction) that we’re
trying to estimate. The frequentist inference for a given dataset
is a point estimate that varies as different possible datasets are
proposed (yielding a distribution of estimates). In Bayesian
inference, we assume that the unknown quantity to be estimated
has many plausible values modeled by what’s called a prior
distribution. Bayesian inference is then using data (that is

considered as unchanging) to build a tighter posterior
distribution for the unknown quantity.

6 See Bradley Efron, “Controversies In The Foundation Of Statistics,” American
Mathematical Monthly, 1978, 85 (4), pp. 231-246.

There’s a stylish snobbery that Bayesian inference is newer and
harder to do than frequentist inference, and therefore more
sophisticated. It is true that Bayesian methods model the joint
nature of parameters and data more explicitly than frequentist
methods. And frequentist methods tend to be much more
compact and efficient (which isn’t always a plus, as frequentist
testing procedures can degenerate into ritual when applied
without thought).

In practice, choosing your inference framework isn’t a matter of
taste, but a direct consequence of what sort of business question
you’re trying to answer. If you’re worried about the sensitivity
of your result to variation in data and modeling procedures, you
should work in the frequentist framework. If you’re worried
about the sensitivity of your result to possible variation in the
unknown quantity to be modeled, you should work in the
Bayesian framework (see http://mng.bz/eHGj).

5.3.3. Ensuring model quality

The standards of scientific presentation are that you should
always share how sensitive your conclusions are to variations in
your data and procedures. You should never just show a model
and its quality statistics. You should also show the likely
distribution of the statistics under variations in your modeling
procedure or your data. This is why you wouldn’t say
something like “We have an accuracy of 90% on our training
data,” but instead you’d run additional experiments so you

http://mng.bz/eHGj

could say something like “We see an accuracy of 85% on hold-
out data.” Or even better: “We saw accuracies of at least 80% on
all but 5% of our reruns.” These distributional statements tell
you if you need more modeling features and/or more data.

Testing on held-out data

The data used to build a model is not the best data for testing
the model’s performance. This is because there’s an upward
measurement bias in this data. Because this data was seen during
model construction, and model construction is optimizing your
performance measure (or at least something related to your
performance measure), you tend to get exaggerated measures of
performance on your training data. Most standard fitting
procedures have some built-in measure for this effect (for
example, the “adjusted R-squared” report in linear regression,
discussed in section 7.1.5) and the effect tends to diminish as
your training data becomes large with respect to the complexity
of your model.[7]

7 See, for example, “The Unreasonable Effectiveness of Data,” Alon Halevy, Peter
Norvig, and Fernando Pereira, IEEE Intelligent Systems, 2009.

The precaution for this optimistic bias we demonstrate
throughout this book is this: split your available data into test
and training. Perform all of your clever work on the training data
alone, and delay measuring your performance with respect to
your test data until as late as possible in your project (as all
choices you make after seeing your test or hold-out performance
introduce a modeling bias). The desire to keep the test data
secret for as long as possible is why we often actually split data
into training, calibration, and test sets (as we’ll demonstrate in
section 6.1.1).

K-fold cross-validation

Testing on hold-out data, while useful, only gives a single-point

estimate of model performance. In practice we want both an
unbiased estimate of our model’s future performance on new
data (simulated by test data) and an estimate of the distribution
of this estimate under typical variations in data and training
procedures. A good method to perform these estimates is k-fold
cross-validation and the related ideas of empirical resampling
and bootstrapping.

The idea behind k-fold cross-validation is to repeat the
construction of the model on different subsets of the available
training data and then evaluate the model only on data not seen
during construction. This is an attempt to simulate the
performance of the model on unseen future data. The need to
cross-validate is one of the reasons it’s critical that model
construction be automatable, such as with a script in a language
like R, and not depend on manual steps. Assuming you have
enough data to cross-validate (not having to worry too much
about the statistical efficiency of techniques) is one of the
differences between the attitudes of data science and traditional
statistics. Section 6.2.3 works through an example of automating
k-fold cross-validation.

Signif icance testing

Statisticians have a powerful idea related to cross-validation
called significance testing. Significance also goes under the name
of p-value and you will actually be asked, “What is your p-
value?” when presenting.

The idea behind significance testing is that we can believe our
model’s performance is good if it’s very unlikely that a naive
model (a null hypothesis) could score as well as our model. The
standard incantation in that case is “We can reject the null
hypothesis.” This means our model’s measured performance is
unlikely for the null model. Null models are always of a simple
form: assuming two effects are independent when we’re trying

to model a relation, or assuming a variable has no effect when
we’re trying to measure an effect strength.

For example, suppose you’ve trained a model to predict how
much a house will sell for, based on certain variables. You want
to know if your model’s predictions are better than simply
guessing the average selling price of a house in the neighborhood
(call this the null model). Your new model will mispredict a
given house’s selling price by a certain average amount, which
we’ll call err.model. The null model will also mispredict a
given house’s selling price by a different amount, err.null. The
null hypothesis is that D = (err.null - err.model) == 0—
on average, the new model performs the same as the null model.

When you evaluate your model over a test set of houses, you
will (hopefully) see that D = (err.null - err.model) > 0
(your model is more accurate). You want to make sure that this
positive outcome is genuine, and not just something you
observed by chance. The p-value is the probability that you’d
see a D as large as you observed if the two models actually
perform the same.

Our advice is this: always think about p-values as estimates of
how often you’d find a relation (between the model and the
data) when there actually is none. This is why low p-values are
good, as they’re estimates of the probabilities of undetected
disastrous situations (see http://mng.bz/A3G1). You might also
think of the p-value as the probability of your whole modeling
result being one big “false positive.” So, clearly, you want the p-
value (or the significance) to be small, say less than 0.05.

The traditional statistical method of computing significance or
p-values is through a Student’s t-test or an f-test (depending on
what you’re testing). For classifiers, there’s a particularly good
significance test that’s run on the confusion matrix called the
fisher.test(). These tests are built into most model fitters.

http://mng.bz/A3G1

They have a lot of math behind them that lets a statistician
avoid fitting more than one model. These tests also rely on a few
assumptions (to make the math work) that may or may not be
true about your data and your modeling procedure.

One way to directly simulate a bad modeling situation is by
using a permutation test. This is when you permute the input (or
independent) variables among examples. In this case, there’s no
real relation between the modeling features (which we have
permuted among examples) and the quantity to be predicted,
because in our new dataset the modeling features and the result
come from different (unrelated) examples. Thus each rerun of
the permuted procedure builds something much like a null
model. If our actual model isn’t much better than the population
of permuted models, then we should be suspicious of our actual
model. Note that in this case, we’re thinking about the
uncertainty of our estimates as being a distribution drawn about
the null model.

We could modify the code in section 6.2.3 to perform an
approximate permutation test by permuting the y-values each
time we resplit the training data. Or we could try a package that
performs the work and/or brings in convenient formulas for the
various probability and significance statements that come out of
permutation experiments (for example, http://mng.bz/SvyB).

Conf idence intervals

An important and very technical frequentist statistical concept
is the confidence interval. To illustrate, a 95% confidence
interval is an interval from an estimation procedure such that the
procedure is thought to have a 95% (or better) chance of
catching the true unknown value to be estimated in an interval. It
is not the case that there is a 95% chance that the unknown true
value is actually in the interval at hand (thought it’s often
misstated as such). The Bayesian alternative to confidence

http://mng.bz/SvyB

intervals is credible intervals (which can be easier to understand,
but do require the introduction of a prior distribution).

Using statistical terminology

The field of statistics has spent the most time formally studying
the issues of model correctness and model soundness
(probability theory, operations research, theoretical computer
science, econometrics, and a few other fields have of course also
contributed). Because of their priority, statisticians often insist
that the checking of model performance and soundness be solely
described in traditional statistical terms. But a data scientist
must present to many non-statistical audiences, so the reasoning
behind a given test is in fact best explicitly presented and
discussed. It’s not always practical to allow the dictates of a
single field to completely style a cross-disciplinary
conversation.

5.4. Summary

You now have some solid ideas on how to choose among
modeling techniques. You also know how to evaluate the quality
of data science work, be it your own or that of others. The
remaining chapters of part 2 of the book will go into more detail
on how to build, test, and deliver effective predictive models. In
the next chapter, we’ll actually start building predictive models,
using the simplest types of models that essentially memorize
and summarize portions of the training data.

Key takeaways

Always first explore your data, but don’t start modeling
before designing some measurable goals.
Divide you model testing into establishing the model’s
effect (performance on various metrics) and soundness

(likelihood of being a correct model versus arising from
overfitting).
Keep a portion of your data out of your modeling work
for final testing. You may also want to subdivide your
training data into training and calibration and to estimate
best values for various modeling parameters.
Keep many different model metrics in mind, and for a
given project try to pick the metrics that best model
your intended business goal.

Chapter 6. Memorization methods
This chapter covers

Building single-variable models
Cross-validated variable selection
Building basic multivariable models
Starting with decision trees, nearest neighbor, and naive
Bayes models

The simplest methods in data science are what we call
memorization methods. These are methods that generate
answers by returning a majority category (in the case of
classification) or average value (in the case of scoring) of a
subset of the original training data. These methods can vary
from models depending on a single variable (similar to the
analyst’s pivot table), to decision trees (similar to what are
called business rules), to nearest neighbor and Naive Bayes
methods.[1] In this chapter, you’ll learn how to use these
memorization methods to solve classification problems (though
the same techniques also work for scoring problems).

1 Be aware: memorization methods are a nonstandard classification of techniques that
we’re using to organize our discussion.

6.1. KDD and KDD Cup 2009

We’ll demonstrate all of the techniques in this chapter on the
KDD Cup 2009 dataset as our example dataset. The Conference
on Knowledge Discovery and Data Mining (KDD) is the
premier conference on machine learning methods. Every year
KDD hosts a data mining cup, where teams analyze a dataset
and then are ranked against each other. The KDD Cup is a huge
deal and the inspiration for the famous Netflix Prize and even

Kaggle competitions.

The KDD Cup 2009 provided a dataset about customer
relationship management. The contest supplied 230 facts about
50,000 credit card accounts. From these features, the goal was to
predict account cancellation (called churn), the innate tendency
to use new products and services (called appetency), and
willingness to respond favorably to marketing pitches (called
upselling).[2] As with many score-based competitions, this
contest concentrated on machine learning and deliberately
abstracted or skipped over a number of important data science
issues, such as cooperatively defining goals, requesting new
measurements, collecting data, and quantifying classifier
performance in terms of business goals. In fact, for this contest
we don’t have names or definitions for any of the independent
(or input) variables and no real definition of the dependent (or
outcome) variables. We have the advantage that the data is
already in a ready-to-model format (all input variables and the
results arranged in single rows). But we don’t know the meaning
of any variable (so we can’t merge in outside data sources), and
we can’t use any method that treats time and repetition of
events carefully (such as time series methods or survival
analysis).

2 Data available from http://mng.bz/RDJF. We share the steps to prepare this data for
modeling in R here: https://github.com/WinVector/zmPDSwR/tree/master/KDD2009.

To simulate the data science processes, we’ll assume that we can
use any column we’re given to make predictions (that all of
these columns are known prior to needing a prediction[3]), the
contest metric (AUC) is the correct one, and the AUC of the
top contestant is a good Bayes rate estimate (telling us when to
stop tuning).

3 Checking if a column is actually going to be available during prediction (and not
some later function of the unknown output) is a critical step in data science projects.

http://mng.bz/RDJF
https://github.com/WinVector/zmPDSwR/tree/master/KDD2009

The worst possible modeling outcome

The worst possible modeling outcome is not failing to find a
good model. The worst possible modeling outcome is thinking
you have a good model when you don’t. One of the easiest
ways to accidentally build such a deficient model is to have an
instrumental or independent variable that is in fact a subtle
function of the outcome. Such variables can easily leak into your
training data, especially when you have no knowledge or control
of variable meaning preparation. The point is this: such variables
won’t actually be available in a real deployment and often are in
training data packaged up by others.

6.1.1. Getting started with KDD Cup 2009 data

For our example, we’ll try to predict churn in the KDD dataset.
The KDD contest was judged in terms of AUC (area under the
curve, a measure of prediction quality discussed in section
5.2.3), so we’ll also use AUC as our measure of performance.[4]

The winning team achieved an AUC of 0.76 on churn, so we’ll
treat that as our upper bound on possible performance. Our
lower bound on performance is an AUC of 0.5, as this is the
performance of a useless model.

4 Also, as is common for example problems, we have no project sponsor to discuss
metrics with, so our choice of evaluation is a bit arbitrary.

This problem has a large number of variables, many of which
have a large number of possible levels. We’re also using the
AUC measure, which isn’t particularly resistant to overfitting
(not having built-in model complexity or chance corrections).
Because of this concern, we’ll split our data into three sets:
training, calibration, and test. The intent of the three-way split

is this: we’ll use the training set for most of our work, and we’ll
never look at the test set (we’ll reserve it for our final report of
model performance). The calibration set is used to simulate the
unseen test set during modeling—we’ll look at performance on
the calibration set to estimate if we’re overfitting. This three-
way split procedure is recommended by many researchers. In
this book, we emphasize a two-way training and test split and
suggest that, generally, steps like calibration and cross-validation
estimates be performed by repeatedly splitting the training
portion of the data (allowing for more efficient estimation than a
single split, and keeping the test data completely out of the
modeling effort). For simplicity in this example, we’ll split the
training portion of our data into training and calibration only a
single time. Let’s start work as shown in the following listing,
where we prepare the data for analysis and modeling.

Listing 6.1. Preparing the KDD data for analysis

We have also saved an R workspace with most of the data,
functions, and results of this chapter in the GitHub repository
that you can load with the command load('KDD2009.Rdata').
We’re now ready to build some single-variable models. Business
analysts almost always build single-variable models using
categorical features, so we’ll start with these.

Subsample to prototype quickly

Often the data scientist will be so engrossed with the business
problem, math, and data that they forget how much trial and
error is needed. It’s often an excellent idea to first work on a

small subset of your training data, so that it takes seconds to
debug your code instead of minutes. Don’t work with expensive
data sizes until you have to.

6.2. Building single-variable models

Single-variable models are simply models built using only one
variable at a time. Single-variable models can be powerful tools,
so it’s worth learning how to work well with them before
jumping into general modeling (which almost always means
multiple variable models). We’ll show how to build single-
variable models from both categorical and numeric variables. By
the end of this section, you should be able to build, evaluate, and
cross-validate single-variable models with confidence.

6.2.1. Using categorical features

A single-variable model based on categorical features is easiest to
describe as a table. For this task, business analysts use what’s
called a pivot table (which promotes values or levels of a feature
to be families of new columns) and statisticians use what’s
called a contingency table (where each possibility is given a
column name). In either case, the R command to produce a table
is table(). To create a table comparing the levels of variable
218 against the labeled churn outcome, we run the table
command shown in the following listing.

Listing 6.2. Plotting churn grouped by variable 218 levels

From this, we see variable 218 takes on two values plus NA, and
we see the joint distribution of these values against the churn
outcome. At this point it’s easy to write down a single-variable
model based on variable 218.

Listing 6.3. Churn rates grouped by variable 218 codes

> print(table218[,2]/(table218[,1]+table218[,2]))
 cJvF UYBR <NA>
0.05994389 0.08223821 0.26523297

This summary tells us that when variable 218 takes on a value
of cJvF, around 6% of the customers churn; when it’s UYBR, 8%
of the customers churn; and when it’s not recorded (NA), 27% of
the customers churn. The utility of any variable level is a
combination of how often the level occurs (rare levels aren’t
very useful) and how extreme the distribution of the outcome is
for records matching a given level. Variable 218 seems like a
feature that’s easy to use and helpful with prediction. In real
work, we’d want to research with our business partners why it
has missing values and what’s the best thing to do when values
are missing (this will depend on how the data was prepared). We
also need to design a strategy for what to do if a new level not
seen during training were to occur during model use. Since this is
a contest problem with no available project partners, we’ll build
a function that converts NA to a level (as it seems to be pretty

informative) and also treats novel values as uninformative. Our
function to convert a categorical variable into a single model
prediction is shown in listing 6.4.

Listing 6.4. Function to build single-variable models for categorical variables

Listing 6.4 may seem like a lot of work, but placing all of the
steps in a function lets us apply the technique to many variables
quickly. The dataset we’re working with has 38 categorical
variables, many of which are almost always NA, and many of
which have over 10,000 distinct levels. So we definitely want to
automate working with these variables as we have. Our first

automated step is to adjoin a prediction or forecast (in this case,
the predicted probability of churning) for each categorical
variable, as shown in the next listing.

Listing 6.5. Applying single-categorical variable models to all of our datasets

for(v in catVars) {
 pi <- paste('pred',v,sep='')
 dTrain[,pi] <- mkPredC(dTrain[,outcome],dTrain[,v],dTrain[,v])
 dCal[,pi] <- mkPredC(dTrain[,outcome],dTrain[,v],dCal[,v])
 dTest[,pi] <- mkPredC(dTrain[,outcome],dTrain[,v],dTest[,v])
}

Note that in all cases we train with the training data frame and
then apply to all three data frames dTrain, dCal, and dTest.
We’re using an extra calibration data frame (dCal) because we
have so many categorical variables that have a very large number
of levels and are subject to overfitting. We wish to have some
chance of detecting this overfitting before moving on to the test
data (which we’re using as our final check, so it’s data we
mustn’t use during model construction and evaluation, or we
may have an exaggerated estimate of our model quality). Once
we have the predictions, we can find the categorical variables
that have a good AUC both on the training data and on the
calibration data not used during training. These are likely the
more useful variables and are identified by the loop in the next
listing.

Listing 6.6. Scoring categorical variables by AUC

library('ROCR')

> calcAUC <- function(predcol,outcol) {
 perf <- performance(prediction(predcol,outcol==pos),'auc')
 as.numeric(perf@y.values)
 }

> for(v in catVars) {
 pi <- paste('pred',v,sep='')
 aucTrain <- calcAUC(dTrain[,pi],dTrain[,outcome])
 if(aucTrain>=0.8) {
 aucCal <- calcAUC(dCal[,pi],dCal[,outcome])
 print(sprintf("%s, trainAUC: %4.3f calibrationAUC: %4.3f",
 pi,aucTrain,aucCal))
 }
 }
[1] "predVar200, trainAUC: 0.828 calibrationAUC: 0.527"
[1] "predVar202, trainAUC: 0.829 calibrationAUC: 0.522"

[1] "predVar214, trainAUC: 0.828 calibrationAUC: 0.527"
[1] "predVar217, trainAUC: 0.898 calibrationAUC: 0.553"

Note how, as expected, each variable’s training AUC is inflated
compared to its calibration AUC. This is because many of these
variables have thousands of levels. For example,
length(unique(dTrain$Var217)) is 12,434, indicating that
variable 217 has 12,434 levels. A good trick to work around this
is to sort the variables by their AUC score on the calibration set
(not seen during training), which is a better estimate of the
variable’s true utility. In our case, the most promising variable is
variable 206, which has both training and calibration AUCs of
0.59. The winning KDD entry, which was a model that
combined evidence from multiple features, had a much larger
AUC of 0.76.

6.2.2. Using numeric features

There are a number of ways to use a numeric feature to make
predictions. A common method is to bin the numeric feature into
a number of ranges and then use the range labels as a new
categorical variable. R can do this quickly with its quantile()
and cut() commands, as shown next.

Listing 6.7. Scoring numeric variables by AUC

> mkPredN <- function(outCol,varCol,appCol) {
 cuts <- unique(as.numeric(quantile(varCol,
 probs=seq(0, 1, 0.1),na.rm=T)))
 varC <- cut(varCol,cuts)

 appC <- cut(appCol,cuts)
 mkPredC(outCol,varC,appC)
}
> for(v in numericVars) {
 pi <- paste('pred',v,sep='')
 dTrain[,pi] <- mkPredN(dTrain[,outcome],dTrain[,v],dTrain[,v])
 dTest[,pi] <- mkPredN(dTrain[,outcome],dTrain[,v],dTest[,v])
 dCal[,pi] <- mkPredN(dTrain[,outcome],dTrain[,v],dCal[,v])
 aucTrain <- calcAUC(dTrain[,pi],dTrain[,outcome])
 if(aucTrain>=0.55) {
 aucCal <- calcAUC(dCal[,pi],dCal[,outcome])
 print(sprintf("%s, trainAUC: %4.3f calibrationAUC: %4.3f",
 pi,aucTrain,aucCal))
 }
 }
[1] "predVar6, trainAUC: 0.557 calibrationAUC: 0.554"
[1] "predVar7, trainAUC: 0.555 calibrationAUC: 0.565"

[1] "predVar13, trainAUC: 0.568 calibrationAUC: 0.553"
[1] "predVar73, trainAUC: 0.608 calibrationAUC: 0.616"
[1] "predVar74, trainAUC: 0.574 calibrationAUC: 0.566"
[1] "predVar81, trainAUC: 0.558 calibrationAUC: 0.542"
[1] "predVar113, trainAUC: 0.557 calibrationAUC: 0.567"
[1] "predVar126, trainAUC: 0.635 calibrationAUC: 0.629"
[1] "predVar140, trainAUC: 0.561 calibrationAUC: 0.560"
[1] "predVar189, trainAUC: 0.574 calibrationAUC: 0.599"

Notice in this case the numeric variables behave similarly on the
training and calibration data. This is because our prediction
method converts numeric variables into categorical variables
with around 10 well-distributed levels, so our training estimate
tends to be good and not overfit. We could improve our numeric
estimate by interpolating between quantiles. Other methods we
could’ve used are kernel-based density estimation and
parametric fitting. Both of these methods are usually available in
the variable treatment steps of Naive Bayes classifiers.

A good way to visualize the predictive power of a numeric
variable is the double density plot, where we plot on the same
graph the variable score distribution for positive examples and
variable score distribution of negative examples as two groups.
Figure 6.1 shows the performance of the single-variable model
built from the numeric feature Var126.

Figure 6.1. Performance of variable 126 on calibration data

The code to produce figure 6.1 is shown in the next listing.

Listing 6.8. Plotting variable performance

ggplot(data=dCal) +
 geom_density(aes(x=predVar126,color=as.factor(churn)))

What figure 6.1 is showing is the conditional distribution of
predVar126 for churning accounts (the dashed-line density
plot) and the distribution of predVar126 for non-churning
accounts (the solid-line density plot). We can deduce that low
values of predVar126 are rare for churning accounts and not as

rare for non-churning accounts (the graph is read by comparing
areas under the curves). This (by Bayes law) lets us in turn say
that a low value of predVar126 is good evidence that an account
will not churn.

Dealing with missing values in numeric variables

One of the best strategies we’ve seen for dealing with missing
values in numeric variables is the following two-step process.
First, for each numeric variable, introduce a new advisory
variable that is 1 when the original variable had a missing value
and 0 otherwise. Second, replace all missing values of the
original variable with 0. You now have removed all of the
missing values and have recorded enough details so that missing
values aren’t confused with actual zero values.

6.2.3. Using cross-validation to estimate effects of
overfitting

We now have enough experience fitting the KDD dataset to try
to estimate the degree of overfitting we’re seeing in our models.
We can use a procedure called cross-validation to estimate the
degree of overfit we have hidden in our models. Cross-validation
applies in all modeling situations. This is the first opportunity
we have to demonstrate it, so we’ll work through an example
here.

In repeated cross-validation, a subset of the training data is used
to build a model, and a complementary subset of the training
data is used to score the model. We can implement a cross-
validated estimate of the AUC of the single-variable model based
on variable 217 with the code in the following listing.

Listing 6.9. Running a repeated cross-validation experiment

This shows that the 100-fold replicated estimate of the AUC
has a mean of 0.556 and a standard deviation of 0.016. So our
original section 6.2 estimate of 0.553 as the AUC of this variable
was very good. In some modeling circumstances, training set
estimations are good enough (linear regression is often such an
example). In many other circumstances, estimations from a
single calibration set are good enough. And in extreme cases
(such as fitting models with very many variables or level
values), you’re well advised to use replicated cross-validation
estimates of variable utilities and model fits. Automatic cross-
validation is extremely useful in all modeling situations, so it’s
critical you automate your modeling steps so you can perform
cross-validation studies. We’re demonstrating cross-validation
here, as single-variable models are among the simplest to work
with.

Aside: cross-validation in functional notation

As a point of style, for(){} loops are considered an
undesirable crutch in R. We used a for loop in our cross-
validation example, as this is the style of programming that is
likely to be most familiar to nonspecialists. The point is that for
loops over-specify computation (they describe both what you
want and the exact order of steps to achieve it). For loops tend
to be less reusable and less composable than other
computational methods. When you become proficient in R, you
look to eliminate for loops from your code and use either
vectorized or functional methods where appropriate. For
example, the cross-validation we just demonstrated could be
performed in a functional manner as shown in the following
listing.

Listing 6.10. Empirically cross-validating performance

> fCross <- function() {
 useForCalRep <- rbinom(n=dim(dTrainAll)
[[1]],size=1,prob=0.1)>0
 predRep <- mkPredC(dTrainAll[!useForCalRep,outcome],
 dTrainAll[!useForCalRep,var],

 dTrainAll[useForCalRep,var])
 calcAUC(predRep,dTrainAll[useForCalRep,outcome])
}
> aucs <- replicate(100,fCross())

What we’ve done is wrap our cross-reference work into a
function instead of in a for-based code block. Advantages are
that the function can be reused and run in parallel, and it’s
shorter (as it avoids needless details about result storage and
result indices). The function is then called 100 times using the
replicate() method (replicate() is a convenience method
from the powerful sapply() family).

Note that we must write replicate(100,fCross()), not the
more natural replicate (100,fCross). This is because R is
expecting an expression (a sequence that implies execution) as
the second argument, and not the mere name of a function. The
notation can be confusing and the reason it works is because
function arguments in R are not evaluated prior to being passed

in to a function, but instead are evaluated inside the function.[5]

This is called promise-based argument evaluation and is
powerful (it allows user-defined macros, lazy evaluation,
placement of variable names on plots, user-defined control
structures, and user-defined exceptions). This can also be
complicated, so it’s best to think of R as having mostly call-by-
value semantics (see http://mng.bz/unf5), where arguments are
passed to functions as values evaluated prior to entering the
function and alterations of these values aren’t seen outside of
the function.

5 For just a taste of the complexity this introduces, try to read Thomas Lumley ’s
“Standard nonstandard evaluation rules”: http://developer.r-project.org/nonstandard-
eval.pdf.

6.3. Building models using many variables

Models that combine the effects of many variables tend to be
much more powerful than models that use only a single variable.
In this section, you’ll learn how to build some of the most
fundamental multiple-variable models: decision trees, nearest
neighbor, and Naive Bayes.

6.3.1. Variable selection

A key part of building many variable models is selecting what
variables[6] to use and how the variables are to be transformed or
treated. We’ve already discussed variable treatment in chapter 4,
so we’ll only discuss variable selection here (we’re assuming
you’ve discussed with your project sponsors what variables are
available for or even legal to use in your model).

6 We’ll call variables used to build the model variously variables, independent
variables, input variables, causal variables, and so on to try and distinguish them from
the item to be predicted (which we’ll call outcome or dependent).

When variables are available has a huge impact on model utility.

http://mng.bz/unf5
http://developer.r-project.org/nonstandard-eval.pdf

For instance, a variable that’s coincident with (available near or
even after) the time that the outcome occurs may make a very
accurate model with little utility (as it can’t be used for long-
range prediction). The analyst has to watch out for variables
that are functions of or “contaminated by” the value to be
predicted. Which variables will actually be available in
production is something you’ll want to discuss with your
project sponsor. And sometimes you may want to improve
model utility (at a possible cost of accuracy) by removing
variables from the project design. An acceptable prediction one
day before an event can be much more useful than a more
accurate prediction one hour before the event.

Each variable we use represents a chance of explaining more of
the outcome variation (a chance of building a better model) but
also represents a possible source of noise and overfitting. To
control this effect, we often preselect which subset of variables
we’ll use to fit. Variable selection can be an important defensive
modeling step even for types of models that “don’t need it” (as
seen with decision trees in section 6.3.2). Listing 6.11 shows a
hand-rolled variable selection loop where each variable is scored
according to an AIC (Akaike information criterion) -inspired
score, in which a variable is scored with a bonus proportional to
the scaled log likelihood of the training data minus a penalty
proportional to the complexity of the variable (which in this
case is 2^entropy). The score is a bit ad hoc, but tends to work
well in selecting variables. Notice we’re using performance on
the calibration set (not the training set) to pick variables. Note
that we don’t use the test set for calibration; to do so lessens the
reliability of the test set for model quality confirmation.

Listing 6.11. Basic variable selection

In our case, this picks 27 of the 212 possible variables. The
categorical and numeric variables selected are shown in the
following listing.

Listing 6.12. Selected categorical and numeric variables

[1] "predVar194, calibrationScore: 5.25759"
[1] "predVar201, calibrationScore: 5.25521"
[1] "predVar204, calibrationScore: 5.37414"
[1] "predVar205, calibrationScore: 24.2323"
[1] "predVar206, calibrationScore: 34.4434"
[1] "predVar210, calibrationScore: 10.6681"
[1] "predVar212, calibrationScore: 6.23409"
[1] "predVar218, calibrationScore: 13.2455"
[1] "predVar221, calibrationScore: 12.4098"
[1] "predVar225, calibrationScore: 22.9074"
[1] "predVar226, calibrationScore: 6.68931"
[1] "predVar228, calibrationScore: 15.9644"
[1] "predVar229, calibrationScore: 24.4946"

[1] "predVar6, calibrationScore: 11.2431"
[1] "predVar7, calibrationScore: 16.685"
[1] "predVar13, calibrationScore: 8.06318"
[1] "predVar28, calibrationScore: 9.38643"
[1] "predVar65, calibrationScore: 7.96938"
[1] "predVar72, calibrationScore: 10.5353"
[1] "predVar73, calibrationScore: 46.2524"
[1] "predVar74, calibrationScore: 17.6324"
[1] "predVar81, calibrationScore: 6.8741"
[1] "predVar113, calibrationScore: 21.136"
[1] "predVar126, calibrationScore: 72.9556"
[1] "predVar140, calibrationScore: 14.1816"
[1] "predVar144, calibrationScore: 13.9858"
[1] "predVar189, calibrationScore: 40.3059"

We’ll show in section 6.3.2 the performance of a multiple-
variable model with and without using variable selection.

6.3.2. Using decision trees

Decision trees are a simple model type: they make a prediction
that is piecewise constant. This is interesting because the null
hypothesis that we’re trying to outperform is often a single
constant for the whole dataset, so we can view a decision tree as
a procedure to split the training data into pieces and use a
simple memorized constant on each piece. Decision trees
(especially a type called classification and regression trees, or
CART) can be used to quickly predict either categorical or
numeric outcomes. The best way to grasp the concept of
decision trees is to think of them as machine-generated business
rules.

Fitting a decision tree model

Building a decision tree involves proposing many possible data
cuts and then choosing best cuts based on simultaneous

competing criteria of predictive power, cross-validation strength,
and interaction with other chosen cuts. One of the advantages of
using a canned package for decision tree work is not having to
worry about tree construction details. Let’s start by building a
decision tree model for churn. The simplest way to call rpart()
is to just give it a list of variables and see what happens
(rpart(), unlike many R modeling techniques, has built-in code
for dealing with missing values).

Listing 6.13. Building a bad decision tree

> library('rpart')
> fV <- paste(outcome,'>0 ~ ',
 paste(c(catVars,numericVars),collapse=' + '),sep='')
> tmodel <- rpart(fV,data=dTrain)
> print(calcAUC(predict(tmodel,newdata=dTrain),dTrain[,outcome]))
[1] 0.9241265
> print(calcAUC(predict(tmodel,newdata=dTest),dTest[,outcome]))
[1] 0.5266172
> print(calcAUC(predict(tmodel,newdata=dCal),dCal[,outcome]))
[1] 0.5126917

What we get is pretty much a disaster. The model looks way too
good to believe on the training data (which it has merely
memorized, negating its usefulness) and not as good as our best
single-variable models on withheld calibration and test data. A
couple of possible sources of the failure are that we have
categorical variables with very many levels, and we have a lot
more NAs/missing data than rpart()’s surrogate value strategy
was designed for. What we can do to work around this is fit on
our reprocessed variables, which hide the categorical levels
(replacing them with numeric predictions), and remove NAs
(treating them as just another level).

Listing 6.14. Building another bad decision tree

> tVars <- paste('pred',c(catVars,numericVars),sep='')
> fV2 <- paste(outcome,'>0 ~ ',paste(tVars,collapse=' + '),sep='')
> tmodel <- rpart(fV2,data=dTrain)
> print(calcAUC(predict(tmodel,newdata=dTrain),dTrain[,outcome]))
[1] 0.928669
> print(calcAUC(predict(tmodel,newdata=dTest),dTest[,outcome]))
[1] 0.5390648
> print(calcAUC(predict(tmodel,newdata=dCal),dCal[,outcome]))
[1] 0.5384152

This result is about the same (also bad). So our next suspicion is
that the overfitting is because our model is too complicated. To
control rpart() model complexity, we need to monkey a bit
with the controls. We pass in an extra argument,
rpart.control (use help('rpart') for some details on this
control), that changes the decision tree selection strategy.

Listing 6.15. Building yet another bad decision tree

> tmodel <- rpart(fV2,data=dTrain,
 control=rpart.control(cp=0.001,minsplit=1000,
 minbucket=1000,maxdepth=5)
)

> print(calcAUC(predict(tmodel,newdata=dTrain),dTrain[,outcome]))
[1] 0.9421195
> print(calcAUC(predict(tmodel,newdata=dTest),dTest[,outcome]))
[1] 0.5794633
> print(calcAUC(predict(tmodel,newdata=dCal),dCal[,outcome]))
[1] 0.547967

This is a very small improvement. We can waste a lot of time
trying variations of the rpart() controls. The best guess is that
this dataset is unsuitable for decision trees and a method that
deals better with overfitting issues is needed—such as random
forests, which we’ll demonstrate in chapter 9. The best result
we could get for this dataset using decision trees was from using
our selected variables (instead of all transformed variables).

Listing 6.16. Building a better decision tree

f <- paste(outcome,'>0 ~ ',paste(selVars,collapse=' + '),sep='')
> tmodel <- rpart(f,data=dTrain,
 control=rpart.control(cp=0.001,minsplit=1000,
 minbucket=1000,maxdepth=5)
)
> print(calcAUC(predict(tmodel,newdata=dTrain),dTrain[,outcome]))
[1] 0.6906852
> print(calcAUC(predict(tmodel,newdata=dTest),dTest[,outcome]))
[1] 0.6843595
> print(calcAUC(predict(tmodel,newdata=dCal),dCal[,outcome]))
[1] 0.6669301

These AUCs aren’t great (they’re not near 1.0 or even
particularly near the winning team’s 0.76), but they are
significantly better than any of the AUCs we saw from single-
variable models when checked on non-training data. So we’ve

finally built a legitimate multiple-variable model.

To tune rpart we suggest, in addition to trying variable
selection (which is an odd thing to combine with decision tree
methods), following the rpart documentation in trying different
settings of the method argument. But we quickly get better
results with KNN and logistic regression, so it doesn’t make
sense to spend too long trying to tune decision trees for this
particular dataset.

How decision tree models work

At this point, we can look at the model and use it to explain
how decision tree models work.

Listing 6.17. Printing the decision tree

> print(tmodel)
n= 40518

node), split, n, deviance, yval
 * denotes terminal node

 1) root 40518 2769.3550 0.07379436
 2) predVar126< 0.07366888 18188 726.4097 0.04167583

 4) predVar126< 0.04391312 8804 189.7251 0.02203544 *
 5) predVar126>=0.04391312 9384 530.1023 0.06010230
 10) predVar189< 0.08449448 8317 410.4571 0.05206204 *
 11) predVar189>=0.08449448 1067 114.9166 0.12277410 *
 3) predVar126>=0.07366888 22330 2008.9000 0.09995522
 6) predVar212< 0.07944508 8386 484.2499 0.06153112
 12) predVar73< 0.06813291 4084 167.5012 0.04285015 *
 13) predVar73>=0.06813291 4302 313.9705 0.07926546 *
 7) predVar212>=0.07944508 13944 1504.8230 0.12306370
 14) predVar218< 0.07134103 6728 580.7390 0.09542212
 28) predVar126< 0.1015407 3901 271.8426 0.07536529 *
 29) predVar126>=0.1015407 2827 305.1617 0.12309870
 58) predVar73< 0.07804522 1452 110.0826 0.08264463 *
 59) predVar73>=0.07804522 1375 190.1935 0.16581820 *
 15) predVar218>=0.07134103 7216 914.1502 0.14883590
 30) predVar74< 0.0797246 2579 239.3579 0.10352850 *
 31) predVar74>=0.0797246 4637 666.5538 0.17403490
 62) predVar189< 0.06775545 1031 102.9486 0.11251210 *
 63) predVar189>=0.06775545 3606 558.5871 0.19162510 *

Each row in listing 6.17 that starts with #) is called a node of
the decision tree. This decision tree has 15 nodes. Node 1 is
always called the root. Each node other than the root node has a
parent, and the parent of node k is node floor(k/2). The

indentation also indicates how deep in the tree a node is. Each
node other than the root is named by what condition must be
true to move from the parent to the node. You move from node
1 to node 2 if predVar126 < -0.002810871 (and otherwise
you move to node 3, which has the complementary condition).
So to score a row of data, we navigate from the root of the
decision tree by the node conditions until we reach a node with
no children, which is called a leaf node. Leaf nodes are marked
with stars. The remaining three numbers reported for each node
are the number of training items that navigated to the node, the
deviance of the set of training items that navigated to the node (a
measure of how much uncertainty remains at a given decision
tree node), and the fraction of items that were in the positive
class at the node (which is the prediction for leaf nodes).

We can get a graphical representation of much of this with the
commands in the next listing that produce figure 6.2.

Figure 6.2. Graphical representation of a decision tree

Listing 6.18. Plotting the decision tree

par(cex=0.7)
plot(tmodel)
text(tmodel)

6.3.3. Using nearest neighbor methods

A k-nearest neighbor (KNN) method scores an example by
finding the k training examples nearest to the example and then
taking the average of their outcomes as the score. The notion of
nearness is basic Euclidean distance, so it can be useful to select
nonduplicate variables, rescale variables, and orthogonalize
variables.

One problem with KNN is the nature of its concept space. For
example, if we were to run a 3-nearest neighbor analysis on our
data, we have to understand that with three neighbors from the
training data, we’ll always see either zero, one, two, or three
examples of churn. So the estimated probability of churn is
always going to be one of 0%, 33%, 66%, or 100%. This is not
going to work on an event as rare as churn, which has a rate of
around 7% in our training data. For events with unbalanced
outcomes (that is, probabilities not near 50%), we suggest using
a large k so KNN can express a useful range of probabilities. For
a good k, we suggest trying something such that you have a good
chance of seeing 10 positive examples in each neighborhood
(allowing your model to express rates smaller than your baseline
rate to some precision). In our case, that’s a k around 10/0.07
= 142. You’ll want to try a range of k, and we demonstrate a
KNN run with k=200 in the following listing.

Listing 6.19. Running k-nearest neighbors

This is our best result yet. What we’re looking for are the two
distributions to be unimodal[7] and, if not separated, at least not
completely on top of each other. Notice how, under these
criteria, the double density performance plot in figure 6.3 is
much better looking than figure 6.1.

7 Distributions that are multimodal are often evidence that there are significant effects
we haven’t yet explained. Distributions that are unimodal or even look normal are
consistent with the unexplained effects being simple noise.

Figure 6.3. Performance of 200-nearest neighbors on calibration data

The code to produce figure 6.3 is shown in the next listing.

Listing 6.20. Platting 200-nearest neighbor performance

dCal$kpred <- knnPred(dCal[,selVars])
ggplot(data=dCal) +
 geom_density(aes(x=kpred,
 color=as.factor(churn),linetype=as.factor(churn)))

This finally gives us a result good enough to bother plotting the
ROC curve for. The code in the next listing produces figure 6.4.

Figure 6.4. ROC of 200-nearest neighbors on calibration data

Listing 6.21. Plotting the receiver operating characteristic curve

plotROC <- function(predcol,outcol) {
 perf <- performance(prediction(predcol,outcol==pos),'tpr','fpr')
 pf <- data.frame(
 FalsePositiveRate=perf@x.values[[1]],
 TruePositiveRate=perf@y.values[[1]])
 ggplot() +
 geom_line(data=pf,aes(x=FalsePositiveRate,y=TruePositiveRate)) +
 geom_line(aes(x=c(0,1),y=c(0,1)))
}
print(plotROC(knnPred(dTest[,selVars]),dTest[,outcome]))

The ROC curve shows every possible classifier you can get by
using different scoring thresholds on the same model. For
example, you can achieve a high recall (high true positive rate, or
TPR) at the expense of a high false positive rate (FPR) by
selecting a threshold that moves you to the top right of the
graph. Conversely, you can achieve high precision (high positive
confirmation rate) at the expense of recall by selecting a
threshold that moves you to the bottom left of the graph. Notice
that score thresholds aren’t plotted, just the resulting FPRs and
TPRs.

KNN is expensive both in time and space. Sometimes we can get
similar results with more efficient methods such as logistic
regression (which we’ll explain in detail in chapter 7). To
demonstrate that a fast method can be competitive with KNN,
we’ll show the performance of logistic regression in the next
listing.

Listing 6.22. Plotting the performance of a logistic regression model

> gmodel <- glm(as.formula(f),data=dTrain,family=binomial(link='logit'))
> print(calcAUC(predict(gmodel,newdata=dTrain),dTrain[,outcome]))
[1] 0.7309537
> print(calcAUC(predict(gmodel,newdata=dTest),dTest[,outcome]))
[1] 0.7234645
> print(calcAUC(predict(gmodel,newdata=dCal),dCal[,outcome]))
[1] 0.7170824

6.3.4. Using Naive Bayes

Naive Bayes is an interesting method that memorizes how each

training variable is related to outcome, and then makes
predictions by multiplying together the effects of each variable.
To demonstrate this, let’s use a scenario in which we’re trying to
predict whether somebody is employed based on their level of
education, their geographic region, and other variables. Naive
Bayes begins by reversing that logic and asking this question:
Given that you are employed, what is the probability that you
have a high school education? From that data, we can then make
our prediction regarding employment.

Let’s call a specific variable (x_1) taking on a specific value
(X_1) a piece of evidence: ev_1. For example, suppose we
define our evidence (ev_1) as the predicate education=="High
School", which is true when the variable x_1 (education) takes
on the value X_1 ("High School"). Let’s call the outcome y
(taking on values T or True if the person is employed and F
otherwise). Then the fraction of all positive examples where
ev_1 is true is an approximation to the conditional probability of
ev_1, given y==T. This is usually written as P(ev1|y==T). But
what we want to estimate is the conditional probability of a
subject being employed, given that they have a high school
education: P(y==T|ev1). How do we get from P(ev1|y==T)
(the quantities we know from our training data) to an estimate of
P(y==T|ev1 ... evN) (what we want to predict)?

Bayes’ law tells us we can expand P(y==T|ev1) and
P(y==F|ev1) like this:

The left-hand side is what you want; the right-hand side is all
quantities that can be estimated from the statistics of the
training data. For a single feature ev1, this buys us little as we
could derive P(y==T|ev1) as easily from our training data as
from P(ev1|y==T). For multiple features (ev1 ... evN) this sort
of expansion is useful. The Naive Bayes assumption lets us
assume that all the evidence is conditionally independent of each
other for a given outcome:

P(ev1&. . . evN | y==T) ≈ P(ev1 | y==T) × P(ev2 | y==T) × . . .
P(evN | y==T)

P(ev1&. . . evN | y==F) ≈ P(ev1 | y==F) × P(ev2 | y==F) × . . .
P(evN | y==F)

This gives us the following:

The numerator terms of the right sides of the final expressions
can be calculated efficiently from the training data, while the left
sides can’t. We don’t have a direct scheme for estimating the
denominators in the Naive Bayes expression (these are called the
joint probability of the evidence). However, we can still estimate
P(y==T|evidence) and P(y==F|evidence), as we know by
the law of total probability that we should have
P(y==T|evidence) + P(y==F|evidence) = 1. So it’s enough
to pick a denominator such that our estimates add up to 1.

For numerical reasons, it’s better to convert the products into
sums, by taking the log of both sides. Since the denominator
term is the same in both expressions, we can ignore it; we only
want to determine which of the following expressions is greater:

score (T| ev1&. . . evN) = log (P(y==T)) + log (P(ev1 | y==T1))
+ . . . log (P(evN | y==T))

score (F| ev1&. . . evN) = log (P(y==F)) + log (P(ev1 | y==F1))
+ . . . log (P(evN | y==F))

It’s also a good idea to add a smoothing term so that you’re
never taking the log of zero.

All of the single-variable models we’ve built up to now are
estimates of the form model(e_i) ~ P(y==T|e_i), so by
another appeal to Bayes’ law we can say that the proportions
we need for the Naive Bayes calculation (the ratios of
P(e_i|y==T) to P(e_i|y==F)) are identical to the ratios of
model(e_i)/P(y===T)) to (1-model(e_i))/P(y===F). So
our single-variable models can be directly used to build an
overall Naive Bayes model (without any need for additional
record keeping). We show such an implementation in the
following listing.

Listing 6.23. Building, applying, and evaluating a Naive Bayes model

Intuitively, what we’ve done is built a new per-variable
prediction column from each of our single-variable models. Each
new column is the logarithm of the ratio of the single-variable
model’s predicted churn rate over the overall churn rate. When
the model predicts a rate near the overall churn rate, this ratio is
near 1.0 and therefore the logarithm is near 0. Similarly, for high
predicted churn rates, the prediction column is a positive
number, and for low predicted churn rates the column prediction
is negative.

Summing these signed columns is akin to taking a net-consensus
vote across all of the columns’ variables. If all the evidence is
conditionally independent given the outcome (this is the Naive
Bayes assumption—and remember it’s only an assumption),
then this is exactly the right thing to do. The amazing thing
about the Naive Bayes classifier is that it can perform well even

when the conditional independence assumption isn’t true.

Smoothing

The most important design parameter in Naive Bayes is how
smoothing is handled. The idea of smoothing is an attempt to
obey Cromwell’s rule that no probability estimate of 0 should
ever be used in probabilistic reasoning. This is because if you’re
combining probabilities by multiplication (the most common
method of combining probability estimates), then once some
term is 0, the entire estimate will be 0 no matter what the values
of the other terms are. The most common form of smoothing is
called Laplace smoothing, which counts k successes out of n
trials as a success ratio of (k+1)/(n+1) and not as a ratio of k/n
(defending against the k=0 case). Frequentist statisticians think
of smoothing as a form of regularization and Bayesian
statisticians think of smoothing in terms of priors.

There are many discussions of Bayes Law and Naive Bayes
methods that cover the math in much more detail. One thing to
remember is that Naive Bayes doesn’t perform any clever
optimization, so it can be outperformed by methods like logistic
regression and support vector machines (when you have enough
training data). Also, variable selection is very important for
Naive Bayes. Naive Bayes is particularly useful when you have
a very large number of features that are rare and/or nearly
independent.

Document classification and Naive Bayes

Naive Bayes is the workhorse method when classifying text
documents (as done by email spam detectors). This is because

the standard model for text documents (usually called bag-of-
words or bag-of-k-grams) can have an extreme number of
possible features. In the bag-of-k-grams model, we pick a small
k (typically 2) and each possible consecutive sequence of k
words is a possible feature. Each document is represented as a
bag, which is a sparse vector indicating which k-grams are in the
document. The number of possible features runs into the
millions, but each document only has a non-zero value on a
number of features proportional to k times the size of the
document.

Of course we can also call a prepackaged Naive Bayes
implementation (that includes its own variable treatments), as
shown in the following listing.

Listing 6.24. Using a Naive Bayes package

library('e1071')
lVars <- c(catVars,numericVars)
ff <- paste('as.factor(',outcome,'>0) ~ ',
 paste(lVars,collapse=' + '),sep='')
nbmodel <- naiveBayes(as.formula(ff),data=dTrain)
dTrain$nbpred <- predict(nbmodel,newdata=dTrain,type='raw')
[,'TRUE']
dCal$nbpred <- predict(nbmodel,newdata=dCal,type='raw')
[,'TRUE']
dTest$nbpred <- predict(nbmodel,newdata=dTest,type='raw')
[,'TRUE']
calcAUC(dTrain$nbpred,dTrain[,outcome])
[1] 0.4643591
calcAUC(dCal$nbpred,dCal[,outcome])
[1] 0.5544484
calcAUC(dTest$nbpred,dTest[,outcome])
[1] 0.5679519

The e1071 code is performing a bit below our expectations on
raw data. We do see performance superior from e1072 if we call
it again with our processed and selected variables. This
emphasizes the advantage of combining by hand variable
processing with pre-made machine learning libraries.

6.4. Summary

The single-variable and multiple-variable memorization style
models in this section are always worth trying first. This is
especially true if most of your variables are categorical variables,
as memorization is a good idea in this case. The techniques of
this chapter are also a good repeat example of variable treatment
and variable selection.

We have, at a bit of a stretch, called all of the modeling
techniques of this chapter memorization methods. The reason
for this is because, having worked an example using all of these
models all in the same place, you now have enough experience to
see the common memorization traits in these models: their
predictions are all sums of summaries of the original training
data.

The models of this chapter are conceptualized as follows:

Single-variable models can be thought of as being simple
memorizations or summaries of the training data. This is
especially true for categorical variables where the model
is essentially a contingency table or pivot table, where
for every level of the variable we record the distribution
of training outcomes (see section 6.2.1). Some
sophisticated ideas (like smoothing, regularization, or
shrinkage) may be required to avoid overfitting and to
build good single-variable models. But in the end, single-
variable models essentially organize the training data
into a number of subsets indexed by the predictive
variable and then store a summary of the distribution of
outcome as their future prediction. These models are
atoms or sub-assemblies that we sum in different ways
to get the rest of the models of this chapter.
Decision tree model decisions are also sums of
summaries over subsets of the training data. For each
scoring example, the model makes a prediction by

choosing the summary of all training data that was
placed in the same leaf node of the decision tree as the
current example to be scored. There’s some cleverness
in the construction of the decision tree itself, but once
we have the tree, it’s enough to store a single data
summary per tree leaf.
K-nearest neighbor predictions are based on summaries
of the k pieces of training data that are closest to the
example to be scored. KNN models usually store all of
their original training data instead of an efficient
summary, so they truly do memorize the training data.
Naive Bayes models partially memorize training data
through intermediate features. Roughly speaking, Naive
Bayes models form their decision by building a large
collection of independent single-variable models.[8] The
Naive Bayes prediction for a given example is just the
product of all the applicable single-variable model
adjustments (or, isomorphically, the sum of logarithms
of the single-variable contributions). Note that Naive
Bayes models are constructed without any truly clever
functional forms or optimization steps. This is why we
stretch terms a bit and call them memorization: their
predictions are just sums of appropriate summaries of
the original training data.

8 As y ou saw in section 6.3.4, these are slightly modified single-variable
models, since they model feature-driven change in outcome distribution,
or in Bayesian terms “have the priors pulled out.”

For all their fascinating features, at some point you’ll have needs
that push you away from memorization methods. For some
problems, you’ll want models that capture more of the
functional or additive structure of relationships. In particular,
you’ll want to try regression for value prediction and logistic
regression for category prediction, as we demonstrate in chapter
7.

Key takeaways

Always try single-variable models before trying more
complicated techniques.
Single-variable modeling techniques give you a useful
start on variable selection.
Always compare your model performance to the
performance of your best single-variable model.
Consider decision trees, nearest neighbor, and naive
Bayes models as basic data memorization techniques
and, if appropriate, try them early in your projects.

Chapter 7. Linear and logistic
regression
This chapter covers

Using linear regression to predict quantities
Using logistic regression to predict probabilities or
categories
Extracting relations and advice from functional models
Interpreting the diagnostics from R’s lm() call
Interpreting the diagnostics from R’s glm() call

In the last chapter, we worked through using memorization
methods for prediction. In this chapter, we’ll talk about a
different class of methods for both scoring and classification:
functional methods. These are methods that learn a model that is
a continuous function of its inputs (versus being a mere lookup
table). This class of methods is especially useful when you
don’t just want to predict an outcome, but you also want to
know the relationship between the input variables and the
outcome. This knowledge can prove useful because this
relationship can often be used as advice on how to get the
outcome that you want.

