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Preface

Regression analysis is both one of the oldest branches of statistics, with
least-squares analysis having been first proposed way back in 1805. But
ironically, it is also one of the newest areas, in the form of the machine
learning techniques being vigorously researched today. Not surprisingly,
then, there is a vast literature on the subject.

Well, then, why write yet another regression book? Many books are out
there already, with titles using words like regression, classification, predic-
tive analytics, machine learning and so on. They are written by authors
whom I greatly admire, and whose work I myself have found useful. Yet,
I did not feel that any existing books covered the material in a manner
that sufficiently provided insight for the practicing data analyst. Too many
equations, too few explanations.

Merely including examples with real data is not enough to truly tell the
story in a way that will be useful in practice. Few if any books go much
beyond presenting the formulas and techniques, and thus the hapless prac-
titioner is largely left to his/her own devices. Too little is said in terms of
what the concepts really mean in a practical sense, what can be done with
regard to the inevitable imperfections of our models, which techniques are
too much the subject of “hype,” and so on.

This book aims to remedy this gaping deficit. It develops the material in
a manner that is mathematically precise yet always maintains as its top
priority — borrowing from a book title of the late Leo Breiman — “a view
toward applications.”

In other words:

The philosophy of this book is to not only prepare the analyst
to know how to do something, but also to understand what she
is doing. For successful application of data science techniques,

xvii



xviii PREFACE

the latter is just as important as the former.

Examples of what is different here:

How is this book is different from all other regression books? Here are a
few examples:

• A recurring interplay between parametric and nonparametric methods.

On the one hand, the book explains why parametric methods can be
much more powerful than their nonparametric cousins if a reason-
able model can be developed, but on the other hand it shows how
to use nonparametric methods effectively in the absence of a good
parametric model. The book also shows how nonparametric analysis
can help in parametric model assessment. In the chapter on selection
of predictor variables (Chapter 9, Dimension Reduction), the relation
of number of predictors to sample size is discussed in both parametric
and nonparametric realms.

• In-depth treatment of the Description aspect of regression analysis.

A well-known point, made in many books, is that in addition to
the vital Prediction goal of regression analysis, there is an equally-
important Description goal. This book devotes an entire chapter to
the latter (Chapter 7, Disaggregating Factor Effects). After an in-
depth discussion of the interpretation of coefficients in parametric
regression models, and a detailed analysis (and even a resolution) of
Simpson’s Paradox, the chapter then turns to the problem of compar-
ing groups in the presence of covariates — updating the old analysis
of covariance. In addition, novel regression-based methods for Small
Area Estimation and Propensity Matching are presented.

• Special issues in classification settings.

Classification methods are discussed throughout the book, intertwined
with general regression methodology. This reflects the fact that classi-
fication can be viewed as a special case of regression. The conditional
mean — regression function – simply becomes the conditional prob-
ability of Class 1 in a two-class classification problem.

However, a number of issues arise that are specifici to multi-class
settings. So here again there is an entire chapter on this topic (Chap-
ter 5, Multiclass Classification Problems). For instance, the One vs.
All and All vs. All approaches are compared, as well as the issue
of “unbalanced” class data. The treatment is both parametric and
nonparametric.
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• To use Method X or not use it — that is the question.

A number of sections in the book are titled, “The Verdict,” suggesting
to the practitioner which among various competing methods might be
the most useful. Consider for instance the issue of heteroscedasticity,
in which the variance of the response variable is nonconstant across
covariate values. After showing that the effects on statistical inference
are perhaps more severe than many realize, the book presents various
solutions: Weighted least squares (including nonparametric estima-
tion of weights); the Eicker-White method; and variance-stabilizing
transformations. The section titled “The Verdict” then argues for
opting for the Eicker-White model if the goal is Description, and ig-
noring the problem if the goal is Prediction.

A related issue, variance-stabilizing transformations, epitomizes the
philosophy of the book. While virtually every regression book presents
this method, few discuss whether it is a good idea; we do so here.

• A general aim toward a unified, modern approach to the field.

Note too that the book aims to take a unified approach to the vari-
ous aspects — regression and classification, parametric and nonpara-
metric approaches, methodology developed in both the statistics and
machine learning communities, and so on. The aforementioned use
of nonparametrics to help assess fit in parametric models exemplifies
this.

• Treatment of Big Data settings.

These days there is much talk about Big Data. Though it is far from
the case that most data these days is Big Data, on the other hand it
is true that things today are indeed quite different from the days of
“your father’s regression book.”

Perhaps the most dramatic of these changes is the emergence of data
sets with very large numbers of predictor variables p, as a fraction of
n, the number of observations. Indeed, for some data sets p >> n,
an extremely challenging situation. Chapter 9, Dimension Reduction,
covers not only “ordinary” issues of variable selection, but also this
important newer type of problem, for which many solutions have been
proposed.

A comment on the field of machine learning:

Mention should be made of the fact that this book’s title includes both the
word regression and the phrase machine learning.
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When China’s Deng Xiaoping was challenged on his then-controversial pol-
icy of introducing capitalist ideas to China’s economy, he famously said,
“Black cat, white cat, it doesn’t matter as long as it catches mice.” Statis-
ticians and machine learning users should take heed, and this book draws
upon both fields, which at core are not really different from each other
anyway.

My own view is that machine learning (ML) consists of the development of
regression models with the Prediction goal. Typically nonparametric meth-
ods are used. Classification models are more common than those for pre-
dicting continuous variables, and it is common that more than two classes
are involved, sometimes a great many classes. All in all, though, it’s still
regression analysis, involving the conditional mean of Y given X (reducing
to P (Y = 1|X) in the classification context).

One often-claimed distinction between statistics and ML is that the former
is based on the notion of a sample from a population whereas the latter
is concerned only with the content of the data itself. But this difference
is more perceived than real. The idea of cross-validation is central to ML
methods, and since that approach is intended to measure how well one’s
model generalizes beyond our own data, it is clear that ML people do think
in terms of samples after all.

So, at the end of the day, we all are doing regression analysis, and this book
takes this viewpoint.

Intended audience:

This book is aimed at both practicing professionals and use in the class-
room. It aims to be both accessible and valuable to such diversity of read-
ership.

Minimal background: The reader must of course be familiar with terms
like confidence interval, significance test and normal distribution, and is
assumed to have knowledge of basic matrix algebra, along with some ex-
perience with R. Many readers will have had at least some prior exposure
to regression analysis, but this is not assumed, and the subject is devel-
oped from the beginning. Very elementary notions of expected value are
assumed, but math stat is needed only for readers who wish to pursue the
Mathematical Complements sections at the end of most chapters. Many
chapters also have Computational Complements sections, which present
advanced details of the usage of R and other computational issues.

The book can be used as a text at either the undergraduate or graduate
level. At the undergraduate level, a basic course might cover Chapters 1, 2,
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3, 5, 6 and 7, plus further topics as time permits. A graduate-level course
with an undergraduate prerequisite might focus on the remaining chapters,
plus the Mathematical Complements sections of all of the chapters.

Those who wish to use the book as a course text should find that all their
favorite topics are here, just organized differently and presented in a fresh,
modern point of view.

There is little material on Bayesian methods (meaning subjective priors, as
opposed to empirical Bayes). This is partly due to author interest, but also
because the vast majority of R packages for regression and classification
do not take a Bayesian approach. However, armed with the solid general
insights into predictive statistics that this book hopes to provide, the reader
would find it easy to go Bayesian in this area.

Code and Software:

Code is displayed explicitly wherever feasible, as this makes concepts more
concrete, and facilitates more “hands-on” learning.

In most cases, data wrangling/data cleaning code is shown, not only for
the purpose of ‘hands-on” learning, but also to highlight the importance of
those topics.

The book also makes use of some of my research results and associated
software. The latter is in my package regtools, available from GitHub.

In many cases, code is also displayed within the text, so as to make clear
exactly what the algorithms are doing.

Thanks

Conversations with a number of people have directly or indirectly enhanced
the quality of this book, among them Charles Abromaitis, Stuart Ambler,
Doug Bates, Oleksiy Budilovsky, Yongtao Cao, Frank Harrell, Benjamin
Hofner, Jiming Jiang, Michael Kane, Hyunseung Kang, Erin McGinnis,
John Mount, Art Owen, Ariel Shin, Yu Wu, Yingkang Xie, Achim Zeileis
and Jiaping Zhang.

Thanks go to my editor, John Kimmel, for his encouragement and patience,
and to the internal reviewers, David Giles and ... Of course, I cannot put
into words how much I owe to my wonderful wife Gamis and my daughter
Laura, both of whom inspire all that I do, including this book project.

A final comment:

My career has evolved quite a bit over the years. I wrote my dissertation in
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abstract probability theory, but turned my attention to applied statistics
soon afterward. I was one of the founders of the Department of Statistics
at UC Davis, but a few years later transferred into the new Computer
Science Department. Yet my interest in regression has remained constant
throughout those decades.

I published my first research papers on regression methodology way back
in the 1980s, and the subject has captivated me ever since. My long-held
wish has been to write a regression book, and thus one can say this work is
30 years in the making. I hope you find its goals both worthy and attained.
Above all, I simply hope you find it an interesting read.



Chapter 1

Setting the Stage

This chapter will set the stage for the book, previewing many of the ma-
jor concepts to be presented in later chapters. The material here will be
referenced repeatedly throughout the book.

1.1 Example: Predicting Bike-Sharing Activ-
ity

Let’s start with a well-known dataset, Bike Sharing, from the Machine
Learning Repository at the University of California, Irvine.1 Here we have
daily/hourly data on the number of riders, weather conditions, day-of-week,
month and so on. Regression analysis, which relates the mean of one vari-
able to the values of one or more other variables, may turn out to be useful
to us in at least two ways:

• Prediction:

The managers of the bike-sharing system may wish to predict rider-
ship, say for the following question:

Tomorrow, Sunday, is expected to be sunny and cool, say
62 degrees Fahrenheit. We may wish to predict the number
of riders, so that we can get some idea as to how many bikes
will need repair. We may try to predict ridership, given the

1Available at https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset.

1
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weather conditions, day of the week, time of year and so
on.

• Description:

We may be interested in determining what factors affect ridership.
How much effect, for instance, does wind speed have in influencing
whether people wish to borrow a bike?

These twin goals, Prediction and Description, will arise frequently in this
book. Choice of methodology will often depend on the goal in the given
application.

1.2 Example of the Prediction Goal: Bodyfat

Prediction is difficult, especially about the future — baseball great, Yogi
Berra

The great baseball player, Yogi Berra was often given to malapropisms, one
of which was supposedly was the quote above. But there is more than a
grain of truth to this, because indeed we may wish to “predict” the present
or even the past.

