
Chapter 12

Automating System Tasks

In This Chapter

• Understanding shell scripts
• System initialization
• System startup and shutdown
• Scheduling system tasks

You’d never get any work done if you typed every command that needs to be run on your
Fedora or RHEL system when it starts. Likewise, you could work more efficiently if you
grouped together sets of commands that you run all the time. Shell scripts can handle these
tasks.

A shell script is a group of commands, functions, variables, or just about anything else you
can use from a shell. These items are typed into a plain-text file. That file can then be run as a
command. Fedora and RHEL use system initialization shell scripts during system startup to
run commands needed to get things going. You can create your own shell scripts to automate
the tasks you need to do regularly.

This chapter provides a rudimentary overview of the inner workings of shell scripts and how
they can be used. You learn how shell scripts are responsible for the messages that scroll by
on the system console during booting and how simple scripts can be harnessed to a scheduling
facility (such as cron or at) to simplify administrative tasks.

You also learn to fine-tune your machine to start at the most appropriate run level and to run
only services you need. With that understanding, you’ll be able to personalize your computer
and cut down on the amount of time you spend repetitively typing the same commands.

Understanding Shell Scripts
Have you ever had a task that you needed to do over and over that took a lot of typing on the
command line? Do you ever think to yourself, “Wow, I wish there was just one command I
could type to do all this of this”? Maybe a shell script is what you’re after.

 496 Part III: Administering Fedora and RHEL

Shell scripts are the equivalent of batch files in MS-DOS, and can contain long lists of
commands, complex flow control, arithmetic evaluations, user-defined variables, user-defined
functions, and sophisticated condition testing. Shell scripts are capable of handling everything
from simple one-line commands to something as complex as starting up your Fedora or RHEL
system.

In fact, as you will read in this chapter, Fedora and RHEL do just that. They use shell scripts
(/etc/rc.d/rc.sysinit and /etc/rc) to check and mount all your file systems, set up
your consoles, configure your network, launch all your system services, and eventually
provide you with your login screen. While there are nearly a dozen different shells available in
Fedora and RHEL, the default shell is called bash, the Bourne-Again SHell.

Executing and debugging shell scripts
One of the primary advantages of shell scripts is that they can be opened in any text editor to
see what they do. A big disadvantage is that large or complex shell scripts often execute more
slowly than compiled programs. There are two basic ways to execute a shell script:

• The filename is used as an argument to the shell (as in bash myscript). In this
method, the file does not need to be executable; it just contains a list of shell commands.
The shell specified on the command line is used to interpret the commands in the script
file. This is most common for quick, simple tasks.

• The shell script may also have the name of the interpreter placed in the first line of the
script preceeded by #! (as in #!/bin/bash), and have its execute bit set (using chmod
+x). You can then run your script just like any other program in your path simply by
typing the name of the script on the command line.

CROSS-REFERENCE: See Chapter 4 for more details on chmod and read/write/execute
permissions.

When scripts are executed in either manner, options for the program may be specified on the
command line. Anything following the name of the script is referred to as a command-line
argument.

As with writing any software, there is no substitute to clear and thoughtful design and lots of
comments. The pound sign (#) prefaces comments and can take up an entire line or exist on
the same line after script code. It’s best to implement more complex shell scripts in stages,
making sure the logic is sound at each step before continuing. Here are a few good, concise
tips to make sure things are working as expected during testing:

• Place an echo statement at the beginning of lines within the body of a loop. That way,
rather than executing the code, you can see what will be executed without making any
permanent changes.

 Chapter 12: Automating System Tasks 497

• To achieve the same goal, you could place dummy echo statements throughout the
code. If these lines get printed, you know the correct logic branch is being taken.

• You could use set -x near the beginning of the script to display each command that is
executed or launch your scripts using bash –x myscript.

• Because useful scripts have a tendency to grow over time, keeping your code readable as
you go along is extremely important. Do what you can to keep the logic of your code
clean and easy to follow.

Understanding shell variables
Often within a shell script, you want to reuse certain items of information. During the course
of processing the shell script, the name or number representing this information may change.
To store information used by a shell script in such a way that it can be easily reused, you can
set variables. Variable names within shell scripts are case-sensitive and can be defined in the
following manner:

NAME=value

The first part of a variable is the variable name, and the second part is the value set for that
name. Be sure that the NAME and value touch the equal sign, without any spaces. Variables
can be assigned from constants, such as text or numbers. This is useful for initializing values
or saving lots of typing for long constants. Here are examples where variables are set to a
string of characters (CITY) and a numeric value (PI):

CITY="Springfield"
PI=3.14159265

Variables can contain the output of a command or command sequence. You can accomplish
this by preceding the command with a dollar sign and open parenthesis, and following it with
a closing parenthesis. For example, MYDATE=$(date) assigns the output from the date
command to the MYDATE variable. Enclosing the command in backticks (`) can have the same
effect.

NOTE: Keep in mind that characters such as dollar sign ($), backtick (`), asterisk (*), exclamation point (!),
and others have special meaning to the shell, as you will see as you proceed through this chapter. To use
those characters in an option to a command, and not have the shell use its special meaning, you need to
precede that character with a backslash (\) or surround it in quotes. One place you will encounter this is in
files created by Windows users that might include spaces, exclamation points, or other characters. In Linux,
to properly interpret a file named my big! file!, you either need to surround it in double quotes or
type: my\ big\! file\!

These are great ways to get information that can change from computer to computer or from
day to day. The following example sets the output of the uname -n command to the MACHINE

 498 Part III: Administering Fedora and RHEL

variable. Then I use parentheses to set NUM_FILES to the number of files in the current
directory by piping (|) the output of the ls command to the word count command (wc -l).

MACHINE=`uname –n`
NUM_FILES=$(/bin/ls | wc –l)

Variables can also contain the value of other variables. This is useful when you have to
preserve a value that will change so you can use it later in the script. Here BALANCE is set to
the value of the CurBalance variable.

BALANCE="$CurBalance"

NOTE: When assigning variables, use only the variable name (for example, BALANCE). When
referenced, meaning you want the value of the variable, precede it with a dollar sign (as in
$CurBalance). The result of the latter is that you get the value of the variable, and not the variable
name itself.

Special shell variables
There are special variables that the shell assigns for you. The most commonly used variables
are called the positional parameters or command line arguments and are referenced as $0, $1,
$2, $3 . . . $n. $0 is special and is assigned the name used to invoke your script; the others are
assigned the values of the parameters passed on the command line. For instance, if the shell
script named myscript were called as:

myscript foo bar

the positional parameter $0 would be myscript, $1 would be foo, and $2 would be bar.

Another variable, $#, tells you how many parameters your script was given. In our example,
$# would be 2. Another particularly useful special shell variable is $?, which receives the exit
status of the last command executed. Typically, a value of zero means everything is okay, and
anything other than zero indicates an error of some kind. For a complete list of special shell
variables, refer to the bash man page.

Parameter expansion in bash
As mentioned earlier, if you want the value of a variable, you precede it with a $ (for example,
$CITY). This is really just shorthand for the notation ${CITY}; curly braces are used when
the value of the parameter needs to be placed next to other text without a space. Bash has
special rules that allow you to expand the value of a variable in different ways. Going into all
the rules is probably a little overkill for a quick introduction to shell scripts, but Table 12-1
presents some common constructs that you’re likely to see in bash scripts you find on your
Fedora or RHEL box.

 Chapter 12: Automating System Tasks 499

Table 12-1: Examples of bash Parameter Expansion
Construction Meaning
${var:-value} If variable is unset or empty, expand this to value

${var#pattern} Chop the shortest match for pattern from the front of var’s value

${var##pattern} Chop the longest match for pattern from the front of var’s value

${var%pattern} Chop the shortest match for pattern from the end of var’s value

${var%%pattern} Chop the longest match for pattern from the end of var’s value

Try typing the following commands from a shell to test how parameter expansion works:

$ THIS="Example"
$ THIS=${THIS:-"Not Set"}
$ THAT=${THAT:-"Not Set"}
$ echo $THIS
Example
$ echo $THAT
Not Set

In the examples here, the THIS variable is initially set to the word Example. In the next two
lines, the THIS and THAT variables are set to their current values or to Not Set, if they are
not currently set. Notice that because I just set THIS to the string Example, when I echo the
value of THIS it appears as Example. However, since THAT was not set, it appears as Not
Set.

NOTE: For the rest of this section, I show how variables and commands may appear in a shell script. To
try out any of those examples, however, you can simply type them into a shell as shown in the previous
example.

In the following example, MYFILENAME is set to /home/digby/myfile.txt. Next, the
FILE variable is set to myfile.txt and DIR is set to /home/digby. In the NAME variable,
the file name is cut down to simply myfile, then in the EXTENSION variable the file
extension is set to txt. (To try these out, you can type them at a shell prompt as in the
previous example, then echo the value of each variable to see how it is set.)