In this chapter, we’ll show how to use linear regression to
predict customer income and logistic regression to predict the
probability that a newborn baby will need extra medical
attention. These are two of the most common functional
methods (there are many others, including generalized additive
models, neural nets, and support vector machines). We’ll also
walk through the diagnostics that R produces when you fit a
linear or logistic model.

7.1. Using linear regression

Linear regression is the bread and butter prediction method for
statisticians and data scientists. If you’re trying to predict a
numerical quantity like profit, cost, or sales volume, you should
always try linear regression first. If it works well, you’re done;
if it fails, the detailed diagnostics produced give you a good clue
as to what methods you should try next.

In this section, we’ll use a real-world example (predicting
personal income) to work through all of the steps of producing
and using a linear regression model.

Before we get to the main example, let’s take a quick overview
of the method.

7.1.1. Understanding linear regression

Linear regression models the expected value of a numeric
quantity (called the dependent or response variable) in terms of
numeric and categorical inputs (called the independent or
explanatory variables). For example, suppose we’re trying to
predict how many pounds a person on a diet and exercise plan
will lose in a month. We’ll base that prediction on other facts
about that person, like their average daily caloric intake over that
month and how many hours a day they exercised. In other
words, for every person i, we want to predict pounds.lost[i]
based on daily.cals[i] and daily.exercise[i]. Linear
regression assumes that pounds.lost[i] is a linear combination
of daily.cals[i] and daily.exercise[i]:

pounds.lost[i] = b.cals * daily.cals[i] + b.exercise * daily.exercise[i]

The goal is to find the values of b.cals and b.exercise so that
the linear combination of daily.cals[i] and
daily.exercise[i] comes very close to pounds.lost[i] for

all persons i in the training data.

Let’s put this in more general terms. Suppose that y[i] is the
numeric quantity we want to predict, and x[i,] is a row of
inputs that corresponds to output y[i]. Linear regression finds
a fit function f(x) such that

y[i] ~ f(x[i,]) = b[1] x[i,1] + ... b[n] x[i,n]

We want numbers b[1],...,b[n] (called the coefficients or
betas) such that f(x[i,]) is as near as possible to y[i] for all
(x[i,],y[i]) pairs in our training data. R supplies a one-line
command to find these coefficients: lm().

In the idealized theoretic situation, linear regression is used to fit
y[i]when the y[i] are themselves given by

y[i] = b[1] x[i,1] + b[2] x[i,2] + ... b[n] x[i,n] + e[i]

In particular, this means that y is linear in the values of x: a
change in the value of x[i,m] by one unit (while holding all the
other x[i,k]s constant) will change the value of y[i] by the
amount b[m] always, no matter what the starting value of
x[i,m] was. This is easier to see in one dimension. If y = 3 +
2*x, and if we increase x by 1, then y will always increase by 2,
no matter what the starting value of x is. This wouldn’t be true
for, say, y = 3 + 2*(x^2).

The last term, e[i], represents what are called unsystematic
errors, or noise. Unsystematic errors average to 0 (so they don’t
represent a net upward or net downward bias) and are
uncorrelated with x[i,] and y[i].

The technical meaning of regression

Regression means the unbiased prediction of the conditional
expected value. A prediction is a function f() such that

f(x[i,]) is near the unknown ideal quantity E[y[i]|x[i,]]
(where E[|] is the conditional expected value operator averaging
over all possible y[j] where x[j,] is sufficiently similar to
x[i,]). Unbiased predictors have E[f(x[i,])-y[i]]=0 under
an appropriate expectation operator E[] (note we’re talking
about properties of the model now, not properties of errors in
the data). Regression isn’t so much a prediction of an individual
y[i] but a forecast of E[y[i]|x[i,]] (the conditional
expectation). For a good regression model, we expect f(x[i,])
to be a good estimate of E[y[i]|x[i,]] and to have low
conditional variance (y[i] tending to be near E[y[i]|x[i,]]).
When both of these conditions are met, then f(x[i,]) is in
general a good estimate for y[i].

Under these assumptions, linear regression is absolutely
relentless in finding the best coefficients. If there’s some
advantageous combination or cancellation of features, it’ll find it.
One thing that linear regression doesn’t do is reshape variables
to be linear. Oddly enough, linear regression often does an
excellent job, even when the actual relation is not in fact linear.

Thinking about linear regression

When working with linear regression, you’ll vacillate between
“Adding is too simple to work,” and “How is it even possible to
estimate the coefficients?” This is natural and comes from the
fact that the method is both simple and powerful. Our friend
Philip Apps sums it up: “You have to get up pretty early in the
morning to beat linear regression.”

As a toy example, consider trying to fit the squares of the first
10 integers using only a linear function plus the constant 1.

We’re asking for coefficients b[0] and b[1] such that

x[i]^2 nearly equals b[0] + b[1] x[i]

This is clearly not a fair thing to ask, but linear regression still
does a great job. It picks the following fit:

x[i]^2 nearly equals -22 + 11 x[i]

As the figure 7.1 shows, this is a good fit in the region of values
we trained on.

Figure 7.1. Fit versus actuals for y=x2

The example in figure 7.1 is typical of how linear regression is
“used in the field”—we’re using a linear model to predict
something that is itself not linear. Be aware that this is a minor
sin: in particular, note that the errors between the model’s
predictions and the true y are systematic. This is bad as the

model underpredicts for specific ranges of x and overpredicts for
others.

Next we’ll work through an example of how to apply linear
regression on more interesting real data. Our example task will
be to predict personal income from other demographic variables
such as age and education from 2011 US Census PUMS data. In
addition to predicting income, we also have a secondary goal: to
determine the effect of a bachelor’s degree on income, relative to
having no degree at all (the reference level “no high school
diploma”). In section 2.2.3, we prepared a small sample of
PUMS data which we’ll use here. As a reminder, the data
preparation steps included

Restricting the data to full-time employees between 20
and 50 years of age, with an income between $1,000 and
$250,000.
Dividing the data into a training set, dtrain, and a test
set, dtest.

Representativeness of data

For our examples, we’re deliberately ignoring the 80 PWGTP* and
WGTP* columns supplied with the Census data. The PUMS data
is a sample of individual households that are representative of
the US population if each person and household is counted
proportionally to one of the PWGTP* and WGTP*columns. There
are 80 columns so the researcher can evaluate the impact of
sampling noise on their work (using lm()’s weights argument).
To keep our examples simple, we’ll model the data as-is and not
worry about how this sample data is related to the larger
(unreported) US population. However, it’s critical when
working with datasets like PUMS to become familiar with the

steps taken to produce the data, and we would certainly want to
use the PWGTP* weights before making any claims about
statistics of the actual US population.

We can continue the example by loading psub.RData (which
you can copy from
https://github.com/WinVector/zmPDSwR/raw/master/PUMS/psub.RData
and performing the steps in the following listing (which we’ll
explain shortly).

Listing 7.1. Loading the PUMS data

load("psub.RData")
dtrain <- subset(psub,ORIGRANDGROUP >= 500)
dtest <- subset(psub,ORIGRANDGROUP < 500)
model <- lm(log(PINCP,base=10) ~ AGEP + SEX + COW + SCHL,data=dtrain)
dtest$predLogPINCP <- predict(model,newdata=dtest)
dtrain$predLogPINCP <- predict(model,newdata=dtrain)

Each row of PUMS data represents a single anonymized person
or household. Personal data recorded includes occupation, level
of education, personal income, and many other demographics
variables.

For the analysis in this section, we’ll consider the input
variables age (AGEP), sex (SEX), class of worker (COW), and level
of education (SCHL). The output variable is personal income
(PINCP). We’ll also set the reference level, or “default” sex to M
(male); the reference level of class of worker to Employee of a
private for-profit; and the reference level of education level
to no high school diploma. We’ll discuss reference levels
later in this chapter.

Now on to the model building.

7.1.2. Building a linear regression model

The first step in either prediction or finding relations (advice) is

https://github.com/WinVector/zmPDSwR/raw/master/PUMS/psub.RData

to build the linear regression model. The command to build the
linear regression model in R is lm(). The most important
argument to lm() is a formula with ~ used in place of an equals
sign. The formula specifies what column of the data frame is the
quantity to be predicted, and what columns are to be used to
make the predictions. Statisticians call the quantity to be
predicted the dependent variable and the variables/columns used
to make the prediction the independent variables. We find it is
easier to call the quantity to be predicted the y and the variables
used to make the predictions the xs. Our formula is this:
log(PINCP,base=10) ~ AGEP + SEX + COW + SCHL, which is
read “Predict the log base 10 of income as a function of age, sex,
employment class, and education.”[1] The overall command is
demonstrated in figure 7.2.

1 Recall from the discussion of the lognormal distribution in section 4.1.2 that it’s often
useful to log transform monetary quantities.

Figure 7.2. Building a linear model using the lm() command

The command in figure 7.2 builds the linear regression model and
stores the results in the new object called model. This model is
able both to make predictions and to extract important advice
from the data.

R stores training data in the model

R holds a copy of the training data in its model to supply the
residual information seen in summary(model). Holding a copy
of the data this way is not strictly necessary and can needlessly
run you out of memory. You can mitigate this problem
somewhat by setting the parameters model = F, x = F, y =
F, qr = F in the lm() call. If you’re running low on memory
(or swapping), you can dispose of R objects like model using
the rm() command. In this case, you’d dispose of the model by
running rm("model").

7.1.3. Making predictions

Once you’ve called lm() to build the model, your first goal is to
predict income. This is easy to do in R. To predict, you pass
data into the predict() method. Figure 7.3 demonstrates this
using both the test and training data frames dtest and dtrain.

Figure 7.3. Making predictions with a linear regression model

The data frame columns dtest$predLogPINCP and
dtrain$predLogPINCP now store the predictions for the test
and training sets, respectively. We have now both produced and
applied a linear regression model.

Characterizing prediction quality

Before sharing predictions, you want to inspect both the
predictions and model for quality. We recommend plotting the
actual y you’re trying to predict as if it were a function of your
prediction. In this case, plot log(PINCP,base=10) as if it were
a function of predLogPINCP. If the predictions are very good,
then the plot will be dots arranged near the line y=x, which we
call the line of perfect prediction (the phrase is not standard
terminology; we use it to make talking about the graph easier).
The commands to produce this for figure 7.4 are shown in the
next listing.

Figure 7.4. Plot of actual log income as a function of predicted log income

Listing 7.2. Plotting log income as a function of predicted log income

ggplot(data=dtest,aes(x=predLogPINCP,y=log(PINCP,base=10))) +

 geom_point(alpha=0.2,color="black") +
 geom_smooth(aes(x=predLogPINCP,
 y=log(PINCP,base=10)),color="black") +
 geom_line(aes(x=log(PINCP,base=10),
 y=log(PINCP,base=10)),color="blue",linetype=2) +
 scale_x_continuous(limits=c(4,5)) +
 scale_y_continuous(limits=c(3.5,5.5))

Statisticians prefer the residual plot shown in figure 7.5, where
the predictions errors predLogPINCP-log(PINCP,base=10) are
plotted as a function of predLogPINCP. In this case, the line of
perfect prediction is the line y=0. Notice the points are scattered
widely from this line (a possible sign of low-quality fit). The
residual plot in figure 7.5 is prepared with the R commands in
the next listing.

Figure 7.5. Plot of residual error as a function of prediction

Listing 7.3. Plotting residuals income as a function of predicted log income

ggplot(data=dtest,aes(x=predLogPINCP,
 y=predLogPINCP-
log(PINCP,base=10))) +
 geom_point(alpha=0.2,color="black") +

 geom_smooth(aes(x=predLogPINCP,
 y=predLogPINCP-log(PINCP,base=10)),
 color="black")

When you look at the true-versus-fitted or residual graphs,
you’re looking for some specific things that we’ll discuss next.

On average, are the predictions correct?

In other words, does the smoothing curve lie more or less along
the line of perfect prediction? Ideally, the points will all lie very
close to that line, but you may instead get a wider cloud of
points (as we do in figures 7.4 and 7.5) if your input variables
don’t explain the output too closely. But if the smoothing curve
lies along the line of perfect prediction, then the model predicts
correctly on average: it underpredicts about as much as it
overpredicts.

Why are the predictions, not the true values, on the x-axis?

The two graphs (plotting residuals as a function of true values
or as a function of predicted values) answer different questions.
Statisticians tend to prefer the graph as shown in figure 7.5,
with predictions on the x-axis.

A residual graph with predictions on the x-axis gives you a sense
of when the model may be under- or overpredicting, based on
the model’s output. A residual graph with the true outcome on
the x-axis instead gives you a sense of where the model under-or
overpredicts based on the actual outcome.

Are there systematic errors?

If the smoothing curve veers off the line of perfect prediction
too much, this is a sign of systematic under- or overprediction in
certain ranges: the error is correlated with y[i]. Many of the

theoretical claims about linear regression depend on the
observation error being uncorrelated with y[i]. Unstructured
observation errors (the good case) are called homoscedastic, and
structured observation errors are called heteroscedastic and
introduce prediction bias. For example, the toy fit in section 7.1
is heteroscedastic and is unsafe to use for values outside of its
training range.

In addition to inspecting graphs, you should produce
quantitative summaries of the quality of the predictions and the
residuals. One standard measure of quality of a prediction is
called R-squared. You can compute the R-squared between the
prediction and the actual y with the R commands in the
following listing.

Listing 7.4. Computing R-squared

rsq <- function(y,f) { 1 - sum((y-f)^2)/sum((y-
mean(y))^2) }
rsq(log(dtrain$PINCP,base=10),predict(model,newdata=dtrain))
rsq(log(dtest$PINCP,base=10),predict(model,newdata=dtest))

You want R-squared to be fairly large (1.0 is the largest you can
achieve) and R-squareds that are similar on test and training. A
significantly lower R-squared on test data is a symptom of an
overfit model that looks good in training and won’t work in
production. In our case, our R-squareds were 0.338 on training
and 0.261 on test. We’d like to see R-squares higher than this
(say, 0.7–1.0). So the model is of low quality, but not
substantially overfit.

R-squared can be thought of as what fraction of the y variation
is explained by the model. For well-fit models, R-squared is also
equal to the square of the correlation between the predicted
values and actual training values.

R-squared can be overoptimistic

In general, R-squared on training data will be higher for models
with more input parameters, independently of whether the
additional variables actually improve the model or not. That’s
why many people prefer the adjusted R-squared (which we’ll
discuss later in this chapter).

Also, R-squared is related to correlation, and the correlation can
be artificially inflated if the model correctly predicts a few
outliers (because the increased data range makes the overall data
cloud appear “tighter” against the line of perfect prediction).
Here’s a toy example. Let y <- c(1,2,3,4,5,9,10) and pred
<- c(0.5,0.5,0.5, 0.5,0.5,9,10). This corresponds to a
model that’s completely uncorrelated to the true outcome for the
first five points, and perfectly predicts the last two points,
which are somewhat far away from the first five. You can check
for yourself that this obviously poor model has a correlation
cor(y,pred) of about 0.926, with a corresponding R-squared
of 0.858. So it’s an excellent idea to look at the true-versus-fitted
graph in addition to checking R-squared.

Another good measure to consider is root mean square error
(RMSE).

Listing 7.5. Calculating root mean square error

rmse <- function(y, f) { sqrt(mean((y-f)^2)) }
rmse(log(dtrain$PINCP,base=10),predict(model,newdata=dtrain))
rmse(log(dtest$PINCP,base=10),predict(model,newdata=dtest))

You can think of the RMSE as a measure of the width of the
data cloud around the line of perfect prediction. We’d like
RMSE to be small, and one way to achieve this is to introduce
more useful explanatory variables.

7.1.4. Finding relations and extracting advice

Recall that our other goal, beyond predicting income, is to find
the value of having a bachelor’s degree. We’ll show how this
value, and other relations in the data, can be read directly off a
linear regression model.

All of the information in a linear regression model is stored in a
block of numbers called the coefficients. The coefficients are
available through the coefficients(model) command. The
coefficients of our income model are shown in figure 7.6.

Figure 7.6. The model coef f icients

Reported coef f icients

Our original modeling variables were only AGEP, SEX, COW, and
SCHL; yet the model reports many more coefficients than these
four. We’ll explain what all the reported coefficients are.

In figure 7.6, there are eight coefficients that start with SCHL.
The original variable SCHL took on these eight string values plus
one more not shown: no high school diploma. Each of these
possible strings is called a level, and SCHL itself is called a
categorical variable or a factor variable. The level that isn’t
shown is called the reference level; the coefficients of the other
levels are measured with respect to the reference level.

For example, in SCHLBachelor's degree we find the
coefficient 0.39, which is read as “The model gives a 0.39 bonus
to log income for having a bachelor’s degree, relative to not
having a high school degree.” This means that the income ratio
between someone with a bachelor’s degree and the equivalent
person (same sex, age, and class of work) without a high school
degree is about 10^0.39, or 2.45 times higher.

And under SCHLRegular high school diploma we find the
coefficient 0.10. This is read as “The model believes that having
a bachelor’s degree tends to add 0.39–0.10 units to the predicted
log income (relative to a high school degree).” The modeled
relation between the bachelor’s degree holder’s expected income
and high school graduate’s (all other variables being equal) is
10^(0.39-0.10), or about 1.8 times greater. The advice: college
is worth it if you can find a job (remember that we limited our
analysis to the fully employed, so this is assuming you can find
a job).

SEX and COW are also discrete variables, and the coefficients that
correspond to the different levels of SEX and COW can be
interpreted in a similar manner. AGEP is a continuous variable
with coefficient 0.0117. You can interpret this as a one-year
increase in age, adding a 0.0117 bonus to log income; in other

words, an increase in age of one year corresponds to an increase
of income of 10^0.0117, or a factor of 1.027—about a 2.7%
increase in income (all other variables being equal).

The coefficient (Intercept) corresponds to a variable that
always has a value of 1, which is implicitly added to linear
regression models unless you use the special 0+ notation in the
formula during the call to lm(). This coefficient is a rough center
for the model predictions.

The preceding interpretations of the coefficients assume that the
model has provided good estimates of the coefficients. We’ll see
how to check that in the next section.

Indicator variables

Most modeling methods handle a string-valued (categorical)
variable with n possible levels by converting it to n (or n-1)
binary variables, or indicator variables. R has commands to
explicitly control the conversion of string-valued variables into
well-behaved indicators: as.factor() creates categorical
variables from string variables; relevel() allows the user to
specify the reference level.

But beware of variables with a very large number of levels, like
ZIP codes. The runtime of linear (and logistic) regression
increases as roughly the cube of the number of coefficients. Too
many levels (or too many variables in general) will bog the
algorithm down and require much more data for reliable
inference.[2]

2 To see a trick for dealing with factors with very many levels, see http://mng.bz/y tFY.

7.1.5. Reading the model summary and characterizing

http://mng.bz/ytFY

coefficient quality

In section 7.1.3, we checked whether our income predictions
were to be trusted. We’ll now show how to check whether
model coefficients are reliable. This is especially urgent, as
we’ve been discussing showing coefficients’ relations to others
as advice.

Most of what we need to know is already in the model
summary, which is produced using the summary() command:
summary(model). This produces the output shown in figure
7.7, which looks intimidating, but contains a lot of useful
information and diagnostics. You’re likely to be asked about
elements of figure 7.7 when presenting results, so we’ll
demonstrate how all of these fields are derived and what the
fields mean.

Figure 7.7. Model summary

We’ll first break down the summary() into pieces.

The original model call

The first part of the summary() is how the lm() model was
constructed:

Call:
lm(formula = log(PINCP, base = 10) ~ AGEP + SEX + COW + SCHL,

 data = dtrain)

This is a good place to double-check whether we used the
correct data frame, performed our intended transformations, and
used the right variables. For example, we can double-check
whether we used the data frame dtrain and not the data frame
dtest.

The residuals summary

The next part of the summary() is the residuals summary:

Residuals:
 Min 1Q Median 3Q Max
-1.29220 -0.14153 0.02458 0.17632 0.62532

In linear regression, the residuals are everything. Most of what
we want to know about the quality of our model fit is in the
residuals. The residuals are our errors in prediction:
log(dtrain$PINCP,base=10) -

predict(model,newdata=dtrain). We can find useful
summaries of the residuals for both the training and test sets, as
shown in the following listing.

Listing 7.6. Summarizing residuals

> summary(log(dtrain$PINCP,base=10) - predict(model,newdata=dtrain))
 Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.29200 -0.14150 0.02458 0.00000 0.17630 0.62530
> summary(log(dtest$PINCP,base=10) - predict(model,newdata=dtest))
 Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.494000 -0.165300 0.018920 -0.004637 0.175500 0.868100

In linear regression, the coefficients are chosen to minimize the
sum of squares of the residuals. This is the why the method is
also often called the least squares method. So for good models,
we expect the residuals to be small.

In the residual summary, you’re given the Min. and Max., which
are the smallest and largest residuals seen. You’re also given
three quantiles of the residuals: 1st. Qu., Median, and 3rd Qu.
An r-quantile is a number r such that an r-fraction of the

residuals is less than x and a (1-r)-fraction of residuals is greater
than x. The 1st. Qu., Median, and 3rd Qu. quantiles’ values
are the values of the 0.25, 0.5, and 0.75 quantiles.

What you hope to see in the residual summary is the median
near 0 and symmetry in that 1st. Qu. is near -3rd Qu. (with
neither too large). The 1st. Qu. and 3rd Qu. quantiles are
interesting because exactly half of the training data has a residual
in this range. If you drew a random training example, its residual
would be in this range exactly half the time. So you really expect
to commonly see prediction errors of these magnitudes. If these
errors are too big for your application, you don’t have a usable
model.

The coef f icients table

The next part of the summary(model) is the coefficients table,
as shown in figure 7.8. A matrix form of this table can be
retrieved as summary(model)$coefficients.

Figure 7.8. Model summary coef f icient columns

Each model coefficient forms a row of the summary coefficients
table. The columns report the estimated coefficient, the
uncertainty of the estimate, how large the coefficient is relative
to the uncertainty, and how likely such a ratio would be due to
mere chance. Figure 7.8 gives the names and interpretations of
the columns.

We set out to study income and the impact on income of getting
a bachelor’s degree. But we must look at all of the coefficients to
check for interfering effects.

For example, the coefficient of -0.093 for SEXF means that our
model learned a penalty of -0.093 to log(PINCP,base=10) for

being female. Females are modeled as earning 1-10^-0.093
relative to males, or 19% less, all other model parameters being
equal. Note we said “all other model parameters being equal” not
“all other things being equal.” That’s because we’re not modeling
the number of years in the workforce (which age may not be a
reliable proxy for) or occupation/industry type (which has a big
impact on income). This model is not, with the features it was
given, capable of testing if, on average, a female in the same job
with the same number of years of experience is paid less.

Statistics as an attempt to correct bad experimental design

The absolute best experiment to test if there’s a sex-driven
difference in income distribution would be to compare incomes
of individuals who were identical in all possible variables (age,
education, years in industry, performance reviews, race, region,
and so on) but differ only in sex. We’re unlikely to have access
to such data, so we’d settle for a good experimental design: a
population where there’s no correlation between any other
feature and sex. Random selection can help in experimental
design, but it’s not a complete panacea. Barring a good
experimental design, the usual pragmatic strategy is this:
introduce extra variables to represent effects that may have been
interfering with the effect we were trying to study. Thus a study
of the effect of sex on income may include other variables like
education and age to try to disentangle the competing effects.

The p-value (also called the significance) is one of the most
important diagnostic columns in the coefficient summary. The
p-value estimates the probability of seeing a coefficient with a
magnitude as large as we observe if the true coefficient is really 0
(if the variable has no effect on the outcome). Don’t trust the
estimate of any coefficient with a large p-value. The general rule

of thumb, p>=0.05, is not to be trusted. The estimate of the
coefficient may be good, but you want to use more data to build
a model that reliably shows that the estimate is good. However,
lower p-values aren’t always “better” once they’re good enough.
There’s no reason to prefer a coefficient with a p-value of 1e-23
to one with a p-value of 1e-08; at this point you know both
coefficients are likely good estimates and you should prefer the
ones that explain the most variance.

Collinearity also lowers significance

Sometimes, a predictive variable won’t appear significant
because it’s collinear (or correlated) with another predictive
variable. For example, if we did try to use both age and number
of years in the workforce to predict income, neither variable
may appear significant. This is because age tends to be
correlated with number of years in the workforce. If you remove
one of the variables and the other one gains significance, this is a
good indicator of correlation.

Another possible indication of collinearity in the inputs is seeing
coefficients with an unexpected sign: for example, seeing that
income is negatively correlated with years in the workforce.

The overall model can still predict income quite well, even when
the inputs are correlated; it just can’t determine which variable
deserves the credit for the prediction. Using regularization
(especially ridge regression as found in lm.ridge() in the
package MASS) is helpful in collinear situations (we prefer it to
“x-alone” variable preprocessing, such as principal components
analysis). If you want to use the coefficient values as advice as
well as to make good predictions, try to avoid collinearity in the
inputs as much as possible.

Overall model quality summaries

The last part of the summary(model) report is the overall model
quality statistics. It’s a good idea to check the overall model
quality before sharing any predictions or coefficients. The
summaries are as follows:

Residual standard error: 0.2691 on 578 degrees of freedom
Multiple R-squared: 0.3383, Adjusted R-
squared: 0.3199
F-statistic: 18.47 on 16 and 578 DF, p-value: < 2.2e-16

The degrees of freedom is the number of data rows minus the
number of coefficients fit; in our case, this:

df <- dim(dtrain)[1] - dim(summary(model)$coefficients)
[1]

The degrees of freedom is thought of as the number of training
data rows you have after correcting for the number of
coefficients you tried to solve for. You want the degrees of
freedom to be large compared to the number of coefficients fit to
avoid overfitting. Overfitting is when you find chance relations
in your training data that aren’t present in the general
population. Overfitting is bad: you think you have a good model
when you don’t.

The residual standard error is the sum of the square of the
residuals (or the sum of squared error) divided by the degrees of
freedom. So it’s similar to the RMSE (root mean squared error)
that we discussed earlier, except with the number of data rows
adjusted to be the degrees of freedom; in R, this:

modelResidualError <- sqrt(sum(residuals(model)^2)/df)

Multiple R-squared is just the R-squared (discussed in section
7.1.3).

The adjusted R-squared is the multiple R-squared penalized by
the ratio of the degrees of freedom to the number of training

examples. This attempts to correct the fact that more complex
models tend to look better on training data due to overfitting.
Usually it’s better to rely on the adjusted R-squared. Better still
is to compute the R-squared between predictions and actuals on
hold-out test data. In section 7.1.3, we showed the R-squared on
test data was 0.26, which is significantly lower than the
reported adjusted R-squared of 0.32. So the adjusted R-squared
discounts for overfitting, but not always enough. This is one of
the reasons we advise preparing both training and test datasets;
the test dataset estimates can be more representative of
production model performance than statistical formulas.

The F-statistic is similar to the p-values we saw with the model
coefficients. It’s used to measure whether the linear regression
model predicts outcome better than the constant mode (the
mean value of y). The F-statistic gets its name from the F-test,
which is the technique used to check if two variances—in this
case, the variance of the residuals from the constant model and
the variance of the residuals from the linear model—are
significantly different. The corresponding p-value is the estimate
of the probability that we would’ve observed an F-statistic this
large or larger if the two variances in question are in reality the
same. So you want the p-value to be small (rule of thumb: less
than 0.05).

In our example, the model is doing better than just the constant
model, and the improvement is incredibly unlikely to have arisen
from sampling error.

Interpreting model signif icances

Most of the tests of linear regression, including the tests for
coefficient and model significance, are based on the error terms,
or residuals are normally distributed. It’s important to examine
graphically or using quantile analysis to determine if the

regression model is appropriate.

7.1.6. Linear regression takeaways

Here’s what you should remember about linear regression:

Linear regression is the go-to statistical modeling
method for quantities.
You should always try linear regression first, and only
use more complicated methods if they actually
outperform a linear regression model.
Linear regression will have trouble with problems that
have a very large number of variables, or categorical
variables with a very large number of levels.
You can enhance linear regression by adding new
variables or transforming variables (like we did with the
log() transform of y, but always be wary when
transforming y as it changes the error model).
With linear regression, you think in terms of residuals.
You look for variables that correlate with your errors
and add them to try and eliminate systematic modeling
errors.
Linear regression can predict well even in the presence
of correlated variables, but correlated variables lower the
quality of the advice.
Overly large coefficient magnitudes, overly large
standard errors on the coefficient estimates, and the
wrong sign on a coefficient could be indications of
correlated inputs.
Linear regression packages have some of the best built-
in diagnostics available, but rechecking your model on
test data is still your most effective safety check.

7.2. Using logistic regression

Logistic regression is the most important (and probably most
used) member of a class of models called generalized linear
models. Unlike linear regression, logistic regression can directly
predict values that are restricted to the (0,1) interval, such as
probabilities. It’s the go-to method for predicting probabilities
or rates, and like linear regression, the coefficients of a logistic
regression model can be treated as advice. It’s also a good first
choice for binary classification problems.

In this section, we’ll use a medical classification example
(predicting whether a newborn will need extra medical attention)
to work through all of the steps of producing and using a logistic
regression model.[3]

3 Logistic regression is usually used to perform classification, but logistic regression
and its close cousin beta regression are also useful in estimating rates. In fact, R’s
standard glm() call will work with prediction numeric values between 0 and 1.0 in
addition to predicting classifications.

7.2.1. Understanding logistic regression

Logistic regression predicts the probability y that an instance
belongs to a specific category—for instance, the probability that
a flight will be delayed. When x[i,] is a row of inputs (for
example, a flight’s origin and destination, the time of year, the
weather, the air carrier), logistic regression finds a fit function
f(x) such that

P[y[i] in class] ~ f(x[i,]) = s(a+b[1] x[i,1] + ... b[n] x[i,n])

Here, s(z) is the so-called sigmoid function, defined as s(z) =
1/(1+exp(z)). If the y[i] are the probabilities that the x[i,]
belong to the class of interest (in our example, that a flight with
certain characteristics will be delayed), then the task of fitting is
to find the b[1], ..., b[n] such that f(x[i,]) is the best

possible estimate of y[i]. R supplies a one-line command to
find these coefficients: glm().[4] Note that we don’t need to
supply y[i] that are probability estimates to run glm(); the
training method only requires y[i] that say whether a given
training example is in the target class.

4 Logistic regression can be used for classify ing into any number of categories (as
long as the categories are disjoint and cover all possibilities: every x has to belong to
one of the given categories). But glm() only handles the two-category case, so our
discussion will focus on this case.

The sigmoid function maps real numbers to the interval (0,1)—
that is, to probabilities. The inverse of the sigmoid is the logit,
which is defined as log(p/(1-p)), where p is a probability. The
ratio p/(1-p) is known as the odds, so in the flight example, the
logit is the log of the odds (or log-odds) that a flight will be
delayed. In other words, you can think of logistic regression as a
linear regression that finds the log-odds of the probability that
you’re interested in.

In particular, logistic regression assumes that logit(y) is linear
in the values of x. Like linear regression, logistic regression will
find the best coefficients to predict y, including finding
advantageous combinations and cancellations when the inputs
are correlated.

For the example task, imagine that you’re working at a hospital.
The goal is to design a plan that provisions neonatal emergency
equipment to delivery rooms. Newborn babies are assessed at
one and five minutes after birth using what’s called the Apgar
test, which is designed to determine if a baby needs immediate
emergency care or extra medical attention. A baby who scores
below 7 (on a scale from 0 to 10) on the Apgar scale needs extra
attention.

Such at-risk babies are rare, so the hospital doesn’t want to
provision extra emergency equipment for every delivery. On the

other hand, at-risk babies may need attention quickly, so
provisioning resources proactively to appropriate deliveries can
save lives. The goal of this project is to identify ahead of time
situations with a higher probability of risk, so that resources can
be allocated appropriately.

We’ll use a sample dataset from the CDC 2010 natality public-
use data file (http://mng.bz/pnGy). This dataset records
statistics for all births registered in the 50 US States and the
District of Columbia, including facts about the mother and
father, and about the delivery. We’ll use a sample of just over
26,000 births in a data frame called sdata.[5] The data is split
into training and test sets, using the random grouping column
that we added, as recommended in section 2.2.2.

5 Our pre-prepared file is at
https://github.com/WinVector/zmPDSwR/tree/master/CDC/NatalRiskData.rData; we
also provide a script file
(https://github.com/WinVector/zmPDSwR/blob/master/CDC/PrepNatalRiskData.R),
which prepares the data frame from an extract of the full natality data set. Details
found at https://github.com/WinVector/zmPDSwR/blob/master/CDC/README.md.

Listing 7.7. Loading the CDC data

load("NatalRiskData.rData")
train <- sdata[sdata$ORIGRANDGROUP<=5,]
test <- sdata[sdata$ORIGRANDGROUP>5,]

Table 7.1 lists the columns of the dataset that we’ll use. Because
the goal is to anticipate at-risk infants ahead of time, we’ll
restrict variables to those whose values are known before
delivery or can be determined during labor. For example, facts
about the mother’s weight or health history are valid inputs, but
postbirth facts like infant birth weight are not. We can consider
in-labor complications like breech birth by reasoning that the
model can be updated in the delivery room (via a protocol or
checklist) in time for emergency resources to be allocated before
delivery.

http://mng.bz/pnGy
https://github.com/WinVector/zmPDSwR/tree/master/CDC/NatalRiskData.rData
https://github.com/WinVector/zmPDSwR/blob/master/CDC/PrepNatalRiskData.R
https://github.com/WinVector/zmPDSwR/blob/master/CDC/README.md

Table 7.1. Some variables in natality dataset

Variable Type Description

atRisk Logical TRUE if 5-minute Apgar score < 7; FALSE otherwise

PWGT Numeric Mother’s prepregnancy weight

UPREVIS Numeric
(integer) Number of prenatal medical visits

CIG_REC Logical TRUE if smoker; FALSE otherwise

GESTREC3 Categorical Two categories: <37 weeks (premature) and >=37 weeks

DPLURAL Categorical Birth plurality, three categories: single/twin/triplet+

ULD_MECO Logical TRUE if moderate/heavy fecal staining of amniotic fluid

ULD_PRECIP Logical TRUE for unusually short labor (< three hours)

ULD_BREECH Logical TRUE for breech (pelvis first) birth position

URF_DIAB Logical TRUE if mother is diabetic

URF_CHYPER Logical TRUE if mother has chronic hypertension

URF_PHYPER Logical TRUE if mother has pregnancy -related hypertension

URF_ECLAM Logical TRUE if mother experienced eclampsia: pregnancy -
related seizures

Now we’re ready to build the model.

7.2.2. Building a logistic regression model

The command to build a logistic regression model in R is glm().
In our case, the dependent variable y is the logical (or Boolean)
atRisk; all the other variables in table 7.1 are the independent
variables x. The formula for building a model to predict atRisk
using these variables is rather long to type in by hand; you can
generate the formula with the commands shown in the next
listing.

Listing 7.8. Building the model formula

complications <- c("ULD_MECO","ULD_PRECIP","ULD_BREECH")
 riskfactors <- c("URF_DIAB", "URF_CHYPER", "URF_PHYPER",
 "URF_ECLAM")
y <- "atRisk"
x <- c("PWGT",
 "UPREVIS",
 "CIG_REC",
 "GESTREC3",
 "DPLURAL",
 complications,
 riskfactors)

fmla <- paste(y, paste(x, collapse="+"), sep="~")

Now we build the logistic regression model, using the training
dataset.

Listing 7.9. Fitting the logistic regression model

print(fmla)
[1] "atRisk ~ PWGT+UPREVIS+CIG_REC+GESTREC3+DPLURAL+ULD_MECO+ULD_PRECIP+
 ULD_BREECH+URF_DIAB+URF_CHYPER+URF_PHYPER+URF_ECLAM"
model <- glm(fmla, data=train, family=binomial(link="logit"))

This is similar to the linear regression call to lm(), with one
additional argument: family=binomial(link="logit"). The
family function specifies the assumed distribution of the
dependent variable y. In our case, we’re modeling y as a binomial
distribution, or as a coin whose probability of heads depends on
x. The link function “links” the output to a linear model—pass
y through the link function, and then model the resulting value
as a linear function of the x values. Different combinations of
family functions and link functions lead to different kinds of
generalized linear models (for example, Poisson, or probit). In
this book, we’ll only discuss logistic models, so we’ll only need
to use the binomial family with the logit link.

Don’t forget the family argument!

Without an explicit family argument, glm defaults to standard
linear regression (like lm).

As before, we’ve stored the results in the object model.

7.2.3. Making predictions

Making predictions with a logistic model is similar to making
predictions with a linear model—use the predict() function.

Listing 7.10. Applying the logistic regression model

train$pred <- predict(model, newdata=train, type="response")
test$pred <- predict(model, newdata=test, type="response")

We’ve again stored the predictions for the training and test sets
as the column pred in the respective data frames. Note the
additional parameter type="response". This tells the
predict() function to return the predicted probabilities y. If
you don’t specify type="response", then by default
predict() will return the output of the link function,
logit(y).

One strength of logistic regression is that it preserves the
marginal probabilities of the training data. That means that if
you sum up the predicted probability scores for the entire
training set, that quantity will be equal to the number of positive
outcomes (atRisk == T) in the training set. This is also true for
subsets of the data determined by variables included in the
model. For example, in the subset of the training data that has
train$GESTREC=="<37 weeks" (the baby was premature), the
sum of the predicted probabilities equals the number of positive
training examples (see, for example http://mng.bz/j338).

Characterizing prediction quality

If our goal is to use the model to classify new instances into one
of two categories (in this case, at-risk or not-at-risk), then we
want the model to give high scores to positive instances and low
scores otherwise. We can check if this is so by plotting the
distribution of scores for both the positive and negative
instances. Let’s do this on the training set (we should also plot
the test set, to make sure that the performance is of similar
quality).

Listing 7.11. Plotting distribution of prediction score grouped by known
outcome

http://mng.bz/j338

library(ggplot2)
ggplot(train, aes(x=pred, color=atRisk, linetype=atRisk)) +
 geom_density()

The result is shown in figure 7.9. Ideally, we’d like the
distribution of scores to be separated, with the scores of the
negative instances (FALSE) to be concentrated on the left, and
the distribution for the positive instances to be concentrated on
the right. Earlier we showed an example of a classifier that
separates the positives and the negatives quite well in figure 5.8.
In the current case, both distributions are concentrated on the
left, meaning that both positive and negative instances score low.
This isn’t surprising, since the positive instances (the ones with
the baby at risk) are rare (about 1.8% of all births in the
dataset). The distribution of scores for the negative instances
dies off sooner than the distribution for positive instances. This
means that the model did identify subpopulations in the data
where the rate of at-risk newborns is higher than the average.

Figure 7.9. Distribution of score broken up by positive examples (TRUE) and
negative examples (FALSE)

In order to use the model as a classifier, you must pick a
threshold; scores above the threshold will be classified as
positive, those below as negative. When you pick a threshold,
you’re trying to balance the precision of the classifier (what
fraction of the predicted positives are true positives) and its
recall (how many of the true positives the classifier finds).

If the score distributions of the positive and negative instances
are well separated, as in figure 5.8, we can pick an appropriate
threshold in the “valley” between the two peaks. In the current
case, the two distributions aren’t well separated, which indicates
that the model can’t build a classifier that simultaneously
achieves good recall and good precision. But we can build a
classifier that identifies a subset of situations with a higher-than-
average rate of at-risk births, so preprovisioning resources to
those situations may be advised. We’ll call the ratio of the
classifier precision to the average rate of positives the
enrichment rate.

The higher we set the threshold, the more precise the classifier
will be (we’ll identify a set of situations with a much higher-
than-average rate of at-risk births); but we’ll also miss a higher
percentage of at-risk situations, as well. When picking the
threshold, we’ll use the training set, since picking the threshold
is part of classifier-building. We can then use the test set to
evaluate classifier performance.

To help pick the threshold, we can use a plot like figure 7.10,
which shows both enrichment and recall as a functions of the
threshold.

Figure 7.10. Enrichment (top) and recall (bottom) plotted as functions of
threshold for the training set

Looking at figure 7.10, you see that higher thresholds result in
more precise classifications, at the cost of missing more cases; a
lower threshold will identify more cases, at the cost of many
more false positives. The best trade-off between precision and
recall is a function of how many resources the hospital has
available to allocate, and how many they can keep in reserve (or
redeploy) for situations that the classifier missed. A threshold of
0.02 (which incidentally is about the overall rate of at-risk births
in the training data) might be a good trade-off. The resulting

classifier will identify a set of potential at-risk situations that
finds about half of all the true at-risk situations, with a true
positive rate 2.5 times higher than the overall population.

We can produce figure 7.10 with the ROCR package, which we
discussed in more detail in chapter 5.

Listing 7.12. Exploring modeling trade-of fs

Once we’ve picked an appropriate threshold, we can evaluate
the resulting classifier by looking at the confusion matrix, as we
discussed in section 5.2.1. Let’s use the test set to evaluate the
classifier, with a threshold of 0.02.

Listing 7.13. Evaluating our chosen model

The resulting classifier is low-precision, but identifies a set of
potential at-risk cases that contains 55.5% of the true positive
cases in the test set, at a rate 2.66 times higher than the overall
average. This is consistent with the results on the training set.

In addition to making predictions, a logistic regression model
also helps you extract useful information and advice. We’ll show
this in the next section.

7.2.4. Finding relations and extracting advice from logistic
models

The coefficients of a logistic regression model encode the
relationships between the input variables and the output in a
way similar to how the coefficients of a linear regression model
do. You can get the model’s coefficients with the call
coefficients(model).

Listing 7.14. The model coef f icients

> coefficients(model)
 (Intercept) PWGT
 -4.41218940 0.00376166
 UPREVIS CIG_RECTRUE

 -0.06328943 0.31316930
 GESTREC3< 37 weeks DPLURALtriplet or higher
 1.54518311 1.39419294
 DPLURALtwin ULD_MECOTRUE
 0.31231871 0.81842627

 ULD_PRECIPTRUE ULD_BREECHTRUE
 0.19172008 0.74923672
 URF_DIABTRUE URF_CHYPERTRUE
 -0.34646672 0.56002503
 URF_PHYPERTRUE URF_ECLAMTRUE
 0.16159872 0.49806435

Negative coefficients that are statistically significant[6]

correspond to variables that are negatively correlated to the odds
(and hence to the probability) of a positive outcome (the baby
being at risk). Positive coefficients that are statistically
significant are positively correlated to the odds of a positive
outcome.

6 We’ll show how to check for statistical significance in the next section.

As with linear regression, every categorical variable is expanded
to a set of indicator variables. If the original variable has n levels,
there will be n-1 indicator variables; the remaining level is the
reference level.

For example, the variable DPLURAL has three levels
corresponding to single births, twins, and triplets or higher. The
logistic regression model has two corresponding coefficients:
DPLURALtwin and DPLURALtriplet or higher. The reference
level is single births. Both of the DPLURAL coefficients are
positive, indicating that multiple births have higher odds of
being at risk than single births do, all other variables being equal.

Logistic regression also dislikes a very large variable count

And as with linear regression, you should avoid categorical
variables with too many levels.

Interpreting the coef f icients

Interpreting coefficient values is a little more complicated with
logistic than with linear regression. If the coefficient for the
variable x[,k] is b[k], then the odds of a positive outcome are
multiplied by a factor of exp(b[k]) for every unit change in
x[,k].

The coefficient for GESTREC3< 37 weeks (for a premature
baby) is 1.545183. So for a premature baby, the odds of being at
risk are exp(1.545183)=4.68883 times higher compared to a
baby that’s born full-term, with all other input variables
unchanged. As an example, suppose a full-term baby with
certain characteristics has a 1% probability of being at risk (odds
are p/(1-p), or 0.01/0.99 = 0.0101); then the odds for a
premature baby with the same characteristics are
0.0101*4.68883 = 0.047. This corresponds to a probability
of being at risk of odds/(1+odds), or 0.047/1.047—about
4.5%.

Similarly, the coefficient for UPREVIS (number of prenatal
medical visits) is about -0.06. This means every prenatal visit
lowers the odds of an at-risk baby by a factor of exp(-0.06),
or about 0.94. Suppose the mother of our premature baby had
made no prenatal visits; a baby in the same situation whose
mother had made three prenatal visits would have odds of being
at risk of about 0.047 * 0.94 * 0.94 * 0.94 = 0.039. This
corresponds to a probability of being at risk of 3.75%.

So the general advice in this case might be to keep a special eye
on premature births (and multiple births), and encourage
expectant mothers to make regular prenatal visits

7.2.5. Reading the model summary and characterizing
coefficients

As we mentioned earlier, conclusions about the coefficient
values are only to be trusted if the coefficient values are

statistically significant. We also want to make sure that the
model is actually explaining something. The diagnostics in the
model summary will help us determine some facts about model
quality. The call, as before, is summary(model).

Listing 7.15. The model summary

> summary(model)

Call:
glm(formula = fmla, family = binomial(link = "logit"), data = train)

Deviance Residuals:
 Min 1Q Median 3Q Max
-0.9732 -0.1818 -0.1511 -0.1358 3.2641

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.412189 0.289352 -15.249 < 2e-
16 ***
PWGT 0.003762 0.001487 2.530 0.011417 *
UPREVIS -0.063289 0.015252 -4.150 3.33e-
05 ***
CIG_RECTRUE 0.313169 0.187230 1.673 0.094398 .
GESTREC3< 37 weeks 1.545183 0.140795 10.975 < 2e-
16 ***
DPLURALtriplet or higher 1.394193 0.498866 2.795 0.005194 **
DPLURALtwin 0.312319 0.241088 1.295 0.195163
ULD_MECOTRUE 0.818426 0.235798 3.471 0.000519 ***
ULD_PRECIPTRUE 0.191720 0.357680 0.536 0.591951
ULD_BREECHTRUE 0.749237 0.178129 4.206 2.60e-
05 ***
URF_DIABTRUE -0.346467 0.287514 -1.205 0.228187
URF_CHYPERTRUE 0.560025 0.389678 1.437 0.150676
URF_PHYPERTRUE 0.161599 0.250003 0.646 0.518029
URF_ECLAMTRUE 0.498064 0.776948 0.641 0.521489

Signif. codes: 0 ’ ***’ 0.001 ’ **’ 0.01 ’ *’ 0.05 ’ .’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 2698.7 on 14211 degrees of freedom
Residual deviance: 2463.0 on 14198 degrees of freedom
AIC: 2491

Number of Fisher Scoring iterations: 7

The original model call

The first line of the summary is the call to glm():

Call:
glm(formula = fmla, family = binomial(link = "logit"), data = train)

Here is where we check that we’ve used the correct training set
and the correct formula (although in our case, the formula itself

is in another variable). We can also verify that we used the
correct family and link function to produce a logistic model.

The deviance residuals summary

The deviance residuals are the analog to the residuals of a linear
regression model:

Deviance Residuals:
 Min 1Q Median 3Q Max
-0.9732 -0.1818 -0.1511 -0.1358 3.2641

In linear regression, the residuals are the vector of differences
between the true outcome values and the predicted output
values (the errors). In logistic regression, the deviance residuals
are related to the log likelihoods of having observed the true
outcome, given the predicted probability of that outcome. The
idea behind log likelihood is that positive instances y should
have high probability py of occurring under the model; negative
instances should have low probability of occurring (or putting it
another way, (1-py) should be large). The log likelihood
function rewards “matches” between the outcome y and the
predicted probability py, and penalizes mismatches (high py for
negative instances, and vice versa).

Listing 7.16. Calculating deviance residuals

Linear regression models are found by minimizing the sum of the
squared residuals; logistic regression models are found by

minimizing the sum of the squared residual deviances, which is
equivalent to maximizing the log likelihood of the data, given the
model.

Logistic models can also be used to explicitly compute rates:
given several groups of identical data points (identical except the
outcome), predict the rate of positive outcomes in each group.
This kind of data is called grouped data. In the case of grouped
data, the deviance residuals can be used as a diagnostic for model
fit. This is why the deviance residuals are included in the
summary. We’re using ungrouped data—every data point in the
training set is potentially unique. In the case of ungrouped data,
the model fit diagnostics that use the deviance residuals are no
longer valid.[7]

7 See Daniel Powers and Yu Xie, Statistical Methods for Categorical Data Analysis,
2nd Ed., Emerald Group Publishing Ltd., 2008.

The summary coef f icients table

The summary coefficients table for logistic regression has the
same format as the coefficients table for linear regression:

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.412189 0.289352 -15.249 < 2e-
16 ***
PWGT 0.003762 0.001487 2.530 0.011417 *
UPREVIS -0.063289 0.015252 -4.150 3.33e-
05 ***
CIG_RECTRUE 0.313169 0.187230 1.673 0.094398 .
GESTREC3< 37 weeks 1.545183 0.140795 10.975 < 2e-
16 ***
DPLURALtriplet or higher 1.394193 0.498866 2.795 0.005194 **
DPLURALtwin 0.312319 0.241088 1.295 0.195163
ULD_MECOTRUE 0.818426 0.235798 3.471 0.000519 ***
ULD_PRECIPTRUE 0.191720 0.357680 0.536 0.591951
ULD_BREECHTRUE 0.749237 0.178129 4.206 2.60e-
05 ***
URF_DIABTRUE -0.346467 0.287514 -1.205 0.228187
URF_CHYPERTRUE 0.560025 0.389678 1.437 0.150676
URF_PHYPERTRUE 0.161599 0.250003 0.646 0.518029
URF_ECLAMTRUE 0.498064 0.776948 0.641 0.521489

Signif. codes: 0 ’ ***’ 0.001 ’ **’ 0.01 ’ *’ 0.05 ’ .’ 0.1 ’ ’ 1

The columns of the table represent

A coefficient
Its estimated value
The error around that estimate
The signed distance of the estimated coefficient value
from 0 (using the standard error as the unit of distance)
The probability of seeing a coefficient value at least as
large as we observed, under the null hypothesis that the
coefficient value is really 0

This last value, called the p-value or significance, tells us
whether we should trust the estimated coefficient value. The
standard rule of thumb is that coefficients with p-values less
than 0.05 are reliable, although some researchers prefer stricter
thresholds.

For the birth data, we can see from the coefficient summary that
premature birth and triplet birth are strong predictors of the
newborn needing extra medical attention: the coefficient
magnitudes are non-negligible and the p-values indicate
significance. Other variables that affect the outcome are the
mother’s prepregnancy weight (heavier mothers indicate higher
risk—slightly surprising); the number of prenatal medical visits
(the more visits, the lower the risk); meconium staining in the
amniotic fluid; and breech position at birth. There might be a
positive correlation between mother’s smoking and an at-risk
birth, but the data doesn’t indicate it definitively. None of the
other variables show a strong relationship to an at-risk birth.

Lack of significance could mean collinear inputs

As with linear regression, logistic regression can predict well
with collinear (or correlated) inputs, but the correlations can
mask good advice.

To see this for yourself, we left data about the babies’ birth
weight in grams in the dataset sdata. It’s present in both the
test and training data as the column DBWT. Try adding DBWT to
the logistic regression model in addition to all the other variables;
you’ll see that the coefficient for baby’s birth weight will be
non-negligible (has a substantial impact on prediction) and
significant, and negatively correlated with risk. The coefficient
for DPLURALtriplet or higher will appear insignificant, and
the coefficient for GESTREC3< 37 weeks has a much smaller
magnitude. This is because low birth weight is correlated to both
prematurity and multiple birth. Of the three related variables,
birth weight is the best single predictor of the outcome: knowing
that the baby is a triplet adds no additional useful information,
and knowing the baby is premature adds only a little
information.

In the context of the modeling goal—to proactively allocate
emergency resources where they’re more likely to be needed—
birth weight isn’t as useful a variable, because we don’t know
the baby’s weight until it’s born. We do know ahead of time if
it’s being born prematurely, or if it’s one of multiple babies. So
it’s better to use GESTREC3 and DPLURAL as input variables,
instead of DBWT.

