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This document is intended for scientists and engineers who develop or maintain computer simulations 
and applications in Fortran and who would like to harness the parallel processing power of graphics 
processing units (GPUs) to accelerate their code. The goal here is to provide the reader with the funda-
mentals of GPU programming using CUDA Fortran as well as some typical examples, without having 
the task of developing CUDA Fortran code become an end in itself.

The CUDA architecture was developed by NVIDIA to allow use of the GPU for general-purpose 
computing without requiring the programmer to have a background in graphics. There are many ways 
to access the CUDA architecture from a programmer’s perspective, including through C/C++ from 
CUDA C or through Fortran using The Portland Group’s (PGI’s) CUDA Fortran. This document per-
tains to the latter approach. PGI’s CUDA Fortran should be distinguished from the PGI Accelerator and 
OpenACC Fortran interfaces to the CUDA architecture, which are directive-based approaches to using 
the GPU. CUDA Fortran is simply the Fortran analog to CUDA C.

The reader of this book should be familiar with Fortran 90 concepts, such as modules, derived 
types, and array operations. For those familiar with earlier versions of Fortran but looking to upgrade 
to a more recent version, there are several excellent books that cover this material (e.g., Metcalf, 2011). 
Some features introduced in Fortran 2003 are used in this book, but these concepts are explained in 
detail. Although this book does assume some familiarity with Fortran 90, no experience with parallel 
programming (on the GPU or otherwise) is required. Part of the appeal of parallel programming on 
GPUs using CUDA is that the programming model is simple and novices can get parallel code up and 
running very quickly.

Often one comes to CUDA Fortran with the goal of porting existing, sometimes rather lengthy, 
Fortran code to code that leverages the GPU. Because CUDA is a hybrid programming model, where 
both GPU and CPU are utilized, CPU code can be incrementally ported to the GPU. CUDA Fortran is 
also used by those porting applications to GPUs mainly using the directive-base OpenACC approach, 
but who want to improve the performance of a few critical sections of code by hand-coding CUDA 
Fortran. Both OpenACC and CUDA Fortran can coexist in the same code.

This book is divided into two main parts. The first part is a tutorial on CUDA Fortran programming, 
from the basics of writing CUDA Fortran code to some tips on optimization. The second part is a col-
lection of case studies that demonstrate how the principles in the first part are applied to real-world 
examples.

This book makes use of the PGI 13.x compilers, which can be obtained from http://pgroup.com. 
Although the examples can be compiled and run on any supported operating system in a variety of 
development environments, the examples included here are compiled from the command line as one 
would do under Linux or Mac OS X.

Companion Site
Supplementary materials for readers can be downloaded from Elsevier:  
http://store.elsevier.com/product.jsp?isbn=9780124169708.

Preface
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1.1 A brief history of GPU computing
Parallel computing has been around in one form or another for many decades. In the early stages it
was generally confined to practitioners who had access to large and expensive machines. Today, things
are very different. Almost all consumer desktop and laptop computers have central processing units, or
CPUs, with multiple cores. Even most processors in cell phones and tablets have multiple cores. The
principal reason for the nearly ubiquitous presence of multiple cores in CPUs is the inability of CPU
manufacturers to increase performance in single-core designs by boosting the clock speed. As a result,
since about 2005 CPU designs have “scaled out” to multiple cores rather than “scaled up” to higher
clock rates. Although CPUs are available with a few to tens of cores, this amount of parallelisms pales
in comparison to the number of cores in a graphics processing unit (GPU). For example, the NVIDIA
Tesla® K20X contains 2688 cores. GPUs were highly parallel architectures from their beginning, in the
mid-1990s, since graphics processing is an inherently parallel task.
CUDA Fortran for Scientists and Engineers. http://dx.doi.org/10.1016/B978-0-12-416970-8.00001-8
© 2014 Elsevier Inc. All rights reserved.
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4 CHAPTER 1 Introduction

The use of GPUs for general-purpose computing, often referred to as GPGPU, was initially a chal-
lenging endeavor. One had to program to the graphics application programming interface (API), which
proved to be very restrictive in the types of algorithms that could be mapped to the GPU. Even when
such a mapping was possible, the programming required to make this happen was difficult and not
intuitive for scientists and engineers outside the computer graphics vocation. As such, adoption of the
GPU for scientific and engineering computations was slow.

Things changed for GPU computing with the advent of NVIDIA’s CUDA® architecture in 2007. The
CUDA architecture included both hardware components on NVIDIA’s GPU and a software program-
ming environment that eliminated the barriers to adoption that plagued GPGPU. Since CUDA’s first
appearance in 2007, its adoption has been tremendous, to the point where, in November 2010, three
of the top five supercomputers in the Top 500 list used GPUs. In the November 2012 Top 500 list, the
fastest computer in the world was also GPU-powered. One of the reasons for this very fast adoption
of CUDA is that the programming model was very simple. CUDA C, the first interface to the CUDA
architecture, is essentially C with a few extensions that can offload portions of an algorithm to run on
the GPU. It is a hybrid approach where both CPU and GPU are used, so porting computations to the
GPU can be performed incrementally.

In late 2009, a joint effort between The Portland Group® (PGI®) and NVIDIA led to the CUDA For-
tran compiler. Just as CUDA C is C with extensions, CUDA Fortran is essentially Fortran 90 with a few
extensions that allow users to leverage the power of GPUs in their computations. Many books, articles,
and other documents have been written to aid in the development of efficient CUDA C applications
(e.g., Sanders and Kandrot, 2011; Kirk and Hwu, 2012; Wilt, 2013). Because it is newer, CUDA Fortran
has relatively fewer aids for code development. Much of the material for writing efficient CUDA C
translates easily to CUDA Fortran, since the underlying architecture is the same, but there is still a need
for material that addresses how to write efficient code in CUDA Fortran. There are a couple of reasons
for this. First, though CUDA C and CUDA Fortran are similar, there are some differences that will affect
how code is written. This is not surprising, since CPU code written in C and Fortran will typically take
on a different character as projects grow. Also, there are some features in CUDA C that are not present
in CUDA Fortran, such as certain aspects of textures. Conversely, there are some features in CUDA
Fortran, such as the device variable attribute used to denote data that resides on the GPU, that are not
present in CUDA C.

This book is written for those who want to use parallel computation as a tool in getting other work
done rather than as an end in itself. The aim is to give the reader a basic set of skills necessary for them
to write reasonably optimized CUDA Fortran code that takes advantage of the NVIDIA® computing
hardware. The reason for taking this approach rather than attempting to teach how to extract every last
ounce of performance from the hardware is the assumption that those using CUDA Fortran do so as a
means rather than an end. Such users typically value clear and maintainable code that is simple to write
and performs reasonably well across many generations of CUDA-enabled hardware and CUDA Fortran
software.

But where is the line drawn in terms of the effort-performance tradeoff? In the end it is up to the
developer to decide how much effort to put into optimizing code. In making this decision, we need
to know what type of payoff we can expect when eliminating various bottlenecks and what effort is
involved in doing so. One goal of this book is to help the reader develop an intuition needed to make such
a return-on-investment assessment. To achieve this end, we discuss bottlenecks encountered in writing
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common algorithms in science and engineering applications in CUDA Fortran. Multiple workarounds
are presented when possible, along with the performance impact of each optimization effort.

1.2 Parallel computation
Before jumping into writing CUDA Fortran code, we should say a few words about where CUDA fits
in with other types of parallel programming models. Familiarity with and an understanding of other
parallel programming models is not a prerequisite for this book, but for readers who do have some
parallel programming experience, this section might be helpful in categorizing CUDA.

We have already mentioned that CUDA is a hybrid computing model, where both the CPU and GPU
are used in an application. This is advantageous for development because sections of an existing CPU
code can be ported to the GPU incrementally. It is possible to overlap computation on the CPU with
computation on the GPU, so this is one aspect of parallelism.

A far greater degree of parallelism occurs within the GPU itself. Subroutines that run on the GPU
are executed by many threads in parallel. Although all threads execute the same code, these threads
typically operate on different data. This data parallelism is a fine-grained parallelism, where it is most
efficient to have adjacent threads operate on adjacent data, such as elements of an array. This model of
parallelism is very different from a model like Message Passing Interface, commonly known as MPI,
which is a coarse-grained model. In MPI, data are typically divided into large segments or partitions,
and each MPI process performs calculations on an entire data partition.

A few characteristics of the CUDA programming model are very different from CPU-based parallel
programming models. One difference is that there is very little overhead associated with creating GPU
threads. In addition to fast thread creation, context switches, where threads change from active to inactive
and vice versa, are very fast for GPU threads compared to CPU threads. The reason context switching
is essentially instantaneous on the GPU is that the GPU does not have to store state, as the CPU does
when switching threads between being active and inactive. As a result of this fast context switching,
it is advantageous to heavily oversubscribe GPU cores—that is, have many more resident threads than
GPU cores so that memory latencies can be hidden. It is not uncommon to have the number of resident
threads on a GPU an order of magnitude larger than the number of cores on the GPU. In the CUDA
programming model, we essentially write a serial code that is executed by many GPU threads in parallel.
Each thread executing this code has a means of identifying itself in order to operate on different data,
but the code that CUDA threads execute is very similar to what we would write for serial CPU code.
On the other hand, the code of many parallel CPU programming models differs greatly from serial CPU
code. We will revisit each of these aspects of the CUDA programming model and architecture as they
arise in the following discussion.

1.3 Basic concepts
This section contains a progression of simple CUDA Fortran code examples used to demonstrate various
basic concepts of programming in CUDA Fortran.
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Before we start, we need to define a few terms. CUDA Fortran is a hybrid programming model,
meaning that code sections can execute either on the CPU or the GPU, or more precisely, on the host or
device. The terms host is used to refer to the CPU and its memory, and the term device is used to refer
to GPU and its memory, both in the context of a CUDA Fortran program. Going forward, we use the
term CPU code to refer to a CPU-only implementation. A subroutine that executes on the device but is
called from the host is called a kernel.

1.3.1 A first CUDA Fortran program
As a reference, we start with a Fortran 90 code that increments an array. The code is arranged so that
the incrementing is performed in a subroutine, which itself is in a Fortran 90 module. The subroutine
loops over and increments each element of an array by the value of the parameter b that is passed into
the subroutine.

1 module simpleOps_m
2 contains
3 subroutine increment(a, b)
4 implicit none
5 integer , intent(inout) :: a(:)
6 integer , intent(in) :: b
7 integer :: i, n
8
9 n = size(a)

10 do i = 1, n
11 a(i) = a(i)+b
12 enddo
13
14 end subroutine increment
15 end module simpleOps_m
16
17
18 program incrementTestCPU
19 use simpleOps_m
20 implicit none
21 integer , parameter :: n = 256
22 integer :: a(n), b
23
24 a = 1
25 b = 3
26 call increment(a, b)
27
28 if (any(a /= 4)) then
29 write (*,*) ’**** Program Failed ****’
30 else
31 write (*,*) ’Program Passed ’
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32 endif
33 end program incrementTestCPU

In practice, we would not accomplish such an operation in this fashion. We would use Fortran 90’s
array syntax within the main program to accomplish the same operation in a single line. However, for
comparison to the CUDA Fortran version and to highlight the sequential nature of the operations in
CPU code, we’ll use this format.

The equivalent CUDA Fortran code is the following:

1 module simpleOps_m
2 contains
3 attributes(global) subroutine increment(a, b)
4 implicit none
5 integer , intent(inout) :: a(:)
6 integer , value :: b
7 integer :: i
8
9 i = threadIdx%x

10 a(i) = a(i)+b
11
12 end subroutine increment
13 end module simpleOps_m
14
15
16 program incrementTestGPU
17 use cudafor
18 use simpleOps_m
19 implicit none
20 integer , parameter :: n = 256
21 integer :: a(n), b
22 integer , device :: a_d(n)
23
24 a = 1
25 b = 3
26
27 a_d = a
28 call increment <<<1,n>>>(a_d , b)
29 a = a_d
30
31 if (any(a /= 4)) then
32 write (*,*) ’**** Program Failed ****’
33 else
34 write (*,*) ’Program Passed ’
35 endif
36 end program incrementTestGPU
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The first difference between the Fortran 90 and CUDA Fortran code we run across is the
attributes(global) prefix to the subroutine on line 3 of the CUDA Fortran implementation.
The attribute global indicates that the code is to run on the device but is called from the host. (The
term global, as with all subroutine attributes, describes the scope; the subroutine is seen from both
the host and the device.)

The second major difference we notice is that the do loop on lines 10–12 of the Fortran 90 example
has been replaced in the CUDA Fortran code by the statement initializing the index i on line 9 and
the content of the loop on line 10. This difference arises out of the serial versus parallel execution of
these two codes. In the CPU code, incrementing elements of the array “a” is performed sequentially
in the do loop by a single CPU thread. In the CUDA Fortran version, the subroutine is executed by
many GPU threads concurrently. Each thread identifies itself via the built-in threadIdx variable that
is available in all device code and uses this variable as an index of the array. Note that this parallelism,
where sequential threads modify adjacent elements of an array, is termed a fine-grained parallelism.

The main program in the CUDA Fortran code is executed on host. The CUDA Fortran definitions
and derived types are contained in the cudafor module, which is used on line 17 along with the
simpleOps_m module on line 18. As we alluded to earlier, CUDA Fortran deals with two separate
memory spaces, one on the host and one on the device. Both these spaces are visible from host code, and
the device attribute is used when declaring variables to indicate they reside in device memory—for
example, when declaring the device variable a_d on line 22 of the CUDA Fortran code. The “_d”
variable suffix is not required but is a useful convention for differentiating device from host variables in
host code. Because CUDA Fortran is strongly typed in this regard, data transfers between host and device
can be performed by assignment statements. This occurs on line 27, where, after the array a is initialized
on the host, the data are transferred to the device memory in dynamic random-access memory (DRAM).

Once the data have been transferred to device memory in DRAM, then the kernel, or subroutine
that executes on the device, can be launched, as is done on line 28. The group of parameters specified
within the triple chevrons between the subroutine name and the argument list on line 28 is called the
execution configuration and determines the number of GPU threads used to execute the kernel. We will
go into the execution configuration in depth a bit later, but for now it is sufficient to say that an execution
configuration of <<< 1,n >>> specifies that the kernel is executed by n GPU threads.

Although kernel array arguments such as a_d must reside in device memory, this is not the case
with scalar arguments such as the second kernel argument b, which resides in host memory. The CUDA
runtime will take care of the transfer of host scalar arguments, but it expects the argument to be passed
by value. By default, Fortran passes arguments by reference, but arguments can be passed by value
using the value variable attribute, as shown on line 6 of the CUDA Fortran code. The value attribute
was introduced in Fortran 2003 as part of a mechanism for interoperating with C code.

One issue that we must contend with in a hybrid programming model such as CUDA is that of
synchronization between the host and the device. For this program to execute correctly, we need to
know that the host-to-device data transfer on line 27 completes before the kernel begins execution and
that the kernel completes before the device-to-host transfer on line 29 commences. We are assured of
such behavior because the data transfers via assignment statements on lines 27 and 29 are blocking
or synchronous transfers. Such transfers do not initiate until all previous operations on the GPU are
complete, and subsequent operations on the GPU will not begin until the data transfer is complete. The
blocking nature of these data transfers is helpful in implicitly synchronizing the CPU and GPU.
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The data transfers via assignment statements are blocking or synchronous operations, whereas kernel
launches are nonblocking or asynchronous. Once the kernel on line 28 is launched, control immediately
returns to the host. However, we are assured of the desired behavior because the data transfer in line 29
does not initiate due the blocking nature of the transfer.

There are routines that perform asynchronous transfers so that computation on the device can overlap
communication between host and device as well as provide a means to synchronize the host and device,
as discussed in Section 3.1.3.

1.3.2 Extending to larger arrays
The preceding example has the limitation that with the execution configuration <<< 1,n >>>, the
parameter n and hence the array size must be small. This limit depends on the particular CUDA device
being used. For Kepler™- and Fermi™-based products, such as the Tesla K20 and C2050 cards, the
limit is n=1024, and on previous-generation cards this limit is n=512. (See Appendix A for such
limits.) The way to accommodate larger arrays is to modify the first execution configuration parameter,
because essentially the product of these two execution configuration parameters gives the number of
GPU threads that execute the code. So, why is this done? Why are GPU threads grouped in this manner?
This grouping of threads in the programming model mimics the grouping of processing elements in
hardware on the GPU.

The basic computational unit on the GPU is a thread processor, also referred to simply as a core.
In essence, a thread processor or core is a floating-point unit. Thread processors are grouped into
multiprocessors, which contain a limited amount of resources used by resident threads, namely registers
and shared memory. This concept is illustrated in Figure 1.1, which shows a CUDA-capable device
containing a GPU with four multiprocessors, each of which contains 32 thread processors.

The analog to a multiprocessor in the programming model is a thread block. Thread blocks are groups
of threads that are assigned to a multiprocessor and do not migrate once assigned. Multiple thread blocks
can reside on a single multiprocessor, but the number of thread blocks that can simultaneously reside
on a multiprocessor is limited by the resources available on a multiprocessor as well as the resources
required by each thread block.

Device
Multiprocessor

Thread
Processors

DRAM

DRAM

DRAM

DRAM

GPU

Memory

FIGURE 1.1

Hierarchy of computational units in a GPU, where thread processors are grouped together in multiprocessors.
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Turning back to our example code, when the kernel is invoked, it launches a grid of thread blocks. The
number of thread blocks launched is specified by the first parameter of the execution configuration, and
the number of threads in a thread block is specified by the second parameter. So, our first CUDA Fortran
program launched a grid consisting of a single thread block of 256 threads. We can accommodate larger
arrays by launching multiple thread blocks, as in the following code:

1 module simpleOps_m
2 contains
3 attributes(global) subroutine increment(a, b)
4 implicit none
5 integer , intent(inout) :: a(:)
6 integer , value :: b
7 integer :: i, n
8
9 i = blockDim%x*( blockIdx%x-1) + threadIdx%x

10 n = size(a)
11 if (i <= n) a(i) = a(i)+b
12
13 end subroutine increment
14 end module simpleOps_m
15
16
17 program incrementTest
18 use cudafor
19 use simpleOps_m
20 implicit none
21 integer , parameter :: n = 1024*1024
22 integer , allocatable :: a(:)
23 integer , device , allocatable :: a_d(:)
24 integer :: b, tPB = 256
25
26 allocate(a(n), a_d(n))
27 a = 1
28 b = 3
29
30 a_d = a
31 call increment <<<ceiling(real(n)/tPB),tPB >>>(a_d , b)
32 a = a_d
33
34 if (any(a /= 4)) then
35 write (*,*) ’**** Program Failed ****’
36 else
37 write (*,*) ’Program Passed ’
38 endif
39 deallocate(a, a_d)
40 end program incrementTest
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In the host code, we declare both host and device arrays to be allocatable. This is not needed when
we use a larger array; we do this just to indicate that device arrays can be allocated and deallocated
just as host arrays can. In fact, both host and device arrays can be used in the same allocate() and
deallocate() statements, as on lines 26 and 39 in this example.

Aside from using allocatable arrays, this program contains only a few modifications to the CUDA
Fortran code presented in Section 1.3.1. In the host code, the parameter tPB representing the number
of threads per block is defined on line 24. When we launch a kernel with multiple thread blocks, all
thread blocks in a single kernel launch must be the same size, which is specified by the second execution
configuration parameter. In our example, when the number of elements in the array is not evenly divisible
by the number of threads per block, we need to make sure enough threads are launched to process each
element of the array, but we must also make sure we don’t access the array out of bounds. The ceiling
function on line 31 is used to determine the number of thread blocks required to process all array
elements. In device code, the Fortran 90 size() intrinsic is used on line 10 to determine the number
of elements in the array, which is used in the �if condition of line 11 to make sure the kernel doesn’t read
or write off the end of the array.

In addition to checking for out-of-bounds memory accesses, the device code also differs from the
single-block example in Section 1.3.1 in the calculation of the array index i on line 9. The predefined
variable threadIdx is the index of a thread within its thread block. When we use multiple thread
blocks, as is the case here, this value needs to be offset by the number of threads in previous thread
blocks to obtain unique integers used to access elements of an array. This offset is determined using the
predefined variables blockDim and blockIdx, which contain the number of threads in a block and
the index of the block within the grid, respectively. An illustration of the way the predefined variables
in device code are used to calculate the global array indices is shown in Figure 1.2.

Global Array Index

blockIdx%x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

threadIdx%x

(blockIdx%x-1)*blockDim%x + 
threadIdx%x

blockDim%x

FIGURE 1.2

Calculation of the global array index in terms of predefined variables blockDim, blockIdx, and
threadIdx. For simplicity, four thread blocks with four threads each are used. In actual CUDA Fortran
code, thread blocks with much higher thread counts are used.
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In both of the CUDA Fortran examples we have discussed, the kernel code accesses the x fields of
the predefined variables, and as you might expect, these data types can accommodate multidimensional
arrays, which we explore next.

1.3.3 Multidimensional arrays
We can easily extend our example to work on a multidimensional array. This is facilitated since the
predefined variables in device code are of a derived type dim3, which contains x, y, and z fields. In
terms of the host code, thus far we have specified the blocks per grid and threads per block execution
configuration parameters as integers, but these parameters can also be of type dim3. Using other fields
of the dim3 type, the multidimensional version of our code becomes:

1 module simpleOps_m
2 contains
3 attributes(global) subroutine increment(a, b)
4 implicit none
5 integer :: a(:,:)
6 integer , value :: b
7 integer :: i, j, n(2)
8
9 i = (blockIdx%x-1)* blockDim%x + threadIdx%x

10 j = (blockIdx%y-1)* blockDim%y + threadIdx%y
11 n(1) = size(a,1)
12 n(2) = size(a,2)
13 if (i<=n(1) .and. j<=n(2)) a(i,j) = a(i,j) + b
14 end subroutine increment
15 end module simpleOps_m
16
17
18
19 program incrementTest
20 use cudafor
21 use simpleOps_m
22 implicit none
23 integer , parameter :: nx=1024, ny=512
24 integer :: a(nx,ny), b
25 integer , device :: a_d(nx,ny)
26 type(dim3) :: grid , tBlock
27
28 a = 1
29 b = 3
30
31 tBlock = dim3 (32,8,1)
32 grid = dim3(ceiling(real(nx)/ tBlock%x), &
33 ceiling(real(ny)/ tBlock%y), 1)
34 a_d = a
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35 call increment <<<grid ,tBlock >>>(a_d , b)
36 a = a_d
37
38 if (any(a /= 4)) then
39 write (*,*) ’**** Program Failed ****’
40 else
41 write (*,*) ’Program Passed ’
42 endif
43 end program incrementTest

After declaring the parameters nx and ny along with the host and device arrays for this two-
dimensional example, we declare two variables of type dim3 used in the execution configuration on
line 26. On line 31 the three components of the dim3 type specifying the number of threads per
block are set; in this case each block has a 32 × 8 arrangement of threads. In the following two lines,
the ceiling function is used to determine the number of blocks in the x and y dimensions required
to increment all the elements of the array. The kernel is then launched with these variables as the
execution configuration parameters in line 35. In the kernel code, the dummy argument a is declared
as a two-dimensional array and the variable n as a two-element array, which, on lines 11 and 12, is
set to hold the size of a in each dimension. An additional index j is assigned a value on line 10 in an
analogous manner to i on line 9, and both i and j are checked for in-bound access before a(i,j) is
incremented.

1.4 Determining CUDA hardware features and limits
There are many different CUDA-capable devices available, spanning different product lines (GeForce®

and Quadro® as well as Tesla) in addition to different generations of architecture. We have already
discussed the limitation of the number of threads per block, which is 1024 on Kepler and Fermi-based
hardware and 512 for earlier architectures, and there are many other features and limits that vary among
devices. In this section we cover the device management API, which contains routines for determining
the number and types of CUDA-capable cards available on a particular system and what features and
limits such cards have.

Before we go into the device management API, we should briefly discuss the notion of compute
capability. The compute capability of a CUDA-enabled device indicates the architecture and is given
in Major.Minor format. The Major component of the compute capability reflects the generation of the
architecture, and the Minor component reflects the revision within that generation. The very first CUDA-
enabled cards were of compute capability 1.0. Fermi-generation cards have compute capabilities of 2.x,
and Kepler-generation cards have compute capabilities of 3.x. Some features of CUDA correlate with
the compute capability; for example, double precision is available with cards of compute capability 1.3
and higher. Other features do not correlate with compute capability but can be determined through the
device management API.

The device management API has routines for getting information on the number of cards avail-
able on a system as well as for selecting a card from among available cards. This API makes use of
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the cudaDeviceProp derived type for inquiring about the features of individual cards, which is
demonstrated in the following program:

1 program deviceQuery
2 use cudafor
3 implicit none
4
5 type (cudaDeviceProp) :: prop
6 integer :: nDevices=0, i, ierr
7
8 ! Number of CUDA -capable devices
9

10 ierr = cudaGetDeviceCount(nDevices)
11
12 if (nDevices == 0) then
13 write(*,"(/,’No CUDA devices found ’,/)")
14 stop
15 else if (nDevices == 1) then
16 write(*,"(/,’One CUDA device found ’,/)")
17 else
18 write(*,"(/,i0,’ CUDA devices found ’,/)") nDevices
19 end if
20
21 ! Loop over devices
22
23 do i = 0, nDevices -1
24
25 write(*,"(’Device Number: ’,i0)") i
26
27 ierr = cudaGetDeviceProperties(prop , i)
28
29 ! General device info
30
31 write(*,"(’ Device Name: ’,a)") trim(prop%name)
32 write(*,"(’ Compute Capability: ’,i0 ,’.’,i0)") &
33 prop%major , prop%minor
34 write(*,"(’ Number of Multiprocessors: ’,i0)") &
35 prop%multiProcessorCount
36 write(*,"(’ Max Threads per Multiprocessor: ’,i0)") &
37 prop%maxThreadsPerMultiprocessor
38 write(*,"(’ Global Memory (GB): ’,f9.3,/)") &
39 prop%totalGlobalMem /1024.0**3
40
41 ! Execution Configuration
42
43 write(*,"(’ Execution Configuration Limits ’)")
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44 write(*,"(’ Max Grid Dims: ’,2(i0,’ x ’),i0)") &
45 prop%maxGridSize
46 write(*,"(’ Max Block Dims: ’,2(i0,’ x ’),i0)") &
47 prop%maxThreadsDim
48 write(*,"(’ Max Threads per Block: ’,i0 ,/)") &
49 prop%maxThreadsPerBlock
50
51 enddo
52
53 end program deviceQuery

This code determines the number of CUDA-capable devices attached to the system from the
cudaGetDeviceCount() routine on line 10 and then loops over each device, retrieving the
device properties from the cudaGetDeviceProperties() routine. This code lists only a small
portion of the fields available in the cudaDeviceProp type. A full list of the members of the
cudaDeviceProp derived type is provided in the CUDA Toolkit Reference Manual, available online
from NVIDIA.

We list the output of this code on a variety of Tesla devices of different compute capabilities. The
first Tesla device, released in 2007, was the Tesla C870, with a compute capability of 1.0, and on a
system with this device we obtain the following result:

� �

One CUDA device found

Device Number: 0
Device Name: Tesla C870
Compute Capability: 1.0
Number of Multiprocessors: 16
Max Threads per Multiprocessor: 768
Global Memory (GB): 1.500

Execution Configuration Limits
Max Grid Dims: 65535 x 65535 x 1
Max Block Dims: 512 x 512 x 64
Max Threads per Block: 512

�

Note that the enumeration of devices is zero-based rather than unit-based. The Max Threads per
Multiprocessor number refers to the maximum number of concurrent threads that can reside
on a multiprocessor. The Global Memory indicated in the following line of output is the amount
of available memory in device DRAM. The first two lines under Execution Configuration
Limits denote the limits in each dimension of the first two execution configuration parameters:
the number and configuration of thread blocks in a kernel launch, and the number and configuration
of threads in a thread block. Note that for this compute capability, grids must be a two-dimensional
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configuration of thread blocks, whereas thread blocks can be a three-dimensional arrangement of threads,
up to the specified limits. The product of the three thread-block components specified in the execution
configuration must be less than or equal to the Max Threads per Block limit of 512 for this
device.

The next Tesla product with a higher compute capability was the Tesla C1060:

� �

One CUDA device found

Device Number: 0
Device Name: Tesla C1060
Compute Capability: 1.3
Number of Multiprocessors: 30
Max Threads per Multiprocessor: 1024
Global Memory (GB): 4.000

Execution Configuration Limits
Max Grid Dims: 65535 x 65535 x 1
Max Block Dims: 512 x 512 x 64
Max Threads per Block: 512

�

In addition to having a greater number of multiprocessors than the C870, the C1060 has a higher
limit on the number of threads per multiprocessor. But perhaps the most important distinction between
these devices is that the C1060 was the first Tesla device with the ability to perform double precision
arithmetic. The execution configuration limits are the same as those on the C870.

The Tesla C2050 is an example of the Fermi generation of devices:

� �

One CUDA device found

Device Number: 0
Device Name: Tesla C2050
Compute Capability: 2.0
Number of Multiprocessors: 14
Max Threads per Multiprocessor: 1536
Global Memory (GB): 2.624

Execution Configuration Limits
Max Grid Dims: 65535 x 65535 x 65535
Max Block Dims: 1024 x 1024 x 64
Max Threads per Block: 1024

�
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Whereas the C2050 has only 14 multiprocessors relative to the 30 of the C1060, the Fermi multiprocessor
design is far more powerful than the previous multiprocessor designs. The maximum number of threads
per multiprocessor has increased from previous generations. The execution configuration limits changed
substantially relative to previous generations of devices. The maximum thread block size increased from
512 to 1024, and three-dimensional arrangements of thread blocks in a grid became possible, greatly
facilitating the decomposition of three-dimensional problems.

The next generation of cards is the Kepler generation of devices, which have a compute capability
of 3.x, such as the Tesla K20:

� �

One CUDA device found

Device Number: 0
Device Name: Tesla K20
Compute Capability: 3.5
Number of Multiprocessors: 13
Max Threads per Multiprocessor: 2048
Global Memory (GB): 4.687

Execution Configuration Limits
Max Grid Dims: 2147483647 x 65535 x 65535
Max Block Dims: 1024 x 1024 x 64
Max Threads per Block: 1024

�

With Kepler, the number of threads per multiprocessor increased again, as did the limit on the number of
blocks that can be launched in the first dimension of the grid. This increased limit arose out of the desire
to launch kernels with large numbers of threads using only one-dimensional thread blocks and grids. On
devices with a compute capability less than 3.0, the largest number of threads that could be launched in
such a fashion is 64 × 10242. For a one-to-one mapping of threads to data elements, this corresponds to
a single-precision array of 256 MB. We could get around this limit by using two-dimensional grids or
having each thread process multiple elements of the array, but such workarounds are no longer needed
on devices of compute capability 3.0 and higher. There are many other features introduced in the Kepler
architecture, which we will address in later in the book. Another Tesla device of the Kepler generation
is the Tesla K10. On a system with a single Tesla K10 we obtain the following:

� �

2 CUDA devices found

Device Number: 0
Device Name: Tesla K10.G1.8GB
Compute Capability: 3.0
Number of Multiprocessors: 8
Max Threads per Multiprocessor: 2048
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Global Memory (GB): 4.000

Execution Configuration Limits
Max Grid Dims: 2147483647 x 65535 x 65535
Max Block Dims: 1024 x 1024 x 64
Max Threads per Block: 1024

Device Number: 1
Device Name: Tesla K10.G1.8GB
Compute Capability: 3.0
Number of Multiprocessors: 8
Max Threads per Multiprocessor: 2048
Global Memory (GB): 4.000

Execution Configuration Limits
Max Grid Dims: 2147483647 x 65535 x 65535
Max Block Dims: 1024 x 1024 x 64
Max Threads per Block: 1024

�

Each Tesla K10 contains two GPUs, each with its own 4 GB of DRAM memory. From the perspective
of the CUDA Fortran programmer, a system with one K10 is no different than having two single-GPU
devices in the system. We address how to program multi-GPU systems such as this in Chapter 4.

Table 1.1 summarizes some of the data from our deviceQuery code.1 With the exception of the
maximum number of thread blocks that can simultaneously reside on a multiprocessor, all of the data
in Table 1.1 was obtained from members of the cudaDeviceProp derived type.

Taking the product of the number of multiprocessors on these devices and the maximum number of
threads per multiprocessor, we see that in all cases the number of concurrent threads on each device can
be in the tens of thousands of threads.

As noted in the table, Tesla devices of compute capability 2.0 and higher have the error-correcting
code (ECC) feature, which can be turned on or off. If it is turned on, the amount of available global
memory will be smaller than the numbers indicated in the table. In such cases, this reduced value will
be reported, as shown in the Tesla C2050 and Tesla K20 output we just looked at. Whether ECC is
enabled or disabled can be queried from the ECCEnabled field of the cudaDeviceProp type.

Although the data in Table 1.1 were obtained from particular Tesla devices, much of the data applies
to other devices with the same compute capability. The only data from Table 1.1 that will vary between
devices of the same compute capability are the amount of global memory and number of multiprocessors
on the device.

By varying the multiprocessor count, a wide range of devices can be made using the same mul-
tiprocessor architecture. A laptop with a GeForce GT 650 M has two multiprocessors of compute
capability 3.0, in contrast to the eight multiprocessors on each of the two GPUs in a Tesla K10. Despite
these differences in processing power, the codes in the previous sections can run on each of these
devices without any alteration. This is part of the benefit of grouping threads into thread blocks in the

1More information on these and other Tesla devices is listed in Appendix A.
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Table 1.1 Characteristics of various Tesla devices.

Tesla C870 Tesla C1060 Tesla C2050 Tesla K10 Tesla K20

Compute capability 1.0 1.3 2.0 3.0 3.5

Number of multiprocessors 16 30 14 2 × 8 13

Max threads per multiprocessor 786 1024 1536 2048 2048

Max thread blocks per multiprocessor 8 8 8 16 16

Max threads per thread block 512 512 1024 1024 1024

Global memory (GB) 1.5 4 3∗ 2 × 4∗ 5∗
∗Enabling ECC reduces available global memory.

programming model. The thread blocks are distributed to the multiprocessors by the scheduler as space
becomes available. Thread blocks are independent, so the order in which they execute does not affect
the outcome. This independence of thread blocks in the programming model allows the scheduling to
be done behind the scenes, so the programmer need only worry about programming for threads within
a thread block.

Regardless of the number of multiprocessors on a device, the number of thread blocks launched by
a kernel can be quite large. Even on a laptop with a GeForce GT 650 M we obtain:

� �

One CUDA device found

Device Number: 0
Device Name: GeForce GT 650M
Compute Capability: 3.0
Number of Multiprocessors: 2
Max Threads per Multiprocessor: 2048
Global Memory (GB): 0.500

Execution Configuration Limits
Max Grid Dims: 2147483647 x 65535 x 65535
Max Block Dims: 1024 x 1024 x 64
Max Threads per Block: 1024

�

We could launch a kernel using a one-dimensional grid of one-dimensional thread blocks with
2147483647 × 1024 threads on the laptop GPU! Once again, the independence of thread blocks allows
the scheduler to assign thread blocks to multiprocessors as space becomes available, all of which is
done without intervention by the programmer.

Before spending the time to implement a full-blown version of the deviceQuery code, please
note that the pgaccelinfo utility included with the PGI compilers provides this information. Sample
output from pgaccelinfo on a system with a single Tesla K20 is as follows:
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� �

CUDA Driver Version: 5000
NVRM version: NVIDIA UNIX x86_64 Kernel Module 304.52
Sun Sep 23 20:28:04 PDT 2012

CUDA Device Number: 0
Device Name: Tesla K20
Device Revision Number: 3.5
Global Memory Size: 5032706048
Number of Multiprocessors: 13
Number of SP Cores: 2496
Number of DP Cores: 832
Concurrent Copy and Execution: Yes
Total Constant Memory: 65536
Total Shared Memory per Block: 49152
Registers per Block: 65536
Warp Size: 32
Maximum Threads per Block: 1024
Maximum Block Dimensions: 1024, 1024, 64
Maximum Grid Dimensions: 2147483647 x 65535 x 65535
Maximum Memory Pitch: 2147483647B
Texture Alignment: 512B
Clock Rate: 705 MHz
Execution Timeout: No
Integrated Device: No
Can Map Host Memory: Yes
Compute Mode: default
Concurrent Kernels: Yes
ECC Enabled: Yes
Memory Clock Rate: 2600 MHz
Memory Bus Width: 320 bits
L2 Cache Size: 1310720 bytes
Max Threads Per SMP: 2048
Async Engines: 2
Unified Addressing: Yes
Initialization time: 44466 microseconds
Current free memory: 4951891968
Upload time (4MB): 1715 microseconds ( 962 ms pinned)
Download time: 3094 microseconds ( 877 ms pinned)
Upload bandwidth: 2445 MB/sec (4359 MB/sec pinned)
Download bandwidth: 1355 MB/sec (4782 MB/sec pinned)
PGI Compiler Option: -ta=nvidia ,cc35

�

The output for the PGI Compiler Option field on the last line of output relates to the flags
used in the PGI Accelerator interface to CUDA. We explore compiler options for CUDA Fortran in
Section 1.6.
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Table 1.2 Single- and double-precision resources on various Tesla devices.

Compute capability 1.0 1.3 2.0 3.0 3.5

Representative device Tesla C870 Tesla C1060 Tesla C2050 Tesla K10 Tesla K20

Number of multiprocessors 16 30 14 2 × 8 13

Single-precision cores per multiprocessor 8 8 32 192 192

Total single-precision cores 128 240 448 2 × 1536 2496

Double-precision cores per multiprocessor - 1 16∗ 8 64

Total double-precision cores - 30 224∗ 2 × 64 832

Max threads per multiprocessor 786 1024 1536 2048 2048
∗GeForce GPUs have fewer double-precision units.

1.4.1 Single and double precision
The thread processors in a multiprocessor are capable of performing single-precision floating-point
arithmetic, whereas double-precision floating-point arithmetic is performed in separate double-precision
cores contained within the multiprocessor. The numbers of single- and double-precision cores per
multiprocessor and per device are summarized in Table 1.2.

As we mentioned, devices with a compute capability of 1.3, e.g., the Tesla C1060, were the first
to support double precision. In general, both single- and double-precision resources have significantly
increased with each generation of cards. The one exception to this is the double-precision capability on
the Tesla K10. The Tesla K10, which has a much higher core clock than the K20, was designed to excel
at single-precision performance. For double-precision performance, the Tesla K20 is the appropriate
Kepler device.

We included the maximum number of threads per multiprocessor in the last row of Table 1.2 to
illustrate that the number of resident threads can far exceed the computational resources on a mul-
tiprocessor in every case by more than a factor of 10. This is by design. Because context switching
between GPU threads is so efficient and latencies to global memory are large, we want to oversubscribe
a multiprocessor with threads to hide the large latencies to global memory.

1.4.1.1 Accommodating variable precision
It is often desirable to develop code using single-precision variables on a small problem size and then
deploy the code on a larger problem size using double precision. Fortran 90’s kind type parameters
allow us to accommodate switching between single and double precision quite easily. All we have to
do is to define a module with the selected kind:

module precision_m
integer , parameter :: singlePrecision = kind (0.0)
integer , parameter :: doublePrecision = kind (0.0d0)



22 CHAPTER 1 Introduction

! Comment out one of the lines below
integer , parameter :: fp_kind = singlePrecision
!integer , parameter :: fp_kind = doublePrecision

end module precision_m

and then use this module and the parameter fp_kind when declaring floating-point variables in code:

use precision_m
real(fp_kind), device :: a_d(n)

This allows us to toggle between the two precisions simply by changing the fp_kind definition in the
precision module. (We may have to write some generic interfaces to accommodate library calls such as
the NVIDIA CUDA® Fast Fourier Transform, or CUFFT, routines.)

Another option for toggling between single and double precision that doesn’t involve modifying
source code is through use of the preprocessor, where the precision module can be modified as:

module precision_m
integer , parameter :: singlePrecision = kind (0.0)
integer , parameter :: doublePrecision = kind (0.0d0)

#ifdef DOUBLE
integer , parameter :: fp_kind = doublePrecision

#else
integer , parameter :: fp_kind = singlePrecision

#endif
end module precision_m

Here we can compile for double precision by compiling the precision module with the compiler options
-Mpreprocess -DDOUBLE or, if the .CUF file extension is used, compiling with -DDOUBLE.

We make extensive use of the precision module throughout this book for several reasons. The first
is that it allows readers to use the example codes on whatever card they have available. It allows us to
easily assess the performance characteristics of the two precisions on various codes. And finally, it is a
good practice in terms of code reuse.

This technique can be extended to facilitate mixed-precision code. For example, in a code simulating
reacting flow, we may want to experiment with different precisions for the flow variables and chemical
species. To do so, we can declare variables in the code as follows:

real(flow_kind), device :: u(nx,ny,nz), v(nx,ny,nz), w(nx,ny,nz)
real(chemistry_kind), device :: q(nx,ny,nz,nspecies)



1.5 Error handling 23

where flow_kind and chemistry_kind are declared as either single or double precision in the
precision_m module.

In using this programming style, we should also define floating-point literals using a specified kind—
for example:

real(fp_kind), parameter :: factorOfTwo = 2.0 _fp_kind

1.5 Error handling
The return values for the host CUDA functions in the device query example, as well as all host CUDA
API functions, can be used to check for errors that occurred during their execution. To illustrate such error
handling, the successful execution of cudaGetDeviceCount() of line 10 in the deviceQuery
example in Section 1.4 can be checked as follows:

ierr = cudaGetDeviceCount(nDevices)
if (ierr/= cudaSuccess) write (*,*) cudaGetErrorString(ierr)

The variable cudaSuccess is defined in the cudafor module that is used in this code. If there is an
error, then the function cudaGetErrorString() is used to return a character string describing the
error, as opposed to just listing the numeric error code. One error that can occur in this case is when the
code is run on a machine without any CUDA-capable devices. Without a device to run on, the command
cannot execute and an error is returned, without modifying the contents of nDevices. It is for this
reason that nDevices is initialized to 0 when it is declared on line 6.

Error handling of kernels is a bit more complicated, since kernels are subroutines and therefore do
not have a return value, and since kernels execute asynchronously with respect to the host. To aid in error
checking kernel execution as well as other asynchronous operations, the CUDA runtime maintains an
error variable that is overwritten each time an error occurs. The functioncudaPeekAtLastError()
returns the value of this variable, and the function cudaGetLastError() returns the value of the
variable and resets it to cudaSuccess. Error checking for kernel execution can be done using the
following approach:

call increment <<<1,n>>>(a_d , b)
ierrSync = cudaGetLastError ()
ierrAsync = cudaDeviceSynchronize ()
if (ierrSync /= cudaSuccess) &

write (*,*) ’Sync kernel error:’, cudaGetErrorString(ierrSync)
if (ierrAsync /= cudaSuccess) &

write (*,*) ’Async kernel error:’, cudaGetErrorString(ierrAsync)
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which checks for both synchronous and asynchronous errors. Invalid execution configuration parame-
ters, e.g., too many threads per thread block, would be reflected in the value of ierrSync returned by
cudaGetLastError(). Asynchronous errors, which occur on the device after control is returned to
the host, require a synchronization mechanism, such as cudaDeviceSynchronize() that blocks
the host thread until all previously issued commands on the device, such as the kernel launch, have com-
pleted. Any such errors will be reflected by the return value of cudaDeviceSynchronize(). We
could also check for asynchronous errors and reset the variable that the runtime maintains by modifying
the last line as follows:

call increment <<<1,n>>>(a_d , b)
ierrSync = cudaGetLastError ()
ierrAsync = cudaDeviceSynchronize ()
if (ierrSync /= cudaSuccess) &

write (*,*) ’Sync kernel error:’, cudaGetErrorString(ierrSync)
if (ierrAsync /= cudaSuccess) write (*,*) ’Async kernel error:’, &

cudaGetErrorString(cudaGetLastError ())

1.6 Compiling CUDA Fortran code
CUDA Fortran codes are compiled using the PGI Fortran compiler. Files with the .cuf or .CUF
extension have CUDA Fortran enabled automatically, and the compiler option -Mcuda can be used in
compiling files with other extensions to enable CUDA Fortran. In addition, because the standard PGI
Fortran compiler is used, all of the features used in CPU code, such as OpenMP and SSE vectorizing
features, are available for host code. Compilation of CUDA Fortran code can be as simple as issuing
the command:

� �

pgf90 increment.cuf
�

Behind the scenes, a multistep process takes place. The device source code is compiled into a intermedi-
ate representation called Parallel Thread eXecution (PTX). This forward-compatible PTX representation
is then further compiled to executable code for different compute capabilities. The host code is compiled
by the host compiler.

