

Linux Shell Scripting Cookbook
Third Edition

Clif Flynt
Sarath Lakshman
Shantanu Tushar

BIRMINGHAM - MUMBAI

Linux Shell Scripting Cookbook
Third Edition
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2011
Second edition: May 2013
Third edition: May 2017

Production reference: 1250517

ISBN 978-1-78588-198-5

Credits

Authors
Clif Flynt
Sarath Lakshman
Shantanu Tushar

Copy Editor
Tom Jacob

Reviewer
John Kennedy

Project Coordinator
Judie Jose

Commissioning Editor
Kartikey Pandey

Proofreader
Safis Editing

Acquisition Editor
Larissa Pinto

Indexer
Tejal Daruwale Soni

Content Development Editor
Radhika Atitkar

Graphics
Kirk D'Penha

Technical Editor
Nidhisha Shetty

Production Coordinator
Nilesh Mohite

About the Authors
Clif Flynt has been programming computers since 1970, administering Linux/Unix systems
since 1985, and writing since he was 9 years old.

He's active in the Tcl/Tk and Linux user communities. He speaks frequently at
technical conferences and user groups.

He owns and runs Noumena Corporation, where he develops custom software and
delivers training sessions. His applications have been used by organizations ranging from
one man startups to the US Navy. These applications range from distributed simulation
systems to tools to help fiction authors write better (Editomat). He has trained programmers
on four continents.

When not working with computers, Clif plays guitar, writes fiction experiments with
new technologies, and plays with his wife's cats.

He's the author of Tcl/Tk: A Developer's Guide by Morgan Kauffman, 2012, as well as
several papers, and magazine articles. His poetry and fiction have been published in small
journals, including Write to Meow by Grey Wolfe Press, 2015.

I'd like to thank my wife for putting up with me during my writing marathons, and my
editors at Packt Publishing, Sanjeet Rao, Radhika Atitkar, and Nidhisha Shetty for their
support and assistance.

Sarath Lakshman is a 27 year old who was bitten by the Linux bug during his teenage
years. He is a software engineer working in ZCloud engineering group at Zynga, India. He
is a life hacker who loves to explore innovations. He is a GNU/Linux enthusiast and
hactivist of free and open source software. He spends most of his time hacking with
computers and having fun with his great friends. Sarath is well known as the developer of
SLYNUX (2005)—a user friendly GNU/Linux distribution for Linux newbies. The free and
open source software projects he has contributed to are PiTiVi Video editor, SLYNUX
GNU/Linux distro, Swathantra Malayalam Computing, School-Admin, Istanbul, and the
Pardus Project. He has authored many articles for the Linux For You magazine on various
domains of FOSS technologies. He had made a contribution to several different open source
projects during his multiple Google Summer of Code projects. Currently, he is exploring his
passion about scalable distributed systems in his spare time. Sarath can be reached via his
website .

I would like to thank my friends and family for the great support and encouragement they
have given me for all my endeavors. I would like to thank my friends Anu Mahadevan and
Neenu Jacob for the tireless enthusiasm and patience to read through the chapter
developments and providing comments during development. I would also like to thank Mr.
Atanu Datta for helping me come up with the chapter titles. I extend my gratitude to the
team at Packt Publishing who helped me in making this book happen.

Shantanu Tushar is an advanced GNU/Linux user since his college days. He works as
an application developer and contributes to the software in the KDE projects. Shantanu has
been fascinated by computers since he was a child, and spent most of his high
school time writing C code to perform daily activities. Since he started using GNU/Linux,
he has been using shell scripts to make the computer do all the hard work for him. He also
takes time to visit students at various colleges to introduce them to the power of Free
Software, including its various tools. Shantanu is a well-known contributor in the KDE
community and works on Calligra, Gluon and the Plasma subprojects. He looks after
maintaining Calligra Active – KDE's offie document viewer for tablets, Plasma Media
Center, and the Gluon Player. One day, he believes, programming will be so easy that
everybody will love to write programs for their computers. Shantanu can be reached by e-
mail on , on Identi.ca/Twitter, or his website

.

About the Reviewer
John Kennedy has been a UNIX and Linux system administrator since 1997. He started on
Solaris and has worked exclusively with Linux since 2005. He started scripting in 1999,
when he realized that scripts could do much of his work for him, using the "a lazy sysadmin
is a great sysadmin" philosophy. John currently works for Daon, a biometric security
company, as a DevOps engineer.

John started tech editing in 2001 and also worked on the first edition of this book.

John has been married to Michele since 1994 and has a daughter, Denise, and a son, Kieran.

First, I’d like to thank my family for all their support. I also thank my dogs for their
patience while I worked away on this book. Thanks also to my employers, Daon, Inc, who
are awesome to work for.
Finally, I would like to thank Judie Jose for her patience on those occasions when life got in
the way of my editing. Your exceptional support was greatly appreciated.

www.PacktPub.com
For support files and downloads related to your book, please visit .

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at .

If you'd like to join our team of regular reviewers, you can e-mail us at
. We award our regular reviewers with free eBooks and

videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

Table of Contents
Preface 1

Chapter 1: Shell Something Out 7

Introduction 7
Displaying output in a terminal 8

Getting ready 9
How to do it... 11
How it works... 13
There's more... 13

Escaping newline in echo 13
Printing a colored output 13

Using variables and environment variables 14
Getting ready 14
How to do it... 15
There's more... 17

Finding the length of a string 17
Identifying the current shell 18
Checking for super user 18
Modifying the Bash prompt string (username@hostname:~$) 19

Function to prepend to environment variables 19
How to do it... 20
How it works... 20

Math with the shell 21
How to do it... 21

Playing with file descriptors and redirection 23
Getting ready 23
How to do it... 24
How it works... 27
There's more... 28

Redirection from a file to a command 28
Redirecting from a text block enclosed within a script 28
Custom file descriptors 28

Arrays and associative arrays 30
Getting ready 30
How to do it... 30
There's more... 31

Defining associative arrays 31

[ii]

Listing of array indexes 32
Visiting aliases 32

How to do it... 33
There's more... 33

Escaping aliases 34
Listing aliases 34

Grabbing information about the terminal 34
Getting ready 34
How to do it... 35

Getting and setting dates and delays 36
Getting ready 36
How to do it... 37
How it works... 38
There's more... 39

Producing delays in a script 40
Debugging the script 40

How to do it... 41
How it works... 42
There's more... 43

Shebang hack 43
Functions and arguments 43

How to do it... 44
There's more... 45

The recursive function 46
Reading the return value (status) of a command 46
Passing arguments to commands 47

Sending output from one command to another 48
Getting ready 48
How to do it... 48
There's more... 49

Spawning a separate process with subshell 50
Subshell quoting to preserve spacing and the newline character 50

Reading n characters without pressing the return key 51
How to do it... 51

Running a command until it succeeds 52
How to do it... 52
How it works... 53
There's more... 53

A faster approach 53
Adding a delay 53

Field separators and iterators 54

[iii]

Getting ready 54
How to do it... 55

Comparisons and tests 57
How to do it... 57

Customizing bash with configuration files 61
How to do it... 61

Chapter 2: Have a Good Command 64

Introduction 65
Concatenating with cat 65

How to do it... 65
There's more... 66

Getting rid of extra blank lines 66
Displaying tabs as ^I 67
Line numbers 67

Recording and playing back terminal sessions 68
Getting ready 69
How to do it... 69
How it works... 70

Finding files and file listing 70
Getting ready 70
How to do it... 70
There's more... 71

Search based on name or regular expression match 71
Negating arguments 73
Searching based on the directory depth 74
Searching based on file type 75
Searching by file timestamp 76
Searching based on file size 77
Matching based on file permissions and ownership 78
Performing actions on files with find 78
Deleting based on file matches 78
Executing a command 78
Skipping specified directories when using the find command 80

Playing with xargs 81
Getting ready 81
How to do it... 82
How it works... 82
There's more... 83

Passing formatted arguments to a command by reading stdin 83
Using xargs with find 86
Counting the number of lines of C code in a source code directory 86
While and subshell trick with stdin 86

[iv]

Translating with tr 87
Getting ready 87
How to do it... 88
How it works... 88
There's more... 89

Deleting characters using tr 89
Complementing character sets 90
Squeezing characters with tr 90
Character classes 91

Checksum and verification 92
Getting ready 93
How to do it... 93
How it works... 93
There's more... 94

Checksum for directories 95
Cryptographic tools and hashes 97

How to do it... 97
Sorting unique and duplicate lines 98

Getting ready 98
How to do it... 99
How it works... 100
There's more... 100

Sorting according to keys or columns 100
uniq 102

Temporary file naming and random numbers 104
How to do it... 104
How it works... 105

Splitting files and data 105
How to do it... 105
There's more... 106

Specifying a filename prefix for the split files 106
Slicing filenames based on extensions 107

How to do it... 108
How it works... 108

Renaming and moving files in bulk 110
Getting ready 110
How to do it... 111
How it works... 111

Spell–checking and dictionary manipulation 112
How to do it... 113
How it works... 113

[v]

Automating interactive input 114
Getting ready 115
How to do it... 115
How it works... 115
There's more... 117

Automating with expect 117
Making commands quicker by running parallel processes 118

How to do it... 118
How it works... 119
There's more... 119

Examining a directory, files and subdirectories in it 119
Getting ready 120
How to do it... 120

Generating a tree view of a directory. 120
Generating a summary of files and sub-directories 121

Chapter 3: File In, File Out 122

Introduction 123
Generating files of any size 123

How to do it... 123
The intersection and set difference (A-B) on text files 125

Getting ready 125
How to do it... 125
How it works... 127

Finding and deleting duplicate files 128
Getting ready 128
How to do it... 129
How it works... 130

Working with file permissions, ownership, and the sticky bit 131
How to do it... 133
There's more... 135

Changing ownership 135
Setting the sticky bit 135
Applying permissions recursively to files 135
Applying ownership recursively 136
Running an executable as a different user (setuid) 136

Making files immutable 136
Getting ready 137
How to do it... 137

Generating blank files in bulk 137
Getting ready 138

[vi]

How to do it... 138
Finding symbolic links and their targets 139

How to do it... 139
How it works... 140

Enumerating file type statistics 140
Getting ready 140
How to do it... 141
How it works... 142

Using loopback files 143
How to do it... 143
How it works... 144
There's more... 145

Creating partitions inside loopback images 145
Mounting loopback disk images with partitions more quickly 146
Mounting ISO files as loopback 147
Flush changing immediately with sync 147

Creating ISO files and hybrid ISO 147
Getting ready 148
How to do it... 148
There's more... 149

Hybrid ISO that boots off a flash drive or hard disk 149
Burning an ISO from the command line 149
Playing with the CD-ROM tray 150

Finding the difference between files, and patching 151
How to do it... 151
There's more... 153

Generating difference against directories 153
Using head and tail for printing the last or first 10 lines 153

How to do it... 153
Listing only directories - alternative methods 156

Getting ready 156
How to do it... 156
How it works... 157

Fast command-line navigation using pushd and popd 157
Getting ready 157
How to do it... 157
There's more... 159

pushd and popd are useful when there are more than three directory paths used.
However, when you use only two locations, there is an alternative and easier way,
that is, cd -. 159

Counting the number of lines, words, and characters in a file 159

[vii]

How to do it... 160
Printing the directory tree 161

Getting ready 161
How to do it... 161
There's more... 162

HTML output for tree 162
Manipulating video and image files 164

Getting ready 164
Extracting Audio from a movie file (mp4) 165

How to do it... 165
Making a video from a set of still images 165

How to do it... 165
How it works... 166

Creating a panned video from a still camera shot 166
How to do it... 166
How it works... 167

Chapter 4: Texting and Driving 168

Introduction 168
Using regular expressions 169

How to do it... 169
Position markers 170
Identifiers 170
Count modifiers 171
Other 171
There's more... 172

How it works... 173
There's more... 173

Treatment of special characters 173
Visualizing regular expressions 174

Searching and mining text inside a file with grep 174
How to do it... 175
There's more... 177

Recursively searching many files 177
Ignoring case in patterns 178
grep by matching multiple patterns 178
Including and excluding files in a grep search 179
Using grep with xargs with the zero-byte suffix 179
Silent output for grep 180
Printing lines before and after text matches 181

Cutting a file column-wise with cut 182
How to do it... 182
There's more 183

Specifying the range of characters or bytes as fields 183

[viii]

Using sed to perform text replacement 185
How to do it... 185
There's more... 186

Removing blank lines 187
Performing replacement directly in the file 187
Matched string notation () 187
Substring match notation (\1) 188
Combining multiple expressions 188
Quoting 189

Using awk for advanced text processing 189
Getting ready 189
How to do it... 190
How it works... 190
There's more... 192

Special variables 192
Passing an external variable to awk 193
Reading a line explicitly using getline 194
Filtering lines processed by awk with filter patterns 194
Setting delimiters for fields 194
Reading the command output from awk 195
Associative arrays in Awk 195
Using loop inside awk 195
String manipulation functions in awk 196

Finding the frequency of words used in a given file 197
Getting ready 197
How to do it... 197
How it works... 198
See also 198

Compressing or decompressing JavaScript 199
Getting ready 199
How to do it... 200
How it works... 200
See also 202

Merging multiple files as columns 202
How to do it... 202
See also 203

Printing the nth word or column in a file or line 203
How to do it... 203
See also 204

Printing text between line numbers or patterns 204
Getting ready 204
How to do it... 204

[ix]

See also 205
Printing lines in the reverse order 205

Getting ready 205
How to do it... 206
How it works... 206

Parsing e-mail address and URLs from text 207
How to do it... 207
How it works... 208
See also 208

Removing a sentence in a file containing a word 208
Getting ready 208
How to do it... 209
How it works... 209
See also 210

Replacing a pattern with text in all the files in a directory 210
How to do it... 210
How it works... 210
There's more... 211

Text slicing and parameter operations 211
How to do it... 211
See also 212

Chapter 5: Tangled Web? Not At All! 213

Introduction 214
Downloading from a web page 214

Getting ready 214
How to do it... 214
How it works... 215
There's more... 215

Restricting the download speed 216
Resume downloading and continue 216
Copying a complete website (mirroring) 216
Accessing pages with HTTP or FTP authentication 217

Downloading a web page as plain text 217
Getting ready 217
How to do it... 218

A primer on cURL 218
Getting ready 219
How to do it... 219
How it works... 219

[x]

There's more... 220
Continuing and resuming downloads 220
Setting the referer string with cURL 220
Cookies with cURL 221
Setting a user agent string with cURL 221
Specifying a bandwidth limit on cURL 222
Specifying the maximum download size 222
Authenticating with cURL 222
Printing response headers excluding data 222

See also 223
Accessing unread Gmail e-mails from the command line 223

How to do it... 223
How it works... 224
See also 225

Parsing data from a website 225
How to do it... 225
How it works... 226
See also 226

Image crawler and downloader 226
How to do it... 226
How it works... 227
See also 229

Web photo album generator 229
Getting ready 229
How to do it... 229
How it works... 230
See also 231

Twitter command-line client 231
Getting ready 232
How to do it... 232
How it works... 234
See also 235

Accessing word definitions via a web server 235
Getting ready 235
How to do it... 235
How it works... 236
See also 236

Finding broken links in a website 236
Getting ready 236
How to do it... 237
How it works... 238

[xi]

See also 238
Tracking changes to a website 238

Getting ready 238
How to do it... 239
How it works... 240
See also 241

Posting to a web page and reading the response 241
Getting ready 241
How to do it... 241
See also 243

Downloading a video from the Internet 243
Getting ready 243
How to do it... 243
How it works... 243

Summarizing text with OTS 244
Getting ready 244
How to do it... 244
How it works... 244

Translating text from the command line 245
Getting ready 245
How to do it... 245
How it works... 246

Chapter 6: Repository Management 247

Introduction 248
Creating a new git repository 249

Getting ready 249
How to do it... 249
How it works... 249

Cloning a remote git repository 250
How to do it... 250

Adding and committing changes with git 250
How to do it... 250

Creating and merging branches with git 252
Getting ready... 252
How to do it... 252
How it works... 252
There's more... 253

Merging branches 253
How to do it... 253

[xii]

How it works... 253
There's more... 254

Sharing your work 254
How to do it... 254

Pushing a branch to a server 256
How to do it... 256

Checking the status of a git repository 258
How to do it... 258
How it works... 258

Viewing git history 259
How to do it... 259

Finding bugs 259
How to do it... 260
There's more... 260

How to do it... 260
How it works... 261

Tagging snapshots 261
How to do it... 261

Committing message ethics 263
How to do it... 263

Using fossil 263
Getting ready 264
How to do it... 264

Creating a new fossil repository 264
How to do it... 264
How it works... 265
There's more... 265

Web interface to fossil 265
How to do it... 265

Making a repository available to remote users 265
Cloning a remote fossil repository 266

How to do it... 266
How it works... 266

Opening a fossil project 267
How to do it... 267
How it works... 267
There's more... 267

Adding and committing changes with fossil 268
How to do it... 268
There's more... 269

Using branches and forks with fossil 269

[xiii]

How to do it 270
How it works... 270
There's more... 271

Merging forks and branches 271
How to do it... 271

Sharing your work with fossil 272
How to do it... 272
How it works... 272

Updating your local fossil repository 272
How to do it... 273

Checking the status of a fossil repository 273
How to do it... 274

Viewing fossil history 274
How to do it... 275

Finding bugs 276
How to do it... 276
There's more... 277

Tagging snapshots 278
How to do it... 279
There's more... 279

Chapter 7: The Backup Plan 280

Introduction 280
Archiving with tar 281

Getting ready 281
How to do it... 281
How it works... 282
There's more... 282

Appending files to an archive 282
Extracting files and folders from an archive 283
stdin and stdout with tar 283
Concatenating two archives 283
Updating files in an archive with a timestamp check 284
Comparing files in the archive and filesystem 285
Deleting files from the archive 285
Compression with the tar archive 285
Excluding a set of files from archiving 286
Excluding version control directories 287
Printing the total bytes 287

See also 287
Archiving with cpio 287

How to do it... 288
How it works... 288

[xiv]

Compressing data with gzip 289
How to do it... 289
There's more... 290

Gzip with tarball 290
zcat - reading gzipped files without extracting 291
Compression ratio 292
Using bzip2 292
Using lzma 292

See also 293
Archiving and compressing with zip 293

How to do it... 293
How it works... 294

Faster archiving with pbzip2 294
Getting ready 295
How to do it... 295
How it works... 295
There's more... 296

Manually specifying the number of CPUs 296
Specifying the compression ratio 296

Creating filesystems with compression 296
Getting ready 297
How to do it... 297
There's more... 298

Excluding files while creating a squashfs file 298
Backing up snapshots with rsync 299

How to do it... 299
How it works... 301
There's more... 301

Excluding files while archiving with rsync 301
Deleting non-existent files while updating rsync backup 302
Scheduling backups at intervals 302

Differential archives 302
How to do it... 303
How it works... 303

Creating entire disk images using fsarchiver 304
Getting ready 304
How to do it... 304
How it works... 305

Chapter 8: The Old-Boy Network 306

Introduction 307
Setting up the network 307

[xv]

Getting ready 307
How to do it... 308
There's more... 309

Printing the list of network interfaces 309
Displaying IP addresses 309
Spoofing the hardware address (MAC address) 310
Name server and DNS (Domain Name Service) 311

DNS lookup 311
Showing routing table information 313

See also 314
Let us ping! 314

How to do it... 314
There's more... 315

Round Trip Time 316
Sequence number 316
Time to live 316
Limiting the number of packets to be sent 317
Return status of the ping command 317

Tracing IP routes 318
How to do it... 318

Listing all available machines on a network 319
Getting ready 319
How to do it... 319
How it works... 320
There's more... 320

Parallel pings 320
Using fping 321

See also 322
Running commands on a remote host with SSH 322

Getting ready 322
How to do it... 322
There's more... 325

SSH with compression 325
Redirecting data into stdin of remote host shell commands 325

Running graphical commands on a remote machine 326
How to do it... 326
See also 326

Transferring files through the network 327
Getting ready 327
How to do it... 327
There's more... 328

Automated FTP transfer 328

[xvi]

SFTP (Secure FTP) 329
The rsync command 329
SCP (secure copy program) 329
Recursive copying with scp 330

See also 330
Connecting to a wireless network 330

Getting ready 331
How to do it... 331
How it works... 332
See also 333

Password-less auto-login with SSH 333
Getting ready 333
How to do it... 333

Port forwarding using SSH 335
How to do it... 335
There's more... 335

Non-interactive port forward 336
Reverse port forwarding 336

Mounting a remote drive at a local mount point 336
Getting ready 337
How to do it... 337
See also 337

Network traffic and port analysis 337
Getting ready 338
How to do it... 338
How it works... 339
There's more... 339

Opened port and services using netstat 339
Measuring network bandwidth 340

How to do it... 340
Creating arbitrary sockets 341

Getting ready 341
How to do it... 341
There's more... 341

Quickly copying files over the network 342
Creating a broadcasting server 342

How it works... 342
Building a bridge 343

Getting ready 343
How to do it... 343

Sharing an Internet connection 344

[xvii]

Getting ready 344
How to do it... 344
How it works 346

Basic firewall using iptables 346
How to do it... 346
How it works... 347
There's more... 348

Creating a Virtual Private Network 348
Getting ready 348
How to do it... 349

Creating certificates 349
Configuring OpenVPN on the server 351
Configuring OpenVPN on the client 352
Starting the server 353
Starting and testing a client 354

Chapter 9: Put On the Monitors Cap 356

Introduction 356
Monitoring disk usage 357

Getting ready 357
How to do it... 357
There's more... 358

Displaying disk usage in KB, MB, or blocks 358
Displaying the grand total sum of disk usage 359
Printing sizes in specified units 359
Excluding files from the disk usage calculation 360
Finding the ten largest size files from a given directory 361
Disk free information 362

Calculating the execution time for a command 363
How to do it... 363
How it works... 365

Collecting information about logged in users, boot logs, and boot
failures 366

Getting ready 366
How to do it... 366

Listing the top ten CPU– consuming processes in an hour 369
Getting ready 369
How to do it... 370
How it works... 371
See also 372

Monitoring command outputs with watch 372
How to do it... 372

[xviii]

There's more 373
Highlighting the differences in the watch output 373

Logging access to files and directories 373
Getting ready 373
How to do it... 373
How it works... 374

Logging with syslog 375
Getting ready 375
How to do it... 376
See also 377

Managing log files with logrotate 377
Getting ready 377
How to do it... 377
How it works... 378

Monitoring user logins to find intruders 379
Getting ready 379
How to do it... 380
How it works... 381

Monitoring remote disk usage health 382
Getting ready 382
How to do it... 382
How it works... 384
See also 384

Determining active user hours on a system 384
Getting ready 385
How to do it... 385
How it works... 386

Measuring and optimizing power usage 387
Getting ready 387
How to do it... 387

Monitoring disk activity 388
Getting ready 388
How to do it... 389

Checking disks and filesystems for errors 389
Getting ready 389
How to do it... 390
How it works... 391

Examining disk health 391
Getting ready 391

[xix]

How to do it... 391
How it works 394

Getting disk statistics 394
Getting ready 394
How to do it... 395
How it works 396
There's more 396

Chapter 10: Administration Calls 397

Introduction 397
Gathering information about processes 398

Getting ready 398
How to do it... 398
How it works... 399
There's more... 400

Showing environment variables for a process 400
Creating a tree view of processes 402
Sorting ps output 402
Filters with ps for real user or ID, effective user or ID 403
TTY filter for ps 403
Information about process threads 403
Specifying the output width and columns to be displayed 404

What's what – which, whereis, whatis, and file 404
How to do it... 404

Finding the process ID from the given command names 406
Determining how busy a system is 407
The top command 407

See also... 407
Killing processes, and sending and responding to signals 408

Getting ready 408
How to do it... 408
There's more... 409

The kill family of commands 409
Capturing and responding to signals 410

Sending messages to user terminals 411
Getting ready 412
How to do it... 412

Sending one message to one user 412
Holding a conversation with another user 413
Sending a message to all users 413

The /proc filesystem 414
How to do it... 414

[xx]

Gathering system information 415
How to do it... 415

Scheduling with a cron 417
Getting ready 417
How to do it... 417
How it works... 419
There's more... 420

Specifying environment variables 420
Running commands at system start-up/boot 421
Viewing the cron table 421
Removing the cron table 421

Database styles and uses 421
Getting ready 422
How to do it... 422
There's more... 423

Creating a table 423
Inserting a row into an SQL database 423
Selecting rows from a SQL database 423

Writing and reading SQLite databases 424
Getting ready 424
How to do it... 424
How it works... 425
There's more... 425

Writing and reading a MySQL database from Bash 426
Getting ready 427
How to do it... 428
How it works... 430

User administration scripts 432
How to do it... 432
How it works... 434

Bulk image resizing and format conversion 436
Getting ready 436
How to do it... 436
How it works... 439
See also 440

Taking screenshots from the terminal 440
Getting ready 440
How to do it... 440

Managing multiple terminals from one 441
Getting ready 441
How to do it... 441

[xxi]

Chapter 11: Tracing the Clues 443

Introduction 443
Tracing packets with tcpdump 443

Getting ready 444
How to do it... 444

Displaying only HTTP packets 445
Displaying only HTTP packets generated by this host 446
Viewing the packet payload as well as headers 446

How it works... 447
Finding packets with ngrep 448

Getting ready 448
How to do it... 448
How it works... 449
There's more... 449

Tracing network routes with ip 449
Getting ready 450
How to do it... 450

Reporting routes with ip route 450
Tracing recent IP connections and the ARP table 451
Tracing a route 452
How it works... 452

Tracing system calls with strace 452
Getting ready 453
How to do it... 453
How it works... 455

Tracing dynamic library functions with ltrace 456
Getting ready 456
How to do it... 456
How it works... 457
There's more... 457

Chapter 12: Tuning a Linux System 459

Introduction 459
Identifying services 460

Getting ready 461
How to do it... 461

systemd-based computers 463
RedHat-based computers 463
Debian-based computers 464

There's more 464
Gathering socket data with ss 465

[xxii]

Getting ready 465
How to do it... 465

Displaying the status of tcp sockets 466
Tracing applications listening on ports 466

How it works 467
Gathering system I/O usage with dstat 467

Getting ready 468
How to do it... 468

Viewing system activity 468
How it works 469
There's more... 469

Identifying a resource hog with pidstat 470
Getting ready 470
How to do it... 470
How it works 471

Tuning the Linux kernel with sysctl 471
Getting started 471
How to do it... 472

Tuning the task scheduler 472
Tuning a network 473

How it works 473
There's more... 473

Tuning a Linux system with config files 474
Getting ready 474
How to do it... 474
How it works 474

Changing scheduler priority using the nice command 475
How to do it... 475
How it works 476
There's more 476

Chapter 13: Containers, Virtual Machines, and the Cloud 477

Introduction 477
Using Linux containers 478

Getting ready 479
How to do it... 480

Creating a privileged container 480
Starting a container 483
Stopping a container 484
Listing known containers 484
Displaying container information 484
Creating an unprivileged container 485

[xxiii]

Creating an Ethernet bridge 486
How it works... 487

Using Docker 487
Getting ready 488
How to do it... 488

Finding a container 489
Downloading a container 489
Starting a Docker container 490
Listing the Docker sessions 490
Attaching your display to a running Docker container 490
Stopping a Docker session 491
Removing a Docker instance 491

How it works 492
Using Virtual Machines in Linux 492

Getting ready 492
How to do it... 493

Linux in the cloud 494
Getting ready 494

Ubuntu 16.10 494
OpenSuSE Tumbleweed 495

How to do it... 495
Configuring OwnCloud 496

There's more... 496

Index 500

Preface
This book will show you how to get the most from your Linux computer. It describes how
to perform common tasks such as finding and searching files, explains complex system
administration activities such as monitoring and tuning a system, and discusses networks,
security, distribution, and how to use the cloud.

Casual users will enjoy recipes for reformatting their photos, downloading videos and
sound files from the Internet, and archiving their files.

Advanced users will find the recipes and explanations that solve complex issues, such
as backups, revision control, and packet sniffing, useful.

Systems administrators and cluster managers will find recipes for using containers, virtual
machines, and the cloud to make their job easier.

What this book covers
, Shell Something Out, explains how to use a command line, write and debug bash

scripts, and use pipes and shell configuration.

, Have a Good Command, introduces common Linux commands that can be used
from the command line or in bash scripts. It also explains how to read data from files; find
files by name, type, or date; and compare files.

, File In, File Out, explains how to work with files, including finding and
comparing files, searching for text, navigating directory hierarchy, and manipulating image
and video files.

, Texting and Driving, explains how to use regular expressions with , ,
and .

, Tangled Web? Not At All!, explains web interactions without a browser! It also
explains how to script to check your website for broken links and download and parse
HTML data.

, Repository Management, introduces revision control with Git or Fossil. Keep
track of the changes and maintain history.

Preface

[2]

, The Backup Plan, discusses traditional and modern Linux backup tools. The
bigger the disk, the more you need backups.

, The Old-Boy Network, explains how to configure and debug network issues,
share a network, and create a VPN.

, Putting on the Monitor's Cap, helps us know what your system is doing. It also
explains how to track disk and memory usage, track logins, and examine log files.

, Administration Calls, explains how to manage tasks, send messages to users,
schedule automated tasks, document your work, and use terminals effectively.

, Tracing the Clues, explains how to snoop your network to find network issues
and track problems in libraries and system calls.

, Tuning a Linux System, helps us understand how to make your system perform
better and use memory, disk, I/O, and CPU efficiently.

, Containers, Virtual Machines, and the Cloud, explains when and how to use
containers, virtual machines, and the cloud to distribute applications and share data.

What you need for this book
The recipes in this book run on any Linux-based computer—from a Raspberry Pi to IBM Big
Iron.

Who this book is for
Everyone, from novice users to experienced admins, will find useful information in this
book. It introduces and explains both the basic tools and advanced concepts, as well as the
tricks of the trade.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Preface

[3]

Getting ready
This section tells you what to expect in the recipe, and it describes how to set up any
software or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions, path
names, dummy URLs, user input, and Twitter handles are shown as follows: "Shebang is a
line on which is prefixed to the interpreter path."

A block of code is set as follows:

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

PWD=/home/clif/ShellCookBook

Any command-line input or output is written as follows:

$ chmod a+x sample.sh

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Select System info from the
Administration panel."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail , and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at .

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at

. If you purchased this book elsewhere, you can visit
and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at

.

We also have other code bundles from our rich catalog of books and videos available at

. Check them out!

Preface

[6]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from the following link:

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting ,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to
and enter the name of the book in the search field. The required information will

appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at , and we will do our best to address the problem.

11
Shell Something Out

In this chapter, we will cover the following recipes:

Displaying output in a terminal
Using variables and environment variables
Function to prepend to environment variables
Math with the shell
Playing with file descriptors and redirection
Arrays and associative arrays
Visiting aliases
Grabbing information about the terminal
Getting and setting dates and delays
Debugging the script
Functions and arguments
Sending output from one command to another
Reading characters without pressing the return key
Running a command until it succeeds
Field separators and iterators
Comparisons and tests
Customizing bash with configuration files

Introduction
In the beginning, computers read a program from cards or tape and generated a single
report. There was no operating system, no graphics monitors, not even an interactive
prompt.

Shell Something Out

[8]

By the 1960s, computers supported interactive terminals (frequently a teletype or glorified
typewriter) to invoke commands.

When Bell Labs created an interactive user interface for the brand new Unix operating
system, it had a unique feature. It could read and evaluate the same commands from a text
file (called a shell script), as it accepted being typed on a terminal.

This facility was a huge leap forward in productivity. Instead of typing several commands
to perform a set of operations, programmers could save the commands in a file and run
them later with just a few keystrokes. Not only does a shell script save time, it also
documents what you did.

Initially, Unix supported one interactive shell, written by Stephen Bourne, and named it the
Bourne Shell (sh).

In 1989, Brian Fox of the GNU Project took features from many user interfaces and created a
new shell—the Bourne Again Shell (bash). The bash shell understands all of the Bourne
shell constructs and adds features from csh, ksh, and others.

As Linux has become the most popular implementation of Unix like operating systems, the
bash shell has become the de-facto standard shell on Unix and Linux.

This book focuses on Linux and bash. Even so, most of these scripts will run on both Linux
and Unix, using bash, sh, ash, dash, ksh, or other sh style shells.

This chapter will give readers an insight into the shell environment and demonstrate some
basic shell features.

Displaying output in a terminal
Users interact with the shell environment via a terminal session. If you are running a GUI-
based system, this will be a terminal window. If you are running with no GUI, (a
production server or ssh session), you will see the shell prompt as soon as you log in.

Displaying text in the terminal is a task most scripts and utilities need to perform regularly.
The shell supports several methods and different formats for displaying text.

Shell Something Out

[9]

Getting ready
Commands are typed and executed in a terminal session. When a terminal is opened, a
prompt is displayed. The prompt can be configured in many ways, but frequently
resembles this:

username@hostname$

Alternatively, it can also be configured as or simply as or .

The character represents regular users and represents the administrative user root. Root
is the most privileged user in a Linux system.

It is a bad idea to directly use the shell as the root user (administrator) to
perform tasks. Typing errors have the potential to do more damage when
your shell has more privileges. It is recommended that you log in as a
regular user (your shell may denote this as in the prompt), and use tools
such as to run privileged commands. Running a command as

 will run it as root.

A shell script typically begins with a shebang:

Shebang is a line on which is prefixed to the interpreter path. is the
interpreter command path for Bash. A line starting with a symbol is treated by the bash
interpreter as a comment. Only the first line of a script can have a shebang to define the
interpreter to be used to evaluate the script.

A script can be executed in two ways:

Pass the name of the script as a command-line argument:1.

 bash myScript.sh

Set the execution permission on a script file to make it executable:2.

 chmod 755 myScript.sh
 ./myScript.sh.

Shell Something Out

[10]

If a script is run as a command-line argument for , the shebang is not required. The
shebang facilitates running the script on its own. Executable scripts use the interpreter path
that follows the shebang to interpret a script.

Scripts are made executable with the command:

$ chmod a+x sample.sh

This command makes a script executable by all users. The script can be executed as follows:

$./sample.sh #./ represents the current directory

Alternatively, the script can be executed like this:

$ /home/path/sample.sh # Full path of the script is used

The kernel will read the first line and see that the shebang is . It will identify
 and execute the script as follows:

$ /bin/bash sample.sh

When an interactive shell starts, it executes a set of commands to initialize settings, such as
the prompt text, colors, and so on. These commands are read from a shell script at

 (or for login shells), located in the home directory of the
user. The Bash shell maintains a history of commands run by the user in the

 file.

The symbol denotes your home directory, which is usually ,
where user is your username or for the root user. A login shell is
created when you log in to a machine. However, terminal sessions you
create while logged in to a graphical environment (such as GNOME, KDE,
and so on), are not login shells. Logging in with a display manager such
as GDM or KDM may not read a or (most
don't), but logging in to a remote system with ssh will read the

. The shell delimits each command or command sequence with a
semicolon or a new line. Consider this example:
This is equivalent to these:

Shell Something Out

[11]

A comment starts with and proceeds up to the end of the line. The comment lines are
most often used to describe the code, or to disable execution of a line of code during
debugging:

sample.sh - echoes "hello world"
echo "hello world"

Now let's move on to the basic recipes in this chapter.

How to do it...
The command is the simplest command for printing in the terminal.

By default, adds a newline at the end of every echo invocation:

$ echo "Welcome to Bash"
Welcome to Bash

Simply, using double-quoted text with the command prints the text in the terminal.
Similarly, text without double quotes also gives the same output:

$ echo Welcome to Bash
Welcome to Bash

Another way to do the same task is with single quotes:

$ echo 'text in quotes'

These methods appear similar, but each has a specific purpose and side effects. Double
quotes allow the shell to interpret special characters within the string. Single quotes disable
this interpretation.

Consider the following command:

$ echo "cannot include exclamation - ! within double quotes"

This returns the following output:

bash: !: event not found error

If you need to print special characters such as , you must either not use any quotes, use
single quotes, or escape the special characters with a backslash ():

$ echo Hello world !

Shell Something Out

[12]

Alternatively, use this:

$ echo 'Hello world !'

Alternatively, it can be used like this:

$ echo "Hello World\!" #Escape character \ prefixed.

When using without quotes, we cannot use a semicolon, as a semicolon is the
delimiter between commands in the Bash shell:

echo hello; hello

From the preceding line, Bash takes as one command and the second as
the second command.

Variable substitution, which is discussed in the next recipe, will not work within single
quotes.

Another command for printing in the terminal is . It uses the same arguments as the
C library function. Consider this example:

$ printf "Hello world"

The command takes quoted text or arguments delimited by spaces. It supports
formatted strings. The format string specifies string width, left or right alignment, and so
on. By default, does not append a newline. We have to specify a newline when
required, as shown in the following script:

#!/bin/bash
#Filename: printf.sh

printf "%-5s %-10s %-4s\n" No Name Mark
printf "%-5s %-10s %-4.2f\n" 1 Sarath 80.3456
printf "%-5s %-10s %-4.2f\n" 2 James 90.9989
printf "%-5s %-10s %-4.2f\n" 3 Jeff 77.564

We will receive the following formatted output:

No Name Mark
1 Sarath 80.35
2 James 91.00
3 Jeff 77.56

Shell Something Out

[13]

How it works...
The , , , and characters are format substitution characters, which define how the
following argument will be printed. The string defines a string substitution with left
alignment (represents left alignment) and a character width. If was not specified, the
string would have been aligned to the right. The width specifies the number of characters
reserved for the string. For , the width reserved is . Hence, any name will reside
within the 10-character width reserved for it and the rest of the line will be filled with
spaces up to 10 characters total.

For floating point numbers, we can pass additional parameters to round off the decimal
places.

For the Mark section, we have formatted the string as , where specifies rounding
off to two decimal places. Note that for every line of the format string, a newline () is
issued.

There's more...
While using flags for and , place the flags before any strings in the command,
otherwise Bash will consider the flags as another string.

Escaping newline in echo
By default, appends a newline to the end of its output text. Disable the newline with
the flag. The command accepts escape sequences in double-quoted strings as an
argument. When using escape sequences, use as

. Consider the following example:

echo -e "1\t2\t3"
1 2 3

Printing a colored output
A script can use escape sequences to produce colored text on the terminal.

Colors for text are represented by color codes, including, reset = 0, black = 30, red = 31, green
= 32, yellow = 33, blue = 34, magenta = 35, cyan = 36, and white = 37.

Shell Something Out

[14]

To print colored text, enter the following command:

echo -e "\e[1;31m This is red text \e[0m"

Here, is the escape string to set the color to red and resets the color back.
Replace with the required color code.

For a colored background, reset = 0, black = 40, red = 41, green = 42, yellow = 43, blue = 44,
magenta = 45, cyan = 46, and white=47, are the commonly used color codes.

To print a colored background, enter the following command:

echo -e "\e[1;42m Green Background \e[0m"

These examples cover a subset of escape sequences. The documentation can be viewed with
.

Using variables and environment variables
All programming languages use variables to retain data for later use or modification. Unlike
compiled languages, most scripting languages do not require a type declaration before a
variable is created. The type is determined by usage. The value of a variable is accessed by
preceding the variable name with a dollar sign. The shell defines several variables it uses for
configuration and information like available printers, search paths, and so on. These are
called environment variables.

Getting ready
Variables are named as a sequence of letters, numbers, and underscores with no
whitespace. Common conventions are to use UPPER_CASE for environment variables and
camelCase or lower_case for variables used within a script.

All applications and scripts can access the environment variables. To view all the
environment variables defined in your current shell, issue the or command:

Shell Something Out

[15]

To view the environment of other processes, use the following command:

cat /proc/$PID/environ

Set with a process ID of the process (is an integer value).

Assume an application called is running. We obtain the process ID of with the
 command:

$ pgrep gedit
12501

We view the environment variables associated with the process by executing the following
command:

$ cat /proc/12501/environ
GDM_KEYBOARD_LAYOUT=usGNOME_KEYRING_PID=1560USER=slynuxHOME=/home/slynux

Note that the previous output has many lines stripped for convenience.
The actual output contains more variables.
The special file contains a list of environment
variables and their values. Each variable is represented as a name=value
pair, separated by a null character (). This is not easily human readable.

To make a human-friendly report, pipe the output of the command to , to substitute
the character with :

$ cat /proc/12501/environ | tr '\0' '\n'

How to do it...
Assign a value to a variable with the equal sign operator:

varName=value

The name of the variable is and is the value to be assigned to it. If
does not contain any space character (such as space), it need not be enclosed in quotes,
otherwise it must be enclosed in single or double quotes.

Note that and are different. It is a usual mistake
to write instead of . An equal sign without
spaces is an assignment operation, whereas using spaces creates an
equality test.

Shell Something Out

[16]

Access the contents of a variable by prefixing the variable name with a dollar sign ().

var="value" #Assign "value" to var
echo $var

You may also use it like this:

echo ${var}

This output will be displayed:

value

Variable values within double quotes can be used with , , and other shell
commands:

#!/bin/bash
#Filename :variables.sh
fruit=apple
count=5
echo "We have $count ${fruit}(s)"

The output will be as follows:

We have 5 apple(s)

Because the shell uses a space to delimit words, we need to add curly braces to let the shell
know that the variable name is , not .

Environment variables are inherited from the parent processes. For example,
is an environment variable that defines which proxy server to use for an Internet
connection.

Usually, it is set as follows:

HTTP_PROXY=192.168.1.23:3128
export HTTP_PROXY

The command declares one or more variables that will be inherited by child tasks.
After variables are exported, any application executed from the current shell script, receives
this variable. There are many standard environment variables created and used by the shell,
and we can export our own variables.

Shell Something Out

[17]

For example, the variable lists the folders, which the shell will search for an
application. A typical variable will contain the following:

$ echo $PATH
/home/slynux/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/b
in:/usr/games

Directory paths are delimited by the character. Usually, is defined in
, or .

To add a new path to the environment, use the following command:

export PATH="$PATH:/home/user/bin"

Alternatively, use these commands:

$ PATH="$PATH:/home/user/bin"
$ export PATH
$ echo $PATH
/home/slynux/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/b
in:/usr/games:/home/user/bin

Here we have added to .

Some of the well-known environment variables are , , , , and .

When using single quotes, variables will not be expanded and will be
displayed as it is. This means, will display .

Whereas, will display the value of the variable if it
is defined, or nothing if it is not defined.

There's more...
The shell has many more built-in features. Here are a few more:

Finding the length of a string
Get the length of a variable's value with the following command:

length=${#var}

Shell Something Out

[18]

Consider this example:

$ var=12345678901234567890$
echo ${#var}
20

The parameter is the number of characters in the string.

Identifying the current shell
To identify the shell which is currently being used, use the variable.

echo $SHELL

Alternatively, use this command:

echo $0

Consider this example:

$ echo $SHELL
/bin/bash

Also, by executing the command, we will get the same output:

$ echo $0
/bin/bash

Checking for super user
The environment variable holds the User ID. Use this value to check whether the
current script is being run as a root user or regular user. Consider this example:

Note that is actually a command and must be separated from the rest of the string with
spaces. We can also write the preceding script as follows:

Shell Something Out

[19]

The value for the root user is .

Modifying the Bash prompt string
(username@hostname:~$)
When we open a terminal or run a shell, we see a prompt such as

. Different GNU/Linux distributions have different prompts and different colors.
The environment variable defines the primary prompt. The default prompt is defined
by a line in the file.

View the line used to set the variable:

To modify the prompt, enter the following command:

We can use colored text using the special escape sequences such as
(refer to the Displaying output in a terminal recipe of this chapter).

Certain special characters expand to system parameters. For example, expands to
username, expands to hostname, and expands to the current working directory.

Function to prepend to environment
variables
Environment variables are often used to store a list of paths of where to search for
executables, libraries, and so on. Examples are and , which will
typically resemble this:

Shell Something Out

[20]

This means that whenever the shell has to execute an application (binary or script), it will
first look in and then search .

When building and installing a program from source, we often need to add custom paths
for the new executable and libraries. For example, we might install in ,
with binaries in a folder and libraries in .

How to do it...
This example shows how to add new paths to the beginning of an environment variable.
The first example shows how to do this with what's been covered so far, the second
demonstrates creating a function to simplify modifying the variable. Functions are covered
later in this chapter.

The and variables should now look something like this:

We can make adding a new path easier by defining a prepend function in the file.

This can be used in the following way:

How it works...
The function first confirms that the directory specified by the second parameter
to the function exists. If it does, the expression sets the variable, with the name in the
first parameter equal to the second parameter string, followed by (the path separator),
and then the original value for the variable.

Shell Something Out

[21]

If the variable is empty when we try to prepend, there will be a trailing at the end. To fix
this, modify the function to this:

In this form of the function, we introduce a shell parameter expansion of
the form:

This expands to expression if parameter is set and is not null.
With this change, we take care to try to append and the old value if, and
only if, the old value existed when trying to prepend.

Math with the shell
The Bash shell performs basic arithmetic operations using the , , and

 commands. The and utilities are used to perform advanced operations.

How to do it...
A numeric value is assigned to a variable the same way strings are assigned. The1.
value will be treated as a number by the methods that access it:

 #!/bin/bash
 no1=4;
 no2=5;

The command is used to perform basic operations directly. Within a 2.
command, we use variable names without the prefix. Consider this example:

 let result=no1+no2
 echo $result

 Other uses of command are as follows:

Use this for increment:

 $ let no1++

For decrement, use this:

 $ let no1--

Shell Something Out

[22]

Use these for shorthands:

 let no+=6
 let no-=6

 These are equal to and , respectively.

Alternate methods are as follows:

 The operator is used in the same way as the command:

 result=$[no1 + no2]

 Using the $ prefix inside the [] operator is legal; consider this example:

 result=$[$no1 + 5]

 The operator can also be used. The prefix variable names
 with a within the operator:

 result=$((no1 + 50))

 The expression can be used for basic operations:

 result=`expr 3 + 4`
 result=$(expr $no1 + 5)

 The preceding methods do not support floating point numbers,
 and operate on integers only.

The application, the precision calculator, is an advanced utility for3.
mathematical operations. It has a wide range of options. We can perform floating
point arithmetic and use advanced functions:

 echo "4 * 0.56" | bc
 2.24
 no=54;
 result=`echo "$no * 1.5" | bc`
 echo $result
 81.0

The application accepts prefixes to control the operation. These are separated
from each other with a semicolon.

Shell Something Out

[23]

Decimal places scale with bc: In the following example, the
parameter sets the number of decimal places to . Hence, the output of

 will contain a number with two decimal places:

 echo "scale=2;22/7" | bc
 3.14

Base conversion with bc: We can convert from one base number
system to another one. This code converts numbers from decimal to
binary and binary to decimal:

 #!/bin/bash
 Desc: Number conversion
 no=100
 echo "obase=2;$no" | bc
 1100100
 no=1100100
 echo "obase=10;ibase=2;$no" | bc
 100

The following examples demonstrate calculating squares and square
roots:

 echo "sqrt(100)" | bc #Square root
 echo "10^10" | bc #Square

Playing with file descriptors and redirection
File descriptors are integers associated with the input and output streams. The best-known
file descriptors are , , and . The contents of one stream can be
redirected to another. This recipe shows examples on how to manipulate and redirect with
file descriptors.

Getting ready
Shell scripts frequently use standard input (), standard output (), and
standard error (). A script can redirect output to a file with the greater-than symbol.
Text generated by a command may be normal output or an error message. By default, both
normal output () and error messages () are sent to the display. The two
streams can be separated by specifying a specific descriptor for each stream.

Shell Something Out

[24]

File descriptors are integers associated with an opened file or data stream. File descriptors 0,
1, and 2 are reserved, as given here:

0:
1:
2:

How to do it...

Use the greater-than symbol to append text to a file:1.

 $ echo "This is a sample text 1" > temp.txt

This stores the echoed text in . If already exists, the single
greater-than sign will delete any previous contents.

Use double-greater-than to append text to a file:2.

 $ echo "This is sample text 2" >> temp.txt

Use to view the contents of the file:3.

 $ cat temp.txt
 This is sample text 1
 This is sample text 2

The next recipes demonstrate redirecting . A message is printed to the
stream when a command generates an error message. Consider the following example:

$ ls +
ls: cannot access +: No such file or directory

Here is an invalid argument and hence an error is returned.

Shell Something Out

[25]

Successful and unsuccessful commands
When a command exits because of an error, it returns a nonzero exit
status. The command returns zero when it terminates after successful
completion. The return status is available in the special variable (run
echo immediately after the command execution statement to print the
exit status).

The following command prints the text to the screen rather than to a file (and
because there is no output, will be empty):

$ ls + > out.txt
ls: cannot access +: No such file or directory

In the following command, we redirect to with (two greater-than):

$ ls + 2> out.txt # works

You can redirect to one file and to another file.

$ cmd 2>stderr.txt 1>stdout.txt

It is also possible to redirect and to a single file by converting to
 using this preferred method:

$ cmd 2>&1 allOutput.txt

This can be done even using an alternate approach:

$ cmd &> output.txt

If you don't want to see or save any error messages, you can redirect the stderr output to
, which removes it completely. For example, consider that we have three files

, , and . However, does not have the read-write-execute permission for the user.
To print the contents of all files starting with the letter , we use the command. Set up
the test files as follows:

$ echo A1 > a1
$ echo A2 > a2
$ echo A3 > a3
$ chmod 000 a1 #Deny all permissions

Shell Something Out

[26]

Displaying the contents of the files using wildcards (), will generate an error message for
the file because that file does not have the proper read permission:

$ cat a*
cat: a1: Permission denied
A2
A3

Here, belongs to the data. We can redirect the
 data into a file, while sending to the terminal.

$ cat a* 2> err.txt #stderr is redirected to err.txt
A2
A3

$ cat err.txt
cat: a1: Permission denied

Some commands generate output that we want to process and also save for future reference
or other processing. The stream is a single stream that we can redirect to a file or
pipe to another program. You might think there is no way for us to have our cake and eat it
too.

However, there is a way to redirect data to a file, while providing a copy of redirected data
as to the next command in a pipe. The command reads from and
redirects the input data to and one or more files.

command | tee FILE1 FILE2 | otherCommand

In the following code, the data is received by the command. It writes a copy of
 to the file and sends another copy as for the next command. The
 command puts a line number for each line received from and writes it into
:

$ cat a* | tee out.txt | cat -n
cat: a1: Permission denied
 1 A2
 2 A3

Shell Something Out

[27]

Use to examine the contents of :

$ cat out.txt
A2
A3

Observe that does not appear, because it
was sent to . The command reads only from .

By default, the command overwrites the file. Including the option will force it to
append the new data.

$ cat a* | tee -a out.txt | cat -n

Commands with arguments follow the format: or simply
.

To send two copies of the input to , use for the filename argument:

$ cmd1 | cmd2 | cmd -

Consider this example:

$ echo who is this | tee -
who is this
who is this

Alternately, we can use as the output filename to use .
Similarly, use for standard error and for standard output.
These are special device files that correspond to , , and .

How it works...
The redirection operators (and) send output to a file instead of the terminal. The and

 operators behave slightly differently. Both redirect output to a file, but the single greater-
than symbol () empties the file and then writes to it, whereas the double greater-than
symbol () adds the output to the end of the existing file.

By default, the redirection operates on standard output. To explicitly take a specific file
descriptor, you must prefix the descriptor number to the operator.

Shell Something Out

[28]

The operator is equivalent to and similarly it applies for (equivalent to).

When working with errors, the output is dumped to the file. The
 file is a special device file where any data received by the file is discarded. The

null device is often known as a black hole, as all the data that goes into it is lost forever.

There's more...
Commands that read input from can receive data in multiple ways. It is possible to
specify file descriptors of our own, using and pipes. Consider this example:

$ cat file | cmd
$ cmd1 | cmd2

Redirection from a file to a command
We can read data from a file as with the less-than symbol ():

$ cmd < file

Redirecting from a text block enclosed within a script
Text can be redirected from a script into a file. To add a warning to the top of an
automatically generated file, use the following code:

#!/bin/bash
cat<<EOF>log.txt
This is a generated file. Do not edit. Changes will be overwritten.
EOF

The lines that appear between and the next line will appear as
the data. The contents of are shown here:

$ cat log.txt
This is a generated file. Do not edit. Changes will be overwritten.

Custom file descriptors
A file descriptor is an abstract indicator for accessing a file. Each file access is associated
with a special number called a file descriptor. 0, 1, and 2 are reserved descriptor numbers
for , , and .

Shell Something Out

[29]

The command can create new file descriptors. If you are familiar with file access in
other programming languages, you may be familiar with the modes for opening files. These
three modes are commonly used:

Read mode
Write with append mode
Write with truncate mode

The operator reads from the file to . The operator writes to a file with truncation
(data is written to the target file after truncating the contents). The operator writes to a
file by appending (data is appended to the existing file contents and the contents of the
target file will not be lost). File descriptors are created with one of the three modes.

Create a file descriptor for reading a file:

$ exec 3<input.txt # open for reading with descriptor number 3

We can use it in the following way:

$ echo this is a test line > input.txt
$ exec 3<input.txt

Now you can use file descriptor with commands. For example, we will use :

$ cat<&3
this is a test line

If a second read is required, we cannot reuse the file descriptor . We must create a new file
descriptor (perhaps 4) with to read from another file or re-read from the first file.

Create a file descriptor for writing (truncate mode):

$ exec 4>output.txt # open for writing

Consider this example:

$ exec 4>output.txt
$ echo newline >&4
$ cat output.txt
newline

Now create a file descriptor for writing (append mode):

$ exec 5>>input.txt

Shell Something Out

[30]

Consider the following example:

$ exec 5>>input.txt
$ echo appended line >&5
$ cat input.txt
newline
appended line

Arrays and associative arrays
Arrays allow a script to store a collection of data as separate entities using indices. Bash
supports both regular arrays that use integers as the array index, and associative arrays,
which use a string as the array index. Regular arrays should be used when the data is
organized numerically, for example, a set of successive iterations. Associative arrays can be
used when the data is organized by a string, for example, host names. In this recipe, we will
see how to use both of these.

Getting ready
To use associate arrays, you must have Bash Version 4 or higher.

How to do it...

Arrays can be defined using different techniques:

Define an array using a list of values in a single line:1.

 array_var=(test1 test2 test3 test4)
 #Values will be stored in consecutive locations starting
 from index 0.

Alternately, define an array as a set of index-value pairs:

 array_var[0]="test1"
 array_var[1]="test2"
 array_var[2]="test3"
 array_var[3]="test4"
 array_var[4]="test5"
 array_var[5]="test6"

Shell Something Out

[31]

Print the contents of an array at a given index using the following commands:2.

 echo ${array_var[0]}
 test1
 index=5
 echo ${array_var[$index]}
 test6

Print all of the values in an array as a list, using the following commands:3.

 $ echo ${array_var[*]}
 test1 test2 test3 test4 test5 test6

 Alternately, you can use the following command:

 $ echo ${array_var[@]}
 test1 test2 test3 test4 test5 test6

Print the length of an array (the number of elements in an array):4.

 $ echo ${#array_var[*]}6

There's more...
Associative arrays have been introduced to Bash from Version 4.0. When the indices are a
string (site names, user names, nonsequential numbers, and so on), an associative array is
easier to work with than a numerically indexed array.

Defining associative arrays
An associative array can use any text data as an array index. A declaration statement is
required to define a variable name as an associative array:

$ declare -A ass_array

After the declaration, elements are added to the associative array using either of these two
methods:

Inline index-value list method:

 $ ass_array=([index1]=val1 [index2]=val2)

Shell Something Out

[32]

Separate index-value assignments:

 $ ass_array[index1]=val1
 $ ass_array'index2]=val2

For example, consider the assignment of prices for fruits, using an associative array:

$ declare -A fruits_value
$ fruits_value=([apple]='100 dollars' [orange]='150 dollars')

Display the contents of an array:

$ echo "Apple costs ${fruits_value[apple]}"
Apple costs 100 dollars

Listing of array indexes
Arrays have indexes for indexing each of the elements. Ordinary and associative arrays
differ in terms of index type.

Obtain the list of indexes in an array.

$ echo ${!array_var[*]}

Alternatively, we can also use the following command:

$ echo ${!array_var[@]}

In the previous array example, consider the following command:

$ echo ${!fruits_value[*]}
orange apple

This will work for ordinary arrays too.

Visiting aliases
An alias is a shortcut to replace typing a long-command sequence. In this recipe, we will see
how to create aliases using the command.

Shell Something Out

[33]

How to do it...
These are the operations you can perform on aliases:

Create an alias:1.

 $ alias new_command='command sequence'

This example creates a shortcut for the command:

 $ alias install='sudo apt-get install'

Once the alias is defined, we can type instead of
.

The command is temporary: aliases exist until we close the current2.
terminal. To make an alias available to all shells, add this statement to the

 file. Commands in are always executed when a new
interactive shell process is spawned:

 $ echo 'alias cmd="command seq"' >> ~/.bashrc

To remove an alias, remove its entry from (if any) or use the 3.
command. Alternatively, should unset the alias named

.
This example creates an alias for that will delete the original and keep a copy4.
in a backup directory:

 alias rm='cp $@ ~/backup && rm $@'

When you create an alias, if the item being aliased already exists, it will be
replaced by this newly aliased command for that user.

There's more...
When running as a privileged user, aliases can be a security breach. To avoid compromising
your system, you should escape commands.

Shell Something Out

[34]

Escaping aliases
Given how easy it is to create an alias to masquerade as a native command, you should not
run aliased commands as a privileged user. We can ignore any aliases currently defined, by
escaping the command we want to run. Consider this example:

$ \command

The character escapes the command, running it without any aliased changes. When
running privileged commands on an untrusted environment, it is always a good security
practice to ignore aliases by prefixing the command with . The attacker might have aliased
the privileged command with his/her own custom command, to steal critical information
that is provided by the user to the command.

Listing aliases
The command lists the currently defined aliases:

$ aliasalias lc='ls -color=auto'
alias ll='ls -l'
alias vi='vim'

Grabbing information about the terminal
While writing command-line shell scripts, we often need to manipulate information about
the current terminal, such as the number of columns, rows, cursor positions, masked
password fields, and so on. This recipe helps in collecting and manipulating terminal
settings.

Getting ready
The and commands are utilities used for terminal manipulations.

Shell Something Out

[35]

How to do it...
Here are some capabilities of the command:

Return the number of columns and rows in a terminal:

 tput cols
 tput lines

Return the current terminal name:

 tput longname

Move the cursor to a 100,100 position:

 tput cup 100 100

Set the terminal background color:

 tput setb n

The value of can be a value in the range of 0 to 7

Set the terminal foreground color:

 tput setf n

The value of can be a value in the range of 0 to 7

Some commands including the common may reset the
foreground and background color.

Make text bold, using this command:

 tput bold

Perform start and end underlining:

 tput smul
 tput rmul

To delete from the cursor to the end of the line, use the following command:

 tput ed

Shell Something Out

[36]

A script should not display the characters while entering a password. The
following example demonstrates disabling character echo with the
command:

 #!/bin/sh
 #Filename: password.sh
 echo -e "Enter password: "
 # disable echo before reading password
 stty -echo
 read password
 # re-enable echo
 stty echo
 echo
 echo Password read.

The option in the preceding command disables the output to the
terminal, whereas enables output.

Getting and setting dates and delays
A time delay is used to wait a set amount of time(such as 1 second) during the program
execution, or to monitor a task every few seconds (or every few months). Working with
times and dates requires an understanding of how time and date are represented and
manipulated. This recipe will show you how to work with dates and time delays.

Getting ready
Dates can be printed in a variety of formats. Internally, dates are stored as an integer
number of seconds since 00:00:00 1970-01-01. This is called epoch or Unix time.

The system's date can be set from the command line. The next recipes demonstrate how to
read and set dates.

Shell Something Out

[37]

How to do it...
It is possible to read the dates in different formats and also to set the date.

Read the date:1.

 $ date
 Thu May 20 23:09:04 IST 2010

Print the epoch time:2.

 $ date +%s
 1290047248

The date command can convert many formatted date strings into the epoch time.
This lets you use dates in multiple date formats as input. Usually, you don't need
to bother about the date string format you use if you are collecting the date from a
system log or any standard application generated output.
Convert the date string into epoch:

 $ date --date "Wed mar 15 08:09:16 EDT 2017" +%s
 1489579718

The option defines a date string as input. We can use any date formatting
options to print the output. The date command can be used to find the day of the
week given a date string:

 $ date --date "Jan 20 2001" +%A
 Saturday

The date format strings are listed in the table mentioned in the How it works...
section

Use a combination of format strings prefixed with as an argument for the 3.
command, to print the date in the format of your choice. Consider this example:

 $ date "+%d %B %Y"
 20 May 2010

Shell Something Out

[38]

Set the date and time: 4.

 # date -s "Formatted date string"
 # date -s "21 June 2009 11:01:22"

On a system connected to a network, you'll want to use to set the
date and time:

The rule for optimizing your code is to measure first. The date command can be5.
used to time how long it takes a set of commands to execute:

 #!/bin/bash
 #Filename: time_take.sh
 start=$(date +%s)
 commands;
 statements;
 end=$(date +%s)
 difference=$((end - start))
 echo Time taken to execute commands is $difference seconds.

The date command's minimum resolution is one second. A better method
for timing commands is the command:

.

How it works...
The Unix epoch is defined as the number of seconds that have elapsed since midnight
proleptic Coordinated Universal Time (UTC) of January 1, 1970, not counting leap seconds.
Epoch time is useful when you need to calculate the difference between two dates or times.
Convert the two date strings to epoch and take the difference between the epoch values.
This recipe calculates the number of seconds between two dates:

Shell Something Out

[39]

Displaying a time in seconds since midnight of January 1, 1970, is not easily read by
humans. The date command supports output in human readable formats.

The following table lists the format options that the date command supports.

Date component Format

Weekday (for example, Sat)
 (for example, Saturday)

Month (for example, Nov)
 (for example, November)

Day (for example, 31)

Date in format (mm/dd/yy) (for example, 10/18/10)

Year (for example, 10)
 (for example, 2010)

Hour or (For example, 08)

Minute (for example, 33)

Second (for example, 10)

Nano second (for example, 695208515)

Epoch Unix time in seconds (for example, 1290049486)

There's more...
Producing time intervals is essential when writing monitoring scripts that execute in a loop.
The following examples show how to generate time delays.

Shell Something Out

[40]

Producing delays in a script
The sleep command will delay a script's execution period of time given in . The
following script counts from 0 to 40 seconds using and :

In the preceding example, a variable steps through the list of numbers generated by the
command. We use to store the cursor position. On every loop execution, we write
the new count in the terminal by restoring the cursor position using , and then
clearing to the end of the line with . After the line is cleared, the script echoes the
new value. The sleep command causes the script to delay for 1 second between each
iteration of the loop.

Debugging the script
Debugging frequently takes longer than writing code. A feature every programming
language should implement is to produce trace information when something unexpected
happens. Debugging information can be read to understand what caused the program to
behave in an unexpected fashion. Bash provides debugging options every developer should
know. This recipe shows how to use these options.

Shell Something Out

[41]

How to do it...
We can either use Bash's inbuilt debugging tools or write our scripts in such a manner that
they become easy to debug; here's how:

Add the option to enable debug tracing of a shell script.1.

 $ bash -x script.sh

Running the script with the flag will print each source line with the current
status.

You can also use .

Debug only portions of the script using and . Consider2.
this example:

In the preceding script, the debug information for will only be printed,
as debugging is restricted to that section using and .
The script uses the construct to iterate from a start to end value,
instead of the command used in the previous example. This construct is
slightly faster than invoking the command.

Shell Something Out

[42]

The aforementioned debugging methods are provided by Bash built-ins. They3.
produce debugging information in a fixed format. In many cases, we need
debugging information in our own format. We can define a _DEBUG
environment variable to enable and disable debugging and generate messages in
our own debugging style.

Look at the following example code:

Run the preceding script with debugging set to "on":

 $ _DEBUG=on ./script.sh

We prefix before every statement where debug information is to be
printed. If is not passed to the script, debug information will not be
printed. In Bash, the command tells the shell to do nothing.

How it works...
The flag outputs every line of script as it is executed. However, we may require only
some portions of the source lines to be observed. Bash uses a to enable and
disable debug printing within the script:

: This displays arguments and commands upon their execution
: This disables debugging
: This displays input when they are read
: This disables printing input

Shell Something Out

[43]

There's more...
We can also use other convenient ways to debug scripts. We can make use of shebang in a
trickier way to debug scripts.

Shebang hack
The shebang can be changed from to to enable
debugging without any additional flags (flags themselves).

It can be hard to track execution flow in the default output when each line is preceded by .
Set the PS4 environment variable to to display actual line numbers:

PS4='$LINENO: '

The debugging output may be long. When using or set , the debugging output is sent
to . It can be redirected to a file with the following command:

sh -x testScript.sh 2> debugout.txt

Bash 4.0 and later support using a numbered stream for debugging output:

exec 6> /tmp/debugout.txt
BASH_XTRACEFD=6

Functions and arguments
Functions and aliases appear similar at a casual glance, but behave slightly differently. The
big difference is that function arguments can be used anywhere within the body of the
function, while an alias simply appends arguments to the end of the command.

Shell Something Out

[44]

How to do it...
A function is defined with the function command, a function name, open/close parentheses,
and a function body enclosed in curly brackets:

A function is defined as follows:1.

Alternatively, it can be defined as:

It can even be defined as follows (for simple functions):

A function is invoked using its name:2.

 $ fname ; # executes function

Arguments passed to functions are accessed positionally, is the first argument,3.
 is the second, and so on:

 fname arg1 arg2 ; # passing args

The following is the definition of the function . In the function, we
have included various ways of accessing the function arguments.

Shell Something Out

[45]

Arguments passed to scripts can be accessed as (the name of the script):

 is the first argument
 is the second argument
 is the nth argument

 expands as and so on
 expands as , where is the first character of IFS
 is used more often than , since the former provides all

arguments as a single string
Compare alias to function
Here's an alias to display a subset of files by piping output to . The
argument is attached to the end of the command, so is expanded to

:

 $> alias lsg='ls | grep'
 $> lsg txt
 file1.txt
 file2.txt
 file3.txt

If we wanted to expand that to get the IP address for a device in
, we might try the following:

 $> alias wontWork='/sbin/ifconfig | grep'
 $> wontWork eth0
 eth0 Link encap:Ethernet HWaddr 00:11::22::33::44:55

The command found the string, not the IP address. If we use a
function instead of an alias, we can pass the argument to the , instead
of appending it to the :

 $> function getIP() { /sbin/ifconfig $1 | grep 'inet '; }
 $> getIP eth0
 inet addr:192.168.1.2 Bcast:192.168.255.255 Mask:255.255.0.0

There's more...
Let's explore more tips on Bash functions.

Shell Something Out

[46]

The recursive function
Functions in Bash also support recursion (the function can call itself). For example,

.

Fork bomb

A recursive function is a function that calls itself: recursive functions must
have an exit condition, or they will spawn until the system exhausts a
resource and crashes.

This function: spawns processes forever and ends up in a
denial-of-service attack.

The character is postfixed with the function call to bring the subprocess
into the background. This dangerous code forks processes forever and is
called a fork bomb.

You may find it difficult to interpret the preceding code. Refer to the
Wikipedia page for more
details and interpretation of the fork bomb.
Prevent this attack by restricting the maximum number of processes that
can be spawned by defining the value in

.

This line will limit all users to 100 processes:

Exporting functions
Functions can be exported, just like environment variables, using the command.
Exporting extends the scope of the function to subprocesses:

export -f fname
$> function getIP() { /sbin/ifconfig $1 | grep 'inet '; }
$> echo "getIP eth0" >test.sh
$> sh test.sh
 sh: getIP: No such file or directory
$> export -f getIP
$> sh test.sh
 inet addr: 192.168.1.2 Bcast: 192.168.255.255 Mask:255.255.0.0

Shell Something Out

[47]

Reading the return value (status) of a command
The return value of a command is stored in the variable.

cmd;
echo $?;

The return value is called exit status. This value can be used to determine whether a
command completed successfully or unsuccessfully. If the command exits successfully, the
exit status will be zero, otherwise it will be a nonzero value.

The following script reports the success/failure status of a command:

#!/bin/bash
#Filename: success_test.sh
Evaluate the arguments on the command line - ie success_test.sh 'ls |
grep txt'
eval $@
if [$? -eq 0];
then
 echo "$CMD executed successfully"
else
 echo "$CMD terminated unsuccessfully"
fi

Passing arguments to commands
Most applications accept arguments in different formats. Suppose and are the options
available, and is another option that takes a number. Also, the command requires a
filename as argument. This application can be executed in multiple ways:

Within a script, the command-line arguments can be accessed by their position in the
command line. The first argument will be , the second , and so on.
This script will display the first three command line arguments:

Shell Something Out

[48]

It's more common to iterate through the command arguments one at a time. The
command shifts eachh argument one space to the left, to let a script access each argument as

. The following code displays all the command-line values:

$ cat showArgs.sh
for i in `seq 1 $#`
do
echo $i is $1
shift
done
$ sh showArgs.sh a b c
1 is a
2 is b
3 is c

Sending output from one command to
another
One of the best features of the Unix shells is the ease of combining many commands to
produce a report. The output of one command can appear as the input to another, which
passes its output to another command, and so on. The output of this sequence can be
assigned to a variable. This recipe illustrates how to combine multiple commands and how
the output can be read.

Getting ready
The input is usually fed into a command through or arguments. The output is sent to

or . When we combine multiple commands, we usually supply input via
 and generate output to .

In this context, the commands are called filters. We connect each filter using pipes,
sympolized by the piping operator (), like this:

$ cmd1 | cmd2 | cmd3

Here, we combine three commands. The output of goes to , the output of
goes to , and the final output (which comes out of) will be displayed on the
monitor, or directed to a file.

Shell Something Out

[49]

How to do it...
Pipes can be used with the subshell method for combining outputs of multiple commands.

Let's start with combining two commands:1.

 $ ls | cat -n > out.txt

The output of (the listing of the current directory) is passed to , which
in turn prepends line numbers to the input received through . The output is
redirected to .

Assign the output of a sequence of commands to a variable:2.

 cmd_output=$(COMMANDS)

This is called the subshell method. Consider this example:

 cmd_output=$(ls | cat -n)
 echo $cmd_output

Another method, called back quotes (some people also refer to it as back tick) can
also be used to store the command output:

 cmd_output=`COMMANDS`

Consider this example:

 cmd_output=`ls | cat -n`
 echo $cmd_output

Back quote is different from the single-quote character. It is the character on the ~ button on
the keyboard.

There's more...
There are multiple ways of grouping commands.

Shell Something Out

[50]

Spawning a separate process with subshell
Subshells are separate processes. A subshell is defined using the operators:

The command prints the path of the working directory
The command changes the current directory to the given directory path:

When commands are executed in a subshell, none of the changes occur in the current shell;
changes are restricted to the subshell. For example, when the current directory in a subshell
is changed using the command, the directory change is not reflected in the main shell
environment.

Subshell quoting to preserve spacing and the newline
character
Suppose we are assigning the output of a command to a variable using a subshell or the
back quotes method, we must use double quotes to preserve the spacing and the newline
character (). Consider this example:

$ cat text.txt
1
2
3

$ out=$(cat text.txt)
$ echo $out
1 2 3 # Lost \n spacing in 1,2,3

$ out="$(cat text.txt)"
$ echo $out
1
2
3

Shell Something Out

[51]

Reading n characters without pressing the
return key
The bash command inputs text from the keyboard or standard input. We can use

 to acquire input from the user interactively, but is capable of more. Most input
libraries in any programming language read the input from the keyboard and terminate the
string when return is pressed. There are certain situations when return cannot be pressed
and string termination is done based on a number of characters received (perhaps a single
character). For example, in an interactive game, a ball is moved upward when + is pressed.
Pressing + and then pressing return to acknowledge the + press is not efficient.

