
M A N N I N G

Robert I. Kabacoff

SECOND EDITION

IN ACTION
Data analysis and graphics with R

SAMPLE CHAPTER

R in Action
Second Edition

Data analysis and graphics with R

by Robert I. Kabacoff

Chapter 1

Copyright 2015 Manning Publications

brief contents
PART 1 GETTING STARTED .. 1

1 ■ Introduction to R 3

2 ■ Creating a dataset 20

3 ■ Getting started with graphs 46

4 ■ Basic data management 71

5 ■ Advanced data management 89

PART 2 BASIC METHODS .. 115

6 ■ Basic graphs 117

7 ■ Basic statistics 137

PART 3 INTERMEDIATE METHODS ... 165

8 ■ Regression 167

9 ■ Analysis of variance 212

10 ■ Power analysis 239

11 ■ Intermediate graphs 255

12 ■ Resampling statistics and bootstrapping 279

PART 4 ADVANCED METHODS ... 299

13 ■ Generalized linear models 301

14 ■ Principal components and factor analysis 319

15 ■ Time series 340

16 ■ Cluster analysis 369

17 ■ Classification 389

18 ■ Advanced methods for missing data 414

PART 5 EXPANDING YOUR SKILLS ... 435

19 ■ Advanced graphics with ggplot2 437

20 ■ Advanced programming 463

21 ■ Creating a package 491

22 ■ Creating dynamic reports 513

23 ■ Advanced graphics with the lattice package online only

BRIEF CONTENTS

www.manning.com/kabacoff2

Part 1

Getting started

Welcome to R in Action! R is one of the most popular platforms for data
analysis and visualization currently available. It’s free, open source software,
available for Windows, Mac OS X, and Linux operating systems. This book will
provide you with the skills needed to master this comprehensive software and
apply it effectively to your own data.

 The book is divided into four sections. Part I covers the basics of installing
the software, learning to navigate the interface, importing data, and massaging it
into a useful format for further analysis.

 Chapter 1 is all about becoming familiar with the R environment. The chap-
ter begins with an overview of R and the features that make it such a powerful
platform for modern data analysis. After briefly describing how to obtain and
install the software, the user interface is explored through a series of simple
examples. Next, you’ll learn how to enhance the functionality of the basic instal-
lation with extensions (called contributed packages), that can be freely down-
loaded from online repositories. The chapter ends with an example that allows
you to test out your new skills.

 Once you’re familiar with the R interface, the next challenge is to get your
data into the program. In today’s information-rich world, data can come from
many sources and in many formats. Chapter 2 covers the wide variety of methods
available for importing data into R. The first half of the chapter introduces the
data structures R uses to hold data and describes how to input data manually.
The second half discusses methods for importing data from text files, web pages,
spreadsheets, statistical packages, and databases.

2 CHAPTER Getting started
 From a workflow point of view, it would probably make sense to discuss data man-
agement and data cleaning next. But many users approach R for the first time out of
an interest in its powerful graphics capabilities. Rather than frustrating that interest
and keeping you waiting, we dive right into graphics in chapter 3. The chapter reviews
methods for creating graphs, customizing them, and saving them in a variety of for-
mats. The chapter describes how to specify the colors, symbols, lines, fonts, axes, titles,
labels, and legends used in a graph, and ends with a description of how to combine
several graphs into a single plot.

 Once you’ve had a chance to try out R’s graphics capabilities, it’s time to get back
to the business of analyzing data. Data rarely comes in a readily usable format. Signifi-
cant time must often be spent combining data from different sources, cleaning messy
data (miscoded data, mismatched data, missing data), and creating new variables
(combined variables, transformed variables, recoded variables) before the questions
of interest can be addressed. Chapter 4 covers basic data-management tasks in R,
including sorting, merging, and subsetting datasets, and transforming, recoding, and
deleting variables.

 Chapter 5 builds on the material in chapter 4. It covers the use of numeric (arith-
metic, trigonometric, and statistical) and character functions (string subsetting, con-
catenation, and substitution) in data management. A comprehensive example is used
throughout this section to illustrate many of the functions described. Next, control
structures (looping, conditional execution) are discussed, and you’ll learn how to write
your own R functions. Writing custom functions allows you to extend R’s capabilities by
encapsulating many programming steps into a single, flexible function call. Finally,
powerful methods for reorganizing (reshaping) and aggregating data are discussed.
Reshaping and aggregation are often useful in preparing data for further analyses.

