Essential
TypeScript 4

Adam Freeman

Essential TypeScript 4

From Beginner to Pro
2nd ed.

ApPress:

Adam Freeman
London, UK

Any source code or other supplementary material referenced by the author in this
book is available to readers on GitHub via the book’s product page, located at
www.apress.com/9781484270103 . For more detailed information,
please visit www .apress.com/source-code.

ISBN 978-1-4842-7010-3 e-ISBN 978-1-4842-7011-0
https://doi.org/10.1007/978-1-4842-7011-0

© Adam Freeman 2021

This work is subject to copyright. All rights are solely and exclusively licensed
by the Publisher, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or
hereafter developed.

The use of general descriptive names, registered names, trademarks, service
marks, etc. in this publication does not imply, even in the absence of a specific
statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and
information in this book are believed to be true and accurate at the date of
publication. Neither the publisher nor the authors or the editors give a warranty,
expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral
with regard to jurisdictional claims in published maps and institutional
affiliations.

Distributed to the book trade worldwide by Apress Media, LL.C, 1 New York

http://www.apress.com/9781484270103
http://www.apress.com/source-code
https://doi.org/10.1007/978-1-4842-7011-0

Plaza, New York, NY 10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-
4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.
Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

Dedicated to my lovely wife, Jacqui Griffyth.(And also to Peanut.)

Table of Contents

Part I: Getting Started with TypeScript
Chapter 1: Your First TypeScript Application
Getting Ready for This Book
Step 1: Install Node.js
Step 2: Install Git
Step 3: Install TypeScript
Step 4: Install a Programmer’s Editor
Creating the Project
Initializing the Project
Creating the Compiler Configuration File
Adding a TypeScript Code File
Compiling and Executing the Code
Defining the Data Model
Adding Features to the Collection Class
Using a Third-Party Package
Adding Type Declarations for the JavaScript Package
Adding Commands
Filtering Items
Adding Tasks
Marking Tasks Complete
Persistently Storing Data
Applying the Persistent Collection Class
Summary
Chapter 2: Understanding TypeScript
Should You Use TypeScript?
Understanding the TypeScript Developer Productivity Features

Understanding the JavaScript Version Features
What Do You Need to Know?
How Do You Set Up Your Development Environment?
What Is the Structure of This Book?
Are There Lots of Examples?
Where Can You Get the Example Code?
What If You Have Problems Following the Examples?
What If You Find an Error in the Book?
How Do You Contact the Author?
What If You Really Enjoyed This Book?
What If This Book Has Made You Angry and You Want to Complain?
Summary
Chapter 3: JavaScript Primer, Part 1
Preparing for This Chapter
Getting Confused by JavaScript
Understanding JavaScript Types
Working with Primitive Data Types
Understanding Type Coercion
Working with Functions
Working with Arrays
Using the Spread Operator on Arrays
Destructuring Arrays
Working with Objects
Adding, Changing, and Deleting Object Properties
Using the Spread and Rest Operators on Objects
Defining Getters and Setters
Defining Methods

Understanding the this Keyword
Understanding the this Keyword in Stand-Alone Functions
Understanding this in Methods
Changing the Behavior of the this Keyword
Understanding this in Arrow Functions
Returning to the Original Problem

Summary

Chapter 4: JavaScript Primer, Part 2

Preparing for This Chapter

Understanding JavaScript Object Inheritance
Inspecting and Modifying an Object’s Prototype
Creating Custom Prototypes
Using Constructor Functions
Checking Prototype Types
Defining Static Properties and Methods
Using JavaScript Classes

Using Iterators and Generators
Using a Generator
Defining Iterable Objects

Using JavaScript Collections
Storing Data by Key Using an Object
Storing Data by Key Using a Map
Storing Data by Index

Using Modules
Creating a JavaScript Module
Using a JavaScript Module

Exporting Named Features from a Module

Defining Multiple Named Features in a Module
Summary
Chapter 5: Using the TypeScript Compiler
Preparing for This Chapter
Understanding the Project Structure
Using the Node Package Manager
Understanding the TypeScript Compiler Configuration File
Compiling TypeScript Code
Understanding Compiler Errors
Using Watch Mode and Executing the Compiled Code
Using the Version Targeting Feature
Setting the Library Files for Compilation
Selecting a Module Format
Useful Compiler Configuration Settings
Summary
Chapter 6: Testing and Debugging TypeScript
Preparing for This Chapter
Debugging TypeScript Code
Preparing for Debugging
Using Visual Studio Code for Debugging
Using the Integrated Node.js Debugger
Using the Remote Node.js Debugging Feature
Using the TypeScript Linter
Disabling Linting Rules
Unit Testing TypeScript
Configuring the Test Framework

Creating Unit Tests

Starting the Test Framework

Summary

Part II: Working with TypeScript

Chapter 7: Understanding Static Types

Preparing for This Chapter

Understanding Static Types
Creating a Static Type with a Type Annotation
Using Implicitly Defined Static Types
Using the any Type

Using Type Unions

Using Type Assertions
Asserting to an Unexpected Type

Using a Type Guard
Understanding the Never Type

Using the unknown Type

Using Nullable Types
Restricting Nullable Assignments
Removing null from a Union with an Assertion
Removing null from a Union with a Type Guard
Using the Definite Assignment Assertion

Summary

Chapter 8: Using Functions

Preparing for This Chapter

Defining Functions
Redefining Functions
Understanding Function Parameters

Understanding Function Results

Overloading Function Types
Understanding Assert Functions
Summary
Chapter 9: Using Arrays, Tuples, and Enums
Preparing for This Chapter
Working with Arrays
Using Inferred Typing for Arrays
Avoiding Problems with Inferred Array Types
Avoiding Problems with Empty Arrays
Working with Tuples
Processing Tuples
Using Tuple Types
Using Tuples with Optional Elements
Defining Tuples with Rest Elements
Using Enums
Understanding How Enums Work
Using String Enums
Understanding the Limitations of Enums
Using Literal Value Types
Using Literal Value Types in Functions
Mixing Value Types in a Literal Value Type
Using Overrides with Literal Value Types
Using Template Literal String Types
Using Type Aliases
Summary
Chapter 10: Working with Objects
Preparing for This Chapter

Working with Objects
Using Object Shape Type Annotations
Understanding How Shape Types Fit
Using Type Aliases for Shape Types
Dealing with Excess Properties
Using Shape Type Unions
Understanding Union Property Types
Using Type Guards for Objects

Using Type Intersections
Using Intersections for Data Correlation
Understanding Intersection Merging

Summary

Chapter 11: Working with Classes and Interfaces

Preparing for This Chapter

Using Constructor Functions

Using Classes
Using the Access Control Keywords
Using JavaScript Private Fields
Defining Read-Only Properties
Simplifying Class Constructors
Using Class Inheritance
Using an Abstract Class

Using Interfaces
Implementing Multiple Interfaces
Extending Interfaces
Defining Optional Interface Properties and Methods

