

INTRODUCTION TO
PROGRAMMING AND
PROBLEM-SOLVING

USING

SCALA
S E C O N D E D I T I O N

CHAPMAN & HALL/CRC
TEXTBOOKS IN COMPUTING

Series Editors

Published Titles

Paul Anderson, Web 2.0 and Beyond: Principles and Technologies

Henrik Bærbak Christensen, Flexible, Reliable Software: Using Patterns and Agile Development

John S. Conery, Explorations in Computing: An Introduction to Computer Science

John S. Conery, Explorations in Computing: An Introduction to Computer Science and Python
Programming

Iztok Fajfar, Start Programming Using HTML, CSS, and JavaScript

Jessen Havill, Discovering Computer Science: Interdisciplinary Problems, Principles, and
Python Programming

Ted Herman, A Functional Start to Computing with Python

Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph, Foundations of Semantic Web
Technologies

Mark J. Johnson, A Concise Introduction to Data Structures using Java

Mark J. Johnson, A Concise Introduction to Programming in Python

Lisa C. Kaczmarczyk, Computers and Society: Computing for Good

Mark C. Lewis, Introduction to the Art of Programming Using Scala

Mark C. Lewis and Lisa L. Lacher, Introduction to Programming and Problem-Solving Using
Scala, Second Edition

Efrem G. Mallach, Information Systems: What Every Business Student Needs to Know

Bill Manaris and Andrew R. Brown, Making Music with Computers: Creative Programming in
Python

Uvais Qidwai and C.H. Chen, Digital Image Processing: An Algorithmic Approach with MATLAB®

David D. Riley and Kenny A. Hunt, Computational Thinking for the Modern Problem Solver

Henry M. Walker, The Tao of Computing, Second Edition

Aharon Yadin, Computer Systems Architecture

John Impagliazzo
Professor Emeritus, Hofstra University

Andrew McGettrick
Department of Computer
and Information Sciences
University of Strathclyde

Aims and Scope

This series covers traditional areas of computing, as well as related technical areas, such as
software engineering, artificial intelligence, computer engineering, information systems, and
information technology. The series will accommodate textbooks for undergraduate and gradu-
ate students, generally adhering to worldwide curriculum standards from professional societ-
ies. The editors wish to encourage new and imaginative ideas and proposals, and are keen to
help and encourage new authors. The editors welcome proposals that: provide groundbreaking
and imaginative perspectives on aspects of computing; present topics in a new and exciting
context; open up opportunities for emerging areas, such as multi-media, security, and mobile
systems; capture new developments and applications in emerging fields of computing; and
address topics that provide support for computing, such as mathematics, statistics, life and
physical sciences, and business.

Chapman & Hall/CRC
TEXTBOOKS IN COMPUTING

Mark C. Lewis
Lisa L. Lacher

INTRODUCTION TO
PROGRAMMING AND
PROBLEM-SOLVING

USING

SCALA
S E C O N D E D I T I O N

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20160607

International Standard Book Number-13: 978-1-4987-3095-2 (Pack - Book and Ebook)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.crcpress.com
http://www.taylorandfrancis.com
http://www.copyright.com/
http://www.copyright.com/
http://www.copyright.com

Contents

List of Figures xiii

List of Tables xvii

Preface xix

1 Basics of Computers, Computing, and Programming 1
1.1 History . 1
1.2 Hardware . 3

1.2.1 Central Processing Unit . 3
1.2.2 Memory . 4
1.2.3 Input/Output Devices . 5

1.3 Software . 6
1.4 Nature of Programming . 8
1.5 Programming Paradigms . 10

1.5.1 Imperative Programming . 11
1.5.2 Functional Programming . 11
1.5.3 Object-Oriented Programming . 12
1.5.4 Logic Programming . 12
1.5.5 Nature of Scala . 12

1.6 End of Chapter Material . 13
1.6.1 Summary of Concepts . 13
1.6.2 Exercises . 13
1.6.3 Projects . 14

2 Scala Basics 17
2.1 Scala Tools . 17
2.2 Expressions, Types, and Basic Math . 19
2.3 Objects and Methods . 23
2.4 Other Basic Types . 24
2.5 Back to the Numbers . 27

2.5.1 Binary Arithmetic . 29
2.5.2 Negative Numbers in Binary . 30
2.5.3 Other Integer Types . 31
2.5.4 Octal and Hexadecimal . 32
2.5.5 Non-Integer Numbers . 33

2.6 The math Object . 34
2.7 Naming Values and Variables . 36

2.7.1 Patterns in Declarations . 38
2.7.2 Using Variables . 39

2.8 Details of Char and String . 40
2.8.1 Escape Characters . 40

v

vi Contents

2.8.2 Raw Strings . 41
2.8.3 String Interpolation . 41
2.8.4 String Methods . 42
2.8.5 Immutability of Strings . 44

2.9 Sequential Execution . 45
2.9.1 Comments . 46

2.10 A Tip for Learning to Program . 47
2.11 End of Chapter Material . 47

2.11.1 Problem Solving Approach . 47
2.11.2 Summary of Concepts . 48
2.11.3 Self-Directed Study . 50
2.11.4 Exercises . 50

3 Conditionals 55
3.1 Motivating Example . 55
3.2 The if Expression . 56
3.3 Comparisons . 60
3.4 Boolean Logic . 61
3.5 Precedence . 65
3.6 Nesting ifs . 65
3.7 Bit-Wise Arithmetic . 67
3.8 End of Chapter Material . 69

3.8.1 Problem Solving Approach . 69
3.8.2 Summary of Concepts . 69
3.8.3 Self-Directed Study . 70
3.8.4 Exercises . 71
3.8.5 Projects . 72

4 Functions 77
4.1 Motivating Example . 77
4.2 Function Refresher . 78
4.3 Making and Using Functions . 79
4.4 Problem Decomposition . 84
4.5 Function Literals/Lambda Expressions/Closure 89
4.6 Side Effects . 90
4.7 Thinking about Function Execution . 91
4.8 type Declarations . 94
4.9 Putting It Together . 95
4.10 End of Chapter Material . 97

4.10.1 Problem Solving Approach . 97
4.10.2 Summary of Concepts . 97
4.10.3 Self-Directed Study . 98
4.10.4 Exercises . 99
4.10.5 Projects . 100

5 Recursion for Iteration 105
5.1 Basics of Recursion . 105
5.2 Writing Recursive Functions . 107
5.3 User Input . 111
5.4 Abstraction . 114
5.5 Matching . 117

Contents vii

5.6 Bad Input, Exceptions, and the try/catch Expression 119
5.7 Putting It Together . 121
5.8 Looking Ahead . 122
5.9 End of Chapter Material . 123

5.9.1 Problem Solving Approach . 123
5.9.2 Summary of Concepts . 123
5.9.3 Self-Directed Study . 125
5.9.4 Exercises . 125
5.9.5 Projects . 126

6 Arrays and Lists in Scala 133
6.1 Making Arrays . 133
6.2 Using Arrays . 135
6.3 Lists . 139
6.4 Bigger Arrays and Lists with Fill and Tabulate 141
6.5 Standard Methods . 143

6.5.1 Basic Methods . 143
6.5.2 Higher-Order Methods . 147
6.5.3 reduce and fold . 151
6.5.4 Combinatorial/Iterator Methods 152

6.6 Complete Grades Script/Software Development 155
6.7 Playing with Data . 160

6.7.1 Reading the Data . 161
6.7.2 Finding Maximum Values . 162

6.8 End of Chapter Material . 164
6.8.1 Problem Solving Approach . 164
6.8.2 Summary of Concepts . 165
6.8.3 Self-Directed Study . 165
6.8.4 Exercises . 166
6.8.5 Projects . 167

7 Type Basics and Argument Passing 171
7.1 Scala API . 171
7.2 The Option Type . 174
7.3 Parametric Functions . 175
7.4 Subtyping . 177
7.5 Variable Length Argument Lists . 179
7.6 Mutability and Aliasing . 181
7.7 Basic Argument Passing . 184
7.8 Currying . 188
7.9 Pass-By-Name . 190
7.10 Multidimensional Arrays . 192
7.11 Classifying Bugs . 194
7.12 End of Chapter Material . 197

7.12.1 Problem Solving Approach . 197
7.12.2 Summary of Concepts . 197
7.12.3 Self-Directed Study . 198
7.12.4 Exercises . 199
7.12.5 Projects . 200

viii Contents

8 Loops 203
8.1 while Loop . 203
8.2 do-while Loop . 205
8.3 for Loop . 206

8.3.1 Range Type . 209
8.3.2 yield . 210
8.3.3 if Guards . 211
8.3.4 Multiple Generators . 211
8.3.5 Patterns in for Loops . 212
8.3.6 Variable Declarations . 213
8.3.7 Multidimensional Sequences and for Loops 214

8.4 Testing . 216
8.5 Putting It Together . 219
8.6 End of Chapter Material . 222

8.6.1 Problem Solving Approach . 222
8.6.2 Summary of Concepts . 222
8.6.3 Self-Directed Study . 223
8.6.4 Exercises . 224
8.6.5 Projects . 225

9 Text Files 233
9.1 I/O Redirection . 234
9.2 Packages and import Statements . 234
9.3 Reading from Files . 236

9.3.1 Iterators . 237
9.3.2 String split Method . 239
9.3.3 Reading from Other Things . 240
9.3.4 Other Options (Java Based) . 241

9.4 Writing to File . 242
9.4.1 Appending to File . 242

9.5 Use Case: Simple Encryption . 244
9.5.1 Command Line Arguments . 244
9.5.2 Mapping a File . 245
9.5.3 Character Offset . 245
9.5.4 Alphabet Flip . 246
9.5.5 Key Word . 246
9.5.6 Putting It Together . 247
9.5.7 Primes and Real Cryptography . 248

9.6 End of Chapter Material . 249
9.6.1 Summary of Concepts . 249
9.6.2 Self-Directed Study . 250
9.6.3 Exercises . 250
9.6.4 Projects . 251

10 Case Classes 255
10.1 User Defined Types . 256
10.2 case classes . 256

10.2.1 Making Objects . 257
10.2.2 Accessing Members . 257
10.2.3 Named and Default Arguments (Advanced) 258
10.2.4 The copy Method . 259

Contents ix

10.2.5 case class Patterns . 260
10.3 Mutable classes . 260
10.4 Putting It Together . 261
10.5 End of Chapter Material . 270

10.5.1 Summary of Concepts . 270
10.5.2 Self-Directed Study . 271
10.5.3 Exercises . 271
10.5.4 Projects . 272

11 GUIs 275
11.1 GUI Libraries and History . 275
11.2 First Steps . 276
11.3 Stages and Scenes . 278
11.4 Events and Handlers . 281
11.5 Controls . 283

11.5.1 Text Controls . 284
11.5.2 Button-like Controls . 286
11.5.3 Selection Controls . 288
11.5.4 Pickers . 291
11.5.5 TableView . 292
11.5.6 TreeView . 293
11.5.7 Menus and FileChooser . 295
11.5.8 Other Stuff . 298

11.6 Observables, Properties, and Bindings . 301
11.6.1 Numeric Properties and Bindings 302
11.6.2 Conditional Bindings . 304

11.7 Layout and Panes . 307
11.7.1 scalafx.scene.layout Panes . 307
11.7.2 scalafx.scene.control Panes 311

11.8 Putting It Together . 314
11.9 End of Chapter Material . 325

11.9.1 Summary of Concepts . 325
11.9.2 Self-Directed Study . 326
11.9.3 Exercises . 326
11.9.4 Projects . 327

12 Graphics and Advanced ScalaFX 331
12.1 Shapes . 332

12.1.1 Path Elements . 334
12.1.2 Paint and Stroke . 336

12.2 Basic Keyboard, Mouse, and Touch Input 340
12.3 Images . 347

12.3.1 Writing Images to File . 349
12.4 Transformations . 350
12.5 Animation . 352

12.5.1 Transitions . 354
12.5.2 Timelines . 358
12.5.3 AnimationTimer . 360

12.6 Canvas . 364
12.6.1 Settings . 364
12.6.2 Basic Fills and Strokes . 366

x Contents

12.6.3 Building a Path . 367
12.6.4 Image Operations on Canvas . 367
12.6.5 A Canvas Based Game . 368

12.7 Effects . 372
12.8 Charts . 380
12.9 Media . 384
12.10 Web . 385
12.11 3D Graphics . 388
12.12 Putting It Together . 391
12.13 End of Chapter Material . 393

12.13.1 Summary of Concepts . 393
12.13.2 Exercises . 394
12.13.3 Projects . 394

13 Sorting and Searching 401
13.1 Basic Comparison Sorts . 401

13.1.1 Bubble Sort . 402
13.1.2 Selection Sort (Min/Max Sort) . 404
13.1.3 Insertion Sort . 405
13.1.4 Testing and Verifying Sorts . 406
13.1.5 Sort Visualization . 408
13.1.6 Order Analysis . 411
13.1.7 Shell Sort (Diminishing Gap Sort) 412

13.2 Searching . 414
13.2.1 Sequential Search (Linear Search) 414
13.2.2 Binary Search . 415

13.3 Sorting/Searching with case classes . 418
13.4 Sorting Lists . 424
13.5 Performance and Timing . 426
13.6 Putting It Together . 429
13.7 End of Chapter Material . 430

13.7.1 Summary of Concepts . 430
13.7.2 Exercises . 432
13.7.3 Projects . 432

14 XML 437
14.1 Description of XML . 438

14.1.1 Tags . 438
14.1.2 Elements . 438
14.1.3 Attributes . 439
14.1.4 Content . 439
14.1.5 Special Characters . 439
14.1.6 Comments . 440
14.1.7 Overall Format . 440
14.1.8 Comparison to Flat File . 440

14.1.8.1 Flexibility in XML . 440
14.2 XML in Scala . 441

14.2.1 Loading XML . 442
14.2.2 Parsing XML . 442
14.2.3 Building XML . 445
14.2.4 Writing XML to File . 446

Contents xi

14.2.5 XML Patterns . 446
14.3 Putting It Together . 447
14.4 End of Chapter Material . 452

14.4.1 Summary of Concepts . 452
14.4.2 Self-Directed Study . 453
14.4.3 Exercises . 454
14.4.4 Projects . 454

15 Recursion 457
15.1 Memory Layout . 457
15.2 Power of Recursion . 458
15.3 Fibonacci Numbers . 460
15.4 Towers of Hanoi . 462
15.5 Permutations . 465
15.6 Mazes . 467
15.7 Sorts . 470

15.7.1 Divide and Conquer Sorts . 470
15.7.1.1 Merge Sort . 470
15.7.1.2 Quicksort . 471

15.8 Putting It Together . 473
15.9 End of Chapter Material . 475

15.9.1 Summary of Concepts . 475
15.9.2 Exercises . 475
15.9.3 Projects . 476

16 Object-Orientation 481
16.1 Basics of Object-Orientation . 481

16.1.1 Analysis and Design of a Bank . 482
16.1.2 Analysis and Design of Pac-Man™ 485

16.2 Implementing OO in Scala . 488
16.2.1 Methods and Members . 489

16.2.1.1 Parameters as Members 489
16.2.1.2 Visibility . 490

16.2.2 Special Methods . 493
16.2.2.1 Property Assignment Methods 493
16.2.2.2 The apply Method . 494

16.2.3 this Keyword . 495
16.2.4 object Declarations . 495

16.2.4.1 Applications . 496
16.2.4.2 Introduction to Companion Objects 497

16.3 Revisiting the API . 497
16.4 Implementing the Bank Example . 499
16.5 Implementing the Pac-Man™ Example . 503
16.6 End of Chapter Material . 514

16.6.1 Summary of Concepts . 514
16.6.2 Exercises . 516
16.6.3 Projects . 517

xii Contents

17 Wrapping Up 525
17.1 What You Have Learned . 525
17.2 IDEs (Eclipse) . 526
17.3 Next Steps . 528
17.4 End of Chapter Material . 528

17.4.1 Exercises . 528

A Getting to Know the Tools 529
A.1 Unix/Linux (includes Mac OS X) . 530

A.1.1 Command Line . 530
A.1.1.1 Files and Directories . 530
A.1.1.2 Aside . 535
A.1.1.3 Helpful Tips . 535
A.1.1.4 Permissions . 536
A.1.1.5 Compression/Archiving 538
A.1.1.6 Remote . 539
A.1.1.7 Other Commands . 541

A.1.2 I/O Redirection . 542
A.1.3 Text Editors (vi/vim) . 543

A.2 Windows . 545
A.2.1 Command Line . 546

A.2.1.1 Files and Directories . 547
A.2.2 Text Editors . 548

A.2.2.1 Edit . 548
A.2.2.2 Notepad . 548
A.2.2.3 Others . 549

A.2.3 Other Commands . 549
A.3 End of Appendix Material . 550

A.3.1 Summary of Concepts . 550
A.3.2 Exercises . 551

B Glossary 553

Bibliography 557

List of Figures

1 This figure shows the dependencies between different chapters in the book
so that you can plan what you want to cover or to allow you to intelligently
choose alternate paths through the book. Arrows point toward later chapters
that use material from an earlier chapter. xxiii

1.1 This is the most basic view of the von Neumann shared memory architecture
which contains a CPU, memory, and input and output mechanisms. A CPU
and the memory are connected by a bus. The memory stores both data and
the programs themselves. The CPU can request information from memory
or write to memory over the bus. 4

1.2 This is a basic view of the CPU and a program in memory. 5
1.3 This is a basic view of the layers of software on top of a computer’s hardware. 6

2.1 Illustration of the conversion from decimal to binary using the subtraction
method. This method works from the top down. To get the number in binary
just read down the list of digits. 28

2.2 Illustration of the conversion from decimal to binary using the repeated
division method. This method works from the bottom up so you get the
bits in the result starting with the smallest. 29

2.3 This figure shows how you should think about value and variable decla-
rations in Scala. The variable itself stores a reference to an object. The
difference between val and var is whether or not you can change what is
referred to, not whether that object can be modified. 37

2.4 This figure shows what you might imagine happening with each of the lines
assigning new values to the variable average. 38

4.1 This figure shows examples of a function definition and a function call. . . 79
4.2 This figure shows a graphical breakdown of making a peanut butter and

jelly sandwich. 86
4.3 Here you can see how control flow moves through a short program that

involves a function. Assume the user enters an age of 12. The code in the
function is not executed until the point where it is invoked. Once it has
completed, control returns to where it had been and then continues on to
execute the next line of code after the call. 91

5.1 This figure is associated with project 12. This shows how you can use picking
random numbers to estimate the area under curves. This figure shows two
curves and random points in square regions that bound those curves. The
points that are below the curves are darker than those above. The fraction
of points below is proportional to the area under the curve. 130

xiii

xiv List of Figures

7.1 This figure shows the primary Scala API as it will appear when you first go
to it. The left panel shows the types organized by package. The right panel
shows the full information for whatever you have selected. 172

7.2 This figures shows the API with the List class selected. 173
7.3 Diagram of general subtype relationships in Scala. This figure has been

adapted from a similar figure in Programming in Scala by Odersky, Spoon,
and Venners [3]. 178

7.4 Simple image of memory layout for a few variables. The objects on the right
side are overly simplified, especially the list, but this portrays sufficient
detail for understanding what is happening at this point. 182

7.5 Modified view of the memory after two variables have been assigned different
values. 183

7.6 What the memory looks like after the introduction of l2 and a2. 184
7.7 The memory layout from the getAndClear script. The arguments passed

into the function become aliases for the objects created at the top level of
the script. 185

7.8 The configuration of memory after getAndClear has executed. 186

11.1 This is the window that pops up running JustButton.scala. There is a single
button in a 300 by 200 pixel scene. Note that the button is, by default, in
the top left corner. 279

11.2 This is the window that pops up when you run MovedButton.scala. Notice
that the button has been moved so that it is roughly centered in our 300
by 200 pixel window. 280

11.3 This is the window created when you run SeveralItems.scala. It has sequence
containing several Nodes added to the scene and moved to different locations. 281

11.4 This figure shows the window that results from running InteractiveIt-
ems.scala after the user has done a few things. 284

11.5 This figure shows the window that results from running TextControls.scala. 286
11.6 This figure shows the window that results from running ButtonCon-

trols.scala. 289
11.7 This figure shows the window that results from running SelectionCon-

trols.scala after the user has selected some items. 290
11.8 This figure shows the window that results from running PickerControls.scala

after the user has selected some items. 292
11.9 This figure shows the window that results from running TableControl.scala. 294
11.10 This figure shows the window that results from running TreeControl.scala

after the items are expanded and one is selected. 295
11.11 This figure shows the window that results from running MenuControls.scala. 298
11.12 This figure shows the window that results from running OtherControls.scala

after adjusting the various elements. 300
11.13 This figure shows the window that results from running NumericBind-

ings.scala after the sliders have been adjusted some. 304
11.14 This figure shows the window that results from running ConditionalBind-

ings.scala after the slider has been adjusted with the mouse hovering over
the label. 306

11.15 This figure shows the window that results from running Layouts.scala after
making the window slightly smaller. 309

11.16 This figure shows the window that results from running GridPane.scala. . 312
11.17 This figure shows the window that results from running ControlPanes.scala

after expanding one of the TitledPanes in the Accordion. 313

List of Figures xv

11.18 This shows a possible layout for the GUI that we want to build for editing
recipes. 314

11.19 This shows the window that is produced when you run Recipe.scala. . . . 320

12.1 This window is produced by running Shapes.scala and the shapes are as
follows: arc, circle, cubic curve, ellipse, line, polygon, polyline, quad curve,
rectangle, and SVG path. It demonstrates all the different subtypes of Shape
with the exception of Path. 334

12.2 The window that is produced by running Path.scala. The long curve demon-
strates each of the different PathElements. The smaller two show the dif-
ferent fill rules for paths. 337

12.3 The window that is produced by running ShapeSettings.scala. The three
triangles at the top demonstrate the three different types of Paint that
are available as well as the three styles of joins. The lines at the bottom
demonstrate dashing and the cap styles. 339

12.4 The window that is produced by running DrawMaze.scala after the user has
drawn in a few lines and moved around with the keys. 345

12.5 The window that is produced by running ImageView.scala with a sample
image. 349

12.6 The window that is produced by running SimpleTransforms.scala. 352
12.7 On the left you will see an example of Interpolator.EaseBoth. On the

right you see an example of Interpolator.Linear. 354
12.8 The window that is produced by running Transitions.scala. 358
12.9 The window that is produced by running Timelines.scala. 360
12.10 The window that is produced by running Pong.scala. 363
12.11 The window that is produced by running EvadeGame.scala after drawing

some puddles with an enemy nearby. 371
12.12 The window that is produced by running Effects.scala. 377
12.13 The window that is produced by running ImageEffects.scala with four

sample images. The top-left and bottom-right images were set to the
ColorAdjust effect, the top-right used SepiaTone, and the bottom-left used
Glow. 379

12.14 The window that is produced by running Charts.scala. 382
12.15 The window that is produced by running Media.scala. 385
12.16 The window that is produced by running Web.scala. 387
12.17 The window that is produced by running HTMLEditor.scala. 389
12.18 The window that is produced by running 3D.scala and changing some of

the settings. 392
12.19 This figure shows what is intended as a possible output for project 3. The

two players are single points that leave lines behind them. They can only
turn at 90 degree angles. 395

13.1 The window that is produced by running SortVis.scala after the “Bubble
Sort” button has been clicked. 410

15.1 This shows the call stack for the function count which prints the numbers
counting up. When you call the function with 5, it calls itself with 4 before
doing anything else. This calls itself with 3 and so on down to 0. The call
with 0 does nothing but return. It returns back into the call to count(1)
that does the print and continues on back up the stack. 459

xvi List of Figures

15.2 This figure shows a call tree for fib(4). Boxes represent stack frames.
Straight arrows point in the direction of function calls. Curved arrows show
returns and are labeled with result values. 461

15.3 This figure shows a Sierpinski’s triangle. 479

16.1 This is part of the right panel that you see when you first enter the API.
The little circles with the letters c, o, and t indicate whether it is a class,
object, or trait. 498

16.2 This figure shows the window created by running the Pac-Man™ game. . . 515

17.1 This is the blank workspace that you will see when you start up Eclipse for
the first time. 526

17.2 This is the Eclipse workspace after we have created a project and an object
that runs “Hello World”. 527

A.1 An example of a Linux terminal with a command prompt. 531
A.2 This figure shows the Windows command prompt. This is the command-line

interface for Windows. 546
A.3 This figure shows the command prompt from Windows after the dir com-

mand has been run. 548
A.4 This figure shows a command prompt with the edit program running. . . . 549

List of Tables

2.1 Integer types with their sizes and ranges. 31
2.2 Floating point types with sizes and ranges. 34
2.3 Table of special character escape sequences in Scala. 41

3.1 This table shows the Boolean operators for Scala and what each one does. . 62
3.2 Truth tables for the different Boolean operators. 62
3.3 Table of operator precedence in Scala. The precedence of an operator is de-

termined by the first character. 65
3.4 Theme park food item costs. 66

13.1 Table of approximate values of log2 n as a function of n. We use the approxi-
mation that 210 ≈ 103. The reality is that 210 = 1024, but this approximation
is rather close and is a good one to keep in your head for quick approxima-
tions. 417

xvii

http://taylorandfrancis.com

Preface

Welcome to “Introduction to Programming and Problem Solving Using Scala”. This book
is intended to be used in first semester college classrooms to teach students beginning
programming. To accomplish this task, the Scala1 programming language is used. The book
was constructed with a focus on the topics students need to know. These topics were then
woven into a format that was deemed the best way to communicate those ideas. Because
there are two very different audiences who might be reading this, the rest of the preface is
split into two sections.

To the Student
Welcome to the world of programming. You are about to embark on a field of study

that will hopefully open your mind to new ways of thinking and impact the way you view
everything in the world around you. For students who intend to major in Computer Science
and make careers working with computer technology, this is your first step in learning how
to communicate with the computer and to instruct the computer in how it should solve
problems for you.

For those who are not planning to make a career in a computing field, a course in
computer programming can still be remarkably beneficial. Computer programming is, fun-
damentally, about problem solving. It is about figuring out how to solve problems and
express them in ways that the computer can understand. Your entire future life is, in one
way or another, going to deal with how to solve problems. You will need to have approaches
to solving these problems well formed in your own head and be able to communicate them
to other people in non-ambiguous ways so that they understand what you want and can act
on it. Learning to program computers will help you develop and hone this ability.

There are more direct benefits as well. The world you live in is already extremely depen-
dent on computing. Many of the things you own that you do not call a computer include
microchips and digital processing. Those devices/objects run programs to complete their
tasks. Many of the tasks you do during an average day are also enabled by computer power
and the ability to process and store information quickly. Activities like browsing the web for
work or leisure explicitly involve this. Other activities such as financial transactions made
with anything other than cash implicitly involve it. This ubiquitous presence of digital pro-
cessing is only going to grow over time. So even if you never have to directly write programs
as part of your future life, you can only benefit from having an understanding of what is
going on under the hood. Even if you do not write the software yourself, there is a good
chance that you will interact with those who do, perhaps as you or your company strives to
gain a competitive advantage by improving the information technology you use to do your

1Code samples in this book were compiled and tested using Scala 2.12.x.

xix

xx Preface

work. Even a basic knowledge of programming will help you understand what these people
are doing and communicate more effectively with them.

Those who do not intend to make programming into a career might occasionally come
across problems where they realize that they could save a lot of time if they could get a
computer to do it for them. When that happens, even a basic knowledge of programming
can make your life a whole lot better. Data is becoming a bigger and bigger part of the
business world. The vast amounts of data created and collected by modern technology can
not be processed by humans manually. To sift through this data to find meaning requires
using machines, and that means using software. You can either pay someone else to write
it or you can write it yourself. That latter is only an option if you know how to program.

While many might be tempted to view programming as an advanced concept, the reality
is this book is going to take you back to your early education quite a few times. The reason
for this is you spent a lot of time in those early years learning how to solve certain basic
problems. The approaches became second nature to you and you no longer think about
them, you just do them. In the context of programming you have to go back and examine
how you solve problems, even ones you have been doing for a long time. The reason for this
is that now you have to tell a computer how to do those same things, and the computer
will need detailed instructions. The reality is, the programming presented in this book is
not an advanced topic, it is basic logic and problem solving, done at a level you probably
have not worked at since you were much younger.

We often refer to programming as an art. Programming shares many features with
traditional arts like creative writing and painting or sculpture. The programmer first creates
an image in his/her mind of what he/she wants to bring into existence. This is followed
by a period of work bringing that mental image into a more real form. The end result
is something new, born from the imagination of the creator, that can be experienced by
others.2 The digital medium might, in some sense, seem less real than paint, clay, or stone,
but it is also remarkably dynamic. You can create things in a computer that you have no
chance of creating in the real world by hand. You can also create things that are remarkably
useful. All the software you interact with every day, whether to get things done or just for
entertainment, was written by programmers. The exercises and projects in this book have
been created with the goal of giving you the ability to express your creativity.

Programming has another characteristic in common with other creative arts, if you want
to be good at it, you need to practice. There are many ways to program the solution to any
problem. That introduces a lot of nuance. This book will strive to instruct you in regards
to the strengths and weaknesses of different approaches, but to really understand how to
write good code to solve a problem, you need to have the experience of solving similar ones.
Imagine an art major who never draws or paints except for class projects, not even doodling
in notes, or a creative writing major who never writes a story except the ones required for
class. Hopefully those hypothetical people seem silly to you. A computer science major who
never writes code beyond what is assigned for class is exactly the same. So explore the art
of programming. Have fun with it and try to do something that interests you.

Some people might wonder why they should be using Scala to learn programming. Scala
is a fairly new language that has gained a lot of momentum since it was adopted by Twit-
ter in 2009, but there are definitely other languages that are used more for professional
development. Scala is newer than languages like Java and Python, and this means that
it has integrated lessons learned from those languages. It has more modern features that
those languages are struggling to integrate. In particular, Scala has found significant use
in developing web sites that have lots of users and doing big data analysis. However, the

2We particularly like the tag line of @muddlymon on Twitter during the time we were writing this book,
which read “I make things out of ideas by wiggling my fingers.”

Preface xxi

real reasons for starting in Scala stem from the advantages it brings to beginning program-
mers. Scala has tools like Python and other scripting languages that make it easy to write
small programs and to get started without dealing with too much overhead. Unlike Python
and other scripting languages, it does robust error checking to help you figure out when
you mess things up. Also, Scala has strong support for object-oriented programming and
functional programming, so it is able to keep growing with you beyond your first course
in programming. You can branch out to more advanced topics without having to learn a
different language. In addition, Scala is powerful and expressive, so that you can do a lot of
things easily. We consider this to be a significant benefit for the novice programmer as you
want to write things that are interesting sooner rather than later.

Using this Book

The goal of this book is to help you in your efforts to learn how to program. In addition
to the practice that was just mentioned, there are some suggestions for how to get the
most out of this book. Clearly, working as many exercises and projects as you can counts
as practice. In addition, you should really read descriptions in this book and make sure
you understand the code samples shown in it. All too often, students treat the task of
reading course material as sounding out all the words in your head. While that fits the
denotative definition, the connotation is that you string the words together and understand
what they mean. Read for understanding, not just so you can say you have gotten through
a chapter. You should also “follow along” with the material by writing code. The best way
to internalize the details of a language, and you are learning a new language, is to type
things in, so that you have to pay attention to the details. Gaining understanding of early
material is especially important in this topic because the material in any given chapter is
typically highly dependent on the chapters before it. If you fail to understand one chapter,
you are not likely to understand the ones that follow it either. As such, effort spent on the
early chapters will pay off later on. Fortunately, there are resources that accompany this
book that can help with this.

Students coming into this course who have a background in programming should consider
taking a “fast path” to chapters 5 and 6. You do not want to skip them completely as there
are aspects of Scala that will likely differ from what you have done before. One way to
approach this is the go to the end of any given chapter and try to do the exercises. Refer
back to the chapter as needed to complete them. Once you can do the exercises and a
project or two, you should feel comfortable moving on.

Book Website

The authors have posted a number of different supplements to this book at http:
//book.programmingusingscala.net that can help you work through the material. Some
of the material is code or prose that could not be put into the book due to length restrictions.
The most useful things on the website are things that cannot be represented in static text.
In addition, the code samples for the book have been posted at https://github.com/
MarkCLewis/ProblemSolvingUsingScala.

There are video lectures posted on a YouTube channel (https://www.youtube.com/
channel/UCEvjiWkK2BoIH819T-buioQ) that follow along with the material in this book.
They are organized in playlists by chapter. Programming is a very non-linear process. This
book typically shows completed pieces of code that do what we want. It is hard to demon-
strate the process of building that code in the format of a book. The videos show construction
of code from the ground up and include descriptions of the programmers thoughts as it is
being done. This type of “live coding” is invaluable in learning to program as it lets you

https://github.com/MarkCLewis/ProblemSolvingUsingScala
http://book.programmingusingscala.net
http://book.programmingusingscala.net
https://www.youtube.com/channel/UCEvjiWkK2BoIH819T-buioQ
https://www.youtube.com/channel/UCEvjiWkK2BoIH819T-buioQ
https://github.com/MarkCLewis/ProblemSolvingUsingScala

xxii Preface

into the mind of a more experienced programmer where you can see the thought processes
associated with the development of the code.

The web site also includes solutions of some exercises for you to reference along with
sample implementations of certain projects. Some of the projects, especially in the second
half of the book, can be challenging to describe in text. To give you a better idea of what is
expected, the author has implemented sample solutions that you can run to see what they
do. The site also includes some additional exercises and links to data files and remote sites
that make the exercises more relevant.

To the Instructor
If you are reading this, it likely means that you are already aware of many of the features

of Scala that make it a great programming language.3 The flexibility of Scala means that
things can be covered in many different ways. The approach taken in this book might be
summarized as semi-functional/semi-imperative with objects later. It is worth describing
exactly what is meant by that.

This book takes advantage of the aspects of Scala that support programming in the
small. It is expected that students will operate mainly in the REPL and in a scripting
environment through at least the first 10 chapters and possibly through the first 15. The
benefit of this is that you can focus on logic instead of extra keywords and scoping rules.
Students are easily overwhelmed early on and this approach helps to flatten the learning
curve a bit.

Scala is purely object-oriented, so students will be using objects and calling methods
on objects very early on. However, the construction of classes to build their own objects is
postponed until later.4 Fitting with this approach, programs are written as scripts, not as
applications, until the last chapter. So the object keyword and things like def main(args:
Array[String]) : Unit are postponed until students are ready to write programs that are
big enough that they need the organization provided by doing proper OO across multiple
files.

The approach is described as semi-functional because there is significant use of higher
order functions with function literals/lambda expressions and immutable style is often pre-
ferred. However, this is not enforced in a zealotous way, and mutable state is introduced
early on. Students are shown mutable and immutable approaches to a number of problems
and the benefits and pitfalls of each approach are discussed.

While the ideal way to go through this book is in a linear fashion, particularly if you
want to use the end-of-chapter projects as assignments, strict linearity is not required and
you can choose to move some topics around so that concepts like class declarations are
covered earlier. Though it would be a bit more challenging, it would be possible to use this
book in a more purely functional manner by simply having students avoid var declarations,
assignments into mutable collections like arrays, and the use of while loops.

3If you are currently unconvinced of the benefits of Scala for teaching CS1 and CS2, there is a complete
discussion at http://book.programmingusingscala.net.

4That material is covered very briefly at the end of this volume, but most of the treatment for doing
real OO is postponed to the second volume “Object-orientation, Abstraction, and Data Structure Using
Scala”[1].

http://book.programmingusingscala.net

Preface xxiii

FIGURE 1: This figure shows the dependencies between different chapters in the book so
that you can plan what you want to cover or to allow you to intelligently choose alternate
paths through the book. Arrows point toward later chapters that use material from an
earlier chapter.

Using this Book

This book is intended to cover CS1. When looking at the chapter list, you might feel
that chapters 11 and 12 are outliers in certain ways. They definitely break from the straight
algorithmic, problem solving nature of the other chapters. This break was placed at this
point in the book at the request of students who often find visual interfaces more compelling
than text based ones. Thanks to the syntax of Scala, it is possible to build GUIs without
explicitly declaring classes or using keywords associated with it, such as extends. It is
possible to skip these, but not advised as graphics play a role in many of the examples later
in the book.

If you have a desire to cover full OO concepts earlier, chapter 16 can be moved to closely
follow chapter 10. There are also a number of chapters through the book that contain
material that can be skipped completely. For example, chapter 14 covers XML. Scala makes
this fairly easy to do and it fits in well with the projects that are given to have students
work on data stored in a formatted manner. However, if you do not want to spend time
on that topic it can be skipped with little impact on later content other than projects and
occasional usage in later chapters.

To help you decide what you can and cannot skip, figure 1 shows rough dependencies
for different chapters in the book. Arrows point from one chapter to later ones that have
direct dependencies. There will be occasional references to material that is not in the line
of the dependency arrows, but the material should still be understandable.

The course web site, http://book.programmingusingscala.net, includes a number of
different types of material that can be helpful for instructors. There are solutions to certain
exercises so you should check there before using exercises for grading purposes. Additional
exercises with recent links and data sets are also available on the web.

1 : Basics of Computers

+ 17: wrapping Up
2 : Scala Basics

• 3 : Conditionals I
'

16 : Object-Orientalion

.I-~
.. 5 : Recursion for lteralion

14:XML

7 : Types and Argument Passing

• B: Loops 12 : Graphics

• t
9: Text Files ------· ... ~ 10: case Classes -------... ~ 11: GUIS

http://book.programmingusingscala.net

xxiv Preface

There are executable JAR files for some of the projects to help students, and instructors,
understand what is being asked for from the student.

In addition, there are videos posted for every chapter of the text. These are generally
“live coding” sessions. Instructors should feel free to use these as pre-lectures or to use with
a flipped classroom format.

Chapter 1
Basics of Computers, Computing, and
Programming

1.1 History . 1
1.2 Hardware . 3

1.2.1 Central Processing Unit . 3
1.2.2 Memory . 4
1.2.3 Input/Output Devices . 5

1.3 Software . 6
1.4 Nature of Programming . 8
1.5 Programming Paradigms . 10

1.5.1 Imperative Programming . 11
1.5.2 Functional Programming . 11
1.5.3 Object-Oriented Programming . 12
1.5.4 Logic Programming . 12
1.5.5 Nature of Scala . 12

1.6 End of Chapter Material . 13
1.6.1 Summary of Concepts . 13
1.6.2 Exercises . 13
1.6.3 Projects . 14

In all things it is good to understand some foundational material before going into the
details. This helps to ground you and give you some context. Inevitably, you already have
some experience with computers and that does give you a bit of context to work in. However,
it is quite possible that your experience is limited to rather recent technology. One of the
factors that shapes the world of computer science is that it is fast moving and ever changing.
Knowing how we got to where we are can perhaps help us see where we will be going.

1.1 History
One might think that Computer Science is a field with a rather short history. After all,

computers have not existed all that long and have been a standard fixture for even less time.
However, the history of Computer Science has deep roots in math that extend far back in
time. One could make a strong argument that the majority of Computer Science is not even
really about computers. This is perhaps best exemplified in this quote by Edsger Dijkstra,
“Computer science is no more about computers than astronomy is about telescopes.”[2]
Instead, Computer Science is about algorithms. An algorithm is a formal specification
for stating a method to solve a problem. The term itself is a distortion of the name al-
Khwārizmı̄. He was Persian mathematician who lived in the 11th century and wrote the
Treatise on Demonstration of Problems of Algebra, the most significant treatise on algebra
written before modern times. He also wrote On the Calculation with Hindu Numerals, which
presented systematic methods of applying arithmetic to algebra.

1

2 Introduction to Programming and Problem-Solving Using Scala

One can go even further back in time depending on how flexibly we use the term compu-
tation. Devices for facilitating arithmetic could be considered. That would push things back
to around 2400 BCE. Mechanical automata for use in astronomy have also existed for many
centuries. However, we will focus our attention on more complete computational devices,
those that can be programmed to perform a broad range of different types of computation.
In that case, the first real mechanical computer design would have been the Analytical En-
gine which was designed by Charles Babbage and first described in 1837. Ada Lovelace is
often referred to as the first programmer because her notes on the Analytic Engine included
what would have been a program for the machine. For various reasons, this device was never
built, and, as such, the first complete computers did not come into existence for another
100 years.

It was in the 1940s that computers in a form that we would recognize them today came
into existence. This began with the Zuse Z3 which was built in Germany in 1941. By the
end of the 1940s there were quite a few digital computers in operation around the world
including the ENIAC, built in the US in 1946. The construction of these machines was
influenced in large part by more theoretical work that had been done a decade earlier.

One could argue that the foundations of the theoretical aspects of Computer Science
began in 1931 when Kurt Gödel published his incompleteness theorem. This theorem, which
proved that in any formal system of sufficient complexity, including standard set theory of
mathematics, would have statements in it that could not be proved or disproved. The nature
of the proof itself brought in elements of computation as logical expressions were represented
as numbers, and operations were transformations on those numbers. Five years later, Alan
Turing and Alonzo Church created independent models of what we now consider to be
computation. In many ways, the work they did in 1936 was the true birth of Computer
Science as a field, and it enabled that first round of digital computers.

Turing created a model of computation called a Turing machine. The Turing machine is
remarkably simple. It has an infinite tape of symbols and a head that can read or write on
the tape. The machine keeps track of a current state, which is nothing more than a number.
The instructions for the machine are kept in a table. There is one row in the table for each
allowed state. There is one column for each allowed symbol. The entries in the table give a
symbol to write to the tape, a direction to move the tape, and a new state for the machine
to be in. The tape can only be moved one symbol over to the left or right or stay where it
is at each step. Cells in the table can also say stop in which case the machine is supposed
to stop running and the computation is terminated.

The way the machine works is that you look up the entry in the table for the current
state of the machine and symbol on the tape under the head. You then write the symbol
from the table onto the tape, replacing what had been there before, move the tape in the
specified direction, and change the state to the specified state. This repeats until the stop
state is reached.

At roughly the same time that Turing was working on the idea of the Turing machine,
Alonzo Church developed the lambda calculus. This was a formal, math based way of
expressing the ideas of computation. While it looks very different from the Turing machine,
it was quickly proved that the two are equivalent. That is to say that any problem you can
solve with a Turing machine can be solved with the lambda calculus and the other way
around. This led to the so-called Church-Turing thesis stating that anything computable
can be computed by a Turing machine or the lambda calculus, or any other system that
can be shown to be equivalent to these.

Basics of Computers, Computing, and Programming 3

1.2 Hardware
When we talk about computers it is typical to break the topic into two parts, hardware

and software. Indeed, the split goes back as far as the work of Babbage and Lovelace.
Babbage designed the hardware and focused on the basic computation abilities that it
could do. Lovelace worked on putting together groups of instructions for the machine to
make it do something interesting. Her notes indicate that she saw the further potential of
such a device and how it could be used for more than just doing calculations.

To understand software, it is helpful to have at least some grasp of the hardware. If you
continue to study Computer Science, hopefully you will, at some point, have a full course
that focuses on the nature of hardware and the details of how it works. For now, our goal is
much simpler. We want you to have a basic mental image of how the tangible elements of
a computer work to make the instructions that we type in execute to give us the answers
that we want.

The major hardware components of a computer include the central processing unit
(CPU), memory, and input/output devices. Let’s take a closer look at each of these in more
detail.

1.2.1 Central Processing Unit

Modern computers work by regulating the flow of electricity through wires. Most of those
wires are tiny elements that have been etched into silicon and are only tens of nanometers
across. The voltage on the wires is used to indicate the state of a bit, a single element
of storage with only two possible values, on or off. The wires connect up transistors that
are laid out in a way that allows logical processing. While a modern computer processor
will include literally hundreds of millions to billions of transistors, we can look at things
at a much higher level and generally ignore that existence of those individual wires and
transistors.

In general, modern computers are built on the von Neumann architecture with minor
modifications. John von Neumann was another one of the fathers of computing. One of his
ideas was that programs for a computer are nothing more than data and can be stored
in the same place as all other data. This can be described quite well with the help of the
basic diagram in figure 1.1. There is a single memory that stores both the programs and the
data used by the program. It is connected to a Central Processing Unit (CPU) by a bus.
The CPU, which can be more generally called a processor, has the ability to execute simple
instructions, read from memory, and write to memory. When the computer is running, the
CPU loads an instruction from memory, executes that instruction, then loads another. This
happens repeatedly until the computer stops. This simple combination of a load and execute
is called a cycle.

One of the things the CPU does is to keep track of the location in memory of the next
instruction to be executed. We call a location in memory an address. After the instruction
is executed, it moves forward each time to get to the next instruction. Different types
of computers can have different instructions. All computers will have instructions to read
values from memory, store values to memory, do basic math operations, and change the
value of the execution address to jump to a different part of the program.

The individual instructions that computers can do are typically very simple. Computers
get their speed from the fact that they perform cycles very quickly. Most computers now
operate at a few gigahertz. This means that they can run through a few billion instructions
every second. There are a lot of complexities to real modern computers that are needed to

4 Introduction to Programming and Problem-Solving Using Scala

FIGURE 1.1: This is the most basic view of the von Neumann shared memory architecture
which contains a CPU, memory, and input and output mechanisms. A CPU and the memory
are connected by a bus. The memory stores both data and the programs themselves. The
CPU can request information from memory or write to memory over the bus.

make that possible, which are not encompassed by this simple image of a computer. In many
ways, these are details that we do not have to worry about too much at the beginning, but
they are important in professional programming because they can have a profound impact
on the performance of a program.

1.2.2 Memory

Memory on a computer is used to store information. There are two basic types of mem-
ory: primary memory (storage) which is known as RAM (Random Access Memory) and
secondary memory (storage). Examples of secondary storage include hard drives, solid state
drives, flash drives, and magnetic tape. RAM is also referred to as main memory which is
directly connected to the CPU. All programs must be loaded into RAM before they can
execute and all data must be loaded into RAM before it can be processed. Figure 1.2 gives
you the basic idea of main memory. RAM is considered because when a computer gets
turned off, everything in main memory is lost unless it has been saved to secondary storage
first. Secondary storage is considered because it allows programs and data to be stored
permanently, and these can be accessed even after the power has been cycled.

Typically speed goes inverse of size for memory, and this is true of disks and RAM.
Disk drives are significantly slower to access than RAM, though what is written to them
stays there even when the machine is turned off. RAM is faster than the disk, but it still is
not fast enough to respond at the rate that a modern processor can use it. For this reason,
processors generally have smaller amounts of memory on them called cache. The cache is
significantly faster than the RAM when it comes to how fast the processor can read or write
values. Even that is not enough anymore, and modern processors will include multiple levels
of cache referred to as L1, L2, L3, etc. Each level up is generally bigger, but also further
from the processor and slower.

Some applications have to concern themselves with these details because the program
runs faster if it will fit inside of a certain cache. If a program uses a small enough amount of
memory that it will fit inside of the L2 cache, it will run significantly faster than if it does

Bus

Memory

Basics of Computers, Computing, and Programming 5

FIGURE 1.2: This is a basic view of the CPU and a program in memory.

not. We will not generally worry about this type of issue, but there are many professional
developers who do.

A significant difference between our simple computer illustration and today’s computers
is that modern processors have multiple cores. What that means in our simple picture
is that the CPU is not doing one instruction at a time, it is doing several. This is what
we call parallel processing. When it happens inside of a single program it is referred to
as multithreading. This is a significant issue for programmers because programs have not
historically included multithreading and new computers require it in order to fully utilize
their power. Unfortunately, making a program multithreaded can be difficult. Different
languages offer different ways to approach this. This is one of the strengths of Scala that
will be hit on briefly in this book and addressed in detail in Object Orientation, Abstraction,
and Data Structures Using Scala[1] which is the second volume for CS2.

1.2.3 Input/Output Devices

For a computer to perform tasks, it needs to get input in the form of instructions
and data. Devices that provide this capability are called input devices. Examples of input
devices include a keyboard, mouse, and secondary storage. The keyboard is the standard
input. Output devices enable the computer to display the results of the instructions and
calculations. Some examples of output devices include the printer, terminal screen, and
secondary storage. The terminal screen is the standard output.

Address

0000

0001

FFFD
FFFE
FFFF

CPU

I

6 Introduction to Programming and Problem-Solving Using Scala

FIGURE 1.3: This is a basic view of the layers of software on top of a computer’s hardware.

1.3 Software
The programs that are run on hardware are typically called software. The software is

not a physical entity. However, without some type of software, the hardware is useless. It
is the running of a program that makes hardware useful to people. As with the hardware,
software can be seen as having multiple parts. It also has a layering or hierarchy to it as can
be seen in figure 1.3. At the base is a layer that gives the computer the initial instructions
for what to do when it is turned on. This is often called the BIOS (Basic Input/Output
System). The BIOS is generally located on a chip in the machine instead of on the more
normal forms of memory like the disk or RAM. Instructions stored in this way are often
called firmware. This term implies that it is between the software and the hardware. The
firmware really is instructions, just like any other software. In a sense it is less soft because
it is stored in a way that might be impossible to write to or which is harder to write to.

The BIOS is responsible for getting all the basic functionality started up on the ma-
chine. Sitting on top of the BIOS is the Operating System (OS). The Operating System is
responsible for controlling the operations of the machine and how it interacts with the user.
The OS is also responsible for writing files to disk and reading files from disk. In addition,
it has the job of loading other programs into memory and getting them started. Over time,
the amount of functionality in operating systems has grown so that they are also expected
to present nice interfaces and have all types of other “basic” functionality that really is not
so basic.

At the top level are the application and utility programs that the user runs. When
the user instructs the operating system to run a program, the operating system loads that
program into memory and sets the execution address so that the computer will start running

Appl ication Appl ication Appl ication

Operating System

BIOS

Hardware

Monitor Keyboard

Printer Mouse RAM

Basics of Computers, Computing, and Programming 7

the program. The breadth of what programs can do is nearly unlimited.1 Everything that
runs on every digital device in the world is a program. You use them to type your papers
and do your e-mail. They likely also run the fuel injection system in your car and control
the lights at intersections. Programs regulate the flow of electricity through the power grid
and the flow of water to your indoor plumbing. Programs do not just give you the apps on
your phone, they are running when you talk on the phone to compress your speech into
a digital form and send it out to a local tower where another program examines it and
sends it on toward the destination. On the way, it likely passes through multiple locations
and gets handled by one or more programs at each stop. At some point on the other end,
another program takes the digital, compressed form and expands it back out to analog that
can be sent to a speaker so the person you are talking to can hear it. Someone wrote each of
those programs and over time more programs are being written that serve more and more
different purposes in our lives.

In the last section we mentioned that newer processors have multiple cores on them. The
availability of multiple cores (and perhaps multiple processors) is significant for software as
well. First, they give the OS the ability to have multiple things happening at one time. All
but the simplest of operating systems perform multitasking. Multitasking is a method that
allows multiple tasks to be performed during the same time period and allows the OS to
have multiple programs or processes running simultaneously. This can be done on a single
core by giving each process a short bit of time and then switching between them. When
there are multiple cores present, it allows the programs to truly run multiple processes all
at once, which is known as multiprocessing.

Each process can also exploit its own parallelism by creating multiple threads. The OS
is still responsible for scheduling what threads are active at any given time. This allows
a single program to utilize more of the resources of a machine than what is present on a
single core. While this does not matter for some specialized applications, the use of multiple
cores has become more and more commonplace and the core count on large machines as
well as smaller devices is currently climbing at an exponential rate. As a result, the need to
multithread programs becomes ever more vital.

This increasing number of cores in machines has led to another interesting development
in the area of servers. Servers are more powerful computers that are used by companies to
store large amounts of data and do lots of processing on that data. Everything you do on
the web is pulling data from servers. If you are at a University, odds are that they have at
least one room full of servers that act as a control and data storage center for the campus.

The nature of the work that servers do is often quite different from a normal PC. A
large fraction of their job is typically just passing information around, and the workload for
that can be very unevenly distributed. The combination of this and multiple cores has led
to an increase in the use of virtualization. A virtual machine is a program that acts like a
computer. It has a BIOS and loads an OS. The OS can schedule and run programs. This
whole process happens inside of a program running potentially on a different OS on a real
machine. Using virtualization, you can start multiple instances of one or more operating
systems running on a single machine. As long as the machine has enough cores and memory,
it can support the work of all of these virtual machines. Doing this cuts down on the number
of real machines that have to be bought and run, reducing costs in both materials and power
consumption.

1There are real limitations to computing that are part of theoretical computer science. There are certain
problems that are provably not solvable by any program.

8 Introduction to Programming and Problem-Solving Using Scala

1.4 Nature of Programming
Every piece of software, from the BIOS of each device to the OS, and the multitude

of applications they run, is a program that was written by a programmer. So what is this
thing we call programming, and how do we do it? How do we give a computer instructions
that will make it do things for us? In one sense, programming is just the act of giving the
computer instructions in a format that it can work with. At a fundamental level, computers
do nothing more than work with numbers. Remember the model in figure 1.2. Each cycle
the computer loads an instruction and executes it. There was a time when programming
was done by writing the specific, low level instructions that the machine executes. We refer
to the language of these instructions as machine language. While machine language is really
the only language that the computer understands, it is not a very good language for humans
to work in. The numbers of machine language do not hold inherent meaning for humans,
and it is very easy to make mistakes. To understand this, consider the following code that
calculates a wage using the math wage = rate ∗ hours using MIPS machine language.

100011 00000 00010 0000000000000000 # Load rate into register 2
100011 00001 00011 0000000000000000 # Load hours into register 3
000000 00010 00011 00100 00000 011000 # Multiply registers 2 and 3,

and store in 4
101011 00100 00101 0000000000000000 # Store result from register 4

This shows the instructions in binary; we will discuss binary in detail in chapter 2. Spaces
have been inserted to make it easier to see the parts of the instructions, and comments are
put in to explain what each command, made up of 32 0s and 1s is doing. Real machine
code does not have spaces, comments, or even separate lines. The commands are generally
written/viewed in hexadecimal instead of binary as well. So this code would really look like
the following.

8c0200008c230000432018ac850000

Even without knowing anything about programming, you can probably tell that this would
be very hard to work with. For this reason, people have developed better ways to program
computers than to write out machine language instructions.

The first step up from machine language is assembly language. Assembly language is
basically the same as machine language in that there is an assembly instruction for each
machine language instruction. However, the assembly instructions are entered as words,
known as mnemonics, that describe what they do. The assembly language also helps to keep
track of how things are laid out in memory so that programmers do not have to actively
consider such issues the way they do with machine language. The machine language above
can be written as the following assembly language instructions.

lw $s0, $s2, 0
lw $s1, $s3, 0
mult $s2, $s3, $s4
sw $s4, $s5, 0

The first group of six numbers in the binary machine code corresponds to an instruction.
For example, you can see that 100011 becomes lw, which is short for “load word”. To get the
computer to understand assembly language, we employ a program that does a translation
from assembly language to machine language. This program is called an assembler.

Basics of Computers, Computing, and Programming 9

Even assembly language is less than ideal for expressing the ideas that we want to put
into programs. For this reason, other languages have been created. These higher level lan-
guages use more complete words and allow a more complex organization of ideas so that
more powerful programs can be written more easily. Our earlier pieces of code would be
written as wage = rate*hours in most modern languages. The computer does not under-
stand these languages either. As such, they either employ programs called compilers that
translate the higher level languages into assembly then down to machine language or pro-
grams called interpreters that execute the instructions one at a time without ever turning
them into machine language.

There are literally hundreds of different programming languages. Each one was created
to address some deficiency that was seen in other languages or to address a specific need.
This book uses the Scala programming language. It is hard to fully explain the benefits of
Scala, or any other programming language, to someone who has not programmed before.
We will just say that Scala is a very high-level language that allows you to communicate
ideas to the computer in a concise way, and gives you access to a large number of existing
libraries to help you write programs that are fun, interesting, and/or useful.

Early on in your process of learning how to program, you will likely struggle with figuring
out how to express your ideas in a programming language instead of the natural language
that you are used to. Part of this is because programming languages are fundamentally
different than natural languages in that they do not allow ambiguity. In addition, they
typically require you to express ideas at a lower level than you are used to with natural
language. Both of these are a big part of the reason why everyone should learn how to
program. The true benefits of programming are not seen in the ability to tell a computer
how to do something. The real benefits come from learning how to break problems down.

At a very fundamental level, the computer is a stupid machine. It does not understand
or analyze things.2 The computer just does what it is told. This is both a blessing and a
curse for the programmer. Ambiguity is fundamentally bad when you are describing how to
do things, and it is particularly problematic when the receiver of the instructions does not
have the ability to evaluate the different possible meanings and pick the one that makes
the most sense. That means that programs have to be rigorous and take into account small
details. On the other hand, you can tell computers to do things that humans would find
incredibly tedious, and the computer will do it repeatedly for as long as you ask it to. This
is a big part of what makes computers so useful. They can sift through huge amounts of
data and do many calculations quickly without fatigue induced errors.

In the end, you will find that converting your thoughts into a language the computer
can understand is the easy part. Yes, it will take time to learn your new language and to
get used to the nuances of it, but the real challenge is in figuring out exactly what steps
are required to solve a problem. As humans, we tend to overlook many of the details in
the processes we go through when we are solving problems. We describe things at a very
high level and ignore the lower levels, assuming that they will be implicitly understood.
Programming forces us to clarify those implicit steps and, in doing so, forces us to think
more clearly about how we solve problems. This skill becomes very important as problems
get bigger and the things we might want to have implicitly assumed become sufficiently
complex that they really need to be spelled out.

One of the main skills that you will develop when you learn how to program is the ability
to break problems down into pieces. All problems can be broken into smaller pieces, and it
is often helpful to do so until you get down to a level where the solution is truly obvious or

2At least they don’t yet. This is the real goal of the field of Artificial Intelligence (AI). If the dreams of
AI researchers are realized, the computers of the future will analyze the world around them and understand
what is going on.

10 Introduction to Programming and Problem-Solving Using Scala

trivial. This approach to solving problems is called a top-down approach, because you start
at the top with a large problem and break it down into smaller and smaller pieces until, at
the bottom, you have elements that are simple to address. The solutions you get are then
put back together to produce the total solution.

Another thing that you will learn from programming is that while there are many ways
to break down almost any problem, not all of them are equally good. Some ways of breaking
the problem down simply “make more sense”. Granted, that is something of a judgement
call, and might differ from one person to the next. A more quantifiable metric of the quality
of how a problem is broken down is how much the pieces can be reused. If you have solved
a particular problem once, you do not want to have to solve it again. You would rather use
the solution you came up with before. Some ways of breaking up a problem will result in
pieces that are very flexible and are likely to be useful in other contexts. Other ways will
give you elements that are very specific to a given problem and will not be useful to you
ever again.

There are many aspects of programming for which there are no hard and fast rules
on how things should be done. In this respect, programming is much more an art than a
science. Like any art, in order to really get good at it you have to practice. Programming
has other similarities to the creative arts. Programming itself is a creative task. When
you are programming, you are taking an idea that exists in your head and giving it a
manifestation that is visible to others. It is not actually a physical manifestation. Programs
are not tangible. Indeed, that is one of the philosophically interesting aspects of software.
It is a creation that other people can experience, but they cannot touch. It is completely
virtual. Being virtual has benefits. Physical media have limitations on them, imposed by
the laws of physics. Whether you are painting, sculpting, or engineering a device, there are
limitations to what can be created in physical space. Programming does not suffer from
this. The ability of expression in programming is virtually boundless. If you go far enough
in computer science you will learn where there are bounds, but even there the results are
interesting because it is possible that the bounds on computation are bounds on human
thinking as well.

This ability for near infinite expression is the root of the power, beauty, and joy of
programming. It is also the root of the biggest challenge. Programs can become arbitrarily
complex. They can become too complex for humans to understand what they are doing.
For this reason, a major part of the field of Computer Science is trying to find ways to tame
the complexity and make it so that large and complex ideas can be expressed in ways that
are also easy for humans to follow and determine the correctness of.

1.5 Programming Paradigms
The fact that there are many ways to break up problems or work with problems has not

only led to many different programming languages, it has led to whole families of different
approaches that are called paradigms. There are four main paradigms of programming. It is
possible others could come into existence in the future, but what appears to be happening
now is that languages are merging the existing paradigms. Scala is one of the languages that
is blurring the lines between paradigms. To help you understand this we will run through
the different paradigms.

Basics of Computers, Computing, and Programming 11

1.5.1 Imperative Programming

The original programming paradigm was the imperative paradigm. That is because this
is the paradigm of machine language. So all the initial programs written in machine language
were imperative. Imperative programming involves giving the computer a set of instructions
that it is to perform. Those actions change the state of the machine. This is exactly what
you get when you write machine language programs.

The two keys to imperative programming are that the programmer specifically states
how to do things and that the values stored by the computer are readily altered during the
computation. The converse of imperative programming would be declarative programming
where the programmer states what is to be done, but generally is not specific about how
it should be done. The Scala language allows imperative style programming and many of
the elements of this book will talk about how to use the imperative programming style in
solving problems.

1.5.2 Functional Programming

Functional programming was born out of the mathematical underpinnings of Computer
Science. In the functional programming paradigm, the main program is written as a function
that receives the program’s input as its arguments and delivers the program’s output as its
result. The first functional languages were based very heavily on Alonzo Church’s lambda
calculus. In a way this is in contrast to imperative programming which bares a stronger
resemblance to the ideas in the Turing machine. “Programming” a Turing machine is only
loosely correlated to writing machine language, but the general ideas of mutable state and
having commands that are taken one after the other are present on the Turing machine. Like
the lambda calculus, functional languages are fundamentally based on the idea of functions
in mathematics. We will see a lot more of the significance of mathematical functions on
programmatic thinking in chapter 4.

Functional languages are typically more declarative than imperative languages. That is
to say that you typically put more effort into describing what is to be done and a lot less in
describing how it is to be done. For a language to be considered purely functional the key
is that it not have mutable state, at least not at a level that the programmer notices. What
does that mean? It means that you have functions that take values and return values, but
do not change anything else along the way. The only thing they do is give you back the
result. In an imperative language, little traces of what has been done can be dropped all
over the place. Certainly, functional programs have to be able to change memory, but they
always clean up after themselves so that there is nothing left behind to show what they did
other than the final answer. Imperative programs can leave alterations wherever they want,
and there is no stipulation that they set things back the way they found it. Supporters
of functional programming often like to say that functional programs are cleaner. If you
think of a program as being a person, this statement makes for an interesting analogy.
Were a functional program to enter your room looking for something, you would never
know, because it would leave no trace of its passing. At the end, everything would be
as it had started except that the function would have the result it was looking for. An
imperative program entering your room might not change anything, but more than likely it
would move the books around and leave your pillow in a different location. The imperative
program would change the “state” of your room. The functional one would not.

Scala supports a functional style of programming, but does not completely enforce it.
A Scala program can come into your room, and it is easy to set it up so that it does
not leave any trace behind, but if you want to leave traces behind you can. The purpose
of this combination is to give you flexibility in how you do things. When a functional

12 Introduction to Programming and Problem-Solving Using Scala

implementation is clean and easy you can feel free to use it. However, there are situations
where the functional style has drawbacks, and in those cases you can use an imperative
style.

1.5.3 Object-Oriented Programming

Object-oriented programming is a relative newcomer to the list of programming
paradigms. The basic idea of object-oriented programming first appeared in the SIMULA67
programming language. As the name implies, this dates it back to the 1960s. However, it
did not gain much momentum until the 1980s when the Smalltalk language took the ideas
further. In the 1990s, object-orientation really hit it big and now virtually any new language
that is created and expects to see wide use will include object-oriented features.

The basic idea of object-orientation is quite simple. It is that data and the functions
that operate on the data should be bundled together into things called objects. This idea
is called encapsulation, and we will discuss it briefly at the end of this book. This might
seem like a really simple idea, but it enables a lot of significant extras that do not become
apparent until you have worked with it a while.

Object-orientation is not really independent of the imperative and functional paradigms.
Instead, object-oriented programs can be done in either a functional or an imperative style.
The early object-oriented languages tended to be imperative and most of the ones in wide
use today still are. However, there are a number of functional languages now that include
object-oriented features.

Scala is a purely object-oriented language, a statement that is not true of many lan-
guages. What this means and the implications of it are discussed in detail in later chapters.
For most of this book, the fact that Scala is object-oriented will not even be that significant
to us, but it will always be there under the surface.

1.5.4 Logic Programming

The fourth programming paradigm is logic programming. The prime example language
is Prolog. Logic programming is completely declarative. As the name implies, programs are
written by writing logical statements. It is then up to the language/computer to figure out a
solution. This is the least used of the paradigms. This is in large part because of significant
performance problems. The main use is in artificial intelligence applications. There is some
indication that logic programming could reappear in languages where it is combined with
other paradigms, but these efforts are still in the early stages.

1.5.5 Nature of Scala

As was indicated in the sections above, Scala provides a mix of different paradigms. It
is a truly hybrid language. This gives you, as the programmer, the ability to solve problems
in the way that makes the most sense to you or that best suits the problem at hand. The
Scala language directly includes imperative, functional, and object-oriented elements. The
name Scala stands for Scalable Language; so, it is not completely out of the question for
them to add a library in the future that could support logic programming to some extent
if a benefit to doing so was found.

Basics of Computers, Computing, and Programming 13

1.6 End of Chapter Material

1.6.1 Summary of Concepts

• Computing has a much longer history than one might expect with roots in mathe-
matics.

• Hardware is the term used for the actual machinery of a computer.

• Software is the term used for the instructions that are run on hardware. Individual
pieces of software are often called programs.

• The act of writing instructions for a computer to solve a problem in a language
that the computer can understand or that can be translated to a form the computer
understands is called programming.

• Programming is very much an art form. There are many different ways to solve any
given problem, and they can be arbitrarily complex. Knowing how to design good
programs takes practice.

• There are four different broad types or styles of programming called paradigms.

– The imperative programming paradigm is defined by explicit instructions telling
the machine what to do and mutable state where values are changed over time.

– The functional paradigm is based on Church’s lambda calculus and uses functions
in a very mathematical sense. Mathematical functions do not involve mutable
state.

– Object-orientation is highlighted by combining data and functionality together
into objects.

– Logic programming is extremely declarative, meaning that you say what solution
you want, but not how to do it.

– Scala is purely object-oriented with support for both functional and imperative
programming styles.

1.6.2 Exercises

1. Find out some of the details of your computer hardware and software.

(a) Processor

i. Who makes it?
ii. What is the clock speed?
iii. How many cores does it have?
iv. How much cache does it have at different cache levels? (optional)

(b) How much RAM does the machine have?

(c) How much non-volatile, secondary storage (typically disk space) does it have?

(d) What operating system is it running?

2. If you own a tablet computer, repeat exercise 1 for that device.

14 Introduction to Programming and Problem-Solving Using Scala

3. If you own a smartphone, repeat exercise 1 for that device.

4. Briefly describe the different programming paradigms and compare them.

5. List a few languages that use each of the different programming paradigms.

6. List a few languages that use compilers.

7. List a few languages that use interpreters.

8. What is the difference between computer multitasking and multiprocessing?

9. What is multithreading?

10. Compare and contrast an algorithm vs. a program.

11. Compare and contrast an interpreter vs. a compiler.

12. Do an Internet search for a genealogy of programming languages. Find and list the
key languages that influences the development of Scala.

13. Go to a website where you can configure a computer (like http://www.dell.com).
What is the maximum number of cores you put in a PC? What about a server?

14. Go to http://www.top500.org, a website that keeps track of the 500 fastest com-
puters in the world. What are the specifications of the fastest computer in the world?
What about the 500th fastest?

1.6.3 Projects

1. Search on the web to find a list of programming languages. Pick two or three and
write descriptions of the basic properties of each including when they were created
and possibly why they were created.

2. Compare and contrast the following activities: planning/building a bridge, growing a
garden, painting a picture. Given what little you know of programming at this point,
how do you see it comparing to these other activities?

3. Make a time line of a specific type of computer technology. This could be processors,
memory, or whatever. Go from as far back as you can find to the modern day. What
were the most significant jumps in technology, and when did they occur?

4. One of the more famous predictions in the field of computing hardware is Moore’s
law. This is the term used to describe a prediction that the number of components on
an integrated circuit would double roughly every 18 months. The name comes from
Intel® co-founder Gordon Moore who noted in 1965 that the number had doubled
every year from 1958 to that point and predicted that would continue for at least a
decade. This has now lead to exponential growth in computing power and capabilities
for over five decades.3 Write a short report on the impact this has had on the field
and what it might mean moving forward.

5. Investigate and write a short report on some developments in future hardware tech-
nology. Make sure to include some things that could come into play when the physical
limits of silicon are reached.

3You can see the exponential growth of supercomputer power on plots at Top500.org.

http://www.top500.org
http://www.dell.com

Basics of Computers, Computing, and Programming 15

6. Investigate and write a short report on some developments in future software technol-
ogy. What are some of the significant new application areas that are on the horizon?
This should definitely include some look at artificial intelligence and robotics.

7. As computers run more and more of our lives, computer security and information
assurance become more and more significant. Research some of the ways that com-
puters are compromised and describe how this is significant for programmers writing
applications and other pieces of software.

Additional exercises and projects can be found on the website.

http://taylorandfrancis.com

Chapter 2
Scala Basics

2.1 Scala Tools . 17
Scala on your Machine . 18
Installation . 18
Dealing with the PATH . 18

2.2 Expressions, Types, and Basic Math . 19
2.3 Objects and Methods . 23
2.4 Other Basic Types . 24
2.5 Back to the Numbers . 27

2.5.1 Binary Arithmetic . 29
2.5.2 Negative Numbers in Binary . 30
2.5.3 Other Integer Types . 31
2.5.4 Octal and Hexadecimal . 32
2.5.5 Non-Integer Numbers . 33

2.6 The math Object . 34
Syntax versus Semantics . 35

2.7 Naming Values and Variables . 36
2.7.1 Patterns in Declarations . 38
2.7.2 Using Variables . 39

2.8 Details of Char and String . 40
2.8.1 Escape Characters . 40
2.8.2 Raw Strings . 41
2.8.3 String Interpolation . 41
2.8.4 String Methods . 42
2.8.5 Immutability of Strings . 44

2.9 Sequential Execution . 45
2.9.1 Comments . 46

2.10 A Tip for Learning to Program . 47
2.11 End of Chapter Material . 47

2.11.1 Problem Solving Approach . 47
2.11.2 Summary of Concepts . 48
2.11.3 Self-Directed Study . 50
2.11.4 Exercises . 50

It is time to begin our journey learning how to program with the Scala language. You can
download Scala for free from http://www.scala-lang.org to run on Windows, Mac, or
Linux (see the inset below for full instructions on how to install). In this book, we will use
the command line to run Scala. If you do not have experience with the command line on
your machine, you can refer to Appendix A for a brief introduction. Before looking at the
language itself, we need to talk a bit about tools so that you can play along.

2.1 Scala Tools
After you have installed Scala on your machine there are several different programs

that get installed in the bin directory under the Scala installation. To begin with, we will

17

http://www.scala-lang.org

18 Introduction to Programming and Problem-Solving Using Scala

only concern ourselves with one of these: scala.1 The scala command actually runs scala
programs. There is a second command, scalac, that is used to compile scala text files into
bytecode that is compatible with either the Java or .NET platform. We will only use scalac
in the last chapter of this book, but we will begin using the scala command immediately.

Scala on your Machine

If you only use Scala on a machine in a computer lab, hopefully everything will have
been set up for you so that you can simply type the name of a command and it will
run. To run Scala on your own machine you can follow the instructions below.

Installation

Scala requires Java® to run so if you do not have Java installed you should go
to http://java.oracle.com and download then install the most recent version of the
Java SE JDK. When you install Java, you can go with the default install locations.

After you have Java installed you can install Scala. To download Scala go to http:
//www.scala-lang.org. On that site download the latest version of Scala. The code
in this book was written to work with Scala 2.12.

Dealing with the PATH

If you are using Scala on your own machine, it is possible that entering scala or
scala.bat on the command line could produce a message telling you that the command
or program scala could not be found. This happens because the location of the installed
programs are not in your default PATH.

The PATH is a set of directories that are checked whenever you run a command. The
first match that is found for any executable file in a directory in the PATH will be run.
If none of the programs in the PATH match what you entered, you get an error.

When you installed Scala, a lot of different stuff was put into the install directory.
That included a subdirectory called “bin” with different files in it for the different
executables. If you are on a Windows machine, odds are that you installed the program
in C:\Program Files (x86)\scala so the scala.bat file that you want to run is in
C:\Program Files\scala\bin\scala.bat. You can type in that full command or you
can add the bin directory to your PATH. To do this go to Control Panel, System and
Security, Advanced System Settings, Environment Variables, and edit the path to add
C:\Program Files\scala\bin to the path.

Under Unix/Linux you can do this from the command line. Odds are that Scala
was installed in a directory called scala in your user space. To add the bin directory
to your path you can do the following:

export PATH=$PATH:/home/username/scala/bin

Replace “username” with your username. This syntax assumes you are using the bash
shell. If it does not work for you, you can do a little searching on the web for how to
add directories to your path in whatever shell you are running. To make it so that you
do not have to do this every time you open a terminal, add that line to the appropriate
configuration file in your home directory. If you are running the Bash shell on Linux
this would be .bashrc.

1On a Windows system this commands should be followed by “.bat”.

http://www.scala-lang.org
http://www.scala-lang.org
http://java.oracle.com

Scala Basics 19

There are three ways in which the scala command can be used. If you just type in scala
and press enter you will be dropped into the Scala REPL (Read-Execute-Print Loop). This
is an environment where you can type in single Scala expressions and immediately see their
values. This is how we will start off interacting with Scala, and it is something that we
will come back to throughout the book because it allows us to easily experiment and play
around with the language. The fact that it gives us immediate feedback is also quite helpful.

To see how this works, at the command prompt, type in scala and then press enter. It
should print out some information for you, including telling you that you can get help by
typing in :help. It will then give you a prompt of the form scala>. You are now in the
Scala REPL. If you type in :help you will see a number of other commands you could give
that begin with a colon. At this time the only one that is significant to us is :quit which
we will use when we are done with the REPL and want to go back to the normal command
prompt.

It is customary for the first program in a language to be Hello World. So as not to break
with tradition, we can start by doing this now. Type the following after the scala> prompt.

println("Hello, World!");

If you do this you will see that the next line prints out “Hello, World!”. This exercise is less
exciting in the REPL because it always prints out the values of things, but it is a reasonable
thing to start with. It is worth asking what this really did. println is a function in Scala
that tells it to print something to standard output and follow that something with a newline
character2 to go to the next line. In this case, the thing that was printed was the string
“Hello, World!”. You can make it print other things if you wish. One of the advantages of
the REPL is that it is easy to play around in. Go ahead and test printing some other things
to see what happens.

The second usage of the scala command is to run small Scala programs as scripts.
The term script is generally used to refer to short programs that perform specific tasks.
There are languages that are designed to work well in this type of usage, and they are often
called scripting languages. The design of Scala makes it quite usable as a scripting language.
Unlike most scripting languages, however, Scala also has many features that make it ideal
for developing large software projects as well. To use Scala for scripting, simply type in a
little Scala program into a text file that ends with “.scala”3 and run it by putting the
file name after the scala command on the command line. So you could edit a file called
Hello.scala and add the line of code from above to it. After you have saved the file, go to
the command line and enter “scala Hello.scala” to see it run.

2.2 Expressions, Types, and Basic Math
All programming languages are built from certain fundamental parts. In English you

put together words into phrases and then combine phrases into sentences. These sentences
can be put together to make paragraphs. To help you understand programming, we will
make analogies between standard English and programming languages. These analogies are

2You will find more information about the and other escape characters in section 2.8
3It is not technically required that your file ends with “.scala”, but there are at least two good reasons

you should do this. First, humans benefit from standard file extensions because they have meaning and
make it easier to keep track of things. Second, some tools treat things differently based on extensions. For
example, some text editors will color code differently based on the file extension.

20 Introduction to Programming and Problem-Solving Using Scala

not perfect. You cannot push them too far. However, they should help you to organize
your thinking early in the process. Later on, when your understanding of programming is
more mature, you can dispense with these analogies as you will be able to think about
programming languages in their own terms.

The smallest piece of a programming language that has meaning is called a token. A
token is like a word or punctuation mark in English. If you break up a token, you change
the meaning of that piece, just like breaking up a word is likely to result in something that
is no longer a word and does not have any meaning at all. Indeed, many of the tokens
in Scala are words. Other tokens are symbols like punctuation. Let’s consider the “Hello,
World” example from the previous section.

println("Hello, World!");

This line contains a number of tokens: println, (, "Hello, World!", and).
When you think of putting words together, you probably think of building sentences with

them. A sentence is a grouping of words that stands on its own in written English. The
equivalent of a sentence in Scala, and most programming languages, is the statement. A
statement is a complete and coherent instruction that we can give the computer. When you
are entering “commands” into the REPL, they are processed as full statements. If you enter
something that is not a complete statement in the REPL, instead of the normal prompt, you
will get a vertical bar on the next line telling you that you need to continue the statement.
The command listed above is a complete statement which is why it worked the way it did.

Note that this statement ends with a semicolon. In English you are used to ending
sentences with a period, question mark, or exclamation point. Scala follows many other
programming languages in that semicolons denote the end of a statement. Scala also does
something called semicolon inference. Put simply, if a line ends in such a way that a semi-
colon makes sense, Scala will put one there for you. As a result of this, our print statement
will work just as well without the semicolon.

println("Hello World!")

You should try entering this into the REPL to verify that it works. Thanks to the semicolon
inference in Scala, we will very rarely have to put semicolons in our code. One of the few
times they will really be needed is when we want to put two statements on a single line for
formatting reasons.

While you probably think of building sentences from words in English, the reality is that
you put words together into phrases and then join phrases into sentences. The equivalent
of a phrase in Scala is the expression. Expressions have a far more significant impact on
programming languages than phrases have in English, or at the least programmers need to
be more cognizant of expressions than English writers have to be of phrases. An expression
is a group of tokens in the language that has a value and a type.4 For example, 2 + 2 is
an expression which will evaluate to 4 and has an Integer type.

Just like some phrases are made from a single word, some tokens represent things that
have values on their own, and, as such, they are expressions themselves. The most basic
of these are what are called literals. Our sample line was not only a statement, it was
also an expression. In Scala, any valid expression can be used as a statement, but some
statements are not expressions. The "Hello, World!" part of our statement was also an
expression. It is something called a string literal which we will learn more about in section
2.4.

Let us take a bit of time to explore these concepts in the REPL. Run the scala command

4Type is a construct that specifies a set of values and the operations that can be performed on them.
Common types include numeric integer, floating-point, character, and boolean.

Scala Basics 21

without any arguments. This will put you in the REPL with a prompt of scala>. In the
last chapter we typed in a line that told Scala to print something. This was made from more
than one token. We want to start simpler here. Type in a whole number, like 5, followed by
a semicolon and hit enter. You should see something like this:

scala> 5;
res0: Int = 5

The first line is what you typed in at the prompt. The second line is what the Scala REPL
printed out as a response. Recall that REPL stands for Read-Evaluate-Print Loop. When
you type something in, the REPL reads what you typed, then evaluates it and prints the
result. The term loop implies that this happens over and over. After printing the result,
you should have been given a new prompt.

So what does this second line mean? The REPL evaluated the statement that you input.
In this case, the statement is just an expression followed by a semicolon and the REPL was
printing out the value of the expression you entered. As was mentioned above, the REPL
needs you to type in full statements so that it can evaluate it. In this case, we typed in
a very simple statement that has an expression called a numeric literal followed by a
semicolon. This semicolon will be inferred if you do not add it in. We will take advantage
of that and leave them out of statements below.

The end of the output line gives us the value of the expression which is, unsurprisingly,
5. What about the stuff before that? What does res0: Int mean? The res0 part is a name.
It is short for “result0”. When you type in an expression as a statement in the Scala REPL
as we did here, it does not just evaluate it, it gives it a name so that you can refer back to
it later. The name res0 is now associated with the value 5 in this run of the REPL. We
will come back to this later. For now we want to focus on the other part of the line, :Int.
Colons are used in Scala to separate things from their types. We will see a lot more of this
through the book, but what matters most to us now is the type, Int. This is the type name
that Scala uses for basic numeric integers. An integer can be either a positive or negative
whole number. You can try typing in a few other integer values to see what happens with
them. Most of the time the results will not be all that interesting, but if you push things
far enough you might get a surprise or two.

What happens if you type in a number that is not an integer? For example, what if you
type in 5.6? Try it, and you should get something like this:

scala> 5.6
res1: Double = 5.6

We have a different name now because this is a new result. We also get a different type.
Instead of Int, Scala now tells us that the type is Double. In short, Double is the type that
Scala uses by default for any non-integer numeric values. Even if a value technically is an
integer, if it includes a decimal point, Scala will interpret it to be a Double. You can type
in 5.0 to see this in action. Try typing in some other numeric values that should have a
Double as the type. See what happens. Once again, the results should be fairly mundane.
Double literals can also use scientific notation by putting the letter e between a number
and the power of ten it is multiplied by. So 5e3 means 5 ∗ 103 or 5000.

So far, all of the expressions we have typed in have been single tokens. Now we will build
some more complex expressions. We will begin by doing basic mathematical operations. Try
typing in “5+6”.

scala> 5+6
res2: Int = 11

22 Introduction to Programming and Problem-Solving Using Scala

This line involves three tokens. Each character in this case is a separate token. If you space
things out, it will not change the result. However, if you use a number with multiple digits,
all the digits together are a single token and inserting spaces does change the meaning.

There should not be anything too surprising about the result of 5+6. We get back a
value of 11, and it has a type of Int. Try the other basic arithmetic operations of -, *,
and /. You’ll notice that you keep getting back values of type Int. This makes sense for
addition, subtraction, and multiplication. However, the result of 5/2 might surprise you a
little bit. You normally think of this expression as having the value of 2.5 which would
be a Double. However, if you ask Scala for the result of 5/2 it will tell you the value is
the Int 2. Why is this, and what happened to the 0.5? When both operands are of type
Int, Scala keeps everything as Ints. In the case of division, the decimal answer you might
expect is truncated and the fractional part is thrown away. Note that it is not rounded, but
truncated. Why is this? It is because in integer arithmetic, the value of 5/2 is not 2.5. It
is 2r1. That is to say that when you divide five by two, you get two groups of two with
one remainder. At some point in your elementary education, when you first learned about
division, this is probably how you were told to think about it. At that time you only had
integers to work with so this is what made sense.

Scala is just doing what you did when you first learned division. It is giving you the
whole number part of the quotient with the fractional part removed. This fractional part
is normally expressed as a remainder. There is another operation called modulo that is
represented by the percent sign that gives us the remainder after division. Here we can see
it in action.

scala> 5%2
res3: Int = 1

The modulo operator is used quite a bit in computing because it is rather handy for ex-
pressing certain ideas. You should take some time to re-familiarize yourself with it. You
might be tempted to say that this would be your first time dealing with it, but in reality,
this is exactly how you did division yourself before you learned about decimal notation for
fractions.

What if you really wanted 2.5 for the division? Well, 2.5 in Scala is a Double. We can
get this by doing division on Doubles.

scala> 5.0/2.0
res4: Double = 2.5

All of our basic numeric operations work for Doubles as well. Play around with them some
and see how they work. You can also build larger expressions. Put in multiple operators,
and use some parentheses.

What happens when you combine a Double and an Int in an expression. Consider this
example:

scala> 5.0/2
res5: Double = 2.5

Here we have a Double divided by an Int. The result is a Double. When you combine
numeric values in expressions, Scala will change one to match the other. The choice of
which one to change is fairly simple. It changes the one that is more restrictive to the one
that is less restrictive. In this case, anything that is an Int is also a Double, but not all
values that are Doubles are Ints. So the logical path is to make the Int into a Double and
do the operation that way.

Scala Basics 23

2.3 Objects and Methods
One of the features of the Scala language is that all the values in Scala are objects.

The term object in reference to programming means something that combines data and
the functionality on that data in a single entity. In Scala we refer to the things that an
object knows how to do as methods. The normal syntax for calling a method on an object
is to follow the object by a period (which we normally read as “dot”) and the name of the
method. Some methods need extra information, which we called arguments. If a method
needs arguments then those are put after the method name in parentheses.

In Scala, even the most basic literals are treated as objects in our program, and we can
therefore call methods on them. An example of when we might do this is when we need to
convert one type to another. In the sample below we convert the Double value 5.6 into an
Int by calling the toInt method. In this simple context we would generally just use an Int
literal, but there will be situations we encounter later on where we are given values that are
Doubles and we need to convert them to Ints. We will be able to do that with the toInt
method.

scala> 5.6.toInt
res6: Int = 5

One thing you should note about this example is that converting a Double to an Int does
not round. Instead, this operation performs a truncation. Any fractional part of the number
is cut off and only the whole integer is left.

We saw at the beginning of this chapter that Scala is flexible when it comes to the
requirement of putting semicolons at the end of statements. Scala will infer a semicolon at
the end of a line if one makes sense. This type of behavior makes code easier to write.

Methods that take one argument can be called using “infix” notation. This notation
leaves off the dot and parentheses, and simply places the method between the object it
is called on and the argument. If the method name uses letters, spaces will be required
on either side of it. This type of flexibility makes certain parts of Scala more coherent and
provides the programmer with significant flexibility. Though you did not realize it, you were
using “infix” notation in the last section. To see this, go into Scala and type “5.” then press
tab. The Scala REPL has tab completion just like the command line, so what you see is a
list of all the methods that could be called on the Int. It should look something like the
following.

scala> 5.
% + > >>> isInstanceOf toDouble toLong unary_+ |
& - >= ^ toByte toFloat toShort unary_-
* / >> asInstanceOf toChar toInt toString unary_~

You have already seen and used some of these methods. We just finished using toInt on a
Double. We can call toDouble on an Int as well. The things that might stand out though
are the basic math operations that were used in the previous section. The +, -, *, /, and
% we used above are nothing more than methods on the Int type. The expression 5+6 is
really 5 .+ (6) to Scala. In fact, you can type this into Scala and see that you get the same
result.

scala> 5 .+ (6)
res7: Int = 11

24 Introduction to Programming and Problem-Solving Using Scala

The space between the 5 and the . is required here because without it Scala thinks you
want a Double. You could also make this clear using parentheses by entering (5).+(6).

So when you type in 5+6, Scala sees a call to the method + on the object 5 with one
argument of 6. We get to use the short form simply because Scala allows both the dot and
the parentheses to be optional in cases like this.

2.4 Other Basic Types
Not everything in Scala is a number. There are other non-numeric types in Scala which

also have literals. We will start simple and move up in complexity. Perhaps the simplest
type in Scala is the Boolean type. Objects of the Boolean type are either true or false,
and those are also valid literals for Booleans.

scala> true
res8: Boolean = true

scala> false
res9: Boolean = false

We will see a lot more on Booleans and what we can do with them in chapter 3 when we
introduce Boolean logic.

Another type that is not explicitly numeric is the Char type. This type is used to
represent single characters. We can make character literals by placing the character inside
of single quotes like we see here.

scala> ’a’
res10: Char = a

The way that computers work, all character data is really numbers, and different numbers
correspond to different characters. We can find out what numeric value is associated with
a given character by using the toInt method. As you can see from the line below, the
lowercase “a” has a numeric value of 97.

scala> ’a’.toInt
res11: Int = 97

Because characters have numeric values associated with them, we can also do math with
them. When we do this, Scala will convert the character to its numeric value as an Int and
then do the math with the Int. The result will be an Int, as seen in this example.

scala> ’a’+1
res12: Int = 98

In the last section you might have noticed that the Int type has a method called toChar.
We can use that to get back from an integer value to a character. You can see from the
following example that when you add 1 to ’a’ you get the logical result of ’b’.

scala> (’a’+1).toChar
res13: Char = b

Scala Basics 25

An object of the Char type can only be a single character. If you try to put more than
one character inside of single quotes you will get an error. It is also an error to try to make
a Char with empty single quotes. However, there are lots of situations when you want to be
able to represent many characters, or even zero characters. This includes words, sentences,
and many other things. For this there is a different type called a String. String literals
are formed by putting zero or more characters inside of double quotes like we see in this
example.

scala> "Scala is a programming language"
res14: String = Scala is a programming language

Notice that the type is listed as String.5
Certain operations that look like mathematical operations are supported for Strings.

For example, when you use + with Strings, it does string concatenation. That is to say
it gives back a new string that is the combined characters of the two that are being put
together as shown here:

scala> "abc"+"def"
res15: java.lang.String = abcdef

This type of operation works with other types as well. The next example shows what happens
when we concatenate a String with an Int. The Int is converted to a String, using the
toString method, and normal string concatenation is performed.

scala> "abc"+123
res16: java.lang.String = abc123

This works whether the String is the first or second argument of the +.

scala> 123+"abc"
res17: java.lang.String = 123abc

In addition to concatenation, you can multiply a string by an integer, and you will get back
a new string that has the original string repeated the specified number of times.

scala> "abc"*6
res18: String = abcabcabcabcabcabc

This can be helpful for things such as padding values with the proper number of spaces
to make a string a specific length. You can do this by “multiplying” the string " " by the
number of spaces you need.

The infix notation for calling a method was introduced earlier. We can show another
example of this using the String type and the substring method. As the name implies,
substring returns a portion of a String. There are two versions of it. One takes a single
Int argument and returns everything from that index to the end of the String. Here you
can see that version being called using both the regular notation and the infix notation.

scala> "abcd".substring(2)
res19: String = cd

scala> "abcd" substring 2
res20: String = cd

5The way you are running this, the real type is a java.lang.String. Scala integrates closely with Java
and uses some of the Java library elements in standard code. This also allows you to freely call code from
the Java libraries, a fact that has been significant in the adoption of Scala.

26 Introduction to Programming and Problem-Solving Using Scala

The indices in Strings begin with zero, so ’a’ is at index 0, ’b’ is at index 1, and ’c’ is
at index 2. Calling substring with an argument of 2 gives back everything from the ’c’
to the end.

The version of substring that takes two arguments allows us to demonstrate a different
syntax where we just leave off the dot. In this case, the first argument is the first index
to take and the second one is one after the last index to take. In math terms, the bounds
are inclusive on the low end and exclusive on the high end. The fact that there are two
arguments means that we have to have parentheses to group together the two arguments,
However, we are not required to put the dot, and the method name can just be between
the object and the arguments. Here are examples using the normal syntax and the version
without the dot.

scala> "abcd".substring(1,3)
res21: String = bc

scala> "abcd" substring (1,3)
res22: String = bc

The space between the method and the parentheses is not required. Remember that in
general Scala does not care about spaces as long as they do not break up a token. In this
book, we will typically use the standard method calling notation, but you should be aware
that these variations exist.

There are other types that are worth noting before we move on. One is the type Unit.
The Unit type in Scala basically represents a value that carries no information.6 There is
a single object of type Unit. It is written in code and prints out as (). We have actually
seen an example of code that uses Unit. The first program we saw in this chapter used
a function called println. When we called println Scala did something (it directed the
string to standard output), but did not give us back a value. This is what happens when
we type in an expression that gives us back a value of Unit in the REPL.

Another significant type in Scala is the tuple. A tuple is a sequence of a specified
number of specific types. Basically, a collection of values that is strict about how many
and what type of values it has. We can make tuples in Scala by simply putting values in
parentheses and separating them with commas as seen in the following examples.

scala> (5,6,7)
res23: (Int, Int, Int) = (5,6,7)

scala> ("book",200)
res24: (String, Int) = (book,200)

scala> (5.7,8,’f’,"a string")
res25: (Double, Int, Char, String) = (5.7,8,f,a string)

The tuples in Scala provide a simple way of dealing with multiple values in a single package,
and they will come up occasionally through the book. Note that the way we express a tuple
type in Scala is to put the types of the values of the tuple in parentheses with commas
between them, just like we do with the values to make a tuple object.

Tuples with only two elements can have special meanings in some parts of Scala. For
that reason, there is an alternate syntax you can use to define these. If you put the token
-> between two values, it will produce a 2-tuple with those values. Consider the following
example.

6The equivalent in many other languages is called void.

Scala Basics 27

scala> 3 -> "three"
res26: (Int, String) = (3,three)

The -> will only produce tuples with two elements though. If you try using it with more
than two elements you can get interesting results.

scala> 4 -> 5 -> 6
res27: ((Int, Int), Int) = ((4,5),6)

So if you want tuples with more than two elements, stick with the parentheses and comma
notation.

Once you have a tuple, there are two ways to get things out of them. The first is to use
methods named _1, _2, _3, etc. So using res21 from above we can do the following.

scala> res25._1
res28: Double = 5.7

scala> res25._3
res29: Char = f

The challenge with this method is that method names like _1 are not very informative and
can make code difficult to read. We will see an alternative approach in section 2.7 that
requires a bit more typing, but can produce more readable code.

2.5 Back to the Numbers
Depending on how much you played around with the topics in section 2.2 you might

or might not have found some interesting surprises where things behaved in ways that you
were not expecting. Consider the following:

scala> 1500000000+1500000000
res30: Int = -1294967296

Mathematicians would consider this to be the wrong answer. It is actually a reflection of
the way that numbers are implemented on computers. The details of this implementation
can impact how your programs work, so it is worth taking a bit of time to discuss it.

At a fundamental level, all information on computers is represented with numbers. We
saw this with the characters being numbers. On modern computers all these numbers are
represented in binary, or base two which represents numeric values using two different
symbols: 0 (zero) and 1 (one). The electronics in the computer alternate between two states
that represent 1 and 0 or on and off. Collections of these represent numbers. A single value
of either a 0 or a 1 is called a bit. It is a single digit in a binary number. The term byte
refers to a grouping of 8 bits which can represent 256 different numbers. In Scala these will
be between -128 and 127. To understand this, we need to do a little review of how binary
numbers work.

You have likely spent your life working with decimal numbers, or base ten. In this system,
there are ten possible values for each digit: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Digits in different
positions represent different power of ten. So the number 365 is really 3∗102+6∗101+5∗100.
There is nothing particularly unique about base ten other than perhaps it relates well to
the number of digits on human hands. You can just as well use other bases, in which case

28 Introduction to Programming and Problem-Solving Using Scala

Value Power of 2 Digit
296 256 1
40 128 0
40 64 0
40 32 1
8 16 0
8 8 1
0 4 0
0 2 0
0 1 0

FIGURE 2.1: Illustration of the conversion from decimal to binary using the subtraction
method. This method works from the top down. To get the number in binary just read
down the list of digits.

you need an appropriate number of symbols for each digit and each position represents a
power of that base.

Binary uses a base of two. In binary we only need two different digits: 0 and 1. This
is convenient on computers where the electronics can efficiently represent two states. The
different positions represent powers of two: 1, 2, 4, 8, 16, 32, ... So the number 110101 =
1 ∗ 32 + 1 ∗ 16 + 0 ∗ 8 + 1 ∗ 4 + 0 ∗ 2 + 1 ∗ 1 = 53. This example shows how you convert
from binary to decimal. Simply add together the powers of two for which the bits have a
value of one. A byte stores eight bits that would represent powers of two from 128 down to
1. The word “would” is used here because there is a significant nuance to this dealing with
negative numbers that we will discuss shortly.

There are two basic approaches to converting from decimal to binary. One involves
repeated subtraction of powers of two while the other involves repeated division by two. We
will start with the first one and use the value 296 in decimal for the conversion. We start by
finding the largest power of 2 that is smaller than our value. In this case it is 256 = 28. So we
will have a one in the 28 position or the 9th digit7. Now we subtract and get 296−256 = 40
and repeat. The largest power of 2 smaller than 40 is 32 = 25. So the digits for 27 and 26

are 0. Subtract again to get 40− 32 = 8. We now have 8 = 23 so the final number in binary
is 100101000. This procedure is written out the way you might actually do it in figure 2.1.

The other approach is a bit more algorithmic in nature and is probably less prone to
error. It works based on the fact that in binary, multiplying and dividing by 2 moves the
“binary point” the same way that multiplying or dividing by 10 moves the decimal point
in the decimal number system. The way it works is you look at the number and if it is
odd you write a 1. If it is even you write a 0. Then you divide the number by 2, throwing
away any remainder or fractional part, and repeat with each new digit written to the left
of those before it. Do this until you get to 0. You can also think of this as just dividing by
two repeatedly and writing the remainder as a bit in the number with the quotient being
what you keep working with.

The number 296 is even so we start off by writing a 0 and divide by 2 to get 148. That
is also even so write another 0. Divide to get 74. This is also even so write another 0. Divide
to get 37. This is odd so write a 1. Divide to get 18, which is even so you write a 0. Divide
to get 9 and write a 1. Divide to get 4 and write a 0. Divide to get 2 and write a 0. Divide
to get 1 and write that one. The next division gives you zero so you stop. This procedure
is illustrated in figure 2.2.

7Remember that the first digit is 20 = 1.

Scala Basics 29

Value Digit
1 1
2 0
4 0
9 1
18 0
37 1
74 0

148 0
296 0

FIGURE 2.2: Illustration of the conversion from decimal to binary using the repeated
division method. This method works from the bottom up so you get the bits in the result
starting with the smallest.

2.5.1 Binary Arithmetic

Now that you know how to go from binary to decimal and decimal to binary, let’s take
a minute to do a little arithmetic with binary numbers. It is certainly possible to do this
by converting the binary to decimal, doing the arithmetic in decimal, then converting back
to binary. However, this is quite inefficient and not worth it because it really is not hard to
work in binary. If anything, it is easier to work in binary than in decimal. Let us begin with
the operation of addition. Say we want to add the numbers 110101 and 101110. To do this
you do exactly what you would do with long addition in decimal. As with decimal numbers,
you start by adding the bits one column, at a time, from right to left. Just as you would do
in decimal addition, when the sum in one column is a two-bit number, the least significant
part is written down as part of the total and the most significant part is "carried" to the
next left column. The biggest difference between decimal and binary addition is that in
binary there is a lot more carrying. Here is a problem solved without showing the carries.

110101
+ 101110

1100011

Here is the same problem, but with numbers written above to show when there is a carry.

1111
110101

+ 101110

1100011

Multiplication in binary can also be done just like in decimal, and you have a lot fewer
multiplication facts to memorize. Zero times anything is zero and one times anything is
that number. That is all we have to know. Let us do multiplication with the same numbers
we just worked with. First we will get all the numbers that need to be added up.

110101
* 101110

1101010

30 Introduction to Programming and Problem-Solving Using Scala

11010100
110101000

11010100000

Adding these numbers is best done in pairs. The reason is that as soon as you add together
3 or more numbers in binary you have the capability to have to do something you are not
accustomed to doing in decimal: carry a value up two digits. In decimal you would have to
have a column sum up to one hundred or more for this to happen. However, in binary you
only have to get to four (which is written as 100 in binary). That happens in this particular
instance in the 6th digit. To reduce the odds of an error, it is better to add the values two
at a time as we have shown here.

1101010
+ 11010100

100111110

+ 110101000

1011100110

+11010100000

100110000110

You can do division in the same way that you do long division with integers, but we will
not cover that here.

2.5.2 Negative Numbers in Binary

We still have not addressed the question of how we represent negative numbers on
a computer. The description that we have given so far only deals with positive values.
Numbers that are interpreted this way are called unsigned. All the numeric types in Scala
are signed, so we should figure out how that works.8 To do this, there are two things that
should be kept in mind. The first is that our values have limited precision. That is to say
that they only store a certain number of bits. Anything beyond that is lost. The second is
that negative numbers are defined as the additive inverses of their positive counterparts. In
other words, x+ (−x) = 0 for any x.

To demonstrate how we can get negative numbers, let’s work with the number 110101
(53 in decimal). Unlike before, we will now limit ourselves to a single byte. So, we have
8 digits to work with, and the top digits are zeros. Our number stored in a byte is really
00110101. So the question of what should be the negative is answered by figuring out what
value we would add to this in order to get zero.

00110101
+ ????????

00000000

Of course, there is nothing that we can put into the question marks to make this work.
However, if we go back to our first fact (i.e. values have limited precision) we can see what
we must do. Note that our total below has 9 digits. We do not need the total to be zero,
we need eight digits of zero. So in reality, what we are looking for is the following.

8The Char is actually a 16-bit unsigned numeric value, but the normal numeric types are all signed.

Scala Basics 31

Type Bits Min Max
Byte 8 -128 127
Short 16 -32768 32767
Int 32 -2147483648 2147483647
Long 64 -9223372036854775808 9223372036854775807

TABLE 2.1: Integer types with their sizes and ranges.

00110101
+ ????????

100000000

This problem is solvable and the most significant 1, the one on the far left, will be thrown
away because we can only store 8 bits in a byte. So the answer is given here.

00110101
+ 11001011

100000000

Note that the top bit is "on" in the negative value. The top bit is not exactly a sign bit,
but if a number is signed, the top bit will tell us quickly whether the number is positive
or negative. This style of making negatives is called two’s compliment. In the early days
of digital computing other options were tried, such as adding a sign-bit or a method called
ones’ compliment where the bits are simply flipped. However, two’s compliment is used in
machines today because it allows numeric operations to be done with negative numbers
using the same circuitry as is used for positive numbers.

This process gives us the correct answer and is based on the proper definition of what a
negative number is. Finding negatives using the definition of what a negative value is works
and can be a fallback, but there is a simpler method. To get the two’s compliment negative
of a binary number of any size, simply flip all the bits and add one. You can verify that this
approach works for our example above. It is left as an exercise for the student to figure out
why this works.

2.5.3 Other Integer Types

There are larger groups of bits beyond the 8-bit bytes that have meaning in Scala. In
fact, if you go back to section 2.3 and you look at the different methods on an Int, you
will see that toDouble and toChar are not the only conversions we can do. Scala has other
integer types called Byte, Short, and Long. A Byte in Scala is an 8-bit number. A Short is
a 16-bit number. The Int that we have been using is a 32-bit number. The Long type is a
64-bit number. The reason for the odd behavior that was demonstrated at the beginning of
section 2.5 is that we added two numbers together whose sum is bigger than what can be
stored in the lower 31 bits of an Int and the overflow, as it is called, wrapped it around
to a negative value. Table 2.1 shows the minimum and maximum values for each of the
different integer types.

Occasionally you will need to use literals that are bigger than what an Int can store.
You can do this with a Long. Making a numeric literal into a Long is done by simply adding
an L to the end. You can see this here.

scala> 5000000000L

32 Introduction to Programming and Problem-Solving Using Scala

res31: Long = 5000000000

The value five billion is not a valid Int. If you leave off the L here you get an error. The
L can be lower case, but then it looks a lot like the number one so it is better to use the
upper case.

We talked about binary above, and Scala has a method that will let you see the binary
form of a number. This method works on the four normal numeric types and Char. Here we
use it to see the binary representation for 83 and -83 for the values as both Int and Long
types.

scala> 83.toBinaryString
res32: String = 1010011

scala> -83.toBinaryString
res33: String = 11111111111111111111111110101101

scala> 83L.toBinaryString
res34: String = 1010011

scala> -83L.toBinaryString
res35: String =
1110101101

The toBinaryString method does not display leading zeros, so the positive values only
show seven digits in both formats. However, the negative form has many leading ones and
all of these are printed.

2.5.4 Octal and Hexadecimal

Binary is what the machine uses, but it really is not that useful to humans. This is
in large part due to the fact that the number of digits in a binary number is often large,
even if the number itself is not what we consider large. There are two other bases that are
commonly seen in programming and dealing with computers. They are base 8, octal, and
base 16, hexadecimal or hex. Like decimal, these bases allow you to represent fairly large
numbers with relatively few digits. Unlike decimal, converting from octal or hex to binary
and back is trivial. The reason for this is that 8 and 16 are powers of two.

To see this, let us start with octal. When working in base 8, the digits can be between 0
and 7 with each subsequent digit being a higher power of 8. The ease of converting to and
from binary comes from the fact that 8 is 23. In binary the values 0 to 7 are represented with
three bits between 000 and 111. The fourth and subsequent bits represent values that are
multiples of eight. Because of this, we can convert a binary number to an octal number by
grouping the bits into groups of three, starting with the least significant bit, and converting
those groups.9 So the binary number, 1010011 is 123 in octal. The lowest three bits, 011,
convert to 3, the next three, 010, convert to 2, and the top bit is just a 1. We can use the
toOctalString method to confirm this.

scala> 83.toOctalString
res36: String = 123

To go the other way, from octal to binary, we simply convert the octal digits to three digit

9It is very important to start grouping with the ones bit. Starting at the other end will give you the
wrong answer if the last group has fewer than three bits.

Scala Basics 33

binary numbers. So the octal value, 3726 converts to 011111010110. We can emphasize the
groupings of bits by spacing them out: 011 111 010 110. This is 2006 in decimal.

Moving between hexadecimal and binary is similar. The catch is that now a single digit
needs to have 16 possible values. So the 0-9 that we are used to will not suffice. It is typical
to augment the normal digits with the letters A-F where A is 10 and F is 15. Because 16 = 24,
we use groups of 4 bits when converting between hexadecimal and binary. Once again, you
start the process with the lower bits and work up. So 1010011 is grouped as 0101 0011
and becomes 53. We saw that 2006 in decimal is 011111010110. This groups as 0111 1101
0110 and becomes 7D6 in hex. Again, there is a method called toHexString that can be
used on the numeric types to quickly get the hexadecimal representation of a number.

While toHexString give us hexadecimal representations of numeric values that we have
in decimal, it is sometimes helpful to be able to enter values into programs using hexadecimal
in a program. This can be done by prefixing a numeric literal with 0x. The following uses
of this confirms the conversion we did for the numbers above.

scala> 0x53.toBinaryString
res37: String = 1010011

scala> 0x7D6.toBinaryString
res38: String = 11111010110

2.5.5 Non-Integer Numbers

We saw previously that if we type in a numeric value that includes a decimal point
Scala tells us that it has type Double. The Double literal format is more powerful than just
including decimal points. It also allows you to use scientific notation to enter very large or
very small numbers. Simply follow a number by an e and the power of ten it should be
multiplied by. So 15000.0 can also be written as 1.5e4.

The name Double is short for double precision floating point number. The full name
includes information about the way that these numbers are stored in the memory of a
computer. Like all values in a computer, the Double is stored as a collection of bits. To
be specific, a Double uses 64-bits. This size is related to the double precision part. There
is another type called Float that is a single precision floating point number and only uses
32-bits. In both cases, the internal representation uses floating point format. This is similar
to scientific notation, but in binary instead of decimal. The bits in a floating point number
are grouped into three different parts. We will call them s, e, and m and the value of the
number is given by (−1)s ∗ (1 +m) ∗ 2(e−bias). The first bit in the number is the sign bit, s.
When that bit is on, the number is negative and when it is off it is positive. After the sign bit
is a group of bits for the exponent, e. Instead of using two’s compliment for determining
if the exponent is negative, the exponent is biased by a value that is picked to match with
the number of bits in the exponent. Using a bias instead of two’s compliment means that
comparisons between floating point values can be done with the same logic used for integer
values with the same number of bits. All remaining bits are used to store a mantissa,
m. The stored mantissa is the fractional part of the number in normalized binary. So the
highest value bit is 1

2 , the next is 1
4 , and so on. Table 2.2 below gives the number of bits

used for e and m, the bias, and the range of numbers they can represent in the Double and
Float types. The E notation is short for multiplication by 10 to that power.

As we have seen, floating point literals are considered to be of type Double by default. If
you specifically need a Float you can append an f to the end of the literal. There are many
other details associated with floating point values, but there is only one main point that will
be stressed here. That is the fact that floating point values, whether Double or Float, are

34 Introduction to Programming and Problem-Solving Using Scala

Type e Bits m Bits bias Min Max
Float 8 23 127 -3.4028235E38 3.4028235E38
Double 11 52 1023 -1.7976931348623157E308 1.7976931348623157E308

TABLE 2.2: Floating point types with sizes and ranges.

not Real numbers in the sense you are used to in math with arbitrary precision. Floating
point numbers have limited precision. Like the integers, they can be overflowed. Unlike the
integers, they are fundamentally imprecise because they represent fractional values with a
finite number of bits. The real implications of this are seen in the following example.

scala> 1.0-0.9-0.1
res39: Double = -2.7755575615628914E-17

To understand why this happens, consider the simple fraction, 1
3 , the decimal represen-

tation of which 0.33333... In order to write this fraction accurately in decimal, you need an
infinite number of digits. In math we can denote things like this by putting in three dots or
putting a line over the digits that are repeated. For floating point values, the digits simply
cut off when you get to the end of the mantissa. As such, they are not exact and the circuitry
in the computer employs a rounding scheme to deal with this. This imprecision is not visible
most of the time, but one immediate implication of it is that you cannot trust two floating
point numbers to be equal if they were calculated using arithmetic. It also means that you
should not use floating point numbers for programs that involve money. The decimal value
0.1 is a repeating fraction in binary, hence the problem in the example above, and as such,
is not perfectly represented. Instead you should use an integer type and store cents instead
of dollars.

2.6 The math Object
While on the topic of numbers, there are quite a few standard functions that you might

want to do with numbers beyond addition, subtraction, multiplication, and division. There
are a few other things you can get from operators that we will discuss later. Things like
square root, logarithms, and trigonometric functions are not operators. They are found as
methods in the math object. You can use tab completion in the REPL to see all the different
methods that you can call on math and values stored in it.

scala> math.
BigDecimal ScalaNumericConversions max
BigInt abs min
E acos package
Equiv asin pow
Fractional atan random
IEEEremainder atan2 rint
Integral cbrt round
LowPriorityEquiv ceil signum
LowPriorityOrderingImplicits cos sin
Numeric cosh sinh
Ordered exp sqrt
Ordering expm1 tan

Scala Basics 35

PartialOrdering floor tanh
PartiallyOrdered hypot toDegrees
Pi log toRadians
ScalaNumber log10 ulp
ScalaNumericAnyConversions log1p

Many of these probably do not make sense right now, and you should not worry about
them. However, many of them should be identifiable by the name. So if we wanted to take
a square root of a number, we could do the following.

scala> math.sqrt(9)
res40: Double = 3.0

You would use a similar syntax for taking cosines and sines. The functions provided in the
math object should be sufficient for the needs of most people. Only two of the contents of
math that start with capital letters are worth noting at this point. Pi and E are numeric
constants for π and e.

scala> math.Pi
res41: Double = 3.141592653589793

Syntax versus Semantics

The terms syntax and semantics are used very commonly when discussing pro-
gramming languages. For natural languages, syntax can be defined as “the arrangement
of words and phrases to create well-formed sentences in a language”. This is a pretty
good definition for programming languages other than we are not building sentences,
we are building programs. The syntax of a programming language specifies the for-
mat or tokens and how tokens have to be put together to form proper expressions and
statements as well as how statements must be combined to make proper programs.

As you will see, assuming that you have not yet, programming languages are much
more picky about their syntax than natural languages. Indeed, the syntax of program-
ming languages are specified in formal grammars. You do not really get the same type
of artistic license in a programming language that you do in a natural language, as devi-
ating from the syntax makes things incorrect and meaningless. Don’t worry though, in
expressive and flexible languages like Scala, you still have a remarkable amount of free-
dom in how you express things, and with experience, you can create beautiful solutions
that follow the syntax of the language.

The semantics of a program deals with the meaning. Syntax does not have to be
attached to meaning. It is just formal rules that are part of a formal system that specify
if a program is well formed. It is the semantics of a language that tell us what something
that follows the syntax actually means.

36 Introduction to Programming and Problem-Solving Using Scala

2.7 Naming Values and Variables
We have seen enough that you can solve some simple problems. For example, if you

were given a number of different grades and asked to find the average, you could type in
an expression to add them all up and divide by the number of them to get the average.
We basically have the ability to use Scala now to solve anything we could solve with a
calculator as well as doing some fairly simple string manipulation. We will develop a lot
more over time, but we have to start somewhere. As it stands we are not just limited to
solving problems we could do with a calculator, we are solving them the way we would
with a calculator. We type in mathematical expressions the way we would write them on
paper and get back an answer. Real programming involves tying together multiple lines of
instructions to solve larger problems. In order to do this, we need to have a way to give
names to values so we can use those values later.

There are two keywords in Scala that give names to values: val and var. To begin with,
let us look at the full syntax of val and var in two samples. Then we can pull them apart,
talk about what they do, see how they are different, and discuss what parts of them are
optional.

scala> val age:Int = 2015-1996
age: Int = 19

scala> var average:Int = (2+3+4+5)/4
average: Int = 3

Syntactically the only difference between these two is that one says val and the other says
var. That is followed by a name with a colon and a type after it. The rules for names in Scala
are that they need to start with a letter or an underscore followed by zero or more letters,
numbers, and underscores.10 So abc, abc123_def, and _Team2150 are all valid Scala names
while 2points is not. You also cannot use keywords as variable names. The only keywords
that have been introduced so far are val and var, but there will be others, and you cannot
use those as names for things as they are reserved by the language.

Scala is also case sensitive. So the names AGE, age, Age, and agE are all different. In
general, it is considered very poor style to use names that differ only in capitalization as it
can quickly lead to confusion. Most names will not involve underscores either, and numbers
only appear where they make sense. Scala borrows a standard naming convention from
Java called camel case. The names of values begin with a lower case letter and the first
letter of subsequent words are capitalized. For example, theClassAverage is a name that
follows this convention. Type names use the same convention except that the first letter is
capitalized. This is called camel case because the capital letters look like humps.

The types in both of these examples are followed by an equal sign and an expression.
Unlike many other programming languages, this is not optional in Scala. In Scala, when
you declare a val or var, you must give it an initial value.11

While the initial value is not optional, the type generally is. Scala is able to figure out

10Scala also allows names that are either made entirely of operator symbols or have a standard name
followed by an underscore and then operator symbols. Symbolic names should only be used in special
situations, and using them improperly makes code difficult to read. For this reason, we will ignore these
types of names for now.

11There are very good reasons for requiring initialization of variables. Even in languages that do not
require it, a programmer can make his/her life a lot easier by initializing all variables at creation. The
declaration and initialization should ideally happen at the point where you have a real value to put into
the variable. This prevents many errors and as a result, can save you a lot of time in your programming.

Scala Basics 37

FIGURE 2.3: This figure shows how you should think about value and variable declara-
tions in Scala. The variable itself stores a reference to an object. The difference between
val and var is whether or not you can change what is referred to, not whether that object
can be modified.

the types of things for us in many situations. If we leave off the colon and the type, Scala
will simply use whatever type it infers is appropriate for the expression in the initial value.
Most of the time, the type that it gives us will be exactly what we want. Using this we
could instead have the following shorter forms of these declarations.

scala> val age = 2015-1996
age: Int = 19

scala> var average = (2+3+4+5)/4
average: Int = 3

The reason for using a val or var declaration is that they give a name to the value that
we can refer back to later. For example, we could now type in age+10 and Scala would give
us 29. The names serve two purposes. They prevent us from typing in expressions over and
over again. They also help give meaning to what we are doing. You should try to pick names
that help you or other readers figure out what is going on with a piece of code.

So far we have discussed all the similarities between val and var and you might be won-
dering in what way they are different. The declarations themselves are basically identical.
The difference is not in the syntax, but in the meaning, or semantics. A val declaration
gives a name to a reference to a value. That reference cannot be changed. It will refer to
the thing it was originally set to forever. In the REPL, you can declare another val with
the same name, but it does not do anything to change the original. A var declaration, on
the other hand, allows the reference to change. In both cases we are not naming the value,
we are naming a box that stores a reference the value. The significance of this will be seen
in section 7.7. Figure 2.3 shows a visual representation of how you should picture what a
val or var declaration does in Scala.

The act of changing the reference stored in one of these boxes we call variables is referred
to as an assignment. Assignment in Scala is done with the same equal sign that was used
to set the initial value. In an assignment though there is no val or var keyword. If you
accidentally include either var or val you will be making a new variable, not changing the
old one.

scala> average = 8
average: Int = 8

var a= 5

a
var a= 5

a

38 Introduction to Programming and Problem-Solving Using Scala

FIGURE 2.4: This figure shows what you might imagine happening with each of the lines
assigning new values to the variable average.

scala> average = 2*average
average: Int = 16

The first assignment causes the box named average to change from referring to the object
3 to the object 8. The second one uses the previously referred to value and multiplies it by
two, then stores a reference to that new value back into the variable. The effects of these
lines are illustrated in figure 2.4.

As a general rule, you should prefer val declarations over var declarations. Try to make
everything a val, and only convert it to a var if you find that you truly need to do so. The
reason for this is that it simplifies the logic of your program and makes it less likely that
you will mess things up. Things that change are harder to reason about than things that
stay the same.

2.7.1 Patterns in Declarations

There is a bit more to the initialization of val and var declarations than was mentioned
above. Technically, the initialization is able to do something called pattern matching
that we will get to in detail in chapter 5. For now, the only aspect we will care about is
that we can put tuples on the left hand side of the equals sign where we would normally
put just a variable name. First, let us see what happens if we do a val declaration with a
tuple on the right hand side.

scala> val t = (100,5.7)
t: (Int, Double) = (100,5.7)

Note that t refers to the tuple and has a type (Int,Double). This is exactly what we would
expect. The power that pattern matching provides is that if you put multiple names inside
of parentheses on the left of the equals, much like a tuple, all the names will be bound.
That type of behavior is shown here.

scala> val (price,weight) = t
price: Int = 100
weight: Double = 5.7

a=7

a=7

Scala Basics 39

The same can be done with a var and then all the names will have the ability to change
what they refer to. This is the second way of getting values out of tuples. It is more readable
because we can pick meaningful names for the variables. After doing the example above,
you could use price and weight instead of t._1 and t._2.

2.7.2 Using Variables

Let us use the ability to name values to do a little problem solving. We are given a total
time in seconds, and we want to know what that is in hours, minutes, and seconds. We then
want to print that out in a reasonable format of “hh:mm:ss”. The first step in solving this
problem is to figure out how to go from just seconds to hours, minutes, and seconds. Once
we have that, we can worry about formatting it to get the right string value.

How do we get from seconds to hours, minutes, and seconds? First, how do you get from
seconds to minutes? That is fairly easy, you simply divide by 60. Thanks to the fact that
integer division truncates, you will get the proper number of whole minutes. Here are two
lines that define a number of total seconds as well as a number of total minutes.

scala> val totalSeconds = 123456
totalSeconds: Int = 123456

scala> val totalMinutes = totalSeconds/60
totalMinutes: Int = 2057

That number of minutes is not exactly the amount of time we want though. There are
seconds left over. How do we figure out how many seconds we should display? We could do
totalSeconds-(60*totalMinutes), but a simpler expression is used here.

scala> val displaySeconds = totalSeconds%60
displaySeconds: Int = 36

The modulo gives us the remainder after we have gotten all the full groups of 60. That is
exactly what we want. Now how do we get the number of hours and the number of minutes
to display? The math is the same because there are 60 minutes in each hour.

scala> val displayMinutes = totalMinutes%60
displayMinutes: Int = 17

scala> val displayHours = totalMinutes/60
displayHours: Int = 34

What we see from this is that 123456 seconds is 34 hours, 17 minutes, and 36 seconds. We
could repeat this same process for a different number of seconds if we used a different value
for totalSeconds.

Now that we have these values, we want to figure out how to get them into a string with
the format “hh:mm:ss”. A first attempt at that might look like the following.

scala> val finalString = displayHours+":"+displayMinutes+":"+displaySeconds
finalString: String = 34:17:36

For this particular number of seconds, this works just fine. However, if you play around with
this at all, you will find that it has a significant shortcoming. If the number of minutes or
seconds is less than 10, only one digit is displayed when we want two. So we need to come
up with a way to get a leading zero on numbers that only have one digit. To do this, we
will break the problem into two steps.

40 Introduction to Programming and Problem-Solving Using Scala

The first step will be to get the number of minutes and seconds as Strings.

scala> val min=displayMinutes.toString
min: String = 17

scala> val sec=displaySeconds.toString
sec: String = 36

This might seem odd, but the string version has something that the number itself does not,
an easy way to tell how many digits/characters are in it. When there is only one digit, we
want to add an extra zero. When there is not, we leave it as is. We can get this effect by
using the * method on the String and a little math. The short names were selected to keep
our expression shorter for formatting, but that is not required.

scala> val finalString=displayHours+":"+("0"*(2-min.length))+min+":"+(
| "0"*(2-sec.length))+sec
finalString: String = 34:17:36

The result for these values is the same, but we could force some different value into min and
sec to see that this does what we want.

scala> val min="5"
min: String = 5

scala> val sec="2"
sec: String = 2

scala> val finalString=displayHours+":"+("0"*(2-min.length))+min+":"+(
| "0"*(2-sec.length))+sec
finalString: String = 34:05:02

2.8 Details of Char and String

There is a lot more to Char and String than we covered in section 2.4. Some of it you
really should know before we go further. We saw how we can make character literals or
string literals that contain keys that appear on the keyboard and that go nicely into a text
file. What about things that we cannot type as nicely or that have other meanings? For
example, how do you put double quotes in a String? Typing the double quote closes off the
string literal instead of putting one in. You are not allowed to have a normal string break
across lines, so how do you get a newline in a String?

2.8.1 Escape Characters

We can do all of these things and more with escape characters. These are denoted
by a backslash in front of one or more characters. For example, if you want to put a double
quote in a string, simply put a backslash in front of the double quote. You can insert a
newline with a \n. If you want to insert a backslash simply put in two backslashes. Table
2.3 shows some commonly used escape characters.

In addition to escape characters, the backslash can be used to put any type of special

Scala Basics 41

Literal Meaning Unicode Hex Encoding
\b backspace \u0008
\f form feed \u000C
\n line feed \u000A
\r carriage return \u000D
\t tab \u0009
\" double quote \u0022
\’ single quote \u0027
\\ backslash \u005C

TABLE 2.3: Table of special character escape sequences in Scala.

character into a string. If you know the Unicode value for a special character, you can put
\u followed by four hexadecimal digits in a string to specify that character.12

2.8.2 Raw Strings

There are some times when using the escape characters becomes a pain. For example,
there are times when you need to build strings that have a number of backslashes. Each one
you want requires you to put in two. This can get unwieldy. In addition, if you have a long,
multi-line string, it can be difficult to format the string the way you want. For these types
of situations, Scala includes a special form of string that begins and ends with three double
quotes. Anything you put between the set of three double quotes is taken to be part of
the string without alteration. These types of strings are called raw strings. The following
shows an example of using this to enter a long string in the REPL.

scala> """This is a long string.
| It spans multiple lines.
| If I put in \n and \\ or \" they are taken literally."""
res42: String =
This is a long string.
It spans multiple lines.
If I put in \n and \\ or \" they are taken literally.

2.8.3 String Interpolation

In section 2.7.2, there were a number of expressions that put together strings using plus
signs for concatenation. This approach can be challenging to write and read in code.13 For
that reason, there is an alternate approach to building strings that include values called
string interpolation. The syntax for doing string interpolation is to put a “s” or a “f”
in front of the string,14 then put expressions in the string that begin with a dollar sign if
they are to be evaluated and their values inserted.

The earlier example originally put together the string for the time using the expression

displayHours+":"+displayMinutes+":"+displaySeconds

12The topic of Unicode characters is beyond the scope of this book, but a simple web search will lead you
to descriptions and tables of the different options.

13Using + to build long strings is also inefficient.
14The string interpolation mechanism in Scala is extensible, and programmers can add other options. The

“s” and “f” forms are the main ones supported by the standard libraries.

42 Introduction to Programming and Problem-Solving Using Scala

Using string interpolation, this could be written as

s"$displayHours:$displayMinutes:$displaySeconds"

More complex expressions can be inserted into the string by enclosing the expression in
curly braces after the dollar sign.

scala> val age = 2015-1996
age: Int = 19
scala> s"$age+10 = ${age+10}"
res43: String = 19+10 = 29

Here $age is nested inside an s processed string. The s interpolator knows to insert the
value of the variable age at this location(s) in the string. There is no set rule for when you
should use string interpolation instead of concatenation. You should pick whichever option
you find easiest to read and understand.

The “f” interpolation requires that you place a format specifier after the expression.
Coverage of these format specifiers is beyond the scope of this book. The interested reader
is encouraged to look up details on his/her own. It should be noted that the format strings
used by Scala are heavily based on those used in the printf function for the C programming
language, and they appear in many libraries across different languages.

2.8.4 String Methods

There are many methods that you can call on the String type. Tab completion shows
you some of them.

scala> "hi".
+ concat isInstanceOf startsWith
asInstanceOf contains lastIndexOf subSequence
charAt contentEquals length substring
chars endsWith matches toCharArray
codePointAt equalsIgnoreCase offsetByCodePoints toLowerCase
codePointBefore getBytes regionMatches toString
codePointCount getChars replace toUpperCase
codePoints indexOf replaceAll trim
compareTo intern replaceFirst
compareToIgnoreCase isEmpty split

These are the methods that come from the Java String type, and they provide a lot of the
basic functionality that one needs when working with strings. Through a language feature
in Scala called implicit conversions, there are others that are also available. The listing
below shows those. You can see that it includes multiplication, as introduced earlier. It
also includes methods like toInt and toDouble, which will convert strings with the proper
values to those types.

* foldLeft mkString stripLineEnd
++ foldRight nonEmpty stripMargin
++: forall padTo stripPrefix
+: foreach par stripSuffix
/: format partition sum
:+ formatLocal patch tail
:\ groupBy permutations tails
> grouped prefixLength take
>= hasDefiniteSize product takeRight

Scala Basics 43

addString head r takeWhile
aggregate headOption reduce to
apply indexOf reduceLeft toArray
asInstanceOf indexOfSlice reduceLeftOption toBoolean
canEqual indexWhere reduceOption toBuffer
capitalize indices reduceRight toByte
collect init reduceRightOption toDouble
collectFirst inits replaceAllLiterally toFloat
combinations intersect repr toIndexedSeq
compare isDefinedAt reverse toInt
compareTo isEmpty reverseIterator toIterable
contains isInstanceOf reverseMap toIterator
containsSlice isTraversableAgain sameElements toList
copyToArray iterator scan toLong
copyToBuffer last scanLeft toMap
corresponds lastIndexOf scanRight toSeq
count lastIndexOfSlice segmentLength toSet
diff lastIndexWhere seq toShort
distinct lastOption size toStream
drop length slice toString
dropRight lengthCompare sliding toTraversable
dropWhile lines sortBy toVector
endsWith linesIterator sortWith union
exists linesWithSeparators sorted updated
filter map span view
filterNot max split withFilter
find maxBy splitAt zip
flatMap min startsWith zipAll
fold minBy stringPrefix zipWithIndex

Going through all these methods is well beyond the scope of this chapter, but it is
beneficial to see examples that use some of them. To do this, let us consider a situation
where we have a person’s name written as “first last”. We wish to build a new string that
has the same name in the format of “ last, first”. In order to do this, we must first find where
the space is, then get the parts of the original string before and after the space. Once we
have done that, we can simply put the pieces back together in the reverse order with a
comma between them.

To find the location of the space, we will use the indexOf method. This method gives
us a numeric index for the first occurrence of a particular character or substring in a string.

scala> val name = "Mark Lewis"
name: String = Mark Lewis

scala> val spaceIndex = name.indexOf(" ")
spaceIndex: Int = 4

The index of the space is 4, not 5, because the indexes in strings, and everything else except
tuples, start counting at 0. So the ’M’ is at index 0, the ’a’ is at index 1, etc.

Now that we know where the space is, we need to get the parts of the string before and
after it. That can be accomplished using the substring method.

scala> val first = name.substring(0,spaceIndex)
first: String = Mark

scala> val last = name.substring(spaceIndex+1)

44 Introduction to Programming and Problem-Solving Using Scala

last: String = Lewis

The first usage passes two arguments to substring. The first is the index of the first
character to grab, in this case, it is 0. The second is the index after the last character to
grab. In this case, it is the index of the space. The fact that the second bound is exclusive
is significant, and it is a standard approach for methods of this nature in many languages.
The second form takes a single argument, and it returns the substring from that index to
the end of the string, making it ideal for getting the last name.

The two strings can now be put back together using concatenation or string interpolation.
The following shows how to do it with string interpolation.

scala> val name2 = s"$last, $first"
name2: String = Lewis, Mark

One could also pull out the names using the splitAt method.

scala> val (first,last) = name.splitAt(spaceIndex)
first: String = Mark
last: String = " Lewis"

scala> val name2 = s"${last.trim}, $first"
name2: String = Lewis, Mark

The splitAtmethod returns a tuple, and we use a pattern here to pull out the two elements.
Note that the space itself was included in the second element of the tuple. To get rid of
that, we use the trim method. This method gives us back a new string with all leading and
trailing whitespace removed.

If you only want a single character from a string, you can get it by indexing into the
string with parentheses. Simply specify the index of the character you want in parentheses
after the name of the string. So we could get the last initial from our original name string
like this.

scala> name(spaceIndex+1)
res44: Char = L

2.8.5 Immutability of Strings

When looking through the list of methods on the String type, you might have noticed
methods called toLowerCase and toUpperCase. These methods illustrate a significant fea-
ture of strings, the fact that they are immutable. This means that once a string object has
been created, it can not be changed. The toLowerCase method might sound like it changes
the string, but it does not. Instead, it makes a new string where all the letters are lower
case, and gives that back to us. This is illustrated by the following.

scala> val lowerName = name.toLowerCase
lowerName: String = mark lewis

scala> name
res45: String = Mark Lewis

The lowerName variable refers to a string that is all lower case, but when we check on the
value of the original name variable, it has not been changed. None of the methods of String
change the value. Any that look like they might simply give back modified values. This is

Scala Basics 45

what makes the String type immutable. The trim method used above demonstrates this
same behavior. Most of the types we will deal with are immutable.15

2.9 Sequential Execution
Sequential execution is used when we write a program and want the instructions to

execute in the same order that they appear in the program, without repeating or skipping
any instructions from the sequence. So far, all of the program instructions we have written
have been executed one after another in the same order that we have typed them in. The
instructions have been executed sequentially.

Working in the REPL is great for certain tasks, but what if you have a sequence of
things you want to do, and you want to do it multiple times. Having to type in the same
set of instructions repeatedly is not a very good option. The time conversion above is a
perfect example of that. If we want to do this for a different number of seconds, we have to
repeat all the commands we just performed. Indeed, you cannot really say that you have
programmed until you put in a fixed set of instructions for solving a problem that you can
easily run multiple times. That is what a program really is. So now it is time to write our
first program of any significance.

We have used the REPL to enter commands one at a time. This is a great way to test
things out in Scala and see what a few commands do. A second way of giving commands
to Scala is to write little programs as scripts. The term script is used to describe small
programs that perform specific tasks. There are languages, called scripting languages, that
have been created specifically to make the task of writing such small programs easier. Scala
is not technically a scripting language, but it can be used in that way. The syntax was
created to mirror a lot of the things that are commonly put into scripting languages, and if
you run the scala command and give it the name of a file that contains Scala code, that
file will be run as a script. The statements in it are executed in order.16 The script for our
time conversion looks like this.

Listing 2.1: TimeConvert.scala
val totalSeconds = 123456
val displaySeconds = totalSeconds%60
val totalMinutes = totalSeconds/60
val displayMinutes = totalMinutes%60
val displayHours = totalMinutes/60
val sec = displaySeconds.toString
val min = displayMinutes.toString
val finalString = displayHours+":"+("0"*(2-min.length))+min+

":"+("0"*(2-sec.length))+sec
println(finalString)

If you put this into a file called TimeScript.scala and then run scala TimeScript.scala,
you will get the output 34:17:36. The println statement is required for the script because
unlike the REPL, the script does not print out values of all statements. You can run through

15The first mutable type we will encounter will be the Array type in chapter 6. That chapter will go
further in demonstrating the significance of this distinction.

16We will see later that the statements are not always executed in order because there are statements
that alter the flow of control through the program. Since we have not gotten to those yet though, execution
is completely sequential at this point.

46 Introduction to Programming and Problem-Solving Using Scala

this code in the REPL using the :load command. If you do “:load TimeScript.scala”
you will see it print out all of the intermediate values as well as the result of the println.

This script allows us to run the commands repeatedly without retyping. By editing
the value of totalSeconds, we can test other total times fairly quickly. However, a better
solution would be to allow a user to tell us how many seconds to use every time we run the
script. We can easily get this behavior by replacing the top line of the script we had with
these three lines.

Listing 2.2: TimeConvert2.scala
import io.StdIn._
print("Enter the number of seconds. ")
val totalSeconds = readInt()

The second line prints a prompt to let the user know that we are waiting for something
to be input. After that we have altered the initialization of totalSeconds so that instead
of giving it a fixed number, it is initialized to the value returned by readInt. This calls a
function that reads in a single integer from the user. The first line is there because the full
name of readInt is io.StdIn.readInt. The import statement allows us to use a shortened
name whenever we want to read a value. The underscore in the import causes it to bring
in other functions such as readLine and readDouble which allow us to read in strings and
double values respectively. If you make this change and run the script, you will be able
to enter any number of seconds, assuming it is a valid Int, and see it converted to hours,
minutes, and seconds.

The following code shows the usage of readLine and readDouble.

import io.StdIn._
val name = readLine()
val number = readDouble()

Note that all of these functions read a full line from the user and expect it to match the
desired type. If you want the user to enter multiple numbers on one line, you cannot use
readInt or readDouble. For that you would have to read a String with readLine, then
break it apart and get the numeric values.

2.9.1 Comments

When writing programs in files, not in the REPL, it is often useful to include plain
English descriptions of parts of the code. This is done by writing comments. If you are
writing code for a course, you likely need to have your name in the code. Your name is
likely not valid Scala, so it should go in a comment. Different instructors and companies
will have different commenting standards that you should follow. In a professional setting,
comments are used primarily for two reasons. The first is to indicate what is going on in
the code, particularly in parts of the code that might be difficult for readers to understand.
The second is for documentation purposes using tools that generate documentation from
code.

There are two basic comment types in Scala, single line comments and multiline com-
ments. Single line comments are made by putting // in the code. Everything after that in
the line will be a comment and will be ignored when the program is compiled and run. Mul-
tiline comments begin with /* and end with */. You can put anything you want between
those, and they can be spaced out across many lines. Code shown in this book will have
limited commenting as descriptions of the code appear in the text of the book, and there is
little point in duplicating that content.

Scala Basics 47

2.10 A Tip for Learning to Program
In many ways, learning to program, whether in Scala or any other programming lan-

guage, is very much like learning a new natural language. The best way to learn a natural
language is through immersion. You need to practice it and be surrounded by it. The key is
to not simply memorize the rules and vocabulary, but to put them into use and learn them
through regular usage. You should strongly consider approaching programming in the same
way.

So what does it mean to immerse yourself in a programming language? Clearly you are
not going to have conversations in it or enjoy television or radio broadcasts in it. The way
to immerse yourself in a programming language is to take a few minutes every day to write
in it. You should consider trying to spend 15-30 minutes each day writing code. The REPL
in Scala is an excellent tool for you to enter in statements to see what they do. Try to play
around with the language. Instead of approaching it as memorizing keywords and rules, try
to put things into use. The things that you use frequently will stick and become natural.
Those things that you do not use regularly you will have to look up, but that is normal.
Programmers, even professional programmers with many years of experience in a language,
still keep references handy.

Over time, the number of lines of code that you write in these short time intervals each
day will grow as the basics become second nature and you begin to practice more advanced
concepts. By the end of this book you might find yourself writing a hundred lines or so of
functional code on certain days during that time span. By that time you will hopefully also
pick up a “pet project”, something that you are truly interested in programming and that
you will think about the structure and logic of much more frequently.

Especially early on, you might find it hard to think of anything that you can write. To
help you with this, many of the chapters in this book contain a “Self-Directed Study” section,
like the one below. Use these as a jumping off point for the material in each chapter. After
that will come a set of exercises and often a set of larger problems called projects. Remember
that one of the significant goals of learning to program is improving your problem solving
skills. While the Self-Directed Study section will help you to familiarize yourself with the
details presented in a chapter, the exercises and projects are actual problems that you are
supposed to solve in a formal way using Scala. You should use these to help provide you
with the immersion you need to learn the language.

2.11 End of Chapter Material

2.11.1 Problem Solving Approach

Many students who are new to programming struggle with putting the English de-
scriptions for solving a problem that they have in their head into whatever programming
language they happen to be learning. The reality is that for any given line of code, there
are a fairly small number of “productive” things that you could write. In the REPL you
can test out any statement that you want, but in a script, an expression like 4+5 does not
do much when used alone as a statement. Sections like this one will appear at the end of
a number of chapters as we introduce new concepts that might stand alone as statements,
or which alter statements we have talked about previously in a significant way. The goal of

48 Introduction to Programming and Problem-Solving Using Scala

these sections is to help focus your thinking so you can narrow down the list of possibilities
any time that you are trying to decide what to put into the next line of code.

Given what we have just learned, there are only three types of statements that you
would put in a script that stand alone:

1. A call to print or println to display information to the user. The function name
should be followed with parentheses that contain the expression you want to print.

2. A variable declaration using val or var. A val declaration would look like val name
= expression. The name could be followed with a colon and a type, though most of
the time those will be left off.

3. An assignment into a previously declared var of the form name = expression. The
expression must have a type that agrees with the type the variable was created with.

If you want to read information using a function like readLine(), readInt(), or
readDouble, that should appear as part of an expression in one of the above statements.
Remember to include the import io.StdIn._ statement at the top of your file if you are
going to be reading user input.

2.11.2 Summary of Concepts

• When you install Scala on your computer you get a number of different executable
commands.

– The scala command can run scripts or applications. If no argument is given it
opens up the REPL for you to type in individual statements.

– The scalac command is used to compile Scala source code to bytecode.

• Programming languages have relatively simple rules that they always follow with no
ambiguity.

– Tokens are the smallest piece with meaning. They are like words in English.

– Expressions are combinations of tokens that have a value and a type.

– Statements are complete instructions to the language. In Scala, any expression
is a valid statement.

– The simplest expressions are literals.

∗ Int literals are just numbers with no decimal points like 42 or 365.
∗ Adding an L to the end of an integer number makes a Long literal.
∗ Numbers that include decimal points or scientific notation using e syntax

are of the type Double.
∗ Adding an f to the end of a number makes it a Float.
∗ Char literals are single characters between single quotes.
∗ String literals can have multiple characters between double quotes. Raw

strings start and end with three double quotes and allow newlines.

• An object is a combination of information and functionality that operates on that
information.

– The information is called data members, fields, or properties.

– The functionality is called methods.

Scala Basics 49

– All values in Scala are objects.

– Methods are normally invoked using the “dot” notation. Arguments go in paren-
theses after the method name.

∗ Scala allows the . to be left out if there is at least one argument to the
method.

∗ Parentheses are also optional for argument lists of length zero or one.
∗ Operators are really method calls. So 4+5 is really (4).+(5).

• Numbers in computers are not exactly like numbers in math, and you need to know
some of the differences so you will understand when they lead to unexpected behavior.

– All values stored in a computer are stored in binary, base 2, numbers. Each digit
is called a bit. Different types use different numbers of bits for storage. The finite
number of bits means that there are minimum and maximum values that can be
stored in each type.

– Negative integer values are stored using two’s compliment numbers.

– Binary numbers require a large number of digits, though they are all either 0 or
1, and converting to and from decimal is non-trivial. For this reason, computer
applications frequently use base 8, octal, and base 16, hex. You can make a
hexadecimal literal by putting a leading 0x on an integer.

– Non-integer numeric values are stored in floating point notation. This is like
scientific notation in binary. These use the types Float and Double. Due to
finite precision, not all decimal numbers can be represented perfectly in these
numbers, and there are small rounding errors for arithmetic.

• Additional mathematical functions, like trigonometric functions and square root are
methods of the math object.

• You can declare variables using the keywords val and var. The name of a variable
should start with a letter or underscore and can be followed by letters, underscores,
or numbers. A var declaration can be reassigned to reference a different value.

• String interpolation allows you to easily put values into strings without using + to
concatenate them.

• There are many methods you can call on strings that allow you to do basic operations
on them.

• Strings are immutable. That means that once a string is created, it is never changed.
Methods that look like they change a string actually make a new string with the
proper alterations.

• Instructions can be written together in scripts. The default behavior of a script is
for lines of code to execute sequentially. Script files should have names that end with
.scala. You run a script by passing the filename as a command-line argument to the
scala command.

• Learning a programming language is much like learning a natural language. Do not
try to memorize everything. Instead, immerse yourself in it and the things you use
frequently will become second nature. Immersion in a programming language means
taking a few minutes each day to write code.

50 Introduction to Programming and Problem-Solving Using Scala

2.11.3 Self-Directed Study

Enter the following statements into the REPL and see what they do. Try some variations
to make sure you understand what is going on. Not all of these will be valid. You should
try to figure out why.

scala> val a=5
scala> val b=7+8
scala> var c=b-a
scala> a=b+c
scala> c=c*c
scala> b=a/c
scala> b%2
scala> b%4
scala> b%a
scala> 0.3*b
scala> val name = "Your name here."
scala> name.length
scala> name+a
scala> println("Hi there "+name)
scala> println("\n\n\n")
scala> println("""\n\n\n""")
scala> ’a’+5
scala> (’a’+5).toChar
scala> math.Pi/2
scala> math.sqrt(64)-4.0
scala> math.sqrt(1e100)
scala> math.cos(math.Pi)
scala> 3000000000
scala> 3000000000L
scala> 3000000000.0
scala> 3e9
scala> 1/0
scala> 1.0/0.0
scala> 0.0/0.0

2.11.4 Exercises

1. What are the types of the following expressions?

(a) 1

(b) 1.7

(c) 1.0

(d) ’h’

(e) "hi"

(f) 5/8

(g) 1+0.5

(h) 7*0.5

(i) "hi".length

2. Which of the following are valid Scala variable names?

Scala Basics 51

(a) 1stName

(b) exam_1

(c) Four

(d) H

(e) 4July

(f) _MIXUP

(g) GO!

(h) last name

(i) May4Meeting

(j) sEcTiOn1

(k) version.2

3. Do the following 8-bit binary arithmetic by hand.

(a) 101011012 + 110101002

(b) 001111102 + 001110112

(c) 010010102 ∗ 001100102

4. Convert the following decimal values to binary (8-bit), hex (2-digit), and octal (3-digit)
by hand.

(a) 7

(b) 18

(c) 57

(d) 93

(e) 196

5. Convert the following hex values to binary and decimal by hand.

(a) 0x35

(b) 0x96

(c) 0xA8

(d) 0x7F

6. Convert the following decimal values to binary (8-bit) and hex (2-digit) by hand.

(a) -87

(b) -32

(c) -105

(d) -1

7. Write a script that will calculate the cost of a fast food order for a burger stand that
sells hamburgers, french fries, and milkshakes. Hamburgers cost $2.00, french fries cost
$1.00, and milkshakes cost $3.00. The tax rate is 8%. Ask the customer how many of
each item they would like, then display a receipt that shows the price of each item,
how many of each item was ordered, the extension (i.e. price * quantity), the subtotal,
the amount of tax, and then the total due.

52 Introduction to Programming and Problem-Solving Using Scala

8. Kyle is really hungry for pizza and wants to get the best pizza deal. He is not sure if
it is a better deal to get two cheaper medium sized pizzas or one large pizza. Write a
script that will help him figure out which to order. He can get two 12 inch pizzas for
$12.00 or one 14 inch pizza for $9.00. Hint: Use the formula "ÏĂ x r squared" to find
the area of a pizza in inches.

9. Bryn just started a new job, but is already thinking of retirement. She wants to retire
as a millionaire. She plans on saving $700 per month and expects to receive an annual
return of 7%. Will she be a millionaire if she retires in 30 years? Write a script to
figure this out.

10. A town administrator in west Texas is trying to decide if she should build a larger
water tower. The town has a water tower that contains 20,000 gallons of water. If there
is no rain, write a script that will calculate the number of weeks the water will last
based on the town’s usage (provided by the town administrator). The weekly usage
does not exceed 20,000 gallons.

11. Write a script that will calculate how far a projectile will go given a launch speed
and an angle ignoring friction. Assume that the projectile is launched from ground
level with a certain speed in m/s and at a certain angle in radians. Use the fact that
acceleration due to gravity is 9.8m/s2. The steps in doing this would be to calculate
the speed parallel and perpendicular to the ground with math.sin and math.cos, then
figure out how long it takes for the projectile to slow to a vertical speed of zero
(v = v0 − at), and use double that time as how long it stays in the air.

12. Quinn is planning on seeding a new lawn of about 1500 square feet in her backyard
this spring and wants to know how much top soil and grass seed she should buy. She
lives in a new development and it is pretty barren and rocky in the backyard; so, she
plans to put down 6 inches of top soil. Most grass seed mixes recommend 4 to 5 lbs.
of grass seed for each 1,000 square feet of land for calculating grass seed. How many
cubic yards of top soil and how pounds of grass seed does she need to buy? Write a
script to help her find the answer.

13. Using Scala as a calculator, figure out how much you have to make each year to bring
home $100,000 assuming a 27% tax rate.

14. In the REPL, declare a variable with the type String that has the name str. Give
it whatever value of string you want. On the next line, type str. then hit tab to see
the methods for String. By playing around with the REPL try to figure out what
the following methods do.

• toUpperCase

• trim

• substring – This method takes two Int arguments.