This recipe uses the command to accomplish this task without having to press return.

How to do it...
You can use various options of the command to obtain different results, as shown in
the following steps:

The following statement will read n characters from input into the1.
 variable:

 read -n number_of_chars variable_name

Consider this example:

 $ read -n 2 var
 $ echo $var

Read a password in the non-echoed mode:2.

 read -s var

Display a message with using the following command:3.

 read -p "Enter input:" var

Shell Something Out

[52]

Read the input after a timeout:4.

 read -t timeout var

Consider the following example:

 $ read -t 2 var
 # Read the string that is typed within 2 seconds into
 variable var.

Use a delimiter character to end the input line:5.

 read -d delim_char var

 Consider this example:

 $ read -d ":" var
 hello:#var is set to hello

Running a command until it succeeds
Sometimes a command can only succeed when certain conditions are met. For example, you
can only download a file after the file is created. In such cases, one might want to run a
command repeatedly until it succeeds.

How to do it...
Define a function in the following way:

Alternatively, add this to your shell's file for ease of use:

Shell Something Out

[53]

How it works...
This repeat function has an infinite loop, which attempts to run the command passed
as a parameter (accessed by) to the function. It returns if the command was successful,
thereby exiting the loop.

There's more...
We saw a basic way to run commands until they succeed. Let's make things more efficient.

A faster approach
On most modern systems, true is implemented as a binary in . This means that each
time the aforementioned loop runs, the shell has to spawn a process. To avoid this,
we can use the shell built-in command, which always returns an exit code 0:

Though not as readable, this is faster than the first approach.

Adding a delay
Let's say you are using to download a file from the Internet which is not
available right now, but will be after some time. An example would be as follows:

This script will send too much traffic to the web server at , which causes
problems for the server (and maybe for you, if the server blacklists your IP as an attacker).
To solve this, we modify the function and add a delay, as follows:

This will cause the command to run every 30 seconds.

Shell Something Out

[54]

Field separators and iterators
The internal field separator (IFS) is an important concept in shell scripting. It is useful for
manipulating text data.

An IFS is a delimiter for a special purpose. It is an environment variable that stores
delimiting characters. It is the default delimiter string used by a running shell environment.

Consider the case where we need to iterate through words in a string or comma separated
values (CSV). In the first case, we will use and in the second, .

Getting ready
Consider the case of CSV data:

This generates the following output:

Item: name
Item: gender
Item: rollno
Item: location

The default value of IFS is a white-space (newline, tab, or a space character).

When IFS is set as the shell interprets the comma as a delimiter character, therefore, the
 variable takes substrings separated by a comma as its value during the iteration.

If IFS is not set as then it will print the entire data as a single string.

Shell Something Out

[55]

How to do it...
Let's go through another example usage of IFS to parse the file. In the

 file, every line contains items delimited by . Each line in the file corresponds
to an attribute related to a user.

Consider the input: . The last entry on each line
specifies the default shell for the user.

Print users and their default shells using the IFS hack:

The output will be as follows:

root's shell is /bin/bash

Loops are very useful in iterating through a sequence of values. Bash provides many types
of loops.

List-oriented loop:

A list can be a string or a sequence of values.

Shell Something Out

[56]

We can generate sequences with the command:

echo {1..50} ;# Generate a list of numbers from 1 to 50.
echo {a..z} {A..Z} ;# List of lower and upper case letters.

We can combine these to concatenate data.
In the following code, in each iteration, the variable i will hold a character in the a
to z range:

Iterate through a range of numbers:

Loop until a condition is met:

The while loop continues while a condition is true, the until loop runs until a
condition is true:

For an infinite loop, use as the condition:

Use a loop:

A special loop called is available with Bash. This executes the loop until the
given condition becomes true. Consider this example:

Shell Something Out

[57]

Comparisons and tests
Flow control in a program is handled by comparison and test statements. Bash comes with
several options to perform tests. We can use , , and logical operators to perform
tests and comparison operators to compare data items. There is also a command called

, which performs tests.

How to do it...
Here are some methods used for comparisons and performing tests:

Use an condition:

Use and :

Nesting is possible with if and else. The if conditions can be lengthy; to
make them shorter we can use logical operators:

 # action executes if the condition is true

 # action executes if the condition is false

 is the logical AND operation and is the logical OR operation. This is
a very helpful trick while writing Bash scripts.
Performing mathematical comparisons: usually, conditions are enclosed in
square brackets . Note that there is a space between or and
operands. It will show an error if no space is provided.

[$var -eq 0] or [$var -eq 0]

Shell Something Out

[58]

Perform mathematical tests on variables and values, like this:

[$var -eq 0] # It returns true when $var equal to 0.
[$var -ne 0] # It returns true when $var is not equal to 0

Other important operators include the following:

: Greater than
: Less than
: Greater than or equal to
: Less than or equal to

The operator is a logical AND and the operator is the logical OR. Multiple test
conditions can be combined:

[$var1 -ne 0 -a $var2 -gt 2] # using and -a
[$var1 -ne 0 -o var2 -gt 2] # OR -o

Filesystem-related tests are as follows:

Test different filesystem-related attributes using different condition flags

: This returns true if the given variable holds a regular file
path or filename

: This returns true if the given variable holds a file path or filename
that is executable

: This returns true if the given variable holds a directory path or
directory name

: This returns true if the given variable holds an existing file
: This returns true if the given variable holds the path of a character

device file
: This returns true if the given variable holds the path of a block

device file
: This returns true if the given variable holds the path of a file that

is writable
: This returns true if the given variable holds the path of a file that

is readable
: This returns true if the given variable holds the path of

a symlink

Shell Something Out

[59]

Consider this example:

String comparisons: When using string comparison, it is best to use double square brackets,
since the use of single brackets can sometimes lead to errors

Note that the double square bracket is a Bash extension. If the script will
be run using ash or dash (for better performance), you cannot use the
double square.

Test if two strings are identical:

: This returns true when equals , that is, the
text contents of and are the same

: It is an alternative method for string
equality check

Test if two strings are not identical:

: This returns true when and mismatch

Find alphabetically larger string:
Strings are compared alphabetically by comparing the ASCII value of the
characters. For example, "A" is 0x41 and "a" is 0x61. Thus "A" is less than
"a", and "AAa" is less than "Aaa".

: This returns true when is alphabetically greater
than

: This returns true when is alphabetically lesser
than

A space is required after and before ; if it is not provided, it is not a
comparison, but it becomes an assignment statement.

Shell Something Out

[60]

Test for an empty string:

: This returns true if holds an empty string
: This returns true if holds a nonempty string

It is easier to combine multiple conditions using logical operators such as and , as in
the following code:

Consider this example:

This will be the output:

str1 is nonempty and str2 is empty string.

The test command can be used for performing condition checks. This reduces the number of
braces used and can make your code more readable. The same test conditions enclosed
within can be used with the test command.

Note that test is an external program which must be forked, while [is an
internal function in Bash and thus more efficient. The test program is
compatible with Bourne shell, ash, dash, and others.

Consider this example:

Shell Something Out

[61]

Customizing bash with configuration files
Most commands you type on the command line can be placed in a special file, to be
evaluated when you log in or start a new bash session. It's common to customize your shell
by putting function definitions, aliases, and environment variable settings in one of these
files.

Common commands to put into a configuration file include the following:

Define my colors for ls
LS_COLORS='no=00:di=01;46:ln=00;36:pi=40;33:so=00;35:bd=40;33;01'
export LS_COLORS
My primary prompt
PS1='Hello $USER'; export PS1
Applications I install outside the normal distro paths
PATH=$PATH:/opt/MySpecialApplication/bin; export PATH
Shorthand for commands I use frequently
function lc () {/bin/ls -C $* ; }

What customization file should I use?

Linux and Unix have several files that might hold customization scripts. These
configuration files are divided into three camps—those sourced on login, those evaluated
when an interactive shell is invoked, and files evaluated whenever a shell is invoked to
process a script file.

How to do it...
These files are evaluated when a user logs into a shell:

/etc/profile, $HOME/.profile, $HOME/.bash_login, $HOME/.bash_profile /

Note that , and
may not be sourced if you log in via a graphical login manager. That's
because the graphical window manager doesn't start a shell. When you
open a terminal window, a shell is created, but it's not a login shell.

If a or file is present, a file will not be read.

Shell Something Out

[62]

These files will be read by an interactive shell such as a X11 terminal session or using to
run a single command like: .

/etc/bash.bashrc $HOME/.bashrc

Run a shell script like this:

$> cat myscript.sh
#!/bin/bash
echo "Running"

None of these files will be sourced unless you have defined the environment
variable:

$> export BASH_ENV=~/.bashrc
$> ./myscript.sh

Use to run a single command, as with the following:

ssh 192.168.1.100 ls /tmp

This will start a bash shell which will evaluate and ,
but not or .

Invoke a ssh login session, like this:

ssh 192.168.1.100

This creates a new login bash shell, which will evaluate the following:

/etc/profile
/etc/bash.bashrc
$HOME/.profile or .bashrc_profile

DANGER: Other shells, such as the traditional Bourne shell, ash, dash,
and ksh, also read this file. Linear arrays (lists) and associative arrays, are
not supported in all shells. Avoid using these in or

.

Use these files to define non-exported items such as aliases desired by all users. Consider
this example:

alias l "ls -l"
/etc/bash.bashrc /etc/bashrc

Shell Something Out

[63]

Use these files to hold personal settings. They are useful for setting paths that must be
inherited by other bash instances. They might include lines like these:

If or are present, will not be
read. A file may be read by other shells.

Use these files to hold your personal values that need to be defined whenever a new shell is
created. Define aliases and functions here if you want them available in an X11 terminal
session:

$HOME/.bashrc, /etc/bash.bashrc

Exported variables and functions are propagated to subordinate shells, but
aliases are not. You must define to be the or

, where aliases are defined in order to use them in a shell script.

This file is evaluated when a user logs out of a session:

$HOME/.bash_logout

For example, if the user logs in remotely they should clear the screen when they log out.

$> cat ~/.bash_logout
Clear the screen after a remote login/logout.
clear

22
Have a Good Command

In this chapter, we will cover the following recipes:

Concatenating with
Recording and playing back terminal sessions
Finding files and file listing
Playing with
Translating with
Checksum and verification
Cryptographic tools and hashes
Sorting unique and duplicate lines
Temporary file naming and random numbers
Splitting files and data
Slicing filenames based on extensions
Renaming and moving files in bulk
Spell–checking and dictionary manipulation
Automating interactive input
Making commands quicker by running parallel processes
Examining a directory, files and subdirectories in it

Have a Good Command

[65]

Introduction
Unix-like systems have the best command-line tools. Each command performs a simple
function to make our work easier. These simple functions can be combined with other
commands to solve complex problems. Combining simple commands is an art; you will get
better at it as you practice and gain experience. This chapter introduces some of the most
interesting and useful commands, including , , , and .

Concatenating with cat
The command displays or concatenates the contents of a file, but is capable of
more. For example, can combine standard input data with data from a file. One way of
combining the data with file data is to redirect to a file and then append two
files. The command can do this in a single invocation. The next recipes show basic and
advanced usages of .

How to do it...
The command is a simple and frequently used command and it stands for
conCATenate.

The general syntax of for reading contents is as follows:

$ cat file1 file2 file3 ...

This command concatenates data from the files specified as command-line arguments and
sends that data to .

To print contents of a single file, execute the following command:

$ cat file.txt
 This is a line inside file.txt
 This is the second line inside file.txt

Have a Good Command

[66]

To print contents of more than one file, execute the following command:

$ cat one.txt two.txt
 This line is from one.txt
 This line is from two.txt

The command not only reads from files and concatenates the data but also reads from
the standard input.

The pipe operator redirects data to the cat command's standard input as follows:

OUTPUT_FROM_SOME COMMANDS | cat

The command can also concatenate content from files with input from a terminal.

Combine and data from another file, like this:

$ echo 'Text through stdin' | cat - file.txt

In this example, acts as the filename for the text.

There's more...
The command has many other options for viewing files. You can view the complete list
by typing in a terminal session.

Getting rid of extra blank lines
Some text files contain two or more blank lines together. If you need to remove the extra
blank lines, use the following syntax:

$ cat -s file

Consider the following example:

$ cat multi_blanks.txt
line 1

line 2

line 3

Have a Good Command

[67]

line 4

$ cat -s multi_blanks.txt # Squeeze adjacent blank lines
line 1
line 2
line 3

line 4

We can remove all blank lines with , as discussed in the Translating with tr recipe in this
chapter.

Displaying tabs as ^I
It is hard to distinguish tabs and repeated space characters. Languages such as Python may
treat tabs and spaces differently. Mixtures of tabs and spaces may look similar in an editor,
but appear as different indentations to the interpreter. It is difficult to identify the difference
between tabs and spaces when viewing a file in a text editor. can also identify tabs. This
helps you to debug indentation errors.

The command's option displays tab characters as :

Line numbers
The cat command's flag prefixes a line number to each line. Consider this example:

$ cat lines.txt
line
line
line

$ cat -n lines.txt
 1 line

Have a Good Command

[68]

 2 line
 3 line

The command never changes a file. It sends output to after
modifying the input according to the options. Do not attempt to use
redirection to overwrite your input file. The shell creates the new output
file before it opens the input file. The command will not let you use
the same file as input and redirected output. Trying to trick with a
pipe and redirecting the output will empty the input file.

$> echo "This will vanish" > myfile
$> cat -n myfile >myfile
cat: myfile: input file is output file
$> cat myfile | cat -n >myfile
$> ls -l myfile
-rw-rw-rw-. 1 user user 0 Aug 24 00:14 myfile ;# myfile has 0
bytes

The option generates line numbers for all lines, including blank lines. If
you want to skip numbering blank lines, use the option.

Recording and playing back terminal
sessions
Recording a screen session as a video is useful, but a video is an overkill for debugging
terminal sessions or providing a shell tutorial.

The shell provides another option. The command records your keystrokes and the
timing of keystrokes as you type, and saves your input and the resulting output in a pair of
files. The command will replay the session.

Have a Good Command

[69]

Getting ready
The and commands are available in most GNU/Linux distributions.
You can create tutorials of command-line hacks and tricks by recording the terminal
sessions. You can also share the recorded files for others to playback and see how to
perform a particular task with the command line. You can even invoke other interpreters
and record the keystrokes sent to that interpreter. You cannot record vi, emacs, or other
applications that map characters to particular locations on the screen.

How to do it...
Start recording the terminal session with the following command:

$ script -t 2> timing.log -a output.session

A full example looks like this:

$ script -t 2> timing.log -a output.session

This is a demonstration of tclsh
$ tclsh
% puts [expr 2 + 2]
4
% exit
$ exit

Note that this recipe will not work with shells that do not support
redirecting only to a file, such as the shell.

The command accepts a filename as an argument. This file will hold the keystrokes
and the command results. When you use the option, the script command sends timing
data to . The timing data can be redirected to a file (), which records the
timing info for each keystroke and output. The previous example used to redirect

 to .

Have a Good Command

[70]

Using the two files, and , we can replay the sequence of
command execution as follows:

$ scriptreplay timing.log output.session
Plays the sequence of commands and output

How it works...
We often record desktop videos to prepare tutorials. However, videos require a
considerable amount of storage, while a terminal script file is just a text file, usually only in
the order of kilobytes.

You can share the and files to anyone who wants to replay
a terminal session in their terminal.

Finding files and file listing
The command is one of the great utilities in the Unix/Linux command-line toolbox. It
is useful both at the command line and in shell scripts. Like and , has many
features, and most people do not use it to its fullest. This recipe deals with some common
ways to utilize to locate files.

Getting ready
The command uses the following strategy: descends through a hierarchy of
files, matches files that meet the specified criteria, and performs some actions. The default
action is to print the names of files and folders, which can be specified with the
option.

How to do it...
To list all the files and folders descending from a given directory, use this syntax:

$ find base_path

The can be any location from which should start descending (for example,
).

Have a Good Command

[71]

Here's an example of this command:

$ find . -print
.history
Downloads
Downloads/tcl.fossil
Downloads/chapter2.doc
…

The specifies the current directory and specifies the parent directory. This convention
is followed throughout the Unix filesystem.

The print option separates each file or folder name with a (newline). The
option separates each name with a null character . The main use for is to pass
filenames containing newlines or whitespace characters to the command. The
command will be discussed in more detail later:

$> echo "test" > "file name"
$> find . -type f -print | xargs ls -l
ls: cannot access ./file: No such file or directory
ls: cannot access name: No such file or directory
$> find . -type f -print0 | xargs -0 ls -l
-rw-rw-rw-. 1 user group 5 Aug 24 15:00 ./file name

There's more...
The previous examples demonstrated using to list all the files and folders in a
filesystem hierarchy. The command can select files based on glob or regular
expression rules, depth in the filesystem tree, date, type of file, and more.

Search based on name or regular expression match
The argument specifies a selection pattern for the name. The argument
accepts both glob-style wildcards and regular expressions. In the following example,

 matches all the file or folder names ending with and prints them.

Note the single quotes around . The shell will expand glob
wildcards with no quotes or using double-quotes (). The single quotes
prevent the shell from expanding the and passes that string to the

 command.

$ find /home/slynux -name '*.txt' -print

Have a Good Command

[72]

The command has an option (ignore case), which is similar to , but it
matches filenames regardless of case.

Consider the following example:

$ ls
example.txt EXAMPLE.txt file.txt
$ find . -iname "example*" -print
./example.txt
./EXAMPLE.txt

The command supports logical operations with the selection options. The and
 options perform a logical AND, while the and option perform a logical OR.

$ ls
new.txt some.jpg text.pdf stuff.png
$ find . \(-name '*.txt' -o -name '*.pdf' \) -print
./text.pdf
./new.txt

The previous command will print all the and files, since the command
matches both and files. and are used to treat

 as a single unit.

The following command demonstrates using the operator to select only the file that
starts with an and has an in the name somewhere.

$ find . \(-name '*e*' -and -name 's*' \)
./some.jpg

The argument restricts the match to files that match a path as well as a name. For
example, will
find , but not .

The argument is similar to , but matches the file
paths based on regular expressions.

Have a Good Command

[73]

Regular expressions are more complex than glob wildcards and support more precise
pattern matching. A typical example of text matching with regular expressions is to
recognize all e-mail addresses. An e-mail address takes the form. It can
be generalized as . The characters inside the square
brackets represent a set of characters. In this case, and The sign signifies that the
previous class of characters can occur one or more times. A period is a single character
wildcard (like a in glob wildcards), so it must be escaped with a backslash to match an
actual dot in the e-mail address. So, this regular expression translates to 'a sequence of
letters or numbers, followed by an , followed by a sequence of letters or numbers, followed
by a period, and ending with a sequence of letters or numbers'. See the Using regular
expressions recipe in , Texting and Driving for more details.

This command matches the or files:

$ ls
new.PY next.jpg test.py script.sh
$ find . -regex '.*\.(py\|sh\)$'
./test.py
script.sh

The option ignores the case for regular expression matches.

Consider this example:

$ find . -iregex '.*\(\.py\|\.sh\)$'
./test.py
./new.PY
./script.sh

Negating arguments
The command can also exclude things that match a pattern using :

$ find . ! -name "*.txt" -print

This will match all the files whose names do not end in . The following example shows
the result of the command:

$ ls
list.txt new.PY new.txt next.jpg test.py

$ find . ! -name "*.txt" -print
.
./next.jpg
./test.py

Have a Good Command

[74]

./new.PY

Searching based on the directory depth
The command walks through all the subdirectories until it reaches the bottom of each
subdirectory tree. By default, the command will not follow symbolic links. The
option will force it to follow symbolic links. If a link references a link that points to the
original, will be stuck in a loop.

The and parameters restrict how far the command will
traverse. This will break the command from an otherwise infinite search.

The filesystem contains information about your system and running tasks. The
folder hierarchy for a task is quite deep and includes symbolic links that loop back on
themselves. Each process running your system has an entry in , named for the process
ID. Under each process ID is a folder called , which is a link to that task's current
working directory.

The following example shows how to list all the tasks that are running in a folder with a file
named :

$ find -L /proc -maxdepth 3 -name 'bundlemaker.def' 2>/dev/null

The option tells the command to follow symbolic links
The is a folder to start searching
The option limits the search to only the current folder, not
subfolders
The option is the file to search for
The redirects error messages about recursive loops to the null
device

The option is similar to , but it sets the minimum depth for which
 will report matches. It can be used to find and print files that are located with a

minimum level of depth from the base path. For example, to print all files whose names
begin with and that are at least two subdirectories distant from the current directory, use
the following command:

$ find . -mindepth 2 -name "f*" -print
./dir1/dir2/file1
./dir3/dir4/f2

Have a Good Command

[75]

Files with names starting with in the current directory or in and will not be
printed.

The and option should be early in the
command. If they are specified as later arguments, it may affect the
efficiency of as it has to do unnecessary checks. For example, if

 is specified after a argument, the command will
first find the files having the specified and then filter out the files
that don't match the proper depth. However, if the depth was specified
before the , will collect the files having the specified depth and
then check for the file type, which is the most efficient way to search.

Searching based on file type
Unix-like operating systems treat every object as a file. There are different kinds of file, such
as regular files, directory, character devices, block devices, symlinks, hardlinks, sockets,
FIFO, and so on.

The command filters the file search with the option. Using , we can
tell the command to match only files of a specified type.

List only directories including descendants:

$ find . -type d -print

It is hard to list directories and files separately. But helps to do it. List only regular
files as follows:

$ find . -type f -print

List only symbolic links as follows:

$ find . -type l -print

The following table shows the types and arguments recognizes:

File type Type argument

Regular file

Symbolic link

Directory

Character special device

Have a Good Command

[76]

Block device

Socket

FIFO

Searching by file timestamp
Unix/Linux filesystems have three types of timestamp on each file. They are as follows:

Access time (): The timestamp when the file was last accessed
Modification time (): The timestamp when the file was last modified
Change time (): The timestamp when the metadata for a file (such as
permissions or ownership) was last modified

Unix does not store file creation time by default; however, some
filesystems (, , , ,) save the creation time. The
creation time can be accessed with the stat command.
Given that some applications modify a file by creating a new file and then
deleting the original, the creation date may not be accurate.
The , , and option are the time parameter options
available with . They can be specified with integer values in number of
days. The number may be prefixed with or signs. The sign implies
less than, whereas the sign implies greater than.

Consider the following example:

Print files that were accessed within the last seven days:

$ find . -type f -atime -7 -print

Print files that have an access time exactly seven days old:

$ find . -type f -atime 7 -print

Print files that have an access time older than seven days:

$ find . -type f -atime +7 -print

The parameter will search for files based on the modification time; searches
based on the change time.

Have a Good Command

[77]

The , , and use time measured in days. The command also
supports options that measure in minutes. These are as follows:

 (access time)
 (modification time)
 (change time)

To print all the files that have an access time older than seven minutes, use the following
command:

$ find . -type f -amin +7 -print

The option specifies a reference file with a modification time that will be used to
select files modified more recently than the reference file.

Find all the files that were modified more recently than file:

$ find . -type f -newer file.txt -print

The command's timestamp flags are useful for writing backup and maintenance
scripts.

Searching based on file size
Based on the file sizes of the files, a search can be performed:

Files having size greater than 2 kilobytes
$ find . -type f -size +2k

Files having size less than 2 kilobytes
$ find . -type f -size -2k

Files having size 2 kilobytes
$ find . -type f -size 2k

Instead of , we can use these different size units:

: 512 byte blocks
: Bytes
: Two-byte words
: Kilobytes (1,024 bytes)
: Megabytes (1,024 kilobytes)
: Gigabytes (1,024 megabytes)

Have a Good Command

[78]

Matching based on file permissions and ownership
It is possible to match files based on the file permissions. We can list out the files with
specified file permissions:

$ find . -type f -perm 644 -print
Print files having permission 644

The option specifies that should only match files with their permission set to a
particular value. Permissions are explained in more detail in the Working with file
permissions, ownership, and the sticky bit recipe in , File In, File Out.

As an example usage case, we can consider the case of the Apache web server. The PHP
files in the web server require proper permissions to execute. We can find PHP files that
don't have proper executing permissions:

$ find . -type f -name "*.php" ! -perm 644 -print
PHP/custom.php
$ ls -l PHP/custom.php
-rw-rw-rw-. root root 513 Mar 13 2016 PHP/custom.php

We can also search files based on ownership. The files owned by a specific user can be
found with the option.

The argument can be a username or UID.

For example, to print a list of all files owned by the user, you can use the following
command:

$ find . -type f -user slynux -print

Performing actions on files with find
The find command can perform actions on the files it identifies. You can delete files, or
execute an arbitrary Linux command on the files.

Deleting based on file matches
The command's flag removes files that are matched instead of displaying
them. Remove the files from the current directory:

$ find . -type f -name "*.swp" -delete

Have a Good Command

[79]

Executing a command
The command can be coupled with many of the other commands using the
option.

Consider the previous example. We used to find files that do not have proper
permissions. Similarly, in the case where we need to change the ownership of all files
owned by a certain user (for example,) to another user (for example, , the
default Apache user in the web server), we can find all the files owned by using the

 option and use to perform the ownership change operation.

You must run the command as root if you want to change the
ownership of files or directories.

The command uses an open/close curly brace pair to represent the filename. In the
next example, each time identifies a file it will replace the with the filename and
change the ownership of the file. For example, if the command finds two files with the

 owner it will change both so they're owned by :

find . -type f -user root -exec chown slynux {} \;

Note that the command is terminated with . The semicolon must be
escaped or it will be grabbed by your command shell as the end of the

 command instead of the end of the command.

Invoking a command for each file is a lot of overhead. If the command accepts multiple
arguments (as does) you can terminate the command with a plus () instead of a
semicolon. The plus causes to make a list of all the files that match the search
parameter and execute the application once with all the files on a single command line.

Another usage example is to concatenate all the C program files in a given directory and
write them to a single file, say, . Each of these examples will perform this
action:

$ find . -type f -name '*.c' -exec cat {} \;>all_c_files.txt
$ find . -type f -name '*.c' -exec cat {} > all_c_files.txt \;
$ fine . -type f -name '*.c' -exec cat {} >all_c_files.txt +

Have a Good Command

[80]

To redirect the data from to the file, we used the operator
instead of (append) because the entire output from the command is a single data
stream (); is necessary when multiple data streams are to be appended to a single
file.

The following command will copy all the files that are older than 10 days to a
directory :

$ find . -type f -mtime +10 -name "*.txt" -exec cp {} OLD \;

The command can be coupled with many other commands.

We cannot use multiple commands along with the parameter. It
accepts only a single command, but we can use a trick. Write multiple
commands in a shell script (for example,) and use it with

 as follows:

-exec ./commands.sh {} \;

The parameter can be coupled with to produce . Consider this
example:

$ find . -type f -name "*.txt" -exec printf "Text file: %s\n" {} \;
Config file: /etc/openvpn/easy-rsa/openssl-1.0.0.cnf
Config file: /etc/my.cnf

Skipping specified directories when using the find
command
Skipping certain subdirectories may improve performance during the operation of .
For example, when searching for files in a development source tree under a version control
system such as , the filesystem contains a directory in each of the subdirectories where
version-control-related information is stored. These directories may not contain useful files
and should be excluded from the search.

The technique of excluding files and directories is known as pruning. The following
example shows how to use the option to exclude files that match a pattern.

$ find devel/source_path -name '.git' -prune -o -type f -print

The is the pruning section, which specifies that directories
should be excluded. The section describes the action to be performed.

Have a Good Command

[81]

Playing with xargs
Unix commands accept data either from the standard input () or as command line
arguments. Previous examples have shown how to pass data from one application's
standard output to another's standard input with a pipe.

We can invoke applications that accept command-line arguments in other ways. The
simplest is to use the back-tic symbol to run a command and use its output as a command
line:

$ gcc `find '*.c'`

This solution works fine in many situations, but if there are a lot of files to be processed,
you'll see the dreaded error message. The program
solves this problem.

The command reads a list of arguments from and executes a command using
these arguments in the command line. The command can also convert any one-line
or multiple-line text inputs into other formats, such as multiple lines (specified number of
columns) or a single line, and vice versa.

Getting ready
The command should be the first command to appear after a pipe operator. It uses
standard input as the primary data source and executes another command using the values
it reads from as command-line arguments for the new command. This example will
search for the main string in a collection of C files:

ls *.c | xargs grep main

Have a Good Command

[82]

How to do it...
The command supplies arguments to a target command by reformatting the data
received through . By default, will execute the command. In many
respects, the command is similar to the actions performed by the command's

 option:

Converting multiple lines of input to a single-line output:

Xarg's default command can be used to convert multiple-line input to
single-line text, like this:

$ cat example.txt # Example file
 1 2 3 4 5 6
 7 8 9 10
 11 12

 $ cat example.txt | xargs
 1 2 3 4 5 6 7 8 9 10 11 12

Converting single-line into multiple-line output:

The argument to limits the number of elements placed on each
command line invocation. This recipe splits the input into multiple lines of N
items each:

$ cat example.txt | xargs -n 3
 1 2 3
 4 5 6
 7 8 9
 10 11 12

How it works...
The command works by accepting input from , parsing the data into
individual elements, and invoking a program with these elements as the final command
line arguments. By default, will split the input based on whitespace and execute

.

Splitting the input into elements based on whitespace becomes an issue when file and folder
names have spaces (or even newlines) in them. The folder would be parsed
into two elements and , neither of which exists.

Have a Good Command

[83]

Most problems have solutions and this is no exception.

We can define the delimiter used to separate arguments. To specify a custom delimiter for
input, use the option:

$ echo "split1Xsplit2Xsplit3Xsplit4" | xargs -d X
split1 split2 split3 split4

In the preceding code, contains a string consisting of multiple characters. We
define to be the input delimiter with the .

Using along with the previous command, we can split the input into multiple lines of
two words each as follows:

$ echo "splitXsplitXsplitXsplit" | xargs -d X -n 2
split split
split split

The command integrates well with the find command. The output from find can be
piped to to perform more complex actions than the option can handle. If the
filesystem has files with spaces in the name, the find command's option will use a

 (NULL) to delimit the elements, which works with the option to parse these.
The following example searches for files on a Samba mounted filesystem, where
names with capital letters and spaces are common. It uses to report files with images:

find /smbMount -iname '*.docx' -print0 | xargs -0 grep -L image

There's more...
The previous examples showed how to use to organize a set of data. The next
examples show how to format sets of data on a command line.

Passing formatted arguments to a command by reading
stdin
Here is a small script to make it obvious as to how provides command
arguments:

Have a Good Command

[84]

When arguments are passed to the shell, it will print the arguments terminated
by the character. Consider this example:

$./cecho.sh arg1 arg2
 arg1 arg2 #

Here's a common problem:

I have a list of elements in a file (one per line) to be provided to a command (say,
). I need to apply the arguments in several styles. In the first method, I

need one argument for each invocation, like this:

 ./cecho.sh arg1
 ./cecho.sh arg2
 ./cecho.sh arg3

Next, I need to provide one or two arguments each for each execution of the
command, like this:

 ./cecho.sh arg1 arg2
 ./cecho.sh arg3

Finally, I need to provide all arguments at once to the command:

 ./cecho.sh arg1 arg2 arg3

Run the script and note the output before going through the following section.
The command can format the arguments for each of these requirements. The list of
arguments is in a file called :

$ cat args.txt
arg1
arg2
arg3

For the first form, we execute the command multiple times with one argument per
execution. The option can limit the number of command line arguments to one:

$ cat args.txt | xargs -n 1 ./cecho.sh
arg1 #
arg2 #
arg3 #

Have a Good Command

[85]

To limit the number of arguments to two or fewer, execute this:

$ cat args.txt | xargs -n 2 ./cecho.sh
arg1 arg2 #
arg3 #

Finally, to execute the command at once with all the arguments, do not use any
argument:

$ cat args.txt | xargs ./cecho.sh
arg1 arg2 arg3 #

In the preceding examples, the arguments added by were placed at the end of the
command. However, we may need to have a constant phrase at the end of the command
and want to substitute its argument in the middle, like this:

./cecho.sh -p arg1 -l

In the preceding command execution, is the only variable text. All others should
remain constant. The arguments from should be applied like this:

./cecho.sh -p arg1 -l

./cecho.sh -p arg2 -l

./cecho.sh -p arg3 -l

The option specifies a replacement string to be replaced with the arguments xargs
parses from the input. When is used with , it will execute as one command
execution per argument. This example solves the problem:

$ cat args.txt | xargs -I {} ./cecho.sh -p {} -l
-p arg1 -l #
-p arg2 -l #
-p arg3 -l #

The specifies the replacement string. For each of the arguments supplied for the
command, the string will be replaced with arguments read through .

When used with , the command is executed in a loop. When there are
three arguments, the command is executed three times along with the
command. Each time, is replaced with arguments one by one.

Have a Good Command

[86]

Using xargs with find
The and command can be combined to perform tasks. However, take care to
combine them carefully. Consider this example:

$ find . -type f -name "*.txt" -print | xargs rm -f

This is dangerous. It may cause removal of unexpected files. We cannot predict the
delimiting character (whether it is or) for the output of the command. If any
filenames contain a space character () may misinterpret it as a delimiter. For
example, would be misinterpreted by as and .
The previous command would not delete , but would delete .

Use the option of to produce an output delimited by the null character
(); you use output as input.

This command will and remove all files and nothing else:

$ find . -type f -name "*.txt" -print0 | xargs -0 rm -f

Counting the number of lines of C code in a source
code directory
At some point, most programmers need to count the Lines of Code (LOC) in their C
program files The code for this task is as follows:

$ find source_code_dir_path -type f -name "*.c" -print0 | xargs -0 wc -l

If you want more statistics about your source code, a utility called
, is very useful. Modern GNU/Linux distributions usually have

packages or you can get it from .

While and subshell trick with stdin
The command places arguments at the end of a command; thus, cannot
supply arguments to multiple sets of commands. We can create a subshell to handle
complex situations. The subshell can use a loop to read arguments and execute
commands in a trickier way, like this:

$ cat files.txt | (while read arg; do cat $arg; done)
Equivalent to cat files.txt | xargs -I {} cat {}

Have a Good Command

[87]

Here, by replacing with any number of commands using a loop, we can
perform many command actions with the same arguments. We can pass the output to other
commands without using pipes. Subshell tricks can be used in a variety of problematic
environments. When enclosed within subshell operators, it acts as a single unit with
multiple commands inside, like so:

$ cmd0 | (cmd1;cmd2;cmd3) | cmd4

If is within the subshell, the path of the working directory changes. However,
this change resides inside the subshell only. The command will not see the directory
change.

The shell accepts a option to invoke a subshell with a command-line script. This can be
combined with to solve the problem of needing multiple substitutions. The following
example finds all files and echoes the name of each file, preceded by a newline (the
option enables backslash substitutions). Immediately after the filename is a list of all the
times appears in that file:

find . -name '*.c' | xargs -I ^ sh -c "echo -ne '\n ^: '; grep main ^"

Translating with tr
The command is a versatile tool in the Unix command–warrior's kit. It is used to craft
elegant one-liner commands. It performs substitution of characters, deletes selected
characters, and can squeeze repeated characters from the standard input. Tr is short for
translate, since it translates a set of characters to another set. In this recipe, we will see how
to use to perform basic translation between sets.

Getting ready
The command accepts input through stdin (standard input) and cannot accept input
through command-line arguments. It has this invocation format:

tr [options] set1 set2

Have a Good Command

[88]

Input characters from are mapped from the first character in to the first
character in , and so on and the output is written to (standard output).
and are character classes or a set of characters. If the length of sets is unequal, is
extended to the length of by repeating the last character; otherwise if the length of

 is greater than that of , all the characters exceeding the length of are
ignored from .

How to do it...
To perform translation of characters in the input from uppercase to lowercase, use this
command:

$ echo "HELLO WHO IS THIS" | tr 'A-Z' 'a-z'
hello who is this

The and are the sets. We can specify custom sets as needed by appending
characters or character classes.

The , , , , and so on are valid sets. We can define sets
easily. Instead of writing continuous character sequences, we can use the

 format. It can also be combined with any other characters or character classes. If
 is not a valid continuous character sequence, they are then taken as a

set of three characters (for example, , , and). You can also use special
characters such as , , or any ASCII characters.

How it works...
Using with the concept of sets, we can map characters from one set to another set easily.
Let's go through an example on using to encrypt and decrypt numeric characters:

$ echo 12345 | tr '0-9' '9876543210'
87654 #Encrypted

$ echo 87654 | tr '9876543210' '0-9'
12345 #Decrypted

Have a Good Command

[89]

The command can be used to encrypt text. ROT13 is a well-known encryption
algorithm. In the ROT13 scheme, characters are shifted by 13 positions, thus the same
function can encrypt and decrypt text:

$ echo "tr came, tr saw, tr conquered." | tr 'a-zA-Z' 'n-za-mN-ZA-M'

The output will be the following:

ge pnzr, ge fnj, ge pbadhrerq.

By sending the encrypted text again to the same ROT13 function, we get this:

$ echo ge pnzr, ge fnj, ge pbadhrerq. | tr 'a-zA-Z' 'n-za-mN-ZA-M'

The output will be the following:

tr came, tr saw, tr conquered.

The can convert each tab character to a single space, as follows:

$ tr '\t' ' ' < file.txt

There's more...
We saw some basic translations using the command. Let's see what else can help us
achieve.

Deleting characters using tr
The command has an option to delete a set of characters that appear on using
the specified set of characters to be deleted, as follows:

$ cat file.txt | tr -d '[set1]'
#Only set1 is used, not set2

Consider this example:

$ echo "Hello 123 world 456" | tr -d '0-9'
Hello world
Removes the numbers from stdin and print

Have a Good Command

[90]

Complementing character sets
We can use a set to complement using the flag. is optional in the following
command:

tr -c [set1] [set2]

If only is present, will delete all characters that are not in . If is also
present, will translate characters that aren't in into values from . If you use the

 option by itself, you must use and . If you combine the and options,
you only use and all other characters will be deleted.

The following example deletes all the characters from the input text, except the ones
specified in the complement set:

$ echo hello 1 char 2 next 4 | tr -d -c '0-9 \n'
124

This example replaces all characters that aren't in with spaces:

$ echo hello 1 char 2 next 4 | tr -c '0-9' ' '
 1 2 4

Squeezing characters with tr
The command can perform many text-processing tasks. For example, it can remove
multiple occurrences of a character in a string. The basic form for this is as follows:

tr -s '[set of characters to be squeezed]'

If you commonly put two spaces after a period, you'll need to remove extra spaces without
removing duplicated letters:

$ echo "GNU is not UNIX. Recursive right ?" | tr -s ' '
GNU is not UNIX. Recursive right ?

The command can also be used to get rid of extra newlines:

$ cat multi_blanks.txt | tr -s '\n'
line 1
line 2
line 3
line 4

Have a Good Command

[91]

In the preceding usage of , it removes the extra characters. Let's use in a tricky
way to add a given list of numbers from a file, as follows:

$ cat sum.txt
1
2
3
4
5

$ cat sum.txt | echo $[$(tr '\n' '+') 0]
15

How does this hack work?

Here, the command replaces with the character, hence, we form the string
 but at the end of the string we have an extra operator. In order to nullify

the effect of the operator, is appended.

The performs a numeric operation. Hence, it forms this string:

echo $[1+2+3+4+5+0]

If we used a loop to perform the addition by reading numbers from a file, it would take a
few lines of code. With , a one–liner does the trick.

Even trickier is when we have a file with letters and numbers and we want to sum the
numbers:

$ cat test.txt
first 1
second 2
third 3

We can use to strip out the letters with the option, then replace the spaces with :

$ cat test.txt | tr -d [a-z] | echo "total: $[$(tr ' ' '+')]"
total: 6

Character classes
The command can use different character classes as sets. Here are the supported
character classes:

: Alphanumeric characters

Have a Good Command

[92]

: Alphabetic characters
: Control (nonprinting) characters
: Numeric characters
: Graphic characters
: Lowercase alphabetic characters
: Printable characters
: Punctuation characters
: Whitespace characters
: Uppercase characters

: Hexadecimal characters

We can select the required classes, like this:

tr [:class:] [:class:]

Consider this example:

tr '[:lower:]' '[:upper:]'

Checksum and verification
Checksum programs are used to generate a relatively small unique key from files. We can
recalculate the key to confirm that a file has not changed. Files may be modified deliberately
(adding a new user changes the password file), accidentally (a data read error from a CD-
ROM drive), or maliciously (a virus is inserted). Checksums let us verify that a file contains
the data we expect it to.

Checksums are used by backup applications to check whether a file has been modified and
needs to be backed up.

Most software distributions also have a checksum file available. Even robust protocols such
as TCP can allow a file to be modified in transit. Hence, we need to know whether the
received file is the original one or not by applying some kind of test.

By comparing the checksum of the file we downloaded with the checksum calculated by the
distributer, we can verify that the received file is correct. If the checksum calculated from
the original file at the source location matches the one calculated at the destination, the file
has been received successfully.

Have a Good Command

[93]

Some system validation suites maintain a checksum of the critical files. If malware modifies
a file, we can detect this from the changed checksum.

In this recipe, we will see how to compute checksums to verify the integrity of data.

Getting ready
Unix and Linux support several checksum programs, but the most robust and widely used
algorithms are MD5 and SHA-1. The ms5sum and sha1sum programs generate checksum
strings by applying the corresponding algorithm to the data. Let's see how to generate a
checksum from a file and verify the integrity of that file.

How to do it...
To compute the md5sum, use the following command:

$ md5sum filename
68b329da9893e34099c7d8ad5cb9c940 filename

The is a 32-character hexadecimal string as given.

We can redirect the checksum output to a file for later use, as follows:

$ md5sum filename > file_sum.md5

How it works...
The syntax for the checksum calculation is as follows:

$ md5sum file1 file2 file3 ..

When multiple files are used, the output will contain a checksum for each of the files, one
checksum report per line:

[checksum1] file1
[checksum1] file2
[checksum1] file3

The integrity of a file can be verified with the generated file, like this:

$ md5sum -c file_sum.md5
It will output a message whether checksum matches or not

Have a Good Command

[94]

If we need to check all the files using all information available, use this:

$ md5sum -c *.md5

SHA-1 is another commonly used checksum algorithm. It generates a 40-character hex code
from the input. The command calculates an SHA-1 . Its usage is similar
to . Simply replace with in all the commands previously
mentioned. Instead of , change the output filename to .

Checksums are useful to verify the integrity of files downloaded from the Internet. ISO
images are susceptible to erroneous bits. A few wrong bits and the ISO may be unreadable,
or, worse, it might install applications that fail in strange ways. Most file repositories
include an or file you can use to verify that files were downloaded correctly.

This is the MD5 sum checksum that is created:

3f50877c05121f7fd8544bef2d722824 *ubuntu-16.10-desktop-amd64.iso
e9e9a6c6b3c8c265788f4e726af25994 *ubuntu-16.10-desktop-i386.iso
7d6de832aee348bacc894f0a2ab1170d *ubuntu-16.10-server-amd64.iso
e532cfbc738876b353c7c9943d872606 *ubuntu-16.10-server-i386.iso

There's more...
Checksums are also useful when used with a number of files. Let's see how to apply
checksums to a collection of files and verify the accuracy.

Have a Good Command

[95]

Checksum for directories
Checksums are calculated for files. Calculating the checksum for a directory requires
recursively calculating the checksums for all the files in the directory.

The or commands traverse a file tree and calculate checksums for all
files. These programs may not be installed on your system. Use or to install
the package. An example of this command is as follows:

$ md5deep -rl directory_path > directory.md5

The option allows md5deep to recurse into sub-directories. The option enables
displaying the relative path, instead of the default absolute path.

to enable recursive traversal

to use relative path. By default it writes absolute file
path in output

The and commands can be used to calculate checksums recursively:

$ find directory_path -type f -print0 | xargs -0 md5sum >> directory.md5

To verify, use this command:

$ md5sum -c directory.md5

The md5 and SHA-1 checksums are unidirectional hash algorithms, which
cannot be reversed to form the original data. These are also used to generate a
unique key from a given data:

$ md5sum file
 8503063d5488c3080d4800ff50850dc9 file
 $ sha1sum file
 1ba02b66e2e557fede8f61b7df282cd0a27b816b file

 These hashes are commonly used to store passwords. Only the hash for a
 password is stored. When a user needs to be authenticated, the password is read
 and converted to the hash and that hash is compared to the stored hash. If they
 are the same, the password is authenticated and access is provided. Storing
 plain–text password strings is risky and poses a security risk.

Have a Good Command

[96]

Although commonly used, md5sum and SHA-1 are no longer considered
secure. This is because the rise in computing power in recent times that
makes it easier to crack them. It is recommended that you use tools such as

 or sha512sum instead. Read more about this at
.

Shadow-like hash (salted hash)

 The next recipe shows how to generate a shadow-like salted hash for passwords.
 The hash for user passwords in Linux is stored in the file. A
 typical line in will look like this:

test:6fG4eWdUi$ohTKOlEUzNk77.4S8MrYe07NTRV4M3LrJnZP9p.qc1bR5c.
EcOruzPXfEu1uloBFUa18ENRH7F70zhodas3cR.:14790:0:99999:7:::

 is the hash corresponding to its
password.

In some situations, we need to write scripts to edit passwords or add users. In that
case, we must generate a shadow password string and write a similar line to the
preceding one to the shadow file. We can generate a shadow password using

.

Shadow passwords are usually salted passwords. is an extra string used to
obfuscate and make the encryption stronger. Salt consists of random bits that are
used as one of the inputs to a key derivation function that generates the salted
hash for the password.

For more details on salt, refer to this Wikipedia page at
.

$ opensslpasswd -1 -salt SALT_STRING PASSWORD
1SALT_STRING$323VkWkSLHuhbt1zkSsUG.

Replace with a random string and with the password
you want to use.

Have a Good Command

[97]

Cryptographic tools and hashes
Encryption techniques are used to protect data from unauthorized access. Unlike the
checksum algorithms we just discussed, encryption programs can reconstruct the original
data with no loss. There are many algorithms available and we will discuss those most
commonly used in the Linux/Unix world.

How to do it...
Let's see how to use tools such as , , and :

The command is not commonly installed on Linux systems. It's a simple
and relatively insecure cryptographic utility that accepts input from ,
requests a , and sends encrypted output to :

$ crypt <input_file >output_file
 Enter passphrase:

We can provide a passphrase on the command line:

$ crypt PASSPHRASE <input_file >encrypted_file

In order to decrypt the file, use this:

$ crypt PASSPHRASE -d <encrypted_file >output_file

 (GNU privacy guard) is a widely used tool for protecting files to ensure that
data is not read until it reaches its intended destination.

 signatures are also widely used in e-mail communications to "sign" e-
mail messages, proving the authenticity of the sender.

In order to encrypt a file with , use this:

$ gpg -c filename

 This command reads the passphrase interactively and generates
. In order to decrypt a file, use the following command:

$ gpg filename.gpg

Have a Good Command

[98]

This command reads a passphrase and decrypts the file.

We are not covering in much detail in this book. For more
information, refer to

.

Base64 is a group of similar encoding schemes that represent binary data in an
ASCII string format by translating it into a radix-64 representation. These
programs are used to transmit binary data via e-mail. The command
encodes and decodes the Base64 string. To encode a binary file into the Base64
format, use this:

$ base64 filename > outputfile

 Alternatively, use this command:

$ cat file | base64 > outputfile

 It can read from .

 Decode Base64 data as follows:

$ base64 -d file > outputfile

Alternatively, use this:

$ cat base64_file | base64 -d > outputfile

Sorting unique and duplicate lines
Sorting text files is a common task. The command sorts text files and . It can be
coupled with other commands to produce the required output. is often used with

 to extract unique (or duplicate) lines. The following recipes illustrate some sort and
 use cases.

Getting ready
The and commands accept input as filenames or from (standard input)
and output the result by writing to .

Have a Good Command

[99]

How to do it...
We can sort a set of files (for example, and), like this:1.

$ sort file1.txt file2.txt > sorted.txt

 Alternatively, use this:

$ sort file1.txt file2.txt -o sorted.txt

For a numerical sort, we use this:2.

$ sort -n file.txt

To sort in the reverse order, we use the following command:3.

$ sort -r file.txt

To sort by months (in the order Jan, Feb, March,...), use this:4.

$ sort -M months.txt

To merge two already sorted files, use this command:5.

$ sort -m sorted1 sorted2

To find the unique lines from a sorted file, use this:6.

$ sort file1.txt file2.txt | uniq

To check whether a file has already been sorted, use the following code:7.

Replace with the file you want to check and run the script.

Have a Good Command

[100]

How it works...
As shown in the examples, accepts numerous parameters to define how the data is to
be sorted. The sort command is useful with the command, which expects sorted input.

There are numerous scenarios where the and commands can be used. Let's go
through the various options and usage techniques.

To check whether a file is already sorted, we exploit the fact that returns an exit code
() of 0 if the file is sorted and nonzero otherwise.

if sort -c fileToCheck ; then echo sorted ; else echo unsorted ; fi

There's more...
These were some basic usages of the command. Here are sections for using it to
accomplish complex tasks:

Sorting according to keys or columns
We can use a column with sort if the input data is formatted like this:

$ cat data.txt
1 mac 2000
2 winxp 4000
3 bsd 1000
4 linux 1000

We can sort this in many ways; currently it is sorted numerically, by the serial number (the
first column). We can also sort by the second or third column.

The option specifies the characters to sort by. A single digit specifies the column. The
option specifies sorting in reverse order. Consider this example:

Sort reverse by column1
$ sort -nrk 1 data.txt
4 linux 1000
3 bsd 1000
2 winxp 4000
1 mac 2000
-nr means numeric and reverse

Sort by column 2
$ sort -k 2 data.txt

Have a Good Command

[101]

3 bsd 1000
4 linux 1000
1 mac 2000
2 winxp 4000

Always be careful about the -n option for numeric sort. The sort command
treats alphabetical sort and numeric sort differently. Hence, in order to
specify numeric sort, the option should be provided.

When is followed by a single integer, it specifies a column in the text file. Columns are
separated by space characters. If we need to specify keys as a group of characters (for
example, characters 4-5 of column 2), we define the range as two integers separated by a
period to define a character position, and join the first and last character positions with a
comma:

$ cat data.txt

1 alpha 300
2 beta 200
3 gamma 100
$ sort -bk 2.3,2.4 data.txt ;# Sort m, p, t
3 gamma 100
1 alpha 300
2 beta 200

The highlighted characters are to be used as numeric keys. To extract them, use their
positions in the lines as the key format (in the previous example, they are and).

To use the first character as the key, use this:

$ sort -nk 1,1 data.txt

To make the sort's output compatible with the terminator, use this command:

$ sort -z data.txt | xargs -0
Use zero terminator to make safe use with xargs

Sometimes, the text may contain unnecessary extraneous characters such as spaces. To sort
them in dictionary order, ignoring punctuations and folds, use this:

$ sort -bd unsorted.txt

The option is used to ignore leading blank lines from the file and the option specifies
sorting in dictionary order.

Have a Good Command

[102]

uniq
The command finds the unique lines in a given input (or a filename command
line argument) and either reports or removes the duplicated lines.

This command only works with sorted data. Hence, is often used with the
command.

To produce the unique lines (all lines in the input are printed and duplicate lines are
printed once), use this:

$ cat sorted.txt
bash
foss
hack
hack

$ uniq sorted.txt
bash
foss
hack

Alternatively, use this:

$ sort unsorted.txt | uniq

Display only unique lines (the lines that are not repeated or duplicated in the input file):

$ uniq -u sorted.txt
bash
foss

Alternatively, use this command:

$ sort unsorted.txt | uniq -u

To count how many times each of the lines appears in the file, use the following command:

$ sort unsorted.txt | uniq -c
 1 bash
 1 foss
 2 hack

To find duplicate lines in the file, use this:

$ sort unsorted.txt | uniq -d
hack

Have a Good Command

[103]

To specify keys, we can use a combination of the and arguments:

: This specifies the number for the first N characters to be skipped
: This specifies the maximum number of characters to be compared

The following example describes using the comparison key as the index for the
operation:

$ cat data.txt
u:01:gnu
d:04:linux
u:01:bash
u:01:hack

To test only the bold characters (skip the first two characters and use the next two) we use
 to skip the first characters and to use the next two:

$ sort data.txt | uniq -s 2 -w 2
d:04:linux
u:01:bash

When the output from one command is passed as input to the command, it's best to
use a zero-byte terminator for each element of data. Passing output from to is
no exception to this rule. If a zero-byte terminator is not used, the default space characters
are used to split the arguments in the command. For example, a line with the text

 from will be taken as four separate arguments by the
command instead of a single line. When a zero-byte terminator, , is used as the delimiter
character, the full line including spaces is interpreted as a single argument.

The option generates zero-byte-terminated output:

$ uniq -z file.txt

This command removes all the files, with filenames read from :

$ uniq -z file.txt | xargs -0 rm

If a filename appears multiple time, the command writes the filename only once to
, thus avoiding a

 error.

Have a Good Command

[104]

Temporary file naming and random numbers
Shell scripts often need to store temporary data. The most suitable location to do this is

 (which will be cleaned out by the system on reboot). There are two methods to
generate standard filenames for temporary data.

How to do it...
The command will create a unique temporary file or folder name:

Create a temporary file:1.

$ filename=`mktemp`
 $ echo $filename
 /tmp/tmp.8xvhkjF5fH

This creates a temporary file, stores the name in filename, and then displays the
name.

Create a temporary directory:2.

$ dirname=`mktemp -d`
 $ echo $dirname
 tmp.NI8xzW7VRX

This creates a temporary directory, stores the name in filename, and displays the
name.

To generate a filename without creating a file or directory, use this:

$ tmpfile=`mktemp -u`
 $ echo $tmpfile
 /tmp/tmp.RsGmilRpcT

Here, the filename is stored in , but the file won't be created.

To create the temporary filename based on a template, use this:

$mktemp test.XXX
 test.2tc

Have a Good Command

[105]

How it works...
The command is straightforward. It generates a file with a unique name and
returns its filename (or directory name, in the case of directories).

When providing custom templates, will be replaced by a random alphanumeric character.
Also note that there must be at least three characters in the template for to work.

Splitting files and data
Splitting a large file into smaller pieces is sometimes necessary. Long ago, we had to split
files to transport large datasets on floppy disks. Today, we split files for readability, for
generating logs, or for working around size-restrictions on e-mail attachments. These
recipes will demonstrate ways of splitting files in different chunks.

How to do it...
The split command was created to split files. It accepts a filename as an argument and
creates a set of smaller files in which the first part of the original file is in the alphabetically
first new file, the next set in the alphabetically next file, and so on.

For example, a 100 KB file can be divided into smaller files of 10k each by specifying the
split size. The split command supports for MB, for GB, for byte, and for word.

$ split -b 10k data.file
$ ls
data.file xaa xab xac xad xae xaf xag xah xai xaj

The preceding code will split into ten files of each. The new files are named
, , , and so on. By default, split uses alphabetic suffixes. To use numeric suffixes,

use the argument. It is also possible to specify a suffix length using length:

$ split -b 10k data.file -d -a 4

$ ls
data.file x0009 x0019 x0029 x0039 x0049 x0059 x0069 x0079

Have a Good Command

[106]

There's more...
The command has more options. Let's go through them.

Specifying a filename prefix for the split files
All the previous split filenames start with x. If we are splitting more than one file, we'll
want to name the pieces, so it's obvious which goes with which. We can use our own
filename prefix by providing a prefix as the last argument.

Let's run the previous command with the prefix:

$ split -b 10k data.file -d -a 4 split_file
$ ls
data.file split_file0002 split_file0005 split_file0008
strtok.c
split_file0000 split_file0003 split_file0006 split_file0009
split_file0001 split_file0004 split_file0007

To split files based on the number of lines in each split rather than chunk size, use this:

-l no_of_lines:
 # Split into files of 10 lines each.
 $ split -l 10 data.file

The utility splits files based on context instead of size. It can split based on line
count or regular expression pattern. It's particularly useful for splitting log files.

Look at the following example log:

$ cat server.log
SERVER-1
[connection] 192.168.0.1 success
[connection] 192.168.0.2 failed
[disconnect] 192.168.0.3 pending
[connection] 192.168.0.4 success
SERVER-2
[connection] 192.168.0.1 failed
[connection] 192.168.0.2 failed
[disconnect] 192.168.0.3 success
[connection] 192.168.0.4 failed
SERVER-3
[connection] 192.168.0.1 pending
[connection] 192.168.0.2 pending
[disconnect] 192.168.0.3 pending
[connection] 192.168.0.4 failed

Have a Good Command

[107]

We may need to split the files into , , and from
the contents for each in each file. This can be done as follows:

$ csplit server.log /SERVER/ -n 2 -s {*} -f server -b "%02d.log" $
rm server00.log
$ ls
server01.log server02.log server03.log server.log

The details of the command are as follows:

: This is the line used to match a line by which a split is to be carried
out.

: This is the format. It copies from the current line (first line) up to the
matching line that contains excluding the match line.

: This specifies repeating a split based on the match up to the end of the file.
We can specify the number of times it is to be continued by placing a number
between the curly braces.

: This is the flag to make the command silent rather than printing other
messages.

: This specifies the number of digits to be used as suffix. , , , and so on.
: This specifies the filename prefix for split files (is the prefix in the

previous example).
: This specifies the suffix format. is similar to the

argument format in C, Here, the filename = prefix + suffix, that is,
.

We remove since the first split file is an empty file (the match word is the
first line of the file).

Slicing filenames based on extensions
Many shell scripts perform actions that involve modifying filenames. They may need to
rename the files and preserve the extension, or convert files from one format to another and
change the extension, while preserving the name, extracting a portion of the filename, and
so on.

The shell has built-in features for manipulating filenames.

Have a Good Command

[108]

How to do it...
The operator will extract the name from . This example extracts
from :

The output is this:

File name is: sample

The operator will extract the extension:

Extract from the filename stored in the variable:

The output is as follows:

Extension is: jpg

How it works...
To extract the name from the filename formatted as , we use the
operator.

 is interpreted as follows:

Remove the string match from for the wildcard pattern that appears to the
right of (in the previous example). Evaluating from right to left finds the
wildcard match.
Store the filename as . Therefore, the wildcard match for
from right to left is . Thus, it is removed from the string and the output
is .

 is a nongreedy operation. It finds the minimal match for the wildcard from right to left.
The operator is similar to , but it is greedy. This means that it finds the maximal match
of the string for the wildcard. Consider this example, where we have this:

VAR=hack.fun.book.txt

Have a Good Command

[109]

Use the operator for a nongreedy match from right to left and match :

$ echo ${VAR%.*}

The output will be: .

Use the operator for a greedy match, and match :

$ echo ${VAR%%.*}

The output will be: .

The operator extracts the extension from the filename. It is similar to , but it evaluates
from left to right.

 is interpreted as follows:

Remove the string match from for the wildcard pattern match that
appears to the right of (in the previous example). Evaluating from the left to
right should make the wildcard match.

Similarly, as in the case of , the operator ## is a greedy equivalent to #.

It makes greedy matches by evaluating from left to right and removes the match string from
the specified variable. Let's use this example:

VAR=hack.fun.book.txt

The operator performs a nongreedy match from left to right and matches :

$ echo ${VAR#*.}

The output will be: .

The operator performs a greedy match from left to right and matches :

$ echo ${VAR##*.}

The output will be: .

The operator is preferred over the operator to extract the extension
from a filename, since the filename may contain multiple characters.
Since makes a greedy match, it always extracts extensions only.

Have a Good Command

[110]

Here is a practical example to extract different portions of a domain name such as
URL= :

$ echo ${URL%.*} # Remove rightmost .*
www.google

$ echo ${URL%%.*} # Remove right to leftmost .* (Greedy operator)
www

$ echo ${URL#*.} # Remove leftmost part before *.
google.com

$ echo ${URL##*.} # Remove left to rightmost part before *.
(Greedy operator) com

Renaming and moving files in bulk
We frequently need to move and perhaps rename a set of files. System housekeeping often
requires moving files with a common prefix or file type to a new folder. Images
downloaded from a camera may need to be renamed and sorted. Music, video, and e-mail
files all need to be reorganized eventually.

There are custom applications for many of these operations, but we can write our own
custom scripts to do it our way.

Let's see how to write scripts to perform these kinds of operation.

Getting ready
The command changes filenames using Perl regular expressions. By combining the

, , and commands, we can perform a lot of things.

Have a Good Command

[111]

How to do it...
The following script uses find to locate PNG and JPEG files, then uses the operator and

 to rename them as , , and so on. This changes the file's name,
but not its extension:

The output is as follows:

$./rename.sh
Renaming hack.jpg to image-1.jpg
Renaming new.jpg to image-2.jpg
Renaming next.png to image-3.png

The preceding script renames all the and files in the current directory to new
filenames in the format , , , , and so
on.

How it works...
The previous script uses a loop to iterate through the names of all files ending with a

 or extension. The command performs this search, using the option to
specify multiple options for case-insensitive matches. The option
restricts the search to the current directory, not any subdirectories.

The variable is initialized to to track the image number. Then the script renames
the file using the command. The new name of the file is constructed using ,
which parses the extension of the filename currently being processed (refer to the Slicing
filenames based on extensions recipe in this chapter for an interpretation of).

Have a Good Command

[112]

 is used to increment the file number for each execution of the loop.

Here are other ways to perform rename operations:

Rename to like this:

$ rename *.JPG *.jpg

Use this to replace spaces in the filenames with the character:

$ rename 's/ /_/g' *

 is the replacement part in the filename and is the wildcard for the
target files. It can be or any other wildcard pattern.

Use these to convert any filenames from uppercase to lowercase and vice versa:

$ rename 'y/A-Z/a-z/' *
 $ rename 'y/a-z/A-Z/' *

Use this to recursively move all the files to a given directory:

$ find path -type f -name "*.mp3" -exec mv {} target_dir \;

Use this to recursively rename all the files by replacing spaces with the
character:

$ find path -type f -exec rename 's/ /_/g' {} \;

Spell–checking and dictionary manipulation
Most Linux distributions include a dictionary file. However, very few people are aware of
this, thus spelling errors abound. The command-line utility is a spell checker. Let's
go through a few scripts that make use of the dictionary file and the spell checker.

Have a Good Command

[113]

How to do it...
The directory contains one or perhaps more dictionary files, which are
text files with a list of words. We can use this list to check whether a word is a dictionary
word or not:

$ ls /usr/share/dict/
american-english british-english

To check whether the given word is a dictionary word, use the following script:

The usage is as follows:

$./checkword.sh ful
ful is not a dictionary word

$./checkword.sh fool
fool is a dictionary word

How it works...
In , is the word-start marker character and the character is the word-end marker.
The option suppresses any output, making the command quiet.

Alternatively, we can use the spell–check, , to check whether a word is in a
dictionary or not:

Have a Good Command

[114]

The command returns output text when the given input is not a dictionary
word, and does not output anything when the input is a dictionary word. A command
checks whether is an empty string or not.

The command will display lines that begin with a given string. You might use it to
find the lines in a log file that start with a given date, or to find words in the dictionary that
start with a given string. By default, searches , or you can
provide a file to search.

$ look word

Alternatively, this can be used:

$ grep "^word" filepath

Consider this example:

$ look android
android
android's
androids

Use this to find lines with a given date in :

$look 'Aug 30' /var/log/syslog

Automating interactive input
We looked at commands that accept arguments on the command line. Linux also supports
many interactive applications ranging from to .

We can create our own interactive shell scripts. It's easier for casual users to interact with a
set of prompts rather than remember command line flags and the proper order. For
instance, a script to back up a user's work, but not to back up and lock files, might look like
this:

$ backupWork.sh

What folder should be backed up?
What type of files should be backed up?

Have a Good Command

[115]

Automating interactive applications can save you time when you need to rerun the same
application and frustration while you're developing one.

Getting ready
The first step to automating a task is to run it and note what you do. The script command
discussed earlier may be of use.

How to do it...
Examine the sequence of interactive inputs. From the previous code, we can formulate the
steps of the sequence like this:

In addition to the preceding steps, type , press , type , and finally press
 to convert into a single string like this:

"notes\ndocx\n"

The character is sent when we press Return. By appending the return () characters, we
get the string that is passed to (standard input).

By sending the equivalent string for the characters typed by the user, we can automate
passing input to the interactive processes.

How it works...
Let's write a script that reads input interactively for an automation example:

Have a Good Command

[116]

Let's automate the sending of input to the command:

$ echo -e "notes\ndocx\n" | ./backup.sh
Backed up files from notes to /BackupDrive/MyName/notes

This style of automating an interactive script can save you a lot of typing during developing
and debugging. It also insures that you perform the same test each time and don't end up
chasing a phantom bug because you mis-typed.

We used to produce the input sequence. The option signals to to interpret
escape sequences. If the input is large we can use an input file and the redirection operator
to supply input:

$ echo -e "notes\ndocx\n" > input.data
$ cat input.data
notes
docx

You can manually craft the input file without the commands by hand–typing.
Consider this example:

$./interactive.sh < input.data

This redirects interactive input data from a file.

If you are a reverse engineer, you may have played with buffer overflow exploits. To
exploit them we need to redirect a shell code such as ,
which is written in hex. These characters cannot be typed directly on the keyboard as keys
for these characters are not present. Therefore, we use:

echo -e \xeb\x1a\x5e\x31\xc0\x88\x46"

This will redirect the byte sequence to a vulnerable executable.

These echo and redirection techniques automate interactive input programs. However,
these techniques are fragile, in that there is no validity checking and it's assumed that the
target application will always accept data in the same order. If the program asks for input in
a changing order, or some inputs are not always required, these methods fail.

The expect program can perform complex interactions and adapt to changes in the target
application. This program is in worldwide use to control hardware tests, validate software
builds, query router statistics, and much more.

Have a Good Command

[117]

There's more...
The expect application is an interpreter similar to the shell. It's based on the TCL language.
We'll discuss the spawn, expect, and send commands for simple automation. With the
power of the TCL language behind it, expect can do much more complex tasks. You can
learn more about the TCL language at the website.

Automating with expect
 does not come by default on all Linux distributions. You may have to install the

expect package with your package manager (or).

Expect has three main commands:

Commands Description

Runs the new target application.

Watches for a pattern to be sent by the target application.

Sends a string to the target application.

The following example spawns the backup script and then looks for the patterns
and to determine if the backup script is asking for a folder name or a filename. It
will then send the appropriate reply. If the backup script is rewritten to request files first
and then folders, this automation script still works.

Run it as:

$./automate_expect.tcl

Have a Good Command

[118]

The command's parameters are the target application and arguments to be
automated.

The command accepts a set of patterns to look for and an action to perform when
that pattern is matched. The action is enclosed in curly braces.

The command is the message to be sent. This is similar to echo in that it does
not automatically include the newline and does understand backslash symbols.

Making commands quicker by running
parallel processes
Computing power constantly increases not only because processors have higher clock
cycles but also because they have multiple cores. This means that in a single hardware
processor there are multiple logical processors. It's like having several computers, instead of
just one.

However, multiple cores are useless unless the software makes use of them. For example, a
program that does huge calculations may only run on one core while the others will sit idle.
The software has to be aware and take advantage of the multiple cores if we want it to be
faster.

In this recipe, we will see how we can make our commands run faster.

How to do it...
Let's take an example of the command we discussed in the previous recipes. This
command performs complex computations, making it CPU-intensive. If we have more than
one file that we want to generate a checksum for, we can run multiple instances of
using a script like this:

Have a Good Command

[119]

When we run this, we get the following output:

$./generate_checksums.sh
330dcb53f253acdf76431cecca0fefe7 File1.iso
bd1694a6fe6df12c3b8141dcffaf06e6 File2.iso

The output will be the same as running the following command:

md5sum File1.iso File2.iso

However, if the commands run simultaneously, you'll get the results quicker if you
have a multi–core processor (you can verify this using the command).

How it works...
We exploit the Bash operand , which instructs the shell to send the command to the
background and continue with the script. However, this means our script will exit as soon
as the loop completes, while the processes are still running in the background. To
prevent this, we get the PIDs of the processes using , which in Bash holds the PID of the
last background process. We append these PIDs to an array and then use the
command to wait for these processes to finish.

There's more...
The Bash operand works well for a small number of tasks. If you had a hundred files to
checksum, the script would try to start a hundred processes and might force your system
into swapping, which would make the tasks run slower.

The GNU parallel command is not part of all installations, but again it can be loaded with
your package manager. The parallel command optimizes the use of your resources without
overloading any of them.

The parallel command reads a list of files on and uses options similar to the find
command's argument to process these files. The symbol represents the file to be
processed, and the symbol represents the filename without a suffix.

The following command uses Imagemagick's command to make new, resized
images of all the images in a folder:

ls *jpg | parallel convert {} -geometry 50x50 {.}Small.jpg

Have a Good Command

[120]

Examining a directory, files and
subdirectories in it
One of the commonest problems we deal with is finding misplaced files and sorting out
mangled file hierarchies. This section will discuss tricks for examining a portion of the
filesystem and presenting the contents.

Getting ready
The command and loops we discussed give us tools to examine and report details in a
directory and its contents.

How to do it...
The next recipes show two ways to examine a directory. First we'll display the hierarchy as
a tree, then we'll see how to generate a summary of files and folders under a directory.

Generating a tree view of a directory.
Sometimes it's easier to visualize a file system if it's presented graphically.

The next recipe pulls together several of the tools we discussed. It uses the find command to
generate a list of all the files and sub-folders under the current folder.

The option creates a subshell which uses echo to send the filenames to the
command's . There are two commands. The first deletes all alphanumeric
characters, and any dash (), underbar (), or period (). This passes only the slashes () in
the path to the second command, which translates those slashes to spaces. Finally, the

 command strips the leading path from the filename and displays it.

Use these to view a tree of the folders in :

$ cd /var/log
$ find . -exec sh -c 'echo -n {} | tr -d "[:alnum:]_.\-" | \
 tr "/" " "; basename {}' \;

Have a Good Command

[121]

This output is generated:

mail
 statistics
gdm
 ::0.log
 ::0.log.1
cups
 error_log
 access_log
 ... access_l

Generating a summary of files and sub-directories
We can generate a list of subdirectories, and the number of files in them, with a
combination of the command, , and commands, which will be discussed in
greater detail in the next chapter.

Use the following to get a summary of files in the current folder:

If this script is run in , it will generate output like this:

103 files in .
17 files in ./cups
0 files in ./hp
0 files in ./hp/tmp

33
File In, File Out

In this chapter, we will be covering the following recipes:

Generating files of any size
The intersection and set difference (A-B) on text files
Finding and deleting duplicate files
Working with file permissions, ownership, and the sticky bit
Making files immutable
Generating blank files in bulk
Finding symbolic links and their targets
Enumerating file type statistics
Using loopback files
Creating ISO files and hybrid ISO
Finding the difference between files, and patching
Using head and tail for printing the last or first 10 lines
Listing only directories - alternative methods
Fast command-line navigation using and
Counting the number of lines, words, and characters in a file
Printing the directory tree
Manipulating video and image files

File In, File Out

[123]

Introduction
Unix provides a file-style interface to all devices and system features. The special files
provide direct access to devices such as USB sticks and disk drives and provide access to
system functions such as memory usage, sensors, and the process stack. For example, the
command terminal we use is associated with a device file. We can write to the terminal by
writing to the corresponding device file. We can access directories, regular files, block
devices, character-special devices, symbolic links, sockets, named pipes, and so on as files.
Filename, size, file type, modification time, access time, change time, inode, links associated,
and the filesystem the file is on are all attributes and properties files can have. This chapter
deals with recipes to handle operations or properties related to files.