 After having completed part I, you’ll be thoroughly familiar with programming in
the R environment. You’ll have the skills needed to enter or access your data, clean it
up, and prepare it for further analyses. You’ll also have experience creating, customiz-
ing, and saving a variety of graphs.

Introduction to R
How we analyze data has changed dramatically in recent years. With the advent of
personal computers and the internet, the sheer volume of data we have available
has grown enormously. Companies have terabytes of data about the consumers they
interact with, and governmental, academic, and private research institutions have
extensive archival and survey data on every manner of research topic. Gleaning
information (let alone wisdom) from these massive stores of data has become an
industry in itself. At the same time, presenting the information in easily accessible
and digestible ways has become increasingly challenging.

 The science of data analysis (statistics, psychometrics, econometrics, and
machine learning) has kept pace with this explosion of data. Before personal com-
puters and the internet, new statistical methods were developed by academic
researchers who published their results as theoretical papers in professional jour-
nals. It could take years for these methods to be adapted by programmers and
incorporated into the statistical packages widely available to data analysts. Today,

This chapter covers
■ Installing R
■ Understanding the R language
■ Running programs
3

4 CHAPTER 1 Introduction to R
new methodologies appear daily. Statistical researchers publish new and improved
methods, along with the code to produce them, on easily accessible websites.

 The advent of personal computers had another effect on the way we analyze data.
When data analysis was carried out on mainframe computers, computer time was pre-
cious and difficult to come by. Analysts would carefully set up a computer run with all
the parameters and options thought to be needed. When the procedure ran, the
resulting output could be dozens or hundreds of pages long. The analyst would sift
through this output, extracting useful material and discarding the rest. Many popular
statistical packages were originally developed during this period and still follow this
approach to some degree.

 With the cheap and easy
access afforded by personal
computers, modern data analy-
sis has shifted to a different par-
adigm. Rather than setting up a
complete data analysis all at
once, the process has become
highly interactive, with the out-
put from each stage serving as
the input for the next stage. An
example of a typical analysis is
shown in figure 1.1. At any
point, the cycles may include
transforming the data, imputing
missing values, adding or delet-
ing variables, and looping back
through the whole process again. The process stops when the analyst believes they
understand the data intimately and have answered all the relevant questions that can
be answered.

 The advent of personal computers (and especially the availability of high-resolu-
tion monitors) has also had an impact on how results are understood and presented.
A picture really can be worth a thousand words, and human beings are adept at extract-
ing useful information from visual presentations. Modern data analysis increasingly
relies on graphical presentations to uncover meaning and convey results.

 Today’s data analysts need to access data from a wide range of sources (database
management systems, text files, statistical packages, and spreadsheets), merge the
pieces of data together, clean and annotate them, analyze them with the latest meth-
ods, present the findings in meaningful and graphically appealing ways, and incorpo-
rate the results into attractive reports that can be distributed to stakeholders and the
public. As you’ll see in the following pages, R is a comprehensive software package
that’s ideally suited to accomplish these goals.

Prepare, explore, and clean data

Import Data

Fit a statistical model

Cross-validate the model

Evaluate the model fit

Evaluate model prediction on new data

Produce report

Figure 1.1 Steps in a typical data analysis

5Why use R?
1.1 Why use R?
R is a language and environment for statistical computing and graphics, similar to the
S language originally developed at Bell Labs. It’s an open source solution to data anal-
ysis that’s supported by a large and active worldwide research community. But there
are many popular statistical and graphing packages available (such as Microsoft Excel,
SAS, IBM SPSS, Stata, and Minitab). Why turn to R?

 R has many features to recommend it:

■ Most commercial statistical software platforms cost thousands, if not tens of
thousands, of dollars. R is free! If you’re a teacher or a student, the benefits are
obvious.

■ R is a comprehensive statistical platform, offering all manner of data-analytic
techniques. Just about any type of data analysis can be done in R.

■ R contains advanced statistical routines not yet available in other packages. In
fact, new methods become available for download on a weekly basis. If you’re a
SAS user, imagine getting a new SAS PROC every few days.

■ R has state-of-the-art graphics capabilities. If you want to visualize complex data,
R has the most comprehensive and powerful feature set available.