Other signs of possibly collinear inputs are coefficients with the
wrong sign and unusually large coefficient magnitudes.

Overall model quality summaries

The next section of the summary contains the model quality
statistics:

Null deviance: 2698.7 on 14211 degrees of freedom
Residual deviance: 2463.0 on 14198 degrees of freedom
AIC: 2491

Null and residual deviances

Deviance is again a measure of how well the model fits the data.
It is 2 times the negative log likelihood of the dataset, given the
model. If you think of deviance as analogous to variance, then
the null deviance is similar to the variance of the data around the
average rate of positive examples. The residual deviance is
similar to the variance of the data around the model. We can
calculate the deviances for both the training and test sets.

Listing 7.17. Computing deviance

The first thing we can do with the null and residual deviances is
check whether the model’s probability predictions are better
than just guessing the average rate of positives, statistically
speaking. In other words, is the reduction in deviance from the
model meaningful, or just something that was observed by
chance? This is similar to calculating the F-test statistics that are
reported for linear regression. In the case of logistic regression,
the test you’ll run is the chi-squared test. To do that, you need
to know the degrees of freedom for the null model and the actual
model (which are reported in the summary). The degrees of
freedom of the null model is the number of data points minus 1:
df.null = dim(train)[[1]] - 1. The degrees of freedom of
the model that you fit is the number of data points minus the
number of coefficients in the model: df.model = dim(train)
[[1]] - length(model$coefficients).

If the number of data points in the training set is large, and
df.null - df.model is small, then the probability of the
difference in deviances null.dev - resid.dev being as large as
we observed is approximately distributed as a chi-squared
distribution with df.null - df.model degrees of freedom.

Listing 7.18. Calculating the signif icance of the observed f it

The p-value is very small; it’s extremely unlikely that we
could’ve seen this much reduction in deviance by chance.

The pseudo R-squared

A useful goodness of fit measure based on the deviances is the
pseudo R-squared: 1 - (dev.model/dev.null). The pseudo
R-squared is the analog to the R-squared measure for linear
regression. It’s a measure of how much of the deviance is
“explained” by the model. Ideally, you want the pseudo R-
squared to be close to 1. Let’s calculate the pseudo-R-squared
for both the test and training data.

Listing 7.19. Calculating the pseudo R-squared

pr2 <- 1-(resid.dev/null.dev)

> print(pr2)
[1] 0.08734674
> pr2.test <- 1-(resid.dev.test/null.dev.test)
> print(pr2.test)
[1] 0.07760427

The model only explains about 7.7–8.7% of the deviance; it’s
not a highly predictive model (you should have suspected that
already, from figure 7.9). This tells us that we haven’t yet
identified all the factors that actually predict at-risk births.

Goodness of fit versus significance

It’s worth noting that the model we found is a legitimate model,
just not a complete one. The good p-value tells us that the
model is legitimate: it gives us more information than the average
rate of at-risk births does alone. The poor pseudo R-squared
means that the model isn’t giving us enough information to
predict at-risk births with high reliability.

It’s also possible to have good pseudo R-squared (on the
training data) with a bad p-value. This is an indication of overfit.
That’s why it’s a good idea to check both, or better yet, check
the pseudo R-squared of the model on both training and test
data.

The AIC

The last metric given in the section of the summary is the AIC,
or the Akaike information criterion. The AIC is the log
likelihood adjusted for the number of coefficients. Just as the R-
squared of a linear regression is generally higher when the
number of variables is higher, the log likelihood also increases
with the number of variables.

Listing 7.20. Calculating the Akaike information criterion

aic <- 2*(length(model$coefficients) -
 loglikelihood(as.numeric(train$atRisk), pred))
> aic
[1] 2490.992

The AIC is usually used to decide which and how many input
variables to use in the model. If you train many different models
with different sets of variables on the same training set, you can
consider the model with the lowest AIC to be the best fit.

Fisher scoring iterations

The last line of the model summary is the number of Fisher
scoring iterations:

Number of Fisher Scoring iterations: 7

The Fisher scoring method is an iterative optimization method
similar to Newton’s method that glm() uses to find the best
coefficients for the logistic regression model. You should expect
it to converge in about six to eight iterations. If there are more
iterations than that, then the algorithm may not have converged,
and the model may not be valid.

Separation and quasi-separation

The probable reason for nonconvergence is separation or quasi-
separation: one of the model variables or some combination of
the model variables predicts the outcome perfectly for at least a
subset of the training data. You’d think this would be a good
thing, but ironically logistic regression fails when the variables
are too powerful. Ideally, glm() will issue a warning when it
detects separation or quasi-separation:

Warning message:
glm.fit: fitted probabilities numerically 0 or 1 occurred

Unfortunately, there are situations when it seems that no
warning is issued, but there are other warning signs:

An unusually high number of Fisher iterations
Very large coefficients, usually with extremely large
standard errors
Residual deviances larger than the null deviances

If you see any of these signs, the model is suspect. To try to fix
the problem, remove any variables with unusually large
coefficients; they’re probably causing the separation. You can
try using a decision tree on the variables that you remove to
detect regions of perfect prediction. The data that the decision
tree doesn’t predict perfectly on can still be used for building a
logistic regression model. The overall model would then be a
hybrid: the decision tree to predict the too-good data, and a
logistic regression model for the rest.

The right way to deal with separation

We admit, it doesn’t feel right to remove variables or data that
are “too good” from the modeling process. The correct way to
handle separation is to regularize. Unfortunately, the default,
glm() doesn’t regularize. The package glmnet can. But its
calling interface isn’t the standard interface that lm(), glm(),
and other modeling functions in this book use. It also doesn’t
have the nice diagnostic output of the other packages. For these
reasons, we consider a discussion of glmnet beyond the scope
of this book.

To regularize glm() in an ad hoc way, you can use the weights
argument. The weights argument lets you pass a vector of
weights (one per datum) to the glm() call. Add another copy of
the data, but with opposite outcomes, and use this faux data in
glm() with a small weight. An example of this trick can be
found in the blog article “A Pathological GLM Problem that
Doesn’t Issue a Warning” (http://mng.bz/G8RS).

http://mng.bz/G8RS

Another way to deal with separation is to build a two-stage
model starting with a decision tree (section 6.3.2) and use a
different glm() for a different set of variables on each induced
partition of your data.

7.2.6. Logistic regression takeaways

What you should remember about logistic regression:

Logistic regression is the go-to statistical modeling
method for binary classification. Try logistic regression
first, and then more complicated methods if logistic
regression doesn’t perform well.
Logistic regression will have trouble with problems with
a very large number of variables, or categorical variables
with a very large number of levels.
Logistic regression is well calibrated: it reproduces the
marginal probabilities of the data.
Logistic regression can predict well even in the presence
of correlated variables, but correlated variables lower the
quality of the advice.
Overly large coefficient magnitudes, overly large
standard errors on the coefficient estimates, and the
wrong sign on a coefficient could be indications of
correlated inputs.
Too many Fisher iterations, or overly large coefficients
with very large standard errors, could be signs that an
input or combination of inputs is perfectly correlated
with a subset of your responses. You may have to
segment the data to deal with this issue.
glm() provides good diagnostics, but rechecking your
model on test data is still your most effective
diagnostic.

Pseudo R-squared is a useful goodness-of-fit heuristic.

7.3. Summary

In this chapter, you’ve started building models that go beyond
training data memorization and infer a functional form of model.
You’ve learned how to predict numerical quantities with linear
regression models and to predict probabilities or classify using
logistic regression models. You’ve also learned how to interpret
the models that you’ve produced.

Both linear and logistic regression assume that the outcome is a
function of a linear combination of the inputs. This seems
restrictive, but in practice linear and logistic regression models
can perform well even when the theoretical assumptions aren’t
exactly met. We’ll show how to further work around these limits
in chapter 9.

Linear and logistic regression can also provide advice by
quantifying the relationships between the outcomes and the
model’s inputs. Since the models are expressed completely by
their coefficients, they’re small, portable, and efficient—all
valuable qualities when putting a model into production. If the
model’s errors are homoscedastic (uncorrelated with y), the
model might be trusted to extrapolate predictions outside the
training range. Extrapolation is never completely safe, but it’s
sometimes necessary.

The methods that we discussed in this chapter and in the
previous chapter use data about known outcomes to build
models that predict future outcomes. But what if you don’t yet
know what to predict? The next chapter looks at unsupervised
methods: algorithms that discover previously unknown
relationships in data.

Key takeaways

Functional models allow you to better explore how
changes in inputs affect predictions.
Linear regression is a good first technique for modeling
quantities.
Logistic regression is good first technique for modeling
probabilities.
Models with simple forms come with very powerful
summaries and diagnostics.

Chapter 8. Unsupervised methods
This chapter covers

Using R’s clustering functions to explore data and look
for similarities
Choosing the right number of clusters
Evaluating a clustering
Using R’s association rules functions to find patterns of
co-occurrence in data
Evaluating a set of association rules

The methods that we’ve discussed in previous chapters build
models to predict outcomes. In this chapter, we’ll look at
methods to discover unknown relationships in data. These
methods are called unsupervised methods. With unsupervised
methods, there’s no outcome that you’re trying to predict;
instead, you want to discover patterns in the data that perhaps
you hadn’t previously suspected. For example, you may want
to find groups of customers with similar purchase patterns, or
correlations between population movement and socioeconomic
factors. Unsupervised analyses are often not ends in themselves;
rather, they’re ways of finding relationships and patterns that
can be used to build predictive models. In fact, we encourage
you to think of unsupervised methods as exploratory—
procedures that help you get your hands in the data—rather
than as black-box approaches that mysteriously and
automatically give you “the right answer.”

In this chapter, we’ll look at two classes of unsupervised
methods. Cluster analysis finds groups in your data with similar
characteristics. Association rule mining finds elements or
properties in the data that tend to occur together.

8.1. Cluster analysis

In cluster analysis, the goal is to group the observations in your
data into clusters such that every datum in a cluster is more
similar to other datums in the same cluster than it is to datums
in other clusters. For example, a company that offers guided
tours might want to cluster its clients by behavior and tastes:
which countries they like to visit; whether they prefer adventure
tours, luxury tours, or educational tours; what kinds of activities
they participate in; and what sorts of sites they like to visit.
Such information can help the company design attractive travel
packages and target the appropriate segments of their client base
with them.

Cluster analysis is a topic worthy of a book in itself; in this
chapter, we’ll discuss two approaches. Hierarchical clustering
finds nested groups of clusters. An example of hierarchical
clustering might be the standard plant taxonomy, which
classifies plants by family, then genus, then species, and so on.
The second approach we’ll cover is k-means, which is a quick
and popular way of finding clusters in quantitative data.

Clustering and density estimation

Historically, cluster analysis is related to the problem of density
estimation: if you think of your data as living in a large
dimensional space, then you want to find the regions of the
space where the data is densest. If those regions are distinct, or
nearly so, then you have clusters.

8.1.1. Distances

In order to cluster, you need the notions of similarity and

dissimilarity. Dissimilarity can be thought of as distance, so that
the points in a cluster are closer to each other than they are to
the points in other clusters. This is shown in figure 8.1.

Figure 8.1. An example of data in three clusters

Different application areas will have different notions of
distance and dissimilarity. In this section, we’ll cover a few of
the most common ones:

Euclidean distance
Hamming distance
Manhattan (city block) distance
Cosine similarity

Euclidean distance

The most common distance is Euclidean distance. The Euclidean
distance between two vectors x and y is defined as

edist(x, y) <- sqrt((x[1]-y[1])^2 + (x[2]-y[2])^2 + ...)

This is the measure people tend to think of when they think of
“distance.” Optimizing squared Euclidean distance is the basis
of k-means. Of course, Euclidean distance only makes sense
when all the data is real-valued (quantitative). If the data is
categorical (in particular, binary), then other distances can be
used.

Hamming distance

For categorical variables (male/female, or
small/medium/large), you can define the distance as 0 if two
points are in the same category, and 1 otherwise. If all the
variables are categorical, then you can use Hamming distance,
which counts the number of mismatches:

hdist(x, y) <- sum((x[1] != y[1]) + (x[2] != y[2]) + ...)

Here, a != b is defined to have a value of 1 if the expression is
true, and a value of 0 if the expression is false.

You can also expand categorical variables to indicator variables
(as we discussed in section 7.1.4), one for each level of the
variable.

If the categories are ordered (like small/medium/large) so that
some categories are “closer” to each other than others, then you
can convert them to a numerical sequence. For example,
(small/medium/large) might map to (1/2/3). Then you can use
Euclidean distance, or other distances for quantitative data.

Manhattan (city block) distance

Manhattan distance measures distance in the number of
horizontal and vertical units it takes to get from one (real-
valued) point to the other (no diagonal moves):

mdist(x, y) <- sum(abs(x[1]-y[1]) + abs(x[2]-y[2]) + ...)

This is also known as L1 distance (and squared Euclidean
distance is L2 distance).

Cosine similarity

Cosine similarity is a common similarity metric in text analysis.
It measures the smallest angle between two vectors (the angle
theta between two vectors is assumed to be between 0 and 90
degrees). Two perpendicular vectors (theta = 90 degrees) are
the most dissimilar; the cosine of 90 degrees is 0. Two parallel
vectors are the most similar (identical, if you assume they’re
both based at the origin); the cosine of 0 degrees is 1. From
elementary geometry, you can derive that the cosine of the angle
between two vectors is given by the normalized dot product
between the two vectors:

dot(x, y) <- sum(x[1]*y[1] + x[2]*y[2] + ...)
cossim(x, y) <- dot(x, y)/(sqrt(dot(x,x)*dot(y,y)))

You can turn the cosine similarity into a pseudo distance by
subtracting it from 1.0 (though to get an actual metric, you
should use 1 - 2*acos(cossim(x,y))/pi).

Different distance metrics will give you different clusters, as will

different clustering algorithms. The application domain may give
you a hint as to the most appropriate distance, or you can try
several distance metrics. In this chapter, we’ll use (squared)
Euclidean distance, as it’s the most natural distance for
quantitative data.

8.1.2. Preparing the data

To demonstrate clustering, we’ll use a small dataset from 1973
on protein consumption from nine different food groups in 25
countries in Europe.[1] The goal is to group the countries based
on patterns in their protein consumption. The dataset is loaded
into R as a data frame called protein, as shown in the next
listing.

1 The original dataset can be found at http://mng.bz/y2Vw. A tab-separated text file
with the data can be found at
https://github.com/WinVector/zmPDSwR/tree/master/Protein/. The data file is called
protein.txt; additional information can be found in the file protein_README.txt.

Listing 8.1. Reading the protein data

protein <- read.table(“protein.txt”, sep=”\t”, header=TRUE)
summary(protein)
 Country RedMeat WhiteMeat Eggs
 Albania : 1 Min. : 4.400 Min. : 1.400 Min. :0.500
 Austria : 1 1st Qu.: 7.800 1st Qu.: 4.900 1st Qu.:2.700
 Belgium : 1 Median : 9.500 Median : 7.800 Median :2.900
 Bulgaria : 1 Mean : 9.828 Mean : 7.896 Mean :2.936
 Czechoslovakia: 1 3rd Qu.:10.600 3rd Qu.:10.800 3rd Qu.:3.700
 Denmark : 1 Max. :18.000 Max. :14.000 Max. :4.700
 (Other) :19
 Milk Fish Cereals Starch
 Min. : 4.90 Min. : 0.200 Min. :18.60 Min. :0.600
 1st Qu.:11.10 1st Qu.: 2.100 1st Qu.:24.30 1st Qu.:3.100
 Median :17.60 Median : 3.400 Median :28.00 Median :4.700
 Mean :17.11 Mean : 4.284 Mean :32.25 Mean :4.276
 3rd Qu.:23.30 3rd Qu.: 5.800 3rd Qu.:40.10 3rd Qu.:5.700
 Max. :33.70 Max. :14.200 Max. :56.70 Max. :6.500
 Nuts Fr.Veg
 Min. :0.700 Min. :1.400
 1st Qu.:1.500 1st Qu.:2.900
 Median :2.400 Median :3.800
 Mean :3.072 Mean :4.136
 3rd Qu.:4.700 3rd Qu.:4.900
 Max. :7.800 Max. :7.900

Units and scaling

http://mng.bz/y2Vw
https://github.com/WinVector/zmPDSwR/tree/master/Protein/

The documentation for this dataset doesn’t mention what the
units of measurement are, though we can assume all the columns
are measured in the same units. This is important: units (or more
precisely, disparity in units) affect what clusterings an algorithm
will discover. If you measure vital statistics of your subjects as
age in years, height in feet, and weight in pounds, you’ll get
different distances—and possibly different clusters—than if
you measure age in years, height in meters, and weight in
kilograms.

Ideally, you want a unit of change in each coordinate to
represent the same degree of difference. In the protein dataset,
we assume that the measurements are all in the same units, so it
might seem that we’re okay. This may well be a correct
assumption, but different food groups provide different
amounts of protein. Animal-based food sources in general have
more grams of protein per serving than plant-based food
sources, so one could argue that a change in consumption of 5
grams is a bigger difference in terms of vegetable consumption
than it is in terms of red meat consumption.

One way to try to make the clustering more coordinate-free is to
transform all the columns to have a mean value of 0 and a
standard deviation of 1. This makes the standard deviation the
unit of measurement in each coordinate. Assuming that your
training data has a distribution that accurately represents the
population at large, then a standard deviation represents
approximately the same degree of difference in every coordinate.
You can scale the data in R using the function scale().

Listing 8.2. Rescaling the dataset

Now on to clustering. We’ll start with hierarchical.

8.1.3. Hierarchical clustering with hclust()

The hclust() function takes as input a distance matrix (as an
object of class dist), which records the distances between all
pairs of points in the data (using any one of a variety of
metrics). It returns a dendrogram: a tree that represents the
nested clusters. hclust() uses one of a variety of clustering
methods to produce a tree that records the nested cluster
structure. You can compute the distance matrix using the
function dist().

dist() will calculate distance functions using the (squared)
Euclidean distance (method="euclidean"), the Manhattan
distance (method="manhattan"), and something like the
Hamming distance, when categorical variables are expanded to
indicators (method="binary"). If you want to use another
distance metric, you’ll have to compute the appropriate distance
matrix and convert it to a dist object using the as.dist() call
(see help(dist) for further details).

Let’s cluster the protein data. We’ll use Ward’s method, which
starts out with each data point as an individual cluster and
merges clusters iteratively so as to minimize the total within sum

of squares (WSS) of the clustering (we’ll explain more about
WSS later in the chapter).

Listing 8.3. Hierarchical clustering

The dendrogram suggests five clusters (as shown in figure 8.2).
You can draw the rectangles on the dendrogram using the
function rect.hclust():

Figure 8.2. Dendrogram of countries clustered by protein consumption

rect.hclust(pfit, k=5)

To extract the members of each cluster from the hclust object,
use cutree().

Listing 8.4. Extracting the clusters found by hclust()

There’s a certain logic to these clusters: the countries in each
cluster tend to be in the same geographical region. It makes sense
that countries in the same region would have similar dietary
habits. You can also see that

Cluster 2 is made of countries with higher-than-average
red meat consumption.
Cluster 4 contains countries with higher-than-average
fish consumption but low produce consumption.
Cluster 5 contains countries with high fish and produce
consumption.

This dataset has only 25 points; it’s harder to “eyeball” the

clusters and the cluster members when there are very many data
points. In the next few sections, we’ll look at some ways to
examine clusters more holistically.

Visualizing clusters

As we mentioned in chapter 3, visualization is an effective way
to get an overall view of the data, or in this case, the clusters. We
can try to visualize the clustering by projecting the data onto the
first two principal components of the data.[2] If N is the number
of variables that describe the data, then the principal
components describe the hyperellipsoid in N-space that bounds
the data. If you order the principal components by the length of
the hyperellipsoid’s corresponding axes (longest first), then the
first two principal components describe a plane in N-space that
captures as much of the variation of the data as can be captured
in two dimensions. We’ll use the prcomp() call to do the
principal components decomposition.

2 We can project the data onto any two of the principal components, but the first two
are the most likely to show useful information.

Listing 8.5. Projecting the clusters on the f irst two principal components

You can see in figure 8.3 that the
Romania/Yugoslavia/Bulgaria/Albania cluster and the
Mediterranean cluster (Spain and so on) are separated from the
others. The other three clusters co-mingle in this projection,
though they’re probably more separated in other projections.

Figure 8.3. Plot of countries clustered by protein consumption, projected onto
f irst two principal components

Bootstrap evaluation of clusters

An important question when evaluating clusters is whether a
given cluster is “real”—does the cluster represent actual
structure in the data, or is it an artifact of the clustering
algorithm? As you’ll see, this is especially important with
clustering algorithms like k-means, where the user has to specify
the number of clusters a priori. It’s been our experience that
clustering algorithms will often produce several clusters that
represent actual structure or relationships in the data, and then
one or two clusters that are buckets that represent “other” or
“miscellaneous.” Clusters of “other” tend to be made up of data

points that have no real relationship to each other; they just
don’t fit anywhere else.

One way to assess whether a cluster represents true structure is
to see if the cluster holds up under plausible variations in the
dataset. The fpc package has a function called clusterboot()
that uses bootstrap resampling to evaluate how stable a given
cluster is.[3] clusterboot() is an integrated function that both
performs the clustering and evaluates the final produced
clusters. It has interfaces to a number of R clustering algorithms,
including both hclust and kmeans.

3 For a full description of the algorithm, see Christian Henning, “Cluster-wise
assessment of cluster stability,” Research Report 271, Dept. of Statistical Science,
University College London, December 2006. The report can be found online at
http://mng.bz/3XzA.

clusterboot’s algorithm uses the Jaccard coefficient, a
similarity measure between sets. The Jaccard similarity between
two sets A and B is the ratio of the number of elements in the
intersection of A and B over the number of elements in the union
of A and B. The basic general strategy is as follows:

1. Cluster the data as usual.

2. Draw a new dataset (of the same size as the original) by
resampling the original dataset with replacement (meaning
that some of the data points may show up more than once,
and others not at all). Cluster the new dataset.

3. For every cluster in the original clustering, find the most
similar cluster in the new clustering (the one that gives the
maximum Jaccard coefficient) and record that value. If this
maximum Jaccard coefficient is less than 0.5, the original
cluster is considered to be dissolved—it didn’t show up in
the new clustering. A cluster that’s dissolved too often is
probably not a “real” cluster.

http://mng.bz/3XzA

4. Repeat steps 2–3 several times.

The cluster stability of each cluster in the original clustering is
the mean value of its Jaccard coefficient over all the bootstrap
iterations. As a rule of thumb, clusters with a stability value less
than 0.6 should be considered unstable. Values between 0.6 and
0.75 indicate that the cluster is measuring a pattern in the data,
but there isn’t high certainty about which points should be
clustered together. Clusters with stability values above about
0.85 can be considered highly stable (they’re likely to be real
clusters).

Different clustering algorithms can give different stability values,
even when the algorithms produce highly similar clusterings, so
clusterboot() is also measuring how stable the clustering
algorithm is.

Let’s run clusterboot() on the protein data, using hierarchical
clustering with five clusters.

Listing 8.6. Running clusterboot() on the protein data

The clusterboot() results show that the cluster of countries
with high fish consumption (cluster 4) is highly stable. Clusters
1 and 2 are also quite stable; cluster 5 less so (you can see in
figure 8.4 that the members of cluster 5 are separated from the
other countries, but also fairly separated from each other).
Cluster 3 has the characteristics of what we’ve been calling the
“other” cluster.

Figure 8.4. Cluster 5: The Mediterranean cluster. Its members are separated
from the other clusters, but also from each other.

clusterboot() assumes that you know the number of clusters,
k. We eyeballed the appropriate k from the dendrogram, but this
isn’t always feasible with a large dataset. Can we pick a
plausible k in a more automated fashion? We’ll look at this
question in the next section.

Picking the number of clusters

There are a number of heuristics and rules-of-thumb for picking
clusters; a given heuristic will work better on some datasets than
others. It’s best to take advantage of domain knowledge to help
set the number of clusters, if that’s possible. Otherwise, try a
variety of heuristics, and perhaps a few different values of k.

Total within sum of squares

One simple heuristic is to compute the total within sum of
squares (WSS) for different values of k and look for an “elbow”
in the curve. Define the cluster’s centroid as the point that is the
mean value of all the points in the cluster. The within sum of
squares for a single cluster is the average squared distance of
each point in the cluster from the cluster’s centroid. The total
within sum of squares is the sum of the within sum of squares
of all the clusters. We show the calculation in the following
listing.

Listing 8.7. Calculating total within sum of squares

The total WSS will decrease as the number of clusters increases,
because each cluster will be smaller and tighter. The hope is that
the rate at which the WSS decreases will slow down for k
beyond the optimal number of clusters. In other words, the
graph of WSS versus k should flatten out beyond the optimal k,
so the optimal k will be at the “elbow” of the graph.
Unfortunately, this elbow can be difficult to see.

Calinski-Harabasz index

The Calinski-Harabasz index of a clustering is the ratio of the
between-cluster variance (which is essentially the variance of all
the cluster centroids from the dataset’s grand centroid) to the
total within-cluster variance (basically, the average WSS of the
clusters in the clustering). For a given dataset, the total sum of

squares (TSS) is the squared distance of all the data points from
the dataset’s centroid. The TSS is independent of the clustering.
If WSS(k) is the total WSS of a clustering with k clusters, then
the between sum of squares BSS(k) of the clustering is given by
BSS(k) = TSS - WSS(k). WSS(k) measures how close the
points in a cluster are to each other. BSS(k) measures how far
apart the clusters are from each other. A good clustering has a
small WSS(k) and a large BSS(k).

The within-cluster variance W is given by WSS(k)/(n-k), where
n is the number of points in the dataset. The between-cluster
variance B is given by BSS(k)/(k-1). The within-cluster
variance will decrease as k increases; the rate of decrease should
slow down past the optimal k. The between-cluster variance
will increase as k, but the rate of increase should slow down
past the optimal k. So in theory, the ratio of B to W should be
maximized at the optimal k.

Let’s write a function to calculate the Calinski-Harabasz (CH)
index. The function will accommodate both a kmeans clustering
and an hclust clustering.

Listing 8.8. The Calinski-Harabasz index

We can calculate both indices for the protein dataset and plot
them.

Listing 8.9. Evaluating clusterings with dif ferent numbers of clusters

Looking at figure 8.5, you see that the CH criterion is maximized
at k=2, with another local maximum at k=5. If you squint your
eyes, you can convince yourself that the WSS plot has an elbow
at k=2. The k=2 clustering corresponds to the first split of the
dendrogram in figure 8.2; if you use clusterboot() to do the
clustering, you’ll see that the clusters are highly stable, though
perhaps not very informative.

Figure 8.5. Plot of the Calinski-Harabasz and WSS indices for 1–10 clusters,
on protein data

There are several other indices that you can try when picking k.
The gap statistic[4] is an attempt to automate the “elbow
finding” on the WSS curve. It works best when the data comes
from a mix of populations that all have approximately Gaussian
distributions (a mixture of Gaussian). We’ll see one more
measure, the average silhouette width, when we discuss
kmeans().

4 See Robert Tibshirani, Guenther Walther, and Trevor Hastie, “Estimating the
number of clusters in a data set via the gap statistic,” Journal of the Royal Statistical
Society B, 2001, 63(2), pp. 411-423; www.stanford.edu/~hastie/Papers/gap.pdf.

8.1.4. The k-means algorithm

K-means is a popular clustering algorithm when the data is all
numeric and the distance metric is squared Euclidean (though
you could in theory run it with other distance metrics). It’s
fairly ad hoc and has the major disadvantage that you must pick
k in advance. On the plus side, it’s easy to implement (one
reason it’s so popular) and can be faster than hierarchical
clustering on large datasets. It works best on data that looks like
a mixture of Gaussians (which the protein data unfortunately
doesn’t appear to be).

The kmeans() function

The function to run k-means in R is kmeans(). The output of
kmeans() includes the cluster labels, the centers (centroids) of
the clusters, the total sum of squares, total WSS, total BSS, and
the WSS of each cluster. The k-means algorithm is illustrated in
figure 8.6, with k = 2.

Figure 8.6. The k-means procedure. The two cluster centers are represented by
the outlined star and diamond.

http://www.stanford.edu/~hastie/Papers/gap.pdf

This algorithm isn’t guaranteed to have a unique stopping point.
K-means can be fairly unstable, in that the final clusters depend
on the initial cluster centers. It’s good practice to run k-means
several times with different random starts, and then select the
clustering with the lowest total WSS. The kmeans() function
can do this automatically, though it defaults to only using one
random start.

Let’s run kmeans() on the protein data (scaled to 0 mean and
unit standard deviation, as before). We’ll use k=5, as shown in

the next listing.

Listing 8.10. Running k-means with k=5

The kmeansruns() function for picking k

To run kmeans(), you must know k. The fpc package (the same
package that has clusterboot()) has a function called
kmeansruns() that calls kmeans() over a range of k and
estimates the best k. It then returns its pick for the best value of
k, the output of kmeans() for that value, and a vector of
criterion values as a function of k. Currently, kmeansruns() has
two criteria: the Calinski-Harabasz Index ("ch"), and the
average silhouette width ("asw"; for more about silhouette
clustering, see http://mng.bz/Qe15). It’s a good idea to plot the
criterion values over the entire range of k, since you may see
evidence for a k that the algorithm didn’t automatically pick (as
we did in figure 8.5), as we demonstrate in the following listing.

Listing 8.11. Plotting cluster criteria

http://mng.bz/Qe15

Figure 8.7 shows the results of the two clustering criteria
provided by kmeansruns. They suggest two to three clusters as
the best choice. However, if you compare the values of
clustering.ch$crit and clustcrit$crit in the listing,
you’ll see that the CH criterion produces different curves for
kmeans() and hclust() clusterings, but it did pick the same
value (which probably means it picked the same clusters) for
k=5, and k=6, which might be taken as evidence that either five
or six is the optimal choice for k.

Figure 8.7. Plot of the Calinski-Harabasz and average silhouette width indices
for 1–10 clusters, on protein data

clusterboot() revisited

We can run clusterboot() using the k-means algorithm, as
well.

Listing 8.12. Running clusterboot() with k-means

Note that the stability numbers as given by cboot$bootmean
(and the number of times that the clusters were “dissolved” as
given by cboot$bootbrd) are different for the hierarchical
clustering and k-means, even though the discovered clusters are
the same. This shows that the stability of a clustering is partly a
function of the clustering algorithm, not just the data. Again, the
fact that both clustering algorithms discovered the same clusters
might be taken as an indication that five is the optimal number
of clusters.

8.1.5. Assigning new points to clusters

Clustering is often used as part of data exploration, or as a

precursor to other supervised learning methods. But you may
want to use the clusters that you discovered to categorize new
data, as well. One common way to do so is to treat the centroid
of each cluster as the representative of the cluster as a whole,
and then assign new points to the cluster with the nearest
centroid. Note that if you scaled the original data before
clustering, then you should also scale the new data point the
same way before assigning it to a cluster.

Listing 8.13. A function to assign points to a cluster

Note that the function sqr_edist (the squared Euclidean
distance) was defined previously, in section 8.1.1.

Let’s look at an example of assigning points to clusters, using
synthetic data.

Listing 8.14. An example of assigning points to clusters

8.1.6. Clustering takeaways

Here’s what you should remember about clustering:

The goal of clustering is to discover or draw out
similarities among subsets of your data.
In a good clustering, points in the same cluster should
be more similar (nearer) to each other than they are to
points in other clusters.
When clustering, the units that each variable is measured
in matter. Different units cause different distances and
potentially different clusterings.
Ideally, you want a unit change in each coordinate to
represent the same degree of change. One way to
approximate this is to transform all the columns to have
a mean value of 0 and a standard deviation of 1.0, for
example by using the function scale().
Clustering is often used for data exploration or as a
precursor to supervised learning methods.
Like visualization, it’s more iterative and interactive,
and less automated than supervised methods.
Different clustering algorithms will give different
results. You should consider different approaches, with
different numbers of clusters.
There are many heuristics for estimating the best
number of clusters. Again, you should consider the
results from different heuristics and explore various
numbers of clusters.

Sometimes, rather than looking for subsets of data points that
are highly similar to each other, you’d like to know what kind of
data (or which data attributes) tend to occur together. In the next
section, we’ll look at one approach to this problem.

8.2. Association rules

Association rule mining is used to find objects or attributes that
frequently occur together—for example, products that are often
bought together during a shopping session, or queries that tend
to occur together during a session on a website’s search engine.
Such information can be used to recommend products to
shoppers, to place frequently bundled items together on store
shelves, or to redesign websites for easier navigation.

8.2.1. Overview of association rules

The unit of “togetherness” when mining association rules is
called a transaction. Depending on the problem, a transaction
could be a single shopping basket, a single user session on a
website, or even a single customer. The objects that comprise a
transaction are referred to as items in an itemset: the products in
the shopping basket, the pages visited during a website session,
the actions of a customer. Sometimes transactions are referred to
as baskets, from the shopping basket analogy.

Mining for association rules occurs in two steps:

1. Look for all the itemsets (subsets of transactions) that
occur more often than in a minimum fraction of the
transactions.

2. Turn those itemsets into rules.

Let’s consider the example of books that are checked out from a
library. When a library patron checks out a set of books, that’s a
transaction; the books that the patron checked out are the
itemset that comprise the transaction. Table 8.1 represents a
database of transactions.

Table 8.1. A database of library transactions

Transaction
ID

Books checked out

1 The Hobbit, The Princess Bride

2 The Princess Bride, The Last Unicorn

3 The Hobbit

4 The Neverending Story

5 The Last Unicorn

6 The Hobbit, The Princess Bride, The Fellowship of the Ring

7 The Hobbit, The Fellowship of the Ring, The Two Towers, The Return of the
King

8 The Fellowship of the Ring, The Two Towers, The Return of the King

9 The Hobbit, The Princess Bride, The Last Unicorn

10 The Last Unicorn, The Neverending Story

Looking over all the transactions in table 8.1, you find that The
Hobbit is in 50% of all transactions, and The Princess Bride is in
40% of them (you run a library where fantasy is quite popular).
Both books are checked out together in 30% of all transaction.
We’d say the support of the itemset {The Hobbit, The Princess
Bride} is 30%. Of the five transactions that include The Hobbit,
three (60%) also include The Princess Bride. So you can make a
rule “People who check out The Hobbit also check out The
Princess Bride.” This rule should be correct (according to your
data) 60% of the time. We’d say that the confidence of the rule
is 60%. Conversely, of the four times The Princess Bride was
checked out, The Hobbit appeared three times, or 75% of the
time. So the rule “People who check out The Princess Bride also
check out The Hobbit” has 75% confidence.

Let’s define support and confidence formally. The rule “if X,
then Y” means that every time you see the itemset X in a
transaction, you expect to also see Y (with a given confidence).
For the apriori algorithm (which we’ll look at in this section), Y
is always an itemset with one item. Suppose that your database
of transactions is called T. Then support(X) is the number of
transactions that contain X divided by the total number of
transactions in T. The confidence of the rule “if X, then Y” is

given by conf(X=>Y) = support(union(X,Y))/support(X),
where union(X, Y) means that you’re referring to itemsets that
contain both the items in X and the items in Y.

The goal in association rule mining is to find all the interesting
rules in the database with at least a given minimum support
(say, 10%) and a minimum given confidence (say, 60%).

8.2.2. The example problem

For our example problem, let’s imagine that we’re working for a
bookstore, and we want to identify books that our customers
are interested in, based on (all of) their previous purchases and
book interests. We can get information about their book interests
two ways: either they’ve purchased a book from us, or they’ve
rated the book on our website (even if they bought the book
somewhere else). In this case, a transaction is a customer, and an
itemset is all the books that they’ve expressed an interest in,
either by purchase or by rating.

The data that we’ll use is based on data collected in 2004 from
the book community Book-Crossing[5] for research conducted at
the Institut für Informatik, University of Freiburg.[6] We’ve
condensed the information into a single tab-separated text file
called bookdata.tsv. Each row of the file consists of a user ID, a
book title (which we’ve designed as a unique ID for each book),
and the rating (which we won’t actually use in this example):

5 The original data repository can be found at http://mng.bz/2052. Since some artifacts
in the original files caused errors when reading into R, we’re providing copies of the
data as a prepared RData
object:https://github.com/WinVector/zmPDSwR/blob/master/Bookdata/bxBooks.RData.
The prepared version of the data that we’ll use in this section is at
https://github.com/WinVector/zmPDSwR/blob/master/Bookdata/bookdata.tsv.gz. Further
information and scripts for preparing the data can be found at
https://github.com/WinVector/zmPDSwR/tree/master/Bookdata.

6 The researchers’ original paper is “Improving Recommendation Lists Through Topic
Diversification,” Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, Georg

http://mng.bz/2052
https://github.com/WinVector/zmPDSwR/blob/master/Bookdata/bxBooks.RData
https://github.com/WinVector/zmPDSwR/blob/master/Bookdata/bookdata.tsv.gz
https://github.com/WinVector/zmPDSwR/tree/master/Bookdata

Lausen; Proceedings of the 14th International World Wide Web Conference (WWW
’05), May 10-14, 2005, Chiba, Japan. It can be found online at http://mng.bz/7trR.

"token" "userid" "rating" "title"
" a light in the storm" 55927 0 " A Light in the Storm"

The token column contains lower-cased column strings; we
used the tokens to identify books with different ISBNs (the
original book IDs) that had the same title except for casing. The
title column holds properly capitalized title strings; these are
unique per book, so we’ll use them as book IDs.

In this format, the transaction (customer) information is diffused
through the data, rather than being all in one row; this reflects
the way the data would naturally be stored in a database, since
the customer’s activity would be diffused throughout time.
Books generally come in different editions or from different
publishers. We’ve condensed all different versions into a single
item; hence different copies or printings of Little Women will all
map to the same item ID in our data (namely, the title Little
Women).

The original data includes approximately a million ratings of
271,379 books from 278,858 readers. Our data will have fewer
books due to the mapping that we discussed earlier.

Now we’re ready to mine.

8.2.3. Mining association rules with the arules package

We’ll use the package arules for association rule mining.
arules includes an implementation of the popular association
rule algorithm apriori, as well as implementations to read in and
examine transaction data.[7] The package uses special data types
to hold and manipulate the data; we’ll explore these data types
as we work the example.

7 For a more comprehensive introduction to arules than we can give in this chapter,

http://mng.bz/7trR

please see Hahsler, Grin, Hornik, and Buchta, “Introduction to arules—A
computational environment for mining association rules and frequent item sets,”
online at cran.r-project.org/web/packages/arules/vignettes/arules.pdf.

Reading in the data

We can read the data directly from the bookdata.tsv.gz file into
the object bookbaskets using the function
read.transaction().

Listing 8.15. Reading in the book data

The read.transactions() function reads data in two formats:
the format where every row corresponds to a single item (like
bookdata.tsv.gz), and a format where each row corresponds
to a single transaction, possibly with a transaction ID, like table
8.1. To read data in the first format, use the argument
format="single"; to read data in the second format, use the
argument format="basket".

It sometimes happens that a reader will buy one edition of a
book and then later add a rating for that book under a different
edition. Because of the way we’re representing books for this
example, these two actions will result in duplicate entries. The
rm.duplicates=T argument will eliminate them. It will also
output some (not too useful) diagnostics about the duplicates.

Once you’ve read in the data, you can inspect the resulting
object.

Examining the data

Transactions are represented as a special object called
transactions. You can think of a transactions object as a
0/1 matrix, with one row for every transaction and one column
for every possible item. The matrix entry (i,j) is 1 if the i
transaction contains item j. There are a number of calls you can
use to examine the transaction data, as the next listing shows.

Listing 8.16. Examining the transaction data

You can examine the distribution of transaction sizes (or basket
sizes) with the function size():

> basketSizes <- size(bookbaskets)
> summary(basketSizes)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.0 1.0 1.0 11.1 4.0 10250.0

Most customers (at least half of them, in fact) only expressed
interest in one book. But someone has expressed interest in
more than 10,000! You probably want to look more closely at
the size distribution to see what’s going on.

Listing 8.17. Examining the size distribution

Figure 8.8 shows the distribution of basket sizes. 90% of
customers expressed interest in fewer than 15 books; most of
the remaining customers expressed interest in up to about 100
books or so (the call quantile(basketSizes, probs=c(0.99,
1)) will show you that 99% of customers expressed interest in
179 books or fewer). Still, there are a few people who have
expressed interest in several hundred, or even several thousand
books.

Figure 8.8. A density plot of basket sizes

Which books are they reading? The function itemFrequency()
will give you the relative frequency of each book in the
transaction data:

> bookFreq <- itemFrequency(bookbaskets)
summary(bookFreq)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
1.086e-05 1.086e-05 1.086e-05 5.035e-05 3.257e-05 2.716e-
02

> sum(bookFreq)
[1] 11.09909

Note that the frequencies don’t sum to 1. You can recover the
number of times that each book occurred in the data by
normalizing the item frequencies and multiplying by the total
number of items.

Listing 8.18. Finding the ten most frequent books

The last observation in the preceding listing highlights one of the
issues with mining high-dimensional data: when you have
thousands of variables, or thousands of items, almost every
event is rare. Keep this point in mind when deciding on support
thresholds for rule mining; your thresholds will often need to be
quite low.

Before we get to the rule mining, let’s refine the data a bit more.
As we observed earlier, half of the customers in the data only
expressed interest in a single book. Since you want to find books
that occur together in people’s interest lists, you can’t make any
direct use of people who haven’t yet shown interest in multiple
books. You can restrict the dataset to customers who have
expressed interest in at least two books:

> bookbaskets_use <- bookbaskets[basketSizes > 1]
> dim(bookbaskets_use)
[1] 40822 220447

Now you’re ready to look for association rules.

The apriori() function

In order to mine rules, you need to decide on a minimum
support level and a minimum threshold level. For this example,
let’s try restricting the itemsets that we’ll consider to those that
are supported by at least 100 people. This leads to a minimum
support of 100/dim(bookbaskets_use)[1] = 100/40822.
This is about 0.002, or 0.2%. We’ll use a confidence threshold of
75%.

Listing 8.19. Finding the association rules

The quality measures on the rules include not only the rules’
support and confidence, but also a quantity called lift. Lift
compares the frequency of an observed pattern with how often
you’d expect to see that pattern just by chance. The lift of a rule
“if X, then Y” is given by support(union(X,

Y))/(support(X)*support(Y)). If the lift is near 1, then
there’s a good chance that the pattern you observed is occurring

just by chance. The larger the lift, the more likely that the
pattern is “real.” In this case, all the discovered rules have a lift
of at least 40, so they’re likely to be real patterns in customer
behavior.

Inspecting and evaluating rules

There are also other metrics and interest measures you can use
to evaluate the rules by using the function interestMeasure().
We’ll look at two of these measures: coverage and
fishersExactTest. Coverage is the support of the left side of
the rule (X); it tells you how often the rule would be applied in
the dataset. Fisher’s exact test is a significance test for whether
an observed pattern is real, or chance (the same thing lift
measures; Fisher’s test is more formal). Fisher’s exact test
returns the p-value, or the probability that you would see the
observed pattern by chance; you want the p-value to be small.

Listing 8.20. Scoring rules

The coverage of the discovered rules ranges from 0.002–0.007,
equivalent to a range of about 100–250 people. All the p-values
from Fisher’s test are small, so it’s likely that the rules reflect
actual customer behavior patterns.

You can also call interestMeasure() with methods support,
confidence, and lift, among others. This would be useful in
our example if you wanted to get support, confidence, and lift
estimates for the full dataset bookbaskets, rather than the
filtered dataset bookbaskets_use—or for a subset of the data,
for instance, only customers from the United States.

The function inspect() pretty-prints the rules. The function
sort() allows you to sort the rules by a quality or interest
measure, like confidence. To print the five most confident rules
in the dataset, you could use the following command:

inspect(head((sort(rules, by="confidence")), n=5))

For legibility, we show the output of this command in table 8.2.

Table 8.2. The f ive most conf ident rules discovered in the data

Left side Right side Support Confidence Lift

Four to Score High Five Seven Up Two for the
Dough

Three to Get
Deadly 0.002 0.988 165

Harry Potter and the Order of the Phoenix
Harry Potter and the Prisoner of Azkaban
Harry Potter and the Sorcerer’s Stone

Harry Potter and
the Chamber of
Secrets

0.003 0.966 73

Four to Score High Five One for the Money
Two for the Dough

Three to Get
Deadly 0.002 0.966 162

Four to Score Seven Up Three to Get Deadly
Two for the Dough High Five 0.002 0.966 181

High Five Seven Up Three to Get Deadly Two
for the Dough Four to Score 0.002 0.966 168

There are two things to notice in table 8.2. First, the rules
concern books that come in series: the numbered series of novels
about bounty hunter Stephanie Plum, and the Harry Potter
series. So these rules essentially say that if a reader has read four
Stephanie Plum or Harry Potter books, they’re almost sure to
buy another one.

The second thing to notice is that rules 1, 4, and 5 are
permutations of the same itemset. This is likely to happen when

the rules get long.

Restricting which items to mine

You can restrict which items appear in the left side or right side
of a rule. Suppose you’re interested specifically in books that
tend to co-occur with the novel The Lovely Bones. You can do
this by restricting which books appear on the right side of the
rule, using the appearance parameter.

Listing 8.21. Finding rules with restrictions

The supports, confidences, and lifts are lower than they were in
our previous example, but the lifts are still much greater than 1,
so it’s likely that the rules reflect real customer behavior
patterns.

Let’s inspect the rules, sorted by confidence. Since they’ll all
have the same right side, you can use the lhs() function to only
look at the left sides.

Listing 8.22. Inspecting rules

Note that four of the five most confident rules include Lucky: A
Memoir in the left side, which perhaps isn’t surprising, since
Lucky was written by the author of The Lovely Bones. Suppose
you want to find out about works by other authors that are
interesting to people who showed interest in The Lovely Bones;
you can use subset() to filter down to only rules that don’t
include Lucky.

Listing 8.23. Inspecting rules with restrictions

These examples show that association rule mining is often
highly interactive. To get interesting rules, you must often set
the support and confidence levels fairly low; as a result you can
get many, many rules. Some rules will be more interesting or
surprising to you than others; to find them requires sorting the
rules by different interest measures, or perhaps restricting
yourself to specific subsets of rules.

8.2.4. Association rule takeaways

Here’s what you should remember about association rules:

The goal of association rule mining is to find
relationships in the data: items or attributes that tend to
occur together.
A good rule “if X, then Y” should occur more often than
you’d expect to observe by chance. You can use lift or
Fisher’s exact test to check if this is true.
When a large number of different possible items can be

in a basket (in our example, thousands of different
books), most events will be rare (have low support).
Association rule mining is often interactive, as there can
be many rules to sort and sift through.

8.3. Summary

In this chapter, you’ve learned how to find similarities in data
using two different clustering methods in R, and how to find
items that tend to occur together in data using association rules.
You’ve also learned how to evaluate your discovered clusters
and your discovered rules.

Unsupervised methods like the ones we’ve covered in this
chapter are really more exploratory in nature. Unlike with
supervised methods, there’s no “ground truth” to evaluate your
findings against. But the findings from unsupervised methods
can be the starting point for more focused experiments and
modeling.

In the last few chapters, we’ve covered the most basic modeling
and data analysis techniques; they’re all good first approaches
to consider when you’re starting a new project. In the next
chapter, we’ll touch on a few more advanced methods.

Key takeaways

Unsupervised methods find structure in the data, often
as a prelude to predictive modeling.
The goal of clustering is to discover or draw out
similarities among subsets of your data.
When clustering, you’ll find that scaling is important.
The goal of association rule mining is to find
relationships in the data: items or attributes that tend to
occur together.

In association rule mining, most events will be rare, so
support and confidence levels must often be set low.

Chapter 9. Exploring advanced
methods
This chapter covers

Reducing training variance with bagging and random
forests
Learning non-monotone relationships with generalized
additive models
Increasing data separation with kernel methods
Modeling complex decision boundaries with support
vector machines

In the last few chapters, we’ve covered basic predictive
modeling algorithms that you should have in your toolkit. These
machine learning methods are usually a good place to start. In
this chapter, we’ll look at more advanced methods that resolve
specific weaknesses of the basic approaches. The main
weaknesses we’ll address are training variance, non-monotone
effects, and linearly inseparable data.

To illustrate the issues, let’s consider a silly health prediction
model. Suppose we have for a number of patients (of widely
varying but unrecorded ages) recorded height (as h in feet) and
weight (as w in pounds), and an appraisal of “healthy” or
“unhealthy.” The modeling question is this: can height and
weight accurately predict health appraisal? Models built off
such limited features provide quick examples of the following
common weaknesses:

Training variance— Training variance is when small
changes in the makeup of the training set result in
models that make substantially different predictions.

Decision trees can exhibit this effect. Both bagging and
random forests can reduce training variance and
sensitivity to overfitting.
Non-monotone effects— Linear regression and logistic
regression (see chapter 7) both treat numeric variables in
a monotone matter: if more of a quantity is good, then
much more of the quantity is better. This is often not
the case in the real world. For example, ideal healthy
weight is in a bounded range, not arbitrarily heavy or
arbitrarily light. Generalized additive models add the
ability to model interesting variable effects and ranges to
linear models and generalized linear models (such as
logistic regression).
Linearly inseparable data— Often the concept we’re
trying to learn is not a linear combination of the original
variables. Take BMI, or body mass index, for example:
BMI purports to relate height (h) and weight (w)
through the expression w/h2 to health (rightly or
wrongly). The term w/h2 is not a linear combination of
w and h, so neither linear regression or logistic
regression would directly discover such a relation. It’s
reasonable to expect that a model that has a term of w/h2

could produce better predictions of health appraisal
than a model that only has linear combinations of h and
w. This is because the data is more “separable” with
respect to a w/h2-shaped decision surface than to an h-
shaped decision surface. Kernel methods allow the data
scientist to introduce new nonlinear combination terms
to models (like w/h2), and support vector machines
(SVMs) use both kernels and training data to build
useful decision surfaces.

These issues don’t always cause modeling efforts to visibly fail.
Instead they often leave you with a model that’s not as
powerful as it could be. In this chapter, we’ll use a few advanced

methods to fix such modeling weaknesses lurking in earlier
examples. We’ll start with a demonstration of bagging and
random forests.

9.1. Using bagging and random forests to reduce
training variance

In section 6.3.2, we looked at using decision trees for
classification and regression. As we mentioned there, decision
trees are an attractive method for a number of reasons:

They take any type of data, numerical or categorical,
without any distributional assumptions and without
preprocessing.
Most implementations (in particular, R’s) handle
missing data; the method is also robust to redundant and
nonlinear data.
The algorithm is easy to use, and the output (the tree) is
relatively easy to understand.
Once the model is fit, scoring is fast.

On the other hand, decision trees do have some drawbacks:

They have a tendency to overfit, especially without
pruning.
They have high training variance: samples drawn from
the same population can produce trees with different
structures and different prediction accuracy.
Prediction accuracy can be low, compared to other
methods.[1]

1 See Lim, Loh, and Shih, “A Comparison of Prediction Accuracy,
Complexity, and Training Time of Thirty -three Old and New
Classification Algorithms,” Machine Learning, 2000. 40, 203–229; online
at http://mng.bz/rwKM.

http://mng.bz/rwKM

For these reasons a technique called bagging is often used to
improve decision tree models, and a more specialized approach
called random forests directly combines decision trees with
bagging. We’ll work examples of both techniques.

9.1.1. Using bagging to improve prediction

One way to mitigate the shortcomings of decision tree models is
by bootstrap aggregation, or bagging. In bagging, you draw
bootstrap samples (random samples with replacement) from
your data. From each sample, you build a decision tree model.
The final model is the average of all the individual decision trees.
[2] To make this concrete, suppose that x is an input datum,
y_i(x) is the output of the ith tree, c(y_1(x), y_2(x), ...
y_n(x)) is the vector of individual outputs, and y is the output
of the final model:

2 Bagging and random forests (which we’ll describe in the next section) are two
variations of a general technique called ensemble learning. An ensemble model is
composed of the combination of several smaller simple models (often small decision
trees). Giovanni Seni and John Elder’s Ensemble Methods in Data Mining (Morgan &
Clay pool, 2010) is an excellent introduction to the general theory of ensemble
learning.