We can see which compute capabilities are being targeted by using the-Mcuda=ptxinfo compiler
option. Compiling our increment example with this option generates the following output:

� �

% pgf90 -Mcuda=ptxinfo increment.cuf
ptxas info : Compiling entry function ’increment ’ for ’sm_10 ’
ptxas info : Used 4 registers , 24+16 bytes smem
ptxas info : Compiling entry function ’increment ’ for ’sm_20 ’
ptxas info : Function properties for increment

0 bytes stack frame , 0 bytes spill stores , 0 bytes spill loads
ptxas info : Used 6 registers , 56 bytes cmem [0]
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ptxas info : Compiling entry function ’increment ’ for ’sm_30 ’
ptxas info : Function properties for increment

0 bytes stack frame , 0 bytes spill stores , 0 bytes spill loads
ptxas info : Used 8 registers , 344 bytes cmem [0]

�

The output from compilation with -Mcuda=ptxinfo contains much useful information about the
compilation of binary code from PTX, such as the number of registers and the amount of different types
of memory utilized by the kernel, but for now let’s focus on the compute capabilities that are targeted.
This output indicates that binary code is generated for three compute capabilities: 1.0, 2.0, and 3.0
(denoted here by sm_10, sm_20, and sm_30). Recall that the first number in the compute capability
refers to the generation of the device architecture, and the second number refers to the revision within
that generation. Binary device code is compatible with any device of the same generation that has an
equal or greater revision than the revision targeted by compilation. As such, this application will run on
all CUDA devices of compute capabilities 1.X, 2.X, and 3.X. At runtime, the host code will select the
most appropriate code to load and execute.

If we change our increment code so that the array is a double-precision floating-point array rather
than an integer array, we get:

� �

% pgf90 -Mcuda=ptxinfo incDP.cuf
ptxas info : Compiling entry function ’increment ’ for ’sm_13 ’
ptxas info : Used 5 registers , 24+16 bytes smem
ptxas info : Compiling entry function ’increment ’ for ’sm_20 ’
ptxas info : Function properties for increment

0 bytes stack frame , 0 bytes spill stores , 0 bytes spill loads
ptxas info : Used 8 registers , 56 bytes cmem [0]
ptxas info : Compiling entry function ’increment ’ for ’sm_30 ’
ptxas info : Function properties for increment

0 bytes stack frame , 0 bytes spill stores , 0 bytes spill loads
ptxas info : Used 8 registers , 344 bytes cmem [0]

�

The CUDA Fortran compiler keeps track of any compute-capability-specific features in the program,
such as double-precision arithmetic, and will generate code for the lowest version of device within each
generation that is legal. Since double precision was first supported in devices of compute capability
1.3, the compiler generates code for compute capabilities 1.3, 2.0, and 3.0, and hence the resulting
application will run on any device that supports double precision.

In addition to containing binary code for various compute capabilities, the executable also contains
PTX code. Because new compute capabilities contain new features, different versions of PTX correspond
to the different compute capabilities. The version of PTX included in the executable corresponds to the
highest targeted compute capability, which, in our example, would correspond to a compute capability
of 3.0. This embedded PTX code can be just-in-time compiled to generate binary code for compute
capabilities equal to or greater than the corresponding PTX version. So, although device binary code is
compatible with devices of newer revisions of the same generation, PTX can generate code for devices
of newer generations (as well as devices of equal or newer revisions of the same generation). In our
example, the executable will run correctly on devices of compute capability 4.0 and higher when they
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become available, because device code will be generated from the embedded PTX. By default, the
application will always use compatible binary code if available rather than just-in-time compile PTX,
although we can force compilation of PTX through environment variables (see Section B.1.3).

The default mechanism described here for generating device binary code guarantees compatibility
of CUDA Fortran applications with all appropriate devices, but there are occasions on which we would
like to target a particular compute capability. The size of the resulting fat binary may be an issue. And
although binary code for compute capability 3.0 will run on a device of compute capability 3.5, it might
not achieve the same performance as binary code created for a compute capability of 3.5. We can target
a compute capability of X.Y with the compiler option -Mcuda=ccXY. For example, we can compile
our code with:

� �

% pgf90 -Mcuda=cc20 ,ptxinfo increment.cuf
ptxas info : Compiling entry function ’increment ’ for ’sm_20 ’
ptxas info : Function properties for increment

0 bytes stack frame , 0 bytes spill stores , 0 bytes spill loads
ptxas info : Used 6 registers , 56 bytes cmem [0]

�

The resultant executable will run on any device of compute capability 2.X using the binary code and
in addition will run correctly on a machine with a device of compute capability 3.X due to just-in-
time compilation of PTX code. We can also target architectures using the name of the generation. For
example, compiling with -Mcuda=fermi is equivalent to -Mcuda=cc20.

Aside from generating PTX information and targeting specific device architectures, there are many
other arguments to the -Mcuda compiler option. A list of such arguments can be generated with pgf90
-Mcuda -help. The output of this command includes:

� �

emu Enable emulation mode
tesla Compile for Tesla architecture
cc1x Compile for compute capability 1.x
fermi Compile for Fermi architecture
cc2x Compile for compute capability 2.x
kepler Compile for Kepler architecture
cc3x Compile for compute capability 3.x
cuda4 .0 Use CUDA 4.0 Toolkit compatibility
cuda4 .1 Use CUDA 4.1 Toolkit compatibility
cuda4 .2 Use CUDA 4.2 Toolkit compatibility
cuda5 .0 Use CUDA 5.0 Toolkit compatibility
fastmath Use fast math library
[no]flushz Enable flush -to-zero mode on the GPU
keepgpu Keep kernel source files
keepbin Keep CUDA binary files
keepptx Keep PTX portable assembly files
maxregcount:<n> Set maximum number of registers to use on the GPU
nofma Don’t generate fused mul -add instructions
ptxinfo Print informational messages from PTXAS
[no]rdc Generate relocatable device code

�
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In addition to specifying the compute architecture, we can compile CUDA code to run on the host
CPU using the-Mcuda=emu option. This allows us to develop CUDA Fortran code on a system without
a CUDA-enabled device and use a host debugger in kernel code. However, the execution in emulation
mode is very different in that typically a single thread block executes at a time, so race conditions may
not be exposed in emulation.

CUDA Fortran ships with several versions of the CUDA Toolkit libraries. The available CUDA
libraries can be determined from the pgf90 -Mcuda -help output. The default version is typically
the second most recent version—in this case, the CUDA 4.2 Toolkit libraries.

CUDA has a set of fast but less accurate intrinsics for single-precision functions such as sin() and
cos(), which can be enabled by -Mcuda=fastmath. The option -Mcuda=maxregcount:N can
be used to limit the number of registers used per thread to N. The keepgpu, keepbin, and keepptx
options dump the kernel source, CUDA binary, and PTX, respectively, to files in the local directory.

Though not CUDA specific, other compiler options are the -v and -V. Compiling with the -v option
provides verbose output of the compilation and linking steps. The -V option can be used to verify the
version of the PGI compiler or to select the compiler version from among those installed on the machine
given the appropriate argument, e.g., -V12.10 for the 12.10 version of the PGI compilers.

1.6.1 Separate compilation
CUDA Fortran has always allowed host code to launch kernels that are defined in multiple modules,
whether these modules are in the same or different files. The host code needs to simply use each of
the modules that contain kernels that are launched.

Likewise, sharing device data between modules is relatively straightforward and available on GPUs
of any compute capability. For example, if the file b.cuf contains a simple module b_m containing
the device data b_d:

1 module b_m
2 integer , device :: b_d
3 end module b_m

and the file a.cuf contains the module a_m with a kernel that uses (in the Fortran 90 sense) module
b_m:

1 module a_m
2 integer , device :: a_d
3 contains
4 attributes(global) subroutine aPlusB ()
5 use b_m
6 implicit none
7 a_d = a_d + b_d
8 end subroutine aPlusB
9 end module a_m
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which is in turn used by the host code aPlusB.cuf:

1 program twoPlusThree
2 use a_m
3 use b_m
4 implicit none
5 integer :: a
6
7 a_d = 2
8 b_d = 3
9 call aPlusB <<<1,1>>>()

10 a = a_d
11 write(*,"(’2+3=’,i0)") a
12 end program twoPlusThree

then the entire application can be compiled and run with the following sequence of commands:

� �

% pgf90 -c b.cuf
% pgf90 -c a.cuf
% pgf90 aPlusB.cuf a.o b.o
aPlusB.cuf:
% ./a.out
2+3=5

�

Sharing device data across modules is straightforward, but using device routines across modules
became available as of the 13.3 compilers. This aspect of separate compilation is only possible on
devices with compute capabilities of 2.0 or higher and requires the 5.0 or higher version of the CUDA
Toolkit. To illustrate using device code across modules, we use the following example. The file d.cuf
defines the module d_m, which contains the device data d_d as well as the routine negateD():

1 module d_m
2 integer , device :: d_d
3 contains
4 attributes(device) subroutine negateD ()
5 d_d = -d_d
6 end subroutine negateD
7 end module d_m

Routines declared withattributes(device) are something we haven’t seen before. Such routines
are executed on the device, similar to kernels, but are called from device code (kernels and other
attributes(device) code) rather than host code, such as in the kernel cMinusD() on line 7 of
the file c.cuf:
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1 module c_m
2 integer , device :: c_d
3 contains
4 attributes(global) subroutine cMinusD ()
5 use d_m
6 implicit none
7 call negateD ()
8 c_d = c_d + d_d
9 end subroutine cMinusD

10 end module c_m

Note that no execution configuration is provided when calling the routine negateD(), as is done
when launching a kernel. It is called in the same manner as any Fortran 90 subroutine or function.
We do not launch a kernel when calling an attributes(device) function, because the function
is executed by existing device threads when the call is encountered. We should point out that all the
predefined variables (threadIdx, blockIdx, blockDim, and gridDim) available in kernels are
also available in code declared with attributes(device), which we don’t use in this simple code
executed by a single device thread. The host code in this example is:

1 program twoMinusThree
2 use c_m
3 use d_m
4 implicit none
5 integer :: c
6
7 c_d = 2
8 d_d = 3
9 call cMinusD <<<1,1>>>()

10 c = c_d
11 write(*,"(’2-3=’,i0)") c
12 end program twoMinusThree

If we try to compile the files d.cuf and c.cuf as we did b.cuf and a.cuf in the previous code,
we obtain the following error:

� �

% pgf90 -c d.cuf
% pgf90 -c c.cuf
PGF90 -S-0155 - Illegal call of a device routine from another module
- negated (c.cuf: 7)

0 inform , 0 warnings , 1 severes , 0 fatal for cminusd
�

To make device routines accessible across modules, we need to use the -Mcuda=rdc, or relocatable
device code, option for both the compilation and linking stages:
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� �

% pgf90 -Mcuda=rdc -c d.cuf
% pgf90 -Mcuda=rdc -c c.cuf
% pgf90 -Mcuda=rdc cMinusD.cuf c.o d.o
cMinusD.cuf:
% ./a.out
2-3=-1

�

When using the option -Mcuda=rdc one does not have to explicitly specify a compute capability
greater than 2.0 or the CUDA 5 Toolkit, the CUDA Fortran compiler is aware of the architecture and
toolkit version required for features such as these and implicitly includes the necessary options. Using
the -Mcuda=ptxinfo option indicates that compute capabilities 2.0 and 3.0 are targeted by default
when compiling with -Mcuda=rdc:

� �

$ pgf90 -Mcuda=rdc ,ptxinfo -c c.cuf
ptxas info : 16 bytes gmem , 8 bytes cmem [14]
ptxas info : Compiling entry function ’c_m_cminusd_ ’ for ’sm_20 ’
ptxas info : Function properties for c_m_cminusd_

0 bytes stack frame , 0 bytes spill stores , 0 bytes spill loads
ptxas info : Used 8 registers , 32 bytes cmem [0]
ptxas info : 16 bytes gmem
ptxas info : Compiling entry function ’c_m_cminusd_ ’ for ’sm_30 ’
ptxas info : Function properties for c_m_cminusd_

0 bytes stack frame , 0 bytes spill stores , 0 bytes spill loads
ptxas info : Used 8 registers , 320 bytes cmem [0]

�
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A prerequisite to performance optimization is a means to accurately time portions of a code and sub-
sequently describe how to use such timing information to assess code performance. In this chapter we
first discuss how to time kernel execution using CPU timers, CUDA events, and the Command Line
Profiler as well as the nvprof profiling tool. We then discuss how timing information can be used
to determine the limiting factor of kernel execution. Finally, we discuss how to calculate performance
metrics, especially those related to bandwidth, and how such metrics should be interpreted.

2.1 Measuring kernel execution time
There are several ways to measure kernel execution time. We can use traditional CPU timers, but in doing
so we must be careful to ensure correct synchronization between host and device for such measurements
to be accurate. The CUDA event API routines, which are called from host code, can be used to calculate
kernel execution time using the device clock. Finally, we discuss how the Command Line Profiler and
the nvprof profiling tool can be used to give this timing information.
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2.1.1 Host-device synchronization and CPU timers
Care must be taken in timing GPU routines using traditional CPU timers. From the host perspective,
kernel execution as well as many CUDA Fortran API functions are nonblocking or asynchronous: They
return control back to the calling CPU thread prior to completing their work on the GPU. For example,
consider the following code segment:

1 a_d = a
2 call increment <<<1,n>>>(a_d , b)
3 a = a_d

Once the increment kernel is launched in line 2, control returns to the CPU. By contrast, the data
transfers before and after the kernel launch are synchronous or blocking. Such data transfers do not
begin until all previously issued CUDA calls have completed, and subsequent CUDA calls will not begin
until the transfer has completed.1 Since the kernel execution is asynchronous with respect to the host
thread, using a CPU timer before and after the call statement would simply record the kernel launch. To
accurately time the kernel execution with host code timers, we need to explicitly synchronize the CPU
thread using cudaDeviceSynchronize():

1 a_d = a
2 t1 = myCPUTimer ()
3 call increment <<<1,n>>>(a_d , b)
4 istat = cudaDeviceSynchronize ()
5 t2 = myCPUTimer ()
6 a = a_d

The function cudaDeviceSynchronize() blocks the calling host thread until all CUDA calls
previously issued by the host thread are completed, which is required for correct measurement of
increment. It is a best practice to call cudaDeviceSynchronize() before any timing call.
For example, inserting a cudaDeviceSynchronize() before line 2 would be well advised, even
though not required, because we might change the transfer at line 1 to an asynchronous transfer and
forget to add the synchronization call.

An alternative to using the function cudaDeviceSynchronize() is to set the environment
variable CUDA_LAUNCH_BLOCKING to 1, which turns kernel invocations into synchronous function
calls. However, this would apply to all kernel launches of a program and would therefore serialize any
CPU code with kernel execution.

2.1.2 Timing via CUDA events
One problem with host-device synchronization points such as those produced by the function
cudaDeviceSynchronize() and the environment variable CUDA_LAUNCH_BLOCKING is that

1Note that asynchronous versions of data transfers are available using the cudaMemcpy*Async() routines, which are
discussed in Section 3.1.3.
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they stall the GPU’s processing pipeline. Unfortunately, such synchronization points are required using
CPU timers. Luckily, CUDA offers a relatively lightweight alternative to using CPU timers via the
CUDA event API. The CUDA event API provides calls that create and destroy events, record events
(via a GPU timestamp), and convert timestamp differences into a floating-point value in units of
milliseconds.

CUDA events make use of the concept of CUDA streams, about which we should say a few words
before we discuss CUDA event code. A CUDA stream is simply a sequence of operations that are
performed in order on the device. Operations in different streams can be interleaved and in some cases
overlapped—a property that can be used to hide data transfers between the host and the device, which
we discuss in detail later. Up to now, all operations on the GPU have occurred in the default stream, or
stream 0.

Typical use of the event API is shown here:

1 type(cudaEvent) :: startEvent , stopEvent
2 real :: time
3 integer :: istat
4
5 istat = cudaEventCreate(startEvent)
6 istat = cudaEventCreate(stopEvent)
7
8 a_d = a
9 istat = cudaEventRecord(startEvent , 0)

10 call increment <<<1,n>>>(a_d , b)
11 istat = cudaEventRecord(stopEvent , 0)
12 istat = cudaEventSynchronize(stopEvent)
13 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
14 a = a_d
15
16 if (any (a/= 4)) then
17 write (*,*) ’**** Program Failed ****’
18 else
19 write (*,*) ’ Time for kernel execution (ms): ’, time
20 endif
21
22 istat = cudaEventDestroy(startEvent)
23 istat = cudaEventDestroy(stopEvent)

CUDA events are of type cudaEvent and are created and destroyed with cudaEventCreate()
and cudaEventDestroy(). In this code, cudaEventRecord() is used to place the start and
stop events into the default stream, stream 0. The device will record a timestamp for the event when it
reaches that event in the stream. The cudaEventElapsedTime() function returns the time elapsed
between the recording of the start and stop events on the GPU. This value is expressed in milliseconds
and has a resolution of approximately half a microsecond. Because cudaEventRecord() is non-
blocking, we require a synchronization before the call to cudaEventElapsedTime() to ensure
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that stopEvent has been recorded, which is the reason for the cudaEventSynchronize() call
on line 12. cudaEventSynchronize() blocks CPU execution until the specified event has been
recorded on the GPU.

For very simple kernels (such as our increment example), there can be some inaccuracy in timing
using CUDA events resulting from CPU-side jitter. In such cases the more accurate results can be
obtained from CUDA events by simply adding a no-op kernel just before the first CUDA event call so
that the cudaEventRecord() and subsequent kernel call will be queued up on the GPU.

2.1.3 Command Line Profiler
Timing information can also be obtained from the Command Line Profiler. This approach does not
require instrumentation of code, as needed with CUDA events. It doesn’t even require recompilation
of the source code with special flags. Profiling can be enabled by setting the environment variable
COMPUTE_PROFILE to 1, as is done when profiling in CUDA C code. Several other environment
variables control what is being profiled and where the output is directed. A discussion of these envi-
ronment variables is included in Section B.1.2, but for now we discuss the output of the simple case
where only COMPUTE_PROFILE is set to 1. The output from the Command Line Profiler is sent to
the file cuda_profile_0.log by default; it contains basic information, such as the method name,
the GPU and CPU execution times, and the occupancy for kernel executions. For example, here is the
profiler output for the multidimensional array increment code in Section 1.3.3:

� �

# CUDA_PROFILE_LOG_VERSION 2.0
# CUDA_DEVICE 0 Tesla K20
# CUDA_CONTEXT 1
# TIMESTAMPFACTOR fffff693dc2e2f28
method ,gputime ,cputime ,occupancy
method =[ memcpyHtoD] gputime =[382.304] cputime =[712.000]
method =[ memcpyHtoD] gputime =[1.632] cputime =[8.000]
method =[ increment] gputime =[153.472] cputime =[24.000]

occupancy =[1.000]
method =[ memcpyDtoH] gputime =[433.504] cputime =[1787.000]

�

The first four lines of output contain header information, including the device number and name on
which the code is executed. The fifth line indicates the fields that are displayed below for each executed
method. By default these are the name of the method being executed, the time in microseconds as reported
by the GPU, the time in microseconds as reported by the CPU, and the occupancy, which is reported
only for kernel executions. Occupancy is the ratio of actual concurrent threads per multiprocessor
to the maximum possible concurrent threads per multiprocessor. We discuss occupancy in detail in
Section 3.5.1. The following lines display the profiling results for each method. There are two host-to-
device data transfers; the first is for the array transfer, and the second is a transfer of kernel parameters
and arguments that is implicitly performed by the CUDA runtime. These are followed by the kernel
increment launch, which is then followed by the device-to-host data transfer of the resultant array.
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The gputime field in the profiler output is straightforward to interpret—the time in microseconds
as recorded by the GPU—but some care needs to be taken in interpreting thecputime. For nonblocking
methods such as kernels, the value reported by cputime is only the CPU overhead to launch the
method, in which case the wall clock time is cputime + gputime. For blocking methods such as
these data transfers, cputime includes both gputime and the CPU overhead, so it is equivalent to
wall clock time. In addition to launch overhead, the timing of the first called method also includes
overhead associated with device initialization.

Note that the times for the data transfers are larger than the times for the kernel execution. This
is partly because we are using a very simple kernel, but data transfers over the PCIe bus are often a
performance bottleneck. In the following chapter on optimization, we discuss how we can minimize
and hide such transfers.

As mentioned earlier, there are several environment variables in addition to COMPUTE_PROFILE
that determine what is measured and how the output is configured. For a discussion of these, see Section
B.1.2.

2.1.4 The nvprof profiling tool
An alternative to the Command Line Profiler is thenvprof application contained in the CUDA 5 Toolkit
distribution. The Command Line Profiler andnvprof are mutually exclusive, soCOMPUTE_PROFILE
must be set to 0 when we use nvprof. Aside from that caveat, using nvprof is as simple as running
it with your CUDA application command as an argument. Once again using our multidimensional
increment code, we obtain the following output when executing nvprof ./a.out:

� �

======== NVPROF is profiling a.out ...
======== Command: a.out
Program Passed

======== Profiling result:
Time (%) Time Calls Avg Min Max Name
44.56 385.19 us 2 192.59 us 1.31us 383.88 us [CUDA memcpy HtoD]
37.93 327.84 us 1 327.84 us 327.84 us 327.84 us [CUDA memcpy DtoH]
17.51 151.36 us 1 151.36 us 151.36 us 151.36 us increment

�

In this output, all calls to each method are summarized in one line, such as the two host-to-device data
copies. Separate output for each call can be obtained using the --print-gpu-trace option.

Before leaving the discussion of the Command Line Profiler and nvprof, we should mention that
we have discussed these tools in the context of “tracing” execution, meaning collecting timeline data.
We can also use these tools to “profile” execution, meaning collecting hardware counters. A list of
hardware counters we can profile can be obtained from executing nvprof --query-events. The
collection of hardware counters is more intrusive than collecting timeline data, and as a result certain
otherwise concurrent operations may be serialized.

For more information on nvprof or the Command Line Profiler, see the CUDA Profiler Users
Guide, provided with the CUDA 5 Toolkit.
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2.2 Instruction, bandwidth, and latency bound kernels
Now having the ability to time kernel execution, we can talk about how to determine the limiting factor
of a kernel’s execution. There are several ways to do this. One option is to use the profiler’s hardware
counters, but the counters used for such an analysis likely change from generation to generation of
hardware. Instead, in this section we describe a method that is more general in that the same procedure
will work regardless of the generation of the hardware. In fact, this method can be applied to CPU
platforms as well as GPUs. For this method, multiple versions of the kernel are created; they expose
the memory- and math-intensive aspects of the full kernel. Each kernel is timed, and a comparison of
these times can reveal the limiting factor of kernel execution. This process is best understood by going
through an example. The following code contains three kernels:

• A base kernel, which performs the desired overall operation
• A memory kernel, which has the same device memory access patterns as the base kernel but no math

operations
• A math kernel, which performs the math operations of the base kernel without accessing global

memory

1 module kernel_m
2 contains
3 attributes(global) subroutine base(a, b)
4 real :: a(*), b(*)
5 integer :: i
6 i = (blockIdx%x-1)* blockDim%x + threadIdx%x
7 a(i) = sin(b(i))
8 end subroutine base
9

10 attributes(global) subroutine memory(a, b)
11 real :: a(*), b(*)
12 integer :: i
13 i = (blockIdx%x-1)* blockDim%x + threadIdx%x
14 a(i) = b(i)
15 end subroutine memory
16
17 attributes(global) subroutine math(a, b, flag)
18 real :: a(*)
19 real , value :: b
20 integer , value :: flag
21 real :: v
22 integer :: i
23 i = (blockIdx%x-1)* blockDim%x + threadIdx%x
24 v = sin(b)
25 if (v*flag == 1) a(i) = v
26 end subroutine math
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27 end module kernel_m
28
29 program limitingFactor
30 use cudafor
31 use kernel_m
32 implicit none
33 integer , parameter :: n=8*1024*1024 , blockSize = 256
34 real :: a(n)
35 real , device :: a_d(n), b_d(n)
36
37 b_d = 1.0
38 call base <<<n/blockSize ,blockSize >>>(a_d , b_d)
39 call memory <<<n/blockSize ,blockSize >>>(a_d , b_d)
40 call math <<<n/blockSize ,blockSize >>>(a_d , 1.0, 0)
41 a = a_d
42 write (*,*) a(1)
43 end program limitingFactor

For the math kernel, care must be taken to trick the compiler because it can detect and eliminate operations
that don’t contribute to stores in device memory. So, we need to put stores inside conditionals that always
evaluate to false, as is done on line 25 in the preceding code. The conditional should be dependent not
only on a flag passed into the subroutine but also on an intermediate result; otherwise, the compiler
could move the entire operation into the conditional.

If we run this code on a Tesla C2050 while using the Command Line Profiler, we get the following
output for the three kernels:

� �

method =[base] gputime =[850.912] cputime =[5.000] occupancy =[1.000]
method =[ memory] gputime =[625.920] cputime =[6.000] occupancy =[1.000]
method =[math] gputime =[784.384] cputime =[5.000] occupancy =[1.000]

�

Comparing gputime for the various kernels, we observe a fair amount of overlap of math and memory
operations, since the sum of thegputime for the base and memory kernels is greater than thegputime
for the base kernel. But because the math kernel is 92% of the base kernel time and the memory kernel is
73% of the base kernel time, the limiting factor for performance in this case is the math operations. If full
precision is not needed, the math kernel can be sped up by using the fast math intrinsics, which calculate
the sin() function in hardware, simply by recompiling with the -Mcuda=fastmath option. The
result is:

� �

method =[base] gputime =[635.424] cputime =[7.000] occupancy =[1.000]
method =[ memory] gputime =[626.336] cputime =[7.000] occupancy =[1.000]
method =[math] gputime =[261.280] cputime =[7.000] occupancy =[1.000]

�
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As expected, the time for the math kernel goes down considerably and along with it the base kernel
time. The base kernel is now memory bound, because the memory and base kernels run in almost
the same amount of time: The math operations are nearly entirely hidden by memory operations.
At this point further improvement can only come from optimizing device memory accesses, if
possible.

Running this code on a K20 and profiling its execution, we observe a different picture:

� �

method =[base] gputime =[529.568] cputime =[7.000] occupancy =[1.000]
method =[ memory] gputime =[473.792] cputime =[7.000] occupancy =[1.000]
method =[math] gputime =[273.344] cputime =[8.000] occupancy =[1.000]

�

Comparing the Tesla K20 and C2050 profiler output, we see that in addition to the kernels run-
ning faster on the K20, the base kernel is more memory bound on the K20 than on the C2050. We
expect that compiling with the -Mcuda=fastmath option would not increase overall performance,
percentage-wise, as much on the K20 as it does on the C2050, which we observe from the profiler
output:

� �

method =[base] gputime =[481.632] cputime =[7.000] occupancy =[1.000]
method =[ memory] gputime =[474.816] cputime =[6.000] occupancy =[1.000]
method =[math] gputime =[210.624] cputime =[8.000] occupancy =[1.000]

�

Once again, with the -Mcuda=fastmath option, the base kernel is memory bound, and further
improvement can only come from optimizing device memory accesses. Deciding whether or not we can
improve memory accesses motivates the next section on memory bandwidth. But before we jump into
bandwidth metrics, we need to tie up some loose ends regarding this technique of modifying source
code to determine the limiting factor of a kernel. When there is very little overlap of math and memory
operations, a kernel is likely latency bound. This often occurs when the occupancy is low; there simply
are not enough threads on the device at one time for any overlap of operations. The remedy for this
situation can often be a modification to the execution configuration.

The reason for using the profiler for time measurement in this analysis is twofold. The first is that
it requires no instrumentation of the host code. (We have already written two additional kernels, so
this is welcome.) The second is that we want to make sure that the occupancy is the same for all our
kernels. When we remove math operations from a kernel, we likely reduce the number of registers
used (which can be checked using the -Mcuda=ptxinfo flag). If the register usage varies enough,
the occupancy, or fraction of actual to maximum number of threads resident on a multiprocessor, can
change, which will affect runtimes. In our example, the occupancy is everywhere 1.0, but if this is not
the case, we can lower the occupancy by allocating dynamic shared memory in the kernel via a third
argument to the execution configuration. This optional argument is the number of bytes of dynamically
allocated shared memory that are used for each thread block. We talk more about shared memory in
Section 3.3.3, but for now all we need to know is that shared memory can be reserved for a thread
block simply by providing the number of bytes per thread block as a third argument to the execution
configuration.
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2.3 Memory bandwidth
Returning to the example code in Section 2.2, we are left with a memory-bound kernel after using the
fast math intrinsics to reduce time spent on evaluation of sin(). At this stage we ask how well the
memory system is used and whether there is room for improvement. To answer this question, we need
to calculate the memory bandwidth.

Bandwidth—the rate at which data can be transferred—is one of the most important gating factors for
performance. Almost all changes to code should be made in the context of how they affect bandwidth.
Bandwidth can be dramatically affected by the choice of memory in which data are stored, how the data
are laid out, and the order in which they are accessed, as well as other factors.

In evaluating memory efficiency, both the theoretical peak memory bandwidth and the observed or
effective memory bandwidth are used. When a code is memory bound and the effective bandwidth
is much lower than the peak bandwidth, optimization efforts should focus on increasing the effective
bandwidth.

2.3.1 Theoretical peak bandwidth
The theoretical peak memory bandwidth can be calculated from the memory clock and the memory bus
width. Both these quantities can be queried through the device management API, as illustrated in the
following code that calculates the theoretical peak bandwidth for all attached devices:

1 program peakBandwidth
2 use cudafor
3 implicit none
4
5 integer :: i, istat , nDevices =0
6 type (cudaDeviceProp) :: prop
7
8 istat = cudaGetDeviceCount(nDevices)
9 do i = 0, nDevices -1

10 istat = cudaGetDeviceProperties(prop , i)
11 write(*,"(’ Device Number: ’,i0)") i
12 write(*,"(’ Device name: ’,a)") trim(prop%name)
13 write(*,"(’ Memory Clock Rate (KHz): ’, i0)") &
14 prop%memoryClockRate
15 write(*,"(’ Memory Bus Width (bits): ’, i0)") &
16 prop%memoryBusWidth
17 write(*,"(’ Peak Memory Bandwidth (GB/s): ’, f6.2)") &
18 2.0 * prop%memoryClockRate * &
19 (prop%memoryBusWidth / 8) * 1.e-6
20 write (*,*)
21 enddo
22 end program peakBandwidth
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In the peak memory bandwidth calculation, the factor of 2.0 appears due to the double data rate of the
RAM per memory clock cycle, the division by eight converts the bus width from bits to bytes, and the
factor of 1.e-6 handles the kilohertz-to-hertz and byte-to-gigabyte conversions.2

Running this code on a variety of Tesla hardware, we obtain:

� �

Device Number: 0
Device name: Tesla C870
Memory Clock Rate (KHz): 800000
Memory Bus Width (bits): 384
Peak Memory Bandwidth (GB/s): 76.80

�

� �

Device Number: 0
Device name: Tesla C1060
Memory Clock Rate (KHz): 800000
Memory Bus Width (bits): 512
Peak Memory Bandwidth (GB/s): 102.40

�

� �

Device Number: 0
Device name: Tesla C2050
Memory Clock Rate (KHz): 1500000
Memory Bus Width (bits): 384
Peak Memory Bandwidth (GB/s): 144.00

�

� �

Device Number: 0
Device name: Tesla K10.G1.8GB
Memory Clock Rate (KHz): 2500000
Memory Bus Width (bits): 256
Peak Memory Bandwidth (GB/s): 160.00

Device Number: 1
Device name: Tesla K10.G1.8GB
Memory Clock Rate (KHz): 2500000
Memory Bus Width (bits): 256
Peak Memory Bandwidth (GB/s): 160.00

�

2Note that some calculations use 1, 0243 instead of 109 for the byte-to-gigabyte conversion. Whichever factor you use, it is
important to use the same factor in calculating theoretical and effective bandwidth so that the comparison is valid.
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� �

Device Number: 0
Device name: Tesla K20
Memory Clock Rate (KHz): 2600000
Memory Bus Width (bits): 320
Peak Memory Bandwidth (GB/s): 208.00

�

For devices with error-correcting code (ECC) memory, such as the Tesla C2050, K10, and K20, we
need to take into account that when ECC is enabled, the peak bandwidth will be reduced.

2.3.2 Effective bandwidth
Effective bandwidth is calculated by timing specific program activities and by knowing how data are
accessed by the program. To do so, use this equation:

BWEffective = (RB + WB)/109

t
Here, BWEffective is the effective bandwidth in units of GB/s, RB is the number of bytes read per kernel,
WB is the number of bytes written per kernel, and t is the elapsed time given in seconds.

It is helpful to obtain the effective bandwidth for a simple copy kernel, such as the memory()
kernel in the limiting factor code in Section 2.2, on a variety of devices. Table 2.1 lists the best effective
bandwidth obtained from a simple copy kernel among runs using different array sizes and launched
with different execution configurations, with both ECC on and off on devices that support ECC.3 Such
numbers can be used as a more realistic upper limit to memory bandwidth than the theoretical peak
bandwidth.

Returning to the example in Section 2.2, where a read and write are performed for each of the
8 × 10242 elements, the following calculation is used to determine effective bandwidth on the C2050
(with ECC on) for the base method when using the -Mcuda=fastmath option:

BWEffective = (8 × 10242 × 4 × 2)/109

635 × 10−6 = 106 GB/s

The number of elements is multiplied by the size of each element (4 bytes for a float), multiplied by
2 (because of the read and write), divided by 109 to obtain the total GB of memory transferred. The
profiler results for the base kernel give a GPU time of 635 µs, which results in an effective bandwidth
of roughly 106 GB/s. We could compare this result to the theoretical peak bandwidth for the C2050 of
144 GB/s, but this does not account for ECC effects. Instead we use the appropriate number of 107 GB/s
from Table 2.1. As a result, we do not expect to obtain any further substantial speedups for this code on
this device.

To obtain the effective bandwidth for this kernel on the Tesla K20, once again with ECC on, we
simply substitute the profiler time for the base kernel of 481 µs into the preceding formula to obtain a
value of 139 GB/s. Compared to the value of 145 GB/s from Table 2.1, we once again do not expect to
obtain any further substantial speedups for this code on this device.

3A discussion of how to toggle ECC on and off can be found in the nvidia-smi section of Appendix B.
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Table 2.1 Effective bandwidth for a simple copy kernel. Block size and array length were
modified to obtain the best result in each case.

Effective Bandwidth for Copy (GB/s)

Tesla C870 Tesla C1060 Tesla C2050 Tesla K20

ECC off 65 78 119 164

ECC on - - 107 145

2.3.3 Actual data throughput vs. effective bandwidth
It is possible to estimate the data throughput using the profiler counters. We must be cautious in compar-
ing such calculated throughput to values obtained from the effective bandwidth calculation described
in Section 2.3.2. One difference is that the profiler measures transactions using a subset of the GPUs
multiprocessors and then extrapolates that number to the entire GPU, thus reporting an estimate of the
data throughput.

Another distinction to be aware of is whether the counters used represent the actual data throughput or
the requested data throughput. This distinction is important because the minimum memory transaction
size is larger than most word sizes, and as a result the actual data transfer throughput will be equal to or
larger than that of requested data throughput. The effective bandwidth is calculated based on the data
relevant to the algorithm and therefore corresponds to the requested data throughput. Both actual and
requested data throughput values are useful. The actual data throughput shows how close the code is to
reaching the hardware limit, and the comparison of the effective bandwidth with the actual throughput
indicates how much bandwidth is wasted by suboptimal memory access patterns.

The difference between actual data throughput and effective bandwidth is not an issue in the example
codes used thus far, since all the data accesses have been using contiguous data. But when we access
memory in a strided fashion, which we explore in Chapter 3, the values for actual data throughput and
effective bandwidth can diverge.
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In the previous chapter we discussed how we can use timing information to determine the limiting
factor of kernel execution. Many science and engineering codes turn out to be bandwidth bound, which
is why we devote the majority of this relatively long chapter to memory optimization. CUDA-enabled
devices have many different memory types, and to program effectively, we need to use these memory
types efficiently.

Data transfers can be broken down in to two main categories: data transfers between host and device
memories, and data transfers between different memories on the device. We begin our discussion with
optimizing transfers between the host and device. We then discuss the different types of memories
on the device and how they can be used effectively. To illustrate many of these memory optimization
techniques, we then go through an example of optimizing a matrix transpose kernel.

In addition to memory optimization, in this chapter we also discuss factors in deciding how we
should choose execution configurations so that the hardware is efficiently utilized. Finally, we discuss
instruction optimizations.

3.1 Transfers between host and device
The peak bandwidth between device memory and the GPU is much higher (208 GB/s on the NVIDIA
Tesla K20, for example) than the peak bandwidth between host memory and device memory (16 GB/s
on PCIe x16 Gen3, and 8 GB/s on PCIe x16 Gen2). Hence, for best overall application performance,
it is important to minimize data transfers between host and device whenever possible and, when such
transfers are necessary, make sure they are optimized.

When initially writing or porting an application to CUDA Fortran, typically a few critical sections of
code are converted to CUDA Fortran kernels. If these code sections are isolated, they will require data
transfers to and from the host, and overall performance will likely be gated by these data transfers. At
this stage it is helpful to assess performance with and without such transfers. The overall time including
data transfers is an accurate assessment of the current code performance, and the time without such
transfers indicates where performance may be when more of the code is written to run on the device. We
shouldn’t spend time at this point optimizing transfers between the host and device, because as more host
code is converted to kernels, many of these intermediate data transfers will disappear. Of course, there
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will always be some transfers required between the host and device, and we need to make sure these
are performed as efficiently as possible, but optimizing data transfers that will eventually be removed
from the code is not time well spent.

There may be some operations that do not demonstrate any speed-up when run on the device in terms
of execution time. If executing the operation on the host would require extra transfers between the host
and device, it may be advantageous overall to perform the operation on the device.

There are other circumstances in which data transfers between the host and device can be avoided.
Intermediate data structures can be created in device memory, operated on by the device, and destroyed
without ever being mapped by the host or copied to host memory.

Up to this point, we have discussed how to avoid transfers between the host and device whenever
possible. In the remainder of this section we discuss how to efficiently perform necessary transfers
between the host and device. This includes using pinned host memory, batching small transfers together,
and performing data transfers asynchronously.

3.1.1 Pinned memory
When memory is allocated for variables that reside on the host, pageable memory is used by default.
Pageable memory can be swapped out to disk to allow the program to use more memory than is available
in RAM on the host system. When data is transferred between the host and the device, the direct memory
access (DMA) engine on the GPU must target page-locked or pinned host memory. Pinned memory
cannot be swapped out and is therefore always available for such transfers. To accommodate data
transfers from pageable host memory to the GPU, the host operating system first allocates a temporary
pinned host buffer, copies the data to the pinned buffer, and then transfers the data to the device, as
illustrated in Figure 3.1. The pinned memory buffer may be smaller than the pageable memory holding
the host data, in which case the transfer occurs in multiple stages. Pinned memory buffers are similarly

Host

Pageable 
Memory

Pinned 
Buffer

Device

DRAM

Host

Pinned 
Memory

Device

DRAM

Pageable Data Transfer Pinned Data Transfer

FIGURE 3.1

Depiction of host-to-device data transfer from pageable host memory (left) and pinned host memory (right).
For pageable host memory, data is transferred to a temporary pinned memory buffer on the host before being
transferred to the device. By using pinned memory from the outset, as on the right, the extra host data copy
is eliminated.
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used with transfers from the device to the host. The cost of the transfer between pageable memory and
pinned host buffer can be avoided if we declare the host arrays to use pinned memory.

In CUDA Fortran, use of pinned memory is denoted using the pinned variable qualifier, and such
memory must be declared allocatable via the allocatable variable qualifier. It is possible for the
allocate statement to fail to allocate pinned memory, in which case a pageable memory allocation
will be attempted. The following code demonstrates the allocation of pinned memory with error checking
and demonstrates the speed-up we can expect with pinned memory:

1 program BandwidthTest
2
3 use cudafor
4 implicit none
5
6 integer , parameter :: nElements = 4*1024*1024
7
8 ! host arrays
9 real (4) :: a_pageable(nElements), b_pageable(nElements)

10 real(4), allocatable , pinned :: a_pinned (:), b_pinned (:)
11
12 ! device arrays
13 real(4), device :: a_d(nElements)
14
15 ! events for timing
16 type (cudaEvent) :: startEvent , stopEvent
17
18 ! misc
19 type (cudaDeviceProp) :: prop
20 real (4) :: time
21 integer :: istat , i
22 logical :: pinnedFlag
23
24 ! allocate and initialize
25 do i = 1, nElements
26 a_pageable(i) = i
27 end do
28 b_pageable = 0.0
29
30 allocate(a_pinned(nElements), b_pinned(nElements), &
31 STAT=istat , PINNED=pinnedFlag)
32 if (istat /= 0) then
33 write (*,*) ’Allocation of a_pinned/b_pinned failed ’
34 pinnedFlag = .false.
35 else
36 if (.not. pinnedFlag) write (*,*) ’Pinned allocation failed’
37 end if
38
39 if (pinnedFlag) then
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40 a_pinned = a_pageable
41 b_pinned = 0.0
42 endif
43
44 istat = cudaEventCreate(startEvent)
45 istat = cudaEventCreate(stopEvent)
46
47 ! output device info and transfer size
48 istat = cudaGetDeviceProperties(prop , 0)
49
50 write (*,*)
51 write (*,*) ’Device: ’, trim(prop%name)
52 write (*,*) ’Transfer size (MB): ’, 4* nElements /1024./1024.
53
54 ! pageable data transfers
55 write (*,*)
56 write (*,*) ’Pageable transfers ’
57
58 istat = cudaEventRecord(startEvent , 0)
59 a_d = a_pageable
60 istat = cudaEventRecord(stopEvent , 0)
61 istat = cudaEventSynchronize(stopEvent)
62
63 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
64 write (*,*) ’ Host to Device bandwidth (GB/s): ’, &
65 nElements *4/ time /1.e+6
66
67 istat = cudaEventRecord(startEvent , 0)
68 b_pageable = a_d
69 istat = cudaEventRecord(stopEvent , 0)
70 istat = cudaEventSynchronize(stopEvent)
71
72 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
73 write (*,*) ’ Device to Host bandwidth (GB/s): ’, &
74 nElements *4/ time /1.e+6
75
76 if (any(a_pageable /= b_pageable )) &
77 write (*,*) ’*** Pageable transfers failed ***’
78
79 ! pinned data transfers
80 if (pinnedFlag) then
81 write (*,*)
82 write (*,*) ’Pinned transfers ’
83
84 istat = cudaEventRecord(startEvent , 0)
85 a_d = a_pinned
86 istat = cudaEventRecord(stopEvent , 0)
87 istat = cudaEventSynchronize(stopEvent)
88
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89 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
90 write (*,*) ’ Host to Device bandwidth (GB/s): ’, &
91 nElements *4/ time /1.e+6
92
93 istat = cudaEventRecord(startEvent , 0)
94 b_pinned = a_d
95 istat = cudaEventRecord(stopEvent , 0)
96 istat = cudaEventSynchronize(stopEvent)
97
98 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
99 write (*,*) ’ Device to Host bandwidth (GB/s): ’, &

100 nElements *4/ time /1.e+6
101
102 if (any(a_pinned /= b_pinned )) &
103 write (*,*) ’*** Pinned transfers failed ***’
104 end if
105
106 write (*,*)
107
108 ! cleanup
109 if (allocated(a_pinned )) deallocate(a_pinned)
110 if (allocated(b_pinned )) deallocate(b_pinned)
111 istat = cudaEventDestroy(startEvent)
112 istat = cudaEventDestroy(stopEvent)
113
114 end program BandwidthTest

The allocation of pinned memory is performed on line 30 with the optional keyword arguments for
STAT and PINNED, which can be checked to see if any allocation was made and if so, whether the
allocation resulted in pinned memory, as is done on lines 32–37.