■ R is a powerful platform for interactive data analysis and exploration. From its
inception, it was designed to support the approach outlined in figure 1.1. For
example, the results of any analytic step can easily be saved, manipulated, and
used as input for additional analyses.

■ Getting data into a usable form from multiple sources can be a challenging prop-
osition. R can easily import data from a wide variety of sources, including text
files, database-management systems, statistical packages, and specialized data
stores. It can write data out to these systems as well. R can also access data directly
from web pages, social media sites, and a wide range of online data services.

■ R provides an unparalleled platform for programming new statistical methods
in an easy, straightforward manner. It’s easily extensible and provides a natural
language for quickly programming recently published methods.

■ R functionality can be integrated into applications written in other languages,
including C++, Java, Python, PHP, Pentaho, SAS, and SPSS. This allows you to
continue working in a language that you may be familiar with, while adding R’s
capabilities to your applications.

■ R runs on a wide array of platforms, including Windows, Unix, and Mac OS X. It’s
likely to run on any computer you may have. (I’ve even come across guides for
installing R on an iPhone, which is impressive but probably not a good idea.)

■ If you don’t want to learn a new language, a variety of graphic user interfaces
(GUIs) are available, offering the power of R through menus and dialogs.

You can see an example of R’s graphic capabilities in figure 1.2. This graph, created
with a single line of code, describes the relationships between income, education, and

6 CHAPTER 1 Introduction to R
prestige for blue-collar, white-collar, and professional jobs. Technically, it’s a scatter-
plot matrix with groups displayed by color and symbol, two types of fit lines (linear
and loess), confidence ellipses, two types of density display (kernel density estimation,
and rug plots). Additionally, the largest outlier in each scatter plot has been automati-
cally labeled. If these terms are unfamiliar to you, don’t worry. We’ll cover them in
later chapters. For now, trust me that they’re really cool (and that the statisticians
reading this are salivating).

 Basically, this graph indicates the following:

■ Education, income, and job prestige are linearly related.
■ In general, blue-collar jobs involve lower education, income, and prestige,

whereas professional jobs involve higher education, income, and prestige.
White-collar jobs fall in between.

bc
prof
wcincome

20 40 60 80 100

RR.engineer

20
40

60
80

minister

20
40

60
80

10
0

RR.engineer

education

RR.engineer

20 40 60 80

minister

RR.engineer

0 20 40 60 80 100

0
20

40
60

80
10

0

prestige

Figure 1.2 Relationships between income, education, and prestige for blue-collar (bc), white-
collar (wc), and professional (prof) jobs. Source: car package (scatterplotMatrix()
function) written by John Fox. Graphs like this are difficult to create in other statistical
programming languages but can be created with a line or two of code in R.

7Working with R
■ There are some interesting exceptions. Railroad engineers have high income
and low education. Ministers have high prestige and low income.

Chapter 8 will have much more to say about this type of graph. The important point is
that R allows you to create elegant, informative, highly customized graphs in a simple
and straightforward fashion. Creating similar plots in other statistical languages would
be difficult, time-consuming, or impossible.

 Unfortunately, R can have a steep learning curve. Because it can do so much, the
documentation and help files available are voluminous. Additionally, because much of
the functionality comes from optional modules created by independent contributors,
this documentation can be scattered and difficult to locate. In fact, getting a handle
on all that R can do is a challenge.

 The goal of this book is to make access to R quick and easy. We’ll tour the many
features of R, covering enough material to get you started on your data, with pointers
on where to go when you need to learn more. Let’s begin by installing the program.

1.2 Obtaining and installing R
R is freely available from the Comprehensive R Archive Network (CRAN) at http://
cran.r-project.org. Precompiled binaries are available for Linux, Mac OS X, and Win-
dows. Follow the directions for installing the base product on the platform of your
choice. Later we’ll talk about adding functionality through optional modules called
packages (also available from CRAN). Appendix G describes how to update an existing
R installation to a newer version.

1.3 Working with R
R is a case-sensitive, interpreted language. You can enter commands one at a time at the
command prompt (>) or run a set of commands from a source file. There are a wide
variety of data types, including vectors, matrices, data frames (similar to datasets), and
lists (collections of objects). We’ll discuss each of these data types in chapter 2.

 Most functionality is provided through built-in and user-created functions and the
creation and manipulation of objects. An object is basically anything that can be
assigned a value. For R, that is just about everything (data, functions, graphs, analytic
results, and more). Every object has a class attribute telling R how to handle it.