For regression, or for estimating class probabilities,
y(x) is the average of the scores returned by the
individual trees: y(x) = mean(c(y_1(x), ...

y_n(x))).
For classification, the final model assigns the class that
got the most votes from the individual trees.

Bagging decision trees stabilizes the final model by lowering the
variance; this improves the accuracy. A bagged ensemble of trees
is also less likely to overfit the data.

Bagging classifiers

The proofs that bagging reduces variance are only valid for
regression and for estimating class probabilities, not for
classifiers (a model that only returns class membership, not
class probabilities). Bagging a bad classifier can make it worse.
So you definitely want to work over estimated class
probabilities, if they’re at all available. But it can be shown that
for CART trees (which is the decision tree implementation in R)
under mild assumptions, bagging tends to increase classifier
accuracy. See Clifton D. Sutton, “Classification and Regression
Trees, Bagging, and Boosting,” Handbook of Statistics, Vol. 24
(Elsevier, 2005) for more details.

The Spambase dataset (also used in chapter 5) provides a good
example of the bagging technique. The dataset consists of about
4,600 documents and 57 features that describe the frequency of
certain key words and characters. First we’ll train a decision tree
to estimate the probability that a given document is spam, and
then we’ll evaluate the tree’s deviance (which you’ll recall from
discussions in chapters 5 and 7 is similar to variance) and its
prediction accuracy.

First, let’s load the data. As we did in section 5.2, let’s
download a copy of spamD .tsv
(https://github.com/WinVector/zmPDSwR/raw/master/Spambase/spamD.tsv
Then we’ll write a few convenience functions and train a
decision tree, as in the following listing.

Listing 9.1. Preparing Spambase data and evaluating the performance of
decision trees

https://github.com/WinVector/zmPDSwR/raw/master/Spambase/spamD.tsv

The output of the last two calls to accuracyMeasures()
produces the following output. As expected, the accuracy and
F1 scores both degrade on the test set, and the deviance
increases (we want the deviance to be small):

 model accuracy f1 dev.norm
tree, training 0.9104514 0.7809002 0.5618654

 model accuracy f1 dev.norm
 tree, test 0.8799127 0.7091151 0.6702857

Now let’s try bagging the decision trees.

Listing 9.2. Bagging decision trees

This results in the following:

 model accuracy f1 dev.norm
bagging, training 0.9220372 0.8072953 0.4702707

 model accuracy f1 dev.norm
 bagging, test 0.9061135 0.7646497 0.528229

As you see, bagging improves accuracy and F1, and reduces
deviance over both the training and test sets when compared to
the single decision tree (we’ll see a direct comparison of the
scores a little later on). The improvement is more dramatic on
the test set: the bagged model has less generalization error[3] than
the single decision tree. We can further improve model
performance by going from bagging to random forests.

3 Generalization error is the difference in accuracy of the model on data it’s never
seen before, as compared to its error on the training set.

9.1.2. Using random forests to further improve prediction

In bagging, the trees are built using randomized datasets, but
each tree is built by considering the exact same set of features.
This means that all the individual trees are likely to use very
similar sets of features (perhaps in a different order or with
different split values). Hence, the individual trees will tend to be
overly correlated with each other. If there are regions in feature
space where one tree tends to make mistakes, then all the trees
are likely to make mistakes there, too, diminishing our
opportunity for correction. The random forest approach tries to
de-correlate the trees by randomizing the set of variables that
each tree is allowed to use. For each individual tree in the
ensemble, the random forest method does the following:

1. Draws a bootstrapped sample from the training data

2. For each sample, grows a decision tree, and at each node
of the tree

1. Randomly draws a subset of mtry variables from the p
total features that are available

2. Picks the best variable and the best split from that set of
mtry variables

3. Continues until the tree is fully grown

The final ensemble of trees is then bagged to make the random
forest predictions. This is quite involved, but fortunately all
done by a single-line random forest call.

By default, the randomForest() function in R draws mtry =
p/3 variables at each node for regression trees and m = sqrt(p)
variables for classification trees. In theory, random forests aren’t
terribly sensitive to the value of mtry. Smaller values will grow
the trees faster; but if you have a very large number of variables
to choose from, of which only a small fraction are actually
useful, then using a larger mtry is better, since with a larger mtry
you’re more likely to draw some useful variables at every step
of the tree-growing procedure.

Continuing from the data in section 9.1, let’s build a spam model
using random forests.

Listing 9.3. Using random forests

Let’s summarize the results for all three of the models we’ve
looked at:

Performance on the training set
 model accuracy f1 dev.norm
 Tree 0.9104514 0.7809002 0.5618654
 Bagging 0.9220372 0.8072953 0.4702707
Random Forest 0.9884142 0.9706611 0.1428786

Performance on the test set
 model accuracy f1 dev.norm
 Tree 0.8799127 0.7091151 0.6702857
 Bagging 0.9061135 0.7646497 0.5282290
Random Forest 0.9541485 0.8845029 0.3972416

Performance change between training and test:
The decrease in accuracy and f1 in the test set
from training, and the increase in dev.norm
in the test set from training.

(So in every case, smaller is better)
 model accuracy f1 dev.norm
 Tree 0.03053870 0.07178505 -0.10842030
 Bagging 0.01592363 0.04264557 -0.05795832
Random Forest 0.03426572 0.08615813 -0.254363

The random forest model performed dramatically better than the
other two models in both training and test. But the random
forest’s generalization error was comparable to that of a single
decision tree (and almost twice that of the bagged model).[4]

4 When a machine learning algorithm shows an implausibly good fit (like 0.99+
accuracy), it can be a symptom that you don’t have enough training data to falsify
bad modeling alternatives. Limiting the complexity of the model can cut down on
generalization error and overfitting and can be worthwhile, even if it decreases
training performance.

Random forests can overfit!

It’s lore among random forest proponents that “random forests
don’t overfit.” In fact, they can. Hastie et al. back up this
observation in their chapter on random forests in The Elements
of Statistical Learning, Second Edition (Springer, 2009). Look for
unreasonably good fits on the training data as evidence of
useless overfit and memorization. Also, it’s important to
evaluate your model’s performance on a holdout set.

You can also mitigate the overfitting problem by limiting how
deep the trees can be grown (using the maxnodes parameter to
randomForest()). When you do this, you’re deliberately
degrading model performance on training data so that you can
more usefully distinguish between models and falsify bad
training decisions.

Examining variable importance

A useful feature of the randomForest() function is its variable
importance calculation. Since the algorithm uses a large number

of bootstrap samples, each data point x has a corresponding set
of out-of-bag samples: those samples that don’t contain the
point x. The out-of-bag samples can be used is a way similar to
N-fold cross validation, to estimate the accuracy of each tree in
the ensemble.

To estimate the “importance” of a variable v, the variable’s
values are randomly permuted in the out-of-bag samples, and
the corresponding decrease in each tree’s accuracy is estimated.
If the average decrease over all the trees is large, then the variable
is considered important—its value makes a big difference in
predicting the outcome. If the average decrease is small, then the
variable doesn’t make much difference to the outcome. The
algorithm also measures the decrease in node purity that occurs
from splitting on a permuted variable (how this variable affects
the quality of the tree).

We can calculate the variable importance by setting
importance=T in the randomForest() call, and then calling the
functions importance() and varImpPlot().

Listing 9.4. randomForest variable importance()

The result of the varImpPlot() call is shown in figure 9.1.

Figure 9.1. Plot of the most important variables in the spam model, as
measured by accuracy

Knowing which variables are most important (or at least, which
variables contribute the most to the structure of the underlying

decision trees) can help you with variable reduction. This is
useful not only for building smaller, faster trees, but for choosing
variables to be used by another modeling algorithm, if that’s
desired. We can reduce the number of variables in this spam
example from 57 to 25 without affecting the quality of the final
model.

Listing 9.5. Fitting with fewer variables

The smaller model performs just as well as the random forest
model built using all 57 variables.

9.1.3. Bagging and random forest takeaways

Here’s what you should remember about bagging and random
forests:

Bagging stabilizes decision trees and improves accuracy
by reducing variance.

Bagging reduces generalization error.
Random forests further improve decision tree
performance by de-correlating the individual trees in the
bagging ensemble.
Random forests’ variable importance measures can help
you determine which variables are contributing the most
strongly to your model.
Because the trees in a random forest ensemble are
unpruned and potentially quite deep, there’s still a
danger of overfitting. Be sure to evaluate the model on
holdout data to get a better estimate of model
performance.

Bagging and random forests are after-the-fact improvements we
can try in order to improve model outputs. In our next section,
we’ll work with generalized additive models, which work to
improve how model inputs are used.

9.2. Using generalized additive models (GAMs) to
learn non-monotone relationships

In chapter 7, we looked at how to use linear regression to model
and predict quantitative output, and how to use logistic
regression to predict class probabilities. Linear and logistic
regression models are powerful tools, especially when you want
to understand the relationship between the input variables and
the output. They’re robust to correlated variables (when
regularized), and logistic regression preserves the marginal
probabilities of the data. The primary shortcoming of both these
models is that they assume that the relationship between the
inputs and the output is monotone. That is, if more is good,
than much more is always better.

But what if the actual relationship is non-monotone? For
example, for underweight patients, increasing weight can
increase health. But there’s a limit: at some point more weight is

bad. Linear and logistic regression miss this distinction (but still
often perform surprisingly well, hiding the issue). Generalized
additive models (GAMs) are a way to model non-monotone
responses within the framework of a linear or logistic model (or
any other generalized linear model).

9.2.1. Understanding GAMs

Recall that, if y[i] is the numeric quantity you want to predict,
and x[i,] is a row of inputs that corresponds to output y[i],
then linear regression finds a function f(x) such that

f(x[i,]) = b0 + b[1] x[i,1] + b[2] x[i,2] + ... b[n] x[i,n]

And f(x[i,]) is as close to y[i] as possible.

In its simplest form, a GAM model relaxes the linearity
constraint and finds a set of functions s_i() (and a constant
term a0) such that

f(x[i,]) = a0 + s_1(x[i,1]) + s_2(x[i,2]) + ... s_n(x[i,n])

And f(x[i,]) is as close to y[i] as possible. The functions
s_i() are smooth curve fits that are built up from polynomials.
The curves are called splines and are designed to pass as closely
as possible through the data without being too “wiggly”
(without overfitting). An example of a spline fit is shown in
figure 9.2.

Figure 9.2. A spline that has been f it through a series of points

Let’s work on a concrete example.

9.2.2. A one-dimensional regression example

Let’s consider a toy example where the response y is a noisy
nonlinear function of the input variable x (in fact, it’s the
function shown in figure 9.2). As usual, we’ll split the data into
training and test sets.

Listing 9.6. Preparing an artif icial problem

set.seed(602957)

x <- rnorm(1000)
noise <- rnorm(1000, sd=1.5)

y <- 3*sin(2*x) + cos(0.75*x) - 1.5*(x^2) + noise

select <- runif(1000)
frame <- data.frame(y=y, x = x)

train <- frame[select > 0.1,]
test <-frame[select <= 0.1,]

Given the data is from the nonlinear functions sin() and cos(),
there shouldn’t be a good linear fit from x to y. We’ll start by
building a (poor) linear regression.

Listing 9.7. Linear regression applied to our artif icial example

> lin.model <- lm(y ~ x, data=train)
> summary(lin.model)

Call:
lm(formula = y ~ x, data = train)

Residuals:
 Min 1Q Median 3Q Max
-17.698 -1.774 0.193 2.499 7.529

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.8330 0.1161 -7.175 1.51e-12 ***
x 0.7395 0.1197 6.180 9.74e-10 ***

Signif. codes: 0 ’ ***’ 0.001 ’ **’ 0.01 ’ *’ 0.05 ’ .’ 0.1 ’ ’ 1

Residual standard error: 3.485 on 899 degrees of freedom
Multiple R-squared: 0.04075, Adjusted R-
squared: 0.03968
F-statistic: 38.19 on 1 and 899 DF, p-value: 9.737e-10

#
calculate the root mean squared error (rmse)
#
> resid.lin <- train$y-predict(lin.model)
> sqrt(mean(resid.lin^2))
[1] 3.481091

The resulting model’s predictions are plotted versus true
response in figure 9.3. As expected, it’s a very poor fit, with an
R-squared of about 0.04. In particular, the errors are
heteroscedastic:[5] there are regions where the model
systematically underpredicts and regions where it
systematically overpredicts. If the relationship between x and y

were truly linear (with noise), then the errors would be
homoscedastic: the errors would be evenly distributed (mean 0)
around the predicted value everywhere.

5 Heteroscedastic errors are errors whose magnitude is correlated with the quantity to
be predicted. Heteroscedastic errors are bad because they ’re sy stematic and violate
the assumption that errors are uncorrelated with outcomes, which is used in many
proofs of the good properties of regression methods.

Figure 9.3. Linear model’s predictions versus actual response. The solid line is
the line of perfect prediction (prediction=actual).

Let’s try finding a nonlinear model that maps x to y. We’ll use
the function gam() in the package mgcv.[6] When using gam(),
you can model variables as either linear or nonlinear. You model
a variable x as nonlinear by wrapping it in the s() notation. In
this example, rather than using the formula y ~ x to describe the
model, you’d use the formula y ~s(x). Then gam() will search
for the spline s() that best describes the relationship between x
and y, as shown in listing 9.8. Only terms surrounded by s()

get the GAM/spline treatment.

6 There’s an older package called gam, written by Hastie and Tibshirani, the inventors
of GAMs. The gam package works fine. But it’s incompatible with the mgcv package,
which ggplot already loads. Since we’re using ggplot for plotting, we’ll use mgcv
for our examples.

Listing 9.8. GAM applied to our artif icial example

The resulting model’s predictions are plotted versus true
response in figure 9.4. This fit is much better: the model
explains over 80% of the variance (R-squared of 0.83), and the
root mean squared error (RMSE) over the training data is less
than half the RMSE of the linear model. Note that the points in
figure 9.4 are distributed more or less evenly around the line of
perfect prediction. The GAM has been fit to be homoscedastic,
and any given prediction is as likely to be an overprediction as
an underprediction.

Figure 9.4. GAM’s predictions versus actual response. The solid line is the
theoretical line of perfect prediction (prediction=actual).

Modeling linear relationships using gam()

By default, gam() will perform standard linear regression. If you
were to call gam() with the formula y ~ x, you’d get the same
model that you got using lm(). More generally, the call gam(y ~
x1 + s(x2), data=...) would model the variable x1 as
having a linear relationship with y, and try to fit the best
possible smooth curve to model the relationship between x2 and

y. Of course, the best smooth curve could be a straight line, so if
you’re not sure whether the relationship between x and y is
linear, you can use s(x). If you see that the coefficient has an
edf (effective degrees of freedom—see the model summary in
listing 9.8) of about 1, then you can try refitting the variable as a
linear term.

The use of splines gives GAMs a richer model space to choose
from; this increased flexibility brings a higher risk of overfitting.
Let’s check the models’ performances on the test data.

Listing 9.9. Comparing linear regression and GAM performance

The GAM performed similarly on both sets (RMSE of 1.40 on
test versus 1.45 on training; R-squared of 0.78 on test versus
0.83 on training). So there’s likely no overfit.

9.2.3. Extracting the nonlinear relationships

Once you fit a GAM, you’ll probably be interested in what the
s() functions look like. Calling plot() on a GAM will give you
a plot for each s() curve, so you can visualize nonlinearities. In
our example, plot(glin.model) produces the top curve in
figure 9.5.

Figure 9.5. Top: The nonlinear function s(PWGT) discovered by gam(), as
output by plot(gam.model) Bottom: The same spline superimposed over the
training data

The shape of the curve is quite similar to the scatter plot we
saw in figure 9.2 (which is reproduced as the lower half of figure
9.5). In fact, the spline that’s superimposed on the scatter plot
in figure 9.2 is the same curve.

We can extract the data points that were used to make this graph
by using the predict() function with the argument
type="terms". This produces a matrix where the ith column
represents s(x[,i]). Listing 9.10 demonstrates how to
reproduce the lower plot in figure 9.5.

Listing 9.10. Extracting a learned spline from a GAM

> sx <- predict(glin.model, type="terms")
> summary(sx)
 s(x)
 Min. :-17.527035
 1st Qu.: -2.378636
 Median : 0.009427
 Mean : 0.000000
 3rd Qu.: 2.869166
 Max. : 4.084999

> xframe <- cbind(train, sx=sx[,1])

> ggplot(xframe, aes(x=x)) + geom_point(aes(y=y), alpha=0.4) +
 geom_line(aes(y=sx))

Now that we’ve worked through a simple example, let’s try a
more realistic example with more variables.

9.2.4. Using GAM on actual data

For this example, we’ll predict a newborn baby’s weight (DBWT)
using data from the CDC 2010 natality dataset that we used in
section 7.2 (though this is not the risk data used in that chapter).
[7] As input, we’ll consider mother’s weight (PWGT), mother’s
pregnancy weight gain (WTGAIN), mother’s age (MAGER), and the
number of prenatal medical visits (UPREVIS).[8]

7 The dataset can be found at
https://github.com/WinVector/zmPDSwR/blob/master/CDC/NatalBirthData.rData. A
script for preparing the dataset from the original CDC extract can be found at

https://github.com/WinVector/zmPDSwR/blob/master/CDC/NatalBirthData.rData

https://github.com/WinVector/zmPDSwR/blob/master/CDC/prepBirthWeightData.R.

8 We’ve chosen this example to highlight the mechanisms of gam(), not to find the
best model for birth weight. Adding other variables beyond the four we’ve chosen will
improve the fit, but obscure the exposition.

In the following listing, we’ll fit a linear model and a GAM, and
compare.

Listing 9.11. Applying linear regression (with and without GAM) to health
data

https://github.com/WinVector/zmPDSwR/blob/master/CDC/prepBirthWeightData.R

The GAM has improved the fit, and all four variables seem to
have a nonlinear relationship with birth weight, as evidenced by
edfs all greater than 1. We could use plot(glinmodel) to
examine the shape of the s() functions; instead, we’ll compare

them with a direct smoothing curve of each variable against
mother’s weight.

Listing 9.12. Plotting GAM results

The plots of the s() splines compared with the smooth curves
directly relating the input variables to birth weight are shown in
figure 9.6. The smooth curves in each case are similar to the
corresponding s() in shape, and nonlinear for all of the
variables. As usual, we should check for overfit with hold-out
data.

Figure 9.6. Smoothing curves of each of the four input variables plotted
against birth weight, compared with the splines discovered by gam(). All
curves have been shif ted to be zero mean for comparison of shape.

Listing 9.13. Checking GAM model performance on hold-out data

The performance of the linear model and the GAM were similar
on the test set, as they were on the training set, so in this
example there’s no substantial overfit.

9.2.5. Using GAM for logistic regression

The gam() function can be used for logistic regression as well.
Suppose that we wanted to predict the birth of underweight
babies (defined as DBWT < 2000) from the same variables we’ve
been using. The logistic regression call to do that would be as
shown in the following listing.

Listing 9.14. GLM logistic regression

form <- as.formula("DBWT < 2000 ~ PWGT + WTGAIN + MAGER + UPREVIS")
logmod <- glm(form, data=train, family=binomial(link="logit"))

The corresponding call to gam() also specifies the binomial
family with the logit link.

Listing 9.15. GAM logistic regression

As with the standard logistic regression call, we recover the class
probabilities with the call predict(glogmodel,

newdata=train, type="response"). Again these models are
coming out with low quality, and in practice we would look for
more explanatory variables to build better screening models.

The gam() package requires explicit formulas as input

You may have noticed that when calling lm(), glm(), or
rpart(), we can input the formula specification as a string.
These three functions quietly convert the string into a formula
object. Unfortunately, neither gam() nor randomForest(),
which you saw in section 9.1.2, will do this automatic
conversion. You must explicitly call as.formula() to convert
the string into a formula object.

9.2.6. GAM takeaways

Here’s what you should remember about GAMs:

GAMs let you represent nonlinear and non-monotonic
relationships between variables and outcome in a linear
or logistic regression framework.
In the mgcv package, you can extract the discovered
relationship from the GAM model using the predict()
function with the type="terms" parameter.
You can evaluate the GAM with the same measures
you’d use for standard linear or logistic regression:
residuals, deviance, R-squared, and pseudo R-squared.
The gam() summary also gives you an indication of
which variables have a significant effect on the model.
Because GAMs have increased complexity compared to
standard linear or logistic regression models, there’s
more risk of overfit.

GAMs allow you to extend linear methods (and generalized
linear methods) to allow variables to have nonlinear (or even
non-monotone) effects on outcome. But we’ve only considered
each variable’s impact individually. Another approach is to form
new variables from nonlinear combinations of existing variables.
The hope is that with access to enough of these new variables,

your modeling problem becomes easier.

In the next two sections, we’ll work with two of the most
popular ways to add and manage new variables: kernel methods
and support vector machines.

9.3. Using kernel methods to increase data
separation

Often your available variables aren’t quite good enough to meet
your modeling goals. The most powerful way to get new
variables is to get new, better measurements from the domain
expert. Acquiring new measurements may not be practical, so
you’d also use methods to create new variables from
combinations of the measurements you already have at hand. We
call these new variables synthetic to emphasize that they’re
synthesized from combinations of existing variables and don’t
represent actual new measurements. Kernel methods are one
way to produce new variables from old and to increase the
power of machine learning methods.[9] With enough synthetic
variables, data where points from different classes are mixed
together can often be lifted to a space where the points from
each class are grouped together, and separated from out-of-class
points.

9 The standard method to create synthetic variables is to add interaction terms. An
interaction between variables occurs when a change in outcome due to two (or more)
variables is more than the changes due to each variable alone. For example, too high a
sodium intake will increase the risk of hypertension, but this increase is
disproportionately higher for people with a genetic susceptibility to hypertension. The
probability of becoming hy pertensive is a function of the interaction of the two factors
(diet and genetics). For details on using interaction terms in R, see
help('formula'). In models such as lm(), you can introduce an interaction
term by adding a colon (:) to a pair of terms in your formula specification.

One misconception about kernel methods is that they’re
automatic or self-adjusting. They’re not; beyond a few
“automatic bandwidth adjustments,” it’s up to the data scientist
to specify a useful kernel instead of the kernel being

automatically found from the data. But many of the standard
kernels (inner-product, Gaussian, and cosine) are so useful that
it’s often profitable to try a few kernels to see what
improvements they offer.

The word kernel is used in many dif ferent senses

The word kernel has many different incompatible definitions in
mathematics and statistics. The machine learning sense of the
word used here is taken from operator theory and the sense used
in Mercer’s theorem. The kernels we want are two argument
functions that behave a lot like an inner product. The other
common (incompatible) statistical use of kernel is in density
estimation, where kernels are single argument functions that
represent probability density functions or distributions.

In the next few sections, we’ll work through the definition of a
kernel function. We’ll give a few examples of transformations
that can be implemented by kernels and a few examples of
transformations that can’t be implemented as kernels. We’ll then
work through a few examples.

9.3.1. Understanding kernel functions

To understand kernel functions, we’ll work through the
definition, why they’re useful, and some examples of important
kernel functions.

Formal def inition of a kernel function

In our application, a kernel is a function with a very specific
definition. Let u and v be any pair of variables. u and v are
typically vectors of input or independent variables (possibly
taken from two rows of a dataset). A function k(,) that maps

pairs (u,v) to numbers is called a kernel function if and only if
there is some function phi() mapping (u,v)s to a vector space
such that k(u,v) = phi(u) %*% phi(v) for all u,v.[10] We’ll
informally call the expression k(u,v) = phi(u) %*% phi(v)
the Mercer expansion of the kernel (in reference to Mercer’s
theorem; see http://mng.bz/xFD2) and consider phi() the
certificate that tells us k(,) is a good kernel. This is much easier
to understand from a concrete example. In listing 9.16, we’ll
develop an example function k(,) and the matching phi() that
demonstrates that k(,) is in fact a kernel over two dimensional
vectors.

10 %*% is R’s notation for dot product or inner product; see help('%*%') for details.
Note that phi() is allowed to map to very large (and even infinite) vector spaces.

Listing 9.16. An artif icial kernel example

http://mng.bz/xFD2

Figure 9.7 illustrates[11] what we hope for from a good kernel:
our data being pushed around so it’s easier to sort or classify.
By using a kernel transformation, we move to a situation where
the distinction we’re trying to learn is representable by a linear
operator in our transformed data.

11 See Nello Cristianini and John Shawe-Tay lor, An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods, Cambridge University Press,
2000.

Figure 9.7. Notional illustration of a kernel transform (based on Cristianini
and Shawe-Taylor, 2000)

Most kernel methods use the function k(,) directly and only
use properties of k(,) guaranteed by the matching phi() to
ensure method correctness. The k(,) function is usually quicker
to compute than the notional function phi(). A simple example
of this is what we’ll call the dot-product similarity of documents.
The dot-product document similarity is defined as the dot
product of two vectors where each vector is derived from a

document by building a huge vector of indicators, one for each
possible feature. For instance, if the features you’re considering
are word pairs, then for every pair of words in a given
dictionary, the document gets a feature of 1 if the pair occurs as
a consecutive utterance in the document and 0 if not. This
method is the phi(), but in practice we never use the phi()
procedure. Instead, for one document each consecutive pair of
words is generated and a bit of score is added if this pair is both
in the dictionary and found consecutively in the other document.
For moderatesized documents and large dictionaries, this direct
k(,) implementation is vastly more efficient than the phi()
implementation.

Why are kernel functions useful?

Kernel functions are useful for a number of reasons:

Inseparable datasets (data where examples from
multiple training classes appear to be intermixed when
plotted) become separable (and hence we can build a
good classifier) under common nonlinear transforms.
This is known as Cover’s theorem. Nonlinear kernels
are a good complement to many linear machine learning
techniques.
Many phi()s can be directly implemented during data
preparation. Never be too proud to try some interaction
variables in a model.
Some very powerful and expensive phi()s that can’t be
directly implemented during data preparation have very
efficient matching kernel functions k(,) that can be
used directly in select machine learning algorithms
without needing access to the highly complex phi().
All symmetric positive semidefinite functions k(,)
mapping pairs of variables to the reals can be
represented as k(u,v) = phi(u) %*% phi(v) for

some function phi(). This is a consequence of Mercer’s
theorem. So by restricting to functions with a Mercer
expansion, we’re not giving up much.

Our next goal is to demonstrate some useful kernels and some
machine learning algorithms that use them efficiently to solve
problems. The most famous kernelized machine learning
algorithm is the support vector machine, which we’ll
demonstrate in section 9.4. But first it helps to demonstrate
some useful kernels.

Some important kernel functions

Let’s look at some practical uses for some important kernels in
table 9.1.

Table 9.1. Some important kernels and their uses

Kernel name Informal description and use

Definitional
(or explicit)
kernels

Any method that explicitly adds additional variables (such as interactions)
can be expressed as a kernel over the original data. These are kernels where
you explicitly implement and use phi().

Linear
transformation
kernels

Any positive semidefinite linear operation (like projecting to principal
components) can also be expressed as a kernel.

Gaussian or
radial kernel

Many decreasing non-negative functions of distance can be expressed as
kernels. This is also an example of a kernel where phi() maps into an infinite
dimensional vector space (essentially the Tay lor series of exp()) and
therefore phi(u) doesn’t have an easy -to-implement representation (you
must instead use k(,)).

Cosine
similarity
kernel

Many similarity measures (measures that are large for identical items and
small for dissimilar items) can be expressed as kernels.

Polynomial
kernel

Much is made of the fact that positive integer powers of kernels are also
kernels. The derived kernel does have many more terms derived from
powers and products of terms from the original kernel, but the modeling
technique isn’t able to independently pick coefficients for all of these terms
simultaneously. Polynomial kernels do introduce some extra options, but
they ’re not magic.

At this point, it’s important to mention that not everything is a
kernel. For example, the common squared distance function (k =

function(u,v) {(u-v) %*% (u-v)}) isn’t a kernel. So kernels
can express similarities, but can’t directly express distances.[12]

12 Some more examples of kernels (and how to build new kernels from old) can be
found at http://mng.bz/1F78.

Only now that we’ve touched on why some common kernels are
useful is it appropriate to look at the formal mathematical
definitions. Remember, we pick kernels for their utility, not
because the mathematical form is exciting. Now let’s take a look
at six important kernel definitions.

Mathematical def initions of common kernels

A definitional kernel is any kernel that is an explicit inner
product of two applications of a vector function:

k(u, v) = Φ(u) · Φ(v)

The dot product or identity kernel is just the inner product
applied to actual vectors of data:

k(u, v) = u · v

A linear transformation kernel is a matrix form like the following:

k(u, v) = uT LT Lv

The Gaussian or radial kernel has the following form:

k(u, v) = e –c||u–v||2

The cosine similarity kernel is a rescaled dot product kernel:

A polynomial kernel is a dot product with a transform (shift and

http://mng.bz/1F78

power) applied as shown here:

k(u, v) = (su · v + c)d

9.3.2. Using an explicit kernel on a problem

Let’s demonstrate explicitly choosing a kernel function on a
problem we’ve already worked with.

Revisiting the PUMS linear regression model

To demonstrate using a kernel on an actual problem, we’ll
reprepare the data used in section 7.1.3 to again build a model
predicting the logarithm of income from a few other factors.
We’ll resume this analysis by using load() to reload the data
from a copy of the file
https://github.com/WinVector/zmPDSwR/raw/master/PUMS/psub.RData
Recall that the basic model (for purposes of demonstration)
used only a few variables; we’ll redo producing a stepwise
improved linear regression model for log(PINCP).

Listing 9.17. Applying stepwise linear regression to PUMS data

https://github.com/WinVector/zmPDSwR/raw/master/PUMS/psub.RData

The quality of prediction was middling (the RMSE isn’t that
small), but the model exposed some of the important
relationships. In a real project, you’d do your utmost to find
new explanatory variables. But you’d also be interested to see if
any combination of variables you were already using would help
with prediction. We’ll work through finding some of these
combinations using an explicit phi().

Introducing an explicit transform

Explicit kernel transforms are a formal way to unify ideas like
reshaping variables and adding interaction terms.[13]

13 See help('formula') for how to add interactions using the : and * operators.

In listing 9.18, we’ll set up a phi() function and use it to build a
new larger data frame with new modeling variables.

Listing 9.18. Applying an example explicit kernel transform

The steps to use this new expanded data frame to build a model
are shown in the following listing.

Listing 9.19. Modeling using the explicit kernel transform

We see RMSE is improved by a small amount on the test data.
With such a small improvement, we have extra reason to confirm
its statistical significance using a cross-validation procedure as
demonstrated in section 6.2.3. Leaving these issues aside, let’s
look at the summary of the new model to see what new
variables the phi() procedure introduced. The next listing
shows the structure of the new model.

Listing 9.20. Inspecting the results of the explicit kernel model

> print(summary(m3))

Call:
lm(formula = log(PINCP, base = 10) ~ AGEP + SEXM +

 COWPrivate_not_for_profit_employee +
 SCHLAssociate_s_degree + SCHLBachelor_s_degree +
 SCHLDoctorate_degree +
 SCHLGED_or_alternative_credential + SCHLMaster_s_degree +

 SCHLProfessional_degree + SCHLRegular_high_school_diploma +
 SCHLsome_college_credit_no_degree + AGEP_AGEP, data = pMtrain)

Residuals:
 Min 1Q Median 3Q Max
-1.29264 -0.14925 0.01343 0.17021 0.61968

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.9400460 0.2219310 13.248 < 2e-
16 ***
AGEP 0.0663537 0.0124905 5.312 1.54e-
07 ***
SEXM 0.0934876 0.0224236 4.169 3.52e-
05 ***
COWPrivate_not_for_profit_em -0.1187914 0.0379944 -3.127 0.00186 **
SCHLAssociate_s_degree 0.2317211 0.0509509 4.548 6.60e-
06 ***
SCHLBachelor_s_degree 0.3844459 0.0417445 9.210 < 2e-
16 ***
SCHLDoctorate_degree 0.3190572 0.1569356 2.033 0.04250 *
SCHLGED_or_alternative_creden 0.1405157 0.0766743 1.833 0.06737 .
SCHLMaster_s_degree 0.4553550 0.0485609 9.377 < 2e-
16 ***
SCHLProfessional_degree 0.6525921 0.0845052 7.723 5.01e-
14 ***
SCHLRegular_high_school_diplo 0.1016590 0.0415834 2.445 0.01479 *
SCHLsome_college_credit_no_de 0.1655906 0.0416345 3.977 7.85e-
05 ***
AGEP_AGEP -0.0007547 0.0001704 -4.428 1.14e-
05 ***

Signif. codes: 0 ’ ***’ 0.001 ’ **’ 0.01 ’ *’ 0.05 ’ .’ 0.1 ’ ’ 1

Residual standard error: 0.2649 on 582 degrees of freedom
Multiple R-squared: 0.3541, Adjusted R-
squared: 0.3408
F-statistic: 26.59 on 12 and 582 DF, p-value: < 2.2e-16

In this case, the only new variable is AGEP_AGEP. The model is
using AGEP*AGEP to build a non-monotone relation between age
and log income.[14]

14 Of course, this sort of relation could be handled quickly by introducing an
AGEP*AGEP term directly in the model or by using a generalized additive model to
discover the optimal (possibly nonlinear) shape of the relation between AGEP and log
income (see section 9.2).

The phi() method is automatic and can therefore be applied in
many modeling situations. In our example, we can think of the
crude function that multiplies all pairs of variables as our phi()
or think of the implied function that took the original set of
variables to the new set called interestingVars as the actual

training data-dependent phi(). Explicit phi() kernel notation
adds some capabilities, but algorithms that are designed to work
directly with implicit kernel definitions in k(,) notation can be
much more powerful. The most famous such method is the
support vector machine, which we’ll use in the next section.

9.3.3. Kernel takeaways

Here’s what you should remember about kernel methods:

Kernels provide a systematic way of creating
interactions and other synthetic variables that are
combinations of individual variables.
The goal of kernelizing is to lift the data into a space
where the data is separable, or where linear methods can
be used directly.

Now we’re ready to work with the most well-known use of
kernel methods: support vector machines.

9.4. Using SVMs to model complicated decision
boundaries

The idea behind SVMs is to use entire training examples as
classification landmarks (called support vectors). We’ll describe
the bits of the theory that affect use and move on to
applications.

9.4.1. Understanding support vector machines

A support vector machine with a given function phi() builds a
model where for a given example x the machine decides x is in
the class if

w %*% phi(x) + b >= 0

for some w and b, and not in the class otherwise. The model is
completely determined by the vector w and the scalar offset b.
The general idea is sketched out in figure 9.8. In “real space”
(left), the data is separated by a nonlinear boundary. When the
data is lifted into the higher-dimensional kernel space (right), the
lifted points are separated by a hyperplane whose normal is w
and that is offset from the origin by b (not shown). Essentially,
all the data that makes a positive dot product with w is on one
side of the hyperplane (and all belong to one class); data that
makes a negative dot product with the w belongs to the other
class.

Figure 9.8. Notional illustration of SVM

Finding w and b is performed by the support vector training
operation. There are variations on the support vector machine
that make decisions between more than two classes, perform
scoring/regression, and detect novelty. But we’ll discuss only
the support vector machines for simple classification.

As a user of support vector machines, you don’t immediately
need to know how the training procedure works; that’s what the
software does for you. But you do need to have some notion of
what it’s trying to do. The model w,b is ideally picked so that

w %*% phi(x) + b >= u

for all training xs that were in the class, and

w %*% phi(x) + b <= v

for all training examples not in the class. The data is called
separable if u>v and the size of the separation (u-v)/sqrt(w
%*% w) is called the margin. The goal of the SVM optimizer is
to maximize the margin. A large margin can actually ensure good
behavior on future data (good generalization performance). In
practice, real data isn’t always separable even in the presence of
a kernel. To work around this, most SVM implementations
implement the so-called soft margin optimization goal.

A soft margin optimizer adds additional error terms that are used
to allow a limited fraction of the training examples to be on the
wrong side of the decision surface.[15] The model doesn’t
actually perform well on the altered training examples, but
trades the error on these examples against increased margin on
the remaining training examples. For most implementations,
there’s a control that determines the trade-off between margin
width for the remaining data and how much data is pushed
around to achieve the margin. Typically the control is named C
and setting it to values higher than 1 increases the penalty for

moving data.[16]

15 A common type of dataset that is inseparable under any kernel is any dataset
where there are at least two examples belonging to different outcome classes with the
exact same values for all input or x variables. The original “hard margin” SVM
couldn’t deal with this sort of data and was for that reason not considered to be
practical.

16 For more details on support vector machines, we recommend Cristianini and
Shawe-Tay lor’s An Introduction to Support Vector Machines and Other Kernel-based
Learning Methods.

The support vectors

The support vector machine gets its name from how the vector
w is usually represented: as a linear combination of training
examples—the support vectors. Recall we said in section 9.3.1
that the function phi() is allowed, in principle, to map into a
very large or even infinite vector space. Support vector
machines can get away with this because they never explicitly
compute phi(x). What is done instead is that any time the
algorithm wants to compute phi(u) %*% phi(v) for a pair of
data points, it instead computes k(u,v) which is, by definition,
equal. But then how do we evaluate the final model w %*%

phi(x) + b? It would be nice if there were an s such that w =
phi(s), as we could then again use k(,) to do the work. In
general, there’s usually no s such that w = phi(s). But there’s
always a set of vectors s1,...,sm and numbers a1,...,am
such that

w = sum(a1*phi(s1),...,am*phi(sm))

With some math, we can show this means

w %*% phi(x) + b = sum(a1*k(s1,x),...,am*k(sm,x)) + b

The right side is a quantity we can compute.

The vectors s1,...,sm are actually the features from m training

examples and are called the support vectors. The work of the
support vector training algorithm is to find the vectors
s1,...,sm, the scalars a1,...,am, and the offset b.[17]

17 Because SVMs work in terms of support vectors, not directly in terms of original
variables or features, a feature that’s predictive can be lost if it doesn’t show up
strongly in kernel-specified similarities between support vectors.

The reason why the user must know about the support vectors
is because they’re stored in the support vector model and there
can be a very large number of them (causing the model to be
large and expensive to evaluate). In the worst case, the number
of support vectors in the model can be almost as large as the
number of training examples (making support vector model
evaluation potentially as expensive as nearest neighbor
evaluation). There are some tricks to work around this: lowering
C, training models on random subsets of the training data, and
primalizing.

The easy case of primalizing is when you have a kernel phi()
that has a simple representation (such as the identity kernel or a
low-degree polynomial kernel). In this case, you can explicitly
compute a single vector w = sum(a1*phi(s1),...

am*phi(sm)) and use w %*% phi(x) to classify a new x (notice
you don’t need to keep the support vectors s1,...sm when
you have w).

For kernels that don’t map into a finite vector space (such as the
popular radial or Gaussian kernel), you can also hope to find a
vector function p() such that p(u) %*% p(v) is very near
k(u,v) for all of your training data and then use

w ~ sum(a1*p(s1),...,am*p(sm))

along with b as an approximation of your support vector model.
But many support vector packages are unable to convert to a
primal form model (it’s mostly seen in Hadoop

implementations), and often converting to primal form takes as
long as the original model training.

9.4.2. Trying an SVM on artificial example data

Support vector machines excel at learning concepts of the form
“examples that are near each other should be given the same
classification.” This is because they can use support vectors and
margin to erect a moat that groups training examples into
classes. In this section, we’ll quickly work some examples. One
thing to notice is how little knowledge of the internal working
details of the support vector machine are needed. The user
mostly has to choose the kernel to control what is
similar/dissimilar, adjust C to try and control model complexity,
and pick class.weights to try and value different types of
errors.

Spiral example

Let’s start with an example adapted from R’s kernlab library
documentation. Listing 9.21 shows the recovery of the famous
spiral machine learning counter-example[18] using kernlab’s
spectral clustering method.

18 See K. J. Lang and M. J. Witbrock, “Learning to tell two spirals apart,” in
Proceedings of the 1988 Connectionist Models Summer School, D. Touretzky, G.
Hinton, and T. Sejnowski (eds), Morgan Kaufmann, 1988 (pp. 52-59).

Listing 9.21. Setting up the spirals data as an example classif ication problem

Figure 9.9 shows the labeled spiral dataset. Two classes
(represented digits) of data are arranged in two interwoven
spirals. This dataset is difficult for learners that don’t have a
rich enough concept space (perceptrons, shallow neural nets)
and easy for more sophisticated learners that can introduce the
right new features. Support vector machines, with the right
kernel, are a technique that finds the spiral easily.

Figure 9.9. The spiral counter-example

Support vector machines with the wrong kernel

Support vector machines are powerful, but without the correct
kernel they have difficulty with some concepts (such as the
spiral example). Listing 9.22 shows a failed attempt to learn the
spiral concept with a support vector machine using the identity
or dot-product kernel.

Listing 9.22. SVM with a poor choice of kernel

This attempt results in figure 9.10. In the figure, we plot the
total dataset in light grey and the SVM classifications of the test
dataset in solid black. Note that the plotted predictions look a
lot more like the concept y < 0 than the spirals. The SVM
didn’t produce a good model with the identity kernel. In the next
section, we’ll repeat the process with the Gaussian radial kernel
and get a much better result.

Figure 9.10. Identity kernel failing to learn the spiral concept

Support vector machines with a good kernel

In listing 9.23, we’ll repeat the SVM fitting process, but this
time specifying the Gaussian or radial kernel. We’ll again plot
the SVM test classifications in black (with the entire dataset in
light grey) in figure 9.11. Note that this time the actual spiral has

been learned and predicted.

Figure 9.11. Radial kernel successfully learning the spiral concept

Listing 9.23. SVM with a good choice of kernel

9.4.3. Using SVMs on real data

To demonstrate the use of SVMs on real data, we’ll quickly redo
the analysis of the Spambase data from section 5.2.1.

Repeating the Spambase logistic regression analysis

In section 5.2.1, we originally built a logistic regression model
and confusion matrix. We’ll continue working on this example in
listing 9.24 (after downloading the dataset from
https://github.com/WinVector/zmPDSwR/raw/master/Spambase/spamD.tsv

Listing 9.24. Revisiting the Spambase example with GLM

spamD <- read.table('spamD.tsv',header=T,sep='\t')
spamTrain <- subset(spamD,spamD$rgroup>=10)
spamTest <- subset(spamD,spamD$rgroup<10)
spamVars <- setdiff(colnames(spamD),list('rgroup','spam'))
spamFormula <- as.formula(paste('spam=="spam"',
 paste(spamVars,collapse=' + '),sep=' ~ '))
spamModel <- glm(spamFormula,family=binomial(link='logit'),
 data=spamTrain)
spamTest$pred <- predict(spamModel,newdata=spamTest,
 type='response')

print(with(spamTest,table(y=spam,glPred=pred>=0.5)))
glPred
y FALSE TRUE
non-spam 264 14
spam 22 158

https://github.com/WinVector/zmPDSwR/raw/master/Spambase/spamD.tsv

Applying a support vector machine to the Spambase example

The SVM modeling steps are about as simple as the previous
regression analysis, and are shown in the following listing.

Listing 9.25. Applying an SVM to the Spambase example

Listing 9.26 shows the standard summary and print display for
the support vector model. Very few model diagnostics are

included (other than training error, which is a simple accuracy
measure), so we definitely recommend using the model critique
techniques from chapter 5 to validate model quality and utility.
A few things to look for are which kernel was used, the SV type
(classification is the type we want),[19] and the number of
support vectors retained (this is the degree of memorization
going on). In this case, 1,118 training examples were retained as
support vectors, which seems like way too complicated a
model, as this number is much larger than the original number of
variables (57) and with an order of magnitude of the number of
training examples (4143). In this case, we’re seeing more
memorization than useful generalization.

19 The ksvm call only performs classification on factors; if a Boolean or numeric
quantity is used as the quantity to be predicted, the ksvm call may return a regression
model (instead of the desired classification model).

Listing 9.26. Printing the SVM results summary

print(svmM)
Support Vector Machine object of class "ksvm"

SV type: C-svc (classification)
 parameter : cost C = 10

Gaussian Radial Basis kernel function.
 Hyperparameter : sigma = 0.0299836801848002

Number of Support Vectors : 1118

Objective Function Value : -4642.236
Training error : 0.028482
Cross validation error : 0.076998
Probability model included.

Comparing results

Note that the two confusion matrices are very similar. But the
SVM model has a lower false positive count of 9 than the
GLM’s 14. Some of this is due to setting C=10 (which tells the
SVM to prefer training accuracy and margin over model
simplicity) and setting class.weights (telling the SVM to
prefer precision over recall). For a more apples-to-apples
comparison, we can look at the GLM model’s top 162 spam

candidates (the same number the SVM model proposed: 153 +
9).

Listing 9.27. Shif ting decision point to perform an apples-to-apples
comparison

Note that the new shifted GLM confusion matrix in listing 9.27
is pretty much indistinguishable from the SVM confusion
matrix. Where SVMs excel is in cases where unknown
combinations of variables are important effects, and also when
similarity of examples is strong evidence of examples being in
the same class (not a property of the email spam example we
have here). Problems of this nature tend to benefit from use of
either SVM or nearest neighbor techniques.[20]

20 For some examples of the connections between support vector machines and
kernelized nearest neighbor methods please see http://mng.bz/1F78.

9.4.4. Support vector machine takeaways

Here’s what you should remember about SVMs:

SVMs are a kernel-based classification approach where
the kernels are represented in terms of a (possibly very
large) subset of the training examples.

http://mng.bz/1F78

SVMs try to lift the problem into a space where the
data is linearly separable (or as near to separable as
possible).
SVMs are useful in cases where the useful interactions
or other combinations of input variables aren’t known
in advance. They’re also useful when similarity is
strong evidence of belonging to the same class.

9.5. Summary

In this chapter, we demonstrated some advanced methods to fix
specific issues with basic modeling approaches. We used

Bagging and random forests— To reduce the
sensitivity of models to early modeling choices and
reduce modeling variance
Generalized additive models— To remove the (false)
assumption that each model feature contributes to the
model in a monotone fashion
Kernel methods— To introduce new features that are
nonlinear combinations of existing features, increasing
the power of our model
Support vector machines— To use training examples as
landmarks (support vectors), again increasing the power
of our model

You should understand that you bring in advanced methods and
techniques to fix specific modeling problems, not because they
have exotic names or exciting histories. We also feel you should
at least try to find an existing technique to fix a problem you
suspect is hiding in your data before building your own custom
technique (often the existing technique incorporates a lot of
tuning and wisdom). Finally, the goal of learning the theory of
advanced techniques is not to be able to recite the steps of the
common implementations, but to know when the techniques

apply and what trade-offs they represent. The data scientist
needs to supply thought and judgment and realize that the
platform can supply implementations.

The actual point of a modeling project is to deliver results for
deployment and to present useful documentation and
evaluations to your partners. The next part of this book will
address best practices for delivering your results.

Key takeaways

Use advanced methods to fix specific problems, not for
the excitement.
Advanced methods can help fix overfit, variable
interactions, non-additive relations, and unbalanced
distributions, but not lack of features or data.
Which method is best depends on the data, and there are
many advanced methods to try.
Only deliver advanced models if you can show they are
outperforming simpler methods.

Part 3. Delivering results
In part 2, we covered how to build a model that addresses the
problem that you want to solve. The next steps are to
implement your solution and communicate your results to other
interested parties. In part 3, we conclude with the important
steps of deploying work into production, documenting work,
and building effective presentations.

Chapter 10 covers the documentation necessary for sharing or
transferring your work to others, in particular those who will be
deploying your model in an operational environment. This
includes effective code commenting practices, as well as proper
version management and collaboration with the version control
software, git. We also discuss the practice of reproducible
research using knitr. Chapter 10 also covers how to export
models you’ve built from R, or deploy them as HTTP services.

Chapter 11 discusses how to present the results of your
projects to different audiences. Project sponsors, project
consumers (people in the organization who’ll be using or
interpreting the results of your model), and fellow data
scientists will all have different perspectives and interests. In
chapter 11, we give examples of how to tailor your
presentations to the needs and interests of a specific audience.

On completing part 3, you’ll understand how to document and
transfer the results of your project and how to effectively
communicate your findings to other interested parties.

Chapter 10. Documentation and
deployment
This chapter covers

Producing effective milestone documentation
Managing project history using source control
Deploying results and making demonstrations

In this chapter, we’ll work through producing effective
milestone documentation, code comments, version control
records, and demonstration deployments. The idea is that these
can all be thought of as important documentation of the work
you’ve done. Table 10.1 expands a bit on our goals for this
chapter.

Table 10.1. Chapter goals

Goal Description

Produce
effective
milestone
documentation

A readable summary of project goals, data provenance, steps taken, and
technical results (numbers and graphs). Milestone documentation is usually
read by collaborators and peers, so it can be concise and can often include
actual code. We’ll demonstrate a great tool for producing excellent
milestone documentation: the R knitr package. knitr is a product of the
“reproducible research” movement (see Christopher Gandrud’s
Reproducible Research with R and RStudio, Chapman and Hall, 2013) and is
an excellent way to produce a reliable snapshot that not only shows the
state of a project, but allows others to confirm the project works.

Manage a
complete
project history

It makes little sense to have exquisite milestone or checkpoint
documentation of how your project worked last February if you can’t get a
copy of February ’s code and data. This is why y ou need a good version
control discipline.

Deploy
demonstrations

True production deployments are best done by experienced engineers.
These engineers know the tools and environment they will be deploy ing to.
A good way to jump-start production deployment is to have a reference
deployment. This allows engineers to experiment with your work, test
corner cases, and build acceptance tests.

This chapter explains how to share your work. We’ll discuss

how to use knitr to create substantial project milestone
documentation and automate reproduction of graphs and other
results. You’ll learn about using effective comments in code, and
using Git for version management and for collaboration. We’ll
also discuss deploying models as HTTP services and exporting
model results.

10.1. The buzz dataset

Our example dataset for this and the following chapter is the
buzz dataset from http://ama.liglab.fr/datasets/buzz/. We’ll work
with the data found in TomsHardware-Relative-Sigma-
500.data.txt.[1] The original supplied documentation
(TomsHardware-Relative-Sigma-500.names.txt and
BuzzDataSetDoc.pdf) tells us the buzz data is structured as
shown in table 10.2.

1 All files mentioned in this chapter are available from
https://github.com/WinVector/zmPDSwR/tree/master/Buzz.

Table 10.2. Buzz data description

Attribute Description

Rows Each row represents many different measurements of the popularity of a
technical personal computer discussion topic.

Topics Topics include technical issues about personal computers such as brand
names, memory, overclocking, and so on.

Measurement
types

For each topic, measurement types are quantities such as the number of
discussions started, number of posts, number of authors, number of readers,
and so on. Each measurement is taken at eight different times.

Times

The eight relative times are named 0 through 7 and are likely day s (the
original variable documentation is not completely clear and the matching
paper has not yet been released). For each measurement type all eight
relative times are stored in different columns in the same data row.

Buzz

The quantity to be predicted is called buzz and is defined as being true or 1 if
the ongoing rate of additional discussion activity is at least 500 events per
day averaged over a number of days after the observed days. Likely buzz is
a future average of the seven variables labeled NAC (the original
documentation is unclear on this).

In our initial buzz documentation, we list what we know (and,

http://ama.liglab.fr/datasets/buzz/
https://github.com/WinVector/zmPDSwR/tree/master/Buzz

importantly, admit what we’re not sure about). We don’t intend
any disrespect in calling out issues in the supplied buzz
documentation. That documentation is about as good as you see
at the beginning of a project. In an actual project, you’d clarify
and improve unclear points through discussions and work
cycles. This is one reason having access to active project
sponsors and partners is critical in real-world projects.

The buzz problem demonstrates some features that are common
in actual data science projects:

This is a project where we’re trying to predict the
future from past features. These sorts of projects are
particularly desirable, as we can expect to produce a lot
of training data by saving past measurements.
The quantity to be predicted is a function of future
values of variables we’re measuring. So part of the
problem is relearning the business rules that make the
determination. In such cases, it may be better to steer
the project to predict estimates of the future values in
question and leave the decision rules to the business.
A domain-specific reshaping of the supplied variables
would be appropriate. We’re given daily popularities of
articles over eight days; we’d prefer variables that
represent popularity summed over the measured days,
variables that measure topic age, variables that measure
shape (indicating topics that are falling off fast or slow),
and other time series–specific features.