For example, consiser the bodyfat data set, available in the R package,
mfp, available on CRAN. (See Section 1.20.1 for information on CRAN
packages, a numbr of which will be used in this book.) Body fat is expen-
sive and unwieldy to measure directly, as it involves underwater weighing.
Thus it would be highly desirable to “predict” that quantity from easily
measurable variables such as height, age, weight, abdomen circumference
and so on.

In scientific studies of ancient times, there may be similar situations in
which we “predict” unknown quantities from known ones.

1.3 Example of the Description Goal: Who
Clicks Web Ads?

One of the most common applications of machine learning methods is in
marketing. Sellers wish to learn which types of people might be interested
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in a given product. The reader is probably familiar with Amazon’s recom-
mender system, in which the viewer who indicates interest in a given book,
say, is shown a list of similar books.2

We will discuss recommender systems at several points in this book, be-
ginning with Section 3.2.4. A more general issue is the click-through rate
(CTR), meaning the proportion of viewers of a Web page who click on a
particular ad on the page. A simple but very engaging example was dis-
cussed online (R-statistics Blog, 2010). The data consist of one observation
per state of the U.S. There was one predictor, the proportion of college
graduates in the state, and a response variable, the click-through rate.

One approach to learning what relation, if any, educational level has to
CTR would be to use regression analysis. We will see how to do so in
Section 1.8.

1.4 Optimal Prediction

Even without any knowledge of statistics, many people would find it rea-
sonable to predict via subpopulation means. In the above bike-sharing
example, say, this would work as follows.

Think of the “population” of all days, past, present and future, and their
associated values of number of riders, weather variables and so on.3 Our
data set is considered a sample from this population. Now consider the
subpopulation consisting of all days with the given conditions: Sundays,
sunny skies and 62-degree-temperatures.

It is intuitive that:

A reasonable prediction for tomorrow’s ridership would be the
mean ridership among all days in the subpopulation of Sundays
with sunny skies and 62-degree-temperatures.

In fact, such a strategy is optimal, in the sense that it minimizes our ex-
pected squared prediction error. We will defer the proof to Section 1.19.3
in the Mathematical Complements section at the end of this chapter, but

2As a consumer, I used to ignore these, but not with the sharp decline in the num-
ber of bricks-and-mortar bookstores which I could browse, I now often find Amazon’s
suggestions useful.

3This is a somewhat slippery notion, because there may be systemic differences from
the present and the distant past and distant future, but let’s suppose we’ve resolved that
by limiting our time range.
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what is important for now is to note that in the above prediction rule, we
are dealing with a conditional mean: Mean ridership, given day of the week
is Sunday, skies are sunny, and temperature is 62.

1.5 A Note About E(), Samples and Popula-
tions

To make this more mathematically precise, keep in mind that in this book,
as with many other books, the expected value functional E() refers to popu-
lation mean. Say we are studying personal income, I, for some population,
and we choose a person at random from that population. Then E(I) is not
only the mean of that random variable, but much more importantly, it is
the mean income of all people in that population.

Similarly, we can define condition means, i.e., means of subpopulations.
Say G is gender. Then the conditional expected value, E(I | G = male) is
the mean income of all men in the population.

To illustrate this in the bike-sharing context, let’s define some variables:

• R, the number of riders

• W , the day of the week

• S, the sky conditions, e.g. sunny

• T , the temperature

We would like our prediction R̂ to be4 the conditional mean,

R̂ = E(R | W = Sunday, S = sunny, T = 62) (1.1)

There is one major problem, though: We don’t know the value of the right-
hand side of (1.1). All we know is what is in our sample data, whereas the
right-side of (1.1) is a population value, and thus unknown.

The difference between sample and population is of course at the
very core of statistics. In an election opinion survey, for instance, we
wish to know p, the proportion of people in the population who plan to
vote for Candidate Jones. But typically only 1200 people are sampled, and

4Note that the “hat” notation ˆ is the traditional one for “estimate of.”
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we calculate the proportion of Jones supporters among them, p̂, using that
as our estimate of p. This is why the news reports on these polls always
report the margin of error,5

Similarly, though we would like to know the value of E(R |W = Sunday, S =
sunny, T = 62), it is an unknown population value, and thus must
be estimated from our sample data, which we’ll do later in this chap-
ter.

Readers will greatly profit from constantly keeping in mind this
distinction between populations and samples.

Before going on, a bit of terminology: We will refer to the quantity to be
predicted, e.g. R above, as the response variable, and the quantities used
in prediction, e.g. W , S and T above, as the predictor variables. (By the
way, the machine learning community uses the term features rather than
predictors.)

1.6 Example: Do Baseball Players GainWeight
As They Age?

Though the bike-sharing data set is the main example in this chapter, it
is rather sophisticated for introductory material. Thus we will set it aside
temporarily, and bring in a simpler data set for now. We’ll return to the
bike-sharing example in Section 1.13.

This new dataset involves 1015 major league baseball players, courtesy of
the UCLA Statistics Department. You can obtain the data either from
the UCLA Web page, or as the data set mlb in freqparcoord, a CRAN
package authored by Yingkang Xie and myself. The variables of interest to
us here are player weight W , height H and age A, especially the first two.

Here are the first few records:

> l ibrary ( f r eqparcoord )
> data (mlb )
> head (mlb )

Name Team Pos i t i on Height
1 Adam Donachie BAL Catcher 74
2 Paul Bako BAL Catcher 74
3 Ramon Hernandez BAL Catcher 72
4 Kevin Mi l l a r BAL F i r s t Baseman 72

5Actually the radius of a 95% confidence interval for p.
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5 Chris Gomez BAL F i r s t Baseman 73
6 Brian Roberts BAL Second Baseman 69

Weight Age PosCategory
1 180 22 .99 Catcher
2 215 34 .69 Catcher
3 210 30 .78 Catcher
4 210 35 .43 I n f i e l d e r
5 188 35 .71 I n f i e l d e r
6 176 29 .39 I n f i e l d e r

1.6.1 Prediction vs. Description

Recall the Prediction and Description goals of regression analysis, discussed
in Section 1.1. With the baseball player data, we may be more interested
in the Description goal, such as:

Ahtletes strive to keep physically fit. Yet even they may gain
weight over time, as do people in the general population. To
what degree does this occur with the baseball players? This
question can be answered by performing a regression analysis of
weight against height and age, which we’ll do in Section 1.9.1.2.6

On the other hand, there doesn’t seem to be much of a Prediction goal
here. It is hard to imagine much need to predict a player’s weight. One
example of such is working with missing data, in which we wish to predict
any value that might be unavailable.

However, for the purposes of explaining the concepts, we will often phrase
things in a Prediction context. In the baseball player example, it will turn
out that by trying to predict weight, we can deduce effects of height and
age. In particular, we can answer the question posed above concerning
weight gain over time.

So, suppose we will have a continuing stream of players for whom we only
know height (we’ll bring in the age variable later), and need to predict their
weights. Again, we will use the conditional mean to do so. For a player of
height 72 inches, for example, our prediction might be

Ŵ = E(W | H = 72) (1.2)

6The phrasing here, “regression analysis of ... against ...,” is commonly used in this
field. The quantity before “against” is the response variable, and the ones following are
the predictors.
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Again, though, this is a population value, and all we have is sample data.
How will we estimate E(W | H = 72) from that data?

First, some important notation: Recalling that µ is the traditional Greek
letter to use for a population mean, let’s now use it to denote a function
that gives us subpopulation means:

For any height t, define

µ(t) = E(W | H = t) (1.3)

which is the mean weight of all people in the population who
are of height t.

Since we can vary t, this is indeed a function, and it is known
as the regression function of W on H.

So, µ(72.12) is the mean population weight of all players of height 72.12,
µ(73.88) is the mean population weight of all players of height 73.88, and
so on. These means are population values and thus unknown, but they do
exist.

So, to predict the weight of a 71.6-inch tall player, we would use µ(71.6) —
if we knew that value, which we don’t, since once again this is a population
value while we only have sample data. So, we need to estimate that value
from the (height, weight) pairs in our sample data, which we will denote
by (H1,W1), ...(H1015,W1015). How might we do that? In the next two
sections, we will explore ways to form our estimate, µ̂(t).

1.6.2 A First Estimator, Using a Nonparametric Ap-
proach

Our height data is only measured to the nearest inch, so instead of esti-
mating values like µ(71.6), we’ll settle for µ(72) and so on. A very natural
estimate for µ(72), again using the “hat” symbol to indicate “estimate of,”
is the mean weight among all players in our sample for whom height is 72,
i.e.

µ̂(72) = mean of all Wi such that Hi = 72 (1.4)

R’s tapply() can give us all the µ̂(t) at once:
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> l ibrary ( f r eqparcoord )
> data (mlb )
> muhats <− tapply (mlb$Weight , mlb$Height ,mean)
> muhats

67 68 69 70 71 72
172.5000 173.8571 179.9474 183.0980 190.3596 192.5600

73 74 75 76 77 78
196.7716 202.4566 208.7161 214.1386 216.7273 220.4444

79 80 81 82 83
218.0714 237.4000 245.0000 240.5000 260.0000

In case you are not familiar with tapply(), here is what just happened. We
asked R to partition the Weight variable into groups according to values
of the Height variable, and then compute the mean weight in each group.
So, the mean weight of people of height 72 in our sample was 192.5600.
In other words, we would set µ̂(72) = 192.5600, µ̂(74) = 202.4566, and so
on. (More detail on tapply() is given in the Computational Complements
section at the end of this chapter.)

Since we are simply performing the elementary statistics operation of esti-
mating population means from samples, we can form confidence intervals
(CIs). For this, we’ll need the “n” and sample standard deviation for each
height group:

> tapply (mlb$Weight , mlb$Height , length )
67 68 69 70 71 72 73 74 75 76 77 78
2 7 19 51 89 150 162 173 155 101 55 27

79 80 81 82 83
14 5 2 2 1

> tapply (mlb$Weight , mlb$Height , sd )
67 68 69 70 71 72

10.60660 22.08641 15.32055 13.54143 16.43461 17.56349
73 74 75 76 77 78

16.41249 18.10418 18.27451 19.98151 18.48669 14.44974
79 80 81 82 83

28.17108 10.89954 21.21320 13.43503 NA

Here is how that first call to tapply() worked. Recall that this function
partitions the data by the Height variables, resulting in a weight vector for
each height value. We need to specify a function to apply to each of those
vectors, which in this case we choose to be R’s length() function. The
latter then gives us the count of weights for each height value, the “n” that
we need to form a CI.
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An approximate 95% CI for µ(72), for example, is then

190.3596± 1.96
17.56349√

150
(1.5)

or about (187.6,193.2).

