
Chapman & Hall/CRC
TEXTBOOKS IN COMPUTING

Mark C. Lewis
Lisa L. Lacher

INTRODUCTION TO
PROGRAMMING AND
PROBLEM-SOLVING

USING

SCALA
S E C O N D E D I T I O N

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20160607

International Standard Book Number-13: 978-1-4987-3095-2 (Pack - Book and Ebook)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

Contents

List of Figures xiii

List of Tables xvii

Preface xix

1 Basics of Computers, Computing, and Programming 1
1.1 History . 1
1.2 Hardware . 3

1.2.1 Central Processing Unit . 3
1.2.2 Memory . 4
1.2.3 Input/Output Devices . 5

1.3 Software . 6
1.4 Nature of Programming . 8
1.5 Programming Paradigms . 10

1.5.1 Imperative Programming . 11
1.5.2 Functional Programming . 11
1.5.3 Object-Oriented Programming . 12
1.5.4 Logic Programming . 12
1.5.5 Nature of Scala . 12

1.6 End of Chapter Material . 13
1.6.1 Summary of Concepts . 13
1.6.2 Exercises . 13
1.6.3 Projects . 14

2 Scala Basics 17
2.1 Scala Tools . 17
2.2 Expressions, Types, and Basic Math . 19
2.3 Objects and Methods . 23
2.4 Other Basic Types . 24
2.5 Back to the Numbers . 27

2.5.1 Binary Arithmetic . 29
2.5.2 Negative Numbers in Binary . 30
2.5.3 Other Integer Types . 31
2.5.4 Octal and Hexadecimal . 32
2.5.5 Non-Integer Numbers . 33

2.6 The math Object . 34
2.7 Naming Values and Variables . 36

2.7.1 Patterns in Declarations . 38
2.7.2 Using Variables . 39

2.8 Details of Char and String . 40
2.8.1 Escape Characters . 40

v

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

vi Contents

2.8.2 Raw Strings . 41
2.8.3 String Interpolation . 41
2.8.4 String Methods . 42
2.8.5 Immutability of Strings . 44

2.9 Sequential Execution . 45
2.9.1 Comments . 46

2.10 A Tip for Learning to Program . 47
2.11 End of Chapter Material . 47

2.11.1 Problem Solving Approach . 47
2.11.2 Summary of Concepts . 48
2.11.3 Self-Directed Study . 50
2.11.4 Exercises . 50

3 Conditionals 55
3.1 Motivating Example . 55
3.2 The if Expression . 56
3.3 Comparisons . 60
3.4 Boolean Logic . 61
3.5 Precedence . 65
3.6 Nesting ifs . 65
3.7 Bit-Wise Arithmetic . 67
3.8 End of Chapter Material . 69

3.8.1 Problem Solving Approach . 69
3.8.2 Summary of Concepts . 69
3.8.3 Self-Directed Study . 70
3.8.4 Exercises . 71
3.8.5 Projects . 72

4 Functions 77
4.1 Motivating Example . 77
4.2 Function Refresher . 78
4.3 Making and Using Functions . 79
4.4 Problem Decomposition . 84
4.5 Function Literals/Lambda Expressions/Closure 89
4.6 Side Effects . 90
4.7 Thinking about Function Execution . 91
4.8 type Declarations . 94
4.9 Putting It Together . 95
4.10 End of Chapter Material . 97

4.10.1 Problem Solving Approach . 97
4.10.2 Summary of Concepts . 97
4.10.3 Self-Directed Study . 98
4.10.4 Exercises . 99
4.10.5 Projects . 100

5 Recursion for Iteration 105
5.1 Basics of Recursion . 105
5.2 Writing Recursive Functions . 107
5.3 User Input . 111
5.4 Abstraction . 114
5.5 Matching . 117

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

Contents vii

5.6 Bad Input, Exceptions, and the try/catch Expression 119
5.7 Putting It Together . 121
5.8 Looking Ahead . 122
5.9 End of Chapter Material . 123

5.9.1 Problem Solving Approach . 123
5.9.2 Summary of Concepts . 123
5.9.3 Self-Directed Study . 125
5.9.4 Exercises . 125
5.9.5 Projects . 126

6 Arrays and Lists in Scala 133
6.1 Making Arrays . 133
6.2 Using Arrays . 135
6.3 Lists . 139
6.4 Bigger Arrays and Lists with Fill and Tabulate 141
6.5 Standard Methods . 143

6.5.1 Basic Methods . 143
6.5.2 Higher-Order Methods . 147
6.5.3 reduce and fold . 151
6.5.4 Combinatorial/Iterator Methods 152

6.6 Complete Grades Script/Software Development 155
6.7 Playing with Data . 160

6.7.1 Reading the Data . 161
6.7.2 Finding Maximum Values . 162

6.8 End of Chapter Material . 164
6.8.1 Problem Solving Approach . 164
6.8.2 Summary of Concepts . 165
6.8.3 Self-Directed Study . 165
6.8.4 Exercises . 166
6.8.5 Projects . 167

7 Type Basics and Argument Passing 171
7.1 Scala API . 171
7.2 The Option Type . 174
7.3 Parametric Functions . 175
7.4 Subtyping . 177
7.5 Variable Length Argument Lists . 179
7.6 Mutability and Aliasing . 181
7.7 Basic Argument Passing . 184
7.8 Currying . 188
7.9 Pass-By-Name . 190
7.10 Multidimensional Arrays . 192
7.11 Classifying Bugs . 194
7.12 End of Chapter Material . 197

7.12.1 Problem Solving Approach . 197
7.12.2 Summary of Concepts . 197
7.12.3 Self-Directed Study . 198
7.12.4 Exercises . 199
7.12.5 Projects . 200

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

viii Contents

8 Loops 203
8.1 while Loop . 203
8.2 do-while Loop . 205
8.3 for Loop . 206

8.3.1 Range Type . 209
8.3.2 yield . 210
8.3.3 if Guards . 211
8.3.4 Multiple Generators . 211
8.3.5 Patterns in for Loops . 212
8.3.6 Variable Declarations . 213
8.3.7 Multidimensional Sequences and for Loops 214

8.4 Testing . 216
8.5 Putting It Together . 219
8.6 End of Chapter Material . 222

8.6.1 Problem Solving Approach . 222
8.6.2 Summary of Concepts . 222
8.6.3 Self-Directed Study . 223
8.6.4 Exercises . 224
8.6.5 Projects . 225

9 Text Files 233
9.1 I/O Redirection . 234
9.2 Packages and import Statements . 234
9.3 Reading from Files . 236

9.3.1 Iterators . 237
9.3.2 String split Method . 239
9.3.3 Reading from Other Things . 240
9.3.4 Other Options (Java Based) . 241

9.4 Writing to File . 242
9.4.1 Appending to File . 242

9.5 Use Case: Simple Encryption . 244
9.5.1 Command Line Arguments . 244
9.5.2 Mapping a File . 245
9.5.3 Character Offset . 245
9.5.4 Alphabet Flip . 246
9.5.5 Key Word . 246
9.5.6 Putting It Together . 247
9.5.7 Primes and Real Cryptography . 248

9.6 End of Chapter Material . 249
9.6.1 Summary of Concepts . 249
9.6.2 Self-Directed Study . 250
9.6.3 Exercises . 250
9.6.4 Projects . 251

10 Case Classes 255
10.1 User Defined Types . 256
10.2 case classes . 256

10.2.1 Making Objects . 257
10.2.2 Accessing Members . 257
10.2.3 Named and Default Arguments (Advanced) 258
10.2.4 The copy Method . 259

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

Contents ix

10.2.5 case class Patterns . 260
10.3 Mutable classes . 260
10.4 Putting It Together . 261
10.5 End of Chapter Material . 270

10.5.1 Summary of Concepts . 270
10.5.2 Self-Directed Study . 271
10.5.3 Exercises . 271
10.5.4 Projects . 272

11 GUIs 275
11.1 GUI Libraries and History . 275
11.2 First Steps . 276
11.3 Stages and Scenes . 278
11.4 Events and Handlers . 281
11.5 Controls . 283

11.5.1 Text Controls . 284
11.5.2 Button-like Controls . 286
11.5.3 Selection Controls . 288
11.5.4 Pickers . 291
11.5.5 TableView . 292
11.5.6 TreeView . 293
11.5.7 Menus and FileChooser . 295
11.5.8 Other Stuff . 298

11.6 Observables, Properties, and Bindings . 301
11.6.1 Numeric Properties and Bindings 302
11.6.2 Conditional Bindings . 304

11.7 Layout and Panes . 307
11.7.1 scalafx.scene.layout Panes . 307
11.7.2 scalafx.scene.control Panes 311

11.8 Putting It Together . 314
11.9 End of Chapter Material . 325

11.9.1 Summary of Concepts . 325
11.9.2 Self-Directed Study . 326
11.9.3 Exercises . 326
11.9.4 Projects . 327

12 Graphics and Advanced ScalaFX 331
12.1 Shapes . 332

12.1.1 Path Elements . 334
12.1.2 Paint and Stroke . 336

12.2 Basic Keyboard, Mouse, and Touch Input 340
12.3 Images . 347

12.3.1 Writing Images to File . 349
12.4 Transformations . 350
12.5 Animation . 352

12.5.1 Transitions . 354
12.5.2 Timelines . 358
12.5.3 AnimationTimer . 360

12.6 Canvas . 364
12.6.1 Settings . 364
12.6.2 Basic Fills and Strokes . 366

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

x Contents

12.6.3 Building a Path . 367
12.6.4 Image Operations on Canvas . 367
12.6.5 A Canvas Based Game . 368

12.7 Effects . 372
12.8 Charts . 380
12.9 Media . 384
12.10 Web . 385
12.11 3D Graphics . 388
12.12 Putting It Together . 391
12.13 End of Chapter Material . 393

12.13.1 Summary of Concepts . 393
12.13.2 Exercises . 394
12.13.3 Projects . 394

13 Sorting and Searching 401
13.1 Basic Comparison Sorts . 401

13.1.1 Bubble Sort . 402
13.1.2 Selection Sort (Min/Max Sort) . 404
13.1.3 Insertion Sort . 405
13.1.4 Testing and Verifying Sorts . 406
13.1.5 Sort Visualization . 408
13.1.6 Order Analysis . 411
13.1.7 Shell Sort (Diminishing Gap Sort) 412

13.2 Searching . 414
13.2.1 Sequential Search (Linear Search) 414
13.2.2 Binary Search . 415

13.3 Sorting/Searching with case classes . 418
13.4 Sorting Lists . 424
13.5 Performance and Timing . 426
13.6 Putting It Together . 429
13.7 End of Chapter Material . 430

13.7.1 Summary of Concepts . 430
13.7.2 Exercises . 432
13.7.3 Projects . 432

14 XML 437
14.1 Description of XML . 438

14.1.1 Tags . 438
14.1.2 Elements . 438
14.1.3 Attributes . 439
14.1.4 Content . 439
14.1.5 Special Characters . 439
14.1.6 Comments . 440
14.1.7 Overall Format . 440
14.1.8 Comparison to Flat File . 440