In this chapter, we’ll use the buzz dataset as-is and concentrate
on demonstrating the tools and techniques used in producing
documentation, deployments, and presentations. In actual
projects, we advise you to start by producing notes like those in
table 10.2. You’d also incorporate meeting notes to document
your actual project goals. As this is only a demonstration, we’ll

emphasize technical documentation: data provenance and an
initial trivial analysis to demonstrate we have control of the
data. Our example initial buzz analysis is found here:
https://github.com/WinVector/zmPDSwR/blob/master/Buzz/buzzm.md
[2] We suggest you skim it before we work through the tools and
steps used to produce these documents in our next section.

2 Also available in PDF form:
https://github.com/WinVector/zmPDSwR/raw/master/Buzz/buzz.pdf.

10.2. Using knitr to produce milestone
documentation

The first audience you’ll have to prepare documentation for is
yourself and your peers. You may need to return to previous
work months later, and it may be in an urgent situation like an
important bug fix, presentation, or feature improvement. For
self/peer documentation, you want to concentrate on facts: what
the stated goals were, where the data came from, and what
techniques were tried. You assume as long as you use standard
terminology or references that the reader can figure out anything
else they need to know. You want to emphasize any surprises or
exceptional issues, as they’re exactly what’s expensive to
relearn. You can’t expect to share this sort of documentation
with clients, but you can later use it as a basis for building wider
documentation and presentations.

The first sort of documentation we recommend is project
milestone or checkpoint documentation. At major steps of the
project you should take some time out to repeat your work in a
clean environment (proving you know what’s in intermediate
files and you can in fact recreate them). An important, and often
neglected, milestone is the start of a project. In this section,
we’ll use the knitr R package to document starting work with
the buzz data.

https://github.com/WinVector/zmPDSwR/blob/master/Buzz/buzzm.md
https://github.com/WinVector/zmPDSwR/raw/master/Buzz/buzz.pdf

10.2.1. What is knitr?

knitr is an R package that allows the inclusion of R code and
results inside documents. knitr’s operation is similar in concept
to Knuth’s literate programming and to the R Sweave package.
In practice you maintain a master file that contains both user-
readable documentation and chunks of program source code. The
document types supported by knitr include LaTeX, Markdown,
and HTML. LaTeX format is a good choice for detailed typeset
technical documents. Markdown format is a good choice for
online documentation and wikis. Direct HTML format may be
appropriate for some web applications.

knitr’s main operation is called a knit: knitr extracts and executes
all of the R code and then builds a new result document that
assembles the contents of the original document plus pretty-
printed code and results (see figure 10.1).

Figure 10.1. knitr process schematic

The process is best demonstrated with a few examples.

A simple knitr Markdown example

Markdown (http://daringfireball.net/projects/markdown/) is a
simple web-ready format that’s used in many wikis. The
following listing shows a simple Markdown document with
knitr annotation blocks denoted with ```.

Listing 10.1. knitr-annotated Markdown

We’ll save listing 10.1 in a file named simple.Rmd. In R we’d
process this as shown next:

library(knitr)
knit('simple.Rmd')

This produces the new file simple.md, which is in Markdown
format and appears (with the proper viewer) as in figure 10.2.[3]

3 We used pandoc -o simple.html simple.md to convert the file to easily
viewable HTML.

http://daringfireball.net/projects/markdown/

Figure 10.2. Simple knitr Markdown result

A simple knitr LaTeX example

LaTeX is a powerful document preparation system suitable for
publication-quality typesetting both for articles and entire
books. To show how to use knitr with LaTeX, we’ll work
through a simple example. The main new feature is that in
LaTeX, code blocks are marked with << and @ instead of ```. A
simple LaTeX document with knitr chunks looks like the
following listing.

Listing 10.2. knitr LaTeX example

We’ll save this content into a file named add.Rnw and then
(using the Bash shell) run R in batch to produce the file add.tex.
At a shell prompt, we then run LaTeX to create the final
add.pdf file:

This produces the PDF as shown in figure 10.3.

Figure 10.3. Simple knitr LaTeX result

Purpose of knitr

The purpose of knitr is to produce reproducible work.[4] When
you distribute your work in knitr format (as we do in section
10.2.3), anyone can download your work and, without great
effort, rerun it to confirm they get the same results you did.
This is the ideal standard of scientific research, but is rarely met,

as scientists usually are deficient in sharing all of their code,
data, and actual procedures. knitr collects and automates all the
steps, so it becomes obvious if something is missing or doesn’t
actually work as claimed. knitr automation may seem like a mere
convenience, but it makes the essential work listed in table 10.3
much easier (and therefore more likely to actually be done).

4 The knitr community calls this reproducible research, but that’s because scientific
work is often called research.

Table 10.3. Maintenance tasks made easier by knitr

Task Discussion

Keeping code
in sync with
documentation

With only one copy of the code (already in the document), it’s not so easy
to get out of sync.

Keeping
results in sync
with data

Eliminating all by -hand steps (such as cutting and pasting results, picking
filenames, and including figures) makes it much more likely you’ll
correctly rerun and recheck your work.

Handing off
correct work
to others

If the steps are sequenced so a machine can run them, then it’s much easier
to rerun and confirm them. Also, having a container (the master document)
to hold all y our work makes managing dependencies much easier.

10.2.2. knitr technical details

To use knitr on a substantial project, you need to know more
about how knitr code chunks work. In particular you need to be
clear how chunks are marked and what common chunk options
you’ll need to manipulate.

knitr block declaration format

In general, a knitr code block starts with the block declaration
(``` in Markdown and << in LaTeX). The first string is the
name of the block (must be unique across the entire project).
After that, a number of comma-separated option=value chunk
option assignments are allowed.

knitr chunk options

A sampling of useful option assignments is given in table 10.4.

Table 10.4. Some useful knitr options

Option
name

Purpose

cache

Controls whether results are cached. With cache=F (the default), the code chunk
is always executed. With cache=T, the code chunk isn’t executed if valid cached
results are available from previous runs. Cached chunks are essential when you’re
revising knitr documents, but you should alway s delete the cache directory (found
as a subdirectory of where you’re using knitr) and do a clean rerun to make sure
your calculations are using current versions of the data and settings you’ve
specified in your document.

echo
Controls whether source code is copied into the document. With echo=T (the
default), pretty formatted code is added to the document. With echo=F, code isn’t
echoed (useful when you only want to display results).

eval Controls whether code is evaluated. With eval=T (the default), code is executed.
With eval=F, it’s not (useful for display ing instructions).

message
Set message=F to direct R message() commands to the console running R instead
of to the document. This is useful for issuing progress messages to the user that
you don’t want in the final document.

results
Controls what’s to be done with R output. Usually you don’t set this option and
output is intermingled (with ## comments) with the code. A useful option is
results='hide', which suppresses output.

tidy
Controls whether source code is reformatted before being printed. You almost
always want to set tidy=F, as the current version of knitr often breaks code due to
mishandling of R comments when reformatting.

Most of these options are demonstrated in our buzz example,
which we’ll work through in the next section.

10.2.3. Using knitr to document the buzz data

For a more substantial example, we’ll use knitr to document the
initial data treatment and initial trivial model for the buzz data
(recall from section 10.1 that buzz is records of computer
discussion topic popularity). We’ll produce a document that
outlines the initial steps of working with the buzz data (the
sorts of steps we had, up until now, been including in this book
whenever we introduce a new dataset). This example works
through advanced knitr topics such as caching (to speed up
reruns), messages (to alert the user), and advanced formatting.

We supply two examples of knitr for the buzz data at
https://github.com/WinVector/zmPDSwR/tree/master/Buzz. The
first example is in Markdown format and found in the knitr file
buzzm.Rmd, which knits to the Markdown file buzzm.md. The
second example is in LaTeX format and found in the knitr file
buzz.Rnw, which knits to the LaTeX file buzz.tex (which in
turn is used to produce the viewable file buzz.pdf). All steps
we’ll mention in this section are completely demonstrated in
both of these files. We’ll show excerpts from buzz.Rmd (using
the ``` delimiter) and excerpts from buzz.Rnw (using the <<
delimiter).

Buzz data notes

For the buzz data, the preparation notes can be found in the
files buzz.md, buzz.html, or buzz.pdf. We suggest viewing one
of these files and table 10.2. The original description files from
the buzz project (Toms-Hardware-Relative-Sigma-500.names.txt
and BuzzDataSetDoc.pdf) are also available at
https://github.com/WinVector/zmPDSwR/tree/master/Buzz.

Setting up chunk cache dependencies

For a substantial knitr project, you’ll want to enable caching.
Otherwise, rerunning knitr to correct typos becomes
prohibitively expensive. The standard way to enable knitr
caching is to add the cache=T option to all knitr chunks. You’ll
also probably want to set up the chunk cache dependency
calculator by inserting the following invisible chunk toward the
top of your file.

Listing 10.3. Setting knitr dependency options

% set up caching and knitr chunk dependency calculation
% note: you will want to do clean re-
runs once in a while to make sure
% you are not seeing stale cache results.

https://github.com/WinVector/zmPDSwR/tree/master/Buzz
https://github.com/WinVector/zmPDSwR/tree/master/Buzz

<<setup,tidy=F,cache=F,eval=T,echo=F,results='hide'>>=
opts_chunk$set(autodep=T)
dep_auto()
@

Conf irming data provenance

Because knitr is automating steps, you can afford to take a
couple of extra steps to confirm the data you’re analyzing is in
fact the data you thought you had. For example, we’ll start our
buzz data analysis by confirming that the SHA cryptographic
hash of the data we’re starting from matches what we thought
we had downloaded. This is done (assuming your system has
the sha cryptographic hash installed) as shown in the following
listing (note: always look to the first line of chunks for chunk
options such as cache=T).

Listing 10.4. Using the system() command to compute a f ile hash

This code sequence depends on a program named "shasum"
being on your execution path. You have to have a cryptographic
hash installed, and you can supply a direct path to the program
if necessary. Common locations for a cryptographic hash include
/usr/bin/shasum, /sbin/md5, and fciv.exe, depending on your
actual system configuration.

This code produces the output shown in figure 10.4. In
particular, we’ve documented that the data we loaded has the
same cryptographic hash we recorded when we first
downloaded the data. Having confidence you’re still working
with the exact same data you started with can speed up
debugging when things go wrong. Note that we’re using the

cryptographic hash to defend only against accident (using the
wrong version of a file or seeing a corrupted file) and not to
defend against true adversaries, so it’s okay to use a
cryptographic hash that’s convenient even if it’s becoming out
of date.

Figure 10.4. knitr documentation of buzz data load

Recording the performance of the naive analysis

The initial milestone is a good place to try to record the results
of a naive “just apply a standard model to whatever variables
are present” analysis. For the buzz data analysis, we’ll use a
random forest modeling technique (not shown here, but in our
knitr documentation) and apply the model to test data.

Listing 10.5. Calculating model performance

rtest <- data.frame(truth=buzztest$buzz,
 pred=predict(fmodel, newdata=buzztest))
print(accuracyMeasures(rtest$pred, rtest$truth))
[1] "precision= 0.809782608695652 ; recall= 0.84180790960452"
pred
truth 0 1
0 579 35
1 28 149
model accuracy f1 dev.norm
1 model 0.9204 0.6817 4.401

Using milestones to save time

Now that we’ve gone to all the trouble to implement, write up,
and run the buzz data preparation steps, we’ll end our knitr

analysis by saving the R workspace. We can then start
additional analyses (such as introducing better shape features for
the time-varying data) from the saved workspace. In the
following listing, we’ll show a conditional saving of the data (to
prevent needless file churn) and again produce a cryptographic
hash of the file (so we can confirm work that starts from a file
with the same name is in fact starting from the same data).

Listing 10.6. Conditionally saving a f ile

Save prepared R environment.
% Another way to conditionally save, check for file.
% message=F is letting message() calls get routed to console instead
% of the document.
<<save,tidy=F,cache=F,message=F,eval=T>>=
fname <- 'thRS500.Rdata'
if(!file.exists(fname)) {
 save(list=ls(),file=fname)
 message(paste('saved',fname)) # message to running R console
 print(paste('saved',fname)) # print to document
} else {
 message(paste('skipped saving',fname)) # message to running R console
 print(paste('skipped saving',fname)) # print to document
}
paste('checked at',date())
system(paste('shasum',fname),intern=T) # write down file hash
@

Figure 10.5 shows the result. The data scientists can safely start
their analysis on the saved workspace and have documentation
that allows them to confirm that a workspace file they’re using
is in fact one produced by this version of the preparation steps.

Figure 10.5. knitr documentation of prepared buzz workspace

knitr takeaway

In our knitr example, we worked through the steps we’ve done
for every dataset in this book: load data, manage
columns/variables, perform an initial analysis, present results,
and save a workspace. The key point is that because we took
the extra effort to do this work in knitr, we have the following:

Nicely formatted documentation (buzz.md and

buzz.pdf)
Shared executable code (buzz.Rmd and buzz.Rnw)

This makes debugging (which usually involves repeating and
investigating earlier work), sharing, and documentation much
easier and more reliable.

10.3. Using comments and version control for
running documentation

Another essential record of your work is what we call running
documentation. Running documentation is more informal than
milestone/checkpoint documentation and is easiest maintained in
the form of code comments and version control records.
Undocumented, untracked code runs up a great deal of technical
debt (see http://mng.bz/IaTd) that can cause problems down the
road.

In this section, we’ll work through producing effective code
comments and using Git for version control record keeping.

10.3.1. Writing effective comments

R’s comment style is simple: everything following a # (that isn’t
itself quoted) until the end of a line is a comment and ignored by
the R interpreter. The following listing is an example of a well-
commented block of R code.

Listing 10.7. Example code comment

Return the pseudo logarithm of x, which is close to
sign(x)*log10(abs(x)) for x such that abs(x) is large
and doesn't "blow up" near zero. Useful
for transforming wide-
range variables that may be negative
(like profit/loss).
See: http://www.win-vector.com/blog
/2012/03/modeling-trick-the-signed-pseudo-logarithm/
NB: This transform has the undesirable property of making most
signed distributions appear bimodal around the origin, no matter
what the underlying distribution really looks like.
The argument x is assumed be numeric and can be a vector.
pseudoLog10 <- function(x) { asinh(x/2)/log(10) }

http://mng.bz/IaTd

Good comments include what the function does, what types
arguments are expected to be, limits of domain, why you should
care about the function, and where it’s from. Of critical
importance are any NB (nota bene or note well) or TODO notes.
It’s vastly more important to document any unexpected features
or limitations in your code than to try to explain the obvious.
Because R variables don’t have types (only objects they’re
pointing to have types), you may want to document what types
of arguments you’re expecting. It’s critical to know if a function
works correctly on lists, data frame rows, vectors, and so on.

Note that in our comments we didn’t bother with anything
listed in table 10.5.

Table 10.5. Things not to worry about in comments

Item Why not to bother

Pretty
ASCII-art
formatting

It’s enough that the comment be there and be readable. Formatting into a
beautiful block just makes the comment harder to maintain and decreases the
chance of the comment being up to date.

Any thing
we see in
the code
itself

There’s no point repeating the name of the function, say ing it takes only one
argument, and so on.

Any thing
we can get
from
version
control

We don’t bother recording the author or date the function was written. These
facts, though important, are easily recovered from your version control sy stem
with commands like git blame.

Any sort
of
Javadoc/
Doxygen-
sty le
annotations

The standard way to formally document R functions is in separate .Rd (R
documentation) files in a package structure (see http://cran.r-
project.org/doc/manuals/R-exts.html). In our opinion, the R package sy stem is
too specialized and toilsome to use in regular practice (though it’s good for final
delivery). For formal code documentation, we recommend knitr.

Also, avoid comments that add no actual content, such as in the
following listing.

Listing 10.8. Useless comment

#######################################
Function: addone

http://cran.r-project.org/doc/manuals/R-exts.html

Author: John Mount
Version: 1.3.11
Location: RSource/helperFns/addone.R
Date: 10/31/13
Arguments: x
Purpose: Adds one
#######################################
addone <- function(x) { x + 1 }

The only thing worse than no documentation is documentation
that’s wrong. At all costs avoid comments that are incorrect, as
in listing 10.9 (the comment says “adds one” when the code
clearly adds two)—and do delete such comments if you find
them.

Listing 10.9. Worse than useless comment

adds one
addtwo <- function(x) { x + 2 }

10.3.2. Using version control to record history

Version control can both maintain critical snapshots of your
work in earlier states and produce running documentation of
what was done by whom and when in your project. Figure 10.6
shows a cartoon “version control saves the day” scenario that is
in fact common.

Figure 10.6. Version control saving the day

In this section, we’ll explain the basics of using Git (http://git-
scm.com/) as a version control system. To really get familiar
with Git, we recommend a good book such as Jon Loeliger and
Matthew McCullough’s Version Control with Git, 2nd Edition
(O’Reilly, 2012). Or, better yet, work with people who know
Git. In this chapter, we assume you know how to run an
interactive shell on your computer (on Linux and OS X you tend
to use bash as your shell; on Windows you can install Cygwin
—http://www.cygwin.com).

Working in bright light

Sharing your Git repository means you’re sharing a lot of
information about your work habits and also sharing your
mistakes. You’re much more exposed than when you just share
final work or status reports. Make this a virtue: know you’re
working in bright light. One of the most critical features in a
good data scientist (perhaps even before analytic skill) is
scientific honesty.

As a single user, to get most of the benefit from Git, you need to
become familiar with a few commands:

git init .

git add -A .

git commit

git status

git log

git diff

git checkout

Unfortunately, we don’t have space to explain all of these
commands. We’ll demonstrate how to think about Git and the

http://git-scm.com/
http://www.cygwin.com

main path of commands you need to maintain your work
history.

Choosing a project directory structure

Before starting with source control, it’s important to settle on
and document a good project directory structure. Christopher
Gandrud’s Reproducible Research with R and RStudio (Chapman
& Hall, 2013) has good advice and instructions on how to do
this. A pattern that’s worked well for us is to start a new project
with the directory structure described in table 10.6.

Table 10.6. A possible project directory structure

Directory Description

Data

Where we save original downloaded data. This directory must usually be
excluded from version control (using the .gitignore feature) due to file sizes, so
y ou must ensure it’s backed up. We tend to save each data refresh in a separate
subdirectory named by date.

Scripts Where we store all code related to analy sis of the data.

Derived

Where we store intermediate results that are derived from data and scripts. This
directory must be excluded from source control. You also should have a master
script that can rebuild the contents of this directory in a single command (and
test the script from time to time). Typical contents of this directory are
compressed files and file-based databases (H2, SQLite).

Results

Similar to derived, but this directory holds smaller later results (often based on
derived) and hand-written content. These include important saved models,
graphs, and reports. This directory is under version control, so collaborators can
see what was said when. Any report shared with partners should come from this
directory.

Starting a Git project using the command line

When you’ve decided on your directory structure and want to
start a version-controlled project, do the following:

1. Start the project in a new directory. Place any work
either in this directory or in subdirectories.

2. Move your interactive shell into this directory and type
git init .. It’s okay if you’ve already started working
and there are already files present.

3. Exclude any subdirectories you don’t want under source
control with .gitignore control files.

You can check if you’ve already performed the init step by
typing git status. If the init hasn’t been done, you’ll get a
message similar to fatal: Not a git repository (or any
of the parent directories): .git.. If the init has been
done, you’ll get a status message telling you something like on
branch master and listing facts about many files.

The init step sets up in your directory a single hidden file tree
called .git and prepares you to keep extra copies of every file in
your directory (including subdirectories). Keeping all of these
extra copies is called versioning and what is meant by version
control. You can now start working on your project: save
everything related to your work in this directory or some
subdirectory of this directory.

Again, you only need to init a project once. Don’t worry about
accidentally running git init . a second time; that’s harmless.

Using add/commit pairs to checkpoint work

As often as practical, enter the following two commands into an
interactive shell in your project directory:

Get nervous about uncommitted state

A good rule of thumb for Git: you should be as nervous about
having uncommitted changes as you should be about not having
clicked Save. You don’t need to push/pull often, but you do

need to make local commits often (even if you later squash them
with a Git technique called rebasing).

Checking in a file is split into two stages: add and commit. This
has some advantages (such as allowing you to inspect before
committing), but for now just consider the two commands as
always going together. The commit command should bring up an
editor where you enter a comment as to what you’re up to.
Until you’re a Git expert, allow yourself easy comments like
“update,” “going to lunch,” “just added a paragraph,” or
“corrected spelling.” Run the add/commit pair of commands
after every minor accomplishment on your project. Run these
commands every time you leave your project (to go to lunch, to
go home, or to work on another project). Don’t fret if you forget
to do this; just run the commands next time you remember.

A “wimpy commit” is better than no commit

We’ve been a little loose in our instructions to commit often and
don’t worry too much about having a long commit message.
Two things to keep in mind are that usually you want commits
to be meaningful with the code working (so you tend not to
commit in the middle of an edit with syntax errors), and good
commit notes are to be preferred (just don’t forgo a commit
because you don’t feel like writing a good commit note).

Using git log and git status to view progress

Any time you want to know about your work progress, type
either git status to see if there are any edits you can put
through the add/commit cycle, or git log to see the history of
your work (from the viewpoint of the add/commit cycles).

The following listing shows the git status from our copy of
this book’s examples repository
(https://github.com/WinVector/zmPDSwR).

Listing 10.10. Checking your project status

$ git status
On branch master
nothing to commit (working directory clean)

And the next listing shows a git log from the same project.

Listing 10.11. Checking your project history

commit c02839e0b34172f54fd68201f64895295b9d7609
Author: John Mount <jmount@win-vector.com>
Date: Sat Nov 9 13:28:30 2013 -0800

 add export of random forest model

commit 974a8d5b95bdf25b95d23ef75d08d8aa6c0d74fe
Author: John Mount <jmount@win-vector.com>
Date: Sat Nov 9 12:01:14 2013 -0800

 Add rook examples

The indented lines are the text we entered at the git commit
step; the dates are tracked automatically.

Using Git through RStudio

The RStudio IDE supplies a graphical user interface to Git that
you should try. The add/commit cycle can be performed as
follows in RStudio:

Start a new project. From the RStudio command menu,
select Project > Create Project, and choose New Project.
Then select the name of the project, what directory to
create the new project directory in, leave the type as
(Default), and make sure Create a Git Repository for
this Project is checked. When the new project pane
looks something like figure 10.7, click Create Project,
and you have a new project.

https://github.com/WinVector/zmPDSwR

Figure 10.7. RStudio new project pane

Do some work in your project. Create new files by
selecting File > New > R Script. Type some R code
(like 1/5) into the editor pane and then click the Save
icon to save the file. When saving the file, be sure to
choose your project directory or a subdirectory of your
project.
Commit your changes to version control. Figure 10.7
shows how to do this. Select the Git control pane in the
top right of RStudio. This pane shows all changed files
as line items. Check the Staged check box for any files
you want to stage for this commit. Then click Commit,

and you’re done.

You may not yet deeply understand or like Git, but you’re able
to safely check in all of your changes every time you remember
to stage and commit. This means all of your work history is
there; you can’t clobber your committed work just by deleting
your working file. Consider all of your working directory as
“scratch work”—only checked-in work is safe from loss.

Your Git history can be seen by pulling down on the Other
Commands gear (shown in the Git pane in figure 10.8) and
selecting History (don’t confuse this with the nearby History
pane, which is command history, not Git history). In an
emergency, you can find Git help and find your earlier files. If
you’ve been checking in, then your older versions are there; it’s
just a matter of getting some help in accessing them. Also, if
you’re working with others, you can use the push/pull menu
items to publish and receive updates. Here’s all we want to say
about version control at this point: commit often, and if you’re
committing often, all problems can be solved with some further
research. Also, be aware that since your primary version control
is on your own machine, you need to make sure you have an
independent backup of your machine. If your machine fails and
your work hasn’t been backed up or shared, then you lose both
your work and your version repository.

Figure 10.8. RStudio Git controls

10.3.3. Using version control to explore your project

Up until now, our model of version control has been this: Git
keeps a complete copy of all of our files each time we
successfully enter the pair of add/commit lines. We’ll now use
these commits. If you add/commit often enough, Git is ready to
help you with any of the following tasks:

Tracking your work over time
Recovering a deleted file
Comparing two past versions of a file
Finding when you added a specific bit of text
Recovering a whole file or a bit of text from the past
(undo an edit)
Sharing files with collaborators
Publicly sharing your project (à la GitHub at
https://github.com/, or Bitbucket at
https://bitbucket.org)
Maintaining different versions (branches) of your work

And that’s why you want to add and commit often.

Getting help on Git

For any Git command, you can type git help [command] to
get usage information. For example, to learn about git log,
type git help log.

Finding out who wrote what and when

In section 10.3.1, we implied that a good version control system
can produce a lot of documentation on its own. One powerful
example is the command git blame. Look what happens if we

https://github.com/
https://bitbucket.org

download the Git repository
https://github.com/WinVector/zmPDSwR (with the command
git clone git@github.com:WinVector/zmPDSwR.git) and
run the command git blame README.md.

Listing 10.12. Annoying work

git blame README.md
376f9bce (John Mount 2013-05-
15 07:58:14 -0700 1) ## Support ...
376f9bce (John Mount 2013-05-
15 07:58:14 -0700 2) # by Nina ...
2541bb0b (Marius Butuc 2013-04-24 23:52:09 -0400 3)
2541bb0b (Marius Butuc 2013-04-
24 23:52:09 -0400 4) Works deri ...
2541bb0b (Marius Butuc 2013-04-24 23:52:09 -0400 5)

We’ve truncated lines for readability. But the git blame

information takes each line of the file and prints the following:

The prefix of the line’s Git commit hash. This is used to
identify which commit the line we’re viewing came
from.
Who committed the line.
When they committed the line.
The line number.
And, finally, the contents of the line.

Viewing a detailed history of changes

The main ways to view the detailed history of your project are
command-line tools like git log --graph --name-status

and GUI tools such as RStudio and gitk. Continuing our
https://github.com/WinVector/zmPDSwR example, we see the
recent history of the repository by executing the git log

command.

Listing 10.13. Viewing detailed project history

git log --graph --name-status
* commit c49c853cbcbb1e5a923d6e1127aa54ec7335d1b3
| Author: John Mount <jmount@win-vector.com>

https://github.com/WinVector/zmPDSwR
https://github.com/WinVector/zmPDSwR

| Date: Sat Oct 26 09:22:02 2013 -0700
|
| Add knitr and rendered result
|
| A Buzz/.gitignore
| A Buzz/buzz.Rnw
| A Buzz/buzz.pdf
|
* commit 6ce20dd33c5705b6de7e7f9390f2150d8d212b42
| Author: John Mount <jmount@win-vector.com>
| Date: Sat Oct 26 07:40:59 2013 -0700
|
| update
|
| M CodeExamples.zip

This variation of the git log command draws a graph of the
history (mostly a straight line, which is the simplest possible
history) and what files were added (the A lines), modified (the M
lines), and so on. Commit comments are shown. Note that
commit comments can be short. We can say things like “update”
instead of “update Code-Examples.zip” because Git records
what files were altered in each commit. The gitk GUI allows
similar views and browsing through the detailed project history,
as shown in figure 10.9.

Figure 10.9. gitk browsing https://github.com/WinVector/zmPDSwR

https://github.com/WinVector/zmPDSwR

Using git dif f to compare f iles from dif ferent commits

The git diff command allows you to compare any two
committed versions of your project, or even to compare your
current uncommitted work to any earlier version. In Git,
commits are named using large hash keys, but you’re allowed to
use prefixes of the hashes as names of commits.[5] For example,
listing 10.14 demonstrates finding the differences in two

versions of https://github.com/WinVector/zmPDSwR in a diff or
patch format.

5 You can also create meaningful names for commits with the git tag command.

Listing 10.14. Finding line-based dif ferences between two committed versions

diff --
git a/CDC/NatalBirthData.rData b/CDC/NatalBirthData.rData
...
+++ b/CDC/prepBirthWeightData.R
@@ -0,0 +1,83 @@
+data <- read.table("natal2010Sample.tsv.gz",

+ sep="\t", header=T, stringsAsFactors=F)
+
+# make a boolean from Y/N data
+makevarYN = function(col) {
+ ifelse(col %in% c("", "U"), NA, ifelse(col=="Y", T, F))
+}
...

Try not to confuse Git commits and Git branches

A Git commit represents the complete state of a directory tree
at a given time. A Git branch represents a sequence of commits
and changes as you move through time. Commits are immutable;
branches record progress.

Using git log to f ind the last time a f ile was around

After working on a project for a while, we often wonder, when
did we delete a certain file and what was in it at the time? Git
makes answering this question easy. We’ll demonstrate this in
the repository https://github.com/WinVector/zmPDSwR. This
repository has a README.md (Markdown) file, but we
remember starting with a simple text file. When and how did
that file get deleted? To find out, we’ll run the following (the
command is after the $ prompt, and the rest of the text is the
result):

$ git log --name-status -- README.txt

commit 2541bb0b9a2173eb1d471e11d4aca3b690a011ef

https://github.com/WinVector/zmPDSwR
https://github.com/WinVector/zmPDSwR

Author: Marius Butuc <marius.butuc@gmail.com>
Date: Wed Apr 24 23:52:09 2013 -0400

 Translate readme to Markdown

D README.txt

commit 9534cff7579607316397cbb40f120d286b7e4b58
Author: John Mount <jmount@win-vector.com>
Date: Thu Mar 21 17:58:48 2013 -0700

 update licenses

M README.txt

Ah—the file was deleted by Marius Butuc, an early book reader
who generously composed a pull request to change our text file
to Markdown (we reviewed and accepted the request at the
time). We can view the contents of this older file with git show
9534cf -- README.txt (the 9534cff is the prefix of the
commit number before the deletion; manipulating these commit
numbers isn’t hard if you use copy and paste). And we can
recover that copy of the file with git checkout 9534cf --
README.txt.

10.3.4. Using version control to share work

In addition to producing work, you must often share it with
peers. The common (and bad) way to do this is emailing zip
files. Most of the bad sharing practices take excessive effort, are
error-prone, and rapidly cause confusion. We advise using
version control to share work with peers. To do that effectively
with Git, you need to start using additional commands such as
git pull, git rebase, and git push. Things seem more
confusing at this point (though you still don’t need to worry
about branching in its full generality), but are in fact far less
confusing and less error-prone than ad hoc solutions. We almost
always advise sharing work in star workflow, where each worker
has their own repository, and a single common “naked”
repository (a repository with only Git data structures and no
ready-to-use files) is used to coordinate (thought of as a server
or gold standard, often named origin).

The usual shared workflow is like this:

Continuously: work, work, work.
Frequently: commit results to the local repository using
a git add/git commit pair.
Every once in a while: pull a copy of the remote
repository into our view with some variation of git
pull and then use git push to push work upstream.

The main rule of Git is this: don’t try anything clever
(push/pull, and so on) unless you’re in a “clean” state
(everything committed, confirmed with git status).

Setting up remote repository relations

For two or more Git repositories to share work, the repositories
need to know about each other through a relation called remote.
A Git repository is able to share its work to a remote repository
by the push command and pick up work from a remote
repository by the pull command. Listing 10.15 shows the
declared remotes for the authors’ local copy of the
https://github.com/WinVector/zmPDSwR repository.

Listing 10.15. git remote

$ git remote --verbose
origin git@github.com:WinVector/zmPDSwR.git (fetch)
origin git@github.com:WinVector/zmPDSwR.git (push)

The remote relation is set when you create a copy of a
repository using the git clone command or can be set using
the git remote add command. In listing 10.15, the remote
repository is called origin—this is the traditional name for a
remote repository that you’re using as your master or gold
standard. (Git tends not to use the name master for repositories
because master is the name of the branch you’re usually working
on.)

https://github.com/WinVector/zmPDSwR

Using push and pull to synchronize work with remote repositories

Once your local repository has declared some other repository
as remote, you can push and pull between the repositories.
When pushing or pulling, always make sure you’re clean (have
no uncommitted changes), and you usually want to pull before
you push (as that’s the quickest way to spot and fix any
potential conflicts). For a description of what version control
conflicts are and how to deal with them, see
http://mng.bz/5pTv.

Usually for simple tasks we don’t use branches (a technical
version control term), and we use the rebase option on pull so
that it appears that every piece of work is recorded into a
simple linear order, even though collaborators are actually
working in parallel. This is what we call an essential difficulty of
working with others: time and order become separate ideas and
become hard to track (and this is not a needless complexity
added by using Git—there are such needless complexities, but
this is not one of them).

The new Git commands you need to learn are these:

git push (usually used in the git push -u origin
master variation)
git pull (usually used in the git fetch; git merge
-m pull master origin/master or git pull --
rebase origin master variations)

Typically two authors may be working on different files in the
same project at the same time. As you can see in figure 10.10,
the second author to push their results to the shared repository
must decide how to specify the parallel work was performed.
Either they can say the work was truly in parallel (represented
by two branches being formed and then a merge record joining

http://mng.bz/5pTv

the work), or they can rebase their own work to claim their
work was done “after” the other’s work (preserving a linear edit
history and avoiding the need for any merge records). Note:
before and after are tracked in terms of arrows, not time.

Figure 10.10. git pull: rebase versus merge

Merging is what’s really happening, but rebase is much simpler
to read. The general rule is that you should only rebase work
you haven’t yet shared (in our example, Worker B should feel
free to rebase their edits to appear to be after Worker A’s edits,
as Worker B hasn’t yet successfully pushed their work
anywhere). You should avoid rebasing records people have seen,
as you’re essentially hiding the edit steps they may be basing
their work on (forcing them to merge or rebase in the future to
catch up with your changed record keeping).

For most projects, we try to use a rebase-only strategy. For
example, this book itself is maintained in a Git repository. We
have only two authors who are in close proximity (so able to
easily coordinate), and we’re only trying to create one final
copy of the book (we’re not trying to maintain many branches
for other uses). If we always rebase, the edit history will appear
totally ordered (for each pair of edits, one is always recorded as
having come before the other) and this makes talking about
versions of the book much easier (again, before is determined by
arrows in the edit history, not by time stamp).

Don’t confuse version control with backup

Git keeps multiple copies and records of all of your work. But
until you push to a remote destination, all of these copies are on
your machine in the .git directory. So don’t confuse basic
version control with remote backups; they’re complementary.

A bit on the Git philosophy

Git is interesting in that it automatically detects and manages so
much of what you’d have to specify with other version control
systems (for example, Git finds which files have changed instead
of you having to specify them, and Git also decides which files

are related). Because of the large degree of automation, beginners
usually severely underestimate how much Git tracks for them.
This makes Git fairly quick except when Git insists you help
decide how a possible global inconsistency should be recorded in
history (either as a rebase or a branch followed by a merge
record). The point is this: Git suspects possible inconsistency
based on global state (even when the user may not think there is
such) and then forces the committer to decide how to annotate
the issue at the time of commit (a great service to any possible
readers in the future). Git automates so much of the record-
keeping that it’s always a shock when you have a conflict and
have to express opinions on nuances you didn’t know were
being tracked. Git is also an “anything is possible, but nothing is
obvious or convenient” system. This is hard on the user at first,
but in the end is much better than an “everything is smooth, but
little is possible” version control system (which can leave you
stranded).

Keep notes

Git commands are confusing; you’ll want to keep notes. One
idea is to write a 3 × 5 card for each command you’re regularly
using. Ideally you can be at the top of your Git game with about
seven cards.

10.4. Deploying models

Good data science shares a rule with good writing: show, don’t
tell. And a successful data science project should include at least
a demonstration deployment of any techniques and models
developed. Good documentation and presentation are vital, but
at some point people have to see things working and be able to
try their own tests. We strongly encourage partnering with a

development group to produce the actual production-hardened
version of your model, but a good demonstration helps recruit
these collaborators.

We outline some deployment methods in table 10.7.

Table 10.7. Methods to demonstrate predictive model operation

Method Description

Batch Data is brought into R, scored, and then written back out. This is essentially an
extension of what you’re already doing with test data.

Cross-
language
linkage

R supplies answers to queries from another language (C, C++, Py thon, Java, and
so on). R is designed with efficient cross-language calling in mind (in particular
the Rcpp package), but this is a specialized topic we won’t cover here.

Services R can be set up as an HTTP service to take new data as an HTTP query and
respond with results.

Export

Often model evaluation is simple compared to model construction. In this case,
the data scientist can export the model and a specification for the code to evaluate
the model, and the production engineers can implement (with tests) model
evaluation in the language of their choice (SQL, Java, C++, and so on).

PMML

PMML, or Predictive Model Markup Language, is a shared XML format that
many modeling packages can export to and import from. If the model y ou
produce is covered by R’s package pmml, you can export it without writing any
additional code. Then any software stack that has an importer for the model in
question can use y our model.

We’ve already demonstrated batch operation of models each
time we applied a model to a test set. We won’t work through
an R cross-language linkage example as it’s very specialized and
requires knowledge of the system you’re trying to link to. We’ll
demonstrate service and export strategies.

10.4.1. Deploying models as R HTTP services

One easy way to demonstrate an R model in operation is to
expose it as an HTTP service. In the following listing, we show
how to do this for our buzz model (predicting discussion topic
popularity).

Listing 10.16. Buzz model as an R-based HTTP service

The next listing shows how to call the HTTP service.

Listing 10.17. Calling the buzz HTTP service

This produces the HTML form buzztest7.html, shown in figure
10.11 (also saved in our example GitHub repository).

Figure 10.11. Top of HTML form that asks server for buzz classif ication on
submit

The generated file buzztest7.html contains a form element that
has an action of
"http://127.0.0.1:20714/custom/modelFn" as a POST. So
when the Send button on this page is clicked, all the filled-out
features are submitted to our server, and (assuming the form’s
action is pointing to a valid server and port) we get a
classification result from our model. This HTML query can be
submitted from anywhere and doesn’t require R. An example
result is saved in GitHub as buzztest7res.txt. Here’s an excerpt:

val=1
nerrors=0
nwarnings=0
...

Note that the result is a prediction of val=1, which was what
we’d expect for the seventh row of the test data. The point is
that the copy of R running the Rook server is willing to classify
examples from any source. Such a server can be used as part of a
larger demonstration and can allow non-R users to enter example
data. If you were pushing this further, you could move to more

machine-friendly formats such as JSON, but this is far enough
for an initial demonstration.

10.4.2. Deploying models by export

Because training is often the hard part of building a model, it
often makes sense to export a finished model for use by other
systems. For example, a lot of theory goes into how a random
forest picks variables and builds its trees. The structure of our
random forest model is large but simple: a big collection of
decision trees. But the construction is time-consuming and
technical. The idea is this: it can be easier to fax a friend a solved
Sudoku puzzle than to teach them your entire solution strategy.

So it often makes sense to export a copy of the finished model
from R, instead of attempting to reproduce all of the details of
model construction. When exporting a model, you’re depending
on development partners to handle the hard parts of hardening a
model for production (versioning, dealing with exceptional
conditions, and so on). Software engineers tend to be good at
project management and risk control, so export projects are also
a good opportunity to learn.

The steps required depend a lot on the model and data
treatment. For many models, you only need to save a few
coefficients. For random forests, you need to export the trees. In
all cases, you need to write code in your target system (be it
SQL, Java, C, C++, Python, Ruby, and so on) to evaluate the
model.[6]

6 A fun example is the Salford Systems Random Forests package that exports models
as source code instead of data. The package creates a compilable file in y our target
language (often Java or C++) that implements the decision trees essentially as a series
of if statements over class variables.

One of the issues of exporting models is that you must repeat
any data treatment. So part of exporting a model is producing a

specification of the data treatment (so it can be reimplemented
outside of R).

In listing 10.18, we show how to export the buzz random forest
model. Some investigation of the random forest model and
documentation showed that the underlying trees are accessible
through a method called getTree(). In this listing, we combine
the description of all of these trees into a single table.

Listing 10.18. Exporting the random forest model

A random forest model is a collection of decision trees, and
figure 10.12 shows an extract of a single tree from the buzz
random forest model. A decision tree is a series of tests
traditionally visualized as a diagram of decision nodes, as shown
in the top portion of the figure. The content of a decision tree is
easy to store in a table where each table row represents the facts
about the decision node (the variables being tested, the level of
the test, and the IDs of the next nodes to go to, depending on

the result of the test), as shown in the bottom part of the figure.
To reimplement a random forest model, one just has to write
code to accept the table representations of all the trees in the
random forest model and trace through the specified tests.[7]

7 We’ve also saved the exported table here:
https://github.com/WinVector/zmPDSwR/blob/master/Buzz/rfmodel.tsv.

Figure 10.12. One tree from the buzz random forest model

https://github.com/WinVector/zmPDSwR/blob/master/Buzz/rfmodel.tsv

Your developer partners would then build tools to read the
model trees and evaluate the trees on new data. Previous test
results and demonstration servers become the basis of important
acceptance tests.

10.4.3. What to take away

You should now be comfortable demonstrating R models to
others. Of particular power is setting up a model as an HTTP
service that can be experimented with by others, and also
exporting models so model evaluation can be reimplemented in a
production environment.

Always make sure your predictions in production are
bounded

A secret trick of successful production deployments is to
always make sure your predictions are bounded. This can
prevent disasters in production. For a classification or
probability problem (such as our buzz example), your
predictions are automatically bounded between 0 and 1 (though
there is some justification for adding code to tighten the allowed
prediction region to between 1/n and 1-1/n for models built
from n pieces of training data). For models that predict a value
or score (such as linear regression), you almost always want to
limit the predictions to be between the min and max values seen
during training. This helps prevent a runaway input from driving
your prediction to unprecedented (and unjustifiable) levels,
possibly causing disastrous actions in production. You also
want to signal when predictions have been so “touched up,” as
unnoticed corrections can also be dangerous.

10.5. Summary

This chapter shared options on how to manage and share your
work. In addition, we showed some techniques to set up
demonstration HTTP services and export models for use by
other software (so you don’t add R as a dependency in
production).

Key takeaways

Use knitr to produce significant reproducible
milestone/checkpoint documentation.
Write effective comments.
Use version control to save your work history.
Use version control to collaborate with others.
Make your models available to your partners for
experimentation and testing.

Chapter 11. Producing effective
presentations
This chapter covers

Presenting your results to project sponsors
Communicating with your model’s end users
Presenting your results to fellow data scientists

In the previous chapter, you saw how to effectively document
your day-to-day project work and how to deploy your model
into production. This included the additional documentation
needed to support operations teams. In this chapter, we’ll look
at how to present the results of your project to other interested
parties.

We’ll continue with the example from last chapter: our company
(let’s call it WVCorp) makes and sells home electronic devices
and associated software and apps. WVCorp wants to monitor
topics on the company’s product forums and discussion board
to identify “about-to-buzz” issues: topics that are posed to
generate a lot of interest and active discussion. This information
can be used by product and marketing teams to proactively
identify desired product features for future releases, and to
quickly discover issues with existing product features. Once
we’ve successfully built a model for identifying about-to-buzz
topics on the forum, we’ll want to explain the work to the
project sponsor, and also to the product managers, marketing
managers, and support engineering managers who will be using
the results of our model.

Table 11.1 summarizes the relevant entities in our scenario,
including products that are sold by our company and by

competitors.

Table 11.1. Entities in the buzz model scenario

Entity Description

WVCorp The company you work for

eRead WVCorp’s e-book reader

TimeWrangler WVCorp’s time-management app

BookBits A competitor’s e-book reader

GCal A third-party cloud-based calendar service that TimeWrangler can
integrate with

A disclaimer about the data and the example project

The dataset that we used for the buzz model was collected from
Tom’s Hardware (tomshardware.com), an actual forum for
discussing electronics and electronic devices. Tom’s Hardware is
not associated with any specific product vendor, and the dataset
doesn’t specify the topics that were recorded. The example
scenario we’re using in this chapter was chosen to present a
situation that would produce data similar to the data in the
Tom’s Hardware dataset. All product names and forum topics in
our example are fictitious.

Let’s start with the presentation for the project sponsors.[1]

1 We provide the PDF versions (with notes) of our example presentations at
https://github.com/WinVector/zmPDSwR/tree/master/Buzz as
ProjectSponsorPresentation.pdf, UserPresentation.pdf, and PeerPresentation.pdf.

11.1. Presenting your results to the project
sponsor

As we mentioned in chapter 1, the project sponsor is the person
who wants the data science result—generally for the business
need that it will fill. Though project sponsors may have
technical or quantitative backgrounds and may enjoy hearing

https://github.com/WinVector/zmPDSwR/tree/master/Buzz

about technical details and nuances, their primary interest is
business-oriented, so you should discuss your results in terms
of the business problem, with a minimum of technical detail.

You should also remember that the sponsor will often be
interested in “selling” your work to others in the organization,
to drum up support and additional resources to keep the project
going. Your presentation will be part of what the sponsor will
share with these other people, who may not be as familiar with
the context of the project as you and your sponsor are.

To cover these considerations, we recommend a structure similar
to the following:

1. Summarize the motivation behind the project, and its
goals.

2. State the project’s results.

3. Back up the results with details, as needed.

4. Discuss recommendations, outstanding issues, and
possible future work.

Some people also recommend an “Executive Summary” slide: a
one-slide synopsis of steps 1 and 2.

How you treat each step—how long, how much detail—
depends on your audience and your situation. In general, we
recommend keeping the presentation short. In this section, we’ll
offer some example slides in the context of our buzz model
example.

Let’s go through each step in detail.

We’ll concentrate on content, not visuals

In our discussion, we’ll concentrate on the content of the
presentations, rather than the visual format of the slides. In an
actual presentation, you’d likely prefer more visuals and less
text than the slides that we provide here. If you’re looking for
guidance on presentation visuals, a good book is The Craft of
Scientific Presentations by Michael Alley (Springer, 2003).

If you peruse that text, you’ll notice that our bullet-laden
example presentation violates all his suggestions. Think of our
skeleton presentations as outlines that you’d flesh out into a
more compelling visual format.

It’s worth pointing out that a visually oriented, low-text format
like Alley recommends is meant to be presented, not read. It’s
common for presentation decks to be passed around in lieu of
reports or memos. If you’re distributing your presentation to
people who won’t see you deliver it, make sure to include
comprehensive speaker’s notes. Otherwise, it may be more
appropriate to go with a bullet-laden, text-heavy presentation
format.

11.1.1. Summarizing the project’s goals

This section of the presentation is intended to provide context
for the rest of the talk, especially if it will be distributed to
others in the company who weren’t as closely involved as your
project sponsor was. Let’s put together the goal slides for the
WVCorp buzz model example.

In figure 11.1, we provide background for the motivation behind
the project by showing the business need and how the project
will address that need. In our example, eRead is WVCorp’s e-
book reader, which led the market until our competitor released a
new version of their e-book reader, BookBits. The new version

of BookBits has a shared-bookshelves feature that eRead
doesn’t provide—though many eRead users expressed the desire
for such functionality on the forums. Unfortunately, forum
traffic is so high that product managers have a hard time keeping
up, and somehow missed detecting this expression of users’
needs. Hence, WVCorp lost market share by not anticipating the
demand for the shared-bookshelf feature.

Figure 11.1. Motivation for project

In figure 11.2, we state the project’s goal, in the context of the
motivation that we set up in figure 11.1: we want to detect
topics on the forum that are about to buzz so that product
managers can find emerging issues early.

Figure 11.2. Stating the project goal

Once you’ve established the project’s context, you should move
directly to the project’s results. Your presentation isn’t a thriller
movie—don’t keep your audience in suspense!

11.1.2. Stating the project’s results

This section of the presentation briefly describes what you did,
and what the results were, in the context of the business need.
Figure 11.3 describes the buzz model pilot study, and what we
found.

Figure 11.3. Describing the project and its results

Keep the discussion of the results concrete and nontechnical.
Your audience isn’t interested in the details of your model per
se, but rather in why your model will help solve the problem
that you stated in the motivation section of the talk. Don’t talk
about your model’s performance in terms of precision and recall
or other technical metrics, but rather in terms of how it reduced
the workload for the model’s end users, how useful they found
the results to be, and what the model missed. In projects where
the model is more closely tied to monetary outcomes, like loan
default prediction, try to estimate how much money your model
could potentially generate, whether as earnings or savings, for
the company.

11.1.3. Filling in the details

Once your audience knows what you’ve done, why, and how
well you’ve succeeded (from a business point of view), you can
fill in details to help them understand more. As before, try to
keep the discussion relatively nontechnical and grounded in the
business process. A description of where the model fits in the
business process or workflow and some examples of interesting
findings would go well in this section, as shown in figure 11.4.

Figure 11.4. Discussing your work in more detail

The “How it Works” slide in figure 11.4 shows where the buzz
model fits into a product manager’s workflow. We emphasize
that (so far) we’ve built the model using metrics that were
already implemented into the system (thus minimizing the
number of new processes to be introduced into the workflow).
We also introduce the ways in which the output from our model
can potentially be used: to generate leads for potential new
features, and to alert product support groups to impending
problems.

The bottom slide of figure 11.4 presents an interesting finding
from the project (in a real presentation, you’d want to show
more than one). In this example, TimeWrangler is WVCorp’s
time-management product, and GCal is a third-party cloud-
based calendar service that TimeWrangler can talk to. In this
slide, we show how the model was able to identify an
integration issue between TimeWrangler and GCal sooner than
the TimeWrangler team would have otherwise (from the
customer support logs). Examples like this make the value of the
model concrete.

We’ve also included one slide in this presentation to discuss the
modeling algorithm (shown in figure 11.5). Whether you use this
slide depends on the audience—some of your listeners may have
a technical background and will be interested in hearing about
your choice of modeling methods. Other audiences may not care.
In any case, keep it brief, and focus on a high-level description
of the technique and why you felt it was a good choice. If
anyone in the audience wants more detail, they can ask—and if
you anticipate such people in your audience, you can have
additional slides to cover likely questions. Otherwise, be
prepared to cover this point quickly, or to skip it altogether.

Figure 11.5. Optional slide on the modeling method

There are other details that you might want to discuss in this
section. For example, if the product managers who participated
in your pilot study gave you interesting quotes or feedback—
how much easier their job is when they use the model, findings
that they thought were especially valuable, ideas they had about
how the model could be improved—you can mention that
feedback here. This is your chance to get others in the company
interested in your work on this project and to drum up
continuing support for follow-up efforts.

11.1.4. Making recommendations and discussing future
work

No project ever produces a perfect outcome, and you should be
up-front (but optimistic) about the limitations of your results.
In the buzz model example, we end the presentation by listing
some improvements and follow-ups that we’d like to make.
This is shown in figure 11.6. As a data scientist, you’re of

course interested in improving the model’s performance, but to
the audience, improving the model is less important than
improving the process (and better meeting the business need).
Frame the discussion from that perspective.

Figure 11.6. Discussing future work

The project sponsor presentation focuses on the big picture and
how your results help to better address a business need. A
presentation for end users will cover much of the same ground,
but now you frame the discussion in terms of the end users’
workflow and concerns. We’ll look at an end user presentation
for the buzz model in the next section.

11.1.5. Project sponsor presentation takeaways

Here’s what you should remember about the project sponsor
presentation:

Keep it short.
Keep it focused on the business issues, not the technical
ones.
Your project sponsor might use your presentation to
help sell the project or its results to the rest of the
organization. Keep that in mind when presenting
background and motivation.
Introduce your results early in the presentation, rather
than building up to them.

11.2. Presenting your model to end users

No matter how well your model performs, it’s important that
the people who will actually be using it have confidence in its
output and are willing to adopt it. Otherwise, the model won’t
be used, and your efforts will have been wasted. Hopefully, you
had end users involved in the project—in our buzz model
example, we had five product managers helping with the pilot
study. End users can help you sell the benefits of the model to
their peers.

In this section, we’ll give an example of how you might present
the results of your project to the end users. Depending on the
situation, you may not always be giving an explicit presentation:
you may be providing a user’s manual or other documentation.
However the information about your model is passed to the
users, we believe that it’s important to let them know how the
model is intended to make their workflow easier, not more
complicated. For the purposes of this chapter, we’ll use a
presentation format.