• replace – This method can be called with two Char arguments or two String
arguments.

15. Kepler’s third law of planetary motion says that P 2 ∝ a3, where P is the orbital
period, and a is the semi-major axis of the orbit. For our Sun, if you measure P in
years and a in Astronomical Units (AU), the proportionality becomes equality. Look
up the semi-major axis values for three bodies in our solar system other than the
Earth and use Scala as a calculator to find the period according to Kepler’s third law.

Scala Basics 53

16. In this option you will write a little script that does part of a 1040-EZ. We have
not covered enough for you to do the whole thing, but you can write enough to
ask questions and do most of the calculations for lines 1-13. Do what you can and
remember this is a learning exercise.

17. Your goal for this exercise is to write a script to calculate the cost of a simple three-
ingredient recipe. You start by asking the user for the names and amounts of the three
ingredients. Then prompt them for the cost per unit of each ingredient. Output the
total cost of each ingredient and for the whole recipe. To make things simple, feel free
to use the Double type.

http://taylorandfrancis.com

Chapter 3
Conditionals

3.1 Motivating Example . 55
3.2 The if Expression . 56

Common Bug . 58
Note on Style . 59

3.3 Comparisons . 60
Equality vs. Identity (Advanced) . 61

3.4 Boolean Logic . 61
Short Circuit Operators . 64

3.5 Precedence . 64
3.6 Nesting ifs . 65
3.7 Bit-Wise Arithmetic . 67
3.8 End of Chapter Material . 69

3.8.1 Problem Solving Approach . 69
3.8.2 Summary of Concepts . 69
3.8.3 Self-Directed Study . 70
3.8.4 Exercises . 71
3.8.5 Projects . 72

We solved some basic problems in the last chapter, but the techniques that we have access
to are fundamentally limited at this point. The real problem is that every line in a script
executes in the same order from top to bottom every time the script is run. In most real
problems, we need to be able to do what is called conditional execution, where choices are
made and some things happen only in certain situations. In this chapter we will learn the
most fundamental method for doing conditional execution in Scala and see how we can use
it to solve some problems.

In order to do this properly, we need to develop a formalized way to express logic and put
it into our programs. This system, called Boolean logic, will allow us to state the conditions
under which various parts of our program will or will not happen.

3.1 Motivating Example
You have been asked to write a program that will calculate charges for people visiting

a local amusement park. There are different charges for adult vs. child, whether they are
bringing in a cooler, and whether they want to also get into the water park. We need to
write code that will tell us how much the person pays. We will have the user input the
needed information such as an Int for the persons age, a Boolean for whether they have a
cooler, and another Boolean for whether they want to get into the water park.

This is something that we could not do last chapter because we did not have a way of
performing logic and making decisions. We could not say that we wanted to do something
only in a particular situation. This ability to do different things in different situations is
called conditional execution, and it is a very important concept in programming. It is also

55

56 Introduction to Programming and Problem-Solving Using Scala

critical for problem solving in general. Conditional execution gives you the ability to express
logic and to solve much more complex problems than you could do without it.

3.2 The if Expression
Virtually all programming languages have a construct in them called if. For this con-

struct, you have a condition where one thing should happen if the condition is true. If the
condition is false, then either nothing or something different will happen. In non-functional
languages, the if construct is a statement. It has no value and simply determines what code
will be executed. In Scala and other functional languages, the if is an expression which
gives back a value. Scala allows you to use it in either style. The syntax of an if is: if
(condition) trueExpression else falseExpression. The else clause is optional.

Let us start with an example, then we can broaden it to the more general syntax. Take
the ticket price example and consider just the person’s age. Say that we want to consider
whether a person should pay the $20 children’s rate or the $35 adult rate. For our purposes,
a child is anyone under the age of 13. We could make a variable with the correct value with
the following declaration using an if expression.

val cost = if (age<13) 20 else 35

This assumes that age is an Int variable that has been defined prior to this point. The
first part of this line is a basic variable declaration as discussed in chapter 2. The next part
contains an if expression which checks the age and gives back one of two values depending
on whether age<13 is true or false.

When using if as an expression we always need to include an else because there has to
be a value that is given to the variable if the condition is false. This same type of behavior
can be also accomplished with a var using the if as a statement.

var cost=20
if (age>=13) cost=35

This code creates a var and gives it the initial value of 20. It then checks if the age is greater
than or equal to 13 and if so, it changes the value to 35. Note that with this usage, the else
clause is not required. Here we only want to do something if the condition is true. In Scala
you should generally prefer the first approach. It is shorter, cleaner, and leaves you with a
val which you can be certain will not be changed after it is created. The first approach is
a functional approach while the second is an imperative approach.

In general, the format of the if is as follows:

if (condition) expr1 [else expr2]

The square brackets here denote that the else and the second expression are optional. The
condition must always be surrounded by parentheses and can be replaced by any expression
of type Boolean. The expressions expr1 and expr2 can be any expression you want, though
they should typically have the same type.

Often, one or both of the expressions will need to be more complex. Consider the time
conversion script from section 2.9. There are a few places where we could have used condi-
tionals in that example, but a major one would have been to check if the user input was a
positive value, as what was done does not make much sense for negative values. There are

Conditionals 57

a number of lines that should only be executed if the value is positive. The example below
uses a code block to group those all together on the true branch of the if statement.

Listing 3.1: TimeConvertIf.scala
import io.StdIn._
print("Enter the number of seconds. ")
val totalSeconds = readInt()
if (totalSeconds > 0) {
val displaySeconds = totalSeconds%60
val totalMinutes = totalSeconds/60
val displayMinutes = totalMinutes%60
val displayHours = totalMinutes/60
val sec = displaySeconds.toString
val min = displayMinutes.toString
val finalString = displayHours+":"+("0"*(2-min.length))+min+

":"+("0"*(2-sec.length))+sec
println(finalString)

} else {
println("This only works for a positive number of seconds.")

}

A code block is just code enclosed in curly braces. If you want multiple lines of code
to be executed after an if or an else you should group those lines with curly braces. In
the above example, the else branch did not need to have curly braces because the code
following the else is a single line, but they were added to make the code consistent. It is
considered good practice to use curly braces on if statements unless they are extremely
simple and fit on one line.

The other thing to note about this example is that the code inside of the curly braces
is uniformly indented. Scala does not care about indentation, but human programmers do,
and this is one style rule that virtually all programmers feel very strongly about: nested
code needs to be indented. How far you indent varies between programmers, languages, and
tools. In Scala, it is customary to indent two spaces, and that is the style that is followed
in this book.

The placement of brackets is something else to pay attention to. In this book, we use
the style shown here, where the open bracket goes at the end of the line it is opening, and
the close bracket is at the end and not indented. The most common alternate format has
a newline before the open curly brace so that it appears lined up below the “i” in if. It
really does not matter what style you use, as long as you are consistent in your usage.1

The previous example uses the if as a statement, and the block of code is a statement.
A block of code can be used as an expression. The value of the expression is the value of
the last thing in the block.

scala> {
| println("First line")
| 4+5
| }

First line
res0: Int = 9

The time formatting example can be done using an if expression in the following way.

1Many employers will have style guides for these types of things. In that case, you will simply use
whatever style they prefer.

58 Introduction to Programming and Problem-Solving Using Scala

Listing 3.2: TimeConvertIfExpr.scala
import io.StdIn._
print("Enter the number of seconds. ")
val totalSeconds = readInt()
val response = if (totalSeconds > 0) {
val displaySeconds = totalSeconds%60
val totalMinutes = totalSeconds/60
val displayMinutes = totalMinutes%60
val displayHours = totalMinutes/60
val sec = displaySeconds.toString
val min = displayMinutes.toString
displayHours+":"+("0"*(2-min.length))+min+":"+("0"*(2-sec.length))+sec

} else {
"This only works for a positive number of seconds."

}
println(response)

Common Bug

One common error that novice programmers encounter with the if statement occurs
when they put more than one expression after the if or the else without using curly
braces. Here is an example of how that can happen. We start with the following code
that calculates an area.

val area = if (shape=="circle")
math.Pi*radius*radius

else
length*width

Here the if is broken across multiple lines so there is not one long line of code. This
can make it easier to read. (Note that this code does not work in the REPL as it ends
the expression when you hit enter before the else.) There are no curly braces, but they
are not needed because each part of the if has only a single expression.

Now consider the possibility that the program this is part of does not work. To help
figure out what is going on, you put print statements in so that you know when it uses
the circle case and when it uses the rectangle case. The error comes when the code is
changed to something like this.

val area = if (shape=="circle")
println("Circle")
math.Pi*radius*radius

else
println(Rectangle)
length*width

Now both branches have two expressions, and we have a problem. This code needs
curly braces, but they are easy to forget because the indentation makes the code look
fine. Scala does not care about indentation. That is only for the benefit of humans. In
reality, this code should look something like the following.

val area = if (shape=="circle") {

Conditionals 59

println("Circle")
math.Pi*radius*radius

} else {
println("Rectangle")
length*width

}

Returning to the theme park example, what about the other parts of our admission park
entrance cost? We also wanted to check if the person had a cooler or if they wanted to get
into the water park. These should both be variables of type Boolean. We might call them
cooler and waterPark. Let us say it costs an additional $5 to bring in a cooler and $10 to
go to the water park. If we used the if as an expression, we can type in the following:

val cost = (if (age<13) 20 else 35)+(if (cooler) 5 else 0)+(if (waterPark) 10 else
0)

Here we are adding together the results of three different if expressions. This format is
somewhat specific to functional languages. It would be more common in most languages to
see this instead:

var cost = 20
val cooler = false
val waterPark = true
if (age >= 13) cost = 35
if (cooler) cost = cost+5
if (waterPark) cost = cost+10

In this second form, we use if as a statement instead of an expression and have the body
of the if change, or mutate, the value of the variable cost.

Note on Style

While there are differences between the functional and imperative versions of code in
different applications in regard to things like performance and the likelihood of errors, at
this stage those should not be your top concerns. You should pick the style that makes
the most sense to you. Later you can evaluate the differences and pick the approach
that best fits the task.

In the second and third if statements, the name cost is repeated. This type of repetition
is often avoided in programming. Many languages, including Scala, include operations that
allow us to avoid it. When the duplication is like this, with an assignment and a variable
appearing on both sides of the equals sign, it is possible to use an abbreviated syntax where
the operator is placed in front of the equals sign in the following manner:

var cost = 20
val cooler = false
val waterPark = true
if (age >= 13) cost = 35
if (cooler) cost += 5
if (waterPark) cost += 10

60 Introduction to Programming and Problem-Solving Using Scala

Note that the += is a token, so you cannot put a space between the symbols. Doing so will
cause an error.

3.3 Comparisons
The first if statement shown in the previous section uses >= to do a comparison between

two values. You likely had no problem figuring out that this can be read as greater than
or equal to. Your keyboard does not have a ≥ key, so instead we use two characters in a
row. All of the normal comparisons that you are used to exist in Scala, but some, like the
greater than or equal to, differ from how you are used to writing them on paper.

The simplest comparison you can do is to check if two things are the same or different.
You read this as saying that two things are equal or not equal to one another. In Scala we
represent these with == and != respectively. Note that the check for equality uses two equal
signs. A single equal sign in Scala stands for assignment, which we have already seen stores
a value into a variable. The double equal sign checks if two expressions have the same value
and produces a Boolean value with the result of the comparison. Here are a few examples
of the use of this in the REPL.

scala> 2 == 3
res1: Boolean = false

scala> 7 == 7
res2: Boolean = true

scala> ’a’ == ’a’
res3: Boolean = true

scala> "hi" == "there"
res4: Boolean = false

scala> "mom".length == "dad".length
res5: Boolean = true

The != operator is basically the opposite of ==. It tells us if two things are different and
should be read as not equal. As we will see, the exclamation point, pronounced “bang” in
many computing contexts, means “not” in Scala. Any of the examples above could use !=
instead of ==, and the result would have been the opposite of what is shown.

In addition to equality and inequality, there are also comparisons of magnitude like the
age >= 13 that we used above. The comparisons of magnitude in Scala are done with <, >,
<=, and >=. These also give us back a value of the Boolean type so it will be either true
or false. These comparison operators are also known as relational operators. The order of
the characters in <= and >= is significant. They are in the same order that you say them,
“less than or equal to” and “greater than or equal to”; so, it will not be hard to remember.
If you reverse the order, Scala will not be able to figure out what you mean and will return
an error.

scala> 5=<9
<console>:6: error: value =< is not a member of Int

5=<9
^

Conditionals 61

You can use == or != on any of the different types in Scala, both those we have talked about
and everything that we have not yet talked about. This is not the case for the magnitude
comparisons. While you can use <, >, <=, and >= for many of the types that we have seen so
far, not every type has an order where these comparisons makes sense. For example, they
do not work on tuples. Later in the book we will have types for things like colors, shapes,
and fruits. Magnitude comparisons will not make sense with these either, and they will not
work if you try to use them.

Equality vs. Identity (Advanced)

If you have experience with Java, you might find the behavior of == confusing. This
is because in Scala, == does what most people expect, it checks for equality between
values. For anyone who has not programmed in Java he/she might wonder what other
options there are. We will see later that objects with the same value are not necessarily
the same objects. If you go to a store and pick up two boxes of the same type of item,
they are basically equal as far as you can tell, but they are not the same object. Each
one has its own identity.

There are times in programming when you do not want to just check if two things
are equal, you want to actually know if they are the same thing. This requires doing a
check for identity. In Scala we use eq to check if two things are the same thing. Here is
an example of where eq and == return different results.

scala> "sssss" eq "s"*5
res8: Boolean = false

scala> "sssss" == "s"*5
res9: Boolean = true

3.4 Boolean Logic
Imagine if the theme park had a policy where seniors are charged the same amount as

children. So now anyone over 65 or anyone under 13 should pay the reduced rate. We could
accomplish this by having separate if statements in either the functional or the imperative
manner.

val cost = if (age < 13) 20 else if (age > 65) 20 else 35

or

var cost = 20
if (age >= 13) cost = 35
if (age > 65) cost = 20

Both of these are verbose, potentially inefficient, and prone to errors. The errors occur
because in both we had to enter the number 20 in two places. What we would really like
to say is exactly what we said in English. We want to say that we use the lower rate if the

62 Introduction to Programming and Problem-Solving Using Scala

Description Usage Meaning
and a && b True if both a and b are true.
or a || b True if a or b is true. Allows both being true.

exclusive or (xor) a ^ b True if either a or b is true, but not both.
not !a True if a is false and false if a is true.

TABLE 3.1: This table shows the Boolean operators for Scala and what each one does.

a && b a=true a=false
b=true true false
b=false false false
a || b a=true a=false
b=true true true
b=false true false
a ^ b a=true a=false
b=true false true
b=false true false

!a
a=true false
a=false true

TABLE 3.2: Truth tables for the different Boolean operators.

person is under 13 or over 65 and use the higher rate otherwise. Boolean logic gives us the
ability to say this.

There are four different Boolean operators we can use to build complex Boolean
expressions from simple ones. These are shown in table 3.1.

We can use the || operator just like we used “or” in our English description of what we
wanted above. If we do this, our functional approach would simplify to this.

val cost = if (age < 13 || age > 65) 20 else 35

We can use && to say “and”.

var cost = 20
if (age >= 13 && age <= 65) cost = 35

The first one reproduces the English description and uses an “or” to give a single Boolean
expression for when the lower rate is charged. The second one is the converse and uses an
“and” to determine when the higher rate should be charged. The second expression could
be written instead with an || and a ! to make it more explicit that it is the converse of the
first one.

var cost = 20
if (!(age < 13 || age > 65)) cost = 35

The extra set of parentheses is required here so that the not is done for the whole expression.

It is worth noting that || is not the “or” of normal English. In normal usage, when you
say “or” you mean the logical exclusive or, ^. For example, when a parent offers their child

Conditionals 63

the option of “cake or cookies”, the parent is not intending for the child to take both. The
inclusive or, ||, allows both. The exclusive or, ^, does not.

Another example would be code that tells us if two rectangles intersect. Each square
is defined by its top left corner as x and y coordinates along with the edge lengths of the
two rectangles. We want a result that is a Boolean telling us whether or not the rectangles
intersect. Before we can write a program to do this, we need to figure out how we would do
this independent of a program.

Your first inclination might be to say that given two rectangles it is obvious whether or
not they intersect. Indeed, novice programmers are tempted to give that type of description
to many problems. This is not because the solution really is obvious, it is because novice
programmers have not developed their skills at analyzing what they do when they solve a
problem. This is something that one develops over time, and it is a requirement for any real
programmer.

So what are you missing when you say that a problem like this is obvious? Given a set
of four numbers as is the case here, most people would not find the solution obvious. To
make it obvious they would draw the squares and look at them. This use of your visual
processing is basically cheating and implicitly brings into play a large amount of processing
that your brain does automatically. For this reason, we will avoid any type of solution where
you would be tempted to say you would “look at” something.

Even if we did take the approach of drawing the squares, that is not as straightforward as
you might picture. When you picture drawing squares, you likely picture squares of nearly
the same size that are in easy to draw coordinates. Plotting gets a lot harder if one of the
squares is millions of times larger than the other. If your program is trying to see if an ant
has entered a building, that is not at all out of the question. So we cannot settle for “just
look at it” or “it is obvious”. That means we have to figure out what it really means for two
squares to be intersecting using just the numbers.

While looking at it is not allowed as a solution, it can be helpful to figure out what we
really mean. Draw a number of different squares on paper. Label them with the numbers 1
and 2. What are different possible relative positions for the squares? What are cases when
they do not intersect? What has to happen for them to intersect? These are not rhetorical
questions. Go through this exercise and come up with something before you read on. The
ability to break down a problem that is “obvious” into the real steps that humans go through
on a subconscious level is a cornerstone of programming. It is also useful for those who do
not intend to be programmers as it can help you to understand your thinking on all manner
of topics.

When you went through the process of drawing the squares, one of the things you might
have found was that squares can overlap in either x or y direction, but they only intersect if
they overlap in both x and y. That gives us something to work with. Our answer could say
something like, overlapX && overlapY. All we have to do now is figure out what it means
to overlap in a given direction. Even this has lots of different possibilities, but if you play
with them you will see that any situation where there is an overlap satisfies the following:
the minimum of the first range has to be less than the maximum of the second range and
the maximum of the first range has to be greater than the minimum of the second range.
Go back to your drawings and verify that this is true.

At this point we have the ability to say what we want. There are many ways that we
could do so. We are going to pick an approach which breaks the problem down into smaller
pieces. This will be easier for people to read. We said above that the squares overlap if
their ranges overlap in both x and y. So we can write code that checks to see if two ranges
overlap in one dimension, then the other. We can then combine these to see if the rectangles
overlap.

64 Introduction to Programming and Problem-Solving Using Scala

val overlapX = x1 < x2+size2 && x1+size1 > x2
val overlapY = y1 < y2+size2 && y1+size1 > y2
val squareOverlap = overlapX && overlapY

The Boolean value, squareOverlap, tells us the answer to the question.

Short Circuit Operators

One other significant factor about the Boolean && and || operators is that they
are short circuit operators. This means that if the value they will give is known after
the first argument is evaluated, the second argument will not be evaluated. For &&, this
happens if the first argument is false because no matter what the second argument
is, the final value will be false. Similarly, if the first argument of || is true, the final
value will be true so there is no point spending time to evaluate the second argument.
This will be significant to us later on when we get to expressions that can cause errors.
The only thing we could do now that would cause an error during a run is to divide
by zero. We can use that to demonstrate how short circuiting can prevent an error and
that the ^ operator is not short circuited.

scala> val n = 0
n: Int = 0

scala> 4/n
java.lang.ArithmeticException: / by zero

at .<init>(<console>:7)
at .<clinit>(<console>)
at RequestResult$.<init>(<console>:9)
at RequestResult$.<clinit>(<console>)
at RequestResult$scala_repl_result(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun...

scala> n != 0 && 4/n == 6
res3: Boolean = false

scala> n == 0 || 4/n == 6
res4: Boolean = true

scala> n == 0 ^ 4/n == 6
java.lang.ArithmeticException: / by zero

at .<init>(<console>:7)
at .<clinit>(<console>)
at RequestResult$.<init>(<console>:9)
at RequestResult$.<clinit>(<console>)
at RequestResult$scala_repl_result(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun...

Conditionals 65

First Character
(other special characters)

* / %
+ -
:
= !
< >
&
^
|

(all letters)
(all assignment operators)

TABLE 3.3: Table of operator precedence in Scala. The precedence of an operator is
determined by the first character.

3.5 Precedence
So far all of our expressions have been fairly small. Other factors can come into play

when they get large. One factor that becomes significant is precedence. This is the order
in which operations are done. You know from math that multiplication happens before
addition, and Scala follows that same order of operation. Now you need to know where
these new operators fit into the order of precedence list. All of the comparison and Boolean
operators perform after all mathematical operators. This allows expressions like a+5 < b*2
without using parentheses. Similarly, comparisons have higher precedence than the Boolean
operators. The expressions for overlapX and overlapY used both of these facts as they
combined addition, comparison, and &&.

As was mentioned earlier, operators are really just methods in Scala. The ones we
have talked about so far are simply methods that are defined in the Scala libraries on
the appropriate types. So && and || are defined on the Boolean type. The comparison
operators are defined on numeric types, etc. When you use operator notation with a method,
the precedence is determined by the first character in the operator. Table 3.3 shows the
order.

3.6 Nesting ifs
There is another interesting point that we have used implicitly, but is worth noting

explicitly. This is that if expressions can be nested inside of one another. We saw this
when we first tried to add senior citizens at a lower cost.

val cost = if (age<13) 20 else if (age>65) 20 else 35

The contents of the else on the first if is itself an if. This is a general property of most
programming languages. The if in Scala needs some form of expression inside of it for the
true and false possibilities and if it is an expression in Scala. As such, the if itself makes

66 Introduction to Programming and Problem-Solving Using Scala

Item S M L
Drink $0.99 $1.29 $1.39
Side $1.29 $1.49 $1.59
Main $1.99 $2.59 $2.99
Combo $4.09 $4.99 $5.69

TABLE 3.4: Theme park food item costs.

a perfectly valid expression to nest. So you can nest ifs inside of one another as much as it
makes sense for the problem you are solving.

To make this more explicit, let us go back to our theme park and this time consider
concessions. The menu is not broad and is standard for fast food. They have drinks, fries,
and various main course items like hamburgers and hot dogs. You can also get a combo
which has one of each. For any of these you can specify a size. The cost is specified by the
simple matrix shown in table 3.4.

We need to convert this table into code. We will start by reading in two strings. The
first is the item type and the second is the size, both as Strings. In the end we want the
variable cost as a Double.

Listing 3.3: ConcessionPrices.scala
import io.StdIn._
println("What item are you ordering?")
val item = readLine()
println("What size do you want?")
val size = readLine()
val cost = if (item == "Drink") {

if (size == "S") 0.99
else if (size == "M") 1.29
else 1.39

} else if (item == "Side") {
if (size == "S") 1.29
else if (size == "M") 1.49
else 1.59

} else if (item == "Main") {
if (size == "S") 1.99
else if (size == "M") 2.59
else 2.99

} else {
if (size == "S") 4.09
else if (size == "M") 4.99
else 5.69

}
println(s"That will cost $$$cost.")

This code has a top level set of ifs that pick the item type. Inside of each is an if statement
that picks from the different sizes. The way this was written, it will default to a combo if
the item is not recognized and to a large if the size is not recognized. There are better ways
to deal with this, but this will work for now.

This code demonstrates a standard formatting style used with this type of structure
where the only thing in the else is another if. Instead of putting another set of curly
braces after the else and indenting everything, leave off the curly braces and just put the
if there. This prevents the indentation from getting too deep.

Conditionals 67

3.7 Bit-Wise Arithmetic
Generally, programmers do not need to worry about operations at the bit level. However,

there are situations when a programmer may like to be able to go to the level of an individual
bit. Data compression and encryption are a couple of examples of where you might want to
use bit-wise operations. The bits in a binary number are just like Boolean values. We can
perform Boolean logic on the bits in integer values the way we would on standard true and
false values. To do this we use slightly different operators. We use & and | instead of &&
and ||. The & is a bit-wise and. The | is a bit-wise or. The versions with a single character
do not short circuit. The motivation for short circuiting does not make sense for this type
of operation because a bit cannot be a complex operation to evaluate. The other difference
is that we use ~ instead of ! for the bit-wise negation.

If you think back to chapter 2 you will remember that every number on a computer is
represented in binary. We store values of one or zero to represent different powers of two.
When we do bit-wise operations we simply take the bits in the same position and do the
specified operations on them to get the bits in the result. To see how this works let us run
through a set of examples on the binary operators where we use the four bit numbers 1100
and 1010.

1100
& 1010

1000

1100
1010

1110

1100
^ 1010

0110

Negation is pretty straightforward: ~1001=0110. Of course, these bit combinations all have
numeric decimal values. We can put commands into Scala to do these same things. Our
first value is 12 and our second is 10. The value we took the negation of is 9. Here are the
operations performed in Scala. Check that they match the answers we got.

scala> 12 & 10
res3: Int = 8

scala> 12 | 10
res4: Int = 14

scala> 12 ^ 10
res5: Int = 6

scala> ~9
res6: Int = -10

68 Introduction to Programming and Problem-Solving Using Scala

The last one is interesting. When you check if it makes sense, remember that negative values
are represented using two’s compliment and an Int has 32 bits.

There are two other bit-wise operators that are worth mentioning. They are left-shift
and right-shift and are written in Scala as << and >>. These operators shift the bits in an
integer value the specified number of positions. If you think about the meaning of bits, this
is like multiplying or dividing by powers of two in the same way that adding zeros to the
end of a decimal number is the same as multiplying by powers of ten. Some simple examples
show you how we can use this to get powers of two.

scala> 1 << 0
res7: Int = 1

scala> 1 << 1
res8: Int = 2

scala> 1 << 2
res9: Int = 4

scala> 1 << 3
res10: Int = 8

Let’s look at some of these a little closer. The decimal 1 is represented as 00000001 in binary
and << means shift to the left. So 1 << 0 is shifting zero bits to the left, thus the result
unchanged and still decimal 1. However, 1 << 1 shifts 1 bit to the left. Shifting 1 bit to
left changes 00000001 to 00000010 which is decimal 2. If we start with the decimal 1 and
perform 1 << 2, this shifts 2 bits to the left. Shifting 2 bits to left changes 00000001 to
00000100 which is decimal 4. There is a second version of right-shift written as >>>. The
normal version does not move the sign bit so that signs are preserved. The second version
does not do this and will shift the sign bit down along with everything else.

You might wonder why you would want to do these things. Using a single integer value
as a collection of Boolean values is common in libraries based on the C language and
frequently appears in operating system code. There is another usage that could will into
play in projects later in this book. If you have adjusted display settings on a computer you
have probably seen that colors can be represented as 8-bit, 16-bit, 24-bit, or 32-bit values.
Given the abundance of memory on modern computers, most of the time people will use
32-bit color. Have you ever wondered what that means? If you have written a web page
or looked at a web page you have seen colors represented as six hexadecimal digits. The
first two digits specify how much red, the next two specify how much green, and the last
two specify how much blue. This is called RGB for obvious reasons and is exactly what
24-bit color gives you. 32-bit color uses an extra 8-bits because computers can operate more
quickly with memory in 32-bit chunks because they are typically wired to deal with a 32-bit
integer. The additional 8-bits stores the alpha channel which can be used for transparency.
It does not matter much for your screen, but it is something that can be used to nice effect
in 2-D graphics which we will discuss in chapter 12.

32-bit color is often called ARGB because it has alpha, red, green, and blue values all
packed into 32 bits. Each gets 8 bits or a byte. This is where bit-wise operations come into
play. You might be given four different values for alpha, red, green, and blue for a color and
need to pack them together into a single 32-bit integer. Alternately, you might be given a
single ARGB value as a 32-bit integer and have to figure out the individual components.
Indeed, both of these appear as exercises below.

Conditionals 69

3.8 End of Chapter Material

3.8.1 Problem Solving Approach

The if can be used as a statement. This is a 4th option for statements that you can
put into a script. So when you are considering what your next line of code is you should be
thinking of one of these four possibilities.

1. Call print or println.

2. Declare a variable with val or var. (Prefer val.)

3. Assign a value to a variable. (Only works with var declarations that you are avoiding.)

4. Write an if statement. Note that to make sense as a statement, the expressions for
the true and false possibilities should include one of more statements from this list.
You should use an if when the code needs to do different things in different situations.
When the word “if” fits in your English description of the solution to the problem,
odds are good that it fits into the code as well.

3.8.2 Summary of Concepts

• Constructs that allow different pieces of code to be executed depending on different
conditions in the code are called conditionals.

• The most basic conditional is if.

– The syntax is if (condition) trueExpression else falseExpression. The else
clause is optional.

– The condition needs to be an expression with the Boolean type.

– In Scala it can be used as an expression with a value or as a statement. As an
expression, you need to have an else clause.

– Curly braces can define blocks of code that function as a large expression. The
value of the expression is the value of the last statement in the block.

• The Boolean expressions often involve comparisons of values.

– Any values can be checked for equality or inequality using == or != respectively.

– Values that have a natural ordering can also be compared using <, <=, >, or >=.

– These comparison operators are also known as relational operators.

• More complex Boolean expressions can be built by combining simple expressions using
Boolean logic.

– The || operator is an inclusive or. This means that it is true if either of the two
arguments are true as well as when both are true.

– The && operator represents a logical and. It is only true when both arguments
are true.

– The ^ operator represents exclusive or. This is “or” as used in normal English
where the result is true if one argument or the other is true, but not both.

70 Introduction to Programming and Problem-Solving Using Scala

– The ! operator is logical negation.
– The || and && operators are short-circuit operators.

• When building large expressions, the order in which operators are applied is significant.
This is called precedence. The precedence of operators in Scala depends on the first
character in the operator. Table 3.3 gives a full list of precedence in Scala.

• Bits can be viewed as Boolean values. Bit-wise arithmetic is operations that work on
numeric numbers as collections of bits instead of normal numbers.

– | is bit-wise or.

– & is bit-wise and.
– ^ is bit-wise xor.

– ~ is bit-wise negation.

3.8.3 Self-Directed Study

Enter the following statements into the REPL and see what they do. Try some variations
to make sure you understand what is going on. Note that some lines read values so the REPL
will pause until you enter those values. The outcome of other lines will depend on what you
enter.

scala> val a = readInt()
scala> val b = readInt()
scala> val minimum = if (a<b) a else b
scala> if (minimum != (a min b)) {
println("Oops, something went wrong.")

} else {
println("That’s good.")

}
scala> true && true
scala> true && false
scala> false && true
scala> false && false
scala> true || true
scala> true || false
scala> false || true
scala> false || false
scala> !true
scala> !false
scala> true ^ true
scala> true ^ false
scala> false ^ true
scala> false ^ false
scala> a < b || { println("a>=b"); a >= b }
scala> a < b && { println("a>=b"); a >= b }
scala> a match {
case 7 => "That is a lucky number."
case 13 => "That is an unlucky number."
case _ => "I’m not certain about that number."

}
scala> 13 & 5
scala> a.toBinaryString

Conditionals 71

scala> a & 0xff
scala> (a & 0xff).toBinaryString
scala> a ^ 0xff
scala> (a ^ 0xff).toBinaryString
scala> (a << 3).toBinaryString
scala> ((a >> 8) && 0xff).toBinaryString

3.8.4 Exercises

1. Write Boolean expressions for the following:

(a) Assume you have a variable called age. Tell if the person is old enough to legally
drink.

(b) Given a height in inches, tell if a person can ride an amusement park ride that
requires riders to be between 48” and 74”.

2. Determine if the following expressions are true or false. Assume the following, a=1,
b=2, c=3, d=true, e=false.

(a) a==1

(b) c<b || b>c

(c) a<=c && d==e

(d) 1+2==c

(e) d

(f) !e

(g) d || e

(h) 6-(c-a)==b && (e || d)

(i) c>b && b>a

(j) a+b!=c || (c*a-b==a && c-a>b)

3. Determine if the following expressions are true or false. Assume the following, a=1,
b=10, c=100, x=true, y=false.

(a) x

(b) x && y

(c) a==b-9

(d) a<b || b>a

(e) !y && !x

(f) (c/b)/b==b/b

(g) (c+b+a==b*b+c/c) || y

(h) a <= b && b <= c && c >= a

(i) c/(b/b)==b/b

(j) !(x || y)

4. The reverse method can be called on a String. Use this to write a script where the
user inputs a word (use readLine) and you tell them whether or not it is a palindrome.

72 Introduction to Programming and Problem-Solving Using Scala

5. A year is a leap year if it is perfectly divisible by 4, except for years which are both
a century year and not divisible by 400 (e.g. 1800 is not a leap year, while 2000 is a
leap year). There were no leap years before 1752. Write a script that inputs a year
and calculates whether or not it is a leap year.

6. Write a script that prompts the user to enter the coordinates of a point in a Cartesian
plane and tells the user indicating whether the point is the origin, is located on the
x-axis, is located on the y-axis, or appears in a particular quadrant. For example: (0,0)
is the origin and (3, -4) is in the forth quadrant.

7. It is customary to express colors on a computer as a combination of red, green, and
blue along with another value called alpha that indicates transparency. A single Int
has 32 bits or 4 bytes. The four different color values are often packed into a single
Int as an ARGB value. The highest byte is the alpha and below that you have red,
green, and blue in order. Each byte can store values between 0 and 255. For alpha, 0
is completely transparent and 255 is completely opaque.

Write code that reads four Int values for alpha, red, green, and blue and calculates
an Int with the combined ARGB value. If one of the numbers passed in is outside the
0 to 255 range, use 0 or 255, whichever it is closer to. Note that bitwise operations are
appropriate for this exercise. You might find hexadecimal representation of numbers
to be useful as well.

8. Repeat the previous exercise, but this time the input should be Doubles between 0.0
and 1.0 that you convert to Ints in the proper range.

9. Write code that does the opposite of what you did for exercise 7. It should take an
Int with an ARGB value and calculate the four Int values with the component values
between 0 and 255.

10. Write code that does the opposite of what you did for exercise 8. It should take an
Int with an ARGB value and calculate four Double values with the component values
between 0.0 and 1.0.

11. Write a script that has the user input a location as x and y coordinate values which
tells whether the point specified is in the unit circle.2

12. Write a script that accepts the month, day, and year of a date and outputs the number
of that day within its year (i.e. Jan 1st is always 1, Dec 31st is either 365 or 366).

3.8.5 Projects

1. Write a script that asks the user for the coefficients of a quadratic equation (a, b, and
c in ax2 + bx + c). It should print the roots for those coefficients. It needs to handle
different options for the roots and print one or two solutions with real or complex
values as appropriate.

2. Write a script that tells you whether or not a rectangle overlaps with a circle. It needs
to prompt the user for the required information for the two shapes that includes
positions and sizes, and it prints an appropriate message based on the Boolean result.

2The unit circle is a circle centered on the origin with radius 1.

Conditionals 73

3. You have built a simple robot that is supposed to move along a straight line from
wherever it is placed to a flag. The robot can move in one of two ways. It can roll
any distance at a speed of one inch per second. It can jump and each jump takes
one second and moves a predetermined amount. When it jumps it always jumps that
amount, not a fraction of it. Write a script that reads the distance you start from the
flag and the distance covered in each jump and prints how many seconds it will take
to get to the flag using an optimal approach. (The trick with this problem is to make
sure you consider all the possibilities.)

4. This problem starts a track of options that you can work on that build up to having
a functioning ray tracer at the end of the semester that can render images in 3-D. For
this first step you are to write a script that determines if and where a ray intersects
either a plane or a sphere.

The script should start by asking for information on the ray. That includes the start
point of the ray, ~r0, and the direction vector for the ray, ~r. It should then ask if
you want to consider a plane or a sphere. The code will have an if that splits into
two possibilities at that point. One will ask for information on the sphere, a center
point and radius, and do the proper calculation for a sphere. The second will ask for
information on a plane, a normal direction and distance, and do the proper calculation
for the plane. The script finishes by printing out information about the intersection.

A ray can be defined as a start point and a direction vector using the parametric
equation ~r(t) = ~r0 + t ∗ ~r, for t ≥ 0. You find intersections by solving for the t
that satisfies certain conditions like coming a certain distance from a point (for a
sphere) or satisfying the equation ~r(t) · ~n = d (for a plane with normal ~n that is d
units from the origin). You can view coming within a certain distance from a point
as solving the equation (~r(t) − ~n) · (~r(t) − ~n) = radius2. With a little algebra you
can reduce this to a quadratic equation. You only care about the solution with the
smaller value of t. This option is a bit more conceptually challenging, but if you
do all the ray tracing options the results can be impressive. The web site at http:
//book.programmingusingscala.net includes a number of images made using a ray
tracer the authors wrote in Scala.

5. You have been going through your book of Simple 2-Ingredient Recipes looking for
something to cook. The problem is, you are really running low on ingredients. You
only have four items, and they are in short supply. For this project you will write a
script that will take the four items you have and how much of each you have. After
that it will ask for two ingredients and how much of each is needed. It should output
whether or not you have enough stuff to make that recipe.

For the input, items will be strings and you do not care about units on the amount.
Item names have to match exactly to be the same and assume the same units are used
for any given item.

6. Imagine that you were considering taking a number of different majors or minors for
college and you want to write a program to do a little math and help you see what
different approaches would require. You have four major/minor interests. For each one
the user should input a name and the number of hours it requires. You also have a
number of hours for the core curriculum, a minimum number of hours for graduation,
and how many hours you bring in from outside (AP/IB/Transfer). Prompt the user to
enter those 11 values. Then run through the four major/minor interests and let them
enter “yes” or “no” for whether they will do it to test an option. After that, print out

http://book.programmingusingscala.net
http://book.programmingusingscala.net

74 Introduction to Programming and Problem-Solving Using Scala

the average number of hours that need to be taken each of the 8-semesters of college
to complete that combination.

7. You are trying to determine how many and what type of calories you need in a day.
However, that depends on several factors including your age, height, gender, activity
level, and goals (e.g. lose weight, stay the same, or gain weight). In order to solve this
problem, you will need to calculate your Basal Metabolic Rate (BMR), your Total
Energy Expended (TEE), and how many additional or fewer calories you might want
to consume. The formula for the BMR for Men = 10 x weight(kg) + 6.25 * height(cm)
- 5 x age(years) + 5. The formula for the BMR for Women = 10 x weight(kg) + 6.25
* height(cm) - 5 x age(years) - 161. To calculate your TEE you need to decide your
activity level: sedentary = BMR * 1.2, lightly active = BMR * 1.375, moderately
active = BMR * 1.55, very active = BMR * 1.725, and extra active = BMR * 1.9.
Next you need to consider your goals. If you want to lose 1 pound, you need to consume
3500 less calories. The inverse is true if you want to gain weight (e.g. body building).
The Centers for Disease Control and Prevention suggest that if you want to lose
weight, aim to lose about 1 to 2 pounds each week. After you have determined your
weight goals and included them in your calculations, then you calculate the amount of
carbohydrates, fat and protein you need to stay active and healthy. Men and women
of all ages should get 45 to 65 percent of their total daily calories from carbohydrates,
10 to 30 percent of their total daily calories from protein, and 20 to 35 percent of their
total daily calories from fats. Write a script to determine how much carbohydrates,
fat, and protein you should eat daily to meet your goals.

8. Write a script that will help someone decide whether it is more cost effective to
walk, ride a bike, or drive a car to work. Assume that the more time that they
spend commuting to work, then the fewer hours they will work. Time is money! Thus,
although your transportation costs for walking are zero, you still will experience a lost
opportunity cost by not being able to work during that time spent walking and this
needs to be added to the overall travel cost. Assume a 17 minute mile walking pace,
a 5 minute per mile biking pace, and a 3 minute per mile driving pace. Assume that
bike maintenance is 1 cent per mile. Also assume that your car gets 25 mpg, gas costs
$3 per gallon and car maintenance costs 6 cents per mile. Ask the user the distance
they have to travel to work and what mode of transportation they wish to use in order
to calculate their total travel costs per day.

9. Internet telephony service providers offer calling services between computers and reg-
ular phones not connected to the Internet. Write a script to help people determine
what their calling costs would be based on how many minutes they expect to talk in
a month, whether they will be using a monthly subscription or pay-as-you-go service,
what country they will be making those calls to and whether they will be making
calls to both mobile and landline phones or just to a landline phone. Use the following
information to help you with your task:

Conditionals 75

Monthly Subscription Pay-As-You-Go (cents/min)
120 mins 400 mins 800 mins Unlimited Mobile/Landline Landline

China $1.19 $3.89 $7.79 $13.99 2 2
India $1.42 $8.99 $19.99 1.5 1.5
Mexico $1.79 3.5 1
UK $2.09 for 10 2.3

mobile/landline

$1.19 landline
USA $2.99 2.3 2.3

http://taylorandfrancis.com

Chapter 4
Functions

4.1 Motivating Example . 77
4.2 Function Refresher . 78
4.3 Making and Using Functions . 79
4.4 Problem Decomposition . 84
4.5 Function Literals/Lambda Expressions/Closure . 89
4.6 Side Effects . 90
4.7 Thinking about Function Execution . 91

Higher Order Functions . 93
4.8 type Declarations . 94
4.9 Putting It Together . 95

Ways to Run a Scala Program (Aside) . 96
4.10 End of Chapter Material . 97

4.10.1 Problem Solving Approach . 97
4.10.2 Summary of Concepts . 97
4.10.3 Self-Directed Study . 98
4.10.4 Exercises . 99
4.10.5 Projects . 100

Earlier in the book we made the statement that programming was all about problem solv-
ing. It is basically the art of giving a computer a set of instructions to solve a problem in
terms that the computer can understand. One of the key foundational elements of good
problem solving is problem decomposition. The idea of problem decomposition is that good
solutions of large, complex problems are built out of solutions to smaller, more manageable
problems. This is especially important in programming because the problems can be arbi-
trarily complex and, at the base, we have to break them down to the level where we can
communicate them to the computer, which is fundamentally quite simplistic.

One of the key elements of problem decomposition in programming is the function. A
function is a collection of statements to solve a specific problem that we can call as needed.
You can think of it as a little, self-contained program that performs a task that we can reuse
over and over again. The scripts we have built to this point share some characteristics with
functions. They were collections of statements we put together to do something repeatedly
without retyping it. We have also looked at a few built-in methods that can be viewed
as functions. Do you remember some of the math methods such as min and max? You
know enough about programming in Scala to be able to write code to find the minimum
or maximum of two numbers, but it is certainly useful to not have to type that code over
and over every time we would want to find an answer. Functions are very beneficial to a
programmer.

4.1 Motivating Example
Imagine that you needed to write a script for a resort where you had to calculate the

taxes on a hotel room, gift shop purchases, and the restaurant purchases made by a guest.

77

78 Introduction to Programming and Problem-Solving Using Scala

You could accomplish this by repeating the code to do the calculation in multiple places,
but there are many problems with this approach. The ability to cut and paste means that it
will not take all that much extra effort, but it will make your code a lot longer and harder
to manage. The primary problem arises if you realize that you have to change something
in the calculation. If you have multiple copies of the code that do the calculation you have
to find all of them and change them. This is an activity that is not only tedious, it is error
prone because it is very easy to miss one or more of the copies.

The way to get around this is to use functions. A function lets you group together all
the commands that are used in a particular calculation so that they can be called on from
other parts of the code. You can specify what information needs to be provided for the
function to do its work. In this way, functions provide flexibility. Instead of doing the copy
and paste, you simply call that one function from different parts of the code, passing in
the information that is needed at that point. If you realize something needs to change in
the calculation, you simply change the function, and all the calls to it will use the modified
version.

4.2 Function Refresher
Functions are things that you are familiar with from many different math classes, going

back to algebra. The simplest example of a function from math might be something like
f(x) = x2. This says that f is a function that takes a number, given the name x, and it
has the value of that number squared. Note that when the function is written, the formal
parameter, x, has no value. For a function like this in math, it was usually understood
that x was a real number, but that does not have to be the case. Complex numbers work
as well. For other functions you might want to limit yourself to integers.

The value of x is specified when we use the function. For example, if we say f(3) then
3 is the argument to the function and x takes on the value of 3 when we figure out the
function’s value. When we do this we find that f(3) = 9.

That was an example of a function of one variable. We can also have functions of two
or more variables. For example, you might have g(x, y) = x + y2. When this function is
called, we provide two values as arguments and they are used as the value of x and y. So
g(3, 5) = 3 + 25 = 28. The value of x is 3, and the value of y is 5. You know this because
the order of the arguments matches the order of the formal parameters.

In a general sense, a function is a mapping that associates input values with output
values. In your math classes you have likely focused on functions that map from numbers
into numbers. We have seen that our programs can work with numbers, but there are other
types that we can work with as well. Some simple examples of this include the following:

• A function that takes a String and returns how many vowels are in it.

• A function that takes a String and returns the first uppercase letter in it.

• A function that takes two points as (x, y) pairs and returns the distance between
them.

All of these have parameters that are not simple numbers. In terms you used in algebra,
we would say that their domain is not just the real numbers. They also give us back values
from different types. In algebra this would be the range. The first example can only produce
a non-negative integer. The second produces a character. The third is a real number.

Functions 79

FIGURE 4.1: This figure shows examples of a function definition and a function call.

4.3 Making and Using Functions
There are a number of ways to make functions in Scala. We will begin with the standard

definition format. In chapter 2 we saw that we can use the keywords val and var to declare
variables. In a similar way, we use the keyword def to define a function. We will start with
the simple mathematical examples that were used in the previous section and create Scala
functions that match them in the REPL.

scala> def square(x:Double):Double = x*x
square: (x: Double)Double

In math, functions are given names like f and g. This works fine for a limited context,
but it does not scale up well if you are using a lot of different functions. We use the name
square here because it describes what the function does. The name is written after the def
and after that we have a set of parentheses that contain a name and a type separated by a
colon. This is like a val declaration except that it does not include an initial value1 and the
type is required. The value is specified when this function is called, just like for the math
function. The contents of the parentheses are the formal parameters of the function.

After the parentheses is another colon and the type that this function gives us back, or
returns. In Scala we refer to this as the result type. In this case, because we are mirroring
the mathematical function, the type is Double. After the result type is an equal sign and
the expression x*x. Once this has been entered, the REPL tells us that we have created
something called square with the type (x: Double)Double. This is Scala’s way of telling
us that we have a function that takes a Double and results in a Double.

Now that we have defined square we can use it. In the last section we used our function
f with f(3). The syntax in Scala is the same.

scala> square(3)
res0: Double = 9.0

We give the name of the function followed by parentheses with the value we want to use for
x. When we do this with the value 3, Scala gives us back a value of 9.0 as a Double. This
particular value could also be represented as an Int, but the function says it works with
type Double and so the Int that we passed in was converted to a Double and the result is
also a Double.

1Scala allows you to provide a value here, called a default value. That is something you will not do often;
so, it is not covered until chapter 10.

Define a function Call a function

function name formal parameter

,/
result type

,/
argument

\
def square(x : Double) :Doubl e = x*x square (3)

80 Introduction to Programming and Problem-Solving Using Scala

Let us now look at the second example math function. In this case we will use the short
name g and make it work with the Int type instead of Double.

scala> def g(x:Int,y:Int):Int = x+y*y
g: (x: Int,y: Int)Int

Note that both of the parameters are put in the parentheses and separated by a comma. In
general, you can have an arbitrary number of parameters. They can all have different types,
and they will be separated by commas. The function is called by giving the function name
with values separated by commas.

scala> g(3,5)
res1: Int = 28

In this example we used simple literals for the arguments to the function, but the arguments
can be any expression with the proper type. For example, we could do the following:

scala> val a = 5
a: Int = 5

scala> g(a+2,square(3).toInt)
res2: Int = 88

Here we show that the arguments to g can include a reference to a val or a call to the
square function. The call to square needs to be followed by a conversion to an Int because
g is declared to take type Int and the result type of square is Double. If you leave that
out, you will get an error like this:

scala> g(a+2,square(3))
<console>:9: error: type mismatch;
found : Double
required: Int

g(a+2,square(3))
^

With the val and var declarations, we saw that we could typically leave off the types
and Scala would figure them out for us. With functions, the types on the parameters are
required. The result type is not required as it can often be inferred, but it is considered
better style to specify it.2 The reason this is preferred is that if you tell Scala a type and
make a mistake in the function that causes it to result in a different type, Scala can tell you
earlier that something has gone wrong.

These functions are very short. If we want to write longer functions, we need to create
code blocks using curly braces. A block is composed of statements. The block, itself, is also
either a statement or an expression. When used as an expression, the value you get from it
is the value of the last expression in the block. To see how this works, we could take the
statements that we had in our script at the end of chapter 2 and put them in a function.
The function might look something like this if we type it into the REPL.

scala> def secondsToTimeString(totalSeconds:Int):String = {
| val displaySeconds = totalSeconds%60
| val totalMinutes = totalSeconds/60
| val displayMinutes = totalMinutes%60

2The exception to this is recursive functions where the result type is required. More on that in chapter
5.

Functions 81

| val displayHours = totalMinutes/60
| val sec = displaySeconds.toString
| val min = displayMinutes.toString
| displayHours+":"+("0"*(2-min.length))+min+":"+("0"*(2-sec.length))+sec
| }

secondsToTimeString: (totalSeconds: Int)String

This function takes a single Int of the number of seconds. It results in a String. After the
equal sign is an open curly brace that opens a block of code. This block is closed at the
end of the function with a closing curly brace placed after an expression that gives us the
String we want to return.

The advantage of this approach is we can easily call the function using different numbers
of seconds, even in the REPL.

scala> secondsToTimeString(123456)
res0: String = 34:17:36

scala> secondsToTimeString(654321)
res1: String = 181:45:21

In this way, functions allow us to organize code and give useful names to things that we
might want to do frequently.

This code also does something else that we have never seen before, it declares variables
inside of a function. When we do this the variables are called local variables, and they
can only be accessed inside of the function. If, after typing in this function, you try to use
sec, or any of the other local variables, outside the function, you will get an error message.

scala> sec
<console>:6: error: not found: value sec

sec
^

The part of the code over which a name can be accessed is called the scope of that name.
When you declare a variable or a function in a script outside any block of code, it has a
scope that goes through the rest of the script. If you declare it in a block of code, it has a
scope that goes from the point of the declaration to the end of the block it is declared in.
A block is denoted with curly braces, so you can use the name until you get to the right
curly brace that closes off the block the name is declared in. As a general rule, you want to
minimize the scope of variables so they can only be accessed where they are needed. This
reduces the amount of code you have to look through if something goes wrong with that
variable. This is particularly true of var declarations.

Trap: New programmers are often tempted to have functions use a var that was
declared outside of the function. The majority of the time, this is a bad idea as it is
very error prone, and makes the functions harder to use or less reusable.

These examples utilize the mathematical concept of a function as something that takes
input values and maps them to output values. In programming it is possible for functions to
do things other than give back a value. We have already seen an example of such a function.
Our first program called println. You might notice that if you use println in the REPL,
a value is printed, but there is not a result value shown. This is because println gives us

82 Introduction to Programming and Problem-Solving Using Scala

back a value of type Unit, which was discussed in chapter 2. Here is a sample function that
simply prints, so the return type is Unit.3

scala> def printMultiple(s:String,howMany:Int):Unit = {
| println(s*howMany)
| }

printMultiple: (s: String,howMany: Int)Unit

scala> printMultiple("hi ",3)
hi hi hi

Tip: The best functions result in values and do not print or read input from a user.
The follow list gives reasons for this.

• Result values can be used for further computations, printed values cannot be.

• Printing ties a function to working with standard output.

• Reading input ties the function to working with standard input.

Right now our only output and input are the standard ones, so having a function that
only does printing and reading tasks is not so limiting. However, mixing calculations or
other computations into a function that does input and output still results in functions
that are generally less useful. It is better to have the extra computation done in a
separate function that has the proper result type. The function doing the input and
output can use that separate function, as can other parts of the code.

Before moving on, we will do another example function that is more interesting, calcu-
lating an average in a course. The course average is calculated by combining the average of
a number of different grades. For example, you might have tests, assignments, and quizzes.
Each of these might contribute a different fraction of the total grade. The tests might be
worth 40%, assignments worth 40%, and quizzes worth 20%. You will also have a different
number of each of these grades. For example, you might have 2 tests, 3 assignments, and
4 quizzes. In many courses, part of the course average is computed by dropping a lowest
grade and taking the average of what remains. In this case, let us assume that the lowest
quiz grade is dropped.

What we want to do is write a function that takes all the grades, and returns the average
for the course. To start with, it might look something like this:

def courseAverage(test1:Double,test2:Double,assn1:Double,
assn2:Double,assn3:Double,quiz1:Double,quiz2:Double,
quiz3:Double,quiz4:Double):Double = {

???
}

This function takes in nine Doubles and produces an average for the full class as a Double.
We want to calculate the averages for each of the different parts of the grade separately,
then combine them with the proper percentages. Filling in a bit more gives the following.

def courseAverage(test1:Double,test2:Double,assn1:Double,

3As of the time of this edition, Scala supports a shortened syntax for functions that return Unit. This
syntax is considered poor form, and is to be deprecated in a future release of the language, so it is not
introduced here.

Functions 83

assn2:Double,assn3:Double,quiz1:Double,quiz2:Double,
quiz3:Double,quiz4:Double):Double = {

val testAve = (test1+test2)/2
val assnAve = (assn1+assn2+assn3)/3
val minQuiz = ???
val quizAve = (quiz1+quiz2+quiz3+quiz4-minQuiz)/3
testAve*0.4+assnAve*0.4+quizAve*0.2

}

All that is left to do is to figure out the minimum quiz grade. To accomplish this, we will
use a method called min that is defined on the Int type. If you have two Int values, a and
b, then the expression a min b will give you the smaller of the two values. This is a call to
the min method on Int and could be written as a.min(b). However, the operator syntax,
where the dot and parentheses are left off, is superior when we have multiple values because
we can put the values in a row to get the smallest of all of them. This gives us a complete
version of the function which looks like the following.

Listing 4.1: CourseAverage.scala
def courseAverage(test1:Double,test2:Double,assn1:Double,

assn2:Double,assn3:Double,quiz1:Double,quiz2:Double,
quiz3:Double,quiz4:Double):Double = {

val testAve = (test1+test2)/2
val assnAve = (assn1+assn2+assn3)/3
val minQuiz = quiz1 min quiz2 min quiz3 min quiz4
val quizAve = (quiz1+quiz2+quiz3+quiz4-minQuiz)/3
testAve*0.4+assnAve*0.4+quizAve*0.2

}

If you put this into the REPL, you can call it and get output as shown here.

scala> courseAverage(90,80,95,76,84,50,70,36,89)
res4: Double = 81.93333333333334

Use of ??? (Aside)
The code examples above used ??? in parts of the code that had not yet been

filled in. The three question marks is actually a construct defined in the Scala libraries,
and you can put the first one in a script and run the script just fine as long as it
never calls that function. If the function were called, the program would crash with
a NotImplementedError when the line with the ??? was executed. This can be very
handy when you are writing larger programs and want to test some parts of the code
when you have not gotten around to completing everything.

The second example does not work because ??? results in a type called Nothing,
and you cannot do math operations with Nothing. For this reason, the ??? is generally
not as helpful as an expression that is used in some way, but it is still a useful feature
that you should take advantage of.

84 Introduction to Programming and Problem-Solving Using Scala

4.4 Problem Decomposition
As we have said, programming is about problem solving. One of the major aspects

of problem solving is breaking hard problems into smaller pieces. There are a number of
reasons to do this. The most obvious reason is that big problems are hard to solve. If you
can break a big problem into smaller pieces, it is often easier to solve the pieces and then
build an answer to the full problem from the answers to the pieces. This can be repeated
on each sub-problem until you get to a level where the problems are simple to solve.

A second advantage to breaking problems up is that the solutions to the pieces might
be useful in themselves. This allows you to potentially reuse pieces of code. The ability to
reuse existing code is critical in programming. There are many different ways that you can
break up a problem. A good way to tell if one is better than another is if one gives you
functions that you are more likely to be able to reuse.

A third advantage to decomposing a problem is that the resulting code can be easier
to understand and modify. If you give the functions good names, then people can easily
read and understand top level functions and have a better idea of what is going on in the
low level functions. In addition, if you decide at some point that you need to modify how
something is done, it is easier to determine where the change needs to be made and how to
make it if the problem has been broken down in a logical way.

A fourth advantage is that they are easier to debug. When you mess something up in
your code it is called a bug.4 The act of removing these flaws is debugging. It is a lot easier
to find and fix bugs in small pieces of code than in large pieces of code. Functions let you
make small pieces of code operate independently, so you can verify each function works on
its own, independent of others.

We looked at two different problems and saw how they could be programmed as a set of
instructions that we can put inside of a function. The question now is how could we break
these things up? If you go back to the original discussions, the descriptions of how to solve
the problems was done piece by piece in a way that worked well for breaking them apart.

Let us begin with the grading program. There are four basic parts to this problem.
We find the average of the tests, the assignments, and the quizzes. Once we have those,
we combine them using the proper percentages. Each could be broken out into a separate
function. If we write this into a file it might look like the following.

Listing 4.2: CourseAverageParts.scala
def testAve(test1:Double,test2:Double):Double = (test1+test2)/2

def assnAve(assn1:Double,assn2:Double,assn3:Double):Double =
(assn1+assn2+assn3)/3

def quizAve(quiz1:Double,quiz2:Double,quiz3:Double,quiz4:Double):Double = {
val minQuiz = quiz1 min quiz2 min quiz3 min quiz4
(quiz1+quiz2+quiz3+quiz4-minQuiz)/3

}

def fullAve(test:Double,assn:Double,quiz:Double):Double =
test*0.4+assn*0.4+quiz*0.2

4The name ”bug” has a long history in engineering, going back to at least Thomas Edison. It was pulled
into the field of electronic computers when an actual moth was found in a relay in the Mark II in 1947.
The name implies that these things accidentally crawl into software without any action for programmers.
In reality, you create the bugs in your software when you do things that are incorrect.

Functions 85

def courseAverage(test1:Double,test2:Double,assn1:Double,
assn2:Double,assn3:Double,quiz1:Double,quiz2:Double,
quiz3:Double,quiz4:Double):Double = {

val test=testAve(test1,test2)
val assn=assnAve(assn1,assn2,assn3)
val quiz=quizAve(quiz1,quiz2,quiz3,quiz4)
fullAve(test,assn,quiz)

}

Once you have this in a file you can either use this as part of a script or use the :load
command in the REPL to load it in and call the functions directly. Note that this version
requires a lot more typing than what we had before. That will not always be the case, but it
is for this example and many small examples where we cannot reuse functions. Even though
this version requires more typing, it has the advantages of being easier to understand and
alter because the functionality is broken out into pieces.

This example is one where we could potentially have some reuse if we just knew a bit
more Scala. Both testAve and assnAve do nothing more than take the average of numbers.
Because one averages two numbers while the other averages three, we do not yet know how
to write a single function to handle both cases. We will fix that in chapter 6.

Our other example was for converting a number of seconds into a properly formatted
time. When we originally discussed this, we broke it into two problems. First, we had to
figure out how many seconds, minutes, and hours a given number of seconds was. After
that, we had to format the string properly. We will maintain that separation of work with
functions. If we write this in a file, it might look like the following.

Listing 4.3: TimeConvertParts.scala
def calcHMS(totalSeconds:Int):(Int,Int,Int) = {
val displaySeconds = totalSeconds%60
val totalMinutes = totalSeconds/60
val displayMinutes = totalMinutes%60
val displayHours = totalMinutes/60
(displayHours,displayMinutes,displaySeconds)

}

def formatHMS(numHours:Int,numMinutes:Int,numSeconds:Int):String = {
val sec = numSeconds.toString
val min = numMinutes.toString
numHours+":"+("0"*(2-min.length))+min+":"+ ("0"*(2-sec.length))+sec

}

def secondsToTimeString(totalSeconds:Int):String = {
val (h,m,s) = calcHMS(totalSeconds)
formatHMS(h,m,s)

}

This code does something that we have not seen a function do yet. The calcHMS function
returns a tuple. This function needs to give us back three values for the hours, minutes,
and seconds. This type of situation is common in programming. How do you get functions
to return multiple values? Different languages have different solutions to this problem. In
Scala, the most direct solution is to have the function return a tuple as we see here.

This approach of taking a bigger problem and breaking it down into pieces is often
called a top-down approach. The mental image is that you have the full problem at the top

86 Introduction to Programming and Problem-Solving Using Scala

FIGURE 4.2: This figure shows a graphical breakdown of making a peanut butter and
jelly sandwich.

and in each level below it you have smaller pieces that are combined to make a solution
to the level above them. This structure stops at the bottom when you get to something
that can be solved relatively easily. In contrast to top-down, it is also possible to approach
problems from the bottom-up. This approach works when you have a certain familiarity
with solving a particular type of problem and you know what types of pieces you will need
or when your top level problem is not completely well defined and you have to try some
different approaches. This can happen when you are building software for a customer, as
the customer may have only a vague idea of what they want their program to look like. In
that situation, you can build pieces you know will be useful and try putting them together
in different ways until you find something that the customer is happy with.

To help you understand this, consider the common example of making a peanut butter
and jelly sandwich shown in figure 4.2. Often this example is used to help illustrate the
explicitness required for programming. Here the main focus is on how the problem can be
broken down and solved piece-by-piece. At the top is the full problem. That is broken into
three subproblems, which are each broken down further. In order to be truly explicit, the
steps would have to be broken down much further. Imagine if the instructions were going
to a robot instead of a human. To have it “Grab Jelly” you would have to instruct it on
moving its arm to the proper location, grasping, etc.

This example also shows that the problem probably contains some reusable parts. There
are several boxes at the bottom that start with “Grab” or “Walk to”. Ideally we would find
a way to write a function for walking that could be passed information on where to go.

Instead of viewing this in the graphical way shown in the figure, it can also be viewed
as an outline like the one shown below. Nesting shows how one action is broken down into
others.

• Make PB&J Sandwich

1. Collect Ingredients

(a) Get Pantry Items
i. Walk to Pantry
ii. Grab Peanut Butter

c
C

/)

P
u

t K
nife in

 S
in

k
J

.
2
~
E

w
-

w

a.
0::0=

=

W
a

lk to
 S

in
k I

:::>
c

E

Q
) en

ctl
.2.g'E

R

e
p

la
ce

 Je
lly

I
w

·c
w

Q

)
O::LL.==

W
a

lk to R
e

frig
e

ra
to

r I
0

R
e

place B
read

J
C

>
,

........
C

/)

R
e

place P
B

J

.2
c
E

w

til

w

..c
0::0...==

W
a

lk to P
a

n
try I

(.)
P

u
t B

re
a

d
 S

lice
s T

o
g

e
th

e
r I

.3:
W

ith P
B

 a
g

a
in

st Je
lly

""0
R

ep
la

ce Jelly Lid I
c

..c
"
0

R

e
p

e
a

t
I

S
p

rea
d Je

lly on B
rea

d I
rn

u
til

U
ntil

(f)
-~

~
~

C
o

vere
d I

E
xtra

ct Je
lly o

n K
n

ife I
o

.-
"
0

C/)~

R
e

m
o

ve
 lid

 fro
m

 Jelly I
.....,

c
oes

ctl
R

e
place P

B
 Lid I

Cl)
co

Q
)

"
0

R

e
p

e
a

t
I

S
p

re
a

d
 P

B
 o

n B
re

a
d

 I
0...

til
U

n
til

..0

w

C
o

vered I
E

xtra
ct P

B
 o

n
 K

n
ife

 I
Q

)
E

C

.m

C/)0...
R

e
m

o
ve

 Lid fro
m

 P
B

J

~

Q
)

rn
C/)

C
lo

se
 B

re
a

d
 B

ag
J

C/)
~

<
(

2
P

la
ce

 B
rea

d on P
late

J
"
0
~

-m
o

...
P

u
ll T

w
o

 S
lices fro

m
 B

ag
j

:::J
....

c
o...m

o
O

p
e

n
 B

read B
ag

I

C/)
w

 C
/)

G
ra

b K
n

ife
 I

-
G

ra
b P

la
te

 I
c

-aJ..cE

Q
)

(
9
0
~

W
a

lk to
 C

u
p

b
o

a
rd

j
"0

Q

)
~C/)

.....
O

'l
--o

E

G
ra

b
 Je

lly I
c

Q
)·L

:
Q

)
-

CJLL==
W

a
lk to R

e
frig

era
to

r
J

- u
G

ra
b B

read
J

Q
)

>
.

....
C

/)

0
-<

=
E

G

ra
b

 P
B

I

0
w

til w

C9o...==

W
a

lk to
 P

a
ntry

J

Functions 87

iii. Grab Bread

(b) Get Fridge Items

i. Walk to Fridge
ii. Grab Jelly

(c) Get Other Items

i. Walk to Cupboard
ii. Grab Plate
iii. Grab Knife

2. Assemble Sandwich

(a) Put Bread on Plate

i. Open Bread Bag
ii. Pull Two Slices from Bag
iii. Place Bread on Plate
iv. Close Bread Bag

(b) Spread Peanut Butter

i. Remove Lid from Peanut Butter
ii. Repeat Until Bread is Covered

A. Extract Peanut Butter on Knife
B. Spread Peanut Butter on Bread

iii. Replace Peanut Butter Lid

(c) Spread Jelly

i. Remove Lid from Jelly
ii. Repeat Until Bread is Covered

A. Extract Jelly on Knife
B. Spread Jelly on Bread

iii. Replace Jelly Lid

(d) Put Bread Slices Together with Peanut Butter Against Jelly

3. Clean Up

(a) Return Pantry Items

i. Walk to Pantry
ii. Replace Peanut Butter
iii. Replace Bread

(b) Return Fridge Items

i. Walk to Refrigerator
ii. Replace Jelly

(c) Return Other Items

i. Walk to Sink
ii. Put Knife in Sink

88 Introduction to Programming and Problem-Solving Using Scala

This outline format and the indentation that comes with it look more like the code that we
will write in Scala.

The problems that we solved above in Scala had solutions such that the decomposed
solution required more text than the original, monolithic solution. We have expressed that
this is not such a bad thing as the decomposed solutions have certain advantages. There is
another factor that you should keep in mind when decomposing problems. The discussion
of top-down approach requires that you keep breaking the problem down until you get to
something that is fairly simple to solve. This is not just practical for the problem solving,
it turns out that there are good reasons to keep functions short. Long functions are much
more likely to include errors than small functions are. For this reason, it is generally advised
that programmers keep their functions relatively short. How short you make your functions
can be a matter of style and personal preference, but there is a good rule you can follow
that is backed up by research. The rule is that functions should be kept short enough that
they fit completely on your screen at one time. When a function gets long enough that it
does not all fit on the screen, the programmer begins having to rely upon his/her memory
of what is in the parts that are off the screen. Human memory is not a great thing to rely
upon, and as a result, the rate of errors goes up significantly when there are parts of the
function that you cannot see on the screen.

We can also employ the if construct that we learned in chapter 3 inside of functions.
Consider the code we wrote to calculate the cost of an item purchased at the theme park.
This can be converted to the following function.5

Listing 4.4: ItemCost.scala
def itemCost(item:String, size:String):Double = {
if (item=="Drink") {
if (size=="S") 0.99
else if (size=="M") 1.29
else 1.39

} else if (item=="Side") {
if (size=="S") 1.29
else if (size=="M") 1.49
else 1.59

} else if (item=="Main") {
if (size=="S") 1.99
else if (size=="M") 2.59
else 2.99

} else {
if (size=="S") 4.09
else if (size=="M") 4.99
else 5.69

}
}

This function does not include reading the input from the user. Instead, it is assumed that
the code that calls it will read the values and pass them in. In general, passing values into
functions and returning values back is more flexible than reading them and printing results
to output in the function. A function that does reading and/or printing internally cannot
be reused if the values come from something other than standard input or if you want to

5The Double type really should not be used for money because it rounds. Remember that numbers in
the computer are represented in binary. The value 0.1 in decimal is an infinite repeating binary number.
That number gets truncated after a certain number of bits so the value 0.1 cannot be represented perfectly
in a Double. That is fine for most applications, including scientific applications. It is not desirable for an
application that deals with real money.

Functions 89

format the output in a different way. Alternately, you might want to add up all the costs for
a day. You cannot add things that are printed. That requires having the values returned.

To understand, consider the simple example of wanting to know how much should be
paid for two items.

import io.StdIn._
println("What is the first item?")
val item1 = readLine()
println("What size?")
val size1 = readLine()
println("What is the second item?")
val item2 = readLine()
println("What size?")
val size2 = readLine()
val totalCost = itemCost(item1,size1)+itemCost(item2,size2)
println("The total cost is "+totalCost)

The line where we calculate totalCost shows the real benefit of putting our code in a
function that returns a value.

4.5 Function Literals/Lambda Expressions/Closure
In chapter 2 we saw that the simplest form of expressions for Int, Double, String,

and some other types was the literal form. For example, just the number 5 is a literal of
type Int. Literals allow you to have an expression of a type that you can write in a short
format without declaring a name for it. Scala, because it includes elements of functional
programming, allows you to express functions as literals too. This construct is also referred
to as a lambda expression or a closure.

The syntax for a function literal starts with a set of parentheses that have a comma
separated list of arguments in them followed by an arrow made from an equals sign and a
greater than sign with the body of the function after that. This type of arrow is often read
as “rocket”. So if we go back to our first two functions we might write them in this way.

scala> (x:Double)=>x*x
res9: Double => Double = <function1>

scala> (x:Int,y:Int)=>x+y*y
res10: (Int, Int) => Int = <function2>

In this type of usage, the type of the arguments is required. As we will see, there are many
usages where it is not required. The basic rule is that if Scala can figure out the types from
where the function literal is used, it will do so. If the function were longer, one could use
curly braces to hold multiple statements. In theory one can use function literals for functions
of any length. In practice this is a style issue, and you will not want to use function literals
that are too long. The function literals will be embedded in other functions, and you do not
want those functions to exceed a screen size in length; so, the literals should not be more
than a few lines at most. The majority of function literals will be like these and fit on a
single line.

Scala has an even shorter form for some special cases of function literals. This form uses
underscores to represent parameters and skips the parameter list and rocket completely. It

90 Introduction to Programming and Problem-Solving Using Scala

can only be used when each parameter is used only once and in the same order they are
passed in. In this form, the function literal (x:Int,y:Int)=>x+y could be represented as
((_:Int)+(_:Int)). When Scala can figure out the types we can use the even shorter form
of (_+_). Note that this cannot be used for x2 written as x*x because we use the x twice. It
has significant limitations, but there are many situations where it is useful and convenient
to use. For that reason, this format will appear frequently in later chapters.

4.6 Side Effects
In purely functional programming, a function takes inputs and calculates a value. The

value it returns depends only on the arguments and the function does not do anything but
give back that value. Often in programming, functions will do other things as well, or might
return different values for the same inputs. These types of functions are not technically
“functional”. When they do other things we refer to that as side effects. This terminology
is like that for medications. You take a medication because it has a certain desired effect.
However, it might have certain other effects as well called the side effects. While the side
effects of a medication typically are not desired, there are times when side effects of functions
are desired. The simplest example of this is printing. The print statement does not return
anything. Instead it sends information to output. That is a side effect.

It is possible to have functions that return a value and have side effects. However, quite
frequently you will find that functions with side effects do not return any data. To Scala
that means their result type is Unit. The type Unit is a type that represents an object that
carries no information. The Boolean type is the simplest type that carries information as
it could be either true or false. The Unit type does not carry any information because
there is only one instance of it, which is written as ().

Here is a simple example of a function that only includes side effects and results in Unit.

scala> def introduce(name:String):Unit = {
| println("Hi, my name is "+name+".")
| }

introduce: (name: String)Unit

scala> introduce("Lisa")
Hi, my name is Lisa.

This is common in non-functional programming. Indeed, some languages include a special
construct, the procedure, for this.

The other significant form of side effect is an assignment. At this point that means an
assignment to a var. One could write a function that has the primary purpose of changing
the value of some var that is declared before it outside the function. When a var is declared
outside of any block of code, it is said to have global scope. This means that it can be
accessed anywhere in the file after to point of declaration.6 As was already mentioned, this
is often a poor way to do things as it is bug prone, and makes it harder to reuse the function.
As a general rule, global scope should be avoided for anything that can be changed. Still,

6Due to the way that Scala scripts are compiled, global vars are actually in scope everywhere, but they
are not initialized until the point of declaration. For this reason, you should not use them until after the
point of declaration.

Functions 91

FIGURE 4.3: Here you can see how control flow moves through a short program that
involves a function. Assume the user enters an age of 12. The code in the function is not
executed until the point where it is invoked. Once it has completed, control returns to where
it had been and then continues on to execute the next line of code after the call.

there are times when we will find it to be useful. The following code illustrates the type of
use we might see for this later in the book.

var x = 0
def moveLeft():Unit = x -= 1
def moveRight():Unit = x += 1

4.7 Thinking about Function Execution
It is not that hard to understand the sequential model of program execution. As the

program executes, you simply move down from one line to the next, doing whatever that
line says to do. All that conditionals added was the possibility that certain parts of the code
might get skipped. Functions can be a bit more complex. When you see a function defined
in code, you would simply skip over it, and remember it is there. The code does not get
executed until something calls it. When a function is called, control jumps to that function,
and continues sequentially inside of the function. When the function is done, control jumps
back to where it had been called from. This can be seen in figure 4.3.

In the presence of side effects, this is pretty much the only way you can think about
program execution and functions, because the order in which control passes over those side
effects is significant. If you have code that does not have side effects, you can think about
it in terms of substitution. Without side effects, everything is either a declaration or an
expression. Any expression can be substituted by something that is equivalent to it. The
goal is to substitute for something that moves you closer to having a simple value. Here are
the rules for substitution with different expressions.

• Expressions that contain only literals can be replaced with what they evaluate to (e.g.
4+5 → 9).

1 import io . Stdin.

def ticketPrice(age:Int) : Double
if(age<=13) 6 .50
else 10 . 00

println{"Enter your age")
val age=readint()
val price=t icketPrice (age)

11 println("The price of your t icket 1s $"+price+" . ")

92 Introduction to Programming and Problem-Solving Using Scala

• Variables can be replaced with their values.

• if-expressions are evaluated based on the value of the condition.

– if (true) trueExpr else falseExpr → trueExpr

– if (false) trueExpr else falseExpr → falseExpr

• A function call is replaced by the body of the function where all parameters have been
substituted by the arguments in the call.

To help understand these rules, we will run through a little example. One of the authors
teaches a roller skating class7 where most of the grade comes from various skills and an
endurance test. The following code can be used to calculate how many points a particular
student got from these components.

Listing 4.5: SkatingPoints.scala
def skillPoints(numSkills:Int):Int = 5*numSkills

def endurancePoints(numLaps:Int):Int = {
if (numLaps < 20) 0
else if (numLaps > 40) 20
else numLaps-20

}

val skills = 9
val laps = 36
val points = skillPoints(skills) + endurancePoints(laps)

It has been broken up to use two small functions, one for each component. This example
also hard codes the values instead of using readInt because that would be a side effect
which would complicate the use of substitution.

What we want to do is find the value of points using substitution. The expression we
want to evaluate is

skillPoints(skills) + endurancePoints(laps)

The first thing we will do is substitute in the values of the two vals. This gives us the
following.

skillPoints(9) + endurancePoints(36)

Note that this is technically doing two things at once. That is to keep the discussion shorter.
You should do the substitutions one at a time. If there is more than one available, you can
pick which one to do first, because there are no side effects, the order it does not matter.
Next we will expand out the call to skillPoints.

5*9 + endurancePoints(36)

Remember that this is done by replacing the call with the body of the function where pa-
rameters have been replaced by arguments. So the numSkills in skillPoints was replaced
by the value 9. We can then evaluate 5*9.

45 + endurancePoints(36)

7Yes, it counts for college credit.

Functions 93

Now we substitute for the endurancePoints function call using the value 36 for numLaps.

45 + {
if (36 < 20) 0
else if (36 > 40) 20
else 36-20

}

The first condition is false, so that if is replaced by the false expression, after the first else.

45 + {
if (36 > 40) 20
else 36-20

}

The next condition is also false, so that also simplifies to the false expression.

45 + {
36-20

}

At this point, all that is left is doing some math with literals, so we get 45 + 16, which
simplifies to our final answer of 61.

Higher Order Functions

Function literals would be nothing more than a novelty in Scala or any other pro-
gramming language if it were not for higher order functions. A higher order function
is a function that operates on other functions. This means that either we pass other
functions into it, or it results in a function. Higher order functions are a functional
programming concept, and they can be challenging to get ones head around, but we
will see how useful they can be in the coming chapters.

As an example of a higher order function here, we will use the idea of composition.
If we have two functions, f(x) and g(x), then the composition of f with g is f(g(x)).
We can write a Scala function that does this as follows.

scala> def compose(f:Double => Double,g:Double => Double):Double => Double =
| x => f(g(x))

compose: (f: Double => Double, g: Double => Double)Double => Double

Note that we write the function types themselves using arrows, “rocket”. We could call
this with either functions we build using def or function literals. We will do it first with
the following two functions that have been defined using def.

scala> def plus5(x:Double):Double = x+5
plus5: (x: Double)Double

scala> def square(x:Double):Double = x*x
square: (x: Double)Double

Now we want to use compose to build new functions from these two using the compose
function and then see our new functions working.

94 Introduction to Programming and Problem-Solving Using Scala

scala> val h=compose(plus5,square)
h: Double => Double = <function1>

scala> val j=compose(square,plus5)
j: Double => Double = <function1>

scala> h(3)
res0: Double = 14.0

scala> j(3)
res1: Double = 64.0

The function h(x) = x2 + 5 while j(x) = (x + 5)2. You can see that when we call
these with an argument of 3, we get values of 14 and 64 respectively, just as would be
expected.

We could define the same functions h and j using function literals as well.

scala> val h = compose(_+5, x => x*x)
h: Double => Double = <function1>

scala> val j = compose(x => x*x, _+5)
j: Double => Double = <function1>

scala> h(3)
res5: Double = 14.0

scala> j(3)
res6: Double = 64.0

If you had no real need for the functions plus5 or square, you would likely use this
latter format. They would be defined with def if you had a need to refer to them
multiple times.

4.8 type Declarations
Scala provides a mechanism that allows you to provide alternate names for types. This

can provide significant power when combined with concepts like abstraction that are beyond
the scope of a first-semester course. However, for now, it can be used to help give you short
meaningful names for tuple types that you use commonly.

The syntax of a type declaration begins with the keyword type. This is followed by the
name you want to give the type. As with other names, you should pick something that is
meaningful to you so that when you are reading through code, having this name helps it to
make more sense. Unlike var, val, and def, it is the general style for type names to being
with capital letters. You have probably noticed that the names of all the types we have
encountered so far, like Int and Double, start with capital letters. This is a style choice,

Functions 95

not something that Scala enforces, but it is highly recommended that you follow it. After
the name is a equal sign followed by the type you are giving a new name to.8

As an example of this, you might put something like the following at the top of a script
if you were going to write a lot of functions dealing with vectors in 3D.

type Vect = (Double, Double, Double)

In the rest of your code, you could refer to the type Vect instead of having to type out
(Double, Double, Double). This does not change how you interact with the tuple. You
would still use the methods _1, _2, and _3 or a val with a tuple pattern to get the values
out of the Vect.

There can even be a value to using a type declaration to give a different name to a
standard type like Int like this.

type Counter = Int

If you carefully use the Counter type through your program in places that call for it, you
can easily change the size of the integer type that is being used. If you find that you need
your counters to be able to go over Int.MaxValue, you can switch to using a Long. On the
other hand, if your counters are always small and you have a need to save memory, you
could consider going down to a Short. This type of usage is not common is Scala, but it
is used significantly in C using a similar construct called typedef when writing libraries so
that it is easy to modify types to fit the platform you are compiling for.

4.9 Putting It Together
In the last chapter we also wrote conditional code for calculating the admission cost to

the theme park. This makes a good example of a function as well. Here is that converted
to a function.

Listing 4.6: EntryCost.scala
def entryCost(age:Int, cooler:Boolean, waterPark:Boolean): Double = {
(if (age<13 || age>65) 20 else 35) +
(if (cooler) 5 else 0) +
(if (waterPark) 10 else 0)

}

The information needed for the calculation is passed in and this function only does a cal-
culation with the data, giving back a number.

Now we can put things together and write a script that will calculate the cost of a group
of people with up to four members including the purchase of meals. We will assume that
the whole group either brings a cooler or does not, that all would either go to the water
park or not, and that they all order some size of combo meal. The following code could be
put in a script with the entryCost and itemCost functions from earlier in the chapter.

Listing 4.7: ThemeParkBook.scala
def individualCost(cooler:Boolean, waterPark:Boolean): Double = {
println("What is the person’s age?")

8The old name continues to work. You just get to use this one as well to refer to the same thing.

96 Introduction to Programming and Problem-Solving Using Scala

val age = readInt()
println("What size combo are they ordering?")
val size = readLine()
entryCost(age,cooler,waterPark)+itemCost("Combo",size)

}

println("How many people are in your group? (1-4)")
val numPeople = readInt()
if (numPeople<1 || numPeople>4) {
println("This script can not handle "+numPeople+" people.")

} else {
println("Is the group bringing a cooler? (Y/N)")
val cooler = readLine()=="Y"
println("Will they be going to the water park? (Y/N)")
val waterPark = readLine()=="Y"
val totalCost = individualCost(cooler,waterPark) +
(if (numPeople>1) individualCost(cooler,waterPark) else 0) +
(if (numPeople>2) individualCost(cooler,waterPark) else 0) +
(if (numPeople>3) individualCost(cooler,waterPark) else 0)

println("The group cost is $"+totalCost+".")
}

Note that this code is not in a function. When you write a script, function declarations do
exactly that, they declare a function. You need to have code outside of the functions that
makes something happen, typically by calling one or more of the declared functions.

This script does have one significant limitation. It only works for 1-4 people. We do not
yet have the ability to make a piece of code happen an arbitrary number of times. That is
something we will learn how to do in the next chapter.

Ways to Run a Scala Program (Aside)

One thing that students occasionally struggle with is figuring out how they should
run their Scala programs. There are three different ways that you can run Scala. Two
of these you have seen: the REPL and scripts. A third, compiling to applications, will
be dealt with briefly at the end of this book. To use the REPL you enter scala on the
command line with no file to execute. To run a script, you enter scala on the command
line and give it a file name that ends with .scala. At first it might seem that these
two approaches are completely distinct. However, the REPL has a :load command
that you can use to load in code from a Scala file. Using this, it is possible to load a
script file into the REPL. There are times when this can be handy, but you need to
understand the difference between these two approaches.

When you run a file as a script, the only thing that the user sees is the values that
are printed out. If your file does not contain a print statement, nothing will be shown
on screen and it will appear to the user that it did not work. If all the file has in it
are declarations, statements beginning with val, var, or def (there are other types of
declarations that we will learn about later, but these three cover what we know at this
point), the script does not really do anything. You have to have statements that use
the declarations for them to matter in the script.

This is not the case when you load a file into the REPL. In that usage, feedback
is shown for every declaration in the form of a line that is printed with the type and

Functions 97

value of the declaration. If you declared functions in the file, you can call them in the
REPL after the file has been loaded. For this reason, files you load into the REPL do
not always need statements at the end that call functions, and they often do not include
print statements to display output.

Basically, the REPL gives you the ability to “play around” with the code. Using a
script simply runs it and does what it says. You should ask your instructor about this,
but odds are good that any code you submit for grading should be in the form of a
script that includes calls that demonstrate the functionality of the script and prompt
users for input. In this case, you can use the :load option in the REPL when you are
working on the program, but before you turn it in, make sure it runs properly and does
what you want when used as a script.

4.10 End of Chapter Material

4.10.1 Problem Solving Approach

The material covered in this chapter adds significant flexibility to our approach to prob-
lem solving. It also adds a number of choices you can consider when you think about what
you might write for any particular line of code. You can now write functions. Technically,
function declarations can go anywhere, including inside of other functions. It is best that
they have some logical organization to them. In the text we will tend to group top level
functions together at the top of scripts.

We also learned in this chapter about functions that are called only for their side effects.
Technically this was part of our list previously in the form of calls to print and println.
We now know that these are special cases of a general class of options. Given what we have
learned, here is a revised list of what any productive line of code might be doing.

1. Call a function just for the side effects. Previously print or println were the only
examples we had of this, but we can now be more general.

2. Declare something:

• A variable with val or var.
• A function with def. Inside of the function will be statements that can pull from
any of these rules. The last statement of the function should be an expression
that gives the result value.

• A type declaration with type to give something a more meaningful name.

3. Assign a value to a variable.

4. Write an if statement.

4.10.2 Summary of Concepts

• Functions are used to break problems up into smaller pieces.

– Help solve problems.

98 Introduction to Programming and Problem-Solving Using Scala

– Informative names make code more understandable.

– Smaller functions are easier to work with and easier to debug.

– Functions help code become more reusable.

• The functions in programming are similar to those from math. Information is passed
in through formal parameters. The value of the parameters is determined at the time
the function is called when arguments are passed in.

• Functions are declared in Scala using def. This is followed by the function name,
an argument list, a result type, and then an equal sign with the expression for the
function. Result type can be left off and inferred, but it is recommended you include
it anyway.

• Functions can also be written as literals in Scala.

– The rocket notation has the argument list and body separated by =>, which we
read as “rocket”.

– Shorter notation uses underscores for arguments. Only works for certain func-
tions.

• Functions that are called only for their side effects and do not need to return a value,
return Unit.

• If you have functions that often take or return tuples, it can be useful to use a type
declaration to give shorter, meaningful names to the tuples.

4.10.3 Self-Directed Study

Enter the following statements into the REPL and see what they do. Some will produce
errors. You should figure out why. Try some variations to make sure you understand what
is going on.

scala> def succ(n:Int):Int = n+1
scala> succ(1)
scala> succ(succ(1))
scala> var cnt = 0
scala> def inc { cnt=cnt+1 }
scala> cnt
scala> inc
scala> cnt
scala> inc
scala> inc
scala> cnt
scala> val f = (x:Double,y:Double)=>math.sqrt(x*x+y*y)
scala> f(3,4)
scala> def doThreeTimes(g:(Double)=>Double,x:Double) = g(g(g(x)))
scala> doThreeTimes(y=>y+1,1)
scala> doThreeTimes(y=>y*2,1)
scala> doThreeTimes(a=>a-5,100)
scala> doThreeTimes(_+1,1)
scala> doThreeTimes(_*2,1)
scala> def incChar(c:Char,offset:Int) = (c+offset).toChar
scala> incChar(’a’,1)

Functions 99

scala> incChar(’a’,2)
scala> incChar(’z’,-3)
scala> def tnp1(n:Int):(Int,Int) = {

val odd = n%2
(n/2*(1-odd),(3*n-1)*odd)

}
scala> odd
scala> var name = ""
scala> def introduction {

println("What is your name?")
name = readLine()
println("Hello "+name)

}
scala> name

4.10.4 Exercises

1. What would be the types of the parameters and result of functions that do the fol-
lowing tasks. (Note that you are not supposed to write the functions, just say what
their types are.)

• Tell you how many words are in a person’s name.

• Take a person’s name as normally written and give it back in “last, first” format.

• Take three words and return the TLA (Three Letter Acronym) for them.

• Take ten points in 2-space (x-y coordinates) and return how many are in the unit
circle.

• Take a number and tell how many distinct prime factors it has.

• Take a number and tell how many positive factors it has.

• Take a value in Fahrenheit and give back the equivalent in Celsius.

• Take a value in Fahrenheit and give back the equivalent in Celsius and Kelvin.

2. Write functions that return a Boolean for the different parts of exercise 3.1.

3. Write a function that takes a String parameter and returns a Boolean telling if the
argument is a palindrome.

4. Write a function for the solution to exercise 3.7.

5. Write a function for the solution to exercise 3.8.

6. Write a function for the solution to exercise 3.9.

7. Write a function for the solution to exercise 3.10.

8. Convert the code you wrote for exercise 3.11 into a function that takes the x and y
values are arguments and returns a Boolean for whether a point is in the unit circle.

9. Write a function to convert a temperature from Fahrenheit to Celsius.

10. Write a function to convert from miles to kilometers.

11. Write a function to convert from seconds to years.

100 Introduction to Programming and Problem-Solving Using Scala

12. Write a function to convert from AU (Astronomical Units) to miles.

13. Write two functions that takes four numbers and returns the smallest. The first can
use min, but the second cannot.

14. Write a function that takes three numbers and returns the median.

15. Write a function that sums all of the digits in an integer number entered by the user.
For example, if the user enters 723, the function would return 12 which is equal to
7+2+3.

16. Write a function that receives the three angles of a triangle and determines if the
input is valid. Then write another function that returns the type of triangle that is
represented by the three angles: isosceles, equilateral, or scalene.

17. Write a function that computes the number of days in a year. Test your program for
all the years from 2010 until 2020.

4.10.5 Projects

1. Write a set of functions to do the following operations on a 2-tuples of Int as if they
were the numerator and denominator of rational numbers.

(a) Addition

(b) Subtraction

(c) Multiplication

(d) Division

For example, the function for addition might start off as def add(n1:(Int, Int),
n2:(Int, Int)):(Int, Int).

2. Write a set of functions to do the following operations on 3-tuples of Doubles as if
they were vectors.

(a) Addition

(b) Subtraction

(c) Dot product

(d) Cross product

For example, the function for addition might start off as def add(v1:(Double,
Double, Double), v2:(Double, Double, Double)):(Double, Double, Double).

3. Write a set of functions to do the following operations on a 2-tuples of Doubles as if
they were complex numbers.

(a) Addition

(b) Subtraction

(c) Multiplication

(d) Division

(e) Magnitude

Functions 101

For example, the function for addition might start off as def add(c1:(Double,
Double), c2:(Double, Double)):(Double, Double).

4. Use your solution to exercise 3 to make a function that takes two complex numbers,
z and c and returns the value z2 + c.

5. Write a function to solve the quadratic equation for real values. Your solution should
return a (Double, Double) of the two roots.

6. Enhance the solution to exercise 5 so that it returns a ((Double, Double),(Double,
Double)). This is a 2-tuple of 2-tuples. This represents the two roots and each root
can be a complex number expressed as a (Double, Double).

7. The hyperbolic trigonometric function, sinh, cosh, and tanh, are all defined in terms
of power of e, the base of the natural logarithms. Here are basic definitions of each:

sinh(x) = 1
2 (ex − e−x)

cosh(x) = 1
2 (ex + e−x)

tanh(x) = sinh(x)
cosh(x)

Write functions for each of these. You can use math.exp(x) to represent ex.

8. Write two functions for converting between Cartesian and polar coordinate systems.
The first takes x:Double and y:Double and returns a (Double, Double) with r and
θ. The second takes r:Double and theta:Double and returns (Double, Double)
with x and y. You can use the Math.atan2(y:Double, x:Double) function to get an
angle. This avoids the problem of using division when x is zero.

9. This option has you doing a scientific calculation. We cannot do that much yet, but
we will work our way up. We are going to play with calculating the non-greenhouse
temperatures for planets with moderate to fast spin rates. This might seem like a
complex thing to do, but it is not difficult. You need two pieces of information and a
little algebra. The first piece of information is the Stefan-Boltzmann Law (j∗ = σT 4,
σ = 5.670400∗10−8

[
J

s∗m2∗K4

]
) for the amount of energy given off in thermal radiation

by any body. The second is the fact that intensity of radiation drops off as 1/r2.
To calculate the non-greenhouse temperature of a planet you need the following pieces
of information. You should prompt the user for values to these. To keep things simple
use mks units and keep temperatures in Kelvin.

• Radius of the star.
• Surface temperature of the star.
• Orbital semimajor axis of the planet.
• Albedo of the planet.

Use the Stefan-Boltzmann law to determine the energy output per square meter on
the stars surface. Make that into a function that takes the needed values. Using the
inverse square relationship you can calculate the intensity at the location of the planet
(use the ratio of the planet’s orbit distance to the stellar radius for this). Make this
another function. The star light will cover the planet with an area of πr2 where r is
the planets radius. A fraction of that, determined by the albedo, is reflected. What is
not reflected warms the planet. The planet cools through its own thermal radiation
from a surface of 4πr2. Setting the absorbed and emitted values equal allows you to
solve the temperature. (Note that the planetary radius should cancel out.) Make a
function that takes the incident power and albedo and gives you back a temperature.

102 Introduction to Programming and Problem-Solving Using Scala

10. If you wrote code for project 3.4 you can convert that to use functions. Write one
function for a sphere and another for a plane. Each should take information for a ray
as well as for the geometry that is being intersected. They should return the value of
t at the point of intersection. An appropriate negative value can be used if they do
not intersect.

11. In project 3.5, you wrote conditional statements to determine if you had enough
ingredients for some simple recipes. The numbers were kept small there in large part
because of the length of code and problems with duplication. Redo that problem for
the situation where you have five items in your pantry and the recipe involves four
ingredients. Use functions to make this manageable.

12. Convert your code from project 3.6 to use functions.

13. You are a waitress at a high end restaurant. You need a script (and appropriate
functions) that will record the order for each table and then calculate the taxes and
tip (if appropriate) to produce a ticket (bill) for the table. The largest table holds 8
people. You can assume that all the orders per table will be on one ticket (i.e. the
same bill). Customers may order just food, just a beverage, or both. You can assume
that each customer will, at most, order one food item and one drink item; however, it
is possible that they will not order anything. Food and beverage orders are processed
separately because the beverage order is handled by the bar (check ID if beverage
is alcoholic). Food tax rate is 7%, but there is an extra 2% tax on drinks. If there
are more than 6 customers at the table, an 18% tip will be added to the bill. You
can charge whatever you like for the food and beverage. You should offer at least 3
different food items, each with their own price. You should also offer at least 2 different
beverage items, each with their own price.

14. You are writing a script for a department store that is running a clothing sale. The
current sale gives the customer a $30 discount if they order at least $75 of clothing, a
$60 discount if they order at least $150 of clothing, and a $75 discount if they order
$200 or more. The discount is taken on the clothing purchase — shipping and tax
are not included in the total when calculating the discount. If the order totals more
than $125 then shipping is free, otherwise there is a $15 shipping charge applied to
the order. Write functions to take the order. This function should ask the user for the
total clothing cost, then calculate the discount, tax, and shipping. Finally, produce
an itemized bill for the order.

15. Write a script that calculates and prints the bill for a cellular telephone company.
The company offers two types of plans: residential and commercial. Its rates vary
depending on the type of plan. The rates are computed as follows:

• Residential plan: $40.00 per month plus the first 50 texts are free. Charges for
over 50 texts are $0.20 per text.

• Commercial plan: $70.00 per month plus
– For texts from 7:00 a.m. to 6:59 p.m., the first 75 texts are free; charges for

over 75 texts are $0.10 per text
– For texts from 7:00 p.m. to 6:59 a.m., the first 100 texts are free; charges for

over 100 texts are $0.05 per text.

Your script should prompt the user to enter an account number, a plan code, the
number of texts sent during the day, and number of texts sent during the night (if
applicable). A plan code of r or R means residential plan; a plan code of c or C means

Functions 103

commercial plan. Treat any other character as an error, displaying a message to the
customer.

Your script should contain functions to calculate and return the billing amount for
residential plan and commercial plan.

16. Craps is a popular dice game in Las Vegas. Write a program to play a variation of
the game, as follows: Ask the player to place a bet on any or all of four sections: the
FIELD section; the NUMBER section; OVER or UNDER 7 section; or the 7, 11, or
CRAPS section.

• If the player placed their bet in the FIELD section:

– The player may be on a 2, 3, 4, 9, 10, 11, or 12.
– If the total of the 2 dice equals a 2, 3, 4, 9, 10, 11, or 12, the player wins.
– If the total of the 2 dice equals 5, 6, 7, or 8, the House wins.

• If the player placed their bet in the NUMBER section:

– The player may bet on a 4, 5, 6, 8, 9, or 10.
– If the dice total 4, 5, 6, 8, 9, or 10 the player wins.
– House wins on all other numbers on that roll.

• If the player placed their bet in the OVER or UNDER 7 section:

– Player bet that the total of the 2 dice will be either Under 7 or Over 7.
– Both over and under lose to the House if a total of 7 is thrown.

• If the player placed their bet in the 7, 11, or CRAPS section:

– The player may bet on a 7, or an 11 or any Craps (dice totaling either 2, 3,
or 12) coming up on the throw of the dice.

– House wins if the number selected does not come up.

Roll two dice. Each die has six faces representing values 1, 2, 3, 4, 5, and 6,
respectively. You can generate a random Int between 0 and n in Scala using
util.Random.nextInt(n). Check the sum of the two dice and tell the player if they
won or if the house won.

17. Neglecting air resistance, objects that are thrown or fired into the air travel on a
parabolic path of the form x(t) = vxt, y(t) = −1

2
gt2 + vyt + h, where vx and vy are

the components of the velocity, g is the acceleration due to gravity, and h is the initial
height. Write a function that is passed the speed, the angle relative to the ground,
and the initial height of a projectile and results in the distance the projectile will go
before it hits the ground with y(t) = 0.

http://taylorandfrancis.com

Chapter 5
Recursion for Iteration

5.1 Basics of Recursion . 105
5.2 Writing Recursive Functions . 107
5.3 User Input . 111
5.4 Abstraction . 114

Tail Recursive Functions . 116
5.5 Matching . 117

match versus switch . 119
5.6 Bad Input, Exceptions, and the try/catch Expression . 119
5.7 Putting It Together . 121
5.8 Looking Ahead . 122
5.9 End of Chapter Material . 123

5.9.1 Problem Solving Approach . 123
5.9.2 Summary of Concepts . 123
5.9.3 Self-Directed Study . 125
5.9.4 Exercises . 125
5.9.5 Projects . 126

Gaining conditionals provided us with a lot of power, we can express more complex logic
in our code. Adding functions gave us the ability to break problems into pieces and reuse
functionality without retyping code. There is still something very significant that we are
missing. Currently, when we write a piece of code, it happens once. We can put that code into
a function and then call the function over and over, but it will only happen as many times
as we directly call it. We cannot easily vary the number of times that something happens,
or make anything happen a really large number of times. This is a problem, because one of
the things that computers are really good at is doing the same thing many times without
getting bored or distracted. The is a capability that we really need to add to our toolbox.
There is more than one way to make something happen multiple times in Scala. One of
these ways, recursion, we can do with just functions and conditionals, constructs that we
have already learned.

5.1 Basics of Recursion
Recursion is a concept that comes from mathematics. A mathematical function is re-

cursive if it is defined in terms of itself. To see how this works, we will begin with factorial.
You might recall from math classes that n! is the product of all the integers from 1 up to
n. We might write this as n! = 1 ∗ 2 ∗ ... ∗ n. More formally we could write it like this.

n! =
n∏
i=1

i

Both of the formal and informal approaches define factorial in terms of just multiplication,
and assume that we know how to make that multiplication happen repeatedly. We can be

105

106 Introduction to Programming and Problem-Solving Using Scala

more explicit about the repetition if we write the definition using recursion like this.

n! =

{
1 n < 2

n ∗ (n− 1)! otherwise

In this definition, the factorial function is defined in terms of itself. To describe what factorial
is, we use factorial.

To see how this works, let us run through an example using the substitution approach we
discussed in section 4.7 and take the factorial of 5. By our definition we get that 5! = 5 ∗ 4!.
This is because 5 is not less than 2. Subsequently, we can see that 4! = 4∗3! so 5! = 5∗4∗3!.
This leads to 5! = 5 ∗ 4 ∗ 3 ∗ 2! and finally to 5! = 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1.

This definition and its application illustrate two of the key aspects of recursion. There
are two possibilities for the value of this function. Which one we use depends on the value
of n. In the case where n is less than 2, the value of the factorial is 1. This is called a base
case. All recursive functions need some kind of base case. The critical thing about a base
case is that it is not recursive. When you get to a base case, it should have a value that can
be calculated directly without reference back to the function. Without this you get what is
called infinite recursion. There can be multiple different base cases as well. There is no
restriction that there be only one, but there must be at least one.

To see why the base case is required, consider what would happen without it. We would
still get 5! = 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1!, but what would happen after that? Without a base case,
1! = 1 ∗ 0! and 0! = 0 ∗ (−1)!. This process continues on forever. That is why it is called
infinite recursion.

The second case of the recursive definition demonstrates the recursive case. Not only
does this case refer back to the function itself, it does so with a different value and that
value should be moving us toward a base case. In this case, we define n! in terms of (n−1)!.
If the recursive case were to use the same value of n we would have infinite recursion again.
Similarly, if it used a value greater than n we would also have infinite recursion because our
base case is for small numbers, not large numbers.

What else could we define recursively? We could define multiplication, which is used by
factorial, recursively. After all, at least for the positive integers, multiplication is nothing
more than repeated addition? As with the factorial, we could write a definition of mul-
tiplication between positive integers that uses a math symbol that assumes some type of
repetition like this.

m ∗ n =
n∑
i=1

m

This says that m∗n is m added to itself n times. This can be written as a recursive function
in the following way.

m ∗ n =

{
0 n = 0

m+ (m ∗ (n− 1)) otherwise

This function has two cases again, with a base case for a small value and a recursive case,
that is defined in terms of the value we are recursing on using a smaller value of that
argument.

We could do the same type of things to define exponentiation in terms of multiplication.
We could also use an increment (adding 1) to define addition by higher numbers. It is worth
taking a look at what that would look like.

m+ n =

{
m n = 0

1 + (m+ (n− 1)) otherwise

Recursion for Iteration 107

While this seems a bit absurd, it would be less so if we named our functions. Consider the
following alternate way of writing this.

add(m,n) =

{
m n = 0

1 + add(m,n− 1) otherwise

Now it is clear that as long as we know how to do increment (+1) and decrement (-1) we
could write full addition. With full addition we could write multiplication. With multiplica-
tion we can write exponentiation or factorial. It turns out that this is not all you can do. It
might be hard to believe, but if you have variables, recursion (which simply requires func-
tions and an if construct), increment, and decrement, you have a full model of computation.
It can calculate anything that you want. Of course, we do not do it that way because it
would be extremely slow. Still, from a theoretical standpoint it is very interesting to know
that so much can be done with so little.

5.2 Writing Recursive Functions
We have seen the mathematical side of recursion and have written some basic mathe-

matical functions as recursive functions. Now we need to see how we write these things and
more in Scala. The translation from math functions to programming functions is not hard.
In fact, little will change from the math notation to the Scala notation.

As before, we will begin with the factorial function. Here is the factorial function written
in Scala in the REPL.

scala> def fact(n:Int):Int = if (n<2) 1 else n*fact(n-1)
fact: (n: Int)Int

We have called the function fact, short for factorial. The body of the function is a single
if expression. First it checks the value of n to see if it is less than 2. If it is, the expression
has a value of 1. Otherwise, it is n*fact(n-1). We can see the results of using this function
here:

scala> fact(5)
res1: Int = 120

We see here that it correctly calculates the factorial of 5.
One significant difference between recursive and non-recursive functions in Scala is that

we have to specify the return type of recursive functions. If you do not, Scala will quickly
let you know it is needed.

scala> def fact(n:Int) = if (n<2) 1 else n*fact(n-1)
<console>:6: error: recursive method fact needs result type

def fact(n:Int) = if (n<2) 1 else n*fact(n-1)
^

Factorial is an interesting function that is significant in Computer Science when we talk
about how much work certain programs have to do. Some programs have to do an amount
of work that scales with the factorial of the number of things they are working on. We can
use our factorial function to see what that would mean. Let us take the factorial of a few
different values.

108 Introduction to Programming and Problem-Solving Using Scala

scala> fact(10)
res2: Int = 3628800

scala> fact(15)
res3: Int = 2004310016

scala> fact(20)
res4: Int = -2102132736

The first two show you that the factorial function grows very quickly. Indeed, programs that
do factorial work are referred to as intractable because you cannot use them for even modest
size problems. The third example though shows something else interesting. The value of 20!
should be quite large. It certainly should not be negative. What is going on here?

If you remember back to chapter 2, we talked about the way that numbers are represented
on computers. Integers on computers are represented by a finite number of bits. As a result,
they can only get so large. The built in number representations in Scala use 32 bits for Int.
If we changed our function just a bit to use Long we could get 64 bits. Let’s see that in
action.

scala> def fact(n:Long):Long = if (n<2) 1L else n*fact(n-1)
fact: (n: Long)Long

scala> fact(20)
res5: Long = 2432902008176640000

scala> fact(30)
res6: Long = -8764578968847253504

The 64 bits in a Long are enough to store 20!, but they still fall short of 30!. If we give up
the speed of using the number types hard wired into the computer, we can represent much
larger numbers. We can then be limited by the amount of memory in the computer. That
is a value not measured in bits, but in billions of bytes. To do this, we use the type BigInt.

The BigInt type provides us with arbitrary precision arithmetic. It does this at the cost
of speed and memory. You do not want to use BigInt unless you really need it. However,
it can be fun to play with using a function like factorial which has the possibility of getting
quite large. Let us redefine our function using this type and see how it works.

scala> def fact(n:BigInt):BigInt = if (n<2) 1L else n*fact(n-1)
fact: (n: BigInt)BigInt

scala> fact(30)
res7: BigInt = 265252859812191058636308480000000

scala> fact(150)
res8: BigInt = 571338395644585459047893286526105400318955357860112641
825483758331798291248453983931265744886753111453771078787468542041626
662501986845044663559491959220665749425920957357789293253572904449624
724054167907221184454371222696755200000000000000000000000000000000000
00

Not only can this version take the factorial of 30, it can go to much larger values as you
see here. There are not that many applications that need these types of numbers, but those
that do greatly benefit from this type of functionality.

Now that we have beaten factorial to death, it is probably time to move on to a different

Recursion for Iteration 109

example. The last section was all about examples pulled from mathematics. The title of this
chapter though is using recursion for iteration. This is a far broader programming concept
than the mathematical functions we have talked about. So let us use an example that is
very specific to programming.

A simple example to start with is to write a function that will “count” down from a
certain number to zero. By count here we it will print out the values, so these functions now
have side effects. Like the factorial, we will pass in a single number, the number we want
to count down from. We also have to have a base case, the point where we stop counting.
Since we are counting down to zero, if the value is ever below zero then we are done and
should not print anything.

In the recursive case we will have a value, n, that is greater than or equal to zero. We
definitely want to print n. The question is, what do we do after that? Well, if we are counting
down, then following n we want to have the count down that begins with n-1. Indeed, this is
how you should imagine the recursion working. Counting down from n is done by counting
the n, then counting down from n-1. Converting this into code looks like the following:

def countDown(n:Int):Unit = {
if (n>=0) {
println(n)
countDown(n-1)

}
}

The way this code is written, the base case does nothing so we have an if statement that
will cause the function to finish without doing anything if the value of n is less than 0. You
can call this function passing in different values for n to verify that it works.

Now let us try something slightly different. What if I want to count from one value up
to another? In some ways, this function looks very much like what we already wrote. There
are some differences though. In the last function we were always counting down to zero so
the only information we needed to know was what we were counting from. In this case, we
need to be told both what we are counting from and what we are counting to. That means
that our function needs two parameters passed in. A first cut at this might look like the
following.

def countFromTo(from:Int,to:Int):Unit = {
println(from)
if (from!=to) {
countFromTo(from+1, to)

}
}

This function will work fine under the assumption that we are counting up. However, if you
call this with the intention of counting down so that from is bigger than to, you have a
problem. To see why, let us trace through this function. First, let us see what happens if
we call it with 2 and 5, so we are trying to count up from 2 to 5. What we are doing is
referred to as tracing the code. It is the act of running through code to see what it does.
The substitution method effectively does this when we have no side effects, but printing is
a side effect, so we need to run through the code in a different way to make certain we get
the right behavior. This is an essential ability for any programmer. After all, how can you
write code to complete a given task if you are not able to understand what the code you
write will do? There are lots of different approaches to tracing. Many involve tables where
you write down the values of different variables. For recursive functions you can often just
write down each call and what it does, then show the calls it makes. That is what we will

110 Introduction to Programming and Problem-Solving Using Scala

do here. We will leave out the method name and just put the values of the arguments as
that is what changes.

(2,5) => prints 2

↓
(3,5) => prints 3

↓
(4,5) => prints 4

↓
(5,5) => prints 5

The last call does not call itself because the condition from!=to is false.
Now consider what happens if we called this function with the arguments reversed. It

seems reasonable to ask the function to count from 5 to 2. It just has to count down. To
see what it really does, we can trace it.

(5,2) => prints 5

↓
(6,2) => prints 6

↓
(7,2) => prints 7

↓
(8,2) => prints 8

↓
...

This function will count for a very long time. It is not technically infinite recursion because
the Int type only has a finite number of values. Once it counts above 231− 1 it wraps back
around to −231 and counts up from there to 2 where it will stop. You have to be patient
to see this behavior. Even if it is not infinite, this is not the behavior we want. We would
rather the function count down from 5 to 2. The question is, how can we do this? To answer
this we should go back to the trace and figure out why it was not doing that in the first
place.

Looking at the code and the trace you should quickly see that the problem is due to the
fact that the recursive call is passed a value of from+1. So the next call is always using a
value one larger than the previous one. What we need is to use +1 when we are counting
up and -1 when we are counting down. This behavior can be easily added by replacing the
1 with an if expression. Our modified function looks like this.

def countFromTo(from:Int,to:Int):Unit = {
println(from)
if (from!=to) {
countFromTo(from + (if (from<to) 1 else -1), to)

}
}

Now when the from value is less than the to value we add 1. Otherwise, we will add -1.
Since we do not get to that point if the two are equal, we do not have to worry about that
situation. You should enter this function in and test it to make sure that it does what we
want.

Recursion for Iteration 111

5.3 User Input
We saw back in chapter 2 that we can call the function readInt to read an integer from

standard input. Now we want to read multiple values and do something with them.1 We
will start by taking the sum of a specific number of values. We can write a function called
sumInputInts. We will pass this function an integer that represents how many integers we
want the user to input, and it will return the sum of those values. How can we define such
a function recursively? If we want to sum up 10 numbers, we could say that sum is the first
number, plus the sum of 9 others. The base case here is that if the number of numbers we
are supposed to sum gets below 1, then the sum is zero. Let us see what this would look
like in code.

def sumInputInts(num:Int):Int = {
if (num>0) {
readInt()+sumInputInts(num-1)

} else {
0

}
}

The if is being used as an expression here. It is the only expression in the function so it
is the last one, and it will be the result value of the function. If num, the argument to the
function, is not greater than zero, then the functions value is zero. If it is greater than zero,
the function will read in a new value and return the sum of that value and what we get
from summing one fewer values.

What if we do not know in advance how many values we are going to sum? What if
we want to keep going until some endpoint is reached? We could do this. One problem is
determining what represents the end. We need to have the user type in something distinctly
different that tells us they have entered all the values they want to sum. An easy way to
do this would be to only allow the user to sum positive values and stop as soon as a non-
positive value is entered. This gives us a function that does not take any arguments. We
do not have to tell it anything. It will return to us an integer for the sum of the numbers
entered before the non-positive value. Such a function could be written as follows.

def sumInputPositive():Int = {
val n = readInt()
if (n>0) {
n+sumInputPositive()

} else {
0

}
}

This time we read a new value before we determine if we will continue or stop. The decision
is based on that value, which we store in the variable n. Empty parentheses have been added
after the function name for both the declaration and the call. This is a style issue because
they are not required. It is considered proper style to use parentheses if the function has side
effects and to leave them off if it does not. You will recall from chapter 4 that side effects
are the way in which a function changes things that go beyond just returning a value. What
does this function do that causes us to say it has side effects? The side effects here are in the

1Remember that you will need to import io.StdIn._ before using these input methods.

112 Introduction to Programming and Problem-Solving Using Scala

form of reading input. Reading input is a side effect because it can have an impact beyond
that one function. Consider having two different functions that both read input. The order
in which you call them is likely to change their behavior. That is because the second one
will read input in the state that is left after the first one.

This function does a good job of letting us add together an arbitrary number of user
inputs, but it has a significant limitation, it only works with positive values. That is because
we reserve negative values as the stop condition. There could certainly be circumstances
where this limitation was a problem. How could we get around it? What other methods could
we use to tell the function to stop the recursion? We could pick some particular special value
like -999 to be the end condition. While -999 might not seem like a particularly common
number, this is really no better than what we had before because our function still cannot
operate on any valid integer value. We’d like to have the termination input be something
like the word “quit”. Something special that is not a number.

We can do this if we do not use readInt. We could instead use the readLine function
which will read a full line of input and returns a String. You might be tempted to create
a method like this:

def sumUntilQuit():Int = {
val n = readLine()
if (n!="quit") {
n+sumUntilQuit()

} else {
0

}
}

If you enter this into a file and then load it into the console, you will get the following error.

<console>:8: error: type mismatch;
found : String
required: Int

n+sumUntilQuit()
^

This is because the function is supposed to return an Int, but n is a String and when we
use + with a String what we get is a String. Why is n a String? Because that is the type
returned by readLine and Scala’s type inference decided on the line val n = readLine()
that n must be a String.

This problem can be easily fixed. We know that if the user is giving us valid input, the
only things which can be entered are integer values until the word “quit” is typed in.2 So
we should be able to convert the String to an Int. That can be done as shown here.

def sumUntilQuit():Int = {
val n = readLine()
if (n!="quit") {
n.toInt+sumUntilQuit()

} else {
0

}
}

2We generally assume that user input will be valid, as it makes things easier and allows us to focus on
the logic of the problem we are solving. Later in this chapter, we will introduce the try-catch construct,
which will allow us to detect and handle when the user enters something it is not what we were expecting.

Recursion for Iteration 113

Now we have a version of the function which will read one integer at a time until it gets the
word “quit”.

Summing up a bunch of numbers can be helpful, but it is a bit basic. Let us try to do
something more complex. A tiny step up in the complexity would be to take an average.
The average is nothing more than the sum divided by the number of elements. In the first
version of the function when we enter how many number would be read, this would be
trivial to write. We do not even need to write it. The user knows how many numbers there
were, just divide by that. This is not so straightforward for the other versions. We do not
know how many values were input, and we do not want to force the user to count them.
Since we need both a sum and a count of the number of values to calculate an average, we
need a function that can give us both.

This is another example of a function that needs to return two values and as before,
we will use a tuple to do the job. So we will write a new function called sumAndCount,
which returns a tuple that has the sum of all the numbers entered as well as the count
of how many there were. We will base this off the last version of sumUntilQuit so there
are no restrictions on the numbers the user can input. Such a function might look like the
following:

def sumAndCount():(Int,Int) = {
val n = readLine()
if (n!="quit") {
val (s,c) = sumAndCount()
(s+n.toInt, c+1)

} else {
(0, 0)

}
}

If you load this function into the REPL and call it, you can enter a set of numbers and
see the return value. If, for example, you enter 3, 4, 5, and 6 on separate lines followed by
“quit”, you will get this:

res0: (Int, Int) = (18,4)

This looks a lot like what we had before, only every line related to the return of the function
now has a tuple for the sum and the count. We see it on the first line for the result type. We
also see it on the last line of both branches of the if expression for the actual result values.
The last place we see it is in the recursive branch where the result value from the recursive
call is stored in a tuple. This syntax of an assignment into a tuple is actually doing pattern
matching which will be discussed later in this chapter.

Now we have both the sum and the count. It is a simple matter to use this in a different
function that will calculate the average. The function shown below calls sumAndCount and
uses the two values that are returned to get a final answer.

def averageInput():Double = {
val (sum,count) = sumAndCount()
sum.toDouble/count

}

The one thing that you might at first find odd about this function is that it has two places
where Double appears. It is the result type and in the last expression the toDouble method
is called on sum. This is done because averages are not generally whole numbers. We have to
call toDouble on sum or count because otherwise Scala will perform integer division which
truncates the value. We could convert both to Doubles, but that is not required because

114 Introduction to Programming and Problem-Solving Using Scala

numerical operations between a Double and an Int automatically convert the Int to a
Double and result in a Double.

5.4 Abstraction
What if, instead of taking the sum of a bunch of user inputs, we want to take a product?

What would we change in sumAndCount to make it productAndCount? The obvious change
is that we change addition to multiplication in the recursive branch of the if. A less obvious
change is that we also need the base case to return 1 instead of 0. So our modified function
might look like this.

def productAndCount():(Int,Int) = {
val n = readLine()
if (n!="quit") {
val (s,c) = productAndCount()
(s*n.toInt, c+1)

} else {
(1, 0)

}
}

This is almost exactly the same as what we had before. We just called it a different name
and changed two characters in it. This copying of code where we make minor changes is
something that is generally frowned upon. You might say that it does not smell right.3
There are a number of reasons why you would want to avoid doing this type of thing.
First, what happens if your first version had a bug? Well, you have now duplicated it and
when you figure out something is wrong you have to fix it in multiple places. A second
problem is closely related to this, that is the situation where you realize you want a bit
more functionality so you need to add something. Again you now have multiple versions to
add that into. In addition, it just makes the code base harder to work with. Longer code
means more places things can be messed up and more code to go through when there is a
problem. For this reason, we strive to reduce code duplication. One way we do this is to
include abstraction. We look for ways to make the original code more flexible so it can do
everything we want. Abstraction is one of the most important tools in Computer Science
and a remarkably powerful concept that you will want to understand. Here we are starting
with a fairly simple example.

In order to abstract these functions to make them into one, we focus on the things
that were different between them and ask if there is a way to pass that information in as
arguments to a version of the function that will do both. For this, the changing of the name
is not important. What is important is that we changed the operation we were doing and
the base value that was returned. The base value is easy to deal with. We simply pass in an
argument to the method that is the value returned at the base. That might look like this.

def inputAndCount(base:Int):(Int,Int) = {
val n = readLine()
if (n!="quit") {
val (s,c) = inputAndCount(base)

3Indeed, the term “smell” is the actual terminology used in the field of refactoring for things in code that
are not quite right and should probably be fixed.

Recursion for Iteration 115

(s*n.toInt, c+1)
} else {
(base, 0)

}
}

The argument base is passed down through the recursion and is also returned in the base
case. However, this version is stuck with multiplication so we have not gained all that much.

Dealing with the multiplication is a bit harder. For that we need to think about what
multiplication and addition really are and how they are used here. Both multiplication and
addition are operators. They take in two operands and give us back a value. When described
that way, we can see they are like functions. What we need is a function that takes two
Ints and returns an Int. That function could be multiplication or addition and then the
inputAndCount function would be flexible enough to handle either a sum or a product. It
might look like this.

def inputAndCount(base:Int, func:(Int,Int)=>Int):(Int,Int) = {
val n = readLine()
if (n!="quit") {
val (s,c) = inputAndCount(base,func)
(func(s,n.toInt), c+1)

} else {
(base, 0)

}
}

The second argument to inputAndCount, which is called func, has a more complex type.
It is a function type. It is a function that takes two Ints as arguments and returns an Int.
As with base, we pass func through on the recursive call. We also used func in place of
the * or the + in the first element of the return tuple in the recursive case. Now instead of
doing s+n.toInt or s*n.toInt, we are doing func(s,n.toInt). What that does depends
on the function that is passed in.

To make sure we understand this process we need to see it in action. Let us start with
doing a sum and use the longest, easiest to understand syntax. We define a function that
does addition and pass that in. For the input we type in the numbers 3, 4, and 5 followed
by “quit”. Those values are not shown by the REPL.

scala> def add(x:Int,y:Int):Int = x+y
add: (x: Int,y: Int)Int

scala> inputAndCount(0,add)
res3: (Int, Int) = (12,3)

In the call to inputAndCount we used the function add, which was defined above it, as
the second argument. Using a function defined in this way forces us to do a lot of typing.
This is exactly the reason Scala includes function literals. You will recall from chapter 4
that a function literal allows us to define a function on the fly in Scala. The normal syntax
for this looks a lot like the function type in the definition of inputAndCount. It uses a =>
between the parameters and the body of the function. Using a function literal we could call
inputAndCount without defining the add function. That approach looks like this.

scala> inputAndCount(0, (x,y) => x+y)
res4: (Int, Int) = (12,3)

116 Introduction to Programming and Problem-Solving Using Scala

One thing to notice about this is that we did not have to specify the types on x and y. That
is because Scala knows that the second argument to inputAndCount is a function that takes
two Int values. As such, it assumes that x and y must be of type Int.

If you remember back to section 4.5 on function literals, you will recall there is an
even shorter syntax for declaring them that only works in certain situations. That was the
syntax that uses _ as a placeholder for the arguments. This syntax can only be used if each
argument occurs only once and in order. That is true here, so we are allowed to use the
shorthand. That simplifies our call all the way down to this.

scala> inputAndCount(0, _+_)
res5: (Int, Int) = (12,3)

Of course, the reason for doing this was so that we could also do products without having
to write a second function. The product function differed from the sum function in that the
base case was 1 and it used * instead of +. If we make those two changes to what we did
above, we will see that we have indeed created a single function that can do either sum or
product.

scala> inputAndCount(1, _*_)
res6: (Int, Int) = (60,3)

Not only did we succeed here, we did so in a way that feels satisfying to us. Why? Because
our abstraction can be used in a minimal way and only the essential variations have to be
expressed. We do not have to do a lot of extra typing to use the abstraction. It is not much
longer to call inputAndCount than it was to call sumAndCount or productAndCount. In
addition, the only things we changed between the two calls were the changing of the 0 to 1
and the + to *. Those were the exact same things we had to change if we had done the full
copy and paste of the functions. This means that the concept we want to express is coming
through clearly and is not complicated with a lot of overhead.

The inputAndCount function is what we call a higher order function. That is because it
is a function that uses other functions to operate. We provide it with a function to help it
do its job. This type of construct has historically been found mostly in functional languages.
With the addition of lambda expressions, many mainstream languages also allows this type
of funtionality.

You might say we only had to duplicate the code once to have the sum and the product.
Is it really worth the effort of our abstraction to prevent that? Is this really all that smelly?
The answer, with only a sum and a product, is probably “no”. A single code duplication
is not the end of the world. However, if I next ask you to complete versions that return
the minimum or the maximum, what do you do then? Without the abstraction, you get to
copy and paste two more versions of the code and make similarly minor changes to them.
With the abstraction, you just call inputAndCount with different arguments. The question
of whether it is worth it to abstract really depends on how much expansion you expect
in the future. If the abstraction does not take much effort it is probably worth doing to
start with because it is often hard to predict if you will need to extend something in the
future. You might not feel this in what we do in this book, but it becomes very significant
in professional development when you often are not told up front exactly what is wanted of
you and even when you are, the customer is prone to change their mind later in the process.

Recursion for Iteration 117

Tail Recursive Functions

Every call to a function typically takes a little memory on what is called the stack to
store the arguments, local variables, and information about where the call came from.
If a recursive function calls itself many times, this can add up to more than the amount
of memory set aside for this purpose. When this happens, you get a stack overflow and
you program terminates.

Scala will optimize this away for recursive functions that have nothing left to do
after the recursive call. You can convert a recursive function that is not tail recursive
to one that is by passing in additional arguments. To see this we can demonstrate how
this would be done on the sumAndCount function on page 113. The original version is
not tail recursive because it does that addition to both the sum and the count after
the recursive call. Just doing one of those would prevent the function from being tail
recursive. To change this, we can pass in the sum and count as arguments. The produces
the following code.

def sumAndCountTailRec(sum:Int, count:Int):(Int,Int) = {
val n = readLine()
if (n!="quit") {
sumAndCountTailRec(sum+n.toInt, count+1)

} else {
(sum, count)

}
}

Note that when you call this version of the function, you have to provide initial values
for sum and count, both of which should probably be zero. It is possible to hide this
by nesting functions, but that is a topic for later.

If a function really needs to be tail recursive, you can tell Scala this with an anno-
tation. Annotations are more advanced features that we do not deal with much in this
book. To do this, you first need to import annotation.tailrec, then you can put
@tailrec in from of any function that must be tail recursive. If Scala cannot make the
function tail recursive, it will give an error.

5.5 Matching
The if expression is not the only conditional construct in Scala. There is a second, far

more expressive, conditional construct, match. While the if construct picks between two
different possibilities, based on whether an expression is true or false, the match construct
allows you to pick from a large number of options to see if a particular expression matches
any of them. The term “matches” here is vague. Indeed, the power of the match construct
comes from something called pattern matching.

The syntax of the match expression in its simplest form is as follows.

expr match {
case pattern1 => expr1
case pattern2 => expr2
case pattern3 => expr3

118 Introduction to Programming and Problem-Solving Using Scala

...
}

The value of the expression before the match keyword is checked against each of the different
patterns that follow the case keywords in order. The first pattern that matches will have
its expression evaluated and that will be the value of the whole match expression.

We can use this to repeat our example from chapter 3 related to the cost of food at a
theme park.

def foodPriceMatch(item:String,size:String):Double = item match {
case "Drink" => size match {
case "S" => 0.99
case "M" => 1.29
case _ => 1.39

}
case "Side" => size match {
case "S" => 1.29
case "M" => 1.49
case _ => 1.59

}
case "Main" => size match {
case "S" => 1.99
case "M" => 2.59
case _ => 2.99

}
case _ => size match {
case "S" => 4.09
case "M" => 4.29
case _ => 5.69

}
}

When an entire function is a single match, it is customary to put the start of the match
after the equals sign as done here. Inside we have the four different cases, each with its own
match on the size. The one thing that might seem odd here is the use of the underscore. An
underscore as a pattern matches anything. This is done so that the behavior would agree
with what we had in the if version where it defaulted to “Combo” as the item and “Large”
as the size.

This example shows that the match expressions can be nested and the _ can be used to
match anything. There is a lot more to the match expression though. The following example
shows how to use match to give responses to whether you might buy different food items.

def buy(food:(String, Double)):Boolean = food match {
case ("Steak", cost) if (cost < 10) => true
case ("Steak", _) => false
case (_, cost) => cost < 1

}

This is a very limited example, but it demonstrates several aspects of match that are worth
noting. First, food is a tuple, and the cases pull the two items out of that tuple. That is
part of the pattern matching aspect. We will use this later on when we have other things
that work as patterns. The second thing we see is that if we put a variable name in the
pattern, it will match with anything and it will be bound to the value of that thing. In
the example, the second element of the tuple in the first and third cases is given the name

Recursion for Iteration 119

cost. That variable could appear in the expression for the case as in the last case where
we will buy anything for under a dollar. It can also be part of an if that “guards” the case.
The pattern in the first case will match anything that has the word “Steak” as the food.
However, the if means we will only use that case if the cost is less than 10. Otherwise, it
falls down and checks later cases.

match versus switch

If you are familiar with other programming languages you might have heard of a
switch statement before. On the surface, match might seem like switch, but match is
far more powerful and flexible in ways allowing you to use it more than a switch.

For this chapter, an appropriate example would be to demonstrate recursion using match
instead of an if. We can start with a simple example of something like countDown.

def countDown(n:Int):Unit = n match {
case 0 =>
case i =>
println(i)
countDown(i-1)

}

This function is not quite the same as what we had with the if because it only stops on the
value 0. This makes it a little less robust, but it does a good job of illustrating the syntax
and style of recursion with a match. The recursive argument, the one that changes each
time the function is called, is the argument to match. There is at least one case that does
not involve a recursive call and at least one case that does.

A more significant example would be to rewrite the inputAndCount function using a
match.

def inputAndCount(base:Int,func:(Int,Int)=>Int):(Int,Int) = readLine() match {
case "quit" =>
(base, 0)

case n =>
val (s, c) = inputAndCount(base, func)
(func(s, n.toInt), c+1)

}

Here the call to readLine is the argument to match. This is because there is not a standard
recursive argument for this function. The decision of whether or not to recurse is based on
user input, so the user input is what we match on.

5.6 Bad Input, Exceptions, and the try/catch Expression
At this point, you have probably noticed that if you call readInt and enter

something that is not a valid Int it causes the program to crash. If you looked
closely at the output when that happens you have noticed that it starts with
java.lang.NumberFormatException. This is the error type reported when the program

120 Introduction to Programming and Problem-Solving Using Scala

is expecting a number and gets something that does not fit that requirement. The
NumberFormatException is just one type of Exception. There are many others that occur
for various reasons, and you can even create your own types of exceptions.

We generally assume that users will input appropriate values to keep examples simple.
As such, we do not include code for handling situations when they do not. If you want to
be able to make more flexible code or simply deal nicely with users giving invalid inputs
you need to use the try/catch expression. This begins with a try block that does what the
name implies, it is going to try to execute a piece of code with the knowledge that it might
fail. This is followed by a catch block with different cases for things that could go wrong.
Here is a very basic example where we try to read an integer and give back the value that
is read if it works, otherwise, it gives us zero.

val num = try {
readInt()

} catch {
case _ => 0

}

As this shows, the try/catch is an expression with a value. One point to keep in mind
about this is that the values given back by different cases generally need to match the type
of the last expression of the try block. If you run this code, you will get a warning about
it catching all Throwables, and it asks if you want to do that. Catching everything with a
case _ is not good form. There are some things that you should not be catching because
you cannot do anything to fix them. An example would be an OutOfMemoryError. If you
run out of memory, just returning zero is not going to save the program. You can fix this
by specifying the type on the pattern for the case as shown below.

You could also see the normal printout you get from an exception by giving a name to
the exception in the case associated with it. All exception objects have a method called
printStackTrace.

val num = try {
readInt()

} catch {
case e =>
e.printStackTrace
0

}

This can be especially useful during debugging as that stack trace includes a significant
amount of useful information.

Both of these examples have the pitfall that they give back a value of zero when any-
thing goes wrong. If you really need to have an integer read, and only want to handle
NumberFormatExceptions, you might consider code like this.

def readIntRobust():Int = try {
readInt()

} catch {
case e:NumberFormatException =>
println("That was not an integer. Please try again.")
readIntRobust()

}

This recursive function will call itself repeatedly until the user enters a valid integer. This
uses a different type of pattern in the case, one which only matches a certain type. In this

Recursion for Iteration 121

case, it only matches an exception of the NumberFormatException type. So if some other
type of exception were to occur, that would still cause a crash. Such behavior is typically
want you want. You should only handle errors that you know how to deal with at that point
in the code. This same type of syntax, where you have a variable name followed by a colon
and a type, can be used in other places that allow patterns, such as with match. Outside
of the try/catch expression, we will not find much use for it in this book as we generally
know the types that we are working with, and this pattern is most useful when that is not
the case.

5.7 Putting It Together
Back to the theme park. Let’s take some of the functions we wrote previously, and put

them to use in a recursive function that is part of a script that we could use at the front of
the park where they sell admission tickets. The recursion will let us handle multiple groups
paying for admission with any number of people per group. It will then add up all the
admissions costs so we can get a daily total. In addition, it will keep track of the number of
groups and people that come in. The code for this makes the same assumptions we made
before about groups in regards to coolers and the water park.

Listing 5.1: EntryGate.scala
def entryCost(age:Int, cooler:Boolean, waterPark:Boolean):Double = {
(if (age < 13 || age > 65) 20 else 35) +
(if (cooler) 5 else 0) +
(if (waterPark) 10 else 0)

}

def individualAdding(num:Int, cooler:Boolean, waterPark:Boolean):Double = {
if (num > 0) {
println("What is the personâĂŹs age?")
val age = readInt()
entryCost(age, cooler, waterPark)+individualAdding(num-1, false, waterPark)

} else 0.0
}

def groupSizeCost():(Int,Double) = {
println("How many people are in your group?")
val numPeople = readInt()
println("Is the group bringing a cooler? (Y/N)")
val cooler = readLine() == "Y"
println("Will they be going to the water park? (Y/N)")
val waterPark = readLine() == "Y"
(numPeople,individualAdding(numPeople,cooler,waterPark))

}

def doAdmission():(Int,Int,Double) = {
println("Is there another group for the day? (Y/N)")
val another = readLine()
if (another == "Y") {
val (people, cost) = groupSizeCost()
val (morePeople, moreGroups, moreCost) = doAdmission()

122 Introduction to Programming and Problem-Solving Using Scala

(people+morePeople, 1+moreGroups, cost+moreCost)
} else (0,0,0.0)

}

val (totalPeople, totalGroups, totalCost) = doAdmission()
println("There were "+totalPeople+" people in "+totalGroups+
" groups who paid a total of "+totalCost)

This code has two different recursive functions, one for groups and one for people. The
doAdmission function recurses over full groups. It asks each time if there is another group
and if there is it uses groupSizeCost to get the number of people and total cost for the
next group, then adds those values to the return of the recursive call. The groupSizeCost
function uses the recursive individualAdding function to run through the proper number
of people, ask their age, and add them all up.

One interesting point to notice about individualAdding is that the function takes a
Boolean for whether or not there is a cooler, but when it recursively calls itself, it always
passes false for that argument. This is a simple way to enforce our rule that each group
only brings in one cooler. If the initial call uses true for cooler, that will be used for the
first person. All following calls will use a value of false, regardless of the value for the
initial call.

5.8 Looking Ahead
This will not be our last look at recursion in this book. Indeed, we have just scratched

the surface. We have only used recursion in this chapter to repeat tasks, as a model for
repetition. The real power of recursion comes from the fact that it can do a lot more than
just repetition. Recursive calls have memory. They do not know what they are doing, they
just remember what they have done. This really comes into play when a recursive function
calls itself more than once. That is a topic for later, but before we leave this first encounter
with recursion here is a little brain teaser for you to think about.

Below is a little bit of code. You will notice that it is nearly identical to the countDown
function that we wrote near the beginning of this chapter. Other than changing the name
of the method the only difference is that the two lines inside the if have been swapped.
Put this function into Scala. What does it do? More importantly, why does it do that?

Recursion for Iteration 123

def count(n:Int):Unit = {
if (n>=0) {
count(n-1)
println(n)

}
}

5.9 End of Chapter Material

5.9.1 Problem Solving Approach

While recursion gives us much greater flexibility with the ability to repeat code an
arbitrary number of times, it used the same constructs we had learned before and, for that
reason, it does not increase the list of options we have for any given line. It only adds new
ways to think about and use options we had before. This chapter did include one new type
of statement/expression, the match conditional expression. That is now included along with
if as a conditional option. So when you go to write a line of code, the following are your
only options.

1. Call a function just for the side effects.

2. Declare something:

• A variable with val or var.

• A function with def. Inside of the function will be statements that can pull from
any of these rules. The last statement in the function should be an expression
that is the result value.

• A new name for a type with type.

3. Assign a value to a variable.

4. Write a conditional statement:

• An if statement.

• A match statement.

5.9.2 Summary of Concepts

• The concept of recursion comes from mathematics where it is used to refer to a function
that is defined in terms of itself.

– All recursive functions must have at least one base case that does not call itself
in addition to at least one recursive case that does call itself.

– Lack of a base case leads to infinite recursion.

• In a programming context, a recursive function is one that calls itself.

– Recursion is used in this chapter to provide repetition.

124 Introduction to Programming and Problem-Solving Using Scala

– Typically an argument is passed in to the function, and on each subsequent call
the argument is moved closer to the base case.

– If the argument is not moved toward the base case it can result in an infinite
recursion.

• Recursion can also be done on user input when we do not know in advance how many
times something should happen.

– Reading from input is a mutation of the state of the input.

– Functions that use this might not take an argument if they read from standard
input.

– The base case occurs when a certain value is input.

• It is inefficient to make copies of code that only differ in slight ways. This can often
be dealt with by introducing an abstraction on the things that are different in the
different copies.

– With functions, this is done by passing in other arguments that tell the code
what to do in the parts that were different in the different copies.

– Values can easily be passed through with parameters of the proper value type.

– Variations in functionality can be dealt with using parameters of function types.
This makes the abstract versions into higher-order functions.

• There is another type of conditional construct in Scala called match.

– A match can include one or more different cases.

– The first case that matches the initial argument will be executed. If the match
is used as an expression, the value of the code in the case will be the value of
the match.

– The cases are actually patterns. This gives them the ability to match structures
in the data and pull out values.

∗ Tuples can be used as a pattern.
∗ Lowercase names are treated as val variable declarations and bound to that

part of the pattern.
∗ You can use _ as a wildcard to match any value that you do not need to give

a name to in a pattern.

– After the pattern in a case you can put an if guard to further restrict that
case.

• The try/catch expression can be used to deal with things going wrong.

– The block of code after try will be executed. If an exception is thrown, control
jumps from the point of the exception down to the catch.

– The catch will have different cases for the exceptions that it can handle.

– It only makes sense for this to be an exception if all paths produce the same
type.

Recursion for Iteration 125

5.9.3 Self-Directed Study

Enter the following statements into the REPL and see what they do. Try some variations
to make sure you understand what is going on. Note that some lines read values so the REPL
will pause until you enter those values. The outcome of other lines will depend on what you
enter.

scala> def recur(n:Int):String = if (n<1) "" else readLine()+recur(n-1)
scala> recur(3)
scala> def recur2(n:Int,s:String):String = if (n<1) s else recur2(n-1,s+readLine())
scala> recur2(3,"")
scala> def log2ish(n:Int):Int = if (n<2) 0 else 1+log2ish(n/2)
scala> log2ish(8)
scala> log2ish(32)
scala> log2ish(35)
scala> log2ish(1100000)
scala> def tnp1(n:Int):Int = if (n<2) 1 else
1+(if (n%2==0) tnp1(n/2) else tnp1(3*n+1))

scala> tnp1(4)
scala> tnp1(3)
scala> def alpha(c:Char):String = if (c>’z’) "" else c+alpha((c+1).toChar)
scala> alpha(’a’)

5.9.4 Exercises

1. Write functions that will find either the minimum or the maximum value from numbers
input by the user until the user types in “quit”.

2. Use inputAndCount to find the minimum and maximum of numbers that the user
enters.

3. Write exponentiation using multiplication. Your function only has to work for positive
integer values.

4. If you did 3, most likely you have a function where if you raise a number to the N th

power, it will do N (or maybe N − 1) multiplications. Consider how you could make
this smarter. It turns out that you can make one that does a lot fewer multiplication,
log2N to be exact. Think about how you would do this and write code for it.

5. Write a recursive function that will print powers of two up to some power.

6. Write a recursive function that will print powers of two up to some value.

7. Write recursive functions that will print a multiplication table up to 10s. Try to get
it running first, then consider how you could make everything line up.

8. Describe the behavior of the last count function in the chapter.

9. Write a recursive function called isPrime that returns a Boolean and lets you know
whether or not a number is prime.

10. Write a recursive function that prints the prime factors of a number.

11. Write a recursive function that lets a user play rock, paper, scissors until either the
user or the computer wins 3 times. Hint: use util.random.nextint.

126 Introduction to Programming and Problem-Solving Using Scala

12. Write a recursive function that simulates a coin flip and counts the number of heads
and the number of tails that occur in 1000 flips. Hint: use util.random.nextint.

13. Suppose that tuition at a university costs $30,000 per year and increases 5% per year.
Write a recursive function that computes the total cost of tuition a student would pay
for a 4-year degree if they started 10 years from now.

14. Write a recursive function that takes an integer and returns the number with the digits
reversed. Using your recursive algorithm, reverse the following number: 07252015.

15. An efficient method of finding the greatest common divisor, gcd, of two integers is Eu-
clid’s algorithm. This is a recursive algorithm that can be expressed in mathematical
notation in the following way.

gcd(a, b) = { a b = 0
gcd(b, a mod b) otherwise

Convert this to Scala code.

16. Certain problems can use a bit more information than just the gcd provided by Eu-
clid’s algorithm shown in exercise 15. In particular, it is often helpful to have the
smallest magnitude values of x and y that satisfy the equation gcd = xa + by. This
information can be found efficiently using the extended Euclid’s algorithm. This is the
math notation for that function.

eEuclid(a, b) = { (a, 1, 0) b = 0
(d, x, y) = eEuclid(b, a mod b), (d, y, x− ba/bc ∗ y) otherwise

Convert this to Scala. Note that the ba/bc operation is naturally achieved by the
truncation of integer division for positive a and b.

5.9.5 Projects

1. For this option I want you to write functions that do the basic math operations of
addition, multiplication, and exponentiation on non-negative Ints. The catch is that
you cannot use +, *, or any functions from math. You only get to call the successor
and predecessor functions shown here.

def succ(i:Int):Int = i+1
def pred(i:Int):Int = i-1

These functions basically do counting for you. So you will define addition in terms of
those two, then define multiplication in terms of addition and exponents in terms of
multiplication.

Put the functions that you write in a script and have the script prompt for two
numbers. Using your functions, print the sum, the product, and the exponent of those
two numbers.

2. Write a function that will return a String with the prime factorization of a positive
Int. The format for the print should be p^e+p^e+... Here each p is a prime number
and e is the how many times it appears in the prime factorization. If you call this
function with 120 it would return 2^3+3^1+5^1 because 120 = 2∗2∗2∗3∗5. Remember
that a number n is divisible by i if n%i==0. For the prime numbers start counting up

Recursion for Iteration 127

from 2. If you pull out all the factors of lower numbers, you will not find any factors
that are not prime. For example, when you pull 2^3=8 out of 120 you get 15 which
only has factors of 3 and 5 so you cannot get 4.

3. This project builds on top of project 4.10. You are using the functions from that
project and putting them into a format where they can be used for multiple geometric
objects. The user inputs a ray first and after that is a series of spheres and planes.
You want a function that returns the first object hit by the ray, smallest t value, and
the parameter (t) of the hit.

4. An interesting twist in biology over the past few decades is the ability to look at the
populations of different species and how they interact with one another. Often, the
way in which different populations vary over time can be approximated by simple
mathematical expressions. In this project you will use your basic knowledge of con-
ditionals and functions with recursion to examine a simple case where you have two
different populations that interact in a predator-prey manner.

The simplest form of this problem is the rabbit and fox scenario. The idea is that each
summer you count the population of rabbits and foxes in a certain region. This region
is fairly well isolated so you do not have animals coming in or leaving. In addition, the
climate is extremely temperate, and there is always enough grass so environmental
factors do not seem to impact the populations. All that happens is each year the
rabbits try to eat and have babies while not getting eaten, and the foxes try to catch
rabbits. We will make up some formulas for what happens to the population from one
year to the next, and you will write a program to produce this sequence.

Over the course of each year, the rabbit population will be impacted in the following
ways. Some rabbits will be born, some rabbits will die of natural causes, and some
rabbits will be eaten. Similarly some foxes will be born and some will die. The number
of rabbits eaten depends upon the population of foxes (more foxes eat more rabbits),
and the number of foxes who are born and die depends on the number of rabbits
because foxes cannot live long or have young without finding rabbits to eat. We can
combine these things to come up with some equations that predict the numbers of
foxes and rabbits in a given year based on the number in the previous year.

Rn+1 = Rn + A ∗Rn −B ∗Rn ∗ Fn
Fn+1 = Fn − C ∗ Fn +D ∗Rn ∗ Fn

Here we assume that the natural tendency of rabbit populations is to increase with-
out foxes around and the natural tendency of fox populations is to decrease without
rabbits around. The four constants should have positive values. A represents the nor-
mal increase in rabbit population without predation. B is the predation rate and is
multiplied by both the rabbit population and the fox population because if either one
is small, the predation rate is small. C is the rate at which foxes would normally die
out without being able to bear young (if they did not have enough food). D is the
rate at which fox will bear young when they do have rabbits to feed on. In reality,
foxes and rabbits only come in whole numbers, but for numeric reasons, you should
use Doubles in your program.

The input for your program is the initial rabbit population, R0, the initial fox popu-
lation F0, and the four constants. To start you off, you might try values of 100, 10,
0.01, 0.001, 0.05, and 0.001. The last four numbers are A, B, C, and D, respectively.
You can play with these values to try to find some that produce interesting results.
Print out the first 1000 iterations. To make it so that you can see your results easily,

128 Introduction to Programming and Problem-Solving Using Scala

output only numbers. Never prompt for anything. The advantage of this is that you
can create a file that is easy to plot. For plotting, you can input the values into a
spreadsheet like Excel. Under Linux you could also use gnuplot. When you run the
program you redirect the output to a file then you can run gnuplot and plot it to see
what it looks like. If you print 3 numbers per line, “n R F ”, and put it in a file called
“pop.txt” then you can plot that in gnuplot with a command like “plot ’pop.txt’ using
($1):($2), ’pop.txt’ using ($1):($3)”. There are many other options in gnuplot and you
can use the help command to see them.
Write this as a script that has the user enter R0, F0, A, B, C, and D without any
prompts. It should then output only the numbers for plotting so that they can be sent
to a file that can be plotted without editing.

5. Suppose that you want to take out a house loan. Your monthly payment for the loan
pays both the principal and the interest. The formula for your monthly payment is:

monthlyPayment =
loanAmount×monthlyInterestRate

1− (1 +monthlyInterestRate)numberOfY ears∗12

The formula for your total payment is:

totalPayment = monthlyPayment ∗ numberOfY ears ∗ 12

You can compute the monthly interest by multiplying the monthly interest rate and
the remaining principal balance. The principal paid for the month is the monthly
payment minus the monthly interest. Write a script that lets a user enter the house
loan amount, number of years they want to take to pay off the loan, and annual
interest rate. Display the monthly payment, the total payment amount and lastly, an
amortization schedule that shows the payment number, interest paid, principle paid,
remaining balance for each of the monthly payments to be paid for the duration of
the loan.