Defining an Abstract Interface Implementation

Type Guarding an Interface
Dynamically Creating Properties
Enabling Index Value Checking
Summary
Chapter 12: Using Generic Types
Preparing for This Chapter
Understanding the Problem
Adding Support for Another Type
Creating Generic Classes
Understanding Generic Type Arguments
Using Different Type Arguments
Constraining Generic Type Values
Defining Multiple Type Parameters
Allowing the Compiler to Infer Type Arguments
Extending Generic Classes
Type Guarding Generic Types
Defining a Static Method on a Generic Class
Defining Generic Interfaces
Extending Generic Interfaces
Implementing a Generic Interface
Summary
Chapter 13: Advanced Generic Types
Preparing for This Chapter
Using Generic Collections
Using Generic Iterators
Combining an Iterable and an Iterator

Creating an Iterable Class

Using Index Types
Using the Index Type Query
Explicitly Providing Generic Type Parameters for Index Types
Using the Indexed Access Operator
Using an Index Type for the Collection<T> Class
Using Type Mapping
Changing Mapping Names and Types
Using a Generic Type Parameter with a Mapped Type
Changing Property Optionality and Mutability
Using the Basic Built-in Mappings
Combining Transformations in a Single Mapping
Creating Types with a Type Mapping
Using Conditional Types
Nesting Conditional Types
Using Conditional Types in Generic Classes
Using Conditional Types with Type Unions
Using Conditional Types in Type Mappings
Identifying Properties of a Specific Type
Inferring Additional Types in Conditions
Summary
Chapter 14: Working with JavaScript
Preparing for This Chapter
Adding the TypeScript Code to the Example Project
Working with JavaScript
Including JavaScript in the Compilation Process
Type Checking JavaScript Code
Describing Types Used in JavaScript Code

Using Comments to Describe Types
Using Type Declaration Files
Describing Third-Party JavaScript Code
Using Definitely Typed Declaration Files
Using Packages That Include Type Declarations
Generating Declaration Files
Summary
Part II1: Creating Web Applications
Chapter 15: Creating a Stand-Alone Web App, Part 1
Preparing for This Chapter
Creating the Toolchain
Adding a Bundler
Adding a Development Web Server
Creating the Data Model
Creating the Data Source
Rendering HTML Content Using the DOM API
Adding Support for Bootstrap CSS Styles
Using JSX to Create HTML Content
Understanding the JSX Workflow
Configuring the TypeScript Compiler and the Webpack Loader
Creating the Factory Function
Using the JSX Class
Importing the Factory Function in the JSX Class
Adding Features to the Application
Displaying a Filtered List of Products
Displaying Content and Handling Updates

Summary

Chapter 16: Creating a Stand-Alone Web App, Part 2
Preparing for This Chapter
Adding a Web Service
Incorporating the Data Source into the Application
Using Decorators
Using Decorator Metadata
Completing the Application
Adding a Header Class
Adding an Order Details Class
Adding a Confirmation Class
Completing the Application
Deploying the Application
Adding the Production HTTP Server Package
Creating the Persistent Data File
Creating the Server
Using Relative URL:s for Data Requests
Building the Application
Testing the Production Build
Containerizing the Application
Installing Docker
Preparing the Application
Creating the Docker Container
Running the Application
Summary
Chapter 17: Creating an Angular App, Part 1
Preparing for This Chapter
Configuring the Web Service

Configuring the Bootstrap CSS Package
Starting the Example Application
Understanding TypeScript in Angular Development
Understanding the Angular TypeScript Compiler Configuration
Creating the Data Model
Creating the Data Source
Creating the Data Source Implementation Class
Configuring the Data Source
Displaying a Filtered List of Products
Displaying the Category Buttons
Creating the Header Display
Combining the Product, Category, and Header Components
Configuring the Application

Summary

Chapter 18: Creating an Angular App, Part 2

Preparing for This Chapter
Completing the Example Application Features
Adding the Summary Component
Creating the Routing Configuration
Deploying the Application
Adding the Production HTTP Server Package
Creating the Persistent Data File
Creating the Server
Using Relative URL:s for Data Requests
Building the Application
Testing the Production Build

Containerizing the Application

Preparing the Application
Creating the Docker Container
Running the Application
Summary
Chapter 19: Creating a React App
Preparing for This Chapter
Configuring the Web Service
Installing the Bootstrap CSS Package
Starting the Example Application
Understanding TypeScript in React Development
Defining the Entity Types
Displaying a Filtered List of Products
Using a Functional Component and Hooks
Displaying a List of Categories and the Header
Composing and Testing the Components
Creating the Data Store
Creating the HTTP Request Class
Connecting the Data Store to the Components
Summary
Chapter 20: Creating a React App, Part 2
Preparing for This Chapter
Configuring URL Routing
Completing the Example Application Features
Adding the Order Summary Component
Adding the Confirmation Component
Completing the Routing Configuration
Deploying the Application

Adding the Production HTTP Server Package
Creating the Persistent Data File
Creating the Server
Using Relative URL:s for Data Requests
Building the Application
Testing the Production Build
Containerizing the Application
Preparing the Application
Creating the Docker Container
Running the Application
Summary
Chapter 21: Creating a Vue.js App, Part 1
Preparing for This Chapter
Configuring the Web Service
Configuring the Bootstrap CSS Package
Starting the Example Application
Understanding TypeScript in Vue.js Development
Understanding the TypeScript Vue.js Toolchain
Creating the Entity Classes
Displaying a Filtered List of Products
Displaying a List of Categories and the Header
Composing and Testing the Components
Creating the Data Store
Connecting Components to the Data Store
Adding Support for the Web Service
Summary

Chapter 22: Creating a Vue.js App, Part 2

Preparing for This Chapter
Configuring URL Routing
Completing the Example Application Features
Adding the Order Summary Component
Adding the Confirmation Component
Completing the Routing Configuration
Deploying the Application
Adding the Production HTTP Server Package
Creating the Persistent Data File
Creating the Server
Using Relative URLs for Data Requests
Building the Application
Testing the Production Build
Containerizing the Application
Preparing the Application
Creating the Docker Container
Running the Application
Summary

Index

About the Author

Adam Freeman

is an experienced IT professional who has held
senior positions in a range of companies, most
recently serving as chief technology officer and
chief operating officer of a global bank. Now
retired, he spends his time writing and long-
distance running.

About the Technical Reviewer

Fabio Claudio Ferracchiati

is a senior consultant and a senior analyst/developer using Microsoft
technologies. He works for BluArancio (www.bluarancio.com). Heisa
Microsoft Certified Solution Developer for .NET, a Microsoft Certified
Application Developer for .NET, a Microsoft Certified Professional, and a
prolific author and technical reviewer. Over the past ten years, he’s written
articles for Italian and international magazines and coauthored more than ten
books on a variety of computer topics.

http://www.bluarancio.com

Part 1
Getting Started with TypeScript

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2021
A. Freeman, Essential TypeScript 4
https://doi.org/10.1007/978-1-4842-7011-0_1

1. Your First TypeScript Application

Adam Freeman'
(1) London, UK

The best way to get started with TypeScript is to dive in. In this chapter, I take
you through a simple development process to create an application that keeps
track of to-do items. Later chapters show how TypeScript features work in detail,
but a simple example will be enough to demonstrate how the basic TypeScript
features work. Don’t worry if you don’t understand everything in this chapter.
The idea is just to get an overall sense of how TypeScript works and how it fits
into an application.

