
Lab 6

Artificial Intelligence

1

Gaming Algorithms

Agenda

Introduction to Gaming Algorithms

Games vs. Search problems

Gaming Algorithms

 Minimax

 Alpha-Beta

 Tic Tac Toe Hands on

2

Gaming Algorithms

• Games are a form of multi-agent deterministic

environment (2 players).

• What do other agents do and how do they affect our

success?

• Cooperative vs. Competitive multi-agent environments.

• Competitive multi-agent environments give rise to

gaming search.

3

Games vs. Search Problems

• Why can not we use traditional search algorithms

like BFS, DFS, UCS, A* ?
• Game problems includes two player, both players try to win the game,

so, both of them try to make the best move possible at each turn.

• Searching algorithms like BFS, DFS, UCS or A* are not accurate for this.

• So, we need another search procedures that improve to:

 Generate procedure: It generates only good moves that can be

taken from current state.

 Test procedure: that choose the best move to be explored first.

4

Minimax Algorithm

• Minimax is a kind of backtracking algorithm that is used

in game theory to find the optimal move for a player,

assuming that your opponent also plays optimally.

• It is widely used in two player turn-based games such as

Tic-Tac-Toe, Chess, etc.

• In Minimax the two players are called maximizer and

minimizer.

• The maximizer tries to get the highest score possible.

• The minimizer tries to do the opposite and get the lowest

score possible.

6

Mini-Max Terminology
A game can be defined a search problem with the

following components:

• Initial state: It comprises the position of the board and

showing whose move it is.

• Successor function: It defines what the legal moves a

player can make are.

• Terminal state: It is the position of the board when the

game gets over.

• Utility function: It is a function which assigns a numeric

value for the outcome of a game.

For instance, in chess or tic-tac-toe, the outcome is

either a win, a loss, or a draw, and these can be

represented by the values +1, -1, or 0, respectively.

7

Game Tree (2-player, Deterministic)

8

At the leaf nodes, the

utility function is called.

High value means good,

Low value is bad.

computer’s

turn

opponent’s

turn

computer’s

turn

opponent’s

turn

leaf nodes

are evaluated

The computer is Max (X).

The opponent is Min (O).

How does the algorithm work?
Step 1: First, generate the entire game tree starting

with the current position of the game all the way up

to the terminal states.

Step 2: Apply the utility function to get the utility

values for all the terminal states.

Step 3: Determine the utilities of the higher nodes

with the help of the utilities of the terminal nodes.

• From bottom to top

• For a max level, select the maximum value of

its successors

• For a min level, select the minimum value of

its successors

Step 4: From root node select the move which leads

to highest value

. 10

Utility Evaluation Function

• Utility Functions are very game-specific

• The simplest utility function can be

evaluated as Sum Zero:

• 1 if player X wins

• -1 if player O wins

• 0 if tie

Example

12

Max

Min

Max

Min

Another Example

13

Max

Min

Max

Minimax Algorithm

14

function minimax(node, depth, maximizingPlayer) is

if node is a terminal node then

return the utility value of node

if maximizingPlayer then

value := −∞

for each child of node do

value := max(value, minimax(child, depth − 1, FALSE))

return value

else (* minimizing player *)

value := +∞

for each child of node do

value := min(value, minimax(child, depth − 1, TRUE))

return value

Making our Minimax smarter :

Assume that there are 2 possible ways for X to win the game from a give

board state.

• Move A : X can win in 2 move

• Move B : X can win in 4 moves

Our evaluation function will return a value of +10 for both moves A and B.

Even though the move A is better because it ensures a faster victory, our AI

may choose B sometimes.

To overcome this problem we subtract the depth value from the evaluated

score.

This means that in case of a victory it will choose a the victory which takes

least number of moves.

15

Making our Minimax smarter :

So the new evaluated value will be:

• Move A will have a value of +10 – 2 = 8

• Move B will have a value of +10 – 4 = 6

Now since move A has a higher score compared to

move B our AI will choose move A over move B.

The same thing must be applied to the minimizer. Instead

of subtracting the depth we add the depth value.

16

Properties of Minimax

• Minimax algorithm requires expanding the entire tree.

• How deeply should the tree be searched? Each increase

in depth multiplies the total search time by about the

number of moves available at each level.