The above analysis takes what is called a nonparametric approach. To see
why, let’s proceed to a parametric one, in the next section.

1.6.3 A Possibly Better Estimator, Using a Linear Model

All models are wrong, but some are useful — famed statistician George Box

So far, we have assumed nothing about the shape that µ(t) would have, if it
were plotted on a graph. Again, it is unknown, but the function does exist,
and thus it does correspond to some curve. But we might consider making
an assumption on the shape of this unknown curve. That might seem odd,
but you’ll see below that this is a very powerful, intuitively reasonable idea.

Toward this end, let’s plot those values of µ̂(t) we found above. We run

> plot ( 67 : 83 , muhats )

producing Figure 1.1.

Interestingly, the points in this plot seem to be near a straight line, sug-
gesting that our unknown function µ̂(t) has a linear form, i.e. that

µ(t) = c+ dt (1.6)

for some constants c and d, over the range of t appropriate to human heights.
Or, in English,

mean weight = c+ d× height (1.7)

Don’t forget the word mean here! We are assuming that the mean weights
in the various height subpopulations have the form (1.6), NOT that weight
itself is this function of height, which can’t be true.

This is called a parametric model for µ(t), with parameters c and d. We
will use this below to estimate µ(t). Our earlier estimation approach, in
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> lmout <− lm(mlb$Weight ˜ mlb$Height )
> lmout
Call :
lm( formula = mlb$Weight ˜ mlb$Height )

C o e f f i c i e n t s :
( I n t e r c ep t ) mlb$Height

−151.133 4 .783

This gives ĉ = −151.133 and d̂ = 4.783.

We would then set, for instance (using the caret instead of the hat, so as
to distinguish from our previous estimator)

µ̌(72) = −151.133 + 4.783× 72 = 193.2666 (1.8)

We need not type this expression into R by hand. Here is why: Writing
the expression in matrix-multiply form, it is

(−151.133, 4.783)

(
1
72

)
(1.9)

Be sure to see the need for that 1 in the second factor; it is used to mul-
tiply the -151.133. Now let’s use that matrix form to show how we can
conveniently compute that value in R:8

The key is that we can exploit the fact that R’s coef() function fetches the
coefficients c and d for us:

> coef ( lmout )
( I n t e r c ep t ) mlb$Height
−151.133291 4.783332

Recalling that the matrix-times-matrix operation in R is specified via the
%∗% operator, we can now obtain our estimated value of µ(72) as

> coef ( lmout ) %∗% c (1 , 72 )
[ , 1 ]

[ 1 , ] 193 .2666

8In order to gain a more solid understanding of the concepts, we will refrain from
using R’s predict() function for now. It will be introduced later, though, in Section
4.4.4.
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So, using this model, we would predict a slightly heavier weight than our
earlier prediction.

We can form a confidence interval from this too, which for the 95% level
will be

µ̂(72)± 1.96 s.e.[(µ̂(72)] (1.10)

where s.e.[] signifies standard error, the estimated standard deviation of an
estimator. Here µ̂(72), being based on our random sample data is itself
random, i.e. it will vary from sample to sample. It thus has a standard de-
viation, which we call the standard error. We will see later that s.e.[(µ̂(72)]
is to be obtainable using the R vcov() function:

> tmp <− c (1 , 72 )
> sqrt (tmp %∗% vcov ( lmout ) %∗% tmp)

[ , 1 ]
[ 1 , ] 0 .6859655
> 193.2666 + 1.96 ∗ 0.6859655
[ 1 ] 194 .6111
> 193.2666 − 1 .96 ∗ 0.6859655
[ 1 ] 191 .9221

(More detail on vcov() and coef() as R functions is presented in Section
1.20.3 in the Computational Complements section at the end of this chap-
ter.)

So, an approximate 95% CI for µ(72) under this model would be about
(191.9,194.6).

1.7 Parametric vs. Nonparametric Models

Now here is a major point: The CI we obtained from our linear model,
(191.9,194.6), was narrower than the nonparametric approach gave us,
(187.6,193.2); the former has width of about 2.7, while the latter’s is 5.6.
In other words:

A parametric model is — if it is (approximately) valid — more
powerful than a nonparametric one, yielding estimates of a re-
gression function that tend to be more accurate than what the
nonparametric approach gives us. This should translate to more
accurate prediction as well.
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Why should the linear model be more effective? Here is some intuition,
say for estimating µ(72): As will be seen in Chapter 2, the lm() function
uses all of the data to estimate the regression coefficients. In our case here,
all 1015 data points played a role in the computation of µ̌(72), whereas
only 150 of our observations were used in calculating our nonparametric
estimate µ̂(72). The former, being based on much more data, should tend
to be more accurate.9

On the other hand, in some settings it may be difficult to find a valid para-
metric model, in which case a nonparametric approach may be much more
effective. This interplay between parametric and nonparametric models will
be a recurring theme in this book.

1.8 Example: Click-Through Rate

Let’s try a linear regression model on the CTR data in Section 1.3:

> c t r <−
read . table ( ’ State CTR Date . txt ’ , header=T, sep=’ \ t ’ )

> lm( c t r$CTR ˜ c t r$Col l ege Grad )
. . .
C o e f f i c i e n t s :

( I n t e r c ep t ) c t r$Col l ege Grad
0.01412 −0.01373

. . .

We can put this in perspective by considering the standard deviation of
College Grad:

> sd ( c t r$Col l ege Grad )
[ 1 ] 0 .04749804

So, a “typical” difference between one state and another is something like
0.05. Multiplying by the -0.01373 figure above, this translates to a difference
in click-through rate of about 0.0005. This is certainly not enough to have
any practical meaning.

So, putting aside such issues as whether our data constitute a sample from
some “population” of potential states, the data suggest that there is really
no substantial relation between educational level and CTR.

9Note the phrase tend to here. As you know, in statistics one usually cannot say that
one estimator is always better than another, because anomalous samples do have some
nonzero probability of occurring.
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1.9 Several Predictor Variables

Now let’s predict weight from height and age. We first need some notation.

Say we are predicting a response variable Y from variables X(1), ..., X(k).
The regression function is now defined to be

µ(t1, ..., tk) = E(Y | X(1) = t1, ..., X
(k) = tk) (1.11)

In other words, µ(t1, ..., tk) is the mean Y among all units (people, cars,
whatever) in the population for which X(1) = t1, ..., X

(k) = tk.

In our baseball data, Y , X(1) and X(2) might be weight, height and age,
respectively. Then µ(72, 25) would be the population mean weight among
all players of height 72 and age 25.

We will often use a vector notation

µ(t) = E(Y | X = t) (1.12)

with t = (t1, ..., tk)
′ and X = (X(1), ..., X(k))′, where ′ denotes matrix

transpose.10

1.9.1 Multipredictor Linear Models

Let’s consider a parametric model for the baseball data,

mean weight = c+ d× height + e× age (1.14)

1.9.1.1 Estimation of Coefficients

We can again use lm() to obtain sample estimates of c, d and e:

10Our vectors in this book are column vectors. However, since they occupy a lot of
space on a page, we will often show them as transposes of rows. For instance, we will
often write (5, 12, 13)′ instead of





5
12
13



 (1.13)
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> lm(mlb$Weight ˜ mlb$Height + mlb$Age)
. . .
C o e f f i c i e n t s :
( I n t e r c ep t ) mlb$Height mlb$Age

−187.6382 4 .9236 0 .9115

Note that the notation mlb$Weight ˜mlb$Height + mlb$Age simply means
“predict weight from height and age.” The variable to be predicted is spec-
ified to the left of the tilde, and the predictor variables are written to the
right of it. The + does not mean addition.

A shorter formulation is

> lm(Weight ˜ Height + Age , data=mlb)

and, shorter still,

> lm(Weight ˜ . , data=mlb [ , 4 : 6 ] )

where the period means “all the other variables.”

So, the output shows us the estimated coefficientsis, e.g. d̂ = 4.9236. So
our estimated regression function is

µ̂(t1, t2) = −187.6382 + 4.9236 t1 + 0.9115 t2 (1.15)

where t1 and t2 are height and age, respectively.

Setting t1 = 72 and t2 = 25, we find that

µ̂(72, 25) = 189.6485 (1.16)

and we would predict the weight of a 72-inch tall, age 25 player to be about
190 pounds.

1.9.1.2 The Description Goal

It was mentioned in Section 1.1 that regression analysis generally has one or
both of two goals, Prediction and Description. In light of the latter, some
brief comments on the magnitudes of the estimated coefficientsis would be
useful at this point:
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• We estimate that, on average (a key qualifier), each extra inch in
height corresponds to almost 5 pounds of additional weight.

• We estimate that, on average, each extra year of age corresponds to
almost a pound in extra weight.

That second item is an example of the Description goal in regression anal-
ysis, We may be interested in whether baseball players gain weight as they
age, like “normal” people do. Athletes generally make great efforts to stay
fit, but we may ask how well they succeed in this. The data here seem to
indicate that baseball players indeed are prone to some degree of “weight
creep” over time.

1.9.2 Nonparametric Regression Estimation: k-NN

Now let’s drop the linear model assumption (1.14), and estimate our re-
gression function “from scratch,” as we did in Section 1.6.2. But here we
will need to broaden our approach, as follows.

1.9.2.1 Looking at Nearby Points

Again say we wish to estimate, using our data, the value of µ(72, 25). A
potential problem is that there likely will not be any data points in our
sample that exactly match those numbers, quite unlike the situation in
(1.4), where µ̂(72) was based on 150 data points. Let’s check:

> z <− mlb [ mlb$Height == 72 & mlb$Age == 25 , ]
> z
[ 1 ] Name Team Pos i t i on
[ 4 ] Height Weight Age
[ 7 ] PosCategory
<0 rows> (or 0−length row .names)

So, indeed there were no data points matching the 72 and 25 numbers. Since
the ages are recorded to the nearest 0.01 year, this result is not surprising.
But at any rate we thus cannot set µ̂(72, 25) to be the mean weight among
our sample data points satisfying those conditions, as we did in Section
1.6.2. And even if we had had a few data points of that nature, that would
not have been enough to obtain an accurate estimate µ̂(72, 25).

Instead, what is done is use data points that are close to the desired pre-
diction point. Again taking the weight/height/age case as a first example,
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this means that we would estimate µ(72, 25) by the average weight in our
sample data among those data points for which height is near 72 and age
is near 25.