MYFILENAME="/home/digby/myfile.txt"
FILE=${MYFILENAME##*/} #FILE becomes "myfile.txt"
DIR=${MYFILENAME%/*} #DIR becomes "/home/digby"
NAME=${FILE%.*} #NAME becomes "myfile"
EXTENSION=${FILE#*.} #EXTENSION becomes "txt"

500 Part III: Administering Fedora and RHEL

Performing arithmetic in shell scripts
Bash uses untyped variables, meaning it normally treats variables as strings or text, but can
change them on the fly if you want it to. Unless you tell it otherwise with declare, your
variables are just a bunch of letters to bash. But when you start trying to do arithmetic with
them, bash will convert them to integers if it can. This makes it possible to do some fairly
complex arithmetic in bash.

Integer arithmetic can be performed using the built-in let command or through the external
expr or bc commands. After setting the variable BIGNUM value to 1024, the three commands
that follow would all store the value 64 in the RESULT variable. The last command gets a
random number between 0 and 10 and echoes the results back to you.

BIGNUM=1024
let RESULT=$BIGNUM/16
RESULT=`expr $BIGNUM / 16`
RESULT=`echo "$BIGNUM / 16" | bc –l`
let foo=$RANDOM%10; echo $foo

NOTE: While most elements of shell scripts are relatively freeform (where whitespace, such as spaces or
tabs, is insignificant), both let and expr are particular about spacing. The let command insists on no
spaces between each operand and the mathematical operator, whereas the syntax of the expr command
requires whitespace between each operand and its operator. In contrast to those, bc isn’t picky about
spaces, but can be trickier to use because it does floating-point arithmetic.

To see a complete list of the kinds of arithmetic you can perform using the let command,
type help let at the bash prompt.

Using programming constructs in shell scripts
One of the features that make shell scripts so powerful is that their implementation of looping
and conditional execution constructs is similar to those found in more complex scripting and
programming languages. You can use several different types of loops, depending on your
needs.

The “if…then” statements
The most commonly used programming construct is conditional execution, or the if
statement. It is used to perform actions only under certain conditions. There are several
variations, depending on whether you’re testing one thing, or want to do one thing if a
condition is true, but another thing if a condition is false, or if you want to test several things
one after the other.

The first if...then example tests if VARIABLE is set to the number 1. If it is, then the
echo command is used to say that it is set to 1. The fi then indicates that the if statement is
complete and processing can continue.

 Chapter 12: Automating System Tasks 501

VARIABLE=1
if [$VARIABLE -eq 1] ; then
echo "The variable is 1"
fi

Instead of using –eq, you can use the equals sign (=), as shown in the following example. The
= works best for comparing string values, while -eq is often better for comparing numbers.
Using the else statement, different words can be echoed if the criterion of the if statement
isn’t met ($STRING = "Friday"). Keep in mind that it's good practice to put strings in
double quotes.

STRING="Friday"
if [$STRING = "Friday"] ; then
echo "WhooHoo. Friday."
else
echo "Will Friday ever get here?"
fi

You can also reverse tests with an exclamation mark (!). In the following example, if STRING
is not Monday, then "At least it's not Monday" is echoed.

STRING="FRIDAY"
if ["$STRING" != "Monday"] ; then
 echo "At least it's not Monday"
fi

In the following example, elif (which stands for "else if") is used to test for an additional
condition (is filename a file or a directory).

filename="$HOME"

if [-f "$filename"] ; then
 echo "$filename is a regular file"
elif [-d "$filename"] ; then
 echo "$filename is a directory"
else
 echo "I have no idea what $filename is"
fi

As you can see from the preceding examples, the condition you are testing is placed between
square brackets []. When a test expression is evaluated, it will return either a value of 0,
meaning that it is true, or a 1, meaning that it is false. Notice that the echo lines are indented.
This is optional and done only to make the script more readable.

Table 12-2 lists the conditions that are testable and is quite a handy reference. (If you’re in a
hurry, you can type help test on the command line to get the same information.)

502 Part III: Administering Fedora and RHEL

Table 12-2: Operators for Test Expressions
Operator What Is Being Tested?

-a file Does the file exist? (same as –e)

-b file Is the file a special block device?

-c file Is the file character special (for example, a character device)? Used
to identify serial lines and terminal devices.

-d file Is the file a directory?

-e file Does the file exist? (same as -a)

-f file Does the file exist, and is it a regular file (for example, not a
directory, socket, pipe, link, or device file)?

-g file Does the file have the set-group-id bit set?

-h file Is the file a symbolic link? (same as –L)

-k file Does the file have the sticky bit set?

-L file Is the file a symbolic link?

-n string Is the length of the string greater than 0 bytes?

-O file Do you own the file?

-p file Is the file a named pipe?

-r file Is the file readable by you?

-s file Does the file exist, and is it larger than 0 bytes?

-S file Does the file exist, and is it a socket?

-t fd Is the file descriptor connected to a terminal?

-u file Does the file have the set-user-id bit set?

-w file Is the file writable by you?

-x file Is the file executable by you?

-z string Is the length of the string 0 (zero) bytes?

expr1 -a expr2 Are both the first expression and the second expression true?

expr1 -o expr2 Is either of the two expressions true?

file1 -nt file2 Is the first file newer than the second file (using the modification
timestamp)?

file1 -ot file2 Is the first file older than the second file (using the modification
timestamp)?

file1 -ef file2 Are the two files associated by a link (a hard link or a symbolic link)?

 Chapter 12: Automating System Tasks 503

Operator What Is Being Tested?

var1 = var2 Is the first variable equal to the second variable?

var1 -eq var2 Is the first variable equal to the second variable?

var1 -ge var2 Is the first variable greater than or equal to the second variable?

var1 -gt var2 Is the first variable greater than the second variable?

var1 -le var2 Is the first variable less than or equal to the second variable?

var1 -lt var2 Is the first variable less than the second variable?

var1 != var2 Is the first variable not equal to the second variable?

var1 -ne var2 Is the first variable not equal to the second variable?

There is also a special shorthand method of performing tests that can be useful for simple one-
command actions. In the following example, the two pipes (||) indicate that if the directory
being tested for doesn’t exist (-d dirname), then make the directory (mkdir $dirname).

[test] || {action}
Perform simple single command {action} if test is false
dirname="/tmp/testdir"
[-d "$dirname"] || mkdir "$dirname"

Instead of pipes, you can use two ampersands to test if something is true. In the following
example, a command is being tested to see if it includes at least three command-line
arguments.

[test] && {action}
Perform simple single command {action} if test is true
[$# -ge 3] && echo "There are at least 3 command line arguments."

The case command
Another frequently used construct is the case command. Similar to a switch statement in
programming languages, this can take the place of several nested if statements. A general
form of the case statement is as follows:

case "VAR" in
 Result1)
 { body };;
 Result2)
 { body };;
 *)
 { body } ;;
esac

One use for the case command might be to help with your backups. The following case
statement tests for the first three letters of the current day (case `date +%a` in). Then,
depending on the day, a particular backup directory (BACKUP) and tape drive (TAPE) is set.

504 Part III: Administering Fedora and RHEL

Our VAR doesn’t have to be a variable,
it can be the output of a command as well
Perform action based on day of week
case `date +%a` in
 "Mon")
 BACKUP=/home/myproject/data0
 TAPE=/dev/rft0
Note the use of the double semi-colon to end each option
 ;;
Note the use of the "|" to mean "or"
 "Tue" | "Thu")
 BACKUP=/home/myproject/data1
 TAPE=/dev/rft1
 ;;
 "Wed" | "Fri")
 BACKUP=/home/myproject/data2
 TAPE=/dev/rft2
 ;;
Don’t do backups on the weekend.
 *)
 BACKUP="none"
 TAPE=/dev/null
 ;;
esac

The asterisk (*) is used as a catchall, similar to the default keyword in the C programming
language. In this example, if none of the other entries are matched on the way down the loop,
the asterisk is matched, and the value of BACKUP becomes none. Note the use of esac, or
case spelled backwards, to end the case statement.

The “for...do” loop
Loops are used to perform actions over and over again until a condition is met or until all data
has been processed. One of the most commonly used loops is the for...do loop. It iterates
through a list of values, executing the body of the loop for each element in the list. The syntax
and a few examples are presented here:

for VAR in LIST
do
 { body }
done

The for loop assigns the values in LIST to VAR one at a time. Then for each value, the body
in braces between do and done is executed. VAR can be any variable name, and LIST can be
composed of pretty much any list of values or anything that generates a list.

for NUMBER in 0 1 2 3 4 5 6 7 8 9
do
 echo The number is $NUMBER
done

 Chapter 12: Automating System Tasks 505

for FILE in `/bin/ls`

do

 echo $FILE

done

You can also write it this way, which is somewhat cleaner.

for NAME in John Paul Ringo George ; do

 echo $NAME is my favorite Beatle

done

Each element in the LIST is separated from the next by whitespace. This can cause trouble if

you’re not careful because some commands, such as ls -l, output multiple fields per line,

each separated by whitespace. The string done ends the for statement.

