

Adam	Freeman

Essential	TypeScript	4
From	Beginner	to	Pro
2nd	ed.

Adam	Freeman
London,	UK

Any	source	code	or	other	supplementary	material	referenced	by	the	author	in	this
book	is	available	to	readers	on	GitHub	via	the	book’s	product	page,	located	at
www.apress.com/9781484270103	.	For	more	detailed	information,
please	visit	www.apress.com/source-code	.

ISBN	978-1-4842-7010-3 e-ISBN	978-1-4842-7011-0
https://doi.org/10.1007/978-1-4842-7011-0

©	Adam	Freeman	2021

This	work	is	subject	to	copyright.	All	rights	are	solely	and	exclusively	licensed
by	the	Publisher,	whether	the	whole	or	part	of	the	material	is	concerned,
specifically	the	rights	of	translation,	reprinting,	reuse	of	illustrations,	recitation,
broadcasting,	reproduction	on	microfilms	or	in	any	other	physical	way,	and
transmission	or	information	storage	and	retrieval,	electronic	adaptation,
computer	software,	or	by	similar	or	dissimilar	methodology	now	known	or
hereafter	developed.

The	use	of	general	descriptive	names,	registered	names,	trademarks,	service
marks,	etc.	in	this	publication	does	not	imply,	even	in	the	absence	of	a	specific
statement,	that	such	names	are	exempt	from	the	relevant	protective	laws	and
regulations	and	therefore	free	for	general	use.

The	publisher,	the	authors	and	the	editors	are	safe	to	assume	that	the	advice	and
information	in	this	book	are	believed	to	be	true	and	accurate	at	the	date	of
publication.	Neither	the	publisher	nor	the	authors	or	the	editors	give	a	warranty,
expressed	or	implied,	with	respect	to	the	material	contained	herein	or	for	any
errors	or	omissions	that	may	have	been	made.	The	publisher	remains	neutral
with	regard	to	jurisdictional	claims	in	published	maps	and	institutional
affiliations.

Distributed	to	the	book	trade	worldwide	by	Apress	Media,	LLC,	1	New	York

http://www.apress.com/9781484270103
http://www.apress.com/source-code
https://doi.org/10.1007/978-1-4842-7011-0

Plaza,	New	York,	NY	10004,	U.S.A.	Phone	1-800-SPRINGER,	fax	(201)	348-
4505,	e-mail	orders-ny@springer-sbm.com,	or	visit	www.springeronline.com.
Apress	Media,	LLC	is	a	California	LLC	and	the	sole	member	(owner)	is
Springer	Science	+	Business	Media	Finance	Inc	(SSBM	Finance	Inc).	SSBM
Finance	Inc	is	a	Delaware	corporation.

Dedicated	to	my	lovely	wife,	Jacqui	Griffyth.(And	also	to	Peanut.)

Table	of	Contents
Part	I:	Getting	Started	with	TypeScript

Chapter	1:	Your	First	TypeScript	Application

Getting	Ready	for	This	Book

Step	1:	Install	Node.js

Step	2:	Install	Git

Step	3:	Install	TypeScript

Step	4:	Install	a	Programmer’s	Editor

Creating	the	Project

Initializing	the	Project

Creating	the	Compiler	Configuration	File

Adding	a	TypeScript	Code	File

Compiling	and	Executing	the	Code

Defining	the	Data	Model

Adding	Features	to	the	Collection	Class

Using	a	Third-Party	Package

Adding	Type	Declarations	for	the	JavaScript	Package

Adding	Commands

Filtering	Items

Adding	Tasks

Marking	Tasks	Complete

Persistently	Storing	Data

Applying	the	Persistent	Collection	Class

Summary

Chapter	2:	Understanding	TypeScript

Should	You	Use	TypeScript?

Understanding	the	TypeScript	Developer	Productivity	Features

Understanding	the	JavaScript	Version	Features

What	Do	You	Need	to	Know?

How	Do	You	Set	Up	Your	Development	Environment?

What	Is	the	Structure	of	This	Book?

Are	There	Lots	of	Examples?

Where	Can	You	Get	the	Example	Code?

What	If	You	Have	Problems	Following	the	Examples?

What	If	You	Find	an	Error	in	the	Book?

How	Do	You	Contact	the	Author?

What	If	You	Really	Enjoyed	This	Book?

What	If	This	Book	Has	Made	You	Angry	and	You	Want	to	Complain?

Summary

Chapter	3:	JavaScript	Primer,	Part	1

Preparing	for	This	Chapter

Getting	Confused	by	JavaScript

Understanding	JavaScript	Types

Working	with	Primitive	Data	Types

Understanding	Type	Coercion

Working	with	Functions

Working	with	Arrays

Using	the	Spread	Operator	on	Arrays

Destructuring	Arrays

Working	with	Objects

Adding,	Changing,	and	Deleting	Object	Properties

Using	the	Spread	and	Rest	Operators	on	Objects

Defining	Getters	and	Setters

Defining	Methods

Understanding	the	this	Keyword

Understanding	the	this	Keyword	in	Stand-Alone	Functions

Understanding	this	in	Methods

Changing	the	Behavior	of	the	this	Keyword

Understanding	this	in	Arrow	Functions

Returning	to	the	Original	Problem

Summary

Chapter	4:	JavaScript	Primer,	Part	2

Preparing	for	This	Chapter

Understanding	JavaScript	Object	Inheritance

Inspecting	and	Modifying	an	Object’s	Prototype

Creating	Custom	Prototypes

Using	Constructor	Functions

Checking	Prototype	Types

Defining	Static	Properties	and	Methods

Using	JavaScript	Classes

Using	Iterators	and	Generators

Using	a	Generator

Defining	Iterable	Objects

Using	JavaScript	Collections

Storing	Data	by	Key	Using	an	Object

Storing	Data	by	Key	Using	a	Map

Storing	Data	by	Index

Using	Modules

Creating	a	JavaScript	Module

Using	a	JavaScript	Module

Exporting	Named	Features	from	a	Module

Defining	Multiple	Named	Features	in	a	Module

Summary

Chapter	5:	Using	the	TypeScript	Compiler

Preparing	for	This	Chapter

Understanding	the	Project	Structure

Using	the	Node	Package	Manager

Understanding	the	TypeScript	Compiler	Configuration	File

Compiling	TypeScript	Code

Understanding	Compiler	Errors

Using	Watch	Mode	and	Executing	the	Compiled	Code

Using	the	Version	Targeting	Feature

Setting	the	Library	Files	for	Compilation

Selecting	a	Module	Format

Useful	Compiler	Configuration	Settings

Summary

Chapter	6:	Testing	and	Debugging	TypeScript

Preparing	for	This	Chapter

Debugging	TypeScript	Code

Preparing	for	Debugging

Using	Visual	Studio	Code	for	Debugging

Using	the	Integrated	Node.js	Debugger

Using	the	Remote	Node.js	Debugging	Feature

Using	the	TypeScript	Linter

Disabling	Linting	Rules

Unit	Testing	TypeScript

Configuring	the	Test	Framework

Creating	Unit	Tests

Starting	the	Test	Framework

Summary

Part	II:	Working	with	TypeScript

Chapter	7:	Understanding	Static	Types

Preparing	for	This	Chapter

Understanding	Static	Types

Creating	a	Static	Type	with	a	Type	Annotation

Using	Implicitly	Defined	Static	Types

Using	the	any	Type

Using	Type	Unions

Using	Type	Assertions

Asserting	to	an	Unexpected	Type

Using	a	Type	Guard

Understanding	the	Never	Type

Using	the	unknown	Type

Using	Nullable	Types

Restricting	Nullable	Assignments

Removing	null	from	a	Union	with	an	Assertion

Removing	null	from	a	Union	with	a	Type	Guard

Using	the	Definite	Assignment	Assertion

Summary

Chapter	8:	Using	Functions

Preparing	for	This	Chapter

Defining	Functions

Redefining	Functions

Understanding	Function	Parameters

Understanding	Function	Results

Overloading	Function	Types

Understanding	Assert	Functions

Summary

Chapter	9:	Using	Arrays,	Tuples,	and	Enums

Preparing	for	This	Chapter

Working	with	Arrays

Using	Inferred	Typing	for	Arrays

Avoiding	Problems	with	Inferred	Array	Types

Avoiding	Problems	with	Empty	Arrays

Working	with	Tuples

Processing	Tuples

Using	Tuple	Types

Using	Tuples	with	Optional	Elements

Defining	Tuples	with	Rest	Elements

Using	Enums

Understanding	How	Enums	Work

Using	String	Enums

Understanding	the	Limitations	of	Enums

Using	Literal	Value	Types

Using	Literal	Value	Types	in	Functions

Mixing	Value	Types	in	a	Literal	Value	Type

Using	Overrides	with	Literal	Value	Types

Using	Template	Literal	String	Types

Using	Type	Aliases

Summary

Chapter	10:	Working	with	Objects

Preparing	for	This	Chapter

Working	with	Objects

Using	Object	Shape	Type	Annotations

Understanding	How	Shape	Types	Fit

Using	Type	Aliases	for	Shape	Types

Dealing	with	Excess	Properties

Using	Shape	Type	Unions

Understanding	Union	Property	Types

Using	Type	Guards	for	Objects

Using	Type	Intersections

Using	Intersections	for	Data	Correlation

Understanding	Intersection	Merging

Summary

Chapter	11:	Working	with	Classes	and	Interfaces

Preparing	for	This	Chapter

Using	Constructor	Functions

Using	Classes

Using	the	Access	Control	Keywords

Using	JavaScript	Private	Fields

Defining	Read-Only	Properties

Simplifying	Class	Constructors

Using	Class	Inheritance

Using	an	Abstract	Class

Using	Interfaces

Implementing	Multiple	Interfaces

Extending	Interfaces

Defining	Optional	Interface	Properties	and	Methods

Defining	an	Abstract	Interface	Implementation

Type	Guarding	an	Interface

Dynamically	Creating	Properties

Enabling	Index	Value	Checking

Summary

Chapter	12:	Using	Generic	Types

Preparing	for	This	Chapter

Understanding	the	Problem

Adding	Support	for	Another	Type

Creating	Generic	Classes

Understanding	Generic	Type	Arguments

Using	Different	Type	Arguments

Constraining	Generic	Type	Values

Defining	Multiple	Type	Parameters

Allowing	the	Compiler	to	Infer	Type	Arguments

Extending	Generic	Classes

Type	Guarding	Generic	Types

Defining	a	Static	Method	on	a	Generic	Class

Defining	Generic	Interfaces

Extending	Generic	Interfaces

Implementing	a	Generic	Interface

Summary

Chapter	13:	Advanced	Generic	Types

Preparing	for	This	Chapter

Using	Generic	Collections

Using	Generic	Iterators

Combining	an	Iterable	and	an	Iterator

Creating	an	Iterable	Class

Using	Index	Types

Using	the	Index	Type	Query

Explicitly	Providing	Generic	Type	Parameters	for	Index	Types

Using	the	Indexed	Access	Operator

Using	an	Index	Type	for	the	Collection<T>	Class

Using	Type	Mapping

Changing	Mapping	Names	and	Types

Using	a	Generic	Type	Parameter	with	a	Mapped	Type

Changing	Property	Optionality	and	Mutability

Using	the	Basic	Built-in	Mappings

Combining	Transformations	in	a	Single	Mapping

Creating	Types	with	a	Type	Mapping

Using	Conditional	Types

Nesting	Conditional	Types

Using	Conditional	Types	in	Generic	Classes

Using	Conditional	Types	with	Type	Unions

Using	Conditional	Types	in	Type	Mappings

Identifying	Properties	of	a	Specific	Type

Inferring	Additional	Types	in	Conditions

Summary

Chapter	14:	Working	with	JavaScript

Preparing	for	This	Chapter

Adding	the	TypeScript	Code	to	the	Example	Project

Working	with	JavaScript

Including	JavaScript	in	the	Compilation	Process

Type	Checking	JavaScript	Code

Describing	Types	Used	in	JavaScript	Code

Using	Comments	to	Describe	Types

Using	Type	Declaration	Files

Describing	Third-Party	JavaScript	Code

Using	Definitely	Typed	Declaration	Files

Using	Packages	That	Include	Type	Declarations

Generating	Declaration	Files

Summary

Part	III:	Creating	Web	Applications

Chapter	15:	Creating	a	Stand-Alone	Web	App,	Part	1

Preparing	for	This	Chapter

Creating	the	Toolchain

Adding	a	Bundler

Adding	a	Development	Web	Server

Creating	the	Data	Model

Creating	the	Data	Source

Rendering	HTML	Content	Using	the	DOM	API

Adding	Support	for	Bootstrap	CSS	Styles

Using	JSX	to	Create	HTML	Content

Understanding	the	JSX	Workflow

Configuring	the	TypeScript	Compiler	and	the	Webpack	Loader

Creating	the	Factory	Function

Using	the	JSX	Class

Importing	the	Factory	Function	in	the	JSX	Class

Adding	Features	to	the	Application

Displaying	a	Filtered	List	of	Products

Displaying	Content	and	Handling	Updates

Summary

Chapter	16:	Creating	a	Stand-Alone	Web	App,	Part	2

Preparing	for	This	Chapter

Adding	a	Web	Service

Incorporating	the	Data	Source	into	the	Application

Using	Decorators

Using	Decorator	Metadata

Completing	the	Application

Adding	a	Header	Class

Adding	an	Order	Details	Class

Adding	a	Confirmation	Class

Completing	the	Application

Deploying	the	Application

Adding	the	Production	HTTP	Server	Package

Creating	the	Persistent	Data	File

Creating	the	Server

Using	Relative	URLs	for	Data	Requests

Building	the	Application

Testing	the	Production	Build

Containerizing	the	Application

Installing	Docker

Preparing	the	Application

Creating	the	Docker	Container

Running	the	Application

Summary

Chapter	17:	Creating	an	Angular	App,	Part	1

Preparing	for	This	Chapter

Configuring	the	Web	Service

Configuring	the	Bootstrap	CSS	Package

Starting	the	Example	Application

Understanding	TypeScript	in	Angular	Development

Understanding	the	Angular	TypeScript	Compiler	Configuration

Creating	the	Data	Model

Creating	the	Data	Source

Creating	the	Data	Source	Implementation	Class

Configuring	the	Data	Source

Displaying	a	Filtered	List	of	Products

Displaying	the	Category	Buttons

Creating	the	Header	Display

Combining	the	Product,	Category,	and	Header	Components

Configuring	the	Application

Summary

Chapter	18:	Creating	an	Angular	App,	Part	2

Preparing	for	This	Chapter

Completing	the	Example	Application	Features

Adding	the	Summary	Component

Creating	the	Routing	Configuration

Deploying	the	Application

Adding	the	Production	HTTP	Server	Package

Creating	the	Persistent	Data	File

Creating	the	Server

Using	Relative	URLs	for	Data	Requests

Building	the	Application

Testing	the	Production	Build

Containerizing	the	Application

Preparing	the	Application

Creating	the	Docker	Container

Running	the	Application

Summary

Chapter	19:	Creating	a	React	App

Preparing	for	This	Chapter

Configuring	the	Web	Service

Installing	the	Bootstrap	CSS	Package

Starting	the	Example	Application

Understanding	TypeScript	in	React	Development

Defining	the	Entity	Types

Displaying	a	Filtered	List	of	Products

Using	a	Functional	Component	and	Hooks

Displaying	a	List	of	Categories	and	the	Header

Composing	and	Testing	the	Components

Creating	the	Data	Store

Creating	the	HTTP	Request	Class

Connecting	the	Data	Store	to	the	Components

Summary

Chapter	20:	Creating	a	React	App,	Part	2

Preparing	for	This	Chapter

Configuring	URL	Routing

Completing	the	Example	Application	Features

Adding	the	Order	Summary	Component

Adding	the	Confirmation	Component

Completing	the	Routing	Configuration

Deploying	the	Application

Adding	the	Production	HTTP	Server	Package

Creating	the	Persistent	Data	File

Creating	the	Server

Using	Relative	URLs	for	Data	Requests

Building	the	Application

Testing	the	Production	Build

Containerizing	the	Application

Preparing	the	Application

Creating	the	Docker	Container

Running	the	Application

Summary

Chapter	21:	Creating	a	Vue.js	App,	Part	1

Preparing	for	This	Chapter

Configuring	the	Web	Service

Configuring	the	Bootstrap	CSS	Package

Starting	the	Example	Application

Understanding	TypeScript	in	Vue.js	Development

Understanding	the	TypeScript	Vue.js	Toolchain

Creating	the	Entity	Classes

Displaying	a	Filtered	List	of	Products

Displaying	a	List	of	Categories	and	the	Header

Composing	and	Testing	the	Components

Creating	the	Data	Store

Connecting	Components	to	the	Data	Store

Adding	Support	for	the	Web	Service

Summary

Chapter	22:	Creating	a	Vue.js	App,	Part	2

Preparing	for	This	Chapter

Configuring	URL	Routing

Completing	the	Example	Application	Features

Adding	the	Order	Summary	Component

Adding	the	Confirmation	Component

Completing	the	Routing	Configuration

Deploying	the	Application

Adding	the	Production	HTTP	Server	Package

Creating	the	Persistent	Data	File

Creating	the	Server

Using	Relative	URLs	for	Data	Requests

Building	the	Application

Testing	the	Production	Build

Containerizing	the	Application

Preparing	the	Application

Creating	the	Docker	Container

Running	the	Application

Summary

Index

About	the	Author
Adam	Freeman
is	an	experienced	IT	professional	who	has	held
senior	positions	in	a	range	of	companies,	most
recently	serving	as	chief	technology	officer	and
chief	operating	officer	of	a	global	bank.	Now
retired,	he	spends	his	time	writing	and	long-
distance	running.

	

About	the	Technical	Reviewer
Fabio	Claudio	Ferracchiati
is	a	senior	consultant	and	a	senior	analyst/developer	using	Microsoft
technologies.	He	works	for	BluArancio	(www.bluarancio.com).	He	is	a
Microsoft	Certified	Solution	Developer	for	.NET,	a	Microsoft	Certified
Application	Developer	for	.NET,	a	Microsoft	Certified	Professional,	and	a
prolific	author	and	technical	reviewer.	Over	the	past	ten	years,	he’s	written
articles	for	Italian	and	international	magazines	and	coauthored	more	than	ten
books	on	a	variety	of	computer	topics.

	

http://www.bluarancio.com

Part	I
Getting	Started	with	TypeScript

(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
A.	Freeman,	Essential	TypeScript	4
https://doi.org/10.1007/978-1-4842-7011-0_1

1.	Your	First	TypeScript	Application
Adam	Freeman1		

London,	UK

	

The	best	way	to	get	started	with	TypeScript	is	to	dive	in.	In	this	chapter,	I	take
you	through	a	simple	development	process	to	create	an	application	that	keeps
track	of	to-do	items.	Later	chapters	show	how	TypeScript	features	work	in	detail,
but	a	simple	example	will	be	enough	to	demonstrate	how	the	basic	TypeScript
features	work.	Don’t	worry	if	you	don’t	understand	everything	in	this	chapter.
The	idea	is	just	to	get	an	overall	sense	of	how	TypeScript	works	and	how	it	fits
into	an	application.

Getting	Ready	for	This	Book
Four	packages	are	required	to	get	ready	for	this	book.	Perform	each	installation
described	in	the	following	sections	and	run	the	test	provided	for	each	of	them	to
ensure	that	the	packages	work	as	they	should.

Step	1:	Install	Node.js
First,	download	and	install	Node.js,	also	known	as	Node,	from
https://nodejs.org/dist/v14.15.4.	This	URL	provides	the
installers	for	all	supported	platforms	for	the	14.15.4	release,	which	is	the	version
that	I	use	in	this	book.	During	the	installation,	ensure	that	Node	Package
Manager	(NPM)	is	selected	for	installation.	Once	the	installation	is	complete,
open	a	new	command	prompt	and	run	the	commands	shown	Listing	1-1	to	check
that	Node	and	NPM	are	working.

node	--version

npm	--version

Listing	1-1. Checking	Node	and	NPM

https://doi.org/10.1007/978-1-4842-7011-0_1
https://nodejs.org/dist/v14.15.4

The	output	from	the	first	command	should	be	v14.15.4,	indicating	that
Node	is	working	and	the	correct	version	has	been	installed.	The	output	from	the
second	command	should	be	6.14.10,	which	indicates	that	NPM	is	working.

Step	2:	Install	Git
The	second	task	is	to	download	and	install	the	Git	version	management	tool
from	https://git-scm.com/downloads.	Git	isn’t	required	directly	for
TypeScript	development,	but	some	of	the	most	commonly	used	packages	depend
on	it.	Once	you	have	completed	the	installation,	use	a	command	prompt	to	run
the	command	shown	in	Listing	1-2	to	check	that	Git	is	working.

git	--version

Listing	1-2. Checking	Git

At	the	time	of	writing,	the	latest	version	of	Git	for	all	platforms	is	2.30.0.

Step	3:	Install	TypeScript
The	third	step	is	to	install	the	TypeScript	package.	Use	a	command	prompt	to	run
the	command	shown	in	Listing	1-3.

npm	install	--global	typescript@4.2.2

Listing	1-3. Installing	the	TypeScript	Package

Once	the	package	has	been	installed,	run	the	command	shown	in	Listing	1-4
to	ensure	that	the	compiler	was	installed	correctly.

tsc	--version

Listing	1-4. Testing	the	TypeScript	Compiler

The	TypeScript	compiler	is	called	tsc,	and	the	output	from	the	command	in
Listing	1-4	should	be	Version	4.2.2.

Step	4:	Install	a	Programmer’s	Editor
The	final	step	is	to	install	a	programmer’s	editor	that	supports	TypeScript.	Most
popular	editors	can	be	used	for	TypeScript	development,	but	if	you	don’t	have	a
preferred	editor,	then	download	and	install	Visual	Studio	Code	from
https://code.visualstudio.com.	Visual	Studio	Code	is	an	open-
source,	cross-platform	code	editor	that	is	free	to	use	and	is	the	editor	I	used

https://git-scm.com/downloads
https://code.visualstudio.com

while	writing	the	examples	for	this	book.
If	you	are	using	Visual	Studio	Code,	run	the	command	code	to	start	the

editor	or	use	the	program	icon	created	during	installation,	and	you	will	see	the
welcome	screen	shown	in	Figure	1-1.	(You	may	need	to	add	Visual	Studio	Code
to	your	command	prompt	path	before	using	the	code	command.)

Figure	1-1. The	Visual	Studio	Code	welcome	screen

Tip Some	editors	will	let	you	specify	a	different	version	of	TypeScript	than
the	one	contained	in	the	project,	which	can	cause	errors	to	be	displayed	in	the
code	editor	even	when	the	command-line	tools	show	successful	compilation.
If	you	are	using	Visual	Studio	Code,	for	example,	you	will	see	the	version	of
TypeScript	that	is	used	displayed	at	the	bottom	right	of	the	editor	window
when	you	edit	a	TypeScript	file.	Click	the	version	that	is	shown,	click	Select
TypeScript	Version,	and	select	the	version	you	require.

Creating	the	Project
To	get	started	with	TypeScript,	I	am	going	to	build	a	simple	to-do	list
application.	The	most	common	use	for	TypeScript	is	web	application

development,	which	I	demonstrate	for	the	most	popular	frameworks	(Angular,
React,	and	Vue)	in	Part	3	of	this	book.	But	for	this	chapter,	I	build	a	command-
line	application	that	will	keep	the	focus	on	TypeScript	and	avoid	the	complexity
of	a	web	application	framework.

The	application	will	display	a	list	of	tasks,	allow	new	tasks	to	be	created,	and
allow	existing	tasks	to	be	marked	as	complete.	There	will	also	be	a	filter	to
include	already	completed	tasks	in	the	list.	Once	the	core	features	are	in	place,	I
will	add	support	for	storing	data	persistently	so	that	changes	are	not	lost	when
the	application	is	terminated.

Initializing	the	Project
To	prepare	a	project	folder	for	this	chapter,	open	a	command	prompt,	navigate	to
a	convenient	location,	and	create	a	folder	named	todo.	Run	the	commands
shown	in	Listing	1-5	to	navigate	into	the	folder	and	initialize	it	for	development.

cd	todo

npm	init	--yes

Listing	1-5. Initializing	the	Project	Folder

The	npm	init	command	creates	a	package.json	file,	which	is	used	to
keep	track	of	the	packages	required	by	the	project	and	also	to	configure	the
development	tools.

Creating	the	Compiler	Configuration	File
The	TypeScript	package	installed	in	Listing	1-3	includes	a	compiler,	named
tsc,	which	compiles	TypeScript	code	to	produce	pure	JavaScript.	To	define	the
configuration	for	the	TypeScript	compiler,	create	a	file	called
tsconfig.json	in	the	todo	folder	with	the	content	shown	in	Listing	1-6.

{

				"compilerOptions":	{

								"target":	"es2018",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"module":	"commonjs"

				}

}

Listing	1-6. The	Contents	of	the	tsconfig.json	File	in	the	todo	Folder

I	describe	the	TypeScript	compiler	in	Chapter	5,	but	these	settings	tell	the
compiler	that	I	want	to	use	the	latest	version	of	JavaScript,	that	the	project’s
TypeScript	files	will	be	found	in	the	src	folder,	that	the	output	it	produces
should	be	placed	in	the	dist	folder,	and	that	the	commonjs	standard	should	be
used	for	loading	code	from	separate	files.

Adding	a	TypeScript	Code	File
TypeScript	code	files	have	the	ts	file	extension.	To	add	the	first	code	file	to	the
project,	create	the	todo/src	folder	and	add	to	it	a	file	called	index.ts	with
the	code	shown	in	Listing	1-7.	This	file	follows	the	popular	convention	of
calling	the	main	file	for	an	application	index,	followed	by	the	ts	file	extension
to	indicate	the	file	contains	JavaScript	code.

console.clear();

console.log("Adam's	Todo	List");

Listing	1-7. The	Contents	of	the	index.ts	File	in	the	src	Folder

The	file	contains	regular	JavaScript	statements	that	use	the	console	object
to	clear	the	command-line	window	and	write	out	a	simple	message,	which	is	just
enough	functionality	to	make	sure	that	everything	is	working	before	starting	on
the	application	features.

Compiling	and	Executing	the	Code
TypeScript	files	must	be	compiled	to	produce	pure	JavaScript	code	that	can	be
executed	by	browsers	or	the	Node.js	runtime	installed	at	the	start	of	this	chapter.
Use	the	command	line	to	run	the	compiler	in	the	todo	folder	using	the
command	in	Listing	1-8.

tsc

Listing	1-8. Running	the	TypeScript	Compiler

The	compiler	reads	the	configuration	settings	in	the	tsconfig.json	file
and	locates	the	TypeScript	files	in	the	src	folder.	The	compiler	creates	the
dist	folder	and	uses	it	to	write	out	the	JavaScript	code.	If	you	examine	the
dist	folder,	you	will	see	that	it	contains	an	index.js	file,	where	the	js	file
extension	indicates	the	file	contains	JavaScript	code.	If	you	examine	the	contents
of	the	index.js	file,	you	will	see	that	it	contains	the	following	statements:

console.clear();

console.log("Adam's	Todo	List");

The	TypeScript	file	and	the	JavaScript	file	contain	the	same	statements
because	I	have	not	yet	used	any	TypeScript	features.	As	the	application	starts	to
take	shape,	the	contents	of	the	TypeScript	file	will	start	to	diverge	from	the
JavaScript	files	that	the	compiler	produces.

Caution Do	not	make	changes	to	the	files	in	the	dist	folder	because	they
will	be	overwritten	the	next	time	the	compiler	runs.	In	TypeScript
development,	changes	are	made	to	files	with	the	ts	extension,	which	are
compiled	into	JavaScript	files	with	the	js	extension.

To	execute	the	compiled	code,	use	the	command	prompt	to	run	the	command
shown	in	Listing	1-9	in	the	todo	folder.

node	dist/index.js

Listing	1-9. Executing	the	Compiled	Code

The	node	command	starts	the	Node.js	JavaScript	runtime,	and	the	argument
specifies	the	file	whose	contents	should	be	executed.	If	the	development	tools
have	been	installed	successfully,	the	command-prompt	window	should	be
cleared	and	display	the	following	output:

Adam's	Todo	List

Defining	the	Data	Model
The	example	application	will	manage	a	list	of	to-do	items.	The	user	will	be	able
to	see	the	list,	add	new	items,	mark	items	as	complete,	and	filter	the	items.	In
this	section,	I	start	using	TypeScript	to	define	the	data	model	that	describes	the
application’s	data	and	the	operations	that	can	be	performed	on	it.	To	start,	add	a
file	called	todoItem.ts	to	the	src	folder	with	the	code	shown	in	Listing	1-
10.

export	class	TodoItem	{

				public	id:	number;

				public	task:	string;

				public	complete:	boolean	=	false;

				public	constructor(id:	number,	task:	string,

complete:	boolean	=	false)	{

								this.id	=	id;

								this.task	=	task;

								this.complete	=	complete;

				}

				public	printDetails()	:	void	{

								console.log(`${this.id}\t${this.task}

${this.complete

												?	"\t(complete)":	""}`);

				}

}

Listing	1-10. The	Contents	of	the	todoItem.ts	File	in	the	src	Folder

Classes	are	templates	that	describe	a	data	type.	I	describe	classes	in	detail	in
Chapter	4,	but	the	code	in	Listing	1-10	will	look	familiar	to	any	programmer
with	knowledge	of	languages	such	as	C#	or	Java,	even	if	not	all	of	the	details	are
obvious.

The	class	in	Listing	1-10	is	named	TodoItem,	and	it	defines	id,	task,	and
complete	properties	and	a	printDetails	method	that	writes	a	summary	of
the	to-do	item	to	the	console.	TypeScript	is	built	on	JavaScript,	and	the	code	in
Listing	1-10	is	a	mix	of	standard	JavaScript	features	with	enhancements	that	are
specific	to	TypeScript.	JavaScript	supports	classes	with	constructors,	properties,
and	methods,	for	example,	but	features	such	as	access	control	keywords	(such	as
the	public	keyword)	are	provided	by	TypeScript.	The	headline	TypeScript
feature	is	static	typing,	which	allows	the	type	of	each	property	and	parameter	in
the	TodoItem	class	to	be	specified,	like	this:

...

public	id:	number;

...

This	is	an	example	of	a	type	annotation,	and	it	tells	the	TypeScript	compiler
that	the	id	property	can	only	be	assigned	values	of	the	number	type.	As	I
explain	Chapter	3,	JavaScript	has	a	fluid	approach	to	types,	and	the	biggest
benefit	that	TypeScript	provides	is	making	data	types	more	consistent	with	other
programming	languages	while	still	allowing	access	to	the	normal	JavaScript
approach	when	needed.

Tip Don’t	worry	if	you	are	not	familiar	with	the	way	that	JavaScript
handles	data	types.	Chapters	3	and	4	provide	details	about	the	JavaScript
features	you	need	to	understand	to	be	effective	with	TypeScript.

I	wrote	the	class	in	Listing	1-10	to	emphasize	the	similarity	between	TypeScript
and	languages	such	as	C#	and	Java,	but	this	isn’t	the	way	that	TypeScript	classes
are	usually	defined.	Listing	1-11	revises	the	TodoItem	class	to	use	TypeScript
features	that	allow	classes	to	be	defined	concisely.

export	class	TodoItem	{

				constructor(public	id:	number,

																public	task:	string,

																public	complete:	boolean	=	false)	{

								//	no	statements	required

				}

				printDetails()	:	void	{

								console.log(`${this.id}\t${this.task}

${this.complete

												?	"\t(complete)":	""}`);

				}

}

Listing	1-11. Using	More	Concise	Code	in	the	todoItem.ts	File	in	the	src	Folder

Support	for	static	data	types	is	only	part	of	the	broader	TypeScript	objective
of	safer	and	more	predictable	JavaScript	code.	The	concise	syntax	used	for	the
constructor	in	Listing	1-11	allows	the	TodoItem	class	to	receive	parameters
and	use	them	to	create	instance	properties	in	a	single	step,	avoiding	the	error-
prone	process	of	defining	a	property	and	explicitly	assigning	it	the	value
received	by	a	parameter.

The	change	to	the	printDetails	method	removes	the	public	access
control	keyword,	which	isn’t	needed	because	TypeScript	assumes	that	all
methods	and	properties	are	public	unless	another	access	level	is	used.	(The
public	keyword	is	still	used	in	the	constructor	because	that’s	how	the
TypeScript	compiler	recognizes	that	the	concise	constructor	syntax	is	being	used,
as	explained	in	Chapter	11.)

Creating	the	Todo	Item	Collection	Class
The	next	step	is	to	create	a	class	that	will	collect	together	the	to-do	items	so	they
can	be	managed	more	easily.	Add	a	file	named	todoCollection.ts	to	the
src	folder	with	the	code	shown	in	Listing	1-12.

import	{	TodoItem	}	from	"./todoItem";

export	class	TodoCollection	{

				private	nextId:	number	=	1;

				constructor(public	userName:	string,	public

todoItems:	TodoItem[]	=	[])	{

								//	no	statements	required

				}

				addTodo(task:	string):	number	{

								while	(this.getTodoById(this.nextId))	{

												this.nextId++;

								}

								this.todoItems.push(new	TodoItem(this.nextId,

task));

								return	this.nextId;

				}

				getTodoById(id:	number)	:	TodoItem	{

								return	this.todoItems.find(item	=>	item.id	===

id);

				}

				markComplete(id:	number,	complete:	boolean)	{

								const	todoItem	=	this.getTodoById(id);

								if	(todoItem)	{

												todoItem.complete	=	complete;

								}

				}

}

Listing	1-12. The	Contents	of	the	todoCollection.ts	File	in	the	src	Folder

Checking	the	Basic	Data	Model	Features

Before	going	any	further,	I	am	going	to	make	sure	the	initial	features	of	the
TodoCollection	class	work	as	expected.	I	explain	how	to	perform	unit
testing	for	TypeScript	projects	in	Chapter	6,	but	for	this	chapter,	it	will	be
enough	to	create	some	TodoItem	objects	and	store	them	in	a
TodoCollection	object.	Listing	1-13	replaces	the	code	in	the	index.ts
file,	removing	the	placeholder	statements	added	at	the	start	of	the	chapter.

import	{	TodoItem	}	from	"./todoItem";

import	{	TodoCollection	}	from	"./todoCollection";

let	todos	=	[

				new	TodoItem(1,	"Buy	Flowers"),	new	TodoItem(2,

"Get	Shoes"),

				new	TodoItem(3,	"Collect	Tickets"),	new

TodoItem(4,	"Call	Joe",	true)];

let	collection	=	new	TodoCollection("Adam",	todos);

console.clear();

console.log(`${collection.userName}'s	Todo	List`);

let	newId	=	collection.addTodo("Go	for	run");

let	todoItem	=	collection.getTodoById(newId);

console.log(JSON.stringify(todoItem));

Listing	1-13. Testing	the	Data	Model	in	the	index.ts	File	in	the	src	Folder

All	the	statements	shown	in	Listing	1-13	use	pure	JavaScript	features.	The
import	statements	are	used	to	declare	dependencies	on	the	TodoItem	and
TodoCollection	classes,	and	they	are	part	of	the	JavaScript	modules	feature,
which	allows	code	to	be	defined	in	multiple	files	(described	in	Chapter	4).
Defining	an	array	and	using	the	new	keyword	to	instantiate	classes	are	also
standard	features,	along	with	the	calls	to	the	console	object.

Note The	code	in	Listing	1-13	uses	features	that	are	recent	additions	to	the
JavaScript	language.	As	I	explain	in	Chapter	5,	the	TypeScript	compiler
makes	it	easy	to	use	modern	JavaScript	features,	such	as	the	let	keyword,
even	when	they	are	not	supported	by	the	JavaScript	runtime	that	will	execute
the	code,	such	as	older	browsers.	The	JavaScript	features	that	are	essential	to
understand	for	effective	TypeScript	development	are	described	in	Chapters	3

and	4.

The	TypeScript	compiler	tries	to	help	developers	without	getting	in	the	way.
During	compilation,	the	compiler	looks	at	the	data	types	that	are	used	and	the
type	information	I	applied	in	the	TodoItem	and	TodoCollection	classes
and	can	infer	the	data	types	used	in	Listing	1-13.	The	result	is	code	that	doesn’t
contain	any	explicit	static	type	information	but	that	the	compiler	can	check	for
type	safety	anyway.	To	see	how	this	works,	Listing	1-14	adds	a	statement	to	the
index.ts	file.

import	{	TodoItem	}	from	"./todoItem";

import	{	TodoCollection	}	from	"./todoCollection";

let	todos	=	[

				new	TodoItem(1,	"Buy	Flowers"),	new	TodoItem(2,

"Get	Shoes"),

				new	TodoItem(3,	"Collect	Tickets"),	new

TodoItem(4,	"Call	Joe",	true)];

let	collection	=	new	TodoCollection("Adam",	todos);

console.clear();

console.log(`${collection.userName}'s	Todo	List`);

let	newId	=	collection.addTodo("Go	for	run");

let	todoItem	=	collection.getTodoById(newId);

todoItem.printDetails();

collection.addTodo(todoItem);

Listing	1-14. Adding	a	Statement	in	the	index.ts	File	in	the	src	Folder

The	new	statement	calls	the	TodoCollection.addTodo	method	using	a
TodoItem	object	as	the	argument.	The	compiler	looks	at	the	definition	of	the
addTodo	method	in	the	todoItem.ts	file	and	can	see	that	the	method
expects	to	receive	a	different	type	of	data.

...

addTodo(task:	string):	number	{

				while	(this.getTodoById(this.nextId))	{

								this.nextId++;

				}

				this.todoItems.push(new	TodoItem(this.nextId,

task));

				return	this.nextId;

}

...

The	type	information	for	the	addTodo	method	tells	the	TypeScript	compiler
that	the	task	parameter	must	be	a	string	and	that	the	result	will	be	a
number.	(The	string	and	number	types	are	built-in	JavaScript	features	and
are	described	in	Chapter	3.)	Run	the	command	shown	in	Listing	1-15	in	the
todo	folder	to	compile	the	code.

tsc

Listing	1-15. Running	the	Compiler

The	TypeScript	compiler	processes	the	code	in	the	project,	detects	that	the
parameter	value	used	to	call	the	addTodo	method	isn’t	the	correct	data	type,
and	produces	the	following	error:

src/index.ts:17:20	-	error	TS2345:	Argument	of	type

'TodoItem'	is	not	assignable	to	parameter	of	type

'string'.

17	collection.addTodo(todoItem);

																						~~~~~~~~

Found	1	error.

TypeScript	does	a	good	job	of	figuring	out	what	is	going	on	and	identifying
problems,	allowing	you	to	add	as	much	or	as	little	type	information	as	you	like
in	a	project.	In	this	book,	I	tend	to	add	type	information	to	make	the	listings
easier	to	follow,	since	many	of	the	examples	in	this	book	are	related	to	how	the
TypeScript	compiler	handles	data	types.	Listing	1-16	adds	types	to	the	code	in
the	index.ts	file	and	disables	the	statement	that	causes	the	compiler	error.

import	{	TodoItem	}	from	"./todoItem";

import	{	TodoCollection	}	from	"./todoCollection";

let	todos:	TodoItem[]	=	[



				new	TodoItem(1,	"Buy	Flowers"),	new	TodoItem(2,

"Get	Shoes"),

				new	TodoItem(3,	"Collect	Tickets"),	new

TodoItem(4,	"Call	Joe",	true)];

let	collection:	TodoCollection	=	new

TodoCollection("Adam",	todos);

console.clear();

console.log(`${collection.userName}'s	Todo	List`);

let	newId:	number	=	collection.addTodo("Go	for	run");

let	todoItem:	TodoItem	=

collection.getTodoById(newId);

todoItem.printDetails();

//collection.addTodo(todoItem);

Listing	1-16. Adding	Type	Information	in	the	index.ts	File	in	the	src	Folder

The	type	information	added	to	the	statements	in	Listing	1-16	doesn’t	change
the	way	the	code	works,	but	it	does	make	the	data	types	being	used	explicit,
which	can	make	the	purpose	of	code	easier	to	understand	and	doesn’t	require	the
compiler	to	infer	the	data	types	being	used.	Run	the	commands	shown	in	Listing
1-17	in	the	todo	folder	to	compile	and	execute	the	code.

tsc

node	dist/index.js

Listing	1-17. Compiling	and	Executing

When	the	code	is	executed,	the	following	output	will	be	produced:

Adam's	Todo	List

5							Go	for	run

Adding	Features	to	the	Collection	Class
The	next	step	is	to	add	new	capabilities	to	the	TodoCollection	class.	First,	I
am	going	to	change	the	way	that	TodoItem	objects	are	stored	so	that	a
JavaScript	Map	is	used,	as	shown	in	Listing	1-18.



import	{	TodoItem	}	from	"./todoItem";

export	class	TodoCollection	{

				private	nextId:	number	=	1;

				private	itemMap	=	new	Map<number,	TodoItem>();

				constructor(public	userName:	string,	todoItems:

TodoItem[]	=	[])	{

								todoItems.forEach(item	=>

this.itemMap.set(item.id,	item));

				}

				addTodo(task:	string):	number	{

								while	(this.getTodoById(this.nextId))	{

												this.nextId++;

								}

								this.itemMap.set(this.nextId,	new

TodoItem(this.nextId,	task));

								return	this.nextId;

				}

				getTodoById(id:	number)	:	TodoItem	{

								return	this.itemMap.get(id);

				}

				markComplete(id:	number,	complete:	boolean)	{

								const	todoItem	=	this.getTodoById(id);

								if	(todoItem)	{

												todoItem.complete	=	complete;

								}

				}

}

Listing	1-18. Using	a	Map	in	the	todoCollection.ts	File	in	the	src	Folder

TypeScript	supports	generic	types,	which	are	placeholders	for	types	that	are
resolved	when	an	object	is	created.	The	JavaScript	Map,	for	example,	is	a
general-purpose	collection	that	stores	key/value	pairs.	Because	JavaScript	has
such	a	dynamic	type	system,	a	Map	can	be	used	to	store	any	mix	of	data	types
using	any	mix	of	keys.	To	restrict	the	types	that	can	be	used	with	the	Map	in



Listing	1-18,	I	provided	generic	type	arguments	that	tell	the	TypeScript	compiler
which	types	are	allowed	for	the	keys	and	values.

...

private	itemMap	=	new	Map<number,	TodoItem>();

...

The	generic	type	arguments	are	enclosed	in	angle	brackets	(the	<	and	>
characters),	and	the	Map	in	Listing	1-18	is	given	generic	type	arguments	that	tell
the	compiler	that	the	Map	will	store	TodoItem	objects	using	number	values
as	keys.	The	compiler	will	produce	an	error	if	a	statement	attempts	to	store	a
different	data	type	in	the	Map	or	use	a	key	that	isn’t	a	number	value.	Generic
types	are	an	important	TypeScript	feature	and	are	described	in	detail	in	Chapter
12.

Providing	Access	to	To-Do	Items
The	TodoCollection	class	defines	a	getTodoById	method,	but	the
application	will	need	to	display	a	list	of	items,	optionally	filtered	to	exclude
completed	tasks.	Listing	1-19	adds	a	method	that	provides	access	to	the
TodoItem	objects	that	the	TodoCollection	is	managing.

import	{	TodoItem	}	from	"./todoItem";

export	class	TodoCollection	{

				private	nextId:	number	=	1;

				private	itemMap	=	new	Map<number,	TodoItem>();

				constructor(public	userName:	string,	todoItems:

TodoItem[]	=	[])	{

								todoItems.forEach(item	=>

this.itemMap.set(item.id,	item));

				}

				addTodo(task:	string):	number	{

								while	(this.getTodoById(this.nextId))	{

												this.nextId++;

								}

								this.itemMap.set(this.nextId,	new

TodoItem(this.nextId,	task));



								return	this.nextId;

				}

				getTodoById(id:	number)	:	TodoItem	{

								return	this.itemMap.get(id);

				}

				getTodoItems(includeComplete:	boolean):	TodoItem[]

{

								return	[...this.itemMap.values()]

												.filter(item	=>	includeComplete	||

!item.complete);

				}

				markComplete(id:	number,	complete:	boolean)	{

								const	todoItem	=	this.getTodoById(id);

								if	(todoItem)	{

												todoItem.complete	=	complete;

								}

				}

}

Listing	1-19. Providing	Access	to	Items	in	the	todoCollection.ts	File	in	the	src	Folder

The	getTodoItems	method	gets	the	objects	from	the	Map	using	its
values	method	and	uses	them	to	create	an	array	using	the	JavaScript
spread	operator,	which	is	three	periods.	The	objects	are	processed	using	the
filter	method	to	select	the	objects	that	are	required,	using	the
includeComplete	parameter	to	decide	which	objects	are	needed.

The	TypeScript	compiler	uses	the	information	it	has	been	given	to	follow	the
types	through	each	step.	The	generic	type	arguments	used	to	create	the	Map	tell
the	compiler	that	it	contains	TodoItem	objects,	so	the	compiler	knows	that	the
values	method	will	return	TodoItem	objects	and	that	this	will	also	be	the
type	of	the	objects	in	the	array.	Following	this	through,	the	compiler	knows	that
the	function	passed	to	the	filter	method	will	be	processing	TodoItem
objects	and	knows	that	each	object	will	define	a	complete	property.	If	I	try	to
read	a	property	or	method	not	defined	by	the	TodoItem	class,	the	TypeScript
compiler	will	report	an	error.	Similarly,	the	compiler	will	report	an	error	if	the
result	of	the	return	statement	doesn’t	match	the	result	type	declared	by	the



method.
In	Listing	1-20,	I	have	updated	the	code	in	the	index.ts	file	to	use	the

new	TodoCollection	class	feature	and	display	a	simple	list	of	to-do	items	to
the	user.

import	{	TodoItem	}	from	"./todoItem";

import	{	TodoCollection	}	from	"./todoCollection";

let	todos:	TodoItem[]	=	[

				new	TodoItem(1,	"Buy	Flowers"),	new	TodoItem(2,

"Get	Shoes"),

				new	TodoItem(3,	"Collect	Tickets"),	new

TodoItem(4,	"Call	Joe",	true)];

let	collection:	TodoCollection	=	new

TodoCollection("Adam",	todos);

console.clear();

console.log(`${collection.userName}'s	Todo	List`);

//collection.addTodo(todoItem);

collection.getTodoItems(true).forEach(item	=>

item.printDetails());

Listing	1-20. Getting	the	Collection	Items	in	the	index.ts	File	in	the	src	Folder

The	new	statement	calls	the	getTodoItems	method	defined	in	Listing	1-
19	and	uses	the	standard	JavaScript	forEach	method	to	write	a	description	of
each	TodoItem	object	using	the	console	object.

Run	the	commands	shown	in	Listing	1-21	in	the	todo	folder	to	compile	and
execute	the	code.

tsc

node	dist/index.js

Listing	1-21. Compiling	and	Executing

When	the	code	is	executed,	the	following	output	will	be	produced:

Adam's	Todo	List

1							Buy	Flowers



2							Get	Shoes

3							Collect	Tickets

4							Call	Joe								(complete)

Removing	Completed	Tasks
As	tasks	are	added	and	then	marked	complete,	the	number	of	items	in	the
collection	will	grow	and	eventually	become	difficult	for	the	user	to	manage.
Listing	1-22	adds	a	method	that	removes	the	completed	items	from	the
collection.

import	{	TodoItem	}	from	"./todoItem";

export	class	TodoCollection	{

				private	nextId:	number	=	1;

				private	itemMap	=	new	Map<number,	TodoItem>();

				constructor(public	userName:	string,	todoItems:

TodoItem[]	=	[])	{

								todoItems.forEach(item	=>

this.itemMap.set(item.id,	item));

				}

				addTodo(task:	string):	number	{

								while	(this.getTodoById(this.nextId))	{

												this.nextId++;

								}

								this.itemMap.set(this.nextId,	new

TodoItem(this.nextId,	task));

								return	this.nextId;

				}

				getTodoById(id:	number)	:	TodoItem	{

								return	this.itemMap.get(id);

				}

				getTodoItems(includeComplete:	boolean):	TodoItem[]

{

								return	[...this.itemMap.values()]

												.filter(item	=>	includeComplete	||



!item.complete);

				}

				markComplete(id:	number,	complete:	boolean)	{

								const	todoItem	=	this.getTodoById(id);

								if	(todoItem)	{

												todoItem.complete	=	complete;

								}

				}

				removeComplete()	{

								this.itemMap.forEach(item	=>	{

												if	(item.complete)	{

																this.itemMap.delete(item.id);

												}

								})

				}

}

Listing	1-22. Removing	Completed	Items	from	the	todoCollection.ts	File	in	the	src	Folder

The	removeComplete	method	uses	the	Map.forEach	method	to
inspect	each	TodoItem	stored	in	the	Map	and	calls	the	delete	method	for
those	whose	complete	property	is	true.	Listing	1-23	updates	the	code	in	the
index.ts	file	to	invoke	the	new	method.

import	{	TodoItem	}	from	"./todoItem";

import	{	TodoCollection	}	from	"./todoCollection";

let	todos:	TodoItem[]	=	[

				new	TodoItem(1,	"Buy	Flowers"),	new	TodoItem(2,

"Get	Shoes"),

				new	TodoItem(3,	"Collect	Tickets"),	new

TodoItem(4,	"Call	Joe",	true)];

let	collection:	TodoCollection	=	new

TodoCollection("Adam",	todos);

console.clear();

console.log(`${collection.userName}'s	Todo	List`);



//collection.addTodo(todoItem);

collection.removeComplete();

collection.getTodoItems(true).forEach(item	=>

item.printDetails());

Listing	1-23. Testing	Item	Removal	in	the	index.ts	File	in	the	src	Folder

Run	the	commands	shown	in	Listing	1-24	in	the	todo	folder	to	compile	and
execute	the	code.

tsc

node	dist/index.js

Listing	1-24. Compiling	and	Executing

When	the	code	is	executed,	the	following	output	will	be	produced,	showing
that	the	completed	task	has	been	removed	from	the	collection:

Adam's	Todo	List

1							Buy	Flowers

2							Get	Shoes

3							Collect	Tickets

Providing	Item	Counts
The	final	feature	I	need	for	the	TodoCollection	class	is	to	provide	counts	of
the	total	number	of	TodoItem	objects,	the	number	that	are	complete,	and	the
number	still	outstanding.

I	have	focused	on	classes	in	earlier	listings	because	this	is	the	way	that	most
programmers	are	used	to	creating	data	types.	JavaScript	objects	can	also	be
defined	using	literal	syntax,	for	which	TypeScript	can	check	and	enforce	static
types	in	the	same	way	as	for	objects	created	from	classes.	When	dealing	with
object	literals,	the	TypeScript	compiler	focuses	on	the	combination	of	property
names	and	the	types	of	their	values,	which	is	known	as	an	object’s	shape.	A
specific	combination	of	names	and	types	is	known	as	a	shape	type.	Listing	1-25
adds	a	method	to	the	TodoCollection	class	that	returns	an	object	that
describes	the	items	in	the	collection.

import	{	TodoItem	}	from	"./todoItem";

type	ItemCounts	=	{

				total:	number,



				incomplete:	number

}

export	class	TodoCollection	{

				private	nextId:	number	=	1;

				private	itemMap	=	new	Map<number,	TodoItem>();

				constructor(public	userName:	string,	todoItems:

TodoItem[]	=	[])	{

								todoItems.forEach(item	=>

this.itemMap.set(item.id,	item));

				}

				addTodo(task:	string):	number	{

								while	(this.getTodoById(this.nextId))	{

												this.nextId++;

								}

								this.itemMap.set(this.nextId,	new

TodoItem(this.nextId,	task));

								return	this.nextId;

				}

				getTodoById(id:	number)	:	TodoItem	{

								return	this.itemMap.get(id);

				}

				getTodoItems(includeComplete:	boolean):	TodoItem[]

{

								return	[...this.itemMap.values()]

												.filter(item	=>	includeComplete	||

!item.complete);

				}

				markComplete(id:	number,	complete:	boolean)	{

								const	todoItem	=	this.getTodoById(id);

								if	(todoItem)	{

												todoItem.complete	=	complete;

								}

				}



				removeComplete()	{

								this.itemMap.forEach(item	=>	{

												if	(item.complete)	{

																this.itemMap.delete(item.id);

												}

								})

				}

				getItemCounts():	ItemCounts	{

								return	{

												total:	this.itemMap.size,

												incomplete:

this.getTodoItems(false).length

								};

				}

}

Listing	1-25. Using	a	Shape	Type	in	the	todoCollection.ts	File	in	the	src	Folder

The	type	keyword	is	used	to	create	a	type	alias,	which	is	a	convenient	way
to	assign	a	name	to	a	shape	type.	The	type	alias	in	Listing	1-25	describes	objects
that	have	two	number	properties,	named	total	and	incomplete.	The	type
alias	is	used	as	the	result	of	the	getItemCounts	method,	which	uses	the
JavaScript	object	literal	syntax	to	create	an	object	whose	shape	matches	the	type
alias.	Listing	1-26	updates	the	index.ts	file	so	that	the	number	of	incomplete
items	is	displayed	to	the	user.

import	{	TodoItem	}	from	"./todoItem";

import	{	TodoCollection	}	from	"./todoCollection";

let	todos:	TodoItem[]	=	[

				new	TodoItem(1,	"Buy	Flowers"),	new	TodoItem(2,

"Get	Shoes"),

				new	TodoItem(3,	"Collect	Tickets"),	new

TodoItem(4,	"Call	Joe",	true)];

let	collection:	TodoCollection	=	new

TodoCollection("Adam",	todos);

console.clear();



console.log(`${collection.userName}'s	Todo	List	`

				+	`(${	collection.getItemCounts().incomplete	}

items	to	do)`);

collection.getTodoItems(true).forEach(item	=>

item.printDetails());

Listing	1-26. Displaying	Item	Counts	in	the	index.ts	File	in	the	src	Folder

Run	the	commands	shown	in	Listing	1-27	in	the	todo	folder	to	compile	and
execute	the	code.

tsc

node	dist/index.js

Listing	1-27. Compiling	and	Executing

When	the	code	is	executed,	the	following	output	will	be	produced:

Adam's	Todo	List	(3	items	to	do)

1							Buy	Flowers

2							Get	Shoes

3							Collect	Tickets

4							Call	Joe								(complete)

Using	a	Third-Party	Package
One	of	the	joys	of	writing	JavaScript	code	is	the	ecosystem	of	packages	that	can
be	incorporated	into	projects.	TypeScript	allows	any	JavaScript	package	to	be
used	but	with	the	addition	of	static	type	support.	I	am	going	to	use	the	excellent
Inquirer.js	package
(https://github.com/SBoudrias/Inquirer.js)	to	deal	with
prompting	the	user	for	commands	and	processing	responses.	To	add	Inquirer.js	to
the	project,	run	the	command	shown	in	Listing	1-28	in	the	todo	folder.

npm	install	inquirer@7.3.3

Listing	1-28. Adding	a	Package	to	the	Project

Packages	are	added	to	TypeScript	projects	just	as	they	are	for	pure	JavaScript
projects,	using	the	npm	install	command.	To	get	started	with	the	new
package,	I	added	the	statements	shown	in	Listing	1-29	to	the	index.ts	file.

https://github.com/SBoudrias/Inquirer.js


import	{	TodoItem	}	from	"./todoItem";

import	{	TodoCollection	}	from	"./todoCollection";

import	*	as	inquirer	from	'inquirer';

let	todos:	TodoItem[]	=	[

				new	TodoItem(1,	"Buy	Flowers"),	new	TodoItem(2,

"Get	Shoes"),

				new	TodoItem(3,	"Collect	Tickets"),	new

TodoItem(4,	"Call	Joe",	true)];

let	collection:	TodoCollection	=	new

TodoCollection("Adam",	todos);

function	displayTodoList():	void	{

				console.log(`${collection.userName}'s	Todo	List	`

								+	`(${	collection.getItemCounts().incomplete	}

items	to	do)`);

				collection.getTodoItems(true).forEach(item	=>

item.printDetails());

}

enum	Commands	{

				Quit	=	"Quit"

}

function	promptUser():	void	{

				console.clear();

				displayTodoList();

				inquirer.prompt({

												type:	"list",

												name:	"command",

												message:	"Choose	option",

												choices:	Object.values(Commands)

				}).then(answers	=>	{

								if	(answers["command"]	!==	Commands.Quit)	{

												promptUser();

								}

				})

}



promptUser();

Listing	1-29. Using	a	New	Package	in	the	index.ts	File	in	the	src	Folder

TypeScript	doesn’t	get	in	the	way	of	using	JavaScript	code,	and	the	changes
in	Listing	1-29	make	use	of	the	Inquirer.js	package	to	prompt	the	user	and	offer	a
choice	of	commands.	There	is	only	one	command	available	currently,	which	is
Quit,	but	I’ll	add	more	useful	features	shortly.

Tip I	don’t	describe	the	Inquirer.js	API	in	detail	in	this	book	because	it	is
not	directly	related	to	TypeScript.	See
https://github.com/SBoudrias/Inquirer.js	for	details	if	you
want	to	use	Inquirer.js	in	your	own	projects.

The	inquirer.prompt	method	is	used	to	prompt	the	user	for	a	response	and
is	configured	using	a	JavaScript	object.	The	configuration	options	I	have	chosen
present	the	user	with	a	list	that	can	be	navigated	using	the	arrow	keys,	and	a
selection	can	be	made	by	pressing	Return.	When	the	user	makes	a	selection,	the
function	passed	to	the	then	method	is	invoked,	and	the	selection	is	available
through	the	answers.command	property.

Listing	1-29	shows	how	TypeScript	code	and	the	JavaScript	code	from	the
Inquirer.js	package	can	be	used	seamlessly	together.	The	enum	keyword	is	a
TypeScript	feature	that	allows	values	to	be	given	names,	as	described	in	Chapter
9,	and	will	allow	me	to	define	and	refer	to	commands	without	needing	to
duplicate	string	values	through	the	application.	Values	from	the	enum	are	used
alongside	the	Inquirer.js	features,	like	this:

...

if	(answers["command"]	!==	Commands.Quit)	{

...

Run	the	commands	shown	in	Listing	1-30	in	the	todo	folder	to	compile	and
execute	the	code.

tsc

node	dist/index.js

Listing	1-30. Compiling	and	Executing

When	the	code	is	executed,	the	list	of	to-do	items	will	be	displayed,	along

https://github.com/SBoudrias/Inquirer.js


with	a	prompt	to	select	a	command,	as	shown	in	Figure	1-2,	although	there	is
only	one	command	available.

Figure	1-2. Prompting	the	user	for	a	command

If	you	press	the	Return	key,	the	Quit	command	will	be	selected,	and	the
application	will	terminate.

Adding	Type	Declarations	for	the	JavaScript	Package
TypeScript	doesn’t	prevent	JavaScript	code	from	being	used,	but	it	isn’t	able	to
provide	any	assistance	for	its	use.	The	compiler	doesn’t	have	any	insight	into	the
data	types	that	are	being	used	by	Inquirer.js	and	has	to	trust	that	I	am	using	the
right	types	of	arguments	to	prompt	the	user	and	that	I	am	processing	the
response	objects	safely.

There	are	two	ways	to	provide	TypeScript	with	the	information	that	it
requires	for	static	typing.	The	first	approach	is	to	describe	the	types	yourself.	I
cover	the	features	that	TypeScript	provides	for	describing	JavaScript	code	in
Chapter	14.	Manually	describing	JavaScript	code	isn’t	difficult,	but	it	does	take
some	time	and	requires	good	knowledge	of	the	code	you	are	describing.

The	second	approach	is	to	use	type	declarations	provided	by	someone	else.
The	Definitely	Typed	project	is	a	repository	of	TypeScript	type	declarations	for
thousands	of	JavaScript	packages,	including	the	Inquirer.js	package.	To	install
the	type	declarations,	run	the	command	shown	in	Listing	1-31	in	the	todo
folder.

npm	install	--save-dev	@types/inquirer



Listing	1-31. Installing	Type	Definitions

Type	declarations	are	installed	using	the	npm	install	command,	just	like
JavaScript	packages.	The	save-dev	argument	is	used	for	packages	that	are
used	in	development	but	that	are	not	part	of	the	application.	The	package	name
is	@types/	followed	by	the	name	of	the	package	for	which	type	descriptions
are	required.	For	the	Inquirer.js	package,	the	type	declarations	package	is
@types/inquirer	because	inquirer	is	the	name	used	to	install	the
JavaScript	package.

Note See
https://github.com/DefinitelyTyped/DefinitelyTyped

for	the	details	of	the	Definitely	Typed	project	and	the	packages	for	which	type
declarations	are	available.

The	TypeScript	compiler	detects	type	declarations	automatically,	and	the
command	in	Listing	1-31	allows	the	compiler	to	check	the	data	types	used	by	the
Inquirer.js	API.	To	demonstrate	the	effect	of	the	type	declarations,	Listing	1-32
uses	a	configuration	property	that	isn’t	supported	by	Inquirer.js.

...

function	promptUser():	void	{

				console.clear();

				inquirer.prompt({

												type:	"list",

												name:	"command",

												message:	"Choose	option",

												choices:	Object.values(Commands),

												badProperty:	true

				}).then(answers	=>	{

								//	no	action	required

								if	(answers["command"]	!==	Commands.Quit)	{

												promptUser();

								}

				})

}

...

Listing	1-32. Adding	a	Property	in	the	index.ts	File	in	the	src	Folder

https://github.com/DefinitelyTyped/DefinitelyTyped


There	is	no	configuration	property	named	badProperty	in	the	Inquirer.js
API.	Run	the	command	shown	in	Listing	1-33	in	the	todo	folder	to	compile	the
code	in	the	project.

tsc

Listing	1-33. Running	the	Compiler

The	compiler	uses	the	type	information	installed	in	Listing	1-31	and	reports
the	following	error:

src/index.ts:25:13	-	error	TS2322:	Type	'"list"'	is

not	assignable	to	type	'"number"'.

25													type:	"list",

															~~~~

Found	1	error.

The	type	declaration	allows	TypeScript	to	provide	the	same	set	of	features
throughout	the	application,	even	though	the	Inquirer.js	package	is	written	in	pure
JavaScript	and	not	TypeScript.	However,	as	this	example	shows,	there	can	be
limitations	to	this	feature,	and	the	addition	of	a	property	that	isn’t	supported	has
produced	an	error	about	the	value	assigned	to	the	type	property.	This	happens
because	it	can	be	difficult	to	describe	the	types	that	pure	JavaScript	expects,	and
sometimes	the	error	messages	can	be	more	of	a	general	indication	that	something
is	wrong.

Adding	Commands
The	example	application	doesn’t	do	a	great	deal	at	the	moment	and	requires
additional	commands.	In	the	sections	that	follow,	I	add	a	series	of	new
commands	and	provide	the	implementation	for	each	of	them.

Filtering	Items
The	first	command	I	will	add	allows	the	user	to	toggle	the	filter	to	include	or
exclude	completed	items,	as	shown	in	Listing	1-34.

import	{	TodoItem	}	from	"./todoItem";

import	{	TodoCollection	}	from	"./todoCollection";

import	*	as	inquirer	from	'inquirer';

let	todos:	TodoItem[]	=	[

				new	TodoItem(1,	"Buy	Flowers"),	new	TodoItem(2,

"Get	Shoes"),

				new	TodoItem(3,	"Collect	Tickets"),	new	TodoItem(4,

"Call	Joe",	true)];

let	collection:	TodoCollection	=	new

TodoCollection("Adam",	todos);

let	showCompleted	=	true;

function	displayTodoList():	void	{

				console.log(`${collection.userName}'s	Todo	List	`

								+	`(${	collection.getItemCounts().incomplete	}

items	to	do)`);

				collection.getTodoItems(showCompleted).forEach(item

=>	item.printDetails());

}

enum	Commands	{

				Toggle	=	"Show/Hide	Completed",

				Quit	=	"Quit"

}

function	promptUser():	void	{

				console.clear();

				displayTodoList();

				inquirer.prompt({

												type:	"list",

												name:	"command",

												message:	"Choose	option",

												choices:	Object.values(Commands),

												//badProperty:	true

				}).then(answers	=>	{

								switch	(answers["command"])	{

												case	Commands.Toggle:

																showCompleted	=	!showCompleted;

																promptUser();

																break;

								}

				})

}

promptUser();

Listing	1-34. Filtering	Items	in	the	index.ts	File	in	the	src	Folder

The	process	for	adding	commands	is	to	define	a	new	value	for	the
Commands	enum	and	the	statements	that	respond	when	the	command	is
selected.	In	this	case,	the	new	value	is	Toggle,	and	when	it	is	selected,	the
value	of	the	showCompleted	variable	is	changed	so	that	the
displayTodoList	function	includes	or	excludes	completed	items.	Run	the
commands	shown	in	Listing	1-35	in	the	todo	folder	to	compile	and	execute	the
code.

tsc

node	dist/index.js

Listing	1-35. Compiling	and	Executing

Select	the	Show/Hide	Completed	option	and	press	Return	to	toggle	the
completed	tasks	in	the	list,	as	shown	in	Figure	1-3.

Figure	1-3. Toggling	completed	items

Adding	Tasks
The	example	application	isn’t	much	use	unless	the	user	can	create	new	tasks.
Listing	1-36	adds	support	for	creating	new	TodoItem	objects.

import	{	TodoItem	}	from	"./todoItem";

import	{	TodoCollection	}	from	"./todoCollection";

import	*	as	inquirer	from	'inquirer';

let	todos:	TodoItem[]	=	[

				new	TodoItem(1,	"Buy	Flowers"),	new	TodoItem(2,

"Get	Shoes"),

				new	TodoItem(3,	"Collect	Tickets"),	new	TodoItem(4,

"Call	Joe",	true)];

let	collection:	TodoCollection	=	new

TodoCollection("Adam",	todos);

let	showCompleted	=	true;

function	displayTodoList():	void	{

				console.log(`${collection.userName}'s	Todo	List	`

								+	`(${	collection.getItemCounts().incomplete	}

items	to	do)`);

				collection.getTodoItems(showCompleted).forEach(item

=>	item.printDetails());

}

enum	Commands	{

				Add	=	"Add	New	Task",

				Toggle	=	"Show/Hide	Completed",

				Quit	=	"Quit"

}

function	promptAdd():	void	{

				console.clear();

				inquirer.prompt({	type:	"input",	name:	"add",

message:	"Enter	task:"})

								.then(answers	=>	{if	(answers["add"]	!==	"")	{

												collection.addTodo(answers["add"]);

								}

								promptUser();

				})

}

function	promptUser():	void	{

				console.clear();

				displayTodoList();

				inquirer.prompt({

												type:	"list",

												name:	"command",

												message:	"Choose	option",

												choices:	Object.values(Commands),

				}).then(answers	=>	{

								switch	(answers["command"])	{

												case	Commands.Toggle:

																showCompleted	=	!showCompleted;

																promptUser();

																break;

												case	Commands.Add:

																promptAdd();

																break;

								}

				})

}

promptUser();

Listing	1-36. Adding	Tasks	in	the	index.ts	File	in	the	src	Folder

The	Inquirer.js	package	can	present	different	types	of	questions	to	the	user.
When	the	user	selects	the	Add	command,	the	input	question	type	is	used	to	get
the	task	from	the	user,	which	is	used	as	the	argument	to	the
TodoCollection.addTodo	method.	Run	the	commands	shown	in	Listing
1-37	in	the	todo	folder	to	compile	and	execute	the	code.

tsc

node	dist/index.js

Listing	1-37. Compiling	and	Executing

Select	the	Add	New	Task	option,	enter	some	text,	and	press	Return	to
create	a	new	task,	as	shown	in	Figure	1-4.

Figure	1-4. Adding	a	new	task

Marking	Tasks	Complete
Completing	a	task	is	a	two-stage	process	that	requires	the	user	to	select	the	item
they	want	to	complete.	Listing	1-38	adds	the	commands	and	an	additional
prompt	that	will	allow	the	user	to	mark	tasks	complete	and	to	remove	the
completed	items.

import	{	TodoItem	}	from	"./todoItem";

import	{	TodoCollection	}	from	"./todoCollection";

import	*	as	inquirer	from	'inquirer';

let	todos:	TodoItem[]	=	[

				new	TodoItem(1,	"Buy	Flowers"),	new	TodoItem(2,

"Get	Shoes"),

				new	TodoItem(3,	"Collect	Tickets"),	new	TodoItem(4,

"Call	Joe",	true)];

let	collection:	TodoCollection	=	new

TodoCollection("Adam",	todos);

let	showCompleted	=	true;

function	displayTodoList():	void	{

				console.log(`${collection.userName}'s	Todo	List	`

								+	`(${	collection.getItemCounts().incomplete	}

items	to	do)`);

				collection.getTodoItems(showCompleted).forEach(item

=>	item.printDetails());

}

enum	Commands	{

				Add	=	"Add	New	Task",

				Complete	=	"Complete	Task",

				Toggle	=	"Show/Hide	Completed",

				Purge	=	"Remove	Completed	Tasks",

				Quit	=	"Quit"

}

function	promptAdd():	void	{

				console.clear();

				inquirer.prompt({	type:	"input",	name:	"add",

message:	"Enter	task:"})

								.then(answers	=>	{if	(answers["add"]	!==	"")	{

												collection.addTodo(answers["add"]);

								}

								promptUser();

				})

}

function	promptComplete():	void	{

				console.clear();

				inquirer.prompt({	type:	"checkbox",	name:

"complete",

								message:	"Mark	Tasks	Complete",

								choices:

collection.getTodoItems(showCompleted).map(item	=>

												({name:	item.task,	value:	item.id,	checked:

item.complete}))

				}).then(answers	=>	{

								let	completedTasks	=	answers["complete"]	as

number[];

								collection.getTodoItems(true).forEach(item	=>

												collection.markComplete(item.id,

																completedTasks.find(id	=>	id	===

item.id)	!=	undefined));

								promptUser();

				})

}

function	promptUser():	void	{

				console.clear();

				displayTodoList();

				inquirer.prompt({

												type:	"list",

												name:	"command",

												message:	"Choose	option",

												choices:	Object.values(Commands),

				}).then(answers	=>	{

								switch	(answers["command"])	{

												case	Commands.Toggle:

																showCompleted	=	!showCompleted;

																promptUser();

																break;

												case	Commands.Add:

																promptAdd();

																break;

												case	Commands.Complete:

																if

(collection.getItemCounts().incomplete	>	0)	{

																				promptComplete();

																}	else	{

																				promptUser();

																}

																break;

												case	Commands.Purge:

																collection.removeComplete();

																promptUser();

																break;

								}

				})

}

promptUser();

Listing	1-38. Completing	Items	in	the	index.ts	File	in	the	src	Folder

The	changes	add	a	new	prompt	to	the	application	that	presents	the	user	with

the	list	of	tasks	and	allows	their	state	to	be	changed.	The	showCompleted
variable	is	used	to	determine	whether	completed	items	are	shown,	creating	a	link
between	the	Toggle	and	Complete	commands.

The	only	new	TypeScript	feature	of	note	is	found	in	this	statement:

...

let	completedTasks	=	answers["complete"]	as	number[];

...

Even	with	type	definitions,	there	are	times	when	TypeScript	isn’t	able	to
correctly	assess	the	types	that	are	being	used.	In	this	case,	the	Inquirer.js	package
allows	any	data	type	to	be	used	in	the	prompts	shown	to	the	user,	and	the
compiler	isn’t	able	to	determine	that	I	have	used	only	number	values,	which
means	that	only	number	values	can	be	received	as	answers.	I	used	a	type
assertion	to	address	this	problem,	which	allows	me	to	tell	the	compiler	to	use	the
type	that	I	specify,	even	if	it	has	identified	a	different	data	type	(or	no	data	type
at	all).	When	a	type	assertion	is	used,	it	overrides	the	compiler,	which	means	that
I	am	responsible	for	ensuring	that	the	type	I	assert	is	correct.	Run	the	commands
shown	in	Listing	1-39	in	the	todo	folder	to	compile	and	execute	the	code.

tsc

node	dist/index.js

Listing	1-39. Compiling	and	Executing

Select	the	Complete	Task	option,	select	one	or	more	tasks	to	change
using	the	spacebar,	and	then	press	Return.	The	state	of	the	tasks	you	selected	will
be	changed,	which	will	be	reflected	in	the	revised	list,	as	shown	in	Figure	1-5.

Figure	1-5. Completing	items

Persistently	Storing	Data
To	store	the	to-do	items	persistently,	I	am	going	to	use	another	open-source
package	because	there	is	no	advantage	in	creating	functionality	when	there	are
well-written	and	well-tested	alternatives	available.	Run	the	commands	shown	in
Listing	1-40	in	the	todo	folder	to	install	the	Lowdb	package	and	the	type
definitions	that	describe	its	API	to	TypeScript.

npm	install	lowdb@1.0.0

npm	install	--save-dev	@types/lowdb

Listing	1-40. Adding	a	Package	and	Type	Definitions

Lowdb	is	an	excellent	database	package	that	stores	data	in	a	JSON	file	and
that	is	used	as	the	data	storage	component	for	the	json-server	package,
which	I	use	to	create	HTTP	web	services	in	Part	3	of	this	book.

Tip I	don’t	describe	the	Lowdb	API	in	detail	in	this	book	because	it	is	not
directly	related	to	TypeScript.	See
https://github.com/typicode/lowdb	for	details	if	you	want	to
use	Lowdb	in	your	own	projects.

I	am	going	to	implement	persistent	storage	by	deriving	from	the
TodoCollection	class.	In	preparation,	I	changed	the	access	control	keyword
used	by	the	TodoCollection	class	so	that	subclasses	can	access	the	Map	that
contains	the	TodoItem	objects,	as	shown	in	Listing	1-41.

import	{	TodoItem	}	from	"./todoItem";

type	ItemCounts	=	{

				total:	number,

				incomplete:	number

}

export	class	TodoCollection	{

				private	nextId:	number	=	1;

				protected	itemMap	=	new	Map<number,	TodoItem>();

https://github.com/typicode/lowdb

				constructor(public	userName:	string,	todoItems:

TodoItem[]	=	[])	{

								todoItems.forEach(item	=>

this.itemMap.set(item.id,	item));

				}

				//	...methods	omitted	for	brevity...

}

Listing	1-41. Changing	Access	Control	in	the	todoCollection.ts	File	in	the	src	Folder

The	protected	keyword	tells	the	TypeScript	compiler	that	a	property	can
be	accessed	only	by	a	class	or	its	subclasses.	To	create	the	subclass,	I	added	a
file	called	jsonTodoCollection.ts	to	the	src	folder	with	the	code	shown
in	Listing	1-42.

import	{	TodoItem	}	from	"./todoItem";

import	{	TodoCollection	}	from	"./todoCollection";

import	*	as	lowdb	from	"lowdb";

import	*	as	FileSync	from	"lowdb/adapters/FileSync";

type	schemaType	=	{

				tasks:	{	id:	number;	task:	string;	complete:

boolean;	}[]

};

export	class	JsonTodoCollection	extends	TodoCollection

{

				private	database:	lowdb.LowdbSync<schemaType>;

				constructor(public	userName:	string,	todoItems:

TodoItem[]	=	[])	{

								super(userName,	[]);

								this.database	=	lowdb(new

FileSync("Todos.json"));

								if	(this.database.has("tasks").value())		{

												let	dbItems	=

this.database.get("tasks").value();

												dbItems.forEach(item	=>

this.itemMap.set(item.id,

																new	TodoItem(item.id,	item.task,

item.complete)));

								}	else	{

												this.database.set("tasks",

todoItems).write();

												todoItems.forEach(item	=>

this.itemMap.set(item.id,	item));

								}

				}

				addTodo(task:	string):	number	{

								let	result	=	super.addTodo(task);

								this.storeTasks();

								return	result;

				}

				markComplete(id:	number,	complete:	boolean):	void

{

								super.markComplete(id,	complete);

								this.storeTasks();

				}

				removeComplete():	void	{

								super.removeComplete();

								this.storeTasks();

				}

				private	storeTasks()	{

								this.database.set("tasks",

[...this.itemMap.values()]).write();

				}

}

Listing	1-42. The	Contents	of	the	jsonTodoCollection.ts	File	in	the	src	Folder

The	type	definition	for	Lowdb	uses	a	schema	to	describe	the	structure	of	the
data	that	will	be	stored,	which	is	then	applied	using	generic	type	arguments	so
that	the	TypeScript	compiler	can	check	the	data	types	being	used.	For	the
example	application,	I	need	to	store	only	one	data	type,	which	I	describe	using	a
type	alias.

...

type	schemaType	=	{

				tasks:	{	id:	number;	task:	string;	complete:

boolean;	}[]

};

...

The	schema	type	is	used	when	the	Lowdb	database	is	created,	and	the
compiler	can	check	the	way	that	data	is	used	when	it	is	read	from	the	database	as
in	this	statement,	for	example:

...

let	dbItems	=	this.database.get("tasks").value();

...

The	compiler	knows	that	the	tasks	argument	corresponds	to	the	tasks
property	in	the	schema	type	and	that	the	get	operation	will	return	an	array	of
objects	with	id,	task,	and	complete	properties.

Applying	the	Persistent	Collection	Class
Listing	1-43	uses	the	JsonTodoCollection	class	in	the	index.ts	file	so
that	data	will	be	stored	persistently	by	the	example	application.

...

import	{	TodoItem	}	from	"./todoItem";

import	{	TodoCollection	}	from	"./todoCollection";

import	*	as	inquirer	from	'inquirer';

import	{	JsonTodoCollection	}	from

"./jsonTodoCollection";

let	todos:	TodoItem[]	=	[

				new	TodoItem(1,	"Buy	Flowers"),	new	TodoItem(2,

"Get	Shoes"),

				new	TodoItem(3,	"Collect	Tickets"),	new

TodoItem(4,	"Call	Joe",	true)];

let	collection:	TodoCollection	=	new

JsonTodoCollection("Adam",	todos);

let	showCompleted	=	true;

...

Listing	1-43. Using	the	Persistent	Collection	in	the	index.ts	File	in	the	src	Folder

Run	the	commands	shown	in	Listing	1-44	in	the	todo	folder	to	compile	and
execute	the	code	for	the	final	time	in	this	chapter.

tsc

node	dist/index.js

Listing	1-44. Compiling	and	Executing

When	the	application	starts,	a	file	called	Todos.json	will	be	created	in	the
todo	folder	and	used	to	store	a	JSON	representation	of	the	TodoItem	objects,
ensuring	that	changes	are	not	lost	when	the	application	is	terminated.

Summary
In	this	chapter,	I	created	a	simple	example	application	to	introduce	you	to
TypeScript	development	and	demonstrate	some	important	TypeScript	concepts.
You	saw	that	TypeScript	provides	features	that	supplement	JavaScript,	focus	on
type	safety,	and	help	avoid	common	patterns	that	trip	up	developers,	especially
those	coming	to	JavaScript	from	languages	such	as	C#	or	Java.

You	saw	that	TypeScript	isn’t	used	in	isolation	and	that	a	JavaScript	runtime
is	required	to	execute	the	JavaScript	code	that	the	TypeScript	compiler	produces.
The	advantage	of	this	approach	is	that	projects	written	with	TypeScript	have	full
access	to	the	broad	spectrum	of	JavaScript	packages	that	are	available,	many	of
which	have	type	definitions	available	for	easy	use.

The	application	I	created	in	this	chapter	uses	some	of	the	most	essential
TypeScript	features,	but	there	are	many	more	available,	as	you	can	tell	from	the
size	of	this	book.	In	the	next	chapter,	I	put	TypeScript	in	context	and	describe	the
structure	and	content	of	this	book.

(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
A.	Freeman,	Essential	TypeScript	4
https://doi.org/10.1007/978-1-4842-7011-0_2

2.	Understanding	TypeScript
Adam	Freeman1		

London,	UK

	

TypeScript	is	a	superset	of	the	JavaScript	language	that	focuses	on	producing
safe	and	predictable	code	that	can	be	executed	by	any	JavaScript	runtime.	Its
headline	feature	is	static	typing,	which	makes	working	with	JavaScript	more
predictable	for	programmers	familiar	with	languages	such	as	C#	and	Java.	In	this
book,	I	explain	what	TypeScript	does	and	describe	the	different	features	it
provides.

This	Book	and	the	Typescript	Release	Schedule
The	TypeScript	team	makes	frequent	releases,	which	means	there	is	an
ongoing	stream	of	fixes	and	features.	It	doesn’t	seem	fair	or	reasonable	to	ask
you	to	buy	a	new	edition	of	this	book	every	few	months,	especially	since
most	TypeScript	features	are	unlikely	to	change	even	in	a	major	release.
Instead,	I	am	going	to	post	updates	following	the	major	releases	to	the
GitHub	repository	for	this	book,
https://github.com/Apress/essential-typescript-4.

This	is	an	ongoing	experiment	for	me	(and	for	Apress),	and	I	don’t	yet
know	what	form	those	updates	may	take—not	least	because	I	don’t	know
what	the	major	releases	of	TypeScript	will	contain—but	the	goal	is	to	extend
the	life	of	this	book	by	supplementing	the	examples	it	contains.

I	am	not	making	any	promises	about	what	the	updates	will	be	like,	what
form	they	will	take,	or	how	long	I	will	produce	them	before	folding	them	into
a	new	edition	of	this	book.	Please	keep	an	open	mind	and	check	the
repository	for	this	book	when	new	TypeScript	versions	are	released.	If	you
have	ideas	about	how	the	updates	could	be	improved,	then	email	me	at
adam@adam-freeman.com	and	let	me	know.

https://doi.org/10.1007/978-1-4842-7011-0_2
https://github.com/Apress/essential-typescript-4

Should	You	Use	TypeScript?
TypeScript	isn’t	the	solution	to	every	problem,	and	it	is	important	to	know	when
you	should	use	TypeScript	and	when	it	will	simply	get	in	the	way.	In	the	sections
that	follow,	I	describe	the	high-level	features	that	TypeScript	provides	and	the
situations	in	which	they	can	be	helpful.

Understanding	the	TypeScript	Developer	Productivity	Features
TypeScript’s	headline	features	are	focused	on	developer	productivity,	especially
through	the	use	of	static	types,	which	help	make	the	JavaScript	type	system
easier	to	work	with.	Other	productivity	features,	such	as	access	control	keywords
and	a	concise	class	constructor	syntax,	help	prevent	common	coding	errors.

The	TypeScript	productivity	features	are	applied	to	JavaScript	code.	As
Chapter	1	demonstrated,	the	TypeScript	package	includes	a	compiler	that
processes	TypeScript	files	and	produces	pure	JavaScript	that	can	be	executed	by
a	JavaScript	runtime,	such	as	Node.js	or	a	browser,	as	shown	in	Figure	2-1.

Figure	2-1. The	TypeScript	transformation	to	JavaScript	code

The	combination	of	JavaScript	and	TypeScript	features	retains	much	of	the
flexible	and	dynamic	nature	of	JavaScript	while	constraining	the	use	of	data
types	so	they	are	familiar	and	more	predictable	for	most	developers.	It	also
means	that	projects	that	use	TypeScript	can	still	make	use	of	the	wide	range	of
third-party	JavaScript	packages	that	are	available,	either	to	provide	specific
features	(such	as	the	command-line	prompts	in	Chapter	1)	or	to	embrace
complete	frameworks	for	app	development	(such	as	the	React,	Angular,	and
Vue.js	frameworks	described	in	Part	3).

TypeScript	features	can	be	applied	selectively,	which	means	you	can	use
only	those	features	useful	for	a	specific	project.	If	you	are	new	to	TypeScript	and
JavaScript,	you	are	likely	to	start	by	using	all	of	the	TypeScript	features.	As	you
become	more	experienced	and	your	depth	of	knowledge	increases,	you	will	find
yourself	using	TypeScript	with	more	focus	and	applying	its	features	just	to	the
parts	of	your	code	that	are	especially	complex	or	that	you	expect	to	cause
problems.

Understanding	the	Limitations	of	the	Productivity	Features
Some	TypeScript	features	are	implemented	entirely	by	the	compiler	and	leave	no
trace	in	the	JavaScript	code	that	is	executed	when	the	application	runs.	Other
features	are	implemented	by	building	on	standard	JavaScript	and	performing
additional	checks	during	compilation.	This	means	you	often	have	to	understand
how	a	feature	works	and	how	it	is	implemented	to	get	the	best	results,	which	can
make	TypeScript	features	seem	inconsistent	and	arcane.

More	broadly,	TypeScript	enhances	JavaScript,	but	the	result	is	still
JavaScript,	and	development	in	a	TypeScript	project	is	largely	a	process	of
writing	JavaScript	code.	Some	developers	adopt	TypeScript	because	they	want	to
write	web	applications	without	learning	how	JavaScript	works.	They	see	that
TypeScript	is	produced	by	Microsoft	and	assume	that	TypeScript	is	C#	or	Java
for	web	development,	which	is	an	assumption	that	leads	to	confusion	and
frustration.

Effective	TypeScript	requires	a	good	knowledge	of	JavaScript	and	the
reasons	it	behaves	as	it	does.	Chapters	3	and	4	describe	the	JavaScript	features
you	need	to	understand	to	get	the	best	out	of	TypeScript	and	provide	a	solid
foundation	for	understanding	why	TypeScript	is	such	a	powerful	tool.

If	you	are	willing	to	understand	the	JavaScript	type	system,	then	you	will
find	TypeScript	a	pleasure	to	use.	But	if	you	are	not	willing	to	invest	the	time	to
become	competent	in	JavaScript,	then	you	should	not	use	TypeScript.	Adding
TypeScript	to	a	project	when	you	don’t	have	any	JavaScript	knowledge	makes
development	more	difficult	because	you	will	have	two	sets	of	language	features
to	wrangle,	neither	of	which	will	behave	exactly	as	you	expect.

Understanding	the	JavaScript	Version	Features
JavaScript	has	had	a	turbulent	history	but	has	recently	become	the	focus	of	a
concerted	standardization	and	modernization	effort,	introducing	new	features
that	make	JavaScript	easier	to	use.	The	problem	is	that	there	are	still	lots	of
JavaScript	runtimes	that	don’t	support	these	modern	features,	especially	older
browsers,	which	constrains	JavaScript	development	to	the	small	set	of	language
features	that	are	universally	supported.	JavaScript	can	be	a	challenging	language
to	master,	and	this	is	made	worse	when	the	features	intended	to	make
development	easier	cannot	be	used.

The	TypeScript	compiler	can	transform	JavaScript	code	written	using
modern	features	into	code	that	conforms	to	older	versions	of	the	JavaScript
language.	This	allows	recent	JavaScript	features	to	be	used	with	TypeScript
during	development	while	allowing	older	JavaScript	runtimes	to	execute	the

code	that	the	project	produces.

Understanding	the	Limitations	of	the	Version	Features
The	TypeScript	compiler	does	a	good	job	of	dealing	with	most	language
features,	but	some	features	can’t	be	translated	effectively	for	older	runtimes.	If
the	earliest	versions	of	JavaScript	are	your	target,	you	will	find	that	not	all
modern	JavaScript	features	can	be	used	during	development	because	the
TypeScript	compiler	doesn’t	have	the	means	to	represent	them	in	legacy
JavaScript.

That	said,	the	need	to	generate	legacy	JavaScript	code	isn’t	important	in	all
projects	because	the	TypeScript	compiler	is	just	one	part	of	an	extended
toolchain.	The	TypeScript	compiler	is	responsible	for	applying	the	TypeScript
features,	but	the	result	is	modern	JavaScript	code	that	is	further	processed	by
other	tools.	This	approach	is	commonly	used	in	web	application	development,
and	you	will	see	examples	in	Part	3.

What	Do	You	Need	to	Know?
If	you	decide	that	TypeScript	is	the	right	choice	for	your	project,	then	you	should
be	familiar	with	using	data	types	in	development	and	understand	the	basic
JavaScript	features.	Don’t	worry	if	you	do	not	understand	how	JavaScript	deals
with	data	types,	however,	because	I	provide	a	primer	for	all	the	JavaScript
features	that	are	useful	to	understand	TypeScript	in	Chapters	3	and	4.	In	Part	3	of
this	book,	I	demonstrate	how	TypeScript	can	be	used	with	popular	web
application	development	frameworks,	and	knowledge	of	HTML	and	CSS	is
required	for	these	examples.

How	Do	You	Set	Up	Your	Development	Environment?
The	only	development	tools	needed	for	TypeScript	development	are	the	ones	you
installed	in	Chapter	1	when	you	created	your	first	application.	Some	later
chapters	require	additional	packages,	but	full	instructions	are	provided.	If	you
successfully	built	the	application	in	Chapter	1,	then	you	are	set	for	TypeScript
development	and	the	rest	of	the	chapters	in	this	book.

What	Is	the	Structure	of	This	Book?
This	book	is	split	into	three	parts,	each	of	which	covers	a	set	of	related	topics.

Part	1,	“Getting	Started	with	TypeScript”:	Part	1	of	this	book	provides	the
information	you	need	to	get	started	with	TypeScript	development.	It	includes
Chapter	1,	this	chapter,	and	a	primer	chapter	for	the	data	type	features
provided	by	JavaScript.	Chapters	5	and	6	introduce	the	TypeScript
development	tools.
Part	2,	“Understanding	TypeScript”:	Part	2	of	this	book	covers	the
TypeScript	features	for	developer	productivity,	including	static	types.
TypeScript	provides	a	lot	of	different	type	features,	which	I	describe	in-depth
and	demonstrate	with	examples.
Part	3,	“Creating	Applications	with	TypeScript”:	TypeScript	isn’t	used	on	its
own,	so	Part	3	of	this	book	shows	you	how	to	use	TypeScript	to	create	web
applications	using	three	popular	frameworks:	React,	Angular,	and	Vue.js.
These	chapters	explain	the	TypeScript	features	that	are	useful	for	each
framework	and	demonstrate	how	to	achieve	tasks	commonly	required	during
web	application	development.	To	provide	the	foundation	for	understanding
what	these	frameworks	do,	I	also	show	you	how	to	create	a	stand-alone	web
application	that	doesn’t	rely	on	a	web	application	framework.

Are	There	Lots	of	Examples?
There	are	loads	of	examples.	The	best	way	to	learn	TypeScript	is	by	example,
and	I	have	packed	as	many	of	them	into	this	book	as	I	can.	To	maximize	the
number	of	examples	in	this	book,	I	have	adopted	a	simple	convention	to	avoid
listing	the	same	code	or	content	repeatedly.	When	I	create	a	file,	I	will	show	its
full	contents,	just	as	I	have	in	Listing	2-1.	I	include	the	name	of	the	file	and	its
folder	in	the	listing’s	header,	and	I	show	the	changes	that	I	have	made	in	bold.

function	calculateTax(amount:	number,	format:

boolean):	string	|	number	{

				const	calcAmount	=	amount	*	1.2;

				return	format	?	`$${calcAmount.toFixed(2)}`	:

calcAmount;

}

let	taxValue	=	calculateTax(100,	false);

switch	(typeof	taxValue)	{

				case	"number":

								console.log(`Number	Value:

${taxValue.toFixed(2)}`);

								break;

				case	"string":

								console.log(`String	Value:

${taxValue.charAt(0)}`);

								break;

				default:

								let	value:	never	=	taxValue;

								console.log(`Unexpected	type	for	value:

${value}`);

}

let	newResult:	unknown	=	calculateTax(200,	false);

let	myNumber:	number	=	newResult	as	number;

console.log(`Number	value:	${myNumber.toFixed(2)}`);

Listing	2-1. Asserting	an	Unknown	Value	in	the	index.ts	File	in	the	src	Folder

This	is	a	listing	from	Chapter	7,	which	shows	the	contents	of	a	file	called
index.ts	that	can	be	found	in	the	src	folder.	Don’t	worry	about	the	content
of	the	listing	or	the	purpose	of	the	file;	just	be	aware	that	this	type	of	listing
contains	the	complete	contents	of	a	file	and	that	the	changes	you	need	to	make	to
follow	the	example	are	shown	in	bold.

Some	code	files	become	long,	and	the	feature	I	am	describing	requires	only	a
small	change.	Rather	than	list	the	complete	file,	I	use	an	ellipsis	(three	periods	in
series)	to	indicate	a	partial	listing,	which	shows	just	a	portion	of	the	file,	as
shown	in	Listing	2-2.

...

"scripts":	{

		"json":	"json-server	data.js	-p	4600",

		"serve":	"react-scripts	start",

		"start":	"npm-run-all	-p	serve	json",

		"build":	"react-scripts	build",

		"test":	"react-scripts	test",

		"eject":	"react-scripts	eject"

},

...

Listing	2-2. Configuring	Tools	in	the	package.json	File	in	the	reactapp	Folder

This	is	a	listing	from	Chapter	19,	and	it	shows	a	set	of	changes	applied	to
one	part	of	a	larger	file.	When	you	see	a	partial	listing,	you	will	know	that	the
rest	of	the	file	does	not	have	to	change	and	that	only	the	sections	marked	in	bold
are	different.

In	some	cases,	changes	are	required	in	different	parts	of	a	file,	which	makes
it	difficult	to	show	as	a	partial	listing.	In	this	situation,	I	omit	part	of	the	file’s
contents,	as	shown	in	Listing	2-3.

import	{	Product,	Order	}	from	"./entities";

import	{	minimumValue	}	from	"../decorators";

export	type	ProductProp	=	keyof	Product;

export	abstract	class	AbstractDataSource	{

				private	_products:	Product[];

				private	_categories:	Set<string>;

				public	order:	Order;

				public	loading:	Promise<void>;

				constructor()	{

								this._products	=	[];

								this._categories	=	new	Set<string>();

								this.order	=	new	Order();

								this.loading	=	this.getData();

				}

				@minimumValue("price",	30)

				async	getProducts(sortProp:	ProductProp	=	"id",

												category?	:	string):	Promise<Product[]>	{

								await	this.loading;

								return	this.selectProducts(this._products,

sortProp,	category);

				}

				//	...other	methods	omitted	for	brevity...

}

Listing	2-3. Applying	a	Decorator	in	the	abstractDataSource.ts	File	in	the	src	Folder

In	this	listing	from	Chapter	16,	the	changes	are	still	marked	in	bold,	and	the

parts	of	the	file	that	are	omitted	from	the	listing	are	not	affected	by	this	example.

Where	Can	You	Get	the	Example	Code?
You	can	download	the	example	projects	for	all	the	chapters	in	this	book	from
https://github.com/Apress/essential-typescript-4.	The
download	is	available	without	charge	and	contains	everything	that	you	need	to
follow	the	examples	without	having	to	type	in	all	of	the	code.

What	If	You	Have	Problems	Following	the	Examples?
The	first	thing	to	do	is	to	go	back	to	the	start	of	the	chapter	and	begin	over.	Most
problems	are	caused	by	accidentally	skipping	a	step	or	not	fully	applying	the
changes	shown	in	a	listing.	Pay	close	attention	to	the	emphasis	in	code	listings,
which	highlights	the	changes	that	are	required.

Next,	check	the	errata/corrections	list,	which	is	included	in	the	book’s
GitHub	repository.	Technical	books	are	complex,	and	mistakes	are	inevitable,
despite	my	best	efforts	and	those	of	my	editors.	Check	the	errata	list	for	the	list
of	known	errors	and	instructions	to	resolve	them.

If	you	still	have	problems,	then	download	the	project	for	the	chapter	you	are
reading	from	the	book’s	GitHub	repository,
https://github.com/Apress/essential-typescript-4,	and
compare	it	to	your	project.	I	create	the	code	for	the	GitHub	repository	by
working	through	each	chapter,	so	you	should	have	the	same	files	with	the	same
contents	in	your	project.

If	you	still	can’t	get	the	examples	working,	then	you	can	contact	me	at
adam@adam-freeman.com	for	help.	Please	make	it	clear	in	your	email
which	book	you	are	reading,	and	which	chapter/example	is	causing	the	problem.
A	page	number	or	code	listing	is	always	helpful.	Please	remember	that	I	get	a	lot
of	emails	and	that	I	may	not	respond	immediately.

What	If	You	Find	an	Error	in	the	Book?
You	can	report	errors	to	me	by	email	at	adam@adam-freeman.com,
although	I	ask	that	you	first	check	the	errata/corrections	list	for	this	book,	which
you	can	find	in	the	book’s	GitHub	repository	at
https://github.com/Apress/essential-typescript-4,	in	case
it	has	already	been	reported.

https://github.com/Apress/essential-typescript-4
https://github.com/Apress/essential-typescript-4
https://github.com/Apress/essential-typescript-4

I	add	errors	that	are	likely	to	confuse	readers,	especially	problems	with
example	code,	to	the	errata/corrections	file	on	the	GitHub	repository,	with	a
grateful	acknowledgment	to	the	first	reader	who	reported	it.	I	keep	a	list	of	less
serious	issues,	which	usually	means	errors	in	the	text	surrounding	examples,	and
I	use	them	when	I	write	a	new	edition.

How	Do	You	Contact	the	Author?
You	can	email	me	at	adam@adam-freeman.com.	It	has	been	a	few	years
since	I	started	publishing	an	email	address	in	my	books.	I	wasn’t	entirely	sure
that	it	was	a	good	idea,	but	I	am	glad	that	I	did	it.	I	have	received	emails	from
around	the	world,	from	readers	working	or	studying	in	every	industry,	and—for
the	most	part,	anyway—the	emails	are	positive,	polite,	and	a	pleasure	to	receive.

I	try	to	reply	promptly,	but	I	get	many	emails,	and	sometimes	I	get	a	backlog,
especially	when	I	have	my	head	down	trying	to	finish	writing	a	book.	I	always
try	to	help	readers	who	are	stuck	with	an	example	in	the	book,	although	I	ask
that	you	follow	the	steps	described	earlier	in	this	chapter	before	contacting	me.

While	I	welcome	reader	emails,	there	are	some	common	questions	for	which
the	answers	will	always	be	“no.”	I	am	afraid	that	I	won’t	write	the	code	for	your
new	startup,	help	you	with	your	college	assignment,	get	involved	in	your
development	team’s	design	dispute,	or	teach	you	how	to	program.

What	If	You	Really	Enjoyed	This	Book?
Please	email	me	at	adam@adam-freeman.com	and	let	me	know.	It	is	always
a	delight	to	hear	from	a	happy	reader,	and	I	appreciate	the	time	it	takes	to	send
those	emails.	Writing	these	books	can	be	difficult,	and	those	emails	provide
essential	motivation	to	persist	at	an	activity	that	can	sometimes	feel	impossible.

What	If	This	Book	Has	Made	You	Angry	and	You
Want	to	Complain?
You	can	still	email	me	at	adam@adam-freeman.com,	and	I	will	still	try	to
help	you.	Bear	in	mind	that	I	can	help	only	if	you	explain	what	the	problem	is
and	what	you	would	like	me	to	do	about	it.	You	should	understand	that
sometimes	the	only	outcome	is	to	accept	I	am	not	the	writer	for	you	and	that	we
will	have	closure	only	when	you	return	this	book	and	select	another.	I’ll	give
careful	thought	to	whatever	has	upset	you,	but	after	25	years	of	writing	books,	I
have	come	to	accept	that	not	everyone	enjoys	reading	the	books	I	like	to	write.

Summary
In	this	chapter,	I	explained	when	TypeScript	is	a	good	choice	for	projects.	I	also
outlined	the	content	and	structure	of	this	book,	explained	where	to	get	the	source
code,	and	talked	about	how	to	contact	me	if	you	have	problems	with	the
examples	in	this	book.	In	the	next	chapter,	I	give	you	a	primer	for	the	JavaScript
type	system,	which	provides	the	underpinnings	for	the	features	of	TypeScript.

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
A.	Freeman,	Essential	TypeScript	4
https://doi.org/10.1007/978-1-4842-7011-0_3

https://doi.org/10.1007/978-1-4842-7011-0_3

(1)

3.	JavaScript	Primer,	Part	1
Adam	Freeman1		

London,	UK

	

Effective	TypeScript	development	requires	an	understanding	of	how	JavaScript
deals	with	data	types.	This	can	be	a	disappointment	to	developers	who	adopt
TypeScript	because	they	found	JavaScript	confusing,	but	understanding
JavaScript	makes	understanding	TypeScript	easier	and	provides	valuable	insights
into	what	TypeScript	offers	and	how	its	features	work.	In	this	chapter,	I
introduce	the	basic	JavaScript	type	features,	continuing	with	more	advanced
features	in	Chapter	4.

Preparing	for	This	Chapter
To	prepare	for	this	chapter,	create	a	folder	called	primer	in	a	convenient
location.	Open	a	command	prompt,	navigate	to	the	primer	folder,	and	run	the
command	shown	in	Listing	3-1.

Tip You	can	download	the	example	project	for	this	chapter—and	for	all	the
other	chapters	in	this	book—from
https://github.com/Apress/essential-typescript-4.

npm	init	--yes

Listing	3-1. Preparing	the	Project	Folder

To	install	a	package	that	will	automatically	execute	the	JavaScript	file	when
its	contents	change,	run	the	command	shown	in	Listing	3-2	in	the	primer
folder.

npm	install	nodemon@2.0.7

Listing	3-2. Installing	a	Package

https://github.com/Apress/essential-typescript-4

The	package,	called	nodemon,	will	be	downloaded	and	installed.	Once	the
installation	is	complete,	create	a	file	called	index.js	in	the	primer	folder
with	the	contents	shown	in	Listing	3-3.

let	hatPrice	=	100;

console.log(`Hat	price:	${hatPrice}`);

Listing	3-3. The	Contents	of	the	index.js	File	in	the	primer	Folder

Run	the	command	shown	in	Listing	3-4	to	execute	the	contents	of	the
JavaScript	file	and	monitor	it	for	changes.

npx	nodemon	index.js

Listing	3-4. Starting	the	JavaScript	File	Monitor

The	nodemon	package	will	execute	the	contents	of	the	index.js	file	and
produce	the	following	output:

[nodemon]	1.18.10

[nodemon]	to	restart	at	any	time,	enter	`rs`

[nodemon]	watching:	*.*

[nodemon]	starting	`node	index.js`

Hat	price:	100

[nodemon]	clean	exit	-	waiting	for	changes	before

restart

I	have	highlighted	the	part	of	the	output	that	comes	from	the	index.js
file.	To	ensure	that	changes	are	detected	correctly,	alter	the	contents	of	the
index.js	file	as	shown	in	Listing	3-5.

let	hatPrice	=	100;

console.log(`Hat	price:	${hatPrice}`);

let	bootsPrice	=	"100";

console.log(`Boots	price:	${bootsPrice}`);

Listing	3-5. Making	a	Change	in	the	index.js	File	in	the	primer	Folder

When	you	save	the	changes,	the	nodemon	package	should	detect	that	the
index.js	file	has	been	modified	and	execute	the	code	it	contains.	The	code	in
Listing	3-5	produces	the	following	output,	which	is	shown	without	the
information	provided	by	the	nodemon	package:

Hat	price:	100

Boots	price:	100

Getting	Confused	by	JavaScript
JavaScript	has	many	features	that	are	similar	to	other	programming	languages,
and	developers	tend	to	start	with	code	that	looks	like	the	statements	in	Listing	3-
5.	Even	if	you	are	new	to	JavaScript,	the	statements	in	Listing	3-5	will	be
familiar.

The	building	blocks	for	JavaScript	code	are	statements,	which	are	executed
in	the	order	they	are	defined.	The	let	keyword	is	used	to	define	variables	(as
opposed	to	the	const	keyword,	which	defines	constant	values)	followed	by	a
name.	The	value	of	a	variable	is	set	using	the	assignment	operator	(the	equal
sign)	followed	by	a	value.

JavaScript	provides	some	built-in	objects	to	perform	common	tasks,	such	as
writing	strings	to	the	command	prompt	with	the	console.log	method.
Strings	can	be	defined	as	literal	values,	using	single	or	double	quotes,	or	as
template	strings,	using	backtick	characters	and	inserting	expressions	into	the
template	using	the	dollar	sign	and	braces.

But	at	some	point,	unexpected	results	appear.	The	cause	of	the	confusion	is
the	way	that	JavaScript	deals	with	types.	Listing	3-6	shows	a	typical	problem.

let	hatPrice	=	100;

console.log(`Hat	price:	${hatPrice}`);

let	bootsPrice	=	"100";

console.log(`Boots	price:	${bootsPrice}`);

if	(hatPrice	==	bootsPrice)	{

				console.log("Prices	are	the	same");

}	else	{

				console.log("Prices	are	different");

}

let	totalPrice	=	hatPrice	+	bootsPrice;

console.log(`Total	Price:	${totalPrice}`);

Listing	3-6. Adding	Statements	in	the	index.ts	File	in	the	primer	Folder

The	new	statements	compare	the	values	of	the	hatPrice	and
bootsPrice	variables	and	assign	their	total	to	a	new	variable	named

totalPrice.	The	console.log	method	is	used	to	write	messages	to	the
command	prompt	and	produces	the	following	output	when	the	code	is	executed:

Hat	price:	100

Boots	price:	100

Prices	are	the	same

Total	Price:	100100

Most	developers	will	notice	that	the	value	for	hatPrice	has	been
expressed	as	a	number,	while	the	bootsPrice	value	is	a	string	of	characters,
enclosed	in	double	quotes.	But	in	most	languages,	performing	operations	on
different	types	would	be	an	error.	JavaScript	is	different;	comparing	a	string	and
a	number	succeeds,	but	trying	to	total	the	values	actually	concatenates	them.
Understanding	the	results	from	Listing	3-6—and	the	reasons	behind	them—
reveals	the	details	of	how	JavaScript	approaches	data	types	and	why	TypeScript
can	be	so	helpful.

Understanding	JavaScript	Types
It	can	seem	that	JavaScript	doesn’t	have	data	types	or	that	types	are	used
inconsistently,	but	that’s	not	true.	JavaScript	just	works	differently	than	most
popular	programming	languages,	and	it	only	seems	to	behave	inconsistently	until
you	know	what	to	expect.	The	foundation	for	the	JavaScript	language	is	a	set	of
built-in	types,	which	are	described	in	Table	3-1.

Table	3-1. The	JavaScript	Built-in	Types

Name Description

number This	type	is	used	to	represent	numeric	values.	Unlike	other	programming	languages,
JavaScript	doesn’t	differentiate	between	integer	and	floating-point	values,	both	of	which
can	be	represented	using	this	type.

string This	type	is	used	to	represent	text	data.

boolean This	type	can	have	true	and	false	values.

symbol This	type	is	used	to	represent	unique	constant	values,	such	as	keys	in	collections.

null This	type	can	be	assigned	only	the	value	null	and	is	used	to	indicate	a	nonexistent	or
invalid	reference.

undefined This	type	is	used	when	a	variable	has	been	defined	but	has	not	been	assigned	a	value.

object This	type	is	used	to	represent	compound	values,	formed	from	individual	properties	and
values.

The	first	six	types	in	the	table	are	the	JavaScript	primitive	data	types.	The
primitive	types	are	always	available,	and	every	value	in	a	JavaScript	application
either	is	a	primitive	type	itself	or	is	composed	from	primitive	types.	The	sixth
type	is	object	and	is	used	to	represent	objects.

Working	with	Primitive	Data	Types
If	you	look	back	at	Listing	3-6,	you	will	see	that	there	are	no	types	declared	in
the	code.	In	other	languages,	you	are	required	to	declare	the	data	type	of	a
variable	before	it	can	be	used,	like	this	fragment	of	code	from	one	of	my	C#
books:

...

string	name	=	"Adam";

...

This	statement	specifies	that	the	type	of	the	name	variable	is	a	string	and
assigns	it	the	value	Adam.	In	JavaScript,	values	have	types,	not	variables.	To
define	a	variable	that	holds	a	string,	you	assign	a	string	value,	as	shown	in
Listing	3-7.

let	hatPrice	=	100;

console.log(`Hat	price:	${hatPrice}`);

let	bootsPrice	=	"100";

console.log(`Boots	price:	${bootsPrice}`);

if	(hatPrice	==	bootsPrice)	{

				console.log("Prices	are	the	same");

}	else	{

				console.log("Prices	are	different");

}

let	totalPrice	=	hatPrice	+	bootsPrice;

console.log(`Total	Price:	${totalPrice}`);

let	myVariable	=	"Adam";

Listing	3-7. Creating	a	String	Variable	in	the	index.js	File	in	the	primer	Folder

The	JavaScript	runtime	only	has	to	figure	out	which	of	the	types	from	Table
3-1	it	should	use	for	the	value	assigned	to	myVariable.	The	small	set	of	types

supported	by	JavaScript	makes	the	process	simpler,	and	the	runtime	knows	that
any	value	enclosed	in	double	quotes	must	be	a	string.	You	can	confirm	the
type	of	a	value	using	the	typeof	keyword,	as	shown	in	Listing	3-8.

let	hatPrice	=	100;

console.log(`Hat	price:	${hatPrice}`);

let	bootsPrice	=	"100";

console.log(`Boots	price:	${bootsPrice}`);

if	(hatPrice	==	bootsPrice)	{

				console.log("Prices	are	the	same");

}	else	{

				console.log("Prices	are	different");

}

let	totalPrice	=	hatPrice	+	bootsPrice;

console.log(`Total	Price:	${totalPrice}`);

let	myVariable	=	"Adam";

console.log(`Type:	${typeof	myVariable}`);

Listing	3-8. Getting	a	Value	Type	in	the	index.js	File	in	the	primer	Folder

The	typeof	keyword	identifies	a	value’s	type	and	produces	the	following
output	when	the	code	is	executed:

Hat	price:	100

Boots	price:	100

Prices	are	the	same

Total	Price:	100100

Type:	string

Listing	3-9	assigns	a	new	value	to	myVariable	and	displays	the	type
again.

let	hatPrice	=	100;

console.log(`Hat	price:	${hatPrice}`);

let	bootsPrice	=	"100";

console.log(`Boots	price:	${bootsPrice}`);

if	(hatPrice	==	bootsPrice)	{

				console.log("Prices	are	the	same");

}	else	{

				console.log("Prices	are	different");

}

let	totalPrice	=	hatPrice	+	bootsPrice;

console.log(`Total	Price:	${totalPrice}`);

let	myVariable	=	"Adam";

console.log(`Type:	${typeof	myVariable}`);

myVariable	=	100;

console.log(`Type:	${typeof	myVariable}`);

Listing	3-9. Assigning	a	New	Value	in	the	index.js	File	in	the	primer	Folder

When	the	changes	are	saved,	the	code	will	produce	the	following	output:

Hat	price:	100

Boots	price:	100

Prices	are	the	same

Total	Price:	100100

Type:	string

Type:	number

Changing	the	value	assigned	to	a	variable	changes	the	type	reported	by	the
typeof	keyword	because	values	have	types.	The	type	of	the	value	initially
assigned	to	myVariable	was	string,	and	then	the	variable	was	assigned	a
number	value.	This	dynamic	approach	to	types	is	made	easier	by	the	limited
range	of	types	that	JavaScript	supports,	which	makes	it	easier	to	determine
which	of	the	built-in	types	is	being	used.	For	example,	all	numbers	are
represented	by	the	number	type,	which	means	that	integers	and	floating-point
values	are	all	handled	using	number,	which	would	not	be	possible	with	a	more
complex	set	of	types.

Understanding	the	Typeof	Null	Oddity
When	the	typeof	keyword	is	used	on	null	values,	the	result	is	object.
This	is	a	long-standing	behavior	that	dates	back	to	the	earliest	days	of
JavaScript	and	that	hasn’t	been	changed	because	so	much	code	has	been
written	that	expects	this	behavior.

Understanding	Type	Coercion
When	an	operator	is	applied	to	values	of	different	types,	the	JavaScript	runtime
converts	one	value	into	an	equivalent	value	in	the	other	type,	a	process	known	as
type	coercion.	It	is	the	type	coercion	feature—also	known	as	type	conversion—
that	causes	the	inconsistent	results	from	Listing	3-6,	although,	as	you	will	learn,
the	results	are	not	inconsistent	once	you	understand	how	this	feature	works.
There	are	two	points	in	the	code	in	Listing	3-6	where	types	are	coerced.

...

let	hatPrice	=	100;

console.log(`Hat	price:	${hatPrice}`);

let	bootsPrice	=	"100";

console.log(`Boots	price:	${bootsPrice}`);

if	(hatPrice	==	bootsPrice)	{

...

The	double	equal	sign	performs	a	comparison	using	type	coercion	so	that
JavaScript	will	try	to	convert	the	values	it	is	working	with	in	order	to	produce	a
useful	result.	This	is	known	as	the	JavaScript	abstract	equality	comparison,	and
when	a	number	is	compared	to	a	string,	the	string	value	is	converted	to	a
number	value,	and	then	the	comparison	is	performed.	This	means	when	the
number	value	100	is	compared	with	the	string	value	100,	the	string	is
converted	to	the	number	value	100,	and	this	is	the	reason	why	the	if
expression	evaluates	to	true.

Tip You	can	read	the	sequence	of	steps	that	JavaScript	follows	in	an
abstract	equality	comparison	in	the	JavaScript	specification,
https://www.ecma-international.org/ecma-

262/7.0/#sec-abstract-equality-comparison.	The
specification	is	well-written	and	surprisingly	interesting.	But	before	you
spend	a	day	getting	lost	in	the	implementation	details,	you	should	bear	in
mind	that	TypeScript	constrains	the	use	of	some	of	the	most	unusual	and
exotic	features.

The	second	time	coercion	is	used	in	Listing	3-6	is	when	the	prices	are	totaled.

https://www.ecma-international.org/ecma-262/7.0/%2523sec-abstract-equality-comparison

...

let	totalPrice	=	hatPrice	+	bootsPrice;

...

When	you	use	the	+	operator	on	a	number	and	a	string,	one	of	the	values
is	converted.	The	confusing	part	is	that	the	conversion	isn’t	the	same	as	for
comparisons.	If	either	of	the	values	is	a	string,	the	other	value	is	converted	to
a	string,	and	both	string	values	are	concatenated.	This	means	that	when
the	number	value	100	is	added	to	the	string	value	100,	the	number	is
converted	to	a	string	and	concatenated	to	produce	the	string	result
100100.

Avoiding	Unintentional	Type	Coercion
Type	coercion	can	be	a	useful	feature,	and	it	has	gained	a	poor	reputation	only
because	it	is	applied	unintentionally,	which	is	easy	to	do	when	the	types	being
processed	are	changed	with	new	values.	As	you	will	learn	in	later	chapters,
TypeScript	provides	features	that	help	manage	unwanted	coercion.	But
JavaScript	also	provides	features	to	prevent	coercion,	as	shown	in	Listing	3-10.

let	hatPrice	=	100;

console.log(`Hat	price:	${hatPrice}`);

let	bootsPrice	=	"100";

console.log(`Boots	price:	${bootsPrice}`);

if	(hatPrice	===	bootsPrice)	{

				console.log("Prices	are	the	same");

}	else	{

				console.log("Prices	are	different");

}

let	totalPrice	=	Number(hatPrice)	+

Number(bootsPrice);

console.log(`Total	Price:	${totalPrice}`);

let	myVariable	=	"Adam";

console.log(`Type:	${typeof	myVariable}`);

myVariable	=	100;

console.log(`Type:	${typeof	myVariable}`);

Listing	3-10. Preventing	Coercion	in	the	index.js	File	in	the	primer	Folder

The	double	equal	sign	(==)	performs	a	comparison	that	applies	type
coercion.	The	triple	equal	sign	(===)	applies	a	strict	comparison	that	will	return
true	only	if	the	values	have	the	same	type	and	are	equal.

To	prevent	string	concatenation,	values	can	be	explicitly	converted	to
numbers	before	the	+	operator	is	applied	using	the	built-in	Number	function,
with	the	effect	that	numeric	addition	is	performed.	The	code	in	Listing	3-10
produces	the	following	output:

Hat	price:	100

Boots	price:	100

Prices	are	different

Total	Price:	200

Type:	string

Type:	number

Appreciating	the	Value	of	Explicitly	Applied	Type	Coercion
Type	coercion	can	be	a	useful	feature	when	it	is	explicitly	applied.	One	useful
feature	is	the	way	that	values	are	coerced	into	the	boolean	type	by	the	logical
OR	operator	(||).	Values	that	are	null	or	undefined	are	converted	into	the
false	value,	and	this	makes	an	effective	tool	for	providing	fallback	values,	as
shown	in	Listing	3-11.

let	hatPrice	=	100;

console.log(`Hat	price:	${hatPrice}`);

let	bootsPrice	=	"100";

console.log(`Boots	price:	${bootsPrice}`);

if	(hatPrice	===	bootsPrice)	{

				console.log("Prices	are	the	same");

}	else	{

				console.log("Prices	are	different");

}

let	totalPrice	=	Number(hatPrice)	+

Number(bootsPrice);

console.log(`Total	Price:	${totalPrice}`);

let	myVariable	=	"Adam";

console.log(`Type:	${typeof	myVariable}`);

myVariable	=	100;

console.log(`Type:	${typeof	myVariable}`);

let	firstCity;

let	secondCity	=	firstCity	||	"London";

console.log(`City:	${	secondCity	}`);

Listing	3-11. Handling	Null	Values	in	the	index.js	File	in	the	primer	Folder

The	value	of	the	variable	named	secondCity	is	set	with	an	expression	that
checks	the	firstCity	value:	if	firstCity	is	converted	to	the	boolean
value	true,	then	the	value	of	secondCity	will	be	the	value	of	firstCity.

The	undefined	type	is	used	when	variables	are	defined	but	have	not	been
assigned	a	value,	which	is	the	case	for	the	variable	named	firstCity,	and	the
use	of	the	||	operator	ensures	that	the	fallback	value	for	secondCity	will	be
used	when	firstCity	is	undefined	or	null.

Understanding	Nullish	Coalescing
One	problem	with	the	logical	OR	operator	is	that	it	isn’t	just	null	or
undefined	that	is	converted	into	a	false	value,	which	can	cause	unexpected
results,	as	shown	in	Listing	3-12.

let	hatPrice	=	100;

console.log(`Hat	price:	${hatPrice}`);

let	bootsPrice	=	"100";

console.log(`Boots	price:	${bootsPrice}`);

let	taxRate;	//	no	tax	rate	has	been	defined

console.log(`Tax	rate:	${taxRate	||	10}%`);

taxRate	=	0;	//	zero-rated	for	tax

console.log(`Tax	rate:	${taxRate	||	10}%`);

Listing	3-12. The	Unintentional	Effect	of	Applied	Type	Coercion	in	the	index.js	File	in	the	primer	Folder

In	addition	to	null	and	undefined,	the	logical	OR	operator	will	also
coerce	the	number	value	0	(zero),	the	empty	string	value	(""),	and	the	special
NaN	number	value	to	false.	These	values,	in	addition	to	the	false	value,	are
collectively	known	as	the	JavaScript	“falsy”	values	and	cause	a	lot	of	confusion.
In	Listing	3-12,	the	logical	OR	operator	uses	the	fallback	value	when	the
taxRate	variable	is	assigned	zero	and	produces	the	following	output:

Hat	price:	100

Boots	price:	100

Tax	rate:	10%

Tax	rate:	10%

The	code	doesn’t	differentiate	between	an	unassigned	value	and	the	zero
value,	which	can	be	a	problem	when	zero	is	a	required	value.	In	this	example,	it
is	impossible	to	set	a	tax	rate	of	zero,	even	though	this	is	a	legitimate	rate.	To
address	this	problem,	JavaScript	supports	the	nullish	coalescing	operator,	??,
which	only	coerces	undefined	and	null	values	and	not	the	other	falsy
values,	as	shown	in	Listing	3-13.

let	hatPrice	=	100;

console.log(`Hat	price:	${hatPrice}`);

let	bootsPrice	=	"100";

console.log(`Boots	price:	${bootsPrice}`);

let	taxRate;	//	no	tax	rate	has	been	defined

console.log(`Tax	rate:	${taxRate	??	10}%`);

taxRate	=	0;	//	zero-rated	for	tax

console.log(`Tax	rate:	${taxRate	??	10}%`);

Listing	3-13. Using	the	Nullish	Operator	in	the	index.js	File	in	the	primer	Folder

In	the	first	statement,	the	fallback	value	will	be	used	because	taxRate	is
undefined.	In	the	second	statement,	the	fallback	value	will	not	be	used
because	zero	is	not	coerced	by	the	??	operator,	producing	the	following	output:

Hat	price:	100

Boots	price:	100

Tax	rate:	10%

Tax	rate:	0%

Working	with	Functions
The	fluid	approach	that	JavaScript	takes	to	types	is	followed	through	in	other
parts	of	the	language,	including	functions.	Listing	3-14	adds	a	function	to	the
example	JavaScript	file	and	removes	some	of	the	statements	from	previous
examples	for	brevity.

let	hatPrice	=	100;

console.log(`Hat	price:	${hatPrice}`);

let	bootsPrice	=	"100";

console.log(`Boots	price:	${bootsPrice}`);

function	sumPrices(first,	second,	third)	{

				return	first	+	second	+	third;

}

let	totalPrice	=	sumPrices(hatPrice,	bootsPrice);

console.log(`Total	Price:	${totalPrice}`);

Listing	3-14. Defining	a	Function	in	the	index.js	File	in	the	primer	Folder

A	function’s	parameter	types	are	determined	by	the	values	used	to	invoke	the
function.	A	function	may	assume	that	it	will	receive	number	values,	for
example,	but	there	is	nothing	to	prevent	the	function	from	being	invoked	with
string,	boolean,	or	object	arguments.	Unexpected	results	can	be
produced	if	the	function	doesn’t	take	care	to	validate	its	assumptions,	either
because	the	JavaScript	runtime	coerces	values	or	because	features	specific	to	a
single	type	are	used.

The	sumPrices	function	in	Listing	3-14	uses	the	+	operator,	intended	to
sum	a	set	of	number	parameters,	but	one	of	the	values	used	to	invoke	the
function	is	a	string,	and	as	explained	earlier	in	the	chapter,	the	+	operator	applied
to	a	string	value	performs	concatenation.	The	code	in	Listing	3-14	produces
the	following	output:

Hat	price:	100

Boots	price:	100

Total	Price:	100100undefined

JavaScript	doesn’t	enforce	a	match	between	the	number	of	parameters
defined	by	a	function	and	the	number	of	arguments	used	to	invoke	it.	Any
parameter	for	which	a	value	is	not	provided	will	be	undefined.	In	the	listing,
no	value	is	provided	for	the	parameter	named	third,	and	the	undefined
value	is	converted	to	the	string	value	undefined	and	included	in	the
concatenation	output.

Total	Price:	100100undefined

Working	with	Function	Results

The	differences	between	JavaScript	types	and	those	of	other	languages	are
magnified	by	functions.	A	consequence	of	the	JavaScript	type	features	is	that	the
arguments	used	to	invoke	a	function	can	determine	the	type	of	the	function’s
result,	as	shown	in	Listing	3-15.

let	hatPrice	=	100;

console.log(`Hat	price:	${hatPrice}`);

let	bootsPrice	=	"100";

console.log(`Boots	price:	${bootsPrice}`);

function	sumPrices(first,	second,	third)	{

				return	first	+	second	+	third;

}

let	totalPrice	=	sumPrices(hatPrice,	bootsPrice);

console.log(`Total:	${totalPrice}	${typeof

totalPrice}`);

totalPrice	=	sumPrices(100,	200,	300);

console.log(`Total:	${totalPrice}	${typeof

totalPrice}`);

totalPrice	=	sumPrices(100,	200);

console.log(`Total:	${totalPrice}	${typeof

totalPrice}`);

Listing	3-15. Invoking	a	Function	in	the	index.js	File	in	the	primer	Folder

The	value	of	the	totalPrice	variable	is	set	three	times	by	invoking	the
sumPrices	function.	After	each	function	call,	the	typeof	keyword	is	used	to
determine	the	type	of	the	value	returned	by	the	function.	The	code	in	Listing	3-
15	produces	the	following	output:

Hat	price:	100

Boots	price:	100

Total:	100100undefined	string

Total:	600	number

Total:	NaN	number

The	first	function	call	includes	a	string	argument,	which	causes	all	of	the

function’s	parameters	to	be	converted	to	string	values	and	concatenated,
meaning	that	the	function	returns	the	string	value	100100undefined.

The	second	function	call	uses	three	number	values,	which	are	added
together	and	produce	the	number	result	600.	The	final	function	call	uses
number	arguments	but	doesn’t	provide	a	third	value,	which	causes	an
undefined	parameter.	JavaScript	coalesces	undefined	to	the	special
number	value	NaN	(meaning	not	a	number).	The	result	of	addition	that	includes
NaN	is	NaN,	which	means	that	the	type	of	the	result	is	number	but	the	value
isn’t	useful	and	is	unlikely	to	be	what	was	intended.

Avoiding	Argument	Mismatch	Problems
Although	the	results	in	the	previous	section	can	confuse,	they	are	the	outcomes
described	in	the	JavaScript	specification.	The	problem	isn’t	that	JavaScript	is
unpredictable	but	that	its	approach	is	different	from	other	popular	programming
languages.

JavaScript	provides	features	that	can	be	used	to	avoid	these	issues.	The	first
is	default	parameter	values	that	are	used	if	the	function	is	invoked	without	a
corresponding	argument,	as	shown	in	Listing	3-16.

let	hatPrice	=	100;

console.log(`Hat	price:	${hatPrice}`);

let	bootsPrice	=	"100";

console.log(`Boots	price:	${bootsPrice}`);

function	sumPrices(first,	second,	third	=	0)	{

				return	first	+	second	+	third;

}

let	totalPrice	=	sumPrices(hatPrice,	bootsPrice);

console.log(`Total:	${totalPrice}	${typeof

totalPrice}`);

totalPrice	=	sumPrices(100,	200,	300);

console.log(`Total:	${totalPrice}	${typeof

totalPrice}`);

totalPrice	=	sumPrices(100,	200);

console.log(`Total:	${totalPrice}	${typeof

totalPrice}`);

Listing	3-16. Using	a	Default	Parameter	Value	in	the	index.js	File	in	the	primer	Folder

The	name	of	the	third	parameter	is	followed	by	the	equal	sign	and	the
value	that	should	be	used	if	the	function	is	invoked	without	a	corresponding
value.	The	result	is	that	the	statement	that	invokes	the	sumPrices	function
with	two	number	values	will	no	longer	produce	the	NaN	result,	as	shown	in	the
output:

Hat	price:	100

Boots	price:	100

Total:	1001000	string

Total:	600	number

Total:	300	number

A	more	flexible	approach	is	a	rest	parameter,	which	is	prefixed	with	three
periods	(...)	and	must	be	the	last	parameter	defined	by	the	function,	as	shown
in	Listing	3-17.

let	hatPrice	=	100;

console.log(`Hat	price:	${hatPrice}`);

let	bootsPrice	=	"100";

console.log(`Boots	price:	${bootsPrice}`);

function	sumPrices(...numbers)	{

				return	numbers.reduce(function(total,	val)	{

								return	total	+	val

				},	0);

}

let	totalPrice	=	sumPrices(hatPrice,	bootsPrice);

console.log(`Total:	${totalPrice}	${typeof

totalPrice}`);

totalPrice	=	sumPrices(100,	200,	300);

console.log(`Total:	${totalPrice}	${typeof

totalPrice}`);

totalPrice	=	sumPrices(100,	200);

console.log(`Total:	${totalPrice}	${typeof

totalPrice}`);

Listing	3-17. Using	a	Rest	Parameter	in	the	index.js	File	in	the	primer	Folder

A	rest	parameter	is	an	array	containing	all	the	arguments	for	which
parameters	are	not	defined.	The	function	in	Listing	3-17	defines	only	a	rest
parameter,	which	means	that	its	value	will	be	an	array	containing	all	of	the
arguments	used	to	invoke	the	function.	The	contents	of	the	array	are	summed
using	the	built-in	array	reduce	method.	JavaScript	arrays	are	described	in	the
“Working	with	Arrays”	section,	and	the	reduce	method	is	used	to	invoke	a
function	for	each	object	in	the	array	to	produce	a	single	result	value.	This
approach	ensures	that	the	number	of	arguments	doesn’t	affect	the	result,	but	the
function	invoked	by	the	reduce	method	uses	the	addition	operator,	which
means	that	string	values	will	still	be	concatenated.	The	listing	produces	the
following	output:

Hat	price:	100

Boots	price:	100

Total:	100100	string

Total:	600	number

Total:	300	number

To	ensure	the	function	produces	a	useful	sum	of	its	parameter	values
however	they	are	received,	they	can	be	converted	to	numbers	and	filtered	to
remove	any	that	are	NaN,	as	shown	in	Listing	3-18.

let	hatPrice	=	100;

console.log(`Hat	price:	${hatPrice}`);

let	bootsPrice	=	"100";

console.log(`Boots	price:	${bootsPrice}`);

function	sumPrices(...numbers)	{

				return	numbers.reduce(function(total,	val)	{

								return	total	+	(Number.isNaN(Number(val))	?	0

:	Number(val));

				},	0);

}

let	totalPrice	=	sumPrices(hatPrice,	bootsPrice);

console.log(`Total:	${totalPrice}	${typeof

totalPrice}`);

totalPrice	=	sumPrices(100,	200,	300);

console.log(`Total:	${totalPrice}	${typeof

totalPrice}`);

totalPrice	=	sumPrices(100,	200,	undefined,	false,

"hello");

console.log(`Total:	${totalPrice}	${typeof

totalPrice}`);

Listing	3-18. Converting	and	Filtering	Parameter	Values	in	the	index.js	File	in	the	primer	Folder

The	Number.isNaN	method	is	used	to	check	whether	a	number	value	is
NaN,	and	the	code	in	Listing	3-18	explicitly	converts	each	parameter	to	a
number	and	substitutes	zero	for	those	that	are	NaN.	Only	parameter	values	that
can	be	treated	as	numbers	are	processed,	and	the	undefined,	boolean,	and
string	arguments	added	to	the	final	function	call	do	not	affect	the	result.

Hat	price:	100

Boots	price:	100

Total:	200	number

Total:	600	number

Total:	300	number

Using	Arrow	Functions
Arrow	functions—also	known	as	fat	arrow	functions	or	lambda	expressions—
are	an	alternative	way	of	concisely	defining	functions	and	are	often	used	to
define	functions	that	are	arguments	to	other	functions.	Listing	3-19	replaces	the
standard	function	used	with	the	array	reduce	method	with	an	arrow	function.

let	hatPrice	=	100;

console.log(`Hat	price:	${hatPrice}`);

let	bootsPrice	=	"100";

console.log(`Boots	price:	${bootsPrice}`);

function	sumPrices(...numbers)	{

				return	numbers.reduce((total,	val)	=>

								total	+	(Number.isNaN(Number(val))	?	0	:

Number(val)));

}

let	totalPrice	=	sumPrices(hatPrice,	bootsPrice);

console.log(`Total:	${totalPrice}	${typeof

totalPrice}`);

totalPrice	=	sumPrices(100,	200,	300);

console.log(`Total:	${totalPrice}	${typeof

totalPrice}`);

totalPrice	=	sumPrices(100,	200,	undefined,	false,

"hello");

console.log(`Total:	${totalPrice}	${typeof

totalPrice}`);

Listing	3-19. Using	an	Arrow	Function	in	the	index.js	File	in	the	primer	Folder

There	are	three	parts	to	an	arrow	function:	the	input	parameters,	then	an
equal	sign	with	a	greater-than	sign	(the	“arrow”),	and	finally	the	result	value.
The	return	keyword	and	curly	braces	are	required	only	if	the	arrow	function
needs	to	execute	more	than	one	statement.

Arrow	functions	can	be	used	anywhere	that	a	function	is	required,	and	their
use	is	a	matter	of	personal	preference,	except	for	the	issue	described	in	the
“Understanding	the	this	Keyword”	section.	Listing	3-20	redefines	the
sumPrices	function	in	the	arrow	syntax.

let	hatPrice	=	100;

console.log(`Hat	price:	${hatPrice}`);

let	bootsPrice	=	"100";

console.log(`Boots	price:	${bootsPrice}`);

let	sumPrices	=	(...numbers)	=>	numbers.reduce((total,

val)	=>

				total	+	(Number.isNaN(Number(val))	?	0	:

Number(val)));

let	totalPrice	=	sumPrices(hatPrice,	bootsPrice);

console.log(`Total:	${totalPrice}	${typeof

totalPrice}`);

totalPrice	=	sumPrices(100,	200,	300);

console.log(`Total:	${totalPrice}	${typeof

totalPrice}`);

totalPrice	=	sumPrices(100,	200,	undefined,	false,

"hello");

console.log(`Total:	${totalPrice}	${typeof

totalPrice}`);

Listing	3-20. Replacing	a	Function	in	the	index.js	File	in	the	primer	Folder

Functions—regardless	of	which	syntax	is	used—are	values,	too.	They	are	a
special	category	of	the	object	type,	described	in	the	“Working	with	Objects”
section,	and	functions	can	be	assigned	to	variables	passed	as	arguments	to	other
functions	and	used	like	any	other	value.