 All objects are kept in memory during an interactive session. Basic functions are
available by default. Other functions are contained in packages that can be attached
to a current session as needed.

 Statements consist of functions and assignments. R uses the symbol <- for assign-
ments, rather than the typical = sign. For example, the statement

x <- rnorm(5)

creates a vector object named x containing five random deviates from a standard nor-
mal distribution.

http://cran.r-project.org
http://cran.r-project.org

8 CHAPTER 1 Introduction to R
NOTE R allows the = sign to be used for object assignments. But you won’t
find many programs written that way, because it’s not standard syntax, there
are some situations in which it won’t work, and R programmers will make fun
of you. You can also reverse the assignment direction. For instance, rnorm(5)
-> x is equivalent to the previous statement. Again, doing so is uncommon
and isn’t recommended in this book.

Comments are preceded by the # symbol. Any text appearing after the # is ignored by
the R interpreter.

1.3.1 Getting started

If you’re using Windows, launch R from the Start menu. On a Mac, double-click the R
icon in the Applications folder. For Linux, type R at the command prompt of a termi-
nal window. Any of these will start the R interface (see figure 1.3 for an example).

 To get a feel for the interface, let’s work through a simple, contrived example. Say
that you’re studying physical development and you’ve collected the ages and weights
of 10 infants in their first year of life (see table 1.1). You’re interested in the distribu-
tion of the weights and their relationship to age.

Note: These are fictional data.

Table 1.1 The ages and weights of 10 infants

Age (mo.) Weight (kg.)

01 4.4

03 5.3

05 7.2

02 5.2

11 8.5

Figure 1.3 Example of the R
interface on Windows

Age (mo.) Weight (kg.)

09 7.3

03 6.0

09 10.4

12 10.2

03 6.1

9Working with R
The analysis is given in listing 1.1. Age and weight data are entered as vectors using
the function c(), which combines its arguments into a vector or list. The mean and
standard deviation of the weights, along with the correlation between age and weight,
are provided by the functions mean(), sd(), and cor(), respectively. Finally, age is
plotted against weight using the plot() function, allowing you to visually inspect the
trend. The q() function ends the session and lets you quit.

> age <- c(1,3,5,2,11,9,3,9,12,3)
> weight <- c(4.4,5.3,7.2,5.2,8.5,7.3,6.0,10.4,10.2,6.1)
> mean(weight)
[1] 7.06
> sd(weight)
[1] 2.077498
> cor(age,weight)
[1] 0.9075655
> plot(age,weight)
> q()

You can see from listing 1.1 that the mean weight for these 10 infants is 7.06 kilo-
grams, that the standard deviation is 2.08 kilograms, and that there is strong linear
relationship between age in months and weight in kilograms (correlation = 0.91). The
relationship can also be seen in the scatter plot in figure 1.4. Not surprisingly, as
infants get older, they tend to weigh more.

Listing 1.1 A sample R session

2 4 6 8 10 12

5
6

7
8

9
10

age

w
ei

gh
t

Figure 1.4 Scatter plot of infant weight (kg) by age (mo)

10 CHAPTER 1 Introduction to R
The scatter plot in figure 1.4 is informative but somewhat utilitarian and unattractive.
In later chapters, you’ll see how to customize graphs to suit your needs.

TIP To get a sense of what R can do graphically, enter demo()at the com-
mand prompt. A sample of the graphs produced is included in figure 1.5.
Other demonstrations include demo(Hershey), demo(persp), and
demo(image). To see a complete list of demonstrations, enter demo() without
parameters.

1.3.2 Getting help

R provides extensive help facilities, and learning to navigate them will help you signif-
icantly in your programming efforts. The built-in help system provides details, refer-
ences, and examples of any function contained in a currently installed package. You
can obtain help using the functions listed in table 1.2.

Figure 1.5 A sample of the graphs created with the demo() function

11Working with R
The function help.start() opens a browser window with access to introductory and
advanced manuals, FAQs, and reference materials. The RSiteSearch() function
searches for a given topic in online help manuals and archives of the R-Help discus-
sion list and returns the results in a browser window. The vignettes returned by the
vignette() function are practical introductory articles provided in PDF format. Not
all packages have vignettes.