14.1.8.1 Flexibility in XML . 440
14.2 XML in Scala . 441

14.2.1 Loading XML . 442
14.2.2 Parsing XML . 442
14.2.3 Building XML . 445
14.2.4 Writing XML to File . 446

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

Contents xi

14.2.5 XML Patterns . 446
14.3 Putting It Together . 447
14.4 End of Chapter Material . 452

14.4.1 Summary of Concepts . 452
14.4.2 Self-Directed Study . 453
14.4.3 Exercises . 454
14.4.4 Projects . 454

15 Recursion 457
15.1 Memory Layout . 457
15.2 Power of Recursion . 458
15.3 Fibonacci Numbers . 460
15.4 Towers of Hanoi . 462
15.5 Permutations . 465
15.6 Mazes . 467
15.7 Sorts . 470

15.7.1 Divide and Conquer Sorts . 470
15.7.1.1 Merge Sort . 470
15.7.1.2 Quicksort . 471

15.8 Putting It Together . 473
15.9 End of Chapter Material . 475

15.9.1 Summary of Concepts . 475
15.9.2 Exercises . 475
15.9.3 Projects . 476

16 Object-Orientation 481
16.1 Basics of Object-Orientation . 481

16.1.1 Analysis and Design of a Bank . 482
16.1.2 Analysis and Design of Pac-Man™ 485

16.2 Implementing OO in Scala . 488
16.2.1 Methods and Members . 489

16.2.1.1 Parameters as Members 489
16.2.1.2 Visibility . 490

16.2.2 Special Methods . 493
16.2.2.1 Property Assignment Methods 493
16.2.2.2 The apply Method . 494

16.2.3 this Keyword . 495
16.2.4 object Declarations . 495

16.2.4.1 Applications . 496
16.2.4.2 Introduction to Companion Objects 497

16.3 Revisiting the API . 497
16.4 Implementing the Bank Example . 499
16.5 Implementing the Pac-Man™ Example . 503
16.6 End of Chapter Material . 514

16.6.1 Summary of Concepts . 514
16.6.2 Exercises . 516
16.6.3 Projects . 517

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

xii Contents

17 Wrapping Up 525
17.1 What You Have Learned . 525
17.2 IDEs (Eclipse) . 526
17.3 Next Steps . 528
17.4 End of Chapter Material . 528

17.4.1 Exercises . 528

A Getting to Know the Tools 529
A.1 Unix/Linux (includes Mac OS X) . 530

A.1.1 Command Line . 530
A.1.1.1 Files and Directories . 530
A.1.1.2 Aside . 535
A.1.1.3 Helpful Tips . 535
A.1.1.4 Permissions . 536
A.1.1.5 Compression/Archiving 538
A.1.1.6 Remote . 539
A.1.1.7 Other Commands . 541

A.1.2 I/O Redirection . 542
A.1.3 Text Editors (vi/vim) . 543

A.2 Windows . 545
A.2.1 Command Line . 546

A.2.1.1 Files and Directories . 547
A.2.2 Text Editors . 548

A.2.2.1 Edit . 548
A.2.2.2 Notepad . 548
A.2.2.3 Others . 549

A.2.3 Other Commands . 549
A.3 End of Appendix Material . 550

A.3.1 Summary of Concepts . 550
A.3.2 Exercises . 551

B Glossary 553

Bibliography 557

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

Chapter 2
Scala Basics

2.1 Scala Tools . 17
Scala on your Machine . 18
Installation . 18
Dealing with the PATH . 18

2.2 Expressions, Types, and Basic Math . 19
2.3 Objects and Methods . 23
2.4 Other Basic Types . 24
2.5 Back to the Numbers . 27

2.5.1 Binary Arithmetic . 29
2.5.2 Negative Numbers in Binary . 30
2.5.3 Other Integer Types . 31
2.5.4 Octal and Hexadecimal . 32
2.5.5 Non-Integer Numbers . 33

2.6 The math Object . 34
Syntax versus Semantics . 35

2.7 Naming Values and Variables . 36
2.7.1 Patterns in Declarations . 38
2.7.2 Using Variables . 39

2.8 Details of Char and String . 40
2.8.1 Escape Characters . 40
2.8.2 Raw Strings . 41
2.8.3 String Interpolation . 41
2.8.4 String Methods . 42
2.8.5 Immutability of Strings . 44

2.9 Sequential Execution . 45
2.9.1 Comments . 46

2.10 A Tip for Learning to Program . 47
2.11 End of Chapter Material . 47

2.11.1 Problem Solving Approach . 47
2.11.2 Summary of Concepts . 48
2.11.3 Self-Directed Study . 50
2.11.4 Exercises . 50

It is time to begin our journey learning how to program with the Scala language. You can
download Scala for free from http://www.scala-lang.org to run on Windows, Mac, or
Linux (see the inset below for full instructions on how to install). In this book, we will use
the command line to run Scala. If you do not have experience with the command line on
your machine, you can refer to Appendix A for a brief introduction. Before looking at the
language itself, we need to talk a bit about tools so that you can play along.

2.1 Scala Tools
After you have installed Scala on your machine there are several different programs

that get installed in the bin directory under the Scala installation. To begin with, we will

17

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

18 Introduction to Programming and Problem-Solving Using Scala

only concern ourselves with one of these: scala.1 The scala command actually runs scala
programs. There is a second command, scalac, that is used to compile scala text files into
bytecode that is compatible with either the Java or .NET platform. We will only use scalac
in the last chapter of this book, but we will begin using the scala command immediately.

Scala on your Machine

If you only use Scala on a machine in a computer lab, hopefully everything will have
been set up for you so that you can simply type the name of a command and it will
run. To run Scala on your own machine you can follow the instructions below.

Installation

Scala requires Java® to run so if you do not have Java installed you should go
to http://java.oracle.com and download then install the most recent version of the
Java SE JDK. When you install Java, you can go with the default install locations.

After you have Java installed you can install Scala. To download Scala go to http:
//www.scala-lang.org. On that site download the latest version of Scala. The code
in this book was written to work with Scala 2.12.

Dealing with the PATH

If you are using Scala on your own machine, it is possible that entering scala or
scala.bat on the command line could produce a message telling you that the command
or program scala could not be found. This happens because the location of the installed
programs are not in your default PATH.

The PATH is a set of directories that are checked whenever you run a command. The
first match that is found for any executable file in a directory in the PATH will be run.
If none of the programs in the PATH match what you entered, you get an error.

When you installed Scala, a lot of different stuff was put into the install directory.
That included a subdirectory called “bin” with different files in it for the different
executables. If you are on a Windows machine, odds are that you installed the program
in C:\Program Files (x86)\scala so the scala.bat file that you want to run is in
C:\Program Files\scala\bin\scala.bat. You can type in that full command or you
can add the bin directory to your PATH. To do this go to Control Panel, System and
Security, Advanced System Settings, Environment Variables, and edit the path to add
C:\Program Files\scala\bin to the path.

Under Unix/Linux you can do this from the command line. Odds are that Scala
was installed in a directory called scala in your user space. To add the bin directory
to your path you can do the following:

export PATH=$PATH:/home/username/scala/bin

Replace “username” with your username. This syntax assumes you are using the bash
shell. If it does not work for you, you can do a little searching on the web for how to
add directories to your path in whatever shell you are running. To make it so that you
do not have to do this every time you open a terminal, add that line to the appropriate
configuration file in your home directory. If you are running the Bash shell on Linux
this would be .bashrc.

1On a Windows system this commands should be followed by “.bat”.

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

Scala Basics 19

There are three ways in which the scala command can be used. If you just type in scala
and press enter you will be dropped into the Scala REPL (Read-Execute-Print Loop). This
is an environment where you can type in single Scala expressions and immediately see their
values. This is how we will start off interacting with Scala, and it is something that we
will come back to throughout the book because it allows us to easily experiment and play
around with the language. The fact that it gives us immediate feedback is also quite helpful.

To see how this works, at the command prompt, type in scala and then press enter. It
should print out some information for you, including telling you that you can get help by
typing in :help. It will then give you a prompt of the form scala>. You are now in the
Scala REPL. If you type in :help you will see a number of other commands you could give
that begin with a colon. At this time the only one that is significant to us is :quit which
we will use when we are done with the REPL and want to go back to the normal command
prompt.

It is customary for the first program in a language to be Hello World. So as not to break
with tradition, we can start by doing this now. Type the following after the scala> prompt.

println("Hello, World!");

If you do this you will see that the next line prints out “Hello, World!”. This exercise is less
exciting in the REPL because it always prints out the values of things, but it is a reasonable
thing to start with. It is worth asking what this really did. println is a function in Scala
that tells it to print something to standard output and follow that something with a newline
character2 to go to the next line. In this case, the thing that was printed was the string
“Hello, World!”. You can make it print other things if you wish. One of the advantages of
the REPL is that it is easy to play around in. Go ahead and test printing some other things
to see what happens.

The second usage of the scala command is to run small Scala programs as scripts.
The term script is generally used to refer to short programs that perform specific tasks.
There are languages that are designed to work well in this type of usage, and they are often
called scripting languages. The design of Scala makes it quite usable as a scripting language.
Unlike most scripting languages, however, Scala also has many features that make it ideal
for developing large software projects as well. To use Scala for scripting, simply type in a
little Scala program into a text file that ends with “.scala”3 and run it by putting the
file name after the scala command on the command line. So you could edit a file called
Hello.scala and add the line of code from above to it. After you have saved the file, go to
the command line and enter “scala Hello.scala” to see it run.

2.2 Expressions, Types, and Basic Math
All programming languages are built from certain fundamental parts. In English you

put together words into phrases and then combine phrases into sentences. These sentences
can be put together to make paragraphs. To help you understand programming, we will
make analogies between standard English and programming languages. These analogies are

2You will find more information about the and other escape characters in section 2.8
3It is not technically required that your file ends with “.scala”, but there are at least two good reasons

you should do this. First, humans benefit from standard file extensions because they have meaning and
make it easier to keep track of things. Second, some tools treat things differently based on extensions. For
example, some text editors will color code differently based on the file extension.

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

20 Introduction to Programming and Problem-Solving Using Scala

not perfect. You cannot push them too far. However, they should help you to organize
your thinking early in the process. Later on, when your understanding of programming is
more mature, you can dispense with these analogies as you will be able to think about
programming languages in their own terms.

The smallest piece of a programming language that has meaning is called a token. A
token is like a word or punctuation mark in English. If you break up a token, you change
the meaning of that piece, just like breaking up a word is likely to result in something that
is no longer a word and does not have any meaning at all. Indeed, many of the tokens
in Scala are words. Other tokens are symbols like punctuation. Let’s consider the “Hello,
World” example from the previous section.

println("Hello, World!");

This line contains a number of tokens: println, (, "Hello, World!", and).
When you think of putting words together, you probably think of building sentences with

them. A sentence is a grouping of words that stands on its own in written English. The
equivalent of a sentence in Scala, and most programming languages, is the statement. A
statement is a complete and coherent instruction that we can give the computer. When you
are entering “commands” into the REPL, they are processed as full statements. If you enter
something that is not a complete statement in the REPL, instead of the normal prompt, you
will get a vertical bar on the next line telling you that you need to continue the statement.
The command listed above is a complete statement which is why it worked the way it did.