If you’re a die-hard C programmer, bash allows you to use C syntax to control your loops:

LIMIT=10

Double parentheses, and no $ on LIMIT even though it's a variable!

for ((a=1; a <= LIMIT ; a++)) ; do

 echo "$a"

done

The “while...do” and “until...do” loops

Two other possible looping constructs are the while...do loop and the until...do loop.

The structure of each is presented here:

while condition until condition

do do

 { body } { body }

done done

The while statement executes while the condition is true. The until statement executes

until the condition is true, in other words, while the condition is false.

Here is an example of a while loop that will output the number 0123456789:

N=0

while [$N –lt 10] ; do

 echo –n $N

 let N=$N+1

done

Another way to output the number 0123456789 is to use an until loop as follows:

N=0

until [$N –eq 10] ; do

 echo –n $N

 let N=$N+1

done

506 Part III: Administering Fedora and RHEL

Some useful external programs
Bash is great and has lots of built-in commands, but it usually needs some help to do anything
really useful. Some of the most common useful programs you’ll see used are grep, cut, tr,
awk, and sed. As with all the best UNIX tools, most of these programs are designed to work
with standard input and standard output, so you can easily use them with pipes and shell
scripts.

The general regular expression parser (grep)
The name general regular expression parser sounds intimidating, but grep is just a way to
find patterns in files or text. Think of it as a useful search tool. Getting really good with
regular expressions is quite a challenge, but many useful things can be accomplished with just
the simplest forms.

For example, you can display a list of all regular user accounts by using grep to search for all
lines that contain the text /home in the /etc/passwd file as follows:

grep /home /etc/passwd

Or you could find all environment variables that begin with HO using the following command:

env | grep ^HO

NOTE: The ^ above is the actual caret character, ^, not what you'll commonly see for a backspace, ^H.
Type ^, H, and O (the uppercase letter) to see what items start with the uppercase characters HO.

To find a list of options to use with the grep command, type man grep.

Remove sections of lines of text (cut)
The cut command can extract specific fields from a line of text or from files. It is very useful
for parsing system configuration files into easy-to-digest chunks. You can specify the field
separator you want to use and the fields you want, or you can break up a line based on bytes.

The following example lists all home directories of users on your system. Using an earlier
example of the grep command, this line pipes a list of regular users from the /etc/passwd
file, then displays the sixth field (-f6) as delimited by a colon (-d':'). The hyphen at the
end tells cut to read from standard input (from the pipe).

grep /home /etc/passwd | cut –f6 –d':' -

Translate or delete characters (tr)
The tr command is a character-based translator that can be used to replace one character or
set of characters with another or to remove a character from a line of text.

 Chapter 12: Automating System Tasks 507

The following example translates all uppercase letters to lowercase letters and displays the
words "mixed upper and lower case" as a result:

FOO="Mixed UPpEr aNd LoWeR cAsE"
echo $FOO | tr [A-Z] [a-z]

In the next example, the tr command is used on a list of filenames to rename any files in that
list so that any tabs or spaces (as indicated by the [:blank:] option) contained in a filename
are translated into underscores. Try running the following code in a test directory:

for file in * ; do
 f=`echo $file | tr [:blank:] [_]`
 ["$file" = "-d"] || mv -i "$file" "$f"
done

The Stream Editor (sed)
The sed command is a simple scriptable editor, and as such can perform only simple edits,
such as removing lines that have text matching a certain pattern, replacing one pattern of
characters with another, and other simple edits. To get a better idea of how sed scripts work,
there’s no substitute for the online documentation, but here are some examples of common
uses.

You can use the sed command to essentially do what I did earlier with the grep example:
search the /etc/passwd file for the word home. Here the sed command searches the entire
/etc/passwd file, searches for the word home, and prints any line containing the word
home.

sed –n '/home/p' /etc/passwd

In this example, sed searches the file somefile.txt and replaces every instance of the
string Mac with Linux. Notice that the letter g is needed at the end of the substitution
command to cause every occurrence of Mac on each line to be changed to Linux. (Otherwise,
only the first instance of Mac on each line is changed.) The output is then sent to the
fixed_file.txt file. The output from sed goes to stdout, so this command redirects the
output to a file for safekeeping.

sed 's/Mac/Linux/g' somefile.txt > fixed_file.txt

You can get the same result using a pipe:

cat somefile.txt | sed 's/Mac/Linux/g' > fixed_file.txt

By searching for a pattern and replacing it with a null pattern, you delete the original pattern.
This example searches the contents of the somefile.txt file and replaces extra blank
spaces at the end of each line (s/ *$) with nothing (//). Results go to the
fixed_file.txt file.

cat somefile.txt | sed 's/ *$//' > fixed_file.txt

508 Part III: Administering Fedora and RHEL

Trying some simple shell scripts
Sometimes the simplest of scripts can be the most useful. If you type the same sequence of
commands repetitively, it makes sense to store those commands (once!) in a file. Here are a
couple of simple, but useful, shell scripts.

A simple telephone list
This idea has been handed down from generation to generation of old UNIX hacks. It’s really
quite simple, but it employs several of the concepts just introduced.

#!/bin/bash
(@)/ph
A very simple telephone list
Type "ph new name number" to add to the list, or
just type "ph name" to get a phone number

PHONELIST=~/.phonelist.txt

If no command line parameters ($#), there
is a problem, so ask what they’re talking about.
if [$# -lt 1] ; then
 echo "Whose phone number did you want? "
 exit 1
fi

Did you want to add a new phone number?
if [$1 = "new"] ; then
 shift
 echo $* >> $PHONELIST
 echo $* added to database
 exit 0
fi

Nope. But does the file have anything in it yet?
This might be our first time using it, after all.
if [! -s $PHONELIST] ; then
 echo "No names in the phone list yet! "
 exit 1
else
 grep -i -q "$*" $PHONELIST # Quietly search the file
 if [$? -ne 0] ; then # Did we find anything?
 echo "Sorry, that name was not found in the phone list"
 exit 1
 else
 grep -i "$*" $PHONELIST
 fi
fi
exit 0

 Chapter 12: Automating System Tasks 509

So, if you created the file ph in your current directory, you could type the following from the
shell to try out your ph script:

$ chmod 755 ph
$./ph new "Mary Jones" 608-555-1212
Mary Jones 608-555-1212 added to database
$./ph Mary
Mary Jones 608-555-1212

The chmod command makes the ph script executable. The ./ph command runs the ph
command from the current directory with the new option. This adds Mary Jones as the name
and 608-555-1212 as the phone number to the database ($HOME/.phone.txt). The next ph
command searches the database for the name Mary and displays the phone entry for Mary. If
the script works, add it to a directory in your PATH (such as $HOME/bin).

A simple backup script
Because nothing works forever and mistakes happen, backups are just a fact of life when
dealing with computer data. This simple script backs up all the data in the home directories of
all the users on your Fedora or RHEL system.

#!/bin/bash
(@)/my_backup
A very simple backup script

Change the TAPE device to match your system.
Check /var/log/messages to determine your tape device.
You may also need to add scsi-tape support to your kernel.
TAPE=/dev/rft0

Rewind the tape device $TAPE
mt $TAPE rew
Get a list of home directories
HOMES=`grep /home /etc/passwd | cut –f6 –d': '`
Backup the data in those directories
tar cvf $TAPE $HOMES
Rewind and eject the tape.
mt $TAPE rewoffl

CROSS-REFERENCE: See Chapter 13 for details on backing up and restoring files and getting the
mt command (part of the ftape-tools packages that must be installed separately).

System Initialization
When you turn on your computer, a lot happens even before Fedora or RHEL starts up. Here
are the basic steps that occur each time you boot up your computer to run Fedora or RHEL:

510 Part III: Administering Fedora and RHEL

1. Boot hardware — Based on information in the computer’s read-only memory (referred
to as the BIOS), your computer checks and starts up the hardware. Some of that
information tells the computer which devices (floppy disk, CD, hard disk, and so on) to
check to find the bootable operating system.

2. Start boot loader — After checking that no bootable operating system is ready to boot
in your floppy, CD, or DVD drive, typically, the BIOS checks the master boot record on
the primary hard disk to see what to load next. With Fedora or RHEL installed, the
GRUB boot loader is started, allowing you to choose to boot Fedora, RHEL, or another
installed operating system.

3. Boot the kernel — Assuming that you selected to boot Fedora or RHEL, the Linux
kernel is loaded. That kernel mounts the basic file systems and transfers control to the
init process. The rest of this section describes what happens after the kernel hands off
control of system startup to the init process.

Starting init
In the boot process, the transfer from the kernel phase (the loading of the kernel, probing for
devices, and loading drivers) to init is indicated by the following lines:

 Welcome to Fedora
 Press "I" to enter interactive startup.

The init program, part of the upstart RPM package, is now in control. The output from ps
always lists init (known as “the father of all processes”) as PID (process identifier) 1.