In	Listing	3-20,	the	arrow	syntax	is	used	to	define	a	function	that	is	assigned
a	variable	called	sumPrices.	Functions	are	special	because	they	can	be
invoked,	but	being	able	to	treat	functions	as	values	allows	complex	functionality
to	be	expressed	concisely,	although	it	is	easy	to	create	code	that	can	be	difficult
to	read.	There	are	more	examples	of	arrow	functions	and	using	functions	as
values	throughout	the	book.

Working	with	Arrays
JavaScript	arrays	follow	the	approach	taken	by	most	programming	languages,
except	they	are	dynamically	resized	and	can	contain	any	combination	of	values
and,	therefore,	any	combination	of	types.	Listing	3-21	shows	how	an	array	is
defined	and	used.

let	names	=	["Hat",	"Boots",	"Gloves"];

let	prices	=	[];

prices.push(100);

prices.push("100");

prices.push(50.25);

console.log(`First	Item:	${names[0]}:	${prices[0]}`);

let	sumPrices	=	(...numbers)	=>	numbers.reduce((total,

val)	=>

				total	+	(Number.isNaN(Number(val))	?	0	:

Number(val)));

let	totalPrice	=	sumPrices(...prices);

console.log(`Total:	${totalPrice}	${typeof

totalPrice}`);

Listing	3-21. Defining	and	Using	an	Array	in	the	index.js	File	in	the	primer	Folder

The	size	of	an	array	is	not	specified	when	it	is	created,	and	capacity	will	be
allocated	automatically	as	items	are	added	or	removed.	JavaScript	arrays	are
zero-based	and	are	defined	using	square	brackets,	optionally	with	the	initial
contents	separated	by	commas.	The	names	array	in	the	example	is	created	with
three	string	values.	The	prices	array	is	created	empty,	and	the	push
method	is	used	to	append	items	to	the	end	of	the	array.

Elements	in	the	array	can	be	read	or	set	using	square	brackets	or	processed
using	the	methods	described	in	Table	3-2.

Table	3-2. Useful	Array	Methods

Method Description

concat(otherArray) This	method	returns	a	new	array	that	concatenates	the	array	on	which	it	has
been	called	with	the	array	specified	as	the	argument.	Multiple	arrays	can	be
specified.

join(separator) This	method	joins	all	the	elements	in	the	array	to	form	a	string.	The	argument
specifies	the	character	used	to	delimit	the	items.

pop() This	method	removes	and	returns	the	last	item	in	the	array.

shift() This	method	removes	and	returns	the	first	element	in	the	array.

push(item) This	method	appends	the	specified	item	to	the	end	of	the	array.

unshift(item) This	method	inserts	a	new	item	at	the	start	of	the	array.

reverse() This	method	returns	a	new	array	that	contains	the	items	in	reverse	order.

slice(start,end) This	method	returns	a	section	of	the	array.

sort() This	method	sorts	the	array.	An	optional	comparison	function	can	be	used	to
perform	custom	comparisons.	Alphabetic	sorting	is	performed	if	no
comparison	function	is	defined.

splice(index,

count)

This	method	removes	count	items	from	the	array,	starting	at	the	specified
index.	The	removed	items	are	returned	as	the	result	of	the	method.

every(test) This	method	calls	the	test	function	for	each	item	in	the	array	and	returns
true	if	the	function	returns	true	for	all	of	them	and	false	otherwise.

some(test) This	method	returns	true	if	calling	the	test	function	for	each	item	in	the
array	returns	true	at	least	once.

filter(test) This	method	returns	a	new	array	containing	the	items	for	which	the	test
function	returns	true.

find(test) This	method	returns	the	first	item	in	the	array	for	which	the	test	function
returns	true.

findIndex(test) This	method	returns	the	index	of	the	first	item	in	the	array	for	which	the	test
function	returns	true.

forEach(callback) This	method	invokes	the	callback	function	for	each	item	in	the	array,	as
described	in	the	previous	section.

includes(value) This	method	returns	true	if	the	array	contains	the	specified	value.

map(callback) This	method	returns	a	new	array	containing	the	result	of	invoking	the
callback	function	for	every	item	in	the	array.

reduce(callback) This	method	returns	the	accumulated	value	produced	by	invoking	the	callback
function	for	every	item	in	the	array.

Using	the	Spread	Operator	on	Arrays
The	spread	operator	can	be	used	to	expand	the	contents	of	an	array	so	that	its
elements	can	be	used	as	arguments	to	a	function.	The	spread	operator	is	three
periods	(...)	and	is	used	in	Listing	3-21	to	pass	the	contents	of	an	array	to	the
sumPrices	function.

...

let	totalPrice	=	sumPrices(...prices);

...

The	operator	is	used	before	the	array	name.	The	spread	operator	can	also	be
used	to	expand	the	contents	of	an	array	for	easy	concatenation,	as	shown	in
Listing	3-22.

let	names	=	["Hat",	"Boots",	"Gloves"];

let	prices	=	[];

prices.push(100);

prices.push("100");

prices.push(50.25);

console.log(`First	Item:	${names[0]}:	${prices[0]}`);

let	sumPrices	=	(...numbers)	=>	numbers.reduce((total,

val)	=>

				total	+	(Number.isNaN(Number(val))	?	0	:

Number(val)));

let	totalPrice	=	sumPrices(...prices);

console.log(`Total:	${totalPrice}	${typeof

totalPrice}`);

let	combinedArray	=	[...names,	...prices];

combinedArray.forEach(element	=>	console.log(`Combined

Array	Element:	${element}`));

Listing	3-22. Using	the	Spread	Operator	in	the	index.js	File	in	the	primer	Folder

The	spread	operator	is	used	to	create	an	array	that	contains	the	elements	from
the	names	and	prices	arrays.	The	code	in	Listing	3-22	produces	the
following	output:

First	Item:	Hat:	100

Total:	250.25	number

Combined	Array	Element:	Hat

Combined	Array	Element:	Boots

Combined	Array	Element:	Gloves

Combined	Array	Element:	100

Combined	Array	Element:	100

Combined	Array	Element:	50.25

Destructuring	Arrays
Values	from	arrays	can	be	unpacked	using	a	destructuring	assignment,	which
assigns	selected	values	to	variables,	as	shown	in	Listing	3-23.

let	names	=	["Hat",	"Boots",	"Gloves"];

let	[one,	two]	=	names;

console.log(`One:	${one},	Two:	${two}`);

Listing	3-23. Destructuring	an	Array	in	the	index.js	File	in	the	primer	Folder

The	left	side	of	the	expression	is	used	to	specify	the	variables	to	which
values	will	be	assigned.	In	this	example,	the	first	value	in	the	names	array	will
be	assigned	to	a	variable	named	one,	and	the	second	value	will	be	assigned	to	a
variable	named	two.	The	number	of	variables	doesn’t	have	to	match	the	number
of	elements	in	the	array:	any	elements	for	which	there	are	not	variables	in	the
destructuring	assignment	are	ignored,	and	any	variables	in	the	destructuring
assignment	for	which	there	is	no	corresponding	array	element	will	be

undefined.	The	code	in	Listing	3-23	produces	the	following	output:

One:	Hat,	Two:	Boots

Ignoring	Elements	When	Destructuring	an	Array
You	can	ignore	elements	by	not	specifying	a	name	in	the	assignment,	as	shown
in	Listing	3-24.

let	names	=	["Hat",	"Boots",	"Gloves"];

let	[,	,	three]	=	names;

console.log(`Three:	${three}`);

Listing	3-24. Ignoring	Elements	in	the	index.js	File	in	the	primer	Folder

No	name	is	specified	in	the	first	two	positions	in	the	assignment,	which
means	the	first	two	elements	in	the	array	are	ignored.	The	third	element	is
assigned	to	the	variable	named	three,	and	the	code	produces	the	following
output:

Three:	Gloves

Assigning	Remaining	Elements	to	an	Array
The	last	variable	name	in	a	destructuring	assignment	can	be	prefixed	with	three
periods	(...),	known	as	the	rest	expression	or	rest	pattern,	which	assigns	any
remaining	elements	to	an	array,	as	shown	in	Listing	3-25.	(The	rest	expression	is
often	referred	to	as	the	spread	operator	for	consistency	since	both	are	three
periods	and	behave	in	similar	ways.)

let	names	=	["Hat",	"Boots",	"Gloves"];

let	[,	,	three]	=	names;

console.log(`Three:	${three}`);

let	prices	=	[100,	120,	50.25];

let	[,	...highest]	=	prices.sort((a,	b)	=>	a	-	b);

highest.forEach(price	=>	console.log(`High	price:

${price}`));

Listing	3-25. Assigning	Remaining	Elements	in	the	index.js	File	in	the	primer	Folder

The	prices	array	is	sorted,	the	first	element	is	discarded,	and	the
remaining	elements	are	assigned	to	an	array	named	highest,	which	is
enumerated	so	that	the	values	can	be	written	to	the	console,	producing	the
following	output:

Three:	Gloves

High	price:	100

High	price:	120

Working	with	Objects
JavaScript	objects	are	collections	of	properties,	each	of	which	has	a	name	and	a
value.	The	simplest	way	to	define	an	object	is	to	use	the	literal	syntax,	as	shown
in	Listing	3-26.

let	hat	=	{

				name:	"Hat",

				price:	100

};

let	boots	=	{

				name:	"Boots",

				price:	"100"

}

let	sumPrices	=	(...numbers)	=>	numbers.reduce((total,

val)	=>

				total	+	(Number.isNaN(Number(val))	?	0	:

Number(val)));

let	totalPrice	=	sumPrices(hat.price,	boots.price);

console.log(`Total:	${totalPrice}	${typeof

totalPrice}`);

Listing	3-26. Creating	an	Object	in	the	index.js	File	in	the	primer	Folder

The	literal	syntax	uses	braces	to	contain	a	list	of	property	names	and	values.
Names	are	separated	from	their	values	with	colons	and	from	other	properties
with	commas.	Objects	can	be	assigned	to	variables,	used	as	arguments	to
functions,	and	stored	in	arrays.	Two	objects	are	defined	in	Listing	3-26	and

assigned	to	variables	named	hat	and	boots.	The	properties	defined	by	the
object	can	be	accessed	through	the	variable	name,	as	shown	in	this	statement,
which	gets	the	values	of	the	price	properties	defined	by	both	objects:

...

let	totalPrice	=	sumPrices(hat.price,	boots.price);

...

The	code	in	Listing	3-26	produces	the	following	output:

Total:	200	number

Adding,	Changing,	and	Deleting	Object	Properties
Like	the	rest	of	JavaScript,	objects	are	dynamic.	Properties	can	be	added	and
removed,	and	values	of	any	type	can	be	assigned	to	properties,	as	shown	in
Listing	3-27.

let	hat	=	{

				name:	"Hat",

				price:	100

};

let	boots	=	{

				name:	"Boots",

				price:	"100"

}

let	gloves	=	{

				productName:	"Gloves",

				price:	"40"

}

gloves.name	=	gloves.productName;

delete	gloves.productName;

gloves.price	=	20;

let	sumPrices	=	(...numbers)	=>	numbers.reduce((total,

val)	=>

				total	+	(Number.isNaN(Number(val))	?	0	:

Number(val)));

let	totalPrice	=	sumPrices(hat.price,	boots.price,

gloves.price);

console.log(`Total:	${totalPrice}	${typeof

totalPrice}`);

Listing	3-27. Manipulating	an	Object	in	the	index.js	File	in	the	primer	Folder

The	gloves	object	is	created	with	productName	and	price	properties.
The	statements	that	follow	create	a	name	property,	use	the	delete	keyword	to
remove	a	property,	and	assign	a	number	value	to	the	price	property,	replacing
the	previous	string	value.	The	code	in	Listing	3-27	produces	the	following
output:

Total:	220	number

Guarding	Against	Undefined	Objects	and	Properties
Care	is	required	when	using	objects	because	they	may	not	have	the	shape	(the
term	used	for	the	combination	of	properties	and	values)	that	you	expect	or	that
was	originally	used	when	the	object	was	created.

Because	the	shape	of	an	object	can	change,	setting	or	getting	the	value	of	a
property	that	has	not	been	defined	is	not	an	error.	If	you	set	a	nonexistent
property,	then	it	will	be	added	to	the	object	and	assigned	the	specified	value.	If
you	read	a	nonexistent	property,	then	you	will	receive	undefined.	One	useful
way	to	ensure	that	code	always	has	values	to	work	with	is	to	rely	on	the	type
coercion	feature	and	the	nullish	or	logical	OR	operators,	as	shown	in	Listing	3-
28.

let	hat	=	{

				name:	"Hat",

				price:	100

};

let	boots	=	{

				name:	"Boots",

				price:	"100"

}

let	gloves	=	{

				productName:	"Gloves",

				price:	"40"

}

gloves.name	=	gloves.productName;

delete	gloves.productName;

gloves.price	=	20;

let	propertyCheck	=	hat.price	??	0;

let	objectAndPropertyCheck	=	(hat	??	{}).price	??	0;

console.log(`Checks:	${propertyCheck},

${objectAndPropertyCheck}`);

Listing	3-28. Guarding	Against	Undefined	Values	in	the	index.js	File	in	the	primer	Folder

The	code	can	be	difficult	to	read,	but	the	??	operator	will	coerce
undefined	and	null	values	to	false	and	other	values	to	true.	The	checks
can	be	used	to	provide	a	fallback	for	an	individual	property,	for	an	object,	or	for
a	combination	of	both.

The	first	check	in	Listing	3-28	assumes	the	hat	variable	has	been	assigned	a
value	but	checks	to	make	sure	hat.price	is	defined	and	has	been	assigned	a
value.	The	second	statement	is	more	cautious—but	harder	to	read—and	checks
that	a	value	has	been	assigned	to	hat	before	also	checking	the	price	property.
The	code	in	Listing	3-28	produces	the	following	output:

Checks:	100,	100

The	second	check	in	Listing	3-28	can	be	simplified	using	optional	chaining,
as	shown	in	Listing	3-29.

let	hat	=	{

				name:	"Hat",

				price:	100

};

let	boots	=	{

				name:	"Boots",

				price:	"100"

}

let	gloves	=	{

				productName:	"Gloves",

				price:	"40"

}

gloves.name	=	gloves.productName;

delete	gloves.productName;

gloves.price	=	20;

let	propertyCheck	=	hat.price	??	0;

let	objectAndPropertyCheck	=	hat?.price	??	0;

console.log(`Checks:	${propertyCheck},

${objectAndPropertyCheck}`);

Listing	3-29. Using	Optional	Chaining	in	the	index.js	File	in	the	primer	Folder

The	optional	changing	operator	(the	?	character)	will	stop	evaluating	an
expression	if	the	value	it	is	applied	to	is	null	or	undefined.	In	the	listing,	I
have	applied	the	operator	to	hat,	which	means	that	the	expression	won’t	try	to
read	the	value	of	the	price	property	if	hat	is	undefined	or	null.	The	result
is	that	the	fallback	value	will	be	used	if	hat	or	hat.price	is	undefined	or
null.

Using	the	Spread	and	Rest	Operators	on	Objects
The	spread	operator	can	be	used	to	expand	the	properties	and	values	defined	by
an	object,	which	makes	it	easy	to	create	one	object	based	on	the	properties
defined	by	another,	as	shown	in	Listing	3-30.

let	hat	=	{

				name:	"Hat",

				price:	100

};

let	boots	=	{

				name:	"Boots",

				price:	"100"

}

let	otherHat	=	{	...hat	};

console.log(`Spread:	${otherHat.name},

${otherHat.price}`);

Listing	3-30. Using	the	Object	Spread	Operator	in	the	index.js	File	in	the	primer	Folder

The	spread	operator	is	used	to	include	the	properties	of	the	hat	object	as
part	of	the	object	literal	syntax.	The	use	of	the	spread	operator	in	Listing	3-30
has	the	effect	of	copying	the	properties	from	the	hat	object	to	the	new
otherHat	object.	The	code	in	Listing	3-30	produces	the	following	output:

Spread:	Hat,	100

The	spread	operator	can	also	be	combined	with	other	properties	to	add,
replace,	or	absorb	properties	from	the	source	object,	as	shown	in	Listing	3-31.

let	hat	=	{

				name:	"Hat",

				price:	100

};

let	boots	=	{

				name:	"Boots",

				price:	"100"

}

let	additionalProperties	=	{	...hat,	discounted:

true};

console.log(`Additional:

${JSON.stringify(additionalProperties)}`);

let	replacedProperties	=	{	...hat,	price:	10};

console.log(`Replaced:

${JSON.stringify(replacedProperties)}`);

let	{	price	,	...someProperties	}	=	hat;

console.log(`Selected:

${JSON.stringify(someProperties)}`);

Listing	3-31. Adding,	Replacing,	and	Absorbing	Properties	in	the	index.js	File	in	the	primer	Folder

The	property	names	and	values	expanded	by	the	spread	operator	are	treated
as	though	they	had	been	expressed	individually	in	the	object	literal	syntax,

which	means	the	shape	of	an	object	can	be	altered	by	mixing	the	spread	operator
with	other	properties.	This	statement,	for	example:

...

let	additionalProperties	=	{	...hat,	discounted:

true};

...

will	be	expanded	so	that	the	properties	defined	by	the	hat	object	will	be
combined	with	the	discounted	property,	equivalent	to	this	statement:

let	additionalProperties	=	{	name:	"Hat",	price:	100,

discounted:	true};

If	a	property	name	is	used	twice	in	the	object	literal	syntax,	then	the	second
value	is	the	one	that	will	be	used.	This	feature	can	be	used	to	change	the	value	of
a	property	that	is	obtained	through	the	spread	operator	and	means	that	this
statement:

...

let	replacedProperties	=	{	...hat,	price:	10};

...

will	be	expanded	so	that	it	is	equivalent	to	this	statement:

let	replacedProperties	=	{	name:	"Hat",	price:	100,

price:	10};

The	effect	is	an	object	that	has	the	name	property	and	value	from	the	hat
object	but	with	a	price	property	whose	value	is	10.	The	rest	operator	(which	is
the	same	three	periods	as	the	spread	operator)	can	be	used	to	select	properties	or
to	exclude	them	when	used	with	the	object	literal	syntax.	This	statement	defines
variables	named	price	and	someProperties:

...

let	{	price	,	...someProperties	}	=	hat;

...

The	properties	defined	by	the	hat	object	are	decomposed.	The	hat.price
property	is	assigned	to	the	new	price	property,	and	all	the	other	properties	are

assigned	to	the	someProperties	object.
The	built-in	JSON.stringify	method	creates	a	string	representation	of

an	object	using	the	JSON	data	format.	It	is	useful	only	for	representing	simple
objects;	it	doesn’t	usefully	deal	with	functions,	for	example,	but	it	is	helpful	in
understanding	how	objects	are	composed,	and	the	code	in	Listing	3-31	produces
the	following	output:

Additional:

{"name":"Hat","price":100,"discounted":true}

Replaced:	{"name":"Hat","price":10}

Selected:	{"name":"Hat"}

Defining	Getters	and	Setters
Getters	and	setters	are	functions	that	are	invoked	when	a	property	value	is	read
or	assigned,	as	shown	in	Listing	3-32.

let	hat	=	{

				name:	"Hat",

				_price:	100,

				priceIncTax:	100	*	1.2,

				set	price(newPrice)	{

								this._price	=	newPrice;

								this.priceIncTax	=	this._price	*	1.2;

				},

				get	price()	{

								return	this._price;

				}

};

let	boots	=	{

				name:	"Boots",

				price:	"100",

				get	priceIncTax()	{

								return	Number(this.price)	*	1.2;

				}

}

console.log(`Hat:	${hat.price},	${hat.priceIncTax}`);

hat.price	=	120;

console.log(`Hat:	${hat.price},	${hat.priceIncTax}`);

console.log(`Boots:	${boots.price},

${boots.priceIncTax}`);

boots.price	=	"120";

console.log(`Boots:	${boots.price},

${boots.priceIncTax}`);

Listing	3-32. Using	Getters	and	Setters	in	the	index.js	File	in	the	primer	Folder

The	example	introduces	a	priceIncTax	property	whose	value	is	updated
automatically	when	the	price	property	is	set.	The	hat	object	does	this	by
using	a	getter	and	setter	for	the	price	property	to	update	a	backing	property
named	_price.	When	a	new	value	is	assigned	to	the	price	property,	the	setter
updates	the	backing	property	and	the	priceIncTax	property.	When	the	value
of	the	price	property	is	read,	the	getter	responds	with	the	value	of	the	_price
property.	(A	backing	property	is	required	because	getters	and	setters	are	treated
as	properties	and	cannot	have	the	same	name	as	any	of	the	conventional
properties	defined	by	the	object.)

Understanding	JavaScript	Private	Properties
JavaScript	doesn’t	have	any	built-in	support	for	private	properties,	meaning
properties	that	can	be	accessed	only	by	an	object’s	methods,	getters,	and
setters.	There	are	techniques	to	achieve	a	similar	effect,	but	they	are	complex,
and	so	the	most	common	approach	is	to	use	a	naming	convention	to	denote
properties	not	intended	for	public	use.	This	doesn’t	prevent	access	to	these
properties,	but	it	does	at	least	make	it	obvious	that	doing	so	is	undesirable.	A
widely	used	naming	convention	is	to	prefix	the	property	name	with	an
underscore,	as	demonstrated	with	the	_price	property	in	Listing	3-32.

There	is	a	proposal	working	its	way	through	the	standardization	process	to
add	support	for	private	properties	to	the	JavaScript	language.	The	names	of
private	properties	will	be	prefixed	with	the	#	character,	but	it	will	be	some
time	before	this	feature	is	part	of	the	JavaScript	standard.	TypeScript	provides
private	properties	and	supports	the	JavaScript	feature,	as	described	in	Chapter
11.

The	boots	object	defines	the	same	behavior	as	the	hat	object	but	does	so	by

creating	a	getter	that	has	no	corresponding	setter,	which	has	the	effect	of
allowing	the	value	to	be	read	but	not	modified	and	demonstrates	that	getters	and
setters	don’t	have	to	be	used	together.	The	code	in	Listing	3-32	produces	the
following	output:

Hat:	100,	120

Hat:	120,	144

Boots:	100,	120

Boots:	120,	144

Defining	Methods
JavaScript	can	be	confusing	at	first,	but	digging	into	the	details	reveals	a
consistency	that	isn’t	always	apparent	from	casual	use.	One	example	is	methods,
which	build	on	the	features	described	in	earlier	sections,	as	shown	in	Listing	3-
33.

let	hat	=	{

				name:	"Hat",

				_price:	100,

				priceIncTax:	100	*	1.2,

				set	price(newPrice)	{

								this._price	=	newPrice;

								this.priceIncTax	=	this._price	*	1.2;

				},

				get	price()	{

								return	this._price;

				},

				writeDetails:	function()	{

								console.log(`${this.name}:	${this.price},

${this.priceIncTax}`);

				}

};

let	boots	=	{

				name:	"Boots",

				price:	"100",

				get	priceIncTax()	{

								return	Number(this.price)	*	1.2;

				}

}

hat.writeDetails();

hat.price	=	120;

hat.writeDetails();

console.log(`Boots:	${boots.price},

${boots.priceIncTax}`);

boots.price	=	"120";

console.log(`Boots:	${boots.price},

${boots.priceIncTax}`);

Listing	3-33. Defining	Methods	in	the	index.js	File	in	the	primer	Folder

A	method	is	a	property	whose	value	is	a	function,	which	means	that	all	the
features	and	behaviors	that	functions	provide,	such	as	default	and	rest
parameters,	can	be	used	for	methods.	The	method	in	Listing	3-33	is	defined
using	the	function	keyword,	but	there	is	a	more	concise	syntax	available,	as
shown	in	Listing	3-34.

...

writeDetails()	{

				console.log(`${this.name}:	${this.price},

${this.priceIncTax}`);

}

...

Listing	3-34. Using	the	Concise	Methods	Syntax	in	the	index.js	File	in	the	primer	Folder

The	function	keyword	and	colon	that	separates	a	property	name	from	its
value	are	omitted,	allowing	methods	to	be	defined	in	a	style	that	many
developers	find	natural.	The	following	output	is	produced	by	the	listings	in	this
section:

Hat:	100,	120

Hat:	120,	144

Boots:	100,	120

Boots:	120,	144

Understanding	the	this	Keyword
The	this	keyword	can	be	confusing	to	even	experienced	JavaScript
programmers.	In	other	programming	languages,	this	is	used	to	refer	to	the
current	instance	of	an	object	created	from	a	class.	In	JavaScript,	the	this
keyword	can	often	appear	to	work	the	same	way—right	up	until	the	moment	a
change	breaks	the	application	and	undefined	values	start	to	appear.

To	demonstrate,	I	used	the	fat	arrow	syntax	to	redefine	the	method	on	the
hat	object,	as	shown	in	Listing	3-35.

let	hat	=	{

				name:	"Hat",

				_price:	100,

				priceIncTax:	100	*	1.2,

				set	price(newPrice)	{

								this._price	=	newPrice;

								this.priceIncTax	=	this._price	*	1.2;

				},

				get	price()	{

								return	this._price;

				},

				writeDetails:	()	=>

								console.log(`${this.name}:	${this.price},

${this.priceIncTax}`)

};

let	boots	=	{

				name:	"Boots",

				price:	"100",

				get	priceIncTax()	{

								return	Number(this.price)	*	1.2;

				}

}

hat.writeDetails();

hat.price	=	120;

hat.writeDetails();

console.log(`Boots:	${boots.price},

${boots.priceIncTax}`);

boots.price	=	"120";

console.log(`Boots:	${boots.price},

${boots.priceIncTax}`);

Listing	3-35. Using	the	Fat	Arrow	Syntax	in	the	index.js	File	in	the	primer	Folder

The	method	uses	the	same	console.log	statement	as	Listing	3-34,	but
when	the	change	is	saved	and	the	code	is	executed,	the	output	shows
undefined	values,	like	this:

undefined:	undefined,	undefined

undefined:	undefined,	undefined

Boots:	100,	120

Boots:	120,	144

Understanding	why	this	happens	and	being	able	to	fix	the	problem	requires
taking	a	step	back	and	examining	what	the	this	keyword	really	does	in
JavaScript.

Understanding	the	this	Keyword	in	Stand-Alone	Functions
The	this	keyword	can	be	used	in	any	function,	even	when	that	function	isn’t
used	as	a	method,	as	shown	in	Listing	3-36.

function	writeMessage(message)	{

				console.log(`${this.greeting},	${message}`);

}

greeting	=	"Hello";

writeMessage("It	is	sunny	today");

Listing	3-36. Invoking	a	Function	in	the	index.js	File	in	the	primer	Folder

The	writeMessage	function	reads	a	property	named	greeting	from
this	in	one	of	the	expressions	in	the	template	string	passed	to	the
console.log	method.	The	this	keyword	doesn’t	appear	again	in	the	listing,

but	when	the	code	is	saved	and	executed,	the	following	output	is	produced:

Hello,	It	is	sunny	today

JavaScript	defines	a	global	object,	which	can	be	assigned	values	that	are
available	throughout	an	application.	The	global	object	is	used	to	provide	access
to	the	essential	features	in	the	execution	environment,	such	as	the	document
object	in	browsers	that	allows	interaction	with	the	Document	Object	Model	API.

Values	assigned	names	without	using	the	let,	const,	or	var	keyword	are
assigned	to	the	global	object.	The	statement	that	assigns	the	string	value	Hello
creates	a	variable	in	the	global	scope.	When	the	function	is	executed,	this	is
assigned	the	global	object,	so	reading	this.greeting	returns	the	string
value	Hello,	explaining	the	output	produced	by	the	application.

The	standard	way	to	invoke	a	function	is	to	use	parentheses	that	contain
arguments,	but	in	JavaScript,	this	is	a	convenience	syntax	that	is	translated	into
the	statement	shown	in	Listing	3-37.

function	writeMessage(message)	{

				console.log(`${this.greeting},	${message}`);

}

greeting	=	"Hello";

writeMessage("It	is	sunny	today");

writeMessage.call(global,	"It	is	sunny	today");

Listing	3-37. Invoking	a	Function	in	the	index.js	File	in	the	primer	Folder

As	explained	earlier,	functions	are	objects,	which	means	they	define
methods,	including	the	call	method.	It	is	this	method	that	is	used	to	invoke	a
function	behind	the	scenes.	The	first	argument	to	the	call	method	is	the	value
for	this,	which	is	set	to	the	global	object.	This	is	the	reason	that	this	can	be
used	in	any	function	and	why	it	returns	the	global	object	by	default.

The	new	statement	in	Listing	3-37	uses	the	call	method	directly	and	sets
the	this	value	to	the	global	object,	with	the	same	result	as	the	conventional
function	call	before	it,	which	can	be	seen	in	the	following	output	produced	by
the	code	when	executed:

Hello,	It	is	sunny	today

Hello,	It	is	sunny	today

The	name	of	the	global	object	changes	based	on	the	execution	environment.
In	code	executed	by	Node.js,	global	is	used,	but	window	or	self	may	be
required	in	browsers.	At	the	time	of	writing,	there	is	a	proposal	to	standardize
the	name	global,	but	it	has	yet	to	be	adopted	universally.

Understanding	the	Effect	of	Strict	Mode
JavaScript	supports	strict	mode,	which	disables	or	restricts	features	that	have
historically	caused	poor-quality	software	or	that	prevent	the	runtime	from
executing	code	efficiently.	When	strict	mode	is	enabled,	the	default	value	for
this	is	undefined	to	prevent	accidental	use	of	the	global	object,	and
values	with	global	scope	must	be	explicitly	defined	as	properties	on	the
global	object.	See	https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Strict_mode	for	details.
The	TypeScript	compiler	provides	a	feature	for	automatically	enabling	strict
mode	in	the	JavaScript	code	it	generates,	as	described	in	Chapter	5.

Understanding	this	in	Methods
When	a	function	is	invoked	as	an	object’s	method,	this	is	set	to	the	object,	as
shown	in	Listing	3-38.

let	myObject	=	{

				greeting:	"Hi,	there",

				writeMessage(message)	{

								console.log(`${this.greeting},	${message}`);

				}

}

greeting	=	"Hello";

myObject.writeMessage("It	is	sunny	today");

Listing	3-38. Invoking	a	Function	as	a	Method	in	the	index.js	File	in	the	primer	Folder

When	the	function	is	invoked	via	the	object,	the	statement	that	invokes	the
function	is	equivalent	to	using	the	call	method	with	the	object	as	the	first
argument,	like	this:

...

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

myObject.writeMessage.call(myObject,	"It	is	sunny

today");

...

Care	is	required	because	this	is	set	differently	if	the	function	is	accessed
outside	of	its	object,	which	can	happen	if	the	function	is	assigned	to	a	variable,
as	shown	in	Listing	3-39.

let	myObject	=	{

				greeting:	"Hi,	there",

				writeMessage(message)	{

								console.log(`${this.greeting},	${message}`);

				}

}

greeting	=	"Hello";

myObject.writeMessage("It	is	sunny	today");

let	myFunction	=	myObject.writeMessage;

myFunction("It	is	sunny	today");

Listing	3-39. Invoking	a	Function	Outside	of	Its	Object	in	the	index.js	File	in	the	primer	Folder

Functions	can	be	used	like	any	other	value,	including	assigning	them	to
variables	outside	of	the	object	in	which	they	were	defined,	as	shown	in	the
listing.	If	the	function	is	invoked	through	the	variable,	then	this	will	be	set	to
the	global	object.	This	often	causes	problems	when	functions	are	used	as
arguments	to	other	methods	or	as	callbacks	to	handle	events,	and	the	effect	is
that	the	same	function	will	behave	differently	based	on	how	it	is	invoked,	as
shown	in	the	output	produced	by	the	code	in	Listing	3-39.

Hi,	there,	It	is	sunny	today

Hello,	It	is	sunny	today

Changing	the	Behavior	of	the	this	Keyword
One	way	to	control	the	this	value	is	to	invoke	functions	using	the	call
method,	but	this	is	awkward	and	must	be	done	every	time	the	function	is
invoked.	A	more	reliable	method	is	to	use	the	function’s	bind	method,	which	is

used	to	set	the	value	for	this	regardless	of	how	the	function	is	invoked,	as
shown	in	Listing	3-40.

let	myObject	=	{

				greeting:	"Hi,	there",

				writeMessage(message)	{

								console.log(`${this.greeting},	${message}`);

				}

}

myObject.writeMessage	=

myObject.writeMessage.bind(myObject);

greeting	=	"Hello";

myObject.writeMessage("It	is	sunny	today");

let	myFunction	=	myObject.writeMessage;

myFunction("It	is	sunny	today");

Listing	3-40. Setting	the	this	Value	in	the	index.js	File	in	the	primer	Folder

The	bind	method	returns	a	new	function	that	will	have	a	persistent	value	for
this	when	it	is	invoked.	The	function	returned	by	the	bind	method	is	used	to
replace	the	original	method,	ensuring	consistency	when	the	writeMessage
method	is	invoked.	Using	bind	is	awkward	because	the	reference	to	the	object
isn’t	available	until	after	it	has	been	created,	which	leads	to	a	two-step	process	of
creating	the	object	and	then	calling	bind	to	replace	each	of	the	methods	for
which	a	consistent	this	value	is	required.	The	code	in	Listing	3-40	produces
the	following	output:

Hi,	there,	It	is	sunny	today

Hi,	there,	It	is	sunny	today

The	value	of	this	is	always	set	to	myObject,	even	when	the
writeMessage	function	is	invoked	as	a	stand-alone	function.

Understanding	this	in	Arrow	Functions
To	add	to	the	complexity	of	this,	arrow	functions	don’t	work	in	the	same	way

as	regular	functions.	Arrow	functions	don’t	have	their	own	this	value	and
inherit	the	closest	value	of	this	they	can	find	when	they	are	executed.	To
demonstrate	how	this	works,	Listing	3-41	adds	an	arrow	function	to	the	example.

let	myObject	=	{

				greeting:	"Hi,	there",

				getWriter()	{

								return	(message)	=>

console.log(`${this.greeting},	${message}`);

				}

}

greeting	=	"Hello";

let	writer	=	myObject.getWriter();

writer("It	is	raining	today");

let	standAlone	=	myObject.getWriter;

let	standAloneWriter	=	standAlone();

standAloneWriter("It	is	sunny	today");

Listing	3-41. Using	an	Arrow	Function	in	the	index.js	File	in	the	primer	Folder

In	Listing	3-41,	the	getWriter	function	is	a	regular	function	that	returns
an	arrow	function	as	its	result.	When	the	arrow	function	returned	by
getWriter	is	invoked,	it	works	its	way	up	its	scope	until	it	locates	a	value	for
this.	As	a	consequence,	the	way	that	the	getWriter	function	is	invoked
determines	the	value	of	this	for	the	arrow	function.	Here	are	the	first	two
statements	that	invoke	the	functions:

...

let	writer	=	myObject.getWriter();

writer("It	is	raining	today");

...

These	two	statements	can	be	combined	as	follows:

...

myObject.getWriter()("It	is	raining	today");

...

The	combined	statement	is	a	little	harder	to	read,	but	it	helps	emphasize	that
the	value	of	this	is	based	on	how	a	function	is	invoked.	The	getWriter
method	is	invoked	through	myObject	and	means	that	the	value	of	this	will
be	set	to	myObject.	When	the	arrow	function	is	invoked,	it	finds	a	value	of
this	from	the	getWriter	function.	The	result	is	that	when	the	getWriter
method	is	invoked	through	myObject,	the	value	of	this	in	the	arrow	function
will	be	myObject,	and	the	this.greeting	expression	in	the	template
string	will	be	Hi,	there.

The	statements	in	the	second	set	treat	getWriter	as	a	stand-alone
function,	so	this	will	be	set	to	the	global	object.	When	the	arrow	function	is
invoked,	the	this.greeting	expression	will	be	Hello.	The	code	in	Listing
3-41	produces	the	following	output,	confirming	the	this	value	in	each	case:

Hi,	there,	It	is	raining	today

Hello,	It	is	sunny	today

Returning	to	the	Original	Problem
I	started	this	section	by	redefining	a	function	in	the	arrow	syntax	and	showing
that	it	behaved	differently,	producing	undefined	in	its	output.	Here	is	the
object	and	its	function:

...

let	hat	=	{

				name:	"Hat",

				_price:	100,

				priceIncTax:	100	*	1.2,

				set	price(newPrice)	{

								this._price	=	newPrice;

								this.priceIncTax	=	this._price	*	1.2;

				},

				get	price()	{

								return	this._price;

				},

				writeDetails:	()	=>

								console.log(`${this.name}:	${this.price},

${this.priceIncTax}`)

};

...

The	behavior	changed	because	arrow	functions	don’t	have	their	own	this
value,	and	the	arrow	function	isn’t	enclosed	by	a	regular	function	that	can
provide	one.	To	resolve	the	issue	and	be	sure	that	the	results	will	be	consistent,	I
must	return	to	a	regular	function	and	use	the	bind	method	to	fix	the	this
value,	as	shown	in	Listing	3-42.

let	hat	=	{

				name:	"Hat",

				_price:	100,

				priceIncTax:	100	*	1.2,

				set	price(newPrice)	{

								this._price	=	newPrice;

								this.priceIncTax	=	this._price	*	1.2;

				},

				get	price()	{

								return	this._price;

				},

				writeDetails()	{

									console.log(`${this.name}:	${this.price},

${this.priceIncTax}`);

				}

};

let	boots	=	{

				name:	"Boots",

				price:	"100",

				get	priceIncTax()	{

								return	Number(this.price)	*	1.2;

				}

}

hat.writeDetails	=	hat.writeDetails.bind(hat);

hat.writeDetails();

hat.price	=	120;

hat.writeDetails();

console.log(`Boots:	${boots.price},

${boots.priceIncTax}`);

boots.price	=	"120";

console.log(`Boots:	${boots.price},

${boots.priceIncTax}`);

Listing	3-42. Resolving	the	Function	Problem	in	the	index.js	File	in	the	primer	Folder

With	these	changes,	the	value	of	this	for	the	writeDetails	method	will
be	its	enclosing	object,	regardless	of	how	it	is	invoked.

Summary
In	this	chapter,	I	introduced	the	basic	features	of	the	JavaScript	type	system.
These	are	features	that	often	confuse	because	they	work	differently	from	those	in
other	programming	languages.	Understanding	these	features	make	working	with
TypeScript	easier	because	they	provide	insight	into	the	problems	that	TypeScript
solves.	In	the	next	chapter,	I	describe	more	of	the	JavaScript	type	features	that
are	useful	for	understanding	TypeScript.

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
A.	Freeman,	Essential	TypeScript	4
https://doi.org/10.1007/978-1-4842-7011-0_4

https://doi.org/10.1007/978-1-4842-7011-0_4

(1)

4.	JavaScript	Primer,	Part	2
Adam	Freeman1		

London,	UK

	

In	this	chapter,	I	continue	describing	the	JavaScript	type	features	that	are
important	to	TypeScript	development.	I	focus	on	the	JavaScript	support	for
objects,	the	different	ways	they	can	be	defined,	and	how	they	relate	to	JavaScript
classes.	I	also	demonstrate	the	features	for	handling	sequences	of	values,	the
JavaScript	collections,	and	the	modules	feature,	which	allows	a	project	to	be
split	up	into	multiple	JavaScript	files.

Preparing	for	This	Chapter
In	this	chapter,	I	continue	to	use	the	primer	project	created	in	Chapter	3.	To
prepare	for	this	chapter,	replace	the	contents	of	the	index.js	file	in	the
primer	folder	with	the	code	shown	in	Listing	4-1.

Tip You	can	download	the	example	project	for	this	chapter—and	for	all	the
other	chapters	in	this	book—from
https://github.com/Apress/essential-typescript-4.

let	hat	=	{

				name:	"Hat",

				price:	100,

				getPriceIncTax()	{

								return	Number(this.price)	*	1.2;

				}

};

console.log(`Hat:	${hat.price},	${hat.getPriceIncTax()

}`);

Listing	4-1. Replacing	the	Code	in	the	index.js	File	in	the	primer	Folder

https://github.com/Apress/essential-typescript-4

Open	a	new	command	prompt,	navigate	to	the	primer	folder,	and	run	the
command	shown	in	Listing	4-2	to	start	monitoring	and	executing	the	JavaScript
file.

npx	nodemon	index.js

Listing	4-2. Starting	the	Development	Tools

The	nodemon	package	will	execute	the	contents	of	the	index.js	file	and
produce	the	following	output:

[nodemon]	1.18.10

[nodemon]	to	restart	at	any	time,	enter	`rs`

[nodemon]	watching:	*.*

[nodemon]	starting	`node	index.js`

Hat:	100,	120

[nodemon]	clean	exit	-	waiting	for	changes	before

restart

Understanding	JavaScript	Object	Inheritance
JavaScript	objects	have	a	link	to	another	object,	known	as	the	prototype,	from
which	they	inherit	properties	and	methods.	Since	prototypes	are	objects	and	have
their	own	prototype,	objects	form	an	inheritance	chain	that	allows	complex
features	to	be	defined	once	and	used	consistently.

When	an	object	is	created	using	the	literal	syntax,	such	as	the	hat	object	in
Listing	4-1,	its	prototype	is	Object,	which	is	a	built-in	object	provided	by
JavaScript.	Object	provides	basic	features	that	all	objects	inherit,	including	a
method	named	toString	that	returns	a	string	representation	of	an	object,	as
shown	in	Listing	4-3.

let	hat	=	{

				name:	"Hat",

				price:	100,

				getPriceIncTax()	{

								return	Number(this.price)	*	1.2;

				}

};

console.log(`Hat:	${hat.price},	${hat.getPriceIncTax()

}`);

console.log(`toString:	${hat.toString()}`);

Listing	4-3. Using	an	Object	in	the	index.js	File	in	the	primer	Folder

The	first	console.log	statement	receives	a	template	string	that	includes
the	price	property,	which	is	one	of	the	hat	object’s	own	properties.	The	new
statement	invokes	the	toString	method.	None	of	the	hat	object’s	own
properties	is	named	toString,	so	the	JavaScript	runtime	turns	to	the	hat
object’s	prototype,	which	is	Object	and	which	does	provide	a	property	named
toString,	producing	the	following	output:

Hat:	100,	120

toString:	[object	Object]

The	result	produced	by	the	toString	method	isn’t	especially	useful,	but	it
does	illustrate	the	relationship	between	the	hat	object	and	its	prototype,	as
shown	in	Figure	4-1.

Figure	4-1. An	object	and	its	prototype

Inspecting	and	Modifying	an	Object’s	Prototype
Object	is	the	prototype	for	most	objects,	but	it	also	provides	methods	that	are
used	directly,	rather	than	through	inheritance,	and	that	can	be	used	to	get
information	about	prototypes.	Table	4-1	describes	the	most	useful	of	these
methods.

Table	4-1. Useful	Object	Methods

Name Description

getPrototypeOf This	method	returns	an	object’s	prototype.

setPrototypeOf This	method	changes	the	prototype	of	an	object.

getOwnPropertyNames This	method	returns	the	names	of	an	object’s	own	properties.

Listing	4-4	uses	the	getPrototypeOf	method	to	confirm	that	two	objects
created	using	the	literal	syntax	share	the	same	prototype.

let	hat	=	{

				name:	"Hat",

				price:	100,

				getPriceIncTax()	{

								return	Number(this.price)	*	1.2;

				}

};

let	boots	=	{

				name:	"Boots",

				price:	100,

				getPriceIncTax()	{

								return	Number(this.price)	*	1.2;

				}

}

let	hatPrototype	=	Object.getPrototypeOf(hat);

console.log(`Hat	Prototype:	${hatPrototype}`);

let	bootsPrototype	=	Object.getPrototypeOf(boots);

console.log(`Boots	Prototype:	${bootsPrototype}`);

console.log(`Common	prototype:	${	hatPrototype	===

bootsPrototype}`);

console.log(`Hat:	${hat.price},	${hat.getPriceIncTax()

}`);

console.log(`toString:	${hat.toString()}`);

Listing	4-4. Comparing	Prototypes	in	the	index.js	File	in	the	primer	Folder

The	listing	introduces	another	object	and	compares	its	prototype,	producing
the	following	output:

Hat	Prototype:	[object	Object]

Boots	Prototype:	[object	Object]

Common	prototype:	true

Hat:	100,	120

toString:	[object	Object]

The	output	shows	that	the	hat	and	boots	objects	have	the	same	prototype,
as	illustrated	by	Figure	4-2.

Figure	4-2. Objects	and	a	common	prototype

Because	prototypes	are	regular	JavaScript	objects,	new	properties	can	be
defined	on	prototypes,	and	new	values	can	be	assigned	to	existing	properties,	as
shown	in	Listing	4-5.

let	hat	=	{

				name:	"Hat",

				price:	100,

				getPriceIncTax()	{

								return	Number(this.price)	*	1.2;

				}

};

let	boots	=	{

				name:	"Boots",

				price:	100,

				getPriceIncTax()	{

								return	Number(this.price)	*	1.2;

				}

}

let	hatPrototype	=	Object.getPrototypeOf(hat);

hatPrototype.toString	=	function()	{

				return	`toString:	Name:	${this.name},	Price:

${this.price}`;

}

console.log(hat.toString());

console.log(boots.toString());

Listing	4-5. Changing	a	Prototype	Property	in	the	index.js	File	in	the	primer	Folder

Listing	4-5	assigns	a	new	function	to	the	toString	method	through	the
hat	object’s	prototype.	Because	objects	maintain	a	link	to	their	prototype,	the
new	toString	method	will	be	used	for	the	boots	object,	too,	as	shown	by
the	following	output:

toString:	Name:	Hat,	Price:	100

toString:	Name:	Boots,	Price:	100

Creating	Custom	Prototypes
Changes	to	Object	should	be	made	cautiously	because	they	affect	all	the	other
objects	in	the	application.	The	new	toString	function	in	Listing	4-5	produces
more	useful	output	for	the	hat	and	boots	objects	but	assumes	that	there	will
be	name	and	price	properties,	which	won’t	be	the	case	when	toString	is
called	on	other	objects.

A	better	approach	is	to	create	a	prototype	specifically	for	those	objects	that
are	known	to	have	name	and	price	properties,	which	can	be	done	using	the
Object.setPrototypeOf	method,	as	shown	in	Listing	4-6.

let	ProductProto	=	{

				toString:	function()	{

								return	`toString:	Name:	${this.name},	Price:

${this.price}`;

				}

}

let	hat	=	{

				name:	"Hat",

				price:	100,

				getPriceIncTax()	{

								return	Number(this.price)	*	1.2;

				}

};

let	boots	=	{

				name:	"Boots",

				price:	100,

				getPriceIncTax()	{

								return	Number(this.price)	*	1.2;

				}

}

Object.setPrototypeOf(hat,	ProductProto);

Object.setPrototypeOf(boots,	ProductProto);

console.log(hat.toString());

console.log(boots.toString());

Listing	4-6. Using	a	Custom	Prototype	in	the	index.js	File	in	the	primer	Folder

Prototypes	can	be	defined	just	like	any	other	object.	In	the	listing,	an	object
named	ProductProto	that	defines	a	toString	method	is	used	as	the
prototype	for	the	hat	and	boots	objects.	The	ProductProto	object	is	just
like	any	other	object,	and	that	means	it	also	has	a	prototype,	which	is	Object,
as	shown	in	Figure	4-3.

Figure	4-3. A	chain	of	prototypes

The	effect	is	a	chain	of	prototypes	that	the	JavaScript	works	its	way	along
until	it	locates	a	property	or	method	or	reaches	the	end	of	the	chain.	The	code	in
Listing	4-6	produces	the	following	output:

toString:	Name:	Hat,	Price:	100

toString:	Name:	Boots,	Price:	100

Using	Constructor	Functions
A	constructor	function	is	used	to	create	a	new	object,	configure	its	properties,
and	assign	its	prototype,	all	of	which	is	done	in	a	single	step	with	the	new
keyword.	Constructor	functions	can	be	used	to	ensure	that	objects	are	created
consistently	and	that	the	correct	prototype	is	applied,	as	shown	in	Listing	4-7.

let	Product	=	function(name,	price)	{

				this.name	=	name;

				this.price	=	price;

}

Product.prototype.toString	=	function()	{

				return	`toString:	Name:	${this.name},	Price:

${this.price}`;

}

let	hat	=	new	Product("Hat",	100);

let	boots	=	new	Product("Boots",	100);

console.log(hat.toString());

console.log(boots.toString());

Listing	4-7. Using	a	Constructor	Function	in	the	index.js	File	in	the	primer	Folder

Constructor	functions	are	invoked	with	the	new	keyword,	followed	by	the
function	or	its	variable	name	and	the	arguments	that	will	be	used	to	configure	the
object,	like	this:

...

let	hat	=	new	Product("Hat",	100);

...

The	JavaScript	runtime	creates	a	new	object	and	uses	it	as	the	this	value	to
invoke	the	constructor	function,	providing	the	argument	values	as	parameters.
The	constructor	function	can	configure	the	object’s	own	properties	using	this,
which	is	set	to	the	new	object.

...

let	Product	=	function(name,	price)	{

				this.name	=	name;

				this.price	=	price;

}

...

The	prototype	for	the	new	object	is	set	to	the	object	returned	by	the
prototype	property	of	the	constructor	function.	This	leads	to	constructors
being	defined	in	two	parts—the	function	itself	is	used	to	configure	the	object’s

own	properties,	while	the	object	returned	by	the	prototype	property	is	used
for	the	properties	and	methods	that	should	be	shared	by	all	the	objects	the
constructor	creates.	In	the	listing,	a	toString	property	is	added	to	the
Product	constructor	function	prototype	and	used	to	define	a	method.

...

Product.prototype.toString	=	function()	{

				return	`toString:	Name:	${this.name},	Price:

${this.price}`;

}

...

The	result	is	the	same	as	the	previous	example,	but	using	a	constructor
function	can	help	ensure	that	objects	are	created	consistently	and	have	their
prototypes	set	correctly.

Chaining	Constructor	Functions
Using	the	setPrototypeOf	method	to	create	a	chain	of	custom	prototypes	is
easy,	but	doing	the	same	thing	with	constructor	functions	requires	a	little	more
work	to	ensure	that	objects	are	configured	correctly	by	the	functions	and	get	the
right	prototypes	in	the	chain.	Listing	4-8	introduces	a	new	constructor	function
and	uses	it	to	create	a	chain	with	the	Product	constructor.

let	Product	=	function(name,	price)	{

				this.name	=	name;

				this.price	=	price;

}

Product.prototype.toString	=	function()	{

				return	`toString:	Name:	${this.name},	Price:

${this.price}`;

}

let	TaxedProduct	=	function(name,	price,	taxRate)	{

				Product.call(this,	name,	price);

				this.taxRate	=	taxRate;

}

Object.setPrototypeOf(TaxedProduct.prototype,

Product.prototype);

TaxedProduct.prototype.getPriceIncTax	=	function()	{

				return	Number(this.price)	*	this.taxRate;

}

TaxedProduct.prototype.toTaxString	=	function()	{

				return	`${this.toString()},	Tax:

${this.getPriceIncTax()}`;

}

let	hat	=	new	TaxedProduct("Hat",	100,	1.2);

let	boots	=	new	Product("Boots",	100);

console.log(hat.toTaxString());

console.log(boots.toString());

Listing	4-8. Chaining	Constructor	Functions	in	the	index.js	File	in	the	primer	Folder

Two	steps	must	be	taken	to	arrange	the	constructors	and	their	prototypes	in	a
chain.	The	first	step	is	to	use	the	call	method	to	invoke	the	next	constructor	so
that	new	objects	are	created	correctly.	In	the	listing,	I	want	the	TaxedProduct
constructor	to	build	on	the	Product	constructor,	so	I	have	to	use	call	on	the
Product	function	so	that	it	adds	its	properties	to	new	objects.

...

Product.call(this,	name,	price);

...

The	call	method	allows	the	new	object	to	be	passed	to	the	next	constructor
through	the	this	value.

The	second	step	is	to	link	the	prototypes	together.

...

Object.setPrototypeOf(TaxedProduct.prototype,

Product.prototype);

...

Notice	that	the	arguments	to	the	setPrototypeOf	method	are	the	objects
returned	by	the	constructor	function’s	prototype	properties	and	not	the
functions	themselves.	Linking	the	prototypes	ensures	that	the	JavaScript	runtime
will	follow	the	chain	when	it	looks	for	properties	that	are	not	an	object’s	own.

Figure	4-4	shows	the	new	set	of	prototypes.

Figure	4-4. A	more	complex	prototype	chain

The	TaxedProduct	prototype	defines	a	toTaxString	method	that
invokes	toString,	which	will	be	found	by	the	JavaScript	runtime	on	the
Product	prototype,	and	the	code	in	Listing	4-8	produces	the	following	output:

toString:	Name:	Hat,	Price:	100,	Tax:	120

toString:	Name:	Boots,	Price:	100

Accessing	Overridden	Prototype	Methods
A	prototype	can	override	a	property	or	method	by	using	the	same	name	as	one
defined	further	along	the	chain.	This	is	also	known	as	shadowing	in
JavaScript,	and	it	takes	advantage	of	the	way	that	the	JavaScript	runtime
follows	the	chain.

Care	is	required	when	building	on	an	overridden	method,	which	must	be
accessed	through	the	prototype	that	defines	it.	The	TaxedProduct
prototype	can	define	a	toString	method	that	overrides	the	one	defined	by
the	Product	prototype	and	can	invoke	the	overridden	method	by	accessing
the	method	directly	through	the	prototype	and	using	call	to	set	the	this
value.

...

TaxedProduct.prototype.toString	=	function()	{

				let	chainResult	=

Product.prototype.toString.call(this);

				return	`${chainResult},	Tax:

${this.getPriceIncTax()}`;

}

...

This	method	gets	a	result	from	the	Product	prototype’s	toString
method	and	combines	it	with	additional	data	in	a	template	string.

Checking	Prototype	Types
The	instanceof	operator	is	used	to	determine	whether	a	constructor’s
prototype	is	part	of	the	chain	for	a	specific	object,	as	shown	in	Listing	4-9.

let	Product	=	function(name,	price)	{

				this.name	=	name;

				this.price	=	price;

}

Product.prototype.toString	=	function()	{

				return	`toString:	Name:	${this.name},	Price:

${this.price}`;

}

let	TaxedProduct	=	function(name,	price,	taxRate)	{

				Product.call(this,	name,	price);

				this.taxRate	=	taxRate;

}

Object.setPrototypeOf(TaxedProduct.prototype,

Product.prototype);

TaxedProduct.prototype.getPriceIncTax	=	function()	{

				return	Number(this.price)	*	this.taxRate;

}

TaxedProduct.prototype.toTaxString	=	function()	{

				return	`${this.toString()},	Tax:

${this.getPriceIncTax()}`;

}

let	hat	=	new	TaxedProduct("Hat",	100,	1.2);

let	boots	=	new	Product("Boots",	100);

console.log(hat.toTaxString());

console.log(boots.toString());

console.log(`hat	and	TaxedProduct:	${	hat	instanceof

TaxedProduct}`);

console.log(`hat	and	Product:	${	hat	instanceof

Product}`);

console.log(`boots	and	TaxedProduct:	${	boots

instanceof	TaxedProduct}`);

console.log(`boots	and	Product:	${	boots	instanceof

Product}`);

Listing	4-9. Checking	Prototypes	in	the	index.js	File	in	the	primer	Folder

The	new	statements	use	instanceof	to	determine	whether	the	prototypes
of	the	TaxedProduct	and	Product	constructor	functions	are	in	the	chains	of
the	hat	and	boots	objects.	The	code	in	Listing	4-9	produces	the	following
output:

toString:	Name:	Hat,	Price:	100,	Tax:	120

toString:	Name:	Boots,	Price:	100

hat	and	TaxedProduct:	true

hat	and	Product:	true

boots	and	TaxedProduct:	false

boots	and	Product:	true

Tip Notice	that	the	instanceof	operator	is	used	with	the	constructor
function.	The	Object.isPrototypeOf	method	is	used	directly	with
prototypes,	which	can	be	useful	if	you	are	not	using	constructors.

Defining	Static	Properties	and	Methods
Properties	and	methods	that	are	defined	on	the	constructor	function	are	often
referred	to	as	static,	meaning	they	are	accessed	through	the	constructor	and	not
individual	objects	created	by	that	constructor	(as	opposed	to	instance	properties,
which	are	accessed	through	an	object).	The	Object.setPrototypeOf	and
Object.getPrototypeOf	methods	are	good	examples	of	static
methods.	Listing	4-10	simplifies	the	example	for	brevity	and	introduces	a	static
method.

let	Product	=	function(name,	price)	{

				this.name	=	name;

				this.price	=	price;

}

Product.prototype.toString	=	function()	{

				return	`toString:	Name:	${this.name},	Price:

${this.price}`;

}

Product.process	=	(...products)	=>

				products.forEach(p	=>	console.log(p.toString()));

Product.process(new	Product("Hat",	100,	1.2),	new

Product("Boots",	100));

Listing	4-10. Defining	a	Static	Method	index.js	File	in	the	primer	Folder

The	static	process	method	is	defined	by	adding	a	new	property	to	the
Product	function	object	and	assigning	it	a	function.	Remember	that	JavaScript
functions	are	objects,	and	properties	can	be	freely	added	and	removed	from
objects.	The	process	method	defines	a	rest	parameter	and	uses	the	forEach
method	to	invoke	the	toString	method	for	each	object	it	receives	and	writes
the	result	to	the	console.	The	code	in	Listing	4-10	produces	the	following	output:

toString:	Name:	Hat,	Price:	100

toString:	Name:	Boots,	Price:	100

Using	JavaScript	Classes
JavaScript	classes	were	added	to	the	language	to	ease	the	transition	from	other
popular	programming	languages.	Behind	the	scenes,	JavaScript	classes	are
implemented	using	prototypes,	which	means	that	JavaScript	classes	have	some
differences	from	those	in	languages	such	as	C#	and	Java.	In	Listing	4-11,	I
removed	the	constructors	and	prototypes	and	introduced	a	Product	class.

class	Product	{

				constructor(name,	price)	{

								this.name	=	name;

								this.price	=	price;

				}

				toString()	{

								return	`toString:	Name:	${this.name},	Price:

${this.price}`;

				}

}

let	hat	=	new	Product("Hat",	100);

let	boots	=	new	Product("Boots",	100);

console.log(hat.toString());

console.log(boots.toString());

Listing	4-11. Defining	a	Class	in	the	index.js	File	in	the	primer	Folder

Classes	are	defined	with	the	class	keyword,	followed	by	a	name	for	the
class.	The	class	syntax	may	appear	more	familiar,	but	classes	are	translated	into
the	underlying	JavaScript	prototype	system	described	in	the	previous	section.

Objects	are	created	from	classes	using	the	new	keyword.	The	JavaScript
runtime	creates	a	new	object	and	invokes	the	class	constructor	function,
which	receives	the	new	object	through	the	this	value	and	which	is	responsible
for	defining	the	object’s	own	properties.	Methods	defined	by	classes	are	added	to
the	prototype	assigned	to	objects	created	using	the	class.	The	code	in	Listing	4-
11	produces	the	following	output:

toString:	Name:	Hat,	Price:	100

toString:	Name:	Boots,	Price:	100

Using	Inheritance	in	Classes
Classes	can	inherit	features	using	the	extends	keyword	and	invoke	the
superclass	constructor	and	methods	using	the	super	keyword,	as	shown	in
Listing	4-12.

class	Product	{

				constructor(name,	price)	{

								this.name	=	name;

								this.price	=	price;

				}

				toString()	{

								return	`toString:	Name:	${this.name},	Price:

${this.price}`;

				}

}

class	TaxedProduct	extends	Product	{

				constructor(name,	price,	taxRate	=	1.2)	{

								super(name,	price);

								this.taxRate	=	taxRate;

				}

				getPriceIncTax()	{

								return	Number(this.price)	*	this.taxRate;

				}

				toString()	{

								let	chainResult	=	super.toString();

								return	`${chainResult},	Tax:

${this.getPriceIncTax()}`;

				}

}

let	hat	=	new	TaxedProduct("Hat",	100);

let	boots	=	new	TaxedProduct("Boots",	100,	1.3);

console.log(hat.toString());

console.log(boots.toString());

Listing	4-12. Extending	a	Class	in	the	index.js	File	in	the	primer	Folder

A	class	declares	its	superclass	using	the	extends	keyword.	In	the	listing,
the	TaxedProduct	class	uses	the	extend	keyword	to	inherit	from	the
Product	class.	The	super	keyword	is	used	in	the	constructor	to	invoke	the
superclass	constructor,	which	is	equivalent	to	chaining	constructor	functions.

...

constructor(name,	price,	taxRate	=	1.2)	{

				super(name,	price);

				this.taxRate	=	taxRate;

}

...

The	super	keyword	must	be	used	before	the	this	keyword	and	is
generally	used	in	the	first	statement	in	the	constructor.	The	super	keyword	can
also	be	used	to	access	superclass	properties	and	methods,	like	this:

...

toString()	{

				let	chainResult	=	super.toString();

				return	`${chainResult},	Tax:

${this.getPriceIncTax()}`;

}

...

The	toString	method	defined	by	the	TaxedProduct	class	invoked	the
superclass’s	toString	method,	which	is	equivalent	to	overriding	prototype
methods.	The	code	in	Listing	4-12	produces	the	following	output:

toString:	Name:	Hat,	Price:	100,	Tax:	120

toString:	Name:	Boots,	Price:	100,	Tax:	130

Defining	Static	Methods
The	static	keyword	is	applied	to	create	static	methods	that	are	accessed
through	the	class,	rather	than	the	object	it	creates,	as	shown	in	Listing	4-13.

class	Product	{

				constructor(name,	price)	{

								this.name	=	name;

								this.price	=	price;

				}

				toString()	{

								return	`toString:	Name:	${this.name},	Price:

${this.price}`;

				}

}

class	TaxedProduct	extends	Product	{

				constructor(name,	price,	taxRate	=	1.2)	{

								super(name,	price);

								this.taxRate	=	taxRate;

				}

				getPriceIncTax()	{

								return	Number(this.price)	*	this.taxRate;

				}

				toString()	{

								let	chainResult	=	super.toString();

								return	`${chainResult},	Tax:

${this.getPriceIncTax()}`;

				}

				static	process(...products)	{

								products.forEach(p	=>

console.log(p.toString()));

				}

}

TaxedProduct.process(new	TaxedProduct("Hat",	100,

1.2),

				new	TaxedProduct("Boots",	100));

Listing	4-13. Defining	a	Static	Method	in	the	index.js	File	in	the	primer	Folder

The	static	keyword	is	used	on	the	process	method	defined	by	the
TaxedProduct	class	and	is	accessed	as	TaxedProduct.process.	The
code	in	Listing	4-13	produces	the	following	output:

toString:	Name:	Hat,	Price:	100,	Tax:	120

toString:	Name:	Boots,	Price:	100,	Tax:	120

Using	Iterators	and	Generators
Iterators	are	objects	that	return	a	sequence	of	values.	Iterators	are	used	with	the
collections	described	later	in	this	chapter,	but	they	can	also	be	useful	in	their
own	right.	An	iterator	defines	a	function	named	next	that	returns	an	object	with
value	and	done	properties:	the	value	property	returns	the	next	value	in	the
sequence,	and	the	done	property	is	set	to	true	when	the	sequence	is	complete.
Listing	4-14	shows	the	definition	and	use	of	an	iterator.

class	Product	{

				constructor(name,	price)	{

								this.name	=	name;

								this.price	=	price;

				}

				toString()	{

								return	`toString:	Name:	${this.name},	Price:

${this.price}`;

				}

}

function	createProductIterator()	{

				const	hat	=	new	Product("Hat",	100);

				const	boots	=	new	Product("Boots",	100);

				const	umbrella	=	new	Product("Umbrella",	23);

				let	lastVal;

				return	{

								next()	{

												switch	(lastVal)	{

																case	undefined:

																				lastVal	=	hat;

																				return	{	value:	hat,	done:	false

};

																case	hat:

																				lastVal	=	boots;

																				return	{	value:	boots,	done:	false

};

																case	boots:

																				lastVal	=	umbrella;

																				return	{	value:	umbrella,	done:

false	};

																case	umbrella:

																				return	{	value:	undefined,	done:

true	};

												}

								}

				}

}

let	iterator	=	createProductIterator();

let	result	=	iterator.next();

while	(!result.done)	{

				console.log(result.value.toString());

				result	=	iterator.next();

}

Listing	4-14. Using	an	Iterator	in	the	index.js	File	in	the	primer	Folder

The	createProductIterator	function	returns	an	object	that	defines	a
next	function.	Each	time	the	next	method	is	called,	a	different	Product
object	is	returned,	and	then,	once	the	set	of	objects	has	been	exhausted,	an	object
whose	done	property	is	true	is	returned	to	indicate	the	end	of	the	data.	A
while	loop	is	used	to	process	the	iterator	data,	calling	next	after	each	object
has	been	processed.	The	code	in	Listing	4-14	produces	the	following	output:

toString:	Name:	Hat,	Price:	100

toString:	Name:	Boots,	Price:	100

toString:	Name:	Umbrella,	Price:	23

Using	a	Generator
Writing	iterators	can	be	awkward	because	the	code	has	to	maintain	state	data	to
keep	track	of	the	current	position	in	the	sequence	each	time	the	next	function	is
invoked.	A	simpler	approach	is	to	use	a	generator,	which	is	a	function	that	is
invoked	once	and	uses	the	yield	keyword	to	produce	the	values	in	the
sequence,	as	shown	in	Listing	4-15.

class	Product	{

				constructor(name,	price)	{

								this.name	=	name;

								this.price	=	price;

				}

				toString()	{

								return	`toString:	Name:	${this.name},	Price:

${this.price}`;

				}

}

function*	createProductIterator()	{

				yield	new	Product("Hat",	100);

				yield	new	Product("Boots",	100);

				yield	new	Product("Umbrella",	23);

}

let	iterator	=	createProductIterator();

let	result	=	iterator.next();

while	(!result.done)	{

				console.log(result.value.toString());

				result	=	iterator.next();

}

Listing	4-15. Using	a	Generator	in	the	index.js	File	in	the	primer	Folder

Generator	functions	are	denoted	with	an	asterisk,	like	this:

...

function*	createProductIterator()	{

...

Generators	are	consumed	in	the	same	way	as	iterators.	The	JavaScript
runtime	creates	the	next	function	and	executes	the	generator	function	until	it
reaches	the	yield	keyword,	which	provides	a	value	in	the	sequence.	Execution
of	the	generator	function	continues	gradually	each	time	the	next	function	is
invoked.	When	there	are	no	more	yield	statements	to	execute,	an	object	whose
done	property	is	true	is	created	automatically.

Generators	can	be	used	with	the	spread	operator,	allowing	the	sequence	to	be
used	as	a	set	of	function	parameters	or	to	populate	an	array,	as	shown	in	Listing
4-16.

class	Product	{

				constructor(name,	price)	{

								this.name	=	name;

								this.price	=	price;

				}

				toString()	{

								return	`toString:	Name:	${this.name},	Price:

${this.price}`;

				}

}

function*	createProductIterator()	{

				yield	new	Product("Hat",	100);

				yield	new	Product("Boots",	100);

				yield	new	Product("Umbrella",	23);

}

[...createProductIterator()].forEach(p	=>

console.log(p.toString()));

Listing	4-16. Using	the	Spread	Operator	in	the	index.js	File	in	the	primer	Folder

The	new	statement	in	Listing	4-16	uses	the	sequence	of	values	from	the
generator	to	populate	an	array,	which	is	enumerated	using	the	forEach
method.	The	code	in	Listing	4-16	produces	the	following	output:

toString:	Name:	Hat,	Price:	100

toString:	Name:	Boots,	Price:	100

toString:	Name:	Umbrella,	Price:	23

Defining	Iterable	Objects
Stand-alone	functions	for	iterators	and	generators	can	be	useful,	but	the	most
common	requirement	is	for	an	object	to	provide	a	sequence	as	part	of	some
broader	functionality.	Listing	4-17	defines	an	object	that	groups	related	data
items	and	provides	a	generator	to	allow	the	items	to	be	sequenced.

class	Product	{

				constructor(name,	price)	{

								this.name	=	name;

								this.price	=	price;

				}

				toString()	{

								return	`toString:	Name:	${this.name},	Price:

${this.price}`;

				}

}

class	GiftPack	{

				constructor(name,	prod1,	prod2,	prod3)	{

								this.name	=	name;

								this.prod1	=	prod1;

								this.prod2	=	prod2;

								this.prod3	=	prod3;

				}

				getTotalPrice()	{

								return	[this.prod1,	this.prod2,	this.prod3]

												.reduce((total,	p)	=>	total	+	p.price,	0);

				}

				*getGenerator()	{

								yield	this.prod1;

								yield	this.prod2;

								yield	this.prod3;

				}

}

let	winter	=	new	GiftPack("winter",	new	Product("Hat",

100),

				new	Product("Boots",	80),	new	Product("Gloves",

23));

console.log(`Total	price:	${	winter.getTotalPrice()

}`);

[...winter.getGenerator()].forEach(p	=>

console.log(`Product:	${	p	}`));

Listing	4-17. Defining	an	Object	with	a	Sequence	in	the	index.js	File	in	the	primer	Folder

The	GiftPack	class	keeps	track	of	a	set	of	related	products.	One	of	the
methods	defined	by	GiftPack	is	named	getGenerator	and	is	a	generator
that	yields	the	products.

Tip The	asterisk	appears	before	generator	method	names.

This	approach	works,	but	the	syntax	for	using	the	iterator	is	a	little	awkward
because	the	getGenerator	method	has	to	be	explicitly	called,	like	this:

...

[...winter.getGenerator()].forEach(p	=>

console.log(`Product:	${	p	}`));

...

A	more	elegant	approach	is	to	use	the	special	method	name	for	the	generator,
which	tells	the	JavaScript	runtime	that	the	method	provides	the	default	iteration
support	for	an	object,	as	shown	in	Listing	4-18.

class	Product	{

				constructor(name,	price)	{

								this.name	=	name;

								this.price	=	price;

				}

				toString()	{

								return	`toString:	Name:	${this.name},	Price:

${this.price}`;

				}

}

class	GiftPack	{

				constructor(name,	prod1,	prod2,	prod3)	{

								this.name	=	name;

								this.prod1	=	prod1;

								this.prod2	=	prod2;

								this.prod3	=	prod3;

				}

				getTotalPrice()	{

								return	[this.prod1,	this.prod2,	this.prod3]

												.reduce((total,	p)	=>	total	+	p.price,	0);

				}

				*[Symbol.iterator]()	{

								yield	this.prod1;

								yield	this.prod2;

								yield	this.prod3;

				}

}

let	winter	=	new	GiftPack("winter",	new	Product("Hat",

100),

				new	Product("Boots",	80),	new	Product("Gloves",

23));

console.log(`Total	price:	${	winter.getTotalPrice()

}`);

[...winter].forEach(p	=>	console.log(`Product:	${	p

}`));

Listing	4-18. Defining	a	Default	Iterator	Method	in	the	index.js	File	in	the	primer	Folder

The	Symbol.iterator	property	is	used	to	denote	the	default	iterator	for
an	object.	(Don’t	worry	about	Symbol	at	the	moment—it	is	the	least	used	of	the
JavaScript	primitives,	and	its	purpose	is	described	in	the	next	section.)	Using	the
Symbol.iterator	value	as	the	name	for	a	generator	allows	the	object	to	be
iterated	directly,	like	this:

...

[...winter].forEach(p	=>	console.log(`Product:	${	p

}`));

...

I	no	longer	have	to	invoke	a	method	to	get	a	generator,	which	produces
clearer	and	more	elegant	code.

Using	JavaScript	Collections
Traditionally,	collections	of	data	in	JavaScript	have	been	managed	using	objects
and	arrays,	where	objects	are	used	to	store	data	by	key,	and	arrays	are	used	to
store	data	by	index.	JavaScript	also	provides	dedicated	collection	objects	that
provide	more	structure,	although	they	can	also	be	less	flexible,	as	explained	in
the	sections	that	follow.

Storing	Data	by	Key	Using	an	Object
Objects	can	be	used	as	collections,	where	each	property	is	a	key/value	pair,	with
the	property	name	being	the	key,	as	shown	in	Listing	4-19.

class	Product	{

				constructor(name,	price)	{

								this.name	=	name;

								this.price	=	price;

				}

				toString()	{

								return	`toString:	Name:	${this.name},	Price:

${this.price}`;

				}

}

let	data	=	{

				hat:	new	Product("Hat",	100)

}

data.boots	=	new	Product("Boots",	100);

Object.keys(data).forEach(key	=>

console.log(data[key].toString()));

Listing	4-19. Using	an	Object	as	a	Collection	in	the	index.js	File	in	the	primer	Folder

This	example	uses	an	object	named	data	to	collect	Product	objects.	New
values	can	be	added	to	the	collection	by	defining	new	properties,	like	this:

...

data.boots	=	new	Product("Boots",	100);

...

Object	provides	useful	methods	for	getting	the	set	of	keys	or	values	from
an	object,	which	Table	4-2	summarizes	for	quick	reference.

Table	4-2. The	Object	Methods	for	Keys	and	Values

Name Description

Object.keys(object) This	method	returns	an	array	containing	the	property	names	defined	by
the	object.

Object.values(object) This	method	returns	an	array	containing	the	property	values	defined	by
the	object.

Listing	4-19	uses	the	Object.keys	method	to	get	an	array	containing	the
property	names	defined	by	the	data	object	and	uses	the	array	forEach
method	to	get	the	corresponding	value.	When	a	property	name	is	assigned	to	a
variable,	the	corresponding	value	can	be	obtained	using	square	brackets,	like
this:

...

Object.keys(data).forEach(key	=>

console.log(data[key].toString()));

...

The	contents	of	the	square	brackets	are	evaluated	as	an	expression,	and
specifying	a	variable	name,	such	as	key,	returns	its	value.	The	code	in	Listing	4-
19	produces	the	following	output:

toString:	Name:	Hat,	Price:	100

toString:	Name:	Boots,	Price:	100

Storing	Data	by	Key	Using	a	Map
Objects	are	easy	to	use	as	basic	collections,	but	there	are	some	limitations,	such
as	being	able	to	use	only	string	values	as	keys.	JavaScript	also	provides	Map,
which	is	purpose-built	for	storing	data	using	keys	of	any	type,	as	shown	in
Listing	4-20.

class	Product	{

				constructor(name,	price)	{

								this.name	=	name;

								this.price	=	price;

				}

				toString()	{

								return	`toString:	Name:	${this.name},	Price:

${this.price}`;

				}

}

let	data	=	new	Map();

data.set("hat",	new	Product("Hat",	100));

data.set("boots",	new	Product("Boots",	100));

[...data.keys()].forEach(key	=>

console.log(data.get(key).toString()));

Listing	4-20. Using	a	Map	in	the	index.js	File	in	the	primer	Folder

The	API	provided	by	Map	allows	items	to	be	stored	and	retrieved,	and
iterators	are	available	for	the	keys	and	values.	Table	4-3	describes	the	most
commonly	used	methods.

Table	4-3. Useful	Map	Methods

Name Description

set(key,

value)

This	method	stores	a	value	with	the	specified	key.

get(key) This	method	retrieves	the	value	stored	with	the	specified	key.

keys() This	method	returns	an	iterator	for	the	keys	in	the	Map.

values() This	method	returns	an	iterator	for	the	values	in	the	Map.

entries() This	method	returns	an	iterator	for	the	key/value	pairs	in	the	Map,	each	of	which	is
presented	as	an	array	containing	the	key	and	value.	This	is	the	default	iterator	for	Map
objects.

Using	Symbols	for	Map	Keys
The	main	advantage	of	using	a	Map	is	that	any	value	can	be	used	as	a	key,
including	Symbol	values.	Each	Symbol	value	is	unique	and	immutable	and
ideally	suited	as	an	identifier	for	objects.	Listing	4-21	defines	a	new	Map	that
uses	Symbol	values	as	keys.

Note Symbol	values	can	be	useful,	but	they	can	be	difficult	to	work	with
because	they	are	not	human-readable	and	have	to	be	created	and	handled
carefully.	See	https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Symbol

for	more	details.

class	Product	{

				constructor(name,	price)	{

								this.id	=	Symbol();

								this.name	=	name;

								this.price	=	price;

				}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol

}

class	Supplier	{

				constructor(name,	productids)	{

								this.name	=	name;

								this.productids	=	productids;

				}

}

let	acmeProducts	=	[new	Product("Hat",	100),	new

Product("Boots",	100)];

let	zoomProducts	=	[new	Product("Hat",	100),	new

Product("Boots",	100)];

let	products	=	new	Map();

[...acmeProducts,	...zoomProducts].forEach(p	=>

products.set(p.id,	p));

let	suppliers	=	new	Map();

suppliers.set("acme",	new	Supplier("Acme	Co",

acmeProducts.map(p	=>	p.id)));

suppliers.set("zoom",	new	Supplier("Zoom	Shoes",

zoomProducts.map(p	=>	p.id)));

suppliers.get("acme").productids.forEach(id	=>

								console.log(`Name:

${products.get(id).name}`));

Listing	4-21. Using	Symbol	Values	as	Keys	in	the	index.js	File	in	the	primer	Folder

The	benefit	of	using	Symbol	values	as	keys	is	that	there	is	no	possibility	of
two	keys	colliding,	which	can	happen	if	keys	are	derived	from	the	value’s
characteristics.	The	previous	example	used	the	Product.name	value	as	the
key,	which	is	subject	to	two	objects	being	stored	with	the	same	key,	such	that
one	replaces	the	other.	In	this	example,	each	Product	object	has	an	id
property	that	is	assigned	a	Symbol	value	in	the	constructor	and	that	is	used	to
store	the	object	in	the	Map.	Using	a	Symbol	allows	me	to	store	objects	that
have	identical	name	and	price	properties	and	retrieve	them	without	difficulty.
The	code	in	Listing	4-21	produces	the	following	output:

Name:	Hat

Name:	Boots

Storing	Data	by	Index
In	Chapter	3,	you	saw	how	data	can	be	stored	in	an	array.	JavaScript	also
provides	Set,	which	stores	data	by	index	but	has	performance	optimizations	and
—most	usefully—stores	only	unique	values,	as	shown	in	Listing	4-22.

class	Product	{

				constructor(name,	price)	{

								this.id	=	Symbol();

								this.name	=	name;

								this.price	=	price;

				}

}

let	product	=	new	Product("Hat",	100);

let	productArray	=	[];

let	productSet	=	new	Set();

for	(let	i	=	0;	i	<	5;	i++)	{

				productArray.push(product);

				productSet.add(product);

}

console.log(`Array	length:	${productArray.length}`);

console.log(`Set	size:	${productSet.size}`);

Listing	4-22. Using	a	Set	in	the	index.js	File	in	the	primer	Folder

This	example	adds	the	same	Product	object	five	times	to	an	array	and	a
Set	and	then	prints	out	how	many	items	each	contains,	producing	the	following
output:

Array	length:	5

Set	size:	1

For	my	projects,	the	need	to	allow	or	prevent	duplicate	values	is	the	reason
to	choose	between	an	array	and	a	Set.	The	API	provided	by	Set	provides
comparable	features	to	working	with	an	array;	Table	4-4	describes	the	most

useful	methods.

Table	4-4. Useful	Set	Methods

Name Description

add(value) This	method	adds	the	value	to	the	Set.

entries() This	value	returns	an	iterator	for	the	items	in	the	Set,	in	the	order	in	which
they	were	added.

has(value) This	value	returns	true	if	the	Set	contains	the	specified	value.

forEach(callback) This	method	invokes	a	function	for	each	value	in	the	Set.

Using	Modules
Most	applications	are	too	complex	to	have	all	the	code	in	a	single	file.	To	break
up	an	application	into	manageable	chunks,	JavaScript	supports	modules.	There
have	been	competing	approaches	for	defining	and	consuming	modules,	but	the
approach	I	focus	on	here	is	the	one	defined	by	the	JavaScript	specification,
which	is	the	most	broadly	supported	by	popular	JavaScript	development	tools
and	application	frameworks.

Node.js	supports	modules	but	in	a	way	that	is	slightly	different	from	the
TypeScript	support	you	will	see	in	later	chapters.	To	work	around	this	limitation,
stop	the	nodemon	process	you	started	in	Listing	4-2	and	use	the	command
prompt	to	run	the	command	shown	in	Listing	4-23	in	the	primer	folder.	This
command	installs	a	package	called	esm	that	provides	support	for	working	with
modules.

npm	install	esm@3.2.25

Listing	4-23. Adding	a	Package

Once	the	package	has	been	installed,	use	the	command	prompt	to	run	the
command	shown	in	Listing	4-24	in	the	primer	folder.

npx	nodemon	--require	esm	index.js

Listing	4-24. Starting	the	Development	Tools

The	nodemon	package	will	start	up	and	display	the	following	output:

[nodemon]	1.18.10

[nodemon]	to	restart	at	any	time,	enter	`rs`

[nodemon]	watching:	*.*

[nodemon]	starting	`node	--require	esm	index.js`

Array	length:	5

Set	size:	1

[nodemon]	clean	exit	-	waiting	for	changes	before

restart

Creating	a	JavaScript	Module
Each	JavaScript	module	is	contained	in	its	own	JavaScript	file.	To	create	a
module,	I	added	a	file	called	tax.js	to	the	primer	folder	and	added	the	code
shown	in	Listing	4-25.

export	default	function(price)	{

				return	Number(price)	*	1.2;

}

Listing	4-25. The	Contents	of	the	tax.js	File	in	the	primer	Folder

The	function	defined	in	the	tax.js	file	receives	a	price	value	and	applies
a	20	percent	tax	rate.	The	function	itself	is	simple,	and	it	is	the	export	and
default	keywords	that	are	important.	The	export	keyword	is	used	to	denote
the	features	that	will	be	available	outside	the	module.	By	default,	the	contents	of
the	JavaScript	file	are	private	and	must	be	explicitly	shared	using	the	export
keyword	before	they	can	be	used	in	the	rest	of	the	application.	The	default
keyword	is	used	when	the	module	contains	a	single	feature,	such	as	the	function
defined	in	Listing	4-25.	Together,	the	export	and	default	keywords	are
used	to	specify	that	the	only	function	in	the	tax.js	file	is	available	for	use	in
the	rest	of	the	application.

Using	a	JavaScript	Module
Another	JavaScript	keyword	is	required	to	use	a	module:	the	import	keyword.
In	Listing	4-26,	I	have	used	the	import	keyword	in	the	index.js	file	to	use
the	function	defined	in	the	tax.js	file.

import	calcTax	from	"./tax";

class	Product	{

				constructor(name,	price)	{

								this.id	=	Symbol();

								this.name	=	name;

								this.price	=	price;

				}

}

let	product	=	new	Product("Hat",	100);

let	taxedPrice	=	calcTax(product.price);

console.log(`Name:	${	product.name	},	Taxed	Price:

${taxedPrice}`);

Listing	4-26. Using	a	Module	in	the	index.js	File	in	the	primer	Folder

The	import	keyword	is	used	to	declare	a	dependency	on	the	module.	The
import	keyword	can	be	used	in	several	different	ways,	but	this	is	the	format
you	will	use	most	often	when	working	with	modules	you	have	created	within
your	project.

The	import	keyword	is	followed	by	an	identifier,	which	is	the	name	by
which	the	function	in	the	module	will	be	known	when	it	is	used,	and	the
identifier	in	this	example	is	calcTax.	The	from	keyword	follows	the
identifier,	which	is	then	followed	by	the	location	of	the	module.	It	is	important	to
pay	close	attention	to	the	location	because	different	behaviors	are	created	by
different	location	formats,	as	described	in	the	“Understanding	Module
Locations”	sidebar.

During	the	build	process,	the	JavaScript	runtime	will	detect	the	import
statement	and	will	load	the	contents	of	the	tax.js	file.	The	identifier	used	in
the	import	statement	can	be	used	to	access	the	function	in	the	module,	in	just
the	same	way	that	locally	defined	functions	are	used.

...

let	taxedPrice	=	calcTax(product.price);

...

When	the	code	is	executed,	the	value	assigned	to	the	taxedPrice	variable
is	calculated	using	the	function	defined	in	the	tax.js	file	and	produces	the
following	output:

Name:	Hat,	Taxed	Price:	120

Understanding	Module	Locations

The	location	of	a	module	specifies	where	the	JavaScript	runtime	will	look	for
the	code	file	that	contains	the	module’s	code.	For	modules	defined	in	the
project,	the	location	is	specified	as	a	relative	path,	starting	with	one	or	two
periods,	indicating	that	the	path	is	relative	to	the	current	file	or	the	current
file’s	parent	directory.	In	Listing	4-26,	the	location	starts	with	a	period.

...

import	calcTax	from	"./tax";

...

This	location	tells	the	build	tools	that	there	is	a	dependency	on	the	tax
module,	which	can	be	found	in	the	same	folder	as	the	file	that	contains	the
import	statement.	Notice	that	the	file	extension	is	not	included	in	the
location.

If	you	omit	the	initial	period	or	periods,	then	the	import	statement
declares	a	dependency	on	a	module	that	is	not	in	the	local	project.	The
locations	that	are	searched	for	the	module	will	vary	depending	on	the
application	framework	and	build	tools	you	are	using,	but	the	most	common
location	to	search	is	the	node_modules	folder,	which	is	where	packages
are	installed	during	the	project	setup.	This	location	is	used	to	access	features
provided	by	third-party	packages.	You	will	see	examples	of	using	modules
from	third-party	packages	in	Part	3	of	this	book,	but	for	quick	reference,	here
is	an	import	statement	from	Chapter	19,	which	covers	development	with
React:

...

import	React,	{	Component	}	from	"react";

...

The	location	for	this	import	statement	doesn’t	start	with	a	period	and
will	be	interpreted	as	a	dependency	on	the	react	module	in	the	project’s
node_modules	folder,	which	is	the	package	that	provides	the	core	React
application	features.

Exporting	Named	Features	from	a	Module
A	module	can	assign	names	to	the	features	it	exports.	This	is	the	approach	that	I
prefer,	and	in	Listing	4-27,	I	have	given	a	name	to	the	function	exported	by	the
tax	module.

export	function	calculateTax(price)	{

				return	Number(price)	*	1.2;

}

Listing	4-27. Exporting	a	Named	Feature	in	the	tax.js	File	in	the	primer	Folder

The	function	provides	the	same	feature	but	is	exported	using	the	name
calculateTax	and	no	longer	uses	the	default	keyword.	In	Listing	4-28,	I
have	imported	the	feature	using	its	new	name	in	the	index.js	file.

import	{	calculateTax	}	from	"./tax";

class	Product	{

				constructor(name,	price)	{

								this.id	=	Symbol();

								this.name	=	name;

								this.price	=	price;

				}

}

let	product	=	new	Product("Hat",	100);

let	taxedPrice	=	calculateTax(product.price);

console.log(`Name:	${	product.name	},	Taxed	Price:

${taxedPrice}`);

Listing	4-28. Importing	a	Named	Feature	in	the	index.js	File	in	the	primer	Folder

The	name	of	the	feature	to	be	imported	is	specified	in	curly	braces	(the	{	and
}	characters)	and	is	used	by	this	name	in	the	code.	A	module	can	export	default
and	named	features,	as	shown	in	Listing	4-29.

export	function	calculateTax(price)	{

				return	Number(price)	*	1.2;

}

export	default	function	calcTaxandSum(...prices)	{

				return	prices.reduce((total,	p)	=>	total	+=

calculateTax(p),	0);

}

Listing	4-29. Exporting	Named	and	Default	Features	in	the	tax.js	File	in	the	primer	Folder

The	new	feature	is	exported	using	the	default	keyword.	In	Listing	4-30,	I
have	imported	the	new	feature	as	the	default	export	from	the	module.

import	calcTaxAndSum,	{	calculateTax	}	from	"./tax";

class	Product	{

				constructor(name,	price)	{

								this.id	=	Symbol();

								this.name	=	name;

								this.price	=	price;

				}

}

let	product	=	new	Product("Hat",	100);

let	taxedPrice	=	calculateTax(product.price);

console.log(`Name:	${	product.name	},	Taxed	Price:

${taxedPrice}`);

let	products	=	[new	Product("Gloves",	23),	new

Product("Boots",	100)];

let	totalPrice	=	calcTaxAndSum(...products.map(p	=>

p.price));

console.log(`Total	Price:	${totalPrice.toFixed(2)}`);

Listing	4-30. Importing	a	Default	Feature	in	the	index.js	File	in	the	primer	Folder

This	is	a	common	pattern	with	web	application	frameworks	such	as	React,
where	the	core	features	are	provided	by	the	default	export	of	a	module	and
optional	features	are	available	as	named	exports.	The	code	in	Listing	4-30
produces	the	following	output:

Name:	Hat,	Taxed	Price:	120

Total	Price:	147.60

Defining	Multiple	Named	Features	in	a	Module
Modules	can	contain	more	than	one	named	function	or	value,	which	is	useful	for
grouping	related	features.	To	demonstrate,	I	added	a	file	called	utils.js	to
the	primer	folder	with	the	code	shown	in	Listing	4-31.

import	{	calculateTax	}	from	"./tax";

export	function	printDetails(product)	{

				let	taxedPrice	=	calculateTax(product.price);

				console.log(`Name:	${product.name},	Taxed	Price:

${taxedPrice}`);

}

export	function	applyDiscount(product,	discount	=	5)	{

				product.price	=	product.price	-	5;

}

Listing	4-31. The	Contents	of	the	utils.js	File	in	the	primer	Folder

This	module	defines	two	functions	to	which	the	export	keyword	has	been
applied.	Unlike	the	previous	example,	the	default	keyword	is	not	used,	and
each	function	has	its	own	name.	When	importing	from	a	module	that	contains
multiple	features,	the	names	of	the	features	that	are	used	are	specified	as	a
comma-separated	list	between	the	braces,	as	shown	in	Listing	4-32.

import	calcTaxAndSum,	{	calculateTax	}	from	"./tax";

import	{	printDetails,	applyDiscount	}	from	"./utils";

class	Product	{

				constructor(name,	price)	{

								this.id	=	Symbol();

								this.name	=	name;

								this.price	=	price;

				}

}

let	product	=	new	Product("Hat",	100);

applyDiscount(product,	10);

let	taxedPrice	=	calculateTax(product.price);

printDetails(product);

let	products	=	[new	Product("Gloves",	23),	new

Product("Boots",	100)];

let	totalPrice	=	calcTaxAndSum(...products.map(p	=>

p.price));

console.log(`Total	Price:	${totalPrice.toFixed(2)}`);

Listing	4-32. Importing	Named	Features	in	the	index.js	File	in	the	primer	Folder

The	braces	that	follow	the	import	keyword	surround	the	functions	I	want
to	use.	I	only	need	to	declare	dependencies	on	the	functions	that	I	require,	and
there	is	no	need	to	add	functions	that	are	not	used	to	the	import	statement.	The
code	in	Listing	4-32	produces	the	following	output:

Name:	Hat,	Taxed	Price:	114

Total	Price:	147.60

Summary
In	this	chapter,	I	described	the	JavaScript	features	for	dealing	with	objects,
sequences	of	values,	collections,	and	the	use	of	modules.	These	are	all
JavaScript	features,	but,	as	you	will	learn,	understanding	them	helps	put
TypeScript	into	context	and	sets	the	foundation	for	effective	TypeScript
development.	In	the	next	chapter,	I	introduce	the	TypeScript	compiler,	which	is
at	the	heart	of	the	features	that	TypeScript	provides	to	developers.

(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
A.	Freeman,	Essential	TypeScript	4
https://doi.org/10.1007/978-1-4842-7011-0_5

5.	Using	the	TypeScript	Compiler
Adam	Freeman1		

London,	UK

	

In	this	chapter,	I	show	you	how	to	use	the	TypeScript	compiler,	which	is
responsible	for	transforming	TypeScript	code	into	JavaScript	that	can	be
executed	by	browsers	or	the	Node.js	runtime.	I	also	describe	the	compiler
configuration	options	that	are	most	useful	for	TypeScript	development,	including
those	that	are	used	with	the	web	application	frameworks	covered	in	Part	3	of	this
book.

Preparing	for	This	Chapter
To	prepare	for	this	chapter,	open	a	command	prompt,	navigate	to	a	convenient
location,	and	create	a	folder	named	tools.	Run	the	commands	shown	in	Listing
5-1	to	navigate	to	the	tools	folder	and	to	tell	the	Node	Package	Manager
(NPM)	to	create	a	file	named	package.json.	This	file	will	be	used	to	keep
track	of	the	packages	added	to	the	project,	as	described	in	the	“Using	the	Node
Package	Manager”	section.

cd	tools

npm	init	--yes

Listing	5-1. Creating	the	package.json	File

Use	the	command	prompt	to	run	the	commands	shown	in	Listing	5-2	in	the
tools	folder	to	install	the	package	required	for	this	chapter.

npm	install	--save-dev	typescript@4.2.2

npm	install	--save-dev	tsc-watch@4.2.9

Listing	5-2. Adding	Packages	Using	the	Node	Package	Manager

https://doi.org/10.1007/978-1-4842-7011-0_5

The	install	argument	tells	NPM	to	download	and	add	a	package	to	the
current	folder.	The	--save-dev	argument	tells	NPM	that	these	are	packages
for	use	in	development	but	not	part	of	the	application.	The	final	argument	is	the
name	of	the	package,	followed	by	the	@	symbol,	followed	by	the	version	that	is
required.

Note It	is	important	to	use	the	versions	specified	for	the	examples	in	this
book.	You	may	encounter	unexpected	behavior	or	errors	if	you	use	different
versions.

To	create	a	configuration	file	for	the	TypeScript	compiler,	add	a	file	called
tsconfig.json	to	the	tools	folder	with	the	content	shown	in	Listing	5-3.

{

				"compilerOptions":	{

								"target":	"es2018",

								"outDir":	"./dist",

								"rootDir":	"./src"

				}

}

Listing	5-3. The	Contents	of	the	tsconfig.json	File	in	the	tools	Folder

To	complete	the	setup,	create	the	tools/src	folder	and	add	to	it	a	file
called	index.ts	that	contains	the	code	in	Listing	5-4.

function	printMessage(msg:	string):	void	{

				console.log(`Message:	${	msg	}`);

}

printMessage("Hello,	TypeScript");

Listing	5-4. The	Contents	of	the	index.ts	File	in	the	src	Folder

To	compile	the	TypeScript	code,	run	the	command	shown	in	Listing	5-5	in
the	tools	folder.

tsc

Listing	5-5. Compiling	the	TypeScript	Code

To	execute	the	compiled	code,	run	the	command	shown	in	Listing	5-6	in	the
tools	folder.

node	dist/index.js

Listing	5-6. Running	the	Compiled	Code

If	the	project	has	been	set	up	successfully,	the	following	output	will	be
displayed	at	the	command	prompt:

Message:	Hello,	TypeScript

Understanding	the	Project	Structure
The	structure	of	the	example	project	is	one	that	you	will	see	in	most	JavaScript
and	TypeScript	development,	with	some	variations	for	the	main	framework	used
for	the	application,	such	as	React	or	Angular.	Figure	5-1	shows	the	contents	of
the	tools	folder.

Figure	5-1. The	contents	of	the	example	project	folder

The	figure	shows	how	the	project	folder	is	displayed	by	Visual	Studio	Code,
which	is	the	editor	I	use	throughout	this	book.	Table	5-1	describes	each	of	the
items	in	the	project,	and	I	provide	more	details	about	the	most	important	items	in
the	sections	that	follow.

Table	5-1. The	Project	Files	and	Folders

Name Description

dist This	folder	contains	the	output	from	the	compiler.

node_modules This	folder	contains	the	packages	that	the	application	and	development	tools	require,
as	described	in	the	“Using	the	Node	Package	Manager”	section.

src This	folder	contains	the	source	code	files	that	will	be	compiled	by	the	TypeScript
compiler.

package.json This	folder	contains	the	set	of	top-level	package	dependencies	for	the	project,	as
described	in	the	“Using	the	Node	Package	Manager”	section.

package-

lock.json

This	file	contains	a	complete	list	of	the	package	dependencies	for	the	project.

tsconfig.json This	file	contains	the	configuration	settings	for	the	TypeScript	compiler.

Using	the	Node	Package	Manager
TypeScript	and	JavaScript	development	depends	on	a	rich	ecosystem	of
packages.	Most	TypeScript	projects	will	require	packages	that	contain	the
TypeScript	compiler,	the	application	framework	(if	one	is	used),	and	the	tools
required	to	package	the	compiled	code	so	that	it	can	be	distributed	and	executed.

NPM	is	used	to	download	these	packages	and	add	them	to	the	project’s
node_modules	folder.	Each	package	declares	a	set	of	dependencies	on	other
packages	and	specifies	the	versions	that	it	can	work	with.	NPM	follows	this
chain	of	dependencies,	working	out	which	versions	of	each	package	is	needed
and	downloads	everything	that	is	required.

The	package.json	file	is	used	to	keep	track	of	the	packages	that	have
been	added	using	the	npm	install	command.	Here	are	the	contents	of	the
package.json	file	from	the	example	project:

{

		"name":	"tools",

		"version":	"1.0.0",

		"description":	"",

		"main":	"index.js",

		"scripts":	{

				"test":	"echo	\"Error:	no	test	specified\"	&&	exit

1"

		},

		"keywords":	[],

		"author":	"",

		"license":	"ISC",

		"devDependencies":	{

				"tsc-watch":	"^4.2.9",

				"typescript":	"^4.2.2"

		}

}

The	basic	content	of	the	file	was	created	by	the	npm	init	command	in
Listing	5-1	and	was	then	modified	by	each	use	of	the	npm	install	command
in	Listing	5-2.	Packages	are	separated	into	the	tools	used	during	the	development
process	and	those	that	form	part	of	the	application.	Packages	used	during
development	are	installed	with	the	save-dev	argument	and	are	recorded	in	the
devDependencies	section	of	the	package.json	file.	Packages	that	are
included	in	the	application	are	installed	without	the	--save-dev	argument	and
are	stored	in	a	section	named	dependencies.	Only	tool	packages	were
installed	in	Listing	5-2,	which	is	why	all	of	the	packages	are	in	the
devDependencies	section	and	why	the	package.json	file	doesn’t
contain	a	dependencies	section	at	all.	Examples	later	in	the	book	add
packages	to	the	dependencies	section,	but	the	focus	in	this	chapter	is	on	the
tools	that	are	used	for	TypeScript	development.	Table	5-2	describes	each	of	the
packages	that	have	been	added	to	the	example	project.

Table	5-2. The	Packages	Added	to	the	Example	Project

Name Description

tsc-watch This	package	watches	a	source	code	folder,	runs	the	TypeScript	compiler	when	there	is	a
change,	and	executes	the	compiled	JavaScript	code.

typescript This	is	the	package	that	contains	the	TypeScript	compiler	and	its	supporting	tools.

Understanding	Global	and	Local	Packages
Package	managers	can	install	packages	so	they	are	specific	to	a	single	project
(known	as	a	local	install)	or	so	they	can	be	accessed	from	anywhere	(known
as	a	global	install).	In	Chapter	1,	you	installed	the	typescript	package
globally,	which	allows	the	tsc	command	to	be	used	to	compile	code
anywhere.	In	Listing	5-2,	the	same	package	is	installed	locally,	even	though
the	functionality	is	already	available.	This	is	so	that	other	packages	in	the
same	project	can	access	the	functionality	provided	by	the	TypeScript
compiler.

For	each	package,	the	package.json	file	includes	details	of	the	version
numbers	that	are	acceptable,	using	the	format	described	in	Table	5-3.

Table	5-3. The	Package	Version	Numbering	System

Format Description

4.2.2 Expressing	a	version	number	directly	will	accept	only	the	package	with	the	exact	matching

version	number,	e.g.,	4.2.2.

* Using	an	asterisk	accepts	any	version	of	the	package	to	be	installed.

>4.2.2

>=4.2.2

Prefixing	a	version	number	with	>	or	>=	accepts	any	version	of	the	package	that	is	greater
than	or	greater	than	or	equal	to	a	given	version.

<4.2.2

<=4.2.2

Prefixing	a	version	number	with	<	or	<=	accepts	any	version	of	the	package	that	is	less	than	or
less	than	or	equal	to	a	given	version.

~4.2.2 Prefixing	a	version	number	with	a	tilde	(the	~	character)	accepts	versions	to	be	installed	even
if	the	patch	level	number	(the	last	of	the	three	version	numbers)	doesn’t	match.	For	example,
specifying	~4.2.2	will	accept	version	4.2.3	or	4.2.4	(which	would	contain	patches	to	version
4.2.2)	but	not	version	4.3.0	(which	would	be	a	new	minor	release).

^4.2.2 Prefixing	a	version	number	with	a	caret	(the	^	character)	will	accept	versions	even	if	the	minor
release	number	(the	second	of	the	three	version	numbers)	or	the	patch	number	doesn’t	match.
For	example,	specifying	^4.2.2	will	allow	versions	4.2.3	and	4.3.0,	but	not	version	5.0.0.

NPM	is	a	sophisticated	tool,	and	understanding	its	use	is	an	important	part	of
JavaScript	and	TypeScript	development.	Table	5-4	describes	some	NPM
commands	that	you	may	find	useful	during	development.	All	of	these	commands
should	be	run	inside	the	project	folder,	which	is	the	one	that	contains	the
package.json	file.

Table	5-4. Useful	NPM	Commands

Command Description

npm	install This	command	performs	a	local	install	of	the	packages	specified	in	the
package.json	file.

npm	install

package@version

This	command	performs	a	local	install	of	a	specific	version	of	a	package	and
updates	the	package.json	file	to	add	the	package	to	the	dependencies
section.

npm	install	--

save-dev

package@version

This	command	performs	a	local	install	of	a	specific	version	of	a	package	and
updates	the	package.json	file	to	add	the	package	to	the	devDependencies
section,	which	is	used	to	add	packages	to	the	project	that	are	required	for
development	but	are	not	part	of	the	application.

npm	install	--

global

package@version

This	command	will	perform	a	global	install	of	a	specific	version	of	a	package.

npm	list This	command	will	list	all	the	local	packages	and	their	dependencies.

npm	run This	command	will	execute	one	of	the	scripts	defined	in	the	package.json	file.

npx	package This	command	runs	the	code	contained	in	a	package.

The	node_modules	folder	is	typically	excluded	from	version	control
because	it	contains	a	large	number	of	files	and	because	packages	can	contain

platform-specific	components	that	don’t	work	when	a	project	is	checked	out	on	a
new	machine.	Instead,	the	npm	install	command	is	used	to	create	a	new
node_modules	folder	and	install	the	required	packages.

This	approach	can	produce	a	different	set	of	packages	each	time	the	npm
install	command	is	run	because	dependencies	can	be	expressed	as	a	range	of
versions,	as	described	in	Table	5-4.	To	ensure	consistency,	NPM	creates	the
package-lock.json	file,	which	contains	a	complete	list	of	the	packages
installed	in	the	node_module	folder,	along	with	the	versions	that	were	used.
The	package-lock.json	file	is	updated	by	NPM	when	changes	are	made	to
the	packages	in	the	project	and	the	versions	it	contains	are	used	by	the	npm
install	command.

Note The	package.json	and	package-lock.json	files	should	be
checked	in	for	revision	control	to	ensure	everyone	on	the	development	team
gets	the	same	packages.	When	you	pull	updates	from	the	repository,	make
sure	you	run	the	npm	install	command	to	receive	any	new	packages	that
have	been	added	by	another	developer.

Understanding	the	TypeScript	Compiler
Configuration	File
The	TypeScript	compiler,	tsc,	is	responsible	for	compiling	TypeScript	files.	It
is	the	compiler	that	is	responsible	for	implementing	TypeScript	features,	such	as
static	types,	and	the	result	is	pure	JavaScript	from	which	the	TypeScript
keywords	and	expressions	have	been	removed.

The	TypeScript	compiler	has	a	lot	of	configuration	options,	as	described	later
in	this	chapter.	A	configuration	file	is	used	to	override	the	default	settings	and
ensures	a	consistent	configuration	is	always	used.	The	name	of	the	configuration
file	is	tsconfig.json,	which	was	created	with	this	content	in	Listing	5-3:

{

				"compilerOptions":	{

								"target":	"es2018",

								"outDir":	"./dist",

								"rootDir":	"./src"

				}

}

The	tsconfig.json	file	can	contain	several	top-level	configuration
settings,	as	described	in	Table	5-5,	although	the	file	used	by	the	example	project
contains	only	compilerOptions	settings,	which	are	described	in	the	“Useful
Compiler	Configuration	Settings”	section.

Table	5-5. The	Top-Level	Configuration	Settings	of	the	tsconfig.json	File

Name Description

compilerOptions This	section	groups	the	settings	that	the	compiler	will	use,	as	described	in	the
“Useful	Compiler	Configuration	Settings”	section.

files This	setting	specifies	the	files	that	will	be	compiled,	which	overrides	the	default
behavior	where	the	compiler	searches	for	files	to	compile.

include This	setting	is	used	to	select	files	for	compilation	by	pattern.	If	unspecified,	files
with	the	.ts,	tsx,	and	.d.ts	extensions	will	be	selected.	(TSX	files	are
described	in	Chapter	15.	Files	with	the	.d.ts	extension	are	described	in	Chapter
14.)

exclude This	setting	is	used	to	exclude	files	from	the	compilation	by	pattern.

compileOnSave When	set	to	true,	this	setting	is	a	hint	to	the	code	editor	that	it	should	run	the
compiler	each	time	a	file	is	saved.	This	feature	is	not	supported	by	all	editors,	and
the	watch	feature,	described	in	the	next	section,	provides	a	more	useful	alternative.

The	files,	include,	and	exclude	options	are	useful	if	you	have	an
unusual	project	structure	to	accommodate,	such	as	when	integrating	TypeScript
into	a	project	that	contains	another	framework	or	toolkit	that	has	a	conflicting	set
of	files.	You	can	see	the	set	of	files	that	the	compiler	has	found	for	compilation
by	using	the	listFiles	setting,	which	can	be	defined	in	the
compilerOptions	section	of	the	tsconfig.json	file	or	specified	on	the
command	line.	As	an	example,	run	the	command	shown	in	Listing	5-7	in	the
tools	folder	to	see	the	files	that	are	selected	by	the	compiler	configuration.

tsc	--listFiles

Listing	5-7. Displaying	the	List	of	Files	for	Compilation

The	listFiles	argument	displays	a	long	list	of	files	that	the	compiler	has
located,	as	follows:

...

C:/npm/node_modules/typescript/lib/lib.es5.d.ts

C:/npm/node_modules/typescript/lib/lib.es2015.d.ts

C:/npm/node_modules/typescript/lib/lib.es2016.d.ts

C:/npm/node_modules/typescript/lib/lib.es2017.d.ts

C:/npm/node_modules/typescript/lib/lib.es2018.d.ts

...

The	files	displayed	by	the	listFiles	option	include	the	type	declarations
that	the	compiler	has	located.	As	explained	in	Chapter	1,	type	declarations
describe	the	data	types	used	by	JavaScript	code	so	that	it	can	be	safely	used	in	a
TypeScript	application.	The	TypeScript	package	includes	type	declarations	for
different	versions	of	the	JavaScript	language	and	for	the	APIs	that	are	available
in	Node.js	and	browsers.	Type	declarations	are	described	in	more	detail	in
Chapter	14,	and	these	specific	files	are	described	in	the	“Using	the	Version
Targeting	Feature”	section	of	this	chapter.

Note The	paths	for	the	type	declaration	files	are	outside	of	the	project
because	the	tsc	command	runs	the	TypeScript	compiler	from	the	package
installed	globally	in	Chapter	1.	The	same	package	has	been	installed	locally
in	the	node_modules	folder	and	is	used	when	creating	a	development
pipeline,	as	described	in	the	next	section.	If	you	need	to	run	the	compiler
from	the	package	installed	locally	in	the	project,	then	you	can	use	the	npx
command,	such	that	npx	tsc	--listFiles	has	the	same	effect	as	the
command	in	Listing	5-7	but	uses	the	local	package.

This	file	appears	at	the	end	of	the	list	produced	by	the	listFile	option:

...

C:/tools/src/index.ts

...

As	part	of	the	discovery	process,	the	TypeScript	compiler	looks	for
TypeScript	files	in	the	location	specified	by	the	rootDir	setting	in	the
tsconfig.json	file.	The	compiler	examines	the	src	folder	and	discovers
the	index.ts	file.

Compiling	TypeScript	Code
The	compiler	checks	the	TypeScript	code	to	enforce	features	like	static	types	and
emits	pure	JavaScript	code	from	which	the	TypeScript	additions	have	been
removed.	The	compiler	can	be	run	directly	from	the	command	line	and	will

process	all	the	files	shown	by	the	listfile	option.	Run	the	command	shown
in	Listing	5-8	in	the	tools	folder	to	start	the	compiler.

tsc

Listing	5-8. Running	the	Compiler

There	is	only	one	TypeScript	file	in	the	project—the	src/index.ts	file—
and	the	configuration	settings	in	the	tsconfig.json	file	tell	the	compiler
that	it	should	place	the	JavaScript	it	emits	into	the	dist	folder.	If	you	examine
the	contents	of	the	dist	folder,	you	will	see	it	contains	a	file	called
index.js,	with	the	following	contents:

function	printMessage(msg)	{

				console.log(`Message:	${msg}`);

}

printMessage("Hello,	TypeScript");

The	index.js	file	contains	the	compiled	code	from	the	index.ts	file	in
the	src	folder	but	without	the	additional	type	information	for	the
printMessage	function.	The	relationship	between	the	TypeScript	code	and
the	JavaScript	code	the	compiler	produces	won’t	always	be	as	direct,	especially
when	the	compiler	has	been	instructed	to	target	a	different	version	of	JavaScript,
as	described	in	the	“Using	the	Version	Targeting	Feature”	section.

Caution Do	not	edit	the	JavaScript	files	in	the	dist	folder	because	your
changes	will	be	overwritten	the	next	time	the	TypeScript	compiler	runs.
Changes	must	be	made	only	to	the	TypeScript	files.

Understanding	Compiler	Errors
The	TypeScript	compiler	checks	the	code	it	compiles	to	make	sure	it	conforms	to
the	JavaScript	language	specification	and	to	apply	the	TypeScript	features,	such
as	static	types	and	access	control	keywords.	To	create	a	simple	example	of	a
compiler	error,	Listing	5-9	adds	a	statement	that	uses	the	wrong	data	type	to
invoke	the	printMessage	function.

function	printMessage(msg:	string):	void		{

				console.log(`Message:	${	msg	}`);

}

printMessage("Hello,	TypeScript");

printMessage(100);

Listing	5-9. Creating	a	Type	Mismatch	in	the	index.ts	File	in	the	src	Folder

Run	the	command	shown	in	Listing	5-10	in	the	tools	folder	to	execute	the
compiler.

Tip The	printMessage	function	specifies	the	data	type	it	is	willing	to
accept	through	its	msg	parameter	using	a	type	annotation,	which	is	described
in	Chapter	7.	For	this	chapter,	it	is	enough	to	know	that	invoking	the
printMessage	function	with	a	number	value	is	a	TypeScript	error.

tsc

Listing	5-10. Running	the	Compiler

The	compiler	detects	that	the	type	of	the	argument	in	the	new	statement	is
number	and	not	the	string	that	is	specified	by	the	printMessage
function,	and	it	produces	the	following	message:

src/index.ts:6:14	-	error	TS2345:	Argument	of	type

'100'	is	not	assignable	to	parameter	of	type	'string'.

6	printMessage(100);

															~~~

Found	1	error.

In	most	respects,	the	TypeScript	compiler	works	like	any	compiler.	But	there
is	one	difference	that	can	catch	out	the	unwary:	by	default,	the	compiler
continues	to	emit	JavaScript	code	even	when	it	encounters	an	error.	If	you
examine	the	contents	of	the	index.js	file	in	the	dist	folder,	you	will	see	that
it	contains	the	following	output:

function	printMessage(msg)	{

				console.log(`Message:	${msg}`);

}

printMessage("Hello,	TypeScript");

printMessage(100);



This	is	an	odd	behavior	that	can	cause	problems	with	chains	of	tools	that
execute	or	further	process	the	JavaScript	emitted	by	the	TypeScript	compiler
because	they	will	operate	on	JavaScript	files	that	contain	potential	problems.
Fortunately,	this	behavior	can	be	disabled	by	setting	the	noEmitOnError
configuration	setting	to	true	in	the	tsconfig.json	file,	as	shown	in	Listing
5-11.

{

				"compilerOptions":	{

								"target":	"es2018",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"noEmitOnError":	true

				}

}

Listing	5-11. Changing	the	Compiler	Configuration	in	the	tsconfig.json	File	in	the	tools	Folder

When	the	compiler	runs,	output	will	be	generated	only	when	there	are	no
errors	detected	in	the	JavaScript	code.

Using	Watch	Mode	and	Executing	the	Compiled	Code
Manually	running	the	compiler	after	every	code	change	quickly	becomes
tiresome,	so	the	TypeScript	compiler	supports	watch	mode,	where	it	monitors	the
project	and	automatically	compiles	files	when	a	change	is	detected.	Run	the
command	shown	in	Listing	5-12	in	the	tools	folder	to	start	the	compiler	in
watch	mode.

tsc	--watch

Listing	5-12. Starting	the	Compiler	in	Watch	Mode

The	compiler	will	start,	report	the	same	error	as	shown	in	the	previous
section,	and	then	start	monitoring	the	project	for	code	changes.	To	trigger	a
compile,	comment	out	the	problem	statement	added	to	the	index.ts	file,	as
shown	in	Listing	5-13.

Caution You	may	encounter	a	bug	in	Node.js	when	running	the	TypeScript
compiler	in	watch	mode.	If	you	see	a	Check	failed:
U_SUCCESS(status)	error,	then	may	need	to	update	to	the	latest	version



of	Node.js.	Alternatively,	just	jump	ahead	to	the	next	section	because	the
TypeScript	compiler	watch	mode	is	used	only	in	this	part	of	the	chapter	and
not	relied	on	again	in	this	book.

function	printMessage(msg:	string):	void		{

				console.log(`Message:	${	msg	}`);

}

printMessage("Hello,	TypeScript");

//printMessage(100);

Listing	5-13. Commenting	Out	a	Statement	in	the	index.ts	File	in	the	src	Folder

When	the	change	is	saved,	the	compiler	will	run	automatically.	There	are	no
errors	in	the	code,	and	the	compiler	produces	the	following	output:

[6:37:35	AM]	File	change	detected.	Starting

incremental	compilation...

[6:37:35	AM]	Found	0	errors.	Watching	for	file

changes.

To	execute	the	compiled	code,	open	a	second	command	prompt,	navigate	to
the	tools	folder,	and	run	the	command	shown	in	Listing	5-14.

node	dist/index.js

Listing	5-14. Executing	the	Compiled	Code

The	Node.js	runtime	will	execute	the	statements	in	the	index.js	file	in	the
dist	folder	and	produce	the	following	output:

Message:	Hello,	TypeScript

Automatically	Executing	Code	After	Compilation
The	compiler’s	watch	mode	doesn’t	automatically	execute	compiled	code.	It	can
be	tempting	to	combine	the	watch	mode	with	a	tool	that	executes	a	command
when	a	file	change	is	detected,	but	this	can	be	difficult	because	the	JavaScript
files	are	not	all	written	at	the	same	time	and	there	is	no	easy	way	to	reliably
determine	when	compilation	has	completed.

If	you	are	using	a	web	development	framework	such	as	React,	Angular,	or



Vue.js,	the	TypeScript	compiler	is	integrated	into	a	larger	toolchain	that	will
automatically	execute	the	compiled	code,	as	demonstrated	in	Part	3.	For	stand-
alone	projects,	there	are	open-source	packages	available	that	build	on	the
functionality	provided	by	the	compiler	to	offer	additional	features.	One	such
package	is	ts-watch,	which	was	installed	in	the	example	project	in	Listing	5-
2.	The	ts-watch	package	starts	the	compiler	in	watch	mode,	observes	its
output,	and	executes	commands	based	on	the	compilation	results.	Run	the
command	shown	in	Listing	5-15	in	the	tools	folder	to	start	the	ts-watch
package.

npx	tsc-watch	--onsuccess	"node	dist/index.js"

Listing	5-15. Starting	the	Package	Command

Escaping	Powershell	Arguments
If	you	are	using	Microsoft	PowerShell,	you	will	receive	a	warning	that
index.js	is	a	JavaScript	file.	This	occurs	because	PowerShell	doesn’t
properly	handle	arguments	that	contain	spaces.	Use	this	command	instead:

npx	tsc-watch	--onsuccess	"\`"node	dist\index.js\`""

Pay	close	attention	to	the	order	of	the	escape	characters,	the	double	quotes
(the	"	character),	and	the	back	ticks	(the	`	character).

The	onsuccess	argument	specifies	a	command	that	is	executed	when
compilation	succeeds	without	errors.	Make	the	change	shown	in	Listing	5-16	to
the	index.ts	file	to	trigger	a	compilation	and	execute	the	result.

Tip See	https://github.com/gilamran/tsc-watch	for	details
of	the	other	options	provided	by	the	ts-watch	package.

function	printMessage(msg:	string):	void		{

				console.log(`Message:	${	msg	}`);

}

printMessage("Hello,	TypeScript");

printMessage("It	is	sunny	today");

Listing	5-16. Making	a	Change	in	the	index.ts	File	in	the	src	Folder

https://github.com/gilamran/tsc-watch


When	the	change	is	saved,	the	TypeScript	compiler	will	detect	the	change
and	compile	the	TypeScript	file.	The	ts-watch	package	will	see	that	no	errors
are	reported	by	the	compiler	and	run	the	command	that	executes	the	compiled
code,	producing	the	following	output:

7:20:25	AM	-	File	change	detected.	Starting

incremental	compilation...

7:20:25	AM	-	Found	0	errors.	Watching	for	file

changes.

Message:	Hello,	TypeScript

Message:	It	is	sunny	today

Note The	TypeScript	compiler	also	provides	an	API	that	can	be	used	to
create	custom	tools,	which	can	be	useful	if	you	need	to	integrate	the	compiler
into	a	complex	workflow.	Microsoft	doesn’t	provide	extensive	documentation
for	the	API,	but	there	are	some	notes	and	examples	at
https://github.com/Microsoft/TypeScript/wiki/Using-

the-Compiler-API.

Starting	the	Compiler	Using	NPM
The	TypeScript	compiler	doesn’t	respond	to	changes	on	all	of	its	configuration
properties,	and	there	will	be	times	when	you	will	need	to	stop	and	then	start	the
compiler.	Instead	of	typing	in	the	command	in	Listing	5-16,	a	more	reliable
method	is	to	use	the	scripts	section	of	the	package.json	file,	as	shown	in
Listing	5-17.

{

		"name":	"tools",

		"version":	"1.0.0",

		"description":	"",

		"main":	"index.js",

		"scripts":	{

				"start":	"tsc-watch	--onsuccess	\"node

dist/index.js\""

		},

		"keywords":	[],

		"author":	"",

		"license":	"ISC",

https://github.com/Microsoft/TypeScript/wiki/Using-the-Compiler-API


		"devDependencies":	{

				"tsc-watch":	"^4.2.9",

				"typescript":	"^4.2.2"

		}

}

Listing	5-17. Adding	an	Entry	to	the	Scripts	Section	of	the	package.json	File	in	the	tools	Folder

Care	must	be	taken	to	escape	the	quote	characters	required	for	the
onsuccess	argument.	Save	the	changes	to	the	package.json	file	and	then
run	the	command	shown	in	Listing	5-18	in	the	tools	folder.

npm	start

Listing	5-18. Starting	the	Compiler

The	effect	is	the	same,	but	the	compiler	can	now	be	started	without	having	to
remember	the	combination	of	package	and	filenames,	which	can	become
complex	in	real	projects.

Using	the	Version	Targeting	Feature
TypeScript	relies	on	the	most	recent	versions	of	the	JavaScript	language,	which
introduced	features	such	as	classes.	To	make	it	easier	to	adopt	TypeScript,	the
compiler	can	generate	JavaScript	code	that	targets	older	versions	of	the
JavaScript	language,	which	means	that	recent	features	can	be	used	during
development	to	create	code	that	can	be	executed	by	older	JavaScript	runtimes,
such	as	legacy	browsers.

The	version	of	the	JavaScript	language	targeted	by	the	compiler	is	specified
by	the	target	setting	in	the	tsconfig.json	file,	as	shown	in	Listing	5-19.

{

				"compilerOptions":	{

								"target":	"ES5",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"noEmitOnError":	true

				}

}

Listing	5-19. Selecting	a	Target	JavaScript	Version	in	the	tsconfig.json	File	in	the	tools	Folder



The	target	setting	selects	a	JavaScript	version	from	the	list	described	in	Table
5-6.

Table	5-6. The	Values	for	the	target	Setting

Name Description

ES3 This	value	targets	the	third	edition	of	the	language	specification	that	was	defined	in	December
1999	and	is	considered	to	be	the	baseline	for	the	language.	This	is	the	default	value	when	the
target	setting	is	not	defined.

ES5 This	value	targets	the	fifth	edition	of	the	language	specification	that	was	defined	in	December
2009	and	focuses	on	consistency.	(There	was	no	fourth	edition.)

ES6 This	value	targets	the	sixth	edition	of	the	language	specification	and	added	features	required	for
creating	complex	applications,	such	as	classes	and	modules,	arrow	functions,	and	promises.

ES2015 This	value	is	equivalent	to	ES6.

ES2016 This	value	targets	the	seventh	edition	of	the	language	specification,	which	introduced	the
includes	method	for	arrays	and	an	exponentiation	operator.

ES2017 This	value	targets	the	eighth	edition	of	the	language	specification,	which	introduced	features	for
inspecting	objects	and	new	keywords	for	asynchronous	operations.

ES2018 This	value	targets	the	ninth	edition	of	the	language	specification,	which	introduced	the	spread
and	rest	operators	and	improvements	for	string	handling	and	asynchronous	operations.

ES2019 This	value	targets	the	tenth	edition	of	the	language	specification,	which	includes	new	array
features,	changes	to	error	handling,	and	improvements	to	JSON	formatting.

ES2020 This	value	targets	the	11th	edition	of	the	language	specification,	which	includes	support	for	the
nullish	operator,	optional	chaining,	and	loading	modules	dynamically.

esNext This	value	refers	to	the	features	that	are	expected	to	be	included	in	the	next	edition	of	the
specification.	The	specific	features	supported	by	the	TypeScript	compiler	can	change	between
releases.	This	is	an	advanced	setting	that	should	be	used	with	caution.

Note The	ES	in	these	settings	refers	to	ECMAScript,	which	is	the	standard
that	defines	the	features	implemented	by	the	JavaScript	language.	The	history
of	JavaScript	and	ECMAScript	is	long,	tortured,	and	not	at	all	interesting.	For
TypeScript	development,	JavaScript	and	ECMAScript	can	be	regarded	as
being	the	same,	which	is	how	I	have	approached	them	in	the	book.	See
https://en.wikipedia.org/wiki/ECMAScript	if	you	want	to
get	into	the	details.

The	earlier	versions	of	the	ECMAScript	standard	were	given	numbers,	but	recent
versions	are	named	for	the	year	in	which	they	were	completed.	This	change
happened	partway	through	the	definition	of	ES6,	which	is	why	it	is	known	as
both	ES6	and	ES2015.	The	biggest	changes	to	the	language	were	introduced	in

https://en.wikipedia.org/wiki/ECMAScript


ES6/ES2015,	which	can	be	regarded	as	the	start	of	“modern”	JavaScript.	The
release	of	ES6	marked	the	switch	to	annual	updates	to	the	language
specification,	which	is	why	the	2016–2020	editions	contain	only	a	small	number
of	changes.

The	setting	in	Listing	5-19	specifies	es5,	which	means	that	modern	features
such	as	the	let	keyword	and	fat-arrow	functions	will	not	be	supported.	To	show
how	the	compiler	deals	with	these	features,	make	the	changes	shown	in	Listing
5-20	to	the	index.ts	file.

let	printMessage	=	(msg:	string):	void

=>		console.log(`Message:	${	msg	}`);

let	message	=	("Hello,	TypeScript");

printMessage(message);

Listing	5-20. Using	Modern	Features	in	the	index.ts	File	in	the	src	Folder

When	the	changes	to	the	file	are	saved,	the	code	will	be	compiled	and
executed.	The	JavaScript	generated	by	the	compiler	can	be	seen	by	examining
the	index.js	file	in	the	dist	folder,	which	contains	the	following	statements:

var	printMessage	=	function	(msg)	{	return

console.log("Message:	"	+	msg);	};

var	message	=	("Hello,	TypeScript");

printMessage(message);

The	let	keyword	has	been	replaced	with	var,	and	the	fat-arrow	function
has	been	replaced	with	a	traditional	function.	The	code	achieves	the	same	effect
as	when	targeting	a	more	recent	version	of	JavaScript	and	produces	the
following	output:

Message:	Hello,	TypeScript

Setting	the	Library	Files	for	Compilation
The	output	from	the	listFiles	compiler	option	showed	the	files	that	the
compiler	discovers	and	included	a	series	of	type	declaration	files.	These	files
provide	the	compiler	with	type	information	about	the	features	available	in
different	versions	of	JavaScript	and	the	features	provided	for	applications
running	in	the	browser,	which	are	able	to	create	and	manage	HTML	content
using	the	Document	Object	Model	(DOM)	API.



The	compiler	defaults	to	the	type	information	it	requires	based	on	the
target	property,	which	means	that	errors	will	be	generated	when	features	from
later	versions	of	JavaScript	are	used,	as	shown	in	Listing	5-21.

let	printMessage	=	(msg:	string):	void

=>		console.log(`Message:	${	msg	}`);

let	message	=	("Hello,	TypeScript");

printMessage(message);

let	data	=	new	Map();

data.set("Bob",	"London");

data.set("Alice",	"Paris");

data.forEach((val,	key)	=>	console.log(`${key}	lives

in	${val}`));

Listing	5-21. Using	a	Later	JavaScript	Feature	in	the	index.ts	File	in	the	src	Folder

The	Map	was	added	to	JavaScript	as	part	of	the	ES2015	specification,	and	it
not	part	of	the	version	selected	by	the	target	property	in	the
tsconfig.json	file.	When	the	changes	to	the	code	file	are	saved,	the
compiler	will	generate	the	following	warning:

src/index.ts(6,16):	error	TS2583:	Cannot	find	name

'Map'.	Do	you	need	to	change	your	target	library?	Try

changing	the	`lib`	compiler	option	to	es2015	or	later.

6:50:49	AM	-	Found	1	error.	Watching	for	file	changes.

To	resolve	this	problem,	I	can	target	a	later	version	of	the	JavaScript
language,	or	I	can	change	the	type	definitions	used	by	the	compiler	with	the	lib
configuration	property,	which	is	set	to	an	array	of	values	from	Table	5-7.

Table	5-7. The	Values	for	the	lib	Compiler	Option

Name Description

ES5,	ES2015,
ES2016,	ES2017,
ES2018,	ES2019,
ES2020

These	values	select	type	definition	files	that	correspond	to	a	specific	version	of
the	JavaScript	specification.	The	old	naming	scheme	can	be	used	as	well	so	that
the	value	ES6	can	be	used	in	place	of	ES2015.

ESnext This	value	selects	features	that	are	proposed	additions	to	the	JavaScript
specification	but	have	not	yet	been	formally	adopted.	The	set	of	features	will
change	over	time.



dom This	value	selects	type	information	files	for	the	Document	Object	Model	(DOM)
API	that	web	applications	use	to	manipulate	the	HTML	content	presented	by
browsers.	This	setting	is	also	useful	for	Node.js	applications.

dom.iterable This	value	provides	type	information	for	the	additions	to	the	DOM	API	that
allow	iteration	over	HTML	elements.

scriptHost This	value	selects	type	information	for	the	Windows	Script	Host,	which	allows
for	automation	on	Windows	systems.

webworker This	value	selects	type	information	for	the	web	worker	feature,	which	allows	web
applications	to	perform	background	tasks.

There	are	also	values	that	can	be	used	to	select	specific	features	from	one
version	of	the	language	specification.	Table	5-8	describes	the	most	useful	single-
feature	settings.

Table	5-8. Useful	Per-Feature	Values	for	the	lib	Compiler	Option

Name Description

es2015.core This	setting	includes	type	information	for	the	main	features	introduced
by	ES2015.

es2015.collection This	setting	includes	type	information	for	the	Map	and	Set
collections,	described	in	Chapters	4	and	13.

es2015.generator

es2015.iterable

These	settings	include	type	information	for	the	generator	and	iterator
features	described	in	Chapter	4	and	13.

es2015.promise This	setting	includes	type	information	for	promises,	which	describe
asynchronous	actions.

es2015.reflect This	setting	includes	type	information	for	the	reflection	features	that
provide	access	to	properties	and	prototypes,	as	described	in	Chapter
16.

es2015.symbol

es2015.symbol.wellknown

These	settings	include	type	information	about	symbols,	which	are
described	in	Chapter	4.

It	is	important	to	think	through	the	implications	of	using	the	lib
configuration	setting	because	it	just	tells	the	TypeScript	compiler	that	the
runtime	for	the	application	can	be	relied	on	to	support	a	specific	set	of	features,
such	as	the	Map	in	this	case.	The	compiler	can	adapt	the	JavaScript	it	generates
for	different	language	features,	but	that	doesn’t	extend	to	objects	like	collections.
Changing	the	lib	setting	tells	the	compiler	that	there	will	be	a	nonstandard	set
of	features	available	when	the	compiled	JavaScript	is	executed,	and	it	is	your
responsibility	to	ensure	this	is	the	case,	either	because	you	know	more	about	the
runtime	than	the	compiler	or	because	the	application	uses	a	polyfill	such	as



core-js	(https://github.com/zloirock/core-js).
The	Node.js	version	installed	in	Chapter	1	supports	the	most	recent

JavaScript	features	and	can	be	relied	on	to	have	Map,	which	means	that	I	can
safely	change	the	lib	setting	in	the	tsconfig.json	file,	as	shown	in	Listing
5-22.

{

				"compilerOptions":	{

								"target":	"es5",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"noEmitOnError":	true,

								"lib":	["es5",	"dom",	"es2015.collection"]

				}

}

Listing	5-22. Changing	the	Compiler	Configuration	in	the	tsconfig.json	File	in	the	tools	Folder

The	set	of	types	I	have	selected	includes	the	standard	types	for	the	version	of
JavaScript	selected	by	the	target	property,	the	dom	setting	(which	provides
access	to	the	console	object),	and	the	ES2015	collections	feature	from	Table
5-8.

The	compiler	will	detect	the	change	to	the	configuration	file	and	recompile
the	code.	The	change	to	the	lib	setting	tells	the	compiler	that	the	Map	will	be
available,	and	no	error	is	reported.	When	the	compiler	code	is	executed,	it
produces	the	following	output:

Message:	Hello,	TypeScript

Bob	lives	in	London

Alice	lives	in	Paris

This	example	runs	because	the	Node.js	version	used	in	this	book	supports	the
Map	feature.	In	this	situation,	I	knew	more	about	the	runtime	than	the	TypeScript
compiler,	and	changing	the	lib	setting	produces	an	example	that	runs,	although
the	same	effect	could	have	been	achieved	by	changing	the	target	setting	to	a
more	recent	JavaScript	version	that	the	compiler	knows	includes	collections.	If	I
were	targeting	a	runtime	that	supported	only	ES5,	then	I	would	have	to	provide	a
polyfill	implementation	of	Map,	such	as	the	one	included	in	the	core-js
package.

https://github.com/zloirock/core-js


Selecting	a	Module	Format
In	Chapter	4,	I	explained	how	modules	can	be	used	to	break	a	JavaScript
application	into	multiple	files,	making	a	project	easier	to	manage.	Modules	were
standardized	as	part	of	the	ES2016	specification,	but	before	that,	different
approaches	were	taken	to	deal	with	defining	and	using	modules.	When	writing
TypeScript	code,	the	standardized	module	features	are	used.	As	a	demonstration,
add	a	file	called	calc.ts	to	the	src	folder	with	the	code	shown	in	Listing	5-
23.

export	function	sum(...vals:	number[]):	number	{

				return	vals.reduce((total,	val)	=>	total	+=	val);

}

Listing	5-23. The	Contents	of	the	calc.ts	File	in	the	src	Folder

The	new	file	uses	the	export	keyword	to	make	a	function	named	sum	that
reduces	an	array	of	number	values	to	create	a	total.	Listing	5-24	imports	the
function	into	the	index.ts	file	and	calls	the	function.

import	{	sum	}	from	"./calc";

let	printMessage	=	(msg:	string):	void

=>		console.log(`Message:	${	msg	}`);

let	message	=	("Hello,	TypeScript");

printMessage(message);

let	total	=	sum(100,	200,	300);

console.log(`Total:	${total}`);

Listing	5-24. Using	a	Module	in	the	index.ts	File	in	the	src	Folder

When	the	file	is	saved,	the	compiler	will	process	the	code	files,	and	the
resulting	JavaScript	produces	the	following	output:

Message:	Hello,	TypeScript

Total:	600

Examine	the	contents	of	the	index.js	file	in	the	dist	folder,	and	you
will	see	that	the	TypeScript	compiler	has	introduced	code	to	deal	with	the
modules.