For an end user presentation, we recommend a structure similar

to the following:

1. Summarize the motivation behind the project, and its
goals.

2. Show how the model fits into the users’ workflow (and
how it improves that workflow).

3. Show how to use the model.

Let’s explore each of these points in turn, starting with project
goals.

11.2.1. Summarizing the project’s goals

With the model’s end users, it’s less important to discuss
business motivations and more important to focus on how the
model affects them. In our example, product managers are
already monitoring the forums to get a sense of customers’ needs
and issues. The goal of our project is to help them focus their
attention on the “good stuff”—buzz. The example slide in figure
11.7 goes directly to this point. The users already know that
they want to find buzz; our model will help them search more
effectively.

Figure 11.7. Motivation for project

11.2.2. Showing how the model fits the users’ workflow

In this section of the presentation, you explain how the model
helps the users do their job. A good way to do this is to give
before-and-after scenarios of a typical user workflow, as we
show in figure 11.8.

Figure 11.8. User workf low before and af ter the model

Presumably, the before process and its minuses are already
obvious to the users. The after slide emphasizes how the model
will do some preliminary filtering of forum topics for them. The
output of the model helps the users manage their already
existing watchlists, and of course the users can still go directly
to the forums as well.

The next slide (figure 11.9, top) uses the pilot study results to
show that the model can reduce the effort it takes to monitor the
forums, and does in fact provide useful information. We
elaborate on this with a compelling example in the bottom slide
of figure 11.9 (the TimeWrangler example that we also used in
the project sponsor presentation).

Figure 11.9. Present the model’s benef its from the users’ perspective.

You may also want to fill in more details about how the model
operates. For example, users may want to know what the inputs
to the model are (figure 11.10), so that they can compare those
inputs with what they themselves consider when looking for
interesting information on the forums manually.

Figure 11.10. Provide technical details that are relevant to the users.

Once you’ve shown how the model fits into the users’
workflow, you can explain how the users will use it.

11.2.3. Showing how to use the model

This section is likely the bulk of the presentation, where you’ll
teach the users how to use the model. The slide in figure 11.11

describes how a product manager will interact with the buzz
model. In this example scenario, we’re assuming that there’s an
existing mechanism for product managers to add topics and
discussions from the forums to a watchlist, as well as a way for
product managers to monitor that watchlist. The model will
separately send the users notifications about impending buzz on
topics they’re interested in.

Figure 11.11. Describe how the users will interact with the model.

In a real presentation, you’d then expand each point to walk the
users through how they use the model: screenshots of the GUIs
that they use to interact with the model, and screenshots of
model output. We give one example slide in figure 11.12: a
screenshot of a notification email, annotated to explain the view

to the user.

Figure 11.12. An example instructional slide

By the end of this section, the user should understand how to
use the buzz model and what to do with the buzz model’s
output.

Finally, we’ve included a slide that asks the users for feedback
on the model, once they’ve been using it in earnest. This is
shown in figure 11.13. Feedback from the users can help you
(and other teams that help to support the model once it’s
operational) to improve the experience for the users, making it

more likely that the model will be accepted and widely adopted.

Figure 11.13. Ask the users for feedback.

In addition to presenting your model to the project sponsors
and to end users, you may be presenting your work to other
data scientists in your organization, or outside of it. We’ll cover
peer presentations in the next section.

11.2.4. End user presentation takeaways

Here’s what you should remember about the end user
presentation:

Your primary goal is to convince the users that they
want to use your model.

Focus on how the model affects (improves) the end
users’ day-to-day processes.
Describe how to use the model and how to interpret or
use the model’s outputs.

11.3. Presenting your work to other data scientists

Presenting to other data scientists gives them a chance to
evaluate your work and gives you a chance to benefit from their
insight. They may see something in the problem that you
missed, and can suggest good variations to your approach or
alternative approaches that you didn’t think of.

Other data scientists will primarily be interested in the modeling
approach that you used, any variations on the standard
techniques that you tried, and interesting findings related to the
modeling process. A presentation to your peers generally has
the following structure:

1. Introduce the problem.

2. Discuss related work.

3. Discuss your approach.

4. Give results and findings.

5. Discuss future work.

Let’s go through these steps in detail.

11.3.1. Introducing the problem

Your peers will generally be most interested in the prediction
task (if that’s what it is) that you’re trying to solve, and don’t
need as much background about motivation as the project
sponsors or the end users. In figure 11.14, we start off by

introducing the concept of buzz and why it’s important, then go
straight into the prediction task.

Figure 11.14. Introducing the project

This approach is best when you’re presenting to other data
scientists within your own organization, since you all share the
context of the organization’s needs. When you’re presenting to
peer groups outside your organization, you may want to lead
with the business problem (for example, the first two slides of
the project sponsor presentation, figures 11.1 and 11.2) to
provide them with some context.

11.3.2. Discussing related work

An academic presentation generally has a related work section,

where you discuss others who have done research on problems
related to your problem, what approach they took, and how
their approach is similar to or different from yours. A related
work slide for the buzz model project is shown in figure 11.15.

Figure 11.15. Discussing related work

You’re not giving an academic presentation; it’s more important
to you that your approach succeeds than that it’s novel. For
you, a related work slide is an opportunity to discuss other
approaches that you considered, and why they may not be
completely appropriate for your specific problem.

After you’ve discussed approaches that you considered and
rejected, you can then go on to discuss the approach that you
did take.

11.3.3. Discussing your approach

Talk about what you did in lots of detail, including compromises
that you had to make and setbacks that you had. For our
example, figure 11.16 introduces the pilot study that we
conducted, the data that we used, and the modeling approach we
chose. It also mentions that a group of end users (five product
managers) participated in the project; this establishes that we
made sure that the model’s outputs are useful and relevant.

Figure 11.16. Introducing the pilot study

After you’ve introduced the pilot study, you introduce the
input variables and the modeling approach that you used (figure
11.17). In this scenario, the dataset didn’t have the right

variables—it would have been better to do more of a time-series
analysis, if we had the appropriate data, but we wanted to start
with metrics that were already implemented in the product
forums’ system. Be up-front about this.

Figure 11.17. Discussing model inputs and modeling approach

The slide also discusses the modeling approach that we chose—
random forest—and why. Since we had to modify the standard
approach (by limiting the model complexity), we mention that,
too.

11.3.4. Discussing results and future work

Once you’ve discussed your approach, you can discuss your
results. In figure 11.18, we discuss our model’s performance
(precision/recall) and also confirm that representative end users
did find the model’s output useful to their jobs.

Figure 11.18. Showing model performance

The bottom slide of figure 11.18 shows which variables are most
influential in the model (recall that the variable importance
calculation is one side effect of building random forests). In this
case, the most important variables are the number of times the
topic is displayed on various days and how many authors are
contributing to the topic. This suggests that time-series data for
these two variables in particular might improve model
performance.

You also want to add examples of compelling findings to this
section of the talk—for example, the TimeWrangler integration
issue that we showed in the other two presentations.

Once you’ve shown model performance and other results of
your work, you can end the talk with a discussion of possible
improvements and future work, as shown in figure 11.19.

Figure 11.19. Discussing future work

Some of the points on the future work slide—in particular the
need for velocity variables—come up naturally from the
previous discussion of the work and findings. Others, like future
work on model retraining schedules, aren’t foreshadowed as
strongly by the earlier part of the talk, but might occur to
people in your audience and are worth elaborating on briefly
here. Again, you want to be up-front, though optimistic, about
the limitations of your model—especially because this audience
is likely to see the limitations already.

11.3.5. Peer presentation takeaways

Here’s what you should remember about your presentation to
fellow data scientists:

A peer presentation can be motivated primarily by the
modeling task.
Unlike the previous presentations, the peer
presentation can (and should) be rich in technical
details.
Be up-front about limitations of the model and
assumptions made while building it. Your audience can
probably spot many of the limitations already.

11.4. Summary

In this chapter, you’ve seen how to present the results of your
work to three different audiences. Each of these audiences has
their own perspective and their own set of interests, and your
talk should be tailored to match those interests. We’ve suggested
ways to organize each type of talk that will help you to tailor
your discussion appropriately. None of our suggestions are set
in stone: you may have a project sponsor or other interested
executives who want to dig down to the more technical details,
or end users who are curious about how the internals of the
model work. You can also have peer audiences who want to hear
more about the business context. If you know this ahead of time
(perhaps because you’ve presented to this audience before),
then you should include the appropriate level of detail in your
talk. If you’re not sure, you can also prepare backup slides, to
be used as needed. There’s only one hard-and-fast rule: have
empathy for your audience.

Key takeaways

Presentations should be organized and written with a
specific audience and purpose in mind.
Organize your presentations to declare a shared goal and
show how you’re meeting that goal.

Some presentations are more technical than others, but
all should be honest and share convincing work and
interesting results.

Appendix A. Working with R and
other tools
In this appendix, we’ll show how you can install tools and start
working with R. We’ll demonstrate some example concepts and
steps, but you’ll want to follow up with additional reading.

A.1. Installing the tools

The primary tool for working our examples will be R as run
inside RStudio. But other tools (databases, version control) are
also highly recommended. You may also need access to online
documentation or other help to get all of these tools to work in
your environment. The distribution sites we list are a good place
to start.

RStudio and the database tools we suggest require Java. You can
download Java from
http://www.oracle.com/technetwork/java/javase/downloads/index.html
You won’t need to enable Java in your web browser (Java
enabled in the web browser is currently considered an
unacceptable security risk).

A.1.1. Installing R

A precompiled version of R can be downloaded from CRAN
(http://cran.r-project.org); we recommend picking up RStudio
from http://rstudio.com. CRAN is also the central repository for
the most popular R libraries. CRAN serves the central role for
R, similar to the role that CPAN serves for Perl and CTAN
serves for Tex. Follow the instructions given at CRAN to
download and install R, and we suggest you install Git and
RStudio before starting to use R.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://cran.r-project.org
http://rstudio.com

A.1.2. The R package system

R is a broad and powerful language and analysis workbench in
and of itself. But one of its real strengths is the depth of the
package system and packages supplied through CRAN. To
install a package from CRAN, just type install.packages
('nameofpackage'). To use an installed package, type
library(nameofpackage). Any time you type
library('nameofpackage')[1] or
require('nameofpackage'), you’re assuming you’re using a
built-in package or you’re able to run install.packages
('nameofpackage') if needed. We’ll return to the package
system again and again in this book. To see what packages are
present in your session, type sessionInfo().

1 Actually, library('nameofpackage') also works with quotes. The unquoted
form works in R because R has the ability to delay argument evaluation (so an
undefined nameofpackage doesn’t cause an error) as well as the ability to snoop
the names of argument variables (most programming languages rely only on
references or values of arguments). Given that a data scientist has to work with many
tools and languages throughout the day, we prefer to not rely on features unique to one
language unless we really need the feature. But the “official R sty le” is without the
quotes.

Changing your CRAN mirror

You can change your CRAN mirror at any time with the
chooseCRANmirror() command. This is handy if the mirror
you’re working with is slow.

A.1.3. Installing Git

We advise installing Git version control before we show you
how to use R and RStudio. This is because without Git, or a
tool like it, you’ll lose important work. Not just lose your work
—you’ll lose important client work. A lot of data science work

(especially the analysis tasks) involves trying variations and
learning things. Sometimes you learn something surprising and
need to redo earlier experiments. Version control keeps earlier
versions of all of your work, so it’s exactly the right tool to
recover code and settings used in earlier experiments. Git is
available in precompiled packages from http://git-scm.com.

A.1.4. Installing RStudio

RStudio supplies a text editor (for editing R scripts) and an
integrated development environment for R. Before picking up
RStudio from http://rstudio.com, you should install both R and
Git as we described earlier.

The RStudio product you initially want is called RStudio
Desktop and is available precompiled for Windows, Linux, and
OS X. RStudio is available in 64-bit and 32-bit versions—which
version you want depends on whether your operating system is
32- or 64-bit. Use the 64-bit version if you can.

A.1.5. R resources

A lot of the power of R comes from the deep bench of freely
available online resources. In this section, we’ll touch on a few
sources of code and documentation.

Installing R views

R has an incredibly deep set of available libraries. Usually, R
already has the package you want; it’s just a matter of finding it.
A powerful way to find R packages is using views: http://cran.r-
project.org/web/views/.

You can also install all of the packages (with help
documentation) from a view in a single command (though be
warned: this can take an hour to finish). For example, here we’re
installing a huge set of time series libraries all at once:

http://git-scm.com
http://rstudio.com
http://cran.r-project.org/web/views/

install.packages('ctv')
library('ctv')
install.views('TimeSeries')

Once you’ve done this, you’re ready to try examples and code.

Online R resources

A lot of R help is available online. Some of our favorite
resources include these:

CRAN— The main R site: http://cran.r-project.org
Stack Overflow R section— A question-and-answer
site: http://stackoverflow.com/questions/tagged/r
Quick-R— A great R resource:
http://www.statmethods.net
LearnR— A translation of all the plots from Lattice:
Multivariate Data Visualization with R (Use R!) (by D.
Sarker; Springer, 2008) into ggplot2:
http://learnr.wordpress.com
R-bloggers— A high-quality R blog aggregator:
http://www.r-bloggers.com

A.2. Starting with R

R implements a dialect of a statistical programming language
called S. The original implementation of S evolved into a
commercial package called S+. So most of R’s language design
decisions are really facts about S. To avoid confusion, we’ll
mostly just say R when describing features. You might wonder
what sort of command and programming environment S/R is. It’s
a pretty powerful one, with a nice command interpreter that we
encourage you to type directly into.

Working with R and issuing commands to R is in fact scripting
or programming. We assume you have some familiarity with
scripting (be it Visual Basic, Bash, Perl, Python, Ruby, and so

http://cran.r-project.org
http://stackoverflow.com/questions/tagged/r
http://www.statmethods.net
http://learnr.wordpress.com
http://www.r-bloggers.com

on) or programming (be it C, C#, C++, Java, Lisp, Scheme, and
so on), or are willing to use one of our references to learn. We
don’t intend to write long programs in R, but we’ll have to show
how to issue R commands. R’s programming, though powerful,
is a bit different than many of the popular programming
languages, but we feel that with a few pointers, anyone can use
R. If you don’t know how to use a command, try using the
help() call to get at some documentation.

Throughout this book, we’ll instruct you to run various
commands in R. This will almost always mean typing the text or
the text following the command prompt > into the RStudio
console window, followed by pressing Return. For example, if
we tell you to type 1/5, you can type that into the console
window, and when you press Enter you’ll see a result such as
[1] 0.2. The [1] portion of the result is just R’s way of
labeling result rows (and is to be ignored), and the 0.2 is the
floating point representation of one-fifth, as requested.

Help

Always try calling help() to learn about commands. For
example, help('if') will bring up help in R’s if command.

Let’s try a few commands to help you become familiar with R
and its basic data types. R commands can be terminated with a
line break or a semicolon (or both), but interactive content isn’t
executed until you press Return. The following listing shows a
few experiments you should run in your copy of R.

Listing A.1. Trying a few R commands

> 1
[1] 1
> 1/2
[1] 0.5

> 'Joe'
[1] "Joe"
> "Joe"
[1] "Joe"
> "Joe"=='Joe'
[1] TRUE
> c()
NULL
> is.null(c())
[1] TRUE
> is.null(5)
[1] FALSE
> c(1)
[1] 1
> c(1,2)
[1] 1 2
> c("Apple",'Orange')
[1] "Apple" "Orange"
> length(c(1,2))
[1] 2
> vec <- c(1,2)
> vec
[1] 1 2

Multiline commands in R

R is good with multiline commands. To enter a multiline
command, just make sure it would be a syntax error to stop
parsing where you break a line. For example, to enter 1+2 as two
lines, add the line break after the plus sign and not before. To get
out of R’s multiline mode, press Escape. A lot of cryptic R
errors are caused by either a statement ending earlier than you
wanted (a line break that doesn’t force a syntax error on early
termination) or not ending where you expect (needing an
additional line break or semicolon).

A.2.1. Primary features of R

R commands look like a typical procedural programming
language. This is deceptive, as the S language (the language R
implements) was actually inspired by functional programming
and also has a lot of object-oriented features.

Assignment

R has five common assignment operators: =, <-, ->, <<-, and -
>>. Traditionally in R, <- is the preferred assignment operator
and = is thought as a late addition and an amateurish alias for it.

The main advantage of the <- notation is that <- always means
assignment, whereas = can mean assignment, list slot binding,
function argument binding, or case statement, depending on
context. One mistake to avoid is accidentally inserting a space in
the assignment operator:

> x <- 2
> x < - 3
[1] FALSE
> print(x)
[1] 2

We actually like = assignment better because data scientists tend
to work in more than one language at a time and more bugs are
caught early with =. But this advice is too heterodox to burden
others with (see http://mng.bz/hfug). We try to consistently use
<- in this book, but some habits are hard to break.

The = operator is also used to bind values to function arguments
(and <- can’t be so used) as shown in the next listing.

Listing A.2. Binding values to function arguments

> divide <- function(numerator,denominator) { numerator/denominator }
> divide(1,2)
[1] 0.5
> divide(2,1)
[1] 2
> divide(denominator=2,numerator=1)
[1] 0.5
divide(denominator<-2,numerator<-1) # yields 2, a wrong answer
[1] 2

The -> operator is just a right-to-left assignment that lets you
write things like x -> 5. It’s cute, but not game changing.

The <<- and ->> operators are to be avoided unless you actually
need their special abilities. What they do is search through
parent calling environments (usually associated with a stack of

http://mng.bz/hfug

function calls) to find an unlocked existing definition they can
alter; or, finding no previous definition, they create a definition
in the global environment. The ability evades one of the
important safety points about functions. When a variable is
assigned inside a function, this assignment is local to the
function. Nobody outside of the function ever sees the effect;
the function can safely use variables to store intermediate
calculations without clobbering same-named outside variables.
The <<- and ->> operators reach outside of this protected scope
and allow potentially troublesome side effects. Side effects seem
great when you need them (often for error tracking and logging),
but on the balance they make code maintenance, debugging, and
documentation much harder. In the following listing, we show a
good function that doesn’t have a side effect and a bad function
that does.

Listing A.3. Demonstrating side ef fects

> x<-1
> good <- function() { x <- 5}
> good()
> print(x)
[1] 1
> bad <- function() { x <<- 5}
> bad()
> print(x)
[1] 5

Vectorized operations

Many R operations are called vectorized, which means they
work on every element of a vector. These operators are
convenient and to be preferred over explicit code like for loops.
For example, the vectorized logic operators are ==, &, and |. The
next listing shows some examples using these operators on R’s
logical types TRUE and FALSE (which can also be written as T
and F).

Listing A.4. R truth tables for Boolean operators

> c(T,T,F,F) == c(T,F,T,F)
[1] TRUE FALSE FALSE TRUE

> c(T,T,F,F) & c(T,F,T,F)
[1] TRUE FALSE FALSE FALSE
> c(T,T,F,F) | c(T,F,T,F)
[1] TRUE TRUE TRUE FALSE

Never use && or | | in R

In many C-descended languages, the preferred logic operators
are && and ||. R has such operators, but they’re not vectorized,
and there are few situations where you want what they do (so
using them is almost always a typo or a bug).

To test if two vectors are a match, we’d use R’s identical()
or all.equal() methods.

R also supplies a vectorized sector called ifelse(,,) (the basic
R-language if statement isn’t vectorized).

R is an object-oriented language

Every item in R is an object and has a type definition called a
class. You can ask for the type of any item using the class()
command. For example, class(c(1,2)) is numeric. R in fact
has two object-oriented systems. The first one is called S3 and
is closest to what a C++ or Java programmer would expect. In
the S3 class system, you can have multiple commands with the
same name. For example, there may be more than one command
called print(). Which print() actually gets called when you
type print(x) depends on what type x is at runtime. S3 is a bit
of a “poor man’s” object-oriented system, as it doesn’t support
the more common method notation c(1,2).print() (instead
using print(c(1,2))), and methods are just defined willy-nilly
and not strongly associated with object definitions, prototypes,
or interfaces. R also has a second object-oriented system called
S4, which supports more detailed classes and allows methods to
be picked based on the types of more than just the first

argument. Unless you’re planning on becoming a professional R
programmer (versus a professional R user or data scientist), we
advise not getting into the complexities of R’s object-oriented
systems. Mostly you just need to know that most R objects
define useful common methods like print(), summary(), and
class(). We also advise leaning heavily on the help()

command. To get class-specific help, you use a notation
method.class; for example, to get information on the predict()
method associated with objects of class glm, you would type
help(predict.glm).

R is a functional language

Functions are first-class objects in R. You can define anonymous
functions on the fly and store functions in variables. For
example, here we’re defining and using a function we call add. In
fact, our function has no name (hence it’s called anonymous),
and we’re just storing it in a variable named add:

> add <- function(a,b) { a + b}
> add(1,2)
[1] 3

To properly join strings in this example, we’d need to use the
paste() function.

R is a generic language

R functions don’t use type signatures (though methods do use
them to determine the object class). So all R functions are what
we call generic. For example, our addition function is generic in
that it has no idea what types its two arguments may be or even
if the + operator will work for them. We can feed any arguments
into add, but sometimes this produces an error:

> add(1,'fred')
Error in a + b : non-numeric argument to binary operator

R is a dynamic language

R is a dynamic language, which means that only values have
types, not variables. You can’t know the type of a variable until
you look at what value the variable is actually storing. R has the
usual features of a dynamic language, such as on-the-fly variable
creation. For example, the line x=5 either replaces the value in
variable x with a 5 or creates a new variable named x with a
value of 5 (depending on whether x had been defined before).
Variables are only created during assignment, so a line like x=y is
an error if y hasn’t already been defined. You can find all of your
variables using the ls() command.

Don’t rely on implicit print()

A command that’s just a variable name often is equivalent to
calling print() on the variable. But this is only at the so-called
“top level” of the R command interpreter. Inside a sourced
script, function, or even a loop body, referring to a variable
becomes a no-op instead of print(). This is especially
important to know for packages like ggplot2 that override the
inbuilt print() command to produce desirable side effects like
producing a plot.

R behaves like a call-by-value language

R behaves like what’s known as a call-by-value language. That
means, from the programmer’s point of view, each argument of a
function behaves as if it were a separate copy of what was
passed to the function. Technically, R’s calling semantics are
actually a combination of references and what is called lazy
evaluation. But until you start directly manipulating function
argument references, you see what looks like call-by-value
behavior.

Call-by-value is a great choice for analysis software: it makes for

fewer side effects and bugs. But most programming languages
aren’t call-by-value, so call-by-value semantics often come as a
surprise. For example, many professional programmers rely on
changes made to values inside a function being visible outside
the function. Here’s an example of call-by-value at work.

Listing A.5. Call-by-value ef fect

> vec <- c(1,2)
> fun <- function(v) { v[[2]]<-5; print(v)}
> fun(vec)
[1] 1 5
> print(vec)
[1] 1 2

R isn’t a disciplined language

R isn’t a disciplined language in that there’s usually more than
one way to do something. The good part is this allows R to be
broad, and you can often find an operator that does what you
want without requiring the user to jump through hoops. The bad
part is you may find too many options and not feel confident in
picking a best one.

A.2.2. Primary R data types

While the R language and its features are interesting, it’s the R
data types that are most responsible for R’s style of analysis. In
this section, we’ll discuss the primary data types and how to
work with them.

Vectors

R’s most basic data type is the vector, or array. In R, vectors are
arrays of same-typed values. They can be built with the c()
notation, which converts a comma-separated list of arguments
into a vector (see help(c)). For example, c(1,2) is a vector

whose first entry is 1 and second entry is 2. Try typing
print(c(1,2)) into R’s command prompt to see what vectors
look like and notice that print(class(1)) returns numeric,
which is R’s name for numeric vectors.

Numbers in R

Numbers in R are primarily represented in double-precision
floating-point. This differs from some programming languages,
such as C and Java, that default to integers. This means you
don’t have to write 1.0/5.0 to prevent 1/5 from being rounded
down to 0, as you would in C or Java. It also means that some
fractions aren’t represented perfectly. For example, 1/5 in R is
actually (when formatted to 20 digits by
sprintf("%.20f",1/5)) 0.20000000000000001110, not the
0.2 it’s usually displayed as. This isn’t unique to R; this is the
nature of floating-point numbers. A good example to keep in
mind is 1/5!=3/5-2/5, because 1/5-(3/5-2/5) is equal to
5.55e-17.

R doesn’t generally expose any primitive or scalar types to the
user. For example, the number 1.1 is actually converted into a
numeric vector with a length of 1 whose first entry is 1.1. Note
that print(class(1.1)) and print(class(c(1.1,0))) are
identical. Note also that length(1.1) and length(c(1.1)) are
also identical. What we call scalars (or single numbers or strings)
are in R just vectors with a length of 1. R’s most common types
of vectors are these:

Numeric— Arrays of double-precision floating-point
numbers.
Character— Arrays of strings.

Factor— Arrays of strings chosen from a fixed set of
possibilities (called enums in many other languages).
Logical— Arrays of TRUE/FALSE.
NULL— The empty vector c() (which always has
type NULL). Note that length(NULL) is 0 and
is.null(c()) is TRUE.

R uses the square-brace notation (and others) to refer to entries
in vectors.[2] Unlike most modern program languages, R numbers
vectors starting from 1 and not 0. Here’s some example code
showing the creation of a variable named vec holding a numeric
vector. This code also shows that most R data types are
mutable, in that we’re allowed to change them:

2 The most commonly used index notation is []. When extracting single values, we
prefer the double square-brace notation [[]] as it gives out-of-bounds warnings in
situations where [] doesn’t.

> vec <- c(2,3)
> vec[[2]] <- 5
> print(vec)
[1] 2 5

Number sequences

Number sequences are easy to generate with commands like
1:10. Watch out: the : operator doesn’t bind very tightly, so
you need to get in the habit of using extra parentheses. For
example, 1:5*4 + 1 doesn’t mean 1:21. For sequences of
constants, try using rep().

Lists

In addition to vectors (created with the c() operator), R has
two types of lists. Lists, unlike vectors, can store more than one
type of object, so they’re the preferred way to return more than
one result from a function. The basic R list is created with the

list() operator, as in list(6,'fred'). Basic lists aren’t really
that useful, so we’ll skip over them to named lists. In named
lists, each item has a name. An example of a named list would be
created in list('a'=6,'b'='fred'). Usually the quotes on
the list names are left out, but the list names are always constant
strings (not variables or other types). In R, named lists are
essentially the only convenient mapping structure (the other
mapping structure being environments, which give you mutable
lists). The ways to access items in lists are the $ operator and
the [[]] operator (see help('[[') in R’s help system). Here’s
a quick example.

Listing A.6. Examples of R indexing operators

> x <- list('a'=6,b='fred')
> names(x)
[1] "a" "b"
> x$a
[1] 6
> x$b
[1] "fred"
> x[['a']]
$a
[1] 6

> x[c('a','a','b','b')]
$a
[1] 6

$a
[1] 6

$b
[1] "fred"

$b
[1] "fred"

Labels use case-sensitive partial match

The R list label operators (such as $) allow partial matches. For
example, list('abe'='lincoln')$a returns lincoln, which
is fine and dandy until you add a slot actually labeled a to such a
list and your older code breaks. In general, it would be better if
list('abe'='lincoln')$a was an error, so you have a chance
of being signalled of a potential problem the first time you make

such an error. You could try to disable this behavior with
options(warnPartialMatchDollar=T), but even if that
worked in all contexts, it’s likely to break any other code that’s
quietly depending on such shorthand notation.

As you see in our example, the [] operator is vectorized, which
makes lists incredibly useful as translation maps.

Selection: [[]] versus []

[[]] is the strictly correct operator for selecting a single element
from a list or vector. At first glance, [] appears to work as a
convenient alias for [[]], but this is not strictly correct for
single-value (scalar) arguments. [] is actually an operator that
can accept vectors as its argument (try list(a='b')

[c('a','a')]) and return nontrivial vectors (vectors of length
greater than 1, or vectors that don’t look like scalars) or lists.
The operator [[]] has different (and better) single-element
semantics for both lists and vectors (though, unfortunately,
[[]] has different semantics for lists than for vectors).

Really you should never use [] when [[]] can be used (when
you want only a single result). Everybody, including the
authors, forgets this and uses [] way more often than is safe.
For lists, the main issue is that [[]] usefully unwraps the
returned values from the list type (as you’d want: compare
class(list(a='b')['a']) to class(list(a='b')

[['a']])). For vectors, the issue is that [] fails to signal out-
of-bounds access (compare c('a','b')[[7]] to c('a','b')
[7] or, even worse, c('a','b')[NA]).

Data frames

R’s central data structure is called the data frame. A data frame
is organized into rows and columns. A data frame is a list of
columns of different types. Each row has a value for each
column. An R data frame is much like a database table: the
column types and names are the schema, and the rows are the
data. In R, you can quickly create a data frame using the
data.frame() command. For example, d =

data.frame(x=c(1,2), y=c('x','y')) is a data frame.

The correct way to read a column out of a data frame is with the
[[]] or $ operators, as in d[['x']], d$x or d[[1]]. Columns
are also commonly read with the d[,'x'] or d['x'] notations.
Note that not all of these operators return the same type (some
return data frames, and some return arrays).

Sets of rows can be accessed from a data frame using the
d[rowSet,] notation, where rowSet is a vector of Booleans
with one entry per data row. We prefer to use
d[rowSet,,drop=F] or subset(d,rowSet), as they’re
guaranteed to always return a data frame and not some
unexpected type like a vector (which doesn’t support all of the
same operations as a data frame).[3] Single rows can be accessed
with the d[k,] notation, where k is a row index. Useful
functions to call on a data frame include dim(), summary(), and
colnames(). Finally, individual cells in the data frame can be
addressed using a row-and-column notation, like d[1,'x'].

3 To see the problem, type class(data.frame(x=c(1,2))[c(T,F),]) or
class(data.frame(x=c (1,2))[1,]), which, instead of returning single-
row data frames, return numeric vectors.

From R’s point of view, a data frame is a single table that has
one row per example you’re interested in and one column per
feature you may want to work with. This is, of course, an
idealized view. The data scientist doesn’t expect to be so lucky
as to find such a dataset ready for them to work with. In fact,

90% of the data scientist’s job is figuring out how to transform
data into this form. We call this task data tubing, and it involves
joining data from multiple sources, finding new data sources, and
working with business and technical partners. But the data
frame is exactly the right abstraction. Think of a table of data as
the ideal data scientist API. It represents a nice demarcation
between preparatory steps that work to get data into this form
and analysis steps that work with data in this form.

Data frames are essentially lists of columns. This makes
operations like printing summaries or types of all columns
especially easy, but makes applying batch operations to all rows
less convenient. R matrices are organized as rows, so converting
to/from matrices (and using transpose t()) is one way to
perform batch operations on data frame rows. But be careful:
converting a data frame to a matrix using something like the
model.matrix() command (to change categorical variables into
multiple columns of numeric level indicators) doesn’t track how
multiple columns may have been derived from a single variable
and can potentially confuse algorithms that have per-variable
heuristics (like stepwise regression and random forests).

Data frames would be useless if the only way to populate them
was to type them in. The two primary ways to populate data
frames are R’s read.table() command and database
connectors (which we’ll cover in section A.3).

Matrices

In addition to data frames, R supports matrices. Matrices are
two-dimensional structures addressed by rows and columns.
Matrices differ from data frames in that matrices are lists of
rows, and every cell in a matrix has the same type. When
indexing matrices, we advise using the ,drop=F notation, as
without this selections that should return single-row matrices
instead return vectors. This would seem okay, except in R

vectors aren’t substitutable for matrices, so downstream code
that’s expecting a matrix will mysteriously crash at runtime.
And the crash may be rare and hard to demonstrate or find, as it
only happens if the selection happens to return exactly one row.

NULL and NA

R has two special values: NULL and NA.

In R, NULL is just an alias for c(), the empty vector. It carries no
type information, so an empty vector of numbers is the same
type as an empty vector of strings (a design flaw, but consistent
with how most programming languages handle so-called null
pointers). NULL can only occur where a vector or list is expected;
it can’t represent missing scalar values (like a single number or
string).

For missing scalar values, R uses a special symbol, NA, which
indicates missing or unavailable data. In R, NA behaves like the
not-a-number or NaN seen in most floating-point
implementations (except NA can represent any scalar, not just a
floating-point number). The value NA represents a nonsignalling
error or missing value. Nonsignalling means you don’t get a
printed warning, and your code doesn’t halt (not necessarily a
good thing). NA is inconsistent if it reproduces. 2+NA is NA, as
we’d hope, but paste(NA,'b') is a valid non-NA string.

Even though class(NA) claims to be logical, NAs can be present
in any vector, list, slot, or data frame.

Factors

In addition to a string type called character, R also has a
special “set of strings” type similar to what Java programmers
would call an enumerated type. This type is called a factor, and a
factor is just a string value guaranteed to be chosen from a
specified set of values called levels. The value of factors is they

are exactly the right data type to represent the different values
or levels of categorical variables.

The following example shows the string red encoded as a factor
(note how it carries around the list of all possible values) and a
failing attempt to encode apple into the same set of factors
(returning NA, R’s special not-a-value symbol).

Listing A.7. R’s treatment of unexpected factor levels

> factor('red',levels=c('red','orange'))
[1] red
Levels: red orange
> factor('apple',levels=c('red','orange'))
[1] <NA>
Levels: red orange

Factors are useful in statistics, and you’ll want to convert most
string values into factors at some point in your data science
process.

Making sure factor levels are consistent

In this book, we often prepare training and test data separately
(simulating the fact that new data will be usually prepared after
the original training data). For factors, this introduced two
fundamental issues: consistency of numbering of factor levels
during training, and application and discovery of new factor
level values during application. For the first issue, it’s the
responsibility of R code to make sure factor numbering is
consistent. Listing A.8 demonstrates that lm() correctly handles
factors as strings and is consistent even when a different set of
factors is discovered during application (this is something you
may want to double-check for noncore libraries). For the second
issue, discovering a new factor during application is a modeling
issue. The data scientist either needs to ensure this can’t happen
or develop a coping strategy (such as falling back to a model not
using the variable in question).

Listing A.8. Conf irm lm() encodes new strings correctly.

Slots

In addition to lists, R can store values by name in object slots.
Object slots are addressed with the @ operator (see help('@')).
To list all of the slots on an object, try slotNames(). Slots and
objects (in particular the S3 and S4 object systems) are advanced
topics we won’t cover in this book. You need to know that R
has object systems, as some packages will return them to you,
but you shouldn’t be creating your own objects early in your R
career.

A.2.3. Loading data from HTTPS sources

In chapter 2, we showed how to use read.table() to read data
directly from HTTP-style URLs. With so many of our examples
hosted on GitHub, it would be convenient to be able to load
examples into R directly from GitHub. The difficulties in
loading directly from GitHub are these: first, finding the correct
URL (to avoid any GitHub page redirects), and second, finding a
library that will let you access data over an HTTPS connection.

With some digging, you can work out the structure of GitHub

raw URLs. And you can load data from HTTPS sources as
shown in the following listing.

Listing A.9. Loading UCI car data directly from GitHub using HTTPS

This method can be used for most of the examples in the book.
But we think that cloning or downloading a zip file of the book
repository is probably going to be more convenient for most
readers.

A.3. Using databases with R

Some of our more significant examples require using R with a
SQL database. In this section, we’ll install one such database
(H2) and work one example of using SQL to process data.

A.3.1. Acquiring the H2 database engine

The H2 database engine is a serverless relational database that
supports queries in SQL. All you need to do to use H2 is
download the “all platforms zip” from
http://www.h2database.com. Just unpack the zip file in some
directory you can remember. All you want from H2 is the Java
JAR file found in the unzipped bin directory. In our case, the
JAR is named h2-1.3.170.jar, or you can use what comes out of

http://www.h2database.com

their supplied installer. The H2 database will allow us to show
how R interacts with a SQL database without having to install a
database server. If you have access to your own database such
as PostgreSQL, MySQL, or Oracle, you likely won’t need to
use the H2 database and can skip it. We’ll only use the H2
database a few times in this book, but you must anticipate that
some production environments are entirely oriented around a
database.

A.3.2. Starting with SQuirreL SQL

SQuirreL SQL is a database browser available from
http://squirrel-sql.sourceforge.net. You can use it to inspect
database contents before attempting to use R. It’s also a good
way to run long SQL scripts that you may write as part of your
data preparation. SQuirreL SQL is also a good way to figure out
database configuration before trying to connect with R. Both
SQuirreL SQL and H2 depend on Java, so you’ll need a current
version of Java available on your workstation (but not
necessarily in your web browser, as that’s considered a security
risk).

For example, we’ll show how to use SQuirreL SQL to create an
example H2 database that’s visible to R. First start SQuirreL
SQL, click on the Drivers pane on the right, and define a new
database driver. This will bring up a panel as shown in figure
A.1. We’ve selected the H2 Embedded driver. In this case, the
panel comes prepopulated with the class name of the H2 driver
(something we’ll need to copy to R) and what the typical
structure of a URL referring to this type of database looks like.
We only have to populate the Extra Class Path tab with a class
path pointing to our h2-1.3.170.jar, and the driver is configured.

Figure A.1. SQuirreL SQL driver conf iguration

http://squirrel-sql.sourceforge.net

Then to connect to (and in this case create) the database, we go
to the SQuirreL SQL Aliases panel and define a new connection
alias, as shown in figure A.2. The important steps are to select
the driver we just configured and to fill out the URL. For H2-
embedded databases, the database will actually be stored as a set
of files derived from the path in the specified URL.

Figure A.2. SQuirreL SQL connection alias

Figure A.3 shows SQuirreL SQL in action. For our example,
we’re executing five lines of SQL code that create and populate a
demonstration table. The point is that this same table can be

easily accessed from R after we close the SQuirreL SQL
connection to release the H2 exclusive lock.

Figure A.3. SQuirreL SQL table commands

To access any database from R, you can use R’s JDBC package.
In the next listing, we’ll show how to do this. Each line
beginning with a > prompt is a command we type into R
(without copying the > prompt). Each line without the prompt
is our copy of R’s response. Throughout this book, for short
listings we’ll delete the prompts, and leave the prompts in when
we want to demonstrate a mixture of input and output. We’ll
define more of R’s syntax and commands later, but first we want
to show in the following listing how to read data from our
example database.

Listing A.10. Reading database data into R

The point is this: a lot of your clients will have data in
databases. One way to get at such data is to dump it into a text
file like a pipe-separated values or tab-separated values file.
This is often good enough, but can also lead to issues of quoting
and parsing if text fields are present. Also, SQL databases carry
useful schema information that provides types of various

columns (not forcing you to represent numeric data as strings,
which is why one of our favorite ways to move data between
Python and R is the non-JDBC database SQLite). You always
want the ability to directly connect to a database.

Connecting to a database can take some work, but once you get
SQuirreL SQL to connect, you can copy the connection specifics
(drivers, URLs, usernames, and passwords) into RJDBC and get
R to connect. Some tasks, such as joins or denormalizing data
for analysis, are frankly easier in SQL than in R.[4]

4 Another option is to use R’s sqldf package, which allows the use of SQL
commands (including fairly complicated joins and aggregations) directly on R data
frames.

You’ll want to perform many data preparation steps in a
database. Obviously, to use a SQL database, you need to know
some SQL. We’ll explain some SQL in this book and suggest
some follow-up references. We also provide a quick database
data-loading tool called SQL Screwdriver.

A.3.3. Installing SQL Screwdriver

SQL Screwdriver is an open source tool for database table
loading that we provide. You can download SQL Screwdriver by
clicking on the Raw tab of the SQLScrewdriver.jar page found at
https://github.com/WinVector/SQLScrewdriver. Every database
comes with its own table dumpers and loaders, but they all tend
to be idiosyncratic. SQL Screwdriver provides a single loader
that can be used with any JDBC-compliant SQL database and
builds a useful schema by inspecting the data in the columns of
the tab- or comma-separated file it’s loading from (a task most
database loaders don’t perform). We have some SQL
Screwdriver documentation at http://mng.bz/bJ9B, and we’ll
demonstrate SQL Screwdriver on a substantial example in this
section.

https://github.com/WinVector/SQLScrewdriver
http://mng.bz/bJ9B

A.3.4. An example SQL data transformation task

We’ll work through an artificial example of loading data that
illustrates a number of R tools, including gdata (which reads
Excel files) and sqldf (which implements SQL on top of R data
frames). Our example problem is trying to plot the effect that
room prices have on bookings for a small hotel client.

Loading data from Excel

Our data can be found in the file Workbook1.xlsx found at
https://github.com/WinVector/zmPDSwR/tree/master/SQLExample
The contents of the Excel workbook look like figure A.4.

Figure A.4. Hotel data in spreadsheet form

This data is typical of what you get from small Excel-oriented
clients: it’s formatted for compact appearance, not immediate
manipulation. The extra header lines and formatting all make the
data less regular. We directly load the data into R as shown in
the next listing.

Listing A.11. Loading an Excel spreadsheet

library(gdata)
bookings <- read.xls('Workbook1.xlsx',sheet=1,pattern='date',
 stringsAsFactors=F,as.is=T)
prices <- read.xls('Workbook1.xlsx',sheet=2,pattern='date',

https://github.com/WinVector/zmPDSwR/tree/master/SQLExample

 stringsAsFactors=F,as.is=T)

We confirm we have the data correctly loaded by printing it out.

Listing A.12. The hotel reservation and price data

> print(bookings)
 date day.of.stay X1.before X2.before X3.before
1 2013-07-01 105 98 95 96
2 2013-07-02 103 100 98 95
3 2013-07-03 105 95 90 80
4 2013-07-04 105 105 107 98
> print(prices)
 date day.of.stay X1.before X2.before X3.before
1 2013-07-01 $250.00 $200.00 $280.00 $300.00
2 2013-07-02 $200.00 $250.00 $290.00 $250.00
3 2013-07-03 $200.00 $200.00 $250.00 $275.00
4 2013-07-04 $250.00 $300.00 $300.00 $200.00

For this hotel client, the record keeping is as follows. For each
date, the hotel creates a row in each sheet of their workbook:
one to record prices and one to record number of bookings or
reservations. In each row, we have a column labeled
"day.of.stay" and columns of the form "Xn.before", which
represent what was known a given number of days before the
day of stay (published price and number of booked rooms). For
example, the 95 bookings and $280 price recorded for the date
2013-07-01 in the column X2 before mean that for the stay
date of July 1, 2013, they had 95 bookings two days before the
date of stay (or on June 29, 2013) and the published price of the
July 1, 2013, day of stay was quoted as $280 on June 29, 2013.
The bookings would accumulate in a nondecreasing manner as
we move toward the day of stay in the row, except the hotel
also may receive cancellations. This is complicated, but clients
often have detailed record-keeping conventions and procedures.

For our example, what the client actually wants to know is if
there’s an obvious relation between published price and number
of bookings picked up.

Reshaping data

For any dataset, you have keys and values. For our example of

hotel booking and price data, the keys are the date (the day the
customer will stay) and the number of days prior to the date the
booking is made (day.of.stay, X1.before, ...). Right now, the
date is a value column, but the number of days of stay is coded
across many columns. The values are number of bookings and
quoted prices. What we’d like to work with is a table where a
specific set of columns holds keys and other columns hold
values. The reshape2 package supplies a function that
performs exactly this transformation, which we illustrate in the
next listing.

Listing A.13. Using melt to restructure data

We now have our data in a much simpler and easier to
manipulate form. All keys are values in rows; we no longer have
to move from column to column to get different values.

Lining up the data for analysis

The bookings data is, as is typical in the hotel industry, the total
number of bookings recorded for a given first day of stay. If we
want to try to show the relation between price and new
bookings, we need to work with change in bookings per day. To
do any useful work, we have to match up three different data
rows into a single new row:

Item 1: a row from bthin supplying the total number of
bookings by a given date (first day of stay) and a given
number of days before the first day of stay.
Item 2: a row from bthin supplying the total number of
bookings for the same date as item 1 with nDaysBefore
one larger than in item 1. This is so we can compare the
two cumulative bookings and find how many new
bookings were added on a given day.
Item 3: a row from pthin supplying the price from the
same date and number of days before stay as item 1.
This represents what price was available at the time of
booking (the decision to match this item to item 1 or
item 2 depends on whether bookings are meant to
record what is known at the end of the day or beginning
of the day—something you need to confirm with your
project sponsor).

To assemble the data, we need to use a fairly long SQL join to
combine two references to bthin with one reference to pthin.
While the join is complicated, notice that it specifies how we
want rows to be matched up and not how to perform the
matching.

Listing A.14. Assembling many rows using SQL

In R, there are many ways to assemble data other than SQL. But
SQL commands are powerful and can be used both inside R
(through sqldf) and outside R (through RJDBC).

SQL commands can look intimidating. The key is to always
think about them as compositions of smaller pieces. The fact
that R allows actual line breaks in string literals lets us write a

large SQL command in a comparatively legible format in listing
A.14 (you could even add comments using SQL’s comment mark
-- where we’ve added callouts). SQL is an important topic and
we strongly recommend Joe Celko’s SQL for Smarties, Fourth
Edition (Morgan Kaufmann, 2011). Two concepts to become
familiar with are select and join.

select

Every SQL command starts with the word select. Think of
select as a scan or filter. A simple select example is select
date,bookings from bthin where nDaysBefore=0.
Conceptually, select scans through data from our given table
(in our case bthin), and for each row matching the where clause
(nDaysBefore=0) produces a new row with the named columns
(date,bookings). We say conceptually because the select
statement can often find all of the columns matching the where
conditions much faster than a table scan (using precomputed
indices). We already used simple selects when we loaded
samples of data from a PUMS Census database into R.

join

join is SQL’s Swiss army knife. It can be used to compute
everything from simple intersections (finding rows common to
two tables) to cross-products (building every combination of
rows from two tables). Conceptually, for every row in the first
table, each and every row in a second table is considered, and
exactly the set of rows that match the on clause is retained.
Again, we say conceptually because the join implementation
tends to be much faster than actually considering every pair of
rows. In our example, we used joins to match rows with
different keys to each other from the bthin table (called a self
join) and then match to the pthin table. We can write the
composite join as a single SQL statement as we did here, or as
two SQL statements by storing results in an intermediate table.

Many complicated calculations can be written succinctly as a
few joins (because the join concept is so powerful) and also
run quickly (because join implementations tend to be smart).

The purpose of this section is to show how to reshape data. But
now that we’ve used select and join to build a table that
relates change in bookings to known price, we can finally plot
the relation in figure A.5.

Figure A.5. Hotel data in spreadsheet form

Listing A.15. Showing our hotel model results

library('ggplot2')
ggplot(data=joined,aes(x=price,y=pickup)) +
 geom_point() + geom_jitter() + geom_smooth(method='lm')
print(summary(lm(pickup~price,data=joined)))
#
#Call:
#lm(formula = pickup ~ price, data = joined)
#
#Residuals:
Min 1Q Median 3Q Max
#-4.614 -2.812 -1.213 3.387 6.386
#
#Coefficients:
Estimate Std. Error t value Pr(>|t|)
#(Intercept) 11.00765 7.98736 1.378 0.198
#price -0.02798 0.03190 -0.877 0.401
#
#Residual standard error: 4.21 on 10 degrees of freedom
#Multiple R-squared: 0.07144, Adjusted R-
squared: -0.02142
#F-statistic: 0.7693 on 1 and 10 DF, p-value: 0.401

The first thing to notice is the model coefficient p-value on price
is way too large. At 0.4, the estimated relation between price
and change in bookings can’t be trusted. Part of the problem is
we have very little data: the joined data frame only has 12
rows. Also, we’re co-mingling data from different numbers of
days before stay and different dates without introducing any
features to model these effects. And this type of data is likely
censored because hotels stop taking reservations as they fill up,
independent of price. Finally, it’s typical of this sort of problem
for the historic price to actually depend on recent bookings (for
example, managers drop prices when there are no bookings),
which can also obscure an actual causal connection from price to
bookings. For an actual client, the honest report would say that
to find a relation more data is needed. We at least need to know
more about hotel capacity, cancellations, and current pricing
policy (so we can ensure some variation in price and eliminate
confounding effects from our model). These are the sort of
issues you’d need to address in experiment design and data
collection.

A.3.5. How to think in SQL

The trick to thinking in SQL is this: for every table, classify the
columns into a few important themes and work with the natural
relations between these themes. One view of the major column
themes is given in the table A.1.

Table A.1. Major SQL column themes

Column
theme

Description Common uses and treatments

Natural key
columns

In many tables, one or more columns
taken together form a natural key that
uniquely identifies the row. In our hotel
example (section A.3.4), for the
original data, the only natural key was
the date. After the reshaping steps, the
natural keys were the pairs
(date,daysBefore). The purpose of the
reshaping steps was to get data
organized so that it had key columns
that anticipate how we were going to
manipulate the data. Some data (such
as running logs) doesn’t have natural
keys (many rows may correspond to a
given timestamp).

Natural keys are used to sort data,
control joins, and specify
aggregations.

Surrogate
key columns

Surrogate key columns are key
columns (collections of columns that
uniquely identify rows) that don’t have
a natural relation to the problem.
Examples of surrogate keys include
row numbers and hashes. In some
cases (like analyzing time series), the
row number can be a natural key, but
usually it’s a surrogate key.

Surrogate key columns can be used
to simplify joins; they tend not to be
useful for sorting and aggregation.
Surrogate key columns must not be
used as modeling features, as they
don’t represent useful
measurements.

Provenance
columns

Provenance columns are columns that
contain facts about the row, such as
when it was loaded. The
ORIGINSERTTIME,
ORIGFILENAME, and
ORIGFILEROWNUMBER columns
added in section 2.2.1 are examples of
provenance columns.

Provenance columns shouldn’t be
used in analy ses, except for
confirming you’re working on the
right dataset, selecting a dataset (if
different datasets are commingled
in the same table), and comparing
datasets.

Pay load
columns

Pay load columns contain actual data.
In section A.3.4, the pay load columns
are the various occupancy counts and
room prices.

Pay load columns are used for
aggregation, grouping, and
conditions. They can also
sometimes be used to specify joins.

Experimental
design
columns

Experimental design columns include
sample groupings like
ORIGRANDGROUP from section
2.2.1, or data weights like the PWGTP*
and WGTP* columns we mentioned in

Experiment design columns can be
used to control an analy sis (select
subsets of data, used as weights in
modeling operations), but they
should never be used as features in

section 7.1.1. an analy sis.

Derived
columns

Derived columns are columns that are
functions of other columns or other
groups of columns. An example would
be the day of week (Monday through
Sunday), which is a function of the
date. Derived columns can be
functions of keys (which means
they ’re unchanging in many GROUP
BY queries, even though SQL will insist
on specify ing an aggregator such as
MAX()) or functions of pay load
columns.

Derived columns are useful in
analy sis. A full normal form database
doesn’t have such columns. In
normal forms, the idea is to not store
any thing that can be derived, which
eliminates certain types of
inconsistency (such as a row with a
date of February 1, 2014 and day of
week of Wednesday, when the
correct day of week is Saturday).
But during analy ses it’s always a
good idea to store intermediate
calculations in tables and columns: it
simplifies code and makes
debugging much easier.

The point is that analysis is much easier if you have a good
taxonomy of column themes for every supplied data source. You
then design SQL command sequences to transform your data
into a new table where the columns are just right for analysis (as
we demonstrated in section A.3.4). In the end, you should have
tables where every row is an event you’re interested in and
every needed fact is already available in a column. Building
temporary tables and adding columns is much better than having
complicated analysis code. These ideas may seem abstract, but
they guide the analyses in this book.

Appendix B. Important statistical
concepts
Statistics is such a broad topic that we’ve only been able to pull
pieces of it into our data science narrative. But it’s an important
field that has a lot to say about what happens when you
attempt to infer from data. We’ve assumed in this book that you
already know some statistical tools (in particular, summary
statistics like the mean, mode, median, and variance). In this
appendix, we’ll demonstrate a few more important statistical
concepts.

B.1. Distributions

In this section, we’ll outline a few important distributions: the
normal distribution, the lognormal distribution, and the binomial
distribution. As you work further, you’ll also want to learn
many other key distributions (such as Poisson, beta, negative
binomial, and many more), but the ideas we present here should
be enough to get you started.