Prior to Fedora 9, a special script, /etc/inittab, directed the actions of the init program.
Starting in Fedora 9, a new initialization system called upstart replaced the older SysV Unix-
style init program.

With upstart, the /etc/inittab file controls only the default run level. Everything else gets
run from a special script for each run level, for example, /etc/event.d/rc5 for run level
5. Upstart is based on the concept of launching programs based on events rather than run
levels. Upstart can restart services that terminate, and isn’t as fragile as the older SysV init
system.

Since so many Linux programs make assumptions about the init system, though, upstart
operates under a compatibility mode. In addition, to understand upstart, you need to
understand the older Linux and Unix run levels, described in the following section. Over a
number of Fedora releases, upstart will gradually phase out older means to initialize Linux.
For now, though, the following concepts still apply.

The inittab file
The following example shows the contents of the /etc/inittab file as it is delivered with
Fedora and RHEL in versions prior to Fedora 9:

 Chapter 12: Automating System Tasks 511

inittab This file describes how the INIT process should set up

the system in a certain run level.

 .

 .

 .

id:5:initdefault:

System initialization.

si::sysinit:/etc/rc.d/rc.sysinit

l0:0:wait:/etc/rc.d/rc 0

l1:1:wait:/etc/rc.d/rc 1

l2:2:wait:/etc/rc.d/rc 2

l3:3:wait:/etc/rc.d/rc 3

l4:4:wait:/etc/rc.d/rc 4

l5:5:wait:/etc/rc.d/rc 5

l6:6:wait:/etc/rc.d/rc 6

Trap CTRL-ALT-DELETE

ca::ctrlaltdel:/sbin/shutdown -t3 -r now

When our UPS tells us power has failed, assume we have a few minutes

of power left. Schedule a shutdown for 2 minutes from now.

This does, of course, assume you have powerd installed and your

UPS connected and working correctly.

pf::powerfail:/sbin/shutdown -f -h +2 "Power Failure; System Shutting Down"

If power was restored before the shutdown kicked in, cancel it.

pr:12345:powerokwait:/sbin/shutdown -c "Power Restored; Shutdown Cancelled"

Run gettys in standard runlevels

1:2345:respawn:/sbin/mingetty tty1

2:2345:respawn:/sbin/mingetty tty2

3:2345:respawn:/sbin/mingetty tty3

4:2345:respawn:/sbin/mingetty tty4

5:2345:respawn:/sbin/mingetty tty5

6:2345:respawn:/sbin/mingetty tty6

Run xdm in runlevel 5

x:5:once:/etc/X11/prefdm -nodaemon

The plain-text inittab file consists of several colon-separated fields in the format:

id:runlevels:action:command

The id field is a unique identifier, one to four alphanumeric characters in length, that
represents a particular action to take during system startup. The runlevels field contains a

512 Part III: Administering Fedora and RHEL

list of run levels in which the command will be run. Common run levels are 0, 1, 2, 3, 4, 5,
and 6 (s and S represent single-user mode, which is equivalent to 1). Run levels 7, 8, and 9 can
also be used as the special run levels associated with the on-demand action (a, b, and c, which
are equivalent to A, B, and C). The next field represents the type of action to be taken by
init (valid actions and the results of those actions are listed in Table 12-3), and the last field
is the actual command that is to be executed.

Table 12-3: Valid init Actions
Action How the Command Is Run

once The command is executed once when entering the specified run
level.

wait The same as once, but init waits for the command to finish
before continuing with other inittab entries.

respawn The process is monitored, and a new instance is started if the
original process terminates.

powerfail The command is executed on receiving a SIGPWR signal from
software associated with a UPS unit. This assumes a few
minutes of power are left so, by default, the system can shut
down the system in two minutes.

powerwait The same as powerfail, but init waits for the command to
finish.

powerokwait The command is executed on receiving a SIGPWR signal if the
/etc/powerstatus file contains the word OK. This is
generally accomplished by the UPS software and indicates that
a normal power level has been restored.

powerfailnow The local system may be able to detect that an external UPS is
running out of power and is about to fail almost immediately.

ondemand The command is executed when init is manually instructed to
enter one of the special run levels a, b, or c (equivalent to A, B,
and C, respectively). No change in run level actually takes place.
The program is restarted if the original process terminates.

sysinit The command is executed during the system boot phase; the
runlevels field is ignored.

boot The command is executed during the system boot phase, after
all sysinit entries have been processed; the runlevels
field is ignored.

bootwait The same as boot, but init waits for the command to finish
before continuing with other inittab entries; the runlevels
field is also ignored.

initdefault The run level to enter after completing the boot and sysinit
actions.

 Chapter 12: Automating System Tasks 513

Action How the Command Is Run

off Nothing happens (perhaps useful for testing and debugging).

ctrlaltdel Traps the Ctrl+Alt+Del key sequence and is typically used to
gracefully shut down the system.

kbrequest Used to trap special key sequences, as interpreted by the
keyboard handler.

Because the inittab file is a configuration file, not a sequential shell script, the order of
lines is not significant. Lines beginning with a hash (#) character are comments and are not
processed.

The first non-commented line in the preceding sample inittab file sets the default run level
to 5. A default of 5 (which is the common run level for desktop systems) means that,
following the completion of all commands associated with the sysinit, boot, and
bootwait actions, run level 5 is entered (booting to a text-based login). The other common
initdefault level is run level 3 (often used for servers that boot up in text mode and often
have no GUI). Table 12-4 describes each of the run levels and helps you choose the run level
that is best suited as the default in your environment.

Table 12-4: Possible Run Levels
Run Level What Happens in This Run Level

0 All processes are terminated and the machine comes to an orderly halt. As
the inittab comments point out, this is not a good choice for
initdefault because as soon as the kernel, modules, and drivers are
loaded, the machine halts.

1, s, S This is single-user mode, frequently used for system maintenance and
instances where it may be preferable to have few processes running and no
services activated. In single-user mode, the network is nonexistent, the X
server is not running, and it is possible that some file systems are not
mounted.

2 Multiuser mode. Multiple user logins are allowed, all configured file systems
are mounted, and all processes except X, the at daemon, the xinetd
daemon, and NIS/NFS are started. If your machine doesn’t have (or
perhaps doesn’t need) a permanent network connection, this is a good
choice for initdefault.

3 Multiuser mode with network services. Run level 3 is the typical value for
initdefault on a Fedora or RHEL server.

4 Run level 4 is available as a user-defined run level. It is nearly identical to
runlevel 3 in a default Fedora or RHEL configuration.

514 Part III: Administering Fedora and RHEL

Run Level What Happens in This Run Level

5 Multiuser mode with network services and X. This run level starts the X
server and presents a graphical login window, visually resembling any of
the more expensive UNIX-based workstations. This is a common
initdefault value for a Fedora or RHEL workstation or desktop system.

6 All processes are terminated and the machine is gracefully rebooted. Again,
the comments in the inittab file mention that this is not a good choice
for initdefault, perhaps even worse than run level 0. The effect is a
possibly infinite cycle of booting, followed by rebooting.

7, 8, 9 Generally unused and undefined, these run levels have the potential to
meet any needs not covered by the default options.

a, b, c, A, B, C Used in conjunction with the ondemand action. These don’t really specify a
run level but can launch a program or daemon “on demand” if so instructed.

NOTE: If there is no initdefault specified in the inittab file, the boot sequence will be
interrupted and you will be prompted to specify a default run level into which the machine will boot.

The next line in the inittab file instructs init to execute the /etc/rc.d/rc.sysinit
script before entering the default run level. This script performs many initialization routines
such as choosing a keymap file, checking and mounting root and proc file systems, setting
the clock and hostname, configuring swap space, cleaning up temp files, and loading
modules.

The seven following lines control the commands executed within each major run level. In
each, the /etc/rc.d/rc script is called, using the desired run level as an argument. In turn,
it descends into the appropriate directory tree (for example, the /etc/rc3.d directory is
entered for run level 3).

The ctrlaltdel action in the inittab file tells init to perform exactly what PC users
would expect if the Ctrl, Alt, and Delete keys were pressed simultaneously. The system
reboots itself in an orderly fashion (a switch to run level 6) after a three-second delay.

The next two lines (with their comments) deal with graceful shutdowns if you have an
uninterruptible power supply (UPS) and software installed. The first line initiates a halt (a
switch to run level 0) two minutes after receiving a signal from the UPS indicating a power
failure. The second line cancels the shutdown in the event that power is restored.

The six getty lines start up virtual consoles to allow logins. These processes are always
running in any of the multiuser run levels. When someone connected to a virtual console logs
out, that getty process dies, and then respawn action tells init to start a new getty
process. You can switch between virtual consoles by pressing Ctrl+Alt+F1, Ctrl+Alt+F2, and
so on.

The last line indicates that as long as the system is in run level 5, the “preferred display
manager” (xdm, gnome, KDE, and so on) will be running. This presents a graphical login

 Chapter 12: Automating System Tasks 515

prompt rather than the usual text-based login, and eliminates the need to run startx to start
the GUI.