Note that this statement ends with a semicolon. In English you are used to ending
sentences with a period, question mark, or exclamation point. Scala follows many other
programming languages in that semicolons denote the end of a statement. Scala also does
something called semicolon inference. Put simply, if a line ends in such a way that a semi-
colon makes sense, Scala will put one there for you. As a result of this, our print statement
will work just as well without the semicolon.

println("Hello World!")

You should try entering this into the REPL to verify that it works. Thanks to the semicolon
inference in Scala, we will very rarely have to put semicolons in our code. One of the few
times they will really be needed is when we want to put two statements on a single line for
formatting reasons.

While you probably think of building sentences from words in English, the reality is that
you put words together into phrases and then join phrases into sentences. The equivalent
of a phrase in Scala is the expression. Expressions have a far more significant impact on
programming languages than phrases have in English, or at the least programmers need to
be more cognizant of expressions than English writers have to be of phrases. An expression
is a group of tokens in the language that has a value and a type.4 For example, 2 + 2 is
an expression which will evaluate to 4 and has an Integer type.

Just like some phrases are made from a single word, some tokens represent things that
have values on their own, and, as such, they are expressions themselves. The most basic
of these are what are called literals. Our sample line was not only a statement, it was
also an expression. In Scala, any valid expression can be used as a statement, but some
statements are not expressions. The "Hello, World!" part of our statement was also an
expression. It is something called a string literal which we will learn more about in section
2.4.

Let us take a bit of time to explore these concepts in the REPL. Run the scala command

4Type is a construct that specifies a set of values and the operations that can be performed on them.
Common types include numeric integer, floating-point, character, and boolean.

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952
https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

Scala Basics 21

without any arguments. This will put you in the REPL with a prompt of scala>. In the
last chapter we typed in a line that told Scala to print something. This was made from more
than one token. We want to start simpler here. Type in a whole number, like 5, followed by
a semicolon and hit enter. You should see something like this:

scala> 5;
res0: Int = 5

The first line is what you typed in at the prompt. The second line is what the Scala REPL
printed out as a response. Recall that REPL stands for Read-Evaluate-Print Loop. When
you type something in, the REPL reads what you typed, then evaluates it and prints the
result. The term loop implies that this happens over and over. After printing the result,
you should have been given a new prompt.

So what does this second line mean? The REPL evaluated the statement that you input.
In this case, the statement is just an expression followed by a semicolon and the REPL was
printing out the value of the expression you entered. As was mentioned above, the REPL
needs you to type in full statements so that it can evaluate it. In this case, we typed in
a very simple statement that has an expression called a numeric literal followed by a
semicolon. This semicolon will be inferred if you do not add it in. We will take advantage
of that and leave them out of statements below.

The end of the output line gives us the value of the expression which is, unsurprisingly,
5. What about the stuff before that? What does res0: Int mean? The res0 part is a name.
It is short for “result0”. When you type in an expression as a statement in the Scala REPL
as we did here, it does not just evaluate it, it gives it a name so that you can refer back to
it later. The name res0 is now associated with the value 5 in this run of the REPL. We
will come back to this later. For now we want to focus on the other part of the line, :Int.
Colons are used in Scala to separate things from their types. We will see a lot more of this
through the book, but what matters most to us now is the type, Int. This is the type name
that Scala uses for basic numeric integers. An integer can be either a positive or negative
whole number. You can try typing in a few other integer values to see what happens with
them. Most of the time the results will not be all that interesting, but if you push things
far enough you might get a surprise or two.

What happens if you type in a number that is not an integer? For example, what if you
type in 5.6? Try it, and you should get something like this:

scala> 5.6
res1: Double = 5.6

We have a different name now because this is a new result. We also get a different type.
Instead of Int, Scala now tells us that the type is Double. In short, Double is the type that
Scala uses by default for any non-integer numeric values. Even if a value technically is an
integer, if it includes a decimal point, Scala will interpret it to be a Double. You can type
in 5.0 to see this in action. Try typing in some other numeric values that should have a
Double as the type. See what happens. Once again, the results should be fairly mundane.
Double literals can also use scientific notation by putting the letter e between a number
and the power of ten it is multiplied by. So 5e3 means 5 ∗ 103 or 5000.

So far, all of the expressions we have typed in have been single tokens. Now we will build
some more complex expressions. We will begin by doing basic mathematical operations. Try
typing in “5+6”.

scala> 5+6
res2: Int = 11

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

22 Introduction to Programming and Problem-Solving Using Scala

This line involves three tokens. Each character in this case is a separate token. If you space
things out, it will not change the result. However, if you use a number with multiple digits,
all the digits together are a single token and inserting spaces does change the meaning.

There should not be anything too surprising about the result of 5+6. We get back a
value of 11, and it has a type of Int. Try the other basic arithmetic operations of -, *,
and /. You’ll notice that you keep getting back values of type Int. This makes sense for
addition, subtraction, and multiplication. However, the result of 5/2 might surprise you a
little bit. You normally think of this expression as having the value of 2.5 which would
be a Double. However, if you ask Scala for the result of 5/2 it will tell you the value is
the Int 2. Why is this, and what happened to the 0.5? When both operands are of type
Int, Scala keeps everything as Ints. In the case of division, the decimal answer you might
expect is truncated and the fractional part is thrown away. Note that it is not rounded, but
truncated. Why is this? It is because in integer arithmetic, the value of 5/2 is not 2.5. It
is 2r1. That is to say that when you divide five by two, you get two groups of two with
one remainder. At some point in your elementary education, when you first learned about
division, this is probably how you were told to think about it. At that time you only had
integers to work with so this is what made sense.

Scala is just doing what you did when you first learned division. It is giving you the
whole number part of the quotient with the fractional part removed. This fractional part
is normally expressed as a remainder. There is another operation called modulo that is
represented by the percent sign that gives us the remainder after division. Here we can see
it in action.

scala> 5%2
res3: Int = 1

The modulo operator is used quite a bit in computing because it is rather handy for ex-
pressing certain ideas. You should take some time to re-familiarize yourself with it. You
might be tempted to say that this would be your first time dealing with it, but in reality,
this is exactly how you did division yourself before you learned about decimal notation for
fractions.

What if you really wanted 2.5 for the division? Well, 2.5 in Scala is a Double. We can
get this by doing division on Doubles.

scala> 5.0/2.0
res4: Double = 2.5

All of our basic numeric operations work for Doubles as well. Play around with them some
and see how they work. You can also build larger expressions. Put in multiple operators,
and use some parentheses.

What happens when you combine a Double and an Int in an expression. Consider this
example:

scala> 5.0/2
res5: Double = 2.5

Here we have a Double divided by an Int. The result is a Double. When you combine
numeric values in expressions, Scala will change one to match the other. The choice of
which one to change is fairly simple. It changes the one that is more restrictive to the one
that is less restrictive. In this case, anything that is an Int is also a Double, but not all
values that are Doubles are Ints. So the logical path is to make the Int into a Double and
do the operation that way.

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952
https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

Scala Basics 23

2.3 Objects and Methods
One of the features of the Scala language is that all the values in Scala are objects.

The term object in reference to programming means something that combines data and
the functionality on that data in a single entity. In Scala we refer to the things that an
object knows how to do as methods. The normal syntax for calling a method on an object
is to follow the object by a period (which we normally read as “dot”) and the name of the
method. Some methods need extra information, which we called arguments. If a method
needs arguments then those are put after the method name in parentheses.

In Scala, even the most basic literals are treated as objects in our program, and we can
therefore call methods on them. An example of when we might do this is when we need to
convert one type to another. In the sample below we convert the Double value 5.6 into an
Int by calling the toInt method. In this simple context we would generally just use an Int
literal, but there will be situations we encounter later on where we are given values that are
Doubles and we need to convert them to Ints. We will be able to do that with the toInt
method.

scala> 5.6.toInt
res6: Int = 5

One thing you should note about this example is that converting a Double to an Int does
not round. Instead, this operation performs a truncation. Any fractional part of the number
is cut off and only the whole integer is left.

We saw at the beginning of this chapter that Scala is flexible when it comes to the
requirement of putting semicolons at the end of statements. Scala will infer a semicolon at
the end of a line if one makes sense. This type of behavior makes code easier to write.

Methods that take one argument can be called using “infix” notation. This notation
leaves off the dot and parentheses, and simply places the method between the object it
is called on and the argument. If the method name uses letters, spaces will be required
on either side of it. This type of flexibility makes certain parts of Scala more coherent and
provides the programmer with significant flexibility. Though you did not realize it, you were
using “infix” notation in the last section. To see this, go into Scala and type “5.” then press
tab. The Scala REPL has tab completion just like the command line, so what you see is a
list of all the methods that could be called on the Int. It should look something like the
following.

scala> 5.
% + > >>> isInstanceOf toDouble toLong unary_+ |
& - >= ^ toByte toFloat toShort unary_-
* / >> asInstanceOf toChar toInt toString unary_~

You have already seen and used some of these methods. We just finished using toInt on a
Double. We can call toDouble on an Int as well. The things that might stand out though
are the basic math operations that were used in the previous section. The +, -, *, /, and
% we used above are nothing more than methods on the Int type. The expression 5+6 is
really 5 .+ (6) to Scala. In fact, you can type this into Scala and see that you get the same
result.

scala> 5 .+ (6)
res7: Int = 11

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

24 Introduction to Programming and Problem-Solving Using Scala

The space between the 5 and the . is required here because without it Scala thinks you
want a Double. You could also make this clear using parentheses by entering (5).+(6).

So when you type in 5+6, Scala sees a call to the method + on the object 5 with one
argument of 6. We get to use the short form simply because Scala allows both the dot and
the parentheses to be optional in cases like this.

2.4 Other Basic Types
Not everything in Scala is a number. There are other non-numeric types in Scala which

also have literals. We will start simple and move up in complexity. Perhaps the simplest
type in Scala is the Boolean type. Objects of the Boolean type are either true or false,
and those are also valid literals for Booleans.

scala> true
res8: Boolean = true

scala> false
res9: Boolean = false

We will see a lot more on Booleans and what we can do with them in chapter 3 when we
introduce Boolean logic.