Generating files of any size
A file of random data is useful for testing. You can use such files to test application
efficiency, to confirm that an application is truly input-neutral, to confirm there's no size
limitations in your application, to create loopback filesystems (loopback files are files that
can contain a filesystem itself and these files can be mounted similarly to a physical device
using the command), and more. Linux provides general utilities to construct such
files.

How to do it...
The easiest way to create a large file of a given size is with the command. The
command clones the given input and writes an exact copy to the output. Input can be

, a device file, a regular file, and so on. Output can be , a device file, a regular
file, and so on. An example of the command is as follows:

$ dd if=/dev/zero of=junk.data bs=1M count=1
1+0 records in
1+0 records out
1048576 bytes (1.0 MB) copied, 0.00767266 s, 137 MB/s

This command creates a file called containing exactly 1 MB of zeros.

File In, File Out

[124]

Let's go through the parameters:

 defines the file
 defines the file
 defines bytes in a block

 defines the number of blocks to be copied

Be careful while using the command as root, as it operates on a low
level with the devices. A mistake could wipe your disk or corrupt the data.
Double-check your command syntax, especially your of parameter
for accuracy.
In the previous example, we created a 1 MB file, by specifying as 1 MB
with a count of 1. If was set to and to , the total file size
would be 4 MB.

We can use various units for blocksize (bs). Append any of the following characters to the
number to specify the size:

Unit size Code

Byte (1 B)

Word (2 B)

Block (512 B)

Kilobyte (1024 B)

Megabyte (1024 KB)

Gigabyte (1024 MB)

We can generate a file of any size using bs. Instead of MB we can use any other unit
notations, such as the ones mentioned in the previous table.

 is a character special device, which returns the zero byte ().

If the input parameter () is not specified, dd will read input from . If the output
parameter () is not specified, will use .

The command can be used to measure the speed of memory operations by transferring a
large quantity of data to and checking the command output (for example,

, as seen in the
previous example).

File In, File Out

[125]

The intersection and set difference (A-B) on
text files
Intersection and set difference operations are common in mathematics classes on set theory.
Similar operations on strings are useful in some scenarios.

Getting ready
The command is a utility to perform a comparison between two sorted files. It
displays lines that are unique to file 1, file 2, and lines in both files. It has options to
suppress one more column, making it easy to perform intersection and difference
operations.

Intersection: The intersection operation will print the lines the specified files have
in common with one another
Difference: The difference operation will print the lines the specified files contain
and that are not the same in all of those files
Set difference: The set difference operation will print the lines in file that do
not match those in all of the set of files specified (plus , for example)

How to do it...
Note that takes two sorted files as input. Here are our sample input files:

$ cat A.txt
apple
orange
gold
silver
steel
iron

$ cat B.txt
orange
gold
cookies
carrot

$ sort A.txt -o A.txt ; sort B.txt -o B.txt

File In, File Out

[126]

First, execute without any options:1.

$ comm A.txt B.txt
 apple
 carrot
 cookies
 gold
 iron
 orange
 silver
 steel

 The first column of the output contains lines that are only in . The second
column contains lines that are only in . The third column contains the
common lines from and . Each of the columns are delimited using
the tab () character.

In order to print the intersection of two files, we need to remove the first and2.
second columns and print the third column. The option removes the first
column, and the option removes the second column, leaving the third column:

$ comm A.txt B.txt -1 -2
 gold
 orange

Print only the lines that are uncommon between the two files by removing3.
column :

$ comm A.txt B.txt -3
 apple
 carrot
 cookies
 iron
 silver
 steel

 This output uses two columns with blanks to show the unique lines in file1 and
file2. We can make this more readable as a list of unique lines by merging the two
columns into one, like this:

apple
 carrot
 cookies
 iron
 silver
 steel

File In, File Out

[127]

The lines can be merged by removing the tab characters with (discussed in4.
, Have a Good Command)

$ comm A.txt B.txt -3 | tr -d '\t'
 apple
 carrot
 cookies
 iron
 silver
 steel

By removing the unnecessary columns, we can produce the set difference for5.
 and , as follows:

Set difference for :

 $ comm A.txt B.txt -2 -3

 removes the second and third columns

Set difference for :

 $ comm A.txt B.txt -1 -3

 removes the second and third columns

How it works...
These command-line options reduce the output:

: Removes the first column
: Removes the second column
: Removes the third column

The set difference operation enables you to compare two files and print all the lines that are
in the or file excluding the common lines in and . When
and are given as arguments to the command, the output will contain column-1
with the set difference for with regard to and column-2 will contain the set
difference for with regard to .

File In, File Out

[128]

The command will accept a character on the command line to read one file from
. This provides a way to compare more than one file with a given input.

Suppose we have a file, like this:

$> cat C.txt
 pear
 orange
 silver
 mithral

We can compare the and files with , like this:

$> sort B.txt C.txt | comm - A.txt
 apple
 carrot
 cookies
 gold
 iron
 mithral
 orange
 pear
 silver
 steel

Finding and deleting duplicate files
If you need to recover backups or you use your laptop in a disconnected mode or download
images from a phone, you'll eventually end up with duplicates: files with the same content.
You'll probably want to remove duplicate files and keep a single copy. We can identify
duplicate files by examining the content with shell utilities. This recipe describes finding
duplicate files and performing operations based on the result.

Getting ready
We identify the duplicate files by comparing file content. Checksums are ideal for this task.
Files with the same content will produce the same checksum values.

File In, File Out

[129]

How to do it...
Follow these steps for finding or deleting duplicate files:

Generate some test files:1.

$ echo "hello" > test ; cp test test_copy1 ; cp test test_copy2;
 $ echo "next" > other;
 # test_copy1 and test_copy2 are copy of test

The code for the script to remove the duplicate files uses , an interpreter that's2.
available on all Linux/Unix systems:

File In, File Out

[130]

Run the code as follows:3.

$./remove_duplicates.sh

How it works...
The preceding code will find the copies of the same file in a directory and remove all except
one copy of the file. Let's go through the code and see how it works.

 lists the details of the files in the current folder sorted by file size. The
 option tells to print dates in the ISO format. reads the output of

 and performs comparisons on columns and rows of the input text to find duplicate
files.

The logic behind the code is as follows:

We list the files sorted by size, so files of the same size will be adjacent. The first
step in finding identical files is to find ones with the same size. Next, we calculate
the checksum of the files. If the checksums match, the files are duplicates and one
set of the duplicates are removed.
The block of is executed before the main processing. It reads the
"total" lines and initializes the variables. The bulk of the processing takes place in
the block, when reads and processes the rest of the output. The
block statements are executed after all input has been read. The output of
is as follows:

total 16
 -rw-r--r-- 1 slynux slynux 5 2010-06-29 11:50 other
 -rw-r--r-- 1 slynux slynux 6 2010-06-29 11:50 test
 -rw-r--r-- 1 slynux slynux 6 2010-06-29 11:50 test_copy1
 -rw-r--r-- 1 slynux slynux 6 2010-06-29 11:50 test_copy2

The output of the first line tells us the total number of files, which in this case is
not useful. We use to read the first line and then dump it. We need to
compare each of the lines and the following line for size. In the block, we
read the first line and store the name and size (which are the eighth and fifth
columns). When enters the block, the rest of the lines are read, one by one.
This block compares the size obtained from the current line and the previously
stored size in the variable. If they are equal, it means that the two files are
duplicates by size and must be further checked by .

We have played some tricks on the way to the solution.

File In, File Out

[131]

The external command output can be read inside as follows:

"cmd"| getline

Once the line is read, the entire line is in and each column is available in , , ..., .
Here, we read the md5sum checksum of files into the and variables. The

 and variables store the consecutive filenames. If the checksums of two files
are the same, they are confirmed to be duplicates and are printed.

We need to find a file from each group of duplicates so we can remove all other duplicates.
We calculate the value of the duplicates and print one file from each group of
duplicates by finding unique lines, comparing from each line using (the first
32 characters in the output; usually, the output consists of a 32-character
hash followed by the filename). One sample from each group of duplicates is written to

.

Now, we need to remove the files listed in , excluding the files listed in
. The command prints files in but not in
.

For that, we use a set difference operation (refer to the recipes on intersection, difference,
and set difference).

 only processes sorted input. Therefore, is used to filter
and .

The command is used to pass filenames to the command as well as . The
command sends its input to both . We can also print text to the
terminal by redirecting to . is the device corresponding to
(standard error). By redirecting to a device file, text sent to will be printed in
the terminal as standard error.

Working with file permissions, ownership,
and the sticky bit
File permissions and ownership are one of the distinguishing features of the Unix/Linux
filesystems. These features protect your information in a multi-user environment.
Mismatched permissions and ownership can also make it difficult to share files. These
recipes explain how to use a file's permission and ownership effectively.

File In, File Out

[132]

Each file possesses many types of permissions. Three sets of permissions (user, group, and
others) are commonly manipulated.

The user is the owner of the file, who commonly has all access permitted. The group is the
collection of users (as defined by the system administrator) that may be permitted some
access to the file. Others are any users other than the owner or members of the owner's
group.

The command's option displays many aspects of the file including type, permissions,
owner, and group:

-rw-r--r-- 1 slynux users 2497 2010-02-28 11:22 bot.py
 drwxr-xr-x 2 slynux users 4096 2010-05-27 14:31 a.py
 -rw-r--r-- 1 slynux users 539 2010-02-10 09:11 cl.pl

The first column of the output defines the file type as follows:

: This is used if it is a regular file
: This is used if it is a directory
: This is used for a character device
: This is used for a block device
: This is used if it is a symbolic link
: This is used for a socket
: This is used for a pipe

The next nine characters are divided into three groups of three letters each (--- --- ---). The
first three characters correspond to the permissions of the user (owner), the second sets of
three characters correspond to the permissions of the group, and the third sets of three
characters correspond to the permissions of others. Each character in the nine-character
sequence (nine permissions) specifies whether permission is set or unset. If the permission
is set, a character appears in the corresponding position, otherwise a character appears in
that position, which means that the corresponding permission is unset (unavailable).

The three common letters in the trio are:

: When this is set, the file, device, or directory can be read.
: When this is set, the file, device, or directory can be modified. On

folders, this defines whether files can be created or deleted.
: When this is set, the file, can be executed. On folders, this defines

whether the files in the folder can be accessed.

File In, File Out

[133]

Let's take a look at what each of these three character sets mean for the user, group, and
others:

User (permission string:): These define the options a user has.
Usually, the user's permission is for a data file and for a script or
executable. The user has one more special permission called (), which
appears in the position of execute (). The permission enables an
executable file to be executed effectively as its owner, even when the executable is
run by another user. An example of a file with permission set is

.
Group (permission string:): The second set of three characters
specifies the group permissions. Instead of , the group has a ()
bit. This enables the item to run an executable file with an effective group as the
owner group. But the group, which initiates the command, may be different. An
example of group permission is .
Others (permission string:): Other permissions appear as the last
three characters in the permission string. If these are set, anyone can access this
file or folder. As a rule you will want to set these bits to .

Directories have a special permission called a sticky bit. When a sticky bit is set for a
directory, only the user who created the directory can delete the files in the directory, even
if the group and others have write permissions. The sticky bit appears in the position of
execute character () in the others permission set. It is represented as character or . The
character appears in the position if the execute permission is unset and the sticky bit is set.
If the sticky bit and the execute permission are set, the character appears in the position.
Consider this example:

------rwt , ------rwT

A typical example of a directory with sticky bit turned on is , where anyone can create
a file, but only the owner can delete one.

In each of the output lines, the string corresponds to the user and
group. Here, is the owner who is a member of the group users.

How to do it...
In order to set permissions for files, we use the command.

File In, File Out

[134]

Assume that we need to set the permission, .

Set these permissions with chmod:

$ chmod u=rwx g=rw o=r filename

The options used here are as follows:

: This specifies user permissions
: This specifies group permissions
: This specifies others permissions

Use to add permission to a user, group, or others, and use to remove the permissions.

Add the executable permission to a file, which has the permission, :

$ chmod o+x filename

This command adds the permission for others.

Add the executable permission to all permission categories, that is, for user, group, and
others:

$ chmod a+x filename

Here means all.

In order to remove a permission, use . For example, $ chmod a-x filename.

Permissions can be denoted with three-digit octal numbers in which each digit corresponds
to user, group, and other, in that order.

Read, write, and execute permissions have unique octal numbers, as follows:

 = 4
 = 2
 = 1

We calculate the required combination of permissions by adding the octal values. Consider
this example:

 = 4 + 2 = 6
 = 4 + 1 = 5

File In, File Out

[135]

The permission in the numeric method is as follows:

 = 4 + 2 + 1 = 7
 = 4 + 2 = 6
 = 4

Therefore, is equal to , and the command to set the permissions using
octal values is .

There's more...
Let's examine more tasks we can perform on files and directories.

Changing ownership
The command will change the ownership of files and folders:

$ chown user.group filename

Consider this example:

$ chown slynux.users test.sh

Here, is the user, and is the group.

Setting the sticky bit
The sticky bit can be applied to directories. When the sticky bit is set, only the owner can
delete files, even though others have write permission for the folder.

The sticky bit is set with the option to :

$ chmod a+t directory_name

Applying permissions recursively to files
Sometimes, you may need to change the permissions of all the files and directories inside
the current directory recursively. The option to supports recursive changes:

$ chmod 777 . -R

File In, File Out

[136]

The option specifies to change the permissions recursively.

We used to specify the path as the current working directory. This is equivalent to
.

Applying ownership recursively
The command also supports the flag to recursively change ownership:

$ chown user.group . -R

Running an executable as a different user (setuid)
Some executables need to be executed as a user other than the current user. For example,
the http server may be initiated during the boot sequence by root, but the task should be
owned by the user. The permission enables the file to be executed as the file
owner when any other user runs the program.

First, change the ownership to the user that needs to execute it and then log in as the user.
Then, run the following commands:

$ chmod +s executable_file
 # chown root.root executable_file
 # chmod +s executable_file
 $./executable_file

Now it executes as the root user regardless of who invokes it.

The is only valid for Linux ELF binaries. You cannot set a shell script to run as
another user. This is a security feature.

Making files immutable
The Read, Write, Execute, and Setuid fields are common to all Linux file systems. The
Extended File Systems (ext2, ext3, and ext4) support more attributes.

One of the extended attributes makes files immutable. When a file is made immutable, any
user or super user cannot remove the file until the immutable attribute is removed from the
file. You can determine the type of filesystem with the command, or by looking at
the file. The first column of the file specifies the partition device path (for
example,) and the third column specifies the filesystem type (for example, ext3).

File In, File Out

[137]

Making a file immutable is one method for securing files from modification. One example is
to make the file immutable. The file stores a list of DNS
servers, which convert domain names (such as packtpub.com) to IP addresses. The DNS
server is usually your ISP's DNS server. However, if you prefer a third-party server, you
can modify to point to that DNS. The next time you connect to your
ISP, will be overwritten to point to ISP's DNS server. To prevent this,
make immutable.

In this recipe, we will see how to make files immutable and make them mutable when
required.

Getting ready
The command is used to change extended attributes. It can make files immutable,
as well as modify attributes to tune filesystem sync or compression.

How to do it...
To make the files immutable, follow these steps:

Use to make a file immutable:1.

chattr +i file

The file is now immutable. Try the following command:2.

rm file
 rm: cannot remove `file': Operation not permitted

In order to make it writable, remove the immutable attribute, as follows:3.

chattr -i file

Generating blank files in bulk
Scripts must be tested before they are used on a live system. We may need to generate
thousands of files to confirm that there are no memory leaks or processes left hanging. This
recipe shows how to generate blank files.

File In, File Out

[138]

Getting ready
The command creates blank files or modifies the timestamp of existing files.

How to do it...
To generate blank files in bulk, follow these steps:

Invoking the touch command with a non-existent filename creates an empty file:1.

$ touch filename

Generate bulk files with a different name pattern:2.

In the preceding code, will be expanded to a string
. Instead of , we can use various shorthand patterns such as

, , and so on.

If a file already exists, the command changes all timestamps associated with the file
to the current time. These options define a subset of timestamps to be modified:

: This modifies the access time
: This modifies the modification time

Instead of the current time, we can specify the time and date:

$ touch -d "Fri Jun 25 20:50:14 IST 1999" filename

The date string used with need not be in this exact format. It will accept many simple
date formats. We can omit time from the string and provide only dates such as Jan 20, 2010.

File In, File Out

[139]

Finding symbolic links and their targets
Symbolic links are common in Unix-like systems. Reasons for using them range from
convenient access, to maintaining multiple versions of the same library or program. This
recipe will discuss the basic techniques for handling symbolic links.

Symbolic links are pointers to other files or folders. They are similar in function to aliases in
MacOS X or shortcuts in Windows. When symbolic links are removed, it does not affect the
original file.

How to do it...
The following steps will help you handle symbolic links:

To create a symbolic link run the following command:1.

$ ln -s target symbolic_link_name

 Consider this example:

$ ln -l -s /var/www/ ~/web

 This creates a symbolic link (called web) in the current user's home directory,
which points to .

To verify the link was created, run this command:2.

$ ls -l ~/web
 lrwxrwxrwx 1 slynux slynux 8 2010-06-25 21:34 web -> /var/www

 specifies that points to .

To print symbolic links in the current directory, use this command:3.

$ ls -l | grep "^l"

To print all symbolic links in the current directory and subdirectories, run this4.
command:

$ find . -type l -print

File In, File Out

[140]

To display the target path for a given symbolic link, use the command:5.

$ readlink web
 /var/www

How it works...
When using and to display symbolic links in the current folder, the
command filters the output to only display lines starting with . The specifies the
start of the string. The following specifies that the string must start with l, the identifier
for a link.

When using , we use the argument - , which instructs find to search for symbolic
link files. The option prints the list of symbolic links to the standard output
(). The initial path is given as the current directory.

Enumerating file type statistics
Linux supports many file types. This recipe describes a script that enumerates through all
the files inside a directory and its descendants, and prints a report with details on types of
files (files with different file types), and the count of each file type. This recipe is an exercise
on writing scripts to enumerate through many files and collect details.

Getting ready
On Unix/Linux systems, file types are not defined by the file extension (as Microsoft
Windows does). Unix/Linux systems use the file command, which examines the file's
contents to determine a file's type. This recipe collects file type statistics for a number of
files. It stores the count of files of the same type in an associative array.

The associative arrays are supported in bash version 4 and newer.

File In, File Out

[141]

How to do it...
To enumerate file type statistics, follow these steps:

To print the type of a file, use the following command:1.

$ file filename

 $ file /etc/passwd
 /etc/passwd: ASCII text

Print the file type without the filename:2.

$ file -b filename
 ASCII text

The script for file statistics is as follows:3.

The usage is as follows:

$./filestat.sh /home/slynux/temp

File In, File Out

[142]

A sample output is shown as follows:5.

$./filetype.sh /home/slynux/programs
 ============ File types and counts =============
 Vim swap file : 1
 ELF 32-bit LSB executable : 6
 ASCII text : 2
 ASCII C program text : 10

How it works...
This script relies on the associative array . This array is indexed by the type of
file: PDF, ASCII, and so on. Each index holds the count for that type of file. It is defined by
the command.

The script then consists of two loops: a while loop, that processes the output from the find
command, and a loop, that iterates through the indices of the variable and
generates output.

The while loop syntax looks like this:

For this script, we use the output of the find command instead of a file as input to .

The command is equivalent to a filename, but
it substitutes the filename with a subprocess output.

Note that the first is for input redirection and the second is for
converting the subprocess output to a filename. Also, there is a space
between these two so the shell won't interpret it as the operator.

The command uses the option to return a list of files under the subdirectory
defined in $path. The filenames are read one line at a time by the command. When the
read command receives an EOF (End of File), it returns a fail and the command exits.

Within the loop, the file command is used to determine a file's type. The option is
used to display the file type without the name.

File In, File Out

[143]

The file command provides more details than we need, such as image encoding and
resolution (in the case of an image file). The details are comma-separated, as in the
following example:

$ file a.out -b
 ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
 dynamically linked (uses shared libs), for GNU/Linux 2.6.15, not
 stripped

We need to extract only from the previous details. Hence,
we use the option to specify as the delimiter and to select the first field.

 is equivalent to a filename, but it substitutes the
filename with a subprocess output. Note that the first is for input redirection and the
second is for converting the subprocess output to a filename. Also, there is a space
between these two so that the shell won't interpret it as the operator.

In Bash 3.x and higher, we have a new operator that lets us use a string output as an
input file. Using this operator, we can write the done line of the loop, as follows:

done <<< "`find $path -type f -print`"

 returns the list of array indexes.

Using loopback files
Linux filesystems normally exist on devices such as disks or memory sticks. A file can also
be mounted as a filesystem. This filesystem-in-a-file can be used for testing, for customized
filesystems, or even as an encrypted disk for confidential information.

How to do it...
To create a 1 GB ext4 filesystem in a file, follow these steps:

Use to create a 1 GB file:1.

$ dd if=/dev/zero of=loobackfile.img bs=1G count=1
 1024+0 records in
 1024+0 records out
 1073741824 bytes (1.1 GB) copied, 37.3155 s, 28.8 MB/s

File In, File Out

[144]

 The size of the created file exceeds 1 GB because the hard disk is a block device,
and hence, storage must be allocated by integral multiples of blocks size.

Format the 1 GB file to ext4 using the command:2.

$ mkfs.ext4 loopbackfile.img

Check the file type with the file command:3.

$ file loobackfile.img
 loobackfile.img: Linux rev 1.0 ext4 filesystem data,
 UUID=c9d56c42-
 f8e6-4cbd-aeab-369d5056660a (extents) (large files) (huge files)

Create a mount point and mount the loopback file with and mount:4.

 # mkdir /mnt/loopback
 # mount -o loop loopbackfile.img /mnt/loopback

The option is used to mount loopback filesystems.

This is a short method that attaches the loopback filesystem to a device chosen by
the operating system named something similar to or .

To specify a specific loopback device, run the following command:5.

losetup /dev/loop1 loopbackfile.img
 # mount /dev/loop1 /mnt/loopback

To umount (), use the following syntax:6.

umount mount_point

Consider this example:

umount /mnt/loopback

We can also use the device file path as an argument to the command:7.

umount /dev/loop1

Note that the mount and umount commands should be executed as a root
user, since it is a privileged command.

File In, File Out

[145]

How it works...
First we had to create a file to make a loopback filesystem. For this, we used , which is a
generic command for copying raw data. It copies data from the file specified in the
parameter to the file specified in the parameter. We instruct to copy data in blocks of
size 1 GB and copy one such block, creating a 1 GB file. The file is a special file,
which will always return 0 when you read from it.

We used the command to create an ext4 filesystem in the file. A filesystem is
needed on any device that can be mounted. Common filesystems include ext4, ext3, and
vfat.

The command attaches the loopback file to a mountpoint (in this
case). A mountpoint makes it possible for users to access the files stored on a filesystem.
The mountpoint must be created using the command before executing the
command. We pass the option to mount to tell it that we are mounting a loopback
file, not a device.

When knows it is operating on a loopback file, it sets up a device in
corresponding to the loopback file and then mounts it. If we wish to do it manually, we use
the command to create the device and then the command to mount it.

There's more...
Let's explore some more possibilities with loopback files and mounting.

Creating partitions inside loopback images
Suppose we want to create a loopback file, partition it, and finally mount a sub-partition. In
this case, we cannot use . We must manually set up the device and mount
the partitions in it.

File In, File Out

[146]

To partition a file of zeros:

losetup /dev/loop1 loopback.img
 # fdisk /dev/loop1

 is a standard partitioning tool on Linux systems. A very concise
tutorial on creating partitions using is available at

(make sure to use instead of in this tutorial).

Create partitions in and mount the first partition:

losetup -o 32256 /dev/loop2 loopback.img

Here, represents the first partition, is the offset flag, and bytes are for
a DOS partition scheme. The first partition starts 32256 bytes from the start of the hard disk.

We can set up the second partition by specifying the required offset. After mounting, we
can perform all regular operations as we can on physical devices.

Mounting loopback disk images with partitions more
quickly
We can manually pass partition offsets to to mount partitions inside a loopback
disk image. However, there is a quicker way to mount all the partitions inside such an
image using . This utility is usually not installed, so you will have to install it using
your package manager:

kpartx -v -a diskimage.img
 add map loop0p1 (252:0): 0 114688 linear /dev/loop0 8192
 add map loop0p2 (252:1): 0 15628288 linear /dev/loop0 122880

This creates mappings from the partitions in the disk image to devices in ,
which you can then mount. For example, to mount the first partition, use the following
command:

mount /dev/mapper/loop0p1 /mnt/disk1

When you're done with the devices (and unmounting any mounted partitions using
), remove the mappings by running the following command:

kpartx -d diskimage.img
 loop deleted : /dev/loop0

File In, File Out

[147]

Mounting ISO files as loopback
An ISO file is an archive of an optical media. We can mount ISO files in the same way that
we mount physical disks using loopback mounting.

We can even use a nonempty directory as the mount path. Then, the mount path will
contain data from the devices rather than the original contents, until the device is
unmounted. Consider this example:

mkdir /mnt/iso
 # mount -o loop linux.iso /mnt/iso

Now, perform operations using files from . ISO is a read-only filesystem.

Flush changing immediately with sync
Changes on a mounted device are not immediately written to the physical device. They are
only written when the internal memory buffer is full. We can force writing with the
command:

$ sync

Creating ISO files and hybrid ISO
An ISO image is an archive format that stores the exact image of an optical disk such as CD-
ROM, DVD-ROM, and so on. ISO files are commonly used to store content to be burned to
optical media.

This section will describe how to extract data from an optical disk into an ISO file that can
be mounted as a loopback device, and then explain ways to generate your own ISO file
systems that can be burned to an optical media.

We need to distinguish between bootable and non-bootable optical disks. Bootable disks are
capable of booting from themselves and also running an operating system or another
product. Bootable DVDs include installation kits and Live systems such as Knoppix and
Puppy.

File In, File Out

[148]

Non-bootable ISOs cannot do that. Upgrade kits, source code DVDs, and so on are non-
bootable.

Note that copying files from a bootable CD-ROM to another CD-ROM is
not sufficient to make the new one bootable. To preserve the bootable
nature of a CD-ROM, it must be copied as a disk image using an ISO file.

Many people use flash drives as a replacement for optical disks. When we write a bootable
ISO to a flash drive, it will not be bootable unless we use a special hybrid ISO image
designed specifically for the purpose.

These recipes will give you an insight into ISO images and manipulations.

Getting ready
As mentioned previously, Unix handles everything as files. Every device is a file. Hence, if
we want to copy an exact image of a device, we need to read all data from it and write to a
file. An optical media reader will be in the folder with a name such as ,

, or perhaps . Be careful when accessing an Multiple disk-type
devices are named . Your hard drive may be and the CD-ROM , for instance.

The command will read any data, and redirection will write that data to a file. This
works, but we'll also see better ways to do it.

How to do it...
In order to create an ISO image from , use the following command:

cat /dev/cdrom > image.iso

Though this will work, the preferred way to create an ISO image is with :

dd if=/dev/cdrom of=image.iso

The command creates an ISO image in a file. The output file created by
can be written to CD-ROM or DVD-ROM with utilities such as . The
command will create an ISO file from a directory containing all the files to be copied to the
ISO file:

$ mkisofs -V "Label" -o image.iso source_dir/

File In, File Out

[149]

The option in the command specifies the ISO file path. The is the
path of the directory to be used as content for the ISO file and the option specifies the
label to use for the ISO file.

There's more...
Let's learn more commands and techniques related to ISO files.

Hybrid ISO that boots off a flash drive or hard disk
Bootable ISO files cannot usually be transferred to a USB storage device to create a bootable
USB stick. However, special types of ISO files called hybrid ISOs can be flashed to create a
bootable device.

We can convert standard ISO files into hybrid ISOs with the command. The
 command is a new utility and most Linux distros don't include this by default.

You can download the from . The command
may also be available in your yum or repository as .

This command will make an ISO file bootable:

isohybrid image.iso

The ISO file can now be written to USB storage devices.

To write the ISO to a USB storage device, use the following command:

dd if=image.iso of=/dev/sdb1

Use the appropriate device instead of , or you can use , as follows:

cat image.iso >> /dev/sdb1

Burning an ISO from the command line
The command burns an ISO file to a CD-ROM or DVD-ROM.

To burn the image to the CD-ROM, run the following command:

cdrecord -v dev=/dev/cdrom image.iso

File In, File Out

[150]

Useful options include the following:

Specify the burning speed with the option:

 -speed SPEED

Consider this example:

cdrecord -v dev=/dev/cdrom image.iso -speed 8

Here, is the speed specified as 8x.

A CD-ROM can be burned in multi-sessions such that we can burn data multiple
times on a disk. Multisession burning can be done with the option:

cdrecord -v dev=/dev/cdrom image.iso -multi

Playing with the CD-ROM tray
If you are on a desktop computer, try the following commands and have fun:

$ eject

This command will eject the tray.

$ eject -t

This command will close the tray.

For extra points, write a loop that opens and closes the tray a number of times. It goes
without saying that one would never slip this into a co-workers while they are out
getting a coffee.

File In, File Out

[151]

Finding the difference between files, and
patching
When multiple versions of a file are available, it is useful to highlight the differences
between files rather than comparing them manually. This recipe illustrates how to generate
differences between files. When working with multiple developers, changes need to be
distributed to the others. Sending the entire source code to other developers is time
consuming. Sending a difference file instead is helpful, as it consists of only lines which are
changed, added, or removed, and line numbers are attached with it. This difference file is
called a patch file. We can add the changes specified in the patch file to the original source
code with the command. We can revert the changes by patching again.

How to do it...
The utility reports the differences between two files.

To demonstrate diff behavior, create the following files:1.

File 1:

File 2:

Nonunified output (without the flag) is:2.

$ diff version1.txt version2.txt
 3d2
 <line3
 6c5
 > GNU is not UNIX

File In, File Out

[152]

The unified output is:3.

$ diff -u version1.txt version2.txt
 --- version1.txt 2010-06-27 10:26:54.384884455 +0530
 +++ version2.txt 2010-06-27 10:27:28.782140889 +0530
 @@ -1,5 +1,5 @@
 this is the original text
 line2
 -line3
 line4
 happy hacking !
 -
 +GNU is not UNIX

 The option produces a unified output. Unified diff output is more readable
and is easier to interpret.

In unified , the lines starting with are the added lines and the lines starting
with are the removed lines.

A patch file can be generated by redirecting the output to a file:4.

$ diff -u version1.txt version2.txt > version.patch

The command can apply changes to either of the two files. When applied to
, we get the file. When applied to ,

we generate .

This command applies the patch:5.

$ patch -p1 version1.txt < version.patch
 patching file version1.txt

We now have with the same contents as .

To revert the changes, use the following command:6.

$ patch -p1 version1.txt < version.patch
 patching file version1.txt
 Reversed (or previously applied) patch detected! Assume -R? [n] y
 #Changes are reverted.

As shown, patching an already patched file reverts the changes. To avoid
prompting the user with , we can use the option along with the
command.

File In, File Out

[153]

There's more...
Let's go through additional features available with .

Generating difference against directories
The command can act recursively against directories. It will generate a difference
output for all the descendant files in the directories. Use the following command:

$ diff -Naur directory1 directory2

The interpretation of each of the options in this command is as follows:

: This is used for treating missing files as empty
: This is used to consider all files as text files
: This is used to produce unified output
: This is used to recursively traverse through the files in the directories

Using head and tail for printing the last or
first 10 lines
When examining a large file, thousands of lines long, the command, which will display
all the line,s is not suitable. Instead, we want to view a subset (for example, the first 10 lines
of the file or the last 10 lines of the file). We may need to print the first n lines or last n lines
or print all except the last n lines or all except the first n lines, or the lines between two
locations.

The and commands can do this.

How to do it...
The command reads the beginning of the input file.

Print the first 10 lines:1.

$ head file

File In, File Out

[154]

Read the data from :2.

$ cat text | head

Specify the number of first lines to be printed:3.

$ head -n 4 file

This command prints the first four lines.

Print all lines excluding the last lines:4.

$ head -n -M file

Note that it is negative M.

 For example, to print all the lines except the last five lines, use the following
command line:

$ seq 11 | head -n -5
 1
 2
 3
 4
 5
 6

This command prints lines 1 to 5:

$ seq 100 | head -n 5

Printing everything except the last lines is a common use for . When5.
examining log files we most often want to view the most recent (that is, the last)
lines.
To print the last 10 lines of a file, use this command:6.

$ tail file

To read from , use the following command:7.

$ cat text | tail

File In, File Out

[155]

Print the last five lines:8.

$ tail -n 5 file

To print all lines excluding the first M lines, use this command:9.

$ tail -n +(M+1)

For example, to print all lines except the first five lines, M + 1 = 6, the command is as
follows:

$ seq 100 | tail -n +6

This will print from 6 to 100.

One common use for is to monitor new lines in a growing file, for instance, a system
log file. Since new lines are appended to the end of the file, can be used to display
them as they are written. To monitor the growth of the file, has a special option or

, which enables to follow the appended lines and display them as data is
added:

$ tail -f growing_file

You will probably want to use this on logfiles. The command to monitor the growth of the
files would be this:

tail -f /var/log/messages

Alternatively, this command can be used:

$ dmesg | tail -f

The command returns contents of the kernel ring buffer messages. We can use this to
debug USB devices, examine disk behavior, or monitor network connectivity. The tail
can add a sleep interval to set the interval during which the file updates are monitored.

The command can be instructed to terminate after a given process ID dies.

Suppose a process is appending data to a file that we are monitoring. The tail should
be executed until the process dies.

$ PID=$(pidof Foo)
 $ tail -f file --pid $PID

File In, File Out

[156]

When the process terminates, also terminates.

Let's work on an example.

Create a new file and open the file in your favorite text editor.1.
Now run the following commands:2.

$ PID=$(pidof gedit)
 $ tail -f file.txt --pid $PID

Add new lines to the file and make frequent file saves.3.

When you add new lines to the end of the file, the new lines will be written to the terminal
by the command. When you close the edit session, the command will terminate.

Listing only directories - alternative methods
Listing only directories via scripting is deceptively difficult. This recipe introduces multiple
ways of listing only directories.

Getting ready
g ready There are multiple ways of listing directories only. The command is similar to

, but with fewer options. We can also list directories with and .

How to do it...
Directories in the current path can be displayed in the following ways:

Use with to print directories:1.

$ ls -d */

Use with :2.

 $ ls -F | grep "/$"

File In, File Out

[157]

Use with :3.

$ ls -l | grep "^d"

Use to print directories:4.

$ find . -type d -maxdepth 1 -print

How it works...
When the parameter is used with , all entries are appended with some type of file
character such as , , , and so on. For directories, entries are appended with the
character. We use to filter only entries ending with the end-of-line indicator.

The first character of any line in the output is the type of file character. For a
directory, the type of file character is . Hence, we use to filter lines starting with

. is a start-of-line indicator.

The command can take the parameter type as directory and is set to since
we don't want it to search inside the subdirectories.

Fast command-line navigation using pushd
and popd
When navigating around multiple locations in the filesystem, a common practice is to cd to
paths you copy and paste. This is not efficient if we are dealing with several locations.
When we need to navigate back and forth between locations, it is time consuming to type or
paste the path with each command. Bash and other shells support and to
cycle between directories.

Getting ready
 and are used to switch between multiple directories without retyping directory

paths. and create a stack of paths-a LastInFirstOut (LIFO) list of the directories
we've visited.

File In, File Out

[158]

How to do it...
The and commands replace cd for changing your working directory.

To push and change a directory to a path, use this command:1.

~ $ pushd /var/www

Now the stack contains and the current directory is changed to
.

Now, push the next directory path:2.

/var/www $ pushd /usr/src

 Now the stack contains and the current directory is
.

You can push as many directory paths as needed.

View the stack contents:3.

$ dirs
 /usr/src /var/www ~ /usr/share /etc
 0 1 2 3 4

Now when you want to switch to any path in the list, number each path from to4.
, then use the path number for which we need to switch. Consider this example:

$ pushd +3

 Now it will rotate the stack and switch to the directory.

 will always add paths to the stack. To remove paths from the stack, use
.

Remove a last pushed path and change to the next directory:5.

$ popd

Suppose the stack is , and the
current directory is . The command will change the stack to

 and change the current directory to
.

File In, File Out

[159]

To remove a specific path from the list, use . is counted as to 6.
from left to right.

There's more...
Let's go through the essential directory navigation practices.

pushd and popd are useful when there are more than
three directory paths used. However, when you use
only two locations, there is an alternative and easier
way, that is, cd -.
The current path is .

/var/www $ cd /usr/src
/usr/src $ # do something

Now, to switch back to , you don't have to type , just execute:

/usr/src $ cd -

To switch to :

/var/www $ cd -

Counting the number of lines, words, and
characters in a file
Counting the number of lines, words, and characters in a text file is frequently useful. This
book includes some tricky examples in other chapters where the counts are used to produce
the required output. Counting LOC (Lines of Code) is a common application for
developers. We may need to count a subset of files, for example, all source code files, but
not object files. A combination of with other commands can perform that.

The utility counts lines, words, and characters. It stands for word count.

File In, File Out

[160]

How to do it...
The command supports options to count the number of lines, words, and characters:

Count the number of lines:1.

$ wc -l file

To use as input, use this command:2.

$ cat file | wc -l

Count the number of words:3.

$ wc -w file
 $ cat file | wc -w

Count the number of characters:4.

$ wc -c file
 $ cat file | wc -c

 To count the characters in a text string, use this command:

echo -n 1234 | wc -c
 4

 Here, deletes the final newline character.

To print the number of lines, words, and characters, execute without any5.
options:

$ wc file
 1435 15763 112200

Those are the number of lines, words, and characters.

Print the length of the longest line in a file with the option:6.

$ wc file -L
 205

File In, File Out

[161]

Printing the directory tree
Graphically representing directories and filesystems as a tree hierarchy makes them easier
to visualize. This representation is used by monitoring scripts to present the filesystem in an
easy-to-read format.

Getting ready
The command prints graphical trees of files and directories. The command does
not come with preinstalled Linux distributions. You must install it using the package
manager.

How to do it...
The following is a sample Unix filesystem tree to show an example:

$ tree ~/unixfs
 unixfs/
 |-- bin
 | |-- cat
 | `-- ls
 |-- etc
 | `-- passwd
 |-- home
 | |-- pactpub
 | | |-- automate.sh
 | | `-- schedule
 | `-- slynux
 |-- opt
 |-- tmp
 `-- usr
 8 directories, 5 files

File In, File Out

[162]

The command supports several options:

To display only files that match a pattern, use the option:

$ tree path -P PATTERN # Pattern should be wildcard in single
 quotes

Consider this example:

$ tree PATH -P '*.sh' # Replace PATH with a directory path
 |-- home
 | |-- packtpub
 | | `-- automate.sh

To display only files that do not match a pattern, use the option:

$ tree path -I PATTERN

To print the size along with files and directories, use the option:

$ tree -h

There's more...
The tree command can generate output in HTML as well as to a terminal.

HTML output for tree
This command creates an HTML file with the tree output:

$ tree PATH -H http://localhost -o out.html

Replace with the URL where you are planning to host the file. Replace
 with a real path for the base directory. For the current directory, use as .

File In, File Out

[163]

The web page generated from the directory listing will look as follows:

File In, File Out

[164]

Manipulating video and image files
Linux and Unix support many applications and tools for working with images and video
files. Most Linux distributions include the imageMagick suite with the convert application
for manipulating images. The full-function video editing applications such as kdenlive and
openshot are built on top of the ffmpeg and mencoder command line applications.

The convert application has hundreds of options. We'll just use the one that extracts a
portion of an image.

 and have enough options and features to fill a book all by themselves.
We'll just look at a couple simple uses.

This section has some recipes for manipulating still images and videos.

Getting ready
Most Linux distributions include the ImageMagick tools. If your system does not include
them, or if they are out of date, there are instructions for downloading and installing the
latest tools on the ImageMagick website at .

Like ImageMagick, many Linux distributions already include the and
toolsets. The latest releases can be found at the and websites at

 and .

Building and installing the video tools will probably require loading codecs and other
ancillary files with confusing version dependencies. If you intend to use your Linux system
for audio and video editing, it's simplest to use a Linux distribution that's designed for this,
such as the Ubuntu Studio distributions.

Here are some recipes for a couple of common audio-video conversions:

File In, File Out

[165]

Extracting Audio from a movie file (mp4)
Music videos are fun to watch, but the point of music is to listen to it. Extracting the audio
portion from a video is simple:

How to do it...
The following command accepts an video file () and extracts the audio
portion into a new file () as an :

Making a video from a set of still images
Many cameras support taking pictures at intervals. You can use this feature to do your own
time-lapse photography or create stop-action videos. There are examples of this on

. You can convert a set of still images into a video with the OpenShot
video editing package or from a command line using the mencoder tool.

This script will accept a list of images and will create an MPEG video file from it:

echo $* | tr ' ' '\n' >files.txt
mencoder mf://@files.txt -mf fps=24 -ovc lavc \
-lavcopts vcodec=msmpeg4v2 -noskip -o movie.mpg

To use this script, copy/paste the commands into a file named , make it
executable and invoke it as follows:

./stills2mpg.sh file1.jpg file2.jpg file3.jpg ...

Alternatively, use this to invoke it:

./stills2mpg.sh *.jpg

File In, File Out

[166]

The command requires that the input file be formatted as one image file per line.
The first line of the script echoes the command line arguments to the tr command to convert
the space delimiters to newlines. This transforms the single-line list into a list of files
arranged one per line.

You can change the speed of the video by resetting the FPS (frames-per-second) parameter.
For example, setting the fps value to will make a slide show that changes images every
second.

Creating a panned video from a still camera shot
If you decide to create your own video, you'll probably want a panned shot of some
landscape at some point. You can record a video image with most cameras, but if you only
have a still image you can still make a panned video.

Cameras commonly take a larger image than will fit on a video. You can create a motion-
picture pan using the convert application to extract sections of a large image, and stitch
them together into a video file with :

$> makePan.sh
Invoke as:
sh makePan.sh OriginalImage.jpg prefix width height xoffset yoffset
Clean out any old data
rm -f tmpFiles
Create 200 still images, stepping through the original xoffset and
yoffset
pixels at a time
for o in `seq 1 200`
 do
 x=$[$o+$5]
 convert -extract $3x$4+$x+$6 $1 $2_$x.jpg
 echo $2_$x.jpg >> tmpFiles
done
#Stitch together the image files into a mpg video file
mencoder mf://@tmpFiles -mf fps=30 -ovc lavc -lavcopts \
 vcodec=msmpeg4v2 -noskip -o $2.mpg

File In, File Out

[167]

This script is more complex than the ones we've looked at so far. It uses seven command-
line arguments to define the input image, a prefix to use for the output files, the width and
height for the intermediate images, and the starting offset into the original image.

Within the loop, it creates a set of image files and stores the names in a file named
. Finally, the script uses to merge the extracted image files into an

MPEG video that can be imported into a video editor such as kdenlive or OpenShot.

44
Texting and Driving

In this chapter, we will cover the following recipes:

Using regular expressions
Searching and mining text inside a file with grep
Cutting a file column-wise with cut
Using to perform text replacement
Using for advanced text processing
Finding the frequency of words used in a given file
Compressing or decompressing JavaScript
Merging multiple files as columns
Printing the nth word or column in a file or line
Printing text between line numbers or patterns
Printing lines in the reverse order
Parsing e-mail address and URLs from text
Removing a sentence in a file containing a word
Replacing a pattern with text in all the files in a directory
Text slicing and parameter operations

Introduction
Shell scripting includes many problem-solving tools. There is a rich set of tools for text
processing. These tools include utilities, such as , , , and , which can be
combined to perform text processing needs.

Texting and Driving

[169]

These utilities process files by character, line, word, column, or row to process text files in
many ways.

Regular expressions are a basic pattern-matching technique. Most text-processing utilities
support regular expressions. With regular expression strings, we can filter, strip, replace,
and search within text files.

This chapter includes a collection of recipes to walk you through many solutions to text
processing problems.

Using regular expressions
Regular expressions are at the heart of pattern-based text-processing. To use regular
expressions effectively, one needs to understand them.

Everyone who uses is familiar with glob style patterns. Glob rules are useful in many
situations, but are too limited for text processing. Regular expressions allow you to describe
patterns in finer detail than glob rules.

A typical regular expression to match an e-mail address might look like this:

If this looks weird, don't worry; it is really simple once you understand the concepts
through this recipe.

How to do it...
Regular expressions are composed of text fragments and symbols with special meanings.
Using these, we can construct a regular expression to match any text. Regular expressions
are the basis for many tools. This section describes regular expressions, but does not
introduce the Linux/Unix tools that use them. Later recipes will describe the tools.

Regular expressions consist of one or more elements combined into a string. An element
may be a position marker, an identifier, or a count modifier. A position marker anchors the
regular expression to the beginning or end of the target string. An identifier defines one or
more characters. The count modifier defines how many times an identifier may occur.

Before we look at some sample regular expressions, let's look at the rules.

Texting and Driving

[170]

Position markers
A position marker anchors a regular expression to a position in the string. By default, any
set of characters that match a regular expression can be used, regardless of position in the
string.

regex Description Example

This specifies that the text that matches the regular
expression must start at the beginning of the string

 matches a line that
starts with

This specifies that the text that matches the regular
expression must end with the last character in the target
string

 matches a line that
ends with

Identifiers
Identifiers are the basis of regular expressions. These define the characters that must be
present (or absent) to match the regular expression.

regex Description Example

 character The regular expression must match this
letter.

 will match the letter A

This matches any one character. matches , ,
but not or ; only
one additional character matches

This matches any one of the characters
enclosed in the brackets. The enclosed
characters may be a set or a range.

 matches or ;
[0-9] matches any single digit

This matches any one of the characters
except those that are enclosed in square
brackets. The enclosed characters may
be a set or a range.

 matches and , but not
 and ; matches an

followed by anything except a digit

Texting and Driving

[171]

Count modifiers
An Identifier may occur once, never, or many times. The Count Modifier defines how many
times a pattern may appear.

regex Description Example

This means that the preceding item
must match one or zero times

 matches or , but
not

This means that the preceding item
must match one or more times

 matches and
, but not

This means that the preceding item
must match zero or more times

 matches , , and

This means that the preceding item
must match n times

 matches any three-digit
number; can be expanded as

This specifies the minimum number
of times the preceding item should
match

 matches any number that is
two digits or longer

This specifies the minimum and
maximum number of times the
preceding item should match

 matches any number that
has two digits to five digits

Other
Here are other characters that fine–tune how a regular expression will be parsed.

This treats the terms enclosed as one entity matches or

This specifies alternation-; one of the items on
either of side of should match

 matches
or

This is the escape character for escaping any
of the special characters mentioned previously

 matches , but not ; it
ignores the special meaning of
because of

Texting and Driving

[172]

For more details on the regular expression components available, you can refer to
.

There's more...
Let's see a few examples of regular expressions:

This regular expression would match any single word:

The initial characters say we need 1 or more spaces.

The set is all upper– and lower–case letters. The following plus sign says we
need at least one letter and can have more.

The final characters say we need to terminate the word with one or more spaces.

This would not match the last word in a sentence. To match the last word
in a sentence or the word before a comma, we write the expression like
this:

The phrase means we might have a question mark, comma, or a period, but at
most one. The period is escaped with a backslash because a bare period is a wildcard that
will match anything.

It's easier to match an IP address. We know we'll have four three-digit numbers separated
by periods.

The phrase defines a number. The phrase defines the count as being at least
one digit and no more than three digits:

We can also define an IP address using the construct to define a number:

We know that an IP address is in the range of four integers (each from 0 to 255), separated
by dots (for example,).

Texting and Driving

[173]

This regex will match an IP address in the text being processed. However, it
doesn't check for the validity of the address. For example, an IP address of
the form will be matched by the regex despite being an
invalid IP.

How it works...
Regular expressions are parsed by a complex state machine that tries to find the best match
for a regular expression with a string of target text. That text can be the output of a pipe, a
file, or even a string you type on the command line. If there are multiple ways to fulfill a
regular expression, the engine will usually select the largest set of characters that match.

For example, given the string and a regular expression , the match
will be , not .

For more details on the regular expression components available, you can refer to
.

There's more...
The previous tables described the special meanings for characters used in regular
expressions.

Treatment of special characters
Regular expressions use some characters, such as , , , , , , and , as special characters.
But, what if we want to use these characters as normal text characters? Let's see an example
of a regex, .

This will match the character , followed by any character (due to the character), which is
then followed by the string. However, we want to match a literal instead of any
character. In order to achieve this, we precede the character with a backward slash (doing
this is called escaping the character). This indicates that the regex wants to match the literal
character rather than its special meaning. Hence, the final regex becomes .

Texting and Driving

[174]

Visualizing regular expressions
Regular expressions can be tough to understand. Fortunately, there are utilities available to
help in visualizing regex. The page at lets you enter a regular
expression and creates a graph to help you understand it. Here is a screenshot describing a
simple regular expression:

Searching and mining text inside a file with
grep
If you forget where you left your keys, you've just got to search for them. If you forget what
file has some information, the command will find it for you. This recipe will teach you
how to locate files that contain patterns.

Texting and Driving

[175]

How to do it...
The command is the magic Unix utility for searching text. It accepts regular
expressions and can produce reports in various formats.

Search for lines that match a pattern:1.

$ echo -e "this is a word\nnext line" | grep word
 this is a word

Search a single file for lines that contain a given pattern:2.

$ grep pattern filename
 this is the line containing pattern

Alternatively, this performs the same search:

$ grep "pattern" filename
 this is the line containing pattern

Search multiple files for lines that match a pattern:3.

$ grep "match_text" file1 file2 file3 ...

To highlight the matching pattern, use the option. While the option4.
position does not matter, the convention is to place options first.

$ grep -color=auto word filename
 this is the line containing word

The command uses basic regular expressions by default. These are a subset5.
of the rules described earlier. The option will cause to use the Extended
Regular Expression syntax. The command is a variant of that uses
extended regular expression by default:

$ grep -E "[a-z]+" filename

Or:

$ egrep "[a-z]+" filename

The option will report only the matching characters, not the entire line:6.

$ echo this is a line. | egrep -o "[a-z]+\."
 line

Texting and Driving

[176]

The option will print all lines, except those containing :7.

$ grep -v match_pattern file

The option added to inverts the match results.

The option will count the number of lines in which the pattern appears:8.

$ grep -c "text" filename
 10

It should be noted that counts the number of matching lines, not the number of
times a match is made. Consider this example:

$ echo -e "1 2 3 4\nhello\n5 6" | egrep -c "[0-9]"
 2

Even though there are six matching items, reports , since there are only two
matching lines. Multiple matches in a single line are counted only once.

To count the number of matching items in a file, use this trick:9.

$ echo -e "1 2 3 4\nhello\n5 6" | egrep -o "[0-9]" | wc -l
 6

The option will print the line number of the matching string:10.

$ cat sample1.txt
 gnu is not unix
 linux is fun
 bash is art
 $ cat sample2.txt
 planetlinux
 $ grep linux -n sample1.txt
 2:linux is fun

Or

$ cat sample1.txt | grep linux -n

If multiple files are used, the option will print the filename with the result:

$ grep linux -n sample1.txt sample2.txt
 sample1.txt:2:linux is fun
 sample2.txt:2:planetlinux

Texting and Driving

[177]

The option will print the offset of the line in which a match occurs. Adding the11.
 option will print the exact character or byte offset where the pattern matches:

$ echo gnu is not unix | grep -b -o "not"
 7:not

Character positions are numbered from , not from .

The option lists which files contain the pattern:12.

$ grep -l linux sample1.txt sample2.txt
 sample1.txt
 sample2.txt

The inverse of the argument is . The argument returns a list of
nonmatching files.

There's more...
The command is one of the most versatile Linux/Unix commands. It also includes
options to search through folders, select files to search, and more options for identifying
patterns.

Recursively searching many files
To recursively search for a text in files contained in a file hierarchy, use the following
command:

$ grep "text" . -R -n

In this command, specifies the current directory.

The options and mean the same thing when used with .

Consider this example:

$ cd src_dir
 $ grep "test_function()" . -R -n
 ./miscutils/test.c:16:test_function();

Texting and Driving

[178]

 exists in line number 16 of . The option is
particularly useful if you are searching for a phrase in a website or source code tree. It is
equivalent to this command:

$ find . -type f | xargs grep "test_function()"

Ignoring case in patterns
The argument matches patterns without considering the uppercase or lowercase:

$ echo hello world | grep -i "HELLO"
 hello

grep by matching multiple patterns
The argument specifies multiple patterns for matching:

$ grep -e "pattern1" -e "pattern2"

This will print the lines that contain either of the patterns and output one line for each
match. Consider this example:

$ echo this is a line of text | grep -o -e "this" -e "line"
 this
 line

Multiple patterns can be defined in a file. The option will read the file and use the line-
separated patterns:

$ grep -f pattern_filesource_filename

Consider the following example:

$ cat pat_file
 hello
 cool

 $ echo hello this is cool | grep -f pat_file
 hello this is cool

Texting and Driving

[179]

Including and excluding files in a grep search
 can include or exclude files in which to search with wild card patterns.

To recursively search only for the and files, use the -include option:

$ grep "main()" . -r --include *.{c,cpp}

Note that expands as
.

Use the flag to exclude all files from the search:

$ grep "main()" . -r --exclude "README"

The option will exclude the named directories from the search:

$ grep main . -r -exclude-dir CVS

To read a list of files to exclude from a file, use .

Using grep with xargs with the zero-byte suffix
The command provides a list of command-line arguments to another command.
When filenames are used as command-line arguments, use a zero-byte terminator for the
filenames instead of the default space terminator. Filenames can contain space characters,
which will be misinterpreted as name separators, causing a filename to be broken into two
filenames (for example, might be interpreted as two filenames and

). Using the zero-byte suffix option solves this problem. We use to accept
 text from commands such as and . These commands can generate output

with a zero-byte suffix. The command will expect byte termination when the
flag is used.

Create some test files:

$ echo "test" > file1
 $ echo "cool" > file2
 $ echo "test" > file3

Texting and Driving

[180]

The option tells to output only the filenames where a match occurs. The option
causes to use the zero-byte terminator () for these files. These two options are
frequently used together. The argument to makes it read the input and separate
filenames at the zero-byte terminator:

$ grep "test" file* -lZ | xargs -0 rm

Silent output for grep
Sometimes, instead of examining at the matched strings, we are only interested in whether
there was a match or not. The quiet option (), causes to run silently and not
generate any output. Instead, it runs the command and returns an exit status based on
success or failure. The return status is for success and nonzero for failure.

The command can be used in quiet mode, for testing whether a match text appears in
a file or not:

The script accepts two command-line arguments, a match word
(), and a file name ():

$./silent_grep.sh Student student_data.txt
 The text exists in the file

Texting and Driving

[181]

Printing lines before and after text matches
Context-based printing is one of the nice features of . When grep finds lines that match
the pattern, it prints only the matching lines. We may need to see n lines before or after the
matching line. The and options display lines before and after the match, respectively.

The option prints lines after a match:

$ seq 10 | grep 5 -A 3
 5
 6
 7
 8

The option prints lines before the match:

$ seq 10 | grep 5 -B 3
 2
 3
 4
 5

The and options can be used together, or the option can be used to print the same
number of lines before and after the match:

$ seq 10 | grep 5 -C 3
 2
 3
 4
 5
 6
 7
 8

If there are multiple matches, then each section is delimited by a line:

$ echo -e "a\nb\nc\na\nb\nc" | grep a -A 1
 a
 b
 --
 a
 b

Texting and Driving

[182]

Cutting a file column-wise with cut
The cut command splits a file by column instead of lines. This is useful for processing files
with fixed-width fields, Comma Separated Values (CSV files), or space delimited files such
as the standard log files.

How to do it...
The t command extracts data between character locations or columns. You can specify
the delimiter that separates each column. In the terminology, each column is known as
a field.

The -f option defines the fields to extract:1.

cut -f FIELD_LIST filename

 is a list of columns that are to be displayed. The list consists of
column numbers delimited by commas. Consider this example:

$ cut -f 2,3 filename

Here, the second and the third columns are displayed.

The command also reads input from .2.

Tab is the default delimiter for fields. Lines without delimiters will be printed. The
 option will disable printing lines without delimiter characters. The following

commands demonstrate extracting columns from a tab delimited file:

$ cat student_data.txt
 No Name Mark Percent
 1 Sarath 45 90
 2 Alex 49 98
 3 Anu 45 90

 $ cut -f1 student_data.txt
 No
 1
 2
 3

Texting and Driving

[183]

To extract multiple fields provide multiple field numbers separated by commas,3.
using the following options:

$ cut -f2,4 student_data.txt
 Name Percent
 Sarath 90
 Alex 98
 Anu 90

The option will display all the fields except those defined by .4.
This command displays all fields except :

$ cut -f3 --complement student_data.txt
 No Name Percent
 1 Sarath 90
 2 Alex 98
 3 Anu 90

The option will set the delimiter. The following command shows how to use5.
 with a colon-separated list:

$ cat delimited_data.txt
 No;Name;Mark;Percent
 1;Sarath;45;90
 2;Alex;49;98
 3;Anu;45;90

 $ cut -f2 -d";" delimited_data.txt
 Name
 Sarath
 Alex
 Anu

There's more
The command has more options to define the columns displayed.

Specifying the range of characters or bytes as fields
A report with fixed-width columns will have varying numbers of spaces between the
columns. You can't extract values based on field position, but you can extract them based on
the character location. The command can select based on bytes or characters as well as
fields.

Texting and Driving

[184]

It's unreasonable to enter every character position to extract, so cut accepts these notations
as well as the comma-separated list:

From the Nth byte, character, or field, to the end of the line

From the Nth to Mth (included) byte, character, or field

From the first to Mth (included) byte, character, or field

We use the preceding notations to specify fields as a range of bytes, characters, or fields
with the following options:

 for bytes
 for characters
 for defining fields

Consider this example:

$ cat range_fields.txt
 abcdefghijklmnopqrstuvwxyz
 abcdefghijklmnopqrstuvwxyz
 abcdefghijklmnopqrstuvwxyz
 abcdefghijklmnopqrstuvwxy

Display the second to fifth characters:

$ cut -c2-5 range_fields.txt
 bcde
 bcde
 bcde
 bcde

Display the first two characters:

$ cut -c -2 range_fields.txt
 ab
 ab
 ab
 ab

Texting and Driving

[185]

Replace with to count in bytes.

The option specifies the output delimiter. This is particularly useful
when displaying multiple sets of data:

$ cut range_fields.txt -c1-3,6-9 --output-delimiter ","
 abc,fghi
 abc,fghi
 abc,fghi
 abc,fghi

Using sed to perform text replacement
 stands for stream editor. It's most commonly used for text replacement. This recipe

covers many common techniques.

How to do it...
The command can replace occurrences of a pattern with another string. The pattern can
be a simple string or a regular expression:

 $ sed 's/pattern/replace_string/' file

Alternatively, can read from :

 $ cat file | sed 's/pattern/replace_string/'

If you use the editor, you will notice that the command to replace the
text is very similar to the one discussed here. By default, only prints
the substituted text, allowing it to be used in a pipe.

 $ cat /etc/passwd | cut -d : -f1,3 | sed 's/:/ - UID: /'
 root - UID: 0
 bin - UID: 1
 ...

The option will cause to replace the original file with the modified data:1.

$ sed -i 's/text/replace/' file

Texting and Driving

[186]

The previous example replaces the first occurrence of the pattern in each line. The2.
 parameter will cause to replace every occurrence:

$ sed 's/pattern/replace_string/g' file

The option will replace from the Nth occurrence onwards:

$ echo thisthisthisthis | sed 's/this/THIS/2g'
 thisTHISTHISTHIS

 $ echo thisthisthisthis | sed 's/this/THIS/3g'
 thisthisTHISTHIS

 $ echo thisthisthisthis | sed 's/this/THIS/4g'
 thisthisthisTHIS

The command treats the character following as the command delimiter.
This allows us to change strings with a character in them:

sed 's:text:replace:g'
 sed 's|text|replace|g'

When the delimiter character appears inside the pattern, we have to escape it
using the prefix, as follows:

sed 's|te\|xt|replace|g'

 is a delimiter appearing in the pattern replaced with escape.

There's more...
The command supports regular expressions as the pattern to be replaced and has more
options to control its behavior.

Texting and Driving

[187]

Removing blank lines
Regular expression support makes it easy to remove blank lines. The regular expression
defines a line with nothing between the beginning and end == a blank line. The final tells
sed to delete the lines, rather than performing a substitution.

$ sed '/^$/d' file

Performing replacement directly in the file
When a filename is passed to , it usually prints to . The option will cause
to modify the contents of the file in place:

$ sed 's/PATTERN/replacement/' -i filename

For example, replace all three-digit numbers with another specified number in a file, as
follows:

$ cat sed_data.txt
 11 abc 111 this 9 file contains 111 11 88 numbers 0000

 $ sed -i 's/\b[0-9]\{3\}\b/NUMBER/g' sed_data.txt
 $ cat sed_data.txt
 11 abc NUMBER this 9 file contains NUMBER 11 88 numbers 0000

The preceding one-liner replaces three-digit numbers only. is the regular
expression used to match three-digit numbers. is the range of digits from to . The

 string defines the count of digits. The backslash is used to give a special meaning for
and and stands for a blank, the word boundary marker.

It's a useful practice to first try the command without to make sure
your regex is correct. After you are satisfied with the result, add the
option to make changes to the file. Alternatively, you can use the
following form of :

sed -i .bak 's/abc/def/' file

In this case, will perform the replacement on the file and also create a
file called , which contains the original contents.

Texting and Driving

[188]

Matched string notation ()
The symbol is the matched string. This value can be used in the replacement string:

$ echo this is an example | sed 's/\w\+/[&]/g'
 [this] [is] [an] [example]

Here, the regex matches every word. Then, we replace it with , which corresponds
to the word that is matched.

Substring match notation (\1)
 corresponds to the matched string for the given pattern. Parenthesized portions of a

regular expression can be matched with :

$ echo this is digit 7 in a number | sed 's/digit \([0-9]\)/\1/'
 this is 7 in a number

The preceding command replaces with . The substring matched is .
 matches the substring. The pattern is enclosed in and is escaped with

backslashes. For the first substring match, the corresponding notation is , for the second,
it is , and so on.

$ echo seven EIGHT | sed 's/\([a-z]\+\) \([A-Z]\+\)/\2 \1/'
 EIGHT seven

 matches the first word and matches the second word; and
 are used for referencing them. This type of referencing is called back referencing. In the

replacement part, their order is changed as , and hence, it appears in the reverse
order.

Combining multiple expressions
Multiple commands can be combined with pipes, patterns separated by semicolons, or
the option:

sed 'expression' | sed 'expression'

Texting and Driving

[189]

The preceding command is equivalent to the following commands:

$ sed 'expression; expression'

Or:

$ sed -e 'expression' -e expression'

Consider these examples:

$ echo abc | sed 's/a/A/' | sed 's/c/C/'
 AbC
 $ echo abc | sed 's/a/A/;s/c/C/'
 AbC
 $ echo abc | sed -e 's/a/A/' -e 's/c/C/'
 AbC

Quoting
The expression is commonly quoted with single quotes. Double quotes can be used.
The shell will expand double quotes before invoking sed. Using double quotes is useful
when we want to use a variable string in a expression.

Consider this example:

 $ text=hello
 $ echo hello world | sed "s/$text/HELLO/"
 HELLO world

 is evaluated as .

Using awk for advanced text processing
The command processes data streams. It supports associative arrays, recursive
functions, conditional statements, and more.

Getting ready
The structure of an script is:

awk ' BEGIN{ print "start" } pattern { commands } END{ print "end"}' file

The command can also read from .

Texting and Driving

[190]

An script includes up to three parts–: , , and a common statement block with
the pattern match option. These are optional and any of them can be absent in the script.

Awk will process the file line by line. The commands following will be evaluated
before starts processing the file. Awk will process each line that
matches PATTERN with the commands that follow PATTERN. Finally, after processing the
entire file, will process the commands that follow .

How to do it...
Let's write a simple script enclosed in single quotes or double quotes:

awk 'BEGIN { statements } { statements } END { end statements }'

Or:

awk "BEGIN { statements } { statements } END { end statements }"

This command will report the number of lines in a file:

$ awk 'BEGIN { i=0 } { i++ } END{ print i}' filename

Or:

$ awk "BEGIN { i=0 } { i++ } END{ print i }" filename

How it works...
The command processes arguments in the following order:

First, it executes the commands in the block.1.
Next, reads one line from the file or , and executes the block2.
if the optional pattern is matched. It repeats this step until the end of file.
When the end of the input stream is reached, it executes the 3.
block.

The block is executed before starts reading lines from the input stream. It is an
optional block. The commands, such as variable initialization and printing the output
header for an output table, are common comamnds in the block.

Texting and Driving

[191]

The block is similar to the block. It gets executed when completes reading
all the lines from the input stream. This is commonly printing results after analyzing all the
lines.

The most important block holds the common commands with the pattern block. This block
is also optional. If it is not provided, gets executed to print each line read. This
block gets executed for each line read by . It is like a loop, with statements to
execute inside the body of the loop.

When a line is read, checks whether the pattern matches the line. The pattern can be a
regular expression match, conditions, a range of lines, and so on. If the current line matches
the pattern, executes the commands enclosed in .

The pattern is optional. If it is not used, all lines are matched:

$ echo -e "line1\nline2" | awk 'BEGIN{ print "Start" } { print } \
 END{ print "End" } '
 Start
 line1
 line2
 End

When is used without an argument, prints the current line.

The print command can accept arguments. These arguments are separated by commas, they
are printed with a space delimiter. Double quotes are used as the concatenation operator.

Consider this example:

$ echo | awk '{ var1="v1"; var2="v2"; var3="v3"; \
 print var1,var2,var3 ; }'

The preceding command will display this:

v1 v2 v3

The command writes a single line into the standard output. Hence, the statements in
the block of are executed once. If the input to contains multiple lines, the
commands in will be executed multiple times.

Concatenation is done with quoted strings:

$ echo | awk '{ var1="v1"; var2="v2"; var3="v3"; \
 print var1 "-" var2 "-" var3 ; }'
 v1-v2-v3

Texting and Driving

[192]

 is like a block in a loop, iterating through each line of a file.

It's a common practice to place initial variable assignments such as
 in the block. The block contains commands to print

the results.

There's more...
The command differs from commands such as , , and , in that it does more
than a single function with options to change the behavior. The command is a program
that interprets and executes programs and includes special variables just like the shell.

Special variables
Some special variables that can be used with are as follows:

: This stands for the current record number, which corresponds to the current
line number when uses lines as records.

: This stands for the number of fields, and corresponds to the number of fields
in the current record being processed. The default field delimiter is a space.

: This is a variable that contains the text of the current record.
: This is a variable that holds the text of the first field.
: This is a variable that holds the text of the second field.

Consider this example:

$ echo -e "line1 f2 f3\nline2 f4 f5\nline3 f6 f7" | \

 awk '{
 print "Line no:"NR",No of fields:"NF, "$0="$0,
 "$1="$1,"$2="$2,"$3="$3
 }'
 Line no:1,No of fields:3 $0=line1 f2 f3 $1=line1 $2=f2 $3=f3
 Line no:2,No of fields:3 $0=line2 f4 f5 $1=line2 $2=f4 $3=f5
 Line no:3,No of fields:3 $0=line3 f6 f7 $1=line3 $2=f6 $3=f7

Texting and Driving

[193]

We can print the last field of a line as , the next to last as , and so on.

 also supports a function with the same syntax as in C.

The following command prints the second and third field of every line:

$awk '{ print $3,$2 }' file

We can use NR to count the number of lines in a file:

$ awk 'END{ print NR }' file

Here, we only use the block. Awk updates as each line is read. When reaches
the end of the file, NR will contain the last line number. You can sum up all the numbers
from each line of as follows:

$ seq 5 | awk 'BEGIN{ sum=0; print "Summation:" }
 { print $1"+"; sum+=$1 } END { print "=="; print sum }'
 Summation:
 1+
 2+
 3+
 4+
 5+
 ==
 15

Passing an external variable to awk
Using the argument, we can pass external values other than to , as follows:

$ VAR=10000
 $ echo | awk -v VARIABLE=$VAR '{ print VARIABLE }'
 10000

There is a flexible alternate method to pass many variable values from outside .
Consider the following example:

$ var1="Variable1" ; var2="Variable2"
 $ echo | awk '{ print v1,v2 }' v1=$var1 v2=$var2
 Variable1 Variable2

When an input is given through a file rather than standard input, use the following
command:

$ awk '{ print v1,v2 }' v1=$var1 v2=$var2 filename

Texting and Driving

[194]

In the preceding method, variables are specified as key-value pairs, separated by a space,
and as command arguments to soon after the , ,
and blocks.

Reading a line explicitly using getline
The program reads an entire file by default. The function will read one line.
This can be used to read header information from a file in the block and then process
actual data in the main block.

The syntax is . The variable will contain the line. If is called
without an argument, we can access the content of the line with , , and .

Consider this example:

$ seq 5 | awk 'BEGIN { getline; print "Read ahead first line", $0 }
 { print $0 }'
 Read ahead first line 1
 2
 3
 4
 5

Filtering lines processed by awk with filter patterns
We can specify conditions for lines to be processed:

 $ awk 'NR < 5' # first four lines
 $ awk 'NR==1,NR==4' #First four lines
 $ # Lines containing the pattern linux (we can specify regex)
 $ awk '/linux/'
 $ # Lines not containing the pattern linux
 $ awk '!/linux/'

Setting delimiters for fields
By default, the delimiter for fields is a space. The option defines a different field
delimiter.

$ awk -F: '{ print $NF }' /etc/passwd

Texting and Driving

[195]

Or:

awk 'BEGIN { FS=":" } { print $NF }' /etc/passwd

We can set the output field separator by setting in the block.

Reading the command output from awk
Awk can invoke a command and read the output. Place a command string within quotes
and use the vertical bar to pipe the output to :

"command" | getline output ;

The following code reads a single line from and displays the login name and
home folder. It resets the field separator to a in the block and invokes in the
main block.

$ awk 'BEGIN {FS=":"} { "grep root /etc/passwd" | getline; \
 print $1,$6 }'
 root /root

Associative arrays in Awk
Awk supports variables that contain a number or string and also supports associative
arrays. An associative array is an array that's indexed by strings instead of numbers. You
can recognize an associative array by the index within square brackets:

arrayName[index]

An array can be assigned a value with the equal sign, just like simple user-defined
variables:

myarray[index]=value

Using loop inside awk
Awk supports a numeric loop with a syntax similar to :

Awk also supports a list style for loop that will display the contents of an array:

Texting and Driving

[196]

The following example shows how to collect data into an array and then display it. This
script reads lines from , splits them into fields at the markers, and creates
an array of names in which the index is the login ID and the value is the user's name:

$ awk 'BEGIN {FS=":"} {nam[$1]=$5} END {for {i in nam} \
 {print i,nam[i]}}' /etc/passwd
 root root
 ftp FTP User
 userj Joe User

String manipulation functions in awk
The language of includes many built-in string manipulation functions:

: This returns the string length.
: This returns the position at which

 is found in the string.
: This populates an array with the strings

created by splitting a string on the delimiter character.
: This returns the

substring of the string between the start and end character offsets.
: This replaces the first occurring

regular expression match from the string with .
: This is like , but it replaces

every regular expression match.
: This returns whether a regular expression (regex)

match is found in the string. It returns a non-zero output if a match is found,
otherwise it returns zero. Two special variables are associated with .
They are and . The variable contains the position at
which the regular expression match starts. The variable contains the
length of the string matched by the regular expression.