B.1.1. Normal distribution

The normal or Gaussian distribution is the classic symmetric
bell-shaped curve, as shown in figure B.1. Many measured
quantities such as test scores from a group of students, or the
age or height of a particular population, can often be
approximated by the normal. Repeated measurements will tend
to fall into a normal distribution. For example, if a doctor weighs
a patient multiple times, using a properly calibrated scale, the
measurements (if enough of them are taken) will fall into a
normal distribution around the patient’s true weight. The
variation will be due to measurement error (the variability of the
scale). The normal distribution is defined over all real numbers.

Figure B.1. The normal distribution with mean 0 and standard deviation 1

In addition, the central limit theorem says that when you’re
observing the sum (or mean) of many independent, bounded
variance random variables, the distribution of your observations
will approach the normal as you collect more data. For example,
suppose you want to measure how many people visit your
website every day between 9 a.m. and 10 a.m. The proper
distribution for modeling the number of visitors is the Poisson

distribution; but if you have a high enough volume of traffic, and
you observe long enough, the distribution of observed visitors
will approach the normal distribution, and you can make
acceptable estimates about your traffic by treating the number
of visitors as if it were normally distributed.

This is important; one reason that the normal is so popular is
because it’s relatively easy to calculate with. The normal is
described by two parameters: the mean m and the standard
deviation s (or alternatively, the variance, which is the square of
s). The mean represents the distribution’s center (and also its
peak); the standard deviation represents the distribution’s
“natural unit of length”—you can estimate how rare an
observation is by how many standard deviations it is from the
mean. As we mention in chapter 4, for a normally distributed
variable

About 68% of the observations will fall in the interval
(m-s,m+s).
About 95% of the observations will fall in the interval
(m-2*s,m+2*s).
About 99.7% of the observations will fall in the interval
(m-3*s,m+3*s).

So an observation more than three standard deviations away
from the mean can be considered quite rare, in most
applications.

Many machine learning algorithms and statistical methods (for
example, linear regression) assume that the unmodeled errors are
distributed normally. Linear regression is fairly robust to
violations of this assumption; still, for continuous variables, you
should at least check if the variable distribution is unimodal and
somewhat symmetric. When this isn’t the case, consider some
of the variable transformations that we discuss in chapter 4.

Using the normal distribution in R

In R, the function dnorm(x, mean=m, sd=s) is the normal
distribution function: it will return the probability of observing x
when it’s drawn from a normal distribution with mean m and
standard deviation s. By default, dnorm assumes that mean=0
and sd=1 (as do all the functions related to the normal
distribution that we discuss here). Let’s use dnorm() to draw
figure B.1.

Listing B.1. Plotting the theoretical normal density

library(ggplot2)

x <- seq(from=-5, to=5, length.out=100) # the interval [-5 5]
f <- dnorm(x) # normal with mean 0 and sd 1
ggplot(data.frame(x=x,y=f), aes(x=x,y=y)) + geom_line()

The function rnorm(n, mean=m, sd=s) will generate n points
drawn from a normal distribution with mean m and standard
deviation s.

Listing B.2. Plotting an empirical normal density

library(ggplot2)

draw 1000 points from a normal with mean 0, sd 1
u <- rnorm(1000)

plot the distribution of points,
compared to normal curve as computed by dnorm() (dashed line)
ggplot(data.frame(x=u), aes(x=x)) + geom_density() +
 geom_line(data=data.frame(x=x,y=f), aes(x=x,y=y), linetype=2)

As you can see in figure B.2, the empirical distribution of the
points produced by rnorm(1000) is quite close to the
theoretical normal. Distributions observed from finite datasets
can never exactly match theoretical continuous distributions like
the normal; and, as with all things statistical, there is a well-
defined distribution for how far off you expect to be for a given
sample size.

Figure B.2. The empirical distribution of points drawn from a normal with
mean 0 and standard deviation 1. The dotted line represents the theoretical

normal distribution.

The function pnorm(x, mean=m, sd=s) is what R calls the
normal probability function, otherwise called the normal
cumulative distribution function: it returns the probability of
observing a data point of value less than x from a normal with
mean m and standard deviation s. In other words, it’s the area
under the distribution curve that falls to the left of x (recall that
a distribution has unit area under the curve). This is shown in

the following listing.

Listing B.3. Working with the normal CDF

--- estimate probabilities (areas) under the curve ---

50% of the observations will be less than the mean
pnorm(0)
[1] 0.5

about 2.3% of all observations are more than 2 standard
deviations below the mean
pnorm(-2)
[1] 0.02275013

about 95.4% of all observations are within 2 standard deviations
from the mean
pnorm(2) - pnorm(-2)
[1] 0.9544997

The function qnorm(p, mean=m, sd=s) is the quantile function
for the normal distribution with mean m and standard deviation
s. It’s the inverse of pnorm(), in that qnorm(p, mean=m,

sd=s) returns the value x such that pnorm(x, mean=m, sd=s)
== p.

Figure B.3 illustrates the use of qnorm(): the vertical line
intercepts the x axis at x = qnorm(0.75); the shaded area to the
left of the vertical line represents the area 0.75, or 75% of the
area under the normal curve.

Figure B.3. Illustrating x < qnorm(0.75)

The code to create figure B.3 (along with a few other examples
of using qnorm()) is shown in the following listing.

Listing B.4. Plotting x < qnorm(0.75)

--
- return the quantiles corresponding to specific probabilities -
--

the median (50th percentile) of a normal is also the mean
qnorm(0.5)
[1] 0

calculate the 75th percentile
qnorm(0.75)
[1] 0.6744898
pnorm(0.6744898)
[1] 0.75

--- Illustrate the 75th percentile ---

create a graph of the normal distribution with mean 0, sd 1
x <- seq(from=-5, to=5, length.out=100)
f <- dnorm(x)
nframe <- data.frame(x=x,y=f)

calculate the 75th percentile
line <- qnorm(0.75)
xstr <- sprintf("qnorm(0.75) = %1.3f", line)

the part of the normal distribution to the left
of the 75th percentile
nframe75 <- subset(nframe, nframe$x < line)

Plot it.
The shaded area is 75% of the area under the normal curve
ggplot(nframe, aes(x=x,y=y)) + geom_line() +
 geom_area(data=nframe75, aes(x=x,y=y), fill="gray") +
 geom_vline(aes(xintercept=line), linetype=2) +
 geom_text(x=line, y=0, label=xstr, vjust=1)

B.1.2. Summarizing R’s distribution naming conventions

Now that we’ve shown some concrete examples, we can
summarize how R names the different functions associated with
a given probability distribution. Suppose the probability
distribution is called DIST. Then the following are true:

dDIST(x, ...) is the distribution function (PDF) that
returns the probability of observing the value x.
pDIST(x, ...) is the cumulative distribution function
(CDF) that returns the probability of observing a value
less than x. The flag lower.tail=F will cause
pDIST(x, ...) to return the probability of observing a
value greater than x (the area under the right tail, rather
than the left).
rDIST(n, ...) is the random number generation
function that returns n values drawn from the
distribution DIST.
qDIST(p, ...) is the quantile function that returns the
x corresponding to the pth percentile of DIST. The flag

lower.tail=F will cause qDIST(p, ...) to return the
x that corresponds to the 1 - pth percentile of DIST.

R’s backward naming convention

For some reason, R refers to the cumulative distribution
function (or CDF) as the probability distribution function (hence
the convention pDIST). This drives us crazy, because most
people use the term probability distribution function (or PDF) to
refer to what R calls dDIST. Be aware of this.

B.1.3. Lognormal distribution

The lognormal distribution is the distribution of a random
variable X whose natural log log(X) is normally distributed. The
distribution of highly skewed positive data, like the value of
profitable customers, incomes, sales, or stock prices, can often
be modeled as a lognormal distribution. A lognormal distribution
is defined over all non-negative real numbers; as shown in figure
B.4 (top), it’s asymmetric, with a long tail out toward positive
infinity. The distribution of log(X) (figure B.4, bottom) is a
normal distribution centered at mean(log(X)). For lognormal
populations, the mean is generally much higher than the median,
and the bulk of the contribution toward the mean value is due to
a small population of highest-valued data points.

Figure B.4. Top: The lognormal distribution X such that mean(log(X))=0
and sd(log(X)=1. The dashed line is the theoretical distribution, and the
solid line is the distribution of a random lognormal sample. Bottom: The
solid line is the distribution of log(X).

Don’t use the mean as a “typical” value for a lognormal population

For a population that’s approximately normally distributed, you
can use the mean value of the population as a rough stand-in
value for a typical member of the population. If you use the
mean as a stand-in value for a lognormal population, you’ll
overstate the value of the majority of your data.

Intuitively, if variations in the data are expressed naturally as
percentages or relative differences, rather than as absolute
differences, then the data is a candidate to be modeled
lognormally. For example, a typical sack of potatoes in your
grocery store might weigh about five pounds, plus or minus half
a pound. The length that a specific type of bullet will fly when
fired from a specific type of handgun might be about 2,100
meters, plus or minus 100 meters. The variations in these
observations are naturally represented in absolute units, and the
distributions can be modeled as normals. On the other hand,
differences in monetary quantities are often best expressed as
percentages: a population of workers might all get a 5% increase
in salary (not an increase of $5,000/year across the board); you
might want to project next quarter’s revenue to within 10% (not
to within plus or minus $1,000). Hence, these quantities are
often best modeled as having lognormal distributions.

Using the lognormal distribution in R

Let’s look at the functions for working with the lognormal
distribution in R (see also section B.1.2). We’ll start with
dlnorm() and rlnorm():

dlnorm(x, meanlog=m, sdlog=s) is the distribution
function (PDF) that returns the probability of observing
the value x when it’s drawn from a lognormal
distribution X such that mean(log(X)) = m and
sd(log(X)) = s. By default, meanlog=0 and sdlog=1
for all the functions discussed in this section.
rlnorm(n, meanlog=m, sdlog=s) is the random
number generation function that returns n values drawn
from a lognormal distribution with mean(log(X)) = m
and sd(log(X)) = s.

We can use dlnorm() and rlnorm() to produce figure B.4 at the
beginning of this section. The following listing also demonstrates
some properties of the lognormal distribution.

Listing B.5. Demonstrating some properties of the lognormal distribution

draw 1001 samples from a lognormal with meanlog 0, sdlog 1
u <- rlnorm(1001)

the mean of u is higher than the median
mean(u)
[1] 1.638628
median(u)
[1] 1.001051

the mean of log(u) is approx meanlog=0
mean(log(u))
[1] -0.002942916

the sd of log(u) is approx sdlog=1
sd(log(u))
[1] 0.9820357

generate the lognormal with meanlog=0, sdlog=1
x <- seq(from=0, to=25, length.out=500)
f <- dlnorm(x)

generate a normal with mean=0, sd=1
x2 <- seq(from=-5,to=5, length.out=500)
f2 <- dnorm(x2)

make data frames
lnormframe <- data.frame(x=x,y=f)
normframe <- data.frame(x=x2, y=f2)
dframe <- data.frame(u=u)

plot densityplots with theoretical curves superimposed
p1 <- ggplot(dframe, aes(x=u)) + geom_density() +
 geom_line(data=lnormframe, aes(x=x,y=y), linetype=2)

p2 <- ggplot(dframe, aes(x=log(u))) + geom_density() +
 geom_line(data=normframe, aes(x=x,y=y), linetype=2)

functions to plot multiple plots on one page
library(grid)
nplot <- function(plist) {
 n <- length(plist)
 grid.newpage()
 pushViewport(viewport(layout=grid.layout(n,1)))
 vplayout<-
function(x,y) {viewport(layout.pos.row=x, layout.pos.col=y)}
 for(i in 1:n) {
 print(plist[[i]], vp=vplayout(i,1))
 }
}

this is the plot that leads this section.
nplot(list(p1, p2))

The remaining two functions are the CDF plnorm() and the
quantile function qlnorm():

plnorm(x, meanlog=m, sdlog=s) is the cumulative
distribution function (CDF) that returns the probability
of observing a value less than x from a lognormal
distribution with mean(log(X)) = m and sd(log(X))
= s.
qlnorm(p, meanlog=m, sdlog=s) is the quantile
function that returns the x corresponding to the pth
percentile of a lognormal distribution with
mean(log(X)) = m and sd(log(X)) = s. It’s the
inverse of plnorm().

The following listing demonstrates plnorm() and qlnorm(). It
uses the data frame lnormframe from the previous listing.

Listing B.6. Plotting the lognormal distribution

the 50th percentile (or median) of the lognormal with
meanlog=0 and sdlog=10
qlnorm(0.5)
[1] 1
the probability of seeing a value x less than 1
plnorm(1)
[1] 0.5

the probability of observing a value x less than 10:
plnorm(10)
[1] 0.9893489

-- show the 75th percentile of the lognormal

use lnormframe from previous example: the
theoretical lognormal curve

line <- qlnorm(0.75)
xstr <- sprintf("qlnorm(0.75) = %1.3f", line)

lnormframe75 <- subset(lnormframe, lnormframe$x < line)

Plot it
The shaded area is 75% of the area under the lognormal curve
ggplot(lnormframe, aes(x=x,y=y)) + geom_line() +
 geom_area(data=lnormframe75, aes(x=x,y=y), fill="gray") +
 geom_vline(aes(xintercept=line), linetype=2) +
 geom_text(x=line, y=0, label=xstr, hjust= 0, vjust=1)

As you can see in figure B.5, the majority of the data is
concentrated on the left side of the distribution, with the
remaining quarter of the data spread out over a very long tail.

Figure B.5. The 75th percentile of the lognormal distribution with
meanlog=1, sdlog=0

B.1.4. Binomial distribution

Suppose that you have a coin that has a probability p of landing
on heads when you flip it (so for a fair coin, p = 0.5). In this
case, the binomial distribution models the probability of
observing k heads when you flip that coin N times. It’s used to

model binary classification problems (as we discuss in relation
to logistic regression in chapter 7), where the positive examples
can be considered “heads.”

Figure B.6 shows the shape of the binomial distribution for
coins of different fairnesses, when flipped 50 times. Note that
the binomial distribution is discrete; it’s only defined for (non-
negative) integer values of k.

Figure B.6. The binomial distributions for 50 coin tosses, with coins of
various fairnesses (probability of landing on heads)

Using the binomial distribution in R

Let’s look at the functions for working with the binomial
distribution in R (see also section B.1.2). We’ll start with the
PDF dbinom() and the random number generator rbinom():

dbinom(k, nflips, p) is the distribution function
(PDF) that returns the probability of observing exactly

k heads from nflips of a coin with heads probability p.
rbinom(N, nflips,p) is the random number
generation function that returns N values drawn from the
binomial distribution corresponding to nflips of a coin
with heads probability p.

You can use dbinom() (as in the following listing) to produce
figure B.6.

Listing B.7. Plotting the binomial distribution

library(ggplot2)
#
use dbinom to produce the theoretical curves
#

numflips <- 50

x is the number of heads that we see
x <- 0:numflips

probability of heads for several different coins
p <- c(0.05, 0.15, 0.5, 0.75)
plabels <- paste("p =", p)

calculate the probability of seeing x heads in numflips flips
for all the coins. This probably isn't the most elegant
way to do this, but at least it's easy to read

flips <- NULL
for(i in 1:length(p)) {
 coin <- p[i]
 label <- plabels[i]
 tmp <- data.frame(number.of.heads=x,
 probability = dbinom(x, numflips, coin),
 coin.type = label)
 flips <- rbind(flips, tmp)
}

plot it
this is the plot that leads this section
ggplot(flips, aes(x=number.of.heads, y=probability)) +
 geom_point(aes(color=coin.type, shape=coin.type)) +
 geom_line(aes(color=coin.type))

You can use rbinom() to simulate a coin-flipping-style
experiment. For example, suppose you have a large population
of students that’s 50% female. If students are assigned to
classrooms at random, and you visit 100 classrooms with 20
students each, then how many girls might you expect to see in
each classroom? A plausible outcome is shown in figure B.7,
with the theoretical distribution superimposed.

Figure B.7. The observed distribution of the count of girls in 100 classrooms
of size 20, when the population is 50% female. The theoretical distribution is
shown with the dashed line.

Let’s write the code to produce figure B.7.

Listing B.8. Working with the theoretical binomial distribution

As you can see, even classrooms with as few as 4 or as many as
16 girls aren’t completely unheard of when students from this
population are randomly assigned to classrooms. But if you
observe too many such classrooms—or if you observe classes
with fewer than 4 or more than 16 girls—you’d want to
investigate whether student selection for those classes is biased
in some way.

You can also use rbinom() to simulate flipping a single coin.

Listing B.9. Simulating a binomial distribution

use rbinom to simulate flipping a coin of probability p N times

p75 <- 0.75 # a very unfair coin (mostly heads)
N <- 1000 # flip it several times
flips_v1 <- rbinom(N, 1, p75)

Another way to generat unfair flips is to use runif:
the probability that a uniform random number from [0 1)
is less than p is exactly p. So "less than p" is "heads".
flips_v2 <- as.numeric(runif(N) < p75)

prettyprint_flips <- function(flips) {
 outcome <- ifelse(flips==1, "heads", "tails")
 table(outcome)
}

prettyprint_flips(flips_v1)
outcome
heads tails
756 244
prettyprint_flips(flips_v2)
outcome
heads tails
743 257

The final two functions are the CDF pbinom() and the quantile
function qbinom():

pbinom(k, nflips, p) is the cumulative distribution
function (CDF) that returns the probability of
observing k heads or fewer from nflips of a coin with
heads probability p. pbinom(k, nflips, p,

lower.tail=F) returns the probability of observing
more than k heads from nflips of a coin with heads
probability p. Note that the left tail probability is
calculated over the inclusive interval numheads <= k,
while the right tail probability is calculated over the
exclusive interval numheads > k.
qbinom(q, nflips, p) is the quantile function that
returns the number of heads k that corresponds to the
qth percentile of the binomial distribution
corresponding to nflips of a coin with heads
probability p.

The next listing shows some examples of using pbinom() and

qbinom().

Listing B.10. Working with the binomial distribution

pbinom example

nflips <- 100
nheads <- c(25, 45, 50, 60) # number of heads

what are the probabilities of observing at most that
number of heads on a fair coin?
left.tail <- pbinom(nheads, nflips, 0.5)
sprintf("%2.2f", left.tail)
[1] "0.00" "0.18" "0.54" "0.98"

the probabilities of observing more than that
number of heads on a fair coin?
right.tail <- pbinom(nheads, nflips, 0.5, lower.tail=F)
sprintf("%2.2f", right.tail)

[1] "1.00" "0.82" "0.46" "0.02"

as expected:
left.tail+right.tail
[1] 1 1 1 1

so if you flip a fair coin 100 times,
you are guaranteed to see more than 10 heads,
almost guaranteed to see fewer than 60, and
probably more than 45.

qbinom example

nflips <- 100

what's the 95% "central" interval of heads that you
would expect to observe on 100 flips of a fair coin?

left.edge <- qbinom(0.025, nflips, 0.5)
right.edge <- qbinom(0.025, nflips, 0.5, lower.tail=F)
c(left.edge, right.edge)
[1] 40 60

so with 95% probability you should see between 40 and 60 heads

One thing to keep in mind is that because the binomial
distribution is discrete, pbinom() and qbinom() won’t be
perfect inverses of each other, as is the case with continuous
distributions like the normal.

Listing B.11. Working with the binomial CDF

because this is a discrete probability distribution,
pbinom and qbinom are not exact inverses of each other

this direction works
pbinom(45, nflips, 0.5)
[1] 0.1841008
qbinom(0.1841008, nflips, 0.5)
[1] 45

this direction won't be exact
qbinom(0.75, nflips, 0.5)
[1] 53
pbinom(53, nflips, 0.5)
[1] 0.7579408

B.1.5. More R tools for distributions

R has many more tools for working with distributions beyond
the PDF, CDF, and generation tools we’ve demonstrated. In
particular, for fitting distributions, you may want to try the
fitdistr method from the MASS package.

B.2. Statistical theory

In this book, we necessarily concentrate on (correctly)
processing data, without stopping to explain a lot of the theory.
The steps we use will be more obvious after we review a bit of
statistical theory in this section.

B.2.1. Statistical philosophy

The predictive tools and machine learning methods we
demonstrate in this book get their predictive power not from
uncovering cause and effect (which would be a great thing to do),
but by tracking and trying to eliminate differences in data and by
reducing different sources of error. In this section, we’ll outline a
few of the key concepts that describe what’s going on and why
these techniques work.

Exchangeability

Since basic statistical modeling isn’t enough to reliably attribute
predictions to true causes, we’ve been quietly relying on a
concept called exchangeability to ensure we can build useful
predictive models.

The formal definition of exchangeability is this: if all the data in

the world is x[i,],y[i] (i=1,...m), we call the data
exchangeable if for any permutation j_1,...j_m of 1,...m, the
joint probability of seeing x[i,],y[i] is equal to the joint
probability of seeing x[j_i,],y[j_i]. The idea is that if all
permutations of the data are equally likely, then when we draw
subsets from the data using only indices (not snooping the
x[i,],y[i]), the data in each subset, though different, can be
considered as independent and identically distributed. We rely
on this when we make train/test splits (or even
train/calibrate/test splits), and we hope (and should take steps
to ensure) this is true between our training data and future data
we’ll encounter in production.

Our hope in building a model is that the unknown future data
the model will be applied to is exchangeable with our training
data. If this is the case, then we’d expect good performance on
training data to translate into good model performance in
production. It’s important to defend exchangeability from
problems such as overfit and concept drift.

Once we start examining training data, we (unfortunately) break
its exchangeability with future data. Subsets that contain a lot of
training data are no longer indistinguishable from subsets that
don’t have training data (through the simple process of
memorizing all of our training data). We attempt to measure the
degree of damage by measuring performance on held-out test
data. This is why generalization error is so important. Any data
not looked at during model construction should be as
exchangeable with future data as it ever was, so measuring
performance on held-out data helps anticipate future
performance. This is also why you don’t use test data for
calibration (instead, you should further split your training data
to do this); once you look at your test data, it’s less
exchangeable with what will be seen in production in the future.

Another potential huge loss of exchangeability in prediction is

summarized is what’s called Goodhart’s law: “When a measure
becomes a target, it ceases to be a good measure.” The point is
this: factors that merely correlate with a prediction are good
predictors ... until you go too far in optimizing for them or when
others react to your use of them. For example, email spammers
can try to defeat a spam detection system by using more of the
features and phrases that correlate highly with legitimate email,
and changing phrases that the spam filter believes correlate
highly with spam. This is an essential difference between actual
causes (which do have an effect on outcome when altered) and
mere correlations (which may be co-occurring with an outcome
and are good predictors only through exchangeability of
examples).

Bias variance decomposition

Many of the modeling tasks in this book are what are called
regressions where, for data of the form y[i],x[i,], we try to
find a model or function f() such that
f(x[i,])~E[y[j]|x[j,]~x[i,]] (the expectation E[] being
taken over all examples, where x[j,] is considered very close to
x[i,]). Often this is done by picking f() to minimize
E[(y[i]-f(x[i,]))^2].[1] Notable methods that fit closely to
this formulation include regression, KNN, and neural nets.

1 The fact that minimizing the squared error gets expected values right is an important
fact that gets used in method design again and again.

Obviously, minimizing square error is not always your direct
modeling goal. But when you work in terms of square error, you
have an explicit decomposition of error into meaningful
components called the bias/variance decomposition (see The
Elements of Statistical Learning, Second Edition, by T. Hastie,
R. Tibshirani, and J. Friedman, Springer, 2009). The
bias/variance decomposition says this:

E[(y[i]-

f(x[i,]))^2] = bias^2 + variance + irreducibleError

Model bias is the portion of the error that your chosen modeling
technique will never get right, often because some aspect of the
true process isn’t expressible within the assumptions of the
chosen model. For example, if the relationship between the
outcome and the input variables is curved or nonlinear, you can’t
fully model it with linear regression, which only considers linear
relationships. You can often reduce bias by moving to more
complicated modeling ideas: kernelizing, GAMs, adding
interactions, and so on. Many modeling methods can increase
model complexity (to try to reduce bias) on their own, for
example, decision trees, KNN, support vector machines, and
neural nets. But until you have a lot of data, increasing model
complexity has a good chance of increasing model variance.

Model variance is the portion of the error that your modeling
technique gets wrong due to incidental relations in the data. The
idea is this: a retraining of the model on new data might make
different errors (this is how variance differs from bias). An
example would be running KNN with k=1. When you do this,
each test example is scored by matching to a single nearest
training example. If that example happened to be positive, your
classification will be positive. This is one reason we tend to run
KNN with a larger k: it gives us the chance to get more reliable
estimates of the nature of neighborhood (by including more
examples) at the expense of making neighborhoods a bit less
local or specific. More data and averaging ideas (like bagging)
greatly reduce model variance.

Irreducible error is the truly unmodelable portion of the problem
(given the current variables). If we have i,j such that
x[i,]=x[j,], then (y[i]-y[j])^2 contributes to the
irreducible error. What we’ve been calling a Bayes rate or error
rate of a saturated model is an ideal model with no bias or
variance term: its only source of error is the irreducible error.

Again, we emphasize that irreducible error is measured with
respect to a given set of variables; add more variables, and you
have a new situation that may have its own lower irreducible
error.

The point is that you can always think of modeling error as
coming from three sources: bias, variance, and irreducible error.
When you’re trying to increase model performance, you can
choose what to try based on which of these you are trying to
reduce.

Averaging is a powerful tool

Under fairly mild assumptions, averaging reduces variance. For
example, for data with identically distributed independent
values, the variance of averages of groups of size n has a
variance of 1/n of the variance of individual values. This is one
of the reasons why you can build models that accurately
forecast population or group rates even when predicting
individual events is difficult. So although it may be easy to
forecast the number of murders per year in San Francisco, you
can’t predict who will be killed. In addition to shrinking
variances, averaging also reshapes distributions to look more and
more like the normal distribution (this is the central limit
theorem and related to the law of large numbers).

Statistical ef f iciency

The efficiency of an unbiased statistical procedure is defined as
how much variance is in the procedure for a given dataset size.
More efficient procedures require less data to get below a given
amount of variance. This differs from computational efficiency,
which is about how much work is needed to produce an
estimate.

When you have a lot of data, statistical efficiency becomes less
critical (which is why we haven’t emphasized it in this book).
But when it’s expensive to produce more data (such as in drug
trials), statistical efficiency is your primary concern. In this
book, we take the approach that we usually have a lot of data,
so we can prefer general methods that are somewhat statistically
inefficient (such as using a test holdout set, using cross-
validation for calibration, and so on) to more specialized
statistically efficient methods (such as specific ready-made
parametric tests like the Wald test and others).

Remember: it’s a luxury, not a right, to ignore statistical
efficiency. If your project has such a need, you’ll want to
consult with expert statisticians to get the advantages of best
practices.

B.2.2. A/B tests

Hard statistical problems usually arise from poor experimental
design. This section describes a simple, good statistical design
philosophy called A/B testing that has very simple theory. The
ideal experiment is one where you have two groups—control
(A) and treatment (B)—and the following holds:

Each group is big enough that you get a reliable
measurement (this drives significance).
Each group is (up to a single factor) distributed exactly
like populations you expect in the future (this drives
relevance). In particular, both samples are run in parallel
at the same time.
The two groups differ only with respect to the single
factor you’re trying to test.

A common way to set up such an ideal test situation is called an
A/B test. In an A/B test, a new idea, treatment, or improvement

is proposed and then tested for effect. A common example is a
proposed change to a retail website that it is hoped will improve
the rate of conversion from browsers to purchasers. Usually the
treatment group is called B and an untreated or control group is
called A. As a reference, we recommend “Practical Guide to
Controlled Experiments on the Web” (R. Kohavi, R. Henne, and
D. Sommerfield, KDD, 2007).

Setting up A/B tests

Some care must be taken in running an A/B test. It’s important
that the A and B groups be run at the same time. This helps
defend the test from any potential confounding effects that
might be driving their own changes in conversion rate (hourly
effects, source-of-traffic effects, day-of-week effects, and so
on). Also, you need to know that differences you’re measuring
are in fact due to the change you’re proposing and not due to
differences in the control and test infrastructures. To control for
infrastructure, you should run a few A/A tests (tests where you
run the same experiment in both A and B).

Randomization is the key tool in designing A/B tests. But the
split into A and B needs to be made in a sensible manner. For
example, for user testing, you don’t want to split raw clicks
from the same user session into A/B because then A/B would
both have clicks from users that may have seen either treatment
site. Instead, you’d maintain per-user records and assign users
permanently to either the A or the B group when they arrive.
One trick to avoid a lot of record-keeping between different
servers is to compute a hash of the user information and assign a
user to A or B depending on whether the hash comes out even or
odd (thus all servers make the same decision without having to
communicate).

Evaluating A/B tests

The key measurements in an A/B test are the size of effect
measured and the significance of the measurement. The natural
alternative (or null hypothesis) to B being a good treatment is
that B makes no difference, or B even makes things worse.
Unfortunately, a typical failed A/B test often doesn’t look like
certain defeat. It usually looks like the positive effect you’re
looking for is there and you just need a slightly larger follow-up
sample size to achieve significance. Because of issues like this,
it’s critical to reason through acceptance/rejection conditions
before running tests.

Let’s work an example A/B test. Suppose we’ve run an A/B test
about conversion rate and collected the following data.

Listing B.12. Building simulated A/B test data

Once we have the data, we summarize it into the essential
counts using a data structure called a contingency table.[2]

2 The confusion matrices we used in section 5.2.1 are also examples of contingency
tables.

Listing B.13. Summarizing the A/B test into a contingency table

tab <- table(d)
print(tab)
 converted
group 0 1
 A 94979 5021
 B 9398 602

The contingency table is what statisticians call a sufficient
statistic: it contains all we need to know about the experiment.
We can print the observed conversion rates of the A and B
groups.

Listing B.14. Calculating the observed A and B rates

aConversionRate <- tab['A','1']/sum(tab['A',])
print(aConversionRate)
[1] 0.05021
bConversionRate <- tab['B','1']/sum(tab['B',])
print(bConversionRate)
[1] 0.0602
commonRate <- sum(tab[,'1'])/sum(tab)
print(commonRate)
[1] 0.05111818

We see that the A group was measured at near 5% and the B
group was measured near 6%. What we want to know is this:
can we trust this difference? Could such a difference be likely
for this sample size due to mere chance and measurement noise?
We need to calculate a significance to see if we ran a large enough
experiment (obviously, we’d want to design an experiment that
was large enough, what we call test power, which we’ll discuss
in section B.2.3). What follows are a few good tests that are
quick to run.

Fisher’s test for independence

The first test we can run is Fisher’s contingency table test. In
the Fisher test, the null hypothesis that we’re hoping to reject is
that conversion is independent of group, or that the A and B
groups are exactly identical. The Fisher test gives a probability
of seeing an independent dataset (A=B) show a departure from
independence as large as what we observed. We run the test as
shown in the next listing.

Listing B.15. Calculating the signif icance of the observed dif ference in rates

fisher.test(tab)

 Fisher's Exact Test for Count Data

data: tab
p-value = 2.469e-05
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 1.108716 1.322464
sample estimates:
odds ratio
 1.211706

This is a great result. The p-value (which in this case is the
probability of observing a difference this large if we in fact had
A=B) is 2.469e-05, which is very small. This is considered a
significant result. The other thing to look for is the odds ratio:
the practical importance of the claimed effect (sometimes also
called clinical significance, which is not a statistical significance).
An odds ratio of 1.2 says that we’re measuring a 20% relative
improvement in conversion rate between the A and B groups.
Whether you consider this large or small (typically, 20% is
considered large) is an important business question.

Frequentist signif icance test

Another way to estimate significance is to again temporarily
assume that A and B come from an identical distribution with a
common conversion rate, and see how likely it would be that the
B group scores as high as it did by mere chance. If we consider a
binomial distribution centered at the common conversion rate,
we’d like to see that there’s not a lot of probability mass for
conversion rates at or above B’s level. This would mean the
observed difference is unlikely if A=B. We’ll work through the
calculation in the following listing.

Listing B.16. Computing frequentist signif icance

This is again a great result. The calculated probability is small,
meaning such a difference is hard to achieve by chance if A=B.

Bayesian posterior estimate

We can also find a Bayesian posterior estimate of what the B
conversion rate is. To do this, we need to supply priors (in this
case, centered around the common rate) and plot the posterior
distribution for the B conversion rate. In a Bayesian analysis,
the priors are supposed to be our guess at the distribution of the
B conversion rate before looking at any data, so we pick
something uninformative like the A conversion rate or some
diffuse distribution. The posterior estimate is our estimate of
the complete distribution of the B conversion rate after we’ve
looked at the data. In a Bayesian analysis, uncertainty is
measured as distributions of what we’re trying to predict (as
opposed to the more common frequentist analysis where

uncertainty is modeled as noise or variations in alternate
samples and measurements). For all this complexity, there’s
code that makes either analysis a one-line operation and it’s clear
what we’re looking for in a good result. In a good result, we’d
hope to see a posterior distribution centered around a high B
rate that has little mass below the A rate.

The most common Bayesian analysis for binomial/Bernoulli
experiments is to encode our priors and posteriors as a beta
distribution and measure how much mass is in the left tail of the
distribution, as shown in the next listing.

Listing B.17. Bayesian estimate of the posterior tail mass

And again we have an excellent result. The number 4.731817e-
06 is called the posterior estimate of the probability of seeing a
conversion rate no higher than the A rate given the observed B
data. This number being small means we estimate the unknown
true B rate to likely be larger than the A rate. We can plot the
entire posterior distribution (shown in figure B.8) as shown in
the following listing.

Figure B.8. Posterior distribution of the B conversion rate. The dashed line is
the A conversion rate.

Listing B.18. Plotting the posterior distribution of the B group

library('ggplot2')
plt <- data.frame(x=seq(from=0.04,to=0.07,length.out=301))

plt$density <- dbeta(plt$x,
 shape1=commonRate+tab['B','1'],
 shape2=(1-commonRate)+tab['B','0'])
ggplot(dat=plt) +
 geom_line(aes(x=x,y=density)) +
 geom_vline(aes(xintercept=bConversionRate)) +
 geom_vline(aes(xintercept=aConversionRate),linetype=2)

B.2.3. Power of tests

To have significant A/B test results, you must first design and
run good A/B tests. For our experiment design example,
suppose you’re running a travel site that has 6,000 unique
visitors per day and a 4% conversion rate from page views to
purchase enquiries (your measurable goal).[3] You’d like to test a
new design for the site to see if it increases your conversion rate.
This is exactly the kind of problem A/B tests are made for! But
we have one more question: how many users do we have to
route to the new design to get a reliable measurement? How long
will it take us to collect enough data?

3 We’re taking the 4% rate from http://mng.bz/7pT3.

When trying to determine sample size or experiment duration,
the important concept is statistical test power. Statistical test
power is the probability of rejecting the null hypothesis when
the null hypothesis is false.[4] Think of statistical test power as
1 minus a p-value. The idea is this: you can’t pick out useful
treatments if you can’t even identify which treatments are
useless. So you want to design your tests to have test power
near 1, which means p-values near 0.

4 See B. S. Everitt, The Cambridge Dictionary of Statistics, Second Edition, Cambridge
University Press, 2010.

http://mng.bz/7pT3

To design a test, you must specify the parameters in table B.1.

Table B.1. Test design parameters

Parameter Meaning Value for our example

confidence
(or power)

This is how likely you want it
to be that the test result is
correct. We’ll write
confidence = 1 - errorProb.

0.95 (or 95% confident), or errorProb=0.05.

targetRate

This is the conversion rate
you hope the B treatment
achieves: the further away
from the A rate, the better.

We hope the B treatment is at least 0.045 or a
4.5% conversion rate.

difference
This is how big an error in
conversion rate estimate we
can tolerate.

We’ll try to estimate the conversion rate to
within plus/minus 0.4%, or 0.004, which is
greater than the distance from our targetRate
and our historical A conversion rate.

So the B part of our experimental design is to find out how
many customers we’d have to route to the B treatment to have a
very good chance of seeing a B conversion rate in the range of
4.1–4.9% if the true B conversion rate were in fact 4.5%. This
would be a useful experiment to run if we were trying to
establish that the B conversion rate is in fact larger than the
historic A conversion rate of 4%. In a complete experiment,
we’d also work out how much traffic to send to the A group to
get a reliable confirmation that the overall rate hasn’t drifted
(that the new B effect is due to being in group B, not just due to
things changing over time).

The formula in listing B.19 gives a rule of thumb yielding an
estimate of needed experiment sizes. Such a rule of thumb is
important to know because it’s simple enough that you can see
how changes in requirements (rate we are assuming, difference in
rates we are trying to detect, and confidence we require in the
experiment) affect test size.

Listing B.19. Sample size estimate

estimate <- function(targetRate,difference,errorProb) {
 ceiling(-log(errorProb)*targetRate/(difference^2))

}

est <- estimate(0.045,0.004,0.05)
print(est)
[1] 8426

We need about 8,426 visitors to have a 95% chance of observing
a B conversion rate of at least 0.041 if the true unknown B
conversion rate is at least 0.045. We’d also want to route a larger
number of visitors to the A treatment to get a tight bound on the
control conversion rate over the same period. The estimate is
derived from what’s called a distribution tail bound and is
specialized for small probabilities (which is usually the case
with conversion rates; see http://mng.bz/Mj62).

More important than how the estimate is derived is what’s said
by its form. Reducing the probability of error (or increasing
experimental power) is cheap, as error probability enters the
formula through a logarithm. Measuring small differences in
performance is expensive; the reciprocal of difference enters the
formula as a square. So it’s easy to design experiments that
measure large performance differences with high confidence, but
hard to design experiments that measure small performance
differences with even moderate confidence. You should
definitely not run A/B tests where the proposed improvements
are very small and thus hard to measure (and also of low value).

R can easily calculate exact test power and propose test sizes
without having to memorize any canned tables or test guides.
All you have to do is model a precise question in terms of R’s
distribution functions, as in the next listing.

Listing B.20. Exact binomial sample size calculation

http://mng.bz/Mj62

So it’s enough to route 7,623 visitors to the B treatment to
expect a successful measurement. In running the experiment, it’s
important to use the precise population size estimate given by
R’s pbinom() distribution function. But for thinking and
planning, it helps to have a simple expression in mind (such as
the formula found in listing B.19).

Venue shopping reduces test power

We’ve discussed test power and significance under the
assumption you’re running one large test. In practice, you may
run multiple tests trying many treatments to see if any
treatment delivers an improvement. This reduces your test
power. If you run 20 treatments, each with a p-value goal of
0.05, you would expect one test to appear to show significant
improvement, even if all 20 treatments are useless. Testing
multiple treatments or even reinspecting the same treatment
many times is a form of “venue shopping” (you keep asking at
different venues until you get a ruling in your favor). Calculating
the loss of test power is formally called “applying the
Bonferroni correction” and is as simple as multiplying your
significance estimates by your number of tests (remember, large
values are bad for significances or p-values). To compensate for
this loss of test power, you can run each of the underlying tests

at a tighter p cutoff: p divided by the number of tests you intend
to run.

B.2.4. Specialized statistical tests

Throughout this book, we concentrate on building predictive
models and evaluating significance, either through the modeling
tool’s built-in diagnostics or through empirical resampling (such
as bootstrap tests or permutation tests). In statistics, there’s an
efficient correct test for the significance of just about anything
you commonly calculate. Choosing the right standard test gives
you a good implementation of the test and access to literature
that explains the context and implications of the test. Let’s work
on calculating a simple correlation and finding the matching
correct test.

We’ll work with a simple synthetic example that should remind
you a bit of our PUMS Census work in chapter 7. Suppose
we’ve measured both earned income (money earned in the form
of salary) and capital gains (money received from investments)
for 100 individuals. Further suppose that there’s no relation
between the two for our individuals (in the real world, there’s a
correlation, but we need to make sure our tools don’t report one
even when there’s none). We’ll set up a simple dataset
representing this situation with some lognormally distributed
data.

Listing B.21. Building a synthetic uncorrelated income example

We claim the observed correlation of -0.01 is statistically
indistinguishable from 0 (or no effect). This is something we
should quantify. A little research tells us the common correlation
is called the Pearson coefficient, and the significance test for a
Pearson coefficient for normally distributed data is a Student t-
test (with the number of degrees of freedom equal to the number
of items minus 2). We know our data is not normally distributed
(it is, in fact, lognormally distributed), so we’d research further
and find the preferred solution is to compare the data by rank
(instead of by value) and use a test like Spearman’s rho or
Kendall’s tau. We’ll use Spearman’s rho, as it can track both
positive and negative correlations (whereas Kendall’s tau tracks
degree of agreement).

A fair question is, how do we know which is the exact right test
to use? The answer is, by studying statistics. Be aware that
there are a lot of tests, giving rise to books like 100 Statistical
Tests: in R by N. D. Lewis (Heather Hills Press, 2013). We also
suggest that if you know the name of a test, consult Everitt’s
The Cambridge Dictionary of Statistics.

Another way to find the right test is using R’s help system.
help(cor) tells us that cor() implements three different
calculations (Pearson, Spearman, and Kendall) and that there’s a
matching function called cor.test() that performs the
appropriate significance test. Since we weren’t too far off the

beaten path, we only need to read up on these three tests and
settle on the one we’re interested in (in this case, Spearman). So
let’s redo our correlation with the correct test and check the
significance.

Listing B.22. Calculating the (non)signif icance of the observed correlation

with(d,cor(EarnedIncome,CapitalGains,method='spearman'))
[1] 0.03083108
with(d,cor.test(EarnedIncome,CapitalGains,method='spearman'))
#
Spearman's rank correlation rho
#
#data: EarnedIncome and CapitalGains
#S = 161512, p-value = 0.7604
#alternative hypothesis: true rho is not equal to 0
#sample estimates:
rho
#0.03083108

We see the Spearman correlation is 0.03 with a p-value of
0.7604, which means truly uncorrelated data would show a
coefficient this large about 76% of the time. So there’s no
significant effect (which is exactly how we designed our
synthetic example).

B.3. Examples of the statistical view of data

Compared to statistics, machine learning and data science have
an optimistic view of working with data. In data science, you
quickly pounce on noncausal relations in the hope that they’ll
hold up and help with future prediction. Much of statistics is
about how data can lie to you and how such relations can
mislead you. We only have space for a couple of examples, so
we’ll concentrate on two of the most common issues: sampling
bias and missing variable bias.

B.3.1. Sampling bias

Sampling bias is any process that systematically alters the
distribution of observed data.[5] The data scientist must be
aware of the possibility of sampling bias and be prepared to

detect it and fix it. The most effective fix is to fix your data
collection methodology.

5 We would have liked to use the common term “censored” for this issue, but in
statistics the phrase censored observations is reserved for variables that have only
been recorded up to a limit or bound. So it would be potentially confusing to try to use
the term to describe missing observations.

For our sampling bias example, we’ll continue with the income
example we started in section B.2.4. Suppose through some
happenstance we were studying only a high-earning subset of
our original population (perhaps we polled them at some
exclusive event). The following listing shows how, when we
restrict to a high-earning set, it appears that earned income and
capital gains are strongly anticorrelated. We get a correlation of
-0.86 (so think of the anticorrelation as explaining about
(-0.86)^2 = 0.74 = 74% of the variance; see
http://mng.bz/ndYf) and a p-value very near 0 (so it’s unlikely
the unknown true correlation of more data produced in this
manner is in fact 0). The following listing demonstrates the
calculation.

Listing B.23. Misleading signif icance result from biased observations

veryHighIncome <- subset(d, EarnedIncome+CapitalGains>=500000)
print(with(veryHighIncome,cor.test(EarnedIncome,CapitalGains,
 method='spearman')))
#
Spearman's rank correlation rho
#
#data: EarnedIncome and CapitalGains
#S = 1046, p-value < 2.2e-16
#alternative hypothesis: true rho is not equal to 0
#sample estimates:
rho
#-0.8678571

Some plots help show what’s going on. Figure B.9 shows the
original dataset with the best linear relation line run through.
Note that the line is nearly flat (indicating change in x doesn’t
predict change in y).

Figure B.9. Earned income versus capital gains

http://mng.bz/ndYf

Figure B.10 shows the best trend line run through the high
income dataset. It also shows how cutting out the points below
the line x+y=500000 leaves a smattering of rare high-value
events arranged in a direction that crudely approximates the
slope of our cut line (-0.8678571 being a crude approximation
for -1). It’s also interesting to note that the bits we suppressed
aren’t correlated among themselves, so the effect wasn’t a
matter of suppressing a correlated group out of an uncorrelated
cloud to get a negative correlation.

Figure B.10. Biased earned income versus capital gains

The code to produce figures B.9 and B.10 and calculate the
correlation between suppressed points is shown in the following
listing.

Listing B.24. Plotting biased view of income and capital gains

B.3.2. Omitted variable bias

Many data science clients expect data science to be a quick
process, where every convenient variable is thrown in at once

and a best possible result is quickly obtained. Statisticians are
rightfully wary of such an approach due to various negative
effects such as omitted variable bias, collinear variables,
confounding variables, and nuisance variables. In this section,
we’ll discuss one of the more general issues: omitted variable
bias.

What is omitted variable bias?

In its simplest form, omitted variable bias occurs when a
variable that isn’t included in the model is both correlated with
what we’re trying to predict and correlated with a variable that’s
included in our model. When this effect is strong, it causes
problems, as the model-fitting procedure attempts to use the
variables in the model to both directly predict the desired
outcome and to stand in for the effects of the missing variable.
This can introduce biases, create models that don’t quite make
sense, and result in poor generalization performance.

The effect of omitted variable bias is easiest to see in a
regression example, but it can affect any type of model.

An example of omitted variable bias

We’ve prepared a synthetic dataset called synth.RData

(download from
https://github.com/WinVector/zmPDSwR/tree/master/bioavailability
that has an omitted variable problem typical for a data science
project. To start, please download synth.RData and load it into
R, as the next listing shows.

Listing B.25. Summarizing our synthetic biological data

https://github.com/WinVector/zmPDSwR/tree/master/bioavailability

This loads synthetic data that’s supposed to represent a
simplified view of the kind of data that might be collected over
the history of a pharmaceutical ADME[6] or bioavailability
project. RStudio’s View() spreadsheet is shown in figure B.11.

6 ADME stands for absorption, distribution, metabolism, excretion; it helps determine
which molecules make it into the human body through ingestion and thus could even
be viable candidates for orally delivered drugs.

Figure B.11. View of rows from the bioavailability dataset

The columns of this dataset are described in table B.2.

Table B.2. Bioavailability columns

Column Description

week

In this project, we suppose that a research group submits a new drug
candidate molecule for assay each week. To keep things simple, we use
the week number (in terms of weeks since the start of the project) as the
identifier for the molecule and the data row. This is an optimization
project, which means each proposed molecule is made using lessons
learned from all of the previous molecules. This is typical of many
projects, but it means the data rows aren’t mutually exchangeable (an
important assumption that we often use to justify statistical and machine
learning techniques).

Caco2A2BPapp

This is the first assay run (and the “cheap” one). The Caco2 test measures
how fast the candidate molecule passes through a membrane of cells
derived from a specific large intestine carcinoma (cancers are often used
for tests, as noncancerous human cells usually can’t be cultured
indefinitely). The Caco2 test is a stand-in or analogy test. The test is
thought to simulate one layer of the small intestine that it’s
morphologically similar to (though it lacks a number of forms and
mechanisms found in the actual small intestine). Think of Caco2 as a
cheap test to evaluate a factor that correlates with bioavailability (the
actual goal of the project).

FractionHuman-
Absorption

This is the second assay run and is what fraction of the drug candidate is
absorbed by human test subjects. Obviously, these tests would be
expensive to run and subject to a lot of safety protocols. For this example,
optimizing absorption is the actual end goal of the project.

We’ve constructed this synthetic data to represent a project
that’s trying to optimize human absorption by working through
small variations of a candidate drug molecule. At the start of the
project, they have a molecule that’s highly optimized for the
stand-in criteria Caco2 (which does correlate with human
absorption), and through the history of the project, actual
human absorption is greatly increased by altering factors that
we’re not tracking in this simplistic model. During drug
optimization, it’s common to have formerly dominant stand-in
criteria revert to ostensibly less desirable values as other inputs
start to dominate the outcome. So for our example project, the
human absorption rate is rising (as the scientists successfully
optimize for it) and the Caco2 rate is falling (as it started high
and we’re no longer optimizing for it, even though it is a useful
feature).

One of the advantages of using synthetic data for these problem
examples is that we can design the data to have a given structure,
and then we know the model is correct if it picks this up and
incorrect if it misses it. In particular, this dataset was designed
such that Caco2 is always a positive contribution to fraction of
absorption throughout the entire dataset. This data was
generated using a random non-increasing sequence of plausible
Caco2 measurements and then generating fictional absorption
numbers, as shown next (the data frame d is the published graph
we base our synthetic example on). We produce our synthetic
data that’s known to improve over time in the next listing.

Listing B.26. Building data that improves over time

The design of this data is this: Caco2 always has a positive
effect (identical to the source data we started with), but this gets
hidden by the week factor (and Caco2 is negatively correlated
with week, because week is increasing and Caco2 is sorted in
decreasing order). Time is not a variable we at first wish to
model (it isn’t something we usefully control), but analyses that
omit time suffer from omitted variable bias. For the complete
details, consult our GitHub example documentation
(https://github.com/WinVector/zmPDSwR/tree/master/bioavailability

A spoiled analysis

In some situations, the true relationship between Caco2 and
FractionHuman-Absorption is hidden because the variable
week is positively correlated with Fraction-HumanAbsorption
(as the absorption is being improved over time) and negatively
correlated with Caco2 (as Caco2 is falling over time). week is a
stand-in variable for all the other molecular factors driving
human absorption that we’re not recording or modeling. Listing
B.27 shows what happens when we try to model the relation
between Caco2 and FractionHumanAbsorption without using
the week variable or any other factors.

https://github.com/WinVector/zmPDSwR/tree/master/bioavailability

Listing B.27. A bad model (due to omitted variable bias)

print(summary(glm(data=s,
 FractionHumanAbsorption~log(Caco2A2BPapp),
 family=binomial(link='logit'))))
Warning: non-integer #successes in a binomial glm!
##
Call:
glm(formula = FractionHumanAbsorption ~ log(Caco2A2BPapp),
family = binomial(link = "logit"),
data = s)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-0.609 -0.246 -0.118 0.202 0.557
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -10.003 2.752 -3.64 0.00028 ***
log(Caco2A2BPapp) -0.969 0.257 -3.77 0.00016 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 43.7821 on 99 degrees of freedom
Residual deviance: 9.4621 on 98 degrees of freedom

AIC: 64.7
##
Number of Fisher Scoring iterations: 6

For details on how to read the glm() summary, please see
section 7.2. Note that the sign of the Caco2 coefficient is
negative, not what’s plausible or what we expected going in.
This is because the Caco2 coefficient isn’t just recording the
relation of Caco2 to FractionHumanAbsorption, but also
having to record any relations that come through omitted
correlated variables.

Working around omitted variable bias

There are a number of ways to deal with omitted variable bias,
the best ways being better experimental design and more
variables. Other methods include use of fixed-effects models and
hierarchical models. We’ll demonstrate one of the simplest
methods: adding in possibly important omitted variables. In the
following listing, we redo the analysis with week included.

Listing B.28. A better model

print(summary(glm(data=s,
 FractionHumanAbsorption~week+log(Caco2A2BPapp),
 family=binomial(link='logit'))))
Warning: non-integer #successes in a binomial glm!
##
Call:
glm(formula = FractionHumanAbsorption ~ week + log(Caco2A2BPapp),
family = binomial(link = "logit"), data = s)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-0.3474 -0.0568 -0.0010 0.0709 0.3038
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.1413 4.6837 0.67 0.5024
week 0.1033 0.0386 2.68 0.0074 **
log(Caco2A2BPapp) 0.5689 0.5419 1.05 0.2938

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 43.7821 on 99 degrees of freedom
Residual deviance: 1.2595 on 97 degrees of freedom
AIC: 47.82
##
Number of Fisher Scoring iterations: 6

We recovered decent estimates of both the Caco2 and week
coefficients, but we didn’t achieve statistical significance on the
effect of Caco2. Note that fixing omitted variable bias requires
(even in our synthetic example) some domain knowledge to
propose important omitted variables and the ability to measure
the additional variables (and try to remove their impact through
the use of an offset; see help('offset')).