Starting with Fedora 10, the inittab file contains a simple one-line setting to define the
default run level:
id:5:initdefault

This file specifies run level 5 as the default.

System Startup and Shutdown
During system startup, a series of scripts are run to start the services that you need. These
include scripts to start network interfaces, mount directories, and monitor your system. Most
of these scripts are run from subdirectories of /etc/rc.d. The program that starts most of
these services up when you boot and stops them when you shut down is the /etc/rc.d/rc
script. The following sections describe run-level scripts and what you can do with them.

Starting run-level scripts
As previously mentioned, the /etc/rc.d/rc script is integral to the concept of run levels.
Any change of run level causes the script to be executed, with the new run level as an
argument. Here’s a quick run-down of what the /etc/rc.d/rc script does:

• Checks that run-level scripts are correct — The rc script checks to find each run-
level script that exists and excludes those that represent backup scripts left by rpm updates.
• Determines current and previous run levels — Determines the current and previous
run levels to know which run-level scripts to stop (previous level) and start (current level).
• Decides whether to enter interactive startup — If the confirm option is passed to
the boot loader at boot time, all server processes must be confirmed at the system console
before starting.
• Kills and starts run-level scripts — Stops run-level scripts from the previous level,
then starts run-level scripts from the current level.

In Fedora and RHEL, most of the services that are provided to users and computers on the
network are started from run-level scripts.

Understanding run-level scripts
A software package that has a service to start at boot time (or when the system changes run
levels) can add a script to the /etc/init.d directory. That script can then be linked to an
appropriate run-level directory and run with either the start or stop option (to start or stop
the service).

Table 12-5 lists many of the typical run-level scripts that are found in /etc/init.d and
explains their function. Depending on the Fedora or RHEL software packages you installed on
your system, you may have dozens more run-level scripts than you see here. (Later, I describe
how these files are linked into particular run-level directories.)

516 Part III: Administering Fedora and RHEL

Each script representing a service that you want to start or stop is linked to a file in each of the
run-level directories. For each run level, a script beginning with K stops the service, whereas a
script beginning with S starts the service.

The two digits following the K or S in the filename provide a mechanism to select the priority
in which the programs are run. For example, S12syslog is run before S90crond. However,
the file S110my_daemon is run before S85gpm, even though you can readily see that 85 is
less than 110. This is because the ASCII collating sequence orders the files, which simply
means that one positional character is compared to another. Therefore, a script beginning with
the characters S110 is executed between S10network and S15netfs in run level 3.

All of the programs within the /etc/rcX.d directories (where X is replaced by a run-level
number) are symbolic links, usually to a file in /etc/init.d. The /etc/rcX.d directories
include the following:

• /etc/rc0.d: Run level 0 directory
• /etc/rc1.d: Run level 1 directory
• /etc/rc2.d: Run level 2 directory
• /etc/rc3.d: Run level 3 directory
• /etc/rc4.d: Run level 4 directory
• /etc/rc5.d: Run level 5 directory
• /etc/rc6.d: Run level 6 directory

In this manner, /etc/rc0.d/K05atd, /etc/rc1.d/K05atd, /etc/rc2.d/K05atd,
/etc/rc3.d/S95atd, /etc/rc4.d/S95atd, /etc/rc5.d/S95atd, and
/etc/rc6.d/K05atd are all symbolic links to /etc/init.d/atd. Using this simple,
consistent mechanism, you can customize which programs are started at boot time.

Table 12-5: Run-Level Scripts Contained in /etc/init.d
Run-Level Scripts What Does It Do?

acpid Controls the Advanced Configuration and Power Interface daemon,
which monitors events in the kernel and reports them to user level.

anacron Runs cron jobs that were not run at their intended times due to the
system being down.

apmd Controls the Advanced Power Management daemon, which monitors
battery status, and which can safely suspend or shut down all or part of
a machine that supports it.

atd Starts or stops the at daemon to receive, queue, and run jobs
submitted via the at or batch commands. (The anacron run-level
script runs at and batch jobs that were not run because the
computer was down.)

 Chapter 12: Automating System Tasks 517

Run-Level Scripts What Does It Do?

autofs Starts and stops the automount daemon, for automatically mounting
file systems (so, for example, a CD can be automatically mounted
when it is inserted).

bluetooth Starts services such as authentication, discovery, and human interface
devices for communicating with Bluetooth devices.

ConsoleKit Maintains a list of user sessions.

crond Starts or stops the cron daemon to periodically run routine
commands.

cups Controls the printer daemon (cupsd) that handles spooling printing
requests.

dhcpd Starts or stops the dhcpd daemon, which automatically assigns IP
addresses to computers on a LAN.

dovecot Starts the dovecot IMAP server, which allows e-mail clients to request
and view their mail messages from the mail server.

firstboot Checks to see if firstboot needs to be run and, if so, runs it. This is
typically done after Fedora or RHEL is first installed.

gpm Controls the gpm daemon, which allows the mouse to interact with
console- and text-based applications.

haldaemon Starts hald daemon to discover and set up hardware. Used to mount
removable media, manage power, or auto-play multimedia.

halt Terminates all processes, writes out accounting records, removes
swap space, unmounts all file systems, and either shuts down or
reboots the machine (depending on how the command was called).

hplip Starts the HP Linux Imaging and Printing (HPLIP) service for running
HP multi-function peripherals.

httpd Starts the httpd daemon, which allows your computer to act as an
HTTP server (that is, to serve Web pages).

iptables Starts the iptables firewall daemon, which manages any
iptables-style firewall rules set up for your computer.

keytable Loads the predefined keyboard map.

killall Shuts down any subsystems that may still be running prior to a
shutdown or reboot.

ldap Starts the Lightweight Directory Access Protocol daemon (sldap),
which listens for LDAP requests from the network.

messagebus Runs the dbus-daemon for broadcasting system message to interested
applications.

518 Part III: Administering Fedora and RHEL

Run-Level Scripts What Does It Do?

mysqld Runs the MySQL database daemon (mysqld) to listen for request to
MySQL databases.

named Starts and stops the BIND DNS server daemon (named) to listen for
and resolve domain name system requests.

netfs Mounts or unmounts network (NFS, SMB, and NCP) file systems.

network Starts or stops all configured network interfaces and initializes the
TCP/IP and IPX protocols.

NetworkManager Switches automatically to the best available network connections.

nfs Starts or stops the NFS-related daemons (rpc.nfsd, rpc.mountd,
rpc.statd, and rcp.rquotad) and exports shared file systems.

ntpd Runs the Network Time Protocol daemon (ntpd), which synchronizes
system time with Internet standard time servers.

openvpn Runs the OpenVPN virtual private network service.

portmap Starts or stops the portmap daemon, which manages programs and
protocols that utilize the Remote Procedure Call (RPC) mechanism.

routed Starts or stops the routed daemon, which controls dynamic-routing
table updates via the Router Information Protocol (RIP).

rsyslog Starts or stops the klogd and rsyslogd daemons that handle
logging events from the kernel and other processes, respectively.

rwhod Starts or stops the rwhod daemon, which enables others on the
network to obtain a list of all currently logged-in users.

sendmail Controls the sendmail daemon, which handles incoming and
outgoing SMTP (Simple Mail Transport Protocol) mail messages.

single Terminates running processes and enters run level 1 (single-user
mode).

smb Starts or stops the smbd and nmbd daemons for allowing access to
Samba file and print services.

snmpd Starts or stops the snmpd (Simple Network Management Protocol)
daemon, which enables others to view machine-configuration
information.

spamassassin Starts and stops the spamd daemon to automate the process of
checking e-mail messages for spam.

squid Starts or stops the squid services, which enables proxy service to
clients on your network.

sshd Runs the secure shell daemon (sshd), which listens for requests from
ssh clients for remote login or remote execution requests.

 Chapter 12: Automating System Tasks 519

Run-Level Scripts What Does It Do?

vsftpd Runs the Very Secure FTP server (vsftpd) to provide FTP sessions
to remote clients for downloading and uploading files.

winbind Runs the winbind service for Samba file and print services.

xfs Starts or stops xfs, the X Window font server daemon.

xinetd Sets the machine’s hostname, establishes network routes, and
controls xinetd, the network services daemon that listens for
incoming TCP/IP connections to the machine.

yum Enables you to run automatic nightly updates of your software using
the yum facility.

xfs Regenerates font lists and starts and stops the X font server.

Understanding what startup scripts do
Despite all the complicated rcXs, Ss, and Ks, the form of each startup script is really quite
simple. Because they are in plain text, you can just open one with a text editor to take a look at
what it does. For the most part, a run-level script can be run with a start option, a stop
option, and possibly a restart option. For example, the following lines are part of the
contents of the smb script that defines what happens when the script is run with different
options to start or stop the Samba file and print service:

#!/bin/sh

chkconfig: - 91 35

description: Starts and stops the Samba smbd daemon \

used to provide SMB network services.

 .

 .