The data transfer rate can depend on the type of host system as well as the GPU. For example, on an
Intel Xeon E5540 system with a Tesla K20, the code results in:

� �

Device: Tesla K20
Transfer size (MB): 16.00000

Pageable transfers
Host to Device bandwidth (GB/s): 1.659565
Device to Host bandwidth (GB/s): 1.593377

Pinned transfers
Host to Device bandwidth (GB/s): 5.745055
Device to Host bandwidth (GB/s): 6.566322

�
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whereas on an Intel Xeon E5-2667 system, also with a Tesla K20, we have:

� �

Device: Tesla K20m
Transfer size (MB): 16.00000

Pageable transfers
Host to Device bandwidth (GB/s): 3.251782
Device to Host bandwidth (GB/s): 3.301395

Pinned transfers
Host to Device bandwidth (GB/s): 6.213710
Device to Host bandwidth (GB/s): 6.608200

�

The transfer rates for the pinned data transfers between these two systems are similar. However, the
transfer rates for pageable data transfers between host and device are greatly affected by the host system
due to the implicit host-side copy from pageable memory to the pinned buffer.

We can verify whether pinned host memory was used in a transfer between host and device from
the Command Line Profiler by specifying the option memtransferhostmemtype in the profiler
configuration file. For example, profiling our BandwidthTest code results in:

� �

# CUDA_PROFILE_LOG_VERSION 2.0
# CUDA_DEVICE 0 Tesla K20
# CUDA_CONTEXT 1
# TIMESTAMPFACTOR fffff69b0066e8b8
method ,gputime ,cputime ,occupancy ,memtransferhostmemtype
method =[ memcpyHtoD ] gputime =[ 9018.912 ] cputime =[ 9937.000 ]

memtransferhostmemtype =[ 0 ]
method =[ memcpyDtoH ] gputime =[ 9216.160 ] cputime =[ 10160.000 ]

memtransferhostmemtype =[ 0 ]
method =[ memcpyHtoD ] gputime =[ 2786.464 ] cputime =[ 3127.991 ]

memtransferhostmemtype =[ 1 ]
method =[ memcpyDtoH ] gputime =[ 2501.312 ] cputime =[ 2555.000 ]

memtransferhostmemtype =[ 1 ]
�

where a value of 0 for memtransferhostmemtype indicates pageable memory and a value of 1
indicates pinned memory.

Pinned memory should not be overused, since excessive use can reduce overall system performance.
How much is too much is difficult to tell in advance, so, as with all optimizations, test the applications
and the systems they run on for optimal performance parameters.

3.1.2 Batching small data transfers
An overhead is associated with every data transfer between host and device, whether using pageable
or pinned memory. The impact of this overhead on overall transfer rate can be large for small data
transfers, and as a result we can gain efficiency by batching small transfers together.
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We can gain an understanding of how to batch multiple data transfers together by running the code
in Section 3.1.1 for various array sizes. Figures 3.2 and 3.3 show the transfer rates for pageable and
pinned data transfers on the two systems in Section 3.1.1 for transfer sizes ranging from a few kilobytes
to nearly a gigabyte. If we are performing multiple transfers of a size that is on the steep part of these
curves, then batching these individual transfers together may provide substantial reduction in overall
transfer time.

3.1.2.1 Explicit transfers using cudaMemcpy()
CUDA Fortran may break up implicit data transfers via assignment statements into several transfers.
The chance of this happening has been greatly reduced with recent compiler versions, but it may still
occur. (We can determine the number of transfers from a single assignment statement by using the
Command Line Profiler.) To avoid this, we can explicitly specify a single transfer of contiguous data
via the cudaMemcpy() function. We could, for example, replace the implicit data transfer on line 59
in the code above with:

istat = cudaMemcpy(a_d , a_pageable , nElements)

FIGURE 3.2

Host-to-device and device-to-host bandwidth for pageable and pinned memory versus transfer size on an
Intel Xeon E5440 system with a Tesla K20.
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FIGURE 3.3

Host-to-device and device-to-host bandwidth for pageable and pinned memory versus transfer size on an
Intel Xeon E5-2667 system with a Tesla K20.

The arguments of cudaMemcpy() are the destination array, source array, and number of elements1

to be transferred. Since CUDA Fortran is strongly typed, there is no need to specify the direction of
transfer. The compiler is able to detect where the data in each of the first two arguments reside based
on whether the device qualifier was used in its declaration and will perform the appropriate data
transfer. However, if we desire, there is an optional fourth argument that specifies the direction of trans-
fer, which can take on the values cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost,
cudaMemcpyDeviceToDevice. When we use this optional fourth argument, the compiler is more
forgiving in terms of ignoring the variable type of the first two arguments. In this case, the number of
elements refers to the number of elements of the source array.

Assignment statements can be used in CUDA Fortran to transfer array sections between device and
host, as in:

a_d(n1_l:n1_u , n2_l:n2_u) = a(n1_l:n1_u , n2_l:n2_u)

Such operations are generally broken up into multiple separate transfers. A more efficient way of
performing such transfers is using the routine cudaMemcpy2D(). The following code section
shows how to perform the same array-section transfer as the previous assignment statement using
cudaMemcpy2D():

1Specifying the number of elements here differs from the third argument of the CUDA C cudaMemcpy() call where the
number of bytes to be transferred is specified.
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istat = cudaMemcpy2D(a_d(n1_l , n2_l), n, &
a(n1_l , n2_l), n, &
n1_u -n1_l+1, n2_u -n2_l +1)

The first and third arguments are the first element of the destination and source arrays, respectively. The
second and fourth arguments are the leading dimensions of these arrays, which we have assumed to be
n, and the final two arguments are the size of the subarray in terms of the number of elements in each
dimension. There is also an analogous cudaMemcpy3D() routine for transferring three-dimensional
array sections.

3.1.3 Asynchronous data transfers (advanced topic)
Data transfers in either direction between the host and device using assignment statements or the function
cudaMemcpy() are blocking transfers; that is, control is returned to the host thread only after the data
transfer is complete. The cudaMemcpyAsync() function is a nonblocking variant in which control
is returned immediately to the host thread. In contrast to assignment statements or cudaMemcpy(),
the asynchronous transfer version requires pinned host memory, and it contains an additional argument,
a stream ID. A stream is simply a sequence of operations that are performed in order on the device.
Operations in different streams can be interleaved and in some cases overlapped—a property that can
be used to hide data transfers between the host and the device.

Asynchronous data transfers enable overlap of data transfers with computation in two different
ways. On all CUDA-enabled devices, it is possible to overlap host computation with asynchronous data
transfers and with device computations. For example, the following code segment demonstrates how
host computation in the routine cpuRoutine() is performed while data is transferred to the device
and a kernel is executed.

istat = cudaMemcpyAsync(a_d , a_h , nElements , 0)
call kernel <<<gridSize ,blockSize >>>(a_d)
call cpuRoutine(b)

The first three arguments ofcudaMemcpyAsync are the same as the three arguments tocudaMemcpy.
The last argument is the stream ID, which in this case uses the default stream, stream 0. The kernel
also uses the default stream. Because the kernel is in the same stream as the asynchronous data transfer,
it will not begin execution until the memory copy completes; therefore, no explicit synchronization is
needed. Because the memory copy and the kernel both return control to the host immediately, the host
subroutine cpuRoutine() can overlap their execution.

In the preceding example, the memory copy and kernel execution occur sequentially. On devices
capable of “concurrent copy and execution,” it is possible to overlap kernel execution on the device
with data transfers between the host and the device. Whether a device has this capability or not can be
determined from the deviceOverlap field of a cudaDeviceProp variable and is also indicated
in the output of pgaccelinfo. On devices that have this capability, the overlap once again requires
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pinned host memory, and, in addition, the data transfer and kernel must use different, nondefault streams
(streams with nonzero stream IDs). Nondefault streams are required for this overlap because memory
copy, memory set functions, and kernel calls that use the default stream begin only after all preceding
calls on the device (in any stream) have completed, and no operation on the device (in any stream)
commences until they are finished. In the following code:

istat = cudaStreamCreate(stream1)
istat = cudaStreamCreate(stream2)
istat = cudaMemcpyAsync(a_d , a, n, stream1)
call kernel <<<gridSize ,blockSize ,0,stream2 >>>(b_d)

two streams are created and used in the data transfer and kernel executions as specified in the last
arguments of the cudaMemcpyAsync() call and the kernel execution configuration.2

Cases in which operations on data in a kernel are point-wise, meaning they are independent of other
data, are good candidates for pipelining data transfers and kernel executions: Data can be broken into
sections and transferred in multiple stages, where multiple kernels are launched to operate on each
section as it arrives, and each section’s results are transferred back to the host when the relevant kernel
completes. The following full code listing demonstrates this technique of breaking up data transfers and
kernels in order to hide transfer time:

1 ! This code demonstrates strategies hiding data transfers via
2 ! asynchronous data copies in multiple streams
3
4 module kernels_m
5 contains
6 attributes(global) subroutine kernel(a, offset)
7 implicit none
8 real :: a(*)
9 integer , value :: offset

10 integer :: i
11 real :: c, s, x
12
13 i = offset + threadIdx%x + (blockIdx%x -1)* blockDim%x
14 x = i; s = sin(x); c = cos(x)
15 a(i) = a(i) + sqrt(s**2+c**2)
16 end subroutine kernel
17 end module kernels_m
18
19 program testAsync
20 use cudafor
21 use kernels_m

2The last two arguments in the execution configuration are optional. The third argument of the execution configuration relates
to shared memory use in the kernel, which we discuss later in this chapter.



54 CHAPTER 3 Optimization

22 implicit none
23 integer , parameter :: blockSize = 256, nStreams = 4
24 integer , parameter :: n = 4*1024* blockSize*nStreams
25 real , pinned , allocatable :: a(:)
26 real , device :: a_d(n)
27 integer(kind=cuda_stream_kind) :: stream(nStreams)
28 type (cudaEvent) :: startEvent , stopEvent , dummyEvent
29 real :: time
30 integer :: i, istat , offset , streamSize = n/nStreams
31 logical :: pinnedFlag
32 type (cudaDeviceProp) :: prop
33
34 istat = cudaGetDeviceProperties(prop , 0)
35 write(*,"(’ Device: ’, a,/)") trim(prop%name)
36
37 ! allocate pinned host memory
38 allocate(a(n), STAT=istat , PINNED=pinnedFlag)
39 if (istat /= 0) then
40 write (*,*) ’Allocation of a failed ’
41 stop
42 else
43 if (.not. pinnedFlag) &
44 write (*,*) ’Pinned allocation failed ’
45 end if
46
47 ! create events and streams
48 istat = cudaEventCreate(startEvent)
49 istat = cudaEventCreate(stopEvent)
50 istat = cudaEventCreate(dummyEvent)
51 do i = 1, nStreams
52 istat = cudaStreamCreate(stream(i))
53 enddo
54
55 ! baseline case - sequential transfer and execute
56 a = 0
57 istat = cudaEventRecord(startEvent ,0)
58 a_d = a
59 call kernel <<<n/blockSize , blockSize >>>(a_d , 0)
60 a = a_d
61 istat = cudaEventRecord(stopEvent , 0)
62 istat = cudaEventSynchronize(stopEvent)
63 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
64 write (*,*) ’Time for sequential ’, &
65 ’transfer and execute (ms): ’, time
66 write (*,*) ’ max error: ’, maxval(abs(a -1.0))
67
68 ! asynchronous version 1: loop over {copy , kernel , copy}
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69 a = 0
70 istat = cudaEventRecord(startEvent ,0)
71 do i = 1, nStreams
72 offset = (i-1)* streamSize
73 istat = cudaMemcpyAsync( &
74 a_d(offset +1),a(offset +1),streamSize ,stream(i))
75 call kernel <<<streamSize/blockSize , blockSize , &
76 0, stream(i)>>>(a_d ,offset)
77 istat = cudaMemcpyAsync( &
78 a(offset +1),a_d(offset +1),streamSize ,stream(i))
79 enddo
80 istat = cudaEventRecord(stopEvent , 0)
81 istat = cudaEventSynchronize(stopEvent)
82 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
83 write (*,*) ’Time for asynchronous V1 ’, &
84 ’transfer and execute (ms): ’, time
85 write (*,*) ’ max error: ’, maxval(abs(a -1.0))
86
87 ! asynchronous version 2:
88 ! loop over copy , loop over kernel , loop over copy
89 a = 0
90 istat = cudaEventRecord(startEvent ,0)
91 do i = 1, nStreams
92 offset = (i-1)* streamSize
93 istat = cudaMemcpyAsync( &
94 a_d(offset +1),a(offset +1),streamSize ,stream(i))
95 enddo
96 do i = 1, nStreams
97 offset = (i-1)* streamSize
98 call kernel <<<streamSize/blockSize , blockSize , &
99 0, stream(i)>>>(a_d ,offset)

100 enddo
101 do i = 1, nStreams
102 offset = (i-1)* streamSize
103 istat = cudaMemcpyAsync (&
104 a(offset +1),a_d(offset +1),streamSize ,stream(i))
105 enddo
106 istat = cudaEventRecord(stopEvent , 0)
107 istat = cudaEventSynchronize(stopEvent)
108 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
109 write (*,*) ’Time for asynchronous V2 ’, &
110 ’transfer and execute (ms): ’, time
111 write (*,*) ’ max error: ’, maxval(abs(a -1.0))
112
113 ! asynchronous version 3:
114 ! loop over copy , loop over {kernel , event},
115 ! loop over copy
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116 a = 0
117 istat = cudaEventRecord(startEvent ,0)
118 do i = 1, nStreams
119 offset = (i-1)* streamSize
120 istat = cudaMemcpyAsync( &
121 a_d(offset +1),a(offset +1),streamSize ,stream(i))
122 enddo
123 do i = 1, nStreams
124 offset = (i-1)* streamSize
125 call kernel <<<streamSize/blockSize , blockSize , &
126 0, stream(i)>>>(a_d ,offset)
127 istat = cudaEventRecord(dummyEvent , stream(i))
128 enddo
129 do i = 1, nStreams
130 offset = (i-1)* streamSize
131 istat = cudaMemcpyAsync( &
132 a(offset +1),a_d(offset +1),streamSize ,stream(i))
133 enddo
134 istat = cudaEventRecord(stopEvent , 0)
135 istat = cudaEventSynchronize(stopEvent)
136 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
137 write (*,*) ’Time for asynchronous V3 ’, &
138 ’transfer and execute (ms): ’, time
139 write (*,*) ’ max error: ’, maxval(abs(a -1.0))
140
141 ! cleanup
142 istat = cudaEventDestroy(startEvent)
143 istat = cudaEventDestroy(stopEvent)
144 istat = cudaEventDestroy(dummyEvent)
145 do i = 1, nStreams
146 istat = cudaStreamDestroy(stream(i))
147 enddo
148 deallocate(a)
149
150 end program testAsync

This code processes the array data in four ways. The first way is the sequential case whereby all data are
transferred to the device (line 58), then a single kernel is launched with enough threads to process every
element in the array (line 59), followed by a data transfer from device to host (line 60). The other three
ways involve different strategies for overlapping asynchronous memory copies with kernel executions.

The asynchronous cases are similar to the sequential case, only there are multiple data transfers and
kernel launches, which are distinguished by different streams and array offsets. For purposes of this
discussion we limit the number of streams to four, although for large arrays there is no reason that a
larger number of streams could not be used. Note that the same kernel is used in the sequential and
asynchronous cases in the code, as an offset is sent to the kernel to accommodate the data in different
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streams. The difference between the first two asynchronous versions is the order in which the copies and
kernels are executed. The first version (starting on line 68) loops over each stream where each stream
issues a host-to-device copy, a kernel, and a device-to-host copy. The second version (starting on line
87) issues all host-to-device copies, then all kernel launches, and then all device-to-host copies. The
third asynchronous version (starting on line 113) is the same as the second version except that a dummy
event is recorded after each kernel is issued in the same stream as the kernel.

At this point you may be asking why we have three versions of the asynchronous case. The reason
is that these variants perform differently on different hardware generations. Running this code on the
NVIDIA Tesla C1060 produces:

� �

Device: Tesla C1060

Time for sequential transfer and execute (ms): 12.92381
max error: 2.3841858E-07

Time for asynchronous V1 transfer and execute (ms): 13.63690
max error: 2.3841858E-07

Time for asynchronous V2 transfer and execute (ms): 8.845888
max error: 2.3841858E-07

Time for asynchronous V3 transfer and execute (ms): 8.998560
max error: 2.3841858E-07

�

and on the NVIDIA Tesla C2050 we get:

� �

Device: Tesla C2050

Time for sequential transfer and execute (ms): 9.984512
max error: 1.1920929E-07

Time for asynchronous V1 transfer and execute (ms): 5.735584
max error: 1.1920929E-07

Time for asynchronous V2 transfer and execute (ms): 7.597984
max error: 1.1920929E-07

Time for asynchronous V3 transfer and execute (ms): 5.735424
max error: 1.1920929E-07

�

To decipher these results, we need to understand a bit more about how devices schedule and execute
various tasks. CUDA devices contain engines for various tasks, and operations are queued up in these
engines as they are issued. Dependencies between tasks in different engines are maintained, but within
any engine all dependence is lost, since tasks in an engine’s queue are executed in the order they are
issued by the host thread. For example, the C1060 has a single copy engine and a single kernel engine.
For the preceding code, timelines for the execution on the device are schematically shown in the top
diagram of Figure 3.4. In this schematic we have assumed that the times required for the host-to-device
transfer, kernel execution, and device-to-host transfer are approximately the same (the kernel code was
chosen in order to make these times comparable on the Tesla C1060 and C2050). For the sequential
kernel, there is no overlap in any of the operations, as we would expect. For the first asynchronous
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FIGURE 3.4

Timelines of data transfers and kernel executions for sequential and three asynchronous strategies on Tesla
C1060 and C2050. The C1060 has a single copy engine, whereas the C2050 has separate device-to-host
and host-to-device copy engines. Data transfers are executed in the order they are issued from the host within
each engine. As a result, different strategies achieve overlap on these different architectures.
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version of our code, the order of execution in the copy engine is H2D stream(1), D2H stream(1), H2D
stream(2), D2H stream(2), and so forth. This is why we do not see any speed-up when we use the first
asynchronous version on the C1060: Tasks were issued to the copy engine in an order that precludes any
overlap of kernel execution and data transfer. For versions two and three, however, where all the host-
to-device transfers are issued before any of the device-to-host transfers, overlap is possible, as indicated
by the lower execution time. From our schematic, we would expect the execution of versions two and
three to be 8/12 of the sequential version, or 8.7 ms, which is what is observed in the preceding timing.

On the C2050, two features interact to cause different behavior than that observed on the C1060. The
C2050 has two copy engines, one for host-to-device transfers and another for device-to-host transfers,
in addition to a single kernel engine. Having two copy engines explains why the first asynchronous
version achieves good speed-up on the C2050: The device-to-host transfer of data in stream(i) does
not block the host-to-device transfer of data in stream(i+1), as it did on the C1060, because these two
operations are in different engines on the C2050, which is schematically shown in the bottom diagram
of Figure 3.4. From the schematic we would expect the execution time to be cut in half relative to
the sequential version, which is roughly what is observed in the timings listed earlier. This does not
explain the performance degradation observed in the second asynchronous approach, however, which
is related to the C2050’s support to concurrently run multiple kernels. When multiple kernels are issued
back-to-back, the scheduler tries to enable concurrent execution of these kernels and, as a result, delays
a signal that normally occurs after each kernel completion (which is responsible for kicking off the
device-to-host transfer) until all kernels complete. So, although there is overlap between host-to-device
transfers and kernel execution in the second version of our asynchronous code, there is no overlap
between kernel execution and device-to-host transfers. From Figure 3.4 we would expect an overall
time for the second asynchronous version to be 9/12 of the time for the sequential version, or 7.5 ms,
which is what we observe from the timings above. This situation can be rectified by recording a dummy
CUDA event between each kernel, which will inhibit concurrent kernel execution but enable overlap of
data transfers and kernel execution, as is done in the third asynchronous version.

3.1.3.1 Hyper-Q
Devices of compute capability 3.5 (the highest compute capability at the time this book was written),
such as the Tesla K20, contain a feature called Hyper-Q. Previous CUDA architectures had a single work
queue, which introduced the serializations in the copy engines and kernel executions observed above.
Hyper-Q introduces 32 independent work queues. In our asynchronous code example, with Hyper-Q
each stream is managed by its own hardware work queue. As a result, operations in one stream will not
block operations on other streams. Running the code on the NVIDIA Tesla K20, we obtain:

� �

Device: Tesla K20

Time for sequential transfer and execute (ms): 7.963808
max error: 1.1920929E-07

Time for asynchronous V1 transfer and execute (ms): 5.608096
max error: 1.1920929E-07

Time for asynchronous V2 transfer and execute (ms): 5.646880
max error: 1.1920929E-07

Time for asynchronous V3 transfer and execute (ms): 5.506816
max error: 1.1920929E-07

�
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where we observe that each asynchronous method achieves roughly the same performance. You may
have noticed that the relative speed-up between the synchronous and asynchronous versions on the K20
isn’t as large as the relative speed-up obtained by the optimal asynchronous version on the C2050. This
is due to the fact that on the K20 the kernel executes in considerably less time than the data transfers,
as shown in profiler output:

� �

method =[ memcpyHtoDasync ] gputime =[ 712.608 ] cputime =[ 19.000 ]
method =[ kernel ] gputime =[ 442.816 ] cputime =[ 29.000 ]

occupancy =[ 1.000 ]
method =[ memcpyDtoHasync ] gputime =[ 1295.520 ] cputime =[ 9.000 ]

�

On the C2050 the data transfers and kernels execute in roughly the same amount of time, yielding a
larger relative speed-up. We could modify the kernel to achieve a similar relative speed-up on the K20
as obtained on the C2050, but the point here is the effort involved in getting the best speed-up. Hyper-Q
eliminates the need for the programmer to optimally schedule work from multiple streams on the K20,
whereas tailoring the order in which asynchronous copies and kernels are issued was required on the
C1060 and C2050 to get the best results.

3.1.3.2 Profiling asynchronous events
A good way to examine asynchronous performance is via the profiler, using a configuration file con-
taining the following:

conckerneltrace
timestamp
gpustarttimestamp
gpuendtimestamp
streamid

Unlike hardware counters, these items will not serialize execution on the device, thus inhibiting the
behavior we are trying to measure. We should note that turning on profiling in the preceding code will
effectively accomplish what inserting a cudaEventRecord() between kernel calls accomplishes,
so in this case the measurement does modify what is being measured.

Before leaving the topic of overlapping kernel execution with asynchronous data transfers, we should
note that the kernel chosen for this example is a very obfuscated way of calculating the value 1.0. This
was chosen so that transfer time between host and device would be comparable to kernel execution
time, at least for the C1060 and C2050. If we used simpler kernels, such as ones discussed up to this
point, such overlaps would be difficult to detect because kernel execution time is so much smaller than
data transfer time.
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3.2 Device memory
Up to this point in this chapter, we have focused on efficient means of getting data to and from device
DRAM. More precisely, these data are stored in global memory, which resides in DRAM. Global
memory is accessible by both the device and the host and can exist for the lifetime of the application.
In addition to global memory, there are other types of data stored in DRAM that have different scopes,
lifetimes, and caching behaviors. There are also several memory types that exist on the chip itself. In
this section, we discuss these different memory types and how they can best be used.

The various memory types in CUDA are represented in Figure 3.5. In device DRAM there are global,
local, constant, and texture memories. On-chip there are registers, shared memory, and various caches
(L1, constant, and texture). We go into detail and provide examples for each of these memories later in
this chapter, but for now we provide these short summaries.

Global memory is the device memory that is declared with the device attribute in host code. It can
be read and written from both host and device. It is available to all threads launched on the device and
persists for the lifetime of the application (or until deallocated, if declared allocatable).

Local variables defined in device code are stored in on-chip registers, provided there are sufficient
registers available. If there are insufficient registers, data are stored off-chip in local memory. (The
adjective local in local memory refers to scope, not physical locality.) Both register memory and local
memory have per-thread access.

Shared memory is memory that is accessible by all threads in a thread block. It is declared in device
code using the shared variable qualifier. It can be used to share data loads and stores and to avoid
global memory access patterns that are inefficient.

Constant memory can be read and written from host code but is read-only from threads in device
code. It is declared using the constant qualifier in a Fortran module and can be used in any code
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FIGURE 3.5

Schematic of device memory types in DRAM and on-chip.
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Table 3.1 Device memory characteristics.

Memory Location Cached Device Access Scope Lifetime

Register On-chip N/A R/W One thread Thread

Local DRAM Fermi, Kepler R/W One thread Thread

Shared On-chip N/A R/W All threads in block Thread block

Global DRAM Fermi, Kepler* R/W All threads and host Application

Constant DRAM Yes R All threads and host Application

Texture DRAM Yes R All threads and host Application

*The Tesla K10, K20 and K20X cache globals only in the L2 cache.

contained in the module as well as any code that uses the module. Constant data is cached on the chip
and is most effective when threads that execute at the same time access the same value.

Texture memory is similar to constant memory in that it is read-only by device code and is also cached
on the GPU. It is simply a different pathway for accessing global memory and is sometimes helpful in
avoiding poor global memory access patterns by device code.

Table 3.1 summarizes the characteristics of all the device memory types.

3.2.1 Declaring data in device code
Before we discuss how to use the different types of memory efficiently, we should mention a few points
regarding how data is declared in device code. For the most part, data declaration in device code is the
same as in host code or regular Fortran 90. There are a few notable exceptions, however.

In declaring data in device code, we need to be aware that because the host and device have separate
memory spaces, and because by default Fortran passes arguments by reference, kernel arguments either
must be on the device or, in the case of host scalar arguments, must have the value attribute.

A second issue is that CUDA Fortran does not support the save attribute in device code, either
explicitly or implicitly. Since variables initialized at the time of declaration implicitly get the save
attribute, initialization of variables at declaration is not allowed in device code in CUDA Fortran. Of
course, variables with the parameter attribute are allowed and must be assigned values at the time
of declaration, since the compiler converts these to literals in the code. The following snippet of code
illustrates these ideas:

attributes(global) subroutine increment(array , incVal)
integer :: array (*)
integer , value :: incVal
integer :: otherVal =1 ! illegal
integer , parameter :: anotherVal = 2 ! OK
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3.2.2 Coalesced access to global memory
Perhaps the single most important performance consideration in programming for the CUDA architec-
ture is coalescing global memory accesses. Before we go into how global memory is accessed, we need
to refine our programming model a bit. We have discussed how threads are grouped into thread blocks,
which are assigned to multiprocessors on the device. There is a further grouping of threads into warps,
or groups of 32 threads, which is the actual grouping of threads that gets calculated in single-instruction,
multiple-thread (SIMT) fashion. Each instruction on the device is issued to a warp of threads, and exe-
cution of instructions is performed by each thread in a warp in lockstep. Different warps in a thread
block may be executing different instructions of the device code, and all of this activity is coordinated
behind the scenes by the scheduler on each multiprocessor. For our purposes, we just need to know that
instructions get simultaneously executed on a group of threads called a warp. Grouping of threads into
warps is relevant not only to computation but also to global memory accesses. Global memory loads
and stores by threads of a half-warp (for devices of compute capability 1.x) or of a warp (for devices
of compute capability 2.0 and higher) are coalesced by the device into as little as one transaction when
certain access requirements are met. To understand these access requirements and how they evolved
with different Tesla architectures, we run some simple experiments on Tesla cards representing different
compute capabilities. We do this in single and double precision (when possible).

We run two experiments that are variants of our increment kernel used in the Introduction—one with
an array offset or misaligned access of the array and the other performing strided access in a similar
fashion. The code that performs this is:

1 module kernels_m
2 use precision_m
3 contains
4 attributes(global) subroutine offset(a, s)
5 real(fp_kind) :: a(*)
6 integer , value :: s
7 integer :: i
8 i = blockDim%x*( blockIdx%x-1)+ threadIdx%x + s
9 a(i) = a(i)+1

10 end subroutine offset
11
12 attributes(global) subroutine stride(a, s)
13 real(fp_kind) :: a(*)
14 integer , value :: s
15 integer :: i
16 i = (blockDim%x*( blockIdx%x-1)+ threadIdx%x) * s
17 a(i) = a(i)+1
18 end subroutine stride
19 end module kernels_m
20
21 program offsetNStride
22 use cudafor
23 use kernels_m
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24
25 implicit none
26
27 integer , parameter :: nMB = 4 ! transfer size in MB
28 integer , parameter :: n = nMB *1024*1024/ fp_kind
29 integer , parameter :: blockSize = 256
30 ! array dimensions are 33*n for stride cases
31 real(fp_kind), device :: a_d (33*n), b_d (33*n)
32 type(cudaEvent) :: startEvent , stopEvent
33 type(cudaDeviceProp) :: prop
34 integer :: i, istat
35 real (4) :: time
36
37
38 istat = cudaGetDeviceProperties(prop , 0)
39 write(*,’(/," Device: ",a)’) trim(prop%name)
40 write(*,’(" Transfer size (MB): ",i0)’) nMB
41
42 if (kind(a_d) == singlePrecision) then
43 write(*,’(a,/)’) ’Single Precision ’
44 else
45 write(*,’(a,/)’) ’Double Precision ’
46 endif
47
48 istat = cudaEventCreate(startEvent)
49 istat = cudaEventCreate(stopEvent)
50
51 write (*,*) ’Offset , Bandwidth (GB/s):’
52 call offset <<<n/blockSize ,blockSize >>>(b_d , 0)
53 do i = 0, 32
54 a_d = 0.0
55 istat = cudaEventRecord(startEvent ,0)
56 call offset <<<n/blockSize ,blockSize >>>(a_d , i)
57 istat = cudaEventRecord(stopEvent ,0)
58 istat = cudaEventSynchronize(stopEvent)
59
60 istat = cudaEventElapsedTime(time , startEvent , &
61 stopEvent)
62 write (*,*) i, 2*n*fp_kind/time *1.e-6
63 enddo
64
65 write (*,*)
66 write (*,*) ’Stride , Bandwidth (GB/s):’
67 call stride <<<n/blockSize ,blockSize >>>(b_d , 1)
68 do i = 1, 32
69 a_d = 0.0
70 istat = cudaEventRecord(startEvent ,0)
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71 call stride <<<n/blockSize ,blockSize >>>(a_d , i)
72 istat = cudaEventRecord(stopEvent ,0)
73 istat = cudaEventSynchronize(stopEvent)
74 istat = cudaEventElapsedTime(time , startEvent , &
75 stopEvent)
76 write (*,*) i, 2*n*fp_kind/time *1.e-6
77 enddo
78
79 istat = cudaEventDestroy(startEvent)
80 istat = cudaEventDestroy(stopEvent)
81
82 end program offsetNStride

3.2.2.1 Misaligned access
We begin by looking at results of the misaligned access for single precision data, which is shown in
Figure 3.6. When an array is allocated in device memory, either explicitly or implicitly, the array is
aligned with a 256-byte segment of memory. Global memory can be accessed via 32-, 64-, or 128-byte
transactions that are aligned to their size. The best performance is achieved when threads in a warp (or
half-warp) access data in as few memory transactions as possible, as is the case with the zero offset
in Figure 3.6. In such cases, the data requested by a warp (or half-warp) of threads is coalesced into a
single 128-byte (or 64-byte) transaction, where all words in the transaction have been requested. For the

FIGURE 3.6

Effective bandwidth versus offset for single-precision data for the array increment kernel.
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C870 and other cards with a compute capability of 1.0, this performance also requires that contiguous
threads in a half-warp access contiguous words in a 64-byte segment of memory.

For misaligned accesses, the performance varies greatly for different compute capabilities. For the
C870 with compute capability 1.0, any misaligned access by a half-warp of threads (or aligned access
where the threads of the half-warp do not access memory in sequence) results in 16 separate 32-byte
transactions. Since only 4 bytes are requested per 32-byte transaction, we would expect the effective
bandwidth to be reduced by a factor of eight, which is roughly what we see in Figure 3.6 for offsets that
are not a multiple of 16 elements, corresponding to one half-warp of threads.

For the C1060, which has a compute capability of 1.3, misaligned accesses are less problematic.
Basically, the misaligned accesses of contiguous data are serviced in a few transactions that “cover” the
requested data. There is still a performance penalty relative to the aligned case due to both unrequested
data being transferred and some overlap of data requested by different half-warps. We analyze the three
performance levels in the C1060 in detail in a moment, but first we give the algorithm that determines the
type of transfers that occur. The exact algorithm used to determine the number and type of transactions
by a half-warp of threads on a C1060 is:

• Find the memory segment that contains the address requested by the lowest numbered active thread.
Segment size is 32 bytes for 8-bit data, 64 bytes for 16-bit data, and 128 bytes for 32-, 64-, and
128-bit data.

• Find all other active threads for which the requested address lies in the same segment, and reduce
the transaction size if possible:

– If the transaction is 128 bytes and only the lower or upper half is used, reduce the transaction
size to 64 bytes.

– If the transaction is 64 bytes and only the lower or upper half is used, reduce the transaction size
to 32 bytes.

• Carry out the transaction and mark the serviced threads as inactive.
• Repeat until all threads in the half-warp are serviced.

We now apply this algorithm to our offset example, looking at what happens for offsets of zero, one,
and eight.

We begin with the optimal case corresponding to zero offset. The access patterns by the first two
half-warps of data are shown in Figure 3.7. In this figure, the two rows of boxes represent the same
256-byte segment of memory, with the alignments of various transaction sizes shown at the top. For
each half-warp of threads, the data requested results in a single 64-byte transaction. Although only two
half-warps are shown, the same occurs for all half-warps. No unrequested data is transferred, and no
data is transferred twice, so this is the optimal case as though reflected in the plot of Figure 3.6. Note
that any offset that is a multiple of 16 elements will have the same performance, since this just shifts
the diagram by one 64-byte segment.

Shifting the access pattern by one results in the worst case for the C1060. The access pattern and
resulting transactions for the first two half-warps are shown in Figure 3.8. For the first half-warp, even
though only 64 bytes are requested, the entire 128-byte segment is transferred. This happens because
the data requested by the first half warp lies in both lower and upper halves of the 128-byte segment;
the transaction can’t be reduced. The second half-warp of threads accesses data across two 128-byte
segments, where the transaction in each segment can be reduced. Note that for these two half-warps,
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FIGURE 3.7

Diagram of transactions of two half-warps on a C1060 for the case of aligned accesses, or zero offset, of
single-precision data. The 32-, 64-, and 128-byte segments are shown at the top, and two rows of boxes
representing the same memory are shown beneath. The first row is used to depict the access by the first
half-warp of threads, and the second row is use to depict the accesses by the second half-warp of threads.
This is the optimal situation where the requests by each half-warp result in a 64-byte transaction, for a total
of 128 bytes transferred for the two half-warps, with no unrequested data and no duplication of data.

64 B 64 B 64 B 64 B
128 B128 B

Threads 1-16

32 B 32 B 32 B 32 B 32 B 32 B 32 B 32 B

Threads 17-32

FIGURE 3.8

Diagram of transactions of two half warps on a C1060 for the case of misaligned single-precision data with
an offset of one element. Two rows of boxes representing the same memory are shown beneath. The first
row is used to depict the access by the first half-warp of threads, and the second row is use to depict the
accesses by the second half-warp of threads. The requests by these two half-warps are serviced by three
transactions totaling 224 bytes.

there are both unrequested data transferred and some data transferred twice. Also, this pattern repeats
itself for subsequent pairs of half-warps, so the 32-byte transaction for the second half-warp will overlap
with the 128-byte transaction of the third half-warp. For the two half-warps, 224 bytes are transferred,
in comparison to 128 bytes transferred for the aligned or zero-offset case. Based on this, we would
expect an effective bandwidth of slightly over half of the zero-offset case, which we see in Figure 3.6.
The same number of transactions occurs for offsets of 2–7, 9–15, 17–23, and 25–31, along with the
same effective bandwidth.
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FIGURE 3.9

Diagram of transactions of two half-warps on a C1060 for the case of misaligned single-precision data with
an offset of eight elements. Two rows of boxes representing the same memory are shown beneath. The first
row is used to depict the access by the first half-warp of threads, and the second row is use to depict the
accesses by the second half-warp of threads. The requests by these two half-warps are serviced by three
transactions totaling 192 bytes.

The final case for misaligned accesses we consider for the C1060 is when the offset is 8 or 24
elements, as depicted in Figure 3.9. This is similar to the offset by one element case, except that the
request from the second half-warp of threads is serviced by two 32-byte transactions rather then one
64-byte and one 32-byte transaction. This results in 192 elements being transferred for these two half-
warps and a resulting effective bandwidth that should be roughly 2/3 of the aligned effective bandwidth,
which we see from Figure 3.6.

For the C2050, the situation is very different than the preceding cases because of the caching of
global memory introduced in the Fermi architecture. Also, memory transactions are issued per warp of
threads rather than per half-warp. On the Fermi architecture, each multiprocessor has 64 KB of memory
that is divided up between shared memory and L1 cache, either as 16 KB shared memory and 48 KB
L1 cache, or vice versa. This L1 cache uses 128-byte cache lines. When a cache line is brought into the
L1 cache on a multiprocessor, it can be used by any warp of threads resident on that multiprocessor. So,
whereas some nonrequested data may be brought into the L1 cache, there should be far less duplication
of data being brought on the chip. We can see this in the results of Figure 3.6, where there is little
performance penalty for any offset—so little that the performance penalty due to misaligned accesses
is actually smaller than the performance penalty due to ECC.

The effective bandwidth variation due to misaligned accesses on the K20 is similar to that of the
C2050, where we see a slight performance penalty when global memory access is misaligned. On the
K20, the L1 cache is used for local memory only, but global memory is cached in L2, which is an on-chip
cache shared by all multiprocessors. Once again, the penalty for misaligned accesses is small—much
less than the effect of ECC.

The preceding discussion for single-precision data also applies to double-precision data, as can shown
in Figure 3.10, with the exception that the C870 does not support double-precision data and hence is not
represented. On both the NVIDIA Tesla C2050 and K20, there once again is only a slight performance
degradation for misaligned accesses. On the NVIDIA Tesla C1060, since the request by a half-warp of
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FIGURE 3.10

Effective bandwidth versus offset for double-precision data using the array increment kernel.

threads for double-precision data spans 128 bytes, there are some additional combinations of segments
that can serve such requests relative to the single-precision case. These are depicted in Figure 3.11,
which shows the transactions for requests of a half-warp of threads with offsets of 0 through 16.

Before we move on to the discussion of strided global memory access, we should mention here that
enabling ECC can result in larger penalties when accesses are misaligned for more complicated kernels
on devices of compute capability 2.0. For example, if we use an out-of-place increment operation in
our kernel, b(i)=a(i)+1, rather than the in-place operation, a(i)=a(i)+1, then, on a C2050 with
ECC on, we observe a substantial decrease in performance, as indicated for the case of single-precision
data in Figure 3.12. As a general rule, it is always best to code such that accesses are aligned whenever
possible, but this is especially true on the Tesla C2050 when ECC is on. For accesses that are naturally
offset, such as those that occur in finite difference operations, on-chip shared memory can be used to
facilitate aligned accesses, which will be discussed later in this chapter. On the Tesla K20 we see no
such performance degradation for the out-of-place kernel when ECC is enabled, as shown in Figure
3.13, since the ECC implementation on Kepler GPUs has been improved.

3.2.2.2 Strided access
The same rules for coalescing that we discussed in the misaligned data access kernel also apply to the
strided access kernel. The difference is that a request by a half-warp or warp of threads no longer accesses
contiguous data and can span many segments of memory. The results for a stride of up to 32 elements
is shown in Figure 3.14 for single-precision data, both with ECC on and off on devices with ECC.

As with the misaligned data access performance, the C870 has the most restrictive conditions for
coalescing data, where any stride other than one results in data requested by a half-warp of threads being
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FIGURE 3.11

Transactions resulting from a half-warp of threads for contiguous double-precision data on a C1060 with
offsets from 0 to 16, represented by the different rows. For double-precision data, the same access pattern
occurs for even an odd number of half-warps, unlike the case of single-precision data.

serviced by 16 separate 32-byte transactions. Correspondingly, we observe an effective bandwidth of
approximately 53 GB/s for unit stride and under 10 GB/s for any other offset.

For the C1060, the reduction in effective bandwidth with larger stride is more gradual because more
segments are transferred as the stride increases. For large strides, a half-warp of threads is serviced by
16 separate 32-byte transactions on the C1060, the same as on the C870.

For the C2050, despite the larger effective bandwidth at unit stride, the performance at large strides is
lower than the C1060 due to 128-byte L1 cache lines on the C2050 rather than 32-byte segments being
transferred on the C1060. We can avoid this situation by turning off caching of global loads in the L1
cache via the compiler option-Mcuda=noL1. The results are shown in Figure 3.15 for single-precision
data and Figure 3.16 for double-precision data. When strides of eight and four are reached for single-
and double- precision data, respectively, segments smaller than 128 bytes are transferred when the L1
cache is disabled, resulting in a higher effective bandwidth.

On the K20, only local variables are cached in L1, so, in effect, the option -Mcuda=noL1 is on
implicitly, as shown in Figure 3.17. Similarly to the C2050 with the L1 cache disabled for global loads,
when a stride of eight is reached, smaller segments of data are transferred, and we observe the effective
bandwidth taper more slowly.

This discussion of coalescing global loads is fairly long and involved. We went into detail because
coalescing of data is one of the most important aspects of achieving good performance in CUDA Fortran.
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FIGURE 3.12

Effective bandwidth on the Tesla C2050 for in-place and out-of-place increment operations on single-
precision data with ECC on and off. On the C2050, with ECC off, in-place and out-of-place have similar
performance. However, with ECC enabled, the out-of-place operation has a performance penalty for offset
accesses. It is best practice on the C2050 to make sure accesses are aligned whenever possible if ECC is
enabled.