17

Alpha-Beta Pruning

The full minimax search explores some parts of the tree it doesn't have to.

For example, Do we need to calculate Z value ?.

18

Alpha-Beta Strategy

Instead of calculating value of utility Only.

Calculate Two Extra Values:

• Alpha (α): a value of the best choice so far for

Max (Highest value)

• Beta (β): a value of the best choice so far for

Min (lowest value)

Search, maintaining α and β Whenever

α ≥ βhigher, or β ≤ αhigher further search at this

node is irrelevant

How to Prune the Unnecessary Path

• If beta value of any MIN node below a MAX

node is less than or equal to its alpha

value, then prune the path below the MIN

node.

• If alpha value of any MAX node below a

MIN node exceeds the beta value of the

MIN node, then prune the nodes below the

MAX node.

45 96 84 72 35

Max

Min

Max

2 4

-∞

∞

-∞ -∞ -∞

∞

-∞

5

Max asks: 5 > -∞

An answer: Yes

An action: Change value of Alpha to be 5

Max asks: 4 > 5

An answer: No

An action: Keep Alpha’s value

Max asks: 6 > 5

An answer: Yes

An action: Change value of Alpha to be 6

6

Min asks: 6 < ∞

An answer: Yes

An action: Change value of Beta to be 6

6

9

Max asks: 9 > -∞

An answer: Yes

An action: Change value of Alpha to be 9

Pruning asks: Alpha>Beta (9>6)

An answer: Yes
An action: Cut off all the rest children of

Node 9

Min asks: 9 < 6

An answer: No

An action: Keep Beta’s value

Max asks: 6 > -∞

An answer: Yes

An action: Change value of Alpha to be 6

6

2

Max asks: 2 > -∞

An answer: Yes

An action: Change value of Alpha to be 2

Max asks: 2 > 2

An answer: No

An action: Keep Alpha’s value

Max asks: 7 > 2

An answer: Yes

An action: Change value of Alpha to be 7

7

Min asks: 7 < ∞

An answer: Yes

An action: Change value of Beta to be 7

7

Pruning asks: Alpha > Beta (6>7)

An answer: No

An action: Continue

Max asks: 4 > -∞

An answer: Yes

An action: Change value of Alpha to be 4

4

Pruning asks: Alpha > Beta (4 > 7)

An answer: No

An action: Continue

Max asks: 5 > 4

An answer: Yes

An action: Change value of Alpha to be 5

5

Pruning asks: Alpha > Beta (5 > 7)

An answer: No

An action: Continue

The End 
Beta

Pruning

Max asks: 3 > 5

An answer: No

An action: Keep Alpha’s value

Min asks: 5 < 7

An answer: Yes

An action: Change value of Beta to be 5

5

Pruning asks: Alpha > Beta (6 > 5)

An answer: Yes
An action: Cut off all the rest children nodes

of 5

Alpha

Pruning

Max asks: 5 > 6

An answer: No

An action: Keep Alpha’s value

Alpha

Alpha

Beta

Example

The α-β algorithm

The α-β algorithm

Hands on – Tic Tac Toe

24

•Human is ‘X’ and Machine ‘O’.

•Board is 1 based index.

•X is maximizer and O is minimizer.

Hands on – Tic Tac Toe

25

Minimax Algorithm

26

function minimax(node, depth, maximizingPlayer) is

if node is a terminal node

then return the utility value of node

if maximizingPlayer

then value := −∞

for each child of node do

value := max(value, minimax(child, depth − 1, FALSE))

return value

else (* minimizing player *)

value := +∞

for each child of node do

value := min(value, minimax(child, depth − 1, TRUE))

return value

Milestone 3

Gaming Algorithms milestone deadline: 12 April 2019.

It will be published on course-sites : 4 April 2019.

General instructions:

• Regarding your AI-Package:

• Add a new folder named ‘GamingAlgorithms’.

• Add only one new ‘.PY’ file for writing your code.

Regarding your submission file:

• Submit only running code that you have tested before.

• Your assignment should be written in ONE “.py” file, this file should include the solution of

ALL the problems and a main function that calls them.

• Compressed files (.zip/.rar) are not allowed.

• The Submission of team work package is only through your shared folder on google drive.

• Don’t delete any previous milestones.

27

Questions?

28