6. Write two recursive functions that returns the number of vowels in a string. One
should use if and the other should use match. Use the following quote, by Thomas
Edison, for your test:
“Our greatest weakness lies in giving up. The most certain way to succeed is always
to try just one more tim”.

7. What would you do if you have a team of 10 people, but you only need 4 people
working on the next project? How many different ways can you create a team of 4
people? You can use the following formula to find the number of ways p different
people can be chosen from a set of tt team members, where p and t are non-negative
integers and p <= t:

Combinations(t, p) = t!/p!(t− p!)

and where the exclamation point denotes the factorial function. Write a recursive
function to implement Combinations(t, p) which determines the number of ways p
different people can be chosen from a team of t people. You can assume that Com-
binations(t, 0) = Combinations(t, t) = 1. You can also assume that Combinations(t,
p) = Combinations(t-1, p-1) + Combinations(t-1, p). Using your recursive algorithm,
determine Combinations(5, 3) and Combinations(9, 4).

8. Write a recursive function to print a string backwards. Go ahead and try this quote
by Thomas Edison for your test: "I have not failed; I’ve just found ten thousand ways
that won’t work".

Recursion for Iteration 129

9. Write a recursive function that generates the following pattern of letters. Make sure
that the user enters an integer between 1 and 26. If the non-negative integer is 6, then
the pattern generated is:

ABCDEF

ABCDE

ABCD

ABC

AB

A

A

AB

ABC

ABCD

ABCDE

ABCDEF

10. Write a script that will calculate a student’s GPA with each course properly weighted
by the number of hours of credit it counts for. It should prompt for a grade and a
number of hours for each class. The grades are letter grades that are converted to
a 4-point GPA scale according to the following table. When “quit” is entered as the
grade you should stop reading values. The script should then print the cumulative
GPA.
Grade GPA
A 4.000
A- 3.666
B+ 3.333
B 3.000
B- 2.666
C+ 2.333
C 2.000
C- 1.666
D+ 1.333
D 1.000
F 0.000

11. The Mandelbrot set is a fractal in the complex plane. It is described by the simple
equation zn+1 = z2n+c where z0 = 0, and c is the point in the plane. That means that
both c and z are complex values. You can represent them with the type (Double,
Double). If the sequence is bounded, the point is in the set. If it heads off to infinity,
it is not. Use the solution to exercise 4.3 to write a function that will take a value of
c, and a value of z and return how many iterations it takes for the magnitude of zn
to become greater than 4.0 or 1000 if it does not get that big in 1000 iterations.

12. Using a computer, you can estimate the value of π by picking random numbers. In
fact, you can find numeric solutions for most integration problems by picking random
numbers. This approach to solving such problems is called the Monte-Carlo method.
For this option, you will write code to do that using calls to math.random() to generate
the random numbers and use that to integrate the area under a curve. You will have a

130 Introduction to Programming and Problem-Solving Using Scala

FIGURE 5.1: This figure is associated with project 12. This shows how you can use
picking random numbers to estimate the area under curves. This figure shows two curves
and random points in square regions that bound those curves. The points that are below
the curves are darker than those above. The fraction of points below is proportional to the
area under the curve.

script that uses this method to solve two problems, one of which is getting an estimate
for the value of π.

The approach is illustrated in figure 5.1. If you can draw a bounding box around a
region of a function, you can randomly select points inside of that box and the area
under the curve is estimated by

A
Nbelow
Ntotal

where A is the area of the box. The more points you draw randomly, the more accurate
the estimate.

Write a recursive function with the following signature.

def countUnder(nPnts:Int,xmin:Double, xmax:Double, ymin:Double,
ymax:Double,f: Double=>Double):Int

This function should generate the specified number of random points in the rectangle
with the given bounds and return how many of them were below the curve defined
by the function f. Note that you can get a random number in the range [min,max)
with code like this.

val r = min+math.random*(max-min)

You want to do this for the x and y axes.

To estimate π use a function of
√

1− x2 with x and y in the range of (0, 1). The full
rectangle has an area of 1 while the area under the curve is π/4. If you multiply the
fraction of points under the curve by 4, you get an estimate of pi.4

In addition to printing out your estimate of π, you should print out an estimate of

π∫
0

(sinx2)2

for the same number of random points.

4Be sure to pay attention to whether you are doing integer or floating-point arithmetic.

0.80

0.60

0.40

0.20

0
0

0
U1
0

0
0

0
U1
0

....
0

t-o)

0
w
0

Recursion for Iteration 131

13. If you did project 4.1, you can now add another option to it. Write a function that
takes a rational number as an (Int,Int) and returns an (Int,Int) where all common
factors have been removed so that it is in lowest form.

With that added in, write a script that uses a recursive function to do calculations
on rational numbers. The script presents the user with a menu with options for add,
subtract, multiply, divide, and quit. If one of the first four options is selected, it should
ask for a fraction and perform that operation between the “current” fraction and the
one entered. When the program starts, the “current” value will be 1

1
represented by

(1,1). After each operation you print the new current value, making sure it is always
in lowest form.

The web site provides additional exercises and projects with data files that you can
process using input redirection.

http://taylorandfrancis.com

Chapter 6
Arrays and Lists in Scala

6.1 Making Arrays . 133
6.2 Using Arrays . 135
6.3 Lists . 139
6.4 Bigger Arrays and Lists with Fill and Tabulate . 141
6.5 Standard Methods . 143

6.5.1 Basic Methods . 143
6.5.2 Higher-Order Methods . 147
6.5.3 reduce and fold . 151
6.5.4 Combinatorial/Iterator Methods . 152

6.6 Complete Grades Script/Software Development . 155
6.7 Playing with Data . 160

6.7.1 Reading the Data . 161
6.7.2 Finding Maximum Values . 162

6.8 End of Chapter Material . 164
6.8.1 Problem Solving Approach . 164
6.8.2 Summary of Concepts . 165
6.8.3 Self-Directed Study . 165
6.8.4 Exercises . 166
6.8.5 Projects . 167

Adding conditionals and functions expanded our capabilities dramatically. Combining it
with recursion gives us the ability to do almost anything we want. Technically, we have
full computing power. However, there are some ideas that are challenging to express with
what we currently know and there are better ways to say them in Scala and programming
languages in general.

One of these ideas is the ability to refer to many different objects with one name. In
chapter 2 we gained the ability to refer to objects by names with val and var declarations.
Using those, we could make as many names as we want and hard code references to them, but
we have to make different names for each declaration if we want to work with the different
values. This is a reasonable thing to do if we only need a few variables. For instance, if
we wanted to read in five numbers so that we could total them, we would just create five
variable declarations. However, what if we wanted to read in 100 numbers, or 1000 numbers?
Just the amount of effort necessary to create that many variable declarations is substantial,
let alone writing the statement(s) necessary to find the total.

In this chapter we will begin learning about collections in Scala. Collections are types
that allow us to store and look up many different values using a single name. Most of this
chapter will focus on the most basic collection types, arrays and lists.

6.1 Making Arrays
The most basic collections of data in Scala or other languages are Arrays and Lists.

Virtually every language will include one as something of a fundamental aspect of the

133

134 Introduction to Programming and Problem-Solving Using Scala

language. Scala happens to include both. Each are easy access parts of the library.1 The
Array and the List are what Scala refers to as sequences. That means that they store a
number of different values in a specific order, and you can get to the elements in them by
an integer index.

In the last chapter, we used recursion to do things such as calculate the sum or take
the product of a bunch of numbers entered by the user. What if we wanted to do both? We
could have done both a sum and a product if the user entered the numbers twice, but the
user does not want to do that. We had one significant problem with what we were doing.
We took the numbers from the user and performed operations on them, but we did not
really store them so that we could use them again. It was all a one shot deal. The reason for
this was that the types we have so far store a single value or, in the case of a tuple, a fixed
number of values. We do not really have a good way to store a variable number of values
so that we can work with them and do multiple operations on them. That is exactly what
collections will allow us to do. To really understand this, it helps to look at some examples.

We will start by making some Arrays that have values in them.

scala> Array(1,2,3,4)
res0: Array[Int] = Array(1, 2, 3, 4)

scala> Array(1.0,2.0,3.0,4.0)
res1: Array[Double] = Array(1.0, 2.0, 3.0, 4.0)

scala> Array(’c’,’a’,’t’)
res2: Array[Char] = Array(c, a, t)

scala> Array("This","is","a","test")
res3: Array[String] = Array(This, is, a, test)

Here we have created four different Arrays of different types. The syntax for making an
Array with values in it is to follow the word “Array” with a list of parameters for the values
we want in the Array. As always, after each expression the REPL tells us the name used for
this, the types of the expression, and the value of the expression. The type of the expression
here shows something that we have never seen before. The type is not just Array. The type
name Array is followed by square brackets that have another type in them. This is called
a parameterized type. All the collection types in Scala are parameterized. We will talk
about this in more detail later in this chapter, but the meaning should be clear. The type
Array[Int] is an Array that can hold integer values in it. As usual, we did not have to tell
Scala that the first Array was an Array of type Int, it figured that out. You can override
Scala’s type inference and specifically tell it the type you want. The example below makes an
Array[Double] even though all the values in it are integers. This is perfectly valid because
all values in Int are also valid values of Double.

scala> Array[Double](1,2,3,4)
res4: Array[Double] = Array(1.0, 2.0, 3.0, 4.0)

Such forcing has to match what you pass in. Scala will not allow you to do this for an invalid
conversion.

1All of the types and methods we have been using to date are part of a collection that is generally
referred to as the standard library or API. All useful languages come with such libraries that contain code
that performs specific tasks and provide standardized solutions to certain problems that are required for
a broad range of programs. The usefulness of many languages is often determined by the breadth of their
standard libraries. Scala has an extremely complete standard library that you can use. This is at least in
part because it can access the Java libraries.

Arrays and Lists in Scala 135

scala> Array[Int]("Does","this","work")
<console>:6: error: type mismatch;
found : java.lang.String("Does")
required: Int Array[Int]("Does","this","work")

^
<console>:6: error: type mismatch;
found : java.lang.String("this")
required: Int Array[Int]("Does","this","work")

^
<console>:6: error: type mismatch;
found : java.lang.String("work")
required: Int Array[Int]("Does","this","work")

^

6.2 Using Arrays
So now you know one way to make arrays, but what can you do with them? The first

things we need be able to do are get the values stored in the array and change the values
stored in the array. This is done by following the name of the array with parentheses and
a number that is the index of the thing we want. Arrays, like with most things in most
modern programming languages, are zero indexed. So the first element in the array is at
index zero, and, if there are N things in the array, the last one is at index N-1. Here is an
example.

scala> val arr=Array(7,4,6,3,9,1)
arr: Array[Int] = Array(7, 4, 6, 3, 9, 1)

scala> arr(0)
res5: Int = 7

scala> arr(1)
res6: Int = 4

scala> arr(5)
res7: Int = 1

The first statement creates a new variable named arr that is an array of integers and gives
that array six values to store. The next three commands basically pull out values from that
array. The expression arr(0) gets the first elements, arr(1) gets the second, and arr(5)
gets the last.

What goes in the parentheses does not have to be a simple integer. It can be any
expression of type Int. You could do something much more complex to pull out a value.

136 Introduction to Programming and Problem-Solving Using Scala

scala> val i = 2
i: Int = 2

scala> arr(2*i-2)
res8: Int = 6

The same type of expression can also be used in an assignment expression. So we can alter
the values that are stored in an array.

scala> arr(4) = 99

scala> arr
res9: Array[Int] = Array(7, 4, 6, 3, 99, 1)

Here we see how we can use assignment to change the value of one of the elements of the
Array. This might surprise you because we originally declared arr to be a val. Previously
we said that you cannot change what is referred to by a variable that is created with val.
This does not actually break that rule. You see, the name arr still refers to the same Array.
What has changed is the value in the Array. An analogy might be that an Array is a house
and the values are the people in it. The variable arr refers to a particular house. People
might come and go from the house, but the house itself is the same. We can demonstrate
this by trying to change what Array the variable arr references.

scala> arr = Array(2,7,5)
<console>:6: error: reassignment to val

arr=Array(2,7,5)
^

We call the Array type a mutable type because the values in it can be changed. Types
whose internal values cannot be changed are called immutable types. This distinction is
very significant to us in Scala and in programming in general, as it alters how we deal with
data. We will talk more about it because the List type, which we will explore in the next
section, happens to be immutable. Indeed, all of the types that we have seen previously are
immutable. Once they are created, the values they have never change. The Array is our
first example of something that is mutable.

Not everything about an array can be changed. As we have seen, we can change the
values stored in an array. However, we cannot efficiently change how many things are stored
in an Array.2 The number of things an Array holds can be called the length or the size of
the Array. In fact, the Array type has methods called length and size which give us this
information.

scala> arr.length
res10: Int = 6

scala> arr.size
res11: Int = 6

When you create an Array you have to specify a length and that length will never change.
If you use a var style variable, you can make a new Array with a different length and have

2There are :+ and +: operators that make new Arrays with one additional element, but you should not
use these much.

Arrays and Lists in Scala 137

the name refer to it, but to do that you create a completely new Array, you do not alter
the size of the old one.3

When you are accessing the array, if you try to use an index value that is either negative
or too large, Scala will give you an error message saying that you have gone outside the
bounds of the array. We can see what that looks like here with attempts to access and
change indexes out of bounds.

scala> arr(100)
java.lang.ArrayIndexOutOfBoundsException: 100

at .<init>(<console>:7)
at .<clinit>(<console>)
at RequestResult$.<init>(<console>:9)
at RequestResult$.<clinit>(<console>)
at RequestResult$scala_repl_result(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun...

scala> arr(100) = 0
java.lang.ArrayIndexOutOfBoundsException: 100

at .<init>(<console>:7)
at .<clinit>(<console>)
at RequestResult$.<init>(<console>:9)
at RequestResult$.<clinit>(<console>)
at RequestResult$scala_repl_result(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun...

Now that we know the ground rules for using Arrays, we can write some functions that
take advantage of them in a useful way. In the last chapter we used recursion to read in a
set of numbers that we could then do operations on. One motivation we used for collections
was that previously we could not store the values to do two or more operations on them. So
two useful functions might be to have one that fills an Array from user input and another
that does the types of operations we did before, but this time on the Array.

We will start with the function to fill the Array from user input. This function needs
to be passed the Array that it will fill. When we are using an Array, it will be easiest to
use the style where we specify at the beginning how many numbers are to be read. This is
because Arrays have a fixed size. The Array knows its size so that information does not
need to be passed. What does need to be passed is the index that the next number will be
read into. The termination condition would be that we are trying to read into a location
beyond the end of the Array. The function to do this might look like this.

def fillArray(arr:Array[Int], index:Int):Unit = {
if (index < arr.length) {
arr(index) = readInt()
fillArray(arr, index+1)

}
}

This function is straightforward, but it is worth noting that it does not produce a result.
The fact that Arrays are mutable means that we can pass in an Array and have the function

3Note that you are not likely to notice this issue in the REPL because you can declare a new val that
replaces a pre-existing one. However, in a script, you cannot have two things with the same name in the
same scope, so it is important to understand this restriction.

138 Introduction to Programming and Problem-Solving Using Scala

mutate the contents. As a result, nothing needs to be returned. The results of this function
are held in the modified contents of the Array. The following shows this function in action.

scala> val numbers = Array(0, 0, 0, 0)
numbers: Array[Int] = Array(0, 0, 0, 0)

scala> fillArray(numbers, 0)

scala> numbers
res12: Array[Int] = Array(2, 3, 4, 5)

A new Array of integers is created that can hold four values. We call fillArray and enter
the values 2, 3, 4, and 5. After doing that we can inspect numbers and see that it now holds
those values.

Now we need to perform an operation on the contents of the Array. We will skip the
step of making a special function for just doing addition or multiplication and jump straight
to the more abstract and flexible method where we pass in a function to operate on the
contents. In addition to the function doing the operation, we also need an Array and an
integer for the current index. Unlike what we did in the previous chapter, we do not need
to pass in a base case value because we know when we are at the beginning or end of the
Array. The function could look like this.

def operateOnArray(arr:Array[Int],index:Int, func:(Int,Int)=>Int):Int = {
if (index < arr.length-1) {
func(arr(index), operateOnArray(arr, index+1, func))

} else {
arr(arr.length-1)

}
}

If an index at or beyond the last element of the Array is passed in, this function results in
the last element of the array. Otherwise, it applies the function to the current element and
the result of the recursive function on subsequent elements. We can see this in action on
the previously defined Array, arr, in these commands.

scala> val arr=Array(7,4,6,3,9,1)
arr: Array[Int] = Array(7, 4, 6, 3, 9, 1)

scala> operateOnArray(arr, 0, _+_)
res13: Int = 30

scala> operateOnArray(arr, 0, _*_)
res14: Int = 4536

Already this allows us to see the added power we get from using an Array. Having the
values stored gives us the ability to operate on them multiple times without having to input
them multiple times.

Arrays and Lists in Scala 139

6.3 Lists
Arrays are the built in collection of choice in most non-functional languages. An Array

is typically stored as a single block of memory. This makes them fast and efficient for a lot
of operations. As we saw though, Arrays are mutable. Functional languages tend to lean
away from mutation and other side effects.4 If you do not allow mutation, Arrays become
much less efficient. If you want to change a single value in an immutable Array, you have
to make a complete copy of the Array. For this reason, functional languages tend to prefer
lists. Technically the List type in Scala is an immutable singly linked lists, a data structure
that you should become familiar with in a later course. You do not have to understand the
structure in detail to see how to use it.

We can build a List using the same syntax we used to build an Array with initial values.

scala> List(7,4,6,3,9,1)
res15: List[Int] = List(7, 4, 6, 3, 9, 1)

Like the Array type, the List type is parametric and Scala will figure out the best type if
you use this syntax.

Unlike Arrays, Lists do not have to have a fixed length determined at the time it is
created. Thus, there is another way to put Lists together when we do not know initially
all of the values that will be stored in them. We can efficiently build Lists one element at
a time if we add elements to the front of the List. To add elements to a List we use the
"cons" operator, ::. Here is an example of adding a single element to an existing List.

scala> val lst = List(2,3,4)
lst: List[Int] = List(2, 3, 4)

scala> 1::lst
res16: List[Int] = List(1, 2, 3, 4)

We begin by creating a List that contains 2, 3, and 4, then cons a 1 to the beginning of
the list. This operation did not alter the original List. Instead it gave us a new list with
an extra element at the beginning. Because of the way that Lists work, this is efficient. It
did not actually have to copy the whole List to make it work. We can look at lst again to
see that it has not changed.

scala> lst
res17: List[Int] = List(2, 3, 4)

If you build a List with the cons operator, it is common to start with an empty List.
There are two ways to represent an empty List in Scala. One is to use what we did before,
but not put any arguments in the parentheses. The other is to use Nil. So we can build the
same list we had before this way.

scala> 1::2::3::4::Nil
res18: List[Int] = List(1, 2, 3, 4)

You have to place the Nil at the end because the :: operator needs to have a List on
the right hand side. Notice that for this to work, the :: operator is right associative.

4This was something we first discussed with the difference between val and var. As a general rule,
programs are easier to reason about when they do not include mutation. Including mutation also makes a
number of things more complex by introducing new classes of errors.

140 Introduction to Programming and Problem-Solving Using Scala

So 1::2::3::Nil is the same as 1::(2::(3::Nil)). This is the opposite of the normal
mathematical operators which are left associative. In Scala, any operator that ends with a
colon will be right associative.

We can use the cons operator to write a function that builds a List of numbers from
user input. This is a recursive method that will read in numbers until it gets to “quit”. Going
until “quit” works well for Lists because we can easily and efficiently add new elements to
a List. That was not the case for Arrays where we needed to have the size of the Array
set when we began. The method for doing this is quite simple.

def inputList():List[Int] = {
val in = readLine()
if (in == "quit") Nil else in.toInt::inputList()

}

We can see this at work as well if we run it and type in 3, 4, 5, and “quit” on separate lines.

scala> inputList()
res19: List[Int] = List(3, 4, 5)

It is possible to access the elements of a List the same way you do an Array by putting an
index inside of parentheses. However, for a List this is generally inefficient. The preferred
method, especially in a recursive function, is to use the methods head and tail or with
pattern matching. The head method will give you back the first element of the List. The
tail method gives you a List of all the elements after the first element. Here are simple
examples operating on the lst defined above.

scala> lst.head
res20: Int = 2

scala> lst.tail
res21: List[Int] = List(3, 4)

Using these methods we can write an operateOnList function that mirrors the
operateOnArray function like this.

def operateOnList(lst:List[Int], func:(Int,Int)=>Int):Int = {
if (lst.tail == Nil) lst.head else
func(lst.head,operateOnList(lst.tail, func))

}

Note that we do not require an index to be passed in. We do not have any +1 or -1 in this
function either. That type of behavior comes from the fact that when we recurse, we pass
in lst.tail. We can see this function in action here.

scala> val lst=List(7,4,6,3,9,1)
lst: List[Int] = List(7, 4, 6, 3, 9, 1)

scala> operateOnList(lst, _+_)
res22: Int = 30

scala> operateOnList(lst, _*_)
res23: Int = 4536

This function was written using an if statement. When working with lists, it is also common

Arrays and Lists in Scala 141

to use pattern matching. The :: can be used in a pattern to indicate a list with different
parts. This particular function can be rewritten as shown here.

def operateOnList2(lst:List[Int], func:(Int,Int)=>Int):Int = lst match {
case h::Nil => h
case h::t => func(h, operateOnList2(t, func))
case _ => 0

}

You might wonder about the last case. This is not required, but if we leave it out we will get
a warning telling us that the match is not exhaustive. This is not just the compiler being
overly picky either. It turns out that the original method that uses an if expression is not
completely safe. Try calling it with an empty List and you will see why.

6.4 Bigger Arrays and Lists with Fill and Tabulate
The simple syntax for creating Arrays and Lists work very well for short sequences.

In the case of Lists, you can build a large List using :: and a recursive function, but
there are even easier ways to do so with the fill and tabulate methods. To use the fill
method you simply specify how many elements you want, and the object value you want to
fill each element with. Simple invocations of fill might look like the following.

scala> Array.fill(10)(4)
res24: Array[Int] = Array(4, 4, 4, 4, 4, 4, 4, 4, 4, 4)

scala> List.fill(6)(23)
res25: List[Int] = List(23, 23, 23, 23, 23, 23)

scala> List.fill(6)("hi")
res26: List[String] = List(hi, hi, hi, hi, hi, hi)

Array and List here refer to what are called "companion objects", and like all objects, they
can have methods. You can see the various methods using tab completion in the REPL. You
should notice something odd about the way fill is called here. It takes two arguments, but
instead of being passed in one parameter list with a comma between them, they are passed
in two separate parameter lists. This is called currying. We will discuss currying in full in
section 7.8. The first argument is how many values we want in the resulting sequence, and
the second is code that gives the values.

The other thing to note about fill is that the second argument is passed in a special
way called ”pass-by-name”. This is a very powerful feature of Scala that will be covered in
detail is section 7.9. For now, we will simply show why it matters for fill. Consider the
following two examples.

scala> List.fill(5)(math.random)
res27: List[Double] = List(0.3426736320227921, 0.8128658516345523,

0.6149061001393661, 0.5380617420048777, 0.7075727808692085)

scala> Array.fill(3)(readInt)
res28: Array[Int] = Array(1, 2, 3)

142 Introduction to Programming and Problem-Solving Using Scala

The behavior of these two examples might seem obvious. As you can guess, in the second
example the user entered 1, 2, and 3 as values. This is what we started off the chapter doing
functions to read values into an Array or List. It turns out that as long as we know how
many elements we want, we can do this with a single line of code using fill.

To see how pass-by-name is different here, consider the following function that is intended
to fill a List similar to the first example.

def fillList(n:Int,x:Double):List[Double] = if (n<1) Nil else x :: fillList(n-1,x)

We call this function passing it how many numbers we want in the List, and the value we
want to use. Here is what happens if we call it with 5 and math.random.

scala> fillList(5,math.random)
res29: List[Double] = List(0.5701406699076761, 0.5701406699076761,

0.5701406699076761, 0.5701406699076761, 0.5701406699076761)

Unlike the call to fill, all the values in this List are the same. If we had called it with
readDouble, only one value would have been read in, and all the elements would have that
one value. Pass-by-name is how fill is able to get different values in those examples.

Another way to see the impact of pass-by-name is to have the second argument print
something.

scala> Array.fill(4){ println("Evaluating argument"); 5 }
Evaluating argument
Evaluating argument
Evaluating argument
Evaluating argument
res30: Array[Int] = Array(5, 5, 5, 5)

Note that here the second argument has been put in curly braces only. As a general rule,
Scala allows you to do that for an argument list that only has one argument. This is part of
the reason fill is curried. You can add an extra set of parentheses, but you will still need
the curly braces because this is a block of code with two expressions in it. This example is
illustrative, but not really all that useful. A more interesting example involves using a var.

scala> var i=1
i: Int = 1

scala> List.fill(5){ i*=2; i }
res31: List[Int] = List(2, 4, 8, 16, 32)

Here the var i is initialized to be 1. The value argument multiplies i by 2 and stores that
value back in i. Then it gives back i as the value to use. You can see in the output that
this gives us powers of 2. While there are situations where this can be helpful, this method
of filling an array with powers of two is likely to confuse most people reading your code.

The primary limitation with fill is that the code in it generally does not know what
element of the sequence is being generated. Sometimes that information can be helpful.
That is why the tabulate method exists. The tabulate method creates a new list or array
filling each element with its index that has a function that you supply applied to it. You call
tabulate much like you do fill, only the second argument is not a pass-by-name variable,
it is a function that takes an Int and results in the type that the sequence should be filled
with. A simple example is a List that is filled with elements that are the squares of their
indices. That can be produced by the following code.

scala> List.tabulate(5)(i => i*i)

Arrays and Lists in Scala 143

res32: List[Int] = List(0, 1, 4, 9, 16)

A more complex example would fill an Array with the result of evaluating a polynomial on
each index.

scala> Array.tabulate(6)(x => 3*x*x+5*x-7)
res33: Array[Int] = Array(-7, 1, 15, 35, 61, 93)

This fills the array with values of 3x2 + 5x− 7 where x is the index in the array: 0, 1, 2, 3,
4, and 5.

Note: You can also make larger Arrays by calling new. If you have any experience
with other languages, you might be familiar with this approach. It is generally not the
recommended approach in Scala, as it is prone to cause certain types of exceptions.

6.5 Standard Methods
Now you know how to make Arrays and Lists. In order to do things with them, you need

to know what methods are available on them. One of the strengths of the Scala collections
is that they have rich interfaces. An interface is a set of protocols, routines, and tools for
building software applications. Scala’s interfaces have a lot of different methods in them.
We looked at length and size on the Array and head and tail on the List, but this
was only scratching the surface. You can actually call either of those on either Lists or
Arrays. However, length and size are not that efficient for Lists while tail is inefficient
on the Array. In this section we will run through a sampling of the other methods that are
available to us when working with Lists and Arrays. We will start with the simple ones.

6.5.1 Basic Methods

We break the methods into a few groups based on what they do. Inside of each group
the methods are in alphabetical order. The methods that say they give you a new collection
result in a collection of the same type that it is called on. So if you call them on an Array you
will get back an Array. If you call them on a List you will get back a List. Short examples
are shown for each using the lst variable defined above at val lst = List(7,4,6,3,9,1).
The type Seq appears occasionally. You can think of this as an Array or a List.

• Methods that give you part of a collection

– drop(n:Int) – Takes an Int and gives you back a new collection where the given
number of elements have been removed from the beginning.

lst.drop(2)
res34: List[Int] = List(6, 3, 9, 1)

– init – Takes no arguments and produces a new collection with all the elements
except the last.

scala> lst.init
res35: List[Int] = List(7, 4, 6, 3, 9)

144 Introduction to Programming and Problem-Solving Using Scala

– last – Takes no arguments and produces the last element in the collection.

scala> lst.last
res36: Int = 1

– slice(from:Int, until:Int) – Takes two arguments which are both integer
indexes. It produces a new collection with all the elements beginning with the
index of the first argument and ending with the one before the index of the
second value.

scala> lst.slice(2,4)
res37: List[Int] = List(6, 3)

– splitAt(n:Int) – Takes an Int for the index of a location to split the collection
at. It produces a tuple of two new collections where the first has the first n
elements and the second has the rest.

scala> lst.splitAt(3)
res38: (List[Int], List[Int]) = (List(7, 4, 6),List(3, 9, 1))

– take(n:Int) – Takes an Int and gives back a new collection with that many
elements from the beginning of this collection.

scala> lst.take(3)
res39: List[Int] = List(7, 4, 6)

– takeRight(n:Int) – Like take, but pulls the last n elements.

scala> lst.takeRight(3)
res40: List[Int] = List(3, 9, 1)

• Boolean tests

– contains(elem:Any) – Takes an element and gives the result of whether or not
the collection contains an element equal to it.

scala> lst.contains(8)
res41: Boolean = false

scala> lst.contains(3)
res42: Boolean = true

– endsWith(that:Seq[B]) – Takes a collection of elements and tells whether the
current collection ends with elements equal to those in the collection passed in.

scala> lst.endsWith(List(3,9,1))
res43: Boolean = true

scala> lst.endsWith(List(3,8,1))
res44: Boolean = false

– isEmpty – Tells whether or not the collection is empty.

scala> lst.isEmpty
res45: Boolean = false

Arrays and Lists in Scala 145

– nonEmpty – The opposite of isEmpty.

scala> lst.nonEmpty
res46: Boolean = true

– startsWith(that:Seq[B]) – Takes a collection of elements and tells whether
the current collection starts with elements equal to those in the collection passed
in.

scala> lst.startsWith(List(7,5,6))
res47: Boolean = false

scala> lst.startsWith(List(7,4,6))
res48: Boolean = true

• Search for something

– indexOf(elem:A) – Takes an element and returns the index of the first element
in the collection equal to the value passed in. Gives back -1 if no matching
element is found.

scala> lst.indexOf(3)
res49: Int = 3

scala> lst.indexOf(8)
res50: Int = -1

– lastIndexOf(elem:A) – Takes an element and returns the index of the last ele-
ment in the collection equal to the value passed in. Gives back -1 if no matching
element is found.

scala> lst.lastIndexOf(4)
res51: Int = 1

• Other simple methods of note

– diff(that:Seq[A]) – Takes an argument that is a sequence of the same type
as what this is called on and produces the multiset difference between the two.
This means that it will give you back all the elements that were in the original
collection that do not have a match in the argument collection.

scala> lst.diff(List(1,2,3,4))
res52: List[Int] = List(7, 6, 9)

scala> lst.diff(Array(4,5,6))
res53: List[Int] = List(7, 3, 9, 1)

– distinct – Takes no arguments and produces a new collection that only contains
the unique members of this collection, so all duplicates are removed from the new
collection.

scala> List(1,2,3,8,5,1,2,8,2).distinct
res54: List[Int] = List(1, 2, 3, 8, 5)

146 Introduction to Programming and Problem-Solving Using Scala

– mkString – Can be called with zero, one, or three arguments. It builds a single
long string from the string representations of the elements. If no argument is
provided then nothing is put between the strings for the elements. If one argument
is specified, it should be a string that is used to separate the element strings. If
three arguments are specified the middle is a separator and the first and last are
strings to put before and after the elements.

scala> lst.mkString
res55: String = 746391

scala> lst.mkString("; ")
res56: String = 7; 4; 6; 3; 9; 1

scala> lst.mkString("[", ", ", "]")
res57: String = [7, 4, 6, 3, 9, 1]

– patch – This powerful method allows you to produce new sequences where ele-
ments have been removed from and inserted into the original sequence. It takes
three arguments, an index to start patching at, the elements to put in the patch,
and the number of elements to replace with the patch. If the replacement is an
empty collection, it simply removes the specified number of elements. If the ele-
ments to remove is given as zero, it will only insert the new elements at the given
location.

scala> lst.patch(3,Nil,2)
res58: List[Int] = List(7, 4, 6, 1)

scala> lst.patch(3,List(10,11,12),0)
res59: List[Int] = List(7, 4, 6, 10, 11, 12, 3, 9, 1)

scala> lst.patch(3,List(10,11,12),3)
res60: List[Int] = List(7, 4, 6, 10, 11, 12)

– reverse – Takes no arguments and produces a new collection with the elements
in the reverse order.

scala> lst.reverse
res61: List[Int] = List(1, 9, 3, 6, 4, 7)

– toArray, toList – Take no arguments and makes a new collection of the type
specified with the elements in the current collection.

scala> lst.toArray
res62: Array[Int] = Array(7, 4, 6, 3, 9, 1)

– zip(that:Iterable[B]) – Takes another collection as an argument and pro-
duces a collection of tuples where the first element comes from the collection this
is called on and the second comes from the collection passed in. The length of
the result is the shorter of the two.

scala> lst.zip(lst.reverse)
res63: List[(Int, Int)] = List((7,1), (4,9), (6,3), (3,6), (9,4), (1,7))

scala> lst.zip(Array(1, 2, 3, 4))
res64: List[(Int, Int)] = List((7,1), (4,2), (6,3), (3,4))

Arrays and Lists in Scala 147

– zipWithIndex – Takes not arguments and produces a new collection of tuples
where the first is an element from the collection and the second is its index.

scala> lst.zipWithIndex
res65: List[(Int, Int)] = List((7,0), (4,1), (6,2), (3,3), (9,4), (1,5))

The methods listed above will work on any type of sequence. So they will work on a
List[Int], a List[String], an Array[Double], or a List[Array[Double]]. There are a
few methods provided that have some special requirements for the type of things in the list.
They require that certain operations be defined. These methods, which are self-explanatory,
are min, max, sum, and product. The min and max methods will work for types that can
be ordered. That includes not just things like Int and Double, but also Strings and many
other types where an ordering makes sense. The sum and product methods require that the
type of the collection be numeric.

While we wrote operateOnList and operateOnArray to do sums and products of those
collections, in Scala we can simply call the sum or product methods as is seen here.

scala> lst.sum
res66: Int = 30

scala> lst.product
res67: Int = 4536

The requirement that the values be numeric means that while you can concatenate Strings
with +, you cannot put them together with sum. For a List[String] or Array[String],
you should use mkString to concatenate the values.

6.5.2 Higher-Order Methods

While you might feel like the list of methods shown here is rather long and gives us
many capabilities, we have not yet hit on the real power of the Scala collections. All of
these methods have taken normal values for arguments. Just like our first recursive methods,
they can be made more powerful by adding some abstraction and making them higher order
methods. Below is a list of many of the higher order methods that are part of the sequences
in Scala. The type A is the type that is contained in the List or Array. The type B could
be any other type. Once again, these examples made use of the declaration val lst =
List(7,4,6,3,9,1).

• count(p:(A)=>Boolean) – Takes a function that will operate on an element and result
in a Boolean. Returns the number of elements in the collection for which this returns
true.

scala> lst.count(_ > 5)
res68: Int = 3

• dropWhile(p:(A)=>Boolean) – Takes a function that will operate on an element and
resuts in a Boolean. Produces a new collection that contains all elements starting
with the first one for which that function is false.

scala> lst.dropWhile(_ > 3)
res69: List[Int] = List(3, 9, 1)

148 Introduction to Programming and Problem-Solving Using Scala

• exists(p:(A)=>Boolean – Takes a function that will operate on an element and
results in a Boolean. It has a value of true if there is some element in the collection
for which the function is true.

scala> lst.exists(x => x>4 && x<7)
res70: Boolean = true

scala> lst.exists(_ % 5 ==0) // Check if any elements are divisible by 5.
res71: Boolean = false

• filter(p:(A)=>Boolean) – Takes a function that will operate on an element and
result in a Boolean. Produces a new collection that contains only the elements for
which the function is true.

scala> lst.filter(_ < 5)
res72: List[Int] = List(4, 3, 1)

scala> lst.filter(x => x>=4 && x<=7)
res73: List[Int] = List(7, 4, 6)

scala> lst.filter(_ % 2 == 0)
res74: List[Int] = List(4, 6)

• filterNot(p:(A)=>Boolean) – Takes a function that will operate on an element and
result in a Boolean. Produces a new collection that contains only the elements for
which the function is false.

scala> lst.filterNot(_ < 5)
res75: List[Int] = List(7, 6, 9)

scala> lst.filterNot(x => x>=4 && x<=7)
res76: List[Int] = List(3, 9, 1)

scala> lst.filterNot(_ % 2 == 0)
res77: List[Int] = List(7, 3, 9, 1)

• flatMap(f:(A)=>Seq[B])5 – Takes a function that will operate on an element and
return a collection. Returns a new collection built from all the result collections ap-
pended together.

scala> lst.flatMap(n => if (n<6) lst.take(n) else Nil)
res78: List[Int] = List(7, 4, 6, 3, 7, 4, 6, 7)

scala> val str = "A test String."
scala> lst.flatMap(str.take)
res79: List[Char] = List(A, , t, e, s, t, , A, , t, e, A, , t, e, s, t, A, ,

t, A, , t, e, s, t, , S, t, A)

• forall(p:(A)=>Boolean) – Takes a function that will operate on an element and
result in a Boolean. Its value is true if the function is true for all elements of the
collection.

5The result type of the function f that is passed into flatMap is technically a GenTraversableOnce[B].
This is more general than a Seq[B], but for now the difference is not important.

Arrays and Lists in Scala 149

scala> lst.forall(_ > 2)
res80: Boolean = false

scala> lst.forall(_ < 10)
res81: Boolean = true

• foreach(f:(A)=>Unit) – Takes a function that operates on an element and applies
it to all elements in the collection. The result type is Unit. This method is called only
for the side effects.

scala> lst.foreach(n=>println(2*n))
14
8
12
6
18
2

• indexWhere(p:(A)=>Boolean) – Takes a function that will operate on an element
and result in a Boolean. It has the value of the index of the first element for which
the function is true.

scala> lst.indexWhere(_ % 2 == 0)
res82: Int = 1

scala> lst.indexWhere(_ > 7)
res83: Int = 4

• lastIndexWhere(p:(A)=>Boolean) – Takes a function that will operate on an ele-
ment and result in a Boolean. It gives the value of the index of the last element for
which the function is true.

scala> lst.lastIndexWhere(_ % 2 == 0)
res84: Int = 2

• map(f:(A)=>B) – Takes a function that operates on an element and results in some-
thing. It produces a new collection that contains the results of applying that function
to all the contents of the original collection.

scala> lst.map(_ + 1)
res85: List[Int] = List(8, 5, 7, 4, 10, 2)

scala> lst.map(_ * 2)
res86: List[Int] = List(14, 8, 12, 6, 18, 2)

scala> lst.map(i => i * i)
res87: List[Int] = List(49, 16, 36, 9, 81, 1)

• partition(p:(A)=>Boolean) – Takes a function that will operate on an element and
result is a Boolean. Produces a tuple with two new collections. The first contains only
the elements for which the function is true and the second is the rest. This is like
doing filter and filterNot at once.

150 Introduction to Programming and Problem-Solving Using Scala

scala> lst.partition(_ < 5)
res88: (List[Int], List[Int]) = (List(4, 3, 1),List(7, 6, 9))

scala> lst.partition(_ % 2 == 0)
res89: (List[Int], List[Int]) = (List(4, 6),List(7, 3, 9, 1))

• takeWhile(p:(A)=>Boolean) – Takes a function that will operate on an element
and result in a Boolean. Produces a new collection that contains all elements all the
elements at the beginning for which that function is true.

scala> lst.takeWhile(_ > 3)
res90: List[Int] = List(7, 4, 6)

While the first set of methods was straightforward, this group could use a bit more ex-
planation. We will focus on map and filter because they are very standard in the functional
programming world. Imagine we have a list or an array of people’s names. This list might
be very long, but for our sample code we will use just a few so you can see the illustration.
The names are in the normal format that people write them: “first middle last” with the
middle name being optional or potentially having multiple middle names. For programming
purposes we would like them to be in the format "last, first middle" because we often care
more about the last name. What we have described here is the application of a function to
every element of a sequence to get back a new sequence with the modified elements. That is
exactly what the map method does for us. All we have to do is figure out how we would write
a function to do that transformation, and then we can use it with map. The transformation
we want to do is to take the last word in the name and move it to the front with a comma
and a space between it and the first name. Basically, we want to split up the string on the
last space. The methods listed above could do this nicely, if only they worked on a String.
As it turns out, they do. We can treat a String as a sequence of characters. So we can use
lastIndexOf to find the last space and splitAt to make two Strings. We can see this on
a particular string here.

scala> val name="Mark C. Lewis"
name: String = Mark C. Lewis

scala> name.splitAt(name.lastIndexOf(’ ’)+1)
res91: (String, String) = (Mark C. ,Lewis)

Now all we need to do is put that back together in the opposite order with a comma and a
space.

If we were going to be reorganizing names like this frequently, we could put this code in
a stand alone function. If not, we can use a function literal to define it on the fly. For this
example, we will use the latter approach.

scala> val names=List("Mark C. Lewis", "Lisa L. Lacher", "Jason C. Hughes",
| "Glen R. Stewart","Jen Hogan")

names: List[String] = List(Mark C. Lewis, Lisa L. Lacher, Jason C. Hughes, Glen R.
Stewart, Jen Hogan)

scala> val lnames=names.map(n => {
| val (rest,last)=n.splitAt(n.lastIndexOf(’ ’)+1); last+", "+rest.trim })

lnames: List[String] = List(Lewis, Mark C., Lacher, Lisa L., Hughes, Jason C.,
Stewart, Glen R., Hogan, Jen)

Arrays and Lists in Scala 151

So the use of map allowed us to complete a task in a quick and short way that could have
taken us a fairly large amount of code using other approaches.

If you had a long list of these names, you might want to do something like find all the
people who have last names beginning with a particular letter. For example, we might want
to find everyone whose last names starts with an ’H’. For this we would use the filter
function. The filter function will select out values that satisfy some condition and give us
a sequence with only those values.

scala> lnames.filter(_.startsWith("H"))
res92: List[String] = List(Hughes, Jason C., Hogan, Jen)

Thanks to filter and the startsWith method, this is a very simple one liner.

6.5.3 reduce and fold

There are some other methods that were not listed above because they take a bit
more explanation. They should not be too hard to understand if you have followed up
to this point because they do exactly what we did ourselves earlier in this chapter with
the operateOnArray and operateOnList functions. We will start with the reduce meth-
ods, reduceLeft and reduceRight. These methods take a function that operates on two
elements of the sequence and results in a value of that type. The reduce methods re-
peatedly apply the function to successive elements the same way the operateOnArray and
operateOnList methods did. The difference between the two is whether they apply the
operations moving from left to right of from right to left. If the operation is associative, like
addition or multiplication, then the order does not impact the result, only potentially the
efficiency.6 For non-associative operations it can matter. Here are a few examples using the
lst variable that we defined earlier which was val lst = List(7,4,6,3,9,1).7

scala> lst.reduceLeft(_ + _) // Means 7+4+6+3+9+1
res93: Int = 30

scala> lst.reduceLeft(_ * _) // Means 7*4*6*3*9*1
res94: Int = 4536

scala> lst.reduceLeft(_ - _) // Means 7-4-6-3-9-1
res95: Int = -16

scala> lst.reduceRight(_ - _) // Means 7-(4-(6-(3-(9-1))))
res96: Int = 14

The first two calls do what we have seen before taking the sum and product of the list. The
last two use a difference, which is not associative, and show how the results of reduceLeft
and reduceRight are different. The reduceLeft method gives us ((((7−4)−6)−3)−9)−1.
The reduceRight method gives us 7− (4− (6− (3− (9− 1)))).

In the last chapter, we made a recursive method that could do these types of operations
with user input. That differed from what we did in this chapter in that we had to pass
in an extra value to use when the user terminated the recursion. We did not do anything
special with that, but it could have opened other possibilities. The reduce operations have to
operate on the element type of the collection for both arguments because the first invocation
of the function uses two elements from the collection. If we specify the base value, the

6The reduceLeft method is much more efficient on a List than reduceRight because of the way that
Lists are stored in the memory of the computer.

7There is also a general reduce method that should only be called using associative functions.

152 Introduction to Programming and Problem-Solving Using Scala

function can take one argument of a different type than the elements in the sequence as
long as it has a matching result type. If we say that the sequence has type A, and we want a
function that will produce type B, then the function has the form (B,A) => B, and we have
to provide a first value of type B. We can run through the sequence applying this function
to each of the A values until we get a final B at the end.

This functionality is provided by the foldLeft and foldRightmethods.8 These methods
use currying, which was introduced back in section 6.4 and will be described in detail in
section 7.8. The first argument list takes the base value to use on the first application. The
second argument list is the function to apply. The types A and B do not have to be different
so we can use foldLeft to sum up a list of integers like this.

scala> lst.foldLeft(0)(_ + _)
res97: Int = 30

However, unlike the reduce methods, we can do other things like count up the total number
of characters in a sequence of Strings. A reduce method on a sequence of Strings could
only give us back a String, but the fold methods can give us back another type. Here
we do exactly that. We show both the longer function literal syntax as well as the shorter
version.

scala> val wordList=List("How","many","characters","do","we","have")
wordList: List[String] = List(How, many, characters, do, we, have)

scala> wordList.foldLeft(0)((count,word) => count + word.length)
res98: Int = 25

scala> wordList.foldLeft(0)(_ + _.length)
res99: Int = 25

6.5.4 Combinatorial/Iterator Methods

There are some other methods on sequences that, for reasons of efficiency and memory
limitations, work a bit differently. These methods give us an object that provides access to
multiple different collections that are created from the original collection. The object that
they give us is called an Iterator, and specifically they give us an Iterator[List[A]] or
an Iterator[Array[A]]. The Iterator type is more primitive than the List or Array.
You can only go through it once because it is consumed as you go through it. The reason
for using an Iterator on these methods is generally for performance and memory benefits.
The fact that the Iterator consumes things as it goes means that it does not have to store
all the contents at once. In fact, only one needs to exist at any given time. When it moves
from one to the next, it can forget the last and make the next one.

The methods in this category are listed here. To show the values of the outputs a call to
foreach(println) is used. Without this, all that would be shown is Iterator[List[Int]]
= non-empty iterator.

• combinations(n:int) – Generates all combinations of the elements of this sequence
of length n.

scala> lst.combinations(3).foreach(println)
List(7, 4, 6)

8The foldRight method needs a function of type (A,B) => B. There is also a basic fold method, but
because the order it runs through the collection is not specified, it cannot work with any type B.

Arrays and Lists in Scala 153

List(7, 4, 3)
List(7, 4, 9)
List(7, 4, 1)
List(7, 6, 3)
List(7, 6, 9)
List(7, 6, 1)
List(7, 3, 9)
List(7, 3, 1)
List(7, 9, 1)
List(4, 6, 3)
List(4, 6, 9)
List(4, 6, 1)
List(4, 3, 9)
List(4, 3, 1)
List(4, 9, 1)
List(6, 3, 9)
List(6, 3, 1)
List(6, 9, 1)
List(3, 9, 1)

• grouped(size:Int) – Runs through the sequence, grouping items into groups of the
specified size.

scala> lst.grouped(2).foreach(println)
List(7, 4)
List(6, 3)
List(9, 1)

scala> lst.grouped(3).foreach(println)
List(7, 4, 6)
List(3, 9, 1)

• inits – Provides an iterator going from the full sequence to an empty one, removing
elements from the end. As the name implies, it is related to the init method, which
returns a single sequence without the last element.

scala> lst.inits.foreach(println)
List(7, 4, 6, 3, 9, 1)
List(7, 4, 6, 3, 9)
List(7, 4, 6, 3)
List(7, 4, 6)
List(7, 4)
List(7)
List()

• permutations – Lets you run through all the permutations of the sequence. Note
that the example here only does permutations of the first three elements as there
are 6! = 720 different ones for the full list. This also demonstrates why this method
return and Iterator. As was shown back in chapter 4, the factorial function grows
very quickly, so calling permutations on even a modest sized sequence would consume
more memory than any computer has if all the permutations were actually created at
once.

scala> lst.take(3).permutations.foreach(println)

154 Introduction to Programming and Problem-Solving Using Scala

List(7, 4, 6)
List(7, 6, 4)
List(4, 7, 6)
List(4, 6, 7)
List(6, 7, 4)
List(6, 4, 7)

• sliding(size:Int) – Provides an iterator that gives the effect of sliding a window
of a certain size across the sequence.

scala> lst.sliding(2).foreach(println)
List(7, 4)
List(4, 6)
List(6, 3)
List(3, 9)
List(9, 1)

scala> lst.sliding(3).foreach(println)
List(7, 4, 6)
List(4, 6, 3)
List(6, 3, 9)
List(3, 9, 1)

• tails – Gives an iterator that runs through subsequences starting with the full se-
quence and ending with an empty one removing one element from the left end each
step. This is basically the reverse of inits and is closely related to the tail method.

scala> lst.tails.foreach(println)
List(7, 4, 6, 3, 9, 1)
List(4, 6, 3, 9, 1)
List(6, 3, 9, 1)
List(3, 9, 1)
List(9, 1)
List(1)
List()

If you want to do something more involved with the values given by the Iterator, you
can convert it to a List or an Array with toList or toArray. However, if there are many
elements, as is the case for lst.permutations you might want to filter it or do something
else to narrow things down before doing that conversion. For example, we could filter down
the permutations of lst so that we only get those which start with the three largest value.
That cuts out the majority of the results, so it can be safely converted from an Iterator
to a List.

scala> lst.permutations.filter(_.take(3).sum > 20).toList
res100: List[List[Int]] = List(List(7, 6, 9, 4, 3, 1), List(7, 6, 9, 4, 1, 3),

List(7, 6, 9, 3, 4, 1), List(7, 6, 9, 3, 1, 4), List(7, 6, 9, 1, 4, 3),
List(7, 6, 9, 1, 3, 4), List(7, 9, 6, 4, 3, 1), List(7, 9, 6, 4, 1, 3),
List(7, 9, 6, 3, 4, 1), List(7, 9, 6, 3, 1, 4), List(7, 9, 6, 1, 4, 3),
List(7, 9, 6, 1, 3, 4), List(6, 7, 9, 4, 3, 1), List(6, 7, 9, 4, 1, 3),
List(6, 7, 9, 3, 4, 1), List(6, 7, 9, 3, 1, 4), List(6, 7, 9, 1, 4, 3),
List(6, 7, 9, 1, 3, 4), List(6, 9, 7, 4, 3, 1), List(6, 9, 7, 4, 1, 3),
List(6, 9, 7, 3, 4, 1), List(6, 9, 7, 3, 1, 4), List(6, 9, 7, 1, 4, 3),
List(6, 9, 7, 1, 3, 4), List(9, 7, 6, 4, 3, 1), List(9, 7, 6, 4, 1, 3),

Arrays and Lists in Scala 155

List(9, 7, 6, 3, 4, 1), List(9, 7, 6, 3, 1, 4), List(9, 7, 6, 1, 4, 3),
List(9, 7, 6, 1, 3, 4), List(9, 6, 7, 4, 3, 1), List(9, 6, 7, 4, 1, 3),...

These methods provide an easy way to do some more interesting work with data. For
example, using sliding, you can quickly smooth noisy data by averaging a data series over
a window as the following does with random numbers. Note how the output never goes
below 0.4 or above 0.82, while the original random data inevitably had values much closer
to 0.0 and 1.0.

scala> Array.fill(20)(math.random).sliding(5).map(_.sum/5).toArray
res101: Array[Double] = Array(0.40686956898234017, 0.42010662219123807,

0.460068215933166, 0.5978974398508441, 0.6977117936915517, 0.711388784520442,
0.815578490945466, 0.7546589297206381, 0.6257741024399198, 0.6461792586151993,
0.6723958342393901, 0.6599362542338169, 0.7182061307254338,
0.7920396281126222, 0.7454312388627433, 0.6635182202052169)

Using combinations or permutations, you could run through all possible options of
some type and find the one that was the best in some way. For example, if I wanted to find
subgroups of numbers that have a small sum, but a large product, I could do something
like the following, which finds any groups of 3 numbers from lst that have a sum less then
15, but a product greater than 30.

scala> lst.combinations(3).filter(s => s.sum<15 && s.product>30).foreach(println)
List(7, 4, 3)
List(7, 6, 1)
List(4, 6, 3)
List(4, 9, 1)

6.6 Complete Grades Script/Software Development
In chapter 4 we spent some time writing functions to calculate averages in a class. We

now have the ability to put together everything that we have learned and write a script
that will keep track of the grades for a single student and be able to calculate that student’s
average. This could be extended to multiple students, but we will not do that here.

When we solve a large problem, there are certain steps that must be taken. The first is
to get a clear description of what problem you are solving. This step is called analysis. The
analysis step does not involve any coding or even thinking about coding. We just want a
description that has enough detail that we know what it is we are supposed to create. Once
we have that, we can move on to the next step, which is called design. In the design step we
figure out how we are going to go about solving the problem described in the analysis. The
design step does not involve coding either, but it specifies what we will do when we get to the
coding. The design phase is where we do our problem decomposition. We think about how
to break the problem down and what pieces we will need to put together to get a single,
whole solution to the problem. After we have a design, we get to the implementation
phase.9 This is where we will actually write the program. Ideally, by the time that we get
to implementation we have worked out most of the problems we will run into. The ability
to see the problems we will encounter requires a lot of experience. As novice programmers,

9These phases are a part of the Software Development LifeCycle (SDLC).

156 Introduction to Programming and Problem-Solving Using Scala

you should try to spend time on design, thinking about how to break the problem down,
but do not become so intent on having a complete design that you stall out and never get
to implementation.10

After you have an implementation you have to make sure it works and fix any problems.
This is called the testing and debugging phase because it is where you test the code
to find all the bugs and fix them. For real software, after all the bugs are fixed and the
software has been rolled out, or deployed, you worry about maintenance. This is where
you continue to make alterations to the software to improve it or address customer requests.

At the level you are at now, you typically do not do much analysis or maintenance.
You do not do much analysis because your instructor or this book will give you a fairly
complete description of what you are doing. You do not do maintenance because you do not
have a customer base that is using the software. A little of each of these can still creep into
your work when you make sure you fully understand the description of a problem and then
perhaps if you are given a later problem that incorporates code you had done previously.

You should spend a significant amount of time working on design and debugging. In fact,
the implementation phase is often the shortest phase of the software creation process.11 If
done properly, most of the thinking goes into the design phase so implementation is simply
typing in what you had designed. Testing and debugging is extremely variable in time. It
is possible to write your program and have everything work perfectly the first time. That
gets less likely as programs get longer and is especially rare for novice programmers, though
the static type checking in Scala will help to make it so that if everything in your program
checks out it has a better chance of working. When things do not work, debugging can take
arbitrarily long periods of time and is often the longest phase of software development.

In real software development, these different phases are not always so distinct, and
they are rarely done in sequential order. It is common that in one phase of development
you realize something that was missed in an earlier phase. Some approaches to software
development mix the phases together so that the developer is involved in more than one at
any given time.

At this point we have a very vague description of the problem that we are going to solve.
For that reason, we need to do some analysis up front so that we have a clear description
of exactly what we are going to solve. This script is going to use a text menu to give the
user options. The options will include the ability to add grades of different types as well
as an option to print the current grades and average. Types of grades are tests, quizzes,
and assignments. For the final average, the tests and assignments count 40% each and the
quizzes make up the remaining 20%. The lowest quiz grade should be dropped. The menu
will have numbers by each option and users enter a number to select that option. That is
probably a sufficient analysis for our needs here. We can start working on the design and if
we hit anything we have questions on, we can go back and add some detail to the analysis
before we proceed further with the design.

So how are we going to break this problem down? At the top level we have code that
repeats over and over and each time a menu is printed, the user selects an option, and we
execute code to perform the selected option. The only way we currently know how to do
something repeatedly an unspecified number of times is with a recursive function. So we
will need a recursive function that contains all this other functionality. That function will
call itself until we hit the condition where it exits. There is a natural decomposition at this

10This type of behavior has been referred to as “paralysis by analysis”, though it is more likely to happen
during the design phase than the analysis phase.

11At least if you do things properly the implementation will be short. I like to tell my students that hours
of coding can save minutes of thinking. The point of this is that if you do not sit and think about design
before you go to the keyboard and write code you are likely to spend hours hashing out in code the design
that you could have nailed down in a few minutes by thinking about it to begin with.

Arrays and Lists in Scala 157

point. Printing the menu is an obvious function. We have already seen that we can write
functions for taking straight averages or averages dropping the minimum grade as well as
one to calculate the final average.

That breaks down the functionality. If you were to run to the keyboard now and start
typing you would quickly realize that something significant was left out of the design: how
we are storing the grades. There are many ways that we could do this, but given that our
only functionality is to add grades and calculate averages, the solution is fairly clear. Our
only real options at this point are Arrays and Lists. Arrays have a fixed size and are
inefficient to add to. That is less than ideal for this application because we will be adding
grades and have not specified how many there can be. So Lists make more sense. We can
use three Lists that store the three different types of grades. If we do this in an imperative
style, the Lists will be declared with var before the main recursive function. If we use a
functional style, they will be passed into the next call for the iteration. We will look at both
to illustrate the differences. Most of the functions will not be altered by this distinction.

That gives us a decent design for this little application. Now we turn to the imple-
mentation. Here is a listing of the complete script using an imperative approach with var
declarations for the Lists.

Listing 6.1: GradesImperative.scala
import io.StdIn._

def average(nums:List[Double]):Double = nums.sum/nums.length

def averageDropMin(nums:List[Double]):Double = (nums.sum-nums.min)/(nums.length-1)

def fullAve(tests:Double, assignments:Double, quizzes:Double):Double = 0.4*tests +
0.4*assignments + 0.2*quizzes

def courseAverage(tests:List[Double],assns:List[Double],
quizzes:List[Double]):Double = {

val aveTest=average(tests)
val aveAssn=average(assns)
val aveQuiz=averageDropMin(quizzes)
fullAve(aveTest,aveAssn,aveQuiz)

}

def printMenu:Unit = {
println("""Select one of the following options:

1. Add a test grade.
2. Add a quiz grade.
3. Add an assignment grade.
4. Calculate average.
5. Quit.""")
}

var tests = List[Double]()
var quizzes = List[Double]()
var assignments = List[Double]()

def mainGrades:Unit = {
printMenu
readInt() match {
case 1 =>
println("Enter a test grade.")

158 Introduction to Programming and Problem-Solving Using Scala

tests = readDouble() :: tests
case 2 =>
println("Enter a quiz grade.")
quizzes = readDouble() :: quizzes

case 3 =>
println("Enter an assignment grade.")
assignments = readDouble() :: assignments

case 4 =>
println("The average is "+courseAverage(tests,assignments,quizzes))

case 5 =>
return

case _ =>
println("Unknown option. Try again.")

}
mainGrades

}

mainGrades

The calculation of the average is accomplished by the first four functions, beginning
with general functions for finding the average of a List of numbers as well as the average
with the minimum dropped. This is followed by the function that prints the menu. The only
thing of interest here is the use of the triple quote string so that the string can be made to
span multiple lines. If you do not do this, you will have to use \n to denote line breaks.

Those functions are the same in both imperative and functional solutions. In this imper-
ative version, the printMenu function is followed by the declaration of three variables. They
are all vars, and they are of the type List[Double]. They have to be vars because the
List itself is immutable. So, whenever something is added we have to change the variable
reference and point to a new List. Remember, this can be done efficiently for the List type
so that is fine.

If you type this code in and play with it a bit, you will probably find that you can make
it behave poorly. If you print the grades without entering a quiz grade, the code will crash
because the min method on a List requires that there be at least one element to find the
minimum of. If you print the grades when there are no tests or assignments, or only one
quiz grade, you can get it so that when you ask for the average you get an output like this.

The average is NaN

This should lead you to two questions. First, what is this thing called NaN? Second, what is
causing this? Technically, the second matters more because we need to know that to fix it.
However, knowing the answer to the first can help you figure it out if you were not able to do
so from your testing. The Double type, as we have discussed previously, is used to represent
numeric values that have fractional parts. It has a rather large range and good precision,
but it is technically a fixed precision type. You cannot represent any real number with it. In
addition, some mathematical operations produce results that are not well defined. Consider
the following.

scala> 1.0/0.0
res102: Double = Infinity

scala> -1.0/0.0
res103: Double = -Infinity

You should have learned in a math class that you cannot divide by zero. If you do this with

Arrays and Lists in Scala 159

Ints you get an error. However, if you do it with Doubles you get what you see here. Any
operation that goes outside the range of the Double will also get you either Infinity or
-Infinity, depending on which side of the range it goes out on as is shown here.

scala> 1e150*1e200
res104: Double = Infinity

What does all of this have to do with NaN? Well, NaN stands for “Not-a-Number”, and it is
the result of an operation when it is not clear what the result should be. One way to get
this is to add Infinity and -Infinity or do other operations with Infinity or -Infinity
that the computer cannot know the result of. Consider this example.

scala> 1e150*1e200-1.0/0.0
res105: Double = NaN

In general the computer cannot know if this would be out of range on the positive or negative
so it goes to NaN because it gives up. There is one other way to get a NaN: divide zero by
zero.

scala> 0.0/0.0
res106: Double = NaN

This is what is happening to cause our error, and it happens when zero test or assignment
grades or only one quiz grade have been entered.

If we have no test or assignment grade, the normal average will return 0.0/0, as the
sum is the Double 0.0 and the length is the Int 0. If the list of quiz grades only has one
element, then that one is the minimum. So the function returns (x-x)/(1-1) where x is the
one grade as a Double. Clearly that is going to be a NaN. So how do we fix this? We need
to make the average and the averageDropMin functions a bit smarter so that they have
special cases in the instances when they should not do division. We can do this by putting
if expressions in both.

def average(nums:List[Double]):Double =
if (nums.isEmpty) 0 else nums.sum/nums.length

def averageDropMin(nums:List[Double]):Double =
if (nums.isEmpty || nums.tail.isEmpty) 0 else
(nums.sum-nums.min)/(nums.length-1)

If you use these versions of the functions things should work well.
Now to the functional alternative. The imperative version uses three var declarations

outside of the function. These declarations can be seen by anything in the script that follows
them. We typically refer to this as the global scope. For small scripts this might not be
a problem, but you do not want to get into the habit of making things global, especially if
it is a var or mutable. Anything that is global in a large program can be messed up by any
line of code, making it very hard to track down certain types of errors. It is better to have
our variables declared in a local scope, inside of a function.

If we simply declare the variables inside of mainGrades, it will not work because when
you make a recursive call, you get new versions of all of the local variables. Instead, we
want to pass the three lists into the function as arguments. The arguments to a function
act just like local val declarations except that the value is provided by the calling code.
This new version will not include any var declarations, nor will it have any mutable values
as everything is stored in immutable Lists. So other than the printing, it is completely

160 Introduction to Programming and Problem-Solving Using Scala

functional. Here is what such a function might look like and how we would call it makes
the script work.

def mainGrades(tests:List[Double],assignments:List[Double],
quizzes:List[Double]):Unit = {

printMenu
readInt() match {
case 1 =>
println("Enter a test grade.")
mainGrades(readDouble() :: tests,assignments,quizzes)

case 2 =>
println("Enter a quiz grade.")
mainGrades(tests,assignments,readDouble() :: quizzes)

case 3 =>
println("Enter an assignment grade.")
mainGrades(tests,readDouble() :: assignments,quizzes)

case 4 =>
println("The average is "+courseAverage(tests,assignments,quizzes))
mainGrades(tests,assignments,quizzes)

case 5 =>
case _ =>
println("Unknown option. Try again.")
mainGrades(tests,assignments,quizzes)

}
}

mainGrades(Nil, Nil, Nil)

Instead of mutating values, this version passes the newly built List into the recursive call
where it is a completely new argument value for the next level down in the recursion. The
options that do not change the Lists simply pass through the same values. The initial call
uses empty lists for all three arguments.

6.7 Playing with Data
Lists of grades make a fairly simple, and easy to understand example, but they do

not really highlight a lot of the power of computers and programming. The lists of grades
are generally short enough that you could do the calculations by hand without too much
difficulty. You are not going to have thousands of grades in a class. Where the power of the
computer really stands out is when the amount of data, or the number of calculations is
so large that you would never want to do things by hand. In this section, we will look at
processing such a data set.

The data set that we are going to work with is a list of baby names maintained by
the United States Social Security Administration. You can get these files for yourself at
http://www.ssa.gov/OACT/babynames/limits.html. In particular, we will work with the
state data. You should download the ZIP file, and unzip it in a directory where you want
to work. Note that the ZIP file contains separate files for each state, so you really do want
them to be in some separate directory.

The format of the files is fairly simple. Here are the first ten lines of the file for North
Dakota.

http://www.ssa.gov/OACT/babynames/limits.html

Arrays and Lists in Scala 161

ND,F,1910,Mary,85
ND,F,1910,Alice,61
ND,F,1910,Margaret,61
ND,F,1910,Helen,59
ND,F,1910,Anna,58
ND,F,1910,Florence,58
ND,F,1910,Gladys,50
ND,F,1910,Mildred,50
ND,F,1910,Myrtle,48
ND,F,1910,Ruth,47

You can see that each line has five values separated by commas. Those values are the state
code (which should be the same for every line in a given file), a letter for gender, the year,
the name, and the number of children of that gender given that name in that year. What
we want to be able to do is read in the entire file and then answer some questions about
the data in it. To make things more concrete, say we want to find the most common name
for males and females in each year.

We know what we want to do, and we know what the data file looks like. Now we need
to take the problem and break it into pieces that we can solve. One immediate way to break
the problem down is to think of reading the data and finding the common names in the
data as separate problems.

6.7.1 Reading the Data

The problem of reading a large data file can be viewed as reading one piece and doing
it many times. The only way that we currently know how to read data like this is with
readLine. That will read the full line as a String. Once we have that, we need to break
it up on the commas and get the pieces. There is a handy method on String called split
that can do exactly that. It takes the delimiter to split on, and returns an Array[String].
The following function takes a line of text and returns a tuple of (String, String, Int,
String, Int) with the data from that line. That tuple type is going to be used a lot in
this code, so we will use a type declaration to give it a shorter name.

type NameData = (String, String, Int, String, Int)

def parseLine(line:String):NameData = {
val parts = line.split(",")
(parts(0), parts(1), parts(2).toInt, parts(3), parts(4).toInt)

}

To use this function, we need to read all the lines from the file and then call that function
on each line. The first part of that is nicely done with fill, and the second part is a perfect
application of the map method, giving us code like the following.

val lines = Array.fill(43858)(readLine)
val data = lines.map(parseLine)

The “magic number” 43858 was the number of lines in the file for North Dakota at the
time this was written. You should replace it with the proper number for whatever file you
are reading in. We refer to this as a magic number because the way it appears in the code
does not really tell us much about what it is for. Such things often make code hard to
maintain, for that reason, it is generally advised that you create named constants instead
of having such magic numbers in your code as shown here.

162 Introduction to Programming and Problem-Solving Using Scala

val linesInFile = 43858

val lines = Array.fill(linesInFile)(readLine)
val data = lines.map(parseLine)

One of the keys to effective time usage when you are writing software is to frequently
run the program to make sure that what you have written is correct and the program does
what you expect. You could certainly go to the command line and run your code, but you
would find there are two problems. First, you have to manually enter over 40 thousand lines
of text. Second, even after you do so, the program does not print anything, so it is very hard
to tell if what you have written is correct. To fix the second problem, you can temporarily
add the following line to the bottom of your script.

data.foreach(println)

This will print out all the data that was actually read with one record per line. It will be
43,858 lines, so you are not going to check them individually to make sure they are all
correct, but you want to see that they have appropriate values in them.

To deal with the problem of needing to enter many lines of input, we are going to use
input redirection. You could change the value of linesInFile briefly to be a smaller number
of lines that you can enter by hand, but eventually we will want to read the whole file. Input
redirection is discussed in Appendix A. The idea is that we want the readLine command to
read from a file instead of the keyboard. Another way to say that is that we want the file to
be the source for standard input. This is done with the less than symbol on the command
line. If your program was named “CommonNames.scala”, and you wanted to run this on the
North Dakota names file, you could enter the following on the command line.

scala CommonNames.scala < ND.TXT

This assumes that the ND.TXT file is in the same directory as your Scala code. If it is, and
you have written the code correctly, running this should flood your screen with a bunch of
output ending with the records from the end of the file.

6.7.2 Finding Maximum Values

Now that we have all the data read in, we can turn to the issue of finding the most
common name in each year. This also breaks down nicely into sub-problems. We need to
find all the years in the date. For each year, we need to get the desired date for just that
year. Given a group of data, we need to find the most common names.

We will start with the last sub-problem. There are many ways that we could break
things down, and how we choose to do so impacts the code that will be written for each
sub-problem. The task of finding the most common names makes a good function, we just
need to decide what exactly that function should do.

Recall that our original problem statement said to find the most common names for males
and females. Given this description, it is tempting to write a function that would take all the
data from one year, and return both the most common male names and the most common
female names.12 The problem with that approach is that it is not very reusable. What if
later we were given the task of figuring out the most common name in each year regardless
of gender, or we were processing a file that only contained a single gender? Coding in the
gender distinction at the lowest level in our solution gives us code that is not very flexible.
It might be great for the problem at hand, but we would rather make something that is

12Note that those are both intentionally left plural because there could be ties.

Arrays and Lists in Scala 163

more generally useful. As you might recall from chapter 4, the best functions are the ones
we can use in many situations. At this point, you might not actually reuse your functions,
but it is still good to keep this objective in mind so that it becomes second nature later on.

Here is the code for such a function.

def mostCommonNames(nameData:Array[NameData]):Array[NameData] = {
val maxTimes = nameData.map(_._5).max
nameData.filter(_._5 == maxTimes)

}

This function uses a call to map to get only the name frequencies. That is what the _._5
is doing as the frequency column was the 5th column in the data file and the 5th element
of the tuple. Then it calls max to get that largest frequency. The function ends by calling
filter to get all the values that have that frequency. If we did not care about ties, and only
wanted one name with the maximum frequency, this could have been done more efficiently
using reduceLeft as shown here.

def mostCommonName(nameData:Array[NameData]):NameData = {
nameData.reduceLeft((nd1,nd2) => if (nd1._5 > nd2._5) nd1 else nd2)

}

The way this is written, it will result in the last element in the Array that had the highest
frequency. Changing the > to a >= or swapping the nd1 and nd2 in the comparison will
result in the first of the ties instead of the last. We want to find all ties, so we will stick
with the first version.

The task of finding all the years in the data file is fairly simple. You could look in the
file and see what years are present, but we can easily get that information from the data
itself using a single line.

val years = data.map(_._3).distinct

This line uses map to pull out all the years, then makes a call to distinct to remove all the
duplicate entries.

Once we have the years, another line can give us the most common female or male
names. Here is a line giving the most common female names.

val femaleNames = years.flatMap(year =>
mostCommonNames(data.filter(nd => nd._2=="F" && nd._3==year)))

This code does a flatMap across all the years and for each year it calls our mostCommonNames
function using that data that has been filtered down to only females in that year.13 To under-
stand why flatMap is used here, we need to think about the types of the various expressions
in this code. The mostCommonNames function results in an Array[NameData]. Also, the value
year is an Array[Int]. If we used a regular map instead of a flatMap, the results would be
an Array[Array[NameData]], where each subarray was for a different year. There could be
times when you want this, but in this case, we do not need it, and it is a bit harder to work
with. So instead, we use flatMap to flatten out that Array[Array[NameData]] to just an
Array[NameData].

We can add a similar line for males along with some lines to print those final results,
and we get a complete script that looks like the following.

13There is a more efficient way to do this using a method called groupBy. We have not covered that
method because it uses a type called a Map that will not be introduced in this volume.

164 Introduction to Programming and Problem-Solving Using Scala

Listing 6.2: CommonNames.scala
import io.StdIn._

val linesInFile = 324133 //43858

// Define shortened name for the tuple that represents each line
type NameData = (String, String, Int, String, Int)

// This function parses a line of text from the file to a NameData
def parseLine(line:String):NameData = {
val parts = line.split(",")
(parts(0), parts(1), parts(2).toInt, parts(3), parts(4).toInt)

}

// Read the contents of the file and parse all the lines
val lines = Array.fill(linesInFile)(readLine)
val data = lines.map(parseLine)

// Function to find the most common names in aa Array
def mostCommonNames(nameData:Array[NameData]):Array[NameData] = {

val maxTimes = nameData.map(_._5).max
nameData.filter(_._5 == maxTimes)

}

// Find the years the the data that has been read
val years = data.map(_._3).distinct

// Find most common female and male names
val femaleNames = years.flatMap(year =>
mostCommonNames(data.filter(nd => nd._2=="F" && nd._3==year)))

val maleNames = years.flatMap(year =>
mostCommonNames(data.filter(nd => nd._2=="M" && nd._3==year)))

// Output the results
femaleNames.foreach(println)
maleNames.foreach(println)

You can pick a particular state file and adjust the value of linesInFile and run it to see
it work.

6.8 End of Chapter Material

6.8.1 Problem Solving Approach

Despite the length of this chapter, no new valid statement types were introduced. In-
stead, a significant amount of flexibility was added in what you might do with the existing
statement types. In particular, you can now use expressions with collection types and call
methods on those collection types. You also learned that types themselves can be more
complex with type parameters.

Arrays and Lists in Scala 165

6.8.2 Summary of Concepts

• Arrays and Lists are collections that allow us to store multiple values under a single
name. They are sequences, meaning that the values have an order and each one is
associated with an integer index. Indexes start at zero.

• Both can be created in a number of ways.

– Array(e1,e2,e3,...) or List(e1,e2,e3,...) to make short collections where
you provide all the values.

– Use the :: operator with Lists to append elements to the front and make a new
List. Use Nil to represent an empty List.

– Array.fill(num)(byNameExpression) will make an Array of the specified size
with values coming from repeated execution of the specified expression. This will
also work for Lists.

– Array.tabulate(num)(functionOnInt) will make an Array with num elements
with values that come from evaluating the function and passing it the index.
Often function literals are used here. This will also work with List.

• Arrays have a fixed size and are mutable. Access and mutate using an index in paren-
theses: arr(i).

• Lists are completely immutable, but you can efficiently add to the front to make new
Lists. They can be accessed with an index, but using head and tail in recursive
functions is typically more efficient.

• The Scala collections, including Array and List, have lots of methods you can call
on to do things.

– There are quite a few basic methods that take normal values for arguments and
give you back values, parts of collections, of locations where things occur.

– The real power of collections is found in the higher-order methods. The primary
ones you will use are map, filter, and foreach.

– There are a handful of methods that give you back various pieces of collections,
including combinatorial possibilities such as permutations and combinations.

6.8.3 Self-Directed Study

Enter the following statements into the REPL and see what they do. Try some variations
to make sure you understand what is going on. Some of these are intended to fail. You should
understand why.

scala> val arr = Array(1, 2, 3)
scala> arr(0)
scala> arr(1)
scala> arr(0) = 5
scala> arr.mkString(" ")
scala> val lst = List(2, 3, 5, 7, 11, 13, 17)
scala> lst.head
scala> lst.tail
scala> val lst2 = 1 :: 2 :: 3 :: 4 :: 5 :: Nil
scala> lst.zip(lst2)

166 Introduction to Programming and Problem-Solving Using Scala

scala> lst.zipWithIndex
scala> val arr3 = Array.fill(5)(readLine())
scala> val lst3 = List.tabulate(20)(i => i*i)
scala> def printList(lst:List[Int]):Unit = lst match {
case h::t =>
println(h)
printList(t)

case Nil =>
}
scala> printList(lst3)
scala> lst3.mkString(" ")
scala> lst3.map(i => math.sqrt(i))
scala> arr3.map(s => s.length)
scala> arr.permutations.foreach(println)
scala> lst.sliding(4)
scala> val numWords = lst.map(_.toString)

6.8.4 Exercises

1. Think of as many ways as you can to make an Array[Int] that has the values 1-10
in it. Write them all to test that they work. The first two should be easy. If you work
you can get at least three others knowing what has been covered so far.

2. Think of as many ways as you can to make a List[Int] that has the values 1-10 in
it. Write them all to test that they work. The first two should be easy. If you work
you can get at least three others knowing what has been covered so far.

3. Make a List[Char] that contains ’a’-’z’ without typing in all the characters. (Use
toChar to make this work.)

4. Given two Array[Double] values of the same length, write a function that returns
their by element sum. This is a new Array where each element is the sum of the
values from the two input arrays at that location. So if you have Array(1,2,3) and
Array(4,5,6) you will get back Array(5,7,9).

5. Write a function that produces a sequence of prime numbers. You can use the isPrime
function that you wrote for exercise 5.9. The function should take an argument for
how many prime numbers need to be in the list.

6. Write a function that takes a number of values and returns the average excluding the
largest and smallest values.

7. Write a program that asks the user for the total sales receipts for each day of the week
and store the amounts in an array. Then calculate the total sales for the week and
display the result.

8. Write a program that asks the user for the total sales receipts for each day of the
week and store the amounts in a list. Then calculate the total sales for the week and
display the result.

9. Write a function that takes a sequence (List or Array) of grades and returns the average
with the lowest two grades dropped. Make sure this function behaves reasonably even
for smaller input sets.

Arrays and Lists in Scala 167

10. A list of baby names is maintained by the United States Social Security Administra-
tion. You can get these files for yourself at http://www.ssa.gov/OACT/babynames/
limits.html. Download this file and select the state in which you were born. Write
a script to find how many people in your state were given your name. Then find out
how many males and how many females were born since the year 2000.

11. Write a script that reads in a number of integers between 1 and 100 and stores them
in a list and then counts the number of times each number occurs.

12. Write several versions of code that will take an Array[Int] and return the number
of even values in the Array. Each one will use a different technique. To test this on a
larger array you can make one using Array.fill(100)(util.Random.nextInt(100))

(a) Use a recursive function.

(b) Use the count higher-order method.

(c) Use the filter higher-order method in conjunction with a regular method.

(d) Use the map higher-order method in conjunction with a regular method.

13. Write a version of getAndClear that uses a List and completely removes the value
at the specified index.

14. Write a script that reads in a series of numbers from the user and stores them in a
list. Then pass this list to a function that will remove all of the duplicates in the list.
Print out the list to make sure that all duplicates were removed.

15. You can treat a String as a sequence of Char and use all the methods that we
introduced here for List and Array on it. Using that, what code would you use to
do the following? For all of these assume that str is a String provided by the user
through readLine().

(a) Get a version of the String with all the spaces removed.

(b) Get a version of the String with all vowels removed.

(c) Split off the first word of the String. Write code that gives you a (String,
String) where the first element is everything up to the first space in str and
the second one is everything else.

(d) Convert to a sequence that has the integer values of each of the characters in
str.

(e) Write code that will take a sequence of Int, like the one you just made, and
give you back a String. (Note that if you get a sequence of Char you can use
mkString to get a simple String from it.)

6.8.5 Projects

1. We can express a general polynomial as

Anx
n + An−1x

n−1 + An−2x
n−2 + ...+A2x

2 + A1x+ A0

where the A values are the coefficients on different terms. You can view a sequence of
Doubles as a polynomial by saying that the value at index n is the value of An. Using
this representation, Array(1.0,0.0,2.0) would represent 2x2+1. Note that the order
when you look at the Array is the opposite of the order seen in the polynomial.

http://www.ssa.gov/OACT/babynames/limits.html
http://www.ssa.gov/OACT/babynames/limits.html

168 Introduction to Programming and Problem-Solving Using Scala

Using this representation of polynomial, write functions that do addition and sub-
traction of two polynomials. You can assume that the Arrays passed in are the same
length. Also write functions that gives you the derivative of a polynomial and the
anti-derivative.14 Note that the anti-derivative function will need and extra argument
for the value of the constant term.

To help you learn, try to write these functions using both recursion with an index and
using standard methods on sequences. For the former option try doing it with Lists
as well using :: to build the Lists in the recursion. For the latter a hint when you
write add and subtract is to consider using the zip method.

If you want an extra challenge, try writing multiplication as well. This is a significantly
harder problem, but if you can do it with both recursion and the built in methods
you should feel good about your understanding.

2. This project has you implement a simple form of encryption and decryption. You
should write at least two functions called encrypt and decrypt.

The form of encryption we are using is offset encryption where you simply offset
letters in the alphabet. If you pick an offset of 1, then if there is an ’a’ in the original
message, the encrypted message will have a ’b’. For a first cut, write these functions
so they just add or subtract a specified offset to all characters. (Note that when you do
arithmetic on a Char you get an Int. Use the toChar method to get back that type.
So (’a’+1).toChar will give you ’b’.) Your methods will both take a String and an
Int and return a String. The Int passed in is the offset to apply to the characters.

This approach is easy, but it produces non-letters in certain situations like when you
do an offset on ’z’. Refine your functions so that they skip any characters that are
not letters and wraps around so that if the offset goes above ’z’ it comes back to
’a’. You have to handle capital letters as well. (Note that the Char type has methods
called isLetter, isUpper, and isLower that can help you with this. You can also do
comparisons and math with the Char type.)

If you want an extra challenge and you want to make it harder for someone to try to
break your code, revise your methods so that they take an extra Int and insert random
characters at intervals of that spacing. So if the value is 5, you will insert an extra ran-
dom character between every fifth character from the message. You can generate a ran-
dom letter character with the expression (’a’+util.Random.nextInt(26)).toChar.

For this whole problem remember that you can treat Strings as sequences. So, you
can use them like an Array[Char] except that they are not mutable.

3. For this project you will be doing some simple data analysis. If you go to the book
website and look at the page for this chapter you will find a text file for this ex-
ercise that has values in it. It is weather data for 2/17/2010 in San Antonio, TX
from the Weather Underground (http://www.wunderground.com). It has one line for
each hour and each line has a single number that is the temperature for that hour.
Write a function that will read this into an Array[Double] using redirection and
readDouble. Then write functions to calculate the following: standard deviation and
change per hour. The standard deviation will return a Double. The change will return
an Array[Double] that is one shorter than the original data set.

4. Write an anagram solver. Anagrams are a type of word play in which the letters of a
word or phrase are re-arranged to create a new word or phrase. Each letter may only

14You might recognize this better as an indefinite integral.

http://www.wunderground.com

Arrays and Lists in Scala 169

be used once. Anagrams have a long history. In ancient times, people used anagrams
to find the hidden and mystical meaning in names. Your script should read in two
strings and determine if they are anagrams. Two words are anagrams if they contain
the same letters. For example, Mary and Army are anagrams. An example of phrases
which are anagrams is "Tom Marvolo Riddle" and "I am Lord Voldemort". Notice
that blank spaces can be variable and capitalization is not important.

5. Blackjack is one of the most popular card games in a casino. In this project, you will
write a two person blackjack game in which the player will try to beat the dealer (the
computer) in one of three ways: 1) The player gets 21 points on their first two cards,
without the dealer getting blackjack (note that the dealer wins on a tie); 2) The player
gets a final score higher than the dealer without exceeding 21; or 3) the dealer’s hand
exceeds 21. First, the computer deals out two cards to both the player and the dealer
(itself). The player’s cards are both face-up, but the dealer only has one card face-up
and the other is face-down. Next, the dealer checks if either the player or the dealer
got a blackjack. If no one got a blackjack, the player gets a chance to add some cards
to their hand. The player must decide whether they want a "Hit", which means the
dealer deals them another card which is added to their hand, or to "Stand", which
means to stop dealing cards to the player. If the player "Hits" and they go over 21,
then they lose, and the game is over. If not, then the player gets to decide again
whether to "Hit" or "Stand". This process continues until the player either loses or
"Stands". If the player has not gone over 21 and "Stands", then the dealer gets a
chance to draw cards. At this point, the dealer shows all their cards to the player. The
general rule of the game that a dealer must follow is that if the dealer’s hand is less
than or equal to 16, the dealer must "Hit" and add another card to their hand. The
dealer must continue to "Hit" until either the dealer’s total is greater than or equal
to the player’s total (in which case the dealer wins), or the dealer has gone over 21
(in which case the player wins).

6. This project is to be built on top of project 5.3. For this one you make functions
that will take a List or Array of the values used to represent spheres and planes and
return the impact parameter of the first one the ray hits and the information on that
geometry.

7. For this project, you will write a function that could help people playing Scrabble®.
You will want to break this down so you have multiple functions in the end, but the
last one is what really matters. If you go to the book’s web site, the page for this
chapter will have a data file for this exercise called 2of12.txt. This is a file with a
list of 41238 English words. There is one word per line. Using input redirection and
readLine you will read the contents of this file into an Array[String].

Once you have this file read in, your goal is to give back words that the person could
likely make using letters he/she has to play. Your end goal is a function that takes the
list of the dictionary words and a String of the letters the person has to play, which
returns all the words that can be made from their letters plus one other letter. The one
other letter is something you do not know that should have been played somewhere
on the board. For our purposes here we do not care what it is. You should give back
any word that can be formed with some subset of the player’s letters plus one extra.

To do this you really want to use functions to break the problem down. Consider
what higher order methods could be helpful and what types of functions you need to
use with them. To make this all work with input redirection download and edit the
2of12.txt file and insert a top line where you put the letters the player has in Scrabble.

170 Introduction to Programming and Problem-Solving Using Scala

The script will read that line to get the letters and then read the proper number of
lines to get all the words.

Lastly, to help you solve this problem consider using the diff method. This method
tells you the difference between two sequences. Play around with calling diff us-
ing different strings to see what it does. Start with "aabbcc".diff("abcde") and
"abcde".diff("aabbcc").

8. Now that you can keep store multiple values in Lists and Arrays, you can push the
recipe program to use an arbitrary number of items. Make a script that asks the user
for items in their pantry. It should ask for item names and how much they have until
the user enters a name of “quit”. After that, the program will let the user run through
recipes, entering one recipe name, followed by a number of ingredients, followed by the
name and amount of each ingredient. It should then tell the user if they have enough
to make that recipe and ask if they want to check another recipe.

9. Every semester you get to build a schedule of the courses that you will take in the
following semester. This is the start of some projects at the end of which you write a
program that will help you do so. For this first part, you want to have the user input
courses he/she is interested in taking as well as how much they want to take those
courses. The user should then tell the program how many courses should be taken
the next semester and the minimum score for the “want to take” sum that will be
accepted. The program should print out all of the schedule combinations with that
many courses that make the cut. (Hint: Use combinations to run through all the
possibilities. For each possibility, you can use map and sum to get the total “score” for
that option.)

There are additional exercises and projects with data files to work on posted on the
book’s web site.

Chapter 7
Type Basics and Argument Passing

7.1 Scala API . 171
7.2 The Option Type . 174
7.3 Parametric Functions . 175
7.4 Subtyping . 177
7.5 Variable Length Argument Lists . 179
7.6 Mutability and Aliasing . 181
7.7 Basic Argument Passing . 184

Code Blocks as Arguments . 188
7.8 Currying . 188
7.9 Pass-By-Name . 190
7.10 Multidimensional Arrays . 192
7.11 Classifying Bugs . 194
7.12 End of Chapter Material . 197

7.12.1 Problem Solving Approach . 197
7.12.2 Summary of Concepts . 197
7.12.3 Self-Directed Study . 198
7.12.4 Exercises . 199
7.12.5 Projects . 200

We have only begun to scratch the surface when it comes to types in Scala. By the end of
this book we will see that not only are there many types provided by the Scala libraries, we
can define our own types and give them names. Still, it is worth being more explicit about
what a type is and some of the details of types in Scala.

Let us begin with the question of what is a type. A type is a set of values and the
associated operations that can be performed on those values. Consider the type Int. There
are a set of different values that we can represent with an instance of Int. They are all the
integer values between -2147483648 and 2147483647. There is also a set of operations that
you can perform on an Int or on pairs of them such as addition and subtraction.

In chapter 6 we began to see that there is more to types in Scala than the basics like
Int. The types List and Array are not complete on their own. They are parametric types.
To be complete they have to have type parameters. So List[Int] is a complete type as is
Array[String]. List and Array are far from the only parametric types. Many of the types
in the Scala library are parametric as it provides them with much greater flexibility.

7.1 Scala API
Chapter 6 presented a number of different methods that you can call on the Array and

List types. It also hinted at the fact that there are others that had not been mentioned.
There are also many other types in the Scala libraries, far more than can be covered well
in a single book, and each of those has its own set of methods. You might have wondered
how you would find out about all of these methods and types. The complete list of all the

171

172 Introduction to Programming and Problem-Solving Using Scala

FIGURE 7.1: This figure shows the primary Scala API as it will appear when you first
go to it. The left panel shows the types organized by package. The right panel shows the
full information for whatever you have selected.

types available in the Scala standard library and methods for them can be found in the
Applications Programmer Interface (API). You can find the Scala API at the main Scala
web site, http://www.scala-lang-org. While the API has a lot of elements that go beyond
your current knowledge, it is worth giving you a quick overview of things to help you read
it and possibly find things in it.

The link to the API on the main page takes you to the core API. Under “Documentation”
you can find APIs for separate modules. If you go to the API, you will see something like
what is shown in figure 7.1.1 The API is divided into two main segments. On the left hand
side is a list of entities that are declared in the main library. On the right is a panel showing
information about whatever you have selected. This starts off on the root package.

The list on the left has names with little circles to the left of them. Each circle has either
an “O”, a “C”, or a “T” in it. These stand for “object”, “class”, and “trait”. The distinction
between a class and a trait is not significant to us in this book. We have been, and will
generally continue to refer to these things at “types”. While we do not focus on the details of
the “object” declaration in Scala in this book, these create what are called singleton objects.
As the name implies, this creates an individual object, whereas the type declarations, both
classes and traits, produces blueprints from which we can instantiate many objects, often
called instances.

The objects, classes, and traits are organized into groups called packages by the type of
functionality that they provide. At the top is a package called scala. The most fundamental
types, including Int, Double, and Char, are stored in this package. This package is imported

1It is interesting to note that the API is created by a tool called scaladoc that can be run on general Scala
code to produce this style of web-based documentation. The scaladoc program does not work on scripts, so
only the code written at the very end of this book using the application style of Scala programming would
be able to benefit from it.

http://www.scala-lang-org

Type Basics and Argument Passing 173

FIGURE 7.2: This figures shows the API with the List class selected.

by default in all Scala programs so that you can use things in it without having to use an
import statement. Though we did not go into details, you have already seen the scala.io
package. We are using part of it in the import io.StdIn._ statements that has gone at the
top of most of our scripts. The imports in Scala are nested, so we can say just io.StdIn._
instead of scala.io.StdIn._ due to the fact that the scala package has already been
imported. You can use the longer version if you wish. Both work equally well. You could
scroll down to the scala.io package, or type “StdIn” into the search bar at the top left of
the API to see the StdIn object. If you click on that, you will see the various read methods
that we have been using.

figure 7.2 shows the API after selecting List from the scala.collection.immutable
package and scrolling down a ways into the methods. In the visible section, you can see
a number of the methods that were introduced in chapter 6, including distinct, drop,
exists, and filter. Clicking on any of those methods will reveal a longer description with
more information.

The API contains a number of things that go beyond our current knowledge of Scala, so
you should not worry if there are things that do not make sense. It is still a useful resource
that you should refer to when you are coding. Note that your goal as a programmer is not
to memorize the entire API. That would actually be a very poor use of your time. You want
to have a feel for what is in the API so that you have a general idea of what is there and are
able to look things up quickly when you need to use something you are not familiar with.
You will come to know the parts that you use regularly without memorization. Indeed, one
of the primary advantages of practice in programming is that it will help you to learn the
details without memorization.

174 Introduction to Programming and Problem-Solving Using Scala

7.2 The Option Type
If you start digging through the API much you will find that the type Option, which is

in the top level scala package, comes up a fair bit. The idea of an Option type is that they
should be used when you are not certain if you will have a value or not. An Option[A] can
either be Some[A] or None. If it is Some, it will have a value in it that can be retrieved with
get. If there was no value, then you get None and know that it does not have a value. An
example of a method that does this is the find method on a sequence. You can call find
on either a List or an Array and pass it a function that takes an element and returns a
Boolean. The find method is supposed to return the first element for which the function
returns true. That description sounds simple enough, but what if there is not one? What
happens if find runs through the whole sequence and nothing makes the function return
true? For that reason, the find method returns Option[A] where A is the type contained
in the sequence. So if nothing works, it can return None.

Let us run through two examples to see how this works using the declaration val lst
= List(7, 4, 6, 9, 3, 1).

scala> lst.find(_ < 4)
res0: Option[Int] = Some(3)

scala> lst.find(_ < 1)
res1: Option[Int] = None

The list does contain elements that are less than 4. The first of these is 3 so we get back
Some(3). However, it does not contain anything less than 1 so that call returns None.
You might wonder how you can use this type of result. There are actually a few different
approaches that can be employed. Which you use depends a lot on what you wanted to do
with the result or based on the result.

The simplest thing to do is to use the getOrElse method of the Option type. As the
name of this method implies, it will get the value that is stored if it is called on a Some or
give back some default value if it is called on a None. Here we can see how this might be
used on our two previous examples with find.

scala> lst.find(_ < 4).getOrElse(0)
res2: Int = 3

scala> lst.find(_ < 1).getOrElse(0)
res3: Int = 0

This approach works well if you have a good default value that you want to use in the case
where nothing was found. It is also good idiomatic Scala. However, this approach does not
work well if you actually want to perform additional logic in the situation where there is a
value or when you want to do different things based on whether or not there is a value.

In the situation where you had more processing that was only supposed to happen in the
case where you have a Some, you can use the map or flatMap methods of Option. Calling
map on a Some applies the function to the stored value and results in a Some with the result
of that function. Calling map on a None does nothing and results in a None. The behavior is
exactly what you would expect if Some were a List with one element and None were a Nil.

Type Basics and Argument Passing 175

Imagine that we wanted to square the value that we found, but only if we found it. Then
map would be a good fit.2

scala> lst.find(_ < 4).map(i => i*i)
res4: Option[Int] = Some(9)

scala> lst.find(_ < 1).map(i => i*i)
res5: Option[Int] = None

As you can see, the one challenge with map, or flatMap, is that you get back another
object of type Option. You can go through many maps, flatMaps, and even filters with
an Option, but at some point you will likely need to use one of the other approaches to
unwrap the contents.

If you actually want to do something in the case where you have a None then you need
to turn to basic conditionals. The more idiomatic way to do this in Scala is using match.
This little example takes the result of a find and tells us what it found or else tells us that
nothing was found.

scala> lst.find(_ < 4) match {
| case Some(i) => "Found "+i
| case None => "Nothing found"
| }

res6: String = Found 3

Note that this is using the pattern matching capabilities of the match expression to get the
value out of the Some.

The Option type also has an isEmpty method that is true for None and false for Some
as well as a get method that will return the value in a Some or crash if called on None.
This allows you to use an if as well. This is the least idiomatic method of dealing with an
Option and it is generally frowned upon. Code using if that does the same thing as the
match above would look like this.

scala> val result = lst.find(_ < 4)
result: Option[Int] = Some(3)

scala> if (result.isEmpty) "Nothing found" else "Found "+result.get
res7: String = Found 3

Note that the result of the call to find needs to be given a name. This is because without
pattern matching, it is used twice in the code, and calling it twice would be inefficient.

7.3 Parametric Functions
Types like List, Array, and Option are not the only things that can have parameters.

Functions can have parameters as well. This is something that is not used much in this
book as it is more important in later courses, but it can help you to read the API if you are
introduced to the syntax. We would make a function parametric if we want it to work with

2You would use flatMap instead of map if the function you were applying was going to result in an Option.
You likely do not want an Option[Option[A]] for whatever A type you are using, so flatMap flattens it out
to only a single Option.

176 Introduction to Programming and Problem-Solving Using Scala

multiple different types. The simplest example of a parametric function is the identity
method shown here.

scala> def ident[A](a:A)=a
ident: [A](a: A)A

This method takes an argument of any type and returns the value passed in. While there are
not many situations where you would want to do this, it demonstrates the syntax of para-
metric functions. You simply place a type parameter name in square brackets between the
function name and the normal argument list. It also demonstrates the power of parametric
functions, especially if we put it to use as we do here.

scala> ident(3)
res1: Int = 3

scala> ident(3.3)
res2: Double = 3.3

scala> ident("3.3")
res3: java.lang.String = 3.3

First, this one function works just fine with an Int, a Double, and a String. That is pretty
good. Even better, it worked with all those types without us telling it the types. Parametric
functions can almost always infer the types of the parameters.

Here is a slightly more complex example though it really does not do much more, a
function that takes two arguments and returns a tuple with those two values in it.

scala> def makeTuple[A,B](a:A,b:B) = (a,b)
makeTuple: [A,B](a: A,b: B)(A, B)

This demonstrates how a function can have multiple parameters. They appear as a comma
separated list in the square brackets. A last simple example would be a function that makes
Lists with three elements.

scala> def threeList[A](a1:A,a2:A,a3:A) = List(a1,a2,a3)
threeList: [A](a1: A,a2: A,a3: A)List[A]

The main reason for introducing these is that they help us understand something we saw
in the last chapter, the fold methods. We said that fold was very much like one of the
recursive functions we wrote in the last chapter where we pass in both a base value and
a function. However, the function that we wrote only works with Ints. The fold methods
work on sequences of any type and what is more, they can return a different type. With the
use of parameters we can write a function with this same capability.

def ourFold[A,B](lst:List[A],base:B)(f:(A,B)=>B):B = {
if (lst.isEmpty) base
else f(lst.head,ourFold(lst.tail,base)(f))

}

Like the one in the API, this method is curried, a topic we will discuss in detail in section
7.8. It turns out that doing so helps with type inference and allows us to not have to specify
types on the function. We can see this working with lst using two different processing
functions.

scala> ourFold(lst,0)(_+_)
res0: Int = 30

Type Basics and Argument Passing 177

scala> ourFold(lst,"")(_+" "+_)
res2: java.lang.String = 7 4 6 3 9 1

The first one takes the sum as we have seen several times already. This does not really
exercise the ability to have different types because everything involved is an Int. The
second example though puts those Ints together in a String, effectively making use of that
second type.

There was another example we saw previously that could benefit from parametric types.
Back in chapter 4 we looked at doing function composition. At the time we only worked with
mathematical functions and limited ourselves to the Double type. By this point you should
see there is a lot more to functions than numbers. We really should be able to compose
two functions, f and g, as long as the output of function g is a type that we can pass into
function f. So there are three types involved here, the type passed into g, the type returned
by g then passed into f, and the type returned by f. Thanks to parametric types, we can
write such a function in one line of Scala.

def compose[A,B,C](f:(B)=>A,g:(C)=>B):(C)=>A = (x)=>f(g(x))

7.4 Subtyping
So far we have generally talked about types as if they are completely independent and

unrelated. We have written functions that might work with an Int or a String or a Tuple.
The one exception to this was in section 7.2, where it was clear that Option, Some, and None
are somehow related. By adding parameters we were able to make functions that could work
with any type, but this still did not imply any relationship between the types. In reality,
Scala, like most object-oriented languages, supports subtyping. A type B is a subtype of
type A if any place where we would want to use an object of type A, we can use an object
of type B instead.

The concept of subtyping is dealt with in detail in Object-Orientation, Abstraction, and
Data Structures Using Scala [1] in the chapter on inheritance, but for now you should be
aware of the term because there will be times when it will come up. The Option type was
our first example. If you wrote a function that took an Option[Int] as its argument, you
could have passed in a Some[Int] or a None and it would have worked. That is because
Some and None are both subtypes of Option.

Some of the general subtype relationships in Scala are shown in figure 7.3. This is a
UML3 Class diagram. The boxes represent types. The arrows point from a subtype to a
supertype.

At the top of the figure there is an ultimate supertype called Any. Every object in Scala
is an instance of Any. Since all values in Scala are objects, everything is an instance of Any,
either directly or indirectly. The types like Int and Double that we learned about back
in chapter 2 are on the left hand side of figure 7.3 under a type called AnyVal which is
a subtype of Any. On the right hand side there is another type called AnyRef that has a
bunch of unspecified types below it. All the other types we have or will talk about in this
book fall somewhere under AnyRef.

3The Unified Modeling Language (UML) is a general purpose modeling language used in object-oriented
software development.

178 Introduction to Programming and Problem-Solving Using Scala

FIGURE 7.3: Diagram of general subtype relationships in Scala. This figure has been
adapted from a similar figure in Programming in Scala by Odersky, Spoon, and Venners [3].

Other classes

Type Basics and Argument Passing 179

Near the bottom on the right side of the figure is a type called Null. This is a subtype
of all the AnyRef types. One implication of this is that any variable of an AnyRef type, or
any function/method with a result that is a subtype of AnyRef can have a value of null.
This exists in Scala largely to maintain backward compatibility with Java. However, as a
general rule you should try to avoid using null in your programs as they are very prone to
cause it to crash.

At the very bottom of the diagram is a type called Nothing which is a subtype of all
other types in Scala. There is no value of type Nothing. This type exists to make the type
system complete and to handle situations when functions do not result in anything. We are
not going to do anything in this book that requires you to use the Nothing type explicitly,
but there are times when it might appear anyway, and understanding what it is will help
you figure out what is going on. Consider the following examples that make an empty List
and an empty Array.

scala> List()
res8: List[Nothing] = List()

scala> Array()
res9: Array[Nothing] = Array()

Note the type that was inferred by Scala. You might also run into errors that mention
Nothing. Do not freak out when you see them. Instead realize that something in your code
is probably not giving Scala enough information about types for it to figure out something
else.

7.5 Variable Length Argument Lists
Have you wondered how you were able to construct Lists and Arrays with calls like this?

val lst = List(7,4,6,3,9,1)
val lst2 = List(1,2,3)

What exactly is going on here? It turns out that List in this usage is one of those singleton
objects mentioned in section 7.1, and they have put code in it that allows it to be called
like a function. More importantly for us now, is that we are able to pass a variable number
of arguments in this call. In the first case we have passed six arguments. In the second we
have passed three arguments. As you have seen, it would work just as well with any other
number. The functions we have written cannot do this. Every function we have written so
far has had an argument list with a specific number of values in it. So how can we make it
so our function will let us pass in a variable number of arguments? In Scala, this is not hard
to do. Simply add an asterisk after the last type of the last argument in the parameter list.
This will allow the caller to pass zero or more of that type to create a variable length
argument list.4

A convenient place to do this would be an average function like we might use for calcu-
lating a grade. Such a method might look something like this.

def average(nums:Double*):Double = ???

4These are often referred to by the shorter name, varargs.

180 Introduction to Programming and Problem-Solving Using Scala

This would allow us to call the function in any of the following ways or with far more or
fewer arguments.

average(1,2)
average(2,3,5,7,11,13)
average(100,95,63,78)

The question is, how do we use nums inside of the function? The answer to this is that we
treat nums just like a List or an Array. Technically, it is a Seq, and all of the methods
discussed in chapter 6 are available on it. These methods will make it very easy to write
the average function.

def average(nums:Double*):Double = nums.sum/nums.length

That is it. Nothing more is needed because we can use sum on a sequence of Double values,
and we can get the length of any sequence.

What if we want the average with the minimum value dropped? That does not add much
complexity because there is a min method that we can call as well.

def averageDropMin(nums:Double*):Double = (nums.sum-nums.min)/(nums.length-1)

We could use these along with the fullAve function from section 6.6 to make a revised
version of courseAverage.

def courseAverage(test1:Double,test2:Double,assn1:Double,
assn2:Double,assn3:Double,quiz1:Double,quiz2:Double,
quiz3:Double,quiz4:Double):Double = {

val aveTest=average(test1,test2)
val aveAssn=average(assn1,assn2,assn3)
val aveQuiz=averageDropMin(quiz1,quiz2,quiz3,quiz4)
fullAve(aveTest,aveAssn,aveQuiz)

}

This code makes nice use of the fact that average can be called with different numbers of
arguments. However, it is fixed with a specific number of grades of each type. Only the last
argument to a function can be a variable length. That should not be surprising as otherwise
Scala would not know where the arguments should stop counting as one variable length list
and start counting as the next. We can also make this function more flexible by passing
in Lists of these different values instead as was done in section 6.6. Then the function
signature would look more like this.

def courseAverage(tests:List[Double],assns:List[Double],
quizzes:List[Double]):Double = {

...
}

Unfortunately, if you try to write this in the first way that comes to mind you will find that
Scala does not like it.

def courseAverage(tests:List[Double],assns:List[Double],
quizzes:List[Double]):Double = {

val aveTest = average(tests)
val aveAssn = average(assns)
val aveQuiz = averageDropMin(quizzes)
fullAve(aveTest,aveAssn,aveQuiz)

}

Type Basics and Argument Passing 181

You will get an error that looks like this.

<console>:11: error: type mismatch;
found : List[Double]
required: Double

val aveTest=average(tests)
^

<console>:12: error: type mismatch;
found : List[Double]
required: Double

val aveAssn=average(assns)
^

<console>:13: error: type mismatch;
found : List[Double]
required: Double

val aveQuiz=averageDropMin(quizzes)
^

This is because List[Double] is not the same type as Double*. However, the two are very
similar in practice, and it seems that you should be able to quickly and easily use the Lists
in a place that calls for a variable length argument. Indeed, you can. You just have to tell
Scala that is what you are doing. You do this with a syntax much like specifying the type
of something with a colon after the name followed by the type. You do not use Double* as
the type though, instead you use _* because Scala really does not care about the specific
type.

def courseAverage(tests:List[Double],assns:List[Double],
quizzes:List[Double]):Double = {

val aveTest = average(tests:_*)
val aveAssn = average(assns:_*)
val aveQuiz = averageDropMin(quizzes:_*)
fullAve(aveTest,aveAssn,aveQuiz)

}

Now we have a function that computes an average with Lists; so, it is flexible in the number
of grades passed in and rather simple to call and use in a larger program. It still has the
bugs that we fixed back in section 6.6 related to lists with zero or one element, but from
the discussion there, you should be able to easily fix them.

7.6 Mutability and Aliasing
In chapter 6 we saw that List is immutable while Array is mutable. It has been stated

that the functional style will tend to use immutable data and that while mutable data has
significant benefits for some operations, it is also potentially less safe. You might wonder
why it is less safe though. After all, it should not be too hard to make sure that you do
not make changes to an Array when you should not. That is true in small programs, but it
gets harder and harder as the programs get larger and for reasons that you probably do not
fully grasp at this point. The goal of this section is to show you one of the subtle challenges
with mutable data.

A big part of the problem comes from something called aliasing. This is when two dif-

182 Introduction to Programming and Problem-Solving Using Scala

FIGURE 7.4: Simple image of memory layout for a few variables. The objects on the
right side are overly simplified, especially the list, but this portrays sufficient detail for
understanding what is happening at this point.

ferent names refer to the same object. To understand this, we need to refine our view of what
is happening in the memory of the computer. Consider the following variable declarations.

var i1 = 5
var d1 = 5.9
var s1 = "Scala is fun!"
var l1 = List(1,2,3,4)
var a1 = Array(1,2,3,4)

All of these have been made as vars just to give us the option of altering them below.
Normally we would want to use a val unless we explicitly found a reason why we had to
change them. In this case the reason is just for illustration.

The memory layout looks something like what is shown in figure 7.4. This is an idealized
representation. In reality memory is all linear and has structure to it that will be discussed in
chapter 13. For now, this view is sufficient. On the left are boxes that represent the variables.
In Scala the best mental picture is to see the variables as boxes that store references to
values.5

What happens to this picture if we change the value of two of the variables? For example,
say that now we execute these two lines of code.

i1=8
s1="New string."

The first one changes i1 so that it references the value 8 instead of 5. The second one
changes the s1 so that it references this alternate String. What would this look like in

5In some situations Scala will put the actual values in the boxes for the variables, but that is an opti-
mization that you do not really have control over, and it will not alter the behavior; so, it is good to picture
the memory like this.

I i1 ~

I dll 5.9

lmsilr-----...,.,.cm~~Scala is fun!" •

111 1,2,3,41

~m~~m~ ~' ~~ ~m~

Type Basics and Argument Passing 183

FIGURE 7.5: Modified view of the memory after two variables have been assigned different
values.

memory? The result is shown in figure 7.5. The 5 and the String “Scala is fun!” have not
been changed. They remain in memory just like before. Because nothing references them,
these objects will be collected and disposed of automatically by the garbage collector,
a part of the system that is responsible for freeing up memory that is no longer in use. What
has changed is the references in i1 and s1. They now point to new objects in new chunks
of memory that hold these new values. Both the Int and String types are immutable. As
a result, once the objects are created, nothing can change them. They do not allow any
operations that would alter their values. If we had made these variables using val we would
not be able to change where the arrows point either.

Indeed, all of the types used here are immutable with the exception of the Array. So
Array is the only one where we can change the value in the box on the right. To see how
this can matter we will consider only the List and the Array variables and add two more
lines of code to the picture.

val l2 = l1
val a2 = a1

This gives us a slightly different picture that is shown in figure 7.6. Now we have two
different variables that point to each of the List and Array objects. These second references
to the same object are often called aliases. Aliasing is where mutability often starts to cause
problems. If you have not figured out why yet, perhaps this code will make it clear.

scala> a2(3) = 99

scala> a1
res1: Array[Int] = Array(1, 2, 3, 99)

@l--- ~
------------------------~~

1 dl 1 5. 9 •

[~::1_.}--- • "Scala is fun!" •
-----------------------·f;;~~~m string." •

lmiilr-----..., ... Cmi,2,3;41

I al r-1 ____,..,.. 1,2,3,41

184 Introduction to Programming and Problem-Solving Using Scala

FIGURE 7.6: What the memory looks like after the introduction of l2 and a2.

In the first line we change the value in the last slot in a2. On the next line we look at the
value of a1. Note that it is changed. We did not explicitly do anything with a1, but the
value is changed because a2 is an alias of a1. You cannot do this with l2 because the List
type is immutable, the assignment statement will not compile for the List.

There are times when the ability to make an alias and change it is great. There are
some tasks for which this can make things much more efficient. However, if you lose track of
what is going on and what names are aliases of what other names you can run into serious
problems.

At this point it might be easy to think that all you have to do is avoid making aliases. If
you just do not write lines like val a2 = a1 then you would be fine, right? While that type
of aliasing might be avoidable, the next section shows why it is pretty much impossible to
avoid aliasing all together.

7.7 Basic Argument Passing
Now that we have looked at the way memory is organized for variable declarations and

the aliasing issue, we should take another look at what happens when you call a function.
The two are actually very similar. When you pass values into a function, the function has
local vals with the local argument names, but they reference the same objects that the
outside variables referenced. Consider the following code from a script.

def getAndClear(arr:Array[Int],index:Int):Int = {
val ret = arr(index)
arr(index) = 0
ret

}

val numbers = Array(7,4,9,8,5,3,2,6,1)
val place = 5
val value = getAndClear(numbers,place)

1, 2, 3, 4
~-, • 12 ,

1,2,3,4

a2

Type Basics and Argument Passing 185

FIGURE 7.7: The memory layout from the getAndClear script. The arguments passed
into the function become aliases for the objects created at the top level of the script.

The function is passed an Array of Ints and an index for a location in that array. It is
supposed to return the value at that location and also “clear” that location. The meaning
of “clear” here is to store a zero at that location. To see how this works look at figure 7.7
which shows the arrangement of memory. The function is defined and the variables numbers
and place are both declared and initialized. We get new objects for them to reference.

When the getAndClear function is called, numbers and place are passed in to be the
values of the arguments arr and index. While the code is in getAndClear, arr is an alias
for the object referred to by numbers and index is an alias for the object referred to by
place. This is significant because the getAndClear method has a side effect. It modifies one
of the values stored in the Array that is passed to it. When the code gets down to “Other
stuff”, the memory looks a bit different as shown in figure 7.8. At that point, the function
has finished so its local variables are no longer needed. In addition, the 6th element in the
array numbers has been changed. The function managed to change the value for the Array
as seen outside that function. With a name like getAndClear you could probably figure out
that this type of side effect might happen. However, when you pass any mutable value into
a function, you need to be aware that the function could change your value, even if you do
not really want it to.

How would this be different with a List? Well, the List type is immutable; so, it would
be impossible for the function to change the list. We can’t write a line like arr(index) =
0 and still have the code compile. If you wanted it changed, the function would need to
return a tuple including both the value gotten and a new List with that value changed.
We will quickly go through a few ways to do this.

186 Introduction to Programming and Problem-Solving Using Scala

3

FIGURE 7.8: The configuration of memory after getAndClear has executed.

def getAndClear(lst:List[Int],index:Int):(Int,List[Int]) = {
(lst(index), lst.zipWithIndex.map(tup => {
val (n,i) = tup
if (i == index) 0 else n}))

}

There is only one expression in this function, the tuple to return. The first element in the
tuple is lst(index). It looks up the proper value and uses the value there. Remember that
looking things up in this way on a List is not really efficient, but we have to do so if given a
List and an index. The second part of the tuple is a bit more complex. It calls the method
zipWithIndex on lst. This returns a new List where each element is a tuple that contains
an element from the List along with the index of that element. We have to do this because
we need the index in order to decide if it is the one to be cleared or not. If we were clearing
based on value instead of position this would not be needed.

The method map is immediately called on the List of tuples, and it is given a function
literal that takes one argument called tup, short for tuple. This function literal uses curly
braces and has two lines. The first line is a val that pulls the two parts out of the tuple.
The number from the List is called n and the index is called i. The function literal finishes
with an if expression that checks the index and gives the value of 0 or n based on if i is
the same as index.

Substituting for a value in a List is a common enough operation that the API contains
a method to do it for us. So we can write a simpler version of getAndClear for a List that
uses the updated. This method takes an index and a new value and returns a modified list.

def getAndClear2(lst:List[Int],index:Int):(Int,List[Int]) = {
(lst(index), lst.updated(index,0))

}

Another approach would be to pull off the elements before and after the index and then
stick them back together with a 0 between them.

def getAndClear3(lst:List[Int],index:Int):(Int,List[Int]) = {
(lst(index), lst.take(index):::(0::lst.drop(index+1)))

}

This version uses the cons operator, ::, which we saw before. It adds one new element to the
front of a List and gives that back. It also uses an operator that we have not seen previously,

Type Basics and Argument Passing 187

the ::: operator. This does roughly the same thing as :: except that the argument on the
left is a full List that should be appended to the front of the second List.

Lastly, we could write this using recursion. Here is one way to do that.

def getAndClear4(lst:List[Int],index:Int):(Int,List[Int]) = {
if (index == 0) (lst.head, 0::lst.tail)
else {
val (n, rest) = getAndClear4(lst.tail, index-1)
(n, lst.head::rest)

}
}

Of course, because the List version is having to rebuild the List, it could go a step
further and truly clear the value. It could remove it from the List instead of overwriting it
with zero. This would be done with filter plus a map on the first version. Using updated
would not make sense for that, so the second version would not be viable. The third and
fourth versions are very easy to change. We leave them as an exercise for the reader to
create and try.

An interesting question now becomes which of these is better, the Array or the List? Is
it better to use an Array which can be mutated or a List which cannot? The answer is that
it depends on whether you want a function to be able to mutate the data. If the function
is supposed to mutate the data then there can be a speed benefit to passing something
mutable. However, if you do not want the data mutated then there is a problem with
passing mutable data. When you pass mutable data into a function, you have no control
over whether it is mutated. In situations where you do not want your data mutated, this
requires that you make a defensive copy. To protect your version of the data, you make
a copy of it and pass the copy into the function.

For this reason, the question of whether you want to use a mutable or immutable struc-
ture depends a lot on the way in which you use that data. If it is going to be mutated
frequently then it might make sense for it to be mutable. However, if it is not going to be
mutated frequently then immutable likely makes sense so you do not have to make defensive
copies. Even in situations where there might be a fair bit of mutation, you need to consider
how much defensive copying will be needed if you choose mutable data.

There is another aspect of normal argument passing that is very significant to under-
stand. Arguments to functions are normally evaluated before they are passed to the function.
Imagine that you have the following function.

def successorWithPrint(i:Int):Int = {
println("In the function.")
i+1

}

Now we call this function with an argument that needs to be evaluated.

scala> successorWithPrint(2+3)
In the function.
res0: Int = 6

This call evaluates 2+3, then passes that value 5 into the function. We can make this clear
if the argument has a side effect.

188 Introduction to Programming and Problem-Solving Using Scala

scala> successorWithPrint({println("argument"); 2+3})
argument
In the function.
res1: Int = 6

Here you can see that the print in the argument happens before the print in the function,
demonstrating that the argument is evaluated before it is passed into the function for normal
argument passing.

Code Blocks as Arguments

Putting multiple expressions in an argument, as with print("argument"); 2+3
above, requires the use of curly braces to make a code block. When there is only one
argument in a list, having both parentheses and curly braces, as was used above, is
somewhat redundant. For the reason, one of the features of the Scala syntax is that in
situations like this you can leave off the parentheses. So that call could also be written
in the following way.

successorWithPrint {println("argument"); 2+3}

7.8 Currying
In chapter 6 we came across a number of methods that used something called currying,

where arguments could be separated into different argument lists. This is a common feature
of functional programming languages. In case you are wondering, the name has nothing to
do with spices. It comes from the name of Haskell Curry, a mathematician and logician. In
this section we want to show you not just how to call functions/methods that use currying,
but how to write your own such methods and why you would want to.

Let’s start off by writing our own curried functions. This first example shows how we can
make a curried function using the normal Scala function type and function literal syntax.

scala> def add(x:Int):(Int)=>Int = (y:Int)=>x+y
add: (x: Int)(Int) => Int

scala> add(5)(6)
res0: Int = 11

scala> val plus5 = add(5)
plus5: (Int) => Int = <function1>

scala> plus5(6)
res1: Int = 11

The first input defines a function add that takes an integer and returns a function which
takes an integer and returns an integer. The add function is a higher-order function because
it returns a function. The second input to the REPL shows that we can use add as a curried

Type Basics and Argument Passing 189

function passing it two arguments separately. In the third line, we call add and pass it the
argument 5. We store the result of this in a variable named plus5. Note that plus5 is
actually a function that takes an integer and returns an integer. At the end we call plus5
and pass it the value 6 which gives us back 11.

This example shows what it means to curry a function. There can be times when this
approach is quite useful. For that reason, Scala provides a shortcut for doing it. If you define
a function and follow it with more than one argument list, the function is curried. So, the
above could be entered like this instead.

scala> def add(x:Int)(y:Int) = x+y
add: (x: Int)(y: Int)Int

scala> add(5)(6)
res2: Int = 11

scala> val plus5 = add(5)_
plus5: (Int) => Int = <function1>

scala> plus5(6)
res3: Int = 11

The only difference here is the underscore where the second argument list would go when
we make plus5. This tells Scala that you really meant to only specify the first argument.

Hopefully these examples made it clear that currying is not hard to do in Scala. Still,
you might be wondering why you would bother. We have actually seen two things in this
chapter that can provide the motivation to curry a function.6 The first was in the section on
variable length argument lists. We said that we could not use variable length arguments for
tests, assignments, and quizzes because a variable length argument can only be used with
the last argument in an argument list. One way around this is to curry the function making
each type of grade be it’s own argument list. That would produce the following function.

def courseAverage(tests:Double*)(assns:Double*)(quizzes:Double*):Double = {
val aveTest = average(tests:_*)
val aveAssn = average(assns:_*)
val aveQuiz = averageDropMin(quizzes:_*)
fullAve(aveTest,aveAssn,aveQuiz)

}

Notice that you still need the :_* when passing the arguments through to other functions
that have variable length argument lists. This version allows us to invoke the function like
this.

courseAverage(80,95,100)(100,80)(56,78,92,76)

So currying gives us the ability to have more than one variable length argument list in a
single function.

The other place in this chapter where we have introduced something that might benefit
from currying was right before the section on currying in the aside about code blocks as
arguments. The syntax where you leave off parentheses and only use curly braces only works
when an argument list has a single argument. Without currying, this means that we could
never take advantage of this feature for any function that needs more than one argument.

6There are actually several other reasons why one might choose to curry a function that go beyond the
scope of this book.

190 Introduction to Programming and Problem-Solving Using Scala

With currying, we can simply break up the arguments so that any argument that might
need a block of code occurs on its own. Indeed, this is one of the reasons why Array.fill
and List.fill are curried. It is common to want to have more than a single expression in
the second argument. Having that second argument stand alone as its own argument list
allows the parentheses to be left off as we see here in this code that produces an Array with
the squares of powers of two.

scala> var i = 1
i: Int = 1

scala> Array.fill(10) {
| i *= 2
| i*i
| }

res4: Array[Int] = Array(4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1048576)

This is most useful in situations like fill where an argument is passed by name. We will
explore this more in the next section.

It is interesting to note that both of the uses of currying presented here is actually
related to the original purpose of currying, which was to partially evaluate functions. These
usages allow us to better take advantage of features of the Scala language. If you do enough
work in Scala, you will likely find this is the case for the vast majority of the uses of currying
that you use and create.

7.9 Pass-By-Name
Section 7.7 looked at the way in which arguments are passed in Scala. This is a style

called pass-by-value. The function gets a copy of what the variable was in the calling
code. The function cannot change that variable, it can only change what it refers to if what
it refers to is mutable. Some languages provide an alternate way of passing things called
pass-by-reference. When something is passed by reference, the function has the ability
to change the variable in the calling function itself. The fact that all variables in Scala
basically are references blurs the line between the two, but fundamentally Scala only allows
pass-by-value, and the function can only modify things seen to the outside if the variable
refers to a mutable object.

While Scala does not provide a true pass-by-reference, it does provide a passing style
that few other languages provide, pass-by-name, which was first mentioned in section 6.4.
The idea of pass-by-name is that the argument is passed not as a value, but as a thunk
that is basically a set of code that will be executed and give a value when the parameter is
used in the function. You can imagine pass-by-name as automatically creating a function
that takes no argument and returns a value that will be executed each time the argument
is used. To help you understand this and see the syntax, we will give a simple example. We
will start making a basic increment function in the way we are used to doing.

scala> def incr(n:Int):Int = {
| println("About to increment.")
| n+1
| }

incr: (n: Int)Int

Type Basics and Argument Passing 191

The print statement is just to help us keep track of what is happening when. Now we will
write the same function again, but this time pass the argument by name instead.

scala> def incrByName(n : =>Int):Int = {
| println("About to increment.")
| n+1
| }

incrByName: (n: => Int)Int

The syntax for passing an argument by name is to put a rocket before the type of the
argument. This is the same arrow used in function literals. If we were to put empty paren-
theses in front of it to get () => Int we would have the type of a function that takes no
arguments and returns an Int. The by-name argument is much the same only when you call
the function you do not have to explicitly make a function for the argument, any collection
of code will work. To start off, we will call this function in the simplest way we possibly
could.

scala> incr(5)
About to increment.
res0: Int = 6

scala> incrByName(5)
About to increment.
res1: Int = 6

No surprises here. They appear to both do the same thing. Both print the statement and
give us back 6. However, the two are not really doing the same thing. To make that clear,
we will call them again and have the argument be a block that includes a print.7

scala> incr {println("Eval"); 5}
Eval
About to increment.
res2: Int = 6

scala> incrByName {println("Eval"); 5}
About to increment.
Eval
res3: Int = 6

Now it is clear that they are not doing the same thing. When you pass an argument
by value, it is evaluated before the function starts so that you can have the value to pass
through. When you pass by name, the evaluation happens when the parameter is used.
That is why the line “Eval” printed out after “About to increment.” in the second case. The
println in the function happens before the value of n is ever accessed.

Using pass-by-name gives you the ability to do some rather interesting things when
mutations of values comes into play. To see that, we can write a slightly different function.

scala> def thriceMultiplied(n : => Int):Int = n*n*n
thriceMultiplied: (n: => Int)Int

It might seem that this method should be called cubed, but as we will see, that name might

7Note that we are making use of the fact that an argument list with a single argument can skip the
parentheses when a block of code is passed.

192 Introduction to Programming and Problem-Solving Using Scala

not always apply for it because it uses pass-by-name. To start with, let us call it with an
expression that gives a simple value, but prints something first.

scala> thriceMultiplied {println("Get value."); 5}
Get value.
Get value.
Get value.
res4: Int = 125

Note that the println statement happened three times. This is because the value n was
used three times in the function. Had the parameter been passed by-value, that would not
have happened. It would have printed once, when the function was called.

This particular call still gave us a valid cube though. So why was the function not simply
called cube? The reason is that if the code in the argument does the right thing, the result
will not be a cube. Here is an example.

scala> var i=5
i: Int = 5

scala> thriceMultiplied {i+=1; i}
res5: Int = 336

336 is not a perfect cube. So how did we get this value? In this example we introduced a
var. The code in the pass-by-name argument alters this var. As a result, every time that
n is used, the value given by n is different. The first time we use n the value is 6 because
the original 5 was incremented and then returned. The next time it is 7 because the 6 that
it was set to the previous time is incremented again. The last time it is 8. So the answer is
6 ∗ 7 ∗ 8 = 336.

7.10 Multidimensional Arrays
When we first introduced Arrays and Lists back in chapter 6, we saw that these types are

parametric. That means that the type requires a type argument to be fully defined. So you
cannot have just an Array or just a List. Instead you have Array[Int] or List[String].
Each of these is a type in Scala. The parameter for these parametric types can be
any type.8 If you put these together you can build things like Array[Array[Double]],
List[List[String]], or List[Array[Int]]. You do not have to stop there though. Scala
will be perfectly happy with a List[Array[List[List[Array[Int]]]]]. It is not clear
what you would want such a type for, but if you find a use, Scala will support it.

In the case of Arrays of Array types, we have a special term for them. They are called
multidimensional arrays. This is because of how you might picture them in your head.
You can picture a normal Array as a row with multiple bins that each store a value. An
Array[Array[Int]] could be pictured as a table of integers that has rows and columns.
Such a table could be said to be two dimensional. If you had an Array[Array[Array[Int]]]
you could picture it as a cube of values in three dimensions. In general all these things can
be applied to Lists just as well as Arrays, but the term multidimensional list is not nearly
as common, and the fact that it is inefficient to do direct indexing on Lists means that most
applications that have multidimensional data structures will not create them with Lists.

8There can be restrictions on parametric types, but the collections generally allow any type to be used.

Type Basics and Argument Passing 193

So, how can you create and use multidimensional arrays? The most basic syntax mirrors
what we used to originally create normal Arrays.

scala> val tda1 = Array(Array(1,2,3),Array(4,5,6))
tda1: Array[Array[Int]] = Array(Array(1, 2, 3), Array(4, 5, 6))

In this usage the number of elements in each sub-array does not have to be the same. When
the lengths are different, they are called ragged arrays. When they are all the same, they
are called rectangular arrays.

If you are interested in making large rectangular arrays, you should use either the fill
method or the tabulate method. For fill, all you have to do is pass in multiple arguments
in the first parameter list.

scala> val tda2 = Array.fill(10,10)(0)
tda2: Array[Array[Int]] = Array(Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0))

In the case of tabulate you pass multiple arguments to the first parameter list and also
use a function that takes the same number of arguments for the second parameter list.

scala> val tda3 = Array.tabulate(10,10)((i,j) => i*j)
tda3: Array[Array[Int]] = Array(Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
Array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), Array(0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
Array(0, 3, 6, 9, 12, 15, 18, 21, 24, 27), Array(0, 4, 8, 12, 16, 20, 24, 28,
32, 36), Array(0, 5, 10, 15, 20, 25, 30, 35, 40, 45), Array(0, 6, 12, 18, 24,
30, 36, 42, 48, 54), Array(0, 7, 14, 21, 28, 35, 42, 49, 56, 63), Array(0, 8,
16, 24, 32, 40, 48, 56, 64, 72), Array(0, 9, 18, 27, 36, 45, 54, 63, 72, 81))

Note that the number of arguments you pass into the first argument list of tabulate or
fill determines the dimensionality of the resulting structure. These examples made two
dimensional arrays, but you can use up to five arguments with this usage.

You can also use fil or tabulate to make non-rectangular arrays by having the code
block/function passed as the second argument build Arrays of different lengths. That tech-
nique is used here with fill to make a truly ragged array with rows of random lengths9
and with tabulate to create a triangular 2-D array.

scala> val tda4 = Array.fill(10)(Array.fill(util.Random.nextInt(10)+1)(0))
tda4: Array[Array[Int]] = Array(Array(0, 0, 0, 0), Array(0, 0, 0, 0, 0, 0, 0),
Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Array(0), Array(0, 0, 0, 0), Array(0, 0,
0, 0), Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Array(0, 0, 0, 0), Array(0, 0, 0,
0), Array(0, 0, 0, 0, 0, 0))

scala> val tda5=Array.tabulate(10)(i => Array.fill(i+1)(0))
tda5: Array[Array[Int]] = Array(Array(0), Array(0, 0), Array(0, 0, 0),
Array(0, 0, 0, 0), Array(0, 0, 0, 0, 0), Array(0, 0, 0, 0, 0, 0),
Array(0, 0, 0, 0, 0, 0, 0), Array(0, 0, 0, 0, 0, 0, 0, 0),
Array(0, 0, 0, 0, 0, 0, 0, 0, 0), Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0))

Note that the output here has a different number of elements in each of the sub-arrays.
To access the elements of a 2-D Array, simply put two sets of parentheses after the

9To get random integers, we use the nextInt method in the Random object in the util package.

194 Introduction to Programming and Problem-Solving Using Scala

Array name with two different indices in them. For example, we can pull values out of tda2
in this way.

scala> tda3(3)(4)
res0: Int = 12

The 2-D Array tda3 was created to be something like a multiplication table. This particular
expression pulled off the element at position 3,4 which is 12. To understand why you use
this syntax, think of the types shown here.

scala> tda3
res32: Array[Array[Int]] = Array(Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Array(0, 1,

2, 3, 4, 5, 6, 7, 8, 9), Array(0, 2, 4, 6, 8, 10, 12, 14, 16, 18), Array(0, 3,
6, 9, 12, 15, 18, 21, 24, 27), Array(0, 4, 8, 12, 16, 20, 24, 28, 32, 36),
Array(0, 5, 10, 15, 20, 25, 30, 35, 40, 45), Array(0, 6, 12, 18, 24, 30, 36,
42, 48, 54), Array(0, 7, 14, 21, 28, 35, 42, 49, 56, 63), Array(0, 8, 16, 24,
32, 40, 48, 56, 64, 72), Array(0, 9, 18, 27, 36, 45, 54, 63, 72, 81))

scala> tda3(3)
res33: Array[Int] = Array(0, 3, 6, 9, 12, 15, 18, 21, 24, 27)

scala> tda3(3)(4)
res34: Int = 12

The original value is an Array[Array[Int]]. When you index into an Array you get back an
instance of the type it stores. In that case, that means that tda(3) has the type Array[Int].
Indexing into that gets down to a single Int.

The advantages and restrictions of the List and Array types that were discussed in
chapter 6 apply to higher dimensional cases as well. Once you have made an Array, the
values can be changed, but the length cannot. Similarly, you can make new Lists by effi-
ciently adding to the head of old ones, but you cannot mutate values in a List even if it
has a higher dimension.

7.11 Classifying Bugs
By this point you have certainly learned that simply writing your code does not mean

that it is correct and that it will work. Errors in programs are commonly referred to as
bugs. The term bug has a long history in the engineering field. It came into the field of
computer science early because one of the first ones was a moth. The earliest computers
were huge. They took up rooms the size of gymnasiums. An early malfunction in one turned
out to be a moth that had flown in and was causing a short circuit.

While the term “bug” has stuck around, the implications of this term no longer fit. The
term and its history imply that it is something beyond the control of the programmer that
just put itself into the code and now the programmer has to search for it. In reality, virtually
all modern bugs are really mistakes on the part of the programmer. They are things that
the programmer put into the code and now the programmer needs to correct.

Not all bugs are the same. There are three fundamentally different types of errors.

1. Syntax error – Error in the structure of the code that is found by the compiler. If

Type Basics and Argument Passing 195

you have a syntax error it means that your program is not valid for the language you
are writing in, for our purposes that is Scala.

2. Runtime error – Error that causes the program to crash while running.

3. Logic error – Error that does not crash the code, but causes it to produce the
wrong answer.

Each of these deserves some discussion. We will also talk about how they compare to one
another and the way in which they impact programmers.

When you are first learning to program, the errors that you likely run into the most
are syntax errors. These can be as simple as typos or misspellings. They can also be more
complex like type mismatch errors or calling functions or methods with the wrong number of
arguments. The common element that makes something a syntax error is that it is discovered
by the compiler when it is trying to translate the human written code into a format that is
more computer friendly. Different programming languages do different amounts of checking
for errors at compile time. This is often called static checking because it can be done
without actually running the program.

Scala does a significant amount of static checking for errors.10 The way we have been
running our programs in the REPL or with scripts, the compile stage is not clearly separated
from the running of the program. The Scala system is running a compiler in the background
and then executing the results of the compile. The syntax errors display a message like the
following:

timing.scala:5: error: not found: value This
This line will not compile
^
one error found

They tell you the name of the file along with a line number. Then they describe the error
and show the line and where on the line the error occurred.

The second type of bug is a runtime error. This type of error occurs when everything
is syntactically correct and the program compiles and runs. However, during the run this
error causes the program to crash. In Scala, a runtime error will produce a message that
looks similar to the following:

java.lang.ArrayIndexOutOfBoundsException: -1
at Main$$anon$1.<init>(timing.scala:5)
at Main$.main(timing.scala:1)
at Main$.main(timing.scala)

...

This message tells you what went wrong and then prints something called a stack trace that
includes line numbers. In this simple example, the code failed on line 5. The stack trace
shows the line of code that was currently executing at the top, followed by the line that
called that function, followed by the line that called that function, etc. Sometimes the top
line is not in your code, but in a library. That generally means it is caused by something
you passed into a library call. You can look down the stack trace to find the first line that
is in your code for guidance on what is causing the problem.

There are many different reasons why runtime errors happen, and it might be dependent
on user input. So a runtime error might not be found from running the program once or

10The significant static checking of types was a major influence in the selection of Scala for this textbook.
Other introductory languages, like Python, do significantly less static checking of programs.

196 Introduction to Programming and Problem-Solving Using Scala

twice. To reduce the number of runtime errors in a program you have to run it with multiple
different test inputs. This will be discussed in more detail in section 8.4. In a general sense,
it is impossible to prove that code has no runtime errors.

The last type of error is a logic error. An error is a logic error if the code compiles and
runs to normal termination, but provides an incorrect output or behaves incorrectly. These
errors can come in all types of forms, and there is no message that tells you there is a
problem. You know there is a problem by checking the output or behavior of the program
to see if it matches expectations. Like runtime errors, logic errors might not occur for all
inputs. There might be only specific inputs that trigger the error.

If you have a choice, you want errors of types earlier on this list. As a novice programmer
you probably get tired of dealing with syntax errors and find them frustrating. However,
the reality is that syntax errors are by far the best type of error. This is because syntax
errors give you the most information on how to fix them and are detected by the compiler
in a way that does not depend on inputs. Your second choice would be a runtime error for
some of the same reasons, it provides you with some information related to what is wrong
and, as a result, helps you fix the problem. By contrast, logic errors provide no information
on how to fix them or even where they are. This makes logic errors very challenging to fix,
especially in larger programs.

Different languages do more or less to help you with error detection. One of the significant
advantages of Scala is that it is designed to maximize the number of errors that are syntax
errors and reduce the number of runtime and logic errors. Part of this is due to the type
checking system of Scala. The language does significant static type checking to make sure
that all the values you are using are of a type that is appropriate for the usage.

Many of the higher order functions and methods in Scala also help to prevent common
errors that programmers face in other languages. This is also true of rules such as the re-
quirement to initialize variables at declaration and the general preference of val declarations
over var declarations. To understand this, simply consider the following line of code.

val dbl = nums.filter(_>0.5).map(_*2)

This line of code will give us a new collection of numbers that are twice the magnitude of
the elements but only for the elements that were originally bigger than 0.5. There are not
too many ways to mess up this line without having it be a syntax error. It is possible to get
a logic error if you mistype the greater than or the multiplication, but that is something no
programming language can really fix. The programmer has to correctly communicate the
key logic, but this line does not have all that much other than that key logic. Despite this
brevity, it is fairly easy to read for anyone who has experience with map and filter.

To understand the real value of this line of code, you have to consider the alternative,
which is what you would have to write in most other programming languages that do not
provide map and filter or if you simply choose not to use them. We will write equivalent
code that is specific for an Array. The Scala code works equally well for any sequence, but
we will ignore that advantage for now.

var cnt = 0
for (i <- 0 until nums.length) {
if (nums(i) > 0.5) cnt += 1

}
val dbl = Array.fill(cnt)(0.0)
cnt = 0
for (i <- 0 until nums.length) {
if (nums(i) > 0.5) {
dbl(cnt) = nums(i)*2

Type Basics and Argument Passing 197

cnt += 1
}

}

The first loop counts how many elements are greater than 0.5. This is required because
Arrays have to be given a size when they are created. Once we know how many there will
be, we can make the Array. The second loop fills in the Array with values that are twice
those in the original Array.

Clearly this second version is longer. More importantly, there are a lot more places
where typos become runtime or logic errors. The reality is that the one line version is doing
basically this same thing. However, most of the code is in the libraries and is not rewritten
by each programmer every time. This works, in large part, because of the first-class functions
and the ease with which function literals can be written in Scala.

7.12 End of Chapter Material

7.12.1 Problem Solving Approach

You can make functions that take variable numbers of arguments and you can pass
arguments into functions using pass-by-name.

7.12.2 Summary of Concepts

• You can make the last parameter of a function accept a variable number of arguments,
var args, by putting an asterisk after the type. The name given to that parameter
functions as a sequence. To pass a real sequence into a function in place of a var args
parameter, follow it with :_* to tell Scala you want that seen as a * argument of some
type.

• When two variables refer to the same object in memory we call them aliases.

• Mutable objects can cause problems with aliases because changes to the object can
be made using any of the aliases, and they will be reflected in all of them.

• By default, arguments in Scala are passed by-value. The value of the reference is
passed into the function. This automatically makes an alias of the object. If you want
to protect a mutable object from unintended changes when it is passed to a function
you need to make a defensive copy.

• Scala also allows pass-by-name parameters. Instead of passing a value, these pass a
chunk of code called a thunk that is evaluated every time the parameter is used.

• The type parameters on collections can themselves be other collections. This allows for
the creation of multidimensional Arrays and Lists in Scala. The fill and tabulate
methods can produce these by passing the proper number of arguments into the first
argument list.

198 Introduction to Programming and Problem-Solving Using Scala

7.12.3 Self-Directed Study

Enter the following statements into the REPL and see what they do. Try some variations
to make sure you understand what is going on. Some of these are intended to fail. You should
understand why.

scala> val arr = Array(1, 2, 3)
scala> arr(0)
scala> arr(1)
scala> arr(0) = 5
scala> arr.mkString(" ")
scala> val lst = List(2, 3, 5, 7, 11, 13, 17)
scala> lst.head
scala> lst.tail
scala> val bigArr = new Array[String](100)
scala> bigArr(0) = "A string"
scala> bigArr(1) = "Another string"
scala> bigArr(0).length
scala> bigArr(2).length
scala> val lst2 = 1 :: 2 :: 3 :: 4 :: 5 :: Nil
scala> lst.zip(lst2)
scala> lst.zipWithIndex
scala> val arr3 = Array.fill(5)(readLine())
scala> val lst3 = List.tabulate(20)(i => i*i)
scala> def printList(lst:List[Int]) = lst match {
case h::t =>
println(h)
printList(t)

case Nil =>
}
scala> printList(lst3)
scala> lst3.mkString(" ")
scala> lst3.map(i => math.sqrt(i))
scala> arr3.map(s => s.length)
scala> bigArr.filter(s => s!=null)
scala> arr.permutations.foreach(println)
scala> lst.sliding(4)
scala> def printWords(copies:Int,words:String*) {
words.foreach(w => println(copies*w))

}
scala> printWords(3,"Hi")
scala> printWords(2,"This","is","a","test")
scala> val numWords = lst.map(_.toString)
scala> printWords(4,numWords)
scala> printWords(4,numWords:_*)
scala> val arrAlias = arr
scala> arrAlias.mkString(" ")
scala> arr.mkString(" ")
scala> arrAlias(0) = 42
scala> arr.mkString(" ")
scala> def alterArray(a:Array[Int]) {
a(0) = 99
a(1) = 98
a(2) = 97

}
scala> alterArray(arr)

Type Basics and Argument Passing 199

scala> arr.mkString(" ")
scala> def getIndex[A](index:Int,a:Array[A]):Option[A] = {
if (index<a.length) Some(a(index)) else None

}
scala> getIndex(1,arr)
scala> getIndex(4,arr)
scala> lst.find(_ == 5)
scala> lst.find(_ == 9)
scala> def recursiveWhile(cond: =>Boolean)(body: =>Unit) {
if (cond) {
body
recursiveWhile(cond)(body)

}
}
scala> var i=0
scala> recursiveWhile(i<10) {
println(i)
i += 1

}

7.12.4 Exercises

1. Think of as many ways as you can to make an Array[Array[Int]] that has the values
1-10 in it. Write them all to test that they work. The first two should be easy. If you
work you can get at least three others knowing what has been covered so far.

2. Create a 2D array of 4 rows and 5 columns and store the row_index+column_index+5
in each element. Next sum the array by rows and then by columns and print the rows
total and the columns total.

3. Write a function called smallestNumber that finds the smallest number in a 2D array
and returns the row and column index. Ignore the possibility of a value occurring
multiple times.

4. Reverse the diagonal of an array. Create a 2D array that has the same number of rows
and columns, for example, the array "arr" has 3 rows and 3 columns. Write a script
that will reverse the contents of the diagonal elements. That means you need to swap
arr(0)(0) with arr(3)(3) and swap arr(1)(1) with arr(2)(2). To reverse the
opposite diagonal you would swap arr(0)(3) with arr(3)(0) and swap arr(1)(2)
with arr(2)(1).

5. Write a script that creates a 12X12 Multiplication table. Be sure to show the numbers
1 through 12 as both row and column labels.

6. Given two 2D Array[Array[Double]] values of the same length, write a func-
tion that returns their by element sum. This is a new Array where each element
is the sum of the values from the two input arrays at that location. So if you
have Array(Array(1,2,3)) and Array(Array(4,5,6)) your new array will have
Array(Array(5,7,9)).

7. Write a function that takes a variable number of grades and returns the median.

8. Write a script that prompts the user for the numbers for a one-dimensional array of
size 25. Next, write a function that takes that one dimensional array and places the
contents into a two-dimensional array of 5 rows and 5 columns.

200 Introduction to Programming and Problem-Solving Using Scala

7.12.5 Projects

1. This project calculates a very simplified golf handicap. The idea of a golf handicap
came about in 1911. The handicap would allow golfers who had different abilities to
play together in a more evenly-matched way. The formula used to calculate a handicap
is as follows:

(Score− CourseRating)× 113/SlopeRating

To calculate your golf handicap you need at least 5 18-hole scorecards or 10 9-hole
scorecards. A score card will look something like the following:

Hole 1 2 3 4 5 6 7 8 9 OUT
Par 5 4 3 4 5 4 3 4 4 36
Score 7 5 3 5 8 6 4 5 4 47

Hole 10 11 12 13 14 15 16 17 18 IN TOTAL
Par 4 4 4 3 5 4 4 3 5 36 72
Score 5 6 4 5 7 7 5 3 7 49 96

Par indicates the predetermined number of strokes that a 0-handicap golfer should
take to complete the hole. Although a course’s actual course rating may be different
than the total par listed on the score card, we will assume that the Course Rating
= Total par for the course. The Slope Rating shows the difficulty of a course for an
average golfer. We will assume that our course’s slope rating is 130. Score indicates
how many strokes you took to complete the hole.

First, you will need to record the scorecards. Next, you will need to determine your
Adjusted Gross Score (AGS). We will assume that the maximum number of strokes
you can take on any hole is 8; so, you will need to adjust the scorecards accord-
ingly (both the per hole score and the total for each round). Now that you have
the AGS, you will need to determine your handicap differential. The equation for
a Handicap Differential is the Course Rating minus your AGS, multiplied by 113,
and divided by the Slope Rating, or (AGS − CourseRating)x113/SlopeRating.11
For example, say your AGS is 96, the Course Rating is 72, and the Slope Rat-
ing is 130. You would have the equation (AGS − CourseRating)x113/SlopeRating,
or (96 − 72)x113/130, which results in a Handicap Differential of 12.1. Next, we
need to calculate our handicap index. The formula for your Handicap Index is
the sum of your differentials divided by the number of differentials, multiplied by
0.96, or (SumofDifferentials/NumberofDifferentials)x0.96. Now that you have
your Handicap Index, you can total up your Course Handicap using the formula:
(HandicapIndex)x(SlopeRating)/113. Round to the nearest whole number.

2. This project can be used to assign seats at a dine-in movie theater. The theater has
20 rows, with 9 seats in each row. Row A is for handicapped individuals only. Show
the theater patron the seating plan and then ask the theater patron if they need a
handicapped accessible seat. Then ask them for their desired seat. The seating display
should look something like this:

11http://www.usga.org/Rule-Books/Handicap-System-Manual/Rule-10/

http://www.usga.org/Rule-Books/Handicap-System-Manual/Rule-10/

Type Basics and Argument Passing 201

1 2 3 4 5 6 7 8 9
Row A * * * X X * * * *
Row B X X * * * * * * *
Row C * * X * * X X * X
Row D * * * * * * * * *
Row E * * X X * * * X X
Row F X * * * * * * * *

.