"use	strict";

Object.defineProperty(exports,	"__esModule",	{	value:

true	});

var	calc_1	=	require("./calc");

var	printMessage	=	function	(msg)	{	return

console.log("Message:	"	+	msg);	};

var	message	=	("Hello,	TypeScript");

printMessage(message);

var	total	=	calc_1.sum(100,	200,	300);

console.log("Total:	"	+	total);

The	TypeScript	compiler	uses	the	target	configuration	property	to	select
the	approach	taken	to	deal	with	modules.	When	the	target	is	es5,	it	uses	the
commonjs	module	style,	which	was	the	result	of	an	earlier	attempt	to	introduce
a	module	standard.	The	Node.js	runtime	supports	the	commonjs	module
system	by	default,	which	is	why	the	code	generated	by	the	TypeScript	compiler
executes	without	problems.

When	later	versions	of	the	JavaScript	language	are	targeted,	the	TypeScript
compiler	switches	to	the	module	system	from	the	ES2015/ES6	version	of	the
JavaScript	language,	which	means	that	the	import	and	export	keywords	are
passed	on	from	the	TypeScript	code	to	the	JavaScript	code	without	being
changed.	Listing	5-25	changes	the	compiler	configuration	to	select	the	ES2018
version	of	JavaScript	and	removes	the	lib	setting	so	that	the	compiler	will	use
the	default	type	definitions.

{

				"compilerOptions":	{

								"target":	"es2018",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"noEmitOnError":	true,

								//"lib":	["es5",	"dom",	"es2015.collection"]

				}

}

Listing	5-25. Changing	the	Compiler	Configuration	in	the	tsconfig.json	File	in	the	tools	Folder

When	the	change	to	the	configuration	file	is	saved,	the	compiler	will
regenerate	the	JavaScript	using	standard	modules.	At	the	time	of	writing,	the
Node.js	runtime	doesn’t	support	modules	as	they	are	emitted	by	the	compiler	and



produces	the	following	error	when	the	JavaScript	code	is	executed:

C:\tools\dist\index.js:1

import	{	sum	}	from	"./calc";

^^^^^^

SyntaxError:	Cannot	use	import	statement	outside	a

module

The	module	system	can	be	explicitly	selected	using	the	module	setting	in
the	tsconfig.json	file,	using	the	values	described	in	Table	5-9.

Table	5-9. The	Types	of	Web	Form	Code	Nuggets

Name Description

None This	value	disables	modules.

CommonJS This	value	selects	the	CommonJS	module	format,	which	is	supported	by	Node.js.

AMD This	value	selects	the	Asynchronous	Module	Definition	(AMD),	which	is	supported	by	the
RequireJS	module	loader.

System This	value	selects	the	module	format	supported	by	the	SystemJS	module	loader.

UMD This	value	selects	the	Universal	Module	Definition	(UMD)	module	format.

ES2015,
ES6

This	value	selects	the	module	format	specified	in	the	ES2016	language	specification.

ES2020 This	value	selects	the	module	format	specified	in	the	ES2020	language	specification,	which
includes	dynamic	loading	of	modules.

ESNext This	value	selects	the	module	features	that	have	been	proposed	for	the	next	version	of	the
JavaScript	language.

The	choice	of	module	format	is	driven	by	the	environment	that	will	execute
the	code.	At	the	time	of	writing,	Node.js	supports	CommonJS	modules	and
ECMAScript	modules,	although	it	requires	the	file	extension	to	be	included	in
the	import	statement,	which	is	problematic	when	using	TypeScript,	which
deals	with	.ts	and	.js	files.

For	web	applications,	especially	those	built	using	a	framework	like	React,
Angular,	or	Vue.js,	the	module	format	will	be	dictated	by	the	framework’s
toolchain,	which	will	include	either	a	bundler,	which	packages	up	all	of	the
modules	into	a	single	JavaScript	file	during	deployment,	or	a	module	loader,
which	sends	HTTP	requests	to	the	web	server	to	get	JavaScript	files	as	they	are
required.	You	will	see	examples	of	using	the	TypeScript	compiler	with	these
frameworks	in	Part	3.	To	target	a	recent	version	of	JavaScript	on	Node.js,	I	have



to	select	the	commonjs	format,	as	shown	in	Listing	5-26.

Tip An	alternative	approach	is	to	use	a	third-party	package	to	add	support
for	ES2015	modules	to	Node.js,	which	is	the	approach	I	took	in	Chapter	4.

{

				"compilerOptions":	{

								"target":	"es2018",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"noEmitOnError":	true,

								//"lib":	["es5",	"dom",	"es2015.collection"]

								"module":	"CommonJS"

				}

}

Listing	5-26. Selecting	a	Module	Format	in	the	tsconfig.json	File	in	the	tools	Folder

The	compiler	doesn’t	pick	up	changes	to	some	configuration	properties.	To
ensure	that	the	specified	module	format	is	used,	terminate	the	compiler	process
using	Control+C	and	run	the	command	shown	in	Listing	5-27	in	the	tools
folder	to	start	it	again.

npm	start

Listing	5-27. Running	the	Compiler

The	compiler	will	add	the	code	required	for	the	CommonJS	module	format,
and	the	code	produces	the	following	output	when	it	is	executed:

Message:	Hello,	TypeScript

Total:	600

Understanding	Module	Resolution
The	TypeScript	compiler	can	use	two	different	approaches	to	resolving
dependencies	on	modules,	which	it	selects	based	on	the	module	format	that	is
being	used.	The	two	modes	are	classic,	which	searches	for	modules	in	the
local	project,	and	Node,	which	locates	modules	in	the	node_modules
folder.	The	TypeScript	compiler	uses	the	classic	resolution	mode	when	the
module	property	is	set	to	ES2015,	System,	or	AND.	For	all	other	module



settings,	the	Node	resolution	is	used.	A	resolution	style	can	be	specified	using
the	moduleResolution	configuration	property	in	the	tsconfig.json
file	using	the	classic	or	node	value.

Useful	Compiler	Configuration	Settings
The	TypeScript	compiler	supports	a	large	number	of	configuration	options.	In
Part	2,	I	include	a	table	at	the	start	of	each	chapter	that	lists	the	compiler	settings
used	by	the	features	in	the	examples.	For	quick	reference,	Table	5-10	lists	the
compiler	options	used	in	this	book.	Many	of	these	options	won’t	make	sense	at
the	moment,	but	each	one	is	described	when	it	is	used,	and	all	will	make	sense
by	the	end	of	this	book.

Tip See
https://www.typescriptlang.org/docs/handbook/compiler-

options.html	for	the	complete	set	of	options	the	compiler	supports.

Table	5-10. The	TypeScript	Compiler	Options	Used	in	This	Book

Name Description

allowJs This	option	includes	JavaScript	files	in	the	compilation
process.

allowSyntheticDefaultImports This	option	allows	imports	from	modules	that	do	not
declare	a	default	export.	This	option	is	used	to	increase
code	compatibility.

baseUrl This	option	specifies	the	root	location	used	to	resolve
module	dependencies.

checkJs This	option	tells	the	compiler	to	check	JavaScript	code
for	common	errors.

declaration This	option	produces	type	declaration	files,	which
provide	type	information	for	JavaScript	code.

downlevelIteration This	option	enables	support	for	iterators	when	targeting
older	versions	of	JavaScript.

emitDecoratorMetadata This	option	includes	decorator	metadata	in	the	JavaScript
emitted	by	the	compiler	and	is	used	with	the
experimentalDecorators	option.

esModuleInterop This	option	adds	helper	code	for	importing	from	modules
that	do	not	declare	a	default	export	and	is	used	in
conjunction	with	the
allowSyntheticDefaultImports	option.

https://www.typescriptlang.org/docs/handbook/compiler-options.html


experimentalDecorators This	option	enables	support	for	decorators.

forceConsistentCasingInFileNames This	option	ensures	that	names	in	import	statements
match	the	case	used	by	the	imported	file.

importHelpers This	option	determines	whether	helper	code	is	added	to
the	JavaScript	to	reduce	the	amount	of	code	that	is
produced	overall.

isolatedModules This	option	treats	each	file	as	a	separate	module,	which
increases	compatibility	with	the	Babel	tool.

jsx This	option	specifies	how	HTML	elements	in	JSX/TSX
files	are	processed.

jsxFactory This	option	specifies	the	name	of	the	factory	function
that	is	used	to	replace	HTML	elements	in	JSX/TSX	files.

lib This	option	selects	the	type	declaration	files	the	compiler
uses.

module This	option	specifies	the	format	used	for	modules.

moduleResolution This	option	specifies	the	style	of	module	resolution	that
should	be	used	to	resolve	dependencies.

noEmit This	option	prevents	the	compiler	from	emitting
JavaScript	code,	with	the	result	that	it	only	checks	code
for	errors.

noImplicitAny This	option	prevents	the	implicit	use	of	the	any	type,
which	the	compiler	uses	when	it	can’t	infer	a	more
specific	type.

noImplicitReturns This	option	requires	all	paths	in	a	function	to	return	a
result.

noUncheckedIndexedAccess This	option	does	not	allow	properties	accessed	via	an
index	signature	to	be	accessed	until	they	have	been
guarded	against	undefined	values.

noUnusedParameters This	option	causes	the	compiler	to	produce	a	warning	if	a
function	defines	parameters	that	are	not	used.

outDir This	option	specifies	the	directory	in	which	the
JavaScript	files	will	be	placed.

paths This	option	specifies	the	locations	used	to	resolve
module	dependencies.

resolveJsonModule This	option	allows	JSON	files	to	be	imported	as	though
they	were	modules.

rootDir This	option	specifies	the	root	directory	that	the	compiler
will	use	to	locate	TypeScript	files.

skipLibCheck This	option	speeds	up	compilation	by	skipping	the
normal	checking	of	declaration	files.

sourceMap This	option	determines	whether	the	compiler	generates



source	maps	for	debugging.

strict This	option	enables	stricter	checking	of	TypeScript	code.

strictNullChecks This	option	prevents	null	and	undefined	from	being
accepted	as	values	for	other	types.

suppressExcessPropertyErrors This	option	prevents	the	compiler	from	generating	errors
for	objects	that	define	properties	not	in	a	specified	shape.

target This	option	specifies	the	version	of	the	JavaScript
language	that	the	compiler	will	target	in	its	output.

typeRoots This	option	specifies	the	root	location	that	the	compiler
uses	to	look	for	declaration	files.

types This	option	specifies	a	list	of	declaration	files	to	include
in	the	compilation	process.

Summary
In	this	chapter,	I	introduced	the	TypeScript	compiler,	which	is	responsible	for
transforming	TypeScript	code	into	pure	JavaScript.	I	explained	how	the	compiler
is	configured,	demonstrated	the	different	ways	that	it	can	be	used,	and	showed
you	how	to	change	the	version	of	the	JavaScript	language	that	is	targeted	and
how	to	change	the	way	that	modules	are	resolved.	I	finished	this	chapter	by
listing	the	configuration	options	used	in	this	book,	which	may	not	make	sense
now	but	will	become	clearer	as	you	progress	through	the	examples.	In	the	next
chapter,	I	continue	with	the	theme	of	TypeScript	developer	tools	and	explain
how	to	perform	debugging	and	unit	testing	of	TypeScript	code.



(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
A.	Freeman,	Essential	TypeScript	4
https://doi.org/10.1007/978-1-4842-7011-0_6

6.	Testing	and	Debugging	TypeScript
Adam	Freeman1		

London,	UK

	

In	this	chapter,	I	continue	the	theme	of	TypeScript	development	tools	started	in
Chapter	5,	which	introduced	the	TypeScript	compiler.	I	show	you	the	different
ways	that	TypeScript	code	can	be	debugged,	demonstrate	the	use	of	TypeScript
and	the	linter,	and	explain	how	to	set	up	unit	testing	for	TypeScript	code.

Preparing	for	This	Chapter
For	this	chapter,	I	continue	using	the	tools	project	created	in	Chapter	5.	No
changes	are	required	for	this	chapter.

Tip You	can	download	the	example	project	for	this	chapter—and	for	all	the
other	chapters	in	this	book—from
https://github.com/Apress/essential-typescript-4.

Open	a	new	command	prompt	and	use	it	to	run	the	command	shown	in	Listing
6-1	in	the	tools	folder	to	start	the	compiler	in	watch	mode	using	the	tsc-
watch	package	installed	in	Chapter	5.

npm	start

Listing	6-1. Starting	the	Compiler

The	compiler	will	start,	the	TypeScript	files	in	the	project	will	be	compiled,
and	the	following	output	will	be	displayed:

7:04:50	AM	-	Starting	compilation	in	watch	mode...

7:04:52	AM	-	Found	0	errors.	Watching	for	file

https://doi.org/10.1007/978-1-4842-7011-0_6
https://github.com/Apress/essential-typescript-4


changes.

Message:	Hello,	TypeScript

Total:	600

Debugging	TypeScript	Code
The	TypeScript	compiler	does	a	good	job	of	reporting	syntax	errors	or	problems
with	data	types,	but	there	will	be	times	when	you	have	code	that	compiles
successfully	but	doesn’t	execute	in	the	way	you	expected.	Using	a	debugger
allows	you	to	inspect	the	state	of	the	application	as	it	is	executing	and	can	reveal
why	problems	occur.	In	the	sections	that	follow,	I	show	you	how	to	debug	a
TypeScript	application	that	is	executed	by	Node.js.	In	Part	3,	I	show	you	how	to
debug	TypeScript	web	applications.

Preparing	for	Debugging
The	difficulty	with	debugging	a	TypeScript	application	is	that	the	code	being
executed	is	the	product	of	the	compiler,	which	transforms	the	TypeScript	code
into	pure	JavaScript.	To	help	the	debugger	correlate	the	JavaScript	code	with	the
TypeScript	code,	the	compiler	can	generate	files	known	as	source	maps.	Listing
6-2	enables	source	maps	in	the	tsconfig.json	file.

{

				"compilerOptions":	{

								"target":	"es2018",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"noEmitOnError":	true,

								"module":	"CommonJS",

								"sourceMap":	true

				}

}

Listing	6-2. Enabling	Source	Maps	in	the	tsconfig.json	File	in	the	tools	Folder

When	the	compiler	next	compiles	the	TypeScript	files,	it	will	also	generate	a
map	file,	which	has	the	map	file	extension,	alongside	the	JavaScript	files	in	the
dist	folder.

Adding	Breakpoints



Code	editors	that	have	good	TypeScript	support,	such	as	Visual	Studio	Code,
allow	breakpoints	to	be	added	to	code	files.	My	experience	with	this	feature	has
been	mixed,	and	I	have	found	them	unreliable,	which	is	why	I	rely	on	the	less
elegant	but	more	predictable	debugger	JavaScript	keyword.	When	a
JavaScript	application	is	executed	through	a	debugger,	execution	halts	when	the
debugger	keyword	is	encountered,	and	control	is	passed	to	the	developer.	The
advantage	of	this	approach	is	that	it	is	reliable	and	universal,	but	you	must
remember	to	remove	the	debugger	keyword	before	deployment.	Most
runtimes	ignore	the	debugger	keyword	during	normal	execution,	but	it	isn’t	a
behavior	that	can	be	counted	on.	(Linting,	described	later	in	this	chapter,	can
help	avoid	leaving	the	debugger	keyword	in	code	files.)	In	Listing	6-3,	I	have
added	the	debugger	keyword	to	the	index.ts	file.

import	{	sum	}	from	"./calc";

let	printMessage	=	(msg:	string):	void

=>		console.log(`Message:	${	msg	}`);

let	message	=	("Hello,	TypeScript");

printMessage(message);

debugger;

let	total	=	sum(100,	200,	300);

console.log(`Total:	${total}`);

Listing	6-3. Adding	the	debugger	Keyword	in	the	index.ts	File	in	the	src	Folder

There	will	be	no	change	in	the	output	when	the	code	is	executed	because
Node.js	ignores	the	debugger	keyword	by	default.

Using	Visual	Studio	Code	for	Debugging
Most	good	code	editors	have	some	degree	of	support	for	debugging	TypeScript
and	JavaScript	code.	In	this	section,	I	show	you	how	to	perform	debugging	with
Visual	Studio	Code	to	give	you	an	idea	of	the	process.	There	may	be	different
steps	required	if	you	use	another	editor,	but	the	basic	approach	is	likely	to	be
similar.

To	set	up	the	configuration	for	debugging,	select	Add	Configuration	from	the
Run	menu	and	select	Node.js	or	Node.js	(legacy)	from	the	list	of	environments
when	prompted,	as	shown	in	Figure	6-1.



Note If	selecting	the	Add	Configuration	menu	doesn’t	work,	try	selecting
Start	Debugging	instead.

Figure	6-1. Selecting	the	debugger	environment

The	editor	will	create	a	.vscode	folder	in	the	project	and	add	to	it	a	file
called	launch.json,	which	is	used	to	configure	the	debugger.	Change	the
value	of	the	program	property	so	that	the	debugger	executes	the	JavaScript
code	from	the	dist	folder,	as	shown	in	Listing	6-4.

{

				"version":	"0.2.0",

				"configurations":	[

								{

												"type":	"node",

												"request":	"launch",

												"name":	"Launch	Program",

												"skipFiles":	[

																"<node_internals>/**"

												],

												"program":

"${workspaceFolder}/dist/index.js"

								}

				]

}

Listing	6-4. Changing	the	Code	Path	in	the	launch.json	File	in	the	.vscode	Folder



Save	the	changes	to	the	launch.json	file	and	select	Start	Debugging
from	the	Run	menu.	Visual	Studio	Code	will	execute	the	index.js	file	in	the
dist	folder	under	the	control	of	the	Node.js	debugger.	Execution	will	continue
as	normal	until	the	debugger	statement	is	reached,	at	which	point	execution
halts	and	control	is	transferred	to	the	debugging	pop-up,	as	shown	in	Figure	6-2.

Figure	6-2. Debugging	an	application	using	Visual	Studio	Code

The	state	of	the	application	is	displayed	in	the	sidebar,	showing	the	variables
that	are	set	at	the	point	that	execution	was	halted.	A	standard	set	of	debugging
features	is	available,	including	setting	watches,	stepping	into	and	over
statements,	and	resuming	execution.	The	Debug	Console	window	allows
JavaScript	statements	to	be	executed	in	the	context	of	the	application	so	that
entering	a	variable	name	and	pressing	Return,	for	example,	will	return	the	value
assigned	to	that	variable.

Using	the	Integrated	Node.js	Debugger
Node.js	provides	a	basic	integrated	debugger.	Open	a	new	command	prompt	and
use	it	to	run	the	command	shown	in	Listing	6-5	in	the	tools	folder.



Note There	are	no	hyphens	before	the	inspect	argument	in	Listing	6-5.
Using	hyphens	enables	the	remote	debugger	described	in	the	following
section.

node	inspect	dist/index.js

Listing	6-5. Starting	the	Node.js	Debugger

The	debugger	starts,	loads	the	index.js	file,	and	halts	execution.	Enter	the
command	shown	in	Listing	6-6	and	press	Return	to	continue	execution.

c

Listing	6-6. Continuing	Execution

The	debugger	halts	again	when	the	debugger	statement	is	reached.	You
can	execute	expressions	to	inspect	the	state	of	the	applications	using	the	exec
command,	although	expressions	have	to	be	quoted	as	strings.	Enter	the
command	shown	in	Listing	6-7	at	the	debug	prompt.

exec("message")

Listing	6-7. Evaluating	an	Expression	in	the	Node.js	Debugger

Press	Return,	and	the	debugger	will	display	the	value	of	the	message
variable,	producing	the	following	output:

'Hello,	TypeScript'

Type	help	and	press	Return	to	see	a	list	of	commands.	Press	Control+C
twice	to	end	the	debugging	session	and	return	to	the	regular	command	prompt.

Using	the	Remote	Node.js	Debugging	Feature
The	integrated	Node.js	debugger	is	useful	but	awkward	to	use.	The	same
features	can	be	used	remotely	using	the	Google	Chrome	developer	tools	feature.
First,	start	Node.js	by	running	the	command	shown	in	Listing	6-8	in	the	tools
folder.

node	--inspect-brk	dist/index.js

Listing	6-8. Starting	Node.js	in	Remote	Debugger	Mode



The	inspect-brk	argument	starts	the	debugger	and	halts	execution
immediately.	This	is	required	for	the	example	application	because	it	runs	and
then	exits.	For	applications	that	start	and	then	enter	an	indefinite	loop,	such	as	a
web	server,	the	inspect	argument	can	be	used.	When	it	starts,	Node.js	will
produce	a	message	like	this:

Debugger	listening	on	ws://127.0.0.1:9229/e3cf5393-

23c8-4393-99a1-d311c585a762

For	help,	see:	https://nodejs.org/en/docs/inspector

The	URL	in	the	output	is	used	to	connect	to	the	debugger	and	take	control	of
execution.	Open	a	new	Chrome	window	and	navigate	to
chrome://inspect.	Click	the	Configure	button	and	add	the	IP	address	and
port	from	the	URL	from	the	previous	message.	For	my	machine,	this	is
127.0.0.1:9229,	as	shown	in	Figure	6-3.

Figure	6-3. Configuring	Chrome	for	remote	Node.js	debugging

Click	the	Done	button	and	wait	a	moment	while	Chrome	locates	the	Node.js
runtime.	Once	it	has	been	located,	it	will	appear	in	the	Remote	Target	list,	as
shown	in	Figure	6-4.



Figure	6-4. Discovering	the	Node.js	runtime

Click	the	“inspect”	link	to	open	a	new	Chrome	developer	tools	window	that
is	connected	to	the	Node.js	runtime.	Control	of	execution	is	handled	by	the
standard	developer	tool	buttons,	and	resuming	execution	will	let	the	runtime
proceed	until	the	debugger	statement	is	reached.	The	initial	view	of	the	code	in
the	debugger	window	will	be	of	the	JavaScript	code,	but	the	source	maps	will	be
used	once	execution	resumes,	as	shown	in	Figure	6-5.

Figure	6-5. Debugging	with	the	Chrome	developer	tools



Using	the	TypeScript	Linter
A	linter	is	a	tool	that	checks	code	files	using	a	set	of	rules	that	describe	problems
that	cause	confusion,	produce	unexpected	results,	or	reduce	the	readability	of	the
code.	The	standard	linter	package	for	TypeScript	is	typescript-eslint,
which	adapts	the	popular	JavaScript	linter	package	eslint	to	work	with
TypeScript.	To	add	the	linter	to	the	project,	use	a	command	prompt	to	run	the
commands	shown	in	Listing	6-9	in	the	tools	folder.

Note The	standard	TypeScript	linter	used	to	be	TSLint,	but	this	has	been
deprecated	in	favor	of	the	typescript-eslint	package.

npm	install	--save-dev	eslint@7.18.0

npm	install	--save-dev	@typescript-

eslint/parser@4.13.0

npm	install	--save-dev	@typescript-eslint/eslint-

plugin@4.13.0

Listing	6-9. Adding	Packages	to	the	Example	Project

To	create	the	configuration	required	to	use	the	linter,	add	a	file	called
.eslintrc	to	the	tools	folder	with	the	content	shown	in	Listing	6-10.

{

				"root":	true,

				"ignorePatterns":	["node_modules",	"dist"],

				"parser":	"@typescript-eslint/parser",

				"parserOptions":	{

						"project":	"./tsconfig.json"

				},

				"plugins":	[

						"@typescript-eslint"

				],

				"extends":	[

						"eslint:recommended",

						"plugin:@typescript-eslint/eslint-recommended",

						"plugin:@typescript-eslint/recommended"

				]

		}



Listing	6-10. The	Contents	of	the	.eslintrc	File	in	the	tools	Folder

The	linter	comes	with	preconfigured	sets	of	rules	that	are	specified	using	the
extends	setting,	as	described	in	Table	6-1.

Table	6-1. The	TSLint	Preconfigured	Rule	Sets

Name Description

eslint:recommended This	is	the	set	of	rules	suggested	by	the	ESLint	development	team	and
is	intended	for	general	JavaScript	development.

@typescript-

eslint/eslint-

recommended

This	set	overrides	the	recommended	set	to	disable	rules	that	are	not
required	for	linting	TypeScript	code.

@typescript-

eslint/recommended

This	set	contains	additional	rules	that	are	specific	to	TypeScript	code.

Stop	the	node	process	using	Control+C	and	run	the	command	shown	in
Listing	6-11	in	the	tools	folder	to	run	the	linter	on	the	example	project.	(Don’t
omit	the	period	at	the	end	of	the	command.)

npx	eslint	.

Listing	6-11. Running	the	TypeScript	Linter

The	project	argument	tells	the	linter	to	use	the	compiler	settings	file	to
locate	the	source	files	it	will	check,	although	there	is	only	one	TypeScript	file	in
the	example	project.	The	linter	will	check	the	code	and	produce	the	following
output:

C:\tools\src\index.ts

			3:5		error		'printMessage'	is	never	reassigned.	Use

'const'	instead		prefer-const

			5:5		error		'message'	is	never	reassigned.	Use

'const'	instead							prefer-const

			8:1		error		Unexpected	'debugger'

statement																										no-debugger

		10:5		error		'total'	is	never	reassigned.	Use

'const'	instead									prefer-const

4	problems	(4	errors,	0	warnings)

		3	errors	and	0	warnings	potentially	fixable	with	the

`--fix`	option.



The	linter	locates	the	TypeScript	code	files	and	checks	them	for	compliance
with	the	rules	specified	in	the	configuration	file.	The	code	in	the	example	project
breaks	two	of	the	linter’s	rules:	the	prefer-const	rule	requires	the	const
keyword	to	be	used	in	place	of	let	when	the	value	assigned	to	a	variable	isn’t
changed,	and	the	no-debugger	rule	prevents	the	debugger	keyword	from
being	used.

Disabling	Linting	Rules
The	problem	is	that	the	value	of	a	linting	rule	is	often	a	matter	of	personal	style
and	preference,	and	even	when	the	rule	is	useful,	it	isn’t	always	helpful	in	every
situation.	Linting	works	best	when	you	only	get	warnings	that	you	want	to
address.	If	you	receive	a	list	of	warnings	that	you	don’t	care	about,	then	there	is
a	good	chance	you	won’t	pay	attention	when	something	important	is	reported.

The	prefer-const	rule	highlights	a	deficiency	in	my	coding	style,	but	it
is	one	that	I	have	learned	to	accept.	I	know	that	I	should	use	const	instead	of
let,	and	that’s	what	I	try	to	do.	But	my	coding	habits	are	deeply	ingrained,	and
my	view	is	that	some	problems	are	not	worth	fixing,	especially	since	doing	so
requires	breaking	my	concentration	on	the	larger	flow	of	the	code	I	write.	I
accept	my	imperfections	and	know	that	I	will	continue	to	use	let,	even	when	I
know	that	const	would	be	a	better	choice.	I	don’t	want	the	linter	to	highlight
this	problem,	and	the	linter	can	be	configured	to	disable	rules,	as	shown	in
Listing	6-12.

{

				"root":	true,

				"ignorePatterns":	["node_modules",	"dist"],

				"parser":	"@typescript-eslint/parser",

				"parserOptions":	{

						"project":	"./tsconfig.json"

				},

				"plugins":	[

						"@typescript-eslint"

				],

				"extends":	[

						"eslint:recommended",

						"plugin:@typescript-eslint/eslint-recommended",

						"plugin:@typescript-eslint/recommended"

				],



				"rules":	{

						"prefer-const":	0

				}

		}

Listing	6-12. Disabling	a	Linter	Rule	in	the	.eslintrc	File	in	the	tools	Folder

The	rules	configuration	section	is	populated	with	the	names	of	the	rules
and	a	value	of	1	or	0	to	enable	or	disable	the	rules.	By	setting	a	value	of	0	for
the	prefer-const	rule,	I	have	told	the	linter	to	ignore	my	use	of	the	let
keyword	when	const	would	be	a	better	choice.

Some	rules	are	useful	in	a	project	but	disabled	for	specific	files	or
statements.	This	is	the	category	into	which	the	no-debugger	rule	falls.	As	a
general	principle,	the	debugger	keyword	should	not	be	left	in	code	files	in
case	it	causes	problems	during	code	execution.	However,	when	investigating	a
problem,	debugger	is	a	useful	way	to	reliably	take	control	of	the	execution	of
the	application,	as	demonstrated	earlier	in	this	chapter.

In	these	situations,	it	doesn’t	make	sense	to	disable	a	rule	in	the	linter’s
configuration	file.	Instead,	a	comment	that	starts	with	eslint-disable-
line	followed	by	one	or	more	rule	names	disables	rules	for	a	single	statement,
as	shown	in	Listing	6-13.

import	{	sum	}	from	"./calc";

let	printMessage	=	(msg:	string):	void

=>		console.log(`Message:	${	msg	}`);

let	message	=	("Hello,	TypeScript");

printMessage(message);

debugger;	//	eslint-disable-line	no-debugger

let	total	=	sum(100,	200,	300);

console.log(`Total:	${total}`);

Listing	6-13. Disabling	a	Linter	Rule	for	a	Single	Statement	in	the	index.ts	File	in	the	src	Folder

The	comment	in	Listing	6-13	tells	the	linter	not	to	apply	the	no-debugger
rule	to	the	highlighted	statement.



Tip Rules	can	be	disabled	for	all	the	statements	that	follow	a	block
comment	(one	that	starts	with	/*	and	ends	with	*/)	that	starts	with
eslint-disable.	You	can	disable	all	linting	rules	by	using	the	eslint-
disable	or	eslint-disable-line	comment	without	any	rule	names.

The	Joy	and	Misery	of	Linting
Linters	can	be	a	powerful	tool	for	good,	especially	in	a	development	team
with	mixed	levels	of	skill	and	experience.	Linters	can	detect	common
problems	and	subtle	errors	that	lead	to	unexpected	behavior	or	long-term
maintenance	issues.	I	like	this	kind	of	linting,	and	I	like	to	run	my	code
through	the	linting	process	after	I	have	completed	a	major	application	feature
or	before	I	commit	my	code	into	version	control.

But	linters	can	also	be	a	tool	of	division	and	strife.	In	addition	to	detecting
coding	errors,	linters	can	be	used	to	enforce	rules	about	indentation,	brace
placement,	the	use	of	semicolons	and	spaces,	and	dozens	of	other	style	issues.
Most	developers	have	style	preferences	that	they	adhere	to	and	believe	that
everyone	else	should,	too.	I	certainly	do:	I	like	four	spaces	for	indentation,
and	I	like	opening	braces	to	be	on	the	same	line	as	the	expression	they	relate
to.	I	know	that	these	are	part	of	the	“one	true	way”	of	writing	code,	and	the
fact	that	other	programmers	prefer	two	spaces,	for	example,	has	been	a	source
of	quiet	amazement	to	me	since	I	first	started	writing	code.

Linters	allow	people	with	strong	views	about	formatting	to	enforce	them
on	others,	generally	under	the	banner	of	being	“opinionated.”	The	logic	is	that
developers	spend	too	much	time	arguing	about	different	coding	styles,	and
everyone	is	better	off	being	forced	to	write	in	the	same	way.	My	experience	is
that	developers	will	just	find	something	else	to	argue	about	and	that	forcing	a
code	style	is	often	just	an	excuse	to	make	one	person’s	preferences	mandatory
for	an	entire	development	team.

I	often	help	readers	when	they	can’t	get	book	examples	working	(my
email	address	is	adam@adam-freeman.com	if	you	need	help),	and	I	see
all	sorts	of	coding	styles	every	week.	I	know,	deep	in	my	heart,	that	anyone
who	doesn’t	follow	my	personal	coding	preferences	is	just	plain	wrong.	But
rather	than	forcing	them	to	code	my	way,	I	get	my	code	editor	to	reformat	the
code,	which	is	a	feature	that	every	capable	editor	provides.

My	advice	is	to	use	linting	sparingly	and	focus	on	the	issues	that	will
cause	real	problems.	Leave	formatting	decisions	to	the	individuals	and	rely	on
code	editor	reformatting	when	you	need	to	read	code	written	by	a	team



member	who	has	different	preferences.

Unit	Testing	TypeScript
Some	unit	test	frameworks	provide	support	for	TypeScript,	although	that	isn’t	as
useful	as	it	may	sound.	Supporting	TypeScript	for	unit	testing	means	allowing
tests	to	be	defined	in	TypeScript	files	and,	sometimes,	automatically	compiling
the	TypeScript	code	before	it	is	tested.	Unit	tests	are	performed	by	executing
small	parts	of	an	application,	and	that	can	be	done	only	with	JavaScript	since	the
JavaScript	runtime	environments	have	no	knowledge	of	TypeScript	features.	The
result	is	that	unit	testing	cannot	be	used	to	test	TypeScript	features,	which	are
solely	enforced	by	the	TypeScript	compiler.

For	this	book,	I	have	used	the	Jest	test	framework,	which	is	easy	to	use	and
supports	TypeScript	tests.	Also,	with	the	addition	of	an	extra	package,	it	will
ensure	that	the	TypeScript	files	in	the	project	are	compiled	into	JavaScript	before
tests	are	executed.	Run	the	commands	shown	in	Listing	6-14	in	the	tools
folder	to	install	the	packages	required	for	testing.

npm	install	--save-dev	jest@26.6.3

npm	install	--save-dev	ts-jest@26.4.4

Listing	6-14. Adding	Packages	to	the	Project

The	jest	package	contains	the	testing	framework.	The	ts-jest	package
is	a	plugin	to	the	Jest	framework	and	is	responsible	for	compiling	TypeScript
files	before	tests	are	applied.

Deciding	Whether	to	Unit	Test
Unit	testing	is	a	contentious	topic.	This	section	assumes	you	do	want	to	do
unit	testing	and	shows	you	how	to	set	up	the	tools	and	apply	them	to
TypeScript.	It	isn’t	an	introduction	to	unit	testing,	and	I	make	no	effort	to
persuade	skeptical	readers	that	unit	testing	is	worthwhile.	If	would	like	an
introduction	to	unit	testing,	then	there	is	a	good	article	here:
https://en.wikipedia.org/wiki/Unit_testing.

I	like	unit	testing,	and	I	use	it	in	my	own	projects—but	not	all	of	them	and
not	as	consistently	as	you	might	expect.	I	tend	to	focus	on	writing	unit	tests
for	features	and	functions	that	I	know	will	be	hard	to	write	and	are	likely	to
be	the	source	of	bugs	in	deployment.	In	these	situations,	unit	testing	helps
structure	my	thoughts	about	how	to	best	implement	what	I	need.	I	find	that

https://en.wikipedia.org/wiki/Unit_testing


just	thinking	about	what	I	need	to	test	helps	produce	ideas	about	potential
problems,	and	that’s	before	I	start	dealing	with	actual	bugs	and	defects.

That	said,	unit	testing	is	a	tool	and	not	a	religion,	and	only	you	know	how
much	testing	you	require.	If	you	don’t	find	unit	testing	useful	or	if	you	have	a
different	methodology	that	suits	you	better,	then	don’t	feel	you	need	to	unit
test	just	because	it	is	fashionable.	(However,	if	you	don’t	have	a	better
methodology	and	you	are	not	testing	at	all,	then	you	are	probably	letting	users
find	your	bugs,	which	is	rarely	ideal.)

Configuring	the	Test	Framework
To	configure	Jest,	add	a	file	named	jest.config.js	to	the	tools	folder
with	the	content	shown	in	Listing	6-15.

module.exports	=	{

				"roots":	["src"],

				"transform":	{"^.+\\.tsx?$":	"ts-jest"}

}

Listing	6-15. The	Contents	of	the	jest.config.js	File	in	the	tools	Folder

The	roots	setting	is	used	to	specify	the	location	of	the	code	files	and	unit
tests.	The	transform	property	is	used	to	tell	Jest	that	files	with	the	ts	and
tsx	file	extension	should	be	processed	with	the	ts-jest	package,	which
ensures	that	changes	to	the	code	are	reflected	in	tests	without	needing	to
explicitly	start	the	compiler.	(TSX	files	are	described	in	Chapter	14.)

Creating	Unit	Tests
Tests	are	defined	in	files	that	have	the	test.ts	file	extension	and	are
conventionally	created	alongside	the	code	files	they	relate	to.	To	create	a	simple
unit	test	for	the	example	application,	add	a	file	called	calc.test.ts	to	the
src	folder	and	add	the	code	shown	in	Listing	6-16.

import	{	sum	}	from	"./calc";

test("check	result	value",	()	=>	{

				let	result	=	sum(10,	20,	30);

				expect(result).toBe(60);

});

Listing	6-16. The	Contents	of	the	calc.test.ts	File	in	the	src	Folder



Tests	are	defined	using	the	test	function,	which	is	provided	by	Jest.	The
test	arguments	are	the	name	of	the	test	and	a	function	that	performs	the
testing.	The	unit	test	in	Listing	6-16	is	given	the	name	check	result
value,	and	the	test	invokes	the	sum	function	with	three	arguments	and	inspects
the	results.	Jest	provides	the	expect	function	that	is	passed	the	result	and	used
with	a	matcher	function	that	specifies	the	expected	result.	The	matcher	in	Listing
6-16	is	toBe,	which	tells	Jest	that	the	expected	result	is	a	specific	value.	Table
6-2	describes	the	most	useful	matcher	functions.	(You	can	find	the	full	list	of
matcher	functions	at	https://jestjs.io/docs/en/expect.)

Table	6-2. Useful	Jest	Matcher	Functions

Name Description

toBe(value) This	method	asserts	that	a	result	is	the	same	as	the	specified	value	(but
need	not	be	the	same	object).

toEqual(object) This	method	asserts	that	a	result	is	the	same	object	as	the	specified
value.

toMatch(regexp) This	method	asserts	that	a	result	matches	the	specified	regular
expression.

toBeDefined() This	method	asserts	that	the	result	has	been	defined.

toBeUndefined() This	method	asserts	that	the	result	has	not	been	defined.

toBeNull() This	method	asserts	that	the	result	is	null.

toBeTruthy() This	method	asserts	that	the	result	is	truthy.

toBeFalsy() This	method	asserts	that	the	result	is	falsy.

toContain(substring) This	method	asserts	that	the	result	contains	the	specified	substring.

toBeLessThan(value) This	method	asserts	that	the	result	is	less	than	the	specified	value.

toBeGreaterThan(value) This	method	asserts	that	the	result	is	more	than	the	specified	value.

Starting	the	Test	Framework
Unit	tests	can	be	run	as	a	one-off	task	or	by	using	a	watch	mode	that	runs	the
tests	when	changes	are	detected.	I	find	the	watch	mode	to	be	most	useful	so	that
I	have	two	command	prompts	open:	one	for	the	output	from	the	compiler	and
one	for	the	unit	tests.	To	start	the	tests,	open	a	new	command	prompt,	navigate	to
the	tools	folder,	and	run	the	command	shown	in	Listing	6-17.

npx	jest	--watchAll

Listing	6-17. Starting	the	Unit	Test	Framework	in	Watch	Mode

https://jestjs.io/docs/en/expect


Jest	will	start,	locate	the	test	files	in	the	project,	and	execute	them,	producing
the	following	output:

PASS		src/calc.test.ts

		check	result	value	(3ms)

Test	Suites:	1	passed,	1	total

Tests:							1	passed,	1	total

Snapshots:			0	total

Time:								3.214s

Ran	all	test	suites.

Watch	Usage

	›	Press	f	to	run	only	failed	tests.

	›	Press	o	to	only	run	tests	related	to	changed	files.

	›	Press	p	to	filter	by	a	filename	regex	pattern.

	›	Press	t	to	filter	by	a	test	name	regex	pattern.

	›	Press	q	to	quit	watch	mode.

	›	Press	Enter	to	trigger	a	test	run.

The	output	shows	that	Jest	discovered	one	test	and	ran	it	successfully.	When
additional	tests	are	defined	or	when	any	of	the	source	code	in	the	application
changes,	Jest	will	run	the	tests	again	and	issue	a	new	report.	To	see	what	happens
when	a	test	fails,	make	the	change	shown	in	Listing	6-18	to	the	sum	function
that	is	the	subject	of	the	test.

export	function	sum(...vals:	number[]):	number	{

				return	vals.reduce((total,	val)	=>	total	+=	val)	+

10;

}

Listing	6-18. Making	a	Test	Fail	in	the	calc.ts	File	in	the	src	Folder

The	sum	function	no	longer	returns	the	value	expected	by	the	unit	test,	and
Jest	produces	the	following	warning:

FAIL		src/calc.test.ts

		check	result	value	(6ms)

		check	result	value

				expect(received).toBe(expected)	//	Object.is

equality

				Expected:	60



				Received:	70

						3	|	test("check	result	value",	()	=>	{

						4	|					let	result	=	sum(10,	20,	30);

				>	5	|					expect(result).toBe(60);

								|																				^

						6	|	});

						at	Object.<anonymous>	(src/calc.test.ts:5:20)

Test	Suites:	1	failed,	1	total

Tests:							1	failed,	1	total

Snapshots:			0	total

Time:								4.726s

Ran	all	test	suites.

Watch	Usage:	Press	w	to	show	more.

The	output	shows	the	result	expected	by	the	test	and	the	result	that	was
received.	Failed	tests	can	be	resolved	by	fixing	the	source	code	to	conform	to	the
expectations	of	the	test	or,	if	the	purpose	of	the	source	code	has	changed,
updating	the	test	to	reflect	the	new	behavior.	Listing	6-19	modifies	the	unit	test.

import	{	sum	}	from	"./calc";

test("check	result	value",	()	=>	{

				let	result	=	sum(10,	20,	30);

				expect(result).toBe(70);

});

Listing	6-19. Changing	a	Unit	Test	in	the	calc.test.ts	File	in	the	src	Folder

When	the	change	to	the	test	is	saved,	Jest	runs	the	tests	again	and	reports
success.

PASS		src/calc.test.ts

		check	result	value	(3ms)

Test	Suites:	1	passed,	1	total

Tests:							1	passed,	1	total

Snapshots:			0	total

Time:								5s

Ran	all	test	suites.

Watch	Usage:	Press	w	to	show	more.



Summary
In	this	chapter,	I	introduced	three	tools	that	are	often	used	to	support	TypeScript
development.	The	Node.js	debugger	is	a	useful	way	to	inspect	the	state	of
applications	as	they	are	being	executed,	the	linter	helps	avoid	common	coding
errors	that	are	not	detected	by	the	compiler	but	that	cause	problems	nonetheless,
and	the	unit	test	framework	is	used	to	confirm	that	code	behaves	as	expected.	In
the	next	chapter,	I	start	describing	TypeScript	features	in	depth,	starting	with
static	type	checking.



Part	II
Working	with	TypeScript



(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
A.	Freeman,	Essential	TypeScript	4
https://doi.org/10.1007/978-1-4842-7011-0_7

7.	Understanding	Static	Types
Adam	Freeman1		

London,	UK

	

In	this	chapter,	I	introduce	the	key	TypeScript	features	for	working	with	data
types.	The	features	I	describe	in	this	chapter	are	the	foundations	for	working
with	TypeScript,	and	they	are	the	building	blocks	for	the	advanced	features
described	in	later	chapters.

I	start	by	showing	how	TypeScript’s	types	differ	from	pure	JavaScript’s
types.	I	demonstrate	that	the	TypeScript	compiler	is	able	to	infer	data	types	from
code,	and	then	I	introduce	features	that	provide	precise	control	over	data	types,
either	by	giving	the	TypeScript	compiler	information	about	how	sections	of	code
are	expected	to	behave	or	by	changing	the	way	that	the	compiler	is	configured.
Table	7-1	summarizes	the	chapter.

For	quick	reference,	Table	7-2	lists	the	TypeScript	compiler	options	used	in
this	chapter.

Preparing	for	This	Chapter
To	create	the	example	project	for	this	chapter,	create	a	folder	called	types	in	a
convenient	location.	Open	a	new	command	prompt,	navigate	to	the	types
folder,	and	run	the	command	shown	in	Listing	7-1	to	initialize	the	folder	for	use
with	NPM.

Tip You	can	download	the	example	project	for	this	chapter—and	for	all	the
other	chapters	in	this	book—from
https://github.com/Apress/essential-typescript-4.

npm	init	--yes

https://doi.org/10.1007/978-1-4842-7011-0_7
https://github.com/Apress/essential-typescript-4


Listing	7-1. Initializing	the	Node	Package	Manager

Run	the	command	shown	in	Listing	7-2	in	the	types	folder	to	add	the
packages	required	for	this	chapter.

npm	install	--save-dev	typescript@4.2.2

npm	install	--save-dev	tsc-watch@4.2.9

Listing	7-2. Adding	Packages	to	the	Project

To	configure	the	TypeScript	compiler,	add	a	file	called	tsconfig.json	to
the	types	folder	with	the	content	shown	in	Listing	7-3.

Table	7-1. Chapter	Summary

Problem Solution Listing

Specify	a	type Use	a	type	annotation	or	allow	the	compiler	to
infer	a	type

10–13

Inspect	the	types	that	the	compiler	infers Enable	the	declarations	compiler	option
and	inspect	the	compiled	code

14,	15

Allow	any	type	to	be	used Specify	the	any	or	unknown	types 16–19,
29,	30

Prevent	the	compiler	from	inferring	the	any
type

Enable	the	noImplicityAny	compiler
option

20

Combine	types Use	a	type	union 21–22

Override	the	type	expected	by	the	compiler Use	a	type	assertion 23–25

Test	for	a	primitive	value	type Use	the	typeof	operator	as	a	type	guard 26–28

Prevent	null	or	undefined	from	being
accepted	as	values	of	other	types

Enable	the	strictNullChecks	compiler
option

31–33

Override	the	compiler	to	remove	null	values
from	a	union

Use	a	non-null	assertion	or	use	a	type	guard 34,	35

Allow	a	variable	to	be	used	when	it	has	not
been	assigned	a	value

Use	the	definite	assignment	assertion 36,	37

Table	7-2. The	TypeScript	Compiler	Options	Used	in	This	Chapter

Name Description

declaration This	option	produces	type	declaration	files	when	enabled,	which	can	be	useful	in
understanding	how	types	have	been	inferred.	These	files	are	described	in	more
detail	in	Chapter	14.

noImplicitAny This	option	prevents	the	implicit	use	of	the	any	type,	which	the	compiler	uses
when	it	can’t	infer	a	more	specific	type.



outDir This	option	specifies	the	directory	in	which	the	JavaScript	files	will	be	placed.

rootDir This	option	specifies	the	root	directory	that	the	compiler	will	use	to	locate
TypeScript	files.

strictNullChecks This	option	prevents	null	and	undefined	from	being	accepted	as	values	for
other	types.

target This	option	specifies	the	version	of	the	JavaScript	language	that	the	compiler	will
target	in	its	output.

{

				"compilerOptions":	{

								"target":	"es2020",

								"outDir":	"./dist",

								"rootDir":	"./src"

				}

}

Listing	7-3. The	Contents	of	the	tsconfig.json	File	in	the	types	Folder

These	configuration	settings	tell	the	TypeScript	compiler	to	generate	code	for
the	most	recent	JavaScript	implementations,	using	the	src	folder	to	look	for
TypeScript	files	and	the	dist	folder	for	its	outputs.	To	configure	NPM	so	that	it
can	start	the	compiler,	add	the	configuration	entry	shown	in	Listing	7-4	to	the
package.json	file.

{

		"name":	"types",

		"version":	"1.0.0",

		"description":	"",

		"main":	"index.js",

		"scripts":	{

				"start":	"tsc-watch	--onsuccess	\"node

dist/index.js\""

		},

		"keywords":	[],

		"author":	"",

		"license":	"ISC",

		"devDependencies":	{

				"tsc-watch":	"^4.2.9",

				"typescript":	"^4.2.2"

		}



}

Listing	7-4. Configuring	NPM	in	the	package.json	File	in	the	types	Folder

To	create	the	entry	point	for	the	project,	create	the	tools/src	folder	and
add	to	it	a	file	called	index.ts	with	the	code	shown	in	Listing	7-5.

console.log("Hello,	TypeScript");

Listing	7-5. The	Contents	of	the	index.ts	File	in	the	src	Folder

Use	the	command	prompt	to	run	the	command	shown	in	Listing	7-6	in	the
types	folder	to	start	the	TypeScript	compiler.

npm	start

Listing	7-6. Starting	the	TypeScript	Compiler

The	compiler	will	compile	the	code	in	the	index.ts	file,	execute	the
output,	and	then	enter	watch	mode,	producing	the	following	output:

6:43:06	AM	-	Starting	compilation	in	watch	mode...

6:43:08	AM	-	Found	0	errors.	Watching	for	file

changes.

Hello,	TypeScript

Understanding	Static	Types
As	I	explained	in	Chapter	4,	JavaScript	is	dynamically	typed.	The	biggest
obstacle	that	JavaScript	presents	to	programmers	who	are	used	to	other
languages	is	that	values	have	types	instead	of	variables.	As	a	quick	reminder	of
how	this	works,	replace	the	code	in	the	index.ts	file	with	the	statements
shown	in	Listing	7-7.

let	myVar;

myVar	=	12;

myVar	=	"Hello";

myVar	=	true;

Listing	7-7. Replacing	the	Contents	of	the	index.ts	File	in	the	src	Folder



The	type	of	the	variable	named	myVar	changes	based	on	the	value	assigned
to	it.	The	JavaScript	typeof	keyword	can	be	used	to	determine	a	type,	as
shown	in	Listing	7-8.

let	myVar;

console.log(`${myVar}	=	${typeof	myVar}`);

myVar	=	12;

console.log(`${myVar}	=	${typeof	myVar}`);

myVar	=	"Hello";

console.log(`${myVar}	=	${typeof	myVar}`);

myVar	=	true;

console.log(`${myVar}	=	${typeof	myVar}`);

Listing	7-8. Displaying	the	Variable	Type	in	the	index.ts	File	in	the	src	Folder

Save	the	changes	to	the	file,	and	you	will	see	the	following	output	when	the
compiled	code	is	executed:

undefined	=	undefined

12	=	number

Hello	=	string

true	=	boolean

The	first	statement	in	Listing	7-8	defines	the	variable	without	assigning	a
value,	which	means	that	its	type	is	undefined.	A	variable	whose	type	is
undefined	will	always	have	a	value	of	undefined,	which	can	be	seen	in
the	output.

The	value	12	is	a	number,	and	as	soon	as	the	value	is	assigned,	the	data
type	of	the	variable	changes.	The	value	Hello	is	a	string,	and	the	value
false	is	a	boolean;	you	can	see	the	data	type	as	each	value	is	assigned	to	the
variable.	You	don’t	need	to	tell	JavaScript	the	data	type,	which	it	automatically
infers	from	the	value.	For	quick	reference,	Table	7-3	describes	the	built-in	types
that	JavaScript	provides.

Table	7-3. The	JavaScript	Built-in	Types

Name Description

number This	type	is	used	to	represent	numeric	values.

string This	type	is	used	to	represent	text	data.

boolean This	type	can	have	true	and	false	values.



symbol This	type	is	used	to	represent	unique	constant	values,	such	as	keys	in	collections.

null This	type	can	be	assigned	only	the	value	null	and	is	used	to	indicate	a	nonexistent	or
invalid	reference.

undefined This	type	is	used	when	a	variable	has	been	defined	but	has	not	been	assigned	a	value.

object This	type	is	used	to	represent	compound	values,	formed	from	individual	properties	and
values.

Dynamic	types	offer	flexibility,	but	they	can	also	lead	to	problems,	as	shown
in	Listing	7-9,	which	replaces	the	code	in	the	index.ts	file	with	a	function
and	a	set	of	statements	that	invoke	it.

function	calculateTax(amount)	{

				return	amount	*	1.2;

}

console.log(`${12}	=	${calculateTax(12)}`);

console.log(`${"Hello"}	=	${calculateTax("Hello")}`);

console.log(`${true}	=	${calculateTax(true)}`);

Listing	7-9. Defining	a	Function	in	the	index.ts	File	in	the	src	Folder

Function	parameter	types	are	also	dynamic,	which	means	that	the
calculateTax	function	may	receive	values	of	any	type.	The	statements	that
follow	the	function	invoke	it	with	number,	string,	and	boolean	values,
producing	the	following	results	when	the	code	is	executed:

12	=	14.399999999999999

Hello	=	NaN

true	=	1.2

From	a	JavaScript	perspective,	there	is	nothing	wrong	with	this	example.
Function	parameters	can	receive	values	of	any	type,	and	JavaScript	has	handled
each	type	exactly	as	it	should.	But	the	calculateTax	function	has	been
written	with	the	assumption	that	it	will	only	receive	number	values,	which	is
why	only	the	first	result	makes	sense.	(The	second	result,	NaN,	means	not	a
number,	and	the	third	result	is	obtained	by	coercing	true	to	the	number	value	1
and	using	that	in	the	calculation—see	Chapter	4	for	details	of	JavaScript	type
coercion.)

It	is	easy	to	understand	the	function’s	assumption	about	its	parameter	type
when	you	can	see	the	code	next	to	the	statements	that	use	it,	but	it’s	much	harder



when	the	function	has	been	written	by	another	programmer	and	is	deep	inside	a
complex	project	or	package.

Creating	a	Static	Type	with	a	Type	Annotation
Most	developers	are	used	to	static	types.	TypeScript’s	static	type	feature	makes
type	assumptions	explicit	and	allows	the	compiler	to	report	an	error	when
different	data	types	are	used.	Static	types	are	defined	using	type	annotations,	as
shown	in	Listing	7-10.

function	calculateTax(amount:	number):	number	{

				return	amount	*	1.2;

}

console.log(`${12}	=	${calculateTax(12)}`);

console.log(`${"Hello"}	=	${calculateTax("Hello")}`);

console.log(`${true}	=	${calculateTax(true)}`);

Listing	7-10. Using	a	Type	Annotation	in	the	index.ts	File	in	the	src	Folder

There	are	two	annotations	in	Listing	7-10,	which	are	defined	using	a	colon
followed	by	the	static	type,	as	shown	in	Figure	7-1.

Figure	7-1. Applying	type	annotations

The	type	annotation	on	the	function	parameter	tells	the	compiler	that	the
function	accepts	only	number	values.	The	annotation	that	follows	the	function
signature	indicates	the	result	type	and	tells	the	compiler	that	the	function	returns
only	number	values.

When	the	code	is	compiled,	the	TypeScript	compiler	analyzes	the	data	types
of	the	values	passed	to	the	calculateTax	function	and	detects	that	some	of
the	values	have	the	wrong	type,	producing	the	following	error	messages:

src/index.ts(6,42):	error	TS2345:	Argument	of	type

'"Hello"'	is	not	assignable	to	parameter	of	type



'number'.

src/index.ts(7,39):	error	TS2345:	Argument	of	type

'true'	is	not	assignable	to	parameter	of	type

'number'.

Tip You	may	also	see	warnings	in	your	code	editor	if	it	has	good	support
for	TypeScript.	I	use	Visual	Studio	Code	for	TypeScript	development,	and	it
highlights	problems	directly	in	the	editor	window.

Type	annotations	can	also	be	applied	to	variables	and	constants,	as	shown	in
Listing	7-11.

function	calculateTax(amount:	number):	number	{

				return	amount	*	1.2;

}

let	price:	number	=	100;

let	taxAmount:	number	=	calculateTax(price);

let	halfShare:	number	=	taxAmount	/	2;

console.log(`Full	amount	in	tax:	${taxAmount}`);

console.log(`Half	share:	${halfShare}`);

Listing	7-11. Applying	Annotations	to	Variables	in	the	index.ts	File	in	the	src	Folder

Annotations	are	applied	after	the	name,	using	a	colon	and	a	type,	just	as	with
the	annotations	applied	to	the	function.	The	three	variables	in	Listing	7-11	are	all
annotated	to	tell	the	compiler	they	will	be	used	for	number	values,	producing
the	following	output	when	the	code	is	executed:

Full	amount	in	tax:	120

Half	share:	60

Using	Implicitly	Defined	Static	Types
The	TypeScript	compiler	can	infer	types,	meaning	that	you	can	benefit	from
static	types	without	using	annotations,	as	shown	in	Listing	7-12.

function	calculateTax(amount:	number)	{

				return	amount	*	1.2;



}

let	price	=	100;

let	taxAmount	=	calculateTax(price);

let	halfShare	=	taxAmount	/	2;

console.log(`Full	amount	in	tax:	${taxAmount}`);

console.log(`Half	share:	${halfShare}`);

Listing	7-12. Relying	on	Implicit	Types	in	the	index.ts	File	in	the	src	Folder

The	TypeScript	compiler	can	infer	the	type	of	the	price	variable	based	on
the	literal	value	that	it	is	assigned	when	it	is	defined.	The	compiler	knows	that
100	is	a	number	value	and	treats	the	price	variable	as	though	it	has	been
defined	with	a	number	type	annotation,	which	means	that	it	is	an	acceptable
value	to	use	as	an	argument	to	the	calculateTax	function.

The	compiler	is	also	able	to	infer	the	result	of	the	calculateTax	function
because	it	knows	that	only	number	parameters	will	be	accepted,	that	1.2	is	a
number	value,	and	that	the	result	of	the	multiplication	operator	on	two	number
values	is	a	number.

The	result	from	the	function	is	assigned	to	the	taxAmount	variable,	which
the	compiler	is	also	able	to	infer	as	a	number.	Finally,	the	compiler	knows	the
type	produced	by	the	division	operator	on	two	number	values	and	can	infer	the
type	of	the	halfShare	variable,	too.

The	TypeScript	compiler	remains	silent	when	types	are	used	correctly,	and	it
is	easy	to	forget	that	the	code	is	being	checked.	To	see	what	happens	when	the
inferred	types	don’t	match,	change	the	function	in	the	index.ts	file	as	shown
in	Listing	7-13.

function	calculateTax(amount:	number)	{

				return	(amount	*	1.2).toFixed(2);

}

let	price	=	100;

let	taxAmount	=	calculateTax(price);

let	halfShare	=	taxAmount	/	2;

console.log(`Full	amount	in	tax:	${taxAmount}`);

console.log(`Half	share:	${halfShare}`);



Listing	7-13. Changing	the	Result	Type	in	the	index.ts	File	in	the	src	Folder

The	toFixed	method	formats	number	values	so	they	have	a	fixed	number
of	digits	after	the	decimal	point.	The	result	of	the	toFixed	method	is	a
string,	which	changes	the	result	from	the	calculateTax	function.	When
the	TypeScript	compiler	works	its	way	through	the	chain	of	types,	it	sees	the
division	operator	applied	to	a	string	and	a	number:

...

let	halfShare	=	taxAmount	/	2;

...

This	is	legal	JavaScript	and	will	be	dealt	with	by	type	coercion,	as	described
in	Chapter	3.	In	this	case,	the	string	value	will	be	converted	to	a	number,
and	the	outcome	will	be	either	the	division	of	two	number	values	or	NaN	if	the
string	value	cannot	be	converted.

In	TypeScript,	automatic	type	coercion	is	restricted,	and	the	compiler	reports
an	error	instead	of	trying	to	convert	values:

src/index.ts(7,17):	error	TS2362:	The	left-hand	side

of	an	arithmetic	operation	must	be	of	type	'any',

'number',	'bigint'	or	an	enum	type.

The	TypeScript	compiler	doesn’t	prevent	the	use	of	the	JavaScript	type
features,	but	it	does	generate	errors	when	it	sees	statements	that	can	lead	to
problems.

There	can	be	times,	especially	when	you	are	first	starting	to	use	TypeScript,
where	you	will	receive	errors	because	the	compiler	infers	types	in	a	way	that	you
don’t	expect.	In	almost	every	instance,	the	compiler	will	be	correct,	but	there	is	a
useful	compiler	feature	that	can	be	enabled	to	reveal	the	types	that	are	used	in
the	code,	as	shown	in	Listing	7-14.

{

				"compilerOptions":	{

								"target":	"es2020",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"declaration":	true

				}



}

Listing	7-14. Configuring	the	TypeScript	Compiler	in	the	tsconfig.json	File	in	the	types	Folder

The	declaration	setting	tells	the	compiler	to	generate	files	that	contain
type	information	alongside	the	JavaScript	code	it	produces.	I	describe	these	files
in	detail	in	Chapter	14,	but	for	now,	it	is	enough	to	know	they	help	identify	the
types	that	the	compiler	has	inferred,	even	though	this	is	not	their	intended
purpose.	The	configuration	change	will	take	effect	when	the	compiler	next	runs.
To	trigger	compilation,	add	the	statement	shown	in	Listing	7-15	to	the
index.js	file	and	then	save	the	changes.

function	calculateTax(amount:	number)	{

				return	(amount	*	1.2).toFixed(2);

}

let	price	=	100;

let	taxAmount	=	calculateTax(price);

let	halfShare	=	taxAmount	/	2;

console.log(`Price:	${price}`);

console.log(`Full	amount	in	tax:	${taxAmount}`);

console.log(`Half	share:	${halfShare}`);

Listing	7-15. Adding	a	Statement	to	the	index.ts	File	in	the	src	Folder

When	the	compiler	runs,	it	will	generate	a	file	named	index.d.ts	in	the
dist	folder,	which	contains	the	following	content:

...

declare	function	calculateTax(amount:	number):	string;

declare	let	price:	number;

declare	let	taxAmount:	string;

declare	let	halfShare:	number;

...

The	purpose	of	the	declare	keyword—and	the	file	itself—is	explained	in
Chapter	14,	but	this	file	reveals	the	types	that	the	compiler	has	inferred	for	the
statements	in	Listing	7-15,	showing	that	the	return	types	for	the
calculateTax	function	and	the	taxAmount	variable	are	string.	When
you	get	a	compiler	error,	looking	at	the	files	generated	when	the	declaration



setting	is	true	can	be	helpful,	especially	if	you	can’t	see	any	obvious	cause.

Using	the	any	Type
TypeScript	doesn’t	stop	you	from	using	the	flexibility	of	the	JavaScript	type
system,	but	it	does	try	to	prevent	you	from	using	it	accidentally.	To	allow	all
types	as	function	parameters	and	results	or	be	able	to	assign	all	types	to	variables
and	constants,	TypeScript	provides	the	any	type,	as	shown	in	Listing	7-16.

function	calculateTax(amount:	any):	any	{

				return	(amount	*	1.2).toFixed(2);

}

let	price	=	100;

let	taxAmount	=	calculateTax(price);

let	halfShare	=	taxAmount	/	2;

console.log(`Price:	${price}`);

console.log(`Full	amount	in	tax:	${taxAmount}`);

console.log(`Half	share:	${halfShare}`);

Listing	7-16. Using	the	any	Type	in	the	index.ts	File	in	the	src	Folder

These	annotations	tell	the	compiler	that	the	amount	parameter	can	accept
any	value	and	that	the	function’s	result	may	be	of	any	type.	The	use	of	the	any
type	stops	the	compiler	from	reporting	the	error	produced	by	Listing	7-15
because	it	no	longer	validates	that	the	result	from	the	calculateTax	function
can	be	used	with	the	division	operator.	The	code	will	run	successfully	because
JavaScript	converts	the	division	operands	to	number	values	automatically	so
that	the	string	returned	by	calculateTax	is	parsed	to	a	number,
producing	the	following	result	when	the	code	is	executed:

Price:	100

Full	amount	in	tax:	120.00

Half	share:	60

When	you	use	the	any	type,	you	take	responsibility	for	ensuring	that	your
code	doesn’t	misuse	types,	just	as	you	would	if	you	were	using	pure	JavaScript.
In	Listing	7-17,	I	have	changed	the	calculateTax	function	so	that	it
prepends	a	currency	symbol	to	its	result.



function	calculateTax(amount:	any):	any	{

				return	`$${(amount	*	1.2).toFixed(2)}`;

}

let	price	=	100;

let	taxAmount	=	calculateTax(price);

let	halfShare	=	taxAmount	/	2;

console.log(`Price:	${price}`);

console.log(`Full	amount	in	tax:	${taxAmount}`);

console.log(`Half	share:	${halfShare}`);

Listing	7-17. Changing	the	Function	Result	in	the	index.ts	File	in	the	src	Folder

The	function’s	result	cannot	be	parsed	into	a	number	value,	so	the	code
produces	this	output	when	it	is	executed:

Price:	100

Full	amount	in	tax:	$120.00

Half	share:	NaN

One	consequence	of	using	any	is	that	it	can	be	assigned	to	all	other	types
without	triggering	a	compiler	warning,	as	shown	in	Listing	7-18.

function	calculateTax(amount:	any):	any	{

				return	`$${(amount	*	1.2).toFixed(2)}`;

}

let	price	=	100;

let	taxAmount	=	calculateTax(price);

let	halfShare	=	taxAmount	/	2;

console.log(`Price:	${price}`);

console.log(`Full	amount	in	tax:	${taxAmount}`);

console.log(`Half	share:	${halfShare}`);

let	newResult:	any	=	calculateTax(200);

let	myNumber:	number	=	newResult;

console.log(`Number	value:	${myNumber.toFixed(2)}`);

Listing	7-18. Assigning	the	any	Type	in	the	index.ts	File	in	the	src	Folder



The	any	value	newResult	is	assigned	to	a	number	without	causing	a
compiler	warning.	At	runtime,	the	calculateTax	method	returns	a	string
result,	which	doesn’t	define	the	toFixed	method	invoked	in	the	last	statement
in	Listing	7-18	and	produces	the	following	error	when	the	code	is	executed:

console.log(`Number	value:	${myNumber.toFixed(2)}`);

																																					^

TypeError:	myNumber.toFixed	is	not	a	function

The	compiler	trusts	that	the	any	value	can	be	treated	as	a	number,	which
means	a	type	mismatch	occurs	at	runtime.	The	any	type	allows	full	use	of	the
JavaScript	type	features,	which	can	be	useful	but	can	lead	to	unexpected	results
when	types	are	coerced	automatically	at	runtime.

Tip TypeScript	also	provides	the	unknown	type	to	provide	deliberate
access	to	the	dynamic	type	features	while	restricting	accidental	use,	as
described	in	the	“Using	the	Unknown	Type”	section.

Using	Implicitly	Defined	Any	Types
The	TypeScript	compiler	will	use	any	when	it	is	assigning	types	implicitly	and
cannot	identify	a	more	specific	type	to	use.	This	makes	it	easier	to	selectively
apply	TypeScript	in	an	existing	JavaScript	project	and	can	simplify	working	with
third-party	JavaScript	packages.	In	Listing	7-19,	I	have	removed	the	type
annotation	from	the	calculateTax	parameter.

function	calculateTax(amount):	any	{

				return	`$${(amount	*	1.2).toFixed(2)}`;

}

let	price	=	100;

let	taxAmount	=	calculateTax(price);

let	halfShare	=	taxAmount	/	2;

let	personVal	=	calculateTax("Bob");

console.log(`Price:	${price}`);

console.log(`Full	amount	in	tax:	${taxAmount}`);

console.log(`Half	share:	${halfShare}`);



console.log(`Name:	${personVal}`);

Listing	7-19. Removing	an	Annotation	and	Defining	a	Variable	in	the	index.ts	File	in	the	src	Folder

The	compiler	will	use	an	implicit	any	for	the	function	parameter	because	it
isn’t	able	to	determine	a	better	type	to	use,	which	is	why	no	compiler	error	will
be	reported	when	the	function	is	invoked	with	a	string	argument,	producing
the	following	output:

Price:	100

Full	amount	in	tax:	$120.00

Half	share:	NaN

Name:	$NaN

You	can	confirm	the	implicit	use	of	any	by	inspecting	the	contents	of
the	index.d.ts	file	in	the	dist	folder,	which	will	contain	the	following
description	of	the	calculateTax	function:

...

declare	function	calculateTax(amount:	any):	any;

...

Disabling	Implicit	Any	Types
Explicitly	using	any	provides	an	escape-hatch	from	type	checking,	which	can
be	useful	when	applied	cautiously.	Allowing	the	compiler	to	use	any	implicitly
creates	gaps	in	type	checking	that	you	may	not	even	notice	and	that	can
undermine	the	benefit	of	using	TypeScript.

It	is	good	practice	to	disable	the	implicit	use	of	any	by	setting	the	compiler’s
noImplicityAny	setting,	as	shown	in	Listing	7-20.	(The	implicit	use	of	any
is	also	disabled	when	you	enable	the	strict	compiler	setting,	as	noted	in	Table
7-3.)

{

				"compilerOptions":	{

								"target":	"es2020",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"declaration":	true,

								"noImplicitAny":	true

				}



}

Listing	7-20. Configuring	the	Compiler	in	the	tsconfig.json	File	in	the	types	Folder

Save	the	changes	to	the	compiler	configuration	file,	and	the	code	will	be
recompiled	with	the	following	error:

src/index.ts(1,23):	error	TS7006:	Parameter	'amount'

implicitly	has	an	'any'	type.

The	compiler	will	now	display	this	warning	when	it	cannot	infer	a	more
specific	type,	although	this	doesn’t	prevent	the	explicit	use	of	any.

Using	Type	Unions
At	one	end	of	the	type	safety	spectrum	is	the	any	feature,	which	allows
complete	freedom.	At	the	other	end	of	the	spectrum	are	type	annotations	for
single	types,	which	narrows	the	range	of	allowable	values.	Between	these	two
extremes,	TypeScript	provides	type	unions,	which	specify	a	set	of	types.	In
Listing	7-21,	I	have	defined	a	function	that	returns	different	data	types	and	used
a	type	annotation	with	a	union	to	describe	the	result	to	the	compiler.

function	calculateTax(amount:	number,	format:

boolean):	string	|	number	{

				const	calcAmount	=	amount	*	1.2;

				return	format	?	`$${calcAmount.toFixed(2)}`	:

calcAmount;

}

let	taxNumber	=	calculateTax(100,	false);

let	taxString	=	calculateTax(100,	true);

Listing	7-21. Using	a	Type	Union	in	the	index.ts	File	in	the	src	Folder

The	type	returned	by	the	calculateTax	function	is	the	union	of	the
string	and	number	types,	which	is	defined	using	the	bar	character	between
type	names,	as	shown	in	Figure	7-2.	The	union	in	Listing	7-21	uses	two	types,
but	you	can	combine	as	many	types	as	you	need	to	create	a	union.



Figure	7-2. Defining	a	type	union

It	is	important	to	understand	that	a	type	union	is	handled	as	a	type	in	its	own
right,	whose	features	are	the	intersection	of	the	individual	types.	This	means	that
the	type	of	the	taxNumber	variable	in	Listing	7-21,	for	example,	is	string
|	number	and	not	number,	even	though	the	calculateTax	function
returns	a	number	when	the	boolean	argument	is	false.	To	emphasize	the
effect	of	the	union	type,	Listing	7-22	makes	the	variable	types	explicit.

function	calculateTax(amount:	number,	format:

boolean):	string	|	number	{

				const	calcAmount	=	amount	*	1.2;

				return	format	?	`$${calcAmount.toFixed(2)}`	:

calcAmount;

}

let	taxNumber:	string	|	number		=	calculateTax(100,

false);

let	taxString:	string	|	number		=	calculateTax(100,

true);

console.log(`Number	Value:	${taxNumber.toFixed(2)}`);

console.log(`String	Value:	${taxString.charAt(0)}`);

Listing	7-22. Declaring	Union	Types	Explicitly	in	the	index.ts	File	in	the	src	Folder

You	can	only	use	the	properties	and	methods	defined	by	all	the	types	in	the
union,	which	can	be	useful	for	complex	types	(as	described	in	Chapter	10)	but	is
limited	by	the	small	common	API	presented	by	primitive	values.	The	only
method	shared	by	the	number	and	string	types	that	are	used	in	the	union	in
Listing	7-22	is	the	toString	method,	as	shown	in	Figure	7-3.



Figure	7-3. The	effect	of	a	type	union

This	means	that	the	other	methods	defined	by	the	number	and	string
types	cannot	be	used,	and	the	use	of	the	toFixed	and	charAt	methods	in
Listing	7-22	produces	the	following	compiler	messages:

src/index.ts(9,40):	error	TS2339:	Property	'toFixed'

does	not	exist	on	type	'string	|	number'.	Property

'toFixed'	does	not	exist	on	type	'string'.

src/index.ts(10,40):	error	TS2339:	Property	'charAt'

does	not	exist	on	type	'string	|	number'.	Property

'charAt'	does	not	exist	on	type	'number'.

Using	Type	Assertions
A	type	assertion	tells	the	TypeScript	compiler	to	treat	a	value	as	a	specific	type,
known	as	type	narrowing.	A	type	assertion	is	one	of	the	ways	that	you	can



narrow	a	type	from	a	union,	as	shown	in	Listing	7-23.

function	calculateTax(amount:	number,	format:

boolean):	string	|	number	{

				const	calcAmount	=	amount	*	1.2;

				return	format	?	`$${calcAmount.toFixed(2)}`	:

calcAmount;

}

let	taxNumber	=	calculateTax(100,	false)	as	number;

let	taxString	=	calculateTax(100,	true)	as	string;

console.log(`Number	Value:	${taxNumber.toFixed(2)}`);

console.log(`String	Value:	${taxString.charAt(0)}`);

Listing	7-23. Using	Type	Assertions	in	the	index.ts	File	in	the	src	Folder

A	type	is	asserted	using	the	as	keyword,	followed	by	the	required	type,	as
illustrated	in	Figure	7-4.

Figure	7-4. Asserting	a	type

In	the	listing,	the	as	keyword	is	used	to	tell	the	compiler	that	the	value
assigned	to	the	taxNumber	variable	is	a	number	and	that	the	value	assigned
to	the	taxString	variable	is	a	string:

...

let	taxNumber	=	calculateTax(100,	false)	as	number;

let	taxString	=	calculateTax(100,	true)	as	string;

...

Caution No	type	conversion	is	performed	by	a	type	assertion,	which	only
tells	the	compiler	what	type	it	should	apply	to	a	value	for	the	purposes	of	type
checking.



When	a	type	is	asserted	in	this	way,	TypeScript	uses	the	asserted	type	as	the	type
for	the	variable,	which	means	that	the	highlighted	statements	in	Listing	7-23	are
equivalent	to	these	statements:

...

let	taxNumber:	number	=	calculateTax(100,	false)	as

number;

let	taxString:	string	=	calculateTax(100,	true)	as

string;

...

The	type	asserts	select	a	specific	type	from	the	union,	which	means	that	the
methods	and	properties	available	on	that	type	can	be	used,	preventing	the	errors
reported	for	Listing	7-22	and	producing	the	following	output:

Number	Value:	120.00

String	Value:	$

Asserting	to	an	Unexpected	Type
The	compiler	checks	that	the	type	used	in	an	assertion	is	expected.	When	using
an	assertion	from	a	type	union,	for	example,	the	assertion	must	be	to	one	of	the
types	in	the	union.	To	see	what	happens	when	asserting	to	a	type	that	the
compiler	doesn’t	expect,	add	the	statements	shown	in	Listing	7-24	to	the
index.ts	file.

function	calculateTax(amount:	number,	format:

boolean):	string	|	number	{

				const	calcAmount	=	amount	*	1.2;

				return	format	?	`$${calcAmount.toFixed(2)}`	:

calcAmount;

}

let	taxNumber	=	calculateTax(100,	false)	as	number;

let	taxString	=	calculateTax(100,	true)	as	string;

let	taxBoolean	=	calculateTax(100,	false)	as	boolean;

console.log(`Number	Value:	${taxNumber.toFixed(2)}`);

console.log(`String	Value:	${taxString.charAt(0)}`);



console.log(`Boolean	Value:	${taxBoolean}`);

Listing	7-24. Asserting	to	an	Unexpected	Type	in	the	index.ts	File	in	the	src	Folder

The	type	assertion	tells	the	compiler	to	treat	a	string	|	number	value
as	a	boolean.	The	compiler	knows	that	boolean	is	not	one	of	the	types	in	the
union	and	produces	the	following	error	when	the	code	is	compiled:

...

src/index.ts(9,18):	error	TS2352:	Conversion	of	type

'string	|	number'	to	type	'boolean'	may	be	a	mistake

because	neither	type	sufficiently	overlaps	with	the

other.	If	this	was	intentional,	convert	the	expression

to	'unknown'	first.

		Type	'number'	is	not	comparable	to	type	'boolean'.

...

In	most	situations,	you	should	review	the	data	types	and	the	type	assertion
and	correct	the	problem	by	expanding	the	type	union	or	asserting	to	a	different
type.	However,	you	can	force	the	assertion	and	override	the	compiler’s	warning
by	first	asserting	to	any	and	then	to	the	type	you	require,	as	shown	in	Listing	7-
25.	(The	compiler	error	refers	to	the	unknown	type,	which	I	explain	in	the
“Using	the	Unknown	Type”	section.)

function	calculateTax(amount:	number,	format:

boolean):	string	|	number	{

				const	calcAmount	=	amount	*	1.2;

				return	format	?	`$${calcAmount.toFixed(2)}`	:

calcAmount;

}

let	taxNumber	=	calculateTax(100,	false)	as	number;

let	taxString	=	calculateTax(100,	true)	as	string;

let	taxBoolean	=	calculateTax(100,	false)	as	any	as

boolean;

console.log(`Number	Value:	${taxNumber.toFixed(2)}`);

console.log(`String	Value:	${taxString.charAt(0)}`);

console.log(`Boolean	Value:	${taxBoolean}`);

Listing	7-25. Asserting	to	an	Unexpected	Type	in	the	index.ts	File	in	the	src	Folder



This	additional	step	prevents	the	compiler	from	warning	about	the	change
and	treats	the	result	from	the	function	as	a	boolean	value.	However,	as	noted
earlier,	assertions	only	affect	the	type	checking	process	and	do	not	perform	type
coercion,	which	can	be	seen	in	the	results	produced	when	the	code	is	compiled:

Number	Value:	120.00

String	Value:	$

Boolean	Value:	120

The	result	produced	by	the	function	has	been	described	to	the	compiler	as	the
string	|	number	union	and	asserted	as	a	boolean.	But	when	the	code	is
executed,	the	function	produces	a	number,	whose	value	is	written	to	the
console.

The	Alternative	Type	Assertion	Syntax
Type	assertions	can	also	be	performed	using	an	angle	bracket	syntax,	so	that
this	statement:

...

let	taxString	=	calculateTax(100,	true)	as	string;

...

is	equivalent	to	this	statement:

...

let	taxString	=	<string>	calculateTax(100,	true);

...

The	problem	with	this	syntax	is	that	it	cannot	be	used	in	TSX	files,	which
combine	HTML	elements	with	TypeScript	code	and	are	commonly	used	in
React	development,	as	described	in	Chapter	19.	For	this	reason,	the	as
keyword	is	the	preferred	way	to	assert	types.

Using	a	Type	Guard
For	primitive	values,	the	typeof	keyword	can	be	used	to	test	for	a	specific	type
without	needing	a	type	assertion,	as	shown	in	Listing	7-26.

function	calculateTax(amount:	number,	format:



boolean):	string	|	number	{

				const	calcAmount	=	amount	*	1.2;

				return	format	?	`$${calcAmount.toFixed(2)}`	:

calcAmount;

}

let	taxValue	=	calculateTax(100,	false);

if	(typeof	taxValue	===	"number")	{

				console.log(`Number	Value:

${taxValue.toFixed(2)}`);

}	else	if	(typeof	taxValue	===	"string")	{

				console.log(`String	Value:

${taxValue.charAt(0)}`);

}

Listing	7-26. Using	a	Type	Guard	in	the	index.ts	File	in	the	src	Folder

To	test	a	type,	the	typeof	keyword	is	applied	to	a	value,	producing	a
string	that	can	be	compared	to	the	names	of	the	primitive	JavaScript	types,
such	as	number	and	boolean.

Note The	typeof	keyword	can	be	used	only	with	the	JavaScript	primitive
types.	A	different	approach	is	required	to	differentiate	between	objects,	as
described	in	Chapter	3	and	Chapter	10.

The	compiler	doesn’t	implement	the	typeof	keyword,	which	is	part	of	the
JavaScript	specification.	Instead,	the	compiler	trusts	that	the	statements	in	the
conditional	block	will	be	executed	at	runtime	only	if	the	value	being	tested	is	of
the	specified	type.	This	knowledge	allows	the	compiler	to	treat	the	value	as	the
type	being	tested.	For	example,	the	first	test	in	Listing	7-26	is	for	number:

...

if	(typeof	taxValue	===	"number")	{

				console.log(`Number	Value:

${taxValue.toFixed(2)}`);

}

...



The	TypeScript	compiler	knows	that	the	statements	inside	the	if	code	block
will	be	executed	only	if	taxValue	is	a	number	and	allows	the	number	type’s
toFixed	method	to	be	used	without	the	need	for	a	type	assertion,	producing
the	following	result	when	the	code	is	compiled:

Number	Value:	120.00

The	compiler	is	adept	at	recognizing	type	guard	statements,	even	when	they
are	not	in	a	conventional	if...else	block.	The	code	in	Listing	7-27	produces
the	same	result	as	Listing	7-26	but	uses	a	switch	statement	to	differentiate
between	types.	Within	each	block,	the	compiler	treats	taxValue	as	though	it
has	been	defined	with	only	the	type	selected	by	the	case	statement.

function	calculateTax(amount:	number,	format:

boolean):	string	|	number	{

				const	calcAmount	=	amount	*	1.2;

				return	format	?	`$${calcAmount.toFixed(2)}`	:

calcAmount;

}

let	taxValue	=	calculateTax(100,	false);

switch	(typeof	taxValue)	{

				case	"number":

								console.log(`Number	Value:

${taxValue.toFixed(2)}`);

								break;

				case	"string":

								console.log(`String	Value:

${taxValue.charAt(0)}`);

								break;

}

Listing	7-27. Type	Guarding	in	a	switch	Statement	in	the	index.ts	File	in	the	src	Folder

Understanding	the	Never	Type
TypeScript	provides	the	never	type	for	situations	where	a	type	guard	has	dealt
with	all	of	the	possible	types	for	a	value.	In	Listing	7-27,	for	example,	the
switch	statement	is	a	type	guard	for	the	number	and	string	types,	which



are	the	only	types	that	will	be	returned	in	the	string	|	number	union	from
the	function.	Once	all	the	possible	types	have	been	handled,	the	compiler	will
only	allow	a	value	to	be	assigned	to	the	never	type,	as	shown	in	Listing	7-28.

function	calculateTax(amount:	number,	format:

boolean):	string	|	number	{

				const	calcAmount	=	amount	*	1.2;

				return	format	?	`$${calcAmount.toFixed(2)}`	:

calcAmount;

}

let	taxValue	=	calculateTax(100,	false);

switch	(typeof	taxValue)	{

				case	"number":

								console.log(`Number	Value:

${taxValue.toFixed(2)}`);

								break;

				case	"string":

								console.log(`String	Value:

${taxValue.charAt(0)}`);

								break;

				default:

								let	value:	never	=	taxValue;

								console.log(`Unexpected	type	for	value:

${value}`);

}

Listing	7-28. Using	the	never	Type	in	the	index.ts	File	in	the	src	Folder

Something	has	gone	wrong	if	execution	reaches	the	default	clause	of	the
switch	statement,	and	TypeScript	provides	the	never	type	to	ensure	you	can’t
accidentally	use	a	value	once	type	guards	have	been	used	to	exhaustively	narrow
a	value	to	all	of	its	possible	types.

Using	the	unknown	Type
In	the	“Using	the	any	Type”	section,	I	explained	that	an	any	value	can	be
assigned	to	all	other	types,	which	creates	a	gap	in	the	compiler’s	type	checking.
TypeScript	also	supports	the	unknown	type,	which	is	a	safer	alternative	to	any.



An	unknown	value	can	be	assigned	only	any	or	itself	unless	a	type	assertion	or
type	guard	is	used.	Listing	7-29	repeats	the	statements	from	the	example	that
showed	how	the	any	type	behaves	but	uses	unknown	instead.

function	calculateTax(amount:	number,	format:

boolean):	string	|	number	{

				const	calcAmount	=	amount	*	1.2;

				return	format	?	`$${calcAmount.toFixed(2)}`	:

calcAmount;

}

let	taxValue	=	calculateTax(100,	false);

switch	(typeof	taxValue)	{

				case	"number":

								console.log(`Number	Value:

${taxValue.toFixed(2)}`);

								break;

				case	"string":

								console.log(`String	Value:

${taxValue.charAt(0)}`);

								break;

				default:

								let	value:	never	=	taxValue;

								console.log(`Unexpected	type	for	value:

${value}`);

}

let	newResult:	unknown	=	calculateTax(200,	false);

let	myNumber:	number	=	newResult;

console.log(`Number	value:	${myNumber.toFixed(2)}`);

Listing	7-29. Using	any	and	unknown	Types	in	the	index.ts	File	in	the	src	Folder

An	unknown	value	can’t	be	assigned	to	another	type	without	a	type
assertion,	so	the	compiler	produces	the	following	error	when	it	compiles	the
code:

src/index.ts(18,5):	error	TS2322:	Type	'unknown'	is

not	assignable	to	type	'number'.



Listing	7-30	uses	a	type	assertion	to	override	the	warning	and	tell	the
compiler	to	assign	the	unknown	value	as	a	number.

function	calculateTax(amount:	number,	format:

boolean):	string	|	number	{

				const	calcAmount	=	amount	*	1.2;

				return	format	?	`$${calcAmount.toFixed(2)}`	:

calcAmount;

}

let	taxValue	=	calculateTax(100,	false);

switch	(typeof	taxValue)	{

				case	"number":

								console.log(`Number	Value:

${taxValue.toFixed(2)}`);

								break;

				case	"string":

								console.log(`String	Value:

${taxValue.charAt(0)}`);

								break;

				default:

								let	value:	never	=	taxValue;

								console.log(`Unexpected	type	for	value:

${value}`);

}

let	newResult:	unknown	=	calculateTax(200,	false);

let	myNumber:	number	=	newResult	as	number;

console.log(`Number	value:	${myNumber.toFixed(2)}`);

Listing	7-30. Asserting	an	Unknown	Value	in	the	index.ts	File	in	the	src	Folder

Unlike	the	earlier	example,	the	unknown	value	is	really	a	number,	so	the
code	doesn’t	generate	a	runtime	error	and	produces	the	following	output	when
executed:

Number	Value:	120.00

Number	value:	240.00



Using	Nullable	Types
There	is	a	hole	in	the	TypeScript	static	type	system:	the	JavaScript	null	and
undefined	types.	The	null	type	can	be	assigned	only	the	null	value	and	is
used	to	represent	something	that	doesn’t	exist	or	is	invalid.	The	undefined
type	can	be	assigned	only	the	undefined	value	and	is	used	when	a	variable
has	been	defined	but	not	yet	assigned	a	value.

The	problem	is	that,	by	default,	TypeScript	treats	null	and	undefined	as
legal	values	for	all	types.	The	reason	for	this	is	convenience	because	a	lot	of
existing	JavaScript	code	that	may	be	required	for	integration	into	an	application
uses	these	values	as	part	of	its	normal	operation,	but	it	does	lead	to
inconsistencies	in	type	checking,	as	shown	in	Listing	7-31.

function	calculateTax(amount:	number,	format:

boolean):	string	|	number	{

				if	(amount	===	0)	{

								return	null;

				}

				const	calcAmount	=	amount	*	1.2;

				return	format	?	`$${calcAmount.toFixed(2)}`	:

calcAmount;

}

let	taxValue:	string	|	number	=	calculateTax(0,

false);

switch	(typeof	taxValue)	{

				case	"number":

								console.log(`Number	Value:

${taxValue.toFixed(2)}`);

								break;

				case	"string":

								console.log(`String	Value:

${taxValue.charAt(0)}`);

								break;

				default:

								let	value:	never	=	taxValue;

								console.log(`Unexpected	type	for	value:

${value}`);



}

let	newResult:	unknown	=	calculateTax(200,	false);

let	myNumber:	number	=	newResult	as	number;

console.log(`Number	value:	${myNumber.toFixed(2)}`);

Listing	7-31. Using	Nullable	Types	in	the	index.ts	File	in	the	src	Folder

The	change	to	the	calculateTax	shows	a	typical	use	of	null,	where	it	is
used	as	a	result	if	the	value	of	the	amount	parameter	is	zero,	indicating	an	invalid
condition.	The	result	type	for	the	function	and	the	type	of	the	taxValue
variable	are	string	|	number.	But,	in	JavaScript,	changing	the	value
assigned	to	a	variable	can	change	its	type,	and	that	is	what	happens	in	the
example:	the	second	call	to	the	calculateTax	function	returns	null,	which
changes	the	taxValue	type	to	null.	When	the	type	guard	statements	inspect
the	type	of	the	variable,	they	fail	to	narrow	its	type	to	one	of	those	in	the
string	|	number	union	and	produce	the	following	output:

Unexpected	type	for	value:	null

Number	value:	240.00

Under	normal	circumstances,	the	compiler	will	report	an	error	if	a	value	of
one	type	is	assigned	to	a	variable	of	a	different	type,	but	the	compiler	remains
silent	because	it	allows	null	and	undefined	to	be	treated	as	values	for	all
types.

Note In	addition	to	type	inconsistencies,	nullable	values	can	lead	to	runtime
errors	that	are	difficult	to	detect	during	development	and	often	encountered
by	users.	In	Listing	7-31,	for	example,	there	is	no	easy	way	for	consumers	of
the	calculateTax	function	to	know	that	a	null	value	may	be	returned
and	to	understand	when	that	might	happen.	It	is	easy	to	see	the	null	value
and	the	reasons	for	its	use	in	the	example	but	much	harder	to	do	the	same
thing	in	a	real	project	or	in	a	third-party	package.

Restricting	Nullable	Assignments
The	use	of	null	and	undefined	can	be	restricted	by	enabling	the
strictNullChecks	compiler	setting,	as	shown	in	Listing	7-32.	(This	setting
is	also	enabled	by	the	strict	setting.)



{

				"compilerOptions":	{

								"target":	"es2020",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"declaration":	true,

								"noImplicitAny":	true,

								"strictNullChecks":	true

				}

}

Listing	7-32. Enabling	Strict	Null	Checks	in	the	tsconfig.json	File	in	the	types	Folder

When	true,	this	setting	tells	the	compiler	not	to	allow	null	or
undefined	values	to	be	assigned	to	other	types.	Save	the	change	to	the
configuration	file,	and	the	compiler	will	recompile	the	index.ts	file	and
generate	the	following	error:

src/index.ts(3,9):	error	TS2322:	Type	'null'	is	not

assignable	to	type	'string	|	number'.

The	configuration	change	tells	the	compiler	to	produce	an	error	when	null
or	undefined	values	are	assigned	to	another	type.	In	this	example,	the	error
occurs	because	the	null	value	returned	by	the	calculateTax	function	isn’t
one	of	the	types	in	the	union	that	describes	the	function’s	result.

To	resolve	the	error,	the	function	can	be	rewritten	not	to	use	null,	or	the
type	union	used	to	describe	its	result	can	be	expanded	to	include	null,	which	is
the	approach	taken	in	Listing	7-33.

function	calculateTax(amount:	number,	format:

boolean):	string	|	number	|	null	{

				if	(amount	===	0)	{

								return	null;

				}

				const	calcAmount	=	amount	*	1.2;

				return	format	?	`$${calcAmount.toFixed(2)}`	:

calcAmount;

}

let	taxValue:	string	|	number	|	null	=	calculateTax(0,



false);

switch	(typeof	taxValue)	{

				case	"number":

								console.log(`Number	Value:

${taxValue.toFixed(2)}`);

								break;

				case	"string":

								console.log(`String	Value:

${taxValue.charAt(0)}`);

								break;

				default:

								if	(taxValue	===	null)	{

												console.log("Value	is	null");

								}	else	{

												console.log(typeof	taxValue);

												let	value:	never	=	taxValue;

												console.log(`Unexpected	type	for	value:

${value}`);

								}

}

Listing	7-33. Expanding	a	Type	Union	in	the	index.ts	File	in	the	src	Folder

Expanding	the	type	union	makes	it	obvious	that	null	values	may	be
returned	by	the	function,	ensuring	that	code	that	uses	the	function	knows	that
string,	number,	or	null	values	have	to	be	dealt	with.	As	explained	in
Chapter	3,	using	typeof	on	null	values	returns	object,	so	guarding	against
null	values	is	done	using	an	explicit	value	check,	which	the	TypeScript
compiler	understands	as	a	type	guard.	The	code	in	Listing	7-33	produces	the
following	result	when	it	is	executed:

Value	is	null

Removing	null	from	a	Union	with	an	Assertion
Remember	that	unions	present	the	intersection	of	the	API	of	each	individual
type.	The	null	and	undefined	values	don’t	present	any	properties	or
methods,	which	means	that	values	for	nullable	type	unions	can’t	be	used	directly,
even	if	the	non-null	types	have	an	intersection	of	useful	properties	or	methods



(of	which	there	are	examples	in	later	chapters).	A	non-null	assertion	tells	the
compiler	that	a	value	isn’t	null,	which	removes	null	from	the	type	union	and
allows	the	intersection	of	the	other	types	to	be	used,	as	shown	in	Listing	7-34.

Caution A	non-null	assertion	should	be	used	only	when	you	know	that	a
null	value	cannot	occur.	A	runtime	error	will	be	caused	if	you	apply	the
assertion	and	a	null	value	does	occur.	A	safer	approach	is	to	use	a	type	guard,
as	described	in	the	next	section.

function	calculateTax(amount:	number,	format:

boolean):	string	|	number	|	null	{

				if	(amount	===	0)	{

								return	null;

				}

				const	calcAmount	=	amount	*	1.2;

				return	format	?	`$${calcAmount.toFixed(2)}`	:

calcAmount;

}

let	taxValue:	string	|	number	=	calculateTax(100,

false)!;

switch	(typeof	taxValue)	{

				case	"number":

								console.log(`Number	Value:

${taxValue.toFixed(2)}`);

								break;

				case	"string":

								console.log(`String	Value:

${taxValue.charAt(0)}`);

								break;

				default:

								if	(taxValue	===	null)	{

												console.log("Value	is	null");

								}	else	{

												console.log(typeof	taxValue);

												let	value:	never	=	taxValue;

												console.log(`Unexpected	type	for	value:



${value}`);

								}

}

Listing	7-34. Using	a	Non-Null	Assertion	in	the	index.ts	File	in	the	src	Folder

A	non-null	value	is	asserted	by	applying	the	!	character	after	the	value,	as
illustrated	by	Figure	7-5.	The	assertion	in	the	listing	tells	the	compiler	that	the
result	from	the	calculateTax	function	will	not	be	null,	which	allows	it	to
be	assigned	to	the	taxValue	variable,	whose	type	is	string	|	number.

Figure	7-5. Asserting	a	non-null	value

The	code	in	Listing	7-34	produces	this	output	when	it	is	compiled	and
executed:

Number	Value:	120.00

Removing	null	from	a	Union	with	a	Type	Guard
An	alternative	approach	is	to	filter	out	null	or	undefined	values	using	a
type	guard,	as	shown	in	Listing	7-35.	This	approach	has	the	advantage	of	testing
values	at	runtime.

function	calculateTax(amount:	number,	format:

boolean):	string	|	number	|	null	{

				if	(amount	===	0)	{

								return	null;

				}

				const	calcAmount	=	amount	*	1.2;

				return	format	?	`$${calcAmount.toFixed(2)}`	:

calcAmount;

}

let	taxValue:	string	|	number	|	null	=



calculateTax(100,	false);

if	(taxValue	!==	null)	{

				let	nonNullTaxValue:	string	|	number	=	taxValue;

				switch	(typeof	taxValue)	{

								case	"number":

												console.log(`Number	Value:

${taxValue.toFixed(2)}`);

												break;

								case	"string":

												console.log(`String	Value:

${taxValue.charAt(0)}`);

												break;

				}

}	else	{

				console.log("Value	is	not	a	string	or	a	number");

}

Listing	7-35. Removing	null	Values	with	a	Type	Guard	in	the	index.ts	File	in	the	src	Folder

The	compiler	knows	that	the	test	for	null	values	means	that	the	value	can
be	treated	as	the	non-nullable	string	|	number	union	type	with	the	if
code	block.	(The	compiler	also	knows	that	taxValue	can	be	null	only	in	the
else	code	block.)	The	code	in	Listing	7-35	produces	this	output	when	it	is
compiled	and	executed:

Number	Value:	120.00

Using	the	Definite	Assignment	Assertion
If	the	strictNullChecks	option	is	enabled,	the	compiler	will	report	an	error
if	a	variable	is	used	before	it	is	assigned	a	value.	This	is	a	helpful	feature,	but
there	can	be	times	where	a	value	is	assigned	in	a	way	that	isn’t	visible	to	the
compiler,	as	shown	in	Listing	7-36.

Caution I	use	the	built-in	JavaScript	eval	function	in	Listing	7-36	to
execute	a	string	as	a	code	statement.	The	eval	function	is	considered
dangerous	and	should	not	be	used	in	real	projects.

function	calculateTax(amount:	number,	format:

boolean):	string	|	number	|	null	{



				if	(amount	===	0)	{

								return	null;

				}

				const	calcAmount	=	amount	*	1.2;

				return	format	?	`$${calcAmount.toFixed(2)}`	:

calcAmount;

}

let	taxValue:	string	|	number	|	null;

eval("taxValue	=	calculateTax(100,	false)");

if	(taxValue	!==	null)	{

				let	nonNullTaxValue:	string	|	number	=	taxValue;

				switch	(typeof	taxValue)	{

								case	"number":

												console.log(`Number	Value:

${taxValue.toFixed(2)}`);

												break;

								case	"string":

												console.log(`String	Value:

${taxValue.charAt(0)}`);

												break;

				}

}	else	{

				console.log("Value	is	not	a	string	or	a	number");

}

Listing	7-36. Using	an	Unassigned	Variable	in	the	index.ts	File	in	the	src	Folder

The	eval	function	accepts	a	string	and	executes	it	as	a	code	statement.
The	TypeScript	compiler	isn’t	able	to	determine	the	effect	of	the	eval	function
and	doesn’t	realize	that	it	assigns	a	value	to	taxValue.	When	the	code	is
compiled,	the	compiler	reports	the	following	errors:

src/index.ts(12,5):	error	TS2454:	Variable	'taxValue'

is	used	before	being	assigned.

src/index.ts(13,9):	error	TS2322:	Type	'string	|

number	|	null'	is	not	assignable	to	type	'string	|

number'.

		Type	'null'	is	not	assignable	to	type	'string	|



number'.

src/index.ts(13,44):	error	TS2454:	Variable	'taxValue'

is	used	before	being	assigned.

src/index.ts(14,20):	error	TS2454:	Variable	'taxValue'

is	used	before	being	assigned.

The	definitive	assignment	assertion	tells	TypeScript	that	a	value	will	be
assigned	before	the	variable	is	used,	as	shown	in	Listing	7-37.

function	calculateTax(amount:	number,	format:

boolean):	string	|	number	|	null	{

				if	(amount	===	0)	{

								return	null;

				}

				const	calcAmount	=	amount	*	1.2;

				return	format	?	`$${calcAmount.toFixed(2)}`	:

calcAmount;

}

let	taxValue!:	string	|	number	|	null;

eval("taxValue	=	calculateTax(100,	false)");

if	(taxValue	!==	null)	{

				let	nonNullTaxValue:	string	|	number	=	taxValue;

				switch	(typeof	taxValue)	{

								case	"number":

												console.log(`Number	Value:

${taxValue.toFixed(2)}`);

												break;

								case	"string":

												console.log(`String	Value:

${taxValue.charAt(0)}`);

												break;

				}

}	else	{

				console.log("Value	is	not	a	string	or	a	number");

}

Listing	7-37. Using	the	Definitive	Assignment	Assertion	in	the	index.ts	File	in	the	src	Folder



The	definitive	assignment	assertion	is	a	!	character,	but	it	is	applied	after	the
name	when	the	variable	is	defined,	unlike	the	non-null	assertion	that	is	applied	in
expressions.	Just	as	with	the	other	assertions,	you	are	responsible	for	ensuring
that	a	value	really	is	assigned.	You	may	encounter	a	runtime	error	if	you	use	an
assertion	but	don’t	perform	an	assignment.	The	assertion	in	Listing	7-37	allows
the	code	to	be	compiled,	which	produces	the	following	output	when	it	is
executed:

Number	Value:	120.00

Summary
In	this	chapter,	I	explained	how	TypeScript	can	be	used	to	restrict	the	JavaScript
type	system	by	performing	type	checking.	I	demonstrated	how	type	annotations
can	be	used	to	specify	the	types	that	can	be	used	and	how	the	compiler	can	infer
types	from	code	statements.	I	explained	the	use	of	the	any,	unknown,	and
never	types;	type	unions;	and	guards	that	restrict	the	range	of	types.	In	the	next
chapter,	I	explain	how	TypeScript	deals	with	functions	in	more	depth.



(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
A.	Freeman,	Essential	TypeScript	4
https://doi.org/10.1007/978-1-4842-7011-0_8

8.	Using	Functions
Adam	Freeman1		

London,	UK

	

In	this	chapter,	I	explain	how	TypeScript	is	applied	to	functions,	showing	you
how	TypeScript	helps	prevent	common	problems	when	defining	functions,
dealing	with	parameters,	and	producing	results.	Table	8-1	summarizes	the
chapter.

Table	8-1. Chapter	Summary

Problem Solution Listing

Allow	a	function	to	be	called	with	fewer	arguments
than	parameters

Define	optional	parameters	or	define
parameters	with	default	values

7,	8

Allow	a	function	to	be	called	with	more	arguments
than	parameters

Use	a	rest	parameter 9,	10

Restrict	the	types	that	can	be	used	for	parameter
values	and	results

Apply	type	annotations	to	parameters	or
function	signatures

11,	17,
18

Prevent	null	values	from	being	used	as	function
arguments

Enable	the	strictNullChecks
compiler	option

12–14

Ensure	that	all	function	code	paths	return	a	result Enable	the	noImplicitReturns
compiler	option

15.	16

Describe	the	relationship	between	the	types	of	a
function’s	parameters	and	its	result

Overload	the	function’s	types 19,	20

Describe	the	effect	of	an	assert	function Use	the	assert	keyword 21–23

For	quick	reference,	Table	8-2	lists	the	TypeScript	compiler	options	used	in
this	chapter.

Table	8-2. The	TypeScript	Compiler	Options	Used	in	This	Chapter

Name Description

https://doi.org/10.1007/978-1-4842-7011-0_8


target This	option	specifies	the	version	of	the	JavaScript	language	that	the	compiler
will	target	in	its	output.

outDir This	option	specifies	the	directory	in	which	the	JavaScript	files	will	be	placed.

rootDir This	option	specifies	the	root	directory	that	the	compiler	will	use	to	locate
TypeScript	files.

declaration This	option	produces	type	declaration	files	when	enabled,	which	can	be	useful
in	understanding	how	types	have	been	inferred.	These	files	are	described	in
more	detail	in	Chapter	14.

strictNullChecks This	option	prevents	null	and	undefined	from	being	accepted	as	values
for	other	types.

noImplicitReturns This	option	requires	all	paths	in	a	function	to	return	a	result.

noUnusedParameters This	option	causes	the	compiler	to	produce	a	warning	if	a	function	defines
parameters	that	are	not	used.

Preparing	for	This	Chapter
In	this	chapter,	I	continue	to	use	the	types	project	created	in	Chapter	7.	To
prepare	for	this	chapter,	replace	the	contents	of	the	index.ts	file	in	the	src
folder	with	the	code	shown	in	Listing	8-1.

Tip You	can	download	the	example	project	for	this	chapter—and	for	all	the
other	chapters	in	this	book—from
https://github.com/Apress/essential-typescript-4.

function	calculateTax(amount)	{

				return	amount	*	1.2;

}

let	taxValue	=	calculateTax(100);

console.log(`Total	Amount:	${taxValue}`);

Listing	8-1. The	Contents	of	the	index.ts	File	in	the	src	Folder

Comment	out	the	compiler	options	that	prevent	the	implicit	use	of	the	any
type	and	the	assignment	of	the	null	and	undefined	values	to	other	types,	as
shown	in	Listing	8-2.

{

				"compilerOptions":	{

https://github.com/Apress/essential-typescript-4


								"target":	"es2020",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"declaration":	true,

								//	"noImplicitAny":	true,

								//	"strictNullChecks":	true

				}

}

Listing	8-2. Disabling	Compiler	Options	in	the	tsconfig.json	File	in	the	types	Folder

Open	a	new	command	prompt,	navigate	to	the	types	folder,	and	run	the
command	shown	in	Listing	8-3	to	start	the	TypeScript	compiler	so	it
automatically	executes	code	after	it	has	been	compiled.

npm	start

Listing	8-3. Starting	the	TypeScript	Compiler

The	compiler	will	compile	the	code	in	the	index.ts	file,	execute	the
output,	and	then	enter	watch	mode,	producing	the	following	output:

6:52:41	AM	-	Starting	compilation	in	watch	mode...

6:52:43	AM	-	Found	0	errors.	Watching	for	file

changes.

Total	Amount:	120

Defining	Functions
TypeScript	transforms	JavaScript	functions	to	make	them	more	predictable	and
to	make	the	data	type	assumptions	explicit	so	they	can	be	checked	by	the
compiler.	The	index.ts	file	contains	this	simple	function:

...

function	calculateTax(amount)	{

				return	amount	*	1.2;

}

...

Chapter	7	demonstrated	how	TypeScript	features	like	type	annotations	can	be



applied	to	functions.	In	the	sections	that	follow,	I	revisit	these	features	and
describe	the	other	ways	that	TypeScript	enhances	functions.

Redefining	Functions
One	of	the	most	important	changes	that	TypeScript	introduces	is	a	warning	when
a	function	is	redefined.	In	JavaScript,	a	function	can	be	defined	more	than	once,
and	the	most	recent	implementation	is	used	when	the	function	is	invoked.	This
leads	to	a	common	problem	for	developers	who	have	moved	to	JavaScript	from
another	language,	as	shown	in	Listing	8-4.

function	calculateTax(amount)	{

				return	amount	*	1.2;

}

function	calculateTax(amount,	discount)	{

				return	calculateTax(amount)	-	discount;

}

let	taxValue	=	calculateTax(100);

console.log(`Total	Amount:	${taxValue}`);

Listing	8-4. Redefining	a	Function	in	the	index.ts	File	in	the	src	Folder

Many	languages	support	function	overloading,	which	allows	multiple
functions	to	be	defined	with	the	same	name	as	long	as	they	have	different
numbers	of	parameters	or	if	the	parameters	have	different	types.	If	you	are	used
to	this	style	of	programming,	the	code	in	Listing	8-4	looks	perfectly	normal,	and
you	will	assume	the	second	calculateTax	function	builds	on	the	first
calculateTax	function	to	apply	a	discount.

JavaScript	doesn’t	support	function	overloading,	and	when	you	define	two
functions	with	the	same	name,	the	second	function	replaces	the	first,	regardless
of	the	function’s	parameters.	The	number	of	arguments	used	to	call	a	function	is
not	important	in	JavaScript—if	there	are	more	parameters	than	arguments,	then
the	extra	parameters	are	undefined.	If	there	are	more	arguments	than
parameters,	the	function	can	either	ignore	them	or	use	the	special	arguments
value,	which	provides	access	to	all	the	arguments	used	to	invoke	the	function.	If
the	code	in	Listing	8-4	were	executed,	the	first	calculateTax	function	would
be	ignored,	and	the	second	function	would	be	invoked,	but	without	a	value	for
the	second	parameter.	When	the	function	is	executed,	it	would	invoke	itself
repeatedly,	until	the	call	stack	becomes	exhausted	and	an	error	is	produced.



To	avoid	this	problem,	the	TypeScript	compiler	reports	an	error	when	more
than	one	function	is	defined	with	the	same	name.	Here	are	the	error	messages
produced	by	the	compiler	for	the	code	in	Listing	8-4:

src/index.ts(1,10):	error	TS2393:	Duplicate	function

implementation.

src/index.ts(5,10):	error	TS2393:	Duplicate	function

implementation.

The	practical	effect	of	not	being	able	to	overload	functions	is	that	different
names	must	be	used	(such	as	calculateTax	and
calculateTaxWithDiscount,	for	example)	or	a	single	function	adapts	its
behavior	based	on	its	parameters.	I	find	the	first	approach	works	well	for
complex	groups	of	features,	and	I	prefer	the	second	approach	for	simpler	tasks.
Listing	8-5	takes	the	second	approach	and	consolidates	the	functionality	into	a
single	function.

function	calculateTax(amount,	discount)	{

				return	(amount	*	1.2)	-	discount;

}

let	taxValue	=	calculateTax(100,	0);

console.log(`Total	Amount:	${taxValue}`);

Listing	8-5. Consolidating	Functions	in	the	index.ts	File	in	the	src	Folder

The	code	in	Listing	8-6	produces	the	following	output	when	compiled	and
executed:

Total	Amount:	120

Understanding	Function	Parameters
I	had	to	make	two	changes	in	Listing	8-5	to	get	the	code	to	compile.	The	first
was	to	remove	the	duplicate	calculateTax	function	and	combine	the
functionality	in	a	single	function.	The	second	change	was	to	the	statement	that
calls	the	function,	to	which	I	added	a	second	argument:

...

let	taxValue	=	calculateTax(100,	0);

...



TypeScript	has	a	stricter	approach	than	JavaScript	and	expects	functions	to
be	used	with	the	same	number	of	arguments	as	there	are	parameters.	Add	the
statements	shown	in	Listing	8-6	to	the	index.ts	file	to	see	how	the	compiler
responds	to	different	numbers	of	arguments.

function	calculateTax(amount,	discount)	{

				return	(amount	*	1.2)	-	discount;

}

let	taxValue	=	calculateTax(100,	0);

console.log(`2	args:	${taxValue}`);

taxValue	=	calculateTax(100);

console.log(`1	arg:	${taxValue}`);

taxValue	=	calculateTax(100,	10,	20);

console.log(`3	args:	${taxValue}`);

Listing	8-6. Calling	a	Function	in	the	index.ts	File	in	the	src	Folder

The	first	new	call	to	the	function	doesn’t	provide	enough	arguments,	and	the
second	provides	too	many.	The	compiler	reports	the	following	errors	when	the
code	is	compiled:

src/index.ts(7,12):	error	TS2554:	Expected	2

arguments,	but	got	1.

src/index.ts(8,12):	error	TS2554:	Expected	2

arguments,	but	got	3.

The	compiler	insists	on	matching	arguments	to	parameters	to	make	the
expectations	in	the	code	explicit,	just	as	for	the	features	described	in	Chapter	7.
When	you	examine	a	set	of	parameters,	you	can’t	easily	determine	how	the
function	will	behave	if	some	of	them	don’t	receive	values.	And	when	a	function
is	invoked	with	a	different	number	of	arguments,	it	is	difficult	to	determine
whether	this	is	intentional	or	an	error.	TypeScript	tackles	both	of	these	problems
by	requiring	arguments	that	correspond	to	all	parameters	unless	the	function
indicates	that	it	can	be	more	flexible	using	the	features	described	in	the
following	sections.

Tip If	the	noUnusedParameters	option	is	enabled,	the	compiler	will
warn	you	if	a	function	defines	parameters	that	it	doesn’t	use.



Using	Optional	Parameters
Function	parameters	are	mandatory	by	default,	but	this	can	be	changed	by	using
optional	parameters,	as	shown	in	Listing	8-7.	(I	have	also	commented	out	the
statement	that	has	too	many	arguments,	which	I	return	to	in	the	following
sections.)

function	calculateTax(amount,	discount?)	{

				return	(amount	*	1.2)	-	(discount	||	0);

}

let	taxValue	=	calculateTax(100,	0);

console.log(`2	args:	${taxValue}`);

taxValue	=	calculateTax(100);

console.log(`1	arg:	${taxValue}`);

//taxValue	=	calculateTax(100,	10,	20);

//console.log(`3	args:	${taxValue}`);

Listing	8-7. Defining	an	Optional	Parameter	in	the	index.ts	File	in	the	src	Folder

Optional	parameters	are	defined	by	placing	a	question	mark	after	the
parameter	name,	as	illustrated	in	Figure	8-1.

Note Optional	parameters	must	be	defined	after	the	required	parameters.
This	means	that	I	cannot	reverse	the	order	of	the	amount	and	discount
parameters	in	Listing	8-7,	for	example,	because	amount	is	required	and
discount	is	optional.

Figure	8-1. Defining	an	optional	parameter

Callers	of	the	calculateTax	function	can	omit	a	value	for	the
discount	parameter,	which	will	provide	the	function	with	an	undefined



value	parameter.	Functions	that	declare	optional	parameters	must	ensure	they
can	operate	when	values	are	not	supplied,	and	the	function	in	Listing	8-7	does
this	using	the	logical	OR	operator	(||)	to	coalesce	undefined	values	to	zero	if
the	discount	parameter	is	undefined,	like	this:

...

return	(amount	*	1.2)	-	(discount	||	0);

...

The	discount	parameter	is	used	in	the	same	way	as	the	required
parameter,	and	the	only	change	is	that	the	function	must	be	able	to	deal	with	the
possibility	of	an	undefined	value.

The	user	of	the	function	doesn’t	have	to	take	any	special	measures	to	deal
with	the	optional	parameter.	In	the	case	of	the	example,	this	means	the
calculateTax	function	can	be	used	with	one	or	two	arguments.	The	code	in
Listing	8-7	produces	the	following	output	when	it	is	executed:

2	args:	120

1	arg:	120

Using	a	Parameter	with	a	Default	Value
If	there	is	a	fallback	value	that	should	be	used	for	an	optional	parameter,	then	it
can	be	applied	when	the	parameter	is	defined,	as	shown	in	Listing	8-8.

function	calculateTax(amount,	discount	=	0)	{

				return	(amount	*	1.2)	-	discount;

}

let	taxValue	=	calculateTax(100,	0);

console.log(`2	args:	${taxValue}`);

taxValue	=	calculateTax(100);

console.log(`1	arg:	${taxValue}`);

//taxValue	=	calculateTax(100,	10,	20);

//console.log(`3	args:	${taxValue}`);

Listing	8-8. Using	a	Default	Parameter	Value	in	the	index.ts	File	in	the	src	Folder

A	parameter	with	a	default	value	is	known	as	a	default-initialized	parameter.
The	name	of	the	parameter	is	followed	by	the	assignment	operator	(a	single	=
character)	and	the	value,	as	shown	in	Figure	8-2.	Notice	that	no	question	mark	is



used	when	defining	a	parameter	with	a	default	value.

Figure	8-2. Defining	a	default	parameter	value

Using	a	default	value	means	that	the	code	in	the	function	doesn’t	have	to
check	for	undefined	values	and	means	that	the	fallback	value	can	be	changed
in	a	single	location	and	take	effect	throughout	the	function.

Tip Parameters	with	default	values	are	still	optional	parameters,	even
though	no	question	mark	is	used,	and	must	be	defined	after	the	function’s
required	parameters.

The	code	in	Listing	8-8	produces	the	following	output	when	it	compiled	and
executed:

2	args:	120

1	arg:	120

Using	a	Rest	Parameter
The	counterpart	to	optional	parameters	is	the	rest	parameter,	which	allows	a
function	to	accept	a	variable	number	of	arguments,	which	are	grouped	and
presented	together.	A	function	can	have	one	rest	parameter	only,	and	it	must	be
the	last	parameter,	as	shown	in	Listing	8-9.

function	calculateTax(amount,	discount	=	0,

...extraFees)	{

				return	(amount	*	1.2)	-	discount

								+	extraFees.reduce((total,	val)	=>	total	+

val,	0);

}



let	taxValue	=	calculateTax(100,	0);

console.log(`2	args:	${taxValue}`);

taxValue	=	calculateTax(100);

console.log(`1	arg:	${taxValue}`);

taxValue	=	calculateTax(100,	10,	20);

console.log(`3	args:	${taxValue}`);

Listing	8-9. Defining	a	Rest	Parameter	in	the	index.ts	File	in	the	src	Folder

A	rest	parameter	is	defined	by	prefixing	the	parameter	name	with	an	ellipsis
(three	periods),	as	shown	in	Figure	8-3.

Figure	8-3. Defining	a	rest	parameter

Any	arguments	for	which	there	are	no	corresponding	parameters	are	assigned
to	the	rest	parameter,	which	is	an	array.	The	array	will	always	be	initialized	and
will	contain	no	items	if	there	were	no	extra	arguments.	The	addition	of	the	rest
parameter	means	that	the	calculateTax	function	can	be	called	with	one	or
more	arguments:	the	first	argument	is	assigned	to	the	amount	parameter,	the
section	argument	(if	there	is	one)	is	assigned	to	the	discount	parameter,	and	any
other	arguments	are	added	to	the	extraFees	parameter	array.

The	process	of	grouping	arguments	into	the	rest	parameter	array	is	done
automatically,	and	no	special	measures	are	required	when	calling	the	function.
The	user	of	the	function	can	define	additional	arguments	and	separate	them	with
commas,	as	shown	in	Listing	8-10.

function	calculateTax(amount,	discount	=	0,

...extraFees)	{

				return	(amount	*	1.2)	-	discount

								+	extraFees.reduce((total,	val)	=>	total	+

val,	0);

}



let	taxValue	=	calculateTax(100,	0);

console.log(`2	args:	${taxValue}`);

taxValue	=	calculateTax(100);

console.log(`1	arg:	${taxValue}`);

taxValue	=	calculateTax(100,	10,	20);

console.log(`3	args:	${taxValue}`);

taxValue	=	calculateTax(100,	10,	20,	1,	30,	7);

console.log(`6	args:	${taxValue}`);

Listing	8-10. Using	Additional	Function	Arguments	in	the	index.ts	File	in	the	src	Folder

The	code	in	Listing	8-10	produces	the	following	output	when	it	is	compiled
and	executed:

2	args:	120

1	arg:	120

3	args:	130

6	args:	168

Applying	Type	Annotations	to	Function	Parameters
By	default,	the	TypeScript	compiler	assigns	all	function	parameters	to	the	any
type,	but	more	specific	types	can	be	declared	using	type	annotations.	Listing	8-
11	applies	type	annotations	to	the	calculateTax	function	to	ensure	that	only
number	values	can	be	used	for	its	parameters.

function	calculateTax(amount:	number,	discount:	number

=	0,	...extraFees:	number[])	{

				return	(amount	*	1.2)	-	discount

								+	extraFees.reduce((total,	val)	=>	total	+

val,	0);

}

let	taxValue	=	calculateTax(100,	0);

console.log(`2	args:	${taxValue}`);

taxValue	=	calculateTax(100);

console.log(`1	arg:	${taxValue}`);

taxValue	=	calculateTax(100,	10,	20);

console.log(`3	args:	${taxValue}`);

taxValue	=	calculateTax(100,	10,	20,	1,	30,	7);

console.log(`6	args:	${taxValue}`);



Listing	8-11. Applying	Parameter	Type	Annotations	in	the	index.ts	File	in	the	src	Folder

For	parameters	with	default	values,	the	type	annotation	comes	before	the
value	assignment.	The	type	for	a	rest	parameter	is	always	an	array.	I	return	to	the
topic	of	typed	arrays	in	Chapter	9,	and	the	annotation	for	the	extraFees
parameter	tells	the	compiler	that	any	additional	arguments	must	be	numbers.	The
code	in	Listing	8-11	produces	the	following	output:

2	args:	120

1	arg:	120

3	args:	130

6	args:	168

Tip Type	annotations	for	optional	parameters	are	applied	after	the	question
mark,	like	this:	discount?:	number.

Controlling	Null	Parameter	Values
As	explained	in	Chapter	7,	TypeScript	allows	null	and	undefined	to	be	used
as	values	for	all	types	by	default,	which	means	that	a	function	can	receive	null
values	for	all	of	its	parameters,	as	shown	in	Listing	8-12.

function	calculateTax(amount:	number,	discount:	number

=	0,	...extraFees:	number[])	{

				return	(amount	*	1.2)	-	discount

								+	extraFees.reduce((total,	val)	=>	total	+

val,	0);

}

let	taxValue	=	calculateTax(null,	0);

console.log(`Tax	value:	${taxValue}`);

Listing	8-12. Passing	a	Null	Value	to	a	Function	in	the	index.ts	File	in	the	src	Folder

If	the	null	value	is	used	for	a	default-initialized	parameter,	then	its	default
value	is	used,	as	though	the	function	had	been	called	without	an	argument.	But
for	required	parameters,	the	function	receives	the	null	value,	which	can	lead	to
unexpected	results.	In	the	example,	the	calculateTax	function	receives
null	for	the	amount	parameter,	which	produces	the	following	output:



Tax	value:	0

The	null	value	is	coerced	to	the	number	0	by	the	multiplication	operator.
For	some	projects,	this	may	be	a	reasonable	outcome,	but	it	is	the	kind	of
outcome	that	silently	swallows	a	null	value	and	confuses	the	user	at	runtime.
The	strictNullChecks	compiler	option	disables	the	use	of	null	and
undefined	as	values	for	all	types,	as	described	in	Chapter	7,	and	requires
parameters	that	can	accept	null	values	to	use	a	type	union.	Listing	8-13	enables
the	compiler	option.

{

				"compilerOptions":	{

								"target":	"es2020",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"declaration":	true,

								"strictNullChecks":	true

				}

}

Listing	8-13. Changing	the	Compiler	Option	in	the	tsconfig.json	File	in	the	types	Folder

When	the	configuration	file	is	saved,	the	compiler	will	run	and	produce	the
following	error,	flagging	the	use	of	the	null	argument:

src/index.ts(6,29):	error	TS2345:	Argument	of	type

'null'	is	not	assignable	to	parameter	of	type

'number'.

When	null	values	should	be	allowed,	the	parameter	can	be	defined	with	a
type	union,	as	shown	in	Listing	8-14.

function	calculateTax(amount:	number	|	null,	discount:

number	=	0,

								...extraFees:	number[])	{

				if	(amount	!=	null)	{

								return	(amount	*	1.2)	-	discount

												+	extraFees.reduce((total,	val)	=>	total	+

val,	0);

				}



}

let	taxValue	=	calculateTax(null	,	0);

console.log(`Tax	value:	${taxValue}`);

Listing	8-14. Allowing	a	Null	Parameter	Value	in	the	index.ts	File	in	the	src	Folder

A	type	guard	is	required	to	prevent	the	null	value	from	being	used	with	the
multiplication	operator.	This	can	feel	like	an	arduous	process	when	you	start
using	TypeScript,	but	restricting	nullable	parameters	can	flush	out	problems	that
would	otherwise	produce	unexpected	results	at	runtime.	The	code	in	Listing	8-14
produces	the	following	result:

Tax	value:	undefined

Understanding	Function	Results
The	TypeScript	compiler	will	try	to	infer	the	result	type	from	the	code	in	the
function	and	will	automatically	use	type	unions	if	a	function	can	return	multiple
types.	The	easiest	way	to	see	what	type	the	compiler	infers	for	a	function	result
is	to	enable	the	generation	of	type	declaration	files,	using	the	declaration
setting,	which	was	enabled	in	Listing	8-2.	These	files	are	used	to	provide	type
information	when	a	package	is	used	in	another	TypeScript	project,	and	I	describe
their	use	in	Chapter	14.

Examine	the	contents	of	the	index.d.ts	file	in	the	dist	folder	to	see
details	of	the	types	that	the	compiler	has	inferred	or	read	from	type	annotations,
as	follows:

declare	function	calculateTax(amount:	number	|	null,

discount?:	number,

				...extraFees:	number[]):	number	|	undefined;

declare	let	taxValue:	number	|	undefined;

The	highlighted	part	of	the	type	information	for	the	calculateTax
function	shows	the	type	inferred	by	the	compiler	for	the	function’s	result.

Disabling	Implicit	Returns
JavaScript	has	an	unusually	relaxed	approach	to	function	results,	such	that	a
function	will	return	undefined	for	any	path	through	the	function’s	code	that
doesn’t	reach	a	statement	with	the	return	keyword,	which	is	known	as	the
implicit	return	feature.



The	type	guard	used	to	filter	out	null	values	means	that	there	is	a	path
through	the	function’s	code	that	doesn’t	reach	a	return	statement	and	so	the
function	will	return	a	number	if	the	amount	parameter	isn’t	null	and	will
return	undefined	if	the	amount	parameter	is	null.	The
strictNullChecks	compiler	option	was	enabled	in	Listing	8-14,	so	the
compiler	has	inferred	the	result	type	to	be	number	|	undefined.

To	prevent	implicit	returns,	enable	the	compiler	setting	shown	in	Listing	8-
15.

{

				"compilerOptions":	{

								"target":	"es2020",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"declaration":	true,

								"strictNullChecks":	true,

								"noImplicitReturns":	true

				}

}

Listing	8-15. Changing	the	Compiler	Configuration	in	the	tsconfig.json	File	in	the	types	Folder

When	the	noImplicitReturns	setting	is	true,	the	compiler	will	report
an	error	when	there	are	paths	through	functions	that	don’t	explicitly	produce	a
result	with	the	result	keyword	or	throw	an	error.	Save	the	change	to	the
tsconfig.json	file;	you	will	see	the	following	output	from	the	compiler,
and	it	builds	the	index.ts	file	using	the	new	configuration:

src/index.ts(1,10):	error	TS7030:	Not	all	code	paths

return	a	value.

Now	every	path	through	functions	must	produce	a	result.	A	function	can	still
return	undefined,	but	it	must	now	be	done	explicitly,	as	shown	in	Listing	8-
16.

function	calculateTax(amount:	number	|	null,	discount:

number	=	0,

								...extraFees:	number[])	{

				if	(amount	!=	null)	{

								return	(amount	*	1.2)	-	discount



												+	extraFees.reduce((total,	val)	=>	total	+

val,	0);

				}	else	{

								return	undefined;

				}

}

let	taxValue	=	calculateTax(null,	0);

console.log(`Tax	value:	${taxValue}`);

Listing	8-16. Returning	a	Result	in	the	index.ts	File	in	the	src	Folder

Disabling	implicit	returns	ensures	that	functions	have	to	be	explicit	about	the
results	they	produce.	The	change	in	Listing	8-16	addresses	the	compiler	error
from	Listing	8-14	and	produces	the	following	result:

Tax	value:	undefined

Using	Type	Annotations	for	Function	Results
The	compiler	infers	a	function	result	type	by	analyzing	the	code	paths	and
creating	a	union	of	the	types	it	encounters.	I	prefer	to	use	a	type	annotation	to
explicitly	specify	the	result	type	because	it	allows	me	to	declare	what	I	intended
the	function	result	to	be,	rather	than	what	the	code	produces,	ensuring	that	I	do
not	accidentally	use	the	wrong	type.	Annotations	for	function	results	appear	at
the	end	of	the	function	signature,	as	shown	in	Listing	8-17.

function	calculateTax(amount:	number,	discount:	number

=	0,

								...extraFees:	number[]):	number	{

				return	(amount	*	1.2)	-	discount

								+	extraFees.reduce((total,	val)	=>	total	+

val,	0);

}

let	taxValue	=	calculateTax(100,	0);

console.log(`Tax	value:	${taxValue}`);

Listing	8-17. Annotating	the	Function	Result	Type	in	the	index.ts	File	in	the	src	Folder

I	have	set	the	result	type	to	number	and	removed	the	null	type	from	the
amount	parameter.	Explicitly	declaring	the	type	means	that	the	compiler	will



report	an	error	if	I	accidentally	return	a	different	type	from	the	function.	The
code	in	Listing	8-17	produces	the	following	output	once	it	has	been	compiled
and	executed:

Tax	value:	120

Defining	Void	Functions
Functions	that	do	not	produce	results	are	declared	using	the	void	type,	as
shown	in	Listing	8-18.

function	calculateTax(amount:	number,	discount:	number

=	0,

								...extraFees:	number[]):	number	{

				return	(amount	*	1.2)	-	discount

								+	extraFees.reduce((total,	val)	=>	total	+

val,	0);

}

function	writeValue(label:	string,	value:	number):

void	{

				console.log(`${label}:	${value}`);

}

writeValue("Tax	value",		calculateTax(100,	0));

Listing	8-18. Defining	a	Void	Function	in	the	index.ts	File	in	the	src	Folder

The	writeValue	function	doesn’t	return	a	result	and	has	been	annotated
with	the	void	type.	Using	void	ensures	that	the	compiler	will	warn	you	if	the
result	keyword	is	used	or	if	the	function	is	used	to	assign	a	value.

Note The	never	type	can	be	used	as	the	result	type	for	functions	that	will
never	complete,	such	as	functions	that	will	always	throw	an	exception,	for
example.

The	code	in	Listing	8-18	produces	the	following	output:

Tax	value:	120



Overloading	Function	Types
Type	unions	make	it	possible	to	define	a	range	of	types	for	function	parameters
and	results,	but	they	don’t	allow	the	relationship	between	them	to	be	expressed
accurately,	as	shown	in	Listing	8-19.

function	calculateTax(amount:	number	|	null):	number	|

null	{

				if	(amount	!=	null)	{

								return	amount	*	1.2;

				}

				return	null;

}

function	writeValue(label:	string,	value:	number):

void	{

				console.log(`${label}:	${value}`);

}

let	taxAmount:	number	|	null	=	calculateTax(100);

if	(typeof	taxAmount	===	"number")	{

				writeValue("Tax	value",		taxAmount);

}

Listing	8-19. Defining	a	Function	with	Unions	in	the	index.ts	File	in	the	src	Folder

The	type	annotation	in	Listing	8-19	describes	the	types	that	the
calculateTax	function	will	accept,	telling	users	that	the	function	will	accept
either	a	number	or	null	and	will	return	a	number	or	null.	The	information
provided	by	the	type	unions	is	correct	but	does	not	fully	describe	the	situation.
What’s	missing	is	the	relationship	between	the	parameter	and	result	types:	the
function	will	always	return	a	number	result	if	the	amount	parameter	is	a
number	parameter	and	will	always	return	null	if	amount	is	null.	The
missing	details	in	the	function’s	types	mean	that	the	user	of	the	function	has	to
use	a	type	guard	on	the	result	to	remove	null	values,	even	though	the	value
100	is	a	number	and	will	always	produce	a	number	result.

To	describe	the	relationships	between	the	types	used	by	a	function,
TypeScript	supports	type	overloads,	as	shown	in	Listing	8-20.

Note This	is	not	the	function	overloading	supported	by	languages	such	as



C#	and	Java.	Only	the	type	information	is	overloaded	by	this	feature	for	the
purposes	of	type	checking.	As	Listing	8-20	shows,	there	is	only	one
implementation	of	the	function,	which	is	still	responsible	for	dealing	with	all
the	types	used	in	the	overloads.

function	calculateTax(amount:	number):	number;

function	calculateTax(amount:	null):	null;

function	calculateTax(amount:	number	|	null):	number	|

null	{

				if	(amount	!=	null)	{

								return	amount	*	1.2;

				}

				return	null;

}

function	writeValue(label:	string,	value:	number):

void	{

				console.log(`${label}:	${value}`);

}

let	taxAmount:	number	=	calculateTax(100);

//if	(typeof	taxAmount	===	"number")	{

				writeValue("Tax	value",		taxAmount);

//}

Listing	8-20. Overloading	Function	Types	in	the	index.ts	File	in	the	src	Folder

Each	type	overload	defines	a	combination	of	types	supported	by	the	function,
describing	a	mapping	between	the	parameters	and	the	result	they	produce,	as
illustrated	in	Figure	8-4.

Figure	8-4. A	function	type	overload

The	type	overloads	replace	the	function	definition	as	the	type	information



used	by	the	TypeScript	compiler,	which	means	that	only	those	combinations	of
types	can	be	used.	When	the	function	is	invoked,	the	compiler	can	determine	the
result	type	based	on	the	type	of	the	arguments	provided,	allowing	the
taxAmount	variable	to	be	defined	as	a	number	and	removing	the	need	for	the
type	guard	to	pass	on	the	result	to	the	writeValue	function.	The	compiler
knows	that	taxAmount	can	only	be	a	number	and	doesn’t	require	the	type	to
be	narrowed.	The	code	in	Listing	8-20	produces	the	following	output	when	it	is
compiled	and	executed:

Tax	value:	120

Tip You	can	also	express	the	relationship	between	parameters	and	results
using	the	conditional	types	feature,	which	is	described	in	Chapter	13.