 As you can see, R provides extensive help facilities, and learning to navigate them
will definitely aid your programming efforts. It’s a rare session that I don’t use ? to
look up the features (such as options or return values) of some function.

1.3.3 The workspace

The workspace is your current R working environment and includes any user-defined
objects (vectors, matrices, functions, data frames, and lists). At the end of an R ses-
sion, you can save an image of the current workspace that’s automatically reloaded the
next time R starts. Commands are entered interactively at the R user prompt. You can
use the up and down arrow keys to scroll through your command history. Doing so
allows you to select a previous command, edit it if desired, and resubmit it using the
Enter key.

 The current working directory is the directory from which R will read files and to
which it will save results by default. You can find out what the current working direc-
tory is by using the getwd() function. You can set the current working directory by
using the setwd() function. If you need to input a file that isn’t in the current working
directory, use the full pathname in the call. Always enclose the names of files and

Table 1.2 R help functions

Function Action

help.start() General help

help("foo") or ?foo Help on function foo (quotation marks optional)

help.search("foo") or ??foo Searches the help system for instances of the string
foo

example("foo") Examples of function foo (quotation marks optional)

RSiteSearch("foo") Searches for the string foo in online help manuals and
archived mailing lists

apropos("foo", mode="function") Lists all available functions with foo in their name

data() Lists all available example datasets contained in cur-
rently loaded packages

vignette() Lists all available vignettes for currently installed pack-
ages

vignette("foo") Displays specific vignettes for topic foo

12 CHAPTER 1 Introduction to R
directories from the operating system in quotation marks. Some standard commands
for managing your workspace are listed in table 1.3.

To see these commands in action, look at the following listing.

setwd("C:/myprojects/project1")
options()
options(digits=3)
x <- runif(20)
summary(x)
hist(x)
q()

First, the current working directory is set to C:/myprojects/project1, the current
option settings are displayed, and numbers are formatted to print with three digits
after the decimal place. Next, a vector with 20 uniform random variates is created, and
summary statistics and a histogram based on this data are generated. When the q()
function is executed, the user is prompted to save their workspace. If they type y, the
session history is saved to the file .Rhistory, and the workspace (including vector x) is
saved to the file .RData in the current directory. The session is ended, and R closes.

 Note the forward slashes in the pathname of the setwd() command. R treats the
backslash (\) as an escape character. Even when you’re using R on a Windows

Table 1.3 Functions for managing the R workspace

Function Action

getwd() Lists the current working directory.

setwd("mydirectory") Changes the current working directory to mydirectory.

ls() Lists the objects in the current workspace.

rm(objectlist) Removes (deletes) one or more objects.

help(options) Provides information about available options.

options() Lets you view or set current options.

history(#) Displays your last # commands (default = 25).

savehistory("myfile") Saves the commands history to myfile (default =
.Rhistory).

loadhistory("myfile") Reloads a command’s history (default = .Rhistory).

save.image("myfile") Saves the workspace to myfile (default = .RData).

save(objectlist, file="myfile") Saves specific objects to a file.

load("myfile") Loads a workspace into the current session.

q() Quits R. You’ll be prompted to save the workspace.

Listing 1.2 An example of commands used to manage the R workspace

13Working with R
platform, use forward slashes in pathnames. Also note that the setwd() function
won’t create a directory that doesn’t exist. If necessary, you can use the dir.create()
function to create a directory and then use setwd() to change to its location.

 It’s a good idea to keep your projects in separate directories. You may want to start
an R session by issuing the setwd() command with the appropriate path to a project,
followed by the load(".RData") command. This lets you start up where you left off in
your last session and keeps both your objects and history separate between projects.
On Windows and Mac OS X platforms, it’s even easier. Just navigate to the project
directory and double-click the saved image file. Doing so starts R, loads the saved
workspace, and sets the current working directory to this location.

1.3.4 Input and output

By default, launching R starts an interactive session with input from the keyboard and
output to the screen. But you can also process commands from a script file (a file con-
taining R statements) and direct output to a variety of destinations.

INPUT

The source("filename") function submits a script to the current session. If the file-
name doesn’t include a path, the file is assumed to be in the current working direc-
tory. For example, source("myscript.R") runs a set of R statements contained in the
file myscript.R. By convention, script filenames end with an .R extension, but this isn’t
required.