Getting Ready for This Book

Four packages are required to get ready for this book. Perform each installation
described in the following sections and run the test provided for each of them to
ensure that the packages work as they should.

Step 1: Install Node.js

First, download and install Node.js, also known as Node, from
https://nodejs.org/dist/v14.15. 4. This URL provides the
installers for all supported platforms for the 14.15.4 release, which is the version
that I use in this book. During the installation, ensure that Node Package
Manager (NPM) is selected for installation. Once the installation is complete,
open a new command prompt and run the commands shown Listing 1-1 to check
that Node and NPM are working.

node --version
npm --version

Listing 1-1. Checking Node and NPM

https://doi.org/10.1007/978-1-4842-7011-0_1
https://nodejs.org/dist/v14.15.4

The output from the first command should be v14.15. 4, indicating that
Node is working and the correct version has been installed. The output from the
second command should be 6 .14 .10, which indicates that NPM is working.

Step 2: Install Git

The second task is to download and install the Git version management tool
from https://git-scm.com/downloads. Gitisn’t required directly for
TypeScript development, but some of the most commonly used packages depend
on it. Once you have completed the installation, use a command prompt to run
the command shown in Listing 1-2 to check that Git is working.

git --version

Listing 1-2. Checking Git
At the time of writing, the latest version of Git for all platforms is 2.30.0.

Step 3: Install TypeScript

The third step is to install the TypeScript package. Use a command prompt to run
the command shown in Listing 1-3.

npm install --global typescript@4.2.2

Listing 1-3. Installing the TypeScript Package

Once the package has been installed, run the command shown in Listing 1-4
to ensure that the compiler was installed correctly.

tsc --version

Listing 1-4. Testing the TypeScript Compiler

The TypeScript compiler is called tsc, and the output from the command in
Listing 1-4 should be Version 4.2.2.

Step 4: Install a Programmer’s Editor

The final step is to install a programmer’s editor that supports TypeScript. Most
popular editors can be used for TypeScript development, but if you don’t have a
preferred editor, then download and install Visual Studio Code from
https://code.visualstudio.com. Visual Studio Code is an open-
source, cross-platform code editor that is free to use and is the editor I used

https://git-scm.com/downloads
https://code.visualstudio.com

while writing the examples for this book.

If you are using Visual Studio Code, run the command code to start the
editor or use the program icon created during installation, and you will see the
welcome screen shown in Figure 1-1. (You may need to add Visual Studio Code
to your command prompt path before using the code command.)

X) File Edit Selection View Go Debug Terminal Help Welcome - Visual Studio Code = O X

) Welcome X (o] 0 @

of Vim, Sublime, Ato

Figure 1-1. The Visual Studio Code welcome screen

Tip Some editors will let you specify a different version of TypeScript than
the one contained in the project, which can cause errors to be displayed in the
code editor even when the command-line tools show successful compilation.
If you are using Visual Studio Code, for example, you will see the version of
TypeScript that is used displayed at the bottom right of the editor window
when you edit a TypeScript file. Click the version that is shown, click Select
TypeScript Version, and select the version you require.

Creating the Project

To get started with TypeScript, I am going to build a simple to-do list
application. The most common use for TypeScript is web application

development, which I demonstrate for the most popular frameworks (Angular,
React, and Vue) in Part 3 of this book. But for this chapter, I build a command-
line application that will keep the focus on TypeScript and avoid the complexity
of a web application framework.

The application will display a list of tasks, allow new tasks to be created, and
allow existing tasks to be marked as complete. There will also be a filter to
include already completed tasks in the list. Once the core features are in place, I
will add support for storing data persistently so that changes are not lost when
the application is terminated.

Initializing the Project

To prepare a project folder for this chapter, open a command prompt, navigate to
a convenient location, and create a folder named todo. Run the commands
shown in Listing 1-5 to navigate into the folder and initialize it for development.

cd todo
npm init --yes

Listing 1-5. Initializing the Project Folder

The npm 1init command creates a package . json file, which is used to
keep track of the packages required by the project and also to configure the
development tools.

Creating the Compiler Configuration File

The TypeScript package installed in Listing 1-3 includes a compiler, named

t sc, which compiles TypeScript code to produce pure JavaScript. To define the
configuration for the TypeScript compiler, create a file called

tsconfig. json in the todo folder with the content shown in Listing 1-6.

{
"compilerOptions": {
"target": "es2018",

"outDir": "./dist",
"rootDir": "./src",
"module": "commonjs"

}

Listing 1-6. The Contents of the tsconfig.json File in the todo Folder

I describe the TypeScript compiler in Chapter 5, but these settings tell the
compiler that I want to use the latest version of JavaScript, that the project’s
TypeScript files will be found in the src folder, that the output it produces
should be placed in the dist folder, and that the commonjs standard should be
used for loading code from separate files.

Adding a TypeScript Code File

TypeScript code files have the ts file extension. To add the first code file to the
project, create the todo/src folder and add to it a file called index. ts with
the code shown in Listing 1-7. This file follows the popular convention of
calling the main file for an application 1ndex, followed by the ts file extension
to indicate the file contains JavaScript code.

console.clear();
console.log("Adam's Todo List");

Listing 1-7. The Contents of the index.ts File in the src Folder

The file contains regular JavaScript statements that use the console object
to clear the command-line window and write out a simple message, which is just
enough functionality to make sure that everything is working before starting on
the application features.

Compiling and Executing the Code

TypeScript files must be compiled to produce pure JavaScript code that can be
executed by browsers or the Node.js runtime installed at the start of this chapter.
Use the command line to run the compiler in the todo folder using the
command in Listing 1-8.

tsc

Listing 1-8. Running the TypeScript Compiler

The compiler reads the configuration settings in the tsconfig. json file
and locates the TypeScript files in the src folder. The compiler creates the
dist folder and uses it to write out the JavaScript code. If you examine the
dist folder, you will see that it contains an index. js file, where the js file
extension indicates the file contains JavaScript code. If you examine the contents
of the index. js file, you will see that it contains the following statements:

console.clear();
console.log("Adam's Todo List");

The TypeScript file and the JavaScript file contain the same statements
because I have not yet used any TypeScript features. As the application starts to
take shape, the contents of the TypeScript file will start to diverge from the
JavaScript files that the compiler produces.

Caution Do not make changes to the files in the dist folder because they
will be overwritten the next time the compiler runs. In TypeScript
development, changes are made to files with the t s extension, which are
compiled into JavaScript files with the j s extension.

To execute the compiled code, use the command prompt to run the command
shown in Listing 1-9 in the todo folder.

node dist/index.js

Listing 1-9. Executing the Compiled Code

The node command starts the Node.js JavaScript runtime, and the argument
specifies the file whose contents should be executed. If the development tools
have been installed successfully, the command-prompt window should be
cleared and display the following output:

Adam's Todo List

Defining the Data Model

The example application will manage a list of to-do items. The user will be able
to see the list, add new items, mark items as complete, and filter the items. In
this section, I start using TypeScript to define the data model that describes the
application’s data and the operations that can be performed on it. To start, add a
file called todoItem. ts to the src folder with the code shown in Listing 1-
10.

export class TodoItem {
public id: number;
public task: string;
public complete: boolean = false;

public constructor(id: number, task: string,
complete: boolean = false) {
this.id = id;
this.task = task;
this.complete = complete;

}

public printDetails() : void {
console.log(${this.id}\t${this.task}
${this.complete
? "\t(complete)": ""});
}

}

Listing 1-10. The Contents of the todolItem.ts File in the src Folder

Classes are templates that describe a data type. I describe classes in detail in
Chapter 4, but the code in Listing 1-10 will look familiar to any programmer
with knowledge of languages such as C# or Java, even if not all of the details are
obvious.