 .

start() {

 KIND="SMB"

 echo -n $"Starting $KIND services: "

 daemon smbd $SMBDOPTIONS

 RETVAL=$?

 echo

 [$RETVAL -eq 0 -a $RETVAL2 -eq 0] && touch /var/lock/subsys/smb || \

 RETVAL=1

 return $RETVAL

}

stop() {

 KIND="SMB"

 echo -n $"Shutting down $KIND services: "

 killproc smbd

520 Part III: Administering Fedora and RHEL

 RETVAL=$?

 echo

 [$RETVAL -eq 0 -a $RETVAL2 -eq 0] && rm -f /var/lock/subsys/smb

 return $RETVAL

}

restart() {

 stop

 start

}

 .

 .

 .

To illustrate the essence of what this script does, I skipped some of the beginning and end of
the script (where it checked if the network was up and running and set some values). Here are
the actions smb takes when it is run with start or stop:

• start — This part of the script starts the smbd server when the script is run with the start
option.

• stop — When run with the stop option, the /etc/init.d/smb script stops the smbd
server.

The restart option runs the script with a stop option followed by a start option. If you
want to start the smb service yourself, type the following command (as root user):

service smb start
Starting SMB services: [OK]

To stop the service, type the following command:

service smb stop
Shutting down SMB services: [OK]

The smb run-level script is different from other run-level scripts in that it supports several
other options than start and stop. For example, this script has options (not shown in the
example) that allow you to reload the smb.conf configuration file (reload) and check the
status of the service (status).

Changing run-level script behavior
Modifying the startup behavior of any such script merely involves opening the file in a text
editor.

For example, the atd daemon queues jobs submitted from the at and batch commands. Jobs
submitted via batch are executed only if the system load is not above a particular value,
which can be set with a command-line option to the atd command.

 Chapter 12: Automating System Tasks 521

The default limiting load factor value of 0.8 is based on the assumption that a single-processor
machine with less than 80 percent CPU utilization could handle the additional load of the
batch job. However, if you were to add another CPU to your machine, 0.8 would only
represent 40 percent of the computer’s processing power. So you could safely raise that limit
without impacting overall system performance.

You can change the limiting load factor from 0.8 to 1.6 to accommodate the increased
processing capacity. To do this, simply modify the following line (in the start section) of
the /etc/init.d/atd script:

daemon /usr/sbin/atd

Replace it with this line, using the -l argument to specify the new minimum system load
value:

daemon /usr/sbin/atd -l 1.6

After saving the file and exiting the editor, you can reboot the machine or just run any of the
following three commands to begin using the new batch threshold value:

service atd reload
service atd restart
service atd stop ; service atd start

NOTE: Always make a copy of a run-level script before you change it. Also, keep track of changes you
make to run-level scripts before you upgrade the packages they come from. You need to make those
changes again after the upgrade.

If you are uncomfortable editing startup scripts and you simply want to add options to the
daemon process run by the script, there may be a way of entering these changes without
editing the startup script directly. Check the /etc/sysconfig directory and see if there is a
file by the same name as the script you want to modify. If there is, that file probably provides
values that you can set to pass options to the startup script. Sysconfig files exist for apmd,
arpwatch, dhcpd, ntpd, samba, squid, and others.

Reorganizing or removing run-level scripts
There are several ways to deal with removing programs from the system startup directories,
adding them to particular run levels, or changing when they are executed. From a Terminal
window, you can use the chkconfig command. From a GUI, use the Service Configuration
window.

CAUTION: You should never remove the run-level file from the /etc/init.d directory. Because no
scripts are run from the /etc/init.d directory automatically, it is okay to keep them there. Scripts in
/etc/init.d are only accessed as links from the /etc/rcX.d directories. Keep scripts in the
init.d directory so you can add them later by re-linking them to the appropriate run-level directory.

522 Part III: Administering Fedora and RHEL

To reorganize or remove run-level scripts from the GUI, use the Service Configuration
window. Either select System Administration Services or log in as root user and type the
following command in a Terminal window:

system-config-services &

Figure 12-1 shows an example of the Service Configuration window.

The Service Configuration window enables you to reconfigure services for run levels 2, 3, 4,
and 5. Icons next to each service indicate whether the service is currently enabled (green) or
disabled (red) for the current run level and whether or not the service is currently running.
Select a service to see a description of that service. Here is what you can do from this window:

• Enable — With a service selected, click the Enable button to enable the service to start
when you start your computer (run levels 2, 3, 4, and 5).

• Disable — With a service selected, click Disable to not have the service not start when
you boot your computer (or otherwise enter run levels 2, 3, 4, or 5).

• Customize — With a service selected, click Customize and select the run levels at
which you want the service to start.

• Start — Click a service on the list. Select Start to request the service to immediately
start.

Figure 12-1: Reorganize, add, and remove run-level scripts from the Service Configuration window.

 Chapter 12: Automating System Tasks 523

Some administrators prefer text-based commands for managing run-level scripts and for
managing other system services that start automatically. The chkconfig command can be
used to list whether services that run-level scripts start, as well as services the xinetd
daemon starts, are on or off. To see a list of all system services, with indications that they are
on or off, type the following:

chkconfig --list | less

You can then page through the list to see those services. If you want to view the status of an
individual service, you can add the service at the end of the list option. For example, to see
whether the nfs service starts in each run level, type the following:

chkconfig --list nfs
nfs 0:off 1:off 2:off 3:on 4:on 5:on 6:off

This example shows that the nfs service is set to be on for run levels 3, 4, and 5, but that it is
set to off for run levels 0, 1, 2, and 6.

Another tool that can be run from the shell to change which services start and do not start at
various levels is the ntsysv command. Type the following as root user from the shell:

ntsysv

A screen appears with a list of available services. Use the up and down arrow keys to locate
the service you want. With the cursor on a service, press the Spacebar to toggle the service on
or off. Press the Tab key to highlight the OK button, and press the Spacebar to save the
change and exit. The ntsysv tool only changes services for the current run level. You can
run ntsysv with the --level # option, where # is replaced by the run level for which you
want to change services.

Adding run-level scripts
Suppose you want to create and configure your own run-level script. For example, after
installing the binaries for the fictitious my_daemon program, it needs to be configured to start
up in run levels 3, 4, and 5, and terminated in any other run level. You can add the script to the
/etc/init.d directory, then use the chkconfig command to configure it.

To use chkconfig, ensure that the following lines are included in the
/etc/init.d/my_daemon script:

chkconfig: 345 82 28
description: Does something pretty cool - you really \
have to see it to believe it!
processname: my_daemon

NOTE: The line chkconfig: 345 82 28 sets the script to start in run levels 3, 4, and 5. It sets start
scripts to be set to 82 for those run levels. It sets stop scripts to be set to 28 in all other levels.

With those lines in place, simply run the following command:

524 Part III: Administering Fedora and RHEL

chkconfig --add my_daemon

Appropriate links are created automatically. This can be verified with the following command:

chkconfig --list my_daemon

The resulting output should look like this:

my_daemon 0:off 1:off 2:off 3:on 4:on 5:on 6:off

The script names that are created by chkconfig to make this all work are:

/etc/rc0.d/K28my_daemon
/etc/rc1.d/K28my_daemon
/etc/rc2.d/K28my_daemon
/etc/rc3.d/S82my_daemon
/etc/rc4.d/S82my_daemon
/etc/rc5.d/S82my_daemon
/etc/rc6.d/K28my_daemon

Managing xinetd services
There are a bunch of services, particularly network services, which are not handled by
separate run-level scripts. Instead, a single run-level script called xinetd (formerly inetd)
is run to handle incoming requests for these services. For that reason, xinetd is sometimes
referred to as the super-server. The xinetd run-level script (along with the xinetd daemon
that it runs) offers the following advantages:

• Fewer daemon processes — Instead of one (or more) daemon processes running on
your computer to monitor incoming requests for each service, the xinetd daemon can
listen for requests for many different services. As a result, when you type ps -ax to see
what processes are running, dozens of fewer daemon processes will be running than
there would be if each service had its own daemon.

• Access control and logging — By using xinetd to oversee the management of
services, consistent methods of access control (such as PAM) and consistent logging
methods (such as the /var/log/messages file) can be used across all of the services.

When a request comes into your computer for a service that xinetd is monitoring, xinetd
uses the /etc/xinetd.conf file to read configuration files contained in the
/etc/xinetd.d directory. Then, based on the contents of the xinetd.d file for the
requested service, a server program is launched to handle the service request (provided that
the service is not disabled).

Each server process is one of two types: single-thread or multithread. A single-thread server
handles only the current request, whereas a multithread server handles all incoming requests
for the service as long as there is still a client holding the process open. Then the multithread
server closes and xinetd begins monitoring that service again.

 Chapter 12: Automating System Tasks 525

The following are a few examples of services that are monitored by xinetd. The daemon
process that is started up to handle each service is also listed.