Another type that is not explicitly numeric is the Char type. This type is used to
represent single characters. We can make character literals by placing the character inside
of single quotes like we see here.

scala> ’a’
res10: Char = a

The way that computers work, all character data is really numbers, and different numbers
correspond to different characters. We can find out what numeric value is associated with
a given character by using the toInt method. As you can see from the line below, the
lowercase “a” has a numeric value of 97.

scala> ’a’.toInt
res11: Int = 97

Because characters have numeric values associated with them, we can also do math with
them. When we do this, Scala will convert the character to its numeric value as an Int and
then do the math with the Int. The result will be an Int, as seen in this example.

scala> ’a’+1
res12: Int = 98

In the last section you might have noticed that the Int type has a method called toChar.
We can use that to get back from an integer value to a character. You can see from the
following example that when you add 1 to ’a’ you get the logical result of ’b’.

scala> (’a’+1).toChar
res13: Char = b

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952
https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

Scala Basics 25

An object of the Char type can only be a single character. If you try to put more than
one character inside of single quotes you will get an error. It is also an error to try to make
a Char with empty single quotes. However, there are lots of situations when you want to be
able to represent many characters, or even zero characters. This includes words, sentences,
and many other things. For this there is a different type called a String. String literals
are formed by putting zero or more characters inside of double quotes like we see in this
example.

scala> "Scala is a programming language"
res14: String = Scala is a programming language

Notice that the type is listed as String.5
Certain operations that look like mathematical operations are supported for Strings.

For example, when you use + with Strings, it does string concatenation. That is to say
it gives back a new string that is the combined characters of the two that are being put
together as shown here:

scala> "abc"+"def"
res15: java.lang.String = abcdef

This type of operation works with other types as well. The next example shows what happens
when we concatenate a String with an Int. The Int is converted to a String, using the
toString method, and normal string concatenation is performed.

scala> "abc"+123
res16: java.lang.String = abc123

This works whether the String is the first or second argument of the +.

scala> 123+"abc"
res17: java.lang.String = 123abc

In addition to concatenation, you can multiply a string by an integer, and you will get back
a new string that has the original string repeated the specified number of times.

scala> "abc"*6
res18: String = abcabcabcabcabcabc

This can be helpful for things such as padding values with the proper number of spaces
to make a string a specific length. You can do this by “multiplying” the string " " by the
number of spaces you need.

The infix notation for calling a method was introduced earlier. We can show another
example of this using the String type and the substring method. As the name implies,
substring returns a portion of a String. There are two versions of it. One takes a single
Int argument and returns everything from that index to the end of the String. Here you
can see that version being called using both the regular notation and the infix notation.

scala> "abcd".substring(2)
res19: String = cd

scala> "abcd" substring 2
res20: String = cd

5The way you are running this, the real type is a java.lang.String. Scala integrates closely with Java
and uses some of the Java library elements in standard code. This also allows you to freely call code from
the Java libraries, a fact that has been significant in the adoption of Scala.

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

26 Introduction to Programming and Problem-Solving Using Scala

The indices in Strings begin with zero, so ’a’ is at index 0, ’b’ is at index 1, and ’c’ is
at index 2. Calling substring with an argument of 2 gives back everything from the ’c’
to the end.

The version of substring that takes two arguments allows us to demonstrate a different
syntax where we just leave off the dot. In this case, the first argument is the first index
to take and the second one is one after the last index to take. In math terms, the bounds
are inclusive on the low end and exclusive on the high end. The fact that there are two
arguments means that we have to have parentheses to group together the two arguments,
However, we are not required to put the dot, and the method name can just be between
the object and the arguments. Here are examples using the normal syntax and the version
without the dot.

scala> "abcd".substring(1,3)
res21: String = bc

scala> "abcd" substring (1,3)
res22: String = bc

The space between the method and the parentheses is not required. Remember that in
general Scala does not care about spaces as long as they do not break up a token. In this
book, we will typically use the standard method calling notation, but you should be aware
that these variations exist.

There are other types that are worth noting before we move on. One is the type Unit.
The Unit type in Scala basically represents a value that carries no information.6 There is
a single object of type Unit. It is written in code and prints out as (). We have actually
seen an example of code that uses Unit. The first program we saw in this chapter used
a function called println. When we called println Scala did something (it directed the
string to standard output), but did not give us back a value. This is what happens when
we type in an expression that gives us back a value of Unit in the REPL.

Another significant type in Scala is the tuple. A tuple is a sequence of a specified
number of specific types. Basically, a collection of values that is strict about how many
and what type of values it has. We can make tuples in Scala by simply putting values in
parentheses and separating them with commas as seen in the following examples.

scala> (5,6,7)
res23: (Int, Int, Int) = (5,6,7)

scala> ("book",200)
res24: (String, Int) = (book,200)

scala> (5.7,8,’f’,"a string")
res25: (Double, Int, Char, String) = (5.7,8,f,a string)

The tuples in Scala provide a simple way of dealing with multiple values in a single package,
and they will come up occasionally through the book. Note that the way we express a tuple
type in Scala is to put the types of the values of the tuple in parentheses with commas
between them, just like we do with the values to make a tuple object.

Tuples with only two elements can have special meanings in some parts of Scala. For
that reason, there is an alternate syntax you can use to define these. If you put the token
-> between two values, it will produce a 2-tuple with those values. Consider the following
example.

6The equivalent in many other languages is called void.

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

Scala Basics 27

scala> 3 -> "three"
res26: (Int, String) = (3,three)

The -> will only produce tuples with two elements though. If you try using it with more
than two elements you can get interesting results.

scala> 4 -> 5 -> 6
res27: ((Int, Int), Int) = ((4,5),6)

So if you want tuples with more than two elements, stick with the parentheses and comma
notation.

Once you have a tuple, there are two ways to get things out of them. The first is to use
methods named _1, _2, _3, etc. So using res21 from above we can do the following.

scala> res25._1
res28: Double = 5.7

scala> res25._3
res29: Char = f

The challenge with this method is that method names like _1 are not very informative and
can make code difficult to read. We will see an alternative approach in section 2.7 that
requires a bit more typing, but can produce more readable code.

2.5 Back to the Numbers
Depending on how much you played around with the topics in section 2.2 you might

or might not have found some interesting surprises where things behaved in ways that you
were not expecting. Consider the following:

scala> 1500000000+1500000000
res30: Int = -1294967296

Mathematicians would consider this to be the wrong answer. It is actually a reflection of
the way that numbers are implemented on computers. The details of this implementation
can impact how your programs work, so it is worth taking a bit of time to discuss it.

At a fundamental level, all information on computers is represented with numbers. We
saw this with the characters being numbers. On modern computers all these numbers are
represented in binary, or base two which represents numeric values using two different
symbols: 0 (zero) and 1 (one). The electronics in the computer alternate between two states
that represent 1 and 0 or on and off. Collections of these represent numbers. A single value
of either a 0 or a 1 is called a bit. It is a single digit in a binary number. The term byte
refers to a grouping of 8 bits which can represent 256 different numbers. In Scala these will
be between -128 and 127. To understand this, we need to do a little review of how binary
numbers work.

You have likely spent your life working with decimal numbers, or base ten. In this system,
there are ten possible values for each digit: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Digits in different
positions represent different power of ten. So the number 365 is really 3∗102+6∗101+5∗100.
There is nothing particularly unique about base ten other than perhaps it relates well to
the number of digits on human hands. You can just as well use other bases, in which case

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

28 Introduction to Programming and Problem-Solving Using Scala

Value Power of 2 Digit
296 256 1
40 128 0
40 64 0
40 32 1
8 16 0
8 8 1
0 4 0
0 2 0
0 1 0

FIGURE 2.1: Illustration of the conversion from decimal to binary using the subtraction
method. This method works from the top down. To get the number in binary just read
down the list of digits.

you need an appropriate number of symbols for each digit and each position represents a
power of that base.

Binary uses a base of two. In binary we only need two different digits: 0 and 1. This
is convenient on computers where the electronics can efficiently represent two states. The
different positions represent powers of two: 1, 2, 4, 8, 16, 32, ... So the number 110101 =
1 ∗ 32 + 1 ∗ 16 + 0 ∗ 8 + 1 ∗ 4 + 0 ∗ 2 + 1 ∗ 1 = 53. This example shows how you convert
from binary to decimal. Simply add together the powers of two for which the bits have a
value of one. A byte stores eight bits that would represent powers of two from 128 down to
1. The word “would” is used here because there is a significant nuance to this dealing with
negative numbers that we will discuss shortly.

There are two basic approaches to converting from decimal to binary. One involves
repeated subtraction of powers of two while the other involves repeated division by two. We
will start with the first one and use the value 296 in decimal for the conversion. We start by
finding the largest power of 2 that is smaller than our value. In this case it is 256 = 28. So we
will have a one in the 28 position or the 9th digit7. Now we subtract and get 296−256 = 40
and repeat. The largest power of 2 smaller than 40 is 32 = 25. So the digits for 27 and 26

are 0. Subtract again to get 40− 32 = 8. We now have 8 = 23 so the final number in binary
is 100101000. This procedure is written out the way you might actually do it in figure 2.1.

The other approach is a bit more algorithmic in nature and is probably less prone to
error. It works based on the fact that in binary, multiplying and dividing by 2 moves the
“binary point” the same way that multiplying or dividing by 10 moves the decimal point
in the decimal number system. The way it works is you look at the number and if it is
odd you write a 1. If it is even you write a 0. Then you divide the number by 2, throwing
away any remainder or fractional part, and repeat with each new digit written to the left
of those before it. Do this until you get to 0. You can also think of this as just dividing by
two repeatedly and writing the remainder as a bit in the number with the quotient being
what you keep working with.

The number 296 is even so we start off by writing a 0 and divide by 2 to get 148. That
is also even so write another 0. Divide to get 74. This is also even so write another 0. Divide
to get 37. This is odd so write a 1. Divide to get 18, which is even so you write a 0. Divide
to get 9 and write a 1. Divide to get 4 and write a 0. Divide to get 2 and write a 0. Divide
to get 1 and write that one. The next division gives you zero so you stop. This procedure
is illustrated in figure 2.2.

7Remember that the first digit is 20 = 1.

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

Scala Basics 29

Value Digit
1 1
2 0
4 0
9 1
18 0
37 1
74 0
148 0
296 0

FIGURE 2.2: Illustration of the conversion from decimal to binary using the repeated
division method. This method works from the bottom up so you get the bits in the result
starting with the smallest.

2.5.1 Binary Arithmetic

Now that you know how to go from binary to decimal and decimal to binary, let’s take
a minute to do a little arithmetic with binary numbers. It is certainly possible to do this
by converting the binary to decimal, doing the arithmetic in decimal, then converting back
to binary. However, this is quite inefficient and not worth it because it really is not hard to
work in binary. If anything, it is easier to work in binary than in decimal. Let us begin with
the operation of addition. Say we want to add the numbers 110101 and 101110. To do this
you do exactly what you would do with long addition in decimal. As with decimal numbers,
you start by adding the bits one column, at a time, from right to left. Just as you would do
in decimal addition, when the sum in one column is a two-bit number, the least significant
part is written down as part of the total and the most significant part is "carried" to the
next left column. The biggest difference between decimal and binary addition is that in
binary there is a lot more carrying. Here is a problem solved without showing the carries.

110101
+ 101110

1100011

Here is the same problem, but with numbers written above to show when there is a carry.