The class in Listing 1-10 is named TodoItem, and it defines 1d, task, and
complete properties and a printDetails method that writes a summary of
the to-do item to the console. TypeScript is built on JavaScript, and the code in
Listing 1-10 is a mix of standard JavaScript features with enhancements that are
specific to TypeScript. JavaScript supports classes with constructors, properties,
and methods, for example, but features such as access control keywords (such as
the public keyword) are provided by TypeScript. The headline TypeScript
feature is static typing, which allows the type of each property and parameter in
the TodoItem class to be specified, like this:

public id: number;

This is an example of a type annotation, and it tells the TypeScript compiler
that the 1d property can only be assigned values of the number type. As I
explain Chapter 3, JavaScript has a fluid approach to types, and the biggest
benefit that TypeScript provides is making data types more consistent with other
programming languages while still allowing access to the normal JavaScript
approach when needed.

Tip Don’t worry if you are not familiar with the way that JavaScript
handles data types. Chapters 3 and 4 provide details about the JavaScript
features you need to understand to be effective with TypeScript.

I wrote the class in Listing 1-10 to emphasize the similarity between TypeScript
and languages such as C# and Java, but this isn’t the way that TypeScript classes
are usually defined. Listing 1-11 revises the TodoItem class to use TypeScript
features that allow classes to be defined concisely.

export class TodoItem {

constructor(public id: number,
public task: string,
public complete: boolean = false) {
// no statements required

}

printDetails() : void {
console.log(${this.id}\t${this. task}
${this.complete
? "\t(complete)": ""}");
}

}

Listing 1-11. Using More Concise Code in the todoItem.ts File in the src Folder

Support for static data types is only part of the broader TypeScript objective
of safer and more predictable JavaScript code. The concise syntax used for the
constructor in Listing 1-11 allows the TodoItem class to receive parameters
and use them to create instance properties in a single step, avoiding the error-
prone process of defining a property and explicitly assigning it the value
received by a parameter.

The change to the printDetails method removes the public access
control keyword, which isn’t needed because TypeScript assumes that all
methods and properties are public unless another access level is used. (The
public keyword is still used in the constructor because that’s how the
TypeScript compiler recognizes that the concise constructor syntax is being used,
as explained in Chapter 11.)

Creating the Todo Item Collection Class

The next step is to create a class that will collect together the to-do items so they
can be managed more easily. Add a file named todoCollection. ts to the
src folder with the code shown in Listing 1-12.

import { TodoItem } from "./todoItem";

export class TodoCollection {
private nextId: number = 1;

constructor(public userName: string, public
todoItems: TodoItem[] = []) {
// no statements required
}

addTodo(task: string): number {
while (this.getTodoById(this.nextId)) {
this.nextId++;

}
this.todoItems.push(new TodoItem(this.nextId,
task));
return this.nextId;
}

getTodoById(id: number) : TodoItem {
return this.todoItems.find(item => item.id ===
id);
}

markComplete(id: number, complete: boolean) {
const todoItem = this.getTodoById(id);
if (todolItem) {
todoItem.complete = complete;
}

}

Listing 1-12. The Contents of the todoCollection.ts File in the src Folder

Checking the Basic Data Model Features

Before going any further, I am going to make sure the initial features of the
TodoCollection class work as expected. I explain how to perform unit
testing for TypeScript projects in Chapter 6, but for this chapter, it will be
enough to create some TodoItem objects and store them in a
TodoCollection object. Listing 1-13 replaces the code in the index. ts
file, removing the placeholder statements added at the start of the chapter.

import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";

let todos = [

new TodoItem(1, "Buy Flowers'"), new TodoItem(2,
"Get Shoes"),

new TodoItem(3, "Collect Tickets"), new
TodoItem(4, "Call Joe", true)];

let collection = new TodoCollection("Adam", todos);

console.clear();
console.log(${collection.userName}'s Todo List);

let newId = collection.addTodo("Go for run");
let todoItem = collection.getTodoById(newId);
console.log(JSON.stringify(todoItem));

Listing 1-13. Testing the Data Model in the index.ts File in the src Folder

All the statements shown in Listing 1-13 use pure JavaScript features. The
import statements are used to declare dependencies on the TodoItem and
TodoCollection classes, and they are part of the JavaScript modules feature,
which allows code to be defined in multiple files (described in Chapter 4).
Defining an array and using the new keyword to instantiate classes are also
standard features, along with the calls to the console object.

Note The code in Listing 1-13 uses features that are recent additions to the
JavaScript language. As I explain in Chapter 5, the TypeScript compiler
makes it easy to use modern JavaScript features, such as the 1et keyword,
even when they are not supported by the JavaScript runtime that will execute
the code, such as older browsers. The JavaScript features that are essential to
understand for effective TypeScript development are described in Chapters 3

and 4.

The TypeScript compiler tries to help developers without getting in the way.
During compilation, the compiler looks at the data types that are used and the
type information I applied in the TodoItem and TodoCollection classes
and can infer the data types used in Listing 1-13. The result is code that doesn’t
contain any explicit static type information but that the compiler can check for
type safety anyway. To see how this works, Listing 1-14 adds a statement to the
index. ts file.

import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";

let todos = [

new TodoItem(1, "Buy Flowers'"), new TodoItem(2,
"Get Shoes"),

new TodoItem(3, "Collect Tickets"), new
TodoItem(4, "Call Joe", true)];

let collection = new TodoCollection("Adam", todos);

console.clear();
console.log(${collection.userName}'s Todo List);

let newId = collection.addTodo("Go for run");
let todoItem = collection.getTodoById(newId);
todoItem.printDetails();

collection.addTodo(todoItem);

Listing 1-14. Adding a Statement in the index.ts File in the src Folder

The new statement calls the TodoCollection.addTodo method using a
TodoItem object as the argument. The compiler looks at the definition of the
addTodo method in the todoItem. ts file and can see that the method
expects to receive a different type of data.

addTodo(task: string): number {
while (this.getTodoById(this.nextId)) {

this.nextId++;
}
this.todoItems.push(new TodoItem(this.nextId,
task));
return this.nextId;

}

The type information for the addTodo method tells the TypeScript compiler
that the task parameter must be a String and that the result will be a
number. (The string and number types are built-in JavaScript features and
are described in Chapter 3.) Run the command shown in Listing 1-15 in the
todo folder to compile the code.

tsc

Listing 1-15. Running the Compiler

The TypeScript compiler processes the code in the project, detects that the
parameter value used to call the addTodo method isn’t the correct data type,
and produces the following error:

src/index.ts:17:20 - error TS2345: Argument of type
'"TodoItem' is not assignable to parameter of type
'string'.

17 collection.addTodo(todoItem);

—~— i~~~ o~ o~~~

Found 1 error.