TEXT OUTPUT

The sink("filename") function redirects output to the file filename. By default, if the
file already exists, its contents are overwritten. Include the option append=TRUE to
append text to the file rather than overwriting it. Including the option split=TRUE
will send output to both the screen and the output file. Issuing the command sink()
without options will return output to the screen alone.

GRAPHIC OUTPUT

Although sink()redirects text output, it has no effect on graphic output. To redirect
graphic output, use one of the functions listed in table 1.4. Use dev.off() to return
output to the terminal.

Table 1.4 Functions for saving graphic output

Function Output

bmp("filename.bmp") BMP file

jpeg("filename.jpg") JPEG file

pdf("filename.pdf") PDF file

png("filename.png") PNG file

postscript("filename.ps") PostScript file

14 CHAPTER 1 Introduction to R
Let’s put it all together with an example. Assume that you have three script files con-
taining R code (script1.R, script2.R, and script3.R). Issuing the statement

source("script1.R")

submits the R code from script1.R to the current session, and the results appear on
the screen.

 If you then issue the statements

sink("myoutput", append=TRUE, split=TRUE)
pdf("mygraphs.pdf")
source("script2.R")

the R code from file script2.R is submitted, and the results again appear on the
screen. In addition, the text output is appended to the file myoutput, and the graphic
output is saved to the file mygraphs.pdf.

 Finally, if you issue the statements

sink()
dev.off()
source("script3.R")

the R code from script3.R is
submitted, and the results
appear on the screen. This
time, no text or graphic output
is saved to files. The sequence is
outlined in figure 1.6.

 R provides quite a bit of
flexibility and control over
where input comes from and
where it goes. In section 1.5,
you’ll learn how to run a pro-
gram in batch mode.

Figure 1.6 Input with the
source() function and

output with the
sink() function

svg("filename.svg") SVG file

win.metafile("filename.wmf") Windows metafile

Table 1.4 Functions for saving graphic output (continued)

Function Output

myoutput
Output added
to the file

Current
session

Current
session

Current
session

script3.R

script2.R

source("script3.R")

source("script1.R")

source("script2.R")

pdf("mygraphs.pdf")

sink(), dev.off()

sink("myoutput", append=TRUE, split=TRUE)

script1.R

15Packages
1.4 Packages
R comes with extensive capabilities right out of the box. But some of its most exciting
features are available as optional modules that you can download and install. There
are more than 5,500 user-contributed modules called packages that you can download
from http://cran.r-project.org/web/packages. They provide a tremendous range of
new capabilities, from the analysis of geospatial data to protein mass spectra process-
ing to the analysis of psychological tests! You’ll use many of these optional packages in
this book.

1.4.1 What are packages?

Packages are collections of R functions, data, and compiled code in a well-defined for-
mat. The directory where packages are stored on your computer is called the library.
The function .libPaths() shows you where your library is located, and the function
library() shows you what packages you’ve saved in your library.

 R comes with a standard set of packages (including base, datasets, utils,
grDevices, graphics, stats, and methods). They provide a wide range of functions
and datasets that are available by default. Other packages are available for download
and installation. Once installed, they must be loaded into the session in order to be
used. The command search() tells you which packages are loaded and ready to use.

1.4.2 Installing a package

A number of R functions let you manipulate packages. To install a package for the first
time, use the install.packages() command. For example, install.packages()
without options brings up a list of CRAN mirror sites. Once you select a site, you’re
presented with a list of all available packages. Selecting one downloads and installs it.
If you know what package you want to install, you can do so directly by providing it as
an argument to the function. For example, the gclus package contains functions for
creating enhanced scatter plots. You can download and install the package with the
command install.packages("gclus").

 You only need to install a package once. But like any software, packages are often
updated by their authors. Use the command update.packages() to update any pack-
ages that you’ve installed. To see details on your packages, you can use the
installed.packages() command. It lists the packages you have, along with their ver-
sion numbers, dependencies, and other information.

1.4.3 Loading a package

Installing a package downloads it from a CRAN mirror site and places it in your library.
To use it in an R session, you need to load the package using the library() com-
mand. For example, to use the package gclus, issue the command library(gclus).