Texting and Driving

[197]

Finding the frequency of words used in a
given file
Computers are good at counting. We frequently need to count items such as the number of
sites sending us spam, the number of downloads different web pages get, or how often
words are used in a piece of text. This recipes show how to calculate word usage in a piece
of text. The techniques are also applicable to log files, database output, and more.

Getting ready
We can use the associative arrays of to solve this problem in different ways. Words are
alphabetic characters, delimited by space or a period. First, we should parse all the words in
a given file and then the count of each word needs to be found. Words can be parsed using
regex with tools such as , , or .

How to do it...
We just explored the logic and ideas about the solution; now let's create the shell script as
follows:

Texting and Driving

[198]

The script will generate this output:

$./word_freq.sh words.txt
 Word Count
 used 1
 this 2
 counting 1

How it works...
The command converts the text file into a stream of words, one word per line. The

 pattern matches each word and removes whitespace and punctuation.
The option prints the matching character sequences as one word in each line.

The command counts each word. It executes the statements in the block for each
line, so we don't need a specific loop for doing that. The count is incremented by the

 command, in which is the current line and is an associative array.
After all the lines are processed, the block prints the words and their count.

The body of this procedure can be modified using other tools we've looked at. We can
merge capitalized and non-capitalized words into a single count with the command, and
sort the output using the sort command, like this:

See also
The Using awk for advanced text processing recipe in this chapter explains the
command
The Arrays and associative arrays recipe in , Shell Something Out, explains
arrays in Bash

Texting and Driving

[199]

Compressing or decompressing JavaScript
JavaScript is widely used in websites. While developing the JavaScript code, we use
whitespaces, comments, and tabs for readability and maintenance of the code. This
increases the file size, which slows page loading. Hence, most professional websites use
compressed JavaScript speed page loading. This compression (also known as minified JS)
is accomplished by removing the whitespace and newline characters. Once JavaScript is
compressed, it can be decompressed by replacing enough whitespace and newline
characters to make it readable. This recipe produces similar functionality in the shell.

Getting ready
We are going to write a JavaScript compressor tool as well as a decompressing tool.
Consider the following JavaScript:

$ cat sample.js
 function sign_out()
 {

 $("#loading").show();
 $.get("log_in",{logout:"True"},

 function(){
 window.location="";
 });
 }

Our script needs to perform these steps to compress the JavaScript:

Remove newline and tab characters.1.
Remove duplicated spaces.2.
Replace comments that look like .3.

To decompress or to make the JavaScript more readable, we can use the following tasks:

Replace with
Replace with , and with

Texting and Driving

[200]

How to do it...
Using these steps, we can use the following command chain:

$ cat sample.js | \
 tr -d '\n\t' | tr -s ' ' \
 | sed 's:/*.**/::g' \
 | sed 's/ \?\([{}();,:]\) \?/\1/g'

The output is as follows:

function sign_out(){$("#loading").show();$.get("log_in",
 {logout:"True"},function(){window.location="";});}

The following decompression script makes the obfuscated code readable:

$ cat obfuscated.txt | sed 's/;/;\n/g; s/{/{\n\n/g; s/}/\n\n}/g'

Or:

$ cat obfuscated.txt | sed 's/;/;\n/g' | sed 's/{/{\n\n/g' | sed
 's/}/\n\n}/g'

There is a limitation in the script: that it even gets rid of extra spaces where
their presence is intentional. For example, if you have a line like the
following:
The two spaces will be converted into one space. You can fix problems
such as this using the pattern-matching tools we have discussed. Also,
when dealing with a mission-critical JavaScript code, it is advised that you
use well-established tools to do this.

How it works...
The compression command performs the following tasks:

Removing the and characters:

 tr -d '\n\t'

Removing extra spaces:

 tr -s ' ' or sed 's/[]\+/ /g'

Texting and Driving

[201]

Removing comments:

 sed 's:/*.**/::g'

 is used as a delimiter to avoid the need to escape since we need to use
and .

In sed, is escaped as .

 matches all the text in between and .

Removing all the spaces preceding and suffixing the , , , , , , and
characters:

 sed 's/ \?\([{}();,:]\) \?/\1/g'

The preceding statement works like this:

 in the code is the match part, and is the
replacement part.

 is used to match any one character in the
set (spaces inserted for readability). and are group operators used to
memorize the match and back reference in the replacement part. and are
escaped to give them a special meaning as a group operator. precedes and
follows the group operators to match the space character that may precede or
follow any of the characters in the set.
In the replacement part, the match string (that is, the combination of , a space
(optional), a character from the set, and again an optional space) is replaced with
the character matched. It uses a back reference to the character matched and
memorized using the group operator . Back-referenced characters refer to a
group match using the symbol.

The decompression command works as follows:

 replaces with
 replaces with
 replaces with

Texting and Driving

[202]

See also
The Using sed to perform text replacement recipe in this chapter explains the
command
The Translating with tr recipe in , Have a Good Command, explains the
command

Merging multiple files as columns
The can command can be used to merge two files by row, one file after the other. Sometimes
we need to merge two or more files side by side, joining the lines from file 1 with the lines
from file 2.

How to do it...
The command performs column-wise concatenation:

$ paste file1 file2 file3 ...

Here is an example:

$ cat file1.txt
 1
 2
 3
 4
 5
 $ cat file2.txt
 slynux
 gnu
 bash
 hack
 $ paste file1.txt file2.txt
 1 slynux
 2 gnu
 3 bash
 4 hack
 5

Texting and Driving

[203]

The default delimiter is tab. We can specify the delimiter with :

$ paste file1.txt file2.txt -d ","
 1,slynux
 2,gnu
 3,bash
 4,hack
 5,

See also
The Cutting a file column-wise with cut recipe in this chapter explains how to
extract data from text files

Printing the nth word or column in a file or
line
We often need to extract a few columns of useful data from a file. For example, in a list of
students ordered by their scores, we want to get the fourth highest scorer. This recipe shows
how to do this.

How to do it...
The command is frequently used for this task.

To print the fifth column, use the following command:1.

$ awk '{ print $5 }' filename

We can print multiple columns and insert a custom string between the columns.2.

 The following command will print the permission and filename of each file in the
 current directory:

$ ls -l | awk '{ print $1 " : " $8 }'
 -rw-r--r-- : delimited_data.txt
 -rw-r--r-- : obfuscated.txt
 -rw-r--r-- : paste1.txt
 -rw-r--r-- : paste2.txt

Texting and Driving

[204]

See also
The Using awk for advanced text processing recipe in this chapter explains the
command
The Cutting a file column-wise with cut recipe in this chapter explains how to
extract data from text files

Printing text between line numbers or
patterns
We may need to print a selected portion of a file, either a range of line numbers or a range
matched by a start and end pattern.

Getting ready
, , or will select lines to print, based on condition. It's simplest to use to

print lines that include a pattern. Awk is the most versatile tool.

How to do it...
To print the text between line numbers or patterns, follow these steps:

Print the lines of a text in a range of line numbers, to :1.

$ awk 'NR==M, NR==N' filename

 Awk can read from :

$ cat filename | awk 'NR==M, NR==N'

Replace and with numbers:2.

$ seq 100 | awk 'NR==4,NR==6'
 4
 5
 6

Texting and Driving

[205]

Print the lines of text between a and :3.

$ awk '/start_pattern/, /end _pattern/' filename

 Consider this example:

$ cat section.txt
 line with pattern1
 line with pattern2
 line with pattern3
 line end with pattern4
 line with pattern5

 $ awk '/pa.*3/, /end/' section.txt
 line with pattern3
 line end with pattern4

The patterns used in are regular expressions.

See also
The Using awk for advanced text processing recipe in this chapter explains the
command

Printing lines in the reverse order
This recipe may not seem useful, but it can be used to emulate the stack data structure in
Bash.

Getting ready
The simplest way to accomplish this is with the command (the reverse of cat). The task
can also be done with .

Texting and Driving

[206]

How to do it...
We will first see how to do this with .

The syntax of is as follows:1.

tac file1 file2 ...

 The command can also read from :

$ seq 5 | tac
 5
 4
 3
 2
 1

 The default line separator for is . The -s option will redefine this:

$ echo "1,2" | tac -s ,
 2
 1

This script will print lines in the reverse order:2.

 in the shell script is used to break a single-line command sequence into multiple
lines.

How it works...
The script stores each of the lines into an associative array using the line number as the
index (returns the line number). After reading all the lines, executes the block.
The variable is maintained by . It holds the current line number. When starts the
END block, is the count of lines. Using in the block iterates from the last line
number to , to print the lines in reverse order.

Texting and Driving

[207]

Parsing e-mail address and URLs from text
Parsing elements such as e-mail addresses and URLs is a common task. Regular expressions
make finding these patterns easy.

How to do it...
The regular expression pattern to match an e-mail address is as follows:

Consider the following example:

$ cat url_email.txt
 this is a line of text contains,<email> #slynux@slynux.com.
 </email> and email address, blog "http://www.google.com",
 test@yahoo.com dfdfdfdddfdf;cool.hacks@gmail.com

 <h1>Heading</h1>

As we are using extended regular expressions (, for instance), we should use :

$ egrep -o '[A-Za-z0-9._]+@[A-Za-z0-9.]+\.[a-zA-Z]{2,4}'
 url_email.txt
 slynux@slynux.com
 test@yahoo.com
 cool.hacks@gmail.com

The regex pattern for an HTTP URL is as follows:

http://[a-zA-Z0-9\-\.]+\.[a-zA-Z]{2,4}

Consider this example:

$ egrep -o "http://[a-zA-Z0-9.]+\.[a-zA-Z]{2,3}" url_email.txt
 http://www.google.com
 http://code.google.com

Texting and Driving

[208]

How it works...
Regular expressions are easy to design part-by-part. In the e-mail regex, we all know that an
e-mail address takes the form. Writing this
pattern in the regex language will look like this:

 means we need one or more characters in the block (means at least
one, maybe more). This string is followed by an character. Next, we will see the domain
name, a string of letters or numbers, a period, and then 2-4 more letters. The
pattern defines an alpha-numeric string. The pattern means that a literal period must
appear. The pattern defines 2, 3, or 4 letters.

An HTTP URL is similar to an e-mail, but we don't need the match part of the e-mail
regex:

See also
The Using sed to perform text replacement recipe in this chapter explains the
command
The Using regular expressions recipe in this chapter explains how to use regular
expressions

Removing a sentence in a file containing a
word
Removing a sentence that contains a specific word is a simple task with regular expressions.
This recipe demonstrates techniques for solving similar problems.

Getting ready
 is the best utility for making substitutions. This recipe uses to replace the matched

sentence with a blank.

Texting and Driving

[209]

How to do it...
Let's create a file with some text to carry out the substitutions. Consider this example:

$ cat sentence.txt
 Linux refers to the family of Unix-like computer operating systems
 that use the Linux kernel. Linux can be installed on a wide variety
 of computer hardware, ranging from mobile phones, tablet computers
 and video game consoles, to mainframes and supercomputers. Linux is
 predominantly known for its use in servers.

To remove the sentence containing the words , use the following
expression:

$ sed 's/ [^.]*mobile phones[^.]*\.//g' sentence.txt
 Linux refers to the family of Unix-like computer operating systems
 that use the Linux kernel. Linux is predominantly known for its use
 in servers.

This recipe assumes that no sentence spans more than one line, for
example, a sentence should always begin and end on the same line in the
text.

How it works...
The regex has the

 format. It replaces every
occurrence of with the replacement string.

The substitution pattern is the regex for a sentence. Every sentence begins with a space and
ends with . The regular expression must match the text in the format

. A sentence may contain any characters except a
"dot", which is the delimiter. The pattern matches any character except a period
The pattern defines any number of those characters. The text match
string is placed between the pattern for non-period characters. Every match sentence is
replaced by (nothing).

Texting and Driving

[210]

See also
The Using sed to perform text replacement recipe in this chapter explains the
command
The Using regular expressions recipe in this chapter explains how to use regular
expressions

Replacing a pattern with text in all the files in
a directory
We often need to replace a particular text with a new text in every file in a directory. An
example would be changing a common URI everywhere in a website's source directory.

How to do it...
We can use to locate the files to have text modified. We can use to do the actual
replacement.

To replace the text with the word in all files, use the following
command:

 find . -name *.cpp -print0 | \
 xargs -I{} -0 sed -i 's/Copyright/Copyleft/g' {}

How it works...
We use on the current directory () to find the files with a suffix. The find
command uses - to print a null separated list of files (use when filenames
have spaces in them). We pipe the list to , which will pass the filenames to , which
makes the modifications.

Texting and Driving

[211]

There's more...
If you recall, has an option, which can be used to run a command on each of
the files that match the search criteria. We can use this option to achieve the same effect or
replace the text with a new one:

$ find . -name *.cpp -exec sed -i 's/Copyright/Copyleft/g' \{\} \;

Or:

$ find . -name *.cpp -exec sed -i 's/Copyright/Copyleft/g' \{\} \+

These commands perform the same function, but the first form will call once for every
file, while the second form will combine multiple filenames and pass them together to .

Text slicing and parameter operations
This recipe walks through some simple text-replacement techniques and parameter-
expansion shorthands available in Bash. A few simple techniques can help avoid writing
multiple lines of code.

How to do it...
Let's get into the tasks.

Replace some text from a variable:

$ var="This is a line of text"
 $ echo ${var/line/REPLACED}
 This is a REPLACED of text"

The word is replaced with .

We can produce a substring by specifying the start position and string length, using the
following syntax:

${variable_name:start_position:length}

Print from the fifth character onwards:

$ string=abcdefghijklmnopqrstuvwxyz
 $ echo ${string:4}
 efghijklmnopqrstuvwxyz

Texting and Driving

[212]

Print eight characters starting from the fifth character:

$ echo ${string:4:8}
 efghijkl

The first character in a string is at position . We can count from the last letter as . When
 is inside a parenthesis, is the index for the last letter:

echo ${string:(-1)}
 z
 $ echo ${string:(-2):2}
 yz

See also
The Using sed to perform text replacement recipe in this chapter explains other
character manipulation tricks

55
Tangled Web? Not At All!

In this chapter, we will cover the following recipes:

Downloading from a web page
Downloading a web page as plain text
A primer on cURL
Accessing unread Gmail e-mails from the command line
Parsing data from a website
Image crawler and downloader
Web photo album generator
Twitter command-line client
Accessing word definitions via a web server
Finding broken links in a website
Tracking changes to a website
Posting to a web page and reading the response
Downloading a video from the Internet
Summarizing text with OTS
Translating text from the command line

Tangled Web? Not At All!

[214]

Introduction
The Web has become the face of technology and the central access point for data processing.
Shell scripts cannot do everything that languages such as PHP can do on the Web, but there
are many tasks for which shell scripts are ideally suited. We will explore recipes to
download and parse website data, send data to forms, and automate website-usage tasks
and similar activities. We can automate many activities that we perform interactively
through a browser with a few lines of scripting. The functionality provided by the HTTP
protocol and command-line utilities enables us to write scripts to solve many web-
automation needs.

Downloading from a web page
Downloading a file or a web page is simple. A few command-line download utilities are
available to perform this task.

Getting ready
 is a flexible file download command-line utility that can be configured with many

options.

How to do it...
A web page or a remote file can be downloaded using :

$ wget URL

For example:

$ wget knopper.net
--2016-11-02 21:41:23-- http://knopper.net/
Resolving knopper.net... 85.214.68.145
Connecting to knopper.net|85.214.68.145|:80...
connected.
HTTP request sent, awaiting response... 200 OK
Length: 6899 (6.7K) [text/html]
Saving to: "index.html.1"

100% [=============================�]45.5K=0.1s

Tangled Web? Not At All!

[215]

2016-11-02 21:41:23 (45.5 KB/s) - "index.html.1" saved
[6899/6899]

It is also possible to specify multiple download URLs:

$ wget URL1 URL2 URL3 ..

How it works...
By default, the downloaded files are named the same as the URL, and the download
information and progress is written to .

The option specifies the output filename. If a file with that name already exists, it will be
replaced by the downloaded file:

$ wget http://www.knopper.net -O knopper.html.

The option specifies a instead of printing logs to :

$ wget ftp://ftp.example.com/somefile.img -O dloaded_file.img -o log

Using the preceding command will print nothing on the screen. The log or progress will be
written to the log and the output file will be .

There is a chance that downloads might break due to unstable Internet connections. The
option specifies how many times the utility will retry before giving up:

$ wget -t 5 URL

Use a value of to force to keep trying infinitely:

$ wget -t 0 URL

There's more...
The utility has options to fine-tune behavior and solve problems.

Tangled Web? Not At All!

[216]

Restricting the download speed
When there is limited bandwidth with many applications sharing it, a large file can devour
all the bandwidth and starve other processes (perhaps interactive users). The option

 will specify the maximum bandwidth for the download job, allowing all
applications fair access to the Internet:

$ wget --limit-rate 20k http://example.com/file.iso

In this command, (kilobyte) specifies the speed limit. You can also use for megabyte.

The (or) option specifies the maximum size of the download. will stop
when the quota is exceeded. This is useful when downloading multiple files to a system
with limited space:

$ wget -Q 100m http://example.com/file1 http://example.com/file2

Resume downloading and continue
If gets interrupted before the download is complete, it can be resumed where it left off
with the option:

$ wget -c URL

Copying a complete website (mirroring)
 can download a complete website by recursively collecting the URL links and

downloading them like a crawler. To download the pages, use the option:

$ wget --mirror --convert-links exampledomain.com

Alternatively, use the following command:

$ wget -r -N -l -k DEPTH URL

The option specifies the depth of web pages as levels. This means that it will traverse
only that number of levels. It is used along with (recursive). The argument is used to
enable time stamping for the file. is the base URL for a website for which the download
needs to be initiated. The or option instructs to convert the
links to other pages to the local copy.

Tangled Web? Not At All!

[217]

Exercise discretion when mirroring other websites. Unless you have
permission, only perform this for your personal use and don't do it too
frequently.

Accessing pages with HTTP or FTP authentication
The and arguments provide the username and password to websites
that require authentication.

$ wget --user username --password pass URL

It is also possible to ask for a password without specifying the password inline. For this, use
 instead of the argument.

Downloading a web page as plain text
Web pages are simply text with HTML tags, JavaScript, and CSS. The HTML tags define the
content of the web page, which we can parse for specific content. Bash scripts can parse web
pages. An HTML file can be viewed in a web browser to see it properly formatted or
processed with tools described in the previous chapter.

Parsing a text document is simpler than parsing HTML data because we aren't required to
strip off the HTML tags. Lynx is a command-line web browser that downloads a web page
as plain text.

Getting ready
Lynx is not installed in all distributions, but is available via the package manager.

yum install lynx

Alternatively, you can execute the following command:

apt-get install lynx

Tangled Web? Not At All!

[218]

How to do it...
The option downloads a web page as pure ASCII. The next recipe shows how to
send that ASCII version of the page to a file:

$ lynx URL -dump > webpage_as_text.txt

This command will list all the hyperlinks () separately under a heading
, as the footer of the text output. This lets us parse links separately with regular

expressions.

Consider this example:

$lynx -dump http://google.com > plain_text_page.txt

You can see the plain text version of using the command:

$ cat plain_text_page.txt
 Search [1]Images [2]Maps [3]Play [4]YouTube [5]News [6]Gmail
 [7]Drive
 [8]More »
 [9]Web History | [10]Settings | [11]Sign in

 [12]St. Patrick's Day 2017

 Google Search I'm Feeling Lucky [13]Advanced search
 [14]Language tools

 [15]Advertising Programs [16]Business Solutions [17]+Google
 [18]About Google

 © 2017 - [19]Privacy - [20]Terms

References
...

A primer on cURL
cURL transfers data to or from a server using the HTTP, HTTPS, or FTP protocols. It
supports , cookies, authentication, downloading partial files from a specified offset,
referer, user agent string, extra headers, limiting speed, maximum file size, progress bar,
and more. cURL is useful for maintaining a website, retrieving data, and checking server
configurations.

Tangled Web? Not At All!

[219]

Getting ready
Unlike , cURL is not included in all Linux distros; you may have to install it with your
package manager.

By default, cURL dumps downloaded files to , and progress information to .
To disable displaying progress information, use the option.

How to do it...
The command performs many functions, including downloading, sending different
HTTP requests, and specifying HTTP headers.

To dump the downloaded file to , use the following command:

$ curl URL

The option specifies sending the downloaded data into a file with the filename
parsed from the URL. Note that the URL must be a full page URL, not just a site
name.

$ curl www.knopper.net/index.htm --silent -O

The option specifies the output file name. With this option you can specify
only the site name to retrieve the home page.

$curl www.knopper.net -o knoppix_index.html
 % Total % Received % Xferd Avg Speed Time Time Time
 Current
 Dload Upload Total Spent Left Speed
 100 6889 100 6889 0 0 10902 0 --:-- --:-- --:-- 26033

The option prevents the command from displaying progress
information:

$ curl URL --silent

The option displays progress bar while downloading:

$ curl http://knopper.net -o index.html --progress
 ################################## 100.0%

Tangled Web? Not At All!

[220]

How it works...
cURL downloads web pages or remote files to your local system. You can control the
destination filename with the and options, and verbosity with the and

 options.

There's more...
In the preceding sections, you learned how to download files. cURL supports more options
to fine tune its behavior.

Continuing and resuming downloads
cURL can resume a download from a given offset. This is useful if you have a per-day data
limit and a large file to download.

$ curl URL/file -C offset

offset is an integer value in bytes.

cURL doesn't require us to know the exact byte offset, if we want to resume downloading a
file. If you want cURL to figure out the correct resume point, use the option, as
follows:

$ curl -C - URL

cURL will automatically figure out where to restart the download of the specified file.

Setting the referer string with cURL
The Referer field in the HTTP header identifies the page that led to the
current web page. When a user clicks on a link on web page A to go to
web page B, the referer header string for page B will contain the URL of
page A.

Some dynamic pages check the referer string before returning the HTML data. For example,
a web page may display a Google logo when a user navigates to a website from Google, and
display a different page when the user types the URL.

Tangled Web? Not At All!

[221]

A web developer can write a condition to return a Google page if the referer is
www.google.com, or return a different page if not.

You can use with the command to specify the referer string, as follows:

$ curl --referer Referer_URL target_URL

Consider this example:

$ curl --referer http://google.com http://knopper.org

Cookies with cURL
 can specify and store the cookies encountered during HTTP operations.

The option specifies which cookies to provide. Cookies are
defined as . Multiple cookies should be delimited with a semicolon ():

$ curl http://example.com --cookie "user=username;pass=hack"

The option specifies the file to store cookies in:

$ curl URL --cookie-jar cookie_file

Setting a user agent string with cURL
Some web pages that check the user agent won't work if there is no user agent specified. For
example, some old websites require Internet Explorer (IE). If a different browser is used,
they display a message that the site must be viewed with IE. This is because the website
checks for a user agent. You can set the user agent with .

The or option sets the user agent:

$ curl URL --user-agent "Mozilla/5.0"

Additional headers can be passed with cURL. Use to pass additional headers:

$ curl -H "Host: www.knopper.net" -H "Accept-language: en" URL

There are many different user agent strings across multiple browsers and
crawlers on the Web. You can find a list of some of them at

.

Tangled Web? Not At All!

[222]

Specifying a bandwidth limit on cURL
When bandwidth is shared among multiple users, we can limit the download rate with the

 option:

$ curl URL --limit-rate 20k

The rate can be specified with (kilobyte) or (megabyte).

Specifying the maximum download size
The option specifies the maximum file size:

$ curl URL --max-filesize bytes

The command will return a non-zero exit code if the file size exceeds
the limit or a zero if the download succeeds.

Authenticating with cURL
The command's option performs HTTP or FTP authentication.

The username and password can be specified using :

$ curl -u user:pass http://test_auth.com

If you prefer to be prompted for the password, provide only a username:

$ curl -u user http://test_auth.com

Printing response headers excluding data
Examining headers is sufficient for many checks and statistics. For example, we don't need
to download an entire page to confirm it is reachable. Just reading the HTTP response is
sufficient.

Another use case for examining the HTTP header is to check the field to
determine the file size or the field to see if the file is newer than a current
copy before downloading.

Tangled Web? Not At All!

[223]

The or option outputs only the HTTP headers, without downloading the remote
file:

$ curl -I http://knopper.net
HTTP/1.1 200 OK
Date: Tue, 08 Nov 2016 17:15:21 GMT
Server: Apache
Last-Modified: Wed, 26 Oct 2016 23:29:56 GMT
ETag: "1d3c8-1af3-b10500"
Accept-Ranges: bytes
Content-Length: 6899
Content-Type: text/html; charset=ISO-8859-1

See also
The Posting to a web page and reading the response recipe in this chapter

Accessing unread Gmail e-mails from the
command line
Gmail is a widely-used free e-mail service from Google: . It
allows you to read your mail via a browser or an authenticated RSS feeds. We can parse the
RSS feeds to report the sender name and subject. This is a quick way to scan unread e-mails
without opening the web browser.

How to do it...
Let's go through a shell script to parse the RSS feeds for Gmail to display the unread mails:

Tangled Web? Not At All!

[224]

The output resembles this:

$./fetch_gmail.sh
From: SLYNUX [slynux@slynux.com]
Subject: Book release - 2

From: SLYNUX [slynux@slynux.com]
Subject: Book release - 1
.
... 5 entries

If you use a Gmail account with two-factor authentication, you will have
to generate a new key for this script and use it. Your regular password
won't work.

How it works...
The script uses cURL to download the RSS feed. You can view the format of the incoming
data by logging in to your Gmail account and viewing

.

cURL reads the RSS feed with the user authentication provided by the
argument. When you use without the password cURL, it will interactively ask for
the password.

: This removes the newline characters
: This replaces every element with a

newline, so each e-mail entry is delimited by a new line and, hence, mails can be
parsed one-by-one.

The next block of script that needs to be executed as one single expression uses to
extract the relevant fields:

Tangled Web? Not At All!

[225]

This script matches the title with the regular expression, the
sender name with the regular expression, and e-
mail using . Sed uses back referencing to display the author, title, and
subject of the e-mail into an easy to read format:

 corresponds to the first substring match (title), for the second substring match
(name), and so on.

The variable is used to take the number of unread mail entries to be printed
on the terminal.

 is used to display only the lines from the first line. is
multiplied by three in order to show three lines of output.

See also
The A primer on cURL recipe in this chapter explains the command
The Using sed to perform text replacement recipe in , Texting and
Driving, explains the command

Parsing data from a website
The , , and commands can be used to mine data from websites. You might
have come across a list of actress rankings in a Searching and mining text inside a file with
grep recipe in , Texting and Driving; it was generated by parsing the

 web page.

How to do it...
Let's go through the commands used to parse details of actresses from the website:

$ lynx -dump -nolist \
 http://www.johntorres.net/BoxOfficefemaleList.html
 grep -o "Rank-.*" | \
 sed -e 's/ *Rank-\([0-9]*\) *\(.*\)/\1\t\2/' | \
 sort -nk 1 > actresslist.txt

Tangled Web? Not At All!

[226]

The output is as follows:

Only 3 entries shown. All others omitted due to space limits
1 Keira Knightley
2 Natalie Portman
3 Monica Bellucci

How it works...
Lynx is a command-line web browser; it can dump a text version of a website as we will see
in a web browser, instead of returning the raw HTML as or cURL does. This saves the
step of removing HTML tags. The option shows the links without numbers.
Parsing and formatting the lines that contain Rank is done with :

sed -e 's/ *Rank-\([0-9]*\) *\(.*\)/\1\t\2/'

These lines are then sorted according to the ranks.

See also
The Using sed to perform text replacement recipe in , Texting and Driving,
explains the command
The Downloading a web page as plain text recipe in this chapter explains the
command

Image crawler and downloader
Image crawlers download all the images that appear in a web page. Instead of going
through the HTML page to pick the images by hand, we can use a script to identify the
images and download them automatically.

How to do it...
This Bash script will identify and download the images from a web page:

Tangled Web? Not At All!

[227]

An example usage is as follows:

How it works...
The image downloader script reads an HTML page, strips out all tags except , parses

 from the tag, and downloads them to the specified directory. This script
accepts a web page URL and the destination directory as command-line arguments.

The statement checks whether the total number of arguments to the script is
three, otherwise it exits and returns a usage example. Otherwise, this code parses the URL
and destination directory:

Tangled Web? Not At All!

[228]

The loop runs until all the arguments are processed. The command shifts
arguments to the left so that will take the next argument's value; that is, , and so on.
Hence, we can evaluate all arguments through itself.

The statement checks the first argument (). If that matches , the next argument
must be a directory name, so the arguments are shifted and the directory name is saved. If
the argument is any other string it is a URL.

The advantage of parsing arguments in this way is that we can place the -d argument
anywhere in the command line:

$./img_downloader.sh -d DIR URL

Or:

$./img_downloader.sh URL -d DIR

 will print only the matching strings, which are the
tags including their attributes. The phrase matches all the characters except the
closing , that is, .

 extracts the from the string.

There are two types of image source paths: relative and absolute. Absolute paths contain
full URLs that start with or . Relative URLs starts with or
itself. An example of an absolute URL is . An example
of a relative URL is .

For relative URLs, the starting should be replaced with the base URL to transform it to
. The script initializes by extracting it from the

initial URL with the following command:

The output of the previously described command is piped into another sed command
to replace a leading with , and the results are saved in a file named for the
script's PID: ().

Tangled Web? Not At All!

[229]

The final loop iterates through each line of the list and uses curl to download the
images. The argument is used with to avoid extra progress messages from
being printed on the screen.

See also
The A primer on cURL recipe in this chapter explains the command
The Using sed to perform text replacement recipe in , Texting and Driving
explains the command
The Searching and mining text inside a file with grep recipe in , Texting and
Driving, explains the command

Web photo album generator
Web developers frequently create photo albums of full-size and thumbnail images. When a
thumbnail is clicked, a large version of the picture is displayed. This requires resizing and
placing many images. These actions can be automated with a simple Bash script. The script
creates thumbnails, places them in exact directories, and generates the code fragment for

 tags automatically.

Getting ready
This script uses a loop to iterate over every image in the current directory. The usual
Bash utilities such as and (from the Image Magick package) are used. These
will generate an HTML album, using all the images, in .

How to do it...
This Bash script will generate an HTML album page:

Tangled Web? Not At All!

[230]

Run the script as follows:

$./generate_album.sh
Creating album..
Album generated to index.html

Tangled Web? Not At All!

[231]

How it works...
The initial part of the script is used to write the header part of the HTML page.

The following script redirects all the contents up to to :

cat <<EOF1 > index.html
contents...
EOF

The header includes the HTML and CSS styling.

 iterates over the filenames and evaluates the body of the loop.

 creates images 100px-wide as
thumbnails.

The following statement generates the required tag and appends it to :

Finally, the footer HTML tags are appended with as in the first part of the script.

See also
The Web photo album generator recipe in this chapter explains and
redirection

Twitter command-line client
Twitter is the hottest micro-blogging platform, as well as the latest buzz word for online
social media now. We can use Twitter API to read tweets on our timeline from the
command line!

Let's see how to do it.

Tangled Web? Not At All!

[232]

Getting ready
Recently, Twitter stopped allowing people to log in using plain HTTP Authentication, so
we must use OAuth to authenticate ourselves. A full explanation of OAuth is out of the
scope of this book, so we will use a library which makes it easy to use OAuth from Bash
scripts. Perform the following steps:

Download the library from1.
, and unzip

it to any directory.
Go to that directory and then inside the subdirectory , run2.

 as root.
Go to and register a new app. This will make it3.
possible to use OAuth.
After registering the new app, go to your app's settings and change Access type4.
to Read and Write.
Now, go to the Details section of the app and note two things, Consumer Key5.
and Consumer Secret, so that you can substitute these in the script we are going
to write.

Great, now let's write the script that uses this.

How to do it...
This Bash script uses the OAuth library to read tweets or send your own updates:

Tangled Web? Not At All!

[233]

Run the script as follows:

$./twitter.sh read
Please go to the following link to get the PIN:
https://api.twitter.com/oauth/authorize?
oauth_token=LONG_TOKEN_STRING
PIN: PIN_FROM_WEBSITE
Now you can create, edit and present Slides offline.
- by A Googler
$./twitter.sh tweet "I am reading Packt Shell Scripting Cookbook"
Tweeted :)
$./twitter.sh read | head -2
From: Clif Flynt
Tweet: I am reading Packt Shell Scripting Cookbook

Tangled Web? Not At All!

[234]

How it works...
First of all, we use the source command to include the library, so we can
use its functions to access Twitter. The function initializes the library.

Every app needs to get an OAuth token and token secret the first time it is used. If these are
not present, we use the library function to acquire them. Once
we have the tokens, we save them to a file so we can simply source it the next time
the script is run.

The library function fetches the tweets from Twitter. This
data is retuned as a single long string in JSON format, which starts like this:

[{"created_at":"Thu Nov 10 14:45:20 +0000
"016","id":7...9,"id_str":"7...9","text":"Dining...

Each tweet starts with the tag and includes a and a tag.
The script will extract the text and screen name data and display only those fields.

The script assigns the long string to the variable.

The JSON format uses quoted strings for the key and may or may not quote the value. The
key/value pairs are separated by commas, and the key and value are separated by a colon
().

The first replaces each character set with a newline, making each key/value a separate
line. These lines are piped to another command to replace each occurrence of with a
tilde (~), which creates a line like this:

The final script reads each line. The option splits the line into fields at the tilde, so
 is the key and is the value. The command checks for or . The

text is first in the tweet, but it's easier to read if we report the sender first; so the script saves
a return until it sees a , then prints the current value of and the saved
value of the text.

The library function generates a tweet. The empty first parameter
defines our message as being in the default format, and the message is a part of the second
parameter.

Tangled Web? Not At All!

[235]

See also
The Using sed to perform text replacement recipe in , Texting and Driving,
explains the command
The Searching and mining text inside a file with grep recipe in , Texting and
Driving, explains the command

Accessing word definitions via a web server
Several dictionaries on the Web offer an API to interact with their website via scripts. This
recipe demonstrates how to use a popular one.

Getting ready
We are going to use , , and for this define utility. There are a lot of dictionary
websites where you can register and use their APIs for personal use for free. In this
example, we are using Merriam-Webster's dictionary API. Perform the following steps:

Go to , and register an1.
account for yourself. Select Collegiate Dictionary and Learner's Dictionary:
Log in using the newly created account and go to My Keys to access the keys.2.
Note the key for the learner's dictionary.

How to do it...
This script will display a word definition:

Tangled Web? Not At All!

[236]

Run the script like this:

$./define.sh usb 1
 1 :a system for connecting a computer to another device (such as
 a printer, keyboard, or mouse) by using a special kind of cord a
 USB cable/port USB is an abbreviation of "Universal Serial Bus."How
 it works...

How it works...
We use to fetch the data from the dictionary API web page by specifying our API

, and the word we want the definition for (). The result contains definitions in
the tags, selected with . The command removes the tags. The script selects
the required number of lines from the definitions and uses to add a line number to each
line.

See also
The Using sed to perform text replacement recipe in explains the
command
The Searching and mining text inside a file with grep recipe in , Texting and
Driving, explains the command

Finding broken links in a website
Websites must be tested for broken links. It's not feasible to do this manually for large
websites. Luckily, this is an easy task to automate. We can find the broken links with HTTP
manipulation tools.

Tangled Web? Not At All!

[237]

Getting ready
We can use and to identify the links and find broken ones. Lynx has the

 option, which recursively visits pages on the website and builds a list of all
hyperlinks. cURL is used to verify each of the links.

How to do it...
This script uses and to find the broken links on a web page:

Tangled Web? Not At All!

[238]

How it works...
 will produce a number of files in the working directory. It includes

a file, which will contain all the links in the website. is used to build
a list by avoiding duplicates. Then, we iterate through each link and check the header
response using . If the first line of the header contains HTTP/ and either or ,
it means that the link is valid. If the link is not valid, it is rechecked and tested for a -link
moved-reply. If that test also fails, the broken link is printed on the screen.

From its name, it might seem like should contain a list of
URLs that were broken or unreachable. However, this is not the case, and
lynx just adds all the URLs there.
Also note that generates a file called , which
contains all the URLs that had problems in browsing. However, will
only add URLs that return , and so we will lose
other errors (for instance,). This is why we
manually check for statuses.

See also
The Downloading a web page as plain text recipe in this chapter explains the
command
The A primer on cURL recipe in this chapter explains the command

Tracking changes to a website
Tracking website changes is useful for both web developers and users. Checking a website
manually is impractical, but a change tracking script can be run at regular intervals. When a
change occurs, it generates a notification.

Getting ready
Tracking changes in terms of Bash scripting means fetching websites at different times and
taking the difference using the command. We can use and to do this.

Tangled Web? Not At All!

[239]

How to do it...
This Bash script combines different commands, to track changes in a web page:

Let's look at the output of the script on a website you control. First
we'll see the output when a web page is unchanged, and then after making changes.

Tangled Web? Not At All!

[240]

Note that you should change to your website name.

First, run the following command:

$./track_changes.sh http://www.MyWebSite.org
 [First run] Archiving..

Second, run the command again:

$./track_changes.sh http://www.MyWebSite.org
 Website has no changes

Third, run the following command after making changes to the web page:

$./track_changes.sh http://www.MyWebSite.org

 Changes:

 --- last.html 2010-08-01 07:29:15.000000000 +0200
 +++ recent.html 2010-08-01 07:29:43.000000000 +0200
 @@ -1,3 +1,4 @@
 <html>
 +added line :)
 <p>data</p>
 </html>

How it works...
The script checks whether the script is running for the first time using

. If doesn't exist, it means that it is the first time, and the web
page must be downloaded and saved as .

If it is not the first time, it downloads the new copy () and checks the
difference with the diff utility. Any changes will be displayed as diff output. Finally,

 is copied to .

Note that changing the website you are checking will generate a huge diff file the first time
you examine it. If you need to track multiple pages, you can create a folder for each website
you intend to watch.

Tangled Web? Not At All!

[241]

See also
The A primer on cURL recipe in this chapter explains the command

Posting to a web page and reading the
response

 and are two types of request in HTTP to send information to or retrieve
information from a website. In a request, we send parameters (name-value pairs)
through the web page URL itself. The POST command places the key/value pairs in the
message body instead of the URL. is commonly used when submitting long forms or
to conceal information submitted from a casual glance.

Getting ready
For this recipe, we will use the sample website included in the tclhttpd
package. You can download tclhttpd from
and then run it on your local system to create a local web server. The guestbook page
requests a name and URL which it adds to a guestbook to show who has visited a site when
the user clicks on the Add me to your guestbook button.

This process can be automated with a single (or) command.

How to do it...
Download the tclhttpd package and to the folder. Start the tclhttpd daemon with
this command:

tclsh httpd.tcl

The format to POST and read the HTML response from the generic website resembles this:

$ curl URL -d "postvar=postdata2&postvar2=postdata2"

Consider the following example:

$ curl http://127.0.0.1:8015/guestbook/newguest.html \
 -d "name=Clif&url=www.noucorp.com&http=www.noucorp.com"

Tangled Web? Not At All!

[242]

The curl command prints a response page like this:

 is the argument used for posting. The string argument for is similar to the
request semantics. pairs are to be delimited by .

You can post the data using using . Consider the following
example:

$ wget http://127.0.0.1:8015/guestbook/newguest.cgi \
 --post-data "name=Clif&url=www.noucorp.com&http=www.noucorp.com" \
 -O output.html

Use the same format as cURL for name-value pairs. The text in output.html is the same as
that returned by the cURL command.

The string to the post arguments (for example, to or)
should always be given in quotes. If quotes are not used, is interpreted
by the shell to indicate that this should be a background process.

If you look at the website source (use the View Source option from the web browser), you
will see an HTML form defined, similar to the following code:

Tangled Web? Not At All!

[243]

Here, is the target URL. When the user enters the details and clicks on the
Submit button, the name and URL inputs are sent to as a request, and
the response page is returned to the browser.

See also
The A primer on cURL recipe in this chapter explains the command
The Downloading from a web page recipe in this chapter explains the
command

Downloading a video from the Internet
There are many reasons for downloading a video. If you are on a metered service, you
might want to download videos during off-hours when the rates are cheaper. You might
want to watch videos where the bandwidth doesn't support streaming, or you might just
want to make certain that you always have that video of cute cats to show your friends.

Getting ready
One program for downloading videos is . This is not included in most
distributions and the repositories may not be up-to-date, so it's best to go to the

 main site at .

You'll find links and information on that page for downloading and installing .

How to do it...
Using is easy. Open your browser and find a video you like. Then copy/paste
that URL to the command line:

youtube-dl https://www.youtube.com/watch?v=AJrsl3fHQ74

While is downloading the file it will generate a status line on your terminal.

Tangled Web? Not At All!

[244]

How it works...
The program works by sending a message to the server, just as a browser
would do. It masquerades as a browser so that YouTube or other video providers will
download a video as if the device were streaming.

The () option will list the available formats a video is available in, and
the () option will specify which format to download. This is useful if you want
to download a higher-resolution video than your Internet connection can reliably stream.

Summarizing text with OTS
The Open Text Summarizer (OTS) is an application that removes the fluff from a piece of
text to create a succinct summary.

Getting ready
The package is not part of most Linux standard distributions, but it can be installed
with the following command:

apt-get install libots-devel

How to do it...
The application is easy to use. It reads text from a file or from and generates the
summary to .

ots LongFile.txt | less

Or

cat LongFile.txt | ots | less

The application can also be used with to summarize information from websites.
For example, you can use to summarize longwinded blogs:

curl http://BlogSite.org | sed -r 's/<[^>]+>//g' | ots | less

Tangled Web? Not At All!

[245]

How it works...
The command retrieves the page from a blog site and passes the page to . The
command uses a regular expression to replace all the HTML tags, a string that starts with a
less-than symbol and ends with a greater-than symbol, with a blank. The stripped text is
passed to , which generates a summary that's displayed by less.

Translating text from the command line
Google provides an online translation service you can access via your browser. Andrei
Neculau created an awk script that will access that service and do translations from the
command line.

Getting ready
The command line translator is not included on most Linux distributions, but it can be
installed directly from Git like this:

cd ~/bin
 wget git.io/trans
 chmod 755 ./trans

How to do it...
The application will translate into the language in your locale environment variable
by default.

$> trans "J'adore Linux"

 J'adore Linux

 I love Linux

 Translations of J'adore Linux
 French -> English

 J'adore Linux
 I love Linux

Tangled Web? Not At All!

[246]

You can control the language being translated from and to with an option before the text.
The format for the option is as follows:

from:to

To translate from English to French, use the following command:

$> trans en:fr "I love Linux"
 J'aime Linux

How it works...
The program is about 5,000 lines of awk code that uses to communicate with
the Google, Bing, and Yandex translation services.

66
Repository Management

In this chapter, we will cover the following recipes:

Creating a new git repository
Cloning a remote git repository
Adding and committing changes with git
Creating and merging branches with git
Sharing your work
Pushing a branch to a server
Retrieving the latest sources for the current branch
Checking the status of a git repository
Viewing git history
Finding bugs
Committing message ethics
Using fossil
Creating a new fossil repository
Cloning a remote fossil repository
Opening a fossil project
Adding and Committing Changes with Fossil
Using branches and forks with fossil
Sharing your work with fossil

Repository Management

[248]

Updating your local fossil repository
Checking the status of a fossil repository
Viewing fossil history

Introduction
The more time you spend developing applications the more you come to appreciate
software that tracks your revision history. A revision control system lets you create a
sandbox for new approaches to problems, maintain multiple branches of released code, and
provide a development history in the event of intellectual property disputes. Linux and
Unix support many source code control systems ranging from the early and primitive SCCS
and RCS to concurrent systems such as CVS and SVN and the modern distributed
development systems such as GIT and FOSSIL.

The big advantage of Git and Fossil over older systems such as CVS and SVN is that a
developer can use them without being connected to a network. Older systems such as CVS
and RCS worked fine when you were at the office, but you could not check the new code or
examine the old code while working remotely.

Git and Fossil are two different revision control systems with some similarities and some
differences. Both support the distributed development model of revision control. Git
provides source code control and has a number of add-on applications for more
information while Fossil is a single executable that provides revision control, trouble tickets,
a Wiki, web pages and technical notes.

Git is used for the Linux kernel development and has been adopted by many open source
developers. Fossil was designed for the SQLite development team and is also widely used
in both the open source and closed source communities.

Git is included with most Linux distributions. If it's not available on your system, you can
install it with either yum (Redhat or SuSE) or apt-get (Debian or Ubuntu).

$ sudo yum install git-all
 $ sudo apt-get install git-all

Fossil is available as source or executable from
.

Repository Management

[249]

Using Git

The git system uses the command with many subcommands to perform individual
actions. We'll discuss git clone, git commit, git branch, and others.

To use git you need a code repository. You can either create one yourself (for your projects)
or clone a remote repository.

Creating a new git repository
If you are working on your own project, you will want to create your own repository. You
can create the repository on your local system, or on a remote site such as GitHub.

Getting ready
All projects in git need a master folder that holds the rest of the project files.

$ mkdir MyProject
 $ cd MyProject

How to do it...
The command creates the subfolder within your current working directory
and initializes the files that configure .

$ git init

How it works...
The command initializes a repository for local use. If you want to allow
remote users access this repository, you need to enable that with the
command:

$ git update-server-info

Repository Management

[250]

Cloning a remote git repository
If you intend to access someone else's project, either to contribute new code or just to use
the project, you'll need to clone the code to your system.

You need to be online to clone a repository. Once you've copied the files to your system,
you can commit new code, backtrack to older revisions, and so on. You can't send any new
code changes upstream to the site you cloned from until you are online again.

How to do it...
The command copies files from the remote site to your local system. The remote
site might be an anonymous repository such as GitHub, or a system where you need to log
in with an account name and perhaps password.

Clone from a known remote site such as GitHub:

$ git clone http://github.com/ProjectName

Clone from a login/password protected site (perhaps your own server):

$ git clone clif@172.16.183.130:gitTest
 clif@172.16.183.130's password:

Adding and committing changes with git
With distributed version control systems such as git, you do most of your work with your
local copy of the repository. You can add new code, change code, test, revise, and finally
commit the fully tested code. This encourages frequent small commits on your local
repository and one large commit when the code is stable.

How to do it...
The command adds a change in your working code to the staging area. It does not
change the repository, it just marks this change as one to be included with the next commit:

$ vim SomeFile.sh
 $ git add SomeFile.sh

Repository Management

[251]

Doing a after every edit session is a good policy if you want to be certain you
don't accidently leave out a change when you commit your changes.

You can also add new files to your repository with the git add command:

$ echo "my test file" >testfile.txt
 $ git add testfile.txt

Alternatively, you can add multiple files:

$ git add *.c

The command commits the changes to the repository:

$ vim OtherFile.sh
 $ git add OtherFile.sh
 $ git commit

The command will open the editor defined in your EDITOR shell variable
and pre-populate like this:

Please enter the commit message for your changes. Lines starting
 # with '#' will be ignored, and an empty message aborts the commit.
 #
 # Committer: Clif Flynt <clif@cflynt.com>
 #
 # On branch branch1
 # Changes to be committed:
 # (use "git reset HEAD <file>..." to unstage)
 #
 # modified: SomeFile.sh
 # modified: OtherFile.sh

After you enter a comment your changes will be saved in your local copy of the repository.

This does not push your changes to the main repository (perhaps), but other
developers can pull the new code from your repository if they have an account on your
system.

You can shorten the add/commit events with the and arguments to commit:

: This adds the new code before committing
: This defines a message without going into the editor

git commit -am "Add and Commit all modified files."

Repository Management

[252]

Creating and merging branches with git
If you are maintaining an application you may need to return to an earlier branch to test.
For instance, the bug you're fixing may have been around, but unreported, for a long time.
You'll want to find when the bug was introduced to track down the code that introduced it.
(Refer to in the Finding bugs recipe in this chapter.)

When you add new features, you should create a new branch to identify your changes. The
project maintainer can then merge the new branch into the master branch after the new
code is tested and validated. You can change and create new branches with the git's

 subcommand.

Getting ready...
Use or to create the project on your system.

How to do it...
To change to a previously defined branch:

$ git checkout OldBranchName

How it works...
The checkout subcommand examines the folder on your system and restores the
snapshot associated with the desired branch.

Note that you cannot change to an existing branch if you have uncommitted changes in
your current workspace.

You can create a new branch when you have uncommitted changes in the current
workspaces. To create a new branch, use git checkout's option:

$ git checkout -b MyBranchName
 Switched to a new branch 'MyBranchName'

Repository Management

[253]

This defines your current working branch to be . It sets a pointer to match
 to the previous branch. As you add and commit changes, the pointer will

diverge further from the initial branch.

When you've tested the code in your new branch, you can merge the changes back into the
branch you started from.

There's more...
You can view the branches with the command:

$ git branch
 * MyBranchName
 master

The current branch is highlighted with an asterisk ().

Merging branches
After you've edited, added, tested, and committed, you'll want to merge your changes back
into the initial branch.

After you've created a new branch and added and committed your changes, change back to
the original branch and use the command to merge the changes in your new
branch:

$ git checkout originalBranch
 $ git checkout -b modsToOriginalBranch
 # Edit, test
 $ git commit -a -m "Comment on modifications to originalBranch"
 $ git checkout originalBranch
 $ git merge modsToOriginalBranch

The first command retrieves the snapshot for the starting branch. The
second command marks your current working code as also being a new
branch.

Repository Management

[254]

The command (or commands) move the snapshot pointer for the new branch
further and further away from the original branch. The third command
restores your code to the initial state before you made your edits and commits.

The command moves the snapshot pointer for the initial branch to the snapshot
of the branch you are merging.

After you merge a branch, you may not need it any longer. The option will delete the
branch:

$ git branch -d MyBranchName

Sharing your work
Git lets you work without connecting to the Internet. Eventually, you'll want to share your
work.

There are two ways to do this, creating a patch or pushing your new code to the master
repository.

Making a patch...

A patch file is a description of the changes that have been committed. Another developer
can apply your patch files to their code to use your new code.

The format-patch command will collect your changes and create one or more patch files.
The patch files will be named with a number, a description and .

How to do it...
The format-patch command requires an identifier to tell Git what the first patch should be.
Git will create as many patch files as it needs to change code from what it was then to what
it should be.

There are several ways to identify the starting snapshot. One common use for a set of
patches is to submit the changes you've made to a given branch to the package maintainer.

Repository Management

[255]

For example, suppose you've created a new branch off the master for a new feature. When
you've completed your testing, you may send a set of patch files to the project maintainer so
they can validate your work and merge the new feature into the project.

The sub-command with the name of a parent branch will generate the patch
file to create your current branch:

$ git checkout master
 $ git checkout -b newFeature
 # Edits, adds and commits.
 $ git format-patch master
 0001-Patch-add-new-feature-to-menu.patch
 0002-Patch-support-new-feature-in-library.patch

Another common identifier is a git snapshot SHA1. Each git snapshot is identified by an
SHA1 string.

You can view a log of all the commits in your repository with the command:

$ git log
 commit 82567395cb97876e50084fd29c93ccd3dfc9e558
 Author: Clif Flynt <clif@example.com>
 Date: Thu Dec 15 13:38:28 2016 -0500

 Fixed reported bug #1

 commit 721b3fee54e73fd9752e951d7c9163282dcd66b7
 Author: Clif Flynt <clif@example.com>
 Date: Thu Dec 15 13:36:12 2016 -0500

 Created new feature

The command with an SHA1 identifier looks like this:

$ git format-patch SHA1

You can use a unique leading segment of the SHA1 identifier or the full, long string:

$ git format-patch 721b
 $ git format-patch 721b3fee54e73fd9752e951d7c9163282dcd66b7

You can also identify a snapshot by its distance from your current location with a option.

This command will make a patch file for the most recent change to the master branch:

$ git format-patch -1 master

Repository Management

[256]

This command will make a patch file for the two most recent changes to the
branch:

$ git format-patch -2 bleedingEdge

Applying a patch

The command applies a patch to your working code set. You'll have to check
out the appropriate snapshot before running this command.

You can test that the patch is valid with the option.

If your environment is correct for this patch, there will be no return. If you don't have the
correct branch checked out, the patch command will generate an error condition:

$ git apply --check 0001-Patch-new-feature.patch
 error: patch failed: feature.txt:2
 error: feature.txt: patch does not apply

When the option does not generate an error message, use the
command to apply the patch:

$ git apply 0001-Patch-new-feature.patch

Pushing a branch to a server
Eventually, you'll want to share your new code with everyone, not just send patches to
individuals.

The command will push a branch to the master.

How to do it...
If you have a unique branch, it can always be pushed to the master repository:

$ git push origin MyBranchName

If you've modified an existing branch, you may receive an error message as follows:

: Refusing to update checked out branch:
: By default, updating the current branch in a non-bare

repository

Repository Management

[257]

In this case, you need to push your changes to a new branch on the remote site:

$ git push origin master:NewBranchName

You'll also need to alert the package maintainer to merge this branch into the master:

On remote
 $ git merge NewBranchName

Retrieving the latest sources for the current branch. If there are multiple developers on a
project, you'll need to synchronize with the remote repository occasionally to retrieve data
that's been pushed by other developers.

The and commands will download data from the remote site to your
local repository.

Update your repository without changing the working code.

The and command will download new code but not modify your
working code set.

get fetch SITENAME

The site you cloned your repository from is named origin:

$ get fetch origin

To fetch from another developer's repository, use the following command:

$ get fetch Username@Address:Project

Update your repository and the working code.

The command performs a fetch and then merges the changes into your current
code. This will fail if there are conflicts you need to resolve:

$ git pull origin
 $ git pull Username@Address:Project

Repository Management

[258]

Checking the status of a git repository
After a concentrated development and debugging session you are likely to forget all the
changes you've made. The command will remind you.

How to do it...
The command reports the current status of your project. It will tell you what
branch you are on, whether you have uncommitted changes and whether you are out of
sync with the origin repository:

$ git status
 # On branch master
 # Your branch is ahead of 'origin/master' by 1 commit.
 #
 # Changed but not updated:
 # (use "git add <file>..." to update what will be committed)
 # (use "git checkout -- <file>..." to discard changes in working
 directory)
 #
 #modified: newFeature.tcl

How it works...
The previous recipe shows output when a change has been added and
committed and one file was modified but not yet committed.

This line indicates that there has been a commit that hasn't been pushed:

Lines in this format report on files that have been modified, but not yet committed:

#modified: newFeature.tcl
 git config --global user.name "Your Name"
 git config --global user.email you@example.com

Repository Management

[259]

If the identity used for this commit is wrong, you can fix it with the following command:

git commit --amend --author='Your Name <you@example.com>'
 1 files changed, 1 insertions(+), 0 deletions(-)
 create mode 100644 testfile.txt

Viewing git history
Before you start working on a project, you should review what's been done. You may need
to review what's been done recently to keep up with other developer's work.

The command generates a report to help you keep up with a project's changes.

How to do it...
The command generates a report of SHA1 IDs, the author who committed that
snapshot, the date it was committed, and the log message:

$ git log
 commit fa9ef725fe47a34ab8b4488a38db446c6d664f3e
 Author: Clif Flynt <clif@noucorp.com>
 Date: Fri Dec 16 20:58:40 2016 -0500
 Fixed bug # 1234

Finding bugs
Even the best testing groups let bugs slip out into the field. When that happens, it's up to
the developers to figure out what the bug is and how to fix it.

Git has tools to help.

Nobody deliberately creates bugs, so the problem is probably caused by fixing an old bug
or adding a new feature.

If you can isolate the code that causes the issue, use the command to find who
committed the code that caused the problem and what the commit SHA code was.

Repository Management

[260]

How to do it...
The command returns a list of commit hash codes, author, date, and the first
line of the commit message:

$ git blame testGit.sh
 d5f62aa1 (Flynt 2016-12-07 09:41:52 -0500 1) Created testGit.sh
 063d573b (Flynt 2016-12-07 09:47:19 -0500 2) Edited on master repo.
 2ca12fbf (Flynt 2016-12-07 10:03:47 -0500 3) Edit created remotely
 and merged.

There's more...
If you have a test that indicates the problem, but don't know the line of code that's at issue,
you can use the command to find the commit that introduced the problem.

How to do it...
The command requires two identifiers, one for the last known good code and
one for the bad release. The bisect command will identify a revision midway between the
good and bad for you to test.

After you test the code, you reset the good or bad pointer. If the test worked, reset the good
pointer, if the test failed, reset the bad pointer.

Git will then check out a new snapshot midway between the new good and bad locations:

 # Pull the current (buggy) code into a git repository
 $ git checkout buggyBranch

 # Initialize git bisect.
 $ git bisect start

 # Mark the current commit as bad
 $ git bisect bad

 # Mark the last known good release tag
 # Git pulls a commit at the midpoint for testing.

 $ git bisect good v2.5
 Bisecting: 3 revisions left to test after this (roughly 2 steps)
 [6832085b8d358285d9b033cbc6a521a0ffa12f54] New Feature

 # Compile and test

Repository Management

[261]

 # Mark as good or bad
 # Git pulls next commit to test
 $ git bisect good
 Bisecting: 1 revision left to test after this (roughly 1 step)
 [2ca12fbf1487cbcd0447cf9a924cc5c19f0debf9] Merged. Merge branch
 'branch1'

How it works...
The command identifies the version of your code midway between a known
good and known bad version. You can now build and test that version. After testing, rerun

 to declare that branch as good or bad. After the branch is declared,
 will identify a new version, halfway between the new good and bad markers.

Tagging snapshots
Git supports tagging specific snapshots with a mnemonic string and an additional message.
You can use the tags to make the development tree clearer with information such as Merged
in new memory management or to mark specific snapshots along a branch. For example, you
can use a tag to mark release-1.0 and release-1.1 along the release-1 branch.

Git supports both lightweight tags (just tagging a snapshot) and tags with associated
annotation.

Git tags are local only. will not push your tags by default. To send tags to the
origin repository, you must include the -tags option:

$ git push origin --tags

The command has options to add, delete, and list tags.

How to do it...
The command with no argument will list the visible tags:

$ git tag
 release-1.0
 release-1.0beta
 release-1.1

Repository Management

[262]

You can create a tag on your current checkout by adding a tag name:

$ git tag ReleaseCandidate-1

You can add a tag to a previous commit by appending an SHA-1 identifier to the git tag
command:

$ git log --pretty=oneline
 72f76f89601e25a2bf5bce59551be4475ae78972 Initial checkin
 fecef725fe47a34ab8b4488a38db446c6d664f3e Added menu GUI
 ad606b8306d22f1175439e08d927419c73f4eaa9 Added menu functions
 773fa3a914615556d172163bbda74ef832651ed5 Initial action buttons

 $ git tag menuComplete ad606b

The option will attach annotation to a tag:

$ git tag -a tagWithExplanation
 # git opens your editor to create the annotation

You can define the message on the command line with the option:

$ git tag -a tagWithShortMessage -m "A short description"

The message will be displayed when you use the command:

$ git show tagWithShortMessage

 tag tagWithShortmessage
 Tagger: Clif Flynt <clif@cflynt.com>
 Date: Fri Dec 23 09:58:19 2016 -0500

 A short description
 ...

The option will delete a tag:

$ git tag
 tag1
 tag2
 tag3
 $ git tag -d tag2
 $ git tag
 tag2
 tag3F

Repository Management

[263]

Committing message ethics
The commit message is free form text. It can be whatever you think is useful. However,
there are comment conventions used in the Git community.

How to do it...
Use 72 characters or less on each line. Use blank lines to separate paragraphs.
The first line should be 50 characters or less and summarize why this commit was
made. It should be specific enough that someone reading just this line will
understand what happened.
Don't write or even , write

.

The following paragraphs describe details that will be important to someone following up
on your work. Mention any global state variables your code uses, side effects, and so on. If
there is a description of the problem you fixed, include the URL for the bug report or
feature request.

Using fossil
The fossil application is another distributed version control system. Like Git, it maintains a
record of changes regardless of whether the developer has access to the master repository
site. Unlike Git, fossil supports an auto-sync mode that will automatically push commits to
the remote repository if it's accessible. If the remote site is not available at commit time,
fossil saves the changes until the remote site becomes available.

Fossil differs from Git in several respects. The fossil repository is implemented in a single
SQLite database instead of a set of folders as Git is implemented. The fossil application
includes several other tools such as a web interface, a trouble-ticket system, and a wiki,
while Git uses add-on applications to provide these services.

Like Git, the main interface to fossil is the command with subcommands to perform
specific actions like creating a new repository, cloning an existing repository, adding,
committing files, and so on.

Repository Management

[264]

Fossil includes a help facility. The fossil help command will generate a list of supported
commands, and will display a help page:

$ fossil help
 Usage: fossil help COMMAND
 Common COMMANDs: (use "fossil help -a|-all" for a complete list)
 add cat finfo mv revert timeline
 ...

Getting ready
Fossil may not be installed on your system, and is not maintained by all repositories.
The definitive site for fossil is .

How to do it...
Download a copy of the fossil executable for your platform from

 and move it to your folder.

Creating a new fossil repository
Fossil is easy to set up and use for your own projects as well as existing projects that you
join.

The and commands are identical. You can use either depending
on your preference.

How to do it...
The and commands create an empty fossil repository:

$ fossil new myProject.fossil
 project-id: 855b0e1457da519d811442d81290b93bdc0869e2
 server-id: 6b7087bce49d9d906c7572faea47cb2d405d7f72
 admin-user: clif (initial password is "f8083e")

 $ fossil init myProject.fossil
 project-id: 91832f127d77dd523e108a9fb0ada24a5deceedd
 server-id: 8c717e7806a08ca2885ca0d62ebebec571fc6d86
 admin-user: clif (initial password is "ee884a")

Repository Management

[265]

How it works...
The and fossil new commands are the same. They create a new empty
repository database with the name you request. The suffix is not required, but it's
a common convention.

There's more...
Let us look at some more recipes:

Web interface to fossil
The fossil web server provides either local or remote access to many features of the fossil
system including configuration, trouble ticket management, a wiki, graphs of the commit
history, and more.

The command starts an http server and attempts to connect your local browser
to the fossil server. By default, this interface connects you to the UI and you can perform
any required task.

$ fossil ui
 Listening for HTTP requests on TCP port 8080

 #> fossil ui -P 80
 Listening for HTTP requests on TCP port 80

Making a repository available to remote users
The fossil server command starts a fossil server that allows a remote user to clone your
repository. By default, fossil allows anyone to clone a project. Disable the checkin, checkout,
clone, and download zip capabilities on the and

 pages to restrict access to only registered users.

The web interface for configuration is supported when running fossil server, but instead of
being the default, you must log in using the credentials provided when you created the
repository.

Repository Management

[266]

The fossil server can be started with a full path to the repository:

$ fossil server /home/projects/projectOne.fossil

The fossil server can be started from a folder with the fossil repository without defining the
repository:

$ cd /home/projects
 $ ls
 projectOne.fossil
 $ fossil server
 Listening for HTTP requests on TCP port 8080

Cloning a remote fossil repository
Because the fossil repository is contained in a single file, you can clone it simply by copying
that file. You can send a fossil repository to another developer as an e-mail attachment, put
it on a website, or copy it to a USB memory stick.

The fossil scrub command removes user and password information that the web server may
require from the database. This step is recommended before you distribute copies of your
repository.

How to do it...
You can clone fossil from a site running fossil in the server mode with the fossil clone
command. The fossil clone command distributes the version history, but not the users and
password information:

$ fossil clone http://RemoteSite:port projectName.fossil

How it works...
The fossil clone command copies the repository from the site you've specified to a local file
with a name you provide (in the example:).

Repository Management

[267]

Opening a fossil project
The fossil open command extracts the files from a repository. It's usually simplest to create a
subfolder under the folder with the fossil repository to hold the project.

How to do it...
Download the fossil repository:

$ fossil clone http://example.com/ProjectName project.fossil

Make a new folder for your working directory and change to it:

$ mkdir newFeature
 $ cd newFeature

Open the repository in your working folder:

$ fossil open ../project.fossil

How it works...
The fossil open command extracts all the folders, subfolders, and files that have been
checked into the fossil repository.

There's more...
You can use fossil open to extract specific revisions of the code in the repository. This
example shows how to check out the 1.0 release to fix an old bug. Make a new folder for
your working directory and change it as follows:

$ mkdir fix_1.0_Bug
 $ cd fix_1.0_Bug

Open the repository in your working folder:

$ fossil open ../project.fossil release_1.0

Repository Management

[268]

Adding and committing changes with fossil
Once you've created a repository, you want to add and edit files. The fossil add command
adds a new file to a repository and the fossil commit command commits changes to the
repository. This is different from Git in which the command marks changes to be added
and the commit command actually does the commit.

How to do it...
The next examples show how fossil behaves if you have not defined the or
shell variables. If or are defined, fossil will use that editor instead of
prompting you on the command line:

$ echo "example" >example.txt
 $ fossil add example.txt
 ADDED example.txt

 $ fossil commit
 # Enter a commit message for this check-in. Lines beginning with #
 are ignored.
 #
 # user: clif
 # tags: trunk
 #
 # ADDED example.txt

 $ echo "Line 2" >>example.txt
 $ fossil commit
 # Enter a commit message for this check-in. Lines beginning with #
 are ignored.
 #
 # user: clif
 # tags: trunk
 #
 # EDITED example.txt

Repository Management

[269]

There's more...
When you edit a file you only need to commit. By default, the commit will remember all
your changes to the local repository. If auto-sync is enabled, the commit will also be pushed
to the remote repository:

$ vim example.txt
 $ vim otherExample.txt
 $ fossil commit
 # Enter a commit message for this check-in. Lines beginning with #
 are ignored.
 #
 # user: clif
 # tags: trunk
 #
 # EDITED example.txt, otherExample.txt

Using branches and forks with fossil
In an ideal world, a development tree is a straight line with one revision following directly
from the previous. In reality, developers frequently work from a stable code base and make
changes that are then merged back into the mainline development.

The fossil system distinguishes temporary divergences from the mainline code (for
example, a bug fix in your repository) from permanent divergences (like the 1.x release that
gets only bug fixes, while new features go into 2.x).

The convention in fossil is to refer to intentional divergences as branches and unintentional
divergences as forks. For example, you might create a branch for a new code you are
developing, while trying to commit a change to a file after someone else has committed a
change to that file would cause a fork unless you first update and resolve collisions.

Branches can be temporary or permanent. A temporary branch might be one you create
while developing a new feature. A permanent branch is when you make a release that is
intended to diverge from the mainline code.

Both temporary and permanent branches are managed with tags and properties.

When you create a fossil repository with fossil or fossil new, it assigns the tag
to the tree.

The fossil branch command manages branches. There are subcommands to create new
branches, list branches, and close branches.

Repository Management

[270]

How to do it
The first step in working with branches is to create one. The fossil branch new1.
command creates a new branch. It can either create a branch based on your
current checkout of the project, or you can create a branch at an earlier state of the
project.
The fossil branch new command will create a new branch from a given checkin:2.

$ fossil branch new NewBranchName Basis-Id
 New branch: 9ae25e77317e509e420a51ffbc43c2b1ae4034da

The is an identifier to tell fossil what code snapshot to branch from.3.
There are several ways to define the . The most common of these are
discussed in the next section.
Note that you need to perform a checkout to update your working folder to the4.
new branch:

$ fossil checkout NewBranchName

How it works...
 is the name for your new branch. A convention is to name branches in a

way that describes the modification being made. Branch names such as
or are common.

The is a string that identifies the node where the branch diverges. This can be the
name of a branch if you are diverging from the head of a given branch.

The following commands show how to create a branch from the tip of a trunk:

$ fossil branch new test_rework_parse_logic trunk
 New branch: 9ae25e77317e509e420a51ffbc43c2b1ae4034da

 $ fossil checkout test_rework_parse_logic

The fossil commit command allows you to specify a new branch name at commit time with
the option:

$ fossil checkout trunk

 # Make Changes

 $ fossil commit --branch test_rework_parse_logic

Repository Management

[271]

There's more...

Merging forks and branches
Branches and forks can both be merged back into their parent branch. The forks are
considered temporary and should be merged as soon as the modifications are approved.
Branches are considered permanent, but even these may be merged back into the mainline
code.

The fossil merge command will merge a temporary fork into another branch.

To create a temporary fork and merge it back into an existing branch, you must1.
first check out the branch you intend to work on:

$ fossil checkout trunk

Now you can edit and test. When you're satisfied with the new code, commit the2.
new code onto a new branch. The option creates a new branch if
necessary and sets your current branch to the new :

$ fossil commit --branch new_logic

After the code has been tested and verified, you can merge it back into the3.
appropriate branch by performing a checkout of the branch you want to merge
into, then invoke the fossil merge command to schedule the merge, and finally
commit the merge:

$ fossil checkout trunk
 $ fossil merge new_logic
 $ fossil commit

Fossil and Git behave slightly differently in this respect. The 4.
command updates the repository, while the fossil merge command doesn't
modify the repository until the merge is committed.

Repository Management

[272]

Sharing your work with fossil
If you use multiple platforms for development, or if you work on someone else's project,
you need to synchronize your local repository with the remote, master repository. Fossil has
several ways to handle this.

How to do it...
By default fossil runs in the mode. In this mode, your commits are immediately
propagated to the remote repository.

The setting can be enabled and disabled with the fossil setting command:

$ fossil setting autosync off
 $ fossil setting autosync on

When is disabled (fossil is running in manual merge mode), you must use the
fossil push command to send changes in your local repository to the remote:

$ fossil push

How it works...
The command pushes all changes in your local repository to the remote repository. It
does not modify any checked out code.

Updating your local fossil repository
The flip side of pushing your work to the remote repository is updating your local
repository. You'll need to do this if you do some development on your laptop while the
main repository is on your companies server, or if you are working on a project with
multiple people and you need to keep up to date on their new features.

Repository Management

[273]

How to do it...
The fossil server does not push updates to remote repositories automatically. The

 command will pull updates to your repository. It updates the repository, but does not
change your working code:

$ fossil pull

The command will update your working code if there were changes in
the repository:

$ fossil checkout

You can combine the pull and checkout subcommands with the command:

$ fossil update
 UPDATE main.tcl

 updated-to: 47c85d29075b25aa0d61f39d56f61f72ac2aae67 2016-12-20
 17:35:49 UTC
 tags: trunk
 comment: Ticket 1234abc workaround (user: clif)
 changes: 1 file modified.
 "fossil undo" is available to undo changes to the working checkout.

Checking the status of a fossil repository
Before you start any new development, you should compare the state of your local
repository to the master repository. You don't want to waste time writing code that conflicts
with code that's been accepted.

Repository Management

[274]

How to do it...
The command will report the current status of your project, whether you
have uncommitted edits and whether your working code is at the tip:

$ fossil status
 repository: /home/clif/myProject/../myProject.fossil
 local-root: /home/clif/myProject/
 config-db: /home/clif/.fossil
 checkout: 47c85d29075b25aa0d61f39d56f61f72ac2aae67 2016-12-20
 17:35:49 UTC
 parent: f3c579cd47d383980770341e9c079a87d92b17db 2016-12-20
 17:33:38 UTC
 tags: trunk
 comment: Ticket 1234abc workaround (user: clif)
 EDITED main.tcl

If there has been a commit made to the branch you're working on since your last checkout,
the status will include a line resembling the following:

child: abcdef123456789... YYYY-MM-DD HH:MM::SS UTC

This indicates that there is a commit after your code. You will have to do a
to bring your working copy of the code into sync before you can commit to the head of the
branch. This may require you to fix conflicts by hand.