TypeScript does a good job of figuring out what is going on and identifying
problems, allowing you to add as much or as little type information as you like
in a project. In this book, I tend to add type information to make the listings
easier to follow, since many of the examples in this book are related to how the
TypeScript compiler handles data types. Listing 1-16 adds types to the code in
the index. ts file and disables the statement that causes the compiler error.

import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";

let todos: TodoItem[] = [

new TodoItem(1, "Buy Flowers'"), new TodoItem(2,
"Get Shoes"),

new TodoItem(3, "Collect Tickets"), new
TodoItem(4, "Call Joe", true)];

let collection: TodoCollection = new
TodoCollection("Adam", todos);

console.clear();
console.log(${collection.userName}'s Todo List);

let newId: number = collection.addTodo("Go for run");
let todoItem: TodoItem =
collection.getTodoById(newId);
todoItem.printDetails();

//collection.addTodo(todoItem);

Listing 1-16. Adding Type Information in the index.ts File in the src Folder

The type information added to the statements in Listing 1-16 doesn’t change
the way the code works, but it does make the data types being used explicit,
which can make the purpose of code easier to understand and doesn’t require the
compiler to infer the data types being used. Run the commands shown in Listing
1-17 in the todo folder to compile and execute the code.

tsc
node dist/index.js

Listing 1-17. Compiling and Executing
When the code is executed, the following output will be produced:

Adam's Todo List
5 Go for run

Adding Features to the Collection Class

The next step is to add new capabilities to the TodoCollection class. First, I
am going to change the way that TodoItem objects are stored so that a
JavaScript Map is used, as shown in Listing 1-18.

import { TodoItem } from "./todoItem";

export class TodoCollection {
private nextId: number = 1;
private itemMap = new Map<number, TodoItem>();

constructor(public userName: string, todoItems:

TodoItem[] = []) {
todoItems.forEach(item =>
this.itemMap.set(item.id, item));

}

addTodo(task: string): number {
while (this.getTodoById(this.nextId)) {
this.nextId++;
}

this.itemMap.set(this.nextId, new
TodoItem(this.nextId, task));
return this.nextId;
}

getTodoById(id: number) : TodoItem {
return this.itemMap.get(id);
}

markComplete(id: number, complete: boolean) {
const todoItem = this.getTodoById(id);
if (todolItem) {
todoItem.complete = complete;
}

}

Listing 1-18. Using a Map in the todoCollection.ts File in the src Folder

TypeScript supports generic types, which are placeholders for types that are
resolved when an object is created. The JavaScript Map, for example, is a
general-purpose collection that stores key/value pairs. Because JavaScript has
such a dynamic type system, a Map can be used to store any mix of data types
using any mix of keys. To restrict the types that can be used with the Map in

Listing 1-18, I provided generic type arguments that tell the TypeScript compiler
which types are allowed for the keys and values.

private itemMap = new Map<number, TodoItem>();

The generic type arguments are enclosed in angle brackets (the < and >
characters), and the Map in Listing 1-18 is given generic type arguments that tell
the compiler that the Map will store TodoItem objects using number values
as keys. The compiler will produce an error if a statement attempts to store a
different data type in the Map or use a key that isn’t a number value. Generic

types are an important TypeScript feature and are described in detail in Chapter
12.

Providing Access to To-Do Items

The TodoCollection class defines a getTodoById method, but the
application will need to display a list of items, optionally filtered to exclude
completed tasks. Listing 1-19 adds a method that provides access to the
TodoItem objects that the TodoCollection is managing.

import { TodoItem } from "./todoItem";

export class TodoCollection {
private nextId: number = 1;
private itemMap = new Map<number, TodoItem>();

constructor(public userName: string, todoItems:
TodoItem[] = []) {
todoItems.forEach(item =>
this.itemMap.set(item.id, item));

}

addTodo(task: string): number {
while (this.getTodoById(this.nextId)) {
this.nextId++;
}

this.itemMap.set(this.nextId, new
TodoItem(this.nextId, task));

return this.nextId;

}

getTodoById(id: number) : TodoItem {
return this.itemMap.get(id);
}

getTodoItems(includeComplete: boolean): TodoItem[]

return [...this.itemMap.values()]
.filter(item => includeComplete ||
litem.complete);

}

markComplete(id: number, complete: boolean) {
const todoItem = this.getTodoById(id);
if (todolItem) {
todoItem.complete = complete;
}

}

Listing 1-19. Providing Access to Items in the todoCollection.ts File in the src Folder

The getTodoItems method gets the objects from the Map using its
values method and uses them to create an array using the JavaScript
spread operator, which is three periods. The objects are processed using the
filter method to select the objects that are required, using the
includeComplete parameter to decide which objects are needed.

The TypeScript compiler uses the information it has been given to follow the
types through each step. The generic type arguments used to create the Map tell
the compiler that it contains TodoItem objects, so the compiler knows that the
values method will return TodoItem objects and that this will also be the
type of the objects in the array. Following this through, the compiler knows that
the function passed to the filter method will be processing TodoItem
objects and knows that each object will define a complete property. If I try to
read a property or method not defined by the TodoItem class, the TypeScript
compiler will report an error. Similarly, the compiler will report an error if the
result of the return statement doesn’t match the result type declared by the

method.

In Listing 1-20, I have updated the code in the index. ts file to use the
new TodoCollection class feature and display a simple list of to-do items to
the user.

import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";

let todos: TodoItem[] = [

new TodoItem(1, "Buy Flowers'"), new TodoItem(2,
"Get Shoes"),

new TodoItem(3, "Collect Tickets"), new
TodoItem(4, "Call Joe", true)];

let collection: TodoCollection = new
TodoCollection("Adam", todos);

console.clear();
console.log(${collection.userName}'s Todo List);

//collection.addTodo(todoItem);
collection.getTodoItems(true).forEach(item =>
item.printDetails());

Listing 1-20. Getting the Collection Items in the index.ts File in the src Folder

The new statement calls the getTodoItems method defined in Listing 1-
19 and uses the standard JavaScript forEach method to write a description of
each TodoItem object using the console object.

Run the commands shown in Listing 1-21 in the todo folder to compile and
execute the code.

tsc
node dist/index.js

Listing 1-21. Compiling and Executing
When the code is executed, the following output will be produced:

Adam's Todo List
1 Buy Flowers

2 Get Shoes
3 Collect Tickets
4 Call Joe (complete)

Removing Completed Tasks

As tasks are added and then marked complete, the number of items in the
collection will grow and eventually become difficult for the user to manage.
Listing 1-22 adds a method that removes the completed items from the
collection.

import { TodoItem } from "./todoItem";

export class TodoCollection {
private nextId: number = 1;
private itemMap = new Map<number, TodoItem>();

constructor(public userName: string, todoItems:
TodoItem[] = []) {
todoItems.forEach(item =>
this.itemMap.set(item.id, item));

}

addTodo(task: string): number {
while (this.getTodoById(this.nextId)) {
this.nextId++;
}

this.itemMap.set(this.nextId, new

TodoItem(this.nextId, task));
return this.nextId;
}

getTodoById(id: number) : TodoItem {
return this.itemMap.get(id);
}

getTodoItems(includeComplete: boolean): TodoItem[]

return [...this.itemMap.values()]
.filter(item => includeComplete ||

litem.complete);