1111
110101

+ 101110

1100011

Multiplication in binary can also be done just like in decimal, and you have a lot fewer
multiplication facts to memorize. Zero times anything is zero and one times anything is
that number. That is all we have to know. Let us do multiplication with the same numbers
we just worked with. First we will get all the numbers that need to be added up.

110101
* 101110

1101010

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

30 Introduction to Programming and Problem-Solving Using Scala

11010100
110101000

11010100000

Adding these numbers is best done in pairs. The reason is that as soon as you add together
3 or more numbers in binary you have the capability to have to do something you are not
accustomed to doing in decimal: carry a value up two digits. In decimal you would have to
have a column sum up to one hundred or more for this to happen. However, in binary you
only have to get to four (which is written as 100 in binary). That happens in this particular
instance in the 6th digit. To reduce the odds of an error, it is better to add the values two
at a time as we have shown here.

1101010
+ 11010100

100111110

+ 110101000

1011100110

+11010100000

100110000110

You can do division in the same way that you do long division with integers, but we will
not cover that here.

2.5.2 Negative Numbers in Binary

We still have not addressed the question of how we represent negative numbers on
a computer. The description that we have given so far only deals with positive values.
Numbers that are interpreted this way are called unsigned. All the numeric types in Scala
are signed, so we should figure out how that works.8 To do this, there are two things that
should be kept in mind. The first is that our values have limited precision. That is to say
that they only store a certain number of bits. Anything beyond that is lost. The second is
that negative numbers are defined as the additive inverses of their positive counterparts. In
other words, x+ (−x) = 0 for any x.

To demonstrate how we can get negative numbers, let’s work with the number 110101
(53 in decimal). Unlike before, we will now limit ourselves to a single byte. So, we have
8 digits to work with, and the top digits are zeros. Our number stored in a byte is really
00110101. So the question of what should be the negative is answered by figuring out what
value we would add to this in order to get zero.

00110101
+ ????????

00000000

Of course, there is nothing that we can put into the question marks to make this work.
However, if we go back to our first fact (i.e. values have limited precision) we can see what
we must do. Note that our total below has 9 digits. We do not need the total to be zero,
we need eight digits of zero. So in reality, what we are looking for is the following.

8The Char is actually a 16-bit unsigned numeric value, but the normal numeric types are all signed.

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

Scala Basics 31

Type Bits Min Max
Byte 8 -128 127
Short 16 -32768 32767
Int 32 -2147483648 2147483647
Long 64 -9223372036854775808 9223372036854775807

TABLE 2.1: Integer types with their sizes and ranges.

00110101
+ ????????

100000000

This problem is solvable and the most significant 1, the one on the far left, will be thrown
away because we can only store 8 bits in a byte. So the answer is given here.

00110101
+ 11001011

100000000

Note that the top bit is "on" in the negative value. The top bit is not exactly a sign bit,
but if a number is signed, the top bit will tell us quickly whether the number is positive
or negative. This style of making negatives is called two’s compliment. In the early days
of digital computing other options were tried, such as adding a sign-bit or a method called
ones’ compliment where the bits are simply flipped. However, two’s compliment is used in
machines today because it allows numeric operations to be done with negative numbers
using the same circuitry as is used for positive numbers.

This process gives us the correct answer and is based on the proper definition of what a
negative number is. Finding negatives using the definition of what a negative value is works
and can be a fallback, but there is a simpler method. To get the two’s compliment negative
of a binary number of any size, simply flip all the bits and add one. You can verify that this
approach works for our example above. It is left as an exercise for the student to figure out
why this works.

2.5.3 Other Integer Types

There are larger groups of bits beyond the 8-bit bytes that have meaning in Scala. In
fact, if you go back to section 2.3 and you look at the different methods on an Int, you
will see that toDouble and toChar are not the only conversions we can do. Scala has other
integer types called Byte, Short, and Long. A Byte in Scala is an 8-bit number. A Short is
a 16-bit number. The Int that we have been using is a 32-bit number. The Long type is a
64-bit number. The reason for the odd behavior that was demonstrated at the beginning of
section 2.5 is that we added two numbers together whose sum is bigger than what can be
stored in the lower 31 bits of an Int and the overflow, as it is called, wrapped it around
to a negative value. Table 2.1 shows the minimum and maximum values for each of the
different integer types.

Occasionally you will need to use literals that are bigger than what an Int can store.
You can do this with a Long. Making a numeric literal into a Long is done by simply adding
an L to the end. You can see this here.

scala> 5000000000L

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

32 Introduction to Programming and Problem-Solving Using Scala

res31: Long = 5000000000

The value five billion is not a valid Int. If you leave off the L here you get an error. The
L can be lower case, but then it looks a lot like the number one so it is better to use the
upper case.

We talked about binary above, and Scala has a method that will let you see the binary
form of a number. This method works on the four normal numeric types and Char. Here we
use it to see the binary representation for 83 and -83 for the values as both Int and Long
types.

scala> 83.toBinaryString
res32: String = 1010011

scala> -83.toBinaryString
res33: String = 11111111111111111111111110101101

scala> 83L.toBinaryString
res34: String = 1010011

scala> -83L.toBinaryString
res35: String =
1110101101

The toBinaryString method does not display leading zeros, so the positive values only
show seven digits in both formats. However, the negative form has many leading ones and
all of these are printed.

2.5.4 Octal and Hexadecimal

Binary is what the machine uses, but it really is not that useful to humans. This is
in large part due to the fact that the number of digits in a binary number is often large,
even if the number itself is not what we consider large. There are two other bases that are
commonly seen in programming and dealing with computers. They are base 8, octal, and
base 16, hexadecimal or hex. Like decimal, these bases allow you to represent fairly large
numbers with relatively few digits. Unlike decimal, converting from octal or hex to binary
and back is trivial. The reason for this is that 8 and 16 are powers of two.

To see this, let us start with octal. When working in base 8, the digits can be between 0
and 7 with each subsequent digit being a higher power of 8. The ease of converting to and
from binary comes from the fact that 8 is 23. In binary the values 0 to 7 are represented with
three bits between 000 and 111. The fourth and subsequent bits represent values that are
multiples of eight. Because of this, we can convert a binary number to an octal number by
grouping the bits into groups of three, starting with the least significant bit, and converting
those groups.9 So the binary number, 1010011 is 123 in octal. The lowest three bits, 011,
convert to 3, the next three, 010, convert to 2, and the top bit is just a 1. We can use the
toOctalString method to confirm this.

scala> 83.toOctalString
res36: String = 123

To go the other way, from octal to binary, we simply convert the octal digits to three digit

9It is very important to start grouping with the ones bit. Starting at the other end will give you the
wrong answer if the last group has fewer than three bits.

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

Scala Basics 33

binary numbers. So the octal value, 3726 converts to 011111010110. We can emphasize the
groupings of bits by spacing them out: 011 111 010 110. This is 2006 in decimal.

Moving between hexadecimal and binary is similar. The catch is that now a single digit
needs to have 16 possible values. So the 0-9 that we are used to will not suffice. It is typical
to augment the normal digits with the letters A-F where A is 10 and F is 15. Because 16 = 24,
we use groups of 4 bits when converting between hexadecimal and binary. Once again, you
start the process with the lower bits and work up. So 1010011 is grouped as 0101 0011
and becomes 53. We saw that 2006 in decimal is 011111010110. This groups as 0111 1101
0110 and becomes 7D6 in hex. Again, there is a method called toHexString that can be
used on the numeric types to quickly get the hexadecimal representation of a number.

While toHexString give us hexadecimal representations of numeric values that we have
in decimal, it is sometimes helpful to be able to enter values into programs using hexadecimal
in a program. This can be done by prefixing a numeric literal with 0x. The following uses
of this confirms the conversion we did for the numbers above.

scala> 0x53.toBinaryString
res37: String = 1010011

scala> 0x7D6.toBinaryString
res38: String = 11111010110

2.5.5 Non-Integer Numbers

We saw previously that if we type in a numeric value that includes a decimal point
Scala tells us that it has type Double. The Double literal format is more powerful than just
including decimal points. It also allows you to use scientific notation to enter very large or
very small numbers. Simply follow a number by an e and the power of ten it should be
multiplied by. So 15000.0 can also be written as 1.5e4.

The name Double is short for double precision floating point number. The full name
includes information about the way that these numbers are stored in the memory of a
computer. Like all values in a computer, the Double is stored as a collection of bits. To
be specific, a Double uses 64-bits. This size is related to the double precision part. There
is another type called Float that is a single precision floating point number and only uses
32-bits. In both cases, the internal representation uses floating point format. This is similar
to scientific notation, but in binary instead of decimal. The bits in a floating point number
are grouped into three different parts. We will call them s, e, and m and the value of the
number is given by (−1)s ∗ (1 +m) ∗ 2(e−bias). The first bit in the number is the sign bit, s.
When that bit is on, the number is negative and when it is off it is positive. After the sign bit
is a group of bits for the exponent, e. Instead of using two’s compliment for determining
if the exponent is negative, the exponent is biased by a value that is picked to match with
the number of bits in the exponent. Using a bias instead of two’s compliment means that
comparisons between floating point values can be done with the same logic used for integer
values with the same number of bits. All remaining bits are used to store a mantissa,
m. The stored mantissa is the fractional part of the number in normalized binary. So the
highest value bit is 1

2 , the next is 1
4 , and so on. Table 2.2 below gives the number of bits

used for e and m, the bias, and the range of numbers they can represent in the Double and
Float types. The E notation is short for multiplication by 10 to that power.

As we have seen, floating point literals are considered to be of type Double by default. If
you specifically need a Float you can append an f to the end of the literal. There are many
other details associated with floating point values, but there is only one main point that will
be stressed here. That is the fact that floating point values, whether Double or Float, are

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

34 Introduction to Programming and Problem-Solving Using Scala

Type e Bits m Bits bias Min Max
Float 8 23 127 -3.4028235E38 3.4028235E38
Double 11 52 1023 -1.7976931348623157E308 1.7976931348623157E308

TABLE 2.2: Floating point types with sizes and ranges.

not Real numbers in the sense you are used to in math with arbitrary precision. Floating
point numbers have limited precision. Like the integers, they can be overflowed. Unlike the
integers, they are fundamentally imprecise because they represent fractional values with a
finite number of bits. The real implications of this are seen in the following example.

scala> 1.0-0.9-0.1
res39: Double = -2.7755575615628914E-17

To understand why this happens, consider the simple fraction, 1
3 , the decimal represen-

tation of which 0.33333... In order to write this fraction accurately in decimal, you need an
infinite number of digits. In math we can denote things like this by putting in three dots or
putting a line over the digits that are repeated. For floating point values, the digits simply
cut off when you get to the end of the mantissa. As such, they are not exact and the circuitry
in the computer employs a rounding scheme to deal with this. This imprecision is not visible
most of the time, but one immediate implication of it is that you cannot trust two floating
point numbers to be equal if they were calculated using arithmetic. It also means that you
should not use floating point numbers for programs that involve money. The decimal value
0.1 is a repeating fraction in binary, hence the problem in the example above, and as such,
is not perfectly represented. Instead you should use an integer type and store cents instead
of dollars.