At this point, you should have a more detailed intentional view
of variables. There are, at the least, variables you can control
(explanatory variables), important variables you can’t control
(nuisance variables), and important variables you don’t know
(omitted variables). Your knowledge of all of these variable
types should affect your experimental design and your analysis.

Appendix C. More tools and ideas
worth exploring
In data science, you’re betting on the data and the process, not
betting on any one magic technique. We advise designing your
projects to be the pursuit of quantifiable goals that have already
been linked to important business needs. To concretely
demonstrate this work style, we emphasize building predictive
models using methods that are easily accessible from R. This is a
good place to start, but shouldn’t be the end.

There’s always more to do in a data science project. At the least,
you can

Recruit new partners
Research more profitable business goals
Design new experiments
Specify new variables
Collect more data
Explore new visualizations
Design new presentations
Test old assumptions
Implement new methods
Try new tools

The point being this: there’s always more to try. Minimize
confusion by keeping a running journal of your actual goals and
of things you haven’t yet had time to try. And don’t let tools
and techniques distract you away from your goals and data.
Always work with “your hands in the data.” That being said,
we close with some useful topics for further research (please see
the bibliography for publication details).

C.1. More tools

The type of tool you need depends on your problem. If you’re
being overwhelmed by data volume, you need to look into big
data tools. If you’re having to produce a lot of custom
processing, you want to look into additional programming
languages. And if you have too little data, you want to study
more sophisticated statistical procedures (that offer more
statistically efficient inference than the simple cross-validation
ideas we emphasize in this book).

C.1.1. R itself

We’ve only been able to scratch the surface of R. Table C.1
shows some important further topics for study.

Table C.1. R topics for follow-up

R topic Points of interest

R
programming
and debugging

Our current favorite R book is Kabacoff ’s R in Action, which presents a
good mix of R and statistics. A good source for R programming and
debugging is Matloff ’s The Art of R Programming, which includes
parallelism, cross-language calling, object-oriented programming, step
debugging, and performance profiling. Other avenues to explore are
various IDEs such as RStudio and Revolution R Enterprise.

R packages
and
documentation

R packages are easy for clients and partners to install, so learning how to
produce them is a valuable skill. Package documentation files also let y ou
extend R’s help() sy stem to include details about your work. A starter lesson
can be found at http://cran.r-project.org/doc/manuals/R-exts.html.

C.1.2. Other languages

R is designed to support statistical data analysis through its
large environment of packages (over 5,000 packages are now
available from CRAN). You always hope your task is close to a
standard statistical procedure and you only need to write a small
amount of adapting code. But if you’re going to produce a lot of
custom code, you may want to consider using something other
than R. Many other programing languages and environments

http://cran.r-project.org/doc/manuals/R-exts.html

exist and have different relative advantages and disadvantages.
The following table surveys some exciting systems.

Table C.2. Other programming languages

Language Description

Py thon
Py thon is a good scripting language with useful tools and libraries. Py thon has
been making strong strides in the data science world with IPy thon interactive
computing notebooks, pandas data frames, and RPy integration.

Julia

Julia is an expressive high-level programming language that compiles to very
fast code. The idea is to write concise code (as in R) but then achieve
performance comparable to raw C. Claims of 20x speedup aren’t uncommon.
Julia also supports distributed parallelism and IJulia (an IPy thon-inspired
notebook sy stem).

J

J is a powerful data processing language inspired by APL and what’s called
variable-free or function-level programming. In J, most of the work is done by
operators used in a compact mathematical composition notation. J supports
powerful vector operations (operations that work over a lot of data in parallel).
APL-derived languages (in particular, K) have historically been popular in
financial and time-series applications.

With so many exciting possibilities, why did we ever advocate
using R? For most midsize data science applications, R is the
best tool for the task. Each of these systems does something
better than R does, but R can be thought of as a best
compromise.

C.1.3. Big data tools

The practical definition of big data is data at a scale where
storing and processing the data becomes an engineering problem
unto itself. When you hit that scale, you’ll need to move away
from pure R (which performs all work in memory) to packages
that store results out of memory (such as ff storage, RHadoop,
and others). But at some point you may have to move your data
preparation out of R. Big data tools tend to be more painful to
use than moderate-size tools (data frames and databases), so
you don’t want to commit to them until you have an actual
need. Table C.3 touches on some important big data tools.

Table C.3. Common big data tools

Tool Description

Hadoop

The main open source implementation of Google’s MapReduce. MapReduce is the
most common way to manipulate very large data. MapReduce organizes big data
tasks into jobs consisting of an initial scan and transformation (the map step),
followed by sorting and distribution data to aggregators (the reduce step).
MapReduce is particularly good for preprocessing, report generation, and tasks like
indexing (its original applications). Other machine learning and data science tasks
can require managing a large number of map-reduce steps.

Mahout Mahout is a collection of large-scale machine-learning libraries, many of which
are hosted on top of Hadoop.

Drill,
Impala

Drill and Impala (and Google’s Dremel) are large-scale data tools specializing in
nested records (things like documents with content and attributes, or use records
with annotations). They attempt to bring power and scale to so-called schemaless
data stores and can interact with stores like Cassandra, HBase, and MongoDB.

Pig,
Hive,
Presto

Various tools to bring SQL or SQL-like data manipulation to the big data
environment.

Storm

Storm (see http://storm-project.net) can be thought of as a complement for Map-
Reduce. MapReduce does every thing in batch jobs (very high latency, but good
eventual throughput) and is suitable for tasks like model construction. Storm
organizes every thing into what it calls topologies, which represent a proposed flow
of individual data records through many stages of processing. So Storm is an
interesting candidate for deploy ing models into production.

HDF5

Hierarchical Data Format 5 is a method of storing and organizing large collections
of numeric data (with support for sparse structures). You’re not likely to see HDF5
outside of scientific work, but there are R and Py thon libraries for working with
HDF5 resources. So for some problems you may consider HDF5 in place of a
SQL database.

C.2. More ideas

Data science is an excellent introduction to a number of fields
that can be rewarding avenues of further study. The fields
overlap, but each has its own emphasis. You can’t be expert in
all of these fields, but you should be aware of them and consider
collaborating with partners expert in some of these fields. Here
are some fields we find fascinating, with a few references if you
want to learn more.

C.2.1. Adaptive learning

In this book, we use data science in a fairly static manner. The
data has already been collected and the model is static after
training is finished. Breaking this rigid model gives you a lot

http://storm-project.net

more to think about: online learning, transductive learning, and
adversarial learning. In online (and stream) learning, you work
with models that adapt to new data, often in environments
where there’s too much data to store. With transductive learning,
models are built after being told which test examples they will
be used on (great for dealing with test examples that have
missing variables). In adversarial learning, models have to deal
with the world adapting against them (especially relevant in
spam filtering and fraud detection). Adversarial learning has
some exciting new material coming out soon in Joseph, Nelson,
Rubinstein, and Tygar’s Adversarial Machine Learning
(Cambridge University Press, projected publishing date 2014).

C.2.2. Statistical learning

This is one of our favorite fields. In statistical learning, the
primary goal is to build predictive models, and the main tools
are statistics (for characterizing model performance) and
optimization (for fitting parameters). Important concepts
include ensemble methods, regularization, and principled
dimension reduction.

The definitive book on the topic is Hastie, Tibshirani, and
Friedman’s The Elements of Statistical Learning, Second Edition.
The book has a mathematical bent, but unlike most references, it
separates the common learning procedures from the more
important proofs of solution properties. If you want to
understand the consequences of a method, this is the book to
study.

C.2.3. Computer science machine learning

The nonstatistical (computer science) view of machine learning
includes concepts like expert systems, pattern recognition,
clustering, association rules, version spaces, VC dimension,
boosting, and support vector machines. In the classic computer

science view of machine learning, nonstatistical quantities such
as model complexity (measured in terms of VC dimension,
minimum description length, or other measures) are used to
prove theorems about model generalization performance. This is
in contrast to the statistical view, where generalization error is
seen as a form of training bias that you simply test for.

In our opinion, the last great book on the topic was Mitchell’s
Machine Learning (1997), but it doesn’t cover enough of the
current topics. Overall, we prefer the statistical learning
treatment of topics, but there are some excellent books on
specific topics. One such is Cristianini and Shawe-Taylor’s An
Introduction to Support Vector Machines and Other Kernel-
based Learning Methods.

C.2.4. Bayesian methods

One of the big sins of common data science is using “point
estimates” for everything. Unknowns are often modeled as
single values, estimates are often single values, and even
algorithm performance is often reported on a single test set (or
even worse, just on the training set). Bayesian methods
overcome these issues by working with explicit distributions
before (prior) and after (posterior) learning.

Of particular interest are Bayesian hierarchical models, which
are a great formal alternative to important tricks we use in the
book (tricks like regularization, dimension reduction, and
smoothing). Good books on the topic include Gelman, Carlin,
Stern, Dunson, Vehtari, and Rubin’s Bayesian Data Analysis,
Third Edition, and Koller and Friedman’s Probabilistic Graphical
Models: Principles and Techniques.

C.2.5. Statistics

Statistics is a fascinating field in and of itself. Statistics covers a

lot more about inference (trying to find the causes that are
driving relations) than data science, and has a number of cool
tools we aren’t able to get to in this book (such as ready-made
significance tests and laws of large numbers).

There are a number of good books; for a good introductory text,
we recommend Freedman, Pisani, and Purves’s Statistics, Fourth
Edition.

C.2.6. Boosting

Boosting is a clever technique for reweighting training data to
find submodels that are complementary to each other. You can
think of boosting as a complement to bagging: bagging averages
ensembles to reduce variance, and boosting manipulates weights
to find more diverse models (good when you feel important
effects may be hidden as interactions of variables). These ideas
about data reweighting are interesting generalizations of the
statistical ideas of offsets and orthogonality, but take some time
to work through. We recommend trying the R package gbm
(Generalized Boosted Regression Models): http://cran.r-
project.org/web/packages/gbm/gbm.pdf.

C.2.7. Time series

Time series analysis can be a topic to itself. Part of the issue is
the need to ensure that non-useful correlations between time
steps don’t interfere with inferring useful relations to external
parameters. The obvious fix (differencing) introduces its own
issues (root testing) and needs some care.

Good books on the topic include Shumway and Stoffer’s Time
Series Analysis and Its Applications, Third Edition, and Tsay’s
Analysis of Financial Time Series, 2nd Edition.

C.2.8. Domain knowledge

http://cran.r-project.org/web/packages/gbm/gbm.pdf

The big fixes for hard data science problems are (in order): better
variables, better experimental design, more data, and better
machine learning algorithms. The main way to get better
variables is through intuition and picking up some domain
knowledge. You don’t have to work in the field to develop good
domain knowledge, but you need partners who do and to spend
some time thinking about the actual problem (taking a break
from thinking about procedures and algorithms). A very good
example of this comes from the famous “Sears catalogue
problem” (see John F. Magee, “Operations Research at Arthur
D. Little, Inc.: The Early Years”) where clever consultants
figured out the variable most predictive of future customer value
was past purchase frequency (outperforming measures like
order size). The lesson is: you can build tools to try and
automatically propose new features, but effective data science is
more often done by having people propose potential features
and letting the statistics work out their relative utility.

Bibliography
Adler, Joseph. R in a Nutshell, Second Edition. O’Reilly Media,
2012.

Agresti, Alan. Categorical Data Analysis, Third Edition. Wiley
Publications, 2012.

Alley, Michael. The Craft of Scientific Presentations. Springer,
2003.

Brooks, Jr., Frederick P. The Mythical Man-Month: Essays on
Software Engineering. Addison-Wesley, 1995.

Casella, George and Roger L. Berger. Statistical Inference.
Duxbury, 1990.

Celko, Joe. SQL for Smarties, Fourth Edition. Morgan
Kauffman, 2011.

Chakrabarti, Soumen. Mining the Web. Morgan Kauffman, 2003.

Chambers, John M. Software for Data Analysis. Springer, 2008.

Chang, Winston. R Graphics Cookbook. O’Reilly Media, 2013.

Charniak, Eugene. Statistical Language Learning. MIT Press,
1993.

Cleveland, William S. The Elements of Graphing Data. Hobart
Press, 1994.

Cover, Thomas M. and Joy A. Thomas. Elements of Information
Theory. Wiley, 1991.

Cristianini, Nello and John Shawe-Taylor. An Introduction to
Support Vector Machines and Other Kernel-based Learning

Methods. Cambridge Press, 2000.

Dalgaard, Peter. Introductory Statistics with R, Second Edition.
Springer, 2008.

Dimiduk, Nick and Amandeep Khurana. HBase in Action.
Manning Publications, 2013.

Efron, Bradley and Robert Tibshirani. An Introduction to the
Bootstrap. Chapman and Hall, 1993.

Everitt, B. S. The Cambridge Dictionary of Statistics, Third
Edition. Cambridge Press, 2006.

Freedman, David. Statistical Models: Theory and Practice.
Cambridge Press, 2009.

Freedman, David; Robert Pisani; and Roger Purves. Statistics,
Fourth Edition. Norton, 2007.

Gandrud, Christopher. Reproducible Research with R and
RStudio. CRC Press, 2014.

Gelman, Andrew; John B. Carlin; Hal S. Stern; David B.
Dunson; Aki Vehtari; and Donald B. Rubin. Bayesian Data
Analysis, Third Edition. CRC Press, 2013.

Gentle, James E. Elements of Computational Statistics. Springer,
2002.

Good, Philip. Permutation Tests. Springer, 2000.

Hastie, Trevor; Robert Tibshirani; and Jerome Friedman. The
Elements of Statistical Learning, Second Edition. Springer, 2009.

James, Gareth; Daniela Witten; Trevor Hastie; and Robert
Tibshirani. An Introduction to Statistical Learning. Springer,
2013.

Kabacoff, Robert. R in Action, Second Edition. Manning
Publications, 2014.

Kennedy, Peter. A Guide to Econometrics, Fifth Edition. MIT
Press, 2003.

Koller, Daphne and Nir Friedman. Probabilistic Graphical
Models: Principles and Techniques. MIT Press, 2009.

Kuhn, Max and Kjell Johnson. Applied Predictive Modeling.
Springer, 2013.

Loeliger, Jon and Matthew McCullough. Version Control with
Git, Second Edition. O’Reilly Media, 2012.

Magee, John. “Operations Research at Arthur D. Little, Inc.:
The Early Years.” Operations Research, 2002. 50 (1), pp. 149-
153.

Marz, Nathan and James Warren. Big Data. Manning
Publications, 2014.

Matloff, Norman. The Art of R Programming: A Tour of
Statistical Software Design. No Starch Press, 2011.

Mitchell, Tom M. Machine Learning. McGraw-Hill, 1997.

Provost, Foster and Tom Fawcett. Data Science for Business.
O’Reilly Media, 2013.

Sachs, Lothar. Applied Statistics, Second Edition. Springer, 1984.

Seni, Giovanni and John Elder. Ensemble Methods in Data
Mining. Morgan & Claypool, 2010.

Shawe-Taylor, John and Nello Cristianini. Kernel Methods for
Pattern Analysis. Cambridge Press, 2004.

Shumway, Robert, and David Stoffer. Time Series Analysis and
Its Applications, Third Edition. Springer, 2013.

Spector, Phil. Data Manipulation with R. Springer, 2008.

Spiegel, Murray R. and Larry J. Stephens. Schaum’s Outlines
Statistics (Fourth Edition). McGraw-Hill, 2011.

Tsay, Ruey S. Analysis of Financial Time Series, 2nd Edition.
Wiley, 2005.

Tukey, John W. Exploratory Data Analysis. Pearson, 1977.

Wasserman, Larry. All of Nonparametric Statistics. Springer,
2006.

Wickham, Hadley. ggplot2: Elegant Graphics for Data Analysis
(Use R!). Springer, 2009.

Xie, Yihui. Dynamic Documents with R and knitr. CRC Press,
2013.

Index
[SYMBOL][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X]

SYMBOL

 ̀(backtick)
: (colon), 2nd
[[]] (double square braces), 2nd
[] (square braces), 2nd
@ (at symbol), 2nd
& vectorized logic operator
(hash symbol)
%in% operation
+ operator
<- assignment operator
<<- assignment operator
= assignment operator
== vectorized logic operator
-> assignment operator
->> assignment operator
| vectorized logic operator
$ (dollar sign)

A

absolute error
academic presentations
accuracyMeasures() function
adaptive learning
add command, 2nd
additive process
adjusted R-squared
AdWords
aesthetics
anonymous functions
Apgar test
Apriori
apriori() function
arcsinh
area under the curve.
 See AUC.
arules package
as.formula() function
assignment operators
at symbol (@), 2nd
AUC (area under the curve)
 defined
 scoring categorical variables by

audience for presentations
average silhouette width
averaging to reduce variance

B

backtick (̀)
backups and version control
bagging
 classifiers and
 overview, 2nd
bag-of-k-grams model
bag-of-words model
bar charts
 checking distributions for single variable
 checking relationships between two variables
base error rate
baskets
batch model
Bayesian inference
Bayesian information criterion.
 See BIC.
Bayesian methods
Bayesian posterior estimate
beta regression
betas, defined
between sum of squares.
 See BSS.
bias
 model problems
 variance decomposition
BIC (Bayesian information criterion)
big data tools
bimodal distribution
binomial classification
binwidth parameter
blame command
block declaration format for knitr
bookstore example
boosting technique
bounded predictions
branches vs. commits (Git)
BSS (between sum of squares)
business rules
buzz dataset
 overview
 product names in

C

c() command
cache knitr option
Calinski-Harabasz index
 cluster analy sis

 kmeansruns() function
call-by -value semantics, 2nd
CART (classification and regression trees)
casual variables
categorization
 accuracy
 single-variable models
 variables
CDC 2010 natality public-use data file
central limit theorem
centroid
change history for Git
characterization
checkout command
checkpoint documentation
chi-squared test
chooseCRANmirror() command
churn, defined
city block distance.
 See Manhattan distance.
class() command
classification and regression trees.
 See CART.
classifiers and bagging
client role
clusterboot() function
 assessing clusters
 k-means algorithm
clustering
 defined
 models
 clusters as classifications or scores
 distance comparisons
 overview
coefficients
 defined
 for linear regression
 overview
 table of
 for logistic regression
 interpreting values
 overview
 table of
 negative
collinearity, 2nd
colon (:), 2nd
comments
commit command, 2nd
comparing files with Git
Comprehensive R Archive Network.
 See CRAN.
computer science machine learning
conditional entropy
confidence intervals
confidence parameter
contingency table
continuous variables

coord_flip command
correlation
cos() function
cosine similarity
 distances
 kernels
 mathematical definition
Cover’s theorem
coverage, defined
CRAN (Comprehensive R Archive Network)
 installing
 online resources
credible intervals
Cromwell’s rule
cross-language linkage
cross-validation
 estimating overfitting effects using
 performing using function
cumulative distribution function
cut() function, 2nd
cutree() function
Cygwin

D

data architect
data collection
data cuts
data dictionary
Data directory
data frame
 defined
 overview
dbinom() function
decision trees
 classification methods
 data cuts for
 problem-to-method mapping
 training variance and
 workings of
declarative language
definitional kernels
dendrogram
density estimation
density plots
dependent variables, 2nd, 3rd
Derived directory
deviance
 probability models
 residuals, logistic regression
diff command, 2nd
difference parameter
dim() command
discrete variables
dissimilarity

dissolved clusters
dist() function
distances
 clustering models
 cosine similarity
 Euclidean distance
 Hamming distance
 Manhattan distance
distribution function
distribution shape
distribution tail bound
dlnorm() function
dnorm() function
document classification
dollar sign ($)
domain knowledge
dot plot
dot product
 mathematical definition
 similarity
 using kernel
double-precision floating-point numbers
Dremel
Drill
dropping records for missing values
dynamic language

E

echo knitr option
end users, presentations for
 overview, 2nd
 showing model usage
 summarizing goals
 workflow and model
enrichment rate
ensemble learning
entropy
equal sign (=)
Euclidean distance
eval knitr option
exchangeability
Executive Summary slide
experimental design, statistics attempt to correct
explanatory variables
explicit kernels
 defined
 mathematical definition
 transforms
 linear regression example
 using
export, deployment by
Extensible Markup Language.
 See XML.

F

F1
faceting graph
factor
 defined
 making sure levels are consistent
 overview
 summary command
factor variable
factor() command
false positive rate.
 See FPR.
faulty sensor
filled bar chart
Fisher scoring iterations
fitdistr() function
floating-point numbers
for loops
forecasting vs. prediction
formats, data files
fpc package
FPR (false positive rate), 2nd
frequentist inference
frequentist significance test
F-statistic
full normal form database
functional language

G

gam package
gam() function, 2nd, 3rd
gap statistic
Gaussian distributions, 2nd
Gaussian kernels
 defined
 example using
 mathematical definition
gbm package
gdata package
generalization error, 2nd, 3rd
generalized additive models.
 See GAMs.
generalized linear models
generic language
geom layers
ggplot2
glm() function
 beta regression
 logistic regression
 separation and
 separation and quasi-separation
 two-category classification
 weights argument

glmnet package
goal
 defining for project
 in presentations
 for end users
 for project sponsor
Greenplum
grouped data
grouping records
.gz extension

H

H2 database
 defined
 driver for
 overview
Hadoop, 2nd
hair clusters
Hamming distance
hash symbol (#)
hash, file
hclust() function
HDF5 (Hierarchical Data Format 5)
held-out data
help() command, 2nd, 3rd, 4th
heteroscedastic errors
heteroscedastic, defined
hexbin plots
hierarchical clustering
 defined
 with hclust() function
Hierarchical Data Format 5.
 See HDF5.
histogram
 checking distributions for single variable
 defined
Hive
hold-out set
homoscedastic errors
homoscedastic, defined
household grouping
HTML (Hypertext Markup Language)
HTTP service, R-based
HTTPS (Hypertext Transfer Protocol Secure)
hyperellipsoid
Hypertext Markup Language.
 See HTML.
Hypertext Transfer Protocol Secure.
 See HTTPS.
hypothesis testing

I

Impala
importance() function
in keyword
independent variables, 2nd, 3rd
indicator variables
 defined
 overview
init command
inner product
input variables
inspect() function
interaction terms
interestMeasure() function
invalid values
itemset

J

J language
Jaccard coefficient
Java
JavaScript Object Notation.
 See JSON.
JDBC (Java Database Connectivity)
join statement, 2nd
joint probability of the evidence
Julia language

K

kernel, machine learning definition
kernlab library
k-fold cross-validation
k-nearest neighbor.
 See KNN.
KNN (k-nearest neighbor).
 See also nearest neighbor methods.
Knowledge Discovery and Data Mining.
 See KDD.

L

L1/L2 distance
languages, alternative
Laplace smoothing
lazy evaluation
leaf node
least squares method
less-than symbol (<)
levels
lhs() function

library () function
lift concept
line plots
linear relationships
linear transformation kernels
 defined
 mathematical definition
linearly inseparable data
list label operators
lists
loess function
log command, 2nd, 3rd
log transformations
log, Git
logarithmic scale
 density plot
 when to use
logit
log-odds
lowess function

M

Mahout
maintenance
Manhattan distance
margin, defined
Markdown
 best cases for using
 knitr example
masking variable
MASS package
master branch
matrices
max command
maxnodes parameter
mean command
mean value, and lognormal population
median command
Mercer’s theorem, 2nd
message knitr option
mgcv package
milestones
 documenting
 knitr
min command
mining, restricting items for
mirrors, CRAN
MongoDB
motivation for project
multicategory classification
multiline commands
multimodal distribution
multinomial classification
multiplicative process

MySQL
Mythical Man-Month

N

NA data type
Naive Bayes
 classification methods
 document classification and
 multiple-variable models
 Naive Bayes assumption
 problem-to-method mapping
 smoothing
naming knitr blocks
narrow data ranges
NB (nota bene) notes
negative coefficients
negative correlation
newborn baby weight example
nonlinear relationships
non-monotone relationships
 defined
 extracting nonlinear relationships
 logistic regression using
 one-dimensional regression example
 overview, 2nd
 predicting newborn baby weight
nonsignificance
normal probability function
normalization
 organizing data for analy sis
 overview
 standard deviation and
normalized form
nota bene notes.
 See NB notes.
null classifiers
NULL data type
null deviance
null hypothesis
number sequences
numeric accuracy, 2nd

O

object-oriented language
odds, defined
OLTP (online transaction processing)
online transaction processing.
 See OLTP.
operations role
operators, assignment
organizing data for analy sis
origin repository
outcome variables

outliers
out-of-bag samples
overfitting
 common model problems
 estimating effects of using cross-validation
 pseudo R-squared and
 random forests

P

package sy stem.
 See CRAN.
pbeta() function
pbinom() function
Pearson coefficient
performance
permutation test
phi() function, 2nd, 3rd
Pig
pipe-separated values, 2nd
pivot table
plnorm() function
plot() function
PMML (Predictive Model Markup Language)
point estimate
Poisson distribution
polynomial kernels
 defined
 mathematical definition
posterior estimate
PostgreSQL
prcomp() function
Predictive Model Markup Language.
 See PMML.
Presto
primalizing
print() function
prior distribution
probability distribution function
procedural language
production environment
promise-based argument evaluation
pseudo R-squared
 defined
 logistic regression
 p-value and
pull command, 2nd
PUMS American Community Survey data
push command, 2nd
Py thon

Q

qbinom() function

qlnorm() function
qnorm() function
quantile() function, 2nd, 3rd
quasi-separation

R

R in Action, 2nd
radial kernels
 defined
 example using
 mathematical definition
RAND command
random sample, reproducing
randomForest() function, 2nd, 3rd
randomization
randomly missing values
ranking
 defined
 models
R-based HTTP service
rbinom() function, 2nd
read.table() function
 gzip compression
 structured data
read.transactions() function
rebasing, 2nd, 3rd
receiver operating characteristic curve.
 See ROC curve.
reference level
 defined
 SCHL coefficient
regression
 defined, 2nd
 problem-to-method mapping
 technical definition.
 See also linear regression; logistic regression.
relational databases.
 See databases.
relationships
 data science tasks
 visually checking
 bar charts
 hexbin plots
 line plots
 scatter plots
remote repository for Git
replicate() function
reproducing results
 documentation
 random sample
rescaling
reshaping data
residual standard error
residuals
 defined

 deviance, logistic regression
 predictions on graph
response variables
Results directory
results knitr option
rlnorm() function
rm() function
rnorm() function
ROC (receiver operating characteristic) curve
root mean square error.
 See RMSE.
root node
rpart() command
RSQLite package
RStudio IDE, 2nd
rug, defined
runif function
running documentation

S

S language
sample function
saturated model
scale() function
scaling
scatter plot
SCHL coefficient
scientific honesty
Screwdriver tool
Scripts directory
select statement
sensitivity
separable data
separation, logistic regression
sequences of numbers
shape of distribution
shasum program
sigmoid function
signed logarithm
sign-off by project sponsor
sin() function
size() function
slots
smoothing curves
soft margin optimization
soundness of model
spam, identify ing
Spambase dataset
 apply ing SVM
 comparing results
 SVMs
specificity
splines
SQL Screwdriver

sqldf package, 2nd
square braces, 2nd
SQuirreL SQL, 2nd, 3rd
Stack Overflow
stacked bar chart
standard deviation
star workflow
stat layers
statistical learning
statistical test power, 2nd
status command
Storm
structured values
subsets
sufficient statistic
summary () function
summary () function
 checking data for errors
 data ranges
 invalid values
 missing values
 outliers
 overview
 units
 linear regression
 coefficients table
 original model call
 producing
 quality statistics
 residuals summary
 logistic regression
 AIC
 coefficients table
 deviance residuals
 Fisher scoring iterations
 glm() function
 null deviance
 producing
 pseudo R-squared
 quasi-separation
 residual deviance
 separation
 overview
support vector machines.
 See SVMs.
support vectors
 defined
 overview
SVMs (support vector machines)
 classification methods
 defined
 overview, 2nd
 problem-to-method mapping
 Spambase example
 apply ing SVM
 comparing results

 overview
 spiral example
 good kernel
 overview
 wrong kernel
 support vectors
synchronizing with Git
synthetic variables
system() function
systematically missing values

T

table() command
tag command
targetRate parameter
technical debt
terminology, and model quality
test set
theta angle
tidy knitr option
time series analy sis
TODO notes
total sum of squares.
 See TSS.
total WSS (within sum of squares)
TPR (true positive rate)
training error
transforming data
trial and error
true negative rate
true outcome
true positive rate.
 See TPR.
TSS (total sum of squares)
two-by -two confusion matrix
two-category classification

U

UCI car dataset
uncommitted changes
unexplainable variance
ungrouped data
uniform resource locator.
 See URL.
unimodal distribution
units
 checking data using summary command
 cluster analy sis
unsupervised learning
upselling
URL (uniform resource locator)

V

variance
variance command
varImpPlot() function
vectorized operations
vectorized, defined
vectors
venue shopping
views, in R

W

waste clusters
workflow of end user, and model

X

XLS/XLSX files
XML (Extensible Markup Language)

List of Figures
Chapter 1. The data science process

Figure 1.1. The lifecycle of a data science project: loops
within loops

Figure 1.2. The fraction of defaulting loans by credit
history category. The dark region of each bar represents the
fraction of loans in that category that defaulted.

Figure 1.3. A decision tree model for finding bad loan
applications, with confidence scores

Figure 1.4. Notional slide from an executive presentation

Chapter 2. Loading data into R

Figure 2.1. Car data viewed as a table

Figure 2.2. SQuirreL SQL table explorer

Figure 2.3. Browsing PUMS data using SQuirreL SQL

Figure 2.4. Strings encoded as indicators

Chapter 3. Exploring data

Figure 3.1. Some information is easier to read from a graph,
and some from a summary.

Figure 3.2. A unimodal distribution (gray) can usually be
modeled as coming from a single population of users. With
a bimodal distribution (black), your data often comes from
two populations of users.

Figure 3.3. A histogram tells you where your data is
concentrated. It also visually highlights outliers and
anomalies.

Figure 3.4. Density plots show where data is concentrated.
This plot also highlights a population of higher-income

customers.
Figure 3.5. The density plot of income on a log10 scale
highlights details of the income distribution that are harder
to see in a regular density plot.

Figure 3.6. Bar charts show the distribution of categorical
variables.

Figure 3.7. A horizontal bar chart can be easier to read
when there are several categories with long names.

Figure 3.8. Sorting the bar chart by count makes it even
easier to read.

Figure 3.9. Example of a line plot

Figure 3.10. A scatter plot of income versus age

Figure 3.11. A scatter plot of income versus age, with a
linear fit

Figure 3.12. A scatter plot of income versus age, with a
smoothing curve

Figure 3.13. Distribution of customers with health
insurance, as a function of age

Figure 3.14. Hexbin plot of income versus age, with a
smoothing curve superimposed in white

Figure 3.15. Health insurance versus marital status: stacked
bar chart

Figure 3.16. Health insurance versus marital status: side-
by-side bar chart

Figure 3.17. Health insurance versus marital status: filled
bar chart

Figure 3.18. Health insurance versus marital status: filled
bar chart with rug

Figure 3.19. Distribution of marital status by housing type:
side-by-side bar chart

Figure 3.20. Distribution of marital status by housing type:

faceted side-by-side bar chart

Chapter 4. Managing data

Figure 4.1. Variables with missing values

Figure 4.2. Health insurance coverage versus income (log10
scale)

Figure 4.3. Is a 35-year-old young?

Figure 4.4. A nearly lognormal distribution and its log

Figure 4.5. Signed log lets you visualize non-positive data
on a logarithmic scale.

Figure 4.6. Example of dataset with customers and
households

Figure 4.7. Example of dataset with customers and
households

Chapter 5. Choosing and evaluating models

Figure 5.1. Schematic model construction and evaluation

Figure 5.2. Assigning products to product categories

Figure 5.3. Notional example of determining the probability
that a transaction is fraudulent

Figure 5.4. Notional example of clustering your customers
by purchase pattern and purchase amount

Figure 5.5. Notional example of finding purchase patterns
in your data

Figure 5.6. Look to the customers with similar movie-
watching patterns as JaneB for her movie
recommendations.

Figure 5.7. Scoring residuals

Figure 5.8. Distribution of score broken up by known
classes

Figure 5.9. ROC curve for the email spam example

Figure 5.10. Clustering example

Figure 5.11. A notional illustration of overfitting

Chapter 6. Memorization methods

Figure 6.1. Performance of variable 126 on calibration data

Figure 6.2. Graphical representation of a decision tree

Figure 6.3. Performance of 200-nearest neighbors on
calibration data

Figure 6.4. ROC of 200-nearest neighbors on calibration
data

Chapter 7. Linear and logistic regression

Figure 7.1. Fit versus actuals for y=x2

Figure 7.2. Building a linear model using the lm() command

Figure 7.3. Making predictions with a linear regression
model

Figure 7.4. Plot of actual log income as a function of
predicted log income

Figure 7.5. Plot of residual error as a function of prediction

Figure 7.6. The model coefficients

Figure 7.7. Model summary

Figure 7.8. Model summary coefficient columns

Figure 7.9. Distribution of score broken up by positive
examples (TRUE) and negative examples (FALSE)

Figure 7.10. Enrichment (top) and recall (bottom) plotted
as functions of threshold for the training set

Chapter 8. Unsupervised methods

Figure 8.1. An example of data in three clusters

Figure 8.2. Dendrogram of countries clustered by protein
consumption

Figure 8.3. Plot of countries clustered by protein
consumption, projected onto first two principal
components

Figure 8.4. Cluster 5: The Mediterranean cluster. Its
members are separated from the other clusters, but also
from each other.

Figure 8.5. Plot of the Calinski-Harabasz and WSS indices
for 1–10 clusters, on protein data

Figure 8.6. The k-means procedure. The two cluster centers
are represented by the outlined star and diamond.

Figure 8.7. Plot of the Calinski-Harabasz and average
silhouette width indices for 1–10 clusters, on protein data

Figure 8.8. A density plot of basket sizes

Chapter 9. Exploring advanced methods

Figure 9.1. Plot of the most important variables in the
spam model, as measured by accuracy

Figure 9.2. A spline that has been fit through a series of
points

Figure 9.3. Linear model’s predictions versus actual
response. The solid line is the line of perfect prediction
(prediction=actual).

Figure 9.4. GAM’s predictions versus actual response. The
solid line is the theoretical line of perfect prediction
(prediction=actual).

Figure 9.5. Top: The nonlinear function s(PWGT)
discovered by gam(), as output by plot(gam.model)
Bottom: The same spline superimposed over the training
data

Figure 9.6. Smoothing curves of each of the four input

variables plotted against birth weight, compared with the
splines discovered by gam(). All curves have been shifted
to be zero mean for comparison of shape.

Figure 9.7. Notional illustration of a kernel transform
(based on Cristianini and Shawe-Taylor, 2000)

Figure 9.8. Notional illustration of SVM

Figure 9.9. The spiral counter-example

Figure 9.10. Identity kernel failing to learn the spiral
concept

Figure 9.11. Radial kernel successfully learning the spiral
concept

Chapter 10. Documentation and deployment

Figure 10.1. knitr process schematic

Figure 10.2. Simple knitr Markdown result

Figure 10.3. Simple knitr LaTeX result

Figure 10.4. knitr documentation of buzz data load

Figure 10.5. knitr documentation of prepared buzz
workspace

Figure 10.6. Version control saving the day

Figure 10.7. RStudio new project pane

Figure 10.8. RStudio Git controls

Figure 10.9. gitk browsing
https://github.com/WinVector/zmPDSwR

Figure 10.10. git pull: rebase versus merge

Figure 10.11. Top of HTML form that asks server for buzz
classification on submit

Figure 10.12. One tree from the buzz random forest model

Chapter 11. Producing effective presentations

Figure 11.1. Motivation for project

Figure 11.2. Stating the project goal

Figure 11.3. Describing the project and its results

Figure 11.4. Discussing your work in more detail

Figure 11.5. Optional slide on the modeling method

Figure 11.6. Discussing future work

Figure 11.7. Motivation for project

Figure 11.8. User workflow before and after the model

Figure 11.9. Present the model’s benefits from the users’
perspective.

Figure 11.10. Provide technical details that are relevant to
the users.

Figure 11.11. Describe how the users will interact with the
model.

Figure 11.12. An example instructional slide

Figure 11.13. Ask the users for feedback.

Figure 11.14. Introducing the project

Figure 11.15. Discussing related work

Figure 11.16. Introducing the pilot study

Figure 11.17. Discussing model inputs and modeling
approach

Figure 11.18. Showing model performance

Figure 11.19. Discussing future work

Appendix A. Working with R and other tools

Figure A.1. SQuirreL SQL driver configuration

Figure A.2. SQuirreL SQL connection alias

Figure A.3. SQuirreL SQL table commands

Figure A.4. Hotel data in spreadsheet form

Figure A.5. Hotel data in spreadsheet form

Appendix B. Important statistical concepts

Figure B.1. The normal distribution with mean 0 and
standard deviation 1

Figure B.2. The empirical distribution of points drawn
from a normal with mean 0 and standard deviation 1. The
dotted line represents the theoretical normal distribution.

Figure B.3. Illustrating x < qnorm(0.75)

Figure B.4. Top: The lognormal distribution X such that
mean(log(X))=0 and sd(log(X)=1. The dashed line is the
theoretical distribution, and the solid line is the distribution
of a random lognormal sample. Bottom: The solid line is
the distribution of log(X).

Figure B.5. The 75th percentile of the lognormal
distribution with meanlog=1, sdlog=0

Figure B.6. The binomial distributions for 50 coin tosses,
with coins of various fairnesses (probability of landing on
heads)

Figure B.7. The observed distribution of the count of girls
in 100 classrooms of size 20, when the population is 50%
female. The theoretical distribution is shown with the
dashed line.

Figure B.8. Posterior distribution of the B conversion rate.
The dashed line is the A conversion rate.

Figure B.9. Earned income versus capital gains

Figure B.10. Biased earned income versus capital gains

Figure B.11. View of rows from the bioavailability dataset

List of Tables
Chapter 1. The data science process

Table 1.1. Data science project roles and responsibilities

Table 1.2. Loan data attributes

Chapter 3. Exploring data

Table 3.1. Visualizations for one variable

Table 3.2. Visualizations for two variables

Chapter 5. Choosing and evaluating models

Table 5.1. Some common classification methods

Table 5.2. From problem to approach

Table 5.3. Ideal models to calibrate against

Table 5.4. Standard two-by-two confusion matrix

Table 5.5. Example classifier performance measures

Table 5.6. Classifier performance measures business stories

Table 5.7. Common model problems

Chapter 7. Linear and logistic regression

Table 7.1. Some variables in natality dataset

Chapter 8. Unsupervised methods

Table 8.1. A database of library transactions

Table 8.2. The five most confident rules discovered in the
data

Chapter 9. Exploring advanced methods

Table 9.1. Some important kernels and their uses

Chapter 10. Documentation and deployment

Table 10.1. Chapter goals

Table 10.2. Buzz data description

Table 10.3. Maintenance tasks made easier by knitr

Table 10.4. Some useful knitr options

Table 10.5. Things not to worry about in comments

Table 10.6. A possible project directory structure

Table 10.7. Methods to demonstrate predictive model
operation

Chapter 11. Producing effective presentations

Table 11.1. Entities in the buzz model scenario

Appendix A. Working with R and other tools

Table A.1. Major SQL column themes

Appendix B. Important statistical concepts

Table B.1. Test design parameters

Table B.2. Bioavailability columns

Appendix C. More tools and ideas worth exploring

Table C.1. R topics for follow-up

Table C.2. Other programming languages

Table C.3. Common big data tools

List of Listings
Chapter 1. The data science process

Listing 1.1. Building a decision tree

Listing 1.2. Plotting the confusion matrix

Listing 1.3. Plotting the relation between disposable income
and loan outcome

Chapter 2. Loading data into R

Listing 2.1. Reading the UCI car data

Listing 2.2. Exploring the car data

Listing 2.3. Loading the credit dataset

Listing 2.4. Setting column names

Listing 2.5. Building a map to interpret loan use codes

Listing 2.6. Transforming the car data

Listing 2.7. Summary of Good.Loan and Purpose

Listing 2.8. PUMS data provenance documentation

Listing 2.9. SQL Screwdriver XML configuration file

Listing 2.10. Loading data with SQL Screwdriver

Listing 2.11. Loading data into R from a relational database

Listing 2.12. Selecting a subset of the Census data

Listing 2.13. Recoding variables

Listing 2.14. Summarizing the classifications of work

Chapter 3. Exploring data

Listing 3.1. The summary() command

Listing 3.2. Will the variable is.employed be useful for
modeling?

Listing 3.3. Examples of invalid values and outliers

Listing 3.4. Looking at the data range of a variable

Listing 3.5. Checking units can prevent inaccurate results
later

Listing 3.6. Plotting a histogram

Listing 3.7. Producing a density plot

Listing 3.8. Creating a log-scaled density plot

Listing 3.9. Producing a horizontal bar chart

Listing 3.10. Producing a bar chart with sorted categories

Listing 3.11. Producing a line plot

Listing 3.12. Examining the correlation between age and
income

Listing 3.13. Plotting the distribution of health.ins as a
function of age

Listing 3.14. Producing a hexbin plot

Listing 3.15. Specifying different styles of bar chart

Listing 3.16. Plotting data with a rug

Listing 3.17. Plotting a bar chart with and without facets

Chapter 4. Managing data

Listing 4.1. Checking locations of missing data

Listing 4.2. Remapping NA to a level

Listing 4.3. Converting missing numeric data to a level

Listing 4.4. Tracking original NAs with an extra categorical
variable

Listing 4.5. Normalizing income by state

Listing 4.6. Converting age into ranges

Listing 4.7. Centering on mean age

Listing 4.8. Summarizing age

Listing 4.9. Splitting into test and training using a random
group mark

Listing 4.10. Ensuring test/train split doesn’t split inside a
household

Chapter 5. Choosing and evaluating models

Listing 5.1. Building and applying a logistic regression
spam model

Listing 5.2. Spam classifications

Listing 5.3. Spam confusion matrix

Listing 5.4. Entering data by hand

Listing 5.5. Plotting residuals

Listing 5.6. Making a double density plot

Listing 5.7. Plotting the receiver operating characteristic
curve

Listing 5.8. Calculating log likelihood

Listing 5.9. Computing the null model’s log likelihood

Listing 5.10. Calculating entropy and conditional entropy

Listing 5.11. Clustering random data in the plane

Listing 5.12. Plotting our clusters

Listing 5.13. Calculating the size of each cluster

Listing 5.14. Calculating the typical distance between items
in every pair of clusters

Chapter 6. Memorization methods

Listing 6.1. Preparing the KDD data for analysis

Listing 6.2. Plotting churn grouped by variable 218 levels

Listing 6.3. Churn rates grouped by variable 218 codes

Listing 6.4. Function to build single-variable models for
categorical variables

Listing 6.5. Applying single-categorical variable models to
all of our datasets

Listing 6.6. Scoring categorical variables by AUC

Listing 6.7. Scoring numeric variables by AUC

Listing 6.8. Plotting variable performance

Listing 6.9. Running a repeated cross-validation experiment

Listing 6.10. Empirically cross-validating performance

Listing 6.11. Basic variable selection

Listing 6.12. Selected categorical and numeric variables

Listing 6.13. Building a bad decision tree

Listing 6.14. Building another bad decision tree

Listing 6.15. Building yet another bad decision tree

Listing 6.16. Building a better decision tree

Listing 6.17. Printing the decision tree

Listing 6.18. Plotting the decision tree

Listing 6.19. Running k-nearest neighbors

Listing 6.20. Platting 200-nearest neighbor performance

Listing 6.21. Plotting the receiver operating characteristic
curve

Listing 6.22. Plotting the performance of a logistic
regression model

Listing 6.23. Building, applying, and evaluating a Naive
Bayes model

Listing 6.24. Using a Naive Bayes package

Chapter 7. Linear and logistic regression

Listing 7.1. Loading the PUMS data

Listing 7.2. Plotting log income as a function of predicted
log income

Listing 7.3. Plotting residuals income as a function of
predicted log income

Listing 7.4. Computing R-squared

Listing 7.5. Calculating root mean square error

Listing 7.6. Summarizing residuals

Listing 7.7. Loading the CDC data

Listing 7.8. Building the model formula

Listing 7.9. Fitting the logistic regression model

Listing 7.10. Applying the logistic regression model

Listing 7.11. Plotting distribution of prediction score
grouped by known outcome

Listing 7.12. Exploring modeling trade-offs

Listing 7.13. Evaluating our chosen model

Listing 7.14. The model coefficients

Listing 7.15. The model summary

Listing 7.16. Calculating deviance residuals

Listing 7.17. Computing deviance

Listing 7.18. Calculating the significance of the observed fit

Listing 7.19. Calculating the pseudo R-squared

Listing 7.20. Calculating the Akaike information criterion

Chapter 8. Unsupervised methods

Listing 8.1. Reading the protein data

Listing 8.2. Rescaling the dataset

Listing 8.3. Hierarchical clustering

Listing 8.4. Extracting the clusters found by hclust()

Listing 8.5. Projecting the clusters on the first two
principal components

Listing 8.6. Running clusterboot() on the protein data

Listing 8.7. Calculating total within sum of squares

Listing 8.8. The Calinski-Harabasz index

Listing 8.9. Evaluating clusterings with different numbers
of clusters

Listing 8.10. Running k-means with k=5

Listing 8.11. Plotting cluster criteria

Listing 8.12. Running clusterboot() with k-means

Listing 8.13. A function to assign points to a cluster

Listing 8.14. An example of assigning points to clusters

Listing 8.15. Reading in the book data

Listing 8.16. Examining the transaction data

Listing 8.17. Examining the size distribution

Listing 8.18. Finding the ten most frequent books

Listing 8.19. Finding the association rules

Listing 8.20. Scoring rules

Listing 8.21. Finding rules with restrictions

Listing 8.22. Inspecting rules

Listing 8.23. Inspecting rules with restrictions

Chapter 9. Exploring advanced methods

Listing 9.1. Preparing Spambase data and evaluating the
performance of decision trees

Listing 9.2. Bagging decision trees

Listing 9.3. Using random forests

Listing 9.4. randomForest variable importance()

Listing 9.5. Fitting with fewer variables

Listing 9.6. Preparing an artificial problem

Listing 9.7. Linear regression applied to our artificial
example

Listing 9.8. GAM applied to our artificial example

Listing 9.9. Comparing linear regression and GAM
performance

Listing 9.10. Extracting a learned spline from a GAM

Listing 9.11. Applying linear regression (with and without
GAM) to health data

Listing 9.12. Plotting GAM results

Listing 9.13. Checking GAM model performance on hold-
out data

Listing 9.14. GLM logistic regression

Listing 9.15. GAM logistic regression

Listing 9.16. An artificial kernel example

Listing 9.17. Applying stepwise linear regression to PUMS
data

Listing 9.18. Applying an example explicit kernel transform

Listing 9.19. Modeling using the explicit kernel transform

Listing 9.20. Inspecting the results of the explicit kernel
model

Listing 9.21. Setting up the spirals data as an example
classification problem

Listing 9.22. SVM with a poor choice of kernel

Listing 9.23. SVM with a good choice of kernel

Listing 9.24. Revisiting the Spambase example with GLM

Listing 9.25. Applying an SVM to the Spambase example

Listing 9.26. Printing the SVM results summary

Listing 9.27. Shifting decision point to perform an apples-
to-apples comparison

Chapter 10. Documentation and deployment

Listing 10.1. knitr-annotated Markdown

Listing 10.2. knitr LaTeX example

Listing 10.3. Setting knitr dependency options

Listing 10.4. Using the system() command to compute a
file hash

Listing 10.5. Calculating model performance

Listing 10.6. Conditionally saving a file

Listing 10.7. Example code comment

Listing 10.8. Useless comment

Listing 10.9. Worse than useless comment

Listing 10.10. Checking your project status

Listing 10.11. Checking your project history

Listing 10.12. Annoying work

Listing 10.13. Viewing detailed project history

Listing 10.14. Finding line-based differences between two
committed versions

Listing 10.15. git remote

Listing 10.16. Buzz model as an R-based HTTP service

Listing 10.17. Calling the buzz HTTP service

Listing 10.18. Exporting the random forest model

Appendix A. Working with R and other tools

Listing A.1. Trying a few R commands

Listing A.2. Binding values to function arguments

Listing A.3. Demonstrating side effects

Listing A.4. R truth tables for Boolean operators

Listing A.5. Call-by-value effect

Listing A.6. Examples of R indexing operators

Listing A.7. R’s treatment of unexpected factor levels

Listing A.8. Confirm lm() encodes new strings correctly.

Listing A.9. Loading UCI car data directly from GitHub
using HTTPS

Listing A.10. Reading database data into R

Listing A.11. Loading an Excel spreadsheet

Listing A.12. The hotel reservation and price data

Listing A.13. Using melt to restructure data

Listing A.14. Assembling many rows using SQL

Listing A.15. Showing our hotel model results

Appendix B. Important statistical concepts

Listing B.1. Plotting the theoretical normal density

Listing B.2. Plotting an empirical normal density

Listing B.3. Working with the normal CDF

Listing B.4. Plotting x < qnorm(0.75)

Listing B.5. Demonstrating some properties of the
lognormal distribution

Listing B.6. Plotting the lognormal distribution

Listing B.7. Plotting the binomial distribution

Listing B.8. Working with the theoretical binomial
distribution

Listing B.9. Simulating a binomial distribution

Listing B.10. Working with the binomial distribution

Listing B.11. Working with the binomial CDF

Listing B.12. Building simulated A/B test data

Listing B.13. Summarizing the A/B test into a contingency
table

Listing B.14. Calculating the observed A and B rates

Listing B.15. Calculating the significance of the observed
difference in rates

Listing B.16. Computing frequentist significance

Listing B.17. Bayesian estimate of the posterior tail mass

Listing B.18. Plotting the posterior distribution of the B
group

Listing B.19. Sample size estimate

Listing B.20. Exact binomial sample size calculation

Listing B.21. Building a synthetic uncorrelated income
example

Listing B.22. Calculating the (non)significance of the
observed correlation

Listing B.23. Misleading significance result from biased
observations

Listing B.24. Plotting biased view of income and capital
gains

Listing B.25. Summarizing our synthetic biological data

Listing B.26. Building data that improves over time

Listing B.27. A bad model (due to omitted variable bias)

Listing B.28. A better model

Table of Contents
Copyright
Brief Table of Contents
Table of Contents
Foreword
Preface
Acknowledgments
About this Book
About the Cover Illustration
Part 1. Introduction to data science

Chapter 1. The data science process
Chapter 2. Loading data into R
Chapter 3. Exploring data
Chapter 4. Managing data

Part 2. Modeling methods
Chapter 5. Choosing and evaluating models
Chapter 6. Memorization methods
Chapter 7. Linear and logistic regression
Chapter 8. Unsupervised methods
Chapter 9. Exploring advanced methods

Part 3. Delivering results
Chapter 10. Documentation and deployment
Chapter 11. Producing effective presentations

Appendix A. Working with R and other tools
Appendix B. Important statistical concepts
Appendix C. More tools and ideas worth exploring
Bibliography
Index
List of Figures
List of Tables
List of Listings

	Copyright
	Brief Table of Contents
	Table of Contents
	Foreword
	Preface
	Acknowledgments
	About this Book
	About the Cover Illustration
	Part 1. Introduction to data science
	Chapter 1. The data science process
	Chapter 2. Loading data into R
	Chapter 3. Exploring data
	Chapter 4. Managing data

	Part 2. Modeling methods
	Chapter 5. Choosing and evaluating models
	Chapter 6. Memorization methods
	Chapter 7. Linear and logistic regression
	Chapter 8. Unsupervised methods
	Chapter 9. Exploring advanced methods

	Part 3. Delivering results
	Chapter 10. Documentation and deployment
	Chapter 11. Producing effective presentations

	Appendix A. Working with R and other tools
	Appendix B. Important statistical concepts
	Appendix C. More tools and ideas worth exploring
	Bibliography
	Index
	List of Figures
	List of Tables
	List of Listings