1.9.3 Measures of Nearness

Nearness is generally defined as Euclidean distance:

distance[(s1, s2, ..., sk), (t1, t2, ..., tk)] =
√
((s1 − t1)2 + ...+ (sk − tk)2

(1.17)

For instance, the distance from a player in our sample of height 72.5 and
age 24.2 to the point (72,25) would be

√
(72.5− 72)2 + (24.2− 25)2 = 0.9434 (1.18)

Note that the Euclidean distance between s = (s1, ..., sk and t = (t1, ..., tk
is simply the Euclidean norm of the difference s− t (Section A.1(.

1.9.3.1 The k-NN Method

The k-Nearest Neighbor (k-NN) method for estimating regression functions
is simple: Find the k data points in our sample that are closest to the
desired prediction point, and average their Y values.

A question arises as to how to choose the value of k. Too large a value
means we are including “nonrepresentative” data points, but too small a
value gives too us few points to average for a good estimate. We will return
to this question later, but will note that due to this nature of k, will call k
a tuning parameter. Various tuning parameters will come up in this book.

1.9.4 The Code

Here is code to perform k-NN regression estimation:

knnest <− function ( xydata , r eg e s tp t s , k ) {
require (FNN)
yco l <− ncol ( xydata )
x <− xydata [ ,− ycol ,drop = F]
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y <− xydata [ , y co l ]
i f ( i s . vector ( r e g e s t p t s ) ) {

r e g e s t p t s <− matrix ( r eg e s tp t s ,nrow=1)
colnames ( r e g e s t p t s ) <− colnames ( x )

}
tmp <− rbind (x , r e g e s t p t s )
tmp <− scale (tmp)
x <− tmp [ 1 :nrow( x ) , ]
r e g e s t p t s <− tmp [ (nrow( x )+1) :nrow(tmp ) , ]
i f ( ! i s .matrix ( r e g e s t p t s ) )

r e g e s t p t s <− matrix ( r eg e s tp t s ,nrow=1)
tmp <− get . knnx (data=x , query=rege s tp t s , k=k)
idx <− tmp$nn . index
meannear <− function ( idxrow ) mean( y [ idxrow ] )
apply ( idx , 1 , meannear )

}

Each row of regestpts is a point at which we wish to estimate the regression
function. For example, let’s estimate µ(72, 25), based on the 20 nearest
neighbors at each point:

> knnest (mlb [ , c ( 4 , 6 , 5 ) ] , c ( 72 , 25 ) , 20 , s c a l e f i r s t=TRUE)
[ 1 ] 188 .9

So we would predict the weight of a 72-inches tall, age 25 player to be
about 189 pounds, not much different — in this instance — from what we
obtained earlier with the linear model.

The call to the built-in R function scale() is useful if our predictor vari-
ables are of widely different magnitudes. In such a setting, the larger-
magnitude variables are in essence being given heavier weightings in the
distance computation. However, rerunning the above analysis without scal-
ing (not shown) produces the same result.

1.10 After Fitting a Model, How Do We Use
It for Prediction?

As noted, our goal in regression analysis could be either Prediction or De-
scription (or both). How specifically does the former case work?
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1.10.1 Parametric Settings

The parametric case is the simpler one. We fit our data, write down the
result, and then use that result in the future whenever we are called upon
to do a prediction.

Recall Section 1.9.1.1. It was mentioned there that in that setting, we prob-
ably are not interested in the Prediction goal, but just as an illustration,
suppose we do wish to predict. We fit our model to our data — called
our training data — resulting in our estimated regression function, (1.15).
From now on, whenever we need to predict a player’s weight, given his
height and age, we simply plug those values into (1.15).

1.10.2 Nonparametric Settings

The nonparametric case is a little more involved, because we have no explicit
equation like (1.15). Nevertheless, we use our training data in the same way.
For instance, say we need to predict the weight of a player whose height
and age are 73.2 and 26.5, respectively. Our predicted value will be then
µ̂(73.2, 26.5). To obtain that, we go back to our training data, find the k
nearest points to (73.2,26.5), and average the weights of those k players.
We would go through this process each time we are called upon to perform
a prediction.

A variation:

A slightly different approach, which we will use here, is as follows. Denote
our training set data as (X1, Y1), ..., (Xn, Yn), where again the Xi are typi-
cally vectors, e.g. (height,age). We estimate our regression function at each
of the points Xi, forming µ̂(Xi), i = 1, ..., n. Then, when faced with a new
case (X,Y ) for which Y is unknown, we find the single closest Xi to X,
and guess Y to be 1 or 0, depending on whether µ̂(Xi) > 0.5.

1.11 Underfitting, Overfitting, Bias and Vari-
ance

One major concern in model development is overfitting, meaning to fit such
an elaborate model that it “captures the noise rather than the signal.”
This description is often heard these days, but it is vague and potentially
misleading. We will discuss it in detail in Chapter 9, but it is of such
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importance that we should introduce it here in this prologue chapter.

The point is that, after fitting our model, we are concerned that it may
fit our training data well but not predict well on new data in the future.11

Let’s look into this further:

1.11.1 Intuition

To see how overfitting may occur, consider the famous bias-variance trade-
off, illustrated in the following example. Again, keep in mind that the
treatment will at this point just be intuitive, not mathematical.

Long ago, when I was just finishing my doctoral study, I had my first
experience in statistical consulting. A chain of hospitals was interested
in comparing the levels of quality of care given to heart attack patients
at its various locations. A problem was noticed by the chain regarding
straight comparison of raw survival rates: One of the locations served a
largely elderly population, and since this demographic presumably has more
difficulty surviving a heart attack, this particular hospital may misleadingly
appear to be giving inferior care.

An analyst who may not realize the age issue here would thus be biasing
the results. The term “bias” here doesn’t mean deliberate distortion of
the analysis, just that one is using a less accurate model than one should,
actually “skewed” in the common vernacular. And it is permanent bias, in
the sense that it won’t disappear, no matter how large a sample we take.

Such a situation, in which an important variable is not included in the
analysis, is said to be underfitted. By adding more predictor variables in a
regression model, in this case age, we are reducing bias.

Or, suppose we use a regression model which is linear in our predictors,
but the true regression function is nonlinear. This is bias too, and again it
won’t go away even if we make the sample size huge.

On the other hand, we must keep in mind that our data is a sample from
a population. In the hospital example, for instance, the patients on which
we have data can be considered a sample from the (somewhat conceptual)
population of all patients at this hospital, past, present and future. A
different sample would produce different regression coefficient estimates.
In other words, there is variability in those coefficients from one sample to
another, i.e. variance. We hope that that variance is small, which gives us

11Note that this assumes that nothing changes in the system under study between the
time we collect our training data and the time we do future predictions.
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confidence that the sample we have is representative.

But the more predictor variables we have, the more collective variability
there is in the inputs to our regression calculations, and thus the larger
the variances of the estimated coefficients.12 If those variances are large
enough, the benefit of using a lot of predictors may be overwhelmed by the
increased variability of the results. This is called overfitting.

In other words:

In deciding how many (and which) predictors to use, we have
a tradeoff. The richer our model, the less bias, but the more
variance.

In Section 1.19.2 it is shown that for any statistical estimator θ̂ (that has
finite variance),

mean squred error = squared bias + variance

Our estimator here is µ̂(t). This shows the tradeoff: Adding variables, such
as age in the hospital example, reduces squared bias but increases variance.
Or, equivalently, removing variables reduces variance but exacerbates bias.
It may for example be beneficial to accept a little bias in exchange for
a sizable reduction in variance, which we may achieve by removing some
predictors from our model..

The trick is somehow to find a “happy medium,” easier said than done.
Chapter 9 will cover this in depth, but for now, we introduce a common
method for approaching the problem:

1.11.2 Cross-Validation

Toward that end, it is common to artificially create a set of “new” data and
try things out. Instead of using all of our collected data as our training set,
we set aside part of it to serve as simulated “new” data. This is called the
validation set or test set. The remainder will be our actual training data.
In other words, we randomly partition our original data, taking one part as
our training set and the other part to play the role of new data. We fit our
model, or models, to the training set, then do prediction on the test set,
pretending its response variable values are unknown. We then compare to

12I wish to thank Ariel Shin for this interpretation.



22 CHAPTER 1. SETTING THE STAGE

the real values. This will give us an idea of how well our models will predict
in the future. This is called cross-validation.

The above description is a little vague, and since there is nothing like code
to clarify the meaning of an algorithm, let’s develop some. Here first is
code to do the random partitioning of data, with a proportion p to go to
the training set:

xva lpar t <− function (data , p ) {
n <− nrow(data )
n t ra in <− round(p∗n)
t r a i n i d x s <− sample ( 1 : n , ntra in , replace=FALSE)
va l i d i d x s <− setd i f f ( 1 : n , t r a i n i d x s )
l i s t ( t r a i n=data [ t r a i n i dx s , ] , v a l i d=data [ v a l i d i dx s , ] )

}

R’s setdiff() function does set differencing, e.g.

> a <− c ( 5 , 2 , 8 , 12 )
> b <− c ( 8 , 5 , 88 )
# eve ry t h in g in a but not b
> setd i f f ( a , b )
[ 1 ] 2 12

This sets up the partitioning of the data into training and test sets.

Now to perform cross-validation, we’ll consider the parametric and non-
parametric cases separately, in the next two sections.