Looking back at the discussion, there are a few major themes that should be kept in mind. The first is
that with newer GPU architectures, not only has the raw performance (i.e., peak bandwidth) increased,
but restrictions and barriers to getting good performance have been removed. In devices of compute
capability 1.0 (e.g., C870), aligned data access is critical to achieving good performance. In devices of
compute capability 3.5 (e.g., K20), the misaligned accesses result in a negligible performance penalty.

Although alignment of data access is not an issue on recent CUDA architectures, accessing data
with large strides results in poor effective bandwidth on all devices. This is not a new aspect of high-
performance computing; data locality has always been an important issue in application performance
tuning. The best way to deal with striding through memory is to avoid it whenever possible. However,
there are cases in which it cannot be avoided, such as when accessing elements in multidimensional
arrays along a dimension other than the first dimension. In such cases there are several options we can
pursue to obtain good performance. If the strided access occurs on read-only data, textures can be used.
Another option is to use on-chip shared memory, which is shared by all threads in a thread block. We
can bring data into shared memory in a coalesced fashion, and then access it in a strided fashion without
any performance penalty. We discuss shared memory later in the chapter, but we look at texture memory
next.
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FIGURE 3.13

Effective bandwidth on the Tesla K20 for in-place and out-of-place increment operations on single-precision
data with ECC on and off. Unlike the C2050 results in Figure 3.12, in-place and out-of-place bandwidth are
roughly the same when ECC is either on or off.

FIGURE 3.14

Effective bandwidth versus stride for single-precision data for the array increment kernel.
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FIGURE 3.15

Effective bandwidth versus stride for single-precision data on the C2050 for cases with ECC and L1 cache
on and off. The scale is adjusted to show differences at the tail of the graphs. Turning off the L1 cache
results in higher effective bandwidth once a stride of eight is reached.

FIGURE 3.16

Effective bandwidth versus stride for double-precision data on the C2050 for cases with ECC and L1 cache
on and off. The scale is adjusted to show differences at the tail of the graphs. Turning off the L1 cache
results in higher effective bandwidth once a stride of four is reached.
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FIGURE 3.17

Effective bandwidth versus stride for single-precision data on the K20 for cases with ECC on and off, and
with and without the compiler option -Mcuda=noL1. Since the K20 does not cache global variables in L1,
the use of the compiler option -Mcuda=noL1 has no effect on the performance.

3.2.3 Texture memory
Textures were added to CUDA Fortran in version 12.8 of the compilers. For those familiar with textures in
CUDA C, this implementation is a subset of the texture features offered in CUDA C, essentially covering
the functionality offered by tex1Dfetch(). The filtering and wrapping/clamping capabilities of
textures are not currently available in CUDA Fortran. In addition, only single precision is currently
supported in CUDA Fortran textures.

Textures in CUDA Fortran allow us to access global memory in a read-only fashion through the
texture cache. In addition to utilizing additional on-chip cache, textures may be advantageous in cases
where access by sequential threads is to noncontiguous data, such as the strided data access pattern
previously discussed. Such data access through textures may be advantageous because the minimum
transaction size for textures is 32 bytes, as opposed to, say, the 128-byte cache line of the L1 cache
on devices of compute capability 2.x. Although we can disable the caching of globals in L1 to obtain
32-byte transactions, doing so prohibits accessing other variables in global memory from using the L1
cache. In addition, textures can have more load requests in flight compared to global memory. We can
see the benefit of textures from a modified version of the strided memory access kernel:

1 module kernels_m
2 real , texture , pointer :: aTex (:)
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3 contains
4 attributes(global) subroutine stride(b, a, s)
5 real :: b(*), a(*)
6 integer , value :: s
7 integer :: i, is
8 i = blockDim%x*( blockIdx%x-1)+ threadIdx%x
9 is = (blockDim%x*( blockIdx%x-1)+ threadIdx%x) * s

10 b(i) = a(is)+1
11 end subroutine stride
12
13 attributes(global) subroutine strideTex(b, s)
14 real :: b(*)
15 integer , value :: s
16 integer :: i, is
17 i = blockDim%x*( blockIdx%x-1)+ threadIdx%x
18 is = (blockDim%x*( blockIdx%x-1)+ threadIdx%x) * s
19 b(i) = aTex(is)+1
20 end subroutine strideTex
21 end module kernels_m
22
23 program strideTexture
24 use cudafor
25 use kernels_m
26
27 implicit none
28
29 integer , parameter :: nMB = 4 ! transfer size in MB
30 integer , parameter :: n = nMB *1024*1024/4
31 integer , parameter :: blockSize = 256
32 real , device , allocatable , target :: a_d(:), b_d(:)
33 type(cudaEvent) :: startEvent , stopEvent
34 type(cudaDeviceProp) :: prop
35 integer :: i, istat , ib
36 real :: time
37
38 istat = cudaGetDeviceProperties(prop , 0)
39 write(*,’(/," Device: ",a)’) trim(prop%name)
40 write(*,’(" Transfer size (MB): ",i0 ,/)’) nMB
41
42 allocate(a_d(n*33), b_d(n))
43
44 istat = cudaEventCreate(startEvent)
45 istat = cudaEventCreate(stopEvent)
46
47 write (*,*) ’Global version ’
48 write (*,*) ’Stride , Bandwidth (GB/s)’
49 call stride <<<n/blockSize ,blockSize >>>(b_d , a_d , 1)
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50 do i = 1, 32
51 a_d = 0.0
52 istat = cudaEventRecord(startEvent ,0)
53 call stride <<<n/blockSize ,blockSize >>>(b_d , a_d , i)
54 istat = cudaEventRecord(stopEvent ,0)
55 istat = cudaEventSynchronize(stopEvent)
56 istat = cudaEventElapsedTime(time , startEvent , &
57 stopEvent)
58 write (*,*) i, 2*n*4/ time *1.e-6
59 enddo
60
61 ! bind the texture
62 aTex => a_d
63
64 write (*,*) ’Texture version ’
65 write (*,*) ’Stride , Bandwidth (GB/s)’
66 call strideTex <<<n/blockSize ,blockSize >>>(b_d , 1)
67 do i = 1, 32
68 a_d = 0.0
69 istat = cudaEventRecord(startEvent ,0)
70 call strideTex <<<n/blockSize ,blockSize >>>(b_d , i)
71 istat = cudaEventRecord(stopEvent ,0)
72 istat = cudaEventSynchronize(stopEvent)
73 istat = cudaEventElapsedTime(time , startEvent , &
74 stopEvent)
75 write (*,*) i, 2*n*4/ time *1.e-6
76 enddo
77
78 ! unbind the texture
79 nullify(aTex)
80
81 istat = cudaEventDestroy(startEvent)
82 istat = cudaEventDestroy(stopEvent)
83 deallocate(a_d , b_d)
84
85 end program strideTexture

Textures in CUDA Fortran make use of the Fortran 90 pointer notation to “bind” a texture to a
region of global memory. The texture pointer is declared on line 2 in the preceding code using both the
texture and the pointer variable attributes. The kernel that uses this texture pointer is listed on
lines 13–20, and the nontexture version is listed on lines 4–11. Note that the texture pointer, aTex, is
not passed in as an argument to the kernel, and it must be declared at module scope. If a texture pointer
is passed as an argument to a kernel, even if declared in the kernel with the texture attribute, the
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FIGURE 3.18

Effective bandwidth versus stride for single-precision data on the K20 using textures and global memory.

data will be accessed through the global memory path, not the texture path.3 Aside from that scoping
aspect, use of CUDA Fortran textures in device code is analogous to use of a global memory array,
unlike CUDA C, which uses a tex1Dfetch() command to access the data.

Note that these kernels differ from the simple increment kernels used previously. First, since textures
are read-only, these kernels must use different variables on the right- and left-hand sides of the assignment
statement. Also, different indices are used to access these two arrays. We write the results in a coalesced
fashion in order to highlight the effect of the strided reads.

In host code, the device data to which a texture is bound must be declared with the target attribute,
as is done on line 32, which is standard practice with Fortran pointers. On line 62, the texture bind-
ing occurs using the pointer notation. And on line 79, the texture is unbound using the Fortran 90
nullify() command.

Running this code on the K20 we see slightly improved performance at large strides with the texture
version, as shown in Figure 3.18. The improved performance at large strides is due to the ability of
textures to have more load requests in flight than global memory.

On the K10, K20, and K20X, where the L1 cache is used only for caching local data, the texture
cache is especially attractive for read-only data that is reused in the kernel. For example, the following
code kernels calculate at each interior point in a 2D mesh the average of the nearest four and eight points
using both global and texture memory:

3To verify use of the texture path, compile the code with -Mcuda=keepgpu, which dumps the generated CUDA C code.
The texture fetch will be denoted in this code by __pgi_texfetchf().
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1 module kernels_m
2 real , texture , pointer :: aTex(:,:)
3 integer , parameter :: n = 2048
4 integer , parameter :: nTile = 32
5 contains
6 attributes(global) subroutine average4(b, a)
7 implicit none
8 real :: b(n,n), a(0:n+1,0:n+1)
9 integer :: i, j

10 i = blockDim%x*( blockIdx%x-1)+ threadIdx%x
11 j = blockDim%y*( blockIdx%y-1)+ threadIdx%y
12 b(i,j) = 0.25*( &
13 a(i-1,j)+ &
14 a(i,j-1)+ a(i,j+1)+&
15 a(i+1,j))
16 end subroutine average4
17
18 attributes(global) subroutine average8(b, a)
19 implicit none
20 real :: b(n,n), a(0:n+1,0:n+1)
21 integer :: i, j
22 i = blockDim%x*( blockIdx%x-1)+ threadIdx%x
23 j = blockDim%y*( blockIdx%y-1)+ threadIdx%y
24 b(i,j) = 0.125*( &
25 a(i-1,j-1)+a(i-1,j)+a(i-1,j+1)+ &
26 a(i,j-1)+ a(i,j+1)+&
27 a(i+1,j-1)+a(i+1,j)+a(i+1,j+1))
28 end subroutine average8
29
30 attributes(global) subroutine average4Tex(b)
31 implicit none
32 real :: b(n,n)
33 integer :: i, j
34 i = blockDim%x*( blockIdx%x-1)+ threadIdx%x
35 j = blockDim%y*( blockIdx%y-1)+ threadIdx%y
36 b(i,j) = 0.25*( &
37 aTex(i-1,j)+ &
38 aTex(i,j-1)+ aTex(i,j+1)+ &
39 aTex(i+1,j))
40 end subroutine average4Tex
41
42 attributes(global) subroutine average8Tex(b)
43 implicit none
44 real :: b(n,n)
45 integer :: i, j
46 i = blockDim%x*( blockIdx%x-1)+ threadIdx%x



3.2 Device memory 79

47 j = blockDim%y*( blockIdx%y-1)+ threadIdx%y
48 b(i,j) = 0.125*( &
49 aTex(i-1,j-1)+ aTex(i-1,j)+aTex(i-1,j+1)+ &
50 aTex(i,j-1)+ aTex(i,j+1)+ &
51 aTex(i+1,j-1)+ aTex(i+1,j)+aTex(i+1,j+1))
52 end subroutine average8Tex
53 end module kernels_m

The complete code is contained in Appendix D.1. This access pattern is very common in finite difference
codes, and in Chapter 6 we will show an example of its use in solving the Laplace equation. Running
this code on a Tesla K20, we obtain:

� �

Device: Tesla K20

4-point versions
Global Bandwidth (GB/s): 90.71741

Max Error: 0.000000
Texture Bandwidth (GB/s): 94.64387

Max Error: 0.000000

8-point versions
Global Bandwidth (GB/s): 58.48986

Max Error: 0.000000
Texture Bandwidth (GB/s): 82.60018

Max Error: 0.000000
�

where we see a substantial improvement in bandwidth for textures in the eight-point stencil case, where
data reuse is large.

3.2.4 Local memory
Local memory is thread-private memory that is stored in device DRAM. It is important to realize that
the moniker local refers to a variable’s scope (meaning thread-private) and not to its physical location,
which is off-chip in device DRAM. Depending on the amount of local memory used and whether or
not local memory is cached, local memory can become a performance bottleneck.

3.2.4.1 Detecting local memory use (advanced topic)
We examine under what conditions local memory is used for arrays by compiling the following set of
kernels:

1 module localmem
2 implicit none
3 contains
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4 attributes(global) subroutine k1(a)
5 real :: a(*), b(2)
6 integer :: i
7 i = blockDim%x*( blockIdx%x-1) + threadIdx%x
8 b(1) = 1; b(2) = 2
9 a(i) = b(2)

10 end subroutine k1
11
12 attributes(global) subroutine k2(a,j,k)
13 real :: a(*), b(2)
14 integer :: i,j,k
15 b(j) = 1.0
16 i = blockDim%x*( blockIdx%x-1) + threadIdx%x
17 a(i) = b(k)
18 end subroutine k2
19
20 attributes(global) subroutine k3(a)
21 real :: a(*), b(256)
22 integer :: i
23 b = 1.0
24 i = blockDim%x*( blockIdx%x-1) + threadIdx%x
25 a(i) = b(2)
26 end subroutine k3
27 end module localmem

The three kernels declare the variable b, which is thread-private data: Each thread executing the kernel
has its own version of this array. In the first kernel, b contains only two elements and is accessed using
static indices. In the second kernel, b is also a two-element array but is accessed by variable or dynamic
indexes. In the third kernel, b is declared with 256 elements and, due to the array initialization b=1.0,
is accessed in a dynamic fashion.

Feedback on the amount of local memory used can be obtained during compilation by using the
-Mcuda=ptxinfo compiler option. If we compile the preceding code for devices of compute capa-
bility 1.x, we obtain the following output:

� �

% pgf90 -c -Mcuda=ptxinfo ,cc10 local.cuf
ptxas info : Compiling entry function ’k1’ for ’sm_10’
ptxas info : Used 2 registers , 8+16 bytes smem

ptxas info : Compiling entry function ’k2’ for ’sm_10’
ptxas info : Used 3 registers , 8+0 bytes lmem ,

24+16 bytes smem

ptxas info : Compiling entry function ’k3’ for ’sm_10’
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ptxas info : Used 3 registers , 1024+0 bytes lmem ,
8+16 bytes smem , 4 bytes cmem [1]

�

In the first kernel, there is no mention of local memory in the compiler feedback; hence the array is
placed in register memory. This is the ideal situation. Because register memory is not indexable, the
dynamic indexing in the second kernel forces the array to be allocated in local memory, as indicated
by 8+0 bytes lmem, where the 8+0 notation refers to different stages of compilation. The array
assignment in the third kernel amounts to dynamic indexing, and as a result we see 1024+0 bytes
lmem, so this array also resides in local memory.

In compiling for compute capability 2.0, we obtain:

� �

% pgf90 -c -Mcuda=ptxinfo ,cc20 local.cuf
ptxas info : Compiling entry function ’k1’ for ’sm_20 ’
ptxas info : Function properties for k1

0 bytes stack frame , 0 bytes spill stores , 0 bytes spill loads
ptxas info : Used 6 registers , 40 bytes cmem [0]
ptxas info : Compiling entry function ’k2’ for ’sm_20 ’
ptxas info : Function properties for k2

8 bytes stack frame , 0 bytes spill stores , 0 bytes spill loads
ptxas info : Used 10 registers , 56 bytes cmem [0]
ptxas info : Compiling entry function ’k3’ for ’sm_20 ’
ptxas info : Function properties for k3

1024 bytes stack frame , 0 bytes spill stores , 0 bytes spill loads
ptxas info : Used 19 registers , 40 bytes cmem [0]

�

For compute capabilities of 2.0 and higher, local memory use is reported by the stack frame
parameter, where we observe similar local memory usage in the second and third kernels, reported by
8 bytes stack frame and 1024 bytes stack frame.

Another way to determine how much local memory is used, and in addition how often it is used, is
by inspecting the generated PTX code. The compiler option -Mcuda=keepptx can be used to save
the PTX intermediate code to a file with the .ptx extension in the local directory. Local memory will
be declared with the .local mnemonic—for example:

� �

.local .align 8 .b8 __local_depot2 [1024];
�

and will be accessed using ld.local or st.local:

� �

st.local.u32 [%rl6+-4], %r10;
�
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Up to this point we have discussed local memory used by thread private arrays declared in device
code, but local memory can also be used to hold scalar variables declared in device code when the
source code exceeds register limits. Register spill loads and stores are reported along with the stack
frame—for example:

� �

ptxas info : Compiling entry function ’jacobian_v1 ’
for ’sm_20’

ptxas info : Function properties for jacobian_v1
160 bytes stack frame , 164 bytes spill stores ,

176 bytes spill loads
ptxas info : Used 63 registers , 4200+0 bytes smem ,

100 bytes cmem[0], 176 bytes cmem[2],
40 bytes cmem [16]

�

indicates 164 spill stores and 176 spill loads. We should note that spill loads and stores are counted
statically and therefore reflect the number of load-and-store instructions in the generated code (weighted
by the size of each load/store). It does not take into account how often these instructions are executed.
Whether register spill loads and stores occur in a loop or not will not be reflected by these numbers.

To establish the frequency of local memory use, whether from arrays placed in local memory due
to size or dynamic indexing or from register spills, we should resort to the profiler. Note that although
local memory use is best avoided on devices with a compute capability of 1.x, local memory may not
degrade performance on devices of compute capability 2.x and higher, since local memory is cached
in the L1 cache. It is possible for local memory to be contained in L1 if there is no contention for
resources there. The profiler can assist in this assessment via use of the l1_local_load_hit and
associated counters. L1 resources can be enhanced using the cudaFuncSetCacheConfig() and
cudaDeviceSetCacheConfig() functions, which we discuss in the section on L1 cache. In
addition, we can disable use of the L1 cache by global variables, to allow more resources for local
variables using the -Mcuda=noL1.

3.2.5 Constant memory
All CUDA devices have 64 KB of constant memory. Constant memory is read-only by kernels but can
be read and written by the host. Constant memory is cached on-chip, which can be a big advantage on
devices that do not have an L1 cache or do not or are not set up to cache globals, such as when the
compiler option -Mcuda=noL1 is used.

Accesses to different addresses in constant cache by threads in a half-warp (compute capability 1.x)
or warp (compute capability 2.0 and higher) are serialized, since there is only one read port. As a result,
the constant cache is most effective when all threads in a half-warp or warp access the same address. A
good example of its use is for physical constants.

In CUDA Fortran, constant data must be declared in the declaration section of a module, i.e., before
the contains, and can be used in any code in the module or any host code that includes the module.
Our increment example can be written using constant memory:
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1 module simpleOps_m
2 integer , constant :: b
3 contains
4 attributes(global) subroutine increment(a)
5 implicit none
6 integer , intent(inout) :: a(:)
7 integer :: i
8
9 i = threadIdx%x

10 a(i) = a(i)+b
11
12 end subroutine increment
13 end module simpleOps_m
14
15
16 program incrementTest
17 use cudafor
18 use simpleOps_m
19 implicit none
20 integer , parameter :: n = 256
21 integer :: a(n)
22 integer , device :: a_d(n)
23
24 a = 1
25 b = 3
26
27 a_d = a
28 call increment <<<1,n>>>(a_d)
29 a = a_d
30
31 if (any(a /= 4)) then
32 write (*,*) ’**** Program Failed ****’
33 else
34 write (*,*) ’Program Passed ’
35 endif
36 end program incrementTest

where the parameter b has been declared as a constant variable using the constant attribute on line 2.
The kernel no longer uses b as an argument and it does not need to be declared in the host code. Aside
from these changes (simplifications), the code remains the same as the code used in the introduction.

For variables declared in modules, it is very easy to experiment with constant memory. Simply
switching the variable attribute between constant and device will place the variable in constant
and global memories, respectively.
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3.2.5.1 Detecting constant memory use (advanced topic)
As with local memory, constant memory use in kernels can be viewed when we compile via the
-Mcuda=ptxinfo flag, where constant memory use is denoted by various cmem[] values. We
should keep in mind that the compiler makes extensive use of constant memory. The amount of constant
memory used by the compiler depends on the compute capability that is targeted. If we compile this
code targeting a compute capability of 1.0 and if b is declared with the device variable attribute we
obtain:

� �

ptxas info : Compiling entry function ’increment ’ for ’sm_10’
ptxas info : Used 4 registers , 16+16 bytes smem , 4 bytes cmem [14]

�

and if b is declared with the constant variable attribute we obtain:

� �

ptxas info : Compiling entry function ’increment ’ for ’sm_10’
ptxas info : Used 4 registers , 16+16 bytes smem , 16 bytes cmem [0]

�

When we target a compute capability of 2.0 and declare b with the device variable attribute we
obtain:

� �

ptxas info : Compiling entry function ’increment ’ for ’sm_20’
ptxas info : Function properties for increment

0 bytes stack frame , 0 bytes spill stores , 0 bytes spill loads
ptxas info : Used 8 registers , 48 bytes cmem[0], 8 bytes cmem [14]

�

and when we declare b with the constant variable attribute we obtain:

� �

ptxas info : Compiling entry function ’increment ’ for ’sm_20’
ptxas info : Function properties for increment

0 bytes stack frame , 0 bytes spill stores , 0 bytes spill loads
ptxas info : Used 6 registers , 48 bytes cmem[0], 16 bytes cmem [2]

�

On devices of compute capability 2.0 and higher, kernel parameters are stored in constant memory,
designated by cmem[0], which is one reason we see higher constant memory usage compared to
compute capabilities of 1.x (where such parameters are placed in shared memory).

Devices of compute capability 2.0 and higher support the LoaD Uniform (LDU) instruction, which
loads a variable in global memory through the constant cache if the variable is read-only in the kernel,
and if an array, the index is not dependent on the threadIdx variable. This last requirement ensures
that each thread in a warp is accessing the same value, resulting in optimal constant cache use. As a
result, for our increment kernel the constant cache is used for b whether declared in constant memory
with the constant variable attribute or in global memory when declared with the device variable
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attribute. We can verify this by compiling with the -Mcuda=keepptx option and examining the PTX
code. When we use the device variable attribute in the declaration of b, the statement:

� �

ldu.global.u32 %r8, [_simpleops_m_16 ];
�

indicates a uniform load of a 32-bit word in global memory through the constant cache. There are other
uniform loads occurring for kernel parameters, but the _simpleops_m_16 parameter here indicates
loading of user-defined module data, where simpleops_m is the module name. In contrast, when we
use the constant variable attribute when declaring b, the PTX code contains:

� �

ld.const.u32 %r10 , [_simpleops_m_17 ];
�

indicating a load from constant memory. In either case, we get the benefit of constant cache. Because of
the load uniform instruction, explicit use of the constant cache through theconstant variable qualifier
has become less important in performance tuning. In fact, relying on the load uniform instruction is
beneficial for cases where the amount of data would exceed the 64 KB of constant memory reserved
in DRAM. But note that register usage is smaller in this kernel when b is declared as a constant
variable. In cases where register pressure is an issue, it may be beneficial to declare some read-only
variables in constant memory.

3.3 On-chip memory
In this section we discuss various types of on-chip memory. Most of this section is devoted to shared
memory and its use, which we save for last. Before discussing shared memory, we briefly comment on
register usage and, for cards of compute capability 2.0 and higher, L1 cache.

3.3.1 L1 cache
On devices of compute capability 2.x and 3.x, there are 64 KB of on-chip memory per multiprocessor
that can be configured for use between L1 cache and shared memory. On devices with compute capa-
bilities of 2.x, there are two settings, 48 KB shared memory/16 KB L1 cache and 16 KB shared memo-
ry/48 KB L1 cache. On devices of compute capability 3.x, there are three settings, the two just mentioned
as well as the 32 KB shared memory/32 KB L1 cache. By default the 48 KB shared memory setting is
used.

We can configure the shared memory/L1 cache during runtime from the host, either for all
kernels on the device using the runtime function cudaDeviceSetCacheConfig() and on a
per-kernel basis using cudaFuncSetCacheConfig(). The former routine takes one argument,
one of the preferences cudaFuncCachePreferNone, cudaFuncCachePreferShared cor-
responding to 48 KB shared memory and 16 KB L1 cache, cudaFuncCachePreferL1 corre-
sponding to 16 KB shared memory and 48 KB L1 cache, and, on devices of compute capabil-
ity 3.x, cudaFuncCachePreferEqual with 32 KB shared memory and 32 KB L1 cache. The
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cudaFuncSetCacheConfig configuration routine takes the function name for the first argument
and one of the preferences as a second argument. The driver will honor the preferences whenever pos-
sible. The case where this is not honored is when more shared memory is required for a single thread
block than requested by the cache configuration setting, which is why the default setting prefers a larger
shared memory allocation.

The cache configuration requested and used during kernel execution can be verified using the pro-
filer options cacheconfigrequested and cacheconfigexecuted. For example, running the
increment code with these options specified in the profile configuration file, we obtain:

� �

# CUDA_PROFILE_LOG_VERSION 2.0
# CUDA_DEVICE 0 Tesla K20
# CUDA_CONTEXT 1
# TIMESTAMPFACTOR fffff69c52860010
method ,gputime ,cputime ,occupancy ,cacheconfigexecuted ,

cacheconfigrequested
method =[ memcpyHtoD ] gputime =[ 1.440 ] cputime =[ 9.000 ]
method =[ memcpyHtoD ] gputime =[ 0.928 ] cputime =[ 8.000 ]
method =[ increment ] gputime =[ 5.472 ] cputime =[ 521.000 ]

occupancy =[0.125 ]
cacheconfigrequested =[ 0 ]cacheconfigexecuted =[ 0 ]

method =[ memcpyDtoH ] gputime =[ 2.656 ] cputime =[ 60.000 ]
�

where the value of 0 represents cudaFuncCachePreferNone. Values of 1, 2, and
3 correspond to cudaFuncCachePreferShared, cudaFuncCachePreferL1, and
cudaFuncCachePreferEqual, respectively.

It is best practice to change the cache configuration whenever possible as a preprocessing step in
host code before kernels are launched, because changing the configuration can idle kernel execution.

For the Tesla K10, K20, and K20X, the L1 cache is used only for local memory, since variables
that reside in global memory are cached only in L2 cache. For devices of compute capability 2.0, the
L1 cache is used by default for variables in global as well as local memory. As we have seen from the
coalescing discussion for strided access of global memory, it may be advantageous to turn L1 caching
of global loads off in order to avoid 128-byte cache-line loads. This can be done per compilation unit
via the flag -Mcuda=noL1.

3.3.2 Registers
Register memory is thread-private memory that is partitioned among all resident threads on a multi-
processor. All variables declared locally in device routines without the shared variable attribute are
placed either in register or local memory. Scalar thread-private variables are placed in registers if there
is sufficient space, and thread-private arrays may or may not be placed in registers, depending on the
size of the array and how it is addressed. See Section 3.2.4 for more information on what gets placed in
local memory. Because registers are on-chip and local memory is in device DRAM (although it can be
cached on-chip), it is preferable for thread-private variables to reside in registers.
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The number of 32-bit registers per multiprocessor has grown steadily with each generation of devices,
from 8K registers for devices of compute capability 1.0 to 64K registers on devices of compute capa-
bility 3.x. See Appendix A for a description of the register properties for various devices. The num-
ber of registers per multiprocessor can be queried at runtime via the regsPerBlock field of the
cudaDeviceProp derived type.

The number of registers used per thread in a kernel is controlled by the compiler. However, the
programmer can limit the number of registers used in every kernel in a compilation unit by using the
-Mcuda=maxregcount:N compiler option. Limiting the number of registers per thread can increase
the number of blocks that can concurrently reside on a multiprocessor, which by itself can result in better
latency hiding. However, restricting the number of registers can increase register pressure.

Register pressure occurs when there are not enough registers available for a given task. As a result,
registers can spill to local memory. Due to the opposing factors of higher occupancy and register spilling,
some experimentation is often needed to obtain the optimal configuration. Both register and local
memory spill loads and stores for each kernel can be obtained by using the-Mcuda=ptxinfo compiler
option. For example, compiling the constant memory version of the increment kernel, we obtain:

� �

ptxas info : Compiling entry function ’increment ’ for ’sm_20’
ptxas info : Function properties for increment

0 bytes stack frame , 0 bytes spill stores , 0 bytes spill loads
ptxas info : Used 8 registers , 48 bytes cmem[0], 8 bytes cmem [14]

�

indicates that 8 registers are used per thread on this device for this kernel. With a maximum of 1536
threads per multiprocessor for a device of compute capability 2.0 at full occupancy, meaning 1536
threads are resident per multiprocessor, a total of 12,288 registers per multiprocessor would be used, far
less than the 32K registers available. As a result we expect the kernel to run at full occupancy. Note that
register spilling is not necessarily a performance issue if the spilling is contained in the on-chip L1 cache
and is not forced to device memory. See the discussion in Section 3.2.4 for more information on this
issue. In addition to the limits imposed by available registers on a multiprocessor, there are per-thread
limits to the number of registers used: 127 registers per thread for compute capability 1.x, 63 registers
per thread for compute capabilities 2.x and 3.0, and 255 registers per thread for compute capability 3.5.

In addition to information regarding register use at compile time, obtained when we compile
with -Mcuda=ptxinfo, register usage is also provided in the Command Line Profiler with the
regperthread option specified in the configuration file.

The compiler and hardware thread scheduler will schedule instructions as optimally as possible to
avoid register memory bank conflicts. They achieve the best results when the number of threads per
block is a multiple of 64. Other than following this rule, an application has no direct control over these
bank conflicts.

3.3.3 Shared memory
The last on-chip memory we discuss here is shared memory. Unlike register memory and the on-chip
caches, the programmer has complete control over shared memory, deciding how much shared memory
to use, which variables use it, and how it is accessed. Shared memory is allocated per thread block, since
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all threads in the block have access to the same shared memory. Because a thread can access shared
memory that was loaded from global memory by another thread within the same thread block, shared
memory can be used to facilitate global memory coalescing in cases where it would otherwise not be
possible.

Shared memory is declared using the shared variable qualifier in device code. Shared memory can
be declared in several ways inside a kernel, depending on whether the amount of memory is known at
compile time or at runtime. The following code illustrates various methods of using shared memory:

1 ! This code shows how dynamically and statically allocated
2 ! shared memory are used to reverse a small array
3
4 module reverse_m
5 implicit none
6 integer , device :: n_d
7 contains
8 attributes(global) subroutine staticReverse(d)
9 real :: d(:)

10 integer :: t, tr
11 real , shared :: s(64)
12
13 t = threadIdx%x
14 tr = size(d)-t+1
15
16 s(t) = d(t)
17 call syncthreads ()
18 d(t) = s(tr)
19 end subroutine staticReverse
20
21 attributes(global) subroutine dynamicReverse1(d)
22 real :: d(:)
23 integer :: t, tr
24 real , shared :: s(*)
25
26 t = threadIdx%x
27 tr = size(d)-t+1
28
29 s(t) = d(t)
30 call syncthreads ()
31 d(t) = s(tr)
32 end subroutine dynamicReverse1
33
34 attributes(global) subroutine dynamicReverse2(d, nSize)
35 real :: d(nSize)
36 integer , value :: nSize
37 integer :: t, tr
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38 real , shared :: s(nSize)
39
40 t = threadIdx%x
41 tr = nSize -t+1
42
43 s(t) = d(t)
44 call syncthreads ()
45 d(t) = s(tr)
46 end subroutine dynamicReverse2
47
48 attributes(global) subroutine dynamicReverse3(d)
49 real :: d(n_d)
50 real , shared :: s(n_d)
51 integer :: t, tr
52
53 t = threadIdx%x
54 tr = n_d -t+1
55
56 s(t) = d(t)
57 call syncthreads ()
58 d(t) = s(tr)
59 end subroutine dynamicReverse3
60 end module reverse_m
61
62
63 program sharedExample
64 use cudafor
65 use reverse_m
66
67 implicit none
68
69 integer , parameter :: n = 64
70 real :: a(n), r(n), d(n)
71 real , device :: d_d(n)
72 type(dim3) :: grid , tBlock
73 integer :: i, sizeInBytes
74
75 tBlock = dim3(n,1,1)
76 grid = dim3(1,1,1)
77
78 do i = 1, n
79 a(i) = i
80 r(i) = n-i+1
81 enddo
82
83 sizeInBytes = sizeof(a(1))* tBlock%x
84
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85 ! run version with static shared memory
86 d_d = a
87 call staticReverse <<<grid ,tBlock >>>(d_d)
88 d = d_d
89 write (*,*) ’Static case max error:’, maxval(abs(r-d))
90
91 ! run dynamic shared memory version 1
92 d_d = a
93 call dynamicReverse1 <<<grid ,tBlock ,sizeInBytes >>>(d_d)
94 d = d_d
95 write (*,*) ’Dynamic case 1 max error:’, maxval(abs(r-d))
96
97 ! run dynamic shared memory version 2
98 d_d = a
99 call dynamicReverse2 <<<grid ,tBlock ,sizeInBytes >>>(d_d ,n)

100 d = d_d
101 write (*,*) ’Dynamic case 2 max error:’, maxval(abs(r-d))
102
103 ! run dynamic shared memory version 3
104 n_d = n ! n_d declared in reverse_m
105 d_d = a
106 call dynamicReverse3 <<<grid ,tBlock ,sizeInBytes >>>(d_d)
107 d = d_d
108 write (*,*) ’Dynamic case 3 max error:’, maxval(abs(r-d))
109
110 end program sharedExample

This code reverses the data in a 64-element array using shared memory. All of the kernel codes are
very similar; the main difference is how the shared memory arrays are declared and how the kernels are
invoked. If the shared memory array size is known at compile time, as in the staticReverse kernel,
then the array is declared using that value, whether an integer parameter or literal, as is done on line 11
with s(64). In this kernel, the two indices representing the original and reverse order are calculated
on lines 13 and 14, respectively. On line 16, the data are copied from global memory to shared memory.
The reversal is done on line 18, where both indices t and tr are used to copy data from shared memory
to global memory. Before executing line 18, where each thread accesses data in shared memory that
was written by another thread, we need to make sure all threads have completed the loads to shared
memory on line 16. This is accomplished by the barrier synchronization on line 17, syncthreads().
This barrier synchronization occurs between all threads in a thread block, meaning that no thread can
pass this line until all threads in the same thread block have reached it. The reason shared memory is
used in this example is to facilitate global memory coalescing. Optimal global memory coalescing is
achieved for both reads and writes because global memory is always accessed through the index t. The
reversed index tr is only used to access shared memory, which does not have the access restrictions
global memory has for optimal performance. The only performance issue with shared memory is bank
conflicts, which are discussed in the next section.
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The other three kernels in this example use dynamic shared memory, where the amount of shared
memory is not known at compile time and must be specified (in bytes) when the kernel is invoked
in the optional third execution configuration parameter, as is done on lines 93, 99, and 106. The first
dynamic shared memory kernel, dynamicReverse1, declares the shared memory array on line
24 using an assumed-size array syntax. The size is implicitly determined from the third execution
configuration parameter when the kernel is launched. The remainder of the kernel code is identical to
the staticReverse kernel.

We can use dynamic shared memory via automatic arrays, as shown in dynamicReverse2 and
dynamicReverse3. In these cases, the dimension of the dynamic shared memory array is specified
by an integer that is in scope. In dynamicReverse2, the subroutine argument nSize is used on
line 38 to declare the shared memory array size, and in dynamicReverse3 the device variable n_d,
declared in the beginning of the module, is used on line 50 to declare the shared memory array size. Note
that in both these cases the amount of dynamic memory must still be specified in the third parameter of
the execution configuration when the kernel is invoked.

Given these options for declaring dynamic shared memory, which one should be used? If we want
to use multiple dynamic shared memory arrays, especially if they are of different types, we need to
use the automatic arrays as in dynamicReverse2 and dynamicReverse3. If we were to specify
multiple dynamic shared memory arrays using assumed size notation as on line 24, how would the
compiler know how to distribute the total amount of dynamic shared memory among such arrays?
Aside from that factor, the choice is up to the programmer; there is no performance difference between
these methods of declaration.

3.3.3.1 Detecting shared memory usage (advanced topic)
Static shared memory usage per thread block is reported during compilation for each kernel when we
use the -Mcuda=ptxinfo compiler option. For example, compiling our array reversal code targeting
compute capability 3.0, we have:

� �

ptxas info : Compiling entry function ’staticreverse ’ for ’sm_30’
ptxas info : Function properties for staticreverse

0 bytes stack frame , 0 bytes spill stores , 0 bytes spill loads
ptxas info : Used 10 registers , 256+0 bytes smem , 336 bytes cmem [0]

ptxas info : Compiling entry function ’dynamicreverse1 ’ for ’sm_30 ’
ptxas info : Function properties for dynamicreverse1

0 bytes stack frame , 0 bytes spill stores , 0 bytes spill loads
ptxas info : Used 10 registers , 336 bytes cmem [0]

ptxas info : Compiling entry function ’dynamicreverse2 ’ for ’sm_30 ’
ptxas info : Function properties for dynamicreverse2

0 bytes stack frame , 0 bytes spill stores , 0 bytes spill loads
ptxas info : Used 6 registers , 332 bytes cmem [0]

ptxas info : Compiling entry function ’dynamicreverse3 ’ for ’sm_30 ’
ptxas info : Function properties for dynamicreverse3

0 bytes stack frame , 0 bytes spill stores , 0 bytes spill loads
ptxas info : Used 10 registers , 328 bytes cmem [0]

�
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where only the staticReverse kernel indicates 256 bytes of shared memory is reserved. Note that
on devices of compute capability 1.x, static shared memory is also used by the system. So, targeting
devices of compute capability 1.0, we get:

� �

ptxas info : Compiling entry function ’staticreverse ’ for ’sm_10’
ptxas info : Used 4 registers , 272+16 bytes smem , 4 bytes cmem [14]

ptxas info : Compiling entry function ’dynamicreverse1 ’ for ’sm_10’
ptxas info : Used 4 registers , 16+16 bytes smem , 4 bytes cmem [14]

ptxas info : Compiling entry function ’dynamicreverse2 ’ for ’sm_10’
ptxas info : Used 3 registers , 16+16 bytes smem , 4 bytes cmem [14]

ptxas info : Compiling entry function ’dynamicreverse3 ’ for ’sm_10’
ptxas info : Used 4 registers , 16+16 bytes smem , 4 bytes cmem [14]

�

where we observe shared memory use for each kernel.
The Command Line Profiler can report both static and dynamic shared memory use when the options

stasmemperblock anddynsmemperblock are placed in the configuration file. Profiling the array
reversal code in this manner, we get:

� �

# CUDA_PROFILE_LOG_VERSION 2.0
# CUDA_DEVICE 0 Tesla K20
# CUDA_CONTEXT 1
# TIMESTAMPFACTOR fffff69de87d2020
method ,gputime ,cputime ,dynsmemperblock ,stasmemperblock ,occupancy
method =[ memcpyHtoD ] gputime =[ 1.344 ] cputime =[ 9.000 ]
method =[ memcpyHtoD ] gputime =[ 0.928 ] cputime =[ 8.000 ]
method =[ staticreverse ] gputime =[ 5.568 ] cputime =[ 9.000 ]

dynsmemperblock =[ 0 ] stasmemperblock =[ 256 ]
occupancy =[ 0.031 ]

method =[ memcpyDtoH ] gputime =[ 2.560 ] cputime =[ 57.000 ]
method =[ memcpyHtoD ] gputime =[ 0.928 ] cputime =[ 8.000 ]
method =[ memcpyHtoD ] gputime =[ 0.896 ] cputime =[ 7.000 ]
method =[ dynamicreverse1 ] gputime =[ 5.088 ] cputime =[ 9.000 ]

dynsmemperblock =[ 256 ] stasmemperblock =[ 0 ]
occupancy =[ 0.031 ]

method =[ memcpyDtoH ] gputime =[ 2.592 ] cputime =[ 57.000 ]
method =[ memcpyHtoD ] gputime =[ 0.928 ] cputime =[ 8.000 ]
method =[ dynamicreverse2 ] gputime =[ 3.904 ] cputime =[ 10.000 ]

dynsmemperblock =[ 256 ] stasmemperblock =[ 0 ]
occupancy =[ 0.031 ]

method =[ memcpyDtoH ] gputime =[ 2.144 ] cputime =[ 59.000 ]
method =[ memcpyHtoD ] gputime =[ 0.896 ] cputime =[ 8.000 ]
method =[ memcpyHtoD ] gputime =[ 0.928 ] cputime =[ 7.000 ]
method =[ dynamicreverse3 ] gputime =[ 4.544 ] cputime =[ 8.000 ]

dynsmemperblock =[ 256 ] stasmemperblock =[ 0 ]
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occupancy =[ 0.031 ]
method =[ memcpyDtoH ] gputime =[ 2.112 ] cputime =[ 55.000 ]

�

3.3.3.2 Shared memory bank conflicts
To achieve high memory bandwidth for concurrent accesses, shared memory is divided into equally
sized memory modules (banks) that can be accessed simultaneously. Therefore, any memory load or
store of n addresses that spans n distinct memory banks can be serviced simultaneously, yielding an
effective bandwidth that is n times as high as the bandwidth of a single bank.

However, if multiple addresses of a memory request map to the same memory bank, the accesses
are serialized. The hardware splits a memory request that has bank conflicts into as many separate
conflict-free requests as necessary, decreasing the effective bandwidth by a factor equal to the number
of separate memory requests. The one exception here is when all threads in a half-warp or warp address
the same shared memory location, resulting in a broadcast. Devices of compute capability 2.0 and higher
have the additional ability to multicast shared memory accesses, meaning that multiple accesses to the
same location by any number of threads within a warp are served simultaneously.

To minimize bank conflicts, it is important to understand how memory addresses map to memory
banks and how to optimally schedule memory requests. Shared memory banks are organized such that
successive 32-bit words are assigned to successive banks and each bank has a bandwidth of 32 bits per
clock cycle. The bandwidth of shared memory is 32 bits per bank per clock cycle.

For devices of compute capability 1.x, the warp size is 32 threads and the number of banks is 16. A
shared memory request for a warp is split into one request for the first half of the warp and one request
for the second half of the warp. Note that no bank conflict occurs if only one memory location per bank
is accessed by a half-warp of threads.

For devices of compute capability 2.x, the warp size is 32 threads and the number of banks is also
32. A shared memory request for a warp is not split as with devices of compute capability 1.x, meaning
that bank conflicts can occur between threads in the first half of a warp and threads in the second half
of the same warp.

On devices of compute capability 3.x, we have the ability to control the size of the
shared memory banks. By default the shared memory bank size is 32 bits, but it can be
set to 64 bits using the cudaDeviceSetSharedMemConfig() function with the argu-
ment cudaSharedMemBankSizeEightByte. Doing so can help avoid shared memory
bank conflicts when we deal with double-precision data. Other arguments to this command are
cudaSharedMemBankSizeDefault and cudaSharedMemBankSizeFourByte. The func-
tion cudaDeviceGetSharedMemConfig(config) returns in config the current size of the
shared memory banks.

3.4 Memory optimization example: matrix transpose
In this section we present an example that illustrates many of the memory optimization techniques
discussed in this chapter, as well as the performance measurements discussed in the previous chapter. The
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code we want to optimize is a transpose of a matrix of single-precision values that operates out of place,
i.e., the input and output matrices address separate memory locations. For simplicity in presentation,
we consider only square matrices for which the dimensions are integral multiples of 32 on a side.

The host code for all the transpose cases is given in Appendix D.2. The host code performs typical
tasks: allocation and data transfers between host and device, launches and timings of several kernels as
well as validation of their results, and deallocation of host and device memory.