 Of course, you must have installed a package before you can load it. You’ll only
have to load the package once in a given session. If desired, you can customize your
startup environment to automatically load the packages you use most often. Customiz-
ing your startup is covered in appendix B.

http://cran.r-project.org/web/packages

16 CHAPTER 1 Introduction to R
1.4.4 Learning about a package

When you load a package, a new set of functions and datasets becomes available.
Small illustrative datasets are provided along with sample code, allowing you to try out
the new functionalities. The help system contains a description of each function
(along with examples) and information about each dataset included. Entering
help(package="package_name") provides a brief description of the package and an
index of the functions and datasets included. Using help() with any of these function
or dataset names provides further details. The same information can be downloaded
as a PDF manual from CRAN.

1.5 Batch processing
Most of the time, you’ll be running R interactively, entering commands at the com-
mand prompt and seeing the results of each statement as it’s processed. Occasionally,
you may want to run an R program in a repeated, standard, and possibly unattended
fashion. For example, you may need to generate the same report once a month. You
can write your program in R and run it in batch mode.

 How you run R in batch mode depends on your operating system. On Linux or
Mac OS X systems, you can use the following command in a terminal window

R CMD BATCH options infile outfile

where infile is the name of the file containing R code to be executed, outfile is the
name of the file receiving the output, and options lists options that control execu-
tion. By convention, infile is given the extension .R, and outfile is given the exten-
sion .Rout.

Common mistakes in R programming

Some common mistakes are made frequently by both beginning and experienced R
programmers. If your program generates an error, be sure to check for the following:

■ Using the wrong case—help(), Help(), and HELP() are three different func-
tions (only the first will work).

■ Forgetting to use quotation marks when they’re needed—install.packages-
("gclus") works, whereas install.packages(gclus) generates an error.

■ Forgetting to include the parentheses in a function call—For example, help()
works, but help doesn’t. Even if there are no options, you still need the ().

■ Using the \ in a pathname on Windows—R sees the backslash character as an
escape character. setwd("c:\mydata") generates an error. Use setwd("c:/
mydata") or setwd("c:\\mydata") instead.

■ Using a function from a package that’s not loaded—The function order.clus-
ters() is contained in the gclus package. If you try to use it before loading
the package, you’ll get an error.

The error messages in R can be cryptic, but if you’re careful to follow these points,
you should avoid seeing many of them.

17Working with large datasets
 For Windows, use

"C:\Program Files\R\R-3.1.0\bin\R.exe" CMD BATCH

➥ --vanilla --slave "c:\my projects\myscript.R"

adjusting the paths to match the location of your R.exe binary and your script file.
For additional details on how to invoke R, including the use of command-line
options, see the “Introduction to R” documentation available from CRAN (http://
cran.r-project.org).

1.6 Using output as input: reusing results
One of the most useful design features of R is that the output of analyses can easily be
saved and used as input to additional analyses. Let’s walk through an example, using
one of the datasets that comes preinstalled with R. If you don’t understand the statis-
tics involved, don’t worry. We’re focusing on the general principle here.

 First, run a simple linear regression predicting miles per gallon (mpg) from car
weight (wt), using the automotive dataset mtcars. This is accomplished with the fol-
lowing function call:

lm(mpg~wt, data=mtcars)

The results are displayed on the screen, and no information is saved.
 Next, run the regression, but store the results in an object:

lmfit <- lm(mpg~wt, data=mtcars)

The assignment creates a list object called lmfit that contains extensive information
from the analysis (including the predicted values, residuals, regression coefficients,
and more). Although no output is sent to the screen, the results can be both displayed
and manipulated further.

 Typing summary(lmfit) displays a summary of the results, and plot(lmfit) pro-
duces diagnostic plots. The statement cook<-cooks.distance(lmfit) generates and
stores influence statistics, and plot(cook) graphs them. To predict miles per gallon
from car weight in a new set of data, you’d use predict(lmfit, mynewdata).

 To see what a function returns, look at the Value section of the R help page for that
function. Here you’d look at help(lm) or ?lm. This tells you what’s saved when you
assign the results of that function to an object.

1.7 Working with large datasets
Programmers frequently ask me if R can handle large data problems. Typically, they
work with massive amounts of data gathered from web research, climatology, or genet-
ics. Because R holds objects in memory, you’re generally limited by the amount of RAM
available. For example, on my 5-year-old Windows PC with 2 GB of RAM, I can easily han-
dle datasets with 10 million elements (100 variables by 100,000 observations). On an
iMac with 4 GB of RAM, I can usually handle 100 million elements without difficulty.