2.6 The math Object
While on the topic of numbers, there are quite a few standard functions that you might

want to do with numbers beyond addition, subtraction, multiplication, and division. There
are a few other things you can get from operators that we will discuss later. Things like
square root, logarithms, and trigonometric functions are not operators. They are found as
methods in the math object. You can use tab completion in the REPL to see all the different
methods that you can call on math and values stored in it.

scala> math.
BigDecimal ScalaNumericConversions max
BigInt abs min
E acos package
Equiv asin pow
Fractional atan random
IEEEremainder atan2 rint
Integral cbrt round
LowPriorityEquiv ceil signum
LowPriorityOrderingImplicits cos sin
Numeric cosh sinh
Ordered exp sqrt
Ordering expm1 tan

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

Scala Basics 35

PartialOrdering floor tanh
PartiallyOrdered hypot toDegrees
Pi log toRadians
ScalaNumber log10 ulp
ScalaNumericAnyConversions log1p

Many of these probably do not make sense right now, and you should not worry about
them. However, many of them should be identifiable by the name. So if we wanted to take
a square root of a number, we could do the following.

scala> math.sqrt(9)
res40: Double = 3.0

You would use a similar syntax for taking cosines and sines. The functions provided in the
math object should be sufficient for the needs of most people. Only two of the contents of
math that start with capital letters are worth noting at this point. Pi and E are numeric
constants for π and e.

scala> math.Pi
res41: Double = 3.141592653589793

Syntax versus Semantics

The terms syntax and semantics are used very commonly when discussing pro-
gramming languages. For natural languages, syntax can be defined as “the arrangement
of words and phrases to create well-formed sentences in a language”. This is a pretty
good definition for programming languages other than we are not building sentences,
we are building programs. The syntax of a programming language specifies the for-
mat or tokens and how tokens have to be put together to form proper expressions and
statements as well as how statements must be combined to make proper programs.

As you will see, assuming that you have not yet, programming languages are much
more picky about their syntax than natural languages. Indeed, the syntax of program-
ming languages are specified in formal grammars. You do not really get the same type
of artistic license in a programming language that you do in a natural language, as devi-
ating from the syntax makes things incorrect and meaningless. Don’t worry though, in
expressive and flexible languages like Scala, you still have a remarkable amount of free-
dom in how you express things, and with experience, you can create beautiful solutions
that follow the syntax of the language.

The semantics of a program deals with the meaning. Syntax does not have to be
attached to meaning. It is just formal rules that are part of a formal system that specify
if a program is well formed. It is the semantics of a language that tell us what something
that follows the syntax actually means.

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

36 Introduction to Programming and Problem-Solving Using Scala

2.7 Naming Values and Variables
We have seen enough that you can solve some simple problems. For example, if you

were given a number of different grades and asked to find the average, you could type in
an expression to add them all up and divide by the number of them to get the average.
We basically have the ability to use Scala now to solve anything we could solve with a
calculator as well as doing some fairly simple string manipulation. We will develop a lot
more over time, but we have to start somewhere. As it stands we are not just limited to
solving problems we could do with a calculator, we are solving them the way we would
with a calculator. We type in mathematical expressions the way we would write them on
paper and get back an answer. Real programming involves tying together multiple lines of
instructions to solve larger problems. In order to do this, we need to have a way to give
names to values so we can use those values later.

There are two keywords in Scala that give names to values: val and var. To begin with,
let us look at the full syntax of val and var in two samples. Then we can pull them apart,
talk about what they do, see how they are different, and discuss what parts of them are
optional.

scala> val age:Int = 2015-1996
age: Int = 19

scala> var average:Int = (2+3+4+5)/4
average: Int = 3

Syntactically the only difference between these two is that one says val and the other says
var. That is followed by a name with a colon and a type after it. The rules for names in Scala
are that they need to start with a letter or an underscore followed by zero or more letters,
numbers, and underscores.10 So abc, abc123_def, and _Team2150 are all valid Scala names
while 2points is not. You also cannot use keywords as variable names. The only keywords
that have been introduced so far are val and var, but there will be others, and you cannot
use those as names for things as they are reserved by the language.

Scala is also case sensitive. So the names AGE, age, Age, and agE are all different. In
general, it is considered very poor style to use names that differ only in capitalization as it
can quickly lead to confusion. Most names will not involve underscores either, and numbers
only appear where they make sense. Scala borrows a standard naming convention from
Java called camel case. The names of values begin with a lower case letter and the first
letter of subsequent words are capitalized. For example, theClassAverage is a name that
follows this convention. Type names use the same convention except that the first letter is
capitalized. This is called camel case because the capital letters look like humps.

The types in both of these examples are followed by an equal sign and an expression.
Unlike many other programming languages, this is not optional in Scala. In Scala, when
you declare a val or var, you must give it an initial value.11

While the initial value is not optional, the type generally is. Scala is able to figure out

10Scala also allows names that are either made entirely of operator symbols or have a standard name
followed by an underscore and then operator symbols. Symbolic names should only be used in special
situations, and using them improperly makes code difficult to read. For this reason, we will ignore these
types of names for now.

11There are very good reasons for requiring initialization of variables. Even in languages that do not
require it, a programmer can make his/her life a lot easier by initializing all variables at creation. The
declaration and initialization should ideally happen at the point where you have a real value to put into
the variable. This prevents many errors and as a result, can save you a lot of time in your programming.

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

Scala Basics 37

FIGURE 2.3: This figure shows how you should think about value and variable declara-
tions in Scala. The variable itself stores a reference to an object. The difference between
val and var is whether or not you can change what is referred to, not whether that object
can be modified.

the types of things for us in many situations. If we leave off the colon and the type, Scala
will simply use whatever type it infers is appropriate for the expression in the initial value.
Most of the time, the type that it gives us will be exactly what we want. Using this we
could instead have the following shorter forms of these declarations.

scala> val age = 2015-1996
age: Int = 19

scala> var average = (2+3+4+5)/4
average: Int = 3

The reason for using a val or var declaration is that they give a name to the value that
we can refer back to later. For example, we could now type in age+10 and Scala would give
us 29. The names serve two purposes. They prevent us from typing in expressions over and
over again. They also help give meaning to what we are doing. You should try to pick names
that help you or other readers figure out what is going on with a piece of code.

So far we have discussed all the similarities between val and var and you might be won-
dering in what way they are different. The declarations themselves are basically identical.
The difference is not in the syntax, but in the meaning, or semantics. A val declaration
gives a name to a reference to a value. That reference cannot be changed. It will refer to
the thing it was originally set to forever. In the REPL, you can declare another val with
the same name, but it does not do anything to change the original. A var declaration, on
the other hand, allows the reference to change. In both cases we are not naming the value,
we are naming a box that stores a reference the value. The significance of this will be seen
in section 7.7. Figure 2.3 shows a visual representation of how you should picture what a
val or var declaration does in Scala.

The act of changing the reference stored in one of these boxes we call variables is referred
to as an assignment. Assignment in Scala is done with the same equal sign that was used
to set the initial value. In an assignment though there is no val or var keyword. If you
accidentally include either var or val you will be making a new variable, not changing the
old one.

scala> average = 8
average: Int = 8

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

38 Introduction to Programming and Problem-Solving Using Scala

FIGURE 2.4: This figure shows what you might imagine happening with each of the lines
assigning new values to the variable average.

scala> average = 2*average
average: Int = 16

The first assignment causes the box named average to change from referring to the object
3 to the object 8. The second one uses the previously referred to value and multiplies it by
two, then stores a reference to that new value back into the variable. The effects of these
lines are illustrated in figure 2.4.

As a general rule, you should prefer val declarations over var declarations. Try to make
everything a val, and only convert it to a var if you find that you truly need to do so. The
reason for this is that it simplifies the logic of your program and makes it less likely that
you will mess things up. Things that change are harder to reason about than things that
stay the same.

2.7.1 Patterns in Declarations

There is a bit more to the initialization of val and var declarations than was mentioned
above. Technically, the initialization is able to do something called pattern matching
that we will get to in detail in chapter 5. For now, the only aspect we will care about is
that we can put tuples on the left hand side of the equals sign where we would normally
put just a variable name. First, let us see what happens if we do a val declaration with a
tuple on the right hand side.

scala> val t = (100,5.7)
t: (Int, Double) = (100,5.7)

Note that t refers to the tuple and has a type (Int,Double). This is exactly what we would
expect. The power that pattern matching provides is that if you put multiple names inside
of parentheses on the left of the equals, much like a tuple, all the names will be bound.
That type of behavior is shown here.

scala> val (price,weight) = t
price: Int = 100
weight: Double = 5.7

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952
https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

Scala Basics 39

The same can be done with a var and then all the names will have the ability to change
what they refer to. This is the second way of getting values out of tuples. It is more readable
because we can pick meaningful names for the variables. After doing the example above,
you could use price and weight instead of t._1 and t._2.

2.7.2 Using Variables

Let us use the ability to name values to do a little problem solving. We are given a total
time in seconds, and we want to know what that is in hours, minutes, and seconds. We then
want to print that out in a reasonable format of “hh:mm:ss”. The first step in solving this
problem is to figure out how to go from just seconds to hours, minutes, and seconds. Once
we have that, we can worry about formatting it to get the right string value.

How do we get from seconds to hours, minutes, and seconds? First, how do you get from
seconds to minutes? That is fairly easy, you simply divide by 60. Thanks to the fact that
integer division truncates, you will get the proper number of whole minutes. Here are two
lines that define a number of total seconds as well as a number of total minutes.

scala> val totalSeconds = 123456
totalSeconds: Int = 123456

scala> val totalMinutes = totalSeconds/60
totalMinutes: Int = 2057

That number of minutes is not exactly the amount of time we want though. There are
seconds left over. How do we figure out how many seconds we should display? We could do
totalSeconds-(60*totalMinutes), but a simpler expression is used here.

scala> val displaySeconds = totalSeconds%60
displaySeconds: Int = 36

The modulo gives us the remainder after we have gotten all the full groups of 60. That is
exactly what we want. Now how do we get the number of hours and the number of minutes
to display? The math is the same because there are 60 minutes in each hour.

scala> val displayMinutes = totalMinutes%60
displayMinutes: Int = 17

scala> val displayHours = totalMinutes/60
displayHours: Int = 34

What we see from this is that 123456 seconds is 34 hours, 17 minutes, and 36 seconds. We
could repeat this same process for a different number of seconds if we used a different value
for totalSeconds.

Now that we have these values, we want to figure out how to get them into a string with
the format “hh:mm:ss”. A first attempt at that might look like the following.

scala> val finalString = displayHours+":"+displayMinutes+":"+displaySeconds
finalString: String = 34:17:36

For this particular number of seconds, this works just fine. However, if you play around with
this at all, you will find that it has a significant shortcoming. If the number of minutes or
seconds is less than 10, only one digit is displayed when we want two. So we need to come
up with a way to get a leading zero on numbers that only have one digit. To do this, we
will break the problem into two steps.