Note that fossil can only report the data in your local repository. If commits have been
made but not pushed to the server and pulled into your local repository, they won't be
displayed. You should invoke before to confirm that your
repository has all the latest information.

Viewing fossil history
The and commands start fossil's web server and let you view
the history of check-ins and navigate through code via your favorite browser.

The timeline tab provides a tree-structured view of the branches, commits, and merges. The
web interface supports viewing the source code associated with the commits and
performing diffs between different versions.

Repository Management

[275]

How to do it...
Start fossil in the UI mode. It will try to find your browser and open the main page. If that
fails, you can point your browser to fossil:

$ fossil ui
 Listening for HTTP requests on TCP port 8080

 $ konqueror 127.0.0.1:8080

Repository Management

[276]

Finding bugs
Fossil provides tools to help locate the commit where a bug was introduced:

Tools Description

This displays the difference between two revisions of a file

This generates a report showing the commit information for each line in a
file

This uses binary search to step between good and bad versions of an
application

The command has several options. When looking for the code that
introduced a problem, we generally want to perform a diff on two versions of a file. The

 and options to perform this action:

$ fossil diff -from ID-1 -to ID-2FILENAME

 and are identifiers used in the repository. They may be SHA-1 hashes, tags or
dates, and so on. The is the file that was committed to fossil.

For example, to find the difference between two revisions of use the following
command:

$ fossil diff -from 47c85 -to 7a7e25 main.tcl

 Index: main.tcl
 ==
 --- main.tcl
 +++ main.tcl
 @@ -9,10 +9,5 @@

 set max 10
 set min 1
 + while {$x < $max} {
 - for {set x $min} {$x < $max} {incr x} {
 - process $x
 - }
 -

Repository Management

[277]

The differences between two revisions are useful, but it's more useful to see the entire file
annotated to show when lines were added.

The command generates an annotated listing of a file showing when lines
were added:

$ fossil blame main.tcl
7806f43641 2016-12-18 clif: # main.tcl
06e155a6c2 2016-12-19 clif: # Clif Flynt
b2420ef6be 2016-12-19 clif: # Packt fossil Test Script
a387090833 2016-12-19 clif:
76074da03c 2016-12-20 clif: for {set i 0} {$i < 10} {incr
i} {
76074da03c 2016-12-20 clif: puts "Buy my book"
2204206a18 2016-12-20 clif: }
7a7e2580c4 2016-12-20 clif:

When you know that there's a problem in one version but not in another, you need to center
in on the version where the problem was introduced.

The command provides support for this. It lets you define a good and bad
version of the code and automatically checks out the version between those to be tested.
You can then mark this version as good or bad and fossil will repeat the process. Fossil
bisect also generates reports showing how many versions have been tested and how many
need to be tested.

How to do it...

The command initializes the good and bad pointers. The
 and commands mark versions as good or bad and

check out the version of the code that's midway between the good and bad version:

$ fossil bisect reset
$ fossil bisect good 63e1e1
$ fossil bisect bad 47c85d
UPDATE main.tcl

updated-to: f64ca30c29df0f985105409700992d54e 2016-12-20 17:05:44 UTC
tags: trunk
comment: Reworked flaky test. (user: clif)
changes: 1 file modified.
 "fossil undo" is available to undo changes to the working checkout.
 2 BAD 2016-12-20 17:35:49 47c85d29075b25aa
 3 CURRENT 2016-12-20 17:05:44 f64ca30c29df0f98
 1 GOOD 2016-12-19 23:03:22 63e1e1290f853d76

Repository Management

[278]

After testing the version of the code, you can mark it good or bad and
 will check out the next version for testing.

There's more...

The command generates a report of the available versions and
marks the tested versions:

$ fossil bisect status
2016-12-20 17:35:49 47c85d2907 BAD
2016-12-20 17:33:38 f3c579cd47
2016-12-20 17:30:03 c33415c255 CURRENT NEXT
2016-12-20 17:12:04 7a7e2580c4
2016-12-20 17:10:35 24edea3616
2016-12-20 17:05:44 f64ca30c29 GOOD

Tagging snapshots
Every node in the fossil graph can have one or more tags attached to it. Tags can identify
releases, branches, or just particular milestones that you may want to refer to. For example,
you may want a release-1 branch with tags for release-1.0, release-1.1, and so on. A tag can
be used with checkout or merge instead of using the SHA1 identifier.

Tags are implemented with the fossil tag command. Fossil supports several subcommands
to add, cancel, find, and list tags.

The command creates a new tag:

$ fossil tag add TagName Identifier

Repository Management

[279]

The is whatever you want to call the branch.

Identifier is an identifier for the node to be tagged. The identifier can be one of the
following:

A branch name: Tag the most recent commit on this branch1.
An SHA1 identifier: Tag the commit with this SHA1 identifier2.
A datestamp (YYYY-MM-DD): Tag the commit just previous to this datestamp3.
A timestamp (YYYY-MM-DD HH:MM:SS): Tag the commit just previous to this4.
timestamp

 # Tag the current tip of the trunk as release_1.0
 $ fossil add tag release_1.0 trunk

 # Tag the last commit on December 15 as beta_release_1
 $ fossil add tag beta_release_1 2016-12-16

A tag can be used as an identifier to create a fork or branch:

$ fossil add tag newTag trunk
 $ fossil branch new newTagBranch newTag
 $ fossil checkout newTagBranch

A tag can create a branch with a commit and the option:

$ fossil add tag myNewTag 2016-12-21
 $ fossil checkout myNewTag
 # edit and change
 $ fossil commit -branch myNewTag

77
The Backup Plan

In this chapter, we will cover the following recipes:

Archiving with
Archiving with
Compressing data with
Archiving and compressing with
Faster archiving with
Creating filesystems with compression
Backing up snapshots with
Differential archives
Creating entire disk images using

Introduction
Nobody cares about backups until they need them, and nobody makes backups unless
forced. Therefore, making backups needs to be automated. With advances in disk drive
technology, it's simplest to add a new drive or use the cloud for backups, rather than
backing up to a tape drive. Even with cheap drives or cloud storage, backup data should be
compressed to reduce storage needs and transfer time. Data should be encrypted before it's
stored on the cloud. Data is usually archived and compressed before encrypting. Many
standard encryption programs can be automated with shell scripts. This chapter's recipes
describe creating and maintaining files or folder archives, compression formats, and
encrypting techniques.

The Backup Plan

[281]

Archiving with tar
The command was written to archive files. It was originally designed to store data on
tape, thus the name, Tape ARchive. Tar allows you to combine multiple files and
directories into a single file while retaining the file attributes, such as owner and
permissions. The file created by the command is often referred to as a tarball. These
recipes describe creating archives with .

Getting ready
The command comes by default with all Unix-like operating systems. It has a simple
syntax and creates archives in a portable file format. It supports many arguments to fine-
tune its behavior.

How to do it...
The command creates, updates, examines, and unpacks archives.

To create an archive file with tar:1.

$ tar -cf output.tar [SOURCES]

The option creates a new archive and the option tells tar the name of a file to
use for the archive. The f option must be followed by a filename:

$ tar -cf archive.tar file1 file2 file3 folder1 ..

The option lists the contents of an archive:2.

$ tar -tf archive.tar
 file1
 file2

The or flag includes more information in the output. These features are3.
called verbose () and very-verbose (). The convention is common for
commands that generate reports by printing to the terminal. The option
displays more details, such as file permissions, owner group, and modification
date:

$ tar -tvf archive.tar
 -rw-rw-r-- shaan/shaan 0 2013-04-08 21:34 file1

The Backup Plan

[282]

 -rw-rw-r-- shaan/shaan 0 2013-04-08 21:34 file2

The filename must appear immediately after the and it should be the
last option in the argument group. For example, if you want verbose
output, you should use the options like this:

How it works...
The tar command accepts a list of filenames or wildcards such as to specify the
sources. When finished, will archive the source files into the named file.

We cannot pass hundreds of files or folders as command-line arguments. So, it is safer to
use the append option (explained later) if many files are to be archived.

There's more...
Let's go through additional features supported by the command.

Appending files to an archive
The option will append new files to the end of an existing archive:

$ tar -rvf original.tar new_file

The next example creates an archive with one text file in it:

$ echo hello >hello.txt
 $ tar -cf archive.tar hello.txt

The option displays the files in an archive. The option defines the archive name:

$ tar -tf archive.tar
 hello.txt

The option appends a file:

$ tar -rf archive.tar world.txt
 $ tar -tf archive.tar
 hello.txt
 world.txt

The archive now contains both the files.

The Backup Plan

[283]

Extracting files and folders from an archive
The option extracts the contents of the archive to the current directory:

$ tar -xf archive.tar

When is used, the command extracts the contents of the archive to the current
directory. The option specifies a different directory to receive the extracted files:

$ tar -xf archive.tar -C /path/to/extraction_directory

The command extracts the contents of an archive to a specified directory. It extracts the
entire contents of the archive. We can extract just a few files by specifying them as
command arguments:

$ tar -xvf file.tar file1 file4

The preceding command extracts only and , and it ignores other files in the
archive.

stdin and stdout with tar
While archiving, we can specify as the output file so another command in a pipe
can read it as and process the archive.

This technique will transfer data through a Secure Shell (SSH) connection, for example:

$ tar cvf - files/ | ssh user@example.com "tar xv -C Documents/"

In the preceding example, the files/directory is added to a tar archive which is output to
 (denoted by) and extracted to the folder on the remote system.

Concatenating two archives
The option will merge multiple tar archives.

Given two tarballs, and , the following command will merge the
contents of into :

$ tar -Af file1.tar file2.tar

Verify it by listing the contents:

$ tar -tvf file1.tar

The Backup Plan

[284]

Updating files in an archive with a timestamp check
The append option appends any given file to the archive. If a file already exists inside the
archive, tar will append the file, and the archive will contain duplicates. The update option

 specifies only appending files that are newer than existing files inside the archive.

$ tar -tf archive.tar
 filea
 fileb
 filec

To append only if has been modified since the last time it was added to
, use the following command:

$ tar -uf archive.tar filea

Nothing happens if the version of outside the archive and the inside
 have the same timestamp.

Use the command to modify the file timestamp and then try the command
again:

$ tar -uvvf archive.tar filea
 -rw-r--r-- slynux/slynux 0 2010-08-14 17:53 filea

The file is appended since its timestamp is newer than the one inside the archive, as shown
with the option:

$ tar -tf archive.tar
 -rw-r--r-- slynux/slynux 0 2010-08-14 17:52 filea
 -rw-r--r-- slynux/slynux 0 2010-08-14 17:52 fileb
 -rw-r--r-- slynux/slynux 0 2010-08-14 17:52 filec
 -rw-r--r-- slynux/slynux 0 2010-08-14 17:53 filea

Note that the new has been appended to the archive. When extracting this
archive, tar will select the latest version of .

The Backup Plan

[285]

Comparing files in the archive and filesystem
The flag compares files inside an archive with those on the filesystem. This feature can
be used to determine whether or not a new archive needs to be created.

$ tar -df archive.tar
 afile: Mod time differs
 afile: Size differs

Deleting files from the archive
The option removes files from an archive:

$ tar -f archive.tar --delete file1 file2 ..

Alternatively,

$ tar --delete --file archive.tar [FILE LIST]

The next example demonstrates deleting a file:

$ tar -tf archive.tar
 filea
 fileb
 filec
 $ tar --delete --file archive.tar filea
 $ tar -tf archive.tar
 fileb
 filec

Compression with the tar archive
By default, the command archives files, it does not compress them. Tar supports
options to compress the resulting archive. Compression can significantly decrease the size
of the files. Tarballs are often compressed into one of the following formats:

gzip format: or
bzip2 format:
Lempel-Ziv-Markov format:

The Backup Plan

[286]

Different flags are used to specify different compression formats:

 for bunzip2
 for gzip

 for lzma

It is possible to use compression formats without explicitly specifying special options as
earlier. can compress based on the extension of the output or decompress based on an
input file's extension. The or - auto-compress option causes tar to select a compression
algorithm automatically based on file extension:

$ tar acvf archive.tar.gz filea fileb filec
 filea
 fileb
 filec
 $ tar tf archive.tar.gz
 filea
 fileb
 filec

Excluding a set of files from archiving
The option will exclude files matched by wildcard patterns from
being archived.

For example, to exclude all files from archiving use the following command:

$ tar -cf arch.tar * --exclude "*.txt"

Note that the pattern should be enclosed within quotes to prevent the shell
from expanding it.

It is also possible to exclude a list of files provided in a list file with the flag as follows:

$ cat list
 filea
 fileb

 $ tar -cf arch.tar * -X list

Now it excludes and from archiving.

The Backup Plan

[287]

Excluding version control directories
One use for tarballs is distributing source code. Much source code is maintained using
version control systems such as subversion, Git, mercurial, and CVS, (refer to the previous
chapter). Code directories under version control often contain special directories such as

 or . These are managed by the version control application and are not useful to
anyone except a developer. Thus, they should be eliminated from the tarball of the source
code being distributed to users.

In order to exclude version control related files and directories while archiving use the
 option along with . Consider this example:

$ tar --exclude-vcs -czvvf source_code.tar.gz eye_of_gnome_svn

Printing the total bytes
The option will print the total bytes copied to the archive. Note that this is the
number of bytes of actual data. If you include a compression option, the file size will be less
than the number of bytes archived.

$ tar -cf arc.tar * --exclude "*.txt" --totals
 Total bytes written: 20480 (20KiB, 12MiB/s)

See also
The Compressing data with gzip recipe in this chapter explains the command

Archiving with cpio
The application is another archiving format similar to . It is used to store files and
directories in an archive with attributes such as permissions and ownership. The
format is used in RPM package archives (which are used in such as Fedora),

 files for the Linux kernel that contain the kernel image, and so on. This recipe
will give simple examples of .

The Backup Plan

[288]

How to do it...
The application accepts input filenames via and it writes the archive to

. We have to redirect to a file to save the output:

Create test files:1.

$ touch file1 file2 file3

Archive the test files:2.

$ ls file* | cpio -ov > archive.cpio

List files in a archive:3.

$ cpio -it < archive.cpio

Extract files from the archive:4.

$ cpio -id < archive.cpio

How it works...
For the archiving command, the options are as follows:

: This specifies the output
: This is used for printing a list of files archived

Using , we can also archive using files as absolute paths.
 is an absolute path as it contains the full path starting from

root ().
A relative path will not start with but it starts the path from the current
directory. For example, means that there is a directory named

 and is inside the directory.
While extracting, extracts to the absolute path itself. However, in the
case of , it removes the in the absolute path and converts it to a
relative path.

The Backup Plan

[289]

The options in the command for listing all the files in the given archive are as follows:

 is for specifying the input
 is for listing

In the command for extraction, stands for extracting and overwrites files without
prompting. The option tells to create new directories as needed.

Compressing data with gzip
The gzip application is a common compression format in the GNU/Linux platform. The

, , and programs all handle compression. These utilities only
compress/decompress a single file or data stream. They cannot archive directories and
multiple files directly. Fortunately, can be used with both tar and .

How to do it...
 will compress a file and will decompress it back to the original:

Compress a file with :1.

$ gzip filename
 $ ls
 filename.gz

Extract a compressed file:2.

$ gunzip filename.gz
 $ ls
 filename

In order to list the properties of a compressed file, use the following command:3.

$ gzip -l test.txt.gz
 compressed uncompressed ratio uncompressed_name
 35 6 -33.3% test.txt

The Backup Plan

[290]

The command can read a file from and write a compressed file to4.
.

Read data from and output the compressed data to :

$ cat file | gzip -c > file.gz

The option is used to specify output to .

The gzip option works well with :

$ ls * | cpio -o | gzip -c > cpiooutput.gz
 $ zcat cpiooutput.gz | cpio -it

We can specify the compression level for using or the 5.
option to provide low and high compression ratios, respectively.

There's more...
The command is often used with other commands and has advanced options to
specify the compression ratio.

Gzip with tarball
A gzipped tarball is a tar archive compressed using gzip. We can use two methods to create
such tarballs:

The first method is as follows:

$ tar -czvvf archive.tar.gz [FILES]

Alternatively, this command can be used:

$ tar -cavvf archive.tar.gz [FILES]

The option specifies compression and the option specifies that the
compression format should be determined from the extension.

The Backup Plan

[291]

The second method is as follows:

First, create a tarball:

$ tar -cvvf archive.tar [FILES]

Then, compress the tarball:

$ gzip archive.tar

If many files (a few hundred) are to be archived in a tarball and need to be compressed, we
use the second method with a few changes. The problem with defining many files on the
command line is that it can accept only a limited number of files as arguments. To solve this
problem, we create a file by adding files one by one in a loop with the append option (

), as follows:

The following command will extract a gzipped tarball:

$ tar -xavvf archive.tar.gz -C extract_directory

In the preceding command, the option is used to detect the compression format.

zcat - reading gzipped files without extracting
The command dumps uncompressed data from a file to without
recreating the original file. The file remains intact.

$ ls
 test.gz

 $ zcat test.gz
 A test file
 # file test contains a line "A test file"

 $ ls
 test.gz

The Backup Plan

[292]

Compression ratio
We can specify the compression ratio, which is available in the range 1 to 9, where:

1 is the lowest, but fastest
9 is the best, but slowest

You can specify any ratio in that range as follows:

$ gzip -5 test.img

By default, uses a value of , favoring a better compression at the cost of some speed.

Using bzip2
 is similar to in function and syntax. The difference is that offers better

compression and runs more slowly than .

To compress a file using use the command as follows:

$ bzip2 filename

Extract a bzipped file as follows:

$ bunzip2 filename.bz2

The way to compress to and extract from tar.bz2 files is similar to tar.gz, discussed earlier:

$ tar -xjvf archive.tar.bz2

Here specifies compressing the archive in the format.

Using lzma
The compression delivers better compression ratios than and .

To compress a file using use the command as follows:

$ lzma filename

To extract a file, use the following command:

$ unlzma filename.lzma

The Backup Plan

[293]

A tarball can be compressed with the option:

$ tar -cvvf --lzma archive.tar.lzma [FILES]

Alternatively, this can be used:

$ tar -cavvf archive.tar.lzma [FILES]

To extract a tarball created with compression to a specified directory, use this
command:

$ tar -xvvf --lzma archive.tar.lzma -C extract_directory

In the preceding command, is used for extraction. specifies the use of to
decompress the resulting file.

Alternatively, use this:

$ tar -xavvf archive.tar.lzma -C extract_directory

See also
The Archiving with tar recipe in this chapter explains the command

Archiving and compressing with zip
ZIP is a popular compressed archive format available on Linux, Mac, and Windows. It isn't
as commonly used as or on Linux but is useful when distributing data to other
platforms.

How to do it...
The following syntax creates a zip archive:1.

$ zip archive_name.zip file1 file2 file3...

Consider this example:

$ zip file.zip file

Here, the file will be produced.

The Backup Plan

[294]

The flag will archive folders recursively:2.

$ zip -r archive.zip folder1 folder2

The command will extract files and folders from a ZIP file:3.

$ unzip file.zip

The unzip command extracts the contents without removing the archive (unlike
 or).

The flag updates files in the archive with newer files:4.

 $ zip file.zip -u newfile

The flag deletes one or more files from a zipped archive:5.

 $ zip -d arc.zip file.txt

The flag to unzip lists the files in an archive:6.

 $ unzip -l archive.zip

How it works...
While being similar to most of the archiving and compression tools we have already
discussed, , unlike , , or , won't remove the source file after archiving.
While is similar to , it performs both archiving and compression, while by itself
does not perform compression.

Faster archiving with pbzip2
Most modern computers have at least two CPU cores. This is almost the same as two real
CPUs doing your work. However, just having a multicore CPU doesn't mean a program
will run faster; it is important that the program is designed to take advantage of the
multiple cores.

The Backup Plan

[295]

The compression commands covered so far use only one CPU. The , , ,
and commands are multithreaded and can use multiple cores, hence, decreasing the
overall time taken to compress your files.

None of these are installed with most distros, but can be added to your system with apt-get
or yum.

Getting ready
 usually doesn't come preinstalled with most distros, you will have to use your

package manager to install it:

sudo apt-get install pbzip2

How to do it...
The command will compress a single file:1.

pbzip2 myfile.tar

 detects the number of cores on your system and compresses ,
to .

To compress and archive multiple files or directories, we use in2.
combination with , as follows:

 tar cf sav.tar.bz2 --use-compress-prog=pbzip2 dir

Alternatively, this can be used:

tar -c directory_to_compress/ | pbzip2 -c > myfile.tar.bz2

Extracting a compressed file is as follows:3.

The flag will decompress a file:

pbzip2 -d myfile.tar.bz2

A tar archive can be decompressed and extracted using a pipe:

pbzip2 -dc myfile.tar.bz2 | tar x

The Backup Plan

[296]

How it works...
The application uses the same compression algorithms as , but it compresses
separate chunks of data simultaneously using , a threading library. The threading
is transparent to the user, but provides much faster compression.

Like or , does not create archives. It only works on a single file. To
compress multiple files and directories, we use it in conjunction with or .

There's more...
There are other useful options we can use with :

Manually specifying the number of CPUs
The option specifies the number of CPU cores to use. This is useful if automatic detection
fails or you need cores free for other jobs:

pbzip2 -p4 myfile.tar

This will tell to use 4 CPUs.

Specifying the compression ratio
The options from to specify the fastest and best compression ratios with 1 being the
fastest and 9 being the best compression

Creating filesystems with compression
The program creates a read-only, heavily compressed filesystem. The
program can compress 2 to 3 GB of data into a 700 MB file. The Linux LiveCD (or LiveUSB)
distributions are built using . These CDs make use of a read-only compressed
filesystem, which keeps the root filesystem on a compressed file. The compressed file can be
loopback-mounted to load a complete Linux environment. When files are required, they are
decompressed and loaded into the RAM, run, and the RAM is freed.

The Backup Plan

[297]

The program is useful when you need a compressed archive and random access
to the files. Completely decompressing a large compressed archive takes a long time. A
loopback-mounted archive provides fast file access since only the requested portion of the
archive is decompressed.

Getting ready
Mounting a filesystem is supported by all modern Linux distributions. However,
creating files requires , which can be installed using the
package manager:

$ sudo apt-get install squashfs-tools

Alternatively, this can be used:

$ yum install squashfs-tools

How to do it...
Create a file by adding source directories and files with the1.

 command:

$ mksquashfs SOURCES compressedfs.squashfs

Sources can be wildcards, files, or folder paths.

Consider this example:

$ sudo mksquashfs /etc test.squashfs
 Parallel mksquashfs: Using 2 processors
 Creating 4.0 filesystem on test.squashfs, block size 131072.
 [=======================================] 1867/1867 100%

The Backup Plan

[298]

More details will be printed on the terminal. The output is stripped to save
space.

To mount the file to a mount point, use loopback mounting, as2.
follows:

mkdir /mnt/squash
 # mount -o loop compressedfs.squashfs /mnt/squash

You can access the contents at .

There's more...
The filesystem can be customized by specifying additional parameters.

Excluding files while creating a squashfs file
The flag will exclude files and folders:

$ sudo mksquashfs /etc test.squashfs -e /etc/passwd /etc/shadow

The option excludes files from the
filesystem.

The option reads a file with a list of files to exclude:

$ cat excludelist
 /etc/passwd
 /etc/shadow

 $ sudo mksquashfs /etc test.squashfs -ef excludelist

If we want to support wildcards in excludes lists, use as an argument.

The Backup Plan

[299]

Backing up snapshots with rsync
Backing up data is something that needs to be done regularly. In addition to local backups,
we may need to back up data to or from remote locations. The command
synchronizes files and directories from one location to another while minimizing transfer
time. The advantages of over the command are that compares
modification dates and will only copy the files that are newer, supports data transfer
across remote machines, and supports compression and encryption.

How to do it...
To copy a source directory to a destination, use the following command:1.

$ rsync -av source_path destination_path

Consider this example:

$ rsync -av /home/slynux/data
 slynux@192.168.0.6:/home/backups/data

In the preceding command:

 stands for archiving
 (verbose) prints the details or progress on stdout

The preceding command will recursively copy all the files from the source path to
the destination path. The source and destination paths can be either remote or
local.

To backup data to a remote server or host, use the following command:2.

$ rsync -av source_dir username@host:PATH

To keep a mirror at the destination, run the same command at regular
intervals. It will copy only changed files to the destination.

To restore the data from the remote host to , use the following3.
command:

$ rsync -av username@host:PATH destination

The Backup Plan

[300]

The command uses SSH to connect to the remote machine hence,
you should provide the remote machine's address in the
format, where user is the username and host is the IP address or host
name attached to the remote machine. is the path on the remote
machine from where the data needs to be copied.
Make sure that the OpenSSH server is installed and running on the remote
machine. Additionally, to avoid being prompted for a password for the
remote machine, refer to the Password-less auto-login with SSH recipe
in , The Old-Boy Network.

Compressing data during transfer can significantly optimize the speed of the4.
transfer. The option compressing data during transfer:

$ rsync -avz source destination

To synchronize one directory to another directory, use the following command:5.

$ rsync -av /home/test/ /home/backups

The preceding command copies the source () to an existing folder called
backups.

To copy a full directory inside another directory, use the following command:6.

$ rsync -av /home/test /home/backups

This command copies the source () to a directory named backups by
creating that directory.

For the PATH format, if we use at the end of the source, will copy
the contents of the end directory specified in the to the
destination.
If is not present at the end of the source, will copy the end
directory itself to the destination.
Adding the option will force to copy all the contents of a
directory, recursively.

The Backup Plan

[301]

How it works...
The command works with the source and destination paths, which can be either
local or remote. Both paths can be remote paths. Usually, remote connections are made
using SSH to provide secure, two-way communication. Local and remote paths look like
this:

 (local path)
 (remote path)

 specifies the absolute path in the machine in which the
command is executed. specifies that the path
is in the machine whose IP address is and is logged
in as the user.

There's more...
The command supports several command-line options to fine-tune its behavior.

Excluding files while archiving with rsync
The and -exclude-from options specify files that should not be transferred:

--exclude PATTERN

We can specify a wildcard pattern of files to be excluded. Consider the following example:

$ rsync -avz /home/code/app /mnt/disk/backup/code --exclude "*.o"

This command excludes the files from backing up.

Alternatively, we can specify a list of files to be excluded by providing a list file.

Use .

The Backup Plan

[302]

Deleting non-existent files while updating rsync backup
By default, does not remove files from the destination if they no longer exist at the
source. The option removes those files from the destination that do not exist at the
source:

$ rsync -avz SOURCE DESTINATION --delete

Scheduling backups at intervals
You can create a job to schedule backups at regular intervals.

A sample is as follows:

$ crontab -ev

Add the following line:

0 */10 * * * rsync -avz /home/code user@IP_ADDRESS:/home/backups

The preceding entry schedules to be executed every 10 hours.

 is the hour position of the syntax. specifies executing the backup every
10 hours. If is written in the minutes position, it will execute every 10 minutes.

Have a look at the Scheduling with a cron recipe in , Administration Calls, to
understand how to configure .

Differential archives
The backup solutions described so far are full copies of a filesystem as it exists at that time.
This snapshot is useful when you recognize a problem immediately and need the most
recent snapshot to recover. It fails if you don't realize the problem until a new snapshot is
made and the previous good data has been overwritten by current bad data.

The Backup Plan

[303]

An archive of a filesystem provides a history of file changes. This is useful when you need
to return to an older version of a damaged file.

, , and can be used to make daily snapshots of a filesystem. However,
backing up a full filesystem every day is expensive. Creating a separate snapshot for each
day of the week will require seven times as much space as the original filesystem.

Differential backups only save the data that's changed since the last full backup. The
dump/restore utilities from Unix support this style of archived backups. Unfortunately,
these utilities were designed around tape drives and are not simple to use.

The find utility can be used with or to duplicate this type of functionality.

How to do it...
Create an initial full backup with tar:

tar -cvz /backup/full.tgz /home/user

Use find's flag to determine what files have changed since the full backup was
created, and create a new archive:

tar -czf day-`date +%j`.tgz `find /home/user -newer
 /backup/full.tgz`

How it works...
The find command generates a list of all files that have been modified since the creation of
the full backup).

The date command generates a filename based on the Julian date. Thus, the first differential
backup of the year will be , the backup for January 2 will be , and so
on.

The differential archive will be larger each day as more and more files are changed from the
initial full backup. When the differential archives grow too large, make a new full backup.

The Backup Plan

[304]

Creating entire disk images using fsarchiver
The application can save the contents of a disk partition to a compressed
archive file. Unlike or , retains extended file attributes and can be
restored to a disk with no current filesystem. The application recognizes and
retains Windows file attributes as well as Linux attributes, making it suitable for migrating
Samba-mounted partitions.

Getting ready
The application is not installed in most distros by default. You will have to
install it using your package manager. For more information, go to

.

How to do it...
Create a backup of a .1.

Use the option of like this:

fsarchiver savefs backup.fsa /dev/sda1

Here is the final backup file and is the partition to
backup

Back-up more than one partition at the same time.2.

Use the option as earlier and pass the partitions as the last parameters to
:

fsarchiver savefs backup.fsa /dev/sda1 /dev/sda2

Restore a partition from a backup archive.3.

Use the option of like this:

fsarchiver restfs backup.fsa id=0,dest=/dev/sda1

The Backup Plan

[305]

 denotes that we want to pick the first partition from the archive to the
partition specified as .

Restore multiple partitions from a backup archive.

As earlier, use the option as follows:

fsarchiver restfs backup.fsa id=0,dest=/dev/sda1
 id=1,dest=/dev/sdb1

Here, we use two sets of the parameter to tell to restore the first two
partitions from the backup to two physical partitions.

How it works...
Like tar, examines the filesystem to create a list of files and then saves those
files in a compressed archive file. Unlike tar which only saves information about the files,

 performs a backup of the filesystem as well. This makes it easier to restore the
backup on a fresh partition as it is not necessary to recreate the filesystem.

If you are seeing the notation for partitions for the first time, this requires an
explanation. in Linux holds special files called device files, which refer to a physical
device. The in refers to SATA disk, the next letter can be a, b, c, and so on,
followed by the partition number.

88
The Old-Boy Network

In this chapter, we will cover the following recipes:

 Setting up the network
 Let us ping!
 Tracing IP routes
 Listing all available machines on a network
 Running commands on a remote host with SSH
 Running graphical commands on a remote machine
 Transferring files through the network
 Connecting to a wireless network
 Password-less auto-login with SSH
 Port forwarding using SSH
 Mounting a remote drive at a local mount point
 Network traffic and port analysis
 Measuring network bandwidth
 Creating arbitrary sockets
 Building a bridge
 Sharing an Internet connection
 Basic firewall using
 Creating a Virtual Private Network

The Old-Boy Network

[307]

Introduction
Networking is the act of connecting computers to allow them to exchange information. The
most widely used networking stack is TCP/IP, where each node is assigned a unique IP
address for identification. If you are already familiar with networking, you can skip this
introduction.

TCP/IP networks work by passing data packets from node to node. Each data packet
contains the IP address of its destination and the port number of the application that can
process this data.

When a node receives a packet, it checks to see if it is this packet's destination. If so, the
node checks the port number and invokes the appropriate application to process the data. If
this node is not the destination, it evaluates what it knows about the network and passes the
packet to a node that is closer to the final destination.

Shell scripts can be used to configure the nodes in a network, test the availability of
machines, automate execution of commands at remote hosts, and more. This chapter
provides recipes that introduce tools and commands related to networking, and shows how
to use them effectively.

Setting up the network
Before digging through recipes based on networking, it is essential to have a basic
understanding of setting up a network, terminologies, and commands for assigning IP
address, adding routes, and so on. This recipe provides an overview of commands used in
GNU/Linux networks.

Getting ready
A network interface physically connects a machine to a network, either with a wire or a Wi-
Fi link. Linux denotes network interfaces using names such as , , or
(referring to Ethernet interfaces). Other interfaces, namely , , and , are
available for USB network interfaces, wireless LAN, and tunnels, respectively.

In this recipe, we will use these commands: , , , and .

The Old-Boy Network

[308]

The command is used to configure and display details about network interfaces,
subnet mask, and so on. It should be available at .

How to do it...
List the current network interface configuration:1.

 $ ifconfig
 lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:6078 errors:0 dropped:0 overruns:0 frame:0
 TX packets:6078 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:634520 (634.5 KB) TX bytes:634520 (634.5 KB)
 wlan0 Link encap:EthernetHWaddr 00:1c:bf:87:25:d2
 inet addr:192.168.0.82 Bcast:192.168.3.255 Mask:255.255.252.0
 inet6addr: fe80::21c:bfff:fe87:25d2/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:420917 errors:0 dropped:0 overruns:0 frame:0
 TX packets:86820 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:98027420 (98.0 MB) TX bytes:22602672 (22.6 MB)

The leftmost column in the ifconfig output lists the names of network interfaces,
and the right-hand columns show the details related to the corresponding
network interface.

To set the IP address for a network interface, use the following command:2.

 # ifconfig wlan0 192.168.0.80

You will need to run the preceding command as root

 is defined as the address for the wireless device, wlan0

To set the subnet mask along with the IP address, use the following command:

 # ifconfig wlan0 192.168.0.80 netmask 255.255.252.0

The Old-Boy Network

[309]

Many networks use Dynamic Host Configuration Protocol (DHCP) to assign IP3.
addresses automatically when a computer connects to the network. The

 command assigns the IP address when your machine is connected to a
network that assigns IP addresses automatically. If addresses are assigned via
DHCP, use instead of manually choosing an address that might
conflict with another machine on the network. Many Linux distributions invoke

 automatically when they sense a network cable connection

 # dhclient eth0

There's more...
The command can be combined with other shell tools to produce specific reports.

Printing the list of network interfaces
This one-line command sequence displays network interfaces available on a system:

$ ifconfig | cut -c-10 | tr -d ' ' | tr -s 'n'
lo
wlan0

The first ten characters of each line in output is reserved for writing names of
network interfaces. Hence, we use to extract the first ten characters of each line.

 deletes every space character in each line. Now, the newline character is squeezed
using to produce a list of interface names.

Displaying IP addresses
The command displays details of every active network interface available on the
system. However, we can restrict it to a specific interface using the following command:

$ ifconfig iface_name

Consider this example:

$ ifconfig wlan0
wlan0 Link encap:EthernetHWaddr 00:1c:bf:87:25:d2
inet addr:192.168.0.82 Bcast:192.168.3.255 Mask:255.255.252.0
inet6 addr: fe80::3a2c:4aff:6e6e:17a9/64 Scope:Link
UP BROADCAST RUNNINT MULTICAST MTU:1500 Metric:1
RX Packets...

The Old-Boy Network

[310]

To control a device, we need the IP address, broadcast address, hardware address, and
subnet mask:

 : This is the hardware address (MAC address)
 : This is the IP address
 : This is the broadcast address
 : This is the subnet mask

To extract the IP address from the output, use this command:

$ ifconfig wlan0 | egrep -o "inetaddr:[^]*" | grep -o "[0-9.]*"
192.168.0.82

The command returns . The
pattern starts with and ends with any non-space character sequence (specified
by). The next command, reduces its input to only numbers
and periods, and prints out an IP4 address.

Spoofing the hardware address (MAC address)
When authentication or filtering is based on the hardware address, we can use hardware
address spoofing. The hardware address appears in the output as

.

The subcommand of will define a devices class and the MAC address:

ifconfig eth0 hw ether 00:1c:bf:87:25:d5

In the preceding command, is the new MAC address to be assigned.
This is useful when we need to access the Internet through MAC-authenticated service
providers that provide access to the Internet for a single machine.

Note: this definition only lasts until a machine restarts.

The Old-Boy Network

[311]

Name server and DNS (Domain Name Service)
The underlying addressing scheme for the Internet is the dotted decimal form (like

). Humans prefer to use words instead of numbers, so resources on the
Internet are identified with strings of words called URLs or domain names. For example,

 is a domain name and it corresponds to an IP address. The site can be
identified by the numeric or the string name.

This technique of mapping IP addresses to symbolic names is called Domain Name Service
(DNS). When we enter , our computer uses the DNS servers to resolve the
domain name into the corresponding IP address. While on a local network, we set up the
local DNS to name local machines with symbolic names.

Name servers are defined in :

$ cat /etc/resolv.conf
Local nameserver
nameserver 192.168.1.1
External nameserver
nameserver 8.8.8.8

We can add name servers manually by editing that file or with a one-liner:

sudo echo nameserver IP_ADDRESS >> /etc/resolv.conf

The easiest method to obtain an IP address is to use the command to access the
domain name. The reply includes the IP address:

$ ping google.com
PING google.com (64.233.181.106) 56(84) bytes of data.

The number is the IP address of a google.com server.

A domain name may map to multiple IP addresses. In that case, shows one address
from the list of IP addresses. To obtain all the addresses assigned to the domain name, we
should use a DNS lookup utility.

Several DNS lookup utilities provide name and IP address resolution from the command
line. The and commands are two commonly installed utilities.

The Old-Boy Network

[312]

The command lists all of the IP addresses attached to a domain name:

$ host google.com
google.com has address 64.233.181.105
google.com has address 64.233.181.99
google.com has address 64.233.181.147
google.com has address 64.233.181.106
google.com has address 64.233.181.103
google.com has address 64.233.181.104

The command maps names to IP addresses and will also map IP addresses to
names:

$ nslookup google.com
Server: 8.8.8.8
Address: 8.8.8.8#53

Non-authoritative answer:
Name: google.com
Address: 64.233.181.105
Name: google.com
Address: 64.233.181.99
Name: google.com
Address: 64.233.181.147
Name: google.com
Address: 64.233.181.106
Name: google.com
Address: 64.233.181.103
Name: google.com
Address: 64.233.181.104

Server: 8.8.8.8

The last line in the preceding command-line snippet corresponds to the default name server
used for resolution.

It is possible to add a symbolic name to the IP address resolution by adding entries into
the file.

Entries in :

IP_ADDRESS name1 name2 ...

The Old-Boy Network

[313]

You can update like this:

echo IP_ADDRESS symbolic_name>> /etc/hosts

Consider this example:

echo 192.168.0.9 backupserver>> /etc/hosts

After adding this entry, whenever resolution to occurs, it will resolve to
.

If has multiple names, you can include them on the same line:

echo 192.168.0.9 backupserver backupserver.example.com >> /etc/hosts

Showing routing table information
It is common to have interconnected networks. For example, different departments at work
or school may be on separate networks. When a device on one network wants to
communicate with a device on the other network, it needs to send packets through a device
which is common to both networks. This device is called a and its function is to
route packets to and from different networks.

The operating system maintains a table called the , which contains the
information on how packets are to be forwarded through machines on the network. The

 command displays the routing table:

$ route
Kernel IP routing table
Destination Gateway GenmaskFlags Metric Ref UseIface
192.168.0.0 * 255.255.252.0 U 2 0 0wlan0
link-local * 255.255.0.0 U 1000 0 0wlan0
default p4.local 0.0.0.0 UG 0 0 0wlan0

Alternatively, you can also use this:

$ route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref UseIface
192.168.0.0 0.0.0.0 255.255.252.0 U 2 0 0 wlan0
169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 wlan0
0.0.0.0 192.168.0.4 0.0.0.0 UG 0 0 0 wlan0

Using specifies to display the numeric addresses. By default, route will map the numeric
address to a name.

The Old-Boy Network

[314]

When your system does not know the route to a destination, it sends the packet to a default
gateway. The default gateway may be the link to the Internet or an inter-departmental
router.

The command can add a default gateway:

route add default gw IP_ADDRESS INTERFACE_NAME

Consider this example:

route add default gw 192.168.0.1 wlan0

See also
The Using variables and environment variables recipe of , Shell Something
Out, explains the variable
The Searching and mining text inside a file with grep recipe of , Texting and
Driving, explains the command

Let us ping!
The command is a basic network command, supported on all major operating
systems. Ping is used to verify connectivity between hosts on a network and identify
accessible machines.

How to do it...
The ping command uses Internet Control Message Protocol (ICMP) packets to check the
connectivity of two hosts on a network. When these echo packets are sent to a target, the
target responds with a reply if the connection is complete. A ping request can fail if there is
no route to the target or if there is no known route from the target back to the requester.

Pinging an address will check whether a host is reachable:

$ ping ADDRESS

The can be a hostname, domain name, or an IP address itself.

The Old-Boy Network

[315]

By default, will continuously send packets and the reply information is printed on the
terminal. Stop the pinging process by pressing Ctrl + C.

Consider the following example:

When a host is reachable, the output will be similar to the following:

 $ ping 192.168.0.1
 PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
 64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=1.44 ms
 ^C
 --- 192.168.0.1 ping statistics ---
 1 packets transmitted, 1 received, 0% packet loss, time 0ms
 rtt min/avg/max/mdev = 1.440/1.440/1.440/0.000 ms

 $ ping google.com
 PING google.com (209.85.153.104) 56(84) bytes of data.
 64 bytes from bom01s01-in-f104.1e100.net (209.85.153.104):
 icmp_seq=1 ttl=53 time=123 ms
 ^C
 --- google.com ping statistics ---
 1 packets transmitted, 1 received, 0% packet loss, time 0ms
 rtt min/avg/max/mdev = 123.388/123.388/123.388/0.000 ms

When a host is unreachable, the output will resemble this:

 $ ping 192.168.0.99
 PING 192.168.0.99 (192.168.0.99) 56(84) bytes of data.
 From 192.168.0.82 icmp_seq=1 Destination Host Unreachable
 From 192.168.0.82 icmp_seq=2 Destination Host Unreachable

If the target is not reachable, the ping returns with the
error message.

Network administrators generally configure devices such as routers not to
respond to . This is done to lower security risks, as can be used
by attackers (using brute-force) to find out IP addresses of machines.

There's more...
In addition to checking the connectivity between two points in a network, the
command returns other information. The round trip time and lost packet reports can be
used to determine whether a network is working properly.

The Old-Boy Network

[316]

Round Trip Time
The command displays Round Trip Time (RTT) for each packet sent and returned.
RTT is reported in milliseconds. On an internal network, a RTT of under 1ms is common.
When pinging a site on the Internet, RTT are commonly 10-400 ms, and may exceed 1000
ms:

--- google.com ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4000ms
rtt min/avg/max/mdev = 118.012/206.630/347.186/77.713 ms

Here, the minimum RTT is , the average RTT is ms, and the
maximum RTT is . The () parameter in the ping output stands
for mean deviation.

Sequence number
Each packet that ping sends is assigned a number, sequentially from 1 until ping stops. If a
network is near saturation, packets may be returned out of order because of collisions and
retries, or may be completely dropped:

$> ping example.com
64 bytes from example.com (1.2.3.4): icmp_seq=1 ttl=37 time=127.2 ms
64 bytes from example.com (1.2.3.4): icmp_seq=3 ttl=37 time=150.2 ms
64 bytes from example.com (1.2.3.4): icmp_seq=2 ttl=30 time=1500.3 ms

In this example, the second packet was dropped and then retried after a timeout, causing it
to be returned out of order and with a longer Round Trip Time.

Time to live
Each ping packet has a predefined number of hops it can take before it is dropped. Each
router decrements that value by one. This value shows how many routers are between your
system and the site you are pinging. The initial Time To Live (TTL) value can vary
depending on your platform or ping revision. You can determine the initial value by
pinging the loopback connection:

$> ping 127.0.0.1
64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.049 ms
$> ping www.google.com
64 bytes from 173.194.68.99: icmp_seq=1 ttl=45 time=49.4 ms

The Old-Boy Network

[317]

In this example, we ping the loopback address to determine what the TTL is with no hops
(in this case, 64). Then we ping a remote site and subtract that TTL value from our No-Hop
value to determine how many hops are between the two sites. In this case, 64-45 is 19 hops.

The TTL value is usually constant between two sites, but can change when conditions
require alternative paths.

Limiting the number of packets to be sent
The command sends echo packets and waits for the reply of echo indefinitely until it
is stopped by pressing Ctrl + C. The flag will limit the count of echo packets to be sent:

-c COUNT

Consider this example:

$ ping 192.168.0.1 -c 2
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=4.02 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=1.03 ms

--- 192.168.0.1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 1.039/2.533/4.028/1.495 ms

In the previous example, the command sends two echo packets and stops. This is
useful when we need to ping multiple machines from a list of IP addresses through a script
and check their statuses.

Return status of the ping command
The command returns the exit status when it succeeds and returns non-zero when it
fails. means the destination host is reachable, whereas is when the
destination host is unreachable.

The return status can be obtained as follows:

$ ping domain -c2
if [$? -eq0];
then
 echo Successful ;
else
 echo Failure
fi

The Old-Boy Network

[318]

Tracing IP routes
When an application requests a service through the Internet, the server may be at a distant
location and connected via many of gateways or routers. The command
displays the address of all intermediate gateways a packet visits before reaching its
destination. information helps us to understand how many hops each packet
takes to reach a destination. The number of intermediate gateways represents the effective
distance between two nodes in a network, which may not be related to the physical
distance. Travel time increases with each hop. It takes time for a router to receive, decipher,
and transmit a packet.

How to do it...
The format for the command is as follows:

traceroute destinationIP

 may be numeric or a string:

$ traceroute google.com
traceroute to google.com (74.125.77.104), 30 hops max, 60 byte packets
1 gw-c6509.lxb.as5577.net (195.26.4.1) 0.313 ms 0.371 ms 0.457 ms
2 40g.lxb-fra.as5577.net (83.243.12.2) 4.684 ms 4.754 ms 4.823 ms
3 de-cix10.net.google.com (80.81.192.108) 5.312 ms 5.348 ms 5.327 ms
4 209.85.255.170 (209.85.255.170) 5.816 ms 5.791 ms 209.85.255.172
(209.85.255.172) 5.678 ms
5 209.85.250.140 (209.85.250.140) 10.126 ms 9.867 ms 10.754 ms
6 64.233.175.246 (64.233.175.246) 12.940 ms 72.14.233.114 (72.14.233.114)
13.736 ms 13.803 ms
7 72.14.239.199 (72.14.239.199) 14.618 ms 209.85.255.166 (209.85.255.166)
12.755 ms 209.85.255.143 (209.85.255.143) 13.803 ms
8 209.85.255.98 (209.85.255.98) 22.625 ms 209.85.255.110 (209.85.255.110)
14.122 ms
*
9 ew-in-f104.1e100.net (74.125.77.104) 13.061 ms 13.256 ms 13.484 ms

Modern Linux distributions also ship with an command, which is
similar to traceroute but shows real-time data that keeps refreshing. It is
useful for checking your network carrier quality.

The Old-Boy Network

[319]

Listing all available machines on a network
When we monitor a large network, we need to check the availability of all machines. A
machine may not be available for two reasons: it is not powered on, or because of a problem
in the network. We can write a shell script to determine and report which machines are
available on the network.

Getting ready
In this recipe, we demonstrate two methods. The first method uses ping and the second
method uses . The command is easier for scripts and has more features than
the ping command. It may not be part of your Linux distribution, but can be installed with
your package manager.

How to do it...
The next example script will find the visible machines on the network using the ping
command:

#!/bin/bash
#Filename: ping.sh
Change base address 192.168.0 according to your network.

for ip in 192.168.0.{1..255} ;
do
 ping $ip -c 2 &> /dev/null ;

 if [$? -eq 0];
 then
 echo $ip is alive
 fi
done

The Old-Boy Network

[320]

The output resembles this:

$./ping.sh
192.168.0.1 is alive
192.168.0.90 is alive

How it works...
This script uses the command to find out the available machines on the network. It
uses a loop to iterate through a list of IP addresses generated by the expression

. The notation generates values between start and
end. In this case, it creates IP addresses from to .

 runs a command to the corresponding IP address.
The option causes ping to send only two packets. The redirects both

 and , so nothing is printed on the terminal. The script uses
 to evaluate the exit status. If it is successful, the exit status is , and the IP address which

replied to our ping is printed.

In this script, a separate command is executed for each address, one after the other.
This causes the script to run slowly when an IP address does not reply, since each ping
must wait to time out before the next ping begins.

There's more...
The next recipes show enhancements to the ping script and how to use .

Parallel pings
The previous script tests each address sequentially. The delay for each test is accumulated
and becomes large. Running the ping commands in parallel will make this faster. Enclosing
the body of the loop in will make the commands run in parallel. encloses a
block of commands to run as a subshell, and sends it to the background:

The Old-Boy Network

[321]

In the loop, we execute many background processes and come out of the loop,
terminating the script. The command prevents the script from terminating until all its
child processes have exited.

The output will be in the order that pings reply. This will not be the
numeric order in which they were sent if some machines or network
segments are slower than others.

The second method uses a different command called . The command
generates ICMP messages to multiple IP addresses and then waits to see which reply. It
runs much faster than the first script.

The options available with include the following:

The option with specifies to display the IP addresses for available
machines
The option with specifies to display unreachable machines
The option specifies generating a range of IP addresses from the slash-subnet
mask notation specified as IP/mask or start and end IP addresses:

 $ fping -a 192.160.1/24 -g

Alternatively, this can be used:

 $ fping -a 192.160.1 192.168.0.255 -g

 is used to dump error messages printed due to an unreachable
host to a null device

The Old-Boy Network

[322]

It is also possible to manually specify a list of IP addresses as command-line arguments or
as a list through . Consider the following example:

$ fping -a 192.168.0.1 192.168.0.5 192.168.0.6
Passes IP address as arguments
$ fping -a <ip.list
Passes a list of IP addresses from a file

See also
The Playing with file descriptors and redirection recipe in , Shell Something
Out, explains the data redirection
The Comparisons and tests recipe in , Shell Something Out, explains
numeric comparisons

Running commands on a remote host with
SSH
SSH stands for Secure Shell. It connects two computers across an encrypted tunnel. SSH
gives you access to a shell on a remote computer where you can interactively run a single
command and receive the results or start an interactive session.

Getting ready
SSH doesn't come preinstalled with all GNU/Linux distributions. You may have to install
the and packages using a package manager. By
default, SSH runs on port number .

How to do it...
To connect to a remote host with the SSH server running, use the following1.
command:

 $ ssh username@remote_host

The Old-Boy Network

[323]

The options in this command are as follows:

 is the user that exists at the remote host
 can be the domain name or IP address

Consider this example:

 $ ssh mec@192.168.0.1
 The authenticity of host '192.168.0.1 (192.168.0.1)' can't be
 established.
 RSA key fingerprint is
 2b:b4:90:79:49:0a:f1:b3:8a:db:9f:73:2d:75:d6:f9.
 Are you sure you want to continue connecting (yes/no)? yes
 Warning: Permanently added '192.168.0.1' (RSA) to the list of
 known hosts.
 Password:

 Last login: Fri Sep 3 05:15:21 2010 from 192.168.0.82
 mec@proxy-1:~$

SSH will ask for a password, and upon successful authentication it will
connect to the login shell on the remote machine.

SSH performs a fingerprint verification to make sure we are actually
connecting to the remote computer we want. This is to avoid what is
called a man-in-the-middle attack, where an attacker tries to impersonate
another computer. SSH will, by default, store the fingerprint the first time
we connect to a server and verify that it does not change for future
connections.

By default, the SSH server runs at port . However, certain servers run SSH
service at different ports. In that case, use with the
command to specify the port.

Connect to an SSH server running at port :2.

 $ ssh user@locahost -p 422

When using in shell scripts, we do not want an interactive shell, we simply
want to execute commands on the remote system and process the command's
output.

The Old-Boy Network

[324]

Issuing a password every time is not practical for an automated script,
so password-less login using SSH keys should be configured. The
Password-less auto-login with SSH recipe in this chapter explains the SSH
commands to set this up.

To run a command at the remote host and display its output on the local shell,3.
use the following syntax:

 $ sshuser@host 'COMMANDS'

Consider this example:

 $ ssh mec@192.168.0.1 'whoami'
 mec

You can submit multiple commands by separating the commands with a
semicolon:

 $ ssh user@host "command1 ; command2 ; command3"

Consider the following example:

 $ ssh mec@192.168.0.1 "echo user: $(whoami);echo OS: $(uname)"
 Password:
 user: mec
 OS: Linux

In this example, the commands executed at the remote host are as follows:

 echo user: $(whoami);
 echo OS: $(uname)

We can pass a more complex subshell in the command sequence using the
subshell operator.

The next example is an SSH-based shell script to collect the uptime of a list of3.
remote hosts. Uptime is the length of time since the last power-on. It's returned
by the command.

It is assumed that all systems in have a common user .

 #!/bin/bash
 #Filename: uptime.sh
 #Description: Uptime monitor

 IP_LIST="192.168.0.1 192.168.0.5 192.168.0.9"

The Old-Boy Network

[325]

 USER="test"

 for IP in $IP_LIST;
 do
 utime=$(ssh ${USER}@${IP} uptime |awk '{ print $3 }')
 echo $IP uptime: $utime
 done

Expected output:

 $./uptime.sh
 192.168.0.1 uptime: 1:50,
 192.168.0.5 uptime: 2:15,
 192.168.0.9 uptime: 10:15,

There's more...
The command can be executed with several additional options.

SSH with compression
The SSH protocol supports compressing the data transfer. This feature comes in handy
when bandwidth is an issue. Use the option with the command to enable
compression:

$ ssh -C user@hostname COMMANDS

Redirecting data into stdin of remote host shell
commands
SSH allows you to use output from a task on your local system as input on the remote
system:

$ echo 'text' | ssh user@remote_host 'echo'
text

Alternatively, this can be used:

Redirect data from file as:
$ ssh user@remote_host 'echo' < file

The Old-Boy Network

[326]

 on the remote host prints the data received through , which in turn is passed to
 from localhost.

This facility can be used to transfer tar archives from a local host to the remote host. This is
described in detail in , The Backup plan:

$> tar -czf - LOCALFOLDER | ssh 'tar -xzvf-'

Running graphical commands on a remote
machine
If you attempt to run a command on a remote machine that uses a graphical window, you
will see an error similar to . This is because the shell is
attempting (and failing) to connect to the X server on the remote machine.

How to do it...
To run an graphical application on a remote server, you need to set the variable
to force the application to connect to the X server on your local machine:

ssh user@host "export DISPLAY=:0 ; command1; command2"""

This will launch the graphical output on the remote machine.

If you want to show the graphical output on your local machine, use SSH's X11 forwarding
option:

ssh -X user@host "command1; command2"

This will run the commands on the remote machine, but it will display graphics on your
machine.

See also
The Password-less auto-login with SSH recipe in this chapter explains how to
configure auto-login to execute commands without prompting for a password

The Old-Boy Network

[327]

Transferring files through the network
A major use for networking computers is resource sharing. Files are a common shared
resource. There are different methods for transferring files between systems, ranging from a
USB stick and to network links such as NFS and Samba. These recipes describe
how to transfer files using the common protocols FTP, SFTP, RSYNC, and SCP.

Getting ready
The commands for performing file transfer over the network are mostly available by default
with Linux installation. Files can be transferred via FTP using the traditional command
or the newer , or via an SSH connection using or . Files can be synchronized
across systems with the command.

How to do it...
File Transfer Protocol (FTP) is old and is used in many public websites to share files. The
service usually runs on port . FTP requires that an FTP server be installed and running on
the remote machine. We can use the traditional command or the newer command
to access an FTP-enabled server. The following commands are supported by both and

. FTP is used in many public websites to share files.

To connect to an FTP server and transfer files to and from it, use the following command:

$ lftpusername@ftphost

It will prompt for a password and then display a logged in prompt:

lftp username@ftphost:~>

You can type commands in this prompt, as shown here:

: This will change directory on the remote system
 This will change the directory on the local machine

: This will create a directory on the remote machine
: This will list files in the current directory on the remote machine

The Old-Boy Network

[328]

: This will download a file to the current directory on the local
machine:

 lftp username@ftphost:~> get filename

: This will upload a file from the current directory on the remote
machine:

 lftp username@ftphost:~> put filename

The command will terminate an session

Autocompletion is supported in the prompt

There's more...
Let's go through additional techniques and commands used for file transfer through a
network.

Automated FTP transfer
The and the commands open an interactive session with the user. We can
automate FTP file transfers with a shell script:

The preceding script has the following structure:

The Old-Boy Network

[329]

This is used to send data through to the command. The Playing with file
descriptors and redirection recipe of , Shell Something Out, explains various methods
for redirection to stdin.

The option logs in to the remote site with our defined and . The
command sets the file mode to binary.

SFTP (Secure FTP)
SFTP is a file transfer system that runs on the top of an SSH connection and emulates an
FTP interface. It requires an SSH server on the remote system instead of an FTP server. It
provides an interactive session with an prompt.

Sftp supports the same commands as and .

To start an session, use the following command:

$ sftp user@domainname

Similar to , an session can be terminated by typing the command.

Sometimes, the SSH server will not be running at the default port . If it is running at a
different port, we can specify the port along with as . Consider this
example:

$ sftp -oPort=422 user@slynux.org

 should be the first argument of the command.

The rsync command
The command is widely used for copying files over networks and for taking backup
snapshots. This is described in detail in the Backing up snapshots with rsync

 recipe of , The Backup Plan.

SCP (secure copy program)
SCP is a secure file copy command similar to the older, insecure remote copy tool called

. The files are transferred through an encrypted channel using SSH:

$ scp filename user@remotehost:/home/path

The Old-Boy Network

[330]

This will prompt for a password. Like , the transfer can be made password-less with the
auto-login SSH technique. The Password-less auto-login with SSH recipe in this chapter
explains SSH auto-login. Once SSH login is automated, the scp command can be executed
without an interactive password prompt.

The can be an IP address or domain name. The format of the command is
as follows:

$ scp SOURCE DESTINATION

 or can be in the format :

$ scp user@remotehost:/home/path/filename filename

The preceding command copies a file from the remote host to the current directory with the
given filename.

If SSH is running at a different port than , use with the same syntax, .

Recursive copying with scp
The parameter tells to recursively copy a directory between two machines:

$ scp -r /home/usernameuser@remotehost:/home/backups
Copies the directory /home/usernameto the remote backup

The parameter will cause to retain permissions and modes when copying files.

See also
The Playing with file descriptors and redirection recipe in , Shell Something
Out, explains the standard input using EOF

Connecting to a wireless network
An Ethernet connection is simple to configure, since it is connected through wired cables
with no special requirements like authentication. However, wireless LAN requires an
Extended Service Set IDentification network identifier (ESSID) and may also require a
pass-phrase.

The Old-Boy Network

[331]

Getting ready
To connect to a wired network, we simply assign an IP address and subnet mask with the

 utility. A wireless network connection requires the and
utilities.

How to do it...
This script will connect to a wireless LAN with WEP (Wired Equivalent Privacy):

#!/bin/bash
#Filename: wlan_connect.sh
#Description: Connect to Wireless LAN

#Modify the parameters below according to your settings
######### PARAMETERS ###########
IFACE=wlan0
IP_ADDR=192.168.1.5
SUBNET_MASK=255.255.255.0
GW=192.168.1.1
HW_ADDR='00:1c:bf:87:25:d2'
#Comment above line if you don't want to spoof mac address

ESSID="homenet"
WEP_KEY=8b140b20e7
FREQ=2.462G
#################################

KEY_PART=""

if [[-n $WEP_KEY]];
then
 KEY_PART="key $WEP_KEY"
fi

if [$UID -ne 0];
then
 echo "Run as root"
 exit 1;
fi

Shut down the interface before setting new config
/sbin/ifconfig $IFACE down

if [[-n $HW_ADDR]];

The Old-Boy Network

[332]

then
 /sbin/ifconfig $IFACE hw ether $HW_ADDR
 echo Spoofed MAC ADDRESS to $HW_ADDR
fi

/sbin/iwconfig $IFACE essid $ESSID $KEY_PART freq $FREQ

/sbin/ifconfig $IFACE $IP_ADDR netmask $SUBNET_MASK

route add default gw $GW $IFACE

echo Successfully configured $IFACE

How it works...
The , , and commands must be run as root. Hence, a check for
the root user is performed before performing any actions in the scripts.

Wireless LAN requires parameters such as , , and to connect to the
network. is the name of the wireless network to connect to. Some networks use a
WEP key for authentication, which is usually a five- or ten-letter hex passphrase. The
frequency assigned to the network is required by the command to attach the
wireless card with the proper wireless network.

The utility will scan and list the available wireless networks:

iwlist scan
wlan0 Scan completed :
 Cell 01 - Address: 00:12:17:7B:1C:65
 Channel:11
 Frequency:2.462 GHz (Channel 11)
 Quality=33/70 Signal level=-77 dBm
 Encryption key:on
 ESSID:"model-2"

The parameter can be extracted from the scan result, from the
 line.

WEP is used in this example for simplicity. Note that WEP is insecure. If
you are administering the wireless network, use a variant of Wi-Fi
Protected Access2 (WPA2).

The Old-Boy Network

[333]

See also
The Comparisons and tests recipe of , Shell Something Out, explains string
comparisons

Password-less auto-login with SSH
SSH is widely used with automation scripting, as it makes it possible to remotely execute
commands at remote hosts and read their outputs. Usually, SSH is authenticated with
username and password, which are prompted during the execution of SSH commands.
Providing passwords in automated scripts is impractical, so we need to automate logins.
SSH has a feature which SSH allows a session to auto-login. This recipe describes how to
create SSH keys for auto-login.

Getting ready
SSH uses an encryption technique called asymmetric keys consisting of two keys–a public
key and a private key for automatic authentication. The application creates an
authentication key pair. To automate the authentication, the public key must be placed on
the server (by appending the public key to the file) and the
private key file of the pair should be present at the directory of the user at the client
machine. SSH configuration options (for example, path and name of the
file) can be modified by altering the configuration file.

How to do it...
There are two steps to implement automatic authentication with SSH. They are as follows:

Creating the SSH key on the local machine
Transferring the public key to the remote host and appending it to

 (which requires access to the remote machine)

To create an SSH key, run the command with the encryption algorithm type
specified as RSA:

$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/username/.ssh/id_rsa):

The Old-Boy Network

[334]

Created directory '/home/username/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/username/.ssh/id_rsa.
Your public key has been saved in /home/username/.ssh/id_rsa.pub.
The key fingerprint is:
f7:17:c6:4d:c9:ee:17:00:af:0f:b3:27:a6:9c:0a:05 username@slynux-laptop
The key'srandomart image is:
+--[RSA 2048]----+
| . |
| o . .|
| E o o.|
| ...oo |
| .S .+ +o.|
| . . .=....|
| .+.o...|
| . . + o. .|
| ..+ |
+-----------------+

You need to enter a passphrase to generate the public-private key pair. It is possible to
generate the key pair without entering a passphrase, but it is insecure.

If you intend to write scripts that use automated login to several machines, you should
leave the passphrase empty to prevent the script from asking for a passphrase while
running.

The program creates two files. and
 is the generated public key and is the private key.

The public key has to be appended to the file on remote
servers where we need to auto-login from the current host.

This command will append a key file:

$ ssh USER@REMOTE_HOST \
 "cat >> ~/.ssh/authorized_keys" < ~/.ssh/id_rsa.pub
Password:

Provide the login password in the previous command.

The auto-login has been set up from now onwards, so SSH will not prompt for passwords
during execution. Test this with the following command:

$ ssh USER@REMOTE_HOST uname
Linux

The Old-Boy Network

[335]

You will not be prompted for a password. Most Linux distros include , which
will append your private key to the appropriate file on the remote
server. This is shorter than the technique described earlier:

ssh-copy-id USER@REMOTE_HOST

Port forwarding using SSH
Port forwarding is a technique which redirects an IP connection from one host to another.
For example, if you are using a Linux/Unix system as a firewall you can redirect
connections to port to an internal address such as to provide an

 tunnel from the outside world to an internal machine.

How to do it...
You can forward a port on your local machine to another machine and it's also possible to
forward a port on a remote machine to another machine. In the following examples, you
will get a shell prompt once the forwarding is complete. Keep this shell open to use the port
forward and exit it whenever you want to stop the port forward.

This command will forward port on your local machine to port on1.
:

 ssh -L 8000:www.kernel.org:80user@localhost

Replace user with the username on your local machine.

This command will forward port 8000 on a remote machine to port of2.
:

 ssh -L 8000:www.kernel.org:80user@REMOTE_MACHINE

Here, replace with the hostname or IP address of the remote
machine and with the username you have SSH access to.

There's more...
Port forwarding is more useful when using non-interactive mode or reverse port
forwarding.

The Old-Boy Network

[336]

Non-interactive port forward
If you want to just set port forwarding instead of having a shell kept open while port
forwarding is effective, use the following form of :

ssh -fL8000:www.kernel.org:80user@localhost -N

The option instructs to fork to background before executing the command. tells
 that there is no command to run; we only want to forward ports.

Reverse port forwarding
Reverse port forwarding is one of the most powerful features of SSH. This is most useful in
situations where you have a machine which isn't publicly accessible from the Internet, but
you want others to be able to access a service on this machine. In this case, if you have SSH
access to a remote machine which is publicly accessible on the Internet, you can set up a
reverse port forward on that remote machine to the local machine which is running the
service.

ssh -R 8000:localhost:80 user@REMOTE_MACHINE

This command will forward port on the remote machine to port on the local
machine. Don't forget to replace with the hostname of the IP address of
the remote machine.

Using this method, if you browse to on the remote machine, you
will connect to a web server running on port of the local machine.

Mounting a remote drive at a local mount
point
Having a local mount point to access the remote host filesystem facilitates read and write
data transfer operations. SSH is the common transfer protocol. The application uses
SSH to enable you to mount a remote filesystem on a local mount point.

The Old-Boy Network

[337]

Getting ready
 doesn't come by default with GNU/Linux distributions. Install with a package

manager. is an extension to the FUSE filesystem package that allows users to mount
a wide variety of data as if it were a local filesystem. Variants of FUSE are supported on
Linux, Unix, Mac OS/X, Windows, and more.

For more information on FUSE, visit its website at
.

How to do it...
To mount a filesystem location at a remote host to a local mount point:

sshfs -o allow_otheruser@remotehost:/home/path /mnt/mountpoint
Password:

Issue the password when prompted. After the password is accepted, the data at
 on the remote host can be accessed via a local mount

point, .

To unmount, use the following command:

umount /mnt/mountpoint

See also
The Running commands on a remote host with SSH recipe in this chapter explains
the command

Network traffic and port analysis
Every application that accesses the network does it via a port. Listing the open ports, the
application using a port and the user running the application is a way to track the expected
and unexpected uses of your system. This information can be used to allocate resources as
well as checking for rootkits or other malware.

The Old-Boy Network

[338]

Getting ready
Various commands are available for listing ports and services running on a network node.
The and commands are available on most GNU/Linux distributions.

How to do it...
The (list open files) command will list open files. The option limits it to open
network connections:

$ lsof -i
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE
 NAME

firefox-b 2261 slynux 78u IPv4 63729 0t0 TCP
 localhost:47797->localhost:42486 (ESTABLISHED)

firefox-b 2261 slynux 80u IPv4 68270 0t0 TCP
 slynux-laptop.local:41204->192.168.0.2:3128 (CLOSE_WAIT)

firefox-b 2261 slynux 82u IPv4 68195 0t0 TCP
 slynux-laptop.local:41197->192.168.0.2:3128 (ESTABLISHED)

ssh 3570 slynux 3u IPv6 30025 0t0 TCP
 localhost:39263->localhost:ssh (ESTABLISHED)

ssh 3836 slynux 3u IPv4 43431 0t0 TCP
 slynux-laptop.local:40414->boney.mt.org:422 (ESTABLISHED)

GoogleTal 4022 slynux 12u IPv4 55370 0t0 TCP
 localhost:42486 (LISTEN)

GoogleTal 4022 slynux 13u IPv4 55379 0t0 TCP
 localhost:42486->localhost:32955 (ESTABLISHED)

Each entry in the output of corresponds to a service with an active network port. The
last column of output consists of lines similar to this:

laptop.local:41197->192.168.0.2:3128

In this output, corresponds to the and
 corresponds to the remote host. is the port used on the current

machine, and is the port to which the service connects at the remote host.

The Old-Boy Network

[339]

To list the opened ports from the current machine, use the following command:

$ lsof -i | grep ":[0-9a-z]+->" -o | grep "[0-9a-z]+" -o | sort | uniq

How it works...
The regex for grep extracts the host port portion
from the output. The next removes the leading colon and trailing arrow leaving
the port number (which is alphanumeric). Multiple connections may occur through the
same port and hence, multiple entries of the same port may occur. The output is sorted and
passed through to display each port only once.

There's more...
There are more utilities that report open port and network traffic related information.

Opened port and services using netstat
 also returns network service statistics. It has many features beyond what is

covered in this recipe.

Use to list opened port and services:

$ netstat -tnp
Proto Recv-Q Send-Q Local Address Foreign Address
 State PID/Program name

tcp 0 0 192.168.0.82:38163 192.168.0.2:3128
 ESTABLISHED 2261/firefox-bin

tcp 0 0 192.168.0.82:38164 192.168.0.2:3128
 TIME_WAIT -

tcp 0 0 192.168.0.82:40414 193.107.206.24:422
 ESTABLISHED 3836/ssh

tcp 0 0 127.0.0.1:42486 127.0.0.1:32955
 ESTABLISHED 4022/GoogleTalkPlug

tcp 0 0 192.168.0.82:38152 192.168.0.2:3128
 ESTABLISHED 2261/firefox-bin

The Old-Boy Network

[340]

tcp6 0 0 ::1:22 ::1:39263
 ESTABLISHED -

tcp6 0 0 ::1:39263 ::1:22
 ESTABLISHED 3570/ssh

Measuring network bandwidth
The previous discussion of and was on measuring the latency of a
network and the number of hops between nodes.

The application provides more metrics for a networks' performance. The
application is not installed by default, but it is provided by most distributions' package
manager.

How to do it...
The application must be installed on both ends of a link (a host and a client). Once

 is installed, start the server end:

$ iperf -s

Then run the client side to generate throughput statistics:

$ iperf -c 192.168.1.36
--
Client connecting to 192.168.1.36, TCP port 5001
TCP window size: 19.3 KByte (default)
--
[3] local 192.168.1.44 port 46526 connected with 192.168.1.36 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 113 MBytes 94.7 Mbits/sec

The option instructs to also find the Maximum Transfer Size (MTU):

$ iperf -mc 192.168.1.36
--
Client connecting to 192.168.1.36, TCP port 5001
TCP window size: 19.3 KByte (default)
--
[3] local 192.168.1.44 port 46558 connected with 192.168.1.36 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 113 MBytes 94.7 Mbits/sec
[3] MSS size 1448 bytes (MTU 1500 bytes, ethernet)

The Old-Boy Network

[341]

Creating arbitrary sockets
For operations such as file transfer and secure shell, there are prebuilt tools such as ftp and

. We can also write custom scripts as network services. The next recipe demonstrates
how to create simple network sockets and use them for communication.

Getting ready
The or command will create network sockets to transfer data over a TCP/IP
network. We need two sockets: one listens for connections and the other connects to the
listener.

How to do it...
Set up the listening socket using the following command:1.

 nc -l 1234

This will create a listening socket on port on the local machine.

Connect to the socket using the following command:2.

 nc HOST 1234

If you are running this on the same machine as the listening socket, replace
with localhost, otherwise replace it with the IP address or hostname of the
machine.