 But there are two issues to consider: the size of the dataset and the statistical meth-
ods that will be applied. R can handle data analysis problems in the gigabyte to

http://cran.r-project.org
http://cran.r-project.org

18 CHAPTER 1 Introduction to R
terabyte range, but specialized procedures are required. The management and analy-
sis of very large datasets is discussed in appendix F.

1.8 Working through an example
We’ll finish this chapter with an example that ties together many of these ideas. Here’s
the task:

1 Open the general help, and look at the “Introduction to R” section.
2 Install the vcd package (a package for visualizing categorical data that you’ll be

using in chapter 11).
3 List the functions and datasets available in this package.
4 Load the package, and read the description of the dataset Arthritis.
5 Print out the Arthritis dataset (entering the name of an object will list it).
6 Run the example that comes with the Arthritis dataset. Don’t worry if you

don’t understand the results; it basically shows that arthritis patients receiving
treatment improved much more than patients receiving a placebo.

7 Quit.

Figure 1.7 Output from listing 1.3, including (left to right) output from the arthritis example, general
help, information about the vcd package, information about the Arthritis dataset, and a graph
displaying the relationship between arthritis treatment and outcome

19Summary
The code required is provided in the following listing, with a sample of the results dis-
played in figure 1.7. As this short exercise demonstrates, you can accomplish a great
deal with a small amount of code.

help.start()
install.packages("vcd")
help(package="vcd")
library(vcd)
help(Arthritis)
Arthritis
example(Arthritis)
q()

1.9 Summary
In this chapter, we looked at some of the strengths that make R an attractive option
for students, researchers, statisticians, and data analysts trying to understand the
meaning of their data. We walked through the program’s installation and talked about
how to enhance R’s capabilities by downloading additional packages. We explored the
basic interface, running programs interactively and in a batch, and produced a few
sample graphs. You also learned how to save your work to both text and graphic files.
Because R can be a complex program, we spent some time looking at how to access
the extensive help that’s available. Hopefully you’re getting a sense of how powerful
this freely available software can be.

 Now that you have R up and running, it’s time to get your data into the mix. In the
next chapter, we’ll look at the types of data R can handle and how to import them into
R from text files, other programs, and database management systems.

Listing 1.3 Working with a new package

Robert I. Kabacoff

B
usiness pros and researchers thrive on data, and R speaks
the language of data analysis. R is a powerful program-
ming language for statistical computing. Unlike general-

purpose tools, R provides thousands of modules for solving
just about any data-crunching or presentation challenge you’re
likely to face. R runs on all important platforms and is used by
thousands of major corporations and institutions worldwide.

R in Action, Second Edition teaches you how to use the R
language by presenting examples relevant to scientifi c, techni-
cal, and business developers. Focusing on practical solutions,
the book offers a crash course in statistics, including elegant
methods for dealing with messy and incomplete data. You’ll
also master R’s extensive graphical capabilities for exploring
and presenting data visually. And this expanded second
edition includes new chapters on forecasting, data mining,
and dynamic report writing.

What’s Inside
● Complete R language tutorial
● Using R to manage, analyze, and visualize data
● Techniques for debugging programs and creating packages
● OOP in R
● Over 160 graphs

A background in mathematics and statistics is helpful but not
required. No prior experience with R is assumed.

Dr. Rob Kabacoff is a seasoned researcher and teacher who
specializes in data analysis. He also maintains the popular
Quick-R website at statmethods.net.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/RinActionSecondEdition

$59.99 / Can $68.99 [INCLUDING eBOOK]

R IN ACTION Second Edition

DATA/STATISTICS/PROGRAMMING

M A N N I N G

“Essential to anyone doing
data analysis with R, whether
 in industry or academia.”

—Cristofer Weber, NeoGrid

“A go-to reference for
general R and many

 statistics questions.”—George Gaines
KYOS Systems Inc.

“Accessible language,
realistic examples,

 and clear code.”
—Samuel D. McQuillin
University of Houston

“Offers a gentle learning
curve to those starting out

 with R for the fi rst time.”—Indrajit Sen Gupta
Mu Sigma Business Solutions

SEE INSERT

	Kabacoff-RinA-2ed-SC-front.pdf
	ASampleChapterPages1
	ASCh-01
	Kabacoff-RinA-2ed-ebook-back