1.11.3 Linear Model Case

To do cross-validation for linear models, we could use this code.13

1.11.3.1 The Code

# arguments :
#
# data : f u l l data
# yco l : column number o f resp . var .
# predvars : column numbers o f p r e d i c t o r s

13There are sophisticated packages on CRAN for this, such as cvTools. But to keep
things simple, and to better understand the concepts, we will write our own code. Sim-
ilarly, as mentioned, we will not use R’s predict() function for the time being.
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# p : prop . f o r t r a i n i n g s e t
# meanabs : see ’ va lue ’ be low

# va lue : i f meanabs i s TRUE, the mean ab s o l u t e
# pr ed i c t i on error ; o therwise , an R l i s t
# conta in ing pred . , r e a l Y

xvallm <− function (data , ycol , predvars , p , meanabs=TRUE){
tmp <− xva lpar t (data , p )
t r a i n <− tmp$ t r a i n
va l i d <− tmp$va l i d
# f i t model to t r a i n i n g data
t r a i ny <− t r a i n [ , y co l ]
t r a i np r ed s <− t r a i n [ , predvars ]
# we ’ l l be us ing matrices , e . g . in lm ()
t r a i np r ed s <− as .matrix ( t r a i np r ed s )
lmout <− lm( t r a i ny ˜ t r a i np r ed s )
# app ly f i t t e d model to v a l i d a t i o n data
va l i dp r ed s <− as .matrix ( v a l i d [ , predvars ] )
predy <− cbind (1 , va l i dp r ed s )%∗% coef ( lmout )
r e a l y <− va l i d [ , y co l ]
i f (meanabs ) return (mean(abs ( predy − r e a l y ) ) )
l i s t ( predy = predy , r e a l y = r ea l y )

}

1.11.3.2 Matrix Partitioning

Note that in the line

predy <− cbind (1 , va l i dp r ed s )%∗% coef ( lmout )

we have exploited the same matrix multiplication property as in (1.9). Here,
though, we have applied it at the matrix level. Such operations will become
common in some parts of this book, so a brief digression will be worthwhile.
For a concrete numerical example, consider the vector

(
(−1, 2)(3, 8)′

(2, 5)(3, 8)′

)
=

(
13
46

)
(1.19)
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The reader should verify that “distributing out” that common (3, 8)′ factor
is valid algebra:

(
−1 2
2 5

)(
3
8

)
=

(
13
46

)
(1.20)

1.11.3.3 Applying the Code

Let’s try cross-validtion on the weight/height/age data, using mean abso-
lute prediction error as our criterion for prediction accuracy:

> xvallm (mlb , 5 , c ( 4 , 6 ) , 2/3)
[ 1 ] 12 .94553

So, on average we would be off by about 13 pounds. We might improve
upon this by using the data’s Position variable, but we’ll leave that for
later.

1.11.4 k-NN Case

Here is the code for performing cross-validation for k-NN:

# arguments :
#
# data : f u l l data
# yco l : column number o f resp . var .
# predvars : column numbers o f p r e d i c t o r s
# k : number o f neare s t ne i ghbor s
# p : prop . f o r t r a i n i n g s e t
# meanabs : see ’ va lue ’ be low

# va lue : i f meanabs i s TRUE, the mean ab s o l u t e
# pr ed i c t i on error ; o therwise , an R l i s t
# conta in ing pred . , r e a l Y

xvalknn <−
function (data , ycol , predvars , k , p , meanabs=TRUE){

tmp <− xva lpar t (data , p )
t r a i n <− tmp$ t r a i n
va l i d <− tmp$va l i d
t ra inxy <− data [ , c ( predvars , yco l ) ]
va l i dx <− va l i d [ , predvars ]
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va l i dx <− as .matrix ( va l i dx )
predy <− knnest ( tra inxy , va l idx , k )
r e a l y <− va l i d [ , y co l ]
i f (meanabs ) return (mean(abs ( predy − r e a l y ) ) )
l i s t ( predy = predy , r e a l y = r ea l y )

}

So, how well does k-NN predict?

> xvallm (mlb , 5 , c ( 4 , 6 ) , 2/3)
[ 1 ] 12 .94553

The two methods gave similar results. However, this depended on choosing
a value of 20 for k, the number of nearest neighbors. We could have tried
other values of k, and in fact could have used cross-validation to choose the
“best” value.

1.11.5 Choosing the Partition Sizes

One other problem, of course, is that we did have a random partition of
our data. A different one might have given substantially different results.

In addition, there is the matter of choosing the sizes of the training and
validation sets (e.g. via the argument p in xvalpart()). We have a classical
tradeoff at work here: Let k be the size of our training set. If we make k
too large, the validation set will be too small for an accurate measure of
prediction accuracy. We won’t have that problem if we set k to a smaller
size, but then we are masuring the predictive ability of only k observations,
whereas in the end we will be using all n observations for predicting new
data.

The Leaving One-Out Method solves this problem, albeit at the expense of
much more computation. It will be presented in Section 2.9.5.

1.12 Rough Rule of Thumb

The issue of how many predictors to use to simultaneously avoid overfitting
and still produce a good model is nuanced, and in fact this is still not fully
resolved. Chapter 9 will be devoted to this complex matter.

Until then, though it is worth using the following:
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Rough Rule of Thumb (Tukey): For a data set consisting
of n observations, use fewer than

√
(n) predictors.

1.13 Example: Bike-Sharing Data

We now return to the bike-sharing data. Our little excursion to the simpler
data set, involving baseball player weights and heights, helped introduce
the concepts in a less complex setting. The bike-sharing data set is more
complicated in several ways:

• Complication (a): It has more potential predictor variables.

• Complication (b): It includes some nominal (or categorical) vari-
ables, such as Day of Week. The latter is technically numeric, 0
through 6, but those codes are just names. Hence the term nominal.
In R, by the way, the formal term for such variables is factors.

The problem is that there is no reason, for instance, tha Sunday,
Thursday and Friday should have an ordinal relation in terms of rid-
ership just because 0 < 4 < 5.

• Complication (c): It has some potentially nonlinear relations. For
instance, people don’t like to ride bikes in freezing weather, but they
are not keen on riding on really hot days either. Thus we might
suspect that the relation of ridership to temperature rises at first,
eventually reaching a peak, but declines somewhat as the temperature
increases further.

Now that we know some of the basic issues from analyzing the baseball
data, we can treat this more complicated data set.

Let’s read in the bike-sharing data. We’ll restrict attention to the first
year,14 and since we will focus on the registered riders, let’s shorten the
name for convenience:

> shar <− read . csv ( ”day . csv ” , header=T)
> shar <− shar [ 1 : 3 6 5 , ]
> names( shar ) [ 1 5 ] <− ” reg ”

14There appears to have been some systemic change in the second year, and while this
could be modeled, we’ll keep things simple by considering only the first year.
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Thus a linear model of the form

mean ridership = c+ d× temperature (1.21)

would seem inappropriate. But don’t give up so quickly! A model like

mean ridership = c+ d× temperature + e× temperature2 (1.22)

i.e., with a temperature-squared term added, might work fine. A negative
value for e would give us the “first up, then later down” behavior we want
our model to have.

And there is good news — the model (1.22) is actually linear! We say that
the expression is linear in the parameters, even though it is nonlinear with
respect to the temperature variable. This means that if we multiply each
of c, d and e by, say, 8, then the values of the left and right sides of the
equation both increase eightfold.

Anotber way to see this is that in calling lm(), we can simply regard
squared temperature as a new variable:

> shar$temp2 <− shar$tempˆ2
> lm( shar$ reg ˜ shar$temp + shar$temp2 )

Call :
lm( formula = shar$ reg ˜ shar$temp + shar$temp2 )

C o e f f i c i e n t s :
( I n t e r c ep t ) shar$temp shar$temp2

−1058 16133 −11756

And note that, sure enough, the coefficient of the squared term, ê =
−11756, did indeed turn out to be negative.

Of course, we want to predict from many variables, not just temperature,
so let’s now turn to Complication (b) cited earlier, the presence of nominal
data. This is not much of a problem either.

Such situations are generally handled by setting up what are called indicator
variables or dummy variables. The former term alludes to the fact that our
variable will indicate whether a certain condition holds or not, with 1 coding
the yes case and 0 indicating no.

We could, for instance, set up such a variable for Tuesday data:
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> shar$ tues <− as . integer ( shar$weekday == 2)

Indeed, we could define six variables like this, one for each of the days
Monday through Saturday. Note that Sunday would then be indicated
indirectly, via the other variables all having the value 0. A direct Sunday
variable would be redundant, and in fact would present mathematical prob-
lems, as we’ll see in Chapter 8. (Actually, R’s lm() function can deal with
factor variables directly, as shown in Section 9.7.5.1. But we take the more
basic route here, in order to make sure the underlying principles are clear.)

However, let’s opt for a simpler analysis, in which we distinguish only be-
tween weekend days and week days, i.e. define a dummy variable that is 1
for Monday through Friday, and 0 for the other days. Actually, those who
assembled the data set already defined such a variable, which they named
workingday.15

We incorporate this into our linear model:

mean reg = c+ d× temp + e× temp2 + f workingday (1.23)

There are several other dummy variables that we could add to our model,
but for this introductory example let’s define just one more:

> shar$ c l ea rday <− as . integer ( shar$weathe r s i t == 1)

So, our regression model will be

mean reg = β0 + β1 temp + β2 temp2

+ β3 workingday + β4 clearday (1.24)

As is traditional, here we have used subscripted versions of the Greek letter
β to denote our equation coefficients, rather than c, d and so on.

So, let’s run this through lm():

> lmout <− lm( reg ˜ temp+temp2+workingday+clearday ,
data = shar [ t e s t , ] )

(The use of the data argument saved multiple typing of the data set name
shar and clutter.)

15More specifically, a value of 1 for this variable indicates that the day is in the
Monday-Friday range and it is not a holiday.
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The return value of lm(), assigned here to lmout, is a very complicated R
object, of class ”lm”. We shouldn’t inspect it in detail now, but let’s at
least print the object, which in R’s interactive mode can be done simply by
typing the name, which automatically calls print() on the object:16

> lmout
. . .
. . .
C o e f f i c i e n t s :
( I n t e r c ep t ) temp temp2

−2310.3 17342.2 −13434.7
workingday c l ea rday

988 .5 760 .3

Remember, the population function µ(t) is unnown, so the βi are unknown.
The above coefficients are merely sample-based estimates. For example,
using our usual “hat” notation to mean “estimate of,” we have that

β̂3 = 988.5 (1.25)

In other words, estimated regression function is

µ̂(t1, t2, t3, t4) = −2310.3+17342.2t1−13434.7t2+988.5t3+760.3t4 (1.26)

where t2 = t21.

So, what should we predict for number of riders on the type of day described
at the outset of this chapter — Sunday, sunny, 62 degrees Fahrenheit? First,
note that the designers of the data set have scaled the temp variable to
[0,1], as

Celsius temperature−minimum

maximum = minimum
(1.27)

where the minimum and maximum here were -8 and 39, respectively. This
form may be easier to understand, as it is expressed in terms of where the
given temperature fits on the normal range of temperatures. A Fahrenheit
temperature of 62 degrees corresponds to a scaled value of 0.525. So, our

16See more detail on this in Section 1.20.3.
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predicted number of riders is

−2310.3+17342.2×0.525−13434.7×0.5252+988.5×0+760.3×1 (1.28)

which as before we can conveniently evaluate as

> coef ( lmout ) %∗% c ( 1 , 0 . 5 25 , 0 . 5 25ˆ2 , 0 , 1 )
[ , 1 ]

[ 1 , ] 3851.673

So, our predicted number of riders for sunny, 62-degree Sundays will be
about 3852.