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

40 Introduction to Programming and Problem-Solving Using Scala

The first step will be to get the number of minutes and seconds as Strings.

scala> val min=displayMinutes.toString
min: String = 17

scala> val sec=displaySeconds.toString
sec: String = 36

This might seem odd, but the string version has something that the number itself does not,
an easy way to tell how many digits/characters are in it. When there is only one digit, we
want to add an extra zero. When there is not, we leave it as is. We can get this effect by
using the * method on the String and a little math. The short names were selected to keep
our expression shorter for formatting, but that is not required.

scala> val finalString=displayHours+":"+("0"*(2-min.length))+min+":"+(
| "0"*(2-sec.length))+sec
finalString: String = 34:17:36

The result for these values is the same, but we could force some different value into min and
sec to see that this does what we want.

scala> val min="5"
min: String = 5

scala> val sec="2"
sec: String = 2

scala> val finalString=displayHours+":"+("0"*(2-min.length))+min+":"+(
| "0"*(2-sec.length))+sec
finalString: String = 34:05:02

2.8 Details of Char and String

There is a lot more to Char and String than we covered in section 2.4. Some of it you
really should know before we go further. We saw how we can make character literals or
string literals that contain keys that appear on the keyboard and that go nicely into a text
file. What about things that we cannot type as nicely or that have other meanings? For
example, how do you put double quotes in a String? Typing the double quote closes off the
string literal instead of putting one in. You are not allowed to have a normal string break
across lines, so how do you get a newline in a String?

2.8.1 Escape Characters

We can do all of these things and more with escape characters. These are denoted
by a backslash in front of one or more characters. For example, if you want to put a double
quote in a string, simply put a backslash in front of the double quote. You can insert a
newline with a \n. If you want to insert a backslash simply put in two backslashes. Table
2.3 shows some commonly used escape characters.

In addition to escape characters, the backslash can be used to put any type of special

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

Scala Basics 41

Literal Meaning Unicode Hex Encoding
\b backspace \u0008
\f form feed \u000C
\n line feed \u000A
\r carriage return \u000D
\t tab \u0009
\" double quote \u0022
\’ single quote \u0027
\\ backslash \u005C

TABLE 2.3: Table of special character escape sequences in Scala.

character into a string. If you know the Unicode value for a special character, you can put
\u followed by four hexadecimal digits in a string to specify that character.12

2.8.2 Raw Strings

There are some times when using the escape characters becomes a pain. For example,
there are times when you need to build strings that have a number of backslashes. Each one
you want requires you to put in two. This can get unwieldy. In addition, if you have a long,
multi-line string, it can be difficult to format the string the way you want. For these types
of situations, Scala includes a special form of string that begins and ends with three double
quotes. Anything you put between the set of three double quotes is taken to be part of
the string without alteration. These types of strings are called raw strings. The following
shows an example of using this to enter a long string in the REPL.

scala> """This is a long string.
| It spans multiple lines.
| If I put in \n and \\ or \" they are taken literally."""
res42: String =
This is a long string.
It spans multiple lines.
If I put in \n and \\ or \" they are taken literally.

2.8.3 String Interpolation

In section 2.7.2, there were a number of expressions that put together strings using plus
signs for concatenation. This approach can be challenging to write and read in code.13 For
that reason, there is an alternate approach to building strings that include values called
string interpolation. The syntax for doing string interpolation is to put a “s” or a “f”
in front of the string,14 then put expressions in the string that begin with a dollar sign if
they are to be evaluated and their values inserted.

The earlier example originally put together the string for the time using the expression

displayHours+":"+displayMinutes+":"+displaySeconds

12The topic of Unicode characters is beyond the scope of this book, but a simple web search will lead you
to descriptions and tables of the different options.

13Using + to build long strings is also inefficient.
14The string interpolation mechanism in Scala is extensible, and programmers can add other options. The

“s” and “f” forms are the main ones supported by the standard libraries.

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

42 Introduction to Programming and Problem-Solving Using Scala

Using string interpolation, this could be written as

s"$displayHours:$displayMinutes:$displaySeconds"

More complex expressions can be inserted into the string by enclosing the expression in
curly braces after the dollar sign.

scala> val age = 2015-1996
age: Int = 19
scala> s"$age+10 = ${age+10}"
res43: String = 19+10 = 29

Here $age is nested inside an s processed string. The s interpolator knows to insert the
value of the variable age at this location(s) in the string. There is no set rule for when you
should use string interpolation instead of concatenation. You should pick whichever option
you find easiest to read and understand.

The “f” interpolation requires that you place a format specifier after the expression.
Coverage of these format specifiers is beyond the scope of this book. The interested reader
is encouraged to look up details on his/her own. It should be noted that the format strings
used by Scala are heavily based on those used in the printf function for the C programming
language, and they appear in many libraries across different languages.

2.8.4 String Methods

There are many methods that you can call on the String type. Tab completion shows
you some of them.

scala> "hi".
+ concat isInstanceOf startsWith
asInstanceOf contains lastIndexOf subSequence
charAt contentEquals length substring
chars endsWith matches toCharArray
codePointAt equalsIgnoreCase offsetByCodePoints toLowerCase
codePointBefore getBytes regionMatches toString
codePointCount getChars replace toUpperCase
codePoints indexOf replaceAll trim
compareTo intern replaceFirst
compareToIgnoreCase isEmpty split

These are the methods that come from the Java String type, and they provide a lot of the
basic functionality that one needs when working with strings. Through a language feature
in Scala called implicit conversions, there are others that are also available. The listing
below shows those. You can see that it includes multiplication, as introduced earlier. It
also includes methods like toInt and toDouble, which will convert strings with the proper
values to those types.

* foldLeft mkString stripLineEnd
++ foldRight nonEmpty stripMargin
++: forall padTo stripPrefix
+: foreach par stripSuffix
/: format partition sum
:+ formatLocal patch tail
:\ groupBy permutations tails
> grouped prefixLength take
>= hasDefiniteSize product takeRight

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

Scala Basics 43

addString head r takeWhile
aggregate headOption reduce to
apply indexOf reduceLeft toArray
asInstanceOf indexOfSlice reduceLeftOption toBoolean
canEqual indexWhere reduceOption toBuffer
capitalize indices reduceRight toByte
collect init reduceRightOption toDouble
collectFirst inits replaceAllLiterally toFloat
combinations intersect repr toIndexedSeq
compare isDefinedAt reverse toInt
compareTo isEmpty reverseIterator toIterable
contains isInstanceOf reverseMap toIterator
containsSlice isTraversableAgain sameElements toList
copyToArray iterator scan toLong
copyToBuffer last scanLeft toMap
corresponds lastIndexOf scanRight toSeq
count lastIndexOfSlice segmentLength toSet
diff lastIndexWhere seq toShort
distinct lastOption size toStream
drop length slice toString
dropRight lengthCompare sliding toTraversable
dropWhile lines sortBy toVector
endsWith linesIterator sortWith union
exists linesWithSeparators sorted updated
filter map span view
filterNot max split withFilter
find maxBy splitAt zip
flatMap min startsWith zipAll
fold minBy stringPrefix zipWithIndex

Going through all these methods is well beyond the scope of this chapter, but it is
beneficial to see examples that use some of them. To do this, let us consider a situation
where we have a person’s name written as “first last”. We wish to build a new string that
has the same name in the format of “ last, first”. In order to do this, we must first find where
the space is, then get the parts of the original string before and after the space. Once we
have done that, we can simply put the pieces back together in the reverse order with a
comma between them.

To find the location of the space, we will use the indexOf method. This method gives
us a numeric index for the first occurrence of a particular character or substring in a string.

scala> val name = "Mark Lewis"
name: String = Mark Lewis

scala> val spaceIndex = name.indexOf(" ")
spaceIndex: Int = 4

The index of the space is 4, not 5, because the indexes in strings, and everything else except
tuples, start counting at 0. So the ’M’ is at index 0, the ’a’ is at index 1, etc.

Now that we know where the space is, we need to get the parts of the string before and
after it. That can be accomplished using the substring method.

scala> val first = name.substring(0,spaceIndex)
first: String = Mark

scala> val last = name.substring(spaceIndex+1)

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

44 Introduction to Programming and Problem-Solving Using Scala

last: String = Lewis

The first usage passes two arguments to substring. The first is the index of the first
character to grab, in this case, it is 0. The second is the index after the last character to
grab. In this case, it is the index of the space. The fact that the second bound is exclusive
is significant, and it is a standard approach for methods of this nature in many languages.
The second form takes a single argument, and it returns the substring from that index to
the end of the string, making it ideal for getting the last name.

The two strings can now be put back together using concatenation or string interpolation.
The following shows how to do it with string interpolation.

scala> val name2 = s"$last, $first"
name2: String = Lewis, Mark

One could also pull out the names using the splitAt method.

scala> val (first,last) = name.splitAt(spaceIndex)
first: String = Mark
last: String = " Lewis"

scala> val name2 = s"${last.trim}, $first"
name2: String = Lewis, Mark

The splitAtmethod returns a tuple, and we use a pattern here to pull out the two elements.
Note that the space itself was included in the second element of the tuple. To get rid of
that, we use the trim method. This method gives us back a new string with all leading and
trailing whitespace removed.

If you only want a single character from a string, you can get it by indexing into the
string with parentheses. Simply specify the index of the character you want in parentheses
after the name of the string. So we could get the last initial from our original name string
like this.

scala> name(spaceIndex+1)
res44: Char = L

2.8.5 Immutability of Strings

When looking through the list of methods on the String type, you might have noticed
methods called toLowerCase and toUpperCase. These methods illustrate a significant fea-
ture of strings, the fact that they are immutable. This means that once a string object has
been created, it can not be changed. The toLowerCase method might sound like it changes
the string, but it does not. Instead, it makes a new string where all the letters are lower
case, and gives that back to us. This is illustrated by the following.

scala> val lowerName = name.toLowerCase
lowerName: String = mark lewis

scala> name
res45: String = Mark Lewis

The lowerName variable refers to a string that is all lower case, but when we check on the
value of the original name variable, it has not been changed. None of the methods of String
change the value. Any that look like they might simply give back modified values. This is

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

Scala Basics 45

what makes the String type immutable. The trim method used above demonstrates this
same behavior. Most of the types we will deal with are immutable.15

2.9 Sequential Execution
Sequential execution is used when we write a program and want the instructions to

execute in the same order that they appear in the program, without repeating or skipping
any instructions from the sequence. So far, all of the program instructions we have written
have been executed one after another in the same order that we have typed them in. The
instructions have been executed sequentially.