Type something and press Enter on the terminal where you performed step 2. The3.
message will appear on the terminal where you performed step 1.

There's more...
Network sockets can be used for more than just text communication, as shown in the
following sections.

The Old-Boy Network

[342]

Quickly copying files over the network
We can exploit and shell redirection to copy files over the network. This command
will send a file to the listening machine:

 On the listening machine, run the following command:1.

 nc -l 1234 >destination_filename

On the sender machine, run the following command:2.

 nc HOST 1234 <source_filename

Creating a broadcasting server
You can use to create a custom server. The next recipe demonstrates a server that
will send the time every 10 seconds. The time can be received by connecting to the port with
a client session of telnet:

A script to echo the date out a port
while [1]
do
 sleep 10
 date
done | nc -l 12345
echo exited

How it works...
Copying files with works because ns echoes the input from the input of one socket to the
output at the other.

The broadcasting server is a bit more complicated. The loop will run forever.
Within the loop, the script sleeps for 10 seconds, then invokes the date command and pipes
the output to the command.

You can use to create a client, as follows:

$ nc 127.0.0.1 12345

The Old-Boy Network

[343]

Building a bridge
If you have two separate networks, you may need a way to pass data from one network to
the other. This is commonly done by connecting the two subnets with a router, hub, or
switch.

A Linux system can be used for a network bridge.

A bridge is a low-level connection that passes packets based on their MAC address instead
of being identified by the IP address. As such it requires fewer machine resources and is
more efficient.

You can use a bridge to link virtual machines on private, non-routed networks, or to link
separate subnets in a company, for instance, to link a manufacturing subnet to the shipping
sub-net so production information can be shared.

Getting ready
The Linux kernel has supported network bridges since the 2.2 kernel. The current tool to
define a bridge, is the iproute2 () command. This is standard in most distributions.

How to do it...
The ip command performs several actions using the command/subcommand model. To
create a bridge, we use the commands.

The Ethernet adapter being attached to the bridge should not be
configured with an IP address when it is added to the bridge. The bridge
is configured with an address, not the NIC.

In this example, there are two NIC cards: is configured and connected to the
 subnet, while eth1 is not configured but will be connected to the

subnet via the bridge:

 # Create a new bridge named br0
 ip link add br0 type bridge

 # Add an Ethernet adapter to the bridge
 ip link set dev eth1 master br0

 # Configure the bridge's IP address

The Old-Boy Network

[344]

 ifconfig br0 10.0.0.2

 # Enable packet forwarding
 echo 1 >/proc/sys/net/ipv4/ip_forward

This creates the bridge allowing packets to be sent from to and back. Before the
bridge can be useful, we need to add this bridge to the routing tables.

On machines in the network, we add a route to the
network:

route add -net 192.168.1.0/16 gw 10.0.0.2

Machines on the subnet need to know how to find the
subnet. If the card is configured for IP address , the route command is
as follows:

route add -net 10.0.0.0/24 gw 192.168.1.2

Sharing an Internet connection
Most firewall/routers have the ability to share an Internet connection with the devices in
your home or office. This is called Network Address Translation (NAT). A Linux computer
with two Network Interface Cards (NIC) can act as a router, providing firewall protection
and connection sharing.

Firewalling and NAT support are provided by the support for iptables built into the kernel.
This recipe introduces with a recipe that shares a computer's Ethernet link to the
Internet through the wireless interface to give other wireless devices access to the Internet
via the host's Ethernet NIC.

Getting ready
This recipe uses to define a Network Address Translation (NAT), which lets a
networking device share a connection with other devices. You will need the name of your
wireless interface, which is reported by the command.

The Old-Boy Network

[345]

How to do it...
Connect to the Internet. In this recipe, we are assuming that the primary wired1.
network connection, , is connected to the Internet. Change it according to
your setup.
Using your distro's network management tool, create a new ad hoc wireless2.
connection with the following settings:

IP address: 10.99.66.55

Subnet mask: 255.255.0.0 (16)

Use the following shell script to share the Internet connection:3.

 #!/bin/bash
 #filename: netsharing.sh

 echo 1 > /proc/sys/net/ipv4/ip_forward

 iptables -A FORWARD -i $1 -o $2 \
 -s 10.99.0.0/16 -m conntrack --ctstate NEW -j ACCEPT

 iptables -A FORWARD -m conntrack --ctstate \
 ESTABLISHED,RELATED -j ACCEPT

 iptables -A POSTROUTING -t nat -j MASQUERADE

 Run the script:4.

 ./netsharing.sh eth0 wlan0

Here is the interface that is connected to the Internet and is the
wireless interface that is supposed to share the Internet with other devices.

Connect your devices to the wireless network you just created with the following5.
settings:

IP address: 10.99.66.56 (and so on)
Subnet mask: 255.255.0.0

To make this more convenient, you might want to install a DHCP and
DNS server on your machine, so it's not necessary to configure IPs on
devices manually. A handy tool for this is , which performs both
DHCP and DNS operations.

The Old-Boy Network

[346]

How it works
There are three sets of IP addresses set aside for non-routing use. That means that no
network interface visible to the Internet can use them. They are only used by machines on a
local, internal network. The addresses are , , and

. In this recipe, we use a portion of the address space for our
internal network.

By default, Linux systems will accept or generate packets, but will not echo them. This is
controlled by the value .

Echoing a to that location tells the Linux kernel to forward any packet it doesn't recognize.
This allows the wireless devices on the subnet to use as their
gateway. They will send a packet destined for an Internet site to , which will
then forward it out its gateway on to the Internet to be routed to the destination.

The command is how we interact with the Linux kernel's iptables subsystem.
These commands add rules to forward all packets from the internal network to the outside
world and to forward expected packets from the outside world to our internal network.

The next recipe will discuss more ways to use iptables.

Basic firewall using iptables
A firewall is a network service that is used to filter network traffic for unwanted traffic,
block it, and allow the desired traffic to pass. The standard firewall tool for Linux is

, which is integrated into the kernel in recent versions.

How to do it...
 is present by default on all modern Linux distributions. It's easy to configure for

common scenarios:

 If don't want to contact a given site (for example, a known malware site), you can1.
block traffic to that IP address:

 #iptables -A OUTPUT -d 8.8.8.8 -j DROP

The Old-Boy Network

[347]

If you use in another terminal, then by running the
command, you will see this:

 PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
 64 bytes from 8.8.8.8: icmp_req=1 ttl=56 time=221 ms
 64 bytes from 8.8.8.8: icmp_req=2 ttl=56 time=221 ms
 ping: sendmsg: Operation not permitted
 ping: sendmsg: Operation not permitted

Here, the ping fails the third time because we used the command to
drop all traffic to .

You can also block traffic to a specific port:2.

 #iptables -A OUTPUT -p tcp -dport 21 -j DROP
 $ ftp ftp.kde.org
 ftp: connect: Connection timed out

If you find messages like this in your or
file, you have a small problem:

 Failed password for abel from 1.2.3.4 port 12345 ssh2
 Failed password for baker from 1.2.3.4 port 12345 ssh2

These messages mean a robot is probing your system for weak passwords. You can prevent
the robot from accessing your site with an INPUT rule that will drop all traffic from that
site.

 #iptables -I INPUT -s 1.2.3.4 -j DROP

How it works...
 is the command used to configure the firewall on Linux. The first argument in
 is -A, which instructs to append a new rule to the chain, or -I, which

places the new rule at the start of the ruleset. The next parameter defines the chain. A chain
is a collection of rules, and in earlier recipes we used the chain, which is evaluated
for outgoing traffic, whereas the last recipes used the chain, which is evaluated for
incoming traffic.

The Old-Boy Network

[348]

The parameter specifies the destination to match with the packet being sent, and
specifies the source of a packet. Finally, the parameter instructs to jump to a
particular action. In these examples, we used the DROP action to drop the packet. Other
actions include and .

In the second example, we use the parameter to specify that this rule matches only TCP
on the port specified with . This blocks only the outbound traffic.

There's more...
You can clear the changes made to the chains with the parameter:

#iptables -flush

Creating a Virtual Private Network
A Virtual Private Network (VPN) is an encrypted channel that operates across public
networks. The encryption keeps your information private. VPNs are used to connect remote
offices, distributed manufacturing sites, and remote workers.

We've discussed copying files with , or , or . With a VPN network, you can mount
remote drives via NFS and access resources on the remote network as if they were local.

Linux has clients for several VPN systems, as well as client and server support for
OpenVPN.

This section's recipes will describe setting up an OpenVPN server and client. This recipe is
to configure a single server to service multiple clients in a hub and spoke model. OpenVPN
supports more topologies that are beyond the scope of this chapter.

Getting ready
OpenVPN is not part of most Linux distributions. You can install it using your package
manager:

apt-get install openvpn

Alternatively, this command can also be used:

yum install openvpn

The Old-Boy Network

[349]

Note that you'll need to do this on the server and each client.

Confirm that the tunnel device () exists. Test this on server and client
systems. On modern Linux systems, the tunnel should already exist:

ls /dev/net/tun

How to do it...
The first step in setting up an OpenVPN network is to create the certificates for the server
and at least one client. The simplest way to handle this is to make self-signed certificates
with the package included with pre-version 2.3 releases of OpenVPN. If you
have a later version of OpenVPN, should be available via the package manager.

This package is probably installed in .

Creating certificates
First, make sure you've got a clean slate with nothing left over from previous installations:

cd /usr/share/easy-rsa
. ./vars
./clean-all

NOTE: If you run , I will be doing a on
.

Next, create the Certificate Authority key with the command. This command
will prompt you for information about your site. You'll have to enter this information
several times. Substitute your name, e-mail, site name, and so on for the values in this
recipe. The required information varies slightly between commands. Only the unique
sections will be repeated in these recipes:

./build-ca
Generating a 2048 bit RSA private key
......+++
...+++
writing new private key to 'ca.key'

You are about to be asked to enter information that will be incorporated
into your certificate request.

The Old-Boy Network

[350]

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For somefieldsthere will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]:
State or Province Name (full name) [CA]:MI
Locality Name (eg, city) [SanFrancisco]:WhitmoreLake
Organization Name (eg, company) [Fort-Funston]:Example
Organizational Unit Name (eg, section) [MyOrganizationalUnit]:Packt
Common Name (eg, your name or your server's hostname) [Fort-Funston
CA]:vpnserver
Name [EasyRSA]:
Email Address [me@myhost.mydomain]:admin@example.com

Next, build the server certificate with the build-key command:
./build-key server
Generating a 2048 bit RSA private key
..................................+++
.....................+++
writing new private key to 'server.key'

You are about to be asked to enter information that will be incorporated
into your certificate request....

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:

Create a certificate for at least one client. You'll need a separate client certificate for each
machine that you wish to connect to this OpenVPN server:

./build-key client1
Generating a 2048 bit RSA private key
.......................+++
...+++
writing new private key to 'client1.key'

You are about to be asked to enter information that will be incorporated
into your certificate request.
...

The Old-Boy Network

[351]

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
Using configuration from /usr/share/easy-rsa/openssl-1.0.0.cnf
Check that the request matches the signature
Signature ok
The Subject's Distinguished Name is as follows
countryName :PRINTABLE:'US'
stateOrProvinceName :PRINTABLE:'MI'
localityName :PRINTABLE:'WhitmoreLake'
organizationName :PRINTABLE:'Example'
organizationalUnitName:PRINTABLE:'Packt'
commonName :PRINTABLE:'client1'
name :PRINTABLE:'EasyRSA'
emailAddress:IA5STRING:'admin@example.com'
Certificate is to be certified until Jan 8 15:24:13 2027 GMT (3650 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

Finally, generate the Diffie-Hellman with the command. This will take several
seconds and will generate a few screens filled with dots and plusses:

./build-dh
Generating DH parameters, 2048 bit long safe prime, generator 2
This is going to take a long time
......................+............+........

These steps will create several files in the keys folder. The next step is to copy them to the
folders where they'll be used.

Copy server keys to :

cp keys/server* /etc/openvpn
cp keys/ca.crt /etc/openvpn
cp keys/dh2048.pem /etc/openvpn

Copy the client keys to the client system:

scp keys/client1* client.example.com:/etc/openvpn
scp keys/ca.crt client.example.com:/etc/openvpn

The Old-Boy Network

[352]

Configuring OpenVPN on the server
OpenVPN includes sample configuration files that are almost ready to use. You only need
to customize a few lines for your environment. The files are commonly found in

:

cd /usr/share/doc/openvpn/examples/sample-config-files
cp server.conf.gz /etc/openvpn
cd /etc/openvpn
gunzip server.conf.gz
vim server.conf

Set the local IP address to listen on. This is the IP address of the NIC attached to the
network you intend to allow VPN connections through:

local 192.168.1.125
Modify the paths to the certificates:

ca /etc/openvpn/ca.crt
cert /etc/openvpn/server.crt
key /etc/openvpn/server.key # This file should be kept secret

Finally, check that the parameter file is correct. The OpenVPN sample
 file may specify a 1024-bit length key, while the creates a 2048-bit (more

secure) key.

#dh dh1024.pem
dh dh2048.pem

Configuring OpenVPN on the client
There is a similar set of configurations to do on each client.

Copy the client configuration file to :

cd /usr/share/doc/openvpn/examples/sample-config-files
cpclient.conf /etc/openvpn

Edit the file:

cd /etc/openvpn
vim client.conf

The Old-Boy Network

[353]

Change the paths for the certificates to the point to correct folders:

ca /etc/openvpn/ca.crt
cert /etc/openvpn/server.crt
key /etc/openvpn/server.key # This file should be kept secret

Set the remote site for your server:

#remote my-server-1 1194
remote server.example.com 1194

Starting the server
The server can be started now. If everything is configured correctly, you'll see it output
several lines of output. The important line to look for is the

 line. If that is missing, look for an error message earlier in the output:

openvpnserver.conf
Wed Jan 11 12:31:08 2017 OpenVPN 2.3.4 x86_64-pc-linux-gnu [SSL (OpenSSL)]
[LZO] [EPOLL] [PKCS11] [MH] [IPv6] built on Nov 12 2015
Wed Jan 11 12:31:08 2017 library versions: OpenSSL 1.0.1t 3 May 2016, LZO
2.08...

Wed Jan 11 12:31:08 2017 client1,10.8.0.4
Wed Jan 11 12:31:08 2017 Initialization Sequence Completed

Using , you can confirm that the server is running. You should see the tunnel
device (tun) listed:

$ ifconfig
tun0 Link encap:UNSPECHWaddr
00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
inet addr:10.8.0.1 P-t-P:10.8.0.2 Mask:255.255.255.255
 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

The Old-Boy Network

[354]

Starting and testing a client
Once the server is running, you can start a client. Like the server, the client side of
OpenVPN is created with the command. Again, the important part of this output
is the line:

openvpn client.conf
Wed Jan 11 12:34:14 2017 OpenVPN 2.3.4 i586-pc-linux-gnu [SSL (OpenSSL)]
[LZO] [EPOLL] [PKCS11] [MH] [IPv6] built on Nov 19 2015
Wed Jan 11 12:34:14 2017 library versions: OpenSSL 1.0.1t 3 May 2016, LZO
2.08...

Wed Jan 11 12:34:17 2017 /sbin/ipaddr add dev tun0 local 10.8.0.6 peer
10.8.0.5
Wed Jan 11 12:34:17 2017 /sbin/ip route add 10.8.0.1/32 via 10.8.0.5
Wed Jan 11 12:34:17 2017 Initialization Sequence Completed

Using the command, you can confirm that the tunnel has been initialized:

$ /sbin/ifconfig

tun0 Link encap:UNSPECHWaddr 00-00-00-00-00-00-00-00...00-00-00-00
inet addr:10.8.0.6 P-t-P:10.8.0.5 Mask:255.255.255.255
 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
 RX packets:2 errors:0 dropped:0 overruns:0 frame:0
 TX packets:4 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:168 (168.0 B) TX bytes:336 (336.0 B)

Use the command to confirm that the new network is routed correctly:

$ netstat -rn
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irttIface
0.0.0.0 192.168.1.7 0.0.0.0 UG 0 0 0 eth0
10.8.0.1 10.8.0.5 255.255.255.255 UGH 0 0 0 tun0
10.8.0.5 0.0.0.0 255.255.255.255 UH 0 0 0 tun0
192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

The Old-Boy Network

[355]

This output shows the tunnel device connected to the network, and the gateway
is .

Finally, you can test connectivity with the command:

$ ping 10.8.0.1
PING 10.8.0.1 (10.8.0.1) 56(84) bytes of data.
64 bytes from 10.8.0.1: icmp_seq=1 ttl=64 time=1.44 ms

99
Put On the Monitors Cap

In this chapter, we will cover the following recipes:

Monitoring disk usage
Calculating the execution time for a command
Collecting information about logged in users, boot logs, and boot failures
Listing the top ten CPU– consuming processes in an hour
Monitoring command outputs with watch
Logging access to files and directories
Logging with syslog
Managing log files with
Monitoring user logins to find intruders
Monitoring remote disk usage health
Determining active user hours on a system
Measuring and optimizing power usage
Monitoring disk activity
Checking disks and filesystems for errors
Examining disk health
Getting disk statistics

Introduction
A computing system is a set of hardware and the software components that control it. The
software includes the operating system kernel which allocates resources and many modules
that perform individual tasks, ranging from reading disk data to serving web pages.

Put On the Monitors Cap

[357]

An administrator needs to monitor these modules and applications to confirm that they are
working correctly and to understand whether resources need to be reallocated (moving a
user partition to a larger disk, providing a faster network, and so on).

Linux provides both interactive programs for examining the system's current performance
and modules for logging performance over time.

This chapter describes the commands that monitor system activity and discusses logging
techniques.

Monitoring disk usage
Disk space is always a limited resource. We monitor disk usage to know when it's running
low, then search for large files or folders to delete, move, or compress. This recipe illustrates
disk monitoring commands.

Getting ready
The (disk usage) and (disk free) commands report disk usage. These tools report what
files and folders are consuming disk space and how much space is available.

How to do it...
To find the disk space used by a file (or files), use the following command:

$ du FILENAME1 FILENAME2 ..

Consider this example:

$ du file.txt

To obtain the disk usage for all files inside a directory, along with the individual disk usage
for each file shown in each line, use this command:

$ du -a DIRECTORY

Put On the Monitors Cap

[358]

The option outputs results for all files in the specified directory or directories
recursively.

Running will output a similar result, but it will show only
the size consumed by subdirectories. However, this does not show the
disk usage for each of the files. For printing the disk usage by files, is
mandatory.

Consider this example:

$ du -a test
 4 test/output.txt
 4 test/process_log.sh
 4 test/pcpu.sh
 16 test

The command can be used on a directory:

$ du test
 16 test

There's more...
The command includes options to define how the data is reported.

Displaying disk usage in KB, MB, or blocks
By default, the disk usage command displays the total bytes used by a file. A more human-
readable format is expressed in units such as KB, MB, or GB. The option displays the
results in a human-readable format:

du -h FILENAME

Consider this example:

$ du -h test/pcpu.sh
 4.0K test/pcpu.sh
 # Multiple file arguments are accepted

Alternatively, use it like this:

du -h DIRECTORY
 $ du -h hack/
 16K hack/

Put On the Monitors Cap

[359]

Displaying the grand total sum of disk usage
The option will calculate the total size used by files or directories, as well as display
individual file sizes:

$ du -c FILENAME1 FILENAME2..
 du -c process_log.sh pcpu.sh
 4 process_log.sh
 4 pcpu.sh
 8 total

Alternatively, use it like one of these:

$ du -c DIRECTORY
 $ du -c test/
 16 test/
 16 total

Or:

 $ du -c *.txt
 # Wildcards

The option can be used with options such as and to produce the usual output,
with an extra line containing the total size.

The option (summarize), will print the grand total as the output. The flag can be used
with it to print in a human-readable format:

$ du -sh /usr/bin
 256M /usr/bin

Printing sizes in specified units
The , , and options will force to print the disk usage in specified units. Note that
these cannot be used with the option:

Print the size in bytes (by default):

$ du -b FILE(s)

Print the size in kilobytes:

$ du -k FILE(s)

Put On the Monitors Cap

[360]

Print the size in megabytes:

$ du -m FILE(s)

Print the size in the given size specified:

$ du -B BLOCK_SIZE FILE(s)

Here, is specified in bytes.

Note that the file size returned is not intuitively obvious. With the option,
reports the exact number of bytes in the file. With other options, reports the
amount of disk space used by the file. Since disk space is allocated in fixed-size
chunks (commonly 4 K), the space used by a 400-byte file will be a single block (4
K):

$ du pcpu.sh
 4 pcpu.sh
 $ du -b pcpu.sh
 439 pcpu.sh
 $ du -k pcpu.sh
 4 pcpu.sh
 $ du -m pcpu.sh
 1 pcpu.sh
 $ du -B 4 pcpu.sh
 1024 pcpu.sh

Excluding files from the disk usage calculation
The and options cause to exclude files from the disk usage
calculation.

The option can be used with wildcards or a single filename:

$ du --exclude "WILDCARD" DIRECTORY

Consider this example:

Excludes all .txt files from calculation
 $ du --exclude "*.txt" *
 # Exclude temp.txt from calculation
 $ du --exclude "temp.txt" *

Put On the Monitors Cap

[361]

The option will exclude one file or files that match a pattern. The
 option allows more files or patterns to be excluded. Each

filename or pattern must be on a single line.

$ ls *.txt >EXCLUDE.txt
 $ ls *.odt >>EXCLUDE.txt
 # EXCLUDE.txt contains a list of all .txt and .odt files.
 $ du --exclude-from EXCLUDE.txt DIRECTORY

The option restricts how many subdirectories du will examine. A depth of
calculates disk usage in the current directory. A depth of calculates usage in the current
directory and the next subdirectory:

$ du --max-depth 2 DIRECTORY

The option limits to a single filesystem. The default behavior for du
is to follow links and mount points.

The command requires read permission for all files, and read and execute for all
directories. The command will throw an error if the user running it does not have proper
permissions.

Finding the ten largest size files from a given directory
Combine the and sort commands to find large files that should be deleted or moved:

$ du -ak SOURCE_DIR | sort -nrk 1 | head

The option makes du display the size of all the files and directories in the .
The first column of the output is the size. The option causes it to be displayed in
kilobytes. The second column contains the file or folder name.

The option to performs a numerical sort. The option specifies column and the
 option reverses the sort order. The command extracts the first ten lines from the

output:

$ du -ak /home/slynux | sort -nrk 1 | head -n 4
 50220 /home/slynux
 43296 /home/slynux/.mozilla
 43284 /home/slynux/.mozilla/firefox
 43276 /home/slynux/.mozilla/firefox/8c22khxc.default

Put On the Monitors Cap

[362]

One of the drawbacks of this one-liner is that it includes directories in the result. We can
improve the one-liner to output only the large files with the command:

$ find . -type f -exec du -k {} \; | sort -nrk 1 | head

The find command selects only filenames for du to process, rather than having du traverse
the filesystem to select items to report.

Note that the du command reports the number of bytes that a file requires. This is not
necessarily the same as the amount of disk space the file is consuming. Space on the disk is
allocated in blocks, so a 1-byte file will consume one disk block, usually between 512 and
4096 bytes.

The next section describes using the command to determine how much space is actually
available.

Disk free information
The command provides information about the usage, while provides information
about free disk space. Use with to print the disk space in a human-readable format.
Consider this example:

$ df -h
 Filesystem Size Used Avail Use% Mounted on
 /dev/sda1 9.2G 2.2G 6.6G 25% /
 none 497M 240K 497M 1% /dev
 none 502M 168K 501M 1% /dev/shm
 none 502M 88K 501M 1% /var/run
 none 502M 0 502M 0% /var/lock
 none 502M 0 502M 0% /lib/init/rw
 none 9.2G 2.2G 6.6G 25%
 /var/lib/ureadahead/debugfs

The command can be invoked with a folder name. In that case, it will report free space
for the disk partition that contains that directory. This is useful if you don't know which
partition contains a directory:

$ df -h /home/user
 Filesystem Size Used Avail Use% Mounted on
 /dev/md1 917G 739G 133G 85% /raid1

Put On the Monitors Cap

[363]

Calculating the execution time for a
command
Execution time is the criteria for analyzing an application's efficiency or comparing
algorithms.

How to do it...
The command measures an application's execution time.1.

Consider the following example:

$ time APPLICATION

The command executes . When is complete, the
 command reports the real, system, and user time statistics to and

sends the APPLICATION's normal output to .

$ time ls
 test.txt
 next.txt
 real 0m0.008s
 user 0m0.001s
 sys 0m0.003s

An executable binary of the command is found in .
If you are running bash, you'll get the shell built-in by default. The
shell built-in has limited options. Use an absolute path
() to access the extended functionality.

The option will write the time statistics to a file:2.

$ /usr/bin/time -o output.txt COMMAND

The filename must appear immediately after the flag.

The flag can be used with to append the time statistics to a file:

$ /usr/bin/time -a -o output.txt COMMAND

Put On the Monitors Cap

[364]

The option specifies the statistics to report and the format for the output. A3.
format string includes one or more parameters prefixed with a . Format
parameters include the following:

Real time:
User time:
System time:
System Page size:

We can create a formatted output by combining these parameters with extra text:

$ /usr/bin/time -f "FORMAT STRING" COMMAND

Consider this example:

$ /usr/bin/time -f "Time: %U" -a -o timing.log uname
 Linux

The parameter specifies user time.

The time command sends the target application's output to and the time
command output to . We can redirect the output with a redirection
operator () and redirect the time information output with the () error
redirection operator.

Consider the following example:

$ /usr/bin/time -f "Time: %U" uname> command_output.txt
 2>time.log
 $ cat time.log
 Time: 0.00
 $ cat command_output.txt
 Linux

The format command can report memory usage as well as timing information.4.
The flag shows the maximum memory used in KB and parameter causes
the time command to report the system page size:

$ /usr/bin/time -f "Max: %M K\nPage size: %Z bytes" \
 ls>
 /dev/null
 Max: 996 K
 Page size: 4096 bytes

Put On the Monitors Cap

[365]

In this example, the output of the target application is unimportant, so the
standard output is directed to rather than being displayed.

How it works...
The time command reports these times by default:

Real: This is the wall clock time-the time from start to finish of the command.
This is the elapsed time including time slices used by other processes and the
time the process spends when blocked (for example, time spent waiting for I/O to
complete).
User: This is the amount of CPU time spent in user-mode code (outside the
kernel) within the process. This is the CPU time used to execute the process.
Other processes, and the time these processes spend when blocked do not count
toward this figure.
Sys: This is the amount of CPU time spent in the kernel within the process; the
CPU time spent in system calls within the kernel, as opposed to the library code,
which runs in the user space. Like user time, this is only the CPU time used by
the process. Refer to the following table for a brief description of the kernel mode
(also known as supervisor mode) and the system call mechanism.

Many details regarding a process can be reported by the command. These include exit
status, number of signals received, and number of context switches made. Each parameter
can be displayed when a suitable format string is supplied to the option.

The following table shows some of the interesting parameters:

Parameter Description

This shows the name and command-line arguments of the command being
timed.

This shows the average size of the process's unshared data area, in kilobytes.

This shows the elapsed real (wall clock) time used by the process in [hours:]
minutes:seconds.

This shows the exit status of the command.

This shows the number of signals delivered to the process.

This shows the number of times the process was swapped out of the main
memory.

Put On the Monitors Cap

[366]

Parameter Description

This shows the system's page size in bytes. This is a per-system constant, but
varies between systems.

This shows the percentage of the CPU that this job got. This is just user +
system times divided by the total running time. It also prints a percentage sign.

This shows the average total (data + stack + text) memory usage of the process,
in Kilobytes.

This shows the number of times that the program was context-switched
voluntarily, for instance, while waiting for an I/O operation to complete.

This shows the number of times the process was context-switched
involuntarily (because the time slice expired).

Collecting information about logged in
users, boot logs, and boot failures
Linux supports commands to report aspects of the runtime system including logged in
users, how long the computer has been powered on, and boot failures. This data is used to
allocate resources and diagnose problems.

Getting ready
This recipe introduces the who, w, users, uptime, last, and lastb commands.

How to do it...
The command reports information about the current users:1.

$ who
 slynux pts/0 2010-09-29 05:24 (slynuxs-macbook-pro.local)
 slynux tty7 2010-09-29 07:08 (:0)

This output lists the login name, the TTY used by the users, login time, and
remote hostname (or X display information) about logged in users.

Put On the Monitors Cap

[367]

TTY (the term comes from TeleTYpewriter) is the device file associated
with a text terminal that is created in when a terminal is newly
spawned by the user (for example,). The device path for the
current terminal can be found out by executing the command.

The command provides more detailed information:2.

 $ w
 07:09:05 up 1:45, 2 users, load average: 0.12, 0.06, 0.02
 USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
 slynux pts/0 slynuxs 05:24 0.00s 0.65s 0.11s sshd: slynux
 slynux tty7 :0 07:08 1:45m 3.28s 0.26s bash

This first line lists the current time, system uptime, number of users currently
logged on, and the system load averages for the past 1, 5, and 15 minutes.
Following this, the details about each login session are displayed with each line
containing the login name, the TTY name, the remote host, login time, idle time,
total CPU time used by the user since login, CPU time of the currently running
process, and the command line of their current process.

Load average in the command's output indicates system load.
This is explained in more detail in , Administration Calls.

The users command lists only the name of logged-in users:3.

$ users
 slynux slynux slynux hacker

If a user has multiple sessions open, either by logging in remotely several times or
opening several terminal windows, there will be an entry for each session. In the
preceding output, the user has opened three terminals sessions. The
easiest way to print unique users is to filter the output through and :

$ users | tr ' ' '\n' | sort | uniq
 slynux
 hacker

The command replaces each character with . Then a combination of and
 reduces the list to a unique entry for each user.

Put On the Monitors Cap

[368]

The command reports how long the system has been powered on:4.

$ uptime
 21:44:33 up 6 days, 11:53, 8 users, load average: 0.09, 0.14,
 0.09

The time that follows the word is how long the system has been powered on.
We can write a one-liner to extract the uptime only:

$ uptime | sed 's/.*up \(.*\),.*users.*/\1/'

This uses to replace the line of output with only the string between the word
up and the comma before users.

The command provides a list of users who have logged onto the system5.
since the file was created. This may go back a year or more:

 $ last
 aku1 pts/3 10.2.1.3 Tue May 16 08:23 - 16:14 (07:51)
 cfly pts/0 cflynt.com Tue May 16 07:49 still logged in
 dgpx pts/0 10.0.0.5 Tue May 16 06:19 - 06:27 (00:07)
 stvl pts/0 10.2.1.4 Mon May 15 18:38 - 19:07 (00:29)

The command reports who logged in, what they were assigned, where
they logged in from (IP address or local terminal), the login, logout, and session
time. Reboots are marked as a login by a pseudo-user named .

The command allows you to define a user to get only information about6.
that user:

$ last USER

USER can be a real user or the pseudo-user :7.

$ last reboot
 reboot system boot 2.6.32-21-generi Tue Sep 28 18:10 - 21:48
 (03:37)
 reboot system boot 2.6.32-21-generi Tue Sep 28 05:14 - 21:48
 (16:33)

Put On the Monitors Cap

[369]

The command will give you a list of the failed login attempts:8.

lastb
 test tty8 :0 Wed Dec 15 03:56 - 03:56
 (00:00)
 slynux tty8 :0 Wed Dec 15 03:55 - 03:55
 (00:00)

The command must be run as the root user.

Both and report the contents of . The default is to
report month, day, and time of the event. However, there may be multiple years
of data in that file, and the month/day can be confusing.

The flag will report the full date:

lastb -F
 hacker tty0 1.2.3.4 Sat Jan 7 11:50:53 2017 -
 Sat Jan 7 11:50:53 2017 (00:00)

Listing the top ten CPU– consuming
processes in an hour
The CPU is another resource that can be exhausted by a misbehaving process. Linux
supports commands to identify and control the processes hogging the CPU.

Getting ready
The command displays details about the processes running on the system. It reports
details such as CPU usage, running commands, memory usage, and process status. The
command can be used in a script to identify who consumed the most CPU resource over an
hour. For more details on the command, refer to , Administration Calls.

Put On the Monitors Cap

[370]

How to do it...
This shell script monitors and calculates CPU usages for one hour:

#!/bin/bash
#Name: pcpu_usage.sh
#Description: Script to calculate cpu usage by processes for 1 hour

#Change the SECS to total seconds to monitor CPU usage.
#UNIT_TIME is the interval in seconds between each sampling

SECS=3600
UNIT_TIME=60

STEPS=$(($SECS / $UNIT_TIME))

echo Watching CPU usage... ;

Collect data in temp file

for((i=0;i<STEPS;i++))
do
 ps -eocomm,pcpu | egrep -v '(0.0)|(%CPU)' >> /tmp/cpu_usage.$$
 sleep $UNIT_TIME
done

Process collected data
echo
echo CPU eaters :

cat /tmp/cpu_usage.$$ | \
awk '
{ process[$1]+=$2; }
END{
 for(i in process)
 {
 printf("%-20s %s\n",i, process[i]) ;
 }

 }' | sort -nrk 2 | head

#Remove the temporary log file
rm /tmp/cpu_usage.$$

Put On the Monitors Cap

[371]

The output resembles the following:

$./pcpu_usage.sh
Watching CPU usage...
CPU eaters :
Xorg 20
firefox-bin 15
bash 3
evince 2
pulseaudio 1.0
pcpu.sh 0.3
wpa_supplicant 0
wnck-applet 0
watchdog/0 0
usb-storage 0

How it works...
The CPU usage data is generated by the first loop that runs for one hour (3600 seconds).
Once each minute, the command generates a report on the system
activity at that time. The option specifies to collect data on all processes, not just this
session's tasks. The option specifies an output format. The and words specify
reporting the command name and percentage of CPU, respectively. This command
generates a line with the command name and current percentage of CPU usage for each
running process. These lines are filtered with to remove lines where there was no CPU
usage (%CPU is 0.0) and the header. The interesting lines are appended to a
temporary file.

The temporary file is named . Here, is a script variable that holds
the process ID (PID) of the current script. For example, if the script's PID is , the
temporary file will be named .

The statistics file will be ready after one hour and will contain 60 sets of entries,
corresponding to the system status at each minute. The script sums the total CPU usage
for each process into an associative array named process. This array uses the process name
as array index. Finally, sorts the result with a numeric reverse sort according to the
total CPU usage and uses head to limit the report to the top 10 usage entries.

Put On the Monitors Cap

[372]

See also
The Using awk for advanced text processing recipe of , Texting and Driving,
explains the command
The Using head and tail for printing the last or first 10 lines recipe of , File
In, File Out, explains the command

Monitoring command outputs with watch
The watch command will execute a command at intervals and display that command's
output. You can use a terminal session and the screen command described in ,
Administration Calls to create a customized dashboard to monitor your systems with watch.

How to do it...
The command monitors the output of a command on the terminal at regular
intervals. The syntax of the command is as follows:

$ watch COMMAND

Consider this example:

$ watch ls

Alternatively, it can be used like this:

$ watch 'df /home'

Consider the following example:

list only directories
 $ watch 'ls -l | grep "^d"'

This command will update the output at a default interval of two seconds.

The option defines the time interval for updating the output:

Monitor the output of ls -l every of 5 seconds
 $ watch -n 5 'ls -l'

Put On the Monitors Cap

[373]

There's more
The command can be used with any command that generates output. Some
commands change their output frequently, and the changes are more important than the
entire output. The watch command will highlight the difference between consecutive runs.
Note that this highlight only lasts until the next update.

Highlighting the differences in the watch output
The option highlights differences between successive runs of the command being
watched:

$ watch -d 'COMMANDS'

 # Highlight new network connections for 30 seconds
 $ watch -n 30 -d 'ss | grep ESTAB'

Logging access to files and directories
There are many reasons you may need to be notified when a file is accessed. You might
want to know when a file is modified so it can be backed up, or you might want to know
when files in are modified by a hacker.

Getting ready
The command watches a file or directory and reports when an event occurs.
It doesn't come by default with every Linux distribution. You have to install the

 package. It requires the support in the Linux kernel. Most new GNU/Linux
distributions compile the support into the kernel.

How to do it...
The command can monitor a directory:

#/bin/bash
 #Filename: watchdir.sh
 #Description: Watch directory access
 path=$1
 #Provide path of directory or file as argument to script

Put On the Monitors Cap

[374]

 $ inotifywait -m -r -e create,move,delete $path -q

A sample output resembles the following:

$./watchdir.sh .
 ./ CREATE new
 ./ MOVED_FROM new
 ./ MOVED_TO news
 ./ DELETE news

How it works...
The previous script will log create, move, and delete events in the given path. The option
causes watch to stay active and monitor changes continuously, rather than exiting after an
event happens. The option enables a recursive watch of the directories (symbolic links
are ignored). The option specifies the list of events to be watched and reduces the
verbose messages and prints only the required ones. This output can be redirected to a log
file.

The events that can check include the following:

Event Description

When a read happens to a file

When file contents are modified

When metadata is changed

When a file undergoes a move operation

When a new file is created

When a file undergoes an open operation

When a file undergoes a close operation

When a file is removed

Put On the Monitors Cap

[375]

Logging with syslog
Log files related to daemons and system processes are located in the directory.
These log files use a standard protocol called syslog, handled by the daemon.
Every standard application makes use of to log information. This recipe describes
how to use to log information from a shell script.

Getting ready
Log files help you deduce what is going wrong with a system. It is a good practice to log
progress and actions with log file messages. The logger command will place data into log
files with .

These are some of the standard Linux log files. Some distributions use different names for
these files:

Log file Description

Boot log information

Apache web server log

Post boot kernel information

User authentication log

System boot up messages

Mail server log

X server log

Put On the Monitors Cap

[376]

How to do it...
The command allows scripts to create and manage log messages:

Place a message in the syslog file :1.

$ logger LOG_MESSAGE

Consider this example:

$ logger This is a test log line

 $ tail -n 1 /var/log/messages
 Sep 29 07:47:44 slynux-laptop slynux: This is a test log line

The log file is a general purpose log file. When the
command is used, it logs to by default.

The flag defines a tag for the message:2.

$ logger -t TAG This is a message

 $ tail -n 1 /var/log/messages
 Sep 29 07:48:42 slynux-laptop TAG: This is a message

The option to logger and configuration files in control where
log messages are saved.

To save to a custom file, follow these steps:

Create a new configuration file in

Add a pattern for a priority and the log file

Restart the log daemon

Put On the Monitors Cap

[377]

Consider the following example:

 # cat /etc/rsyslog.d/myConfig
 local7.* /var/log/local7
 # cd /etc/init.d
 # ./syslogd restart
 # logger -p local7.info A line to be placed in /var/log/local7

The option will log the lines from another file:3.

$ logger -f /var/log/source.log

See also
The Using head and tail for printing the last or first 10 lines recipe of , File
In, File Out, explains the head and tail commands

Managing log files with logrotate
Log files keep track of events on the system. They are essential for debugging problems and
monitoring live machines. Log files grow as time passes and more events are recorded.
Since the older data is less useful than the current data, log files are renamed when they
reach a size limit and the oldest files are deleted.

Getting ready
The command can restrict the size of the log file. The system logger facility
appends information to the end of a log file without deleting earlier data. Thus a log file
will grow larger over time. The command scans log files defined in the
configuration file. It will keep the last 100 kilobytes (for example, specified SIZE = 100 k)
from the log file and move the rest of the data (older log data) to a new file

. When the old-data file () exceeds ,
renames that file to and starts a new . The
command can compress the older logs as , , and
so on.

Put On the Monitors Cap

[378]

How to do it...
The system's configuration files are held in . Most Linux
distributions have many files in this folder.

We can create a custom configuration for a log file (say):

This is a complete configuration. The string specifies the log file
path. Logrotate will archive old logs in the same directory.

How it works...
The command supports these options in the configuration file:

Parameter Description

This ignores if the log file is missing and return without rotating the
log.

This only rotates the log if the source log file is not empty.

This limits the size of the log file for which the rotation is to be
made. It can be 1 M for 1 MB.

This enables compression with gzip for older logs.

This specifies the interval at which the rotation is to be performed.
It can be weekly, yearly, or daily.

This is the number of older copies of log file archives to be kept.
Since 5 is specified, there will be ,

, and so on up to .

Put On the Monitors Cap

[379]

This specifies the mode, user, and the group of the log file archive
to be created.

The options in the table are examples of what can be specified. More options can be defined
in the configuration file. Refer to the man page at

, for more information.

Monitoring user logins to find intruders
Log files can be used to gather details about the state of the system and attacks on the
system.

Suppose we have a system connected to the Internet with SSH enabled. Many attackers are
trying to log in to the system. We need to design an intrusion detection system to identify
users who fail their login attempts. Such attempts may be of a hacker using a dictionary
attack. The script should generate a report with the following details:

User that failed to log in
Number of attempts
IP address of the attacker
Host mapping for the IP address
Time when login attempts occurred

Getting ready
A shell script can scan the log files and gather the required information. Login details are
recorded in or . The script scans the log file for
failed login attempts and analyzes the data. It uses the command to map the host from
the IP address.

Put On the Monitors Cap

[380]

How to do it...
The intrusion detection script resembles this:

#!/bin/bash
#Filename: intruder_detect.sh
#Description: Intruder reporting tool with auth.log input
AUTHLOG=/var/log/auth.log

if [[-n $1]];
then
 AUTHLOG=$1
 echo Using Log file : $AUTHLOG
fi

Collect the failed login attempts
LOG=/tmp/failed.$$.log
grep "Failed pass" $AUTHLOG > $LOG

extract the users who failed
users=$(cat $LOG | awk '{ print $(NF-5) }' | sort | uniq)

extract the IP Addresses of failed attempts
ip_list="$(egrep -o "[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+" $LOG | sort | uniq)"

printf "%-10s|%-3s|%-16s|%-33s|%s\n" "User" "Attempts" "IP address" \
 "Host" "Time range"

Loop through IPs and Users who failed.

for ip in $ip_list;
do
 for user in $users;
 do
 # Count attempts by this user from this IP

 attempts=`grep $ip $LOG | grep " $user " | wc -l`

 if [$attempts -ne 0]
 then
 first_time=`grep $ip $LOG | grep " $user " | head -1 | cut -c-16`
 time="$first_time"
 if [$attempts -gt 1]
 then
 last_time=`grep $ip $LOG | grep " $user " | tail -1 | cut -c-16`
 time="$first_time -> $last_time"
 fi

Put On the Monitors Cap

[381]

 HOST=$(host $ip 8.8.8.8 | tail -1 | awk '{ print $NF }')
 printf "%-10s|%-3s|%-16s|%-33s|%-s\n" "$user" "$attempts" "$ip"\
 "$HOST" "$time";
 fi
 done
done

rm $LOG

The output resembles the following:

Using Log file : secure
User |Attempts|IP address|Host |Time range
pi |1 |10.251.90.93 |3(NXDOMAIN) |Jan 2 03:50:24
root |1 |10.56.180.82 |2(SERVFAIL) |Dec 26 04:31:29
root |6 |10.80.142.25 |example.com |Dec 19 07:46:49 -> Dec 19 07:47:38

How it works...
The script defaults to using as input.
Alternatively, we can provide a log file with a command-line argument. The failed logins
are collected in a temporary file to reduce processing.

When a login attempt fails, SSH logs lines are similar to this:

sshd[21197]: Failed password for bob1 from 10.83.248.32 port 50035

The script for the string and puts those lines in
.

The next step is to extract the users who failed to login. The command extracts the fifth
field from the end (the user name) and pipes that to sort and to create a list of the
users.

Next, the unique IP addresses are extracted with a regular expression and the
command.

Put On the Monitors Cap

[382]

Nested for loops iterate through the IP address and users extracting the lines with each IP
address and user combination. If the number of attempts for this IP/User combination is > 0,
the time of the first occurrence is extracted with , head, and cut. If the number of
attempts is > 1, then the last time is extracted using tail instead of head.

This login attempt is then reported with the formatted command.

Finally, the temporary file is removed.

Monitoring remote disk usage health
Disks fill up and sometimes wear out. Even RAIDed storage systems can fail if you don't
replace a faulty drive before the others fail. Monitoring the health of the storage systems is
part of an administrator's job.

The job gets easier when an automated script checks the devices on the network and
generates a one-line report, the date, IP address of the machine, device, capacity of device,
used space, free space, percentage usage, and alert status. If the disk usage is under 80
percent, the drive status is reported as . If the drive is getting full and needs attention,
the status is reported as .

Getting ready
The script uses SSH to log in to remote systems, collect disk usage statistics, and write them
to a log file in the central machine. This script can be scheduled to run at a particular time.

The script requires a common user account on the remote machines so the script
can log in to collect data. We should configure auto-login with SSH for the common user
(the Password-less auto-login with SSH recipe of , The Old-Boy Network, explains
auto-login).

How to do it...
Here's the code:

Put On the Monitors Cap

[383]

Put On the Monitors Cap

[384]

The utility will schedule the script to run at regular intervals. For example, to run the
script every day at 10 a.m., write the following entry in :

Run the command and add the preceding line.

You can run the script manually as follows:

$./disklog.sh

The output for the previous script resembles this:

01/18/17 192.168.1.6 /dev/sda1 106G 53G 49G 52% SAFE
01/18/17 192.168.1.6 /dev/md1 958G 776G 159G 84% ALERT

How it works...
The script accepts the log file path as a command-line argument or uses the
default log file. The checks whether the file exists or not. If the log file does
not exist, it is initialized with a column header. The list of remote machine IP addresses can
be hardcoded in , delimited with spaces, or the command can be used to scan
the network for available nodes. If you use the call, adjust the IP address range for
your network.

A for loop iterates through each of the IP addresses. The application sends the
command to each node to retrieve the disk usage information. The output is stored in a
temporary file. A loop reads that file line by line and invokes to extract the
relevant data and output it. An command extracts the percent full value and strips .
If this value is less than 80, the line is marked , else it's marked . The entire
output string must be redirected to the file. Hence, the loop is enclosed in a
subshell and the standard output is redirected to the log file.

See also
The Scheduling with a cron recipe in , Administration Calls, explains the

 command

Put On the Monitors Cap

[385]

Determining active user hours on a system
This recipe makes use of the system logs to find out how many hours each user has spent
on the server and ranks them according to the total usage hours. A report is generated with
the details, including rank, user, first logged in date, last logged in date, number of times
logged in, and total usage hours.

Getting ready
The raw data about user sessions is stored in a binary format in the file.
The command returns details about login sessions. The sum of the session hours for
each user is that user's total usage hours.

How to do it...
This script will determine the active users and generate the report:

Put On the Monitors Cap

[386]

The output resembles the following:

$./active_users.sh
Rank User Start Logins Usage hours
1 easyibaa Dec 11 531 349
2 demoproj Dec 10 350 230
3 kjayaram Dec 9 213 55
4 cinenews Dec 11 85 139
5 thebenga Dec 10 54 35
6 gateway2 Dec 11 52 34
7 soft132 Dec 12 49 25
8 sarathla Nov 1 45 29
9 gtsminis Dec 11 41 26
10 agentcde Dec 13 39 32

How it works...
The script reads from or a log file defined on the
command line. The command extracts the log file contents. The first column in the
log file is the username. The command extracts the first column from the log file. The

 and commands reduce this to a list of unique users.

The script's outer loop iterates through the users. For each user, is used to extract the
log lines corresponding to a particular user.

The last column of each line is the duration of this login session. These values are summed
in the inner loop.

Put On the Monitors Cap

[387]

The session duration is formatted as . This value is extracted with awk to
report the last field and then piped to to remove the parentheses. A second
command converts the HH::MM string to minutes and the minutes are totaled. When the
loop is complete, the total minutes are converted to hours by dividing with 60.

The first login time for a user is the last line in the temporary file of user data. This is
extracted with tail and . The number of login sessions is the number of lines in this file,
calculated with .

The users are sorted by the total usage hours with sort's option for the numeric and
descending order and to specify the sort column (usage hour). Finally, the output of the
sort is passed to , which prefixes each line with a line number representing the rank of
each user.

Measuring and optimizing power usage
Battery capacity is a critical resource on mobile devices, such as notebook computers and
tablets. Linux provides tools that measure power consumption, one such command is

.

Getting ready
The application doesn't come preinstalled with many Linux distributions, you
will have to install it using your package manager.

How to do it...
The application measures per-module power consumption and supports
interactively optimizing power consumption:

With no options, presents a display on the terminal:

powertop

Put On the Monitors Cap

[388]

The command takes measurements and displays detailed information about
power usage, the processes using the most power, and so on:

PowerTOP 2.3 Overview Idle stats Frequency stats Device stats Tunable

Summary: 1146.1 wakeups/sec, 0.0 GPU ops/secs, 0.0 VFS ops/sec and 73.0% C

Usage Events/s Category Description
407.4 ms/s 258.7 Process /usr/lib/vmware/bin/vmware
64.8 ms/s 313.8 Process /usr/lib64/firefox/firefox

The tag will cause to take measurements over a period of time and
generate an HTML report with the default filename , which you can open
using any web browser:

powertop --html

In the interactive mode, you can optimize power usage. When is running, use the
arrow or tab keys to switch to the Tunables tab; this shows a list of attributes can
tune to for consuming less power. Choose the ones you want, press Enter to toggle from
Bad to Good.

If you want to monitor the power consumption from a portable device's
battery, it is required to remove the charger and use the battery for

 to make measurements.

Monitoring disk activity
A popular naming convention for monitoring tools is to end the name with the word
(the command used to monitor processes). The tool to monitor disk I/O is called .

Getting ready
The iotop application doesn't come preinstalled with most Linux distributions, you will
have to install it using your package manager. The iotop application requires root
privileges, so you'll need to run it as or root user.

Put On the Monitors Cap

[389]

How to do it...
The application can either perform continuous monitoring or generate reports for a
fixed period:

For continuous monitoring, use the command as follows:1.

iotop -o

 The option tells to show only those processes that are doing active I/O
while it is running, which reduces the noise in the output.

The option tells iotop to run for N times and exit:2.

iotop -b -n 2

The option monitors a specific process:3.

iotop -p PID

 is the process you wish to monitor.

In most modern distributions, instead of finding the PID and supplying it
to , you can use the command and write the preceding
command as follows: # iotop -p `pidof cp`

Checking disks and filesystems for errors
Linux filesystems are incredibly robust. Despite that, a filesystem can become corrupted
and data can be lost. The sooner you find a problem, the less data loss and corruption you
need to worry about.

Getting ready
The standard tool for checking filesystems is . This command is installed on all
modern distributions. Note that you'll need to run as root or via a .

Put On the Monitors Cap

[390]

How to do it...
Linux will run automatically at boot time if the filesystem has been unchecked for a
long time or there is a reason (unsafe reboot after a power glitch) to suspect it's been
corrupted. You can run manually.

To check for errors on a partition or filesystem, pass the path to :1.

 # fsck /dev/sdb3
 fsck from util-linux 2.20.1
 e2fsck 1.42.5 (29-Jul-2012)
 HDD2 has been mounted 26 times without being checked, check forced.
 Pass 1: Checking inodes, blocks, and sizes
 Pass 2: Checking directory structure
 Pass 3: Checking directory connectivity
 Pass 4: Checking reference counts
 Pass 5: Checking group summary information
 HDD2: 75540/16138240 files (0.7% non-contiguous),
 48756390/64529088 blocks

The flag checks all the filesystems configured in :2.

fsck -A

This will go through the file, checking each filesystem. The
file defines the mapping between physical disk partitions and mount points. It's
used to mount filesystems during boot.

The option instructs to automatically attempt to fix errors, instead of3.
interactively asking us whether or not to repair them. Use this option with
caution:

fsck -a /dev/sda2

The option simulates the actions will perform:4.

 # fsck -AN
 fsck from util-linux 2.20.1
 [/sbin/fsck.ext4 (1) -- /] fsck.ext4 /dev/sda8
 [/sbin/fsck.ext4 (1) -- /home] fsck.ext4 /dev/sda7
 [/sbin/fsck.ext3 (1) -- /media/Data] fsck.ext3 /dev/sda6

Put On the Monitors Cap

[391]

How it works...
The application is a frontend for filesystem specific applications. When we run

, it detects the type of the filesystem and runs the appropriate
command, where is the type of the filesystem. For example, if we run on an

 filesystem, it will end up calling the command.

Because of this, supports only the common options across all filesystem-specific tools.
To find more detailed options, read the application specific man pages such as .

It's very rare, but possible, for to lose data or make a badly damaged filesystem worse.
If you suspect severe corruption of a filesystem, you should use the option to list the
actions that will perform without actually performing them. If reports more than
a dozen problems it can fix or if these include damaged directory structures, you may want
to mount the drive in the read-only mode and try to extract critical data before running

.

Examining disk health
Modern disk drives run for years with no problems, but when a disk fails, it's a major
disaster. Modern disk drives include a Self-Monitoring, Analysis, and Reporting
Technology (SMART) facility to monitor the disk's health so you can replace an ailing
drive before a major failure occurs.

Getting ready
Linux supports interacting with the drives SMART utilities via the
package. This is installed by default on most distributions. If it's not present, you can install
it with your package manager:

apt-get install smartmontools

Alternatively, this command can be used:

yum install smartmontools

Put On the Monitors Cap

[392]

How to do it...
The user interface to is the application. This application initiates
tests on the disk drive and reports the status of the SMART device.

Since the application accesses the raw disk device, you must have root access to
run it.

The option reports the full status of a device:

$ smartctl -a /dev/sda

The output will be a header of basic information, a set of raw data values and the test
results. The header includes details about the drive being tested and a datestamp for this
report:

 smartctl 5.43 2012-06-30 r3573 [x86_64-linux-2.6.32-
 642.11.1.el6.x86_64] (local build)
 Copyright (C) 2002-12 by Bruce Allen,
 http://smartmontools.sourceforge.net

 === START OF INFORMATION SECTION ===
 Device Model: WDC WD10EZEX-00BN5A0
 Serial Number: WD-WCC3F1HHJ4T8
 LU WWN Device Id: 5 0014ee 20c75fb3b
 Firmware Version: 01.01A01
 User Capacity: 1,000,204,886,016 bytes [1.00 TB]
 Sector Sizes: 512 bytes logical, 4096 bytes physical
 Device is: Not in smartctl database [for details use: -P
 showall]
 ATA Version is: 8
 ATA Standard is: ACS-2 (unknown minor revision code: 0x001f)
 Local Time is: Mon Jan 23 11:26:57 2017 EST
 SMART support is: Available - device has SMART capability.
 SMART support is: Enabled
 ...

Put On the Monitors Cap

[393]

The raw data values include error counts, spin-up time, power-on hours, and more. The last
two columns (and) are of particular interest. In the following
sample, the device has been powered on 9823 hours. It was powered on and off 11 times
(servers don't get power-cycled a lot) and the current temperature is 30° C. When the value
for power on gets close to the manufacturer's Mean Time Between Failures (MTBF), it's
time to start considering replacing the drive or moving it to a less critical system. If the
Power Cycle count increases between reboots, it could indicate a failing power supply or
faulty cables. If the temperature gets high, you should consider checking the drive's
enclosure. A fan may have failed or a filter might be clogged:

ID# ATTRIBUTE_NAME FLAG VALUE WORST THRESH TYPE UPDATED
 WHEN_FAILED RAW_VALUE

 9 Power_On_Hours 0x0032 087 087 000 Old_age Always
 - 9823

12 Power_Cycle_Count 0x0032 100 100 000 Old_age Always
 - 11

194 Temperature_Celsius 0x0022 113 109 000 Old_age Always
 - 30

The last section of the output will be the results of the tests:

SMART Error Log Version: 1
No Errors Logged

SMART Self-test log structure revision number 1

Num Test_Description Status Remaining LifeTime(hours)
 LBA_of_first_error
1 Extended offline Completed without error 00% 9825
 -

Put On the Monitors Cap

[394]

The flag forces the SMART device to run the self-tests. These are non-destructive and can
be run on a drive while it is in service. SMART devices can run a long or short test. A short
test will take a few minutes, while the long test will take an hour or more on a large device:

$ smartctl -t [long][short] DEVICE

$ smartctl -t long /dev/sda

smartctl 5.43 2012-06-30 r3573 [x86_64-linux-2.6.32-642.11.1.el6.x86_64]
(local build)
Copyright (C) 2002-12 by Bruce Allen, http://smartmontools.sourceforge.net

=== START OF OFFLINE IMMEDIATE AND SELF-TEST SECTION ===
Sending command: "Execute SMART Extended self-test routine immediately in
off-line mode".
Drive command "Execute SMART Extended self-test routine immediately in off-
line mode" successful.
Testing has begun.
Please wait 124 minutes for test to complete.
Test will complete after Mon Jan 23 13:31:23 2017

Use smartctl -X to abort test.

In a bit over two hours, this test will be completed and the results will be viewable with the
 command.

How it works
Modern disk drives are much more than a spinning metal disk. They include a CPU, ROM,
memory, and custom signal processing chips. The command interacts with the
small operating system running on the disk's CPU to requests tests and reports.

Getting disk statistics
The command provides many disk statistics and tests the drives. The
command provides more statistics and examines how the disk performs in your system,
which may be influenced by controller chips, cables, and so on.

Put On the Monitors Cap

[395]

Getting ready
The command is standard on most Linux distributions. You must have root access
to use it.

How to do it...
The option will provide basic information about your device:

$ hdparm -I DEVICE
 $ hdparm -I /dev/sda

The following sample output shows some of the data reported. The model number and
firmware are the same as reported by . The configuration includes parameters
that can be tuned before a drive is partitioned and a filesystem is created:

/dev/sda:

ATA device, with non-removable media
 Model Number: WDC WD10EZEX-00BN5A0
 Serial Number: WD-WCC3F1HHJ4T8
 Firmware Revision: 01.01A01
 Transport: Serial, SATA 1.0a, SATA II Extensions, SATA Rev 2.5,
SATA Rev 2.6, SATA Rev 3.0
Standards:
 Used: unknown (minor revision code 0x001f)
 Supported: 9 8 7 6 5
 Likely used: 9
Configuration:
 Logical max current
 cylinders 16383 16383
 heads 16 16
 sectors/track 63 63
 --
 CHS current addressable sectors: 16514064
 LBA user addressable sectors: 268435455
 LBA48 user addressable sectors: 1953525168
 Logical Sector size: 512 bytes
 Physical Sector size: 4096 bytes
 device size with M = 1024*1024: 953869 MBytes
 device size with M = 1000*1000: 1000204 MBytes (1000 GB)
 cache/buffer size = unknown
 Nominal Media Rotation Rate: 7200

...
Security:

Put On the Monitors Cap

[396]

 Master password revision code = 65534
 supported
 not enabled
 not locked
 not frozen
 not expired: security count
 supported: enhanced erase
 128min for SECURITY ERASE UNIT. 128min for ENHANCED SECURITY ERASE UNIT.
Logical Unit WWN Device Identifier: 50014ee20c75fb3b
 NAA : 5
 IEEE OUI : 0014ee
 Unique ID : 20c75fb3b
Checksum: correct

How it works
The command is a user interface into the kernel libraries and modules. It includes
support for modifying parameters as well as reporting them. Use extreme caution when
changing these parameters!

There's more
The command can test a disk's performance. The and options performs
timing tests on buffered and cached reads, respectively:

hdparm -t /dev/sda
Timing buffered disk reads: 486 MB in 3.00 seconds = 161.86 MB/sec

hdparm -T /dev/sda
Timing cached reads: 26492 MB in 1.99 seconds = 13309.38 MB/sec

110
Administration Calls

In this chapter, we will cover the following topics:

Gathering information about processes
What's what – which, whereis, whatis, and file
Killing processes, and sending and responding to signals
Sending messages to user terminals
The filesystem
Gathering system information
Scheduling with a
Database styles and uses
Writing and reading SQLite databases
Writing and reading a MySQL database from Bash
User administration scripts
Bulk image resizing and format conversion
Taking screenshots from the terminal
Managing multiple terminals from one

Introduction
Managing multiple terminals from one GNU/Linux ecosystem consists of the network, each
set of hardware, the OS Kernel that allocates resources, interface modules, system utilities,
and user programs. An administrator needs to monitor the entire system to keep everything
running smoothly. Linux administration tools range from all-in-one GUI applications to
command-line tools designed for scripting.

Administration Calls

[398]

Gathering information about processes
The term process in this case means the running instance of a program. Many processes run
simultaneously on a computer. Each process is assigned a unique identification number,
called a process ID (PID). Multiple instances of the same program with the same name can
run at the same time, but they will each have different PIDs and attributes. Process
attributes include the user who owns the process, the amount of memory used by the
program, the CPU time used by the program, and so on. This recipe shows how to gather
information about processes.

Getting ready
Important commands related to process management are , , and . These tools
are available in all Linux distributions.

How to do it...
 reports information about active processes. It provides information about which user

owns the process, when the process started, the command path used to execute the process,
the PID, the terminal it is attached to (TTY, for TeleTYpe), the memory used by the process,
the CPU time used by the process, and so on. Consider the following example:

$ ps
PID TTY TIME CMD
1220 pts/0 00:00:00 bash
1242 pts/0 00:00:00 ps

Be default, will display the processes initiated from the current terminal (TTY). The first
column shows the PID, the second column refers to the terminal (TTY), the third column
indicates how much time has elapsed since the process started, and finally we have CMD
(the command).

The command report can be modified with command-line parameters.

The option displays more columns of information:

$ ps -f
UID PID PPID C STIME TTY TIME CMD
slynux 1220 1219 0 18:18 pts/0 00:00:00 -bash
slynux 1587 1220 0 18:59 pts/0 00:00:00 ps -f

Administration Calls

[399]

The (every) and (all) options provide a report on every process that is running on
the system.

The argument (along with) specifies the removal of the default TTY
restriction imparted by . Usually, if you use without arguments, it'll
only print processes attached to the current terminal.

The commands , , , and generate reports on all processes
and provide more information than :

$ ps -e | head -5
PID TTY TIME CMD
1 ? 00:00:00 init
2 ? 00:00:00 kthreadd
3 ? 00:00:00 migration/0
4 ? 00:00:00 ksoftirqd/0

The option generates a long report. This example filters the output with to display
the first five entries.

The , option specifies the data to be displayed.

Parameters for are delimited with a comma (). There is no space
between the comma operator and the next parameter.
The option can be combined with the (every) option () to list
every process running in the system. However, when you use filters
similar to the ones that restrict to the specified users along with ,
is not used. The -e option overrules the filter and displays all the
processes.

In this example, stands for COMMAND and represents the percentage of CPU
usage:

$ ps -eo comm,pcpu | head -5
COMMAND %CPU
init 0.0
kthreadd 0.0
migration/0 0.0
ksoftirqd/0 0.0

Administration Calls

[400]

How it works...
The following parameters for the option are supported:

Parameter Description

Percentage of CPU

Process ID

Parent process ID

Percentage of memory

Executable filename

A simple command

The user who started the process

The priority (niceness)

Cumulative CPU time

Elapsed time since the process started

The associated TTY device

The effective user

Process state

There's more...
The command, , and other tools can be combined to produce custom reports.

Showing environment variables for a process
Some processes are dependent on their environment variable definitions. Knowing the
environment variables and values can help you debug or customize a process.

Administration Calls

[401]

The command does not normally show the environment information of a command. The
 output modifier at the end of the command adds this information to the output:

$ ps e

Here's an example of environment information:

$ ps -eo pid,cmd e | tail -n 1
1238 -bash USER=slynux LOGNAME=slynux HOME=/home/slynux
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
MAIL=/var/mail/slynux SHELL=/bin/bash SSH_CLIENT=10.211.55.2 49277 22
SSH_CONNECTION=10.211.55.2 49277 10.211.55.4 22 SSH_TTY=/dev/pts/0

Environment information helps trace problems using the package manager. If you
use an HTTP proxy to connect to the Internet, you may need to set environment variables
using . If this is not set, the command will not select the
proxy and hence returns an error. Knowing that is not set makes the problem
obvious.

When a scheduling tool, such as (discussed later in this chapter), is used to run an
application, the expected environment variables may not be set. This entry will
not open a GUI-windowed application:

00 10 * * * /usr/bin/windowapp

It fails because GUI applications require the environment variable. To determine
the required environment variables, run manually and then

.

After you've identified the required environment variables, define them before the
command name in :

00 10 * * * DISPLAY=:0 /usr/bin/windowapp

OR

DISPLAY=0
00 10 * * * /usr/bin/windowapp

The definition was obtained from the output.

Administration Calls

[402]

Creating a tree view of processes
The command can report a process PID, but tracking from a child to the ultimate parent
is tedious. Adding to the end of the command creates a tree view of the processes,
showing the parent-child relationship between tasks. The next example shows an
session invoked from a bash shell running inside :

$ ps -u clif f | grep -A2 xterm | head -3
15281 ? S 0:00 xterm
15284 pts/20 Ss+ 0:00 _ bash
15286 pts/20 S+ 0:18 _ ssh 192.168.1.2

Sorting ps output
By default, the command output is unsorted. The -sort parameter forces to sort the
output. The ascending or descending order can be specified by adding the (ascending) or

 (descending) prefix to the parameter:

$ ps [OPTIONS] --sort -paramter1,+parameter2,parameter3..

For example, to list the top five CPU-consuming processes, use the following:

$ ps -eo comm,pcpu --sort -pcpu | head -5
COMMAND %CPU
Xorg 0.1
hald-addon-stor 0.0
ata/0 0.0
scsi_eh_0 0.0

This displays the top five processes, sorted in descending order by percentage of CPU
usage.

The command can filter the output. To report only those Bash processes that are
currently running, use the following:

$ ps -eo comm,pid,pcpu,pmem | grep bash
bash 1255 0.0 0.3
bash 1680 5.5 0.3

Administration Calls

[403]

Filters with ps for real user or ID, effective user or ID
The command can group processes based on the real and effective usernames or IDs
specified. The command filters the output by checking whether each entry belongs to a
specific effective user or a real user from the list of arguments.

Specify an effective user's list with , , and so on
Specify a real user's list with , , and so on

Here's an example of this:

 # display user and percent cpu usage for processes with real user
 # and effective user of root
 $ ps -u root -U root -o user,pcpu

The may be used with as but when filters are applied, should not be used. It
overrides the filter options.

TTY filter for ps
The output can be selected by specifying the TTY to which the process is attached. Use
the option to specify the TTY list:

 $ ps -t TTY1, TTY2 ..

Here's an example of this:

 $ ps -t pts/0,pts/1
 PID TTY TIME CMD
 1238 pts/0 00:00:00 bash
 1835 pts/1 00:00:00 bash
 1864 pts/0 00:00:00 ps

Information about process threads
The option to will display information about process threads. This option adds an
LWP column to the thread ID. Adding the option to () adds two columns: NLWP,
the thread count, and LWP, the thread ID:

 $ ps -Lf
 UID PID PPID LWP C NLWP STIME TTY TIME
 CMD
 user 1611 1 1612 0 2 Jan16 ? 00:00:00
 /usr/lib/gvfs/gvfsd

Administration Calls

[404]

This command lists five processes with a maximum number of threads:

$ ps -eLf --sort -nlwp | head -5
UID PID PPID LWP C NLWP STIME TTY TIME
 CMD
root 647 1 647 0 64 14:39 ? 00:00:00
 /usr/sbin/console-kit-daemon --no-daemon
root 647 1 654 0 64 14:39 ? 00:00:00
 /usr/sbin/console-kit-daemon --no-daemon
root 647 1 656 0 64 14:39 ? 00:00:00
 /usr/sbin/console-kit-daemon --no-daemon
root 647 1 657 0 64 14:39 ? 00:00:00
 /usr/sbin/console-kit-daemon --no-daemon

Specifying the output width and columns to be
displayed
The command supports many options to select fields in order to display and control how
they are displayed. Here are some of the more common options:

This specifies a full format. It includes the starting time of the parent PID user
ID.

 userList This selects processes owned by the users in the list. By default, it selects the
current user.

Long listing. It displays the user ID, parent PID, size, and more.

What's what – which, whereis, whatis, and
file
There may be several files with the same name. Knowing which executable is being invoked
and whether a file is compiled code or a script is useful information.

How to do it...
The , , , and commands report information about files and
directories.

: The which command reports the location of a command:

Administration Calls

[405]

$ which ls
 /bin/ls

We often use commands without knowing the directory where the executable file
is stored. Depending on how your variable is defined, you may use a
command from , , or .
When we type a command, the terminal looks for the command in a set of
directories and executes the first executable file it finds. The directories to search
are specified in the environment variable:

 $ echo $PATH
 /usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin

We can add directories to be searched and export the new . To add
 to , use the following command:

$ export PATH=$PATH:/opt/bin
 # /opt/bin is added to PATH

whereis: is similar to the which command. It not only returns the path
of the command, but also prints the location of the man page (if available) and
the path for the source code of the command (if available):

$ whereis ls
 ls: /bin/ls /usr/share/man/man1/ls.1.gz

whatis: The command outputs a one-line description of the command
given as the argument. It parses information from the page:

$ whatis ls
 ls (1) - list directory contents

The command reports a file type. Its syntax is as follows:

$ file FILENAME

The reported file type may comprise a few words or a long description:

$file /etc/passwd
 /etc/passwd: ASCII text
 $ file /bin/ls
 /bin/ls: ELF 32-bit LSB executable, Intel 80386, version 1
 (SYSV), dynamically linked (uses shared libs), for GNU/Linux
 2.6.15, stripped

Administration Calls

[406]

apropos
Sometimes we need to search for a command that is related to the topic.
The command will search the man pages for a keyword. Here's
the code to do this: Apropos topic

Finding the process ID from the given command names
Suppose several instances of a command are being executed. In such a scenario, we need
the PID of each process. Both the and command return this information:

 $ ps -C COMMAND_NAME

Alternatively, the following is returned:

 $ ps -C COMMAND_NAME -o pid=

When is appended to , it removes the header PID from the output of . To remove
headers from a column, append to the parameter.

This command lists the process IDs of Bash processes:

 $ ps -C bash -o pid=
 1255
 1680

The command also returns a list of process IDs for a command:

 $ pgrep bash
 1255
 1680

 requires only a portion of the command name as its input argument
to extract a Bash command; or will also work, for
example. But requires you to type the exact command. supports
these output-filtering options.

The option specifies an output delimiter other than the default new line:

 $ pgrep COMMAND -d DELIMITER_STRING
 $ pgrep bash -d ":"
 1255:1680

Administration Calls

[407]

The option filters for a list of users:

 $ pgrep -u root,slynux COMMAND

In this command, and are users.

The option returns the count of matching processes:

 $ pgrep -c COMMAND

Determining how busy a system is
Systems are either unused or overloaded. The value describes the total load
on the running system. It describes the average number of runnable processes, processes
with all resources except CPU time slices, on the system.

Load average is reported by the uptime and top commands. It is reported with three values.
The first value indicates the average in 1 minute, the second indicates the average in 5
minutes, and the third indicates the average in 15 minutes.

It is reported by uptime:

 $ uptime
 12:40:53 up 6:16, 2 users, load average: 0.00, 0.00, 0.00

The top command
By default, the command displays a list of the top CPU-consuming processes as well as
basic system statistics, including the number of tasks in the process list, CPU cores, and
memory usage. The output is updated every few seconds.

This command displays several parameters along with the top CPU-consuming processes:

$ top
 top - 18:37:50 up 16 days, 4:41,7 users,load average 0.08 0.05 .11
 Tasks: 395 total, 2 running, 393 sleeping, 0 stopped 0 zombie

See also...
The Scheduling with a cron recipe in this chapter explains how to schedule tasks

Administration Calls

[408]

Killing processes, and sending and
responding to signals
You may need to kill processes (if they go rogue and start consuming too many resources) if
you need to reduce system load, or before rebooting. Signals are an inter-process
communication mechanism that interrupts a running process and forces it to perform some
action. These actions include forcing a process to terminate in either a controlled or
immediate manner.