}

markComplete(id: number, complete: boolean) {
const todoItem = this.getTodoById(id);
if (todolItem) {
todoItem.complete = complete;
}

}

removeComplete() {
this.itemMap.forEach(item => {
if (item.complete) {
this.itemMap.delete(item.id);
}

})
}

Listing 1-22. Removing Completed Items from the todoCollection.ts File in the src Folder

The removeComplete method uses the Map . forEach method to
inspect each TodoItem stored in the Map and calls the delete method for
those whose complete property is true. Listing 1-23 updates the code in the
index. ts file to invoke the new method.

import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";

let todos: TodoItem[] = [

new TodoItem(1, "Buy Flowers'"), new TodoItem(2,
"Get Shoes"),

new TodoItem(3, "Collect Tickets"), new
TodoItem(4, "Call Joe", true)];

let collection: TodoCollection = new
TodoCollection("Adam", todos);

console.clear();
console.log(${collection.userName}'s Todo List);

//collection.addTodo(todoItem);
collection.removeComplete();
collection.getTodoItems(true).forEach(item =>
item.printDetails());

Listing 1-23. Testing Item Removal in the index.ts File in the src Folder

Run the commands shown in Listing 1-24 in the todo folder to compile and
execute the code.

tsc
node dist/index.js

Listing 1-24. Compiling and Executing

When the code is executed, the following output will be produced, showing
that the completed task has been removed from the collection:

Adam's Todo List

1 Buy Flowers
2 Get Shoes
3 Collect Tickets

Providing Item Counts

The final feature I need for the TodoCollection class is to provide counts of
the total number of TodoItem objects, the number that are complete, and the
number still outstanding.

I have focused on classes in earlier listings because this is the way that most
programmers are used to creating data types. JavaScript objects can also be
defined using literal syntax, for which TypeScript can check and enforce static
types in the same way as for objects created from classes. When dealing with
object literals, the TypeScript compiler focuses on the combination of property
names and the types of their values, which is known as an object’s shape. A
specific combination of names and types is known as a shape type. Listing 1-25
adds a method to the TodoCollection class that returns an object that
describes the items in the collection.

import { TodoItem } from "./todoItem";

type ItemCounts = {
total: number,

incomplete: number

}

export class TodoCollection {
private nextId: number = 1;
private itemMap = new Map<number, TodoItem>();

constructor(public userName: string, todoItems:
TodoItem[] = []) {
todoItems.forEach(item =>
this.itemMap.set(item.id, item));

}

addTodo(task: string): number {
while (this.getTodoById(this.nextId)) {
this.nextId++;
}

this.itemMap.set(this.nextId, new
TodoItem(this.nextId, task));
return this.nextId;
}

getTodoById(id: number) : TodoItem {
return this.itemMap.get(id);
}

getTodoItems(includeComplete: boolean): TodoItem[]

return [...this.itemMap.values()]
.filter(item => includeComplete ||
litem.complete);

}

markComplete(id: number, complete: boolean) {
const todoItem = this.getTodoById(id);
if (todolItem) {
todoItem.complete = complete;
}

removeComplete() {
this.itemMap.forEach(item => {
if (item.complete) {
this.itemMap.delete(item.id);

}
3)
}
getItemCounts(): ItemCounts {
return {
total: this.itemMap.size,
incomplete:
this.getTodoItems(false).length
};
}

Listing 1-25. Using a Shape Type in the todoCollection.ts File in the src Folder

The type keyword is used to create a type alias, which is a convenient way
to assign a name to a shape type. The type alias in Listing 1-25 describes objects
that have two number properties, named total and incomplete. The type
alias is used as the result of the getItemCounts method, which uses the
JavaScript object literal syntax to create an object whose shape matches the type
alias. Listing 1-26 updates the 1ndex. ts file so that the number of incomplete
items is displayed to the user.

import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";

let todos: TodoItem[] = [

new TodoItem(1, "Buy Flowers'"), new TodoItem(2,
"Get Shoes"),

new TodoItem(3, "Collect Tickets"), new
TodoItem(4, "Call Joe", true)];

let collection: TodoCollection = new
TodoCollection("Adam", todos);

console.clear();

console.log(${collection.userName}'s Todo List

+ " (${ collection.getItemCounts().incomplete }
items to do));
collection.getTodoItems(true).forEach(item =>
item.printDetails());

Listing 1-26. Displaying Item Counts in the index.ts File in the src Folder

Run the commands shown in Listing 1-27 in the todo folder to compile and
execute the code.

tsc
node dist/index.js

Listing 1-27. Compiling and Executing
When the code is executed, the following output will be produced:

Adam's Todo List (3 items to do)

1 Buy Flowers

2 Get Shoes

3 Collect Tickets

4 Call Joe (complete)

Using a Third-Party Package

One of the joys of writing JavaScript code is the ecosystem of packages that can
be incorporated into projects. TypeScript allows any JavaScript package to be
used but with the addition of static type support. I am going to use the excellent
Inquirer.js package
(https://github.com/SBoudrias/Inquirer.Jjs)to deal with
prompting the user for commands and processing responses. To add Inquirer.js to
the project, run the command shown in Listing 1-28 in the todo folder.

npm install inquirer@7.3.3

Listing 1-28. Adding a Package to the Project

Packages are added to TypeScript projects just as they are for pure JavaScript
projects, using the npm install command. To get started with the new
package, I added the statements shown in Listing 1-29 to the indeX. ts file.

https://github.com/SBoudrias/Inquirer.js

import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";
import * as inquirer from 'inquirer';

let todos: TodoItem[] = [

new TodoItem(1, "Buy Flowers'"), new TodoItem(2,
"Get Shoes"),

new TodoItem(3, "Collect Tickets"), new
TodoItem(4, "Call Joe", true)];

let collection: TodoCollection = new
TodoCollection("Adam", todos);

function displayTodolList(): void {
console.log(${collection.userName}'s Todo List °
+ " (${ collection.getItemCounts().incomplete }
items to do));
collection.getTodoItems(true).forEach(item =>
item.printDetails());

}

enum Commands {
Quit = "Quit"
}

function promptUser(): void {
console.clear();
displayTodolList();
inquirer.prompt({
type: "list",
name: "command",
message: "Choose option",
choices: Object.values(Commands)
}) . then(answers => {
if (answers["command"] !== Commands.Quit) {
promptUser();
}

})

promptUser();

Listing 1-29. Using a New Package in the index.ts File in the src Folder

TypeScript doesn’t get in the way of using JavaScript code, and the changes
in Listing 1-29 make use of the Inquirer.js package to prompt the user and offer a
choice of commands. There is only one command available currently, which is
Quit, but I’ll add more useful features shortly.

Tip [don’t describe the Inquirer.js API in detail in this book because it is
not directly related to TypeScript. See
https://github.com/SBoudrias/Inquirer. js for details if you
want to use Inquirer.js in your own projects.

The inquirer.prompt method is used to prompt the user for a response and
is configured using a JavaScript object. The configuration options I have chosen
present the user with a list that can be navigated using the arrow keys, and a
selection can be made by pressing Return. When the user makes a selection, the
function passed to the then method is invoked, and the selection is available
through the answers.command property.