.

.
Row T * * X X X X * * X

Seats that are already reserved are marked with an X. Seats that are available are
marked with a *.

3. Both you and your friend decide to go bowling. Bowling is a game where a ball is
rolled down an alley in an attempt to knock down pins. Write a script that calculates
the total score of both of your games. One game of bowling consists of 10 frames, with
a minimum score of zero and a maximum of 300. Each frame consists of two chances
to knock down ten pins. If all ten pins are knocked down on your first ball you get a
"strike". A strike is denoted by an X on the score sheet. If it takes you two rolls to
knock down all ten pins, it is called a "spare". A spare is denoted by a \on the score
sheet. If there is at least one pin still standing after two rolls, it is called an "open
frame". Here are the scoring rules:

• Open frames are scored at face value.

• A strike is worth 10, plus the value of your next two rolls. For example, if you
knock down 4 pins on your next first roll and zero pins on your next second roll,
the score for that frame will be 10+4+0=14. However, if you get another strike
on your next first roll and another strike on your next second roll, the score for
that frame will be 10+10+10=30. The minimum score for a frame in which you
get a strike is 10 and the maximum score is 30.

• A spare is worth 10, plus the value of your next roll. The minimum score for a
frame in which you get a spare is 10 and the maximum score is 20 (a spare and
a strike on your next roll).

Each frame consists of up to 2 rolls, except for the tenth frame which could consist of
3 rolls if the player gets a strike on their first roll of the frame. Read in the bowling
marks for each frame that you and your friend recorded, then display the score sheet
with the game totals displaying the frame, each roll result (X, \, or a number), frame
score, and a running total for each player.

4. The Galton box, also known as the bean machine, is a device created by Sir Francis
Galton. It consists of a vertical board with evenly spaced pegs in a triangular pattern.
Each time a ball hits a peg, it will fall to either the left or right of the peg. Piles
of balls are accumulated in the slots at the bottom of the board. Write a script that
simulates the bean machine that has 8 slots in which you drop 20 balls. You should
simulate the falling of each ball by printing the ball’s path. For example, LLRRLLR
indicates each direction the ball fell before it landed in slot 4 on a bean machine with
8 slots. Print the final buildup of the balls in the slots in a histogram.

5. Write a function that takes a Double* and returns the median value (not the mean)

202 Introduction to Programming and Problem-Solving Using Scala

as a Double. Your solution is not expected to be efficient. This is more of a test of
your ability to do logic using the methods that were presented in this chapter.12

6. Write a function that takes an Int* and returns the mode of the values. As with the
previous project, the goal here is more for you to think about how to make a solution
than to make an efficient solution.

There are additional exercises and projects with data files to work on posted on the
book’s web site.

12The API includes a number of methods for sorting. Those could be used to make a more efficient and
shorter solution to this problem, but the goal here is for you to do this without sorting.

Chapter 8
Loops

8.1 while Loop . 203
8.2 do-while Loop . 205
8.3 for Loop . 206

8.3.1 Range Type . 209
8.3.2 yield . 210
8.3.3 if Guards . 211

Syntax Note . 211
8.3.4 Multiple Generators . 211
8.3.5 Patterns in for Loops . 212
8.3.6 Variable Declarations . 213

For Comprehensions . 213
8.3.7 Multidimensional Sequences and for Loops . 214

Parallel for Loops . 214
8.4 Testing . 216

Views (Advanced Topic) . 218
8.5 Putting It Together . 219
8.6 End of Chapter Material . 222

8.6.1 Problem Solving Approach . 222
8.6.2 Summary of Concepts . 222
8.6.3 Self-Directed Study . 223
8.6.4 Exercises . 224
8.6.5 Projects . 225

We saw in chapter 5 how we could use recursion to produce an iterative behavior where
something was done multiple times. We also saw in chapter 6 that we can use collections to
make certain operations happen multiple times. These approaches are the primary methods
used in functional languages, and they often work well to provide the functionality we need
in Scala. Most languages, including Scala, provide other constructs called loops that are
designed specifically for creating this iterative behavior. In this chapter we will explore the
loop structures present in Scala and see how we can use these in our programs. We will
start by repeating some of the things that we did previously using recursion.

8.1 while Loop
The most basic looping construct is the while loop. The name tells you roughly what

it does. You should keep repeating something while some condition is true. The syntax of
the while loop is as follows.

while (condition) statement

The condition can be any expression that evaluates to a Boolean type. The statement is
very commonly a block of code, so you will typically see the while followed by curly braces.

203

204 Introduction to Programming and Problem-Solving Using Scala

To see an example of this, let us use a while loop in a function that builds a List of
numbers input by the user. The List will end when the user enters “quit”. This is exactly
like the example that we did with recursion. We could not do it with the collections because
we did not know in advance how many numbers there would be.

def readInts:List[Int] = {
var lst = List[Int]()
var input = readLine()
while (input != "quit") {
lst = input.toInt :: lst
input = readLine()

}
lst

}

This code is distinctly imperative. We have to declare two variables with var to make it
work. In fact, the while loop and it’s partner, the do-while loop that we will discuss in the
next section, are only usable as statements. They are not expressions and cannot be used in
places that need to have a value as all they produce is Unit. The fact that the while loop
has to be used in an imperative way is somewhat implicit in the way it works. For the code
inside of the while loop to execute, the condition must be true originally. In order for the
loop to finish, the value of the condition has to change to false. This change requires the
mutation of data at some point; so, it is impossible to use the while loop in a completely
functional way.

Another thing to note about the while loop is that it is a pre-check loop. This means
that the condition is checked before the body of the loop is executed. As a result, it is
possible that the contents of the loop will never execute. If the condition is false when the
loop is first reached, the body of the loop will never execute.

Let us look at another example of the while loop. One of our first examples of using
recursion to get iteration was the factorial. We can rewrite factorial using a while loop in
the following way.

def factorial(n:Int):Int = {
var product = 1
var i = 1
while (i <= n) {
product *= i
i += 1

}
product

}

We declare two variables named product and i at the beginning and initialize both to 1.
The condition on the while loop causes it to iterate as long as i is less than or equal to n.
Inside the loop, the value product is multiplied by i and i is incremented by one. This is
an example of a counter controlled loop.

The *= and += operators are examples of assignment operators. They provide a handy
shorthand for when you want to apply a mathematical operation to a value and store the
result back in the original variable. You can follow any operator by an equal sign and Scala
will see it as a compound operation that performs the specified operator and stores the
value back. The storing of the value is a mutation operation. As such, these operators have
to be used with mutable data. That either requires var declarations, or mutable constructs
such as Arrays.

Loops 205

This function also shows another element that is common to most while loops and
which can lead to a common form of bug. The line i += 1 is the incrementor (iterator)
of the loop. It is what moves us from one case to the next in the loop so that the loop
eventually terminates. The common bug is to accidentally leave out the iterator. Consider
what happens in this code if you do that. Without the line i += 1, the value of i will never
change. As a result, the condition will never change either and if it is true to begin with,
it will be true forever. This leads to what we call an infinite loop, a loop that never exits.
This type of error is easy to put into the code with a while loop, because the loop does not
include anything in its structure to remind you to include the incrementor. The fact that
the while loop requires mutation and is a bit prone to bugs means that it is something we
will only use when we find that we have a good reason to. The reason will generally be that
we want to repeat some action multiple times, but we have no way of knowing how many
before the loop starts, and we do not want to write a recursive function.1

8.2 do-while Loop
Scala provides a second construct that is very closely related to the while loop. It is the

do-while loop. The syntax for the do-while loop is as follows.

do {
statements

} while (condition)

The curly braces are not technically required here either, but it is rare to see a do-while
loop without them. Again, the statement does very much what it says that it does. It will
do the statements while the condition is true.

Given how very similar this sounds to the normal while loop, you might wonder what
the difference is. The difference is implied by the layout. The normal while loop checks
the condition before it executes the statements in the body of the loop. The do-while
loop checks the condition after it executes the body of the loop. As a result, the body of a
do-while loop will always execute at least once.

The do-while loop is not used that often in programming. The only times it is used
are in situations where the post-check nature of the loop is helpful and you want the
contents of the loop to always happen once. A common example of this is in menu based
applications where you need to read what the user wants to do and then act on it. The
decision of whether or not the loop should be executed again is based on what option the
user picks.

The mainGrades function from the end of chapter 6 was an example of this. In that
chapter we wrote the program using recursion because that was the only method we knew
for making the program execute the same code repeatedly for an unknown number of times.
This function can be converted over to use a do-while loop, and the result might look like
the following.

def printMenu:Unit = {
println("""Select one of the following options:

1. Add a test grade.

1If a recursive function is not “tail recursive”, then the while loop will be superior when the action needs
to happen more than several thousand times.

206 Introduction to Programming and Problem-Solving Using Scala

2. Add a quiz grade.
3. Add an assignment grade.
4. Calculate average.
5. Quit.""")
}

def mainGrades {
var tests = List[Double]()
var assignments = List[Double]()
var quizzes = List[Double]()
var option = 0

do {
printMenu
option=readInt()
option match {
case 1 =>
println("Enter a test grade.")
tests ::= readDouble()

case 2 =>
println("Enter a quiz grade.")
quizzes ::= readDouble()

case 3 =>
println("Enter an assignment grade.")
assignments ::= readDouble()

case 4 =>
println("The average is "+
courseAverage(tests,assignments,quizzes))

case 5 =>
case _ =>
println("Unknown option. Try again.")

}
} while (option != 5)

}

Whether you use this or the code in section 6.6 is primarily a question of style. Most develop-
ers would probably write this version by default, but that is mainly because most developers
have a background in imperative programming and will tend to favor this approach for rea-
sons of familiarity. The form using recursion would be preferred by most programmers used
to functional programming. Like the while loop, the do-while loop requires mutation and
is prone to the problem of forgetting to increment which leads to an infinite loop.

8.3 for Loop
The while loop is logically the simplest loop, but it is not the most commonly used

loop in most languages. In languages that provide a for loop, it is typically the most
commonly used loop. The for loop in Scala is a bit different from that provided in many
other languages, but you will probably find that it is the one that you turn to the most
when you are putting iteration into your code.

In most languages, the natural usage of the for loop is to count so we will start with

Loops 207

that. A for loop that counts from 1 to 10 and prints out the values would be written as
follows in Scala.

for (i <- 1 to 10) {
println(i)

}

The name i is a variable name just like you would get with a val declaration for Scala. As
such, you can call it whatever you want. For counting loops it is very common to use names
such as i, j, and k. However, anything will work and as with other variable names, it is
better if your choice communicates something to those reading the code to make it easier
for them to understand. After the variable name is an arrow pointing to the left made from
a less than and a hyphen or minus sign. You will see this in all of your for loops in Scala.
You can read the <- as “in”. After that is a nice expression that you should be able to read.
We will talk more about exactly what that means shortly. You can read this for loop as
something like “for i in 1 to 10”.

As we saw in chapter 6, the indexes in collections in Scala do not start counting at
one. Instead, they start counting at zero. As such, you often would not count from 1 to
10. Instead, we would normally count from 0 up to 9. This could be expressed in Scala by
replacing 1 to 10 with 0 to 9. However, it is very common that you want to start at zero
and express the number of elements you want to go through. For this reason you may want
to use until instead of to, thus the following also works in Scala.

for (i <- 0 until 10) {
println(i)

}

Using until causes the counting to finish one before the last value listed.
The for loop in Scala is not just about counting though. Indeed, this usage is something

of a special case in Scala. In general, the expression to the right of the <- in a for loop
in Scala can evaluate to any type of collection. In other languages, this type of loop that
runs through the elements of a collection is often called a for-each loop because it does
something for each element of the collection. That might remind you of the foreach method
from section 6.5. This is more than a passing resemblance.

To illustrate this usage of the for loop, consider the following code in the REPL.

scala> List.tabulate(10)(i => i*i)
res0: List[Int] = List(0, 1, 4, 9, 16, 25, 36, 49, 64, 81)

scala> for (elem <- res0) {
| println(elem)
| }

0
1
4
9
16
25
36
49
64
81

In this case, the for loop actually does exactly the same thing that foreach does and runs
the code inside the loop on each of the different elements in the list. What code you put

208 Introduction to Programming and Problem-Solving Using Scala

in the for loop can be arbitrarily complex. The println statements shown here just make
simple examples.

A more general beginning description of the syntax of the for loop would be the follow-
ing.

for (name <- collection) statement

The name can be any valid Scala name. The collection can be any expression that results
in a collection. The statement can be anything that you want to have happen. Frequently
a code block is used, and you will see multiple statements in curly braces.

Let us use a for loop to evaluate a polynomial. We will treat an Array[Double] as the
polynomial where each element in the array is a coefficient of a term in the polynomial. For
example, the polynomial 3x3 + 6x2 − 4x+ 7 is represented as Array(3.0,6.0,-4.0,7.0).
We want the function to evaluate the polynomial for a particular value of x that will also be
passed into the function. We will write this in several ways. The first one will use a counting
loop.

def evalPolyCount(coefs:Array[Double],x:Double):Double = {
var ret = 0.0
for (i <- 0 until coefs.length) {
ret += coefs(i)*math.pow(x, coefs.length-1-i)

}
ret

}

This will work, but it is particularly inefficient. The use of math.pow for small integer
exponents is very inefficient. Walking through the Array with the index is not bad, but if
we decided to use a List for the coefficients that would change.

Recall that the for loop is intended to go through the elements of a collection. As such,
we could just run through the elements of coefs and perform the math. The only challenge
in this is that we were using the index, i, to calculate the power of x as well. We could get
rid of that and remove the use of pow if we simply went through the Array in the reverse
order. Putting that logic into code produces this.

def evalPolyReverse(coefs:Array[Double],x:Double):Double = {
var ret = 0.0
var power = 1.0
for (c <- coefs.reverse) {
ret += c*power
power *= x

}
ret

}

This version does not count with an index. Instead it runs through the array elements.
Each value in the Array is put into c and then the return value is incremented. A separate
variable called power is created with a value of 1.0 and each time through it is multiplied
by x. This provides us with a running power of x and removes the need to call math.pow.

This function is also perfectly correct. It’s main drawback is that in order to do the
powers of x properly, the Array had to be reversed. Given this usage, that will create a
completely new Array and copy the elements across in the reverse order. While that is also
inefficient, this does allow us to nicely illustrate the usage of the for loop to run through
any collection, even one that is created through operations on other collections. This loop
is also very imperative as we have two var declarations that are being mutated. So far we

Loops 209

have only used the for loop as a statement, so this type of mutation is almost inevitable.
In section 8.3.2 we will see how we can use the for loop as an expression, something we
could not do with while or do-while.

8.3.1 Range Type

Now that you have seen that the for loop really just runs through a collection, you
might wonder about the counting usage with something like this.

for (i <- 0 until 10) { ...

To understand this it might help to type some expressions into the REPL and see what is
really going on. Here we have done that.

scala> 1 to 10
res1: scala.collection.immutable.Range.Inclusive = Range(1, 2, 3, 4, 5, 6, 7, 8,

9, 10)

scala> 0 until 10
res2: scala.collection.immutable.Range = Range(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

The expressions 1 to 10 and 0 until 10 give us back values that actually are collections.
Specifically, they produce instances of the Range type, which is a subtype of sequence. You
already know that Scala allows infix notation for methods that take only one argument. In
this case, 1 to 10 is really 1.to(10). You could type it using that format, but there is no
reason to.

The Range type in Scala gives us a simple way to use the for-each style loop that Scala
provides to do the counting operations that most programmers are used to using the for
loop to accomplish. You can use to and until with other integer types including the Char
type. So the expression ’a’ to ’z’ will give you a collection of all of the lower case letters.

What if you want to count down? The i Range type has a method called by defined on
it that will allow you to specify the step between elements in the Range. So, if you want
to go from 10 down to 1, you can use 10 to 1 by -1. We can use this to get a version
of the polynomial evaluation function that uses the index counting, but does not require
math.pow and instead keeps track of the exponent of x.

def evalPolyCountDown(coefs:Array[Double],x:Double):Double = {
var ret = 0.0
var power = 1.0
for (i <- coefs.length-1 to 0 by -1) {
ret += coefs(i)*power
power *= x

}
ret

}

This version has most of the advantages of both of the previous versions. It does not have
to reverse the Array, nor does it require the use of math.pow. The downside is that it still
would not translate well to a List, and it is still very imperative.

If you use by to specify the step, you can also use Ranges of the Double type. Other, less
standard, numeric types like BigInt will also work nicely with the Range type. The fact
that the Range type is really a collection means that all of the methods that were discussed
in chapter 6 are available for them. This leads to a concise way of expressing factorial.

210 Introduction to Programming and Problem-Solving Using Scala

scala> (1 to 5).product
res21: Int = 120

In addition to product and sum, you can also apply map, filter, or other operations to
instances of the Range type.

There are some times when you want to count through the indices of a collection like
an Array. You could do this with code like the following assuming that you have an Array
called a.

for (i <- 0 until a.length) ...

You can also use the indices method on the collection. Calling a.indices will give you a
Range that goes from the first index to the last one. So this loop could also be expressed in
this way.

for (i <- a.indices) ...

Not only is this shorter, it is slightly less error prone in that you cannot accidentally start
at 1 instead of 0, nor can you accidentally use to instead of until.

8.3.2 yield

The while loop is a statement only and cannot be used as an expression. This is not true
of the for loop. You can cause the for loop to produce a value so that it can be used as an
expression. This is done by putting the yield keyword right after the close parentheses of
the for loop. When you use yield, instead of a statement you need to have an expression.
The result of the for expression is a new collection with all of the yielded values in it. The
following shows a simple example of this.

scala> for (i <- 1 to 10) yield i*i
res5: scala.collection.immutable.IndexedSeq[Int] =
Vector(1, 4, 9, 16, 25, 36, 49, 64, 81, 100)

Another slightly different example shows how you could use a for loop to make a collection
that is filled with values read in from input.

val nums = for (i <- 1 to 10) yield readInt()

This could work as an alternative to fill if you find it more readable.
You should note that the example gives a result with a type we have not seen before.

The general type is listed as an IndexedSeq[Int] and the specific object is a Vector[Int].
Do not let these different types throw you off. For our purposes, we will use them just like
we would the Array type. The difference between the Array and the Vector is that the
Vector is immutable. You can index into it efficiently like an Array, but like a List, you
are not allowed to change the values of the elements. All the standard functions that we
saw earlier for Array and List will work on these types as well. If you really need an Array
or a List, you can call toArray or toList on either a Vector or a Range.

scala> (1 to 10).toList
res6: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Loops 211

8.3.3 if Guards

The for loop in Scala also allows conditionals. After the first generator, you can put an
if that is followed by a condition. The for loop will only happen for those instances where
the condition is true. This can lead to a more compact syntax than putting an if inside
of the for loop. It can also be more efficient. Most importantly, it can be useful when you
have a yield so that you do not add unwanted elements to the value of the expression.

As an example of this, and other aspects of the for loop, let us consider having a
sequence of points in 2-D that are stored as (Double,Double). We want an expression that
will give us back a sequence that has the distances to those points from the origin. The
catch is that we only want the distances that are less than one. Without the if guard, this
would require two steps. One would calculate the distances and a second would filter out
the large values. The if guard lets us do this in a single loop.

for ((x,y) <- points; if magnitude(x,y)<1.0) yield magnitude(x,y)

This example was written assuming a function called magnitude that might look like the
following.

def magnitude(x:Double,y:Double):Double = math.sqrt(x*x+y*y)

The beginning of this loop illustrates how you can use a pattern on a tuple to pull out the
two elements in the point. This is actually one of the great strengths of the for loop in
Scala that helps simplify your code.

Syntax Note

Note that you do not have to include parentheses after the if in an if guard. You
can, but unlike a normal if it is not required.

The one significant drawback of this approach is that the magnitude function is called
twice. The sqrt function can be expensive so this is less than ideal. We will see how to get
around that shortly.

8.3.4 Multiple Generators

The for loop in Scala also supports the ability to iterate across multiple collections in
a single loop. This can be done by putting more than one variableName <- collection
in the parentheses. We call these generators. Each of these that you put into the for loop
will generate values from the collection to run through the logic. The first generator will
pull the first value from its collection. A second generator will then run through all of its
values before the first one goes on to the second option. So the number of times the body
of the loop happens goes as the product of the number of elements in the collections for the
generators, not the sum. To help you understand this, consider the following example.

scala> for (i <- 1 to 5; c <- ’a’ to ’c’) println(i+" "+c)
1 a
1 b
1 c
2 a
2 b
2 c

212 Introduction to Programming and Problem-Solving Using Scala

3 a
3 b
3 c
4 a
4 b
4 c
5 a
5 b
5 c

You can see that the character variable, c, goes through all of its values for each value that
i takes on. As a result, there are 15 lines printed.

You might wonder why you would want to do this. Consider again the example of using
a 2-tuple to represent points. You might want to make a collection of all the points on a
grid in some range of x and y values with a particular spacing in the grid. You could do
that with the following code.

val xmin = -1.5
val xmax = 0.5
val xstep = 0.01
val ymin = -1.0
val ymax = 1.0
val ystep = 0.01
val pnts = for (x <- xmin to xmax by xstep;
y <- ymin to ymax by ystep) yield (x,y)

The output from the last line will appear in the REPL as something like the following.

pnts: scala.collection.immutable.IndexedSeq[(Double, Double)] =
Vector((-1.5,-1.0), (-1.5,-0.99), (-1.5,-0.98), (-1.5,-0.97),
(-1.5,-0.96), (-1.5,-0.95), (-1.5,-0.94), (-1.5,-0.93), (-1.5,-0.92),
(-1.5,-0.91), (-1.5,-0.9), (-1.5,-0.89), (-1.5,-0.88), (-1.5,-0.87),
(-1.5,-0.86), (-1.5,-0.85), (-1.5,-0.84), (-1.5,-0.83), (-1.5,-0.82),
(-1.5,-0.81), (-1.5,-0.8), (-1.5,-0.79), (-1.5,-0.78), (-1.5,-0.77),
(-1.5,-0.76), (-1.5,-0.75), (-1.5,-0.74), (-1.5,-0.73), (-1.5,-0.72),
(-1.5,-0.71), (-1.5,-0.7), (-1.5,-0.69), (-1.5,-0.68), (-1.5,-0.67),
(-1.5,-0.66), (-1.5,-0.65), (-1.5,-0.64), (-1.5,-0.63), (-1.5,-0.62),
(-1.5,-0.61), (-1.5,-0.6), (-1.5,-0.59), (-1.5,-0.58), (-1.5,-0.57),
(-1.5,-0.56), (-1.5,-0.55), (-1.5,-0.54), (-1.5,-0.53), (-1.5,-0.52),
(-1.5,-0.51), (-1.5,-0.5), (-1.5,-0.49), (-1....

In this case, the output is truncated before it even gets to the second value of x.

8.3.5 Patterns in for Loops

One example above used the pattern (x,y) to the left of the <- in a for loop. You can
use any pattern that you want in that position of a for loop. What makes this truly useful
in for loops is that any value that does not match the pattern is skipped.

Our main usage for this will be to quickly and easily pull values out of tuples. However,
we can present one other interesting usage here that uses the fact that collections can be
used as patterns. Consider the following code that makes an Array[Array[Double]] where
each of the contained Arrays has a variable length between 3 and 9.

scala> val twoD = Array.fill(100){
| Array.fill(util.Random.nextInt(7)+3)(math.random)

Loops 213

| }
twoD: Array[Array[Double]] = Array(Array(0.9714402463829903, 0.14015197447391436,

0.8524582916143384, 0.6162004743306447, 0.620366190244299, 0.36698269639501,
0.46318519546397396), Array(0.6436214632596926, 0.48145976017298175,
0.5205354884596076, 0.20188086494076174, 0.9186534118857578,
0.206412655336915), Array(0.41326520865491023, 0.5388572013936772,
0.3835287127371739, 0.840667735649998, 0.5776048750341035, 0.8564378792435797,
0.33358311231736193), Array(0.8386133676386185, 0.19634635871412187,
0.85047321636848, 0.8920110191832437, 0.22432093122102714, 0.9053781210756321,
0.7642421256500077), Array(0.7958975255688977, 0.30398364976466374,
0.8810424486159291, 0.1328719423800543, 0.7129174104031204),
Array(0.6067234631262645, 0.5276942206810142, 0.06504059155788122,
0.4145379572950526...

You can imagine a situation where this is data that you got from some data set and you
only care about the entries with only three values in them and for those you only want the
average value. The following for loop would provide exactly that data.

scala> for (Array(d1,d2,d3) <- twoD) yield (d1+d2+d3)/3
res6: Array[Double] = Array(0.7844266684446944, 0.4057923197637461,

0.44310232980470454, 0.5634809009372609, 0.576642991638965,
0.3789396949661376, 0.5706536514773105, 0.5844720273258665,
0.3445436835569556, 0.3547819380526076, 0.5996534540605474,
0.38416980809208406, 0.8018516553113365, 0.2244482193993954,
0.5098449834833878, 0.6578966352311121)

Note that the array twoD has a length of 100, but res1 has only 16 elements. That is because
the other 84 had more than three elements in them. The pattern Array(d1,d2,d3) matches
only Arrays that have exactly three elements in them. Those three elements are bound to
the names d1, d2, and d2.

8.3.6 Variable Declarations

With if guards, multiple generators, matching patterns, the for loop seems like a dream,
but wait! There’s more! You can define variables inside of the for loop. This is helpful for
situations like we had earlier where we do not want to have to calculate the magnitude twice
for each iteration.

for ((x,y) <- points; dist = magnitude(x,y); if dist<1.0) yield dist

In this sample, the magnitude is calculated and stored in dist. That value is then used in
the two different locations. This way we get slightly shorter code with the real benefit that
we only have to calculate the magnitude once.

The generators, if guards, and value declarations can be combined in any way given that
a generator comes first. This provides a significant amount of power in a single construct.
Just do not abuse it to make code that no one can understand.

For Comprehensions

In reality, the for loop in Scala is just a form of “syntactic sugar” (syntactic sugar
refers to syntax within a programming language that is designed to make things easier
to read or write – it makes the language "sweeter" for people to use). When you write

214 Introduction to Programming and Problem-Solving Using Scala

a for loop, it is converted to appropriate calls to foreach, map, flatMap, and filter.
In this way, the implementation can be optimal for the collection type in question.

Also, because it is common to have multiple generators, if guards, and variable
declarations in for loops, Scala allows you to leave out semicolons and use newlines
instead if you enclose them all in curly braces instead of parentheses.

8.3.7 Multidimensional Sequences and for Loops

In chapter 7 we saw that the power of the type system allowed us to do things like make
Arrays of Arrays. At this point you might wonder how you could produce such things with
for loops. It is tempting to think that using multiple generators might do that, but the
example of the grid of points shown above make it clear that doesn’t happen. If you want
to have a construct with higher dimensions, you need to have multiple nested for loops. As
an example of this, we will use for loops to build the multiplication table that we built in
chapter 6 with tabulate.

val multTable = for (i <- 0 until 10) yield {
for (j <- 0 until 10) yield i*j

}

If you execute this code in the REPL you get the following result.

multTable: scala.collection.immutable.IndexedSeq[scala.collection.immutable.
IndexedSeq[Int]] = Vector(Vector(0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
Vector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), Vector(0, 2, 4, 6, 8, 10, 12,
14, 16, 18), Vector(0, 3, 6, 9, 12, 15, 18, 21, 24, 27),
Vector(0, 4, 8, 12, 16, 20, 24, 28, 32, 36), Vector(0, 5, 10, 15,
20, 25, 30, 35, 40, 45), Vector(0, 6, 12, 18, 24, 30, 36, 42, 48, 54),
Vector(0, 7, 14, 21, 28, 35, 42, 49, 56, 63), Vector(0, 8, 16, 24,
32, 40, 48, 56, 64, 72), Vector(0, 9, 18, 27, 36, 45, 54, 63, 72, 81))

This has the same values as the Array[Array[Int]] that we made earlier, and we can use
it much the same way despite the fact that it is technically a Vector[Vector[Int]]. We
just can’t assign values into it.

The key here is that each for loop with a yield produces a sequence. If you want to
have sequences of sequences, you need to actually put for loops inside of for loops.

Parallel for Loops

Modern processors have the ability to do multiple things at the same time through a
process called multithreading. This is a topic that is increasingly important to computer
science and which we cover in detail in Object-Orientation and Abstraction Using Scala
[1]. Here we can provide a brief introduction to a simple way to include multithreading
in your programs through parallel collections.

One of the primary motivations for multithreaded parallelism is to more fully utilize
the hardware of modern processors and speed things up. So, if you have a loop with a
body that does a lot of work, you can make it parallel so that the processor does work
on different parts at the same time. You can make an Array or a Range parallel by

Loops 215

calling the par method. (Note that you can also call the par method on a List, but
it is not efficient because it has to convert the List into a different structure that is
efficient to work with in parallel.) Many calls to these parallel collections will get split
up across multiple threads, as will for loops. To see the impact of this, consider the
following.

scala> def fact(n:BigInt):BigInt = if (n<2) 1 else n*fact(n-1)
fact: (n: BigInt)BigInt

scala> for (i <- 30 to 15 by -1) println(fact(i))
265252859812191058636308480000000
8841761993739701954543616000000
304888344611713860501504000000
10888869450418352160768000000
403291461126605635584000000
15511210043330985984000000
620448401733239439360000
25852016738884976640000
1124000727777607680000
51090942171709440000
2432902008176640000
121645100408832000
6402373705728000
355687428096000
20922789888000
1307674368000

scala> for (i <- (30 to 15 by -1).par) println(fact(i))
1124000727777607680000
51090942171709440000
2432902008176640000
265252859812191058636308480000000
121645100408832000
6402373705728000
403291461126605635584000000
355687428096000
15511210043330985984000000
20922789888000
620448401733239439360000
304888344611713860501504000000
25852016738884976640000
10888869450418352160768000000
1307674368000
8841761993739701954543616000000

The factorial on BigInt is used in part because it is fairly slow. The first version
everything runs in the way that you expect and the values of 30! down to 15! are
printed in order. With the addition of par, the values are no longer printed in order.
Instead, the work is broken up into different threads and each value prints after it has
been calculated. The biggest values take longer to calculate; so, they are not the first
ones to print.

While you can use this to speed things up, it has to be done with care. To get some
idea of why this is, consider the following few lines typed into the REPL.

216 Introduction to Programming and Problem-Solving Using Scala

scala> var count = 0
count: Int = 0

scala> for (i <- (1 to 1000000).par) count +=1

scala> count
res0: Int = 930420

At the end of this, count should be 1000000, but it is not. It is about 70000 shy of
that. Were you to do this on your own machine, you would certainly get a different
value. Doing it on the same machine a second time will even produce a different value.
This code has what is called a race condition. While the details of race conditions and
how to deal with them is beyond what we will cover here, you can consider using par
when you are not mutating values. That also means that if it is part of a for loop, you
should probably be using yield.

8.4 Testing
We have now gotten to the point where you can write programs of reasonable complexity.

You know most of the constructs that exist in the Scala programming language. As soon as
you start writing larger programs, there are some new elements of the programming process
that becomes more significant such as testing and debugging.

Just because you have written the code and it compiles and runs does not mean that it
is correct. To determine if it actually does what you want it to, you need to test it. This
means that you need to run the code with a variety of different inputs to make sure that
they all work, and then fix the problems when they do not.

The first part of this, running the program with different inputs is called testing. The
challenge in testing is trying to figure out what inputs make good tests. When you are
testing code you are actually looking for inputs that will break what you have written. You
want to give it some things that you know it will work on, but you also want to give it some
things that you think might break it. In addition, a good set of tests will go through all of
the functionality of the code.

Thinking of things that will break the code often involves looking for boundary condi-
tions. Things that are right at the edge of valid input. For example, if you have a function
that takes an Array or a List, what happens if the List or Array you pass in is empty?
You want to check different small number input sets as well as large ones. If the code takes
numeric values, does it work for both positive and negative? What about zero? Giving you
back answers that are wrong or do not make sense can be worse than crashing. If the input
is a String, what happens when the String is empty?

There are some situations where you will be certain that the input has a particular
structure. In other situations the input will be coming from a user who might give you
something that is not quite what you expected. Even when the input is coming from another
part of the program and something that you think will have the right format, there can be
cases that you have not considered. Good testing will help you find these situations.

If parts of your code require that certain things be true, you can use the require function
in Scala to force the program to terminate if a condition is violated. You can call require

Loops 217

with just a Boolean argument. If the Boolean is false, the program will terminate. The
termination can be made more informative by providing a second argument that is a message
to give the user if the requirement fails. The following shows how this might be used.

def weightedAverage(values:Array[Double],weights:Array[Double]):Double = {
require(values.length == weights.length,

"Must have same number of values and weights.")
require(weights.length > 0,"Average of zero elements not defined.")
require(weights.sum != 0.0,"Sum of weights can’t be zero.")
(for ((v,w) <- values.zip(weights)) yield v*w).sum/weights.sum

}

This function is intended to take the weighted sum of a set of values. There are a number
of requirements on the values passed into it. There are three require calls that make sure
that each of these is true before it calculates the value. This might seem like a lot of extra
typing, but if you put calls to require in your code whenever there really is a requirement,
you will find that it makes the debugging process a lot easier.

The other part of testing is coverage. Showing that the code works for one test input
is not sufficient to show that it is really correct. How many tests do you have to write to
feel confident that your code works? One of the challenges of Computer Science is that you
cannot, in general, prove that programs are correct. This was one of the earliest results of
Computer Science and is still a fundamental aspect of the theory of the field.2 Certainly,
some programs can be proved to be correct, but generally the best we achieve is to show
that our programs work across a broad range of inputs.

There are some criteria, beyond looking for boundary cases, you can use to determine
if you have enough tests. The metric to determine this is called code coverage. You want
to know what fraction of your code has been executed by the tests. There are a number of
different code coverage metrics that can be used.

• Function coverage - Has every function been called?

• Statement coverage - Has every statement been executed?

• Decision coverage - Has every option in branching structures (if and match) been
executed?

• Condition coverage - Has every Boolean sub-expression been evaluated as both true
and false?

• Condition/decision coverage - Combination of the two above.

• Loop coverage - Has every loop been executed zero, one, and more than one times?

• Path coverage - Has every path through part of the code been executed?

2The proof itself was due to Alan Turing showing that you cannot write a program that will take any
program and an input and determine if the program terminates when run on that input. This is called the
“Halting Problem”. The implication is that you cannot, in a completely general way, even show that your
program will terminate, much less give the right answer assuming it does stop. There are ways of writing
things that avoid errors, but no systematic way of demonstrating correctness. It is worth noting that one
nice thing about for loops is that they do always terminate as long as they are run on finite collections.

It should also be mentioned that while there is no completely systematic way to prove programs correct,
there is a significant amount of work that has gone into proofs of correctness. Unfortunately, proving a
program or algorithm correct is often challenging; so, it is only done for small algorithms or when it is
absolutely required. Making this more applicable to general programming could be a significant boost to a
world that is increasingly dependent on the proper functioning of programs.

218 Introduction to Programming and Problem-Solving Using Scala

The more complete the coverage your test set has, the more confident you are that your
code is correct. The levels of coverage higher in this list are basically minimal standards. If
your tests have not gone to every function or every statement, then there are parts of the
program that you simply have not tested. Going beyond those you start looking at different
ways for things to happen. There are often several different places from which a function
can be called. Covering decisions will make sure that you have called them from different
locations. Covering conditions makes sure that all the possibilities for why different parts
of the code might be reached have been exercised.

If you stop and think about it, you will probably realize that getting condition/deci-
sion coverage requires quite a few test cases. Even these options potentially leave a lot of
possibilities unchecked as they do not force loops to happen different numbers of times.
The ultimate form of coverage, path coverage, is generally unattainable for any program of
even modest size. Having path coverage implies that you have tested every possible path
that the execution could take through the code. Consider a simple function with three if
statements one after the other. One path through the code would have all three evaluate to
true. Another path might have the first two true and the last false. There are actually
eight different paths through such a function. If you add another if, the number of paths
doubles to 16. Path coverage requires exponentially many different cases be tested as con-
ditional statements are added. If that was not bad enough, a single while loop or recursion
generally creates an infinite number of different paths as the loop could execute zero, one,
two, or more times. Each one is a different path through the code. As such, path coverage
is typically viewed as an unattainable ideal for anything beyond fairly simple functions.

Due to the challenges of getting good coverage on large collections of code, it is common
to do testing on small blocks at a time. This process is called Unit testing. Each different
unit of the code has a test suite written for it that checks it’s functionality independent of
other parts of the code. These test suites are run over and over again during development
to make sure that no new changes break code that was written earlier.

The real advantage of Unit testing is that in a small unit, one can hope to get fairly
complete path coverage. However, it is not sufficient to only do Unit tests. As the different
units are assembled, they have to be put through integration tests that test how the pieces
work together. It is very possible for two units of code to work perfectly in isolation and
fail miserably when they are put together.

Views (Advanced Topic)

The collection methods that we learned about in chapter 6 provide you with the
ability to write concise expressions that have remarkable power. Unfortunately, if you
string together many of these methods, the result can be inefficient code. Consider the
following for some List of Ints.

numList.filter(_>70).map(_/10-6).sum

This expression makes two Lists and runs through Lists a total of three times. It
first runs through numList with the filter and produces a new List of the elements
that pass the filter. It then runs through that List and maps the elements to create
another List. Finally it runs through that List and takes the sum of the elements.
The multiple intermediate Lists and the iteration through them is inefficient.

All of this extra work happens because the List type is a strict type. That means
that whatever it contains is truly kept in memory as a real structure. For expressions

Loops 219

like this we would like the ability to have a non-strict representation of the List. In
Scala such things are called Views. Most operations on a View accrue the operation
without actually performing it. Later on, the operations can be forced which will cause
them to actually happen and produce a strict representation.

To get a View, call the view method of a collection. Operations like map and filter
that are done on the View will give you a new View type that has a memory of what
operations are to be performed, but the work will not have been done yet. You can force
the operations to be applied to give you back a strict representation of the data with
the force method. Some other methods, such as sum, which produce a final value, will
also force the accrued operations to be performed. So the above could be done using
Views in the following way.

numList.view.filter(_>70).map(_/10-6).sum

This code only runs through the collection once at the call to sum and does not cre-
ate any intermediate Lists. If numList were particularly long, this could provide a
significant benefit.

8.5 Putting It Together
Going back to the theme park, imagine that you have the job of scheduling workers

to operate rides. Your scheduling needs to take into account a number of different factors.
Each ride needs a minimum number of operators and, on days when there are lots of people
riding, that number needs to be increased. Also, the people who are working have to be
trained to operate rides. Not everyone has been trained for every ride, so you have to make
sure you have enough people scheduled who can operate each ride.

You have data from multiple weeks telling you how many people ride each ride on
different days of the week. That is fairly consistent so you will use averages of those values
to plan for each day. It is possible to write a program that will generate optimal schedules
for an entire week. We are not yet at the point where we are ready to write such a program.
Instead, we will write a program that outputs potential schedules for each day of the week.
This will help you to build schedules, but will not complete the entire task for you.

The script needs to start by reading in all the data on rides and employees. There will
need to be a fair bit of this; so, this is a script that should probably be run using input
redirection and having the contents of a file put in as the standard input. The input will
start by telling you how many rides there are followed by information for each ride. That
information will include a name, the number of operators needed on a slow day, and the
number of riders that qualifies as a heavy day. We will assume that on heavy days, one extra
operator is needed. That will be followed by the number of employees. For each employee
there will be a name, a number of rides they are trained on, and the names of those rides.

The last type of data in the input will be information on sample days. This will start
by telling you how many samples there are. Each sample will have the name of a day, the
name of the ride, and the total number of people who rode it that day. No assumptions will
be made about the days or how many times each day appears.

Once the data has all been read in, the script should run through every day that there
is data for, average the number of riders for each ride on that day, and list possible combi-

220 Introduction to Programming and Problem-Solving Using Scala

nations of workers who can cover the rides that day. Any ride that does not have data for
a given day can be assumed to be closed and does not need an operator.

The approach to finding possible groups of ride operators requires looping through the
rides that are active on a given day and determining how many operators each one needs
based on the average number of riders in the data. Our code will store this by having a
single sequence with one entry for each operator needed on each ride. The length of that
sequence tells us how many total operators are needed.

The combinations method is then used to pick all groupings of that many workers as
our goal is to not bring in more people than we have to. For each combination, the code
will run through permutations of the ride-operator list using permutations. It will check
whether that permutation has operators who match up with rides they know how to run. If
any permutation matches, that combination of operators is a possibility and it is printed.
Code for doing this is shown here.

Listing 8.1: RiderSchedule.scala
1 import io.StdIn._
2

3 def readRide():(String, Int, Int) = {
4 val name = readLine()
5 val numOps = readInt()
6 val heavyRiders = readInt()
7 (name, numOps, heavyRiders)
8 }
9

10 def readEmploy():(String, List[String]) = {
11 val name = readLine()
12 val num = readInt()
13 val rides = List.fill(num)(readLine())
14 (name, rides)
15 }
16

17 def readDay():(String, String, Int) = {
18 val day = readLine()
19 val ride = readLine()
20 val numRiders = readInt()
21 (day, ride, numRiders)
22 }
23

24 val numRides = readInt()
25 val rideInfo = Array.fill(numRides)(readRide())
26 val numEmploys = readInt()
27 val employInfo = Array.fill(numEmploys)(readEmploy())
28 val numDays = readInt()
29 val daysInfo = Array.fill(numDays)(readDay())
30

31 val days = daysInfo.map(_._1).distinct
32

33 for (day <- days) {
34 val thisDay = daysInfo.filter(_._1==day)
35 val rides = thisDay.map(_._2).distinct
36 val operatorRides = rides.flatMap(ride => {
37 val nums = thisDay.filter(_._2==ride).map(_._3)
38 val avg = nums.sum/nums.length
39 val rideData = rideInfo.find(_._1==ride).get

Loops 221

40 Array.fill(rideData._2+(if (avg>=rideData._3) 1 else 0))(ride)
41 })
42 val totalOps = operatorRides.length
43 for (choice <- employInfo.combinations(totalOps)) {
44 val perms = operatorRides.permutations
45 var works = false
46 while (!works && perms.hasNext) {
47 val perm = perms.next
48 if ((perm,choice).zipped.forall((r,op) => op._2.contains(r)))
49 works = true
50 }
51 if (works) {
52 println(day+" : "+choice.map(_._1).mkString(", "))
53 }
54 }
55 }

The top of the code defines three functions on lines 3-22 for reading information. Then lines
24-29 declare values and read in all the data. Once the data has been read in, line 31 finds
the days we have data for and stores them in the value days using the distinct call to
remove duplicates.

The primary functionality of the code is for for loop that covers lines 33-55. Inside this
loop that runs through the days, the variable thisDay gets all the ride data for the day
being considered on line 34. That is used to build the value rides on line 35, which contains
the unique rides that we have data for on that day. The next step is to expand that so we
have a sequence, called operatorRides with each ride duplicated a number of times equal
to how many operators are needed for it. This is done using flatMap on lines 36-41 with a
function that returns an Array of the proper size that is built using fill.

Line 42 defines totalOps as a short name for the total number of ride operators that
are needed. Another loop on lines 43-54 goes through all combinations of employees with
a length matching the number of operators needed. The selection of operators goes into
choice. Permutations of operatorRides are then taken on line 44, and a check is done to
see if operators match with rides in that permutation. This is done with a while loop on
lines 46-50 so that it can exit early if any match is found.3 If there is a match, the choice
sequence with operator names is printed along with the day in question.

A sample input can be found at the books GitHub repository. The output from running
that program on the sample input is shown here. This sample input had only four rides and
ten employees, but it shows the basic functionality.

Listing 8.2: Schedules.scala
Fri : Mark, Lisa, Madison, Kelsey, John, Jason
Fri : Mark, Lisa, Madison, Kelsey, John, Kevin
Fri : Mark, Lisa, Kelsey, John, Jason, Kevin
Fri : Mark, Madison, Kelsey, John, Jason, Jane
Fri : Mark, Madison, Kelsey, John, Kevin, Jane
Fri : Mark, Kelsey, John, Jason, Kevin, Jane
Sat : Mark, Lisa, Madison, Amber, Kelsey, John, Jason, Kevin, Jane
Sat : Mark, Lisa, Madison, Amber, Kelsey, John, Jason, Jim, Jane
Sat : Mark, Lisa, Madison, Amber, Kelsey, John, Kevin, Jim, Jane
Sat : Mark, Lisa, Madison, Kelsey, John, Jason, Kevin, Jim, Jane
Sat : Mark, Lisa, Amber, Kelsey, John, Jason, Kevin, Jim, Jane

3This while loop could be replaced by a call to exists or forall to create a more functional solution.
However, the use of a loop is more fitting with the learning objectives of this particular chapter.

222 Introduction to Programming and Problem-Solving Using Scala

Sun : Mark, Madison, Amber, Kelsey, John, Jason, Kevin
Sun : Mark, Madison, Amber, Kelsey, John, Jason, Jim
Sun : Mark, Madison, Amber, Kelsey, John, Kevin, Jim
Sun : Mark, Madison, Kelsey, John, Jason, Kevin, Jim
Sun : Mark, Amber, Kelsey, John, Jason, Kevin, Jim

One of the significant aspects of this example is the use of combinations and
permutations to run through various possibilities. We will explore alternate ways of solving
problems like this that can be more efficient in chapter 15. For now, these methods give us
the ability to solve complex problems that would otherwise be out of our reach.

8.6 End of Chapter Material

8.6.1 Problem Solving Approach

This chapter added quite a few new constructs for you to pick from for any given line
of code in the form of three different types of loops. These have been added below to what
was given previously.

1. Call a function just for the side effects.

2. Declare something:

• A variable with val or var.
• A function with def. Inside of the function will be statements that can pull from
anything in this list.

• A type declaration with type.

3. Assign a value to a variable.

4. Write a conditional statement:

• An if statement.
• A match statement.

5. Write a loop statement:

• Use a while loop when you do not have a collection or know how many times
something will happen, nor do you need to use it as an expression.

• Use a do-while loop in a situation where you could consider a while loop, but
you know that it should always happen at least once.

• Use a for loop to run through the elements of a collection or to do simple
counting.

8.6.2 Summary of Concepts

• The while loop is a pre-test conditional loop. It will repeat the body of the loop until
a condition check returns false. The condition is checked before the first execution
of the body and then before any subsequent executions. The while loop is used as a
statement only. It results in Unit so it cannot be used as a productive expression.

Loops 223

• The do-while loop is a post-test conditional loop and is just like the while loop
except that the condition is checked after each execution of the body. This means
that the body of a do-while loop will always execute at least once.

• The most commonly used loop is the for loop. Scala’s for loop is a for-each loop that
iterates through each member of a collection. It has many options that give it a lot of
flexibility and power.

– A generator in a for loop has a pattern followed by a <- followed by a collection
that is iterated through. The <- symbol should be read as “in”.

– To make counting easy, there is a Range type that can specify ranges of numeric
values. The methods to and until can produce Ranges on numeric types. The
method by can adjust stepping. Floating point Ranges require a stepping.

– The yield keyword can be put before the body of a for loop to cause it to
produce a value so that it is an expression. When you have a for loop yield a
value, it produces a collection similar to the one the generator is iterating over
with the values that are produced by the expression in the body of the loop.

– The left side of a generator in a for loop is a pattern. This can allow you to pull
values out of the elements of the collection, such as parts of a tuple. In addition,
any elements of the collection that do not match the pattern is skipped over.

– if guards can be placed in for loops. This is particularly helpful when using
yield, and the values that fail the conditional check will not produce an output
in the result.

– You can also place value declarations in the specification of a for loop. This can
help make the code shorter, easier to read, and faster.

• Testing is an essential part of software development. This is where you run the program
using various inputs to make certain that it does not fail or produce incorrect output.
Proper testing should exercise all parts of the code. It is generally impossible to test
all paths through the code, though good coverage is desirable. Challenging test cases
often include boundary values.

8.6.3 Self-Directed Study

Enter the following statements into the REPL and see what they do. Some will produce
errors. You should try to figure out why. Try some variations to make sure you understand
what is going on.

scala> var i = 0
scala> while (i<20) {
println(i)
i += 2

}
scala> while (i<30) {
println(i)

}
scala> do {
println(i)
i -= 1

} while (i>0)
scala> var resp = ""

224 Introduction to Programming and Problem-Solving Using Scala

scala> do {
println("Go again? (Y/N)")
resp = readLine()

} while (resp=="Y")
scala> 1 to 10
scala> 1 to 10 by 2
scala> 0.0 to 1.0 by 0.1
scala> for (i <- 1 to 10) println(i)
scala> for (i <- 1 to 10) yield i
scala> for (i <- 1 to 5; j <- 2 to 4) println(i+" "+j)
scala> val tups = for (i <- 1 to 5; j <- 2 to 4) yield (i,j)
scala> for ((n1,n2) <- tups) yield n1*n2
scala> val twoD = List.fill(6,4)(99)
scala> val mult = Array.tabulate(10,10)((i,j) => i*j)
scala> mult(3)(4)
scala> twoD(1)

8.6.4 Exercises

Many of these exercises are identical to ones that were given in chapter 5. The only
difference is that those problems were to be solved with recursion and these are to be solved
with loops.

1. Write the function isPrime that returns a Boolean telling if a number is prime using
a loop.

2. Write a function using a loop that will print powers of two up to some value.

3. Write a function using a loop that will print powers of two up to some power.

4. Write a function using loops that will print a multiplication table up to 10s. Try to
get it running first, then consider how you could make everything line up.

5. Write a function that returns a List[Int] of the prime factors of a number using a
loop.

6. Repeat exercise 5.11 using a loop instead of recursion.

7. Write code that can take a List[Int] and give you back a new one where all the
values have been doubled. Do this with a while loop, a for loop without a yield,
and a for loop with a yield.

8. Ask the user to enter an integer number. Next, loop from zero to that number and
count how many numbers contain the digit 3. Do this without using toString.

9. This problem is like 6.12 in that you are supposed to count the number of even values
in an Array[Int]. The difference is that now you will do it once with a while loop
and once with a for loop.

10. Another problem that is significant when doing real cryptography is solving linear
equations under modulo arithmetic. That sounds complex, but it is really just solutions
to the following:

ax ≡ b mod n,

where we know a, b, and n and want to find x. To find the solutions to this, there can
be more than one, you need to use the extended Euclid’s algorithm for exercise 5.16.

Loops 225

You start off by calling the extended Euclid’s algorithm on a and n, putting the
returned values into d, x, and y. If b is not divisible by d then there is no solution.
Otherwise, make x0 = x(b/d) mod n. The solutions are given by (x0+i(n/d)) mod n
for i ∈ [0, d− 1].

11. Try to write functions to do these different things with Strings in the following ways:
with a while loop and an index, with a for loop and an index, with a for loop
and no index, with a Range and higher-order methods but no loops, and with only
higher-order methods.

• Determine if a String is a palindrome.

• Count the number of times a letter occurs.

• Remove all occurrences of a letter.

• Replace all occurrences of a letter (without using any replace methods).

• Count the number of occurrences of a substring.

• Remove all occurrences of a substring.

• Replace all occurrences of a substring (without using any replace methods).

• Count the number of vowels.

• Remove all vowels.

• Convert all characters to uppercase (without using toUpper).

• Convert all characters to lowercase (without using toLower).

8.6.5 Projects

1. This project builds on top of project 6.6. For this you will fill in an entire grid of
values with intersection parameters for a set of geometry. Most images on computers
are made as grids of values where the values give the colors. We do not quite have the
ability to introduce colors and images yet, but we are getting close.

For now you will fill an Array[Array[Double]] with the t parameters for a collection
of geometry. You should write a function that takes the following arguments: location
of the viewer as a 3-D point, forward direction for the viewer as a 3-D vector, up
direction for the viewer as a 3-D vector4, a sequence of geometry (spheres and planes),
and the number of cells across the square grid should be. You will cast one ray for
each cell in the grid and see if it hits anything, and, if so, how far out it hits. Fill the
grid with the values for minimum intersection parameter.

The grid represents a plane in space that is one unit in front of the viewer position
with a top left corner that is one unit up and one unit to the left. (You can find a left
vector by doing the cross product of the up and forward vectors.) The grid extends
to one unit to the right and one unit down. This is the basic approach for building
images using ray tracing.

2. One of the useful things that you learn in calculus is that functions can be approxi-
mated. Your calculus text will mention both the MacLaurin series approximation and
the Taylor series approximation. They are basically the same other than MacLaurin

4For a standard projection the up and forward directions should be perpendicular. However, the math
works as long as they are not parallel. You simply get a distorted view in that case.

226 Introduction to Programming and Problem-Solving Using Scala

series are always taken about x = 0 and this is what we will be working with here.
The definition of the MacLaurin series is

f(x) ∼
∑
i

f (i)(0)

i!
xi

So, this is the sum from i = 0 up to some n (or infinity if you want to be really
accurate). In the sum we have x raised to the i power times the ith derivative of f(x)
evaluated at 0 divided by i factorial. Obviously, this is a real pain to use on func-
tions where taking the derivative is not easy. However, for some functions where the
derivatives are straightforward, performing this approximation is very easy. Examples
of that would be ex, sin(x), and cos(x).

Write a program that does a Maclaurin approximation of cos(x). That is not that
hard because the derivative is − sin(x), which has a derivative of − cos(x) which goes
to sin(x) then back to cos(x). Also note that you are always evaluating at x = 0; so,
all the terms for sin go to zero.

The first few terms in this series are:

1− 0− x2

2!
+ 0 +

x4

4!
− 0− x6

6!
+ 0 +

x8

8!
+ ...

For this project, you should ask the user for the x to use, as well as an accuracy. Use
the math.cos function to get the “real” value of cosine at that value of x. Iterate until
the difference between the series value and what that function gives you is less than
the input accuracy. After the loop, print out the real value, the value you got from
the series, and how many terms you had to sum to get that. (For an extra challenge,
make your program use a Taylor series instead. This means inputing another value x0
which the series is expanded around.)

3. Computers are used extensively for simulating physical systems, especially when the
system is hard or impossible to build in a lab. For this project you will write a simple
simulation of the gravitational Kepler problem. You will also explore the accuracy of
what you are doing in a little bit. Imagine you have a body in orbit around a star.
We will assume that the star is much larger than the other body so it stays at the
origin, (0, 0), of our coordinate system. The other body starts at some position (x, y)
with a velocity (vx, vy). A simple “integrator” for a system like this can be constructed
by a discretization of Newton’s laws (a fancy way of saying that we avoid calculus
and do things in a way that is more computer friendly). Newton’s second law tells us
F1 = m1 ∗ a1 and for gravity F = −Gm1∗m2

d2 . We are going to simplify this for our
toy system and just say that a = − 1

d2
. We can break this into components and get

ax = − x
d3 and ay = − y

d3 . Now, the trick on the computer is to say that instead of
moving smoothly, the particle jumps over certain time steps, ∆t. So after one time
step the new position is x = x+∆t∗vx and y = y+∆t∗vy. Similarly, vx = vx+∆t∗ax
and vy = vy + ∆t ∗ ay. Doing this in a loop “integrates” the motion of the body. (Use
the math.sqrt function to calculate d.)

This integrator is very simple, but far from perfect. If you start with your body
at (1, 0) with a velocity of (0, 1) it should be in a nice circular orbit staying that
distance forever. By measuring how that distance changes, you can get a measure of
how accurate, or inaccurate, the integrator is. You can play with other positions and
velocities to see what happens.

You will write a program that takes the initial x, y, vx, and vy as well as a time step,

Loops 227

∆t, as inputs. It should advance the system for a total time of 10.0 (so if ∆t = 0.1
that requires 100 iterations). At the end of it you should measure the distance from
the origin and print a message giving that and the original distance. Then check to
see if the change is less than 1%. If it is, say that the integration was accurate enough,
otherwise, say it is not. In a comment in your code you should tell how small you had
to make your time step for this to be reached given the coordinate 1 0 0 1. (Note
that this measure of accuracy is only good for circular orbits. We are not going to do
enough physics to go beyond that, but if you happen to want to, the real objective
is to conserve total energy. For an extra challenge, comparing initial and final total
energies of the system.)

For fun, you can change it so it prints the x and y values during the simulation and see
what is happening with a spreadsheet of using gnuplot in a manner similar to what is
described in project 5.4. This can also be helpful for debugging. Such plots are shown
on the website.

4. An alternate physics problem that can be solved in the same way as that for the
previous project is calculating the trajectory of a projectile. If you consider air resis-
tance, the path of a body is not a simple parabola. Using a numerical integrator that
was described in the previous project, you can figure out how far a projectile will go
assuming there is air resistance.

The force of gravity near the ground can be approximated a
−→
F g = −gmĵ.5 The

friction force from the air can be approximated by Fd = 1
2ρv

2CdA, where ρ is the
density of the fluid, Cd is the drag coefficient of the shape, and A is the cross sectional
surface area of the particle. The value of Cd for a smooth sphere is 0.1. The density of
air is about 1.2kg/m3. This force is directed in the opposite direction of the motion.

Using a while loop write a script that will tell you how far a ball will go before it
hits the ground with the user specifying the height from which it is thrown/launched,
its initial speed, its initial angle, its radius, and its density. If you want a bit of extra
challenge, allow the user to input a wind speed.

5. For this problem you will do some string parsing that has relationships to chemical
formulas in chemistry. We are going to keep things fairly simple for this. The basic
idea is that the user types in a string that is a chemical formula, and your program
should parse that string and tell how many of each type of element are on each side of
the equation. This is the first step in balancing a chemical equation. A later project
will have you go through the process of doing the actual balancing.

The format of the chemical equation will look something like this: CH4+O2=H2O+CO2.
This is a reaction for burning/oxidizing methane. Note that it is not well balanced
as there need to be coefficients in front of each term. Your program will assume a
coefficient on each term in the equation as a lower case letter starting with ’a’ in
alphabetical order from left to right and output how many of each element there are.
So for this input the output would be:

C: a*1=d*1
H: a*4=c*2
O: b*2=c*1+d*2

or if you want to clean it up a bit,

5If you are not familiar with the notation, î and ĵ represent unit vectors in the x and y directions,
respectively.

228 Introduction to Programming and Problem-Solving Using Scala

C: a=d
H: a*4=c*2
O: b*2=c+d*2

This gives us three linear equations that we could try to solve (actually we have 3
equations for 4 unknowns so the system is under-determined, but that is often the
case, so we will find the solution where a, b, c, and d have the smallest values possible
and are all integers but you do not have to worry about that now). We will not be
solving it in this project.

To be more specific about the input, it has a sequence of terms that are separated by
+ or =. The reagents are in terms on the left hand side of the = and the products are
on the right hand side of the =. Each term can have one or more element names, each
followed by the number of that element in the given molecule. The element names will
all be one character long and capitalized. Also, the number of elements will be just
one digit. If no number is present you assume there is only one. Allowing elements
with more than one letter (uppercase followed by lowercase) or numbers with more
than one digit makes a nice project for anyone looking for an extra challenge.

The output should have a separate line for each element that was present in the
equation. It should list the symbol for the element followed by a colon and then the
equation that tells what the coefficients have to satisfy for that element to be balanced
on both sides of the equation. You can choose either format above.

6. You are on the Planning and Development Commission for your city and need to have
an idea of how the city’s population is going to grow over the years. Create a script
that asks the user to enter the birth rate, death rate, current population, and the
number of years. The script should then calculate and print the estimated population
after that number of years has elapsed. Your script should include a function that
calculates the population growth rate and a function that calculates the estimated
population after a certain number of years. Your script should not accept a negative
birth rate, negative death rate, or a population less than two.

If P is the population on the first day of the year, B is the birth rate, and D is the
death rate, the estimated population at the end of the year is given by the formula:

P + (B ∗ P)/100(D ∗ P)/100

The population growth rate is given by the formula:

B −D

7. The Luhn algorithm is a simple checksum algorithm used to validate a variety of
identification numbers, such as credit card numbers. All credit cards have between
13 and 16 digits and those digits follow certain patterns. For example, the number
on American Express cards start with 37. Discover cards start with a 6. MasterCard
credit cards start with a 5, and Visa credit cards start with a 4. Luhn’s algorithm can
be described as follows using card number 4258130280679132 as an example:

• Double every second digit from right to left. If the doubling of a digit results in a
two-digit number, you then add up each digit to get a single-digit number. Thus,
using our example we get the following:
3 ∗ 3 = 6

Loops 229

9 ∗ 9 = 18→ 1 + 8 = 9

6 ∗ 2 = 12→ 1 + 2 = 3

8 ∗ 2 = 16→ 1 + 6 = 7

0 ∗ 2 = 0

1 ∗ 2 = 2

5 ∗ 2 = 10→ 1 + 0 = 1

4 ∗ 2 = 8

• Add all single-digit numbers produced in the previous step. Using our example
we get the following:
6 + 9 + 3 + 7 + 0 + 2 + 1 + 8 = 36

• Add all of the digits in the odd locations from right to left (the right-most digit
is in the 1’s location which is odd) in the credit card number. Using our example
we get:
2 + 1 + 7 + 0 + 2 + 3 + 8 + 2 = 25

• Sum the results from the second and third steps:
36 + 25 = 61

If this number is divisible by 10, the credit card number is valid; otherwise,
it is invalid. Thus 4258130280679132 is invalid, but 4208130280679132 is valid.
Using functions, write a script to determine whether or not a credit card number
supplied by the user is valid.

8. A word find is well represented by a 2 dimensional array of characters. Enter the
following into a 2D array.

z p i q x t p c o f r g t y r
d r y n r o r a u o t j u n x
j o h a o j r n y m f g m o a
r g a h a v c e s k x e b s v
e r t z g t e c x w s x l b d
t a y m i o a l w d i r r y e
t m e o d l m d l l u a e y r
i m n r a g z r f q p h u d k
w i i i o t k t y e x l q x o
t n i n i d e k n i l h v l s
j g i z a n y k t c v p v h i
e c l f v p a h e z t x f g a
l a c h e r z k v e z g w m l
j p p m e g k x q b w d m l g
p g o p p j d k z s i w e l i

Now, write a program that searches for the following words in this word find and
determine if each word is in the puzzle.

art

binary

class

function

geometry

230 Introduction to Programming and Problem-Solving Using Scala

lacher

lewis

linkedin

math

netflix

novell

odersky

pesky

programming

scala

sony

tumblr

twitter

wonderful

xerox

9. Suppose you are at a school that has 1000 lockers which are all shut and unlocked.
The school also has 1000 students. The first student opens every locker. The second
student then shuts every second locker. Next, the third student stops at every third
locker and opens the locker if it is closed or closes the locker if it is open. After that,
the forth student stops at every forth locker and opens the locker if it is closed or closes
the locker if it is open. This pattern keeps continuing until all thousand students have
followed the pattern with all thousand lockers. At the end, which lockers will be open
and which will be closed. Write a program to figure this out.

10. For this project you can keep working with recipes. You can think of this as an
extension of project 6.8, but you do not have to have completed that project to do
this one. For this project you will write a text menu with the following options.

(a) Add a pantry item.

(b) Print pantry contents.

(c) Check a recipe.

(d) Cook recipe.

(e) Quit

If the user selects to add a pantry item you ask for the name of the item and how
much they are adding then return to the menus. The option to check a recipe has
them enter names and amounts until they give a name of “quit”. It then tells them
whether or not they can make the recipe based on what they currently have. The
last option will subtract the appropriate amounts for the items in the last recipe that
was successfully checked. If no recipe has been successfully checked, it should print an
appropriate message.

11. For this project you can upgrade what you did for project 6.9 so that there is a text
menu with options.

(a) Add course of interest.

Loops 231

(b) Print current courses.

(c) Remove course of interest.

(d) Build a schedule.

(e) Quit

Adding a course should have them type in a unique String for the course number or
description along with a numeric value for how much they want that course and an
integer for the time slot.6 When they select remove they should type in the unique
ID and that course will be removed from consideration. The schedule building option
should ask for how many hours they want to take that semester. It will then print
out the three “best” schedules that match that number of hours and do not contain
courses at conflicting times.

Additional exercises and projects, along with data files, are available on the book’s web
site.

6Real time slots involve days and times. That would make this problem a lot harder. You can do that
if you want the challenge, but to keep things simple you could use a number for each standard time slot in
the schedule. So use 1 for the first MWF slot, 2 for the next one and so on.

http://taylorandfrancis.com

Chapter 9
Text Files

9.1 I/O Redirection . 234
9.2 Packages and import Statements . 234
9.3 Reading from Files . 236

FileNotFoundException and IOException . 236
9.3.1 Iterators . 237
9.3.2 String split Method . 239
9.3.3 Reading from Other Things . 240
9.3.4 Other Options (Java Based) . 241

9.4 Writing to File . 242
9.4.1 Appending to File . 242

printf and format . 243
9.5 Use Case: Simple Encryption . 244

9.5.1 Command Line Arguments . 244
9.5.2 Mapping a File . 245
9.5.3 Character Offset . 245
9.5.4 Alphabet Flip . 246
9.5.5 Key Word . 246
9.5.6 Putting It Together . 247
9.5.7 Primes and Real Cryptography . 248

9.6 End of Chapter Material . 249
9.6.1 Summary of Concepts . 249
9.6.2 Self-Directed Study . 250
9.6.3 Exercises . 250
9.6.4 Projects . 251

Most of the programs that you use on a regular basis would be far less useful if they did
not have the ability to read from and write to files. Consider a word processor that could
not save your files and let you load them back in later. A program where you had to print
output to paper before you closed to program to have any record of what you had done.
Such a program would not be very useful, and it would not be used much. That is true even
if it provided you with a very full set of other capabilities.

The reason for this is that all the work you do without a file sits in the temporary
memory of the computer that is given to the application when it runs. When the application
is stopped, for any reason, all of that memory is lost. It might be given over to other
applications or used by the operating system. Whatever happens to it, you no longer have
the ability to get to it in any useful way.

Files give you the ability to store values from one run of a program to the next. Files
can also be used to store information that you do not want to have to write into the source
code or just to store amounts of information larger than what will fit in the memory of the
machine. Disk drives are much slower than memory so this last part has to be done with a
level of care.

233

234 Introduction to Programming and Problem-Solving Using Scala

9.1 I/O Redirection
In a certain way, you have already had the ability to make your program deal with files

through I/O redirection. When you run the program from the command line as a script,
you can have standard input come from a file using “<”. You can also make the standard
output go to a file using “>”. This works very nicely if you are going to be entering the same
values multiple times or want to preserve the output so that you can look at it.

The down side of using I/O redirection is that it is rather limited. You only get to read
from one file or write to one file. What is more, if you decide to read from a file, you cannot
also have the user provide input from the keyboard, or if you decide to have the output go
to a file, your user will not see anything that is printed on the screen. These limitations
make this approach impractical for most applications. As such, it is important for us to
learn other ways to get data into a program.

9.2 Packages and import Statements
Before we can learn about reading from files and writing to files, we need to learn a little

about how code is organized in large projects, and specifically in the standard libraries of
Scala. Almost everything that we have used so far was available in Scala without us having
to specify where to look for it. The basic parts of the language are simply available by
default. The one exception to this was the various read methods. To use those without
giving long names, we have put import io.StdIn._ at the top of scripts and in the REPL.
Similarly, file handling is not available by default. We will have to tell Scala where to go
looking in the libraries for these things.

The Scala language uses packages to organize code. To understand the reason for pack-
ages, consider the List type that we learned to use in chapter 6. This type is defined by
a class written in the Scala libraries that is available to you by default because it is so
commonly used. However, the word List is not an uncommon one. Without packages there
could only be one type called List. If anyone tried to create another one, it would conflict
with the first one. Packages allow you to have multiple types that all have the same base
name, like List, but which are differentiated by being in different packages. In the case of
List, the one you have been using is technically a scala.collection.immutable.List.
However, the name List could also refer to java.util.List or java.awt.List from the
Java libraries.

These longer names are the fully specified names of the types. They specify both a
package name and the specific type name. Packages are typically named in all lower case
and the dots separate subpackages in a hierarchy going from broadest to most specific. So the
List that you have been using sits in the top level package scala, which has a subpackage
called collection, which has a package inside of it called immutable. The List type is
inside of that subpackage. We will not worry about creating packages at this point. Right
now all you need to understand is that they exist and how to deal with code that is in
packages.

To illustrate what you need to know, we will consider one of the types we will use for the
topic of this chapter. To help us read from files we will use instances of the scala.io.Source
type. While it is useful to know the fully specified name of this type as well as that of others,
these full names are longer than what we want to type in all the time. Imagine if you had to

Text Files 235

type in scala.collection.immutable.List any time you wanted a List in your code. This
is the reason that the import statement exists. An import statement gives Scala directions
on how to find things. If it sees the name of a type or value that is not declared locally, it
will look in things that have been imported to see if it can find it there. The basic syntax of
an import statement is to have the keyword import followed by what you want to import.
To make it easy to use scala.io.Source you can do the following.

import scala.io.Source

After putting in this line, you can just use the name Source instead of the fully specified
name and Scala will know what you mean.

So what about the import io.StdIn._ statement that we have been putting in our code
so far? It is actually short for import scala.io.StdIn._. The import statement in Scala
understands nesting, and everything in the package called scala is imported by default, so
that can be left off. StdIn is an object in the io package, and the underscore is used as a
wildcard to signify that everything in that object should be imported so that we can use
one import statement to get all the read methods. You could also manually import each
method on separate lines like this.

import io.StdIn.readInt
import io.StdIn.readLine
import io.StdIn.readDouble

You might notice that the StdIn object and the Source type happen to be in the same
package, io. This makes sense as both deal with input/output, commonly abbreviated as
I/O. In this way, packages do not just prevent name conflicts, they also provide organization
and structure to large code bases.

The import statement in Scala is very flexible and powerful. You can use import any-
where you want, and it will be in effect from that point down to the end of the current
code block. So, imports have the same scope as other declarations. If it appears inside of
curly braces, it will only be in effect inside those curly braces. When you want to import
everything in a package or object, you can do so by using an underscore as a wild card. For
example, this line would bring everything in the scala.io package into scope.

import scala.io._

Note that this import statement does not make the read methods visible, it would allow
you to refer to them by names such as StdIn.readInt, but it only brings the StdIn object
into scope, not the members of that object. You can also import several things with a single
line by grouping what you want to import in curly braces. If you wanted to have the Source
class and the BufferedSource class from the scala.io package, but no other classes, you
could use a line like this.

import scala.io.{Source,BufferedSource}

There are a number of other possibilities for import in Scala that we will not cover at this
time.

By default, Scala always includes three imports for every file.

import java.lang._
import scala._
import Predef._

The first one beings all the standard classes from Java into scope. It also imports the basic

236 Introduction to Programming and Problem-Solving Using Scala

scala package and then all the contents of the object scala.Predef. You can see the full
structure of packages for Scala by looking at the API.

9.3 Reading from Files
Now it is time to actually use scala.io.Source to help us read information from sources

other than standard input. There are other ways that we could read from files that use
the Java libraries, but for now we will use Source because it provides us with sufficient
capabilities and ties in well with the Scala collections that we have already discussed. Any
code in this section will assume that you have done an import of scala.io.Source so that
we can refer to it as just Source.

There is an object called Source that has methods we can call to get instances of type
Source that we will use to read from things. The simplest way to read from a file is to use
the fromFile method of the Source object.

scala> val fileSource = Source.fromFile("sampleFile.txt")
fileSource: scala.io.BufferedSource = non-empty iterator

As you can see from this output, the object we got back was specifically of the type
scala.io.BufferedSource. The BufferedSource type will provide better performance
for files which is why we were given that. It happens that reading from a hard disk is one
of the slowest things you can do on a computer. A big part of the slowdown is the result
of having to move to the right part of the disk. As a result, it is much faster to read a
bunch of data at once, even if you do not need it all yet, than it is to read each little piece
of data one byte at a time. The BufferedSource does exactly this. It reads in a relatively
large amount of data into a buffer and then gives you that data as you request it. When
the buffer is emptied, it will read again.

When you are done with the Source object, you should call close on it. In this case that
would look like the following.

fileSource.close

There are many reasons you should remember to do this, but two really stand out. The first
is that a program is only allowed to have a certain number of files open at a given time.
If you fail to close files for an extended period of time, you can run out of available file
descriptors and then when you try to open another file it will fail. It also signals to Scala
that you are done with the file so that it can clean up things like the memory that was used
for the buffer.

FileNotFoundException and IOException

File handling activities include a lot of operations where things can go wrong. In
the case of fromFile you could have mistyped the file name or the file that is specified
might be one that you cannot read from. Either of these situations would result in a
java.io.FileNotFoundException. When reading from files, you could also attempt to
do something like read beyond the end of a file. This and other mishaps would result in
a more general java.io.IOException. If we want to make your code deal with these

Text Files 237

situations gracefully, you will need to use the try/catch expression that was mentioned
in section 5.6.

In this situation you might have code like the following.

def readStuffFromFile(fileName:String):SomeType = {
try {
val fileSource = Source.fromFile(fileName)
// ...
fileSource.close()

} catch {
case e:java.io.FileNotFoundException =>
// An expression to build an empty SomeType

}
}

9.3.1 Iterators

When the value of the BufferedSource is printed all it shows is “non-empty iterator”.
This is because the BufferedSource, and the normal Source, are both subtypes of a more
general type called an Iterator. An Iterator is much like the Array and List types that
we saw previously. In fact, virtually all the methods that we could call on the Array and
the List are available on an Iterator. The difference is that a basic Iterator is consumed
as you go through it, so it can only be used once. The Array and the List are said to
be Iterable which means that they can give us multiple Iterators to use to call those
methods over and over again. In the case of an Iterator, once you call a method that runs
through the whole thing, it is spent and you cannot use it again.

scala> fileSource.mkString
res0: String =
"This is a sample text file that I have written to use for the files chapter.
There really is not all that much to this file. It is simply supposed to be
used to illustrate how we can read from files.
"

scala> fileSource.mkString
res1: String = ""

scala> fileSource
res2: scala.io.BufferedSource = empty iterator

The first call to mkString gives us back a string that has the contents of the file. The second
call gives us back nothing. The reason for this is clear if we look at the value of fileSource.
After reading through the file the first time, it has gone from a non-empty iterator to an
empty iterator. There is nothing left for us to read. The Source type provides a method
called reset that you do not get in most Iterators. The reset method gives you a new
Source that is set back to the beginning for you to read again. Note that it is a new Source,
it does not make the original Source non-empty again.

At a fundamental level, the Iterator type is based on two methods: hasNext and next.
The hasNext method gives a Boolean and tells you whether or not there is something more
in the Iterator. The next method will give you that next thing. You should be able to

238 Introduction to Programming and Problem-Solving Using Scala

picture how these two methods can be used in either a while loop or with recursion to let
you run through the entire contents of the Iterator. Here we reset our source and call next
on it.

scala> val newSource = fileSource.reset
newSource: scala.io.Source = non-empty iterator

scala> newSource.next
res3: Char = T

The reason the BufferedSource is just an iterator is not hard to understand. Remember,
reading files is extremely slow. You should do it once and get the information you want that
time. Reading it over and over again would be inefficient. To help force you toward efficiency,
you would have to explicitly reset the file or open it back up to iterate through it again.
In addition, files can be very large. An advantage of the Iterator is that it only needs to
keep the current contents in memory, not the entire file. In contrast, the Array and List
need to use memory for everything that they store.

With the List and Array types, you saw that they were parametric. We could
make a List[Int] or a List[String]. This is also true of Iterators. The Source and
BufferedSource types are specifically Iterator[Char]. This means that they operate nat-
urally on individual characters. The call to next above illustrated this. Also, if you call
functions like map or filter, or if you convert the Iterator to a List or an Array, the
result will be a bunch of characters. We can see that explicitly here.

scala> newSource.toList
res4: List[Char] =
List(h, i, s, , i, s, , a, , s, a, m, p, l, e, , t, e, x, t, , f, i, l, e, , t, h,

a, t, , I, , h, a, v, e, , w, r, i, t, t, e, n, , t, o, , u, s, e, , f, o, r,
, t, h, e, , f, i, l, e, s, , c, h, a, p, t, e, r, .,

, T, h, e, r, e, , r, e, a, l, l, y, , i, s, , n, o, t, , a, l, l, , t, h, a, t, ,
m, u, c, h, , t, o, , t, h, i, s, , f, i, l, e, ., , I, t, , i, s, , s, i, m,
p, l, y, , s, u, p, p, o, s, e, d, , t, o, , b, e,

, u, s, e, d, , t, o, , i, l, l, u, s, t, r, a, t, e, , h, o, w, , w, e, , c, a,
n, , r, e, a, d, , f, r, o, m, , f, i, l, e, s, .,

)

Note that the original character ‘T’ is missing. That is because it was consumed by the call
to next. Converting an Iterator to an Array or List only takes the elements that have
not yet been iterated through. It also consumes the Iterator in the process.

scala> newSource
res5: scala.io.Source = empty iterator

While technically all the data that you want is in the form of characters, it can be a bit
difficult to do what you really want to with it in that format. For this reason, there is a
method called getLines that will give you back a different Iterator. This new Iterator is
of the type Iterator[String] and each element is a full line in the file without the newline
character at the end.

scala> val lines = fileSource.reset.getLines
lines: Iterator[String] = non-empty iterator

scala> lines.next
res6: String = This is a sample text file that I have written to use for the files

chapter.

Text Files 239

9.3.2 String split Method

Even lines are not always all that useful because there might be multiple pieces of data
on each line. There are many ways that you can split up a String into different pieces. For
most purposes, the simplest of these is the split method, which was introduced in section
6.7.1. The split method takes a single argument that is a String which should be the
delimiter between the pieces you want split up. It will then return an Array[String] with
everything that was separated by that delimiter. Here is a simple example.

scala> "This is a test.".split(" ")
res7: Array[String] = Array(This, is, a, test.)

The String, “This is a test.”, is split up using a single space as the delimiter. The result
has each word from the String as a separate element.

Technically, the argument to split is a regular expression. We will not go into the
details of regular expressions in this book. They are introduced in Object-Orientation, Ab-
straction, and Data Structures using Scala[1]. There are a few things that are worth men-
tioning at this point. The regular expression can have more than one character. Also, the
characters ’+’ and ’*’ have special meanings. The ’+’ says that the character before it
can occur one or more times while the ’*’ says that it can occur zero or more times. This
is worth mentioning at this point because it is not uncommon for inputs to potentially have
multiple spaces between words. To handle this, you will often call split with " +" instead
of just a space.

Now we want to put the split method into action with the ability to read the file
line-by-line. What we want to do is create code that will read in numeric data from a file
into a 2-D data structure. In this case, we will create a 2-D Array because the direct access
capability is useful for most of the applications we would want to use this in. We will do
this in two different ways. We will break this up into two functions. The first function will
work with any Iterator[String] and give us back the Array[Array[Double]] that we
want. The Iterator[String] is helpful because that is what getLines will give us and
that is more flexible than forcing it to be a file. The second function will take a file name
and return the Array[Array[Double]]. It will not do much itself other than use a Source
to read the file and pass that Iterator to the first function. Both functions will also take
a delimiter for split so that the person calling them can choose what we split on.

def dataGrid(lines:Iterator[String],delim:String):Array[Array[Double]] = {
(lines.map(s => s.split(delim).map(_.toDouble))).toArray

}

def fileToDataGrid(fileName:String,delim:String):Array[Array[Double]] = {
dataGrid(Source.fromFile(fileName).getLines,delim)

}

Now we can demonstrate how this works by calling it on a file called numbers.txt. The file
has the values for a 3x3 identity matrix with the values separated by commas and spaces
as shown here.

1.0, 0.0, 0.0
0.0, 1.0, 0.0
0.0, 0.0, 1.0

The choice of format is particular because this is what you would get if you had Excel® or
some other spreadsheet program write out a CSV format with only numbers. CSV stands
for Comma Separated Values. It is more complex if we include non-numeric data. Anything

240 Introduction to Programming and Problem-Solving Using Scala

that is not numeric is put inside of double quotes in a CSV file. We will ignore that for now
and only deal with numbers.

We can read in this file and see the result in the REPL.

scala> fileToDataGrid("numbers.txt"," *, *")
res8: Array[Array[Double]] = Array(Array(1.0, 0.0, 0.0),
Array(0.0, 1.0, 0.0), Array(0.0, 0.0, 1.0))

Everything here should be pretty clear with the possible exception of the delimiter. For
this file, it would have worked to use the delimiter ", ". However, that delimiter is not all
that robust. If there were any extra spaces either before or after the comma it would fail.
It would also fail if a space was left out after the comma. Using " *, *" as the delimiter
means that this code will work as long as there is a comma with zero or more spaces either
before or after it.

Even with this delimiter, the dataGrid method leaves some things to be desired. We are
not trying to make it deal with Strings so we do not consider it a problem if this function
crashes when there is a value in the file that is not a number. More problematic is the fact
that it also does not deal well with blanks. In a CSV file there are two types of blanks that
can occur. One is when there are two commas with nothing between them and one is when
there is a completely blank line. If either of these occurs in the file right now, our code will
not respond well. We could fix this in our current version by adding some extra logic, but
as long as we are good with just skipping the blanks, it is easier to do this with for loops
and if guards.

def dataGrid(lines:Iterator[String],delim:String):Array[Array[Double]] = {
(for (l <- lines; if !l.trim.isEmpty) yield {
for (n <- l.split(delim); if !n.trim.isEmpty) yield n.trim.toDouble

}).toArray
}

The if guards make it easy to skip things that do not fit what we want. In this case, what
we want is a String that is not empty. Recall that the trim method on a String gives back
a new String with all leading and trailing white space removed.

9.3.3 Reading from Other Things

One of the nice things about the scala.io.Source object is that it has more than just
the fromFile method for us to use in reading files. Indeed, there are quite a few different
methods that start with from in scala.io.Source. We will only consider one of them here,
though you can certainly go to the API to look at others. The one you might find most
interesting is the fromURL(s:String) method. URL stands for Uniform Resource Locator,
and they are the things that you type into the address bar of a web browser. You call this
method passing it a URL as a String, very much like what you would put in the web
browser.

This makes it remarkably easy to have your program read information off of the web.
For example, executing the following line will give you back the contents of my web page
as a String.

Source.fromURL("http://www.cs.trinity.edu/~mlewis/").mkString

You can do everything with this Source that you would do with a Source from a file. Like
with the file, the Source is an Iterator so you can only read through it once without calling

http://www.cs.trinity.edu/~mlewis/

Text Files 241

reset. This also makes sense because if there is anything slower on a modern computer than
reading from a hard disk, it is reading information from the network.

9.3.4 Other Options (Java Based)

The advantage of using a scala.io.Source is that you get a Scala based Iterator that
has all the methods you have gotten used to in working with the List and Array types.
However, that does not mean that Source is always your best option. For some situations,
you might find that the java.util.Scanner class is better.

The java.util.Scanner class has methods for reading specific types of data as well as
for checking if there are specific types of data available. Here is a sampling of the methods
that are available in java.util.Scanner.

• hasNext():Boolean - Check to see if there is another “word”.

• hasNextDouble():Boolean - Check to see if there is a Double ready to read.

• hasNextInt():Boolean - Check to see if there is an Int ready to read.

• texttthasNextLine():Boolean - Check to see if there is a line of text ready to read.

• next():String - Read the next “word”.

• nextDouble():Double - Read the next Double.

• nextInt():Int - Read the next Int.

• nextLine():String - Read the next line of text.

• useDelimiter(pattern:String) - Change the pattern used for the delimiter.

This list should be fairly self-explanatory. The only thing one might wonder about is why
“word” is in quotes. The reason for this is reflected in the last method listed. When you
want to read a “word” with a Scanner, it will read up to the next delimiter, whatever that
happens to be. By default it is any grouping of white space.

In order to use a Scanner, you first have to make one. To do this you probably want to
import java.util.Scanner and use the following expression.

new Scanner(file)

The file needs to be an expression that has the type java.io.File which we will also
make with a new expression. You will probably want to import that type as well. Putting
this together, you could put something like this into a program to read and print a bunch
of Ints if you had a file with integers separated by white space. Note that this would not
work on our earlier file called ”numbers.txt” because of the commas and the fact that the
values in that file were Doubles.

import java.util.Scanner
import java.io.File

val sc = new Scanner(new File(‘‘numbers.txt"))
while (sc.hasNextInt) {
println(sc.nextInt())

}
sc.close()

242 Introduction to Programming and Problem-Solving Using Scala

The choice of printing here comes from the fact that the Scanner does not nicely produce
a Scala collection. You can get the values into a collection, but it will typically take a bit
more effort, for example you could cons it onto a var List. You should also remember to
close your Scanners when you are done with them. If they link to a file, they are holding
onto valuable resources.

9.4 Writing to File
Scala does not provide any functionality for writing to files in its own libraries. That is

something that is already well supported by Java and adding Scala libraries has not been
seen as providing a significant benefit. There are many ways to set up a file to write to in
Java. The easiest approach, and the one that we will use, is the java.io.PrintWriter. We
can make a new PrintWriter with new and telling it the name of the file we want to write
to. So we can get a PrintWriter that we can use for doing output with this code.

import java.io.PrintWriter
val pw = new PrintWriter("output.txt")

Now we could call methods on pw that will cause things to be written to that file. You can
use print and println methods to print to the file in much the same way that you have
been using those functions in Scala to print to standard output.

Using this we could write the following code to print 100 random points with x and y
values between 0 and 1.

for (i <- 1 to 100) {
pw.println(math.random+" "+math.random)

}
pw.close()

The last line is critical because the PrintWriter is also used as a file resource with buffering,
just like the BufferedSource. However, it holds things in memory until there is enough to
make it worth writing to the disk. If you do not close the file, the text in the buffer will not
have been written out. If you are not done with the file, but you want to make sure that
what you have written goes into the file, you can use the flush method.

pw.flush

When you call this, anything in the buffer will be written out. This way if the computer
crashes, loses power, or something else goes wrong, that information will be out of the
volatile memory.

9.4.1 Appending to File

Creating a PrintWriter in the way just described has the side effect that it will either
create a new file or delete an existing one and write over it. If there is an existing file and
you want to append to the end of it instead of overwriting it, there is one more step that
needs to be added. Instead of simply telling the PrintWriter what file name to use, we
tell it a java.io.FileWriter to use. When we create a FileWriter we can tell it the file
name and also give it a Boolean value that tells it whether or not to append. If the Boolean
value is true, the contents of the existing file will be left in place and anything else written

Text Files 243

will go to the end of the file. If it is false it will behave like what we had before. So if you
wanted to append to the output.txt file you could do the following.

import java.io.{FileWriter,PrintWriter}
val pw = new PrintWriter(new FileWriter("output.txt",true))

printf and format

If you have an application where you have to be picky about the formatting of output
there are some additional functions/methods that you should be aware of. These are the
printf function for printing to screen or file and the format method on String. These
two methods provide you with a way of encoding how you want something printed or
how you want a string to look. They use a style of formatting that is the default way
of doing things in the C programming language.

A full description of formatting is beyond the scope of this book and can be found
in the Java API under java.util.Formatter. You can find the Java API through a
web search or going to the java.oracle.com web site. As of this writing, Java 8 is
the current version. You would want to look at the Java SE 8 version of the API or
whatever newer version might be available. A brief introduction is presented here.

Let us start by creating a few variables and printing them using println the way
we are accustomed to doing.

scala> val g = 6.67e-11
g: Double = 6.67E-11

scala> val name = "Mark"
name: java.lang.String = Mark

scala> val classSize = 20
classSize: Int = 20

scala> println(g+" "+name+" "+classSize)
6.67E-11 Mark 20

This approach requires using + a lot for String concatenation. It also gives us very little
control over how the different values are printed. The first issue could be addressed with
string interpolation, but both complaints can be addressed using printf.

The printf function uses variable argument length parameters. The first argument
is a format String. This is followed by arguments for that format. The format String
can include format specifiers. These start with a percent sign and end with a character
that specifies a type of conversion. Between these there can be some additional infor-
mation that describes how the conversion should be applied. Some of the more common
conversion types are:

• d – decimal formatting for an integer,

• e – scientific notation for a floating point value,

• f – standard decimal notation for a floating point value,

• g – uses either e or f formatting depending on the number, the precision, and the
width,

244 Introduction to Programming and Problem-Solving Using Scala

• s – a string,

• x – hexadecimal formatting for an integer.

Here is an example using the variables above with spaces between them.

scala> printf("%e %s %d",g,name,classSize)
6.670000e-11 Mark 20

By default, the scientific notation displays a significant number of trailing zeros. It is
possible to specify the width, in characters, of values by putting a number between the
percent sign and the conversion. For fractional numbers, precision can also be specified
by putting a dot and the number of digits of precision that are desired. Here are some
examples showing that.

scala> printf("%.2e %s %d",g,name,classSize)
6.67e-11 Mark 20
scala> printf("%19.2e %s %d",g,name,classSize)

6.67e-11 Mark 20
scala> printf("%19f %s %d",math.Pi,name,classSize)

3.141593 Mark 20

By default, values are right-aligned when the width is larger than the number of char-
acters displayed. This can be changed by putting a flag after the percent sign. The -
flag says you want the value left-aligned. The comma flag says that you want proper
regional separators put in long numbers. Examples of both of these are shown here.

scala> printf("%-19f %s %d",math.Pi,name,classSize)
3.141593 Mark 20
scala> printf("%,19d %s %d",Int.MaxValue,name,classSize)

2,147,483,647 Mark 20

9.5 Use Case: Simple Encryption
To demonstrate the use of files, we will write some very basic encryption and decryption

scripts. At this point we will not be using any serious cryptography methods. There are
some end of chapter exercises and projects that build up to that. The approach we will take
will probably stop others from reading your stuff, but you would not want to use them to
access your bank accounts.

9.5.1 Command Line Arguments

We want to write scripts that allow us to specify all the information needed, including
the names of the input and output files, on the command line. In order to do this we need
to discuss how we can get the command line arguments into our programs in Scala.

When you run a program as a script in Scala, anything that appears on the command line
after the name of the script file is available in the program as an element of the Arrayargs,

Text Files 245

which has the type Array[String]. We can get the values out of this Array the same way
we would any other Array. You can refer to args(0) to get the first argument after the
file name, args(1) to get the second, and so on. A simple example to illustrate the use of
arguments would be a script that converts two arguments to Doubles and adds them.

println(args(0).toDouble+args(1).toDouble)

If we put this into a file called add.scala we could call it with the following command on
the command line.

scala add.scala 88 12

This would print 100.0 as the sum. The decimal point appears because the Strings were
converted to Doubles and so the sum is a Double and prints as a Double.

9.5.2 Mapping a File

To start off with, we will write a script that uses two command line arguments for the
input file name and the output file name. The main functionality is in a function that will
read a file and write a modified file using a function that is passed in as a parameter to map
from the character read to the one printed.

To make it so that the formatting is reasonable, the transform function will only be
called for characters that are in the alphabet, whether they are uppercase or lowercase.
This will leave white space and punctuation intact. Such a function could be written in the
following way.

def mapFile(inFile:String,outFile:String,trans:Char => Char):Unit = {
val pw = new PrintWriter(outFile)
val in = Source.fromFile(inFile)
for (c <- in) {
pw.print(if (c.isLetter) trans(c) else c)

}
in.close
pw.close

}

Make sure you do the two calls to close at the end to clean up things before the function
exits. Both pw and in are local variables so once the program leaves this function you will
not have any way to manually close them.

This function could be invoked with a simple identity function to make a copy of a file.

mapFile(args(0),args(1),c => c)

The function c=>c simply returns whatever is passed into it. If you put this in a file that
has imports for Source and PrintWriter, you can call it from the command line specifying
two file names, one that exists and one that does not, and the contents of the file that exists
will be copied to the new file name.

9.5.3 Character Offset

A simple way to make it much harder for anyone to read what is in your file is to take
the characters and offset them by a specified amount in the alphabet. We will write a script
that uses three command line arguments: one for the input file name, one for the output

246 Introduction to Programming and Problem-Solving Using Scala

file name, and the last for the offset amount. The simplest code for doing this might look
like the following.

val offset = args(2).toInt
mapFile(args(0),args(1),c=>(c+offset).toChar)

Here we convert the third argument to an Int and then add it to whatever character we are
encrypting. This has to be turned back into a Char with toChar because doing arithmetic
with the Char type implicitly results in an Int.

This is simple enough and works well for both encoding and decoding. To decode a
message, simply use an offset that is the additive inverse of what you used originally. The
only thing lacking in this is that letters can be shifted out of the alphabet making them look
a bit odd when the text is printed. This problem can be resolved by having the characters
wrap around the end of the alphabet. So if the offset would move the letter beyond ’z’, it
is wrapped back to ’a’. Similarly, we need to handle the case where the offset is wrapped
before ’a’. The easy way to do this is with a modulo operator. The following code will
work for any offset larger than -26.

val offset = args(2).toInt
mapFile(args(0),args(1),c=> {
if (c.isLower) (’a’+(c-’a’+offset+26)%26).toChar
else (’A’+(c-’A’+offset+26)%26).toChar

})

This code is a bit more complex because it has to differentiate between lowercase and
uppercase letters so that it knows what to subtract from the character to get a value that
we can take the modulo of.

This code also does something that might look a bit odd to you at first. The function
literal now includes curly braces. Remember that the curly braces just make a code block
which is an expression whose value is the value of the last expression in the code block. This
block only has one statement, an if expression, but putting it in a block helps to set it off
and make it easier to read.

9.5.4 Alphabet Flip

A slightly different way to alter the letters is to flip the alphabet around. So a ’z’
will become an ’a’, a ’y’ will become a ’b’, and so on. This encoding does not need an
extra argument for something like the offset. It also has an interesting side effect that the
transformation is its own inverse. The code to do this might look like the following.

mapFile(args(0),args(1),c=> {
if (c.isLower) (’a’+(25-(c-’a’))).toChar
else (’A’+(25-(c-’A’))).toChar

})

This has the same basic structure of the normal offset version. It just does not need to get
an offset, and it uses an adjustment of 25 minus the characters position in the alphabet.

9.5.5 Key Word

Both of the methods described above are reasonably easy to crack assuming someone
has some idea about what you are doing. For the offset method they just need to know
what offset you used, and they can probably figure that out if they get to look at a decent

Text Files 247

sample of encoded text. For the alphabet flipping model all they need to know is what you
are doing, and they can decrypt any message you send.

To make things a little harder, you can use a key string to provide a variable offset. The
encoding starts with the first letter in the key string and offsets the message character by
the number of positions that character is above ’a’. It then uses the second letter in the
key string to offset the second character in the message. This repeats until the end of the
key string is reached as which point it wraps back around and starts using characters at
the beginning. Code that does this is shown here.

val key = args(2)
val factor = args(3).toInt
var keyIndex = 0
mapFile(args(0),args(1),c=> {
val offset = factor*(key(keyIndex)-’a’)+26
keyIndex = (keyIndex+1)%key.length
if (c.isLower) (’a’+(c-’a’+offset+26)%26).toChar
else (’A’+(c-’A’+offset+26)%26).toChar

})

This method needs both a key and a factor. The factor is required, because decoding
is done by applying the same key with the negative of the factor. Most of the time the
factor should be either 1 or -1. The way this code is written, the key should only include
lowercase letters. After it uses two arguments to create the key and the factor, it then
makes a mutable variable for the index in the key which begins at zero. The transforming
function calculates an offset using the value of the key at the index and then increments the
index using modulo so that the value wraps back around to zero. The code for calculating
the new character is the same as that used for the first offset method.

9.5.6 Putting It Together

To make a more useful script, all three of these approaches can be put into a single script
that takes an extra argument to specify the style to be used. The full contents of such a
script are shown here including the imports and a repeat of the mapFile function.

Listing 9.1: mapFile.scala
import scala.io.Source
import java.io.PrintWriter

def mapFile(inFile:String,outFile:String,trans:Char=>Char):Unit = {
val pw = new PrintWriter(outFile)
val in = Source.fromFile(inFile)
for (c <- in) {
pw.print(if (c>=’a’ && c<=’z’ || c>=’A’ && c<=’Z’) trans(c) else c)

}
in.close
pw.close

}

args(2) match {
case "copy" =>
mapFile(args(0),args(1),c => c)

case "offset" =>
val offset = args(3).toInt

248 Introduction to Programming and Problem-Solving Using Scala

mapFile(args(0),args(1),c => {
if (c.isLower) (’a’+(c-’a’+offset+26)%26).toChar
else (’A’+(c-’A’+offset+26)%26).toChar

})
case "flip" =>
mapFile(args(0),args(1),c => {
if (c.isLower) (’a’+(25-(c-’a’))).toChar
else (’A’+(25-(c-’A’))).toChar

})
case "key" =>
val key = args(3)
val factor = args(4).toInt
var keyIndex = 0
mapFile(args(0),args(1),c => {
val offset = factor*(key(keyIndex)-’a’)+26
keyIndex = (keyIndex+1)%key.length
if (c.isLower) (’a’+(c-’a’+offset+26)%26).toChar
else (’A’+(c-’A’+offset+26)%26).toChar

})
}

This script uses the third command line argument to tell it what type of transform function
to use. Any information, like an offset or a key and factor, should be specified in the
arguments after that.

9.5.7 Primes and Real Cryptography

The type of cryptography that you would want for your financial transactions involves
significantly more math than what we have just covered. In particular, real cryptography
makes extensive use of concepts from number theory. To understand and write cryptogra-
phy algorithms does not require that you have a full and complete knowledge of number
theory. There are some key concepts that you will need to understand though. We will start
developing those a little here and add onto it in future chapters with the objective that you
will be able to write code for the RSA public-key encryption and decryption system later
in the book.

The first concept we need to cover is that of prime numbers. A prime number is a number
that is only divisible by one and itself. So the sequence of primes begins as 2, 3, 5, 7, 11, 13,
17, ... All the values that were skipped in this sequence have other divisors. For example,
all even numbers greater than two are divisible by two and are therefore not prime. There
are an infinite number of primes, and cryptography algorithms work when using very large
primes. Since we are not actually trying to secure bank transactions, we will be happy just
using numbers that fit inside of our 64-bit Long type.

Now that we have had a little refresher on primes, we can write some code that deals
with primes. For this section it will be sufficient to just write a function called isPrime that
tells us whether or not a number is prime. Thanks to the Range type and the higher-order
methods present in Scala, this can be done in one line.

def isPrime(n:Long):Boolean = (2L until n).forall(n%_!=0)

This code takes all the numbers between 2 and n-1 and checks whether n is divisible by
any of them using modulo. Recall that if a divides evenly into b then b%a==0. As long as
that is not true for any of the values between 2 and n-1 then the number is prime.

Text Files 249

While this code is easy to write, it is also inefficient, particularly in the cases where n
is prime. The reason is that we really do not need to go up to n-1. If there is not a divisor
less than the square root of n, there cannot be one above that. If n were really large, the
difference between n and the square root of n would be significant. A more efficient function
can be written in the following way.

def isPrime2(n:Long):Boolean = {
var i = 2
while (i*i<=n && n%i!=0) i += 1
n%i!=0

}

A Range type could have been used with a square root function, but the math.sqrt function
works with Doubles that introduce difficulties we did not want to deal with here.

You might wonder about the use of a while loop here. After all, we generally prefer
the for loop. In this case, the while loop not only allows us an easy way to check if we
have gone above the square root of n, it also allows this function to stop as soon as it finds
anything that divides into n. On the other hand, a for loop runs for every member of a
collection. The forall method used above is smart enough to break out early as well.

There are more efficient ways of determining if a number is prime. You do not really need
to check all the values even up to the square root of n. You only need to check the prime
numbers up to that point. We leave it as an exercise to the reader to determine how you
might write code that would use that approach to more efficiently determine if a number is
prime across many calls to the function.

9.6 End of Chapter Material

9.6.1 Summary of Concepts

• Files are important to real applications as values stored in memory are lost when a
program terminates. Files allow data to persist between runs. They can also be used
as a source of large data sets.

• Minimal file interactions can be accomplished with I/O redirection. This approach
comes with significant limitations for interactive programs.

• Large groups of code, like the libraries for Scala and Java, have to be broken into
pieces. Packages are groups of code that have common functionality.

• Names that include full package specifications can be very long. import statements
can be used to allow the programmer to use shorter names.

• One way to read from files is using scala.io.Source.

– A call to Source.fromFile will return an instance of BufferedSource that pulls
data from the file.

– Source is an Iterator[Char]. The Iterator part implies that it is a collection
that is consumed as values are pulled off it. It gives individual characters.

– The getLines method returns an Iterator[String] with elements that are full
lines.

250 Introduction to Programming and Problem-Solving Using Scala

• The split method on String is useful for breaking up lines into their constituent
parts. It takes a delimiter as a String and returns an Array[String] of all the parts
of the String that are separated by that delimiter.

• You can use the Source.fromURL(url:String) method to get a Source that can
read data from a source located on the web in the form of a URL.

• For some applications it is easier to read data with a java.util.Scanner. This does
not provide a Scala style collection, but it has methods for checking if certain types of
values are present and reading them in a way that is more independent of line breaks.

• You can use the java.io.PrintWriter to write text data out to file. This type has
print methods like those that you have already become familiar with.

9.6.2 Self-Directed Study

Enter the following statements into the REPL and see what they do. Some will produce
errors. You should try to figure out why. Try some variations to make sure you understand
what is going on.

scala> import java.io._
scala> import scala.io._
scala> val pw = new PrintWriter(new File("RandomMatrix.txt"))
scala> for (i <- 1 to 20) {

| pw.println(Array.fill(20)(math.random).mkString(" "))
| }

scala> pw.close()
scala> val nums = {

| val src = Source.fromFile("RandomMatrix.txt")
| val lines = src.getLines
| val ret = lines.map(_.split(" ").map(_.toDouble)).toArray
| src.close()
| ret
| }

scala> import java.util.Scanner
scala> val sc = new Scanner(new File("RandomMatrix.txt"))
scala> var nums = List[Double]()
scala> while (sc.hasNextDouble) {

| nums ::= sc.nextDouble()
| }

scala> nums
scala> val webPageSource = Source.fromURL("http://www.google.com")
scala> val webLines = webPageSource.getLines
scala> webLines.count(_.contains("google"))
scala> webPageSource.close()

9.6.3 Exercises

1. If you did project 6.7, you can now modify it so that it does not have to use input
redirection. Make a function that reads in the dictionary of words and then write a
script that will allow the user to input Scrabble letter sets until they enter a special
value to stop the program.

http://www.google.com

Text Files 251

2. Create a file with the letters of the alphabet on one line separated by spaces. The
challenge is that you cannot manually type in a String with that.

3. Create a file with the letters of the alphabet with one letter on each line.

4. Write scripts that copy a file using each of the following constructs. They should take
two command line arguments for the input file name and the output file name.

• while loop

• for loop

• Higher order methods

• Recursion

• You can repeat each of the above using getLines if you did not the first time or
without it if you used it the first time.

5. Write scripts using each of the different methods from exercise 4 that capitalizes every
letter.

6. Write scripts using each of the different methods from exercise 4 that shift each vowel
up one. So “a” becomes “e” and so forth.

7. Write a script that takes a number of rows and columns as command-line arguments
and outputs a file with a matrix of random numbers of that size.

8. Write a script that takes a filename as a command-line argument and reads in a matrix
of numbers form that file. It should print out the row and column sums and averages.

9. The Raven, by Edgar Allan Poe, is considered by some to be scary. Make this poem
less scary by substituting a parrot (or some other bird of your choice) for the raven
and then output the newly revised poem to a file. A text file for this poem can be
found at http://www.textfiles.com/etext/AUTHORS/POE/poe-raven-702.txt.

10. Go to http://www.gutenberg.org/files/3201/files/, you will find a number of text
files that you could play with. The text file that we need for this exercise is
CROSSWD.TXT. Write a program that counts the number of words that do not
have an "e" in them and prints each word.

9.6.4 Projects

1. There is a utility in Linux called wc that stands for “word count”. You can run it on
one or more files, and it will tell you how many lines, words, and characters there are
in the files. For this project you will do the same thing, only you should also count
how many times each letter occurs in each file (regardless of case). The files you should
work on will be specified on the command line. Your program should read through
each file and count up how many characters, words, and lines there are as well has how
many times each letter occurs. You will print this information for each file followed
by a grand total for all the files. Your program might be invoked as scala wc.scala
*.txt, which would go through all the “.txt” files in the current directory.

You will consider any string that is between white spaces to be a word. To make the
counting of letters easier try doing this: "abcde".map(c=> c-’a’) to see what it
does and think about how that can help you.

http://www.gutenberg.org/files/3201/files/
http://www.textfiles.com/etext/AUTHORS/POE/poe-raven-702.txt

252 Introduction to Programming and Problem-Solving Using Scala

2. Back in section 9.5 we went through a few simple forms of encryption. These might
keep most people from reading your files, but you would not want to make changes to
your bank account using them. The encryption techniques that are used for sending
truly sensitive messages rely heavily on number theory. The most common systems
today are what are called public-key cryptosystems. In this type of system, each
user has both some information that they make public, the public-key, and some
information they keep private, the private-key. For this project, you will implement a
simple version of the RSA cryptosystem.
The way the RSA cryptosystem works is the following:

(a) Select two prime numbers p and q such that p 6= q. The level of security of the
system is dependent on how big p and q are. For good security you want them
to be 512-1024 bit numbers, far larger than what you can store in an Int or even
a Long. Finding large primes is beyond the scope of this book so to keep this
simple you should use two primes that multiply to give you a number between
128 and 256.

(b) Compute n = pq.
(c) Select an small odd integer, e,that is relatively prime to (p− 1)(q − 1).
(d) Compute d, the multiplicative inverse of e, modulo (p− 1)(q− 1). The technique

for finding this is described in exercise 8.10.
(e) The pair (e, n) is the RSA public-key. You or anyone who wants to send you a

message know these values.
(f) The pair (d, n) is the private-key. You need to know this to decode a message

and you do not want anyone else to have it.
(g) To encode a message, M , the sender uses P (M) = M e mod n. For this to work

you need to break up the message into chunks that can be encoded into numbers,
M , that are less then n.

(h) To decode the message you use S(C) = Cd mod n, where C is the encrypted
message you got from the sender.

3. The proper way to represent a recipe is using a file. The same thing is true for the
contents of your pantry. For this project you will extend project 8.10 to include options
for building a cookbook along with file access for the pantry contents. The script should
take two command-line arguments for a pantry file and a recipe file. Those files should
be loaded in when the program starts. The menu should have the following options.

(a) Add a pantry item.
(b) Print pantry contents.
(c) Add a recipe.
(d) Check a recipe.
(e) Cook recipe.
(f) Quit

When the user selects the “Quit” option. The files should be written to reflect new
changes. You can decide what file format to use. You simply have to make the code
that writes it work with the code that reads it.
In this version, the “Add recipe” option should have the user type in a unique name
of a recipe followed by item names and amounts. That should be remembered so that
the “Check a recipe” option allows the user to type in just a name.

Text Files 253

4. For this project you will extend what you did as part of project 8.11 so that the
courses you are interested in will be stored in a file for reuse. The script should take
a single command-line argument for the name of the storage file. The file stores the
course information along with the level of interest. Menu options should be as follows.

(a) Add course of interest.
(b) Print current courses.
(c) Remove course of interest.
(d) Modify course interest.
(e) Build a schedule.
(f) Quit

There is a new option to modify interest because if the program is run over a period
of time, the user might become more or less interested in the course. Also, for the
build option, you should add the option to have the user say they are taking one of
the printed schedules and remove all those courses from the list of interests. Save the
modified list of courses of interest to the file when the user quits.

5. The National Weather Service computes the windchill index using the following for-
mula:

33.74 + 0.6215T − 35.75(V 0.16) + 0.4275T (V 0.16)

Where T is the temperature in degrees Fahrenheit, and V is the wind speed in miles
per hour. This formula only applies for wind speeds over 3 miles per hour. Write a
program that calculates the windchill for all the data in a file. A file that you can use
for this project can be found at http://www.wunderground.com/history/. Search for
your location and date, then go to the bottom of the page for a comma separated file.

6. Write a hangman game. If you go to http://www.gutenberg.org/files/3201/files/, you
will find a number of text files that you could play with. The text file that we need
for this project is CROSSWD.TXT. These files were placed in the public domain by
Grady Ward and CROSSWD.TXT a list of words permitted in crossword games such
as Scrabble®. Randomly select a word from this list and then prompt the player to
guess what the word is - one letter at at time. At the beginning, display a series of
asterisks ’*’ to represent each letter. When the player makes a correct guess, display
the letter in its correct location as well as the remaining asterisks ’*’. After the player
has guessed the word correctly, display the number of misses and ask the user if they
would like to continue to play.

7. Grimm’s Fairy Tales are available in text file format in Project Gutenberg and can
be found at http://www.gutenberg.org/files/2591/2591.txt. Download this file for it
is one of the files that you will need for this project. You will need to look through
Grimm’s Fairy Tales for a series of words. These words will be found in a second
file created by you. For example, you could create a file that had the words "gold",
"kingdom", and "queen" in it. The goal of this project is for you to create an output
file that contains each word, how many times that word was found in Grimm’s Fairy
Tales and a listing of all the lines that that word was found on.

8. For this project, you will need to download a DVD list from the book’s web
site. This is a relatively complete list of all the Region 1 DVD’s that some-
one may have in their home theater library. The original list was obtained at

http://www.gutenberg.org/files/2591/2591.txt
http://www.gutenberg.org/files/3201/files/
http://www.wunderground.com/history/

254 Introduction to Programming and Problem-Solving Using Scala

http://www.hometheaterinfo.com/dvdlist.htm, and we are very grateful for the enor-
mous effort that it takes for the authors to maintain this list. You may find it inter-
esting to play with this data set, but for the purposes of this project, we want you to
simply search for several things: 1) Find the most expensive DVD in the list; 2) Find
all the films produced by New LineTM studios; 3) Find how many titles there are from
NetflixTM studios; 4) What is the title of the oldest DVD in the list; 5) Print out a
list of the different Genre’s in the file (listing each Genre only once).

9. The Beatles were an English rock band from the 60’s. They were widely regarded as the
greatest and most influential act of the rock era. The group broke up in 1970, but they
are still considered one of the most successful groups of all time. A list of all of the Bea-
tles record titles through 1974 can be found at http://textfiles.com/music/beatle.u-k.
Download this file. Then ask the user for a word and list all of the albums, singles,
and extended plays contain that word. Next, print out all the dates that include that
word in the title.

10. Sports have a tendency to produce a lot of information in the form of statistics.
You should be able to go out to the Internet and find many text files that contain
statistics information for basketball teams, football teams, water polo teams, etc. For
this project you will need to find a text format of box scores for a sport that interests
you. One place you can look for text file statistics is at http://www.dougstats.com/
which has NBA and MLB statistics. Read in this data. Then provide a menu of
relevant statistics to the user. For example, you may calculate averages for a player,
or averages for a team, and you can allow the user a menu option that allows them
the ability to select which average they would like to see.

Additional exercises and projects, along with data files, are available on the book’s web
site.

http://www.dougstats.com/
http://textfiles.com/music/beatle.u-k
http://www.hometheaterinfo.com/dvdlist.htm

Chapter 10
Case Classes

10.1 User Defined Types . 256
10.2 case classes . 256

10.2.1 Making Objects . 257
10.2.2 Accessing Members . 257
10.2.3 Named and Default Arguments (Advanced) . 258
10.2.4 The copy Method . 259
10.2.5 case class Patterns . 260

10.3 Mutable classes . 260
10.4 Putting It Together . 261

Tuple Zipped Type (Advanced) . 269
10.5 End of Chapter Material . 270

10.5.1 Summary of Concepts . 270
10.5.2 Self-Directed Study . 271
10.5.3 Exercises . 271
10.5.4 Projects . 272

One of the things that you should have noticed by this point is that there are times when it
can be helpful to group pieces of data together. We have seen two ways that we can do this.
If all the data is the same type, you could use something like an Array or a List. The down
side of this is that the compiler cannot check to make sure that you have the right number
of elements. For example, if you want a point in 3-D with x, y, and z coordinates then
you would need an Array[Double] that has three elements in it. Having more or less could
cause the code to break and Scala would not be able to check for that until the program
was running. The alternative, which also works if the types of the values are different is to
use a tuple. That same 3-D point could be represented as a (Double, Double, Double).
While this works reasonably well for a 3-D point, it too has some significant limitations.
The main limitation is that being a (Double, Double, Double) does not tell you anything
about what those three Doubles mean (i.e. which is x, which is y, and which is z) or how it
should be used.

To illustrate this, consider some different things that could be represented as three
Doubles. One is a point in 3-D. Another closely related one is a vector in 3-D. Either the
vector or the point could be represented in Cartesian coordinates, cylindrical coordinates,
or polar coordinates and the tuple would not tell you which it is. The three Doubles could
also represent the high temperature, low temperature and average temperature for a day;
or the regular price, sales price, and cost of a sweater; or three sub-averages for a students
grade in a class. For example, they might be the test, quiz, and assignment averages. The
tuple does not tell you which type of data is in the tuple and this does not help you at all
with keeping things straight.

What is more, the tuple lacks some flexibility and the syntax for getting things out of
them is less than ideal. Calling the _1 and _2 methods all through your code can make
it difficult to read. Imagine if instead you wanted to represent a full student in a class.
Then the tuple might have a String and a large number of grades, all of the same type.
Keeping track what numbers are associated with what grades would very quickly become
problematic. To get around these limitations, we will consider the use of case classes for
grouping data.

255

256 Introduction to Programming and Problem-Solving Using Scala

10.1 User Defined Types
What we really need to break away from the limitations of using tuples to deal with

groupings of data is the ability to define our own types that have meaningful names. Tuples
definitely have their place, and they are very useful in those situations, such as when you
need to return 2 or 3 values from a function. However, there are many times when it would
be handy to create a type specifically for a particular purpose. Then we could give the type
a name that indicated its purpose and have the compiler check for us that we were using
that type in the proper way.1

User defined types are a common feature of programming languages and have been for
decades. Scala provides two constructs for creating user defined types: classes and traits.
For this chapter, in order to keep things simple, we will only consider a specific type of one
of these, the case class.

Back in chapter 7 we defined a type as a collection of values and the operations that can
be performed on them. The user defined types typically take the form of being collections
of other types. This makes them fundamentally similar to just using a tuple. Where they
prove to be more than just a tuple is the control they give you in determining what can be
done with the types. We will remain somewhat limited in this regard for now, but even with
those limitations you should find that our user defined types provide a significant boost to
our programming capabilities.

10.2 case classes
The simplest way to start with user defined types in Scala is with case classes. We

will start with two examples that were mentioned above: a 3-D point and a student with
some grades.

case class Point3D(x:Double, y:Double, z:Double)

case class Student(name:String, assignments:List[Double], tests:List[Double],
quizzes:List[Double])

The first one declares a type called Point3D that stores inside of it three different Doubles
that are named x, y, and z. The second declares a type called Student that has a name
which is a String and three different Lists of Double to use as grades.

There can be more to the declaration of a case class, but for now we will limit ourselves
to this syntax that begins with the keywords “case class”. After that is the name you want
to give the type. This could be any valid Scala name, but it is customary to begin type
names with uppercase letters and use camel case naming so all subsequent words also begin
with uppercase letters. After that is a list of name/type pairs in parentheses. The format
of these is just like the arguments to a function. The elements of this list give the names
and types of the values stored in this new type. The values stored in a class are called
members and a case class is a class.

1Using a type declaration, it is possible to give a more meaningful name to a tuple, but it is still an
equivalent type, so the compiler will accept any tuple of the correct structure and does not help you as
much finding errors.

Case Classes 257

10.2.1 Making Objects

After you have declared a type, you need to be able to create objects of that type. With
a case class, you can do this with an expression that has the name of the class followed
by an argument list, just like a function call. The two classes listed above could be created
and stored in variables with the following lines of code.

val p = Point3D(1, 2, 3)
val s = Student("Lisa", Nil, Nil, List(89))

The first line makes a point that has x=1, y=2, and z=3 and stores a reference to it in
a variable named p. The next line makes a student with the name "Lisa" who has no
assignment or test grades, but who has an 89 on one quiz and stores a reference to it in a
variable named s.

You could insert the word new and a space after the equals signs so that these lines look
like the following.

val p = new Point3D(1, 2, 3)
val s = new Student("Lisa", Nil, Nil, List(89))

The result of this would be exactly the same. The first syntax is shorter and works for all
case classes so we will stick with that in our sample code.2

10.2.2 Accessing Members

In order to be able to use these objects, we must be able to access the different members
in them. This is very simple to do, just use the dot notation to access the members. So if
you want the x value in the Point3D, p that we made above, you would just do this.

scala> p.x
res1: Double = 1.0

To get the name of the Student you would do this.

scala> s.name
res2: String = Lisa

The dot notation in Scala simply means that you are using something from inside of an
object. It could be a method or a value that is stored in the object. For now we will only
be concerning ourselves with the values that we store in our case classes.

We could put this to use by writing a function to find the distance between two Point3Ds.
It might look something like this.

def distance(p1:Point3D, p2:Point3D):Double = {
val dx = p1.x-p2.x
val dy = p1.y-p2.y
val dz = p1.z-p2.z
math.sqrt(dx*dx + dy*dy + dz*dz)

}

We could also use it to calculate and average for a Student with code like this. Note that
the minimum quiz grade is thrown out.

2In chapter 16 you will learn that normal classes require the use of new by default. To get around this
requires writing some code in a companion object, a technique also covered in that chapter.

258 Introduction to Programming and Problem-Solving Using Scala

def classAverage(s:Student):Double = {
val assnAve = if (s.assignments.isEmpty) 0.0
else s.assignments.sum/s.assignments.length

val quizAve = if (s.quizzes.length<2) 0.0
else (s.quizzes.sum-s.quizzes.min)/(s.quizzes.length-1)

val testAve = if (s.tests.isEmpty) 0.0
else s.tests.sum/s.tests.length

0.5*assnAve + 0.3*testAve + 0.2*quizAve
}

The if expressions here prevent us from doing division by zero.
One of the things to note about case classes is that the members in them are vals by

default. As such, you cannot change what they refer to. If you try to make such a change
you get something like the following.

scala> p.x = 99
<console>:13: error: reassignment to val

p.x = 99
^

Whether you can change the fields in an object created from a case class depends on
whether the things in it are mutable or not. In our two examples, all of the contents are
immutable. As a result, the case class as a whole is immutable. Once you create a Point3D
or a Student, the object you create cannot change its value in any way. However, if one or
more of the fields in the case class were an Array, then the values in the Array would
be mutable. You would not be able to change the size of the Array without making a new
object, but you could change the values stored in it.

10.2.3 Named and Default Arguments (Advanced)

Normally, arguments are passed into a function by position to the corresponding param-
eter variables, thus Scala figures out which argument is which, by their order. Consider this
function.

def evalQuadratic(a:Double, b:Double, c:Double, x:Double):Double = {
val x2 = x*x
a*x2 + b*x + c

}

If you load this into the REPL you can execute it as follows.

scala> evalQuadratic(2, 3, 4, 5)
res3: Double = 69.0

In this call, a=2, b=3, c=4, and x=5. This is because that is the order the arguments appear
in both the definition of the function and the call to it. For functions where there are a
significant number of arguments that are all of the same type, this can lead to confusion.
To get around this, Scala has named arguments. When you call the function, you can
specify the names you want the values associated with. So the call above would be like the
following:

scala> evalQuadratic(a=2, b=3, c=4, x=5)
res4: Double = 69.0

Case Classes 259

In this call it is now explicit what values are going to what parameters. One advantage of this
is you can enter the arguments in a different order. For example, you might inadvertently
think that x was the first argument instead of the last. Without named arguments, this
would lead to an error with no error message. You would simply get the wrong answer.
However, if you use named arguments everything is fine because the names supersede the
order.

scala> evalQuadratic(x=5, a=2, b=3, c=4)
res5: Double = 69.0

Here we see that even though x is first, the value we get is correct.
You can use named parameters without naming all the parameters. You can start the

list with arguments that are based on position and then use names for the later ones. All
the arguments after the first named one have to be named, and they cannot duplicate any
that you gave using the position.

For some functions, there are some arguments that will have a particular value a lot of
the time. For example, if you were creating a program to help a local bank calculate loans,
it might be likely that most of their customers live in the same state. In that situation,
it is nice to make it so that people calling the function do not have to provide a value
for the state and let the function use a default value. When you declare the function
simply follow the type with an equals sign and the value you want to have for the default.
If the caller is happy with the default value, then that argument can be left out. Default
arguments at the end of the list can be simply omitted. If they are in the middle then you
will have to use named arguments to specify any arguments after them in the list. Consider
a function to add a grade to a Student.

def addGrade(name:String, grade:Int = 0):Student = ...

Here the default grade is a zero. So this function can be called in two ways.

addGrade("Quinn", 95)
addGrade("Kyle")

The first call is like everything we have seen to this point. The second one leaves off the
grade. As a result, Kyle gets a 0 for whatever grade this was.

10.2.4 The copy Method

The fact that you cannot mutate the values in a case class means that it would be
helpful to have a way to make new case class objects that are only slightly different from
existing instances. To see this, consider what happens when you want to add a new grade
to a Student. The grades are in Lists, and it is easy to add to a List. The problem is,
that does not mutate what is in the original List, it just gives us a new List that includes
the new values as well as what was already there.

To help get around this problem, case classes come with a copy method. The copy
method is intended to be used with the named arguments that were discussed in section
10.2.3. The arguments to copy have the same names as the fields in the class. Using named
arguments, you only provide the ones you want to change. Anything you leave out will be
copied straight over to the new object. So using the Student object we gave the name s
above, we could use copy to do the following.

val ns = s.copy(tests = 99::s.tests)

260 Introduction to Programming and Problem-Solving Using Scala

This gives us back a new Student with the same name, assignments, and quizzes as we had
in s, only it has a test grade of 99.

You can specify as many or as few of the fields in the case class as you want. Whatever
fields you give the names of will be changed to the value that you specify. If you leave the
parentheses empty, you will simply get a copy of the object you have originally.

10.2.5 case class Patterns

Another capability that comes with case classes is that you can use them in patterns.
This can be used as a simple way to pull values out of an instance or to select between
objects in a match. As an example of pulling out values, consider the following code using
Point3D.

for (Point3D(x, y, z) <- points) {
// Do stuff with x, y, and z.

}

This is a for loop that runs through a collection of points. Instead of calling each point
with a name like point, this pulls out the values in the point and gives them the names x,
y, and z. That can make things shorter and more clear in the body of the loop.

As an example of limiting what is considered, we can use another for loop that goes
through a course full of students.

for (Student(name, _, List(t1, t2, t3), _) <- courseStudents) {
// Processing on the students with three test grades.

}

This does something with patterns that we have not seen before, it nests them. You can nest
patterns in any way that you want. This is part of what makes them extremely powerful.
In this case, the assignment and quiz grades have been ignored and the loop is limited to
only considering students with exactly three test grades. Those grades are given the names
t1, t2, and t3. That could also have been specified with the pattern t1::t2::t3::Nil.
Students who have more or fewer test grades will be skipped over by this loop. Note that
the underscores in this pattern are used to match anything when we do not care about what
it is and so we do not give it a name.

10.3 Mutable classes
While the functional style benefits from immutable data, and there are some distinct

benefits to having all of your data be immutable, we can create case classes that mutate
by putting the var keyword in front of any fields that we need to mutate.3 So if you wanted
to be able to add grades to students through mutation instead of the copy method, you
could define Student in the following way.

case class Student(name:String, var assignments:List[Double], var
tests:List[Double],

3It is worth noting that this approach is strongly frowned upon in many Scala style guides. If you need
a class to be mutable, it is strongly suggested that you use the approach discussed in chapter 16. Adding
var to a case class is presented here to keep thing simple, but really is not the appropriate approach.

Case Classes 261

var quizzes:List[Double])

There the fields for assignments, tests, and quizzes are declared as vars, so they can
be mutated and used in a more imperative style. With that declaration, one could made a
student and add grades to it in the following way.

scala> var s = Student("Lisa", Nil, Nil, Nil)
s: Student = Student(Lisa,List(),List(),List())

scala> s.assignments ::= 99

scala> s.tests ::= 85

scala> s.quizzes ::= 68

scala> s
res5: Student = Student(Lisa,List(99.0),List(85.0),List(68.0))

This might look simple, but the mutable state of s makes it harder to reason about what
is going on and to find flaws when things are done incorrectly. It can cause even bigger
headaches when you get to the point where your programs are running in parallel as we saw
when briefly looking at parallel loops in chapter 8.

10.4 Putting It Together
Now we want to use a case class along with other things that we have learned to

create a small, text based application. The application that we will write will use our first
definition of Student along with the classAverage function, which are repeated here.

case class Student(name:String, assignments:List[Double], tests:List[Double],
quizzes:List[Double])

def classAverage(s:Student):Double = {
val assnAve = if (s.assignments.isEmpty) 0.0
else s.assignments.sum/s.assignments.length

val quizAve = if (s.quizzes.length<2) 0.0
else (s.quizzes.sum-s.quizzes.min)/(s.quizzes.length-1)

val testAve = if (s.tests.isEmpty) 0.0
else s.tests.sum/s.tests.length

0.5*assnAve + 0.3*testAve + 0.2*quizAve
}

We will add other functions to make a complete grade book script. This program will be
run from a text menu and give us various options similar to what was done in section 8.2.

The program will also use the file handling capabilities that we have learned so that the
grades of the students in the course can be saved off and then be loaded back in when we
restart the program. The menu for the program will have the following options:

1. Add Test Grade

2. Add Assignment Grade

262 Introduction to Programming and Problem-Solving Using Scala

3. Add Quiz Grade

4. Print Averages

5. Save and Quit

The program will take a command line argument for the file to load in. If none is given, the
user will be asked how many students are in the section and their names along with the file
name to save it under. When one of the first three menu options is selected, the program
will list each student’s name and ask for their grade. The “Print Averages” option will print
out the names of each student along with their grades in each area, their average in that
area, and their total average.

There is quite a bit to this program so it is worth breaking it up into different functions
and then writing each of those. To do this we can outline what will happen when we run the
program and use the outline to break things down then assign function names to things.

• Startup

– load a file (loadSection)
– or create a section (createSection)

• Main menu (mainMenu)

– print the menu (printMenu)
– act on the selection

∗ add a test grade (addTest)
∗ add an assignment grade (addAssignment)
∗ add a quiz grade (addQuiz)
∗ print the averages (printAverages)

• Save when done (saveSection)

Now that we have figured out roughly what we need to do, we can write these functions
in any order that we want. In general the process of writing functions like this can be very
non-linear. You should not feel any reason why you would have to go through the functions
in any particular order. Often in a real project you would do things in a certain order as
you figure out how to do them.

The more experience you gain, the more comfortable you will be in writing code and
then you might decide to pick certain functions because they will give you functionality that
you can test. One of the advantages of having the REPL to fall back on is that we can load
in our file and test functions one by one, seeing the results along the way. Without that,
the printAverages function would prove to be extremely important to us as it would be
the only way that we could see what was going on.

For our purposes we will start with createSection and saveSection. These two func-
tions pair well together and are closely related because we have to decide how we are going
to represent a section both in the memory of the computer and in the file. We will start
with createSection and the way in which things are represented in the memory of the
computer.

We have already created a case class called Student that can be used to represent
one student in the section. We just need several of them. We also need to realize that they
will change over time as grades are added. It would probably be sufficient to just keep an
Array[Student]. However, there are benefits to actually wrapping the Array inside of a
different case class like this.

Case Classes 263

case class Section(students:Array[Student])

In general, using a case class can provide greater flexibility. We might decide at some
point that we want to attach data for a course name, semester, instructor, etc. to each
Section. Those things cannot be added to a simple Array[Student]. However, they could
easily be added to the case class. It also has the advantage of providing extra meaning.
This is not just a random collection of Students, it represents a section of a class.

Now that we know this, we can write the createSection function. This function will
prompt the user for the information that is needed to create the Section. For now that is a
file name to save it to, the number of students, and the names of the students. The function
will return the file name and the Section.

def createSection:(String,Section) = {
println("What file would you like to save this as?")
val fileName = readLine()
println("How many students are in the class?")
val numStudents = readInt()
println("Enter the student names, one per line.")
(fileName,Section(Array.
fill(numStudents)(Student(readLine(),Nil,Nil,Nil))))

}

The first five lines of this function are fairly self-explanatory with prompts being printed
and values being read. After that is the return tuple which includes a call to Array.fill
that has a readLine in the pass-by-name parameter. This means that it not only makes
the return value, it also includes the input of the names.

Now that we have created a new Section, we can consider what it will look like in a
file. There are many different ways that the file could be formatted. For obvious reasons,
it is nice if the format that we use to write the file is also convenient for reading it back
in. The manner that we will pick here starts with the number of students in the class on a
line. After that there are four lines for each student. They are the student’s name followed
by a line each with assignment, test, and quiz grades. This saveSection function can be
written as follows.

def saveSection(fileName:String, section:Section):Unit = {
val pw = new PrintWriter(fileName)
pw.println(section.students.length)
for (s <- section.students) {
pw.println(s.name)
pw.println(s.assignments.mkString(" "))
pw.println(s.tests.mkString(" "))
pw.println(s.quizzes.mkString(" "))

}
pw.close()

}

This function takes the file name and the Section. It then makes a PrintWriter with the
fileName, which is closed at the end of the function, and prints the needed information.
The use of mkString on the different Lists makes the code for doing this much shorter.

As you are writing these functions, you need to test them. One way to do that is to load
them into the REPL and call them. Another way is to end the script with calls to them. At
this point, the end of the script might look something like the following.

val (fileName, section) = createSection

264 Introduction to Programming and Problem-Solving Using Scala

saveSection(fileName, section)

This comes after the definition of both the case classes and the different functions. If you
run the script with this in it, you should be prompted for the information on the Section
and after you enter that the script should stop. You can then look at the file that you told
it to save as and make sure it looks like what you would expect.

We will hold the loadSection function until the end and go into the main functionality
with mainMenu and printMenu. You can write them in the following way.

def printMenu:Unit = {
println("""Select an option:

1. Add Test Grade
2. Add Assignment Grade
3. Add Quiz Grade
4. PrintAverages
5. Save and Quit""")
}

def mainMenu(section:Section):Unit = {
var option = 0
do {
printMenu
option = readInt()
option match {
case 1 => addTest(section)
case 2 => addAssignment(section)
case 3 => addQuiz(section)
case 4 => printAverages(section)
case 5 => println("Goodbye!")
case _ => println("Invalid option. Try again.")

}
} while (option!=5)

}

You cannot test this code yet because mainMenu calls four other functions that have not
been written yet. Once we have those written, we can put a call to mainMenu at the end of
the script right before the call to saveSection.

The three different add functions will all look pretty much the same. We will only show
the addTest function and let you figure out the others. It is worth thinking a bit about how
that function will work. The Student type is immutable. All the fields in the case class
are vals so they cannot be changed. The String and the three different List[Int] values
are all immutable so once a Student is created, it is set forever. However, the Section type
stores the Students in an Array. This means we can change what Student objects are being
referred to. We can use the copy capabilities of the case class to make new instances that
are almost the same except for small variations. Using this, the addTest function could be
written in the following way.

def addTest(section:Section):Unit = {
for (i <- 0 until section.students.length) {
println("Enter the grade for "+section.students(i).name+".")
section.students(i) = section.students(i).
copy(tests=readInt()::section.students(i).tests)

}
}

Case Classes 265

This code works just fine, but it is a bit verbose because we have to type in
section.students(i) so many times. We have to have the index because we need to be
able to do the assignment to an element of the Array. The section.students(i) before
the equal sign in the assignment is hard to get rid of because we have to mutate that value
in the design of this code. The code could be shortened with appropriate use of imports,
but there is another, more interesting solution.

def addTest(section:Section):Unit = {
for ((s,i) <- section.students.zipWithIndex) {
println("Enter the grade for "+s.name+".")
section.students(i) = s.copy(tests=readInt()::s.tests)

}
}

This version uses zipWithIndex and a pattern on the tuple to give us both a short name
for the student, s, and an index into the array, i. Both of these are equally correct so use
the one that makes more sense to you and duplicate it for assignments and quizzes.

The next function in the menu is printAverages. A very basic implementation of this
would just print student names and the course average. However, it could be helpful to see
all the grades and the partial averages as well. That is what is done in this version.

def printAverages(section:Section):Unit = {
for (s <- section.students) {
println(s.name)
val assnAve = if (s.assignments.isEmpty) 0.0
else s.assignments.sum/s.assignments.length

println(s.assignments.mkString("Assignments:",", "," = "+assnAve))
val quizAve = if (s.quizzes.length<2) 0.0
else (s.quizzes.sum-s.quizzes.min)/(s.quizzes.length-1)

println(s.quizzes.mkString("Quizzes:",", "," = "+quizAve))
val testAve = if (s.tests.isEmpty) 0.0
else s.tests.sum/s.tests.length

println(s.tests.mkString("Tests:",", "," = "+testAve))
println("Average = "+(0.5*assnAve+0.3*testAve+0.2*quizAve))

}
}

This function uses the code from the earlier classAverage function and inserts some print
statements. The only thing in here that might seem odd is the use of a mkString method
that takes three arguments instead of just one. With this longer version, the first string
goes before all the elements and the third one goes after all the elements. The argument in
the middle is the delimiter as it has been in previous usage.

def loadSection(fileName:String):(String,Section) = {
val src = Source.fromFile(fileName)
val lines = src.getLines
val section = Section(Array.fill(lines.next().toInt)(Student(
lines.next(),
lines.next().split(" ").filter(_.length>0).map(_.toDouble).toList,
lines.next().split(" ").filter(_.length>0).map(_.toDouble).toList,
lines.next().split(" ").filter(_.length>0).map(_.toDouble).toList

)))
src.close
(fileName,section)

}

266 Introduction to Programming and Problem-Solving Using Scala

This function includes three lines for handling the file. The most important part of the
function is in the declaration of the section variable which calls lines.next() anytime
that it needs a new line from the input file. The first time is to read how many students
are in the section for building the Array. Each student pulls in four lines for the name and
three different grade types. The lines of grades are split, filtered, and them mapped to
Doubles before they are converted to a List. The filter is required for the situation where
you have not entered any grades of a particular type.

You might wonder why the return type of this function includes the fileName that was
passed in. Technically this is not required, but it makes this function integrate much more
nicely at the bottom of the script.

val (fileName, section) = if (args.length<1) createSection
else loadSection(args(0))

mainMenu(section)
saveSection(fileName, section)

Having createSection and loadSection return the same information greatly simplifies
this part of the code as they can be called together in a simple if expression.

That is everything. You now have a full little application that could be used to store a
grade book for some course. Try putting this code in and playing with it a while. Here is a
complete version with everything together, along with import statements.

Listing 10.1: GradeScript.scala
import io.StdIn._
import io.Source
import java.io.PrintWriter

case class Student(name:String, assignments:List[Double], tests:List[Double],
quizzes:List[Double])

case class Section(students:Array[Student])

def classAverage(s:Student):Double = {
val assnAve = if (s.assignments.isEmpty) 0.0
else s.assignments.sum/s.assignments.length

val quizAve = if (s.quizzes.length<2) 0.0
else (s.quizzes.sum-s.quizzes.min)/(s.quizzes.length-1)

val testAve = if (s.tests.isEmpty) 0.0
else s.tests.sum/s.tests.length

0.5*assnAve + 0.3*testAve + 0.2*quizAve
}

def createSection:(String,Section) = {
println("What file would you like to save this as?")
val fileName = readLine()
println("How many students are in the class?")
val numStudents = readInt()
println("Enter the student names, one per line.")
(fileName,Section(Array.
fill(numStudents)(Student(readLine(),Nil,Nil,Nil))))

}

def saveSection(fileName:String, section:Section):Unit = {
val pw = new PrintWriter(fileName)

Case Classes 267

pw.println(section.students.length)
for (s <- section.students) {
pw.println(s.name)
pw.println(s.assignments.mkString(" "))
pw.println(s.tests.mkString(" "))
pw.println(s.quizzes.mkString(" "))

}
pw.close()

}

def loadSection(fileName:String):(String,Section) = {
val src = Source.fromFile(fileName)
val lines = src.getLines
val section = Section(Array.fill(lines.next().toInt)(Student(
lines.next(),
lines.next().split(" ").filter(_.length>0).map(_.toDouble).toList,
lines.next().split(" ").filter(_.length>0).map(_.toDouble).toList,
lines.next().split(" ").filter(_.length>0).map(_.toDouble).toList

)))
src.close
(fileName,section)

}

def addTest(section:Section):Unit = {
for (i <- 0 until section.students.length) {
println("Enter the grade for "+section.students(i).name+".")
section.students(i) = section.students(i).
copy(tests=readInt()::section.students(i).tests)

}
}

def addAssignment(section:Section):Unit = {
for (i <- 0 until section.students.length) {
println("Enter the grade for "+section.students(i).name+".")
section.students(i) = section.students(i).
copy(assignments=readInt()::section.students(i).assignments)

}
}

def addQuiz(section:Section):Unit = {
for (i <- 0 until section.students.length) {
println("Enter the grade for "+section.students(i).name+".")
section.students(i) = section.students(i).
copy(quizzes=readInt()::section.students(i).quizzes)

}
}

def printAverages(section:Section):Unit = {
for (s <- section.students) {
println(s.name)
val assnAve = if (s.assignments.isEmpty) 0.0
else s.assignments.sum/s.assignments.length

println(s.assignments.mkString("Assignments:",", "," = "+assnAve))
val quizAve = if (s.quizzes.length<2) 0.0
else (s.quizzes.sum-s.quizzes.min)/(s.quizzes.length-1)

268 Introduction to Programming and Problem-Solving Using Scala

println(s.quizzes.mkString("Quizzes:",", "," = "+quizAve))
val testAve = if (s.tests.isEmpty) 0.0
else s.tests.sum/s.tests.length

println(s.tests.mkString("Tests:",", "," = "+testAve))
println("Average = "+(0.5*assnAve+0.3*testAve+0.2*quizAve))

}
}

def printMenu:Unit = {
println("""Select an option:

1. Add Test Grade
2. Add Assignment Grade
3. Add Quiz Grade
4. PrintAverages
5. Save and Quit""")
}

def mainMenu(section:Section):Unit = {
var option = 0
do {
printMenu
option = readInt()
option match {
case 1 => addTest(section)
case 2 => addAssignment(section)
case 3 => addQuiz(section)
case 4 => printAverages(section)
case 5 => println("Goodbye!")
case _ => println("Invalid option. Try again.")

}
} while (option!=5)

}

val (fileName, section) = if (args.length<1) createSection
else loadSection(args(0))

mainMenu(section)
saveSection(fileName, section)

As a final exercise, consider how this might be altered if the Section type used a List,
or we decided not to mutate the Array. In this situation, the functions like addTest have to
be altered so that they return a new Section instead of mutating the one that was passed
in. The mainMenu function also needs to be changed. The ideal implementation would be
recursive. Here are modified implementations of addTest and mainMenu that support this
approach.

def addTest(section:Section):Section = {
section.copy(students = section.students.map(s => {
println("Enter the grade for "+s.name+".")
s.copy(tests=readInt()::s.tests)

}))
}

def mainMenu(section:Section):Unit = {
printMenu
val option = readInt()

Case Classes 269

val newSection = option match {
case 1 => addTest(section)
case 2 => addAssignment(section)
case 3 => addQuiz(section)
case 4 => printAverages(section); section
case 5 => println("Goodbye!"); section
case _ => println("Invalid option. Try again."); section

}
if (option!=5) mainMenu(newSection)

}

The addTest function for this version is actually simpler than the non-functional approaches
because we use map to produce the new set of students with updated grades. The other thing
to note is that in mainMenu, the match statement is converted to an expression. To make
the types work, all the cases have to give back a session.

Tuple Zipped Type (Advanced)
Something that you need to do fairly frequently is to run through two collections

at the same time, pulling items from the same location of each. One way to do this is
to use the zip method to zip the collections together into a new collection of tuples.
While this works well if you have two collections, especially if you use a for loop, it
does not work as well for three or more collections, and it is fundamentally inefficient
because the zip method will go through the effort of creating a real collection with a
bunch of tuples in it.

To get around these limitations, the types for tuples of length 2 and 3 have a type
associated with them called Zipped. The sole purpose of the Zipped type is to let
you get the benefits of running through a zipped collection without actually doing the
zipping. To get an instance of the Zipped type, simply make a tuple that has all the
collections you want in it and call the zipped method. The Zipped type has some of the
main higher order methods that you have been using on collections: exists, filter,
flatMap, forall, foreach, and map. The difference is that in the Zipped type they take
multiple arguments. Specifically, they take as many arguments as there are elements in
the tuple. This is significant because if you call a function like map that is mapping a
collection of tuples the function has to take one argument and go through some effort
to pull the elements out of the tuple. With the Zipped type you do not have to do that
as the functions that are passed in are supposed to take multiple arguments instead of
a single tuple with the multiple values.

A comparison of the two approaches is shown here.

val l1=List(1,2,3)
val l2=List(4,5,6)
l1.zip(l2).map(t => t._1*t._2)
(l1,l2).zipped.map((v1,v2) => v1*v2)
// or
(l1,l2).zipped.map(_*_)

For this example the first one is a bit shorter unless we use the underscore notation, but

270 Introduction to Programming and Problem-Solving Using Scala

that typically will not be the case. Note that the underscore notation is not an option
for the version that uses normal zip. More importantly, the first one relies on the _1
and _2 methods which will make the code hard to read and understand for anything
with more logic. To get the benefit of easy to read names using zip you would have to
do the following.

l1.zip(l2).map(t => {
val (v1,v2)=t
v1*v2

})

It remains an exercise for the reader to see what happens if you want to iterate over
three collections using zip. Consider the Zipped type when you need to iterate over
two or three collections at the same time.

10.5 End of Chapter Material

10.5.1 Summary of Concepts

• The act of grouping together data is very useful in programming. We have been doing
this with tuples. The problem with tuples is that they do not provide meaning and
their syntax can make code difficult to read and understand.

• User defined types let you create your own types that have meaning related to the
problem you are solving.

• One way of making user defined types is with case classes. We will use these to
group values together and give them useful, easy to read names.

– To create a case class, follow those keywords with an argument list like that for
a function with names and types separated by commas. Names for types typically
start with a capital letter.

– You create an instance of a case class give the name of the type followed by
an argument list of the values it should store.

– When you want to access the members of a case class, use the dot notation we
have been using for other objects.

– The members of a case class are all vals by default. As a result, instances of
case classes tend to be immutable. The only way that will not be true is if a
member is mutable.

– To make new instances of case classes that are slightly different from old ones,
use the copy method. This method is called with named arguments for any
members that you want to have changed in the copy.

– Another useful capability of case classes is that they can be used as patterns.

– You can make case classes mutable by putting var in front of the fields you
wish to mutate, but as with var declarations, this approach is discouraged.

Case Classes 271

10.5.2 Self-Directed Study

Enter the following statements into the REPL and see what they do. Some will produce
errors. You should try to figure out why. Try some variations to make sure you understand
what is going on.

scala> case class Accident(dlNumber1:String,dlNumber2:String)
scala> case class

Driver(name:String,dlNumber:String,dob:String,history:List[Accident])
scala> def wreck(d1:Driver,d2:Driver):(Driver,Driver,Accident) = {

| val accident = Accident(d1.dlNumber,d2.dlNumber)
| (d1.copy(history = accident::d1.history),
| d2.copy(history = accident::d2.history),
| accident)
| }

scala> var me = Driver("Mark","12345","long ago",Nil)
scala> var otherPerson = Driver("John Doe","87654","01/01/1990",Nil)
scala> val (newMe,newOther,acc) = wreck(me,otherPerson)
scala> me = newMe
scala> otherPerson = newOther
scala> println(me.name)
scala> println(otherPerson.dlNumber)
scala> println(me.history.length)
scala> otherPerson.name = "Jane Doe"
scala> case class Vect2D(x:Double,y:Double)
scala> def magnitude(v:Vect2D):Double = {

| math.sqrt(v.x*v.x+v.y*v.y)
| }

scala> def dot(v1:Vect2D,v2:Vect2D):Double = v1.x*v2.x+v1.y*v2.y
scala> def makeUnit(angle:Double):Vect2D = {

| Vect2D(math.cos(angle),math.sin(angle))
| }

scala> def scale(v:Vect2D,s:Double):Vect2D = Vect2D(v.x*s,v.y*s)
scala> val a = makeUnit(math.Pi/4)
scala> val b = makeUnit(3*math.Pi/4)
scala> dot(a,b)
scala> magnitude(a)
scala> magnitude(b)
scala> magnitude(scale(a,3))

10.5.3 Exercises

1. Write a case class to represent a student transcript.

2. Using your answer to the previous exercise, define a function that adds one semester
of grades to the transcript.

3. Using your answer to 1, write a function that will return the student’s GPA.

4. Write a case class to represent a recipe.

5. Using your answer to 4, write a function that take a recipe and the name of an
ingredient and returns how much of that ingredient is needed.