In addition to performing several different matrix transposes, we run a kernel that performs a matrix
copy. The performance of the matrix copy serves as an indication of what we would like the matrix
transpose to achieve. For both matrix copy and transpose, the relevant performance metric is the effective
bandwidth, calculated in GB/s as twice the size of the matrix (in GB), once for reading the matrix and
once for storing, divided by time of execution (in seconds). We call each routine NUM_REP times and
normalize the effective bandwidth accordingly.

All kernels in this study launch thread blocks of dimension 32 × 8, each of which transposes (or
copies) a tile of size 32 × 32. As such, the parameters TILE_DIM and BLOCK_ROWS are set to 32 and
8, respectively. Using a thread block with fewer threads than elements in a tile is advantageous for the
matrix transpose in that each thread transposes several matrix elements, four in our case, and much of
the cost of calculating the indices is amortized over these elements.

One last preliminary issue we should mention is how the thread indices are mapped to array elements.
We use an (x, y) coordinate system for which the origin is in the upper-left corner of the array when
we interpret the array elements. This coordinate system maps seamlessly to the x and y components
of our predefined variables threadIdx, blockIdx, and blockDim. Because the first index in
multidimensional variables varies the quickest in Fortran, as does the x component of the predefined
variables, contiguous elements are along the x-direction in this interpretation. Another choice would
have been to interpret the x and y components of the predefined variables as the row and column of the
matrix, which effectively transposes the problem. There is no performance advantage to either approach;
the same performance bottlenecks appear, but switch from reading to writing global data.

With these above conventions in mind, we look at our first kernel, the matrix copy:

29 attributes(global) subroutine copySharedMem(odata , idata)
30
31 real , intent(out) :: odata(nx,ny)
32 real , intent(in) :: idata(nx,ny)
33
34 real , shared :: tile(TILE_DIM , TILE_DIM)
35 integer :: x, y, j
36
37 x = (blockIdx%x-1) * TILE_DIM + threadIdx%x
38 y = (blockIdx%y-1) * TILE_DIM + threadIdx%y
39
40 do j = 0, TILE_DIM -1, BLOCK_ROWS
41 tile(threadIdx%x, threadIdx%y+j) = idata(x,y+j)
42 end do
43
44 call syncthreads ()
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45
46 do j = 0, TILE_DIM -1, BLOCK_ROWS
47 odata(x,y+j) = tile(threadIdx%x, threadIdx%y+j)
48 end do
49 end subroutine copySharedMem

This copy kernel uses shared memory. Use of shared memory for a copy isn’t necessary, but we use
it here because it mimics the data access pattern used in the optimal transpose kernel. Little, if any,
performance is lost due to shared memory use in the copy.

Data is copied from global to the shared memory tile on line 41 and then from the shared memory
tile back to global memory on line 47. These two statements occur in loops, which are required since
the number of threads in a block is smaller by a factor of TILE_DIM/BLOCK_ROWS than the number
of elements in a tile. Each thread is responsible for copying four elements of the matrix. Note also that
TILE_DIM needs to be used in the calculation of the matrix indexy in line 38 rather thanBLOCK_ROWS
or blockIdx%y, whereas for the calculation of x on line 37, TILE_DIM could be replaced by
blockDim%x. The looping is done in the second dimension rather than the first because each warp
of threads loads contiguous elements of idata from global memory on line 41 and stores contiguous
elements of odata to global memory on line 47. Therefore, both reads from idata and writes to
odata are coalesced.

Note that the synchthreads() call in line 44 is technically not needed, since each element in the
shared memory tile is read and written by the same thread. But the synchthreads() call is included
here to mimic the behavior of its use in the transpose case. The performance of the shared memory copy
kernel for different devices is listed here:

Effective Bandwidth (GB/s)

Routine Tesla C870 Tesla C1060 Tesla C2050 Tesla K10 Tesla K20

copySharedMem 61.2 71.3 101.4 118.8 149.6

We should mention that all devices that support ECC have it enabled in this section.
We start our discussion of the transpose with a very simple kernel:

56 attributes(global) &
57 subroutine transposeNaive(odata , idata)
58
59 real , intent(out) :: odata(ny,nx)
60 real , intent(in) :: idata(nx,ny)
61
62 integer :: x, y, j
63
64 x = (blockIdx%x-1) * TILE_DIM + threadIdx%x
65 y = (blockIdx%y-1) * TILE_DIM + threadIdx%y
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66
67 do j = 0, TILE_DIM -1, BLOCK_ROWS
68 odata(y+j,x) = idata(x,y+j)
69 end do
70 end subroutine transposeNaive

In transposeNaive, the reads from idata are coalesced, but the writes to odata by contiguous
threads now have a stride of 1024 elements or 4096 bytes. This puts us well into the asymptote of
Figure 3.14, and we expect the performance of this kernel to suffer accordingly. The observed perfor-
mance of transposeNaive bears this out:

Effective Bandwidth (GB/s)

Routine Tesla C870 Tesla C1060 Tesla C2050 Tesla K10 Tesla K20

copySharedMem 61.2 71.3 101.4 118.8 149.6

transposeNaive 3.9 3.2 18.5 6.5 54.6

The transposeNaive kernels performs from about 3 to 20 times worse than the copySharedMem
kernel, depending on the architecture.

The remedy for the poor transpose performance is to avoid the large strides by using shared memory.
A depiction of how shared memory is used in the transpose is presented in Figure 3.19. Using a tile
of shared memory in this fashion is similar to the cache-blocking schemes used to optimize CPU
code (see Garg and Sharapov, 2002 or Dowd and Severance, 1998). The kernel code corresponding to
Figure 3.19 is:

79 attributes(global) &
80 subroutine transposeCoalesced(odata , idata)
81
82 real , intent(out) :: odata(ny,nx)
83 real , intent(in) :: idata(nx,ny)
84 real , shared :: tile(TILE_DIM , TILE_DIM)
85 integer :: x, y, j
86
87 x = (blockIdx%x-1) * TILE_DIM + threadIdx%x
88 y = (blockIdx%y-1) * TILE_DIM + threadIdx%y
89
90 do j = 0, TILE_DIM -1, BLOCK_ROWS
91 tile(threadIdx%x, threadIdx%y+j) = idata(x,y+j)
92 end do
93
94 call syncthreads ()
95
96 x = (blockIdx%y-1) * TILE_DIM + threadIdx%x
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97 y = (blockIdx%x-1) * TILE_DIM + threadIdx%y
98
99 do j = 0, TILE_DIM -1, BLOCK_ROWS

100 odata(x,y+j) = tile(threadIdx%y+j, threadIdx%x)
101 end do
102 end subroutine transposeCoalesced

On line 91, a warp of threads reads contiguous data from idata into rows of the shared memory tile.
After recalculating the array indices on line 96 and 97, a column on the shared memory tile is written
to contiguous addresses in odata. Because a thread will write different data to odata than it has read
from idata, the block-wise barrier synchronization syncthreads() on line 94 is required. Adding
to our effective bandwidth table, we have:

Effective Bandwidth (GB/s)

Routine Tesla C870 Tesla C1060 Tesla C2050 Tesla K10 Tesla K20

copySharedMem 61.2 71.3 101.4 118.8 149.6

transposeNaive 3.9 3.2 18.5 6.5 54.6

transposeCoalesced 36.6 23.6 51.6 65.8 90.4

The transposeCoalesced results are an improvement from the transposeNaive case, but
they are still far from the performance of the copySharedMem kernel.

Although using shared memory has improved the transpose performance, the use of shared memory
in thetransposeCoalesced kernel is not optimal. For a shared memory tile of 32×32 elements, all
elements in a column of data are from the same shared memory bank, resulting in a worst-case scenario

idata odata

tile

FIGURE 3.19

Depiction of how a shared memory tile is used to achieve full coalescing of global memory reads and writes.
A warp of threads reads a partial row from idata and writes it to a row of the shared memory tile. The
same warp of threads reads a column of the shared memory tile and writes it to a partial row of odata.
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for memory bank conflicts: reading a column (C2050, K20) or half-column (C870, C1060) of data results
in a 32-way or 16-way bank conflict, respectively. Luckily, the solution for this is simply to pad the first
index of the shared memory array, as in line 114 of the transposeNoBankConflict kernel:

109 attributes(global) &
110 subroutine transposeNoBankConflicts(odata , idata)
111
112 real , intent(out) :: odata(ny,nx)
113 real , intent(in) :: idata(nx,ny)
114 real , shared :: tile(TILE_DIM+1, TILE_DIM)
115 integer :: x, y, j
116
117 x = (blockIdx%x-1) * TILE_DIM + threadIdx%x
118 y = (blockIdx%y-1) * TILE_DIM + threadIdx%y
119
120 do j = 0, TILE_DIM -1, BLOCK_ROWS
121 tile(threadIdx%x, threadIdx%y+j) = idata(x,y+j)
122 end do
123
124 call syncthreads ()
125
126 x = (blockIdx%y-1) * TILE_DIM + threadIdx%x
127 y = (blockIdx%x-1) * TILE_DIM + threadIdx%y
128
129 do j = 0, TILE_DIM -1, BLOCK_ROWS
130 odata(x,y+j) = tile(threadIdx%y+j, threadIdx%x)
131 end do
132 end subroutine transposeNoBankConflicts

Removing the bank conflicts solves most of our performance issues:

Effective Bandwidth (GB/s)

Routine Tesla C870 Tesla C1060 Tesla C2050 Tesla K10 Tesla K20

copySharedMem 61.2 71.3 101.4 118.8 149.6

transposeNaive 3.9 3.2 18.5 6.5 54.6

transposeCoalesced 36.6 23.6 51.6 65.8 90.4

transposeNoBankConflict 45.6 23.6 96.1 94.0 137.6

with the exception that the Tesla C1060 transpose kernel still performs well below the copy kernel.
This gap in performance is due to partition camping and is related to the size of the matrix. A similar
performance degradation can occur for the Tesla C870 for different matrix sizes.
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3.4.1 Partition camping (advanced topic)
The following discussion of partition camping generally applies to devices with a compute capability
less than 2.0, e.g., C870 and C1060. Partition camping can occur in devices of compute capability 2.0
and higher, but it is far less common and the effects are less severe.

Just as shared memory is divided into 16 banks of 32-bit width, global memory is divided into either
six partitions (Tesla C870) or eight partitions (Tesla C1060) of 256-byte width. To use shared memory
effectively on these architectures, threads within a half-warp should access different banks so that these
accesses can occur simultaneously. If threads within a half-warp access shared memory though only
a few banks, bank conflicts occur. To use global memory effectively, concurrent accesses to global
memory by all active warps should be divided evenly among partitions. The term partition camping
is used to describe the case when global memory accesses are directed through a subset of partitions,
causing requests to queue up at some partitions while others go unused, and is analogous to shared
memory bank conflicts.

Coalescing concerns global memory accesses within a half-warp, whereas partition camping concerns
global memory accesses among active half-warps. Since partition camping concerns the way active
thread blocks distributed among multiprocessors behave, the issue of how thread blocks are scheduled
on multiprocessors is important. When a kernel is launched on devices of compute capability 1.x, the
order in which blocks are assigned to multiprocessors is the natural column-major order that they occur
in the blockIdx variable. Initially this assignment occurs in a round-robin fashion. Once maximum
occupancy is reached, additional blocks are assigned to multiprocessors as needed; how quickly and
the order in which blocks complete kernels cannot be determined.

If we return to our matrix transpose and look at how our blocks in our 1024 × 1024 matrices map to
partitions on the Tesla C1060, as depicted in Figure 3.20, we immediately see that partition camping is a
problem. On a Tesla C1060, with eight partitions of 256-byte width, all data in strides of 2048 bytes (or
512 single precision elements) map to the same partition. Any single-precision matrix with an integral
multiple of 512 columns, such as our matrices, will contain columns whose elements map to only one
partition. With tiles of 32 × 32 elements (or 128 × 128 bytes), all the data within the first two columns
of tiles map to the same partition, and likewise for other pairs of tile columns (assuming the matrix is
aligned to a partition segment).

Concurrent blocks will be accessing tiles row-wise in idata, which will be roughly equally dis-
tributed among partitions. However, these blocks will access tiles column-wise in odata, which will
typically access global memory through one or two partitions.

To avoid partition camping, we can pad the matrix just as we did with the shared memory tile. How-
ever, padding by enough columns to eliminate partition camping can be very expensive memory-wise.
Another option that is effective is basically to reinterpret how the components of blockIdx relate to
the matrix.

3.4.1.1 Diagonal reordering
Although the programmer does not have direct control of the order in which blocks are scheduled
(which is determined by the value of the automatic kernel variable blockIdx), the programmer does have
flexibility in how to interpret the components of blockIdx. Given how the components blockIdx
are named, i.e., x and y, we generally assume that these components refer to a Cartesian coordinate
system. This does not need to be the case, however, and we can choose otherwise. Doing so essentially
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FIGURE 3.20

Diagram of how thread blocks (numbers) are assigned to partitions (colors) for the upper-left corner of both
idata and odata. For a 1024×1024 element matrix of single-precision data, all the elements in a column
belong to the same partition on a C1060. Reading values from idata is distributed evenly among active
thread blocks, but groups of 32 thread blocks will write to odata through the same partition.

FIGURE 3.21

Diagram of how thread blocks (numbers) are assigned to partitions (colors) for the upper-left corner of both
idata and odata using a diagonal interpretation of the blockIdx components. Here both reads and writes
are evenly distributed across partitions.

amounts to rescheduling the blocks in software, which is what we are after here: how to reschedule the
blocks so that operations are evenly distributed across partitions for both input and output matrices.

One way to avoid partition camping in both reading from idata and writing to odata is to use
a diagonal interpretation of the components of blockIdx: The y component represents different
diagonal slices of tiles through the matrix, and the x component indicates the distance along each
diagonal. Doing so results in the mapping of blocks, as depicted in Figure 3.21. The kernel that performs
this transformation is:



3.4 Memory optimization example: matrix transpose 101

142 attributes(global) &
143 subroutine transposeDiagonal(odata , idata)
144
145 real , intent(out) :: odata(ny,nx)
146 real , intent(in) :: idata(nx,ny)
147 real , shared :: tile(TILE_DIM+1, TILE_DIM)
148 integer :: x, y, j
149 integer :: blockIdx_x , blockIdx_y
150
151 if (nx==ny) then
152 blockIdx_y = blockIdx%x
153 blockIdx_x = &
154 mod(blockIdx%x+blockIdx%y-2,gridDim%x)+1
155 else
156 x = blockIdx%x + gridDim%x*( blockIdx%y-1)
157 blockIdx_y = mod(x-1,gridDim%y)+1
158 blockIdx_x = &
159 mod((x-1)/ gridDim%y+blockIdx_y -1,gridDim%x)+1
160 endif
161
162 x = (blockIdx_x -1) * TILE_DIM + threadIdx%x
163 y = (blockIdx_y -1) * TILE_DIM + threadIdx%y
164
165 do j = 0, TILE_DIM -1, BLOCK_ROWS
166 tile(threadIdx%x, threadIdx%y+j) = idata(x,y+j)
167 end do
168
169 call syncthreads ()
170
171 x = (blockIdx_y -1) * TILE_DIM + threadIdx%x
172 y = (blockIdx_x -1) * TILE_DIM + threadIdx%y
173
174 do j = 0, TILE_DIM -1, BLOCK_ROWS
175 odata(x,y+j) = tile(threadIdx%y+j, threadIdx%x)
176 end do
177 end subroutine transposeDiagonal

On lines 152 and 153, a mapping from Cartesian to diagonal coordinates is specified for our case of square
matrices. After this mapping is complete, the code is the same as transposeNoBankConflicts
with the exception that all occurrences of blockIdx.x are replaced with blockIdx_x and likewise
for the y component. We can now add a final row to our table of results:
The transposeDiagonal kernel has brought the Tesla C1060 transpose performance close to that
of the copySharedMem kernel. Note that reordering did not help performance on most of the other
devices. The added computation required for the indices actually hurt performance in most cases. The
Tesla K10 does show slight improvement with diagonal reordering, bringing the performance from



102 CHAPTER 3 Optimization

Effective Bandwidth (GB/s)

Routine Tesla C870 Tesla C1060 Tesla C2050 Tesla K10 Tesla K20

copySharedMem 61.2 71.3 101.4 118.8 149.6

transposeNaive 3.9 3.2 18.5 6.5 54.6

transposeCoalesced 36.6 23.6 51.6 65.8 90.4

transposeNoBankConflict 45.6 23.6 96.1 94.0 137.6

transposeDiagonal 44.2 64.3 90.3 110.4 128.7

roughly 80% to 93% of the copySharedMem performance. Diagonal reordering is much more critical
for the Tesla C1060, bringing performance from 33% to 90% of the copySharedMem performance.

There are a few points to remember about partition camping. On cards of compute capability less than
2.0, partition camping is problem-size-dependent. If our matrices were multiples of 386 32-bit elements
per side, we would see partition camping on the C870 and not on the C1060. Partition camping is far
less common and generally less severe on devices of compute capability of 2.0 and higher because the
assignment of blocks to multiprocessors is hashed.

3.5 Execution configuration
Even if a kernel has been optimized so that all global memory accesses are perfectly coalesced, we still
have to deal with the issue that such memory accesses have a latency of several hundred cycles. To
get good overall performance, we have to ensure that there is enough parallelism on a multiprocessor
so that stalls for memory accesses are hidden as much as possible. There are two ways to achieve this
parallelism: through the number of concurrent threads on a multiprocessor and through the number of
independent operations issued per thread. The first of these we call thread-level parallelism and the
second is instruction-level parallelism.

3.5.1 Thread-level parallelism
Thread-level parallelism can be controlled to some degree by the execution configuration specified in
the host code used to launch kernels. In the execution configuration, we specify the number of threads
per block and the number of blocks in the kernel launch. The number of thread blocks that can reside
on a multiprocessor for a given kernel is then an important consideration and can be limited by a variety
of factors, some of which are given in Figure 3.22 for different generations of Tesla cards. For a more
detailed table of such properties, see Appendix A. There is a limit on the number of thread blocks
per multiprocessor, regardless of the thread block size or resource use. This limit is 8 thread blocks
on devices with a compute capabilities of 1.x and 2.x and 16 thread blocks for devices of compute
capability 3.x. There are also limits on the number of threads per block, threads per multiprocessor,
register size, and available shared memory, which can limit the number of concurrent threads.

The metric occupancy is used to help assess the thread-level parallelism of a kernel on a multiproces-
sor. Occupancy is the ratio of the number of active warps per multiprocessor to the maximum number
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Tesla C870
Computer capability 1.0 1.3 2.0 3.5
Max threads/thread block 512 512 1024 1024
Max thread blocks/multiprocessor 8 8 8 16

Max warps/multiprocessor 24 32 48 64
Threads/warp 32 32 32 32
Max threads/multiprocessor 768 1024 1536 2048
32-bit registers/multiprocessor 8K 16K 32K 64K

Tesla K20Tesla C2050Tesla C1060

FIGURE 3.22

Thread block and multiprocessor limits for various CUDA architectures.

of possible active warps. Warps are used in the definition since they are the unit of threads that are
executed simultaneously, but we can think of this metric in terms of threads. A higher occupancy does
not necessarily lead to higher performance, since we can express a fair amount of instruction-level par-
allelism in kernel code. But if we rely on thread-level parallelism to hide latencies, then the occupancy
should not be very small. Occupancy can be determined for all kernel launches by using the Command
Line Profiler, where it is a default option.

To illustrate how choosing various execution configurations can affect performance, we can use a
simple copy code listed in Appendix D.3. The kernels in this code are relatively simple, for example
the first kernel we investigate is:

12 attributes(global) subroutine copy(odata , idata)
13 use precision_m
14 implicit none
15 real(fp_kind) :: odata(*), idata(*), tmp
16 integer :: i
17
18 i = (blockIdx%x-1)* blockDim%x + threadIdx%x
19 tmp = idata(i)
20 odata(i) = tmp
21 end subroutine copy

In using double precision data and targeting a Tesla K20 with the -Mcuda=cc35 compiler option, we
observe the following results:
In this table, the thread block size and effective bandwidth are obtained from the output of the code, and
the occupancy is obtained from the file generated by the Command Line Profiler. We use thread block
sizes that are a multiple of a warp of threads, as we should always do. If we were to launch a kernel
with 33 threads per block, two complete warps per block would be processed, where the results from
all but one thread in the second warp are masked out.

Since the Tesla K20 has maxima of 2048 threads and 16 thread blocks per multiprocessor, kernel
launches with thread block sizes of 32 and 64 cannot achieve full occupancy. The effective bandwidth
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Thread Block Occupancy Effective Bandwidth (GB/s)

32 0.25 96

64 0.5 125

128 1.0 136

256 1.0 137

512 1.0 137

1024 1.0 133

of launches with 32 threads per block size suffer as a result, but even with half occupancy the bandwidth
of the kernel execution with 64 threads per thread block comes close to the maximum observed; full
occupancy is not needed to achieve good performance.

In general, more threads per block do not indicate higher occupancy. If we look at the results on the
Tesla C2050, also with double-precision data, we have:

Thread Block Occupancy Effective Bandwidth (GB/s)

32 0.167 55

64 0.333 82

128 0.667 103

256 1.0 102

512 1.0 103

1024 0.667 98

The Tesla C2050 has maxima of 1536 threads and 8 thread blocks per multiprocessor, so, with a thread
block of 1024 threads, only a single thread block can reside on a multiprocessor at one time, resulting in
two-thirds occupancy. Once again, higher occupancy does not imply better performance, since the thread
block of 128 threads results in two-thirds occupancy but achieves the highest bandwidth of all the runs.

3.5.1.1 Shared memory
Shared memory can be helpful in several situations, such as helping to coalesce or eliminate redundant
access to global memory. However, it also can act as a constraint on occupancy. Our example code
does not use shared memory in the kernel; however, we can determine the sensitivity of performance
to occupancy by changing the amount of dynamically allocated shared memory, as specified in the
third parameter of the execution configuration. By simply increasing this parameter (without modifying
the kernel), it is possible to effectively reduce the occupancy of the kernel and measure its effect on
performance. For example, if we launch the same copy kernel using:

122 call copy <<<grid , threadBlock , 0.9* smBytes >>>(b_d , a_d)
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where smBytes is the size of shared memory per multiprocessor in bytes, then we force there to be
only one concurrent thread block per multiprocessor. Doing so yields the following results on the Tesla
K20 as we add to the previous table:

No Shared Memory Shared Memory

Thread Block Occupancy Bandwidth (GB/s) Occupancy Bandwidth (GB/s)

32 0.25 96 0.016 8

64 0.5 125 0.031 15

128 1.0 136 0.063 29

256 1.0 137 0.125 53

512 1.0 137 0.25 91

1024 1.0 133 0.5 123

The results under the No Shared Memory columns are those from the previous table of K20 results. The
occupancy under the Shared Memory column indicates that only one thread block resides at any one
time on a multiprocessor when the shared memory is used, and the bandwidth numbers indicate that
performance degrades as we would expect. This exercise prompts the question: What can be done in
more complicated kernels where either register or shared memory use limits the occupancy? Do we have
to put up with poor performance in such cases? The answer is no if we use instruction-level parallelism.

3.5.2 Instruction-level parallelism
We have already seen an example of instruction-level parallelism in this book. In the transpose example
of Section 3.4, a shared-memory tile of 32 × 32 was used in most of the kernels. But because the
maximum number of threads per block is 512 on certain devices, it is not possible to launch a kernel
with 32 ×32 threads per block. Instead, we have to use a thread block with fewer threads and have each
thread process multiple elements. In the transpose case, blocks of 32 × 8 threads were launched, with
each thread processing four elements.

For the example in this section, we can modify the copy kernel to take advantage of instruction-level
parallelism as follows:

27 attributes(global) subroutine copy_ILP(odata , idata)
28 use precision_m
29 implicit none
30 real(fp_kind) :: odata(*), idata(*), tmp(ILP)
31 integer :: i,j
32
33 i = (blockIdx%x-1)* blockDim%x*ILP + threadIdx%x
34
35 do j = 1, ILP
36 tmp(j) = idata(i+(j-1)* blockDim%x)
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37 enddo
38
39 do j = 1, ILP
40 odata(i+(j-1)* blockDim%x) = tmp(j)
41 enddo
42 end subroutine copy_ILP

where the parameter ILP is set to 4. In this kernel, each thread copies ILP array elements, so a thread
block of blockDim%x threads will copy ILP*blockDim%x elements. In addition to having each
thread copy multiple elements, we group or batch all the loads together in the loop from lines 35–37
through use of a thread-private array tmp(ILP), which resides in register memory. The reason we do
this load batching is because in CUDA a load command will not block further independent execution,
but the first use of the data requested by a load will block until that load completes. The term load-use
separation is used to describe the amount of time or the number of instructions between when a load
is issued and when the requested data is used. The larger the load-use separation, the better in terms of
hiding load latencies. By load batching, as is done in the loop from lines 35–37, we can have ILP load
requests in flight per thread. We have increased the load-use separation of the first load by the other
ILP-1 loads issued in the loop.

If we once again use dynamically allocated shared memory to restrict the occupancy to a single block
per multiprocessor, we can append the results for ILP=4 to our table:

No Shared Memory Shared Memory

No ILP ILP=4

Thread Block Occupancy Bandwidth Occupancy Bandwidth Bandwidth

32 0.25 96 0.016 8 26

64 0.5 125 0.031 15 50

128 1.0 136 0.063 29 90

256 1.0 137 0.125 53 125

512 1.0 137 0.25 91 140

1024 1.0 133 0.5 123 139

Here we see greatly improved performance for low levels of occupancy, approximately a factor of
three better than the kernel that does not use instruction-level parallelism. The use of instruction-level
parallelism essentially increases the effective occupancy by a factor equal to ILP. For example, a block
of 128 threads (occupancy 1/16) obtains a bandwidth of 90 GB/s when ILP=4, similar to the 91 GB/s
obtained with a block of 512 threads (1/4 occupancy) when no instruction-level parallelism is used and
similar to the 96 GB/s obtained when a block of 32 threads with no shared memory is used (also 1/4
occupancy).
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Table 3.2 Native arithmetic throughput given in operations per clock cycle per multiprocessor.
For a warp of 32 threads, one instruction corresponds to 32 operations, so the instruction
throughput is 1/32 the operation throughput. The entry MI implies the operation gets translated
to multiple instructions.

Compute Capability

Operations 1.0 1.3 2.0 3.0 3.5

32-bit iand(), ieor(), ior() 8 8 32 160 160

32-bit ishft() 8 8 16 32 64

32-bit integer add, compare 10 10 32 160 160

32-bit integer multiply, multiply-add MI MI 16 32 32

32-bit floating-point add, multiply, multiply-add 8 8 32 192 192

32-bit floating-point reciprocal, reciprocal square root 2 2 4 32 32

64-bit floating-point add, multiply, multiply-add – 1 16* 8 64

*Throughput is lower for Geforce GPUs.

The approach of using a single thread to process multiple elements of a shared memory array can be
beneficial even if occupancy is not an issue. This is because some operations common to each element
can be performed by the thread once, amortizing the cost over the number of shared memory elements
processed by the thread. We observe that at a quarter and half occupancy, the results for ILP=4 surpass
those at full occupancy when shared memory isn’t used to restrict the number of thread blocks per
multiprocessor.

One drawback of instruction-level parallelism is that the thread-private arrays like tmp(ILP) con-
sume registers and consequently can further add to register pressure. As a result, how much instruction-
level parallelism to use is a balancing act, and some experimentation is generally needed to get optimal
results.

3.6 Instruction optimization
Up to this point, we have addressed optimization from the perspective of data movement, both between
the host and device and within the device. We have also spoken about ensuring that there is enough
parallelism exposed to keep the device busy, either through thread-level parallelism (execution config-
uration and occupancy) or though instruction-level parallelism. When a code is not memory bound and
there is sufficient parallelism exposed on the device, then we need to address the instruction throughput
of kernels in order to increase performance.

The arithmetic throughput of various native instructions on devices of different compute capabilities
is listed in Table 3.2. (A more complete version of this table can be found in the CUDA C Programming
Guide.) Aside from type conversions, other instructions map to multiple native instructions, with the
exception of certain device intrinsics.
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3.6.1 Device intrinsics
CUDA Fortran allows access to many of the built-in device functions through the use of thecudadevice
module in device code. A full list of the built-in functions available to CUDA Fortran is included in
the CUDA Fortran Programming and Reference Guide. Here we briefly discuss as few classes of these
functions.

3.6.1.1 Directed rounding
Directed rounding in CUDA is available through additional instructions rather than by setting a rounding
mode. The suffixes _ru, _rd, _rn, and _rz imply rounding upward, downward, to the nearest even,
and to zero. For example, 32-bit and 64-bit floating-point addition functions are available in various
rounding modes using __fadd_[rn,rz,ru,rd] and __dadd_[rn,rz,ru,rd].

3.6.1.2 C intrinsics
There are some C intrinsics available through thecudadevicemodule that are not available in Fortran.
In particular, sincos(x, s, c) calculates both sine and cosine of the argument x. This function
nearly doubles the throughput relative to calling sine and cosine separately, without any loss of precision.

3.6.1.3 Fast math intrinsics
CUDA has a set of fast but less accurate intrinsics for 32-bit floating-point data that can be enabled
per compilation unit through the -Mcuda=fastmath compiler option or selectively by using the
cudadevice module and explicitly calling __fdividef(x,y), __sinf(x), __cosf(x),
__tanf(x), __sincosf(x,s,c), __logf(x), __log2f(x), __log10f(x), __expf(x),
__exp10f(x), and __powf(x,y).

3.6.2 Compiler options
We have already discussed the compiler option -Mcuda=fastmath used to invoke faster but less
accurate intrinsics for 32-bit floating-point data. There are some other compiler options that affect
instruction throughput.

The option -Mcuda=nofma toggles the use of fusing multiply-add instructions. If we compile the
simple example code:

1 module mfa_m
2 contains
3 attributes(global) subroutine k(a, b, c)
4 implicit none
5 real :: a, b, c
6 c = a*b+c
7 end subroutine k
8 end module mfa_m
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and dump the generated PTX code via the -Mcuda=keepptx option, the PTX code generated for
compute capability 1.x contains the instruction:

� �

mad.f32 %f4, %f2, %f3, %f1;
�

whereas the PTX generated for compute capabilities 2.0 and higher contains the instruction:

� �

fma.rn.f32 %f4, %f2, %f3, %f1;
�

The MAD and FMA both combine the multiply and add operations into a single instruction, but they
do so very differently. The MAD instruction truncates the mantissa of the product prior to its use in the
addition, whereas the FMA instruction is an IEEE-754(2008)-compliant fused-multiply add instruction
where the full-width product is used in the addition, followed by a single rounding step. Contrast this
to the case where -Mcuda=nofma is specified, where for all targeted compute capabilities the PTX
contains the two instructions:

� �

mul.rn.f32 %f4, %f2, %f3;
add.f32 %f5, %f1, %f4;

�

The MAD or FMA instructions will execute faster than separate MUL and ADD instructions because
there is dedicated hardware for those operations. But because the MUL rounds to the nearest even
versus the truncation of the intermediate result in MAD, on devices of compute capability 1.x separate
multiplication and addition will generally be more accurate than MAD. On devices of compute capability
2.0 and higher, however, the lack of any truncation or rounding of the product prior to the addition in
FMA means that the FMA will in general yield a more accurate result than separate MUL and ADD
instructions.

The option -Mcuda=[no]flushz controls single-precision denormals support. Code compiled
with -Mcuda=flushz flushes denormals to zero and will generally execute faster than code with
-Mcuda=noflushz where denormals are supported. The compiler option -Mcuda=fastmath
implies -Mcuda=flushz. On devices of compute capability 1.x, denormals are not supported and
-Mcuda=flushz is implied. On devices of compute capability 2.0 and higher, denormals are sup-
ported and are used by default.

3.6.3 Divergent warps
Another instruction optimization is minimizing the number of divergent warps. Consider the following
segment of device code:
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1 i = blockDim%x*( blockIdx%x-1) + threadIdx%x
2 if (mod(i,2) == 0) then
3 x(i) = 0
4 else
5 x(i) = 1
6 endif

which sets x(i) to zero or one if the index i is even or odd. Because a warp of threads executes in
tandem, if a branch of a conditional is satisfied by any thread in a warp, all threads in a warp must
execute that branch. The various execution paths are serialized and the instruction count per thread
increases accordingly. The results for threads that do not satisfy the branch are effectively masked out,
but the performance implications are that every thread in a warp executes every branch that is satisfied
by one thread in the warp. In our example, because half the threads in a warp satisfy each branch,
all threads execute both branches. The performance penalty is not severe for this simple example,
but if there are many branches to an if or case construct or multiple levels of nesting of such
control flow statements, warp divergence can become a problem. On the other hand, if a condition
evaluates uniformly over a warp of threads, then at most a single branch is executed, as in the following
example:

1 i = blockDim%x*( blockIdx%x-1) + threadIdx%x
2 if (mod((i-1)/ warpsize ,2) == 0) then
3 x(i) = 0
4 else
5 x(i) = 1
6 endif

which sets x(i) to 0 or 1 if it belongs to an even or odd warp, respectively. Here each thread only
executes one branch.

3.7 Kernel loop directives
Although not strictly a performance optimization technique, kernel loop directives, or CUF kernels,
can be used to simplify programming of certain operations on the device. These directives instruct the
compiler to generate kernels from a region of host code consisting of tightly nested loops. Essentially,
kernel loop directives allow us to inline kernels in host code.

We have used an array increment example extensively in this book. The CUF kernel version of the
increment code is:

1 program incrementTest
2 implicit none
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3 integer , parameter :: n = 1024*1024
4 integer :: a(n), i, b
5 integer , device :: a_d(n)
6 integer , parameter :: tPB = 256
7
8 a = 1
9 b = 3

10
11 a_d = a
12
13 !$cuf kernel do <<<*,tPB >>>
14 do i = 1, n
15 a_d(i) = a_d(i) + b
16 enddo
17
18 a = a_d
19
20 if (any(a /= 4)) then
21 write (*,*) ’**** Program Failed ****’
22 else
23 write (*,*) ’Program Passed ’
24 endif
25 end program incrementTest

In this code there is no kernel contained in the module. In place of an explicit device routine is the
directive on line 13 that instructs the compiler to automatically generate a kernel from the do loop
on lines 14–17. An execution configuration is provided on line 13, indicating that a thread block of
tPB threads be used when launching the kernel. The * specified for the first execution configuration
parameter leaves the compiler free to calculate the number of thread blocks to launch in order to carry
out the operation in the loop. The execution configuration could have been specified as <<<*,*>>>,
in which case the compiler would choose the thread block size as well as the number of thread blocks
to launch. We can determine what execution configuration parameters are used in a CUF kernel launch
from output of the Command Line Profiler when gridsize and threadblocksize are specified
in the configuration file:

� �

# CUDA_PROFILE_LOG_VERSION 2.0
# CUDA_DEVICE 0 Tesla K20
# CUDA_CONTEXT 1
# TIMESTAMPFACTOR fffff68da82e00f0
method ,gputime ,cputime ,gridsizeX ,gridsizeY ,threadblocksizeX ,

threadblocksizeY ,threadblocksizeZ ,occupancy
method =[ memcpyHtoD ] gputime =[ 1250.176 ] cputime =[ 1593.000 ]
method =[ incrementtest_14_gpu ]

gputime =[ 67.264 ] cputime =[ 26.000 ]
gridsize =[ 4096, 1 ] threadblocksize =[ 256, 1, 1 ]
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occupancy =[ 1.000 ]
method =[ memcpyDtoH ] gputime =[ 2111.168 ] cputime =[ 3198.000 ]

�

where an execution configuration of <<<4096,256>>> was used to launch the automatically gener-
ated kernel incrementtest_14_gpu.

Data management in code using CUF kernels is performed explicitly. Arrays on the device are
declared with the device attribute, as on line 5, and host-to-device and device-to-host data transfers
are explicitly performed on lines 11 and 18, respectively. The scalar variable b is a host variable that is
passed by value to the generated kernel.

The two-dimensional version of our increment example using a CUF kernel is:

1 program incrementTest
2 implicit none
3 integer , parameter :: n = 4*1024
4 integer :: a(n,n), i, j, b
5 integer , device :: a_d(n,n)
6
7 a = 1
8 b = 3
9

10 a_d = a
11
12 !$cuf kernel do (2) <<< (*,*), (32,8) >>>
13 do j = 1, n
14 do i = 1, n
15 a_d(i,j) = a_d(i,j) + b
16 enddo
17 enddo
18
19 a = a_d
20
21 if (any(a /= 4)) then
22 write (*,*) ’**** Program Failed ****’
23 else
24 write (*,*) ’Program Passed ’
25 endif
26 end program incrementTest

In this case the do (2) specified on the directive indicates that the generated kernel will map to the two
following loops. Multidimensional thread blocks and grids specified by the execution configuration in
the directive map to the nested loops in an innermost to outermost fashion. For example, for the thread
block of 32 × 8, the predefined kernel variable threadIdx%x will run from 1 to 32 and map to the
i index, and threadIdx%y will run from 1 to 8 and map to the j index. Rather than specifying the
thread block size, we could have also used <<<(*,*),(*,*)>>> or even <<<*,*>>> and have the
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compiler choose the thread block and grid size. Using single asterisks for the execution configuration
would still result in both loops being mapped to the kernel due to the do (2) specification. Without
the (2) specified after the do, only the outer loop will be mapped to threadIdx%x and the generated
kernel will contain the loop over i.

3.7.1 Reductions in CUF kernels
One area where CUF kernels are very beneficial is in performing reductions. Efficient reductions in
CUDA are not trivial to write, as we will see in the Monte Carlo case study. We need to reduce data both
within and across thread blocks. CUF kernels do this automatically for you, as in the following code.

1 program reduce
2 implicit none
3 integer , parameter :: n = 1024*1024
4 integer :: i, aSum = 0
5 integer , device :: a_d(n)
6 integer , parameter :: tPB = 256
7
8 a_d = 1
9

10 !$cuf kernel do <<<*,tPB >>>
11 do i = 1, n
12 aSum = aSum + a_d(i)
13 enddo
14
15 if (aSum /= n) then
16 write (*,*) ’**** Program Failed ****’
17 else
18 write (*,*) ’Program Passed ’
19 endif
20 end program reduce

In this code the variable aSum is a scalar variable declared on the host. As such, the compiler knows
to perform a reduction on the device and place the result on the host variable. This particular example
performs a sum reduction, but other types of reductions can be performed.

3.7.2 Streams in CUF kernels
Up to this point we have only used the first two execution parameters in the directive for CUF kernels.
We can also specify a stream in which the CUF kernel will be launched by specifying a stream ID
as an optional parameter. This can be accomplished in two ways. The first is as a fourth execution
configuration parameter, for example:

!$cuf kernel do <<< *,*,0,streamID >>>
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with 0 as the third parameter. We can also specify the stream ID as a third parameter with the stream
keyword:

!$cuf kernel do <<< *,*,stream=streamID >>>

3.7.3 Instruction-level parallelism in CUF kernels
In Section 3.5.2 we saw how it was possible to use instruction-level parallelism to hide latencies. We
essentially had each thread process multiple elements of an array. We can achieve the same effect in
CUF kernels by explicitly specifying thread block and grid parameters that are not sufficient to cover all
elements of the array. The compiler will then generate a kernel where by each thread processes multiple
elements. For example, if we return to our first CUF kernel code and explicitly specify the grid size in
addition to the block size on the directive, we have:

1 program ilp
2 implicit none
3 integer , parameter :: n = 1024*1024
4 integer :: a(n), i, b
5 integer , device :: a_d(n)
6 integer , parameter :: tPB = 256
7
8 a = 1
9 b = 3

10
11 a_d = a
12
13 !$cuf kernel do <<<1024,tPB >>>
14 do i = 1, n
15 a_d(i) = a_d(i) + b
16 enddo
17
18 a = a_d
19
20 if (any(a /= 4)) then
21 write (*,*) ’**** Program Failed ****’
22 else
23 write (*,*) ’Program Passed ’
24 endif
25 end program ilp

Here the 1024 blocks of 256 threads cannot processes the 10242 elements if each thread processes
a single element, so the compiler generates a loop that results in each thread processing four array
elements.
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There are many configurations in which multiple GPUs can be used by an application based on the
number of host threads launched and whether or not resources are distributed across multiple compute
nodes, as in a cluster. CUDA is compatible with any host threading model, such as OpenMP and MPI,
and each host thread can access either single or multiple GPUs. In this chapter we explore two common
scenarios: using multiple GPUs from a single host thread and using MPI where each MPI process uses
a separate GPU. We discuss these two multi-GPU approaches in the following sections.

4.1 CUDA multi-GPU features
The CUDA 4.0 toolkit introduced a greatly simplified model for multi-GPU programming. Prior to this
release, management of multiple GPUs from a single host thread required use of the driver API’s push
and pop context functions. As of CUDA 4.0, one does not have to deal with contexts explicitly, since
switching to another device is simply done with cudaSetDevice(). All CUDA calls are issued to
the current GPU, and cudaSetDevice() sets the current GPU. A simple example of its use is in the
following code that assigns values to arrays on different devices:

1 module kernel
2 contains
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3 attributes(global) subroutine assign(a, v)
4 implicit none
5 real :: a(*)
6 real , value :: v
7 a(threadIdx%x) = v
8 end subroutine assign
9 end module kernel

10
11 program minimal
12 use cudafor
13 use kernel
14 implicit none
15 integer , parameter :: n=32
16 real :: a(n)
17 real , device , allocatable :: a0_d(:), a1_d (:)
18 integer :: nDevices , istat
19
20 istat = cudaGetDeviceCount(nDevices)
21 if (nDevices < 2) then
22 write (*,*) ’This program requires at least two GPUs’
23 stop
24 end if
25
26 istat = cudaSetDevice (0)
27 allocate(a0_d(n))
28 call assign <<<1,n>>>(a0_d , 3.0)
29 a = a0_d
30 deallocate(a0_d)
31 write (*,*) ’Device 0: ’, a(1)
32
33 istat = cudaSetDevice (1)
34 allocate(a1_d(n))
35 call assign <<<1,n>>>(a1_d , 4.0)
36 a = a1_d
37 deallocate(a1_d)
38 write (*,*) ’Device 1: ’, a(1)
39 end program minimal

The kernel code used to assign values in lines 3–8 is no different than kernel code for single GPU
use; all of the differences between single- and multi-GPU code occurs in host code. The declaration of
device arrays on line 17 uses the allocatable variable attribute. Device arrays that are not declared
with the allocatable attribute are implicitly allocated on the default device (device 0). To declare
arrays intended to reside on other devices, the allocation must be done after the current device is set to
the appropriate device; hence the variable attribute allocatable is needed. Lines 20–24 ensure that
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there are at least two CUDA-capable GPUs on the system and terminate the program if that is not the
case.

The current device is set to device 0 on line 26. This is not necessary since the default device is
0, but we include it for clarity. In this code, the allocation, kernel launch, device-to-host transfer, and
deallocation of device data on lines 27–30 all require that the current device be set to the device where
the array a0_d resides. On lines 34–37, similar operations are performed with a device array allocated
on device 1.

To compile this code we must use the CUDA 4.0 or newer libraries, which is the case for recent
compiler versions, so compilation and execution of this code are as simple as:

� �

% pgf90 minimal.cuf -o minimal
% ./ minimal
Device 0: 3.000000
Device 1: 4.000000

�

4.1.1 Peer-to-peer communication
Up to this point we have discussed multi-GPU programming whereby the GPUs operate independently
using local data. If data from one GPU is needed by another, one would have to stage the transfer
through the host using two transfers, one device-to-host transfer from the GPU where the data resides,
followed by a host-to-device transfer to the destination GPU.