Listing 1-29 shows how TypeScript code and the JavaScript code from the
Inquirer.js package can be used seamlessly together. The enum keyword is a
TypeScript feature that allows values to be given names, as described in Chapter
9, and will allow me to define and refer to commands without needing to
duplicate string values through the application. Values from the enum are used
alongside the Inquirer.js features, like this:

if (answers['"command"] !== Commands.Quit) {

Run the commands shown in Listing 1-30 in the todo folder to compile and
execute the code.

tsc
node dist/index.js

Listing 1-30. Compiling and Executing

When the code is executed, the list of to-do items will be displayed, along

https://github.com/SBoudrias/Inquirer.js

with a prompt to select a command, as shown in Figure 1-2, although there is
only one command available.

E¥ Windows PowerShell , . : = o X

Adam's Todo List (3 items to do)
1 Buy Flowers

2 Get Shoes

3 Collect Tickets
|

call Joe (complete)
Choose option

Quit

Figure 1-2. Prompting the user for a command

If you press the Return key, the Quit command will be selected, and the
application will terminate.

Adding Type Declarations for the JavaScript Package

TypeScript doesn’t prevent JavaScript code from being used, but it isn’t able to
provide any assistance for its use. The compiler doesn’t have any insight into the
data types that are being used by Inquirer.js and has to trust that I am using the
right types of arguments to prompt the user and that I am processing the
response objects safely.

There are two ways to provide TypeScript with the information that it
requires for static typing. The first approach is to describe the types yourself. I
cover the features that TypeScript provides for describing JavaScript code in
Chapter 14. Manually describing JavaScript code isn’t difficult, but it does take
some time and requires good knowledge of the code you are describing.

The second approach is to use type declarations provided by someone else.
The Definitely Typed project is a repository of TypeScript type declarations for
thousands of JavaScript packages, including the Inquirer.js package. To install
the type declarations, run the command shown in Listing 1-31 in the todo
folder.

npm install --save-dev @types/inquirer

Listing 1-31. Installing Type Definitions

Type declarations are installed using the npm install command, just like
JavaScript packages. The save -dev argument is used for packages that are
used in development but that are not part of the application. The package name
is @types/ followed by the name of the package for which type descriptions
are required. For the Inquirer.js package, the type declarations package is
@types/inquirer because inquirer is the name used to install the
JavaScript package.

Note See
https://github.com/DefinitelyTyped/DefinitelyTyped
for the details of the Definitely Typed project and the packages for which type
declarations are available.

The TypeScript compiler detects type declarations automatically, and the
command in Listing 1-31 allows the compiler to check the data types used by the
Inquirer.js API. To demonstrate the effect of the type declarations, Listing 1-32
uses a configuration property that isn’t supported by Inquirer.js.

function promptUser(): void {
console.clear();
inquirer.prompt({
type: "list",
name: "command",
message: 'Choose option",
choices: Object.values(Commands),
badProperty: true
}).then(answers => {
// no action required
if (answers['"command"] !== Commands.Quit) {
promptUser();
}

1)

Listing 1-32. Adding a Property in the index.ts File in the src Folder

https://github.com/DefinitelyTyped/DefinitelyTyped

There is no configuration property named badProperty in the Inquirer.js
API. Run the command shown in Listing 1-33 in the todo folder to compile the
code in the project.

tsc

Listing 1-33. Running the Compiler

The compiler uses the type information installed in Listing 1-31 and reports
the following error:

src/index.ts:25:13 - error TS2322: Type '"list"' 1is
not assignable to type '"number"'.

25 type: "list",

~——~——~

Found 1 error.

The type declaration allows TypeScript to provide the same set of features
throughout the application, even though the Inquirer.js package is written in pure
JavaScript and not TypeScript. However, as this example shows, there can be
limitations to this feature, and the addition of a property that isn’t supported has
produced an error about the value assigned to the type property. This happens
because it can be difficult to describe the types that pure JavaScript expects, and
sometimes the error messages can be more of a general indication that something
is wrong.

Adding Commands

The example application doesn’t do a great deal at the moment and requires
additional commands. In the sections that follow, I add a series of new
commands and provide the implementation for each of them.

Filtering Items

The first command I will add allows the user to toggle the filter to include or
exclude completed items, as shown in Listing 1-34.

import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";
import * as inquirer from 'inquirer';

let todos: TodoItem[] = [

new TodoItem(1, "Buy Flowers'"), new TodoItem(2,
"Get Shoes"),

new TodoItem(3, "Collect Tickets"), new TodoItem(4
"Call Joe", true)];

let collection: TodoCollection = new
TodoCollection("Adam", todos);
let showCompleted = true;

function displayTodoList(): void {
console.log(${collection.userName}'s Todo List °
+ “(${ collection.getItemCounts().incomplete }
items to do));
collection.getTodoItems(showCompleted).forEach(ite
=> item.printDetails());

}

enum Commands {
Toggle = "Show/Hide Completed",
Quit = "Quit"

}

function promptUser(): void {
console.clear();
displayTodoList();
inquirer.prompt({
type: "list",
name: '"command",
message: 'Choose option",
choices: Object.values(Commands),
//badProperty: true
}).then(answers => {
switch (answers["command"]) {
case Commands.Toggle:
showCompleted = !showCompleted;
promptUser();
break;

1)
}

promptUser();

Listing 1-34. Filtering Items in the index.ts File in the src Folder

The process for adding commands is to define a new value for the
Commands enum and the statements that respond when the command is
selected. In this case, the new value is Toggle, and when it is selected, the
value of the showCompleted variable is changed so that the
displayTodolList function includes or excludes completed items. Run the
commands shown in Listing 1-35 in the todo folder to compile and execute the
code.

tsc
node dist/index.js
Listing 1-35. Compiling and Executing

Select the Show/Hide Completed option and press Return to toggle the
completed tasks in the list, as shown in Figure 1-3.

E¥ Windows PowerShell X 4+ v - m ~
EN Windows PowerShell X B / (m] X

Adam's Todo List (3 items to do)
1 Buy Flowers Adam's Todo List (3 items to do)
Get Shoes il Buy Flowers
Collect Tickets 2 Get Shoes
(complete) 3 Collect Tickets
e option

Figure 1-3. Toggling completed items

Adding Tasks

The example application isn’t much use unless the user can create new tasks.
Listing 1-36 adds support for creating new TodoItem objects.

import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";
import * as inquirer from 'inquirer';

let todos: TodoItem[] = [

new TodoItem(1, "Buy Flowers'"), new TodoItem(2,
"Get Shoes"),

new TodoItem(3, "Collect Tickets"), new TodoItem(4
"Call Joe", true)];

let collection: TodoCollection = new
TodoCollection("Adam", todos);
let showCompleted = true;

function displayTodoList(): void {
console.log(${collection.userName}'s Todo List °
+ “(${ collection.getItemCounts().incomplete }
items to do));
collection.getTodoItems(showCompleted).forEach(itel
=> item.printDetails());

}

enum Commands {
Add = "Add New Task",
Toggle = "Show/Hide Completed",
Quit = "Quit"

}

function promptAdd(): void {
console.clear();
inquirer.prompt({ type: "input", name: "add",
message: "Enter task:"})
.then(answers => {if (answers["add"] !== "") {
collection.addTodo(answers["add"]);
}

promptUser();

})
}

function promptUser(): void {
console.clear();
displayTodoList();
inquirer.prompt({

}

type: "list",
name: '"command",
message: 'Choose option",
choices: Object.values(Commands),
}).then(answers => {
switch (answers['"command"]) {
case Commands.Toggle:
showCompleted = !showCompleted;
promptUser();
break;
case Commands.Add:
promptAdd();
break;

1)

promptUser();

Listing 1-36. Adding Tasks in the index.ts File in the src Folder

The Inquirer.js package can present different types of questions to the user.
When the user selects the Add command, the 1nput question type is used to get

the task from the user, which is used as the argument to the

TodoCollection.addTodo method. Run the commands shown in Listing

1-37 in the todo folder to compile and execute the code.

tsc

node dist/index.js

Listing 1-37. Compiling and Executing

Select the Add New Task option, enter some text, and press Return to

create a new task, as shown in Figure 1-4.