Working in the REPL is great for certain tasks, but what if you have a sequence of
things you want to do, and you want to do it multiple times. Having to type in the same
set of instructions repeatedly is not a very good option. The time conversion above is a
perfect example of that. If we want to do this for a different number of seconds, we have to
repeat all the commands we just performed. Indeed, you cannot really say that you have
programmed until you put in a fixed set of instructions for solving a problem that you can
easily run multiple times. That is what a program really is. So now it is time to write our
first program of any significance.

We have used the REPL to enter commands one at a time. This is a great way to test
things out in Scala and see what a few commands do. A second way of giving commands
to Scala is to write little programs as scripts. The term script is used to describe small
programs that perform specific tasks. There are languages, called scripting languages, that
have been created specifically to make the task of writing such small programs easier. Scala
is not technically a scripting language, but it can be used in that way. The syntax was
created to mirror a lot of the things that are commonly put into scripting languages, and if
you run the scala command and give it the name of a file that contains Scala code, that
file will be run as a script. The statements in it are executed in order.16 The script for our
time conversion looks like this.

Listing 2.1: TimeConvert.scala
val totalSeconds = 123456
val displaySeconds = totalSeconds%60
val totalMinutes = totalSeconds/60
val displayMinutes = totalMinutes%60
val displayHours = totalMinutes/60
val sec = displaySeconds.toString
val min = displayMinutes.toString
val finalString = displayHours+":"+("0"*(2-min.length))+min+

":"+("0"*(2-sec.length))+sec
println(finalString)

If you put this into a file called TimeScript.scala and then run scala TimeScript.scala,
you will get the output 34:17:36. The println statement is required for the script because
unlike the REPL, the script does not print out values of all statements. You can run through

15The first mutable type we will encounter will be the Array type in chapter 6. That chapter will go
further in demonstrating the significance of this distinction.

16We will see later that the statements are not always executed in order because there are statements
that alter the flow of control through the program. Since we have not gotten to those yet though, execution
is completely sequential at this point.

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

46 Introduction to Programming and Problem-Solving Using Scala

this code in the REPL using the :load command. If you do “:load TimeScript.scala”
you will see it print out all of the intermediate values as well as the result of the println.

This script allows us to run the commands repeatedly without retyping. By editing
the value of totalSeconds, we can test other total times fairly quickly. However, a better
solution would be to allow a user to tell us how many seconds to use every time we run the
script. We can easily get this behavior by replacing the top line of the script we had with
these three lines.

Listing 2.2: TimeConvert2.scala
import io.StdIn._
print("Enter the number of seconds. ")
val totalSeconds = readInt()

The second line prints a prompt to let the user know that we are waiting for something
to be input. After that we have altered the initialization of totalSeconds so that instead
of giving it a fixed number, it is initialized to the value returned by readInt. This calls a
function that reads in a single integer from the user. The first line is there because the full
name of readInt is io.StdIn.readInt. The import statement allows us to use a shortened
name whenever we want to read a value. The underscore in the import causes it to bring
in other functions such as readLine and readDouble which allow us to read in strings and
double values respectively. If you make this change and run the script, you will be able
to enter any number of seconds, assuming it is a valid Int, and see it converted to hours,
minutes, and seconds.

The following code shows the usage of readLine and readDouble.

import io.StdIn._
val name = readLine()
val number = readDouble()

Note that all of these functions read a full line from the user and expect it to match the
desired type. If you want the user to enter multiple numbers on one line, you cannot use
readInt or readDouble. For that you would have to read a String with readLine, then
break it apart and get the numeric values.

2.9.1 Comments

When writing programs in files, not in the REPL, it is often useful to include plain
English descriptions of parts of the code. This is done by writing comments. If you are
writing code for a course, you likely need to have your name in the code. Your name is
likely not valid Scala, so it should go in a comment. Different instructors and companies
will have different commenting standards that you should follow. In a professional setting,
comments are used primarily for two reasons. The first is to indicate what is going on in
the code, particularly in parts of the code that might be difficult for readers to understand.
The second is for documentation purposes using tools that generate documentation from
code.

There are two basic comment types in Scala, single line comments and multiline com-
ments. Single line comments are made by putting // in the code. Everything after that in
the line will be a comment and will be ignored when the program is compiled and run. Mul-
tiline comments begin with /* and end with */. You can put anything you want between
those, and they can be spaced out across many lines. Code shown in this book will have
limited commenting as descriptions of the code appear in the text of the book, and there is
little point in duplicating that content.

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

Scala Basics 47

2.10 A Tip for Learning to Program
In many ways, learning to program, whether in Scala or any other programming lan-

guage, is very much like learning a new natural language. The best way to learn a natural
language is through immersion. You need to practice it and be surrounded by it. The key is
to not simply memorize the rules and vocabulary, but to put them into use and learn them
through regular usage. You should strongly consider approaching programming in the same
way.

So what does it mean to immerse yourself in a programming language? Clearly you are
not going to have conversations in it or enjoy television or radio broadcasts in it. The way
to immerse yourself in a programming language is to take a few minutes every day to write
in it. You should consider trying to spend 15-30 minutes each day writing code. The REPL
in Scala is an excellent tool for you to enter in statements to see what they do. Try to play
around with the language. Instead of approaching it as memorizing keywords and rules, try
to put things into use. The things that you use frequently will stick and become natural.
Those things that you do not use regularly you will have to look up, but that is normal.
Programmers, even professional programmers with many years of experience in a language,
still keep references handy.

Over time, the number of lines of code that you write in these short time intervals each
day will grow as the basics become second nature and you begin to practice more advanced
concepts. By the end of this book you might find yourself writing a hundred lines or so of
functional code on certain days during that time span. By that time you will hopefully also
pick up a “pet project”, something that you are truly interested in programming and that
you will think about the structure and logic of much more frequently.

Especially early on, you might find it hard to think of anything that you can write. To
help you with this, many of the chapters in this book contain a “Self-Directed Study” section,
like the one below. Use these as a jumping off point for the material in each chapter. After
that will come a set of exercises and often a set of larger problems called projects. Remember
that one of the significant goals of learning to program is improving your problem solving
skills. While the Self-Directed Study section will help you to familiarize yourself with the
details presented in a chapter, the exercises and projects are actual problems that you are
supposed to solve in a formal way using Scala. You should use these to help provide you
with the immersion you need to learn the language.

2.11 End of Chapter Material

2.11.1 Problem Solving Approach

Many students who are new to programming struggle with putting the English de-
scriptions for solving a problem that they have in their head into whatever programming
language they happen to be learning. The reality is that for any given line of code, there
are a fairly small number of “productive” things that you could write. In the REPL you
can test out any statement that you want, but in a script, an expression like 4+5 does not
do much when used alone as a statement. Sections like this one will appear at the end of
a number of chapters as we introduce new concepts that might stand alone as statements,
or which alter statements we have talked about previously in a significant way. The goal of

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

48 Introduction to Programming and Problem-Solving Using Scala

these sections is to help focus your thinking so you can narrow down the list of possibilities
any time that you are trying to decide what to put into the next line of code.

Given what we have just learned, there are only three types of statements that you
would put in a script that stand alone:

1. A call to print or println to display information to the user. The function name
should be followed with parentheses that contain the expression you want to print.

2. A variable declaration using val or var. A val declaration would look like val name
= expression. The name could be followed with a colon and a type, though most of
the time those will be left off.

3. An assignment into a previously declared var of the form name = expression. The
expression must have a type that agrees with the type the variable was created with.

If you want to read information using a function like readLine(), readInt(), or
readDouble, that should appear as part of an expression in one of the above statements.
Remember to include the import io.StdIn._ statement at the top of your file if you are
going to be reading user input.

2.11.2 Summary of Concepts

• When you install Scala on your computer you get a number of different executable
commands.

– The scala command can run scripts or applications. If no argument is given it
opens up the REPL for you to type in individual statements.

– The scalac command is used to compile Scala source code to bytecode.

• Programming languages have relatively simple rules that they always follow with no
ambiguity.

– Tokens are the smallest piece with meaning. They are like words in English.

– Expressions are combinations of tokens that have a value and a type.

– Statements are complete instructions to the language. In Scala, any expression
is a valid statement.

– The simplest expressions are literals.

∗ Int literals are just numbers with no decimal points like 42 or 365.
∗ Adding an L to the end of an integer number makes a Long literal.
∗ Numbers that include decimal points or scientific notation using e syntax
are of the type Double.

∗ Adding an f to the end of a number makes it a Float.
∗ Char literals are single characters between single quotes.
∗ String literals can have multiple characters between double quotes. Raw
strings start and end with three double quotes and allow newlines.

• An object is a combination of information and functionality that operates on that
information.

– The information is called data members, fields, or properties.

– The functionality is called methods.

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

Scala Basics 49

– All values in Scala are objects.

– Methods are normally invoked using the “dot” notation. Arguments go in paren-
theses after the method name.

∗ Scala allows the . to be left out if there is at least one argument to the
method.

∗ Parentheses are also optional for argument lists of length zero or one.
∗ Operators are really method calls. So 4+5 is really (4).+(5).

• Numbers in computers are not exactly like numbers in math, and you need to know
some of the differences so you will understand when they lead to unexpected behavior.

– All values stored in a computer are stored in binary, base 2, numbers. Each digit
is called a bit. Different types use different numbers of bits for storage. The finite
number of bits means that there are minimum and maximum values that can be
stored in each type.

– Negative integer values are stored using two’s compliment numbers.

– Binary numbers require a large number of digits, though they are all either 0 or
1, and converting to and from decimal is non-trivial. For this reason, computer
applications frequently use base 8, octal, and base 16, hex. You can make a
hexadecimal literal by putting a leading 0x on an integer.

– Non-integer numeric values are stored in floating point notation. This is like
scientific notation in binary. These use the types Float and Double. Due to
finite precision, not all decimal numbers can be represented perfectly in these
numbers, and there are small rounding errors for arithmetic.

• Additional mathematical functions, like trigonometric functions and square root are
methods of the math object.

• You can declare variables using the keywords val and var. The name of a variable
should start with a letter or underscore and can be followed by letters, underscores,
or numbers. A var declaration can be reassigned to reference a different value.

• String interpolation allows you to easily put values into strings without using + to
concatenate them.

• There are many methods you can call on strings that allow you to do basic operations
on them.

• Strings are immutable. That means that once a string is created, it is never changed.
Methods that look like they change a string actually make a new string with the
proper alterations.

• Instructions can be written together in scripts. The default behavior of a script is
for lines of code to execute sequentially. Script files should have names that end with
.scala. You run a script by passing the filename as a command-line argument to the
scala command.

• Learning a programming language is much like learning a natural language. Do not
try to memorize everything. Instead, immerse yourself in it and the things you use
frequently will become second nature. Immersion in a programming language means
taking a few minutes each day to write code.

From "Introduction to Programming and Problem-Solving Using Scala, Second Edition"
by Mark C. Lewis and Lisa Lacher, © 2017 by Taylor & Francis Group, LLC.

https://www.crcpress.com/Introduction-to-Programming-and-Problem-Solving-Using-Scala-Second-Edition/Lewis-Lacher/p/book/9781498730952

	FM
	Text