CUDA permits peer-to-peer access under certain conditions where such transfers are not staged
through the CPU. With peer-to-peer access enabled between two devices, we can transfer data between
GPUs as simply as we can transfer data between host and device:

a1_d = a0_d

Not only is the coding easier in this case, but there can be significant performance gains as such direct
transfers occur across the PCIe bus without any interaction from the host (aside from initiating the
transfer), as depicted on the left of Figure 4.1. In addition to direct transfers, it is possible for a kernel
executing on one GPU to access data from another GPU, a feature called direct access. All of this is
made possible by a feature introduced in CUDA 4.0 called Unified Virtual Addressing, or UVA. In UVA,
the host and all GPU memories are combined into a single virtual address space, where each device’s
memory occupies a contiguous set of addresses in this virtual space. Based on the value of the virtual
address for a given variable, the runtime is able to determine where the data resides.

4.1.1.1 Requirements for peer-to-peer communication
There are several requirements that must be met to use peer-to-peer features. Aside from using a CUDA
Toolkit of version 4.0 or newer, the generated code must target a compute capability of 2.0 or higher.
Additionally, the operating system must be 64-bit, and the pair or pairs of GPUs to perform peer-to-peer
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FIGURE 4.1

Depiction of direct transfer, left, and direct access, right, via peer-to-peer communication.

transfers must be of the same generation and located on the same I/O Hub (IOH) chipset. This last
requirement might not be as readily verified as the others, but we can use the peer-to-peer API to
determine which GPUs are capable of peer access with each other, as is done in the following code:

1 program checkP2pAccess
2 use cudafor
3 implicit none
4 integer , allocatable :: p2pOK (:,:)
5 integer :: nDevices , i, j, istat
6 type (cudaDeviceProp) :: prop
7
8 istat = cudaGetDeviceCount(nDevices)
9 write(*,"(’Number of CUDA -capable devices: ’, i0 ,/)") &

10 nDevices
11
12 do i = 0, nDevices -1
13 istat = cudaGetDeviceProperties(prop , i)
14 write(*,"(’Device ’, i0, ’: ’, a)") i, trim(prop%name)
15 enddo
16 write (*,*)
17
18 allocate(p2pOK (0: nDevices -1, 0:nDevices -1))
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19 p2pOK = 0
20
21 do j = 0, nDevices -1
22 do i = j+1, nDevices -1
23 istat = cudaDeviceCanAccessPeer(p2pOK(i,j), i, j)
24 p2pOK(j,i) = p2pOK(i,j)
25 end do
26 end do
27
28 do i = 0, nDevices -1
29 write(*,"(3x,i3)", advance=’no’) i
30 enddo
31 write (*,*)
32
33 do j = 0, nDevices -1
34 write(*,"(i3)", advance=’no’) j
35 do i = 0, nDevices -1
36 if (i == j) then
37 write(*,"(2x,’-’,3x)", advance=’no’)
38 else if (p2pOK(i,j) == 1) then
39 write(*,"(2x, ’Y’,3x)",advance=’no’)
40 else
41 write(*,"(6x)",advance=’no’)
42 end if
43 end do
44 write (*,*)
45 end do
46 end program checkP2pAccess

In this code, after listing all the CUDA-capable devices in the loop from lines 12–15, the code performs
a double-nested loop in lines 21–26 that evaluates whether GPUs can access each others’ memories.

21 do j = 0, nDevices -1
22 do i = j+1, nDevices -1
23 istat = cudaDeviceCanAccessPeer(p2pOK(i,j), i, j)
24 p2pOK(j,i) = p2pOK(i,j)
25 end do
26 end do

The function cudaDeviceCanAccessPeer() on line 23 determines if device i is capable of
accessing the memory of device j and sets p2pOK(i,j) to either 1 or 0 if this is possible or
not, respectively. Although there is a directionality of transfer implied by this function, any of the
restrictions that would prevent peer access do not relate to the direction of transfer. In essence, the
cudaDeviceCanAccessPeer() call can be interpreted as generally determining whether or not
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peer access is possible between the devices specified in the last two arguments. It is for this reason that
the loop for i on line 22 is set up to determine accessibility when i>j, and line 24 applies the result to
the cases where j>i.

The remainder of the code prints out a matrix reflecting peer-to-peer accessibility. On a node with
two Tesla S2050 systems (each Tesla S2050 contains four GPUs) connected to the same IOH chipset,
we have:

� �

% pgf90 p2pAccess.cuf -o p2pAccess
% ./ p2pAccess
Number of CUDA -capable devices: 8

Device 0: Tesla S2050
Device 1: Tesla S2050
Device 2: Tesla S2050
Device 3: Tesla S2050
Device 4: Tesla S2050
Device 5: Tesla S2050
Device 6: Tesla S2050
Device 7: Tesla S2050

0 1 2 3 4 5 6 7
0 - Y Y Y Y Y Y Y
1 Y - Y Y Y Y Y Y
2 Y Y - Y Y Y Y Y
3 Y Y Y - Y Y Y Y
4 Y Y Y Y - Y Y Y
5 Y Y Y Y Y - Y Y
6 Y Y Y Y Y Y - Y
7 Y Y Y Y Y Y Y -

�

which shows that each GPU is capable of accessing the other’s memory. It is important to remember
that device ordering is zero-based to be compatible with the underlying CUDA C runtime.

If we have a code that requires peer access between all GPUs, we can use the environment variable
CUDA_VISIBLE_DEVICES to enumerate which devices are available to CUDA programs and in what
order. For example, if we continue in the previous shell:

� �

% export CUDA_VISIBLE_DEVICES =2,4,1,3
% ./ p2pAccess
Number of CUDA -capable devices: 4

Device 0: Tesla S2050
Device 1: Tesla S2050
Device 2: Tesla S2050
Device 3: Tesla S2050



4.1 CUDA multi-GPU features 121

0 1 2 3
0 - Y Y Y
1 Y - Y Y
2 Y Y - Y
3 Y Y Y -

�

Recall that the Tesla K10 is essentially two devices in a single form factor. If we run this code on a
system with two Tesla K10s in it, we obtain:

� �

% pgf90 p2pAccess.cuf -o p2pAccess
% ./ p2pAccess
Number of CUDA -capable devices: 4

Device 0: Tesla K10.G1.8GB
Device 1: Tesla K10.G1.8GB
Device 2: Tesla K10.G2.8GB
Device 3: Tesla K10.G2.8GB

0 1 2 3
0 - Y
1 Y -
2 - Y
3 Y -

�

Devices 0 and 1 belong to one K10, and devices 2 and 3 belong to the other. Whereas the two devices
within a K10 are peer-to-peer accessible with each other, on this particular system the two K10s reside
on different IOH chipsets and do not have peer access with each other.

In addition to using the CUDA API to determine which pairs of cards in a system are capable of
peer-to-peer communication, the Linux command /sbin/lspci -tv can be used to print the PCIe
tree.

4.1.2 Peer-to-peer direct transfers
We begin our discussion of peer-to-peer direct transfers using the following code that copies data from
an array from one device to another using three different methods: transfer via assignment, which
implicitly uses cudaMemcpy(); transfer via cudaMemcpyPeer() with peer access enabled, and
transfer via cudaMemcpyPeer() with peer access disabled. The code also times the transfers twice,
using events on each device. The code is listed here, followed by a discussion:

1 program directTransfer
2 use cudafor
3 implicit none
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4 integer , parameter :: N = 4*1024*1024
5 real , pinned , allocatable :: a(:), b(:)
6 real , device , allocatable :: a_d(:), b_d(:)
7
8 ! these hold free and total memory before and after
9 ! allocation , used to verify allocation is happening

10 ! on proper devices
11 integer(int_ptr_kind ()), allocatable :: &
12 freeBefore (:), totalBefore (:), &
13 freeAfter (:), totalAfter (:)
14
15 integer :: istat , nDevices , i, accessPeer , timingDev
16 type (cudaDeviceProp) :: prop
17 type (cudaEvent) :: startEvent , stopEvent
18 real :: time
19
20 ! allocate host arrays
21 allocate(a(N), b(N))
22 allocate(freeBefore (0: nDevices -1), &
23 totalBefore (0: nDevices -1))
24 allocate(freeAfter (0: nDevices -1), &
25 totalAfter (0: nDevices -1))
26
27 ! get device info (including total and free memory)
28 ! before allocating a_d and b_d on devices 0 and 1
29 istat = cudaGetDeviceCount(nDevices)
30 if (nDevices < 2) then
31 write (*,*) ’Need at least two CUDA capable devices ’
32 stop
33 endif
34 write(*,"(’Number of CUDA -capable devices: ’, i0 ,/)") &
35 nDevices
36 do i = 0, nDevices -1
37 istat = cudaGetDeviceProperties(prop , i)
38 istat = cudaSetDevice(i)
39 istat = cudaMemGetInfo(freeBefore(i), totalBefore(i))
40 enddo
41 istat = cudaSetDevice (0)
42 allocate(a_d(N))
43 istat = cudaSetDevice (1)
44 allocate(b_d(N))
45
46 ! print out free memory before and after allocation
47 write(*,"(’Allocation summary ’)")
48 do i = 0, nDevices -1
49 istat = cudaGetDeviceProperties(prop , i)
50 write(*,"(’ Device ’, i0, ’: ’, a)") &
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51 i, trim(prop%name)
52 istat = cudaSetDevice(i)
53 istat = cudaMemGetInfo(freeAfter(i), totalAfter(i))
54 write(*,"(’ Free memory before: ’, i0, &
55 ’, after: ’, i0, ’, difference: ’,i0 ,/)") &
56 freeBefore(i), freeAfter(i), &
57 freeBefore(i)-freeAfter(i)
58 enddo
59
60 ! check whether devices 0 and 1 can use P2P
61 if (nDevices > 1) then
62 istat = cudaDeviceCanAccessPeer(accessPeer , 0, 1)
63 if (accessPeer == 1) then
64 write (*,*) ’Peer access available between 0 and 1’
65 else
66 write (*,*) ’Peer access not available between 0 and 1’
67 endif
68 endif
69
70 ! initialize
71 a = 1.0
72 istat = cudaSetDevice (0)
73 a_d = a
74
75 ! perform test twice , timing on both sending GPU
76 ! and receiving GPU
77 do timingDev = 0, 1
78 write(*,"(/,’Timing on device ’, i0, /)") timingDev
79
80 ! create events on the timing device
81 istat = cudaSetDevice(timingDev)
82 istat = cudaEventCreate(startEvent)
83 istat = cudaEventCreate(stopEvent)
84
85 if (accessPeer == 1) then
86 ! enable P2P communication
87 istat = cudaSetDevice (0)
88 istat = cudaDeviceEnablePeerAccess (1, 0)
89 istat = cudaSetDevice (1)
90 istat = cudaDeviceEnablePeerAccess (0, 0)
91
92 ! transfer (implicitly) across devices
93 b_d = -1.0
94 istat = cudaSetDevice(timingDev)
95 istat = cudaEventRecord(startEvent ,0)
96 b_d = a_d
97 istat = cudaEventRecord(stopEvent ,0)
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98 istat = cudaEventSynchronize(stopEvent)
99 istat = cudaEventElapsedTime(time , &

100 startEvent , stopEvent)
101 b = b_d
102 if (any(b /= a)) then
103 write(*,"(’Transfer failed ’)")
104 else
105 write(*,"(’b_d=a_d transfer (GB/s): ’, f)") &
106 N*4/ time /1.0E+6
107 endif
108 end if
109
110 ! transfer via cudaMemcpyPeer ()
111 if (accessPeer == 0) istat = cudaSetDevice (1)
112 b_d = -1.0
113
114 istat = cudaSetDevice(timingDev)
115 istat = cudaEventRecord(startEvent ,0)
116 istat = cudaMemcpyPeer(b_d , 1, a_d , 0, N)
117 istat = cudaEventRecord(stopEvent ,0)
118 istat = cudaEventSynchronize(stopEvent)
119 istat = cudaEventElapsedTime(time , startEvent , &
120 stopEvent)
121 if (accessPeer == 0) istat = cudaSetDevice (1)
122 b = b_d
123 if (any(b /= a)) then
124 write(*,"(’Transfer failed ’)")
125 else
126 write(*,"(’cudaMemcpyPeer transfer (GB/s): ’, f)") &
127 N*4/ time /1.0E+6
128 endif
129
130 ! cudaMemcpyPeer with P2P disabled
131 if (accessPeer == 1) then
132 istat = cudaSetDevice (0)
133 istat = cudaDeviceDisablePeerAccess (1)
134 istat = cudaSetDevice (1)
135 istat = cudaDeviceDisablePeerAccess (0)
136 b_d = -1.0
137
138 istat = cudaSetDevice(timingDev)
139 istat = cudaEventRecord(startEvent ,0)
140 istat = cudaMemcpyPeer(b_d , 1, a_d , 0, N)
141 istat = cudaEventRecord(stopEvent ,0)
142 istat = cudaEventSynchronize(stopEvent)
143 istat = cudaEventElapsedTime(time , startEvent , &
144 stopEvent)
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145
146 istat = cudaSetDevice (1)
147 b = b_d
148 if (any(b /= a)) then
149 write(*,"(’Transfer failed ’)")
150 else
151 write(*,"(’cudaMemcpyPeer transfer w/ P2P ’, &
152 ’ disabled (GB/s): ’, f)") N*4/ time /1.0E+6
153 endif
154 end if
155
156 ! destroy events associated with timingDev
157 istat = cudaEventDestroy(startEvent)
158 istat = cudaEventDestroy(stopEvent)
159 end do
160
161 ! clean up
162 deallocate(freeBefore , totalBefore , freeAfter , totalAfter)
163 deallocate(a, b, a_d , b_d)
164 end program directTransfer

After declaring and allocating host data, the device management API is used to determine the number
and types of GPUs on the system from lines 29–40. Of special note here is:

39 istat = cudaMemGetInfo(freeBefore(i), totalBefore(i))

which is used to determine the available memory on each device before array allocations. The device
arrays are allocated on lines 42 and 44. After the device allocations, cudaMemGetInfo() is used
again on line 53 to determine the available memory on all devices after allocations, and the difference
in available memory before and after is printed out. We do this to verify that arrays are being allocated
on the intended devices.

Whether peer access is possible between devices 0 and 1 is determined on lines 61–68, which
is followed by initialization of host data and a loop that performs and times the data trans-
fers between devices. To enable bidirectional peer access between two devices, we must use
cudaDeviceEnablePeerAccess() twice, but to determine whether peer access is possible
between two devices, only a single call to cudaDeviceCanAccessPeer() is needed.

The main loop starting at line 77 is over the timing device, timingDev, since both device 0 and 1
are used to time execution. We time on each device not because we expect different answers; rather, we
do this to demonstrate some features of using events in multi-GPU code. CUDA events use the GPU
clock and are therefore associated with the current device at the time the events are created. It is for this
reason that the events are created within the timing device loop on lines 82–83 after the current device
is set to the timing device on line 81. After this, if peer access between devices 0 and 1 is possible, it
is enabled on lines 87–90 and the direct transfer of data via assignment statement is performed on line
96. Before any call to the CUDA event API, the current device must be set to timingDev.
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Note that before the transfer of b_d from device 1 to the host on line 101, we do not need to set the
current device, which is timingDevice, to device 1. The current device does not need to be on the
sending or receiving end of a data transfer; it only needs to have peer access to the device or devices
involved in such a transfer. It is for this reason that we enable bidirectional access between devices 0 and
1 on lines 88 and 90: to accommodate device-to-host transfers when the current device is not sending
or receiving data. The same logic applies to data transfers between two devices. The transfer is a valid
operation as long as the current device has peer access to the memory of both devices involved in a data
transfer.

Data transfer by explicitly callingcudaMemcpyPeer() can be done whether peer access is enabled
or not. If peer access is enabled, the transfer is done without being staged through the CPU, and we
should obtain a similar transfer rate as the above implicit transfer via assignment. When peer access
is not enabled, cudaMemcpyPeer() issues a device-to-host transfer from the device on which the
source array resides, followed by a host-to-device transfer to the device on which the destination array
resides. In addition, when peer access is not enabled, we must be careful that the current device is set
properly when we are initializing device data, as on line 112:

111 if (accessPeer == 0) istat = cudaSetDevice (1)
112 b_d = -1.0

and when retrieving the results on line 122. When peer access is enabled, we do not need to set the
current device as long as the current device has access to devices involved in the transfer.

Finally, we time the transfer after explicitly disabling peer-to-peer communication on lines 133 and
135. Once again, here we use cudaMemcpyPeer() on line 140. The result of running this program
on a system with two peer-to-peer capable cards is:

� �
Number of CUDA -capable devices: 2

Allocation summary
Device 0: Tesla M2050

Free memory before: 2748571648 , after: 2731794432 , difference: 16777216

Device 1: Tesla M2050
Free memory before: 2748571648 , after: 2731794432 , difference: 16777216

Peer access available between 0 and 1

Timing on device 0

b_d=a_d transfer (GB/s): 5.0965576
cudaMemcpyPeer transfer (GB/s): 5.3010325
cudaMemcpyPeer transfer w/ P2P disabled (GB/s): 3.4764111

Timing on device 1

b_d=a_d transfer (GB/s): 5.2460275
cudaMemcpyPeer transfer (GB/s): 5.2518082
cudaMemcpyPeer transfer w/ P2P disabled (GB/s): 3.5856843

�
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As we expect, the transfer rates for transfers with peer-to-peer disabled are substantially slower than
those where it is enabled.

On the system with two Tesla K10 GPUs, we obtain the following:

� �
Number of CUDA -capable devices: 4

Allocation summary
Device 0: Tesla K10.G1.8GB

Free memory before: 4240695296 , after: 4223918080 , difference: 16777216

Device 1: Tesla K10.G1.8GB
Free memory before: 4240695296 , after: 4223918080 , difference: 16777216

Device 2: Tesla K10.G2.8GB
Free memory before: 4240695296 , after: 4240695296 , difference: 0

Device 3: Tesla K10.G2.8GB
Free memory before: 4240695296 , after: 4240695296 , difference: 0

Peer access available between 0 and 1

Timing on device 0

b_d=a_d transfer (GB/s): 10.8029337
cudaMemcpyPeer transfer (GB/s): 11.6984177
cudaMemcpyPeer transfer w/ P2P disabled (GB/s): 8.2490988

Timing on device 1

b_d=a_d transfer (GB/s): 11.3913746
cudaMemcpyPeer transfer (GB/s): 11.6451511
cudaMemcpyPeer transfer w/ P2P disabled (GB/s): 8.9019289

�

Here we observe higher bandwidth because the two devices within a single K10 are connected by a
PCIe Gen 3 switch. We can use the environment variable CUDA_VISIBLE_DEVICES to perform the
transfer between two devices on different K10s. On this particular system, each K10 is in a PCIe Gen
3 slot:

� �
% export CUDA_VISIBLE_DEVICES =0,2
% ./ directTransfer
Number of CUDA -capable devices: 2

Allocation summary
Device 0: Tesla K10.G1.8GB

Free memory before: 4240695296 , after: 4223918080 , difference: 16777216

Device 1: Tesla K10.G2.8GB
Free memory before: 4240695296 , after: 4223918080 , difference: 16777216

Peer access not available between 0 and 1
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Timing on device 0

cudaMemcpyPeer transfer (GB/s): 8.3558540

Timing on device 1

cudaMemcpyPeer transfer (GB/s): 8.8945284
�

In the beginning of this chapter we discussed a code used to print a matrix of which pairs of devices
are capable of using peer-to-peer communication. The code just above printed out the bandwidth of
data transfers between two devices. We can combine these features in one code to print a matrix of
bandwidth between two devices:

1 program p2pBandwidth
2 use cudafor
3 implicit none
4 integer , parameter :: N = 4*1024*1024
5 type distributedArray
6 real , device , allocatable :: a_d(:)
7 end type distributedArray
8 type (distributedArray), allocatable :: distArray (:)
9

10 real , allocatable :: bandwidth (:,:)
11 real :: array(N), time
12 integer :: nDevices , access , i, j, istat
13 type (cudaDeviceProp) :: prop
14 type (cudaEvent) :: startEvent , stopEvent
15
16 istat = cudaGetDeviceCount(nDevices)
17 write(*,"(’Number of CUDA -capable devices: ’, i0 ,/)") &
18 nDevices
19
20 do i = 0, nDevices -1
21 istat = cudaGetDeviceProperties(prop , i)
22 write(*,"(’Device ’, i0, ’: ’, a)") i, trim(prop%name)
23 enddo
24 write (*,*)
25
26 allocate(distArray (0: nDevices -1))
27
28 do j = 0, nDevices -1
29 istat = cudaSetDevice(j)
30 allocate(distArray(j)%a_d(N))
31 distArray(j)%a_d = j
32 do i = j+1, nDevices -1
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33 istat = cudaDeviceCanAccessPeer(access , j, i)
34 if (access == 1) then
35 istat = cudaSetDevice(j)
36 istat = cudaDeviceEnablePeerAccess(i, 0)
37 istat = cudaSetDevice(i)
38 istat = cudaDeviceEnablePeerAccess(j, 0)
39 endif
40 enddo
41 end do
42
43 allocate(bandwidth (0: nDevices -1, 0:nDevices -1))
44 bandwidth = 0.0
45
46 do j = 0, nDevices -1
47 istat = cudaSetDevice(j)
48 istat = cudaEventCreate(startEvent)
49 istat = cudaEventCreate(stopEvent)
50 do i = 0, nDevices -1
51 if (i == j) cycle
52 istat = cudaMemcpyPeer(distArray(j)%a_d , j, &
53 distArray(i)%a_d , i, N)
54 istat = cudaEventRecord(startEvent ,0)
55 istat = cudaMemcpyPeer(distArray(j)%a_d , j, &
56 distArray(i)%a_d , i, N)
57 istat = cudaEventRecord(stopEvent ,0)
58 istat = cudaEventSynchronize(stopEvent)
59 istat = cudaEventElapsedTime(time , &
60 startEvent , stopEvent)
61
62 array = distArray(j)%a_d
63 if (all(array == i)) bandwidth(j,i) = N*4/ time /1.0E+6
64 end do
65 distArray(j)%a_d = j
66 istat = cudaEventDestroy(startEvent)
67 istat = cudaEventDestroy(stopEvent)
68 enddo
69
70 write(*,"(’Bandwidth (GB/s) for transfer size (MB): ’, &
71 f9.3,/)") N*4.0/1024**2
72 write(*,"(’ S\\R 0’)", advance=’no’)
73 do i = 1, nDevices -1
74 write(*,"(5x,i3)", advance=’no’) i
75 enddo
76 write (*,*)
77
78 do j = 0, nDevices -1
79 write(*,"(i3)", advance=’no’) j
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80 do i = 0, nDevices -1
81 if (i == j) then
82 write(*,"(4x,’-’,3x)", advance=’no’)
83 else
84 write(*,"(f8.2)",advance=’no’) bandwidth(j,i)
85 end if
86 end do
87 write (*,*)
88 end do
89
90 ! cleanup
91 do j = 0, nDevices -1
92 deallocate(distArray(j)%a_d)
93 end do
94 deallocate(distArray ,bandwidth)
95
96 end program p2pBandwidth

where we use cudaMemcpyPeer() for all transfers, with peer access enabled if possible. Most of
the content of this code appeared in one of the two aforementioned codes, the exception being how the
device arrays are organized in this code. We define a derived type distributedArray on lines 5–7
that contains an allocatable device array a_d. On line 8 we declare an allocatable host array of this type
as distArray. After determining the number of devices on the system, the host array distArray is
allocated on line 26 using zero offset to correspond to the way CUDA enumerates devices. We then loop
over devices and allocate distArray(j)%a_d on device j on line 30. Using derived types in this
manner is a convenient and general way to deal with data that are distributed across multiple devices.
Peer access is enabled if possible in the loop from 36–40, the transfers are performed and timed on lines
46–68, and the bandwidth matrix is printed out on lines 70–88. Running this code on the dual Tesla
K10 system, we obtain:

� �

Number of CUDA -capable devices: 4

Device 0: Tesla K10.G1.8GB
Device 1: Tesla K10.G1.8GB
Device 2: Tesla K10.G2.8GB
Device 3: Tesla K10.G2.8GB

Bandwidth (GB/s) for transfer size (MB): 16.000

S\R 0 1 2 3
0 - 11.64 9.60 9.74
1 11.57 - 9.83 9.67
2 9.53 9.61 - 11.70
3 9.95 9.71 11.64 -

�
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The rows in the output correspond to the sending devices, and the columns are the receiving devices for
the transfers. As shown before, we observe better bandwidth between the two devices of a single K10.
On a node with two Tesla S2050 systems, we get:

� �

Number of CUDA -capable devices: 8

Device 0: Tesla S2050
Device 1: Tesla S2050
Device 2: Tesla S2050
Device 3: Tesla S2050
Device 4: Tesla S2050
Device 5: Tesla S2050
Device 6: Tesla S2050
Device 7: Tesla S2050

Bandwidth (GB/s) for transfer size (MB): 16.000

S\R 0 1 2 3 4 5 6 7
0 - 6.61 6.61 6.61 5.25 5.25 5.25 5.25
1 6.61 - 6.61 6.61 5.25 5.25 5.25 5.25
2 6.61 6.61 - 6.61 5.24 5.25 5.25 5.25
3 6.61 6.61 6.61 - 5.25 5.25 5.25 5.25
4 5.25 5.25 5.25 5.25 - 6.61 6.61 6.61
5 5.25 5.25 5.25 5.25 6.61 - 6.61 6.61
6 5.25 5.25 5.25 5.25 6.61 6.61 - 6.61
7 5.25 5.25 5.25 5.23 6.61 6.61 6.61 -

�

where we observe slightly better performance when the transfers occur within a single S2050.

4.1.3 Peer-to-peer transpose
In this section we extend the matrix transpose example of Section 3.4 to operate on a matrix that is
distributed across multiple GPUs. The data layout is shown in Figure 4.2 for an nx×ny = 1024 ×768
element matrix that is distributed among four devices. Each device contains a horizontal slice of the
input matrix shown in the figure as well as a horizontal slice of the output matrix. These input matrix
slices of 1024×192 elements are divided into four tiles containing 256×192 elements each, which are
referred to as p2pTile in the code. As the name indicates, the p2pTiles are used for peer-to-peer
transfers. After a p2pTile has been transferred to the appropriate device if necessary (tiles on the
block diagonal do not need to be transferred since the input and output tiles are on the same device), a
CUDA transpose kernel launch transposes the elements within the p2pTile using thread blocks that
process smaller tiles of 32 × 32 elements.
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Each square is a CUDA tile 
= 32x32 elements

Process 0

Process 1
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P2P tile = 256x192 elements
 = 8x6 CUDA tiles

FIGURE 4.2

Device data layout for peer-to-peer transpose with a nx × ny = 1024 × 768 matrix on four devices. Each
device holds a 1024 × 192 horizontal slice of input matrix (as well as a 768 × 256 horizontal slice of the
output matrix). Each slice of the input matrix is broken into four tiles of 256 × 192 elements, which are
used for peer-to-peer transfers. The CUDA kernel transposes this tile using 48 thread blocks, each of which
processes a 32 × 32 tile.

The full code is contained in Appendix D.4.1. In this section we pull in only the relevant parts for
our discussion. We start the discussion of the code with the transpose kernel:

14 attributes(global) subroutine cudaTranspose( &
15 odata , ldo , idata , ldi)
16 implicit none
17 real , intent(out) :: odata(ldo ,*)
18 real , intent(in) :: idata(ldi ,*)
19 integer , value , intent(in) :: ldo , ldi
20 real , shared :: tile(cudaTileDim+1, cudaTileDim)
21 integer :: x, y, j
22
23 x = (blockIdx%x-1) * cudaTileDim + threadIdx%x
24 y = (blockIdx%y-1) * cudaTileDim + threadIdx%y
25
26 do j = 0, cudaTileDim -1, blockRows
27 tile(threadIdx%x, threadIdx%y+j) = idata(x,y+j)
28 end do
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29
30 call syncthreads ()
31
32 x = (blockIdx%y-1) * cudaTileDim + threadIdx%x
33 y = (blockIdx%x-1) * cudaTileDim + threadIdx%y
34
35 do j = 0, cudaTileDim -1, blockRows
36 odata(x,y+j) = tile(threadIdx%y+j, threadIdx%x)
37 end do
38 end subroutine cudaTranspose

This transpose is basically the same kernel we developed in Section 3.4 for the single-GPU transpose,
with the exception that two additional parameters are passed to the kernel, ldi and ldo, the leading
dimensions of the input and output matrices. These parameters are needed because each kernel call
transposes a submatrix of each device’s slice of the matrix. We could do without modifying the kernel
at all by copying data to and from a temporary array, but such intermediate data transfers would greatly
affect performance. Note that the leading dimension parameters are only used in the declaration of the
input and output matrices on lines 17 and 18; the rest of the code is identical to the single-GPU code.

Most of the host code performs mundane tasks such as getting the number and types of devices (lines
85–94), checking that all devices are peer-to-peer capable and enabling peer-to-peer communication
(lines 96–119), verifying that the matrix divides evenly into the various tile sizes (121–140), printing out
the various sizes (lines 146–165), and initializing host data and transposing on the host (lines 169–170).

Because we want to overlap the execution of the transpose kernel with the data transfer between
GPUs, we want to avoid using the default stream for peer-to-peer communication as well as kernel
execution. We want each device to have nDevices streams, one for each transpose call. Since there
are nDevices devices, each requiring nDevices streams, we use a two-dimensional variable to hold
the stream IDs:

180 allocate(streamID (0: nDevices -1,0: nDevices -1))
181 do p = 0, nDevices -1
182 istat = cudaSetDevice(p)
183 do stage = 0, nDevices -1
184 istat = cudaStreamCreate(streamID(p,stage))
185 enddo
186 enddo

where the first index to streamID corresponds to the particular device the stream is associated with,
and the second index refers to the stages of the calculation.

The stages of the transpose, enumerated zero to nDevices-1, are organized as follows: In the
zeroth stage, each device transposes the submatrix that lies along the block diagonal of the global
matrix, which is depicted in the top diagram of Figure 4.3. This is done first because no peer-to-peer
communication is involved, and the kernel execution can overlap data transfers in the first stage.
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FIGURE 4.3

Stages of the matrix transpose. In stage zero, each device transposes the block along the global matrix
diagonal, which requires no peer-to-peer communication. In stage one, blocks from the first subdiagonal
of the input matrix are transferred to the device holding the respective block superdiagonal, after which
the transpose is performed on the receiving device. Subsequent stages (such as stage 2) do the same
for subsequent sub- and superdiagonals. The wrapping of the diagonals becomes more pronounced for
subsequent stages, culminating in the last stage’s communication pattern being the reverse of the first stage.
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In stage one, data from what is primarily the first block-subdiagonal of the input matrix is sent to
the devices that hold the corresponding first block-superdiagonal, as depicted in Figure 4.3. After the
transfer completes, the receiving device performs the transpose. Note that one of the blocks transferred
during stage one is not on the subdiagonal, since we wrap the pattern so that all devices both send and
receive data during each stage. The following stages do similar operations on additional block sub- and
super diagonals until all of the blocks have been transposed. The wrapping during these stages becomes
more pronounced, so that in the final stage the communication pattern is the reverse of the first stage. In
using this arrangement, during each stage other than the zeroth, each device sends and receives a block
of data, and both of these transfers can overlap if transferred asynchronously, since the devices have
separate send and receive copy engines.

The distributed global matrices are stored using the derived type deviceArray:

68 ! distributed arrays
69 type deviceArray
70 real , device , allocatable :: v(:,:)
71 end type deviceArray
72
73 type (deviceArray), allocatable :: &
74 d_idata (:), d_tdata (:), d_rdata (:) ! (0: nDevices -1)

This same technique was used in the p2pBandwidth code in the previous section. Instances of this
derived type will be host data, but the member v is device data. There are three allocatable array
declarations of this drived type on line 74: d_idata for the input data; d_rdata, which is a receive
buffer used in the transfers; and d_tdata, which holds the final transposed data. These variables are
allocated by:

190 allocate(d_idata (0: nDevices -1),&
191 d_tdata (0: nDevices -1), d_rdata (0: nDevices -1))

which represents decomposition of the global array into the horizontal slices depicted in Figure 4.2.
The members of the derived type hold the horizontal slices, which are allocated and initialized by:

193 do p = 0, nDevices -1
194 istat = cudaSetDevice(p)
195 allocate(d_idata(p)%v(nx,p2pTileDimY), &
196 d_rdata(p)%v(nx,p2pTileDimY), &
197 d_tdata(p)%v(ny,p2pTileDimX ))
198
199 yOffset = p*p2pTileDimY
200 d_idata(p)%v(:,:) = h_idata(:, &
201 yOffset +1: yOffset+p2pTileDimY)
202 d_rdata(p)%v(:,:) = -1.0
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203 d_tdata(p)%v(:,:) = -1.0
204 enddo

where nx and ny are the global matrix sizes, and p2pTileDimY and p2pTileDimX are the sizes
of the horizontal slices of the input and transposed matrices, respectively. Note that the device is set
on line 194 to the appropriate device before each member v is allocated. Also, since the matrix on the
host is stored in h_idata(nx,ny), the offset yOffset is used in initializing d_idata on lines
200–201.

The code that performs the various transpose stages is:

216 ! Stage 0:
217 ! transpose diagonal blocks (local data) before kicking off
218 ! transfers and transposes of other blocks
219
220 do p = 0, nDevices -1
221 istat = cudaSetDevice(p)
222 if (asyncVersion) then
223 call cudaTranspose &
224 <<<dimGrid , dimBlock , 0, streamID(p,0)>>> &
225 (d_tdata(p)%v(p*p2pTileDimY +1,1), ny, &
226 d_idata(p)%v(p*p2pTileDimX +1,1), nx)
227 else
228 call cudaTranspose <<<dimGrid , dimBlock >>> &
229 (d_tdata(p)%v(p*p2pTileDimY +1,1), ny, &
230 d_idata(p)%v(p*p2pTileDimX +1,1), nx)
231 endif
232 enddo
233
234 ! now send data to blocks to the right of diagonal
235 ! (using mod for wrapping) and transpose
236
237 do stage = 1, nDevices -1 ! stages = offset diagonals
238 do rDev = 0, nDevices -1 ! device that receives
239 sDev = mod(stage+rDev , nDevices) ! dev that sends
240
241 if (asyncVersion) then
242 istat = cudaSetDevice(rDev)
243 istat = cudaMemcpy2DAsync( &
244 d_rdata(rDev)%v(sDev*p2pTileDimX +1,1), nx, &
245 d_idata(sDev)%v(rDev*p2pTileDimX +1,1), nx, &
246 p2pTileDimX , p2pTileDimY , &
247 stream=streamID(rDev ,stage))
248 else
249 istat = cudaMemcpy2D( &
250 d_rdata(rDev)%v(sDev*p2pTileDimX +1,1), nx, &
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251 d_idata(sDev)%v(rDev*p2pTileDimX +1,1), nx, &
252 p2pTileDimX , p2pTileDimY)
253 end if
254
255 istat = cudaSetDevice(rDev)
256 if (asyncVersion) then
257 call cudaTranspose &
258 <<<dimGrid , dimBlock , 0, &
259 streamID(rDev ,stage)>>> &
260 (d_tdata(rDev)%v(sDev*p2pTileDimY +1,1), ny, &
261 d_rdata(rDev)%v(sDev*p2pTileDimX +1,1), nx)
262 else
263 call cudaTranspose <<<dimGrid , dimBlock >>> &
264 (d_tdata(rDev)%v(sDev*p2pTileDimY +1,1), ny, &
265 d_rdata(rDev)%v(sDev*p2pTileDimX +1,1), nx)
266 endif
267 enddo
268 enddo

Stage 0 occurs in the loop on lines 220–232. After the device is set on line 221, the transpose of the
diagonal block is performed either using the default blocking stream on line 228 or in a non-default
stream on line 223. The parameter asyncVersion is used to toggle between asynchronous and
synchronous execution. The execution configuration used in the kernel launches is determined by:

142 dimGrid = dim3(p2pTileDimX/cudaTileDim , &
143 p2pTileDimY/cudaTileDim , 1)
144 dimBlock = dim3(cudaTileDim , blockRows , 1)

where the thread block is the same as in the single-GPU case, and each kernel launch operates on a
submatrix of size p2pTileDimX×p2pTileDimY.

The other stages are performed in the loop from line 237–268. After the sending and receiving
devices are determined on lines 238 and 239, the peer-to-peer transfer is performed using either
cudaMemcpy2DAsync() or cudaMemcpy2D(), depending on asyncVersion. If the asyn-
chronous version is used, then the device is set to the receiving device on line 242, and accordingly, the
nondefault stream used for the transfer is the stream associated with the receiving device. We use the
stream associated with the device receiving the data rather than the device sending the data because we
want to block the launch of the transpose kernel on the receiving device until the transfer is complete.
This is accomplished by default when the same stream is used for the transfer and transpose. For the
synchronous data transfer, the device does not need to be specified via cudaSetDevice(). Note that
the array receiving the data is d_rdata. The out-of-place transpose from d_rdata to d_tdata is
then performed by the kernel launch on line 257 or 263. Regardless of whether the default stream is
used or not, the device must be set as done on line 255.
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The remainder of the code transfers the data back to the host, checks for correctness, and reports the
effective bandwidth. Timing in this case is done using a wall-clock timer. This code uses the C function
gettimeofday():

1 #include <time.h>
2 #include <sys/types.h>
3 #include <sys/times.h>
4 #include <sys/time.h>
5
6 double wallclock ()
7 {
8 struct timeval tv;
9 struct timezone tz;

10 double t;
11
12 gettimeofday (&tv, &tz);
13
14 t = (double)tv.tv_sec;
15 t += (( double)tv.tv_usec )/1000000.0;
16
17 return t;
18 }

which is accessed in the Fortran code using the timing module:

1 module timing
2 interface wallclock
3 function wallclock () result(res) bind(C, name=’wallclock ’)
4 use iso_c_binding
5 real (c_double) :: res
6 end function wallclock
7 end interface wallclock
8 end module timing

Whenever this routine is called, we explicitly check to make sure there is no pending or executing
operations on the device:

271 do p = 0, nDevices -1
272 istat = cudaSetDevice(p)
273 istat = cudaDeviceSynchronize ()
274 enddo
275 timeStop = wallclock ()



4.1 CUDA multi-GPU features 139

Note that most of this multi-GPU code is overhead associated with declaring and initializing arrays
and enabling peer-to-peer communication. The actual data transfers and kernel launches are contained in
approximately 50 lines of code, which contains branches for synchronous and asynchronous execution.
The transpose kernel itself is only slightly modified from the single-GPU transpose to allow for arbitrary
leading dimensions of the arrays.

We use a compute node with two devices for running this transpose code. To compare to the single-
GPU transpose results in Section 3.4, which used 1024 × 1024 matrices, we choose an overall matrix
size of 2048 × 2048. In this case each transpose kernel processes a 1024 × 1024 submatrix, the same
as in the single-GPU case. When we use blocking transfers, we obtain the results:

� �

Number of CUDA -capable devices: 2

Device 0: Tesla M2050
Device 1: Tesla M2050

Array size: 2048 x2048

CUDA block size: 32x8, CUDA tile size: 32x32
dimGrid: 32x32x1 , dimBlock: 32x8x1

nDevices: 2, Local input array size: 2048 x1024
p2pTileDim: 1024 x1024

async mode: F

Bandwidth (GB/s): 16.43
�

and when we use asynchronous transfers, we have:

� �

Number of CUDA -capable devices: 2

Device 0: Tesla M2050
Device 1: Tesla M2050

Array size: 2048 x2048

CUDA block size: 32x8, CUDA tile size: 32x32
dimGrid: 32x32x1 , dimBlock: 32x8x1

nDevices: 2, Local input array size: 2048 x1024
p2pTileDim: 1024 x1024
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async mode: T

Bandwidth (GB/s): 29.73
�

While both these numbers fall short of the effective bandwidth achieved in the single-GPU case, we
must take into account that half of the data is being transferred over the PCIe bus, which is over an
order of magnitude slower that the global memory bandwidth within a GPU. In light of this fact, the
use of asynchronous transfers that overlap kernel execution is very advantageous, as can be seen from
the results. In addition, typically the transpose is used as a means to some other operation that can be
done in parallel, in which case cost of the PCIe transfer is further amortized.

4.2 Multi-GPU Programming with MPI
In the preceding section we explored using multiple GPUs from a single host thread. Toggling between
GPUs using cudaSetDevice() provides a convenient way to distribute data and processing among
several GPUs. As problems scale up, however, this approach reaches a limit in how many GPUs can
be attached to a single node. When this limit is reached, we need to program for multiple nodes using
MPI. MPI can be used in conjunction with the multi-GPU techniques we have described, where MPI
can be used to transfer data between nodes and the CUDA 4.0 multi-GPU features used to distribute
and process data among the GPUs attached to that node. This is analogous to the way that OpenMP and
MPI are used on CPUs in clusters. We can even combine MPI, OpenMP, and multi-GPU models in an
application.

We briefly discuss the MPI library calls used in this section as they are introduced in the text.
For readers who are new to MPI, a more detailed discussion of the API routines can be found in
MPI: The Complete Reference (Snir, 1966) and Using MPI: Portable Parallel Programming with the
Message-Passing Interface (Gropp et al., 1999). Before we jump into MPI code, we should mention
some high-level aspects of the MPI programming model. Just as all device threads in a kernel execute
the same device code, all host threads in a MPI application execute the same host code. In CUDA we
use predefined variables to identify the individual device threads in device code. In MPI, individual
MPI threads, or ranks, are identified through the library call MPI_COMM_RANK(). While the CUDA
programming model benefits from fine-grained parallelism (e.g., coalescing), MPI generally benefits
from coarse-grained parallelism, where each MPI rank operates on a large partition of the data.

Compilation of MPI CUDA Fortran code is performed using the MPI wrapper mpif90 supplied
with numerous MPI distributions. Execution of MPI programs is typically performed with the command
mpirun, whereby the program executable as well as the number of MPI ranks used are provided on
the command line. Because of the CUDA-aware features of the MPI implementation of MVAPICH
(available at http://mvapich.cse.ohio-state.edu) that are discussed later in this section,
we use the MVAPICH package for our examples.

There are many ways to use CUDA Fortran in conjunction with MPI in terms of the way devices are
mapped to MPI ranks. In this section we opt for a simple, versatile approach whereby each MPI rank is
associated with a single GPU. In this configuration we can still use multiple GPUs per node simply by
using multiple MPI ranks per node, which is determined by the way the application is launched rather

http://mvapich.cse.ohio-state.edu
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than from within the code. If the nature of the application merits a different mapping of GPUs to MPI
ranks, we can add this later using the techniques discussed earlier in this chapter, but in general the
one-GPU-per-MPI rank model is a good first approach.