6. Write a case class to represent the information needed for a house in a Realtor
posting.

272 Introduction to Programming and Problem-Solving Using Scala

7. Rewrite the grade book program in a completely functional way so that it has neither
Arrays, vars, or other mutable objects.

8. Play with zip using 3 collections. Compare it to using zipped.

9. Pick a favorite sport and make a case class that can be used to store player infor-
mation.

10. Extend what you did on the previous exercise so you have a case class that stores
the information for a team.

10.5.4 Projects

1. This is an extension on project 8.3. You will use Arrays and classes to take the
Keplerian simulator a bit further. In that program all you had was one body in motion
about a “central mass” that was not moving at all. Now you can store and work with
the positions and velocities of many bodies because you can store their component
data in Arrays or case classes. That is to say you can have an Array for x positions
as well as y, vx, and vy, or an Array of some case class that stores those values.
This allows you to simulate the motions of many particles at the same time which is
much more fun. Earlier you only had to calculate the acceleration due to the central
particle. Now you want to calculate accelerations due to all interactions between all
the particles. You can also make the central particle one of the particles in the array
or try not even having a central particle.

With multiple particles, you need to have a nested loop (or a for loop with two
generators) that calculates the accelerations on each particle from all the others and
adds them all up. Keep in mind that if particle i pulls on particle j then particle j
pulls back on i just as hard, but in the opposite direction. That does not mean the
accelerations are the same though. The acceleration is proportional to the mass of the
puller because the mass of the pullee is canceled out by its inertia. Earlier we had
ax = − x

d3
and ay = − y

d3
. When the particle doing the pulling is not at the origin, d

is the distance between the particles, and x and y are the distances between them in
x and y directions. We also need a factor of m for the mass of the puller. You want
to add up the accelerations from all other particles on each one and store that into
arrays so

ax(i) = −
∑
j

(xj − xi) ∗mj

d3ij

There is a similar formula for y. The dij value is the distance between particle i and
particle j. Also note that given a value, c, the best way to cube it is c*c*c, not
math.pow(c,3).

When you write your formula in the code, think a bit about it. This formula causes
a problem if we really use d because particles can get too close to one another. It
is suggested that you make d =

√
d2x + d2y + ε, where epsilon is a small value. You

can play with how small you want it to be because that depends on the scale of your
problem. It is also recommended that you have your integrator not use the normal
Euler method which calculates accelerations, then updates positions, then velocities.
Make sure that it does the accelerations on velocities before applying the velocities
to the positions. Keep in mind that you want to break this up into functions that fit
together nicely and are helpful. It will hurt your brain more if you do not.

Case Classes 273

The input for the program will have a first line that is the number of bodies, the
timestep, the stopping time, and the number of steps between outputs. This will be
followed by lines with the x, y, vx, vy, and mass values for each particle. A sample
input file can be found on the book’s website on the page for this chapter. Note that
the central mass in that file has a mass of 1 and all the others are much smaller.

As output, you should write out the positions of all the particles in your simulation to
a file once for every n steps, where n is a value given on the first line of the input. If
you do this then you can run a spreadsheet of gnuplot to plot it. If you use gnuplot
and give it the command plot ’output’ it will make a little scatter plot showing you
the paths of the particles in the simulation.

2. This project builds on top of project 8.1. You have likely been using tuples or separate
values to represent the geometry elements in your ray tracer. This is information that
is much more naturally represented as a case class. For this project you should go
through and edit your existing code so that it includes three different case classes,
one for spheres, one for planes, and one for a scene which has a List[Sphere] and a
List[Plane].

3. This is the first installment for you building your own text adventure. Your program
will read in from a map file that you will write by hand and let the user run around
in that map by using commands like "north" to move from one room to another. The
map file will have a fairly simple format right now and you will create your own map
file using vi. Make sure when you turn in this program you turn in both the script
and the map file so it can be tested with your map.

The format of the map file should start with a line telling the number of rooms then
have something like the following. You can change this if you want to use a slightly
different format:

room_number
room_name
long line of room description
number_of_links
direction1
destination1
direction2
destination2
...

This is repeated over and over. (The number of rooms at the top is helpful for storing
things in an Array so that you know how big to make it.) Each room should have
a unique room number, and they should start at 0. The reason is that you will be
putting all the room information into Arrays. There is a link on the book’s website
to a sample map file, but you do not have to stick exactly to that format if you do
not want to. You might deviate if you are thinking about other options you will add
in later. Odds are good you will be refactoring your code for later projects.

The interface for your program is quite simple. When you run the program it should
read in the map file and keep all the map information stored in an Array[Room]
where Room is a case class you have made to keep the significant information for
each room.4 You will start the user in room 0 and print the description of that room

4Many implementations also make a case class to represent an Exit from a room.

274 Introduction to Programming and Problem-Solving Using Scala

and the different directions they can go as well as where those exits lead to, then
follow that with a prompt. You could just use > as the prompt to start with. It might
get more complex later on when you have real game functionality. So when the user
starts the game it might look something like this if you read in the sample map file.

Halsell 228
You are standing in a room full of computers and comfy chairs with
a giant air conditioning unit hanging from the ceiling. While the
surroundings are serene enough, you cannot help feeling a certain amount
of dread. This isn’t just a fear that the air conditioning unit is
going to fall either. Something in you tells you that this room is
regularly used for strange rituals involving torture. You can only
wonder what happens here and why there isn’t blood all over the place.
Your uneasiness makes you want to leave quickly.
The hallway is east.
>

The user must type in either a direction to move or “quit”. If anything else is entered
you should print an appropriate error message. The only goal of this project is to allow
the user to move around the map. Collection methods such as find, indexWhere,
filter, or partition can be extremely helpful for this project.

4. Convert the work you did for project 9.3 to use case classes to bind data. So you
should have a case class for an item with an amount, one for a recipe, one for pantry
contents, etc.

5. Convert the work you did for project 9.4 to use case classes. With this addition
you can put more information into each course because you now have a better way to
store it all together.

6. Convert the work you did for project 9.5 to use case classes to bind data. You should
have a case class that includes CDT Time, Temperature, Dew Point, Humidity, Sea
Level Pressure In, Visibility MPH, Wind Direction, Wind Speed MPH, Gust Speed
MPH, Precipitation In, Events, Conditions, Wind Direction Degrees, UTC Date.

7. Convert the work you did for project 9.8 to use case classes to bind data. You
should have a case class that includes a DVD title, studio, date released, status,
Sound, versions, price, rating, year, genre, aspect, UPC, DVD release date, ID, and
timestamp.

8. Convert the work you did for project 9.9 to use case classes to bind data. You should
have a case class that includes Media Type, Song Title, and Date Released.

9. Sports have a tendency to produce a lot of information in the form of statistics. A
case class is a good way to represent this information. For this project, convert the
work you did for project 9.10 to use case classes to bind data. Put multiple box
scores into a text file and read them in. Have menu options for calculating averages
for players and teams in the different relevant statistics.

Additional exercises and projects, along with data files, are available on the book’s web
site.

Chapter 11
GUIs

11.1 GUI Libraries and History . 275
11.2 First Steps . 276
11.3 Stages and Scenes . 278
11.4 Events and Handlers . 281
11.5 Controls . 283

11.5.1 Text Controls . 284
11.5.2 Button-like Controls . 286
11.5.3 Selection Controls . 288
11.5.4 Pickers . 291
11.5.5 TableView . 292
11.5.6 TreeView . 293
11.5.7 Menus and FileChooser . 295
11.5.8 Other Stuff . 298

11.6 Observables, Properties, and Bindings . 301
11.6.1 Numeric Properties and Bindings . 302
11.6.2 Conditional Bindings . 304

11.7 Layout and Panes . 307
11.7.1 scalafx.scene.layout Panes . 307
11.7.2 scalafx.scene.control Panes . 311

11.8 Putting It Together . 314
11.9 End of Chapter Material . 325

11.9.1 Summary of Concepts . 325
11.9.2 Self-Directed Study . 326
11.9.3 Exercises . 326
11.9.4 Projects . 327

So far, all of the programming that we have done has been part of a text interface. The
programs print information to a terminal window and to give them input we enter text
from the keyboard. These types of programs have their place in computing, but these days
very few people actually use such programs. They typically run in the background instead,
doing things that people do not see. The programs that you likely work with most are more
graphical. They open up windows and you can interact with them through mouse clicks as
well as typing.

This type of program is called a GUI (Graphical User Interface). In this chapter we will
look at how we can write GUIs in Scala and get them to interact with the user.

11.1 GUI Libraries and History
There are reasons why we began doing our programming with the console. There are

certain complications involved in programming GUIs. Your Scala programs run on top of
the Java Virtual Machine and relies on the underlying virtual machine and the libraries for
it to do a lot of the work in a GUI. Scala adds things on top when it is possible to improve
them in a significant way by doing so. In the implementation of Scala that we are using,
this means that there is a dependence on the Java GUI libraries.

275

276 Introduction to Programming and Problem-Solving Using Scala

When Java was originally released in 1995, there was one GUI library called the Abstract
Windowing Toolkit, AWT. The AWT library makes direct calls to the operating system or
windowing environment for building elements of the GUI. This gave the AWT a significant
benefit in speed. However, it also provided a significant limitation. Due to the cross-platform
nature of Java, they only included elements in the AWT that were present on all platforms.
They are the most fundamental parts of GUI construction like windows, buttons, text
boxes, etc. These elements were drawn by the underlying platform and always looked like
the underlying platform.

Both the restriction in appearance and the limited number of component types led to
the creation of a second GUI library for the Java standard. This second library was called
Swing, and it was a “pure” Java library. That means that all the code in Swing was written
in Java. It uses calls to AWT to make things happen, but does not directly call anything
that is not in Java itself. The Swing library included a lot of different GUI elements that
were more powerful and flexible than what was provided in AWT. It also included the ability
to have elements of the GUI rendered in different ways so they do not have to look like the
underlying system. Originally this flexibility came at a significant cost in speed. Over time
various optimizations were made and now Swing runs perfectly fine for most applications.

In 2007, a new GUI and graphics framework called JavaFX was introduced to fix per-
ceived problems with Swing. The primary goals were to make something that was faster
and which made it easier for programmers to create rich and visually pleasing interfaces.
JavaFX started its life as a separate scripting language, but later became just a library
for Java. With the release of Java 8 in 2014, JavaFX became the standard that developers
are supposed to use for graphical interfaces on the JVM. It has an even broader variety of
options than Swing, and runs faster as well.

There is a Scala library that is a wrapper1 around JavaFX called ScalaFX. This is
the library that will be used in this book for writing GUIs. It makes calls to JavaFX,
but provides a syntax that takes full advantage of the features of the Scala programming
language. Unfortunately, this library is not part of the standard Scala installation. For
that reason, you might go to http://www.scalafx.org/ to get the most recent version of
ScalaFX. A JAR file2 for a reasonably recent version can be found at the book’s GitHub
repository.

All the types for ScalaFX are organized in packages that start with scalafx. The
ScalaFX web site has a link to the API on the right side. At the time of this writing,
the current version was 8.0. We will introduce each of the subpackages as they are needed.
As with the standard Scala API, the ScalaFX API is a useful tool that you will want to
familiarize yourself with. Unlike previous chapters, this chapter and the following one can
truly only skim the top of what is in ScalaFX. The API is a good resource for those who
want to go further.

11.2 First Steps
To get us started, we will write a little program that does nothing more than pop up a

window with nothing inside of it. The code for that is shown here.

Listing 11.1: FirstGUI.scala
import scalafx.application.JFXApp

1ScalaFX provides types that allow you to make calls to JavaFX using a more Scala like style.
2Java Archive File which is a compressed file used by the Java platform to distribute code.

http://www.scalafx.org/

GUIs 277

val app = new JFXApp {
stage = new JFXApp.PrimaryStage {
title = "First GUI"
width = 500
height = 500

}
}

app.main(args)

At the top, you can see there is an import of the JFXApp type from the
scalafx.application package. We then declare a val called app of that type. Inside of
our new JFXApp object we set the stage to be a new JFXApp.PrimaryStage. If you look
at scalafx.application.JFXApp in the API, you will see that it has a var called stage,
and that is what we are setting here.

The Stage type has members for title, width, and height that we set inside of that
new JFXApp.PrimaryStage object. The meanings of these should be fairly obvious.

The script ends with a call to the main method of app passing it the command line
arguments. That call is what makes things happens and should pop up a window.

Now you have to run this script. We assume that you are running your scripts from
the command line as described in Appendix A. If you try that, you will get a number of
errors telling you that scalafx.application.JFXApp cannot be found, along with other
information that is basically caused by the same issue. The problem is that ScalaFX is not
part of the standard Scala libraries. For that reason, we need to tell Scala where to find
the JAR file for ScalaFX.3 This is done by specifying what is called a classpath. There are
several ways that you can do this. The simplest is to use the -cp option at the command
line. On my system, I do that with the following command.

scala -cp /home/mlewis/scalafx.jar FirstGUI.scala

The -cp is followed by the path to the JAR file. On your machine that path will definitely
be different and the JAR file might have a longer name that includes version details.

Another approach is to specify a place that the JVM should always go to look for extra
libraries. This can be done by making a CLASSPATH environment variable. The details of
how you do this vary greatly between operating systems, versions, and other details that
make it impossible to cover here. You can find such information on the web. On one of
the author’s Windows machines a CLASSPATH environment variable was created with
a variable value of "C:\Users\llben_000\scalafx.jar;." (where C:\Users\llben_000 is
the location of the scalafx.jar file. Do not include the double quotes.). Under the Bash
shell for Linux, adding the line export CLASSPATH=.:/home/mlewis/scalafx.jar to your
.bashrc file works well. Again, the exact path and file name could be different on your
machine.

On a Linux machine, a third approach would be to make an alias for the command
that includes the classpath specification. That might look like alias scalafx="scala
-cp /home/mlewis/scalafx.jar". Once you have this defined, you could execute scalafx
FirstGUI.scala and you do not need to worry about the classpath variable.

3There are several ways you can get this JAR file. You could build it from the main repository through
http://www.scalafx.org (there are several steps involved in this, but the advantage of this approach is
that it will always match your current version of Scala) or download it from the book’s GitHub repository.
If you are taking a course, your instructor might tell you where you can find one.

http://www.scalafx.org

278 Introduction to Programming and Problem-Solving Using Scala

However you go about doing it, when you run this little script, it will pop up a window
that is 500 pixels by 500 pixels with a title that says “First GUI”. Closing the window will
end the script running.

11.3 Stages and Scenes
The Stage type that was created in our first little application is what defined the window

that popped up. To make the GUI more interesting, we need to put things on our Stage.
This is done by adding a Scene to the Stage. That Scene can then have contents that will
show up in the window. The following example demonstrates adding a Scene with one thing
inside of it to our GUI.

Listing 11.2: JustButton.scala
import scalafx.application.JFXApp
import scalafx.scene.Scene
import scalafx.scene.paint.Color
import scalafx.scene.control.Button

val app = new JFXApp {
stage = new JFXApp.PrimaryStage {
title = "First GUI"
scene = new Scene(300,200) {
fill = Color.Coral
val button = new Button("Click me!")
content = button

}
}

}

app.main(args)

There are three additional imports added here to bring in the Scene, the Color type, and
the Button type, which is what we added to the scene. The String “Click me!” is the text
that appears on the button. You can see the window that results from running this code in
figure 11.1.

Note that the button is located in the top left corner. This probably is not the ideal
location for the button, but it is where things go in the scene by default. The scene has a
coordinate system using the x and y coordinates. The top left corner is at location (0, 0) in
our scene. However, 2D graphics coordinates are slightly different than what you are used
to from math. In math you are used to x growing as you move right and y growing as you
move up. The scene uses typical graphics coordinates where x still grows from left to right,
but y grows from top down. The coordinates that are typically used for 2D graphics are like
this. The x-coordinate value, increases as it goes right and the y-coordinate increases as it
goes down. The following code moves the button to be roughly centered on the window.

Listing 11.3: MoveButton.scala
import scalafx.application.JFXApp
import scalafx.scene.Scene
import scalafx.scene.paint.Color

GUIs 279

FIGURE 11.1: This is the window that pops up running JustButton.scala. There is a
single button in a 300 by 200 pixel scene. Note that the button is, by default, in the top
left corner.

import scalafx.scene.control.Button

val app = new JFXApp {
stage = new JFXApp.PrimaryStage {
title = "First GUI"
scene = new Scene(300,200) {
fill = Color.Coral
val button = new Button("Click me!")
content = button
button.layoutX = 115
button.layoutY = 70

}
}

}

app.main(args)

This code sets the values of layoutX and layoutY on the button. Those values are specified
in pixels on the graphics coordinates, so the top left corner of the button is 115 pixels to
the right and 70 pixels below the top of the scene. Figure 11.2 shows the results of running
this program.

Having a window with only one thing in it is a bit limiting. As it happens, the contents
of the scene can also be set to a sequence, and all the elements of the sequence are placed
in the scene. This is shown here in the program called SeveralFiles.scala.

Listing 11.4: SeveralItems.scala
import scalafx.application.JFXApp
import scalafx.scene.Scene
import scalafx.scene.paint.Color
import scalafx.scene.control._
import scalafx.scene.shape._

val app = new JFXApp {
stage = new JFXApp.PrimaryStage {
title = "First GUI"
scene = new Scene(500,300) {

280 Introduction to Programming and Problem-Solving Using Scala

FIGURE 11.2: This is the window that pops up when you run MovedButton.scala. Notice
that the button has been moved so that it is roughly centered in our 300 by 200 pixel window.

fill = Color.Coral

// Create and place elements
val button = new Button("Click me!")
button.layoutX = 75
button.layoutY = 45
val rectangle = Rectangle(200,150)
rectangle.layoutX = 10
rectangle.layoutY = 140
val label = new Label("A label")
label.layoutX = 250
label.layoutY = 10
val checkBox = new CheckBox("Would you like to play a game?")
checkBox.layoutX = 250
checkBox.layoutY = 40
val comboBox = new ComboBox(List("Scala","Java","C++"))
comboBox.layoutX = 250
comboBox.layoutY = 70
val listView = new ListView("AWT Swing JavaFX ScalaFX".split(" "))
listView.layoutX = 250
listView.layoutY = 100
listView.prefHeight = 190

// Add elements to contents
content = List(button, rectangle, label, checkBox, comboBox, listView)

}
}

}

app.main(args)

This code uses the underscore for some imports as we are using multiple types from those
packages. It then goes through and creates several different Nodes to place in the scene.
Each element that is placed on the screen is a Node. In addition to a Button, it includes a
Rectangle, a Label, a CheckBox, a ComboBox, and a ListView. The end of the block for the
scene sets the contents equal to a List that includes all of those elements. The layoutX and
layoutY of each one are set so that they do not overlap. To prevent the ListView from going
below the bottom of the window, we set its preferred size. The ComboBox and ListView take

GUIs 281

FIGURE 11.3: This is the window created when you run SeveralItems.scala. It has se-
quence containing several Nodes added to the scene and moved to different locations.

arguments that are sequences of the things that they are supposed to display. To illustrate
how it works, the ComboBox was created with a List[String], while the ListView was
created with an Array[String] that is built using split. Running this program produces
the window shown in figure 11.3

11.4 Events and Handlers
The next thing that we need to do is learn how to allow the user to interact with a GUI.

Before learning about GUIs, we did this using functions like readInt and readLine. Things
are more complex with the GUI as there are many ways that you can interact with them.
There are some elements that accept text/keystrokes, but many others interact with the
mouse. Even those that do interact with keys cannot use something like readLine because
there could be many of elements in a window, which one gets the key strokes?

The way that GUIs typically deal with user interaction is through events and handlers.
When the user does something, it produces an event. In the code, you have to specify a
handler that is supposed to deal with that event. The handler is basically a function that is
passed the event and which then completes the desired action, potentially using information
from that event.

To help illustrate this, we modify the GUI from the last example and put different types
of interactivity on the various elements. Here is the modified code.

Listing 11.5: InteractiveItems.scala
import scalafx.Includes._
import scalafx.application.JFXApp
import scalafx.scene.Scene
import scalafx.scene.paint.Color
import scalafx.scene.control._
import scalafx.scene.shape._

282 Introduction to Programming and Problem-Solving Using Scala

import scalafx.event.ActionEvent
import scalafx.scene.input._

val app = new JFXApp {
stage = new JFXApp.PrimaryStage {
title = "First GUI"
scene = new Scene(500,300) {
fill = Color.Coral

// Make and place elements
val button = new Button("Remove Item")
button.layoutX = 75
button.layoutY = 45
val rectangle = Rectangle(30,30)
rectangle.layoutX = 10
rectangle.layoutY = 140
val label = new Label(s"Location is ${rectangle.layoutX()},

${rectangle.layoutY()}.")
label.layoutX = 250
label.layoutY = 10
val checkBox = new CheckBox("Would you like to play a game?")
checkBox.layoutX = 250
checkBox.layoutY = 40
val comboBox = new ComboBox(List("Scala","Java","C++"))
comboBox.layoutX = 250
comboBox.layoutY = 70
val listView = new ListView("AWT Swing JavaFX ScalaFX".split(" "))
listView.layoutX = 250
listView.layoutY = 100
listView.prefHeight = 190

// Add contents
content = List(button, rectangle, label, checkBox, comboBox, listView)

// Add event handlers
button.onAction = (e:ActionEvent) => {
val selected = listView.selectionModel.value.selectedItems
listView.items = listView.items.value.diff(selected)

}
comboBox.onAction = (e:ActionEvent) => {
listView.items.value += comboBox.selectionModel.value.selectedItem.value

}
onMouseClicked = (e:MouseEvent) => {
if (checkBox.selected.value) {
rectangle.layoutX = e.x
rectangle.layoutY = e.y
label.text = s"Location is ${rectangle.layoutX.value},

${rectangle.layoutY.value}."
}

}
}

}
}

app.main(args)

GUIs 283

Other than altering the text in the Button and the Label, the primary changes come near
the end of the script where the event handlers are added to the different elements. There
is also a new import of scalafx.Includes._ added to the top which is needed so that
Scala will do some conversions for the handlers. The handlers are added by setting values
that start with “on”, such as onAction and onMouseClicked. They are set to be functions
that take an appropriate type of event as input. When the user does the specified thing,
the function is called. These functions are just like any other lambda expressions with a
variable name, a rocket (=>), and the body of the function. The one thing to note is that
you generally have to specify the type of the argument for these to work. That is why the
argument is given as (e:ActionEvent) for the first two. As usual, the variable name e could
be anything you choose. The letter e is chosen here to represent an event.

In this example, handlers are added to the button and the combo box. For both of those
it is the onAction value that is set. This function is called when the most common action for
that element occurs, such as clicking on the button.4 The code in the button click removes
all the selected items from the list view. It does this by first getting all the items that are
selected in the list view and then setting the list view items to be the original list of items
with the selected ones removed. For the combo box, the handler adds whatever item was
selected in the combo box to the end of the list view.

This code also sets the onMouseClick handler of the whole scene. Note that the onAction
follows an object and a dot. The onMouseClicked does not. Because the code is nested inside
the scene, it uses the scene’s version of onMouseClicked. This usage is just like setting
the title of the Stage or the fill on the Scene. The handler that is created checks if the
check box has been selected. If it has not, nothing else is done. If it is has been selected,
then the rectangle is moved to the location of the click, and the label is updated with the
appropriate text. Note that because this is part of the Scene, only clicks on the background
invoke it. If you click on one of the other components in the GUI, this code is not called,
so the rectangle cannot be placed directly on top of the other elements.

Running this code will bring up a window that looks like that shown in figure 11.4.

11.5 Controls
ScalaFX has a long list of different elements that can be added into a scene, a few of

which were shown in the previous examples, but not really explained. All of these elements
that can be added into a Scene are subtypes of the type called Node. Looking at the whole
picture, for a ScalaFX GUI, we have the JFXApp at the top level. Inside of this we have a
Stage that represents the primary window for the application. The Stage needs to contain
a Scene, and finally the Scene can contain the different Nodes that appear in it.

There are 120 subtypes of scalafx.scene.Node in the ScalaFX API, a fact that should
give you an indication of how much you can do with this library. Only a few of the key ones
will be covered in this book. This section focuses on some of the GUI controls, which are
found in the scalafx.scene.control and scalafx.scene.shape packages.

The term Control is used in JavaFX to denote basic GUI elements that the user can
interact with. We break these into different categories for discussion and show examples of
each. The sample code shows not only how to create each element and add it into a Scene,
but also how to code basic interactions with that element.

4There are many types of events that can occur for each element, but the Scala developers have deter-
mined which is the most common event action for each GUI element.

284 Introduction to Programming and Problem-Solving Using Scala

FIGURE 11.4: This figure shows the window that results from running InteractiveIt-
ems.scala after the user has done a few things.

11.5.1 Text Controls

The first set of controls that we want to look at are those that deal with text. This
includes the non-interactive Label as well at the TextField, TextArea, and PasswordField.
The last three are used to allow users to enter text into a GUI. The TextField is for
shorter input that takes a single line. The TextArea is used for multi-line inputs. The
PasswordField is like a TextField, but it hides what the user types into the field. This
sample code shows the use of these four different controls.

Listing 11.6: TextControls.scala
import scalafx.Includes._
import scalafx.scene.Scene
import scalafx.application.JFXApp
import scalafx.scene.control.Label
import scalafx.scene.control.TextField
import scalafx.scene.control.TextArea
import scalafx.scene.control.PasswordField
import scalafx.event.ActionEvent

val app = new JFXApp {
stage = new JFXApp.PrimaryStage {
title = "Text Controls"
scene = new Scene(500,300) {
// Label
val label = new Label("Generally non-interactive text.")
label.layoutX = 20
label.layoutY = 20

// TextField
val textField = new TextField()
textField.layoutX = 20
textField.layoutY = 50

GUIs 285

textField.promptText = "Single-line field"

// TextArea
val textArea = new TextArea()
textArea.layoutX = 20
textArea.layoutY = 80
textArea.promptText = "Multi-line field"
textArea.prefWidth = 460
textArea.prefHeight = 120

// Password Field
val passwordField = new PasswordField()
passwordField.layoutX = 20
passwordField.layoutY = 205
passwordField.promptText = "Password field"

content = List(label, textField, textArea, passwordField)

textField.onAction = (e:ActionEvent) => {
label.text = "Field action : "+textField.text.value

}
textField.focused.onChange {
if (!textField.focused.value) label.text =
"Field focus : "+textField.text.value

}

textArea.focused.onChange {
if (!textArea.focused.value) label.text =
"Area focus : "+textArea.text.value

}

passwordField.onAction = (e:ActionEvent) => {
label.text = "Password action : "+passwordField.text.value

}
passwordField.focused.onChange {
if (!passwordField.focused.value) label.text =
"Password focus : "+passwordField.text.value

}
}

}
}

app.main(args)

Figure 11.5 shows what you see when you run this code. In addition to placing the
elements, this code sets the promptText on each element. The promptText is the greyed
out text that you see in each field that tells the user what they should enter in that field.
It is text that appears when the element does not have focus and the user has not yet
input anything. Readers might not be familiar with the term “focus”. When writing simple
console applications, where there is only one place for keystrokes to go, they are taken
as standard input that can be read by commands like readInt and readLine. In a GUI
though, keystrokes could go to any of the different elements. The one that the user selected
is said to have focus. The field that has focus will be the field that receives the users actions.
This is significant for code that wants to do something after a user has altered text.

286 Introduction to Programming and Problem-Solving Using Scala

FIGURE 11.5: This figure shows the window that results from running TextControls.scala.

There are two types of handlers in this code: the onAction handler and the onChange
handler. The TextField and PasswordField set the onAction handler. This handler is
called when the user hits the Enter key on that field. However, users do not always hit
Enter on a TextField. That type of handler does not even exist for the TextArea because
hitting Enter on a TextArea simply goes to the next line. To know that the user has finished
editing text, we can also detect when the element loses focus. That is what is being done
with the calls to focused.onChange. The code passed to that method is passed by-name,
and it is invoked anytime that the element gains or loses focus. In this case, we only care
about when it loses focus. The focused member is a property, so we have to call the value
method to get an actual Boolean value.5

11.5.2 Button-like Controls

There are four button-like controls in ScalaFX. In addition to the Button and CheckBox,
which we saw earlier, there are also RadioButtons and ToggleButtons that can both be
grouped together into ToggleGroups. The RadioButton appears as a circle next to some
text and can be marked as selected or not. The ToggleButton looks like a standard Button,
but when selected, it stays in the “down” state which generally appears in a darker color.
Other than appearance, the main difference between the two is that if you click the selected
ToggleButton, it will be unselected. This is not true of RadioButtons. Once a RadioButton
from a group has been selected, you cannot get back to a state where nothing is selected.
The following code sample shows a GUI with these elements and how to handle events that
happen with them.

Listing 11.7: ButtonControls.scala
import scalafx.Includes._
import scalafx.scene.Scene
import scalafx.application.JFXApp
import scalafx.scene.control.Label
import scalafx.scene.control.Button

5You can also call the apply method to get the same result.

GUIs 287

import scalafx.scene.control.CheckBox
import scalafx.scene.control.RadioButton
import scalafx.scene.control.ToggleButton
import scalafx.scene.control.ToggleGroup
import scalafx.event.ActionEvent

val app = new JFXApp {
stage = new JFXApp.PrimaryStage {
title = "Button Controls"
scene = new Scene(300,340) {
// Label
val label = new Label("Just used for feedback.")
label.layoutX = 20
label.layoutY = 20

// Button
val button = new Button("Button")
button.layoutX = 20
button.layoutY = 50

// CheckBoxes
val cb1 = new CheckBox("Check Box 1")
cb1.layoutX = 20
cb1.layoutY = 80
val cb2 = new CheckBox("Check Box 2")
cb2.layoutX = 20
cb2.layoutY = 110

// RadioButtons
val rb1 = new RadioButton("Radio Button 1")
rb1.layoutX = 20
rb1.layoutY = 140
val rb2 = new RadioButton("Radio Button 2")
rb2.layoutX = 20
rb2.layoutY = 170
val rb3 = new RadioButton("Radio Button 3")
rb3.layoutX = 20
rb3.layoutY = 200
val group1 = new ToggleGroup()
group1.toggles = List(rb1, rb2, rb3)

// Toggle Buttons
val tb1 = new ToggleButton("Toggle Button 1")
tb1.layoutX = 20
tb1.layoutY = 230
val tb2 = new ToggleButton("Toggle Button 2")
tb2.layoutX = 20
tb2.layoutY = 260
val tb3 = new ToggleButton("Toggle Button 3")
tb3.layoutX = 20
tb3.layoutY = 290
val group2 = new ToggleGroup()
group2.toggles = List(tb1, tb2, tb3)

content = List(label, button, cb1, cb2, rb1, rb2, rb3, tb1, tb2, tb3)

288 Introduction to Programming and Problem-Solving Using Scala

button.onAction = (e:ActionEvent) => {
label.text = "Button clicked"

}

cb1.onAction = (e:ActionEvent) => {
label.text = "Check Box 1 is " + cb1.selected.value

}
cb2.onAction = (e:ActionEvent) => {
label.text = "Check Box 2 is " + cb2.selected.value

}

rb1.onAction = (e:ActionEvent) => {
label.text = "Radio Button 1 is " + rb1.selected.value

}
rb2.onAction = (e:ActionEvent) => {
label.text = "Radio Button 2 is " + rb2.selected.value

}
rb3.onAction = (e:ActionEvent) => {
label.text = "Radio Button 3 is " + rb3.selected.value

}
rb1.selected.onChange(println("Radio button 1 is " + rb1.selected.value))

tb1.onAction = (e:ActionEvent) => {
label.text = "Toggle Button 1 is " + tb1.selected.value

}
tb2.onAction = (e:ActionEvent) => {
label.text = "Toggle Button 2 is " + tb2.selected.value

}
tb3.onAction = (e:ActionEvent) => {
label.text = "Toggle Button 3 is " + tb3.selected.value

}
tb1.selected.onChange(println("Toggle button 1 is " + tb1.selected.value))

}
}

}

app.main(args)

All of the button-like controls allow you to define onAction, which is called when the user
clicks on that button. For the RadioButton and the ToggleButton, the state of selection
can also change when the user selects one of the other elements. This does not fire the action
handler, but you can set up code to be called when that type of change occurs by setting
the onChange value of the selected member, as shown in the code. Code to do this was
only added for the first RadioButton and ToggleButton.

11.5.3 Selection Controls

There are three controls that allow the user to select different items from a desig-
nated selection. The ComboBox and ListView appeared in earlier examples. There is also a
ChoiceBox, which is very similar to the ComboBox in functionality and appearance, but can
allow multiple selections. Here is code that adds these three components to a Scene and
handles the user making selections on them.

GUIs 289

FIGURE 11.6: This figure shows the window that results from running ButtonCon-
trols.scala.

Listing 11.8: SelectionControls.scala
import scalafx.Includes._
import scalafx.scene.Scene
import scalafx.application.JFXApp
import scalafx.scene.control.Label
import scalafx.scene.control.ChoiceBox
import scalafx.scene.control.ComboBox
import scalafx.scene.control.ListView
import scalafx.collections.ObservableBuffer
import scalafx.event.ActionEvent

val app = new JFXApp {
stage = new JFXApp.PrimaryStage {
title = "Selection Controls"
scene = new Scene(667,200) {
// Label
val label = new Label("For display purposes.")
label.layoutX = 20
label.layoutY = 20

// ChoiceBox
val choiceBox = new ChoiceBox(ObservableBuffer("Choice 1", "Choice 2",

"Choice 3"))
choiceBox.layoutX = 20
choiceBox.layoutY = 50

// ComboBox
val comboBox = new ComboBox(List("Combo 1", "Combo 2", "Combo 3"))
comboBox.layoutX = 20
comboBox.layoutY = 80

290 Introduction to Programming and Problem-Solving Using Scala

FIGURE 11.7: This figure shows the window that results from running SelectionCon-
trols.scala after the user has selected some items.

// ListView
val listView = new ListView(List("List 1", "List 2", "List 3"))
listView.layoutX = 353
listView.layoutY = 20
listView.prefHeight = 160

content = List(label, choiceBox, comboBox, listView)

choiceBox.value.onChange {
label.text = "Choice selected : " + choiceBox.value.value

}

comboBox.onAction = (e:ActionEvent) => {
label.text = "Combo box selected : " + comboBox.value.value

}

listView.selectionModel.value.selectedItem.onChange {
label.text = "List view selected : " +

listView.selectionModel.value.selectedItem.value
}

}
}

}

app.main(args)

The ChoiceBox requires that the elements be added using an ObservableBuffer instead
of just a List. Also note that the three controls have different ways in which you add code
that is executed when a selection is made. The ComboBox uses the standard onAction
method. For the ChoiceBox, you have to use onChange with the value property. The
ListView is the most complex, as it requires calling onChange, but on the selectedItem
under the selectionModel.

GUIs 291

11.5.4 Pickers

There are some types of values that the program needs to work with frequently, that
require more complex interfaces for them to be easier to use. These include things like colors
and dates. ScalaFX includes ColorPicker and DatePicker controls for just this purpose.
Each of these appears normally as something like a ComboBox, but when the user clicks on
them, they are presented with controls that allow them to select from various colors or a
calendar that allows them to pick dates. Here is some code that uses these two controls.

Listing 11.9: PickerControls.scala
import scalafx.Includes._
import scalafx.scene.Scene
import scalafx.application.JFXApp
import scalafx.scene.control.Label
import scalafx.scene.control.ColorPicker
import scalafx.scene.control.DatePicker
import scalafx.scene.paint.Color
import scalafx.event.ActionEvent
import java.time.LocalDate

val app = new JFXApp {
stage = new JFXApp.PrimaryStage {
title = "Picker Controls"
scene = new Scene(250,130) {
// Label
val label = new Label("Shows date once selected.")
label.layoutX = 20
label.layoutY = 20

// ColorPicker
val colorPicker = new ColorPicker(Color.White)
colorPicker.layoutX = 20
colorPicker.layoutY = 50

// DatePicker
val datePicker = new DatePicker(LocalDate.now)
datePicker.layoutX = 20
datePicker.layoutY = 80

content = List(label, colorPicker, datePicker)

colorPicker.onAction = (e:ActionEvent) => {
fill = colorPicker.value.value

}

datePicker.onAction = (e:ActionEvent) => {
label.text = "Date is : " + datePicker.value.value

}
}

}
}

app.main(args)

292 Introduction to Programming and Problem-Solving Using Scala

FIGURE 11.8: This figure shows the window that results from running PickerCon-
trols.scala after the user has selected some items.

Note that when make one of these types, you have to give it an initial value. For this
reason, there are two extra imports at the top of the file for scalafx.scene.paint.Color
and java.time.LocalDate. Both of these controls use onAction to set what will happen
when their value is changed. In this example code, the ColorPicker value is used to set the
fill color of the scene, so you can control what color is used for the background. The selected
date is shown in the Label, as has been done in most of the other examples. Running this
program and making some selections produced the window shown in figure 11.8.

11.5.5 TableView

One of the more complex controls that you have available to you in ScalaFX is the
TableView. As the name implies, this control displays a table of information. It is very
powerful, and includes options for editing data, but we will only look at its usage for
displaying data in a table format. The code below shows a simple example.

Listing 11.10: TableControl.scala
import scalafx.Includes._
import scalafx.scene.Scene
import scalafx.application.JFXApp
import scalafx.scene.control.TableView
import scalafx.scene.control.TableColumn
import scalafx.event.ActionEvent
import scalafx.collections.ObservableBuffer
import scalafx.beans.property.StringProperty
import scalafx.beans.property.ObjectProperty

case class Student(name:String,test1:Int,test2:Int)

val app = new JFXApp {
stage = new JFXApp.PrimaryStage {
title = "Table Control"
scene = new Scene(500, 300) {
val data = ObservableBuffer(
Student("Mark Smith", 76, 89),
Student("Lisa Doe", 97, 96),
Student("Bob Builder", 20, 54)

)

val table = new TableView(data)
val col1 = new TableColumn[Student,String]("Name")

GUIs 293

col1.cellValueFactory = cdf => StringProperty(cdf.value.name)
val col2 = new TableColumn[Student,Int]("Test 1")
col2.cellValueFactory = cdf => ObjectProperty(cdf.value.test1)
val col3 = new TableColumn[Student,Int]("Test 2")
col3.cellValueFactory = cdf => ObjectProperty(cdf.value.test2)
val col4 = new TableColumn[Student,Double]("Average")
col4.cellValueFactory = cdf =>

ObjectProperty((cdf.value.test1+cdf.value.test2)/2.0)
table.columns ++= List(col1, col2, col3, col4)

root = table

table.selectionModel.value.selectedItem.onChange(
println("Selected " + table.selectionModel.value.selectedItem.value)

)
}

}
}

app.main(args)

In a table, the data is a sequence of rows that you make as an ObservableBuffer. Each
column in the table has code that pulls out some value from that data. In this example,
we created a Student type that stores a name and two grades. The table is created and
passed data that contains three students. We then create four columns for the table that
display the name, two grades, and average. The TableColumn type needs to have two type
parameters. The first one is the type of data that is in the rows. The second one is the type
of value being displayed in that column. It also takes an argument for the text you want to
appear at the top of that column.

In order to display the data, we have to tell each column how it gets the proper value
from the student. This is done by setting the cellValueFactory for that column. We set it
to a function that takes an object of type CellDataFeatures and returns an observable6 of
the value to display. In this code, we have used the name cdf for the CellDataFeatures,
and the only member of that class that we use is the value. The functions return either a
StringProperty or ObjectProperty in this code.

Another thing that has been changed from previous examples is that instead of setting
the content member of the Scene, we set the root value. Using content makes it easy
to add multiple items to a Scene, but those items do not change in size when the window
changes in size. In this program, we only have a single Node being added, and there is an
advantage to having that Node conform to the size of the window. For that reason, we use
root instead. We will see this again in section 11.7.

The last element in the code shows how to handle a user selecting a row from the table.
This is done in a manner very similar to the ListView, where we set the onChange behavior
for the selected item. Running this program produces a window like that shown in figure
11.9.

11.5.6 TreeView

Another more complex control that is provided in ScalaFX is the TreeView. This displays
values that can be nested and allows the user to expand or collapse elements that have things

6Observables and properties are discussed in detail in a few sections.

294 Introduction to Programming and Problem-Solving Using Scala

FIGURE 11.9: This figure shows the window that results from running TableControl.scala.

nested inside of them. It is likely that you have seen this type of display to show things like
directory structures. Simple example code for a TreeView is shown here.

Listing 11.11: TreeControl.scala
import scalafx.Includes._
import scalafx.scene.Scene
import scalafx.application.JFXApp
import scalafx.scene.control.TreeView
import scalafx.scene.control.TreeItem
import scalafx.event.ActionEvent

val app = new JFXApp {
stage = new JFXApp.PrimaryStage {
title = "Tree Control"
scene = new Scene(500, 300) {
val imperative = new TreeItem("Imperative")
imperative.children = List(new TreeItem("Java"), new TreeItem("C"), new

TreeItem("C++"))
val functional = new TreeItem("Functional")
functional.children = List(new TreeItem("Lisp"), new TreeItem("Haskell"), new

TreeItem("Scala"))
val treeRoot = new TreeItem("Languages")
treeRoot.children = List(imperative, functional)

val tree = new TreeView(treeRoot)
tree.layoutX = 20
tree.layoutY = 20
tree.prefWidth = 460
tree.prefHeight = 260

content = tree

tree.selectionModel.value.selectedItem.onChange(

GUIs 295

FIGURE 11.10: This figure shows the window that results from running TreeControl.scala
after the items are expanded and one is selected.

println("Selected " + tree.selectionModel.value.selectedItem.value)
)

}
}

}

app.main(args)

The TreeView displays TreeItems, and each TreeItem may or may not have children
associated with it. In this example, the top item in the tree, typically called the “root”,
is for programming languages. That item has two children for imperative and functional
languages. Each of those is given three children that are created at the point where they
are added as children.

The script ends by showing how you can register code to be run when an item is selected.
The code resembles that used for the TableView and the ListView. Note that when a user
expands or collapses an item, that does not register as a change in the selection. The window
produced by running this code, expanding all the elements, and selecting “Scala” is shown
in figure 11.10.

11.5.7 Menus and FileChooser

Menus typically provide one of the main ways for users to interact with GUIs, and
ScalaFX includes a number of different options for creating and interacting with menus.
The following code runs through and sets up a little program that makes use of most of the
different options for menus. It also shows how a FileChooser can be utilized to allow the
user to easily select files for opening or saving.

Listing 11.12: MenuControls.scala
import scalafx.Includes._
import scalafx.scene.Scene
import scalafx.application.JFXApp

296 Introduction to Programming and Problem-Solving Using Scala

import scalafx.scene.control.Label
import scalafx.scene.control.MenuBar
import scalafx.scene.control.Menu
import scalafx.scene.control.MenuItem
import scalafx.scene.control.MenuButton
import scalafx.scene.control.SeparatorMenuItem
import scalafx.scene.control.CheckMenuItem
import scalafx.scene.control.ContextMenu
import scalafx.scene.control.RadioMenuItem
import scalafx.scene.control.SplitMenuButton
import scalafx.scene.control.ToggleGroup
import scalafx.scene.layout.Priority
import scalafx.stage.FileChooser
import scalafx.event.ActionEvent
import scalafx.scene.input.KeyCode
import scalafx.scene.input.KeyCombination
import scalafx.scene.input.KeyCodeCombination

val app = new JFXApp {
stage = new JFXApp.PrimaryStage {
title = "Menu Controls"
scene = new Scene(500, 200) {
val menuBar = new MenuBar()
val fileMenu = new Menu("File")
val newItem = new MenuItem("New")
newItem.accelerator = new KeyCodeCombination(KeyCode.N,

KeyCombination.ControlDown)
val openItem = new MenuItem("Open")
openItem.accelerator = new KeyCodeCombination(KeyCode.O,

KeyCombination.ControlDown)
val saveItem = new MenuItem("Save")
saveItem.accelerator = new KeyCodeCombination(KeyCode.S,

KeyCombination.ControlDown)
val exitItem = new MenuItem("Exit")
exitItem.accelerator = new KeyCodeCombination(KeyCode.X,

KeyCombination.ControlDown)
fileMenu.items = List(newItem, openItem, saveItem, new SeparatorMenuItem,

exitItem)

val checkMenu = new Menu("Checks")
val check1 = new CheckMenuItem("Check 1")
val check2 = new CheckMenuItem("Check 2")
checkMenu.items = List(check1, check2)

val radioMenu = new Menu("Radios")
val radio1 = new RadioMenuItem("Radio 1")
val radio2 = new RadioMenuItem("Radio 2")
val radio3 = new RadioMenuItem("Radio 3")
val group = new ToggleGroup
group.toggles = List(radio1, radio2, radio3)
radioMenu.items = List(radio1, radio2, radio3)

val typesMenu = new Menu("Types")
typesMenu.items = List(checkMenu, radioMenu)
menuBar.menus = List(fileMenu, typesMenu)

GUIs 297

menuBar.prefWidth = 500

val menuButton = new MenuButton("Menu Button")
menuButton.items = List(new MenuItem("Button 1"), new MenuItem("Button 2"))
menuButton.layoutX = 20
menuButton.layoutY = 50

val splitMenuButton = new SplitMenuButton(new MenuItem("Split Button 1"), new
MenuItem("Split Button 2"))

splitMenuButton.text.value = "Split Menu Button"
splitMenuButton.layoutX = 20
splitMenuButton.layoutY = 100

val contextMenu = new ContextMenu(new MenuItem("Context 1"), new
MenuItem("Context 2"))

val label = new Label("Right click this to get a context menu.")
label.layoutX = 20
label.layoutY = 150
label.contextMenu = contextMenu

content = List(menuBar, menuButton, splitMenuButton, label)

exitItem.onAction = (e:ActionEvent) => {
sys.exit(0)

}
saveItem.onAction = (e:ActionEvent) => {
val fileChooser = new FileChooser
val selectedFile = fileChooser.showSaveDialog(stage)
label.text = "Save to : "+selectedFile

}
openItem.onAction = (e:ActionEvent) => {
val fileChooser = new FileChooser
val selectedFile = fileChooser.showOpenDialog(stage)
label.text = "Open : "+selectedFile

}
}

}
}

app.main(args)

The menus at the top of the Scene are created as part of a MenuBar. That MenuBar in-
cludes different Menus that can be set with the menu property. In this example we add a “File”
menu and a “Types” menu. Each menu can be populated by a combination of MenuItems,
CheckMenuItems, RadioMenuItems, or other Menus as well as SeparatorMenuItems that are
intended to help with layout.

The “File” menu in this example has several MenuItems that one might expect to see in
such a menu, with a separator to give some offset for “Exit”. To see this, you should pull the
code down from the book’s GitHub repository and run it. These options also have accelerator
keys (also known as short-cut keys) set for them. Actions have been attached to “Open”,
“Save”, and “Exit”. Setting an action handler for a MenuItem is similar to what was done
for the Button. You do this by setting the onAction value. The action for “Exit” is to call
sys.exit(0), which terminates the program and tells whatever called it that it was a normal
termination. The “Open” and “Save” options have actions that create FileChoosers and

298 Introduction to Programming and Problem-Solving Using Scala

FIGURE 11.11: This figure shows the window that results from running MenuCon-
trols.scala.

then call the showOpenDialog or showSaveDialog methods. When you do this, a standard
dialog box for file selection is displayed. There are many other options you can provide for
FileChoosers, but this gives you the basics.

The different options in the “File” menu also have keyboard accelerator values set for
them. This allows the user to quit the program simply by pressing Ctrl-X on their keyboard
or invoke the “Save” option with Ctrl-S. Having shortcuts like this is never required for a
program, but it can make things much faster for users who like using the keyboard.

The “Types” menu illustrates nesting sub-menus. The first sub-menu shows the use
of CheckMenuItems, which can be checked or unchecked and remember their state, much
like a CheckBox. The second sub-menu demonstrates the use of RadioMenuItems. Like
RadioButtons, these can be added to a ToggleGroup so that only one option can be selected
at a time from within that group. You can have multiple ToggleGroups in your Scene.

ScalaFX also includes three other ways to utilize menus. There is a MenuButton, that
will pop up a menu when the button is clicked as well as a SplitMenuButton that has a
left section that operates as a plain button, and a right section that will cause a menu to be
displayed. You can see what these look like in figure 11.11. So in our example, the side of the
button that has the text "Split Menu Button" is just a regular button, and the drop-down
arrow to the left displays a menu when clicked.

Lastly, this code demonstrates the use of a ContextMenu. This is a menu that you can
bring up by right clicking on some element of the GUI. A Label is added to our Scene and
its contextMenu is set to be a little ContextMenu. If you run the program and right click
on the label, you will see it pop up.

11.5.8 Other Stuff

There are a number of other controls that do not fit into the categories of the pre-
vious sections, so they are presented here. These include the ProgressBar, ScrollBar,
Separator, Slider, and ToolBar. The following code shows examples of using these and
how you can interact with them.

GUIs 299

Listing 11.13: OtherControls.scala
import scalafx.Includes._
import scalafx.scene.Scene
import scalafx.application.JFXApp
import scalafx.scene.control.Button
import scalafx.scene.control.Label
import scalafx.scene.control.ProgressBar
import scalafx.scene.control.ScrollBar
import scalafx.scene.control.Separator
import scalafx.scene.control.Slider
import scalafx.scene.control.ToolBar
import scalafx.event.ActionEvent
import scalafx.geometry.Orientation

val app = new JFXApp {
stage = new JFXApp.PrimaryStage {
title = "Other Controls"
scene = new Scene(500, 190) {
val toolBar = new ToolBar
toolBar.prefWidth = 500

val advButton = new Button("Advance")
val decButton = new Button("Decrement")
toolBar.items = List(advButton, decButton, new Separator,

new Button("tool 1"), new Button("tool 2"))

val progress = new ProgressBar
progress.layoutX = 20
progress.layoutY = 70
progress.prefWidth = 210

val scroll = new ScrollBar
scroll.layoutX = 20
scroll.layoutY = 100
scroll.min = 0
scroll.max = 100
scroll.prefWidth = 210

val scrollLabel = new Label("Scroll bar value")
scrollLabel.layoutX = 20
scrollLabel.layoutY = 140

val separator = new Separator
separator.layoutX = 250
separator.layoutY = 0
separator.orientation = Orientation.Vertical
separator.prefHeight = 300

val slider = new Slider(0,10,0)
slider.layoutX = 270
slider.layoutY = 70
slider.prefWidth = 210

val sliderLabel = new Label("Slider value")
sliderLabel.layoutX = 270

300 Introduction to Programming and Problem-Solving Using Scala

FIGURE 11.12: This figure shows the window that results from running OtherCon-
trols.scala after adjusting the various elements.

sliderLabel.layoutY = 100

content = List(progress, scroll, scrollLabel, separator, slider, toolBar,
sliderLabel)

advButton.onAction = (e:ActionEvent) => {
progress.progress = progress.progress.value + 0.05 min 1.0 max 0.0

}

decButton.onAction = (e:ActionEvent) => {
progress.progress = progress.progress.value - 0.05 min 1.0 max 0.0

}

scroll.value.onChange {
scrollLabel.text = "Scroll bar = " + scroll.value.value

}

slider.value.onChange {
sliderLabel.text = "Slider = " + slider.value.value

}
}

}
}

app.main(args)

The top of the window has the ToolBar with four buttons. There is a Separator between
the first two buttons and the second two buttons. The main area is divided in half by another
Separator.

On the left side of the main area is a ProgressBar and a ScrollBar. The first two
buttons in the ToolBar control the ProgressBar. By default, the ProgressBar has a neg-
ative value which causes it to be animated. For example, at the time of this writing shows
a blue bar that moves back and forth across the field. The buttons can be used to increase
or decrease the value. When these are clicked, you can see the indicator move. Figure 11.12
shows after the “Advance” button has been clicked several times.

The ScrollBar is set to go from 0 to 100, and when the value changes, the Label below
the ScrollBar changes to tell what the value is. By default the ScrollBar is horizontal.
You can change it to a vertical orientation if you want.

GUIs 301

The right side of the main area has the Slider, which also has a label below it, and
that label is updated when the value of the Slider is changed.

11.6 Observables, Properties, and Bindings
A number of examples above have used things with names that included the words

“Observable” or “Property”. For example, both the ChoiceBox and the TableView used
an ObservableBuffer to hold the data that was placed into them. The columns
for the TableView also explicitly made objects with the types StringProperty and
ObjectProperty. Though it was not explicit in the code, the text and focused members of
the TextField are of type StringProperty and ReadOnlyBooleanProperty, respectively.
It turns out that properties are all over the place in the code that we have written. The
calls to onChange typically followed a value, which was a Property. In addition to the
ability to set the onChange behavior, these properties have capabilities that we have not
yet explored. The most important of those is the ability to do bindings.

In the ScalaFX library, an observable is, as the name implies, something that we can
observe in the code. What this means is that you can set it up so that other parts of the code
are notified when the observed value is changed. The reason for the ObservableBuffer in
the TableView is that the table is observing the data. So if you change the data, the table
will be automatically updated. Note that this type of behavior does not happen by default
normally. If you make a var and set a TextField to display that value, doing an assignment
to the var does not alter the TextField. It happens that the text in the TextField is a
property, so there are other ways to get it to update that are automatic.

The way to make things update automatically in the GUI is with bindings. You can
bind a property to an observable of the proper type, and when the observable changes, the
property will automatically be updated. You can also create bidirectional bindings between
two properties, so that if either one is changed, the other will be updated as well. To see
how this works, we start off by modifying a few of the earlier examples so that they use
bindings instead of the onAction method.

We begin with the code for the ColorPicker and DatePicker. In the original version,
both set onAction to do something. The following code shows how these can be replaced
by appropriate bindings.

Listing 11.14: PickerBindings.scala
import scalafx.Includes._
import scalafx.scene.Scene
import scalafx.application.JFXApp
import scalafx.scene.control.Label
import scalafx.scene.control.ColorPicker
import scalafx.scene.control.DatePicker
import scalafx.scene.paint.Color
import scalafx.beans.property.StringProperty
import java.time.LocalDate

val app = new JFXApp {
stage = new JFXApp.PrimaryStage {
title = "Picker Bindings"
scene = new Scene(250,130) {
// Label

302 Introduction to Programming and Problem-Solving Using Scala

val label = new Label("Shows date once selected.")
label.layoutX = 20
label.layoutY = 20

// ColorPicker
val colorPicker = new ColorPicker(Color.White)
colorPicker.layoutX = 20
colorPicker.layoutY = 50

// DatePicker
val datePicker = new DatePicker(LocalDate.now)
datePicker.layoutX = 20
datePicker.layoutY = 80

content = List(label, colorPicker, datePicker)

fill <== colorPicker.value

label.text <== StringProperty("Date is : ") + datePicker.value.asString
}

}
}

app.main(args)

The only changes are at the end of the file, where the handling code had been.
The colorPicker object had been set so that it would alter the fill property of the
Scene when a selection was made. Now that functionality is achieved with fill <==
colorPicker.value. The <== operator creates a unidirectional binding. In this case, fill
is bound to the value of colorPicker.value. So when the value of the colorPicker is
changed, the background color of the scene is automatically updated to reflect it.

Updating the text on the Label is a bit more complex, but only a bit. This is because
we have a type difference, and we also want to bind to a String that is more than just
the date itself. The code that is used is label.text <== StringProperty("Date is :
") + datePicker.value.asString. Again, the <== operator is used to actually create the
binding. What we bind to needs to be a property, and more specifically a StringProperty,
because the text is a StringProperty. Calling asString on the datePicker.value gives
us a StringProperty for that, but we also want to prepend “Date is :” for the label. To do
that, we make a StringProperty with that string literal and use + to concatenate them.
This produces a new StringProperty that is itself bound to the value of the DatePicker.

11.6.1 Numeric Properties and Bindings

To illustrate what we can do with numeric bindings, we will use a new example. This
example has three Sliders that control the location and size of a rectangle. The first
one controls the x-location (horizontal location), the second one controls the y-location
(vertical location), and the third one controls the size. There is also a ScrollBar that is
bidirectionally bound to one of the Sliders to illustrate how one of the elements change
when you change the other element. Lastly, there is a Label that is set to be centered on
the window using bindings.

GUIs 303

Listing 11.15: NumericBindings.scala
import scalafx.Includes._
import scalafx.scene.Scene
import scalafx.application.JFXApp
import scalafx.scene.control.Label
import scalafx.scene.control.ScrollBar
import scalafx.scene.control.Slider
import scalafx.scene.shape.Rectangle

val app = new JFXApp {
stage = new JFXApp.PrimaryStage {
title = "Numeric Bindings"
scene = new Scene(600, 250) {
val label = new Label("This stays centered.")

val xSlider = new Slider(0,100,0)
xSlider.layoutX = 10
xSlider.layoutY = 10
xSlider.prefWidth = 180

val ySlider = new Slider(0,100,0)
ySlider.layoutX = 210
ySlider.layoutY = 10
ySlider.prefWidth = 180

val sizeSlider = new Slider(0,100,0)
sizeSlider.layoutX = 410
sizeSlider.layoutY = 10
sizeSlider.prefWidth = 180

val scroll = new ScrollBar
scroll.layoutX = 210
scroll.layoutY = 220
scroll.min = 0
scroll.max = 100
scroll.prefWidth = 180

val rectangle = Rectangle(10,10)
rectangle.layoutX = 0
rectangle.layoutY = 40

content = List(label, xSlider, ySlider, sizeSlider, scroll, rectangle)

label.layoutX <== (width-label.width)/2
label.layoutY <== (height-label.height)/2
rectangle.layoutX <== xSlider.value*6
rectangle.layoutY <== ySlider.value+40
rectangle.width <== (sizeSlider.value*2)+10
rectangle.height <== (sizeSlider.value*2)+10
scroll.value <==> ySlider.value

}
}

}

app.main(args)

304 Introduction to Programming and Problem-Solving Using Scala

FIGURE 11.13: This figure shows the window that results from running NumericBind-
ings.scala after the sliders have been adjusted some.

The setup of the GUI is fairly standard, based on what we have seen previously. The
interesting part is the bindings at the bottom. All of these bindings are for numeric values.
In particular, they have the type DoubleProperty. As you can see in the code, we are able
to do math with these values, and the result is another DoubleProperty.

If you have played much with the previous GUIs, you probably noted one significant
shortcoming, they do not adjust to the user changing the window size. In all of the GUIs
so far, we have manually set the values of layoutX and layoutY as well as prefWidth and
prefHeight when needed. This approach is simple, but it is not really flexible. We could
have added the line resizable = false to the stage in any of these GUIs to make it so
that the user is not allowed to change the size of the window, but that does not really fix the
underlying problem. The proper way to do with this is to use layouts and panes, which are
described in section 11.7. However, bindings can also produce the desired results in simple
situations, or when you want to do something that an existing layout or pane will not do.

In this example, the label is always displayed in the center of the window, even when
you resize the window.7 This behavior is produced by binding the layout values to simple
calculations based on the width and height of the full scene and the label. You can use
this type of binding to put things in arbitrary locations that are based on the size of the
window, but it is less efficient than using layouts and panes when they work.

The last binding is an example of a bidirectional binding. It uses the <==> operator to
link the values of the ScrollBar and the middle Slider that is bound to the y-value of the
rectangle. If you move either one, the other also moves, and the rectangle’s vertical position
also shifts. In figure 11.13 you can see that the ScrollBar and the Slider above it are in
the same position.

11.6.2 Conditional Bindings

It is also possible to make bindings conditional. This is done using when, choose, and
otherwise. To illustrate this, we have a simple script that includes a Slider and a Label.
The location of the Label is determined by the Slider. Unlike the previous example, where
the position moved smoothly, the position here is set in a discontinuous way so it jumps

7In the build of ScalaFX used at the time this was written, this produces a warning as the binding
happens before the scene has a size. This does not have a negative performance on the behavior of the
script, so we will ignore it.

GUIs 305

from the left side to the right when the Slider crosses the central value. The color of the
background is also varies based on whether the mouse is over the Label.

Listing 11.16: ConditionalBindings.scala
import scalafx.Includes._
import scalafx.scene.Scene
import scalafx.application.JFXApp
import scalafx.scene.control.Label
import scalafx.scene.control.Slider
import scalafx.scene.paint.Color

val app = new JFXApp {
stage = new JFXApp.PrimaryStage {
title = "Conditional Bindings"
scene = new Scene(500, 250) {
val label = new Label("Hover to change background.")

val slider = new Slider(0,100,0)
slider.layoutX = 10
slider.layoutY = 10
slider.prefWidth = 180

content = List(label, slider)

label.layoutX <== when (slider.value < 50) choose 0 otherwise
width-label.width

label.layoutY <== (height-label.height)/2
fill <== when (label.hover) choose Color.Red otherwise Color.White

}
}

}

app.main(args)

At the end of the code you can see how the conditional bindings are created. The when
is followed by an observable Boolean, such as a BooleanProperty. That is followed by
choose and the value/property that should be used if the condition is true. That is followed
by otherwise and the value/property to use if the condition is false. Unlike if and else,
when, choose, and otherwise are not keywords in the Scala language, they are part of the
ScalaFX library. The import scalafx.Includes._ makes when visible, and the others are
actually methods being used in the infix style.8

Figure 11.14 shows the window that one gets from this script with the Slider moved
above the middle value and the mouse, not shown, hovering over the Label.

8Recall that the infix style is when a method with one argument is put between the object and the
operand without a dot or parentheses. We typically use this with symbolic operators. Another common
example was min and max when we would do a min b instead of a.min(b).

306 Introduction to Programming and Problem-Solving Using Scala

FIGURE 11.14: This figure shows the window that results from running Conditional-
Bindings.scala after the slider has been adjusted with the mouse hovering over the label.

GUIs 307

11.7 Layout and Panes
While you can use bindings to make things move around when you change the size of a

window, this really is not the way you want to build complex user interfaces. The proper
way to make complex interfaces in ScalaFX is with layouts and panes. Most of these are in
the scalafx.scene.layout package, but some are part of scalafx.scene.control. The
ones in layout produce fairly simple layouts that do not interact with the user. The ones in
control allow some form of user interaction. Using either of these, you can create complex
displays by nesting them inside of one another. The panes themselves are Nodes, so you can
add them to one another in the same way that you might add a Button into one. Each type
has its own rules for how the elements inside of it change size when the whole thing changes
size.

11.7.1 scalafx.scene.layout Panes

The following list briefly describes the types provided in the scalafx.scene.layout
package in alphabetical order.

• AnchorPane - This pane allows you to set the location of contents in-
side of it relative to the location of this pane. You can call methods like
AnchorPane.setBottomAnchor(child:Node, value:Double) to specify where a
child should appear in the AnchorPane. Items can be anchored to more than one
edge.

• BorderPane - Arranges elements in five different regions: top, bottom, left, right,
and center. The elements at the top and the bottom span the full width of the pane
and take as much space as they need in height. The left and right elements take the
remaining space in height and as much as they need in width. The center element gets
whatever is left over.

• FlowPane - This pane places the contents one after another with either a horizontal
or vertical orientation, giving each one as much space as it wants. When it runs out
of space it starts a new row or column, based on the orientation.

• GridPane - Arranges its elements in a flexible grid. The elements can be placed at any
row and column, and they are allowed to cover multiple rows and/or columns. The
rows and columns are sized to accommodate the elements that are in them.

• HBox - Arranges elements horizontally next to one another.

• StackPane - Stacks elements on top of one another in the same area of the screen so
that they overlap.

• TilePane - Arranges the elements in a grid of uniform “tiles”. The contents are ar-
ranged going across each row first. Tile sizes are determined by the contents by default.

• VBox - Arranges the elements vertically each one below the one before it.

To help illustrate how these work, the following code creates a GUI that has a
BorderPane as the primary contents, with a HBox on top, a VBox on the left, a FlowPane
on bottom, a StackPane on the right, and a TilePane in the center. In each one of these
we add a Button, a Label, a TextField, a TextArea, a ComboBox, and a Slider.

308 Introduction to Programming and Problem-Solving Using Scala

Listing 11.17: Layouts.scala
import scalafx.Includes._
import scalafx.scene.Scene
import scalafx.application.JFXApp
import scalafx.scene.control._
import scalafx.scene.layout.BorderPane
import scalafx.scene.layout.FlowPane
import scalafx.scene.layout.HBox
import scalafx.scene.layout.Pane
import scalafx.scene.layout.StackPane
import scalafx.scene.layout.TilePane
import scalafx.scene.layout.VBox
import scalafx.scene.layout.Background
import scalafx.scene.layout.BackgroundFill
import scalafx.scene.paint.Color

def addControlsToPane(pane:Pane, fill:Color):Pane = {
val button = new Button("Click Me")
val label = new Label("Plain label")
val field = new TextField
field.text = "Text Field"
val area = new TextArea
area.text = "Text Area\nMultiple\nLines"
area.prefWidth = 100
area.prefHeight = 100
val combo = new ComboBox(List("Alpha", "Beta", "Gamma"))
val slider = new Slider
pane.children = List(button, label, field, area, combo, slider)
pane.background = new Background(Array(new BackgroundFill(fill, null, null)))
pane

}

val app = new JFXApp {
stage = new JFXApp.PrimaryStage {
title = "Layouts"
scene = new Scene(750,600) {
val borderPane = new BorderPane
borderPane.top = addControlsToPane(new HBox(10), Color.gray(0.25))
borderPane.left = addControlsToPane(new VBox(10), Color.gray(0.75))
borderPane.bottom = addControlsToPane(new FlowPane(10, 10), Color.gray(0.5))
borderPane.right = addControlsToPane(new StackPane, Color.gray(1.0))
val tilePane = new TilePane
tilePane.prefRows = 2
borderPane.center = addControlsToPane(tilePane, Color.gray(0.0))
tilePane.children.foreach(_.managed = true)
root = borderPane

}
}

}

app.main(args)

The result of running this program is shown in figure 11.15. The import of the con-
trols was changed to use an underscore as the details of those were discussed above. The
addControlsToPane function was written because the same controls are being added to

GUIs 309

FIGURE 11.15: This figure shows the window that results from running Layouts.scala
after making the window slightly smaller.

every one of the different panes and we do not want to have to duplicate that code. Making
it take a Pane allows it to work with all of the different panes. The preferred size of the
TextArea was set so that it would not consume too much space in the GUI. All the other
elements were left at their default sizes. The addControlsToPane function also takes a sec-
ond argument that gives the background color for that Pane. This is used at the end of the
function when pane.background is set. This is done so that you can tell the different panes
apart in the resulting GUI. There are many options for setting the background of Panes,
and we will not be going into the details in this book.

In the top you can see that the HBox, which has a dark gray background color, positions
the controls horizontally with all of them aligned to the top by default. Note that this can
be changed by setting the alignment property. On the left is the VBox with a light gray
background color, which behaves much like the HBox, but stacks the elements vertically and
aligned to the left. At the bottom is a FlowPane with a medium gray background, which
looks much like the HBox as far as what it produces, but there are two significant differences
to note. The controls are all centered vertically by default, and when the window gets too
small for them to fit across a single row, the last one is shifted down to a new row. If the
window is made smaller, the Slider would be cut off in the HBox. The two arguments passed
in to make the FlowPane are spacing values. The spacing values represent the number of
pixels that are put between items vertically and horizontally. Spacing can be added to all
the elements using Insets, but we will not go into details about those.

On the right there is a StackPane. Its white background is not seen as the TextArea here
covers the whole thing and conceals not only the background, but the elements added before
the TextArea. This produces very different results from the other panes as the controls are
literally stacked one on top of the other. In the center is a TilePane with a black background.
All the controls are given a space that is equal to the largest width and largest height of the

310 Introduction to Programming and Problem-Solving Using Scala

contents. They are then laid out across rows, forming new rows as needed. The TilePane
works much like the FlowPane other than how things are sized.

Note that the BorderPane is set to be the root of the Scene. As was mentioned before,
this causes it to be bound to the size of the window, so that the contents adjust when the
window size is changed. This will not happen by default if you use content.

The GridPane is a bit more complex than the panes in the previous example, so we give
it its own. The following code shows how a GridPane could be used to lay out a GUI for a
basic calculator.

Listing 11.18: GridPane.scala
import scalafx.Includes._
import scalafx.scene.Scene
import scalafx.application.JFXApp
import scalafx.scene.control._
import scalafx.scene.layout.GridPane
import scalafx.scene.layout.Priority

val app = new JFXApp {
stage = new JFXApp.PrimaryStage {
title = "GridPane"
scene = new Scene(300,300) {
val gridPane = new GridPane
for (i <- 1 to 9) {
val button = new Button(i.toString)
gridPane.children += button
GridPane.setColumnIndex(button, (i-1)%3)
GridPane.setRowIndex(button, (i-1)/3+1)
GridPane.setHgrow(button, Priority.Always)
GridPane.setVgrow(button, Priority.Always)
button.maxWidth = Int.MaxValue
button.maxHeight = Int.MaxValue

}
val textField = new TextField
gridPane.children += textField
GridPane.setConstraints(textField,0,0,4,1)
val zeroButton = new Button("0")
gridPane.children += zeroButton
GridPane.setConstraints(zeroButton,0,4,2,1)
GridPane.setVgrow(zeroButton, Priority.Always)
zeroButton.maxWidth = Int.MaxValue
zeroButton.maxHeight = Int.MaxValue
val periodButton = new Button(".")
gridPane.children += periodButton
GridPane.setConstraints(periodButton,2,4)
GridPane.setVgrow(periodButton, Priority.Always)
periodButton.maxWidth = Int.MaxValue
periodButton.maxHeight = Int.MaxValue
val plusButton = new Button("+")
gridPane.children += plusButton
GridPane.setConstraints(plusButton,3,1)
GridPane.setHgrow(plusButton, Priority.Always)
plusButton.maxWidth = Int.MaxValue
plusButton.maxHeight = Int.MaxValue
val minusButton = new Button("-")

GUIs 311

gridPane.children += minusButton
GridPane.setConstraints(minusButton,3,2)
minusButton.maxWidth = Int.MaxValue
minusButton.maxHeight = Int.MaxValue
val multButton = new Button("*")
gridPane.children += multButton
GridPane.setConstraints(multButton,3,3)
multButton.maxWidth = Int.MaxValue
multButton.maxHeight = Int.MaxValue
val divButton = new Button("/")
gridPane.children += divButton
GridPane.setConstraints(divButton,3,4)
divButton.maxWidth = Int.MaxValue
divButton.maxHeight = Int.MaxValue

root = gridPane
}

}
}

app.main(args)

The result of this code can be seen in figure 11.16. To add the main buttons, we use
a for loop to prevent us from having to duplicate the same code nine times. After each
Button is created and added, we set constraints on it. This code sets the column and row
values with separate calls, then sets the Hgrow and Vgrow values. Without this, the rows
and columns will not grow to fill in the full space of the window, and all the elements will
remain packed in the top left corner. Note that the constraints are set by calling methods
of the GridPane object and passing the Node as the first argument. That loop ends with
calls to set the maxWidth and maxHeight of the buttons to the maximum Int value. This
causes the buttons to fill the entire space available to them. Without this, there will be
small buttons spaced out through the window.

The other controls are added after the loop. The constraints for these are set using
setConstraints, which takes the Node followed by the row, column, row span, and column
span. The span values allow us to have a single element cover more than one row or column.
This is used for the TextField and the “0” button.

11.7.2 scalafx.scene.control Panes

The scalafx.scene.control package provides these additional panes. Each of these
includes user interaction of some form or another.

• Accordion - This is a group of TitledPanes stacked vertically on top of one another,
where only one can be open at a time.

• ScrollPane - This pane embeds a single Node and will display scroll bars if the child
wants more space than what the ScrollPane has to display.

• SplitPane - Arranges children horizontally or vertically with a bar between them
that the user can adjust.

• TabPane - Displays a row of tabs and one child. Selecting a tab brings up the associated
child. The Tab type is used to describe those tabs.

312 Introduction to Programming and Problem-Solving Using Scala

FIGURE 11.16: This figure shows the window that results from running GridPane.scala.

• TitledPane - This element shows up as a title that can be expanded to display its
contents and collapsed back down to just the title. It is primarily used in an Accordion.

These can be used with the other panes from the layout package. The example code shown
here demonstrates their usage in isolation.

To demonstrate the usage of these panes, we put a TabPane at the top level with one tab
that contains the other panes and a second tab with a single large TextArea. The tab with
the panes has a SplitPane at the top level with an Accordion embedded in a ScrollPane
on the left and another TextArea on the right.

Listing 11.19: ControlPanes.scala
import scalafx.Includes._
import scalafx.scene.Scene
import scalafx.application.JFXApp
import scalafx.scene.control._

val app = new JFXApp {
stage = new JFXApp.PrimaryStage {
title = "Control Panes"
scene = new Scene(500,250) {
val tabPane = new TabPane
val splitPane = new SplitPane
val tabArea = new TextArea
val panesTab = new Tab
panesTab.text = "Control Panes"
panesTab.content = splitPane
val areaTab = new Tab
areaTab.text = "Text Area"
areaTab.content = tabArea
tabPane.tabs = List(panesTab, areaTab)
val scrollPane = new ScrollPane

GUIs 313

FIGURE 11.17: This figure shows the window that results from running Control-
Panes.scala after expanding one of the TitledPanes in the Accordion.

val rightArea = new TextArea
splitPane.items += scrollPane
splitPane.items += rightArea
val accordion = new Accordion
for (i <- 1 to 10) {
val titledPane = new TitledPane
titledPane.text = "Title Pane "+i
titledPane.content = new Button("Button "+i)
accordion.panes += titledPane

}
scrollPane.content = accordion

root = tabPane
}

}
}

app.main(args)

Figure 11.17 shows what you would see if you ran this script and expanded “Title Pane
3”. The tabs appear at the top. The central bar for the SplitPane can be moved left or right
by the user. Note that there is a scroll bar present that allows you to view the later elements
in the Accordion. This was the reason for including a loop that added ten TitledPanes, so
they would be long enough to need a scroll bar. If you drag the split location to the left so
that it is smaller than the Accordion, a scroll bar will appear at the bottom as well.

Perhaps the biggest challenge in using these controls is remembering the name each one
uses for where the children/contents should be placed. The names are fairly logical for each
one, but there is not a single name that works for all of them. The TabPane uses tabs,
the SplitPane uses items, the ScrollPane uses content, and the Accordion uses panes.
You either have to remember these or go look in the API or this book when you need that
information.

314 Introduction to Programming and Problem-Solving Using Scala

FIGURE 11.18: This shows a possible layout for the GUI that we want to build for editing
recipes.

11.8 Putting It Together
Now that we have briefly explored the different components of ScalaFX GUIs and how

we interact with them, we can try to put a number of them together in a larger program.
The program is going to be something like a digital recipe book. It should be able to store
multiple recipes. For each recipe, it should allow the user to specify ingredients with amounts
as well as have a written description of the cooking directions. The GUI should give the
user the ability to add and remove recipes. They should be able to select recipes and edit
the various information that we have on them.

At this point in the analysis you would probably want to sketch out a little picture of
what you want the GUI to look like. That is done for this GUI in figure 11.18. The left side
is taken up by a ListView that shows all the recipes. When the user clicks on a recipe, the
information for it should be shown on the right. That includes a list of all the ingredients
and the directions. The ingredients can also be edited and there need to be some buttons
to help with this. The options for adding and removing recipes will be in the menus.

The question is how we should lay this out. Any GUI can be built in multiple different
ways using the different pane options that were discussed above. For example, the separation
between the recipe list and the information about the selected recipe could be created by a
BorderPane, a HBox, or a SplitPane. Which of these you pick will normally be determined
by the way in which the panes would size things or whether you want to give the user the
control of a SplitPane. We will use a BorderPane for the top level, which will hold the

Menu Bar

Recipe List Ingredient
Buttons

Ingredient
List

Ingredient Settings

I

Recipe Directions

GUIs 315

MenuBar, the recipe list, ingredient information and tools, and the recipe directions. The
BorderPane will allow us to resize the elements if the user resizes the window, and it will
give us a top, left, and center that will be used to further organize the content. We can
place the MenuBar in the top, the recipe list in the left, and everything else in the center.
We will break up the center and use a SplitPane to separate the recipe directions from
the ingredient information. We will use a GridPanel for the buttons, ingredient list, and
ingredient settings. The following code shows how we could solve this adding “traditional”
handlers to the code instead of bindings.

Listing 11.20: Recipe.scala
1 import scalafx.Includes._
2 import scalafx.scene.Scene
3 import scalafx.application.JFXApp
4 import scalafx.scene.control._
5 import scalafx.scene.layout._
6 import scalafx.event.ActionEvent
7 import scalafx.scene.input.KeyCode
8 import scalafx.scene.input.KeyCombination
9 import scalafx.scene.input.KeyCodeCombination

10 import scalafx.stage.FileChooser
11 import scalafx.collections.ObservableBuffer
12 import java.io.PrintWriter
13

14 case class Ingredient(name:String, amount:String)
15 case class Recipe(name:String, ingredients:List[Ingredient], directions:String)
16

17 val app = new JFXApp {
18 stage = new JFXApp.PrimaryStage {
19 title = "Recipes"
20 scene = new Scene(600,400) {
21 // Menus
22 val menuBar = new MenuBar
23 val fileMenu = new Menu("File")
24 val openItem = new MenuItem("Open")
25 openItem.accelerator = new KeyCodeCombination(KeyCode.O,

KeyCombination.ControlDown)
26 openItem.onAction = (e:ActionEvent) => { openFile }
27 val saveItem = new MenuItem("Save")
28 saveItem.accelerator = new KeyCodeCombination(KeyCode.S,

KeyCombination.ControlDown)
29 saveItem.onAction = (e:ActionEvent) => { saveFile }
30 val exitItem = new MenuItem("Exit")
31 exitItem.accelerator = new KeyCodeCombination(KeyCode.X,

KeyCombination.ControlDown)
32 exitItem.onAction = (e:ActionEvent) => { System.exit(0) }
33 fileMenu.items = List(openItem, saveItem, new SeparatorMenuItem, exitItem)
34

35 val recipeMenu = new Menu("Recipe")
36 val addItem = new MenuItem("Add")
37 addItem.onAction = (e:ActionEvent) => { addRecipe }
38 val removeItem = new MenuItem("Remove")
39 removeItem.onAction = (e:ActionEvent) => { removeRecipe }
40 recipeMenu.items = List(addItem, removeItem)
41

316 Introduction to Programming and Problem-Solving Using Scala

42 menuBar.menus = List(fileMenu, recipeMenu)
43

44 // Recipe List
45 var recipes = Array(Recipe("Pop Tarts",List(Ingredient("Pop Tart",
46 "1 packet")), "Toast the poptarts ...\nor don’t."))
47

48 val recipeList = new ListView(recipes.map(_.name))
49 recipeList.selectionModel.value.selectedIndex.onChange {
50 val index = recipeList.selectionModel.value.selectedIndex.value
51 if (index>=0) setFields(recipes(index))
52 }
53

54 // Ingredients stuff
55 val addButton = new Button("Add")
56 addButton.onAction = (ae:ActionEvent) => addIngredient
57 val removeButton = new Button("Remove")
58 removeButton.onAction = (ae:ActionEvent) => removeIngredient
59 val ingredientsList = new ListView[String]()
60 val ingredientNameField = new TextField
61 val amountField = new TextField
62 val ingredientsGrid = new GridPane
63 ingredientsGrid.children += addButton
64 GridPane.setConstraints(addButton,0,0)
65 ingredientsGrid.children += removeButton
66 GridPane.setConstraints(removeButton,1,0)
67 ingredientsGrid.children += ingredientsList
68 GridPane.setConstraints(ingredientsList,0,1,2,3)
69 val nameLabel = new Label("Name:")
70 ingredientsGrid.children += nameLabel
71 GridPane.setConstraints(nameLabel,3,0)
72 val amountLabel = new Label("Amount:")
73 ingredientsGrid.children += amountLabel
74 GridPane.setConstraints(amountLabel,3,2)
75 ingredientsGrid.children += ingredientNameField
76 GridPane.setConstraints(ingredientNameField,4,0)
77 ingredientsGrid.children += amountField
78 GridPane.setConstraints(amountField,4,2)
79 ingredientsList.selectionModel.value.selectedItem.onChange {
80 val recipeIndex = recipeList.selectionModel.value.selectedIndex.value
81 val ingredientIndex =

ingredientsList.selectionModel.value.selectedIndex.value
82 if (recipeIndex>=0 && ingredientIndex>=0) {
83 ingredientNameField.text =

recipes(recipeIndex).ingredients(ingredientIndex).name
84 amountField.text =

recipes(recipeIndex).ingredients(ingredientIndex).amount
85 }
86 }
87 ingredientNameField.text.onChange {
88 val newName = ingredientNameField.text.value
89 alterSelectedIngredient(i => i.copy(name = newName))
90 val ingredientIndex =

ingredientsList.selectionModel.value.selectedIndex.value
91 if (ingredientIndex>=0) ingredientsList.items.value(ingredientIndex) =

newName

GUIs 317

92 }
93 amountField.text.onChange {
94 alterSelectedIngredient(i => i.copy(amount = amountField.text.value))
95 }
96

97 // Directions
98 val directionsArea = new TextArea
99 directionsArea.text.onChange {

100 val recipeIndex = recipeList.selectionModel.value.selectedIndex.value
101 if (recipeIndex>=0) {
102 recipes(recipeIndex) = recipes(recipeIndex).copy(directions =

directionsArea.text.value)
103 }
104 }
105

106 val splitPane = new SplitPane
107 splitPane.orientation = scalafx.geometry.Orientation.Vertical
108 splitPane.items += ingredientsGrid
109 splitPane.items += directionsArea
110

111 // Top level layout
112 val topBorderPane = new BorderPane
113 topBorderPane.top = menuBar
114 topBorderPane.left = recipeList
115 topBorderPane.center = splitPane
116

117 root = topBorderPane
118

119 def openFile:Unit = {
120 val chooser = new FileChooser
121 val selected = chooser.showOpenDialog(stage)
122 if (selected!=null) {
123 val src = io.Source.fromFile(selected)
124 val lines = src.getLines
125 recipes = Array.fill(lines.next.toInt)(Recipe(
126 lines.next,
127 List.fill(lines.next.toInt)(Ingredient(lines.next,lines.next)),
128 {
129 var dir = ""
130 var line = lines.next
131 while (line!=".") {
132 dir += (if (dir.isEmpty) "" else "\n")+line
133 line = lines.next
134 }
135 dir
136 }
137))
138 src.close()
139 recipeList.items = ObservableBuffer(recipes.map(_.name):_*)
140 recipeList.selectionModel.value.selectFirst
141 setFields(recipes.head)
142 }
143 }
144

145 def saveFile:Unit = {

318 Introduction to Programming and Problem-Solving Using Scala

146 val chooser = new FileChooser
147 val selected = chooser.showSaveDialog(stage)
148 if (selected!=null) {
149 val pw = new PrintWriter(selected)
150 pw.println(recipes.length)
151 for (r <- recipes) {
152 pw.println(r.name)
153 pw.println(r.ingredients.length)
154 for (ing <- r.ingredients) {
155 pw.println(ing.name)
156 pw.println(ing.amount)
157 }
158 pw.println(r.directions)
159 pw.println(".")
160 }
161 pw.close()
162 }
163 }
164

165 def addRecipe:Unit = {
166 val dialog = new TextInputDialog
167 dialog.title = "Recipe Name"
168 dialog.headerText = "Question?"
169 dialog.contentText = "What is the name of the new recipe?"
170 dialog.showAndWait().foreach { name =>
171 recipes = recipes :+ Recipe(name,
172 List(Ingredient("ingredient","amount")),"Directions")
173 recipeList.items = ObservableBuffer(recipes.map(_.name):_*)
174 recipeList.selectionModel.value.clearAndSelect(recipes.length-1)
175 setFields(recipes.last)
176 }
177 }
178

179 def removeRecipe:Unit = {
180 if (!recipeList.selectionModel.value.selectedItems.isEmpty) {
181 recipes = recipes.patch(recipeList.selectionModel.value.selectedIndex.

value,Nil,1)
182 if (recipes.isEmpty) {
183 recipes = Array(Recipe("New recipe",
184 List(Ingredient("ingredient","amount")),"Directions"))
185 }
186 recipeList.items = ObservableBuffer(recipes.map(_.name):_*)
187 recipeList.selectionModel.value.clearAndSelect(0)
188 setFields(recipes.head)
189 }
190 }
191

192 def addIngredient:Unit = {
193 val recipeIndex = recipeList.selectionModel.value.selectedIndex.value
194 if (recipeIndex>=0) {
195 val newIngr = Ingredient("Stuff", "Some")
196 recipes(recipeIndex) = recipes(recipeIndex).copy(
197 ingredients = recipes(recipeIndex).ingredients :+ newIngr)
198 ingredientsList.items.value += newIngr.name
199 }

GUIs 319

200 }
201

202 def removeIngredient:Unit = {
203 val recipeIndex = recipeList.selectionModel.value.selectedIndex.value
204 val ingredientIndex =

ingredientsList.selectionModel.value.selectedIndex.value
205 if (recipeIndex>=0 && ingredientIndex>=0) {
206 recipes(recipeIndex) = recipes(recipeIndex).copy(ingredients =
207 recipes(recipeIndex).ingredients.patch(ingredientIndex,Nil,1))
208 setFields(recipes(recipeIndex))
209 }
210 }
211

212 def setFields(r:Recipe):Unit = {
213 ingredientsList.items.value.clear
214 ingredientsList.items.value ++= r.ingredients.map(_.name)
215 directionsArea.text = r.directions
216 ingredientNameField.text = ""
217 amountField.text = ""
218 }
219

220 def alterSelectedIngredient(diff: Ingredient => Ingredient):Unit = {
221 val recipeIndex = recipeList.selectionModel.value.selectedIndex.value
222 val ingredientIndex =

ingredientsList.selectionModel.value.selectedIndex.value
223 if (recipeIndex>=0 && ingredientIndex>=0) {
224 val newIngredient =

diff(recipes(recipeIndex).ingredients(ingredientIndex))
225 val newRecipe = recipes(recipeIndex).copy(ingredients =
226 recipes(recipeIndex).ingredients.updated(ingredientIndex,
227 newIngredient))
228 recipes(recipeIndex) = newRecipe
229 }
230 }
231 }
232 }
233 }
234

235 app.main(args)

The GUI created by running this code can be seen in figure 11.19. This is a rather long
program, so we will consider the pieces individually. Lines 1-12 have the imports that we
need, mostly from the ScalaFX libraries, but also includes java.io.PrintWriter for saving
the recipes out to file. Lines 14 and 15 have the case classes that are used to store the
recipe book.

The GUI setup happens in lines 21-117. There are comments to offset the different
sections of code that handle different parts of the GUI. The sections for the menus and the
recipe list are fairly straightforward. Note that line 45 declares and initializes a var Array
that stores the recipes in memory. This is used extensively by the other elements of the
GUI.

The section of the GUI that shows the ingredient information uses a GridPane and is a
bit longer. The interactions with the user include changing the TextFields when the user
selects a different ingredient and changing the data when they edit the fields. Note that
unlike previous examples, this code reacts to changes in the actual text of the TextField

320 Introduction to Programming and Problem-Solving Using Scala

FIGURE 11.19: This shows the window that is produced when you run Recipe.scala.

and the TextArea below it. This is because the code that deals with the changes refers to
the indexes selected in the ListViews. If focus is lost because the user clicks on a different
option in one of the two ListViews, those indexes are updated before the change in focus
is processed. As a result, all changes are lost. Listening to every change in the text is less
efficient, but it prevents any changes from being lost.

The onChange code for the fields uses a function below called alterSelectedIngredient
to prevent code duplication. This function takes a single argument which is a function of
Ingredient => Ingredient. This function is passed the current value for the ingredient
and should return a modified ingredient to store back into the list. If you go to the definition
of alterSelectedIngredient on lines 220-230, you will see that on line 226 we use a method
of List that we have not seen before called updated. The behavior of this method is to
replace one element of a List at a particular index with a specified value. This is used to
modify the selected recipe by replacing the old ingredient with the one built by the function
that is passed in.

The GUI setup ends by making the directions TextArea and then placing all the pieces
together using a SplitPane and a BorderPane. The BorderPane is set as the root of the
Scene, so that it will size itself with the window.

After the GUI setup are a number of functions that are called when things change in
the GUI or for buttons and menu items. These include functions for saving and loading in
text files that store the recipes, as well as functions for adding and removing recipes and
ingredients.

The addRecipe function on lines 165-177 uses another feature that we have not seen
previously. It needs to ask the user for the name of the new recipe, as we do not provide
any way to edit that in the GUI. To do this, it uses a type called TextInputDialog from

GUIs 321

the control package. As the name implies, this class allows us to pop up a dialog box that
reads text from the user. After creating the dialog box, we set the title, headerText, and
contentText. We then call the method showAndWait, which waits until the user has hit
either “OK” or “Cancel”. The result of that method is an Option which will either be some
value or None. Since we do not want to do anything if the user selects “Cancel”, a call to
foreach is used to handle their input. A foreach will ignore Nones.

There is also a ChoiceDialog that can be used to allow the user to select from a set
number of options. Readers can look in the API for details of that class.

We can reduce the length of this code a bit by utilizing bindings. The following code
produces the same GUI, and it functions in the same way. However, instead of having
handlers in the TextFields that set the values in our recipe objects, in this version the
recipe objects store their values using the StringProperty type, and binds the TextField’s
text properties to those values when they are selected.

Listing 11.21: Recipe2.scala
1 import scalafx.Includes._
2 import scalafx.scene.Scene
3 import scalafx.application.JFXApp
4 import scalafx.scene.control._
5 import scalafx.scene.layout._
6 import scalafx.event.ActionEvent
7 import scalafx.scene.input.KeyCode
8 import scalafx.scene.input.KeyCombination
9 import scalafx.scene.input.KeyCodeCombination

10 import scalafx.stage.FileChooser
11 import scalafx.collections.ObservableBuffer
12 import scalafx.beans.property.StringProperty
13 import java.io.PrintWriter
14

15 case class Ingredient(name:StringProperty, amount:StringProperty)
16 case class Recipe(name:StringProperty, ingredients:List[Ingredient],

directions:StringProperty)
17

18 val app = new JFXApp {
19 stage = new JFXApp.PrimaryStage {
20 title = "Recipes"
21 scene = new Scene(600,400) {
22 // Menus
23 val menuBar = new MenuBar
24 val fileMenu = new Menu("File")
25 val openItem = new MenuItem("Open")
26 openItem.accelerator = new KeyCodeCombination(KeyCode.O,

KeyCombination.ControlDown)
27 openItem.onAction = (e:ActionEvent) => { openFile }
28 val saveItem = new MenuItem("Save")
29 saveItem.accelerator = new KeyCodeCombination(KeyCode.S,

KeyCombination.ControlDown)
30 saveItem.onAction = (e:ActionEvent) => { saveFile }
31 val exitItem = new MenuItem("Exit")
32 exitItem.accelerator = new KeyCodeCombination(KeyCode.X,

KeyCombination.ControlDown)
33 exitItem.onAction = (e:ActionEvent) => { System.exit(0) }
34 fileMenu.items = List(openItem, saveItem, new SeparatorMenuItem, exitItem)
35

322 Introduction to Programming and Problem-Solving Using Scala

36 val recipeMenu = new Menu("Recipe")
37 val addItem = new MenuItem("Add")
38 addItem.onAction = (e:ActionEvent) => { addRecipe }
39 val removeItem = new MenuItem("Remove")
40 removeItem.onAction = (e:ActionEvent) => { removeRecipe }
41 recipeMenu.items = List(addItem, removeItem)
42

43 menuBar.menus = List(fileMenu, recipeMenu)
44

45 // Recipe List
46 var recipes = Array(Recipe(StringProperty("Pop Tarts"),List(Ingredient(
47 StringProperty("Pop Tart"), StringProperty("1 packet"))),
48 StringProperty("Toast the poptarts ...\nor don’t.")))
49

50 val recipeList = new ListView(recipes.map(_.name.value))
51 var selectedRecipe:Option[Recipe] = None
52 recipeList.selectionModel.value.selectedIndex.onChange {
53 val index = recipeList.selectionModel.value.selectedIndex.value
54 if (index>=0) bindRecipeFields(recipes(index))
55 }
56

57 // Ingredients stuff
58 var selectedIngr:Option[Ingredient] = None
59 val addButton = new Button("Add")
60 addButton.onAction = (ae:ActionEvent) => addIngredient
61 val removeButton = new Button("Remove")
62 removeButton.onAction = (ae:ActionEvent) => removeIngredient
63 val ingredientsList = new ListView[String]()
64 val ingredientNameField = new TextField
65 val amountField = new TextField
66 val ingredientsGrid = new GridPane
67 ingredientsGrid.children += addButton
68 GridPane.setConstraints(addButton,0,0)
69 ingredientsGrid.children += removeButton
70 GridPane.setConstraints(removeButton,1,0)
71 ingredientsGrid.children += ingredientsList
72 GridPane.setConstraints(ingredientsList,0,1,2,3)
73 val nameLabel = new Label("Name:")
74 ingredientsGrid.children += nameLabel
75 GridPane.setConstraints(nameLabel,3,0)
76 val amountLabel = new Label("Amount:")
77 ingredientsGrid.children += amountLabel
78 GridPane.setConstraints(amountLabel,3,2)
79 ingredientsGrid.children += ingredientNameField
80 GridPane.setConstraints(ingredientNameField,4,0)
81 ingredientsGrid.children += amountField
82 GridPane.setConstraints(amountField,4,2)
83 ingredientsList.selectionModel.value.selectedItem.onChange {
84 val recipeIndex = recipeList.selectionModel.value.selectedIndex.value
85 val ingredientIndex =

ingredientsList.selectionModel.value.selectedIndex.value
86 if (recipeIndex>=0 && ingredientIndex>=0) {
87 bindIngredientFields(recipes(recipeIndex).ingredients(ingredientIndex))
88 }
89 }

GUIs 323

90 ingredientNameField.text.onChange {
91 val newName = ingredientNameField.text.value
92 val ingredientIndex =

ingredientsList.selectionModel.value.selectedIndex.value
93 if (ingredientIndex>=0) ingredientsList.items.value(ingredientIndex) =

newName
94 }
95

96 // Directions
97 val directionsArea = new TextArea
98

99 val splitPane = new SplitPane
100 splitPane.orientation = scalafx.geometry.Orientation.Vertical
101 splitPane.items += ingredientsGrid
102 splitPane.items += directionsArea
103

104 // Top level layout
105 val topBorderPane = new BorderPane
106 topBorderPane.top = menuBar
107 topBorderPane.left = recipeList
108 topBorderPane.center = splitPane
109

110 root = topBorderPane
111

112 def openFile:Unit = {
113 val chooser = new FileChooser
114 val selected = chooser.showOpenDialog(stage)
115 if (selected!=null) {
116 val src = io.Source.fromFile(selected)
117 val lines = src.getLines
118 recipes = Array.fill(lines.next.toInt)(Recipe(
119 StringProperty(lines.next),
120 List.fill(lines.next.toInt)(Ingredient(StringProperty(lines.next),

StringProperty(lines.next))),
121 {
122 var dir = ""
123 var line = lines.next
124 while (line!=".") {
125 dir += (if (dir.isEmpty) "" else "\n")+line
126 line = lines.next
127 }
128 StringProperty(dir)
129 }
130))
131 src.close()
132 recipeList.items = ObservableBuffer(recipes.map(_.name.value):_*)
133 recipeList.selectionModel.value.selectFirst
134 bindRecipeFields(recipes.head)
135 }
136 }
137

138 def saveFile:Unit = {
139 val chooser = new FileChooser
140 val selected = chooser.showSaveDialog(stage)
141 if (selected!=null) {

324 Introduction to Programming and Problem-Solving Using Scala

142 val pw = new PrintWriter(selected)
143 pw.println(recipes.length)
144 for (r <- recipes) {
145 pw.println(r.name)
146 pw.println(r.ingredients.length)
147 for (ing <- r.ingredients) {
148 pw.println(ing.name)
149 pw.println(ing.amount)
150 }
151 pw.println(r.directions)
152 pw.println(".")
153 }
154 pw.close()
155 }
156 }
157

158 def addRecipe:Unit = {
159 val dialog = new TextInputDialog
160 dialog.title = "Recipe Name"
161 dialog.headerText = "Question?"
162 dialog.contentText = "What is the name of the new recipe?"
163 dialog.showAndWait().foreach{ name =>
164 recipes = recipes :+ Recipe(StringProperty(name),
165 List(Ingredient(StringProperty("ingredient"),

StringProperty("amount"))), StringProperty("Directions"))
166 recipeList.items = ObservableBuffer(recipes.map(_.name.value):_*)
167 recipeList.selectionModel.value.clearAndSelect(recipes.length-1)
168 }
169 }
170

171 def removeRecipe:Unit = {
172 if (!recipeList.selectionModel.value.selectedItems.isEmpty) {
173 recipes = recipes.patch(recipeList.selectionModel.value.selectedIndex.

value,Nil,1)
174 recipeList.items = ObservableBuffer(recipes.map(_.name.value):_*)
175 recipeList.selectionModel.value.clearAndSelect(0)
176 }
177 }
178

179 def addIngredient:Unit = {
180 val recipeIndex = recipeList.selectionModel.value.selectedIndex.value
181 if (recipeIndex>=0) {
182 val newIngr = Ingredient(StringProperty("Stuff"), StringProperty("Some"))
183 recipes(recipeIndex) = recipes(recipeIndex).copy(
184 ingredients = recipes(recipeIndex).ingredients :+ newIngr)
185 ingredientsList.items.value += newIngr.name.value
186 }
187 }
188

189 def removeIngredient:Unit = {
190 val recipeIndex = recipeList.selectionModel.value.selectedIndex.value
191 val ingredientIndex =

ingredientsList.selectionModel.value.selectedIndex.value
192 if (recipeIndex>=0 && ingredientIndex>=0) {
193 recipes(recipeIndex) = recipes(recipeIndex).copy(ingredients =

GUIs 325

194 recipes(recipeIndex).ingredients.patch(ingredientIndex,Nil,1))
195 bindRecipeFields(recipes(recipeIndex))
196 }
197 }
198

199 def bindRecipeFields(r:Recipe):Unit = {
200 ingredientsList.items = ObservableBuffer(r.ingredients.map(_.name.value):_*)
201 selectedRecipe.foreach(_.directions.unbind)
202 directionsArea.text = r.directions.value
203 r.directions <== directionsArea.text
204 selectedRecipe = Some(r)
205 }
206

207 def bindIngredientFields(ingr:Ingredient):Unit = {
208 selectedIngr.foreach { si =>
209 si.name.unbind
210 si.amount.unbind
211 }
212 ingredientNameField.text = ingr.name.value
213 ingr.name <== ingredientNameField.text
214 amountField.text = ingr.amount.value
215 ingr.amount <== amountField.text
216 recipes.foreach(println)
217 selectedIngr = Some(ingr)
218 }
219 }
220 }
221 }
222

223 app.main(args)

You can see that we were able to eliminate the AlterSelectedIngredient function in
the above code, but we did add another function to call when binding ingredients in addition
to the one for recipes. The bindings simplify the code in some ways, but they do introduce
one notable complexity. When we switch from one recipe to another or one ingredient to
another, we have to unbind the values that are no longer selected. This requires introducing
two vars that store what we have bound to. The Option type is used for these as nothing
has been bound when the program is first started.

The approach of using bindings typically works best if there is minimal changing of what
values are being bound, hence, this is not the ideal application for them. In your own GUIs,
you are encouraged to use whichever approach makes the most sense to you.

11.9 End of Chapter Material

11.9.1 Summary of Concepts

• Most of the programs that people interact with these days have Graphical User In-
terfaces, GUIs.

• We can write GUIs in Scala using types from the ScalaFX. This library wraps around
the JavaFX library, though this fact is generally not obvious in our code.

326 Introduction to Programming and Problem-Solving Using Scala

• The elements of a GUI are called Nodes. There are a number of different active and
passive Nodes in the ScalaFX library. You should consult the API to see everything
that is available.

– To represent windows you can use Stage or Dialog types.

– There many different active Nodes ranging from the simple Button to the complex
TableView.

– Complex GUIs are built using Panes. These Panes can hold other Nodes, including
other panes. Different panes have different rules for how their contents are placed
and sized.

– MenuBars hold Menus. These can hold several types including MenuItems and
other Menus.

• User interactivity for GUIs is different from terminal applications which have a single
point of input and can block when waiting for information.

– Depending on what you want to do in the GUI, you can set one of the “on”
members of a Node or you might provide onChange code that will be executed
when a Property changes.

– Bindings provide another mechanism for having changes to one value alter an-
other one.

• The FileChooser type provides a standard file selection dialog box.

11.9.2 Self-Directed Study

ScalaFX GUIs cannot be done well in a REPL.

11.9.3 Exercises

1. Using three ComboBoxes and a TextField set up a little GUI where the user makes
simple math problems. The ComboBoxes should be in a row with the first and third
having numbers and the middle on having math operators. When the user picks a
different value or operation, the TextField should update with the proper answer.

2. Write a GUI for a simple text editor. Use a TextArea for the main editing field and
put in menu options to open and save files.

3. Write a GUI that has a TableView that can display the contents of a CSV file. You
can take a normal spreadsheet and save to CSV format. You want to be able to load
it in and have the values appear in your TableView in the appropriate locations.

4. Write tic-tac-toe with a 3x3 grid of buttons. Have something print when each is clicked.

5. Make a GUI with one of each of the Node types mentioned in this chapter, excluding
panes. You can decide what, if anything, it does.

6. Add menu options to the last table example for removing a row or a column and
implement the code to carry out those operations.

7. Make a GUI that has one Slider and one TextField. When the user moves the
Slider, the value it is moved to should appear in the TextField.

GUIs 327

8. Write a GUI that has two ListViews with two Buttons in between them. The Buttons
should say “Add” and “Remove”.

9. Write a GUI that has three CheckBoxes and a ListView. The CheckBoxes should be
labeled “Uppercase”, “Lowercase”, and “Digits” for uppercase letters, lowercase letters,
and the numeric digits. When the state of a CheckBox is altered, the ListView should
be changed to show only the values for the things that are selected.

10. Repeat the above exercise except use RadioButtons and have them in a ToggleGroup
so that only one option can be selected at a time.

11.9.4 Projects

1. Write a functional calculator in a GUI. You need to have at least the basic four
math operations. Feel free to put in other functionality as well. You can get a basic
idea of how an old four function calculator works by going to http://www.online-
calculator.com/.

2. If you did project 8.5 on parsing chemical equations, you might consider doing this
problem as well. The chemical parser is not required for this, so you can start here if
you want. In that problem, the chemical equation was converted to a system of linear
equations. Systems of linear equations can be represented as matrix equations. For
this problem you will build a GUI that represents matrices as tables then lets you edit
them and do basic operations of addition and multiplication on them.

To keep things easy, the matrices will be square. You should have a menu option where
the user can set the size of the matrices. They should be at least 2x2. The GUI will
display three matrices that we will call A, B, and C. The user gets to enter values into
A and B. The value of C is set when the user selects menu options for add or multiply.

3. Write a GUI to play a basic minesweeper game. You can use a GridPane or a TilePane
of Buttons for the display and the user interaction. The challenge in this problem is
deciding how to store the mines and associate them with Buttons. There are many
ways to do this. Students should think about different approaches instead just rushing
into one.

4. This project continues the line of ray tracing options. You should build a GUI that
lets you edit a scene. You should have ListViews of spheres, planes, and light sources.
Each one should have the geometric settings as well as color information. You need
to have menu options to save to a file or load from a file.

5. Editing rooms for the map traversal in project 10.3 using a text editor in a basic text
file can be challenging and is error prone. For this reason, it could be helpful to have
a GUI that lets you edit the rooms. It can display a ListView of rooms that you can
select from and then other options for setting values on the selected room. You need
to have menu options for loading a file, saving a file, and adding a room. For a little
extra challenge consider putting in the option to remove a room. Note that when you
do this, the indices of all the rooms after that one change.

6. You can extend project 10.8. For this project you will write a GUI that lets users
rank their favorite songs. You should provide a GUI element that allows the user to
rank each song on a 5-star rating scale. You also should have GUI elements that let
the user pick songs they like best and put them into a top-10 ListView. They should

http://www.online-calculator.com/
http://www.online-calculator.com/

328 Introduction to Programming and Problem-Solving Using Scala

also be able to remove songs from that top-10 ListView. Give the user menu options
to save and load newly ranked file.

7. Make a program that displays a music database. You want to store significant infor-
mation for different songs including the name of the song, the artist, the album, the
year released, and anything else you find significant. The program should be able to
display the information for all the songs as well as allow the user to narrow it down
to certain artists, albums, years, etc.

8. For this project, we want to turn the menu driven script of project 10.4 into a GUI
driven program. You can use a ListView or a TableView to display information related
to the pantry and recipe items. You need to have menu options for saving and loading.
Like the menu based version, users should be able to add items to their pantries, add
recipes to the recipe books, check if they can make a recipe, and tell the program
that they have made a recipe and have the proper amount reduced from their pantry
contents. The details of how this looks and whether you use Buttons or MenuItems
for most of the functionality is up to you.

9. This chapter did not use the theme park example so it appears in this project idea
instead. You should write a GUI for the theme park functionality using different tabs
in a TabPane for different areas of the park. The GUI should interact with files for
saving activity in the park. You should keep at least the following three tabs, “Ticket
Sales”, “Food Sales”, and “Ride Operation”.

For the first two, you should have Buttons that the user can click on to add items to a
purchase. On the ticket tab those would include people of different ages, whether they
were going to the water park, and various numbers of coolers. For the food purchase
there are different types of food and their sizes. You can find food prices on page
66. All purchases should be added to a ListView. There should also be a Button to
remove selected items.

On the ride operation tab you need to have a ComboBox for selecting the ride, a
ListView with all the possible operator names for the user to select from, a TextField
for entering how many people rode in the last period of time, and a Button for
submitting the data.

10. For this project you will convert the functionality of the text menu based program in
project 10.5 to a GUI. You can decide the exact format of the GUI, but you should
have a ListView of the courses of interest with the ability to add and remove entries
as well as the ability to edit values for entries. The courses should have at least a
course number, name, interest level, and time slot information associated with them.

When the user chooses to generate schedules, you should show the different schedules
in some format and allow the user the ability to select one that they will take. All
courses from that selected schedule should be removed from the list of courses of
interest. The course of interest information should be saved in a file for use from one
run to another.

11. For this project you will extend the work you did for project 10.9 so that there is a
GUI. The GUI should include a TableView for displaying the statistics from a single
game as well as a ListView that shows the different games that are known. A second
part of the GUI, perhaps a second tab in a TabPane, should have a ListView with all
the games and give the user the ability to select multiple options and display average
stats for what is selected.

GUIs 329

Note that the exact details of how this works will depend significantly on the sport that
you have chosen. If your sport does not match this description well, make modifications
to get a better fit.

12. You can extend project 10.9 by displaying the information from a box score in a
GUI. Depending on the sport and what you want to display, this can be done with a
TableView or using a complex layout including a GridPane or TilePane with Labels
for the different information. The user should also get a ListView of the different
box scores that are available and clicking on an option should display the proper box
score. In a separate section of the GUI you should display the average values that you
have been calculating in the earlier project.

Additional exercises and projects, along with data files, are available on the book’s web
site.

http://taylorandfrancis.com

Chapter 12
Graphics and Advanced ScalaFX

12.1 Shapes . 332
12.1.1 Path Elements . 334
12.1.2 Paint and Stroke . 336

12.2 Basic Keyboard, Mouse, and Touch Input . 340
12.3 Images . 347

12.3.1 Writing Images to File . 349
12.4 Transformations . 350
12.5 Animation . 352

12.5.1 Transitions . 354
12.5.2 Timelines . 358
12.5.3 AnimationTimer . 360

12.6 Canvas . 364
12.6.1 Settings . 364
12.6.2 Basic Fills and Strokes . 366
12.6.3 Building a Path . 367
12.6.4 Image Operations on Canvas . 367
12.6.5 A Canvas Based Game . 368

Thread Handling . 372
12.7 Effects . 372
12.8 Charts . 380
12.9 Media . 384
12.10 Web . 385
12.11 3D Graphics . 388
12.12 Putting It Together . 391
12.13 End of Chapter Material . 393

12.13.1 Summary of Concepts . 393
12.13.2 Exercises . 394
12.13.3 Projects . 394

Not everything that you might ever want to put into a GUI is part of the standard GUI
library. They have only added elements that are used fairly frequently. There are also times
when you want to display your own graphics, something completely unique to your program,
in a GUI. In order to do this, you have to be able to write graphics code.

ScalaFX includes a number of different ways to add graphics in a GUI. You can either
add special Nodes directly to the Scene, or you can draw to a Canvas node. This chapter
also presents a number of other features of the ScalaFX scene graph and Nodes that provide
features that are more graphical in nature.

For graphical elements, you can think of the Scene as being like a magnetic board that
you can stick various things on. This is true for the non-graphical elements as well, but the
view is a bit more complex when using Panes that automatically move things around and
resize them. We will see that you can make various graphical shapes and stick them to the
board, then move them around and change how they are drawn in various ways.

Note that this is a long chapter that has fairly complete coverage of many topics in
ScalaFX. The topics have been put in order of importance as seen by the authors. The first
five sections have the most essential information. Sections beyond that include features that
many readers might find interesting, but which are less central to understanding graphics
in general.

331

332 Introduction to Programming and Problem-Solving Using Scala

12.1 Shapes
Some of the examples in chapter 11 drew a rectangle by putting a Rectangle

in the Scene. The Rectangle type is one of a number of different types in the
scalafx.scene.shape package that you can use to draw things in a scene. In this sec-
tion we will look at the different options that are part of that package. These are not the
only way to draw things in a ScalaFX GUI. We will look at another option, the Canvas
node, in section 12.6.

The Rectangle type is one of several subtypes of Shape in scalafx.scene.shape. Here
is a full list of the subtypes of Shape. Each has a brief description and a possible syntax for
how you would create one in your code. Note that the code you want to use for instantiating
these objects often does not involve new.

• Arc - Creates an arc that covers a specified angle and can be filled in. You cre-
ate one with Arc(centerX, centerY, radiusX, radiusY, startAngle, length),
where each argument is a Double. The startAngle and length are measured in de-
grees. The way in which it is drawn and filled in depends on the type property which
can be one of the following: ArcType.Chord, ArcType.Open, or ArcType.Round.1

• Circle - As the name implies, this makes a Circle. You can create it with one of
the following options: Circle(fill:Paint), Circle(radius:Double, fill:Paint),
Circle(centerX:Double, centerY:Double, radius:Double), or Circle(centerX:
Double, centerY:Double, radius:Double, fill:Paint).

• CubicCurve - Draws a cubic Bèzier curve. You create one with new CubicCurve.
Then you have to set eight values. Those are startX, startY, controlX1, controlY1,
controlX2, controlY2, endX, and endY.

• Ellipse - Draws an ellipse with a specified center and radii for x and y. You can
build one with the center at (0, 0) using Ellipse(radiusX, radiusY) or specify the
center using Ellipse(centerX, centerY, radiusX, radiusY). All arguments have
type Double.

• Line - Draws a line between two points. Create with Line(startX, startY, endX,
endY). All arguments have type Double.

• Path - Paths are formed by combining lines, arcs, and curves. The Path type allows
you to create a complex path by putting together different elements. You create one
using new Path. The details of the path elements are described in section 12.1.1.

• Polygon - Creates a general polygon with the syntax Polygon(points:Double*).
Note that this is a variable length argument list. The arguments are taken in pairs
as x, y coordinates, so a triangle would have six values, a quadrilateral would have 8
arguments, etc. This shape is automatically closed if the last point is not the same as
the first one.

• Polyline - Creates a shape from a sequence of line segments with the syntax
Polyline(points:Double*). Note that this is a variable length argument list. The

1Setting the type property requires a little extra effort because “type” is a keyword in Scala, used for type
declarations. In order to use keywords as identifiers in Scala, they have to be enclosed in backticks. This is
the character on the top left key of US keyboards. So if you want to set this, you cannot use arc.type =
ArcType.Open, you have to use arc.`type`= ArcType.Open.

Graphics and Advanced ScalaFX 333

arguments are taken in pairs as x, y coordinates, so a triangle would have six values,
a quadrilateral would have 8 arguments, etc. This shape is only an outline, and it is
not closed unless you make the last point equal to the first one.

• QuadCurve - Draws a quadratic Bèzier curve. You create one with QuadCurve(startX,
startY, controlX, controlY, endX, endY). All the arguments have type Double.

• Rectangle - As we have seen, this creates a basic rectangle. There are three
ways to construct one: Rectangle(width:Double, height:Double, fill:Paint),
Rectangle(x:Double, y:Double, width:Double, height:Double) and Rectangle
(width:Double, height:Double). The x and y coordinates for the rectangle are at
the top-left corner, the minimum in both x and y.

• SVGPath - Creates a path by parsing a String that is formatted with SVG2 com-
mands. You create one with new SVGPath, then set the content to a String like
the following path.content = "M410,110 L410,190 C490,190 490,110 410,110".
This moves to a location, draws a line from there, then has a cubic curve that goes
back around to the points moved to create a shape like the letter “D”.

• Text - This type is found in the scalafx.scene.text package instead of
scalafx.scene.shape. It can be used to add general text to a scene. You
can build this with either new Text(x:Double, y:Double, t:String) or new
Text(t:String).

The use of all of these types with the exception of Path is shown in the following code.

Listing 12.1: Shapes.scala
import scalafx.Includes._
import scalafx.application.JFXApp
import scalafx.scene.Scene
import scalafx.scene.paint.Color
import scalafx.scene.shape._
import scalafx.scene.text.Text

val app = new JFXApp {
stage = new JFXApp.PrimaryStage {
title = "Shapes"
scene = new Scene(500, 200) {
val arc = Arc(50, 50, 40, 30, 0, 270)
arc.fill = Color.Black
arc.`type` = ArcType.Open

val circle = Circle(150, 50, 40, Color.Red)

val cubic = new CubicCurve
cubic.startX = 210
cubic.startY = 10
cubic.controlX1 = 210
cubic.controlY1 = 90
cubic.controlX2 = 290
cubic.controlY2 = 10
cubic.endX = 290
cubic.endY = 90

2Simple Vector Graphics

334 Introduction to Programming and Problem-Solving Using Scala

FIGURE 12.1: This window is produced by running Shapes.scala and the shapes are as
follows: arc, circle, cubic curve, ellipse, line, polygon, polyline, quad curve, rectangle, and
SVG path. It demonstrates all the different subtypes of Shape with the exception of Path.

val ellipse = Ellipse(350, 50, 40, 30)

val line = Line(410, 10, 490, 90)

val polygon = Polygon(10, 110, 50, 190, 90, 150)

val polyline = Polyline(110, 110, 150, 190, 190, 150)

val quad = QuadCurve(210, 110, 250, 190, 290, 110)

val rectangle = Rectangle(310, 110, 80, 80)

val path = new SVGPath
path.content = "M410,110 L410,190 C490,190 490,110 410,110"

val text = new Text(210, 100, "Shapes")

content = List(arc, circle, cubic, ellipse, line, polygon, polyline, quad,
rectangle, path, text)

}
}

}

app.main(args)

The output from this program is shown in figure 12.1. Note that the CubicCurve and
QuadCurve are both filled in. Only the Line and Polyline types produce outlines in this
example.

12.1.1 Path Elements

The Path type allows you to build up more complex paths by adding various subtypes
of PathElement. This allows you to make a single Shape that includes some of the line and
curve types that were shown above. To make a Path you call new Path, then add the items
you want into the elements member. You generally begin with a MoveTo that positions

Graphics and Advanced ScalaFX 335

the starting location of the Path. Subsequent elements begin from the current element and
specify where they will end up being placed.

Here are the different PathElement subtypes that can be added to a Path, along with
the code you would use to create them.

• ArcTo - Adds an arc from the current location to some x, y location. An arc is
essentially a piece of an ellipse. You can specify the radius of the arc in both
x direction and y direction as well as the angle of rotation of the ellipse the
arc is taken from. There are also options for whether you want the arc to cover
the longest distance along the ellipse or the shortest distance along the ellipse
to create the arc, as well as which direction the arc should bend. You create an
arc using ArcTo(radiusX: Double, radiusY: Double, xAxisRotation: Double,
x: Double, y: Double, largeArcFlag: Boolean, sweepFlag: Boolean).

• ClosePath - As the name implies, this closes off a path. When it closes off the path,
it draws a line back to a part of the path. You create this with new ClosePath. Note
that you have to use new here. This is because there are no arguments for this element.

• CubicCurveTo - Adds a cubic Bèzier curve to the path starting at the cur-
rent location and using the specified control points and end point. You create
one with CubicCurveTo(controlX1: Double, controlY1: Double, controlX2:
Double, controlY2: Double, x: Double, y: Double).

• HLineTo - Adds a horizontal line to the path that moves across from the current
position to the specified x-coordinate. Create one with HLineTo(x:Double).

• LineTo - Adds a line to the path that connects the current position to a specified end
point. Create one of these with Line(x:Double, y:Double).

• MoveTo - This moves the current position to a new location without drawing anything.
You can imagine this as picking up your pen so that you can start drawing somewhere
else. You generally want to start a Path off with one of these. Create one of these with
MoveTo(x:Double, y:Double).

• QuadCurveTo - Adds a quadratic Bèzier curve to the path that goes from the current
position to the end position using the specified control point. Create one of these with
QuadCurveTo(controlX: Double, controlY: Double, x: Double, y: Double).

• VLineTo - Adds a vertical line to the path from the current position to the specified
y-coordinate. Create one of these with VLineTo(y:Double).

The following sample program demonstrates all of the different PathElements by build-
ing a long path that includes all of them. It also has two shorter paths that are used to
demonstrate the meaning of the fillRule setting on a path.

Listing 12.2: Path.scala
import scalafx.Includes._
import scalafx.application.JFXApp
import scalafx.scene.Scene
import scalafx.scene.shape._
import scalafx.scene.paint.Color

val app = new JFXApp {
stage = new JFXApp.PrimaryStage {
title = "Path"

336 Introduction to Programming and Problem-Solving Using Scala

scene = new Scene(500, 300) {
val path = new Path
path.elements += MoveTo(50, 50)
path.elements += VLineTo(250)
path.elements += HLineTo(250)
path.elements += LineTo(300, 200)
path.elements += CubicCurveTo(500, 300, 500, 0, 400, 100)
path.elements += QuadCurveTo(250,0,200,100)
path.elements += ArcTo(100, 50, 45, 100, 50,false, true)
path.elements += new ClosePath

val path2 = new Path
path2.elements += MoveTo(75,75)
path2.elements += VLineTo(175)
path2.elements += HLineTo(175)
path2.elements += VLineTo(75)
path2.elements += CubicCurveTo(0,175,250,175,75,75)
path2.fillRule = FillRule.EvenOdd
path2.fill = Color.Blue

val path3 = new Path
path3.elements += MoveTo(275,75)
path3.elements += VLineTo(175)
path3.elements += HLineTo(375)
path3.elements += VLineTo(75)
path3.elements += CubicCurveTo(200,175,450,175,275,75)
path3.fillRule = FillRule.NonZero
path3.fill = Color.Cyan

content = List(path, path2, path3)

}
}

}

app.main(args)

You can see the window produced by this code in figure 12.2. The variable named path sets
up the long line that goes roughly around the perimeter and includes each of the different
types of elements. The smaller paths just have a box where one edge is a cubic curve that
forms a loop. Having the loop allows us to illustrate that there are two different methods
that can be used for filling in paths. There are FillRule.EvenOdd and FillRule.NonZero.
The darker shape on the left uses the EvenOdd rule. With this rule, whether a region is filled
in depends on if you cross the path an odd or even number of times to get to it. The central
loop is not filled in because getting into there requires crossing two parts of the path, an
even number. Getting to the parts that are filled in requires crossing the path one or three
times. The lighter shape on the right uses the NonZero rule. This fills in the central loop as
everything that would require going over the path more than zero times gets filled in. Note
that you can also specify the fillRule of a SVGPath.

12.1.2 Paint and Stroke

The way in which different shapes are drawn is determined by different settings. When
you create a Circle or a Rectangle, you can pass in a color to use for the fill property.

Graphics and Advanced ScalaFX 337

FIGURE 12.2: The window that is produced by running Path.scala. The long curve
demonstrates each of the different PathElements. The smaller two show the different fill
rules for paths.

For any other shape, you need to make the shape first and then set the fill property. So
far we have only looked at using Colors for the fill, but there are two other subtypes of the
general Paint type, LinearGradient and RadialGradient. All of these types are found in
the scalafx.scene.paint package.

You can also change the way that lines are drawn using settings for the stroke. You can
change the paint style, the dashing, the way lines end, the way they are joined, where the
line is relative to the shape, and the width of the line. The code below demonstrates both
paint and stroke settings.

Listing 12.3: ShapeSettings.scala
import scalafx.Includes._
import scalafx.application.JFXApp
import scalafx.scene.Scene
import scalafx.scene.paint._
import scalafx.scene.shape._

val app = new JFXApp {
stage = new JFXApp.PrimaryStage {
title = "Shape Settings"
scene = new Scene(500, 300) {
val polygon1 = Polygon(10, 10, 100, 190, 190, 100)
polygon1.fill = Color.Green
polygon1.stroke = Color.Black
polygon1.strokeWidth = 5
polygon1.strokeType = StrokeType.Centered
polygon1.strokeLineJoin = StrokeLineJoin.Bevel

val polygon2 = Polygon(160, 10, 250, 190, 340, 100)
polygon2.fill = LinearGradient(160, 10, 340, 100, false, CycleMethod.NoCycle,

Stop(0.0, Color.White), Stop(0.3, Color.Cyan), Stop(0.7,Color.Blue),
Stop(1.0, Color.Black))

338 Introduction to Programming and Problem-Solving Using Scala

polygon2.stroke = Color.Black
polygon2.strokeWidth = 5
polygon2.strokeType = StrokeType.Inside
polygon2.strokeLineJoin = StrokeLineJoin.Miter

val polygon3 = Polygon(310, 10, 400, 190, 490, 100)
polygon3.fill = RadialGradient(45, 0.5, 400, 100, 50, false,

CycleMethod.Reflect, Stop(0.0, Color.White), Stop(0.5, Color.Red),
Stop(1.0, Color.Black))

polygon3.stroke = Color.Black
polygon3.strokeWidth = 5
polygon3.strokeType = StrokeType.Outside
polygon3.strokeLineJoin = StrokeLineJoin.Round

val line1 = Line(50, 220, 450, 220)
line1.stroke = Color.Black
line1.strokeWidth = 5
line1.strokeLineCap = StrokeLineCap.Butt
line1.strokeDashArray = List(30, 10, 20, 15)

val line2 = Line(50, 250, 450, 250)
line2.stroke = Color.Black
line2.strokeWidth = 5
line2.strokeLineCap = StrokeLineCap.Round
line2.strokeDashArray = List(30, 10, 20, 15)

val line3 = Line(50, 280, 450, 280)
line3.stroke = Color.Black
line3.strokeWidth = 5
line3.strokeLineCap = StrokeLineCap.Square
line3.strokeDashArray = List(30, 10, 20, 15)

content = List(polygon1, polygon2, polygon3, line1, line2, line3)
}

}
}

app.main(args)

You can see the output of running this code in figure 12.3. The first polygon uses a basic
Color for the fill. The second polygon uses a linear gradient. This type of paint has a
starting point and an ending point, and you can specify the various colors that appear
along the gradient and where they appear. These are called Stops. You can also tell if
the positions for the Stops are proportional or not. If not, then the values for them go
from 0 to 1. If it is proportional, then they should use units comparable to the pixel size
you want the gradient to vary over. The last thing you can specify is a cycle method that
determines what color is used beyond the start and end. There are three settings for this,
CycleMethod.NoCycle, CycleMethod.Reflect, and CycleMethod.Repeat. With NoCycle,
anything before the start position is the first color and anything after the end is the last
color. With Reflect, the sequence repeats over and over in alternating order. With Repeat,
the same sequence is done repeatedly.

You can construct a LinearGradient with either LinearGradient(startX: Double,
startY: Double, endX: Double, endY: Double, proportional: Boolean,
cycleMethod: CycleMethod, stops: Stop*) or LinearGradient(startX: Double,

Graphics and Advanced ScalaFX 339

FIGURE 12.3: The window that is produced by running ShapeSettings.scala. The three
triangles at the top demonstrate the three different types of Paint that are available as well
as the three styles of joins. The lines at the bottom demonstrate dashing and the cap styles.

startY: Double, endX: Double, endY: Double, proportional: Boolean,
cycleMethod: CycleMethod, stops: List[Stop]). The only difference between the two
is the last argument. The sample code uses the first option and NoCycle. Note that the
Stops are created using Stop(offset: Double, color: Color).

The third polygon uses a RadialGradient for the fill. This creates a circular or elliptical
pattern of colors. You can provide an orientation and length for the ellipse as well as a center
and radius for the pattern. Like the LinearGradient, you then specify the CycleMethod
and the Stops. You can construct a RadialGradient using RadialGradient(focusAngle:
Double, focusDistance: Double, centerX: Double, centerY: Double, radius:
Double, proportional: Boolean, cycleMethod: CycleMethod, stops: Stop*) or
RadialGradient (focusAngle: Double, focusDistance: Double, centerX: Double,
centerY: Double, radius: Double, proportional: Boolean, cycleMethod:
CycleMethod, stops: List[Stop]). The code uses the first option. For the CycleMethod
it uses Reflect.

There are more options for the stroke than there are for the fill. The properties that
you can set as well as their types and possible values are shown here.

• stroke: Paint - The color of the lines. Gradients are allowed.

• strokeDashArray: ObservableBuffer[Double] - Lengths in pixels for how long a
section should be drawn or not drawn.

• strokeDashOffset: DoubleProperty - An offset for where the dashing begins.

• strokeLineCap: StrokeLineCap

– StrokeLineCap.Butt - Ends the line at the end with no cap.

– StrokeLineCap.Round - Puts a round, half-circle, cap on the end of the line.

– StrokeLineCap.Square - Put a square cap with a size equal to the width at the
end of the line.

340 Introduction to Programming and Problem-Solving Using Scala

• strokeLineJoin: StrokeLineJoin

– StrokeLineJoin.Bevel - Flattens off the join between the segments.

– StrokeLineJoin.Miter - Extends the segments out to meet in a point.

– StrokeLineJoin.Round - Rounds out the transition from one segment to the
next.

• strokeMiterLimit: Double - Specifies how far a miter join can extend.

• strokeType: StrokeType - Tells where the line is drawn for a shape.

– StrokeType.Centered - Draws centered on the perimeter.

– StrokeType.Inside - Draws inside of the perimeter.

– StrokeType.Outside - Draws outside of the perimeter.

• strokeWidth: Double - Specifies how wide the stroke should be.

The polygons demonstrate the StrokeTypes and StrokeJoins. The styles used are centered,
inside, and outside going from left to right. The joins are bevel, miter, and round going from
left to right. The dashing and cap types are illustrated in the three lines at the bottom. All
three have the same dashing structure so that you can see the impact of the different cap
types. The lines use cap styles of Butt, Miter, and Square going from top to bottom.

12.2 Basic Keyboard, Mouse, and Touch Input
In chapter 11 we saw how we could add in code to allow the user to interact with the

various GUI elements. It is also possible to interact with the user at a lower level by getting
individual actions from the keyboard and mouse as well as touch. This can be done using
many different properties that begin with on, each of which specifies a function that is
called when something happens. We will look at these separately for the different types of
interactions.

For the keyboard there are only three properties of significance: onKeyPressed,
onKeyReleased, and onKeyTyped. The onKeyPressed function is called when a key goes
down. The onKeyReleased is called when a key is let back up.3 The onKeyTyped is called
for the full typing of a character and is only called for keys that wind up being printed.
This means that onKeyTyped does not register things like arrow keys, Shift, or Ctrl while
onKeyPressed and onKeyReleased do.

These handlers all take an argument of a scalafx.scene.input.KeyEvent. This pro-
vides you with the information about what key was part of the event as well as other things
that you may need to know. The KeyEvent object contains members such as character
for typed values, code to tell you which key was hit (including non-printable keys), as
well as altDown, controlDown, metaDown, and shiftDown. The code member has the type
scalafx.scene.input.KeyCode. You can compare those codes to values in KeyCode such
as KeyCode.A, KeyCode.F1, KeyCode.Left, or many others that are included to represent
whatever keys might be found on your keyboard.

In section 11.5.1 we discussed the concept of focus as it relates to text controls. This

3Note that keyboards have a “repeat” rate so that if you press a key and hold it, multiple events will
wind up being fired.

Graphics and Advanced ScalaFX 341

same concept applies to handling keyboard events. If you have multiple elements in your
GUI, and you want to deal with the keyboard events for certain ones, you will have to
request focus on the Node that is handling the events. It can be helpful to put in a handler
for onMouseClicked along with the keyboard handling so that you can call requestFocus
on that Node when it is clicked.

The onMouseClicked handler is just one of several event handlers that you can register
for dealing with user interactions involving the mouse. The following list shows the different
options, when those handlers are called, and the type of event that gets passed into them.

• onDragDetected - Takes a MouseEvent and is called when a drag is detected.

• onDragDone - Takes a DragEvent and is called when a drag-and-drop event ends after
the release and the current Node was the source of the drag.

• onDragDropped - Takes a DragEvent and is called when a mouse button is released
at the end of a drag-and-drop on the current Node.

• onDragEntered - Takes a DragEvent and is called when a drag-and-drop motion enters
this Node.

• onDragExited - Takes a DragEvent and is called when a drag-and-drop event exits
the current Node.

• onDragOver - Takes a DragEvent and is called when a drag-and-drop event moved
over the current Node.

• onMouseClicked - Takes a MouseEvent when the mouse is clicked over this Node.

• onMouseDragEntered - Takes a MouseDragEvent and is called when the mouse enters
the Node while the mouse button is down.

• onMouseDragExited - Takes a MouseDragEvent and is called when the mouse leaves
the Node while the mouse button is down.

• onMouseDragOver - Takes a MouseDragEvent and is called when a full mouse pressed-
drag-release gesture happens on this Node.

• onMouseDragReleased - Takes a MouseDragEvent and is called when a mouse press-
drag-release ends on this Node.

• onMouseDragged - Takes a MouseDragEvent when and is called when the mouse is
pressed on this Node then dragged.

• onMouseEntered - Takes a MouseEvent when the mouse enters this Node.

• onMouseExited - Takes a MouseEvent when the mouse exits this Node.

• onMouseMoved - Takes a MouseEvent when the mouse moves within this Node and no
buttons are pressed.

• onMousePressed - Takes a MouseEvent when a mouse button goes down over this
Node.

• onMouseReleased - Takes a MouseEvent when a mouse buttons is released over this
Node.

• onScroll - Takes a ScrollEvent and when the user performs a scroll action.

342 Introduction to Programming and Problem-Solving Using Scala

• onScrollFinished - Takes a ScrollEvent and when the user finises a scroll action.

• onScrollStarted - Takes a ScrollEvent and when the user begins a scroll action.

The MouseEvent object has all the information that you need to know about the state of
the mouse and other information for the particular event. The following list shows significant
members of the MouseEvent type that you might need to use to interpret what to do with
that action.

• altDown: Boolean - Tells if the Alt key was down during this event.

• button: MouseButton - Gives a value that can be compared to MouseButton.Middle,
MouseButton.None, MouseButton.Primary, or MouseButton.Secondary.

• clickCount: Int - Tells you how many times the mouse has been clicked in a row so
the program can respond to double clicks, triple clicks, etc.

• controlDown: Boolean - Tells you if the Control key was down during this event.

• metaDown: Boolean - Tells you if the Meta key was down during this event.

• middleButtonDown: Boolean - Tells you if the middle mouse button was down for
this event.

• pickResult: PickResult - Used for 3D graphics discussed in section 12.11.

• primaryButtonDown: Boolean - Tells you if the primary mouse button was down
during this event.

• sceneX: Double - Tells you the x-coordinate of the mouse in the Scene.

• sceneY: Double - Tells you the y-coordinate of the mouse in the Scene.

• screenX: Double - Tells you the x-coordinate of the mouse on the full screen.

• screenY: Double - Tells you the y-coordinate of the mouse on the full screen.

• secondaryButtonDown: Boolean - Tells you if the secondary mouse button was down
during this event.

• shiftDown: Boolean - Tells you if the Shift buttons was down during this event.

• shortcutDown: Boolean - Tells you if the shortcut modifier for your platform was
down during this event.

• source: AnyRef - Tells you the object on which the event initially occurred.

• stillSincePress: Boolean - Tells you if the mouse pointer has stayed in the same
location since the last pressed event occurred.

• x: Double - Gives you the x-coordinate of the mouse relative to the origin of the
event’s source.

• y: Double - Gives you the y-coordinate of the mouse relative to the origin of the
event’s source.

• z: Double - Gives you the z-coordinate (the depth position) of the mouse relative to
the origin of the event’s source.

Graphics and Advanced ScalaFX 343

The MouseDragEvent is a subtype of MouseEvent that only adds a method called
gestureSource which can be used to determine the object that the drag started with. The
DragEvent removed the members that tell you about buttons and instead has a method
called dragboard that returns an object of type Dragboard that is used for transferring data.
Full details and usage of drag-and-drop are beyond the scope of this book. The ScrollEvent
has many of the same methods as a MouseEvent related to keyboard keys and position, but
it adds a few others specific to scrolling.

• deltaX: Double - Gets the amount of horizontal scroll.

• deltaY: Double - Gets the amount of vertical scroll.

• textDeltaX: Double - Gets the amount of horizontal text-based.

• textDeltaY: Double - Gets the amount of vertical text-based.

Mouse and keyboard interactions are demonstrated in the following program which
allows the user to draw paths with the mouse then use the arrow keys to move a little circle
around. The circle is not allowed to cross the lines.

Listing 12.4: DrawMaze.scala
import scalafx.Includes._
import scalafx.application.JFXApp
import scalafx.scene.Scene
import scalafx.scene.paint.Color
import scalafx.scene.shape._
import scalafx.scene.input.MouseEvent
import scalafx.scene.input.KeyEvent
import scalafx.scene.input.KeyCode

val app = new JFXApp {
stage = new JFXApp.PrimaryStage {
title = "Draw Maze"
scene = new Scene(500,500) {
val polyline = Polyline(0, 0, 500, 0, 500, 500, 0, 500, 0, 0)
var walls = List(polyline)

val ball = Circle(21, 21, 20)

content = List(polyline, ball)

onKeyPressed = (e:KeyEvent) => {
println("Pressed")

val oldX = ball.centerX.value
val oldY = ball.centerY.value
if (e.code == KeyCode.Up) ball.centerY = ball.centerY.value - 2
if (e.code == KeyCode.Down) ball.centerY = ball.centerY.value + 2
if (e.code == KeyCode.Left) ball.centerX = ball.centerX.value - 2
if (e.code == KeyCode.Right) ball.centerX = ball.centerX.value + 2

// Collision detection with walls
val clear = walls.forall(shape => {
Shape.intersect(ball,shape).boundsInLocal.value.isEmpty

})

344 Introduction to Programming and Problem-Solving Using Scala

// If it collided, go back to old location
if (!clear) {
ball.centerX = oldX
ball.centerY = oldY

}
}

onMousePressed = (e:MouseEvent) => {
walls ::= Polyline()
content += walls.head
walls.head.points ++= List(e.x,e.y)

}
onMouseDragged = (e:MouseEvent) => {
walls.head.points ++= List(e.x,e.y)

}
onMouseReleased = (e:MouseEvent) => {
walls.head.points ++= List(e.x,e.y)

}
}

}
}

app.main(args)

The code begins by creating a scene that has a Polyline that goes around the scene as well
as a Circle that begins in the top left corner. Note that the perimeter line is added to a
var List called walls. This is used to keep track of all the shapes that the circle cannot
go through.

The onKeyPressed handler is set to code that moves the ball. To do this, it remembers
the current location of the ball, then moves it two pixels in the proper direction. It then
uses a call to forall on walls to see if this new location would overlap any walls. This is
done using a call to Shape.intersect. The results of that call is a new Shape object that
represents the intersection. To tell if this shape is empty, we call boundsInLocal, which
gives us a Property. To get the actual bounds from the property we call value, then finally
ask the bounds if it is empty. If the new position does intersect something, the circle is set
back to its initial position.

The three mouse handlers are all rather simple. When the mouse is pressed, a new
Polyline is prepended to the front of walls using cons. That new shape is added to the
contents of the scene, and the current point of the mouse is added onto its set of points.
The handlers for dragging and releasing the mouse simply append the mouse location to
the Polyline at the head of walls, adding the most recent segment to that line.

Figure 12.4 shows the result of running this program after the user has drawn some walls
and moved the ball around a bit using the keys.

One of the features that has been added to JavaFX, and hence ScalaFX, is the ability to
handle touch interactions. Earlier GUI libraries for Java were written before the widespread
use of touch interfaces. JavaFX came out after touch interfaces on phones and computers
become more common. As such, it includes the ability to detect those types of events and
gives you the ability to write code that uses them. To do this, you set a handler much as
you would for the mouse or keyboard. The handler is passed an event type that gives the
needed information. The following list gives the different properties that you can set to be
handlers as well as the types of events that they take as inputs.

Graphics and Advanced ScalaFX 345

FIGURE 12.4: The window that is produced by running DrawMaze.scala after the user
has drawn in a few lines and moved around with the keys.

346 Introduction to Programming and Problem-Solving Using Scala

• onRotate - This is called when the user performs a rotate action. It is passed a
RotateEvent.

• onRotationFinished - This is called at the end of a rotate action. It is passed a
RotateEvent.

• onRotationStarted - This is called when the user begins a rotate action. It is passed
a RotateEvent.

• onSwipeDown - This is called when a swipe down gesture is started. It is passed a
SwipeEvent.

• onSwipeLeft - This is called when a swipe left gesture is started. It is passed a
SwipeEvent.

• onSwipeRight - This is called when a swipe right gesture is started. It is passed a
SwipeEvent.

• onSwipeUp - This is called when a swipe up gesture is started. It is passed a
SwipeEvent.

• onTouchMoved - This is called when the user performs a move gesture. It is passed a
TouchEvent.

• onTouchPressed - This is called when the user does a touch press. It is passed a
TouchEvent.

• onTouchReleased - This is called when the user does a touch release. It is passed a
TouchEvent.

• onTouchStationary - This is called when the user does a stationary touch gesture. It
is passed a TouchEvent.

• onZoom - This is called when the user performs a zooming action. It is passed a
ZoomEvent.

• onZoomFinished - This is called when the user finishes a zooming action. It is passed
a ZoomEvent.

• onZoomStarted - This is called when the user starts a zooming action. It is passed a
ZoomEvent.

As you can see, there are five different types of events for touch gestures. Each one has
methods that specifically fit that type of action. For example, the RotateEvent has angle
and totalAngle methods that tell you how far the rotation has gone. The SwipeEvent
has a touchCount: Int that tells you the number of touch points for this gesture. The
TouchEvent also has touchCount, but also has touchPoint and touchPoints which give
back instances of TouchPoint that contains information on a single point where the user is
touching the screen. Lastly, ZoomEvent has a totalZoomFactor and zoomFactor that both
give Doubles for the amount of zoom.

If you do not have a touch screen on your computer, you will not be able to take ad-
vantage of these handlers. However, there are projects that are designed to compile JavaFX
programs for use on iOS and Android mobile devices. While you cannot use these with
the Scala scripts we are currently writing, this is something you could consider doing after
you have learned how to write Scala applications and use a number of other tools, such as
appropriate build tools.

Graphics and Advanced ScalaFX 347

12.3 Images
Most applications that do graphics cannot do what they need just with shapes. Another

critical component for most applications is images. Most of the types that you need to work
with images are provided in the scalafx.scene.image package. The most fundamental of
these types is the Image type, which represents an image. These can be created using any
of the following.

• new Image(url: String, requestedWidth: Double, requestedHeight: Double,
preserveRatio: Boolean, smooth: Boolean, backgroundLoading: Boolean)

• new Image(url: String, requestedWidth: Double, requestedHeight: Double,
preserveRatio: Boolean, smooth: Boolean)

• new Image(url: String, backgroundLoading: Boolean)

• new Image(url: String)

The url argument specifies the source of the image data. These can start with “file:” to pull
the information from the local disk. The requestedWidth and requestedHeight arguments
allow you to specify the size of the image if you want one that is different from the natural
size of the image. The preserveRatio argument, if true, will cause the aspect ratio to be
preserved despite the scaling. The smooth argument tells ScalaFX whether it should use a
higher quality filtering algorithm or a faster one. Lastly, the backgroundLoading argument,
if true, will let the program continue to execute while this image loads in the background.

The Image type has height and width properties. The most significant method on
the Image type is probably pixelReader: Option[PixelReader]. This will provide a
PixelReader assuming that the image type in question allows for reading pixels. The details
of the PixelReader type are discussed later.

If your primary goal is to get an image to display in your GUI, the ImageView type
is a subtype of Node that serves this purpose. You can create one of these with new
ImageView(url: String) or new ImageView(image: Image). After you have created it,
you can set the fitHeight and fitWidth to alter the bounding box that the image is fit
inside.

For many applications, it is helpful to be able to find out the color of individual pixels
in an image. For these purposes there is the PixelReader type, which allows you to get this
type of information. At this point, the two that are significant are getArgb(x: Int, y:
Int): Int and getColor(x: Int, y: Int): Color. Given the x and y coordinate values
of a pixel, these methods return either the numeric ARGB value for the color or a Color
value for it.

There is a subtype of Image called WritableImage. As the name implies, this type of
allows you to write into it. Specifically, you can get a PixelWriter, the couterpart to the
PixelReader and set the value of individual pixels. To create a WritableImage, use one of
the following.

• new WritableImage(reader: PixelReader, x: Int, y: Int, width: Int,
height: Int)

• new WritableImage(reader: PixelReader, width: Int, height: Int)

• new WritableImage(width: Int, height: Int)

348 Introduction to Programming and Problem-Solving Using Scala

The two versions that take a PixelReader make a copy of the image that PixelReader
is attached to, potentially with an offset and a different scale. The last version creates a
blank, transparent image of the specified width and height.

Once you have a WritableImage you can call the pixelWriter method to get
a PixelWriter. There are three methods in PixelWriter that are significant to
us here. They are setArgb(x: Int, y: Int, argb: Int): Unit, setColor(x: Int,
y: Int, c: Color): Unit, and setPixels(dstx: Int, dsty: Int, w: Int, h: Int,
reader: PixelReader, srcx: Int, srcy: Int): Unit. The first two parallel methods
in PixelReader, in that they set a single pixel in the image to a particular ARGB numeric
value or a specific Color. The last method sets a rectangular region of pixels at a location
and size determined by the first four arguments and uses values taken from the specified
location in a PixelReader.

To illustrate the user of these different types, the following example loads in an image
that is specified at command line and scales it down to be only 200 pixels across. It then
tries to gets a PixelReader for that image. If it can, it makes three WritableImages and
their associated PixelWriters and copies over the red, green, and blue components to those
images. They are then put in ImageViews and stored in the variables red, green, and blue.
If the reader cannot be acquired those variables simply get Labels that say such. All four
images are then added to a TilePane to display.

Listing 12.5: ImageView.scala
1 import scalafx.Includes._
2 import scalafx.application.JFXApp
3 import scalafx.scene.Scene
4 import scalafx.scene.image.{Image, ImageView, WritableImage, PixelReader,

PixelWriter}
5 import scalafx.scene.control.Label
6 import scalafx.scene.layout.TilePane
7 import scalafx.scene.paint.Color
8

9 if (args.length < 1) {
10 println("You must provide an argument with the name of a file to load.")
11 sys.exit(0)
12 }
13

14 val app = new JFXApp {
15 stage = new JFXApp.PrimaryStage {
16 scene = new Scene(800,200) {
17 val original = new Image("file:"+args(0), 200, 200, true, true)
18 val (red, green, blue) = original.pixelReader match {
19 case Some(reader) =>
20 val rimg = new WritableImage(original.width.value.toInt,

original.height.value.toInt)
21 val rwriter = rimg.pixelWriter
22 val gimg = new WritableImage(original.width.value.toInt,

original.height.value.toInt)
23 val gwriter = gimg.pixelWriter
24 val bimg = new WritableImage(original.width.value.toInt,

original.height.value.toInt)
25 val bwriter = bimg.pixelWriter
26 for (i <- 0 until original.width.value.toInt;
27 j <- 0 until original.height.value.toInt) {
28 val c = reader.getColor(i, j)

Graphics and Advanced ScalaFX 349

FIGURE 12.5: The window that is produced by running ImageView.scala with a sample
image.