Understanding	Assert	Functions
An	assert	function	is	one	that	evaluates	an	expression	condition	and,	typically,
throws	an	error	if	the	result	isn’t	true.	Assert	functions	are	sometimes	used	as
type	guards	in	pure	JavaScript,	where	the	static	types	of	TypeScript	are	not
available.	The	problem	with	asset	functions	is	that	the	TypeScript	compiler
cannot	infer	the	effect	of	the	assert	function	on	types,	as	shown	in	Listing	8-21.

function	check(expression:	boolean)	{

				if	(!expression)	{

								throw	new	Error("Expression	is	false");

				}

}

function	calculateTax(amount:	number	|	null):	number	{

				check(typeof	amount	==	"number");

				return	amount	*	1.2;

}

let	taxAmount:	number	=	calculateTax(100);

console.log(`Tax	value:	${taxAmount}`)

Listing	8-21. Using	an	Assert	Function	in	the	index.ts	File	in	the	src	Folder

The	check	function	defines	a	boolean	parameter	and	throws	an	error	if	it
is	false.	This	is	the	basic	pattern	of	an	assert	function.



The	calculateTax	function	accepts	a	number	|	null	argument	and
uses	the	check	function	to	narrow	the	type	so	that	null	values	cause	errors
and	so	number	values	are	used	to	produce	a	result.

The	problem	with	this	code	is	that	the	TypeScript	compiler	doesn’t
understand	that	the	check	function	means	that	only	number	values	will	be
processed.	When	the	code	is	compiled,	the	following	error	message	is	produced:

src/index.ts(9,12):	error	TS2531:	Object	is	possibly

'null'.

The	asserts	keyword	can	be	used	to	denote	an	assert	function,	which	lets
the	TypeScript	compiler	take	the	function	into	account,	as	shown	in	Listing	8-22.

function	check(expression:	boolean)	:	asserts

expression		{

				if	(!expression)	{

								throw	new	Error("Expression	is	false");

				}

}

function	calculateTax(amount:	number	|	null):	number	{

				check(typeof	amount	==	"number");

				return	amount	*	1.2;

}

let	taxAmount:	number	=	calculateTax(100);

console.log(`Tax	value:	${taxAmount}`)

Listing	8-22. Denoting	an	Assert	Function	in	the	index.ts	File	in	the	src	Folder

The	asserts	keyword	is	used	like	a	result	type	and	is	followed	by	the
name	of	the	parameter	that	the	function	asserts,	as	shown	in	Figure	8-5.

Figure	8-5. Denoting	an	assert	function



The	TypeScript	compiler	can	take	the	effect	of	the	check	function	into
account	and	knows	that	the	calculateTax	function	narrows	the	type	of
amount	parameter	to	exclude	null	values.

There	is	a	variation	for	assert	functions	that	operate	on	types	directly,	rather
than	just	evaluating	an	expression,	as	shown	in	Listing	8-23.

function	checkNumber(val:	any):	asserts	val	is	number

{

				if	(typeof	val	!=	"number")	{

								throw	new	Error("Not	a	number");

				}

}

function	calculateTax(amount:	number	|	null):	number	{

				checkNumber(amount);

				return	amount	*	1.2;

}

let	taxAmount:	number	=	calculateTax(100);

console.log(`Tax	value:	${taxAmount}`)

Listing	8-23. Narrowing	Types	Directly	in	the	index.ts	File	in	the	src	Folder

In	this	example,	the	assets	keyword	is	followed	by	val	is	number,
which	tells	the	TypeScript	compiler	that	the	effect	of	the	checkNumber
function	is	to	ensure	that	the	val	parameter	is	a	number	value.

Summary
In	this	chapter,	I	described	the	features	that	TypeScript	provides	for	functions.	I
explained	how	duplicate	function	definitions	are	prevented,	showed	you	the
different	ways	to	describe	function	parameters	and	results,	and	described	how	to
override	function	types	to	create	more	specific	mappings	between	parameter
types	and	the	results	they	produce.	In	the	next	chapter,	I	describe	how
TypeScript	addresses	simple	data	structures.



(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
A.	Freeman,	Essential	TypeScript	4
https://doi.org/10.1007/978-1-4842-7011-0_9

9.	Using	Arrays,	Tuples,	and	Enums
Adam	Freeman1		

London,	UK

	

The	examples	so	far	in	this	part	of	the	book	have	focused	on	primitive	types,
which	has	let	me	introduce	the	basic	TypeScript	features.	In	real	projects,	related
data	properties	are	grouped	together	to	create	objects.	In	this	chapter,	I	describe
the	TypeScript	support	for	simple	data	structures,	starting	with	arrays.	Table	9-1
summarizes	the	chapter.

Table	9-1. Chapter	Summary

Problem Solution Listing

Restrict	the	range	of	types	that	an
array	can	contain

Apply	a	type	annotation	or	allow	the	compiler	to	infer	the
types	from	the	value	used	to	initialize	the	array

4–9

Define	fixed-length	arrays	with
specified	types	for	each	value

Use	a	tuple 10–14

Define	variable-length	arrays	with
specified	types	for	each	value

Use	a	tuple	with	a	rest	element 15

Refer	to	a	collection	of	related
values	through	a	single	name

Use	an	enum 16–25

Define	a	type	that	can	be	assigned
only	specific	values

Use	a	literal	value	type 26–32

Avoid	duplication	when	describing
a	complex	type

Use	a	type	alias 33

For	quick	reference,	Table	9-2	lists	the	TypeScript	compiler	options	used	in
this	chapter.

Table	9-2. The	TypeScript	Compiler	Options	Used	in	This	Chapter

Name Description

https://doi.org/10.1007/978-1-4842-7011-0_9


target This	option	specifies	the	version	of	the	JavaScript	language	that	the	compiler	will
target	in	its	output.

outDir This	option	specifies	the	directory	in	which	the	JavaScript	files	will	be	placed.

rootDir This	option	specifies	the	root	directory	that	the	compiler	will	use	to	locate
TypeScript	files.

declaration This	option	produces	type	declaration	files	when	enabled,	which	can	be	useful	in
understanding	how	types	have	been	inferred.	These	files	are	described	in	more
detail	in	Chapter	14.

strictNullChecks This	option	prevents	null	and	undefined	from	being	accepted	as	values	for
other	types.

Preparing	for	This	Chapter
In	this	chapter,	I	continue	to	use	the	types	project	created	in	Chapter	7.	To
prepare	for	this	chapter,	replace	the	contents	of	the	index.ts	file	in	the	src
folder	with	the	code	shown	in	Listing	9-1.

Tip You	can	download	the	example	project	for	this	chapter—and	for	all	the
other	chapters	in	this	book—from
https://github.com/Apress/essential-typescript-4.

function	calculateTax(amount:	number):	number	{

				return	amount	*	1.2;

}

function	writePrice(product:	string,	price:	number):

void	{

				console.log(`Price	for	${product}:

$${price.toFixed(2)}`);

}

let	hatPrice	=	100;

let	glovesPrice	=	75;

let	umbrellaPrice	=	42;

writePrice("Hat",	calculateTax(hatPrice));

writePrice("Gloves",	calculateTax(glovesPrice));

writePrice("Umbrella",	calculateTax(umbrellaPrice));

https://github.com/Apress/essential-typescript-4


Listing	9-1. The	Contents	of	the	index.ts	File	in	the	src	Folder

Comment	out	the	compiler	options	shown	in	Listing	9-2	to	reset	the	compiler
configuration.

{

				"compilerOptions":	{

								"target":	"es2020",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"declaration":	true,

								//	"strictNullChecks":	true,

								//	"noImplicitReturns":	true

				}

}

Listing	9-2. Disabling	Compiler	Options	in	the	tsconfig.json	File	in	the	types	Folder

Open	a	new	command	prompt,	navigate	to	the	types	folder,	and	run	the
command	shown	in	Listing	9-3	to	start	the	TypeScript	compiler	so	that	the
compiled	code	is	executed	automatically.

npm	start

Listing	9-3. Starting	the	TypeScript	Compiler

The	compiler	will	compile	the	code	in	the	index.ts	file,	execute	the
output,	and	then	enter	watch	mode,	producing	the	following	output:

6:58:20	AM	-	File	change	detected.	Starting

incremental	compilation...

6:58:21	AM	-	Found	0	errors.	Watching	for	file

changes.

Price	for	Hat:	$120.00

Price	for	Gloves:	$90.00

Price	for	Umbrella:	$50.40

Working	with	Arrays
As	explained	in	Chapter	8,	JavaScript	arrays	can	contain	any	combination	of
types	and	have	variable	length,	which	means	that	values	can	be	added	and



removed	dynamically	without	the	need	to	explicitly	resize	the	array.	TypeScript
doesn’t	change	the	flexible	sizing	of	arrays,	but	it	does	allow	the	data	types	they
contain	to	be	restricted	through	the	use	of	type	annotations,	as	shown	in	Listing
9-4.

function	calculateTax(amount:	number):	number	{

				return	amount	*	1.2;

}

function	writePrice(product:	string,	price:	number):

void	{

				console.log(`Price	for	${product}:

$${price.toFixed(2)}`);

}

let	prices:	number[]	=	[100,	75,	42];

let	names:	string[]	=	["Hat",	"Gloves",	"Umbrella"];

writePrice(names[0],	calculateTax(prices[0]));

writePrice(names[1],	calculateTax(prices[1]));

writePrice(names[2],	calculateTax(prices[2]));

Listing	9-4. Using	Arrays	in	the	index.ts	File	in	the	src	Folder

An	array	type	is	specified	by	putting	square	brackets	after	the	type	name	in
the	annotation,	as	illustrated	in	Figure	9-1.

Figure	9-1. An	array	type	annotation

TypeScript	uses	an	annotation	to	restrict	the	operations	that	can	be	performed
on	the	array	to	the	specified	type:	one	of	the	arrays	in	the	listing	is	restricted	to
number	values	and	the	other	to	string	values.	In	Listing	9-5,	I	have	used	the



JavaScript	forEach	method	on	the	arrays,	and	you	can	see	that	the	function	I
used	to	process	the	array	values	is	typed	to	match	the	array	types.

Tip You	can	use	parentheses	when	describing	an	array	that	contains
multiple	types,	such	as	when	using	a	type	union	(described	in	Chapter	8)	or	a
type	intersection	(described	in	Chapter	10).	For	example,	an	array	whose
elements	can	be	number	or	string	values	can	be	annotated	as	(number
|	string)[],	where	the	parentheses	around	the	type	union	prevent	the
compiler	from	assuming	that	the	union	is	between	a	single	number	or	an	array
of	strings.

function	calculateTax(amount:	number):	number	{

				return	amount	*	1.2;

}

function	writePrice(product:	string,	price:	number):

void	{

				console.log(`Price	for	${product}:

$${price.toFixed(2)}`);

}

let	prices:	number[]	=	[100,	75,	42];

let	names:	string[]	=	["Hat",	"Gloves",	"Umbrella"];

prices.forEach((price:	number,	index:	number)	=>	{

				writePrice(names[index],	calculateTax(price));

});

Listing	9-5. Performing	Operations	on	Typed	Arrays	in	the	index.ts	File	in	the	src	Folder

The	first	argument	of	the	function	passed	to	the	forEach	method	receives	a
number	value	because	that’s	the	type	of	the	array	that	is	being	processed.
TypeScript	will	ensure	that	only	operations	that	are	allowed	for	number	values
are	performed	by	the	function.	The	code	in	Listing	9-5	produces	the	following
output	when	compiled	and	executed:

Price	for	Hat:	$120.00

Price	for	Gloves:	$90.00

Price	for	Umbrella:	$50.40



The	Array	Syntax
Array	types	can	also	be	expressed	using	an	angle	bracket	syntax	so	that	this
statement:

...

let	prices:	number[]	=	[100,	75,	42];

...

is	equivalent	to	this	statement:

...

let	prices:Array<number>	=	[100,	75,	42];

...

The	problem	with	this	syntax	is	that	it	cannot	be	used	in	TSX	files,	which
combine	HTML	elements	with	TypeScript	code,	as	described	in	Chapter	15.
For	this	reason,	the	square	bracket	syntax	is	the	preferred	way	to	assert	array
types.

Using	Inferred	Typing	for	Arrays
I	used	type	annotations	in	Listing	9-5	to	make	it	obvious	that	the	arrays	are
typed,	but	the	TypeScript	compiler	is	adept	at	inferring	types	automatically,	and
the	same	example	can	be	expressed	without	type	annotations,	as	shown	in
Listing	9-6.

function	calculateTax(amount:	number):	number	{

				return	amount	*	1.2;

}

function	writePrice(product:	string,	price:	number):

void	{

				console.log(`Price	for	${product}:

$${price.toFixed(2)}`);

}

let	prices	=	[100,	75,	42];

let	names	=	["Hat",	"Gloves",	"Umbrella"];

prices.forEach((price,	index)	=>	{



				writePrice(names[index],	calculateTax(price));

});

Listing	9-6. Using	Inferred	Types	in	the	index.ts	File	in	the	src	Folder

The	compiler	can	determine	the	array	types	based	on	the	set	of	values	that
are	assigned	when	the	arrays	are	initialized,	and	it	uses	the	inferred	types	to
follow	through	to	the	forEach	method.

The	compiler	is	skilled	at	inferring	types,	but	if	you	don’t	get	the	results	you
expect,	you	can	inspect	the	files	that	the	compiler	emits	when	the
declaration	option	is	enabled.	This	option	generates	type	declaration	files,
which	are	used	to	provide	type	information	when	a	package	is	used	in	another
TypeScript	project	and	which	are	described	in	detail	in	Chapter	14.

Here	are	the	types	that	the	compiler	has	inferred	for	the	arrays	in	Listing	9-6,
which	are	contained	in	the	index.d.ts	file	in	the	dist	folder:

...

declare	let	prices:	number[];

declare	let	names:	string[];

...

I	explain	the	declare	keyword	in	Chapter	14.	For	the	moment,	it	is	enough
to	see	that	the	compiler	has	correctly	inferred	the	array	types	from	the	initial
values.

Avoiding	Problems	with	Inferred	Array	Types
The	compiler	infers	array	types	using	the	values	used	to	populate	the	array	when
it	is	created.	This	can	lead	to	type	errors	if	the	values	used	to	populate	an	array
are	accidentally	mixed,	as	shown	in	Listing	9-7.

function	calculateTax(amount:	number):	number	{

				return	amount	*	1.2;

}

function	writePrice(product:	string,	price:	number):

void	{

				console.log(`Price	for	${product}:

$${price.toFixed(2)}`);

}



let	prices	=	[100,	75,	42,	"20"];

let	names	=	["Hat",	"Gloves",	"Umbrella",

"Sunglasses"];

prices.forEach((price,	index)	=>	{

				writePrice(names[index],	calculateTax(price));

});

Listing	9-7. Mixing	Array	Types	in	the	index.ts	File	in	the	src	Folder

The	new	value	used	to	initialize	the	price	array	causes	the	following	error
when	the	code	is	compiled:

src/index.ts(13,43):	error	TS2345:	Argument	of	type

'string	|	number'	is	not	assignable	to	parameter	of

type	'number'.

If	you	examine	the	index.d.ts	file	in	the	dist	folder,	you	will	see	that
the	TypeScript	compiler	has	inferred	the	smallest	set	of	types	that	can	describe
the	values	used	to	initialize	the	array:

declare	let	prices:	(string	|	number)[];

The	change	in	the	array	type	causes	the	error	message	because	the	function
passed	to	the	forEach	method	treats	the	values	as	number	when	they	are	now
part	of	the	string	|	number	union.	It	is	easy	to	see	the	cause	of	the
problem	in	a	simple	example,	but	it	becomes	more	difficult	when	the	initial
values	for	the	array	come	from	different	parts	of	an	application.	I	find	it	more
useful	to	declare	the	array	type	explicitly,	which	means	that	problems	like	the
one	in	Listing	9-7	produce	a	compiler	error	that	highlights	my	error	in	trying	to
add	a	string	to	a	number	array.

Avoiding	Problems	with	Empty	Arrays
Another	reason	for	using	type	annotations	for	arrays	is	that	the	compiler	will
infer	the	type	any	for	arrays	that	are	created	empty,	as	shown	in	Listing	9-8.

function	calculateTax(amount:	number):	number	{

				return	amount	*	1.2;

}



function	writePrice(product:	string,	price:	number):

void	{

				console.log(`Price	for	${product}:

$${price.toFixed(2)}`);

}

let	prices	=	[];

prices.push(...[100,	75,	42,	"20"]);

let	names	=	["Hat",	"Gloves",	"Umbrella",

"Sunglasses"];

prices.forEach((price,	index)	=>	{

				writePrice(names[index],	calculateTax(price));

});

Listing	9-8. Creating	an	Empty	Array	in	the	index.ts	File	in	the	src	Folder

There	are	no	initial	values	for	the	compiler	to	use	when	selecting	the	type	for
the	prices	array.	The	only	option	available	to	the	compiler	is	to	use	any	since
it	has	no	other	information	to	work	with,	which	you	can	see	by	examining	the
index.d.ts	file	in	the	dist	folder.

declare	let	prices:	any[];

Even	though	the	values	added	to	the	array	mix	number	and	string
values,	the	code	in	Listing	9-8	compiles	without	error	and	produces	the
following	results:

Price	for	Hat:	$120.00

Price	for	Gloves:	$90.00

Price	for	Umbrella:	$50.40

Price	for	Sunglasses:	$24.00

The	effect	of	allowing	the	compiler	to	infer	the	type	of	the	empty	array	is	to
create	a	gap	in	the	type	checking	process.	The	code	works	because	the
JavaScript	multiplication	operator	coerces	string	values	to	number	values
automatically.	This	can	be	useful	behavior,	but	it	is	likely	to	be	used	accidentally,
and	it	is	for	this	reason	that	you	should	use	explicit	types.

Understanding	the	never	Array	Type	Pitfall



TypeScript	infers	types	for	empty	arrays	differently	when	null	and
undefined	values	are	not	assignable	to	other	types.	To	see	the	difference,
change	the	compiler	configuration	as	shown	in	Listing	9-9.

{

				"compilerOptions":	{

								"target":	"es2020",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"declaration":	true,

								"strictNullChecks":	true

				}

}

Listing	9-9. Configuring	the	Compiler	in	the	tsconfig.json	File	in	the	types	Folder

The	strictNullChecks	setting	tells	the	compiler	to	restrict	the	use	of
null	and	undefined	values	and	prevents	the	compiler	from	using	any	when
inferring	the	type	of	an	empty	array.	Instead,	the	compiler	infers	the	never
type,	which	means	that	nothing	can	be	added	to	the	array.	When	the	code	in
Listing	9-9	is	compiled	and	executed,	the	following	error	is	reported:

src/index.ts(10,13):	error	TS2345:	Argument	of	type

'string	|	number'	is	not	assignable	to	parameter	of

type	'never'.

Inferring	the	never	type	ensures	that	the	array	doesn’t	escape	the	type
checking	process	and	the	code	won’t	compile	until	a	type	is	asserted	for	the
array	or	the	array	is	initialized	using	values	that	allow	the	compiler	to	infer	a	less
restrictive	type.

Working	with	Tuples
Basic	tuples	are	fixed-length	arrays,	where	each	element	in	the	array	can	have	a
different	type.	Tuples	are	a	data	structure	that	is	provided	by	the	TypeScript
compiler	implemented	using	regular	JavaScript	arrays	in	the	compiled	code.
Listing	9-10	shows	how	tuples	are	defined	and	used.	(There	is	a	more	complex
type	of	tuple	that	I	describe	shortly.)

function	calculateTax(amount:	number):	number	{



				return	amount	*	1.2;

}

function	writePrice(product:	string,	price:	number):

void	{

				console.log(`Price	for	${product}:

$${price.toFixed(2)}`);

}

let	hat:	[string,	number]	=	["Hat",	100];

let	gloves:	[string,	number]	=	["Gloves",	75];

writePrice(hat[0],	hat[1]);

writePrice(gloves[0],	gloves[1]);

Listing	9-10. Using	Tuples	in	the	index.ts	File	in	the	src	Folder

Tuples	are	defined	using	square	brackets	containing	the	types	for	each
element,	separated	by	commas,	as	illustrated	in	Figure	9-2.

Figure	9-2. Defining	a	tuple

The	type	of	the	hat	tuple	in	Listing	9-10	is	[string,	number],	which
defines	a	tuple	with	two	elements,	where	the	first	element	is	a	string	and	the
second	value	is	a	number.	The	elements	in	the	tuple	are	accessed	using	the	array
index	syntax	so	that	the	first	element	of	the	hat	tuple	is	hat[0],	for	example.

The	code	in	Listing	9-10	produces	the	following	output	when	compiled	and
executed:

Price	for	Hat:	$100.00

Price	for	Gloves:	$75.00

Tuples	must	be	defined	with	type	annotations;	otherwise,	the	compiler	will



assume	that	a	regular	array	with	a	type	that	is	the	union	of	each	value	used
during	initialization.	Without	the	type	annotation	shown	in	Figure	9-2,	for
example,	the	compiler	would	assume	that	the	type	of	the	value	assigned	to	the
hat	variable	is	[string	|	number],	which	would	denote	a	variable-length
array	in	which	every	element	can	be	either	a	string	or	number	value.

Processing	Tuples
The	restrictions	on	the	number	of	elements	and	the	element	types	are	enforced
entirely	by	the	TypeScript	compiler,	and,	at	runtime,	a	tuple	is	implemented	as	a
regular	JavaScript	array.	This	means	tuples	can	be	used	with	the	standard
JavaScript	array	features,	as	shown	in	Listing	9-11.

function	calculateTax(amount:	number):	number	{

				return	amount	*	1.2;

}

function	writePrice(product:	string,	price:	number):

void	{

				console.log(`Price	for	${product}:

$${price.toFixed(2)}`);

}

let	hat:	[string,	number]	=	["Hat",	100];

let	gloves:	[string,	number]	=	["Gloves",	75];

hat.forEach((h:	string	|	number)	=>	{

				if	(typeof	h	===	"string")	{

								console.log(`String:	${h}`);

				}	else	{

								console.log(`Number:	${h.toFixed(2)}`);

				}

});

Listing	9-11. Processing	the	Elements	in	a	Tuple	in	the	index.ts	File	in	the	src	Folder

To	process	all	the	tuple	values,	the	function	passed	to	the	forEach	method
must	receive	string	|	number	values,	which	are	then	narrowed	with	a	type
guard.	I	used	type	annotations	for	clarity,	but	the	compiler	will	correctly	infer	the
type	union	based	on	the	element	types	in	the	tuple.	The	code	in	Listing	9-11
produces	the	following	output	when	it	is	compiled	and	executed:



String:	Hat

Number:	100.00

Since	tuples	are	arrays,	they	can	be	destructured	to	access	individual	values,
which	can	make	tuples	easier	to	work	with,	as	shown	in	Listing	9-12.

function	calculateTax(amount:	number):	number	{

				return	amount	*	1.2;

}

function	writePrice(product:	string,	price:	number):

void	{

				console.log(`Price	for	${product}:

$${price.toFixed(2)}`);

}

let	hat:	[string,	number]	=	["Hat",	100];

let	gloves:	[string,	number]	=	["Gloves",	75];

let	[hatname,	hatprice]	=	hat;

console.log(`Name:	${hatname}`);

console.log(`Price:	${hatprice.toFixed(2)}`);

Listing	9-12. Destructuring	Tuples	in	the	index.ts	File	in	the	src	Folder

The	hat	tuple	is	destructured,	and	its	values	are	assigned	to	hatname	and
hatprice	variables,	which	are	written	to	the	console.	There	is	no	change	in
the	output	in	this	example;	only	the	way	the	tuples	values	are	accessed	has
changed.

Using	Tuple	Types
Tuples	have	a	distinct	type	that	can	be	used	just	like	any	type,	which	means	you
can	create	arrays	of	tuples,	use	tuples	in	type	unions,	and	use	type	guards	to
narrow	values	to	specific	tuple	types,	all	of	which	are	shown	in	Listing	9-13.

function	calculateTax(amount:	number):	number	{

				return	amount	*	1.2;

}

function	writePrice(product:	string,	price:	number):



void	{

				console.log(`Price	for	${product}:

$${price.toFixed(2)}`);

}

let	hat:	[string,	number]	=	["Hat",	100];

let	gloves:	[string,	number]	=	["Gloves",	75];

let	products:	[string,	number][]	=	[["Hat",	100],

["Gloves",	75]];

let	tupleUnion:	([string,	number]	|	boolean)[]	=

[true,	false,	hat,	...products];

tupleUnion.forEach((elem:	[string,	number]	|	boolean)

=>	{

				if	(elem	instanceof	Array)	{

								let	[str,	num]	=	elem;

								console.log(`Name:	${str}`);

								console.log(`Price:	${num.toFixed(2)}`);

				}	else	if	(typeof	elem	===	"boolean")	{

								console.log(`Boolean	Value:	${elem}`);

				}

});

Listing	9-13. Using	Tuple	Types	in	the	index.ts	File	in	the	src	Folder

The	profusion	of	square	brackets	can	be	confusing,	and	it	can	take	a	few
attempts	to	describe	the	combination	of	types	correctly,	but	the	example	shows
how	a	tuple	type	can	be	used	just	like	any	other	type,	albeit	with	one	important
difference	from	the	previous	examples	in	this	part	of	the	book:	I	cannot	use	the
typeof	keyword	in	Listing	9-13	to	determine	whether	a	value	is	a	tuple.	Tuples
are	implemented	using	standard	JavaScript	arrays,	and	the	test	for	array	types
requires	the	instanceof	keyword,	which	I	described	in	Chapter	4.	The	code
in	Listing	9-13	produces	the	following	output	when	it	is	compiled	and	executed:

Boolean	Value:	true

Boolean	Value:	false

String	Value:	Hat

Number	Value:	100

String	Value:	Hat



Number	Value:	100

String	Value:	Gloves

Number	Value:	75

Using	Tuples	with	Optional	Elements
Tuples	can	contain	optional	elements,	which	are	denoted	by	the	question	mark
(the	?	character).	The	tuple	is	still	fixed-length,	and	the	optional	element	will	be
undefined	if	no	value	has	been	defined,	as	shown	in	Listing	9-14.

function	calculateTax(amount:	number):	number	{

				return	amount	*	1.2;

}

function	writePrice(product:	string,	price:	number):

void	{

				console.log(`Price	for	${product}:

$${price.toFixed(2)}`);

}

let	hat:	[string,	number,	number?]	=	["Hat",	100];

let	gloves:	[string,	number,	number?]	=	["Gloves",	75,

10];

[hat,	gloves].forEach(tuple	=>	{

				let	[name,	price,	taxRate]	=	tuple;

				if	(taxRate	!=	undefined)	{

								price	+=	price	*	(taxRate	/	100);

				}

				writePrice(name,	price);

});

Listing	9-14. Using	an	Optional	Element	in	the	index.ts	File	in	the	src	Folder

The	tuple	type	in	Listing	9-14	has	an	optional	number	element.	(A	tuple	can
have	multiple	optional	elements,	but	they	must	be	the	last	elements	defined	by
the	tuple	type.)

The	type	of	the	optional	element	is	a	union	of	the	specified	type	and
undefined	so	that	in	the	example,	the	type	is	number	|	undefined.	The
value	of	the	element	will	be	undefined	if	no	value	has	been	provided,	and	it	is
the	responsibility	of	the	code	that	processes	the	tuple	to	narrow	the	type	to



exclude	undefined	values.
Defining	an	optional	element	means	that	the	TypeScript	compiler	won’t

complain	if	there	is	no	corresponding	value,	like	this:

...

let	hat:	[string,	number,	number?]	=	["Hat",	100];

...

There	is	no	value	for	the	third	tuple	element,	but	the	compiler	processes	the
code	without	complaint	and	produces	the	following	output:

Price	for	Hat:	$100.00

Price	for	Gloves:	$82.50

Defining	Tuples	with	Rest	Elements
Tuples	can	also	contain	a	rest	element,	that	can	be	used	to	match	multiple	values
of	a	given	type.	This	feature	produces	a	variable-length	tuple	that	lacks	the
rigidly	defined	structure	of	basic	tuples.	Listing	9-15	shows	the	use	of	a	tuple
with	a	rest	element.

function	calculateTax(amount:	number):	number	{

				return	amount	*	1.2;

}

function	writePrice(product:	string,	price:	number):

void	{

				console.log(`Price	for	${product}:

$${price.toFixed(2)}`);

}

let	hat:	[string,	number,	number?,	...number[]]	=

["Hat",	100,	10,	1.20,	3,	0.95];

let	gloves:	[string,	number,	number?,	...number[]]	=

["Gloves",	75,	10];

[hat,	gloves].forEach(tuple	=>	{

				let	[name,	price,	taxRate,	...coupons]	=	tuple;

				if	(taxRate	!=	undefined)	{

								price	+=	price	*	(taxRate	/	100);



				}

				coupons.forEach(c	=>	price	-=	c);

				writePrice(name,	price);

});

Listing	9-15. Using	a	Rest	Element	in	the	index.ts	File	in	the	src	Folder

In	this	example,	I	destructure	the	tuple	rest	element	into	an	array	named
coupons,	which	is	processed	by	a	forEach	loop,	producing	the	following
output:

Price	for	Hat:	$104.85

Price	for	Gloves:	$82.50

This	is	not	a	feature	that	I	like	because	the	variable	lengths	introduced	by	the
rest	elements	undermine	the	fixed	structure	that	makes	tuples	useful.	The	only
time	I	use	this	feature	is	when	describing	JavaScript	code,	as	described	in
Chapter	14.

Using	Enums
An	enum	allows	a	collection	of	values	to	be	used	by	name,	which	makes	code
easier	to	read	and	ensures	that	a	fixed	set	of	values	is	used	consistently.	Like
tuples,	enums	are	a	feature	that	is	provided	by	the	TypeScript	compiler.	Listing
9-16	shows	the	definition	and	use	of	an	enum.

function	calculateTax(amount:	number):	number	{

				return	amount	*	1.2;

}

function	writePrice(product:	string,	price:	number):

void	{

				console.log(`Price	for	${product}:

$${price.toFixed(2)}`);

}

enum	Product	{	Hat,	Gloves,	Umbrella	}

let	products:	[Product,	number][]	=	[[Product.Hat,

100],	[Product.Gloves,	75]];



products.forEach((prod:	[Product,	number])	=>	{

				switch	(prod[0])	{

								case	Product.Hat:

												writePrice("Hat",	calculateTax(prod[1]));

												break;

								case	Product.Gloves:

												writePrice("Gloves",

calculateTax(prod[1]));

												break;

								case	Product.Umbrella:

												writePrice("Umbrella",

calculateTax(prod[1]));

												break;

				}

});

Listing	9-16. Using	an	Enum	in	the	index.ts	File	in	the	src	Folder

An	enum	is	defined	using	the	enum	keyword,	followed	by	a	name,	followed
by	a	list	of	values	in	curly	braces,	as	illustrated	in	Figure	9-3.

Figure	9-3. Defining	an	enum

The	enum	values	are	accessed	in	the	form	<enum>.<value>	so	that	the
Hat	value	defined	by	the	Product	enum	is	accessed	as	Product.Hat,	like
this:

...

case	Product.Hat:

...

An	enum	is	used	like	any	other	type,	and	the	example	shows	the	Product
enum	used	in	a	tuple	and	a	switch	statement.	The	code	in	Listing	9-16



produces	the	following	output	when	it	is	compiled	and	executed:

Price	for	Hat:	$120.00

Price	for	Gloves:	$90.00

Understanding	How	Enums	Work
Enums	are	implemented	entirely	by	the	TypeScript	compiler,	relying	on	type
checking	during	compilation	and	standard	JavaScript	features	at	runtime.	Each
enum	value	has	a	corresponding	number	value	that	is	assigned	automatically	by
the	compiler	and	that	starts	at	zero	by	default.	This	means	that	the	numbers	used
for	the	Hat,	Gloves,	and	Umbrella	names	for	the	Product	enum	are	0,	1,
and	2,	as	demonstrated	in	Listing	9-17.

function	calculateTax(amount:	number):	number	{

				return	amount	*	1.2;

}

function	writePrice(product:	string,	price:	number):

void	{

				console.log(`Price	for	${product}:

$${price.toFixed(2)}`);

}

enum	Product	{	Hat,	Gloves,	Umbrella	}

[Product.Hat,	Product.Gloves,

Product.Umbrella].forEach(val	=>	{

				console.log(`Number	value:	${val}`);

});

Listing	9-17. Using	an	Enum	Number	Value	in	the	index.ts	File	in	the	src	Folder

The	highlighted	statements	pass	each	value	from	the	Product	enum	to	the
console.log	value.	Each	enum	value	is	a	number,	and	the	code	in	Listing
9-17	produces	the	following	output:

Number	value:	0

Number	value:	1

Number	value:	2



Because	enums	are	implemented	using	JavaScript	number	values,	an	enum
can	be	assigned	a	number	and	is	displayed	as	a	number	value,	as	shown	in
Listing	9-18.

function	calculateTax(amount:	number):	number	{

				return	amount	*	1.2;

}

function	writePrice(product:	string,	price:	number):

void	{

				console.log(`Price	for	${product}:

$${price.toFixed(2)}`);

}

enum	Product	{	Hat,	Gloves,	Umbrella	}

let	productValue:	Product	=	0;

let	productName:	string	=	Product[productValue];

console.log(`Value:	${productValue},	Name:

${productName}`);

Listing	9-18. Using	Enum	and	Number	Values	in	the	index.ts	File	in	the	src	Folder

The	compiler	enforces	type	checking	for	enums,	which	means	that	you	will
receive	an	error	if	you	try	to	compare	values	from	different	enums,	even	when
they	have	the	same	underlying	number	value.	Enums	provide	an	array-indexer
style	syntax	that	can	be	used	to	get	the	name	of	a	value,	like	this:

...

let	productName:	string	=	Product[productValue];

...

The	result	from	this	operation	is	a	string	containing	the	name	of	the	enum
value,	which	is	Hat	in	this	example.	The	code	in	Listing	9-18	produces	the
following	output:

Value:	0,	Name:	Hat

Using	Specific	Enum	Values
By	default,	the	TypeScript	compiler	starts	assigning	number	values	for	an	enum



with	zero	and	will	compute	the	values	by	incrementing	the	previous	value.	For
the	Product	enum	in	Listing	9-18,	the	compiler	starts	by	assigning	0	to	Hat,
1	to	Gloves,	and	2	to	Umbrella.	If	you	want	to	see	the	values	that	have	been
assigned	for	an	enum,	then	you	can	examine	the	type	declaration	files	that	are
generated	by	the	compiler	when	the	declarations	setting	is	true.	If	you
examine	the	index.d.ts	file	in	the	dist	folder,	you	will	see	the	values	the
compiler	computed	for	the	Product	enum.

...

declare	enum	Product	{

				Hat	=	0,

				Gloves	=	1,

				Umbrella	=	2

}

...

Enums	can	also	be	defined	with	literal	values,	where	a	specific	value	is	used,
as	shown	in	Listing	9-19.	This	is	useful	when	the	enum	represents	a	real-world
set	of	values.

function	calculateTax(amount:	number):	number	{

				return	amount	*	1.2;

}

function	writePrice(product:	string,	price:	number):

void	{

				console.log(`Price	for	${product}:

$${price.toFixed(2)}`);

}

enum	Product	{	Hat,	Gloves	=	20,	Umbrella	}

let	productValue:	Product	=	0;

let	productName:	string	=	Product[productValue];

console.log(`Value:	${productValue},	Name:

${productName}`);

Listing	9-19. Using	a	Constant	Enum	Value	in	the	index.ts	File	in	the	src	Folder

I	assigned	Gloves	a	value	of	20.	The	compiler	will	still	generate	the



remaining	values	required	for	the	enum,	and	examining	the	index.d.ts	file
shows	that	the	compiler	has	computed	values	for	Hat	and	Umbrella.

...

declare	enum	Product	{

				Hat	=	0,

				Gloves	=	20,

				Umbrella	=	21

}

...

The	previous	value	is	used	to	generate	enum	values,	regardless	of	whether	it
has	been	selected	by	the	programmer	or	generated	by	the	compiler.	For	the	enum
in	Listing	9-19,	the	compiler	has	used	the	value	assigned	to	Gloves	to	generate
the	value	for	Umbrella.	The	code	in	Listing	9-19	produces	the	following
output:

Value:	0,	Name:	Hat

Caution The	compiler	consults	the	previous	value	only	when	it	generates	a
number	value	and	doesn’t	check	to	see	whether	the	value	has	already	been
used,	which	can	lead	to	duplicate	values	in	an	enum.

The	compiler	will	evaluate	simple	expressions	for	enum	values,	as	shown	in
Listing	9-20,	which	means	that	values	can	be	based	on	other	values	in	the	same
enum,	another	enum,	or	another	value	entirely.

function	calculateTax(amount:	number):	number	{

				return	amount	*	1.2;

}

function	writePrice(product:	string,	price:	number):

void	{

				console.log(`Price	for	${product}:

$${price.toFixed(2)}`);

}

enum	OtherEnum	{	First	=	10,	Two	=	20	}

enum	Product	{	Hat	=	OtherEnum.First	+	1	,	Gloves	=



20,	Umbrella	=	Hat	+	Gloves	}

let	productValue:	Product	=	0;

let	productName:	string	=	Product[productValue];

console.log(`Value:	${productValue},	Name:

${productName}`);

Listing	9-20. Using	Expressions	in	an	Enum	in	the	index.ts	File	in	the	src	Folder

The	Hat	value	is	assigned	using	an	expression	that	uses	an	OtherEnum
value	and	the	addition	operator,	and	the	Umbrella	value	is	the	sum	of	Hat	and
Gloves;	examining	the	index.d.ts	file	in	the	dist	folder	shows	the
compiler	has	evaluated	the	expressions	to	determine	the	Product	enum	values.

...

declare	enum	Product	{

				Hat	=	11,

				Gloves	=	20,

				Umbrella	=	31

}

...

These	features	can	be	useful,	but	close	attention	is	required	to	avoid
accidentally	creating	duplicate	values	or	unexpected	results.	My	advice	is	to
keep	enums	simple	and	leave	the	compiler	to	generate	numbers	wherever
possible.	The	code	in	Listing	9-20	produces	the	following	output:

Value:	0,	Name:	undefined

Using	String	Enums
The	default	implementation	of	enums	represents	each	value	with	a	number,	but
the	compiler	can	also	use	string	values	for	enums,	as	shown	in	Listing	9-21.

Tip An	enum	can	contain	both	string	and	number	values,	although	this
is	not	a	feature	that	is	widely	used.

function	calculateTax(amount:	number):	number	{

				return	amount	*	1.2;

}



function	writePrice(product:	string,	price:	number):

void	{

				console.log(`Price	for	${product}:

$${price.toFixed(2)}`);

}

enum	OtherEnum	{	First	=	10,	Two	=	20	}

enum	Product	{	Hat	=	OtherEnum.First	+	1	,	Gloves	=

20,	Umbrella	=	Hat	+	Gloves	}

let	productValue:	Product	=	0;

let	productName:	string	=	Product[productValue];

console.log(`Value:	${productValue},	Name:

${productName}`);

enum	City	{	London	=	"London",	Paris	=	"Paris",	NY	=

"New	York"}

console.log(`City:	${City.London}`);

Listing	9-21. Using	a	String	Enum	in	the	index.ts	File	in	the	src	Folder

A	string	values	must	be	provided	for	every	enum	value	name,	but	the
advantage	of	using	string	values	is	that	they	are	easier	to	recognize	during
debugging	or	in	log	files,	as	this	output	from	Listing	9-21	shows:

Value:	0,	Name:	undefined

City:	London

Understanding	the	Limitations	of	Enums
Enums	can	be	useful,	but	there	are	some	limitations	because	they	are	a	feature
that	is	implemented	entirely	by	the	TypeScript	compiler	and	then	translated	into
pure	JavaScript.

Understanding	the	Value-Checking	Limitation
The	compiler	is	excellent	at	checking	types	for	enums,	but	it	doesn’t	do	anything
to	ensure	that	legal	number	values	are	used.	In	Listing	9-21,	I	selected	specific
values	for	some	of	the	Product	enum	values,	which	means	this	statement	is	a
problem:

...



let	productValue:	Product	=	0;

...

The	compiler	doesn’t	prevent	the	assignment	of	a	number	to	a	variable
whose	type	is	an	enum	when	the	number	doesn’t	correspond	to	one	of	the	enum
values,	which	is	why	the	output	shown	for	Listing	9-21	contains	undefined,
as	the	lookup	fails	to	find	a	corresponding	Product	name	for	the	number
value.	The	same	issue	arises	if	a	function	uses	an	enum	as	its	result	type	because
the	compiler	will	allow	it	to	return	any	number	value.

Tip This	isn’t	a	problem	with	string	enums,	which	are	implemented
differently	behind	the	scenes	and	can	be	assigned	values	only	from	the	enum.

Understanding	the	Type	Guard	Limitation
A	related	problem	arises	when	using	a	type	guard.	Testing	types	is	done	using
the	JavaScript	typeof	keyword,	and	since	enums	are	implemented	using
JavaScript	number	values,	typeof	cannot	be	used	to	distinguish	between
enum	and	number	values,	as	shown	in	Listing	9-22.

function	calculateTax(amount:	number):	number	{

				return	amount	*	1.2;

}

function	writePrice(product:	string,	price:	number):

void	{

				console.log(`Price	for	${product}:

$${price.toFixed(2)}`);

}

enum	OtherEnum	{	First	=	10,	Two	=	20	}

enum	Product	{	Hat	=	OtherEnum.First	+	1	,	Gloves	=

20,	Umbrella	=	Hat	+	Gloves	}

let	productValue:	Product	=	Product.Hat;

if	(typeof	productValue	===	"number")	{

				console.log("Value	is	a	number");

}



let	unionValue:	number	|	Product	=	Product.Hat;

if	(typeof	unionValue	===	"number")	{

				console.log("Value	is	a	number");

}

Listing	9-22. Using	a	Type	Guard	in	the	index.ts	File	in	the	src	Folder

The	code	in	Listing	9-22	produces	the	following	output	when	it	is	compiled
and	executed:

Value	is	a	number

Value	is	a	number

Using	Constant	Enums
The	TypeScript	compiler	creates	an	object	that	provides	the	implementation	for
an	enum.	In	some	applications,	the	performance	impact	of	using	the	object	can
be	a	problem,	and	a	different	approach	can	be	used	instead.

Tip This	is	an	advanced	feature	that	is	rarely	required	in	most	projects.

To	demonstrate	how	the	compiler	uses	an	object	to	implement	an	enum,	Listing
9-23	simplifies	the	code	in	the	index.ts	file	so	that	it	defines	an	enum	and
contains	a	statement	that	assigns	an	enum	value	to	a	variable.

enum	Product	{	Hat,	Gloves,	Umbrella	}

let	productValue	=	Product.Hat;

Listing	9-23. Simplifying	the	Code	in	the	index.ts	File	in	the	src	Folder

To	see	how	the	enum	is	implemented,	examine	the	index.js	file	in	the
dist	folder,	and	you	will	see	the	following	code:

...

var	Product;

(function	(Product)	{

				Product[Product["Hat"]	=	0]	=	"Hat";

				Product[Product["Gloves"]	=	1]	=	"Gloves";

				Product[Product["Umbrella"]	=	2]	=	"Umbrella";

})(Product	||	(Product	=	{}));

let	productValue	=	Product.Hat;



...

You	don’t	have	to	understand	how	this	code	works.	What’s	important	is	that
a	Product	object	is	created	and	that	it	is	used	when	the	value	is	assigned	to	the
productValue	variable.

To	prevent	the	compiler	from	using	an	object	to	implement	an	enum,	the
const	keyword	can	be	used	when	the	enum	is	defined	in	the	TypeScript	file,	as
shown	in	Listing	9-24.

Note Const	enums	are	more	restrictive	than	regular	enums,	and	all	of	the
values	must	be	assigned	constant	expressions.	The	simplest	way	to	do	this	is
to	allow	the	compiler	to	assign	values	or	to	explicitly	assign	values	yourself.

const	enum	Product	{	Hat,	Gloves,	Umbrella	}

let	productValue	=	Product.Hat;

Listing	9-24. Defining	a	Const	Enum	in	the	index.ts	File	in	the	src	Folder

When	the	code	is	compiled,	the	compiler	will	inline	each	reference	to	the
enum,	meaning	that	the	numeric	value	will	be	used	directly.	If	you	examine	the
index.js	file	in	the	dist	folder	after	the	compilation	is	complete,	you	will
see	the	following	code:

...

let	productValue	=	0	/*	Hat	*/;

...

The	comment	is	included	by	the	compiler	to	indicate	the	relationship
between	the	number	value	and	the	enum.	The	object	that	previously
represented	the	enum	is	no	longer	included	in	the	compiled	code.

Const	enums	may	offer	a	small	performance	improvement,	but	they	do	so	by
disabling	the	enum	feature	that	allows	a	name	to	be	looked	up	by	value,	as
shown	in	Listing	9-25.

const	enum	Product	{	Hat,	Gloves,	Umbrella}

let	productValue	=	Product.Hat;

let	productName	=	Product[0];

Listing	9-25. Looking	Up	an	Enum	Name	in	the	index.ts	File	in	the	src	Folder



The	compiler	will	produce	the	following	error	when	compiling	the	code:

src/index.ts(11,27):	error	TS2476:	A	const	enum	member

can	only	be	accessed	using	a	string	literal

The	object	used	to	represent	a	normal	enum	is	responsible	for	providing	the
lookup	feature	and	isn’t	available	for	const	enums.

Tip There	is	a	compiler	option	named	preserveConstEnums	that	tells
the	compiler	to	generate	the	object	even	for	const	enums.	This	feature	is	only
for	debugging,	and	it	doesn’t	restore	the	lookup	feature.

Using	Literal	Value	Types
A	literal	value	type	specifies	a	specific	set	of	values	and	allows	only	those
values.	The	effect	is	to	treat	a	set	of	values	as	a	distinct	type,	which	is	a	useful
feature	but	can	be	difficult	to	understand	because	it	blurs	the	separation	between
types	and	values.	This	feature	is	most	easily	understood	with	an	example,	as
shown	in	Listing	9-26.

let	restrictedValue:	1	|	2	|	3	=	3;

console.log(`Value:	${restrictedValue}`);

Listing	9-26. Using	a	Literal	Value	Type	in	the	index.ts	File	in	the	src	Folder

A	literal	type	looks	similar	to	a	type	union,	but	literal	values	are	used	instead
of	data	types,	as	illustrated	in	Figure	9-4.

Figure	9-4. A	literal	value	type

The	literal	value	type	in	Listing	9-26	tells	the	compiler	that	the
restrictedValue	variable	can	be	assigned	only	1,	2,	or	3.	The	compiler



will	report	an	error	if	the	variable	is	assigned	any	other	value,	including	other
number	values,	as	shown	in	Listing	9-27.

let	restrictedValue:	1	|	2	|	3	=	100;

console.log(`Value:	${restrictedValue}`);

Listing	9-27. Assigning	a	Different	Value	in	the	index.ts	File	in	the	src	Folder

The	compiler	determines	that	100	isn’t	one	of	the	allowed	values	and
produces	the	following	error:

src/index.ts(1,5):	error	TS2322:	Type	'100'	is	not

assignable	to	type	'1	|	2	|	3'.

The	combination	of	values	is	treated	as	a	distinct	type,	and	each	combination
of	literal	values	is	a	different	type,	as	shown	in	Listing	9-28,	but	a	value	of	one
type	can	be	assigned	to	a	different	type	as	long	as	it	is	one	of	the	allowed	values.

let	restrictedValue:	1	|	2	|	3	=	1;

let	secondValue:	1	|	10	|	100	=	1;

restrictedValue	=	secondValue;

secondValue	=	100;

restrictedValue	=	secondValue;

console.log(`Value:	${restrictedValue}`);

Listing	9-28. Defining	a	Second	Literal	Value	Type	in	the	index.ts	File	in	the	src	Folder

The	first	statement	that	assigns	secondValue	to	restrictedValue	is
allowed	because	the	value	of	secondValue	is	one	of	the
restrictedValue	literal	values.	The	second	assignment	statement	isn’t
allowed	because	the	value	falls	outside	the	allowed	set,	producing	the	following
error	when	the	code	is	compiled:

src/index.ts(7,1):	error	TS2322:	Type	'100'	is	not

assignable	to	type	'1	|	2	|	3'

Using	Literal	Value	Types	in	Functions
Literal	value	types	are	most	helpful	when	used	with	functions,	allowing



parameters	or	results	to	be	restricted	to	a	specific	set	of	values,	as	shown	in
Listing	9-29.

function	calculatePrice(quantity:	1	|	2,	price:

number):	number	{

				return	quantity	*	price;

}

let	total	=	calculatePrice(2,	19.99);

console.log(`Price:	${total}`);

Listing	9-29. Restricting	a	Function	in	the	index.ts	File	in	the	src	Folder

The	function’s	quantity	parameter	will	only	accept	1	or	2,	and	using	any
other	value—even	other	number	values—will	produce	a	compiler	error.	The
code	in	Listing	9-29	produces	the	following	output	when	it	is	compiled	and
executed:

Price:	39.98

Mixing	Value	Types	in	a	Literal	Value	Type
A	literal	value	type	can	be	made	up	of	any	combination	of	values	that	can	be
expressed	literally,	including	enums.	Listing	9-30	shows	a	mix	of	values	in	a
literal	value	type.

function	calculatePrice(quantity:	1	|	2,	price:

number):	number	{

				return	quantity	*	price;

}

let	total	=	calculatePrice(2,	19.99);

console.log(`Price:	${total}`);

function	getRandomValue():	1	|	2	|	3	|	4	{

				return	Math.floor(Math.random()	*	4)	+	1	as	1	|	2

|	3	|	4;

}

enum	City	{	London	=	"LON",	Paris	=	"PAR",	Chicago	=

"CHI"	}



function	getMixedValue():	1	|	"Hello"	|	true	|

City.London	{

				switch	(getRandomValue())	{

								case	1:

												return	1;

								case	2:

												return	"Hello";

								case	3:

												return	true;

								case	4:

												return	City.London;

				}

}

console.log(`Value:	${getMixedValue()}`);

Listing	9-30. Mixing	Values	in	a	Literal	Value	Type	in	the	index.ts	File	in	the	src	Folder

The	getRandomValue	function	returns	one	of	four	values,	which	are	used
by	the	getMixedValue	function	to	produce	its	result.	The	getMixedValue
function	shows	how	a	literal	value	type	can	combine	values	that	would	usually
be	considered	separate	types,	using	a	number	value,	a	string	value,	a
boolean	value,	and	an	enum	value.	The	code	in	Listing	9-30	produces	the
following	output	when	it	is	compiled	and	executed,	although	you	may	see
different	output	since	the	value	from	the	getMixedValue	function	is	selected
using	a	random	number:

Price:	39.98

Value:	true

Tip Literal	value	types	can	be	used	in	type	unions	with	regular	types,
creating	combinations	that	permit	specific	values	of	one	type	with	any	legal
values	for	another.	For	example,	the	type	union	string	|	true	|	3	can
be	assigned	any	string	value,	the	true	boolean	value,	and	the	number
value	3.

Using	Overrides	with	Literal	Value	Types
In	Chapter	8,	I	explained	how	the	relationship	between	a	function’s	parameter



and	result	types	can	be	expressed	using	type	overrides,	restricting	the	effect	of
using	type	unions.	Type	overrides	can	also	be	applied	to	literal	value	types,	as
shown	in	Listing	9-31,	which	are	essentially	unions	for	individual	values.

function	calculatePrice(quantity:	1	|	2,	price:

number):	number	{

				return	quantity	*	price;

}

let	total	=	calculatePrice(2,	19.99);

console.log(`Price:	${total}`);

function	getRandomValue():	1	|	2	|	3	|	4	{

				return	Math.floor(Math.random()	*	4)	+	1	as	1	|	2

|	3	|	4;

}

enum	City	{	London	=	"LON",	Paris	=	"PAR",	Chicago	=

"CHI"	}

function	getMixedValue(input:	1):	1;

function	getMixedValue(input:	2	|	3):	"Hello"	|	true;

function	getMixedValue(input:	4):	City.London;

function	getMixedValue(input:	number):	1	|	"Hello"	|

true	|	City.London	{

				switch	(input)	{

								case	1:

												return	1;

								case	2:

												return	"Hello";

								case	3:

												return	true;

								case	4:

								default:

												return	City.London;

				}

}

let	first	=	getMixedValue(1);



let	second	=	getMixedValue(2);

let	third	=	getMixedValue(4);

console.log(`${	first},	${second},	${third}`);

Listing	9-31. Overriding	Literal	Value	Types	in	the	index.ts	File	in	the	src	Folder

Each	mapping	creates	a	relationship	between	parameter	and	result
parameters,	which	can	be	expressed	as	one	or	more	values.	The	TypeScript
compiler	can	follow	the	overloads	to	determine	the	types	for	the	first,
second,	and	third	variables,	which	can	be	seen	by	inspecting	the	contents	of
the	index.d.ts	file	in	the	dist	folder.

...

declare	let	first:	1;

declare	let	second:	true	|	"Hello";

declare	let	third:	City.London;

...

This	isn’t	a	feature	that	you	will	need	in	most	projects,	but	I	have
demonstrated	it	here	to	show	that	literal	value	types	are	handled	just	like	regular
types	and	because	it	is	an	interesting	insight	into	the	way	that	the	TypeScript
compiler	works.	The	code	in	Listing	9-31	produces	the	following	output:

Price:	39.98

1,	Hello,	LON

Using	Template	Literal	String	Types
Literal	string	types	can	be	used	with	the	JavaScript	template	string	feature	to
create	template	strings	that	only	accept	specific	values,	which	can	be	a	concise
way	to	express	complex	combinations	of	values.	Listing	9-32	creates	a	template
string	that	uses	a	literal	value	type.

function	calculatePrice(quantity:	1	|	2,	price:

number):	number	{

				return	quantity	*	price;

}

let	total	=	calculatePrice(2,	19.99);

console.log(`Price:	${total}`);



function	getRandomValue():	1	|	2	|	3	|	4	{

				return	Math.floor(Math.random()	*	4)	+	1	as	1	|	2

|	3	|	4;

}

function	getCityString(city:	"London"	|	"Paris"	|

"Chicago")

								:	`City:	${"London"	|	"Paris"	|	"Chicago"}`	{

				return	`City:	${city}`	as	`City:	${"London"	|

"Paris"	|	"Chicago"}`;

}

let	str	=	getCityString("London");

console.log(str);

Listing	9-32. Using	a	Literal	Value	Type	in	a	String	Template	in	the	index.ts	File	in	the	src	Folder

The	getCityString	function	defines	a	parameter	that	is	restricted	to
three	string	values	with	a	literal	value	type.	The	function’s	result	is	expressed
using	a	string	template	that	uses	the	literal	value	type,	like	this:

...

`City:	${"London"	|	"Paris"	|	"Chicago"}`

...

To	see	why	this	is	useful,	inspect	the	contents	of	the	index.d.ts	file	in
the	dist	folder	to	see	how	the	TypeScript	compiler	defines	the	type	for	the	str
variable:

...

declare	let	str:	"City:	London"	|	"City:	Paris"	|

"City:	Chicago";

...

The	compiler	has	used	the	literal	value	type	to	expand	the	string	template
into	the	complete	set	of	strings	that	can	be	assigned	to	the	str	variable.	The
code	in	Listing	9-32	produces	the	following	output:

Price:	39.98

City:	London



Using	Type	Aliases
To	avoid	repetition,	TypeScript	provides	the	type	alias	feature,	which	allows	a
custom	type	combination	to	be	assigned	a	name	and	applied	where	it	is	needed,
as	shown	in	Listing	9-33.

function	calculatePrice(quantity:	1	|	2,	price:

number):	number	{

				return	quantity	*	price;

}

let	total	=	calculatePrice(2,	19.99);

console.log(`Price:	${total}`);

type	numVals	=	1	|	2	|	3	|	4;

function	getRandomValue():	numVals	{

				return	Math.floor(Math.random()	*	4)	+	1	as

numVals;

}

type	cities	=	"London"	|	"Paris"	|	"Chicago";

type	cityResponse	=	`City:	${	cities	}`;

function	getCityString(city:	cities):	cityResponse	{

				return	`City:	${city}`	as	cityResponse;

}

let	str	=	getCityString("London");

console.log(str);

Listing	9-33. Using	Type	Aliases	in	the	index.ts	File	in	the	src	Folder

Type	aliases	clean	up	TypeScript	code	by	reducing	duplication.	Instead	of
having	to	define	the	same	set	of	cities	for	the	parameter	and	result	of	the
getCityString	function,	for	example,	I	can	create	a	type	alias	that	can	be
used	for	the	function	parameter	and	also	in	the	template	string:

...

type	cities	=	"London"	|	"Paris"	|	"Chicago";



type	cityResponse	=	`City:	${	cities	}`;

...

Type	aliases	are	defined	using	the	type	keyword,	followed	by	a	name	for
the	alias,	the	equal	sign,	and	the	type	that	will	be	aliased,	as	shown	in	Figure	9-5.

Figure	9-5. Defining	a	type	alias

The	name	assigned	to	the	alias	is	used	in	place	of	the	full	type	description.
Using	a	type	alias	allows	a	complex	type	or	combination	of	types	to	be	referred
to	more	easily,	but	it	doesn’t	change	the	way	that	the	TypeScript	compiler	deals
with	the	type,	and	the	alias	can	be	used	in	type	annotations	or	assertions	as
normal.	The	code	in	Listing	9-33	produces	the	following	output	when	it	is
compiled	and	executed:

Price:	39.98

City:	London

Summary
In	this	chapter,	I	explained	how	TypeScript	can	be	used	with	arrays	and
introduced	the	tuples	and	enums	features,	which	are	implemented	by	the
TypeScript	compiler.	I	also	showed	you	how	to	define	literal	value	types	and
how	to	use	aliases	to	describe	types	consistently.	In	the	next	chapter,	I	describe
the	features	that	TypeScript	provides	for	working	with	objects.



(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
A.	Freeman,	Essential	TypeScript	4
https://doi.org/10.1007/978-1-4842-7011-0_10

10.	Working	with	Objects
Adam	Freeman1		

London,	UK

	

In	this	chapter,	I	describe	the	way	that	TypeScript	deals	with	objects.	As
explained	in	Chapters	3	and	4,	JavaScript	has	a	fluid	and	flexible	approach	to
dealing	with	objects,	and	TypeScript	aims	to	strike	a	balance	between	preventing
the	most	common	mistakes	while	allowing	useful	features	to	be	preserved.	This
is	a	theme	that	is	continued	in	Chapter	11,	where	I	describe	the	TypeScript
support	for	using	classes.	Table	10-1	summarizes	the	chapter.

Table	10-1. Chapter	Summary

Problem Solution Listing

Describe	an	object	to	the	TypeScript	compiler Use	a	shape	type 4–6,	8

Describe	irregular	shape	types Use	optional	properties 7,	9,	10

Use	the	same	shape	to	describe	multiple	objects Use	a	type	alias 11

Prevent	compiler	errors	when	a	type	contains	a
superset	of	the	properties	in	a	shape

Enable	the
suppressExcessPropertyErrors

compiler	option

12,	13

Combine	shape	types Use	type	unions	or	intersections 14,	15,
19–25

Type	guard	for	object	types Check	the	properties	defined	by	an	object
using	the	in	keyword

16,	17

Reuse	a	type	guard Define	a	predicate	function 18

For	quick	reference,	Table	10-2	lists	the	TypeScript	compiler	options	used	in
this	chapter.

Table	10-2. The	TypeScript	Compiler	Options	Used	in	This	Chapter

Name Description

https://doi.org/10.1007/978-1-4842-7011-0_10


target This	option	specifies	the	version	of	the	JavaScript	language
that	the	compiler	will	target	in	its	output.

outDir This	option	specifies	the	directory	in	which	the	JavaScript	files
will	be	placed.

rootDir This	option	specifies	the	root	directory	that	the	compiler	will
use	to	locate	TypeScript	files.

declaration This	option	produces	type	declaration	files	when	enabled,
which	can	be	useful	in	understanding	how	types	have	been
inferred.	These	files	are	described	in	more	detail	in	Chapter	14.

strictNullChecks This	option	prevents	null	and	undefined	from	being
accepted	as	values	for	other	types.

suppressExcessPropertyErrors This	option	prevents	the	compiler	from	generating	errors	for
objects	that	define	properties	not	in	a	specified	shape.

Preparing	for	This	Chapter
In	this	chapter,	I	continue	to	use	the	types	project	created	in	Chapter	7	and
updated	in	the	chapters	since.	To	prepare	for	this	chapter,	replace	the	contents	of
the	index.ts	file	in	the	src	folder	with	the	code	shown	in	Listing	10-1.

let	hat	=	{	name:	"Hat",	price:	100	};

let	gloves	=	{	name:	"Gloves",	price:	75	};

let	products	=	[hat,	gloves];

products.forEach(prod	=>	console.log(`${prod.name}:

${prod.price}`));

Listing	10-1. Replacing	the	Contents	of	the	index.ts	File	in	the	src	Folder

Reset	the	configuration	of	the	compiler	by	replacing	the	contents	of	the
tsconfig.json	file	with	those	shown	in	Listing	10-2.

{

				"compilerOptions":	{

								"target":	"es2020",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"declaration":	true,

								//"strictNullChecks":	true,

				}



}

Listing	10-2. Configuring	the	Compiler	in	the	tsconfig.json	File	in	the	types	Folder

The	compiler	configuration	includes	the	declaration	setting,	which
means	that	the	compiler	will	create	type	declaration	files	alongside	the
JavaScript	files.	The	real	purpose	of	declaration	files	is	explained	in	Chapter	14,
but	they	will	be	used	in	this	chapter	to	explain	how	the	compiler	deals	with	data
types.

Open	a	new	command	prompt,	navigate	to	the	types	folder,	and	run	the
command	shown	in	Listing	10-3	to	start	the	TypeScript	compiler	so	that	it
automatically	executes	code	after	it	has	been	compiled.

Tip You	can	download	the	example	project	for	this	chapter—and	for	all	the
other	chapters	in	this	book—from
https://github.com/Apress/essential-typescript-4.

npm	start

Listing	10-3. Starting	the	TypeScript	Compiler

The	compiler	will	compile	the	project,	execute	the	output,	and	then	enter
watch	mode,	producing	the	following	output:

7:10:34	AM	-	Starting	compilation	in	watch	mode...

7:10:35	AM	-	Found	0	errors.	Watching	for	file

changes.

Hat:	100

Gloves:	75

Working	with	Objects
JavaScript	objects	are	collections	of	properties	that	can	be	created	using	the
literal	syntax,	constructor	functions,	or	classes.	Regardless	of	how	they	are
created,	objects	can	be	altered	once	they	have	been	created,	adding	or	removing
properties	and	receiving	values	of	different	types.	To	provide	type	features	for
objects,	TypeScript	focuses	on	an	object’s	“shape,”	which	is	the	combination	of
its	property	names	and	types.

The	TypeScript	compiler	tries	to	make	sure	that	objects	are	used	consistently
by	looking	for	common	shape	characteristics.	The	best	way	to	see	how	this

https://github.com/Apress/essential-typescript-4


works	is	to	look	at	the	declaration	files	that	the	compiler	generates	when	its
declarations	option	is	enabled.	If	you	examine	the	index.d.ts	file	in
the	dist	folder,	you	will	see	that	the	compiler	has	used	the	shape	of	each	object
defined	in	Listing	10-1	as	its	type,	like	this:

declare	let	hat:						{	name:	string;	price:	number;

};

declare	let	gloves:			{	name:	string;	price:	number;

};

declare	let	products:	{	name:	string;	price:	number;	}

[];

I	have	formatted	the	contents	of	the	declaration	file	to	make	it	easier	to	see
how	the	compiler	has	identified	the	type	of	each	object	using	its	shape.	When	the
objects	are	placed	into	an	array,	the	compiler	uses	the	shape	of	the	objects	to	set
the	type	of	the	array	to	match.

This	may	not	seem	like	a	useful	approach,	but	it	prevents	many	common
mistakes.	Listing	10-4	adds	an	object	with	a	different	shape.

let	hat	=	{	name:	"Hat",	price:	100	};

let	gloves	=	{	name:	"Gloves",	price:	75	};

let	umbrella	=	{	name:	"Umbrella"	};

let	products	=	[hat,	gloves,	umbrella];

products.forEach(prod	=>	console.log(`${prod.name}:

${prod.price}`));

Listing	10-4. Adding	an	Object	in	the	index.ts	File	in	the	src	Folder

Even	though	the	objects	in	Listing	10-1	are	defined	using	the	literal	syntax,
the	TypeScript	compiler	is	able	to	warn	when	the	objects	are	used	inconsistently.
The	umbrella	object	doesn’t	have	a	price	property,	and	the	compiler
produces	the	following	error	when	the	file	is	compiled:

src/index.ts(9,60):	error	TS2339:	Property	'price'

does	not	exist	on	type	'{	name:	string;	}'.

The	arrow	function	used	with	the	forEach	method	reads	a	price	property
that	isn’t	present	on	all	of	the	objects	in	the	products	array,	leading	to	an



error.	The	compiler	correctly	identifies	the	shape	of	the	objects	in	the	example,
which	can	be	seen	in	the	index.d.ts	file	in	the	dist	folder.

declare	let	hat:						{	name:	string;	price:	number;

};

declare	let	gloves:			{	name:	string;	price:	number;

};

declare	let	umbrella:	{	name:	string;	};

declare	let	products:	{	name:	string;	}[];

Notice	that	the	type	for	the	products	array	has	changed.	When	objects	of
different	shapes	are	used	together,	such	as	in	an	array,	the	compiler	creates	a	type
that	has	the	common	properties	of	the	objects	it	contains	because	they	are	the
only	properties	that	are	safe	to	work	with.	In	the	example,	the	only	property
common	to	all	the	objects	in	the	array	is	the	string	property	name,	which	is
why	the	compiler	reports	an	error	for	the	statement	that	tries	to	read	the	price
property.

Using	Object	Shape	Type	Annotations
For	object	literals,	the	TypeScript	compiler	infers	the	type	of	each	property	using
the	value	that	it	has	been	assigned.	Types	can	also	be	explicitly	specified	using
type	annotations,	which	are	applied	to	individual	properties,	as	shown	in	Listing
10-5.

let	hat	=	{	name:	"Hat",	price:	100	};

let	gloves	=	{	name:	"Gloves",	price:	75	};

let	umbrella	=	{	name:	"Umbrella"	};

let	products:	{	name:	string,	price:	number	}[]	=

[hat,	gloves,	umbrella];

products.forEach(prod	=>	console.log(`${prod.name}:

${prod.price}`));

Listing	10-5. Using	Object	Shape	Type	Annotations	in	the	index.ts	File	in	the	src	Folder

The	type	annotation	restricts	the	contents	of	the	products	array	to	objects
that	have	name	and	price	properties	that	are	string	and	number	values,	as
shown	in	Figure	10-1.



Figure	10-1. An	object	shape	type

The	compiler	still	reports	an	error	for	the	code	in	Listing	10-5,	but	now	the
problem	is	that	the	umbrella	object	doesn’t	conform	to	the	shape	specified	by
the	type	annotation	for	the	products	array,	which	provides	a	more	useful
description	of	the	problem.

src/index.ts(5,64):	error	TS2741:	Property	'price'	is

missing	in	type	'{	name:	string;	}'	but	required	in

type	'{	name:	string;	price:	number;	}'.

Understanding	How	Shape	Types	Fit
To	match	a	type,	an	object	must	define	all	the	properties	in	the	shape.	The
compiler	will	still	match	an	object	if	it	has	additional	properties	that	are	not
defined	by	the	shape	type,	as	shown	in	Listing	10-6.

let	hat	=	{	name:	"Hat",	price:	100	};

let	gloves	=	{	name:	"Gloves",	price:	75	};

let	umbrella	=	{	name:	"Umbrella",	price:	30,

waterproof:	true	};

let	products:	{	name:	string,	price?:	number	}[]	=

[hat,	gloves,	umbrella];

products.forEach(prod	=>	console.log(`${prod.name}:

${prod.price}`));

Listing	10-6. Adding	Properties	in	the	index.ts	File	in	the	src	Folder

The	new	properties	allow	the	umbrella	object	to	match	the	shape	of	the
array	type	because	it	now	defines	name	and	price	properties.	The
waterproof	property	is	ignored	because	it	is	not	part	of	the	shape	type.	The
code	in	Listing	10-6	produces	the	following	code	when	it	is	compiled	and
executed:



Hat:	100

Gloves:	75

Umbrella:	30

Notice	that	type	annotations	are	not	required	to	indicate	that	individual
objects	have	a	specific	shape.	The	TypeScript	compiler	automatically	determines
whether	an	object	conforms	to	a	shape	by	inspecting	its	properties	and	their
values.

Using	Optional	Properties	for	Irregular	Shapes
Optional	properties	make	a	shape	type	more	flexible,	allowing	it	to	match
objects	that	don’t	have	those	properties,	as	shown	in	Listing	10-7.	This	can	be
important	when	dealing	with	a	set	of	objects	that	don’t	share	the	same	shape	but
where	you	need	to	use	a	property	when	it	is	available.

let	hat	=	{	name:	"Hat",	price:	100	};

let	gloves	=	{	name:	"Gloves",	price:	75	};

let	umbrella	=	{	name:	"Umbrella",	price:	30,

waterproof:	true	};

let	products:	{	name:	string,	price?:	number,

waterproof?:	boolean	}[]

				=	[hat,	gloves,	umbrella];

products.forEach(prod	=>

				console.log(`${prod.name}:	${prod.price}

Waterproof:	${	prod.waterproof	}`));

Listing	10-7. Using	an	Optional	Property	in	the	index.ts	File	in	the	src	Folder

Optional	properties	are	defined	using	the	same	syntax	as	optional	function
parameters,	where	a	question	mark	follows	the	property	name,	as	shown	in
Figure	10-2.

Figure	10-2. An	optional	property	in	a	shape	type

A	shape	type	with	optional	properties	can	match	objects	that	don’t	define



those	properties,	as	long	the	required	properties	are	defined.	When	the	optional
property	is	used,	such	as	in	the	forEach	function	in	Listing	10-7,	the	value	of
the	optional	property	will	be	either	the	value	defined	by	the	object	or
undefined,	as	shown	in	the	following	output	from	the	code	when	it	is
compiled	and	executed:

Hat:	100	Waterproof:	undefined

Gloves:	75	Waterproof:	undefined

Umbrella:	30	Waterproof:	true

The	hat	and	gloves	objects	don’t	define	the	optional	waterproof
property,	so	the	value	received	in	the	forEach	function	is	undefined.	The
umbrella	object	does	define	this	property,	and	its	value	is	displayed.

Including	Methods	in	Shape	Types
Shape	types	can	include	methods	as	well	as	properties,	giving	greater	control
over	how	objects	are	matched	by	the	type,	as	shown	in	Listing	10-8.

enum	Feature	{	Waterproof,	Insulated	}

let	hat	=	{	name:	"Hat",	price:	100	};

let	gloves	=	{	name:	"Gloves",	price:	75	};

let	umbrella	=	{	name:	"Umbrella",	price:	30,

								hasFeature:	(feature)	=>	feature	===

Feature.Waterproof	};

let	products:	{	name:	string,	price?:	number,

								hasFeature?(Feature):	boolean	}[]

				=	[hat,	gloves,	umbrella];

products.forEach(prod	=>	console.log(`${prod.name}:

${prod.price}	`

				+	`Waterproof:

${prod.hasFeature(Feature.Waterproof)}`));

Listing	10-8. Including	a	Method	in	a	Shape	Type	in	the	index.ts	File	in	the	src	Folder

The	type	annotation	for	the	products	array	includes	an	optional	property
called	hasFeature	that	represents	a	method.	A	method	property	is	similar	to	a
regular	property	with	the	addition	of	parentheses	that	describe	the	types	of	the



parameters,	followed	by	a	colon	and	then	the	result	type,	as	shown	in	Figure	10-
3.

Figure	10-3. A	method	in	a	shape	type

The	method	included	in	the	shape	type	in	Listing	10-8	specifies	a	method
called	hasFeature	that	has	one	parameter,	which	must	be	a	value	from	the
Feature	enum	(also	defined	in	Listing	10-8)	and	which	returns	a	boolean
result.

Tip Methods	in	shape	types	don’t	have	to	be	optional,	but	when	they	are,	as
in	Listing	10-8,	the	question	mark	comes	after	the	method	name	and	before
the	parentheses	that	denote	the	start	of	the	parameter	types.

The	umbrella	object	defines	the	hasFeature	method	with	the	correct
types,	but	since	the	method	is	optional,	the	hat	and	gloves	object	are	also
matched	by	the	shape	type.	As	with	regular	properties,	optional	methods	are
undefined	when	they	are	not	present	on	an	object,	which	means	that	the	code
in	Listing	10-8	produces	the	following	error	when	compiled	and	executed:

C:\types\dist\index.js:12		+	`Waterproof:

${prod.hasFeature(Feature.Waterproof)}`));

TypeError:	prod.hasFeature	is	not	a	function

As	with	regular	properties,	you	must	ensure	that	a	method	is	implemented
before	it	is	invoked.

Enforcing	Strict	Checking	for	Methods
To	help	prevent	errors	like	the	one	in	the	previous	section,	the	TypeScript
compiler	can	report	errors	when	an	optional	method	specified	by	a	shape	type	is
used	without	checking	for	undefined	values.	This	check	is	enabled	by	the
strictNullChecks	setting,	which	has	also	been	used	in	earlier	chapters.



Change	the	configuration	of	the	compiler	by	enabling	the	settings	as	shown	in
Listing	10-9.

{

				"compilerOptions":	{

								"target":	"es2020",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"declaration":	true,

								"strictNullChecks":	true

				}

}

Listing	10-9. Configuring	the	Compiler	in	the	tsconfig.json	File	in	the	types	Folder

When	the	configuration	file	is	saved,	the	compiler	will	rebuild	the	project
and	produce	the	following	error:

src/index.ts(13,22):	error	TS2722:	Cannot	invoke	an

object	which	is	possibly	'undefined'.

This	error	prevents	the	use	of	optional	methods	until	they	are	checked	to
make	sure	they	exist	on	an	object,	as	shown	in	Listing	10-10.

enum	Feature	{	Waterproof,	Insulated	}

let	hat	=	{	name:	"Hat",	price:	100	};

let	gloves	=	{	name:	"Gloves",	price:	75	};

let	umbrella	=	{	name:	"Umbrella",	price:	30,

								hasFeature:	(feature)	=>	feature	===

Feature.Waterproof	};

let	products:	{	name:	string,	price?:	number,

hasFeature?(Feature):	boolean	}[]

				=	[hat,	gloves,	umbrella];

products.forEach(prod	=>	console.log(`${prod.name}:

${prod.price}	`

				+	`${	prod.hasFeature	?

prod.hasFeature(Feature.Waterproof)	:	"false"	}`));



Listing	10-10. Checking	for	an	Optional	Method	in	the	index.ts	File	in	the	src	Folder

The	hasFeature	method	is	invoked	only	if	it	has	been	defined,	and	the
code	in	Listing	10-10	produces	the	following	output	when	it	is	compiled	and
executed:

Hat:	100	false

Gloves:	75	false

Umbrella:	30	true

Using	Type	Aliases	for	Shape	Types
A	type	alias	can	be	used	to	give	a	name	to	a	specific	shape,	making	it	easier	to
refer	to	the	shape	in	code	consistently,	as	shown	in	Listing	10-11.

enum	Feature	{	Waterproof,	Insulated	}

type	Product	=	{

				name:	string,

				price?:	number,

				hasFeature?(Feature):	boolean

};

let	hat	=	{	name:	"Hat",	price:	100	};

let	gloves	=	{	name:	"Gloves",	price:	75	};

let	umbrella	=	{	name:	"Umbrella",	price:	30,

								hasFeature:	(feature)	=>	feature	===

Feature.Waterproof	};

let	products:	Product[]	=	[hat,	gloves,	umbrella];

products.forEach(prod	=>	console.log(`${prod.name}:

${prod.price}	`

				+	`${	prod.hasFeature	?

prod.hasFeature(Feature.Waterproof)	:	"false"	}`));

Listing	10-11. Using	an	Alias	for	a	Shape	Type	in	the	index.ts	File	in	the	src	Folder

The	alias	assigns	a	name	to	the	shape,	which	can	be	used	in	type	annotations.
In	the	listing,	an	alias	named	Product	is	created	and	used	as	the	type	for	the
array.	Using	an	alias	doesn’t	change	the	output	from	the	code	when	it	is



compiled	and	executed.

Hat:	100	false

Gloves:	75	false

Umbrella:	30	true

Dealing	with	Excess	Properties
The	TypeScript	compiler	is	good	at	inferring	types,	which	means	that	type
annotations	can	often	be	omitted.	There	are	times,	however,	when	providing	the
compiler	with	information	about	types	can	change	its	behavior,	as	demonstrated
in	Listing	10-12.

enum	Feature	{	Waterproof,	Insulated	}

type	Product	=	{

				name:	string,

				price?:	number,

				hasFeature?(Feature):	boolean

};

let	hat	=	{	name:	"Hat",	price:	100	};

let	gloves	=	{	name:	"Gloves",	price:	75	};

let	umbrella	=	{	name:	"Umbrella",	price:	30,

								hasFeature:	(feature)	=>	feature	===

Feature.Waterproof	};

let	mirrorShades	=	{	name:	"Sunglasses",	price:	54,

finish:	"mirrored"};

let	darkShades:	Product	=	{	name:	"Sunglasses",	price:

54,	finish:	"flat"};

let	products:	Product[]	=	[hat,	gloves,	umbrella,

mirrorShades,	darkShades];

products.forEach(prod	=>	console.log(`${prod.name}:

${prod.price}	`

				+	`${	prod.hasFeature	?

prod.hasFeature(Feature.Waterproof)	:	"false"	}`));

Listing	10-12. Defining	Objects	in	the	index.ts	File	in	the	src	Folder



When	the	code	is	compiled,	the	compiler	will	report	the	following	error:

src/index.ts(16,60):	error	TS2322:	Type	'{	name:

string;	price:	number;	finish:	string;	}'	is	not

assignable	to	type	'Product'

		Object	literal	may	only	specify	known	properties,

and	'finish'	does	not	exist	in	type	'Product'.

The	compiler	treats	the	mirrorShades	and	darkShades	objects
differently,	even	though	they	have	the	same	shape.	The	compiler	reports	errors
when	object	literals	with	type	annotations	define	additional	properties,	because
this	is	likely	to	be	a	mistake.	In	the	case	of	the	example,	the	darkShades
object	has	a	Product	type	annotation.	The	finish	property	isn’t	part	of	the
Product	shape	and	is	known	as	an	excess	property,	which	the	compiler	reports
as	an	error.	Excess	properties	do	not	cause	errors	when	an	object	is	defined
without	a	type	annotation,	which	means	the	darkShades	object	can	be	used	as
a	Product.

I	can	prevent	the	error	by	removing	the	excess	property	or	by	removing	the
type	annotation,	but	my	preference	is	to	disable	excess	property	checking
entirely	because	I	find	it	counterintuitive.	Listing	10-13	shows	the	changes	to	the
compiler	configuration	file.

{

				"compilerOptions":	{

								"target":	"es2020",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"declaration":	true,

								"strictNullChecks":	true,

								"suppressExcessPropertyErrors":	true

				}

}

Listing	10-13. Configuring	the	Compiler	in	the	tsconfig.json	File	in	the	types	Folder

When	the	suppressExcessPropertyErrors	setting	is	true,	the
compiler	won’t	report	an	error	if	an	object	literal	defines	properties	that	are	not
part	of	the	type	declared	by	the	annotation.	When	the	change	to	the	configuration
file	is	saved,	the	code	will	be	compiled	and	executed	and	produce	the	following
output:



Hat:	100	false

Gloves:	75	false

Umbrella:	30	true

Sunglasses:	54	false

Sunglasses:	54	false

Using	Shape	Type	Unions
In	Chapter	7,	I	described	the	type	union	feature	that	allows	multiple	types	to	be
expressed	together	so	that,	for	example,	arrays	or	function	parameters	can	accept
multiple	types.	As	I	explained,	type	unions	are	types	in	their	own	right	and
contain	the	properties	that	are	defined	by	all	of	their	constituent	types.	This	isn’t
a	useful	feature	when	dealing	with	unions	of	primitive	data	types	because	there
are	few	common	properties,	but	it	is	a	more	useful	feature	when	dealing	with
objects,	as	shown	in	Listing	10-14.

type	Product	=	{

				id:	number,

				name:	string,

				price?:	number

};

type	Person	=	{

				id:	string,

				name:	string,

				city:	string

};

let	hat	=	{	id:	1,	name:	"Hat",	price:	100	};

let	gloves	=	{	id:	2,	name:	"Gloves",	price:	75	};

let	umbrella	=	{	id:	3,	name:	"Umbrella",	price:	30	};

let	bob	=	{	id:	"bsmith",	name:	"Bob",	city:	"London"

};

let	dataItems:	(Product	|	Person)[]	=	[hat,	gloves,

umbrella,	bob];

dataItems.forEach(item	=>	console.log(`ID:	${item.id},

Name:	${item.name}`));

Listing	10-14. Using	a	Type	Union	in	the	index.ts	File	in	the	src	Folder



The	dataItems	array	in	this	example	has	been	annotated	with	a	union	of
the	Product	and	Person	types.	These	types	have	two	properties	in	common,
id	and	name,	which	means	these	properties	can	be	used	when	processing	the
array	without	having	to	narrow	to	a	single	type.

...

dataItems.forEach(item	=>	console.log(`ID:	${item.id},

Name:	${item.name}`));

...

These	are	the	only	properties	that	can	be	accessed	because	they	are	the	only
properties	shared	by	all	types	in	the	union.	Any	attempt	to	access	the	price
property	defined	by	the	Product	type	or	the	city	property	defined	by	the
Person	type	will	produce	an	error	because	these	properties	are	not	part	of	the
Product	|	Person	union.	The	code	in	Listing	10-14	produces	the	following
output:

ID:	1,	Name:	Hat

ID:	2,	Name:	Gloves

ID:	3,	Name:	Umbrella

ID:	bsmith,	Name:	Bob

Understanding	Union	Property	Types
When	a	union	of	shape	types	is	created,	the	types	of	each	common	property	are
combined,	also	using	a	union.	This	effect	can	be	more	easily	understood	by
creating	a	type	that	is	equivalent	to	the	union,	as	shown	in	Listing	10-15.

type	Product	=	{

				id:	number,

				name:	string,

				price?:	number

};

type	Person	=	{

				id:	string,

				name:	string,

				city:	string

};



type	UnionType	=	{

				id:	number	|	string,

				name:	string

};

let	hat	=	{	id:	1,	name:	"Hat",	price:	100	};

let	gloves	=	{	id:	2,	name:	"Gloves",	price:	75	};

let	umbrella	=	{	id:	3,	name:	"Umbrella",	price:	30	};

let	bob	=	{	id:	"bsmith",	name:	"Bob",	city:	"London"

};

let	dataItems:	UnionType[]	=	[hat,	gloves,	umbrella,

bob];

dataItems.forEach(item	=>	console.log(`ID:	${item.id},

Name:	${item.name}`));

Listing	10-15. Creating	an	Equivalent	Type	in	the	index.ts	File	in	the	src	Folder

The	UnionType	shows	the	effect	of	the	union	between	the	Product	and
Person	types.	The	id	property	type	is	a	number	|	string	union	because
the	id	property	in	the	Product	type	is	a	number,	but	the	id	property	in	the
Person	type	is	a	string.	The	name	property	in	both	types	is	a	string,	so
this	is	the	type	for	the	name	property	in	the	union.	The	code	in	Listing	10-15
produces	the	following	output	when	it	is	compiled	and	executed:

ID:	1,	Name:	Hat

ID:	2,	Name:	Gloves

ID:	3,	Name:	Umbrella

ID:	bsmith,	Name:	Bob

Using	Type	Guards	for	Objects
The	previous	section	demonstrated	how	unions	of	shape	types	can	be	useful	in
their	own	right,	but	type	guards	are	still	required	to	get	to	a	specific	type	to
access	all	of	the	features	it	defines.

In	Chapter	7,	I	demonstrated	how	the	typeof	keyword	can	be	used	to
create	type	guards.	The	typeof	keyword	is	a	standard	JavaScript	feature	that
the	TypeScript	compiler	recognizes	and	uses	during	the	type-checking	process.
But	the	typeof	keyword	cannot	be	used	with	objects	because	it	will	always
return	the	same	result,	as	demonstrated	in	Listing	10-16.



type	Product	=	{

				id:	number,

				name:	string,

				price?:	number

};

type	Person	=	{

				id:	string,

				name:	string,

				city:	string

};

let	hat	=	{	id:	1,	name:	"Hat",	price:	100	};

let	gloves	=	{	id:	2,	name:	"Gloves",	price:	75	};

let	umbrella	=	{	id:	3,	name:	"Umbrella",	price:	30	};

let	bob	=	{	id:	"bsmith",	name:	"Bob",	city:	"London"

};

let	dataItems:	(Product	|	Person)[]	=	[hat,	gloves,

umbrella,	bob];

dataItems.forEach(item	=>	console.log(`ID:	${item.id},

Type:	${typeof	item}`));

Listing	10-16. Type	Guarding	in	the	index.ts	File	in	the	src	Folder

This	listing	resets	the	type	of	the	array	to	be	a	union	of	the	Product	and
Person	types	and	uses	the	typeof	keyword	in	the	forEach	function	to
determine	the	type	of	each	item	in	the	array,	producing	the	following	results
when	the	code	is	compiled	and	executed:

ID:	1,	Type:	object

ID:	2,	Type:	object

ID:	3,	Type:	object

ID:	bsmith,	Type:	object

The	shape	type	feature	is	provided	entirely	by	TypeScript,	and	all	objects
have	the	type	object	as	far	as	JavaScript	is	concerned,	with	the	result	that	the
typeof	keyword	isn’t	useful	for	determining	whether	an	object	conforms	to	the
Product	and	Person	shapes.



Type	Guarding	by	Checking	Properties
The	simplest	way	to	differentiate	between	shape	types	is	to	use	the	JavaScript
in	keyword	to	check	for	a	property,	as	shown	in	Listing	10-17.

type	Product	=	{

				id:	number,

				name:	string,

				price?:	number

};

type	Person	=	{

				id:	string,

				name:	string,

				city:	string

};

let	hat	=	{	id:	1,	name:	"Hat",	price:	100	};

let	gloves	=	{	id:	2,	name:	"Gloves",	price:	75	};

let	umbrella	=	{	id:	3,	name:	"Umbrella",	price:	30	};

let	bob	=	{	id:	"bsmith",	name:	"Bob",	city:	"London"

};

let	dataItems:	(Product	|	Person)[]	=	[hat,	gloves,

umbrella,	bob];

dataItems.forEach(item	=>	{

				if	("city"	in	item)	{

								console.log(`Person:	${item.name}:

${item.city}`);

				}	else		{

								console.log(`Product:	${item.name}:

${item.price}`);

				}

});

Listing	10-17. Type	Guarding	in	the	index.ts	File	in	the	src	Folder

The	goal	is	to	be	able	to	determine	each	object	in	the	array	conforms	to	the
Product	shape	or	the	Person	shape.	We	know	these	are	the	only	types	that
the	array	can	contain	because	its	type	annotation	is	(Product	|	Person)



[].
A	shape	is	a	combination	of	properties,	and	a	type	guard	must	test	for	one	or

more	properties	that	are	included	in	one	shape	but	not	the	other.	In	the	case	of
Listing	10-17,	any	object	that	has	a	city	property	must	conform	to	the
Person	shape	since	this	property	is	not	part	of	the	Product	shape.	To	create	a
type	guard	that	checks	for	a	property,	the	property	name	is	expressed	as	a
string	literal,	followed	by	the	in	keyword,	followed	by	the	object	to	test,	as
shown	in	Figure	10-4.

Figure	10-4. Using	the	in	keyword

The	in	expression	returns	true	for	objects	that	define	the	specified
property	and	false	otherwise.	The	TypeScript	compiler	recognizes	the
significance	of	testing	for	a	property	and	infers	the	type	within	the	code	blocks
of	the	if/else	statement.	The	code	in	Listing	10-17	produces	the	following
output	when	compiled	and	executed:

Product:	Hat:	100

Product:	Gloves:	75

Product:	Umbrella:	30

Person:	Bob:	London

Avoiding	Common	Type	Guard	Problems
It	is	important	to	create	type	guard	tests	that	definitively	and	accurately
differentiate	between	types.	If	the	compiler	gives	you	unexpected	errors	when
you	have	used	a	type	guard,	then	the	likely	cause	is	an	inaccurate	test.

There	are	two	common	problems	to	avoid.	The	first	is	creating	an



inaccurate	test	that	doesn’t	reliably	differentiate	between	types,	such	as	this
test:

dataItems.forEach(item	=>	{

				if	("id"	in	item	&&	"name"	in	item)	{

								console.log(`Person:	${item.name}:

${item.city}`);

				}	else		{

								console.log(`Product:	${item.name}:

${item.price}`);

				}

});

This	test	checks	for	id	and	name	properties,	but	these	are	defined	by
both	the	Person	and	Product	types,	and	the	test	doesn’t	give	the	compiler
enough	information	to	infer	a	type.	The	type	inferred	in	the	if	block	is	the
Product	|	Person	union,	which	means	the	use	of	the	city	property
will	generate	an	error.	The	type	inferred	in	the	else	block	is	never,	since
all	the	possible	types	have	already	been	inferred,	and	the	compiler	will
generate	errors	for	the	use	of	the	name	and	price	properties.

A	related	problem	is	testing	for	an	optional	property,	like	this:

dataItems.forEach(item	=>	{

				if	("price"	in	item)	{

								console.log(`Product:	${item.name}:

${item.price}`);

				}	else		{

								console.log(`Person:	${item.name}:

${item.city}`);

				}

});

The	test	will	match	objects	that	define	a	price	property,	which	means
that	the	type	inferred	in	the	if	block	will	be	Product,	as	intended	(notice
that	the	statements	in	the	code	blocks	are	reversed	in	this	example).	The
problem	is	that	objects	can	still	match	the	Product	shape	if	they	don’t	have
a	price	property,	which	means	the	type	inferred	in	the	else	block	is
Product	|	Person	and	the	compiler	will	report	an	error	for	the	use	of
the	city	property.



Writing	effective	tests	for	types	can	require	careful	thought	and	thorough
testing,	although	the	process	becomes	easier	with	experience.

Type	Guarding	with	a	Type	Predicate	Function
The	in	keyword	is	a	useful	way	to	identify	whether	an	object	conforms	to	a
shape,	but	it	requires	the	same	checks	to	be	written	each	time	types	need	to	be
identified.	TypeScript	also	supports	guarding	object	types	using	a	function,	as
shown	in	Listing	10-18.

type	Product	=	{

				id:	number,

				name:	string,

				price?:	number

};

type	Person	=	{

				id:	string,

				name:	string,

				city:	string

};

let	hat	=	{	id:	1,	name:	"Hat",	price:	100	};

let	gloves	=	{	id:	2,	name:	"Gloves",	price:	75	};

let	umbrella	=	{	id:	3,	name:	"Umbrella",	price:	30	};

let	bob	=	{	id:	"bsmith",	name:	"Bob",	city:	"London"

};

let	dataItems:	(Product	|	Person)[]	=	[hat,	gloves,

umbrella,	bob];

function	isPerson(testObj:	any):	testObj	is	Person	{

				return	testObj.city	!==	undefined;

}

dataItems.forEach(item	=>	{

				if	(isPerson(item))	{

								console.log(`Person:	${item.name}:

${item.city}`);

				}	else		{



								console.log(`Product:	${item.name}:

${item.price}`);

				}

});

Listing	10-18. Type	Guarding	with	a	Function	in	the	index.ts	File	in	the	src	Folder

Type	guarding	for	objects	is	done	with	a	function	that	uses	the	is	keyword,
as	shown	in	Figure	10-5.

Figure	10-5. An	object	type	guard	function

The	result	of	the	function,	which	is	a	type	predicate,	tells	the	compiler	which
of	the	function’s	parameters	is	being	tested	and	the	type	that	the	function	checks
for.	In	Listing	10-18,	the	isPerson	function	tests	its	testObj	parameter	for
the	Person	type.	If	the	result	of	the	function	is	true,	then	the	TypeScript
compiler	will	treat	the	object	as	the	specified	type.

Using	a	function	for	type	guarding	can	be	more	flexible	because	the
parameter	type	is	any,	allowing	properties	to	be	tested	for	without	having	to	use
string	literals	and	the	in	keyword.

Tip The	are	no	restrictions	on	the	name	of	the	type	guard	function,	but	the
convention	is	to	prefix	the	guarded	type	with	is,	such	that	a	function	that
tests	for	the	Person	type	is	named	isPerson	and	a	function	that	tests	for
the	Product	type	is	named	isProduct.

The	code	in	Listing	10-18	produces	the	following	output	when	compiled	and
executed,	showing	that	using	the	guard	function	has	the	same	effect	as	the	in
keyword:

Product:	Hat:	100

Product:	Gloves:	75

Product:	Umbrella:	30



Person:	Bob:	London

Using	Type	Intersections
Type	intersections	combine	the	features	of	multiple	types,	allowing	all	the
features	to	be	used.	This	is	in	contrast	to	type	unions,	which	only	allow	the	use
of	common	features.	Listing	10-19	shows	an	intersection	type	being	defined	and
used.

type	Person	=	{

				id:	string,

				name:	string,

				city:	string

};

type	Employee	=	{

				company:	string,

				dept:	string

};

let	bob	=	{	id:	"bsmith",	name:	"Bob",	city:	"London",

				company:	"Acme	Co",	dept:	"Sales"	};

let	dataItems:	(Person	&	Employee)[]	=	[bob];

dataItems.forEach(item	=>	{

				console.log(`Person:	${item.id},	${item.name},

${item.city}`);

				console.log(`Employee:	${item.id},

${item.company},	${item.dept}`);

});

Listing	10-19. Defining	a	Type	Intersection	in	the	index.ts	File	in	the	src	Folder

The	type	of	the	dataItems	array	is	set	to	the	intersection	of	the	Person
and	Employee	types.	Intersections	are	defined	using	the	ampersand	between
two	or	more	types,	as	shown	in	Figure	10-6.



Figure	10-6. Defining	an	intersection	type

An	object	will	conform	to	the	shape	of	a	type	intersection	only	if	it	defines
the	properties	defined	by	merging	all	the	types	in	that	intersection,	as	shown	in
Figure	10-7.

Figure	10-7. The	effect	of	a	type	intersection

In	Listing	10-19,	the	intersection	between	Person	and	Employee	types
has	the	effect	that	the	dataItems	array	can	contain	only	objects	that	define
id,	name,	city,	company,	and	dept	properties.

The	contents	of	the	array	are	processed	using	the	forEach	method,	which
demonstrates	that	the	properties	from	both	types	in	the	intersection	can	be	used.
The	code	in	the	listing	produces	the	following	output	when	compiled	and
executed:

Person:	bsmith,	Bob,	London



Employee:	bsmith,	Acme	Co,	Sales

Using	Intersections	for	Data	Correlation
Intersections	are	useful	when	you	receive	objects	from	one	source	and	need	to
introduce	new	functionality	so	they	can	be	used	elsewhere	in	the	application	or
when	objects	from	two	data	sources	need	to	be	correlated	and	combined.
JavaScript	makes	it	easy	to	introduce	functionality	from	one	object	into	another,
and	intersections	allow	the	types	that	are	used	to	be	clearly	described	so	they	can
be	checked	by	the	TypeScript	compiler.	Listing	10-20	shows	a	function	that
correlates	two	data	arrays.

type	Person	=	{

				id:	string,

				name:	string,

				city:	string

};

type	Employee	=	{

				id:	string,

				company:	string,

				dept:	string

};

type	EmployedPerson	=	Person	&	Employee;

function	correlateData(peopleData:	Person[],	staff:

Employee[]):	EmployedPerson[]	{

				const	defaults	=	{	company:	"None",	dept:	"None"};

				return	peopleData.map(p	=>	({	...p,

								...staff.find(e	=>	e.id	===	p.id)	||	{

...defaults,	id:	p.id	}	}));

}

let	people:	Person[]	=

				[{	id:	"bsmith",	name:	"Bob	Smith",	city:	"London"

},

					{	id:	"ajones",	name:	"Alice	Jones",	city:

"Paris"},

					{	id:	"dpeters",	name:	"Dora	Peters",	city:	"New



York"}];

let	employees:	Employee[]	=

				[{	id:	"bsmith",	company:	"Acme	Co",	dept:	"Sales"

},

					{	id:	"dpeters",	company:	"Acme	Co",	dept:

"Development"	}];

let	dataItems:	EmployedPerson[]	=

correlateData(people,	employees);

dataItems.forEach(item	=>	{

				console.log(`Person:	${item.id},	${item.name},

${item.city}`);

				console.log(`Employee:	${item.id},

${item.company},	${item.dept}`);

});

Listing	10-20. Correlating	Data	in	the	index.ts	File	in	the	src	Folder

In	this	example,	the	correlateData	function	receives	an	array	of
Person	objects	and	an	array	of	Employee	objects	and	uses	the	id	property
they	share	to	produce	objects	that	combine	the	properties	of	both	shape	types.	As
each	Person	object	is	processed	by	the	map	method,	the	array	find	method	is
used	to	locate	the	Employee	object	with	the	same	id	value,	and	the	object
spread	operator	is	used	to	create	objects	that	match	the	intersection	shape.	Since
the	results	from	the	correlateData	function	have	to	define	all	the
intersection	properties,	I	use	default	values	when	there	is	no	matching
Employee	object.

...

const	defaults	=	{	company:	"None",	dept:	"None"};

return	peopleData.map(p	=>	({	...p,

				...staff.find(e	=>	e.id	===	p.id)	||	{

...defaults,	id:	p.id	}	}));

...

I	used	type	annotations	in	Listing	10-20	to	make	the	purpose	of	the	code
easier	to	understand,	but	the	code	would	work	without	them.	The	TypeScript
compiler	is	adept	at	understanding	the	effect	of	code	statements	and	can



understand	the	effect	of	this	statement	is	to	create	objects	that	conform	to	the
shape	of	the	type	intersection.

The	code	in	Listing	10-20	produces	the	following	output	when	it	is	compiled
and	executed:

Person:	bsmith,	Bob	Smith,	London

Employee:	bsmith,	Acme	Co,	Sales

Person:	ajones,	Alice	Jones,	Paris

Employee:	ajones,	None,	None

Person:	dpeters,	Dora	Peters,	New	York

Employee:	dpeters,	Acme	Co,	Development

Understanding	Intersection	Merging
Because	an	intersection	combines	features	from	multiple	types,	an	object	that
conforms	to	the	intersection	shape	also	conforms	to	each	of	the	types	in	the
intersection.	For	example,	an	object	that	conforms	to	Person	&	Employee
can	be	used	where	the	Person	type	or	the	Employee	type	is	specified,	as
shown	in	Listing	10-21.

type	Person	=	{

				id:	string,

				name:	string,

				city:	string

};

type	Employee	=	{

				id:	string,

				company:	string,

				dept:	string

};

type	EmployedPerson	=	Person	&	Employee;

function	correlateData(peopleData:	Person[],	staff:

Employee[]):	EmployedPerson[]	{

				const	defaults	=	{	company:	"None",	dept:	"None"};

				return	peopleData.map(p	=>	({	...p,

								...staff.find(e	=>	e.id	===	p.id)	||	{

...defaults,	id:	p.id	}	}));



}

let	people:	Person[]	=

				[{	id:	"bsmith",	name:	"Bob	Smith",	city:	"London"

},

					{	id:	"ajones",	name:	"Alice	Jones",	city:

"Paris"},

					{	id:	"dpeters",	name:	"Dora	Peters",	city:	"New

York"}];

let	employees:	Employee[]	=

				[{	id:	"bsmith",	company:	"Acme	Co",	dept:	"Sales"

},

					{	id:	"dpeters",	company:	"Acme	Co",	dept:

"Development"	}];

let	dataItems:	EmployedPerson[]	=

correlateData(people,	employees);

function	writePerson(per:	Person):	void	{

				console.log(`Person:	${per.id},	${per.name},

${per.city}`);

}

function	writeEmployee(emp:	Employee):	void	{

				console.log(`Employee:	${emp.id},	${emp.company},

${emp.dept}`);

}

dataItems.forEach(item	=>	{

				writePerson(item);

				writeEmployee(item);

});

Listing	10-21. Using	Underlying	Types	in	an	Intersection	in	the	index.ts	File	in	the	src	Folder

The	compiler	matches	an	object	to	a	shape	by	ensuring	that	it	defines	all	the
properties	in	the	shape	and	doesn’t	care	about	excess	properties	(except	when
defining	an	object	literal,	as	explained	earlier	in	the	chapter).	The	objects	that
conform	to	the	EmployedPerson	type	can	be	used	in	the	writePerson	and



writeEmployee	functions	because	they	conform	to	the	types	specified	for	the
function’s	parameters.	The	code	in	Listing	10-21	produces	the	following	output:

Person:	bsmith,	Bob	Smith,	London

Employee:	bsmith,	Acme	Co,	Sales

Person:	ajones,	Alice	Jones,	Paris

Employee:	ajones,	None,	None

Person:	dpeters,	Dora	Peters,	New	York

Employee:	dpeters,	Acme	Co,	Development

It	may	seem	obvious	that	an	intersection	type	is	compatible	with	each	of	its
constituents,	but	it	has	an	important	effect	when	the	types	in	the	intersection
define	properties	with	the	same	name:	the	type	of	the	property	in	the	intersection
is	an	intersection	of	the	individual	property	types.	That	sentence	is	hard	to	make
sense	of,	so	the	sections	that	follow	provide	a	more	useful	explanation.

Merging	Properties	with	the	Same	Type
The	simplest	situation	is	where	there	are	properties	with	the	same	name	and	the
same	type,	such	as	the	id	properties	defined	by	the	Person	and	Employee
types,	which	are	merged	into	the	intersection	without	any	changes,	as	shown	in
Figure	10-8.

Figure	10-8. Merging	properties	with	the	same	type

There	are	no	issues	to	deal	with	in	this	situation	because	any	value	assigned
to	the	id	property	will	be	a	string	and	will	conform	to	the	requirements	of	the
object	and	intersection	types.



Merging	Properties	with	Different	Types
If	there	are	properties	with	the	same	name	but	different	types,	the	compiler	keeps
the	property	name	but	intersects	the	type.	To	demonstrate,	Listing	10-22	removes
the	functions	and	adds	a	contact	property	to	the	Person	and	Employee
types.

type	Person	=	{

				id:	string,

				name:	string,

				city:	string,

				contact:	number

};

type	Employee	=	{

				id:	string,

				company:	string,

				dept:	string,

				contact:	string

};

type	EmployedPerson	=	Person	&	Employee;

let	typeTest	=	({}	as	EmployedPerson).contact;

Listing	10-22. Adding	Properties	with	Different	Types	in	the	index.ts	File	in	the	src	Folder

The	last	statement	in	Listing	10-22	is	a	useful	trick	for	seeing	what	type	the
compiler	assigns	to	a	property	in	the	intersection	by	looking	at	the	declaration
file	created	in	the	dist	folder	when	the	declaration	compiler	configuration
option	is	true.	The	statement	uses	a	type	assertion	to	tell	the	compiler	that	an
empty	object	conforms	to	the	EmployedPeson	type	and	assigns	the	contact
property	to	the	typeTest	variable.	When	the	changes	to	the	index.ts	file
are	saved,	the	compiler	will	compile	the	code,	and	the	index.d.ts	file	in	the
dist	folder	will	show	the	type	for	the	contact	property	in	the	intersection.

declare	let	typeTest:	number	&	string;

The	compiler	created	an	intersection	between	the	type	of	the	contact
property	defined	by	Person	and	the	type	of	the	contact	property	defined	by
Employee,	as	shown	in	Figure	10-9.



Figure	10-9. Merging	properties	with	different	types

Creating	an	intersection	of	the	types	is	the	only	way	the	compiler	can	merge
the	properties,	but	it	doesn’t	produce	a	useful	result	because	there	are	no	values
that	can	be	assigned	to	the	intersection	of	the	primitive	number	and	string
types,	as	shown	in	Listing	10-23.

type	Person	=	{

				id:	string,

				name:	string,

				city:	string,

				contact:	number

};

type	Employee	=	{

				id:	string,

				company:	string,

				dept:	string,

				contact:	string

};

type	EmployedPerson	=	Person	&	Employee;

let	typeTest	=	({}	as	EmployedPerson).contact;

let	person1:	EmployedPerson	=	{

				id:	"bsmith",	name:	"Bob	Smith",	city:	"London",

				company:	"Acme	Co",	dept:	"Sales",	contact:

"Alice"



};

let	person2:	EmployedPerson	=	{

				id:	"dpeters",	name:	"Dora	Peters",	city:	"New

York",

				company:	"Acme	Co",	dept:	"Development",	contact:

6512346543

};

Listing	10-23. Assigning	Values	to	the	Intersection	of	Primitives	in	the	index.ts	File	in	the	src	Folder

An	object	has	to	assign	a	value	to	the	contact	property	to	conform	to	the
shape,	but	doing	so	creates	the	following	errors:

src/index.ts(21,40):	error	TS2322:	Type	'string'	is

not	assignable	to	type	'never'.

src/index.ts(26,46):	error	TS2322:	Type	'number'	is

not	assignable	to	type	'never'.

The	intersection	of	number	and	string	is	an	impossible	type.	There	is	no
way	to	work	around	this	problem	for	primitive	types,	and	the	only	solution	is	to
adjust	the	types	used	in	the	intersection	so	that	shape	types	are	used	instead	of
primitives,	as	shown	in	Listing	10-24.

Note It	might	seem	odd	that	the	TypeScript	compiler	allows	impossible
types	to	be	defined,	but	the	reason	is	that	some	of	the	advanced	TypeScript
features,	described	in	later	chapters,	make	it	difficult	for	the	compiler	to	deal
with	all	situations	consistently,	and	the	Microsoft	development	team	has
chosen	simplicity	over	exhaustively	checking	for	every	impossible	type.

type	Person	=	{

				id:	string,

				name:	string,

				city:	string,

				contact:	{	phone:	number	}

};

type	Employee	=	{

				id:	string,



				company:	string,

				dept:	string,

				contact:	{	name:	string	}

};

type	EmployedPerson	=	Person	&	Employee;

let	typeTest	=	({}	as	EmployedPerson).contact;

let	person1:	EmployedPerson	=	{

				id:	"bsmith",	name:	"Bob	Smith",	city:	"London",

				company:	"Acme	Co",	dept:	"Sales",

				contact:	{	name:	"Alice"	,	phone:	6512346543	}

};

let	person2:	EmployedPerson	=	{

				id:	"dpeters",	name:	"Dora	Peters",	city:	"New

York",

				company:	"Acme	Co",	dept:	"Development",

				contact:	{	name:	"Alice"	,	phone:	6512346543	}

};

Listing	10-24. Using	Shape	Types	in	an	Intersection	in	the	index.ts	File	in	the	src	Folder

The	compiler	handles	the	property	merge	in	the	same	way,	but	the	result	of
the	intersection	is	a	shape	that	has	name	and	phone	properties,	as	shown	in
Figure	10-10.

Figure	10-10. Merging	properties	with	shape	types

The	intersection	of	an	object	with	a	phone	property	and	an	object	with	a
name	property	is	an	object	with	phone	and	name	properties,	which	makes	it
possible	to	assign	contact	values	that	conform	to	the	Person	and



Employee	types	and	their	intersection.

Merging	Methods
If	the	types	in	an	intersection	define	methods	with	the	same	name,	then	the
compiler	will	create	a	function	whose	signature	is	an	intersection,	as	shown	in
Listing	10-25.

type	Person	=	{

				id:	string,

				name:	string,

				city:	string,

				getContact(field:	string):	string

};

type	Employee	=	{

				id:	string,

				company:	string,

				dept:	string

				getContact(field:	number):	number

};

type	EmployedPerson	=	Person	&	Employee;

let	person:	EmployedPerson	=	{

				id:	"bsmith",	name:	"Bob	Smith",	city:	"London",

				company:	"Acme	Co",	dept:	"Sales",

				getContact(field:	string	|	number):	any	{

								return	typeof	field	===	"string"	?	"Alice"	:

6512346543;

				}

};

let	typeTest	=	person.getContact;

let	stringParamTypeTest	=	person.getContact("Alice");

let	numberParamTypeTest	=	person.getContact(123);

console.log(`Contact:	${person.getContact("Alice")}`);

console.log(`Contact:	${person.getContact(12)}`);

Listing	10-25. Merging	Methods	in	the	index.ts	File	in	the	src	Folder



The	compiler	will	merge	the	functions	by	creating	an	intersection	of	their
signatures,	which	can	produce	impossible	types	or	functions	that	cannot	be
usefully	implemented.	In	the	example,	the	getContact	methods	in	the
Person	and	Employee	types	are	intersected,	as	shown	in	Figure	10-11.

Figure	10-11. Merging	methods

It	can	be	difficult	to	work	out	the	consequences	of	merging	methods	in	an
intersection,	but	the	overall	effect	is	similar	to	type	overloading,	described	in
Chapter	8.	I	often	rely	on	the	type	declaration	file	to	make	sure	that	I	have
achieved	the	intersection	I	want,	and	there	are	three	statements	in	Listing	10-25
that	help	show	how	the	methods	have	been	merged.

...

let	typeTest	=	person.getContact;

let	stringParamTypeTest	=	person.getContact("Alice");

let	numberParamTypeTest	=	person.getContact(123);

...

When	the	index.ts	file	is	saved	and	compiled,	the	index.d.ts	file	in
the	dist	folder	will	contain	statements	that	show	the	type	the	compiler	has
assigned	to	each	of	the	variables:

declare	let	typeTest:	((field:	string)	=>	string)	&

((field:	number)	=>	number);

declare	let	stringParamTypeTest:	string;

declare	let	numberParamTypeTest:	number;

The	first	statement	shows	the	type	of	the	intersected	method,	and	the	other
statements	show	the	type	returned	when	string	and	number	arguments	are
used.	(I	explain	the	intended	purpose	of	the	index.d.ts	file	in	Chapter	14,
but	taking	advantage	of	this	feature	to	see	the	types	that	the	compiler	is	working



with	is	often	useful.)
The	implementation	of	an	intersected	method	must	preserve	compatibility

with	the	methods	in	the	intersection.	Parameters	are	usually	easy	to	deal	with,
and	in	Listing	10-25,	I	used	a	type	union	to	create	a	method	that	can	receive
string	and	number	values.	Method	results	are	more	difficult	to	deal	with
because	it	can	be	hard	to	find	a	type	that	preserves	compatibility.	I	find	the	most
reliable	approach	is	to	use	any	as	the	method	result	and	use	type	guards	to
create	the	mappings	between	parameters	and	result	types.

...

getContact(field:	string	|	number):	any	{

				return	typeof	field	===	"string"	?	"Alice"	:

6512346543;

}

...

I	try	to	avoid	using	any	as	much	as	possible,	but	there	is	no	other	type	that
can	be	specified	in	this	example	that	allows	an	EmployedPerson	object	to	be
used	both	as	a	Person	and	an	Employee	object.	The	code	in	Listing	10-25
produces	the	following	output	when	compiled	and	executed:

Contact:	Alice

Contact:	6512346543

Summary
In	this	chapter,	I	describe	the	way	that	TypeScript	uses	an	object’s	shape	to
perform	type	checking.	I	explained	how	shapes	are	compared,	how	shapes	can
be	used	for	aliases,	and	how	shapes	are	combined	into	unions	and	intersections.
In	the	next	chapter,	I	explain	how	the	shape	features	are	used	to	provide	type
support	for	classes.



(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
A.	Freeman,	Essential	TypeScript	4
https://doi.org/10.1007/978-1-4842-7011-0_11

11.	Working	with	Classes	and	Interfaces
Adam	Freeman1		

London,	UK

	

In	this	chapter,	I	describe	the	features	that	TypeScript	provides	for	working	with
classes	and	introduce	the	interface	feature,	which	provides	an	alternative
approach	to	describing	the	shape	of	objects.	Table	11-1	summarizes	the	chapter.

Table	11-1. Chapter	Summary

Problem Solution Listing

Create	objects	consistently Use	a	constructor	function	or	define	a	class 4–6,
13–15

Prevent	access	to	properties	and	methods Use	the	TypeScript	access	control	keywords
or	JavaScript	private	fields

7-10

Prevent	properties	from	being	modified Use	the	readonly	keyword 11

Receive	a	constructor	parameter	and	create	an
instance	property	in	a	single	step

Use	the	concise	constructor	syntax 12

Define	partial	common	functionality	that	will	be
inherited	by	subclasses

Define	an	abstract	class 16,	17

Define	a	shape	that	classes	can	implement Define	an	interface 18–23

Define	a	property	dynamically Use	an	index	signature 24-28

For	quick	reference,	Table	11-2	lists	the	TypeScript	compiler	options	used	in
this	chapter.

Table	11-2. The	TypeScript	Compiler	Options	Used	in	This	Chapter

Name Description

target This	option	specifies	the	version	of	the	JavaScript	language	that	the
compiler	will	target	in	its	output.

outDir This	option	specifies	the	directory	in	which	the	JavaScript	files	will

https://doi.org/10.1007/978-1-4842-7011-0_11


be	placed.

rootDir This	option	specifies	the	root	directory	that	the	compiler	will	use	to
locate	TypeScript	files.

declaration This	option	produces	type	declaration	files	when	enabled,	which	can
be	useful	in	understanding	how	types	have	been	inferred.	These	files
are	described	in	more	detail	in	Chapter	14.

noUncheckedIndexedAccess This	option	does	not	allow	properties	accessed	via	an	index	signature
to	be	accessed	until	they	have	been	guarded	against	undefined
values.

Preparing	for	This	Chapter
In	this	chapter,	I	continue	to	use	the	types	project	created	in	Chapter	7	and
used	in	the	chapters	since.	To	prepare	for	this	chapter,	replace	the	contents	of	the
index.ts	file	in	the	src	folder	with	the	code	shown	in	Listing	11-1.

type	Person	=	{

				id:	string,

				name:	string,

				city:	string

};

let	data:	Person[]	=

				[{	id:	"bsmith",	name:	"Bob	Smith",	city:	"London"

},

					{	id:	"ajones",	name:	"Alice	Jones",	city:

"Paris"},

					{	id:	"dpeters",	name:	"Dora	Peters",	city:	"New

York"}];

data.forEach(item	=>	{

				console.log(`${item.id}	${item.name},

${item.city}`);

});

Listing	11-1. Replacing	the	Contents	of	the	index.ts	File	in	the	src	Folder

Reset	the	configuration	of	the	compiler	by	commenting	out	the	configuration
options	shown	in	Listing	11-2.

{



				"compilerOptions":	{

								"target":	"es2020",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"declaration":	true,

								//	"strictNullChecks":	true,

								//	"suppressExcessPropertyErrors":	true

				}

}

Listing	11-2. Configuring	the	Compiler	in	the	tsconfig.json	File	in	the	types	Folder

The	compiler	configuration	includes	the	declaration	setting,	which
means	that	the	compiler	will	create	type	declaration	files	alongside	the
JavaScript	files.	The	intended	purpose	for	declaration	files	is	explained	in
Chapter	14,	but	they	will	be	used	in	this	chapter	to	explain	how	the	compiler
deals	with	data	types.

Open	a	new	command	prompt,	navigate	to	the	types	folder,	and	run	the
command	shown	in	Listing	11-3	to	start	the	TypeScript	compiler	so	that	it
automatically	executes	code	after	it	has	been	compiled.

Tip You	can	download	the	example	project	for	this	chapter—and	for	all	the
other	chapters	in	this	book—from
https://github.com/Apress/essential-typescript-4.

npm	start

Listing	11-3. Starting	the	TypeScript	Compiler

The	compiler	will	compile	the	project,	execute	the	output,	and	then	enter
watch	mode,	producing	the	following	output:

7:16:33	AM	-	Starting	compilation	in	watch	mode...

7:16:35	AM	-	Found	0	errors.	Watching	for	file

changes.

bsmith	Bob	Smith,	London

ajones	Alice	Jones,	Paris

dpeters	Dora	Peters,	New	York

https://github.com/Apress/essential-typescript-4


Using	Constructor	Functions
As	explained	in	Chapter	4,	objects	can	be	created	using	constructor	functions
and	provide	access	to	the	JavaScript	prototype	system.	Constructor	functions	can
be	used	in	TypeScript	code,	but	the	way	they	are	supported	is	counterintuitive
and	not	as	elegant	as	the	way	that	classes	are	handled,	as	explained	later	in	this
chapter.	Listing	11-4	adds	a	constructor	function	to	the	example	code.

type	Person	=	{

				id:	string,

				name:	string,

				city:	string

};

let	Employee	=	function(id:	string,	name:	string,

dept:	string,	city:	string)	{

				this.id	=	id;

				this.name	=	name;

				this.dept	=	dept;

				this.city	=	city;

};

Employee.prototype.writeDept	=	function()	{

				console.log(`${this.name}	works	in	${this.dept}`);

};

let	salesEmployee	=	new	Employee("fvega",	"Fidel

Vega",	"Sales",	"Paris");

let	data:	(Person	|	Employee	)[]	=

				[{	id:	"bsmith",	name:	"Bob	Smith",	city:	"London"

},

					{	id:	"ajones",	name:	"Alice	Jones",	city:

"Paris"},

					{	id:	"dpeters",	name:	"Dora	Peters",	city:	"New

York"},

					salesEmployee];

data.forEach(item	=>	{

				if	(item	instanceof	Employee)	{



								item.writeDept();

				}	else	{

								console.log(`${item.id}	${item.name},

${item.city}`);

				}

});

Listing	11-4. Using	a	Constructor	Function	in	the	index.ts	File	in	the	src	Folder

The	Employee	constructor	function	creates	objects	with	id,	name,	dept,
and	city	properties,	and	there	is	a	method	named	writeDept	defined	on	the
Employee	prototype.	The	data	array	is	updated	to	contain	Person	and
Employee	objects,	and	the	function	passed	to	the	forEach	method	uses	the
instanceof	operator	to	narrow	the	type	of	each	object	in	the	array.	The	code
in	Listing	11-4	produces	the	following	compiler	errors:

src/index.ts(17,21):	error	TS2304:	Cannot	find	name

'Employee'.

src/index.ts(17,21):	error	TS4025:	Exported	variable

'data'	has	or	is	using	private	name	'Employee'.

src/index.ts(25,14):	error	TS2339:	Property

'writeDept'	does	not	exist	on	type	'{}'.

TypeScript	treats	the	Employee	constructor	function	like	any	other	function
and	looks	at	its	parameter	and	result	types	to	describe	its	shape.	When	the
Employee	function	is	used	with	the	new	keyword,	the	compiler	uses	the	any
type	for	the	object	assigned	to	the	salesEmployee	variable.	The	result	is	a
series	of	errors	as	the	compiler	struggles	to	make	sense	of	the	way	the
constructor	function	is	used.

The	simplest	way	to	solve	this	problem	is	to	provide	the	compiler	with
additional	information	about	the	shapes	of	the	objects	that	are	used.	Listing	11-5
adds	a	type	alias	that	describes	the	objects	created	by	the	Employee
constructor	function.

type	Person	=	{

				id:	string,

				name:	string,

				city:	string

};



type	Employee	=	{

				id:	string,

				name:	string,

				dept:	string,

				city:	string,

				writeDept:	()	=>	void

};

let	Employee	=	function(id:	string,	name:	string,

dept:	string,	city:	string)	{

				this.id	=	id;

				this.name	=	name;

				this.dept	=	dept;

				this.city	=	city;

};

Employee.prototype.writeDept	=	function()	{

				console.log(`${this.name}	works	in	${this.dept}`);

};

let	salesEmployee	=	new	Employee("fvega",	"Fidel

Vega",	"Sales",	"Paris");

let	data:	(Person	|	Employee	)[]	=

				[{	id:	"bsmith",	name:	"Bob	Smith",	city:	"London"

},

					{	id:	"ajones",	name:	"Alice	Jones",	city:

"Paris"},

					{	id:	"dpeters",	name:	"Dora	Peters",	city:	"New

York"},

					salesEmployee];

data.forEach(item	=>	{

				if	("dept"	in	item)	{

								item.writeDept();

				}	else	{

								console.log(`${item.id}	${item.name},

${item.city}`);

				}

});



Listing	11-5. Adding	a	Type	Alias	in	the	index.ts	File	in	the	src	Folder

The	TypeScript	compiler	may	not	understand	the	significance	of	the
constructor	function,	but	it	can	match	the	objects	it	creates	by	shape.	The	listing
adds	a	shape	type	that	corresponds	to	those	created	by	the	constructor	function,
including	the	method	that	is	accessed	through	the	prototype.	For	convenience,	I
have	given	the	shape	type	an	alias	that	matches	the	name	of	the	constructor
function,	but	that	is	optional	because	the	compiler	keeps	track	of	variable	names
and	type	names	separately.

Notice	that	the	type	guard	has	changed	in	Listing	11-5	so	that	the	type	is
narrowed	by	checking	for	a	property.	The	TypeScript	compiler	isn’t	able	to	use
the	instanceof	operator	as	a	type	guard	for	objects	created	by	a	constructor
function,	so	I	have	used	one	of	the	techniques	described	in	Chapter	10.	The
result	is	that	the	compiler	can	match	the	shape	of	the	objects	created	by	the
Employee	constructor	function	to	the	shape	defined	by	the	Employee	type
and	differentiate	between	objects	based	on	the	presence	of	the	dept	property,
producing	the	following	output	when	the	code	is	compiled	and	executed:

bsmith	Bob	Smith,	London

ajones	Alice	Jones,	Paris

dpeters	Dora	Peters,	New	York

Fidel	Vega	works	in	Sales

Using	Classes
TypeScript	doesn’t	have	good	support	for	constructor	functions,	but	that	is
because	the	focus	has	been	on	classes,	building	on	the	features	provided	by
JavaScript	to	make	them	more	familiar	to	programmers	accustomed	to	languages
such	as	C#.	Listing	11-6	replaces	the	factory	function	with	a	class.

type	Person	=	{

				id:	string,

				name:	string,

				city:	string

};

class	Employee	{

				id:	string;

				name:	string;



				dept:	string;

				city:	string;

				constructor(id:	string,	name:	string,	dept:

string,	city:	string)	{

								this.id	=	id;

								this.name	=	name;

								this.dept	=	dept;

								this.city	=	city;

				}

				writeDept()	{

								console.log(`${this.name}	works	in

${this.dept}`);

				}

}

let	salesEmployee	=	new	Employee("fvega",	"Fidel

Vega",	"Sales",	"Paris");

let	data:	(Person	|	Employee	)[]	=

				[{	id:	"bsmith",	name:	"Bob	Smith",	city:	"London"

},

					{	id:	"ajones",	name:	"Alice	Jones",	city:

"Paris"},

					{	id:	"dpeters",	name:	"Dora	Peters",	city:	"New

York"},

					salesEmployee];

data.forEach(item	=>	{

				if	(item	instanceof	Employee)	{

								item.writeDept();

				}	else	{

								console.log(`${item.id}	${item.name},

${item.city}`);

				}

});

Listing	11-6. Using	a	Class	in	the	index.ts	File	in	the	src	Folder



The	syntax	for	a	TypeScript	class	requires	the	declaration	of	instance
properties	and	their	types.	This	leads	to	more	verbose	classes—although	I
demonstrate	a	feature	that	addresses	this	shortly—but	it	has	the	advantage	of
allowing	the	constructor	parameter	types	to	be	different	from	the	types	of	the
instance	properties	to	which	they	are	assigned.	Objects	are	created	from	classes
using	the	standard	new	keyword,	and	the	compiler	understands	the	use	of	the
instanceof	keyword	for	type	narrowing	when	classes	are	used.

As	you	will	learn	in	the	sections	that	follow,	TypeScript	provides	powerful
features	for	classes,	and	a	TypeScript	class	can	look	different	from	the	standard
JavaScript	classes	described	in	Chapter	4.	But	it	is	important	to	understand	that
the	compiler	generates	standard	classes	that	depend	on	the	JavaScript	constructor
function	and	prototype	features	at	runtime.	You	can	see	the	class	that	is
generated	from	Listing	11-6	by	looking	at	the	contents	of	the	index.js	file	in
the	dist	folder,	which	will	contain	the	following	code:

...

class	Employee	{

				constructor(id,	name,	dept,	city)	{

								this.id	=	id;

								this.name	=	name;

								this.dept	=	dept;

								this.city	=	city;

				}

				writeDept()	{

								console.log(`${this.name}	works	in

${this.dept}`);

				}

}

...

As	you	start	using	more	advanced	class	features,	it	can	be	useful	to	examine
the	classes	that	the	compiler	produces	to	see	how	the	TypeScript	features	are
translated	into	pure	JavaScript.	The	code	in	Listing	11-6	produces	the	following
output	when	it	is	compiled	and	executed:

bsmith	Bob	Smith,	London

ajones	Alice	Jones,	Paris

dpeters	Dora	Peters,	New	York

Fidel	Vega	works	in	Sales



Using	the	Access	Control	Keywords
JavaScript	doesn’t	provide	access	controls,	which	means	that	all	of	an	object’s
instance	properties	are	accessible,	such	that	classes—or	the	objects	created	from
them—can	be	easily	changed	or	dependencies	created	on	implementation
features.	In	pure	JavaScript,	property	naming	conventions	are	used	to	indicate
which	properties	are	not	to	be	used,	but	TypeScript	goes	further	and	supports
keywords	that	can	be	used	to	manage	access	to	class	properties,	as	described	in
Table	11-3.	(There	is	also	support	for	a	proposed	addition	to	the	JavaScript
specification,	which	I	describe	in	the	“Using	JavaScript	Private	Fields”	section.)

Table	11-3. The	TypeScript	Access	Control	Keywords

Name Description

public This	keyword	allows	free	access	to	a	property	or	method	and	is	the	default	if	no	keyword	is
used.

private This	keyword	restricts	access	to	the	class	that	defines	the	property	or	method	it	is	applied
to.

protected This	keyword	restricts	access	to	the	class	that	defines	the	property	or	method	it	is	applied	to
and	its	subclasses.

TypeScript	treats	properties	as	public	by	default	when	no	keyword	is
specified,	although	you	can	explicitly	apply	the	public	keyword	to	make	the
purpose	of	the	code	easier	to	understand.	Listing	11-7	applies	keywords	to	the
properties	defined	by	the	Employee	class.

type	Person	=	{

				id:	string,

				name:	string,

				city:	string

};

class	Employee	{

				public	id:	string;

				public	name:	string;

				private	dept:	string;

				public	city:	string;

				constructor(id:	string,	name:	string,	dept:

string,	city:	string)	{

								this.id	=	id;



								this.name	=	name;

								this.dept	=	dept;

								this.city	=	city;

				}

				writeDept()	{

								console.log(`${this.name}	works	in

${this.dept}`);

				}

}

let	salesEmployee	=	new	Employee("fvega",	"Fidel

Vega",	"Sales",	"Paris");

console.log(`Dept	value:	${salesEmployee.dept}`);

Listing	11-7. Applying	Access	Control	Keywords	in	the	index.ts	File	in	the	src	Folder

The	access	control	keywords	are	applied	before	the	property	name,	as	shown
in	Figure	11-1.

Figure	11-1. An	access	control	keyword

In	Listing	11-7,	I	applied	the	public	keyword	to	all	the	instance	properties
except	dept,	to	which	private	has	been	applied.	The	effect	of	the	private
keyword	is	to	restrict	access	to	within	the	Employee	class,	and	the	compiler
generates	the	following	error	for	the	statement	that	attempts	to	read	the	value	of
the	dept	property	from	outside	the	class:

src/index.ts(27,42):	error	TS2341:	Property	'dept'	is

private	and	only	accessible	within	class	'Employee'.



The	only	way	that	the	dept	property	can	be	accessed	is	through	the
writeDept	method,	as	used	in	Listing	11-8,	which	is	part	of	the	Employee
class	and	allowed	by	the	private	keyword.

Caution The	access	protection	features	are	enforced	by	the	TypeScript
compiler	and	are	not	part	of	the	JavaScript	code	that	the	compiler	generates.
Do	not	rely	on	the	private	or	protected	keyword	to	shield	sensitive
data	because	it	will	be	accessible	to	the	rest	of	the	application	at	runtime.

type	Person	=	{

				id:	string,

				name:	string,

				city:	string

};

class	Employee	{

				public	id:	string;

				public	name:	string;

				private	dept:	string;

				public	city:	string;

				constructor(id:	string,	name:	string,	dept:

string,	city:	string)	{

								this.id	=	id;

								this.name	=	name;

								this.dept	=	dept;

								this.city	=	city;

				}

				writeDept()	{

								console.log(`${this.name}	works	in

${this.dept}`);

				}

}

let	salesEmployee	=	new	Employee("fvega",	"Fidel

Vega",	"Sales",	"Paris");

salesEmployee.writeDept();



Listing	11-8. Using	a	Method	in	the	index.ts	File	in	the	src	Folder

The	code	in	Listing	11-8	produces	the	following	output	when	it	compiled
and	executed:

Fidel	Vega	works	in	Sales

Ensuring	Instance	Properties	are	Initialized
When	the	strictPropertyInitialization	configuration	option	is
set	to	true,	the	TypeScript	compiler	reports	an	error	if	a	class	defines	a
property	that	is	not	assigned	a	value,	either	as	it	is	defined	or	by	the
constructor.	The	strictNullChecks	option	must	also	be	enabled	for	this
feature	to	work.

Using	JavaScript	Private	Fields
TypeScript	supports	a	JavaScript	feature	working	its	way	through	the
standardization	process	and	that	is	likely	to	be	added	to	the	language
specification.	This	feature	is	support	for	private	fields,	which	provides	an
alternative	to	the	private	keyword,	as	shown	in	Listing	11-9.

Note My	advice	is	to	use	the	TypeScript	private	keyword,	at	least	until
private	fields	become	part	of	the	JavaScript	specification.

type	Person	=	{

				id:	string,

				name:	string,

				city:	string

};

class	Employee	{

				public	id:	string;

				public	name:	string;

				#dept:	string;

				public	city:	string;

				constructor(id:	string,	name:	string,	dept:

string,	city:	string)	{

								this.id	=	id;



								this.name	=	name;

								this.#dept	=	dept;

								this.city	=	city;

				}

				writeDept()	{

								console.log(`${this.name}	works	in

${this.#dept}`);

				}

}

let	salesEmployee	=	new	Employee("fvega",	"Fidel

Vega",	"Sales",	"Paris");

salesEmployee.writeDept();

Listing	11-9. Using	a	Private	Field	in	the	index.ts	File	in	the	src	Folder

Private	fields	are	denoted	with	the	#	character,	as	shown	in	Figure	11-2.

Figure	11-2. A	private	field

By	prefixing	the	name	of	the	dept	variable,	I	restrict	its	access	to	the	class
that	defines	it.	The	#	character	is	also	required	to	get	or	set	the	value	of	the	field,
like	this:

...

this.#dept	=	dept;

...