4.2.1 Assigning devices to MPI ranks
One of the first issues we confront in writing multi-GPU MPI code using the configuration in which each
MPI rank has a unique device is how to ensure that no device is assigned to multiple MPI ranks. The
way devices are associated with CPU processes and threads depends on how the system is configured
via nvidia-smi. NVIDIA’s System Management Interface (nvidia-smi) is a tool distributed with
the driver that allows users to display and administrators to modify settings of devices attached to the
system.1 We can use this utility to simply print the devices attached to the system:

� �

% nvidia -smi -L
GPU 0: Tesla M2050 (S/N: 0322210101582)
GPU 1: Tesla M2050 (S/N: 0322210101238)

�

as well as getting detailed information about temperature, power, and various settings. The setting we
are concerned with here is the compute mode. The compute mode determines if multiple processes or
threads can use the same GPU. The four modes are:

default: 0 In this mode, multiple host threads can use the same device via calls tocudaSetDevice().

exclusive thread: 1 In this mode, only a single context can be created by a single process systemwide,
and this context can be current to at most one thread of the process at a time.

prohibited: 2 In this mode, no contexts can be created on the device.

exclusive process: 3 In this mode, only a single context can be created by a single process systemwide,
and this context can be current to all threads of that process.

One can query the compute mode as follows:

� �

% nvidia -smi -q -d COMPUTE
============== NVSMI LOG ==============
Timestamp : Wed Feb 1 17:06:23 2012
Driver Version : 285.05.32
Attached GPUs : 2
GPU 0000:02:00.0

Compute Mode : Exclusive_Process
GPU 0000:03:00.0

Compute Mode : Exclusive_Process
�

which indicates that both devices are in the exclusive process mode.

1nvidia-smi is discussed in more detail in Appendix B.
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To illustrate the different behavior of these modes, we use the following simple program:

1 program mpiDevices
2 use cudafor
3 use mpi
4 implicit none
5
6 ! global array size
7 integer , parameter :: n = 1024*1024
8 ! MPI variables
9 integer :: myrank , nprocs , ierr

10 ! device
11 type(cudaDeviceProp) :: prop
12 integer(int_ptr_kind ()) :: freeB , totalB , freeA , totalA
13 real , device , allocatable :: d(:)
14 integer :: i, j, istat
15
16 ! MPI initialization
17 call MPI_init(ierr)
18 call MPI_comm_rank(MPI_COMM_WORLD , myrank , ierr)
19 call MPI_comm_size(MPI_COMM_WORLD , nProcs , ierr)
20
21 ! print compute mode for device
22 istat = cudaGetDevice(j)
23 istat = cudaGetDeviceProperties(prop , j)
24 do i = 0, nprocs -1
25 call MPI_BARRIER(MPI_COMM_WORLD , ierr)
26 if (myrank == i) write(*,"(’[’,i0 ,’] using device: ’, &
27 i0, ’ in compute mode: ’, i0)") &
28 myrank , j, prop%computeMode
29 enddo
30
31 ! get memory use before large allocations ,
32 call MPI_BARRIER(MPI_COMM_WORLD , ierr)
33 istat = cudaMemGetInfo(freeB , totalB)
34
35 ! now allocate arrays , one rank at a time
36 do j = 0, nProcs -1
37
38 ! allocate on device associated with rank j
39 call MPI_BARRIER(MPI_COMM_WORLD , ierr)
40 if (myrank == j) allocate(d(n))
41
42 ! Get free memory after allocation
43 call MPI_BARRIER(MPI_COMM_WORLD , ierr)
44 istat = cudaMemGetInfo(freeA , totalA)
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45
46 write(*,"(’ [’,i0 ,’] after allocation on rank: ’, i0, &
47 ’, device arrays allocated: ’, i0)") &
48 myrank , j, (freeB -freeA)/n/4
49
50 end do
51
52 deallocate(d)
53 call MPI_Finalize(ierr)
54 end program mpiDevices

This code simply has each rank allocate a device array and reports the memory usage on each device
as the allocations are performed. The module containing all of the MPI interfaces and parameters is
included on line 3. The typical MPI initialization occurs on lines 17–20. The call to MPI_init() on
line 17 initializes MPI, the call to MPI_comm_rank() on line 18 returns the MPI rank in the myrank
variable, and the call to MPI_comm_size() returns the number of ranks launched by the application.
The device number each rank uses as well its compute mode are printed in lines 22–29. The loop used
for printing on line 24 is not technically needed, but it is used along with the MPI_BARRIER() call to
avoid collisions in output from different ranks. The synchronization barrier MPI_BARRIER() blocks
execution of all MPI processes until every MPI process has reached that point in the code, similar to
CUDA’s syncthreads() used in device code. After printing the device number and compute mode,
the amount of free space on each device is determined on line 33. In each iteration of the loop from
lines 36–50, a device array is allocated on the device associated with a particular rank (line 40), the free
memory after allocation is determined (line 44), and the number of arrays allocated on each device is
printed out (line 46).

When this code is run using two MPI processes on a single node with two devices in exclusive mode,
we obtain:

� �

[0] using device: 1 in compute mode: 3
[1] using device: 0 in compute mode: 3

[0] after allocation on rank: 0, device arrays allocated: 1
[1] after allocation on rank: 0, device arrays allocated: 0
[0] after allocation on rank: 1, device arrays allocated: 1
[1] after allocation on rank: 1, device arrays allocated: 1

�

which indicates that two separate devices are used by the two ranks from the devices listed in the first
two lines, which is verified from the memory utilization in the remainder of the output.

On a node with devices in default compute mode, a two-MPI-process run results in:

� �

[0] using device: 0 in compute mode: 0
[1] using device: 0 in compute mode: 0

[0] after allocation on rank: 0, device arrays allocated: 1
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[1] after allocation on rank: 0, device arrays allocated: 1
[0] after allocation on rank: 1, device arrays allocated: 2
[1] after allocation on rank: 1, device arrays allocated: 2

�

which indicates that device 0 is being used for both MPI ranks, which is verified in the allocation
summary whereby after each allocation stage, the free memory on all ranks decreases.

One way to ensure that each MPI rank has a unique device regardless of the compute mode setting
is to use the following module:

1 module mpiDeviceUtil
2 interface
3 subroutine quicksort(base , nmemb , elemsize , compar) &
4 bind(C,name=’qsort ’)
5 use iso_c_binding
6 implicit none
7 !pgi$ ignore_tkr base ,nmemb ,elemsize ,compar
8 type(C_PTR), value :: base
9 integer(C_SIZE_T), value :: nmemb , elemsize

10 type(C_FUNPTR), value :: compar
11 end subroutine quicksort
12
13 integer function strcmp(a,b) bind(C,name=’strcmp ’)
14 use iso_c_binding
15 implicit none
16 !pgi$ ignore_tkr a,b
17 type(C_PTR), value :: a, b
18 end function strcmp
19 end interface
20 contains
21 subroutine assignDevice(dev)
22 use mpi
23 use cudafor
24 implicit none
25 integer :: dev
26 character (len=MPI_MAX_PROCESSOR_NAME), allocatable :: hosts (:)
27 character (len=MPI_MAX_PROCESSOR_NAME) :: hostname
28 integer :: namelength , color , i
29 integer :: nProcs , myrank , newComm , newRank , ierr
30
31 call MPI_COMM_SIZE(MPI_COMM_WORLD , nProcs , ierr)
32 call MPI_COMM_RANK(MPI_COMM_WORLD , myrank , ierr)
33
34 ! allocate array of hostnames
35 allocate(hosts (0:nProcs -1))
36
37 ! Every process collects the hostname of all the nodes
38 call MPI_GET_PROCESSOR_NAME(hostname , namelength , ierr)
39 hosts(myrank )= hostname (1: namelength)
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40
41 do i=0,nProcs -1
42 call MPI_BCAST(hosts(i),MPI_MAX_PROCESSOR_NAME , &
43 MPI_CHARACTER ,i,MPI_COMM_WORLD ,ierr)
44 end do
45
46 ! sort the list of names
47 call quicksort(hosts ,nProcs ,MPI_MAX_PROCESSOR_NAME ,strcmp)
48
49 ! assign the same color to the same node
50 color =0
51 do i=0,nProcs -1
52 if (i > 0) then
53 if ( lne(hosts(i-1), hosts(i)) ) color=color +1
54 end if
55 if ( leq(hostname ,hosts(i)) ) exit
56 end do
57
58 call MPI_COMM_SPLIT(MPI_COMM_WORLD ,color ,0,newComm ,ierr)
59 call MPI_COMM_RANK(newComm , newRank , ierr)
60
61 dev = newRank
62 ierr = cudaSetDevice(dev)
63
64 deallocate(hosts)
65 end subroutine assignDevice
66
67 ! lexical .eq.
68 function leq(s1, s2) result(res)
69 implicit none
70 character (len =*) :: s1, s2
71 logical :: res
72 res = .false.
73 if (lle(s1,s2) .and. lge(s1 ,s2)) res = .true.
74 end function leq
75
76 ! lexical .ne.
77 function lne(s1, s2) result(res)
78 implicit none
79 character (len =*) :: s1, s2
80 logical :: res
81 res = .not. leq(s1, s2)
82 end function lne
83 end module mpiDeviceUtil

where the subroutine assignDevice() on lines 21–65 is responsible for finding and setting a
unique device. This subroutine uses the MPI routines MPI_GET_PROCESSOR_NAME() (line 38)
and MPI_BCAST() (line 42) to compile a list of hostnames used by all ranks. Once each rank has the
entire list of hostnames, the C quicksort() function is called using the comparator strcmp to sort
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the list. (These C routines are accessed through interfaces defined on lines 3–18.) A color is associated
with each node in the loop on lines 51–56, which is used by the call to MPI_COMM_SPLIT() to
determine a set of new MPI communicators. An MPI communicator is simply a group of MPI pro-
cesses. Each new communicator contains only the MPI ranks on the associated node, and a call to
MPI_COMM_RANK() returns the new rank with respect to the new communicator. This new rank is
used to enumerate CUDA devices on the node (line 61) and to set the current device (line 62). Once
again, we emphasize that this routine can be used regardless of the compute mode setting. The code can
be modified to select only GPUs with certain characteristics, such as double-precision capable devices
or devices with a certain amount of memory, by adding more logic before the cudaSetDevice()
call on line 62.

The following code shows how this module is used:

1 program main
2 use mpi
3 use mpiDeviceUtil
4 use cudafor
5 implicit none
6
7 ! global array size
8 integer , parameter :: n = 1024*1024
9 ! mpi

10 character (len=MPI_MAX_PROCESSOR_NAME) :: hostname
11 integer :: myrank , nprocs , ierr , namelength
12 ! device
13 type(cudaDeviceProp) :: prop
14 integer(int_ptr_kind ()) :: freeB , totalB , freeA , totalA
15 real , device , allocatable :: d(:)
16 integer :: deviceID , i, istat
17
18 call MPI_INIT(ierr)
19 call MPI_COMM_RANK(MPI_COMM_WORLD , myrank , ierr)
20 call MPI_COMM_SIZE(MPI_COMM_WORLD , nProcs , ierr)
21
22 ! get and set unique device
23 call assignDevice(deviceID)
24
25 ! print hostname and device ID for each rank
26 call MPI_GET_PROCESSOR_NAME(hostname , namelength , ierr)
27 do i = 0, nProcs -1
28 call MPI_BARRIER(MPI_COMM_WORLD , ierr)
29 if (i == myrank) &
30 write(*,"(’[’,i0 ,’] host: ’, a, ’, device: ’, i0)") &
31 myrank , trim(hostname), deviceID
32 enddo
33
34 ! get memory use before large allocations ,
35 call MPI_BARRIER(MPI_COMM_WORLD , ierr)
36 istat = cudaMemGetInfo(freeB , totalB)



4.2 Multi-GPU Programming with MPI 147

37
38 ! allocate memory on each device
39 call MPI_BARRIER(MPI_COMM_WORLD , ierr)
40 allocate(d(n))
41
42 ! Get free memory after allocation
43 call MPI_BARRIER(MPI_COMM_WORLD , ierr)
44 istat = cudaMemGetInfo(freeA , totalA)
45
46 do i = 0, nProcs -1
47 call MPI_BARRIER(MPI_COMM_WORLD , ierr)
48 if (i == myrank) &
49 write(*,"(’ [’, i0, ’] ’, &
50 ’device arrays allocated: ’, i0)") &
51 myrank , (freeB -freeA )/n/4
52 end do
53
54 deallocate(d)
55 call MPI_FINALIZE(ierr)
56 end program main

One simply needs to use mpiDeviceUtil (line 3) and call assignDevice() (line 23) after
MPI_INIT() (line 18) is called. When run using five MPI ranks across three nodes, the code produces:

� �

% mpirun -np 5 -host c0 -7,c0 -2,c0 -7,c0 -3,c0 -7 assignDevice
[0] host: compute -0-7.local , device: 0
[1] host: compute -0-7.local , device: 1
[2] host: compute -0-7.local , device: 2
[3] host: compute -0-2.local , device: 0
[4] host: compute -0-3.local , device: 0

[0] device arrays allocated: 1
[1] device arrays allocated: 1
[2] device arrays allocated: 1
[3] device arrays allocated: 1
[4] device arrays allocated: 1

�

where, to save space in the output, the code prints the arrays allocated on each device only after all
allocations are made. The code is successful at assigning different devices to the MPI ranks.

4.2.2 MPI transpose
The MPI transpose code, listed in its entirety in Appendix D.4.2, shares much in common with the peer-
to-peer transpose code discussed previously in this chapter: The domain decomposition, the transpose
kernel, the execution configuration, and the communication pattern and stages are the same. One small
difference is the code needed to initialize MPI and assign the device to the MPI rank, as shown in the
previous section:
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73 call MPI_init(ierr)
74 call MPI_comm_rank(MPI_COMM_WORLD , myrank , ierr)
75 call MPI_comm_size(MPI_COMM_WORLD , nProcs , ierr)
76
77 ! get and set device
78
79 call assignDevice(deviceID)

where we use the mpiDeviceUtil module introduced in the previous section to assign a unique
device to the MPI rank. Parameter checking and initialization are the same in both codes. Timing in the
MPI code is done using the MPI function MPI_Wtime() after a call to MPI_BARRIER().

The main difference between the peer-to-peer and MPI codes occurs within the loop over commu-
nication stages:

176 do stage = 1, nProcs -1
177 ! sRank = the rank to which myrank sends data
178 ! rRank = the rank from which myrank receives data
179 sRank = modulo(myrank -stage , nProcs)
180 rRank = modulo(myrank+stage , nProcs)
181
182 call MPI_BARRIER(MPI_COMM_WORLD , ierr)
183
184 ! D2H transfer - pack into contiguous host array
185 ierr = cudaMemcpy2D(sTile , mpiTileDimX , &
186 d_idata(sRank*mpiTileDimX +1,1), nx, &
187 mpiTileDimX , mpiTileDimY)
188
189 ! MPI transfer
190 call MPI_SENDRECV(sTile , mpiTileDimX*mpiTileDimY , &
191 MPI_REAL , sRank , myrank , &
192 rTile , mpiTileDimX*mpiTileDimY , MPI_REAL , &
193 rRank , rRank , MPI_COMM_WORLD , status , ierr)
194
195 ! H2D transfer
196 d_rTile = rTile
197
198 ! do transpose from receive tile into final array
199 call cudaTranspose <<<dimGrid , dimBlock >>> &
200 (d_tdata(rRank*mpiTileDimY +1,1), ny, &
201 d_rTile , mpiTileDimX)
202 end do
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The cudaMemcpy2d() or cudaMemcpy2dAsync() calls that transfer data between devices in the
peer-to-peer code are replaced by a device-to-host transfer (line 185), an MPI transfer between hosts
(line 190), and a host-to-device transfer (line 196).

Running this code with two MPI ranks on an overall matrix of 2048 × 2048, we obtain:

� �

Array size: 2048 x2048

CUDA block size: 32x8, CUDA tile size: 32x32
dimGrid: 32x32x1 , dimBlock: 32x8x1

nprocs: 2, Local input array size: 2048 x1024
mpiTileDim: 1024 x1024

Bandwidth (GB/s): 7.37
�

which is considerably under the performance of the synchronous peer-to-peer code, even though both
MPI ranks, and therefore devices, were on the same node. This is not surprising, however, given that
the transfers are staged through the host. When performing a parallel transpose on devices distributed
across multiple nodes, we would expect to incur the cost of transfers between host and device. However,
when MPI transfers occur between device on the same node that are peer-to-peer capable, we would like
to take advantage of the peer-to-peer capability in such cases. Luckily there are MPI implementations
such as MVAPICH, OpenMPI, and Cray MPI that do exactly that. In the following section we show
how the GPU-aware capabilities of MVAPICH can be leveraged in the transpose code.

4.2.3 GPU-aware MPI transpose
The MVAPICH implementation of MPI2 overloads some of the MPI calls so they can take device
arrays as well as host arrays. When the array arguments are device arrays from devices that exist on
different nodes or that are not peer-to-peer capable, the transfers between the host and device are taken
care of behind the scenes. When the array arguments are device arrays from devices on the same node
that are peer-to-peer capable, then the transfer is done (in a nondefault stream) using the peer-to-peer
mechanism.

To take advantage of MVAPICH, we only need to make a few modifications to the code, which is
listed in Appendix D.4.3. First, we must set the device before any MPI function is called, which rules
out using the assignDevice() as we have done previously. Luckily, MVAPICH sets a environment
variable that contains the desired information, which we simply need to read as done in the following:

70 ! for MVAPICH set device before MPI initialization
71
72 call get_environment_variable(’MV2_COMM_WORLD_LOCAL_RANK ’, &

2For the details of the GPU-aware MVAPICH implementation, we refer the reader to the MVAPICH documentation. Since
we will be using CUDA Fortran, the PGI compiler must be selected as the default Fortran compiler.
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73 localRankStr)
74 read(localRankStr ,’(i10)’) localRank
75 ierr = cudaSetDevice(localRank)

The main loop over communication stages in the MVAPICH code is:

178 do stage = 1, nProcs -1
179 ! sRank = the rank to which myrank sends data
180 ! rRank = the rank from which myrank receives data
181 sRank = modulo(myrank -stage , nProcs)
182 rRank = modulo(myrank+stage , nProcs)
183
184 call MPI_BARRIER(MPI_COMM_WORLD , ierr)
185
186 ! pack tile so data to be sent is contiguous
187
188 !$cuf kernel do(2) <<<*,*>>>
189 do j = 1, mpiTileDimY
190 do i = 1, mpiTileDimX
191 d_sTile(i,j) = d_idata(sRank*mpiTileDimX+i,j)
192 enddo
193 enddo
194
195 call MPI_SENDRECV(d_sTile , mpiTileDimX*mpiTileDimY , &
196 MPI_REAL , sRank , myrank , &
197 d_rTile , mpiTileDimX*mpiTileDimY , MPI_REAL , &
198 rRank , rRank , MPI_COMM_WORLD , status , ierr)
199
200 ! do transpose from receive tile into final array
201 ! (no need to unpack)
202
203 call cudaTranspose <<<dimGrid , dimBlock >>> &
204 (d_tdata(rRank*mpiTileDimY +1,1), ny, &
205 d_rTile , mpiTileDimX)
206
207 end do ! stage

where the MPI_SENDRECV() call on line 195 uses two device arrays, d_sTile and d_rTile. To
facilitate the transfer, the sent data are packed into the contiguous array d_sTile using the CUF kernel
on lines 188–193.
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When the code is run on the same node and devices as the previous MPI transpose code, we obtain:

� �

Array size: 2048 x2048

CUDA block size: 32x8, CUDA tile size: 32x32
dimGrid: 32x32x1 , dimBlock: 32x8x1

nprocs: 2, Local input array size: 2048 x1024
mpiTileDim: 1024 x1024

Bandwidth (GB/s): 18.06
�

which shows a performance similar to the synchronous version of the peer-to-peer code.
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A book on high-performance and parallel computing is not complete without an example that shows how
to compute π . Instead of using the classic example of numerical integration of the function

∫ 1
0

4
1+x2 dx ,

we use a Monte Carlo method to compute π .
Calculating π using a Monte Carlo method is quite simple. In a unit square, we generate a sequence

of N points, (xi , yi ) with i = 1, . . . , N , where each component is a random number with uniform
distribution. We then count the number of points, M, that lie on or inside the unit circle (i.e., satisfy
the relationship x2

i + y2
i ≤ 1), as shown in Figure 5.1. The ratio of M to N will give us an estimate of

π/4, which is the ratio of the area of a quarter of the unit circle, π/4, to the area of the unit square, 1.
The method is inherently parallel, since every point can be evaluated independently, so we expect good
performance and scalability on the GPU.

The accuracy of the ratio depends on the number of points used. The convergence to the real value is
very slow: simple Monte Carlo methods like the one just presented have a convergence O(1/

√
N ). There

are algorithmic improvements such as importance sampling and the use of low-discrepancy sequences
(quasi-Monte Carlo methods) to improve the convergence speed, but these are beyond the scope of this
book.

In writing a CUDA Fortran code to solve this problem, the first issue we face is how to generate the
random numbers on the GPU. Parallel random-number generation is a fascinating subject, but we take a
shortcut and use CURAND, the library for random-number generation provided by CUDA. CURAND
provides a high-quality, high-performance series of random and pseudo-random generators.

CUDA Fortran for Scientists and Engineers. http://dx.doi.org/10.1016/B978-0-12-416970-8.00005-5
© 2014 Elsevier Inc. All rights reserved.
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FIGURE 5.1

Monte Carlo method: π is computed as the ratio between the points inside the circle and the total number
of points.

5.1 CURAND
The basic operations we need to perform in CURAND to generate a sequence of random numbers are:

• Create a generator using curandCreateGenerator().
• Set a random-number seed with curandSetPseudoRandomGeneratorSeed().
• Generate the data from a distribution using the functions curandGenerateUniform(),

curandGenerateNormal(), or curandGenerateLogNormal(), depending on the dis-
tribution required.

• Destroy the generator with curandDestroyGenerator().

Before applying this procedure to generate random numbers in our Monte Carlo code, we demonstrate
how CURAND is used from CUDA Fortran in a simple application that generates N random numbers
on the GPU, copies the results back to the CPU, and prints the first four values. There are several source
code files used in this application. The main code is in the file generate_randomnumbers.cuf:

1 ! Generate N random numbers on GPU , copy them back to CPU
2 ! and print the first 4
3
4 program curand_example
5 use precision_m
6 use curand_m
7 implicit none
8 real(fp_kind), allocatable :: hostData (:)
9 real(fp_kind), allocatable , device :: deviceData (:)

10 integer(kind=int_ptr_kind ()) :: gen , N, seed
11



5.1 CURAND 157

12 ! Define how many numbers we want to generate
13 N=20
14
15 ! Allocate array on CPU
16 allocate(hostData(N))
17
18 ! Allocate array on GPU
19 allocate(deviceData(N))
20
21 if (fp_kind == singlePrecision) then
22 write(*,"(’Generating random numbers in single precision ’)")
23 else
24 write(*,"(’Generating random numbers in double precision ’)")
25 end if
26
27 ! Create pseudonumber generator
28 call curandCreateGenerator(gen , CURAND_RNG_PSEUDO_DEFAULT )
29
30 ! Set seed
31 seed =1234
32 call curandSetPseudoRandomGeneratorSeed ( gen , seed)
33
34 ! Generate N floats or double on device
35 call curandGenerateUniform(gen , deviceData , N)
36
37 ! Copy the data back to CPU
38 hostData=deviceData
39
40 ! print the first 4 of the sequence
41 write (*,*) hostData (1:4)
42
43 ! Deallocate data on CPU and GPU
44 deallocate(hostData)
45 deallocate(deviceData)
46
47 ! Destroy the generator
48 call curandDestroyGenerator(gen)
49 end program curand_example

This code uses the precision_m module (line 5) to facilitate toggling between single and double
precision. This module is contained in the precision_m.f90 file listed at the end of Section 1.4.1.
The code also uses the curand_m module (line 6), which contains the interfaces that allow CUDA
Fortran to call the CURAND library functions that are written in CUDA C. These interfaces in turn use
the iso_c_binding module provided by the compiler. The curand_m module is defined in the file
curand_m.cuf:

1 module curand_m
2 integer , public :: CURAND_RNG_PSEUDO_DEFAULT = 100
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3 integer , public :: CURAND_RNG_PSEUDO_XORWOW = 101
4 integer , public :: CURAND_RNG_QUASI_DEFAULT = 200
5 integer , public :: CURAND_RNG_QUASI_SOBOL32 = 201
6
7 interface curandCreateGenerator
8 subroutine curandCreateGenerator( &
9 generator ,rng_type) &

10 bind(C,name=’curandCreateGenerator ’)
11 use iso_c_binding
12 integer(c_size_t ):: generator
13 integer(c_int),value:: rng_type
14 end subroutine curandCreateGenerator
15 end interface curandCreateGenerator
16
17 interface curandSetPseudoRandomGeneratorSeed
18 subroutine curandSetPseudoRandomGeneratorSeed( &
19 generator ,seed) &
20 bind(C,name=’curandSetPseudoRandomGeneratorSeed ’)
21 use iso_c_binding
22 integer(c_size_t), value:: generator
23 integer(c_long_long),value:: seed
24 end subroutine curandSetPseudoRandomGeneratorSeed
25 end interface curandSetPseudoRandomGeneratorSeed
26
27 interface curandGenerateUniform
28 subroutine curandGenerateUniform( &
29 generator , odata , numele) &
30 bind(C,name=’curandGenerateUniform ’)
31 use iso_c_binding
32 integer(c_size_t),value:: generator
33 !pgi$ ignore_tr odata
34 real(c_float), device :: odata (*)
35 integer(c_size_t),value:: numele
36 end subroutine curandGenerateUniform
37
38 subroutine curandGenerateUniformDouble (&
39 generator , odata , numele) &
40 bind(C,name=’curandGenerateUniformDouble ’)
41 use iso_c_binding
42 integer(c_size_t),value:: generator
43 !pgi$ ignore_tr odata
44 real(c_double), device :: odata (*)
45 integer(c_size_t),value:: numele
46 end subroutine curandGenerateUniformDouble
47 end interface curandGenerateUniform
48
49 interface curandGenerateNormal
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50 subroutine curandGenerateNormal( &
51 generator , odata , numele , mean ,stddev) &
52 bind(C,name=’curandGenerateNormal ’)
53 use iso_c_binding
54 integer(c_size_t),value:: generator
55 !pgi$ ignore_tr odata
56 real(c_float), device :: odata (*)
57 integer(c_size_t),value:: numele
58 real(c_float), value:: mean ,stddev
59 end subroutine curandGenerateNormal
60
61 subroutine curandGenerateNormalDouble( &
62 generator , odata , numele ,mean , stddev) &
63 bind(C,name=’curandGenerateNormalDouble ’)
64 use iso_c_binding
65 integer(c_size_t),value:: generator
66 !pgi$ ignore_tr odata
67 real(c_double), device :: odata (*)
68 integer(c_size_t),value:: numele
69 real(c_double), value:: mean ,stddev
70 end subroutine curandGenerateNormalDouble
71 end interface curandGenerateNormal
72
73 interface curandDestroyGenerator
74 subroutine curandDestroyGenerator(generator) &
75 bind(C,name=’curandDestroyGenerator ’)
76 use iso_c_binding
77 integer(c_size_t),value:: generator
78 end subroutine curandDestroyGenerator
79 end interface curandDestroyGenerator
80
81 end module curand_m

The use of the iso_c_binding module to interface with C functions and libraries is described
in detail in Appendix C, but we should mention a few aspects of writing these interfaces here.
First, CURAND contains different routines for single and double precision. Though we can use the
precision_m module to toggle between single- and double-precision variables in our code, we
need to use generic interfaces in curand_m to effectively toggle between functions. For exam-
ple, the interface curandGenerateUniform() defined on line 27 contains the two subroutines
curandGenerateUniform() and curandGenerateUniformDouble(). The correct ver-
sion will be called depending on whether curandGenerateUniform() is called with single- or
double-precision arguments.

Another issue encountered when we call C from Fortran is how C and Fortran pass arguments to
functions: C passes arguments by value and Fortran passes arguments by address. This difference can
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be accommodated by using the variable qualifier value in the interface when declaring a dummy
argument that is not a pointer. Each interface in curand_m uses at least one such value argument.

Finally, on some occasions generic C buffers are used in library functions. Because Fortran is strongly
typed, to write an interface the !pgi$ ignore_tkr directive must be used, which effectively tells
the compiler to ignore any combination of the type, kind, rank, and presence of the device attribute
of the specified dummy arguments. For example, on lines 33 and 43 the directive is used to ignore the
type and rank of odata.

The three source files code can be compiled with:

� �

pgf90 -O3 -o rng_gpu_sp precision_m.F90 curand_m.cuf \
generate_randomnumbers.cuf -lcurand

�

Here we need to add the CURAND library (-lcurand), located in the cuda subdirectory of the PGI
installation, to link the proper functions. We also renamed the precision module file precision_m.
F90 so that the -Mpreprocess compiler option is not needed. If we execute rng_gpu_sp, we will
see the following output:

� �

./ rng_gpu_sp
Generating random numbers in single precision
0.1454676 0.8201809 0.5503992 0.2948303

�

To create a double-precision executable, we compile the code using:

� �

pgf90 -DDOUBLE -O3 -o rng_gpu_dp precision_m.F90 \
curand_m.cuf generate_randomnumbers.cuf -lcurand

�

where the option -DDOUBLEwas added. If we execute rng_gpu_dp, we will see that the code is now
using double precision:

� �

./ rng_gpu_dp
Generating random numbers in double precision
0.4348988043884129 0.9264169202024377
0.8118452111300192 0.3085554246353980

�

The two sequences are different; they are not just the same sequence with different precision.
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5.2 Computing � with CUF kernels
Having established how to generate the random numbers in parallel on the GPU, we turn our attention to
writing the Monte Carlo code to test whether points are inside the circle and count the number of points
that satisfy this criterion. To accomplish this task, we first use a feature of CUDA Fortran called CUF
kernels, also known as kernel loop directives, which were introduced in the 2011 version of the PGI
compiler. CUF kernels are a set of directives that tell the compiler to generate a kernel from a loop or
tightly nested loops when the data in the loop reside on the GPU (see Section 3.7 for more information on
CUF kernels). These directives can greatly simplify the job of writing many trivial kernels; in addition,
they are able to recognize reduction operations, such as counting the number of points that lie within
the unit circle in our example.

If the random numbers are stored in two arrays X(N) and Y(N), the CPU code to determine the
number of points that lie inside the unit circle is:

inside =0
do i=1,N
if ( (X(i)**2 + Y(i)**2 ) <= 1. _fpkind ) inside=inside +1

end do

If we denote X_d and Y_d as the two corresponding arrays on the GPU, the PGI compiler is able to
generate a kernel that performs the same operations on the GPU simply by adding a directive:

inside =0
!$cuf kernel do <<< *, * >>>
do i=1,N
if ( (X_d(i)**2 + Y_d(i)**2 ) <= 1. _fpkind ) inside=inside +1

end do

This directive instructs the compiler to generate a kernel for the do loop that follows. Moreover, the
compiler is able to detect that the variable inside is the result of a reduction operation. Without the
use of CUF kernels, reductions in CUDA need to be expressed using either atomic operations or a
sequence of two kernels: the first kernel generates partial sums, and the second kernel uses a single
block to compute the final sum. We present these methods of performing the reduction later in this
chapter. Though not difficult, getting all the details right can be time consuming.

Putting together the random-number generation with the CUF kernel that counts the number of
points that lie in the unit circle, we have a fully functional Monte Carlo code. We also perform the same
operation on the CPU to check the results. When the counting variable is an integer, we should get the
exact same result on both platforms, since integer addition is commutative. We will see later on that
when the accumulation is done on floating-point variables, there may be differences due to the different
order of accumulation.
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1 ! Compute pi using a Monte Carlo method
2
3 program compute_pi
4 use precision_m
5 use curand_m
6 implicit none
7 real(fp_kind), allocatable :: hostData (:)
8 real(fp_kind), allocatable , device :: deviceData (:)
9 real(fp_kind) :: pival

10 integer :: inside_gpu , inside_cpu , N, i
11 integer(kind=int_ptr_kind ()) :: gen , twoN , seed
12
13 ! Define how many numbers we want to generate
14 N=100000
15 twoN=N*2
16
17 ! Allocate array on CPU
18 allocate(hostData(twoN))
19
20 ! Allocate array on GPU
21 allocate(deviceData(twoN))
22
23 if (fp_kind == singlePrecision) then
24 write(*,"(’Compute pi in single precision ’)")
25 else
26 write(*,"(’Compute pi in double precision ’)")
27 end if
28
29 ! Create pseudonumber generator
30 call curandCreateGenerator(gen , CURAND_RNG_PSEUDO_DEFAULT )
31
32 ! Set seed
33 seed =1234
34 call curandSetPseudoRandomGeneratorSeed ( gen , seed)
35
36 ! Generate N floats or double on device
37 call curandGenerateUniform(gen , deviceData , twoN)
38
39 ! Copy the data back to CPU to check result later
40 hostData=deviceData
41
42 ! Perform the test on GPU using CUF kernel
43 inside_gpu =0
44 !$cuf kernel do <<<*,*>>>
45 do i=1,N
46 if( (deviceData(i)**2+ deviceData(i+N)**2) <= 1. _fp_kind ) &
47 inside_gpu=inside_gpu +1
48 end do
49
50 ! Perform the test on CPU
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51 inside_cpu =0
52 do i=1,N
53 if( (hostData(i)**2+ hostData(i+N)**2) <= 1. _fp_kind ) &
54 inside_cpu=inside_cpu +1
55 end do
56
57 ! Check the results
58 if (inside_cpu .ne. inside_gpu) &
59 write (*,*) "Mismatch between CPU/GPU"
60
61 ! Print the value of pi and the error
62 pival= 4. _fp_kind*real(inside_gpu ,fp_kind )/real(N,fp_kind)
63 write(*,"(t3,a,i10 ,a,f10.8,a,e11 .4)") "Samples=", N, &
64 " Pi=", pival , &
65 " Error=", abs(pival -2.0 _fp_kind*asin (1.0 _fp_kind ))
66
67 ! Deallocate data on CPU and GPU
68 deallocate(hostData)
69 deallocate(deviceData)
70
71 ! Destroy the generator
72 call curandDestroyGenerator(gen)
73 end program compute_pi

In this code, rather than generate two sequences of N random numbers for the x and y coordinates,
we generate only one set of twoN random numbers that can be interpreted as containing all the x
coordinates first, followed by all the y coordinates. Compiling the code similarly to rng_gpu_sp, for
single precision, typical output will be:

� �

./pi_sp
Compute pi in single precision
Samples= 100000 Pi =3.13631988 Error= 0.5273E-02

�

which gives a reasonable result for the number of samples. We can add a simple do loop to study the
convergence of the solution:

� �

Compute pi in single precision
Samples= 10000 Pi =3.11120009 Error= 0.3039E-01
Samples= 100000 Pi =3.13632011 Error= 0.5273E-02
Samples= 1000000 Pi =3.14056396 Error= 0.1029E-02
Samples= 10000000 Pi =3.14092445 Error= 0.6683E-03
Samples= 100000000 Pi =3.14158082 Error= 0.1192E-04

�
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From these results, which span several orders of magnitude of sample size, we observe O(N−1/2)

convergence of the method. We need to increase the sample size by two orders of magnitude to lower
the error by an order of magnitude. Using double precision would not alter the convergence rate, since
the rate is determined solely by the number of points; the test of whether a point it is inside or outside
the unit circle is not affected by precision. A typical result in double precision is:

� �

Compute pi in double precision (seed = 1234)
Samples= 10000 Pi =3.13440000 Error= 0.7193E-02
Samples= 100000 Pi =3.13716000 Error= 0.4433E-02
Samples= 1000000 Pi =3.14028800 Error= 0.1305E-02
Samples= 10000000 Pi =3.14155360 Error= 0.3905E-04
Samples= 100000000 Pi =3.14141980 Error= 0.1729E-03

�

where the apparent better precision of the double sequence is a consequence of a lucky seed. Changing
the seed will produce a new series that will generate different results. For example, doing a simulation
in double precision with a seed=1234567 will give lower accuracy than the simulation with single
precision with seed=1234:

� �

Compute pi in double precision (seed =1234567)
Samples= 10000 Pi =3.12880000 Error= 0.1279E-01
Samples= 100000 Pi =3.14676000 Error= 0.5167E-02
Samples= 1000000 Pi =3.14274000 Error= 0.1147E-02
Samples= 10000000 Pi =3.14062480 Error= 0.9679E-03
Samples= 100000000 Pi =3.14148248 Error= 0.1102E-03

�

5.2.1 IEEE-754 precision (advanced topic)
CPUs have been following the IEEE Standard for Floating-Point Arithmetic, also known as IEEE 754
standard, for quite some time: The original standard was published in 1985 and was updated in 2008 to
IEEE 754-2008. This standard made it possible to write algorithms using floating-point arithmetic that
could be executed on a variety of platforms with identical results. A detailed description is outside the
scope of this book, but one of the main additions to the updated standard was the introduction of a Fused
Multiply-Add (FMA) instruction. FMA computes a × b + c with only one rounding operation and has
been available on several computer architectures, including IBM Power architecture and Intel Itanium.
When implemented in hardware, the equivalent instruction takes about the same time as a multiply,
resulting in a performance advantage for many applications.

Whereas an unfused multiply-add would compute the product a × b, round it to P significant bits,
add the result to c, and round back to P significant bits, a fused multiply-add would compute the entire
sum a × b + c to its full precision before rounding the final result down to P significant bits.
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Several generations of NVIDIA GPUs, like the Tesla C2050 (Fermi architecture) or the Tesla K20
(Kepler architecture), have support for the IEEE 754-2008 FMA in both single and double preci-
sion. In CUDA Fortran it is possible to disable generating this instruction using the compiler option
-Mcuda=nofma.

If we revisit our calculation of π , we realize that the result of the test to see if the points are inside
the unit circle is dependent on whether FMA is used or not. The test is summing the square of the
coordinates of each point and comparing this value to the unity. If the value computed by the CPU and
GPU is off by only one bit, the test will give different results if the point is exactly on the unit circle.
The probability of finding points exactly on the unit circle is small but nonzero. If we rerun the previous
code with seed=1234567, we observe a discrepancy between the number of interior points detected
by the CPU and the one detected by the GPU when the number of samples is equal to 100 million.

� �

Compute pi in single precision (seed =1234567 FMA enabled)
Samples= 10000 Pi =3.16720009 Error= 0.2561E-01
Samples= 100000 Pi =3.13919997 Error= 0.2393E-02
Samples= 1000000 Pi =3.14109206 Error= 0.5007E-03
Samples= 10000000 Pi =3.14106607 Error= 0.5267E-03

Mismatch between CPU/GPU 78534862 78534859
Samples= 100000000 Pi =3.14139414 Error= 0.1986E-03

�

There are 3 out of 100 million points for which the test is giving different results, listed in Table 5.1:

We will analyze the error in detail for the first point; however, the same analysis applies to the other
points. To analyze the error, we look at results obtained by rearranging the order of the multiplications
and additions. Using the notation F M A(a, b, c) = a × b + c, we could compute x2 + y2 in one of
three ways (the results on the left are in floating-point notation, the ones on the right in hexadecimal
notation):

Table 5.1 Coordinates of the points and distance from the origin with results different between
CPU and GPU. Values are in floating-point (top) and hexadecimal (bottom) representations.

x 2 + y 2 x 2 + y 2

N x y CPU GPU with FMA

2377069 6.162945032e-01 7.875158191e-01 1.000000000 1.000000119

3F1DC57A 3F499AA3 3F800000 3F800001

33027844 2.018149495e-01 9.794237018e-01 1.000000000 1.000000119

3E4EA894 3F7ABB83 3F800000 3F800001

81541078 6.925099492e-01 7.214083672e-01 1.000000000 1.000000119

3F314855 3F38AE38 3F800000 3F800001
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1. Compute x∗x , compute y∗y, and then add the two squares:
(x*x + y*y) = 1.000000000e+00 3f800000

2. Compute y∗y , use FMA(x,x,y*y):
fmaf(x,x,y*y)= 1.000000000e+00 3f800000

3. Compute x∗x , use FMA(y,y,x*x):
fmaf(y,y,x*x)= 1.000000119e+00 3f800001

In theory, the last way should be the most accurate, since in this case y > x and therefore we are
using the full precision for the bigger term. To confirm this, we could try the following experiment:
What would it happen if we recompute the distance on the CPU in double precision?

The following code performs this experiment. It loads the hex value of x and y, computes the
distance with the single-precision values, casts the values of x and y to double precision and recom-
putes the distance in double, and finally recasts the double-precision value of the distance to single
precision.

1 program test_accuracy
2 real :: x, y, dist
3 double precision :: x_dp , y_dp , dist_dp
4
5 x=Z’3F1DC57A ’
6 y=Z’3F499AA3 ’
7 dist= x**2 +y**2
8
9 x_dp=real(x,8)

10 y_dp=real(y,8)
11 dist_dp= x_dp **2 +y_dp **2
12
13 print *, ’Result with operands in single precision:’
14 print ’((2x,z8)) ’, dist
15
16 print *, ’Result in double precision with operands ’
17 print *, ’promoted to double precision:’
18 print ’((2x,z16))’, dist_dp
19
20 print *, ’Result in single precision with operands ’
21 print *, ’promoted to double precision:’
22 print ’((2x,z8))’, real(dist_dp ,4)
23
24 end program test_accuracy

� �

Result with operands in single precision:
3F800000

Result in double precision with operands
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promoted to double precision:
3FF0000015781ED0

Result in single precision with operands
promoted to double precision:
3F800001

�

The result from fmaf(y,y,x*x) in single precision on the GPU matches the result on the CPU
when the operands are promoted to double precision. All the operations are performed in double preci-
sion, and the final result is cast back to single.

The following detailed analysis shows why the third result differs by one ULP (unit in the last place
or unit of least precision, the spacing between floating-point numbers) from the other two results:

� �

x = 3f1dc57a
y = 3f499aa3
x*x = 3ec277a0
fma(y,y,x*x) =

3f1ec431_5e83c90
+ 3ec277a0_0000000
------------------

9ec431_5e83c90 // align mantissas for add
613 bd0_0000000

------------------
1000001 _5e83c90 // sum
800000 _af41e48 // normalized mantissa

------------------
= 3f800000_af41e48 // result before rounding
= 3f800001 // rounded result

�

As Einstein said: “A man with a watch knows what time it is. A man with two watches is never sure.”
Now that we have two outputs, we may get different results and need to understand the source of the
possible difference. In the context of finite precision math, the difference is extremely slight. FMA
instructions are being introduced in x86 processors too, so this kind of behavior can be observed on
mainstream CPUs as well. Recompiling the code disabling the FMA instruction (-Mcuda=nofma)
will generate the same value on the GPU as on the CPU, as we expected from our analysis:

� �

Compute pi in single precision (seed =1234567 FMA disabled)
Samples= 10000 Pi =3.16720009 Error= 0.2561E-01
Samples= 100000 Pi =3.13919997 Error= 0.2393E-02
Samples= 1000000 Pi =3.14109206 Error= 0.5007E-03
Samples= 10000000 Pi =3.14106607 Error= 0.5267E-03
Samples= 100000000 Pi =3.14139462 Error= 0.1981E-03

�
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5.3 Computing � with reduction kernels
The use of CUF kernels to calculate π was advantageous in that we did not need to write explicit code
for a reduction; the compiler performed the reduction on our behalf. However, circumstances may arise
where we need to write a reduction in CUDA Fortran, so in this section we explore how this is done in
the context of our Monte Carlo code.

The most common reduction operation is computing the sum of a large array of values. Other
reduction operations that are often encountered are the computation of the minimum or maximum value
of an array. Before describing the approach, we should remember that the properties of a reduction
operator ⊗ are:

• The operator is commutative: a ⊗ b = b ⊗ a
• The operator is associative: a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c

With these two properties, we can rearrange and combine the elements in any order. We should point out
that the second property is not always true when performed on a computer: Although integer addition
is always associative, floating-point addition is not. If we change the order of the partial sums and the
operands are expressed as floating-point numbers, we may get different results.

