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Artificial Neural Networks

ANNs
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Introduction

•The human brain is amazing at learning 

new things.

• Why not use the model of the human brain to 

build a machine?

•An artificial Neural Network 

is a model designed to simulate the learning 

process and generalization ability of the 

human brain.

3



Biological Background

•Our brain has about  100 billions nerve cells 

(neurons)

•A neuron may connect to as many as 

100,000 other neurons

•Neuron consists of:

• Cell body

• Dendrites

• Axon

• Synapses
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Biological Background

5

•Signals “move” via electrochemical signals

•The synapses release a chemical transmitter – the sum of which can 

cause a threshold to be reached – causing the neuron to “fire”



Advantage and 

Application

Inherent Advantages of the Brain:

• Parallel processing speeds

• Adaptivity

• Fault tolerance

• Ability to generalize
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Building Blocks: 

Neurons

•First, we have to talk about neurons, the 

basic unit of a neural network.

•A neuron takes inputs, does some math 

with them, and produces one output. Here’s 

what a 2-input neuron looks like:
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3 things are happening here. 

First, each input is multiplied 

by a weight: 

Next, all the weighted inputs are 

added together with a bias b:
Finally, the sum is passed through 

an activation function:



Activation Function

•Their main purpose is to convert a input signal of a node in 

a ANN to an output signal.

•Output of neuron depends on the weighted sum of its input 

and activation function
The question arises that what happened if we don’t apply activation function to 

the weighted sum of input? 
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•the output signal would simply be a simple linear 

function

•A Neural Network without Activation function would 

simply be a Linear regression Model, which has 

limited power and does not performs good most of 

the times.
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Types of Activation 

Function

•Threshold function

• The activation of a neuron is binary. That is, the neuron either 

fires (activation of one) or does not fire (activation of zero).

where X is the total input signal (weighted sum of input 

)received θ is the threshold for Y
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Types of Activation 

Function

•Linear function

• A straight line function where activation is proportional to input ( 

which is the weighted sum from neuron ).

• Disadvantage: it is limited power 
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Types of Activation 

Function

Sigmoid Function
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Sigmoid functions are one of the most widely used activation 

functions today, but its problem is towards either end of the 

sigmoid function, the Y values tend to respond very less to 

changes in X.



Activation Function 

(Example)
•For example, let us consider a simple neuron that  has just  two inputs. Each of 

these inputs has a weight associated with it, as follows: w1 = 0.8 and w2 = 0.4

• The inputs to the neuron are x1 and x2:

x1 = 0.7 and x2 = 0.9

• So, the summed weight of these inputs is

• (0.8 x 0.7) + (0.4 x 0.9) = 0.92

•

•The activation level Y, is defined for this neuron as

•

•

•

•Hence, if t is less than 0.92, then this neuron will fire with this particular set of 

inputs. Otherwise, it will have an activation level of zero.
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Activation Function

•A neural network consists of a set of neurons that are connected 

together.

•The connections between neurons have weights associated with them, 

and each neuron passes its output on to the inputs of the neurons to 

which it is connected. 

•This output depends on the application of the activation function to the 

inputs it receives.

•In this way, an input signal to the network is processed by the entire 

network and an output (or multiple outputs) produced. There is no 

central processing or control mechanism — the entire network is 

involved in every piece of computation that takes place.
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Neural Network 

Architectures

•Artificial Neural Network is nothing more 

than a bunch of neurons connected together. 

• Single-Layer Feed-forward Networks

• Multilayer Feed-forward Networks

• Recurrent Networks

15



Single-Layer Feed-

forward Networks
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•In a layered neural network the 

neurons are organized in the form 

of layers

•This network is strictly a feed-

forward or acyclic type.

•We do not count the input layer of 

source nodes because no 

computation is performed there.



Multilayer Feed-forward 

Networks
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•The second class of a feed-forward neural network 

distinguishes itself by the presence of one or more 

hidden layers.

•The source nodes in the input layer of the network 

supply respective elements of the activation pattern 

(input vector), which constitute the input signals 

applied to the neurons (computation nodes) in the 

second layer (i.e., the first hidden layer).

•The output signals of the second layer are used as 

inputs to the third layer, and so on for the rest of the 

network. Typically the neurons in each layer of the 

network have as their inputs the output signals of the 

preceding layer only.



Recurrent Networks
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•It has at least one feedback loop.

•For example, a recurrent network may consist of a 

single layer of neurons with each neuron feeding its 

output signal back to the inputs of all the other neurons; 

self feedback refers to a situation where the output of a 

neuron is fed back into its own input.

•The recurrent network may or may not has hidden 

neurons.



Perceptron
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•It takes an input

• aggregates it (weighted sum) 

• returns 1 only if the 

aggregated sum is more than 

some threshold else returns 0. 

•Update weights



Perceptron
Steps

1-Initialize weights

2. Present a pattern and target output

3. Compute output 

4. Update weights

Where y is the expected output , f(x) is real output α

learning rate and E error

5.  Repeat step 2 until acceptable level of error
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Perceptron:

Example (Logical Or)
• Let us examine a simple example: we will see how a perceptron can 

learn to represent the logical-OR function for two inputs. We will use a 

threshold of zero (t = 0) and a learning  rate of 0.2.

• First, the weight associated with each of the two inputs is initialized to a 

random value between -1 and +1:

w1 = -0.2 and w2 = 0.4

• Now, the first epoch is run through. The training data will consist of the four 

combinations of 1’s and 0’s possible with two inputs.

Hence, our first piece of training data is x1 = 0 , x2 = 0 and our expected 

output is x1 ∨ x2 = 0. We apply our formula for Y:
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Perceptron:

Example (Logical Or)
• Hence, the output Y is as expected, and the error, e, is therefore 0. So the 

weights do not change.

• Now, for x1 = 0 and x2 = 1:

Y = Step ((0 x -0.2) + (1 x 0.4))

Y = Step (0.4) = 1

Again, this is correct, and so the weights do not need to change.

• For x1 = 1 and x2 = 0:

Y = Step ((1 x -0.2) + (0 x 0.4)) = Step (-0.2) = 0

This is incorrect because 1 ∨ 0 = 1, so we should expect Y to be 1 for this set of 

inputs. Hence, the weights are adjusted.
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Perceptron:

Example (Logical Or)
• We will use the perceptron training rule to assign new values to the weights:

• Our learning rate is 0.2, and in this case, the e  is 1, so we will assign the 

following value to w1:

w1 = -0.2 + (0.2 x 1 x 1) = -0.2 + (0.2) = 0

We now use the same formula to assign a new value to w2:

w2 = 0.4 + (0.2 x 0 x 1) = 0.4 

Because w2 did not contribute to this error, it is not adjusted.

• The final piece of training data is now used (x1 = 1 and x2= 1):

Y = Step ((0 x 1) + (0.4 x 1)) = Step (0 + 0.4) = Step (0.4) = 1

This is correct, and so the weights are not adjusted.

This is the end of the first epoch, and at this point the method runs again and 

continues to repeat until all four pieces of training data are classified correctly.
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Perceptron
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Hands on

Open Perceptron template to complete the 

function and implement Or Logical Function 

using Step function
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Hands on

Threshold = 0

Learning rate = 0.2

Training set input= [0, 0, 1],

[1, 1, 1],

[1, 0, 1],

[0, 1, 1],

[0, 0, 0]

Output=[1,1,1,1,0]

Test with [1,1,0] expected output =1
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Questions?
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