29 rwriter.setColor(i, j, Color(c.red, 0, 0, 1.0))
30 gwriter.setColor(i, j, Color(0, c.green, 0, 1.0))
31 bwriter.setColor(i, j, Color(0, 0, c.blue, 1.0))
32 }
33 (new ImageView(rimg), new ImageView(gimg), new ImageView(bimg))
34 case None =>
35 (new Label("No Reader"), new Label("No Reader"), new Label("No Reader"))
36 }
37 val tilePane = new TilePane
38 tilePane.children = List(new ImageView(original), red, green, blue)
39

40 root = tilePane
41 }
42 }
43 }
44

45 app.main(args)

A possible output of this program can be seen in figure 12.5.4
It is interesting to note that you can get images onto Buttons by using the code new

Button(text: String, graphic: Node) and providing an appropriate ImageView as the
graphic.

12.3.1 Writing Images to File

While JavaFX and therefore ScalaFX support a remarkable number of features, there is
one rather significant one that they did not add direct support for, writing images to file. In
order to do this, we have to go through some older Java based libraries. The functionality to
read and write images in Java is provided by the javax.imageio.ImageIO type. This type
has a method called write that can write out image files in various formats. The challenge
is that ImageIO works with the BufferedImage that was part of the older libraries, not
the Image type from JavaFX. Fortunately, there are ways to convert the Image type that
we use to the BufferedImage type using the scalafx.embed.swing.SwingFXUtils object.
The following line of code will write an Image called img out to a file specified by the
java.io.File named file as a PNG file.

ImageIO.write(SwingFXUtils.fromFXImage(img, null), "png", file)

You might find that you want to save off your whole Scene or a particular Node as an
image. In order to do this, you can use some snapshot methods in order to get what is

4This image provided by Quinn Bender.

350 Introduction to Programming and Problem-Solving Using Scala

displayed on the screen into a WritableImage. To take a snapshot of the full Scene you
can use one of the following methods.

• snapshot(callback:(SnapshotResult) => Unit, image:WritableImage):Unit

• snapshot(image: WritableImage): WritableImage

For both of them you pass in a WritableImage that is supposed to be used. In the first one,
you also provide a callback function that takes a SnapshotResult and returns Unit. This
version will do the rendering separately, and call the callback function when it is done. The
SnapshotResult type has a method called Image that will give you the WritableImage
with the snapshot in it. The second version will pause until the image has been written and
give it back to you. Either way, you can then use the code above to write the image out to
a file.

12.4 Transformations
One of the most fundamental capabilities common to nearly all graphical displays is

the ability to transform the things that are being drawn. Transforms include combinations
of rotations, translations, scaling, and shearing. You can see an example of what each of
these looks like in figure 12.6. ScalaFX takes this to the extreme of allowing you to apply
transforms to every Node in a Scene. This means you can not only transform the Shape
types, but controls, panes, and everything else. The types of transforms that are allowed
are affine transforms. An affine transform is one where lines that are parallel before
the transform are still parallel after the transform. This is true for rotations, translations,
scaling, and shear. Any combination of these transforms is also an affine transform.

You can apply transforms using a number of different methods of the Node class given
in the following list.

• rotate - Can be set to specify the amount of rotation in degrees.

• rotationAxis - Can specify a Point3D that is the location to rotate about.

• scaleX - Can be set to a Double that is the amount the Node is scaled in the x-
coordinate.

• scaleY - Can be set to a Double that is the amount the Node is scaled in the y-
coordinate.

• scaleZ - Can be set to a Double that is the amount the Node is scaled in the z-
coordinate.5

• transforms - Allows you to specify a sequence of transforms that are all applied to
this Node.

• translateX - Can be set to a Double that specifies the amount to translate in the
x-coordinate.

• translateY - Can be set to a Double that specifies the amount to translate in the
y-coordinate.

Graphics and Advanced ScalaFX 351

• translateZ - Can be set to a Double that specifies the amount to translate in the
z-coordinate.5

Most of these are straightforward other than transforms. To make the these you use

Transform.rotate(angle: Double, pivotX: Double, pivotY: Double): Rotate,
Transform.scale(x: Double, y: Double, pivotX: Double, pivotY: Double): Scale,
Transform.scale(x: Double, y: Double): Scale,
Transform.shear(x: Double, y: Double, pivotX: Double, pivotY: Double): Shear,
Transform.shear(x: Double, y: Double): Shear,

and

Transform.translate(x: Double, y: Double): Translate.

This approach is shown in the following code segment. These transforms are represented
in the computer using matrices. That details of how that works goes beyond this text, but
you should know that you can build your own transforms using the methods

Transform.affine(mxx: Double, mxy: Double, mxz: Double, tx: Double, myx: Double,
myy: Double, myz: Double, ty: Double, mzx: Double, mzy: Double, mzz: Double,
tz: Double): Affine

or

Transform.affine(mxx: Double, myx: Double, mxy: Double, myy: Double, tx: Double,
ty: Double): Affine.

Listing 12.6: SimpleTransforms.scala
import scalafx.Includes._
import scalafx.application.JFXApp
import scalafx.scene.{Scene, Group}
import scalafx.scene.shape.Line
import scalafx.scene.transform.Transform

def makeParallelLines:Group = {
new Group(Line(-50, -50, -50, 50), Line(50, -50, 50, 50))

}

val app = new JFXApp {
stage = new JFXApp.PrimaryStage {
title = "Transforms"
scene = new Scene(400,400) {
val lines1 = makeParallelLines
lines1.transforms = List(Transform.translate(100,100))

val lines2 = makeParallelLines
lines2.transforms = List(Transform.translate(300,100), Transform.rotate(45,

0, 0))

val lines3 = makeParallelLines
lines3.transforms = List(Transform.translate(100,300), Transform.scale(0.5,

0.5))

5Only used for 3D graphics discussed in section 12.11.

352 Introduction to Programming and Problem-Solving Using Scala

FIGURE 12.6: The window that is produced by running SimpleTransforms.scala.

val lines4 = makeParallelLines
lines4.transforms = List(Transform.translate(300,300),

Transform.shear(0.1,0.2))

content = List(lines1, lines2, lines3, lines4)
}

}
}

app.main(args)

The output of this code is shown in figure 12.6.
This example demonstrates something else that we have not seen before, using Groups to

group together Nodes in the scene graph. The parallel lines are separate Line objects, and
we want to provide the same transformations to each of them. This is achieved by putting
the two lines in a Group, then applying the transforms to that Group and adding the Group
into the Scene. You can nest Groups inside of Groups to create more complicated structures
as well. This capability is we say that ScalaFX uses a scene graph, and you should take
advantage of it if you intend to build more complex graphics using the geometry types in
Scalafx.

12.5 Animation
Up to this point, any changes that happened in our GUIs had to be completely motivated

by user interactions with our programs. That is to say that we could change aspects of the
GUI when the user clicked a mouse or hit a key. Consider the DrawMaze.scala example where
the mouse cuased lines to be drawn and the keys caused a circle to move. Having things

Graphics and Advanced ScalaFX 353

happen between user interactions, or possibly even without the user doing anything at all
is essential for a number of different types of applications. This is the realm of animations.
ScalaFX provides a scalafx.animation package, which has a number of types that help
with the creation of animations, including the Animation type. There are two main subtypes
of Animation called Transition and Timeline that can be used to produce different types
of animations. There is also an AnimationTimer that gives you the ability to do whatever
you want at fairly regular intervals in an application. These three approaches are covered
in the following subsections.

There are a number of useful members and methods provided by the Animation type
that are common the both Transitions and the Timeline. Here is a partial list of those.

• autoReverse - This is a BooleanProperty that tells if the animation should reverse
when it gets to the end.

• currentRate - A ReadOnlyDoubleProperty that tells the current direction and speed
that the animation is being played at.

• currentTime - A ReadOnlyObjectProperty[Duration] that tells the current position
in playing the animation. The scalafx.util.Duration type is used to represent
lengths of time and is covered in more detail below.

• cycleCount - This IntegerProperty defines how many times the animation should
cycle.

• cycleDuration - This ReadOnlyObjectProperty[Duration] gives how long it takes
to run through the full animation.

• delay - This ObjectProperty[Duration] can be used to get or set a delay to wait
before the animation begins.

• jumpTo(cuePoint: String) - Jumps to a predefined location in the animation.

• jumpTo(time: Duration) - Jumps to a specified point in time in the animation.

• onFinished - This ActionEvent handler can be given code that should happen when
the animation is finished. You can use this to schedule subsequent animations.

• pause() - Pauses play of the animation.

• play() - Causes the animation to begin playing.

• playFrom(cuePoint: String) - Begins playing the animation from a predefined
point.

• playFrom(time: Duration) - Begins playing the animation from a specified time.

• playFromStart() - Begins playing the animation from its beginning.

• rate - This DoubleProperty can be used to set the speed and direction of play for
the animation.

• status - This ReadOnlyObjectProperty[Animation.Status] allows you to
determine the current state of the animation. The possible statuses are
Animation.Status.Paused, Animation.Status.Running, and Animation.Status.
Stopped.

• stop() - Stops play of the animation and sets it back to the beginning.

354 Introduction to Programming and Problem-Solving Using Scala

FIGURE 12.7: On the left you will see an example of Interpolator.EaseBoth. On the
right you see an example of Interpolator.Linear.

• targetFramerate: Double - Tells you the maximum frame rate that this animation
is expected to be played.

• totalDuration - This ReadOnlyObjectProperty[Duration] tells you how long the
full animation takes to play, including any repeating.

The fact that animations take time to execute leads to several of the methods listed above
working with the scalafx.util.Duration type. Instances of this type represent time dura-
tions in milliseconds. You can make one by calling new Duration(millis: Double). You
can perform standard math operations and comparisons between Durations. There are also
some special values defined at Duration.Indefinite, Duration.One, Duration.Unknown,
and Duration.Zero.

12.5.1 Transitions

The first subtype of Animation that we want to consider is the Transition type.
The Transition type has all the members of Animation listed above, but adds an
ObjectProperty[Interpolator] called interpolator that governs the way in which the
animation goes from beginning to end.

You can imagine an animation as taking time from 0.0 to 1.0 and the position in the
animation going from 0.0 to 1.0. An Interpolator is a function that takes a fractional
time and gives back a fractional position. The simplest approach to this gives back the
same value that is passed in. This can look a bit unnatural for some actions though as
there are abrupt stops at the ends. For this reason, there are alternative functions as well as
mechanisms that you can use to define your own interpolation. Here are the options defined
in the Interpolator object.

• Discrete - Gives back 1.0 for the input 1.0 and 0.0 otherwise.

• EaseBoth - Slows the transition at both the beginning and the end and is linear in
between.

• EaseIn - Slows the transition at the beginning, but is linear in the middle and end.

• EaseOut - Slows the transition at the end, but is linear at the beginning and middle.

• Linear - This is the basic interpolator that gives back the input value.

• Spline(x1:Double, y1:Double, x2:Double, y2:Double): Interpolator - This
creates a cubic function that uses the two specified control points.

c: c:
0 0

·;; :;:;

"' "' E E
·;:: ·c:
"' "'

.!:: ·=
!: !:
0 0

·;; ·.-:::;
·;;:; ·;;;
0 0
a. a.

time time

Graphics and Advanced ScalaFX 355

• Tangent(t1:Duration, v1:Double, t2:Duration, v2:Double): Interpolator -
This creates an interpolator with a specified tangent value coming in and out for
a particular duration. This should be used with a Timeline that is described in the
next section.

• Tangent(t: Duration, v: Double): Interpolator - This creates an interpolator
that uses the same tangent and duration at both the start and the end.

There are ten subtypes of Transition that are defined in ScalaFX. Two of them are
used for combining other transitions, but the other eight give control over specific things
that can be transitioned for Nodes. Here is a list of the different types, how you create them,
and extra members that are useful in each.

• FadeTransition - This causes a Node to fade in or out by altering the opacity. You
can create them with new FadeTransition(duration: Duration, node: Node) or
new FadeTransition(duration: Duration). If you use the second option, you have
to set the Node property. The fromValue and toValue properties allow you to specify
the opacity at the beginning and end of the transition.

• FillTransition - This causes the fill of a Shape to transition from one color to
another. Instances can be created with

new FillTransition(duration: Duration),
new FillTransition(duration: Duration, shape: Shape),
new FillTransition(duration: Duration, fromValue: Color, toValue: Color),

or

new FillTransition (duration: Duration, shape: Shape, fromValue: Color,
toValue: Color).

There are properties with the names duration, shape, fromValue, and toValue that
can be set if you do not use the option that specifies all of these.

• ParallelTransition - This transition is used to combine other transitions making
them happen at the same time. You can create them with

new ParallelTransition(node: Node, children: Seq[Animation]),
new ParallelTransition(node: Node),

or

new ParallelTransition(children: Seq[Animation]).

You will have to set the node or the children if you use an option that does not
specify one of them.

• PathTransition - Causes a Node to follow a path. This is done by alter-
ing the translateX and translateY values of the Node as well as the rotate
value if the orientation has the value OrthogonalToTangent. Instances can be
created using new PathTransition(duration: Duration, path: Shape) or new
PathTransition(duration: Duration, path: Shape, node: Node). You can also
set the orientation, which can be either PathTransition.OrientationType.None
or PathTransition.OrientationType.OrthogonalToTangent.

356 Introduction to Programming and Problem-Solving Using Scala

• PauseTransition - This does not do anything but call the onFinished code when it is
completed. You can create one with new PauseTransition(duration: Duration).

• RotateTransition - Rotates a Node during the transition. You can make one
of these with new RotateTransition(duration: Duration, node: Node) or new
RotateTransition(duration: Duration). You should specify the axis, which is a
scalafx.geometry.Point3D. You should also set the fromAngle property and either
the toAngle or byAngle property.

• ScaleTransition - Scales a given Node through a transition. You can create instances
using

new ScaleTransition(duration: Duration)

or

new ScaleTransition(duration: Duration, node: Node).

You should specify the fromX, fromY, and fromZ properties. Then you can either
specify toX, toY, and toZ or byX, byY, and byZ.

• SequentialTransition - This is the other approach to combining transi-
tions. The transitions put in a SequentialTransition will happen one af-
ter another. You can create instances of this using new SequentialTransition
(children: Seq[Animation]), new SequentialTransition (node: Node), or new
SequentialTransition (node: Node, children: Seq[Animation]). You will need
to specify the node or the children properties if you use an option that does not give
both.

• StrokeTransition - This transitions the color of a stroke on a Shape. You can create
instances using

new StrokeTransition(duration: Duration),
new StrokeTransition (duration: Duration, shape: Shape),
new StrokeTransition (duration: Duration, fromValue: Color, toValue: Color),

or

new StrokeTransition (duration: Duration, shape: Shape, fromValue: Color,
toValue: Color).

If you use an option that does not set all the properties, you should set them on the
created object.

• TranslateTransition - Moves/translates the Node through a transition. You
can create instances using new TranslateTransition(duration: Duration, node:
Node) or new TranslateTransition(duration: Duration). You should specify
fromX, fromY, and fromZ, then also give either toX, toY, and toZ or byX, byY, and
byZ.

Nearly all of these transitions are demonstrated in the following example. The scene has
two rectangles. The top one has a number of sequential transitions that are controlled by
the user with some buttons. The bottom one is doing a number of transitions in parallel.

Graphics and Advanced ScalaFX 357

Listing 12.7: Transitions.scala
1 import scalafx.Includes._
2 import scalafx.application.JFXApp
3 import scalafx.scene.Scene
4 import scalafx.event.ActionEvent
5 import scalafx.animation._
6 import scalafx.scene.control.Button
7 import scalafx.scene.layout.FlowPane
8 import scalafx.scene.paint.Color
9 import scalafx.scene.shape._

10 import scalafx.util.Duration
11

12 val app = new JFXApp {
13 stage = new JFXApp.PrimaryStage {
14 title = "Transitions"
15 scene = new Scene(600, 400) {
16 val rect1 = Rectangle(20, 50, 100, 100)
17 rect1.strokeWidth = 10
18 val fadeTrans = new FadeTransition(new Duration(1000))
19 fadeTrans.fromValue = 1.0
20 fadeTrans.toValue = 0.5
21 fadeTrans.autoReverse = true
22 val path = new CubicCurve
23 path.startX = 70
24 path.startY = 100
25 path.controlX1 = 600
26 path.controlY1 = 400
27 path.controlX2 = 0
28 path.controlY2 = 400
29 path.endX = 530
30 path.endY = 100
31 val pathTrans = new PathTransition(new Duration(1000), path)
32 val strokeTrans = new StrokeTransition(new Duration(1000), Color.Black,

Color.Cyan)
33 val seqTrans = new SequentialTransition(rect1, List(fadeTrans, pathTrans,

strokeTrans))
34 seqTrans.autoReverse = true
35 seqTrans.cycleCount = 4
36 val startButton = new Button("Start")
37 startButton.onAction = (e:ActionEvent) => seqTrans.play
38 val pauseButton = new Button("Pause")
39 pauseButton.onAction = (e:ActionEvent) => seqTrans.pause
40 val stopButton = new Button("Stop")
41 stopButton.onAction = (e:ActionEvent) => seqTrans.stop
42 val flowPane = new FlowPane
43 flowPane.children = List(startButton, pauseButton, stopButton)
44 val rect2 = Rectangle(20, 280, 100, 100)
45 val transTrans = new TranslateTransition(new Duration(2000))
46 transTrans.fromX = 0
47 transTrans.toX = 460
48 val fillTrans = new FillTransition(new Duration(2000), Color.Black,

Color.Green)
49 val rotTrans = new RotateTransition(new Duration(2000))
50 rotTrans.fromAngle = 0
51 rotTrans.toAngle = 360

358 Introduction to Programming and Problem-Solving Using Scala

FIGURE 12.8: The window that is produced by running Transitions.scala.

52 val parallel = new ParallelTransition(rect2, List(transTrans, fillTrans,
rotTrans))

53 parallel.autoReverse = true
54 parallel.cycleCount = 1000000
55

56 // Uncomment to see non-eased motion
57 // transTrans.interpolator = Interpolator.LINEAR
58 // rotTrans.interpolator = Interpolator.LINEAR
59

60 content = List(rect1, rect2, flowPane)
61

62 parallel.play
63 }
64 }
65 }
66

67 app.main(args)

You can see a sample of what this program looks like in figure 12.8. Lines 16 to 35 set up
the first rectangle with a FadeTransition, a PathTransition, and a StrokeTransition.
Those three are put together in a SequentialTransition that is applied to the rectan-
gle. Lines 36 to 41 set up buttons to control that SequentialTransition. Lines 44 to
54 set up the second rectangle with a TranslateTransition, a FillTransition, and a
RotateTransition. These are all combined in a ParallelTransition, so the rectangle at
the bottom spins from side to side of the window while changing color from black to green
and back.

All of the transitions use the EASE_BOTH interpolation by default. If you run this code and
watch it, you should be able to tell that the movement accelerates smoothly at the beginning
and decelerates smoothly at the end. If you uncomment lines 57 and 58 and rerun the script,
you will be able to see what the LINEAR interpolation looks like by comparison.

12.5.2 Timelines

Another approach to doing animation is with the Timeline type. Using a Timeline
you are able to specify given times as KeyFrames. Each KeyFrame has different KeyValues
associated with it. The KeyValue is a part of a pair which consists of a writeable value
or property and the value it should have when the animation reaches that KeyFrame. The

Graphics and Advanced ScalaFX 359

KeyValue can optionally specify an interpolator for how the change from the previous
KeyFrame to the current one should be handled. The default interpolator for KeyValues is
Linear.

You can build a Timeline with Timeline(keyFrames: Seq[KeyFrame]). To make a
single KeyFrame, you would use the following.

KeyFrame(time: Duration, name: String = null, onFinished:
EventHandler[ActionEvent] = null, values: Set[KeyValue[_, _]] = Set.empty)

Note that all the parameters other than time have default values, so this can be called
with just a single argument of type Duration. Most likely, you will want to specify the
Set[KeyValue[_,_]]. You can do so by name if you do not want to provide a name or an
onFinish handler that is called when this KeyFrame is reached. The individual KeyFrames
are created with KeyValue(target, endValue, interpolator) or KeyValue(target,
endValue). The target and endValue can have many different types, but they need to
match. So if the target value is a DoubleProperty then the endValue needs to be a
Double. In general, the types need to be things that can be interpolated, you will find it
works best with numeric types and Boolean.

The following example shows the use of a basic Timeline with three different KeyFrames.
It begins with a rectangle that is in the top left corner. When the user presses the “Start”
button, the rectangle slides along the top and rotates one full time around. After getting
half way across the top, it stops spinning and slides down to the bottom while still moving
across.

Listing 12.8: Timelines.scala
1 import scalafx.Includes._
2 import scalafx.application.JFXApp
3 import scalafx.scene.Scene
4 import scalafx.event.ActionEvent
5 import scalafx.animation._
6 import scalafx.scene.control.Button
7 import scalafx.scene.layout.FlowPane
8 import scalafx.scene.shape._
9 import scalafx.util.Duration

10

11 val app = new JFXApp {
12 stage = new JFXApp.PrimaryStage {
13 title = "Transitions"
14 scene = new Scene(600, 400) {
15 val rect1 = Rectangle(20, 50, 100, 100)
16

17 val kv11 = KeyValue(rect1.translateX, 0)
18 val kv12 = KeyValue(rect1.translateY, 0)
19 val kv13 = KeyValue(rect1.rotate, 0)
20 val kf1 = KeyFrame(new Duration(0), values = Set(kv11, kv12, kv13))
21 val kv21 = KeyValue(rect1.translateY, 0)
22 val kv22 = KeyValue(rect1.rotate, 360)
23 val kf2 = KeyFrame(new Duration(1000), values = Set(kv21, kv22))
24 val kv31 = KeyValue(rect1.translateX, 460)
25 val kv32 = KeyValue(rect1.translateY, 230)
26 val kf3 = KeyFrame(new Duration(2000), values = Set(kv31, kv32))
27

28 val timeline = Timeline(List(kf1, kf2, kf3))
29

360 Introduction to Programming and Problem-Solving Using Scala

FIGURE 12.9: The window that is produced by running Timelines.scala.

30 val startButton = new Button("Start")
31 startButton.onAction = (e:ActionEvent) => timeline.play
32 val pauseButton = new Button("Pause")
33 pauseButton.onAction = (e:ActionEvent) => timeline.pause
34 val stopButton = new Button("Stop")
35 stopButton.onAction = (e:ActionEvent) => timeline.stop
36 val flowPane = new FlowPane
37 flowPane.children = List(startButton, pauseButton, stopButton)
38

39

40 content = List(rect1, flowPane)
41 }
42 }
43 }
44

45 app.main(args)

A KeyFrame is added with a time of 0 that sets translateX, translateY, and rotate all to
zero. The second KeyFrame is at one second into the animation, and it keeps the translateY
value at 0 and has the rotate value go to 360. This produces the spinning motion moving
across the top. If the translateY value were not set to zero here, the rectangle would begin
moving down immediately at the beginning of the animation. The third KeyFrame is at two
seconds, and it has the translateX and translateY values set to 460 and 230, respectively,
to put the rectangle at the bottom of the window. The output of this script after pressing
“Start” is shown in figure 12.9.

This script stopped at three KeyFrames to keep the example reasonably short. You can
add far more than this and create arbitrarily complex animations using this approach.

12.5.3 AnimationTimer

Transitions are good for doing fairly short animated actions. Timelines allow for longer
sequences of behaviors that alter numeric properties of Nodes. Both of these are best for
scripted types of behaviors that the programmer can lay out in advance and that have less
dependence on what the user is doing. If you want to simply have actions that occur at
fairly regular intervals where you write logic to do things based on the state of the program,
including user actions, the AnimationTimer is probably a better choice. An example of
the type of program that could benefit from an AnimationTimer is a game. In a game,

Graphics and Advanced ScalaFX 361

the user typically interacts with the program through keyboard or mouse events, and the
behavior of elements in the game needs to vary depending on where things are and what
has happened. This is challenging to set up using Transitions or Timelines. It works best
if you can simply write code that is called every so often to update the state. This is what
an AnimationTimer does.

You can create an AnimationTimer using AnimationTimer(handler: (Long) =>
Unit). The handler is a function that takes a Long and produces Unit. The Long rep-
resents the current time measured in nanoseconds. You can make a var outside of the
function that is used to store the previous time. Then each time the function is invoked,
you can use the difference of the last time and the current time to figure out how much time
has passed and update things in an appropriate manner. The handler code can do whatever
it is that you want it to do, including altering the properties of Nodes in the Scene. You
can control the timer with start and stop methods. Remember that the timer will not do
anything until you call the start method.

To illustrate the use of an AnimationTimer, the following code shows a simple imple-
mentation of the classic video game Pong. There are paddles on the left and right side of
the window. The left paddle is controlled by the W and S keys while the right paddle is
controlled by the up and down arrow keys. There is a circle that moves around with a
particular speed and angle. The speed and angle are stored in vars so that they can change
as the game goes on. There is also a label that is centered near the top of the window that
shows the score. The individual player scores are stored in properties and bindings are used
to both position the label and to set its text so that when either score is changed, the label
updates and always stays centered.

Listing 12.9: Pong.scala
1 import scalafx.Includes._
2 import scalafx.application.JFXApp
3 import scalafx.scene.Scene
4 import scalafx.scene.shape._
5 import scalafx.scene.control.Label
6 import scalafx.scene.paint.Color
7 import scalafx.scene.input._
8 import scalafx.animation.AnimationTimer
9 import scalafx.beans.property._

10

11 val app = new JFXApp {
12 stage = new JFXApp.PrimaryStage {
13 title = "Pong"
14 scene = new Scene(500, 500) {
15 val paddle1 = Rectangle(0, 200, 20, 100)
16 val paddle2 = Rectangle(480, 200, 20, 100)
17 val ball = Circle(250, 250, 20)
18 var speed = 100.0
19 var theta = 0.0
20 val score1 = IntegerProperty(0)
21 val score2 = IntegerProperty(0)
22 val scoreDisplay = Label("")
23 scoreDisplay.layoutY = 30
24 scoreDisplay.layoutX <== (width-scoreDisplay.width)/2
25

26 scoreDisplay.text <== StringProperty("")+score1.asString+" : "+score2.asString
27

28 content = List(paddle1, paddle2, ball, scoreDisplay)

362 Introduction to Programming and Problem-Solving Using Scala

29

30 onKeyPressed = (e:KeyEvent) => {
31 if (e.code == KeyCode.W) {
32 paddle1.y = paddle1.y.value - 5
33 }
34 if (e.code == KeyCode.S) {
35 paddle1.y = paddle1.y.value + 5
36 }
37 if (e.code == KeyCode.Up) {
38 paddle2.y = paddle2.y.value - 5
39 }
40 if (e.code == KeyCode.Down) {
41 paddle2.y = paddle2.y.value + 5
42 }
43 }
44

45 var lastTime = 0L
46 val timer = AnimationTimer(t => {
47 if (lastTime!=0) {
48 val vx = speed*math.cos(theta)*(t-lastTime)/1e9
49 val vy = speed*math.sin(theta)*(t-lastTime)/1e9
50 ball.centerX = ball.centerX.value + vx
51 ball.centerY = ball.centerY.value + vy
52 speed += (t-lastTime)/1e8
53 }
54 lastTime = t
55 if (!Shape.intersect(ball,paddle1).boundsInLocal.value.isEmpty) {
56 val offset = (paddle1.y.value+paddle1.height.value/2-ball.centerY.value)
57 theta = -offset/100*math.Pi/2
58 }
59 if (!Shape.intersect(ball,paddle2).boundsInLocal.value.isEmpty) {
60 val offset = (paddle2.y.value+paddle2.height.value/2-ball.centerY.value)
61 theta = math.Pi + offset/100*math.Pi/2
62 }
63 if (ball.centerY.value < ball.radius.value && math.sin(theta) < 0.0) {
64 theta = math.atan2(-math.sin(theta),math.cos(theta))
65 }
66 if (ball.centerY.value > height.value-ball.radius.value && math.sin(theta)

> 0.0) {
67 theta = math.atan2(-math.sin(theta),math.cos(theta))
68 }
69 if (ball.centerX.value < -ball.radius.value) {
70 speed = 100
71 score2.value = score2.value+1
72 ball.centerX = 250
73 ball.centerY = 250
74 theta = 0
75 }
76 if (ball.centerX.value > 500+ball.radius.value) {
77 speed = 100
78 score1.value = score1.value+1
79 ball.centerX = 250
80 ball.centerY = 250
81 theta = math.Pi
82 }

Graphics and Advanced ScalaFX 363

FIGURE 12.10: The window that is produced by running Pong.scala.

83 })
84

85 timer.start
86 }
87 }
88 }
89

90 app.main(args)

Figure 12.10 shows what the display might look like in the middle of a game. The new
element in this code is the AnimationTimer, which is created on lines 46-83. All of the logic
of the game occurs in here. On line 45 a var called lastTime is declared and given a value of
0L. Remember that the capital L on an integer literal forces it to be a Long. Without this,
lastTime would be an Int, which would cause a type error on line 54 where it is updated
with the new time.

Lines 48 to 52 move the ball and speed it up a bit based on the difference between the
last time and the current time. The initial value of lastTime is not a valid time value, so
that logic needs to be put in an if so it is skipped the first time the handler is called and
does not happen until we have a valid time to use in the t-lastTime calculations. Lines 55
to 58 check to see if the ball intersects the left paddle. If it does, it sets the theta value for
the ball motion to be heading to the right with some variation depending on what part of
the paddle was hit. Lines 59 to 62 do the same thing for the second paddle.

364 Introduction to Programming and Problem-Solving Using Scala

Lines 63 to 82 deal with the ball and the edges. Lines 63 to 68 cause the ball to bounce
off the top and bottom edges. Lines 69 to 82 deal with the ball going out the left or right
sides. When that happens, the ball is reset to the center with the original speed of 100
pixels/second and the score of the appropriate player is updated. Do not worry if not all
the math related to the motion of the ball makes sense to you. What is important is that
you see how the code in an AnimationTimer can be used to control a graphical game.

12.6 Canvas
We have been creating our graphics by adding Nodes to the scene graph that represent

the elements that we want to have drawn. The Canvas is a Node that you can draw onto
itself. Going back to the analogy from the beginning of the chapter of the Scene being a
magnetic board that we can stick our shapes to, the Canvas is like a paper or some other
drawing surface that we can stick onto the board. This paper can be moved around with
transformations or treated in many ways like the other shapes we can put on the board,
but it is also a surface that we can draw directly to.

There are a number of reasons why you might want to use a Canvas instead of placing
shapes directly in the Scene, but the main reason would be for speed and efficiency. When
you put shapes into the Scene, the computer stores memory for each of those shapes. This
has an advantage that you can easily move them around or adjust them over time in various
ways. However, if you are going to be drawing a large number of things, having to store
significant information for each one can create a lot of overhead. With the Canvas, you
simply draw stuff to it and while the result is stored, all the information that went into the
individual steps of creating the drawing do not have to be. The down side of this is that if
you draw a bunch of circles (or other shapes), you cannot pick one and change its location
or appearance, you would need to redraw everything. For many applications though, this
type of behavior is perfectly fine.

Canvas and the types associated with it are in the package scalafx.scene.canvas. You
can instantiate a Canvas with new Canvas(width: Double, height: Double). The fact
that Canvas is a subtype of Node means that you can insert it into your Scene and do any
of the other things that we have discussed for Nodes with it. When you want to draw on
the Canvas, you call the graphicsContext2D method, which returns a GraphicsContext.
It is the GraphicsContext type that includes most of the functionality. Most of this func-
tionality mirrors things that we have already discussed such as paths, filling, and strokes.
The following subsections run through most of the methods of GraphicsContext breaking
them up into different types of methods.

12.6.1 Settings

Since the settings impact everything that is drawn, we will start with those. Here is a
list of the members of GraphicsContext that deal with the settings. The ones that do not
have parentheses for the arguments are properties that you can get the value from or set
using assignment. Many of these settings use types that were described in previous sections
and apply in the same way here as they did before.

• applyEffect(e: Effect): Unit - Applies the given scalafx.scene.effect.Effect
to the entire canvas.

Graphics and Advanced ScalaFX 365

• clip(): Unit - Sets the current path to be a clipping region. This means anything
that would normally be drawn outside of this path will not appear.

• fillRule: FillRule - Allows you to set a scalafx.scene.shape.FillRule.

• fill: Paint - Get or set the Paint that is used to fill.

• font: Font - Get or set the font that is used for text.

• getEffect(e: Effect): Effect - Get the effect that is currently in use.

• getTransform: Affine - Get the scalafx.scene.transform.Affine transform that
is currently in use.

• globalAlpha: Double - Get or set the transparency used for drawing.

• globalBlendMode: BlendMode - Get or set the scalafx.scene.effect.BlendMode
that is being used.

• lineCap: StrokeLineCap - Get or set the scalafx.scene.shape.StrokeLineCap
that is being used.

• lineJoin: StrokeLineJoin - Get or set the scalafx.scene.shape.StrokeLineJoin
that is being used.

• lineWidth: Double - Get or set the width of the line for strokes.

• miterLimit: Double - Get or set the miter limit used with the stroke when the line
join style is set to be a miter join.

• rotate(degrees: Double): Unit - Rotate the current transform by the specified
number of degrees.

• scale(x: Double, y: Double): Unit - Scale the current transform by the specified
amount.

• setEffect(e: Effect): Unit - Allows you to specify a scalafx.scene.effect.
Effect that will be applied to subsequently drawn elements.

• setTransform(mxx: Double, myx: Double, mxy: Double, myy: Double, mxt:
Double, myt: Double):Unit - Sets the transform to a particular matrix.

• setTransform(xform: Affine): Unit - Sets the transform to the provided affine
transform.

• stroke: Paint - Sets the paint style used for subsequent strokes.

• textAlign: TextAlignment - Sets the scalafx.scene.text.TextAlignment that is
used for rendering text.

• textBaseline: VPos - Sets the scalafx.geometry.VPos to be used to position text.

• transform(mxx: Double, myx: Double, mxy: Double, myy: Double, mxt:
Double, myt: Double): Unit - Applies the specified matrix to the current trans-
formation.

• transform(xform: Affine): Unit - Applies the specified affine transform to the
current transformation.

366 Introduction to Programming and Problem-Solving Using Scala

• translate(x: Double, y: Double): Unit - Applies a translation to the current
transform.

With the exception of clip, these methods should be fairly straightforward as they refer
to the same types of settings that have been covered earlier for non-Canvas based drawing.

There are two other methods related to settings on the GraphicsContext that allow you
to store and recover settings. The save(): Unit method will take all the current settings
and store them in a structure called a stack. You can later call restore(): Unit to bring
back earlier settings. If you call save() multiple times without calling restore(), they
stack up and the next call to restore will pull off the most recently saved values. Another
call will pull off the values before that and so on.

12.6.2 Basic Fills and Strokes

One way of drawing things to a GraphicsContext is to simply draw shapes out directly.
This can be done by filling in the shape or just by drawing the outline as a stroke. The
following methods provide this functionality.

• fillArc(x: Double, y: Double, w: Double, h: Double, startAngle: Double,
arcExtent: Double, closure: ArcType): Unit

• fillOval(x: Double, y: Double, w: Double, h: Double): Unit

• fillPolygon(points: Seq[(Double, Double)]): Unit

• fillPolygon(xPoints: Array[Double], yPoints: Array[Double], nPoints:
Int): Unit

• fillRect(x: Double, y: Double, w: Double, h: Double): Unit

• fillRoundRect(x: Double, y: Double, w: Double, h: Double, arcWidth:
Double, arcHeight: Double): Unit

• fillText(text: String, x: Double, y: Double, maxWidth: Double): Unit

• fillText(text: String, x: Double, y: Double): Unit

• strokeArc(x: Double, y: Double, w: Double, h: Double, startAngle:
Double, arcExtent: Double, closure: ArcType): Unit

• strokeLine(x1: Double, y1: Double, x2: Double, y2: Double): Unit

• strokeOval(x: Double, y: Double, w: Double, h: Double): Unit

• strokePolygon(points: Seq[(Double, Double)]): Unit

• strokePolygon(xPoints: Array[Double], yPoints: Array[Double], nPoints:
Int): Unit

• strokePolyline(points: Seq[(Double, Double)]): Unit

• strokePolyline(xPoints: Array[Double], yPoints: Array[Double], nPoints:
Int): Unit

• strokeRect(x: Double, y: Double, w: Double, h: Double): Unit

• strokeRoundRect(x: Double, y: Double, w: Double, h: Double, arcWidth:
Double, arcHeight: Double): Unit

Graphics and Advanced ScalaFX 367

• strokeText(text: String, x: Double, y: Double, maxWidth: Double): Unit

• strokeText(text: String, x: Double, y: Double): Unit

Given the previous discussions of shapes, the meaning of these methods and their arguments
should be fairly clear.

There is another method of GraphicsContext that is worth mentioning here, and that
is clearRect(x: Double, y: Double, w: Double, h: Double): Unit. By default, the
Canvas is transparent. When you draw on it, the drawing covers up anything that is below
the Canvas in the Scene. The clearRect method sets a region back to being transparent
so that you can see through it again to what is below.

12.6.3 Building a Path

Instead of drawing simple shapes, you can also build more complex paths, much the
same way that you could with the Path type as opposed to just using things like Rectangle
and Circle. To use this approach, you start off by calling beginPath(): Unit. This starts
a new path for you to work with. When you are done with a path, you can call either
fillPath(): Unit or strokePath(): Unit depending on how you want to add that path
to your drawing.

After you have called beginPath, the following methods can be used to add to the path.

• appendSVGPath(svgpath: String): Unit

• arc(centerX: Double, centerY: Double, radiusX: Double, radiusY:
Double, startAngle: Double, length: Double): Unit

• arcTo(x1: Double, y1: Double, x2: Double, y2: Double, radius: Double):
Unit

• bezierCurveTo(xc1: Double, yc1: Double, xc2: Double, yc2: Double, x1:
Double, y1: Double): Unit

• closePath(): Unit

• lineTo(x1: Double, y1: Double): Unit

• moveTo(x0: Double, y0: Double): Unit

• quadraticCurveTo(xc: Double, yc: Double, x1: Double, y1: Double): Unit

• rect(x: Double, y: Double, w: Double, h: Double): Unit

The behavior of these methods is similar to the ones described previously for adding
PathElements to a Path.

12.6.4 Image Operations on Canvas

The GraphicsContext also has a number of methods that deal with images. Those
methods are as follows.

• drawImage(img: Image, sx: Double, sy: Double, sw: Double, sh: Double,
dx: Double, dy: Double, dw: Double, dh: Double): Unit - Draw a portion of
the specified image to the given destination in the Canvas. The sx, sy, sw, and sh
parameters represent the x, y, width, and height of the rectangular region of the im-
age or source. The dx, dy, dw, and dh parameters give the rectangular region of the
destination for drawing.

368 Introduction to Programming and Problem-Solving Using Scala

• drawImage(img: Image, x: Double, y: Double, w: Double, h: Double): Unit
- Draws the specified image into the given rectangular region of the Canvas.

• drawImage(img: Image, x: Double, y: Double): Unit - Draws the specified im-
age with the top left corner at the supplied x, y coordinates.

There is also a method called pixelWriter that provides you with a PixelWriter that
can be used to write specific pixels directly to the Canvas. Note that you cannot get a
PixelReader for the Canvas, so if you are writing something that needs to be able to read
pixels, you will need to make a WritableImage and draw that to the Canvas using one of
the drawImage methods.6

12.6.5 A Canvas Based Game

We finish this section with an example game that is based entirely on Canvas style
graphics. In the game the player controls a little green dot with the keyboard. Little red
dots try to catch the green dot and if they succeed, the player loses. The mouse is used to
“draw” puddles on the screen area that slow down both the player and the enemies. That
is the basic idea.

There are a few more details in the analysis. Puddles evaporate over time to become
smaller and enemies only live so long. New enemies pop up at regular intervals. As the game
goes on, enemies live longer. So the real objective is to see how long the player can stay
alive. Here is code for this game.

Listing 12.10: EvadeGame.scala
1 import scalafx.Includes._
2 import scalafx.application.JFXApp
3 import scalafx.scene.Scene
4 import scalafx.animation.AnimationTimer
5 import scalafx.scene.canvas._
6 import scalafx.scene.control._
7 import scalafx.scene.input._
8 import scalafx.scene.layout.BorderPane
9 import scalafx.scene.paint.Color

10 import scalafx.event.ActionEvent
11

12 case class Enemy(x:Double, y:Double, time:Double)
13 case class Puddle(x:Double, y:Double, size:Double)
14 case class Player(x:Double, y:Double)
15

16 val CanvasSize = 600
17

18 var enemies = List[Enemy]()
19 var puddles = List[Puddle]()
20 var player = Player(300,300)
21 var leftPressed = false
22 var rightPressed = false
23 var upPressed = false
24 var downPressed = false
25 var regenDelay = 0.0

6There are two methods on Canvas called snapshot that can give you a WritableImage that you could read
pixels from. However, this approach would be far less efficient than simply making your own WritableImage
that you can read from, write to, and draw to the GraphicsContext.

Graphics and Advanced ScalaFX 369

26 var enemyLifespan = 10.0
27 var lastTime = 0L
28 var playerDead = false
29

30 val app = new JFXApp {
31 stage = new JFXApp.PrimaryStage {
32 title = "Puddle Dash"
33 scene = new Scene(CanvasSize, CanvasSize+30) {
34

35 val startItem = new MenuItem("Start")
36 val exitItem = new MenuItem("Exit")
37 val fileMenu = new Menu("File")
38 fileMenu.items = List(startItem, new SeparatorMenuItem, exitItem)
39 val menuBar = new MenuBar
40 menuBar.menus = List(fileMenu)
41

42 val canvas = new Canvas(CanvasSize, CanvasSize)
43 val border = new BorderPane
44 border.top = menuBar
45 border.center = canvas
46 content = border
47

48 canvas.onMousePressed = (me:MouseEvent) => { puddles ::= Puddle(me.x, me.y,
5) }

49 canvas.onMouseDragged = (me:MouseEvent) => { puddles ::= Puddle(me.x, me.y,
5) }

50 canvas.onKeyPressed = (ke:KeyEvent) => {
51 if (ke.code==KeyCode.Left) leftPressed = true
52 if (ke.code==KeyCode.Right) rightPressed = true
53 if (ke.code==KeyCode.Up) upPressed = true
54 if (ke.code==KeyCode.Down) downPressed = true
55 }
56 canvas.onKeyReleased = (ke:KeyEvent) => {
57 if (ke.code==KeyCode.Left) leftPressed = false
58 if (ke.code==KeyCode.Right) rightPressed = false
59 if (ke.code==KeyCode.Up) upPressed = false
60 if (ke.code==KeyCode.Down) downPressed = false
61 }
62 val gt = canvas.graphicsContext2D
63

64 def inMud(x:Double,y:Double):Boolean = {
65 puddles.exists(p => {
66 val dx = p.x-x
67 val dy = p.y-y
68 dx*dx+dy*dy<p.size*p.size
69 })
70 }
71

72 def movePlayer(dt:Double):Unit = {
73 val speed = if (inMud(player.x,player.y)) 10 else 30
74 if (leftPressed) player = player.copy(x = player.x-speed*dt)
75 if (rightPressed) player = player.copy(x = player.x+speed*dt)
76 if (upPressed) player = player.copy(y = player.y-speed*dt)
77 if (downPressed) player = player.copy(y = player.y+speed*dt)
78 }

370 Introduction to Programming and Problem-Solving Using Scala

79

80 def moveEnemies(t:Double, dt:Double):Unit = {
81 enemies = for (e <- enemies; if e.time+enemyLifespan>t) yield {
82 val speed = if (inMud(e.x,e.y)) 15 else 40
83 val dx = if (e.x < player.x) speed else if (e.x > player.x) -speed else 0
84 val dy = if (e.y < player.y) speed else if (e.y > player.y) -speed else 0
85 e.copy(x = e.x+(dx+util.Random.nextInt(5)-2)*dt,
86 y = e.y+(dy+util.Random.nextInt(5)-2)*dt)
87 }
88 }
89

90 def checkKill():Unit = {
91 for (enemy <- enemies) {
92 val dx = enemy.x-player.x
93 val dy = enemy.y-player.y
94 if (dx*dx+dy*dy < 25) {
95 playerDead = true
96 timer.stop
97 }
98 }
99 }

100

101 def updatePuddles(dt:Double):Unit = {
102 puddles = puddles.filter(_.size > 1).map(p => p.copy(size =

math.sqrt(p.size*p.size-5*dt)))
103 }
104

105 val timer = AnimationTimer(t => {
106 if (lastTime>0) {
107 val dt = (t-lastTime)/1e9
108 movePlayer(dt)
109 moveEnemies(t/1e9, dt)
110 checkKill()
111 updatePuddles(dt)
112 regenDelay -= dt
113 if (regenDelay < 0) {
114 val cx = util.Random.nextInt(2)
115 val cy = util.Random.nextInt(CanvasSize-10)
116 enemies ::= Enemy(10+cx*(CanvasSize-20), cy, t/1e9)
117 if (math.random<0.1) enemyLifespan += 1
118 regenDelay = 10.0
119 }
120 }
121 lastTime = t
122

123 // Draw stuff
124 gt.fill = Color.Black
125 gt.fillRect(0, 0, canvas.width.value, canvas.height.value)
126 for (p <- puddles) {
127 gt.fill = Color.Brown
128 gt.fillOval(p.x-p.size, p.y-p.size, p.size*2, p.size*2)
129 }
130 for (enemy <- enemies) {
131 gt.fill = Color(1f, 0f, 0f, (t/1e9-enemy.time)/enemyLifespan.toFloat)
132 gt.fillOval(enemy.x-5, enemy.y-5, 10, 10)

Graphics and Advanced ScalaFX 371

FIGURE 12.11: The window that is produced by running EvadeGame.scala after drawing
some puddles with an enemy nearby.

133 }
134 gt.fill = Color.Green
135 gt.fillOval(player.x-5, player.y-5, 10, 10)
136 if (playerDead) {
137 gt.fill = Color.White
138 gt.fillText("You Lose!", 200, 200)
139 }
140 })
141

142 startItem.onAction = (e:ActionEvent) => {
143 canvas.requestFocus
144 timer.start
145 }
146 exitItem.onAction = (e:ActionEvent) => sys.exit(0)
147

148 }
149 }
150 }
151

152 app.main(args)

372 Introduction to Programming and Problem-Solving Using Scala

You can see what this game looks like in figure 12.11. The first 28 lines have various
declarations. Those are followed by the declaration of the app with a Stage and Scene.
Lines 35 to 46 build a simple layout with a MenuBar at the top of a BorderPane and a
Canvas at the center.

Lines 48 to 61 set up the event handling on the canvas. Mouse presses and drags add
elements to the puddles list. The key presses and releases change the value of some Boolean
variables. The actual movement of the player occurs in the movePlayer function on lines
72 to 78. This is a different approach to player movement than was done previously. It has
two main advantages. It allows the motion to be part of the normal timing of the game, so
that you have more control over things like speed. It also allows the program to easily work
with multiple keys being held down at the same time. That allows diagonal motion, which
would not work if we moved the player in the onKeyPressed handler the way we did in the
Pong game.

Lines 64 to 103 have some helper functions that are just used to break up the logic some
and make the code easier to read and work with.

Lines 105 to 140 have the AnimationTimer declaration, which is where the real work is
done. This includes calls to the helper functions for moving the player, the enemies, and
evaporating the puddles. It also has code to create new enemies at regular intervals. After
that code is the code that actually draws out the game to the GraphicsContext of the
Canvas which was stored in the variable gt on line 62. This starts by filling a rectangle
that is the size of the whole canvas with black, then it draws the puddles, enemies, and the
player. If the player has died, a text message is also drawn.

Thread Handling

One of the aspects of ScalaFX that we have not really worried about is the fact that
certain types of changes should only be made in certain parts of the code. In particular,
ScalaFX has a thread that is used to handle all the events and drawing that goes on. A
proper discussion of threads goes beyond the scope of this book (it is covered in “Object-
Orientation, Abstraction, and Data-Structures using Scala”), but there are times when
you need to worry about it. The issue is that you should only change values of things
in the scene graph, or draw to a GraphicsContext inside of that event thread. That
means either inside of an event handler or in a timer, basically something that is called
by ScalaFX. If you want to make changes to values or draw things outside of those
chunks of code, you need to schedule it to run in the event thread. You can do this by
calling Process.runLater(op) where op is a pass-by-name argument. Whatever code
you put into there will be run in the ScalaFX event thread when it is free to do so.
This is presented here because you might find it handy to use the GraphicsContext
outside of the events or timer handling.

12.7 Effects
Another cool feature of ScalaFX is that it allows you to attach effects to Nodes. The

different effects that you can add are all in the scalafx.scene.effect package, and they
are subtypes of Effect. Here is a list of the different options, how to create them, and

Graphics and Advanced ScalaFX 373

what they do. Many of these are somewhat advanced, and their descriptions will use terms
that are specific to graphics and image manipulation that are not defined in this text. The
interested reader is encouraged to investigate these topics further.

• Blend - This effect determines how colors at the same pixel are combined. By de-
fault, the pixel being drawn overwrites the one below it with transparency causing
some blending. You can create one using new Blend(mode: BlendMode). The differ-
ent BlendModes are listed here. A color has red, green, and blue components with
values between 0 and 1 as well as an alpha component with the same range that is
the inverse of transparency.

– BlendMode.Add - Adds together the color values and an alpha value.
– BlendMode.Blue - Replaces only the blue component of the color.
– BlendMode.ColorBurn - Inverts the bottom color components, then divides by

the top color components and inverts again for the final color.
– BlendMode.ColorDodge - The bottom color components are divided by the in-

verse of the top color components.
– BlendMode.Darken - Takes the darker of the bottom and top colors.
– BlendMode.Difference - Subtracts the darker of the two inputs from the lighter

and displays the result.
– BlendMode.Exclusion - The color components of the two inputs are multiplied

and doubled. That is subtracted from the bottom input color component to give
the resulting color.

– BlendMode.Green - Replaces only the green component of the color.
– BlendMode.HardLight - The input color components are either multiplied or

screened, depending on the top input color.7

– BlendMode.Lighten - Takes the lighter of the bottom and top colors.
– BlendMode.Multiply - Multiplies the color components to get the resulting color.
– BlendMode.Overlay - The input color components are either multiplied or

screened, depending on the bottom input color.7

– BlendMode.Red - Replaces only the red component of the color.
– BlendMode.Screen - The color components for top and bottom are inverted,

multiplied by one another and then that result is inverted to get the resulting
color.

– BlendMode.SoftLight - The bottom color components are either darkened or
lightened depending on the top input.

– BlendMode.SrcAtop - The part of the top input lying inside of the bottom input
is blended with the bottom input.7

– BlendMode.SrcOver - The top input is blended over the bottom input.7

• Bloom - This makes brighter parts of the image appear to glow. You create one using
new Bloom(threshold: Double).

• BoxBlur - Blurs an image using a box filter kernel. You create one using new
BoxBlur(width: Double, height: Double, iterations: Int). The width and
height specify the size of the blur region and iterations tells how many times
that blur should be processed. More times will lead to more bluring.

7Taken directly from the JavaFX API.

374 Introduction to Programming and Problem-Solving Using Scala

• ColorAdjust - This effect does per-pixel adjustments to hue, saturation, brightness,
and contrast. You create one using new ColorAdjust(hue: Double, saturation:
Double, brightness: Double, contrast: Double).

• ColorInput - Renders a rectangular region that is filled with the given Paint. Cre-
ate one using new ColorInput(x: Double, y: Double, width: Double, height:
Double, paint: Paint).

• DisplacementMap - This causes the image to be rendered with offsets specified
by a FloatMap. This allows you to do things like make a Node appear wavy.
Create one using new DisplacementMap(mapData: FloatMap, offsetX: Double,
offsetY: Double, scaleX: Double, scaleY: Double) or new DisplacementMap
(mapData: FloatMap). The FloatMap can be created using new FloatMap(width:
Int, height: Int) and the values in it are set using the def setSamples(x: Int,
y: Int, s0: Float, s1: Float): Unit method.8

• DropShadow - Renders a shadow behind the given content with a specified ra-
dius, offset, and color. You can create one using new DropShadow(radius: Double,
offsetX: Double, offsetY: Double, color: Color), new DropShadow(radius:
Double, color: Color), or new DropShadow(blurType: BlurType, color: Color,
radius: Double, spread: Double, offsetX: Double, offsetY: Double). The
BlurType can be one of the following four values: BlurType.Gaussian, BlurType.
OnePassBox, BlurType.ThreePassBox, or BlurType.TwoPassBox.9

• GaussianBlur - This blurs the image using a Gaussian function with the specified
radius. You can create one using new GaussianBlur(radius: Double).

• Glow - Makes an input image appear to glow. You can create one with new
Glow(level: Double).

• ImageInput - A source effect that passes an unmodified image through to another
effect. Create one with new ImageInput(source: Image, x: Double, y: Double)
or new ImageInput(source: Image).

• InnerShadow - Renders a shadow inside the edges of some content with a specified ra-
dius, offset, and color. You can create one using new InnerShadow(radius: Double,
offsetX: Double, offsetY: Double, color: Color), new InnerShadow(radius:
Double, color: Color), or new InnerShadow(blurType: BlurType, color:
Color, radius: Double, choke: Double, offsetX: Double, offsetY: Double).
The BlurType is one of the same values listed above for DropShadow.

• Lighting - Creates the effort of a light shining on an element to give it a more realistic
look. You create one with new Lighting(light: Light). The Light type is gener-
ally created by instantiating one of three subtypes, Light.Distant, Light.Point, or
Light.Spot. These can be made using the following calls.

– new Light.Distant(azimuth: Double, elevation: Double, color: Color)

– new Light.Point(x: Double, y: Double, z: Double, color: Color)

8The FloatMap type allows different “bands” that can be used for different things. The DisplacementMap
uses two bands for x and y values, respectively.

9These are the names used at the time of writing. The developers of ScalaFX appear to be moving to
a camel-case standard, so it is likely that in the future these will be Gaussian, OnePassBox, ThreePassBox,
and TwoPassBox instead.

Graphics and Advanced ScalaFX 375

– new Light.Spot(x: Double, y: Double, z: Double, specularExponent:
Double, color: Color)

• MotionBlur - Creates the effort of blurring from motion. You can create one with new
MotionBlur(angle: Double, radius: Double). The angle specifies the perceived
direction of motion and the radius tells it how much blurring to do.

• PerspectiveTransform - This effect provides a faux perspective transforma-
tion. This cannot be done with affine transforms, because when viewed in
perspective, parallel lines appear to meet in the distance. You can create
one with new PerspectiveTransform(ulx: Double, uly: Double, urx: Double,
ury: Double, lrx: Double, lry: Double, llx: Double, lly: Double), the val-
ues passed in specify the location for the corners of a quadrilateral that the Node is
mapped to.

• Reflection - This renders a reflected version of the node below the actual con-
tent. You can create one using new Reflection(topOffset: Double, fraction:
Double, topOpacity: Double, bottomOpacity: Double). The opacities allow the
reflection to have a fading appearance.

• SepiaTone - Applies a sepia coloration to an image. You can create one with new
SepiaTone(level: Double).

• Shadow - This creates a shadow of the Node it is attached to. Unlike DropShadow,
it does not show both the original and the shadow. You can create one with new
Shadow(radius: Double, color: Color) or new Shadow(blurType: BlurType,
color: Color, radius: Double). The BlurType has the same options as mentioned
for DropShadow.

Usage of the majority of these is shown in the following code. In particular, this code
displays the ones that work well with text. Effects that work best with images are shown
in section 12.3.

Listing 12.11: Effects.scala
import scalafx.Includes._
import scalafx.application.JFXApp
import scalafx.scene._
import scalafx.scene.effect._
import scalafx.scene.paint._
import scalafx.scene.shape._
import scalafx.scene.text._

def makeText(x:Double, y:Double, s:String, effect:Effect, darkBack:Boolean):Node =
{

val text = new Text(x, y, s)
text.font = Font("serif", FontWeight.Bold, 40)
text.fill = if (darkBack) Color.White else Color.Black
text.effect = effect
if (darkBack) {
val group = new Group
val b = text.boundsInLocal.value
val r = Rectangle(b.minX, b.minY, b.width, b.height)
r.fill = Color.Black
group.children = List(r, text)
group

376 Introduction to Programming and Problem-Solving Using Scala

} else {
text

}
}

val app = new JFXApp {
stage = new JFXApp.PrimaryStage {
title = "Effects"
scene = new Scene(450,720) {
val bloom = makeText(20, 40, "Bloom", new Bloom(0.1), true)
val boxBlur = makeText(20, 100, "BoxBlur", new BoxBlur(7, 7, 2), false)
val floatMap = new FloatMap(400, 40)
for (i <- 0 until floatMap.width.value;

offset = (0.1*math.sin(i/30.0)).toFloat;
j <- 0 until floatMap.height.value) {

floatMap.setSamples(i, j, 0.0f, offset)
}
val dMap = new DisplacementMap(floatMap)
val displacementMap = makeText(20, 160, "DisplacementMap", dMap, false)
val dropShadow = makeText(20, 220, "DropShadow", new DropShadow(5, 20, 20,

Color.Black), false)
val gaussianBlur = makeText(20, 300, "GaussianBlur", new GaussianBlur(7),

false)
val innerShadow = makeText(20, 360, "InnerShadow", new InnerShadow(3, 3, 3,

Color.Green), false)
val lightEffect = new Lighting(new Light.Distant(0, 45, Color.White))
lightEffect.surfaceScale = 5.0
val lighting = makeText(20, 420, "Lighting", lightEffect, false)
val motionBlur = makeText(20, 480, "MotionBlur", new MotionBlur(15, 10),

false)
val perspective = makeText(20, 540, "Perspective", new

PerspectiveTransform(20, 500, 400, 510, 400, 520, 20, 540), false)
val reflection = makeText(20, 600, "Reflection", new Reflection(5, 0.8, 1.0,

0.0), false)
val shadow = makeText(20, 700, "Shadow", new Shadow(5, Color.Black), false)

content = List(bloom, boxBlur, displacementMap, dropShadow, gaussianBlur,
innerShadow, lighting, motionBlur, perspective, reflection, shadow)

}
}

}

app.main(args)

The output of this code is shown in figure 12.12. Each effect is applied to a string with the
name of the effect. There is a helper method called makeText that creates an instance of
Text and gives it a large font. If the effect needs a background to be visible, one is added
by making a group that also contains a Rectangle that matches the bounds of the Text.

The above example showed the effects that worked well with text. The ColorAdjust,
SepiaTone, and Glow effects are better suited for working with images, so we have a sepa-
rate example for those. The following code allows the user to specify multiple files on the
command line. It loads in those files and puts them on MenuButtons that have menu op-
tions of ColorAdjust, SepiaTone, and Glow. If the user selects a menu option, that effect
is applied to the image on the button. All the buttons are put in a TilePane.

Graphics and Advanced ScalaFX 377

FIGURE 12.12: The window that is produced by running Effects.scala.

378 Introduction to Programming and Problem-Solving Using Scala

Listing 12.12: ImageEffects.scala
1 import scalafx.Includes._
2 import scalafx.application.JFXApp
3 import scalafx.scene.Scene
4 import scalafx.scene.image.{Image, ImageView}
5 import scalafx.scene.layout.TilePane
6 import scalafx.scene.effect._
7 import scalafx.scene.control._
8 import scalafx.event.ActionEvent
9

10 if (args.length < 1) {
11 println("You must provide arguments with the names of files to load.")
12 sys.exit(0)
13 }
14

15 val app = new JFXApp {
16 stage = new JFXApp.PrimaryStage {
17 scene = new Scene(680,420) {
18 val tilePane = new TilePane
19 for (file <- args) {
20 val img = new Image("file:"+file, 300, 200, true, true)
21 val view = new ImageView(img)
22 val colorAdjust = new MenuItem("Color Adjust")
23 colorAdjust.onAction = (e:ActionEvent) => {
24 view.effect = new ColorAdjust(-0.05, 0.2, 0.1, 0.1)
25 }
26 val glow = new MenuItem("Glow")
27 glow.onAction = (e:ActionEvent) => {
28 view.effect = new Glow(0.5)
29 }
30 val sepia = new MenuItem("Sepia")
31 sepia.onAction = (e:ActionEvent) => {
32 view.effect = new SepiaTone(0.5)
33 }
34 val button = new MenuButton("",view)
35 button.items = List(colorAdjust, glow, sepia)
36 tilePane.children += button
37 }
38

39 root = tilePane
40 }
41 }
42 }
43

44 app.main(args)

A possible output of this program can be seen in figure 12.13.10

10The images shown here were provided by Quinn Bender.

Graphics and Advanced ScalaFX 379

FIGURE 12.13: The window that is produced by running ImageEffects.scala with four
sample images. The top-left and bottom-right images were set to the ColorAdjust effect,
the top-right used SepiaTone, and the bottom-left used Glow.

380 Introduction to Programming and Problem-Solving Using Scala

12.8 Charts
A common task done on computers when you have data sets is to use charts to plot the

data. For this reason, ScalaFX includes a scalafx.scene.chart package with a number of
different chart types as well as other types that are required to build those charts. There
are eight different chart types that are part of the library. These are as follows.

• AreaChart - Fills in an area from zero up to a line for one or more sequences of data
numeric x-y data.

• BarChart - Displays data as bars for different text categories.

• BubbleChart - Draws bubbles of various sizes at numeric x-y coordinates.

• LineChart - Draws a line for a sequence of numeric x-y data.

• PieChart - Draws a pie chart for a sequence of labeled numeric data.

• ScatterChart - Draws a scatter chart for a sequence of x-y data.

• StackedAreaChart - Draws area charts stacked on top of one another for multiple
series of x-y data.

• StackedBarChart - Draws bar charts stacked on top of one another for different
categories.

With the exception of PieChart, all of the chart types inherit from a XYChart, which is
not listed here because it is abstract. All of the subtypes of XYChart require two axes as
well as the data to be plotted. ScalaFX provides three different subtypes of Axis including
CategoryAxis for text categories and NumberAxis for numeric values.

To help illustrate the use of these charts in a program, the following code creates three
different charts, a PieChart, a BarChart, and a ScatterChart, based on data about the
planets in our solar system.

Listing 12.13: Charts.scala
1 import scalafx.Includes._
2 import scalafx.application.JFXApp
3 import scalafx.scene.Scene
4 import scalafx.scene.chart._
5 import scalafx.scene.control._
6 import scalafx.scene.layout._
7 import scalafx.collections.ObservableBuffer
8 import scalafx.geometry.Pos
9

10 val app = new JFXApp {
11 stage = new JFXApp.PrimaryStage {
12 title = "Charts"
13 scene = new Scene(1000, 800) {
14 case class PlanetData(name:String, mass:Double, a:Double)
15 val planets = List(PlanetData("Mercury", 0.0553, 0.387),
16 PlanetData("Venus", 0.815, 0.723),
17 PlanetData("Earth", 1.0, 1.0),
18 PlanetData("Mars", 0.107, 1.524),
19 PlanetData("Jupiter", 317.83, 5.203),

Graphics and Advanced ScalaFX 381

20 PlanetData("Saturn", 95.159, 9.537),
21 PlanetData("Uranus", 14.536, 19.191),
22 PlanetData("Neptune", 17.147, 30.069))
23

24 val pieChart = PieChart(ObservableBuffer(planets.map(p =>
PieChart.Data(p.name,p.mass)):_*))

25

26 val barSeries = XYChart.Series("Planetary Mass",
ObservableBuffer(planets.map(p => XYChart.Data(p.name,
p.mass:Number)):_*))

27 val barChart = BarChart(CategoryAxis(), NumberAxis("Mass [Earth Mass]"),
ObservableBuffer(barSeries))

28

29 val scatterSeries = XYChart.Series("Mass vs. Orbital Distance",
ObservableBuffer(planets.map(p => XYChart.Data[Number, Number](p.a,
p.mass)):_*))

30 val scatterChart = ScatterChart(NumberAxis("Semimajor Axis [AU]"),
NumberAxis("Mass [Earth Mass]"), ObservableBuffer(scatterSeries))

31

32 val tilePane = new TilePane
33 tilePane.children = List(pieChart, barChart, scatterChart)
34 tilePane.alignment = Pos.TopCenter
35

36 root = tilePane
37 }
38 }
39 }
40

41 app.main(args)

The result of running this code can be seen in figure 12.14. As usual, the code begins with
a number of imports, this time that includes scalafx.scene.chart._. That is followed by
the general setup of the app, the stage, and the scene. Lines 14-22 define a case class
and a list of instances of it that provide the data to be used for the plots. This data has
the planets in our Solar System along with their masses in units of Earth masses and the
semimajor axes (average distance from the Sun) in AU.11

Line 24 creates a PieChart using the masses to show how much of the mass of the
solar system, outside of the Sun, is in each planet. This is done by passing PieChart an
ObservableBuffer filled with PieChart.Data instances. All the charts in ScalaFX use
ObservableBuffers because they update if the values are changed. This can be used to
nice effect in some applications. There is also a property of the charts called animated that
will cause such changes to be animated if it is set to true. In this case, the contents of the
ObservableBuffer are created by mapping over the planets data pulling out the names
and the masses. Note the use of :_*. Recall that this is used when a function or method
expects a variable length argument list, and we want to pass it a sequence such as a List
or Array.

Lines 26 and 27 set up the BarChart. All of the XYCharts can display multiple series of
data. Your example only shows one, but the way it is set up should make it fairly clear how
others would be added. Line 26 makes the single series. Note that it is a XYChart.Series.
All of the subtypes of XYChart use the Series and Data types defined in XYChart instead
of defining their own. After seeing the creation of the PieChart, the way in which this is
created should be fairly straightforward. There is only one element that might seem a bit

11An AU, short of Astronomical Unit, is the average distance between the Earth and the Sun.

382 Introduction to Programming and Problem-Solving Using Scala

FIGURE 12.14: The window that is produced by running Charts.scala.

Graphics and Advanced ScalaFX 383

unusual, and that is the type specification in p.mass:Number. This is because the next line
uses a NumberAxis and the type of the data has to be an exact match to the types of the
axes. Using the type specification forces Scala to treat the Double from the case class as
a Number. We could have also changed the case class so that the number fields were of
type Number instead of Double.

On line 27 the BarChart is built. It needs to be given two axes. The data can be
added later, or in this call. For this example, the first axis, the x-axis, is a CategoryAxis.
The second axis, the y-axis, is a NumberAxis with a specified label. The data is an
ObservableBuffer[XYChart.Series]. This code makes a buffer with our one series, but if
there were multiple series of data that we wanted to display, they could easily be added to
the buffer.

Lines 29 and 30 create the ScatterChart. The series declaration is very similar to that
for the BarChart. One difference is that the types for the data are given as type parameters
instead of putting type specifications on the arguments. That is to say that we put [Number,
Number] after XYChart.Data instead of putting :Number after each argument. This is just
used to show a different approach. You can use either style in your own code.

The ScatterChart itself is created by giving two labeled NumberAxes followed by an
ObservableBuffer of our data series. Again, adding multiple series is as easy as adding
them to the buffer of data.

The script ends by putting all three charts in a TilePane, setting the TilePane to
display its children at the top-center, and setting that TilePane to be the root of the
scene. This gives us the layout that appears in figure 12.14.

This example allows the axes to use default settings, but there are times when you want
to provide more direction in how axes are displayed. To do this on a NumberAxis, we would
create the axis on a separate line and give it a name, then change the appropriate properties.
The properties you are most likely to want to change are the bounds and the tick marks.
You can change the bounds by setting lowerBound and upperBound. You can make tick
marks visible or not by setting tickMarkVisible or minorTickVisible. You can set the
number of minor tick marks between major tick marks with minorTickCount. There are
other settings for tick lengths and fonts that we will not describe here, that you can find in
the API.

One note of caution related to the charts in ScalaFX. These types were built to be very
flexible and to provide a lot of options. Using observable values for lists and data allows
them to do interesting animations without putting too much burden on the programmer as
well. Unfortunately, all of these things have overhead associated with them. For that reason,
you probably do not want to use these charts for large data sets. If you have much more
than 10,000 data elements to display, you will probably find that these charts are too slow
and consume too much memory to be useful.

384 Introduction to Programming and Problem-Solving Using Scala

12.9 Media
Media, both audio and video, has become a significant part of many modern user inter-

faces. ScalaFX includes a number of types that we can use to add media to our applications
in the scalafx.scene.media package. We will only cover the most significant of those here.

Short sounds that you want to play repeatedly are best represented by the AudioClip
type. You can create an AudioClip using new AudioClip(source: String). The source
needs to be a URL. If you have a file in your current directory, you can simply specify
"file:filename". ScalaFX supports a reasonable number of audio formats including .wav
and .mp3.12

Longer audio files and pretty much any video files should not be loaded completely into
memory. The Media type should be used to represent such files. You create a Media instance
using new Media(source: String) where the source should again be a URL, like for the
AudioClip. In addition to the audio formats mentioned above, ScalaFX has fairly general
support for video as well, but it is not as accepting here as for audio.13 You are likely to find
that you have to put in some effort to get video files in formats that it is happy with. The
authors’ experience is that the formats recorded by cell phones seem to be well supported.

In order to play a Media instance you use a MediaPlayer. You can create an instance
of MediaPlayer using new MediaPlayer(media: Media). If the Media is audio, this is all
that you need. For video, you probably want to have it displayed in the GUI. This is done by
creating a MediaView with new MediaView(mediaPlayer: MediaPlayer). The MediaView
is a subtype of Node and can be added to a GUI. Calling the play, pause, and stop methods
on the MediaPlayer will control what is displayed in the MediaView

A program demonstrating the use of these media types is shown here. A button at the
top will play an AudioClip of a laser.14 Most of the display shows a video with some buttons
to control it on the left.

Listing 12.14: Media.scala
1 import scalafx.Includes._
2 import scalafx.application.JFXApp
3 import scalafx.scene.Scene
4 import scalafx.scene.media._
5 import scalafx.scene.layout._
6 import scalafx.scene.control.Button
7 import scalafx.event.ActionEvent
8

9 val app = new JFXApp {
10 stage = new JFXApp.PrimaryStage {
11 title = "Media"
12 scene = new Scene(600, 350) {
13 val audioClip = new AudioClip("file:Laser_Cannon-Mike_Koenig-797224747.mp3")
14

15 val fireButton = new Button("Fire!")
16 fireButton.onAction = (ae:ActionEvent) => audioClip.play
17 fireButton.prefWidth = Int.MaxValue

12At the time of writing, JavaFX 8 listed their audio support as “MP3; AIFF containing uncompressed
PCM; WAV containing uncompressed PCM; MPEG-4 multimedia container with Advanced Audio Coding
(AAC) audio”.

13At the time of writing, JavaFX 8 list their video support as “FLV containing VP6 video and MP3 audio;
MPEG-4 multimedia container with H.264/AVC (Advanced Video Coding) video compression”.

14The sound for the AudioClip was downloaded from http://soundbible.com/1771-Laser-Cannon.html.

http://soundbible.com/1771-Laser-Cannon.html

Graphics and Advanced ScalaFX 385

FIGURE 12.15: The window that is produced by running Media.scala.

18

19 val media = new Media("http://techslides.com/demos/sample-videos/small.mp4")
20 val mediaPlayer = new MediaPlayer(media)
21 val mediaView = new MediaView(mediaPlayer)
22

23 val playButton = new Button("Play")
24 playButton.onAction = (ae:ActionEvent) => mediaPlayer.play
25 val pauseButton = new Button("Pause")
26 pauseButton.onAction = (ae:ActionEvent) => mediaPlayer.pause
27 val stopButton = new Button("Stop")
28 stopButton.onAction = (ae:ActionEvent) => mediaPlayer.stop
29

30 val borderPane = new BorderPane
31 borderPane.top = fireButton
32 borderPane.left = new VBox(playButton, pauseButton, stopButton)
33 borderPane.center = mediaView
34

35 root = borderPane
36 }
37 }
38 }
39

40 app.main(args)

The window produced by this code is shown in figure 12.15.

12.10 Web
Just as media has become increasingly important in applications, so has the web.

ScalaFX includes types that allow you to bring the web into your application in the

http://techslides.com/demos/sample-videos/small.mp4

386 Introduction to Programming and Problem-Solving Using Scala

scalafx.scene.web package. The most obvious of these is the WebView, which is basi-
cally a fully capable web browser in a Node, so you can add it to any GUI that you want to
display Web based content. The WebView is really a graphical front end for the WebEngine
type, which does the real work associated with running web pages.

The following example uses a WebView and a TextField to make a very basic web
browser. They are put in a BorderPane with the TextField at the top and the WebView in
the center. The WebView is initially set to display the home page for Scala.

Listing 12.15: Web.scala
1 import scalafx.Includes._
2 import scalafx.application.JFXApp
3 import scalafx.event.ActionEvent
4 import scalafx.scene.Scene
5 import scalafx.scene.control.TextField
6 import scalafx.scene.layout.BorderPane
7 import scalafx.scene.web._
8

9 val app = new JFXApp {
10 stage = new JFXApp.PrimaryStage {
11 title = "Web"
12 scene = new Scene(750,600) {
13 val urlField = new TextField
14 val webView = new WebView
15 webView.engine.load("http://www.scala-lang.org")
16 urlField.text = webView.location.value
17

18 val borderPane = new BorderPane
19 borderPane.top = urlField
20 borderPane.center = webView
21

22 root = borderPane
23

24 urlField.onAction = (ae:ActionEvent) => {
25 webView.engine.load(urlField.text.value)
26 }
27 webView.location.onChange(urlField.text = webView.location.value)
28 }
29 }
30 }
31

32 app.main(args)

At the end of the code, handlers are added so that when the user enters a URL in the
TextField and hits enter, that page will be displayed, and when the page updates from
something like a clicked link, the displayed text is shown. If you enter this code and run it,
take note of the fact that you have to enter a full URL, including the protocol (normally
http) for it to work.

Figure 12.16 shows what this script looks like when you run it. You can view most
content on the web with just this small amount of code. One of the main things it will not
do is play media on sites like YouTube.

The other Node type in the scalafx.scene.web package is HTMLEditor. As the name
implies, this type provides you with an editor that can be used to edit formatted text. The
user sees an editor with controls for how things are displayed. The fact that the back-end
representation uses HTML is not revealed to the user. If you want to allow users to edit

http://www.scala-lang.org

Graphics and Advanced ScalaFX 387

FIGURE 12.16: The window that is produced by running Web.scala.

text beyond the plain text of a TextArea, this is how you would want to do it in ScalaFX.
The following code shows a script that uses this along with menu options for saving and
opening files to produce a functional text editor with formatting that saves in HTML.

Listing 12.16: Web.scala
1 import scalafx.Includes._
2 import scalafx.application.JFXApp
3 import scalafx.event.ActionEvent
4 import scalafx.scene.Scene
5 import scalafx.scene.control._
6 import scalafx.scene.layout.BorderPane
7 import scalafx.scene.web._
8 import scalafx.stage.FileChooser
9

10 val app = new JFXApp {
11 stage = new JFXApp.PrimaryStage {
12 title = "Rich Editor"
13 scene = new Scene(600,400) {
14 val menuBar = new MenuBar
15 val fileMenu = new Menu("File")
16 val openItem = new MenuItem("Open")
17 val saveItem = new MenuItem("Save")
18 val exitItem = new MenuItem("Exit")
19 fileMenu.items = List(openItem, saveItem, new SeparatorMenuItem, exitItem)
20 menuBar.menus = List(fileMenu)
21 menuBar.prefWidth = Int.MaxValue
22

23 val editor = new HTMLEditor

388 Introduction to Programming and Problem-Solving Using Scala

24

25 val borderPane = new BorderPane
26 borderPane.top = menuBar
27 borderPane.center = editor
28

29 root = borderPane
30

31 openItem.onAction = (ae:ActionEvent) => {
32 val chooser = new FileChooser
33 chooser.showOpenDialog(stage) match {
34 case null =>
35 case file =>
36 val source = io.Source.fromFile(file)
37 editor.htmlText = source.mkString
38 source.close
39 }
40 }
41

42 saveItem.onAction = (ae:ActionEvent) => {
43 val chooser = new FileChooser
44 chooser.showSaveDialog(stage) match {
45 case null =>
46 case file =>
47 val pw = new java.io.PrintWriter(file)
48 pw.print(editor.htmlText)
49 pw.close
50 }
51 }
52

53 exitItem.onAction = (ae:ActionEvent) => {
54 sys.exit(0)
55 }
56 }
57 }
58 }
59

60 app.main(args)

The window created by running this and entering some text is shown in figure 12.17. You
can see the setting controls that are provided by the HTMLEditor type along the top of the
window under the menu bar. You probably recognize most of these as standard controls for
text editors that you have worked with.

12.11 3D Graphics
The last topic of graphics in ScalaFX that we will discuss is 3D graphics. Everything that

we have done to this point has been distinctly 2D. There are a number of reasons for that,
the main one being that 2D graphics are a lot simpler. Despite that relative “simplicity”,
we have still managed to spend over 50 pages on the topic. There are a lot more details to
3D graphics than what we will cover in this section. This will be a very basic introduction
to the topic that gives you enough knowledge to do some basic things with 3D graphics.

Graphics and Advanced ScalaFX 389

FIGURE 12.17: The window that is produced by running HTMLEditor.scala.

There are four different 3D shapes in the scalafx.scene.shape package that are 3D.
These are Box, Cylinder, MeshView, and Sphere. With the exception of MeshView, these
should be fairly self-explanatory as they are all basic 3D shapes. The MeshView covers
everything that is not those other three shapes by allowing you to make complex geome-
tries out of triangles. Proper coverage of the MeshView is outside of the scope of our
discussion.

For 2D shapes, you needed to specify the fill that was used for drawing
them. When you go to 3D, this changes to a material. ScalaFX provides the
scalafx.scene.paint.PhongMaterial type for this purpose. You can instantiate this type
with new PhongMaterial(diffuseColor: Color, diffuseMap: Image, specularMap:
Image, bumpMap: Image, selfIlluminationMap: Image) or new PhongMaterial(
diffuseColor: Color). The first option gives you signfiicant control over how the ma-
terial appears. The different “map” arguments specify differences in how things are drawn
across the surface. For example, the diffuseMap allows you to apply a texture to the surface
of the shape.

In addition to having the shapes and material, when you move to 3D you have to
deal with cameras and lighting, both of which are defined in the scalafx.scene package.
There are two types of cameras provided. By default you get a ParallelCamera. You can
change this to be a PerspectiveCamera. When you use the ParallelCamera, object do
not get smaller as they move away from the camera. In this view, parallel lines heading
away from the viewer remain parallel. This is not what happens in real life, but it is suf-
ficient for some application. The PerspectiveCamera more closely resembles the way we
actually see, with objects shrinking as they get further away and everything converging to
a point at infinite distance. You make a ParallelCamera with new ParallelCamera. To
make a PerspectiveCamera you use new PerspectiveCamera(fixedEyeAtCameraZero:
Boolean). The Stage has a member called camera that you can assign to your desired
camera type.15

There are also two types of light defined in ScalaFX. They are the AmbientLight and

15The ability to only have one camera for the full stage can be a bit limiting. The scalafx.scene package

390 Introduction to Programming and Problem-Solving Using Scala

the PointLight. An AmbientLight lights everything evenly while a PointLight can be
moved around, and it lights items in the scene as if there is a light in that location. They
are both created with new and require a single argument of a Color that is the color of the
light.

The following code shows an example of these features of 3D graphics in ScalaFX. It
adds one of each of the basic shapes to the scene as well as one of each type of light source.
There are controls that let you pick the camera type and the color of the lights. You can
also specify if you want the Sphere to be texture mapped or not. It starts off a flat red, but
if you select that CheckBox, it is textured with a surface map of Mars.

Listing 12.17: 3D.scala
1 import scalafx.Includes._
2 import scalafx.application.JFXApp
3 import scalafx.scene.{Scene, ParallelCamera, PerspectiveCamera, AmbientLight,

PointLight}
4 import scalafx.scene.image.Image
5 import scalafx.scene.paint.{Color, PhongMaterial}
6 import scalafx.scene.shape.{Box, Cylinder, MeshView, Sphere}
7 import scalafx.scene.control._
8 import scalafx.event.ActionEvent
9

10 val app = new JFXApp {
11 stage = new JFXApp.PrimaryStage {
12 title = "3D"
13 scene = new Scene(400, 400) {
14 val marsImage = new Image("file:marssurface.jpg")
15 val sphere = new Sphere(50)
16 sphere.translateX = 200
17 sphere.translateY = 200
18 val sphereMaterial = new PhongMaterial(Color.Red)
19 sphere.material = sphereMaterial
20

21 val cylinder = new Cylinder(40, 100)
22 cylinder.translateX = 100
23 cylinder.translateY = 100
24 cylinder.material = new PhongMaterial(Color.Green)
25

26 val box = new Box(50, 40, 60)
27 box.translateX = 300
28 box.translateY = 300
29 box.material = new PhongMaterial(Color.Blue)
30

31 val ambient = new AmbientLight(Color.Gray)
32 val point = new PointLight(Color.White)
33 point.translateX = 400
34 point.translateZ = -400
35

36 val usePerspective = new CheckBox("Perspective View")
37 usePerspective.layoutY = 270
38 usePerspective.onAction = (e:ActionEvent) => {
39 if (usePerspective.selected.value) {
40 camera = new PerspectiveCamera(false)

also has a type called SubScene that is a subtype of Node. Each SubScene gets its own camera so you can
create multiple different views that way.

Graphics and Advanced ScalaFX 391

41 } else {
42 camera = new ParallelCamera
43 }
44 }
45

46 val useTexture = new CheckBox("Texture Sphere")
47 useTexture.layoutY = 300
48 useTexture.onAction = (e:ActionEvent) => {
49 if (useTexture.selected.value) {
50 sphereMaterial.diffuseMap = marsImage
51 sphereMaterial.diffuseColor = Color.White
52 } else {
53 sphereMaterial.diffuseMap = null
54 sphereMaterial.diffuseColor = Color.Red
55 }
56 }
57

58 val ambientPicker = new ColorPicker(ambient.color.value)
59 ambient.color <==> ambientPicker.value
60 ambientPicker.layoutY = 330
61

62 val pointPicker = new ColorPicker(point.color.value)
63 point.color <==> pointPicker.value
64 pointPicker.layoutY = 360
65

66 content = List(sphere, cylinder, box, ambient, point, usePerspective,
useTexture, ambientPicker, pointPicker)

67 }
68 }
69 }
70

71 app.main(args)

A possible output of this program can be seen in figure 12.18.

12.12 Putting It Together
Given the breadth of this chapter, and the fact most of the sections had their own

examples highlighting usage of the elements in a program, we are not going to attempt to
write a single application that pulls everything together. It is not really clear that such a
thing would even make sense.

392 Introduction to Programming and Problem-Solving Using Scala

FIGURE 12.18: The window that is produced by running 3D.scala and changing some of
the settings.

Graphics and Advanced ScalaFX 393

12.13 End of Chapter Material

12.13.1 Summary of Concepts

• If you understand how to do graphics you can go beyond the standard GUI components
and draw whatever you want in a Scene.

• One way to add graphics is by adding shape Nodes directly to the scene.

– A number of different types of shapes are included in the scalafx.scene.shape
package.

– The Path type allows you to make more complex shapes.
– You can vary settings for filling shapes as well as the way outlines are drawn

with stroke settings.

• Setting the handlers for keyboard, mouse, and touch allows you to make your graphics
interact with the user.

• You can load images from files or the web using the scalafx.scene.image.Image
type.

– The PixelReader type will let you read pixel values for individual pixels as colors
or numeric ARGB values.

– The WritableImage type works with a PixelWriter to allow you to set the
values on individual pixels.

• Affine transformations can be applied to any Node to move, rotate, scale, or shear
their appearance in the display.

• ScalaFX includes three different styles of creating animations.

– Transitions do fairly simple variations of values for certain types of values.
– Timelines allow you to build more complex combinations of transitions for nu-

meric properties.
– The AnimationTimer gives general purpose control over things happening in the

GUI. This is useful for applications like games.

• The Canvas type is a subtype of Node that you can draw on and manipulate like
any other Node. This is done through a GraphicsContext. The system does not use
resources storing properties of things drawn in this manner, but updating elements
requires a full redraw.

• The scalafx.scene.effect package contains a number different effects that can be
applied to nodes to produce interesting graphical results.

• The scalafx.scene.chart package provides functionality for plotting data with a
variety of different chart styles.

• The scalafx.scene.media package contains types that you can use to add audio and
video into your applications.

• The scalafx.scene.web package contains a node type for a web browser and an
HTML-based rich text editor.

394 Introduction to Programming and Problem-Solving Using Scala

• ScalaFX also include basic 3D graphics capabilities. You can add 3D shapes from the
scalafx.scene.shape package. You will also need to adjust the camera and light
settings to get your desired result.

12.13.2 Exercises

1. Create a pane that draws several geometric shapes with different types of paints and
strokes.

2. Use the scalafx.scene.shape package to create in interesting shape.

3. Write a program that displays a 10 x 10 grid.

4. Write a program that allows the user to move a ball in a scene left, right, up, and
down. Check the boundaries to prevent the ball from moving out of bounds.

5. Use a gradient style paint and Timer to make a pattern where the colors move.

6. Use a dotted line on a wide stroke along with a Timer where the dotted line moves
with the Timer ticks.

7. Write a script where you control the movement of a geometric figure with the arrows
keys. Put another figure at the location of the mouse click draw them in a different
color when the two intersect.

8. Polish up the evade game.

9. Write a program that creates a user interface for displaying an address book that
contains a person’s name, street, city, state, and zip. Your GUI should also contain
buttons that would allow the user to add a new name to the book, go to the first
name in the book, go to the last name in the book, go to the next name in the book,
and go to the previous name in the book.

10. Write a traffic light program. This program lets the user select one of three lights: red,
yellow, or green by selecting a radio button. When a color is selected, the appropriate
light is turned on. Only one light can be on at a time. No light is on when the program
starts.

11. Write a program that draws a circle or a square. The user selects which figure they
want to draw by clicking on a radio button. You should also allow the user to select
whether or not the shape is filled by selecting a check box.

12.13.3 Projects

1. If you did project 10.1 you should have noticed that looking at the numbers to figure
out what is going on is quite a pain. To see if particles are moving properly it really
does help to have a plot of their motion. For this project you will add a GUI with
a custom drawn panel onto that program so that you can draw where particles are
located.

The only challenge in doing this is getting from the coordinates that your particles are
at to coordinates that fit in a normal window. There are two ways to do this. One is
to do the math yourself. Specify a minimum and maximum value for x and y and use

Graphics and Advanced ScalaFX 395

FIGURE 12.19: This figure shows what is intended as a possible output for project 3.
The two players are single points that leave lines behind them. They can only turn at 90
degree angles.

linear equations to transform from the range (min,max) to (0, width) or (0, height).
You can also do this with an AffineTransform using a combination of scale and
translate. There is benefit to each approach and neither is significantly harder than
the other.

To make the GUI more functional you could include TextFields that allow the user to
change the values of Xmin, Xmax, Ymin, and Ymax. You could also include a CheckBox
that lets the user select whether the background is cleared each time particles are
drawn. Without clearing, you will see the paths of the particles as they move. With
clearing you will only see whatever shapes you use to draw the particles.

2. For this project you should write a script that reads in a text file of numbers and plots
the data. You can pick what style of plotting you want to enable and what format
the data should be in. As with the previous project, the main challenge in this is to
convert from the coordinates that the data points are in to something that appears
nicely on screen.

3. The movie Tron (http://www.imdb.com/title/tt0084827/), released in 1982, in-
cluded a number of different early arcade style games. One of these, Light Cycles, can
be simplified down to a level where it is very easy to write. For this project, you will
do just that to produce something like figure 12.19.

In the game, the players ride cycles that leave colored walls behind them. Running

http://www.imdb.com/title/tt0084827/

396 Introduction to Programming and Problem-Solving Using Scala

into a wall kills the player. The last player alive wins. For your implementation, the
walls will be lines of pixels in a WritableImage, and the cycle will just be the end
where the line is growing. You do not have to graphically represent the cycle. Two
humans can play. One uses arrow keys and another uses letters. Only two keys are
needed for each, one to turn left and one to turn right. Using an image to store the
walls prevents you from having to keep that data in a separate array.

For an extra challenge, try putting in a computer controlled player. This is not really
all that hard. The easiest one to write is virtually impossible for a human to beat
because it has perfect reflexes. Throw in occasional random turns to make things
more even.

4. A step up from the Tron Light Cycles game is the far more common Snake game. In
this game a single person controls a snake that goes around eating apples or something
else. Each time one is eaten, the snake grows longer. This continues until the snake
runs into itself or an edge of the screen.

The reason this is more challenging than Light Cycles is that the cycles leave walls
that can stay until the program is done. The walls can also be a single pixel wide.
With Snake, the body parts that follow the head have to “move” because the snake
does not simply get longer all the time.

5. One of the early educational programming languages, called Logo, made graphics easy
to use by implementing a turtle graphics system (http://en.wikipedia.org/wiki/
Turtle_graphics). The idea of turtle graphics is that you have a cursor, typically
called the turtle, that has a position, an orientation, and pen settings. The turtle can
turn and move. When it moves, it can either draw or not. Simple systems only allow
the turtle to move along straight lines and that is what you will do for this project.

A simple way to encode instructions for a turtle is with a String. Different characters
tell the turtle to do different things. An ‘F’ tells the turtle to move forward while
drawing. An ‘f’ tells it to move forward without drawing. The ‘+’ and ‘-’ characters
tell it to turn to the left and right, respectively. Other characters can be added to
give the system more power and later projects will give you the opportunity to do so.
The amount that the turtle moves or turns for each character is considered to be a
fixed parameter. Using this system, one could draw a square by setting the angle to
90 degrees and using the string “F+F+F+F”. Two squares that are separated could
be made with “F+F+F+FfF+F+F+F”.

Make a GUI that has a TextField where the user can enter a String. You might also
have fields for segment length and turn angle. You should draw the appropriate set of
lines. Simply ignore any characters that are not ‘F’, ‘f’, ‘+’, or ‘-’.

6. For this project you will model the process of crystal growth. This might sound like
something of a challenge, but it is not really all that hard. Crystals grow when material
dissolved in a solution meets a surface of the crystal and sticks. The dissolved material
moves around due to Brownian motion and is basically a random walk. You start the
process by putting a seed crystal in the solution for stuff to stick to.

For our purposes, the crystal is simply represented as one color on top of a background
that is another color. Use a WritableImage to store this so that you can get and set
pixels. If the user clicks on the panel it should add a new “seed” at the click location
(simply set the color at that point in the image to the crystal color).

There should be either a Button or a menu option to release more particles. When a
particle is released, it should start at one of the edges. You just need to keep track of

http://en.wikipedia.org/wiki/Turtle_graphics
http://en.wikipedia.org/wiki/Turtle_graphics

Graphics and Advanced ScalaFX 397

the x, y location of it. Using a while loop, have the particle move randomly around
until the move would put it on top of a spot that already has crystal. At that point
you change the pixel at the location the particle had been to the crystal color.

To move the particle randomly you could use util.Random.nextInt(4) to get a
number in the 0-3 range and move either up, down, left, or right depending on that
value. If a move would put a particle outside of the image, simply ignore that move.
The menu option should probably run through a loop that drops 100 or so particles
and lets each run until it sticks. You only need to repaint after all have found their
place.

Note that especially early on when the crystal seed is small, it can take a long time
for a particle to run around until it hits that seed.

7. If you have been doing ray tracing options in earlier projects, it is time for you to
finally see something. You can use the code you wrote for project 10.2 that makes
a grid of parameter values and simply set colors in a BufferedImage based on the t
intersect parameters. To do this you will probably want to build your own colors. You
can make a new Color object by saying new Color(r:Int, g:Int, b:Int) where r,
g, and b are in the 0-255 range. Values outside of that range will cause an error. Simply
display the image in a Panel that you have put in the GUI to see depth information
for your ray trace.

8. Write a simple 2-D game of your choosing with simple geometry or sprites (little
images for characters). Your game should have a Timer to make actions occur as well
and take input from the user in the form of key pressed or mouse movement. At this
point you know enough to write many types of games, but it is suggested that you
strive to keep things simple. Have movement and some collision checking.

9. This project has you write another simple “game” that you are likely familiar with
that involves sliding tiles in a 4x4 grid where one piece is missing. The tiles might have
numbers or parts of a picture. Your goal is to move them around by sliding pieces into
the one open space until they are in the desired order.

Write a GUI that shows the 4x4 grid. You can choose if you want to use numbers of
parts of an image. If you want to use parts of an image, you can get the small sections
by loading the full image, then drawing it into smaller images with offsets so that only
the part you want for a given piece appears in the smaller image.

The user should interact with the game by click on the piece that they want to slide.
In the simplest implementation, they have to click on a square immediately adjacent
to the open square. For a bit of an extra challenge you can make it so that they can
click on any square in the same row or column as the empty one and multiple pieces
can be moved over at the same time.

10. If you did project 11.8 then you already have a GUI set up for keeping track of what
a person has in their pantry and checking on recipes. However, this GUI is fairly
bland. Now that you know how to put in graphics you have the ability to make it
more visually appealing. For this project you should add onto your previous GUI the
ability to have images associated with ingredients and recipes. You should also add in
directions for how to make the recipe in the GUI.

A basic implementation should specify a file name for images. Image files are to be
copied into the directory that the script is run from. If you want a bit more challenge,
make your program take a URL to load in an image. Then the paths to images can be
given as a full URL and loaded off the web. To take this a step further, let the user

398 Introduction to Programming and Problem-Solving Using Scala

type in a URL the first time, then save that locally as an image. You can save the
image using the write method from ImageIO. Details are in the API.

11. An alternative upgrade to project 11.8 is to make it so that it can help you organize
your shopping trip. To make this happen, you need a second data file that tells you
where items are located in the store. This can be as simple as listing rows that items
are in. If you want to put some information for roughly where on an isle each item is,
you can.

You need to give the user the ability to build a shopping list using the items that are
in the store file. They should be able to do this while looking at the current pantry
contents, or at least flip between the two views quickly. The grocery list should have
the ability to specify an item and an amount. The user should be able to say that
they are buying that list and have those items added to the pantry.

The row information is used to build a simple graphical representation of the store.
You can draw rectangles for rows and put labeled dots for the items in each row. The
details are left up to you.

12. For this option, you can add a graphical representation to the schedule that is built in
project 11.10. The goal is to have what looks like a fairly standard “week view” of the
schedule. You will have a column for each day, and the courses should be displayed
as labeled rectangles that span the section of the day that course would occupy. This
makes it easier to see when there are overly long blocks of class time or too many
small breaks spread around.

How you specify times is left up to you. In the previous project in this line, it was
suggested that each time in the schedule be given a unique integer number. To stay
with that, you need to hard code the times and days for those time slots. The alterna-
tive is to add functionality so that the user can enter specific times and days. Taking
that route will require more complex code in the schedule building to make sure that
no two courses are scheduled for the same time.

13. The Mandelbrot set is a famous fractal in the complex plane discovered by Benoit
Mandelbrot. A web search will provide you with lots of information on this beautiful
structure. Part of what is so remarkably about the Mandelbrot set is that it has such
a simple definition, but contains infinite complexities. The set is defined as the points,
c, in the complex plane for which the equation zn+1 = z2n + c, where z0 = 0, gives a
bounded sequence.

In practice, if the value of |z| ever goes beyond 4, the sequence will diverge. So pro-
grams to explore the Mandelbrot set count the number of iterations to reach that
point and assign a color based on how many iterations it takes. Because the points in
the set itself will never diverge, there has to be some maximum number of iterations
at which point you simply say it is in the set.

For this project you will write a GUI program that displays the Mandelbrot set. You
have a view on the set with minimum and maximum values in the real and complex
axes. Allow the user to zoom in by clicking.

14. Most applications that allow you to keep track of your music, like that written for
project 11.7, will show cover art for albums. Put that feature into your solution so that
when albums (or possibly songs) are selected, the cover art for the album is displayed.
Cover art can be stored in the same directory as the script and data file or you can
use URLs.

Graphics and Advanced ScalaFX 399

15. Most interactive box scores do more than just present the statistics in the way you did
for project 11.12. They also use graphics to display things like team logos and photos
of players. For this project you should extend what you did for project 11.12 so that
it displays this information. You should also make it interactive so that the images
of things like players can be changed by user actions. For example, you could listen
to MouseEntered events on labels of their names. If the box scores involve different
teams, the logo displays should change with what teams are in the current box score.

Additional exercises and projects, along with data files, are available on the book’s web
site.

http://taylorandfrancis.com

Chapter 13
Sorting and Searching

13.1 Basic Comparison Sorts . 401
13.1.1 Bubble Sort . 402
13.1.2 Selection Sort (Min/Max Sort) . 404
13.1.3 Insertion Sort . 405
13.1.4 Testing and Verifying Sorts . 406
13.1.5 Sort Visualization . 408
13.1.6 Order Analysis . 411
13.1.7 Shell Sort (Diminishing Gap Sort) . 412

13.2 Searching . 414
13.2.1 Sequential Search (Linear Search) . 414
13.2.2 Binary Search . 415

Linear Binary Search (Advanced) . 418
13.3 Sorting/Searching with case classes . 418

Searching for Doubles (Advanced) . 422
13.4 Sorting Lists . 424
13.5 Performance and Timing . 426

Bucket/Radix Sort (Advanced) . 427
13.6 Putting It Together . 429
13.7 End of Chapter Material . 430

13.7.1 Summary of Concepts . 430
13.7.2 Exercises . 432
13.7.3 Projects . 432

Some of the most fundamental things that we do on computers are to order data according
to certain values and to search through data for various things. These activities are known as
sorting and searching, respectively. Due to their importance in solving many different
types of problems, a lot of work has gone into doing them as quickly and efficiently as
possible. In this chapter we will start your exploration of the topics by working through
some of the simpler approaches.

13.1 Basic Comparison Sorts
There are many different ways in which to sort data. The most general ones do not have

many requirements on the nature of the data. All they require is the ability to compare
elements to see if one should come before another. These comparison sorts are the ones
that are used most frequently, mainly because they are so flexible. There are limits on how
fast they can be because they are not customized to the data, but typically their generality
trumps speed.

At this point we are not even going to consider the fastest comparison based sorts.
Instead, we will start with some of the conceptually simpler sorts. Before we do that, you
should take a second to think about how you sort things as a human. There are some
different scenarios you could consider. When you were younger, odds are that you were

401

402 Introduction to Programming and Problem-Solving Using Scala

given assignments in school where you had to sort a list of words into alphabetical order.
What approach did you take to doing that? Could you write down a step-by-step procedure
to explain to a small child who was doing it for the first time how he/she might go about
it?

The procedure that you use might vary depending on what you have to work with. In
the list of words, you might need to write it down as a sorted list, and you do not want
to have to erase and move things around if at all possible. You might be sorting folders
in a filing cabinet. The folders can slide backward and forward. They do not have any set
position, and moving a folder is not all that hard to do. On the other hand, imagine the
silly situation of having to sort cars in a parking lot by their license plates. The cars do not
move easily. Each move takes effort, and they certainly do not slide around.

Take some time to consider how you would sort in these different scenarios. How does
the type of object impact your approach? Space can also be an issue. If you are sorting
folders in a big room you might pick a different approach than if you are in a small closet
with a file cabinet. For the cars, you might pick one approach if you are moving the cars
from one long row to a completely different row than you would if there was only one open
space for you to park cars in as you move things around.

The sorts that we are going to work with here not only work with a basic comparison
operation, they are also intended to work with arrays and can work in-place. This implies
that they can be done using just a single array. You do not have to make a copy. Not all
sorts have this property. So this is like the parking lot with only one open space.

13.1.1 Bubble Sort

The first sort that we will describe is something of a classic in computer science. It is not
efficient. In fact, you would be hard pressed to convince any person to use this sort method
when sorting things by hand. It works for computers because they will do whatever you tell
them, even if it is extremely repetitive. It is only taught broadly because it is so simple to
describe and code.

The basic idea of the bubble sort is that you want to run through the array and look
at items that are next to one another. If two items are out of order, you swap them. One
pass through the array will not get it sorted unless it was very close to sorted to begin
with. However, if you repeat this process over and over, the array will eventually get to a
situation where it is sorted. Using this description, there are a few ways in which the bubble
sort can be written. They all have an inner loop that looks something like the following.

for (i <- 0 until a.length-1) {
if (a(i) > a(i+1)) {
val tmp = a(i)
a(i) = a(i+1)
a(i+1) = tmp

}
}

The end index of this loop can change over different iterations to make it more efficient,
but the idea is the same. The value i runs through the array comparing each element to
the one after it. If the first is larger than the second, then they do a swap.

Sorting and Searching 403

The swap code is the three lines inside of the if. To picture what this is doing, imagine
the analogy of cars in a parking lot. The tmp variable is an extra space where you can move
one car. So you start by moving the first car to the empty space. After that you move the
second car into the space the first one had been in. To finish it off, you pull the car from the
extra space into the second spot. The car analogy is not perfect. When we move a car from
one spot to another, the spot that is vacated is left empty. When we do an assignment, the
variable or Array location we are getting the value from does not lose the value. Instead,
we have two memory locations that both have references to the value. That would be like
having a second version of the car. Much of the time this is only a technicality, but there
are times when it can be significant as those extra references can hold onto memory that
you really are not using anymore.

In order to do a full sort, this loop needs to be repeated over and over again. How many
times must it be repeated? To answer that we can observe that each time through, the
largest unsorted value is pushed all the way to where it belongs. If there are n elements in
the Array, then after n − 1 passes everything will certainly be in place.1 Using this logic,
we can write the following code.

def bubbleSort(a:Array[Double]):Unit = {
for (j <- 0 until a.length-1) {
for (i <- 0 until a.length-1-j) {
if (a(i) > a(i+1)) {
val tmp = a(i)
a(i) = a(i+1)
a(i+1) = tmp

}
}

}
}

In this code, the outer loop executes n− 1 times as the value j counts up from 0 to n− 2.
You will notice one other change in the inner loop. The end value for i has been changed
from a.length-1 to a.length-1-j. This is based on the observation that after one pass,
the largest element is in the correct location at the end. After two passes, the second largest
element is also in the correct place and so on. For this reason, the inner loop can stop
one spot earlier each time through because there is no need to check those values that we
already know are sorted. The sort would still work fine without subtracting off j, but it
would do roughly twice as much work.

The other thing that this full sort includes that was not apparent from just the inner
loop is that this function has been written to sort an Array of Doubles. As written, this
will not work if you pass in anything other than an Array[Double]. If you need to sort
something else, you have to write a different sort. There are many ways in which this is less
than ideal, especially considering that everything except the type declaration would work
equally well for Array[Int], Array[String], or an Array of anything else that works with
greater than. The approach to creating code that can sort multiple different types is covered
in our second semester book, Object-Orientation, Abstraction, and Data-Structures Using
Scala[1].

Technically, this version of bubble sort might get the data sorted and then keep working
on it. Smaller elements only move forward one slot on each pass. If the data is not too far
out of order so that nothing has to move all that far forward, the sort might get the data
in order before the n − 1 iterations are complete. For this reason, you might want to use

1We do not have to put n things in place because if there are only n places and n − 1 are in the right
place, the last one must also be in the right place as it is the only one left.

404 Introduction to Programming and Problem-Solving Using Scala

a flagged bubble sort. This is a small variation on the normal bubble sort that uses a
while loop for the outer loop. It exits after n− 1 iterations or if it goes through a pass of
the inner loop without doing any swaps as that implies that everything is already sorted.

def flaggedBubbleSort(a:Array[Double]):Unit = {
var flip = true
var j = 0
while (flip && j < a.length-1) {
flip = false
for (i <- 0 until a.length-1-j) {
if (a(i) > a(i+1)) {
val tmp = a(i)
a(i) = a(i+1)
a(i+1) = tmp
flip = true

}
}
j += 1

}
}

This code adds a few more lines to deal with the flag and the fact that we have to do the
counting ourselves with a while loop. The flag is called flip, and it starts off as true.
However, before the inner loop starts it is always set to false and only gets set back to
true when a swap is done.

13.1.2 Selection Sort (Min/Max Sort)

The next sort we want to consider is one that humans are far more likely to employ,
especially in a situation like sorting the cars where moving cars around takes a significant
amount of effort. The sort is the selection sort, and it is called this because it runs
through the values and selects one element and places it where it belongs. In order for this
to work you have to know where the value should go. This is easy if the value is either the
largest or the smallest in the collection. As such, the selection sort is typically implemented
as either a minimum sort (min sort) or a maximum sort (max sort). In theory one can
also write a min-max sort that picks both and moves them to where they belong.

We will write a min sort here. It is fairly trivial to convert this to a max sort. The
inner loop of the min sort will run through the currently unsorted part of the collection and
find the minimum element in that. If that element is not already where it should be, it is
swapped into place. For an Array, the fact that this is a swap is significant. To understand
this, think about the cars. Shifting all the cars over one is hard. Swapping two is much
easier as it only requires moving cars three times. The Array is like the parking lot with
fixed locations. Certain other data structures could act more similarly to file folders, which
slide around easily and might allow shifting. If you use an Array and a shift instead of a
swap, the code you produce will be both longer and significantly slower.

def minSort(a:Array[Double]):Unit = {
for (j <- 0 until a.length-1) {
var min = j
for (i <- j+1 until a.length) {
if (a(i) < a(min)) min = i

}
if (min != j) {

Sorting and Searching 405

val tmp = a(j)
a(j) = a(min)
a(min) = tmp

}
}

}

As with the standard bubble sort, the outer loop happens n − 1 times as it has to swap
n− 1 elements into the locations they belong. The contents of the inner loop here are quite
short, just a check that changes the min variable if needed. The swap itself is longer than
the loop.

The selection sort is not really more efficient than bubble sort in general. However,
because the swap is outside of the inner loop, this sort can be much more efficient in those
situations where the swaps are expensive. This situation cannot happen for normal Arrays
in Scala, but it can be true for Arrays in some other languages or if the values being sorted
are contained in a file instead of the memory of the computer.

13.1.3 Insertion Sort

The last sort we will discuss in this section is another one that humans might consider
using. It is called the insertion sort because the way it works is to build up a sorted
group of elements at the beginning of the Array and each new element is inserted into the
proper location in that group. The advantage of this sort is that it can do less checking
than the other two. Once it finds the place to put the element it can stop and move to the
next element. It is particularly efficient if the Array is fairly close to sorted, as each element
typically does not have to be moved very far.

The code for an insertion sort can be written in the following way.

def insertionSort(a:Array[Double]):Unit = {
for (j <- 1 until a.length) {
var i = j-1
val tmp = a(j)
while (i >= 0 && a(i) > tmp) {
a(i+1) = a(i)
i -= 1

}
a(i+1) = tmp

}
}

The outer loop here still executes n − 1 times, but in a different way and for a different
reason. Instead of starting at 0 and stopping one short of the last element, this loop starts
at 1 and goes to the last element of the Array. The reason for this is that an Array of one
element can be viewed as a sorted Array. So we take the first element as being where it
should be in a group of 1. Then we start with the second element and potentially move it
forward if needed.

The code inside the outer loop needs some explaining as well, as it is a bit different from
what we saw with the other two sorts. It begins with the declaration of the variable i which
begins at j-1. This is the index of the next element that we need to compare to the one
we are moving. We also declare a temporary variable called tmp that stores the value in the
Array that we are moving forward. Having the temporary variable here prevents us from
doing full swaps and makes the code both shorter and faster. To understand this, consider
again the example of moving cars in a parking lot. Consider you have ten cars, the first

406 Introduction to Programming and Problem-Solving Using Scala

eight of which are already sorted. You need to move the ninth one forward to the place it
belongs, potentially several spots down. You would not do this by swapping cars one after
the other. Instead, you would pull that car out and put it in the one empty spot to the
side. Then you would move the sorted cars down, one at a time, until you had cleared out
the proper spot. At that point you would drive the car from the spot on the side into the
correct position.

That mental image is exactly what this code is doing. The while loop executes as long as
we have not gotten down to the beginning of the Array and the element we are considering
is greater than the one we are inserting. As long as that is true, we move the element up
and shift our attention down to the next element. When we are done, we put the temporary
value where it belongs.

13.1.4 Testing and Verifying Sorts

The last three subsections presented sorts as working products. In reality, sorts are like
any other code and have to be tested. Fortunately, sorts are fairly easy to test. After the sort
has completed, you should be able to run through the elements and check that each element
is less than or equal to the one after it. As long as this is true for all of the elements,
the array is properly sorted.2 An imperative approach to doing this might look like the
following.

def isSorted(a:Array[Double]):Boolean = {
for (i <- 0 until a.length-1) {
if (a(i) > a(i+1)) return false

}
true

}

This code does something that we have not seen before. It uses a return statement. We
have seen that normally, the last statement in a function should be an expression and the
value of that expression is what the function returns. It is also possible to force a function to
return earlier using a return statement as is done here. If at any point we find consecutive
elements that are out of order, there is a forced return of false. If it gets all the way
through the array it returns true.

This style is frowned on by some because it complicates things for those reading the
code. Normally when you see a for loop, you know that it will run through the entire
collection, and the code will exit when it gets to the end of the collection. The return
statement forces the for loop to exit earlier and as such, forces the reader to look more
closely to figure out what is going on here. Code that behaves in slightly unexpected ways
like this is a common source of errors, especially if the code gets modified later on.

You could get around having the return statement by using a while loop. This would
remove the requirement of a return statement, but it does not really make the code more
functional or easier to read. If anything, it might make it a bit harder to read and deal with.
An alternative to this is to use the forall method of collections. The only challenge in this
is picking a way to compare sequential elements using forall, as that method only works
on one argument at a time. One way to get around this is to use forall on a Range that
is the index. This is logically very similar to the original for loop except that your part of
the code is completely functional.

2This does not check that all the original elements are present in the sorted array. That check is harder
to do, but would be required for a complete check of correctness as it is not uncommon to create bugs where
some values are lost and others get duplicated.

Sorting and Searching 407

def isSorted(a:Array[Double]):Boolean = {
(0 until a.length-1).forall(i => a(i) <= a(i+1))

}

The fact that random access is a fast operation on an Array allows this code to be efficient.
A second approach, which is also functional, is to use forall on a zipped tuple as is shown
here.

def isSorted(a:Array[Double]):Boolean = {
(a,a.view.tail).zipped.forall(_ <= _)

}

This code is a bit shorter, but significantly more advanced. In fact, it uses advanced topics
from sections 8.4 and 10.4. The approach here is to make a tuple that contains the original
elements first and everything but the first element second. If we zipped these two collections
with the zip method, the result would be a sequence of tuples with each element and the
one after it in a tuple and the first and last element appear only once in the first and last
tuples. That zipped collection could then be dealt with using forall. Such a solution would
be very inefficient, however, as it would actually construct a lot of new objects and do a lot
of copying. The advanced topics of view and zipped are used to make it more efficient.

The first advanced topic is the view from section 8.4. A view is a representation of a
collection that does not make a full copy unless forced to do so. In this code, taking a tail
of a normal Array would produce a whole new Array and copy a lot of data over into it.
However, the tail of the view is just a small object that will interact with code the same
way the tail would, but through logic instead of making a real copy.

The second advanced topic is the use of the tuple zipped method from section 10.4.
This is a method of the 2 and 3-tuple types that allows you to more efficiently run common
functions that need to go through two or three collections at the same time. Instead of
making a whole new zipped collection of tuples, this gives you back an object that has
methods like map, filter, and forall declared such that they take as many arguments as
are in the tuple. So we get a version of forall which needs a function of two arguments we
can easily provide using the shorthand syntax.

Whichever approach you choose, you can test a particular sort with code like the fol-
lowing.

val nums = Array.fill(args(0).toInt)(math.random)
flaggedBubbleSort(nums)
assert(isSorted(nums))

This code creates an Array of random Doubles with a length determined by a command-line
argument. It then calls a sort on that Array and uses the assert function to make sure it is
true. Assert is a standard function in Scala that can be called with one or two arguments.
The first argument is a Boolean that should be true. If it is not true, an error results,
terminating the program. A second argument can be provided that is passed by-name and
should provide a useful message if the assert fails.

The assert function can be used generally in your code. There is also a require function
that performs similarly, but should be used for argument values. So at the top of a function,
if the function will only work on certain argument values, you can use a call to require to
make it so the code fails in an informative manner when bad arguments are passed in.

408 Introduction to Programming and Problem-Solving Using Scala

13.1.5 Sort Visualization

It can help you understand sorts if you get to see them in action. There are many
different places on the web that have animations/videos that will show you how these and
other sorts work. One advantage of having already studied graphics is that we can write our
own code to visualize what the sorts are doing. This is part of why the sorts above were set
up to work with the Double type. It makes it easy to generate with the call to math.random
and to draw because the random numbers are uniformly distributed between 0.0 and 1.0.

The following code is a full listing of a program that will show you the three sorts above
on random data. When you click one of the buttons, it will generate a random array and
begin sorting it. While it is sorting, it draws a representation of the array using black lines.
Taller lines indicate larger values in the array.

Listing 13.1: SortVis.scala
1 import scalafx.Includes._
2 import scalafx.application.{JFXApp, Platform}
3 import scalafx.scene.Scene
4 import scalafx.scene.canvas._
5 import scalafx.scene.control.{Button, Slider}
6 import scalafx.scene.layout.FlowPane
7 import scalafx.scene.paint.Color
8 import scalafx.event.ActionEvent
9 import scala.concurrent.Future

10 import scala.concurrent.ExecutionContext.Implicits.global
11

12 val numToSort = if (args.length>0) args(0).toInt else 300
13 val drawHeight = 300
14

15 def renderValues(gc:GraphicsContext, a:Array[Double], i:Int, min:Int):Unit = {
16 gc.clearRect(0, 0, a.length, drawHeight)
17 gc.stroke = Color.Black
18 for (j <- a.indices) {
19 gc.strokeLine(j,drawHeight*(1.0-a(j)),j,drawHeight)
20 }
21 gc.stroke = Color.Green
22 gc.strokeLine(i, 0, i, 10)
23 gc.stroke = Color.Blue
24 gc.strokeLine(min, 0, min, 10)
25 }
26

27 def bubbleSortVis(gc:GraphicsContext, a:Array[Double], delay:Int) = {
28 for (j <- 0 until a.length-1) {
29 for (i <- 0 until a.length-1-j) {
30 if (a(i) > a(i+1)) {
31 val tmp = a(i)
32 a(i) = a(i+1)
33 a(i+1) = tmp
34 }
35 Platform.runLater(renderValues(gc, a, i, -1))
36 Thread.sleep(delay)
37 }
38 }
39 }
40

41 def minSortVis(gc:GraphicsContext, a:Array[Double], delay:Int):Unit = {

Sorting and Searching 409

42 for (j <- 0 until a.length-1) {
43 var min = j
44 for (i <- j+1 until a.length) {
45 if (a(i) < a(min)) min = i
46 Platform.runLater(renderValues(gc, a, i, min))
47 Thread.sleep(delay)
48 }
49 if (min != j) {
50 val tmp = a(j)
51 a(j) = a(min)
52 a(min) = tmp
53 }
54 }
55 }
56

57 def insertionSortVis(gc:GraphicsContext, a:Array[Double], delay:Int):Unit = {
58 for (j <- 1 until a.length) {
59 var i = j-1
60 val tmp = a(j)
61 while (i >= 0 && a(i) > tmp) {
62 a(i+1) = a(i)
63 i -= 1
64 Platform.runLater(renderValues(gc, a, i, -1))
65 Thread.sleep(delay)
66 }
67 a(i+1) = tmp
68 }
69 }
70

71 val app = new JFXApp {
72 stage = new JFXApp.PrimaryStage {
73 title = "Sorts"
74 scene = new Scene(numToSort, drawHeight+50) {
75 val canvas = new Canvas(numToSort, drawHeight)
76 val gc = canvas.graphicsContext2D
77

78 val slider = new Slider(1, 20, 1)
79 slider.layoutY = drawHeight+30
80 slider.prefWidth = numToSort
81

82 val bubble = new Button("Bubble Sort")
83 bubble.onAction = (e:ActionEvent) => Future {
84 bubbleSortVis(gc, Array.fill(numToSort)(math.random), slider.value.toInt)
85 }
86 val minSort = new Button("Min Sort")
87 minSort.onAction = (e:ActionEvent) => Future {
88 minSortVis(gc, Array.fill(numToSort)(math.random), slider.value.toInt)
89 }
90 val insertion = new Button("Insertion Sort")
91 insertion.onAction = (e:ActionEvent) => Future {
92 insertionSortVis(gc, Array.fill(numToSort)(math.random), slider.value.toInt)
93 }
94

95 val flow = new FlowPane
96 flow.children = List(bubble, minSort, insertion)

410 Introduction to Programming and Problem-Solving Using Scala

FIGURE 13.1: The window that is produced by running SortVis.scala after the “Bubble
Sort” button has been clicked.

97 flow.layoutY = drawHeight
98

99 content = List(canvas, flow, slider)
100 }
101 }
102 }
103

104 app.main(args)

Figure 13.1 shows this code part way through a bubble sort.
The program allows the user to specify how many numbers are going to be sorted on the

command line. If they do not give any value, 300 will be used. We also define a constant on
line 13 for the height that things will be drawn so that the number 300 does not become a
magic number in the code. A magic number is a number that appears multiple times in
the code whose meaning is not always completely clear. Magic numbers make code harder
to read and understand. They also make it harder to modify and maintain. In this case, 300
appears twice with different meanings. If we did not define drawHeight and just used 300
instead of numToSort, it would be quite challenging to alter either one without messing up
at least one instance of the other.

Lines 15 to 25 define the function that actually draws out our array to a
GraphicsContext. The array values are drawn as black lines. There is also a green seg-
ment drawn at the top to show where the algorithm is working in the away. For the min
sort there is a blue line that can show the location of the current minimum.

Lines 27 to 69 redefine our bubble sort, min sort, and insertion sort. They each take
two different arguments that are needed for drawing. At the end of the inner loop of each
of these is a call to renderValues followed by a call to Thread.sleep, which pauses the

Sorting and Searching 411

sort of rendering and allows you to adjust the speed. Note that the calls to renderValue
are done in a call to Platform.runLater. That is because the sorting has to be done in a
separate thread. As was mentioned in the last chapter, ScalaFX uses only a single thread for
event handling and rendering. If the sort were done with that, nothing could be drawn until
the sort was completed. On the other hand, the drawing needs to happen in that ScalaFX
thread. The use of Platform.runLater makes that happen.

The actual GUI is set up on lines 71 to 102. There is a Canvas at the top. Below that
are three buttons, one for each sort, and a Slider. The buttons are placed in a FlowPane
to line them up, and the Slider is placed below that at the bottom of the window. When
the buttons are clicked the appropriate sort is run with one nuance. Note that the call is
in a block that has a call to Future. This is what causes the action to occur in a separate
thread so it does not block the event and drawing thread. A full discussion of threads is
beyond our scope here, but you should be aware that if you are going to do something that
would take an extended period of time, or which needs to be animated in a button click or
other event handler, this is a good way to make it happen.

13.1.6 Order Analysis

We said previously that the sorts presented above are not the most efficient sorts. These
sorts are presented first because they are fairly simple and straightforward. However, it is
a reasonable question to ask how “fast” they really are. This is a challenging question to
answer because speed can depend on many different things including the computer you
are running on and exactly what you are sorting. To address this, algorithms are generally
described in terms of their “order” in a particular operation. The order is a rough functional
description of how the number of operations scales with the size of the input. There are
many mathematical details to proper order analysis, but for now we will use the term fairly
loosely.

So the idea of order analysis is to pick one or more operations that are particularly
important to the algorithm and try to find a function that models how the number of those
operations changes with the size of the input. In the case of sorts, there are two operations
that are particularly significant, comparisons and assignments. Most of the time we worry
about comparisons and for the code we have written here, that is appropriate.

So how many comparisons does the full bubbleSort do on an Array with n elements?
The first pass through the loop does n − 1 comparisons. The second pass does n − 2. The
third does n− 3 and so on. In math terms we can write the number of comparisons in this
way:

C =

n−1∑
i=1

i =
n(n− 1)

2
=

1

2
n2 − 1

2
n.

This gives the exact number of comparisons between elements that will be done. It happens
to be exactly the same for the selection sort. We typically refer to this as O(n2). For order
analysis we generally ignore coefficients and everything except the highest power. This does
not provide a perfect picture of performance, but it works very well in general, especially
when you talk about larger inputs.

The most important thing to note about an O(n2) algorithm is that if you double the
number of elements, there will be four times as many comparisons done. As a result, you
can generally expect the sort to take four times longer on twice as much stuff. The nature
of the scaling is what we often care about the most. Different computers might be faster or

412 Introduction to Programming and Problem-Solving Using Scala

slower, but just knowing this scaling and a run time for a problem of a certain size gives
you a good feel for what the run time will be if you change the size of the problem.3

The number of comparisons in the selection sort and the bubble sort depends only on the
size of the data set being sorted. It does not depend on the nature of the data. This is not
the case for the flagged bubble sort or the insertion sort. These sorts can do very different
numbers of comparisons depending on the data that is given to them. For example, if you
give a flagged bubble sort an array that is already sorted, it will only run through it once,
doing n− 1 comparisons. We would call that O(n). Granted, that is a best-case scenario.
The best-case is rarely of interest. Instead, we typically worry about average-case and
worst-case situations.4

So what are the average and worst-case behaviors of insertion sort? The outer loop clearly
happens n−1 times. So we can do a summation much like what we did above. However, the
inner loop happens a variable number of times. In the worst-case, which would be getting
data in reverse order, the inner loop will run i times, and we get exactly the same behavior
as with the bubble and selection sorts. In the best-case, which is data in the proper order,
the inner loop does only one check. This gives linear performance, O(n), because

C =
n−1∑
i=1

1 = n− 1.

On average we expect something half way between these extremes, we expect the inner loop
to do i/2 comparisons. This gives

C =
n−1∑
i=1

i

2
=
n(n− 1)

4
=

1

4
n2 − 1

4
n.

While this is better than the behavior of the other sorts by a factor of two, it is still O(n2).
This is because doubling the size of the input still makes it take four times longer.

So how good or bad is O(n2)? Functions like this that grow as a polynomial function
are referred to in a very general way as being tractable, because you can use them for fairly
large values of n and still expect the calculation to finish in a reasonable time. We will
see later on that not all algorithms have this behavior. However, O(n2) is not great if the
value of n gets extremely large. We have no problem using these sorts for Arrays with 100
or 1000 values. However, as you continue to add zeros, these methods will prove to be too
slow. Each factor of 10 in the size causes the program to do 100 times as many comparisons
and generally this leads to it taking 100 times longer to complete. As such, these methods
become slow if n gets bigger than about a million. Fortunately, there are alternatives.

13.1.7 Shell Sort (Diminishing Gap Sort)

The first alternative sort we will look at is the Shell sort, also called the diminishing
gap sort. This sort was first proposed in 1959 by Donald Shell, and it was one of the first
general sort algorithms developed that is faster than O(n2), though some minor changes
had to be made in order to get that performance for the worst case. The basic idea of this
sort is one that might seem a bit counter intuitive. It performs an insertion sort repeatedly
on different subsets of the full array. To start with, the subsets are taken to be groups of

3Real hardware can break down these scaling arguments at certain critical points. For example, if the
input set becomes larger than the cache of the machine, you will typically see a slowdown that does not
scale quite as O(n2).

4The exception to this is if we happen to know that we will very often have inputs that produce best-case
behavior.

Sorting and Searching 413

elements that are widely spaced. The spacing between the elements in each subset is called
the “gap”. As the alternate name implies, the gap is then decreased in size for each run
through the sort.

The counter intuitive aspect of this sort is that performing insertion sort multiple times
should sort the array faster than doing it outright. This can work because a sort with a
smaller gap size maintains the ordering at the larger gap size so work is not undone, and the
insertion sort is very efficient on partially ordered data. The sorts with large gaps do very
little work compared to the smaller gaps because they do not contain many elements, but
once you get to the smaller gaps the data is mostly sorted so you get close to the best-case
performance of the insertion sort. The sort always ends with a gap size of 1, which is doing
a normal insertion sort, so you know that the result is fully sorted.

The only trick to the Shell sort is figuring out what to do about the gap. The initial
suggestion was to start at half the size of the Array and decrease it by factors of 2. This
often works well, but spacings that are factors of 2 apart will keep even and odd subsets
separate until you get down to a gap of 1 and in certain cases that can actually lead to
O(n2) behavior. For this reason, we use a slightly different factor where we divide by 2.2
instead of 2.

def shellSort(a:Array[Double]):Unit = {
var gap = a.length/2
while (gap >= 1) {
for (j <- gap until a.length) {
var i = j-gap
val tmp = a(j)
while (i >= 0 && a(i) > tmp) {
a(i+gap) = a(i)
i -= gap

}
a(i+gap) = tmp

}
gap = (gap/2.2).round.toInt

}
}

This code was created by defining the var gap and writing the while loop, then cutting
and pasting the insertion sort inside of the while loop. Once there, all the places where
i was incremented or decremented by 1 were changed so the 1 was gap. The factor of 2.2
gives better spacings though you do need to round and convert back to an Int. You could
put this into the visualization code and add the extra arguments and calls to renderValues
to see how it works. Of the sorts we have discussed so far, this one is probably the most
important to visualize to get a grasp on what it is doing and why the process of reducing
the gap is significant.

The exact order of the Shell sort is harder to pin down. This is largely because it varies
with the selection of gap scaling and can range from O(n2) at the poor end all the way to
O(n log2 n) at the good end. Reasonable implementations like the one shown here will tend
to give O(n3/2) performance. This might not seem like a tremendous improvement, but if
n gets large, the difference can be quite dramatic.

414 Introduction to Programming and Problem-Solving Using Scala

13.2 Searching
While sorting data is something that we do a fair bit with computers, searching for data

is a far more common task. A lot of the things that you do with computers on a regular basis
involve searching for information either just to retrieve it or to modify information related
to what is found. This makes sense, as running through data is something that computers
do particularly quickly and efficiently.

13.2.1 Sequential Search (Linear Search)

The most basic form of search is the sequential or linear search. This involves
running through data one element at a time and checking each one to see if it matches what
you are looking for. If it finds what you are looking for, it either returns the data or an
index where it can be found. If it gets to the end without finding it, it will return something
to indicate that the data was not there. The following code is a linear search through an
Array of Ints.

def linearSearch(a:Array[Int], value:Int):Int = {
var i = 0
while (i < a.length && a(i) != value) {
i += 1

}
if (i >= a.length) -1 else i

}

This search returns the index of the first element in the Array whose value is the same as
what was passed in. It does this with a while loop so that it can stop early if it is found.

The if statement is needed because the common idiom when returning an index is to
return -1 when the value is not found. We can get rid of this conditional at the end if we
count backwards.

def linearSearchForLast(a:Array[Int], value:Int):Int = {
var i = a.length-1
while (i >= 0 && a(i) != value) {
i -= 1

}
i

}

This modified version of the code starts at the end and goes backwards. It is a bit simpler,
but it fundamentally alters the description of the function as we now find the last occurrence
instead of the first.

There are quite a few different methods on the Scala collections that do searching. For
the collections that we have learned about, these are all performing linear searches. They
include the following, roughly as they are defined in Seq[A]:5

• def find(p: (A) => Boolean): Option[A]

• def indexOf(elem: A, from: Int): Int

5The exact signatures of some of the methods have been simplified so that they make sense at this point
in the book.

Sorting and Searching 415

• def indexOf(elem: A): Int

• def indexOfSlice(that: Seq[A], from: Int): Int

• def indexOfSlice(that: Seq[A]): Int

• def indexWhere(p: (A) => Boolean, from: Int): Int

• def indexWhere(p: (A) => Boolean): Int

• def lastIndexOf(elem: A, end: Int): Int

• def lastIndexOf(elem: A): Int

• def lastIndexWhere(p: (A) => Boolean, end: Int): Int

• def lastIndexWhere(p: (A) => Boolean): Int

Many of these methods come in pairs where one of the two takes an extra Int argument for
an index in the collection that it should start working from. Only the first method returns
an element from the collection, all the others return indices. The one that does return an
element wraps it in an Option so that if no match is found it can return None. If no match
is found for the methods that return an index, they will return -1.

13.2.2 Binary Search

Even though computers are very fast, linear search is far from ideal, mainly because
searching is something that is done so very frequently. If the data is not ordered in any way,
linear search is your only option. To understand this, imagine you are handed a normal
phone book and asked to find the person who has a given phone number. Due to the fact
that phone books are not ordered by phone numbers, your only recourse is to go through each
and every line and check the numbers against what you are looking for. In any reasonably
sized city this is something that no human would actually undertake.

If this were the only way to look through a telephone book people would not bother
to keep them.6 However, people do keep telephone books because they rarely look things
up by number. Instead, people normally look things up by name and the telephone book
is sorted by name. This ordering of the elements can lead to much more efficient searches.
You might not be able to write a good algorithm for how you really look things up in a
telephone book, but we can consider your first step and use that as direction for writing an
efficient algorithm.

Given a large phone book and a name, you will open it up and look at what is on the
page you open to. Odds are good that you will not get exactly the right page. However,
comparing what you are looking for to what is on the page gives you a significant piece of
information. If what you are looking for comes earlier in the alphabet than what is on the
page you will only look at other pages before that one. You basically throw everything after
that page out of your search without even looking at it. Similarly, if what you are looking
for comes after the page you have opened to you will only consider pages after the current
one. You will generally repeat this process in a manner that is not easy to describe in an
algorithm just because your method of picking pages might be impacted by things like the
binding of the book and whether one page sticks out a bit further than another.

6Thanks to rapidly changing technology and remarkable changes in computer speed and usability, it is
not clear people are bothering to keep phone books anyway.

416 Introduction to Programming and Problem-Solving Using Scala

The idea of looking at a location and only considering things before or after it based on
a sorted order can be used to create fast searching algorithms. The most general of which is
the binary search. In a binary search, you keep track of a range of elements that you are
considering by two integer indexes. We will call them start and end. At any given time,
you know that the value you are looking for, if it is present, will be at an index in the range
i ∈ [start,end).7 So if we are searching the whole Array, then initially start is 0 and end is
the length of the Array. We consider the midpoint of the range, mid=(start+end)/2,8 and
check if the element at mid is what you are looking for. If it is, we return mid. Otherwise
we check if what we are looking for is greater or less than the element at mid and cut down
our range accordingly.

To begin with, we will present an imperative version of this algorithm that uses a while
loop and several var declarations.

def binarySearch(a:Array[Int], value:Int):Int = {
var start = 0
var end = a.length
var mid = (end+start)/2
while (end > start && a(mid) != value) {
if (value < a(mid)) {
end = mid

} else {
start = mid+1

}
mid = (end+start)/2

}
if (end <= start) -1 else mid

}

The while loop continues as long as the range includes at least one element and the midpoint
is not the value we want. Inside the loop, a check is performed to see if the midpoint is
less than or greater than what we are looking for. If it is less, we set end=mid. This works
because end is exclusive, and we have just verified that the element is not at mid. Otherwise,
we set start=mid+1. The start is inclusive so we have to move it one element beyond the
mid. When the loop is completed we return either the value of mid or -1 based on whether
the element was found or not.

This version of the code is fairly straightforward, but there is a simpler approach. Binary
search happens to be an algorithm that lends itself very nicely to implementation as a
recursive algorithm. The following code shows what this might look like.

def binarySearchRecur(a:Array[Int], value:Int, start:Int, end:Int):Int = {
if (end <= start) -1 else {
val mid = (start+end)/2
if (a(mid) == value) mid
else if (value < a(mid)) binarySearchRecur(a, value, start, mid)
else binarySearchRecur(a, value, mid+1, end)

}
}

Clearly this code is shorter than what we had before. Most people would also find this code
a bit easier to read than the imperative version. The only drawback is that the function has

7As a reminder, this notation implies that the range is inclusive for start and exclusive for end.
8For extremely large arrays this formula for the middle value is problematic as start+end might overflow

an Int. You could use start+(end-start)/2 instead if that is an issue.

Sorting and Searching 417

n ∼ log2 n

1,000 10
1,000,000 20

1,000,000,000 30
1,000,000,000,000 40

TABLE 13.1: Table of approximate values of log2 n as a function of n. We use the approx-
imation that 210 ≈ 103. The reality is that 210 = 1024, but this approximation is rather
close and is a good one to keep in your head for quick approximations.

two extra arguments. The normal way to get around that is to provide a wrapper function
that only has two arguments and have it call this version. An appropriate wrapper could
be written this way.

def binarySearch(a:Array[Int],value:Int):Int =
binarySearchRecur(a, value, 0, a.length)

The logic of the recursive version is identical to the iterative version. Only the approach
has changed.

Now that we have code to do a binary search, it is interesting to ask what order this
function is. Again we say that the array has n elements in it. The worst case is the situation
when the element is not found, and we get down to one element in the range that is not what
we are looking for. So we need to figure out how many comparisons happen to narrow the
range down from n to 1. After one comparison the range is cut to n/2. After two comparisons
it is n/4. In general, after t comparisons, there are roughly n/2t elements left in the range.9
We now have enough information to find the maximum number of comparisons.

n/2t = 1
n = 2t

t = log2 n

This is typically called O(log n) as the difference between logs of different bases is simply
a constant multiplier. This order is generally considered to be quite fast, as it grows slowly
as the input gets bigger.

To get a feel for this, let us look at a few examples of how log2 n scales with n. A list
of approximate values for this are given in table 13.1. To really put this in perspective,
consider the fact that the first number is the worst case for a sequential search, and the
second number is the worst case for a binary search. When n is small, the difference is
not all that significant. However, as n gets large the cost savings of doing a binary search
become quite apparent. The last two values of n are large enough that they pose a problem
even for computers, despite their speed.

Of course, you can only use a binary search on sorted data and attempting an O(n2) sort
on even a million items can be time consuming. So the real power of this O(log n) scaling
is purely academic until we discuss some better ways to sort.

9This is only exact if n is a power of two. Otherwise, some rounding will occur, but that is a detail we
can ignore when talking about the order.

418 Introduction to Programming and Problem-Solving Using Scala

Linear Binary Search (Advanced)

The binary search is ideal for general sorted data. However, if you happen to know
that your data is fairly evenly distributed you can do even better. Instead of having
mid be the midpoint of the range, you can place it where you would expect the value
to be based on data being linearly distributed between the values at start and end-1.
Assuming the Array contains Doubles, this could be done with a line like the following.

val mid = start+(((value-a(start)/(a(end-1)-a(start))*(end-1-start)).toInt

This picks the value of mid based on a linear approximation. Some care would have to
be taken to insure that this does not fall into an infinite loop. In addition, if the data
is not uniformly distributed, this approach can wind up begin much slower than the
normal binary search. In fact, it can degrade to O(n).

13.3 Sorting/Searching with case classes
In the sorts and searches that we have looked at, we were working with numeric

types. More generally, the code that was written will work with any type that works with
the comparison operators. As such, our code would have worked with Array[Char] or
Array[String] if you simply altered the type that was passed into the sort because you
can use < and > with the Char and String types. The case classes we have written do
not meet this requirement. As such, we need to make other alterations to the code beyond
the type if we want to sort a case class. Fortunately, these alterations are not all that
significant.

We will work with the following case class.

case class Weather(id:String,year:Int,month:Int,precip:Double,tmax:Double,
tmean:Double,tmin:Double)

This case class was created to store historical weather data. It was used to represent
records for monthly data on temperature and precipitation. You would load an entire file of
these records into an Array. If you want to see the hottest ten months you could sort the
array by the high temperatures. Code for such a sort is shown here.

def bubbleSortWeatherHighTemps(a:Array[Weather]):Unit = {
for (j <- 0 until a.length-1) {
for (i <- 0 until a.length-1-j) {
if (a(i).tmax > a(i+1).tmax) {
val tmp = a(i)
a(i) = a(i+1)
a(i+1) = tmp

}
}

}
}

Sorting and Searching 419

A bubble sort was picked because of the simplicity of the sort. It is very easy to see what
was changed. The only changes are the type in the parameter for the Array that is passed
in and the fact that the comparison is done between fields of the Array elements. After
applying this sort to the Array you can use take or takeRight to pull off the elements at
one end or the other.

case classes also present another alternative that we did not really get with single
values, the ability to have the comparison based on more than one field. For the weather
data, it is likely to be stored in the data file in chronological order. Proper chronological
order is a combination of both the year and month fields. If you wanted to have the ability
to search for entries by time you might want to have a binary search that can look for a
particular year and month. Code for doing that is listed here.

def binarySearchWeather(a:Array[Weather], year:Int, month:Int):Int = {
var start = 0
var end = a.length
var mid = (end+start)/2
while (end > start && (a(mid).year != year || a(mid).month != month)) {
if (year < a(mid).year || (year == a(mid).year && month < a(mid).month)) {
end = mid

} else {
start = mid+1

}
mid = (end+start)/2

}
if (end <= start) -1 else mid

}

Note that the comparison has become significantly more complex. It has to compare the
year first, and then if there is a tie, break that tie with the month.

Unfortunately, when written in this way, we have to write a completely separate sort
or search for each ordering we might want on the case class. For example, if you wanted
wettest months instead of hottest months, you would need a separate sort. You might
feel that copying a whole sort or search function only to make such small changes is not
very efficient and that there should be a way to make a sort or search that works more
generally. We can help improve these functions for case classes here. InObject-Orientation,
Abstraction, and Data Structures Using Scala[1], we will gain the ability to abstract these
ideas so that the function works with multiple types, not just different sort orders on a
single type.

Back in section 5.4 we saw how we could make some recursive functions more powerful
by passing functions into them. This approach is exactly what is taken by the higher order
functions in the Scala collections libraries. As such, we have not had to go to it ourselves
much since then. However, the desire to not write a completely new sort or search function
for each and every possible ordering on a case class provides motivation to pull out these
ideas again.

If you were to write a new version of bubble sort that sorts the Weather objects by
precipitation, you would find that the only thing you change is the code related to the
comparison of the elements. In order to get a sort that can sort by high temperature,
precipitation, or anything else related to the Weather type, all we have to do is make it so
that we can vary the comparison from the outside. This can be accomplished by passing
in a function that does the comparison. For our sorts, we have been using less than and
greater than for comparison so we just need to pass in a function that represents one of

420 Introduction to Programming and Problem-Solving Using Scala

these. We pick less than here, though the code could easily be rewritten with greater than.
The code for the sort after this change looks like the following.

def bubbleSortWeather(a:Array[Weather], lessThan:(Weather,Weather)=>Boolean):Unit
= {

for (j <- 0 until a.length-1) {
for (i <- 0 until a.length-1-j) {
if (lessThan(a(i+1), a(i))) {
val tmp = (i)
a(i) = a(i+1)
a(i+1) = tmp

}
}

}
}

The comparison operator is represented as a function that takes two Weather objects and
returns a Boolean. A call to this function is used in the if statement.

Using this modified version, we could sort by the high temperatures with a call like this.

bubbleSortWeather(weather, (w1,w2)=>{w1.tmax < w2.tmax})

Alternately, the same method could be used to sort by precipitation with a call like this.

bubbleSortWeather(weather, (w1,w2)=>{w1.precip < w2.precip})

What is more, using this version of the sort, it is easy to change it so that it sorts from
greatest to least instead of the standard least to greatest. In the case of precipitation this
is done by changing the call in the following way.

bubbleSortWeather(weather, (w1,w2)=>{w1.precip > w2.precip})

All that is changed in the direction of the comparison operator. As you can see, this ab-
stracted version that uses a function instead of a hard coded comparison operator is far
more flexible.

Having seen the benefits we can get from using this in our sort, it would be nice to enable
searching in the same way. If you start to write the search code with the same comparison
operator you will find that there is a significant problem, the search requires more than
just a less than or greater than. The search requires that we be able to tell if two things
are equal. The standard way to deal with this is to have a function that returns an Int
instead of a Boolean. The Int is negative, zero, or positive to represent less than, equal to,
or greater than respectively. The other change that makes search a bit different is that the
function only takes one Weather object because we just want to know where the thing we
are looking for is relative to this value we are searching for.

Translating all of this into code gives the following.

def binarySearchWeather(a:Array[Weather],comp:(Weather)=>Int):Int = {
var start = 0
var end = a.length
var mid = (end+start)/2
var c = comp(a(mid))
while (end > start && c != 0) {
if (c < 0) {
end = mid

} else {

Sorting and Searching 421

start = mid+1
}
mid = (end+start)/2
c = comp(a(mid))

}
if (end <= start) -1 else mid

}

The function is called comp and it takes a Weather and returns an Int. In order to prevent
having the code call comp more times than it needs to, we introduce a variable named c
that stores the result of the most recent comparison. We assign this in a code block in the
condition. The loop checks to make sure it is not zero. The if checks if it is negative. After
we calculate a new mid we also make a new comparison.

Now the question is, how could we use this search to find different elements in the Array.
The first example we will give is one that duplicates the search we had above searching for
a specific year and month.

binarySearchWeather(data, w => {
if (w.year > 1896) -1
else if (w.year < 1896) 1
else if (w.month > 2) -1
else if (w.month < 2) 1
else 0

})

In this case, we are searching for February of 1896. This version uses a sequence of if
expressions to determine if the element w comes before or after that time. With a little
math we can make a shorter version taking advantage of the fact that there are 12 months
in each year.

binarySearchWeather(data, w => (1896*12+2)-(w.year*12+w.month))

Searching for data based on date is made more complex because it depends on two values.
If we use our flexible sort to reorder the Array by precipitation we could use the following
to search for a month in which there was 1.43 inches of rain.

binarySearchWeather(data, w => {
val diff = 1.43-w.precip
if (diff > 1e-8) 1
else if (diff < -1e-8) -1
else 0

})

The logic in this can be challenging to write. Thankfully, the behavior of returning negative,
zero, or positive is a common standard, and the Scala library contains code that does this
with the built in numeric types. As such, the code can be expressed more simply in this
way.

binarySearchWeather(data, 1.43 compare _.precip)

The compare call is actually a method we can call on a Double. The fact that a period has
other meaning for numbers led to us using operator notation for the method instead of the
more standard notation with dot and parentheses.

422 Introduction to Programming and Problem-Solving Using Scala

Searching for Doubles (Advanced)

Careful readers might have noticed that between the section on sorts and the section
on searches, a small change was made. The sorting section used an Array[Double] while
the searching section used Array[Int]. The choice of the Double type for sorting was
motivated by the fact that they are easy to generate and visualize. However, they are not
ideal for searching. This is due to the nature of the Double type. In our discussions we
have only presented the Double type as the type we use for numbers when a fractional
part is required. We have glossed over the details of what is happening with the Double
type. To understand the reason that Doubles are not good for search algorithms requires
us to dig a bit deeper into what they are.

The term Double stands for double precision floating point number. The
Float type, which we have generally ignored, is a single precision floating point
number. The Float type can also represent fractional numbers, but it has a smaller
range and lower precision. As with all numbers on a computer, floating point numbers,
be they single or double precision, are really stored in binary. The best way to think
about a floating point number is to think of numbers in normalized scientific notation.
In decimal, you can think of a number in scientific notation as being in the following
form,

(−1)s ∗m ∗ 10e,

where s ∈ [0, 1], 1 ≤ m < 10 or m = 0. We call s the sign, m the mantissa, and e the
exponent. Not much changes when the number goes to binary except that s, m, and e
are stored in bits instead of decimal digits, and we want powers of 2 instead of 10. So
scientific notation in binary would be

(−1)s ∗m ∗ 2e.

This still does not explain why it is hard to do searching with a floating point
number. The key to that comes from the fact that we only have a finite number of bits
to use to store m. To understand the implication of this, consider a situation where
you only have 7 decimal digits to write m. Now try to write the decimal form of the
fraction 1/3. You would write (−1)0 ∗ 3.333333 ∗ 10−1. This is not exactly the same as
1/3, but it is as close as you can get with only 7 digits. The reality is that to write 1/3
in decimal you need an infinite number of digits. Lots of fractions require an infinite
repeating representation in decimal.

This same thing happens in binary on the computer. Not having infinite binary
digits can lead to some interesting results for factional numbers that cannot be perfectly
represented. To understand this, consider the following simple example from the Scala
REPL.

scala> 0.1 == 1.0 - 0.9
res0: Boolean = false

Mathematically you expect the expression 0.1 == 1.0 - 0.9 to be true, but the dec-
imal value 0.1 is an infinite repeating sequence in binary. As such, it is truncated at
some point and we get an approximation. Similarly, 0.9 cannot be represented perfectly
either. The result is that subtracting 0.9 from 1 gives a value that is not exactly the
same as the approximation to 0.1. To see how different the two are we can subtract
one from the other.

Sorting and Searching 423

scala> 0.1 - (1.0 - 0.9)
res1: Double = 2.7755575615628914E-17

This is an extremely small number, but it is not zero, and because it is not zero, the
two are not equal.

This is a well known challenge with floating point numbers and people who do nu-
meric work have learned not to do checks for equality on them as the results are generally
unpredictable because of the rounding that is part of even the simplest arithmetic. For
our discussion, what we have seen is evidence that using == in a search algorithm on
the Double type is likely to produce unexpected results. So the next question is, how
do we get around that.