The	key	advantage	over	the	TypeScript	private	keyword	is	that	the	#
character	is	not	removed	during	the	compilation	process,	which	means	that
access	control	is	enforced	by	the	JavaScript	runtime.	Like	most	TypeScript
features,	the	private	keyword	is	not	included	in	the	JavaScript	code	produced
by	the	compiler,	which	means	that	access	control	is	not	enforced	in	the



JavaScript	code.
There	are	limitations.	This	feature	applies	only	to	fields	and	cannot	be	used

with	methods.	There	is	a	proposal	for	private	methods,	but	it	isn’t	yet	supported
by	the	TypeScript	compiler.	And	because	this	feature	is	not	part	of	the	JavaScript
language	specification,	the	TypeScript	compiler	implements	the	feature
indirectly	by	adding	code	to	the	JavaScript	output.	If	you	examine	the
index.js	file	in	the	dist	folder,	you	can	see	how	the	compiler	handles
private	fields.

var	__classPrivateFieldSet	=	(this	&&

this.__classPrivateFieldSet)	||	function	(receiver,

privateMap,	value)	{

				if	(!privateMap.has(receiver))	{

								throw	new	TypeError("attempted	to	set	private

field	on	non-instance");

				}

				privateMap.set(receiver,	value);

				return	value;

};

var	__classPrivateFieldGet	=	(this	&&

this.__classPrivateFieldGet)	||	function	(receiver,

privateMap)	{

				if	(!privateMap.has(receiver))	{

								throw	new	TypeError("attempted	to	get	private

field	on	non-instance");

				}

				return	privateMap.get(receiver);

};

var	_dept;

class	Employee	{

				constructor(id,	name,	dept,	city)	{

								_dept.set(this,	void	0);

								this.id	=	id;

								this.name	=	name;

								__classPrivateFieldSet(this,	_dept,	dept);

								this.city	=	city;

				}

				writeDept()	{

								console.log(`${this.name}	works	in



${__classPrivateFieldGet(this,	_dept)}`);

				}

}

_dept	=	new	WeakMap();

let	salesEmployee	=	new	Employee("fvega",	"Fidel

Vega",	"Sales",	"Paris");

salesEmployee.writeDept();

It	is	difficult	to	implement	access	controls	when	they	are	not	available	in	the
runtime,	and	the	result	is	an	approximation,	at	best.	If	you	know	that	your	target
runtime	supports	the	proposed	private	fields	feature,	then	you	can	include	the
private	fields	in	the	compiled	JavaScript	code	by	selecting	the	ESNext	version
in	the	tsconfig.json	file,	as	shown	in	Listing	11-10.

{

				"compilerOptions":	{

								"target":	"esNext",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"declaration":	true,

								//	"strictNullChecks":	true,

								//	"suppressExcessPropertyErrors":	true

				}

}

Listing	11-10. Changing	the	Version	Target	in	the	tsconfig.json	File	in	the	types	Folder

No	configuration	option	enables	just	the	private	fields	feature,	so	you	must
make	sure	that	your	JavaScript	runtime	supports	all	the	features	that	are	enabled
by	the	ESNext	target	version,	which	changes	from	release	to	release.	When	the
TypeScript	file	is	compiled,	the	private	fields	are	passed	on	directly,	producing
the	following	code:

class	Employee	{

				constructor(id,	name,	dept,	city)	{

								this.id	=	id;

								this.name	=	name;

								this.#dept	=	dept;

								this.city	=	city;

				}



				#dept;

				writeDept()	{

								console.log(`${this.name}	works	in

${this.#dept}`);

				}

}

let	salesEmployee	=	new	Employee("fvega",	"Fidel

Vega",	"Sales",	"Paris");

salesEmployee.writeDept();

Defining	Read-Only	Properties
The	readonly	keyword	can	be	used	to	create	instance	properties	whose	value
is	assigned	by	the	constructor	but	cannot	otherwise	be	changed,	as	shown	in
Listing	11-11.

type	Person	=	{

				id:	string,

				name:	string,

				city:	string

};

class	Employee	{

				public	readonly	id:	string;

				public	name:	string;

				#dept:	string;

				public	city:	string;

				constructor(id:	string,	name:	string,	dept:

string,	city:	string)	{

								this.id	=	id;

								this.name	=	name;

								this.#dept	=	dept;

								this.city	=	city;

				}

				writeDept()	{

								console.log(`${this.name}	works	in

${this.#dept}`);

				}



}

let	salesEmployee	=	new	Employee("fvega",	"Fidel

Vega",	"Sales",	"Paris");

salesEmployee.writeDept();

salesEmployee.id	=	"fidel";

Listing	11-11. Creating	a	Read-Only	Property	in	the	index.ts	File	in	the	src	Folder

The	readonly	keyword	must	come	after	the	access	control	keyword	if	one
has	been	used,	as	shown	in	Figure	11-3.

Figure	11-3. A	read-only	property

The	application	of	the	readonly	keyword	to	the	id	property	in	Listing	11-
11	means	the	value	assigned	by	the	constructor	cannot	be	changed	subsequently.
The	statement	that	attempts	to	assign	a	new	value	to	the	id	property	causes	the
following	compiler	error:

src/index.ts(27,15):	error	TS2540:	Cannot	assign	to

'id'	because	it	is	a	read-only	property.

Caution The	readonly	keyword	is	enforced	by	the	TypeScript	compiler
and	does	not	affect	the	JavaScript	code	that	the	compiler	generates.	Do	not
use	this	feature	to	protect	sensitive	data	or	operations.

Simplifying	Class	Constructors
Pure	JavaScript	classes	use	constructors	that	create	instance	properties
dynamically,	but	TypeScript	requires	properties	to	be	explicitly	defined.	The
TypeScript	approach	is	the	one	that	most	programmers	find	familiar,	but	it	can
be	verbose	and	repetitive,	especially	when	most	constructor	parameters	are
assigned	to	properties	that	have	the	same	name.	TypeScript	supports	a	more
concise	syntax	for	constructors	that	avoids	the	“define	and	assign”	pattern,	as



shown	in	Listing	11-12.

type	Person	=	{

				id:	string,

				name:	string,

				city:	string

};

class	Employee	{

				constructor(public	readonly	id:	string,	public

name:	string,

												private	dept:	string,	public	city:	string)

{

								//	no	statements	required

				}

				writeDept()	{

								console.log(`${this.name}	works	in

${this.dept}`);

				}

}

let	salesEmployee	=	new	Employee("fvega",	"Fidel

Vega",	"Sales",	"Paris");

salesEmployee.writeDept();

//salesEmployee.id	=	"fidel";

Listing	11-12. Simplifying	the	Constructor	in	the	index.ts	File	in	the	src	Folder

To	simplify	the	constructor,	access	control	keywords	are	applied	to	the
parameters,	as	shown	in	Figure	11-4.

Figure	11-4. Applying	access	control	keywords	to	constructor	parameters

The	compiler	automatically	creates	an	instance	property	for	each	of	the



constructor	arguments	to	which	an	access	control	keyword	has	been	applied	and
assigns	the	parameter	value.	The	use	of	the	access	control	keywords	doesn’t
change	the	way	the	constructor	is	invoked	and	is	required	only	to	tell	the
compiler	that	corresponding	instance	variables	are	required.	The	concise	syntax
can	be	mixed	with	conventional	parameters	if	required,	and	the	readonly
keyword	is	carried	over	to	the	instance	properties	created	by	the	compiler.	The
code	in	Listing	11-12	produces	the	following	output:

Fidel	Vega	works	in	Sales

Using	Class	Inheritance
TypeScript	builds	on	the	standard	class	inheritance	features	to	make	them	more
consistent	and	familiar,	with	some	useful	additions	for	commonly	required	tasks
and	for	restricting	some	of	the	JavaScript	characteristics	that	can	cause
problems.	Listing	11-13	replaces	the	Person	type	alias	with	a	class	that
provides	the	same	features	and	uses	it	as	the	superclass	for	Employee.

Note I	have	shown	multiple	classes	in	the	same	code	file,	but	a	common
convention	is	to	separate	each	class	into	its	own	file,	which	can	make	a
project	easier	to	navigate	and	understand.	You	can	see	more	realistic
examples	in	Part	3,	where	I	build	a	series	of	web	applications.

class	Person	{

				constructor(public	id:	string,	public	name:

string,

								public	city:	string)	{	}

}

class	Employee	extends	Person	{

				constructor(public	readonly	id:	string,	public

name:	string,

												private	dept:	string,	public	city:	string)

{

								super(id,	name,	city);

				}



				writeDept()	{

								console.log(`${this.name}	works	in

${this.dept}`);

				}

}

let	data	=	[new	Person("bsmith",	"Bob	Smith",

"London"),

				new	Employee("fvega",	"Fidel	Vega",	"Sales",

"Paris")];

data.forEach(item	=>	{

				console.log(`Person:	${item.name},	${item.city}`);

				if	(item	instanceof	Employee)	{

								item.writeDept();

				}

});

Listing	11-13. Adding	a	Class	in	the	index.ts	File	in	the	src	Folder

When	using	the	extends	keyword,	TypeScript	requires	that	the	superclass
constructor	is	invoked	using	the	super	keyword,	ensuring	that	its	properties	are
initialized.	The	code	in	Listing	11-13	produces	the	following	output:

Person:	Bob	Smith,	London

Person:	Fidel	Vega,	Paris

Fidel	Vega	works	in	Sales

Understanding	Type	Inference	for	Subclasses
Caution	is	required	when	letting	the	compiler	infer	types	from	classes	because	it
is	easy	to	produce	unexpected	results	by	assuming	the	compiler	has	insight	into
the	hierarchy	of	classes.

The	data	array	in	Listing	11-13	contains	a	Person	object	and	an
Employee	object,	and	if	you	examine	the	index.d.ts	file	in	the	dist
folder,	you	will	see	that	the	compiler	has	inferred	Person[]	as	the	array	type,
like	this:

...

declare	let	data:	Person[];

...



If	you	are	familiar	with	other	programming	languages,	you	might	reasonably
assume	that	the	compiler	has	realized	that	Employee	is	a	subclass	of	Person
and	that	all	the	objects	in	the	array	can	be	treated	as	Person	objects.	In	reality,
the	compiler	creates	a	union	of	the	types	the	array	contains,	which	would	be
Person	|	Employee,	and	determines	that	this	is	equivalent	to	Person
since	a	union	only	presents	the	features	that	are	common	to	all	types.	It	is
important	to	remember	that	the	compiler	pays	attention	to	object	shapes,	even	if
the	developer	is	paying	attention	to	classes.	This	can	appear	to	be	an	unimportant
difference,	but	it	has	consequences	when	using	objects	that	share	a	common
superclass,	as	shown	in	Listing	11-14.

class	Person	{

				constructor(public	id:	string,	public	name:

string,

								public	city:	string)	{	}

}

class	Employee	extends	Person	{

				constructor(public	readonly	id:	string,	public

name:	string,

												private	dept:	string,	public	city:	string)

{

								super(id,	name,	city);

				}

				writeDept()	{

								console.log(`${this.name}	works	in

${this.dept}`);

				}

}

class	Customer	extends	Person	{

				constructor(public	readonly	id:	string,	public

name:	string,

												public	city:	string,	public	creditLimit:

number)	{

								super(id,	name,	city);



				}

}

class	Supplier	extends	Person	{

				constructor(public	readonly	id:	string,	public

name:	string,

												public	city:	string,	public	companyName:

string)	{

								super(id,	name,	city);

				}

}

let	data	=	[new	Employee("fvega",	"Fidel	Vega",

"Sales",	"Paris"),

								new	Customer("ajones",	"Alice	Jones",

"London",	500)];

data.push(new	Supplier("dpeters",	"Dora	Peters",	"New

York",	"Acme"));

data.forEach(item	=>	{

				console.log(`Person:	${item.name},	${item.city}`);

				if	(item	instanceof	Employee)	{

								item.writeDept();

				}	else	if	(item	instanceof	Customer)	{

								console.log(`Customer	${item.name}	has

${item.creditLimit}	limit`);

				}	else	if	(item	instanceof	Supplier)	{

								console.log(`Supplier	${item.name}	works	for

${item.companyName}`);

				}

});

Listing	11-14. Using	Objects	with	a	Common	Superclass	in	the	index.ts	File	in	the	src	Folder

This	example	won’t	compile	because	the	TypeScript	compiler	has	inferred
the	type	for	the	data	array	based	on	the	types	of	the	objects	it	contains	and	has
not	reflected	the	shared	superclass.	Here	is	the	statement	from	the
index.d.ts	file	in	the	dist	folder	that	shows	the	type	the	compiler	inferred:



...

declare	let	data:	(Employee	|	Customer)[];

...

The	array	can	only	contain	Employee	or	Customer	objects,	and	the	errors
are	reported	because	a	Supplier	object	is	added.	To	resolve	this	problem,	a
type	annotation	can	be	used	to	tell	the	compiler	that	the	array	can	contain
Product	objects,	as	shown	in	Listing	11-15.

...

let	data:	Person[]	=	[new	Employee("fvega",	"Fidel

Vega",	"Sales",	"Paris"),

								new	Customer("ajones",	"Alice	Jones",

"London",	500)];

data.push(new	Supplier("dpeters",	"Dora	Peters",	"New

York",	"Acme"));

...

Listing	11-15. Using	a	Type	Annotation	in	the	index.ts	File	in	the	src	Folder

The	compiler	will	allow	the	data	array	to	store	Product	objects	and	objects
created	from	its	subclasses.	The	code	in	Listing	11-15	produces	the	following
output:

Person:	Fidel	Vega,	Paris

Fidel	Vega	works	in	Sales

Person:	Alice	Jones,	London

Customer	Alice	Jones	has	500	limit

Person:	Dora	Peters,	New	York

Supplier	Dora	Peters	works	for	Acme

Using	an	Abstract	Class
Abstract	classes	cannot	be	instantiated	directly	and	are	used	to	describe	common
functionality	that	must	be	implemented	by	subclasses,	forcing	subclasses	to
adhere	to	a	specific	shape	but	allowing	class-specific	implementations	of
specific	methods,	as	shown	in	Listing	11-16.

abstract	class	Person	{



				constructor(public	id:	string,	public	name:

string,

								public	city:	string)	{	}

				getDetails():	string	{

								return	`${this.name},

${this.getSpecificDetails()}`;

				}

				abstract	getSpecificDetails():	string;

}

class	Employee	extends	Person	{

				constructor(public	readonly	id:	string,	public

name:	string,

												private	dept:	string,	public	city:	string)

{

								super(id,	name,	city);

				}

				getSpecificDetails()	{

								return	`works	in	${this.dept}`;

				}

}

class	Customer	extends	Person	{

				constructor(public	readonly	id:	string,	public

name:	string,

												public	city:	string,	public	creditLimit:

number)	{

								super(id,	name,	city);

				}

				getSpecificDetails()	{

								return	`has	${this.creditLimit}	limit`;

				}

}



class	Supplier	extends	Person	{

				constructor(public	readonly	id:	string,	public

name:	string,

												public	city:	string,	public	companyName:

string)	{

								super(id,	name,	city);

				}

				getSpecificDetails()	{

								return	`works	for	${this.companyName}`;

				}

}

let	data:	Person[]	=	[new	Employee("fvega",	"Fidel

Vega",	"Sales",	"Paris"),

								new	Customer("ajones",	"Alice	Jones",

"London",	500)];

data.push(new	Supplier("dpeters",	"Dora	Peters",	"New

York",	"Acme"));

data.forEach(item	=>	console.log(item.getDetails()));

Listing	11-16. Defining	an	Abstract	Class	in	the	index.ts	File	in	the	src	Folder

Abstract	classes	are	created	using	the	abstract	keyword	before	the
class	keyword,	as	shown	in	Figure	11-5.

Figure	11-5. Defining	an	abstract	class

The	abstract	keyword	is	also	applied	to	individual	methods,	which	are
defined	without	a	body,	as	shown	in	Figure	11-6.



Figure	11-6. Defining	an	abstract	method

When	a	class	extends	an	abstract	class,	it	must	implement	all	the	abstract
methods.	In	the	example,	the	abstract	Person	class	defines	an	abstract	method
named	getSpecificDetails,	which	must	be	implemented	by	the
Employee,	Customer,	and	Supplier	classes.	The	Person	class	also
defines	a	regular	method	named	getDetails,	which	invokes	the	abstract
method	and	uses	its	result.

Objects	instantiated	from	classes	derived	from	an	abstract	class	can	be
used	through	the	abstract	class	type,	which	means	that	the	Employee,
Customer,	and	Supplier	objects	can	be	stored	in	a	Person	array,	although
only	the	properties	and	methods	defined	by	the	Person	class	can	be	used
unless	objects	are	narrowed	to	a	more	specific	type.	The	code	in	Listing	11-16
produces	the	following	output:

Fidel	Vega,	works	in	Sales

Alice	Jones,	has	500	limit

Dora	Peters,	works	for	Acme

Type	Guarding	an	Abstract	Class
Abstract	classes	are	implemented	as	regular	classes	in	the	JavaScript	generated
by	the	TypeScript	compiler.	The	drawback	of	this	approach	is	that	it	is	the
TypeScript	compiler	that	prevents	abstract	classes	from	being	instantiated,	and
this	isn’t	carried	over	into	the	JavaScript	code,	potentially	allowing	objects	to	be
created	from	the	abstract	class.	However,	this	approach	does	mean	that	the
instanceof	keyword	can	be	used	to	narrow	types,	as	shown	in	Listing	11-17.

abstract	class	Person	{

				constructor(public	id:	string,	public	name:

string,

								public	city:	string)	{	}

				getDetails():	string	{



								return	`${this.name},

${this.getSpecificDetails()}`;

				}

				abstract	getSpecificDetails():	string;

}

class	Employee	extends	Person	{

				constructor(public	readonly	id:	string,	public

name:	string,

												private	dept:	string,	public	city:	string)

{

								super(id,	name,	city);

				}

				getSpecificDetails()	{

								return	`works	in	${this.dept}`;

				}

}

class	Customer	{

				constructor(public	readonly	id:	string,	public

name:	string,

												public	city:	string,	public	creditLimit:

number)	{

				}

}

let	data:	(Person	|	Customer)[]	=	[

								new	Employee("fvega",	"Fidel	Vega",	"Sales",

"Paris"),

								new	Customer("ajones",	"Alice	Jones",

"London",	500)];

data.forEach(item	=>	{

				if	(item	instanceof	Person)	{

								console.log(item.getDetails());

				}	else	{



								console.log(`Customer:	${item.name}`);

				}

});

Listing	11-17. Type	Guarding	an	Abstract	Class	in	the	index.ts	File	in	the	src	Folder

In	this	listing,	Employee	extends	the	abstract	Person	class,	but	the
Customer	class	does	not.	The	instanceof	operator	can	be	used	to	identify
any	object	instantiated	from	a	class	that	extends	the	abstract	class,	which	allows
narrowing	in	the	Person	|	Customer	union	used	as	the	type	for	the	array.
The	code	in	Listing	11-17	produces	the	following	output:

Fidel	Vega,	works	in	Sales

Customer:	Alice	Jones

Using	Interfaces
Interfaces	are	used	to	describe	the	shape	of	an	object,	which	a	class	that
implements	the	interface	must	conform	to,	as	shown	in	Listing	11-18.

Note Interfaces	have	a	similar	purpose	to	shape	types,	described	in	Chapter
10,	and	successive	versions	of	TypeScript	have	eroded	the	differences
between	these	two	features,	to	the	point	where	they	can	often	be	used
interchangeably	to	achieve	the	same	effect,	especially	when	dealing	with
simple	types.	Interfaces	do	have	some	useful	features,	however,	and	they
provide	a	development	experience	that	is	more	consistent	with	other
languages,	such	as	C#.

interface	Person	{

				name:	string;

				getDetails():	string;

}

class	Employee	implements	Person	{

				constructor(public	readonly	id:	string,	public

name:	string,

												private	dept:	string,	public	city:	string)

{



								//	no	statements	required

				}

				getDetails()	{

								return	`${this.name}	works	in	${this.dept}`;

				}

}

class	Customer	implements	Person	{

				constructor(public	readonly	id:	string,	public

name:	string,

												public	city:	string,	public	creditLimit:

number)	{

								//	no	statements	required

				}

				getDetails()	{

								return	`${this.name}	has	${this.creditLimit}

limit`;

				}

}

let	data:	Person[]	=	[

								new	Employee("fvega",	"Fidel	Vega",	"Sales",

"Paris"),

								new	Customer("ajones",	"Alice	Jones",

"London",	500)];

data.forEach(item	=>	console.log(item.getDetails()));

Listing	11-18. Using	an	Interface	in	the	index.ts	File	in	the	src	Folder

Interfaces	are	defined	by	the	interface	keyword	and	contain	the	set	of
properties	and	methods	that	a	class	must	provide	in	order	to	conform	to	the
interface,	as	shown	in	Figure	11-7.



Figure	11-7. Defining	an	interface

Unlike	abstract	classes,	interfaces	don’t	implement	methods	or	define	a
constructor	and	just	define	a	shape.	Interfaces	are	implemented	by	classes
through	the	implements	keyword,	as	shown	in	Figure	11-8.

Figure	11-8. Implementing	an	interface

The	Person	interface	defines	a	name	property	and	a	getDetails
method,	so	the	Employee	and	Customer	classes	must	define	the	same
property	and	method.	These	classes	can	define	extra	properties	and	methods,	but
they	can	only	conform	to	the	interface	by	providing	name	and	getDetails.
The	interface	can	be	used	in	type	annotations,	such	as	the	array	in	the	example.

...

let	data:	Person[]	=	[

								new	Employee("fvega",	"Fidel	Vega",	"Sales",

"Paris"),

								new	Customer("ajones",	"Alice	Jones",

"London",	500)];

...

The	data	array	can	contain	any	object	created	from	a	class	that	implements
the	Product	array,	although	the	function	passed	to	the	forEach	method	can



access	only	the	features	defined	by	the	interface	unless	objects	are	narrowed	to	a
more	specific	type.	The	code	in	Listing	11-18	produces	the	following	output:

Fidel	Vega	works	in	Sales

Alice	Jones	has	500	limit

Merging	Interface	Declarations
Interfaces	can	be	defined	in	multiple	interface	declarations,	which	are
merged	by	the	compiler	to	form	a	single	interface.	This	is	an	odd	feature—
and	one	that	I	have	yet	to	find	useful	in	my	own	projects.	The	declarations
must	be	made	in	the	same	code	file,	and	they	must	all	be	exported	(defined
with	the	export	keyword)	or	defined	locally	(defined	without	the	export
keyword).

Implementing	Multiple	Interfaces
A	class	can	implement	more	than	one	interface,	meaning	it	must	define	the
methods	and	properties	defined	by	all	of	them,	as	shown	in	Listing	11-19.

interface	Person	{

				name:	string;

				getDetails():	string;

}

interface	DogOwner	{

				dogName:	string;

				getDogDetails():	string;

}

class	Employee	implements	Person	{

				constructor(public	readonly	id:	string,	public

name:	string,

												private	dept:	string,	public	city:	string)

{

								//	no	statements	required

				}

				getDetails()	{



								return	`${this.name}	works	in	${this.dept}`;

				}

}

class	Customer	implements	Person,	DogOwner	{

				constructor(public	readonly	id:	string,	public

name:	string,

												public	city:	string,	public	creditLimit:

number,

												public	dogName	)	{

								//	no	statements	required

				}

				getDetails()	{

								return	`${this.name}	has	${this.creditLimit}

limit`;

				}

				getDogDetails()	{

								return	`${this.name}	has	a	dog	named

${this.dogName}`;

				}

}

let	alice	=	new	Customer("ajones",	"Alice	Jones",

"London",	500,	"Fido");

let	dogOwners:	DogOwner[]	=	[alice];

dogOwners.forEach(item	=>

console.log(item.getDogDetails()));

let	data:	Person[]	=	[new	Employee("fvega",	"Fidel

Vega",	"Sales",	"Paris"),	alice];

data.forEach(item	=>	console.log(item.getDetails()));

Listing	11-19. Implementing	Multiple	Interfaces	in	the	index.ts	File	in	the	src	Folder

Interfaces	are	listed	after	the	implements	keyword,	separated	with
commas.	In	the	listing,	the	Customer	class	implements	the	Person	and



DogOwner	interfaces,	which	means	that	the	Person	object	assigned	to	the
variable	named	alice	can	be	added	to	the	arrays	typed	for	Person	and
DogOwner	objects.	The	code	in	Listing	11-19	produces	the	following	output:

Alice	Jones	has	a	dog	named	Fido

Fidel	Vega	works	in	Sales

Alice	Jones	has	500	limit

Note A	class	can	implement	multiple	interfaces	only	if	there	are	no
overlapping	properties	with	conflicting	types.	For	example,	if	the	Person
interface	defined	a	string	property	named	id	and	if	the	DogOwner
interface	defined	a	number	property	with	the	same	name,	the	Customer
class	would	not	be	able	to	implement	both	interfaces	because	there	is	no	value
that	could	be	assigned	to	its	id	property	that	could	represent	both	types.

Extending	Interfaces
Interfaces	can	be	extended,	just	like	classes.	The	same	basic	approach	is	used,
and	the	result	is	an	interface	that	contains	the	properties	and	methods	inherited
from	its	parent	interfaces,	along	with	any	new	features	that	are	defined,	as	shown
in	Listing	11-20.

interface	Person	{

				name:	string;

				getDetails():	string;

}

interface	DogOwner	extends	Person	{

				dogName:	string;

				getDogDetails():	string;

}

class	Employee	implements	Person	{

				constructor(public	readonly	id:	string,	public

name:	string,

												private	dept:	string,	public	city:	string)

{

								//	no	statements	required



				}

				getDetails()	{

								return	`${this.name}	works	in	${this.dept}`;

				}

}

class	Customer	implements	DogOwner	{

				constructor(public	readonly	id:	string,	public

name:	string,

												public	city:	string,	public	creditLimit:

number,

												public	dogName	)	{

								//	no	statements	required

				}

				getDetails()	{

								return	`${this.name}	has	${this.creditLimit}

limit`;

				}

				getDogDetails()	{

								return	`${this.name}	has	a	dog	named

${this.dogName}`;

				}

}

let	alice	=	new	Customer("ajones",	"Alice	Jones",

"London",	500,	"Fido");

let	dogOwners:	DogOwner[]	=	[alice];

dogOwners.forEach(item	=>

console.log(item.getDogDetails()));

let	data:	Person[]	=	[new	Employee("fvega",	"Fidel

Vega",	"Sales",	"Paris"),	alice];

data.forEach(item	=>	console.log(item.getDetails()));

Listing	11-20. Extending	an	Interface	in	the	index.ts	File	in	the	src	Folder



The	extend	keyword	is	used	to	extend	an	interface.	In	the	listing,	the
DogOwner	interface	extends	the	Person	interface,	which	means	that	classes
that	implement	DogOwner	must	define	the	properties	and	methods	from	both
interfaces.	Objects	created	from	the	Customer	class	can	be	treated	as	both
DogOwner	and	Person	objects,	since	they	always	define	the	shapes	required
by	each	interface.	The	code	in	Listing	11-20	produces	the	following	output:

Alice	Jones	has	a	dog	named	Fido

Fidel	Vega	works	in	Sales

Alice	Jones	has	500	limit

Interfaces	and	Shape	Types
As	noted	at	the	start	of	this	section,	shape	types	and	interfaces	can	often	be
used	interchangeably.	Classes	can,	for	example,	use	the	implements
keyword	with	a	shape	type	to	indicate	they	implement	the	properties	in	the
shape,	like	this:

...

type	Person	=	{

				name:	string;

				getDetails():	string;

};

class	Employee	implements	Person	{

				constructor(public	readonly	id:	string,	public

name:	string,

												private	dept:	string,	public	city:

string)	{

								//	no	statements	required

				}

				getDetails()	{

								return	`${this.name}	works	in	${this.dept}`;

				}

}

...

This	fragment	of	code	is	based	on	Listing	11-20	and	replaces	the	Person



interface	with	a	shape	type	that	has	the	same	properties.	The	Employee
class	uses	the	implements	keyword	to	declare	that	it	conforms	to	the
Person	shape.

Interfaces	can	also	conform	to	shape	types,	using	the	extends	keyword,
like	this:

...

type	NamedObject	=	{

				name:	string;

};

interface	Person	extends	NamedObject	{

				getDetails():	string;

};

...

In	this	fragment	of	code,	the	Person	interface	inherits	the	name
property	from	the	NamedObject	shape	type.	Classes	that	implement	the
Person	interface	must	define	the	name	property,	along	with	the
getDetails	method	that	the	interface	specifies	directly.

Defining	Optional	Interface	Properties	and	Methods
Adding	an	optional	property	to	an	interface	allows	classes	that	implement	the
interface	to	provide	the	property	without	making	it	a	requirement,	as	shown	in
Listing	11-21.

interface	Person	{

				name:	string;

				getDetails():	string;

				dogName?:	string;

				getDogDetails?():	string;

}

class	Employee	implements	Person	{

				constructor(public	readonly	id:	string,	public

name:	string,

												private	dept:	string,	public	city:	string)



{

								//	no	statements	required

				}

				getDetails()	{

								return	`${this.name}	works	in	${this.dept}`;

				}

}

class	Customer	implements	Person	{

				constructor(public	readonly	id:	string,	public

name:	string,

												public	city:	string,	public	creditLimit:

number,

												public	dogName)	{

								//	no	statements	required

				}

				getDetails()	{

								return	`${this.name}	has	${this.creditLimit}

limit`;

				}

				getDogDetails()	{

								return	`${this.name}	has	a	dog	named

${this.dogName}`;

				}

}

let	alice	=	new	Customer("ajones",	"Alice	Jones",

"London",	500,	"Fido");

let	data:	Person[]	=	[new	Employee("fvega",	"Fidel

Vega",	"Sales",	"Paris"),	alice];

data.forEach(item	=>	{

				console.log(item.getDetails());

				if	(item.getDogDetails)	{

								console.log(item.getDogDetails());

				}



});

Listing	11-21. Adding	an	Optional	Property	in	the	index.ts	File	in	the	src	Folder

Declaring	an	optional	property	on	an	interface	is	done	using	the	question
mark	character	after	the	name,	as	shown	in	Figure	11-9.

Figure	11-9. Defining	optional	interface	members

Optional	interface	features	can	be	defined	through	the	interface	type	without
causing	compiler	errors,	but	you	must	check	to	ensure	that	you	do	not	receive
undefined	values	since	objects	may	have	been	created	from	classes	that	have
not	implemented	them,	like	this:

...

data.forEach(item	=>	{

				console.log(item.getDetails());

				if	(item.getDogDetails)	{

								console.log(item.getDogDetails());

				}

});

...

Only	one	of	the	types	in	Listing	11-21	that	implements	the	Person	interface
defines	the	getDogDetails	method.	This	method	can	be	accessed	through
the	Person	type	without	narrowing	to	a	specific	class	but	may	not	have	been
defined,	which	is	why	I	use	type	coercion	in	a	conditional	expression	so	that	the
method	is	only	invoked	on	objects	that	have	defined	it.	The	code	in	Listing	11-
21	produces	the	following	output:



Fidel	Vega	works	in	Sales

Alice	Jones	has	500	limit

Alice	Jones	has	a	dog	named	Fido

Defining	an	Abstract	Interface	Implementation
Abstract	classes	can	be	used	to	implement	some	or	all	of	the	features	described
by	an	interface,	as	shown	in	Listing	11-22.	This	can	reduce	code	duplication
when	some	of	the	classes	that	implement	an	interface	would	do	so,	in	the	same
way,	using	the	same	code.

interface	Person	{

				name:	string;

				getDetails():	string;

				dogName?:	string;

				getDogDetails?():	string;

}

abstract	class	AbstractDogOwner	implements	Person	{

				abstract	name:	string;

				abstract	dogName?:	string;

				abstract	getDetails();

				getDogDetails()	{

								if	(this.dogName)	{

												return	`${this.name}	has	a	dog	called

${this.dogName}`;

								}

				}

}

class	DogOwningCustomer	extends	AbstractDogOwner	{

				constructor(public	readonly	id:	string,	public

name:	string,

												public	city:	string,	public	creditLimit:

number,

												public	dogName)	{



								super();

				}

				getDetails()	{

								return	`${this.name}	has	${this.creditLimit}

limit`;

				}

}

let	alice	=	new	DogOwningCustomer("ajones",	"Alice

Jones",	"London",	500,	"Fido");

if	(alice.getDogDetails)	{

				console.log(alice.getDogDetails());

}

Listing	11-22. Creating	an	Abstract	Implementation	in	the	index.ts	File	in	the	src	Folder

AbstractDogOwner	provides	a	partial	implementation	of	the	Person
interface	but	declares	the	interface	features	that	it	doesn’t	implement	as
abstract,	which	forces	subclasses	to	implement	them.	There	is	one	subclass
that	extends	AbstractDogOwner,	which	inherits	the	getDogDetails
method	from	the	abstract	class.	The	code	in	Listing	11-22	produces	the
following	output:

Alice	Jones	has	a	dog	called	Fido

Type	Guarding	an	Interface
There	is	no	JavaScript	equivalent	to	interfaces,	and	no	details	of	interfaces	are
included	in	the	JavaScript	code	generated	by	the	TypeScript	compiler.	This
means	that	the	instanceof	keyword	cannot	be	used	to	narrow	interface	types,
and	type	guarding	can	be	done	only	by	checking	for	one	or	more	properties	that
are	defined	by	the	interface,	as	shown	in	Listing	11-23.

interface	Person	{

				name:	string;

				getDetails():	string;

}

interface	Product	{

				name:	string;



				price:	number;

}

class	Employee	implements	Person	{

				constructor(public	name:	string,	public	company:

string)	{

								//	no	statements	required

				}

				getDetails()	{

								return	`${this.name}	works	for

${this.company}`;

				}

}

class	SportsProduct	implements	Product	{

				constructor(public	name:	string,	public	category:

string,

												public	price:	number)	{

								//	no	statements	required

				}

}

let	data:	(Person	|	Product)[]	=	[new	Employee("Bob

Smith",	"Acme"),

				new	SportsProduct("Running	Shoes",	"Running",

90.50),

				new	Employee("Dora	Peters",	"BigCo")];

data.forEach(item	=>	{

				if	("getDetails"	in	item)	{

								console.log(`Person:	${item.getDetails()}`);

				}	else	{

								console.log(`Product:	${item.name},

${item.price}`);

				}

});

Listing	11-23. Type	Guarding	an	Interface	in	the	index.ts	File	in	the	src	Folder



This	listing	uses	the	presence	of	the	getDetails	property	to	identify	those
objects	that	implement	the	Person	interface,	allowing	the	contents	of	the	data
array	to	be	narrowed	to	the	Person	or	Product	type.	Listing	11-23	produces
the	following	output:

Person:	Bob	Smith	works	for	Acme

Product:	Running	Shoes,	90.5

Person:	Dora	Peters	works	for	BigCo

Dynamically	Creating	Properties
The	TypeScript	compiler	only	allows	values	to	be	assigned	to	properties	that	are
part	of	an	object’s	type,	which	means	that	interfaces	and	classes	have	to	define
all	the	properties	that	the	application	requires.

By	contrast,	JavaScript	allows	new	properties	to	be	created	on	objects	simply
by	assigning	a	value	to	an	unused	property	name.	The	TypeScript	index
signature	feature	bridges	these	two	models,	allowing	properties	to	be	defined
dynamically	while	preserving	type	safety,	as	shown	in	Listing	11-24.

interface	Product	{

				name:	string;

				price:	number;

}

class	SportsProduct	implements	Product	{

				constructor(public	name:	string,	public	category:

string,

												public	price:	number)	{

								//	no	statements	required

				}

}

class	ProductGroup	{

				constructor(...initialProducts:	[string,	Product]

[])	{

								initialProducts.forEach(p	=>	this[p[0]]	=

p[1]);

				}



				[propertyName:	string]:	Product;

}

let	group

				=	new	ProductGroup(["shoes",	new

SportsProduct("Shoes",	"Running",	90.50)]);

group.hat	=	new	SportsProduct("Hat",	"Skiing",	20);

Object.keys(group).forEach(k	=>	console.log(`Property

Name:	${k}`));

Listing	11-24. Defining	an	Index	Signature	in	the	index.ts	File	in	the	src	Folder

The	ProductGroup	class	receives	an	array	of	[string,	Product]
tuples	through	its	constructor,	each	of	which	is	used	to	create	a	property	using
the	string	value	as	its	name	and	the	Product	as	its	value.	The	compiler	will
allow	the	constructor	to	create	the	property	and	give	it	the	any	type,	unless	the
noImplicitAny	or	strict	compiler	options	are	enabled,	when	an	error	is
thrown.

Classes	can	define	an	index	signature	to	allow	properties	to	be	created
dynamically	outside	the	constructor	(and	to	prevent	noImplicitAny	compiler
errors).	An	index	signature	uses	square	brackets	to	specify	the	type	of	the
property	keys,	followed	by	a	type	annotation	that	restricts	the	types	that	can	be
used	to	create	dynamic	properties,	as	shown	in	Figure	11-10.

Figure	11-10. An	index	signature

The	property	name	type	can	be	only	string	or	number,	but	the	property
value	type	can	be	any	type.	The	index	signature	in	the	figure	tells	the	compiler	to
allow	dynamic	properties	that	use	string	values	for	names	and	that	are
assigned	Product	values,	such	as	this	property:

...

group.hat	=	new	SportsProduct("Hat",	"Skiing",	20);

...



This	statement	creates	a	property	named	hat.	The	code	in	Listing	11-24
produces	the	following	output,	showing	the	names	of	the	properties	created	by
the	constructor	and	by	the	subsequent	statement:

Property	Name:	shoes

Property	Name:	hat

Enabling	Index	Value	Checking
One	potential	pitfall	with	index	signatures	is	that	the	TypeScript	compiler
assumes	that	you	will	only	access	properties	that	exist,	which	is	inconsistent
with	the	broader	approach	taken	by	TypeScript	to	force	assumptions	into	the
open	so	they	can	be	explicitly	verified.	In	Listing	11-25,	I	access	a	property	that
doesn’t	exist	via	an	index	signature.

interface	Product	{

				name:	string;

				price:	number;

}

class	SportsProduct	implements	Product	{

				constructor(public	name:	string,	public	category:

string,

												public	price:	number)	{

								//	no	statements	required

				}

}

class	ProductGroup	{

				constructor(...initialProducts:	[string,	Product]

[])	{

								initialProducts.forEach(p	=>	this[p[0]]	=

p[1]);

				}

				[propertyName:	string]:	Product;

}

let	group

				=	new	ProductGroup(["shoes",	new



SportsProduct("Shoes",	"Running",	90.50)]);

group.hat	=	new	SportsProduct("Hat",	"Skiing",	20);

let	total	=	group.hat.price	+	group.boots.price;

console.log(`Total:	${total}`);

Listing	11-25. Accessing	a	Nonexistent	Property	in	the	index.ts	File	in	the	src	Folder

The	statement	that	assigns	a	value	to	total	uses	the	index	signature	to
access	hat	and	boots	properties.	No	boots	property	has	been	created,	but
the	code	still	compiles,	and	the	result	is	an	error	when	the	compiled	code	is
executed.

let	total	=	group.hat.price	+	group.boots.price;

																																										^

TypeError:	Cannot	read	property	'price'	of	undefined

				at	Object.<anonymous>

(C:\types\dist\index.js:16:43)

To	configure	the	compiler	to	check	index	signatures	accesses,	set	the
noUncheckedIndexedAccess	and	strictNullChecks	configuration
options	to	true,	as	shown	in	Listing	11-26.

{

				"compilerOptions":	{

								"target":	"esNext",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"declaration":	true,

								"strictNullChecks":	true,

								"noUncheckedIndexedAccess":	true

				}

}

Listing	11-26. Configuring	the	Compiler	in	the	tsconfig.json	File	in	the	types	Folder

Save	the	configuration	changes,	and	the	code	will	be	recompiled.	This	time
the	TypeScript	compiler	generates	an	error.

src/index.ts(25,31):	error	TS2532:	Object	is	possibly

'undefined'.



To	prevent	the	error,	I	must	make	sure	that	the	property	exists	before
attempting	to	use	its	value,	as	shown	in	Listing	11-27,	to	guard	against
undefined	values.

interface	Product	{

				name:	string;

				price:	number;

}

class	SportsProduct	implements	Product	{

				constructor(public	name:	string,	public	category:

string,

												public	price:	number)	{

								//	no	statements	required

				}

}

class	ProductGroup	{

				constructor(...initialProducts:	[string,	Product]

[])	{

								initialProducts.forEach(p	=>	this[p[0]]	=

p[1]);

				}

				[propertyName:	string]:	Product;

}

let	group

				=	new	ProductGroup(["shoes",	new

SportsProduct("Shoes",	"Running",	90.50)]);

group.hat	=	new	SportsProduct("Hat",	"Skiing",	20);

if	(group.hat	&&	group.boots)	{

				let	total	=	group.hat.price	+	group.boots.price;

				console.log(`Total:	${total}`);

}

Listing	11-27. Checking	a	Property	in	the	index.ts	File	in	the	src	Folder

The	if	expression	ensures	that	the	boots	property	won’t	be	used	if	it	is



undefined.	An	alternative	approach	is	to	use	optional	chaining	and	the	nullish
operator	to	provide	a	fallback	value,	as	shown	in	Listing	11-28.

interface	Product	{

				name:	string;

				price:	number;

}

class	SportsProduct	implements	Product	{

				constructor(public	name:	string,	public	category:

string,

												public	price:	number)	{

								//	no	statements	required

				}

}

class	ProductGroup	{

				constructor(...initialProducts:	[string,	Product]

[])	{

								initialProducts.forEach(p	=>	this[p[0]]	=

p[1]);

				}

				[propertyName:	string]:	Product;

}

let	group

				=	new	ProductGroup(["shoes",	new

SportsProduct("Shoes",	"Running",	90.50)]);

group.hat	=	new	SportsProduct("Hat",	"Skiing",	20);

let	total	=	group.hat.price	+	(group.boots?.price	??

0);

console.log(`Total:	${total}`);

Listing	11-28. Using	a	Fallback	Value	in	the	index.ts	File	in	the	src	Folder

This	code	produces	the	following	output:

Total:	20



Summary
In	this	chapter,	I	explained	the	way	that	TypeScript	enhances	the	JavaScript	class
feature,	providing	support	for	concise	constructors,	abstract	classes,	and	access
control	keywords.	I	also	described	the	interface	feature,	which	is	implemented
by	the	compiler	and	provides	an	alternative	way	to	describe	the	shape	of	objects
so	that	classes	can	readily	conform	to	them.	In	the	next	chapter,	I	describe	the
TypeScript	support	for	generic	types.



(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
A.	Freeman,	Essential	TypeScript	4
https://doi.org/10.1007/978-1-4842-7011-0_12

12.	Using	Generic	Types
Adam	Freeman1		

London,	UK

	

Generic	types	are	placeholders	for	types	that	are	resolved	when	a	class	or
function	is	used,	allowing	type-safe	code	to	be	written	that	can	deal	with	a	range
of	different	types,	such	as	collection	classes.	This	is	a	concept	that	is	more	easily
demonstrated	than	explained,	so	I	start	this	chapter	with	an	example	of	the
problem	that	generic	types	solve	and	then	describe	the	basic	ways	that	generic
types	are	used.	In	Chapter	13,	I	describe	the	advanced	generic	type	features	that
TypeScript	provides.	Table	12-1	summarizes	the	chapter.

Table	12-1. Chapter	Summary

Problem Solution Listing

Define	a	class	or	function	that	can
safely	operate	on	different	types

Define	a	generic	type	parameter 5–7,
19,	20

Resolve	a	type	for	a	generic	type
parameter

Use	a	generic	type	argument	when	instantiating	the	class
or	invoking	the	function

8–13

Extend	a	generic	class Create	a	class	that	passes	on,	restricts,	or	fixes	the	generic
type	parameter	inherited	from	the	superclass

14–16

Type	guard	a	generic	type Use	a	type	predicate	function 17,	18

Describe	a	generic	type	without
providing	an	implementation

Define	an	interface	with	a	generic	type	parameter 21–25

For	quick	reference,	Table	12-2	lists	the	TypeScript	compiler	options	used	in
this	chapter.

Table	12-2. The	TypeScript	Compiler	Options	Used	in	This	Chapter

Name Description

declaration This	option	produces	type	declaration	files	when	enabled,	which	can	be	useful	in

https://doi.org/10.1007/978-1-4842-7011-0_12


understanding	how	types	have	been	inferred.	These	files	are	described	in	more	detail	in
Chapter	14.

module This	option	specifies	the	module	format,	as	described	in	Chapter	5.

outDir This	option	specifies	the	directory	in	which	the	JavaScript	files	will	be	placed.

rootDir This	option	specifies	the	root	directory	that	the	compiler	will	use	to	locate	TypeScript
files.

target This	option	specifies	the	version	of	the	JavaScript	language	that	the	compiler	will	target
in	its	output.

Preparing	for	This	Chapter
In	this	chapter,	I	continue	to	use	the	types	project	created	in	Chapter	7	and
used	in	every	chapter	since.	To	prepare	for	this	chapter,	create	a	file	called
dataTypes.ts	in	the	src	folder,	with	the	contents	shown	in	Listing	12-1.

Tip You	can	download	the	example	project	for	this	chapter—and	for	all	the
other	chapters	in	this	book—from
https://github.com/Apress/essential-typescript-4.

export	class	Person	{

				constructor(public	name:	string,	public	city:

string)	{}

}

export	class	Product	{

				constructor(public	name:	string,	public	price:

number)	{}

}

export	class	City		{

				constructor(public	name:	string,	public

population:	number)	{}

}

export	class	Employee	{

				constructor(public	name:	string,	public	role:

string)	{}

}

https://github.com/Apress/essential-typescript-4


Listing	12-1. The	Contents	of	the	dataTypes.ts	File	in	the	src	Folder

Replace	the	contents	of	the	index.ts	file	in	the	src	folder	with	the	code
shown	in	Listing	12-2.

import	{	Person,	Product	}	from	"./dataTypes";

let	people	=	[new	Person("Bob	Smith",	"London"),

				new	Person("Dora	Peters",	"New	York")];

let	products	=	[new	Product("Running	Shoes",	100),	new

Product("Hat",	25)];

[...people,	...products].forEach(item	=>

console.log(`Item:	${item.name}`));

Listing	12-2. Replacing	the	Contents	of	the	index.ts	File	in	the	src	Folder

This	listing	uses	an	import	statement	to	declare	dependencies	on	the
Person	and	Product	classes	defined	in	the	dataTypes	module.	To	enable
module	resolution,	as	described	in	Chapter	5,	add	the	configuration	statement
shown	in	Listing	12-3	to	the	tsconfig.json	file	in	the	types	folder.

{

				"compilerOptions":	{

								"target":	"es2020",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"declaration":	true,

								//	"strictNullChecks":	true,

								//	"noUncheckedIndexedAccess":	true,

								"module":	"CommonJS"

				}

}

Listing	12-3. Configuring	the	Compiler	in	the	tsconfig.json	File	in	the	types	Folder

Open	a	new	command	prompt,	navigate	to	the	types	folder,	and	run	the
command	shown	in	Listing	12-4	to	start	the	TypeScript	compiler	so	that	it
automatically	executes	code	after	it	has	been	compiled.

npm	start



Listing	12-4. Starting	the	TypeScript	Compiler

The	compiler	will	compile	the	project,	execute	the	output,	and	then	enter
watch	mode,	producing	the	following	output:

7:22:32	AM	-	Starting	compilation	in	watch	mode...

7:22:34	AM	-	Found	0	errors.	Watching	for	file

changes.

Item:	Bob	Smith

Item:	Dora	Peters

Item:	Running	Shoes

Item:	Hat

Understanding	the	Problem
The	best	way	to	understand	how	generic	types	work—and	why	they	are	useful—
is	to	work	through	a	common	scenario	that	shows	when	regular	types	become
difficult	to	manage.	Listing	12-5	defines	a	class	that	manages	a	collection	of
Person	objects.

import	{	Person,	Product	}	from	"./dataTypes";

let	people	=	[new	Person("Bob	Smith",	"London"),

				new	Person("Dora	Peters",	"New	York")];

let	products	=	[new	Product("Running	Shoes",	100),	new

Product("Hat",	25)];

class	PeopleCollection	{

				private	items:	Person[]	=	[];

				constructor(initialItems:	Person[])	{

								this.items.push(...initialItems);

				}

				add(newItem:	Person)	{

								this.items.push(newItem);

				}

				getNames():	string[]	{

								return	this.items.map(item	=>	item.name);



				}

				getItem(index:	number):	Person	{

								return	this.items[index];

				}

}

let	peopleData	=	new	PeopleCollection(people);

console.log(`Names:	${peopleData.getNames().join(",

")}`);

let	firstPerson	=	peopleData.getItem(0);

console.log(`First	Person:	${firstPerson.name},

${firstPerson.city}`);

Listing	12-5. Defining	a	Class	in	the	index.ts	File	in	the	src	Folder

The	PeopleCollection	class	operates	on	Person	objects,	which	are
provided	via	the	constructor	or	the	add	method.	The	getNames	method	returns
an	array	containing	the	name	value	of	each	Person	object,	and	the	getItem
method	allows	a	Person	object	to	be	retrieved	using	an	index.	A	new	instance
of	the	PeopleCollection	class	is	created,	and	its	methods	are	called	to
produce	the	following	output:

Names:	Bob	Smith,	Dora	Peters

First	Person:	Bob	Smith,	London

Adding	Support	for	Another	Type
The	problem	with	the	PeopleCollection	class	is	that	it	works	only	on
Person	objects.	If	I	want	to	perform	the	same	set	of	operations	on	Product
objects,	then	the	obvious	choices	present	compromises.	I	could	create	a	new
class	that	duplicates	the	functionality.	This	is	easy	to	do,	but	there	will	always	be
another	type	to	deal	with	in	the	future,	and	the	classes	will	quickly	become
difficult	to	manage.	Another	approach	is	to	take	advantage	of	the	TypeScript
features	and	modify	the	existing	class	to	support	multiple	types,	as	shown	in
Listing	12-6.

import	{	Person,	Product	}	from	"./dataTypes";

let	people	=	[new	Person("Bob	Smith",	"London"),



				new	Person("Dora	Peters",	"New	York")];

let	products	=	[new	Product("Running	Shoes",	100),	new

Product("Hat",	25)];

type	dataType	=	Person	|	Product;

class	DataCollection	{

				private	items:	dataType[]	=	[];

				constructor(initialItems:	dataType[])	{

								this.items.push(...initialItems);

				}

				add(newItem:	dataType)	{

								this.items.push(newItem);

				}

				getNames():	string[]	{

								return	this.items.map(item	=>	item.name);

				}

				getItem(index:	number):	dataType	{

								return	this.items[index];

				}

}

let	peopleData	=	new	DataCollection(people);

console.log(`Names:	${peopleData.getNames().join(",

")}`);

let	firstPerson	=	peopleData.getItem(0);

if	(firstPerson	instanceof	Person)	{

				console.log(`First	Person:	${firstPerson.name},

${firstPerson.city}`);

}

Listing	12-6. Adding	Type	Support	in	the	index.ts	File	in	the	src	Folder

The	listing	uses	a	type	union	to	add	support	for	the	Product	class.	I	could
also	have	used	an	interface,	an	abstract	class,	or	function	type	overrides,	but	the



support	for	a	wider	range	of	types	would	require	some	form	of	type	narrowing	to
get	back	to	a	specific	type.	The	other	problem	is	that	the	DataCollection
class	will	accept	both	Person	and	Product	objects.	What	I	wanted	was
support	for	either	Person	or	Product	objects	but	not	both.	The	code	in
Listing	12-6	produces	the	following	output:

Names:	Bob	Smith,	Dora	Peters

First	Person:	Bob	Smith,	London

Creating	Generic	Classes
A	generic	class	is	a	class	that	has	a	generic	type	parameter.	A	generic	type
parameter	is	a	placeholder	for	a	type	that	is	specified	when	the	class	is	used	to
create	a	new	object.	Generic	type	parameters	allow	classes	to	be	written	that
operate	on	a	specific	type	without	knowing	what	that	type	will	be	in	advance,	as
shown	in	Listing	12-7.

import	{	Person,	Product	}	from	"./dataTypes";

let	people	=	[new	Person("Bob	Smith",	"London"),

				new	Person("Dora	Peters",	"New	York")];

let	products	=	[new	Product("Running	Shoes",	100),	new

Product("Hat",	25)];

//type	dataType	=	Person	|	Product;

class	DataCollection<T>	{

				private	items:	T[]	=	[];

				constructor(initialItems:	T[])	{

								this.items.push(...initialItems);

				}

				add(newItem:	T)	{

								this.items.push(newItem);

				}

				//	getNames():	string[]	{

				//					return	this.items.map(item	=>	item.name);



				//	}

				getItem(index:	number):	T	{

								return	this.items[index];

				}

}

let	peopleData	=	new	DataCollection<Person>(people);

//console.log(`Names:	${peopleData.getNames().join(",

")}`);

let	firstPerson	=	peopleData.getItem(0);

//if	(firstPerson	instanceof	Person)	{

console.log(`First	Person:	${firstPerson.name},

${firstPerson.city}`);

//}

Listing	12-7. Using	a	Generic	Type	in	the	index.ts	File	in	the	src	Folder

The	DataCollection	class	has	been	defined	with	a	generic	type
parameter,	which	is	part	of	the	class	declaration,	as	shown	in	Figure	12-1.

Figure	12-1. A	generic	type	parameter

A	generic	type	parameter	is	defined	between	angle	brackets	(the	<	and	>
characters),	and	only	a	name	is	specified.	The	convention	is	to	start	with	the
letter	T	as	the	name	of	the	type	parameter,	although	you	are	free	to	follow	any
naming	scheme	that	makes	sense	in	your	project.

The	result	is	known	as	a	generic	class,	meaning	a	class	that	has	at	least	one
generic	type	parameter.	The	generic	type	parameter	is	named	T	in	this	example
and	can	be	used	in	place	of	a	specific	type.	For	example,	the	constructor	can	be
defined	to	accept	an	array	of	T	values,	like	this:



...

constructor(initialItems:	T[])	{

				this.items.push(...initialItems);

}

...

As	the	constructor	shows,	generic	types	can	be	used	in	type	annotations,
even	though	we	don’t	yet	know	the	specific	type	for	which	it	is	a	placeholder.
The	class	in	Listing	12-7	defines	a	single	type	parameter	named	T	and	so	is
referred	to	as	DataCollection<T>,	clearly	indicating	that	it	is	a	generic
class.	The	code	in	Listing	12-7	produces	the	following	output:

First	Person:	Bob	Smith,	London

Understanding	Generic	Type	Arguments
A	generic	type	parameter	is	resolved	to	a	specific	type	using	a	generic	type
argument	when	an	instance	of	the	DataCollection<T>	class	is	created	with
the	new	keyword,	as	shown	in	Figure	12-2.

Figure	12-2. Creating	an	object	with	a	generic	type	argument

The	type	argument	uses	angle	brackets,	and	the	argument	in	the	example
specifies	the	Person	class.

...

let	peopleData	=	new	DataCollection<Person>(people);

...

This	statement	creates	a	DataCollection<T>	object	where	the	type
parameter	T	will	be	Person.	When	an	object	is	created	from	a	generic	class,	its
type	incorporates	the	argument,	such	as	DataCollection<Person>.	The



compiler	enforces	the	TypeScript	type	rules	using	Person	wherever	it
encounters	T,	which	means	that	only	Person	objects	can	be	passed	to	the
constructor	and	the	add	method	and	that	invoking	the	getItem	method	will
return	a	Person	object.	TypeScript	keeps	track	of	the	type	argument	used	to
create	the	DataCollection<Person>	object,	and	no	type	assertions	or	type
narrowing	is	required.

Using	Different	Type	Arguments
The	value	of	a	generic	type	parameter	affects	only	a	single	object,	and	a	different
type	can	be	used	for	the	generic	type	argument	for	each	use	of	the	new	keyword,
producing	a	DataCollection<T>	object	that	works	with	a	different	type,	as
shown	in	Listing	12-8.

import	{	Person,	Product	}	from	"./dataTypes";

let	people	=	[new	Person("Bob	Smith",	"London"),

				new	Person("Dora	Peters",	"New	York")];

let	products	=	[new	Product("Running	Shoes",	100),	new

Product("Hat",	25)];

class	DataCollection<T>	{

				private	items:	T[]	=	[];

				constructor(initialItems:	T[])	{

								this.items.push(...initialItems);

				}

				add(newItem:	T)	{

								this.items.push(newItem);

				}

				//	getNames():	string[]	{

				//					return	this.items.map(item	=>	item.name);

				//	}

				getItem(index:	number):	T	{

								return	this.items[index];

				}



}

let	peopleData	=	new	DataCollection<Person>(people);

let	firstPerson	=	peopleData.getItem(0);

console.log(`First	Person:	${firstPerson.name},

${firstPerson.city}`);

let	productData	=	new	DataCollection<Product>

(products);

let	firstProduct	=	productData.getItem(0);

console.log(`First	Product:	${firstProduct.name},

${firstProduct.price}`);

Listing	12-8. Using	a	Different	Type	Argument	in	the	index.ts	File	in	the	src	Folder

The	new	statements	create	a	DataCollection<Product>	object	by
using	Product	for	the	generic	type	argument.	TypeScript	keeps	track	of	which
type	has	been	specified	for	each	object	and	ensures	only	that	the	type	can	be
used.	The	code	in	Listing	12-8	produces	the	following	output:

First	Person:	Bob	Smith,	London

First	Product:	Running	Shoes,	100

Constraining	Generic	Type	Values
In	Listing	12-7	and	Listing	12-8,	I	commented	out	the	getNames	method.	By
default,	any	type	can	be	used	for	a	generic	type	argument,	so	the	compiler	treats
generic	types	as	any	by	default,	meaning	that	it	won’t	let	me	access	the	name
property	on	which	the	getNames	method	depends	without	some	kind	of	type
narrowing.

I	could	do	the	type	narrowing	within	the	getNames	method,	but	a	more
elegant	approach	is	to	restrict	the	range	of	types	that	can	be	used	as	the	value	for
the	generic	type	parameter	so	that	the	class	can	be	instantiated	only	with	types
that	define	the	features	that	the	generic	class	relies	on,	as	shown	in	Listing	12-9.

import	{	Person,	Product	}	from	"./dataTypes";

let	people	=	[new	Person("Bob	Smith",	"London"),

				new	Person("Dora	Peters",	"New	York")];

let	products	=	[new	Product("Running	Shoes",	100),	new

Product("Hat",	25)];



class	DataCollection<T	extends	(Person	|	Product)>	{

				private	items:	T[]	=	[];

				constructor(initialItems:	T[])	{

								this.items.push(...initialItems);

				}

				add(newItem:	T)	{

								this.items.push(newItem);

				}

				getNames():	string[]	{

								return	this.items.map(item	=>	item.name);

				}

				getItem(index:	number):	T	{

								return	this.items[index];

				}

}

let	peopleData	=	new	DataCollection<Person>(people);

let	firstPerson	=	peopleData.getItem(0);

console.log(`First	Person:	${firstPerson.name},

${firstPerson.city}`);

console.log(`Person	Names:

${peopleData.getNames().join(",	")}`);

let	productData	=	new	DataCollection<Product>

(products);

let	firstProduct	=	productData.getItem(0);

console.log(`First	Product:	${firstProduct.name},

${firstProduct.price}`);

console.log(`Product	Names:

${productData.getNames().join(",	")}`);

Listing	12-9. Restricting	Generic	Types	in	the	index.ts	File	in	the	src	Folder

The	extends	keyword	is	used	after	the	type	parameter	name	to	specify	a
constraint,	as	shown	in	Figure	12-3.



Figure	12-3. A	generic	type	parameter	restriction

The	change	in	Listing	12-9	can	be	thought	of	as	creating	two	levels	of
restriction	on	the	DataCollection<T>	class:	one	applied	when	a	new	object
is	created	and	one	that	is	applied	when	the	object	is	used.

The	first	restriction	constrains	the	types	that	can	be	used	as	the	generic	type
argument	to	create	a	new	DataCollection<Product	|	Person>	object
so	that	only	types	that	can	be	assigned	to	Product	|	Person	can	be	used	as
the	type	parameter	value.	Three	types	can	meet	that	restriction:	Person,
Product,	and	the	Person	|	Product	union.	These	are	the	only	types	that
can	be	assigned	to	the	generic	type	parameter	T.

The	second	restriction	applies	the	value	of	the	generic	type	parameter	when
the	object	is	used.	When	a	new	object	is	created	with	Product	as	the	type
parameter,	for	example,	Product	is	the	value	of	T:	the	constructor	and	add
methods	will	only	accept	Product	objects,	and	the	getItem	method	will	only
return	a	Product	object.	When	Person	is	used	as	the	type	parameter,
Person	is	the	value	of	T	and	becomes	the	type	used	by	the	constructor	and
methods.

Put	another	way,	the	extends	keyword	constrains	the	types	that	can	be
assigned	to	the	type	parameter,	and	the	type	parameter	restricts	the	types	that	can
be	used	by	a	specific	instance	of	the	class.	Since	the	compiler	knows	all	the
types	that	can	be	used	for	the	generic	type	parameter	to	define	a	name	property,
it	allows	me	to	uncomment	the	getItem	method	and	read	the	value	of	the
name	property	without	causing	an	error.	The	code	in	Listing	12-9	produces	the
following	output:

First	Person:	Bob	Smith,	London

Person	Names:	Bob	Smith,	Dora	Peters

First	Product:	Running	Shoes,	100

Product	Names:	Running	Shoes,	Hat

Constraining	Generic	Types	Using	a	Shape



Using	a	type	union	to	constrain	generic	type	parameters	is	useful,	but	the	union
must	be	extended	for	each	new	type	that	is	required.	An	alternative	approach	is
to	use	a	shape	to	constrain	the	type	parameter,	which	will	allow	only	the
properties	that	the	generic	class	relies	on	to	be	described,	as	shown	in	Listing	12-
10.

import	{	City,	Person,	Product	}	from	"./dataTypes";

let	people	=	[new	Person("Bob	Smith",	"London"),

				new	Person("Dora	Peters",	"New	York")];

let	products	=	[new	Product("Running	Shoes",	100),	new

Product("Hat",	25)];

let	cities	=	[new	City("London",	8136000),	new

City("Paris",	2141000)];

class	DataCollection<T	extends	{	name:	string	}>	{

				private	items:	T[]	=	[];

				constructor(initialItems:	T[])	{

								this.items.push(...initialItems);

				}

				add(newItem:	T)	{

								this.items.push(newItem);

				}

				getNames():	string[]	{

								return	this.items.map(item	=>	item.name);

				}

				getItem(index:	number):	T	{

								return	this.items[index];

				}

}

let	peopleData	=	new	DataCollection<Person>(people);

let	firstPerson	=	peopleData.getItem(0);

console.log(`First	Person:	${firstPerson.name},

${firstPerson.city}`);

console.log(`Person	Names:



${peopleData.getNames().join(",	")}`);

let	productData	=	new	DataCollection<Product>

(products);

let	firstProduct	=	productData.getItem(0);

console.log(`First	Product:	${firstProduct.name},

${firstProduct.price}`);

console.log(`Product	Names:

${productData.getNames().join(",	")}`);

let	cityData	=	new	DataCollection<City>(cities);

console.log(`City		Names:

${cityData.getNames().join(",	")}`);

Listing	12-10. Using	a	Shape	Type	in	the	index.ts	File	in	the	src	Folder

The	shape	specified	in	Listing	12-10	tells	the	compiler	that	the
DataCollection<T>	class	can	be	instantiated	using	any	type	that	has	a
name	property	that	returns	a	string.	This	allows	DataCollection	objects
to	be	created	to	deal	with	Person,	Product,	and	City	objects	without
requiring	individual	types	to	be	specified.

Tip Generic	type	parameters	can	also	be	constrained	using	type	aliases	and
interfaces.	It	is	also	possible	to	constrain	generic	types	to	those	that	define	a
specific	constructor	shape,	which	is	done	with	the	extends	new	keywords,
which	are	demonstrated	in	Chapter	13.

The	code	in	Listing	12-10	produces	the	following	output:

First	Person:	Bob	Smith,	London

Person	Names:	Bob	Smith,	Dora	Peters

First	Product:	Running	Shoes,	100

Product	Names:	Running	Shoes,	Hat

City		Names:	London,	Paris

Defining	Multiple	Type	Parameters
A	class	can	define	multiple	type	parameters.	Listing	12-11	adds	a	second	type
parameter	to	the	DataCollection<T>	class	and	uses	it	to	correlate	data
values.	(The	listing	also	removes	methods	from	the	class	that	are	no	longer



required	for	the	examples.)

import	{	City,	Person,	Product	}	from	"./dataTypes";

let	people	=	[new	Person("Bob	Smith",	"London"),

				new	Person("Dora	Peters",	"New	York")];

let	products	=	[new	Product("Running	Shoes",	100),	new

Product("Hat",	25)];

let	cities	=	[new	City("London",	8136000),	new

City("Paris",	2141000)];

class	DataCollection<T	extends	{	name:	string	},	U>	{

				private	items:	T[]	=	[];

				constructor(initialItems:	T[])	{

								this.items.push(...initialItems);

				}

				collate(targetData:	U[],	itemProp:	string,

targetProp:	string):	(T	&	U)[]	{

								let	results	=	[];

								this.items.forEach(item	=>	{

												let	match	=	targetData.find(d	=>

d[targetProp]	===	item[itemProp]);

												if	(match	!==	undefined)	{

																results.push({	...match,	...item	});

												}

								});

								return	results;

				}

}

let	peopleData	=	new	DataCollection<Person,	City>

(people);

let	collatedData	=	peopleData.collate(cities,	"city",

"name");

collatedData.forEach(c	=>	console.log(`${c.name},

${c.city},	${c.population}`));

Listing	12-11. Defining	Another	Generic	Type	Parameter	in	the	index.ts	File	in	the	src	Folder



Additional	type	parameters	are	separated	with	commas,	just	like	regular
function	or	method	parameters.	The	DataCollection<T,	U>	class	defines
two	generic	type	parameters.	The	new	parameter,	named	U,	is	used	to	define	the
type	of	an	argument	passed	to	the	collate	method,	which	compares	the
properties	on	an	array	of	objects	and	intersections	between	those	T	and	U	objects
that	have	the	same	property	values.

When	the	generic	class	is	instantiated,	arguments	must	be	supplied	for	each
of	the	generic	type	parameters,	separated	by	commas,	like	this:

...

let	peopleData	=	new	DataCollection<Person,	City>

(people);

...

This	statement	creates	a	DataCollection<Person,	City>	object
that	will	store	Person	objects	and	compare	them	to	City	objects.	An	array	of
City	objects	is	passed	to	the	collate	method,	comparing	the	values	of	the
city	property	of	the	Person	objects	and	the	name	property	of	the	City
objects.

The	properties	of	objects	that	have	matching	values	are	combined	using	the
spread	syntax	to	create	an	intersection.

...

results.push({	...match,	...item	});

...

There	is	one	pair	of	objects	with	matching	values,	and	the	code	in	Listing	12-
11	produces	the	following	result:

Bob	Smith,	London,	8136000

Applying	a	Type	Parameter	to	a	Method
The	second	type	parameter	in	Listing	12-11	isn’t	as	flexible	as	it	could	be
because	it	requires	the	data	type	used	by	the	collate	method	to	be	specified
when	the	DataCollection	object	is	created,	meaning	that’s	the	only	data
type	that	can	be	used	with	that	method.

When	a	type	is	used	by	only	one	method,	the	type	parameter	can	be	moved
from	the	class	declaration	and	applied	directly	to	the	method,	allowing	a
different	type	to	be	specified	each	time	the	method	is	invoked,	as	shown	in



Listing	12-12.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

let	people	=	[new	Person("Bob	Smith",	"London"),

				new	Person("Dora	Peters",	"New	York")];

let	products	=	[new	Product("Running	Shoes",	100),	new

Product("Hat",	25)];

let	cities	=	[new	City("London",	8136000),	new

City("Paris",	2141000)];

let	employees	=	[new	Employee("Bob	Smith",	"Sales"),

				new	Employee("Alice	Jones",	"Sales")];

class	DataCollection<T	extends	{	name:	string	}>	{

				private	items:	T[]	=	[];

				constructor(initialItems:	T[])	{

								this.items.push(...initialItems);

				}

				collate<U>(targetData:	U[],	itemProp:	string,

targetProp:	string):	(T	&	U)[]	{

								let	results	=	[];

								this.items.forEach(item	=>	{

												let	match	=	targetData.find(d	=>

d[targetProp]	===	item[itemProp]);

												if	(match	!==	undefined)	{

																results.push({	...match,	...item	});

												}

								});

								return	results;

				}

}

let	peopleData	=	new	DataCollection<Person>(people);

let	collatedData	=	peopleData.collate<City>(cities,

"city",	"name");

collatedData.forEach(c	=>	console.log(`${c.name},



${c.city},	${c.population}`));

let	empData	=	peopleData.collate<Employee>(employees,

"name",	"name");

empData.forEach(c	=>	console.log(`${c.name},

${c.city},	${c.role}`));

Listing	12-12. Applying	a	Type	Parameter	to	a	Method	in	the	index.ts	File	in	the	src	Folder

The	type	parameter	U	is	applied	directly	to	the	collate	method,	allowing	a
type	to	be	provided	when	the	method	is	invoked,	like	this:

...

let	collatedData	=	peopleData.collate<City>(cities,

"city",	"name");

...

The	method’s	type	parameter	allows	the	collate	method	to	be	invoked
using	City	objects	and	then	invoked	again	with	Employee	objects.	The	code
in	Listing	12-12	produces	the	following	output:

Bob	Smith,	London,	8136000

Bob	Smith,	London,	Sales

Allowing	the	Compiler	to	Infer	Type	Arguments
The	TypeScript	compiler	can	infer	generic	type	arguments	based	on	the	way	that
objects	are	created	or	methods	are	invoked.	This	can	be	a	useful	way	to	write
concise	code	but	requires	caution	because	you	must	ensure	that	you	initialize
objects	with	the	types	that	you	would	have	specified	explicitly.	Listing	12-13
instantiates	the	DataCollection<T>	class	and	invokes	the	collate
method	without	type	arguments,	leaving	the	compiler	to	infer	the	type.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

let	people	=	[new	Person("Bob	Smith",	"London"),

				new	Person("Dora	Peters",	"New	York")];

let	products	=	[new	Product("Running	Shoes",	100),	new

Product("Hat",	25)];

let	cities	=	[new	City("London",	8136000),	new

City("Paris",	2141000)];



let	employees	=	[new	Employee("Bob	Smith",	"Sales"),

				new	Employee("Alice	Jones",	"Sales")];

class	DataCollection<T	extends	{	name:	string	}>	{

				private	items:	T[]	=	[];

				constructor(initialItems:	T[])	{

								this.items.push(...initialItems);

				}

				collate<U>(targetData:	U[],	itemProp:	string,

targetProp:	string):	(T	&	U)[]	{

								let	results	=	[];

								this.items.forEach(item	=>	{

												let	match	=	targetData.find(d	=>

d[targetProp]	===	item[itemProp]);

												if	(match	!==	undefined)	{

																results.push({	...match,	...item	});

												}

								});

								return	results;

				}

}

export	let	peopleData	=	new	DataCollection(people);

export	let	collatedData	=	peopleData.collate(cities,

"city",	"name");

collatedData.forEach(c	=>	console.log(`${c.name},

${c.city},	${c.population}`));

export	let	empData	=	peopleData.collate(employees,

"name",	"name");

empData.forEach(c	=>	console.log(`${c.name},

${c.city},	${c.role}`));

Listing	12-13. Using	Generic	Type	Inference	in	the	index.ts	File	in	the	src	Folder

The	compiler	is	able	to	infer	the	type	arguments	based	on	the	argument
passed	to	the	DataCollection<T>	constructor	and	the	first	argument	passed
to	the	collate	method.	To	check	the	types	inferred	by	the	complier,	examine
the	index.d.ts	file	in	the	dist	folder,	which	is	created	when	the



declaration	option	is	enabled.

Tip In	a	project	that	uses	modules,	the	files	created	through	the	declaration
option	contain	only	those	types	that	are	exported	outside	a	module,	which	is
why	I	added	the	export	keyword	in	Listing	12-13.

Here	are	the	types	inferred	by	the	compiler:

...

export	declare	let	peopleData:	DataCollection<Person>;

export	declare	let	collatedData:	(Person	&	City)[];

export	declare	let	empData:	(Person	&	Employee)[];

...

The	code	in	Listing	12-13	produces	the	following	output:

Bob	Smith,	London,	8136000

Bob	Smith,	London,	Sales

Extending	Generic	Classes
A	generic	class	can	be	extended,	and	the	subclass	can	choose	to	deal	with	the
generic	type	parameters	in	several	ways,	as	described	in	the	following	sections.

Adding	Extra	Features	to	the	Existing	Type	Parameters
The	first	approach	is	to	simply	add	features	to	those	defined	by	the	superclass
using	the	same	generic	types,	as	shown	in	Listing	12-14.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

let	people	=	[new	Person("Bob	Smith",	"London"),

				new	Person("Dora	Peters",	"New	York")];

let	products	=	[new	Product("Running	Shoes",	100),	new

Product("Hat",	25)];

let	cities	=	[new	City("London",	8136000),	new

City("Paris",	2141000)];

let	employees	=	[new	Employee("Bob	Smith",	"Sales"),

				new	Employee("Alice	Jones",	"Sales")];



class	DataCollection<T	extends	{	name:	string	}>	{

				protected	items:	T[]	=	[];

				constructor(initialItems:	T[])	{

								this.items.push(...initialItems);

				}

				collate<U>(targetData:	U[],	itemProp:	string,

targetProp:	string):	(T	&	U)[]	{

								let	results	=	[];

								this.items.forEach(item	=>	{

												let	match	=	targetData.find(d	=>

d[targetProp]	===	item[itemProp]);

												if	(match	!==	undefined)	{

																results.push({	...match,	...item	});

												}

								});

								return	results;

				}

}

class	SearchableCollection<T	extends	{	name:	string	}>

extends	DataCollection<T>	{

				constructor(initialItems:	T[])	{

								super(initialItems);

				}

				find(name:	string):	T	|	undefined	{

								return	this.items.find(item	=>	item.name	===

name);

				}

}

let	peopleData	=	new	SearchableCollection<Person>

(people);

let	foundPerson	=	peopleData.find("Bob	Smith");

if	(foundPerson	!==	undefined)	{

				console.log(`Person	${	foundPerson.name	},	${



foundPerson.city}`);

}

Listing	12-14. Subclassing	a	Generic	Class	in	the	index.ts	File	in	the	src	Folder

The	SearchableCollection<T>	class	is	derived	from
DataCollection<T>	and	defines	a	find	method	that	locates	an	object	by
its	name	property.	The	declaration	of	the	SearchableCollection<T>
class	uses	the	extends	keyword	and	includes	type	parameters,	like	this:

...

class	SearchableCollection<T	extends	{	name:	string	}>

extends	DataCollection<T>	{

...

The	type	of	a	generic	class	includes	its	type	parameters	so	that	the	superclass
is	DataCollection<T>.	The	type	parameter	defined	by	the
SearchableCollection<T>	class	must	be	compatible	with	the	type
parameter	of	the	superclass,	so	I	have	used	the	same	shape	type	to	specify	types
that	defined	a	name	property.

Tip Notice	I	changed	the	access	control	keyword	on	the	items	property	in
Listing	12-14	to	protected,	allowing	it	to	be	accessed	by	subclasses.	See
Chapter	11	for	details	of	the	access	control	keywords	provided	by	TypeScript.

The	SearchableCollection<T>	class	is	instantiated	just	like	any	other
using	a	type	argument	(or	allowing	the	compiler	to	infer	the	type	argument).	The
code	in	Listing	12-14	produces	the	following	output:

Person	Bob	Smith,	London

Fixing	the	Generic	Type	Parameter
Some	classes	need	to	define	functionality	that	is	only	available	using	a	subset	of
the	types	that	are	supported	by	the	superclass.	In	these	situations,	a	subclass	can
use	a	fixed	type	for	the	superclass’s	type	parameter,	such	that	the	subclass	is	not
a	generic	class,	as	shown	in	Listing	12-15.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";



let	people	=	[new	Person("Bob	Smith",	"London"),

				new	Person("Dora	Peters",	"New	York")];

let	products	=	[new	Product("Running	Shoes",	100),	new

Product("Hat",	25)];

let	cities	=	[new	City("London",	8136000),	new

City("Paris",	2141000)];

let	employees	=	[new	Employee("Bob	Smith",	"Sales"),

				new	Employee("Alice	Jones",	"Sales")];

class	DataCollection<T	extends	{	name:	string	}>	{

				protected	items:	T[]	=	[];

				constructor(initialItems:	T[])	{

								this.items.push(...initialItems);

				}

				collate<U>(targetData:	U[],	itemProp:	string,

targetProp:	string):	(T	&	U)[]	{

								let	results	=	[];

								this.items.forEach(item	=>	{

												let	match	=	targetData.find(d	=>

d[targetProp]	===	item[itemProp]);

												if	(match	!==	undefined)	{

																results.push({	...match,	...item	});

												}

								});

								return	results;

				}

}

class	SearchableCollection	extends

DataCollection<Employee>	{

				constructor(initialItems:	Employee[])	{

								super(initialItems);

				}

				find(searchTerm:	string):	Employee[]	{

								return	this.items.filter(item	=>



												item.name	===	searchTerm	||	item.role	===

searchTerm);

				}

}

let	employeeData	=	new

SearchableCollection(employees);

employeeData.find("Sales").forEach(e	=>

				console.log(`Employee	${	e.name	},	${	e.role}`));

Listing	12-15. Fixing	a	Generic	Type	Parameter	in	the	index.ts	File	in	the	src	Folder

The	SearchableCollection	class	extends
DataCollection<Employee>,	which	fixes	the	generic	type	parameter	so
that	the	SearchableCollection	can	deal	only	with	Employee	objects.
No	type	parameter	can	be	used	to	create	a	SearchableCollection	object,
and	the	code	in	the	find	method	can	safely	access	the	properties	defined	by	the
Employee	class.	The	code	in	Listing	12-15	produces	the	following	output:

Employee	Bob	Smith,	Sales

Employee	Alice	Jones,	Sales

Restricting	the	Generic	Type	Parameter
The	third	approach	strikes	a	balance	between	the	previous	two	examples,
providing	a	generic	type	variable	but	restricting	it	to	specific	types,	as	shown	in
Listing	12-16.	This	allows	functionality	that	can	depend	on	features	of	particular
classes	without	fixing	the	type	parameter	completely.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

let	people	=	[new	Person("Bob	Smith",	"London"),

				new	Person("Dora	Peters",	"New	York")];

let	products	=	[new	Product("Running	Shoes",	100),	new

Product("Hat",	25)];

let	cities	=	[new	City("London",	8136000),	new

City("Paris",	2141000)];

let	employees	=	[new	Employee("Bob	Smith",	"Sales"),

				new	Employee("Alice	Jones",	"Sales")];



class	DataCollection<T	extends	{	name:	string	}>	{

				protected	items:	T[]	=	[];

				constructor(initialItems:	T[])	{

								this.items.push(...initialItems);

				}

				collate<U>(targetData:	U[],	itemProp:	string,

targetProp:	string):	(T	&	U)[]	{

								let	results	=	[];

								this.items.forEach(item	=>	{

												let	match	=	targetData.find(d	=>

d[targetProp]	===	item[itemProp]);

												if	(match	!==	undefined)	{

																results.push({	...match,	...item	});

												}

								});

								return	results;

				}

}

class	SearchableCollection<T	extends	Employee	|

Person>	extends	DataCollection<T>	{

				constructor(initialItems:	T[])	{

								super(initialItems);

				}

				find(searchTerm:	string):	T[]	{

								return	this.items.filter(item	=>	{

												if	(item	instanceof	Employee)	{

																return	item.name	===	searchTerm	||

item.role	===	searchTerm;

												}	else	if	(item	instanceof	Person)	{

																return	item.name	===	searchTerm	||

item.city	===	searchTerm;

												}

								});

				}



}

let	employeeData	=	new	SearchableCollection<Employee>

(employees);

employeeData.find("Sales").forEach(e	=>

				console.log(`Employee	${	e.name	},	${	e.role}`));

Listing	12-16. Restricting	a	Type	Parameter	in	the	index.ts	File	in	the	src	Folder

The	type	parameter	specified	by	the	subclass	must	be	assignable	to	the	type
parameter	it	inherits,	meaning	that	only	a	more	restrictive	type	can	be	used.	In
the	example,	the	Employee	|	Person	union	can	be	assigned	to	the	shape
used	to	restrict	the	DataCollection<T>	type	parameter.

Caution Bear	in	mind	that	when	a	union	is	used	to	constrain	a	generic	type
parameter,	the	union	itself	is	an	acceptable	argument	for	that	parameter.	This
means	that	the	SearchableCollection	class	in	Listing	12-16	can	be
instantiated	with	a	type	parameter	of	Employee,	Product,	and
Employee	|	Product.	See	Chapter	13	for	advanced	features	for
restricting	type	arguments.

The	find	method	uses	the	instanceof	keyword	to	narrow	objects	to	specific
types	to	make	property	value	comparisons.	The	code	in	Listing	12-16	produces
the	following	output:

Employee	Bob	Smith,	Sales

Employee	Alice	Jones,	Sales

Type	Guarding	Generic	Types
The	SearchableCollection<T>	class	in	Listing	12-16	used	the
instanceof	keyword	to	identify	Employee	and	Person	objects.	This	is
manageable	because	the	restriction	applied	to	the	type	parameter	means	that
there	are	only	a	small	number	of	types	to	deal	with.	For	classes	with	type
parameters	that	are	not	restricted,	narrowing	to	a	specific	type	can	be	difficult,	as
shown	in	Listing	12-17.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";



let	people	=	[new	Person("Bob	Smith",	"London"),

				new	Person("Dora	Peters",	"New	York")];

let	products	=	[new	Product("Running	Shoes",	100),	new

Product("Hat",	25)];

let	cities	=	[new	City("London",	8136000),	new

City("Paris",	2141000)];

let	employees	=	[new	Employee("Bob	Smith",	"Sales"),

				new	Employee("Alice	Jones",	"Sales")];

class	DataCollection<T>	{

				protected	items:	T[]	=	[];

				constructor(initialItems:	T[])	{

								this.items.push(...initialItems);

				}

				filter<V	extends	T>():	V[]	{

								return	this.items.filter(item	=>	item

instanceof	V)	as	V[];

				}

}

let	mixedData	=	new	DataCollection<Person	|	Product	>

([...people,	...products]);

let	filteredProducts	=	mixedData.filter<Product>();

filteredProducts.forEach(p	=>	console.log(`Product:	${

p.name},	${p.price}`));

Listing	12-17. Narrowing	a	Generic	Type	in	the	index.ts	File	in	the	src	Folder

Listing	12-17	introduces	a	filter	method	that	uses	the	instanceof
keyword	to	select	objects	of	a	specific	type	from	the	array	of	data	items.	A
DataCollection<Person	|	Product>	object	is	created	with	an	array
that	contains	a	mix	of	Person	and	Product	objects,	and	the	new	filter
method	is	used	to	select	the	Product	objects.

Tip Notice	that	the	filter	method’s	generic	type	parameter,	named	V,	is
defined	with	the	extend	keyword,	telling	the	compiler	that	it	can	only
accept	types	that	can	be	assigned	to	the	class	generic	type	T,	which	prevents



the	compiler	from	treating	V	as	any.

This	example	doesn’t	compile	and	produces	the	following	error	message:

src/index.ts(18,58):	error	TS2693:	'V'	only	refers	to

a	type,	but	is	being	used	as	a	value	here.

There	is	no	JavaScript	feature	that	is	equivalent	to	generic	types,	so	they	are
removed	from	the	TypeScript	code	during	the	compilation	process,	which	means
that	there	is	no	information	available	at	runtime	to	use	generic	types	with	the
instanceof	keyword.

In	situations	where	you	need	to	identify	objects	by	type,	generic	types	are	not
helpful,	and	a	predicate	function	must	be	used.	Listing	12-18	adds	a	parameter	to
the	filter	method	that	accepts	a	type	predicate	function,	which	is	then	used	to
find	objects	of	a	specific	type.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

let	people	=	[new	Person("Bob	Smith",	"London"),

				new	Person("Dora	Peters",	"New	York")];

let	products	=	[new	Product("Running	Shoes",	100),	new

Product("Hat",	25)];

let	cities	=	[new	City("London",	8136000),	new

City("Paris",	2141000)];

let	employees	=	[new	Employee("Bob	Smith",	"Sales"),

				new	Employee("Alice	Jones",	"Sales")];

class	DataCollection<T>	{

				protected	items:	T[]	=	[];

				constructor(initialItems:	T[])	{

								this.items.push(...initialItems);

				}

				filter<V	extends	T>(predicate:	(target)	=>	target

is	V):	V[]	{

								return	this.items.filter(item	=>

predicate(item))	as	V[];



				}

}

let	mixedData	=	new	DataCollection<Person	|	Product	>

([...people,	...products]);

function	isProduct(target):	target	is	Product	{

				return	target	instanceof	Product;

}

let	filteredProducts	=	mixedData.filter<Product>

(isProduct);

filteredProducts.forEach(p	=>	console.log(`Product:	${

p.name},	${p.price}`));

Listing	12-18. Using	a	Type	Predicate	Function	in	the	index.ts	File	in	the	src	Folder

The	predicate	function	for	the	required	type	is	provided	as	an	argument	to	the
filter	method	using	JavaScript	features	that	are	available	when	the	code	is
executed;	this	provides	the	method	with	the	means	to	select	the	required	objects.
The	code	in	Listing	12-18	produces	the	following	results:

Product:	Running	Shoes,	100

Product:	Hat,	25

Defining	a	Static	Method	on	a	Generic	Class
Only	instance	properties	and	methods	have	a	generic	type,	which	can	be
different	for	each	object.	Static	methods	are	accessed	through	the	class,	as	shown
in	Listing	12-19.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

let	people	=	[new	Person("Bob	Smith",	"London"),

				new	Person("Dora	Peters",	"New	York")];

let	products	=	[new	Product("Running	Shoes",	100),	new

Product("Hat",	25)];

let	cities	=	[new	City("London",	8136000),	new

City("Paris",	2141000)];

let	employees	=	[new	Employee("Bob	Smith",	"Sales"),

				new	Employee("Alice	Jones",	"Sales")];



class	DataCollection<T>	{

				protected	items:	T[]	=	[];

				constructor(initialItems:	T[])	{

								this.items.push(...initialItems);

				}

				filter<V	extends	T>(predicate:	(target)	=>	target

is	V):	V[]	{

								return	this.items.filter(item	=>

predicate(item))	as	V[];

				}

				static	reverse(items:	any[])	{

								return	items.reverse();

				}

}

let	mixedData	=	new	DataCollection<Person	|	Product	>

([...people,	...products]);

function	isProduct(target):	target	is	Product	{

				return	target	instanceof	Product;

}

let	filteredProducts	=	mixedData.filter<Product>

(isProduct);

filteredProducts.forEach(p	=>	console.log(`Product:	${

p.name},	${p.price}`));

let	reversedCities:	City[]	=

DataCollection.reverse(cities);

reversedCities.forEach(c	=>	console.log(`City:

${c.name},	${c.population}`));

Listing	12-19. Defining	a	Static	Method	in	the	index.ts	File	in	the	src	Folder

The	static	reverse	method	is	accessed	through	the	DataCollection
class	without	the	use	of	a	type	argument,	like	this:

...



let	reversedCities:	City[]	=

DataCollection.reverse(cities);

...

Static	methods	can	define	their	own	generic	type	parameters,	as	shown	in
Listing	12-20.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

let	people	=	[new	Person("Bob	Smith",	"London"),

				new	Person("Dora	Peters",	"New	York")];

let	products	=	[new	Product("Running	Shoes",	100),	new

Product("Hat",	25)];

let	cities	=	[new	City("London",	8136000),	new

City("Paris",	2141000)];

let	employees	=	[new	Employee("Bob	Smith",	"Sales"),

				new	Employee("Alice	Jones",	"Sales")];

class	DataCollection<T>	{

				protected	items:	T[]	=	[];

				constructor(initialItems:	T[])	{

								this.items.push(...initialItems);

				}

				filter<V	extends	T>(predicate:	(target)	=>	target

is	V):	V[]	{

								return	this.items.filter(item	=>

predicate(item))	as	V[];

				}

				static	reverse<ArrayType>(items:	ArrayType[]):

ArrayType[]	{

								return	items.reverse();

				}

}

let	mixedData	=	new	DataCollection<Person	|	Product	>

([...people,	...products]);



function	isProduct(target):	target	is	Product	{

				return	target	instanceof	Product;

}

let	filteredProducts	=	mixedData.filter<Product>

(isProduct);

filteredProducts.forEach(p	=>	console.log(`Product:	${

p.name},	${p.price}`));

let	reversedCities	=	DataCollection.reverse<City>

(cities);

reversedCities.forEach(c	=>	console.log(`City:

${c.name},	${c.population}`));

Listing	12-20. Adding	a	Type	Parameter	in	the	index.ts	File	in	the	src	Folder

The	reverse	method	defines	a	type	parameter	that	specifies	the	array	type
it	processes.	When	the	method	is	invoked,	it	is	done	so	through	the
DataCollection	class,	and	a	type	argument	is	provided	after	the	method
name,	like	this:

...

let	reversedCities	=	DataCollection.reverse<City>

(cities);

...

The	type	parameters	defined	by	static	methods	are	separate	from	those
defined	by	the	class	for	use	by	its	instance	properties	and	methods.	The	code	in
Listing	12-20	produces	the	following	output:

Product:	Running	Shoes,	100

Product:	Hat,	25

City:	Paris,	2141000

City:	London,	8136000

Defining	Generic	Interfaces
Interfaces	can	be	defined	with	generic	type	parameters,	allowing	functionality	to
be	defined	without	specifying	individual	types.	Listing	12-21	defines	an
interface	with	a	generic	type	parameter.



import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

type		shapeType	=	{	name:	string	};

interface	Collection<T	extends	shapeType>	{

				add(...newItems:	T[]):	void;

				get(name:	string):	T;

				count:	number;

}

Listing	12-21. Defining	a	Generic	Interface	in	the	index.ts	File	in	the	src	Folder

The	Collection<T>	interface	has	a	generic	type	parameter	named	T,
following	the	same	syntax	used	for	class	type	parameters.	The	type	parameter	is
used	by	the	add	and	get	methods,	and	it	has	been	constrained	to	ensure	that
only	types	that	have	a	name	property	can	be	used.

An	interface	with	a	generic	type	parameter	describes	a	set	of	abstract
operations	but	doesn’t	specify	which	types	they	can	be	performed	on,	leaving
specific	types	to	be	selected	by	derived	interfaces	or	implementation	classes.	The
code	in	Listing	12-21	produces	no	output.

Extending	Generic	Interfaces
Generic	interfaces	can	be	extended	just	like	regular	interfaces,	and	the	options
for	dealing	with	its	type	parameters	are	the	same	as	when	extending	a	generic
class.	Listing	12-22	shows	a	set	of	interfaces	that	extend	the	Collection<T>
interface.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

type		shapeType	=	{	name:	string	};

interface	Collection<T	extends	shapeType>	{

				add(...newItems:	T[]):	void;

				get(name:	string):	T;

				count:	number;

}



interface	SearchableCollection<T	extends	shapeType>

extends	Collection<T>	{

				find(name:	string):	T	|	undefined;

}

interface	ProductCollection	extends

Collection<Product>	{

				sumPrices():	number;

}

interface	PeopleCollection<T	extends	Product	|

Employee>	extends	Collection<T>	{

				getNames():	string[];

}

Listing	12-22. Extending	a	Generic	Interface	in	the	index.ts	File	in	the	src	Folder

The	code	in	Listing	12-22	does	not	produce	any	output.

Implementing	a	Generic	Interface
When	a	class	implements	a	generic	interface,	it	must	implement	all	the	interface
properties	and	methods,	but	it	has	some	choices	about	how	to	deal	with	type
parameters,	as	described	in	the	following	sections.	Some	of	these	options	are
similar	to	those	used	when	extending	generic	classes	and	interfaces.

Passing	on	the	Generic	Type	Parameter
The	simplest	approach	is	to	implement	the	interface	properties	and	methods
without	changing	the	type	parameter,	creating	a	generic	class	that	directly
implements	the	interface,	as	shown	in	Listing	12-23.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

type		shapeType	=	{	name:	string	};

interface	Collection<T	extends	shapeType>	{

				add(...newItems:	T[]):	void;



				get(name:	string):	T;

				count:	number;

}

class	ArrayCollection<DataType	extends	shapeType>

implements	Collection<DataType>	{

				private	items:	DataType[]	=	[];

				add(...newItems):	void	{

								this.items.push(...newItems);

				}

				get(name:	string):	DataType	{

								return	this.items.find(item	=>	item.name	===

name);

				}

				get	count():	number	{

								return	this.items.length;

				}

}

let	peopleCollection:	Collection<Person>	=	new

ArrayCollection<Person>();

peopleCollection.add(new	Person("Bob	Smith",

"London"),

				new	Person("Dora	Peters",	"New	York"));

console.log(`Collection	size:

${peopleCollection.count}`);

Listing	12-23. Implementing	an	Interface	in	the	index.ts	File	in	the	src	Folder

The	ArrayCollection<DataType>	class	uses	the	implements
keyword	to	declare	that	it	conforms	to	the	interface.	The	interface	has	a	generic
type	parameter,	so	the	ArrayCollection<DataType>	class	must	define	a
compatible	parameter.	Since	the	type	parameter	for	the	interface	is	required	to
have	a	name	property,	so	must	the	type	parameter	for	the	class,	and	I	used	the
same	type	alias	for	the	interface	and	the	class	to	ensure	consistency.

The	ArrayCollection<DataType>	class	requires	a	type	argument
when	an	object	is	created	and	can	be	operated	on	through	the	Collection<T>



interface,	like	this:

...

let	peopleCollection:	Collection<Person>	=	new

ArrayCollection<Person>();

...

The	type	argument	resolves	the	generic	type	for	the	class	and	the	interface	it
implements	so	that	an	ArrayCollection<Person>	object	implements	the
Collection<Person>	interface.	The	code	in	Listing	12-23	produces	the
following	output:

Collection	size:	2

Restricting	or	Fixing	the	Generic	Type	Parameter
Classes	can	provide	an	implementation	of	an	interface	that	is	specific	to	a	type	or
a	subset	of	the	types	supported	by	the	interface,	as	shown	in	Listing	12-24.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

type		shapeType	=	{	name:	string	};

interface	Collection<T	extends	shapeType>	{

				add(...newItems:	T[]):	void;

				get(name:	string):	T;

				count:	number;

}

class	PersonCollection	implements	Collection<Person>	{

				private	items:	Person[]	=	[];

				add(...newItems:	Person[]):	void	{

								this.items.push(...newItems);

				}

				get(name:	string):	Person	{

								return	this.items.find(item	=>	item.name	===

name);



				}

				get	count():	number	{

								return	this.items.length;

				}

}

let	peopleCollection:	Collection<Person>	=	new

PersonCollection();

peopleCollection.add(new	Person("Bob	Smith",

"London"),

				new	Person("Dora	Peters",	"New	York"));

console.log(`Collection	size:

${peopleCollection.count}`);

Listing	12-24. Implementing	an	Interface	in	the	index.ts	File	in	the	src	Folder

The	PersonCollection	class	implements	the
Collection<Product>	interface,	and	the	code	in	Listing	12-24	produces
the	following	output	when	compiled	and	executed:

Collection	size:	2

Creating	an	Abstract	Interface	Implementation
An	abstract	class	can	provide	a	partial	implementation	of	an	interface,	which	can
be	completed	by	subclasses.	The	abstract	class	has	the	same	set	of	options	for
dealing	with	type	parameters	as	regular	classes:	pass	it	on	to	subclasses
unchanged,	apply	further	restrictions,	or	fix	for	specific	types.	Listing	12-25
shows	an	abstract	class	that	passed	on	the	interface’s	generic	type	argument.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

type		shapeType	=	{	name:	string	};

interface	Collection<T	extends	shapeType>	{

				add(...newItems:	T[]):	void;

				get(name:	string):	T;

				count:	number;



}

abstract	class	ArrayCollection<T	extends	shapeType>

implements	Collection<T>	{

				protected	items:	T[]	=	[];

				add(...newItems:	T[]):	void	{

								this.items.push(...newItems);

				}

				abstract	get(searchTerm:	string):	T;

				get	count():	number	{

								return	this.items.length;

				}

}

class	ProductCollection	extends

ArrayCollection<Product>	{

				get(searchTerm:	string):	Product	{

								return	this.items.find(item	=>	item.name	===

searchTerm);

				}

}

class	PersonCollection	extends	ArrayCollection<Person>

{

				get(searchTerm:	string):	Person	{

								return	this.items.find(item	=>

												item.name	===	searchTerm	||	item.city	===

searchTerm);

				}

}

let	peopleCollection:	Collection<Person>	=	new

PersonCollection();

peopleCollection.add(new	Person("Bob	Smith",

"London"),



				new	Person("Dora	Peters",	"New	York"));

let	productCollection:	Collection<Product>	=	new

ProductCollection();

productCollection.add(new	Product("Running	Shoes",

100),	new	Product("Hat",	25));

[peopleCollection,	productCollection].forEach(c	=>

console.log(`Size:	${c.count}`));

Listing	12-25. Defining	an	Abstract	Class	in	the	index.ts	File	in	the	src	Folder

The	ArrayCollection<T>	class	is	abstract	and	provides	a	partial
implementation	of	the	Collection<T>	interface,	leaving	subclasses	to
provide	the	get	method.	The	ProductCollection	and
PersonCollection	classes	extend	ArrayCollection<T>,	narrowing
the	generic	type	parameter	to	specific	types	and	implementing	the	get	method
to	use	the	properties	of	the	type	they	operate	on.	The	code	in	Listing	12-25
produces	the	following	output:

Size:	2

Size:	2

Summary
In	this	chapter,	I	introduced	generic	types	and	described	the	problem	they	solve.
I	showed	you	the	relationship	between	generic	type	parameters	and	arguments
and	the	different	ways	that	generic	types	can	be	restricted	or	fixed.	I	explained
that	generic	types	can	be	used	with	regular	classes,	abstract	classes,	and
interfaces	and	showed	you	how	functions	and	methods	can	have	generic	types
that	are	resolved	each	time	they	are	used.	In	the	next	chapter,	I	describe	the
advanced	generic	type	features	that	TypeScript	provides.



(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
A.	Freeman,	Essential	TypeScript	4
https://doi.org/10.1007/978-1-4842-7011-0_13

13.	Advanced	Generic	Types
Adam	Freeman1		

London,	UK

	

In	this	chapter,	I	continue	to	describe	the	generic	type	features	provided	by
TypeScript	and	focus	on	the	advanced	features.	I	explain	how	generic	types	can
be	used	with	collections	and	iterators,	introduce	the	index	types	and	type
mapping	features,	and	describe	the	most	flexible	of	the	generic	type	features:
conditional	types.	Table	13-1	summarizes	the	chapter.

Table	13-1. Chapter	Summary

Problem Solution Listing

Use	collection	classes	with	type	safety Provide	a	generic	type	argument	when	creating	the
collection

3,	4

Use	iterators	with	type	safety Use	the	interfaces	that	TypeScript	provides	that
support	generic	type	arguments

5–7

Define	a	type	whose	value	can	only	be	the
name	of	a	property

Use	an	index	type	query 8–14

Transform	a	type Use	a	type	mapping 15–22

Select	types	programmatically Use	conditional	types 23–32

For	quick	reference,	Table	13-2	lists	the	TypeScript	compiler	options	used	in
this	chapter.

Table	13-2. The	TypeScript	Compiler	Options	Used	in	This	Chapter

Name Description

declaration This	option	produces	type	declaration	files	when	enabled,	which	can	be	useful
in	understanding	how	types	have	been	inferred.	These	files	are	described	in
more	detail	in	Chapter	14.

downlevelIteration This	option	enables	support	for	iteration	when	targeting	older	versions	of

https://doi.org/10.1007/978-1-4842-7011-0_13


JavaScript.

outDir This	option	specifies	the	directory	in	which	the	JavaScript	files	will	be	placed.

rootDir This	option	specifies	the	root	directory	that	the	compiler	will	use	to	locate
TypeScript	files.

target This	option	specifies	the	version	of	the	JavaScript	language	that	the	compiler
will	target	in	its	output.

Preparing	for	This	Chapter
In	this	chapter,	I	continue	to	use	the	types	project	created	in	Chapter	7	and
used	in	all	the	chapters	since.	To	prepare	for	this	chapter,	replace	the	contents	of
the	index.ts	file	in	the	src	folder	with	the	code	shown	in	Listing	13-1.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

let	products	=	[new	Product("Running	Shoes",	100),	new

Product("Hat",	25)];

type	shapeType	=	{	name:	string	};

class	Collection<T	extends	shapeType>	{

				constructor(private	items:	T[]	=	[])	{}

				add(...newItems:	T[]):	void	{

								this.items.push(...newItems);

				}

				get(name:	string):	T	{

								return	this.items.find(item	=>	item.name	===

name);

				}

				get	count():	number	{

								return	this.items.length;

				}

}

let	productCollection:	Collection<Product>	=	new



Collection(products);

console.log(`There	are	${	productCollection.count	}

products`);

let	p	=	productCollection.get("Hat");

console.log(`Product:	${	p.name	},	${	p.price	}`);

Listing	13-1. Replacing	the	Contents	of	the	index.ts	File	in	the	src	Folder

Open	a	new	command	prompt,	navigate	to	the	types	folder,	and	run	the
command	shown	in	Listing	13-2	to	start	the	TypeScript	compiler	so	that	it
automatically	executes	code	after	it	has	been	compiled.

Tip You	can	download	the	example	project	for	this	chapter—and	for	all	the
other	chapters	in	this	book—from
https://github.com/Apress/essential-typescript-4.

npm	start

Listing	13-2. Starting	the	TypeScript	Compiler

The	compiler	will	compile	the	project,	execute	the	output,	and	then	enter
watch	mode,	producing	the	following	output:

7:31:10	AM	-	Starting	compilation	in	watch	mode...

7:31:11	AM	-	Found	0	errors.	Watching	for	file

changes.

There	are	2	products

Product:	Hat,	25

Using	Generic	Collections
TypeScript	provides	support	for	using	the	JavaScript	collections	with	generic
type	parameters,	allowing	a	generic	class	to	safely	use	collections,	as	described
in	Table	13-3.	The	JavaScript	collection	classes	are	described	in	Chapter	4.

Table	13-3. The	Generic	Collection	Types

Name Description

Map<K,	V> This	describes	a	Map	whose	key	type	is	K	and	whose	value	type	is	V.

ReadonlyMap<K,	V> This	describes	a	Map	that	cannot	be	modified.

https://github.com/Apress/essential-typescript-4


Set<T> This	describes	a	Set	whose	value	type	is	T.

ReadonlySet<T> This	describes	a	Set	that	cannot	be	modified.

Listing	13-3	shows	how	a	generic	class	can	use	its	type	parameters	with	a
collection.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

let	products	=	[new	Product("Running	Shoes",	100),	new

Product("Hat",	25)];

type	shapeType	=	{	name:	string	};

class	Collection<T	extends	shapeType>	{

				private	items:	Set<T>;

				constructor(initialItems:	T[]	=	[])	{

								this.items	=	new	Set<T>(initialItems);

				}

				add(...newItems:	T[]):	void	{

								newItems.forEach(newItem	=>

this.items.add(newItem));

				}

				get(name:	string):	T	{

								return	[...this.items.values()].find(item	=>

item.name	===	name);

				}

				get	count():	number	{

								return	this.items.size;

				}

}

let	productCollection:	Collection<Product>	=	new

Collection(products);

console.log(`There	are	${	productCollection.count	}

products`);



let	p	=	productCollection.get("Hat");

console.log(`Product:	${	p.name	},	${	p.price	}`);

Listing	13-3. Using	a	Collection	in	the	index.ts	File	in	the	src	Folder

The	Collection<T>	class	has	been	changed	to	Set<T>	to	store	its
items,	which	it	does	by	using	its	generic	type	parameter	for	the	collection.	The
TypeScript	compiler	uses	the	type	parameter	to	prevent	other	data	types	from
being	added	to	the	set,	and	no	type	guarding	is	required	when	retrieving	objects
from	the	collection.	The	same	approach	can	be	taken	with	a	map,	as	shown	in
Listing	13-4.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

let	products	=	[new	Product("Running	Shoes",	100),	new

Product("Hat",	25)];

type	shapeType	=	{	name:	string	};

class	Collection<T	extends	shapeType>	{

				private	items:	Map<string,	T>;

				constructor(initialItems:	T[]	=	[])	{

								this.items	=	new	Map<string,	T>();

								this.add(...initialItems);

				}

				add(...newItems:	T[]):	void	{

								newItems.forEach(newItem	=>

this.items.set(newItem.name,	newItem));

				}

				get(name:	string):	T	{

								return	this.items.get(name);

				}

				get	count():	number	{

								return	this.items.size;

				}

}



let	productCollection:	Collection<Product>	=	new

Collection(products);

console.log(`There	are	${	productCollection.count	}

products`);

let	p	=	productCollection.get("Hat");

console.log(`Product:	${	p.name	},	${	p.price	}`);

Listing	13-4. Using	a	Map	in	the	index.ts	File	in	the	src	Folder

Generic	classes	don’t	have	to	provide	generic	type	parameters	for	collections
and	can	specify	concrete	types	instead.	In	the	example,	a	Map	is	used	to	store
objects	using	the	name	property	as	a	key.	The	name	property	can	be	used	safely
because	it	is	part	of	the	restriction	applied	to	the	type	parameter	named	T.	The
code	in	Listing	13-4	produces	the	following	output:

There	are	2	products

Product:	Hat,	25

Using	Generic	Iterators
As	explained	in	Chapter	4,	iterators	allow	a	sequence	of	values	to	be
enumerated,	and	support	for	iterators	is	a	common	feature	for	classes	that
operate	on	other	types,	such	as	collections.	TypeScript	provides	the	interfaces
listed	in	Table	13-4	for	describing	iterators	and	their	results.

Table	13-4. The	TypeScript	Iterator	Interface

Name Description

Iterator<T> This	interface	describes	an	iterator	whose	next	method	returns
IteratorResult<T>	objects.

IteratorResult<T> This	interface	describes	a	result	produced	by	an	iterator,	with	done	and
value	properties.

Iterable<T> This	interface	defines	an	object	that	has	a	Symbol.iterator	property
and	that	supports	iteration	directly.

IterableIterator<T> This	interface	combines	the	Iterator<T>	and	Iterable<T>	interfaces
to	describe	an	object	that	has	a	Symbol.iterator	property	and	that
defines	a	next	method	and	a	result	property.

Listing	13-5	shows	the	use	of	the	Iterator<T>	and
IteratorResult<T>	interfaces	to	provide	access	to	the	contents	of	the



Map<string,	T>	used	to	store	objects	by	the	Collection<T>	class.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

let	products	=	[new	Product("Running	Shoes",	100),	new

Product("Hat",	25)];

type	shapeType	=	{	name:	string	};

class	Collection<T	extends	shapeType>	{

				private	items:	Map<string,	T>;

				constructor(initialItems:	T[]	=	[])	{

								this.items	=	new	Map<string,	T>();

								this.add(...initialItems);

				}

				add(...newItems:	T[]):	void	{

								newItems.forEach(newItem	=>

this.items.set(newItem.name,	newItem));

				}

				get(name:	string):	T	{

								return	this.items.get(name);

				}

				get	count():	number	{

								return	this.items.size;

				}

				values():	Iterator<T>	{

								return	this.items.values();

				}

}

let	productCollection:	Collection<Product>	=	new

Collection(products);

console.log(`There	are	${	productCollection.count	}

products`);



let	iterator:	Iterator<Product>	=

productCollection.values();

let	result:	IteratorResult<Product>	=	iterator.next();

while	(!result.done)	{

				console.log(`Product:	${result.value.name},	${

result.value.price}`);

				result	=	iterator.next();

}

Listing	13-5. Iterating	Objects	in	the	index.ts	File	in	the	src	Folder

The	values	method	defined	by	the	Collection<T>	class	returns	an
Iterator<T>.	When	this	method	is	invoked	on	the
Collection<Product>	object,	the	iterator	it	returns	will	produce
IteratorResult<Product>	objects	through	its	next	method.	The
result	property	of	each	IteratorResult<Product>	object	will	return	a
Product,	allowing	the	objects	managed	by	the	collection	to	be	iterated.	The
code	in	Listing	13-5	produces	the	following	output:

There	are	2	products

Product:	Running	Shoes,	100

Product:	Hat,	25

Using	Iterators	with	JavaScript	ES5	and	Earlier
Iterators	were	introduced	in	the	JavaScript	ES6	standard.	If	you	use	iterators
in	your	project	and	are	targeting	earlier	versions	of	JavaScript,	then	you	must
set	the	TypeScript	downlevelIteration	compiler	property	to	true.

Combining	an	Iterable	and	an	Iterator
The	IterableIterator<T>	interface	can	be	used	to	describe	objects	that
can	be	iterated	and	that	also	define	a	Symbol.iterator	property.	Objects
that	implement	this	interface	can	be	enumerated	more	elegantly,	as	shown	in
Listing	13-6.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

let	products	=	[new	Product("Running	Shoes",	100),	new

Product("Hat",	25)];



type	shapeType	=	{	name:	string	};

class	Collection<T	extends	shapeType>	{

				private	items:	Map<string,	T>;

				constructor(initialItems:	T[]	=	[])	{

								this.items	=	new	Map<string,	T>();

								this.add(...initialItems);

				}

				add(...newItems:	T[]):	void	{

								newItems.forEach(newItem	=>

this.items.set(newItem.name,	newItem));

				}

				get(name:	string):	T	{

								return	this.items.get(name);

				}

				get	count():	number	{

								return	this.items.size;

				}

				values():	IterableIterator<T>	{

								return	this.items.values();

				}

}

let	productCollection:	Collection<Product>	=	new

Collection(products);

console.log(`There	are	${	productCollection.count	}

products`);

[...productCollection.values()].forEach(p	=>

				console.log(`Product:	${p.name},	${	p.price}`));

Listing	13-6. Using	an	Iterable	Iterator	in	the	index.ts	File	in	the	src	Folder

The	values	method	returns	an	IterableIterator	object,	which	it	is
able	to	do	because	the	result	of	the	Map	method	defines	all	the	members



specified	by	the	interface.	The	combined	interface	allows	the	result	of	the
values	method	to	be	iterated	directly,	and	the	listing	uses	the	spread	operator
to	populate	an	array	and	then	enumerates	its	contents	with	the	forEach
method.	The	code	in	Listing	13-6	produces	the	following	output:

There	are	2	products

Product:	Running	Shoes,	100

Product:	Hat,	25

Creating	an	Iterable	Class
Classes	that	define	a	Symbol.iterator	property	can	implement	the
Iterable<T>	interface,	which	allows	iteration	without	needing	to	call	a
method	or	read	a	property,	as	shown	in	Listing	13-7.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

let	products	=	[new	Product("Running	Shoes",	100),	new

Product("Hat",	25)];

type	shapeType	=	{	name:	string	};

class	Collection<T	extends	shapeType>	implements

Iterable<T>	{

				private	items:	Map<string,	T>;

				constructor(initialItems:	T[]	=	[])	{

								this.items	=	new	Map<string,	T>();

								this.add(...initialItems);

				}

				add(...newItems:	T[]):	void	{

								newItems.forEach(newItem	=>

this.items.set(newItem.name,	newItem));

				}

				get(name:	string):	T	{

								return	this.items.get(name);

				}



				get	count():	number	{

								return	this.items.size;

				}

				[Symbol.iterator]():	Iterator<T>	{

								return	this.items.values();

				}

}

let	productCollection:	Collection<Product>	=	new

Collection(products);

console.log(`There	are	${	productCollection.count	}

products`);

[...productCollection].forEach(p	=>

console.log(`Product:	${p.name},	${	p.price}`));

Listing	13-7. Creating	an	Iterable	Class	in	the	index.ts	File	in	the	src	Folder

The	new	property	implements	the	Iterable<T>	interface,	indicating	that
it	defines	a	Symbol.iterator	property	that	returns	an	Iterator<T>
object	that	can	be	used	for	iteration.	The	code	in	Listing	13-7	produces	the
following	output:

There	are	2	products

Product:	Running	Shoes,	100

Product:	Hat,	25

Using	Index	Types
The	Collection<T>	class	restricts	the	types	it	can	accept	using	a	shape	type,
which	ensures	that	all	the	objects	it	deals	with	have	a	name	property	that	can	be
used	as	the	key	to	store	and	retrieve	objects	in	the	Map.

TypeScript	provides	a	set	of	related	features	that	allow	any	property	defined
by	an	object	to	be	used	as	a	key	while	preserving	type	safety.	These	features	can
be	difficult	to	understand,	so	I	show	how	they	work	in	isolation	and	then	use
them	to	improve	the	Collection<T>	class.

Using	the	Index	Type	Query
The	keyof	keyword,	known	as	the	index	type	query	operator,	returns	a	union	of



the	property	names	of	a	type,	using	the	literal	value	type	feature	described	in
Chapter	9.	Listing	13-8	shows	keyof	applied	to	the	Product	class.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

let	myVar:	keyof	Product	=	"name";

myVar	=	"price";

myVar	=	"someOtherName";

Listing	13-8. Using	the	Index	Type	Query	Operator	in	the	index.ts	File	in	the	src	Folder

The	type	annotation	for	the	myVar	variable	is	keyof	Product,	which
will	be	the	union	of	the	property	names	defined	by	the	Product	class.	The
result	is	that	myVar	can	be	assigned	only	the	string	values	name	and	price
because	these	are	the	names	of	the	only	two	properties	defined	by	the	Product
class	in	the	dataTypes.ts	file,	which	was	created	in	Chapter	12.

...

export	class	Product	{

				constructor(public	name:	string,	public	price:

number)	{}

}

...

Assigning	any	other	value	to	myVar,	as	the	final	statement	in	Listing	13-8
attempts	to	do,	produces	a	compiler	error.

src/index.ts(34,1):	error	TS2322:	Type

'"someOtherName"'	is	not	assignable	to	type	'"name"	|

"price"'.

The	keyof	keyword	can	be	used	to	constrain	generic	type	parameters	so
that	they	can	only	be	typed	to	match	the	properties	of	another	type,	as	shown	in
Listing	13-9.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

function	getValue<T,	K	extends	keyof	T>(item:	T,



keyname:	K)	{

				console.log(`Value:	${item[keyname]}`);

}

let	p	=	new	Product("Running	Shoes",	100);

getValue(p,	"name");

getValue(p,	"price");

let	e	=	new	Employee("Bob	Smith",	"Sales");

getValue(e,	"name");

getValue(e,	"role");

Listing	13-9. Constraining	a	Generic	Type	Parameter	in	the	index.ts	File	in	the	src	Folder

The	example	defines	a	function	named	getValue,	whose	type	parameter	K
is	constrained	using	typeof	T,	which	means	that	K	can	be	the	name	of	only
one	of	the	properties	defined	by	T,	regardless	of	the	type	used	for	T	when	the
function	is	invoked.	When	the	getValue	function	is	used	with	a	Product
object,	the	keyname	parameter	can	be	only	name	or	price.	And	when	the
getValue	function	is	used	with	an	Employee	object,	the	keyname
parameter	can	be	only	name	or	role.	In	both	cases,	the	keyname	parameter
can	be	used	to	safely	get	or	set	the	value	of	the	corresponding	property	from	the
Product	or	Employee	object,	and	the	code	in	Listing	13-9	produces	the
following	output:

Value:	Running	Shoes

Value:	100

Value:	Bob	Smith

Value:	Sales

Explicitly	Providing	Generic	Type	Parameters	for	Index	Types
The	getValue	method	was	invoked	without	generic	type	arguments	in	Listing
13-9,	allowing	the	compiler	to	infer	the	types	from	the	function	arguments.
Explicitly	stating	the	type	arguments	reveals	an	aspect	of	using	the	index	type
query	operator	that	can	be	confusing,	as	shown	in	Listing	13-10.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

function	getValue<T,	K	extends	keyof	T>(item:	T,



keyname:	K)	{

				console.log(`Value:	${item[keyname]}`);

}

let	p	=	new	Product("Running	Shoes",	100);

getValue<Product,	"name">(p,	"name");

getValue(p,	"price");

let	e	=	new	Employee("Bob	Smith",	"Sales");

getValue(e,	"name");

getValue(e,	"role");

Listing	13-10. Using	Explicit	Type	Arguments	in	the	index.ts	File	in	the	src	Folder

It	can	appear	as	though	the	property	that	is	required	for	the	example	is
specified	twice,	but	name	has	two	different	uses	in	the	modified	statement,	as
shown	in	Figure	13-1.

Figure	13-1. An	index	type	and	value

As	a	generic	type	argument,	name	is	a	literal	value	type	that	specifies	one	of
the	keyof	Product	types	and	is	used	by	the	TypeScript	compiler	for	type
checking.	As	a	function	argument,	name	is	a	string	value	that	is	used	by	the
JavaScript	runtime	when	the	code	is	executed.	The	code	in	Listing	13-10
produces	the	following	output:

Value:	Running	Shoes

Value:	100

Value:	Bob	Smith

Value:	Sales

Using	the	Indexed	Access	Operator
The	indexed	access	operator	is	used	to	get	the	type	for	one	or	more	properties,	as
shown	in	Listing	13-11.



import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

function	getValue<T,	K	extends	keyof	T>(item:	T,

keyname:	K)	{

				console.log(`Value:	${item[keyname]}`);

}

type	priceType	=	Product["price"];

type	allTypes	=	Product[keyof	Product];

let	p	=	new	Product("Running	Shoes",	100);

getValue<Product,	"name">(p,	"name");

getValue(p,	"price");

let	e	=	new	Employee("Bob	Smith",	"Sales");

getValue(e,	"name");

getValue(e,	"role");

Listing	13-11. Using	the	Indexed	Access	Operator	in	the	index.ts	File	in	the	src	Folder

The	indexed	access	operator	is	expressed	using	square	brackets	following	a
type	so	that	Product["price"],	for	example,	is	number,	since	that	is	the
type	of	the	price	property	defined	by	the	Product	class.	The	indexed	access
operator	works	on	literal	value	types,	which	means	it	can	be	used	with	index
type	queries,	like	this:

...

type	allTypes	=	Product[keyof	Product];

...

The	keyof	Product	expression	returns	a	literal	value	type	union	with	the
property	names	defined	by	the	Product	class,	"name"	|	"price".	The
indexed	access	operator	returns	the	union	of	the	types	of	those	properties,	such
that	Product[keyof	Product]	is	string	|	number,	which	is	the
union	of	the	types	of	the	name	and	price	properties.

Tip The	types	returned	by	the	indexed	access	operator	are	known	as	lookup
types.



The	indexed	access	operator	is	most	commonly	used	with	generic	types,	which
allows	property	types	to	be	handled	safely	even	though	the	specific	types	that
will	be	used	are	unknown,	as	shown	in	Listing	13-12.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

function	getValue<T,	K	extends	keyof	T>(item:	T,

keyname:	K):	T[K]	{

				return	item[keyname];

}

let	p	=	new	Product("Running	Shoes",	100);

console.log(getValue<Product,	"name">(p,	"name"));

console.log(getValue(p,	"price"));

let	e	=	new	Employee("Bob	Smith",	"Sales");

console.log(getValue(e,	"name"));

console.log(getValue(e,	"role"));

Listing	13-12. Using	the	Indexed	Access	Operator	with	a	Generic	Type	in	the	index.ts	File	in	the	src
Folder

The	indexed	access	operator	is	expressed	using	a	regular	type,	its	keyof
type,	and	square	brackets,	as	shown	in	Figure	13-2.

Figure	13-2. The	indexed	access	operator

The	indexed	access	operator	in	Listing	13-12,	T[K],	tells	the	compiler	that
the	result	of	the	getValue	function	will	have	the	type	of	the	property	whose
name	is	specified	by	the	keyof	type	argument,	leaving	the	compiler	to
determine	the	result	types	based	on	the	generic	type	arguments	used	to	invoke
the	function.	For	the	Product	object,	that	means	a	name	argument	will
produce	a	string	result,	and	a	price	argument	will	produce	a	number
result.	The	code	in	Listing	13-12	produces	the	following	output:



Running	Shoes

100

Bob	Smith

Sales

Using	an	Index	Type	for	the	Collection<T>	Class
Using	an	index	type	allows	me	to	change	the	Collection<T>	class	so	that	it
can	store	any	type	of	object	and	not	just	those	that	define	a	name	property.
Listing	13-13	shows	the	changes	to	the	class,	which	uses	an	index	type	query	to
restrict	the	propertyName	constructor	property	to	the	names	of	the	properties
defined	by	the	generic	type	parameter	T,	providing	the	key	by	which	objects	can
be	stored	in	the	Map.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

let	products	=	[new	Product("Running	Shoes",	100),	new

Product("Hat",	25)];

//type	shapeType	=	{	name:	string	};

class	Collection<T,	K	extends	keyof	T>	implements

Iterable<T>	{

				private	items:	Map<T[K],	T>;

				constructor(initialItems:	T[]	=	[],	private

propertyName:	K)	{

								this.items	=	new	Map<T[K],	T>();

								this.add(...initialItems);

				}

				add(...newItems:	T[]):	void	{

								newItems.forEach(newItem	=>

												this.items.set(newItem[this.propertyName],

newItem));

				}

				get(key:	T[K]):	T	{

								return	this.items.get(key);



				}

				get	count():	number	{

								return	this.items.size;

				}

				[Symbol.iterator]():	Iterator<T>	{

								return	this.items.values();

				}

}

let	productCollection:	Collection<Product,	"name">

				=	new	Collection(products,	"name");

console.log(`There	are	${	productCollection.count	}

products`);

let	itemByKey	=	productCollection.get("Hat");

console.log(`Item:	${	itemByKey.name},	${

itemByKey.price}`);

Listing	13-13. Using	an	Index	Type	in	a	Collection	Class	in	the	index.ts	File	in	the	src	Folder

The	class	has	been	rewritten	with	an	additional	generic	type	parameter,	K,
that	is	restricted	to	keyof	T,	which	is	the	data	type	of	the	objects	stored	by	the
collection.	A	new	instance	of	the	Collection<T,	K>	is	created	like	this:

...

let	productCollection:	Collection<Product,	"name">

				=	new	Collection(products,	"name");

...

The	code	in	Listing	13-13	produces	the	following	output:

There	are	2	products

Item:	Hat,	25

The	dense	chains	of	angle	and	square	brackets	in	Listing	13-13	can	be
difficult	to	make	sense	of	when	you	first	start	using	index	types.	To	help	make
sense	of	the	code,	Table	13-5	describes	the	significant	type	and	constructor
parameters	and	the	types	they	are	resolved	to	for	the



Collection<Product,	"name">	object	that	is	created	in	the	example.

Table	13-5. The	Significant	Types	Used	by	the	Collection<T>	Class

Name Description

T This	is	the	type	of	the	objects	stored	in	the	collection	class,	which	is	provided	by	the
first	generic	type	argument,	which	is	Product	for	the	object	created	in	the	listing.

K This	is	the	key	property	name,	which	is	restricted	to	the	property	names	defined	by	T.
The	value	for	this	type	is	provided	by	the	second	generic	type	argument,	which	is
name	for	the	object	created	in	the	listing.

T[K] This	is	the	type	of	the	key	property,	which	is	obtained	using	the	indexed	access
operator	and	which	is	used	to	specify	the	key	type	when	creating	the	Map	object	and	to
restrict	the	type	for	the	parameters.	This	is	the	type	of	the	Product.name	property
for	the	object	created	in	the	listing,	which	is	string.

propertyName This	is	the	key	property	name,	which	is	required	as	a	value	that	can	be	used	by	the
JavaScript	runtime	after	the	TypeScript	generic	type	information	has	been	removed.
For	the	object	created	in	the	listing,	this	value	is	name,	corresponding	to	the	generic
type	K.

The	results	of	the	index	type	in	Listing	13-13	are	that	any	property	can	be
used	to	store	objects	and	that	any	type	of	object	can	be	stored.	Listing	13-14
changes	the	way	that	the	Collection<T,	K>	class	is	instantiated	so	that	the
price	property	is	used	as	the	key.	The	listing	also	omits	the	generic	type
arguments	and	allows	the	compiler	to	infer	the	types	that	are	required.

...

let	productCollection	=	new	Collection(products,

"price");

console.log(`There	are	${	productCollection.count	}

products`);

let	itemByKey	=	productCollection.get(100);

console.log(`Item:	${	itemByKey.name},	${

itemByKey.price}`);

...

Listing	13-14. Changing	the	Key	Property	in	the	index.ts	File	in	the	src	Folder

The	type	of	the	argument	to	the	get	method	changes	to	match	the	type	of
the	key	property	so	that	objects	can	be	obtained	using	a	number	argument.	The
code	in	Listing	13-14	produces	the	following	output:



There	are	2	products

Item:	Running	Shoes,	100

Using	Type	Mapping
Mapped	types	are	created	by	applying	a	transformation	to	the	properties	of	an
existing	type.	The	best	way	to	understand	how	mapped	types	work	is	to	create
one	that	processes	a	type	but	doesn’t	make	any	changes,	as	shown	in	Listing	13-
15.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

type	MappedProduct	=	{

				[P	in	keyof	Product]	:	Product[P]

};

let	p:	MappedProduct	=	{	name:	"Kayak",	price:	275};

console.log(`Mapped	type:	${p.name},	${p.price}`);

Listing	13-15. Using	a	Mapped	Type	in	the	index.ts	File	in	the	src	Folder

A	type	mapping	is	an	expression	that	selects	property	names	to	be	included
in	the	mapped	type	and	the	type	for	each	of	them,	as	shown	in	Figure	13-3.

Figure	13-3. A	mapped	type

The	property	name	selector	defines	a	type	parameter,	named	P	in	this
example,	and	uses	the	in	keyword	to	enumerate	the	types	in	a	literal	value
union.	The	type	union	can	be	expressed	directly,	such	as	"name"|"price",	or
obtained	using	keyof.

The	TypeScript	compiler	creates	a	new	property	in	the	mapped	type	for	each
of	the	types	in	the	union.	The	type	of	each	property	is	determined	by	the	type



selector,	which	can	be	obtained	from	the	source	type	using	the	indexed	access
operator	with	P	as	the	literal	value	type	to	look	up.

The	MappedProduct	type	in	Listing	13-15	uses	keyof	to	select	the
properties	defined	by	the	Product	class	and	uses	the	indexed	type	operator	to
get	the	type	of	each	of	those	properties.	The	result	is	equivalent	to	this	type:

type	MappedProduct	=	{

				name:	string;

				price:	number;

}

The	code	in	Listing	13-15	produces	the	following	output:

Mapped	type:	Kayak,	275

Changing	Mapping	Names	and	Types
The	previous	example	preserved	the	names	and	types	of	the	properties	during	the
mapping.	But	type	mapping	is	more	flexible	and	there	is	support	for	changing
both	the	name	and	the	type	of	the	properties	in	the	new	type,	as	shown	in	Listing
13-16.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

type	MappedProduct	=	{

				[P	in	keyof	Product]	:	Product[P]

};

let	p:	MappedProduct	=	{	name:	"Kayak",	price:	275};

console.log(`Mapped	type:	${p.name},	${p.price}`);

type	AllowStrings	=	{

				[P	in	keyof	Product]	:	Product[P]	|	string

}

let	q:	AllowStrings	=	{	name:	"Kayak",		price:

"apples"	};

console.log(`Changed	type	#	1:	${q.name},

${q.price}`);



type	ChangeNames	=	{

				[P	in	keyof	Product	as	`${P}Property`]	:

Product[P]

}

let	r:	ChangeNames	=	{	nameProperty:

"Kayak",		priceProperty:	12	};

console.log(`Changed	type	#	2:	${r.nameProperty},

${r.priceProperty}`);

Listing	13-16. Changing	Mappings	Names	and	Types	in	the	index.ts	File	in	the	src	Folder

The	AllowStrings	type	is	created	with	a	mapping	that	creates	a	type
union	between	string	and	the	property’s	original	type,	like	this:

...

[P	in	keyof	Product]	:	Product[P]	|	string

...

The	result	is	a	type	that	is	equivalent	to	this	type:

type	AllowStrings	=	{

				name:	string;

				price:	number	|	string;

}

The	ChangeNames	type	is	created	with	a	mapping	that	alters	the	name	of
each	property	by	adding	Property.

...

[P	in	keyof	Product	as	`${P}Property`]	:	Product[P]

...

The	as	keyword	is	combined	with	an	expression	that	defines	the	property
name.	In	this	case,	a	template	string	is	used	to	modify	the	existing	name,	with
the	result	that	is	equivalent	to	this	type:

type	ChangeNames	=	{

				nameProperty:	string;

				priceProperty:	number;



}

The	code	in	Listing	13-16	produces	the	following	output	when	it	is	compiled
and	executed:

Mapped	type:	Kayak,	275

Changed	type	#	1:	Kayak,	apples

Changed	type	#	2:	Kayak,	12

Using	a	Generic	Type	Parameter	with	a	Mapped	Type
Mapped	types	become	more	useful	when	they	define	a	generic	type	parameter,
as	shown	in	Listing	13-17,	which	allows	the	transformation	they	describe	to	be
applied	to	a	broader	range	of	types.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

type	Mapped<T>	=	{

				[P	in	keyof	T]	:	T[P]

};

let	p:	Mapped<Product>	=	{	name:	"Kayak",	price:	275};

console.log(`Mapped	type:	${p.name},	${p.price}`);

let	c:	Mapped<City>	=	{	name:	"London",	population:

8136000};

console.log(`Mapped	type:	${c.name},

${c.population}`);

Listing	13-17. Using	a	Generic	Type	Parameter	in	the	index.ts	File	in	the	src	Folder

The	Mapped<T>	type	defines	a	generic	type	parameter	named	T,	which	is
the	type	to	be	transformed.	The	type	parameter	is	used	in	the	name	and	type
selectors,	meaning	that	any	type	can	be	mapped	using	a	generic	type	parameter.
In	Listing	13-17,	the	Mapped<T>	mapped	type	is	used	on	the	Product	and
City	classes	and	produces	the	following	output:

Mapped	type:	Kayak,	275

Mapped	type:	London,	8136000



Understanding	Mapping	for	Constructors	and	Methods
Mapping	operates	only	on	properties.	When	applied	to	a	class,	a	type
mapping	produces	a	shape	type	that	contains	properties	but	omits	the
constructor	and	the	implementation	of	methods.	For	example,	this	class:

class	MyClass	{

				constructor(public	name:	string	)	{}

				getName():	string	{

								return	this.name;

				}

}

is	mapped	to	the	following	type	by	the	Mapping<T>	type	mapping	in
Listing	13-17:

{

				name:	string;

				getName:	()	=>	string;

}

Type	mapping	produces	shapes	that	can	be	used	for	object	literals,
implemented	by	classes,	or	extended	by	interfaces.	Type	mapping	does	not
produce	a	class,	however.

Changing	Property	Optionality	and	Mutability
Mapped	types	can	change	properties	to	make	them	optional	or	required	and	to
add	or	remove	the	readonly	keyword,	as	shown	in	Listing	13-18.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

type	MakeOptional<T>	=	{

				[P	in	keyof	T]?	:	T[P]

};

type	MakeRequired<T>	=	{

				[P	in	keyof	T]-?	:	T[P]



};

type	MakeReadOnly<T>	=	{

				readonly	[P	in	keyof	T]	:	T[P]

};

type	MakeReadWrite<T>	=	{

				-readonly	[P	in	keyof	T]	:	T[P]

};

type	optionalType	=	MakeOptional<Product>;

type	requiredType	=	MakeRequired<optionalType>;

type	readOnlyType	=	MakeReadOnly<requiredType>;

type	readWriteType	=	MakeReadWrite<readOnlyType>;

let	p:	readWriteType	=	{	name:	"Kayak",	price:	275};

console.log(`Mapped	type:	${p.name},	${p.price}`);

Listing	13-18. Changing	Properties	in	the	index.ts	File	in	the	src	Folder

A	question	mark	(the	?	character)	is	placed	after	the	name	selector	to	make
the	properties	in	the	mapped	type	optional,	and	a	minus	sign	and	a	question	mark
(the	-?	characters)	are	used	to	make	properties	required.	Properties	are	made
read-only	and	read-write	by	preceding	the	name	selector	with	readonly	and	-
readonly.

Mapped	types	change	all	the	properties	defined	by	the	type	they	transform	so
that	the	type	produced	by	MakeOptional<T>	when	applied	to	the	Product
class,	for	example,	is	equivalent	to	this	type:

type	optionalType	=	{

				name?:	string;

				price?:	number;

}

The	types	produced	by	mappings	can	be	fed	into	other	mappings,	creating	a
chain	of	transformations.	In	the	listing,	the	type	produced	by	the
MakeOptional<T>	mapping	is	then	transformed	by	the
MakeRequired<T>	mapping,	the	output	of	which	is	then	fed	to	the
MakeReadOnly<T>	mapping	and	then	the	MakeReadWrite<T>	mapping.
The	result	is	that	properties	are	made	optional	and	then	required	and	then	read-



only	and,	finally,	read-write.

Using	the	Basic	Built-in	Mappings
TypeScript	provides	built-in	mapped	types,	some	of	which	correspond	to	the
transformations	in	Listing	13-18	and	some	that	are	described	in	later	sections.
Table	13-6	describes	the	basic	built-in	mappings.