• eklogin (/usr/kerberos/sbin/klogind) — Kerberos-related login daemon
• finger (/usr/sbin/in.fingerd) — Handles incoming finger requests for

information from remote users about local users
• gssftp (/usr/kerberos/sbin/ftpd) — Kerberos-related daemon for handling file

transfer requests (FTP)
• ntalk (/usr/sbin/in.ntalkd) — Daemon for handling requests to set up chats

between a remote user and a local one (using the talk command)
• rlogin (/usr/sbin/in.rlogind) — Daemon for responding to remote login

requests (from a remote rlogin command)
• rsh (/usr/sbin/in.rshd) — Handles requests from a remote client to run a

command on the local computer

NOTE: You should normally not run finger, rlogin, or rsh due to security concerns with these
commands.

Other services that can be launched by requests that come to xinetd include services for
remote telnet requests, Samba configuration requests (swat), and Amanda network backups. A
short description of each service is included in its /etc/xinetd.d file. Many of the services
handled by xinetd are legacy services, including rlogin, rsh, and finger, that are
considered insecure by today's security standards because they use clear-text passwords.

Manipulating run levels
Aside from the run level chosen at boot time (usually 3 or 5) and the shutdown or reboot
levels (0 and 6, respectively), you can change the run level at any time while you’re logged in
(as root user). The telinit command (really just a symbolic link to init) enables you to
specify a desired run level, causing the termination of all system processes that shouldn’t exist
in that run level, and starting all processes that should be running.

NOTE: The telinit command is also used to instruct init to reload its configuration file,
/etc/inittab. This is accomplished with either the telinit q or the telinit Q commands.

For example, if you encountered a problem with your hard disk on startup, you may be placed
in single-user mode (run level 1) to perform system maintenance. After the machine is stable,
you can execute the command as follows:

telinit 5

The init command handles terminating and starting all processes necessary to present you
with a graphical login window.

526 Part III: Administering Fedora and RHEL

Determining the current run level
You can determine the machine’s current run level with the aptly named runlevel
command. Using the previous example of booting into single-user mode and then manually
changing the run level, the output of the runlevel command would be:

runlevel
S 5

This means that the previous run level was S (for single-user mode) and the current run level
is 5. If the machine had booted properly, the previous run level would be listed as N to
indicate that there really wasn’t a previous run level.

Changing to a shutdown run level
Shutting down the machine is simply a change in run level. With that in mind, other ways to
change the run level include the reboot, halt, poweroff, and shutdown commands. The
reboot command, which is a symbolic link to the consolehelper command, which in
turn runs the halt command, executes a shutdown -r now, terminating all processes and
rebooting the machine. The halt command executes shutdown -h now, terminating all
processes and leaving the machine in an idle state (but still powered on).

Similarly, the poweroff command, which is also a link to the consolehelper command,
executes a change to run level 0, but if the machine’s BIOS supports Advanced Power
Management (APM), it will switch off the power to the machine.

NOTE: A time must be given to the shutdown command, either specified as +m (representing the
number of minutes to delay before beginning shutdown) or as hh:mm (an absolute time value, where hh is
the hour and mm is the minute that you would like the shutdown to begin). Alternatively, now is commonly
used to initiate the shutdown immediately.

Scheduling System Tasks
Frequently, you need to run a process unattended or at off-hours. The at facility is designed
to run such jobs at specific times. Jobs you submit are spooled in the directory
/var/spool/at, awaiting execution by the at daemon atd. The jobs are executed using
the current directory and environment that was active when the job was submitted. Any output
or error messages that haven’t been redirected elsewhere are e-mailed to the user who
submitted the job.

The following sections describe how to use the at, batch, and cron facilities to schedule
tasks to run at specific times. These descriptions also include ways of viewing which tasks are
scheduled and deleting scheduled tasks that you don’t want to run anymore.

 Chapter 12: Automating System Tasks 527

Using at.allow and at.deny
There are two access control files designed to limit which users can use the at facility. The
file /etc/at.allow contains a list of users who are granted access, and the file
/etc/at.deny contains a similar list of those who may not submit at jobs. If neither file
exists, only the superuser is granted access to at. If a blank /etc/at.deny file exists (as in
the default configuration), all users are allowed to utilize the at facility to run their own at
jobs. If you use either at.allow or at.deny, you aren't required to use both.

Specifying when jobs are run
There are many different ways to specify the time at which an at job should run (most of
which look like spoken commands). Table 12-6 has a few examples. These are not complete
commands — they only provide an example of how to specify the time that a job should run.

Table 12-6: Samples for Specifying Times in an at Job
Command Line When the Command Is Run

at now The job is run immediately.

at now + 2 minutes The job will start two minutes from the current time.

at now + 1 hour The job will start one hour from the current time.

at now + 5 days The job will start five days from the current time.

at now + 4 weeks The job will start four weeks from the current time.

at now next minute The job will start in exactly 60 seconds.

at now next hour The job will start in exactly 60 minutes.

at now next day The job will start at the same time tomorrow.

at now next month The job will start on the same day and at the same time next
month.

at now next year The job will start on the same date and at the same time next
year.

at now next fri The job will start at the same time next Friday.

at teatime The job will run at 4 p.m. They keywords noon and midnight can
also be used.

at 16:00 today The job will run at 4 p.m. today.

at 16:00 tomorrow The job will run at 4 p.m. tomorrow.

at 2:45pm The job will run at 2:45 p.m. on the current day.

at 14:45 The job will run at 2:45 p.m. on the current day.

at 5:00 Apr 14 2008 The job will begin at 5 a.m. on April14, 2008.

at 5:00 4/14/08 The job will begin at 5 a.m. on April 14, 2008.

528 Part III: Administering Fedora and RHEL

Submitting scheduled jobs
The at facility offers a lot of flexibility in how you can submit scheduled jobs. There are three
ways to submit a job to the at facility:

• Piped in from standard input — For example, the following command will attempt to
build the Perl distribution from source in the early morning hours while the machine is
likely to be less busy, assuming the perl sources are stored in /tmp/perl:
echo "cd /tmp/perl; make ; ls -al" | at 2am tomorrow

An ancillary benefit to this procedure is that a full log of the compilation process will be
e-mailed to the user who submitted the job.

• Read as standard input — If no command is specified, at will prompt you to enter
commands at the special at> prompt, as shown in the following example. You must
indicate the end of the commands by pressing Ctrl+D, which signals an End of
Transmission (<EOT>) to at.
$ at 23:40
at> cd /tmp/perl
at> make
at> ls -al
at> <Ctrl-d>

• Read from a file — When the -f command-line option is followed by a valid filename,
the contents of that file are used as the commands to be executed, as in the following
example:
$ at -f /root/bin/runme now + 5 hours

 This runs the commands stored in /root/bin/runme in five hours. The file can
either be a simple list of commands or a shell script to be run in its own subshell (that is,
the file begins with #!/bin/bash or the name of another shell).

Viewing scheduled jobs
You can use the atq command (effectively the same as at -l) to view a list of your pending
jobs in the at queue, showing each job’s sequence number, the date and time the job is
scheduled to run, and the queue in which the job is being run.

The two most common queue names are a (which represents the at queue) and b (which
represents the batch queue). All other letters (upper- and lowercase) can be used to specify
queues with lower priority levels. If the atq command lists a queue name as =, it indicates
that the job is currently running. Here is an example of output from the atq command:

atq
2 2008-09-02 00:51 a ericfj
3 2008-09-02 00:52 a ericfj
4 2008-09-05 23:52 a ericfj

 Chapter 12: Automating System Tasks 529

Here you can see that there are three at jobs pending (job numbers 2, 3, and 4, all indicated as
a). After the job number, the output shows the date and hour each job is scheduled to run.

Deleting scheduled jobs
If you decide that you’d like to cancel a particular job, you can use the atrm command
(equivalent to at -d) with the job number (or more than one) as reported by the atq
command. For example, using the following output from atq:

atq
18 2008-09-01 03:00 a ericfj
19 2008-09-29 05:27 a ericfj
20 2008-09-30 05:27 a ericfj
21 2008-09-14 00:01 a ericfj
22 2008-09-01 03:00 a ericfj

you can remove the jobs scheduled to run at 5:27 a.m. on September 29 and September 30
from the queue with the following command:

atrm 19 20

Using the batch command
If system resources are at a premium on your machine, or if the job you submit can run at a
priority lower than normal, the batch command (equivalent to at -q b) may be useful. It is
controlled by the same atd daemon, and it allows job submissions in the same format as at
submissions (although the time specification is optional).

However, to prevent your job from usurping already scarce processing time, the job will run
only if the system load average is below a particular value. The default value is 0.8, but
specifying a command-line option to atd can modify this. This was used as an example in the
earlier section describing startup and shutdown. Here is an example of the batch command:

$ batch
at> du -h /home > /tmp/duhome
at> <Ctrl+d>

In this example, after I type the batch command, the at facility is invoked to enable me to
enter the command(s) I want to run. Typing the du -h /home > /tmp/duhome command
line has the disk usages for everything in the /home directory structure output to the
/tmp/duhome file. On the next line, pressing Ctrl+D ends the batch job. As soon as the load
average is low enough, the command is run. (Run the top command to view the current load
average.)