The basic idea behind the solution is that we generally consider floating point num-
bers to be equivalent as long as they are close enough to one another. So how close
is close enough? That depends on whether you are working with single or double pre-
cision numbers. In math the Greek symbol ε, epsilon, is typically used to represent a
vanishingly small value. In computer numerics it is used to describe the smallest value
that you can add to one and still get a number greater than one. If you go smaller than
ε, the value will be rounded off in the sum and all you will get back is one. Here is code
that declares and calculates this for both the Double and Float types.

scala> val doubleEpsilon = {
| var eps = 1.0
| while (1.0+eps > 1.0) eps *= 0.5
| eps*2.0
| }

doubleEpsilon: Double = 2.220446049250313E-16

scala> val floatEpsilon = {
| var eps = 1.0f
| while (1.0f+eps > 1.0f) eps *= 0.5f
| eps*2.0
| }

floatEpsilon: Double = 1.1920928955078125E-7

Any single operation can be expected to have errors on the order of ε. When you string
many operations together the error grows. As such, it is standard practice to consider
two values equal if the relative error is less than the square root of ε. This means you
only trust half the bits of precision in the number. As such, the following values are
what you really find important.

scala> val sqrtDoubleEpsilon=math.sqrt(doubleEpsilon)
sqrtDoubleEpsilon: Double = 1.4901161193847656E-8

scala> val sqrtFloatEpsilon=math.sqrt(floatEpsilon)
sqrtFloatEpsilon: Double = 3.4526698300124393E-4

For simple order of magnitude purposes, you might remember that for Double this is
about 10−8 and for a Float it is 10−4. We will use this approximate value in the code
that follows.

So how could we modify our searches to work with the Double type? We simply

424 Introduction to Programming and Problem-Solving Using Scala

need to replace the check for equality with a check of the relative difference between
the two. For the linear search that would look like the following.

def linearSearch(a:Array[Double],value:Double):Int = {
var i = 0
while (i < a.length && (a(i)-value).abs > 1e-8*value.abs) {

i += 1
}
if (i > a.length) -1 else i

}

The second half of the condition in the while loop is performing the critical check. It
takes the absolute value of the difference between the value in the Array and the value
we are looking for. It compares to see if that is bigger than our approximate value for
the square root of ε times the value we are looking for. You cannot simply compare to
1e-8 because if both value and a(i) have a magnitude much smaller than unity, such
a comparison could be erroneous. For example, imagine if the values were positions of
atoms in an object measured in meters. A separation of 10−8 meters apart would likely
be quite significant.

13.4 Sorting Lists
The sorts discussed so far have all been very imperative, mutating value in Arrays. These

same sorts can be written in a functional manner using Lists. The fact that the List type
is immutable means that we can not alter the argument passed in. Instead, we have to build
a new List that has the values in sorted order, and that sorted List is the result of the
function. We’ll look at how we can do this for our three most basic sorts in this section.
Other, more efficient sorts with Lists will be explored in chapter 15.

As before, we start off with bubble sort. The following code shows a flagged bubble
sort that stops running when it goes through and there are no more swaps. It has a helper
function defined inside of it that runs through and does swaps.

def bubbleSort(lst:List[Double]):List[Double] = {
def swapper(lst:List[Double]):(Boolean, List[Double]) = lst match {
case Nil => (false, lst)
case h::Nil => (false, lst)
case h1::h2::t =>
if (h1 <= h2) {
val (swap, rest) = swapper(h2::t)
(swap, h1 :: rest)

} else (true, h2 :: swapper(h1::t)._2)
}

val (swap, swapped) = swapper(lst)
if (swap) bubbleSort(swapped)
else swapped

}

Sorting and Searching 425

The swapper function returns a Boolean and the List that results from a single pass.
The Boolean tells us if there were any swaps done during this pass. The first two cases
form something that is a common theme in these sorts because both the empty list and
all lists with just one element are sorted, so they are both base cases. If there are at least
two elements on the List, we compare them, and, if they are in the right order, we do a
recursive call on all elements after the first one and give back that result with the first one
consed on to the list. In that situation, this iteration was not a swap, so the value of the
Boolean is whatever we get from further down the list. If the first element should go after
the second one, the Boolean is true because there was a swap, and the List is the second
element consed onto the second element of the recursive call.

The whole function works by calling swapper then calling again on the result if there
was a swap. If there was not a swap, it returns the resulting List. Note that this function
does not stop short of the high elements the way that our imperative version did. This code
could be edited to do that, but it is a bit more challenging.

Next up is the selection sort, which is implemented as a min-sort again.

def minSort(lst:List[Double]):List[Double] = {
def findAndRemoveMin(lst:List[Double]):(Double, List[Double]) = lst match {
case Nil => throw new RuntimeException("Find and remove from Nil.")
case h::Nil => (h, Nil)
case h::t =>
val (min, rest) = findAndRemoveMin(t)
if (h < min) (h, min::rest) else (min, h::rest)

}

lst match {
case Nil => lst
case h::Nil => lst
case h::t =>
val (min, rest) = findAndRemoveMin(lst)
min::minSort(rest)

}
}

This code is built around a helper called findAndRemoveMin, which returns a tuple of the
minimum value in the list and the list elements other than that minimum value. It only
makes sense to call on a list with at least one element, hence the case for Nil which throws
an exception. The way this function works is that it recurses to the end of the list, and begins
returning the minimum and reduced list from the end backward. If the current element is
smaller than the min after it, it becomes the new min and the old min is consed to the
returned list, otherwise the min stays the same and the current element is consed to the
returned list.

The primary code in the function matches the list against lists of length 0 and 1, return-
ing simple base cases in those situations. The more complex case calls findAndRemoveMin,
then conses that minimum value onto a recursive call of minSort on the whole list.

The last sort is the insertion sort, the code for which is shown here.

def insertionSort(lst:List[Double]):List[Double] = {
def insert(x:Double, sorted:List[Double]):List[Double] = sorted match {
case Nil => x::Nil
case h::t => if (x < h) x::sorted else h::insert(x, t)

}

426 Introduction to Programming and Problem-Solving Using Scala

def helper(sorted:List[Double], unsorted:List[Double]):List[Double] = unsorted
match {

case Nil => sorted
case h::t => helper(insert(h, sorted), t)

}

helper(Nil, lst)
}

One could argue that insertion sort is the best sorted for the immutable, functional approach
of the three shown here. The insert helper function is very simple. It assumes the input
List is sorted, and returns a new List with the specified value added in the proper location.
If sorted is empty, it returns a List with the new value as the only element. Otherwise, it
checks if the value it insert is less than the head of sorted. If so, it conses it to sorted and
if not it conses the head of sorted to the result of inserting the new element on the tail.

Unlike the other sorts, this one has a second short helper function that we have called
helper. It simply builds up a sorted list, taking values one at a time from the unsorted list.
The base case is when everything has been moved to the sorted list, which is returned. The
function does its work by just calling the helper.

As you can certainly tell, these sorts are somewhat longer when dealing with Lists than
they were when written for Arrays. The sorts shown in chapter 15 are actually often shorter
when written in a functional manner than in an imperative one.

13.5 Performance and Timing
This chapter has introduced a number of different sorting and searching algorithms. We

have discussed the performance of these algorithms in terms of order. This tells us how they
scale as the number of inputs is changed and quite often this is all you really care about.
You might not know or care about details of the hardware or the data sets you will be
running on, or you know that such details will change over time. There are times though
when you really do care exactly how fast an algorithm is on a particular machine, and you
need to compare it to other similar algorithms on that same machine. When you do this,
you need to do timing tests on the algorithm.

There are a number of different ways to get timing information on a program. Linux has
a command called time that will let you know how much time a program consumes when it
is running. For some applications this is ideal. However, for our purposes we only want to
measure how long a particular part of the program takes. We do not want to measure the
time taken to start things up or to initialize the Array. We only want to measure the time
spent sorting the Array. You can get very detailed information like this from a profiler,10
but that is overkill for what we want to do. For our purposes, we just need the ability to
determine a start time and a stop time and take the difference between the two. We can do
this by calling System.nanoTime(). This is a call to the Java libraries that returns a Long
measuring the current time in nanoseconds.11

Another thing that we want to do to make the tests even is sort the same numbers for
each sort. To make this happen, we really need to sort a copy of the Array and keep the

10You can invoke the Java profiler with the Java -Xprof option. To get Scala to run this option you set
the JAVA_OPTS environment variable to include -Xprof.

11A nanosecond is 10−9 seconds.

Sorting and Searching 427

original so that we can make other copies of it. We need to do this for each of the sorts;
so, it is nice to put the code into a function that we can easily call with different sorts. To
make it work with different sorts, we need to pass in the sort function as an argument. The
following function does this for us.

def timeFunc(sortFunc:(Array[Double])=>Unit, a:Array[Double]):Unit = {
val copy = Array.tabulate(a.length)(i => a(i))
val start = System.nanoTime()
sortFunc(copy)
val end = System.nanoTime()
println("Time:" + (end-start)/1e9)
assert(isSorted(copy))

}

The print statement divides the time difference by 1e9. This gives us back a value in seconds
instead of nanoseconds which is much easier for us to read and deal with. We can invoke
this by putting the following code at the end of our script.

val nums = Array.fill(args(0).toInt)(math.random)
args(1) match {
case "bubble" => timeFunc(bubbleSort,nums)
case "flagged" => timeFunc(flaggedBubbleSort,nums)
case "min" => timeFunc(minSort,nums)
case "insert" => timeFunc(insertionSort,nums)
case "shell" => timeFunc(shellSort,nums)

}

Make sure that you include the sort functions that do not have calls to the rendering code
when you put this together.

If you play around with this some you will notice a few things. First, you have to get
up to at least 10000 numbers in the Array before the timing means much. If the Array is
too small, the sort will be so fast that the resolution of the machine’s clock will become a
problem. Second, the amount of time spent doing the sort can vary on different invocations.
For this reason, any true attempt to measure performance will run the code multiple times
and take an average of the different values.

Bucket/Radix Sort (Advanced)

The sorts discussed earlier in this chapter require nothing more than the ability
to compare elements. There are situations where you have more information about the
values, and you can use that to sort them more efficiently. Examples of such non-general
sorts include bucket sort and radix sort. Both use knowledge about the data being
sorted to break them into groups.

To understand how this works, consider the situation where you are given a large
number of folders to sort by name and you are in a big room. Many people would
start off by going through the stack and breaking it into different piles. The piles would
be for different parts of the alphabet. If the original stack were really large and you
had a really big room, you might make one stack for each starting letter. You could
continue to break things down in this way, again for each pile or switch to some other
approach when the pile is smaller. This general approach is called a bucket sort and the

428 Introduction to Programming and Problem-Solving Using Scala

piles would be called buckets. The bucket sort is really a general approach to breaking
sorting problems into smaller, more manageable pieces.

The radix sort uses a similar approach, but it is a specific algorithm for sorting
integer values. It organizes values, one digit at a time. In a counter-intuitive way, it starts
from the least significant digit. This only works because each pass through preserves
the order of the elements. So if A has a lower digit than B in one pass, and the next
pass puts them in the same bin, A will come before B in that bin.

By convention we will implement our radix sort using decimal digits using division
and modulo with powers of ten. The following code is a reasonably efficient implemen-
tation that sorts an Array[Int] using an Array[List[Int]] for the bins. Note that
moving items to the bins is not an in-place operation. The values are copied back to
the Array after binning, but it does require at least twice the memory of an in-place
sort.

def radixSort(a:Array[Int]):Unit = {
var max = a.max max a.min.abs
var powerOf10 = 1
while (max>0) {
val byDigit = Array.fill(19)(List[Int]())
for (num <- a) {
val digit = num/powerOf10%10+9
byDigit(digit) ::= num

}
var i = 0
for (bin <- byDigit; num <- bin.reverse) {
a(i) = num
i += 1

}
powerOf10 *= 10
max /= 10

}
}

The max variable starts with the largest magnitude value and is divided by ten each
time so that we know when to stop. The powerOf10 variable keeps track of what digit
we are currently binning. Each time through the loop, 19 empty bins are set up. You
might wonder why there are 19 bins instead of just 10. The answer is that division
and modulo preserves sign. If you only use 10 bins, this sort can only work on positive
values. By going up to 19, it is able to handle negative numbers as well. To make that
work, the bin value we get from division and modulo is incremented by 9 so that the
values slide up to the domain of the Array index values.

The binning runs through all the numbers in the array and conses them onto the
List for the proper digit. Consing to a List adds to the front. For that reason, the for
loop that moves the values back to the Array has to run through each bin in reverse.

This sorting algorithm is O(kn) where k = dlog10(max)e. In the case of an Int, the
value of k cannot be larger than 10. So the performance scales linearly for really large
Arrays.

Sorting and Searching 429

13.6 Putting It Together
To illustrate concepts in this chapter and link them together with earlier chapters we

will return to the theme park example. Every month the theme park picks a top employee.
This is based on performance relative to the average for that month. For every day of the
month you have data that tells you what operators were working each ride, and how many
people went on the ride. From this, we can calculate average ridership for each ride during
the month as well as how many riders rode each ride for each day that a given operator was
working it. Each operator can be given an efficiency for any particular ride as the average
number of people who rode on days he/she was working divided by the average for all days.
Averaging these efficiencies gives an overall rating to each operator. Those can be sorted
and displayed to show relative performance. Code for doing that is shown here.

Listing 13.2: EmployeeOfTheMonth.scala
1 import scala.io.Source
2

3 case class DailyData(ride:String, operators:Array[String], numRiders:Int)
4 case class RideAverage(ride:String, avNum:Double)
5 case class OperatorDailyData(name:String, ride:String, numRiders:Int)
6 case class OperatorRideAverages(name:String, rideAvs:Array[RideAverage])
7 case class OperatorEfficiencyFactor(name:String,factor:Double)
8

9 def parseDailyData(line:String):DailyData = {
10 val parts = line.split(" *; *")
11 DailyData(parts(0), parts.slice(1, parts.length-1), parts.last.toInt)
12 }
13

14 def readData(fileName:String):Array[DailyData] = {
15 val source = Source.fromFile(fileName)
16 val lines = source.getLines
17 val ret = (lines.map(parseDailyData)).toArray
18 source.close
19 ret
20 }
21

22 def insertionSortByEfficiency(a:Array[OperatorEfficiencyFactor]):Unit = {
23 for (j <- 1 until a.length) {
24 var i=j-1
25 val tmp=a(j)
26 while (i>=0 && a(i).factor>tmp.factor) {
27 a(i+1) = a(i)
28 i -= 1
29 }
30 a(i+1) = tmp
31 }
32 }
33

34 val data = readData(args(0))
35 val rides = data.map(_.ride).distinct
36 val averages = for (ride <- rides) yield {
37 val days = data.filter(_.ride==ride)
38 RideAverage(ride, days.map(_.numRiders).sum.toDouble/days.length)

430 Introduction to Programming and Problem-Solving Using Scala

39 }
40 val dataByOperator = for (day <- data; op <- day.operators) yield {
41 OperatorDailyData(op, day.ride, day.numRiders)
42 }
43 val operators = dataByOperator.map(_.name).distinct
44 val opRideAverages = for (op <- operators) yield {
45 val opDays = dataByOperator.filter(_.name == op)
46 val rideAvs = for (ride <- rides; if opDays.exists(_.ride==ride)) yield {
47 val opRides = opDays.filter(_.ride == ride)
48 RideAverage(ride, opRides.map(_.numRiders).sum.toDouble/opRides.length)
49 }
50 OperatorRideAverages(op, rideAvs)
51 }
52 val operatorFactors = for (OperatorRideAverages(op, rideAvs) <- opRideAverages)

yield {
53 val factors = for (RideAverage(ride,av) <- rideAvs) yield {
54 av/averages.filter(_.ride==ride).head.avNum
55 }
56 OperatorEfficiencyFactor(op,factors.sum/factors.length)
57 }
58 insertionSortByEfficiency(operatorFactors)
59 operatorFactors.foreach(println)

This code assumes that the file has a line of data for each day that starts with the
ride name, followed by operator names, with number of riders at the end. Each of these is
separated by semicolons. That data is read and used to calculate the various values needed
for efficiency. Once the efficiencies have been calculated, all the employees are sorted with
an insertion sort and the results are printed.

13.7 End of Chapter Material

13.7.1 Summary of Concepts

• The act of ordering data according to some value is called sorting. It is a common
operation on a computer as it benefits humans who view the data as well as programs
when they process it. Several types of sorts were discussed in this chapter.

– A bubble sort runs through the Array comparing adjacent elements and swapping
them if they are out of order. This action is repeated until all the values are in
proper order.

– A selection sort picks specific elements and puts them into place. We demon-
strated a minSort, which finds the smallest unsorted element and swaps it to the
correct location. Selection sort does few swaps so it is most useful in a situation
where moving data is an expensive operation.

– An insertion sort takes each element and pushes it forward through the Array
until it gets it into sorted order with the elements that came before it. Insertion
sort is extremely efficient in situations where the data starts off close to the
proper order.

– The Shell sort is also called the diminishing gap sort. It does insertion sorts over

Sorting and Searching 431

partial data in such a way that things are moved toward proper ordering. It
winds up being more efficient that any of the other three.

• When we talk about the performance of different algorithms in computer science, we
typically use order analysis. This gives a rough idea of how the number of times an
operation is performed will scale with the size of the input. The first three sorts above
all do O(n2) comparisons.

• One of the most common tasks done on computers is looking for data, an activity we
call searching.

– If data is unorganized, the only approach is to go through all elements in a
sequential/linear search. This type of search is O(n).

– When the data has a sorted order to it, you can use a binary search to find ele-
ments. A binary search is significantly faster that a sequential search because it ef-
fectively throws out half the data with each comparison. This provides O(log(n))
performance.

• Sorting case classes requires minor alterations to the sort so that the appropriate
fields are compared.

• To compare the performance of different algorithms when you really care about how
quickly a program runs, you can measure how much time it takes. To measure the
runtime of a whole program you can use the Linux time command. To measure only
specific parts of code call System.nanoTime() before and after the section you want
to time and subtract the results. Profilers can also provide more detailed information
on what is taking time in a program.

• Programmers often put errors into their code by accident. These errors are commonly
called bugs. The process of fixing the errors is called debugging. Bugs can be catego-
rized into different types.

– Sytnax errors are errors where the programmer enters something that is not valid
for the language. These are found when the program is compiled. The compiler
can generally give you helpful information about what is wrong and where the
error is in the code.

– Runtime errors occur when the code compiles, but crashes during the run. The
crash itself can print helpful information for you. Unfortunately, runtime errors
often only occur under certain situations, making them harder to track down and
fix.

– Logic errors are the term we use to describe when the code compiles and runs
without crashing, but the result is inaccurate. These are generally the worst
of the three as the computer does not give you pointers to where the error is
occurring or what it is caused by. Instead, the programmer has to track it down.
This can be done using print statements or using a debugger.12

• The memory of the computer can be thought of as a really big array. Each program is
given a different section of memory that is divided into the heap and the stack. The
stack is well organized and is where local variables are allocated. Each function that
is called gets a chunk of memory called a stack frame. When the function returns,
the frame is released. The heap is where all objects are allocated in Scala. A garbage
collector deals with objects that are no longer in use.

12The debugger is not an option for how we are currently doing things.

432 Introduction to Programming and Problem-Solving Using Scala

13.7.2 Exercises

1. Write a minMaxSort that finds both the minimum and maximum values in each pass
and swaps them to the proper locations.

2. Do timing tests on Arrays of Ints and Doubles for the sorts presented in this chapter.
Note that the radix sort that is presented only works with integer types. You want to
have the number of elements in the Array or List grow exponentially so that you can
see variation over a large range. Recommended sizes could be 100, 300, 1000, 3000,
10000, 30000, etc. Plot the data as a log-log scatter plot.13

3. Following onto the timing results, do a comparison of the number of comparisons done
for different sorts presented in this chapters. Plot the results in the same way.

4. While most of the work for these sorts is in comparisons, it is also interesting to look
at the number of memory moves. A standard swap is three assignments. Add code to
count how many assignments are done in each of the sorts and plot the results.

5. Section 7.3 showed how you can abstract functions over types. This is something that
will be dealt with in detail in the second half of the book. Review that section and see
if you can write a version of insertion sort and min sort that is general with regards
to type.

6. Do a little web searching to find some other type of sort not described in this chapter
and write it.

7. Describe what happens if you apply binary search to an unordered array.

8. Create an array of 1000 random numbers and use any sorting algorithm to sort the
list. Then search the list for some items using the binary search algorithm. After that,
use the binary search algorithm to search the list, switching to a sequential search
when the size of the search list reduces to less than 15.

9. Print the number of comparisons performed in both searches in the previous example.

10. Rewrite the bubble sort so that it bubbles smaller numbers down instead of bigger
numbers up in the array.

13.7.3 Projects

1. This project is intended for people who have been working on graphics and ray tracing,
but it does not immediately link so you can do it even if you have not been doing the
previous ones. For this problem you will draw polygons to a Canvas using a “painter’s
algorithm.” That is where you draw things from the back to the front so that the
things in front appear on top of the things behind them. Doing this properly is a
challenging problem. You should base your drawing on the point in the polygon that
is closest to the viewer.

To keep things simple, the viewer will be at the origin facing out the z-axis. That
way the x and y coordinates are roughly what you expect. To make it so that things
that are further away are smaller you divide the actual x and y by the z value to

13This means that the N value should be the x-axis, and the time it takes should be the y-axis where
both axes use a log scale. The advantage of this is that functions of the form f(x) = xn appear as straight
lines in this type of plot with a slope equal to n.

Sorting and Searching 433

get the location you would draw them at. Given a point (x,y,z) you would want it
drawn on an image or panel at ((x/z+1)*size.width/2,(1-y/z)*size.height/2).
To represent a polygon for drawing to the GraphicsContext you should use moveTo
and lineTo to make lines. When you get to the last point you call closePath to close
it off.

Store your polygons in a file. You can decide the exact format. In addition to having
the points in each polygon, each one should have a color that it will be drawn in.
Remember to sort them by z value so that the one with the smallest z value is drawn
last.

2. The BASIC programming language was created to be a simple language for novice
programmers. The original versions were organized by line number. Each statement
of the program was a single line that has a number associated with it. The lines were
ordered according to that number and flow control was implemented by allowing the
program to jump to other line numbers. For this project you will create a simple GUI
that lets you edit a simplified version of BASIC.

For this simplified version you have a very limited set of possible commands. The GUI
will also use a “line editor” style. The allowed commands including the following: GOTO,
IF-THEN, INPUT, LET, and PRINT. Each of these must be preceded by a line number
that is an integer. For our purposes, variable names are single characters, and they
will all be numbers. You can use a Double. The format of the commands is as follows.

• The GOTO command should be followed by an integer number that is the line
number the program should execute next. (Example: 100 GOTO 50)

• The IF-THEN command has the following syntax: IF comp THEN #. The comp is
a comparison that can have a variable or a number on either side and either =
or < between them. The # is a line number that the execution will jump to if
the comparison in the condition is true. If the comparison is false, the execution
continues on the next line. (Example: 110 IF a<21 GOTO 50)

• The INPUT command should be followed by a single variable name and when it
is executed the program pauses and waits for the user to input a value that is
stored in that variable. (Example: 120 INPUT b)

• The LET command has the keyword LET followed by a variable name with an equal
sign and then either a single number/variable or two number/variable operands
that are separated by an operator. The operator can be +, -, *, or /. The result
of the operation should be stored in the variable before the equal sign. (Example:
130 LET a=b+3)

• The PRINT command can be followed either by a variable name or a string in
double quotes. When executed, this will print either the value of the variable or
the string to the output.

Variables do not have to be declared. They come into existence when first used and
they should have a value of 0 to start with if no other value was given to them.

The GUI for this program should have three main elements. The program itself is
displayed in a ListView. This makes it simple for users to select a line to edit without
letting them type random text. There should also be a TextField where the user can
enter/edit lines. If a line is selected in the ListView, the text from it should appear in
the TextField. The user can edit that line or enter anything else. The number at the
beginning of the line will be used to put it in place. If a number is used that duplicates

434 Introduction to Programming and Problem-Solving Using Scala

an existing line, the new one replaces the old one. Lastly there is a TextArea that
shows the output when the program is run.

When the user hits enter on the TextField your program should check if what was
entered is a valid command. If it is, it should put it in the program and clear. If it is
not, it should leave the text there and not alter the existing program.

There should be at least four menu items for this program: “Save”, “Open”, “Remove”,
and “Run”. The “Save” option saves the program to a text file. The “Open” option
allows the user to select a file and open it up as a program. The “Remove” option
will remove the currently selected lines in the program. Nothing happens if nothing
is selected in the ListView. The “Run” option runs the program. It starts running at
the first line and continues until execution goes beyond the last line.

3. On the book’s web site, under this chapter, you will find files with historical weather
data for some different cities in the US along with a link to the source of the data.
You should read this data into an Array of some case class that you create. The data
is separated by commas. Note that the second line tells you what each column of
data represents. You will skip the top two lines when reading the information. Write
a script that will report the months with the five warmest average temperatures and
those with the five lowest average temperatures.

For a bit of an extra challenge make it so that the user can tell the program whether
to report the top and bottom five months for any of the values in the file. You could
do this with a lot of typing, but by passing in a function you can cut down on the
length of the code greatly.

If you did any of the problems in the last chapter that included plotting points or
data, you should consider sticking that functionality onto this project. That way you
can bring up a GUI and show the plots of whatever field(s) the user selects.

4. If you did a game for one of the projects in chapter 12, for this one you can enhance
it by adding a high scores list. That means having some way to score games. It also
means saving scores to a file in a format of your choosing. Lastly, the high scores need
to be sorted. Each score record needs to have at least a score and an identifying name
or initials. All other details are up to the student.

5. If you have been working with the recipe projects, you now have the ability to order
a shopping list according to where things are in the store. This follows most logically
from project 12.11, but it does not require the graphical functionality, only a data file
listing what aisles different items are in and the ability for a user to make a shopping
list.

Your script should have the ability to sort the grocery list they build to go through
the store in either ascending or descending order by row. The sorted list should be
displayable in a TextArea so that the user can cut and paste it for printing.

6. This project fits in with the sequence of schedule building projects. In particular, it
makes sense to do if you have already done project 11.10 where schedules were built
and displayed in a GUI. That project showed the selected courses in the order the
user selected them. However, it would often be helpful to have them displayed based
on other criteria. For example, having them sorted by department and number or how
much interest the user expressed in them could be helpful.

For a bit of extra challenge, you could include some additional information with each

Sorting and Searching 435

course indicating things like whether it is required for graduation or what gradua-
tion requirement it fulfills. Allow the user to select from multiple orderings using a
ComboBox.

7. If you did project 12.15 or 11.12 looking at box scores you might have noticed that
one significant feature that was missing was the ability to change the player listing so
that it orders the players based on a particular stat. Now that you know how to sort
you can fix this. How you do this depends on how you chose to display the box score,
but it can be as simple as adding a few Buttons for sorting by different statistical
categories.

Additional exercises and projects, along with data files, are available on the book’s web
site.

http://taylorandfrancis.com

Chapter 14
XML

14.1 Description of XML . 438
14.1.1 Tags . 438
14.1.2 Elements . 438
14.1.3 Attributes . 439
14.1.4 Content . 439
14.1.5 Special Characters . 439
14.1.6 Comments . 440
14.1.7 Overall Format . 440
14.1.8 Comparison to Flat File . 440

14.1.8.1 Flexibility in XML . 440
14.2 XML in Scala . 441

14.2.1 Loading XML . 442
14.2.2 Parsing XML . 442
14.2.3 Building XML . 445
14.2.4 Writing XML to File . 446

Validating XML (Advanced) . 446
14.2.5 XML Patterns . 446

14.3 Putting It Together . 447
14.4 End of Chapter Material . 452

14.4.1 Summary of Concepts . 452
14.4.2 Self-Directed Study . 453
14.4.3 Exercises . 454
14.4.4 Projects . 454

This chapter deals with XML, short for eXtensible Markup Language. XML is technically a
completely language independent topic, Scala was developed with XML in mind and makes
it easy to work with.

In chapter 9, we learned how to read from and write to text files. The files that we used
in that and following chapters are what are called “flat” text files. They have the data in
them with nothing that tells us about the nature of the data other than formatting. The
advantages flat files have are that they are fairly simple to read and write, and it can be both
read and written with standard tools like a text editor, just like the one you use for your
programs. The disadvantages are that it can be slow, and it lacks any inherent meaning;
so, it is hard to move the information from one program to another. It is also somewhat
error prone because so much information is in the formatting. XML addresses the latter
disadvantage, without losing the advantages.

The eXtensible Markup Language is a standard for formatting text files to encode any
type of information. It is a markup language, not a programming language. The standard
simply defines a format for encoding information in a structured way. It is likely that you
have heard of a different markup language called HTML, the HyperText Markup Language.
HTML is used to encode web pages and has a format very similar to XML. Indeed, there
is a standard called XHTML, which is basically HTML that conforms to the XML rules.

437

438 Introduction to Programming and Problem-Solving Using Scala

14.1 Description of XML
Everything in an XML file can be classified as either markup or content. Markup in XML

is found between the symbols ‘<’ and ‘>’ or between ‘&’ and ‘;’. The content is anything
that is not markup. To help you understand XML we will look at an example XML file.
This example is built on the idea of calculating grades for a course.

<course name="CSCI 1320">
<student fname="Quinn" lname="Bender">

<quiz grade="98"/>
<quiz grade="100"/>
<quiz grade="90"/>
<test grade="94"/>
<assignment grade="100">

<!-- Feedback -->
Code compiled and runs fine.

</assignment>
</student>
<student fname="Jason" lname="Hughes">

<quiz grade="85"/>
<quiz grade="78"/>
<test grade="67"/>
<assignment grade="20">

Code didn’t compile.
</assignment>

</student>
</course>

Just reading this should tell you what information it contains. That is one of the benefits
of XML, the markup can be informative. Now we want to go through the different pieces
of XML to see how this was built.

14.1.1 Tags

Text between ‘<’ and ‘>’ characters are called tags. Nearly everything in our sample
XML file is inside of a tag. The first word in the tag is the name of the tag, and it is the
only thing that is required in the tag. There are three types of tags that can appear in an
XML file.

• Start tag - Begins with ‘<’ and ends with ‘>’,

• End tag - Begins with ‘</’ and ends with ‘>’,

• Empty-element tag - Begins with ‘<’ and ends with ‘/>’.

Tags can also include attributes, which come after the name and before the close of the tag.
These are discussed below in section 14.1.3.

14.1.2 Elements

The tags are used to define elements which give structure to the XML document. An
element is either a start tag and an end tag with everything in between or else it is an empty

XML 439

element tag. The empty element tag is simply a shorter version of a start tag followed by
an end tag with nothing in between.

Elements can be nested inside of one another. In our sample file, there is a course
element that encloses everything else. This is required for XML, there needs to be one
element that goes around all the other content. There are two student elements inside of
the course element. Each of those includes elements for the different grades. Most of these
are empty elements, but the assignments are not empty and have contents in them.

Any time there is a start tag, there should be a matching end tag. When elements are
nested, they have to be nested properly. That is to say that if element2 begins inside of
element1, then element2 must also end before the end of element1. In addition to other
elements, you can place general text inside of elements.

14.1.3 Attributes

Additional information can be attached to both start tags and empty element tags in
the form of attributes. An attribute is a name value pair where the value is in quotes and
the two are separated by an equal sign. The example XML contains quite a few attributes.
In fact, every start or empty element tag in the example has an attribute. It is not required
that these tags have an attribute, but it is a good way to associate simple data with a tag.
Some of the tags in the example show that you can also have multiple attributes associated
with them.

14.1.4 Content

Between a start tag and an end tag you cannot only put other tags, you can put plain
text. In the example XML, the assignment element has text in it that serves as a comment
on the grade. The text that you put inside of an element is not formatted and can include
anything you want, as long as it does not conflict with the XML syntax. Unlike the markup
part of the XML document, there is no special formatting on content.

14.1.5 Special Characters

While the content does not have any special formatting, it is still embedded in an XML
document. There are certain characters that are special in XML that you cannot include
directly in the content. For example, if you put a ‘<’ in the content it will be interpreted as
the beginning of a tag. For this reason, there is a special syntax that you can use to include
certain symbols in the content of an XML file. This syntax uses the other form of markup
that begins with & and ends with ;. There are five standard values defined for XML.

• & = &

• ' = ’

• > = >

• < = <

• " = "

There are many more defined for other specific markup languages. For example, if you have
ever looked at HTML you have probably seen used to represent spaces.

440 Introduction to Programming and Problem-Solving Using Scala

14.1.6 Comments

Just like with code, it is helpful to occasionally put comments in your XML. A comment
begins with ‘<!--’ and ends with ‘-->’. You can put whatever text you want between these
as long as it does not include the sequence to end the comment.

14.1.7 Overall Format

There are two other rules that are significant for XML. First, the entire XML document
must be inside of a single element. In the example above, everything was in the course
element. Had we wanted to have more than one course element, we would have had to
create some higher level element to hold them.

In addition, most XML files will begin with an XML declaration that comes right before
the element containing the XML document information. The declaration has a slightly
different syntax and might look like the following line.

<?xml version="1.0" encoding="UTF-8" ?>

14.1.8 Comparison to Flat File

To better understand the benefit of XML, we will compare our XML file to a flat file
that might be used to store basically the same information. Here is a flat file representation
of the grade information from the XML above.

CSCI 1320
2
Quinn Bender
98 100 90
90
100
Jason Hughes
85 78
67
20

This is a lot shorter, but unless you happen to know what it is encoding, you cannot figure
much out about it. Namely, the numbers in the file are hard to distinguish. The 2 near the
top you might be able to figure out, but without additional information, it is impossible to
determine which lines of grades are assignments, quizzes, or tests.

The flat file also lacks some of the information that was in the XML. In particular,
the comments on the assignments in the XML format are missing in this file. It would be
possible to make the flat file contain such information, but doing so would cause the code
required to parse the flat file to be much more complex.

14.1.8.1 Flexibility in XML

A significant “Catch 22” of XML is that there are lots of different ways to express the
same information. For example, the comment could have been given as an attribute with
the name comment instead of as contents of the element. Similarly, if you do not want to
allow comments, you could shorten the XML to be more like the flat file by changing it to
the following format.

XML 441

<course name="CSCI 1320">
<student fname="Quinn" lname="Bender">

<quizzes>98 100 90</quizzes>
<tests>94</tests>
<assignments>100</assignments>

</student>
<student fname="Jason" lname="Hughes">

<quizzes>85 78</quizzes>
<tests>67</tests>
<assignments>20</assignments>

</student>
</course>

Here all the grades of the same type have been given as contents of elements with the proper
names. This makes things much shorter and does not significantly increase the difficulty of
parsing the grades. It does remove the flexibility of attaching additional information with
each grade such as the comments.

An alternate approach would be to not use attributes at all and store all the information
in sub-elements. Doing that, one of the students might look like the following.

<student>
<fname>Jason</fname>
<lname>Hughes</lname>
<quiz><grade>85</grade></quiz>
<quiz><grade>78</grade></quiz>
<test><grade>67</grade></test>
<assignment>

<grade>20</grade>
<comment>Code didn’t compile.</comment>

</assignment>
</student>

There is no definitive answer for which of these two styles you should use. What can be
said definitively is that attributes must be unique and should generally have short text. So
you should not try to use attributes for things that would span multiple lines or that need
multiple values that would be challenging to break apart. A possible rule of thumb to follow
is that anything where you only have a single value that is short, you should represent as
an attribute. Anything that has multiple values or is long should be in sub-elements.

14.2 XML in Scala
XML is not part of the normal first semester topics in computer science, but Scala makes

it so easy that there is no reason not too. To see this, simply go to the REPL and type in
valid XML.

scala> <tag>Some XML.</tag>
res0: scala.xml.Elem = <tag>Some XML.</tag>

The Scala language has a built in XML parser that allows you to write XML directly into
your code. You can see that the type of this expression is scala.xml.Elem.

442 Introduction to Programming and Problem-Solving Using Scala

The scala.xml package contains the types related XML. We will run through some of
the more significant ones here.

• Elem - Represents a single element. This is a subtype of Node.

• Node - Represents a more general node in the XML document. This is a subtype of
NodeSeq.

• NodeSeq - Represents a sequence of Nodes.

• XML - A helper object that has methods for reading and writing XML files.

There are quite a few other types that you can see in the API, but we will focus on these
as they give us the functionality that we need for our purposes.

14.2.1 Loading XML

The XML object has methods we can use to either read from files or write to files. The
loadFile method can be used to read in a file. If the first example XML that was shown
is put in a file with the name “grades.xml”, then the following call would load it in.

scala> xml.XML.loadFile("grades.xml")
res4: scala.xml.Elem =
<course name="CSCI 1320">

<student lname="Bender" fname="Quinn">
<quiz grade="98"></quiz>
<quiz grade="100"></quiz>
<quiz grade="90"></quiz>
<test grade="94"></test>
<assignment grade="100">

Code compiled and runs fine.
</assignment>

</student>
<student lname="Hughes" fname="Jason">

<quiz grade="85"></quiz>
<quiz grade="78"></quiz>
<test grade="67"></test>
<assignment grade="20">

Code did not compile.
</assignment>

</student>
</course>

Clearly this is the content of the XML file that we had created. All that is missing is the
comment, which was there for human purposes, not for other programs to worry about.
In addition, the empty tags have also been converted to start and end tags with nothing
in between. This illustrates that the empty tags were also just for human convenience and
their meaning is the same as an empty pair of start and end tags.

14.2.2 Parsing XML

Once we have this Elem object stored in res4, the question becomes how you get the
information out of it. The NodeSeq type, and hence the Node and Elem types which are
subtypes of it, declare operators called \ and \\. These operators are used to search inside

XML 443

the contents of an object. Both operators take a second argument of a String that gives the
name of what you want to look for. The difference is how far they search. The \ operator
looks only for things at the top level, either Nodes in the current sequence if we have a true
NodeSeq, or children of this node if we have a Node or Elem. The \\, on the other hand,
finds anything that matches at any depth below the current level. To illustrate this, we will
do three example searches.

scala> res4 \ "student"
res5: scala.xml.NodeSeq =
NodeSeq(<student lname="Bender" fname="Quinn">

<quiz grade="98"></quiz>
<quiz grade="100"></quiz>
<quiz grade="90"></quiz>
<test grade="94"></test>
<assignment grade="100">

Code compiled and runs fine.
</assignment>

</student>, <student lname="Hughes" fname=Jason">
<quiz grade="85"></quiz>
<quiz grade="78"></quiz>
<test grade="67"></test>
<assignment grade="20">

Code did not compile.
</assignment>

</student>)

scala> res4 \ "test"
res6: scala.xml.NodeSeq = NodeSeq()

scala> res4 \\ "test"
res7: scala.xml.NodeSeq = NodeSeq(<test grade="94"></test>, <test

grade="67"></test>)

The first two searches use the \ operator. The first one searches for elements that have the
tag name “student”. It finds two of them because they are at the top level and gives us back
a NodeSeq with them in it. The second search looks for tags that have the name “test”.
This search returns an empty NodeSeq. This is because while there are tags with the name
“test” in res4, they are nested more deeply inside of the “student” elements as such, are
not found by the \ operator. The last example searches for the “test” tag name again, but
does so with \\, which searches deeply, and hence gives back a NodeSeq with two Nodes
inside of it.

The \ and \\ operators can also be used to get the attributes from elements. To get an
attribute instead of a tag, simply put a ‘@’ at the beginning of the string you are searching
for. Here are three searches to illustrate this.

scala> res4 \ "@name"
res8: scala.xml.NodeSeq = CSCI 1320

scala> res4 \ "@grade"
res9: scala.xml.NodeSeq = NodeSeq()

scala> res4 \\ "@grade"
res10: scala.xml.NodeSeq = NodeSeq(98, 100, 90, 94, 100, 85, 78, 67, 20)

444 Introduction to Programming and Problem-Solving Using Scala

The first search uses \ to get the name of the top level node. Using \ to look for a @grade
at the top level node does not give us anything, but using \\ will return the values of all
the @grades in the document.

What you really want to do is put the information from the XML file into a structure
that can be used in the program. Given what we have learned, this would mean that we
want to put things into case classes. The data in this XML file corresponds very closely
to the student type that was created in chapter 10. That case class looked like this.

case class Student(name:String,assignments:List[Double],tests:List[Double],
quizzes:List[Double])

In that chapter we parsed a flat file into an Array of Students. Now we will demonstrate
how to do the same thing using the XML. We will start with a function that takes a Node
that should be a student Element and returns a Student object. Such a function might
look like the following.

def studentFromXML(elem:xml.Node):Student =
Student((elem \ "@fname")+" "+(elem \ "@lname"),
(elem \ "assignment").map(n => (n \ "@grade").toString.toDouble).toList,
(elem \ "test").map(n => (n \ "@grade").text.toDouble).toList,
(elem \ "quiz").map(n => (n \ "@grade").text.toDouble).toList)

This function builds a Student object and passes in the four required arguments. The first
is the name, which is made from the fname and lname attributes of the element. After that
are three Lists of grades for the assignments, tests, and quizzes respectively. These all have
a similar form. They start by doing a search for the proper tag name and mapping the result
to a function that converts the value of the grade attribute to a Double. The call to text
is required because the result of \ here is a Node, not a String, and the Node type does
not have a toDouble method. The last part of each grade type is a call to toList. This is
required because the map is working on a NodeSeq and will give back a Seq, but a List is
required for the Student type.

The form of studentFromXML above is compact, but it might not be the more readable
or easiest to work with. It is often helpful to introduce new variables for each value as it is
parsed from the XML. The following code shows a modified version that does this.

def studentFromXML(elem:xml.Node):Student = {
val name = (elem \ "@fname")+" "+(elem \ "@lname")
val assignments = (elem \ "assignment").map(n => (n \

"@grade").toString.toDouble).toList
val tests = (elem \ "test").map(n => (n \ "@grade").text.toDouble).toList
val quizzes = (elem \ "quiz").map(n => (n \ "@grade").text.toDouble).toList
Student(name, assignments, tests, quizzes)

}

The use of map probably does not jump out to you at first. Hopefully at this point you
have become quite comfortable with it and other higher order methods. However, if you
think a bit you will realize that it is a bit surprising here because the thing it is being called
on is not a List or an Array. Instead, it is a NodeSeq. This works because the NodeSeq is
itself a subtype of Seq[Node], meaning that all the methods we have been using on other
sequences work just fine on this as well.

This is useful for getting our array of students as well. The following line shows how we
can use map and toArray to get the result that we want with the studentFromXML function.

XML 445

scala> (res4 \ "student").map(studentFromXML).toArray
res15: Array[Student] = Array(Student(Quinn

Bender,List(100.0),List(94.0),List(98.0, 100.0, 90.0)), Student(Jason
Hughes,List(20.0),List(67.0),List(85.0, 78.0)))

Again, the call to toArray gives us back the desired Array[Student] instead of a more
general Seq[Student].

We have used the text method a few times in this parsing process. It is worth noting
that the text method applied to a full Elem will give you all of the text that appears inside
of it and all sub-elements. So calling text on res4 gives the two comments along with a lot
of whitespace. To get just the comment on any particular grade, you would parse down to
that specific element and call the text method on it.

14.2.3 Building XML

So now you know how to get the contents of an XML file into a useful form in Scala.
What about going the other way? Assume that the code we just wrote was used in the
menu based application from chapter 10 and that changes were made and now we want to
write the results back out to a file. The first step in this would be to build the Node that
represents the data.

We saw above that we can put XML directly into a Scala program or the REPL and
it will be parsed and understood. However, that alone does not give us the ability to put
values from the program back into the XML file. Fortunately, this is not hard to do either.
Inside of XML that is embedded in a Scala program you can embed Scala expressions using
curly braces. We will start with a simple example.

scala> <tag>4+5 is {4+5}</tag>
res19: scala.xml.Elem = <tag>4+5 is 9</tag>

Here the expression 4+5 has been put in curly braces, and as you can see it evaluates to the
value 9 as it should. The code you put inside of the curly braces can be far more complex
and built additional XML content or tags.

We will use this to write a function that packs a Student object into an XML node.
This code looks like the following.

def studentToXML(stu:Student):xml.Node = {
val nameParts = stu.name.split(" +")
<student fname={nameParts(0)} lname={nameParts(1)}>
{stu.quizzes.map(q => <quiz grade={q.toString}/>)}
{stu.tests.map(t => <test grade={t.toString}/>)}
{stu.assignments.map(a => <assignment grade={a.toString}/>)}

</student>
}

The first line splits the student name into pieces around spaces. It is assumed that the
first element is the first name, and the second element is the last name. These are used as
attribute values in the student tag. Inside of that element are three lines of code, one each
for quizzes, tests, and assignments. Each of these maps the corresponding List to a set
of elements with grade attributes.

It is worth noting two things about using code for the attribute values. First, the quotes
are not written anywhere. They are automatically provided when the value is Scala code.
Second, the type of the Scala expression for the value has to be String. This is apparent
with the grade values. They are Doubles and have to be explicitly converted to Strings.

446 Introduction to Programming and Problem-Solving Using Scala

14.2.4 Writing XML to File

Once you have the Node you want to write, the writing process is as easy as a call to
the save method of the XML object.

xml.XML.save("grades.xml",node)

The first argument is the name of the file you want to write to. The second is the Node that
you want to write.

Validating XML (Advanced)

When XML is used for large applications, it is important to be able to verify that
the contents of a file match the format that is required by the applications. This process
is called validation. When the XML standard was first released, validation was done
with Document Type Definition files (DTDs). A DTD is a text file that has a fairly
simple format that allows you to specify what types of elements should be in a file. For
each element you can say what needs to be in it or what could be in it. This ability
includes attributes as well at sub-elements.

DTDs were generally considered to have two problems. First, they were a bit limited
and simplistic. For example, you could say that an element must contain an attribute,
but you could not put any constraints on the nature of that attribute. For example,
you could not say that it had to be a number or a date. In addition, DTDs had their
own syntax. The goal of XML was to be a general data storage format and some found
it unfitting that you had to use some other format to specify what should go into an
XML file.

For these reasons, XML schema were created. An XML schema is an XML document
that uses certain tags to specify what can and cannot go into some other XML files.
XML schema tend to be large and complex, but they provide great control over the
format of an XML file.

There are tools for both DTDs and XML schema that will run through XML files
and tell you whether or not they adhere to a given specification. There is also a package
in the Scala standard libraries called scala.xml.dtd that can help with validation using
DTDs.

14.2.5 XML Patterns

We have seen patterns in a number of places so far. With XML we can add another
one. Not only can XML be written directly into the Scala language, it can be used to
build patterns. The patterns look just like what you would use to build XML, except that
what you put into curly braces should be names you want bound as variables. There is one
significant limitation, you cannot put attributes into your patterns. This usage can be seen
with the following little example in the REPL.

scala> val personXML = <person><name>Kyle</name><gender>M</gender></person>
personXML: scala.xml.Elem = <person><name>Kyle</name><gender>M</gender></person>

scala> val <person><name>{name}</name><gender>{sex}</gender></person> = personXML
name: scala.xml.Node = Kyle
sex: scala.xml.Node = M

XML 447

If you decide that you like parsing XML using patterns, that might provide a motivation to
use a format where you put all of your information in sub-elements instead for attributes.

14.3 Putting It Together
To illustrate the real power of XML we will make a more complete theme park program

that includes the functionality of some of the earlier scripts along with editing abilities. All
the information will be stored in a single XML file. This last part is something that was
not highlighted before, but it implicitly comes with the ability to give meaning to data. In
a flat text file, it is the position in the file that gives meaning to something. This makes it
very hard to insert new information of different types. That is not a problem for XML as
new tags can be added as desired. As long as the new tags have names that do not conflict
with earlier tags, the earlier code will continue to work just fine.

In chapter 8, we wrote a script that would help with building schedules. In chapter 13
we wrote another script that could be used to determine the employee of the month. Both of
these deal with information related to employees and rides, but there is not a 100% overlap
between the required data, and the file formats are very different. We want to write a script
here that will include the functionality of both of those scripts, along with the ability to
add ride and employee information while keeping all of the information stored in a single
XML file.

Code for this is shown below. It starts with the definition of a number of case classes
followed by functions that can build instances of those case classes from XML or build
XML from them. After those functions are four lines that declare the main data for the
program while reading it in from an XML file specified on the command line. This is followed
by slightly modified versions of the schedule builder and the employee ranker from previous
chapters.

Listing 14.1: ThemeParkMenu.scala
import scala.io.Source
import scala.xml._

case class DayData(ride:String, dayOfWeek:String, operators:Array[String],
numRiders:Int)

case class MonthData(month:Int, days:List[DayData])
case class YearData(year:Int, months:List[MonthData])
case class RideData(name:String, numberOfOperators:Int, heavyCount:Int)
case class EmployeeData(name:String, rides:List[String])

def parseDay(node:Node):DayData = {
val ride = (node \ "@ride").text
val dow = (node \ "@dayOfWeek").text
val num = (node \ "@numRiders").text.toInt
val ops = (node \ "operator").map(_.text).toArray
DayData(ride, dow, ops, num)

}

def dayToXML(day:DayData):Node = {
<day ride={day.ride} dayOfWeek={day.dayOfWeek} numRiders={day.numRiders.toString}>
{day.operators.map(op => <operator>{op}</operator>)}

448 Introduction to Programming and Problem-Solving Using Scala

</day>
}

def parseMonth(node:Node):MonthData = {
val month = (node \ "@month").text.toInt
val days = (node \ "day").map(parseDay).toList
MonthData(month, days)

}

def monthToXML(month:MonthData):Node = {
<month month={month.month.toString}>
{month.days.map(dayToXML)}

</month>
}

def parseYear(node:Node):YearData = {
val year = (node \ "@year").text.toInt
val months = (node \ "month").map(parseMonth).toList
YearData(year, months)

}

def yearToXML(year:YearData):Node = {
<year year={year.year.toString}>
{year.months.map(monthToXML)}

</year>
}

def parseRideData(node:Node):RideData = {
val name = (node \ "@name").text
val numOps = (node \ "@numberOfOperators").text.toInt
val heavy = (node \ "@heavyCount").text.toInt
RideData(name, numOps, heavy)

}

def rideDataToXML(rd:RideData):Node = {
<ride name={rd.name} numberOfOperators={rd.numberOfOperators.toString}

heavyCount={rd.heavyCount.toString}/>
}

def parseEmployeeData(node:Node):EmployeeData = {
val name = (node \ "@name").text
val rides = (node \ "trainedRide").map(_.text).toList
EmployeeData(name, rides)

}

def employeeToXML(ed:EmployeeData):Node = {
<employee name={ed.name}>
{ed.rides.map(r => <trainedRide>{r}</trainedRide>)}

</employee>
}

val xmlData = XML.loadFile(args(0))
var years = (xmlData \ "year").map(parseYear).toList
var rideInfo = (xmlData \ "ride").map(parseRideData).toList
var employeeInfo = (xmlData \ "employee").map(parseEmployeeData).toList

XML 449

def buildWeeklySchedules:Unit = {
val daysInfo = for (y <- years; m <- y.months; d <- m.days) yield d
val days = daysInfo.map(_.dayOfWeek).distinct
for (day <- days) {
val thisDay = daysInfo.filter(_.dayOfWeek==day)
val rides = thisDay.map(_.ride).distinct
val operatorRides = rides.flatMap(ride => {
val nums = thisDay.filter(_.ride==ride).map(_.numRiders)
val avg = nums.sum/nums.length
val rideData = rideInfo.find(_.name==ride).get
Array.fill(rideData.numberOfOperators+(if (avg>=rideData.heavyCount) 1 else

0))(ride)
})
val totalOps = operatorRides.length
for (choice <- employeeInfo.combinations(totalOps)) {
val perms = operatorRides.permutations
var works = false
while (!works && perms.hasNext) {
val perm = perms.next
if ((perm,choice).zipped.forall((r,op) => op.rides.contains(r)))
works = true

}
if (works) {
println(day+" - "+choice.map(_.name).mkString(", "))

}
}

}
}

case class RideAverage(ride:String, avNum:Double)
case class OperatorDailyData(name:String, ride:String, numRiders:Int)
case class OperatorRideAverages(name:String, rideAvs:List[RideAverage])
case class OperatorEfficiencyFactor(name:String,factor:Double)

def insertionSortByEfficiency(a:Array[OperatorEfficiencyFactor]):Unit = {
for (j <- 1 until a.length) {
var i = j-1
val tmp = a(j)
while (i>=0 && a(i).factor>tmp.factor) {
a(i+1) = a(i)
i -= 1

}
a(i+1) = tmp

}
}

def rankEmployees(data:List[DayData]):Array[OperatorEfficiencyFactor] = {
val rides = data.map(_.ride).distinct
val averages = for (ride <- rides) yield {
val days = data.filter(_.ride==ride)
RideAverage(ride, days.map(_.numRiders).sum.toDouble/days.length)

}
val dataByOperator = for (day <- data; op <- day.operators) yield {
OperatorDailyData(op, day.ride, day.numRiders)

450 Introduction to Programming and Problem-Solving Using Scala

}
val operators = dataByOperator.map(_.name).distinct
val opRideAverages = for (op <- operators) yield {
val opDays = dataByOperator.filter(_.name == op)
val rideAvs = for (ride <- rides; if opDays.exists(_.ride==ride)) yield {
val opRides = opDays.filter(_.ride == ride)
RideAverage(ride, opRides.map(_.numRiders).sum.toDouble/opRides.length)

}
OperatorRideAverages(op, rideAvs)

}
val operatorFactors = (for (OperatorRideAverages(op, rideAvs) <- opRideAverages)

yield {
val factors = for (RideAverage(ride,av) <- rideAvs) yield {
av/averages.filter(_.ride==ride).head.avNum

}
OperatorEfficiencyFactor(op,factors.sum/factors.length)

}).toArray
insertionSortByEfficiency(operatorFactors)
operatorFactors

}

def rideInput(ri:RideData):Array[String] = {
println(ri.name)
println(employeeInfo.filter(_.rides.contains(ri.name)).map(_.name).zipWithIndex.

mkString(" "))
readLine().split(" +")

}

def inputDay:List[DayData] = {
println("What day of the week is this for?")
val dow = readLine()
println("For each ride displayed, enter the number of riders for the day followed

by employee numbers from this list with spaces in between.")
for (ri <- rideInfo;

val input = rideInput(ri)
if input.head.toInt>=0) yield {

DayData(ri.name, dow, input.tail.map(_.toInt).map(employeeInfo).map(_.name),
input.head.toInt)

}
}

def inputRideDayData:Unit = {
println("What month/year do you want to enter data for?")
readLine().trim.split("/") match {
case Array(monthText, yearText) =>
val (month, year) = (monthText.toInt, yearText.toInt)
if (years.exists(_.year==year)) {
years = for (y <- years) yield {
if (y.year==year) {
y.copy(months = {
if (y.months.exists(_.month==month)) {
for (m <- y.months) yield {
if (m.month==month) {
m.copy(days = inputDay ::: m.days)

} else m

XML 451

}
} else MonthData(month, inputDay) :: y.months

})
} else y

}
} else {
years ::= YearData(year,MonthData(month, inputDay)::Nil)

}
case _ =>
println("Improper format. Needs to be numeric month followed by numeric year

with a / between them.")
}

}

def hireEmployee:Unit = {
println("What is the new employees name?")
val name = readLine()
employeeInfo ::= EmployeeData(name,Nil)

}

def trainEmployee:Unit = {
println("Which employee is training for a new ride?")
println(employeeInfo.map(_.name).zipWithIndex.mkString(" "))
val empNum = readInt()
employeeInfo = for ((e,i) <- employeeInfo.zipWithIndex) yield {
if (i==empNum) {
val avail = rideInfo.map(_.name).diff(e.rides)
println("Which rides should be added? (Enter space separated numbers.)")
println(avail.zipWithIndex.mkString(" "))
e.copy(rides = (readLine().split(" +").map(_.toInt)).map(avail).toList :::

e.rides)
} else e

}
}

def addRide:Unit = {
println("What is the name of the new ride?")
val name = readLine()
println("How many operators does it need?")
val ops = readInt()
println("At what rider count should another operator be added?")
val heavy = readInt()
rideInfo ::= RideData(name, ops, heavy)

}

var input = 0
do {
println("""What would you like to do?
1) Add ridership for a day.
2) Add an Employee.
3) Add training to an employee.
4) Add a ride.
5) Get schedule options for a week.
6) Rank Employees.
7) Quit.""")

452 Introduction to Programming and Problem-Solving Using Scala

input = readInt()
input match {
case 1 => inputRideDayData
case 2 => hireEmployee
case 3 => trainEmployee
case 4 => addRide
case 5 => buildWeeklySchedules
case 6 =>
println("What month/year or year do you want to rank for?")
println(readLine().trim.split("/") match {
case Array(monthText,yearText) =>
val year = yearText.toInt
val month = monthText.toInt
val y = years.filter(_.year==year)
if (y.isEmpty) "Year not found."
else {
val m = y.head.months.filter(_.month==month)
if (m.isEmpty) "Month not found."
else {
rankEmployees(m.head.days).mkString("\n")

}
}

case Array(yearText) =>
val year = yearText.toInt
val y = years.filter(_.year==year)
if (y.isEmpty) "Year not found."
else {
rankEmployees(y.head.months.flatMap(_.days)).mkString("\n")

}
case _ => "Invalid input"

})
case _ =>

}
} while (input!=7)

XML.save(args(0), <themeParkData>
{years.map(yearToXML)}
{rideInfo.map(rideDataToXML)}
{employeeInfo.map(employeeToXML)}

</themeParkData>)

There is completely new code at the bottom to allow for data entry that is added to
the main variables. There is also a do-while loop that handles the menu functionality. The
script ends by saving the main data elements back out to the same XML file.

14.4 End of Chapter Material

14.4.1 Summary of Concepts

• XML is a text markup language that can be used to encode arbitrary data. Being
text means that it is as easy to work with as flat text files, but it allows you to attach

XML 453

meaning to the values in the file, and the flexibility of the parsing makes it easier to
extend XML files than flat text files.

• An XML file is composed of markup and content. The content is plain text. Markup
has a number of options that must follow a certain format.

– The primary markup is tags. A tag starts with < and ends with >. Each tag has
a name.

– The combination of a matching start and end tag defines an element. An element
can contain content and other elements.

– Start tags can be given attributes to store basic information.

– Special characters that cannot appear as plain text can be specified by markup
tokens that begin with a & and end with a ;.

– You can put comments into an XML file by starting them with <!-- and ending
them with -->.

– The entire contents of an XML file must be held inside of a single element.

• The Scala language has native support for XML. This makes it significantly easier to
work with XML in Scala than in most other languages. XML elements can be written
directly into Scala source code.

– An XML file can be loaded using XML.loadFile(fileName:String):Elem.

– The \ and \\ operators can be used to pull things out of XML.

– You can build XML by typing in XML literals. You can put Scala code into the
XML by surrounding it with curly braces.

– XML can be written to a file using XML.save(fileName:String,node:Node).

– Patterns can be made using XML with the limitation that attributes cannot be
part of the match. Values can be bound by including names in curly braces.

14.4.2 Self-Directed Study

Enter the following statements into the REPL and see what they do. Some will produce
errors. You should try to figure out why. Try some variations to make sure you understand
what is going on.

scala> val xml1 = <tag>contents</tag>
scala> xml1.text
scala> val <tag>{str}</tag> = xml1
scala> val xml2 = <data type="simple">

| <language>Scala</language>
| <lesson>Programming is an art.</lesson>
| <lesson>Software runs the world</lesson>
| </data>

scala> xml2 \ "language"
scala> xml2 \ "lesson"
scala> val xml3 = <randPoints>

| {(1 to 20).map(i => <point x={math.random.toString}
y={math.random.toString}/>)}

| </randPoints>
scala> (xml3 \ "point").map(p => {

454 Introduction to Programming and Problem-Solving Using Scala

| val x = (p \ "@x").text.toDouble
| val y = (p \ "@y").text.toDouble
| math.sqrt(x*x+y*y)
| })

scala> for (<point x={x} y={y}/> <- xml3) yield math.sqrt(x*x+y*y)
scala> val xml4 = <randPoints>

| {(1 to 20).map(i => <point><x>{math.random}</x><y>{math.random}</y></point>)}
| </randPoints>

scala> for (<point><x>{x}</x><y>{y}</y></point> <- xml4 \ "point") println(x+" "+y)

14.4.3 Exercises

1. Chapter 10 had several exercises where you were supposed to design case classes for
a number of different types of data. For each of those, write code to convert to and
from XML.

• A transcript for a student.

• Realtor information for a house.

• Data for a sports team.

2. On the web site for the book there are a number of XML data files. Write case
classes to represent that data in each one, and then write code to load the files and
build objects from it.

3. Pick some other case class that you have written and create code to convert it to
and from XML.

4. Find an RSS feed for a website you visit and save the feed as a file. Use Scala to look
through the XML.

14.4.4 Projects

1. If you have been working on the different graphics options for earlier projects, the
material in this chapter gives you a clear extension, store your geometry data in an
XML file instead of a flat text file. You can use tags like “sphere” and “plane” to give
meaning to the information. Add in a “light” tag as well in anticipation of adding
lighting in a future project.

After you have the XML format set up and some data to play with, alter the code
from project 12.7 to use this data format.

2. Project 10.3 on the text adventure is very nicely extended with the use of XML
data files. Using XML also makes it easier to extend the file to include additional
information. For this project you should convert your map over to an XML format
and have the code read in that format. In addition, you should add items. This will
involve adding another case class for an item and putting some items into rooms in
the XML data file.

To make the items significant, you need to have it so that the case class for your
room includes items in that room and the text description of the room lists what items
are there. You should also give your player an inventory and implements commands
for “get” and “drop”. So if the player enters “get” followed by the name of an item in

XML 455

the room, that item will be taken out of the room and added to the players inventory.
An “inv” command would be nice to let the player see what is in his/her inventory.
If the player uses the “drop” command followed by an item in inventory, that item
should be removed from inventory and placed in the current room. If “get” or “drop”
are provided with an invalid item name, print an appropriate message for the user.

3. If you did project 13.4 extending your game, you had a text file that specified the
high scores for players of a particular game. For this project you should modify your
code and the text file to use XML instead of a flat file.

4. If you have been doing the other recipe projects, you can change the format so that
it uses XML to save the data. If you do this, you need to add in instructions for the
recipes as well as the ability to add comments and other information like how much
certain recipes are favored. You can merge what are currently separate text files into
a single XML file if you want.

The fact that your script keeps track of recipes and pantry contents points to one
other piece of functionality you should be able to add in. Allow the user to see only
the recipes that they have the ingredients to cook. If you have a preference level, sort
them by preference.

5. If you have been doing the scheduling options, convert the data file for courses over
to XML. In doing this, you can also add the ability to include comments on courses,
instructors, or other things that make sense to you, but which did not fit as well in
the limited formatting of a plain text file.

6. If you did project 10.8, you can extend this project to use XML encoding for the
music file. You probably want to do this by having functionality to load in a plain
text record information and add it to an XML file with all the record information.
To really take advantage of the XML formatting, you should allow the user to add
comments to whatever elements you feel are appropriate.

7. You can extend project 12.14 on your music library by changing the format of the
data file from a flat file to an XML file. Use the hierarchical nature of XML to simplify
the file. You can have tags for <artist> at a higher level with <album> tags inside of
those and <song> tags at the lowest level. With the XML you could add the ability for
the user to insert notes about any element that will be displayed in a manner similar
to the album cover when the appropriate item is selected in the GUI. Menu options
could be used to allow editing of the notes.

8. This is a continuation of project 12.5 on turtle graphics to draw fractal shapes gener-
ated with L-systems. You can find a full description of L-systems in "The Algorithmic
Beauty of Plants", which can be found on-line at http://algorithmicbotany.org/
papers/#abop. The first chapter has all the material that will be used for this project
and a later one.

In the last turtle project you made it so that you could use a turtle to draw figures
from Strings using the characters ’F’, ’f’, ’+’, and ’-’. L-systems are formal grammars
that we will use to generate strings that have interesting turtle representations. An
L-system is defined by an initial String and a set of productions. Each production
maps a character to a String. So the production F -> F-F++F-F will cause any F in a
String to be replaced by F-F++F-F. The way L-systems work is that all productions
are applied at the same time to all characters. Characters that do not have productions
just stay the same.

http://algorithmicbotany.org/papers/#abop
http://algorithmicbotany.org/papers/#abop

456 Introduction to Programming and Problem-Solving Using Scala

So with this example you might start with F. After one iteration you would have
F-F++F-F. You would have F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F after the sec-
ond iteration. The next iteration will be about five times longer than that. The Strings
in an L-system grow exponentially in length. As a result, you probably want to have
the length of the turtle move for an F or f get exponentially shorter. Start with a
good value like 100 pixels and divide by an appropriate value for each generation. For
this example dividing by a factor of 3 is ideal. This one also works best with a turn
angle of 60 degrees.

The productions for an L-system can be implemented as a List[(Char,String)].
You can use the find method on the List and combine that with flatMap to run
through generations of your String. You can decide how elaborate you want your
GUI to be and if users should be able to enter productions or if they will be hard
coded. Look in "The Algorithmic Beauty of Plants", Chapter 1 for examples of other
interesting production rules.

9. If you have done the box score options from any of the last three chapters you can
extend to use XML encoding for the box score. You probably want to do this by
having functionality to load in a plain text box score and add it to an XML file with
all the box scores. To really take advantage of the XML formatting, you should allow
the user to add comments to whatever elements you feel are appropriate.

Additional exercises and projects, along with data files, are available on the book’s web
site.

Chapter 15
Recursion

15.1 Memory Layout . 457
15.2 Power of Recursion . 458
15.3 Fibonacci Numbers . 460
15.4 Towers of Hanoi . 462
15.5 Permutations . 465
15.6 Mazes . 467
15.7 Sorts . 470

15.7.1 Divide and Conquer Sorts . 470
15.7.1.1 Merge Sort . 470
15.7.1.2 Quicksort . 471

15.8 Putting It Together . 473
15.9 End of Chapter Material . 475

15.9.1 Summary of Concepts . 475
15.9.2 Exercises . 475
15.9.3 Projects . 476

Back in chapter 5 we got our first introduction to recursion. At that point we used recursion
to provide iteration. In chapter 8 we learned how to produce iteration using loops and have
used that technique more than recursion since that point. If the only capability of recursion
was to produce iteration it would not be of much interest in Computer Science because
loops would be a complete substitute that have simpler syntax for most uses. However, that
is not the case. Recursion allows us to express a lot more than just simple iteration, and
because of this, recursion is a critical tool in writing concise solutions to many different
problems.

15.1 Memory Layout
To have a proper understanding of recursion, it is helpful to have a mental model of

the way that the memory of programs is laid out. The memory of the computer is basically
like a huge array of bytes. It is shared between the operating system and many different
programs. Different parts of memory can be allocated for different things or associated with
different devices. Scala hides most of the intricacies of memory from you. It is not a language
designed for doing low-level system programming. At some point in your computer science
training you should learn about the details of computer memory and a language that reveals
those details. For our purposes here, we will only care about the organization of memory
inside of the allocation of a single program.

The memory for a program is broken into two broad pieces, the stack and the heap.
These terms were chosen intentionally, and the images they invoke in your mind are probably
fairly accurate. A stack is orderly with one item placed on top of the previous one. A heap
is much less organized with items placed almost at random. Local variables and function
arguments are allocated on the stack. As was discussed in section 7.7, the memory model

457

458 Introduction to Programming and Problem-Solving Using Scala

in Scala is such that the variables are references and they refer to objects. In this memory
model, the objects are allocated on the heap. Every time a new function is called, the
memory for the arguments and the local variables, along with some memory for bookkeeping,
is allocated in a block that is referred to as the stack frame. If that function calls another
function, then another frame is allocated on top of it. When a function returns, the stack
frame for that function is freed up. That same memory will be used later for another
function.

This should help explain the output from a runtime error. The stack implicitly keeps
track of where you are in each function when it calls the next. You can picture each of
those functions stacked on top of the one that called it. That is what gets printed in the
stack trace. Each line tells you what function has been called followed by the file name and
line number. This memory of what functions have been called previously and the values of
variables in those functions is critical to recursive functions operating properly.

The objects on the heap are allocated in free spaces. The memory for objects is freed up
automatically when the object is no longer in use. The automatic freeing of heap memory
is accomplished by a process called garbage collection. An object can be collected if it
can no longer be reached by following references that start on the stack. Not all languages
include garbage collectors. In those that do not, the programmer is responsible for freeing
memory that was allocated on the heap.

15.2 Power of Recursion
To understand the real power of recursion and where this power comes from, we need

to revisit some code from the end of chapter 5. Early in that chapter we used a recursive
function to count down from a specified number using a single argument. The code for doing
that looked liked this.

def countDown(n:Int):Unit = {
if (n>=0) {
println(n)
countDown(n-1)

}
}

As long as the argument has not gotten below zero, this function prints the number and
counts down. We also wrote code to count up using two arguments where one argument was
incremented for each subsequent call. At the end of the chapter you were presented with
the following code.

def count(n:Int):Unit = {
if (n>=0) {
count(n-1)
println(n)

}
}

You were told to enter this code and run it to see what it does. If you did so, you might have
been rather surprised to see that this code counts up. That seems surprising because the
argument is clearly decrementing. The reason this can count up has to do with the memory
of the computer and in particular the call stack.

Recursion 459

FIGURE 15.1: This shows the call stack for the function count which prints the numbers
counting up. When you call the function with 5, it calls itself with 4 before doing anything
else. This calls itself with 3 and so on down to 0. The call with 0 does nothing but return.
It returns back into the call to count(1) that does the print and continues on back up the
stack.

To understand how this works, consider figure 15.1. This shows a graphical representa-
tion for different frames on the call stack and what happens when you call count(5). This
call immediately calls count(4) before it does anything else. The call to count(4) gets a
new stack frame that keeps track of where it was in the call to count(5) so that when it
returns it can go back to that point. The call to count(4) also goes straight into a call to
count(3), which also gets a new stack frame. This continues until we get down to count(0)
which does nothing at all. When the call to count(0) finishes, control returns to the call
to count(1) and resumes right after the call to count(0), which is the line with the print
statement. So it prints a 1. After the print, count(1) returns to count(2) which similarly
does a print. Because the prints are happening as it pops back up the stack, the numbers
get printed in ascending order even though the function only includes a decrement. The
memory of the stack is essential for this to work because each stack frame remembers its
own value of n.

This is a very significant point to remember about recursive calls. While the variables
in the recursive calls all have the same names, they are not the same variables. It is like
multiple people with the same name. Just because two or three people are named "Pat",
that does not mean they are the same person. In this case, there were six different versions
of n that were created, and they took on the values from 5 down to 0. Each was distinct
from the others and occupied different parts of memory.

This example shows how the stack can come into play with recursion, but it does not
really show the power of recursion. To do that, we need to have a recursive function that
can call itself more than once. In the following sections we will look at several different

Call Stack

,- I ;;;;~~t(s) """'
(l . '

~ r)
/l count(4) ~ (\
~ .)
(' • count(3) ~
. '
~ .)
(• count(2) ~
' .

~
' I

*'1···································· / count(O) ~
----------------------------------~

prinlln(5)

prinlln(4)

prinlln(3)

prinlln(2)

prinlln(l)

460 Introduction to Programming and Problem-Solving Using Scala

examples of this and see problems that really require the stack and are significantly harder
to convert over to loops.

15.3 Fibonacci Numbers
The classic example of recursion is Fibonacci numbers. This is a sequence of numbers

where each number is defined as the sum of the previous two. So in mathematical notation
this is written as f(n) = f(n − 1) + f(n − 2). This is not a complete definition, however,
because we need to know how the sequence starts. That is to say that we need a base case
for the recursion. It is customary to have the first two elements be 1. So, the sequence then
is 1, 1, 2, 3, 5, 8, 13, 21, ...

We can write this function in Scala with one short function definition.

def fib(n:Int):Int = if (n<3) 1 else fib(n-1)+fib(n-2)

So for n=1 and n=2 we get back 1. For n=3 we get back 1+1=2. For larger numbers, the process
is more complex, and it is instructive to try to visualize it. We do this by considering what
happens on the call stack in a manner similar to figure 15.1. Unlike the code for figure 15.1,
this function calls itself twice and that makes things a bit more complex.

For example, consider a call to fib(4). This is equal to fib(3)+fib(2). In order to know
what that is, recursive calls have to be made to each of those functions. By convention, we
will imagine that the calls are processed from left to right. So it calls fib(3) which gets
a stack frame. That in turn calls fib(2) which gets a stack frame. Unlike examples we
have seen before, when fib(3) returns, there is another call to fib(2) still waiting. So
immediately a new stack frame appears where the one for fib(3) had just been. This
process of stack frames being removed to be replaced with new ones happens a lot in this
calculation of the Fibonacci numbers as well as other recursive functions that call themselves
more than once. Instead of drawing this as a vertical stack as was done in figure 15.1, it
is customary to draw it in a branching structure called a tree as is drawn in figure 15.2.
Each new stack frame is still below the one that called it, but different stack frames at the
same depth in the stack are drawn next to one another horizontally. Arrows are used to
keep track of things.

In this representation, boxes represent the stack frames. We have dispensed with putting
the function names and left only the argument value. The straight arrows show function
calls. The curved arrows show returns and are labeled with result values. These types of
diagrams can be very helpful to you when you are trying to figure out what happens in a
complex recursive function. When you draw them yourself you can dispense with the boxes
and arrows. Values with lines between them will typically suffice.

The Fibonacci numbers are a standard example of recursion, but they are not a great
one outside of instructional purposes. You can fairly easily write a function that calculates
Fibonacci numbers that uses a loop instead of recursion, and it will be a lot faster. That is
not true of the examples that follow.

Recursion 461

FIGURE 15.2: This figure shows a call tree for fib(4). Boxes represent stack frames.
Straight arrows point in the direction of function calls. Curved arrows show returns and are
labeled with result values.

462 Introduction to Programming and Problem-Solving Using Scala

15.4 Towers of Hanoi
Our next example of these more powerful recursive functions is somewhat playful. You

have likely seen and perhaps even played Towers of Hanoi. It is a “game” played with three
pegs and a number of disks of different sizes that have holes in them; so, they can be put
on the pegs. Your goal in playing is to move the disks from one peg to another following
two rules:

1. You can only move one disk at a time.

2. No disk can be placed on a disk smaller than it.

We want to write a program that can solve this. To do so, we need to first analyze the
problem a bit more.

If you start by picturing a peg with 7 disks on it stacked from largest at the bottom to
smallest at the top and try to picture the solution, you will probably have a hard time. The
first step is clearly to move the top disk to one of the other pegs, but which one? It gets
more complex from there. Instead of trying to solve a hard problem, we should start with
an easy problem and try to build up from there.

The easiest setup to solve is when you have only one disk. Simply move the disk from
where it started to the peg you want it to finish on. That was a bit trivial, so what about
two disks? First you have to move the top disk to the peg you do not want to end on, then
you move the second disk to the end peg and move the smaller one over on top of it. It
might not be clear at this point, but that points toward a general solution. To see this,
think of the situation with three disks. We could run through every single move, but we
just saw how to move two disks so we can assume we know how to do that. Using that, we
move two disks to the middle peg. Note that we do not literally move two disks at a time as
that would violate the rules. Instead, we use the approach we just developed to move two
disks in three separate moves. Then the largest disk is moved to the end peg and the two
disks are moved on top of it.

This points to a general solution. If we make the assumption that we know how to move
N − 1 disks, we can move N disks by first moving the top N − 1 disks to the off peg, then
moving the largest one to the destination, then moving the N − 1 disks back on top of the
largest one. Note that this is a recursive definition. The solution for N disks relies on the
solution to N − 1 disks. The base case is the trivial one where we move a single disk across.

We now have an approach to solving this problem. Next we need to figure out how we
want to represent the problem in the memory of the computer. We need to come up with
a way to represent disks and pegs. For the disks, all we really care about is the size of the
disk. This can nicely be represented by an Int. A peg is really just a stack of disks so we
need something like an Array or a List of Ints. To decide which, we should consider how
they are used. The number of disks on a peg changes over time, but they are always added
or removed at one location, the top of the stack. This points to using a List where the head
of the List is the top disk. We can use :: to add a disk to a peg and the tail is what is left
when a disk is removed. The script below shows code that implements the three pegs as an
Array[List[Int]]. There is a function called moveDisk that moves one disk that includes
a check to make sure we are not breaking the second rule.

Listing 15.1: hanoiText.scala
1 val num = if (args.length>0) args(0).toInt else 7
2 val pegs = Array(List.tabulate(num)(i => i+2), List[Int](), List[Int]())

Recursion 463

3

4 def moveDisk(from:Int,to:Int):Unit = {
5 require(pegs(to).isEmpty || pegs(from).head < pegs(to).head)
6 pegs(to) = pegs(from).head :: pegs(to)
7 pegs(from) = pegs(from).tail
8 }
9

10 def moveNDisks(n:Int,from:Int,to:Int):Unit = {
11 if (n==1) {
12 moveDisk(from, to)
13 } else {
14 val other = 3-from-to
15 moveNDisks(n-1, from, other)
16 moveDisk(from, to)
17 moveNDisks(n-1, other, to)
18 }
19 }
20

21 moveNDisks(pegs(0).size, 0, 2)
22

23 println(pegs.map(a => a.mkString(" ")).mkString("\n"))

The function moveNDisks is recursive and relies on the moveDisk function so we can feel
certain the program is not cheating. The line val other = 3-from-to might seem a bit
odd at first. The function is only passed the peg numbers to move from and to, but we have
to refer to the third peg in the function as that is where the top n-1 disks are to go first.
That line calculates the number of the other peg using the simple observation that if you
add the indexes of all the pegs you get 3. The script ends with a call to the moveNDisks
function followed by a print of what is left at the end. This makes it simple to verify that
the puzzle was actually solved.

Given the physical and visual nature of the Towers of Hanoi, the text print is a bit
unsatisfying. This is a problem that really deserves to have a graphic display. The following
script puts the earlier code inside of a ScalaFX app and uses Rectangles instead of Ints
so that you can watch the disks move around as the recursion solves the puzzle.

Listing 15.2: hanoi.scala
1 import scalafx.Includes._
2 import scalafx.application._
3 import scalafx.event.ActionEvent
4 import scalafx.scene.Scene
5 import scalafx.scene.control.Button
6 import scalafx.scene.paint._
7 import scalafx.scene.shape._
8 import scala.concurrent.Future
9 import scala.concurrent.ExecutionContext.Implicits.global

10

11 val app = new JFXApp {
12 stage = new JFXApp.PrimaryStage {
13 title = "Towers of Hanoi"
14 scene = new Scene(600,300) {
15 def makeDisk(peg:Int, h:Int, size:Int):Rectangle = {
16 val s = size*10
17 val r = Rectangle(100+peg*200-s/2, height.value-h*30, s, 20)
18 r.fill = Color.Red

464 Introduction to Programming and Problem-Solving Using Scala

19 r.stroke = Color.Black
20 content += r
21 r
22 }
23

24 val num = if (args.length>0) args(0).toInt else 7
25 val pegs = Array(List.tabulate(num)(i => makeDisk(0, num-i, i+2)),

List[Rectangle](), List[Rectangle]())
26

27 def moveDisk(from:Int,to:Int) {
28 require(pegs(to).isEmpty || pegs(from).head.width.value <

pegs(to).head.width.value)
29 pegs(to) = pegs(from).head :: pegs(to)
30 pegs(from) = pegs(from).tail
31 Platform.runLater {
32 val p = pegs(to).head
33 p.x = 100+to*200-p.width.value/2
34 p.y = height.value-pegs(to).length*30
35 }
36 Thread.sleep(100)
37 }
38

39 def moveNDisks(n:Int,from:Int,to:Int) {
40 val other = 3-from-to
41 if (n==1) {
42 moveDisk(from, to)
43 } else {
44 moveNDisks(n-1, from, other)
45 moveDisk(from, to)
46 moveNDisks(n-1, other, to)
47 }
48 }
49

50 val button = new Button("Start")
51 content += button
52 button.onAction = (e:ActionEvent) => Future {
53 moveNDisks(pegs(0).size, 0, 2)
54 }
55 }
56 }
57 }
58

59 app.main(args)

To make it so that you can watch the animation, there is a Button, that when clicked
makes a call to moveNDisks. This happens in a Future so that the animation can be seen.
Inside of the moveDisk function, code was added that changes the location of the disk that
was moved, and pauses the work for a short period so that you can see it. Right now the
rectangles simply disappear from their old position and appear in the new one. It is left as
an exercise for the student to use Transitions to animate this process.

If you play with this code a bit you will notice that tall stacks of disks take a very long
time to move. This leads to the question of just how many moves does it take to get N disks
from one peg to another? The recursive code makes this question fairly easy to answer if

Recursion 465

we are happy with a recursive function for the answer.

f(N) =
1 N = 1
1 + 2 ∗ f(N − 1) otherwise

This can be simplified to f(N) = 2N−1. So the number of moves grows exponentially in the
number of disks. Stacks of 20 or 30 disks would indeed take a very long time to complete.

15.5 Permutations
This next example is a bit more practical. We are given a List of values, and we want

to perform some function on all permutations of this List. A permutation of a collection
contains all the same elements, but the elements are in a different order. This type of
behavior might be desired if you have different tasks and you need to find an optimal order
in which to perform the tasks based on some rule.

So the next question is, how could we do this? We have seen previously that sequences
in Scala have a method called permutations which will do for us, but we want to see how
we could do it ourselves. To figure this out, we will employ a common idiom when building
recursive functions. It is one that we talked about in chapter 5 with our simpler recursive
functions. The idea is to take a large problem and break it down so that we solve one step
and then apply the same function to solve what is left. In this case, one step is picking a
first element. Unlike what we did in chapter 5, there will generally be more than one option
here. Any of the elements in the current List could be the first element in the permutation.
What follows that first element is the permutations of everything else in the List. That
gives us a recursive definition. We want to pick an element to go first, then make a recursive
call on the rest. After that returns, we pick a different element to go first and re-curse again.
This should be repeated for all the elements in the List.

To convert this into a function we need to figure out what information has to be passed
in. The obvious part is that we have to pass in the List of values we are permuting. We also
need to pass in the elements in the permutation that has been built so far. This can be done
as a second List. If we made the function such that it returns a List of Lists with all the
permutations, these would be the only arguments we would need. However, such a function
is not useful for many situations because the number of permutations grows very quickly
with List length and the cost in memory would become prohibitive. Instead, we will pass
in a function that operates on a List that we will call each time a complete permutation is
built. That way the caller can decide what is done with the different permutations.

So we are writing a function that takes three arguments, the List of numbers we want
to permute, a function to apply to any finished permutations, and the current List for this
permutation.1 This is done in the following code.

def permute(nums:List[Int],f:(List[Int])=>Unit,p:List[Int]):Unit = {
if (nums.isEmpty) {
f(p)

} else {
var before=List[Int]()
var after=nums

1This last argument is something of an implementation detail that we could hide using a nested function
if we desired. We do not do that here to keep things a bit simpler.

466 Introduction to Programming and Problem-Solving Using Scala

while (!after.isEmpty) {
val perm = after.head :: p
permute(before ::: after.tail,f,perm)
before ::= after.head
after = after.tail

}
}

}

When the List is empty, we have a full permutation, and we call the function on it. Oth-
erwise, we have a loop that runs through all the elements we want to permute and makes
recursive calls assuming each one has been added to the head of the permutation. This is
done using two variable Lists and a while loop. To start off with, one List is empty and
the other is all the elements in the input List. In the loop we not only make the recursive
call, we also move elements from one List to the other. We can check to see that this
function works by calling it like this.

permute(List(1,2,3), println, Nil)

When we make this call, we get the six different permutations of the list with three elements
and then simply print them out. The first call should always use Nil for the last argument.

This function displays an interesting feature that is generally true of recursive functions.
Because it is defined in terms of itself, we write it assuming that it works. When we are
done writing it, it will work. This logic seems circular, but it is actually using a method
called induction. First we make the function work for the simple base case. Every case
above that is defined in terms of a smaller one. Eventually this gets down to the base case,
which generally works in a trivial way. If the base case works, the case right above it should
work. When the one above the base case works, the one above that should work. This logic
progresses upward to allow us to solve problems of arbitrary size.

We mentioned earlier that we do not return a List of the permutations because there
can be a lot of them and that would require a lot of memory. It is worth taking a second to
get a slightly better understanding of what “a lot” means here. Specifically, we would like
to know the order of the number of permutations. This will not only tell us how long a list
would be if we built one, it will give us a measure of how long this function will take to
run for any task that we might give it as it will be the number of times that the function
parameter, f, gets called.

As is normally the case for order analysis, we will think of things in terms of the size
of our input. In this case, that is the size of the input List which we will call n. The first
call to permute makes n calls to itself, each of which is passed a List with n− 1 elements.
Those then make n − 1 calls with Lists of size n − 2. This process continues until we get
down to 0 elements in the List. If you picture this as a tree similar to that in figure 15.2,
we have a top box with n branches off it. Those lead to n boxes that each have n − 1
branches off of them. So at the third level we have n ∗ (n − 1) boxes. At the next level
we have n ∗ (n − 1) ∗ (n− 2). In you continue this down to 1 we get the factorial function
that we played with way back in chapter 5. Indeed, the order of the permutation function
is O(n!). If you recall from our earlier discussion, the factorial function grows very quickly.
So quickly in fact, that we had to use the Long or BigInt types if we wanted to use even
modestly large inputs. Clearly you do not want to try to get all the permutations of Lists
with much more than 10 elements in them. Depending on what you are doing, even lists of
10 elements might take a while.

Recursion 467

15.6 Mazes
Another class of problems that works well with recursion is those involving mazes. This

might also seem to be more for recreation, but mazes are a simplified case of something
called graphs which are very important in computer science and mathematics and are used
to represent all types of different problems. The same approaches that we will use here for
mazes apply to graphs as well. There are also a number of applications where doing things
like finding the optimal route through some type of restricted path like a maze is significant.

To keep things simple, we are going to use a rather basic approach to building our
mazes. Instead of having a grid with walls between cells, we will have a grid where complete
squares can either be open or be occupied by a wall. This representation means that we can
use a 2-D Array of values that tell us if there is a wall or not. In theory we could use an
Array[Array[Boolean]] for this purpose, but in practice we will have use of being able to
put numeric values in the “rooms” so an Array[Array[Int]] will be more practical.

We will define the maze with code like the following.

val maze=Array(Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
Array(-1,-1,-1, 0,-1,-1,-1,-1,-1,-1),
Array(0, 0, 0, 0,-1, 0, 0, 0,-1, 0),
Array(0,-1, 0,-1,-1,-1,-1, 0, 0, 0),
Array(0,-1, 0,-1, 0, 0,-1,-1,-1, 0),
Array(0,-1,-1,-1,-1, 0, 0, 0, 0, 0),
Array(0,-1, 0, 0,-1, 0,-1,-1,-1, 0),
Array(0, 0, 0,-1,-1, 0,-1, 0, 0, 0),
Array(0,-1, 0,-1,-1, 0,-1, 0,-1,-1),
Array(0,-1, 0, 0, 0, 0,-1, 0, 0, 0))

This builds a 2-D Array of Ints that uses a 0 to represent an open square and a -1 to
represent a wall. The use of -1 for a wall is intentional so that positive numbers can be used
to represent other things later. This particular maze is only 10x10 in size. This is a good
size to start off with for our purposes though it does not allow for a very complex maze.

Our first task is the thing that most people would probably want to do with a maze. We
want to know how to get through it in the shortest number of steps. To start with, we will
ask the simple question of how many steps long is the shortest path. This has a significant
advantage over trying to actually return a path. Not only is it a simple numeric value, it is
also unique. There can be multiple paths all with the same length. That produces ambiguity
if we ask for the optimal path. It also happens that having a function to find the length of
the shortest path is sufficient to find a path, as multiple calls to this function can be used
to construct the optimal path even though such a construction is less than optimal.

You can write a function to find the length of the shortest path using loops, but it is
fairly complex code. We can write a simpler solution using recursion, and the recursive
approach will easily adapt to solving other problems as well. As with all recursive functions,
we can break the solution down into two broad parts, base cases and recursive cases. The
base cases should be trivial to solve. There are two good base cases for the maze problem.
One base case is when you reach the exit. If you are at the exit it takes zero steps to get
out. Another base case is if you are checking a location which is out of the maze or in a
wall. For that we want to return a value that could not possibly be a solution. We will come
back to specifically what that value should be after discussing the recursive cases.

Picture yourself standing at a location somewhere in the maze, and you want to know
how many steps it takes to get from your current location to the exit on the shortest path.

468 Introduction to Programming and Problem-Solving Using Scala

The recursive way to do this is to imagine that you had an oracle that could tell you that
answer from any of the neighboring squares and figure out how you would combine those
values to determine the distance from where you are. As we said earlier in the chapter, we
write a recursive function by assuming we have one that works, and we write based on that
assumption. Once we are done, assuming we have handled the cases properly, it will work.
The oracle is our assumed working function. If you are in the maze and you can ask the
oracle to tell you how many steps it takes to get out from one step to the north, south,
east, and west, how would you use that information to determine the shortest distance from
where you are?

To make this more concrete, picture yourself at a four way intersection. You ask the
oracle about each direction and get values of 7, 13, 4, and 19. So the shortest path lies in
the direction that gave you back 4. However, that was the distance from one step in that
direction. The minimum distance from where you are is one greater than that, or 5 steps.
It is the minimum of the four, plus one step to get to that other location. The solution of
taking the minimum also points us in the proper direction for the base case of hitting a wall
or going out of bounds. If the best solution is the minimum, we should return a number that
cannot possibly be the minimum for a bad path. A large number such as one billion will
suffice for virtually any maze. You might be tempted to use Int.MaxValue, but remember
that we are adding 1 to it. Try doing Int.MaxValue+1 in the REPL and you will see why
that is not an ideal choice.

That defines our recursive case. There is only one other factor that needs to be con-
sidered. If you have ever been in a hedge maze or some other maze where you cannot see
over the walls, it can be quite difficult to tell one location from another, and unless you do
something to mark your previous locations you can wind up running in circles and never
finding your way out. A rather famous solution to this problem was described by the Broth-
ers Grimm in Hansel and Gretel who left breadcrumbs to mark their path. We will choose
the same approach. Assuming you have no birds in your computer this should work better
for you than it did for the children. If you do have birds in your computer, you should
probably deal with that before reading on.

So the last facet that we need for our algorithm is the ability to drop down breadcrumbs
to mark our path. If we ever come back upon our breadcrumbs we will treat it just like
being in a wall or out of bounds. We will also sweep up our breadcrumbs before we return
from a path. This was not required by Hansel and Gretel who simply wanted to be able to
find their path. We, however, want to find an optimal path and leaving breadcrumbs all over
the place would often cause us to miss such a path. Converting this all to code produces
the following.

def shortestPath(maze:Array[Array[Int]],x:Int,y:Int,endX:Int,endY:Int):Int = {
if (x<0 || y<0 || y>=maze.length || x>=maze(y).length || maze(y)(x)!=0) {
1000000000

} else if (x==endX && y==endY) {
0

} else {
maze(y)(x)=1
val dist=(shortestPath(maze, x+1, y, endX, endY) min
shortestPath(maze, x-1, y, endX, endY) min
shortestPath(maze, x, y+1, endX, endY) min
shortestPath(maze, x, y-1, endX, endY)) + 1

maze(y)(x)=0
dist

}
}

Recursion 469

The whole function is built from if expressions. The first option is for going out of bounds,
hitting a wall, or coming across one of our breadcrumbs, and it returns one billion, a number
so large it cannot possibly be a valid path, but one small enough that we also will not
overflow it by adding 1 for other steps through the maze. The second case is where we have
reached the end. These two can be reversed and would need to be if the exit were outside
of the bounds or marked by a special value in the array. The last case is the recursive case
which drops a breadcrumb, makes four recursive calls and combines them with min, then
picks up the breadcrumb and returns. This code could be invoked with this call.

println(shortestPath(maze, 0, 0, 9, 9))

For the maze shown above, the return value from this call is 36. For this particular maze,
that is the length of the only path from 0,0 to 9,9. You should play with the maze some to
make sure that the function finds the shortest path for other configurations.

This function literally tests every single path through the maze and gives us back the
shortest. There are strengths and weaknesses to this approach. The weakness is that if there
are a lot of paths this could take a while. We explore that more and consider ways to address
it in Object-Orientation, Abstraction, and Data Structures Using Scala[1]. The strength of
trying every path is that it takes only very minor modifications of this code to produce
other similar functions such as one to find the longest path or to count up how many paths
there are. These particular problems are left as exercises for the student, but we will tell
you now that the only real changes are to alter the return values of the base cases and the
way in which the recursive calls are combined.

470 Introduction to Programming and Problem-Solving Using Scala

15.7 Sorts
In chapter 13 we used loops to provide most our iteration. We only used recursion when

working with Lists, and the sorts were longer than the imperative versions. We could also
write those sorts recursively using Arrays, but then the use of recursion is only a change
in presentation. It does not really alter how the sorts run or how efficient they are. The
recursion in these functions is only used for iteration, nothing more. However, recursion also
opens the door to some more efficient sorts. The next two subsections describe two of these.

15.7.1 Divide and Conquer Sorts

Recursion that calls itself multiple times opens up a new style of problem solving called
divide and conquer. The idea is exactly what the name sounds like. You take a big
problem, divide it up, conquer/solve the pieces, then build a solution to the larger problem
from the solutions to the pieces. The divide and conquer approach is very general and can
be applied to many types of problems. In this section, we will look at two different sort
algorithms that are built on this idea.

15.7.1.1 Merge Sort

The first sort we want to consider is the merge sort. The general idea of a merge sort
is that we are given a collection that we break into two roughly equal pieces. Each of those
pieces is sorted individually and then the sorted results are merged back together.

This is a fast sort algorithm because the merge operation is O(n). The reason for this
is that when you want the lowest element from either collection, you do not have to look
through all the elements, you only need to consider the elements at the low ends of the
two collections. That means you only do one comparison. To find the next lowest element
you again do one comparison. So you can make a sorted collection of n elements from two
smaller sorted collections with only n − 1 comparisons. The fact that you are repeatedly
cutting the collection in half means that you get down to a single element in log2(n) cuts.
This gives an overall performance of O(n log(n)). For large values of n, this is much better
than the O(n2) performance of the sorts considered earlier.

There is one minor problem with the merge sort: it cannot be done in-place. Recall that
being done in-place means that the sort happens in the original collection without the use
of additional memory. Merge sort requires additional memory at least proportional to n to
complete the sort. A well crafted merge sort can get everything done with one additional
Array of length n. Getting the memory usage down to that level is a bit complex so it is
not presented in this book.2 In this chapter, we will use the inability to do the sort in-place
as an excuse for using Lists, which requires extra work space anyway because they are
immutable.

The first solution that we will look at is all recursive. It has a recursive mergeSort
function that takes a List[Int] and returns a List[Int].3 The sort function uses a second
recursive function called merge to put the sorted pieces together.

2Such an implementation is presented in Object-Orientation, Abstraction, and Data Structures Using
Scala[1].

3Recall that unlike sorts with Arrays, a sort using a List must return a new List as the original one
cannot be altered.

Recursion 471

Listing 15.3: mergeSort.scala
def merge(lst1:List[Int], lst2:List[Int]):List[Int] = (lst1,lst2) match {
case (Nil,_) => lst2
case (_,Nil) => lst1
case (h1::t1, h2::t2) =>
if (h1<h2) h1 :: merge(t1, lst2)
else h2 :: merge(lst1, t2)

}

def mergeSort(lst:List[Int]):List[Int] = lst match {
case Nil => lst
case h::Nil => lst
case _ =>
val (l1, l2) = lst.splitAt(lst.length/2)
merge(mergeSort(l1), mergeSort(l2))

}

Both of the functions use pattern matching for the different cases in the recursion. This
makes them nice, short, and easy to read. Unfortunately, the recursive version of merge
has to allocate a new stack frame for every element that is merged. That means that this
version of the code cannot scale up to large sizes.

To get around this limitation we need to use a more imperative merge that works with
a while loop. Such a version might look like the following.

def merge(lst1:List[Int], lst2:List[Int]):List[Int] = {
var l1 = lst1
var l2 = lst2
var ret = List[Int]()
while (l1.nonEmpty && l2.nonEmpty) {
if (l1.head<l2.head) {
ret ::= l1.head
l1 = l1.tail

} else {
ret ::= l2.head
l2 = l2.tail

}
}
if (l1.nonEmpty) ret :::= l1.reverse
else ret :::= l2.reverse
ret.reverse

}

This version is not as pretty and is about twice as long. However, it handles significantly
longer Lists making it useful if you actually have a large set of data.

One last thing to note about the merge sort is the way in which it does work. As the
recursive calls go down the stack, very little happens. The input List gets split in half and
those two halves get passed down. This repeats until we reach a single element. The real
work happens as the recursion pops back up the stack. Before a function can return, it calls
merge, which does the real work. So if you picture in your head something like 15.1, the
down arrows are not associated with much work. It is the up arrows where the work is done.

15.7.1.2 Quicksort

Another divide and conquer sort is quicksort. The idea of quicksort is to pick a special
element called the pivot, then move it to the correct location with all the elements that are

472 Introduction to Programming and Problem-Solving Using Scala

less than it before it and all those that are greater than it after it. Those elements to either
side will not yet be sorted so, recursive calls are made to sort each of them. The recursion
terminates when it gets down to a single element.

Unlike merge sort, quicksort can be done in-place. However, that is more complex and
is not covered in this book.4 For now we will make the quicksort like our merge sort and
work on a List, for which the idea of being done in-place does not make sense.

The quality of a quicksort is largely dependent on the selection of a pivot. A good pivot
will be in the middle of the collection to cut it in half. A really bad pivot would be the
minimum or maximum element which does nothing to split up the data and only pulls out
that one element from the next level of the recursion. Keeping with the idea of simplicity
for the implementations in this chapter, we will use the first element as the pivot. This is
not a good way to do this in general and can lead to very bad behavior on sequences that
are already sorted.5

With these simplifications in place, we can write a version of quicksort with the following
code.

Listing 15.4: quicksort.scala
def quicksort(lst:List[Double]):List[Double] = lst match {
case Nil => lst
case h::Nil => lst
case _ =>
val pivot = lst.head
val (less, greater) = lst.tail.partition(_<pivot)
quicksort(less) ::: (pivot :: quicksort(greater))

}

The pivot is set to the head of the List. We then use partition to split the rest of the
elements between those that are less than the pivot and those that are not. Finally, we call
quicksort on those two sublists and put the whole thing together into a result. The result
is a short and simple sort function that actually works fairly well on random data.

It is worth asking what the order of this sort really is. Unlike the merge sort, which is
very stable in the amount of work that it does, the performance of our quicksort can vary
dramatically depending on the input. Like the merge sort, each level of the recursion does
O(n) work. In this case that work is the partition and sticking Lists together. If the
pivot is in the middle of the values, each level the data is cut in half and we get O(log(n))
levels for the recursion and O(n log(n)) overall performance. For random data, this is the
expected behavior. However, our simple pivot selection can lead to very poor behavior and
this sort is O(n2) if the input is already sorted.

The last thing to note about quicksort is that unlike merge sort, it does most of its work
going down the call stack. The call to partition is where all the comparisons happen. This
List version does have to merge Lists on the way back up the call stack. A version written
to work in-place with Arrays will not have to do even that.

4Code for an efficient quicksort is given in Object-Orientation, Abstraction, and Data Structures Using
Scala.[1]

5Code for doing better pivot selection is also presented in Object-Orientation, Abstraction, and Data
Structures Using Scala[1].

Recursion 473

15.8 Putting It Together
To see another use of recursion we want to solve a problem that we have done before

using a different approach. Twice now we have included code that makes suggestions for
employee schedules based on data about ridership. The work of finding schedules was done
using the permutations and combinations methods on sequences. As we saw earlier in
this chapter, recursion can also be used to generate permutations. It can do combinations
as well.

Instead of repeating exactly what we did before, we are going to use recursion to push
it a bit further. Instead of showing possible groups of employees for each day, we want to
show possible schedules for a full week that include a limit on how many days each week
any given ride operator is willing/able to work.

We will not repeat the entire code from chapter 14 for the various menu options. This
simply shows a function that can be used to build these more complete schedule types. For
this to work, a daysPerWeek:Int member was added to the EmployeeData case class.
You can also modify menu option 5 to call this function.

def recursiveBuildWeeklySchedule {
val daysInfo = for (y <- years; m <- y.months; d <- m.days) yield d
val days = daysInfo.map(_.dayOfWeek).distinct

case class WorkerDays(name:String, numDays:Int)
case class WorkerAssigns(day:String, workerRide:List[(String, String)])

def printSchedule(schedule:List[WorkerAssigns]) {
println("Possible Schedule:")
println(schedule.mkString("\n"))

}

def recurByWorker(daysLeft:List[String], workerAvail:List[WorkerDays],
schedule:List[WorkerAssigns], workersLeft:List[String],
ridesNeedingOps:List[String]) {

if (ridesNeedingOps.isEmpty) {
recurByDay(daysLeft, workerAvail, schedule)

} else if (workersLeft.length>=ridesNeedingOps.length) {
val worker = employeeInfo.filter(_.name == workersLeft.head).head
for (ride <- worker.rides) {
ridesNeedingOps.indexOf(ride) match {
case -1 =>
case i =>
val newAvail = (for (w <- workerAvail) yield {
if (w.name == worker.name) w.copy(numDays = w.numDays-1)
else w

}).filter(_.numDays>0)
val newSchedule = schedule.head.copy(workerRide = (worker.name, ride) ::

schedule.head.workerRide) :: schedule.tail
recurByWorker(daysLeft, newAvail, newSchedule, workersLeft.tail,

ridesNeedingOps.patch(i,Nil,1))
}

}
recurByWorker(daysLeft, workerAvail, schedule, workersLeft.tail,

ridesNeedingOps)

474 Introduction to Programming and Problem-Solving Using Scala

}
}

def recurByDay(daysLeft:List[String], workerAvail:List[WorkerDays],
schedule:List[WorkerAssigns]) {

if (daysLeft.isEmpty) {
printSchedule(schedule)

} else {
val day = daysLeft.head
val thisDay = daysInfo.filter(_.dayOfWeek==day)
val rides = thisDay.map(_.ride).distinct
val operatorRides = rides.flatMap(ride => {
val nums = thisDay.filter(_.ride==ride).map(_.numRiders)
val avg = nums.sum/nums.length
val rideData = rideInfo.find(_.name==ride).get
Array.fill(rideData.numberOfOperators+(if (avg>=rideData.heavyCount) 1 else

0))(ride)
})
recurByWorker(daysLeft.tail, workerAvail, WorkerAssigns(day, Nil)::schedule,

workerAvail.map(_.name), operatorRides)
}

}

recurByDay(days, employeeInfo.map(e => WorkerDays(e.name, e.daysPerWeek)),
List[WorkerAssigns]())

}

This is a significantly more complex recursive function than what we looked at previously.
It is worth taking some time to study what is going on. The recursion is broken into two
separate functions that are nested in the primary function. The primary function does little
more than pull together the information on the days and then make a call to recurByDay.

As the name implies, the recurByDay function is using days as the primary recursive
argument. Each level down the call stack has one fewer elements on the daysLeft List.
The base case is when daysLeft is empty. That means we have a full schedule for the week,
and we are ready to print it. This function borrows code from the earlier version to build
up a List of ride names with multiple copies for the number of operators needed.

All of the information that comes into recurByDay, as well as other information that it
figures out is passed into recurByWorker. The name here is again meant to give an image
of what is going on. This function re-curses through the workers, considering one worker
on each call. The base case is when there are no more rides that need operators. In the
recursive case the code runs through all the rides that a worker is trained to operate, and
if any of them still need operators, one recursive branch is taken with that worker assigned
to that ride. There is also a recursive branch at the end where the current worker is not
assigned to work that day.

Note that the base case of recurByWorker contains a call back to recurByDay so these
are mutually recursive functions. It is reasonably common in more complex situations,
when the recursion needs to run through a space that has several different independent
parameters, to break the problem up like this into different functions that handle changes
in different options and depend on one another to get a complete solution.

Recursion 475

15.9 End of Chapter Material

15.9.1 Summary of Concepts

• Recursion can be used for much more than iteration. The memory of the stack frames
on the call stack allows recursive functions to call themselves more than once and try
different possibilities for solving a problem.

• One of the most common examples of a recursive function that calls itself more than
once is a function to generate the Fibonacci sequence. Each number in this sequence
is the sum of the previous two, so this recursive function calls itself with arguments
one less than the current value and two less than the current value.

• A more interesting example is the Towers of Hanoi. Here we saw that if we knew how
to solve the problem with N disks, we could extend it to N + 1 disks. This and a base
case constitutes a complete solution for any value of N .

• Finding the shortest path through a maze works well as a recursive problem. At each
point you need to find out the distance from the different options you have. Those
can be combined to give you an appropriate value for the current location.

• Using a recursive divide and conquer approach to sorting leads us to two other sorts
that do O(n log(n)) comparisons instead of the O(n2) of our previous sorts.

– A merge sort repeatedly breaks the collection in two going down the call stack,
then merges the sorted results as it comes back up the call stack.

– Quicksort works by picking a pivot and putting it in the right place. It then
recurses on the elements that are less than the pivot as well as those that are
not and sticks all the results together.

15.9.2 Exercises

1. Write functions that calculate Fibonacci numbers using the following approaches.

• Using a loop with an Array or List.

• Using a loop with three var declarations.

• Using a recursion function that takes three arguments, but only calls itself once
each time.

2. Write a function that will calculate the longest non-self-intersecting path through a
maze.

3. Write a function that will count the number of non-self-intersecting paths through
maze.

4. Find the size of the biggest completely empty maze on which you can do one of the
recursive search functions that finishes in a minute or less.

476 Introduction to Programming and Problem-Solving Using Scala

5. The following is a function called the Ackermann function which is significant in
theoretical computer science. Put this into Scala and play with it a bit.

f(0, n) = n+ 1
f(m+ 1, 0) = f(m, 1)

f(m+ 1, n+ 1) = f(m, f(m+ 1, n))

6. Write a recursive function that will build the power-set of a List. The power-
set is the set of all subsets of a given set. The fact that it is a set means
that we do not care about order, unlike with permutations. For example, the
power set of List(1,2,3) is List(Nil, List(1), List(2), List(3), List(1,2),
List(1,3), List(2,3), List(1,2,3).

7. Write a recursive function that builds combinations of a List instead of permutations.
The caller should be able to specify how many elements are desired in the combination.
(Hint: All combinations of all sizes are part of the power-set.)

15.9.3 Projects

1. If you have been doing the ray-tracing and graphics options, this project continues with
that. Ray tracers can implement both reflections and transparency using recursion.
If you have a function that tells you what color to draw for a particular ray, you can
do reflection by recursively calling that function with the reflected ray and combining
that color with the color of the reflecting surface. How much of each goes into the
color depends on the fractional reflectivity of the object.

For this project you will give your objects colors, but you still will not worry about
lighting. So when a ray hits an object, it gets the full color of that object unless the ob-
ject is reflective. If it has reflectivityR then it gets (1−R) of the color of that object and
R of the color from the reflected ray. To add colors you need to be able to build your
own colors and get the components out of colors. The scalafx.scene.paint.Color
class has methods called red, green, and blue that return the amount of each primary
in a color. The values are Doubles in the range of 0-1 inclusive. You can also make
a new Color object by calling Color(red:Int,green:Int,blue:Int). The values
passed in must be in the same range or you will get an error.

To calculate reflection, you need the unit-normal vector for the surface you are re-
flecting off of. For a plane this is easy as the normal is the same everywhere. For a
sphere, this is the vector from the center to the point of intersection. In both cases,
you want it normalized. If you have that, the direction of the reflected ray is given by

−→r reflected = −→r − 2 (−→r · −→n)−→n ,

where −→r is the direction of the incoming ray, and −→n is the unit normal. The unit
normal will also be significant for calculating lighting in a later project.

2. For this project you will write a program that solves 9x9 Sudoku puzzles. It will do
this through a recursive function.

The input will be nine lines of text, each with nine characters on it. The characters
will either be a space or a single digit number. You should output a board with all
the blanks filled in and put spaces between the numbers to keep it readable. It turns
out that most puzzles have more than one solution. You only need to provide one.

Recursion 477

For an extra challenge, make it so your program has a GUI. It should load puzzles
from text files and use a GridPane to display the puzzle. Users should be able to select
a solve option to have all spaces filled in or a hint option to add just a few.

3. For this project, you will write a program that recursively parses a string for an arith-
metic expression and returns the value of it. Examples would be 5+7 or 9*(5+7.5)/2.
Your parser should do proper order of operations (things in parentheses bind highest,
* and / before + and -, and go from left to right for the same level of priority).

The approach I want you to take for solving this problem is with a divide and con-
quer recursive algorithm that breaks the problem into pieces starting with the lowest
priority operation. You will write a function parse(exp:String):Double. This func-
tion will return the value of the expression in the String exp. First it should find
the lowest priority operator (it cannot be in parentheses). If it finds one, it recurses
twice with the substrings on either side of that operator (use the substring method
of String or take and drop). If there is not an operator that is not in parentheses
you can check if the String starts with ’(’ and pull the bounding parentheses off
and recurse on what is left. If it does not start with ’(’ you know that part of the
expression is just a number so use toDouble to get the value.

The user will give you a formula, that does not include any spaces, at the command
line and you should simply print the value it evaluates to. So a potential invocation
of your program might be as follows: scala parser.scala 5+3*(70/5).

4. If you did project 14.8, you can extend it in this project. If you go further into
chapter 1 of “The Algorithmic Beauty of Plants”, you will find that you can use L-
systems to model grasses and trees. We will not do the 3-D implementation, but you
can add handling for ’[’ and ’]’ to allow branching structures. This is best done
using recursive calls that start on a ’[’ and return on a ’]’. Instead of passing in a
String, pass in the Iterator[Char] that you get by calling the iterator method
on a String. The advantage of the Iterator is that the elements are consumed when
you call next so that when you return from a function call, the code will automatically
be working on what remains after the ’]’.

5. Determining if a particular recipe can be made with items from your pantry is not all
that hard and does not require using recursion. Planning an entire meal for a large
dinner party is another matter. To do this, the recipes need to be annotated with what
type of dish they are: entrée, dessert, side, etc. When planning a meal, the user must
be able to specify how many of each type of dish they wish to make for the meal. You
can then use recursion to find the meals that can be made fitting those requirements
with ingredients that are on hand.

You should attach information on how much the user likes certain recipes so that only
the top 5 or so meals are shown. If you want a bit of extra challenge, consider handling
the situation where there are not any meals that can be made with what is on hand
and then you list top meals that need few additional ingredients that would serve as
a grocery list.

6. If you have been doing the schedule building problems, you can now extend the func-
tionality using recursion. Annotate each course with how it fits into your curriculum.
Then you can specify not only how many hours you want to take, but also what
requirements you want to fulfill.

This is a problem that you could solve using permutations and combinations, but
as the number of course options grows, those options become less efficient. Using

478 Introduction to Programming and Problem-Solving Using Scala

recursion, you can cut the recursion short for any combination if you determine that
it cannot possibly work. For example, if you hit the proper number of hours before
you are done with courses, you do not need to consider variations in the remaining
courses, just check if you have satisfied the other requirements.

7. Having the ability to do recursion opens up a lot of possibilities for the motion of
computer controlled characters in games that have barriers. Moving straight to a
location is fine if the playing space is open and empty, but when there are obstacles,
like in a maze, it is important to have a way to navigate them. Recursion gives you a
way to do this. For this project you can implement your choice of a simple game with
enemies that uses recursion to find ways around obstacles. Note that you probably
do not want the enemy to have the ability to follow the shortest path to the player
unless the player has a significant speed advantage. Instead, you can throw in some
randomness to take choices that are somewhat less than optimal.

8. If you have been doing the text-adventure/text-map project options, you can write
some utility functions that can be used to help check out the map. Recursion can let
you see things like if you can get from one room to another, how many steps it takes,
how many paths there are, or even the paths themselves. You can implement these
as new commands when you run the program. For example a “canReach” command
could be given a room number/identifier to see if the specified room can be reached
from the current room.

9. If you have been working on the music library, you can throw some recursion into that
as well if you give a few hints. You would need to annotate songs with hints as to what
are good options for songs to follow it. You can make the recursion only follow from
one song to another when the user has recommended that it is worth doing. Those
recommendations can be given a “strength” as well. The user should select a starting
song, and the program should find the play list with the highest total strength for all
the connections.

Note that this is a problem where you could run into problems if there are lots of
songs with lots of connections. Doing this with a simple recursive algorithm could
lead to extremely long run times. However, assuming that the user does not enter too
many connections, recursion should work fine as long as you do not test song combos
that have not been marked by the user. This is why you cannot simply consider every
ordering of songs.

10. There is a common fractal structure known as Sierpinski’s triangle that is created by
a repeated pattern of triangles. Figure 15.3 shows the output of a program to create
these. A way to view this structure is that you start with a single triangle from which
you delete the triangle created by connecting the midpoints of the segments. That
leaves three smaller triangles, and you then delete the middle triangles from those
and repeat this process infinitely. You can also view it as replacing a triangle with
three smaller triangles where the middle is missing and then repeating that process on
the smaller triangles over and over. Either of these processes can be seen as a recursive
method. In figure fig:Sierpinski the triangle on the left went down two levels of
recursion while the triangle on the right went down seven levels. For this project you
should write a program using recursion to generate an image like that shown in the
figure. You only need to show one triangle, and you should be able to easily alter the
level of detail in your output.

11. Given a regular 8x8 chess board, write a recursive program that finds and displays

Recursion 479

FIGURE 15.3: This figure shows a Sierpinski’s triangle.

all the possible ways to place 8 queens on the board in such a way that they cannot
attack each other.

12. Write a program that finds all the occurrences of a word in all the files under a di-
rectory, recursively, printing out the filename and line each time one is found. Your
program should take a directory and the word to search for as command line ar-
guments. In order to do this, you need to use some additional capabilities of the
java.io.File type, which was introduced back in chapter 9. In particular, you
need to use the isDirectory():Boolean and listFiles():Array[File] methods.
Use listFiles() to get all the files in a directory, search the contents of the non-
directories, and recursively descend into the directories.

Additional exercises and projects, along with data files, are available on the book’s web
site.

http://taylorandfrancis.com

Chapter 16
Object-Orientation

16.1 Basics of Object-Orientation . 481
16.1.1 Analysis and Design of a Bank . 482
16.1.2 Analysis and Design of Pac-Man™ . 485

16.2 Implementing OO in Scala . 488
16.2.1 Methods and Members . 489

16.2.1.1 Parameters as Members . 489
16.2.1.2 Visibility . 490

16.2.2 Special Methods . 493
16.2.2.1 Property Assignment Methods . 493
16.2.2.2 The apply Method . 494

16.2.3 this Keyword . 495
16.2.4 object Declarations . 495

16.2.4.1 Applications . 496
16.2.4.2 Introduction to Companion Objects . 497

16.3 Revisiting the API . 497
16.4 Implementing the Bank Example . 499
16.5 Implementing the Pac-Man™ Example . 503
16.6 End of Chapter Material . 514

16.6.1 Summary of Concepts . 514
16.6.2 Exercises . 516
16.6.3 Projects . 517

From the beginning we have said that Scala is a completely object-oriented language. You
have been using objects and calling methods on them since back in chapter 2 when we were
taking our first steps in the language. Despite this, we have actually done very little with
object-orientation. This has been intentional. So far we have been building up your logic
skills and teaching you to break problems up into different functional units. Now that your
problem solving skills have reached a sufficient level we will take the next step to doing
full object-oriented decomposition of problems. We finish this book by giving you a brief
introduction to object-orientation and how to do it in Scala.

16.1 Basics of Object-Orientation
The basic idea of an object is that it is something that contains both data and the

functionality that operates on that data. This combining of data and the functionality that
works on the data is commonly referred to as encapsulation. We grouped data originally
with tuples and then in chapter 10 we started using case classes to group data together
in a more meaningful way. What we did not do with either of these methods was to bind
any functionality to them directly. We wrote functions that could operate on them, but it
was independent of the data itself. In the case of tuples, we cannot bind the functionality
into objects. case classes do allow us to do this; however, we simply did not to keep things
simple.

481

482 Introduction to Programming and Problem-Solving Using Scala

There are many different ways to think about object-orientation in programs. It is com-
mon to have beginners think of the description of the problem and the nouns in the descrip-
tion become objects while the verbs are methods on those objects. This is a bit restrictive,
but it can be useful. A better description is that you should think of objects as having
certain responsibilities, and they package together the data and functionality associated
with a particular responsibility. Whichever way you want to think about it, it helps to go
through some examples.

16.1.1 Analysis and Design of a Bank

We begin with a very standard example of a bank. Before we can really figure out what
the code looks like, we need to know more about the problem that we are trying to solve.
Without a proper description of the problem, you really do not have any chance of solving
a problem. This process of properly defining the problem that you are going to solve in
natural language is called analysis which was introduced back in section 6.6. Analysis is one
of the first steps in any software development effort. It is something that has generally been
done for you in this book.

When designing solutions to problems, programmers often need to be concerned with
how user friendly their programs are for the people who will be using them. However, we
are not going to worry too much here about the user interface for this system, but instead
focus on the type of functionality that a simple bank system should have. We want to
represent a bank where people have accounts. Our bank example only has two different
types of accounts: checking and savings. Customers can make deposits to and withdraws
from these accounts. Each customer can have multiple accounts. The bank itself needs to
provide ways to look up customers and accounts.

A proper analysis of a real bank system would be a much more involved process and
you would need to gather significantly more detailed information. What we have here is
sufficient for our current purposes. We can make up details as we go. If you were writing
this for a real customer, you would need to get them to actually spell out a lot more details
because “making it up” would be disastrous.

Once you have a proper natural language definition of your problem, you can start think-
ing about how to break it up and solve it in your programming language. This is the design
phase, and it is what we really want to focus on here. Our previous efforts in this area
have been non-object-oriented. When we thought about the problems, we considered the
grouping of data largely independent of the functions that we would write to deal with the
problem. That all changes when we approach the problem from an object-oriented stand-
point. Now, when we define our new types they will incorporate both data and functions.
All of our functions will change into methods which will act on the data members grouped
by the type.

Given the analysis from above, there are some fairly obvious things that should jump
out to you for this system. They are the account, the customer, and the bank itself. We
will consider each of these and try to figure out what data members and methods each one
should have. The data that we will put into them will be similar to what you might have
done in our previous treatment of case classes. The real change here is that the logic
is no longer in separate functions, but is moved into the classes themselves in the form of
methods. As a general rule, functions that deal closely with the data are going to move
inside of our type to become methods. Any function that might mutate data for an object
should definitely become a method.

Let’s start by laying out the Account type. We will specify the data members and
methods separately, giving a brief description of each.

Object-Orientation 483

• Account

– Data Members:

∗ account number - A value that uniquely identifies this account for this
bank.

∗ balance - A numeric value to keep track of how much money is in the
account.

∗ account type - Something that tells us if this is a savings or checking
account.

∗ customer - A reference to the customer who owns this account.

– Methods:

∗ deposit - Takes an amount of money that needs to be positive and adds it
to the account balance. It also logs the transaction.

∗ withdraw - Takes an amount of money that needs to be positive and less
than or equal to the current balance and subtracts that amount from the
balance. It also logs the transaction.

∗ monthly adjustment - If appropriate for the account type, this will add
interest into the account balance. It also logs any adjustment.

You could probably come up with several other pieces of data and activities to add to this
example, but this provides sufficient complexity for our current purposes. The real key here
is that manipulation of the data for this class is encapsulated into the methods. These
methods will do safety checks to make sure that only allowed operations occur. We will
also be able to prevent any outside code from altering the values. In this way, we limit the
number of places in the code that could cause an error with an account.

Not only can we protect the data and make it so only certain methods are allowed to
access key data (like the balance), we can also provide the ability to make sure that all
changes to this key data are recorded. The descriptions of the three methods listed for the
Account type all say that they “log” something. This has been left intentionally vague, but
it is a critical element of any real financial software. If the balance were open to modification
by any part of the program, it would be much harder to enforce the rule that every change
has to be logged.

Next up is the Customer type. This type is largely just a collection of the information
that is significant for a customer.

• Customer

– Data Members:

∗ customer id - A value that uniquely identifies this customer for this bank.
∗ first name - The customer’s given name.
∗ last name - The customer’s family name.
∗ address - Something that stores an address for the customer. This is prob-

ably best done by defining another type for an address and having this
reference an object of that type.

∗ phone number - Something that stores the phone number of the customer.
Like the address, this is probably best done by making another type, though
it could start as just a String.

∗ accounts - A sequence of the accounts that belong to this customer.

– Methods:

484 Introduction to Programming and Problem-Solving Using Scala

∗ change address - Sets this customer’s address to a new value. It also logs
the change.

∗ change phone number - Sets this customer’s phone number to a new
value. It also logs the change.

∗ add account - Adds an account for this customer. It also logs the change.
∗ remove account - Removes a customer’s account. It also logs the change.

The data members here should all be fairly straightforward. The only interesting aspect of
them is the possibility that the address and phone number are represented with different
types. You do not have to do this. Clearly an address could be represented with a few strings
and a phone number could be represented by a string, but in practice, you likely want your
system to do some verification to make certain that these have valid values. We could put
that code here in the customer, but it is likely that addresses and phone numbers will occur
in other parts of the system as this piece of software grows. When that happens, we would
need to copy code from the customer into other types that deal with addresses or phone
numbers. A better approach is to take the key information and functionality that these
things need, and encapsulate them in their own types. That prevents code duplication and
makes the code easier to work with.

If you think about this from the standpoint of objects being responsible for things, it
should not be the job of the Customer type to validate/verify addresses and phone numbers.
That gives the Customer type too much responsibility and dilutes the focus of what it should
be doing. Creating separate types for Address and PhoneNumber allows each task to remain
focused on a particular type of functionality, which can have many benefits over the lifetime
of a piece of software.

Note that address and phone number were not things that we identified in our original
analysis of the problem. Perhaps we would have if we have done a more complete analysis,
but even if we had not, that should not prevent you from adding it to your design when you
see that it makes sense. Especially as a novice programmer, you are going to miss things
when you think about different problems and the code you need to write to solve them.
This does not mean that you should not bother thinking about problems up front. Quite the
opposite in fact. Spending the time thinking about problems before you sit down to code
them will help you to gain a greater understanding of programming and problem solving.
When you do realize that you missed something later in the process, you should make a
mental note of that and the experience will help you the next time you solve a similar
problem so that your initial approach will be more complete and you will waste less time
going down paths that are not fruitful.

The last type that we will do the design for is the Bank type.

• Bank

– Data Members:

∗ customers - A sequence of Customers.
∗ accounts - A sequence of Accounts.

– Methods:

∗ add customer - Creates a new customer with appropriate information and
no accounts. It also logs changes.

∗ add account - Creates a new account with a zero balance and associates it
with a customer. It also logs changes.

∗ remove customer - Closes out all accounts for the given customer and
removes them from the system. It also logs changes.

Object-Orientation 485

∗ remove account - Closes a single account and updates the customer that
had been associated with it. It also logs changes.

∗ find customer - Probably a few methods that finds customers based on
various pieces information.

∗ find account - Looks up an account based on the account number.

In this design, this type is little more than a grouping of two sequences with methods for
manipulating the sequences as well as methods for finding information in the sequences.
Here again, encapsulation provides us with security. Not just any code should be able to
manipulate the sequence of customers or accounts that we have in the system, and when it
happens, those changes need to be recorded.

Clearly there are many things that have been left out of this solution. You also might
have thought about other things that you would want to add in to make the solution more
complete. One possibility would be the concept of branches/locations for the bank. Adding
this in would illustrate why you might want to pull addresses and phone numbers out into
their own types because each branch will have that information associated with it, just like
the customer does.

We are not going to show how we would turn this design into actual Scala code yet.
That will come a bit later. There are a fair number of details related to syntax and concepts
that we have to deal with when we code this and for now we want to focus on getting you
to think in a more object-oriented way without focusing too much on the syntax.

16.1.2 Analysis and Design of Pac-Man™

A very different example problem for us to break down in an object-oriented way is the
classic arcade game, Pac-Man™. One reason for picking this game is that it is assumed that
anyone is either already familiar with this game, or can easily find information on the basic
game play.1 For that reason, we will not explicitly describe the analysis of the problem, and
instead go straight into problem design.

There are a number of different types of things that are significant in a Pac-Man™ game.
Some of these are fairly obvious, such as Pac-Man™, the ghosts, and fruit. Other elements
are less obvious. We definitely need a type that represents the overall playing area, we might
call this the maze. Just how the maze stores things can impact what other types we will
use. For example, should we have a separate type for a pellet, or should the grid cells in the
maze store values that tell if the cell contains a pellet in addition to whether the cell is a
wall or open space? There are pros and cons to each of these approaches. For this design,
we are going to make it so that the grid stores information about whether or not pellets are
present. It could also be useful to have something that represents the full game for things
like score and the number of lives left. This gives us a reasonable list of types to start off
with.

We will start with the PacMan type.

• PacMan

– Data Members:

∗ x - The x-coordinate for the player likely measured in terms of the grid of
the maze, not in pixels.

1For the 30th anniversary of Pac-Man™ in 2010, Google used it as the theme for their Doodle and created
a playable version of the game that works in your browser. So if you are not familiar with how Pac-Man™
works, a Google search for it should be very informative.

486 Introduction to Programming and Problem-Solving Using Scala

∗ y - The y-coordinate for the player likely measured in terms of the grid of
the maze, not in pixels.

∗ direction moving - The direction in which the player is moving or trying
to move.

∗ key direction - The direction key the player has most recently hit.
∗ animation count - A value that is used to figure out how "open" the mouth

is drawn.
∗ dying - Tells whether the player has been caught by a ghost and the program

should do the dying animation.

– Methods:

∗ update - Uses the PacMan type information and the information about the
maze to determine how to update the various values for this object.

∗ go left - This is called when the user does something to tell the character
to move left.

∗ go right - This is called when the user does something to tell the character
to move right.

∗ go up - This is called when the user does something to tell the character to
move up.

∗ go down - This is called when the user does something to tell the character
to move down.

This type has the responsibility of keeping track and updating everything related to the
Pac-Man™ character. That includes where it is in the maze, where it is moving, and some
additional information related to its movement and animation.

Perhaps the most important method there is the update method. This is to be called
at regular intervals by outside code when the state of the player should be changed. This
is the primary responsibility of this type, performing the key logic for the player. This will
require accessing information about the maze and the locations of other elements of the
game. We will see how this is done in a object-oriented fashion later.

The counterpart to the PacMan type is clearly the Ghost type.

• Ghost

– Data Members:

∗ x - The x-coordinate for the ghost likely measured in terms of the grid of
the maze, not in pixels.

∗ y - The y-coordinate for the ghost likely measured in terms of the grid of
the maze, not in pixels.

∗ direction moving - The direction in which the ghost is moving.
∗ animation count - A value that is used to figure out aspects of the anima-

tion of the ghost.
∗ color - Tells what color ghost this is.
∗ scared - Tells if this ghost is running from Pac-Man™ or not.

– Methods:

∗ update - Uses the information stored here and the information about the
maze to determine how to update the various values for this object.

Object-Orientation 487

Much of the data for the Ghost is similar to that for the PacMan player. The majority of the
functionality also occurs in the update method as it does for the PacMan player. Since it is
the responsibility of the Ghost type to handle all elements related to the logic of a ghost,
outside code is not intended to change values in the Ghost directly. The changes should
occur through update.

Up next is the Fruit type, which is very simple as they do not move in the original
Pac-Man™ game. They only need to store their location and the type of fruit it represents.
Since they do not move, they do not need an update method. Their placement and removal
will be handled by other classes.

• Fruit

– Data Members:

∗ x - The x-coordinate for the fruit likely measured in terms of the grid of the
maze, not in pixels.

∗ y - The y-coordinate for the fruit likely measured in terms of the grid of the
maze, not in pixels.

∗ fruit type - Tells which type of fruit this is for drawing and scoring purposes.

The Maze type is where things get more interesting. This type is used to keep track of
all the other types we have discussed as well as the layout of the maze and the pellets that
the player and ghosts are moving through.

• Maze

– Data Members:

∗ cells - A 2D structure that tells us what state each cell is in. At this point
we will probably make this an Array[Array[Int]] as we have not learned
better ways to do this.

∗ player - A reference to a PacMan that stores the one player on the board.
∗ ghosts - A sequence of Ghost objects.
∗ fruit - This should probably be an Option[Fruit] given that you do not

always have a Fruit in the maze.

– Methods:

∗ update all - When this method is called, the player and ghosts are updated,
and fruit might be added or removed. This method will also handle any other
changes that need to occur to the maze.

For our purposes here, we are going to use different Int values to tell if we have a wall,
an empty cell, a regular pellet, or a power pellet. There are better ways to do this that
go beyond the scope of this book and are covered in Object-Orientation, Abstraction, and
Data Structures Using Scala[1]. As with many of the earlier types, the functionality from
the outside is handled by a single method that updates the game. This calls the update on
the player as well as on the ghosts and the fruit. In some ways, this one method is largely
responsible for running the logic of the game. For that reason, there is a good chance that
we will break it into pieces, and have other methods that help it, but those will not be
visible to outside code.

There is another class that represents the full state of the game. We are going to call it
Game. This keeps track of score and how many lives the player has left.

• Game

488 Introduction to Programming and Problem-Solving Using Scala

– Data Members:

∗ score - An Int for how many points the player has.
∗ lives - An Int for how many lives the player has left.

– Methods:

∗ main - As we will see later, this is the method that makes the whole game
run.

You might have noticed that while some of the types above dealt with some aspects of
how things are drawn in the game, nothing actually did any drawing. There is a reason
for this. Drawing is something of a separate responsibility from game logic, scoring, and
movement. For that reason, it should be placed in a different type. This separation of
responsibilities makes it easier in the future to change just how things are drawn.

• Renderer

– Methods:

∗ render - Draws everything so that we can see the game being played.

That completes the design for our Pac-Man™ game. The key thing to note is that we
are putting functionality directly into the classes that have the data to deal with that data
so that any mutation/alteration is limited in where it happens. In the next section, we will
see how we can implement these designs in Scala.

16.2 Implementing OO in Scala
Scala is a class based object-oriented programming language. That means that pro-

grammers create classes in their programs and those classes define types that are used
to make objects. We already saw how the case classes that we made defined new types.
We did not put anything in them though except some data elements.

The case keyword in front of a case class worked well for our needs in chapter 10, but
it is not required to define a class. We will be writing normal classes now and only using
case classes when they are called for. The way that you should think of a class is as a
blueprint for an object. The class tells Scala what goes into the objects of that type and
what type of functionality those objects should have. The syntax for a class is as follows.

class TypeName(arg1:Type1, arg2:Type2, ...) {
// Methods and Members

}

As you can see, the only things that are different between this and the case classes we
have already worked with is the lack of the keyword case and the curly braces with stuff in
them after the class. These curly braces, like all curly braces in Scala, define a new scope.
This scope is associated with the class and anything you want to put in the class goes
inside of them.

Object-Orientation 489

16.2.1 Methods and Members

Inside of the class you can write code exactly the way you have anyplace else. There
are small differences that will be discussed and the meaning and terminology changes a bit.
When you write a variable declaration with val or var inside the body of a class, that is
now a member declaration. It is data that is stored in the objects that are created from that
class. When you use def to create a function, we call it a method because of its scope in
the class and the fact that it is something that you will be able to call on objects created
from this class. Any statements that you write that are not declarations of members (val
or var) or methods (def) will simply be run when an object of this type is instantiated.

To see how this works, we will write a little script that includes a class declaration.
For the class we will go back to the concept of grades in a course and write the class to
represent a student. Here is a first draft of the class with some lines that use the class.

class Student(name:String, id:String) {
var tests = List[Double]()
var quizzes = List[Double]()
var assignments = List[Double]()

def testAverage = tests.sum/tests.size
def quizAverage = quizzes.sum/quizzes.size
def assignmentAverage = assignments.sum/assignments.size
def courseAverage = testAverage*0.4 + quizAverage*0.1 + assignmentAverage*0.5

}

val john = new Student("John Doe","0123456")
john.tests ::= 78
john.tests ::= 85
println(john.testAverage)

The class begins with a class declaration that looks a lot like a case class and really
is not too different from a def. After the keyword class is the name of the type, in this
case Student. This is followed by a list of parameters to the class. In this case we have
two Strings called name and id. The body of the class is denoted with curly braces and
inside of the curly braces we have three member variable declarations for grades and four
method declarations for taking averages.

After the class declaration are four lines of code. The first declares a variable called john
that is set to be a new Student with the name John Doe and a student number of 0123456.
The second and third statements add two test grades of 78 and 85 to this student. While
this is simple, it is not clear that we really want the grades to be this accessible. The last
statement in the script prints the average for the tests by calling the testAverage method.

16.2.1.1 Parameters as Members

Everything in this example should seem fairly straightforward. It really does not look
much different from things that we have done before. This would change though if we try
to make the print statement a bit more informative.

println(john.name+" has a "+john.testAverage+" test average.")

If you change the println to this and run the script you will get an error message that
might not make much sense to you.

ScalaCS1/Chapters/ObjectOrientation/Code/Student1.scala:16: error: value name is
not a member of this.Student

490 Introduction to Programming and Problem-Solving Using Scala

println(john.name+" has a "+john.testAverage+" test average.")
^

one error found

You should definitely find this surprising. This would have worked for a case class. Indeed,
if you put the case keyword at the beginning of the class declaration this works fine.

The error message tells us that name is not a member of Student. This is because, by
default, the arguments passed into a class are not turned into members. The logic behind
this is that members have to be stored by each instance of the class that is created, so
extra members consume memory. Even if they do have to be remembered, they will not be
visible to any code outside of the class. For example, if you add the following method into
the class you can call it to get the last name, but you still cannot get the name itself.

def lastName = name.split(" +").last

If you want an argument to be a member simply put val or var before the name. It will then
become a member with the proper behavior for either a val or a var. In a case class,
everything is implicitly a val, so we did not have to add that. For a normal class, we
do. For our Student class we likely want both name and id to be constant, so we should
change the class declaration to the following.

class Student(val name:String,val id:String) {

If you make this change you can use the print statement shown above without an error.

16.2.1.2 Visibility

The possibility of things being visible or not is new to us with this chapter, but it is a
very important aspect of object-oriented programming because it allows you to hide details
about the way an object works away from the code that uses the class. The value of this
is that you can change those details without causing problems for the code that depends on
the class. In the case of member data, you can also hide away details that you do not want
other parts of code to have free access to. In addition, this makes it easier to find many
runtime and logic errors, as certain values can only be altered in a small subset of the full
program.

A great demonstration of the value of data hiding can be seen with the account class
from the bank example we started earlier. Let us consider the simplest possible class that
we might write to represent a bank account.

class Account {
var balance = 0

}

This class does not take any arguments when it is constructed and, as a result, the paren-
theses have been left off. It has one piece of member data, an Int for the balance. As you
might recall from chapter 2, money should be stored in Ints because the arithmetic of the
Double type is inaccurate due to the limited precision. This representation is simple, but it
has a significant drawback. The member balance is a var that can be set by any code that
gets hold of an Account object. For a real bank program that would not be acceptable. The
balance cannot be just any value. For example, negative numbers generally are not allowed.
In addition, changes to the balance are typically supposed to happen in specific operations:
deposits and withdraws. Those operations can enforce certain rules and, for a real bank,
would log any changes to the balance so that it is possible to go back and figure out what
happened. While we could make functions for those operations, there would be nothing that

Object-Orientation 491

forces programmers to use those functions. It would be possible for a programmer to “get
lazy” at some point and access the balance directly. The results of this in banking software
could be quite extreme.

The ability to force access to data to occur through certain methods is one of the most
significant capabilities of object-orientation as a way of improving software construction
and controlling complexity. The real benefit of this capability is to take responsibility for
proper usage away from the users of the objects. If the only ways to use the object are
through methods or data that is safe for them to use, then they know they cannot mess it
up and do not have to worry about that. Instead, they can focus on the logic that they are
working on.

How do we accomplish this in our classes? We do it by setting the visibility of members.
There are three main levels of visibility in Scala, and they are very similar to what you will
find in other class based object-oriented languages.

• Public - This means that something can be accessed by any code inside or outside of
the class. In Scala this is the default visibility for elements, so, there is no keyword
for it.

• private - This means that the member can only be accessed inside the class. At-
tempts to access the member from outside of the class will result in a syntax error.
If you prefix a declaration in a class with the private keyword, that member will
be private.

• protected - This is like private except that protected members are also visible in
subtypes. The details of this are beyond the scope of this book, but are dealt with in
Object-Orientation, Abstraction, and Data Structures Using Scala[1].

In our example Account we really want the balance to be private. We can do this by
simply adding private before the var.

class Account {
private var balance = 0

}

Unfortunately, this leaves us with a class that is completely useless. Before making this
change we could have done something like the following.

val myAccount = new Account
println(myAccount.balance)
myAccount.balance += 100
println(myAccount.balance)

If we do this now though we get a set of error messages.

ScalaCS1/Chapters/ObjectOrientation/Code/Bank.scala:6: error: variable balance in
class Account cannot be accessed in this.Account

println(myAccount.balance)
^

ScalaCS1/Chapters/ObjectOrientation/Code/Bank.scala:7: error: variable balance in
class Account cannot be accessed in this.Account

myAccount.balance += 100
^

ScalaCS1/Chapters/ObjectOrientation/Code/Bank.scala:8: error: variable balance in
class Account cannot be accessed in this.Account

println(myAccount.balance)
^

three errors found

492 Introduction to Programming and Problem-Solving Using Scala

Note how the error message is different than what we saw previously for name in our Student
class. Instead of telling us that balance is not a member, it tells us that balance cannot
be accessed. This is precisely because the balance is now private, and the code is outside
of the class.

To make this class useful, we would need to put some methods in it that are public
that manipulate the balance in allowed ways. We had three of these in our design for the
bank. We will start with the deposit and withdraw methods. Here is what the deposit
method might look like. Note that this is indented because it appears inside of the Account
class.

def deposit(amount:Int):Boolean = {
if (amount > 0) {
balance += amount
true

} else false
}

The method takes the amount to deposit as an Int. It returns a Boolean to tell us if the
deposit went through. This method does not support logging because adding that function-
ality goes deeper than we want to at this point. It does check to make sure that the amount
of the deposit is positive. If it is, then that amount is added to the balance and the result
is true; otherwise, nothing is done and the result is false.

We can add a very similar looking withdraw method.

def withdraw(amount:Int):Boolean = {
if (amount > 0 && amount <= balance) {
balance -= amount
true

} else false
}

The only difference between deposit and withdraw is that you cannot withdraw more
money than you have, and the amount is subtracted from the balance.

The last thing we need to add is a method to get the balance so that it can be checked.
The proper style for this in Scala is to name the method balance and name the private
member _balance. That would change our class to look like the following.

class Account {
private var _balance = 0

def deposit(amount:Int):Boolean = {
if (amount > 0) {
_balance += amount
true

} else false
}

def withdraw(amount:Int):Boolean = {
if (amount > 0 && amount <= _balance) {
_balance -= amount
true

} else false
}

def balance = _balance
}

Object-Orientation 493

The balance method simply gives back the value of _balance in the account. We can utilize
this code by doing the following.

val myAccount = new Account
println(myAccount.balance)
myAccount.deposit(100)
println(myAccount.balance)

Note that because of the use of the name balance, the println statements appear the
same way they did when balance was a public var. The difference is that you cannot set
balance now unless you go through either the deposit method or the withdraw method.

Our original design included another method and several more data members. Some of
these require additional elements of the bank example, so their implementations will wait
until those other pieces are in place.

16.2.2 Special Methods

There are a few method names that are special when you put them into classes in
Scala. In a way, these special methods are rules that you have to learn as special cases.
This section covers the ones that are critical for you to understand to write our sample
applications.

16.2.2.1 Property Assignment Methods

In the bank account example we said that in Scala when a method should simply give
you the value of a member, you give it the name you want people to see for the property.
In our example this was balance. What about when you want to alter the value? In Scala,
the proper style is to have the code use the assignment method. The advantage of the
assignment method is that it allows you to set a property using normal assignment syntax.
To create an assignment operator, write a method with the name prop_=, where prop is the
name of the property.

To help you understand this, let us assume that you did want to be able to enter
something like myAccount.balance = 700. We had this ability with the public var, but we
decided that was too little control. We could get that back by adding the following method.

def balance_=(b:Int):Unit = _balance = b

Thanks to the way Scala handles assignment operators, this will let all three of the following
lines work.

myAccount.balance = 700
myAccount.balance += 40
myAccount.balance -= 50

So doing += will work like a deposit and -= will work like a withdrawal. The downside is
that neither returns a Boolean to let you know if it worked. As written, neither checks the
value being deposited or withdrawn either.

This particular method leaves things too open again. We might as well have the var
because we are doing exactly what the var would do. However, the advantage of an assign-
ment method is that it can be more complex and have more logic behind it. For example,
the balance_= method could be altered to the following.

def balance_=(b:Int):Unit = {
if (b >= 0) {

494 Introduction to Programming and Problem-Solving Using Scala

if (b < _balance) withdraw(_balance - b) else deposit(b - _balance)
}

}

This version will reuse the code from withdraw or deposit and include any error checking,
logging, etc. It also throws in checking so that assignments to invalid balances will not go
through. If this were production code, there really should be an else clause on that outer
if that would do something like throw an exception if the code attempts to set the balance
to a negative value.

Note that you only include a set method for properties that are mutable so there are
many situations where they are left off. If you are programming in a more functional style,
you will not have these assignment methods. It is only when objects specifically need to be
able to mutate that these are helpful. The real advantage, in that case, is that the code can
look like a normal assignment, but will call the method that can do various types of error
checking.

16.2.2.2 The apply Method

Another method that Scala treats in a special way is the apply method. This method,
and how it is handled, is a major part of what makes Scala work as a functional language
while remaining very object-oriented. You write apply just like any other method that you
might put in a class. You can call it just like any other method as well. However, Scala
will allow you to call the apply method without using a dot or the name apply. When you
remove those, it makes it look like you are treating the object as a function. Indeed, this is
how all functions work in Scala. As was said very early on, everything in Scala is an object.
That includes functions. A function is just an object of a type that has an apply method
that takes the appropriate arguments.

The intelligent use of apply is how you have been indexing into all of the collection
types. Consider the following code that you could write in the REPL.

scala> val arr = Array(5,7,4,6,3,2,8)
arr: Array[Int] = Array(5, 7, 4, 6, 3, 2, 8)

scala> arr(3)
res0: Int = 6

scala> arr.apply(3)
res1: Int = 6

The call to arr(3) is actually just a shortcut for arr.apply(3). Scala is doing nothing
more here than assuming the presence of the call to apply.

How can we use this in our own code? In our design for the bank program, we mentioned
having a Bank class that stores all the accounts and customers of a bank, and includes
methods for looking them up. We could put an apply method in the Bank class that takes
an account number and produces an Option[Account]. To do this, first we need to give the
Account an ID. This is easily done by modifying the declaration to take a val argument.

class Account(val id:String) {

It is fine for the id to be public because it is a val of an immutable type, so people using
the code cannot mess it up. Note that this assumes that account ID numbers cannot ever
be changed. Doing so would basically require closing one account and opening a new one
for the same customer with the same balance, but using a different ID.

Object-Orientation 495

With that in place, we can start our implementation of the Bank class giving it a
collection for the accounts. We also add methods to add and find the accounts. The method
to find an account is the apply method.

class Bank {
private var accounts:List[Account] = Nil

def addAccount(account:Account):Unit = accounts ::= account

def apply(accountID:String):Option[Account] = accounts.find(_.id == accountID)
}

The apply method returns an Option[Account] because it is possible that there is not
an account with the provided ID. In that situation, it would return None. After setting
up an instance of Bank and giving it some accounts, you could search for one by ID using
bank("01234567"), which would give back an Option[Account] for an account with ID
“01234567”.

16.2.3 this Keyword

By default, when you write code in a class that calls a method or uses a member of that
class, the call is made on the current object or the value from the current object is used.
All calls are implicitly made on the current instance. That is exactly what you want most of
the time and given the scoping of variables it feels very natural. This implicit specification
of an object prevents you from having to specify one. Consider the code in the deposit
method for adding money to the balance. We wrote

_balance += amount

which is really short for

this._balance += amount

Scala simply added the this for you.
That is fine in general, but occasionally you will have a need to be able to put a new

to the current object. For example, you might need to call a function/method that needs
an instance of the object as an argument and you want to use the one that the code is
currently executing on. When that situation arises you will use the this keyword. this is
a name that always refers to the current instance in a class. In the bank example, we will
us this in two ways when creating an account. We will use this in the account to pass the
current account to the Customer who owns it to set things up. We will also use this in the
Customer to check if an account belongs to the current Customer as it would be an error
to have a Customer taking ownership of an account for someone else.