Table	13-6. The	Basic	Type	Mappings

Name Description

Partial<T> This	mapping	makes	properties	optional.

Required<T> This	mapping	makes	properties	required.

Readonly<T> This	mapping	adds	the	readonly	keyword	to	properties.

Pick<T,	K> This	mapping	selects	specific	properties	to	create	a	new	type,	as	described	in	the
“Mapping	Specific	Properties”	section.

Omit<T,

keys>

This	mapping	selects	specific	properties	to	create	a	new	type,	as	described	in	the
“Mapping	Specific	Properties”	section.

Record<T,

K>

This	mapping	creates	a	type	without	transforming	an	existing	one,	as	explained	in	the
“Creating	Types	with	a	Type	Mapping”	section.

There	is	no	built-in	mapping	to	remove	the	readonly	keyword,	but	Listing
13-19	replaces	my	custom	mappings	with	those	provided	by	TypeScript.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

//	type	MakeOptional<T>	=	{

//					[P	in	keyof	T]?	:	T[P]

//	};

//	type	MakeRequired<T>	=	{

//					[P	in	keyof	T]-?	:	T[P]

//	};

//	type	MakeReadOnly<T>	=	{

//					readonly	[P	in	keyof	T]	:	T[P]

//	};

type	MakeReadWrite<T>	=	{

				-readonly	[P	in	keyof	T]	:	T[P]



};

type	optionalType	=	Partial<Product>;

type	requiredType	=	Required<optionalType>;

type	readOnlyType	=	Readonly<requiredType>;

type	readWriteType	=	MakeReadWrite<readOnlyType>;

let	p:	readWriteType	=	{	name:	"Kayak",	price:	275};

console.log(`Mapped	type:	${p.name},	${p.price}`);

Listing	13-19. Using	the	Built-in	Mappings	in	the	index.ts	File	in	the	src	Folder

The	built-in	mappings	have	the	same	effect	as	the	ones	defined	in	Listing	13-
19,	and	the	code	in	Listing	13-19	produces	the	following	output:

Mapped	type:	Kayak,	275

Mapping	Specific	Properties
The	index	type	query	for	a	mapped	type	can	be	expressed	as	a	generic	type
parameter,	which	can	then	be	used	to	select	specific	properties	to	map	by	name,
as	shown	in	Listing	13-20.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

type	SelectProperties<T,	K	extends	keyof	T>	=	{

				[P	in	K]:	T[P]

};

let	p1:	SelectProperties<Product,	"name">	=	{	name:

"Kayak"	};

let	p2:	Pick<Product,	"name">	=	{	name:	"Kayak"	};

let	p3:	Omit<Product,	"price">	=	{	name:	"Kayak"};

console.log(`Custom	mapped	type:	${p1.name}`);

console.log(`Built-in	mapped	type	(Pick):

${p2.name}`);

console.log(`Built-in	mapped	type	(Omit):

${p3.name}`);

Listing	13-20. Mapping	Specific	Properties	in	the	index.ts	File	in	the	src	Folder



The	SelectProperties	mapping	defines	an	additional	generic	type
parameter	named	K	that	is	restricted	using	keyof	so	that	only	types	that
correspond	to	properties	defined	by	the	type	parameter	T	can	be	specified.	The
new	type	parameter	is	used	in	the	mapping’s	name	selector,	with	the	result	that
individual	properties	can	be	selected	for	inclusion	in	the	mapped	type,	like	this:

...

let	p1:	SelectProperties<Product,	"name">	=	{	name:

"Kayak"	};

...

This	mapping	selects	the	name	property	defined	by	the	Product	class.
Multiple	properties	can	be	expressed	as	a	type	union,	and	TypeScript	provides
the	built-in	Pick<T,	K>	mapping	that	performs	the	same	role.

...

let	p2:	Pick<Product,	"name">	=	{	name:	"Kayak"	};

...

The	Pick	mapping	specifies	the	keys	that	are	to	be	kept	in	the	mapped	type.
The	Omit	mapping	works	in	the	opposite	way	and	excludes	one	or	more	keys.

...

let	p3:	Omit<Product,	"price">	=	{	name:	"Kayak"};

...

The	result	of	all	three	mappings	is	the	same,	and	the	code	in	Listing	13-20
produces	the	following	output:

Custom	mapped	type:	Kayak

Built-in	mapped	type	(Pick):	Kayak

Built-in	mapped	type	(Omit):	Kayak

Combining	Transformations	in	a	Single	Mapping
Listing	13-19	showed	how	mappings	can	be	combined	to	create	a	chain	of
transformations,	but	mappings	can	apply	multiple	changes	to	properties,	as
shown	in	Listing	13-21.

import	{	City,	Person,	Product,	Employee	}	from



"./dataTypes";

type	CustomMapped<T,	K	extends	keyof	T>	=	{

				readonly[P	in	K]?:	T[P]

};

type	BuiltInMapped<T,	K	extends	keyof	T>	=

Readonly<Partial<Pick<T,	K>>>;

let	p1:	CustomMapped<Product,	"name">	=	{	name:

"Kayak"	};

let	p2:	BuiltInMapped<Product,	"name"|	"price">

				=	{	name:	"Lifejacket",	price:	48.95};

console.log(`Custom	mapped	type:	${p1.name}`);

console.log(`Built-in	mapped	type:	${p2.name},

${p2.price}`);

Listing	13-21. Combining	Transformations	in	the	index.ts	File	in	the	src	Folder

For	custom	type	mappings,	the	question	mark	and	the	readonly	keyword
can	be	applied	in	the	same	transformation,	which	can	be	constrained	to	allow
properties	to	be	selected	by	name.	Mappings	can	also	be	chained	together,	as
shown	by	the	combination	of	the	Pick,	Partial,	and	Readonly	mappings.
The	code	in	Listing	13-21	produces	the	following	results:

Custom	mapped	type:	Kayak

Built-in	mapped	type:	Lifejacket,	48.95

Creating	Types	with	a	Type	Mapping
The	final	feature	provided	by	type	mappings	is	the	ability	to	create	new	types,
rather	than	transform	a	specific	one.	Listing	13-22	shows	the	basic	use	of	this
feature,	which	creates	a	type	that	contains	name	and	city	properties.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

type	CustomMapped<K	extends	keyof	any,	T>	=	{

				[P	in	K]:	T

};



let	p1:	CustomMapped<"name"	|	"city",	string>	=	{

name:	"Bob",		city:	"London"};

let	p2:	Record<"name"|	"city",	string>	=	{	name:

"Alice",	city:	"Paris"};

console.log(`Custom	mapped	type:	${p1.name},

${p1.city}`);

console.log(`Built-in	mapped	type:	${p2.name},

${p2.city}`);

Listing	13-22. Creating	a	Type	in	the	index.ts	File	in	the	src	Folder

The	first	generic	type	parameter	is	restricted	using	keyof	any,	which
means	that	a	literal	value	type	union	can	be	specified	and	that	it	can	contain	the
property	names	required	for	the	new	type.	The	second	generic	type	parameter	is
used	to	specify	the	type	for	the	properties	that	are	created	and	is	used	like	this:

...

let	p1:	CustomMapped<"name"	|	"city",	string>	=	{

name:	"Bob",		city:	"London"};

...

The	mapping	produces	a	type	with	two	string	properties:	name	and
city.	TypeScript	provides	the	built-in	Record	mapping,	which	performs	the
same	task.

...

let	p2:	Record<"name"|	"city",	string>	=	{	name:

"Alice",	city:	"Paris"};

...

This	is	the	mapping	feature	that	I	use	the	least	in	my	own	projects,	but	it
does	serve	to	show	that	mappings	are	more	flexible	than	they	might	appear	and
that	literal	value	types	restricted	by	keyof	any	can	accept	any	combination	of
property	names.	The	code	in	Listing	13-22	produces	the	following	output:

Custom	mapped	type:	Bob,	London

Built-in	mapped	type:	Alice,	Paris



Using	Conditional	Types
Conditional	types	are	expressions	containing	generic	type	parameters	that	are
evaluated	to	select	new	types.	Listing	13-23	shows	a	basic	conditional	type.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

type	resultType<T	extends	boolean>	=	T	extends	true	?

string	:	number;

let	firstVal:	resultType<true>	=	"String	Value";

let	secondVal:	resultType<false>	=	100;

let	mismatchCheck:	resultType<false>	=	"String	Value";

Listing	13-23. Using	a	Conditional	Type	in	the	index.ts	File	in	the	src	Folder

Conditional	types	have	a	generic	type	parameter	and	a	ternary	expression
that	selects	a	result	type,	as	illustrated	in	Figure	13-4.

Figure	13-4. A	conditional	type

A	conditional	type	is	a	placeholder	for	one	of	its	result	types,	which	isn’t
chosen	until	the	generic	type	parameter	is	used,	which	allows	the	expression	to
be	evaluated	using	one	of	the	result	types	selected.

In	the	listing,	the	resultType<T>	conditional	type	is	a	placeholder	for	the
string	and	number	types,	meaning	that	the	argument	for	the	generic	type	T
will	determine	whether	the	conditional	type	resolves	to	string	or	number.
The	generic	type	parameter	T	is	restricted	so	that	it	can	only	accept	boolean
values,	and	the	expression	will	evaluate	as	true	if	the	argument	provided	for	T
is	the	literal	value	type	true.	The	effect	is	that	resultType<T>	resolves	to
string	when	T	is	true.

...

let	firstVal:	resultType<true>	=	"String	Value";

let	stringTypeCheck:	string	=	firstVal;



...

The	compiler	resolves	the	conditional	type	and	knows	that	the	type
annotation	for	firstVal	resolves	to	string,	allowing	a	string	literal	value	to
be	assigned	to	firstVal.	When	the	generic	type	argument	is	false,	the
conditional	type	resolves	to	number.

...

let	secondVal:	resultType<false>	=	100;

let	numberTypeCheck:	number	=	secondVal;

...

The	compiler	enforces	type	safety	with	conditional	types.	In	the	final
statement	in	Listing	13-23,	the	conditional	type	resolves	to	number	but	is
assigned	a	string	value,	which	produces	the	following	compiler	error:

error	TS2322:	Type	'"String	Value"'	is	not	assignable

to	type	'number'.

The	Danger	of	Conditional	Types
Conditional	types	are	an	advanced	feature	that	should	be	used	carefully.
Writing	conditional	types	can	be	a	tortured	process	and	can	often	feel	like
sleight	of	hand	as	you	lead	the	compiler	through	a	series	of	expressions	to	get
the	results	you	require.

As	the	complexity	of	a	conditional	type	increases,	so	does	the	danger	that
you	won’t	capture	all	of	the	permutations	of	types	correctly	and	create	a	result
that	is	too	lax,	creating	a	type	checking	hole,	or	too	restrictive,	causing
compiler	errors	for	valid	uses.

When	using	conditional	types,	remember	that	you	are	only	describing
combinations	of	types	to	the	TypeScript	compiler	and	that	the	type
information	will	be	removed	during	compilation.	And,	as	a	conditional	type
becomes	more	complex	and	encompasses	more	combinations,	you	should
take	a	moment	to	consider	if	there	is	a	simpler	way	to	achieve	the	same	result.

Nesting	Conditional	Types
More	complex	combinations	of	types	can	be	described	by	nesting	conditional
types.	A	conditional	type’s	result	types	can	be	another	conditional	type,	and	the
compiler	will	follow	the	chain	of	expressions	until	it	reaches	a	result	that	isn’t



conditional,	as	shown	in	Listing	13-24.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

type	resultType<T	extends	boolean>	=	T	extends	true	?

string	:	number;

type	references	=	"London"	|	"Bob"	|	"Kayak";

type	nestedType<T	extends	references>

				=	T	extends	"London"	?	City	:	T	extends	"Bob"	?

Person	:	Product;

let	firstVal:	nestedType<"London">	=	new

City("London",	8136000);

let	secondVal:	nestedType<"Bob">	=	new	Person("Bob",

"London");

let	thirdVal:	nestedType<"Kayak">	=	new

Product("Kayak",	275);

Listing	13-24. Nesting	Conditional	Types	in	the	index.ts	File	in	the	src	Folder

The	type	nestedType<T>	is	a	nested	conditional	type	to	select	between
three	result	types,	based	on	the	value	of	the	generic	type	parameter.	As	noted	in
the	sidebar,	complex	conditional	types	can	be	difficult	to	understand,	and	this	is
especially	true	when	they	are	nested.

Using	Conditional	Types	in	Generic	Classes
Conditional	types	can	be	used	to	express	the	relationship	between	a	method	or
function’s	parameter	types	and	the	results	it	produces,	as	shown	in	Listing	13-25.
This	is	a	more	concise	alternative	to	the	function	type	overloading	I	described	in
Chapter	8,	although	conditional	types	can	be	harder	to	understand.

import	{	City,	Person,	Product,	Employee	}	from

"./dataTypes";

type	resultType<T	extends	boolean>	=	T	extends	true	?

string	:	number;



class	Collection<T>	{

				private	items:	T[];

				constructor(...initialItems:	T[])	{

								this.items	=	initialItems	||	[];

				}

				total<P	extends	keyof	T,	U	extends	boolean>

(propName:	P,	format:	U)

												:	resultType<U>	{

								let	totalValue	=	this.items.reduce((t,	item)

=>

												t	+=	Number(item[propName]),	0);

								return	format	?	`$${totalValue.toFixed()}`	:

totalValue	as	any;

				}

}

let	data	=	new	Collection<Product>(new

Product("Kayak",	275),	new	Product("Lifejacket",

48.95));

let	firstVal:	string	=	data.total("price",	true);

console.log(`Formatted	value:	${firstVal}`);

let	secondVal:	number	=	data.total("price",	false);

console.log(`Unformatted	value:	${secondVal}`);

Listing	13-25. Defining	a	Generic	Type	in	the	index.ts	File	in	the	src	Folder

The	Collection<T>	class	uses	an	array	to	store	objects	whose	type	is
specified	by	the	generic	type	parameter	named	T.	The	total	method	defines
two	generic	type	parameters:	P,	which	specifies	a	property	to	use	to	create	a
total,	and	U,	which	specifies	whether	the	result	should	be	formatted.	The	result
of	the	total	method	is	a	conditional	type,	which	is	resolved	using	the	value
provided	for	the	type	parameter	U.

...

total<P	extends	keyof	T,	U	extends	boolean>(propName:

P,	format:	U):	resultType<U>	{

...



The	use	of	the	conditional	type	means	that	the	result	of	the	total	method	is
determined	by	the	argument	provided	for	the	type	parameter	U.	And	since	the
compiler	can	infer	U	from	the	value	provided	for	the	argument	format,	as
explained	in	Chapter	12,	the	method	can	be	invoked	like	this:

...

let	firstVal:	string	=	data.total("price",	true);

...

When	the	argument	for	the	format	parameter	is	true,	the	conditional	type
resolves	to	set	the	result	type	of	the	total	method	to	string.	This	matches
the	data	type	produced	by	the	method	implementation.

...

return	format	?	`$${totalValue.toFixed()}`	:

totalValue	as	any;

...

When	the	argument	for	the	format	parameter	is	false,	the	conditional	type
resolves	to	set	the	type	of	the	total	method	to	number,	allowing	the	method	to
return	the	unformatted	number	value.

...

return	format	?	`$${totalValue.toFixed()}`	:

totalValue	as	any;

...

Returning	Values	in	Methods	that	Use	a	Conditional	Type
At	the	time	of	writing,	the	TypeScript	compiler	has	difficulty	correlating	the
data	type	of	values	returned	by	methods	and	functions	when	conditional	types
are	used.	It	is	for	this	reason	that	Listing	13-25	uses	a	type	assertion	in	the
total	method	to	tell	the	compiler	to	treat	the	result	as	any.	Without	the
type	annotation,	the	compiler	will	report	an	error.

The	code	in	Listing	13-25	produces	the	following	output:

Formatted	value:	$324

Unformatted	value:	323.95



Using	Conditional	Types	with	Type	Unions
Conditional	types	can	be	used	to	filter	type	unions,	allowing	types	to	be	easily
selected	or	excluded	from	the	set	that	the	union	contains,	as	shown	in	Listing	13-
26.

import	{	City,	Person,	Product,	Employee}	from

"./dataTypes";

type	Filter<T,	U>	=	T	extends	U	?	never	:	T;

function	FilterArray<T,	U>(data:	T[],

								predicate:	(item)	=>	item	is	U):	Filter<T,	U>

[]	{

				return	data.filter(item	=>	!predicate(item))	as

any;

}

let	dataArray	=	[new	Product("Kayak",	275),	new

Person("Bob",	"London"),

				new	Product("Lifejacket",	27.50)];

function	isProduct(item:	any):	item	is	Product	{

				return	item	instanceof	Product;

}

let	filteredData:	Person[]	=	FilterArray(dataArray,

isProduct);

filteredData.forEach(item	=>	console.log(`Person:

${item.name}`));

Listing	13-26. Filtering	a	Type	Union	in	the	index.ts	File	in	the	src	Folder

When	a	conditional	type	is	provided	with	a	type	union,	the	TypeScript
compiler	distributes	the	condition	over	each	type	in	the	union,	creating	what	is
known	as	a	distributive	conditional	type.	This	effect	is	applied	when	a
conditional	type	is	used	like	a	type	union,	like	this,	for	example:

...

type	filteredUnion	=	Filter<Product	|	Person,	Product>

...



The	TypeScript	compiler	applies	the	conditional	type	to	each	type	in	the
union	separately	and	then	creates	a	union	of	the	results,	like	this:

...

type	filteredUnion	=	Filter<Product,	Product>	|

Filter<Person,	Product>

...

The	Filter<T,	U>	conditional	type	evaluates	to	never	when	the	first
type	parameter	is	the	same	as	the	second,	producing	this	result:

...

type	filteredUnion	=	never	|	Person

...

It	isn’t	possible	to	have	a	union	with	never,	so	the	compiler	omits	it	from
the	union,	with	the	result	that	Filter<Product	|	Person,	Product>
is	equivalent	to	this	type:

...

type	filteredUnion	=	Person

...

The	conditional	type	filters	out	any	type	that	cannot	be	assigned	to	Person
and	returns	the	remaining	types	in	the	union.	The	FilterArray<T,	U>
method	does	the	work	of	filtering	an	array	using	a	predicate	function	and	returns
the	Filter<T,	U>	type.	The	code	in	Listing	13-26	produces	the	following
result:

Person:	Bob

Using	the	Built-in	Distributive	Conditional	Types
TypeScript	provides	a	set	of	built-in	conditional	types	that	are	used	to	filter
unions,	as	described	in	Table	13-7,	allowing	common	tasks	to	be	performed
without	the	need	to	define	custom	types.

Table	13-7. The	Built-in	Distributive	Conditional	Types

Name Description

Exclude<T,	U> This	type	excludes	the	types	that	can	be	assigned	to	U	from	T,	equivalent	to	the



Filter<T,	U>	type	in	Listing	13-26.

Extract<T,	U> This	type	selects	the	types	that	can	be	assigned	to	U	from	T.

NonNullable<T> This	type	excludes	null	and	undefined	from	T.

Using	Conditional	Types	in	Type	Mappings
Conditional	types	can	be	combined	with	type	mappings,	allowing	different
transformations	to	be	applied	to	the	properties	in	a	type,	which	can	provide
greater	flexibility	than	using	either	feature	alone.	Listing	13-27	shows	a	type
mapping	that	uses	a	conditional	type.

import	{	City,	Person,	Product,	Employee}	from

"./dataTypes";

type	changeProps<T,	U,	V>	=	{

				[P	in	keyof	T]:	T[P]	extends	U	?	V:	T[P]

};

type	modifiedProduct	=	changeProps<Product,	number,

string>;

function	convertProduct(p:	Product):	modifiedProduct	{

				return	{	name:	p.name,	price:

`$${p.price.toFixed(2)}`	};

}

let	kayak	=	convertProduct(new	Product("Kayak",	275));

console.log(`Product:	${kayak.name},	${kayak.price}`);

Listing	13-27. Defining	a	Type	Mapping	with	a	Conditional	Type	in	the	index.ts	File	in	the	src	Folder

The	changeProps<T,	U,	V>	mapping	selects	the	properties	of	type	U
and	changes	them	to	type	V	in	the	mapped	type.	This	statement	applies	the
mapping	to	the	Product	class,	specifying	that	number	properties	should	be
made	into	string	properties:

...

type	modifiedProduct	=	changeProp<Product,	number,

string>;

...



The	mapped	type	defines	name	and	price	properties,	both	of	which	are
typed	as	string.	The	modifiedProduct	type	is	used	as	the	result	of	the
convertProduct	function,	which	accepts	a	Product	object	and	returns	an
object	that	conforms	to	the	shape	of	the	mapped	type	by	formatting	the	price
property.	The	code	in	Listing	13-27	produces	the	following	output:

Product:	Kayak,	$275.00

Identifying	Properties	of	a	Specific	Type
A	common	requirement	is	to	limit	a	type	parameter	so	that	it	can	be	used	only	to
specify	a	property	that	has	a	specific	type.	For	example,	the	Collection<T>
class	in	Listing	13-25	defined	a	total	method	that	accepts	a	property	name	and
that	should	be	restricted	to	number	properties.	This	type	of	restriction	can	be
achieved	by	combining	the	features	described	in	the	previous	sections,	as	shown
in	Listing	13-28.

import	{	City,	Person,	Product,	Employee}	from

"./dataTypes";

type	unionOfTypeNames<T,	U>	=	{

				[P	in	keyof	T]	:	T[P]	extends	U	?	P	:	never;

};

type	propertiesOfType<T,	U>	=	unionOfTypeNames<T,	U>

[keyof	T];

function	total<T,	P	extends	propertiesOfType<T,

number>>(data:	T[],

								propName:	P):	number	{

				return	data.reduce((t,	item)	=>	t	+=

Number(item[propName]),	0);

}

let	products	=	[new	Product("Kayak",	275),	new

Product("Lifejacket",	48.95)];

console.log(`Total:	${total(products,	"price")}`);

Listing	13-28. Identifying	Properties	in	the	index.ts	File	in	the	src	Folder

The	method	for	identifying	the	properties	is	unusual,	so	I	have	broken	the



process	into	two	statements	to	make	it	easier	to	explain.	The	first	step	is	to	use	a
type	mapping	that	has	a	conditional	statement.

...

type	unionOfTypeNames<T,	U>	=	{

				[P	in	keyof	T]	:	T[P]	extends	U	?	P	:	never;

};

...

The	conditional	statement	checks	the	type	of	each	property.	If	a	property
doesn’t	have	the	target	type,	then	its	type	is	changed	to	never.	If	a	property
does	have	the	expected	type,	then	its	type	is	changed	to	the	literal	value	that	is
the	property	name.	This	means	that	the	mapping
unionOfTypeNames<Product,	number>	produces	the	following
mapped	type:

...

{

				name:	never,

				price:	"price"

}

...

This	odd	mapped	type	provides	the	input	to	the	second	stage	in	the	process,
which	is	to	use	the	indexed	access	operator	to	get	a	union	of	the	types	of	the
properties	defined	by	the	mapped	type,	like	this:

...

type	propertiesOfType<T,	U>	=	unionOfTypeNames<T,	U>

[keyof	T];

...

For	the	mapped	type	created	by	unionOfTypeNames<Product,
number>,	the	indexed	access	operator	produces	the	following	union:

...

never	|	"price"

...



As	noted	previously,	never	is	automatically	removed	from	unions,	leaving
a	union	of	literal	value	types	that	are	the	properties	of	the	required	type.	The
union	of	property	names	can	then	be	used	to	restrict	generic	type	parameters.

...

function	total<T,	P	extends	propertiesOfType<T,

number>>(data:	T[],

								propName:	P):	number	{

				return	data.reduce((t,	item)	=>	t	+=

Number(item[propName]),	0);

}

...

The	propName	parameter	of	the	total	function	can	be	used	only	with	the
names	of	the	number	properties	in	the	type	T,	like	this:

...

console.log(`Total:	${total(products,	"price")}`);

...

This	example	shows	how	flexible	the	TypeScript	generic	type	features	can	be
but	also	illustrates	how	unusual	steps	can	be	required	to	achieve	a	specific	effect.
The	code	in	Listing	13-28	produces	the	following	output:

Total:	323.95

Inferring	Additional	Types	in	Conditions
There	can	be	a	tension	between	the	need	to	accept	a	wide	range	of	types	through
a	generic	type	parameter	and	the	need	to	know	the	details	of	those	types.	As	an
example,	Listing	13-29	shows	a	function	that	accepts	an	array	or	a	single	object
of	a	given	type.

import	{	City,	Person,	Product,	Employee}	from

"./dataTypes";

function	getValue<T,	P	extends	keyof	T>(data:	T,

propName:	P):	T[P]	{

				if	(Array.isArray(data))	{

								return	data[0][propName];



				}	else	{

								return	data[propName];

				}

}

let	products	=	[new	Product("Kayak",	275),	new

Product("Lifejacket",	48.95)];

console.log(`Array	Value:	${getValue(products,

"price")}`);

console.log(`Single	Total:	${getValue(products[0],

"price")}`);

Listing	13-29. Defining	a	Function	in	the	index.ts	File	in	the	src	Folder

This	code	won’t	compile	because	the	generic	parameters	don’t	correctly
capture	the	relationship	between	the	types.	If	the	total	function	receives	an
array	through	the	data	parameter,	it	returns	the	value	of	the	property	specified
by	the	propName	parameter	for	the	first	item	in	the	array.	If	the	function
receives	a	single	object	through	data,	then	it	returns	the	propName	value	for
that	object.	The	propName	parameter	is	constrained	using	keyof,	which	is	a
problem	when	an	array	is	used	because	keyof	returns	a	union	of	the	property
names	defined	by	the	JavaScript	array	object	and	not	the	properties	of	the	type
contained	in	the	array,	which	can	be	seen	in	the	compiler	error	message.

src/index.ts(12,48):	error	TS2345:	Argument	of	type

'"price"'	is	not	assignable	to	parameter	of	type

'number	|	keyof	Product[]'.

The	TypeScript	infer	keyword	can	be	used	to	infer	types	that	are	not
explicitly	expressed	in	the	parameters	of	a	conditional	type.	For	the	example,
this	means	I	can	ask	the	compiler	to	infer	the	type	of	the	objects	in	an	array,	as
shown	in	Listing	13-30.

import	{	City,	Person,	Product,	Employee}	from

"./dataTypes";

type	targetKeys<T>	=	T	extends	(infer	U)[]	?	keyof	U:

keyof	T;

function	getValue<T,	P	extends	targetKeys<T>>(data:	T,



propName:	P):	T[P]	{

				if	(Array.isArray(data))	{

								return	data[0][propName];

				}	else	{

								return	data[propName];

				}

}

let	products	=	[new	Product("Kayak",	275),	new

Product("Lifejacket",	48.95)];

console.log(`Array	Value:	${getValue(products,

"price")}`);

console.log(`Single	Total:	${getValue(products[0],

"price")}`);

Listing	13-30. Inferring	the	Array	Type	in	the	index.ts	File	in	the	src	Folder

Types	are	inferred	with	the	infer	keyword,	and	they	introduce	a	generic
type	whose	type	will	be	inferred	by	the	compiler	when	the	conditional	type	is
resolved,	as	shown	in	Figure	13-5.

Figure	13-5. Inferring	a	type	in	a	conditional	type

In	Listing	13-30,	the	type	U	is	inferred	if	T	is	an	array.	The	type	of	U	is
inferred	by	the	compiler	from	the	generic	type	parameter	T	when	the	type	is
resolved.	The	effect	is	that	the	type	of	targetKeys<Product>	and
targetKeys<Product[]>	both	produce	the	"name"	|	"price"	union.
The	conditional	type	can	be	employed	to	constrain	the	property	of	the
getValue<T,	P>	function,	providing	consistent	typing	for	both	single
objects	and	arrays.	The	code	in	Listing	13-30	produces	the	following	output:

Array	Value:	275

Single	Total:	275

Inferring	Types	of	Functions



The	compiler	can	also	infer	types	in	generic	types	that	accept	functions,	as
shown	in	Listing	13-31.

import	{	City,	Person,	Product,	Employee}	from

"./dataTypes";

type	Result<T>	=	T	extends	(...args:	any)	=>	infer	R	?

R	:	never;

function	processArray<T,

								Func	extends	(T)	=>	any>(data:	T[],	func:

Func):	Result<Func>[]	{

				return	data.map(item	=>	func(item));

}

let	selectName	=	(p:	Product)	=>	p.name;

let	products	=	[new	Product("Kayak",	275),	new

Product("Lifejacket",	48.95)];

let	names:	string[]	=	processArray(products,

selectName);

names.forEach(name	=>	console.log(`Name:	${name}`));

Listing	13-31. Using	Type	Inference	for	a	Function	in	the	index.ts	File	in	the	src	Folder

The	Result<T>	conditional	type	uses	the	infer	keyword	to	obtain	the
result	type	for	a	function	that	accepts	an	object	of	type	T	and	produces	an	any
result.	The	use	of	type	inference	allows	functions	that	process	a	specific	type	to
be	used	while	ensuring	that	the	result	of	the	processArray	function	is	a
specific	type,	based	on	the	result	of	the	function	provided	for	the	func
parameter.	The	selectName	function	returns	the	string	value	of	the	name
property	of	a	Product	object,	and	the	inference	means	that
Result<(...args:Product)	=>	string)>	is	correctly	identified	as
string,	allowing	the	processArray	function	to	return	a	string[]	result.
The	code	in	Listing	13-31	produces	the	following	output:

Name:	Kayak

Name:	Lifejacket

Type	inference	in	conditional	types	can	be	difficult	to	figure	out,	and



TypeScript	provides	a	series	of	built-in	conditional	types	that	are	useful	for
dealing	with	functions,	as	described	in	Table	13-8.

Table	13-8. The	Built-in	Conditional	Types	with	Inference

Name Description

Parameters<T> This	conditional	type	selects	the	types	of	each	function	parameter,
expressed	as	a	tuple.

ReturnType<T> This	conditional	type	selects	the	function	result	type,	equivalent	to
Result<T>	in	Listing	13-31.

ConstructorParameters<T> The	conditional	type	selects	the	types	of	each	parameter	of	a
constructor	function,	expressed	as	a	tuple,	as	demonstrated	after	the
table.

InstanceType<T> This	conditional	type	returns	the	result	type	of	a	constructor	function.

The	ConstructorParameters<T>	and	InstanceType<T>
conditional	types	operate	on	constructor	functions	and	are	most	useful	when
describing	the	types	of	functions	that	create	objects	whose	type	is	specified	as	a
generic	type	parameter,	as	shown	in	Listing	13-32.

import	{	City,	Person,	Product,	Employee}	from

"./dataTypes";

function	makeObject<T	extends	new	(...args:	any)	=>

any>

								(constructor:	T,	...args:

ConstructorParameters<T>)	:	InstanceType<T>	{

				return		new	constructor(...args	as	any[]);

}

let	prod:	Product	=	makeObject(Product,	"Kayak",	275);

let	city:	City	=	makeObject(City,	"London",	8136000);

[prod,	city].forEach(item	=>	console.log(`Name:

${item.name}`));

Listing	13-32. Using	the	Built-in	Conditional	Types	in	the	index.ts	File	in	the	src	Folder

The	makeObject	function	creates	objects	from	classes	without	advanced
knowledge	of	which	class	is	required.	The	ConstructorParameters<T>
and	InstanceType<T>	conditional	types	infer	the	parameters	and	result	for



the	constructor	of	the	class	provided	as	the	first	generic	type	parameter,	ensuring
that	the	makeObject	function	receives	the	correct	types	for	creating	an	object
and	whose	type	accurately	reflects	the	type	of	the	object	that	is	created.	The	code
in	Listing	13-32	produces	the	following	output:

Name:	Kayak

Name:	London

Summary
In	this	chapter,	I	described	the	advanced	generic	type	features	that	TypeScript
provides.	These	are	not	required	in	every	project,	but	they	are	invaluable	when
the	more	basic	features	cannot	describe	the	types	that	an	application	requires.	In
the	next	chapter,	I	explain	how	TypeScript	deals	with	JavaScript	code,	both
when	it	is	directly	part	of	the	project	and	also	when	it	is	in	third-party	packages
on	which	the	application	depends.



(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
A.	Freeman,	Essential	TypeScript	4
https://doi.org/10.1007/978-1-4842-7011-0_14

14.	Working	with	JavaScript
Adam	Freeman1		

London,	UK

	

TypeScript	projects	generally	incorporate	some	amount	of	pure	JavaScript	code,
either	because	the	application	is	written	in	both	TypeScript	and	JavaScript	or
because	the	project	relies	on	third-party	JavaScript	packages	installed	using
NPM.	In	this	chapter,	I	describe	the	features	that	TypeScript	provides	for
working	with	JavaScript.	Table	14-1	summarizes	the	chapter.

Table	14-1. Chapter	Summary

Problem Solution Listing

Incorporate	JavaScript	files	in	a	project Enable	the	allowJs	and	checkJs	compiler	options 9–13

Control	whether	a	JavaScript	file	is
checked	by	the	TypeScript	compiler

Use	the	@ts-check	and	@ts-nocheck	comments 14

Describe	JavaScript	types Use	JSDoc	comments	or	create	a	declaration	file 15–22

Describe	third-party	JavaScript	code Update	the	compiler	configuration	and	create	a
declaration	file

22–26

Describe	third-party	code	without
creating	a	declaration	file

Use	a	package	that	contains	a	declaration	file	or	install	a
publicly	available	type	declaration	package

27–35

Generate	declaration	files	for	use	in
other	projects

Enable	the	declaration	compiler	option 36–38

For	quick	reference,	Table	14-2	lists	the	TypeScript	compiler	options	used	in
this	chapter.

Table	14-2. The	TypeScript	Compiler	Options	Used	in	This	Chapter

Name Description

allowJs This	option	includes	JavaScript	files	in	the	compilation	process.

baseUrl This	option	specifies	the	root	location	used	to	resolve	module	dependencies.

https://doi.org/10.1007/978-1-4842-7011-0_14


checkJs This	option	tells	the	compiler	to	check	JavaScript	code	for	common	errors.

declaration This	option	produces	type	declaration	files	when	enabled,	which	describe	the	types
for	use	in	other	projects.

esModuleInterop This	option	adds	helper	code	for	importing	from	modules	that	do	not	declare	a
default	export	and	is	used	in	conjunction	with	the
allowSyntheticDefaultImports	option.

outDir This	option	specifies	the	directory	in	which	the	JavaScript	files	will	be	placed.

paths This	option	specifies	the	locations	used	to	resolve	module	dependencies.

rootDir This	option	specifies	the	root	directory	that	the	compiler	will	use	to	locate
TypeScript	files.

target This	option	specifies	the	version	of	the	JavaScript	language	that	the	compiler	will
target	in	its	output.

Preparing	for	This	Chapter
To	prepare	the	project	for	this	chapter,	open	a	new	command	prompt,	navigate	to
a	convenient	location,	and	create	a	folder	named	usingjs.	Run	the	commands
shown	in	Listing	14-1	to	navigate	into	the	new	folder	and	tell	the	Node	Package
Manager	(NPM)	to	create	a	package.json	file,	which	will	track	the	packages
added	to	the	project.

Tip You	can	download	the	example	project	for	this	chapter—and	for	all	the
other	chapters	in	this	book—from
https://github.com/Apress/essential-typescript-4.

cd	usingjs

npm	init	--yes

Listing	14-1. Creating	the	package.json	File

Run	the	commands	shown	in	Listing	14-2	in	the	usingjs	folder	to
download	and	install	the	packages	required	for	this	chapter.

npm	install	--save-dev	typescript@4.2.2

npm	install	--save-dev	tsc-watch@4.2.9

Listing	14-2. Adding	Packages

To	create	a	configuration	file	for	the	TypeScript	compiler,	add	a	file	called
tsconfig.json	to	the	usingjs	folder	with	the	content	shown	in	Listing

https://github.com/Apress/essential-typescript-4


14-3.

{

				"compilerOptions":	{

								"target":	"es2020",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"module":	"commonjs"

				}

}

Listing	14-3. The	Contents	of	the	tsconfig.json	File	in	the	usingjs	Folder

These	configuration	settings	tell	the	TypeScript	compiler	to	generate	code	for
the	most	recent	JavaScript	implementations,	using	the	src	folder	to	look	for
TypeScript	files	and	using	the	dist	folder	for	its	outputs.	The	module	setting
tells	the	compiler	that	the	CommonJS	modules	are	required,	which	is	the	format
supported	by	Node.js.

To	configure	NPM	so	that	it	can	start	the	compiler,	add	the	configuration
entry	shown	in	Listing	14-4	to	the	package.json	file.

{

		"name":	"usingjs",

		"version":	"1.0.0",

		"description":	"",

		"main":	"index.js",

		"scripts":	{

						"start":	"tsc-watch	--onsuccess	\"node

dist/index.js\""

		},

		"keywords":	[],

		"author":	"",

		"license":	"ISC",

		"devDependencies":	{

				"tsc-watch":	"^4.2.9",

				"typescript":	"^4.2.2"

		}

}

Listing	14-4. Configuring	NPM	in	the	package.json	File	in	the	usingjs	Folder



Adding	the	TypeScript	Code	to	the	Example	Project
Create	the	usingjs/src	folder	and	add	to	it	a	file	called	product.ts	with
the	code	shown	in	Listing	14-5.

export	class	Product	{

				constructor(public	id:	number,

												public	name:	string,

												public	price:	number)	{

								//	no	statements	required

				}

}

export	enum	SPORT	{

				Running,	Soccer,	Watersports,	Other

}

export	class	SportsProduct	extends	Product	{

				private	_sports:	SPORT[];

				constructor(public	id:	number,

												public	name:	string,

												public	price:	number,

												...sportArray:	SPORT[])	{

								super(id,	name,	price);

								this._sports	=	sportArray;

				}

				usedForSport(s:	SPORT):	boolean	{

								return	this._sports.includes(s);

				}

				get	sports():	SPORT[]	{

								return	this._sports;

				}

}

Listing	14-5. The	Contents	of	the	product.ts	File	in	the	src	Folder

This	file	is	used	to	define	a	basic	Product	class,	which	is	extended	by	the



SportsProduct	class	that	adds	features	specific	to	sporting	goods.	Next,	add
a	file	called	cart.ts	to	the	src	folder	with	the	code	shown	in	Listing	14-6.

import	{	SportsProduct	}	from	"./product";

class	CartItem	{

				constructor(public	product:	SportsProduct,

												public	quantity:	number)	{

								//	no	statements	required

				}

				get	totalPrice():	number	{

								return	this.quantity	*	this.product.price;

				}

}

export	class	Cart	{

				private	items	=	new	Map<number,	CartItem>();

				constructor(public	customerName:	string)	{

								//	no	statements	required

				}

				addProduct(product:	SportsProduct,	quantity:

number):	number	{

								if	(this.items.has(product.id))	{

												let	item	=	this.items.get(product.id);

												item.quantity	+=	quantity;

												return	item.quantity;

								}	else	{

												this.items.set(product.id,	new

CartItem(product,	quantity));

												return	quantity;

								}

				}

				get	totalPrice():	number	{

								return	[...this.items.values()].reduce((total,

item)	=>



												total	+=	item.totalPrice,	0);

				}

				get	itemCount():	number	{

								return	[...this.items.values()].reduce((total,

item)	=>

												total	+=	item.quantity,	0);

				}

}

Listing	14-6. The	Contents	of	the	cart.ts	File	in	the	src	Folder

This	file	defines	the	Cart	class,	which	tracks	a	customer’s	selection	of
SportProduct	objects	using	a	Map.	To	create	the	entry	point	for	the	project,
add	a	file	called	index.ts	to	the	src	folder	with	the	code	shown	in	Listing
14-7.

import	{	SportsProduct,	SPORT	}	from	"./product";

import	{	Cart	}	from	"./cart";

let	kayak	=	new	SportsProduct(1,	"Kayak",	275,

SPORT.Watersports);

let	hat	=		new	SportsProduct(2,	"Hat",	22.10,

SPORT.Running,	SPORT.Watersports);

let	ball	=	new	SportsProduct(3,	"Soccer	Ball",	19.50,

SPORT.Soccer);

let	cart	=	new	Cart("Bob");

cart.addProduct(kayak,	1);

cart.addProduct(hat,	1);

cart.addProduct(hat,	2);

console.log(`Cart	has	${cart.itemCount}	items`);

console.log(`Cart	value	is

$${cart.totalPrice.toFixed(2)}`);

Listing	14-7. The	Contents	of	the	index.ts	File	in	the	src	Folder

The	code	in	the	index.ts	file	creates	some	SportsProduct	objects,
uses	them	to	populate	a	Cart,	and	writes	details	of	the	Cart	contents	to	the
console.



Run	the	command	shown	in	Listing	14-8	in	the	usingjs	folder	to	start	the
compiler	so	that	the	compiled	code	is	executed	automatically.

npm	start

Listing	14-8. Starting	the	Compiler

The	compiler	will	start	and	produce	the	following	output:

7:23:34	AM	-	Starting	compilation	in	watch

mode...7:23:36	AM	-	Found	0	errors.	Watching	for	file

changes.

Cart	has	4	items

Cart	value	is	$341.30

Working	with	JavaScript
The	examples	in	this	book	have	all	assumed	that	you	are	working	purely	in
TypeScript.	Often,	this	won’t	be	possible,	either	because	TypeScript	is
introduced	partway	through	a	project	or	because	you	need	to	work	with
JavaScript	code	that	has	already	been	developed	in	earlier	projects.

A	project	can	contain	TypeScript	and	JavaScript	code	side	by	side,	requiring
only	changes	to	the	TypeScript	compiler	and	some	optional	steps	to	describe	the
types	used	by	the	JavaScript	code.	To	demonstrate	the	process,	some	JavaScript
code	is	required.	Add	a	file	called	formatters.js	to	the	src	folder	with	the
code	shown	in	Listing	14-9.

Note The	file	extension	for	the	file	in	Listing	14-9	is	js	because	this	is	a
pure	JavaScript	file.	It	is	important	to	use	the	right	extension	for	the	examples
in	this	section.

export	function	sizeFormatter(thing,	count)	{

				writeMessage(`The	${thing}	has	${count}	items`);

}

export	function	costFormatter(thing,	cost)	{

				writeMessage(`The	${thing}	costs

$${cost.toFixed(2)}`,	true);

}



function	writeMessage(message)	{

				console.log(message);

}

Listing	14-9. The	Contents	of	the	formatters.js	File	in	the	src	Folder

The	JavaScript	file	exports	two	formatting	functions	that	write	messages	to
the	console.	To	incorporate	the	JavaScript	code	into	the	application,	add	the
statements	shown	in	Listing	14-10	to	the	index.ts	file.

import	{	SportsProduct,	SPORT	}	from	"./product";

import	{	Cart	}	from	"./cart";

import	{	sizeFormatter,	costFormatter	}	from

"./formatters";

let	kayak	=	new	SportsProduct(1,	"Kayak",	275,

SPORT.Watersports);

let	hat	=		new	SportsProduct(2,	"Hat",	22.10,

SPORT.Running,	SPORT.Watersports);

let	ball	=	new	SportsProduct(3,	"Soccer	Ball",	19.50,

SPORT.Soccer);

let	cart	=	new	Cart("Bob");

cart.addProduct(kayak,	1);

cart.addProduct(hat,	1);

cart.addProduct(hat,	2);

sizeFormatter("Cart",	cart.itemCount);

costFormatter("Cart",	cart.totalPrice);

Listing	14-10. Using	JavaScript	Functions	in	the	index.ts	File	in	the	src	Folder

When	the	changes	to	the	index.ts	file	are	saved,	the	compiler	will	run
without	reporting	any	problems,	but	the	following	message	will	be	displayed
when	the	code	is	executed:

internal/modules/cjs/loader.js:613

				throw	err;

				^

Error:	Cannot	find	module	'dist\index.js'



The	TypeScript	compiler	locates	the	JavaScript	code	without	difficulty	but
doesn’t	copy	the	code	into	the	dist	folder,	which	means	that	the	Node.js
runtime	can’t	locate	the	JavaScript	code	at	runtime.

Including	JavaScript	in	the	Compilation	Process
The	TypeScript	compiler	uses	JavaScript	files	to	resolve	dependencies	during
compilation	but	doesn’t	include	them	in	the	output	it	generates.	To	change	this
behavior,	set	the	allowJs	option	in	the	tsconfig.json	file	to	true,	as
shown	in	Listing	14-11.

{

				"compilerOptions":	{

								"target":	"es2020",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"module":	"commonjs",

								"allowJs":	true

				}

}

Listing	14-11. Changing	the	Compiler	Configuration	in	the	tsconfig.json	File	in	the	usingjs	Folder

This	setting	includes	the	JavaScript	files	in	the	src	folder	in	the	compilation
process.	The	JavaScript	files	don’t	contain	TypeScript	features,	but	the	compiler
will	transform	the	JavaScript	files	to	match	the	JavaScript	version	specified	by
the	target	setting	and	the	module	format	specified	by	the	module	property.
For	this	example,	no	code	features	used	in	the	formatters.js	file	will
change	because	the	target	property	is	set	to	es2018,	but	the	compiler	will
transform	the	exports	to	match	the	CommonJS	module	format.	If	you	examine
the	formatters.js	file	in	the	dist	folder,	you	will	see	the	changes	the
compiler	has	made.

...

"use	strict";

Object.defineProperty(exports,	"__esModule",	{	value:

true	});

function	sizeFormatter(thing,	count)	{

				writeMessage(`The	${thing}	has	${count}	items`);

}



exports.sizeFormatter	=	sizeFormatter;

function	costFormatter(thing,	cost)	{

				writeMessage(`The	${thing}	costs

$${cost.toFixed(2)}`,	true);

}

exports.costFormatter	=	costFormatter;

function	writeMessage(message)	{

				console.log(message);

}

...

Configuring	the	TypeScript	compiler	to	include	JavaScript	files	allows	code
to	be	easily	mixed	and	ensures	that	JavaScript	features	are	versioned
consistently.

Type	Checking	JavaScript	Code
The	TypeScript	compiler	will	check	JavaScript	code	for	common	errors	when
the	checkJs	configuration	option	is	true,	as	shown	in	Listing	14-12.	This	is
not	as	comprehensive	as	the	features	applied	to	TypeScript	files,	but	it	can
highlight	potential	problems.

{

				"compilerOptions":	{

								"target":	"es2020",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"module":	"commonjs",

								"allowJs":	true,

								"checkJs":	true

				}

}

Listing	14-12. Configuring	the	Compiler	in	the	tsconfig.json	File	in	the	usingjs	Folder

The	compiler	doesn’t	detect	the	change	to	the	checkJs	property	until	it	is
restarted.	Once	you	have	saved	the	tsconfig.json	file,	use	Control+C	to
stop	the	compiler;	run	the	command	shown	in	Listing	14-13	in	the	usingjs
folder	to	start	it	again.

npm	start



Listing	14-13. Starting	the	Compiler

The	costFormatter	function	in	the	formatters.js	file	calls	the
writeMessage	function	defined	in	the	same	file	with	more	arguments	than
there	are	parameters.	This	is	legal	JavaScript,	which	doesn’t	enforce	restrictions
on	the	number	of	arguments	used	to	invoke	a	function,	but	the	TypeScript
compiler	reports	an	error	because	this	is	a	common	error.

src/formatters.js(6,60):	error	TS2554:	Expected	0-1

arguments,	but	got	2.

This	feature	is	useful	only	if	you	can	modify	the	JavaScript	files	to	address
the	problems	the	compiler	reports.	You	may	have	code	that	causes	the
TypeScript	compiler	to	report	an	error	but	that	can’t	be	changed	because	it
conforms	to	the	requirements	of	a	third-party	library.	If	you	have	a	mix	of
JavaScript	files	you	can	edit	and	those	you	cannot,	you	can	add	comments	to
control	which	JavaScript	files	are	checked.	Table	14-3	describes	the	comments,
which	are	applied	to	the	top	of	JavaScript	files.

Table	14-3. The	Comments	Controlling	JavaScript	Checking

Name Description

//@ts-

check

This	comment	tells	the	compiler	to	check	the	contents	of	a	JavaScript	file	even	when	the
checkJs	property	in	the	tsconfig.json	file	is	false.

//@ts-

nocheck

This	comment	tells	the	compiler	to	ignore	the	contents	of	a	JavaScript	file,	even	when	the
checkJs	property	in	the	tsconfig.json	file	is	true.

Listing	14-14	adds	a	comment	to	the	formatters.js	file	to	tell	the
compiler	not	to	check	the	contents	of	the	file.	Any	other	JavaScript	files	in	the
project	will	still	be	checked	unless	the	same	comment	is	applied.

//	@ts-nocheck

export	function	sizeFormatter(thing,	count)	{

				writeMessage(`The	${thing}	has	${count}	items`);

}

export	function	costFormatter(thing,	cost)	{

				writeMessage(`The	${thing}	costs

$${cost.toFixed(2)}`,	true);



}

function	writeMessage(message)	{

				console.log(message);

}

Listing	14-14. Disabling	JavaScript	Checks	in	the	formatters.js	File	in	the	src	Folder

The	compiler	will	detect	the	change	and	run	without	checking	the	statements
in	the	JavaScript	file,	producing	the	following	output:

The	Cart	has	4	items

The	Cart	costs	$341.30

Describing	Types	Used	in	JavaScript	Code
The	TypeScript	compiler	will	incorporate	JavaScript	code	into	a	project,	but
there	won’t	be	static	type	information	available.	The	compiler	will	do	its	best	to
infer	the	types	used	in	the	JavaScript	code	but	will	struggle	and	fall	back	to
using	any,	especially	for	function	parameters	and	results.	The
costFormatter	function	defined	in	the	formatters.js	file,	for	example,
will	be	treated	as	though	it	had	been	defined	with	these	type	annotations:

...

export	function	costFormatter(thing:	any,	cost:	any):

any	{

...

Adding	JavaScript	to	a	project	can	create	holes	in	type	checking	that
undermine	the	benefits	of	using	TypeScript.	The	compiler	can’t	determine	that
the	costFormatter	function	assumes	that	it	will	receive	a	number	value,
which	can	be	seen	by	adding	a	statement	to	the	index.ts	file	that	provides	a
string	value,	as	shown	in	Listing	14-15.

import	{	SportsProduct,	SPORT	}	from	"./product";

import	{	Cart	}	from	"./cart";

import	{	sizeFormatter,	costFormatter	}	from

"./formatters";

let	kayak	=	new	SportsProduct(1,	"Kayak",	275,



SPORT.Watersports);

let	hat	=		new	SportsProduct(2,	"Hat",	22.10,

SPORT.Running,	SPORT.Watersports);

let	ball	=	new	SportsProduct(3,	"Soccer	Ball",	19.50,

SPORT.Soccer);

let	cart	=	new	Cart("Bob");

cart.addProduct(kayak,	1);

cart.addProduct(hat,	1);

cart.addProduct(hat,	2);

sizeFormatter("Cart",	cart.itemCount);

costFormatter("Cart",	`${cart.totalPrice}`);

Listing	14-15. Using	the	Wrong	Type	in	the	index.ts	File	in	the	src	Folder

The	new	statement	invokes	the	costFormatter	function	with	two
string	arguments.	The	TypeScript	compiler	doesn’t	understand	this	will	cause
a	problem	and	compiles	the	code	without	error.	But	when	the	code	is	executed,
the	costFormatter	function	invokes	the	toFixed	method	without
checking	that	it	has	received	a	number	value,	which	causes	the	following
runtime	error:

formatters.js:9:	writeMessage(`The	${thing}	costs

$${cost.toFixed(2)}`,	true);

TypeError:	cost.toFixed	is	not	a	function

This	issue	can	be	resolved	by	providing	the	compiler	with	type	information
that	describes	the	JavaScript	code	so	that	its	use	can	be	checked	during
compilation.	There	are	two	approaches	to	describing	types	in	JavaScript	code,
which	I	demonstrate	in	the	following	sections.

Using	Comments	to	Describe	Types
The	TypeScript	compiler	can	obtain	type	information	when	it	is	included	in
JSDoc	comments.	JSDoc	is	a	popular	markup	language	used	to	annotate
JavaScript	code	as	comments.	Listing	14-16	adds	JSDoc	comments	to	the
formatters.js	file.

Tip Many	code	editors	will	help	generate	JSDoc	comments.	Visual	Studio
Code,	for	example,	responds	when	a	comment	is	created	and	automatically



generates	a	list	of	function	parameters.

//	@ts-nocheck

export	function	sizeFormatter(thing,	count)	{

				writeMessage(`The	${thing}	has	${count}	items`);

}

/**

	*	Format	something	that	has	a	money	value

	*	@param	{	string	}	thing	-	the	name	of	the	item

	*	@param	{	number}	cost	-	the	value	associated	with

the	item

	*/

export	function	costFormatter(thing,	cost)	{

				writeMessage(`The	${thing}	costs

$${cost.toFixed(2)}`,	true);

}

function	writeMessage(message)	{

				console.log(message);

}

Listing	14-16. Using	JSDoc	in	the	formatters.js	File	in	the	src	Folder

The	JSDoc	specification	allows	types	to	be	indicated	for	function
parameters.	The	JSDoc	comment	in	Listing	14-16	indicates	that	the
costFormatter	function	expects	to	receive	string	and	number
parameters.	The	type	information	is	a	standard	part	of	JSDoc,	but	it	is	usually
just	to	provide	guidance.

The	TypeScript	compiler	reads	the	JSDoc	comments	to	get	type	information
about	the	JavaScript	code.	When	the	JSDoc	comment	in	Listing	14-16	is	saved,
the	compiler	will	run	and	report	the	following	error:

src/index.ts(15,23):	error	TS2345:	Argument	of	type

'string'	is	not	assignable	to	parameter	of	type

'number'.

The	compiler	has	read	the	JSDoc	comment	for	the	costFormatter
function	and	determined	that	the	value	used	to	invoke	the	function	in	the



index.ts	file	doesn’t	use	the	right	data	type.

Tip See
https://github.com/Microsoft/TypeScript/wiki/JSDoc-

support-in-JavaScript	for	a	complete	list	of	the	JSDoc	tags	that	the
TypeScript	compiler	understands.

JSDoc	comments	can	use	the	TypeScript	syntax	to	describe	more	complex	types,
as	shown	in	Listing	14-17,	which	uses	a	type	union.

//	@ts-nocheck

export	function	sizeFormatter(thing,	count)	{

				writeMessage(`The	${thing}	has	${count}	items`);

}

/**

	*	Format	something	that	has	a	money	value

	*	@param	{	string	}	thing	-	the	name	of	the	item

	*	@param	{	number	|	string	}	cost	-	the	value

associated	with	the	item

	*/

export	function	costFormatter(thing,	cost)	{

				if	(typeof	cost	===	"number")	{

								writeMessage(`The	${thing}	costs

$${cost.toFixed(2)}`,	true);

				}	else	{

								writeMessage(`The	${thing}	costs	$${cost}`);

				}

}

function	writeMessage(message)	{

				console.log(message);

}

Listing	14-17. Describing	a	Type	Union	in	the	formatters.js	File	in	the	src	Folder

The	costFormatter	function	has	been	modified	so	that	it	can	accept
number	and	string	values	for	its	cost	parameter,	which	is	reflected	in	the

https://github.com/Microsoft/TypeScript/wiki/JSDoc-support-in-JavaScript


updated	JSDoc	comment,	which	specifies	the	type	as	number	|	string.
When	the	changes	are	saved,	the	code	will	be	compiled,	and	the	following
output	will	be	produced:

The	Cart	has	4	items

The	Cart	costs	$341.3

Using	Type	Declaration	Files
Declaration	files,	also	referred	to	as	type	definition	files,	provide	a	way	to
describe	JavaScript	code	to	the	TypeScript	file	without	having	to	change	the
source	code	file.	Type	declaration	files	have	the	d.ts	extension,	and	the	name
of	the	file	corresponds	to	the	JavaScript	file.	To	create	a	declaration	file	for	the
formatters.js	file,	a	file	named	formatters.d.ts	must	be	created.
Add	a	file	named	formatters.d.ts	to	the	src	folder	with	the	contents
shown	in	Listing	14-18.

export	declare	function	sizeFormatter(thing:	string,

count:	number):	void;

export	declare	function	costFormatter(thing:	string,

cost:	number	|	string	):	void;

Listing	14-18. The	Contents	of	the	formatters.d.ts	File	in	the	src	Folder

The	contents	of	a	type	declaration	file	mirror	those	of	the	code	file	it
describes.	Each	statement	contains	the	declare	keyword,	which	tells	the
compiler	that	the	statement	describes	the	types	defined	elsewhere.	Listing	14-18
describes	the	parameters	and	result	types	of	the	functions	that	are	exported	from
the	formatters.js	file.

Tip Type	declaration	files	take	precedence	over	JSDoc	comments	when
both	are	used	to	describe	JavaScript	code.

When	a	type	declaration	file	is	used,	it	must	describe	all	the	features	defined	in
the	corresponding	JavaScript	file	that	is	used	by	the	application	because	it	is	the
only	source	of	information	used	by	the	TypeScript	compiler,	which	no	longer
examines	the	JavaScript	file.	For	the	example	project,	this	means	that	the	type
declaration	in	Listing	14-18	must	describe	the	sizeFormatter	and
costFormatter	functions	since	both	are	used	in	the	index.ts	file.	Any
feature	that	is	not	described	in	the	type	declaration	file	will	not	be	visible	to	the



TypeScript	compiler.	To	demonstrate,	Listing	14-19	changes	the
writeMessage	function	in	the	formatters.js	file	so	that	is	exported	for
use	in	the	rest	of	the	application.

Tip The	TypeScript	compiler	trusts	that	the	contents	of	a	type	declaration
file	are	accurate,	which	means	you	are	responsible	for	ensuring	the	types	you
select	are	supported	by	the	JavaScript	code	and	that	all	of	the	features	in	the
JavaScript	code	are	implemented	as	you	describe.

//	@ts-nocheck

export	function	sizeFormatter(thing,	count)	{

				writeMessage(`The	${thing}	has	${count}	items`);

}

/**

	*	Format	something	that	has	a	money	value

	*	@param	{	string	}	thing	-	the	name	of	the	item

	*	@param	{	number	|	string	}	cost	-	the	value

associated	with	the	item

	*/

export	function	costFormatter(thing,	cost)	{

				if	(typeof	cost	===	"number")	{

								writeMessage(`The	${thing}	costs

$${cost.toFixed(2)}`,	true);

				}	else	{

								writeMessage(`The	${thing}	costs	$${cost}`);

				}

}

export	function	writeMessage(message)	{

				console.log(message);

}

Listing	14-19. Exporting	a	Function	in	the	formatters.js	File	in	the	src	Folder

Listing	14-20	uses	the	newly	exported	function	in	the	index.ts	file	to
display	a	simple	message.



import	{	SportsProduct,	SPORT	}	from	"./product";

import	{	Cart	}	from	"./cart";

import	{	sizeFormatter,	costFormatter,	writeMessage	}

from	"./formatters";

let	kayak	=	new	SportsProduct(1,	"Kayak",	275,

SPORT.Watersports);

let	hat	=		new	SportsProduct(2,	"Hat",	22.10,

SPORT.Running,	SPORT.Watersports);

let	ball	=	new	SportsProduct(3,	"Soccer	Ball",	19.50,

SPORT.Soccer);

let	cart	=	new	Cart("Bob");

cart.addProduct(kayak,	1);

cart.addProduct(hat,	1);

cart.addProduct(hat,	2);

sizeFormatter("Cart",	cart.itemCount);

costFormatter("Cart",	`${cart.totalPrice}`);

writeMessage("Test	message");

Listing	14-20. Using	a	Function	in	the	index.ts	File	in	the	src	Folder

The	compiler	will	process	the	changes	to	the	index.ts	file	when	they	are
saved	and	report	the	following	error:

src/index.ts(3,40):	error	TS2305:	Module

'"/usingjs/src/formatters"'	has	no	exported	member

'writeMessage'.

The	compiler	relies	entirely	on	the	type	declaration	file	to	describe	the
contents	of	the	formatters	module.	A	declaration	statement	in	the
formatters.d.ts	file	is	required	to	make	the	writeMessage	function
visible	to	the	compiler,	as	shown	in	Listing	14-21.

export	declare	function	sizeFormatter(thing:	string,

count:	number):	void;

export	declare	function	costFormatter(thing:	string,

cost:	number	|	string	):	void;

export	declare	function	writeMessage(message:	string):



void;

Listing	14-21. Adding	a	Statement	in	the	formatters.d.ts	File	in	the	src	Folder

Once	the	declaration	file	includes	the	function,	the	code	in	the	project	will
compile	and	produce	the	following	output:

The	Cart	has	4	items

The	Cart	costs	$341.3

Test	message

Describing	Third-Party	JavaScript	Code
Declaration	files	can	also	be	used	to	describe	JavaScript	code	added	to	the
project	in	third-party	packages	that	have	been	added	to	the	project	using	NPM.
Open	a	new	command	prompt,	navigate	to	the	usingjs	folder,	and	run	the
command	shown	in	Listing	14-22	to	install	a	new	package	in	the	example
project.

npm	install	debug@4.3.1

Listing	14-22. Adding	a	Package	to	the	Example	Project

The	debug	package	is	a	utility	package	that	provides	decorated	debugging
output	to	the	JavaScript	console.	I	have	chosen	it	for	this	chapter	because	it	is
small	but	well-written	and	widely	used	in	JavaScript	development.

The	compiler	will	try	to	infer	types	for	third-party	packages	but	will	have	the
same	limited	success	as	for	JavaScript	files	in	the	project.	A	type	declaration	file
can	be	created	for	packages	installed	in	the	node_modules	folder,	although
the	technique	is	awkward;	a	better	approach	is	to	use	publicly	available
definitions,	as	described	in	the	next	section.

The	first	step	is	to	reconfigure	the	way	that	the	TypeScript	compiler	resolves
dependencies	on	modules,	as	shown	in	Listing	14-23.

{

				"compilerOptions":	{

								"target":	"es2020",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"module":	"commonjs",

								"allowJs":	true,

								"checkJs":	true,



								"baseUrl":	".",

								"paths":	{

												"*":	["types/*"]

								}

				}

}

Listing	14-23. Configuring	the	Compiler	in	the	tsconfig.json	File	in	the	usingjs	Folder

The	paths	property	is	used	to	specify	locations	that	the	TypeScript
compiler	will	use	as	it	tries	to	resolve	import	statements	for	modules.	The
configuration	used	in	the	listing	tells	the	compiler	to	look	for	all	packages	in	a
folder	called	types.	When	the	paths	property	is	used,	the	baseUrl	property
must	also	be	specified,	and	the	value	used	in	the	listing	tells	the	compiler	that	the
location	specified	by	the	path	property	can	be	found	in	the	same	folder	as	the
tsconfig.json	file.

The	next	step	is	to	create	the	usingjs/types/debug	folder	and	add	to	it
a	file	called	index.d.ts.	To	provide	the	compiler	with	custom	declaration
files,	the	location	specified	by	the	paths	folder	must	contain	a	folder	that
corresponds	to	the	name	of	the	module	or	package	and	must	contain	a	type
declaration	file	that	corresponds	to	the	package’s	entry	point,	which	is	usually
index.js,	meaning	that	the	declaration	file	is	named	index.d.ts.	In	the
case	of	the	debug	package,	this	means	the	types	used	by	the	package	will	be
described	by	the	types/debug/index.d.ts	file.	Once	you	have	created
the	file,	add	the	contents	shown	in	Listing	14-24.

declare	interface	Debug	{

				(namespace:	string):	Debugger

}

declare	interface	Debugger	{

				(...args:	string[]):	void;

				enabled:	boolean;

}

declare	var	debug:	{	default:	Debug	};

export	=	debug;

Listing	14-24. The	Contents	of	the	index.d.ts	File	in	the	types/debug	Folder



The	process	for	describing	a	third-party	module	can	be	complicated,	not	least
because	the	package	authors	may	not	have	anticipated	that	someone	would	try	to
describe	their	code	using	static	types.	To	further	complicate	matters,	the	wide
range	of	JavaScript	language	versions	and	module	formats	means	that	arcane
incantations	can	be	required	to	present	TypeScript	with	descriptions	that	are
useful	and	accurately	represent	the	code	in	the	module.

The	two	interfaces	in	Listing	14-24	describe	the	most	basic	features	of	the
debug	package,	allowing	a	simple	debugger	to	be	set	up	and	used.	The	last	two
statements	are	required	to	represent	the	exports	from	the	package	to	TypeScript.

Tip See	https://github.com/visionmedia/debug	for	details	of
the	full	API	provided	by	the	debug	package.

To	make	use	of	the	debug	package,	add	the	statements	shown	in	Listing	14-25
to	the	index.ts	file	in	the	src	folder.

import	{	SportsProduct,	SPORT	}	from	"./product";

import	{	Cart	}	from	"./cart";

import	{	sizeFormatter,	costFormatter,	writeMessage	}

from	"./formatters";

import	debug	from	"debug";

let	kayak	=	new	SportsProduct(1,	"Kayak",	275,

SPORT.Watersports);

let	hat	=		new	SportsProduct(2,	"Hat",	22.10,

SPORT.Running,	SPORT.Watersports);

let	ball	=	new	SportsProduct(3,	"Soccer	Ball",	19.50,

SPORT.Soccer);

let	cart	=	new	Cart("Bob");

cart.addProduct(kayak,	1);

cart.addProduct(hat,	1);

cart.addProduct(hat,	2);

sizeFormatter("Cart",	cart.itemCount);

costFormatter("Cart",	`${cart.totalPrice}`);

let	db	=	debug("Example	App",	true);

db.enabled	=	true;

https://github.com/visionmedia/debug


db("Message:	%0",	"Test	message");

Listing	14-25. Using	a	Package	in	the	index.ts	File	in	the	src	Folder

The	TypeScript	compiler	will	locate	the	declaration	file	and	determine	that
the	debug	function	has	been	invoked	with	too	many	arguments,	producing	the
following	error	message:

...

src/index.ts(18,31):	error	TS2554:	Expected	1

arguments,	but	got	2.

...

This	error	would	not	have	been	reported	without	the	declaration	file	because
pure	JavaScript	doesn’t	require	that	the	number	of	arguments	used	to	invoke	a
function	matches	the	number	of	parameters	it	defines,	as	explained	in	Chapter	8.

You	don’t	have	to	create	a	deliberate	error	to	check	that	the	compiler	has
found	the	declaration	file.	Instead,	open	a	new	command	prompt,	navigate	to	the
usingjs	folder,	and	run	the	command	shown	in	Listing	14-26.

tsc	--traceResolution

Listing	14-26. Running	the	Compiler

The	traceResolution	argument,	which	can	also	be	used	as	a
configuration	setting	in	the	tsconfig.json	file,	tells	the	compiler	to	report
on	its	progress	as	it	attempts	to	locate	each	module.	The	output	can	be	verbose—
especially	in	complex	projects—but	the	trace	for	the	example	project	will
contain	this	message:

========	Module	name	'debug'	was	successfully	resolved

to

'C:/usingjs/types/debug/index.d.ts'.	========

You	may	see	different	locations	reported	on	your	development	machine,	but
the	message	will	confirm	that	the	compiler	has	located	the	custom	declaration
file	and	will	use	it	to	resolve	dependencies	on	the	debug	package.

Don’t	Write	Declarations	for	Third-Party	Packages
The	declaration	file	in	Listing	14-24	shows	that	it	is	possible	to	describe
publicly	available	packages,	but	it	is	not	a	process	that	I	recommend,	to	the



extent	that	I	don’t	provide	any	detail	about	the	different	ways	that	package
contents	can	be	described.

First,	it	can	be	difficult	to	accurately	represent	someone	else’s	code,	and
creating	an	accurate	type	declaration	file	can	require	a	detailed	analysis	of	a
package	and	a	solid	understanding	of	what	it	does	and	how	it	works.	Second,
custom	declarations	tend	to	focus	on	just	the	features	that	are	immediately
required,	and	declaration	files	get	patched	up	and	extended	as	further	features
are	needed,	producing	results	that	are	difficult	to	understand	and	manage.
Third,	each	new	release	means	that	the	declaration	file	must	be	revisited	to
ensure	that	it	still	accurately	reflects	the	API	presented	by	the	package.

But,	the	most	compelling	reason	not	to	create	your	own	declaration	files	is
that	there	is	an	excellent	library	of	high-quality	declarations	for	thousands	of
JavaScript	packages	available	through	the	Definitely	Typed	project,	as
described	in	the	next	section.	And	the	increased	popularity	of	TypeScript
means	that	more	packages	come	with	type	declaration	files	built	in.

If	you	are	determined	to	write	your	own	files—or	you	want	to	contribute
to	the	Definitely	Typed	project—then	Microsoft	has	produced	a	dedicated
guide	to	describing	packages,	which	can	be	found	at
https://www.typescriptlang.org/docs/handbook/declaration-

files/introduction.html.

Using	Definitely	Typed	Declaration	Files
The	Definitely	Typed	project	provides	declaration	files	for	thousands	of
JavaScript	packages	and	is	a	more	reliable—and	quicker—way	to	use
TypeScript	with	third-party	packages	than	creating	your	own	declaration	files.
Definitely	Typed	declaration	files	are	installed	using	the	npm	install
command.	To	install	the	declaration	file	for	the	debug	package,	run	the
command	shown	in	Listing	14-27	in	the	usingjs	folder.

npm	install	--save-dev	@types/debug

Listing	14-27. Installing	a	Type	Declaration	Package

The	name	used	for	the	Definitely	Typed	package	is	@types/	followed	by
the	name	of	the	package	for	which	a	description	is	required.	For	the	debug
package,	for	example,	the	Definitely	Typed	package	is	called	@types/debug.

Tip Notice	that	a	version	number	for	the	@types/debug	package	is	not

https://www.typescriptlang.org/docs/handbook/declaration-files/introduction.html


specified	in	Listing	14-27.	When	installing	@types	packages,	I	let	NPM
select	the	package	version.

The	compiler	won’t	use	the	Definitely	Typed	declarations	until	the	configuration
is	changed	to	stop	the	compiler	from	looking	in	the	types	folder,	as	shown	in
Listing	14-28.

Note The	configuration	change	is	required	because	the	project	contains
custom	and	Definitely	Typed	declarations	for	the	same	package.	This	won’t
be	a	problem	in	real	projects,	and	you	can	use	the	configuration	settings	to
choose	between	custom	and	Definitely	Typed	declarations	for	each	package
you	use.

{

				"compilerOptions":	{

								"target":	"es2020",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"module":	"commonjs",

								"allowJs":	true,

								"checkJs":	true,

								//	"baseUrl":	".",

								//	"paths":	{

								//					"*":	["types/*"]

								//	}

				}

}

Listing	14-28. Configuring	the	Compiler	in	the	tsconfig.json	File	in	the	usingjs	Folder

Open	a	new	command	prompt,	navigate	to	the	usingjs	folder,	and	run	the
command	shown	in	Listing	14-29	to	see	the	effect	of	using	the	Definitely	Typed
package.

tsc	--traceResolution

Listing	14-29. Running	the	Compiler

The	new	trace	shows	that	the	compiler	has	located	a	different	declaration
file.



========	Type	reference	directive	'debug'	was

successfully	resolved	to

'C:/usingjs/node_modules/@types/debug/index.d.ts'	with

Package	ID	'@types/debug/index.d.ts@4.1.5',	primary:

true.	========

The	compiler	looks	in	the	node_modules/@types	folder,	which
contains	folders	that	correspond	to	each	of	the	packages	for	which	there	are
declaration	files,	following	the	same	pattern	as	for	custom	files.	(No
configuration	changes	are	required	to	tell	the	compiler	to	look	in	the
node_modules@types	folder.)

The	result	is	that	the	Definitely	Typed	declaration	file	is	used,	which
provides	a	full	description	of	the	API	presented	by	the	debug	package.	Listing
14-30	corrects	the	number	of	arguments	used	to	invoke	the	debug	function.

import	{	SportsProduct,	SPORT	}	from	"./product";

import	{	Cart	}	from	"./cart";

import	{	sizeFormatter,	costFormatter,	writeMessage	}

from	"./formatters";

import	debug	from	"debug";

let	kayak	=	new	SportsProduct(1,	"Kayak",	275,

SPORT.Watersports);

let	hat	=		new	SportsProduct(2,	"Hat",	22.10,

SPORT.Running,	SPORT.Watersports);

let	ball	=	new	SportsProduct(3,	"Soccer	Ball",	19.50,

SPORT.Soccer);

let	cart	=	new	Cart("Bob");

cart.addProduct(kayak,	1);

cart.addProduct(hat,	1);

cart.addProduct(hat,	2);

sizeFormatter("Cart",	cart.itemCount);

costFormatter("Cart",	`${cart.totalPrice}`);

let	db	=	debug("Example	App");

db.enabled	=	true;

db("Message:	%0",	"Test	message");



Listing	14-30. Using	Package	Features	in	the	index.ts	File	in	the	src	Folder

Save	the	changes	and	start	the	TypeScript	compiler	using	the	npm	start
command	if	it	isn’t	already	running.	The	compiler	will	run	using	the	new
declaration	file,	which	includes	a	description	of	the	destroy	method	used	in
the	listing.	The	compiled	code	produces	the	following	output:

The	Cart	has	4	items

The	Cart	costs	$341.3

Example	App	Message:	%0	Test	message	+0ms

Using	Packages	That	Include	Type	Declarations
As	TypeScript	has	become	more	popular,	packages	have	started	to	include
declaration	files	so	that	no	additional	downloads	are	required.	The	easiest	way	to
see	whether	a	project	includes	a	declaration	file	is	to	install	the	package	and	look
in	the	node_modules	folder.	As	a	demonstration,	open	a	new	command
prompt,	navigate	to	the	usingjs	folder,	and	run	the	command	shown	in	Listing
14-31	to	add	a	package	to	the	example	project.

npm	install	chalk@4.1.0

Listing	14-31. Adding	a	Package	to	the	Project

The	Chalk	package	provides	styles	for	console	output.	Examine	the
contents	of	the	node_modules/chalk	folder,	and	you	will	see	that	it
contains	a	types	folder	with	an	index.d.ts	file.	The
node_modules/chalk/package.json	file	contains	a	types	property
that	tells	the	TypeScript	compiler	where	to	find	the	declaration	file.

...

"types":	"types/index.d.ts",

...

To	confirm	that	the	TypeScript	compiler	is	able	to	find	the	Chalk
declaration	file,	add	the	statements	shown	in	Listing	14-32	to	the	index.ts
file	in	the	src	folder	to	confirm.

import	{	SportsProduct,	SPORT	}	from	"./product";

import	{	Cart	}	from	"./cart";

import	{	sizeFormatter,	costFormatter,	writeMessage	}



from	"./formatters";

import	debug	from	"debug";

import	chalk	from	"chalk";

let	kayak	=	new	SportsProduct(1,	"Kayak",	275,

SPORT.Watersports);

let	hat	=		new	SportsProduct(2,	"Hat",	22.10,

SPORT.Running,	SPORT.Watersports);

let	ball	=	new	SportsProduct(3,	"Soccer	Ball",	19.50,

SPORT.Soccer);

let	cart	=	new	Cart("Bob");

cart.addProduct(kayak,	1);

cart.addProduct(hat,	1);

cart.addProduct(hat,	2);

sizeFormatter("Cart",	cart.itemCount);

costFormatter("Cart",	`${cart.totalPrice}`);

console.log(chalk.greenBright("Formatted	message"));

console.log(chalk.notAColor("Formatted	message"));

Listing	14-32. Adding	Statements	in	the	index.ts	File	in	the	src	Folder

One	of	the	features	provided	by	the	Chalk	package	is	coloring	for	text
written	to	the	console.	The	first	statement	tells	Chalk	to	apply	the
greenBright	color,	and	the	second	statement	uses	a	nonexistent	property.
When	the	changes	to	the	index.ts	file	are	saved,	the	compiler	will	use	the
declaration	file	and	report	the	following	error:

src/index.ts(20,19):	error	TS2339:	Property

'notAColor'	does	not	exist	on	type	'Chalk	&	{

supportsColor:	ColorSupport;	}'.

To	enable	the	compiler	support	for	importing	the	functionality	from	the
Chalk	package,	add	the	configuration	setting	shown	in	Listing	14-33.

{

				"compilerOptions":	{

								"target":	"es2020",



								"outDir":	"./dist",

								"rootDir":	"./src",

								"module":	"commonjs",

								"allowJs":	true,

								"checkJs":	true,

								"esModuleInterop":	true

				}

}

Listing	14-33. Configuring	the	Compiler	in	the	tsconfig.json	File	in	the	usingjs	Folder

To	see	the	process	by	which	the	compiler	locates	the	declaration	file,	use	the
command	prompt	to	run	the	command	shown	in	Listing	14-34	in	the	usingjs
folder.

tsc	--traceResolution

Listing	14-34. Running	the	Compiler

The	output	from	the	traceResolution	argument	is	verbose,	but	if	you
read	through	the	messages,	you	will	see	the	different	locations	the	compiler
checks	for	declaration	files	and	the	effect	of	the	settings	in	the	Chalk
package.json	file.

...

'package.json'	has	'types'	field	'types/index.d.ts'

that	references

'C:/usingjs/node_modules/chalk/types/index.d.ts'.

...

File	'C:/usingjs/node_modules/chalk/index.d.ts'	exist

-	use	it	as	a	name	resolution	result.

...

Listing	14-35	removes	the	statement	that	deliberately	caused	a	compiler	error
so	the	example	application	can	be	compiled	and	executed.

import	{	SportsProduct,	SPORT	}	from	"./product";

import	{	Cart	}	from	"./cart";

import	{	sizeFormatter,	costFormatter,	writeMessage	}

from	"./formatters";

import	debug	from	"debug";



import	chalk	from	"chalk";

let	kayak	=	new	SportsProduct(1,	"Kayak",	275,

SPORT.Watersports);

let	hat	=		new	SportsProduct(2,	"Hat",	22.10,

SPORT.Running,	SPORT.Watersports);

let	ball	=	new	SportsProduct(3,	"Soccer	Ball",	19.50,

SPORT.Soccer);

let	cart	=	new	Cart("Bob");

cart.addProduct(kayak,	1);

cart.addProduct(hat,	1);

cart.addProduct(hat,	2);

sizeFormatter("Cart",	cart.itemCount);

costFormatter("Cart",	`${cart.totalPrice}`);

console.log(chalk.greenBright("Formatted	message"));

//console.log(chalk.notAColor("Formatted	message"));

Listing	14-35. Removing	a	Statement	in	the	index.ts	File	in	the	src	Folder

The	code	will	be	compiled	and	executed,	with	the	statement	formatted	by
Chalk	displayed	in	bright	green,	as	shown	in	Figure	14-1.

Figure	14-1. Using	the	Chalk	package

Generating	Declaration	Files
If	your	code	is	going	to	be	used	by	other	projects,	you	can	ask	the	compiler	to
generate	declaration	files	alongside	the	pure	JavaScript,	which	has	the	effect	of
preserving	the	type	information	for	other	TypeScript	programmers	but	still



allowing	the	project	to	be	used	as	regular	JavaScript.
The	compiler	won’t	generate	declaration	files	when	the	allowJS	option	is

enabled,	which	means	I	have	to	remove	the	dependency	on	the
formatters.js	file	so	that	the	project	is	all	TypeScript.	Add	a	file	called
tsFormatters.ts	to	the	src	folder	and	add	the	code	shown	in	Listing	14-
36.

export	function	sizeFormatter(thing:	string,	count:

number):	void	{

				writeMessage(`The	${thing}	has	${count}	items`);

}

export	function	costFormatter(thing:	string,	cost:

number	|	string):	void	{

				if	(typeof	cost	===	"number")	{

								writeMessage(`The	${thing}	costs

$${cost.toFixed(2)}`);

				}	else	{

								writeMessage(`The	${thing}	costs	$${cost}`);

				}

}

export	function	writeMessage(message:	string):	void	{

				console.log(message);

}

Listing	14-36. The	Contents	of	the	tsFormatters.ts	File	in	the	src	Folder

This	is	the	JavaScript	code	from	the	formatters.js	file	but	with	type
annotations.	Listing	14-37	updates	the	index.ts	file	to	depend	on	the
TypeScript	file	instead	of	the	JavaScript	file.

Caution It	is	important	to	follow	through	with	the	changes	in	this	process
because	disabling	the	allowJS	option	only	prevents	the	compiler	from
adding	the	JavaScript	file	to	the	output	folder.	It	doesn’t	prevent	any	of	the
TypeScript	code	from	depending	on	the	JavaScript	file,	which	can	lead	to
runtime	errors	because	the	JavaScript	runtime	won’t	be	able	to	find	all	the
files	it	needs.



import	{	SportsProduct,	SPORT	}	from	"./product";

import	{	Cart	}	from	"./cart";

import	{	sizeFormatter,	costFormatter,	writeMessage	}

from	"./tsFormatters";

import	debug	from	"debug";

import	chalk	from	"chalk";

let	kayak	=	new	SportsProduct(1,	"Kayak",	275,

SPORT.Watersports);

let	hat	=		new	SportsProduct(2,	"Hat",	22.10,

SPORT.Running,	SPORT.Watersports);

let	ball	=	new	SportsProduct(3,	"Soccer	Ball",	19.50,

SPORT.Soccer);

let	cart	=	new	Cart("Bob");

cart.addProduct(kayak,	1);

cart.addProduct(hat,	1);

cart.addProduct(hat,	2);

sizeFormatter("Cart",	cart.itemCount);

costFormatter("Cart",	`${cart.totalPrice}`);

console.log(chalk.greenBright("Formatted	message"));

//console.log(chalk.notAColor("Formatted	message"));

Listing	14-37. Updating	a	Dependency	in	the	index.ts	File	in	the	src	Folder

Listing	14-38	changes	the	configuration	of	the	compiler	to	disable	the
allowJS	and	checkJS	properties	and	to	enable	the	automatic	generation	of
declaration	files.

{

				"compilerOptions":	{

								"target":	"es2020",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"module":	"commonjs",

								//	"allowJs":	true,

								//	"checkJs":	true,

								//	"baseUrl":	".",



								//	"paths":	{

								//					"*":	["types/*"]

								//	},

								"esModuleInterop":	true,

								"declaration":	true

				}

}

Listing	14-38. Configuring	the	Compiler	in	the	tsconfig.json	File	in	the	usingjs	Folder

The	compiler	won’t	generate	the	declaration	files	until	it	is	restarted.	Use
Control+C	to	stop	the	compiler	and	run	the	command	shown	in	Listing	14-39	in
the	usingjs	folder	to	start	it	again.

npm	start

Listing	14-39. Starting	the	Compiler

When	the	declaration	property	is	true,	the	compiler	will	generate
declaration	files	in	the	dist	folder	that	describe	the	features	exported	from	each
TypeScript	file,	as	shown	in	Figure	14-2.



Figure	14-2. Generating	declaration	files

Summary



In	this	chapter,	I	showed	you	how	to	work	with	JavaScript	in	a	TypeScript
project.	I	explained	how	to	configure	the	compiler	to	process	and	type	check
JavaScript	files	and	how	declaration	files	can	be	used	to	describe	JavaScript
code	to	the	compiler.	In	the	next	part	of	the	book,	I	build	a	series	of	web
applications	that	rely	on	TypeScript,	starting	with	a	stand-alone	application	and
then	using	the	Angular,	React,	and	Vue.js	frameworks.



Part	III
Creating	Web	Applications



©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
A.	Freeman,	Essential	TypeScript	4
https://doi.org/10.1007/978-1-4842-7011-0_15

https://doi.org/10.1007/978-1-4842-7011-0_15


(1)

15.	Creating	a	Stand-Alone	Web	App,	Part	1
Adam	Freeman1		

London,	UK

	

In	this	part	of	the	book,	I	show	you	how	TypeScript	fits	into	the	development
process	for	the	three	most	popular	web	application	frameworks:	Angular,	React,
and	Vue.js.	In	each	case,	I	go	through	the	process	of	creating	the	project,	setting
up	a	web	service,	and	writing	a	simple	web	application.	In	this	chapter,	I	create
the	same	web	application	without	using	any	of	these	frameworks,	providing	a
baseline	for	understanding	the	features	they	provide	and	context	for	how
TypeScript	features	are	used.

I	don’t	recommend	creating	real	applications	without	using	a	framework,	but
working	on	a	stand-alone	application	reveals	much	about	TypeScript	and	its	role
in	modern	development	and	is	worthwhile	simply	to	learn.	For	quick	reference,
Table	15-1	lists	the	TypeScript	compiler	options	used	in	this	chapter.

Table	15-1. The	TypeScript	Compiler	Options	Used	in	This	Chapter

Name Description

jsx This	option	specifies	how	HTML	elements	in	TSX	files	are	processed.

jsxFactory This	option	specifies	the	name	of	the	factory	function	that	is	used	to	replace	HTML
elements	in	TSX	files.

outDir This	option	specifies	the	directory	in	which	the	JavaScript	files	will	be	placed.

rootDir This	option	specifies	the	root	directory	that	the	compiler	will	use	to	locate	TypeScript
files.

target This	option	specifies	the	version	of	the	JavaScript	language	that	the	compiler	will	target	in
its	output.

Preparing	for	This	Chapter
To	prepare	for	this	chapter,	open	a	new	command	prompt,	navigate	to	a
convenient	location,	and	create	a	folder	called	webapp.	Run	the	commands
shown	in	Listing	15-1	to	move	to	the	webapp	folder	and	to	tell	the	Node



Package	Manager	(NPM)	to	create	a	file	named	package.json.

Tip You	can	download	the	example	project	for	this	chapter—and	for	all	the
other	chapters	in	this	book—from
https://github.com/Apress/essential-typescript-4.

cd	webapp

npm	init	--yes

Listing	15-1. Creating	the	package.json	File

I	will	be	building	a	toolchain	that	incorporates	the	TypeScript	compiler	in
this	chapter	to	show	the	workflow	common	in	web	application	development.
This	requires	the	TypeScript	package	to	be	installed	locally	in	the	project;	you
cannot	rely	on	the	globally	installed	package	from	Chapter	1.	Run	the	command
shown	in	Listing	15-2	in	the	webapp	folder	to	install	the	TypeScript	package.

npm	install	--save-dev	typescript@4.2.2

Listing	15-2. Adding	Packages	Using	the	Node	Package	Manager

I	will	install	further	packages	as	the	application	takes	shape,	but	the
TypeScript	package	is	enough	for	now.	To	configure	the	TypeScript	compiler,
add	a	file	named	tsconfig.json	to	the	webapp	folder	with	the	content
shown	in	Listing	15-3.

{

				"compilerOptions":	{

								"target":	"es2020",

								"outDir":	"./dist",

								"rootDir":	"./src"

				}

}

Listing	15-3. The	Contents	of	the	tsconfig.json	File	in	the	webapp	Folder

The	configuration	tells	the	compiler	to	target	the	ES2018	version	of
JavaScript,	to	find	the	code	files	in	the	src	folder,	and	to	put	the	generated	files
in	the	dist	folder.	To	prepare	the	entry	point	for	the	application,	create	the	src
folder	and	add	to	it	a	file	called	index.ts	with	the	content	shown	in	Listing
15-4.

https://github.com/Apress/essential-typescript-4


console.log("Web	App");

Listing	15-4. The	Contents	of	the	index.ts	File	in	the	src	Folder

Run	the	commands	shown	in	Listing	15-5	in	the	webapp	folder	to	compile
the	index.ts	file	and	execute	the	contents	of	the	JavaScript	file	that	is
produced.

tsc

node	dist/index.js

Listing	15-5. Compiling	and	Executing	the	Result

The	compiled	code	will	generate	the	following	output:

Web	App

Creating	the	Toolchain
Web	application	development	relies	on	a	chain	of	tools	that	compile	the	code	and
prepare	it	for	the	delivery	and	execution	of	the	application	by	the	JavaScript
runtime.	The	TypeScript	compiler	is	the	only	development	tool	in	the	project	at
present,	as	shown	in	Figure	15-1.

Figure	15-1. The	initial	project	toolchain

The	development	tools	are	hidden	when	you	use	a	framework	like	Angular,
React,	or	Vue.js,	as	demonstrated	in	later	chapters,	but	for	this	chapter,	I	am
going	to	install	and	configure	each	tool	and	show	you	how	they	work	together.



Adding	a	Bundler
When	the	application	is	executed	using	Node.js	in	the	project	folder,	any
import	statements	can	be	resolved	using	the	JavaScript	generated	by	the
TypeScript	compiler	or	by	the	packages	installed	in	the	node_modules	folder.

The	JavaScript	runtime	starts	with	the	application	entry	point—the
index.js	file	that	is	compiled	from	the	index.ts	file—and	processes	the
import	statements	it	contains.	For	each	import	statement,	the	runtime
resolves	the	dependency	and	loads	the	required	module,	which	will	be	another
JavaScript	file.	Any	import	statements	declared	in	the	new	JavaScript	file	are
processed	in	the	same	way,	allowing	all	the	dependencies	in	the	application	to	be
resolved	so	the	code	can	be	executed.

The	JavaScript	runtime	doesn’t	know	in	advance	what	import	statements
each	code	file	may	contain	and	so	it	doesn’t	know	which	JavaScript	files	are
required.	But	it	doesn’t	matter	because	looking	for	files	to	resolve	dependencies
is	a	relatively	quick	operation	since	all	the	local	files	are	easily	accessible.

This	approach	doesn’t	work	as	well	for	web	applications,	which	don’t	have
direct	access	to	the	file	system.	Instead,	files	have	to	be	requested	over	HTTP,
which	can	be	a	slow	and	expensive	operation	and	which	doesn’t	lend	itself	to
easily	checking	multiple	locations	to	resolve	dependencies	on	files.	Instead,	a
bundler	is	used,	which	resolves	the	dependencies	during	compilation	and
packages	all	the	files	that	the	application	uses	into	a	single	file.	One	HTTP
request	delivers	all	the	JavaScript	required	to	run	the	application,	and	other
content	types,	such	as	CSS,	can	be	included	in	the	file	produced	by	the	bundler,
which	is	known	as	a	bundle.	During	the	bundling	process,	the	code	and	content
can	be	minified	and	compressed,	reducing	the	amount	of	bandwidth	required	to
deliver	the	application	to	the	client.	Large	applications	can	be	split	into	multiple
bundles	so	that	optional	code	or	content	can	be	loaded	separately	and	only	when
it	is	required.

The	most	widely	used	bundler	is	webpack,	and	it	forms	a	key	part	of	the
toolchains	used	by	React,	Angular,	and	Vue.js,	although	you	don’t	usually	need
to	work	with	it	directly,	as	you	will	see	in	later	chapters.	Webpack	can	be
complex	to	work	with,	but	it	is	supported	by	a	wide	range	of	add-on	packages
that	allow	development	toolchains	to	be	created	for	just	about	any	type	of
project.	Run	the	commands	shown	in	Listing	15-6	in	the	webapp	folder	to	add
webpack	packages	to	the	example	project.

npm	install	--save-dev	webpack@5.17.0



npm	install	--save-dev	webpack-cli@4.5.0

npm	install	--save-dev	ts-loader@8.0.14

Listing	15-6. Adding	Packages	to	the	Example	Project

The	webpack	package	contains	the	main	bundler	features,	and	the
webpack-cli	package	adds	command-line	support.	Webpack	uses	packages
known	as	loaders	to	deal	with	different	content	types,	and	the	ts-loader
package	adds	support	for	compiling	TypeScript	files	and	feeding	the	compiled
code	into	the	bundle	created	by	webpack.	To	configure	webpack,	add	a	file
named	webpack.config.js	to	the	webapp	folder	with	the	contents	shown
in	Listing	15-7.

module.exports	=	{

				mode:	"development",

				devtool:	"inline-source-map",

				entry:	"./src/index.ts",

				output:	{	filename:	"bundle.js"	},

				resolve:	{	extensions:	[".ts",	".js"]	},

				module:	{

								rules:	[

												{	test:	/\.ts/,	use:	"ts-loader",	exclude:

/node_modules/	}

								]

				}

};

Listing	15-7. The	Contents	of	the	webpack.config.js	File	in	the	webapp	Folder

This	entry	and	output	settings	tell	webpack	to	start	with	the
src/index.ts	file	when	resolving	the	application’s	dependencies	and	to	give
the	bundle	file	the	name	bundle.js.	The	other	settings	configure	webpack	to
use	the	ts-loader	package	to	process	files	with	the	ts	file	extension.

Tip See	https://webpack.js.org	for	details	of	the	full	range	of
configuration	options	that	webpack	supports.

Run	the	command	shown	in	Listing	15-8	in	the	webapp	folder	to	run	webpack
and	create	the	bundle	file.

https://webpack.js.org


npx	webpack

Listing	15-8. Creating	a	Bundle	File

Webpack	works	its	way	through	the	dependencies	in	the	project	and	uses	the
ts-loader	package	to	compile	the	TypeScript	files	it	encounters,	producing
the	following	output:

asset	bundle.js	788	bytes	[emitted]	(name:	main)

./src/index.ts	25	bytes	[built]	[code	generated]

webpack	5.17.0	compiled	successfully	in	1865	ms

The	bundle.js	file	is	created	in	the	dist	folder.	Run	the	command
shown	in	Listing	15-9	in	the	webapp	folder	to	execute	the	code	in	the	bundle.

node	dist/bundle.js

Listing	15-9. Executing	the	Bundle	File

There	is	only	one	TypeScript	file	in	the	project,	but	the	bundle	is	self-
contained	and	will	remain	so	even	as	the	example	application	becomes	more
complex.	Executing	the	bundle	produces	the	following	output:

Web	App

The	addition	of	webpack	and	its	supporting	packages	has	changed	the
development	toolchain,	as	shown	in	Figure	15-2.



Figure	15-2. Adding	a	bundle	to	the	toolchain

Adding	a	Development	Web	Server
A	web	server	is	required	to	deliver	the	bundle	file	to	the	browser	so	it	can	be
executed.	The	Webpack	Dev	Server	(WDS)	is	an	HTTP	server	that	is	integrated
into	webpack	and	includes	support	for	triggering	automatic	browser	reloads
when	a	code	file	changes	and	a	new	bundle	file	is	produced.	Run	the	command
shown	in	Listing	15-10	in	the	webapp	folder	to	install	the	WDS	package.

npm	install	--save-dev	webpack-dev-server@3.11.2

Listing	15-10. Adding	the	WDS	Package

Change	the	webpack	configuration	to	set	up	the	basic	configuration	for
WDS,	as	shown	in	Listing	15-11.

module.exports	=	{

				mode:	"development",

				devtool:	"inline-source-map",

				entry:	"./src/index.ts",

				output:	{	filename:	"bundle.js"	},

				resolve:	{	extensions:	[".ts",	".js"]	},

				module:	{

								rules:	[



												{	test:	/\.ts/,	use:	"ts-loader",	exclude:

/node_modules/	}

								]

				},

				devServer:	{

								contentBase:	"./assets",

								port:	4500

				}

};

Listing	15-11. Changing	the	Configuration	in	the	webpack.config.js	File	in	the	webapp	Folder

The	new	configuration	settings	tell	WDS	to	look	for	any	file	that	is	not	a
bundle	in	a	folder	named	assets	and	to	listen	for	HTTP	requests	on	port	4500.
To	provide	WDS	with	an	HTML	file	that	can	be	used	to	respond	to	browsers,
create	a	webapp/assets	folder	and	add	to	it	a	file	named	index.html	with
the	content	shown	in	Listing	15-12.

<!DOCTYPE	html>

<html>

<head>

				<title>Web	App</title>

				<script	src="bundle.js"></script>

</head>

<body>

				<div	id="app">Web	App	Placeholder</div>

</body>

</html>

Listing	15-12. The	Contents	of	the	index.html	File	in	the	assets	Folder

When	the	browser	receives	the	HTML	file,	it	will	process	the	contents	and
encounter	the	script	element,	which	will	trigger	an	HTTP	request	for	the
bundle.js	file,	which	contains	the	application’s	JavaScript	code.

To	start	the	server,	run	the	command	shown	in	Listing	15-13	in	the	webapp
folder.

npx	webpack	serve

Listing	15-13. Starting	the	Development	Web	Server



The	HTTP	server	will	start,	and	the	bundle	will	be	created.	However,	the
dist	folder	is	no	longer	used	to	store	the	files—the	output	from	the	bundling
process	is	held	in	memory	and	used	to	respond	to	HTTP	requests	without
needing	to	create	a	file	on	disk.	As	the	server	starts	and	the	application	is
bundled,	you	will	see	the	following	output:

i	⌈wds⌋:	Project	is	running	at	http://localhost:4500/
i	⌈wds⌋:	webpack	output	is	served	from	/
i	⌈wds⌋:	Content	not	from	webpack	is	served	from
./assets

i	⌈wds⌋:	asset	bundle.js	364	KiB	[emitted]	(name:
main)

runtime	modules	430	bytes	3	modules

cacheable	modules	335	KiB

		modules	by	path	./node_modules/webpack-dev-

server/client/	20.9	KiB	10	modules

		modules	by	path	./node_modules/html-

entities/lib/*.js	61	KiB	5	modules

		modules	by	path	./node_modules/url/	37.4	KiB	3

modules

		modules	by	path	./node_modules/querystring/*.js	4.51

KiB

				./node_modules/querystring/index.js	127	bytes

[built]	[code	generated]

				./node_modules/querystring/decode.js	2.34	KiB

[built]	[code	generated]

				./node_modules/querystring/encode.js	2.04	KiB

[built]	[code	generated]

		modules	by	path	./node_modules/webpack/hot/*.js	1.42

KiB

				./node_modules/webpack/hot/emitter.js	75	bytes

[built]	[code	generated]

				./node_modules/webpack/hot/log.js	1.34	KiB	[built]

[code	generated]

./node_modules/webpack/hot/	sync	nonrecursive

^\.\/log$	170	bytes	[built]	[code	generated]

webpack	5.17.0	compiled	successfully	in	2087	Microsoft

i	⌈wdm⌋:	Compiled	successfully.



The	detail	of	the	messages	isn’t	important	other	than	to	give	you	a	sense	of
the	overall	progress.	Once	the	server	has	started,	open	a	new	web	browser	and
navigate	to	http://localhost:4500,	which	is	the	port	on	which	WDS
was	configured	to	listen	for	HTTP	requests.	The	contents	of	the	index.html
file	will	be	displayed	by	the	browser,	as	shown	in	Figure	15-3.

Figure	15-3. Displaying	the	HTML	file

Open	the	browser’s	F12	development	tools	and	switch	to	the	Console	tab	to
see	the	output	from	the	console.log	statement	in	the	index.ts	file.

Web	App

When	WDS	is	started,	webpack	is	put	into	a	watch	mode	that	builds	a	new
bundle	when	a	change	to	the	code	files	is	detected.	During	the	bundling	process,
WDS	injects	additional	code	into	the	JavaScript	file	that	opens	a	connection
back	to	the	server	and	waits	for	a	signal	to	reload	the	browser,	which	is	sent	for
each	new	bundle.	The	effect	is	that	the	browser	is	reloaded	automatically	each
time	a	change	is	detected	and	processed,	which	can	be	seen	by	adding	a
statement	to	the	index.ts	file,	as	shown	in	Listing	15-14.

Tip The	reload	feature	works	only	for	code	files	and	doesn’t	apply	to	the
HTML	file	in	the	assets	folder.	Changes	to	the	HTML	file	take	effect	only
when	WDS	is	restarted.

console.log("Web	App");

console.log("This	is	a	new	statement");

Listing	15-14. Adding	a	Statement	to	the	index.ts	File	in	the	src	Folder

As	soon	as	the	index.ts	file	is	saved,	webpack	builds	a	new	bundle,	and



the	signal	is	sent	to	the	browser	to	trigger	a	reload,	producing	the	following
output	in	the	browser’s	F12	developer	tool	console:

Web	App

This	is	a	new	statement

Adding	WDS	extends	the	chain	of	development	tools	and	links	the
application	to	the	JavaScript	runtime	provided	by	the	browser,	as	shown	in
Figure	15-4.

Figure	15-4. Adding	WDS	to	the	development	toolchain

This	toolchain	contains	the	key	elements	that	you	will	see	in	most	web
application	projects,	although	the	individual	parts	are	often	hidden	from	sight.
Notice	how	the	TypeScript	compiler	is	just	one	part	of	the	chain,	allowing
TypeScript	code	to	be	integrated	into	a	set	of	broader	JavaScript	development
tools.

Creating	the	Data	Model
The	application	will	retrieve	its	list	of	products	from	a	web	service	using	an
HTTP	request.	The	user	will	be	able	to	select	products	to	assemble	an	order,
which	will	be	sent	back	to	the	web	service	using	another	HTTP	request.	To	start
the	data	model,	I	created	the	src/data	folder	and	added	to	it	a	file	called
entities.ts	with	the	code	shown	in	Listing	15-15.

export	type	Product	=	{

				id:	number,



				name:	string,

				description:	string,

				category:	string,

				price:	number

};

export	class	OrderLine	{

				constructor(public	product:	Product,	public

quantity:	number)	{

								//	no	statements	required

				}

				get	total():	number	{

								return	this.product.price	*	this.quantity;

				}

}

export	class	Order	{

				private	lines	=	new	Map<number,	OrderLine>();

				constructor(initialLines?:	OrderLine[])	{

								if	(initialLines)	{

												initialLines.forEach(ol	=>

this.lines.set(ol.product.id,	ol));

								}

				}

				public	addProduct(prod:	Product,	quantity:	number)

{

								if	(this.lines.has(prod.id))	{

												if	(quantity	===	0)	{

																this.removeProduct(prod.id);

												}	else	{

																this.lines.get(prod.id)!.quantity	+=

quantity;

												}

								}	else	{

												this.lines.set(prod.id,	new

OrderLine(prod,	quantity));



								}

				}

				public	removeProduct(id:	number)	{

								this.lines.delete(id);

				}

				get	orderLines():	OrderLine[]	{

								return	[...this.lines.values()];

				}

				get	productCount():	number	{

								return	[...this.lines.values()]

												.reduce((total,	ol)	=>	total	+=

ol.quantity,	0);

				}

				get	total():	number	{

								return	[...this.lines.values()].reduce((total,

ol)	=>	total	+=	ol.total,	0);

				}

}

Listing	15-15. The	Contents	of	the	entities.ts	File	in	the	src/data	Folder

The	Product,	Order,	and	OrderLine	types	are	all	exported	so	they	can
be	used	outside	of	the	code	file.	The	Order	class	represents	the	user’s	product
selections,	each	of	which	is	expressed	as	an	OrderLine	object	that	combines	a
Product	and	a	quantity.	I	have	defined	Product	as	a	type	alias	because	this
will	simplify	working	with	data	obtained	remotely	when	I	introduce	a	web
service	in	Chapter	15.	The	Order	and	OrderLine	types	are	defined	as	classes
because	they	define	additional	features	beyond	being	a	collection	of	related
properties.

Creating	the	Data	Source
I	will	introduce	the	web	service	later	in	the	chapter.	For	the	moment,	I	will	create
a	class	that	provides	access	to	some	local	test	data.	To	ease	the	transition	from
local	to	remote	data,	I	will	define	an	abstract	class	that	provides	the	basic
features	and	create	concrete	implementations	for	each	data	source.	I	added	a	file
called	abstractDataSource.ts	to	the	src/data	folder	and	used	it	to



define	the	class	shown	in	Listing	15-16.

import	{	Product,	Order	}	from	"./entities";

export	type	ProductProp	=	keyof	Product;

export	abstract	class	AbstractDataSource	{

				private	_products:	Product[];

				private	_categories:	Set<string>;

				public	order:	Order;

				public	loading:	Promise<void>;

				constructor()	{

								this._products	=	[];

								this._categories	=	new	Set<string>();

								this.order	=	new	Order();

								this.loading	=	this.getData();

				}

				async	getProducts(sortProp:	ProductProp	=	"id",

												category?	:	string):	Promise<Product[]>	{

								await	this.loading;

								return	this.selectProducts(this._products,

sortProp,	category);

				}

				protected	async	getData():	Promise<void>	{

								this._products	=	[];

								this._categories.clear();

								const	rawData	=	await	this.loadProducts();

								rawData.forEach(p	=>	{

												this._products.push(p);

												this._categories.add(p.category);

								});

				}

				protected	selectProducts(prods:	Product[],

												sortProp:	ProductProp,	category?:	string):

Product[]	{

								return	prods.filter(p=>	category	===	undefined



||	p.category	===	category)

																.sort((p1,	p2)	=>	p1[sortProp]	<

p2[sortProp]

																				?	-1	:	p1[sortProp]	>	p2[sortProp]

?	1:	0);

				}

				async	getCategories():	Promise<string[]>	{

								await	this.loading;

								return	[...this._categories.values()];

				}

				protected	abstract	loadProducts():

Promise<Product[]>;

				abstract	storeOrder():	Promise<number>;

}

Listing	15-16. The	Contents	of	the	abstractDataSource.ts	File	in	the	src/data	Folder

The	AbstractDataSource	class	uses	the	JavaScript	Promise	features
to	fetch	data	in	the	background	and	uses	the	async/await	keywords	to	express
the	code	that	depends	on	those	operations.	The	class	in	Listing	15-16	invokes	the
abstract	loadProducts	method	in	the	constructor,	and	the	getProducts
and	getCategories	methods	wait	for	the	background	operation	to	produce
data	before	returning	any	responses.	To	create	an	implementation	of	the	data
source	class	that	uses	local	test	data,	I	added	a	file	called
localDataSource.ts	to	the	src/data	folder	and	added	the	code	shown
in	Listing	15-17.

import	{	AbstractDataSource	}	from

"./abstractDataSource";

import	{	Product	}	from	"./entities";

export	class	LocalDataSource	extends

AbstractDataSource	{

								loadProducts():	Promise<Product[]>	{

												return	Promise.resolve([

																{	id:	1,	name:	"P1",	category:

"Watersports",



																				description:	"P1	(Watersports)",

price:	3	},

																{	id:	2,	name:	"P2",	category:

"Watersports",

																				description:	"P2	(Watersports)",

price:	4	},

																{	id:	3,	name:	"P3",	category:

"Running",

																				description:	"P3	(Running)",

price:	5	},

																{	id:	4,	name:	"P4",	category:

"Chess",

																				description:	"P4	(Chess)",	price:

6	},

																{	id:	5,	name:	"P5",	category:

"Chess",

																				description:	"P6	(Chess)",	price:

7	},

												]);

								}

								storeOrder():	Promise<number>	{

												console.log("Store	Order");

												console.log(JSON.stringify(this.order));

												return	Promise.resolve(1);

								}

}

Listing	15-17. The	Contents	of	the	localDataSource.ts	File	in	the	src/data	Folder

This	class	uses	the	Promise.resolve	method	to	create	a	Promise	that
immediately	produces	a	response	and	allows	test	data	to	be	easily	used.	In
Chapter	16,	I	introduce	a	data	source	that	performs	real	background	operations
to	request	data	from	a	web	service.	To	check	that	the	basic	features	of	the	data
model	are	working,	I	replaced	the	code	in	the	index.ts	file	with	the
statements	shown	in	Listing	15-18.

import	{	LocalDataSource	}	from

"./data/localDataSource";



async	function	displayData():	Promise<string>	{

				let	ds	=	new	LocalDataSource();

				let	allProducts	=	await	ds.getProducts("name");

				let	categories	=	await	ds.getCategories();

				let	chessProducts	=	await	ds.getProducts("name",

"Chess");

				let	result	=	"";

				allProducts.forEach(p	=>	result	+=	`Product:

${p.name},	${p.category}\n`);

				categories.forEach(c	=>	result	+=	(`Category:

${c}\n`));

				chessProducts.forEach(p	=>	ds.order.addProduct(p,

1));

				result	+=	`Order	total:

$${ds.order.total.toFixed(2)}`;

				return	result;

}

displayData().then(res	=>	console.log(res));

Listing	15-18. Replacing	the	Contents	of	the	index.ts	File	in	the	src	Folder

When	the	changes	to	the	index.ts	file	are	saved,	the	code	will	be
compiled,	and	the	chain	of	import	statements	is	resolved	to	include	all	the
JavaScript	required	by	the	application	in	the	webpack	bundle.	A	browser	reload
will	be	triggered,	and	the	following	output	will	be	displayed	in	the	browser’s
JavaScript	console:

Product:	P1,	Watersports

Product:	P2,	Watersports

Product:	P3,	Running

Product:	P4,	Chess

Product:	P5,	Chess

Category:	Watersports

Category:	Running

Category:	Chess

Order	total:	$13.00



Rendering	HTML	Content	Using	the	DOM	API
Few	users	will	want	to	look	in	the	browser’s	JavaScript	console	window	to	see
the	output.	Browsers	provide	the	Domain	Object	Model	(DOM)	API	to	allow
applications	to	interact	with	the	HTML	document	displayed	to	the	user,	generate
content	dynamically,	and	respond	to	user	interaction.	To	create	a	class	that	will
produce	an	HTML	element,	I	added	a	file	called	domDisplay.ts	to	the	src
folder	and	used	it	to	define	the	class	shown	in	Listing	15-19.

import	{	Product,	Order	}	from	"./data/entities";

export	class	DomDisplay	{

				props:	{

								products:	Product[],

								order:	Order

				}

				getContent():	HTMLElement	{

								let	elem	=	document.createElement("h3");

								elem.innerText	=	this.getElementText();

								elem.classList.add("bg-primary",	"text-

center",	"text-white",	"p-2");

								return	elem;

				}

				getElementText()	{

								return	`${this.props.products.length}

Products,	`

												+	`Order	total:	$${	this.props.order.total

}`;

				}

}

Listing	15-19. The	Contents	of	the	domDisplay.ts	File	in	the	src	Folder

The	DomDisplay	class	defines	a	getContent	method	whose	result	is	an
HTMLElement	object,	which	is	the	type	used	by	the	DOM	API	to	represent	an
HTML	element.	The	getContent	method	creates	an	H3	element	and	uses	a
template	string	to	set	its	content.	The	element	is	added	to	four	classes,	which	will



be	used	to	manage	the	appearance	of	the	element	when	it	is	displayed.	The	data
values	used	in	the	template	string	are	provided	through	a	property	named
props.	This	is	a	convention	that	was	adopted	from	the	React	framework,	which
I	explain	in	the	“Using	JSX	to	Create	HTML	Content”	section	and	demonstrate
in	Chapter	19.

Adding	Support	for	Bootstrap	CSS	Styles
The	three	classes	to	which	the	h3	element	is	assigned	in	Listing	15-19
correspond	to	styles	defined	by	Bootstrap,	which	is	a	high-quality,	open-source
CSS	framework	that	makes	it	easy	to	consistently	style	HTML	content.

The	webpack	configuration	can	be	extended	with	loaders	for	additional
content	types	that	are	included	in	the	bundle	file,	which	means	that	the
development	toolchain	can	be	extended	to	include	support	for	CSS	stylesheets,
such	as	the	one	that	defines	the	Bootstrap	styles	applied	to	the	h3	element.

Stop	the	WDS	process	using	Control+C	and	run	the	commands	shown	in
Listing	15-20	in	the	webapp	folder	to	install	the	CSS	loaders	and	Bootstrap
packages.

Note I	use	the	Bootstrap	CSS	framework	in	most	of	my	projects	because	it
is	easy	to	work	with	and	produces	good	results.	See
https://getbootstrap.com	for	details	of	the	styles	available	and	of
the	optional	JavaScript	features	that	are	available.

npm	install	bootstrap@4.6.0

npm	install	--save-dev	css-loader@5.0.1

npm	install	--save-dev	style-loader@2.0.0

Listing	15-20. Adding	Packages	to	the	Project

The	bootstrap	package	contains	the	CSS	styles	that	I	want	to	apply	to	the
example	project.	The	css-loader	and	style-loader	packages	contain	the
loaders	that	deal	with	CSS	styles	(both	are	required	to	incorporate	CSS	into	the
webpack	bundle).	Make	the	changes	shown	in	Listing	15-21	to	the	webpack
configuration	to	add	support	for	including	CSS	in	the	bundle	file.

module.exports	=	{

				mode:	"development",

				devtool:	"inline-source-map",

				entry:	"./src/index.ts",

https://getbootstrap.com


				output:	{	filename:	"bundle.js"	},

				resolve:	{	extensions:	[".ts",	".js",	".css"]	},

				module:	{

								rules:	[

												{	test:	/\.ts/,	use:	"ts-loader",	exclude:

/node_modules/	},

												{	test:	/\.css$/,	use:	["style-loader",

"css-loader"]	},

								]

				},

				devServer:	{

								contentBase:	"./assets",

								port:	4500

				}

};

Listing	15-21. Adding	a	Loader	in	the	webpack.config.js	File	in	the	webapp	Folder

In	Listing	15-22,	I	have	revised	the	code	in	the	index.ts	file	to	declare	a
dependency	on	the	CSS	stylesheet	from	the	Bootstrap	package	and	to	use	the
DomHeader	class	to	render	HTML	content	in	the	browser.

import	{	LocalDataSource	}	from

"./data/localDataSource";

import	{	DomDisplay	}	from	"./domDisplay";

import	"bootstrap/dist/css/bootstrap.css";

let	ds	=	new	LocalDataSource();

async	function	displayData():	Promise<HTMLElement>	{

				let	display	=	new	DomDisplay();

				display.props	=	{

								products:	await	ds.getProducts("name"),

								order:	ds.order

				}

				return	display.getContent();

}

document.onreadystatechange	=	()	=>	{

				if	(document.readyState	===	"complete")	{



								displayData().then(elem	=>	{

												let	rootElement	=

document.getElementById("app");

												rootElement.innerHTML	=	"";

												rootElement.appendChild(elem);

								});

				}

};

Listing	15-22. Displaying	HTML	Content	in	the	index.ts	File	in	the	src	Folder

The	DOM	API	provides	a	complete	set	of	features	to	work	with	the	HTML
document	displayed	by	the	browser,	but	the	result	can	be	verbose	code	that	is
difficult	to	read,	especially	when	the	content	to	be	displayed	depends	on	the
result	of	background	tasks,	such	as	getting	data	from	a	web	service.

The	code	in	Listing	15-22	has	to	wait	for	two	tasks	to	be	completed	before	it
can	display	any	content.	The	browser	has	to	complete	processing	the	HTML
document	contained	in	the	index.html	file	before	the	DOM	API	can	be	used
to	manipulate	its	contents.	Browsers	process	HTML	elements	in	the	order	in
which	they	are	defined	in	the	HTML	document,	which	means	that	the	JavaScript
code	will	be	executed	before	the	browser	has	processed	the	elements	in	the
body	section	of	the	document.	Any	attempt	to	modify	the	document	before	it
has	been	fully	processed	can	lead	to	inconsistent	results.

Tip The	default	settings	for	the	TypeScript	compiler	include	type
declaration	files	for	the	DOM	API,	which	allows	type-safe	use	of	the	browser
features.

The	code	in	Listing	15-22	also	has	to	wait	for	the	data	source	to	obtain	its	data.
The	LocalDataSource	class	uses	local	test	data	that	is	immediately
available,	but	there	may	be	a	delay	when	the	data	is	retrieved	from	a	web
service,	which	I	implement	in	Chapter	16.

When	both	tasks	are	complete,	the	placeholder	element	in	the	index.html
file	is	removed	and	replaced	with	the	HTMLElement	object	obtained	by
creating	a	DomDisplay	object	and	calling	its	getContent	method.

Save	the	changes	to	the	index.ts	file	and	run	the	command	shown	in
Listing	15-23	in	the	webapp	folder	to	start	the	Webpack	Development	Server
using	the	configuration	created	in	Listing	15-21.



npx	webpack	serve

Listing	15-23. Starting	the	Development	Tools

A	new	bundle	that	includes	the	CSS	styles	will	be	created.	Use	the	browser
to	navigate	to	http://localhost:4500,	and	the	styled	HTML	content	will
be	displayed,	as	shown	in	Figure	15-5.

Figure	15-5. Generating	HTML	elements

Tip The	loaders	added	to	the	project	deal	with	CSS	by	adding	JavaScript
code	that	is	executed	when	the	contents	of	the	bundle	file	are	processed.	This
code	uses	an	API	provided	by	the	browser	to	create	the	CSS	styles.	This
approach	means	that	the	bundle	file	contains	only	JavaScript	even	though	it
delivers	different	types	of	content	to	the	client.

Using	JSX	to	Create	HTML	Content
Expressing	HTML	elements	using	JavaScript	statements	is	awkward,	and	using
the	DOM	API	directly	produces	verbose	code	that	is	difficult	to	understand	and
prone	to	errors,	even	with	the	static	type	support	that	TypeScript	provides.

The	problem	isn’t	the	DOM	API	itself—although	it	hasn’t	always	been
designed	with	ease	of	use	in	mind—but	the	difficulty	in	using	code	statements	to
create	declarative	content	like	HTML	elements.	A	more	elegant	approach	is	to
use	JSX,	which	stands	for	JavaScript	XML	and	which	allows	declarative	content
such	as	HTML	elements	to	be	easily	mixed	with	code	statements.	JSX	is	most
closely	associated	with	React	development—as	demonstrated	in	Chapter	19—
but	the	TypeScript	compiler	provides	features	that	allow	it	to	be	used	in	any
project.



Note JSX	isn’t	the	only	way	to	simplify	working	with	HTML	elements,	but
I	have	used	it	in	this	chapter	because	the	TypeScript	compiler	supports	it.	If
you	don’t	like	JSX,	you	can	use	one	of	the	many	JavaScript	template
packages	available	(search	for	mustache	templates	to	get	started).

The	best	way	to	understand	JSX	is	to	start	by	writing	some	JSX	code.	TypeScript
files	that	contain	JSX	content	are	defined	in	files	with	the	tsx	extension,
reflecting	the	combination	of	TypeScript	and	JSX	features.	Add	a	file	called
htmlDisplay.tsx	to	the	src	folder	and	add	the	content	shown	in	Listing
15-24.

import	{	Product,	Order	}	from	"./data/entities";

export	class	HtmlDisplay	{

				props:	{

								products:	Product[],

								order:	Order

				}

				getContent():	HTMLElement	{

								return	<h3	className="bg-secondary	text-center

text-white	p-2">

																	{	this.getElementText()	}

															</h3>

				}

				getElementText()	{

								return	`${this.props.products.length}

Products,	`

												+	`Order	total:	$${	this.props.order.total

}`;

				}

}

Listing	15-24. The	Contents	of	the	htmlDisplay.tsx	File	in	the	src	Folder

This	file	uses	JSX	to	create	the	same	result	as	the	regular	TypeScript	class.
The	difference	is	the	getContent	method,	which	returns	an	HTML	element
expressed	directly	as	an	element,	instead	of	using	the	DOM	API	to	create	an



object	and	configure	it	through	its	properties.	The	h3	element	returned	by	the	h3
element	is	expressed	in	a	way	that	is	similar	to	an	element	in	an	HTML
document,	with	the	addition	of	fragments	of	JavaScript	that	allow	expressions	to
generate	content	dynamically	based	on	the	values	provided	through	the	props
property.

This	file	won’t	compile	because	the	project	has	not	yet	been	configured	for
JSX,	but	you	can	see	how	this	format	can	be	used	to	create	content	more
naturally.	In	the	sections	that	follow,	I	will	explain	how	JSX	files	are	processed
and	configure	the	example	project	to	support	them.

Understanding	the	JSX	Workflow
When	a	TypeScript	JSX	file	is	compiled,	the	compiler	processes	the	HTML
elements	it	contains	to	transform	them	into	JavaScript	statements.	Each	element
is	parsed	and	separated	into	the	tag	that	defines	the	element	type,	the	attributes
applied	to	the	element,	and	the	element’s	content.

The	compiler	replaces	each	HTML	element	with	a	call	to	a	function,	known
as	the	factory	function,	that	will	be	responsible	for	creating	the	HTML	content	at
runtime.	The	factory	function	is	conventionally	named	createElement
because	that’s	the	name	used	by	the	React	framework,	and	it	means	that	the	class
in	Listing	15-24	is	transformed	into	this	code:

...

import	{	Product,	Order	}	from	"./data/entities";

export	class	HtmlDisplay	{

				props:	{

								products:	Product[],

								order:	Order

				}

				getContent()	{

								return	createElement("h3",

												{	className:	"bg-secondary	text-center

text-white	p-2"	},

																this.getElementText());

				}

				getElementText()	{



								return	`${this.props.products.length}

Products,	`

												+	`Order	total:	$${	this.props.order.total

}`;

				}

}

...

The	compiler	doesn’t	know	anything	about	the	factory	function	other	than	its
name.	The	result	of	the	transformation	is	that	the	HTML	content	is	replaced	with
code	statements	that	can	be	compiled	normally	and	executed	by	a	regular
JavaScript	runtime,	as	shown	in	Figure	15-6.

Figure	15-6. Transforming	JSX

When	the	application	runs,	each	call	to	the	factory	function	is	responsible	for
using	the	tag	name,	attribute,	and	content	parsed	by	the	compiler	to	create	the
HTML	element	the	application	requires.

Understanding	Props	Versus	Attributes
The	elements	in	a	JSX	file	are	not	standard	HTML.	The	key	difference	is	that
the	attributes	on	the	elements	use	the	JavaScript	property	names	defined	by
the	DOM	API	instead	of	the	corresponding	attribute	names	from	the	HTML
specification.	Many	of	the	properties	and	attributes	share	the	same	name,	but
there	are	some	important	differences,	and	the	one	that	causes	the	most
confusion	is	the	class	attribute,	which	is	used	to	assign	elements	to	one	or
more	classes,	typically	so	they	can	be	styled.

The	DOM	API	can’t	use	class	because	it	is	a	reserved	JavaScript	word
and	so	elements	are	assigned	to	classes	using	the	className	property,	like
this:

...

<h3	className="bg-secondary	text-center	text-white

p-2">



...

This	is	the	reason	that	TypeScript	JSX	classes	receive	their	data	values
through	the	property	named	props,	because	each	prop	corresponds	to	a
property	that	must	be	set	on	the	HTMLElement	object	created	by	the	factory
function.	Forgetting	to	use	property	names	in	a	JSX	file	is	a	common	mistake
and	is	a	good	place	to	start	checking	when	you	don’t	get	the	results	you
expect.

Configuring	the	TypeScript	Compiler	and	the	Webpack	Loader
The	TypeScript	compiler	won’t	process	TSX	files	by	default	and	requires	two
configuration	settings	to	be	set,	as	described	in	Table	15-2.	There	are	other
compiler	options	for	JSX,	but	these	are	the	two	that	are	required	to	get	started.

Table	15-2. The	Compiler	Settings	for	JSX

Name Description

jsx This	option	determines	the	way	that	the	compiler	handles	elements	in	a	TSX	file.	The
react	setting	replaces	HTML	elements	with	calls	to	the	factory	function	and	emits	a
JavaScript	file.	The	react-native	setting	emits	a	JavaScript	file	that	leaves	the
HTML	elements	intact.	The	preserve	setting	emits	a	JSX	file	that	leaves	the	HTML
elements	intact.	The	react-jsx	and	react-jsx	settings	use	__jsx	as	the	name	of
the	function	that	creates	elements.

jsxFactory This	option	specifies	the	name	of	the	factory	function,	which	the	compiler	will	use	when
the	jsx	option	is	set	to	react.

For	this	project,	I	am	going	to	define	a	factory	function	called
createElement	and	select	the	react	option	for	the	jsx	setting	so	the
compiler	will	replace	HTML	content	with	calls	to	the	factory	function,	as	shown
in	Listing	15-25.

{

				"compilerOptions":	{

								"target":	"es2020",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"jsx":	"react",

								"jsxFactory":	"createElement"

				}

}



Listing	15-25. Configuring	the	Compiler	in	the	tsconfig.json	File	in	the	webapp	Folder

The	webpack	configuration	must	be	updated	so	that	TSX	files	will	be
included	in	the	bundling	process,	as	shown	in	Listing	15-26.

module.exports	=	{

				mode:	"development",

				devtool:	"inline-source-map",

				entry:	"./src/index.ts",

				output:	{	filename:	"bundle.js"	},

				resolve:	{	extensions:	[".ts",	".tsx",	".js",

".css"]	},

				module:	{

								rules:	[

												{	test:	/\.tsx?$/,	use:	"ts-loader",

exclude:	/node_modules/	},

												{	test:	/\.css$/,	use:	["style-loader",

"css-loader"]	},

								]

				},

				devServer:	{

								contentBase:	"./assets",

								port:	4500

				}

};

Listing	15-26. Configuring	Webpack	in	the	webpack.config.js	File	in	the	webapp	Folder

The	change	to	the	resolve	setting	tells	webpack	that	TSX	files	should	be
included	in	the	bundle,	and	the	other	change	specifies	that	TSX	files	will	be
handled	by	the	ts-loader	package,	which	will	use	the	TypeScript	compiler.

Creating	the	Factory	Function
The	code	generated	by	the	compiler	replaces	HTML	content	with	calls	to	the
factory	function,	which	allows	JSX	code	to	be	transformed	into	standard
JavaScript.	The	implementation	of	the	factory	function	depends	on	the
environment	in	which	the	application	is	being	run	so	that	React	applications,	for
example,	will	use	the	factory	function	that	generates	content	that	React	can
manage.	For	the	example	application,	I	am	going	to	create	a	factory	function	that
simply	uses	the	DMO	API	to	create	an	HTMLElement	object.	This	is	nowhere



near	as	elegant	or	efficient	as	the	way	that	React	and	the	other	frameworks
handle	dynamic	content,	but	it	is	enough	to	allow	the	use	of	JSX	in	the
application	without	getting	bogged	down	in	the	details.	To	define	the	factory
function,	I	created	the	src/tools	folder	and	added	to	it	a	file	named
jsxFactory.ts	with	the	code	shown	in	Listing	15-27.

export	function	createElement(tag:	any,	props:	Object,

...children	:	Object[])

								:	HTMLElement	{

				function	addChild(elem:	HTMLElement,	child:	any)	{

								elem.appendChild(child	instanceof	Node	?	child

												:

document.createTextNode(child.toString()));

				}

				if	(typeof	tag	===	"function")	{

								return	Object.assign(new	tag(),	{	props:	props

||	{}}).getContent();

				}

				const	elem	=

Object.assign(document.createElement(tag),	props	||

{});

				children.forEach(child	=>	Array.isArray(child)

								?	child.forEach(c	=>	addChild(elem,	c))	:

addChild(elem,	child));

				return	elem;

}

declare	global	{

			namespace	JSX	{

						interface	ElementAttributesProperty	{	props;	}

			}

}

Listing	15-27. The	Contents	of	the	jsxFactory.ts	File	in	the	src/tools	Folder

The	createElement	function	in	Listing	15-27	does	the	bare	minimum	to
create	HTML	elements	using	the	DOM	API	without	any	of	the	sophisticated



features	provided	by	the	frameworks	used	in	later	chapters.	The	tag	parameter
can	be	a	function,	in	which	case	another	class	that	uses	JSX	has	been	specified
as	the	element	type.

Tip The	last	section	of	code	in	Listing	15-27	is	a	specific	incantation	that
tells	the	TypeScript	compiler	that	it	should	use	the	props	property	to
perform	type	checking	on	the	values	assigned	to	JSX	element	attributes	in
TSX	files.	This	relies	on	the	TypeScript	namespace	feature,	which	I	have	not
described	in	this	chapter	because	it	has	been	superseded	by	the	introduction
of	standard	JavaScript	modules	and	is	no	longer	recommended	for	use.

Using	the	JSX	Class
JSX	classes	are	transformed	into	standard	JavaScript	code,	which	means	they
can	be	used	in	the	same	way	as	any	TypeScript	class.	In	Listing	15-28,	I	have
removed	the	dependency	on	the	DOM	API	class	and	replaced	it	with	a	JSX
class.

import	{	LocalDataSource	}	from

"./data/localDataSource";

import	{	HtmlDisplay	}	from	"./htmlDisplay";

import	"bootstrap/dist/css/bootstrap.css";

let	ds	=	new	LocalDataSource();

async	function	displayData():	Promise<HTMLElement>	{

				let	display	=	new	HtmlDisplay();

				display.props	=	{

								products:	await	ds.getProducts("name"),

								order:	ds.order

				}

				return	display.getContent();

}

document.onreadystatechange	=	()	=>	{

				if	(document.readyState	===	"complete")	{

								displayData().then(elem	=>	{

												let	rootElement	=

document.getElementById("app");



												rootElement.innerHTML	=	"";

												rootElement.appendChild(elem);

								});

				}

};

Listing	15-28. Using	a	JSX	Class	in	the	index.ts	File	in	the	src	Folder

The	JSX	class	is	a	drop-in	replacement	for	the	class	that	uses	the	DOM	API
directly.	In	later	sections,	you	will	see	how	classes	that	use	JSX	can	be	combined
using	only	elements,	but	there	is	always	a	boundary	between	a	regular	class	and
one	that	contains	HTML	elements.	For	the	example	application,	that	boundary
will	be	between	the	index	file	and	HtmlDisplay	class.

Importing	the	Factory	Function	in	the	JSX	Class
The	final	change	to	complete	the	JSX	configuration	is	to	add	an	import
statement	for	the	factory	function	to	the	JSX	class,	as	shown	in	Listing	15-29.
The	TypeScript	compiler	will	convert	HTML	elements	into	calls	to	the	factory
function,	but	an	import	statement	is	required	to	allow	the	converted	code	to	be
compiled.

import	{	createElement	}	from	"./tools/jsxFactory";

import	{	Product,	Order	}	from	"./data/entities";

export	class	HtmlDisplay	{

				props:	{

								products:	Product[],

								order:	Order

				}

				getContent():	HTMLElement	{

								return	<h3	className="bg-secondary	text-center

text-white	p-2">

																	{	this.getElementText()	}

															</h3>

				}

				getElementText()	{

								return	`${this.props.products.length}



Products,	`

												+	`Order	total:	$${	this.props.order.total

}`;

				}

}

Listing	15-29. Adding	an	import	Statement	in	the	htmlDisplay.tsx	File	in	the	src	Folder

An	import	statement	for	the	factory	function	is	required	in	every	TSX	file.
Use	Control+C	to	stop	the	webpack	development	tools	and	use	the	command
prompt	to	run	the	command	shown	in	Listing	15-30	in	the	webapp	folder	to
start	them	again	using	the	new	configuration.

npx	webpack	serve

Listing	15-30. Starting	the	Development	Tools

Once	the	bundle	has	been	re-created,	use	the	browser	to	navigate	to
http://localhost:4500,	and	you	will	see	the	content	shown	in	Figure
15-7,	which	is	styled	using	a	different	color	from	the	previous	example.

Figure	15-7. Rendering	content	using	JSX

Adding	Features	to	the	Application
Now	that	the	basic	structure	of	the	application	is	in	place,	I	can	add	features,
starting	with	a	display	of	products	that	can	be	filtered	by	category.

Displaying	a	Filtered	List	of	Products
Add	a	file	called	productItem.tsx	in	the	src	folder	and	add	the	code
shown	in	Listing	15-31	to	create	a	class	that	will	display	details	of	a	single



product.

import	{	createElement	}	from	"./tools/jsxFactory";

import	{	Product	}	from	"./data/entities";

export	class	ProductItem	{

				private	quantity:	number	=	1;

				props:	{

								product:	Product,

								callback:	(product:	Product,	quantity:	number)

=>	void

				}

				getContent():	HTMLElement	{

								return	<div	className="card	m-1	p-1	bg-light">

												<h4>

																{	this.props.product.name	}

																<span	className="badge	badge-pill

badge-primary	float-right">

																				${

this.props.product.price.toFixed(2)	}

																</span>

												</h4>

												<div	className="card-text	bg-white	p-1">

																{	this.props.product.description	}

																<button	className="btn	btn-success

btn-sm	float-right"

																								onclick={	this.handleAddToCart

}	>

																				Add	To	Cart

																</button>

																<select	className="form-control-inline

float-right	m-1"

																								onchange={

this.handleQuantityChange	}>

																				<option>1</option>

																				<option>2</option>

																				<option>3</option>



																</select>

												</div>

								</div>

				}

				handleQuantityChange	=	(ev:	Event):	void	=>	{

								this.quantity	=	Number((ev.target	as

HTMLSelectElement).value);

				}

				handleAddToCart	=	():	void	=>	{

								this.props.callback(this.props.product,

this.quantity);

				}

}

Listing	15-31. The	Contents	of	the	productItem.tsx	File	in	the	src	Folder

The	ProductItem	class	receives	a	Product	object	and	a	callback
function	through	its	props.	The	getContent	method	renders	HTML	elements
that	display	the	details	of	the	Product	object,	along	with	a	select	element
that	allows	a	quantity	to	be	selected	and	a	button	that	the	user	will	click	to	add
items	to	the	order.