Getting ready
Signals send an interrupt to a running program. When a process receives a signal, it
responds by executing a signal handler. Compiled applications generate signals with the

 system call. A signal can be generated from the command line (or shell script) with the
 command. The command can be used in a script to handle received signals.

Each signal is identified by a name and an integer value. The signal
terminates a process immediately. The keystroke events Ctrl + C and Ctrl + Z send signals to
abort or put the task in the background.

How to do it...
The kill command will list the available signals:1.

$ kill -l
 SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
 ...

Terminate the process:2.

$ kill PROCESS_ID_LIST

The command issues a signal by default. The process ID list is
specified with spaces for delimiters.

The option specifies the signal to be sent to the process:3.

$ kill -s SIGNAL PID

Administration Calls

[409]

The argument is either a signal name or a signal number. There are many
signals available for different purposes. The most common ones are as follows:

: Hangup detection on the death of the controlling process or
terminal

: This is the signal emitted when Ctrl + C is pressed

: This is the signal used to forcibly kill the process

: This is the signal used to terminate a process by default

: This is the signal emitted when Ctrl + Z is pressed

We frequently use force kill for processes. Use this with caution. This is an4.
immediate action, and it will not save data or perform a normal cleanup
operation. The signal should be tried first; should be saved for
extreme measures:

$ kill -s SIGKILL PROCESS_ID

Alternatively, use this to perform the cleanup operation:

$ kill -9 PROCESS_ID

There's more...
Linux supports other commands to signal or terminate processes.

The kill family of commands
The command takes the process ID as the argument. The command
terminates the process by name:

$ killall process_name

The option specifies the signal to send. By default, sends a signal:

$ killall -s SIGNAL process_name

The option forcibly kills a process by name:

$ killall -9 process_name

Administration Calls

[410]

Here's an example of the preceding:

$ killall -9 gedit

The owner specifies the process's user:

$ killall -u USERNAME process_name

The option makes in interactive mode:

The command is similar to the command, but by default it accepts a process
name instead of a process ID:

$ pkill process_name
 $ pkill -s SIGNAL process_name

 is the signal number. The name is not supported with . The
command provides many of the same options as the command. Check the man
pages for more details.

Capturing and responding to signals
Well-behaved programs save data and shut down cleanly when they receive a
signal. The command assigns a signal handler to signals in a script. Once a function is
assigned to a signal using the command, when a script receives a signal, this function
is executed.

The syntax is as follows:

trap 'signal_handler_function_name' SIGNAL LIST

 is space-delimited. It can include both signal numbers and signal names.

This shell script responds to the signal:

Administration Calls

[411]

Run this script in a terminal. When the script is running, pressing Ctrl + C it will show the
message by executing the signal handler associated with it. Ctrl + C corresponds to a

 signal.

The loop is used to keep the process running forever without being terminated. This
is done so the script can respond to signals. The loop to keep a process alive infinitely is
often called the event loop.

If the process ID of the script is given, the command can send a signal to it:

$ kill -s SIGINT PROCESS_ID

The process ID of the preceding script will be printed when it is executed; alternatively, you
can find it with the command.

If no signal handlers are specified for signals, a script will call the default signal handlers
assigned by the operating system. Generally, pressing Ctrl + C will terminate a program, as
the default handler provided by the operating system will terminate the process. The
custom handler defined here overrides the default handler.

We can define signal handlers for any signals available () with the command.
A single signal handler can process multiple signals.

Sending messages to user terminals
Linux supports three applications to display messages on another user's screen. The
command sends a message to a user, the command lets two users have a conversation,
and the command sends a message to all users.

Before doing something potentially disruptive (say, rebooting the server), the system
administrator should send a message to the terminal of every user on the system or
network.

Administration Calls

[412]

Getting ready
The and commands are part of most Linux distributions. If a user is logged in
multiple times, you may need to specify the terminal you wish to send a message to.

You can determine a user's terminals with the command:

$> who
 user1 pts/0 2017-01-16 13:56 (:0.0)
 user1 pts/1 2017-01-17 08:35 (:0.0)

The second column () is the user's terminal identifier.

The and programs work on a single system. The program can connect
users across a network.

The talk program is not commonly installed. Both the talk program and talk server must be
installed and running on any machine where talk is used. Install the talk application as

 and on Debian-based systems or as and on Red Hat-
based systems. You will probably need to edit and

 to set the field to . Once you do this, restart :

cd /etc/xinet.d
 # vi ntalk
 # cd /etc/init.d
 #./xinetd restart

How to do it...

Sending one message to one user
The write command will send a message to a single user:

$ write USERNAME [device]

You can redirect a message from a file or an echo or write interactively. An interactive write
is terminated with Ctrl-D.

The message can be directed to a specific session by appending the pseudo terminal
identifier to the command:

$ echo "Log off now. I'm rebooting the system" | write user1 pts/3

Administration Calls

[413]

Holding a conversation with another user
The talk command opens an interactive conversation between two users. The syntax for this
is .

The next command initiates a conversation with user2 on their workstation:

$ talk user2@workstation2.example.com

After typing the talk command, your terminal session is cleared and split into two
windows. In one of the windows, you'll see text like this:

[Waiting for your party to respond]

The person you're trying to talk to will see a message like this:

Message from Talk_Daemon@workstation1.example.com
 talk: connection requested by user1@workstation.example.com
 talk: respond with talk user1@workstation1.example.com

When they invoke talk, their terminal session will also be cleared and split. What you type
will appear in one window on their screen and what they type will appear on yours:

I need to reboot the database server.
 How much longer will your processing take?

 90% complete. Should be just a couple more minutes.

Sending a message to all users
The wall (WriteALL) command broadcasts a message to all the users and terminal sessions:

$ cat message | wall

Or:

$ wall < message
 Broadcast Message from slynux@slynux-laptop
 (/dev/pts/1) at 12:54 ...

 This is a message

The message header shows who sent the message: which user and which host.

Administration Calls

[414]

The write, talk, and wall commands only deliver messages between users when the write
message option is enabled. Messages from the root are displayed regardless of the write
message option.

The message option is usually enabled. The command will enable or disable the
receiving of messages:

enable receiving messages
 $ mesg y
 # disable receiving messages
 $ mesg n

The /proc filesystem
 is an in-memory pseudo filesystem that provides user-space access to many of the

Linux kernel's internal data structures. Most pseudo files are read-only, but some, such as
 (described in , The Old-Boy Network), can be

used to fine-tune your system's behavior.

How to do it...
The directory contains several files and directories. You can view most files in
and their subdirectories with , , or . They are displayed as plain text.

Every process running on a system has a directory in , named according to the
process's PID.

Suppose Bash is running with PID (); in this case, will exist.
This folder will contain information about the process. The files under include:

: This contains the environment variables associated with the process.
 will display the environment variables passed to the

process .
: This is a to the process's working directory.
: This is a to the process's executable:

$ readlink /proc/4295/exe
 /bin/bash

Administration Calls

[415]

: This is the directory consisting of entries on file descriptors used by the
process. The values 0, 1, and 2 are stdin, stdout, and stderr, respectively.

: This file displays the number of characters read or written by the process.

Gathering system information
Describing a computer system requires many sets of data. This data includes network
information, the hostname, kernel version, Linux distribution name, CPU description,
memory allocation, disk partitions, and more. This information can be retrieved from the
command line.

How to do it...
The and commands print the hostname of the current system:1.

$ hostname

Alternatively, they print the following:

$ uname -n
 server.example.com

The option to prints details about the Linux kernel version, hardware2.
architecture, and more:

$ uname -a
 server.example.com 2.6.32-642.11.1.e16.x86_64 #1 SMP Fri Nov 18
 19:25:05 UTC 2016 x86_64 x86_64 GNU/Linux

The option limits the report to the kernel release:3.

$ uname -r
 2.6.32-642.11.1.e16.x86_64

The option prints the machine type:4.

$ uname -m
 x86_64

Administration Calls

[416]

The directory holds information about the system, modules, and running5.
processes. contains CPU details:

$ cat /proc/cpuinfo
 processor : 0
 vendor_id : GenuineIntel
 cpu family : 6
 model : 63
 model name : Intel(R)Core(TM)i7-5820K CPU @ 3.30GHz
 ...

If the processor has multiple cores, these lines will be repeated n times. To extract
only one item of information, use . The fifth line contains the processor name:

$ cat /proc/cpuinfo | sed -n 5p
 Intel(R)CORE(TM)i7-5820K CPU @ 3.3 GHz

 contains information about the memory and current RAM6.
usage:

$ cat /proc/meminfo
 MemTotal: 32777552 kB
 MemFree: 11895296 kB
 Buffers: 634628 kB
 ...

The first line of shows the system's total RAM:

$ cat /proc/meminfo | head -1
 MemTotal: 1026096 kB

 describes the disk partitions:7.

$ cat /proc/partitions
 major minor #blocks name
 8 0 976762584 sda
 8 1 512000 sda1
 8 2 976248832 sda2
 ...

 The program edits a disk's partition table and also reports the current
partition table. Run this command as :

$ sudo fdisk -l

Administration Calls

[417]

The and applications generate long and complete reports about8.
your system. The report includes information about the motherboard, BIOS, CPU,
memory slots, interface slots, disks, and more. These must be run as root.

 is commonly available, but you may need to install :

$ sudo lshw
 description: Computer
 product: 440BX
 vendor: Intel
 ...

 $ sudo dmidecode
 SMBIOS 2.8 present
 115 structures occupying 4160 bytes.
 Table at 0xDCEE1000.

 BIOS Information
 Vendor: American Megatrends Inc
 ...

Scheduling with a cron
The GNU/Linux system supports several utilities for scheduling tasks. The utility is
the most widely supported. It allows you to schedule tasks to be run in the background at
regular intervals. The utility uses a table (crontab) with a list of scripts or commands
to be executed and the time when they are to be executed.

Cron is used to schedule system housekeeping tasks, such as performing backups,
synchronizing the system clocking with , and removing temporary files.

A regular user might use to schedule Internet downloads to happen late at night
when their ISP allows drop caps and the available bandwidth is higher.

Getting ready
The scheduling utility comes with all GNU/Linux distributions. It scans the
tables to determine whether a command is due to be run. Each user has their own
table, which is a plain text file. The command manipulates the table.

Administration Calls

[418]

How to do it...
A entry specifies the time to execute a command and the command to be
executed. Each line in the table defines a single command. The command can either be
a script or a binary application. When runs a task, it runs as the user who created the
entry, but it does not source the user's . If the task requires environment variables,
they must be defined in the .

Each cron table line consists of six space-delimited fields in the following order:

 (0 - 59)
 (0 - 23)

 (1 - 31)
 (1 - 12)

 (0 - 6)
 (the script or command to be executed at the specified time)

The first five fields specify the time when an instance of the command is to be executed.
Multiple values are delimited by commas (no spaces). A star signifies that any time or any
day will match. A division sign schedules the event to trigger every /Y interval (*/5 in
minutes means every five minutes).

Execute the script at the 2nd minute of all hours on all days:1.

02 * * * * /home/slynux/test.sh

Execute test.sh on the 5th, 6th, and 7th hours on all days:2.

00 5,6,7 * * /home/slynux/test.sh

Execute every other hour on Sundays:3.

00 */2 * * 0 /home/slynux/script.sh

Shut down the computer at 2 a.m. every day:4.

00 02 * * * /sbin/shutdown -h

Administration Calls

[419]

The command can be used interactively or with prewritten files.5.

Use the option with to edit the table:

$ crontab -e
 02 02 * * * /home/slynux/script.sh

When is entered, the default text editor (usually) is opened and
the user can type the jobs and save them. The jobs will be scheduled
and executed at specified time intervals.

The command can be invoked from a script to replace the current6.
crontab with a new one. Here's how you do this:

Create a text file (for example,) with the job in it and
then run with this filename as the command argument:

 $ crontab task.cron

Alternatively, specify the job as an inline function without
creating a separate file. For example, refer to the following:

 $ crontab<<EOF
 02 * * * * /home/slynux/script.sh
 EOF

 The job needs to be written between and .

How it works...
An asterisk () specifies that the command should be executed at every instance during the
given time period. A in the field in the job will cause the command to be
executed every hour. To execute the command at multiple instances of a time period,
specify the time intervals separated by a comma in this time field. For example, to run the
command at the 5th and 10th minute, enter in the field. A slash (divide by)
symbol will cause the command to run as per a division of the time. For example 0-30/6 in
the Minutes field will run a command every 5 minutes during the first half of each hour.
The string in the Hours field will run a command every other hour.

Cron jobs are executed as the user who created . If you need to execute commands
that require higher privileges, such as shutting down the computer, run the
command as root.

Administration Calls

[420]

The commands specified in a cron job are written with the full path to the command. This is
because cron does not source your , so the environment in which a cron job is
executed is different from the bash shell we execute on a terminal. Hence, the
environment variable may not be set. If your command requires certain environment
variables, you must explicitly set them.

There's more...
The command has more options.

Specifying environment variables
Many commands require environment variables to be set properly for execution. The cron
command sets the SHELL variable to and also sets and from the
values in . If other variables are required, they can be defined in the .
These can be defined for all tasks or individually for a single task.

If the environment variable is defined, will send the output of the command
to that user via an e-mail.

The defines environment variables by inserting a line with a variable assignment
statement in the user's table.

The following defines an environment variable to use a proxy server
for Internet interactions:

http_proxy=http://192.168.0.3:3128
 MAILTO=user@example.com
 00 * * * * /home/slynux/download.sh

This format is supported by , used in Debian, Ubunto, and CentOS
distributions. For other distributions, environment variables can be defined on a per-
command basis:

00 * * * * http_proxy=http:192.168.0.2:3128;
 /home/sylinux/download.sh

Administration Calls

[421]

Running commands at system start-up/boot
Running specific commands when the system starts (or boots) is a common requirement.
Some implementations support a time field to run a job during the reboot
process. Note that this feature is not supported by all implementations and only root
is allowed to use this feature on some systems. Now check out the following code:

@reboot command

This will run the command as your user at runtime.

Viewing the cron table
The option to crontab will list the current user's crontab:

$ crontab -l
 02 05 * * * /home/user/disklog.sh

Adding the option will specify a user's crontab to view. You must be logged in as root to
use the option:

crontab -l -u slynux
 09 10 * * * /home/slynux/test.sh

Removing the cron table
The option will remove the current user's cron table:

$ crontab -r

The option specifies the crontab to remove. You must be a root user to remove another
user's crontab:

crontab -u slynux -r

Database styles and uses
Linux supports many styles of databases, ranging from simple text files () to
low level B-Tree databases (Berkely DB and bdb), lightweight SQL (sqlite), and fully
featured relational database servers, such as Postgres, Oracle, and MySQL.

Administration Calls

[422]

One rule of thumb for selecting a database style is to use the least complex system that
works for your application. A text file and is sufficient for a small database when the
fields are known and fixed.

Some applications require references. For example, a database of books and authors should
be created with two tables, one for books and one for the authors, to avoid duplicating the
author information for each book.

If the table is read more often than it's modified, then SQLite is a good choice. This database
engine does not require a server, which makes it portable and easy to embed in another
application (as Firefox does).

If the database is modified frequently by multiple tasks (for example, a webstore's inventory
system), then one of the RDBMS systems, such as Postgres, Oracle, or MySQL, is
appropriate.

Getting ready
You can create a text-based database with standard shell tools. SqlLite is commonly
installed by default; the executable is . You'll need to install MySQL, Oracle, and
Postgres. The next section will explain how to install MySQL. You can download Oracle
from www.oracle.com. Postgres is usually available with your package manager.

How to do it...
A text file database can be built with common shell tools.

To create an address list, create a file with one line per address and fields separated by a
known character. In this case, the character is a tilde ():

first last~Street~City, State~Country~Phone~

For instance:

Joe User~123 Example Street~AnyTown, District~1-123-123-1234~

Then add a function to find lines that match a pattern and translate each line into a human-
friendly format:

function addr {
 grep $1 $HOME/etc/addr.txt | sed 's/~/\n/g'
 }

Administration Calls

[423]

When in use, this would resemble the following:

$ addr Joe
 Joe User
 123 Example Street
 AnyTown District
 1-123-123-1234

There's more...
The SQLite, Postgres, Oracle, and MySQL database applications provide a more powerful
database paradigm known as relational databases. A relational database stores relations
between tables, for example, the relation between a book and its author.

A common way to interact with a relational database is using SQL. This language is
supported by SQLite, Postgres, Oracle, MySQL, and other database engines.

SQL is a rich language. You can read books devoted to it. Luckily, you just need a few
commands to use SQL effectively.

Creating a table
Tables are defined with the command:

 CREATE TABLE tablename (field1 type1, field2 type2,...);

The next line creates a table of books and authors:

 CREATE TABLE book (title STRING, author STRING);

Inserting a row into an SQL database
The insert command will insert a row of data into the database.

 INSERT INTO table (columns) VALUES (val1, val2,...);

The following command inserts the book you're currently reading:

 INSERT INTO book (title, author) VALUES ('Linux Shell Scripting
 Cookbook', 'Clif Flynt');

Administration Calls

[424]

Selecting rows from a SQL database
The select command will select all the rows that match a test:

 SELECT fields FROM table WHERE test;

This command will select book titles that include the word Shell from the book table:

 SELECT title FROM book WHERE title like '%Shell%';

Writing and reading SQLite databases
SQLite is a lightweight database engine that is used in applications ranging from Android
apps and Firefox to US Navy inventory systems. Because of the range of use, there are more
applications running SQLite than any other database.

A SQLite database is a single file that is accessed by one or more database engines. The
database engine is a C library that can be linked to an application; it is loaded as a library to
a scripting language, such as TCL, Python, or Perl, or run as a standalone program.

The standalone application sqlite3 is the easiest to use within a shell script.

Getting ready
The executable may not be installed in your installation. If it is not, it can be
installed by loading the package with your package manager.

For Debian and Ubuntu, use the following:

apt-get install sqlite3 libsqlite3-dev

For Red Hat, SuSE, Fedora, and Centos, use the following:

yum install sqlite sqlite-devel

How to do it...
The command is an interactive database engine that connects to a SQLite database
and supports the process of creating tables, inserting data, querying tables, and so on.

Administration Calls

[425]

The syntax of the command is this:

sqlite3 databaseName

If the file exists, will open it. If the file does not exist, will
create an empty database. In this recipe, we will create a table, insert one row, and retrieve
that entry:

Create a books database
 $ sqlite3 books.db
 sqlite> CREATE TABLE books (title string, author string);
 sqlite> INSERT INTO books (title, author) VALUES ('Linux Shell
 Scripting Cookbook', 'Clif Flynt');
 sqlite> SELECT * FROM books WHERE author LIKE '%Flynt%';
 Linux Shell Scripting Cookbook|Clif Flynt

How it works...
The application creates an empty database named and displays the

 to accept SQL commands.

The command creates a table with two fields: title and author.

The command inserts one book into the database. Strings in SQL are delimited with
single quotes.

The command retrieves the rows that match the test. The percentage symbol () is
the SQL wildcard, similar to a star () in the shell.

There's more...
A shell script can use to access a database and provide a simple user interface. The
next script implements the previous address database with instead of a flat text file.
It provides three commands:

: This is to create the database
: This is to add a new row

: This is to select rows that match a query

Administration Calls

[426]

In use, it would look like this:

$> dbaddr.sh init
 $> dbaddr.sh insert 'Joe User' '123-1234' 'user@example.com'
 $> dbaddr.sh query name Joe
 Joe User
 123-1234
 user@example.com

The following script implements this database application:

This script uses the case statement to select the SQL command string. The other command-
line arguments are replaced with this string and the string is sent to to be
evaluated. The , , , and are the first, second, third, and fourth arguments,
respectively, to the script.

Writing and reading a MySQL database from
Bash
MySQL is a widely used database management system. In 2009, Oracle acquired SUN and
with that the MySQL database. The MariaDB package is a fork of the MySQL package that
is independent of Oracle. MariaDB can access MySQL databases, but MySQL engines
cannot always access MariaDB databases.

Administration Calls

[427]

Both MySQL and MariaDB have interfaces for many languages, including PHP, Python,
C++, Tcl, and more. All of them use the command to provide an interactive session in
order to access a database. This is the easiest way for a shell script to interact with a MySQL
database. These examples should work with either MySQL or MariaDB.

A bash script can convert a text or Comma-Separated Values (CSV) file into MySQL tables
and rows. For example, we can read all the e-mail addresses stored in a guestbook
program's database by running a query from the shell script.

The next set of scripts demonstrates how to insert the contents of the file into a database
table of students and generate a report while ranking each student within the department.

Getting ready
MySQL and MariaDB are not always present in the base Linux distribution. They can be
installed as either and or the package.
The MariaDB distribution uses MySQL as a command and is sometimes installed when the
MySQL package is requested.

MySQL supports a username and password for authentication. You will be prompted for a
password during the installation.

Use the command to create a new database on a fresh installation. After you create
the database with the command, you can select it for use with the use
command. Once a database is selected, standard SQL commands can be used to create
tables and insert data:

$> mysql -user=root -password=PASSWORD

Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 44
Server version: 10.0.29-MariaDB-0+deb8u1 (Debian)

Copyright (c) 2000, 2016, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

MariaDB [(none)]> CREATE DATABASE test1;
Query OK, 1 row affected (0.00 sec)
MariaDB [(none)]> use test1;

The command or Ctrl-D will terminate a interactive session.

Administration Calls

[428]

How to do it...
This recipe consists of three scripts: one to create a database and table, one to insert student
data, and one to read and display data from the table.

Create the database and table script:

This script inserts data in the table:

Administration Calls

[429]

The last script queries the database and generates a report:

Administration Calls

[430]

The data for the input CSV file () will resemble this:

1,Navin M,98,CS
2,Kavya N,70,CS
3,Nawaz O,80,CS
4,Hari S,80,EC
5,Alex M,50,EC
6,Neenu J,70,EC
7,Bob A,30,EC
8,Anu M,90,AE
9,Sruthi,89,AE
10,Andrew,89,AE

Execute the scripts in the following sequence:

$./create_db.sh
Created DB
Created table students

$./write_to_db.sh studentdat.csv
Wrote data into DB

$./read_db.sh
Department : CS
rank name mark
1 Navin M 98
2 Nawaz O 80
3 Kavya N 70

Department : EC
rank name mark
1 Hari S 80
2 Neenu J 70
3 Alex M 50
4 Bob A 30

Department : AE
rank name mark
1 Anu M 90
2 Sruthi 89
3 Andrew 89

Administration Calls

[431]

How it works...
The first script, , creates a database called and a table named

 inside it. The command is used for MySQL manipulations. The
command specifies the username with and the password with . The
variables and are used to store the username and password.

The other command argument for the command is the database name. If a database
name is specified as an argument to the command, it will use that database;
otherwise, we have to explicitly define the database to be used with the use

 command.

The command accepts the queries to be executed through standard input (). A
convenient way of supplying multiple lines through is using the method. The
text that appears between and is passed to as standard input.

The and commands redirect to to
prevent the display of error messages. The script checks the exit status for the
command stored in to determine whether a failure has occurred; it assumes that a failure
occurs because a table or database already exists. If the database or table already exists, a
message is displayed to notify the user; otherwise, the database and table are created.

The script accepts the filename of the student data CSV file. It reads each
line of the CSV file in the loop. On each iteration, a line from the CSV file is read and
reformatted into a SQL command. The script stores the data from the comma-separated line
in an array. Array assignment is done in this form: . Here, the
space character is the InternalFieldSeparator (IFS). This data has comma-separated values.
By changing the IFS to a comma, we can easily assign values to the array ().

The data elements in the comma-separated line are , , , and . The
 and values are integers, while and are strings that must be quoted.

The name could contain space characters that would conflict with the IFS. The script
replaces the space in the name with a character () and restores it after formulating the
query.

To quote the strings, the values in the array are reassigned with a prefix and suffixed with
. The command substitutes each space in the name with .

Administration Calls

[432]

Finally, the query is formed by replacing the space character with a comma and replacing
with a space. Then, SQL's command is executed.

The third script, , generates a list of students for each department ordered by
rank. The first query finds distinct names of departments. We use a loop to iterate
through each department and run the query to display student details in the order of
highest marks obtained. is an SQL construct to set this: . On each row, it is
incremented and displayed as the rank of the student.

User administration scripts
GNU/Linux is a multiuser operating system that allows many users to log in and perform
activities at the same time. Administration tasks involving user management include setting
the default shell for the user, adding a user to a group, disabling a shell account, adding
new users, removing users, setting a password, setting an expiry date for a user account,
and so on. This recipe demonstrates a user management tool to handle these tasks.

How to do it...
This script performs common user management tasks:

Administration Calls

[433]

Administration Calls

[434]

A sample output resembles the following:

./user_adm.sh -details test
Login: test Name:
Directory: /home/test Shell: /bin/sh
Last login Tue Dec 21 00:07 (IST) on pts/1 from localhost
No mail.
No Plan.
Last password change : Dec 20, 2010
Password expires : never
Password inactive : never
Account expires : Oct 10, 2010
Minimum number of days between password change : 0
Maximum number of days between password change : 99999
Number of days of warning before password expires : 7

How it works...
The script performs several common user management tasks. The
text explains how to use the script when the user provides incorrect parameters or includes
the parameter. A case statement parses command arguments and executes the
appropriate commands.

The valid command options for the script are: , ,
, , , , , , , ,

, and . When the case is matched, it means no option was recognized;
hence, is invoked.

Run this script as the root. It confirms the user ID (the root's user ID is) before the
arguments are examined.

When an argument is matched, the test usage checks the number of
arguments. If the number of command arguments does not match the required number, the

 function is invoked and the script exits.

These options are supported by the following scripts:

: The command creates a new user:

useradd USER -p PASSWORD -m

The option creates the home directory.

Administration Calls

[435]

: The command removes the user:

deluser USER --remove-all-files

The option removes all the files associated with the user,
including the directory.

: The command changes the default shell of the user:

chsh USER -s SHELL

 and : The command manipulates several attributes
related to user accounts. locks the user account and

 unlocks the user account.
: The command manipulates user account expiry information:

chage -E DATE

These options are supported:

: This sets the minimum number of days between
password changes to

: This sets the maximum number of days during which a
password is valid

: This sets the number of days to provide a warning
before a password change is required

: The command changes a user's password:

passwd USER

The command will prompt to enter a new password:

 and : The command adds a new user group to
the system:

addgroup GROUP

Administration Calls

[436]

If you include a username, it will add this user to a group:

addgroup USER GROUP
 -delgroup

The command removes a user group:

delgroup GROUP

: The command displays user information, including the
home directory, last login time, default shell, and so on. The command
displays the user account expiry information.

Bulk image resizing and format conversion
All of us download photos from our phones and cameras. Before we e-mail an image or
post it to the Web, we may need to resize it or perhaps change the format. We can use
scripts to modify these image files in bulk. This recipe describes recipes for image
management.

Getting ready
The command from the ImageMagick suite contains tools for manipulating
images. It supports many image formats and conversion options. Most GNU/Linux
distributions don't include ImageMagick by default. You need to manually install the
package. For more information, point your web browser at .

How to do it...
The convert program will convert a file from one image format to another:

$ convert INPUT_FILE OUTPUT_FILE

Here's an example of this:

$ convert file1.jpg file1.png

Administration Calls

[437]

We can resize an image by specifying the scale percentage or the width and height of the
output image. To resize an image by specifying or , use this:

$ convert imageOrig.png -resize WIDTHxHEIGHT imageResized.png

Here's an example of this:

$ convert photo.png -resize 1024x768 wallpaper.png

If either or is missing, then whatever is missing will be automatically
calculated to preserve the image aspect ratio:

$ convert image.png -resize WIDTHx image.png

Here's an example of this:

$ convert image.png -resize 1024x image.png

To resize the image by specifying the percentage scale factor, use this:

$ convert image.png -resize "50%" image.png

This script will perform a set of operations on all the images in a directory:

Administration Calls

[438]

The following example scales the images in the directory to :

$./image_help.sh -source sample_dir -percent 20%
Processing file :sample/IMG_4455.JPG
Processing file :sample/IMG_4456.JPG
Processing file :sample/IMG_4457.JPG
Processing file :sample/IMG_4458.JPG

To scale images to a width of , use this:

$./image_help.sh -source sample_dir -scale 1024x

To scale and convert files into a specified destination directory, use this:

newdir is the new destination directory
$./image_help.sh -source sample -scale 50% -ext png -dest newdir

Administration Calls

[439]

How it works...
The preceding script accepts these arguments:

: This specifies the source directory of the images.
: This specifies the destination directory of the converted image files. If

 is not specified, the destination directory will be the same as the source
directory.

: This specifies the target file format for conversions.
: This specifies the percentage of scaling.

: This specifies the scaled width and height.
Both the and parameters may not appear.
The script starts by checking the number of command arguments. Either four, six,
or eight parameters are valid.

The command line is parsed with a loop and the case statement and values are
assigned to appropriate variables. is a special variable that contains the number of
arguments. The command shifts the command arguments one position to the left.
With this, every time the shifting happens, we can access the next command argument as
rather than using , , , and so on.

The case statement is like a switch statement in the C programming language. When a case
is matched, the corresponding statements are executed. Each match statement is terminated
with . Once all the parameters are parsed into the variables , ,

, , and , a loop iterates through each file in the source
directory and the file is converted.

Several tests are done within the loop to fine-tune the conversion.

If the variable is defined (if is given in the command argument), the extension of
the destination file is changed from to .

If the parameter is provided, the destination file path is modified by replacing the
directory in the source path with the destination directory.

If -scale or -percent are specified, the resize parameter (or
) is added to the command.

After the parameters are evaluated, the command is executed with proper
arguments.

Administration Calls

[440]

See also
The Slicing filenames based on extensions recipe in , Have a Good
Command, explains how to extract a portion of the filename

Taking screenshots from the terminal
As GUI applications proliferate, it becomes important to take screenshots, both to document
your actions and to report unexpected results. Linux supports several tools for grabbing
screenshots.

Getting ready
This section will describe the xwd application and a tool from ImageMagick, which was
used in the previous recipe. The xwd application is usually installed with the base GUI. You
can install ImageMagick using your package manager.

How to do it...
The xwd program extracts visual information from a window, converts it into X Window
Dump format, and prints the data to . This output can be redirected to a file, and the
file can be converted into GIF, PNG, or JPEG format, as shown in the previous recipe.

When xwd is invoked, it changes your cursor to a crosshair. When you move this crosshair
to an X Window and click on it, the window is grabbed:

$ xwd >step1.xwd

ImageMagick's command supports more options for taking screenshots:

To take a screenshot of the whole screen, use this:

$ import -window root screenshot.png

You can manually select a region and take a screenshot of it using this:

$ import screenshot.png

Administration Calls

[441]

To take a screenshot of a specific window, use this:

$ import -window window_id screenshot.png

The command will return a window ID. Run the command and click on the
window you want. Then, pass this value to the option of .

Managing multiple terminals from one
SSH sessions, Konsoles, and xterms are heavyweight solutions for applications you want to
run for a long time, but they perform a check infrequently (such as monitoring log files or
disk usage).

The GNU screen utility creates multiple virtual screens in a terminal session. The tasks you
start in a virtual screen continue to run when the screen is hidden.

Getting ready
To achieve this, we will use a utility called GNU screen. If the screen is not installed on
your distribution by default, install it using the package manager:

apt-get install screen

How to do it...
Once the screen utility has created a new window, all the keystrokes go to the1.
task running in that window, except Control-A (Ctrl-A), which marks the start of
a screen command.
Creating screen windows: To create a new screen, run the command screen from2.
your shell. You will see a welcome message with information about the screen.
Press Space or Return to return to the shell prompt. To create a new virtual
terminal, press Ctrl + A and then C (these are case-sensitive) or type screen again.
Viewing a list of open windows: While running the screen, pressing Ctrl+A3.
followed by a quote () will list your terminal sessions.

Administration Calls

[442]

Switching between windows: The keystrokes Ctrl + A and Ctrl + N display the4.
next window and Ctrl + A and Ctrl + P the previous window.
Attaching to and detaching screens: The screen command supports saving and5.
loading screen sessions, called detaching and attaching in screen terminology. To
detach from the current screen session, press Ctrl + A and Ctrl + D. To attach to an
existing screen when starting the screen, use:

screen -r -d

This tells the screen to attach the last screen session. If you have more than one6.
detached session, the screen will output a list; then use:

screen -r -d PID

Here, is the PID of the screen session you want to attach.

111
Tracing the Clues

In this chapter, we will cover the following topics:

Tracing packets with
Finding packets with
Tracing network routes with
Tracing system calls with
Tracing dynamic library functions with

Introduction
Nothing happens without a trace. On a Linux system, we can trace events via the log files
discussed in , Put On The Monitor's Cap. The command shows which
programs use the most CPU time, and , , and let us monitor disk usage.

This chapter will describe ways to get more information about network packets, CPU usage,
disk usage, and dynamic library calls.

Tracing packets with tcpdump
Just knowing which applications are using a given port may not be sufficient information to
trace down a problem. Sometimes you need to check the data that is being transferred as
well.

Tracing the Clues

[444]

Getting ready
You need to be a root user to run . The application may not be installed
in your system by default. So install it with your package manager:

$ sudo apt-get install tcpdump
$ sudo yum install libpcap tcpdump

How to do it...
The application is the frontend to Wireshark and other network sniffer programs.
The GUI interface supports many of the options we'll describe shortly.

This application's default behavior is to display every packet seen on the primary Ethernet
link. The format of a packet report is as follows:

TIMESTAMP SRC_IP:PORT > DEST_IP:PORT: NAME1 VALUE1, NAME2 VALUE2,...

The name-value pairs include:

: The flags associated with this packet are as follows:
The term stands for SYN (Start Connection)
The term stands for FIN (Finish Connection)
The term stands for PUSH (Push data)
The term stands for RST (Reset Connection)
The period means there are no flags

: This refers to the sequence number of the packet. It will be echoed in an
ACK to identify the packet being acknowledged.

: This refers to the acknowledgement that indicates a packet is received. The
value is the sequence number from a previous packet.

: This indicates the size of the buffer at the destination.
: This refers to the TCP options defined for this packet. It is reported as a

comma-separated set of key-value pairs.

Tracing the Clues

[445]

The following output shows requests from a Windows computer to the SAMBA server
intermingled with a DNS request. The intermingling of different packets from different
sources and applications makes it difficult to track a specific application or traffic on a given
host. However, the command has flags that make our life easier:

$ tcpdump
22:00:25.269277 IP 192.168.1.40.49182 > 192.168.1.2.microsoft-ds: Flags
[P.], seq 3265172834:3265172954, ack 850195805, win 257, length 120SMB
PACKET: SMBtrans2 (REQUEST)

22:00:25.269417 IP 192.168.1.44.33150 > 192.168.1.7.domain: 13394+ PTR?
2.1.168.192.in-addr.arpa. (42)

22:00:25.269917 IP 192.168.1.2.microsoft-ds > 192.168.1.40.49182: Flags
[.], ack 120, win 1298, length 0

22:00:25.269927 IP 192.168.1.2.microsoft-ds > 192.168.1.40.49182: Flags
[P.], seq 1:105, ack 120, win 1298, length 104SMB PACKET: SMBtrans2 (REPLY)

The flag sends the output to a file instead of the terminal. The output format is
in binary form, which can be read with the flag. Sniffing packets must be done with root
privileges, but displaying the results from a previously saved file can be done as a normal
user.

By default, runs and collects data until it is killed using Ctrl-C or SIGTERM. The
 flag limits the number of packets:

tcpdump -w /tmp/tcpdump.raw -c 50
tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 65535
bytes
50 packets captured
50 packets received by filter
0 packets dropped by kernel

As a rule, we want to examine the activity on a single host, perhaps a single application.

The last values of the command line form an expression that helps us filter
packets. The expression is a set of key-value pairs with modifiers and Boolean operators.
The next recipes demonstrate using filters.

Displaying only HTTP packets
The key displays only the packets sent to or from a given port:

$ tcpdump -r /tmp/tcpdump.raw port http

Tracing the Clues

[446]

reading from file /tmp/tcpdump.raw, link-type EN10MB (Ethernet)
10:36:50.586005 IP 192.168.1.44.59154 > ord38s04-in-f3.1e100.net.http:
Flags [.], ack 3779320903, win 431, options [nop,nop,TS val 2061350532 ecr
3014589802], length 0

10:36:50.586007 IP ord38s04-in-f3.1e100.net.http > 192.168.1.44.59152:
Flags [.], ack 1, win 350, options [nop,nop,TS val 3010640112 ecr
2061270277], length 0

Displaying only HTTP packets generated by this host
If you are trying to track web usage on your network, you may only need to see the packets
generated on your site. The modifier specifies only these packets, with given values, in
the source file. The modifier specifies only the destination:

$ tcpdump -r /tmp/tcpdump.raw src port http
reading from file /tmp/tcpdump.raw, link-type EN10MB (Ethernet)

10:36:50.586007 IP ord38s04-in-f3.1e100.net.http > 192.168.1.44.59152:
Flags [.], ack 1, win 350, options [nop,nop,TS val 3010640112 ecr
2061270277], length 0
10:36:50.586035 IP ord38s04-in-f3.1e100.net.http > 192.168.1.44.59150:
Flags [.], ack 1, win 350, options [nop,nop,TS val 3010385005 ecr
2061270277], length 0

Viewing the packet payload as well as headers
If you need to track down the host that's swamping the network, all you need is headers. If
you are trying to debug a web or database application, you probably need to see the
contents of the packets as well as the headers.

The flag will include the packet data in the output.

The host keyword can be combined with port information to limit the report to data to and
from a given host.

The two tests are connected with and to perform the Boolean and operation, and they
report only those packets that are to or from noucorp.com and/or the server. The
sample output shows the start of a request and the server's reply:

$ tcpdump -X -r /tmp/tcpdump.raw host noucorp.com and port http
reading from file /tmp/tcpdump.raw, link-type EN10MB (Ethernet)
11:12:04.708905 IP 192.168.1.44.35652 > noucorp.com.http: Flags [P.], seq
2939551893:2939552200, ack 1031497919, win 501, options [nop,nop,TS val

Tracing the Clues

[447]

2063464654 ecr 28236429], length 307
 0x0000: 4500 0167 1e54 4000 4006 70a5 c0a8 012c E..g.T@.@.p....,
 0x0010: 98a0 5023 8b44 0050 af36 0095 3d7b 68bf ..P#.D.P.6..={h.
 0x0020: 8018 01f5 abf1 0000 0101 080a 7afd f8ce z...
 0x0030: 01ae da8d 4745 5420 2f20 4854 5450 2f31 GET./.HTTP/1
 0x0040: 2e31 0d0a 486f 7374 3a20 6e6f 7563 6f72 .1..Host:.noucor
 0x0050: 702e 636f 6d0d 0a55 7365 722d 4167 656e p.com..User-Agen
 0x0060: 743a 204d 6f7a 696c 6c61 2f35 2e30 2028 t:.Mozilla/5.0.(
 0x0070: 5831 313b 204c 696e 7578 2078 3836 5f36 X11;.Linux.x86_6
 0x0080: 343b 2072 763a 3435 2e30 2920 4765 636b 4;.rv:45.0).Geck
 0x0090: 6f2f 3230 3130 3031 3031 2046 6972 6566 o/20100101.Firef
 0x00a0: 6f78 2f34 352e 300d 0a41 6363 6570 743a ox/45.0..Accept:
...
11:12:04.731343 IP noucorp.com.http > 192.168.1.44.35652: Flags [.], seq
1:1449, ack 307, win 79, options [nop,nop,TS val 28241838 ecr 2063464654],
length 1448
 0x0000: 4500 05dc 0491 4000 4006 85f3 98a0 5023 E.....@.@.....P#
 0x0010: c0a8 012c 0050 8b44 3d7b 68bf af36 01c8 ...,.P.D={h..6..
 0x0020: 8010 004f a7b4 0000 0101 080a 01ae efae ...O............
 0x0030: 7afd f8ce 4854 5450 2f31 2e31 2032 3030 z...HTTP/1.1.200
 0x0040: 2044 6174 6120 666f 6c6c 6f77 730d 0a44 .Data.follows..D
 0x0050: 6174 653a 2054 6875 2c20 3039 2046 6562 ate:.Thu,.09.Feb
 0x0060: 2032 3031 3720 3136 3a31 323a 3034 2047 .2017.16:12:04.G
 0x0070: 4d54 0d0a 5365 7276 6572 3a20 5463 6c2d MT..Server:.Tcl-
 0x0080: 5765 6273 6572 7665 722f 332e 352e 3220 Webserver/3.5.2.

How it works...
The application sets a promiscuous flag that causes the NIC to pass all the packets
to the processor. It does this instead of filtering only the ones that pertain to this host. This
flag allows the recording of any packet on the physical network that the host is connected
to, not just the packets intended for this host.

This application is used to trace issues with overloaded network segments, hosts that
generate unexpected traffic, network looping, faulty NICs, malformed packets, and more.

With the and option, saves data in raw format, allowing you to examine it
later as a regular user. For example, if there are excessive network packet collisions at 3:00
A.M., you can set up a job to run at 3:00 A.M. and then examine the data
during normal working hours.

Tracing the Clues

[448]

Finding packets with ngrep
The application is a cross between and . It watches network ports and
displays packets that match a pattern. You must have root privileges to run .

Getting ready
You may not have the package installed. However, it can be installed with most
package managers:

apt-get install ngrep
yum install ngrep

How to do it...
The application accepts a pattern to watch for (such as), a filter string (such as

), and many command-line flags to fine-tune its behavior.

The following example watches the traffic on port and reports any packets with the
string in them:

$> ngrep -q -c 64 Linux port 80
interface: eth0 (192.168.1.0/255.255.255.0)
filter: (port 80) and (ip or ip6)
match: Linux

T 192.168.1.44:36602 -> 152.160.80.35:80 [AP]
 GET /Training/linux_detail/ HTTP/1.1..Host: noucorp.com..Us
 er-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:45.0) Gecko/20
 100101 Firefox/45.0..Accept: text/html,application/xhtml+xm
 l,application/xml;q=0.9,*/*;q=0.8..Accept-Language: en-US,e
 n;q=0.5..Accept-Encoding: gzip, deflate..Referer: http://no
 ucorp.com/Training/..Connection: keep-alive..Cache-Control:
 max-age=0....

The flag directs to only print the headers and payloads.

The flag defines the number of columns to use for payload data. By default, the number
is four, which is not useful for text-based packets.

After the flags is the match string (Linux), followed by a filter expression using the same
filter language as .

Tracing the Clues

[449]

How it works...
The application also sets the promiscuous flag, allowing it to sniff all the visible
packets, whether they relate to the host or not.

The previous example displayed all of the HTTP traffic. If the host system is on a wireless
network or wired via a hub (instead of a switch), it will display all of the web traffic caused
by all the active users.

There's more...
The option in displays a hex dump as well as a printable form. Combining this
with allows you to search for a binary string (perhaps a virus signature or some known
pattern).

This example watches for a binary stream from an HTTPS connection:

ngrep -xX '1703030034' port 443
interface: eth0 (192.168.1.0/255.255.255.0)
filter: (port 443) and (ip or ip6)
match: 0x1703030034
###
T 172.217.6.1:443 -> 192.168.1.44:40698 [AP]
 17 03 03 00 34 00 00 00 00 00 00 00 07 dd b0 02 4...........
 f5 38 07 e8 24 08 eb 92 3c c6 66 2f 07 94 8b 25 .8..$...<.f/...%
 37 b3 1c 8d f4 f0 64 c3 99 9e b3 45 44 14 64 23 7.....d....ED.d#
 80 85 1b a1 81 a3 d2 7a cd z.

The hash marks indicate the packets that were scanned; they do not include the target
pattern. There are many more options to ; read the page for the complete list.

Tracing network routes with ip
The utility reports information about the state of your network. It can tell you how many
packets are being sent and received, what types of packets are being sent, how the packets
are being routed, and more.

Tracing the Clues

[450]

Getting ready
The utility described in , The Old-Boy Network is standard in all Linux
distributions; however, it is now being replaced by more efficient utilities, such as . These
new utilities are included in the package, which is already installed on most
modern distributions.

How to do it...
The utility has many features. This recipe will discuss a few that are useful for tracing
network behavior.

Reporting routes with ip route
When packets don't reach their destination (or fail), the first thing an
experienced user checks is the cables. The next thing to check is the routing tables. If a
system lacks a default gateway (), it will only find machines on its physical
network. If you have multiple networks running on the same wires, you'll need to add
routes to allow machines attached to one network to send packets to another.

The command reports known routes:

$ ip route
10.8.0.2 dev tun0 proto kernel scope link src 10.8.0.1
192.168.87.0/24 dev vmnet1 proto kernel scope link src 192.168.87.1
192.168.1.0/24 dev eth0 proto kernel scope link src 192.168.1.44
default via 192.168.1.1 dev eth0 proto static

The report is space-delimited. After the first element, it consists of a set of keys
and values.

The first line in the preceding code describes the address as a tunnel device that
uses a kernel protocol, and this address is only valid on this tunnel device. The second line
describes the network used to communicate with virtual machines. The
third line is the primary network of this system, which is connected to . The last
line defines the default route, which routes to through .

Tracing the Clues

[451]

The keys reported by include the following:

: This refers to the address of the next hop.
: This is the protocol identifier of the route. The kernel protocol is a route

installed by the kernel, while static routes are defined by an administrator.
: This refers to the scope where the address is valid. A link scope is only

valid on this device.
: This is the device associated with the address.

Tracing recent IP connections and the ARP table
The command reports known relationships between the IP address, device,
and hardware MAC address. It reports whether the relationship was reestablished recently
or has gone stale:

$> ip neighbor
192.168.1.1 dev eth0 lladdr 2c:30:33:c9:af:3e STALE
192.168.1.4 dev eth0 lladdr 00:0a:e6:11:c7:dd STALE
172.16.183.138 dev vmnet8 lladdr 00:50:56:20:3d:6c STALE

192.168.1.2 dev eth0 lladdr 6c:f0:49:cd:45:ff REACHABLE

The output of the command shows that there has been no recent activity
between either this system and the default gateway, or this system and the host at

. It also shows that there has been no recent activity in the virtual machines
and the host at is connected recently.

The current status of in the preceding output means that the table is up to
date and the host thinks it knows the MAC address of the remote system. The value of

 here does not indicate that the system is unreachable; it merely means the values in
the table have expired. When your system tries to use one of these routes, it sends an
ARP request first to verify the MAC address associated with the IP address.

The relationship between the MAC address and the IP address should only change when
the hardware is changed or devices are reassigned.

If devices on a network show intermittent connectivity, it may mean that two devices have
been assigned the same IP address. It could also be possible that two DHCP servers are
running or someone has manually assigned an address that's already in use.

Tracing the Clues

[452]

In the case of two devices with the same IP address, the reported MAC address for a given
IP address will change in intervals, and the command will help track down
the misconfigured device.

Tracing a route
The command discussed in , The Old-Boy Network traces a packet's
entire path from the current host to its destination. The command reports the
next hop from the current machine:

$ ip route get 172.16.183.138
172.16.183.138 dev vmnet8 src 172.16.183.1
cache mtu 1500 hoplimit 64

The preceding return shows that the route to the virtual machine is through the vmnet8
interface located at . The packets sent to this site will be split if they are
larger than 1,500 bytes and discarded after 64 hops:

$ in route get 148.59.87.90
148.59.87.90 via 192.168.1.1 dev eth0 src 192.168.1.3
cache mtu 1500 hoplimit 64

To reach an address on the Internet, a packet needs to leave the local network via the
default gateway, and the link to this gateway is the host's device at .

How it works...
The command runs in the user space and interfaces in the kernel tables. Using this
command, a normal user can examine the network configuration whereas a superuser can
configure the network.

Tracing system calls with strace
A GNU/Linux computer may have hundreds of tasks running at a time, but it will possess
only one Network Interface, one disk drive, one keyboard, and so on. The Linux kernel
allocates these limited resources and controls how tasks access them. This prevents two
tasks from accidently intermingling data in a disk file, for example.

Tracing the Clues

[453]

When you run an application, it uses a combination of User-Space libraries (functions such
as and) and System-Space Libraries (functions such as and).
When your program calls (or a script invokes the command), it invokes a
user-space library call to to format the output string; this is followed by a system-
space call to the function. The system call makes sure only one task can access a
resource at a time.

In a perfect world, all computer programs would run with no problems. In an almost
perfect world, you'd have the source code, the program would be compiled with debugging
support, and it would fail consistently.

In the real world, you sometimes have to cope with programs where you don't have the
source, and it fails intermittently. Developers can't help you unless you give them some
data to work with.

The Linux command reports the system calls that an application makes; this can
help us understand what it's doing even if we don't have the source code.

Getting ready
The command is installed as part of the Developer package; it can be installed
separately as well:

$ sudo apt-get install strace
$ sudo yum install strace

How to do it...
One way to understand is to write a short C program and use to see what
system calls it makes.

This test program allocates memory, uses the memory, prints a short message, frees the
memory, and exits.

The output shows the system functions this program calls:

Tracing the Clues

[454]

Tracing the Clues

[455]

How it works...
The first lines are standard start up commands for any application. The call is the
system call to initialize a new executable. The call returns the current memory address,
and the call allocates 4,096 bytes of memory for dynamic libraries and other
applications that load housekeeping.

The attempt to access fails because is a hook to preload
the libraries. It is not required on most production systems.

The file is the memory-resident copy of , which
contains the paths for loading dynamic libraries. These values are kept in memory to reduce
the overhead in starting programs.

The next lines with , , , and calls continue to load the
libraries and mapping devices to memory.

The two calls to are invoked by the program's call. This allocates 100 bytes
from the heap.

The call is a user-space function that doesn't generate any system calls.

The call doesn't generate a system call to format the data, but it makes calls to send
the formatted string to .

The and calls load and initialize the device. These calls occur only once
in a program that generates output to .

The system call sends the string to .

Finally, the call exits the program, frees resources, and terminates all the
threads associated with the executable.

Tracing the Clues

[456]

Note that there is no call associated with freeing memory. The and
functions are user-space functions that manage a task's memory. They only invoke the
function if the program's overall memory footprint changes. When your program allocates
N bites, it needs to add that many bytes to its available memory. When it frees that block,
the memory is marked available, but it remains a part of this program's memory pool. The
next uses memory from the pool of available memory space until it's exhausted. At
this point, another call adds more memory to the program's memory pool.

Tracing dynamic library functions with ltrace
Knowing the user-space library functions being called is as useful as knowing the system
functions being invoked. The command provides a similar function to ;
however, it tracks user-space library calls instead of system calls.

Getting ready
Have the command installed using the Developer tools.

How to do it...
To trace user-space dynamic library calls, invoke the command, followed by the
command you want to trace:

$ ltrace myApplication

The next example is a program with a subroutine:

Tracing the Clues

[457]

In the output, we see the call to the dynamically linked ; however, we do
not see the statically linked local function, namely . The call to was simplified
to a call to . The calls to and are shown since they are user-space function
calls.

How it works...
The and utilities use the function to rewrite the Procedure Linkage
Table (PLT) which maps between dynamic library calls and the actual memory address of
the called function. This means that can trap any dynamically linked function call
but not a statically linked function.

There's more...
The and commands are useful, but it would be really nice to trace both
user-space and system-space function calls. The option to will do this. The next
example shows the output from the previous executable:

$> ltrace -S ./a.out
SYS_brk(NULL) = 0xa9f000
SYS_mmap(0, 4096, 3, 34, 0xffffffff) = 0x7fcdce4ce000
SYS_access(0x3b0dc1d380, 4, 0x3b0dc00158, 0, 0) = -2
SYS_open("/etc/ld.so.cache", 0, 01) = 4
SYS_fstat(4, 0x7ffd70342bc0, 0x7ffd70342bc0, 0, 0xfefefefefefefeff) = 0
SYS_mmap(0, 95195, 1, 2, 4) = 0x7fcdce4b6000
SYS_close(4) = 0
SYS_open("/lib64/libc.so.6", 0, 00) = 4
SYS_read(4, "\177ELF\002\001\001\003", 832) = 832
SYS_fstat(4, 0x7ffd70342c20, 0x7ffd70342c20, 4, 0x7fcdce4ce640) = 0

Tracing the Clues

[458]

SYS_mmap(0x3b0e000000, 0x393928, 5, 2050, 4) = 0x3b0e000000
SYS_mprotect(0x3b0e18a000, 0x200000, 0, 1, 4) = 0
SYS_mmap(0x3b0e38a000, 24576, 3, 2066, 4) = 0x3b0e38a000
SYS_mmap(0x3b0e390000, 14632, 3, 50, 0xffffffff) = 0x3b0e390000
SYS_close(4) = 0
SYS_mmap(0, 4096, 3, 34, 0xffffffff) = 0x7fcdce4b5000
SYS_mmap(0, 4096, 3, 34, 0xffffffff) = 0x7fcdce4b4000
SYS_mmap(0, 4096, 3, 34, 0xffffffff) = 0x7fcdce4b3000
SYS_arch_prctl(4098, 0x7fcdce4b4700, 0x7fcdce4b3000, 34, 0xffffffff) = 0
SYS_mprotect(0x3b0e38a000, 16384, 1, 0x3b0de20fd8, 0x1f25bc2) = 0
SYS_mprotect(0x3b0de1f000, 4096, 1, 0x4003e0, 0x1f25bc2) = 0
(0, 0, 987392, -1, 0x1f25bc2) = 0x3b0de21160
SYS_munmap(0x7fcdce4b6000, 95195) = 0
__libc_start_main(0x4005fe, 1, 0x7ffd703435c8, 0x400660, 0x400650
<unfinished ...>
malloc(100 <unfinished ...>
SYS_brk(NULL) = 0xa9f000
SYS_brk(0xac0000) = 0xac0000
<... malloc resumed>) = 0xa9f010
strcat("", "testing") = "testing"
puts("testing" <unfinished ...>
SYS_fstat(1, 0x7ffd70343370, 0x7ffd70343370, 0x7ffd70343230, 0x3b0e38f040)
= 0
SYS_mmap(0, 4096, 3, 34, 0xffffffff) = 0x7fcdce4cd000
SYS_write(1, "testing\n", 8) = 8
<... puts resumed>) = 8
free(0xa9f010) = <void>
exit(0 <unfinished ...>
SYS_exit_group(0 <no return ...>
+++ exited (status 0) +++

This shows the same type of startup call (, , and so on) as the example.

When a user-space function invokes a system-space function (as with the and puts
calls), the display shows that the user-space function was interrupted (

 and then resumed after the system call
was completed.

Note that the call needed to pass control to to allocate more memory for the
application. However, the call does not shrink the application; it just frees the memory
for future use by this application.

112
Tuning a Linux System

In this chapter, we will cover the following recipes:

Identifying services
Gathering socket data with
Gathering system I/O usage with
Identifying a resource hog with
Tuning the Linux kernel with
Tuning a Linux system with config files
Changing scheduler priority using the command

Introduction
No system runs as fast as we need it to run, and any computer's performance can be
improved.

We can improve the performance of a system by turning off unused services, by tuning the
kernel parameters, or by adding new hardware.

The first step in tuning a system is understanding what the demands are and whether they
are being met. Different types of applications have different critical needs. The questions to
ask yourself include the following:

Is the CPU the critical resource for this system? A system doing engineering
simulations requires CPU cycles more than other resources.
Is network bandwidth critical for this system? A file server does little
computation, but can saturate its network capacity.

Tuning a Linux System

[460]

Is disk access speed critical for this system? A file server or database server will
put more demand on the disks than a calculation engine does.
Is RAM the critical resource for this system? All systems need RAM, but a
database server commonly builds large in-memory tables to perform queries, and
file servers are more efficient with larger RAM for disk caches.
Has your system been hacked? A system can suddenly become unresponsive
because it's running unexpected malware. This is not common on Linux
machines, but a system with many users (like a college or business network) is
vulnerable to a brute-force password attack.

The next question to ask is: How do I measure usage? Knowing how a system is being used
will lead you to the questions, but may not lead you to the answer. A fileserver will cache
commonly accessed files in the memory, so one with too little memory may be disk/RAM
limited rather than network limited.

Linux has tools for analyzing a system. Many have been discussed in , The Old-
Boy Network, , Put on The Monitor's Cap, and , Tracing The Clues. This
chapter will introduce more monitoring tools.

Here is a list of subsystems and tools to examine them. Many (but not all) of these tools
have been discussed in this book.

CPU: , , , , , ,
Network: , , , , , , ,
Disk: , , ,
RAM: top, , , ,

Many of these tools are part of a standard Linux distribution. The others can be loaded with
your package manager.

Identifying services
A Linux system can run hundreds of tasks at a time. Most of these are part of the operating
system environment, but you might discover you're running a daemon or two you don't
need.

Linux distributions support one of the three utilities that start daemons and services. The
traditional system uses scripts in . The newer daemon uses the
same scripts and also uses a call. Some distributions use Upstart,
which stores configuration scripts in .

Tuning a Linux System

[461]

The SysV system is being phased out in favor of the suite. The
utility was developed and used by Ubuntu, but discarded in favor of with the
14.04 release. This chapter will focus on , since that's the system used by most
distributions.

Getting ready
The first step is to determine whether your system is using the SysV calls, , or

.

Linux/Unix systems must have an initialization process running as . This process
executes a fork and exec to start every other process. The command may tell you which
initialization process is running:

$ ps -p 1 -o cmd
 /lib/system/systemd

In the previous example, the system is definitely running . However, on some
distributions, the SysV program is to the actual process, and
will always show , whether it's SysV , , or that's
actually being used:

$ ps -p 1 -o cmd
 /sbin/init

The and commands give more clues:

$ ps -eaf | grep upstart

Alternatively, they can be used like this:

ps -eaf | grep systemd

If either of these commands return tasks such as or
, the system is running or , respectively. If there are

no matches, then your system is probably running the SysV utility.

How to do it...
The command is supported on most distributions. The option will
report the current status of all services defined in .

Tuning a Linux System

[462]

The output format varies between distributions:

$> service -status-all

Debian:

 [+] acpid
 [-] alsa-utils
 [-] anacron
 [+] atd
 [+] avahi-daemon
 [-] bootlogs
 [-] bootmisc.sh
...

CentOS:

abrt-ccpp hook is installed
abrtd (pid 4009) is running...
abrt-dump-oops is stopped
acpid (pid 3674) is running...
atd (pid 4056) is running...
auditd (pid 3029) is running...
...

The command will reduce the output to only running tasks:

Debian:

$ service -status-all | grep +

CentOS:

$ service -status-all | grep running

You should disable any unnecessary services. This reduces the load on the system and
improves the system security.

Services to check for include the following:

, nmbd: These are the Samba daemons used to share resources between
Linux and Windows systems.

: This is the old, insecure login program. Unless there is an overwhelming
need for this, use SSH.

: This is the old, insecure File Transfer Protocol. Use SSH and scp instead.
: This is remote login. SSH is more secure.

Tuning a Linux System

[463]

: This is remote exec. SSH is more secure.
: If you are not using NFS or Samba you probably don't need this.

: This daemon provides Domain Name Service (DNS). It's only necessary
if the system is defining the local names and IP addresses. You don't need it to
resolve names and access the net.

: The Line Printer Daemon lets other systems use this system's printer. If this
is not a print server, you don't need this service.

: This is the Network File System daemon. It lets remote machines mount
this computer's disk partitions. If this is not a file server, you probably don't need
this service.

: This is part of the NFS support. If the system is not using NFS, you
don't need this.

: The mysql application is a database server. It may be used by your
webserver.

: This is the HTTP daemon. It sometimes gets installed as part of a Server
System set of packages.

There are several potential ways to disable an unnecessary service depending on whether
your system is Redhat or Debian derived, and whether it's running , SysV, or
Upstart. All of these commands must be run with root privileges.

systemd-based computers
The command enables and disables services. The syntax is as follows:

systemctl enable SERVICENAME

Alternatively, it can also be as follows:

systemctl disable SERVICENAME

To disable an FTP server, use the following command:

systemctl disable ftp

RedHat-based computers
The utility provides a frontend for working with SysV style initialization scripts
in . The option disables a service, while the option enables a
service. Note that an initialization file must already exist to add a service.

Tuning a Linux System

[464]

The syntax is as follows:

chkconfig -del SERVICENAME
 # chkconfig -add SERVICENAME

To disable the HTTPD daemon, use the following command:

chkconfig -del httpd

Debian-based computers
Debian-based systems provide the utility to control SysV style initialization
scripts. The command supports and as subcommands:

To disable the telnet daemon, use the following command:

update-rc.d disable telnetd

There's more
These techniques will find services that have been started at root with the SysV or systemd
initialization scripts. However, services may be started manually, or in a boot script, or with

.

The daemon functions in a similar way to init: it starts services. Unlike init, the
 daemon only starts a service when it's requested. For services such as SSH, which

are required infrequently and run for a long time once started, this reduces the system load.
Services such as that perform small actions (serve a web page) frequently are more
efficient to start once and keep running.

The configuration file for xinet is . The individual service files are
commonly stored in .

The individual service files resemble this:

cat /etc/xinetd.d/talk
description: The talk server accepts talk requests for chatting \
with users on other systems.
service talk
{
 flags = IPv4
 disable = no
 socket_type = dgram
 wait = yes

Tuning a Linux System

[465]

 user = nobody
 group = tty
 server = /usr/sbin/in.talkd
}

A service can be enabled or disabled by changing the value of the field. If
 is , the service is enabled. If disable is , the service is disabled.

After editing a service file, you must restart :

 # cd /etc/init.d
 # ./inetd restart

Gathering socket data with ss
The daemons started by and may not be the only services running on a
system. Daemons can be started by commands in an local file

), a entry, or even by a user with privileges.

The command returns socket statistics, including services using sockets, and current
socket status.

Getting ready
The utility is included in the package that is already installed on most modern
distributions.

How to do it...
The command displays more information than the command. These recipes
will introduce a few of its features.

Tuning a Linux System

[466]

Displaying the status of tcp sockets
A socket connection is opened for every HTTP access, every SSH session, and so on.
The option reports the status of TCP connections:

 $ ss -t
 ESTAB 0 0 192.168.1.44:740 192.168.1.2:nfs
 ESTAB 0 0 192.168.1.44:35484 192.168.1.4:ssh

 CLOSE-WAIT 0 0 192.168.1.44:47135 23.217.139.9:http

This example shows an NFS server connected at IP address and an SSH
connection to .

The socket status means that the signal has been sent, but the socket has
not been fully closed. A socket can remain in this state forever (or until you reboot).
Terminating the process that owns the socket may free the socket, but that's not guaranteed.

Tracing applications listening on ports
A service on your system will open a socket in the mode to accept network
connections from a remote site. The SSHD application does this to listen for SSH
connections, http servers do this to accept HTTP requests, and so on.

If your system has been hacked, it might have a new application listening for instructions
from its master.

The option to will list sockets that are open in the mode. The option
specifies to report UDP sockets. A option reports TCP sockets.

This command shows a subset of the listening UDP sockets on a Linux workstation:

$ ss -ul
State Recv-Q Send-Q Local Address:Port Peer
Address:Port
UNCONN 0 0 *:sunrpc *:*
UNCONN 0 0 *:ipp *:*
UNCONN 0 0 *:ntp *:*
UNCONN 0 0 127.0.0.1:766 *:*
UNCONN 0 0 *:898 *:*

Tuning a Linux System

[467]

This output shows that this system will accept Remote Procedure Calls (sunrpc). This port
is used by the program. The program controls access to the RPC services
and is used by the client and server.

The and ports are used for Internet Printing Protocol and Network Time Protocol.
Both are useful tools, but may not be required on a given system.

Ports and are not listed in . The option of the command
will display the task that has a port open. You may need to have root access to view this:

lsof -I :898

Or:

 # lsof -n -I :898
 COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
 rpcbind 3267 rpc 7u IPv4 16584 0t0 UDP *:898
 rpcbind 3267 rpc 10u IPv6 16589 0t0 UDP *:898

This command shows that the tasks listening on port are part of the RPC system, not a
hacker.

How it works
The command uses system calls to extract information from the internal kernel tables.
The known services and ports on your system are defined in .

Gathering system I/O usage with dstat
Knowing what services are running may not tell you which services are slowing down your
system. The top command (discussed in , Put on the Monitor's Cap) will tell you
about CPU usage and how much time is spent waiting for IO, but it might not tell you
enough to track down a task that's overloading the system.

Tracking I/O and context switches can help trace a problem to its source.

The utility can point you to a potential bottleneck.

Tuning a Linux System

[468]

Getting ready
The dstat application is not commonly installed. It will need to be installed with your
package manager. It requires Python 2.2, which is installed by default on modern Linux
systems:

apt-get install dstat
 # yum install dstat

How to do it...
The dstat application displays disk, network, memory usage, and running task information
at regular intervals. The default output gives you an overview of the system activity. By
default, this report is updated every second on a new line, allowing easy comparison with
previous values.

The default output lets you track overall system activity. The application supports more
options to track top resource users.

Viewing system activity
Invoking dstat with no arguments will show CPU activity, disk I/O, network I/O, paging,
interrupts, and context switches at one second intervals.

The following example shows the default output:

$ dstat
----total-cpu-usage---- -dsk/total- -net/total- ---paging-- ---system--
usr sys idl wai hiq siq| read writ| recv send| in out | int csw
 1 2 97 0 0 0|5457B 55k| 0 0 | 0 0 |1702 3177
 1 2 97 0 0 0| 0 0 | 15k 2580B| 0 0 |2166 4830
 1 2 96 0 0 0| 0 36k|1970B 1015B| 0 0 |2122 4794

You can ignore the first line. Those values are the initial contents of the tables dstat mines.
The subsequent lines show the activity during a time slice.

In this sample, the CPU is mostly idle, and there is little disk activity. The system is
generating network traffic, but only a few packets a second.

Tuning a Linux System

[469]

There is no paging on this system. Linux only pages out memory to disk when the main
memory is exhausted. Paging lets a system run more applications than it could run without
paging, but disk access is thousands of times slower than memory access, so a computer
will slow to a crawl if it needs to page.

If your system sees consistent paging activity, it needs more RAM or fewer applications.

A database application can cause intermittent paging when queries that require building
large in-memory arrays are evaluated. It may be possible to rewrite these queries using the
IN operation instead of a JOIN to reduce the memory requirement. (This is a more
advanced SQL than what is covered in this book.)

Context switches (csw) happen with every system call (refer to the strace and ltrace
discussion in , Tracing the Clues) and when a timeslice expires and another
application is given access to the CPU. A system call happens whenever I/O is performed or
a program resizes itself.

If the system is performing tens of thousands of context switches per second, it's a symptom
of a potential problem.

How it works
The utility is a Python script that collects and analyzes data from the
filesystem described in , Administration Calls.

There's more...
The utility can identify the top resource user in a category:

-top-bio Disk Usage: This reports the process performing the most block I/O
-top-cpu CPU Usage: This reports the process using the most CPU resources
-top-io I/O usage: This reports the process performing the most I/O (usually
network I/O)
-top-latency System Load: This shows the process with the highest latency
-top-mem Memory Usage: This shows the process using the most memory

Tuning a Linux System

[470]

The following example displays the CPU and Network usage and the top users in each
category:

$ dstat -c -top-cpu -n -top-io
----total-cpu-usage---- -most-expensive- -net/total- ----most-expensive----
usr sys idl wai hiq siq| cpu process | recv send| i/o process
 1 2 97 0 0 0|vmware-vmx 1.0| 0 0 |bash 26k 2B
 2 1 97 0 0 0|vmware-vmx 1.7| 18k 3346B|xterm 235B 1064B
 2 2 97 0 0 0|vmware-vmx 1.9| 700B 1015B|firefox 82B 32k

On a system running an active virtual machine, the VM uses the most CPU time, but not the
bulk of the IO. The CPU is spending most of its time in the idle state.

The and options specify showing the CPU usage and Network usage, respectively.

Identifying a resource hog with pidstat
The and flags will identify a top resource user, but might not provide
enough information to identify the problem if there are multiple instances of a resource hog.

The program will report per-process statistics, which can be sorted to provide
more insight.

Getting ready
The application may not be installed by default. It can be installed with this
command:

apt-get install sysstat

How to do it...
The pidstat application has several options for generating different reports:

: This reports IO statistics
: This reports page faults and memory utilization
: This reports CPU utilization
: This reports task switches

Tuning a Linux System

[471]

Report Context Switch activity:

 $ pidstat -w | head -5
 Linux 2.6.32-642.11.1.el6.x86_64 (rtdaserver.cflynt.com)
 02/15/2017 _x86_64_ (12 CPU)

 11:18:35 AM PID cswch/s nvcswch/s Command
 11:18:35 AM 1 0.00 0.00 init
 11:18:35 AM 2 0.00 0.00 kthreadd

The pidstat application sorts its report by the PID number. The data can be re-organized
with the sort utility. The following command displays the five applications that generate the
most context switches per second (Field 4 in the output):

 $ pidstat -w | sort -nr -k 4 | head -5
 11:13:55 AM 13054 351.49 9.12 vmware-vmx
 11:13:55 AM 5763 37.57 1.10 vmware-vmx
 11:13:55 AM 3157 27.79 0.00 kondemand/0
 11:13:55 AM 3167 21.18 0.00 kondemand/10
 11:13:55 AM 3158 21.17 0.00 kondemand/1

How it works
The pidstat application queries the kernel to get task information. The sort and head utilities
reduce the data to pinpoint the program hogging a resource.

Tuning the Linux kernel with sysctl
The Linux kernel has about 1,000 tunable parameters. These default to reasonable values for
common usage, which means they are not perfect for anyone.

Getting started
The command is available on all Linux systems. You must be root to modify kernel
parameters.

The command will change the parameter value immediately, but the value will
revert to the original value upon reboot unless you add a line to define the parameter to

.

Tuning a Linux System

[472]

It's a good policy to change a value manually and test it before modifying .
You can make a system unbootable by applying bad values to .

How to do it...
The command supports several options:

: This reports all available parameters
: This reads values from . By default from

: This reports the current value of
: This sets the value of

Tuning the task scheduler
The task scheduler is optimized for a desktop environment, where a fast response to a user
is more important than overall efficiency. Increasing the time a task stays resident improves
the performance of server systems. The following example examines the value of

:

 $ sysctl.kernel.shed_migration_cost_ns
 kernel.sched_migration_cost_ns = 500000

The (and in older
kernels) controls how long a task will remain active before being exchanged for another
task. On systems with many tasks or many threads, this can result in too much overhead
being used for context switching. The default value of ns is too small for systems
running Postgres or Apache servers. It's recommended that you change the value to 5 ms:

sysctl kernel.sched_migration_cost_ns=5000000

On some systems (postgres servers in particular), unsetting the
 parameter improves performance.

Tuning a Linux System

[473]

Tuning a network
The default values for network buffers may be too small on a system performing many
network operations (NFS client, NFS server, and so on).

Examine the values for maximum read buffer memory:

 $ sysctl net.core.rmem_max
 net.core.rmem_max = 124928

Increase values for network servers:

 # sysctl net.core.rmem_max=16777216
 # sysctl net.core.wmem_max=16777216
 # sysctl net.ipv4.tcp_rmem="4096 87380 16777216"
 # sysctl net.ipv4.tcp_wmem="4096 65536 16777216"
 # sysctl net.ipv4.tcp_max_syn_backlog=4096

How it works
The command lets you directly access kernel parameters. By default, most
distributions optimize these parameters for a normal workstation.