16.2.4 object Declarations

In order to complete our examples, we need to introduce another style of declaration
that exists in Scala, the object declaration. We said earlier that you should think of a class
as a blueprint for making objects. These objects are called instances, and the process of
making them using new is called instantiation. On the other hand, the object declaration
specifies how to build what is called a singleton object. As the name implies, this is an
object where there is only a single instance. The syntax is very much like that of a class
other than you cannot pass in arguments. This makes sense as you pass the arguments to

496 Introduction to Programming and Problem-Solving Using Scala

a class when you use new, and you never call new with a singleton object, because the
declaration creates it in the current scope. Any data members or methods you want can be
declared in the object declaration.

Even though an object declaration does not create a new type, we use a capital letter
as the first letter in the name to distinguish it from normal instantiated objects. To use the
members or methods of an object, use the object name and call it just like you would for
an instance of a class. object declarations can be used in any scope where you want an
object, but you only want one object of that type. At the top level they are typically used
as a place to organize functions, but they have far more versatility than this overall.

16.2.4.1 Applications

The fact that you can use an object without instantiation is very significant. The
objects effectively exist as soon as the program starts running. You do not have to have
a line that makes a new one. This is most significant when we move beyond the REPL
and scripts and into applications. A top level object declaration defines an entry point
to an application if it contains a method called main that takes an argument of type
Array[String] and results in Unit. Here is a simple example.

object FirstApp {
def main(args:Array[String]):Unit = {
println("My first application.")

}
}

The scripts that we have been using can be converted to applications by doing nothing more
than putting the code inside of a main that is in an object. If you use the variable name
args for the command-line arguments, then references to them in a script will even work.

The main differences between a script and an application is how you organize the code
in files and how you run them. By definition, a script is supposed to be a small program. All
of the code for a script goes into a single file. When the amount of code that is required gets
larger, it needs to be split apart and organized. The organizational structure you should
follow in Scala in nearly all situations is to put each top level class or object in a separate
file that is the name of the class or object followed by “.scala”.

Consider the example bank application. We might use the Account class from above
and put it in a file called “Account.scala”. The Customer class would go in “Customer.scala”,
and the Bank class would go in “Bank.scala”. Finally, we would have an object declaration
for the application that might be called BankBranch and would go in “BankBranch.scala”.
In addition to having a main method, this would keep a reference to an instance of Bank,
and handle whatever user interface we wanted, whether that was a text menu or a GUI.

Running an application like this is a two step process. First you have to compile the
code. This is done with the scalac command, which stands for “Scala compiler”. You have
to tell the Scala compiler what files it is you want to compile. If you organize your code
so that all the code for an application is under a directory you can execute something like
scalac *.scala. This will compile all of the files ending in “.scala” in the current directory.

When you do this, if you have any syntax errors, they will be found and reported to you
in much the same way they were when you ran programs as scripts. Once you have found
and fixed all syntax errors, the compiler will produce a set of files in compiled bytecode
that you can run. These files will end with the “.class” extension. To run the application
you go back to using the scala command. Only now you follow it by the name of the
object you want to run the main from. So in the case of our bank example we could run it

Object-Orientation 497

by entering scala BankBranch. Other command-line arguments can be specified after the
name of the object.

The application has to be an object because methods in a class can only be called on
instances of that class, not the class itself. So in order to call a method you have to have
executed new on that type. However, main has to be called first, before any other logic has
been executed. This is not a problem with an object as the single instance exists without
a call to new.

16.2.4.2 Introduction to Companion Objects

While making applications with object is vital, the most common use of objects is
as companion objects. A companion object is an object that has the same name as a
class. Both the class and its companion object should be placed in the same file. The
companion object has access to private members of the class it is a companion with.
Similarly, the class can see private elements in the object.

You might have wondered why it is that when we are building objects in Scala, sometimes
we use new and sometimes we do not. The reality is that making an object always requires
invoking new. When you do not type it, it means that you are calling code that does. When
you use the name of the type without new to instantiate an object, you are calling the apply
method on the companion object, and that apply method is calling new. The first examples
of this that we encountered were the simple forms for creating Arrays and Lists. When
you wrote List(1,2,3) in your code, it actually called List.apply(1,2,3), where List
refers to the companion object.

Unfortunately, you cannot easily write classes with companion objects in the REPL
or in scripts. For us to create our own companion objects, we have to be working in the
mode of writing applications, compiling with scalac, and running the compiled files with
scala.

16.3 Revisiting the API
We have already learned enough to help a bit with understanding what some things

mean in the API. When you open up the API, the left side has a frame that looks like figure
16.1. Thus far we have used the generic word “type” to describe the things that are listed in
this frame. Now we can be more specific. There are really three different declaration styles
in Scala that appear over there and the API indicates which one you are dealing with.

The circles next to the names contain one of three letters in them. The meaning of these
letters is as follows.

• c - For a class.

• o - For an object.

• t - For a trait, which we do not cover in this book, but are very similar to classes.

When you click on one of these, you are shown the methods and members that are defined
in them, whether it be a class, an object, or a trait. The API itself is built by running
a program called scaladoc on scala code to generate HTML descriptions of what is in the
code.

When there is an “o” next to a “c” or a “t” it is a companion object. If you want to know
if you can build objects without a direct use of new, look there and see if there is an apply

498 Introduction to Programming and Problem-Solving Using Scala

FIGURE 16.1: This is part of the right panel that you see when you first enter the API.
The little circles with the letters c, o, and t indicate whether it is a class, object, or trait.

Object-Orientation 499

method defined. If there is, it generally implies that is the preferred way to make instances
of that type.

16.4 Implementing the Bank Example
We now know enough about the syntax of object-oriented programming in Scala that

we can implement the bank example. This is being written as an application, so each class
is put in its own file. Note that this code does not do anything related to logging as that
is beyond the scope of this text, but the code has been written such that you could add
appropriate code in the methods to easily get logging in all of the places it is needed. Since
we have done the most work with the Account class to this point, let’s look at that first.

Listing 16.1: Account.scala
1 class Account private(val id:String, val customer:Customer, accountType:Int) {
2 require(accountType == Account.Checking || accountType == Account.Savings ||

accountType == Account.CD)
3 private var _balance = 0
4

5 customer.addAccount(this)
6

7 def deposit(amount:Int):Boolean = {
8 if (amount > 0) {
9 _balance += amount

10 true
11 } else false
12 }
13

14 def withdraw(amount:Int):Boolean = {
15 if (amount > 0 && amount <= _balance) {
16 _balance -= amount
17 true
18 } else false
19 }
20

21 def monthlyAdjustment():Unit = {
22 accountType match {
23 case Account.Checking => _balance = (_balance * 1.01).toInt
24 case Account.Savings => _balance = (_balance * 1.03).toInt
25 case Account.CD => _balance = (_balance * 1.05).toInt
26 }
27 }
28

29 def balance = _balance
30 def balance_=(b:Int):Unit = {
31 if (b >= 0) {
32 if (b < _balance) withdraw(_balance - b) else deposit(b - _balance)
33 }
34 }
35 }
36

500 Introduction to Programming and Problem-Solving Using Scala

37 object Account {
38 val Checking = 0
39 val Savings = 1
40 val CD = 2
41

42 private var nextAccount = 1
43

44 def apply(customer:Customer, accountType:Int):Account = {
45 val id = "0"*(7-nextAccount.toString.length) + nextAccount
46 nextAccount += 1
47 new Account(id, customer, accountType)
48 }
49 }

There are quite a few things in this code that are worth taking note of. Lines 37-49 include a
companion object. This serves two main purposes in this code. The first is a place to store
the three constants that tell us the account type. If these values were put in the class, then
every instance of the class would get their own copy. As they would all have the same values,
this would be wasteful. The object is a singleton though, so putting them in the companion
object means we get a single copy of each. In the class we refer to these constants in two
locations. On line 2 there is a check to make sure that the accountType that is passed in
matches one of the allowed values.2 The other reference is in monthlyAdjustment, where
interest is added based on the type of account.3 Note that in both of these locations, the
references to the constants are prefixed with the name of the object.

The other use of the companion object is to make certain that all instances of the
Account class have unique IDs. Up on line 1 there is some syntax that we have not
specifically introduced before. The private keyword appears in front of the argument list.
This has the effect of making instantiation private so that nothing outside of this file can call
new Account(...). If we did not do this, other code could create new account instances
with the same IDs as existing ones. Instead, we have added an apply method into the
companion object and outside code must use this method to make accounts with the
syntax Account(...). Note that the apply method does not take an ID as an argument.
Instead, there is a private var declared in the companion object that keeps track of the
next account number to use. Inside of apply, this numeric value is prefixed with zeros to
make a string seven characters long, and that is used as the ID in a call to new. The apply
method also increments the value of nextAccount so that subsequent accounts will have a
different ID. The combination of apply and making instantiation private means that outside
code can never create two accounts with the same ID.

Line 3 of Account.scala shows our first usage of this. The Account and Customer
classes have a mutual dependence. Instances of Account have to be constructed with a
reference to a Customer, and the Customer instances keep track of the accounts they have.
To deal with this, we have added line 3 to the Account that will automatically add the
new Account instance to the customer it refers to. Doing this requires passing the current
account, which means that we need to use this.

Now we can look at the Customer class. Like Account, this file includes a companion
object with an apply method that helps to create unique IDs. Unlike the Account, it is

2As has been mentioned before, there are better ways of dealing with account types that go beyond what
we have learned. Those methods would make it impossible to pass in bad values here. This approach at
least makes it a runtime error that happens immediately upon creation of an Account with a bad type.

3This example is simplified in many ways, but the contents of monthlyAdjustment are probably the most
extreme simplification. Interest rates should not be hard coded in here. Also, there should inevitably be
code that makes sure this does not happen more than once each month.

Object-Orientation 501

possible for outside code to make instances of Customer using new. The reason for this
design choice is in part to show you that it can be done, and in part based on the idea
that when a customer gets a legal name change, you might want to preserve their ID, but
the operation requires creating a new instance of Customer as the name members are not
mutable.

Listing 16.2: Customer.scala
1 class Customer(
2 val id:String,
3 val firstName:String,
4 val lastName:String,
5 private var _address:List[String],
6 private var _phone:String) {
7 private var _accounts:List[Account] = Nil
8

9 def accounts = _accounts
10

11 def address:List[String] = _address
12 def address_=(newAddr:List[String]):Unit = _address = newAddr
13

14 def phone:String = _phone
15 def phone_=(newPhone:String):Unit = _phone = newPhone
16

17 def addAccount(account:Account):Boolean = {
18 if (account.customer == this && _accounts.find(_.id == account.id) == None) {
19 _accounts ::= account
20 true
21 } else false
22 }
23

24 def removeAccount(accountID:String):Boolean = {
25 val index = _accounts.indexWhere(_.id == accountID)
26 if (index < 0) false
27 else {
28 _accounts = _accounts.patch(index, Nil, 1)
29 true
30 }
31 }
32 }
33

34 object Customer {
35 private var nextID = 1
36

37 def apply(firstName:String, lastName:String, address:List[String],
phone:String):Customer = {

38 val id = "0"*(7-nextID.toString.length) + nextID
39 nextID += 1
40 new Customer(id, firstName, lastName, address, phone)
41 }
42 }

The Customer class takes quite a few arguments. When an argument list does not fit nicely
on a single line, the format shown here is considered proper style, with one argument on
each line following the line declaring the class.

502 Introduction to Programming and Problem-Solving Using Scala

The values for the address and phone number are private vars. Assignment methods
have been added for each of them. These methods do not do anything to check the cor-
rectness of the arguments, nor do they log the changes, but that functionality could be
easily added to the methods shown here. This is the advantage of using a private var
with accessor methods, you have additional control over the values given to members even
though this code does not utilize that.

The addAccount method is interesting because it uses this to help safeguard against
adding invalid accounts. In order to be added, an account must refer to this instance of
Customer, and it must have an ID that does not already appear in the list.

The last class that is part of the bank example is the Bank class. The following code
adds a few methods to what we had shown previously for the Bank as well as a member for
storing customers. Nothing in this code should seem all that unusual.

Listing 16.3: Bank.scala
1 class Bank {
2 private var accounts:List[Account] = Nil
3 private var customers:List[Customer] = Nil
4

5 def addAccount(account:Account):Unit = accounts ::= account
6 def removeAccount(accountID:String):Boolean = {
7 val index = accounts.indexWhere(_.id == accountID)
8 if (index < 0) false
9 else {

10 accounts = accounts.patch(index, Nil, 1)
11 true
12 }
13 }
14

15 def addCustomer(customer:Customer):Unit = customers ::= customer
16 def removeCustomer(customerID:String):Boolean = {
17 val index = customers.indexWhere(_.id == customerID)
18 if (index < 0) false
19 else {
20 customers = customers.patch(index, Nil, 1)
21 true
22 }
23 }
24

25 def apply(accountID:String):Option[Account] = accounts.find(_.id == accountID)
26 def findCustomer(customerID:String):Option[Customer] = customers.find(_.id ==

customerID)
27 }

To demonstrate how we can put all of these things together and how to make an appli-
cation, we have written an object called BankBranch that includes a main method.

Listing 16.4: BankBranch.scala
1 object BankBranch {
2 def main(args:Array[String]):Unit = {
3 val branch = new Bank
4 val customer = Customer("Bob", "Builder",
5 List("123 Broadway", "Walawala, WA"), "(123) 456-7890")
6 branch.addCustomer(customer)
7 val account1 = Account(customer, Account.Checking)

Object-Orientation 503

8 branch.addAccount(account1)
9 val account2 = Account(customer, Account.Savings)

10 branch.addAccount(account2)
11 }
12 }

The purpose of this code is to illustrate how the other classes and objects can be used.
In order to run this, we must first compile it with scalac. If these are the only Scala files
in your current directory, you can compile them using scalac *.scala. If you have other
Scala files in the current directory, especially if you have script files that will not compile
properly with scalac, you will have to specify the files individually. This could be done
with a command like scalac Account.scala Customer.scala BankBranch.scala. Once
you have compiled these files, you can run the main with scala BankBranch. Note that
this command does have the .scala the way that we have done when running scripts.

16.5 Implementing the Pac-Man™ Example
Like the bank example, our version of Pac-Man™ is written as an application and is

broken across multiple files. Not everything exactly follows the design that was laid out
at the beginning of the chapter. This is to be expected. When you go to implement your
designs, you often find things that were missed or realize that some pieces do not fit together
the way that you expected them to. In this case, we also introduced some different Scala
concepts between the design presentation and this section that have altered how we build
things.

We start by looking at the Game, which as been implemented as a singleton object with
a main method that is used to run the program. The main method includes ScalaFX code
for the GUI and a timer to make the code run as well as handlers for the keyboard input.

Listing 16.5: Game.scala
1 import scalafx.Includes._
2 import scalafx.animation._
3 import scalafx.application._
4 import scalafx.scene._
5 import scalafx.scene.canvas._
6 import scalafx.scene.input._
7 import scalafx.scene.paint._
8

9 object Game {
10 val Width = 760
11 val Height = 840
12

13 private var _lives = 3
14 private var _score = 0
15

16 def lives = _lives
17 def score = _score
18 def newLife():Unit = {
19 _lives -= 1
20 }
21

504 Introduction to Programming and Problem-Solving Using Scala

22 val maze = new Maze
23

24 def main(args:Array[String]):Unit = {
25 val app = new JFXApp {
26 stage = new JFXApp.PrimaryStage {
27 title = "PacMan"
28 scene = new Scene(Width, Height) {
29 val canvas = new Canvas(Width, Height)
30 val gc = canvas.graphicsContext2D
31

32 content = canvas
33

34 onKeyPressed = (e:KeyEvent) => {
35 e.code match {
36 case KeyCode.Left => maze.player.goLeft
37 case KeyCode.Right => maze.player.goRight
38 case KeyCode.Up => maze.player.goUp
39 case KeyCode.Down => maze.player.goDown
40 case _ =>
41 }
42 }
43

44 var lastTime = 0L
45 val timer:AnimationTimer = AnimationTimer(t => {
46 val delay = (t-lastTime)/1e9
47 if (lastTime > 0 && delay > 0.1) {
48 _score += maze.updateAll()
49 Renderer.render(gc, maze)
50 lastTime = t-((delay-0.1)*1000000000).toInt
51 }
52 if (lastTime == 0) lastTime = t
53 if (lives < 0 || maze.pelletCount==0) timer.stop
54 })
55 timer.start
56 }
57 }
58 }
59

60 app.main(args)
61 }
62 }

Lines 10-22 have basic declarations, some simple accessor methods, and a declaration of a
Maze along with the instantiation of an instance of that type. In the main method on lines
24-61, we create a JFXApp and do the normal setup. Much of this should seem familiar from
chapters 11 and 12. The only thing that likely seems odd is line 50. In earlier examples, we
would have just said lastTime = t. However, for this example we wanted the “game ticks”
to happen as close to 0.1 seconds apart as possible. In testing, the timer would fire several
times before it got to 0.1 and often got to values around 0.115. The simple form would have
caused the time to “slip” by 0.015 seconds in that situation. This might not seem like much,
but it is a significant fraction of the 0.1 seconds that we desire. The extra math on line 50
sets lastTime to be the time at the actual 0.1 mark instead of however far we might have
gone past that, so that the whole game stays close to being on time. Line 53 shows that

Object-Orientation 505

our two conditions for stopping the timer are when the player runs out of lives or when the
player clears the board of all pellets.

It is worth noting that while we are presenting one complete file at a time, this is not how
it was written. Real development moves from one file to another and back again, iterating
as features are added. This approach does not just help with logic, but it helps with actually
getting things done. You should stop coding and run your program every so often to make
sure it works. You should also debug each feature as you add it. Do not try to go on to the
next feature until you have the current one working. Staying focused on a single task like
that can be challenging, but it helps tremendously with the development process.

Next up is Maze, which is declared as a class. This is where a lot of the logic of the
game actually takes place. The Maze class does not take any arguments as it always sets
things up in a default configuration. Lines 4-9 declare a number of private vars, setting
them all to default values. This can be dangerous, especially the use of null, except that
lines 11-12 calls the initMap and initContents methods that gives them all values. Earlier
iterations of the code set those values at the point of declaration, but it is useful to be able
to call them later.

Listing 16.6: Maze.scala
1 import scalafx.scene.paint.Color
2

3 class Maze {
4 private var cells:Array[Array[Int]] = null
5 private var _player:PacMan = null
6 private var _ghosts:List[Ghost] = Nil
7 private var _fruit:Option[Fruit] = None
8 private var count = 0
9 private var nextFruitType = 0

10

11 initMap()
12 initContents()
13

14 private def initMap():Unit = {
15 cells = Array(Array(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
16 Array(0,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0),
17 Array(0,2,0,0,1,0,0,0,1,0,1,0,0,0,1,0,0,2,0),
18 Array(0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0),
19 Array(0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0),
20 Array(0,1,1,1,1,0,1,1,1,0,1,1,1,0,1,1,1,1,0),
21 Array(0,0,0,0,1,0,0,0,3,0,3,0,0,0,1,0,0,0,0),
22 Array(0,0,0,0,1,0,3,3,3,3,3,3,3,0,1,0,0,0,0),
23 Array(0,0,0,0,1,0,3,0,0,-1,0,0,3,0,1,0,0,0,0),
24 Array(3,3,3,3,1,3,3,0,3,3,3,0,3,3,1,3,3,3,3),
25 Array(0,0,0,0,1,0,3,0,0,0,0,0,3,0,1,0,0,0,0),
26 Array(0,0,0,0,1,0,3,3,3,3,3,3,3,0,1,0,0,0,0),
27 Array(0,0,0,0,1,0,3,0,0,0,0,0,3,0,1,0,0,0,0),
28 Array(0,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0),
29 Array(0,1,0,0,1,0,0,0,1,0,1,0,0,0,1,0,0,1,0),
30 Array(0,2,1,0,1,1,1,1,1,3,1,1,1,1,1,0,1,2,0),
31 Array(0,0,1,0,1,0,1,0,0,0,0,0,1,0,1,0,1,0,0),
32 Array(0,1,1,1,1,0,1,1,1,0,1,1,1,0,1,1,1,1,0),
33 Array(0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0),
34 Array(0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0),
35 Array(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))
36 }

506 Introduction to Programming and Problem-Solving Using Scala

37

38 private def initContents():Unit = {
39 _player = new PacMan(9, 15, -1)
40 _ghosts = List(new Ghost(9, 7, 1, 0, Color.Red),
41 new Ghost(8, 9, 1, -50, Color.Cyan),
42 new Ghost(9, 9, 0, -25, Color.Pink),
43 new Ghost(10, 9, 3, -75, Color.Orange))
44 _fruit = None
45 count = 0
46 nextFruitType = 0
47 }
48

49 def player = _player
50 def ghosts = _ghosts
51 def fruit = _fruit
52

53 def rows = cells.length
54 def columns = cells(0).length
55

56 def cell(x:Int, y:Int):Int = {
57 if (y < 0 || y >= cells.length || x < 0 || x >= cells(y).length) {
58 if (y == 9) Maze.Open else Maze.Wall
59 } else cells(y)(x)
60 }
61

62 def pelletCount:Int = cells.map(_.count(c => c == Maze.Pellet || c ==
Maze.PowerPellet)).sum

63

64 def updateAll():Int = {
65 // Update moving stuff
66 player.update(this)
67 if (player.dying) {
68 if (player.animationCount > 10) initContents()
69 0
70 } else {
71 ghosts.foreach(_.update(this))
72 count += 1
73

74 // Eat pellets
75 val pelletScore = if (player.x>0 && player.x<cells(0).length-1) {
76 val c = cells((player.y+0.5).toInt)((player.x+0.5).toInt)
77 cells((player.y+0.5).toInt)((player.x+0.5).toInt) = Maze.Open
78 if (c == Maze.PowerPellet) {
79 ghosts.foreach(_.scare())
80 100
81 } else if (c == Maze.Pellet) 10 else 0
82 } else 0
83

84 // Check ghost intersects
85 val (ghostScore, dying) = ghosts.map(g => {
86 if ((g.x-player.x).abs < 0.8 && (g.y-player.y).abs < 0.8) {
87 if (g.scared) {
88 g.eaten()
89 (200, false)
90 } else (0, true)

Object-Orientation 507

91 } else (0, false)
92 }).foldLeft(0, false)((acc, gt) => (acc._1+gt._1, acc._2 || gt._2))
93 if (dying) {
94 player.setDying
95 }
96

97 // Check fruit intersect
98 val fruitScore = fruit.map(f => if ((f.x-player.x).abs < 0.8 &&

(f.y-player.y).abs < 0.8) Fruit.Scores(f.fruitType) else 0).getOrElse(0)
99 if (fruitScore > 0) _fruit = None

100

101 // Add fruit
102 if (count%200 == 0) {
103 if (fruit == None) {
104 _fruit = Some(new Fruit(9, 11, nextFruitType))
105 if (nextFruitType < Fruit.Orange) nextFruitType += 1
106 } else {
107 _fruit = None
108 }
109 }
110

111 pelletScore+ghostScore+fruitScore
112 }
113 }
114 }
115

116 object Maze {
117 val Door = -1
118 val Wall = 0
119 val Pellet = 1
120 val PowerPellet = 2
121 val Open = 3
122

123 val Up = 0
124 val Right = 1
125 val Down = 2
126 val Left = 3
127 val XOffset = Array(0,1,0,-1)
128 val YOffset = Array(-1,0,1,0)
129 }

The initMap method sets up the cells member with a 2D array of integers that repre-
sent the initial configuration of the maze. The numeric values map to walls, pellets, etc.
The meaning of each value is given down in the companion object on lines 117-121. The
initContents method sets up the player, ghosts, and fruit as well as some counters used
for adding fruit. This method is called any time the player dies to reset things back to where
they started.

Lines 49-62 have a number of fairly basic methods that are used to allow other classes
to get information about the maze. The cell method lets other code find out what value
is at a particular location in the maze. It is a bit more complicated than just a look up in
the array because it includes bounds checking. For squares that are outside of the bounds,
it gives back the Wall value unless they happen to be on the row that connects from one
side to the other, in which case it gives back Open.

508 Introduction to Programming and Problem-Solving Using Scala

The meat of the Maze class is the updateAll method that covers lines 64-114. This
gets called by the timer in Game roughly once every 0.1 seconds. It takes no arguments, and
results in an Int that is the number of points scored by the player in that tick. The method
begins by calling update on the player. After this, there is a check to see if the player is
in the process of dying or not. If so, it checks if that has been happening for 10 ticks yet.
If it has, it calls initContents to reset the board. Either way, it gives back 0. The more
interesting branch is when the player is not dying. Then each of the ghosts are updated,
and the count variable is incremented. You can then see subsections that are labeled with
comments for eating pellets, running into ghosts, running into fruit, and replenishing fruit.
The value that is returned is the sum of points the player got from eating pellets, ghosts,
and fruit.

The ghost interactions are the one subsection that likely needs more explanation, mainly
because it uses a foldLeft operation. This code runs through the ghosts and maps each
one to a tuple. That tuple has the number of points the player gets from that ghost in the
first element and whether the ghost killed them in the second. The if on line 86 checks
if they are close enough to interact. If they are and the ghost is scared, we tell that ghost
that it has been eaten and return points and say the player was not killed. If the ghost was
not scared, then there are no points, and we say the player was killed. If they are not close
enough to interact then there are no points and the player is not killed.

The results of that map are put through a foldLeft operation that combines them. The
first elements, which are the scores, are added up, while the second elements, whether or
not the player died, is or’ed together. If any one ghost killed the player, the player is dead.

This same logic could be done with a for loop and two vars for ghostScore and dying.
That code would look like the following.

var ghostScore = 0
var dying = false
for (g <- ghosts) {
if ((g.x-player.x).abs < 0.8 && (g.y-player.y).abs < 0.8) {
if (g.scared) {
g.eaten()
ghostScore += 200

} else {
dying = true

}
}

}

Lines 123-128 in the companion object declare a number of constants that are used in
other classes to support navigation around the maze.

Up next is the PacMan class. This class is rather true to the initial design. The data
from our design is split between arguments that are passed in from outside code and some
values that are always set to defaults. There are also a number of accessor methods.

Listing 16.7: PacMan.scala
1 class PacMan(
2 private var _x:Double,
3 private var _y:Double,
4 private var _dir:Int) {
5

6 private var _animationCount = 0
7 private var keyDir = -1
8 private var _dying = false

Object-Orientation 509

9

10 Game.newLife()
11

12 def x = _x
13 def y = _y
14 def dir = _dir
15 def animationCount = _animationCount
16 def dying = _dying
17

18 def setDying():Unit = {
19 _dying = true
20 _animationCount = 0
21 }
22

23 def update(maze:Maze):Unit = {
24 if (dying) {
25 _animationCount += 1
26 } else {
27 if ((x == x.toInt) && y == y.toInt) {
28 val allowed = (0 to 3).filter(d => {
29 maze.cell((x+Maze.XOffset(d)).toInt, (y+Maze.YOffset(d)).toInt) > 0
30 })
31 if (allowed.contains(keyDir)) _dir = keyDir
32 if (!allowed.contains(dir)) _dir = -1
33 } else if ((keyDir+2)%4 == dir) {
34 _dir = keyDir
35 }
36 if (dir >= 0) {
37 _x += Maze.XOffset(dir)/4.0
38 _y += Maze.YOffset(dir)/4.0
39 if (x < -1) _x = maze.columns
40 else if (x >= maze.columns) _x = -1
41 _animationCount += 1
42 }
43 }
44 }
45

46 def goLeft:Unit = keyDir = Maze.Left
47 def goRight:Unit = keyDir = Maze.Right
48 def goUp:Unit = keyDir = Maze.Up
49 def goDown:Unit = keyDir = Maze.Down
50 }

The first thing that should stand out here is line 10, which calls Game.newLife(). With
this line of code we make it so that creating a new PacMan instance automatically reduces
the number of lives the player has. Lines 18-21 add a method that was not in the design
which is called by the Maze when the player runs into a ghost that is not scared.

As with the Maze, the main logic of this class is contained in the update method on
lines 23-44. If the player is dying, it only increments the animation count. Otherwise, it
checks to see if the position of the player is a whole number in both x and y. The reason
for this check is that the player can only turn at an intersection, which means that the
fractional parts are zero. If they are at whole numbers, the filter on lines 28-30 checks which
directions are safe for the player to turn in. This code uses the XOffset and YOffset arrays
that are defined in the Maze companion object. You should spend a few minutes looking at

510 Introduction to Programming and Problem-Solving Using Scala

those values to understand how they work. Up is 0, and if you look at the offsets, the values
at index 0 are 0 for x and -1 for y, which is the combination you need for moving up.

After the valid directions have been determined, line 31 checks if the direction the player
has pressed is allowed. If it is, that becomes the new direction for movement. This style
of handling the input gives the game the feel that is typical for Pac-Man™, where you can
select a direction before you get to a turn, and the character will go in that direction when
it gets there.

Line 32 checks if the current direction is allowed. This line is critical because without it,
the PacMan will go right through walls when it runs into them. The else if on lines 33-35
allow the player to turn around even if they are located at a fractional block.

Lines 36-42 check is the player is moving and if so, it moves them and updates the
animation count. The movement includes checks that wrap the player from one side to the
other if they should be wrapping. Lines 37-38 include one aspect that is deceptively simple
yet very important, that is the division by 4. Clearly this makes it so that the PacMan
moves 1/4th of a cell on each tick. What is not so clear is that you cannot just divide
by any value you want. If you change this to dividing by 5, the results are very odd. The
player will not be able to take certain turns, and it will even go through walls and cause
an exception when it goes out of bounds. Why is that? Remember that arithmetic with
Doubles is not exact. Fractional powers of two can be represented exactly. Other values
tend to be infinite repeating sequences of bits. 1.0/5.0 or 0.2, does not have an exact binary
representation. 1.0/4.0 does. So the decision to divide by 4.0 was not arbitrary. Due to the
way that turning is only allowed on whole values, some care must be taken to use values
that have exact binary representations and which add to whole numbers. So 3.0/8.0 has
an exact binary representation, but you cannot add them nicely to get to 1.0. If you want
to adjust the speed in ways that does not do exact binary arithmetic, you could change
the checks to something like (x-x.toInt).abs < 1e-8, using the technique described in
section 13.3.

Note that outside code cannot directly set _x and _y or any of the other values after
creation. This was true for Maze as well, but that might not have seemed as interesting
given how much of the game is controlled by the Maze. For PacMan, this really highlights
the significance of encapsulation given to us by writing this in an object oriented method. If
the player ever moves or behaves in a way that it is not supposed to, you know immediately
that these 50 lines are code are where you need to look because nothing else can move or
alter the direction of a PacMan instance.

Up next is the Ghost class, which is very similar to PacMan in many ways. The Ghost
has the ability to be scared and to be eaten by the player. In addition, the movement has
to be done completely through code, not based on input from the user.

Listing 16.8: Ghost.scala
1 import scalafx.scene.paint.Color
2

3 class Ghost(
4 private var _x:Double,
5 private var _y:Double,
6 private var _dir:Int,
7 private var _animationCount:Int,
8 val color:Color) {
9

10 private var _scared = false
11

12 def x = _x
13 def y = _y

Object-Orientation 511

14 def dir = _dir
15 def animationCount = _animationCount
16 def scared = _scared
17

18 def scare():Unit = {
19 _scared = true
20 _animationCount = 0
21 }
22

23 def eaten():Unit = {
24 _x = 9
25 _y = 9
26 _scared = false
27 }
28

29 def update(maze:Maze):Unit = {
30 if (animationCount >= 0) {
31 if ((x == x.toInt) && y == y.toInt) {
32 if (maze.cell(x.toInt, y.toInt-1) == Maze.Door) {
33 _dir = 0
34 } else {
35 val allowed = (0 to 3).filter(d => {
36 val cell = maze.cell((x+Maze.XOffset(d)).toInt,

(y+Maze.YOffset(d)).toInt)
37 cell > 0 && (d+2)%4 != dir
38 })
39 _dir = allowed(util.Random.nextInt(allowed.length))
40 }
41 }
42 if (dir >= 0) {
43 _x += Maze.XOffset(dir)/4.0
44 _y += Maze.YOffset(dir)/4.0
45 if (x < -1) _x = maze.columns
46 else if (x >= maze.columns) _x = -1
47 }
48 }
49 _animationCount += 1
50 if (scared && animationCount > Ghost.ScaredTime) {
51 _scared = false
52 }
53 }
54 }
55

56 object Ghost {
57 val ScaredTime = 100
58 }

Here again, the main logic is in the update method. The Ghost does not do anything unless
the animation count is non-negative. This allows us to easily get the ghosts to leave their
home base one at a time. The logic for turning is like that for PacMan in that they can
only turn when x and y have no fractional part, and it finds the allowed directions using a
filter. One difference is that the random selection is not allowed to send the Ghost back in
the opposite direction it is currently heading. The Ghost picks randomly from those allowed
directions. Lines 32-33 are a special case to get the Ghost to come out of their home area
as soon as they move below the Door cell.

512 Introduction to Programming and Problem-Solving Using Scala

The end of update checks if the Ghost has reached its maximum time being scared
and sets that value to false if it has reached that max. The companion object defines the
constant for how long the ghosts remain scared.

The main thing missing from this Ghost implementation is that they always turn ran-
domly, with no regard to where the player is. In reality, they should generally head toward
the player when they are not scared, and they should head away from the player when they
are scared. In the actual game, they also move slightly faster than the player when they
are not scared and slightly slower when they are. The intelligent direction selection can be
implemented with the help of the recursive shortest path algorithm introduced in chapter
15. Making these enhancements is left as an exercise for the reader.

The simplest class is Fruit. It does nothing more than store a location and a type.
There is also a companion object that stores information related to Fruit.

Listing 16.9: Fruit.scala
1 import scalafx.scene.paint.Color
2

3 class Fruit(
4 val x:Double,
5 val y:Double,
6 val fruitType:Int) {
7 }
8

9 object Fruit {
10 val Cherry = 0
11 val Strawberry = 1
12 val Orange = 2
13 val Scores = List(100, 300, 500)
14 val Colors = List(Color.Red, Color.Fuchsia, Color.Orange)
15 }

The last file that is part of the Pac-Man™ implementation is the Renderer. Because this
implementation only allows for one of these at a time, it has been declared as a singleton
object. The fact that there are no data members in this tells us that it should probably
be an object instead of a class. A class would allow us to create multiple instantiations,
but why should we make multiple instances of a type that does not have any data in it?
Generally, the answer is that we should not; so, in that situation, an object declaration is
the better choice.

The object has a single method called render that takes a GraphicsContext and a
Maze. It then draws everything in that Maze to the GraphicsContext.

Listing 16.10: Renderer.scala
1 import scalafx.scene.canvas._
2 import scalafx.scene.paint._
3 import scalafx.scene.shape.ArcType
4

5 object Renderer {
6 def render(gc:GraphicsContext, maze:Maze):Unit = {
7 gc.fill = Color.Black
8 gc.fillRect(0, 0, Game.Width, Game.Height)
9 val cellWidth = Game.Width/maze.columns

10 val cellHeight = Game.Height/maze.rows
11 for (i <- 0 until maze.rows; j <- 0 until maze.columns) {
12 maze.cell(j, i) match {

Object-Orientation 513

13 case Maze.Wall =>
14 gc.fill = Color.Blue
15 gc.fillRect(j*cellWidth, i*cellHeight, cellWidth, cellHeight)
16 case Maze.Pellet =>
17 gc.fill = Color.White
18 gc.fillOval(j*cellWidth+3*cellWidth/8, i*cellHeight+3*cellHeight/8,

cellWidth/4, cellHeight/4)
19 case Maze.PowerPellet =>
20 gc.fill = Color.White
21 gc.fillOval(j*cellWidth+cellWidth/4, i*cellHeight+cellHeight/4,

cellWidth/2, cellHeight/2)
22 case Maze.Open =>
23 case Maze.Door =>
24 gc.fill = Color.LightGray
25 gc.fillRect(j*cellWidth, i*cellHeight+cellHeight/4, cellWidth,

cellHeight/2)
26 }
27 }
28 maze.ghosts.foreach(g => drawGhost(gc, g, cellWidth, cellHeight))
29 drawPacMan(gc, maze.player, cellWidth, cellHeight)
30 maze.fruit.foreach(f => {
31 gc.fill = Fruit.Colors(f.fruitType)
32 gc.fillOval(f.x*cellWidth+cellWidth/4, f.y*cellHeight+cellHeight/4,

cellWidth/2, cellHeight/2)
33 })
34 gc.fill = Color.White
35 gc.fillText(Game.score.toString, 10, 20)
36 for (i <- 0 until Game.lives) {
37 gc.fill = Color.Yellow
38 gc.fillArc(400+i*cellWidth, 0, cellWidth, cellHeight, 45, 270, ArcType.Round)
39 }
40 }
41

42 private def drawPacMan(gc:GraphicsContext, pm:PacMan, cellWidth:Double,
cellHeight:Double):Unit = {

43 gc.fill = Color.Yellow
44 if (pm.dying) {
45 val centerAngle = 90
46 val openAngle = pm.animationCount*18
47 gc.fillArc(pm.x*cellWidth, pm.y*cellHeight, cellWidth, cellHeight,

centerAngle+openAngle, 360-2*openAngle, ArcType.Round)
48 } else {
49 val openAngle =

45*math.sin(pm.animationCount/2.0)*math.sin(pm.animationCount/2.0)
50 val centerAngle = pm.dir match {
51 case Maze.Up => 90
52 case Maze.Right => 0
53 case Maze.Down => 270
54 case Maze.Left => 180
55 case _ => 0
56 }
57 gc.fillArc(pm.x*cellWidth, pm.y*cellHeight, cellWidth, cellHeight,

centerAngle+openAngle, 360-2*openAngle, ArcType.Round)
58 }
59 }

514 Introduction to Programming and Problem-Solving Using Scala

60

61 private def drawGhost(gc:GraphicsContext, ghost:Ghost, cellWidth:Double,
cellHeight:Double):Unit = {

62 gc.fill = if (ghost.scared) {
63 if (ghost.animationCount < Ghost.ScaredTime-20 || ghost.animationCount%10>2)

Color.DarkBlue else Color.AliceBlue
64 } else ghost.color
65 gc.fillArc(ghost.x*cellWidth, ghost.y*cellHeight, cellWidth, cellHeight, 0,

180, ArcType.Round)
66 gc.fillRect(ghost.x*cellWidth, ghost.y*cellHeight+cellHeight/2, cellWidth,

cellHeight/3)
67 }
68 }

Lines 11-27 draw the grid of the Maze, including the pellets. There are separate methods
that handle the drawing of the PacMan and the Ghosts. After those are called, the Fruit is
drawn then the score is written out as are graphical representations of however many lives
the player has left.

The result produced by this looks like figure 16.2. The Renderer could be enhanced in
a number of different ways, especially the representations of the ghosts and the fruit, but
even with this fairly short section of code, the result is highly recognizable and the full code
produces a game that it generally playable.

Hopefully these different examples have given you a feel for the general concepts of
object-orientation and how you think about programs when using it. There is a lot more
left to explore, but that is left for Object-Orientation, Abstraction, and Data Structures
Using Scala[1].

16.6 End of Chapter Material

16.6.1 Summary of Concepts

• Objects are constructs that combine data and the functionality that operates on that
data.

• The standard way of making objects in Scala is to define a class and instantiate
objects from it. You can think of a class as a blueprint for making objects.

– A def declaration in a class defines a method. A val or var declaration defines
member data.

– classes can take parameters. By default they are not members. Adding val or
var in front of the name makes it member data.

– By default, constructs declared inside of a class are public and can be seen by
any code. A big part of the power of object-orientation comes from the ability to
hide things so that other code cannot get to it. The private modifier makes it so
no code outside of the class can see the declaration. There is also a protected
modifier that makes declarations visible only to subtypes.

• Scala also allows object declarations which create singleton objects. These cannot
take arguments and are not instantiated with new. A single instance just exists for
the ability to use it.

Object-Orientation 515

FIGURE 16.2: This figure shows the window created by running the Pac-Man™ game.

516 Introduction to Programming and Problem-Solving Using Scala

– Scripts are good for small programs, but larger programs are written and run
as applications. The entry point to an application is defined by a main method
in an object. Top level declarations are split to different files. Code is compiled
with scalac and run using scala.

– An object with the same name as a class can be declared in the same file, and it
becomes a companion object. Companions have access to private declarations.

16.6.2 Exercises

1. Alter the Ghost class so that it makes more intelligent direction choices to head
toward or away from the player. Note that they cannot always make the best choice
or the game becomes impossible.

2. Alter the Ghost class so that they move faster than the player when they are not
scared and slower when they are.

3. You can turn any script that you wrote previously into an application by embedding
everything into an object in the main method. The results of this should compile
with scalac and the run with scala.4

The result of this simple conversion is not generally ideal. Any method or case class
declarations should generally be pulled out of main. The methods likely should go
inside of the object, but outside of main. If those methods are not generally useful,
they should be made private. The case classes could go inside of the object where
they might or might not be private, depending on how generally useful they are.
However, if they truly stand on their own and have meaning, they should go outside
the object and into a separate file bearing their name.

The results of this modification might not compile. That will depend on the quality
of the original code and whether you used variables that were declared outside of
methods in the methods. If you use variables defined outside of the methods in their
body, you have one of two choices. Generally your first choice should be to pass those
variables in by adding extra parameters to the method. If a variable really deserves
to be a data member/property of the object, it can be moved up a level so it too is
in the object, but not in main.5

Your goal for this exercise is to run through this process on a number of scripts that
you wrote earlier in the book. When you do this it is recommended that you make a
subdirectory for each script you are converting, then copy files into there. This way
you not only preserve the original script, you make it easier to compile that single
application. Doing this on a number of scripts will really help to build your feel for
how this new approach differs from what we had been doing previously.

4. Another thing that you can do to help you get used to some aspects of the object-
oriented model is to convert case classes over to normal classes. This is generally
a less significant modification, but it will require some changes in other parts of the
code such as forcing you to use new when instantiating an object. You will also lose
the copy method.

4Remember that when you run an application with scala you give only the name of the object, not the
name of the file. Most of the time the file name should start with the object name so you are just leaving
off the .scala.

5Note that if a variable is set by user input, it almost certainly needs to stay in main. Having singleton
objects that request users to enter input will lead to very odd and unexpected behaviors in larger programs.

Object-Orientation 517

While converting scripts to applications has some general use to it, keep in mind that
not all case classes need to be changed. The case classes exist in Scala for a reason
that goes beyond the educational purposes that have benefited us in this book. It is
quite possible that a number of your case classes should ideally remain that way
over the long term. Practice with changing them is good for you to see how that
matters, but it is not always something you want to do.

16.6.3 Projects

All the projects in this chapter switch from running as scripts to running as applications.
That means that you need to run scalac first to compile the application, then run scala
on just the name of the object you put the main method in. This also allows you to split
code up into separate files for different classes and objects. All code must be inside of a
class or an object for this approach to work. If you put the files for the project in their
own directory you can compile them all by running scalac *.scala.

1. One way to build on top of project 15.3 is to give the user the ability to plot functions.
For this to work, the formula parser needs to support variables.

In the formula parser, there were two possible cases where you did not find an operator:
a number and parentheses. The variable becomes a third possibility. To keep things
simple for now, the only variable allowed in a formula will be x. So if you do not find
an operator and the value of the String you are parsing is “x”, you will say it is a
variable. To use variables, you need an extra argument to the evaluation, a Double
that represents the value of the variable x.

To fit in with the contents of this chapter, you are to make your code for this object
oriented by having it run as an application and including two separate classes called
Plot and Formula. The Formula class is where your earlier parsing code will go.
The class should take one argument that is a String for the formula. You will
put the parsing code into a method in that class. The method should take a single
argument of x:Double. It does not need to accept a String because the class as a
whole knows what formula is being used. You could also add things like trigonometric
function support so that you can plot more interesting curves.

The Plot class will keep a private var List that tells it all the formulas that are
to be plotted. This List could contain instances of Formula or of some case class
that groups a Formula with a Color so that different functions are drawn in different
colors. The Plot also needs to keep bounds for the x and y axes. You should put a
draw(gc:GraphicsContext)method into Plot that can be called from the application
itself. That method will loop through the different Formula objects, evaluating them
at proper points inside the range to be plotted, and connecting the points to draw a
line for the function.

You can decide exactly how to create the application. Clearly the object will need
to have a main and include a JFXApp that has a Canvas and a GraphicsContext
with code that calls draw on a Plot object. If you want an extra challenge to make
the application more useful you can add the capability for the user to edit settings
on the Plot. As with previous plotting work, it is recommended that you not try
to support labels on axes. However, if the range or domain crosses zero, you might
consider drawing in lines for the axes themselves.

518 Introduction to Programming and Problem-Solving Using Scala

2. If you did project 15.3 and you did gravity integrations before that, then you can
consider doing this option. The basic idea is that you will add variable support to
your formula as described in the previous project, and then have the user type in a
force formula that is used instead of gravity.

In the GUI for your integrator you should have a text field that lets users input
a formula. You should use “x” for the distance between the bodies. You can also
define standard variables that are used, like “ma” and “mb” for the masses of the
first and second particles in an interaction. Using this, gravity would be input as
“-ma*mb/(x*x)”. A spring connection would be "-x". You can play with other options
as well and see how they change the way particles move.

To make this work with the Formula type described above, you will need to build
a String where the variables like ma and mb have been replaced by the proper nu-
meric values for the masses of the particles being considered. You might even consider
keeping those formulas in an Array[Array[String]] so that they do not have to
be rebuilt each time. Then you have the Formula evaluate using the proper distance
between the particles.

You could also extend the Formula type so that it accepts variables for x, ma, mb, and
possibly others that you want to define. This second approach is less than ideal for
the Formula type as it makes it less generic, but is probably the easiest way for you
to get some flexibility is user force functions.

Note that this version of the integrator is going to be significantly slower than what
you did before because every force calculation involves String parsing.

3. If you did the Tron game in an earlier project, you could update it to be object
oriented. For Tron you can make a class that represents a light cycle including its
position, direction, and color. It could have a method called move that alters the
position appropriately for the direction. Other methods could include turning left or
right that are called by handlers for key presses or a draw method that puts a point
at the appropriate location. You might also encapsulate whether a cycle is alive or
not into the class.

With this change it is now feasible to add in more players and have walls from one
player disappear when that player dies. Extend the game to have three human players
(or add a computer player) and make it so that when a player dies, the line for that
player goes away.

4. If you worked on any other type of graphical game in earlier chapters, you should also
be able to convert it to be an application with an object-oriented approach by making
the different elements of the game into classes that store the relevant information
and have appropriate methods.

5. If you implemented the Mandelbrot set calculation and display previously, this is the
project for you. First, use what you have learned in this chapter to make a class
called Complex that represents complex numbers and alter your original Mandelbrot
calculations to use that. Once you have done that, you will take further advantage of
it by adding the ability to display Julia sets of quadratic polynomials.

Every point in the Mandelbrot corresponds to one of these Julia sets. The equation
for a Julia set looks much like that for the Mandelbrot set, zn+1 = z2n + c with c
being a fixed value and z0 being the point in the plane you are calculating for. By
contrast, the Mandelbrot set used a different c value for each point and z0 = 0 so

Object-Orientation 519

z1 = c. Again, you iterate until either the value leaves the area around the origin or
until some pre-specified number of iterations.

If the user clicks on a location (use the MouseClicked event) then you should pop up
another window (use Stagefor this) with a different panel that will draw the Julia set
associated with the point the user clicked on. You can decide what functionality you
want to put into window. It should start with a bounds of r ∈ [−2, 2] and i ∈ [−2, 2]
for the real and imaginary axes, respectively. It should not be hard to add zooming,
but that is not required.

6. This project continues project 8.5, where you had to figure out how many elements
of each type were on the different sides of a chemical equation. You should recall that
the output of that program was something like the following.

C: a*1=d*1
H: a*4=c*2
O: b*2=c*1+d*2

We want to treat this as a system of linear equations and solve it to find the proper
values of a, b, c, and d. These particular formulas give you three equations for four
unknowns. If you remember systems of equations, that is typically not a good thing
as the system is underdetermined so there are an infinite number of solutions. The
easy way to fix that is to assume that a certain number of the coefficients are 1 so
that you are left with equal numbers of equations and unknowns.

The form given above would be fine for solving this equation by hand, but for solving
it on a computer we will want to move things around a bit. The idea is that we want
to get it into the form Ax = y, where A is a matrix giving the explicit numbers in the
equations, x is a vector with the variables we are solving for, and y is a vector with
whatever constants wind up being on the right side of the equal sign. Let us make this
more explicit by rearranging the equations above into something more like the form
we want.

1*a-1*d=0
4*a-2*c=0
2*b-1*c-2*d=0

Now we have to pick a coefficient to set to 1 so we get down to equal numbers of
equations and coefficients. Any will do equally fine, but programmatically you will
probably find it is easiest to set the last coefficient to a constant value (so everything
is still zero indexed in your code). In this case that is d. If we do that and move
constants to the right side we get the following equations.

1*a=1
4*a-2*c=0
2*b-1*c=2

This can be transformed into Ax = y if

A =

 1 0 0
4 0 −2
0 2 −1

520 Introduction to Programming and Problem-Solving Using Scala

and

y =

 1
0
2

 .
Both x and y are column vectors here so they have a single column and multiple rows.
Remember that

x =

 a
b
c

and that is what we want to solve for. The way you will do this is through a process
called Gaussian elimination. It turns out that there are many methods of doing this
that have different numerical properties. Gaussian elimination is not the best, but it
is the simplest to describe and sufficient for our purposes. Gaussian elimination is also
exactly what you would do if you were solving this problem on paper so hopefully it
will make sense.

What we do in Gaussian elimination is multiply and add together rows in A and y to
remove coefficients and turn A into a triangular matrix. We might also have to swap
rows at certain times. In fact, we will do that generally to improve numerical stability.
To begin with, we want to remove the a term from everything but the first row. We
could do this with A as it is, but for numerical reasons it is best if we keep the largest
coefficient. You will see other reasons for this when we remove b. So, the first thing
we do is we note that the largest coefficient of a is 4, and it is in the second row; so,
we swap the first and second rows. Note that we swap them in both A and y.6 This
gives the following values.

A =

 4 0 −2
1 0 0
0 2 −1

and

y =

 0
1
2

Now we eliminate the a terms in the second and third rows by multiplying their values
appropriately so that when we subtract them from the top column we do not have
anything left. If the a term is already zero in a row we can leave it alone. In this case
we will remove the a term from the middle row by multiplying it by 4 and subtracting
the top row from it. We will do nothing with the bottom row. This gives the following
values.

A =

 4 0 −2
0 0 2
0 2 −1

and

y =

 0
4
2

Now the top row is set so we look at the smaller nested matrix ignoring the first row
and column. We want to eliminate the b coefficients from that. Here it really matters

6The fact that value in both A and y need to be swapped at the same time means that your implemen-
tation could represent both A and y in a single Array[Array[Double]] where each inner array stores a row
of A followed by the corresponding y value.

Object-Orientation 521

that we swap up the row with the largest coefficient because what is there right now
has a zero coefficient and that will cause division by zero if we do not move it. We do
the swap and since the last row already has a zero in the b coefficient we will not do
anything else. That leaves us with the following values.

A =

 4 0 −2
0 2 −1
0 0 2

and

y =

 0
2
4

This we can solve by working our way up the matrix. The bottom row tells us that
c = 2. We plug that into the next row and get 2*b-1*c = 2*b-2 = 2 and find b =
2. It is easy for us to say that, but we should probably examine how the computer
will find these values. For the first one, the computer simply does c = y(2)/A(2)(2).
Then as we move up we have to do some loops to subtract things off before we do
the division. In this case b = (y(1)-c*A(1)(2))/A(1)(1). Note that we are always
dividing by the component on the diagonal, and we subtract off all the terms to the
right of the diagonal. Now we are down to our top equation which is a = 2*c/4 so a
= 1. In the program that will be a = (y(0)-c*A(0)(2)-b*A(0)(1))/A(0)(0). The
values of y(0) and A(0)(1) are both zero, but the math in the program will include
them, and it will not matter.

Your program should take an input just like the earlier project where you type in a
chemical equation. It should then print out the same output as in that assignment
and follow that with a solution. In this case it would print out “a=1 b=2 c=2 d=1”
as the last line of output. While this example does not show it, there might be some
decimal points in there as well. If you want an extra challenge you can scale things
up so they are all integers.

Make this object oriented by making an application and having a class that represents
a chemical formula. You can add methods to access the information that is calculated
using the approach described above.

7. It is time to make your map program into a true text adventure game. It does not
matter how you do this, but you need to add in a goal to the game and have it inform
the player if he/she wins or loses. Most of the original text adventure games had
some type of puzzle solving where the items could interact with one another or with
rooms in certain ways to make things happen. You probably do not want to go the
RPG route and have equipment, combat, and the like though simple combat might be
feasible. You must add a “help” command which prints out the objective of the game
and how to play. This should read and print the content of a file so you do not have
to type in the full help in print statements.

8. If you did project 15.1 for the ray tracing with recursion and the graphics projects
before it, now it is time to add lighting and proper colors and make it so that you
have a real image. You will also organize things into an application with objects and
classes.

You already have a case class scene that includes spheres, planes, and lights. So far
you have not made use of the lights. Each of the geometry objects and lights should
have a color attached to it. You need to write a function that takes a ray and the scene

522 Introduction to Programming and Problem-Solving Using Scala

and tells you what color to use. If it never hits anything the color should be black.
It is recommended for this that you make your own class called DColor that uses
Doubles for the red, green, blue, and alpha values. You can put in methods to scale
and combine these in meaningful ways. This might include a + method for adding
DColors and a * method for scaling when multiplied by a Double.

The reason for using your own DColor class is that you can represent colors with
components that go outside the normal 0.0 to 1.0 range when you are doing calcu-
lations. You only have to bring things back to that range when you build a normal
Color object. That operation makes another good method for the DColor type.

You should also update the existing ray tracer code so that it uses classes for the
various components including points/vectors, spheres, planes, lights, etc. The Point
and Vect7 classes in particular can have methods for doing mathematical operations
that will make your code much simpler and easier to read. Methods like mag and
normalize could also come in handy.

To color a point you need the color of the object that was hit, and the lighting on
that point. To get the lighting, send a ray from the point of contact to the light
source. If there is any geometry in the way (t value between 0.0 and 1.0), then that
point is shadowed and the light does not get to it. If there is not anything in the
way, that light contributed to the point. The color should be the component wise
product of the colors of the light and the object hit, scaled by the cosine of the angle
between the normal and the direction to the light. To find the cosine, keep in mind
that −→a ·

−→
b = |a| |b| cos θ. To make this easier, you should probably store the colors of

lights and geometry using DColor. This hopefully helps to demonstrate why putting
proper methods in the DColor, Point, and Vect will help to make the code easier to
write and to read.

If the geometry that is hit is reflective, you do the recursive call to find what it hits
and add the resulting colors,scaled by the appropriate fractions, together to get the
color value of the incoming ray.

9. You can make the scheduling script from project 15.6 into an object-oriented appli-
cation. To do this, you want to put a body on your Course case class. It is possible
that you will leave it as an immutable case class and just add methods to it. The
methods should probably include one that takes another Course and determines if
the two overlap or not. There might also be methods designed to do specific types of
copy operations that you find yourself doing frequently, such as making a copy of a
course at a different time or with a different professor.

The fact that the choice of professor often impacts how much you want to take a
course, you could split this off and make a class called Professor that has the name
of the Professor and a favorability rating. The Course could then hold a reference
to Professor and have a rating that is independent of the professor. A method can
be written to give you the combined favorability. This way you can easily copy course
options with different professor selections and have that change automatically taken
into account.

You can also build a mutable Schedule class that keeps track of what the user wants
in a schedule along with what has been met so far from the courses that have been
put inside of the schedule. Put this all in an application and tie it together in a GUI.

7There is a standard collection type called Vector. We suggest the shorter name Vect so as not to conflict
with that.

Object-Orientation 523

10. To upgrade the recipe project from 15.5 to be more object-oriented, you will convert
case classes to have methods and possibly make them mutable classes. You will
also move the main functionality of the script into an object with a main method.

In addition to having classes for Pantry, Recipe, and Item, you might want to have
a class that keeps track of all the known Item types that have been used in the
program. That class should have methods that facilitate looking up items by names
or other attributes so that users do not wind up creating duplicates of Item objects.

11. The music library script from project 15.9 can be converted to an object-oriented
application by filling out the different case classes with methods or turning them
into mutable classes.

You can also make types for play lists or other groupings of information that would
benefit from encapsulation. Put the main script into an object with a main and you
have an application.

12. There are a number of features of the L-Systems script from project 15.4 that call for
object-orientation. Starting at the top, an L-System should be represented by a class
that includes multiple Productions as well as an initial value. The Production type
should be a class that includes a Char for the character that is being changed and a
String for what it should result in.

One of the advantages of encapsulating a production in an L-System is that you can
make probabilistic productions. These start with a single character, but can result
in various different Strings depending on a random value. Whether a Production is
deterministic or not does not really matter to the whole system as all the system does
is ask for what a given character will be converted to.

Using a String to represent the state of the L-System at any given time works fine,
but there is some benefit to creating your own class that is wrapped around a String.
This class might also include information on what generation you are at in applying
the productions. The advantage of this is that the type makes it clear this is not any
random String; instead, it is the state of an L-System.

You should make these changes and adjust the script to go into an object with a
main to create a complete application.

Additional exercises and projects, along with data files, are available on the book’s web
site.

http://taylorandfrancis.com

Chapter 17
Wrapping Up

17.1 What You Have Learned . 525
17.2 IDEs (Eclipse) . 526
17.3 Next Steps . 528
17.4 End of Chapter Material . 528

17.4.1 Exercises . 528

We have reached the end of our tour of basic programming for problem solving with Scala.
While this book has covered a good number of different topics, this is only a basic intro-
duction to programming, which is but a stepping stone into the field of computer science.
The goal of this book was to lay a foundation that you can build on going forward. Now it
is your job to continue the construction process.

17.1 What You Have Learned
This book focused primarily on basic constructs used to tell a computer how to do things.

You learned the use of conditional logic and looping constructs that could be put around
simple sequential commands to express actions that you wanted to have the machine carry
out. You learned how to break problems into pieces. Primarily the approach was to build
separate functions that handled one part of the problem at a time, and ways of grouping
data that made sense. At the very end you got a brief introduction to the approach of
decomposing problems into objects that combine data with functionality. This learning to
break problems apart should have had an impact on how you looked at many things through
your life and in your studies outside of computer science. The basic constructs of conditional,
functions, loops, and basic collections will be applicable, with minor modifications, to any
other language that you might study in the future.

The modern world is teeming with data. Data is produced by all types of devices during
all types of activities. You have learned how to give instructions to a computer to make it
process data for you. There are limits on how much you can do by hand, but a computer
can read and process millions or even billions of values quickly. You now know how to pull
this data from files or over networks. You can deal with data in flat text or XML. You can
use higher-order constructs to do the processing.

You also have the ability to write programs that display GUIs and draw custom graphics,
allowing you to make programs that interact with the user in whatever manner you desire.

525

526 Introduction to Programming and Problem-Solving Using Scala

FIGURE 17.1: This is the blank workspace that you will see when you start up Eclipse
for the first time.

17.2 IDEs (Eclipse)
There is still a lot more for you to learn about Scala, programming, and the field of

computer science. In order to not only learn more, but to maintain the skills you have
developed, you need to practice. Many students find the combination of text editor and
command line tools that we have used through this book to have an unnatural feel, as it is
not the way they normally interact with their computers. Most students are more used to a
GUI interface than to command line. Having discussed applications and the object-oriented
approach to programming in chapter 16, it is now possible to use development environments
that have this style of interaction.

Programs that provide complete support for writing code, running programs, and de-
bugging are called IDEs, short for Integrated Development Environments. The officially
supported IDE for Scala is Eclipse. You can download a version of Eclipse with support for
Scala already included at http://scala-ide.org.1 If you download, install, and run this,
when you go to the workspace you should see a window like figure 17.1.

When you want to code in Eclipse, you cannot just create a file and go. First, you have
to create a project. You can do this with File > New > Scala Project or by right clicking
on Package Explorer area and selecting New > Scala Project from the context menu. You

1The version of Eclipse used by the bundle often lags a bit behind the newest version of Eclipse. You
can also download Eclipse for Java from http://java.oracle.com and add the Scala plug-in using the link
at http://scala-ide.org/download/current.html.

http://scala-ide.org/download/current.html
http://java.oracle.com
http://scala-ide.org

Wrapping Up 527

FIGURE 17.2: This is the Eclipse workspace after we have created a project and an object
that runs “Hello World”.

probably want to make a new project for each major program you write. You should be
able to use the default options for the project after you enter the name.

Once you have a project, click on the triangle to expand it and right click on the src
directory to bring up a menu that will let you create a file with code. Given what you have
learned, you should select to make a “Scala Object”. As we did with our scripts, you could
start with a “Hello World” program, so call the object HelloWorld. Add a main and a print
statement into the object that is created. At this point, your Eclipse window should look
something like figure 17.2.

To run this code, right click on the text editor or on the “HelloWorld.scala” file in the
Package Explorer and select Run As > Scala Application. This will pop up a console at the
bottom of the workspace that shows the output. You can create more objects or classes
to build whatever applications interest you.

Note that if you want to make a program with ScalaFX there is one other step that you
will have to take. You have to point Eclipse to the ScalaFX JAR file that you have been
using with your scripts. To do this, right click on your project and select Build Path > Add
External Archives... then go select the JAR file on your file system. Once you have done
that, you will be able to include ScalaFX types in your applications and run them.

528 Introduction to Programming and Problem-Solving Using Scala

17.3 Next Steps
You could redo lots of the things that you have done through this book in Eclipse, but

what are your options for continuing to learn? If you want to continue to work with Scala and
gain a solid foundation in key concepts of computer science, we would certainly recommend
Object-Orientation, Abstraction, and Data Structures Using Scala[1]. In addition to the
topics that are listed in the title, this book gives you an introduction to parallelism through
multithreading and a coverage of networking.

Whatever route you take, you really should strive to learn more about computer science.
These remarkable machines have become integrated in every aspect of our daily lives, often
in ways that are remarkably non-obvious because they have become so ubiquitous. Even
when you do not see them, computers and the software that they run have a dramatic
impact on your life. Learning how to tell these incredible devices how to do what you want
is an increasingly essential skill for modern life.

17.4 End of Chapter Material

17.4.1 Exercises

1. Back in project 1.2 you were asked to compare programming to three other activities
based on an extremely limited introduction. Now that you have significantly more
experience, revisit that same question.

2. Write one of the projects from chapter 16 in Eclipse.

Appendix A
Getting to Know the Tools

A.1 Unix/Linux (includes Mac OS X) . 530
A.1.1 Command Line . 530

A.1.1.1 Files and Directories . 530
Aside . 532

A.1.1.2 Aside . 535
A.1.1.3 Helpful Tips . 535
A.1.1.4 Permissions . 536

Aside . 538
A.1.1.5 Compression/Archiving . 538
A.1.1.6 Remote . 539

Aside . 540
Aside . 540

A.1.1.7 Other Commands . 541
A.1.2 I/O Redirection . 542
A.1.3 Text Editors (vi/vim) . 543

vi Settings . 545
A.2 Windows . 545

A.2.1 Command Line . 546
A.2.1.1 Files and Directories . 547

Aside . 547
A.2.2 Text Editors . 548

A.2.2.1 Edit . 548
A.2.2.2 Notepad . 548
A.2.2.3 Others . 549

A.2.3 Other Commands . 549
A.3 End of Appendix Material . 550

A.3.1 Summary of Concepts . 550
A.3.2 Exercises . 551

Everything you do on a computer involves the running of software. At the most basic level,
your computer has some operating system on it that controls everything that happens,
organizes data, and lets you execute other programs inside of it. What operating system
and tool set you choose to use has a significant impact on how you go about doing things.
This chapter walks you through some tools that you might use and might not be familiar
with. It then moves on to look at some of the tools that are part of a standard Scala
distribution that we will use through the rest of the book.

Your choice of tools begins with your choice of operating system. It is very likely that
you are familiar with common graphical environments on a Windows PC or Macintosh
environment. For that reason, we are not going to take time to introduce them. Instead,
this appendix talks about how you interact with various operating systems using a text
interface. There are a number of reasons why it is good to be able to use this type of
interface. For our purposes, the most significant is that it is the way we will interact with
some of the Scala tools that we will be using.

529

530 Introduction to Programming and Problem-Solving Using Scala

A.1 Unix/Linux (includes Mac OS X)
This section covers the environment you will encounter in a Linux and Unix environment.

Mac OS X is built on top of BSD Unix so everything here applies to the Mac. If you are on
a Mac you can open a terminal to get access to the command-line tools.

A.1.1 Command Line

Most people these days are used to the point and click approach of a Graphical User
Interface, GUI. This is not how people have always interacted with computers. Indeed, a
GUI takes a significant amount of processing power to run. For many years, computers had
to have a simpler interface. Even today, there are times when you will need to interact with
a computer without a GUI. This can happen when something goes wrong with the computer
or if you need to use a computer that is located far away. There are also situations where
people will choose to not run a GUI on a computer simply because they do not want to
waste the processing power.

Even when a computer is running a GUI, you can choose to interact using a command
line interface. Using the command line itself provides you with abilities that are not easily
accomplished with a GUI. The reason why many people choose not to use a command
prompt is that it does have a bit of a learning curve. You have to know some basic commands
to be able to do anything. If you are going to spend much time working on computers it is
worth putting in the small amount of effort to learn the basic commands for the command
prompt interface on your OS. Odds are that you will find that not only does it speed things
up on a regular basis, but there will be times when it allows you to do things that you
simply could not do otherwise.

Figure A.1 shows a terminal window under Linux that gives a command prompt. Your
command prompt might look different than this. In general, the prompt should display
some useful information followed by a character that signifies the end of the prompt. In
this figure the prompt shows the user name and computer name followed by the current
directory and a $. It is the $ that signifies the end of the prompt. Commands that you enter
appear after the $. Anything the command displays will be printed out below the prompt.
After the command finishes, another prompt will be given.

A.1.1.1 Files and Directories

In a GUI you organize your files in folders. You have icons that represent different file
types or folders and you can place files/folders inside of folders to organize them. These
concepts came from the systems already in place on the command line. The only change
is terminology. The term folder works well from a graphical standpoint. On the command
line they have long been called directories.

The first set of commands we will learn about allow us to work with files and directories
so that we can navigate around and do the types of things you are used to doing by clicking,
double-clicking, or drag and dropping. Here is a list of commands with a brief description
of each. You will notice that in general they are abbreviations for what they do.

• cat – Display the contents of one or more files.

• cd – Change directory.

• cp – Copy one file to another name or location.

Getting to Know the Tools 531

FIGURE A.1: An example of a Linux terminal with a command prompt.

• less – Display out the contents of one or more files with the ability to move forward
and backward, search, etc. (Less is more than more.)

• ls – List the contents of a directory.

• mkdir – Make a directory.

• more – Display the contents of one or more files with the ability to page through or
search.

• mv – Move a file to a new name or location.

• pwd – Stands for “print working directory”. This prints out the directory you are
currently working in.

• rm – Remove a file.

• rmdir – Remove a directory if it is empty.

The big advantage of the command line is that each command can be followed by arguments.
Just entering a command is like double clicking on a program icon. It is the arguments that
let you specify additional information. Most of these commands do not do anything unless
you give them one or more file/directory names to work on.

To see how you go about using these commands we will begin with pwd. It is a very
simple command and can come in handy if you have lost track of where you are in the
directory structure. At the command prompt simply type in pwd and hit Enter. Exactly
what you get will depend on many things, but it should print out one line of output showing
you the current directory. It could look something like this.

532 Introduction to Programming and Problem-Solving Using Scala

mlewis@mlewis-laptop:~$ pwd
/home/mlewis
mlewis@mlewis-laptop:~$

In this case, the directory is /home/mlewis. After printing the output we get a new prompt
to enter the next command.

Aside

In Unix and Linux systems, the base of the entire file system is /. That is why it
appears at the beginning of the /home/mlewis directory. A directory that begins with
/ is an absolute directory.

The next command we want to enter is the ls command. Type in ls, followed by an
enter and you will get a listing of all of the files in your current directory. This is the most
basic usage of the command. You can also use it to see the contents of some other directory
by following the ls command with a directory name. Here we see a listing of the contents
of the root directory.

mlewis@mlewis-laptop:~$ ls /
bin dev initrd lib lost+found opt sbin tmp vmlinuz
boot etc initrd.img lib32 media proc srv usr vmlinuz.old
cdrom home initrd.img.old lib64 mnt root sys var

If you list a directory and it does not start with / then it will be a relative directory
which means that the location of that directory is relative to (within) the current working
directory. So, the directory that you list will be appended to the end of the current directory.
For example, you might have a directory called Desktop in the current directory. Typing in
ls Desktop will list the contents of the Desktop directory under the current directory.

mlewis@mlewis-laptop:~$ ls Desktop
AdobeReader.desktop QtCreator.desktop

You can also specify multiple files or directories, and they will all be listed as seen here.

mlewis@mlewis-laptop:~$ ls Desktop /
/:
bin dev initrd lib lost+found opt sbin tmp vmlinuz
boot etc initrd.img lib32 media proc srv usr vmlinuz.old
cdrom home initrd.img.old lib64 mnt root sys var

Desktop:
AdobeReader.desktop QtCreator.desktop

As you can see, the contents of the current directory are listed on the lines below /: and
the contents of Desktop are listed on the line below Desktop:.

You might not think that you would normally want to list multiple things at once, but
it is a feature people use all the time with wild card characters. If you put a * into a name,
the system will replace it with all the files or directories that match if the * is replaced with
zero or more characters. Here is an example of that usage.

mlewis@mlewis-laptop:~$ ls /vmlinuz*
/vmlinuz /vmlinuz.old

Getting to Know the Tools 533

For the first file, the * is replaced with nothing. For the second it is replaced with “.old”.
You can also use a ? to represent any one character. These wild cards are not ever seen
by the ls command of other commands. The command shell replaces them with all of the
matching files, and it is the multiple file names or directory names that get passed to the
command.

The ls command has a lot of other possible options as well. The options are all preceded
by a hyphen. The most commonly used option is -l, which tells ls to use a long display
format. The following is an example of that.

mlewis@mlewis-laptop:~$ ls -l Desktop
total 8
-rwxrwxrwx 1 root root 1261 2008-11-28 12:21 AdobeReader.desktop
-rw-r--r-- 1 mlewis mlewis 250 2009-12-22 11:03 QtCreator.desktop

The long format puts each file or directory on a separate line. In addition to the file names,
it shows a number of other pieces of information. The first ten characters show permissions
on the files. Permissions are discussed in section A.1.1.4. After the permissions is a number
showing how many links there are to this file. After that are the user name of the owner of
the file and the group that the file belongs to. The last two pieces of information are the
size of the file, measured in bytes, and the date and time of the last modification of that
file.

The next most commonly used option is -a. This tells ls to list all the files, including the
hidden files. Hidden files in Unix and Linux are files whose names begin with a period. We
see here a usage of this combined with the long option. Only one hyphen is needed when
options are combined.

mlewis@mlewis-laptop:~$ ls -al Desktop
total 16
drwxr-xr-x 2 mlewis mlewis 4096 2010-02-27 20:02 .
drwxr-xr-x 106 mlewis mlewis 4096 2010-08-09 16:57 ..
-rwxrwxrwx 1 root root 1261 2008-11-28 12:21 AdobeReader.desktop
-rw-r--r-- 1 mlewis mlewis 250 2009-12-22 11:03 QtCreator.desktop

This adds two additional lines. The letter d at the far left edge tells us that these are actually
directories. The . directory is the name for the current directory. The .. directory is the
name of the directory in which the current directory sits. We might also refer to it as the
parent directory.

By default, commands work on the things in the current directory. For this reason, one
of the commands you will use the most is the command that changes the current directory,
cd. The cd command is followed by a single directory name. The directory will be the new
current directory. As we just saw, each directory has . and .. as directory names inside of
it. If you want to move up a level in the directory structure, simply execute “cd ..”. You
can also enter cd without a directory at any time to change back to your home directory.
The following command changes our current directory to the Desktop directory.

mlewis@mlewis-laptop:~$ cd Desktop
mlewis@mlewis-laptop:~/Desktop$

Note the prompt used in this example changes so that we can see we are in this new
directory.

Other tasks that you do frequently when you are manipulating files in a GUI are to copy,
move, or delete. The commands for these are cp, mv, and rm. The cp and mv commands
are used in roughly the same way. One way to use them is to enter one or more file names

534 Introduction to Programming and Problem-Solving Using Scala

and then end with a directory name. In that usage all of the files listed are either copied or
moved to the directory listed at the end. If you include a name that has a wild card in it,
it will be expanded to all the file names. We can see this in use here:

mlewis@mlewis-laptop:~/Desktop$ mv ../*.txt .

Here we move all the files from our home directory that end with .txt into the current
directory. This line with mv uses both .. to refer to the directory above the current one
and . to refer to the current directory. Another way to use those commands is to enter two
file names, where the first file will be copied to the second name with cp or renamed to
the second name with mv. Assume that one of the files in the Desktop directory was named
text.txt. After the following command executes we will have copied that file into a new
file named text2.txt.

mlewis@mlewis-laptop:~/Desktop$ cp test.txt test2.txt

If you want to remove a file, use the rm command. The rm command can be followed by
one or more files. Again, wild cards can be used to match multiple files. Here we are getting
rid of all of the files that end with .txt.

mlewis@mlewis-laptop:~/Desktop$ rm *.txt

Use caution when removing files on most Linux based systems with the command line, it
is not forgiving and you cannot easily "undo" what was done. This is true whether you are
using rm or if you happen to mv or cp to a file name when you already had a file of that
name. While most of the GUIs that you have used probably move files you delete to some
form of trash can, really just a different directory, and then allow you to clear that out later,
doing rm on a file really deletes it at that moment. You cannot go digging in the trash to
find it. In general when you delete a file with rm on these systems, it is gone and your only
chance of getting it back is if you have a backup.1

This can be especially dangerous with the way that the command line deals with wild
cards. Take the rm command above. If you accidentally insert a space between the asterisk
and the dot, you will delete every file in the current directory. This is because the * alone
matches everything.2 So be careful when you are using rm and look over the command
before you hit enter to make sure you did not mistype anything or insert any unwanted
spaces.

Directories exist to keep files organized. For this reason, you should probably make
directories for each different major grouping of work that you have. You might also nest
these to further refine the organization scheme. You can make a new directory with the
mkdir command. Simply follow the command with the names of one or more directories
you want to create. For example, it is probably a good idea to make a directory to store all
of the work for this book or the course you are taking. You might make sub-directories in
there for different assignments/projects or the code you write in class. So that we do not
clutter up our Desktop directory, here make a sub-directory called projects in which we
can store all of our assignment and project files.

mlewis@mlewis-laptop:~/Desktop$ mkdir projects

1There is a -i option for rm, mv, and cp that will cause the program to prompt you before any file is
removed. This is not practical if you want to remove a lot of files, but it could be considered a good default
for most of what you do.

2There is one minor safety in place. The * alone does not match files that start with a ., so hidden files
would not be deleted in that situation. That will not make you feel much better though if you have just
erased five different multi-hour coding projects.

Getting to Know the Tools 535

By default, rm does not remove directories. To remove a directory use the rmdir com-
mand. Like mkdir, you follow it with the name of one or more directories you want to
remove. rmdir will only remove a directory if it is empty. So you would need to remove the
contents to the directory first before you can remove it.

A.1.1.2 Aside

If you really want to delete an entire directory and all of its contents, including
potentially other directories, there is an option for rm that will do that. The -r option
tells rm or cp to recursively run down into a directory and either remove or copy all of
its contents. This is very helpful if you want to copy a directory that has a lot of things
in it. It can also be of great help if you want to remove such a directory. Remember to
tread carefully though. Using rm with the -r flag has the possibility to wipe out a lot
of files that you might have wanted to keep around. The command below uses -r with
a copy to copy over an entire directory and all of its contents into the current directory.

mlewis@mlewis-laptop:~/Desktop$ cp -r ../Music/ .

The last thing you might want to do with your files is actually look at what is in them.
There are many ways to do this. The commands we will consider here work best with plain
text files. We will be dealing with a lot of those in this book. The most basic way to look at
such a file is with the cat command which simply prints the contents of one or more files to
standard output. A step above that is the more command which will display one screen at
a time and let you move down one line by hitting enter or a whole screen by hitting space.
You can also search for things by typing what you want to search for after pressing /. Yet
another step up is the less command which allows you to move around freely using arrow
keys or page-up and page-down as well as search as you could with more.

A.1.1.3 Helpful Tips

Many people who are not familiar with the command line are initially turned off a bit
by the amount of typing they have to do. People who use command line all the time do not
necessarily like typing more, they simply know more tricks to do things with the keyboard
that do not require a lot of typing. A couple of handy tricks to help you use the command
line more efficiently include tab completion and viewing your command history.3

Typing in complete file names can be tedious and worse, is often error prone. If you
mistype something it will not work and you have to enter the whole thing again. Worse, it
might work and do something you did not really want to do. Because of this, tab completion
is probably the most helpful feature you will find in your command line environment. If you
type in the first few letters of a file or directory then hit tab, the shell will fill in as many
characters as it can. If there is only one file that starts that way, it will give you the whole
file. If there is more than one, it will fill in as much as it can until it gets to a point where
you have to make a choice. If you double tab it will print out the different options that fit.

You should try this by going back to your home directory (remember you can do this at
any time by typing in cd and hitting enter without giving it a directory) and then typing
cd De and hitting tab. Odds are good that the word Desktop will be completed for you

3Tricks like those discussed in this section vary depending on the exact command shell you are using. A
command shell is a separate software program that provides direct communication between the user and the
operating system. This book describes features of the bash shell, which is standard for many Linux installs.

536 Introduction to Programming and Problem-Solving Using Scala

with a / at the end because it is a directory. Use ls to see if there are two files/directories
that start with the same first few letters. Type in cat followed by the first two letters and
hit tab. The shell will complete as much as it can then stop. Hit tab twice quickly and it
will show you the different options. It might look something like this.

mlewis@mlewis-laptop:~$ cd Do
Documents/ Downloads/

Not only does tab completion save you from typing a lot of extra characters, it never
misspells a file or directory name. Use tab often and it will save you a lot of key strokes and
a lot of little mistakes.

It is not uncommon to want to enter the same command or a very similar command
more than once. The easiest way to do this, if it is a command you entered recently, is to
use the up and down arrow keys to navigate backward and forward through the command
history. When you get to a command, you can edit it if you want to make changes.

Using the arrow keys is not all that convenient if the command was something you
entered a long time ago. The simplest way to repeat an old command exactly is to start the
line with an exclamation point (often read “bang”) and follow it by some of the command.
This will go back through the history and find the most recent command that started
with those characters. That command will be executed without the chance to edit it. The
limitation that you cannot edit it or see exactly what the command is you will execute before
you execute it means that ! is most useful for commands that start in a rather unique way.

You can also press Ctrl-r to get the ability to search through history. After pressing
Ctrl-r, start typing in characters that occur consecutively in the command you want. It
will bring up the most recent command that includes what you have typed in and you can
edit it.

Another command that is very useful in general is the man command. This is short for
manual and basically functions as help pages for commands or installed programs on the
systems. The most basic usage is to type in man followed by the command that you want
information on. You can also put in a -k option to do a search for something in the man
pages.

A.1.1.4 Permissions

All modern operating systems have permissions that control who can get access to differ-
ent types of files. What files you can access depends on who you are and what permissions
you have. The act of logging into a machine determines who you are. You can use the
command whoami to see who you are logged onto the machine as.

mlewis@mlewis-laptop:~$ whoami
mlewis

In this case the prompt also displays the user name, but that will not always be the case.
Each user can also be a member of various groups. You can use the groups command to
see what groups you are a member of.

mlewis@mlewis-laptop:~$ groups
mlewis adm dialout cdrom floppy audio dip video plugdev fuse lpadmin admin

The combination of who you are and the groups that you are in will determine what you
have access to on a machine.

On Unix and Linux every file has read, write, and execute permissions for their owner,
their group, and others. Those, along with the owner and the group of a file are displayed
by ls when you use the -l option. Let us go back to the Desktop directory and look at the
long listing of the files again.

Getting to Know the Tools 537

mlewis@mlewis-laptop:~/Desktop$ ls -l
total 8
-rwxrwxrwx 1 root root 1261 2008-11-28 12:21 AdobeReader.desktop
-rw-r--r-- 1 mlewis mlewis 250 2009-12-22 11:03 QtCreator.desktop

There are two files here. The first ten characters tell us the permissions on the file. The first
one is either ’d’ or ’-’. The ’d’ would tell us it is a directory. Neither is a directory so both of
these begin with ’-’. After that are three groups of rwx where any of those can be replaced
by ’-’. The letters stand for read permission, write permission, and execute permission with
’-’ being used when that permission is not granted. The first set of rwx is the permissions
of the user the file belongs to. The second set is for the group the file belongs to. The
third is for others. The first file listed here gives full permissions to all three. The second
gives read and write to the user and only read to the group and others. Shortly after the
permissions appear two names. For the first file they are both root. For the second they
are both mlewis. These are the user and group owners for the file. The name root is the
superuser on Unix and Linux machines.

To make this more interesting, let us use the mkdir command to make a new directory
and then list the contents of the directory again.

mlewis@mlewis-laptop:~/Desktop$ mkdir NewDir
mlewis@mlewis-laptop:~/Desktop$ ls -l
total 12
-rwxrwxrwx 1 root root 1261 2008-11-28 12:21 AdobeReader.desktop
drwxr-xr-x 2 mlewis mlewis 4096 2010-08-11 19:59 NewDir
-rw-r--r-- 1 mlewis mlewis 250 2009-12-22 11:03 QtCreator.desktop

This new directory is also owned by mlewis and is part of the group mlewis. Note the letter
’d’ first thing on the line telling us that this is a directory. The owner, mlewis, has full
read, write, and execute permissions. Anyone in group mlewis will have read and execute
permissions as do other users on the machine. If you try to use a file/directory in a way you
do not have permissions for, you will get an error message. To go into a directory and see
what is inside of it you need both read and execute permissions.

So now that you know how to tell what permissions a file has, the next question is how
do you change them. The chmod command is used to change permissions on a file. There
are quite a few different ways to use chmod. We will just introduce one of them here. After
chmod you specify how you want to change or set permissions, then give a list of the files
you want to make the changes to. The simplest way to specify changes is to use character
codes for which set of users and the permissions involved and separate them with a ’+’, ’-’,
or ’=’ to say if you want to add them, remove them, or set them. The different permission
sets are specified by ’u’ for the user, ’g’ for the group, ’o’ for others, and ’a’ for all. The
rights are specified by the letters ’r’, ’w’, and ’x’ as we have already seen.

Let us say that we are going to put things in this new directory that we do not want
anyone but the user to have the ability to see. In that case we would want to remove the
read and execute permissions from the group and others. We can see how that is done and
the result of doing it here.

mlewis@mlewis-laptop:~/Desktop$ chmod go-rx NewDir/
mlewis@mlewis-laptop:~/Desktop$ ls -l
total 12
-rwxrwxrwx 1 root root 1261 2008-11-28 12:21 AdobeReader.desktop
drwx------ 2 mlewis mlewis 4096 2010-08-11 19:59 NewDir
-rw-r--r-- 1 mlewis mlewis 250 2009-12-22 11:03 QtCreator.desktop

538 Introduction to Programming and Problem-Solving Using Scala

Had we wanted to give everyone full permissions, we could have used a+rwx as the second
argument to chmod.

Less common than changing permissions is changing ownership. If you own the file you
can change the user and the group of the file with the chown command. The most likely
scenario for this is if you want to change the group to a shared group so that a select set of
users can have access to something. If the group were called project then you would type
in “chown :project files”.

Aside

As with the cp and rm commands, there are times when you will want to change
the permissions of a large number of files in an entire directory. Both chmod and chown
accept the -R option so that they will do this.

A.1.1.5 Compression/Archiving

If you spend much time on a system, you will likely need to interact with compressed
or at some point. Both of these play the role of taking many separate files and turning
them into one large file. Archiving is used to collect multiple data files together into a single
file for easier portability and storage. Compressing is used to reduce the size of the file to
save storage space or to share more easily. A large, compressed file should be smaller than
the sum of the files that went into it. Later, the file can be expanded back to its original
size. Many programs that you might want to put on your computer come in the form of
compressed files. If you have assignments or projects that span multiple files, your instructor
might want you to combine them into a single file to turn them in. There are many different
compression and archiving utilities. We will just talk about the main ones here.

• tar – Archive files to a single tarball.4

• gzip/gunzip – Compress one or more individual files to the gzip format.

• zip/unzip – Compress multiple files to a single zip file. The zip format is used exten-
sively on many operating systems.

The first two are used in the Unix/Linux world. They do archiving and compression sep-
arately, but are often used together to do both. The archiving program is called tar. It
was originally created for archiving files from disk to tape. It simply collects multiple files
together into a single file called a tarball. It can also extract files from a tarball. As with
our other programs, tar is controlled by passing it arguments. You can use the man pages
to see the many different options for tar. We will only discuss the basic ones.

The three main ways you will interact with a tarball are to create one, view the contents
of one, or extract files from one. These different options are given with the characters c, v,
and x. Most of the time you will want to interact with a file, and for that you will give the
f option. The next thing after the f option should be the file name of the tarball you are
creating, viewing, or extracting. Tarball files should typically end with the extension .tar.
If you are creating a tarball, that will be followed by the file and directory names of the
things you want to put into the tarball. Here are some sample invocations.

4Tarball is a jargon term for an archived group of files collected together into one file. You might think
of tar as a sticky substance that holds things together.

Getting to Know the Tools 539

tar cf assign1.tar header.txt Assign1/
tar tf assign1.tar
tar xf assign1.tar

The first command is what you might execute to create a tarball called assign1.tar which
contains a header file and all the contents of the directory Assign1. The second command
might be used to verify that everything you want is in the file or to check what is there
before it is extracted. The last command would extract the contents.

The counterpart to tar is gzip. This command will compress one or more files. Simply
follow the gzip command with a set of file names to compress. That will create a new set
of compressed files that end with the extension .gz. The gunzip command will unzip any
file to give you back the original file. You can use the -r option to recursively descend into
a directory.

The combination of tar and gzip is so common that you can get tar to automatically
zip or unzip files using gzip. Simply put the z flag in the options to tar and either gzip
or gunzip will be invoked. Files created that way are typically given the .tgz extension.

Both tar and gzip are rather specific to the Unix/Linux world. If you have to deal with
compressed files going to or from other systems, you might want to use the more broadly
used zip format. The zip command can be followed by the name of a zip file and the set
of file names to zip up into the specified zip file. If you want it to zip up a whole directory
structure you will need to use the -r option. There is an unzip command that will extract
the contents of a zip file.

A.1.1.6 Remote

One of the great strengths of Unix/Linux is the true multi-user capabilities that they
have. These systems will allow multiple people to be logged in at once. A computer could
be in full use even if no one is sitting at it. In fact, this is a big part of why you should
be familiar with the command line. Running graphical interfaces on machines across long
distance Internet connections can be very unpleasant. However, the plain text form of a
command line will be quite responsive even across slow networks.

So how do you log into one computer from another one? If you are on a Unix/Linux box
and you want to log into another there are several commands that you could use to make
a connection. The most basic, and likely least useful, is telnet.5 Simply type in telnet
followed by the name or IP address of the machine that you want to connect to. This opens
a very simple network connection between the machines. Because telnet connections are
not secure and are, in a way, too flexible, you will probably find this approach blocked by
the security setting on most machines.

Next up the scale is rsh. This stands for remote shell and can be invoked in the same way
as telnet. The rsh connection is also not secure and as such, is blocked on many systems.
However, it might be allowed on your system if you are logged into a trusted machine inside
of the local firewall.

The connection type that you probably should use by default is ssh. This stands for
secure shell and, as the name implies, all communication across a ssh connection is encrypted
using public key cryptography. As such, if a system is going to let you log in remotely, this
is the method that most system administrators are likely to leave open for you.

When you connect remotely to a machine you will be asked for your password and,
assuming you get it right, you will be dropped at a command prompt on that machine.

5You will have occasion to use telnet in the second half of the book when we start writing our own
networked code. One of the project ideas from the second half of the book is a networked text-based game
called a MUD that users would connect to with telnet.

540 Introduction to Programming and Problem-Solving Using Scala

Everything that is discussed in this section will work on the remote machine just as well
as the local one, no matter how far away the machine is. When you are done entering
commands and you want to come back to the current machine, type logout or exit to
terminate the remote session.

Aside

If your username on the remote machine is different from that on the current machine
you can use “ssh username@machine” to specify the remote username. Also, the ssh
command has one argument that will be particularly helpful once you get past chapter
11. The -Y option allows the remote machine to send windows back to the current
machine. Use “ssh -Y machine” to activate this.

What if you are on a Windows machine? How can you connect then? Your windows
machine should likely have telnet on it if you bring up the command prompt. As was men-
tioned above, this type of connection will likely be blocked for security reasons. Thankfully,
there are free ssh programs that you can get for Windows. One of these is called putty and
it will allow you to ssh into a remote machine and use it from a Windows box. If you decide
you like the Unix/Linux command prompt you can also install Cygwin under Windows and
get rsh, ssh, and all the other commands we will talk about on your Windows machine.

Aside

You can get remote windows sent back to your machine through Putty using X-
forwarding. This is a bit more complex so you should look at the help for Putty to see
how to do it.

An even better approach if you have a Windows machine is create a dual boot so
you can run Linux on the machine. There are versions of Linux such as Ubuntu® and
Linux Mint® which are specifically targeted at novice users or people who want to just
get things running without much difficulty. You can download these from their websites at
http://www.ubuntu.com and http://linuxmint.com respectively. If you do not want to
dual boot your machine, you can even run Linux in a window under Windows using free
virtualization software such as VirtualBox®(http://www.virtualbox.org) or VMWare
Player®(http://www.vmware.com/products/player/).

telnet, rsh, and ssh all give you ways to log into a remote machine and execute
commands on that machine. Sometimes what you need is to move files from one machine
to another. For this you should probably use scp or sftp.6 The scp command stands for
secure copy. You use it much like you would the normal cp command. The only difference
is that your file names can be prepended with a machine name and a colon to say that they
come from or are going to a different machine. A sample invocation is shown here.

scp cs.trinity.edu:Desktop/fileINeed.txt .

This copies the file fileINeed.txt from the Desktop directory on the machine
cs.trinity.edu to the current directory on the current machine. If the second argument

6There are also rcp and ftp programs, but just like rsh and telnet, secure systems likely will not let
these through.

http://www.vmware.com/products/player/
http://www.virtualbox.org
http://linuxmint.com
http://www.ubuntu.com

Getting to Know the Tools 541

has a machine name with a colon then the file will go to that remote location. As with cp,
the -r option can be used to copy an entire directory structure.

The sftp command is a secure version of the classic ftp program. ftp stands for File
Transfer Protocol. It allows you to navigate local and remote directory structures, see what
files are on the remote machine, and then move them across. The full usage of sftp is
beyond the scope of what we want to cover here, but you should be aware it exists in case
you need to move files around and are not certain what you want to move or where it should
be moved to or from.

A.1.1.7 Other Commands

There are many other commands that are available to you on the Unix/Linux command
line. You do not have to be familiar with all of them to get things done with the command
line. In fact, after this appendix you should have enough to get through the tasks that you
will need for this book. There are just a few more commands you might find helpful that
we will list here.

• clear – Clears the terminal so you get a fresh screen. This is only cosmetic, but it
can be helpful at times.

• df – Stands for disk free. This will list all of the different volumes on the current disk
system and show you information on their usage.

• du – Stands for disk usage. This will give you a rundown of how much disk space is
being used in the current directory and its sub-directories.

• echo – Prints whatever follows the command back to the terminal.

• find – Find files that have different properties specified on the command line.

• grep – Searches for text inside of the specified files.

• head – Print the first lines of a file.

• ps – Show information about processes running on the machine.

• tail – print the last lines of a file.

• touch – Updates the edit time on the specified file to the current time.

• top – Lists the top resource consuming programs currently running on the machine.

• w – Tells you who is logged onto your machine, where they are coming from, and what
they are running.

• wget – You give this command a URL and it will download the file at that URL to
the current directory.

• which – This command should be followed by the name of an executable. It will tell
you the full path to that executable if it is in the current path.

As a final tip, you can follow any command with & to make it run in the background.

542 Introduction to Programming and Problem-Solving Using Scala

A.1.2 I/O Redirection

So far we have been talking about the different commands we can run from command
line. We have typed input into the console when it was needed, and the commands have
output to the terminal screen so we could see it. The Unix/Linux command line gains a
significant amount of power from the fact that you can redirect input and output. The
simple forms of redirection have the output of a program go to a file or have the input come
from a file. These will be of use to you in many of the projects in later chapters even if you
do not see the benefit right now.

To send the output of a program to a file you put a greater than, >, followed by a file
name after the command. The output will go into that file. Here is an example.

mlewis@mlewis-laptop:~/Desktop$ ls -l > list.txt
mlewis@mlewis-laptop:~/Desktop$ ls -l
total 16
-rwxrwxrwx 1 root root 1261 2008-11-28 12:21 AdobeReader.desktop
-rw-r--r-- 1 mlewis mlewis 259 2010-08-12 22:32 list.txt
drwx------ 2 mlewis mlewis 4096 2010-08-11 19:59 NewDir
-rw-r--r-- 1 mlewis mlewis 250 2009-12-22 11:03 QtCreator.desktop
mlewis@mlewis-laptop:~/Desktop$ cat list.txt
total 12
-rwxrwxrwx 1 root root 1261 2008-11-28 12:21 AdobeReader.desktop
-rw-r--r-- 1 mlewis mlewis 0 2010-08-12 22:32 list.txt
drwx------ 2 mlewis mlewis 4096 2010-08-11 19:59 NewDir
-rw-r--r-- 1 mlewis mlewis 250 2009-12-22 11:03 QtCreator.desktop

The first call to ls does not print to screen. Instead, it sends it to the file list.txt because
of the greater than followed by that file name. We can then do another ls and let it print to
screen to verify the new file is there. Indeed, we have a new file that is 259 bytes in length.
We can also use cat to view the contents of the file, and you see the output you expect
from ls. There is one interesting aspect to it. The file we are outputting to is there, but it
has a size of zero. This is because the file is created as soon as we execute the command,
but it does not get contents written to it immediately. That happens over time as parts of
the output get big enough that they have to be moved from a buffer in memory to the file.

Using > for redirecting output will create a new file if none is there and will wipe out
any existing file if one is there. If you want a command to add onto an existing file, use »
instead. This will redirect the output so that it appends the output to an existing file.

We can also tell a command to take it’s input from a file instead of from standard input
using the less than, <, symbol. None of the commands we have looked at require additional
input from standard input unless it requires a password which you do not want to put in
an unencrypted file. Many of the programs that you write will need to have you type text
into them. You will often have to run these programs multiple times, and it can get very
tedious to input the same values over and over while you try to get the program to work.
Having it take the input from the file can save you time as you only have to enter it into
the file once, and then use the file when you are testing the program.

The real value of redirection power comes from the ability to send the output of one
command into the next command as the input. This is called “piping”, and it is done with
the vertical bar, |, a symbol that is read as pipe. Perhaps the most common usage of the
pipe is to send an output that is long into grep to search for something in it. This example
here will find any files in the current directory that were last edited in December of 2014.
For the directory listings we have done so far this type of thing would not be of much use,
but it is more helpful in large directories like the one this example was executed on.

Getting to Know the Tools 543

mlewis@mlewis-laptop:~$ ls -l | grep 2014-12
drwxr-xr-x 6 mlewis mlewis 4096 2014-12-22 11:03 qtsdk-2009.05
drwxr-xr-x 4 mlewis mlewis 4096 2014-12-23 17:33 QtWorkspace
-rwx------ 1 mlewis mlewis 2291366 2014-12-28 12:21 SwiftVis-0.3.0.jar

Another example is when some programs that are long running produce very long output
files. Even if you use grep to cut the output down to just lines that have what you are
interested in, that might still be many pages of material. You could pipe that output to
programs like head, tail, or less to allow you to look at them in a manner that is easier
to handle. For example, if you have a log file for a program that includes certain lines that
have the word “Step” that you care about and you only want to see the last few you could
do this.

grep Step log | tail

A.1.3 Text Editors (vi/vim)

Most programming languages have programs that are written in plain text. As such,
you can use any simple text editor that you want to edit your programs. Word processors,
such as Microsoft Word® or Open Office® are not plain text editors. You should not use
them to edit your programs. Word processors store all types of additional information such
as the font and format of text in addition to the text itself. Programs need only the straight
text. On a Windows machine, Notepad is an example of a text editor.

You could use Notepad to edit Scala programs, but not all text editors are equally useful
for programming. Due to the fact that programming is a fairly common usage for plain text
editors, many text editors have features in them that are specifically aimed at programming.
On Unix/Linux a primary example of this is the vi editor. While there are lots of different
editors that one can choose from on Unix/Linux, we will work with vi because it is light-
weight and is installed on virtually all such machines.7 Many other editors will bring up
separate windows or are not part of a default installation. If you decide you do not like vi
or have another preference, you are more than welcome to use whatever editor you want in
going through this book.

To start running vi, simply type in vi followed by the name of the file you want to edit.
If the file exists, you will see its contents on your screen. If not, you will get a mostly blank
screen with tildes () down the left side and some extra information at the bottom.

The first thing to know about vi is that it has two main modes. When you first start
it up, you are in command mode. To type things you need to be in an editing mode. When
you are in an editing mode you can type just like you would in Notepad. What gives vi the
extra power that is helpful for programmers is the ability to use the command mode. To
get from command mode into a edit mode, type one of the following.

• i – Insert before the current character.

• I – Insert at the beginning of the current line.

• a – Append after the current character.

• A – Append at the end of the current line.

7Many Linux installs technically come with vim instead of vi. vim stands for “vi improved” and everything
covered in regards to vi here will work for vim. On those systems executing vi will typically run vim by
default, so, it is likely you will never notice a difference. In fact, a few features described in this section, like
multiple undo and redo, only work in vim, not in standard vi.

544 Introduction to Programming and Problem-Solving Using Scala

• R – Start replacing characters from the current position.

Most of the time you will probably just use i, but there are occasions when the others can
be helpful. The line at the bottom of your terminal should change to show you that you are
now in an edit mode. After you get into edit mode you start typing. In vim you can also use
the arrow keys along with Home, End, Page Up, and Page Down to move around. If you are
in a true vi install that will not work, instead you will have to return to command mode
to move the cursor around.

To get back into command mode, simply hit escape (Esc). The bottom line will let you
know that you are back in command mode. In command mode you can move the cursor
around. In vim the special keys will still work for this. If you are in a true vi install, you
will need to use the following keys to move around.

• h – Move left.

• j – Move down.

• k – Move up.

• l – Move right.

• Ctrl-d – Page down.

• Ctrl-u – Page up.

You can do other edits while you are in command mode. Here are some of the other keys
that do things for you in command mode.

• x – Delete a character.

• dd – Delete a line and place on the clipboard. (Precede with a number for multiple
lines.)

• yy or Y – Yank a line. This copies to the clipboard. (Precede with a number for
multiple lines.)

• p – Paste the clipboard after the current line.

• P – Paste the clipboard before the current line.

• r – Replace a single character.

• J – Join lines.

• / – Search for something. Enter the search string after the /.

• n – Repeat the last search.

• cw – Change the current word. This removes up to the next white space and goes into
insert mode.

• . – Repeat the last command.

• u – Undo the last command.

• Ctrl-r – Redo the last undone command.

Getting to Know the Tools 545

If you type in a number before any command in vi, that command will be repeated that
number of times. This includes going into an edit mode. So if you type 100 and ’A’, any text
you add in will be added 100 times when you hit Esc. If that is not what you wanted, you
will probably find that the ’u’ command comes in handy.

Some commands work well in patterns. For example, if you want to do a find and replace
where you look at each instance before doing the replace, you might use ’/’ to search for
the first instance, then use ’cw’ to replace the word in question and hit Esc. After that, you
use ’n’ to move to the next instance of the string and ’.’ to repeat the ’cw’ command if you
want to replace that instance. The ’.’ command is something that would only have minimal
value in writing a term paper, but comes in handy a lot more with programming tasks.

There are also a whole set of commands that you invoke by typing a colon. For example,
you might have wondered how you save files or how you get out of vi all together. Here are
just a few of the colon commands that you might find helpful.

• :n – Jump to the nth line of the file where n is a number.

• :w – Save the file as it is.

• :q – Safe quit of vi. This will not work if you have made changes since the last save.

• :q! – Unsafe quit of vi. This will quit and throw away any unsaved changes.

• :wq – Save the file and quit vi.

You should spend some time getting used to these commands. If you really want to see
what vi can do, read the man page. Many students who are new to vi fall into the pit of
hitting ’i’ as soon as they start up and then using it like Notepad until they are ready to
save. This approach ignores all the powerful features of vi and, in the long run, slows you
down. Try to get used to hitting Esc whenever you pause in your typing. If nothing else, it
will allow you to also hit ’:w’ so you save your changes frequently. On systems with vim,
you can run vimtutor to get a guided tour.

vi Settings

You can change settings in vi by editing a file in your home directory with the name
“.exrc”. In particular, you should consider adding this line.

set tabstop=2

This makes it so that tabs display as four characters. You can use 4 if you want, but
the default is 8 which is a bit too large to work well with Scala.

A.2 Windows
Based on installation statistics, odds are good that the computer you use most of the

time is running some form of Using Microsoft Windows®. That will not prevent you from
programming or doing any of the activities described in this book. One of the advantages

546 Introduction to Programming and Problem-Solving Using Scala

FIGURE A.2: This figure shows the Windows command prompt. This is the command-line
interface for Windows.

of the Scala language is that it is platform independent and will work equally well on many
operating systems, including Windows.8

A.2.1 Command Line

Most people interact with Windows using the GUI. This is so much the case that you
might not even realize that there is a command-line interface. The Command Prompt is the
command line interface program used to execute commands in Windows. How you access
this program depends on the version of Windows you are using. In Windows 7, look under
the Accessories option on the Programs menu you will see an option for Command Prompt.
In Windows 8, you can access this program by right-clicking on the Start button or pressing
the WIN key and X key together. Each of these different actions brings up a menu with
Command Prompt as one of the menu options.9 If you select and run this, you should see a
window that looks like figure A.2. Like the terminal for Unix/Linux, this is a text interface
that gives you some type of prompt with basic information. In the figure it shows you the
current directory followed by a ’>’. In this case we are in the directory “C:\Users\mlewis”.

While the Windows command prompt looks and acts much like a Unix/Linux terminal,
it has a different set of commands. The history of Windows and its command prompt are
rooted in DOS (Disk Operating System) and the commands that are used in the command
prompt for Windows today are largely the same as for that purely command-line based
operating system. One of the differences between Unix/Linux and Windows that should
be noted immediately is that unlike Unix/Linx, the Windows system is not case sensitive.
Commands will be presented here in lowercase, but they will work fine in uppercase or
mixed case.

8Even though you can do your coding under Windows, you might want to consider installing Cygwin or
running Linux through virtualization or as a dual-boot configuration just to get experience with something
new.

9As of the time of writing, Microsoft® had announced that the bash shell will be included in Windows
10, but details on how to access it are not available. Once that is available, Windows users can use the same
tools as described for Unix/Linux.

Getting to Know the Tools 547

A.2.1.1 Files and Directories

As with the Unix/Linux environment, the folders that you are used to in a GUI are
called directories on the command line, and they are used to organize files on the computer.
There are a number of different commands that can be used for working with directories
and files with the Windows command prompt.

• cd/chdir – Changes the current directory.

• copy – Copy files from one location/name to another.

• del/erase – Deletes files. This does not move them to Trash like doing a deleter from
the GUI. Once this has been executed the files cannot be recovered.

• dir – Lists the contents of the specified directory or the current directory if none is
listed.

• md/mkdir – Make the specified directory.

• more – Print the contents of a file one screen at a time.

• move – Moves a file to a different directory.

• path – Let’s you see the current path or change the path.

• ren/rename – Rename an existing file.

• rd/rmdir – Remove a specified directory.

• tree – Display the contents of a directory or drive as an ASCII based tree.

There are some significant differences between directories under Windows and those under
Unix/Linux. The first is that directories are separated by a backslash, ’\’, instead of a
forward slash, ’/’. This is something you have to keep in mind, but it does not significantly
impact how any commands are used. The other difference is that Windows machines have
different drives, each with its own directory tree.

The prompt above showed the current directory as being “C:\Users\mlewis”. The C:
at the beginning of this specifies the drive. The drives on a Windows machine are specified
as single capital letters. By default, C: is the master hard-disk of the machine. If you want
to deal with locations on other drives you need to be certain to specify the drive name in
the path you are using. In addition, by default the cd command will either change drives
or move you to a different directory. To do both you have to give the ’/d’ option.

Aside

The C: standard for the hard drive arose early on. The first DOS machines did not
have hard-drives. Instead, they typically had one or two floppy disk drives. These were
named A: and B:. When hard drives were added on, they took the next letter in the
alphabet. Even though it is very rare to find a computer with a floppy disk drive these
days, the main disk still gets the C: distinction and other drives use higher letters in
the alphabet.

By contrast, different drives in Unix/Linux systems are represented as directories un-
der the main directory tree that starts with /. Removable drives are typically mounted
in subdirectories of /media.

548 Introduction to Programming and Problem-Solving Using Scala

FIGURE A.3: This figure shows the command prompt from Windows after the dir com-
mand has been run.

Figure A.3 shows what the command prompt looks like after the dir command has
been run. This shows a lot of the same information that you get from running “ls -l” on
a Unix/Linux machine.

A.2.2 Text Editors

No matter what the operating system, programs are still generally written in plain text
files so you need a plain text editor for doing that. In this section we will look at some of
the options you have for this in Windows.

A.2.2.1 Edit

Working on the command line in 32-bit Windows the command “edit” will bring up a
text based program that works much like a GUI. You can see what it looks like in figure A.4.
It has a set of menus that you can access by hitting Alt. These let you do the normal things
you would expect from an editor. The edit program is much more of a general purpose
editor and is much more user friendly than vi. As a result, you can use it without too
much introduction. The down side is that it lacks features that are specifically beneficial for
programming. If you have a newer Windows install it is probably 64-bit and there will not
be an install of edit. You can use a GUI based text editor instead.

A.2.2.2 Notepad

Of course, you do not have to edit your text files in the command prompt. You can feel
free to bring up Notepad on a Windows machine and edit files that way. Then you can use
the command prompt just for running the programs that need to use that interface. The
simple GUI of Notepad has the same benefits and drawbacks of edit. It will work fine for
small things, but it was not built for programming and will slow you down at a certain
point.

Getting to Know the Tools 549

FIGURE A.4: This figure shows a command prompt with the edit program running.

A.2.2.3 Others

There are many other text editors that you could use on Windows which are more
directly aimed at programming. Attempting to list all such editors and provide any type
of comparison or judge their relative merits in this space would be pointless. Not only are
there too many of them, they can change over time. Doing a web search for “text editor”
will likely provide you with many different options. In addition, other people have done
the work of compiling a list with comparisons on Wikipedia®. Simply go to http://en.
wikipedia.org/wiki/Comparison_of_text_editors and you can see tables comparing
different editors and check out other information on the ones that seem interesting.

A.2.3 Other Commands

There are a number of other commands that you might find it helpful to know when
working with the Windows command prompt.

• cls - Clears the screen and puts you at a blank prompt. This command only impacts
appearance, but can be useful at times.

• echo - Like the Unix/Linux command, this will print out whatever text is passed in
to it.

• exit - This will close the command prompt.

• find - This is the equivalent of grep in Unix/Linux. It will find strings in a file for
you.

• help - This gives you help on commands. If you enter it without specifying a command
it will list the possible commands for you.

• where - Takes one argument which is the name of a command. It will tell you the full
path of that command.

http://en.wikipedia.org/wiki/Comparison_of_text_editors
http://en.wikipedia.org/wiki/Comparison_of_text_editors

550 Introduction to Programming and Problem-Solving Using Scala

• whoami - Tells you the name of the user account you are logged in as.

In addition to these commands, I/O redirection with ’<’, ’>’, ’»’, and ’|’ work in the Windows
command prompt just like they did in Unix/Linux. You can also use tab completion in
Windows to auto-complete file names and save yourself some typing or the possibility of
typos. The use of tab in Windows is particularly helpful because many files and directories
have spaces in them that have to be handled properly. If you use tab completion, the
system will automatically add double quotes around things so that spaces are dealt with
appropriately.

A.3 End of Appendix Material

A.3.1 Summary of Concepts

• The software you use to interact with your computer comprises a tool set. The nature
of these tools is extremely important to software developers.

• Most of this book is written with the expectation the reader is using command-line
tools. These vary between operating systems.

• Linux and Unix based operating systems, including Mac OS X, include a powerful
command-line that is often utilized.

– There are a number of different commands that you use to give instructions to
the computer using the command-line. You will likely commit these to memory
over time as you use them. The real power of these commands is that they can
be given arguments to make them behave in specific ways or do specific things.

– Files are organized in directories. Some of the most important commands you
will need to learn are for dealing with directories and navigating the directory
structure. The name . always represents the current directory and .. represents
the parent directory.

– Input and output for commands can be redirected in different ways.

∗ Use > to send the output of a program to a file, deleting anything that is
there.

∗ Use » to send the output of a program to a file, appending to the end of
current contents.

∗ Use < to have the contents of a file act as the standard input for a program.
∗ Use | to have the output of one program sent to the input of another. You

can chain multiple programs together with this technique called “piping”.

– Programs are typically written in plain text with a text editor. The text editor
described in this appendix is vi. It is very common on Linux/Unix installs, and
the capabilities of the command mode make it a good editor for programming.

• Windows also incorporates a command prompt that resembles the older DOS interface.

– There are a different set of commands that you can use in the Windows command
prompt. I/O redirection works like it does in Linux/Unix.

Getting to Know the Tools 551

– The command-line text editor is called edit. It is not included in 64-bit Windows
installs. You can use Notepad or some other GUI text editor. Microsoft Word
and other word processing programs are not text editors.

A.3.2 Exercises

1. Make a directory for the work associated with this book in your user directory.

2. Enter the “Hello World” program in the directory you created. Make sure the file name
that you use ends with .scala. Run it using the scala command.

3. (Linux/Unix/Mac) Use wget to download the file for the primary page of google. This
should give you a file called index.html. Move this to the name google.html. Count
how many times the word “google” appears in that file. Describe how you did this and
how many times it occurred.

4. Ask your instructor if you have a web space on the machines you work on. If so, make
a directory in that space called CS1. Put a file called persinfo.txt in that directory
that tells your instructor a little about you and why you are taking the course. Set
permissions on the directory and the file so that they are visible for the web (a+rX
for Linux). You can test if you did this correctly by pointing a browser at your web
space to make certain the files are there.

5. (Linux/Unix/Mac) The ps command can tell you what is running on a machine. Run
“ps -ef” and send the output to a file called allprocs.txt. Look at the file to see
what all is running.

6. (Linux/Unix/Mac) Do a long listing (ls -l) of the /etc directory. Pipe the output to
grep to see how many files contain your first and last initials (e.g. jd for John Doe).

Additional exercises can be found on the website.

http://taylorandfrancis.com

Appendix B
Glossary

Affine Transform This is a term from graphics that is defined as any transformation of the
space where parallel lines are preserved. The basic affine transforms are translation,
rotation, scale, and shear. Any combination of these is also an affine transform.

Argument A value that is passed into a function of method.

Array A basic collection of values that is a sequence represented by a single block of
memory. Arrays have efficient direct access, but do not easily grow or shrink.

Class A construct that works as the blueprint for objects.

CPU The term Central Processing Unit is used to describe the primary computing element
in a computer. This is where most of the work for the programs you are writing takes
place.

Conditional An expression of the Boolean type that is used to determine if code is exe-
cuted.

Expression A sequence of tokens that has a value and a type.

File An independent grouping of information in the static storage of a computer.

Function This is a concept from mathematics of something that maps from values in a
certain domain to values in a certain range. In programming, functions can serve
this same purpose, but they also more generally group statements together under a
particular name to allow you to break code into pieces and give it meaningful names.

GUI Short for Graphical User Interface. This is an interface that includes graphical el-
ements that the user interacts with using a pointing device possibly in addition to
keyboard input.

Higher-Order Function This is a term used to describe a function whose inputs or out-
puts include function types.

if A simple conditional construct that picks between one of two options based on whether
or not a Boolean expression is true. In Scala, the if is a valid expression, but can also
be used as statements.

Instantiation The act of creating an object that is an instance of a particular type.

Iteration The act of running through steps or elements one at a time.

List An abstract data type that stores items by a numeric index and allows random access,
insertion, and removal.

553

554 Introduction to Programming and Problem-Solving Using Scala

Logic Error This is an error in which a program compiles and runs to completion, but
produces the wrong output. These are typically hard to find and fix as the computer
gives you limited information about what is wrong.

Loop A construct designed to execute code repeatedly.

Multithreading The act of having a program that allows more than one thread of con-
trol to be active at a time. This effectively allows multiple instructions to execute
simultaneously. This is a form of shared memory parallelism.

Parallel In the context of programming, this is when two or more things are executing at
the same time. This generally requires multiple computational elements such as cores,
processors, or even full computers.

Parameter This is a place holder for a value that will be passed into a function.

Recursion When a function or method calls itself. In mathematical terms, this is when a
function is defined in terms of itself.

Runtime Error This is an error that causes the program to crash/terminate while run-
ning. This means that the code is valid Scala that compiles, but it has a flaw that
produces throws and exception or error. When this happens, Scala prints a message
and a stack trace.

Search The process of looking for a particular element or its position in a collection.

Sequence (Seq) A type of collection characterized by items having a particular order and
being referred to by an integer index.

Signature The signature of a method/function includes the name along with the parameter
types and the return type. From the signature you can see how a method/function
should be called. The return type also lets you know what you can do with the result
of the call.

Sort The act of putting the items in a sequence into the appropriate order according to
some comparison function.

Stack Trace A listing of the call stack of a program. This shows what line in what function
a program is at as well as what line and function called that going back many levels
of calls.

Statement A set of tokens that represents a complete command to a language. In Scala,
any expression can be used as a statement.

Syntax Error This is an error you are notified of during the compile stage which exists
because you wrote code that violates the syntax of the language. These are typically
the easiest errors to deal with because the compiler can give you an informative
message with a line number. If you are working in an IDE, syntax errors will often be
shown with a red underscore, much like spelling errors in a word processor.

Thread A single unit of control in a program that shares memory with other threads.

Token The smallest element of a programming language that has meaning on its own and
which changes meaning if altered or broken apart with whitespace.

Type A construct that specifies a set of values and the operations that can be performed
on them.

Glossary 555

Variable A construct that associates a name to a reference to a value.

XML This is short for eXtensible Markup Language. XML is a standard, plain text format
that can be used to represent various forms of data in a tree-like structure. It is called
extensible because users are allowed to develop their own tags to represent data in
the manner they want.

http://taylorandfrancis.com

Bibliography

[1] Mark C. Lewis and Lisa L. Lacher. Object-Orientation, Abstraction, and Data Structures
Using Scala. Chapman & Hall/CRC, 2st edition, 2016.

[2] Michael P. Marder. Research Methods for Science. Cambridge University Press, New
York, NY, USA, 1st edition, 2011.

[3] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: A Comprehensive
Step-by-Step Guide, 2nd Edition. Artima Incorporation, USA, 2nd edition, 2011.

557

http://taylorandfrancis.com

Index

!, 62
<<, 68
>>, 68
>>>, 68
&&, 62
::, 139
::, 139
<, 60
<=, 60
==, 60
>, 60
>=, 60
???, 83
&, 67
~, 67
import, 46
^, 62
|, 67
||, 62

address, 3
affine transform, 350
algorithm, 1
aliasing, 181
analysis, 155, 482
Analytical Engine, 2
Animation, 353
AnimationTimer, 361
Any, 177
AnyRef, 177
AnyVal, 177
API, 171, 497
Application Programming Interface, 171
applications, 496
apply, 494
Arc, 332
archived files, 538
ArcTo, 335
AreaChart, 380
ARGB, 68
args, 244
argument, 78
arguments, 23

Array, 133
assembly language, 8
assert, 407
assignment, 37
AudioClip, 384
average-case, 412

Babbage, Charles, 2
BarChart, 380
base case, 106
best-case, 412
binary, 27
binary search, 416
BIOS, 6
bit, 3, 27
bit-wise and, 67
bit-wise arithmetic, 67
bit-wise negation, 67
bit-wise or, 67
Blend, 373
Boolean, 24
Boolean logic, 61
Boolean operators, 62
boundsInLocal, 344
bubble sort, 402
BubbleChart, 380
bucket sort, 427
BufferedSource, 236
bug, 84
bugs, 194
bus, 3
Byte, 31
byte, 27
bytecode, 496

case class, 256
cat, 530, 535
catch, 237
cd, 530, 533, 547
Char, 24, 40
chdir, 547
chmod, 537
chown, 538

559

560 Index

Church, Alonzo, 2
Church-Turing thesis, 2
Circle, 332
class, 172
class based OOPL, 488
clear, 541
ClosePath, 335
closure, 89
cls, 549
code block, 57
collections, 133
combinations, 222
combinations, 152
command history, 536
Command Line, 546
comments, 46
companion object, 497
comparisons, 60
compressed files, 538
cons, 139
contains, 144
copy, 547
copy method, 259
count, 147
cp, 530, 533
CPU, 3
CSV, 239
CubicCurve, 332
CubicCurveTo, 335
currying, 141, 188
CycleMethod, 338

debug, 84
debugging, 156
def, 79
default value, 259
defensive copy, 187
del, 547
design, 155, 482
df, 541
diff, 145
Dijkstra, Edsger, 1
diminishing gap sort, 412
dir, 547
distinct, 145
divide and conquer, 470
do-while loop, 205
Double, 21, 33
double precision floating point number, 422
down shift, 68
Dragboard, 343

drop, 143
dropWhile, 147
DTD, 446
du, 541

echo, 541, 549
Edit, 548
Elem, 442
Ellipse, 332
encapsulation, 481
endsWith, 144
ENIAC, 2
erase, 547
escape characters, 40
Euclid’s algorithm, 126
event handlers, 341
exception, 119
exceptions, 236
exists, 148
exit, 549
exponent, 33
expression, 20

FadeTransition, 355
Fibonacci numbers, 460
files, 233
fileSource, 237
fill, 221
fillRule, 335
FillTransition, 355
filter, 148
filterNot, 148
find, 414, 541, 549
flagged bubble sort, 404
flatMap, 221
flatMap, 148
Float, 33
floating point types, 34
flush, 242
focus, 285
foldLeft, 152
foldRight, 152
for loop, 206
for-each, 209
for-each loop, 207
forall, 406
forall, 148
foreach, 149
formal parameter, 78
format, 243
format, 243

Index 561

fromFile, 236
fromURL, 240
ftp, 541
function, 77
function literals, 89
functional programming, 11

garbage collection, 458
garbage collector, 183
gestureSource, 343
getLines, 238
global scope, 90, 159
Gödel, Kurt, 2
graphical user interface, 530
graphics coordinates, 278
GraphicsContext, 364
grep, 541
Group, 352
grouped, 153
groups, 536
GUI, 530
gunzip, 538
gzip, 538

hardware, 3
hasNext, 237, 241
hasNextDouble, 241
hasNextInt, 241
hasNextLine, 241
head, 541
help, 549
hexadecimal, 32
higher order function, 93, 116
HLineTo, 335

IDE, 526
identity, 61
if expression, 56
if guards, 211
Image, 347
immutable, 44, 136
imperative, 204
imperative programming, 11
implementation, 155
implicit conversion, 42
import, 234
in-place sorts, 402
indexing, 44
indexOf, 43, 414
indexOf, 145
indexOfSlice, 415

indexWhere, 415
indexWhere, 149
infinite recursion, 106
init, 143
inits, 153
insertion sort, 405
instance, 172, 495
instantiate, 172
instantiation, 495
Int, 31
Integer, 20
integer types, 31
interface, 143
import io.StdIn._, 234
isEmpty, 144
Iterator, 152
Iterator, 237

java.io.FileNotFoundException, 236
java.io.IOException, 236
java.io.PrintWrite, 242
JFXApp, 277

KeyCode, 340
KeyEvent, 340
KeyFrame, 358

lambda calculus, 2, 11
lambda expression, 89
last, 144
lastIndexOf, 415
lastIndexOf, 145
lastIndexWhere, 415
lastIndexWhere, 149
left shift, 68
less, 531, 535
library, 134
Line, 332
linear search, 414
LinearGradient, 337
LineChart, 380
LineTo, 335
Linux commands

cat, 530, 535
cd, 530, 533
chmod, 537
chown, 538
clear, 541
cp, 530, 533
df, 541
du, 541

562 Index

echo, 541
find, 541
grep, 541
groups, 536
gunzip, 538
gzip, 538
head, 541
less, 531, 535
ls, 531, 532
man, 536
mkdir, 531, 534
more, 531, 535
mv, 531, 533
ps, 541
pwd, 531
rm, 531, 533, 535
rmdir, 531, 535
rsh, 539
scp, 540
sftp, 540
ssh, 539
tail, 541
tar, 538
telnet, 539
top, 541
touch, 541
unzip, 538
vi, 543
w, 541
wget, 541
which, 541
whoami, 536
zip, 538

List, 133, 139
literal, 20
loadFile, 442
local scope, 159
local variable, 81
logic error, 195
logic programming, 12
logical and, 62
logical not, 62
logical or, 62
Long, 31
Lovelace, Ada, 2
ls, 531, 532

machine language, 8
magic number, 161
maintenance, 156
man, 536

mantissa, 33
map, 149
match, 117
math, 34
max sort, 404
md, 547
Media, 384
MediaPlayer, 384
MediaView, 384
member, 256, 489
memory heap, 457
memory stack, 457
merge sort, 470
method, 489
methods, 23
min sort, 404
mkdir, 531, 534, 547
mkString, 237
mkString, 146
Monte-Carlo method, 129
more, 531, 535, 547
MouseDragEventMouseDragEvent, 343
MousEvent, 342
move, 547
MoveTo, 335
multidimensional arrays, 192
multiprocessing, 7
multitasking, 7
multithreading, 5, 214
mutable, 136
mutually recursive functions, 474
mv, 531, 533

named arguments, 258
newline character, 19
next, 237
nextDouble, 241
nextInt, 241
nextLine, 241
Nil, 139
NoCycle, 338
Node, 442
Node (ScalaFX), 283
NodeSeq, 442
non-volatile, 4
nonEmpty, 145
Nothing, 83, 179
Null, 179
numeric literal, 21

object, 23

Index 563

object, 495
object-oriented programming, 12
octal, 32
onDragDetected, 341
onDragDone, 341
onDragDropped, 341
onDragEntered, 341
onDragEntered, 341
onDragOver, 341
ones’ compliment, 31
onKeyPressed, 340
onKeyReleased, 340
onKeyTyped, 340
onMouseClicked, 341
onMouseDragEntered, 341
onMouseDragExited, 341
onMouseDragged, 341
onMouseDragOver, 341
onMouseDragReleased, 341
onMouseEntered, 341
onMouseExited, 341
onMouseMoved, 341
onMousePressed, 341
onMouseReleased, 341
onRotate, 344
onRotationFinished, 346
onRotationStarted, 346
onScroll, 341
onScrollFinished, 342
onScrollStarted, 342
onSwipeDown, 346
onSwipeLeft, 346
onSwipeRight, 346
onSwipeUp, 346
onTouchMoved, 346
onTouchPressed, 346
onTouchReleased, 346
onTouchStationary, 346
onZoom, 346
onZoomFinished, 346
onZoomStarted, 346
operating system, 6
Option, 174
order analysis, 411
overflow, 31

packages, 234
Paint, 336
par, 215
parallel processing, 5
ParallelTransition, 355

parameterized type, 134
parametric functions, 175
partition, 149
pass-by-name, 141, 190
pass-by-reference, 190
pass-by-value, 190
patch, 146
Path, 332, 334
path, 547
PathElement, 335
PathTransition, 355
pattern, 260
pattern matching, 38, 117
PauseTransition, 356
permissions, 536
permutations, 222
permutations, 153
PieChart, 380
Polygon, 332
Polyline, 332
post-check, 205
pre-check, 204
precedence, 65
printf, 243
printf, 243
println, 46
PrintWriter, 242, 245
private, 491
problem decomposition, 84
procedure, 90
profiler, 426
programming paradigms, 10
Prolog, 12
protected, 491
ps, 541
public visibility, 491
putty, 540
pwd, 531

QuadCurve, 333
QuadCurveTo, 335
quicksort, 471

race condition, 216
RadialGradient, 337
radix sort, 427
ragged array, 193
RAM, 4
random access memory, 4
Range type, 209
raw string, 41

564 Index

rd, 547
readDouble, 46
readInt, 46
readLine, 46
Rectangle, 333
rectangular array, 193
recursion, 105
reduce, 151
reduceLeft, 151
reduceRight, 151
Reflect, 338
regular expression, 239
relational operator, 60
ren, 547
rename, 547
Repeat, 338
REPL, 19
require, 216
require, 407
reset, 237
result type, 79
return, 406
reverse, 146
RGB, 68
right associative, 140
right shift, 68
rm, 531, 533, 535
rmdir, 531, 535, 547
rocket, 89
RotateEvent, 346
RotateTransition, 356
rsh, 539
runtime error, 195

scalac, 496
scaladoc, 172
ScalaFX

Binding, 301
Button, 286
CheckBox, 286
ChoiceBox, 288
ColorPicker, 291
ComboBox, 288
controls, 283
DatePicker, 291
FileChooser, 295
Label, 284
ListView, 288
menus, 295
Observable, 301
PasswordField, 284

ProgressBar, 298
Property, 301
RadioButton, 286
ScrollBar, 298
Separator, 298
shapes, 332
Slider, 298
TableView, 292
TextArea, 284
TextField, 284
ToggleButton, 286
ToggleGroup, 286
ToolBar, 298
TreeView, 293

ScaleTransition, 356
Scanner, 241
ScatterChart, 380
Scene, 278
scientific notation, 33
scope, 81, 159, 488
scp, 540
script, 45
ScrollEvent, 343
searching, 401, 414
selection sort, 404
semantics, 35
sequence, 134
Sequential Execution, 45
sequential search, 414
SequentialTransition, 356
sftp, 540
Shell sort, 412
Short, 31
short circuit operators, 64
side effect, 90
signed, 30
SIMULA67, 12
single precision floating point number, 422
singleton, 495
singleton object, 172
slice, 144
sliding, 154
Smalltalk, 12
software, 3
sorting, 401
Source, 235, 237
split, 239
split, 239
split, 161
splitAt, 44
splitAt, 144

Index 565

ssh, 539
stack frame, 458
StackedAreaChart, 380
StackedBarChart, 380
Stage, 278
standard input, 5
standard output, 5
startsWith, 145
statement, 20
static checking, 195
StdIn, 235
Stop, 338
strict type, 218
String, 25, 40
string interpolation, 41
Stroke, 336
stroke, 339
StrokeJoin, 340
StrokeTransition, 356
StrokeType, 340
substring, 44
SVGPath, 333
SwipeEvent, 346
syntax, 35
syntax error, 194

tab completion, 535
tail, 541
tail recursion, 117
tails, 154
take, 144
takeRight, 144
takeWhile, 150
tar, 538
telnet, 539
testing, 156, 216
Text, 333
text files, 233
this, 495
thunk, 190
Timeline, 358
toArray, 146
token, 20
toList, 238
toLowerCase, 44
top, 541
touch, 541
TouchEvent, 346
toUpperCase, 44
Towers of Hanoi, 462
trait, 172

Transition, 354
TranslateTransition, 356
tree, 547
trim, 44, 240
try, 237
try/catch, 119, 236
tuple, 26, 38, 94
Turing machine, 2, 11
Turing, Alan, 2
two’s compliment, 31, 68
type, 20, 171
type declarations, 94

Unicode, 41
Unit, 26
Unit, 90
Unit testing, 218
unsigned, 30
unzip, 538
up shift, 68
updated, 320
useDelimiter, 241

val, 36
var, 36
variable length argument lists, 179
variable length arguments, 179
variables, 36
Vector, 210
vi, 543
view, 218
virtual machine, 7
virtualization, 7
visibility, 490
VLineTo, 335
volatile, 4
von Neumann architecture, 3
von Neumann, John, 3

w, 541
WebEngine, 386
WebView, 386
wget, 541
where, 549
which, 541
while loop, 203
whoami, 536, 550
Window commands

cd, 547
chdir, 547
cls, 549

566 Index

copy, 547
del, 547
dir, 547
echo, 549
Edit, 548
erase, 547
exit, 549
find, 549
help, 549
md, 547
mkdir, 547
more, 547
move, 547
path, 547
rd, 547
ren, 547
rename, 547
rmdir, 547
tree, 547
where, 549
whoami, 550

Windows, 545
worst-case, 412

XML, 437
attribute, 439
comments, 440
element, 438
tag, 438

XML patterns, 446
XML schema, 446

yield, 210

zip, 538
zip, 146
Zipped, 269
zipWithIndex, 147
ZoomEvent, 346
Zuse Z3, 2

	Cover������������
	Half Title�����������������
	Title Page�����������������
	Copyright Page���������������������
	Table of Contents������������������������
	List of Figures����������������������
	List of Tables���������������������
	Preface��������������
	1: Basics of Computers, Computing, and Programming
	1.1 History������������������
	1.2 Hardware�������������������
	1.2.1 Central Processing Unit������������������������������������
	1.2.2 Memory�������������������
	1.2.3 Input/Output Devices���������������������������������

	1.3 Software�������������������
	1.4 Nature of Programming��������������������������������
	1.5 Programming Paradigms��������������������������������
	1.5.1 Imperative Programming�����������������������������������
	1.5.2 Functional Programming�����������������������������������
	1.5.3 Object-Oriented Programming��
	1.5.4 Logic Programming������������������������������
	1.5.5 Nature of Scala����������������������������

	1.6 End of Chapter Material����������������������������������
	1.6.1 Summary of Concepts��������������������������������
	1.6.2 Exercises����������������������
	1.6.3 Projects���������������������

	2: Scala Basics
	2.1 Scala Tools����������������������
	2.2 Expressions, Types, and Basic Math���
	2.3 Objects and Methods������������������������������
	2.4 Other Basic Types����������������������������
	2.5 Back to the Numbers������������������������������
	2.5.1 Binary Arithmetic������������������������������
	2.5.2 Negative Numbers in Binary���������������������������������������
	2.5.3 Other Integer Types��������������������������������
	2.5.4 Octal and Hexadecimal����������������������������������
	2.5.5 Non-Integer Numbers��������������������������������

	2.6 The math Object��������������������������
	2.7 Naming Values and Variables��������������������������������������
	2.7.1 Patterns in Declarations�������������������������������������
	2.7.2 Using Variables����������������������������

	2.8 Details of Char and String�������������������������������������
	2.8.1 Escape Characters������������������������������
	2.8.2 Raw Strings������������������������
	2.8.3 String Interpolation���������������������������������
	2.8.4 String Methods���������������������������
	2.8.5 Immutability of Strings������������������������������������

	2.9 Sequential Execution�������������������������������
	2.9.1 Comments���������������������

	2.10 A Tip for Learning to Program���
	2.11 End of Chapter Material�����������������������������������
	2.11.1 Problem Solving Approach��������������������������������������
	2.11.2 Summary of Concepts���������������������������������
	2.11.3 Self-Directed Study���������������������������������
	2.11.4 Exercises�����������������������

	3: Conditionals
	3.1 Motivating Example�����������������������������
	3.2 The if Expression����������������������������
	3.3 Comparisons����������������������
	3.4 Boolean Logic������������������������
	3.5 Precedence���������������������
	3.6 Nesting ifs����������������������
	3.7 Bit-Wise Arithmetic������������������������������
	3.8 End of Chapter Material����������������������������������
	3.8.1 Problem Solving Approach�������������������������������������
	3.8.2 Summary of Concepts��������������������������������
	3.8.3 Self-Directed Study��������������������������������
	3.8.4 Exercises����������������������
	3.8.5 Projects���������������������

	4: Functions
	4.1 Motivating Example�����������������������������
	4.2 Function Refresher�����������������������������
	4.3 Making and Using Functions�������������������������������������
	4.4 Problem Decomposition��������������������������������
	4.5 Function Literals/Lambda Expressions/Closure���
	4.6 Side Effects�����������������������
	4.7 Thinking about Function Execution��
	4.8 type Declarations����������������������������
	4.9 Putting It Together������������������������������
	4.10 End of Chapter Material�����������������������������������
	4.10.1 Problem Solving Approach��������������������������������������
	4.10.2 Summary of Concepts���������������������������������
	4.10.3 Self-Directed Study���������������������������������
	4.10.4 Exercises�����������������������
	4.10.5 Projects����������������������

	5: Recursion for Iteration
	5.1 Basics of Recursion������������������������������
	5.2 Writing Recursive Functions��������������������������������������
	5.3 User Input���������������������
	5.4 Abstraction����������������������
	5.5 Matching�������������������
	5.6 Bad Input, Exceptions, and the try/catch Expression��
	5.7 Putting It Together������������������������������
	5.8 Looking Ahead������������������������
	5.9 End of Chapter Material����������������������������������
	5.9.1 Problem Solving Approach�������������������������������������
	5.9.2 Summary of Concepts��������������������������������
	5.9.3 Self-Directed Study��������������������������������
	5.9.4 Exercises����������������������
	5.9.5 Projects���������������������

	6: Arrays and Lists in Scala
	6.1 Making Arrays������������������������
	6.2 Using Arrays�����������������������
	6.3 Lists����������������
	6.4 Bigger Arrays and Lists with Fill and Tabulate���
	6.5 Standard Methods���������������������������
	6.5.1 Basic Methods��������������������������
	6.5.2 Higher-Order Methods���������������������������������
	6.5.3 reduce and fold����������������������������
	6.5.4 Combinatorial/Iterator Methods���

	6.6 Complete Grades Script/Software Development��
	6.7 Playing with Data����������������������������
	6.7.1 Reading the Data�����������������������������
	6.7.2 Finding Maximum Values�����������������������������������

	6.8 End of Chapter Material����������������������������������
	6.8.1 Problem Solving Approach�������������������������������������
	6.8.2 Summary of Concepts��������������������������������
	6.8.3 Self-Directed Study��������������������������������
	6.8.4 Exercises����������������������
	6.8.5 Projects���������������������

	7: Type Basics and Argument Passing
	7.1 Scala API��������������������
	7.2 The Option Type��������������������������
	7.3 Parametric Functions�������������������������������
	7.4 Subtyping��������������������
	7.5 Variable Length Argument Lists���
	7.6 Mutability and Aliasing����������������������������������
	7.7 Basic Argument Passing���������������������������������
	7.8 Currying�������������������
	7.9 Pass-By-Name�����������������������
	7.10 Multidimensional Arrays�����������������������������������
	7.11 Classifying Bugs����������������������������
	7.12 End of Chapter Material�����������������������������������
	7.12.1 Problem Solving Approach��������������������������������������
	7.12.2 Summary of Concepts���������������������������������
	7.12.3 Self-Directed Study���������������������������������
	7.12.4 Exercises�����������������������
	7.12.5 Projects����������������������

	8: Loops
	8.1 while Loop���������������������
	8.2 do-while Loop������������������������
	8.3 for Loop�������������������
	8.3.1 Range Type�����������������������
	8.3.2 yield������������������
	8.3.3 if Guards����������������������
	8.3.4 Multiple Generators��������������������������������
	8.3.5 Patterns in for Loops����������������������������������
	8.3.6 Variable Declarations����������������������������������
	8.3.7 Multidimensional Sequences and for Loops���

	8.4 Testing������������������
	8.5 Putting It Together������������������������������
	8.6 End of Chapter Material����������������������������������
	8.6.1 Problem Solving Approach�������������������������������������
	8.6.2 Summary of Concepts��������������������������������
	8.6.3 Self-Directed Study��������������������������������
	8.6.4 Exercises����������������������
	8.6.5 Projects���������������������

	9: Text Files
	9.1 I/O Redirection��������������������������
	9.2 Packages and import Statements���
	9.3 Reading from Files�����������������������������
	9.3.1 Iterators����������������������
	9.3.2 String split Method��������������������������������
	9.3.3 Reading from Other Things��������������������������������������
	9.3.4 Other Options (Java Based)���������������������������������������

	9.4 Writing to File��������������������������
	9.4.1 Appending to File������������������������������

	9.5 Use Case: Simple Encryption��������������������������������������
	9.5.1 Command Line Arguments�����������������������������������
	9.5.2 Mapping a File���������������������������
	9.5.3 Character Offset�����������������������������
	9.5.4 Alphabet Flip��������������������������
	9.5.5 Key Word���������������������
	9.5.6 Putting It Together��������������������������������
	9.5.7 Primes and Real Cryptography���

	9.6 End of Chapter Material����������������������������������
	9.6.1 Summary of Concepts��������������������������������
	9.6.2 Self-Directed Study��������������������������������
	9.6.3 Exercises����������������������
	9.6.4 Projects���������������������

	10: Case Classes
	10.1 User Defined Types������������������������������
	10.2 case classes������������������������
	10.2.1 Making Objects����������������������������
	10.2.2 Accessing Members�������������������������������
	10.2.3 Named and Default Arguments (Advanced)��
	10.2.4 The copy Method�����������������������������
	10.2.5 case class Patterns���������������������������������

	10.3 Mutable classes���������������������������
	10.4 Putting It Together�������������������������������
	10.5 End of Chapter Material�����������������������������������
	10.5.1 Summary of Concepts���������������������������������
	10.5.2 Self-Directed Study���������������������������������
	10.5.3 Exercises�����������������������
	10.5.4 Projects����������������������

	11: GUIs
	11.1 GUI Libraries and History�������������������������������������
	11.2 First Steps�����������������������
	11.3 Stages and Scenes�����������������������������
	11.4 Events and Handlers�������������������������������
	11.5 Controls��������������������
	11.5.1 Text Controls���������������������������
	11.5.2 Button-like Controls����������������������������������
	11.5.3 Selection Controls��������������������������������
	11.5.4 Pickers���������������������
	11.5.5 TableView�����������������������
	11.5.6 TreeView����������������������
	11.5.7 Menus and FileChooser�����������������������������������
	11.5.8 Other Stuff�������������������������

	11.6 Observables, Properties, and Bindings���
	11.6.1 Numeric Properties and Bindings���
	11.6.2 Conditional Bindings����������������������������������

	11.7 Layout and Panes����������������������������
	11.7.1 scalafx.scene.layout Panes��
	11.7.2 scalafx.scene.control Panes���

	11.8 Putting It Together�������������������������������
	11.9 End of Chapter Material�����������������������������������
	11.9.1 Summary of Concepts���������������������������������
	11.9.2 Self-Directed Study���������������������������������
	11.9.3 Exercises�����������������������
	11.9.4 Projects����������������������

	12: Graphics and Advanced ScalaFX
	12.1 Shapes������������������
	12.1.1 Path Elements���������������������������
	12.1.2 Paint and Stroke������������������������������

	12.2 Basic Keyboard, Mouse, and Touch Input��
	12.3 Images������������������
	12.3.1 Writing Images to File������������������������������������

	12.4 Transformations���������������������������
	12.5 Animation���������������������
	12.5.1 Transitions�������������������������
	12.5.2 Timelines�����������������������
	12.5.3 AnimationTimer����������������������������

	12.6 Canvas������������������
	12.6.1 Settings����������������������
	12.6.2 Basic Fills and Strokes�������������������������������������
	12.6.3 Building a Path�����������������������������
	12.6.4 Image Operations on Canvas
	12.6.5 A Canvas Based Game���������������������������������

	12.7 Effects�������������������
	12.8 Charts������������������
	12.9 Media�����������������
	12.10 Web����������������
	12.11 3D Graphics������������������������
	12.12 Putting It Together��������������������������������
	12.13 End of Chapter Material������������������������������������
	12.13.1 Summary of Concepts����������������������������������
	12.13.2 Exercises������������������������
	12.13.3 Projects�����������������������

	13: Sorting and Searching
	13.1 Basic Comparison Sorts����������������������������������
	13.1.1 Bubble Sort�������������������������
	13.1.2 Selection Sort (Min/Max Sort)���
	13.1.3 Insertion Sort����������������������������
	13.1.4 Testing and Verifying Sorts���
	13.1.5 Sort Visualization��������������������������������
	13.1.6 Order Analysis����������������������������
	13.1.7 Shell Sort (Diminishing Gap Sort)���

	13.2 Searching���������������������
	13.2.1 Sequential Search (Linear Search)���
	13.2.2 Binary Search���������������������������

	13.3 Sorting/Searching with case classes���
	13.4 Sorting Lists�������������������������
	13.5 Performance and Timing����������������������������������
	13.6 Putting It Together�������������������������������
	13.7 End of Chapter Material�����������������������������������
	13.7.1 Summary of Concepts���������������������������������
	13.7.2 Exercises�����������������������
	13.7.3 Projects����������������������

	14: XML
	14.1 Description of XML������������������������������
	14.1.1 Tags������������������
	14.1.2 Elements����������������������
	14.1.3 Attributes������������������������
	14.1.4 Content���������������������
	14.1.5 Special Characters��������������������������������
	14.1.6 Comments����������������������
	14.1.7 Overall Format����������������������������
	14.1.8 Comparison to Flat File�������������������������������������
	14.1.8.1 Flexibility in XML����������������������������������

	14.2 XML in Scala������������������������
	14.2.1 Loading XML�������������������������
	14.2.2 Parsing XML�������������������������
	14.2.3 Building XML��������������������������
	14.2.4 Writing XML to File���������������������������������
	14.2.5 XML Patterns��������������������������

	14.3 Putting It Together�������������������������������
	14.4 End of Chapter Material�����������������������������������
	14.4.1 Summary of Concepts���������������������������������
	14.4.2 Self-Directed Study���������������������������������
	14.4.3 Exercises�����������������������
	14.4.4 Projects����������������������

	15: Recursion
	15.1 Memory Layout�������������������������
	15.2 Power of Recursion������������������������������
	15.3 Fibonacci Numbers�����������������������������
	15.4 Towers of Hanoi���������������������������
	15.5 Permutations������������������������
	15.6 Mazes�����������������
	15.7 Sorts�����������������
	15.7.1 Divide and Conquer Sorts��������������������������������������
	15.7.1.1 Merge Sort��������������������������
	15.7.1.2 Quicksort�������������������������

	15.8 Putting It Together�������������������������������
	15.9 End of Chapter Material�����������������������������������
	15.9.1 Summary of Concepts���������������������������������
	15.9.2 Exercises�����������������������
	15.9.3 Projects����������������������

	16: Object-Orientation
	16.1 Basics of Object-Orientation��
	16.1.1 Analysis and Design of a Bank���
	16.1.2 Analysis and Design of Pac-Man™���

	16.2 Implementing OO in Scala������������������������������������
	16.2.1 Methods and Members���������������������������������
	16.2.1.1 Parameters as Members�������������������������������������
	16.2.1.2 Visibility��������������������������

	16.2.2 Special Methods�����������������������������
	16.2.2.1 Property Assignment Methods���
	16.2.2.2 The apply Method��������������������������������

	16.2.3 this Keyword��������������������������
	16.2.4 object Declarations���������������������������������
	16.2.4.1 Applications����������������������������
	16.2.4.2 Introduction to Companion Objects���

	16.3 Revisiting the API������������������������������
	16.4 Implementing the Bank Example���
	16.5 Implementing the Pac-Man™ Example���
	16.6 End of Chapter Material�����������������������������������
	16.6.1 Summary of Concepts���������������������������������
	16.6.2 Exercises�����������������������
	16.6.3 Projects����������������������

	17: Wrapping Up
	17.1 What You Have Learned���������������������������������
	17.2 IDEs (Eclipse)��������������������������
	17.3 Next Steps����������������������
	17.4 End of Chapter Material�����������������������������������
	17.4.1 Exercises�����������������������

	A: Getting to Know the Tools
	A.1 Unix/Linux (includes Mac OS X)���
	A.1.1 Command Line�������������������������
	A.1.1.1 Files and Directories������������������������������������
	A.1.1.2 Aside��������������������
	A.1.1.3 Helpful Tips���������������������������
	A.1.1.4 Permissions��������������������������
	A.1.1.5 Compression/Archiving������������������������������������
	A.1.1.6 Remote���������������������
	A.1.1.7 Other Commands�����������������������������

	A.1.2 I/O Redirection����������������������������
	A.1.3 Text Editors (vi/vim)����������������������������������

	A.2 Windows������������������
	A.2.1 Command Line�������������������������
	A.2.1.1 Files and Directories������������������������������������

	A.2.2 Text Editors�������������������������
	A.2.2.1 Edit�������������������
	A.2.2.2 Notepad����������������������
	A.2.2.3 Others���������������������

	A.2.3 Other Commands���������������������������

	A.3 End of Appendix Material�����������������������������������
	A.3.1 Summary of Concepts��������������������������������
	A.3.2 Exercises����������������������

	B: Glossary
	Bibliography�������������������
	Index������������

