
Lab 9

Artificial Intelligence

1

Artificial Neural Networks

ANNs

Agenda

• Introduction

•Biological Background

•Building Blocks: Neurons

• Activation Function

•Network Architectures

•Perceptron

2

Introduction

•The human brain is amazing at learning

new things.

• Why not use the model of the human brain to

build a machine?

•An artificial Neural Network

is a model designed to simulate the learning

process and generalization ability of the

human brain.

3

Biological Background

•Our brain has about 100 billions nerve cells

(neurons)

•A neuron may connect to as many as

100,000 other neurons

•Neuron consists of:

• Cell body

• Dendrites

• Axon

• Synapses
4

Biological Background

5

•Signals “move” via electrochemical signals

•The synapses release a chemical transmitter – the sum of which can

cause a threshold to be reached – causing the neuron to “fire”

Advantage and

Application

Inherent Advantages of the Brain:

• Parallel processing speeds

• Adaptivity

• Fault tolerance

• Ability to generalize

6

Building Blocks:

Neurons

•First, we have to talk about neurons, the

basic unit of a neural network.

•A neuron takes inputs, does some math

with them, and produces one output. Here’s

what a 2-input neuron looks like:

7

3 things are happening here.

First, each input is multiplied

by a weight:

Next, all the weighted inputs are

added together with a bias b:
Finally, the sum is passed through

an activation function:

Activation Function

•Their main purpose is to convert a input signal of a node in

a ANN to an output signal.

•Output of neuron depends on the weighted sum of its input

and activation function
The question arises that what happened if we don’t apply activation function to

the weighted sum of input?

8

•the output signal would simply be a simple linear

function

•A Neural Network without Activation function would

simply be a Linear regression Model, which has

limited power and does not performs good most of

the times.

9

Types of Activation

Function

•Threshold function

• The activation of a neuron is binary. That is, the neuron either

fires (activation of one) or does not fire (activation of zero).

where X is the total input signal (weighted sum of input

)received θ is the threshold for Y

10

Types of Activation

Function

•Linear function

• A straight line function where activation is proportional to input (

which is the weighted sum from neuron).

• Disadvantage: it is limited power

11

Types of Activation

Function

Sigmoid Function

12

Sigmoid functions are one of the most widely used activation

functions today, but its problem is towards either end of the

sigmoid function, the Y values tend to respond very less to

changes in X.

Activation Function

(Example)
•For example, let us consider a simple neuron that has just two inputs. Each of

these inputs has a weight associated with it, as follows: w1 = 0.8 and w2 = 0.4

• The inputs to the neuron are x1 and x2:

x1 = 0.7 and x2 = 0.9

• So, the summed weight of these inputs is

• (0.8 x 0.7) + (0.4 x 0.9) = 0.92

•

•The activation level Y, is defined for this neuron as

•

•

•

•Hence, if t is less than 0.92, then this neuron will fire with this particular set of

inputs. Otherwise, it will have an activation level of zero.
13

Activation Function

•A neural network consists of a set of neurons that are connected

together.

•The connections between neurons have weights associated with them,

and each neuron passes its output on to the inputs of the neurons to

which it is connected.

•This output depends on the application of the activation function to the

inputs it receives.

•In this way, an input signal to the network is processed by the entire

network and an output (or multiple outputs) produced. There is no

central processing or control mechanism — the entire network is

involved in every piece of computation that takes place.

14

Neural Network

Architectures

•Artificial Neural Network is nothing more

than a bunch of neurons connected together.

• Single-Layer Feed-forward Networks

• Multilayer Feed-forward Networks

• Recurrent Networks

15

Single-Layer Feed-

forward Networks

16

•In a layered neural network the

neurons are organized in the form

of layers

•This network is strictly a feed-

forward or acyclic type.

•We do not count the input layer of

source nodes because no

computation is performed there.

Multilayer Feed-forward

Networks

17

•The second class of a feed-forward neural network

distinguishes itself by the presence of one or more

hidden layers.

•The source nodes in the input layer of the network

supply respective elements of the activation pattern

(input vector), which constitute the input signals

applied to the neurons (computation nodes) in the

second layer (i.e., the first hidden layer).

•The output signals of the second layer are used as

inputs to the third layer, and so on for the rest of the

network. Typically the neurons in each layer of the

network have as their inputs the output signals of the

preceding layer only.

Recurrent Networks

18

•It has at least one feedback loop.

•For example, a recurrent network may consist of a

single layer of neurons with each neuron feeding its

output signal back to the inputs of all the other neurons;

self feedback refers to a situation where the output of a

neuron is fed back into its own input.

•The recurrent network may or may not has hidden

neurons.

Perceptron

19

•It takes an input

• aggregates it (weighted sum)

• returns 1 only if the

aggregated sum is more than

some threshold else returns 0.

•Update weights

Perceptron
Steps

1-Initialize weights

2. Present a pattern and target output

3. Compute output

4. Update weights

Where y is the expected output , f(x) is real output α

learning rate and E error

5. Repeat step 2 until acceptable level of error

20

Perceptron:

Example (Logical Or)
• Let us examine a simple example: we will see how a perceptron can

learn to represent the logical-OR function for two inputs. We will use a

threshold of zero (t = 0) and a learning rate of 0.2.

• First, the weight associated with each of the two inputs is initialized to a

random value between -1 and +1:

w1 = -0.2 and w2 = 0.4

• Now, the first epoch is run through. The training data will consist of the four

combinations of 1’s and 0’s possible with two inputs.

Hence, our first piece of training data is x1 = 0 , x2 = 0 and our expected

output is x1 ∨ x2 = 0. We apply our formula for Y:

21

Perceptron:

Example (Logical Or)
• Hence, the output Y is as expected, and the error, e, is therefore 0. So the

weights do not change.

• Now, for x1 = 0 and x2 = 1:

Y = Step ((0 x -0.2) + (1 x 0.4))

Y = Step (0.4) = 1

Again, this is correct, and so the weights do not need to change.

• For x1 = 1 and x2 = 0:

Y = Step ((1 x -0.2) + (0 x 0.4)) = Step (-0.2) = 0

This is incorrect because 1 ∨ 0 = 1, so we should expect Y to be 1 for this set of

inputs. Hence, the weights are adjusted.

22

Perceptron:

Example (Logical Or)
• We will use the perceptron training rule to assign new values to the weights:

• Our learning rate is 0.2, and in this case, the e is 1, so we will assign the

following value to w1:

w1 = -0.2 + (0.2 x 1 x 1) = -0.2 + (0.2) = 0

We now use the same formula to assign a new value to w2:

w2 = 0.4 + (0.2 x 0 x 1) = 0.4

Because w2 did not contribute to this error, it is not adjusted.

• The final piece of training data is now used (x1 = 1 and x2= 1):

Y = Step ((0 x 1) + (0.4 x 1)) = Step (0 + 0.4) = Step (0.4) = 1

This is correct, and so the weights are not adjusted.

This is the end of the first epoch, and at this point the method runs again and

continues to repeat until all four pieces of training data are classified correctly.

23

Perceptron

24

Hands on

Open Perceptron template to complete the

function and implement Or Logical Function

using Step function

25

Hands on

Threshold = 0

Learning rate = 0.2

Training set input= [0, 0, 1],

[1, 1, 1],

[1, 0, 1],

[0, 1, 1],

[0, 0, 0]

Output=[1,1,1,1,0]

Test with [1,1,0] expected output =1

26

Questions?

27