If your system has lots of memory, you can improve performance by increasing the amount
of memory devoted to buffers. If it's short on memory, you may want to shrink these. If the
system is a server, you may want to keep tasks resident longer than you would for a single-
user workstation.

There's more...
The filesystem is available on all Linux distributions. It includes a folder for every
running task and folders for all the major kernel subsystems. The files within these folders
can be viewed and updated with .

The parameters supported by sysctl are commonly supported by the filesystem as
well.

Thus, can also be accessed as .

Tuning a Linux System

[474]

Tuning a Linux system with config files
The Linux system includes several files to define how disks are mounted, and so on. Some
parameters can be set in these files instead of using or .

Getting ready
There are several files in that control how a system is configured. These can be edited
with a standard text editor such as or . The changes may not take effect until the
system is rebooted.

How to do it...
The file defines how disks are to be mounted and what options are supported.

The Linux system records when a file is created, modified, and read. There is little value in
knowing that a file has been read, and updating the timestamp every time a
common utility like cat is accessed gets expensive.

The and mount options will reduce disk thrashing:

 $ cat /dev/fstab
 /dev/mapper/vg_example_root / ext4 defaults,noatime 1 1
 /dev/mapper/gb_example_spool /var ext4 defaults,relatime 1 1

How it works
The preceding example mounts the / partition (which includes and) with
the usual default options, plus the parameter to disable updating the disk every
time a file is accessed. The partition (which includes the mail spool folder) has the
realtime option set, which will update time at least once every day, but not every time a file
is accessed.

Tuning a Linux System

[475]

Changing scheduler priority using the nice
command
Every task on a Linux system has a priority. The priority values range from -20 to 19. The
lower the priority (-20), the more CPU time a task will be allocated. The default priority is 0.

Not all tasks need the same priority. An interactive application needs to respond quickly or
it becomes difficult to use. A background task run via only needs to finish before
it is scheduled to run again.

The command will modify a task's priority. It can be used to invoke a task with
modified priority. Raising a task's priority value will free resources for other tasks.

How to do it...
Invoking the command with no arguments will report a task's current priority:

$ cat nicetest.sh
 echo "my nice is `nice`"
 $ sh nicetest.sh
 my nice is 0

Invoking the command followed by another command name will run the second
command with a niceness of –it will add 10 to the task's default priority:

$ nice sh nicetest.sh
 my nice is 10

Invoking the command with a value before the command will run the command with
a defined niceness:

$ nice -15 sh nicetest.sh
 my nice is 15

Only a superuser can give a task a higher priority (lower priority number), by assigning a
negative niceness value:

nice -adjustment=-15 nicetest.sh
 my nice is -15

Tuning a Linux System

[476]

How it works
The command modifies the kernel's scheduling table to run a task with a greater or
lesser priority. The lower the priority value, the more time the scheduler will give to this
task.

There's more
The command modifies the priority of a running task. Tasks that use a lot of
resources, but are not time-critical, can be made nicer with this command. The
command is useful to find tasks that are utilizing the CPU the most.

The command is invoked with a new priority value and the program ID (PID):

$ renice 10 12345
 12345: old priority 0, new priority 10

113
Containers, Virtual Machines,

and the Cloud
In this chapter, we will cover the following topics:

Using Linux Containers
Using Docker
Using Virtual Machines in Linux
Linux in the cloud

Introduction
Modern Linux applications can be deployed on dedicated hardware, containers, Virtual
Machines (VMs), or the cloud. Each solution has strengths and weaknesses, and each of
them can be configured and maintained with scripts as well as GUIs.

A container is ideal if you want to deploy many copies of a single application where each
instance needs its own copy of data. For example, containers work well with database-
driven web servers where each server needs the same web infrastructure but has private
data.

However, the downside of a container is that it relies on the host system's kernel. You can
run multiple Linux distributions on a Linux host, but you can't run Windows in a container.

Containers, Virtual Machines, and the Cloud

[478]

Using a VM is your best bet if you need a complete environment that is not the same for all
instances. With VMs, you can run Windows and Linux on a single host. This is ideal for
validation testing when you don't want a dozen boxes in your office but need to test against
different distributions and operating systems.

The downside of VMs is that they are huge. Each VM implements an entire computer-
operating system, device drivers, all the applications and utilities, and so on. Each Linux
VM needs at least one core and 1 GB RAM. A Windows VM may need two cores and 4 GB
RAM. If you wish to run multiple VMs simultaneously, you need enough RAM to support
each one of the VMs; otherwise, the host will start swapping and performance will suffer.

The cloud is like having many computers and lots of bandwidth at your fingertips. You
may actually be running on a VM or container in the cloud, or you might have your own
dedicated system.

The biggest advantage of the cloud is that it can scale. If you think your application might
go viral or your usage is cyclic, the ability to scale up and down quickly without needing to
buy or lease new hardware new connectivity is necessary. For example, if your system
processes college registrations, it will be overworked for about two weeks, twice a year, and
almost dormant for the rest of the time. You may need a dozen sets of hardware for those
two weeks, but you don't want to have them sitting idle for the rest of the year.

The downside of the cloud is that it's not something you can see. All of the maintenance and
configuration has to be done remotely.

Using Linux containers
Linux Container (lxc) packages provide the basic container functionality used by Docker
and LXD container deployment systems.

A Linux container uses kernel level support for Control Groups (cgroups) and the
tools described in , Tuning a Linux System. The cgroups support provides tools to
control the resources available to a group of programs. This informs kernel control about
the resources that are available to the processes running in a container. A container may
have limited access to devices, network connectivity, memory, and so on. This control keeps
the containers from interfering with each other or potentially damaging the host system.

Containers, Virtual Machines, and the Cloud

[479]

Getting ready
Container support is not provided in stock distributions. You'll need to install it separately.
The level of support across distributions is inconsistent. The lxc container system was
developed by Canonical, so Ubuntu distributions have complete container support. Debian
9 (Stretch) is better than Debian 8 (Jessie) in this regard.

Fedora has limited support for lxc containers. It is easy to create privileged containers and a
bridged Ethernet connection, but as of Fedora 25, the service required for
unprivileged containers is unavailable.

SuSE supports limited use of lxc. SuSE's package is similar but not identical
to lxc. SuSE's package is not covered in this chapter. A privileged container
with no Ethernet is easy to create under SuSE, but it does not support unprivileged
containers and bridged Ethernet.

Here's how to install support on major distributions.

For Ubuntu, use the following code:

apt-get install lxc1

Next we have Debian. Debian distributions may only include the security repositories in
. If so, you'll need to add

 to
 and then perform , loading the

package:

apt-get install lxc

For OpenSuSE, use the following code:

zypper install lxc
 RedHat, Fedora:

For Red Hat/Fedora-based systems, add the following repository:

yum install epel-release

Containers, Virtual Machines, and the Cloud

[480]

Once you've done this, install the following packages before you install lxc support:

yum install perl libvirt debootstrap

The package provides networking support, and is required to run
Debian-based containers:

yum install lxc lxc-templates tunctl bridge-utils

How to do it...
The package adds several commands to your system. These include:

: This is to create an lxc container
: This is a list of the available containers

: This is to start a container
: This is to stop a container

: This is to connect to the root shell of a container
: This is to connect to a login session in a container

On Red Hat-based systems, you may need to disable SELinux while testing. On OpenSuSE
systems, you may need to disable AppArmor. You'll need to reboot after disabling
AppArmor via .

Linux containers come in two basic flavors: privileged and unprivileged. Privileged
containers are created by the root and the underlying system has root privileges. An
unprivileged container is created by a user and only has user privileges.

Privileged containers are easier to create and more widely supported since they don't
require and mapping, device permissions, and so on. However, if a user or
application manages to escape from the container, they'll have full privileges on the host.

Creating a privileged container is a good way to confirm that all the required packages are
installed on your system. After you create a privileged container, use unprivileged
containers for your applications.

Creating a privileged container
The easiest way to get started with Linux containers is to download a prebuilt distribution
in a privileged container. The command creates a base container structure and
can populate it with a predefined Linux distribution.

Containers, Virtual Machines, and the Cloud

[481]

The syntax of the command is as follows:

lxc-create -n NAME -t TYPE

The option defines a name for this container. This name will be used to identify this
container when it is started, stopped, or reconfigured.

The option defines the template to be used to create this container. The type
connects your system to a repository of prebuilt containers and prompts you for the
container to download.

This is an easy way to experiment with other distributions or create an application that
needs a distribution other than the host's Linux distribution:

$ sudo lxc-create -t download -n ContainerName

The download template retrieves a list of the available predefined containers from the
Internet and populates the container from the network archive. The create command
provides a list of the available containers and then prompts for the Distribution, Release,
and Architecture. You can only run a container if your hardware supports this Architecture.
You cannot run an Arm container if your system has an Intel CPU, but you can run a 32-bit
i386 container on a system with a 64-bit Intel CPU:

$ sudo lxc-create -t download -n ubuntuContainer
...
ubuntu zesty armhf default 20170225_03:49
ubuntu zesty i386 default 20170225_03:49
ubuntu zesty powerpc default 20170225_03:49
ubuntu zesty ppc64el default 20170225_03:49
ubuntu zesty s390x default 20170225_03:49

Distribution: ubuntu
Release: trusty
Architecture: i386

Downloading the image index
Downloading the rootfs
Downloading the metadata
The image cache is now ready
Unpacking the rootfs

You just created an Ubuntu container (release=trusty, arch=i386,
variant=default)
To enable sshd, run: apt-get install openssh-server
For security reason, container images ship without user accounts and

Containers, Virtual Machines, and the Cloud

[482]

without a root password.
Use lxc-attach or chroot directly into the rootfs to set a root password or
create user accounts.

You can create a container based on your current distribution by selecting a template that
matches the current installation. The templates are defined in

:

ls /usr/share/lxc/templates
 lxc-busybox lxc-debian lxc-download ...

To create a container for your current distribution, select the appropriate template and run
the command. The download process and installation takes several minutes.
The following example skips most of the installation and configuration messages:

$ cat /etc/issue
Debian GNU/Linux 8
$ sudo lxc-create -t debian -n debianContainer
debootstrap is /usr/sbin/debootstrap
Checking cache download in /var/cache/lxc/debian/rootfs-jessie-i386 ...
Downloading debian minimal ...
I: Retrieving Release
I: Retrieving Release.gpg
I: Checking Release signature
I: Valid Release signature (key id
75DDC3C4A499F1A18CB5F3C8CBF8D6FD518E17E1)
...
I: Retrieving Packages
I: Validating Packages
I: Checking component main on http://http.debian.net/debian...
I: Retrieving acl 2.2.52-2
I: Validating acl 2.2.52-2
I: Retrieving libacl1 2.2.52-2
I: Validating libacl1 2.2.52-2

I: Configuring libc-bin...
I: Configuring systemd...
I: Base system installed successfully.
Current default time zone: 'America/New_York'
Local time is now: Sun Feb 26 11:38:38 EST 2017.
Universal Time is now: Sun Feb 26 16:38:38 UTC 2017.

Root password is 'W+IkcKkk', please change !

The preceding command populates the new container from the repositories defined in your
package manager. Before you can use a container, you must start it.

Containers, Virtual Machines, and the Cloud

[483]

Starting a container
The command starts a container. As with other lxc commands, you must
provide the name of the container to start:

lxc-start -n ubuntuContainer

The boot sequence may hang and you may see errors similar to the following one. These are
caused by the container's boot sequence trying to perform graphics operations, such as
displaying a splash screen without graphics support in the client:

<4>init: plymouth-upstart-bridge main process (5) terminated with
 status 1
 ...

You can wait for these errors to time out and ignore them, or you can disable the splash
screen. Disabling the splash screen varies between distributions and releases. The files may
be in , but that's not guaranteed.

There are two ways to work within a container:

: This attaches directly to a root account on a running container
: This opens a console for a login session on a running container

The first use of a container is to attach directly to create user accounts:

lxc-attach -n containerName
root@containerName:/#
root@containerName:/# useradd -d /home/USERNAME -m USERNAME
root@containerName:/# passwd USERNAME
Enter new UNIX password:
Retype new UNIX password:

After you've created a user account, log in as an unprivileged user or root with the
 application:

$ lxc-console -n containerName
Connected to tty 1
Type <Ctrl+a q> to exit the console,
<Ctrl+a Ctrl+a> to enter Ctrl+a itself
Login:

Containers, Virtual Machines, and the Cloud

[484]

Stopping a container
The command stops a container:

lxc-stop -n containerName

Listing known containers
The command lists the container names that are available for the current user. This
does not list all the containers in a system, only those that the current user owns:

$ lxc-ls
 container1Name container2Name...

Displaying container information
The command displays information about a container:

$ lxc-info -n containerName
Name: testContainer
State: STOPPED

This command will only display information about a single container, though. Using a shell
loop, as described in , Shell Something Out, we can display information about all
the containers:

$ for c in `lxc-ls`
do
lxc-info -n $c
echo
done
Name: name1
State: STOPPED

Name: name2
State: RUNNING
PID: 1234
IP 10.0.3.225
CPU use: 4.48 seconds
BlkIO use: 728.00 KiB
Memory use: 15.07 MiB
KMem use: 2.40 MiB
Link: vethMU5I00
 TX bytes: 20.48 KiB
 RX bytes: 30.01 KiB

Containers, Virtual Machines, and the Cloud

[485]

 Total bytes: 50.49 KiB

If the container is stopped, there is no status information available. Running containers
record their CPU, memory, disk (block), I/O, and network usage. This tool lets you monitor
your containers to see which ones are most active.

Creating an unprivileged container
Unprivileged containers are recommended for normal use. There is potential for a badly
configured container or badly configured application to allow control to escape from the
container. Since containers invoke system calls in the host kernel, if the container is running
as the root, the system calls will also run as the root. However, unprivileged containers run
with normal user privileges and are thus safer.

To create unprivileged containers, the host must support Linux Control Groups and uid
mapping. This support is included in basic Ubuntu distributions, but it needs to be added to
other distributions. The package is not available in all distributions. You cannot
start an unprivileged container without this package:

apt-get install cgmanager uidmap systemd-services

Start :

$ sudo service cgmanager start

Debian systems may require that clone support be enabled. If you receive a error
when creating a container, these lines will fix it:

echo 1 > /sys/fs/cgroup/cpuset/cgroup.clone_children
 # echo 1 > /proc/sys/kernel/unprivileged_userns_clone

The username of an account that's allowed to create containers must be included in the
mapping tables:

$ sudo usermod --add-subuids 100000-165536 $USER
 $ sudo usermod --add-subgids 100000-165536 $USER
 $ sudo chmod +x $HOME

These commands add the user to the User ID and Group ID mapping tables
and) and assign UIDs from to the user.

Next, set up the configuration file for your containers:

$ mkdir ~/.config/lxc
 $ cp /etc/lxc/default.conf ~/.config/lxc

Containers, Virtual Machines, and the Cloud

[486]

Add the following lines to :

lxc.id_map = u 0 100000 65536
 lxc.id_map = g 0 100000 65536

If the containers support network access, add a line to to define
the users who will have access to the network bridge:

USERNAME veth BRIDGENAME COUNT

Here, is the name of the user who owns the container. is the usual name for
the virtual Ethernet device. is the name that's displayed by . It is
usually either or . is the number of simultaneous connections that will be
allowed:

$ cat /etc/lxc/lxc-usernet
 clif veth lxcbr0 10

Creating an Ethernet bridge
A container cannot access your Ethernet adapter directly. It requires a bridge between the
Virtual Ethernet and the actual Ethernet. Recent Ubuntu distributions create an Ethernet
bridge automatically when you install the lxc package. Debian and Fedora may require that
you manually create the bridge. To create a bridge on Fedora, use the package to
create a virtual bridge first:

systemctl start libvirtd

Then, edit to reference instead of :

lxc.network_link = virbr0

If you've already created a container, edit the config file for that container as well.

To create a bridge on Debian systems, you must edit the network configuration and the
container configuration files.

Edit . Comment out the default empty network and add a
definition for the lxc bridge:

lxc.network.type = empty
 lxc.network.type = veth
 lxc.network.link = lxcbr0
 lxc.network.flage = up`

Containers, Virtual Machines, and the Cloud

[487]

Next, create the networking bridge:

systemctl enable lxc-net
 # systemctl start lxc-net

Containers created after these steps are performed will have networking enabled. Network
support can be added to the existing containers by adding the lines to the
container's config file.

How it works...
The container created by the command is a directory tree that includes the
configuration options and root filesystem for the container. Privileged containers are
constructed under . Nonprivileged containers are stored under

:

$ ls /var/lib/lxc/CONTAINERNAME
 config rootfs

You can examine or modify a container's configuration by editing the config file in the
container's top directory:

vim /var/lib/lxc/CONTAINERNAME/config

The folder contains a root filesystem for the container. This is the root () folder of a
running container:

ls /var/lib/lxc/CONTAINERNAME/rootfs
 bin boot cdrom dev etc home lib media mnt proc
 root run sbin sys tmp usr var

You can populate a container by adding, deleting, or modifying files in the folder.
For instance, to run web services, a container might have basic web services installed via the
package manager and the actual data of each service installed by copying files to the

.

Using Docker
The containers are complex and can be difficult to work with. These issues led to the
Docker package. Docker uses the same underlying Linux functionalities of
and to create lightweight containers.

Containers, Virtual Machines, and the Cloud

[488]

Docker is only officially supported on 64-bit systems, making the better choice for
legacy systems.

The major difference between a Docker container and an lxc container is that a Docker
container commonly runs one process, while an lxc container runs many. To deploy a
database-backed web server, you need at least two Docker containers–one for the web
server and one for the database server–but only one lxc container.

The Docker philosophy makes it easy to construct systems from smaller building blocks,
but it can make it harder to develop blocks since so many Linux utilities are expected to run
inside a full Linux system with entries to carry out operations such as cleanup, log
rotation, and so on.

Once a Docker container is created, it will run exactly as expected on other Docker servers.
This makes it very easy to deploy Docker containers on cloud clusters or remote sites.

Getting ready
Docker is not installed with most distributions. It is distributed via Docker's repositories.
Using these requires adding new repositories to your package manager with new
checksums.

Docker has instructions for each distribution and different releases on their main page,
which is available at .

How to do it...
When Docker is first installed, it is not running. You must start the server with a command
such as the following:

service docker start

The Docker command has many subcommands that provide functionality. These
commands will find a Docker container and download and run it. Here's a bit about the
subcommands:

: This searches Docker archives for containers with names that
match a key

: This pulls the named container to your system
: This runs an application in a container

: This lists the running Docker containers

Containers, Virtual Machines, and the Cloud

[489]

: This attaches to a running container
: This stops a container

: This removes a container

The default Docker installation requires that the command be run either as a
or using .

Each of these commands have a page. This page is named by combining the command
and subcommand with a dash. To view the man page, use

.

The next recipe demonstrates how to download a Docker container and run it.

Finding a container
The command returns a list of Docker containers that match a search term:

docker search TERM

Here TERM is an alphanumeric string (no wild cards). The search command will return up
to 25 containers that include the string in their name:

docker search apache
NAME DESCRIPTION STARS OFFICIAL AUTOMATED
eboraas/apache Apache (with SSL support) 70 [OK]
bitnami/apache Bitnami Apache Docker 25 [OK]
apache/nutch Apache Nutch 12 [OK]
apache/marmotta Apache Marmotta 4 [OK]
lephare/apache Apache container 3 [OK]

Here STARS represent a rating for the container. The containers are ordered with the
highest rating first.

Downloading a container
The command downloads a container from the Docker registry. By default, it
pulls data from Docker's public registry at . The downloaded
container is added to your system. The containers are commonly stored under
/ :

docker pull lephare/apache
latest: Pulling from lephare/apache
425e28bb756f: Pull complete

Containers, Virtual Machines, and the Cloud

[490]

ce4a2c3907b1: Extracting [======================>] 2.522 MB/2.522 MB
40e152766c6c: Downloading [==================>] 2.333 MB/5.416 MB
db2f8d577dce: Download complete
Digest:
sha256:e11a0f7e53b34584f6a714cc4dfa383cbd6aef1f542bacf69f5fccefa0108ff8
Status: Image is up to date for lephare/apache:latest

Starting a Docker container
The command starts a process in a container. Commonly, the process is a
shell that allows you to attach to the container and start other processes. This command
returns a hash value that defines this session.

When a Docker container starts, a network connection is created for it automatically.

The syntax for the run command is as follows:

docker run [OPTIONS] CONTAINER COMMAND

The command supports many options, including:

: Allocate a pseudo tty (by default, false)
: Keep an interactive session open while unattached
: Start the container detached (running in the background)

: The name to assign to this instance

This example starts the bash shell in the container that was previously pulled:

 # docker run -t -i -d --name leph1 lephare/apache /bin/bash
 1d862d7552bcaadf5311c96d439378617d85593843131ad499...

Listing the Docker sessions
The s command lists the currently running Docker sessions:

docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
123456abc lephare/apache /bin/bash 10:05 up 80/tcp leph1

The option will list all the Docker containers on your system, whether they are running
or not.

Containers, Virtual Machines, and the Cloud

[491]

Attaching your display to a running Docker container
The command attaches your display to the session in a running
container. You need to run as the root within this container.

To exit an attached session, type .

This example creates an HTML page and starts the Apache web server in the container:

$ docker attach leph1
root@131aaaeeac79:/# cd /var/www
root@131aaaeeac79:/var/www# mkdir symfony
root@131aaaeeac79:/var/www# mkdir symfony/web
root@131aaaeeac79:/var/www# cd symfony/web
root@131aaaeeac79:/var/www/symfony/web# echo "<html><body><h1>It's
Alive</h1></body></html>"
 >index.html
root@131aaaeeac79:/# cd /etc/init.d
root@131aaaeeac79:/etc/init.d# ./apache2 start
[....] Starting web server: apache2/usr/sbin/apache2ctl: 87: ulimit: error
setting limit (Operation
 not permitted)
Setting ulimit failed. See README.Debian for more information.
AH00558: apache2: Could not reliably determine the server's fully qualified
domain name, using
 172.17.0.5. Set the 'ServerName' directive globally to suppress this
message
. ok

Browsing to will show the page.

Stopping a Docker session
The command terminates a running Docker session:

docker stop leph1

Removing a Docker instance
The command removes a container. The container must be stopped before
removing it. A container can be removed either by name or identifier:

docker rm leph1

Containers, Virtual Machines, and the Cloud

[492]

Alternatively, you can use this:

docker rm 131aaaeeac79

How it works
The Docker containers use the same and kernel support as that of the

 containers. Initially, Docker was a layer over , but it has since evolved into a unique
system.

The main configuration files for the server are stored at / and
.

Using Virtual Machines in Linux
There are four options for using VMs in Linux. The three open source options are KVM,
XEN, and VirtualBox. Commercially, VMware supplies a virtual engine that can be hosted
in Linux and an executive that can run VMs.

VMware has been supporting VMs longer than anyone else. They support Unix, Linux, Mac
OS X, and Windows as hosts and Unix, Linux, and Windows as guest systems. For
commercial use, VMware Player or VMWare Workstation are the two best choices you
have.

KVM and VirtualBox are the two most popular VM engines for Linux. KVM delivers better
performance, but it requires a CPU that supports virtualization (Intel VT-x). Most modern
Intel and AMD CPUs support these features. VirtualBox has the advantage of being ported
to Windows and Mac OS X, allowing you to move a virtual machine to another platform
easily. VirtualBox does not require VT-x support, making it suitable for legacy systems as
well as modern systems.

Getting ready
VirtualBox is supported by most distributions, but it may not be part of these distributions'
default package repositories.

Containers, Virtual Machines, and the Cloud

[493]

To install VirtualBox on Debian 9, you need to add the virtualbox.org repository to the sites
that apt-get will accept packages from:

vi /etc/apt/sources.list
ADD:
deb http://download.virtualbox.org/virtualbox/debian stretch contrib

The package is required to install the proper keys. If this is not already present, install
it before adding the key and updating the repository information:

apt-get install curl
curl -O https://www.virtualbox.org/download/oracle_vbox_2016.asc
apt-key add oracle_vbox_2016.asc
apt-get update

Once the repository is updated, you can install VirtualBox with :

apt-get install virtualbox-5.1

OpenSuSE
zypper install gcc make kernel-devel
Open yast2, select Software Management, search for virtualbox.
Select virtualbox, virtualbox-host-kmp-default, and virtualbox-qt.

How to do it...
When VirtualBox is installed, it creates an item in the start menu. It may be under System or
Applications/System Tools. The GUI can be started from a terminal session as
or as .

The VirtualBox GUI makes it easy to create and run VMs. The GUI has a button named
New in the upper-left corner; this is used to create a new, empty VM. The wizard prompts
you for information such as memory and disk limits for the new VM.

Once the VM is created, the Start button is activated. The default settings connect the virtual
machine's CD-ROM to the host's CD-ROM. You can put an installation disk in the CD-ROM
and click on Start to install the operating system on a new VM.

Containers, Virtual Machines, and the Cloud

[494]

Linux in the cloud
There are two primary reasons to use a cloud server. Service providers use a commercial
cloud service, such as Amazon's AWS, because it lets them easily ramp up their resources
when demand is higher and ramp down their costs when demand is lower. Cloud storage
providers, such as Google Docs, allow users to access their data from any device and share
data with others.

The OwnCloud package transforms your Linux server into a private cloud storage system.
You can use an OwnCloud server as a private corporate file sharing system to share files
with friends or as a remote backup for your phone or tablet.

The OwnCloud project forked in 2016. The NextCloud server and applications are expected
to use the same protocol as that of OwnCloud and to be interchangeable.

Getting ready
Running the OwnCloud package requires a LAMP (Linux, Apache, MySQL, PHP)
installation. These packages are supported by all Linux distributions, though they may not
be installed by default. Administering and installing MySQL is discussed in ,
Administration Calls.

Most distributions do not include the OwnCloud server in their repositories. Instead, the
OwnCloud project maintains repositories to support the distributions. You'll need to attach
OwnCloud to your RPM or apt repository before you download.

Ubuntu 16.10
The following steps will install the LAMP stack on a Ubuntu 16.10 system. Similar
commands will work for any Debian-based system. Unfortunately, package names
sometimes vary between releases:

 apt-get install apache2
 apt-get install mysql-server php-mysql

OwnCloud requires security beyond default settings. The
script will configure MySQL properly:

/usr/bin/mysql_secure_installation

Containers, Virtual Machines, and the Cloud

[495]

Configure the repository:

curl \ https://download.owncloud.org/download/repositories/stable/ \
Ubuntu_16.10/Release.key/'| sudo tee \
/etc/apt/sources.list.d/owncloud.list

apt-get update

Once the repository is in place, apt will install and start the server:

apt-get install owncloud

OpenSuSE Tumbleweed
Install the LAMP stack with Yast2. Open , select Software Management, and install

, , and .

Next, select the tab, and from this tab, select the tab. Confirm
that the and services are enabled and active.

These steps install the OwnCloud client that will let you synchronize your workspace to an
OwnCloud server and the system requirements for a server.

OwnCloud requires security beyond default settings. The
script will configure MySQL properly:

/usr/bin/mysql_secure_installation

The following commands will install and start the OwnCloud server. The first three
commands configure to include the OwnCloud repository. Once these repositories
are added, the Owncloud package is installed like any other package:

rpm --import
https://download.owncloud.org/download/repositories/stable/openSUSE_Leap_42
.2/repodata/repomd.xml.key

zypper addrepo
http://download.owncloud.org/download/repositories/stable/openSUSE_Leap_42.
2/ce:stable.repo

zypper refresh

zypper install owncloud

Containers, Virtual Machines, and the Cloud

[496]

How to do it...
Once OwnCloud is installed, you can configure an admin account, and from there, add user
accounts. The NextCloud Android app will communicate with the OwnCloud server as
well as the NextCloud server.

Configuring OwnCloud
Once is installed, you can configure it by browsing to your local address:

$ konqueror http://127.0.0.1/owncloud

The initial screen will prompt you for an admin username and password. You can log in as
the user to create backups and copy files between phones, tablets, and computers.

There's more...
The bare installation process we just discussed is suitable for testing. OwnCloud and
NextCloud will use HTTPS sessions if HTTPS support is available. Enabling HTTPS
support requires an X.509 security certificate.

You can purchase a security certificate from one of the dozens of commercial providers,
self-sign a certificate for your own use, or create a free certificate with Let's Encrypt
(http://letsencrypt.org).

A self-signed certificate is adequate for testing, but most browsers and phone apps will flag
this as an untrusted site. Let's Encrypt is a service of the Internet Security Research Group
(ISRG). The certificates they generate are fully registered and all applications can accept
them.

The first step in acquiring a certificate is verifying that your site is what you claim it is. Let's
Encrypt certificates are validated using a system called Automated Certificate Management
Environment (ACME). The ACME system creates a hidden file on your web server, tells the
Certificate Authority (CA) where that file is, and the CA confirms that the expected file is
there. This proves that you have access to the web server and that DNS records point to the
proper hardware.

Containers, Virtual Machines, and the Cloud

[497]

If you are using a common web server, such as Nginx or Apache, the simplest way to set up
your certificates is with the created by EFF:

wget https://dl.eff.org/certbot-auto
 # chmod a+x certbot-auto
 # ./certbot-auto

This robot will add new packages and install your new certificate in the proper place.

If you are using a less common server or have a non-standard installation, the
package is more configurable. The package is a bash script that reads two
configuration files to automate the creation of the certificate. Download the package from
here and unzip from .

Unzipping creates a folder named .

Generating and installing the certificates requires three steps:

Create the default configuration files with .1.
Edit the configuration files.2.
Create the certificates.3.

Start by to the folder and creating the configuration files:

cd getssl_master
 # getssl -c DOMAIN.com

Replace with the name of your domain.

This step creates the and folders and
creates a file named in both of these. Each of these files must be edited.

Edit and add your email address:

ACCOUNT_EMAIL='myName@mySite.com'

The default values in the rest of the fields are suitable for most sites.

Next, edit . There are several fields to modify in this
file.

Containers, Virtual Machines, and the Cloud

[498]

The main change is to set the Acme Challenge Location (ACL) field. The ACME protocol
will try to find a file in . The ACL
value is the physical location of that folder on your system. You must create the

and . folders and set ownership if they don't exist.

If your web pages are kept in , you could create new folders as follows:

mkdir /var/web/DOMAIN/.well-known
mkdir /var/web/DOMAIN/.well-known/acme-challenge
chown webUser.webGroup /var/web/DOMAIN/.well-known
chown webUser.webGroup /var/web/DOMAIN/.well-known/acme-challenge

The ACL lines would resemble the following:

ACL="/var/web/DOMAIN/.well-known/acme-challenge"
USE_SINGLE_ACL="true"

You must also define where the certificates are to be placed. This location must match the
configuration option in your web server. For instance, if certificates are kept in

, the definitions will resemble this:

DOMAIN_CERT_LOCATION="/var/web/certs/DOMAIN.crt"
DOMAIN_KEY_LOCATION="/var/web/certs/DOMAIN.key"
CA_CERT_LOCATION="/var/web/certs/DOMAIN.com.bundle"

You must set the type of test that the ACME protocol will use. These are commented out at
the bottom of the configuration file. Using the default values are usually best:

SERVER_TYPE="https"
CHECK_REMOTE="true"

After these edits are complete, test them by running this:

./getssl DOMAIN.com

This command resembles the first one, but it does not include the (create) option. You
can repeat this command until you've corrected any errors and are happy with the results.

The default behavior of the script is to generate a test certificate that's not really
valid. This is done because Let's Encrypt limits the number of actual certificates it will
generate for a site to avoid abuse.

Containers, Virtual Machines, and the Cloud

[499]

Once the configuration files are correct, edit them again and change the server–from the
Staging server to the actual Let's Encrypt server:

CA="https://acme-v01.api.letsencrypt.org"

Then, rerun the script one last time with the option to force it to rebuild and
replace the previous files:

./getssl -f DOMAIN.com

You may need to restart your web server or reboot your system before the new files are
recognized.

Index

/
/proc filesystem
 using ,

A
absolute paths
access to files/directories
 logging , ,
active user hours, on system
 determining ,
advanced text processing
 with awk command ,
aliases
 escaping
 listing
 visiting ,
AppArmor
applications
 tracing, in listen mode
arbitrary sockets
 creating
archives
 concatenating
 files, appending to
 files, deleting from
 files, extracting from
 folders, extracting from
archiving
 set of files, excluding from
arguments
 about
 negating
 passing ,
 passing, to commands ,
ARP table
 tracing

array indexes
 listing
arrays
ASCII
associative arrays, in awk
associative arrays
 about ,
 defining ,
auto-compress option
Automated Certificate Management Environment

(ACME)
automated FTP transfer
automount daemon
awk command
 associative arrays
 command output, reading from
 delimiters, setting for fields
 external variable, passing to
 loops, using inside ,
 special variables
 string manipulation functions
 using, for advanced text processing ,
awk, with filter patterns
 used, for processing filtering lines

B
back quotes
back referencing
back tick
backups
 scheduling, at intervals
bandwidth limit
 specifying, on cURL
base64
Bash prompt string
 modifying
bash script

[501]

 MySQL database, reading from
 MySQL database, writing
bash
 customizing, with configuration files , ,
black hole
blank files
 generating, in bulk ,
blocksize (bs)
Bourne Shell (sh)
branches
 creating ,
 forks, merging with
 merging ,
 pushing, to server
 using, with fossil
bridge
 building
broadcasting server
 creating
broken links
 finding, in website , ,
bzip2
 using

C
case
 ignoring, in patterns
cat command
 blank lines, removing
 concatenating with ,
 line number, prefixing to line
 tabs, displaying
CD-ROM tray
 working with
cdrecord command
Certificate Authority (CA)
Certificate Authority key
certificates
 creating
 generating ,
 installing ,
character classes
character set
 complementing
characters

 deleting, tr used
 squeezing, tr used ,
chattr command
checksums
 about
 computing
 for directories
chkconfig utility ,
chown command
cloud
 about
 advantage
 downside
colored output
 printing ,
columns
 multiple files, merging as ,
comm command ,
Comma Separated Values (CSV) files
command line
 Gmail e-mails, accessing from ,
 ISO, burning from ,
 text, translating from ,
command names
 process ID, finding from
command output
 monitoring, with watch command
 reading, from awk
commands, lxc package
 lxc-attach
 lxc-console
 lxc-create
 lxc-ls
 lxc-start
 lxc-stop
commands
 arguments, passing to ,
 executing ,
 execution time, calculating of
 making quicker ,
 return value, reading of
 running
 running, on remote host ,
comparisons ,
compression

[502]

 filesystems, creating with , ,
computing system
concatenating
 with cat command ,
config files
 Linux system, tuning with
configuration files
 bash, customizing with , ,
container information
 displaying
container
 about
 downloading
 downside
 finding
 known containers, listing
 privileged container, creating ,
 starting
 stopping
 unprivileged container, creating ,
 working
context switches (csw)
context-based printing
Control Groups (cgroups)
conversation
 holding, with user
convert command
cookies
 with cURL
Coordinated Universal Time (UTC)
count modifiers
cpio application
 archiving with ,
cron table
 removing
 viewing
cron utility
 scheduling with
crontab command
 commands, running at system start-up/boot
 environment variables, specifying
crypt command
cryptographic tools
curl command
cURL

 about
 authenticating with
 bandwidth limit, specifying on
 downloads, continuing
 downloads, resuming
 maximum download size, specifying
 referer string, setting with ,
 response headers, printing excluding data ,

 user agent string, setting with
current shell
 identifying
custom file descriptors ,
customization scripts
cut command
 used, for cutting file column-wise
CVS

D
data
 compressing, with gzip ,
 parsing, from website ,
 splitting
database
 styles
 uses
dates
 working with ,
Debian-based computers
delays
 producing, in script
deleting
 based on file matches
df command ,
dictionary manipulation
diff utility
difference operation
differential archives ,
directories
 differences, generating against
 listing
directory tree
 printing
directory
 examining

[503]

 tree view, generating of
disk activity
 monitoring ,
disk free information
disk health
 examining ,
disk images
 creating, fsarchiver used ,
disk statistics
 obtaining
disk usage calculation
 files, excluding from ,
disk usage
 grand total sum, displaying of
 monitoring
 sizes, printing in specified units ,
disk
 checking, for errors , ,
 displaying, in bytes
display
 attaching, to running Docker container
DNS lookup , ,
docker attach command
Docker container
 starting
Docker containers
 working
Docker instance
 removing
docker ps command
docker pull command
docker rm command
docker run command
 options
docker search command
Docker session
 stopping
Docker sessions
 listing
docker stop command
Docker
 about
 using
Domain Name Service (DNS) ,
domain names

dstat
 system I/O usage, gathering with
du command ,
duplicate files
 deleting , , ,
 finding , , ,
duplicates
 sorting ,
Dynamic Host Configuration Protocol (DHCP)

E
e-mail addresses
 parsing, from text ,
echo command
 about
 newline, escaping in
egrep command
environment variables
 showing, for process ,
 using ,
EOF (End of File)
epoch
Ethernet bridge
 creating ,
event loop
executable
 running, as different user (setuid)
execution time
 calculating, for command
expect package
 automating with
Extended File Systems
Extended Regular Expression syntax
Extended Service Set IDentification (ESSID)
external variable
 passing, to awk

F
field separators ,
fields
 about
 range of characters, specifying as ,
file command ,
file descriptors
 working with , , , ,

[504]

file permissions
 working with ,
File Transfer Protocol (FTP)
file type statistics
 enumerating , ,
filename prefix
 specifying, for split files ,
filenames
 slicing, based on extension ,
files
 appending, to archive
 comparing, in archive and filesystem
 copying, over network
 deleting, from archive
 differences, generating between
 examining
 excluding, from disk usage calculation ,
 excluding, while creating squashfs file
 extracting, from archive
 finding ,
 frequency of words, finding in ,
 generating, of any size ,
 listing ,
 making immutable ,
 managing, find command used
 moving
 patterns, replacing with text
 renaming
 splitting
 summary, generating of
 transferring, through network ,
 updating, in archive with timestamp check
filesystem-related tests
filesystems
 checking, for errors , ,
 creating, with compression , ,
find command
 used, for performing actions on files
 xargs, using with
firewall
 about
 configuring, iptables used
folders
 extracting, from archive
forks

 merging, with branches
 using, with fossil
format-patch command
formatted arguments
 passing, to command by reading stdin , ,
fossil diff command
fossil history
 viewing
fossil init command
fossil merge command
fossil new command
fossil project
 opening
fossil repository
 changes, adding
 changes, committing
 creating ,
 making, available to remote users
 status, checking of
fossil server command
fossil status command
fossil ui command
fossil web server
fossil
 branches, using with
 bugs, finding
 forks, using with
 snapshots, tagging
 using ,
 work, sharing
fping
 options
 using ,
frequency of words
 finding, in file ,
fsarchiver
 used, for creating entire disk images ,
fsck command
ftp command
ftp daemon
functions
 about
 defining
 exporting
 to prepend environment variables , ,

[505]

FUSE
 reference

G
GET request
getline function
 used, for reading line explicitly
git add command
git apply command
git bisect command
git blame command
git checkout command
git commit command ,
git fetch command
git history
 viewing
git init command
git log command
git merge command
git pull command
git push command
git repository
 bugs, finding ,
 changes, adding ,
 changes, committing ,
 creating
 snapshots, tagging ,
 status, checking of
git status command
git tag command
Git
 about
 using
 work, sharing
Gmail e-mails
 accessing, from command line
Gmail
 reference
GNU screen
gpg tool
 about
 reference
graphical commands
 running, on remote machine
grep command

 about
 multiple patterns, marching
 text, mining inside file , ,
 text, searching inside file , ,
 using, in quiet mode
 xargs, using with zero-byte suffix
grep search
 files, excluding
 files, including
group
group permissions
gzip application
 data, compressing with ,
gzip command
 compression ratio, specifying
gzipped tarball ,

H
hashes
hdparm command
head command
 using
hostname command
HTTP packets
 displaying
 displaying, generated by host
httpd daemon
hybrid ISO
 creating ,
 flash drive, booting off
 hard disk, booting off

I
identifiers
ifconfig command
 hardware address, spoofing
 IP addresses, displaying ,
 list of network interfaces, printing
 name servers, defining
 routing table information, showing
image crawlers
image downloader
image
 format conversion , ,
 resizing, in bulk , ,

[506]

ImageMagick
 about
 reference
information
 collecting, about boot failures , ,
 collecting, about boot logs , ,
 collecting, about logged in users , ,
 collecting, about processes ,
inotifywait command
interactive input
 automating , ,
internal field separator (IFS)
Internet connection
 sharing ,
Internet Control Message Protocol (ICMP)
Internet Printing Protocol
Internet
 video, downloading from
intersection operation
 about
 on text files
iotop application
ip neighbor command
ip route
 routes, reporting with
IP routes
 tracing
ip utility
 network routes, tracing with ,
iperf application
iptables command
iptables
 about
 used, for configuring firewall
 working
ISO files
 creating ,
 mounting, as loopback
ISO
 burning, from command line ,
iterators ,

J
JavaScript
 compressing , ,

 decompressing , ,

K
kill command ,
KVM

L
LAMP (Linux, Apache, MySQL, PHP)
LAMP stack
 installing, on Ubuntu 16.10
 installing, with Yast2
last command
lastb command
Let's Encrypt
 reference
lftp command
library calls
 tracing, with ltrace ,
libvirt-lxc package
line numbers
 text, printing between ,
Line Printer Daemon
Lines of Code (LOC)
lines
 printing, in reverse order ,
Linux Container (lxc)
 using , ,
Linux kernel
 tuning, with sysctl
Linux log files
Linux system
 tuning, with config files
Linux
 in cloud ,
 Virtual Machines, using in
load average
local fossil repository
 updating
local mount point
 remote drive, mounting at
log files
 managing, with logrotate
logger command
logrotate command
 log files, managing with

[507]

 options
loop
 using, inside awk ,
loopback disk images
 mounting, with partitions
loopback files
 using ,
loopback images
 partitions, creating inside
loopback
 ISO files, mounting as
lpd daemon
lsof command
ltrace
 about
 used, for tracing library calls ,
lxc package
 commands
lxc-attach command
lxc-console command
lxc-create command ,
lxc-info command
lxc-ls command
lxc-start command ,
lxc-stop command
Lynx
lzma
 using ,

M
machines
 available machines, listing on network ,
man-in-the-middle attack
MariaDB
match
 based on file permissions
 based on ownership
matched string notation
Math
 with shell , ,
MD5
md5sum
 computing
Mean Time Between Failures (MTBF)
message ethics

 committing
message
 sending, to all users ,
 sending, to single user
 sending, to user terminals ,
minified JS
mktemp command
multiple expressions
 combining
multiple files
 merging, as columns ,
 searching, recursively
multiple terminals
 managing
mysql application

N
n characters
 reading, without pressing return key ,
named daemon
nc command
netcat command
netstat
 opened ports, listing
 opened services, listing
Network Address Translation (NAT)
network bandwidth
 measuring
Network File System
Network Interface Cards (NIC)
network routes
 tracing, with ip ,
Network Time Protocol
network traffic ,
network
 available machines, listing on ,
 files, copying over
 files, transferring through ,
 setting up , ,
 tuning
newline
 escaping, in echo
nfsd daemon
ngrep
 packets, finding with

[508]

nice command
 used, for changing scheduler priority
nmbd daemon
non-interactive port forwarding
nslookup command
nth column
 printing, in file
nth word
 printing, in file

O
Open Text Summarizer (OTS)
 text, summarizing with
OpenSuSE Tumbleweed
OpenVPN
 configuring, on client
 configuring, on server
other permissions
output
 displaying, in terminal , , , , ,
 sending, from one command to another
OwnCloud package
OwnCloud project
OwnCloud
 configuring
ownership
 applying, recursively
 changing
 working with ,

P
packet payload
 viewing
packets
 finding, with ngrep
 tracing, with tcpdump , ,
panned video
 creating, from still camera shot
parallel pings
parameter operations
parameters, time command
 %c
 %C
 %D
 %E

 %K
 %k
 %P
 %W
 %w
 %x
 %Z
partitions
 creating, inside loopback images
 used, for mounting loopback disk images
password-less auto-login
 with SSH
passwords
 shadow-like salted hash, generating for
patch file ,
patch
 applying
patching ,
patterns
 replacing, with text
 text, printing between ,
pbzip2
 compression ratio, specifying
 faster archiving with ,
 number of CPUs, specifying manually
PDF
permissions
 adding
 applying, recursively to files
 removing
 setting
pidstat
 resource hog, identifying with
ping command
 about
 number of packets, limiting to be sent
 return status
 Round Trip Time (RTT), displaying
pkill command
plain text
 web page, downloading as ,
port analysis ,
port forwarding
 about
 non-interactive port forward

[509]

 with SSH
portmap daemon
portmap program
position markers
POST command
power usage
 measuring ,
 optimizing ,
powertop command ,
privileged container
 creating ,
Procedure Linkage Table (PLT)
process attributes
process ID
 about
 finding, from command names
process threads
process
 about
 consuming ,
 environment variables, showing for ,
 information, gathering about ,
 killing
 spawning, with subshell
 tree view, creating of
pruning
ps command
 columns to be displayed, specifying
 output width, specifying
 output, filtering
ps output
 sorting

Q
quoting

R
radix-64 representation
random numbers
range of characters
 specifying, as fields ,
recent IP connections
 tracing
recursive function
RedHat-based computers

redirection
 from file, to command
 from text block, enclosed within script
Referer field
referer string
 setting, with cURL ,
regular expressions
 count modifiers
 examples
 identifiers
 position markers
 special characters
 using
 visualizing
 working
relative URLs
remote disk usage health
 monitoring ,
remote drive
 mounting, at local mount point ,
remote fossil repository
 cloning
remote git repository
 cloning
remote host
 commands, running on ,
remote machine
 graphical commands, running on
Remote Procedure Calls (sunrpc)
renice command
resource hog
 identifying, with pidstat
response
 reading
return value
 reading, of command
reverse order
 lines, printing in ,
reverse port forwarding
revision control systems
rexec daemon
Round Trip Time (RTT)
route
 reporting, with ip route
 tracing

[510]

rows
 inserting, into SQL database
 selecting, from SQL database
rsync backup
 non-existent files, deleting
rsync command
rsync
 files, excluding with archiving
 snapshots, backing up with

S
Salt (cryptography)
 reference
scheduler priority
 changing, nice command used
SCP (secure copy program) ,
 recursive copying
screenshots
 taking, in terminal
script command
script
 debugging , ,
 delays, producing in
scriptreplay command
search
 based on directory depth
 based on file size
 based on file type
 based on name ,
 based on regular expression match , ,
 by file timestamp ,
Secure Shell (SSH)
 about
 commands, running on remote host ,
 data, redirecting into stdin of remote host shell

commands ,
 password-less auto-login
 used, for port forwarding
 with compression
sed command
 blank lines, removing
 replacement, performing directly in file
 used, for performing text replacement
Self-Monitoring, Analysis, and Reporting

Technology (SMART)

self-signed certificate
sentence
 removing, in file containing word ,
Server System
server
 branch, pushing to
 OpenVPN, configuring on
 starting
services
 identifying ,
set difference operation
 on text files
set of files
 excluding, from archiving
SFTP (Secure FTP)
SHA-1 ,
sha1sum
sha512sum
 reference
shadow-like salted hash
 generating, for passwords
shebang hack
signals
 about
 capturing
 responding to , ,
 sending to ,
SLOCCount
 reference
smartctl command
snapshots
 backing up, with rsync
socket data
 gathering, with ss
sort command ,
sorting
 according to keys
source code directory
 number of lines of C code, counting in
spell checking
split files
 filename prefix, specifying for ,
SQL database
 row, inserting into
 row, selecting from

[511]

SQLite
SQLite database
 about
 reading
 writing
squashfs program
ss
 socket data, gathering with
status
 checking, of fossil repository
 checking, of git repository
stdin
 with tar
stdout
 with tar
sticky bit
 about
 reference
 setting
 working with
strace
 about
 system calls, tracing with ,
stream editor
string length
 finding ,
string manipulation functions, awk
 gsub(regex, replacment_str, string)
 index(string, search_string)
 length(string)
 match(regex, string)
 split(string, array, delimiter)
 substr(string, start-position, end-position)
subdirectories
 examining
 skipping
 summary, generating of
subshell method
subshell
 process, spawning with
 quoting
 with stdin ,
substring match notation
super user
 checking for

SVN
symbolic links
 finding ,
syn command
 used, for flush changing
sysctl
 Linux kernel, tuning with
syslog
 logging with
system activity
 viewing
system calls
 tracing, with strace ,
system I/O usage
 gathering, with dstat
system information
 gathering , ,
system
 load average value, determining
systemctl command
systemd based computers

T
table
 creating
tail command
 using
talk command
Tape ARchive
tar archive
 compressing with ,
tar command
 archiving with
 working
tar flags
tarball
task scheduler
 tuning
tclhttpd
tcp sockets
 status, displaying of
TCP/IP networks
tcpdump
 packets, tracing with , ,
 working

[512]

TeleTYpewriter (TTY)
telnet daemon
temporary file naming
ten largest size files
 finding, from directory ,
terminal sessions
 playing back , ,
 recording , ,
terminal
 information, obtaining of ,
 output, displaying in , , , , ,
 screenshots, taking in
tests
 performing , ,
text files
 intersection operation, performing on
 set difference operation, performing on
text replacement
 performing, sed used ,
text slicing
text
 e-mail addresses, parsing from ,
 patterns, replacing with
 printing, between line numbers ,
 printing, between patterns ,
 summarizing, with Open Text Summarizer (OTS)

 translating, from command line ,
 URLs, parsing from ,
time command
 parameters
 real time
 sys time
 user time
time delay
 about
 working with ,
Time To Live (TTL)
timestamps
 access time (-atime)
 change time (-ctime)
 modification time (-mtime)
top command
top ten CPU
 listing ,

total bytes, copied to archive
 printing
touch command
tr command
 about
 translating with , ,
 used, for deleting characters
 used, for squeezing characters ,
trans application
trans program
trap command ,
tree view
 creating, of processes
 generating, of directory
TTY filter
 for ps
Twitter
Twitter command-line client
 about
 working

U
Ubuntu 16.10
 LAMP stack, installing on
uname command
uniq command , ,
uniques
 sorting ,
Unix time
unprivileged container
 creating ,
uptime command
URLs
 about
 parsing, from text ,
user
user administration scripts ,
user agent string
 setting, with cURL
user logins
 monitoring, to find intruders ,
user permission
user terminals
 messages, sending to ,
User-Space libraries

V
variables
 about
 using ,
version control directories
 excluding
video
 downloading, from Internet
 making, from set of still images
Virtual Machines
 downside
 using
 using, in Linux
Virtual Private Network (VPN)
 creating
VirtualBox

W
w command
wall command
watch command
 used, for monitoring command outputs
watch output
 differences, highlighting
web page
 downloading
 downloading, as plain text ,
 posting to
web photo album generator
web server
 word definitions, accessing via
website
 broken lines, finding in , ,
 changes, tracking to ,
 data, parsing from ,
WEP (Wired Equivalent Privacy)

wget command
 about
 complete website, copying
 download speed, restricting
 download, resuming
 pages, accessing with HTTP/FTP authentication

whatis command
whereis command
which command
while loop
 with stdin ,
who command
wireless network
 connecting to ,
word definitions
 accessing, via web server
words
work
 sharing
write command

X
xargs
 using, with find
 working with , ,
xinetd daemon
xwd application

Z
zcat command
 gzipped files, reading without extracting
ZIP
 about
 archiving with
 compressing with

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Shell Something Out
	Introduction
	Displaying output in a terminal
	Getting ready
	How to do it...
	How it works...
	There's more...
	Escaping newline in echo
	Printing a colored output

	Using variables and environment variables
	Getting ready
	How to do it...
	There's more...
	Finding the length of a string
	Identifying the current shell
	Checking for super user
	Modifying the Bash prompt string (username@hostname:~$)

	Function to prepend to environment variables
	How to do it...
	How it works...

	Math with the shell
	How to do it...

	Playing with file descriptors and redirection
	Getting ready
	How to do it...
	How it works...
	There's more...
	Redirection from a file to a command
	Redirecting from a text block enclosed within a script
	Custom file descriptors

	Arrays and associative arrays
	Getting ready
	How to do it...
	There's more...
	Defining associative arrays
	Listing of array indexes

	Visiting aliases
	How to do it...
	There's more...
	Escaping aliases
	Listing aliases

	Grabbing information about the terminal
	Getting ready
	How to do it...

	Getting and setting dates and delays
	Getting ready
	How to do it...
	How it works...
	There's more...
	Producing delays in a script

	Debugging the script
	How to do it...
	How it works...
	There's more...
	Shebang hack

	Functions and arguments
	How to do it...
	There's more...
	The recursive function
	Reading the return value (status) of a command
	Passing arguments to commands

	Sending output from one command to another
	Getting ready
	How to do it...
	There's more...
	Spawning a separate process with subshell
	Subshell quoting to preserve spacing and the newline character

	Reading n characters without pressing the return key
	How to do it...

	Running a command until it succeeds
	How to do it...
	How it works...
	There's more...
	A faster approach
	Adding a delay

	Field separators and iterators
	Getting ready
	How to do it...

	Comparisons and tests
	How to do it...

	Customizing bash with configuration files
	How to do it...

	Chapter 2: Have a Good Command
	Introduction
	Concatenating with cat
	How to do it...
	There's more...
	Getting rid of extra blank lines
	Displaying tabs as ^I
	Line numbers

	Recording and playing back terminal sessions
	Getting ready
	How to do it...
	How it works...

	Finding files and file listing
	Getting ready
	How to do it...
	There's more...
	Search based on name or regular expression match
	Negating arguments
	Searching based on the directory depth
	Searching based on file type
	Searching by file timestamp
	Searching based on file size
	Matching based on file permissions and ownership
	Performing actions on files with find
	Deleting based on file matches
	Executing a command
	Skipping specified directories when using the find command

	Playing with xargs
	Getting ready
	How to do it...
	How it works...
	There's more...
	Passing formatted arguments to a command by reading stdin
	Using xargs with find
	Counting the number of lines of C code in a source code directory
	While and subshell trick with stdin

	Translating with tr
	Getting ready
	How to do it...
	How it works...
	There's more...
	Deleting characters using tr
	Complementing character sets
	Squeezing characters with tr
	Character classes

	Checksum and verification
	Getting ready
	How to do it...
	How it works...
	There's more...
	Checksum for directories

	Cryptographic tools and hashes
	How to do it...

	Sorting unique and duplicate lines
	Getting ready
	How to do it...
	How it works...
	There's more...
	Sorting according to keys or columns
	uniq

	Temporary file naming and random numbers
	How to do it...
	How it works...

	Splitting files and data
	How to do it...
	There's more...
	Specifying a filename prefix for the split files

	Slicing filenames based on extensions
	How to do it...
	How it works...

	Renaming and moving files in bulk
	Getting ready
	How to do it...
	How it works...

	Spell–checking and dictionary manipulation
	How to do it...
	How it works...

	Automating interactive input
	Getting ready
	How to do it...
	How it works...
	There's more...
	Automating with expect

	Making commands quicker by running parallel processes
	How to do it...
	How it works...
	There's more...

	Examining a directory, files and subdirectories in it
	Getting ready
	How to do it...
	Generating a tree view of a directory.
	Generating a summary of files and sub-directories

	Chapter 3: File In, File Out
	Introduction
	Generating files of any size
	How to do it...

	The intersection and set difference (A-B) on text files
	Getting ready
	How to do it...
	How it works...

	Finding and deleting duplicate files
	Getting ready
	How to do it...
	How it works...

	Working with file permissions, ownership, and the sticky bit
	How to do it...
	There's more...
	Changing ownership
	Setting the sticky bit
	Applying permissions recursively to files
	Applying ownership recursively
	Running an executable as a different user (setuid)

	Making files immutable
	Getting ready
	How to do it...

	Generating blank files in bulk
	Getting ready
	How to do it...

	Finding symbolic links and their targets
	How to do it...
	How it works...

	Enumerating file type statistics
	Getting ready
	How to do it...
	How it works...

	Using loopback files
	How to do it...
	How it works...
	There's more...
	Creating partitions inside loopback images
	Mounting loopback disk images with partitions more quickly
	Mounting ISO files as loopback
	Flush changing immediately with sync

	Creating ISO files and hybrid ISO
	Getting ready
	How to do it...
	There's more...
	Hybrid ISO that boots off a flash drive or hard disk
	Burning an ISO from the command line
	Playing with the CD-ROM tray

	Finding the difference between files, and patching
	How to do it...
	There's more...
	Generating difference against directories

	Using head and tail for printing the last or first 10 lines
	How to do it...

	Listing only directories - alternative methods
	Getting ready
	How to do it...
	How it works...

	Fast command-line navigation using pushd and popd
	Getting ready
	How to do it...
	There's more...
	pushd and popd are useful when there are more than three directory paths used. However, when you use only two locations, there is an alternative and easier way, that is, cd -.

	Counting the number of lines, words, and characters in a file
	How to do it...

	Printing the directory tree
	Getting ready
	How to do it...
	There's more...
	HTML output for tree

	Manipulating video and image files
	Getting ready
	Extracting Audio from a movie file (mp4)

	How to do it...
	Making a video from a set of still images
	How to do it...
	How it works...

	Creating a panned video from a still camera shot
	How to do it...
	How it works...

	Chapter 4: Texting and Driving
	Introduction
	Using regular expressions
	How to do it...
	Position markers
	Identifiers
	Count modifiers
	Other
	There's more...

	How it works...
	There's more...
	Treatment of special characters
	Visualizing regular expressions

	Searching and mining text inside a file with grep
	How to do it...
	There's more...
	Recursively searching many files
	Ignoring case in patterns
	grep by matching multiple patterns
	Including and excluding files in a grep search
	Using grep with xargs with the zero-byte suffix
	Silent output for grep
	Printing lines before and after text matches

	Cutting a file column-wise with cut
	How to do it...
	There's more
	Specifying the range of characters or bytes as fields

	Using sed to perform text replacement
	How to do it...
	There's more...
	Removing blank lines
	Performing replacement directly in the file
	Matched string notation ()
	Substring match notation (\1)
	Combining multiple expressions
	Quoting

	Using awk for advanced text processing
	Getting ready
	How to do it...
	How it works...
	There's more...
	Special variables
	Passing an external variable to awk
	Reading a line explicitly using getline
	Filtering lines processed by awk with filter patterns
	Setting delimiters for fields
	Reading the command output from awk
	Associative arrays in Awk
	Using loop inside awk
	String manipulation functions in awk

	Finding the frequency of words used in a given file
	Getting ready
	How to do it...
	How it works...
	See also

	Compressing or decompressing JavaScript
	Getting ready
	How to do it...
	How it works...
	See also

	Merging multiple files as columns
	How to do it...
	See also

	Printing the nth word or column in a file or line
	How to do it...
	See also

	Printing text between line numbers or patterns
	Getting ready
	How to do it...
	See also

	Printing lines in the reverse order
	Getting ready
	How to do it...
	How it works...

	Parsing e-mail address and URLs from text
	How to do it...
	How it works...
	See also

	Removing a sentence in a file containing a word
	Getting ready
	How to do it...
	How it works...
	See also

	Replacing a pattern with text in all the files in a directory
	How to do it...
	How it works...
	There's more...

	Text slicing and parameter operations
	How to do it...
	See also

	Chapter 5: Tangled Web? Not At All!
	Introduction
	Downloading from a web page
	Getting ready
	How to do it...
	How it works...
	There's more...
	Restricting the download speed
	Resume downloading and continue
	Copying a complete website (mirroring)
	Accessing pages with HTTP or FTP authentication

	Downloading a web page as plain text
	Getting ready
	How to do it...

	A primer on cURL
	Getting ready
	How to do it...
	How it works...
	There's more...
	Continuing and resuming downloads
	Setting the referer string with cURL
	Cookies with cURL
	Setting a user agent string with cURL
	Specifying a bandwidth limit on cURL
	Specifying the maximum download size
	Authenticating with cURL
	Printing response headers excluding data

	See also

	Accessing unread Gmail e-mails from the command line
	How to do it...
	How it works...
	See also

	Parsing data from a website
	How to do it...
	How it works...
	See also

	Image crawler and downloader
	How to do it...
	How it works...
	See also

	Web photo album generator
	Getting ready
	How to do it...
	How it works...
	See also

	Twitter command-line client
	Getting ready
	How to do it...
	How it works...
	See also

	Accessing word definitions via a web server
	Getting ready
	How to do it...
	How it works...
	See also

	Finding broken links in a website
	Getting ready
	How to do it...
	How it works...
	See also

	Tracking changes to a website
	Getting ready
	How to do it...
	How it works...
	See also

	Posting to a web page and reading the response
	Getting ready
	How to do it...
	See also

	Downloading a video from the Internet
	Getting ready
	How to do it...
	How it works...

	Summarizing text with OTS
	Getting ready
	How to do it...
	How it works...

	Translating text from the command line
	Getting ready
	How to do it...
	How it works...

	Chapter 6: Repository Management
	Introduction
	Creating a new git repository
	Getting ready
	How to do it...
	How it works...

	Cloning a remote git repository
	How to do it...

	Adding and committing changes with git
	How to do it...

	Creating and merging branches with git
	Getting ready...
	How to do it...
	How it works...
	There's more...
	Merging branches
	How to do it...
	How it works...
	There's more...

	Sharing your work
	How to do it...

	Pushing a branch to a server
	How to do it...

	Checking the status of a git repository
	How to do it...
	How it works...

	Viewing git history
	How to do it...

	Finding bugs
	How to do it...
	There's more...
	How to do it...
	How it works...

	Tagging snapshots
	How to do it...

	Committing message ethics
	How to do it...

	Using fossil
	Getting ready
	How to do it...

	Creating a new fossil repository
	How to do it...
	How it works...
	There's more...
	Web interface to fossil
	How to do it...

	Making a repository available to remote users

	Cloning a remote fossil repository
	How to do it...
	How it works...

	Opening a fossil project
	How to do it...
	How it works...
	There's more...

	Adding and committing changes with fossil
	How to do it...
	There's more...

	Using branches and forks with fossil
	How to do it
	How it works...
	There's more...
	Merging forks and branches
	How to do it...

	Sharing your work with fossil
	How to do it...
	How it works...

	Updating your local fossil repository
	How to do it...

	Checking the status of a fossil repository
	How to do it...

	Viewing fossil history
	How to do it...
	Finding bugs
	How to do it...
	There's more...

	Tagging snapshots
	How to do it...
	There's more...

	Chapter 7: The Backup Plan
	Introduction
	Archiving with tar
	Getting ready
	How to do it...
	How it works...
	There's more...
	Appending files to an archive
	Extracting files and folders from an archive
	stdin and stdout with tar
	Concatenating two archives
	Updating files in an archive with a timestamp check
	Comparing files in the archive and filesystem
	Deleting files from the archive
	Compression with the tar archive
	Excluding a set of files from archiving
	Excluding version control directories
	Printing the total bytes

	See also

	Archiving with cpio
	How to do it...
	How it works...

	Compressing data with gzip
	How to do it...
	There's more...
	Gzip with tarball
	zcat - reading gzipped files without extracting
	Compression ratio
	Using bzip2
	Using lzma

	See also

	Archiving and compressing with zip
	How to do it...
	How it works...

	Faster archiving with pbzip2
	Getting ready
	How to do it...
	How it works...
	There's more...
	Manually specifying the number of CPUs
	Specifying the compression ratio

	Creating filesystems with compression
	Getting ready
	How to do it...
	There's more...
	Excluding files while creating a squashfs file

	Backing up snapshots with rsync
	How to do it...
	How it works...
	There's more...
	Excluding files while archiving with rsync
	Deleting non-existent files while updating rsync backup
	Scheduling backups at intervals

	Differential archives
	How to do it...
	How it works...

	Creating entire disk images using fsarchiver
	Getting ready
	How to do it...
	How it works...

	Chapter 8: The Old-Boy Network
	Introduction
	Setting up the network
	Getting ready
	How to do it...
	There's more...
	Printing the list of network interfaces
	Displaying IP addresses
	Spoofing the hardware address (MAC address)
	Name server and DNS (Domain Name Service)
	DNS lookup

	Showing routing table information

	See also

	Let us ping!
	How to do it...
	There's more...
	Round Trip Time
	Sequence number
	Time to live
	Limiting the number of packets to be sent
	Return status of the ping command

	Tracing IP routes
	How to do it...

	Listing all available machines on a network
	Getting ready
	How to do it...
	How it works...
	There's more...
	Parallel pings
	Using fping

	See also

	Running commands on a remote host with SSH
	Getting ready
	How to do it...
	There's more...
	SSH with compression
	Redirecting data into stdin of remote host shell commands

	Running graphical commands on a remote machine
	How to do it...
	See also

	Transferring files through the network
	Getting ready
	How to do it...
	There's more...
	Automated FTP transfer
	SFTP (Secure FTP)
	The rsync command
	SCP (secure copy program)
	Recursive copying with scp

	See also

	Connecting to a wireless network
	Getting ready
	How to do it...
	How it works...
	See also

	Password-less auto-login with SSH
	Getting ready
	How to do it...

	Port forwarding using SSH
	How to do it...
	There's more...
	Non-interactive port forward
	Reverse port forwarding

	Mounting a remote drive at a local mount point
	Getting ready
	How to do it...
	See also

	Network traffic and port analysis
	Getting ready
	How to do it...
	How it works...
	There's more...
	Opened port and services using netstat

	Measuring network bandwidth
	How to do it...

	Creating arbitrary sockets
	Getting ready
	How to do it...
	There's more...
	Quickly copying files over the network
	Creating a broadcasting server

	How it works...

	Building a bridge
	Getting ready
	How to do it...

	Sharing an Internet connection
	Getting ready
	How to do it...
	How it works

	Basic firewall using iptables
	How to do it...
	How it works...
	There's more...

	Creating a Virtual Private Network
	Getting ready
	How to do it...
	Creating certificates
	Configuring OpenVPN on the server
	Configuring OpenVPN on the client
	Starting the server
	Starting and testing a client

	Chapter 9: Put On the Monitors Cap
	Introduction
	Monitoring disk usage
	Getting ready
	How to do it...
	There's more...
	Displaying disk usage in KB, MB, or blocks
	Displaying the grand total sum of disk usage
	Printing sizes in specified units
	Excluding files from the disk usage calculation
	Finding the ten largest size files from a given directory
	Disk free information

	Calculating the execution time for a command
	How to do it...
	How it works...

	Collecting information about logged in users, boot logs, and boot failures
	Getting ready
	How to do it...

	Listing the top ten CPU– consuming processes in an hour
	Getting ready
	How to do it...
	How it works...
	See also

	Monitoring command outputs with watch
	How to do it...
	There's more
	Highlighting the differences in the watch output

	Logging access to files and directories
	Getting ready
	How to do it...
	How it works...

	Logging with syslog
	Getting ready
	How to do it...
	See also

	Managing log files with logrotate
	Getting ready
	How to do it...
	How it works...

	Monitoring user logins to find intruders
	Getting ready
	How to do it...
	How it works...

	Monitoring remote disk usage health
	Getting ready
	How to do it...
	How it works...
	See also

	Determining active user hours on a system
	Getting ready
	How to do it...
	How it works...

	Measuring and optimizing power usage
	Getting ready
	How to do it...

	Monitoring disk activity
	Getting ready
	How to do it...

	Checking disks and filesystems for errors
	Getting ready
	How to do it...
	How it works...

	Examining disk health
	Getting ready
	How to do it...
	How it works

	Getting disk statistics
	Getting ready
	How to do it...
	How it works
	There's more

	Chapter 10: Administration Calls
	Introduction
	Gathering information about processes
	Getting ready
	How to do it...
	How it works...
	There's more...
	Showing environment variables for a process
	Creating a tree view of processes
	Sorting ps output
	Filters with ps for real user or ID, effective user or ID
	TTY filter for ps
	Information about process threads
	Specifying the output width and columns to be displayed

	What's what – which, whereis, whatis, and file
	How to do it...
	Finding the process ID from the given command names
	Determining how busy a system is
	The top command

	See also...

	Killing processes, and sending and responding to signals
	Getting ready
	How to do it...
	There's more...
	The kill family of commands
	Capturing and responding to signals

	Sending messages to user terminals
	Getting ready
	How to do it...
	Sending one message to one user
	Holding a conversation with another user
	Sending a message to all users

	The /proc filesystem
	How to do it...

	Gathering system information
	How to do it...

	Scheduling with a cron
	Getting ready
	How to do it...
	How it works...
	There's more...
	Specifying environment variables
	Running commands at system start-up/boot
	Viewing the cron table
	Removing the cron table

	Database styles and uses
	Getting ready
	How to do it...
	There's more...
	Creating a table
	Inserting a row into an SQL database
	Selecting rows from a SQL database

	Writing and reading SQLite databases
	Getting ready
	How to do it...
	How it works...
	There's more...

	Writing and reading a MySQL database from Bash
	Getting ready
	How to do it...
	How it works...

	User administration scripts
	How to do it...
	How it works...

	Bulk image resizing and format conversion
	Getting ready
	How to do it...
	How it works...
	See also

	Taking screenshots from the terminal
	Getting ready
	How to do it...

	Managing multiple terminals from one
	Getting ready
	How to do it...

	Chapter 11: Tracing the Clues
	Introduction
	Tracing packets with tcpdump
	Getting ready
	How to do it...
	Displaying only HTTP packets
	Displaying only HTTP packets generated by this host
	Viewing the packet payload as well as headers

	How it works...

	Finding packets with ngrep
	Getting ready
	How to do it...
	How it works...
	There's more...

	Tracing network routes with ip
	Getting ready
	How to do it...
	Reporting routes with ip route
	Tracing recent IP connections and the ARP table
	Tracing a route
	How it works...

	Tracing system calls with strace
	Getting ready
	How to do it...
	How it works...

	Tracing dynamic library functions with ltrace
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 12: Tuning a Linux System
	Introduction
	Identifying services
	Getting ready
	How to do it...
	systemd-based computers
	RedHat-based computers
	Debian-based computers

	There's more

	Gathering socket data with ss
	Getting ready
	How to do it...
	Displaying the status of tcp sockets
	Tracing applications listening on ports

	How it works

	Gathering system I/O usage with dstat
	Getting ready
	How to do it...
	Viewing system activity

	How it works
	There's more...

	Identifying a resource hog with pidstat
	Getting ready
	How to do it...
	How it works

	Tuning the Linux kernel with sysctl
	Getting started
	How to do it...
	Tuning the task scheduler
	Tuning a network

	How it works
	There's more...

	Tuning a Linux system with config files
	Getting ready
	How to do it...
	How it works

	Changing scheduler priority using the nice command
	How to do it...
	How it works
	There's more

	Chapter 13: Containers, Virtual Machines, and the Cloud
	Introduction
	Using Linux containers
	Getting ready
	How to do it...
	Creating a privileged container
	Starting a container
	Stopping a container
	Listing known containers
	Displaying container information
	Creating an unprivileged container
	Creating an Ethernet bridge

	How it works...

	Using Docker
	Getting ready
	How to do it...
	Finding a container
	Downloading a container
	Starting a Docker container
	Listing the Docker sessions
	Attaching your display to a running Docker container
	Stopping a Docker session
	Removing a Docker instance

	How it works

	Using Virtual Machines in Linux
	Getting ready
	How to do it...

	Linux in the cloud
	Getting ready
	Ubuntu 16.10
	OpenSuSE Tumbleweed

	How to do it...
	Configuring OwnCloud

	There's more...

	Index