As noted earlier, one can also form confidence intervals and perform sig-
nificance tests on the βi. We’ll go into this in Chapter 2, but some brief
comments on the magnitudes and signs of the β̂i is useful at this point:

• As noted, the estimated coefficient of temp2 is negative, consistent
with our intuition. Note, though, that it is actually more negative
than when we predicted reg from only temperature and its square.
This is typical, and will be discussed in detail in Chapter 7.

• The estimated coefficient forworkingday is positive. This too matches
our intuition, as presumably many of the registered riders use the
bikes to commute to work. The value of the estimate here, 988.5, in-
dicates that, for fixed temperature and weather conditions, weekdays
tend to have close to 1000 more registered riders than weekends.

• Similarly, the coefficient of clearday suggests that for fixed temper-
ature and day of the week, there are about 760 more riders on clear
days than on other days.

1.13.2 Nonparametric Analysis

Let’s see what k-NN gives us as our predicted value for sunny, 62-degree
Sundays, say with values of 20 and 50 for k:

> knnest ( shar [ , c ( 1 0 , 8 , 1 7 , 1 5 ) ] ,matrix (c ( 0 . 5 25 , 0 , 1 ) ,
nrow=1) ,20)

[ 1 ] 2881 .8
> knnest ( shar [ , c ( 1 0 , 8 , 1 7 , 1 5 ) ] ,matrix (c ( 0 . 5 25 , 0 , 1 ) ,

nrow=1) ,10)
[ 1 ] 3049 .7
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This is quite different from what the linear model gave us. Let’s see how
the two approaches compare in cross-validation:

> xvallm ( shar , 1 5 , c (10 , 18 , 8 , 17 ) , 2/3)
[ 1 ] 519 .8701
> xvalknn ( shar , 1 5 , c (10 , 8 , 17 ) , 20 , 2/3)
[ 1 ] 461 .2426
> xvalknn ( shar , 1 5 , c (10 , 8 , 17 ) , 10 , 2/3)
[ 1 ] 498 .3115

The nonparametric approach did substantially better, possibly indicating
that our linear model was not valid. Of course, there still is the problems
of not knowing what value to use for k, the fact that our partition was
random and so on. These issues will be discussed in detail in succeeding
chapters.

1.14 Interaction Terms

Let’s take another look at (1.24), specifically the term involving the variable
workingday, a dummy indicating a nonholiday Monday through Friday.
Our estimate for β3 turned out to be 988.5, meaning that, holding tem-
perature and the other variables fixed, there are 988.5 additional riders on
workingdays.

But implicit in this model is that the workingday effect is the same on
low-temprerature days as on warmer days. For a broader model that does
not make this assumption, we could add an interaction term, consisting of
a product of workingday and temp:

mean reg = β0 + β1 temp + β2 temp2

+ β3 workingday + β4 clearday (1.29)

+ β5 temp × workingday (1.30)

How does this model work? Let’s illustrate it with a new data set.
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1.14.1 Example: Salaries of Female Programmers and
Engineers

This data is from the 2000 U.S. Census, consisting of 20,090 programmers
and engineers in the Silicon Valley area. The data set is included in the
freqparcoord package on CRAN. Suppose we are working toward a De-
scription goal, specifically the effects of gender on wage income.

As with our bike-sharing data, we’ll add a quadratic term, in this case
on the age variable, reflecting the fact that many older programmers and
engineers encounter trouble finding work after age 35 or so. Let’s restrict
our analysis to workers having at least a Bachelor’s degree, and look at
the variables age, age2, sex (coded 1 for male, 2 for female), wkswrked
(number of weeks worked), ms, phd and wageinc:

> l ibrary ( f r eqparcoord )
> data ( prgeng )
> prgeng$age2 <− prgeng$age ˆ2
> edu <− prgeng$educ
> prgeng$ms <− as . integer ( edu == 14)
> prgeng$phd <− as . integer ( edu == 16)
> prgeng$fem <− prgeng$ sex − 1
> tmp <− prgeng [ edu >= 13 , ]
> pe <− tmp [ , c ( 1 , 1 2 , 9 , 1 3 , 14 , 15 , 8 ) ]
> pe <− as .matrix ( pe )

Our model is

mean wageinc = β0 + β1 age + β2 age2 + β3 wkswrkd

+ β4 ms + β5 phd

+ β6 fem (1.31)

We find the following:

> summary(lm( pe [ , 7 ] ˜ pe [ , −7 ] ) )
. . .
C o e f f i c i e n t s :

Estimate Std . Error t value
( I n t e r c ep t ) −87162.556 4716.088 −18.482
pe [ , −7] age 4189.304 234.335 17 .877
pe [ , −7] age2 −43.479 2 .668 −16.293
pe [ , −7]wkswrkd 1312.234 29 .325 44 .748
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pe [ , −7]ms 9845.719 843.128 11 .678
pe [ , −7]phd 17403.523 1762.154 9 .876
pe [ , −7]fem −11176.740 912.206 −12.252

Pr(>| t | )
( I n t e r c ep t ) <2e−16 ∗∗∗

pe [ , −7] age <2e−16 ∗∗∗

pe [ , −7] age2 <2e−16 ∗∗∗

pe [ , −7]wkswrkd <2e−16 ∗∗∗

pe [ , −7]ms <2e−16 ∗∗∗

pe [ , −7]phd <2e−16 ∗∗∗

pe [ , −7]fem <2e−16 ∗∗∗

. . .

The results are striking in terms of gender: With age, education and so on
held constant, women are estimated to have incomes about $11,177 lower
than comparable men.

But this analysis implicitly assumes that the female wage deficit is, for
instance, uniform across educational levels. To see this, consider (1.31).
Being female makes a β6 difference, no matter what the values of ms and
phd are. To generalize our model in this regard, let’s define two interaction
variables:17

> msfem <− pe [ , 4 ] ∗ pe [ , 6 ]
> phdfem <− pe [ , 5 ] ∗ pe [ , 6 ]
> pe <− cbind ( pe , msfem , phdfem )

Our model is now

mean wageinc = β0 + β1 age + β2 age2 + β3 wkswrkd

+ β4 ms + β5 phd

+ β6 fem + β7 msfem + β8 phdfem (1.32)

So, now instead of there being a single number for the “female effect,” β6,
we how have two:

• Female effect for Master’s degree holders: β6 + β7

17Rather than creating the interaction terms “manually” as is done here, one can use
R colon operator, which automates the process. This is not done here, so as to ensure
that the reader fully understands the meaning of interaction terms. For information on
the colon operator, type ?formula at the R prompt.
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• Female effect for PhD degree holders β6 + β8

So, let’s rerun the regression analysis:

> summary(lm( pe [ , 7 ] ˜ pe [ , −7 ] ) )
. . .
C o e f f i c i e n t s :

Estimate Std . Error t value
( I n t e r c ep t ) −87499.793 4715.343 −18.556
pe [ , −7] age 4183.402 234.244 17 .859
pe [ , −7] age2 −43.439 2 .667 −16.285
pe [ , −7]wkswrkd 1312.160 29 .313 44 .763
pe [ , −7]ms 11060.653 965.016 11 .462
pe [ , −7]phd 19726.664 1907.382 10 .342
pe [ , −7]fem −9091.230 1121.816 −8.104
pe [ , −7]msfem −5088.779 1975.841 −2.575
pe [ , −7]phdfem −14831.582 4957.859 −2.992

Pr(>| t | )
( I n t e r c ep t ) < 2e−16 ∗∗∗

pe [ , −7] age < 2e−16 ∗∗∗

pe [ , −7] age2 < 2e−16 ∗∗∗

pe [ , −7]wkswrkd < 2e−16 ∗∗∗

pe [ , −7]ms < 2e−16 ∗∗∗

pe [ , −7]phd < 2e−16 ∗∗∗

pe [ , −7]fem 5.75 e−16 ∗∗∗

pe [ , −7]msfem 0.01002 ∗

pe [ , −7]phdfem 0.00278 ∗∗

. . .

The estimated values of the two female effects are -9091.230 -5088.779 =
-14180.01, and 9091.230 -14831.582 = -23922.81. A few points jump out
here:

• Once one factors in educational level, the gender gap is seen to be
even worse than before.

• The gap is worse at the PhD level than the Master’s, likely because
of the generally higher wages for the latter.

Thus we still have many questions to answer, especially since we haven’t
consider other types of interactions yet. This story is not over yet, and will
be pursued in detail in Chapter 7.
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1.15 Classification Techniques

Recall the hospital example in Section 1.11.1. There the response variable
is nominal, represented by a dummy variable taking the values 1 and 0,
depending on whether the patient survives or not. This is referred to as
a classification problem, because we are trying to predict which class the
population unit belongs to — in this case, whether the patient will belong
to the survival or nonsurvival class. We could set up dummy variables
for each of the hospital branches, and use these to assess whether some
were doing a better job than others, while correcting for variations in age
distribution from one branch to another. (Thus our goal here is Description
rather than directly Prediction itself.)

This will be explained in detail in Chapter 4, but the point is that we are
predicting a 1-0 variable. In a marketing context, we might be predicting
which customers are more likely to purchase a certain product. In a com-
puter vision context, we may want to predict whether an image contains a
certain object. In the future, if we are fortunate enough to develop relevant
data, we might even try our hand at predicting earthquakes.

Classification applications are extremely common. And in many cases there
are more than two classes, such as in indentifying many different printed
characters in computer vision.

In a number of applications, it is desirable to actually convert a problem
with a numeric response variable into a classification problem. For instance,
there may be some legal or contractural aspect that comes into play when
our variable V is above a certain level c, and we are only interested in
whether the requirement is satisfied. We could replace V with a new vari-
able

Y =

{
1, if V > c

0, if V ≤ c
(1.33)

Classification methods will play a major role in this book.

1.15.1 It’s a Regression Problem!

Recall that the regression function is the conditional mean:

µ(t) = E(Y | X = t) (1.34)
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(As usual, X and t may be vector-valued.) In the classification case, Y is an
indicator variable, which implies that we know its mean is the probability
that Y = 1 (Section 1.19.1). In other words,

µ(t) = P (Y = 1 | X = t) (1.35)

The great implication of this is that the extensive knowledge about regression
analysis developed over the years can be applied to the classification problem.

An intuitive strategy — but, as we’ll see, NOT the only appropriate one —
would be to guess that Y = 1 if the conditional probability of 1 is greater
than 0.5, and guess 0 otherwise. In other words,

guess for Y =

{
1, if µ(X) > 0.5

0, if µ(X) ≤ 0.5
(1.36)

It turns out that this strategy is optimal, in that it minimizes the overall
misclassification error rate (see Section 1.19.4 in the Mathematical Com-
plements portion of this chapter). However, it should be noted that this
is not the only possible criterion that might be used. We’ll return to this
issue in Chapter 5.