Using the cron facility
Another way to run commands unattended is via the cron facility. Part of the cronie rpm
package, cron addresses the need to run commands periodically or routinely (at least, more

530 Part III: Administering Fedora and RHEL

often than you’d care to manually enter them) and allows lots of flexibility in automating the
execution of the command. (The cronie package contains an extended version of the cron
utility for running scheduling tasks to run at a particular time, as well as adding security
enhancements.)

As with the at facility, any output or error messages that haven’t been redirected elsewhere
are e-mailed to the user who submitted the job. Unlike using at, however, cron jobs are
intended to run more than once and at a regular interval (even if that interval is only once per
month or once per year).

Also like the at facility, cron includes two access control files designed to limit which users
can use it. The file /etc/cron.allow contains a list of users who are granted access, and
the file /etc/cron.deny contains a similar list of those who may not submit cron jobs. If
neither file exists (or if cron.deny is empty), all users are granted access to cron.

There are four places where a job can be submitted for execution by the cron daemon
crond:

• The /var/spool/cron/username file — This method, where each individual user
(indicated by username) controls his or her own separate file, is the method used on
UNIX System V systems.

• The /etc/crontab file — This is referred to as the system crontab file, and was the
original crontab file from BSD UNIX and its derivatives. Only root has permission to
modify this file.

• The /etc/cron.d directory — Files placed in this directory have the same format as
the /etc/crontab file. Only root is permitted to create or modify files in this
directory.

• The /etc/cron.hourly, /etc/cron.daily, /etc/cron.weekly, and
/etc/cron.monthly directories — Each file in these directories is a shell script that
runs at the times specified in the /etc/crontab file (by default, at one minute after
the hour every hour; at 4:02 a.m. every day; Sunday at 4:22 a.m.; and 4:42 a.m. on the
first day of the month, respectively). Only root is allowed to create or modify files in
these directories.

The standard format of an entry in the /var/spool/cron/username file consists of five
fields specifying when the command should run: minute, hour, day of the month, month, and
day of the week. The sixth field is the actual command to be run.

The files in the /etc/cron.d directory and the /etc/crontab file use the same first five
fields to determine when the command should run. However, the sixth field represents the
name of the user submitting the job (because it cannot be inferred by the name of the file as in
a /var/spool/cron/username directory), and the seventh field is the command to be run.
Table 12-7 lists the valid values for each field common to both types of files.

 Chapter 12: Automating System Tasks 531

Table 12-7: Valid /etc/crontab Field Values
Field Number Field Acceptable Values

1 minute Any integer between 0 and 59

2 hour Any integer between 0 and 23, using a 24-hour clock

3 day of the month Any integer between 0 and 31

4 month Any integer between 0 and 12, or an abbreviation for
the name of the month (Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct, Nov, Dec)

5 day of the week Any integer between 0 and 7 (where both 0 and 7
can represent Sunday, 1 is Monday, 2 is Tuesday,
and so on), or abbreviation for the day (Sun, Mon,
Tue, Wed, Thu, Fri, Sat)

The latest version of cron (cronie and crontabs packages) includes the ability to indicate that a
cron job be run at boot time.

Refer to the crontab man page (type man 5 crontab) for information on using the reboot
option to have a command run once at startup time.

NOTE: The cronie package replaces the older vixie-cron.

An asterisk (*) in any field indicates all possible values for that field. For example, an asterisk
in the second column is equivalent to 0,1,2 . . . 22,23, and an asterisk in the fourth column
means Jan,Feb,Mar . . . Nov,Dec. In addition, lists of values, ranges of values, and increments
can be used. For example, to specify the days Monday, Wednesday, and Friday, the fifth field
could be represented as the list Mon,Wed,Fri. To represent the normal working hours in a day,
the range 9–17 could be specified in the second field. Another option is to use an increment,
as in specifying 0–31/3 in the third field to represent every third day of the month, or */5 in
the first field to denote every five minutes.

Lines beginning with a # character in any of the crontab-format files are comments, which
can be very helpful in explaining what task each command is designed to perform. It is also
possible to specify environment variables (in Bourne shell syntax, for example,
NAME="value") within the crontab file. Any variable can be specified to fine-tune the
environment in which the job runs, but one that may be particularly useful is MAILTO. The
following line sends the results of the cron job to a user other than the one who submitted the
job:

MAILTO=otheruser

If the following line appears in a crontab file, all output and error messages that haven’t
already been redirected will be discarded:

MAILTO=

532 Part III: Administering Fedora and RHEL

Modifying scheduled tasks with crontab
The files in /var/spool/cron should not be edited directly. They should only be accessed
via the crontab command. To list the current contents of your own personal crontab file,
type the following command:

$ crontab -l

All crontab entries can be removed with the following command:

$ crontab -r

Even if your personal crontab file doesn’t exist, you can use the following command to
begin editing it:

$ crontab -e

The file automatically opens in the text editor that is defined in your EDITOR or VISUAL
environment variables, with vi as the default. When you’re done, simply exit the editor.
Provided there were no syntax errors, your crontab file will be installed. For example, if
your user name is jsmith, you have just created the file /var/spool/cron/jsmith. If
you add a line (with a descriptive comment, of course) to remove any old core files from your
source code directories, that file may look similar to this:

Find and remove core files from /home/jsmith/src

5 1 * * Sun,Wed find /home/jsmith/src -name core.[0-9]* -exec rm {} \; >
/dev/null 2>&1

Because core files in Fedora and RHEL consist of the word core, followed by a dot (.) and
process ID, this example will match all files beginning with core. and followed by a number.
The root user can access any user’s individual crontab file by using the -u username
option to the crontab command.

Understanding cron files
Separate cron directories are set up to contain cron jobs that run hourly, daily, weekly, and
monthly. These cron jobs are all set up to run from the /etc/crontab file. The default
/etc/crontab file is empty. Under the hood, though, cron runs the hourly, daily, weekly,
and monthly jobs as if the crontab file looks like this:

SHELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root
HOME=/

run-parts
01 * * * * root run-parts /etc/cron.hourly
02 4 * * * root run-parts /etc/cron.daily
22 4 * * 0 root run-parts /etc/cron.weekly
42 4 1 * * root run-parts /etc/cron.monthly

 Chapter 12: Automating System Tasks 533

The first four lines initialize the run-time environment for all subsequent jobs (the subshell in
which jobs run, the executable program search path, the recipient of output and error
messages, and that user’s home directory). The next five lines execute (as the user root) the
run-parts program that controls programs that you may want to run periodically.

run-parts is a shell script that takes a directory as a command-line argument. It then
sequentially runs every program within that directory (shell scripts are most common, but
binary executables and links are also evaluated). The default configuration executes programs
in /etc/cron.hourly at one minute after every hour of every day; /etc/cron.daily
at 4:02 a.m. every day; /etc/cron.weekly at 4:22 a.m. on Sundays; and
/etc/cron.monthly at 4:42 a.m. on the first day of each month.

Here are examples of files that are installed in cron directories for different software
packages:

• /etc/cron.daily/logrotate — Automates rotating, compressing, and
manipulating system logfiles.

• /etc/cron.daily/makewhatis.cron — Updates the whatis database (contains
descriptions of man pages), which is used by the man -k, apropos, and whatis
commands to find man pages related to a particular word.

• /etc/cron.daily/mlocate.cron — Updates the
/var/lib/mlocate/mlocate.db database (using the updatedb command), which
contains a searchable list of files on the machine.

• /etc/cron.daily/tmpwatch — Removes files from /tmp, /var/tmp, and
/var/catman that haven’t been accessed in ten days.

The makewhatis.cron script installed in /etc/cron.weekly is similar to the one in
/etc/cron.daily, but it completely rebuilds the whatis database, rather than just
updating the existing database.

Finally, in the /etc/cron.d directory are files that have the same format as
/etc/crontab files.

NOTE: If you are not comfortable working with cron from the command line, there is a KCron Task
Scheduler window that comes in the kdeadmin package for managing cron tasks. To launch KCron, type
kcron from a Terminal window.

Summary
Shell scripts are an integral part of a Fedora or RHEL system for configuring, booting,
administering, and customizing Fedora or RHEL. They are used to eliminate typing repetitive
commands. They are frequently executed from the scheduling facilities within Fedora or
RHEL, allowing much flexibility in determining when and how often a process should run.
They also control the startup of most daemons and server processes at boot time.

534 Part III: Administering Fedora and RHEL

The init daemon and its configuration file, /etc/inittab, also factor heavily in the initial
startup of your Fedora or RHEL system. They implement the concept of run levels that is
carried out by the shell scripts in /etc/rc.d/init.d, and they provide a means by which
the machine can be shut down or rebooted in an orderly manner.

To have shell scripts configured to run on an ongoing basis, you can use the cron facility.
Cron jobs can be added by editing cron files directly or by running commands such as at
and batch to enter the commands to be run.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