The	select	and	button	elements	are	configured	with	event	handling
functions	using	the	onchange	and	onclick	props.	The	methods	that	handle
the	events	are	defined	using	the	fat	arrow	syntax,	like	this:

...

handleQuantityChange	=	(ev:	Event):	void	=>	{

				this.quantity	=	Number((ev.target	as

HTMLSelectElement).value);

}

...

The	fat	arrow	syntax	ensures	that	the	this	keyword	refers	to	the
ProductItem	object,	which	allows	the	props	and	quantity	properties	to
be	used.	If	a	conventional	method	is	used	to	handle	an	event,	this	refers	to	the
object	that	describes	the	event.

The	TypeScript	type	declarations	for	DOM	API	event	handling	are	awkward
and	require	a	type	assertion	for	the	target	of	the	event	before	its	features	can	be



accessed.

...

handleQuantityChange	=	(ev:	Event):	void	=>	{

				this.quantity	=	Number((ev.target	as

HTMLSelectElement).value);

}

...

To	read	the	value	property	from	the	select	element,	I	have	to	apply	an
assertion	to	tell	the	TypeScript	compiler	that	the	event.target	property	will
return	an	HTMLSelectElement	object.

Tip The	HTMLSelectElement	type	is	one	of	the	standard	DOM	API
types,	which	are	described	in	detail	at
https://developer.mozilla.org/en-

US/docs/Web/API/HTMLElement.

To	display	a	list	of	category	buttons	allowing	the	user	to	filter	the	content,	add	a
file	called	categoryList.tsx	to	the	src	folder	with	the	contents	shown	in
Listing	15-32.

import	{	createElement	}	from	"./tools/jsxFactory";

export	class	CategoryList	{

				props:	{

								categories:	string[];

								selectedCategory:	string,

								callback:	(selected:	string)	=>	void

				}

				getContent():	HTMLElement	{

								return	<div>

												{	["All",	...this.props.categories].map(c

=>	this.getCategoryButton(c))}

								</div>

				}

https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement


				getCategoryButton(cat?:	string):	HTMLElement	{

								let	selected	=	this.props.selectedCategory	===

undefined

												?	"All":	this.props.selectedCategory;

								let	btnClass	=	selected	===	cat	?	"btn-

primary":	"btn-secondary";

								return	<button	className={	`btn	btn-block

${btnClass}`	}

																onclick={	()	=>

this.props.callback(cat)}>

												{	cat	}

								</button>

				}

}

Listing	15-32. The	Contents	of	the	categoryList.tsx	File	in	the	src	Folder

This	class	displays	a	list	of	button	elements	that	are	styled	using	Bootstrap
classes.	The	props	for	this	class	provide	the	list	of	categories	for	which	buttons
should	be	created,	the	currently	selected	category,	and	a	callback	function	to
invoke	when	the	user	clicks	a	button.

...

return	<button	className={	`btn	btn-block	${btnClass}`

}

				onclick={	()	=>	this.props.callback(cat)	}>

...

This	pattern	is	common	when	JSX	is	used	so	that	classes	render	HTML
elements	using	data	received	via	props;	this	props	also	includes	callback
functions	that	are	invoked	in	response	to	events.	In	this	case,	the	onclick
attribute	is	used	to	invoke	the	function	received	through	the	callback	prop.

To	display	a	list	of	products	and	the	category	buttons,	add	a	file	called
productList.tsx	to	the	src	folder	with	the	contents	shown	in	Listing	15-
33.

import	{	createElement	}	from	"./tools/jsxFactory";

import	{	Product	}	from	"./data/entities";

import	{	ProductItem	}	from	"./productItem";

import	{	CategoryList	}	from	"./categoryList";



export	class	ProductList	{

				props:	{

								products:	Product[],

								categories:	string[],

								selectedCategory:	string,

								addToOrderCallback?:	(product:	Product,

quantity:	number)	=>	void,

								filterCallback?:	(category:	string)	=>	void;

				}

				getContent():	HTMLElement	{

								return	<div	className="container-fluid">

												<div	className="row">

																<div	className="col-3	p-2">

																				<CategoryList	categories={

this.props.categories	}

																								selectedCategory={

this.props.selectedCategory	}

																								callback={

this.props.filterCallback	}	/>

																</div>

																<div	className="col-9	p-2">

																				{

																								this.props.products.map(p	=>

																												<ProductItem	product={	p	}

																																callback={

this.props.addToOrderCallback	}	/>)

																				}

																</div>

												</div>

								</div>

				}

}

Listing	15-33. The	Contents	of	the	productList.tsx	File	in	the	src	Folder

The	getContent	method	in	this	class	relies	on	one	of	the	most	useful	JSX
features,	which	is	the	ability	to	apply	other	JSX	classes	as	HTML	elements,	like
this:



...

<div	className="col-3	p-2">

				<CategoryList	categories={	this.props.categories	}

								selectedCategory={	this.props.selectedCategory

}

								callback={	this.props.filterCallback	}	/>

</div>

...

When	it	parses	the	TSX	file,	the	TypeScript	compiler	detects	that	the	custom
tag	creates	a	statement	that	invokes	the	factory	function	with	the	corresponding
class.	At	runtime,	a	new	instance	of	the	class	is	created,	the	attributes	of	the
element	are	assigned	to	the	props	property,	and	the	getContent	method	is
called	to	get	the	content	to	include	in	the	HTML	presented	to	the	user.

Displaying	Content	and	Handling	Updates
I	need	to	create	a	bridge	between	the	features	of	the	data	store	and	the	JSX
classes	that	display	content	to	the	user,	ensuring	that	the	content	is	updated	to
reflect	changes	in	the	application	state.	The	frameworks	demonstrated	in	later
chapters	take	care	of	handling	updates	efficiently	and	minimizing	the	amount	of
work	the	browser	does	to	display	changes.

I	am	going	to	take	the	simplest	approach	for	the	example	application,	which
is	to	deal	with	changes	by	destroying	and	re-creating	the	HTML	elements
displayed	by	the	browser,	as	shown	in	Listing	15-34,	which	revises	the
HtmlDisplay	class	so	that	it	receives	a	data	source	and	manages	the	state	data
required	to	display	a	list	of	products	filtered	by	category.

import	{	createElement	}	from	"./tools/jsxFactory";

import	{	Product,	Order	}	from	"./data/entities";

import	{	AbstractDataSource	}	from

"./data/abstractDataSource";

import	{	ProductList	}	from	"./productList";

export	class	HtmlDisplay	{

				private	containerElem:	HTMLElement;

				private	selectedCategory:	string;

				constructor()	{

								this.containerElem	=



document.createElement("div");

				}

				props:	{

								dataSource:	AbstractDataSource;

				}

				async	getContent():	Promise<HTMLElement>	{

								await	this.updateContent();

								return	this.containerElem;

				}

				async	updateContent()	{

								let	products	=	await

this.props.dataSource.getProducts("id",

												this.selectedCategory);

								let	categories	=	await

this.props.dataSource.getCategories();

								this.containerElem.innerHTML	=	"";

								let	content	=	<div>

												<ProductList	products={	products	}

categories={	categories	}

																selectedCategory={

this.selectedCategory	}

																addToOrderCallback={	this.addToOrder	}

																filterCallback={	this.selectCategory}

/>

								</div>

								this.containerElem.appendChild(content);

				}

				addToOrder	=	(product:	Product,	quantity:	number)

=>	{

								this.props.dataSource.order.addProduct(product,

quantity);

								this.updateContent();

				}

				selectCategory	=	(selected:	string)	=>	{



								this.selectedCategory	=	selected	===	"All"	?

undefined	:	selected;

								this.updateContent();

				}

}

Listing	15-34. Displaying	Content	in	the	htmlDisplay.tsx	File	in	the	src	Folder

The	methods	defined	by	the	HtmlDisplay	class	are	used	as	the	callback
functions	for	the	ProductList	class,	which	passes	them	on	to	the
ProductItem	and	CategoryList	classes.	When	these	methods	are
invoked,	they	update	the	properties	that	keep	track	of	the	application	state	and
then	call	the	updateContent	method,	which	replaces	the	HTML	rendered	by
the	class.

To	provide	the	HtmlDisplay	class	with	the	props	it	requires,	update	the
index.ts	file,	as	shown	in	Listing	15-35.

import	{	LocalDataSource	}	from

"./data/localDataSource";

import	{	HtmlDisplay	}	from	"./htmlDisplay";

import	"bootstrap/dist/css/bootstrap.css";

let	ds	=	new	LocalDataSource();

function	displayData():	Promise<HTMLElement>	{

				let	display	=	new	HtmlDisplay();

				display.props	=	{

								dataSource:	ds

				}

				return	display.getContent();

}

document.onreadystatechange	=	()	=>	{

				if	(document.readyState	===	"complete")	{

								displayData().then(elem	=>	{

												let	rootElement	=

document.getElementById("app");

												rootElement.innerHTML	=	"";

												rootElement.appendChild(elem);

								});



				}

};

Listing	15-35. Changing	Props	in	the	index.ts	File	in	the	src	Folder

A	new	bundle	will	be	created	when	the	changes	are	saved,	triggering	a
browser	reload	and	displaying	the	content	shown	in	Figure	15-8.	As	the	figure
shows,	clicking	a	category	button	filters	the	products	shown	to	the	user.

Figure	15-8. Displaying	products

Summary
In	this	chapter,	I	showed	you	how	to	create	a	simple	but	effective	development
toolchain	for	web	application	development	using	the	TypeScript	compiler	and
webpack.	I	showed	you	how	the	output	from	the	TypeScript	compiler	can	be
incorporated	into	a	webpack	bundle	and	how	the	support	for	JSX	can	be	used	to
simplify	working	with	HTML	elements.	In	the	next	chapter,	I	complete	the
stand-alone	web	application	and	prepare	it	for	deployment.



©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
A.	Freeman,	Essential	TypeScript	4
https://doi.org/10.1007/978-1-4842-7011-0_16

https://doi.org/10.1007/978-1-4842-7011-0_16


(1)

16.	Creating	a	Stand-Alone	Web	App,	Part	2
Adam	Freeman1		

London,	UK

	

In	this	chapter,	I	complete	the	stand-alone	web	application	and	prepare	it	for
deployment,	demonstrating	the	way	that	a	TypeScript	project	dovetails	with
standard	development	processes	for	deployment.	For	quick	reference,	Table	16-1
lists	the	TypeScript	compiler	options	used	in	this	chapter.

Table	16-1. The	TypeScript	Compiler	Options	Used	in	This	Chapter

Name Description

emitDecoratorMetadata This	option	includes	decorator	metadata	in	the	JavaScript	emitted	by	the
compiler.

experimentalDecorators This	option	enables	support	for	decorators.

jsx This	option	specifies	how	HTML	elements	in	TSX	files	are	processed.

jsxFactory This	option	specifies	the	name	of	the	factory	function	that	is	used	to
replace	HTML	elements	in	TSX	files.

moduleResolution This	option	specifies	the	style	of	module	resolution	that	should	be	used
to	resolve	dependencies.

outDir This	option	specifies	the	directory	in	which	the	JavaScript	files	will	be
placed.

rootDir This	option	specifies	the	root	directory	that	the	compiler	will	use	to
locate	TypeScript	files.

target This	option	specifies	the	version	of	the	JavaScript	language	that	the
compiler	will	target	in	its	output.

Preparing	for	This	Chapter
In	this	chapter,	I	continue	to	use	the	webapp	project	created	in	Chapter	15.	To
prepare	for	this	chapter,	open	a	new	command	prompt,	navigate	to	the	webapp
folder,	and	run	the	commands	shown	in	Listing	16-1	to	add	new	packages	to	the
project.



Tip You	can	download	the	example	project	for	this	chapter—and	for	all	the
other	chapters	in	this	book—from
https://github.com/Apress/essential-typescript-4.

npm	install	--save-dev	json-server@0.16.3

npm	install	--save-dev	npm-run-all@4.1.5

Listing	16-1. Adding	Packages	to	the	Project

The	json-server	package	is	a	RESTful	web	service	that	will	provide
data	for	the	application,	replacing	the	local	test	data	used	in	Chapter	15.	The
npm-run-all	package	is	a	useful	tool	for	running	multiple	NPM	packages
from	a	single	command.

To	provide	the	web	service	with	its	data,	create	a	file	called	data.js	in	the
webapp	folder	with	the	contents	shown	in	Listing	16-2.

module.exports	=	function	()	{

				return	{

								products:	[

												{	id:	1,	name:	"Kayak",	category:

"Watersports",

																description:	"A	boat	for	one	person",

price:	275	},

												{	id:	2,	name:	"Lifejacket",	category:

"Watersports",

																description:	"Protective	and

fashionable",	price:	48.95	},

												{	id:	3,	name:	"Soccer	Ball",	category:

"Soccer",

																description:	"FIFA-approved	size	and

weight",	price:	19.50	},

												{	id:	4,	name:	"Corner	Flags",	category:

"Soccer",

																description:	"Give	your	playing	field

a	professional	touch",

																price:	34.95	},

												{	id:	5,	name:	"Stadium",	category:

"Soccer",

																description:	"Flat-packed	35,000-seat

https://github.com/Apress/essential-typescript-4


stadium",	price:	79500	},

												{	id:	6,	name:	"Thinking	Cap",	category:

"Chess",

																description:	"Improve	brain	efficiency

by	75%",	price:	16	},

												{	id:	7,	name:	"Unsteady	Chair",	category:

"Chess",

																description:	"Secretly	give	your

opponent	a	disadvantage",

																price:	29.95	},

												{	id:	8,	name:	"Human	Chess	Board",

category:	"Chess",

																description:	"A	fun	game	for	the

family",	price:	75	},

												{	id:	9,	name:	"Bling	Bling	King",

category:	"Chess",

																description:	"Gold-plated,	diamond-

studded	King",	price:	1200	}

								],

								orders:	[]

				}

}

Listing	16-2. The	Contents	of	the	data.js	File	in	the	webapp	Folder

The	json-server	package	will	be	configured	to	use	the	data	in	Listing
16-2,	which	will	cause	it	to	reset	each	time	it	is	restarted.	(The	package	can	also
store	data	persistently,	but	that	is	not	as	useful	for	example	projects	where	a
known	baseline	is	more	useful.)

To	configure	the	development	tools,	update	the	scripts	section	of	the
package.json	file,	as	shown	in	Listing	16-3.

...

		"scripts":	{

				"json":	"json-server	data.js	-p	4600",

				"wds":	"webpack	serve",

				"start":	"npm-run-all	-p	json	wds"

		},

...



Listing	16-3. Configuring	the	Development	Tools	in	the	package.json	File	in	the	webapp	Folder

These	entries	allow	both	the	web	service	that	will	provide	the	data	and	the
webpack	HTTP	server	to	be	started	with	a	single	command.	Use	the	command
prompt	to	run	the	command	shown	in	Listing	16-4	in	the	webapp	folder.

npm	start

Listing	16-4. Starting	the	Development	Tools

The	web	service	will	start,	although	the	data	has	yet	to	be	integrated	into	the
application.	To	test	the	web	service,	use	the	browser	to	navigate	to
http://localhost:4600/products,	which	will	produce	the	response
shown	in	Figure	16-1.

Figure	16-1. Getting	data	from	the	web	service

The	TypeScript	files	will	be	compiled,	a	bundle	will	be	created,	and	the
development	HTTP	server	will	start	listening	for	HTTP	requests.	Open	a	new
browser	window	and	navigate	to	http://localhost:4500	to	see	the
content	shown	in	Figure	16-2.



Figure	16-2. Running	the	example	application

Adding	a	Web	Service
In	Chapter	15,	I	used	local	test	data	to	get	started.	I	find	this	a	useful	approach	to
laying	the	foundation	for	a	project,	without	getting	bogged	down	in	the	details	of
getting	the	data	from	a	server.	But	now	that	the	application	is	taking	shape,	it	is
time	to	add	a	web	service	and	start	working	with	remote	data.	Open	a	new
command	prompt,	navigate	to	the	webapp	folder,	and	run	the	command	shown
in	Listing	16-5	to	add	a	new	package	to	the	project.

npm	install	axios@0.21.1

Listing	16-5. Adding	a	Package	to	the	Project

Many	packages	are	available	for	making	HTTP	requests	in	JavaScript
applications,	all	of	which	use	APIs	provided	by	the	browser.	In	this	chapter,	I	am
using	the	Axios	package,	which	is	a	popular	choice	because	it	is	easy	to	work
with	and	comes	complete	with	TypeScript	declarations.	To	create	a	data	source
that	uses	HTTP	requests,	add	a	file	called	remoteDataSource.ts	in	the
src/data	folder	and	add	the	code	shown	in	Listing	16-6.

Tip There	are	two	APIs	provided	by	browsers	for	making	HTTP	requests.
The	traditional	API	is	XmlHttpRequest	and	is	supported	by	all	browsers,



but	it	difficult	to	work	with.	There	is	a	new	API,	named	Fetch,	that	is	easier	to
work	with	but	is	not	supported	by	older	browsers.	You	can	use	either	API
directly,	but	packages	like	Axios	provide	an	API	that	is	easy	to	work	with
while	preserving	support	for	older	browsers.

import	{	AbstractDataSource	}	from

"./abstractDataSource";

import	{	Product,	Order	}	from	"./entities";

import	Axios	from	"axios";

const	protocol	=	"http";

const	hostname	=	"localhost";

const	port	=	4600;

const	urls	=	{

				products:

`${protocol}://${hostname}:${port}/products`,

				orders:	`${protocol}://${hostname}:${port}/orders`

};

export	class	RemoteDataSource	extends

AbstractDataSource	{

				loadProducts():	Promise<Product[]>	{

								return	Axios.get(urls.products).then(response

=>	response.data);

				}

				storeOrder():	Promise<number>	{

								let	orderData	=	{

												lines:

[...this.order.orderLines.values()].map(ol	=>	({

																productId:	ol.product.id,

																productName:	ol.product.name,

																quantity:	ol.quantity

												}))

								}

								return	Axios.post(urls.orders,

orderData).then(response	=>	response.data.id);



				}

}

Listing	16-6. The	Contents	of	the	remoteDataSource.ts	File	in	the	src/data	Folder

The	Axios	package	provides	get	and	post	methods	that	send	HTTP
requests	with	the	corresponding	verbs.	The	implementation	of	the
loadProducts	method	sends	a	GET	request	to	the	web	service	to	get	the
product	data.	The	storeOrder	method	transforms	the	details	of	the	order	to	a
shape	that	can	be	easily	stored	and	sends	the	data	to	the	web	service	as	a	POST
request.	The	web	service	will	respond	with	the	object	that	has	been	stored,	which
includes	an	id	value	that	uniquely	identifies	the	stored	object.

Incorporating	the	Data	Source	into	the	Application
A	configuration	change	is	required	so	that	the	TypeScript	compiler	can	resolve
the	dependency	on	the	Axios	package,	as	shown	in	Listing	16-7.

{

				"compilerOptions":	{

								"target":	"es2020",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"jsx":	"react",

								"jsxFactory":	"createElement",

								"moduleResolution":	"node"

				}

}

Listing	16-7. Configuring	the	TypeScript	Compiler	in	the	tsconfig.json	File	in	the	webapp	Folder

This	change	tells	the	compiler	that	it	can	resolve	dependencies	by	looking	in
the	node_modules	folder.	No	change	is	required	for	webpack.	Listing	16-8
updates	the	index.ts	file	to	use	the	new	data	source.

//import	{	LocalDataSource	}	from

"./data/localDataSource";

import	{	RemoteDataSource	}	from

"./data/remoteDataSource";

import	{	HtmlDisplay	}	from	"./htmlDisplay";

import	"bootstrap/dist/css/bootstrap.css";



let	ds	=	new	RemoteDataSource();

function	displayData():	Promise<HTMLElement>	{

				let	display	=	new	HtmlDisplay();

				display.props	=	{

								dataSource:	ds

				}

				return	display.getContent();

}

document.onreadystatechange	=	()	=>	{

				if	(document.readyState	===	"complete")	{

								displayData().then(elem	=>	{

												let	rootElement	=

document.getElementById("app");

												rootElement.innerHTML	=	"";

												rootElement.appendChild(elem);

								});

				}

};

Listing	16-8. Changing	the	Data	Source	in	the	index.ts	File	in	the	src	Folder

The	development	tools	must	be	restarted	to	apply	the	configuration	change	in
Listing	16-7.	Use	Control+C	to	stop	the	combined	web	service	and	webpack
process,	and	run	the	command	shown	in	Listing	16-9	in	the	webapp	folder	to
start	them	again.

npm	start

Listing	16-9. Starting	the	Development	Tools

Use	a	browser	to	navigate	to	http://localhost:4500,	and	you	will
see	the	data	that	has	been	retrieved	from	the	web	service,	as	shown	in	Figure	16-
3.



Figure	16-3. Using	remote	data

Using	Decorators
In	the	same	way	that	JSX	is	most	closely	associated	with	React,	the	decorator
feature	is	associated	with	Angular	(although	it	can	also	be	useful	in	Vue.js
applications,	as	shown	in	Chapter	21).	Decorators	are	a	proposed	addition	to	the
JavaScript	specification,	but	they	are	not	widely	used	outside	of	Angular
development	and	must	be	enabled	with	a	compiler	configuration	setting,	as
shown	in	Listing	16-10.

{

				"compilerOptions":	{

								"target":	"es2020",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"jsx":	"react",

								"jsxFactory":	"createElement",

								"moduleResolution":	"node",

								"experimentalDecorators":	true

				}

}

Listing	16-10. Enabling	Decorators	in	the	tsconfig.json	File	in	the	webapp	Folder



Decorators	are	annotations	that	can	be	applied	to	modify	classes,	methods,
properties,	and	parameters.	To	create	a	simple	decorator	for	this	chapter,	I	added
a	file	called	decorators.ts	to	the	src	folder	and	added	the	code	shown	in
Listing	16-11.

export	const	minimumValue	=	(propName:	string,	min:

number)	=>

				(constructor:	any,	methodName:	string,	descriptor:

PropertyDescriptor):	any	=>	{

								const	origFunction	=	descriptor.value;

								descriptor.value	=	async	function

wrapper(...args)	{

												let	results	=	await

origFunction.apply(this,	args);

												return	results.map(r	=>	({	...r,

[propName]:	r[propName]	<	min

																?	min	:	r[propName]	}));

								}

				}

Listing	16-11. The	Contents	of	the	decorators.ts	File	in	the	src	Folder

Writing	decorators	can	be	difficult	because	they	rely	on	a	set	of	nested
functions.	The	minimumValue	function	receives	parameters	that	contain	the
name	of	the	property	to	operate	on	and	the	minimum	value	to	apply.	The	result	is
a	function	that	is	invoked	at	runtime	and	whose	parameters	are	the	class	to	which
the	decorator	has	been	applied,	the	name	of	the	method,	and	a
PropertyDescriptor	object	that	describes	the	method.	The
PropertyDescriptor	type	is	an	interface	provided	by	TypeScript	that
describes	the	shape	of	JavaScript	properties.	For	methods,	the
PropertyDescriptor.value	property	is	used	to	store	the	function,	and
this	is	replaced	by	an	implementation	that	invokes	the	original	method	and	then
processes	the	result	to	set	the	minimum	property	value.

In	Listing	16-12,	I	applied	the	minimumValue	decorator	to	the	method	that
returns	Product	objects,	enforcing	a	minimum	value	of	30	for	the	price
property.

import	{	Product,	Order	}	from	"./entities";

import	{	minimumValue	}	from	"../decorators";



export	type	ProductProp	=	keyof	Product;

export	abstract	class	AbstractDataSource	{

				private	_products:	Product[];

				private	_categories:	Set<string>;

				public	order:	Order;

				public	loading:	Promise<void>;

				constructor()	{

								this._products	=	[];

								this._categories	=	new	Set<string>();

								this.order	=	new	Order();

								this.loading	=	this.getData();

				}

				@minimumValue("price",	30)

				async	getProducts(sortProp:	ProductProp	=	"id",

												category?	:	string):	Promise<Product[]>	{

								await	this.loading;

								return	this.selectProducts(this._products,

sortProp,	category);

				}

				//	...other	methods	omitted	for	brevity...

}

Listing	16-12. Applying	a	Decorator	in	the	abstractDataSource.ts	File	in	the	src/data	Folder

Stop	the	development	tools	using	Control+C,	and	run	the	command	shown	in
Listing	16-13	in	the	webapp	folder	to	start	them	again	using	the	new	compiler
configuration.

npm	start

Listing	16-13. Starting	the	Development	Tools

The	result	is	that	products	have	a	minimum	price	of	$30,	as	shown	in	Figure
16-4.



Figure	16-4. Using	a	decorator	to	enforce	a	minimum	value

Using	Decorator	Metadata
Decorator	functions	are	invoked	at	runtime,	which	means	they	have	no	access	to
the	type	information	from	the	TypeScript	source	files	or	the	types	inferred	by	the
compiler.	To	ease	the	process	of	writing	decorators,	the	TypeScript	compiler	can
include	metadata	when	decorators	are	used	that	provides	details	of	the	types
involved.	To	enable	this	feature,	change	the	configuration	of	the	TypeScript
compiler,	as	shown	in	Listing	16-14.

{

				"compilerOptions":	{

								"target":	"es2020",

								"outDir":	"./dist",

								"rootDir":	"./src",

								"jsx":	"react",

								"jsxFactory":	"createElement",

								"moduleResolution":	"node",

								"experimentalDecorators":	true,

								"emitDecoratorMetadata":	true



				}

}

Listing	16-14. Configuring	the	TypeScript	Compiler	in	the	tsconfig.json	File	in	the	webapp	Folder

The	emitDecoratorMetadata	compiler	option	requires	an	additional
package	in	the	project.	Open	a	new	command	prompt,	navigate	to	the	webapp
folder,	and	run	the	command	shown	in	Listing	16-15.

npm	install	reflect-metadata@0.1.13

Listing	16-15. Adding	a	Package	to	the	Project

During	compilation,	the	TypeScript	compiler	will	add	metadata	to	the
compiled	JavaScript,	which	is	accessed	using	the	reflect-metadata
package.	For	the	decorator	applied	to	the	method	in	Listing	16-14,	the	compiler
adds	the	metadata	items	described	in	Table	16-2.

Table	16-2. The	Metadata	for	a	Decorator	Applied	to	a	Method

Name Description

design:type This	item	describes	what	the	decorator	has	been	applied	to.	For	the	decorator	in
Listing	16-12,	this	will	be	Function.

design:paramtypes This	item	describes	the	types	of	the	parameters	of	the	function	to	which	the
decorator	has	been	applied.	For	the	decorator	in	Listing	16-12,	this	will	be
[String,	String],	indicating	two	parameters,	both	of	which	accept	string
values.

design:returntype This	item	describes	the	result	type	of	the	function	to	which	the	decorator	has
been	applied.	For	the	decorator	in	Listing	16-12,	this	will	be	Promise.

In	Listing	16-16,	I	have	defined	a	new	decorator	that	relies	on	the	metadata
feature.

import	"reflect-metadata";

export	const	minimumValue	=	(propName:	string,	min:	number)	=>

				(constructor:	any,	methodName:	string,	descriptor:

PropertyDescriptor):	any	=>	{

								const	origFunction	=	descriptor.value;

								descriptor.value	=	async	function	wrapper(...args)	{

												let	results	=	await	origFunction.apply(this,	args);

												return	results.map(r	=>	({	...r,	[propName]:



r[propName]	<	min

																?	min	:	r[propName]	}));

								}

				}

export	const	addClass	=	(selector:	string,	...classNames:

string[])	=>

				(constructor:	any,	methodName:	string,	descriptor:

PropertyDescriptor):	any	=>	{

								if	(Reflect.getMetadata("design:returntype",

																constructor,	methodName)	===	HTMLElement)	{

												const	origFunction	=	descriptor.value;

												descriptor.value	=	function	wrapper(...args)	{

																let	content:	HTMLElement	=

origFunction.apply(this,	args);

																content.querySelectorAll(selector).forEach(elem

=>

																				classNames.forEach(c	=>

elem.classList.add(c)));

																return	content;

												}

								}

				}

Listing	16-16. Defining	a	Decorator	in	the	decorators.ts	File	in	the	src	Folder

The	reflect-metadata	package	adds	methods	to	Reflect,	which	is
the	JavaScript	feature	that	allows	objects	to	be	inspected.	The	changes	in	Listing
16-16	use	the	Reflect.getMetadata	method	to	get	the
design:returntype	item	to	ensure	that	the	decorator	only	modifies
methods	that	return	HTMLElement	objects.	This	decorator	accepts	a	CSS
selector	that	is	used	to	locate	specific	elements	generated	by	the	method	and	add
them	to	one	or	more	classes.	Listing	16-17	applies	the	new	decorator	to	the
HTML	produced	by	the	ProductList	class.

import	{	createElement	}	from	"./tools/jsxFactory";

import	{	Product	}	from	"./data/entities";

import	{	ProductItem	}	from	"./productItem";

import	{	CategoryList	}	from	"./categoryList";

import	{	addClass	}	from	"./decorators";



export	class	ProductList	{

				props:	{

								products:	Product[],

								categories:	string[],

								selectedCategory:	string,

								addToOrderCallback?:	(product:	Product,

quantity:	number)	=>	void,

								filterCallback?:	(category:	string)	=>	void;

				}

				@addClass("select",	"bg-info",	"m-1")

				getContent():	HTMLElement	{

								return	<div	className="container-fluid">

												<div	className="row">

																<div	className="col-3	p-2">

																				<CategoryList	categories={

this.props.categories	}

																								selectedCategory={

this.props.selectedCategory	}

																								callback={

this.props.filterCallback	}	/>

																</div>

																<div	className="col-9	p-2">

																				{

																								this.props.products.map(p	=>

																												<ProductItem	product={	p	}

																																callback={

this.props.addToOrderCallback	}	/>)

																				}

																</div>

												</div>

								</div>

				}

}

Listing	16-17. Applying	a	Decorator	in	the	productList.tsx	File	in	the	src	Folder

This	example	mixes	features	that	are	closely	associated	with	the	React	and
Angular	frameworks,	showing	that	both	are	built	on	standard	features	and	both
can	be	used	in	the	same	application	(even	though	this	is	rarely	done	in	real



projects).
Stop	the	development	tools	using	Control+C,	and	run	the	command	shown	in

Listing	16-18	in	the	webapp	folder	to	start	them	again	so	that	the	compiler
configuration	change	takes	effect.

npm	start

Listing	16-18. Starting	the	Development	Tools

A	bundle	will	be	created	that	includes	the	metadata	and	the	package	required
to	use	it.	The	application	of	the	decorator	locates	the	select	elements	in	the
result	produced	by	the	ProductList	class	and	adds	them	to	classes	that
change	the	background	color	and	the	spacing	around	the	element,	as	shown	in
Figure	16-5.

Figure	16-5. Using	a	decorator	to	modify	HTML	elements

Completing	the	Application
Much	of	Chapter	15	was	spent	setting	up	the	development	tools	and	configuring
the	project	to	deal	with	JSX,	which	makes	it	easier	to	work	with	HTML	content
in	code	files.	Now	that	the	basic	structure	of	the	application	is	in	place,	adding
new	features	is	relatively	simple.	There	are	no	new	TypeScript	features	in	this
section	of	the	chapter,	which	just	completes	the	application.



Adding	a	Header	Class
To	display	a	header	that	provides	the	user	with	a	summary	of	their	selections,
add	a	file	called	header.tsx	to	the	src	folder	with	the	contents	shown	in
Listing	16-19.

import	{	createElement	}	from	"./tools/jsxFactory";

import	{	Order	}	from	"./data/entities";

export	class	Header	{

				props:	{

								order:	Order,

								submitCallback:	()	=>	void

				}

				getContent():	HTMLElement	{

								let	count	=	this.props.order.productCount;

								return	<div	className="p-1	bg-secondary	text-

white	text-right">

												{	count	===	0	?	"(No	Selection)"

																:	`${	count	}	product(s),	$${

this.props.order.total.toFixed(2)}`	}

												<button	className="btn	btn-sm	btn-primary

m-1"

																				onclick={

this.props.submitCallback	}>

																Submit	Order

												</button>

								</div>

				}

}

Listing	16-19. The	Contents	of	the	header.tsx	File	in	the	src	Folder

This	class	receives	an	Order	object	and	a	callback	function	through	its
props.	A	simple	summary	of	the	Order	is	displayed,	along	with	a	button	that
invokes	the	callback	function	when	it	is	clicked.

Adding	an	Order	Details	Class
To	display	details	of	the	order,	add	a	file	called	orderDetails.tsx	to	the



src	folder	and	add	the	code	shown	in	Listing	16-20.

import	{	createElement	}	from	"./tools/jsxFactory";

import	{	Product,	Order	}	from	"./data/entities";

export	class	OrderDetails	{

				props:	{

								order:	Order

								cancelCallback:	()	=>	void,

								submitCallback:	()	=>	void

				}

				getContent():	HTMLElement	{

								return	<div>

												<h3	className="text-center	bg-primary

text-white	p-2">

																Order	Summary

												</h3>

												<div	className="p-3">

																<table	className="table	table-sm

table-striped">

																				<thead>

																								<tr>

																												<th>Quantity</th>

<th>Product</th>

																												<th	className="text-

right">Price</th>

																												<th	className="text-

right">Subtotal</th>

																								</tr>

																				</thead>

																				<tbody>

																								{

this.props.order.orderLines.map(line	=>

																												<tr>

																																<td>{	line.quantity	}

</td>

																																<td>{



line.product.name	}</td>

																																<td	className="text-

right">

																																				${

line.product.price.toFixed(2)	}

																																</td>

																																<td	className="text-

right">

																																				${

line.total.toFixed(2)	}

																																</td>

																												</tr>

																								)}

																				</tbody>

																				<tfoot>

																								<tr>

																												<th	className="text-right"

colSpan="3">Total:</th>

																												<th	className="text-

right">

																																${

this.props.order.total.toFixed(2)	}

																												</th>

																								</tr>

																				</tfoot>

																</table>

												</div>

												<div	className="text-center">

																<button	className="btn	btn-secondary

m-1"

																								onclick={

this.props.cancelCallback	}>

																				Back

																</button>

																<button	className="btn	btn-primary	m-

1"

																								onclick={

this.props.submitCallback	}>

																				Submit	Order



																</button>

												</div>

								</div>

				}

}

Listing	16-20. The	Contents	of	the	orderDetails.tsx	File	in	the	src	Folder

The	OrderDetails	class	displays	a	table	containing	the	details	of	the
order,	along	with	buttons	to	return	to	the	product	list	or	to	submit	the	order.

Adding	a	Confirmation	Class
To	display	a	message	when	an	order	has	been	submitted,	add	a	file	called
summary.tsx	to	the	src	folder	and	add	the	code	shown	in	Listing	16-21.

import	{	createElement	}	from	"./tools/jsxFactory";

export	class	Summary	{

				props:	{

								orderId:	number,

								callback:	()	=>	void

				}

				getContent():	HTMLElement	{

								return	<div	className="m-2	text-center">

												<h2>Thanks!</h2>

												<p>Thanks	for	placing	your	order.</p>

												<p>Your	order	is	#{	this.props.orderId	}

</p>

												<p>We'll	ship	your	goods	as	soon	as

possible.</p>

												<button	className="btn	btn-primary"

onclick={	this.props.callback	}>

																OK

												</button>

								</div>

				}

}

Listing	16-21. The	Contents	of	the	summary.tsx	File	in	the	src	Folder



This	class	displays	a	simple	message	that	contains	the	unique	ID	assigned	by
the	web	service	and	a	button	that	invokes	a	callback	received	as	a	prop	when	it	is
clicked.

Completing	the	Application
The	final	step	is	to	add	the	code	that	will	combine	the	classes	created	in	the
earlier	sections,	provide	them	with	the	data	and	callback	functions	they	require
through	their	props,	and	display	the	HTML	content	they	generate,	as	shown	in
Listing	16-22.

import	{	createElement	}	from	"./tools/jsxFactory";

import	{	Product,	Order	}	from	"./data/entities";

import	{	AbstractDataSource	}	from

"./data/abstractDataSource";

import	{	ProductList	}	from	"./productList";

import	{	Header	}	from	"./header";

import	{	OrderDetails	}	from	"./orderDetails";

import	{	Summary	}	from	"./summary";

enum	DisplayMode	{

				List,	Details,	Complete

}

export	class	HtmlDisplay	{

				private	containerElem:	HTMLElement;

				private	selectedCategory:	string;

				private	mode:	DisplayMode	=	DisplayMode.List;

				private	orderId:	number;

				constructor()	{

								this.containerElem	=

document.createElement("div");

				}

				props:	{

								dataSource:	AbstractDataSource;

				}

				async	getContent():	Promise<HTMLElement>	{



								await	this.updateContent();

								return	this.containerElem;

				}

				async	updateContent()	{

								let	products	=	await	this.props.dataSource

												.getProducts("id",	this.selectedCategory);

								let	categories	=	await

this.props.dataSource.getCategories();

								this.containerElem.innerHTML	=	"";

								let	contentElem:	HTMLElement;

								switch	(this.mode)	{

												case	DisplayMode.List:

																contentElem	=

this.getListContent(products,	categories);

																break;

												case	DisplayMode.Details:

																contentElem	=	<OrderDetails	order={

this.props.dataSource.order	}

																				cancelCallback={	this.showList	}

																				submitCallback={	this.submitOrder	}

/>

																break;

												case	DisplayMode.Complete:

																contentElem	=	<Summary	orderId={

this.orderId	}

																				callback=	{	this.showList	}	/>

																break;

								}

								this.containerElem.appendChild(contentElem);

				}

				getListContent(products:	Product[],	categories:

string[]):	HTMLElement	{

								return	<div>

												<Header	order={	this.props.dataSource.order

}

																submitCallback={	this.showDetails	}	/>

												<ProductList	products={	products	}



categories={	categories	}

																selectedCategory={

this.selectedCategory	}

																addToOrderCallback={	this.addToOrder	}

																filterCallback={	this.selectCategory}

/>

								</div>

				}

				addToOrder	=	(product:	Product,	quantity:	number)

=>	{

								this.props.dataSource.order.addProduct(product,

quantity);

								this.updateContent();

				}

				selectCategory	=	(selected:	string)	=>	{

								this.selectedCategory	=	selected	===	"All"	?

undefined	:	selected;

								this.updateContent();

				}

				showDetails	=	()	=>	{

								this.mode	=	DisplayMode.Details;

								this.updateContent();

				}

				showList	=	()	=>	{

								this.mode	=	DisplayMode.List;

								this.updateContent();

				}

				submitOrder	=	()	=>	{

								this.props.dataSource.storeOrder().then(id	=>	{

												this.orderId	=	id;

												this.props.dataSource.order	=	new	Order();

												this.mode	=	DisplayMode.Complete;

												this.updateContent();

								});



				}

}

Listing	16-22. Completing	the	Application	in	the	htmlDisplay.tsx	File	in	the	src	Folder

The	additions	to	the	HtmlDisplay	class	are	used	to	determine	which	JSX
classes	are	used	to	display	content	to	the	user.	The	key	is	the	mode	property,
which	uses	the	values	of	the	DisplayMode	enum	to	select	content,	combined
with	the	showDetails,	showList,	and	submitOrder	methods,	which
change	the	mode	value	and	update	the	display.

There	can	often	be	a	single	class	in	a	web	application	that	becomes	a	point
where	complexity	is	concentrated,	even	in	a	simple	application	like	this	one.
Using	one	of	the	frameworks	described	in	the	chapters	that	follow	can	help	but
simply	expresses	it	in	a	different	way,	most	often	in	a	complex	set	of	mappings
between	the	URLs	the	application	supports	and	the	content	classes	that	they
correspond	to.

When	all	the	changes	are	saved	and	the	browser	has	loaded	the	new	bundle,
you	will	be	able	to	make	product	selections,	review	those	selections,	and	submit
them	to	the	server,	as	shown	in	Figure	16-6.

Figure	16-6. Using	the	example	application

When	you	submit	an	order,	you	can	see	the	data	that	the	server	has	stored	by
navigating	to	http://localhost:4600/orders,	as	shown	in	Figure	16-
7.

Note The	orders	are	not	stored	persistently	and	will	be	lost	when	the	web



service	is	stopped	or	restarted.	Persistent	storage	is	added	in	the	next	section.

Figure	16-7. Inspecting	the	submitted	orders

Deploying	the	Application
The	Webpack	Development	Server	and	the	toolchain	that	provides	it	with	the
bundle	cannot	be	used	in	production,	so	some	additional	work	is	required	to
prepare	an	application	for	deployment,	as	described	in	the	following	sections.

Adding	the	Production	HTTP	Server	Package
The	Webpack	Development	Server	should	not	be	used	in	production	because	the
features	it	provides	are	focused	on	creating	bundles	dynamically	based	on
changes	in	the	source	code.	For	production,	a	regular	HTTP	server	is	required	to
deliver	the	HTML,	CSS,	and	JavaScript	files	to	the	browser,	and	a	good	choice
for	simple	projects	is	the	open-source	Express	server,	which	is	a	JavaScript
package	that	is	executed	by	the	Node.js	runtime.	Use	Control+C	to	stop	the
development	tools,	and	use	the	command	prompt	to	run	the	command	shown	in
Listing	16-23	in	the	webapp	folder	to	install	the	express	package.

Note The	express	package	may	already	be	installed	because	it	is	used	by
other	tools.	Even	so,	it	is	good	practice	to	add	the	package	because	it	adds	a
dependency	in	the	project.json	file.



npm	install	--save-dev	express@4.17.1

Listing	16-23. Adding	a	Package	for	Deployment

Creating	the	Persistent	Data	File
The	json-server	package	will	store	its	data	persistently	when	configured	to
use	a	JSON	file,	rather	than	the	JavaScript	file	that	allows	the	data	to	be	reset
during	development.	Add	a	file	called	data.json	to	the	webapp	folder	and
add	the	content	shown	in	Listing	16-24.

{

				"products":	[

								{	"id":	1,	"name":	"Kayak",	"category":

"Watersports",

												"description":	"A	boat	for	one	person",

"price":	275	},

								{	"id":	2,	"name":	"Lifejacket",	"category":

"Watersports",

												"description":	"Protective	and

fashionable",	"price":	48.95	},

								{	"id":	3,	"name":	"Soccer	Ball",	"category":

"Soccer",

												"description":	"FIFA-approved	size	and

weight",	"price":	19.50	},

								{	"id":	4,	"name":	"Corner	Flags",	"category":

"Soccer",

												"description":	"Give	your	playing	field	a

professional	touch",

												"price":	34.95	},

								{	"id":	5,	"name":	"Stadium",	"category":

"Soccer",

												"description":	"Flat-packed	35,000-seat

stadium",	"price":	79500	},

								{	"id":	6,	"name":	"Thinking	Cap",	"category":

"Chess",

												"description":	"Improve	brain	efficiency

by	75%",	"price":	16	},

								{	"id":	7,	"name":	"Unsteady	Chair",

"category":	"Chess",



												"description":	"Secretly	give	your

opponent	a	disadvantage",

												"price":	29.95	},

								{	"id":	8,	"name":	"Human	Chess	Board",

"category":	"Chess",

												"description":	"A	fun	game	for	the

family",	"price":	75	},

								{	"id":	9,	"name":	"Bling	Bling	King",

"category":	"Chess",

												"description":	"Gold-plated,	diamond-

studded	King",	"price":	1200	}

				],

				"orders":	[]

}

Listing	16-24. The	Contents	of	the	data.json	File	in	the	webapp	Folder

This	is	the	same	product	information	I	added	to	the	JavaScript	file	in	Listing
16-2,	but	it	is	expressed	in	JSON	format,	which	means	that	the	stored	order	data
won’t	be	lost	when	the	application	is	stopped	or	restarted.

Creating	the	Server
To	create	the	server	that	will	deliver	the	application	and	its	data	to	the	browser,
create	a	file	called	server.js	in	the	webapp	folder	and	add	the	code	shown
in	Listing	16-25.

const	express	=	require("express");

const	jsonServer	=	require("json-server");

const	app	=	express();

app.use("/",	express.static("dist"));

app.use("/",	express.static("assets"));

const	router	=	jsonServer.router("data.json");

app.use(jsonServer.bodyParser)

app.use("/api",	(req,	resp,	next)	=>	router(req,	resp,

next));

const	port	=	process.argv[3]	||	4000;

app.listen(port,	()	=>	console.log(`Running	on	port



${port}`));

Listing	16-25. The	Contents	of	the	server.js	File	in	the	webapp	Folder

The	statements	in	the	server.js	file	configure	the	express	and	json-
server	packages	so	that	the	contents	of	the	dist	and	assets	folders	are
used	to	deliver	static	files	and	so	URLs	prefixed	with	/api	will	be	handled	by
the	web	service.

Tip You	can	write	server	code	like	this	in	TypeScript	and	then	compile	it	to
generate	the	JavaScript	that	will	be	executed	in	production.	This	is	a	good
idea	if	you	have	especially	complex	server	code,	but	I	find	working	directly
in	JavaScript	easier	for	simple	projects	that	are	only	combining	the	features
provided	by	different	packages.

Using	Relative	URLs	for	Data	Requests
The	web	service	that	provided	the	application	with	data	has	been	running
alongside	the	Webpack	Development	Server.	In	deployment,	I	am	going	to	listen
for	both	types	of	HTTP	requests	in	a	single	port.	In	preparation,	a	change	is
required	to	the	URLs	used	by	the	RemoteDataSource	class,	as	shown	in
Listing	16-26.

import	{	AbstractDataSource	}	from

"./abstractDataSource";

import	{	Product,	Order	}	from	"./entities";

import	Axios	from	"axios";

//	const	protocol	=	document.location.protocol;

//	const	hostname	=	document.location.hostname;

//	const	port	=	4600;

const	urls	=	{

				//	products:

`${protocol}//${hostname}:${port}/products`,

				//	orders:

`${protocol}//${hostname}:${port}/orders`

				products:	"/api/products",

				orders:	"/api/orders"

};



export	class	RemoteDataSource	extends

AbstractDataSource	{

				loadProducts():	Promise<Product[]>	{

								return	Axios.get(urls.products).then(response

=>	response.data);

				}

				storeOrder():	Promise<number>	{

								let	orderData	=	{

												lines:

[...this.order.orderLines.values()].map(ol	=>	({

																productId:	ol.product.id,

																productName:	ol.product.name,

																quantity:	ol.quantity

												}))

								}

								return	Axios.post(urls.orders,

orderData).then(response	=>	response.data.id);

				}

}

Listing	16-26. Using	Relative	URLs	in	the	remoteDataSource.ts	File	in	the	src/data	Folder

The	URLs	are	specified	relative	to	the	one	used	to	request	the	HTML
document,	following	the	common	convention	that	data	requests	are	prefixed
with	/api.

Building	the	Application
Run	the	command	shown	in	Listing	16-27	in	the	webapp	folder	to	create	a
bundle	that	can	be	used	in	production.

npx	webpack	--mode	"production"

Listing	16-27. Creating	the	Production	Bundle

When	the	mode	argument	is	production,	webpack	creates	a	bundle
whose	contents	are	minified,	meaning	that	they	are	optimized	for	size	instead	of
code	readability.	The	build	process	can	take	a	few	moments	to	complete	and	will
produce	the	following	output,	which	shows	which	files	have	been	incorporated
into	the	bundle:



asset	bundle.js	1.91	MiB	[emitted]	[minimized]	[big]	(name:	main)

1	related	asset

orphan	modules	15.7	KiB	[orphan]	13	modules

runtime	modules	878	bytes	4	modules

modules	by	path	./node_modules/axios/	41.3	KiB

		modules	by	path	./node_modules/axios/lib/helpers/*.js	9.02	KiB

10	modules

		modules	by	path	./node_modules/axios/lib/core/*.js	12.1	KiB	9

modules

		modules	by	path	./node_modules/axios/lib/*.js	12.7	KiB	3	modules

		modules	by	path	./node_modules/axios/lib/cancel/*.js	1.69	KiB	3

modules

		2	modules

modules	by	path	./node_modules/css-loader/dist/runtime/*.js	3.78

KiB

		./node_modules/css-loader/dist/runtime/cssWithMappingToString.js

2.21	KiB	[built]	[code	generated]

		./node_modules/css-loader/dist/runtime/api.js	1.57	KiB	[built]

[code	generated]

./src/index.ts	+	13	modules	16.4	KiB	[built]	[code	generated]

./node_modules/style-

loader/dist/runtime/injectStylesIntoStyleTag.js	6.67	KiB	[built]

[code	generated]

./node_modules/css-

loader/dist/cjs.js!./node_modules/bootstrap/dist/css/bootstrap.css

707	KiB	[built]	[code	generated]

./node_modules/reflect-metadata/Reflect.js	50	KiB	[built]	[code

generated]

WARNING	in	asset	size	limit:	The	following	asset(s)	exceed	the

recommended	size	limit	(244	KiB).

This	can	impact	web	performance.

Assets:

		bundle.js	(1.91	MiB)

WARNING	in	entrypoint	size	limit:	The	following	entrypoint(s)

combined	asset	size	exceeds	the	recommended	limit	(244	KiB).	This

can	impact	web	performance.

Entrypoints:

		main	(1.91	MiB)

						bundle.js



WARNING	in	webpack	performance	recommendations:

You	can	limit	the	size	of	your	bundles	by	using	import()	or

require.ensure	to	lazy	load	some	parts	of	your	application.

For	more	info	visit	https://webpack.js.org/guides/code-splitting/

webpack	5.17.0	compiled	with	3	warnings	in	5129	ms

The	TypeScript	files	are	compiled	into	JavaScript,	just	as	they	were	in
development,	and	the	bundle	file	is	written	to	the	dist	folder.	The	warnings
about	the	size	of	the	files	that	have	been	created	can	be	ignored.

Testing	the	Production	Build
To	make	sure	that	the	build	process	has	worked	and	the	configuration	changes
have	taken	effect,	run	the	command	shown	in	Listing	16-28	in	the	webapp
folder.

node	server.js

Listing	16-28. Starting	the	Production	Server

The	code	from	Listing	16-25	will	be	executed	and	will	produce	the	following
output:

Running	on	port	4000

Open	a	new	web	browser	and	navigate	to	http://localhost:4000,
which	will	show	the	application,	as	illustrated	in	Figure	16-8.



Figure	16-8. Running	the	production	build

Containerizing	the	Application
To	complete	this	chapter,	I	am	going	to	create	a	container	for	the	example
application	so	that	it	can	be	deployed	into	production.	At	the	time	of	writing,
Docker	is	the	most	popular	way	to	create	a	container,	which	is	a	pared-down
version	of	Linux	with	just	enough	functionality	to	run	the	application.	Most
cloud	platforms	or	hosting	engines	have	support	for	Docker,	and	its	tools	run	on
the	most	popular	operating	systems.

Installing	Docker
The	first	step	is	to	download	and	install	the	Docker	tools	on	your	development
machine,	which	is	available	from	www.docker.com/products/docker.
There	are	versions	for	macOS,	Windows,	and	Linux,	and	there	are	some
specialized	versions	to	work	with	the	Amazon	and	Microsoft	cloud	platforms.
The	free	Community	edition	is	sufficient	for	this	chapter.

Caution One	drawback	of	using	Docker	is	that	the	company	that	produces
the	software	has	gained	a	reputation	for	making	breaking	changes.	This	may
mean	that	the	example	that	follows	may	not	work	as	intended	with	later
versions.	If	you	have	problems,	check	the	repository	for	this	book	for	updates

http://www.docker.com/products/docker


(https://github.com/Apress/essential-typescript-4)	or
contact	me	at	adam@adam-freeman.com.

Preparing	the	Application
The	first	step	is	to	create	a	configuration	file	for	NPM	that	will	be	used	to
download	the	additional	packages	required	by	the	application	for	use	in	the
container.	I	created	a	file	called	deploy-package.json	in	the	webapp
folder	with	the	content	shown	in	Listing	16-29.

{

				"name":	"webapp",

				"description":	"Stand-Alone	Web	App",

				"repository":

"https://github.com/Apress/essential-typescript",

				"license":	"0BSD",

				"devDependencies":	{

								"express":	"4.17.1",

								"json-server":	"0.16.3"

						}

}

Listing	16-29. The	Contents	of	the	deploy-package.json	File	in	the	webapp	Folder

The	devDependencies	section	specifies	the	packages	required	to	run	the
application	in	the	container.	All	of	the	packages	for	which	there	are	import
statements	in	the	application’s	code	files	will	have	been	incorporated	into	the
bundle	created	by	webpack	and	are	listed.	The	other	fields	describe	the
application,	and	their	main	use	is	to	prevent	a	warning	when	the	container	is
created.

Creating	the	Docker	Container
To	define	the	container,	I	added	a	file	called	Dockerfile	(with	no	extension)
to	the	webapp	folder	and	added	the	content	shown	in	Listing	16-30.

FROM	node:14.15.4

RUN	mkdir	-p	/usr/src/webapp

COPY	dist	/usr/src/webapp/dist

https://github.com/Apress/essential-typescript-4


COPY	assets	/usr/src/webapp/assets

COPY	data.json	/usr/src/webapp/

COPY	server.js	/usr/src/webapp/

COPY	deploy-package.json	/usr/src/webapp/package.json

WORKDIR	/usr/src/webapp

RUN	echo	'package-lock=false'	>>	.npmrc

RUN	npm	install

EXPOSE	4000

CMD	["node",	"server.js"]

Listing	16-30. The	Contents	of	the	Dockerfile	File	in	the	webapp	Folder

The	contents	of	the	Dockerfile	use	a	base	image	that	has	been	configured
with	Node.js	and	copies	the	files	required	to	run	the	application,	including	the
bundle	file	containing	the	application	and	the	file	that	will	be	used	to	install	the
NPM	packages	required	to	run	the	application	in	deployment.

To	speed	up	the	containerization	process,	I	created	a	file	called
.dockerignore	in	the	webapp	folder	with	the	content	shown	in	Listing	16-
31.	This	tells	Docker	to	ignore	the	node_modules	folder,	which	is	not
required	in	the	container	and	takes	a	long	time	to	process.

node_modules

Listing	16-31. The	Contents	of	the	.dockerignore	File	in	the	webapp	Folder

Run	the	command	shown	in	Listing	16-32	in	the	webapp	folder	to	create	an
image	that	will	contain	the	example	application,	along	with	all	the	packages	it
requires.

docker	build	.	-t	webapp	-f		Dockerfile

Listing	16-32. Building	the	Docker	Image

An	image	is	a	template	for	containers.	As	Docker	processes	the	instructions
in	the	Docker	file,	the	NPM	packages	will	be	downloaded	and	installed,	and	the
configuration	and	code	files	will	be	copied	into	the	image.



Running	the	Application
Once	the	image	has	been	created,	create	and	start	a	new	container	using	the
command	shown	in	Listing	16-33.

docker	run	-p	4000:4000	webapp

Listing	16-33. Starting	the	Docker	Container

You	can	test	the	application	by	opening	http://localhost:4000	in
the	browser,	which	will	display	the	response	provided	by	the	web	server	running
in	the	container,	as	shown	in	Figure	16-9.

Figure	16-9. Running	the	containerized	application

To	stop	the	container,	run	the	command	shown	in	Listing	16-34.

docker	ps

Listing	16-34. Listing	the	Containers

You	will	see	a	list	of	running	containers,	like	this	(I	have	omitted	some	fields
for	brevity):

CONTAINER



ID				IMAGE					COMMAND																			CREATED

4b9b82772197				webapp				"docker-entrypoint.s…"				33

seconds	ago

Using	the	value	in	the	Container	ID	column,	run	the	command	shown	in
Listing	16-35.

docker	stop	4b9b82772197

Listing	16-35. Stopping	the	Container

The	application	is	ready	to	deploy	to	any	platform	that	supports	Docker.

Summary
In	this	chapter,	I	completed	the	development	of	the	stand-alone	web	application
by	adding	a	data	source	that	consumed	a	web	service	and	by	adding	JSX	classes
that	displayed	different	content	to	the	user.	I	finished	by	preparing	the
application	for	deployment	and	creating	a	Docker	container	image.	In	the	next
chapter,	I	build	a	web	application	using	the	Angular	framework.



©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
A.	Freeman,	Essential	TypeScript	4
https://doi.org/10.1007/978-1-4842-7011-0_17

https://doi.org/10.1007/978-1-4842-7011-0_17


(1)

17.	Creating	an	Angular	App,	Part	1
Adam	Freeman1		

London,	UK

	

In	this	chapter,	I	start	the	process	of	creating	an	Angular	web	application	that	has
the	same	set	of	features	as	the	example	in	Chapters	15	and	16.	Unlike	other
frameworks,	where	using	TypeScript	is	an	option,	Angular	puts	TypeScript	at	the
heart	of	web	application	development	and	relies	on	its	features,	especially
decorators.	For	quick	reference,	Table	17-1	lists	the	TypeScript	compiler	options
used	in	this	chapter.

Table	17-1. The	TypeScript	Compiler	Options	Used	in	This	Chapter

Name Description

baseUrl This	option	specifies	the	root	location	used	to	resolve	module
dependencies.

declaration This	option	produces	type	declaration	files	when	enabled,	which
describe	the	types	for	use	in	other	projects.

downlevelIteration This	option	enables	support	for	iterators	when	targeting	older	versions
of	JavaScript.

experimentalDecorators This	option	determines	whether	decorators	are	enabled.

importHelpers This	option	determines	whether	helper	code	is	added	to	the	JavaScript	to
reduce	the	amount	of	code	that	is	produced	overall.

lib This	option	selects	the	type	declaration	files	the	compiler	uses.

module This	option	determines	the	style	of	module	that	is	used.

moduleResolution This	option	specifies	how	modules	are	resolved.

outDir This	option	specifies	the	directory	in	which	the	JavaScript	files	will	be
placed.

sourceMap This	option	determines	whether	the	compiler	generates	source	maps	for
debugging.

target This	option	specifies	the	version	of	the	JavaScript	language	that	the
compiler	will	target	in	its	output.



Preparing	for	This	Chapter
Angular	projects	are	most	easily	created	using	the	angular-cli	package.
Open	a	command	prompt	and	run	the	command	shown	in	Listing	17-1	to	install
the	angular-cli	package.

Tip You	can	download	the	example	project	for	this	chapter—and	for	all	the
other	chapters	in	this	book—from
https://github.com/Apress/essential-typescript-4.

npm	install	--global	@angular/cli@11.1.1

Listing	17-1. Installing	the	Project	Creation	Package

The	Angular	package	names	are	prefixed	with	@.	Once	you	have	installed	the
package,	navigate	to	a	convenient	location	and	run	the	command	shown	in
Listing	17-2	to	create	a	new	Angular	project.

ng	new	angularapp

Listing	17-2. Creating	a	New	Project

The	Angular	development	tools	are	used	through	the	ng	command,	and	ng
new	creates	a	new	project.	During	the	setup	process,	you	will	be	asked	to	make
choices	about	the	way	the	new	project	is	configured.	Use	the	answers	from	Table
17-2	to	prepare	the	example	project	for	this	chapter.

Table	17-2. The	Project	Setup	Questions	and	Answers

Question Answer

Do	you	want	to	enforce	stricter	type	checking	and	stricter	bundle	budgets	in	the	workspace? No

Would	you	like	to	add	Angular	routing? Yes

Which	stylesheet	format	would	you	like	to	use? CSS

It	can	take	a	few	minutes	for	the	project	to	be	created	because	a	large	number
of	JavaScript	packages	must	be	downloaded.

Configuring	the	Web	Service
Once	the	creation	process	is	complete,	run	the	commands	shown	in	Listing	17-3
to	navigate	to	the	project	folder	and	add	the	packages	that	will	provide	the	web

https://github.com/Apress/essential-typescript-4


service	and	allow	multiple	packages	to	be	started	with	a	single	command.

cd	angularapp

npm	install	--save-dev	json-server@0.16.3

npm	install	--save-dev	npm-run-all@4.1.5

Listing	17-3. Adding	Packages	to	the	Project

To	provide	the	data	for	the	web	service,	add	a	file	called	data.js	to	the
angularapp	folder	with	the	content	shown	in	Listing	17-4.

module.exports	=	function	()	{

				return	{

								products:	[

												{	id:	1,	name:	"Kayak",	category:

"Watersports",

																description:	"A	boat	for	one	person",

price:	275	},

												{	id:	2,	name:	"Lifejacket",	category:

"Watersports",

																description:	"Protective	and

fashionable",	price:	48.95	},

												{	id:	3,	name:	"Soccer	Ball",	category:

"Soccer",

																description:	"FIFA-approved	size	and

weight",	price:	19.50	},

												{	id:	4,	name:	"Corner	Flags",	category:

"Soccer",

																description:	"Give	your	playing	field

a	professional	touch",

																price:	34.95	},

												{	id:	5,	name:	"Stadium",	category:

"Soccer",

																description:	"Flat-packed	35,000-seat

stadium",	price:	79500	},

												{	id:	6,	name:	"Thinking	Cap",	category:

"Chess",

																description:	"Improve	brain	efficiency

by	75%",	price:	16	},

												{	id:	7,	name:	"Unsteady	Chair",	category:



"Chess",

																description:	"Secretly	give	your

opponent	a	disadvantage",

																price:	29.95	},

												{	id:	8,	name:	"Human	Chess	Board",

category:	"Chess",

																description:	"A	fun	game	for	the

family",	price:	75	},

												{	id:	9,	name:	"Bling	Bling	King",

category:	"Chess",

																description:	"Gold-plated,	diamond-

studded	King",	price:	1200	}

								],

								orders:	[]

				}

}

Listing	17-4. The	Contents	of	the	data.js	File	in	the	angularapp	Folder

Update	the	scripts	section	of	the	package.json	file	to	configure	the
development	tools	so	that	the	Angular	toolchain	and	the	web	service	are	started
at	the	same	time,	as	shown	in	Listing	17-5.

...

"scripts":	{

		"ng":	"ng",

		"json":	"json-server	data.js	-p	4600",

		"serve":	"ng	serve",

		"start":	"npm-run-all	-p	serve	json",

		"build":	"ng	build",

		"test":	"ng	test",

		"lint":	"ng	lint",

		"e2e":	"ng	e2e"

},

...

Listing	17-5. Configuring	Tools	in	the	package.json	File	in	the	angularapp	Folder

These	entries	allow	both	the	web	service	that	will	provide	the	data	and	the
Angular	development	tools	to	be	started	with	a	single	command.



Configuring	the	Bootstrap	CSS	Package
Use	the	command	prompt	to	run	the	command	shown	in	Listing	17-6	in	the
angularapp	folder	to	add	the	Bootstrap	CSS	framework	to	the	project.

npm	install	bootstrap@4.6.0

Listing	17-6. Adding	the	CSS	Package

The	Angular	development	tools	require	a	configuration	change	to
incorporate	the	Bootstrap	CSS	stylesheet	in	the	application.	Open	the
angular.json	file	in	the	angularapp	folder	and	add	the	item	shown	in
Listing	17-7	to	the	build/styles	section.

Caution There	are	two	styles	settings	in	the	angular.json	file,	and
you	must	take	care	to	change	the	one	in	the	build	section	and	not	the	test
section.	If	you	don’t	see	styled	content	when	you	run	the	example	application,
the	likely	cause	is	that	you	have	edited	the	wrong	section.

...

"build":	{

				"builder":	"@angular-devkit/build-angular:browser",

				"options":	{

				"outputPath":	"dist/angularapp",

				"index":	"src/index.html",

				"main":	"src/main.ts",

				"polyfills":	"src/polyfills.ts",

				"tsConfig":	"src/tsconfig.app.json",

				"assets":	[

								"src/favicon.ico",

								"src/assets"

				],

				"styles":	[

								"src/styles.css",

									"node_modules/bootstrap/dist/css/bootstrap.min.css"

				],

				"scripts":	[],

				"es5BrowserSupport":	true

				},

...



Listing	17-7. Adding	a	Stylesheet	in	the	angular.json	File	in	the	angularapp	Folder

Starting	the	Example	Application
Use	the	command	prompt	to	run	the	command	shown	in	Listing	17-8	in	the
angularapp	folder.

npm	start

Listing	17-8. Starting	the	Development	Tools

The	Angular	development	tools	take	a	moment	to	start	and	perform	the
initial	compilation,	producing	output	like	this:

...

Compiling	@angular/core	:	es2015	as	esm2015

Compiling	@angular/common	:	es2015	as	esm2015

Compiling	@angular/platform-browser	:	es2015	as

esm2015

Compiling	@angular/router	:	es2015	as	esm2015

Compiling	@angular/platform-browser-dynamic	:	es2015

as	esm2015

√	Browser	application	bundle	generation	complete.

Initial	Chunk	Files			|	Names									|						Size

vendor.js													|	vendor								|			2.68	MB

styles.css,	styles.js	|	styles								|	489.97	kB

polyfills.js										|	polyfills					|	472.88	kB

main.js															|	main										|		58.50	kB

runtime.js												|	runtime							|			6.15	kB

																						|	Initial	Total	|			3.68	MB

Build	at:	2021-01-25T07:18:49.961Z	-	Hash:

063fb4c85c8d3ffee713	-	Time:	19481ms

**	Angular	Live	Development	Server	is	listening	on

localhost:4200,	open	your	browser	on

http://localhost:4200/	**

√	Compiled	successfully.

√	Browser	application	bundle	generation	complete.

Initial	Chunk	Files			|	Names		|						Size



styles.css,	styles.js	|	styles	|	489.97	kB

4	unchanged	chunks

Build	at:	2021-01-25T07:18:52.776Z	-	Hash:

49799edf3d51e390dbad	-	Time:	2350ms

√	Compiled	successfully.

...

Once	the	initial	compilation	has	been	completed,	open	a	browser	window
and	navigate	to	http://localhost:4200	to	see	the	placeholder	content
created	by	the	command	in	Listing	17-2	and	which	is	shown	in	Figure	17-1.

Figure	17-1. Running	the	example	application

Understanding	TypeScript	in	Angular	Development
Angular	depends	on	TypeScript	decorators,	shown	in	Chapter	15,	to	describe	the
different	building	blocks	used	to	create	web	applications.	Look	at	the	contents	of
the	app.module.ts	file	in	the	src/app	folder,	and	you	will	see	one	of	the
modules	that	Angular	relies	on.

import	{	NgModule	}	from	'@angular/core';

import	{	BrowserModule	}	from	'@angular/platform-

browser';



import	{	AppRoutingModule	}	from	'./app-

routing.module';

import	{	AppComponent	}	from	'./app.component';

@NgModule({

		declarations:	[AppComponent],

		imports:	[BrowserModule,	AppRoutingModule],

		providers:	[],

		bootstrap:	[AppComponent]

})

export	class	AppModule	{	}

Decorators	are	so	important	in	Angular	development	that	they	are	applied	to
classes	that	contain	few	or	even	no	members,	just	to	help	define	or	configure	the
application.	This	is	the	NgModule	decorator,	and	it	is	used	to	describe	a	group
of	related	features	in	the	Angular	application	(Angular	modules	exist	alongside
conventional	JavaScript	modules,	which	is	why	this	file	contains	both	import
statements	and	the	NgModule	decorator).	Another	example	can	be	seen	in	the
app.component.ts	file	in	the	src/app	folder.

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'app-root',

		templateUrl:	'./app.component.html',

		styleUrls:	['./app.component.css']

})

export	class	AppComponent	{

		title	=	'angularapp';

}

This	is	the	Component	decorator,	which	describes	a	class	that	will	generate
HTML	content,	similar	in	purpose	to	the	JSX	classes	I	created	in	the	stand-alone
web	app	in	Chapters	15	and	16.

Understanding	the	Angular	TypeScript	Compiler	Configuration
The	toolchain	for	Angular	is	similar	to	the	one	I	used	in	Chapters	15	and	16	and
relies	on	webpack	and	the	Webpack	Development	Server,	with	customizations
specific	to	Angular.	You	can	see	traces	of	webpack	in	some	of	the	messages	that



are	omitted	by	the	Angular	development	tools,	but	the	details—and	the
configuration	file—are	not	exposed	directly.	You	can	see	and	change	the
configuration	used	for	the	TypeScript	compiler	because	the	project	is	created
with	a	tsconfig.json	file,	which	is	created	with	the	following	settings:

{

		"compileOnSave":	false,

		"compilerOptions":	{

				"baseUrl":	"./",

				"outDir":	"./dist/out-tsc",

				"sourceMap":	true,

				"declaration":	false,

				"downlevelIteration":	true,

				"experimentalDecorators":	true,

				"moduleResolution":	"node",

				"importHelpers":	true,

				"target":	"es2015",

				"module":	"es2020",

				"lib":	[

						"es2018",

						"dom"

				]

		},

		"angularCompilerOptions":	{

				"enableI18nLegacyMessageIdFormat":	false

		}

}

The	configuration	writes	the	compiled	JavaScript	files	to	the	dist/out-
tsc	folder,	although	you	won’t	see	that	folder	in	the	project	because	webpack	is
used	to	create	a	bundle	automatically.

The	most	important	setting	is	experimentalDecorators,	which
enables	decorators,	as	described	in	Chapter	16.	This	feature—more	than	any
other	feature	provided	by	TypeScript—is	essential	for	Angular	development.

Caution Care	is	required	when	making	changes	to	the	tsconfig.json
file	because	they	can	break	the	rest	of	the	Angular	toolchain.	Most	changes	in
an	Angular	project	are	applied	through	the	angular.json	File.



Creating	the	Data	Model
To	start	the	data	model,	create	the	src/app/data	folder	and	add	to	it	a	file
called	entities.ts,	with	the	code	shown	in	Listing	17-9.

export	type	Product	=	{

				id:	number,

				name:	string,

				description:	string,

				category:	string,

				price:	number

};

export	class	OrderLine	{

				constructor(public	product:	Product,	public

quantity:	number)	{

								//	no	statements	required

				}

				get	total():	number	{

								return	this.product.price	*	this.quantity;

				}

}

export	class	Order	{

				private	lines	=	new	Map<number,	OrderLine>();

				constructor(initialLines?:	OrderLine[])	{

								if	(initialLines)	{

												initialLines.forEach(ol	=>

this.lines.set(ol.product.id,	ol));

								}

				}

				public	addProduct(prod:	Product,	quantity:	number)

{

								if	(this.lines.has(prod.id))	{

												if	(quantity	===	0)	{

																this.removeProduct(prod.id);



												}	else	{

																this.lines.get(prod.id)!.quantity	+=

quantity;

												}

								}	else	{

												this.lines.set(prod.id,	new

OrderLine(prod,	quantity));

								}

				}

				public	removeProduct(id:	number)	{

								this.lines.delete(id);

				}

				get	orderLines():	OrderLine[]	{

								return	[...this.lines.values()];

				}

				get	productCount():	number	{

								return	[...this.lines.values()]

												.reduce((total,	ol)	=>	total	+=

ol.quantity,	0);

				}

				get	total():	number	{

								return	[...this.lines.values()].reduce((total,

ol)	=>	total	+=	ol.total,	0);

				}

}

Listing	17-9. The	Contents	of	the	entities.ts	File	in	the	src/app/data	Folder

This	is	the	same	code	used	in	Chapter	15	and	requires	no	changes	because
Angular	uses	regular	TypeScript	classes	for	its	data	model	entities.

Creating	the	Data	Source
To	create	the	data	source,	add	a	file	named	dataSource.ts	to	the
src/app/data	folder	with	the	code	shown	in	Listing	17-10.

import	{	Observable	}	from	"rxjs";



import	{	Injectable	}	from	'@angular/core';

import	{	Product,	Order	}	from	"./entities";

export	type	ProductProp	=	keyof	Product;

export	abstract	class	DataSourceImpl	{

				abstract	loadProducts():	Observable<Product[]>;

				abstract	storeOrder(order:	Order):

Observable<number>;

}

@Injectable()

export	class	DataSource	{

				private	_products:	Product[];

				private	_categories:	Set<string>;

				public	order:	Order;

				constructor(private	impl:	DataSourceImpl)	{

								this._products	=	[];

								this._categories	=	new	Set<string>();

								this.order	=	new	Order();

								this.getData();

				}

				getProducts(sortProp:	ProductProp	=	"id",

category?	:	string):	Product[]	{

								return	this.selectProducts(this._products,

sortProp,	category);

				}

				protected	getData():	void	{

								this._products	=	[];

								this._categories.clear();

								this.impl.loadProducts().subscribe(rawData	=>

{

												rawData.forEach(p	=>	{

																this._products.push(p);

																this._categories.add(p.category);

												});



								});

				}

				protected	selectProducts(prods:	Product[],

sortProp:	ProductProp,

												category?:	string):	Product[]	{

								return	prods.filter(p	=>	category	===

undefined	||	p.category	===	category)

																.sort((p1,	p2)	=>	p1[sortProp]	<

p2[sortProp]

																				?	-1	:	p1[sortProp]	>	p2[sortProp]

?	1:	0);

				}

				getCategories():	string[]	{

								return	[...this._categories.values()];

				}

				storeOrder():	Observable<number>	{

								return	this.impl.storeOrder(this.order);

				}

}

Listing	17-10. The	Contents	of	the	dataSource.ts	File	in	the	src/app/data	Folder

Services	are	one	of	the	key	features	in	Angular	development;	they	allow
classes	to	declare	dependencies	in	their	constructors	that	are	resolved	at	runtime,
a	technique	known	as	dependency	injection.	The	DataSource	class	declares	a
dependency	on	a	DataSourceImpl	object	in	its	constructor,	like	this:

...

constructor(private	impl:	DataSourceImpl)	{

...

When	a	new	DataSource	object	is	needed,	Angular	will	inspect	the
constructor,	create	a	DataSourceImpl	object,	and	use	it	to	invoke	the
constructor	to	create	the	new	object,	a	process	known	as	injection.	The
Injectable	decorator	tells	Angular	that	other	classes	can	declare
dependencies	on	the	DataSource	class.	The	DataSourceImpl	class	is
abstract,	and	the	DataSource	class	has	no	idea	which	concrete



implementation	class	will	be	used	to	resolve	its	constructor	dependency.	The
selection	of	the	implementation	class	is	made	in	the	application’s	configuration,
as	shown	in	Listing	17-12.

One	of	the	key	advantages	of	using	a	framework	for	web	application
development	is	that	updates	are	handled	automatically.	Angular	uses	the
Reactive	Extensions	library,	known	as	RxJS,	to	manage	updates,	allowing
changes	in	data	to	be	handled	automatically.	The	RxJS	Observable	class	is
used	to	describe	a	sequence	of	values	that	will	be	generated	over	time,	including
asynchronous	activities	like	requesting	data	from	a	web	service.	The
loadProducts	method	defined	by	the	DataSourceImpl	class	returns	an
Observable<Product[]>	object,	like	this:

...

abstract	loadProducts():	Observable<Product[]>;

...

A	TypeScript	generic	type	argument	is	used	to	specify	that	the	result	of	the
loadProducts	method	is	an	Observable	object	that	will	generate	a
sequence	of	Product	array	objects.	The	values	generated	by	an	Observable
object	are	received	using	the	subscribe	method,	like	this:

...

this.impl.loadProducts().subscribe(rawData	=>	{

				rawData.forEach(p	=>	{

								this._products.push(p);

								this._categories.add(p.category);

				});

});

...

In	this	situation,	I	am	using	the	Observable	class	as	a	direct	replacement
for	the	standard	JavaScript	Promise.	The	Observable	class	provides
sophisticated	features	for	dealing	with	complex	sequences,	but	the	advantage
here	is	that	Angular	will	update	the	content	presented	to	the	user	when	the
Observable	produces	a	result,	which	means	that	the	rest	of	the	DataSource
class	can	be	written	without	needing	to	deal	with	asynchronous	tasks.

Creating	the	Data	Source	Implementation	Class
To	extend	the	abstract	DataSourceImpl	class	to	work	with	the	web	service,	I



added	a	file	named	remoteDataSource.ts	to	the	src/app/data	folder
and	added	the	code	shown	in	Listing	17-11.

import	{	Injectable	}	from	"@angular/core";

import	{	HttpClient	}	from	"@angular/common/http";

import	{	Observable	}	from	"rxjs";

import	{	map	}	from	"rxjs/operators";

import	{	DataSourceImpl	}	from	"./dataSource";

import	{	Product,	Order	}	from	"./entities";

const	protocol	=	"http";

const	hostname	=	"localhost";

const	port	=	4600;

const	urls	=	{

				products:

`${protocol}://${hostname}:${port}/products`,

				orders:	`${protocol}://${hostname}:${port}/orders`

};

@Injectable()

export	class	RemoteDataSource	extends	DataSourceImpl	{

				constructor(private	http:	HttpClient)	{

								super();

				}

				loadProducts():	Observable<Product[]>	{

								return	this.http.get<Product[]>

(urls.products);

				}

				storeOrder(order:	Order):	Observable<number>	{

								let	orderData	=	{

												lines:

[...order.orderLines.values()].map(ol	=>	({

																productId:	ol.product.id,

																productName:	ol.product.name,

																quantity:	ol.quantity

												}))



								}

								return	this.http.post<{	id:	number}>

(urls.orders,	orderData)

												.pipe<number>(map(val	=>	val.id));

				}

}

Listing	17-11. The	Contents	of	the	remoteDataSource.ts	File	in	the	src/app/data	Folder

The	RemoteDataSource	constructor	declares	a	dependency	on	an
instance	of	the	HttpClient	class,	which	is	the	built-in	Angular	class	for
making	HTTP	requests.	The	HttpClient	class	defines	get	and	post
methods	that	are	used	to	send	HTTP	requests	with	the	GET	and	POST	verbs.
The	data	type	that	is	expected	is	specified	as	a	type	argument,	like	this:

...

loadProducts():	Observable<Product[]>	{

				return	this.http.get<Product[]>(urls.products);

}

...

The	type	argument	is	used	for	the	result	from	the	get	method,	which	is	an
Observable	that	will	generate	a	sequence	of	the	specified	type,	which	is
Product[]	in	this	case.

Tip The	generic	type	arguments	for	the	HttpClient	methods	are
standard	TypeScript.	There	is	no	Angular	magic	happening	behind	the	scenes,
and	the	developer	remains	responsible	for	specifying	a	type	that	will
correspond	to	the	data	received	from	the	server.

The	RxJS	library	contains	features	that	can	be	used	to	manipulate	the	values
generated	by	an	Observable	object,	some	of	which	are	used	in	Listing	17-11.

...

return	this.http.post<{	id:	number}>(urls.orders,

orderData)

				.pipe<number>(map(val	=>	val.id));

...



The	pipe	method	is	used	with	the	map	function	to	create	an	Observable
that	generates	values	based	on	those	from	another	Observable.	This	allows
me	to	receive	the	result	from	the	HTTP	POST	request	and	extract	just	the	id
property	from	the	result.

Note In	the	stand-alone	web	application,	I	created	an	abstract	data	source
class	and	created	subclasses	that	provided	local	or	web	service	data,	which
was	loaded	by	a	method	called	in	the	abstract	class	constructor.	This	is	an
approach	that	doesn’t	work	well	in	Angular	because	the	HttpClient	is	not
assigned	to	an	instance	property	until	after	the	abstract	class	constructor	is
invoked	with	the	super	keyword,	which	means	the	subclass	is	asked	to	get
data	before	it	has	been	properly	set	up.	To	avoid	this	problem,	I	separated	just
the	part	of	the	data	source	that	deals	with	the	data	into	the	abstract	class.

Configuring	the	Data	Source
The	last	step	of	creating	the	data	source	is	to	create	an	Angular	module,	which
will	make	the	data	source	available	for	use	in	the	rest	of	the	application	and
select	the	implementation	of	the	abstract	DataSourceImpl	class	that	will	be
used.	Add	a	file	called	data.module.ts	to	the	src/app/data	folder	and
add	the	code	shown	in	Listing	17-12.

import	{	NgModule	}	from	"@angular/core";

import	{	HttpClientModule	}	from

"@angular/common/http";

import	{	DataSource,	DataSourceImpl	}	from

'./dataSource';

import	{	RemoteDataSource	}	from	'./remoteDataSource';

@NgModule({

		imports:	[HttpClientModule],

		providers:	[DataSource,	{	provide:	DataSourceImpl,

useClass:	RemoteDataSource}]

})

export	class	DataModelModule	{	}

Listing	17-12. The	Contents	of	the	data.module.ts	File	in	the	src/app/data	Folder

The	DataModelModule	class	is	defined	just	so	that	the	NgModule
decorator	can	be	applied.	The	decorator’s	imports	property	defines	the



dependencies	that	the	data	model	classes	require,	and	the	providers	property
defines	the	classes	in	the	Angular	module	that	can	be	injected	into	the
constructors	of	other	classes	in	the	application.	For	this	module,	the	imports
property	tells	Angular	that	the	module	that	contains	the	HttpClient	class	is
required,	and	the	providers	property	tells	Angular	that	the	DataSource
class	can	be	used	for	dependency	injection	and	that	dependencies	on	the
DataSourceImpl	class	should	be	resolved	using	the	RemoteDataSource
class.

Displaying	a	Filtered	List	of	Products
Angular	splits	the	generation	of	HTML	content	into	two	files:	a	TypeScript	class
to	which	the	Component	decorator	is	applied	and	an	HTML	template	that	is
annotated	with	directives	that	direct	the	generation	of	dynamic	content.	When
the	application	is	executed,	the	HTML	template	is	compiled,	and	the	directives
are	executed	using	the	methods	and	properties	provided	by	the	TypeScript	class.

Classes	to	which	the	Component	decorator	is	applied	are	known,	logically
enough,	as	components.	The	convention	in	Angular	development	is	to	include
the	role	of	the	class	in	the	file	name,	so	to	create	the	component	responsible	for
the	details	of	a	single	product	to	the	user,	I	added	a	file	named
productItem.component.ts	in	the	src/app	folder	with	the	code	shown
in	Listing	17-13.

import	{	Component,	Input,	Output,	EventEmitter	}	from

"@angular/core";

import	{	Product	}	from	'./data/entities';

export	type	productSelection	=	{

				product:	Product,

				quantity:	number

}

@Component({

				selector:	"product-item",

				templateUrl:	"./productItem.component.html"

})

export	class	ProductItem	{

				quantity:	number	=	1;



				@Input()

				product:	Product;

				@Output()

				addToCart	=	new	EventEmitter<productSelection>();

				handleAddToCart()	{

								this.addToCart.emit({	product:	this.product,

												quantity:	Number(this.quantity)});

				}

}

Listing	17-13. The	Contents	of	the	productItem.component.ts	File	in	the	src/app	Folder

The	Component	decorator	configures	the	component.	The	selector
property	specifies	the	CSS	selector	that	Angular	will	use	to	apply	the	component
to	the	application’s	HTML,	and	the	templateUrl	property	specifies	the
component’s	HTML	template.	For	the	ProductItem	class,	the	selector
property	tells	Angular	to	apply	this	component	when	it	encounters	the	product-
item	element	and	that	the	component’s	HTML	template	can	be	found	in	a	file
called	productItem.component.html	in	the	same	directory	as	the
TypeScript	file.

Angular	uses	the	Input	decorator	to	denote	the	properties	that	allow
components	to	receive	data	values	through	HTML	element	attributes.	The
Output	decorator	is	used	to	denote	the	flow	of	data	out	from	the	component
through	a	custom	event.	The	ProductItem	class	receives	a	Product	object,
whose	details	it	displays	to	the	user,	and	triggers	a	custom	event	when	the	user
clicks	a	button,	accessible	through	the	addToCart	property.

To	create	the	component’s	template,	create	a	file	called
productItem.component.html	in	the	src/app	folder	and	add	the
elements	shown	in	Listing	17-14.

<div	class="card	m-1	p-1	bg-light">

				<h4>

								{{	product.name	}}

								<span	class="badge	badge-pill	badge-primary

float-right">

												${{	product.price.toFixed(2)	}}

								</span>

				</h4>



				<div	class="card-text	bg-white	p-1">

								{{	product.description	}}

								<button	class="btn	btn-success	btn-sm	float-

right"

																(click)="handleAddToCart()">

												Add	To	Cart

								</button>

								<select	class="form-control-inline	float-right

m-1"	[(ngModel)]="quantity">

												<option>1</option>

												<option>2</option>

												<option>3</option>

								</select>

				</div>

</div>

Listing	17-14. The	Contents	of	the	productItem.component.html	File	in	the	src/app	Folder

Angular	templates	use	double	curly	braces	to	display	the	results	of
JavaScript	expressions,	such	as	this	one:

...

<span	class="badge	badge-pill	badge-primary	float-

right">

				${{	product.price.toFixed(2)	}}

</span>

...

Expressions	are	evaluated	in	the	context	of	the	component,	so	this	fragment
reads	the	value	of	the	product.price	property,	invokes	the	toFixed
method,	and	inserts	the	result	into	the	enclosing	span	element.

Event	handling	is	done	using	parentheses	around	the	event	name,	like	this:

...

<button	class="btn	btn-success	btn-sm	float-right"

(click)="handleAddToCart()">

...

This	tells	Angular	that	when	the	button	element	emits	the	click	event,
the	component’s	handleAddToCart	method	should	be	invoked.	Form



elements	have	special	support	in	Angular,	which	you	can	see	on	the	select
element.

...

<select	class="form-control-inline	float-right	m-1"

[(ngModel)]="quantity">

...

The	ngModel	directly	is	applied	with	square	brackets	and	parentheses	and
creates	a	two-way	binding	between	the	select	element	and	the	component’s
quantity	property.	Changes	to	the	quantity	property	will	be	reflected	by
the	select	element,	and	values	picked	using	the	select	element	are	used	to
update	the	quantity	property.

Displaying	the	Category	Buttons
To	create	the	component	that	will	display	the	list	of	category	buttons,	add	a	file
called	categoryList.component.ts	to	the	src/app	folder	and	add	the
code	shown	in	Listing	17-15.

import	{	Component,	Input,	Output,	EventEmitter	}	from

"@angular/core";

@Component({

				selector:	"category-list",

				templateUrl:	"./categoryList.component.html"

})

export	class	CategegoryList	{

				@Input()

				selected:	string

				@Input()

				categories:	string[];

				@Output()

				selectCategory	=	new	EventEmitter<string>();

				getBtnClass(category:	string):	string	{

								return		"btn	btn-block	"	+



												(category	===	this.selected	?	"btn-

primary"	:	"btn-secondary");

				}

}

Listing	17-15. The	Contents	of	the	categoryList.component.ts	File	in	the	src/app	Folder

The	CategoryList	component	has	Input	properties	that	receive	the
currently	selected	category	and	the	list	of	categories	to	display.	The	Output
decorator	has	been	applied	to	the	selectCategory	property	to	define	a
custom	event	that	will	be	triggered	when	the	user	makes	a	selection.	The
getBtnClass	method	is	a	helper	that	returns	the	list	of	Bootstrap	classes	that
a	button	element	should	be	assigned	to	and	helps	keep	the	component’s
template	free	of	complex	expressions.	To	create	the	template	for	the	component,
create	a	file	named	categoryList.component.html	in	the	src/app
folder	with	the	content	shown	in	Listing	17-16.

<button	*ngFor="let	cat	of	categories"

[class]="getBtnClass(cat)"

								(click)="selectCategory.emit(cat)">

				{{	cat	}}

</button>

Listing	17-16. The	Contents	of	the	categoryList.component.html	File	in	the	src/app	Folder

This	template	uses	the	ngFor	directive	to	generate	a	button	element	for
each	of	the	values	returned	by	the	categories	property.	The	asterisk	(the	*
character)	that	prefixes	ngFor	indicates	a	concise	syntax	that	allows	the	ngFor
directive	to	be	applied	directly	to	the	element	that	will	be	generated.

Angular	templates	use	square	brackets	to	create	a	one-way	binding	between
an	attribute	and	a	data	value,	like	this:

...

<button	*ngFor="let	cat	of	categories"

[class]="getBtnClass(cat)"

				(click)="selectCategory.emit(cat)">

...

The	square	brackets	allow	the	value	of	the	class	attribute	to	be	set	using	a
JavaScript	expression,	which	is	the	result	of	calling	the	component’s



getBtnClass	method.

Creating	the	Header	Display
To	create	the	component	that	will	display	the	summary	of	the	user’s	product
selections	and	provide	the	means	to	navigate	to	the	order	summary,	add	a	file
called	header.component.ts	in	the	src/app	folder	with	the	code	shown
in	Listing	17-17.

import	{	Component,	Input,	Output,	EventEmitter	}	from

"@angular/core";

import	{	Order	}	from	'./data/entities';

@Component({

				selector:	"header",

				templateUrl:	"./header.component.html"

})

export	class	Header	{

				@Input()

				order:	Order;

				@Output()

				submit	=	new	EventEmitter<void>();

				get	headerText():	string	{

								let	count	=	this.order.productCount;

								return	count	===	0	?	"(No	Selection)"

												:	`${	count	}	product(s),	$${

this.order.total.toFixed(2)}`

				}

}

Listing	17-17. The	Contents	of	the	header.component.ts	File	in	the	src/app	Folder

To	create	the	component’s	template,	add	a	file	named
header.component.html	to	the	src/app	folder	with	the	content	shown
in	Listing	17-18.

<div	class="p-1	bg-secondary	text-white	text-right">

				{{	headerText	}}



				<button	class="btn	btn-sm	btn-primary	m-1"

(click)="submit.emit()">

								Submit	Order

				</button>

</div>

Listing	17-18. The	Contents	of	the	header.component.html	File	in	the	src/app	Folder

Combining	the	Product,	Category,	and	Header	Components
To	define	the	component	that	presents	the	ProductItem,	CategoryList,
and	Header	components	to	the	user,	add	a	file	named
productList.component.ts	to	the	src/app	folder	with	the	code	shown
in	Listing	17-19.

import	{	Component	}	from	"@angular/core";

import	{	DataSource	}	from	'./data/dataSource';

import	{	Product	}	from	'./data/entities';

@Component({

				selector:	"product-list",

				templateUrl:	"./productList.component.html"

})

export	class	ProductList	{

				selectedCategory	=	"All";

				constructor(public	dataSource:	DataSource)	{}

				get	products():	Product[]	{

								return	this.dataSource.getProducts("id",

												this.selectedCategory	===	"All"	?

undefined	:	this.selectedCategory);

				}

				get	categories():	string[]	{

								return	["All",

...this.dataSource.getCategories()];

				}

				handleCategorySelect(category:	string)	{

								this.selectedCategory	=	category;



				}

				handleAdd(data:	{product:	Product,	quantity:

number})	{

								this.dataSource.order.addProduct(data.product,

data.quantity);

				}

				handleSubmit()	{

								console.log("SUBMIT");

				}

}

Listing	17-19. The	Contents	of	the	productList.component.ts	File	in	the	src/app	Folder

The	ProductList	class	declares	a	dependency	on	the	DataSource
class	and	defines	products	and	categories	methods	that	return	data	from
the	DataSource.	There	are	three	methods	that	respond	to	user	interaction:
handleCategorySelect	will	be	invoked	when	the	user	clicks	a	category
button,	handleAdd	will	be	invoked	when	the	user	adds	a	product	to	the	order,
and	handleSubmit	will	be	called	when	the	user	wants	to	move	on	to	the
order	summary.	The	handleSubmit	method	writes	out	a	message	to	the
console	and	will	be	fully	implemented	in	Chapter	18.

To	create	the	component’s	template,	add	a	file	named
productList.component.html	to	the	src/app	folder	with	the	content
shown	in	Listing	17-20.

<header	[order]="dataSource.order"	(submit)="handleSubmit()">

</header>

<div	class="container-fluid">

				<div	class="row">

								<div	class="col-3	p-2">

												<category-list	[selected]="selectedCategory"

[categories]="categories"

																(selectCategory)="handleCategorySelect($event)">

</category-list>

								</div>

								<div	class="col-9	p-2">

												<product-item	*ngFor="let	p	of	products"

[product]="p"



																(addToCart)="handleAdd($event)"></product-item>

								</div>

				</div>

</div>

Listing	17-20. The	Contents	of	the	productList.component.html	File	in	the	src/app	Folder

This	template	shows	how	components	are	combined	to	present	content	to	the
user.	Custom	HTML	elements	whose	tags	correspond	to	the	selector
properties	in	the	Component	decorators	are	applied	to	the	classes	defined	in
earlier	listings,	like	this:

...

<header	[order]="dataSource.order"

(submit)="handleSubmit()"></header>

...

The	header	tag	corresponds	to	the	selector	setting	for	the	Component
decorator	applied	to	the	Header	class	in	Listing	17-17.	The	order	attribute	is
used	to	provide	a	value	for	the	Input	property	of	the	same	name	defined	by	the
Header	class	and	allows	ProductList	to	provide	Header	with	the	data	it
requires.	The	submit	attribute	corresponds	to	the	Output	property	defined	by
the	Header	class	and	allows	ProductList	to	receive	notifications.	The
ProductList	template	uses	header,	category-list,	and	product-
item	elements	to	display	the	Header,	CategoryList,	and	ProductItem
components.

Configuring	the	Application
The	application	module	is	used	to	register	the	components	the	application	uses
as	well	as	any	additional	modules	that	have	been	defined,	such	as	the	one	I
created	for	the	data	model	earlier	in	the	chapter.	Listing	17-21	shows	the	changes
to	the	application	module,	which	is	defined	in	the	app.module.ts	file.

import	{	NgModule	}	from	'@angular/core';

import	{	BrowserModule	}	from	'@angular/platform-

browser';

import	{	AppRoutingModule	}	from	'./app-

routing.module';



import	{	AppComponent	}	from	'./app.component';

import	{	FormsModule	}	from	"@angular/forms";

import	{	DataModelModule	}	from	"./data/data.module";

import	{	ProductItem	}	from	'./productItem.component';

import	{	CategegoryList	}	from

"./categoryList.component";

import	{	Header	}	from	"./header.component";

import	{	ProductList	}	from	"./productList.component";

@NgModule({

		declarations:	[AppComponent,	ProductItem,

CategegoryList,	Header,	ProductList],

		imports:	[BrowserModule,	AppRoutingModule,

FormsModule,	DataModelModule],

		providers:	[],

		bootstrap:	[AppComponent]

})

export	class	AppModule	{	}

Listing	17-21. Configuring	the	Module	in	the	app.module.ts	File	in	the	src/app	Folder

The	NgModule	decorator’s	declarations	property	is	used	to	declare
the	components	that	the	application	requires	and	is	used	to	add	the	classes
defined	in	the	previous	sections.	The	imports	property	is	used	to	list	the	other
modules	the	application	requires	and	has	been	updated	to	include	the	data	model
module	defined	in	Listing	17-12.

To	display	the	new	components	to	the	user,	replace	the	content	in	the
app.component.html	file	with	the	single	element	shown	in	Listing	17-22.

<product-list></product-list>

Listing	17-22. Replacing	the	Contents	of	the	app.component.html	File	in	the	src/app	Folder

When	the	application	runs,	Angular	will	encounter	the	product-list
element	and	compare	it	to	the	selector	properties	of	the	Component
decorators	configured	through	the	Angular	module.	The	product-list	tag
corresponds	to	the	selector	property	of	the	Component	decorator	applied	to
the	ProductList	class	in	Listing	17-19.	Angular	creates	a	new
ProductList	object,	renders	its	template	content,	and	inserts	it	into	the
product-list	element	defined	in	Listing	17-22.	The	HTML	that	the



ProductList	component	generates	is	inspected,	and	the	header,
category-list,	and	product-item	elements	are	discovered,	leading	to
those	components	being	instantiated	and	their	content	inserted	into	each	element.
The	process	is	repeated	until	all	the	elements	that	correspond	to	components
have	been	resolved	and	the	content	can	be	presented	to	the	user,	as	shown	in
Figure	17-2.

Figure	17-2. Displaying	content	to	the	user

The	user	can	filter	the	list	of	products	and	add	products	to	the	order.	Clicking
Submit	Order	only	writes	a	message	to	the	browser’s	JavaScript	console,	but	I’ll
add	support	for	the	rest	of	the	application’s	workflow	in	the	next	chapter.

Summary
In	this	chapter,	I	explained	the	role	that	TypeScript	has	in	Angular	development.
I	explained	that	TypeScript	decorators	are	used	to	describe	the	different	building
blocks	that	can	be	used	in	an	Angular	application.	I	also	explained	that	Angular



HTML	templates	are	compiled	when	the	browser	executes	the	application,	which
means	that	TypeScript	features	have	already	been	removed	and	cannot	be	used	in
templates.	In	the	next	chapter,	I	complete	the	application	and	prepare	it	for
deployment.



©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
A.	Freeman,	Essential	TypeScript	4
https://doi.org/10.1007/978-1-4842-7011-0_18

https://doi.org/10.1007/978-1-4842-7011-0_18


(1)

18.	Creating	an	Angular	App,	Part	2
Adam	Freeman1		

London,	UK

	

In	this	chapter,	I	continue	the	development	of	the	Angular	web	application
started	in	Chapter	17	by	adding	the	remaining	features	and	preparing	the
application	for	deployment	into	a	container.	For	quick	reference,	Table	18-1	lists
the	TypeScript	compiler	options	used	in	this	chapter.

Table	18-1. The	TypeScript	Compiler	Options	Used	in	This	Chapter

Name Description

baseUrl This	option	specifies	the	root	location	used	to	resolve	module
dependencies.

declaration This	option	produces	type	declaration	files	when	enabled,	which
describe	the	types	for	use	in	other	projects.

downlevelIteration This	option	includes	helper	code	to	support	iterators	on	older	JavaScript
runtimes.

emitDecoratorMetadata This	option	determines	whether	decorator	metadata	is	produced	in	the
JavaScript	code	emitted	by	the	compiler.

experimentalDecorators This	option	determines	whether	decorators	are	enabled.

importHelpers This	option	determines	whether	helper	code	is	added	to	the	JavaScript	to
reduce	the	amount	of	code	that	is	produced	overall.

lib This	option	selects	the	type	declaration	files	the	compiler	uses.

module This	option	determines	the	style	of	module	that	is	used.

moduleResolution This	option	specifies	how	modules	are	resolved.

outDir This	option	specifies	the	directory	in	which	the	JavaScript	files	will	be
placed.

sourceMap This	option	determines	whether	the	compiler	generates	source	maps	for
debugging.

target This	option	specifies	the	version	of	the	JavaScript	language	that	the
compiler	will	target	in	its	output.

typeRoots This	option	specifies	the	root	location	that	the	compiler	uses	to	look	for
declaration	files.



Preparing	for	This	Chapter
For	this	chapter,	I	continue	working	with	the	angularapp	project	started	in
Chapter	17.	No	changes	are	required	to	prepare	for	this	chapter.	Open	a	new
command	prompt,	navigate	to	the	angularapp	folder,	and	run	the	command
shown	in	Listing	18-1	to	start	the	web	service	and	the	Angular	development
tools.

Tip You	can	download	the	example	project	for	this	chapter—and	for	all	the
other	chapters	in	this	book—from
https://github.com/Apress/essential-typescript-4.

npm	start

Listing	18-1. Starting	the	Development	Tools

Once	the	initial	build	has	completed,	open	a	new	browser	window	and
navigate	to	http://localhost:4200	to	see	the	example	application,	as
shown	in	Figure	18-1.

https://github.com/Apress/essential-typescript-4


Figure	18-1. Running	the	example	application

Completing	the	Example	Application	Features
For	the	component	that	will	display	the	details	of	an	order,	add	a	file	named
orderDetails.component.ts	to	the	src/app	folder	with	the	code
shown	in	Listing	18-2.

import	{	Component	}	from	"@angular/core";

import	{	Router	}	from	"@angular/router";

import	{	Order	}	from	"./data/entities";

import	{	DataSource	}	from	'./data/dataSource';

@Component({

				selector:	"order-details",

				templateUrl:	"./orderDetails.component.html"

})

export	class	OrderDetails	{



				constructor(private	dataSource:	DataSource,	private

router:	Router)	{}

				get	order()	:	Order	{

								return	this.dataSource.order;

				}

				submit()	{

								this.dataSource.storeOrder().subscribe(id	=>

												this.router.navigateByUrl(`/summary/${id}`));

				}

}

Listing	18-2. The	Contents	of	the	orderDetails.component.ts	File	in	the	src/app	Folder

The	OrderDetails	component	receives	a	DataSource	object	through
its	constructor	and	provides	an	order	property	to	its	template.	This	component
makes	use	of	the	Angular	URL	routing	system,	which	selects	the	components
displayed	to	the	user	based	on	the	current	URL.	Table	18-2	shows	the	URLs	that
the	example	application	will	support	and	the	purpose	of	each	of	them.

Table	18-2. The	URLs	Supported	by	the	Application

Name Description

/products This	URL	will	display	the	ProductList	component	defined	in	Chapter	17.

/order This	URL	will	display	the	OrderDetails	component,	defined	in	Listing	18-2.

/summary This	URL	will	display	a	summary	of	an	order	once	it	has	been	sent	to	the	server.	The	URL
will	include	the	number	assigned	to	the	order	so	that	an	order	whose	ID	is	5	will	be
displayed	using	the	URL	/summary/5.

/ The	default	URL	will	be	redirected	to	/products	so	the	ProductList	component	is
shown.

The	Router	object	received	in	the	OrderDetails	constructor	allows	the
component	to	use	the	URL	routing	feature	to	navigate	to	a	new	URL	and	is	used
in	the	submit	method.

...

submit()	{

				this.dataSource.storeOrder().subscribe(id	=>

								this.router.navigateByUrl(`/summary/${id}`));

}



...

This	method	uses	the	DataSource	to	send	the	user’s	order	to	the	server,
waits	for	the	response,	and	then	uses	the	Router	object’s	navigateByUrl
method	to	navigate	to	the	URL	that	will	display	the	summary	to	the	user.

To	create	the	template	for	the	OrderDetails	component,	add	a	file	named
orderDetails.component.html	to	the	src/app	folder	with	the	content
shown	in	Listing	18-3.

<h3	class="text-center	bg-primary	text-white	p-

2">Order	Summary</h3>

<div	class="p-3">

				<table	class="table	table-sm	table-striped">

								<thead>

												<tr>

																<th>Quantity</th><th>Product</th>

																<th	class="text-right">Price</th>

																<th	class="text-right">Subtotal</th>

												</tr>

								</thead>

								<tbody>

												<tr	*ngFor="let	line	of	order.orderLines">

																				<td>{{	line.quantity	}}</td>

																				<td>{{	line.product.name	}}</td>

																				<td	class="text-right">${{

line.product.price.toFixed(2)	}}</td>

																				<td	class="text-right">${{

line.total.toFixed(2)	}}</td>

												</tr>

								</tbody>

								<tfoot>

												<tr>

																<th	class="text-right"

colSpan="3">Total:</th>

																<th	class="text-right">

																				${{	order.total.toFixed(2)	}}

																</th>

												</tr>

								</tfoot>



				</table>

</div>

<div	class="text-center">

				<button	class="btn	btn-secondary	m-1"

routerLink="/products">Back</button>

				<button	class="btn	btn-primary	m-1"

(click)="submit()">Submit	Order</button>

</div>

Listing	18-3. The	Contents	of	the	orderDetails.component.html	File	in	the	src/app	Folder

The	component	displays	details	of	the	user’s	selected	products	and	buttons
that	invoke	the	submit	method	or	navigate	to	the	/products	list	so	the
ProductList	component	will	be	displayed.	Navigation	is	configured	by
applying	the	routerLink	directive	to	the	button	element	and	specifying	the
URL	that	the	browser	will	navigate	to	when	the	element	is	clicked.

...

<button	class="btn	btn-secondary	m-1"

routerLink="/products">Back</button>

...

The	routerLink	directive	is	part	of	the	Angular	routing	feature	and
allows	navigation	without	the	need	to	use	a	Router	object	in	the	component
class.

Adding	the	Summary	Component
To	create	the	component	that	will	be	displayed	for	the	/summary	URL,	add	a
file	named	summary.component.ts	to	the	src/app	folder	with	the	code
shown	in	Listing	18-4.

import	{	Component	}	from	"@angular/core";

import	{	Router,	ActivatedRoute	}	from

"@angular/router";

@Component({

				selector:	"summary",

				templateUrl:	"./summary.component.html"

})

export	class	Summary	{



				constructor(private	activatedRoute:

ActivatedRoute)	{}

				get	id():	string	{

								return

this.activatedRoute.snapshot.params["id"];

				}

}

Listing	18-4. The	Contents	of	the	summary.component.ts	File	in	the	src/app	Folder

The	Summary	component	declares	a	dependency	on	an
ActivatedRoute	object,	which	Angular	will	resolve	using	its	dependency
injection	feature.	The	ActivatedRoute	class	is	responsible	for	describing	the
current	route,	which	describes	the	currently	active	route	through	its	snapshot
property.	The	Summary	component	reads	the	value	of	a	parameter	named	id,
which	will	contain	the	identifier	for	the	order.	For	a	URL	of	/summary/5,	for
example,	the	value	of	the	id	parameter	will	be	5.	To	provide	the	template	for
the	component,	add	a	file	named	summary.component.html	to	the
src/app	folder	with	the	content	shown	in	Listing	18-5.

<div	class="m-2	text-center">

				<h2>Thanks!</h2>

				<p>Thanks	for	placing	your	order.</p>

				<p>Your	order	is	#{{	id	}}</p>

				<p>We'll	ship	your	goods	as	soon	as	possible.</p>

				<button	class="btn	btn-primary"

routerLink="/products">OK</button>

</div>

Listing	18-5. The	Contents	of	the	summary.component.html	File	in	the	src/app	Folder

The	template	displays	the	value	of	the	id	property,	which	is	obtained	from
the	active	route,	and	presents	a	button	element	that	will	navigate	to	the
/products	URL	when	clicked.

Creating	the	Routing	Configuration
To	describe	the	URLs	that	the	application	will	support	and	the	components	that
each	of	them	will	display,	make	the	changes	shown	in	Listing	18-6	to	create	the
configuration	for	the	Angular	routing	system.



import	{	BrowserModule	}	from	'@angular/platform-

browser';

import	{	NgModule	}	from	'@angular/core';

import	{	AppRoutingModule	}	from	'./app-

routing.module';

import	{	AppComponent	}	from	'./app.component';

import	{	FormsModule	}	from	"@angular/forms";

import	{	DataModelModule	}	from	"./data/data.module";

import	{	ProductItem	}	from	'./productItem.component';

import	{	CategegoryList	}	from

"./categoryList.component";

import	{	Header	}	from	"./header.component";

import	{	ProductList	}	from	"./productList.component";

import	{	RouterModule	}	from	"@angular/router"

import	{	OrderDetails	}	from

"./orderDetails.component";

import	{	Summary	}	from	"./summary.component";

const	routes	=	RouterModule.forRoot([

				{	path:	"products",	component:	ProductList	},

				{	path:	"order",	component:	OrderDetails},

				{	path:	"summary/:id",	component:	Summary},

				{	path:	"",	redirectTo:	"/products",	pathMatch:

"full"}

]);

@NgModule({

				declarations:	[AppComponent,		ProductItem,

CategegoryList,	Header,	ProductList,

																			OrderDetails,	Summary],

				imports:	[BrowserModule,	AppRoutingModule,

FormsModule,	DataModelModule,	routes],

				providers:	[],

				bootstrap:	[AppComponent]

})

export	class	AppModule	{	}

Listing	18-6. Configuring	the	Application	in	the	app.module.ts	File	in	the	src/app	Folder

The	RouterModule.forRoot	method	is	used	to	describe	the	URLs	and



the	components	that	they	will	display,	as	well	as	the	instruction	to	redirect	the
default	URL	to	/products.	To	tell	Angular	where	to	display	the	components
specified	by	the	routing	configuration,	replace	the	contents	of	the
app.component.html	file	with	the	element	shown	in	Listing	18-7.

<router-outlet></router-outlet>

Listing	18-7. Replacing	the	Contents	of	the	app.component.html	File	in	the	src/app	Folder

The	final	change	is	to	change	the	ProductList	component	so	that	its
submit	method	uses	the	Angular	routing	feature	to	navigate	to	the	/order
URL,	as	shown	in	Listing	18-8.

import	{	Component	}	from	"@angular/core";

import	{	DataSource	}	from	'./data/dataSource';

import	{	Product	}	from	'./data/entities';

import	{	Router	}	from	"@angular/router";

@Component({

				selector:	"product-list",

				templateUrl:	"./productList.component.html"

})

export	class	ProductList	{

				selectedCategory	=	"All";

				constructor(public	dataSource:	DataSource,	private

router:	Router)	{}

				get	products():	Product[]	{

								return	this.dataSource.getProducts("id",

												this.selectedCategory	===	"All"	?

undefined	:	this.selectedCategory);

				}

				get	categories():	string[]	{

								return	["All",

...this.dataSource.getCategories()];

				}

				handleCategorySelect(category:	string)	{



								this.selectedCategory	=	category;

				}

				handleAdd(data:	{product:	Product,	quantity:

number})	{

								this.dataSource.order.addProduct(data.product,

data.quantity);

				}

				handleSubmit()	{

								this.router.navigateByUrl("/order");

				}

}

Listing	18-8. Navigating	to	a	URL	in	the	productList.component.ts	File	in	the	src/app	Folder

Save	the	changes	and	wait	while	the	development	tools	rebuild	the
application	and	reload	the	browser.	The	example	application	is	complete,	so	you
will	be	able	to	select	products,	see	a	summary	of	an	order,	and	send	it	to	the
server,	as	shown	in	Figure	18-2.

Tip If	only	the	browser	URL	changes	when	you	click	the	Submit	Order
button,	the	likely	reason	is	that	you	did	not	replace	the	contents	of	the
app.component.html	file	as	shown	in	Listing	18-7.



Figure	18-2. Adding	components	to	the	example	application

Deploying	the	Application
The	Angular	development	tools	rely	on	the	Webpack	Development	Server,
which	is	not	suitable	for	hosting	a	production	application	because	it	adds
features	such	as	automatic	reloading	to	the	JavaScript	bundles	it	generates.	In
this	section,	I	work	through	the	process	of	preparing	the	Angular	application	for
deployment,	which	is	a	similar	process	for	any	web	application.

Adding	the	Production	HTTP	Server	Package
For	production,	a	regular	HTTP	server	is	required	to	deliver	the	HTML,	CSS,
and	JavaScript	files	to	the	browser.	For	this	example,	I	am	going	to	use	the
Express	server,	which	is	the	same	package	I	use	for	all	the	examples	in	this	part
of	the	book	and	is	a	good	choice	for	any	web	application.	Use	Control+C	to	stop
the	Angular	development	tools	and	use	the	command	prompt	to	run	the
command	shown	in	Listing	18-9	in	the	angularapp	folder	to	install	the
express	package.

The	second	command	installs	the	connect-history-api-fallback
package,	which	is	useful	when	deploying	applications	that	use	URL	routing,	and
it	maps	requests	for	the	URLs	that	the	application	supports	to	the	index.html
file,	ensuring	that	reloading	the	browser	doesn’t	present	the	user	with	a	“not
found”	error.

npm	install	--save-dev	express@4.17.1

npm	install	--save-dev	connect-history-api-

fallback@1.6.0

Listing	18-9. Adding	Packages	for	Deployment

Creating	the	Persistent	Data	File
To	create	the	persistent	data	file	for	the	web	service,	add	a	file	called
data.json	to	the	angularapp	folder	and	add	the	content	shown	in	Listing
18-10.

{

				"products":	[

								{	"id":	1,	"name":	"Kayak",	"category":

"Watersports",



												"description":	"A	boat	for	one	person",

"price":	275	},

								{	"id":	2,	"name":	"Lifejacket",	"category":

"Watersports",

												"description":	"Protective	and

fashionable",	"price":	48.95	},

								{	"id":	3,	"name":	"Soccer	Ball",	"category":

"Soccer",

												"description":	"FIFA-approved	size	and

weight",	"price":	19.50	},

								{	"id":	4,	"name":	"Corner	Flags",	"category":

"Soccer",

												"description":	"Give	your	playing	field	a

professional	touch",

												"price":	34.95	},

								{	"id":	5,	"name":	"Stadium",	"category":

"Soccer",

												"description":	"Flat-packed	35,000-seat

stadium",	"price":	79500	},

								{	"id":	6,	"name":	"Thinking	Cap",	"category":

"Chess",

												"description":	"Improve	brain	efficiency

by	75%",	"price":	16	},

								{	"id":	7,	"name":	"Unsteady	Chair",

"category":	"Chess",

												"description":	"Secretly	give	your

opponent	a	disadvantage",

												"price":	29.95	},

								{	"id":	8,	"name":	"Human	Chess	Board",

"category":	"Chess",

												"description":	"A	fun	game	for	the

family",	"price":	75	},

								{	"id":	9,	"name":	"Bling	Bling	King",

"category":	"Chess",

												"description":	"Gold-plated,	diamond-

studded	King",	"price":	1200	}

				],

				"orders":	[]

}



Listing	18-10. The	Contents	of	the	data.json	File	in	the	angularapp	Folder

Creating	the	Server
To	create	the	server	that	will	deliver	the	application	and	its	data	to	the	browser,
create	a	file	called	server.js	in	the	angularapp	folder	and	add	the	code
shown	in	Listing	18-11.

const	express	=	require("express");

const	jsonServer	=	require("json-server");

const	history	=	require("connect-history-api-

fallback");

const	app	=	express();

app.use(history());

app.use("/",	express.static("dist/angularapp"));

const	router	=	jsonServer.router("data.json");

app.use(jsonServer.bodyParser)

app.use("/api",	(req,	resp,	next)	=>	router(req,	resp,

next));

const	port	=	process.argv[3]	||	4001;

app.listen(port,	()	=>	console.log(`Running	on	port

${port}`));

Listing	18-11. The	Contents	of	the	server.js	File	in	the	angularapp	Folder

The	statements	in	the	server.js	file	configure	the	express	and	json-
server	packages	to	serve	the	content	of	the	dist/angularapp	folder,
which	is	where	the	Angular	build	process	will	put	the	application’s	JavaScript
bundles	and	the	HTML	file	that	tells	the	browser	to	load	them.	URLs	prefixed
with	/api	will	be	handled	by	the	web	service.

Using	Relative	URLs	for	Data	Requests
The	web	service	that	provided	the	application	with	data	has	been	running
alongside	the	Angular	development	server.	To	prepare	for	sending	requests	to	a
single	port,	I	changed	the	RemoteDataSource	class,	as	shown	in	Listing	18-
12.

import	{	Injectable	}	from	"@angular/core";



import	{	HttpClient	}	from	"@angular/common/http";

import	{	Observable	}	from	"rxjs";

import	{	map	}	from	"rxjs/operators";

import	{	DataSourceImpl	}	from	"./dataSource";

import	{	Product,	Order	}	from	"./entities";

//	const	protocol	=	document.location.protocol;

//	const	hostname	=	document.location.hostname;

//	const	port	=	4600;

const	urls	=	{

				//	products:

`${protocol}//${hostname}:${port}/products`,

				//	orders:

`${protocol}//${hostname}:${port}/orders`

				products:	"/api/products",

				orders:	"/api/orders"

};

@Injectable()

export	class	RemoteDataSource	extends	DataSourceImpl	{

				constructor(private	http:	HttpClient)	{

								super();

				}

				loadProducts():	Observable<Product[]>	{

								return	this.http.get<Product[]>

(urls.products);

				}

				storeOrder(order:	Order):	Observable<number>	{

								let	orderData	=	{

												lines:

[...order.orderLines.values()].map(ol	=>	({

																productId:	ol.product.id,

																productName:	ol.product.name,

																quantity:	ol.quantity

												}))



								}

								return	this.http.post<{	id:	number}>

(urls.orders,	orderData)

												.pipe<number>(map(val	=>	val.id));

				}

}

Listing	18-12. Using	Relative	URLs	in	the	remoteDataSource.ts	File	in	the	src/app/data	Folder

The	URLs	in	Listing	18-12	are	specified	relative	to	the	one	used	to	request
the	HTML	document,	following	the	common	convention	that	data	requests	are
prefixed	with	/api.

Building	the	Application
To	build	the	application	for	deployment,	run	the	command	shown	in	Listing	18-
13	in	the	angularapp	folder	to	create	the	production	build	of	the	application.

ng	build	--prod

Listing	18-13. Creating	the	Production	Bundle

The	build	process	creates	a	set	of	optimized	files	in	the	dist	folder.	The
build	process	can	take	a	few	moments	to	complete	and	will	produce	the
following	output,	which	shows	which	files	have	been	created:

√	Browser	application	bundle	generation	complete.

√	Copying	assets	complete.

√	Index	html	generation	complete.

Initial	Chunk	Files															|

Names									|						Size

main.fae8db30eaa4f8e5a238.js						|	main										|

255.33	kB

styles.a5f71e09a5471b3525f6.css			|	styles								|

141.60	kB

polyfills.6abdde2583a2e01a2350.js	|

polyfills					|		35.73	kB

runtime.7b63b9fd40098a2e8207.js			|

runtime							|			1.45	kB

																																		|	Initial	Total	|

434.11	kB

Build	at:	09:44:57.144Z	-	Hash:	1ad09b3df3412b22d555	-



Time:	24746ms

Testing	the	Production	Build
To	make	sure	that	the	build	process	has	worked	and	the	configuration	changes
have	taken	effect,	run	the	command	shown	in	Listing	18-14	in	the
angularapp	folder.

node	server.js

Listing	18-14. Starting	the	Production	Server

The	code	from	Listing	18-14	will	be	executed	and	will	produce	the	following
output:

Running	on	port	4001

Open	a	new	web	browser	and	navigate	to	http://localhost:4001,
which	will	show	the	application,	as	illustrated	in	Figure	18-3.

Figure	18-3. Running	the	production	build



Containerizing	the	Application
To	complete	this	chapter,	I	am	going	to	create	a	Docker	container	for	the
Angular	application	so	that	it	can	be	deployed	into	production.	If	you	did	not
install	Docker	in	Chapter	15,	then	you	must	do	so	now	to	follow	the	rest	of	the
examples	in	this	chapter.

Preparing	the	Application
The	first	step	is	to	create	a	configuration	file	for	NPM	that	will	be	used	to
download	the	additional	packages	required	by	the	application	for	use	in	the
container.	I	created	a	file	called	deploy-package.json	in	the
angularapp	folder	with	the	content	shown	in	Listing	18-15.

{

		"name":	"angularapp",

		"description":	"Angular	Web	App",

		"repository":	"https://github.com/Apress/essential-

typescript",

		"license":	"0BSD",

		"devDependencies":	{

						"express":	"4.17.1",

						"json-server":	"0.16.3",

						"connect-history-api-fallback":	"1.6.0"

			}

}

Listing	18-15. The	Contents	of	the	deploy-package.json	File	in	the	angularapp	Folder

The	devDependencies	section	specifies	the	packages	required	to	run	the
application	in	the	container.	All	of	the	packages	for	which	there	are	import
statements	in	the	application’s	code	files	will	have	been	incorporated	into	the
bundle	created	by	webpack	and	are	listed.	The	other	fields	describe	the
application,	and	their	main	use	is	to	prevent	a	warning	when	the	container	is
created.

Creating	the	Docker	Container
To	define	the	container,	I	added	a	file	called	Dockerfile	(with	no	extension)
to	the	angularapp	folder	and	added	the	content	shown	in	Listing	18-16.

FROM	node:14.15.4



RUN	mkdir	-p	/usr/src/angularapp

COPY	dist	/usr/src/angularapp/dist/

COPY	data.json	/usr/src/angularapp/

COPY	server.js	/usr/src/angularapp/

COPY	deploy-package.json

/usr/src/angularapp/package.json

WORKDIR	/usr/src/angularapp

RUN	echo	'package-lock=false'	>>	.npmrc

RUN	npm	install

EXPOSE	4001

CMD	["node",	"server.js"]

Listing	18-16. The	Contents	of	the	Dockerfile	File	in	the	angularapp	Folder

The	contents	of	Dockerfile	use	a	base	image	that	has	been	configured
with	Node.js	and	that	copies	the	files	required	to	run	the	application	into	the
container,	along	with	the	file	that	lists	the	packages	required	for	deployment.

To	speed	up	the	containerization	process,	I	created	a	file	called
.dockerignore	in	the	angularapp	folder	with	the	content	shown	in
Listing	18-17.	This	tells	Docker	to	ignore	the	node_modules	folder,	which	is
not	required	in	the	container	and	takes	a	long	time	to	process.

node_modules

Listing	18-17. The	Contents	of	the	.dockerignore	File	in	the	angularapp	Folder

Run	the	command	shown	in	Listing	18-18	in	the	angularapp	folder	to
create	an	image	that	will	contain	the	example	application,	along	with	all	of	the
packages	it	requires.

docker	build	.	-t	angularapp	-f		Dockerfile

Listing	18-18. Building	the	Docker	Image

An	image	is	a	template	for	containers.	As	Docker	processes	the	instructions
in	the	Docker	file,	the	NPM	packages	will	be	downloaded	and	installed,	and	the
configuration	and	code	files	will	be	copied	into	the	image.



Running	the	Application
Once	the	image	has	been	created,	create	and	start	a	new	container	using	the
command	shown	in	Listing	18-19.

docker	run	-p	4001:4001	angularapp

Listing	18-19. Starting	the	Docker	Container

You	can	test	the	application	by	opening	http://localhost:4000	in
the	browser,	which	will	display	the	response	provided	by	the	web	server	running
in	the	container,	as	shown	in	Figure	18-4.

Figure	18-4. Running	the	containerized	application

To	stop	the	container,	run	the	command	shown	in	Listing	18-20.

docker	ps

Listing	18-20. Listing	the	Containers



You	will	see	a	list	of	running	containers,	like	this	(I	have	omitted	some	fields
for	brevity):

CONTAINER

ID								IMAGE															COMMAND																		CREATED

48dbd2431700								angularapp										"docker-

entrypoint.s…"			41	seconds	ago

Using	the	value	in	the	Container	ID	column,	run	the	command	shown	in
Listing	18-21.

docker	stop	48dbd2431700

Listing	18-21. Stopping	the	Container

The	Angular	application	is	ready	to	deploy	to	any	platform	that	supports
Docker.

Summary
In	this	chapter,	I	completed	the	example	Angular	application	by	adding
components	and	using	the	URL	routing	feature	to	specify	when	they	will	be
shown	to	the	user.	I	prepared	the	production	build	of	the	application	and
containerized	it	so	that	it	can	be	easily	deployed.	In	the	next	chapter,	I	create	a
web	application	using	the	React	framework.



(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
A.	Freeman,	Essential	TypeScript	4
https://doi.org/10.1007/978-1-4842-7011-0_19

19.	Creating	a	React	App
Adam	Freeman1		

London,	UK

	

In	this	chapter,	I	start	the	process	of	creating	a	React	application	that	has	the
same	features	as	the	stand-alone	and	Angular	examples	from	earlier	chapters.
TypeScript	is	optional	in	React	development,	but	there	is	good	support	available,
and	React	development	with	TypeScript	provides	a	good	developer	experience.
For	quick	reference,	Table	19-1	lists	the	TypeScript	compiler	options	used	in	this
chapter.

Table	19-1. The	TypeScript	Compiler	Options	Used	in	This	Chapter

Name Description

allowJs This	option	includes	JavaScript	files	in	the	compilation
process.

allowSyntheticDefaultImports This	option	allows	imports	from	modules	that	do	not
declare	a	default	export.	This	option	is	used	to	increase
code	compatibility.

esModuleInterop This	option	adds	helper	code	for	importing	from	modules
that	do	not	declare	a	default	export	and	is	used	in
conjunction	with	the
allowSyntheticDefaultImports	option.

forceConsistentCasingInFileNames This	option	ensures	that	names	in	import	statements
match	the	case	used	by	the	imported	file.

isolatedModules This	option	treats	each	file	as	a	separate	module,	which
increases	compatibility	with	the	Babel	tool.

lib This	option	selects	the	type	declaration	files	the	compiler
uses.

module This	option	determines	the	style	of	module	that	is	used.

moduleResolution This	option	specifies	the	style	of	module	resolution	that
should	be	used	to	resolve	dependencies.

https://doi.org/10.1007/978-1-4842-7011-0_19


noEmit This	option	prevents	the	compiler	from	emitting
JavaScript	code,	with	the	result	that	it	checks	code	only
for	errors.

resolveJsonModule This	option	allows	JSON	files	to	be	imported	as	though
they	were	modules.

skipLibCheck This	option	speeds	up	compilation	by	skipping	the
normal	checking	of	declaration	files.

strict This	option	enables	stricter	checking	of	TypeScript	code.

target This	option	specifies	the	version	of	the	JavaScript
language	that	the	compiler	will	target	in	its	output.

Preparing	for	This	Chapter
React	projects	are	most	easily	created	using	the	create-react-app
package.	Open	a	new	command	prompt,	navigate	to	a	convenient	location,	and
run	the	command	shown	in	Listing	19-1	to	install	the	create-react-app
package.

Tip You	can	download	the	example	project	for	this	chapter—and	for	all	the
other	chapters	in	this	book—from
https://github.com/Apress/essential-typescript-4.

npm	install	--global	create-react-app@4.0.1

Listing	19-1. Installing	the	Project	Creation	Package

Once	the	package	has	been	installed,	run	the	command	shown	in	Listing	19-
2	to	create	a	project	named	reactapp.

npx	create-react-app	reactapp	--template	typescript	--

use-npm

Listing	19-2. Creating	a	React	Project

The	--template	typescript	argument	tells	the	create-react-
app	package	to	create	a	React	project	that	is	configured	for	use	with	TypeScript,
which	includes	installing	and	configuring	the	TypeScript	compiler	and	the
declaration	files	that	describe	the	React	API	and	its	related	tools.	The	--use-
npm	command	installs	the	packages	using	the	NPM	package	manager,	which	I
have	used	throughout	this	book.

https://github.com/Apress/essential-typescript-4


Tip See	https://create-react-app.dev/docs/adding-
typescript	for	details	of	how	to	add	TypeScript	to	an	existing	React
project.

Configuring	the	Web	Service
Once	the	creation	process	is	complete,	run	the	commands	shown	in	Listing	19-3
to	navigate	to	the	project	folder,	add	the	packages	that	will	provide	the	web
service,	and	allow	multiple	packages	to	be	started	with	a	single	command.

cd	reactapp

npm	install	--save-dev	json-server@0.16.3

npm	install	--save-dev	npm-run-all@4.1.5

Listing	19-3. Adding	Packages	to	the	Project

To	provide	the	data	for	the	web	service,	add	a	file	called	data.js	to	the
reactapp	folder	with	the	content	shown	in	Listing	19-4.

module.exports	=	function	()	{

				return	{

								products:	[

												{	id:	1,	name:	"Kayak",	category:

"Watersports",

																description:	"A	boat	for	one	person",

price:	275	},

												{	id:	2,	name:	"Lifejacket",	category:

"Watersports",

																description:	"Protective	and

fashionable",	price:	48.95	},

												{	id:	3,	name:	"Soccer	Ball",	category:

"Soccer",

																description:	"FIFA-approved	size	and

weight",	price:	19.50	},

												{	id:	4,	name:	"Corner	Flags",	category:

"Soccer",

																description:	"Give	your	playing	field

a	professional	touch",

																price:	34.95	},

												{	id:	5,	name:	"Stadium",	category:

https://create-react-app.dev/docs/adding-typescript


"Soccer",

																description:	"Flat-packed	35,000-seat

stadium",	price:	79500	},

												{	id:	6,	name:	"Thinking	Cap",	category:

"Chess",

																description:	"Improve	brain	efficiency

by	75%",	price:	16	},

												{	id:	7,	name:	"Unsteady	Chair",	category:

"Chess",

																description:	"Secretly	give	your

opponent	a	disadvantage",

																price:	29.95	},

												{	id:	8,	name:	"Human	Chess	Board",

category:	"Chess",

																description:	"A	fun	game	for	the

family",	price:	75	},

												{	id:	9,	name:	"Bling	Bling	King",

category:	"Chess",

																description:	"Gold-plated,	diamond-

studded	King",	price:	1200	}

								],

								orders:	[]

				}

}

Listing	19-4. The	Contents	of	the	data.js	File	in	the	reactapp	Folder

Update	the	scripts	section	of	the	package.json	file	to	configure	the
development	tools	so	that	the	React	toolchain	and	the	web	service	are	started	at
the	same	time,	as	shown	in	Listing	19-5.

...

"scripts":	{

		"json":	"json-server	data.js	-p	4600",

		"serve":	"react-scripts	start",

		"start":	"npm-run-all	-p	serve	json",

		"build":	"react-scripts	build",

		"test":	"react-scripts	test",

		"eject":	"react-scripts	eject"

},



...

Listing	19-5. Configuring	Tools	in	the	package.json	File	in	the	reactapp	Folder

Installing	the	Bootstrap	CSS	Package
Use	the	command	prompt	to	run	the	command	shown	in	Listing	19-6	in	the
reactapp	folder	to	add	the	Bootstrap	CSS	framework	to	the	project.

npm	install	bootstrap@4.6.0

Listing	19-6. Adding	the	CSS	Package

To	ensure	the	Bootstrap	CSS	stylesheet	is	included	in	the	application,	add	the
import	statement	shown	in	Listing	19-7	to	the	index.tsx	file	in	the	src
folder.

import	React	from	'react';

import	ReactDOM	from	'react-dom';

import	'./index.css';

import	App	from	'./App';

import	reportWebVitals	from	'./reportWebVitals';

import	'bootstrap/dist/css/bootstrap.css';

ReactDOM.render(

		<React.StrictMode>

				<App	/>

		</React.StrictMode>,

		document.getElementById('root')

);

reportWebVitals();

Listing	19-7. Declaring	a	Dependency	in	the	index.tsx	File	in	the	src	Folder

Starting	the	Example	Application
Use	the	command	prompt	to	run	the	command	shown	in	Listing	19-8	in	the
reactapp	folder.

npm	start

Listing	19-8. Starting	the	Development	Tools



The	web	service	and	the	React	build	tools	will	start,	and	you	will	see	the
following	output:

Compiled	successfully!

You	can	now	view	reactapp	in	the	browser.

		Local:												http://localhost:3000

		On	Your	Network:		http://172.22.208.1:3000

Note	that	the	development	build	is	not	optimized.

To	create	a	production	build,	use	yarn	build.

A	new	browser	window	will	open	and	navigate	to
http://localhost:3000,	which	shows	the	placeholder	content	provided
during	the	project	creation	process,	as	shown	in	Figure	19-1.

Figure	19-1. Running	the	example	application

Understanding	TypeScript	in	React	Development
TypeScript	is	optional	when	using	React,	and	this	is	reflected	in	the	way	that	the
development	tools	and	the	TypeScript	compiler	are	configured.	Behind	the
scenes,	the	webpack	and	Webpack	Development	are	used	to	create	the
JavaScript	bundle	and	deliver	it	to	the	browser.

React	development	relies	on	the	JSX	format,	demonstrated	in	Chapter	15,
which	allows	JavaScript	and	HTML	to	be	mixed	in	a	single	file.	The	React



development	tools	already	have	the	ability	to	transform	JSX	files	into	pure
JavaScript,	which	is	done	using	the	Babel	package.	Babel	is	a	JavaScript
compiler	that	allows	code	written	using	recent	versions	of	JavaScript	to	be
translated	into	code	that	works	on	older	browsers,	much	like	the	version
targeting	feature	provided	by	the	TypeScript	compiler.	Babel	is	extensible
through	plugins,	and	support	has	grown	to	translate	a	wide	range	of	other
formats	into	JavaScript,	including	JSX	files.	Figure	19-2	shows	the	basic
elements	of	the	React	development	toolchain	for	a	regular	JavaScript	project.

Figure	19-2. The	JavaScript	React	development	toolchain

The	Babel	plugin	responsible	for	JSX	plays	the	same	role	as	the	JSX	factory
class	I	created	in	Chapter	15	and	replaces	the	HTML	fragments	with	JavaScript
statements,	albeit	using	the	more	sophisticated	and	efficient	React	API.	The
transformation	produces	pure	JavaScript,	which	is	bundled	into	a	file	so	that	it
can	be	received	and	executed	by	the	browser.	The	bundle	also	includes
JavaScript	code	to	unpack	any	CSS	or	image	resources	that	the	application
requires.

The	way	that	the	React	toolchain	deals	with	TypeScript	is	unusual,	and	you
can	get	a	sense	of	what	is	happening	by	looking	at	the	TypeScript	compiler
configuration	file	that	has	been	added	to	the	project,	shown	here:

{

		"compilerOptions":	{

				"target":	"es5",

				"lib":	["dom","dom.iterable","esnext"],

				"allowJs":	true,

				"skipLibCheck":	true,

				"esModuleInterop":	true,

				"allowSyntheticDefaultImports":	true,

				"strict":	true,

				"forceConsistentCasingInFileNames":	true,

				"noFallthroughCasesInSwitch":	true,



				"module":	"esnext",

				"moduleResolution":	"node",

				"resolveJsonModule":	true,

				"isolatedModules":	true,

				"noEmit":	true,

				"jsx":	"react-jsx"

		},

		"include":	["src"]

}

The	setting	worth	noting	is	noEmit.	When	the	noEmit	setting	is	true,	the
TypeScript	compiler	won’t	generate	JavaScript	files.	The	reason	for	the	unusual
compiler	setting	is	that	it	is	the	Babel	package—and	not	the	TypeScript	compiler
—that	is	responsible	for	transforming	TypeScript	code	into	JavaScript.	The
React	toolchain	includes	a	Babel	plugin	that	transforms	TypeScript	into	pure
JavaScript.