As before, note that (1.35) is a population quantity. We’ll need to estimate
it from our sample data.

1.15.2 Example: Bike-Sharing Data

Let’s take as our example the situation in which ridership is above 3,500
bikes, which we will call HighUsage:

> shar$highuse <− as . integer ( shar$ reg > 3500)

We’ll try to predict that variable. Let’s again use our earlier example, of
a Sunday, clear weather, 62 degrees. Should we guess that this will be a
High Usage day?

We can use our k-NN approach just as before:

> knnest ( shar [ , c ( 1 0 , 8 , 1 8 , 1 9 ) ] , c ( 0 . 5 25 , 0 , 1 ) , 2 0 )
[ 1 ] 0 . 1

We estimat that there is a 10% chance of that day having HighUsage.
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The parametric case is a little more involved. A model like

probability of HighUsage = β0 + β1 temp + β2 temp2

+ β3 workingday + β4 clearday (1.37)

could be used, but would not be very satisfying. The left-hand side of
(1.37), as a probability, should be in [0,1], but the right-hand side could in
principle fall far outside that range.

Instead, the most common model for conditional probability is logistic re-
gression:

probability of HighUsage = ℓ(β0 + β1 temp + β2 temp2

+ β3 workingday + β4 clearday) (1.38)

where ℓ(s) is the logistic function,

ℓ(s) =
1

1 + e−s
(1.39)

Our model, then is

µ(t1, t2, t3, t4) =
1

1 + e−(β0+β1t1+β2t2+β3t3+β4t4)
(1.40)

where t1 is temperature, t2 is the square of temperature, and so on. We
wish to estimate µ(62, 622, 0, 1).

Note the form of the curve, shown in Figure 1.3 The appeal of this model
is clear at a glance: First, the logistic function produces a value in [0,1], as
appropriate for modeling a probability. Second, it is a monotone increasing
function in each of the variables in (1.38), just as was the case in (1.24)
for predicting our numeric variable, reg. Other motivations for using the
logistic model will be discussed in Chapter 4.

R provides the glm() (“generalized linear model”) function for several non-
linear model families, including the logistic,18, which is designated via fam-
ily = binomial:

18Often called “logit,” by the way.





40 CHAPTER 1. SETTING THE STAGE

> glmout <− glm( h ighuse ˜
temp+temp2+workingday+clearday ,
data=shar , family=binomial )

> glmout
. . .
C o e f f i c i e n t s :
( I n t e r c ep t ) temp temp2

−18.263 45 .909 −36.231
workingday c l ea rday

3 .570 1 .961
. . .
> tmp <− coef ( glmout ) %∗% c ( 1 , 0 . 5 25 , 0 . 5 25ˆ2 , 0 , 1 )
> 1/(1+exp(−tmp ) )

[ , 1 ]
[ 1 , ] 0 .1010449

So, our parametric model gives an almost identical result here to the one
arising from k-NN, about a 10% probability of HighUsage.

We can perform cross-validation too, and will do so in later chapters. For
now, note that our accuracy criterion should change, say to the proportion
of misclassified data points.

1.16 Crucial Advice: Don’t Automate, Par-
ticipate!

Data science should not be a “spectator sport”; the methodology is effec-
tive only if the users participate. Avoid ceding the decision making to the
computer output. For example:

• Statistical significance does not imply practical importance, and con-
versely.

• A model is just that — just an approximation to reality, hopefully
useful but never exact.

• Don’t rely solely on variable selection algorithms to choose your model
(Chapter 9).

• “Read directions before use” — make sure you understand what a
method really does before employing it.
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1.17 Informal Use of Prediction

Though statisticians tend to view things through the lens of exact models,
proper computation of standard errors and so on, much usage of regression
models is much less formal. Former Chinese leader Deng Xiaoping’s famous
line to convince his peers to accept capitalistt ways comes to mind: “Black
cat, white cat, it doesn’t matter as long as it catches mice.” This more
relaxed view is common in the machine learning community, for example.19

1.17.1 Example: Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a popular tool in many appli-
cations, such as image and text recognition. Here is an overview:

Given an u× v matrix A with nonnegative elements, we wish to find non-
negative, rank-k matrices20 W (u× k) and H (k × v) such that

A ≈ WH (1.41)

The larger the rank, the better our approximation in (1.41). But we typi-
cally hope that a good approximation can be achieved with

k ≪ rank(A) (1.42)

The matrices W and H are calculated iteratively, with one of the major
methods being regression. Here is how:

We make initial guesses for W and H, say with random numbers. Now
consider an odd-numbered iteration. Suppose just for a moment that we
know the exact value of W , with H unknown. Then for each j we could
“predict” column j of A from the columns of W . The coefficient vector
returned by lm() will become column j of H. We do this for j = 1, 2, ..., v.

In even-numbered iterations, suppose we know H but not W . We could
take transposes,

A′ = H ′W ′ (1.43)

19There of course is the question of whether the cat really is catching mice, a topic
that will arise frequently in the coming chapters.

20Recall that the rank of a matrix is the maximal number of linearly independent rows
or columns.
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Figure 1.4: Mt. Rushmore

and then just interchange the roles of W and H above. Here a call to lm()
gives us a row of W , and we do this for all rows.

R’s NMF package for NMF computation is quite versatile, with many,
many options. In its simplest form, though, it is quite easy to use. For a
matrix a and desired rank k, we simply run

> nout <− nmf(a , k )

The factors are then in nout@fit@W and nout@fit@H.

Let’s illustrate it in an image context, using the image in Figure 1.4.

Though typically NMF is used for image classification, with input data
consisting of many images, here we have only one image, and we’ll use
NMF to compress it, not do classification. We first obtain A:

> l ibrary ( pixmap )
> mtr <− read . pnm( ’ Images/MtRush .pgm ’ )
> a <− mtr@grey

Now, perform NMF, find the approximation to A, and display it, as seen
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one of rank only 50, with a 75% storage savings. This is not important for
one small p;cture, but possibly worthwhile if we have many large ones. The
approximation is not bad in that light, and may be good enough for image
recognition or other applications.

Indeed, in many if not most applications of NMF, we need to worry about
overfitting. As you will see later, overfitting in this context amounts to
using too high a value for our rank, something to be avoided.

1.18 Some Properties of Conditional Expec-
tation

This section will be just a wee bit mathematical. Usually this book aims to
relegate such material to the Mathematical Complements sections, so that
nonmathematical readers can skip such material. But in this section, we
ask the reader’s brief indulgence, and promise to focus on intuition.

Since the regression function is defined as a conditional expected value,
as in (1.3), for mathematical analysis we’ll need some properties. First, a
definition.

1.18.1 Conditional Expectation As a Random Variable

For any random variables U and V with defined expectation, either of which
could be vector-valued, define a new random variable W , as follows. First
note that the conditional expectation of V given U = t is a function of t,

µ(t) = E(V | U = t) (1.44)

This is an ordinary function, just like, say,
√
t or sin(t). But we can turn

it into a random variable by plugging in a random variable, say Q, in for
t: R =

√
Q is a random variable. Thinking along these lines, we define the

random variable version of conditional expectation accordingly:

W = E(V |U) = µ(U) (1.45)

As a simple example, say we choose a number U at random from the num-
bers 1 through 5. We then randomly choose a second number V , from the
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numbers 1 through U . Then

µ(t) = E(V | U = t) =
1 + t

2
(1.46)

We now form a new random variable W = (1 + U)/2.

And, since W is a random variable, we can talk of its expected value, which
turns out to be an elegant result:

1.18.2 The Law of Total Expectation

A property of conditional expected value, proven in many undergraduate
probability texts, is

E(V ) = EW = E[E(V | U)] (1.47)

The foreboding appearance of this equation belies the fact that it is actually
quite intuitive, as follows. Say you want to compute the mean height of all
people in the U.S., and you already have available the mean heights in each
of the 50 states. You cannot simply take the straight average of those state
mean heights, because you need to give more weight to the more populous
states. In other words, the national mean height is a weighted average of
the state means, with the weight for each state being is its proportion of
the national population.

In (1.47), this corresponds to having V as height and U as state. State is
an integer-valued random variable, ranging from 1 to 50, so we have

EV = E[E(V | U)] (1.48)

= EW (1.49)

=

50∑

i=1

P (U = i) E(V | U = i) (1.50)

The left-hand side, EV , is the overall mean height in the nation; E(V | U =
i) is the mean height in state i; and the weights in the weighted average
are the proportions of the national population in each state, P (U = i).

Not only can we look at the mean of W , but also its variance. By using the
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various familiar properties of mean and variance, one can derive a similar
relation for variance:

1.18.3 Law of Total Variance

For scalar V ,

V ar(V ) = E[V ar(V |U)] + V ar[E(V |U)] (1.51)

One might initially guess that we only need the first term. To obtain the
national variance in height, we would take the weighted average of the state
variances. But this would not take into account that the mean heights vary
from state to state, thus also contributing to the national variance in height,
hence the second term.

This is proven in Section 2.12.10.3.

1.18.4 Tower Property

Now consider conditioning on two variables, say U1 and U2. One can show
that

E [E(V |U1, U2) | U1] = E(V | U1) (1.52)

In the height example above, take U1 and U2 to be height and gender,
respectively, so that E(V |U1, U2) is the mean height of all people in a
certain state and of a certain gender. If we take the mean of all these
values for a certain state — i.e. take the average of the two gender-specific
means in the state — we get the mean height in the state without regard
to gender.

Again, note that we take the straight average of the two gender-specific
means, because the two genders have equal proportions. If, say, U2 were
race instead of gender, we would need to compute a weighted average of the
race-specific means, with the weights being the proportions of the various
races in the given state.

This is proven in Section 7.8.1.
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1.18.5 Geometric View

There is an elegant way to view all of this in terms of abstract vector spaces
— (1.47) becomes the Pythagorean Theorem! — which we will address later
in Mathematical Complements Sections 2.12.10 and 7.8.1.

1.19 Mathematical Complements

1.19.1 Indicator Random Variables

A random variable W is an indicator variable, if it is equal to 1 or 0, de-
pending on whether a certain event Q occurs or not. Two simple properties
are very useful:

• EW = P (Q)

This follows from

EW = 1 · P (Q) + 0 · P (not Q) = P (Q) (1.53)

• V ar(W ) = P (Q) · [1− P (Q)]

True because

V ar(W ) = E(W 2)− (EW )2 = E(W )− E(W 2) = EW (1− EW )
(1.54)

where the second equality stems from W 2 = W (remember, W is
either 1 or 0). Then use the first bullet above!