=

EN¥ Windows PowerShell

E¥ Windows PowerShell x 4 v/] X

Adam's Todo List (3 items to do) |

1 Buy Flowers] Enter task: Go for a run

2 Get Shoes

3 Collect Tickets

4 call Joe (complete)
Choose option

EN Windows PowerShell

Adam's Todo List (4 items to dp)
Show/Hide Completed 1 Buy Flowers
Quit 2 Get Shoes
3 Collect Tickets
{1} call Joe (gefplete)
5 Go for a run

Choose option

Show/Hide Completed
Quit

Figure 1-4. Adding a new task

Marking Tasks Complete

Completing a task is a two-stage process that requires the user to select the item
they want to complete. Listing 1-38 adds the commands and an additional
prompt that will allow the user to mark tasks complete and to remove the
completed items.

import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";
import * as inquirer from 'inquirer';

let todos: TodoItem[] = [

new TodoItem(1, "Buy Flowers'"), new TodoItem(2,
"Get Shoes"),

new TodoItem(3, "Collect Tickets"), new TodoItem(4
"Call Joe", true)];

let collection: TodoCollection = new
TodoCollection("Adam", todos);
let showCompleted = true;

function displayTodoList(): void {
console.log(${collection.userName}'s Todo List
+ “(${ collection.getItemCounts().incomplete }
items to do));
collection.getTodoItems(showCompleted).forEach(itel
=> item.printDetails());

}

enum Commands {
Add = "Add New Task",
Complete = "Complete Task",
Toggle = "Show/Hide Completed",
Purge = "Remove Completed Tasks",
Quit = "Quit"

}

function promptAdd(): void {
console.clear();
inquirer.prompt({ type: "input", name: "add",
message: "Enter task:"})
.then(answers => {if (answers["add"] !=="") {
collection.addTodo(answers["add"]);
}

promptUser();

1)
}

function promptComplete(): void {
console.clear();
inquirer.prompt({ type: "checkbox", name:
"complete",
message: "Mark Tasks Complete",
choices:
collection.getTodoItems(showCompleted).map(item =>
({name: item.task, value: item.id, checked
item.complete}))
}) . then(answers => {
let completedTasks = answers['"complete"] as
number[];
collection.getTodoItems(true).forEach(item =>
collection.markComplete(item.1d,
completedTasks.find(id => id ===
item.id) != undefined));
promptUser();

})

}

function promptUser(): void {
console.clear();
displayTodoList();
inquirer.prompt({
type: "list",
name: '"command",
message: 'Choose option",
choices: Object.values(Commands),
}).then(answers => {
switch (answers["command"]) {
case Commands.Toggle:
showCompleted = !showCompleted;
promptUser();
break;
case Commands.Add:
promptAdd();
break;
case Commands.Complete:
if
(collection.getItemCounts().incomplete > 0) {
promptComplete();
} else {
promptUser();
}

break;

case Commands.Purge:
collection.removeComplete();
promptUser();
break;

1)
}

promptUser();

Listing 1-38. Completing Items in the index.ts File in the src Folder

The changes add a new prompt to the application that presents the user with

the list of tasks and allows their state to be changed. The showCompleted
variable is used to determine whether completed items are shown, creating a link
between the Toggle and Complete commands.

The only new TypeScript feature of note is found in this statement:

let completedTasks = answers['"complete"] as number[];

Even with type definitions, there are times when TypeScript isn’t able to
correctly assess the types that are being used. In this case, the Inquirer.js package
allows any data type to be used in the prompts shown to the user, and the
compiler isn’t able to determine that I have used only number values, which
means that only number values can be received as answers. I used a type
assertion to address this problem, which allows me to tell the compiler to use the
type that I specify, even if it has identified a different data type (or no data type
at all). When a type assertion is used, it overrides the compiler, which means that
I am responsible for ensuring that the type I assert is correct. Run the commands
shown in Listing 1-39 in the todo folder to compile and execute the code.

tsc
node dist/index.js

Listing 1-39. Compiling and Executing

Select the Complete Task option, select one or more tasks to change
using the spacebar, and then press Return. The state of the tasks you selected will
be changed, which will be reflected in the revised list, as shown in Figure 1-5.

E¥ Windows PowerShell X 5 = [m] X

EX Windows PowerShell
Buy Flowers
Get Shoes

. E¥ Windows P Shell t
Collect Tickets e 1 Buy

Call Joe (complete) Mark Tasks Complete 2 Get Shoes (complete)

Choose option ()_Buy Elowers 3 COTTECT TIiTRETS

Add_New Task [} call Joe (complete)
[t CoTteeTr TicRets Choose option

StTow; Fide conpteted call Joe
Remove Completed Tasks Complete Task
Quit Show/Hide Completed

Remove Completed Tasks
Quit

Figure 1-5. Completing items

Persistently Storing Data

To store the to-do items persistently, I am going to use another open-source
package because there is no advantage in creating functionality when there are
well-written and well-tested alternatives available. Run the commands shown in
Listing 1-40 in the todo folder to install the Lowdb package and the type
definitions that describe its API to TypeScript.

npm install lowdb@1.0.0

npm install --save-dev @types/lowdb
Listing 1-40. Adding a Package and Type Definitions

Lowdb is an excellent database package that stores data in a JSON file and
that is used as the data storage component for the json-server package,
which I use to create HTTP web services in Part 3 of this book.

Tip [don’t describe the Lowdb API in detail in this book because it is not
directly related to TypeScript. See
https://github.com/typicode/lowdb for details if you want to
use Lowdb in your own projects.

I am going to implement persistent storage by deriving from the
TodoCollection class. In preparation, I changed the access control keyword
used by the TodoCollection class so that subclasses can access the Map that
contains the TodoItem objects, as shown in Listing 1-41.

import { TodoItem } from "./todoItem";

type ItemCounts = {
total: number,
incomplete: number

}

export class TodoCollection {
private nextId: number = 1;
protected itemMap = new Map<number, TodoItem>();

https://github.com/typicode/lowdb

constructor(public userName: string, todoItems:
TodoItem[] = []) {
todoItems.forEach(item =>
this.itemMap.set(item.id, item));

}

// ...methods omitted for brevity...
}

Listing 1-41. Changing Access Control in the todoCollection.ts File in the src Folder

The protected keyword tells the TypeScript compiler that a property can
be