Babel	can	transform	TypeScript	into	JavaScript,	but	it	doesn’t	understand	the
TypeScript	features,	and	it	doesn’t	know	how	to	perform	type	checking.	That
task	is	left	to	the	TypeScript	compiler	so	that	responsibility	for	dealing	with
TypeScript	is	split:	the	TypeScript	compiler	is	responsible	for	detecting	type
errors,	and	Babel	is	responsible	for	creating	the	JavaScript	code	the	browser	will
execute,	as	shown	in	Figure	19-3.

Figure	19-3. The	TypeScript	React	development	toolchain

The	noEmit	setting	makes	sense	in	this	context	since	the	TypeScript
compiler	doesn’t	need	to	create	JavaScript	files	to	perform	its	type	checks.

The	limitation	of	this	approach	is	that	Babel	can’t	deal	with	every	TypeScript
feature,	although	there	are	surprisingly	few	limitations.	At	the	time	of	writing,
enums	are	not	fully	supported,	and	the	namespace	feature	cannot	be	used



(namespaces	are	a	deprecated	forerunner	of	JavaScript	modules	and	not	covered
in	this	book).

Note You	may	have	received	a	warning	when	starting	the	development
tools	that	warned	you	of	a	mismatch	between	TypeScript	versions.	This
warning	reflects	the	possible	difference	between	the	type	checking	features
implemented	by	the	latest	TypeScript	compiler	and	the	way	the	TypeScript
code	is	translated	into	JavaScript	by	Babel.	For	a	simple	project	like	this	one,
there	are	unlikely	to	be	serious	issues,	but	you	should	consider	using	only	the
TypeScript	versions	that	are	explicitly	supported	by	the	create-react-
app	package.

As	in	the	other	chapters	in	this	part	of	the	book,	I	am	going	to	use	the	spread
operator,	which	requires	a	change	to	the	TypeScript	compiler	configuration,	as
shown	in	Listing	19-9.

{

		"compilerOptions":	{

				"target":	"es6",

				"lib":	["dom","dom.iterable","esnext"],

				"allowJs":	true,

				"skipLibCheck":	true,

				"esModuleInterop":	true,

				"allowSyntheticDefaultImports":	true,

				"strict":	true,

				"forceConsistentCasingInFileNames":	true,

				"noFallthroughCasesInSwitch":	true,

				"module":	"esnext",

				"moduleResolution":	"node",

				"resolveJsonModule":	true,

				"isolatedModules":	true,

				"noEmit":	true,

				"jsx":	"react-jsx"

		},

		"include":	["src"]

}

Listing	19-9. Changing	the	Compiler	Configuration	in	the	tsconfig.json	File	in	the	reactapp	Folder



The	Babel	transformation	can	deal	with	the	spread	operator	without	needing
a	configuration	change,	and	the	effect	of	the	target	setting	in	Listing	19-9
only	prevents	the	TypeScript	compiler	from	generating	errors.

Defining	the	Entity	Types
React	focuses	on	presenting	HTML	content	to	the	user	and	leaves	other	tasks,
such	as	managing	application	data	and	making	HTTP	requests,	to	other
packages.	I’ll	add	packages	to	the	project	later	to	complete	the	set	of	features
required	by	the	example	application,	but	I	am	going	to	start	by	focusing	on	the
features	that	React	does	provide	and	come	back	to	deal	with	the	ones	it	doesn’t
later.	To	get	started,	I	need	to	define	the	entities	that	the	application	will	use.
Create	the	src/data	folder	and	add	to	it	a	file	named	entities.ts	with
the	code	shown	in	Listing	19-10.

export	type	Product	=	{

				id:	number,

				name:	string,

				description:	string,

				category:	string,

				price:	number

};

export	class	OrderLine	{

				constructor(public	product:	Product,	public

quantity:	number)	{

								//	no	statements	required

				}

				get	total():	number	{

								return	this.product.price	*	this.quantity;

				}

}

export	class	Order	{

				private	lines	=	new	Map<number,	OrderLine>();

				constructor(initialLines?:	OrderLine[])	{

								if	(initialLines)	{



												initialLines.forEach(ol	=>

this.lines.set(ol.product.id,	ol));

								}

				}

				public	addProduct(prod:	Product,	quantity:	number)

{

								if	(this.lines.has(prod.id))	{

												if	(quantity	===	0)	{

																this.removeProduct(prod.id);

												}	else	{

																this.lines.get(prod.id)!.quantity	+=

quantity;

												}

								}	else	{

												this.lines.set(prod.id,	new

OrderLine(prod,	quantity));

								}

				}

				public	removeProduct(id:	number)	{

								this.lines.delete(id);

				}

				get	orderLines():	OrderLine[]	{

								return	[...this.lines.values()];

				}

				get	productCount():	number	{

								return	[...this.lines.values()]

												.reduce((total,	ol)	=>	total	+=

ol.quantity,	0);

				}

				get	total():	number	{

								return	[...this.lines.values()].reduce((total,

ol)	=>	total	+=	ol.total,	0);

				}

}



Listing	19-10. The	Contents	of	the	entities.ts	File	in	the	src/data	Folder

This	is	the	same	set	of	data	types	used	for	the	other	web	applications	in	this
part	of	the	book.	Regardless	of	which	framework	you	use,	the	same	set	of
features	can	be	used	to	describe	data	types.

Displaying	a	Filtered	List	of	Products
React	uses	the	JSX	format	to	allow	HTML	elements	to	be	defined	alongside
JavaScript	code,	similar	to	the	approach	that	I	used	when	creating	the	stand-
alone	web	application.	During	compilation,	the	HTML	elements	are	transformed
into	JavaScript	statements	that	use	the	React	API	to	efficiently	display	content	to
the	user,	a	much	more	elegant	approach	than	the	one	I	created	in	Chapter	15.

The	key	building	block	in	a	React	application	is	the	component	that	is
responsible	for	generating	HTML	content.	Components	are	configured	using
props;	they	can	respond	to	user	interaction	by	handling	events	triggered	by	the
HTML	elements	they	render	and	can	define	local	state	data.

To	display	the	details	of	a	single	product,	add	a	file	named
productItem.tsx	to	the	src	folder	and	add	the	code	shown	in	Listing	19-
11	to	create	a	simple	React	component.

import	React,	{	Component,	ChangeEvent	}	from	"react";

import	{	Product	}	from	"./data/entities";

interface	Props	{

				product:	Product,

				callback:	(product:	Product,	quantity:	number)	=>

void

}

interface	State	{

				quantity:	number

}

export	class	ProductItem	extends	Component<Props,

State>	{

				constructor(props:	Props)	{

								super(props);



								this.state	=	{

												quantity:	1

								}

				}

				render()	{

								return	<div	className="card	m-1	p-1	bg-light">

												<h4>

																{	this.props.product.name	}

																<span	className="badge	badge-pill

badge-primary	float-right">

																				${

this.props.product.price.toFixed(2)	}

																</span>

												</h4>

												<div	className="card-text	bg-white	p-1">

																{	this.props.product.description	}

																<button	className="btn	btn-success

btn-sm	float-right"

																								onClick={	this.handleAddToCart

}	>

																				Add	To	Cart

																</button>

																<select	className="form-control-inline

float-right	m-1"

																								onChange={

this.handleQuantityChange	}>

																				<option>1</option>

																				<option>2</option>

																				<option>3</option>

																</select>

												</div>

								</div>

				}

				handleQuantityChange	=	(ev:

ChangeEvent<HTMLSelectElement>):	void	=>

								this.setState({	quantity:

Number(ev.target.value)	});



				handleAddToCart	=	():	void	=>

								this.props.callback(this.props.product,

this.state.quantity);

}

Listing	19-11. The	Contents	of	the	productItem.tsx	File	in	the	src	Folder

Using	TypeScript	requires	some	changes	to	the	way	that	React	components
are	defined	so	that	data	types	that	describe	the	props	and	state	data	are	defined
and	used	as	generic	type	arguments	to	the	Component	class.	The
ProductItem	component	receives	props	that	provide	it	with	a	Product
object	and	a	callback	function	to	invoke	when	the	user	clicks	the	Add	To	Cart
button.	The	ProductItem	component	has	one	state	data	property,	named
quantity,	which	is	used	to	respond	when	the	user	picks	a	value	through	the
select	element.	The	props	and	state	data	are	described	by	the	Props	and
State	interfaces,	which	are	used	as	generic	type	parameters	to	configure	the
base	class	for	components,	like	this:

...

export	class	ProductItem	extends	Component<Props,

State>	{

...

The	generic	type	arguments	allow	the	TypeScript	compiler	to	check	the
component	when	it	is	applied	so	that	only	properties	defined	by	the	Props
interface	are	used	and	to	ensure	that	updates	are	applied	only	to	properties
defined	by	the	State	interface.

The	declaration	files	for	React	include	types	for	the	events	that	HTML
elements	will	produce	through	the	render	method.	For	the	change	event
triggered	by	a	select	element,	the	handler	function	will	receive	a
ChangeEvent<HTMLSelectElement>	object.	Changes	to	a	component’s
properties	must	be	performed	through	the	setState	method,	which	is	how
React	knows	that	an	update	has	been	made.

...

handleQuantityChange	=	(ev:

ChangeEvent<HTMLSelectElement>):	void	=>

				this.setState({	quantity:	Number(ev.target.value)

});



...

The	TypeScript	compiler	will	ensure	that	the	right	type	of	event	is	handled
and	that	updates	through	the	setState	method	are	of	the	right	type	and	update
only	the	properties	defined	by	the	State	type.

Using	a	Functional	Component	and	Hooks
The	component	in	Listing	19-11	is	defined	using	a	class,	but	React	also	supports
components	to	be	defined	using	functions.	When	using	TypeScript,	functional
components	are	annotated	with	the	FunctionComponent<T>	type,	where
the	generic	type	T	describes	the	props	the	component	will	receive.	In	Listing	19-
12,	I	have	redefined	the	ProductItem	component	so	that	it	is	expressed	as	a
function	instead	of	a	class.

import	React,	{	FunctionComponent,	useState	}	from

"react";

import	{	Product	}	from	"./data/entities";

interface	Props	{

				product:	Product,

				callback:	(product:	Product,	quantity:	number)	=>

void

}

//	interface	State	{

//					quantity:	number

//	}

export	const	ProductItem:	FunctionComponent<Props>	=

(props)	=>	{

				const	[quantity,	setQuantity]	=	useState<number>

(1);

				return	<div	className="card	m-1	p-1	bg-light">

								<h4>

												{	props.product.name	}

												<span	className="badge	badge-pill	badge-

primary	float-right">



																${	props.product.price.toFixed(2)	}

												</span>

								</h4>

								<div	className="card-text	bg-white	p-1">

												{	props.product.description	}

												<button	className="btn	btn-success	btn-sm

float-right"

																				onClick={	()	=>

props.callback(props.product,	quantity)	}>

																Add	To	Cart

												</button>

												<select	className="form-control-inline

float-right	m-1"

																				onChange={	(ev)	=>

setQuantity(Number(ev.target.value))	}>

																<option>1</option>

																<option>2</option>

																<option>3</option>

												</select>

								</div>

				</div>

}

Listing	19-12. Defining	a	Functional	Component	in	the	productItem.tsx	File	in	the	src	Folder

The	result	of	the	component’s	function	is	the	HTML	that	should	be	displayed
to	the	user	and	that	is	defined	using	the	same	combination	of	elements	and
expressions	that	class-based	components	produce	from	their	render	method.

Class-based	components	rely	on	properties	and	methods,	accessed	through
this,	to	implement	state	data	and	participate	in	the	lifecycle	that	React
provides	for	applications.	Functional	components	use	a	feature	named	hooks	to
achieve	the	same	result,	like	this:

...

const	[quantity,	setQuantity]	=	useState<number>(1);

...

This	is	an	example	of	a	state	hook,	which	provides	a	functional	component
with	a	state	data	property	that	will	trigger	a	content	update	when	it	is	modified.
The	useState	function	is	provided	with	a	generic	type	argument	and	an	initial



value,	and	it	returns	a	property	that	can	be	read	to	get	the	current	value	and	a
function	that	can	be	invoked	to	change	it.	In	this	case,	the	property	is	assigned
the	name	quantity,	and	the	update	function	is	assigned	the	name
setQuantity,	following	a	common	naming	convention.	The	result	is	that
quantity	can	be	used	in	expressions	to	get	the	state	data	value.

...

onClick={	()	=>	props.callback(props.product,

quantity)	}>

...

The	quantity	property	is	constant,	which	means	that	it	cannot	be
modified.	Instead,	changes	must	be	applied	through	the	setQuantity
function,	like	this:

...

<select	className="form-control-inline	float-right	m-

1"

				onChange={	(ev)	=>

setQuantity(Number(ev.target.value))	}>

...

The	use	of	separate	properties	and	functions	ensures	that	all	changes	to	state
data	trigger	the	React	update	process,	and	the	TypeScript	compiler	checks	the
values	passed	to	the	function	to	ensure	they	correspond	to	the	generic	type
argument	provided	to	the	useState	function.

Tip The	choice	between	function	and	class	components	is	a	matter	of
personal	preference,	and	both	are	fully	supported	by	React.	I	tend	to	use
classes	because	that’s	the	programming	model	that	I	am	most	used	to,	but
both	approaches	have	their	merits	and	can	be	freely	mixed	in	a	project.

Displaying	a	List	of	Categories	and	the	Header
To	define	the	component	that	will	display	the	list	of	categories,	add	a	file	named
categoryList.tsx	to	the	src	folder	with	the	contents	shown	in	Listing	19-
13.

import	React,	{	Component	}	from	"react";



interface	Props	{

				selected:	string,

				categories:	string[],

				selectCategory:	(category:	string)	=>	void;

}

export	class	CategoryList	extends	Component<Props>	{

				render()	{

								return	<div>

												{	["All",	...this.props.categories].map(c

=>	{

																let	btnClass	=	this.props.selected	===

c

																				?	"btn-primary":	"btn-secondary";

																return	<button	key={	c	}

																								className={	`btn	btn-block

${btnClass}`	}

																								onClick={	()	=>

this.props.selectCategory(c)	}>

																				{	c	}

																</button>

												})	}

								</div>

				}

}

Listing	19-13. The	Contents	of	the	categoryList.tsx	File	in	the	src	Folder

The	CategoryList	component	does	not	define	any	state	data,	and	its	base
class	is	specified	using	only	one	type	argument.	To	create	the	header	component,
add	a	file	named	header.tsx	to	the	src	folder	and	add	the	code	shown	in
Listing	19-14.

import	React,	{	Component	}	from	"react";

import	{	Order	}	from	"./data/entities";

interface	Props	{

				order:	Order

}



export	class	Header	extends	Component<Props>	{

				render()	{

								let	count	=	this.props.order.productCount;

								return	<div	className="p-1	bg-secondary	text-

white	text-right">

												{	count	===	0	?	"(No	Selection)"

																:	`${	count	}	product(s),	$${

this.props.order.total.toFixed(2)}`	}

												<button	className="btn	btn-sm	btn-primary

m-1">

																Submit	Order

												</button>

								</div>

				}

}

Listing	19-14. The	Contents	of	the	header.tsx	File	in	the	src	Folder

Composing	and	Testing	the	Components
To	create	the	component	that	will	display	the	header,	the	list	of	products,	and	the
category	buttons,	add	a	file	named	productList.tsx	to	the	src	folder	and
add	the	code	shown	in	Listing	19-15.

import	React,	{	Component	}	from	"react";

import	{	Header	}	from	"./header";

import	{	ProductItem	}	from	"./productItem";

import	{	CategoryList}	from	"./categoryList";

import	{	Product,	Order	}	from	"./data/entities";

interface	Props	{

				products:	Product[],

				categories:	string[],

				order:	Order,

				addToOrder:	(product:	Product,	quantity:	number)

=>	void

}

interface	State	{

				selectedCategory:	string;



}

export	class	ProductList	extends	Component<Props,

State>	{

				constructor(props:	Props)	{

								super(props);

								this.state	=	{

												selectedCategory:	"All"

								}

				}

				render()	{

								return	<div>

												<Header	order={	this.props.order	}	/>

												<div	className="container-fluid">

																<div	className="row">

																				<div	className="col-3	p-2">

																								<CategoryList	categories={

this.props.categories	}

																												selected={

this.state.selectedCategory	}

																												selectCategory={

this.selectCategory	}	/>

																				</div>

																				<div	className="col-9	p-2">

																								{

																												this.products.map(p	=>

																																<ProductItem	key={

p.id	}	product={	p	}

																																				callback={

this.props.addToOrder	}	/>)

																								}

																				</div>

																</div>

												</div>

								</div>

				}



				get	products():	Product[]	{

								return	this.props.products.filter(p	=>

this.state.selectedCategory	===	"All"

												||	p.category	===

this.state.selectedCategory);

				}

				selectCategory	=	(cat:	string)	=>	{

								this.setState({	selectedCategory:	cat});

				}

}

Listing	19-15. The	Contents	of	the	productList.tsx	File	in	the	src	Folder

Components	are	applied	using	custom	HTML	elements	whose	tag	matches
the	component	class	name.	Components	are	configured	using	props,	which	can
be	used	to	provide	data	or	callback	functions,	just	as	in	Chapter	15	when	I
created	a	custom	JSX	implementation.	The	ProductList	component	provides
its	functionality	by	composing	the	Header,	CategoryList,	and
ProductItem	components,	each	of	which	is	configured	using	the	props	the
ProductList	component	receives	or	its	state	data.

To	make	sure	that	the	components	can	display	content	to	the	user,	replace	the
contents	of	the	App.tsx	file	with	those	shown	in	Listing	19-16.

import	React,	{	Component	}	from	'react';

import	{	Product,	Order	}	from	'./data/entities';

import	{	ProductList	}	from	'./productList';

let	testData:	Product[]	=	[1,	2,	3,	4,	5].map(num	=>

				({	id:	num,	name:	`Prod${num}`,	category:

`Cat${num	%	2}`,

								description:	`Product	${num}`,	price:	100}))

interface	Props	{

				//	no	props	required

}

interface	State	{

				order:	Order

}



export	default	class	App	extends	Component<Props,

State>	{

				constructor(props:	Props)	{

								super(props);

								this.state	=	{

												order:	new	Order()

								}

				}

				render	=	()	=>

								<div	className="App">

												<ProductList	products={	testData	}

																categories={this.categories	}

																order={	this.state.order	}

																addToOrder=	{	this.addToOrder	}	/>

								</div>

				get	categories():	string[]	{

								return	[...new	Set(testData.map(p	=>

p.category))]

				}

				addToOrder	=	(product:	Product,	quantity:	number)

=>	{

								this.setState(state	=>	{

												state.order.addProduct(product,	quantity);

												return	state;

								})

				}

}

Listing	19-16. Replacing	the	Contents	of	the	App.tsx	File	in	the	src	Folder

The	App	component	has	been	updated	to	display	a	ProductList,	which	is
configured	using	test	data.	I’ll	add	support	for	working	with	the	web	service
later,	but	the	changes	in	Listing	19-16	are	enough	to	show	the	list	of	products,	as
shown	in	Figure	19-4.	(You	may	have	to	reload	the	browser	to	see	the	changes
because	the	auto-reload	feature	isn’t	always	reliable.)



Figure	19-4. Testing	the	product	list	components

Creating	the	Data	Store
In	most	React	projects,	the	application	data	is	managed	by	a	data	store.	Several
data	store	packages	are	available,	but	the	most	widely	used	is	Redux.	To	add	the
Redux	packages	to	the	project,	open	a	new	command	prompt,	navigate	to	the
reactapp	folder,	and	run	the	commands	shown	in	Listing	19-17.

npm	install	redux@4.0.5

npm	install	react-redux@7.2.2

npm	install	--save-dev	@types/react-redux

Listing	19-17. Adding	Packages	to	the	Example	Project

The	Redux	package	includes	TypeScript	declarations,	but	an	additional
package	is	required	for	the	React-Redux	package,	which	connects	React
components	to	a	data	store.

Redux	data	stores	separate	reading	data	from	the	operations	that	change	it.
This	can	feel	awkward	at	first,	but	it	is	similar	to	other	parts	of	React
development,	such	as	component	state	data,	and	it	quickly	becomes	second
nature.	In	Redux	data	stores,	actions	are	objects	that	are	sent	to	the	data	store	to
make	changes	to	the	data	it	contains.	Actions	have	types	and	are	created	using
action	creator	functions.	To	describe	the	actions	that	the	data	store	will	support,
add	a	file	named	types.ts	to	the	src/data	folder	and	add	the	code	shown



in	Listing	19-18.

Note There	are	many	different	ways	to	create	and	configure	a	data	store	and
connect	it	to	React	components.	In	this	chapter,	I	have	taken	the	simplest
approach	and	handled	the	HTTP	requests	that	interact	with	the	web	service	in
a	separate	class.	What’s	important	in	this	section	is	not	how	I	use	the
datastore	but	how	I	can	use	TypeScript	annotations	to	describe	the	approach	I
have	selected	to	the	compiler	so	that	type	checks	can	be	performed.

import	{	Product,	Order	}	from	"./entities";

import	{	Action	}	from	"redux";

export	interface	StoreData	{

				products:	Product[],

				order:	Order

}

export	enum	ACTIONS	{

				ADD_PRODUCTS,	MODIFY_ORDER,	RESET_ORDER

}

export	interface	AddProductsAction	extends

Action<ACTIONS.ADD_PRODUCTS>	{

				payload:	Product[]

}

export	interface	ModifyOrderAction	extends

Action<ACTIONS.MODIFY_ORDER>	{

				payload:	{

								product:	Product,

								quantity:	number

				}

}

export	interface	ResetOrderAction	extends

Action<ACTIONS.RESET_ORDER>	{}

export	type	StoreAction	=	AddProductsAction	|

ModifyOrderAction	|	ResetOrderAction;



Listing	19-18. The	Contents	of	the	types.ts	File	in	the	src/data	Folder

The	StoreData	interface	describes	the	data	that	the	data	store	will
manage,	which,	for	the	example	application,	defines	products	and	order
properties.

The	ACTIONS	enum	defines	a	set	of	values,	each	of	which	corresponds	to	an
action	that	the	data	store	will	support.	Each	enum	value	is	used	as	a	type
argument	to	the	Action	type,	which	is	an	interface	provided	by	the	Redux
package.	The	Action	interface	is	extended	to	describe	the	characteristics	of	the
object	for	each	action	type,	some	of	which	have	a	payload	property	that
provides	the	data	that	will	be	required	to	apply	the	action.	The	StoreAction
type	is	the	intersection	of	the	action	interfaces.

The	next	step	is	to	define	the	action	creator	functions	that	are	responsible	for
creating	the	action	objects	that	describe	operations	that	will	change	the	data
store.	Add	a	file	named	actionCreators.ts	to	the	src/data	folder	with
the	code	shown	in	Listing	19-19.

import	{	ACTIONS,	AddProductsAction,

ModifyOrderAction,	ResetOrderAction	}

				from	"./types";

import	{	Product	}	from	"./entities";

export	const	addProduct	=	(...products:	Product[]):

AddProductsAction	=>	({

				type:	ACTIONS.ADD_PRODUCTS,

				payload:	products

});

export	const	modifyOrder	=

				(product:	Product,	quantity:	number):

ModifyOrderAction	=>	({

								type:	ACTIONS.MODIFY_ORDER,

								payload:	{	product,	quantity}

				});

export	const	resetOrder	=	():	ResetOrderAction	=>	({

				type:	ACTIONS.RESET_ORDER

});

Listing	19-19. The	Contents	of	the	actionCreators.ts	File	in	the	src/data	Folder



The	function	defined	in	Listing	19-19	acts	as	a	bridge	between	the
application’s	components	and	the	data	store,	providing	a	means	to	create	actions
that	the	data	store	will	process	to	apply	changes.	Actions	are	processed	by
functions	known	as	reducers,	which	receive	the	current	state	of	the	data	store,
and	an	action	object	describes	the	change	that	is	required.	To	create	the	reducer
for	the	example	application,	add	a	file	called	reducer.ts	to	the	src/data
folder	and	add	the	code	shown	in	Listing	19-20.

import	{	ACTIONS,	StoreData,	StoreAction	}	from

"./types";

import	{	Order	}	from	"./entities";

import	{	Reducer	}	from	"redux";

export	const	StoreReducer:	Reducer<StoreData,

StoreAction>

								=	(data:	StoreData	|	undefined	,	action)		=>	{

				data	=	data	||	{	products:	[],	order:	new	Order()	}

				switch(action.type)	{

								case	ACTIONS.ADD_PRODUCTS:

												return	{

																...data,

																products:	[...data.products,

...action.payload]

												};

								case	ACTIONS.MODIFY_ORDER:

												data.order.addProduct(action.payload.product,

action.payload.quantity);

												return	{	...data	};

								case	ACTIONS.RESET_ORDER:

												return	{

																...data,

																order:	new	Order()

												}

								default:

												return	data;

				}



}

Listing	19-20. The	Contents	of	the	reducer.ts	File	in	the	src/data	Folder

A	reducer	function	receives	the	data	currently	in	the	data	store	and	an	action
and	returns	the	modified	data.	This	transformation	is	described	by	the
Reducer<S,	A>	type,	where	S	is	the	type	that	represents	the	shape	of	the
store	data	and	A	is	the	type	that	represents	the	actions	the	store	supports.	For	the
example	application,	the	type	of	the	reducer	function	is
Reducer<StoreData,	StoreAction>.

...

export	const	StoreReducer:	Reducer<StoreData,

StoreAction>

								=	(data:	StoreData	|	undefined	,	action):

StoreData		=>	{

...

When	the	function	is	invoked,	it	identifies	the	action	using	the	type
property	inherited	from	the	Action	interface,	and	it	updates	the	data	using	the
payload	property	for	those	actions	that	provide	it.	The	reducer	function	will
also	be	invoked	when	the	datastore	is	first	created,	which	provides	an
opportunity	to	define	the	initial	data	the	application	will	use.

The	final	step	is	to	create	the	data	store	so	that	it	can	be	used	by	the
application.	Add	a	file	named	dataStore.ts	to	the	src/data	folder	and
add	the	code	shown	in	Listing	19-21.

import	{	createStore,	Store	}	from	"redux";

import	{	StoreReducer	}	from	"./reducer";

import	{	StoreData,	StoreAction	}	from	"./types";

export	const	dataStore:	Store<StoreData,	StoreAction>

=	createStore(StoreReducer);

Listing	19-21. The	Contents	of	the	dataStore.ts	File	in	the	src/data	Folder

This	file	uses	the	Redux	createStore	method	to	create	a	datastore	object,
which	is	exported	so	that	it	can	be	used	throughout	the	application.

Creating	the	HTTP	Request	Class
Redux	data	stores	can	support	actions	that	handle	HTTP	requests,	but	this	relies



on	advanced	features	that	don’t	reveal	anything	useful	about	TypeScript.	To	keep
the	example	simple,	I	am	going	to	handle	the	HTTP	requests	that	get	the	product
data	and	store	a	user’s	order	in	a	separate	class.	React	doesn’t	include	integrated
support	for	HTTP,	so	open	a	new	command	prompt,	navigate	to	the	reactapp
folder,	and	run	the	command	shown	in	Listing	19-22	to	add	the	Axios	package	to
the	project.

npm	install	axios@0.21.1

Listing	19-22. Adding	a	Package	to	the	Project

Once	the	package	has	been	installed,	add	a	file	called	httpHandler.ts	to
the	src/data	folder	and	add	the	code	shown	in	Listing	19-23.

import	Axios	from	"axios";

import	{	Product,	Order}		from	"./entities";

const	protocol	=	"http";

const	hostname	=	"localhost";

const	port	=	4600;

const	urls	=	{

				products:

`${protocol}://${hostname}:${port}/products`,

				orders:	`${protocol}://${hostname}:${port}/orders`

};

export	class	HttpHandler	{

				loadProducts(callback:	(products:	Product[])	=>

void):	void	{

								Axios.get(urls.products).then(response	=>

callback(response.data))

				}

				storeOrder(order:	Order,	callback:	(id:	number)	=>

void):	void	{

								let	orderData	=	{

												lines:

[...order.orderLines.values()].map(ol	=>	({



																productId:	ol.product.id,

																productName:	ol.product.name,

																quantity:	ol.quantity

												}))

								}

								Axios.post(urls.orders,	orderData)

												.then(response	=>

callback(response.data.id));

				}

}

Listing	19-23. The	Contents	of	the	httpHandler.ts	File	in	the	src/data	Folder

Connecting	the	Data	Store	to	the	Components
The	React-Redux	package	is	responsible	for	connecting	components	in	a	React
application	to	a	Redux	data	store.	This	is	a	package	that	doesn’t	include
TypeScript	declaration	files,	which	is	why	I	installed	the	additional	type	package
in	Listing	19-17.	To	connect	the	ProductList	component	to	the	data	store,	I
added	a	file	named	productListConnector.ts	to	the	src/data	folder
with	the	code	shown	in	Listing	19-24.

import	{	StoreData	}	from	"./types";

import	{	modifyOrder	}	from	"./actionCreators";

import	{	connect	}	from	"react-redux";

import	{	ProductList	}	from	"../productList";

const	mapStateToProps	=	(data:	StoreData)	=>	({

				products:	data.products,

				categories:	[...new	Set(data.products.map(p	=>

p.category))],

				order:	data.order

})

const	mapDispatchToProps	=	{

				addToOrder:	modifyOrder

}

const	connectFunction	=	connect(mapStateToProps,

mapDispatchToProps);

export	const	ConnectedProductList	=



connectFunction(ProductList);

Listing	19-24. The	Contents	of	the	productListConnector.ts	File	in	the	src/data	Folder

The	connection	process	maps	data	properties	from	the	data	store	and	maps
action	creators	to	the	component’s	props,	producing	a	component	that	is
configured	partly	by	the	props	used	when	it	is	applied	as	an	HTML	element	and
partly	from	the	data	store.	In	the	listing,	the	products,	categories,	and
order	props	are	mapped	to	the	datastore	products	and	order	properties,
and	the	addToOrder	prop	is	mapped	to	the	modifyOrder	action	creator.
The	result	is	a	component	named	ConnectedProductList	that	connects	the
ProductList	component	to	the	data	store.

Tip Notice	that	I	have	not	used	type	annotations	when	mapping	the
component.	There	are	types	available,	but	they	become	convoluted,	and	I
prefer	to	let	the	compiler	infer	the	types	and	warn	me	only	if	there	is	a
problem.

To	complete	the	connection	to	the	data	store,	Listing	19-25	modifies	the	App
component	to	select	the	store,	populate	it	with	data	from	the	web	service,	and
remove	the	test	data	and	props	that	are	no	longer	required.

import	React,	{	Component	}	from	'react';

//import	{	Product,	Order	}	from	'./data/entities';

//import	{	ProductList	}	from	'./productList';

import	{	dataStore	}	from	"./data/dataStore";

import	{	Provider	}	from	'react-redux';

import	{	HttpHandler	}	from	"./data/httpHandler";

import	{	addProduct	}	from	'./data/actionCreators';

import	{	ConnectedProductList	}	from

'./data/productListConnector';

interface	Props	{

				//	no	props	required

}

export	default	class	App	extends	Component<Props>	{

				private	httpHandler	=	new	HttpHandler();



				//	constructor(props:	Props)	{

				//					super(props);

				//					this.state	=	{

				//									order:	new	Order()

				//					}

				//	}

				componentDidMount	=	()	=>	this.httpHandler

								.loadProducts(data	=>

{dataStore.dispatch(addProduct(...data))});

				render	=	()	=>

								<div	className="App">

												<Provider	store={	dataStore	}>

																<ConnectedProductList	/>

												</Provider>

								</div>

				submitCallback	=	()	=>	{

								console.log("Submit	order");

				}

}

Listing	19-25. Applying	the	Data	Store	in	the	App.tsx	File	in	the	src	Folder

The	Provider	component	sets	up	the	data	store	so	that	it	can	be	accessed
by	the	ConnectedProductList	component,	allowing	the	connection
features	to	be	used.

...

<Provider	store={	dataStore	}>

				<ConnectedProductList	/>

</Provider>

...

Datastores	can	be	used	directly,	as	well	as	through	mappings	to	props.	In	this
case,	the	App	component	gets	the	data	from	the	web	service	via	the
HttpHandler	class	and	explicitly	creates	and	dispatches	an	action	to	update
the	data	in	the	store.



...

this.httpHandler.loadProducts(data	=>

dataStore.dispatch(addProduct(...data)));

...

The	result	is	that	the	data	is	requested	from	the	server	and	added	to	the	data
store,	which	triggers	an	update	that	leads	the	connected	components	to	display
new	data,	as	shown	in	Figure	19-5.

Figure	19-5. Using	a	data	store

Summary
In	this	chapter,	I	started	a	React	project	that	uses	TypeScript.	I	explained	the
unusual	developer	tools	configuration	and	the	effect	it	has	on	the	TypeScript
compiler	configuration.	I	created	React	components	that	are	defined	using
TypeScript	features	and	connected	them	to	a	simple	Redux	data	store.	In	the	next
chapter,	I	complete	the	development	of	the	React	project	and	prepare	the
application	for	deployment.



©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
A.	Freeman,	Essential	TypeScript	4
https://doi.org/10.1007/978-1-4842-7011-0_20

https://doi.org/10.1007/978-1-4842-7011-0_20


(1)

20.	Creating	a	React	App,	Part	2
Adam	Freeman1		

London,	UK

	

In	this	chapter,	I	complete	the	React	web	application	by	adding	URL	routing	and
the	remaining	components	before	preparing	the	application	for	deployment	in	a
container.	For	quick	reference,	Table	20-1	lists	the	TypeScript	compiler	options
used	in	this	chapter.

Table	20-1. The	TypeScript	Compiler	Options	Used	in	This	Chapter

Name Description

allowJs This	option	includes	JavaScript	files	in	the	compilation
process.

allowSyntheticDefaultImports This	option	allows	imports	from	modules	that	do	not
declare	a	default	export.	This	option	is	used	to	increase
code	compatibility.

esModuleInterop This	option	adds	helper	code	for	importing	from	modules
that	do	not	declare	a	default	export	and	is	used	in
conjunction	with	the
allowSyntheticDefaultImports	option.

forceConsistentCasingInFileNames This	option	ensures	that	names	in	import	statements
match	the	case	used	by	the	imported	file.

isolatedModules This	option	treats	each	file	as	a	separate	module,	which
increases	compatibility	with	the	Babel	tool.

lib This	option	selects	the	type	declaration	files	the	compiler
uses.

module This	option	determines	the	style	of	modules	that	are
used.

moduleResolution This	option	specifies	the	style	of	module	resolution	that
should	be	used	to	resolve	dependencies.

noEmit This	option	prevents	the	compiler	from	emitting
JavaScript	code,	with	the	result	that	it	only	checks	code
for	errors.

resolveJsonModule This	option	allows	JSON	files	to	be	imported	as	though



they	were	modules.

skipLibCheck This	option	speeds	up	compilation	by	skipping	the
normal	checking	of	declaration	files.

strict This	option	enables	stricter	checking	of	TypeScript	code.

target This	option	specifies	the	version	of	the	JavaScript
language	that	the	compiler	will	target	in	its	output.

Preparing	for	This	Chapter
In	this	chapter,	I	continue	to	work	with	the	reactapp	project	started	in	Chapter
19.	Open	a	command	prompt,	navigate	to	the	reactapp	folder,	and	run	the
command	shown	in	Listing	20-1	to	start	the	web	service	and	the	React
development	tools.

Tip You	can	download	the	example	project	for	this	chapter—and	for	all	the
other	chapters	in	this	book—from
https://github.com/Apress/essential-typescript-4.

npm	start

Listing	20-1. Starting	the	Development	Tools

After	the	initial	build	process,	a	new	browser	window	will	open	and	display
the	example	application,	as	shown	in	Figure	20-1.

https://github.com/Apress/essential-typescript-4


Figure	20-1. Running	the	example	application

Configuring	URL	Routing
Most	real	React	projects	rely	on	URL	routing,	which	uses	the	browser’s	current
URL	to	select	the	components	that	are	displayed	to	the	user.	React	doesn’t
include	built-in	support	for	URL	routing,	but	the	most	commonly	used	package
is	React	Router.	Open	a	new	command	prompt,	navigate	to	the	reactapp
folder,	and	run	the	commands	shown	in	Listing	20-2	to	install	the	React	Router
package	and	the	type	definition	files.

npm	install	react-router-dom@5.2.0

npm	install	--save-dev	@types/react-router-dom

Listing	20-2. Adding	a	Package	to	the	Project

The	React	Router	package	supports	different	navigation	systems,	and	the
react-router-dom	package	contains	the	functionality	required	for	web
applications.	Table	20-2	shows	the	URLs	that	the	example	application	will
support	and	the	purpose	of	each	of	them.

Table	20-2. The	URLs	Supported	by	the	Application



Name Description

/products This	URL	will	display	the	ProductList	component	defined	in	Chapter	19.

/order This	URL	will	display	a	component	that	displays	details	of	the	order.

/summary This	URL	will	display	a	summary	of	an	order	once	it	has	been	sent	to	the	server.	The	URL
will	include	the	number	assigned	to	the	order	so	that	an	order	whose	ID	is	5	will	be
displayed	using	the	URL	/summary/5.

/ The	default	URL	will	be	redirected	to	/products	so	the	ProductList	component	is
shown.

Not	all	the	components	required	by	the	application	have	been	written,	so
Listing	20-3	sets	up	the	configuration	for	the	/products	and	/	URLs,	with	the
others	to	be	defined	in	the	sections	that	follow.

import	React,	{	Component	}	from	'react';

import	{	dataStore	}	from	"./data/dataStore";

import	{	Provider	}	from	'react-redux';

import	{	HttpHandler	}	from	"./data/httpHandler";

import	{	addProduct	}	from	'./data/actionCreators';

import	{	ConnectedProductList	}	from

'./data/productListConnector';

import	{	Switch,	Route,	Redirect,	BrowserRouter	}	from

"react-router-dom";

interface	Props	{

				//	no	props	required

}

export	default	class	App	extends	Component<Props>	{

				private	httpHandler	=	new	HttpHandler();

				componentDidMount	=	()	=>	this.httpHandler

								.loadProducts(data	=>

{dataStore.dispatch(addProduct(...data))});

				render	=	()	=>

								<div	className="App">

												<Provider	store={	dataStore	}>

																<BrowserRouter>

																				<Switch>



																								<Route	path="/products"

component={	ConnectedProductList	}	/>

																								<Redirect	to="/products"	/>

																				</Switch>

																</BrowserRouter>

												</Provider>

								</div>

				submitCallback	=	()	=>	{

								console.log("Submit	order");

				}

}

Listing	20-3. Configuring	URL	Routing	in	the	App.tsx	File	in	the	src	Folder

The	React	Router	package	relies	on	components	for	configuration.	The
BrowserRouter	component	defines	a	region	of	content	that	is	selected	by
using	the	browser’s	URL.	The	Route	component	creates	a	mapping	between	a
URL	and	a	component.	The	Switch	component	is	equivalent	to	a	JavaScript
switch	block	and	selects	the	component	from	the	first	Route	component
whose	path	prop	matches	the	current	URL.	The	Redirect	component
provides	a	fallback	that	directs	the	browser	to	a	URL	if	there	are	no	other
matches.	When	the	changes	in	Listing	20-3	are	saved,	the	application	will	be
rebuilt,	and	the	browser	will	be	redirected	to	the	/products	URL,	as	shown	in
Figure	20-2.



Figure	20-2. Adding	URL	routing

Completing	the	Example	Application	Features
Now	that	the	application	can	display	components	based	on	the	current	URL,	I
can	add	the	remaining	components	to	the	project.	To	enable	URL	navigation
from	the	button	displayed	by	the	Header	component,	I	added	the	statements
shown	in	Listing	20-4	to	the	header.tsx	file.

import	React,	{	Component	}	from	"react";

import	{	Order	}	from	"./data/entities";

import	{	NavLink	}	from	"react-router-dom";

interface	Props	{

				order:	Order

}

export	class	Header	extends	Component<Props>	{

				render()	{

								let	count	=	this.props.order.productCount;

								return	<div	className="p-1	bg-secondary	text-

white	text-right">



												{	count	===	0	?	"(No	Selection)"

																:	`${	count	}	product(s),	$${

this.props.order.total.toFixed(2)}`	}

												<NavLink	to="/order"	className="btn	btn-sm

btn-primary	m-1">

																Submit	Order

												</NavLink>

								</div>

				}

}

Listing	20-4. Adding	Navigation	in	the	header.tsx	File	in	the	src	Folder

The	NavLink	component	produces	an	anchor	element	(an	element	whose
tag	is	a)	that	navigates	to	a	specified	URL	when	it	is	clicked.	The	Bootstrap
classes	applied	to	the	NavLink	give	the	link	the	appearance	of	a	button.

Adding	the	Order	Summary	Component
To	display	the	details	of	the	order	to	the	user,	add	a	file	called
orderDetails.tsx	to	the	src	folder	and	add	the	code	shown	in	Listing	20-
5.

import	React,	{	Component	}	from	"react";

import	{	StoreData	}	from	"./data/types";

import	{	Order	}	from	"./data/entities";

import	{	connect	}	from	"react-redux";

import	{	NavLink	}	from	"react-router-dom";

const	mapStateToProps	=	(data:	StoreData)	=>	({

				order:	data.order

})

interface	Props	{

				order:	Order,

				submitCallback:	()	=>	void

}

const	connectFunction	=	connect(mapStateToProps);

export	const	OrderDetails	=	connectFunction(

				class	extends	Component<Props>	{



								render()	{

												return	<div>

												<h3	className="text-center	bg-primary

text-white	p-2">Order	Summary</h3>

												<div	className="p-3">

																<table	className="table	table-sm

table-striped">

																				<thead>

																								<tr>

																												<th>Quantity</th>

<th>Product</th>

																												<th	className="text-

right">Price</th>

																												<th	className="text-

right">Subtotal</th>

																								</tr>

																				</thead>

																				<tbody>

																								{

this.props.order.orderLines.map(line	=>

																												<tr	key={	line.product.id

}>

																																<td>{	line.quantity	}

</td>

																																<td>{

line.product.name	}</td>

																																<td	className="text-

right">

																																				${

line.product.price.toFixed(2)	}

																																</td>

																																<td	className="text-

right">

																																				${

line.total.toFixed(2)	}

																																</td>

																												</tr>

																								)}

																				</tbody>



																				<tfoot>

																								<tr>

																												<th	className="text-right"

colSpan={3}>Total:</th>

																												<th	className="text-

right">

																																${

this.props.order.total.toFixed(2)	}

																												</th>

																								</tr>

																				</tfoot>

																</table>

												</div>

												<div	className="text-center">

																<NavLink	to="/products"	className="btn

btn-secondary	m-1">

																				Back

																</NavLink>

																<button	className="btn	btn-primary	m-

1"

																								onClick={

this.props.submitCallback	}>

																				Submit	Order

																</button>

												</div>

								</div>

				}});

Listing	20-5. The	Contents	of	the	orderDetails.tsx	File	in	the	src	Folder

In	Chapter	19,	I	created	a	connector	for	an	existing	component	so	that	it
would	receive	props	that	are	linked	to	the	data	store.	In	Listing	20-5,	I	have
created	a	component	that	is	always	connected	to	the	data	store,	which	avoids	the
need	to	define	a	separate	connector	but	does	mean	that	the	component	can’t	be
used	when	the	datastore	isn’t	available,	such	as	in	another	project.	This
component	uses	a	NavLink	to	return	the	user	to	the	/products	button	and
invokes	a	function	prop	when	the	user	is	ready	to	send	the	order	to	the	web
service.

Adding	the	Confirmation	Component



Add	a	file	named	summary.tsx	to	the	src	folder	and	add	the	code	shown	in
Listing	20-6	to	display	a	message	to	the	user	once	the	order	has	been	stored	by
the	web	service.

import	React,	{	Component	}	from	"react";

import	{	match	}	from	"react-router";

import	{	NavLink	}	from	"react-router-dom";

interface	Params	{

				id:	string;

}

interface	Props	{

				match:	match<Params>

}

export	class	Summary	extends	Component<Props>	{

				render()	{

								let	id	=	this.props.match.params.id;

								return	<div	className="m-2	text-center">

												<h2>Thanks!</h2>

												<p>Thanks	for	placing	your	order.</p>

												<p>Your	order	is	#{	id	}</p>

												<p>We'll	ship	your	goods	as	soon	as

possible.</p>

												<NavLink	to="/products"	className="btn

btn-primary">OK</NavLink>

								</div>

				}

}

Listing	20-6. The	Contents	of	the	summary.tsx	File	in	the	src	Folder

The	Summary	component	only	needs	to	know	the	number	assigned	by	the
web	service	to	the	user’s	order,	which	it	obtains	from	the	current	route.	The
routing	package	provides	details	of	the	route	through	props,	following	the
established	React	pattern.	The	type	declarations	for	the	React	Router	package
are	used	to	describe	the	parameter	that	the	component	expects,	allowing	the
TypeScript	compiler	to	check	types.



Completing	the	Routing	Configuration
In	Listing	20-7,	I	added	new	Route	elements	to	display	the	OrderDetails
and	Summary	components,	completing	the	routing	configuration	for	the
example	application.

import	React,	{	Component	}	from	'react';

import	{	dataStore	}	from	"./data/dataStore";

import	{	Provider	}	from	'react-redux';

import	{	HttpHandler	}	from	"./data/httpHandler";

import	{	addProduct	}	from	'./data/actionCreators';

import	{	ConnectedProductList	}	from

'./data/productListConnector';

import	{	Switch,	Route,	Redirect,	BrowserRouter,

RouteComponentProps	}

				from	"react-router-dom";

import	{	OrderDetails	}	from	'./orderDetails';

import	{	Summary	}	from	'./summary';

interface	Props	{

				//	no	props	required

}

export	default	class	App	extends	Component<Props>	{

				private	httpHandler	=	new	HttpHandler();

				componentDidMount	=	()	=>	this.httpHandler

								.loadProducts(data	=>

{dataStore.dispatch(addProduct(...data))});

				render	=	()	=>

						<div	className="App">

								<Provider	store={	dataStore	}>

										<BrowserRouter>

												<Switch>

																<Route	path="/products"	component={

ConnectedProductList	}	/>

																<Route	path="/order"	render={	(props)	=>

																		<OrderDetails	{	...props	}	submitCallback={

()	=>



																						this.submitCallback(props)	}	/>

																}	/>

																<Route	path="/summary/:id"	component={

Summary	}	/>

																<Redirect	to="/products"	/>

												</Switch>

										</BrowserRouter>

								</Provider>

						</div>

				submitCallback	=	(routeProps:	RouteComponentProps)	=>	{

						this.httpHandler.storeOrder(dataStore.getState().order,

								id	=>	routeProps.history.push(	`/summary/${id}`));

				}

}

Listing	20-7. Adding	the	Remaining	Routes	in	the	App.tsx	File	in	the	src	Folder

The	Route	component	for	the	OrderDetails	component	uses	the
render	function	to	select	the	component	and	provide	it	with	a	mix	of	props
provided	by	the	routing	system	and	a	callback	function.	The
submitCallback	method	requires	access	to	the	routing	features	that	are
provided	as	props	to	components	to	navigate	to	a	new	URL,	but	these	are
available	only	within	the	Browser	router	component.	To	work	around	this
limitation,	I	provide	the	OrderDetails	component	with	an	inline	function
that	passes	the	routing	props	to	the	submitCallback	method,	which	allows
the	history.push	method	to	be	used.	The	Route	component	for	the
Summary	component	defines	a	URL	with	a	parameter	that	provides	the	order
number	to	display	to	the	user.

When	the	changes	are	saved,	items	can	be	added	to	the	order,	and	the	order
can	be	sent	to	the	web	service,	as	shown	in	Figure	20-3.



Figure	20-3. Completing	the	example	application

Deploying	the	Application
The	React	development	tools	rely	on	the	Webpack	Development	Server,	which	is
not	suitable	for	hosting	a	production	application	because	it	adds	features	such	as
automatic	reloading	to	the	JavaScript	bundles	it	generates.	In	this	section,	I	work
through	the	process	of	preparing	the	application	for	deployment,	which	is	a
similar	process	for	any	web	application,	including	those	developed	using	other
frameworks.

Adding	the	Production	HTTP	Server	Package
For	production,	a	regular	HTTP	server	is	required	to	deliver	the	HTML,	CSS,
and	JavaScript	files	to	the	browser.	For	this	example,	I	am	going	to	use	the
Express	server,	which	is	the	same	package	I	use	for	the	other	examples	in	this
part	of	the	book	and	which	is	a	good	choice	for	any	web	application.	Use
Control+C	to	stop	the	development	tools	and	use	the	command	prompt	to	run	the
command	shown	in	Listing	20-8	in	the	reactapp	folder	to	install	the
express	package.

The	second	command	installs	the	connect-history-api-fallback
package,	which	is	useful	when	deploying	applications	that	use	URL	routing
because	it	maps	requests	for	the	URLs	that	the	application	supports	to	the
index.html	file,	ensuring	that	reloading	the	browser	doesn’t	present	the	user
with	a	“not	found”	error.

npm	install	--save-dev	express@4.17.1

npm	install	--save-dev	connect-history-api-



fallback@1.6.0

Listing	20-8. Adding	Packages	for	Deployment

Creating	the	Persistent	Data	File
To	create	the	persistent	data	file	for	the	web	service,	add	a	file	called
data.json	to	the	reactapp	folder	and	add	the	content	shown	in	Listing	20-
9.

{

				"products":	[

								{	"id":	1,	"name":	"Kayak",	"category":

"Watersports",

												"description":	"A	boat	for	one	person",

"price":	275	},

								{	"id":	2,	"name":	"Lifejacket",	"category":

"Watersports",

												"description":	"Protective	and

fashionable",	"price":	48.95	},

								{	"id":	3,	"name":	"Soccer	Ball",	"category":

"Soccer",

												"description":	"FIFA-approved	size	and

weight",	"price":	19.50	},

								{	"id":	4,	"name":	"Corner	Flags",	"category":

"Soccer",

												"description":	"Give	your	playing	field	a

professional	touch",

												"price":	34.95	},

								{	"id":	5,	"name":	"Stadium",	"category":

"Soccer",

												"description":	"Flat-packed	35,000-seat

stadium",	"price":	79500	},

								{	"id":	6,	"name":	"Thinking	Cap",	"category":

"Chess",

												"description":	"Improve	brain	efficiency

by	75%",	"price":	16	},

								{	"id":	7,	"name":	"Unsteady	Chair",

"category":	"Chess",

												"description":	"Secretly	give	your



opponent	a	disadvantage",

												"price":	29.95	},

								{	"id":	8,	"name":	"Human	Chess	Board",

"category":	"Chess",

												"description":	"A	fun	game	for	the

family",	"price":	75	},

								{	"id":	9,	"name":	"Bling	Bling	King",

"category":	"Chess",

												"description":	"Gold-plated,	diamond-

studded	King",	"price":	1200	}

				],

				"orders":	[]

}

Listing	20-9. The	Contents	of	the	data.json	File	in	the	reactapp	Folder

Creating	the	Server
To	create	the	server	that	will	deliver	the	application	and	its	data	to	the	browser,
create	a	file	called	server.js	in	the	reactapp	folder	and	add	the	code
shown	in	Listing	20-10.

const	express	=	require("express");

const	jsonServer	=	require("json-server");

const	history	=	require("connect-history-api-

fallback");

const	app	=	express();

app.use(history());

app.use("/",	express.static("build"));

const	router	=	jsonServer.router("data.json");

app.use(jsonServer.bodyParser)

app.use("/api",	(req,	resp,	next)	=>	router(req,	resp,

next));

const	port	=	process.argv[3]	||	4002;

app.listen(port,	()	=>	console.log(`Running	on	port

${port}`));

Listing	20-10. The	Contents	of	the	server.js	File	in	the	reactapp	Folder



The	statements	in	the	server.js	file	configure	the	express	and	json-
server	packages	so	they	use	the	contents	of	the	build	folder,	which	is	where
the	React	build	process	will	put	the	application’s	JavaScript	bundles	and	the
HTML	file	that	tells	the	browser	to	load	them.	URLs	prefixed	with	/api	will	be
handled	by	the	web	service.

Using	Relative	URLs	for	Data	Requests
The	web	service	that	provided	the	application	with	data	has	been	running
alongside	the	React	development	server.	To	prepare	for	sending	requests	to	a
single	port,	I	changed	the	HttpHandler	class,	as	shown	in	Listing	20-11.

import	Axios	from	"axios";

import	{	Product,	Order}		from	"./entities";

//	const	protocol	=	document.location.protocol;

//	const	hostname	=	document.location.hostname;

//	const	port	=	4600;

const	urls	=	{

				//	products:

`${protocol}//${hostname}:${port}/products`,

				//	orders:

`${protocol}//${hostname}:${port}/orders`

				products:	"/api/products",

				orders:	"/api/orders"

};

export	class	HttpHandler	{

				loadProducts(callback:	(products:	Product[])	=>

void):	void	{

								Axios.get(urls.products).then(response	=>

callback(response.data))

				}

				storeOrder(order:	Order,	callback:	(id:	number)	=>

void):	void	{

								let	orderData	=	{

												lines:



[...order.orderLines.values()].map(ol	=>	({

																productId:	ol.product.id,

																productName:	ol.product.name,

																quantity:	ol.quantity

												}))

								}

								Axios.post(urls.orders,	orderData)

												.then(response	=>

callback(response.data.id));

				}

}

Listing	20-11. Using	Relative	URLs	in	the	httpHandler.ts	File	in	the	src/data	Folder

The	URLs	in	Listing	20-11	are	specified	relative	to	the	one	used	to	request
the	HTML	document,	following	the	common	convention	that	data	requests	are
prefixed	with	/api.

Building	the	Application
Run	the	command	shown	in	Listing	20-12	in	the	reactapp	folder	to	create	the
production	build	of	the	application.

npm	run	build

Listing	20-12. Creating	the	Production	Bundle

The	build	process	creates	a	set	of	optimized	files	in	the	build	folder.	The
build	process	can	take	a	few	moments	to	complete	and	will	produce	the
following	output,	which	shows	which	files	have	been	created:

Creating	an	optimized	production	build...

Compiled	successfully.

File	sizes	after	gzip:

		59.35	KB		build\static\js\2.943d36b9.chunk.js

		22.63	KB		build\static\css\2.658248ec.chunk.css

		2.52	KB			build\static\js\main.51b0a5f5.chunk.js

		1.39	KB			build\static\js\3.03f9fbbc.chunk.js

		1.16	KB			build\static\js\runtime-main.e80fc4bd.js

		278	B					build\static\css\main.6dea0f05.chunk.css

The	project	was	built	assuming	it	is	hosted	at	/.

You	can	control	this	with	the	homepage	field	in	your



package.json.

The	build	folder	is	ready	to	be	deployed.

You	may	serve	it	with	a	static	server:

		npm	install	-g	serve

		serve	-s	build

Find	out	more	about	deployment	here:

		https://cra.link/deployment

Testing	the	Production	Build
To	make	sure	that	the	build	process	has	worked	and	the	configuration	changes
have	taken	effect,	run	the	command	shown	in	Listing	20-13	in	the	reactapp
folder.

node	server.js

Listing	20-13. Starting	the	Production	Server

The	code	from	Listing	20-13	will	be	executed	and	will	produce	the	following
output:

Running	on	port	4002

Open	a	new	web	browser	and	navigate	to	http://localhost:4002,
which	will	show	the	application,	as	illustrated	in	Figure	20-4.



Figure	20-4. Running	the	production	build

Containerizing	the	Application
To	complete	this	chapter,	I	am	going	to	create	a	Docker	container	for	the
example	application	so	that	it	can	be	deployed	into	production.	If	you	did	not
install	Docker	in	Chapter	15,	then	you	must	do	so	now	to	follow	the	rest	of	the
examples	in	this	chapter.

Preparing	the	Application
The	first	step	is	to	create	a	configuration	file	for	NPM	that	will	be	used	to
download	the	additional	packages	required	by	the	application	for	use	in	the
container.	I	created	a	file	called	deploy-package.json	in	the	reactapp
folder	with	the	content	shown	in	Listing	20-14.

{

				"name":	"reactapp",

				"description":	"React	Web	App",

				"repository":



"https://github.com/Apress/essential-typescript",

				"license":	"0BSD",

				"devDependencies":	{

								"express":	"4.17.1",

								"json-server":	"0.16.3",

								"connect-history-api-fallback":	"1.6.0"

					}

}

Listing	20-14. The	Contents	of	the	deploy-package.json	File	in	the	reactapp	Folder

The	devDependencies	section	specifies	the	packages	required	to	run	the
application	in	the	container.	All	of	the	packages	for	which	there	are	import
statements	in	the	application’s	code	files	will	have	been	incorporated	into	the
bundle	created	by	webpack	and	are	listed.	The	other	fields	describe	the
application,	and	their	main	use	is	to	prevent	warnings	when	the	container	is
created.

Creating	the	Docker	Container
To	define	the	container,	I	added	a	file	called	Dockerfile	(with	no	extension)
to	the	reactapp	folder	and	added	the	content	shown	in	Listing	20-15.

FROM	node:14.15.4

RUN	mkdir	-p	/usr/src/reactapp

COPY	build	/usr/src/reactapp/build/

COPY	data.json	/usr/src/reactapp/

COPY	server.js	/usr/src/reactapp/

COPY	deploy-package.json

/usr/src/reactapp/package.json

WORKDIR	/usr/src/reactapp

RUN	echo	'package-lock=false'	>>	.npmrc

RUN	npm	install

EXPOSE	4002

CMD	["node",	"server.js"]



Listing	20-15. The	Contents	of	the	Dockerfile	File	in	the	reactapp	Folder

The	contents	of	the	Dockerfile	use	a	base	image	that	has	been	configured
with	Node.js	and	that	copies	the	files	required	to	run	the	application	into	the
container,	along	with	the	file	that	lists	the	packages	required	for	deployment.

To	speed	up	the	containerization	process,	I	created	a	file	called
.dockerignore	in	the	reactapp	folder	with	the	content	shown	in	Listing
20-16.	This	tells	Docker	to	ignore	the	node_modules	folder,	which	is	not
required	in	the	container	and	takes	a	long	time	to	process.

node_modules

Listing	20-16. The	Contents	of	the	.dockerignore	File	in	the	reactapp	Folder

Run	the	command	shown	in	Listing	20-17	in	the	reactapp	folder	to	create
an	image	that	will	contain	the	example	application,	along	with	all	the	packages	it
requires.

docker	build	.	-t	reactapp	-f		Dockerfile

Listing	20-17. Building	the	Docker	Image

An	image	is	a	template	for	containers.	As	Docker	processes	the	instructions
in	the	Docker	file,	the	NPM	packages	will	be	downloaded	and	installed,	and	the
configuration	and	code	files	will	be	copied	into	the	image.

Running	the	Application
Once	the	image	has	been	created,	create	and	start	a	new	container	using	the
command	shown	in	Listing	20-18.

docker	run	-p	4002:4002	reactapp

Listing	20-18. Starting	the	Docker	Container

You	can	test	the	application	by	opening	http://localhost:4002	in
the	browser,	which	will	display	the	response	provided	by	the	web	server	running
in	the	container,	as	shown	in	Figure	20-5.



Figure	20-5. Running	the	containerized	application

To	stop	the	container,	run	the	command	shown	in	Listing	20-19.

docker	ps

Listing	20-19. Listing	the	Containers

You	will	see	a	list	of	running	containers,	like	this	(I	have	omitted	some	fields
for	brevity):

CONTAINER

ID								IMAGE															COMMAND																				CREATED

82352eba95a2								reactapp												"docker-

entrypoint.s…"					51	seconds	ago

Using	the	value	in	the	Container	ID	column,	run	the	command	shown	in
Listing	20-20.



docker	stop	82352eba95a2

Listing	20-20. Stopping	the	Container

The	React	application	is	ready	to	deploy	to	any	platform	that	supports
Docker.

Summary
In	this	chapter,	I	completed	the	React	application	by	adding	support	for	URL
routing	and	by	defining	the	remaining	components.	As	with	the	other	examples
in	this	part	of	the	book,	I	prepared	the	application	for	deployment	and	created	a
Docker	image	that	can	be	readily	deployed.	In	the	next	chapter,	I	create	the	same
web	application	using	Vue.js	and	TypeScript.



©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
A.	Freeman,	Essential	TypeScript	4
https://doi.org/10.1007/978-1-4842-7011-0_21

https://doi.org/10.1007/978-1-4842-7011-0_21


(1)

21.	Creating	a	Vue.js	App,	Part	1
Adam	Freeman1		

London,	UK

	

In	this	chapter,	I	start	the	process	of	building	the	example	web	application	using
Vue.js,	which	is	the	newest	of	the	three	main	frameworks,	but	which	already	has
an	enthusiastic	and	committed	user	base.	For	quick	reference,	Table	21-1	lists
the	TypeScript	compiler	options	used	in	this	chapter.

Table	21-1. The	TypeScript	Compiler	Options	Used	in	This	Chapter

Name Description

allowSyntheticDefaultImports This	option	allows	imports	from	modules	that	do	not	declare	a
default	export.	This	option	is	used	to	increase	code
compatibility.

baseUrl This	option	specifies	the	root	location	used	to	resolve	module
dependencies.

esModuleInterop This	option	adds	helper	code	for	importing	from	modules	that
do	not	declare	a	default	export	and	is	used	in	conjunction	with
the	allowSyntheticDefaultImports	option.

importHelpers This	option	determines	whether	helper	code	is	added	to	the
JavaScript	to	reduce	the	amount	of	code	that	is	produced
overall.

jsx This	option	specifies	how	HTML	elements	in	TSX	files	are
processed.

lib This	option	selects	the	type	declaration	files	the	compiler	uses.

module This	option	determines	the	style	of	module	that	is	used.

moduleResolution This	option	specifies	the	style	of	module	resolution	that	should
be	used	to	resolve	dependencies.

paths This	option	specifies	the	locations	used	to	resolve	module
dependencies.

skipLibCheck This	option	speeds	up	compilation	by	skipping	the	normal
checking	of	declaration	files.

sourceMap This	option	determines	whether	the	compiler	generates	source
maps	for	debugging.



strict This	option	enables	stricter	checking	of	TypeScript	code.

target This	option	specifies	the	version	of	the	JavaScript	language
that	the	compiler	will	target	in	its	output.

types This	option	specifies	a	list	of	declaration	files	to	include	in	the
compilation	process.

Preparing	for	This	Chapter
Vue.js	projects	are	most	easily	created	using	the	Vue	Cli	package,	which	has
built-in	support	for	creating	Vue.js	projects	that	include	TypeScript	support.
Open	a	command	prompt	and	run	the	command	shown	in	Listing	21-1	to	install
the	Vue	Cli	package.

Tip You	can	download	the	example	project	for	this	chapter—and	for	all	the
other	chapters	in	this	book—from
https://github.com/Apress/essential-typescript-4.

npm	install	--global	@vue/cli@4.5.11

Listing	21-1. Installing	the	Project	Creation	Package

The	first	@	character	is	part	of	the	package	name,	@vue-cli.	The	second	@
character	is	the	separator	between	the	package	name	and	the	version	that	is
required,	4.5.11.

Once	the	package	has	been	installed,	navigate	to	a	convenient	location	and
run	the	command	shown	in	Listing	21-2	to	create	a	new	Vue.js	project.

vue	create	vueapp

Listing	21-2. Creating	a	New	Project

The	project	setup	process	is	interactive.	Select	the	answers	to	each	question
shown	in	Table	21-2.

Table	21-2. The	Project	Setup	Questions	and	Answers

Question Answers

Please	pick	a	preset. Manually	select	features.

Check	the	features	needed	for
your	project.

Select	these	features:	Babel,	TypeScript,	Router,	Vuex.	Do	not
select	the	linter.

https://github.com/Apress/essential-typescript-4


Once	you	have	chosen	the	features	shown,	select	the	Choose	Vue	version
option	and	select	Vue	3.x.	(Support	for	Vue.js	3	is	in	preview	at	the	time
of	writing.)

Use	class-style	component
syntax?

N

Use	Babel	alongside
TypeScript?

Y

Use	history	mode	for	router? Y

Where	do	you	prefer	placing
config	for	Babel,	PostCSS,
ESLint,	etc.?

In	dedicated	config	files

Save	this	as	a	preset	for	future
projects?

N

Pick	the	package	manager	to
use	when	installing
dependencies

Use	NPM.

Once	you	have	answered	the	questions,	the	project	will	be	created,	and	the
packages	it	requires	will	be	installed.

Configuring	the	Web	Service
Run	the	commands	shown	in	Listing	21-3	to	navigate	to	the	project	folder	and
add	the	packages	that	will	provide	the	web	service	and	allow	multiple	packages
to	be	started	with	a	single	command.

cd	vueapp

npm	install	--save-dev	json-server@0.16.3

npm	install	--save-dev	npm-run-all@4.1.5

npm	install	axios@0.21.1

Listing	21-3. Adding	Packages	to	the	Project

To	provide	the	data	for	the	web	service,	add	a	file	called	data.js	to	the
vueapp	folder	with	the	content	shown	in	Listing	21-4.

module.exports	=	function	()	{

				return	{

								products:	[

												{	id:	1,	name:	"Kayak",	category:

"Watersports",

																description:	"A	boat	for	one	person",



price:	275	},

												{	id:	2,	name:	"Lifejacket",	category:

"Watersports",

																description:	"Protective	and

fashionable",	price:	48.95	},

												{	id:	3,	name:	"Soccer	Ball",	category:

"Soccer",

																description:	"FIFA-approved	size	and

weight",	price:	19.50	},

												{	id:	4,	name:	"Corner	Flags",	category:

"Soccer",

																description:	"Give	your	playing	field

a	professional	touch",

																price:	34.95	},

												{	id:	5,	name:	"Stadium",	category:

"Soccer",

																description:	"Flat-packed	35,000-seat

stadium",	price:	79500	},

												{	id:	6,	name:	"Thinking	Cap",	category:

"Chess",

																description:	"Improve	brain	efficiency

by	75%",	price:	16	},

												{	id:	7,	name:	"Unsteady	Chair",	category:

"Chess",

																description:	"Secretly	give	your

opponent	a	disadvantage",

																price:	29.95	},

												{	id:	8,	name:	"Human	Chess	Board",

category:	"Chess",

																description:	"A	fun	game	for	the

family",	price:	75	},

												{	id:	9,	name:	"Bling	Bling	King",

category:	"Chess",

																description:	"Gold-plated,	diamond-

studded	King",	price:	1200	}

								],

								orders:	[]

				}

}



Listing	21-4. The	Contents	of	the	data.js	File	in	the	vueapp	Folder

Update	the	scripts	section	of	the	package.json	file	to	configure	the
development	tools	so	that	the	toolchain	and	the	web	service	are	started	at	the
same	time,	as	shown	in	Listing	21-5.

...

"scripts":	{

				"start":	"npm-run-all	-p	serve	json",

				"json":	"json-server	data.js	-p	4600",

				"serve":	"vue-cli-service	serve",

				"build":	"vue-cli-service	build"

},

...

Listing	21-5. Configuring	Tools	in	the	package.json	File	in	the	vueapp	Folder

These	entries	allow	both	the	web	service	that	will	provide	the	data	and	the
Vue.js	development	tools	to	be	started	with	a	single	command.

Configuring	the	Bootstrap	CSS	Package
Use	the	command	prompt	to	run	the	command	shown	in	Listing	21-6	in	the
vueapp	folder	to	add	the	Bootstrap	CSS	framework	to	the	project.

npm	install	bootstrap@4.6.0

Listing	21-6. Adding	the	CSS	Package

The	Vue.js	development	tools	require	a	configuration	change	to	incorporate
the	Bootstrap	CSS	stylesheet	in	the	application.	Open	the	main.ts	file	in	the
src	folder	and	add	the	statement	shown	in	Listing	21-7.

import	{	createApp	}	from	'vue'

import	App	from	'./App.vue'

import	router	from	'./router'

import	store	from	'./store'

import	"bootstrap/dist/css/bootstrap.min.css";

createApp(App).use(store).use(router).mount('#app')

Listing	21-7. Adding	a	Stylesheet	in	the	main.ts	File	in	the	src	Folder



Starting	the	Example	Application
Use	the	command	prompt	to	run	the	command	shown	in	Listing	21-8	in	the
vueapp	folder.

npm	start

Listing	21-8. Starting	the	Development	Tools

The	Vue.js	development	tools	take	a	moment	to	start	and	perform	the	initial
compilation,	producing	output	like	this:

...

DONE		Compiled	successfully	in

2905ms																																																																								17:12:21

		App	running	at:

		-	Local:			http://localhost:8080/

		-	Network:	http://192.168.1.10:8080/

		Note	that	the	development	build	is	not	optimized.

		To	create	a	production	build,	run	npm	run	build.

No	issues	found.

...

Once	the	initial	compilation	has	been	completed,	open	a	browser	window
and	navigate	to	http://localhost:8080	to	see	the	placeholder	content
created	by	the	command	in	Listing	21-2	and	which	is	shown	in	Figure	21-1.



Figure	21-1. Running	the	example	application

Understanding	TypeScript	in	Vue.js	Development
TypeScript	isn’t	required	for	Vue.js	development,	but	it	has	become	such	a
popular	choice	that	the	main	Vue.js	packages	contain	complete	type	declaration
files,	and	the	Vue	Cli	package	can	create	projects	ready-configured	for
TypeScript.

Vue.js	files	don’t	have	a	different	file	extension	when	they	use	TypeScript
features	and	are	defined	in	files	with	the	vue	extension	that	can	contain
template,	style,	and	script	elements,	known	as	single-file	components.
The	template	element	contains	a	template	that	will	be	used	to	render	HTML
content,	the	style	element	contains	CSS	styles	for	the	content,	and	the
script	element	contains	the	code	that	supports	the	template.	As	an	example,
here	are	the	contents	of	the	Home.vue	file	in	the	src/views	folder:

<template>

		<div	class="home">



				<img	alt="Vue	logo"	src="../assets/logo.png">

				<HelloWorld	msg="Welcome	to	Your	Vue.js	+

TypeScript	App"/>

		</div>

</template>

<script	lang="ts">

import	{	defineComponent	}	from	'vue';

import	HelloWorld	from	'@/components/HelloWorld.vue';

//	@	is	an	alias	to	/src

export	default	defineComponent({

		name:	'Home',

		components:	{

				HelloWorld,

		},

});

</script>

The	language	used	for	the	script	element	is	specified	by	the	lang
attribute,	like	this:

...

<script	lang="ts">

...

This	value	specifies	TypeScript	and	ensures	that	the	code	will	be	processed
by	the	TypeScript	compiler.	Components	are	defined	using	the
defineComponent	function	and	are	expressed	using	the	JavaScript	object
literal	syntax.	There	is	support	for	defining	components	using	classes,	but	I	have
not	used	that	feature	because	its	future	seems	uncertain	and	the	literal	syntax	is
more	widely	used.

Understanding	the	TypeScript	Vue.js	Toolchain
The	Vue.js	development	tools	rely	on	webpack	and	the	Webpack	Development
Server	packages,	which	I	used	in	Chapter	15	and	which	are	also	used	by	the
Angular	and	React	development	tools.	When	a	project	is	created	to	use
TypeScript,	a	tsconfig.json	file	is	created	to	configure	the	compiler	with
the	following	settings:



{

		"compilerOptions":	{

				"target":	"esnext",

				"module":	"esnext",

				"strict":	true,

				"jsx":	"preserve",

				"importHelpers":	true,

				"moduleResolution":	"node",

				"skipLibCheck":	true,

				"esModuleInterop":	true,

				"allowSyntheticDefaultImports":	true,

				"sourceMap":	true,

				"baseUrl":	".",

				"types":	["webpack-env"],

				"paths":	{

						"@/*":	["src/*"]

				},

				"lib":	["esnext","dom","dom.iterable","scripthost"

				]

		},

		"include":

["src/**/*.ts","src/**/*.tsx","src/**/*.vue",

				"tests/**/*.ts","tests/**/*.tsx"

		],

		"exclude":	["node_modules"]

}

The	Vue.js	development	tools	deal	with	vue	files	by	converting	the	contents
of	the	template	element	into	code	statements	and	using	the	TypeScript
compiler	to	process	the	contents	of	the	script	element.	The	compiled	code	is
passed	to	the	Babel	package,	which	is	used	to	target	a	specific	version	of	the
JavaScript	language.	Regular	TypeScript	files	and	TypeScript	JSX	files	are	also
supported,	and	the	results	are	bundled	into	files	that	are	served	to	the	browser
through	the	Webpack	Development	Server,	as	shown	in	Figure	21-2.



Figure	21-2. The	Vue.js	toolchain

Creating	the	Entity	Classes
To	define	the	data	types	that	the	application	will	manage,	create	the	src/data
folder	and	add	to	it	a	file	called	entities.ts	with	the	code	shown	in	Listing
21-9.

export	class	Product		{

				constructor(

								public	id:	number,

								public	name:	string,

								public	description:	string,

								public	category:	string,

								public	price:	number)	{}

};

export	class	OrderLine	{

				constructor(public	product:	Product,	public

quantity:	number)	{

								//	no	statements	required

				}

				get	total():	number	{

								return	this.product.price	*	this.quantity;

				}

}

export	class	Order	{

				private	lines:	OrderLine[]	=	[];

				constructor(initialLines?:	OrderLine[])	{



								if	(initialLines)	{

												this.lines.push(...initialLines);

								}

				}

				public	addProduct(prod:	Product,	quantity:	number)

{

								let	index	=	this.lines.findIndex(ol	=>

ol.product.id	===	prod.id)

								if	(index	>	-1)	{

												if	(quantity	===	0)	{

																this.removeProduct(prod.id);

												}	else	{

																this.lines[index].quantity	+=

quantity;

												}

								}	else	{

												this.lines.push(new	OrderLine(prod,

quantity));

								}

				}

				public	removeProduct(id:	number)	{

								this.lines	=	this.lines.filter(ol	=>

ol.product.id	!==	id);

				}

				get	orderLines():	OrderLine[]	{

								return	this.lines;

				}

				get	productCount():	number	{

								return	this.lines.reduce((total,	ol)	=>	total

+=	ol.quantity,	0);

				}

				get	total():	number	{

								return	this.lines.reduce((total,	ol)	=>	total

+=	ol.total,	0);



				}

}

Listing	21-9. The	Contents	of	the	entities.ts	File	in	the	src/data	Folder

These	types	describe	products	and	orders	and	the	relationship	between	them.
Unlike	the	other	chapters	in	this	part	of	the	book,	Product	is	defined	as	a	class
and	not	a	type	alias,	because	the	Vue.js	development	tools	rely	on	concrete
types.	The	Vue.js	change	detection	system	doesn’t	work	well	with	the	JavaScript
Map,	so	the	Order	class	for	this	chapter	is	written	using	an	array	for	storage.

Displaying	a	Filtered	List	of	Products
Vue.js	supports	different	ways	of	defining	components,	which	are	the	key
building	block	for	displaying	content	to	the	user.	For	this	book,	I	am	going	to	use
the	most	popular,	which	is	the	single-file	component	format	that	combines
HTML	and	its	supporting	code	in	one	file.	(These	files	can	also	contain	CSS,	but
I	won’t	be	using	that	feature	since	I	am	relying	on	the	Bootstrap	package
configured	in	Listing	21-6.)

The	convention	is	to	store	individual	components	in	the	src/components
folder	and	compose	them	together	for	display	to	the	user	using	the	src/views
folder.	To	display	the	details	of	a	single	product,	add	a	file	named
ProductItem.vue	to	the	src/components	folder	and	add	the	content
shown	in	Listing	21-10.

<template>

				<div	class="card	m-1	p-1	bg-light">

								<h4>

												{{	product.name	}}

												<span	class="badge	badge-pill	badge-

primary	float-right">

																${{	product.price.toFixed(2)	}}

												</span>

								</h4>

								<div	class="card-text	bg-white	p-1">

												{{	product.description	}}

												<button	class="btn	btn-success	btn-sm

float-right"

																				@click="handleAddToCart">



																Add	To	Cart

												</button>

												<select	class="form-control-inline	float-

right	m-1"

																				v-model.number="quantity">

																<option>1</option>

																<option>2</option>

																<option>3</option>

												</select>

								</div>

				</div>

</template>

<script	lang="ts">

import	{	defineComponent,	PropType	}	from	"vue";

import	{	Product	}	from	"../data/entities";

export	default	defineComponent({

				name:	"ProductItem",

				props:	{

								product:	{

												type:	Object	as	PropType<Product>

								}

				},

				data()	{

								return	{

												quantity:	1

								}

				},

				methods:	{

								handleAddToCart(){

												this.$emit("addToCart",

																{	product:	this.product,	quantity:

this.quantity	});

								}

				}

});



</script>

Listing	21-10. The	Contents	of	the	ProductItem.vue	File	in	the	src/component	Folder

A	Vue.js	component’s	template	element	uses	data	bindings,	denoted	by
double	curly	brackets	({{	and	}}),	to	display	data	values	and	uses	event
handling	attributes,	prefixed	by	the	@	character,	to	handle	events.	The
expressions	specified	by	the	bindings	and	the	event	attributes	are	evaluated	using
the	featured	defined	by	the	class	in	the	script	element.

This	component	in	Listing	21-10	displays	the	details	of	a	Product	object
and	emits	an	event	when	the	user	clicks	the	Add	To	Cart	button.

The	component’s	code	is	defined	in	the	script	element,	and	the
component	is	created	with	the	defineComponent	function,	which	is	defined
in	the	vue	package.

...

export	default	defineComponent({

...

The	properties	of	the	object	passed	to	the	defineComponent	function
describe	different	aspects	of	the	component’s	behavior.	The	props	property	is
used	to	describe	the	data	values	that	the	component	will	receive	from	its	parent,
like	this:

...

props:	{

				product:	{

								type:	Object	as	PropType<Product>

				}

},

...

This	component	defines	a	single	prop,	named	product.	To	specify	the	type
of	the	data	value	that	is	expected,	the	product	property	is	assigned	an	object
that	defines	a	type	parameter	and	whose	value	is	this	expression:

...

type:	Object	as	PropType<Product>

...



Vue.js	implements	simple	type	checking	for	props,	and	to	accommodate
TypeScript,	this	expression	uses	the	PropType<T>	generic	type,	where	the
expected	type	is	specified	as	the	type	argument.	In	this	case,	the	expression
specifies	that	the	expected	type	of	the	product	prop	is	Product.

The	data	property	is	assigned	a	function	that	returns	an	object	used	to
define	the	state	data	that	the	component	requires.	This	component	defines	a
single	state	data	property	named	quantity,	which	has	an	initial	value	of	1.

The	methods	property	is	used	to	define	the	component’s	methods,	which
can	be	called	in	response	to	events.	This	component	defines	a	method	called
handleAddToCart,	which	uses	the	$emit	method	to	trigger	a	custom	event.
This	method	will	be	invoked	when	the	user	clicks	the	button	element	in	the
component’s	template,	for	which	there	is	an	event	handler,	like	this:

...

<button	class="btn	btn-success	btn-sm	float-right"

@click="handleAddToCart">

...

The	result	is	that	clicking	the	button	causes	the	component	to	trigger	an
event	that	will	be	received	by	its	parent.	The	data	sent	with	the	event	includes
the	Product	object	received	as	a	prop	and	the	current	value	of	the	quantity
state	data	value.

Displaying	a	List	of	Categories	and	the	Header
To	display	the	category	buttons,	add	a	file	called	CategoryList.vue	to	the
src/components	folder	and	add	the	content	shown	in	Listing	21-11.

<template>

				<div>

								<button	v-for="c	in	categories"

												v-bind:key="c"

												v-bind:class="getButtonClasses(c)"

												@click="selectCategory(c)">

																{{	c	}}

								</button>

				</div>

</template>



<script	lang="ts">

import	{	defineComponent,	PropType	}	from	"vue";

export	default	defineComponent({

				name:	"CategoryList",

				props:	{

								categories:	{

												type:	Object	as	PropType<string[]>

								},

								selected:	{

												type:	String	as	PropType<string>

								}

				},

				methods:	{

								selectCategory(category:	string)	{

												this.$emit("selectCategory",	category);

								},

								getButtonClasses(category:	string):	string	{

												const	btnClass	=	this.selected	===

category

																?	"btn-primary":	"btn-secondary";

												return	`btn	btn-block	${btnClass}`;

								}

				}

});

</script>

Listing	21-11. The	Contents	of	the	CategoryList.vue	File	in	the	src/components	Folder

This	component	displays	a	list	of	buttons	and	highlights	the	one	that
corresponds	to	the	selected	category.	The	element	attributes	in	the	template
section	are	evaluated	as	string	literal	values	unless	they	are	prefixed	with	v-
bind,	which	tells	Vue.js	to	create	a	data	binding	between	the	code	in	the
script	element	and	the	value	assigned	to	the	attribute.	This	is	an	example	of	a
Vue.js	directive,	and	it	allows	the	result	of	methods	defined	by	the	component
class	to	be	inserted	into	the	HTML	in	the	template	section:

...



v-bind:class="getButtonClasses(c)"

...

This	fragment	tells	Vue.js	that	the	value	of	the	class	attribute	should	be	the
result	of	calling	the	getButtonClasses	method.	The	argument	for	the
method	is	obtained	from	another	directive,	v-for,	which	repeats	an	element	for
each	object	in	a	sequence.

...

<button	v-for="c	in	categories"	v-bind:key="c"	v-

bind:class="getButtonClasses(c)"

				@click="selectCategory(c)">

								{{	c	}}

</button>

...

This	v-for	directive	tells	Vue.js	to	create	a	button	element	for	each	value
returned	in	the	sequence	returned	by	the	categories	property.	To	perform
efficient	updates,	Vue.js	requires	a	key	attribute	to	be	assigned	to	each	element,
which	is	why	v-for	and	v-bind:key	are	used	together.

The	result	is	a	series	of	button	elements	for	each	category.	Clicking	the
button	invokes	the	selectCategory	method,	which	triggers	a	custom	event
and	allows	a	component	to	signal	the	user’s	category	selection	to	another	part	of
the	application.

One	oddity	of	the	Vue.js	type	checking	for	props	is	that	it	uses	the	names	of
the	constructor	functions	of	the	JavaScript	built-in	types.	This	means	that
String	is	used	when	defining	a	string	prop,	like	this:

...

selected:	{

				type:	String	as	PropType<string>

}

...

This	can	be	confusing	but	quickly	becomes	second	nature	as	you	get	into	the
habit	of	creating	components.	To	denote	that	a	value	for	the	order	prop	is
needed,	a	required	property	is	added	to	the	prop	definition,	like	this:

...



categories:	{

				type:	Object	as	PropType<string[]>,

				required:	true

},

...

Without	the	required	property,	the	TypeScript	compiler	will	set	the	type
of	the	categories	prop	to	string[]	|	undefined,	which	would	then
require	the	expression	that	sets	the	selected	property	to	check	for
undefined	values	to	prevent	compiler	errors.

To	create	the	component	that	displays	the	header,	add	a	file	named
Header.vue	to	the	src/components	folder	with	the	content	shown	in
Listing	21-12.

<template>

				<div	class="p-1	bg-secondary	text-white	text-

right">

								{{	displayText	}}

								<button	class="btn	btn-sm	btn-primary	m-1">

												Submit	Order

								</button>

				</div>

</template>

<script	lang="ts">

import	{	defineComponent,	PropType}	from	"vue";

import	{	Order	}	from	"../data/entities";

export	default	defineComponent({

				name:	"Header",

				props:	{

								order:	{

												type:	Object	as	PropType<Order>,

												required:	true

								}

				},

				computed:	{



								displayText():	string	{

												const	count	=	this.order.productCount;

												return	count	===	0	?	"(No	Selection)"

																:	`${	count	}	product(s),	$${

this.order.total.toFixed(2)}`

								}

				}

})

</script>

Listing	21-12. The	Contents	of	the	Header.vue	File	in	the	src/components	Folder

The	Header	component	displays	a	summary	of	the	current	order.	The
computed	property	is	used	to	define	functions	whose	result	is	derived	from	the
component’s	data,	including	its	props.	This	allows	Vue.js	to	cache	the	values
produced	by	these	functions	and	invoke	the	functions	only	when	the
component’s	data	changes.	This	Header	component	defines	a	computed
function	named	displayText,	whose	result	depends	on	its	order	prop.

Composing	and	Testing	the	Components
To	create	the	component	that	will	display	the	header,	the	list	of	products,	and	the
category	buttons,	add	a	file	named	ProductList.vue	to	the	src/views
folder	and	add	the	code	shown	in	Listing	21-13.	The	location	of	this	file	denotes
that	it	presents	a	view	by	composing	other	components,	which	is	a	common
convention,	albeit	one	that	you	don’t	have	to	follow	in	your	projects.

<template>

				<div>

								<Header	v-bind:order="order"	/>

								<div	class="container-fluid">

												<div	class="row">

																<div	class="col-3	p-2">

																				<CategoryList	v-

bind:categories="categories"

																								v-bind:selected="selectedCategory"

																								@selectCategory="handleSelectCategory"

/>

																</div>

																<div	class="col-9	p-2">



																				<ProductItem	v-for="p	in	filteredProducts"

v-bind:key="p.id"

																								v-bind:product="p"

@addToCart="handleAddToCart"	/>

																</div>

												</div>

								</div>

				</div>

</template>

<script	lang="ts">

import	{	defineComponent	}	from	"vue";

import	{	Product,	Order	}	from	"../data/entities";

import	ProductItem	from	"../components/ProductItem.vue";

import	CategoryList	from	"../components/CategoryList.vue";

import	Header	from	"../components/Header.vue";

export	default	defineComponent({

				name:	"ProductList",

				components:	{	ProductItem,	CategoryList,	Header},

				data()	{

								const	products:	Product[]	=	[];

								[1,	2,	3,	4,	5].map(num	=>

												products.push(new	Product(num,	`Prod${num}`,

`Product	${num}`,

																`Cat${num	%	2}`,	100)));

								return	{

												products,

												selectedCategory:	"All",

												order:	new	Order()

								}

				},

				computed:	{

								categories():	string[]	{

												return	["All",	...new	Set<string>

(this.products.map(p	=>	p.category))];

								},



								filteredProducts():	Product[]	{

												return	this.products.filter(p	=>

																this.selectedCategory	==	"All"

																				||	this.selectedCategory	===	p.category);

								},

				},

				methods:	{

								handleSelectCategory(category:	string)	{

												this.selectedCategory	=	category;

								},

								handleAddToCart(data:	{product:	Product,	quantity:

number})	{

												this.order.addProduct(data.product,

data.quantity);

								}

				}

})

</script>

Listing	21-13. The	Contents	of	the	ProductList.vue	File	in	the	src/views	Folder

The	ProductList	component	combines	the	ProductItem,
CategoryList,	and	Header	components	to	present	content	to	the	user.
Using	other	components	is	a	multistep	process.	First,	the	component	must	be
imported	using	an	import	statement.

...

import	Header	from	"../components/Header.vue";

...

Notice	that	curly	brackets	are	not	used	in	the	import	statement	and	that	the
file	extension	is	included.	The	object	passed	to	the	defineComponent
function	uses	the	components	property	to	specify	the	components	it	requires:

...

components:	{	ProductItem,	CategoryList,	Header},

...



The	final	step	is	to	add	elements	to	the	template	section	of	the	file	to
apply	the	components	and	provide	the	values	for	the	props,	like	this:

...

<Header	v-bind:order="order"	/>

...

The	Header	element	applies	the	Header	component.	Vue.js	uses	the	v-
bind	directive	to	create	a	data	binding	that	sets	the	Header	component’s
order	prop	to	the	order	property	defined	by	the	ProductList	component,
allowing	one	component	to	provide	data	values	to	another.

To	make	sure	that	the	components	can	display	content	to	the	user,	replace	the
contents	of	the	App.Vue	file	with	those	shown	in	Listing	21-14.

<template>

				<ProductList	/>

</template>

<script	lang="ts">

import	{	defineComponent	}	from	"vue";

import	ProductList	from	"./views/ProductList.vue";

export	default	defineComponent({

				name:	"App",

				components:	{	ProductList	}

});

</script>

Listing	21-14. Replacing	the	Contents	of	the	App.vue	File	in	the	src	Folder

The	App	component	has	been	updated	to	display	a	ProductList,
replacing	the	placeholder	content	added	to	the	project	when	it	was	set	up.	When
the	changes	to	the	App	component	are	saved,	the	browser	will	be	updated	with
the	content	shown	in	Figure	21-3,	displaying	test	data.	I’ll	add	support	for	the
web	service	shortly,	but	the	test	data	allows	the	basic	features	to	be	tested.



Figure	21-3. Testing	the	product	list	components

Creating	the	Data	Store
Data	in	most	Vue.js	projects	is	managed	using	the	Vuex	package,	which	provides
data	store	features	that	are	integrated	into	the	Vue.js	API.	The	answers	used
during	project	setup	added	Vuex	to	the	package	and	set	up	a	placeholder	data
store,	which	can	be	seen	in	the	index.ts	file	in	the	src/store	folder,	as
shown	here:

import	{	createStore	}	from	'vuex'

export	default	createStore({

		state:	{

		},

		mutations:	{

		},

		actions:	{

		},

		modules:	{

		}

})



Vuex	data	stores	are	set	up	with	four	properties:	state,	mutations,
actions,	and	modules.	The	state	property	is	used	to	set	up	the	state	data
managed	by	the	data	store,	the	mutations	property	is	used	to	define	functions
that	modify	the	state	data,	and	the	actions	property	is	used	to	define
asynchronous	tasks	that	use	mutations	to	update	the	store.	The	modules
property	is	used	to	manage	complex	data	stores	that	are	defined	in	multiple	files,
but	I	don’t	use	this	feature	for	this	example	application.

Data	stores	can	also	define	a	getters	property,	which	is	used	to	compute
data	values	from	the	data	held	in	the	store.	Listing	21-15	adds	the	basic	state
data,	mutations,	and	getters	required	for	the	example	application	using	test	data
to	get	the	store	started.

import	{	createStore,	Store	}	from	"vuex";

import	{	Product,	Order	}	from	"../data/entities";

export	interface	StoreState	{

				products:	Product[],

				order:	Order,

				selectedCategory:	string

}

type	ProductSelection	=	{

				product:	Product,

				quantity:	number

}

export	default	createStore<StoreState>({

				state:	{

								products:	[1,	2,	3,	4,	5].map(num	=>	new

Product(num,	`Store	Prod${num}`,

												`Product	${num}`,	`Cat${num	%	2}`,	450)),

								order:	new	Order(),

								selectedCategory:	"All"

				},

				mutations:	{

								selectCategory(currentState:	StoreState,	category:

string)	{

												currentState.selectedCategory	=	category;

								},



								addToOrder(currentState:	StoreState,	selection:

ProductSelection)	{

												currentState.order.addProduct(selection.product,

selection.quantity);

								}

				},

				getters:	{

								categories(state):	string[]	{

												return	["All",	...new	Set(state.products.map(p

=>	p.category))];

								},

								filteredProducts(state):	Product[]	{

												return	state.products.filter(p	=>

state.selectedCategory	===	"All"

																||	state.selectedCategory	===	p.category);

								}

				},

				actions:	{

				},

				modules:	{

				}

})

Listing	21-15. Setting	Up	the	Data	Store	in	the	index.ts	File	in	the	src/store	Folder

The	project	has	been	configured	with	declaration	files	for	Vuex,	which
allows	a	data	store	to	be	created	with	a	generic	type	argument	that	describes	the
types	of	the	state	data,	which	TypeScript	can	then	use	to	perform	type	checking.
In	the	listing,	I	define	a	StoreState	interface	that	describes	the	types	of	the
product,	order,	and	selectedCategory	values	the	data	store	will
manage,	and	I	use	the	interface	as	the	type	argument	to	create	the	store.

...

export	default	createStore<StoreState>({

...

Connecting	Components	to	the	Data	Store
Connecting	to	the	data	store	is	done	using	helper	functions	that	integrate	store



features	seamlessly	into	the	functionality	provided	by	the	component.	Listing
21-16	connects	the	Header	component	to	the	data	store.

<template>

				<div	class="p-1	bg-secondary	text-white	text-

right">

								{{	displayText	}}

								<button	class="btn	btn-sm	btn-primary	m-1">

												Submit	Order

								</button>

				</div>

</template>

<script	lang="ts">

import	{	defineComponent,	PropType}	from	"vue";

import	{	Order	}	from	"../data/entities";

import	{	useStore	}	from	"vuex";

export	default	defineComponent({

				name:	"Header",

				setup()	{

								return	{	store:		useStore()	}

				},

				//	props:	{

				//					order:	{

				//									type:	Object	as	PropType<Order>,

				//									required:	true

				//					}

				//	},

				computed:	{

								displayText():	string	{

												const	count	=

this.store.state.order.productCount;

												return	count	===	0	?	"(No	Selection)"

																:	`${	count	}	product(s),	`

																				+	`$${



this.store.state.order.total.toFixed(2)}`;

								}

				}

})

</script>

Listing	21-16. Connecting	to	the	Data	Store	in	the	Header.vue	File	in	the	src/components	Folder

The	setup	function	defined	by	the	object	passed	to	the
defineComponent	function	is	used	to	perform	any	initial	configuration
required	by	the	component.	The	function	defined	by	the	Header	component
calls	the	userStore	function	to	get	access	to	the	data	store	and	makes	it
available	to	the	rest	of	the	component	by	returning	an	object	with	a	store
property.

...

return	{	store:		useStore()	}

...

Instead	of	using	a	prop,	the	displayText	function	uses	the	Order	state
value	in	the	store,	which	it	can	access	using	the	store	property	defined	by	the
setup	function.

...

const	count	=	this.store.state.order.productCount;

...

The	state	data	properties	defined	by	the	store	can	be	accessed	using
store.state.

In	Listing	21-17,	I	have	connected	the	ProductList	component	to	the
data	store.

<template>

				<div>

								<Header	/>

								<div	class="container-fluid">

												<div	class="row">

																<div	class="col-3	p-2">

																				<CategoryList	v-

bind:categories="categories"



																								v-bind:selected="selectedCategory"

																								@selectCategory="handleSelectCategory"

/>

																</div>

																<div	class="col-9	p-2">

																				<ProductItem	v-for="p	in	filteredProducts"

v-bind:key="p.id"

																								v-bind:product="p"

@addToCart="handleAddToCart"	/>

																</div>

												</div>

								</div>

				</div>

</template>

<script	lang="ts">

import	{	defineComponent	}	from	"vue";

import	{	Product,	Order	}	from	"../data/entities";

import	ProductItem	from	"../components/ProductItem.vue";

import	CategoryList	from	"../components/CategoryList.vue";

import	Header	from	"../components/Header.vue";

import	{	mapMutations,	mapState,	mapGetters	}	from	"vuex";

import	{	StoreState	}	from	"../store";

export	default	defineComponent({

				name:	"ProductList",

				components:	{	ProductItem,	CategoryList,	Header},

				//	data()	{

				//					const	products:	Product[]	=	[];

				//					[1,	2,	3,	4,	5].map(num	=>

				//									products.push(new	Product(num,	`Prod${num}`,

`Product	${num}`,

				//													`Cat${num	%	2}`,	100)));

				//					return	{

				//									products,

				//									selectedCategory:	"All",

				//									order:	new	Order()

				//					}



				//	},

				computed:	{

								...mapState<StoreState>({

												selectedCategory:	(state:	StoreState)	=>

state.selectedCategory,

												products:	(state:	StoreState)	=>	state.products,

												order:	(state:	StoreState)	=>	state.order

								}),

								...mapGetters(["filteredProducts",	"categories"])

				},

				methods:	{

								...mapMutations({

											handleSelectCategory:	"selectCategory",

											handleAddToCart:	"addToOrder"

								}),

				}

})

</script>

Listing	21-17. Connecting	to	the	Data	Store	in	the	ProductList.vue	File	in	the	src/views	Folder

In	the	Header	component,	I	obtained	a	data	store	object	and	used	it	to
access	a	state	data	value,	but	this	can	be	a	tedious	process	if	multiple	data	store
features	are	required.	Vuex	provides	functions	that	map	data	store	features	onto	a
component.	The	mapState	and	mapGetters	functions	make	state	data	and
getters	accessible	as	computed	properties,	and	the	mapMutations	function
makes	mutations	accessible	as	methods.	These	functions	are	used	with	the	object
spread	operator,	like	this:

...

...mapGetters(["filteredProducts",	"categories"])

...

The	spread	operator	ensures	that	the	properties	produced	by	the	mapping
functions	are	incorporated	into	the	component’s	features.

In	the	component’s	template,	I	have	updated	the	Header	element	because
the	component	no	longer	receives	an	Order	object	as	a	prop;	now	it	is
connected	to	the	user	store.

When	the	changes	are	saved,	the	data	store	will	be	used	and	show	the	test



data,	as	shown	in	Figure	21-4.

Figure	21-4. Using	a	data	store

Adding	Support	for	the	Web	Service
To	prepare	the	data	store	for	working	with	the	web	service,	I	added	the	actions
shown	in	Listing	21-18.	Actions	are	asynchronous	operations	that	can	apply
mutations	to	modify	the	data	store.

import	{	createStore,	Store	}	from	"vuex";

import	{	Product,	Order	}	from	"../data/entities";

export	interface	StoreState	{

				products:	Product[],

				order:	Order,

				selectedCategory:	string,

				storedId:	number

}

type	ProductSelection	=	{

				product:	Product,

				quantity:	number

}



export	default	createStore<StoreState>({

				state:	{

								products:	[],

								order:	new	Order(),

								selectedCategory:	"All",

								storedId:	-1

				},

				mutations:	{

								selectCategory(currentState:	StoreState,	category:

string)	{

												currentState.selectedCategory	=	category;

								},

								addToOrder(currentState:	StoreState,	selection:

ProductSelection)	{

												currentState.order.addProduct(selection.product,

selection.quantity);

								},

								addProducts(currentState:	StoreState,	products:

Product[])	{

												currentState.products	=	products;

								},

								setOrderId(currentState:	StoreState,	id:	number)	{

												currentState.storedId	=	id;

								},

								resetOrder(currentState:	StoreState)	{

												currentState.order	=	new	Order();

								}

				},

				getters:	{

								categories(state):	string[]	{

												return	["All",	...new	Set(state.products.map(p

=>	p.category))];

								},

								filteredProducts(state):	Product[]	{



												return	state.products.filter(p	=>

state.selectedCategory	===	"All"

																||	state.selectedCategory	===	p.category);

								}

				},

				actions:	{

								async	loadProducts(context,	task:	()	=>

Promise<Product[]>)	{

												let	data	=	await	task();

												context.commit("addProducts",	data);

								},

								async	storeOrder(context,	task:	(order:	Order)	=>

Promise<number>)	{

												context.commit("setOrderId",	await

task(context.state.order));

												context.commit("resetOrder");

								}

				},

				modules:	{

				}

})

Listing	21-18. Adding	Actions	in	the	index.ts	File	in	the	src/store	Folder

Actions	can	modify	the	data	store	only	through	mutations.	The	changes	in
Listing	21-18	define	actions	that	allow	products	to	be	loaded	and	added	to	the
store	and	that	allow	orders	to	be	sent	to	the	server.

Vue.js	doesn’t	include	integrated	support	for	HTTP	requests.	A	popular
choice	for	working	with	HTTP	is	the	Axios	package,	which	I	have	used
throughout	this	part	of	the	book	and	which	was	added	to	the	example	project	in
Listing	21-3.	To	define	the	HTTP	operations	that	the	example	application
requires,	I	added	a	file	called	httpHandler.ts	to	the	src/data	folder	and
added	the	code	shown	in	Listing	21-19.

import	Axios	from	"axios";

import	{	Product,	Order}		from	"./entities";

const	protocol	=	"http";

const	hostname	=	"localhost";



const	port	=	4600;

const	urls	=	{

				products:

`${protocol}://${hostname}:${port}/products`,

				orders:	`${protocol}://${hostname}:${port}/orders`

};

export	class	HttpHandler	{

				loadProducts()	:	Promise<Product[]>	{

								return	Axios.get<Product[]>

(urls.products).then(response	=>	response.data);

				}

				storeOrder(order:	Order):	Promise<number>	{

								let	orderData	=	{

												lines:

[...order.orderLines.values()].map(ol	=>	({

																productId:	ol.product.id,

																productName:	ol.product.name,

																quantity:	ol.quantity

												}))

								}

								return	Axios.post<{id	:	number}>(urls.orders,

orderData)

												.then(response	=>	response.data.id);

				}

}

Listing	21-19. The	Contents	of	the	httpHandler.ts	File	in	the	src/data	Folder

The	changes	in	Listing	21-20	to	the	App	component	load	the	products	data
from	the	web	service.

<template>

				<ProductList	/>

</template>

<script	lang="ts">



import	{	defineComponent,	onMounted	}	from	"vue";

import	ProductList	from	"./views/ProductList.vue";

import	{	HttpHandler	}	from	"./data/httpHandler";

import	{	useStore	}	from	"vuex";

export	default	defineComponent({

				name:	"App",

				components:	{	ProductList	},

				setup()	{

								const	store	=	useStore();

								const	handler	=	new	HttpHandler();

								onMounted(()	=>	store.dispatch("loadProducts",

handler.loadProducts));

				}

});

</script>

Listing	21-20. Using	the	Web	Service	in	the	App.vue	File	in	the	src	Folder

The	onMounted	function	is	one	of	the	component	lifecycle	methods	that
Vue.js	provides,	and	it	accepts	a	function	that	will	be	invoked	when	the
component	is	mounted,	which	is	the	point	after	the	component’s	content	is
rendered	for	the	first	time	and	which	is	the	conventional	point	for	loading
external	data.	The	result	is	that	real	product	data	is	obtained	from	the	data	store,
as	shown	in	Figure	21-5.



Figure	21-5. Using	the	web	service

Summary
In	this	chapter,	I	showed	you	how	to	create	a	Vue.js	app	that	uses	TypeScript.
The	project	creation	package	provides	integrated	support	for	TypeScript,	which	I
used	to	create	the	basic	structure	of	the	application.	I	connected	the	application’s
components	to	a	Vuex	data	store	and	loaded	data	from	the	web	service.	In	the
next	chapter,	I	complete	the	Vue.js	web	project	and	prepare	the	application	for
deployment.



©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2021
A.	Freeman,	Essential	TypeScript	4
https://doi.org/10.1007/978-1-4842-7011-0_22

https://doi.org/10.1007/978-1-4842-7011-0_22


(1)

22.	Creating	a	Vue.js	App,	Part	2
Adam	Freeman1		

London,	UK

	

In	this	chapter,	I	complete	the	Vue.js	web	application	by	implementing	URL
routing	and	adding	the	remaining	components,	before	preparing	for	deployment
in	a	container.	For	quick	reference,	Table	22-1	lists	the	TypeScript	compiler
options	used	in	this	chapter.

Table	22-1. The	TypeScript	Compiler	Options	Used	in	This	Chapter

Name Description

allowSyntheticDefaultImports This	option	allows	imports	from	modules	that	do	not	declare	a
default	export.	This	option	is	used	to	increase	code
compatibility.

baseUrl This	option	specifies	the	root	location	used	to	resolve	module
dependencies.

esModuleInterop This	option	adds	helper	code	for	importing	from	modules	that
do	not	declare	a	default	export	and	is	used	in	conjunction	with
the	allowSyntheticDefaultImports	option.

importHelpers This	option	determines	whether	helper	code	is	added	to	the
JavaScript	to	reduce	the	amount	of	code	that	is	produced
overall.

jsx This	option	specifies	how	HTML	elements	in	TSX	files	are
processed.

lib This	option	selects	the	type	declaration	files	the	compiler	uses.

module This	option	determines	the	style	of	module	that	is	used.

moduleResolution This	option	specifies	the	style	of	module	resolution	that	should
be	used	to	resolve	dependencies.

paths This	option	specifies	the	locations	used	to	resolve	module
dependencies.

skipLibCheck This	option	speeds	up	compilation	by	skipping	the	normal
checking	of	declaration	files.

sourceMap This	option	determines	whether	the	compiler	generates	source
maps	for	debugging.



strict This	option	enables	stricter	checking	of	TypeScript	code.

target This	option	specifies	the	version	of	the	JavaScript	language
that	the	compiler	will	target	in	its	output.

types This	option	specifies	a	list	of	declaration	files	to	include	in	the
compilation	process.

Preparing	for	This	Chapter
In	this	chapter,	I	continue	to	work	with	the	vueapp	project	started	in	Chapter
21.	Open	a	command	prompt,	navigate	to	the	vueapp	folder,	and	run	the
command	shown	in	Listing	22-1	to	start	the	web	service	and	the	React
development	tools.

Tip You	can	download	the	example	project	for	this	chapter—and	for	all	the
other	chapters	in	this	book—from
https://github.com/Apress/essential-typescript-4.

npm	start

Listing	22-1. Starting	the	Development	Tools

Once	the	initial	compilation	has	been	completed,	open	a	browser	window
and	navigate	to	http://localhost:8080	to	see	the	content	shown	in
Figure	22-1.

https://github.com/Apress/essential-typescript-4


Figure	22-1. Running	the	example	application

Configuring	URL	Routing
Most	real	Vue.js	projects	rely	on	URL	routing,	which	uses	the	browser’s	current
URL	to	select	the	components	that	are	displayed	to	the	user.	The	answers	to	the
questions	asked	during	the	project	setup	in	Chapter	21	added	the	Vue	Router
package	to	the	project	and	configured	it	for	basic	use	in	the	index.ts	file	in
the	src/router	folder.	Table	22-2	shows	the	URLs	that	the	example
application	will	support	and	the	purpose	of	each	of	them.

Table	22-2. The	URLs	Supported	by	the	Application

Name Description

/products This	URL	will	display	the	ProductList	component	defined	in	Chapter	21.

/order This	URL	will	display	a	component	that	displays	details	of	the	order.

/summary This	URL	will	display	a	summary	of	an	order	once	it	has	been	sent	to	the	server.

/ The	default	URL	will	be	redirected	to	/products	so	the	ProductList	component	is
shown.



Not	all	the	components	required	by	the	application	have	been	written,	so
Listing	22-2	sets	up	the	configuration	for	the	/products	and	/	URLs,	with	the
others	to	be	defined	in	the	sections	that	follow.

import	{	createRouter,	createWebHistory,

RouteRecordRaw	}	from	'vue-router'

import	Home	from	'../views/Home.vue'

import	ProductList	from	"../views/ProductList.vue";

const	routes:	Array<RouteRecordRaw>	=	[

		{	path:	'/products',	component:	ProductList	},

		{	path:	'/',	redirect:	'/products'	}

]

const	router	=	createRouter({

		history:	createWebHistory(process.env.BASE_URL),

		routes

})

export	default	router

Listing	22-2. Configuring	Routing	in	the	index.ts	File	in	the	src/router	Folder

The	routing	configuration	sets	up	the	/products	URL	to	show	the
ProductList	component	and	redirects	the	/	URL	to	/products.	To
display	the	component	selected	by	the	routing	system,	changes	are	required	to
the	App	component,	as	shown	in	Listing	22-3.

<template>

				<router-view	/>

</template>

<script	lang="ts">

import	{	defineComponent,	onMounted	}	from	"vue";

import	ProductList	from	"./views/ProductList.vue";

import	{	HttpHandler	}	from	"./data/httpHandler";

import	{	useStore	}	from	"vuex";

export	default	defineComponent({



				name:	"App",

				//components:	{	ProductList	},

				setup()	{

								const	store	=	useStore();

								const	handler	=	new	HttpHandler();

								onMounted(()	=>	store.dispatch("loadProducts",

handler.loadProducts));

				}

});

</script>

Listing	22-3. Displaying	the	Routed	Component	in	the	App.vue	File	in	the	src	Folder

The	router-view	element	displays	the	selected	component.	When	the
changes	are	saved,	the	browser	will	display	the	/products	URL	and	show	the
content	presented	by	the	ProductList	component,	as	shown	in	Figure	22-2.

Figure	22-2. Using	URL	routing

Completing	the	Example	Application	Features
Now	that	the	application	can	display	components	based	on	the	current	URL,	I
can	add	the	remaining	components	to	the	project.	To	enable	URL	navigation



from	the	button	displayed	by	the	Header	component,	I	added	the	statements
shown	in	Listing	22-4	to	the	Header.vue	file.

<template>

				<div	class="p-1	bg-secondary	text-white	text-

right">

								{{	displayText	}}

								<router-link	to="/order"	class="btn	btn-sm

btn-primary	m-1">

												Submit	Order

								</router-link>

				</div>

</template>

<script	lang="ts">

import	{	defineComponent,	PropType}	from	"vue";

import	{	Order	}	from	"../data/entities";

import	{	useStore	}	from	"vuex";

export	default	defineComponent({

				name:	"Header",

				setup()	{

								return	{	store:		useStore()	}

				},

				computed:	{

								displayText():	string	{

												const	count	=

this.store.state.order.productCount;

												return	count	===	0	?	"(No	Selection)"

																:	`${	count	}	product(s),	`

																				+	`$${

this.store.state.order.total.toFixed(2)}`;

								}

				}

})

</script>



Listing	22-4. Adding	URL	Navigation	in	the	Header.vue	File	in	the	src/components	Folder

The	router-link	element	renders	an	HTML	element	that	navigates	to	the
specified	URL	when	it	is	clicked	and	that	is	styled	to	appear	as	a	button	using	the
Bootstrap	CSS	framework.

Adding	the	Order	Summary	Component
To	display	the	details	of	the	order	to	the	user,	add	a	file	named
OrderDetails.vue	in	the	src/views	folder	with	the	content	shown	in
Listing	22-5.

<template>

				<div>

								<h3	class="text-center	bg-primary	text-white

p-2">Order	Summary</h3>

								<div	class="p-3">

												<table	class="table	table-sm	table-

striped">

																<thead>

																				<tr>

																								<th>Quantity</th>

<th>Product</th>

																								<th	class="text-

right">Price</th>

																								<th	class="text-

right">Subtotal</th>

																				</tr>

																</thead>

																<tbody>

																				<tr	v-for="line	in	order.lines"	v-

bind:key="line.product.id">

																								<td>{{	line.quantity	}}</td>

																								<td>{{	line.product.name	}}

</td>

																								<td	class="text-right">

																												${{

line.product.price.toFixed(2)	}}

																								</td>

																								<td	class="text-right">



																												${{	line.total.toFixed(2)

}}

																								</td>

																				</tr>

																</tbody>

																<tfoot>

																				<tr>

																								<th	class="text-right"

colSpan="3">Total:</th>

																								<th	class="text-right">

																												${{	order.total.toFixed(2)

}}

																								</th>

																				</tr>

																</tfoot>

												</table>

								</div>

								<div	class="text-center">

												<router-link	to="/products"	class="btn

btn-secondary	m-1">

																Back

												</router-link>

												<button	class="btn	btn-primary	m-1"

@click="submit">

																Submit	Order

												</button>

								</div>

				</div>

</template>

<script	lang="ts">

import	{	defineComponent,	}	from	"vue";

import	{	Order	}	from	"../data/entities";

import	{	HttpHandler	}	from	'../data/httpHandler';

import	{	mapState,	mapActions	}	from	"vuex";

import	{	StoreState	}	from	"../store";

export	default	defineComponent({



				name:	"OrderDetails",

				computed:	{

								...mapState<StoreState>({

												order:	(state:	StoreState)	=>	state.order

								})

				},

				methods:	{

								...mapActions(["storeOrder"]),

								submit()	{

												this.storeOrder((order:	Order)	=>	{

																return	new

HttpHandler().storeOrder(order).then(id	=>	{

																				this.$router.push("/summary");

																				return	id;

																});

												});

								}

				}

})

</script>

Listing	22-5. The	Contents	of	the	OrderDetails.vue	File	in	the	src/views	Folder

The	OrderDetails	component	uses	the	Vuex	mapActions	function	to
create	a	method	that	invokes	the	storeOrder	action.	It	also	defines	a	method
named	submit	that	invokes	the	mapped	storeOrder	method,	uses	the
HttpHandler	class	to	send	the	Order	to	the	web	service,	and	redirects	to	the
/summary	URL.

Adding	the	Confirmation	Component
Add	a	file	named	Summary.vue	to	the	src/views	folder	and	add	the
content	shown	in	Listing	22-6	to	display	a	message	to	the	user	once	the	order	has
been	stored	by	the	web	service.

<template>

<div	class="m-2	text-center">

												<h2>Thanks!</h2>

												<p>Thanks	for	placing	your	order.</p>



												<p>Your	order	is	#{{	id	}}</p>

												<p>We'll	ship	your	goods	as	soon	as

possible.</p>

												<router-link	to="/products"	class="btn

btn-primary">OK</router-link>

								</div>

</template>

<script	lang="ts">

import	{	defineComponent	}	from	"vue";

import	{	mapState	}	from	"vuex";

import	{	StoreState	}	from	"../store";

export	default	defineComponent({

				name:	"Summary",

				computed:	{

								...mapState<StoreState>({

												id:	(state:	StoreState)	=>	state.storedId

								})

				}

})

</script>

Listing	22-6. The	Contents	of	the	Summary.vue	File	in	the	src/views	Folder

The	Summary	component	only	needs	to	know	the	number	assigned	by	the
web	service	to	the	user’s	order,	which	it	obtains	from	the	data	store.	The
router-link	element	allows	the	user	to	return	to	the	/products	URL.

Completing	the	Routing	Configuration
The	final	step	is	to	complete	the	routing	configuration	by	adding	the	mapping
between	the	URLs	supported	by	the	application	and	their	components,	as	shown
in	Listing	22-7.

import	{	createRouter,	createWebHistory,

RouteRecordRaw	}	from	'vue-router'

import	Home	from	'../views/Home.vue'

import	ProductList	from	"../views/ProductList.vue";



import	OrderDetails	from	"../views/OrderDetails.vue";

import	Summary	from	"../views/Summary.vue";

const	routes:	Array<RouteRecordRaw>	=	[

		{	path:	'/products',	component:	ProductList	},

		{	path:	"/order",	component:	OrderDetails	},

		{	path:	"/summary",	component:	Summary	},

		{	path:	"/",	redirect:	"/products"}

]

const	router	=	createRouter({

		history:	createWebHistory(process.env.BASE_URL),

		routes

})

export	default	router

Listing	22-7. Completing	the	Routing	Configuration	in	the	index.ts	File	in	the	src/router	Folder

When	the	changes	are	saved,	items	can	be	added	to	the	order,	and	the	order
can	be	sent	to	the	web	service,	as	shown	in	Figure	22-3.

Figure	22-3. Completing	the	example	application



Deploying	the	Application
The	Vue.js	development	tools	rely	on	the	Webpack	Development	Server,	which
is	not	suitable	for	hosting	a	production	application	because	it	adds	features	such
as	automatic	reloading	to	the	JavaScript	bundles	it	generates.	In	this	section,	I
work	through	the	process	of	preparing	the	application	for	deployment,	which	is	a
similar	process	for	any	web	application,	including	those	developed	using	other
frameworks.

Adding	the	Production	HTTP	Server	Package
For	production,	a	regular	HTTP	server	is	required	to	deliver	the	HTML,	CSS,
and	JavaScript	files	to	the	browser.	For	this	example,	I	am	going	to	use	the
Express	server,	which	is	the	same	package	I	use	for	the	other	examples	in	this
part	of	the	book	and	which	is	a	good	choice	for	any	web	application.	Use
Control+C	to	stop	the	development	tools	and	use	the	command	prompt	to	run	the
command	shown	in	Listing	22-8	in	the	vueapp	folder	to	install	the	express
package.

The	second	command	installs	the	connect-history-api-fallback
package,	which	is	useful	when	deploying	applications	that	use	URL	routing
because	it	maps	requests	for	the	URLs	that	the	application	supports	to	the
index.html	file,	ensuring	that	reloading	the	browser	doesn’t	present	the	user
with	a	“not	found”	error.

npm	install	--save-dev	express@4.17.1

npm	install	--save-dev	connect-history-api-

fallback@1.6.0

Listing	22-8. Adding	Packages	for	Deployment

Creating	the	Persistent	Data	File
To	create	the	persistent	data	file	for	the	web	service,	add	a	file	called
data.json	to	the	vueapp	folder	and	add	the	content	shown	in	Listing	22-9.

{

				"products":	[

								{	"id":	1,	"name":	"Kayak",	"category":

"Watersports",

												"description":	"A	boat	for	one	person",

"price":	275	},



								{	"id":	2,	"name":	"Lifejacket",	"category":

"Watersports",

												"description":	"Protective	and

fashionable",	"price":	48.95	},

								{	"id":	3,	"name":	"Soccer	Ball",	"category":

"Soccer",

												"description":	"FIFA-approved	size	and

weight",	"price":	19.50	},

								{	"id":	4,	"name":	"Corner	Flags",	"category":

"Soccer",

												"description":	"Give	your	playing	field	a

professional	touch",

												"price":	34.95	},

								{	"id":	5,	"name":	"Stadium",	"category":

"Soccer",

												"description":	"Flat-packed	35,000-seat

stadium",	"price":	79500	},

								{	"id":	6,	"name":	"Thinking	Cap",	"category":

"Chess",

												"description":	"Improve	brain	efficiency

by	75%",	"price":	16	},

								{	"id":	7,	"name":	"Unsteady	Chair",

"category":	"Chess",

												"description":	"Secretly	give	your

opponent	a	disadvantage",

												"price":	29.95	},

								{	"id":	8,	"name":	"Human	Chess	Board",

"category":	"Chess",

												"description":	"A	fun	game	for	the

family",	"price":	75	},

								{	"id":	9,	"name":	"Bling	Bling	King",

"category":	"Chess",

												"description":	"Gold-plated,	diamond-

studded	King",	"price":	1200	}

				],

				"orders":	[]

}

Listing	22-9. The	Contents	of	the	data.json	File	in	the	vueapp	Folder



Creating	the	Server
To	create	the	server	that	will	deliver	the	application	and	its	data	to	the	browser,
create	a	file	called	server.js	in	the	vueapp	folder	and	add	the	code	shown
in	Listing	22-10.

const	express	=	require("express");

const	jsonServer	=	require("json-server");

const	history	=	require("connect-history-api-

fallback");

const	app	=	express();

app.use(history());

app.use("/",	express.static("dist"));

const	router	=	jsonServer.router("data.json");

app.use(jsonServer.bodyParser)

app.use("/api",	(req,	resp,	next)	=>	router(req,	resp,

next));

const	port	=	process.argv[3]	||	4003;

app.listen(port,	()	=>	console.log(`Running	on	port

${port}`));

Listing	22-10. The	Contents	of	the	server.js	File	in	the	vueapp	Folder

The	statements	in	the	server.js	file	configure	the	express	and	json-
server	packages	so	they	use	the	content	of	the	dist	folder,	which	is	where
the	Vue.js	build	process	will	put	the	application’s	JavaScript	bundles	and	the
HTML	file	that	tells	the	browser	to	load	them.	URLs	prefixed	with	/api	will	be
handled	by	the	web	service.

Using	Relative	URLs	for	Data	Requests
The	web	service	that	provided	the	application	with	data	has	been	running
alongside	the	Vue.js	development	server.	To	prepare	for	sending	requests	to	a
single	port,	I	changed	the	HttpHandler	class,	as	shown	in	Listing	22-11.

import	Axios	from	"axios";

import	{	Product,	Order}		from	"./entities";

//	const	protocol	=	document.location.protocol;



//	const	hostname	=	document.location.hostname;

//	const	port	=	4600;

const	urls	=	{

				//	products:

`${protocol}//${hostname}:${port}/products`,

				//	orders:

`${protocol}//${hostname}:${port}/orders`

				products:	"/api/products",

				orders:	"/api/orders"

};

export	class	HttpHandler	{

				loadProducts()	:	Promise<Product[]>	{

								return	Axios.get<Product[]>

(urls.products).then(response	=>	response.data);

				}

				storeOrder(order:	Order):	Promise<number>	{

								let	orderData	=	{

												lines:

[...order.orderLines.values()].map(ol	=>	({

																productId:	ol.product.id,

																productName:	ol.product.name,

																quantity:	ol.quantity

												}))

								}

								return	Axios.post<{id	:	number}>(urls.orders,

orderData)

												.then(response	=>	response.data.id);

				}

}

Listing	22-11. Using	Relative	URLs	in	the	httpHandler.ts	File	in	the	src/data	Folder

The	URLs	in	Listing	22-11	are	specified	relative	to	the	one	used	to	request
the	HTML	document,	following	the	common	convention	that	data	requests	are
prefixed	with	/api.



Building	the	Application
Run	the	command	shown	in	Listing	22-12	in	the	vueapp	folder	to	create	the
production	build	of	the	application.

npm	run	build

Listing	22-12. Creating	the	Production	Bundle

The	build	process	creates	a	set	of	optimized	files	in	the	dist	folder.	The
build	process	can	take	a	few	moments	to	complete.

Testing	the	Production	Build
To	make	sure	that	the	build	process	has	worked	and	the	configuration	changes
have	taken	effect,	run	the	command	shown	in	Listing	22-13	in	the	vueapp
folder.

node	server.js

Listing	22-13. Starting	the	Production	Server

The	code	from	Listing	22-13	will	be	executed	and	will	produce	the	following
output:

Running	on	port	4003

Open	a	new	web	browser	and	navigate	to	http://localhost:4003,
which	will	show	the	application,	as	illustrated	in	Figure	22-4.



Figure	22-4. Running	the	production	build

Containerizing	the	Application
To	complete	this	chapter,	I	am	going	to	create	a	Docker	container	for	the
example	application	so	that	it	can	be	deployed	into	production.	If	you	did	not
install	Docker	in	Chapter	15,	then	you	must	do	so	now	to	follow	the	rest	of	the
examples	in	this	chapter.

Preparing	the	Application
The	first	step	is	to	create	a	configuration	file	for	NPM	that	will	be	used	to
download	the	additional	packages	required	by	the	application	for	use	in	the
container.	I	created	a	file	called	deploy-package.json	in	the	vueapp
folder	with	the	content	shown	in	Listing	22-14.

{

				"name":	"vueapp",

				"description":	"Vue.js	Web	App",



				"repository":

"https://github.com/Apress/essential-typescript",

				"license":	"0BSD",

				"devDependencies":	{

								"express":	"4.17.1",

								"json-server":	"0.16.3",

								"connect-history-api-fallback":	"1.6.0"

					}

}

Listing	22-14. The	Contents	of	the	deploy-package.json	File	in	the	vueapp	Folder

The	devDependencies	section	specifies	the	packages	required	to	run	the
application	in	the	container.	All	of	the	packages	for	which	there	are	import
statements	in	the	application’s	code	files	will	have	been	incorporated	into	the
bundle	created	by	webpack	and	are	listed.	The	other	fields	describe	the
application,	and	their	main	use	is	to	prevent	warnings	when	the	container	is
created.

Creating	the	Docker	Container
To	define	the	container,	I	added	a	file	called	Dockerfile	(with	no	extension)
to	the	vueapp	folder	and	added	the	content	shown	in	Listing	22-15.

FROM	node:14.15.4

RUN	mkdir	-p	/usr/src/vueapp

COPY	dist	/usr/src/vueapp/dist/

COPY	data.json	/usr/src/vueapp/

COPY	server.js	/usr/src/vueapp/

COPY	deploy-package.json	/usr/src/vueapp/package.json

WORKDIR	/usr/src/vueapp

RUN	echo	'package-lock=false'	>>	.npmrc

RUN	npm	install

EXPOSE	4003

CMD	["node",	"server.js"]



Listing	22-15. The	Contents	of	the	Dockerfile	File	in	the	vueapp	Folder

The	contents	of	the	Dockerfile	use	a	base	image	that	has	been	configured
with	Node.js	and	that	copies	the	files	required	to	run	the	application	into	the
container,	along	with	the	file	that	lists	the	packages	required	for	deployment.	To
speed	up	the	containerization	process,	I	created	a	file	called	.dockerignore
in	the	vueapp	folder	with	the	content	shown	in	Listing	22-16.	This	tells	Docker
to	ignore	the	node_modules	folder,	which	is	not	required	in	the	container	and
takes	a	long	time	to	process.

node_modules

Listing	22-16. The	Contents	of	the	.dockerignore	File	in	the	vueapp	Folder

Run	the	command	shown	in	Listing	22-17	in	the	vueapp	folder	to	create	an
image	that	will	contain	the	example	application,	along	with	all	the	packages	it
requires.

docker	build	.	-t	vueapp	-f		Dockerfile

Listing	22-17. Building	the	Docker	Image

An	image	is	a	template	for	containers.	As	Docker	processes	the	instructions
in	the	Docker	file,	the	NPM	packages	will	be	downloaded	and	installed,	and	the
configuration	and	code	files	will	be	copied	into	the	image.

Running	the	Application
Once	the	image	has	been	created,	create	and	start	a	new	container	using	the
command	shown	in	Listing	22-18.

docker	run	-p	4003:4003	vueapp

Listing	22-18. Starting	the	Docker	Container

You	can	test	the	application	by	opening	http://localhost:4002	in
the	browser,	which	will	display	the	response	provided	by	the	web	server	running
in	the	container,	as	shown	in	Figure	22-5.



Figure	22-5. Running	the	containerized	application

To	stop	the	container,	run	the	command	shown	in	Listing	22-19.

docker	ps

Listing	22-19. Listing	the	Containers

You	will	see	a	list	of	running	containers,	like	this	(I	have	omitted	some	fields
for	brevity):

CONTAINER

ID								IMAGE									COMMAND																				CREATED

09761b008ab4								vueapp								"docker-

entrypoint.s…"					43	seconds	ago

Using	the	value	in	the	Container	ID	column,	run	the	command	shown	in
Listing	22-20.

docker	stop	09761b008ab4



Listing	22-20. Stopping	the	Container

The	React	application	is	ready	to	deploy	to	any	platform	that	supports
Docker.

Summary
In	this	chapter,	I	completed	the	Vue.js	and	TypeScript	project	and	prepared	the
application	for	deployment	into	a	Docker	container.	Each	of	the	web	applications
created	in	this	part	of	the	book	shows	a	different	approach	to	integrating
TypeScript	into	the	development	process	and	emphasizes	different	TypeScript
features.	The	result,	however,	has	been	the	same:	an	improved	developer
experience	that	can	improve	productivity	and	help	avoid	common	JavaScript
errors.

And	that	is	all	I	have	to	teach	you	about	TypeScript.	I	started	by	creating	a
simple	application	and	then	took	you	on	a	comprehensive	tour	of	the	different
features	that	TypeScript	provides	and	how	they	are	applied	to	the	JavaScript	type
system.	I	wish	you	every	success	in	your	TypeScript	projects,	and	I	can	only
hope	that	you	have	enjoyed	reading	this	book	as	much	as	I	enjoyed	writing	it.



Index
A
Abstract	classes
Access	control	keywords
Angular
components
container
data	binding
decorators
injection
modules
RxJS
URL	routing

any	Type
disabling	implicit	use
implicit	use

Arrays
empty	arrays
syntax
types
inferred	types

B
Bundles

C
Classes
abstract	classes
access	control
type	guarding

concise	constructors
concise	syntax
index	signatures
inheritance
read-only	properties

Collections
Compiler
automatic	code	execution



configuration
configuration	file
declaration	files
errors
library	files	setting
modules
format
resolution
supported	formats

polyfilling
running	the	compiler
tsconfig.json
type	inference
watch	mode

Conditional	types
Constructor	functions

D
Debugging
break	points
debugger	keyword
remote	debugging
source	maps
using	Node.js
using	Visual	Studio	Code

Declaration	files
Decorators
defining
enabling
metadata
uses

Definite	assignment	assertions
Docker
configuration	file
creating	an	image
exclusions
starting	a	container

Domain	Object	Model	(DOM)	API



E
Enums
constant	enums
implementation
limitations
string	enums
using	specific	values

Errata,	reporting
Examples,	complete	listings
Examples,	GitHub	repository
Examples,	omitted	content
Examples,	partial	listings

F
Functions
assert	functions
implicit	results
overloading	types
parameters
default	values
null	values
optional
rest	parameters
type	annotations

redefining
results
type	annotations
void	functions

G,	H
Generic	types
collections
conditional	types
extending	classes
indexed	access	operator
index	type	queries
index	types
interfaces
iterables



iterators
method	parameters
type	arguments
type	guards
type	inference
type	mappings
type	parameters
constraining
methods
multiple	parameters

Git,	installing

I
Index	access	operator
Index	signatures
Index	types
Inferred	types
Interfaces
abstract	interfaces
extending
multiple	interfaces
optional	methods
optional	properties

Intersections
correlation
merging
methods
properties

Iterators,	generic	types

J,	K
JavaScript
arrays
destructuring
methods
rest	expression
spreading

built-in	types
checking	for	errors



classes
defining
inheritance
static	methods

collections
Map
Set
using	objects

constructor	functions,	chaining
describing	types
declaration	files
definitely	typed	packages
generating	declaration	files
third-party	code
using	comments

functions
arguments
arrow	functions
default	parameter	values
lambda	expressions
parameters
rest	parameters
results

generators
including	in	compilation
iterable	objects
iterators
modules
objects
constructor	functions
getters	and	setters
inheritance
instance	properties
literal	syntax
methods
private	properties
properties
prototypes
static	properties



type	checking
optional	chaining
primitive	types
private	fields
Symbol
this	keyword
arrow	functions
bind	method
call	method
methods
stand-alone	functions

type	coercion
falsy	values
intentional
nullish	operator
unintentional

typeof	keyword
JavaScript	XML	Files
compiler	options
factory	function
props
with	TypeScript
workflow

JSDoc	comments

L
Linting
configuration
rule	sets

disabling	rules
installing	TSLint
running	the	linter

Literal	value	types
functions
template	strings
type	overrides

M
Modules



N
never	type
Node.js,	installing
Node	Package	Manager
commands
configuration	file
local	and	global	packages
versions

Nullable	types
removing	from	a	union
restricting

O
Object	literals
See Shape	types

Objects
classes
constructor	functions
methods
optional	properties
shape	types
shape	type	unions
type	aliases
type	comparisons
type	excess	property	errors
type	guards
in	keyword
predicate	functions

P,	Q
Packages
Editor
Git
Node.js
Node	Package	Manager

R
React
Babel



components
hooks

containerization
deployment
hooks
JSX
production	build
Redux
action	creators
React-Redux	package
reducer
types

toolchain
with	TypeScript
URL	routing
configuration

Read-only	properties

S
Shape	types

T
tsconfig.json	File
Tuples
optional	elements
using
using	as	a	type

Type	aliases
Type	annotations
Type	definitions
Type	predicate	functions
Types
aliases
conditional	types
generic	types
guards
index	types
inference
intersections



literal	values
shape	types
type	mappings

Type	unions
asserting	outside	the	union
defining
using

U
Unit	testing
configuration
creating	unit	tests
installing	the	test	packages
matching	functions
performing	tests

unknown	Type

V
Version	targeting
configuration
targets

Vue.js
components
lifecycle

composition
containerization
creating	the	project
datastore
connecting	components
mapping	functions

deployment
directives
production	build
toolchain
with	TypeScript
URL	routing
Vuex

W,	X,	Y,	Z
Webpack



development	server
workflow


	Front Matter
	Part I. Getting Started with TypeScript
	1. Your First TypeScript Application
	2. Understanding TypeScript
	3. JavaScript Primer, Part 1
	4. JavaScript Primer, Part 2
	5. Using the TypeScript Compiler
	6. Testing and Debugging TypeScript

	Part II. Working with TypeScript
	7. Understanding Static Types
	8. Using Functions
	9. Using Arrays, Tuples, and Enums
	10. Working with Objects
	11. Working with Classes and Interfaces
	12. Using Generic Types
	13. Advanced Generic Types
	14. Working with JavaScript

	Part III. Creating Web Applications
	15. Creating a Stand-Alone Web App, Part 1
	16. Creating a Stand-Alone Web App, Part 2
	17. Creating an Angular App, Part 1
	18. Creating an Angular App, Part 2
	19. Creating a React App
	20. Creating a React App, Part 2
	21. Creating a Vue.js App, Part 1
	22. Creating a Vue.js App, Part 2

	Back Matter