1.19.2 Mean Squared Error of an Estimator

Say we are estimating some unknown population value θ, using an estimator
θ̂ based on our sample data. Then a natural measure of the accuracy of
our estimator is the Mean Squared Error (MSE),

E[(θ̂ − θ)2] (1.55)

This is the squared distance from our estimator to the true value, averaged
over all possible samples.



48 CHAPTER 1. SETTING THE STAGE

Let’s rewrite the quantity on which we are taking the expected value:

(
θ̂ − θ

)2

=
(
θ̂ − Eθ̂ + Eθ̂ − θ

)2

= (θ̂−Eθ̂)2+(Eθ̂−θ)2+2(θ̂−Eθ̂)(Eθ̂−θ)

(1.56)

Look at the three terms on the far right of (1.56). The expected of the first

is V ar(θ̂), by definition of variance.

As to the second term, Eθ̂ − θ is the bias of θ̂, the tendency of θ̂ to over-
or underestimate θ over all possible samples.

What about the third term? Note first that Eθ̂ − θ is a constant, thus
factoring out of the expectation. But for what remains,

E(θ̂ − Eθ̂) = 0 (1.57)

Taking the expected value of both sides of (1.56), taking the above remarks
into account, we have

MSE(θ̂) = V ar(θ̂) + (Eθ̂ − θ)2 (1.58)

= variance + bias2 (1.59)

In other words:

The MSE of θ̂ is equal to the variance of θ̂ plus squared bias of
θ̂.

1.19.3 µ(t) Minimizes Mean Squared Prediction Error

Claim: Consider all the functions f() with which we might predict Y from

X, i.e., Ŷ = f(X). The one that minimizes mean squared prediction error,
E[(Y − f(X))2], is the regression function, µ(t) = E(Y | X = t).

(Note that the above involves population quantities, not samples. Consider
the quantity E[(Y −f(X))2], for instance. It is the mean squared prediction
error (MSPE) over all (X,Y ) pairs in the population.)

To derive this, first ask, for any (finite-variance) random variable W , what
number c that minimizes the quantity E[(W−c)2]? The answer is c = EW .
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To see this, write

E[(W − c)2] = E(W 2 − 2cW + c2] = E(W 2)− 2cEW + c2 (1.60)

Setting to 0 the derivative of the right-hand side with respect to c, we find
that indeed, c = EW .

Now use the Law of Total Expectation (Section 1.47):

MSPE = E[(Y − f(X))2] = E
[
E((Y − f(X))2|X)

]
(1.61)

In the inner expectation, X is a constant, and from the statement following
(1.60) we know that the minimizing value of f(X) is “EW,” in this case
E(Y |X), i.e. µ(X). Since that minimizes the inner expectation for any X,
the overall expectation is minimized too.

1.19.4 µ(t) Minimizes the Misclassification Rate

This result concerns the classification context. It shows that if we know the
population distribution — we don’t, but are going through this exercise to
guide our intuition — the conditional mean provides the optimal action in
the classification context.

Remember, in this context, µ(t) = P (Y | X = t), i.e. the conditional mean
reduces to the conditional probability. Now plug in X for t, and we have
the following.

Claim: Consider all rules based on X that produce a guess Ŷ , taking on
values 0 and 1. The one that minimizes the overall misclassification rate
P (Ŷ 6= Y ) is

Ŷ =

{
1, if µ(X) > 0.5

0, if µ(X) ≤ 0.5
(1.62)

The claim is completely intuitive, almost trivial: After observing X, how
should we guess Y ? If conditionally Y has a greater than 50% chance of
being 1, then guess it to be 1!

(Note: In some settings, a “false positive” may be worse than a “false
negative,” or vice versa. The reader should ponder how to modify the
material here for such a situation. We’ll return to this issue in Chapter 5.)
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Think of this simple situation: There is a biased coin, with known prob-
ability of heads p. The coin will be tossed once, and we are supposed to
guess the outcome.

Let’s name your guess g (a nonrandom constant), and let C denote the
as-yet-unknown outcome of the toss (1 for heads, 0 for tails). Then the
reader should check that, no matter whether we choose 0 or 1 for g, the
probability that we guess correctly is

P (C = g) = P (C = 1)g + P (C = 0)(1− g) (1.63)

= pg + (1− p)(1− g) (1.64)

= [2p− 1]g + 1− p (1.65)

Now remember, p is known. How should we choose g, 0 or 1, in order
to maximize (1.65), the probability that our guess is correct? Inspecting
(1.65) shows that maximizing that expression will depend on whether 2p−1
is positive or negative, i.e., whether p > 0.5 or not. In the former case we
should choose g = 1, while in the latter case g should be chosen to be 0.

The above reasoning gives us the very intuitive — actually trivial, when
expressed in English — result:

If the coin is biased toward heads, we should guess heads. If the
coin is biased toward tails, we should guess tails.

Now to show the original claim, we use iterated expectation, a term alluding
to the following. Now returning to our original claim, write

P (Ŷ = Y ) = E
[
P (Ŷ = Y | X)

]
(1.66)

In that inner probability, “p” is

P (Y = 1 | X) = µ(X) (1.67)

which completes the proof.
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1.20 Computational Complements

1.20.1 CRAN Packages

There are thousands of useful contributed R packages available on CRAN,
the Comprehensive R Archive Network, https://cran.r-project.org.
The easiest way to install them is from R’s interactive mode, e.g.

> in s ta l l . packages ( ’ f r eqparcoord ’ , ’˜/R’ )

¿

Here I have instructed R to download the freqparcoord package, installing
it in ˜/R, the directory where I like to store my packages.

Official R parlance is package, not library, even though ironically one loads
a package using the library() function! For instance,

> l ibrary ( f r eqparcoord )

One can learn about the package in various ways. After loading it, for
instance, you can list its objects, such as

> l s ( ’ package : f r eqparcoord ’ )
[ 1 ] ” f r eqparcoord ” ”knndens” ”knnreg” ” p o s j i t t e r ”
” regd iag ”
[ 6 ] ” regd iagbas ” ”rmixmvnorm” ”smoothz” ” smoothzpred”

where we see objects (functions here) knndens() and so on. There is the
help() function, e.g.

> help (package=freqparcoord )

In format ion on package f r e q p a r c o o r d

Desc r ip t i on :

Package : f r eqparcoord
Version : 1 . 1 . 0
Author : Norm Mat lo f f <normmatloff@gmail . com> and Yingkang Xie

<yingkang . xie@gmail . com>
Maintainer : Norm Mat lo f f <normmatloff@gmail . com>
. . .

Some packages have vignettes, extended tutorials. Type
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> v i gne t t e ( )

to see what’s available.

1.20.2 The Functions tapply() and Its Cousins

In Section 1.6.2 we had occasion to use R’s tapply(), a highly useful feature
of the language. To explain it, let’s start with useful function, split().

Consider this tiny data frame:

> x
gender he ight
1 m 66
2 f 67
3 m 72
4 f 63

Now let’s split by gender:

> xs <− sp l i t (x , x$gender )
> xs
$ f

gender he ight
2 f 67
4 f 63
5 f 63

$m
gender he ight

1 m 66
3 m 72

Note the types of the objects:

• xs is an R list

• xs$f and xs$m are data frames, the male and female subsets of x

We could then find the mean heights in each gender:

> mean( xs$ f$he ight )
[ 1 ] 64 .33333
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> mean( xs$m$he ight )
[ 1 ] 69

But with tapply(), we can combine the two operations:

> tapply ( x$height , x$gender ,mean)
f m

64.33333 69.00000

The first argument of tapply() must be a vector, but the function that is
applied can be vector-valued. Say we want to find not only the mean but
also the standard deviation. We can do this:

> tapply ( x$height , x$gender , function (w) c (mean(w) , sd (w) ) )
$ f
[ 1 ] 64 .333333 2.309401

$m
[ 1 ] 69.000000 4.242641

Here, our function (which we defined “on the spot,” within our call to
tapply(), produces a vector of two components. We asked tapply() to
call that function on our vector of heights, doing so separately for
each gender.

1.20.3 Function Dispatch

The return value from a call to lm() is an object of R’s S3 class structure;
the class, not surprisingly, is named ”lm”. It turns out that the functions
coef() and vcov() mentioned in this chapter are actually related to this
class, as follows.

Recall our usage, on the baseball player data:

> lmout <− lm(mlb$Weight ˜ mlb$Height )
> coef ( lmout ) %∗% c (1 , 72 )

[ , 1 ]
[ 1 , ] 193 .2666

The call to coef extracted the vector of estimated regression coefficents
(which we also could have obtained as lmout$coefficents). But here is
what happened behind the scenes:

The R function coef() is a generic function, which means it’s just a place-
holder, not a “real” function. When we call it, the R interpreter says,
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This is a generic function, so I need to relay this call to the one
associated with this class, ”lm”. That means I need to check
whether we have a function coef.lm(). Oh, yes we do, so let’s
call that.

That relaying action is referred to in R terminology as the original call
being dispatched to coef.lm().

This is a nice convenience. Consider another generic R function, plot().
No matter what object we are working with, the odds are that some kind
of plotting function has been written for it. We can just call plot() on the
given object, and leave it to R to find the proper call. (This includes the
”lm” class; try it on our lmout above!)

Similarly, there are a number of R classes on which coef() is defined, and
the same is true for vcov().

One generic function we will use quite often, and indeed have already used
in this chapter, is summary(). As its name implies, it summarizes (what
the function’s author believes) are the most important characteristics of the
object. So, when this generic function is called on an ”lm” object, the call
is dispatched to summary.lm(), yielding estimated coefficients, standard
errors and so on.

1.21 Further Exploration: Data, Code and
Math Problems

1. Consider the bodyfat data mentioned in Section 1.2. Use lm() to form
a prediction equation for density from the other variables (skipping the
first three), and comment on whether use of indirect methods in this way
seems feasible.

2. Suppose the joint density of (X,Y ) is 3s2e−st, 1 < s < 2, 0 < t < −∞.
Find the regression function µ(s) = E(Y |X = s).

3. For (X,Y ) in the notation of Section 1.19.3, show that the predicted
value µ(X) and the predicton error Y − µ(X) are uncorrelated.

4. Suppose X is a scalar random variable with density g. We are interested
in the nearest neighbors to a point t, based on a random sample X1, ..., Xn

from g. Find Lk denote the cumulative distribution function of the distance
of the kth-nearest neighbor to t.
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5. In Section 1.11.2, we used the R function setdiff() to form the train-
ing/test set partitioning. Show how we could use R’s negative-index capa-
bility to do this as an alternate approach.