We have seen that the fundamental programming paradigms of CUDA are that each block is inde-
pendent and that the same shared memory is visible only to threads within a thread block. How could
we perform a global operation like a reduction using multiple blocks with these two constraints? There
are several ways of doing so, which we discuss in this and the following section. The approach we use
in this section is to use two different kernels to perform the reduction. In the first kernel, each block
will compute its partial sum and will write the result back to global memory. After the first kernel
is completed, a second kernel consisting of a single block is launched, reading the partial sums and
performing the final reduction. The code used for these two stages is quite similar, since the operations
performed by a block in both stages are almost identical: (see Figure 5.2).

If each block would calculate a partial sum with a single accumulator (as we would do on the CPU),
there will only be a single thread out of the entire thread block working and the rest would be idle.
Though this is still legal CUDA code, it will give very poor performance, since the hardware utilization
would be suboptimal. Luckily, there is a very well-known workaround to perform a parallel summation:
a tree reduction. Figures 5.2 and 5.3 depict tree reductions. To sum N values using a tree reduction, we
first sum them in pairs, ending up with N/2 values, and we keep repeating the procedure until there
is a single value left. The level of parallelism decreases for each iteration, but it is still better than the
sequential alternative.

Now let’s analyze a case in which N = 16, assuming a block with 16 threads for illustrative purposes.
(In reality we want to use many more threads in a block to hide latencies.) After we load the values
in shared memory, each active thread at step M (M = 1, . . . , logN ) will sum its value to the one
with stride 2M−1, as in Figure 5.4. If we look carefully at Figure 5.4, we notice that there is room for
improvement. The issue here is thread divergence. For cases where a large number of threads per block
are used, a warp of threads in the latter stages of the reduction may have only one active thread. We
would like to have all the active threads in as few warps as possible in order to minimize divergence.
This can be achieved by storing the result of one stage of the reduction so that all the active threads for
the next stage are contiguous. This is accomplished by the scenario in Figure 5.5.
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FIGURE 5.2

Two-stage reduction: Multiple blocks perform a local reduction in a first stage. A single block performs the
final reduction in a second stage.
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FIGURE 5.3

Tree reduction in a single block.

With this in mind we are now ready to write the kernel to perform the final reduction, where a single
thread block is launched. The code to calculate the final sum is:

5 attributes(global) subroutine final_sum(partial ,total)
6 integer :: partial (256)
7 integer , shared :: psum (*)
8 integer :: total
9 integer :: index , inext

10
11 index=threadIdx%x
12
13 psum(index)= partial(index)
14 call syncthreads ()
15
16 inext=blockDim%x/2
17 do while ( inext >=1 )
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18 if (index <=inext) &
19 psum(index)=psum(index)+psum(index+inext)
20 inext = inext/2
21 call syncthreads ()
22 end do
23 if (index == 1) total=psum (1)
24 end subroutine final_sum

On line 13, each thread loads a value of the partial sum array from global memory into the shared memory
array psum. To be sure that all the threads have completed this task, a call to syncthreads() forces
a barrier (the control flow will resume when all the threads in a thread block have reached this point).
This will ensure a consistent view of the shared memory array for all the threads. We are now ready to
start the reduction. For the first stage of reduction, a thread pool composed of half the threads (inext)
will sum the value at index with value at index+inext and store the result at index. For each
subsequent stage, inext is halved and the procedure repeated until there is only one thread left in the
pool.

When the while loop beginning on line 17 is completed, the thread with index 1 has the final value,
which we will store back in global memory (line 23). The only limitation in the kernel is the requirement
for the total number of threads used to be a power of 2. It will be easy to pad the array in shared memory
to the next suitable number with values that are neutral to the reduction operation (for the sum, the
neutral value is 0).

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2Values (shared memory)

0 2 4 6 8 10 12 14
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FIGURE 5.4

Tree reduction in a single block with divergence.
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Tree reduction in a single block without divergence.

Having written the kernel for the final reduction, we now turn to writing the kernel to calculate
the partial reduction that generates the input to the final reduction kernel. In the Monte Carlo code,
to compute π the number of points used was quite large (up to 100 million). If we are going to use a
1D grid of blocks and a 1:1 mapping between threads and elements of the array, we will be limited to
65535×512 ≈ 33M (or, in the case of a GPU with compute capability greater than 2.0, 65535×1024 ≈
66M). We could use a 2D grid of blocks to increase the total number of available threads, but there
is another strategy that is simpler. We could have a single thread adding up multiple elements of the
array in serial fashion and start the tree reduction when each thread has exhausted the work. This will
be beneficial for performance, since all the threads will be active for a long time, instead of losing half
of the active threads at each step of the reduction. The code for this is as follows:

26 attributes(global) subroutine partial_sum(input ,partial ,N)
27 real(fp_kind) :: input(N)
28 integer :: partial (256)
29 integer , shared :: psum (*)
30 integer :: total
31 integer(kind=8),value :: N
32 integer :: i,index , inext ,interior
33
34 index=threadIdx%x+( BlockIdx%x -1)* BlockDim%x
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35
36 interior =0
37 do i=index ,N/2, BlockDim%x*GridDim%x
38 if( (input(i)**2+ input(i+N/2)**2) <= 1. _fp_kind ) &
39 interior=interior +1
40 end do
41
42 ! Local reduction per block
43 index=threadIdx%x
44
45 psum(index)= interior
46 call syncthreads ()
47
48 inext=blockDim%x/2
49 do while ( inext >=1 )
50 if (index <=inext) &
51 psum(index)=psum(index)+psum(index+inext)
52 inext = inext /2
53 call syncthreads ()
54 end do
55 if (index == 1) partial(BlockIdx%x)=psum (1)
56 end subroutine partial_sum

The listing for the partial reduction is very similar to the one for the final reduction. This time, instead
of reading the partial sum from global memory, we will compute the partial sums starting from the input
data. The variable interiorwill store the number of interior points that each thread will detect inside
the circle. The rest of the code follows exactly the same logic of the code to compute the final sum, with
the only difference that thread 1 will write the partial sum to a different global array partial in the
position corresponding to the block number.

Now that we have the two custom kernels, the only missing piece is their invocation. In the following
code we call the first kernel that computes the partial sums (using, for example, 256 blocks of 512
threads), followed by the kernel that computes the final result (using 1 block with 256 threads):

! Compute the partial sums with 256 blocks of 512 threads
call partial_sum <<<256,512,512*4>>>( deviceData ,partial ,N)

! Compute the final sum with 1 block of 256 threads
call final_sum <<<1,256,256*4>>>(partial ,inside_gpu)

Once again, the sizes of the grid and thread block are independent of the number of points we process,
since the loop on line 11 of the partial reduction accommodates any amount of data. We can use
different block and grid sizes; the only requirement is that number of blocks in the partial reduction must
correspond to the number of threads in the one block of the final reduction. To accommodate different
block sizes, dynamic shared memory is used, as indicated by the third configuration parameter argument.
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5.3.1 Reductions with atomic locks (advanced topic)
We mentioned in the previous section that there are two ways to perform a reduction, aside from using
CUF kernels. The independence of blocks was circumvented in the previous section by using two
kernels. There is one way for separate blocks within a single kernel launch to share and update data
safely for certain operations.1 This requires some features to ensure global synchronization among
blocks, supported only in GPUs with compute capabilities of 1.1 or higher. The entire reduction code
using atomic locks will be nearly identical to the code that performs the partial reduction in the two-
kernel approach. The only difference is that instead of having each block store its partial sum to global
memory:

if (index == 1) partial(BlockIdx%x)=psum (1)

and then run a second kernel to add these partial sums, a single value in global memory is updated using
an atomic lock to ensure that only one block at a time updates the final sum:

if (index == 1) then
do while ( atomiccas(lock ,0,1) == 1) !set lock
end do
partial (1)= partial (1)+ psum (1) ! atomic update of partial (1)
call threadfence () ! Wait for memory transaction to be

! visible to all the other threads
lock =0 ! release lock

end if

Outside of this code, the integer variable lock is declared in global memory and initialized
to 0. To set the lock, the code uses the atomicCAS (atomic Compare And Swap) instruction.
atomicCAS(mem,comp,val) compares mem to comp and atomically stores back the value val in
mem if they are equal. The function returns the value ofmem. The logic is equivalent to the following code:

if (mem == comp ) then
mem = val

end if
return mem

with the addition of the atomic update, i.e., only one block at a time will be able to aquire the lock.
Another important routine is threadfence(), which ensures that the global memory access made
by the calling thread prior to threadfence() is visible to all the threads in the device. We also need
to be sure that the variable that is going to store the final sum (in this case, we are reusing the first
element of the partial array from the previous kernel) is initialized to zero:

1Giles, http://people.maths.ox.ac.uk/gilesm/cuda/lecs/lec4.pdf.

http://people.maths.ox.ac.uk/gilesm/cuda/lecs/lec4.pdf
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partial (1)=0
call sum <<<64,256,256*4>>>( deviceData ,partial ,N)
inside=partial (1)

As a final note in this section, we should elaborate on the degree to which atomic functions can provide
cooperation between blocks. Atomic operations can only be used when the order of the operations is
not important, as in the case of reductions. This is because the order in which the blocks are scheduled
cannot be determined; there is no warranty, for example, that block 1 starts before block N . If we were
to assume any particular order, the code may cause deadlock. Deadlocks, along with race conditions,
are the most difficult bugs to diagnose and fix, since their occurrence may be sporadic and/or may cause
the computer or GPU to lock. The code for the atomic lock does not rely on a particular scheduling of
the blocks; it only ensures that one block at a time updates the variable, but the order of the blocks does
not matter.

5.4 Accuracy of summation
The summation we used to find the number of points inside the circle used integer variables. Reduc-
tions involving floating-point variables are very common and important for a wide variety of numerical
applications. When we deal with floating-point arithmetic, several numerical accuracy issues can arise
(rounding, cancellation of significant digits), and particular care should be taken in designing an algo-
rithm that reduces these errors.

The standard way of summing a sequence of N numbers:

S =
N∑

i=1

xi

is the use of the recursive formula (hence the term recursive summation):

S0 = 0

Si = Si−1 + xi , i = 1, 2, . . . , N

S = SN

The accuracy and stability properties of the recursion have been extensively studied in literature. Without
going into too many details (an excellent in-depth error analysis is given by Higham (Higham, 2002)),
the main source of the error is the difference in magnitude between the running sum and the terms of
the sequence. When summing two floating-point numbers with big difference in magnitude, there is a
loss of precision. In the extreme case, the new term of the sequence added to the running sum could
be completely lost. When both negative and positive operands are present, there is also the issue of
subtractive cancellation. How could we improve the accuracy of the sum?

• Minimize the intermediate sum by sorting the sequence. To keep the error small, we want the Si

term as small as possible, i.e., the smallest terms should be added first. This is very expensive and
it may be difficult or impossible to apply in general cases.
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Table 5.2 Sum of the series for N = 8192. For the single-precision results, the upper value is
the sum, the lower value is the error.

x(i) Forward Single Precision Backward Single Precision Reference Result

1/i Result 1.644725 1.644812 1.644812003408614

error 8.6680685225104526E-005 1.5531721686556921E-008

1/i2 Result 9.588196 9.588188 9.588190111622680

error 5.6891585700213909E-006 1.9402359612286091E-006

• Use an accumulator with higher precision. In double precision, there will be 53 bits to store the
mantissa, and a loss of significant digits will be reduced or completely eliminated. Note that on a
GPU capable only of single precision, this is not a feasible solution.

• Use multiple intermediate sums. The extreme case, pairwise summation, also has the nice property
of exposing parallelism. This is the preferred solution on GPUs and the approach we used in the
previous examples.

• Use a compensated sum, also known as Kahan summation. The basic idea is to have a correction
term designed to reduce the rounding errors. It achieves better accuracy at the cost of increasing
the arithmetic intensity by a factor of four, and it is still a serial algorithm. The algorithm is quite
old (Kahan, 1965) and was written at a time when double precision was not supported on several
architectures. Kahan summation is the most popular compensated summation technique, but there
are several variations of this idea.

There are other algorithms (insertion, several variants of compensated sum). Higham’s book (Higham,
2002) is a good reference.

Let’s explore sorting the sequence before doing the summation. To verify the effectiveness of sorting,
we could sum a simple series, taking N = 8192 and x(i) = 1/i or x(i) = 1/i2. The elements in the
two sequences are by construction sorted and with descending magnitude. We can do a forward sum
(from i = 1 to N ) and a backward sum (from i = N to 1) and compare the accuracy to a sum where
the accumulator is stored in double precision and produce Table 5.2.

As predicted by the error analysis, the sum where the smallest terms are added first, in this case from
i = N to 1, in order to minimize the running sum, returns the closest value to the reference sum.

To examine the other algorithms, we reuse an example from Barone (Barone et al., 2006), summing
an array with 10 million elements, all equal to 7.0. Clearly, in this case, sorting the array will not reduce
the error. We compare the sum computed by the intrinsic Fortran90 function sum(), the recursive
sum with a single-precision accumulator, the recursive sum with a double-precision accumulator, the
pairwise reduction, and the Kahan sum.

1 program sum_accuracy
2 implicit none
3 real , allocatable :: x(:)
4 real :: sum_intrinsic ,sum_cpu , sum_kahan , sum_pairwise , &
5 comp , y, tmp
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6 double precision :: sum_cpu_dp
7 integer :: i,inext ,icurrent , N=10000000
8
9 allocate (x(N))

10 x=7.
11
12 ! Summation using intrinsic
13 sum_intrinsic=sum(x)
14
15 ! Recursive summation
16 sum_cpu =0.
17 sum_cpu_dp =0.d0
18 do i=1,N
19 ! accumulator in single precision
20 sum_cpu=sum_cpu+x(i)
21 ! accumulator in double precision
22 sum_cpu_dp=sum_cpu_dp+x(i)
23 end do
24
25 ! Kahan summation
26 sum_kahan =0.
27 comp =0. ! running compensation to recover lost low -order bits
28
29 do i=1,N
30 y = comp +x(i)
31 tmp = sum_kahan + y ! low -order bits may be lost
32 comp = (sum_kahan -tmp)+y ! (sum -tmp) recover low -order bits
33 sum_kahan = tmp
34 end do
35 sum_kahan=sum_kahan +comp
36
37 ! Pairwise summation
38 icurrent=N
39 inext=ceiling(real(N)/2)
40 do while (inext >1)
41 do i=1,inext
42 if ( 2*i <= icurrent) x(i)=x(i)+x(i+inext)
43 end do
44 icurrent=inext
45 inext=ceiling(real(inext )/2)
46 end do
47 sum_pairwise=x(1)+x(2)
48
49 write(*, "(’Summming ’,i10 , &
50 ’ elements of magnitude ’,f3.1)") N,7.
51 write(*, "(’Sum with intrinsic function =’,f12.1, &
52 ’ Error=’, f12.1)") &
53 sum_intrinsic , 7.*N-sum_intrinsic
54 write(*, "(’Recursive sum with SP accumulator =’,f12.1, &
55 ’ Error=’, f12.1)") sum_cpu , 7.*N-sum_cpu
56 write(*, "(’Recursive sum with DP accumulator =’,f12.1, &
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57 ’ Error=’, f12 .1)") sum_cpu_dp , 7.*N-sum_cpu_dp
58 write(*, "(’Pairwise sum in SP =’,f12.1, &
59 ’ Error=’, f12 .1)") sum_pairwise , 7.*N-sum_pairwise
60 write(*, "(’Compensated sum in SP =’,f12.1, &
61 ’ Error=’, f12 .1)") sum_kahan , 7.*N-sum_kahan
62
63 deallocate(x)
64 end program sum_accuracy

The output from compiling and running this simple Fortran code is:

� �

pgf90 -O3 -o accuracy_sum accuracy_sum.f90

./ accuracy_sum
Summming 10000000 elements of magnitude 7.0
Sum with intrinsic function = 77603248.0 Error= -7603248.0
Recursive sum with SP accumulator = 77603248.0 Error= -7603248.0
Recursive sum with DP accumulator = 70000000.0 Error= 0.0
Pairwise sum in SP = 70000000.0 Error= 0.0
Compensated sum in SP = 70000000.0 Error= 0.0

�

As we can see from the output, both the intrinsic sum and the recursive sum in single precision give
us a wrong answer, overestimating the sum. The recursive sum with the double-precision accumulator,
the pairwise summation, and the Kahan summation are instead delivering the correct result. It should be
mentioned that this is the ideal case for pairwise reduction, since all the arguments at each stage are equal.

If we increase the number of elements by a factor of two, we will see that the two methods that were
giving the incorrect result are still giving the wrong answer but are now underestimating the sum.

� �

pgf90 -O3 -o accuracy_sum accuracy_sum.f90

./ accuracy_sum
Summming 20000000 elements of magnitude 7.0
Sum with intrinsic function = 134217728.0 Error= 5782272.0
Recursive sum with SP accumulator = 134217728.0 Error= 5782272.0
Recursive sum with DP accumulator = 140000000.0 Error= 0.0
Pairwise sum in SP = 140000000.0 Error= 0.0
Compensated sum in SP = 140000000.0 Error= 0.0

�

It is instructive to see how the error behaves when we vary the range. Figure 5.6 shows the sum
computed with the recursive formula compared with the expected value and a plot of the error when
the number of terms in the sequence varies over a wide range. We can observe two different regions
in the error plot. The first part is where the main source of the error is coming from rounding (in this
case rounding up), causing an overestimation of the sum. The second part is where the main source of
the error is due to the difference in magnitude that completely neglects the additional terms in the sum.
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FIGURE 5.6

Top: Computed value for the recursive sum (dotted line) compared to exact result (solid line). Bottom:
Difference between the two values.

The first value at which the sum is computed incorrectly is N = 2396746. This is easily computed since
a single-precision IEEE floating-point number has 23 digits in the mantissa, plus an implicit leading
digit, so the last number for which there will be no loss of precision will be 224/7 = 2396745.
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The same behavior could be observed for sums in which the elements are all different but very small.
Using double-precision representation for the floating point numbers, the problem will still be present
but appears when N in the order of 1016.

Is there anything else we could learn from this example? Yes, there is another important aspect.
Modern CPUs have vector instructions (SSE, SSE2, SSE3, SSE4, AVX) that enable the CPU to perform
the same operation on multiple data (the exact number of concurrent operations will depend on the
width of the vector hardware and the type of data used). After the debug phase, it is not unusual to
enable aggressive optimizations with flags similar to -fast or -fastsse. If we recompile our simple
example with the flag -fast, we will see a similar behavior, but the errors will be smaller in magnitude.

� �

pgf90 -fast -o accuracy_sum_sse accuracy_sum.f90

./ accuracy_sum_sse
Summming 10000000 elements of magnitude 7.0
Sum with intrinsic function = 70413008.0 Error= 413008.0
Recursive sum with SP accumulator = 70413008.0 Error= 413008.0
Recursive sum with DP accumulator = 70000000.0 Error= 0.0
Pairwise sum in SP = 70000000.0 Error= 0.0
Compensated sum in SP = 70000000.0 Error= 0.0

�

With the -fast option, the compiler is generating vector instructions and using multiple accumulators.
The multiple accumulators have a smaller magnitude than the single one, extending the range in which
the sum is correct. To find out exactly what the compiler is doing, we had to inspect the assembler
code and notice the use of Horizontal Add Packed Single-FP (HADDPS), which, from two input vector
registers {A0,A1,A2,A3} and {B0,B1,B2,B3}, generates the output {A0+A1,A2+A3,B0+B1,B2+B3}.

We can also recompute the same sequence we used with the forward and backward summations to
compare the errors of all the methods.

� �

Summming 8192 elements of magnitude 1/(i)
Sum with intrinsic function = 0.9588196E+01 Error= 0.5689159E-05
Recursive SP forward sum = 0.9588196E+01 Error= 0.5689159E-05
Recursive DP forward sum = 0.9588190E+01 Error= 0.0000000E+00
Pairwise sum in SP = 0.9588190E+01 Error = -0.3288733E-07
Compensated sum in SP = 0.9588190E+01 Error = -0.3288733E-07

Summming 8192 elements of magnitude 1/(i*i)
Sum with intrinsic function = 0.1644725E+01 Error = -0.8668069E-04
Recursive SP forward sum = 0.1644725E+01 Error = -0.8668069E-04
Recursive DP forward sum = 0.1644812E+01 Error= 0.0000000E+00
Pairwise sum in SP = 0.1644812E+01 Error = -0.1347410E-06
Compensated sum in SP = 0.1644812E+01 Error = -0.1553172E-07

�

This section reminds us that the effect of different algorithms and the proprieties of floating-point
arithmetics could present unexpected results. When we perform a sum on a GPU, we are probably going
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to use something similar to a pairwise summation, which, as we have seen, has excellent accuracy. If we
were going to compare the results with a naive implementation of the CPU, we could get quite different
results. It is important to understand why this happens and which implementation is giving the more
precise result.

5.5 Option pricing
Now that we have all the basic components to perform a Monte Carlo simulation, let’s increase the
complexity of the problem: Instead of computing the value of π , we will use the Monte Carlo method
to value stock options.

Without going into technical details (see Willmott et al., 1995; Higham, 2004), an option is a derivative
financial instrument where the buyer gains the right (but not the obligation) to buy or sell an underlying
stock. When the right is to buy, the option is called a call; when the right is to sell, the option is called
a put. The price at which the underlying asset may be traded is called the exercise price or the strike
price.

We will start with a simple European option, an option that can be exercised only at expiration. For
this kind of option, there is an analytical solution, the Black-Scholes formula, that computes the value of
the put and the call. If we denote by C N D the cumulative distribution function of the standard normal
distribution and we define the Black-Scholes parameters d1 and d2 as:

d1 = ln(S/E) + (r + σ 2/2)τ

σ
√

τ

d2 = ln(S/E) + (r − σ 2/2)τ

σ
√

τ

where:

S is the asset price at time t
E is the exercise (strike) price at time T
σ is the volatility, a measure for the variation of price of the asset over time
r is the risk free annual interest rate
τ is the time to expiration (T − t)

the values for a call C and for a put P will be:

C(S, t) = C N D(d1)S − C N D(d2)Ee−rτ

P(S, t) = −C N D( − d1)S + C N D( − d2)Ee−rτ

Now that we have a reference solution, we need to find a way of computing the same quantities using
a Monte Carlo method. It can be shown (Higham, 2004) that pricing the option is equivalent to finding
the expected value of the random variable:
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S(T ) = S(t)exp
[
(r − σ 2/2)τ + σ

√
τ Z

]

V = e−rT �
(
S(T )

)
where Z is a normally distributed random number and the payoff function � = max(E − ST , 0) for a
European put or � = max(ST − E, 0) for a European call. Once we compute the mean a and standard
deviation b for a sequence of N samples, we can also compute a 95% confidence interval, a range in
which there is a 95% probability of including the correct result, with:

conf =
[

a − 1.96b√
N

, a + 1.96b√
N

]

The structure of the code will be very similar to the ones we used to compute π . We will generate
on the device a set of random numbers, this time with a normal distribution. For each random number,
we will compute S(T ) and the value of the stock at time T , apply the payoff function � on this value,
and discount the value at present time (multiplication by the factor e−rT ). Once we have an array of
values V , we will compute the mean and standard deviation in order to compute the expected value and
the confidence interval. To compute the reference value, we need to evaluate the Cumulative Normal
Distribution that is not available in the standard set of functions provided by Fortran. This is done
with the Hasting’s appoximation, where the 5th order polynomial is evaluated using Horner’s rule.
The code is also accepting an additional argument on the command line, to change the number of
points used in the simulation. This is done using the command_argument_count function and
the get_command_argument subroutine, now standard in Fortran 2003. In this version, for the
generation of the values of the call and put options at each point and for the reductions, we are still
relying on CUF kernels. The first CUF kernel computes the values and means, the second CUF kernel
uses these values to compute the standard deviations. The timing is measured with CUDA events.

1 module blackscholes_m
2 use precision_m
3 contains
4
5 real(fp_kind) function CND( d )
6 ! Cumulative Normal Distribution function
7 ! using Hasting ’s formula
8 implicit none
9 real(fp_kind), parameter :: A1 = 0.31938153 _fp_kind

10 real(fp_kind), parameter :: A2 = -0.356563782 _fp_kind
11 real(fp_kind), parameter :: A3 = 1.781477937 _fp_kind
12 real(fp_kind), parameter :: A4 = -1.821255978 _fp_kind
13 real(fp_kind), parameter :: A5 = 1.330274429 _fp_kind
14 real(fp_kind) :: d, K, abs , exp , RSQRT2PI
15
16 K = 1.0 _fp_kind /(1.0 _fp_kind + 0.2316419 _fp_kind * abs(d))
17 RSQRT2PI = 1. _fp_kind/sqrt (8. _fp_kind*atan (1. _fp_kind ))
18 CND = RSQRT2PI * exp( -0.5 _fp_kind * d * d) * &
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19 (K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5)))))
20 if( d .gt. 0. _fp_kind ) CND = 1.0 _fp_kind - CND
21 return
22 end function CND
23
24 subroutine blackscholes(callResult , putResult , &
25 S, E, R, sigma , T)
26 ! Black -Scholes formula for call and put
27 ! S = asset price at time t
28 ! E = exercise (strike) price
29 ! sigma = volatility
30 ! R = interest rate
31 ! T = time to expiration
32 implicit none
33 real(fp_kind) :: callResult , putResult
34 real(fp_kind) :: S, E, R, sigma , T
35 real(fp_kind) :: sqrtT , d1, d2, log , exp , expRT
36
37 if ( T > 0 ) then
38 sqrtT = sqrt(T)
39 d1 = (log(S/E)+(R+0.5 _fp_kind*sigma*sigma)*T) &
40 /(sigma*sqrtT)
41 d2 = d1 -sigma*sqrtT
42 expRT = exp( -R * T)
43 callResult = ( S * CND(d1) - E * expRT * CND(d2))
44 putResult = callResult + E * expRT - S
45 else
46 callResult = max(S-E,0. _fp_kind)
47 putResult = max(E-S,0. _fp_kind)
48 end if
49 end subroutine blackscholes
50 end module blackscholes_m
51
52 program mc
53 use blackscholes_m
54 use curand_m
55 use cudafor
56 implicit none
57 real(fp_kind), allocatable , device :: deviceData (:), &
58 putValue (:), callValue (:)
59 real(fp_kind) :: S, E, R, sigma , T,Sfinal , &
60 call_price , put_price
61 real(fp_kind) :: meanPut ,meanCall , &
62 stddevPut , stddevCall , confidence
63 integer(kind=int_ptr_kind ()) :: gen , N, seed
64 integer :: i,n2, nargs ,istat
65 type(cudaEvent) :: startEvent ,stopEvent
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66 real :: time
67 character *12 arg
68
69 istat=cudaEventCreate(startEvent)
70 istat=cudaEventCreate(stopEvent)
71
72 ! Number of samples
73 nargs=command_argument_count ()
74 if ( nargs == 0 ) then
75 N = 1000000
76 else
77 call get_command_argument(1,arg)
78 read(arg ,’(i)’) N
79 endif
80
81 S = 5. _fp_kind; E = 4. _fp_kind
82 sigma = 0.3 _fp_kind; R = 0.05 _fp_kind
83 T = 1. _fp_kind
84
85 istat=cudaEventRecord(startEvent ,0) !start timing
86
87 !Allocate arrays on GPU
88 allocate (deviceData(N),putValue(N),callValue(N))
89
90 if (fp_kind == singlePrecision) then
91 print *, " European option with random numbers"
92 print *, " in single precisionm using ",N," samples"
93 else
94 print *, " European option with random numbers"
95 print *, " in double precision using ",N," samples"
96 end if
97
98 ! Create pseudonumber generator
99 call curandCreateGenerator(gen , CURAND_RNG_PSEUDO_DEFAULT)

100
101 ! Set seed
102 seed =1234
103 call curandSetPseudoRandomGeneratorSeed( gen , seed)
104
105 ! Generate N floats/doubles on device w/ normal distribution
106 call curandGenerateNormal(gen , deviceData , N, &
107 0._fp_kind , 1. _fp_kind)
108
109 meanPut =0. _fp_kind; meanCall =0. _fp_kind
110 !$cuf kernel do <<<*,*>>>
111 do i=1,N
112 Sfinal= S*exp((R-0.5 _fp_kind*sigma*sigma)*T &
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113 +sigma*sqrt(T)* deviceData(i))
114 putValue(i) =exp (-R *T) * max (E-Sfinal ,0. _fp_kind)
115 callValue(i)=exp (-R *T) * max (Sfinal -E,0. _fp_kind)
116 meanPut=meanPut+putValue(i)
117 meanCall=meanCall+callValue(i)
118 end do
119 meanPut=meanPut/N
120 meanCall=meanCall/N
121
122 stddevPut =0. _fp_kind; stddevCall =0. _fp_kind
123 !$cuf kernel do <<<*,*>>>
124 do i=1,N
125 stddevPut= stddevPut + (putValue(i)-meanPut) **2
126 stddevCall= stddevCall + (callValue(i)-meanCall) **2
127 end do
128 stddevPut=sqrt(stddevPut /(N-1) )
129 stddevCall=sqrt(stddevCall /(N-1) )
130
131 ! compute a reference solution using Black Scholes formula
132 call blackscholes(call_price ,put_price ,S,E,R,sigma ,T)
133
134 print *, "Montecarlo value of put option =", meanPut
135 print *, "BlackScholes value of put option =", put_price
136 print *, "Confidence interval of put option = [", &
137 meanPut -1.96* stddevPut/sqrt(real(N)),",",&
138 meanPut +1.96* stddevPut/sqrt(real(N)),"]"
139 print *, "Montecarlo value of call option =", meanCall
140 print *, "BlackScholes value of call option=", call_price
141 print *, "Confidence interval of call option = [", &
142 meanCall -1.96* stddevCall/sqrt(real(N)),",",&
143 meanCall +1.96* stddevCall/sqrt(real(N)),"]"
144
145 istat=cudaEventRecord(stopEvent ,0)
146 istat=cudaEventSynchronize(stopEvent)
147 istat=cudaEventElapsedTime(time ,startEvent ,stopEvent)
148
149 print *,"Elapsed time (ms) :",time
150
151
152 deallocate (deviceData ,putValue ,callValue)
153
154 ! Destroy the generator
155 call curandDestroyGenerator(gen)
156
157 end program mc
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As we did for the code computing π , we will generate two versions, one using single precision and
the other using double precision passing a preprocessor flag.

� �

pgf90 -O3 -Minfo -o mc_european_single precision_m.F90 \
curand_m.cuf montecarlo_european_option.cuf -lcurand

pgf90 -O3 -Minfo -DDOUBLE -o mc_european_double precision_m.F90 \
curand_m.cuf montecarlo_european_option.cuf -lcurand

�

The output from the compilation confirms that the compiler was able to identify the reduction
variables. Since we did not specify the execution configuration in the CUF directives, the choice is left
to the compiler, and kernels are invoked with 128 threads.

� �

111, CUDA kernel generated
111, !$cuf kernel do <<< (*), (128) >>>

116, Sum reduction generated for meanput
117, Sum reduction generated for meancall
124, CUDA kernel generated

124, !$cuf kernel do <<< (*), (128) >>>
125, Sum reduction generated for stddevput
126, Sum reduction generated for stddevcall

�

If we run the codes on a Tesla K20x with no additional arguments, it will use 1 million samples.

� �

% ./ mc_european_single
European option with random numbers in single precision
using 1000000 samples

Montecarlo value of put option = 0.1276108
BlackScholes value of put option = 0.1280217
Confidence interval of put option = [0.1269990 , 0.1282227]
Montecarlo value of call option = 1.322455
BlackScholes value of call option= 1.323104
Confidence interval of call option = [1.319741 , 1.325168]
Elapsed time (ms) : 18.85296

% ./ mc_european_double
European option with random numbers in double precision
using 1000000 samples

Montecarlo value of put option = 0.1280019167019667
BlackScholes value of put option = 0.1280215707263190
Confidence interval of put option =

[0.1273886989425723 , 0.1286151344613610]
Montecarlo value of call option = 1.322242692975769
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BlackScholes value of call option= 1.323103872723463
Confidence interval of call option =

[1.319531953505469 , 1.324953432446070]
Elapsed time (ms) : 19.21347

�

We notice that the runtime for the single- and double-precision runs are very similar. To better
understand the cause of this behavior, we could use nvprof.

� �

% nvprof ./ mc_european_single
======== Profiling result:
Time (%) Time Calls Avg Min Max Name
96.87 15.89 ms 1 15.89ms 15.89 ms 15.89 ms generate_seed_pseudo
1.11 182.56 us 1 182.56 us 182.56 us 182.56 us mc_111_gpu
0.91 149.60 us 1 149.60 us 149.60 us 149.60 us mc_122_gpu
0.82 134.27 us 1 134.27 us 134.27 us 134.27 us void gen_sequenced
0.12 19.20 us 1 19.20us 19.20 us 19.20 us mc_116_gpu_red
0.12 19.10 us 1 19.10us 19.10 us 19.10 us mc_124_gpu_red
0.03 5.12us 2 2.56us 2.56us 2.56us [CUDA memcpy DtoH]
0.02 3.01us 2 1.50us 1.34us 1.66us [CUDA memcpy HtoD]

% nvprof ./ mc_european_double
======== Profiling result:
Time (%) Time Calls Avg Min Max Name
94.94 15.91ms 1 15.91ms 15.91 ms 15.91ms generate_seed_pseudo
2.21 371.07 us 1 371.07 us 371.07 us 371.07 us void gen_sequenced
1.67 280.16 us 1 280.16 us 280.16 us 280.16 us mc_111_gpu
0.89 149.03 us 1 149.03 us 149.03 us 149.03 us mc_122_gpu
0.12 20.16us 1 20.16us 20.16 us 20.16us mc_116_gpu_red
0.12 19.90us 1 19.90us 19.90 us 19.90us mc_124_gpu_red
0.03 5.18us 2 2.59us 2.59us 2.59us [CUDA memcpy DtoH]
0.02 3.01us 2 1.50us 1.31us 1.70us [CUDA memcpy HtoD]

�

The profiler output clearly shows that almost 85% of the time is spent in the random-number gen-
eration function generate_seed_pseudo and this time is almost constant for the two cases (the
seed generation is done using integer arithmetic and is independent of the precision used). For the
other kernels we can notice the expected 1:2 ratio between single- and double-precision cases. The
seed generation could be sped up by adding a call to curandSetGeneratorOrdering after the
curandCreateGenerator call.

1 ! Create pseudonumber generator
2 call curandCreateGenerator(gen , CURAND_RNG_PSEUDO_DEFAULT )
3 call curandSetGeneratorOrdering(gen , CURAND_ORDERING_PSEUDO_SEEDED)
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If we increase the number of points to 100 million, we will see that now there is a clear difference
in runtime between the two cases.

� �

% ./ mc_european_single 100000000
European option with random numbers in single precision
using 100000000 samples

Montecarlo value of put option = 0.1279889
BlackScholes value of put option = 0.1280217
Confidence interval of put option = [0.1279276 , 0.1280502]
Montecarlo value of call option = 1.323060
BlackScholes value of call option= 1.323104
Confidence interval of call option = [1.322789 , 1.323332 ]
Elapsed time (ms) : 48.94390

% ./ mc_european_double 100000000
European option with random numbers in double precision
using 100000000 samples

Montecarlo value of put option = 0.1280167276013557
BlackScholes value of put option = 0.1280215707263190
Confidence interval of put option =
[0.1279554295131442 ,0.1280780256895671]

Montecarlo value of call option = 1.323177159935128
BlackScholes value of call option= 1.323103872723463
Confidence interval of call option =
[1.322905719832569 , 1.323448600037688]

Elapsed time (ms) : 89.72614
�

The real power of the Monte Carlo method shows when we consider more sophisticated options—
for example, options that depend on the path of the stock during the contract period. Instead of going
directly from time t to the expiration time T , as we did for the European option, we can set up a grid of
points t j = j�t , with 0 ≤ j ≤ M and �t = T /M and compute the option value on each point:

S(t j+1) = S(t j )exp
[
(r − σ 2/2)�t + σ

√
�t Z j

]

Once we have the asset price on this underlying grid, we can compute min and max and test for
barrier crossing or integrals, depending on the payoff of the exotic option.
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In many fields of science and engineering, the governing system of equations takes the form of either
ordinary or partial differential equations. One method of solving these equations is to use finite dif-
ferences, where the continuous analytical derivatives are approximated at each point on a discrete grid
using function values of neighboring points. In this chapter we discuss how to optimize a particular
nine-point one-dimensional scheme, although the method we discuss can be applied to different finite
difference approximations quite easily. A general discussion of finite difference methods and their prop-
erties can be found in Ferziger (1981) and Ferziger and Perić (2001). We also discuss how a 2D Laplace
equation can be implemented in CUDA Fortran using a compact nine-point stencil.

6.1 Nine-Point 1D finite difference stencil
Our first example uses a three-dimensional grid of size 643. For simplicity we assume periodic boundary
conditions and only consider first-order derivatives, although extending the code to calculate higher-
order derivatives with other types of boundary conditions is straightforward.

The finite difference method uses a weighted summation of function values at neighboring points to
approximate the derivative at a particular point. For a (2N + 1)-point stencil with a uniform spacing
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�x in the x direction, a central finite difference scheme for the derivative in x can be written as:

∂ f (x, y, z)

∂x
≈ 1

�x

N∑
i=−N

Ci f (x + i�x, y, z)

and similarly for other directions. The coefficients Ci are typically generated from Taylor series expan-
sions and can be chosen to obtain a scheme with desired characteristics such as accuracy and, in the
context of partial differential equations, dispersion and dissipation. For explicit finite difference schemes
such as the type shown here, larger stencils typically have a higher order of accuracy. For this study we
use a nine-point stencil that has an eighth-order accuracy. We also choose a symmetric stencil, which
can be written as:

∂ fi, j,k

∂x
≈ ax

(
fi+1, j,k − fi−1, j,k

) + bx
(

fi+2, j,k − fi−2, j,k
) + cx

(
fi+3, j,k − fi−3, j,k

)
+ dx

(
fi+4, j,k − fi−4, j,k

)
where we specify values of the function on the computational grid using the grid indices i, j, k rather
than the physical coordinates x, y, z. Here the coefficients are ax = 4

5
1

�x , bx = − 1
5

1
�x , cx = 4

105
1

�x ,
and dx = − 1

280
1

�x , which is a typical eighth-order scheme. For derivative in the y and z directions, the
index offsets in the preceding equation are simply applied to the j and k indices and the coefficients are
the same except �y and �z are used in place of �x .

Because we calculate an approximation to the derivative at each point on the 643 periodic grid, the
value of f at each point is used eight times, one time for each right-side term in the previous expression.
In designing a derivative kernel, we want to exploit this data reuse by fetching the values of f from
global memory as few times as possible using shared memory.

6.1.1 Data reuse and shared memory
Each block of threads can bring in a tile of data to shared memory, and then each thread in the block
can access all elements of the shared memory tile as needed. How does one choose the best tile shape
and size? Some experimentation is required, but characteristics of the finite-difference stencil and grid
size provide some direction.

In choosing a tile shape for stencil calculations, there typically is an overlap of the tiles corresponding
to half of the stencil size, as depicted on the left in Figure 6.1. Here, in order to calculate the derivative in
a 16×16 tile, the values of f —not only from this tile but also from two additional 4×16 sections—must
be loaded by each thread block. Overall, the f values in the 4 × 16 sections get loaded twice—once by
the thread block that calculates the derivative at that location and once by the neighboring thread block.
As a result, 8 × 16 values out of 16 × 16, or half of the values, get loaded from global memory twice.
In addition, coalescing on a device with a compute capability of 2.0 and higher will be suboptimal for
a 16 × 16 tile, since perfect coalescing on such devices requires access to data within 32 contiguous
elements in global memory per load.

A better choice of tile (and thread block) that calculates the derivative for the same number of points
is depicted on the right side of Figure 6.1. This tile avoids overlap altogether when we calculate the
x derivative for our one-dimensional stencil on a grid of 643 since the tile contains all points in the
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FIGURE 6.1

Possible tile configurations for the x -derivative calculation. On the left is a depiction of a tile needed for
calculating the derivative at points in a 16 × 16 tiles. To calculate the derivative at points in this tile, data
from two additional 4×16 sections must be loaded for each thread block. The data in these 4×16 sections
are loaded twice—once by the thread block, which calculates the derivative at that point, and once by a
neighboring thread block. As a result, half of all of the data get loaded twice. A better option is the 64 × 4
tile on the right, which, for the 643 mesh, loads each datum from global memory once.

direction of the derivative, as in the 64 × 4 tile shown. A minimal tile would have just one pencil, i.e.,
a one-dimensional array of all points in a direction. However, this would correspond to thread blocks
of 64 threads, so, from an occupancy standpoint, it is beneficial to use multiple pencils in a tile. In our
finite difference code, which is listed in its entirety in Appendix D.5, we parameterize the number of
pencils to allow some experimentation. In addition to loading each value of f only once, every warp
of threads will load contiguous data from global memory using this tile and therefore will result in
perfectly coalesced accesses to global memory.

6.1.2 The x-derivative kernel
The first kernel we discuss is the x-derivative kernel:

129 attributes(global) subroutine deriv_x(f, df)
130 implicit none
131
132 real(fp_kind), intent(in) :: f(mx ,my,mz)
133 real(fp_kind), intent(out) :: df(mx,my ,mz)
134
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135 real(fp_kind), shared :: f_s(-3:mx+4,sPencils)
136
137 integer :: i,j,k,j_l
138
139 i = threadIdx%x
140 j = (blockIdx%x-1)* blockDim%y + threadIdx%y
141 ! j_l is local variant of j for accessing shared memory
142 j_l = threadIdx%y
143 k = blockIdx%y
144
145 f_s(i,j_l) = f(i,j,k)
146
147 call syncthreads ()
148
149 ! fill in periodic images in shared memory array
150
151 if (i <= 4) then
152 f_s(i-4, j_l) = f_s(mx+i-5,j_l)
153 f_s(mx+i,j_l) = f_s(i+1, j_l)
154 endif
155
156 call syncthreads ()
157
158 df(i,j,k) = &
159 (ax_c *( f_s(i+1,j_l) - f_s(i-1,j_l) ) &
160 +bx_c *( f_s(i+2,j_l) - f_s(i-2,j_l) ) &
161 +cx_c *( f_s(i+3,j_l) - f_s(i-3,j_l) ) &
162 +dx_c *( f_s(i+4,j_l) - f_s(i-4,j_l) ))
163
164 end subroutine deriv_x

Here mx, my, and mz are the grid size parameters set to 64, and sPencils is 4, which is the number of
pencils used to make the shared memory tile. (There are two pencil sizes used in this study. sPencils
refers to a small number of pencils; we discuss use of a larger number of pencils later.) The indices i, j,
and k correspond to the coordinates in the 643 mesh. The index i can also be used for the x coordinate
in the shared memory tile, whereas the index j_l is the local coordinate in the y direction for the shared
memory tile. This kernel is launched with a block of 64 × sPencils threads, which calculated the
derivatives on a x × y tile of 64 × sPencils.

The shared memory tile declared on line 135 has padding of four elements at each end of the
first index to accommodate the periodic images needed to calculate the derivative at the endpoints
of the x direction. On line 145, data from global memory are read into the shared memory tile for
f_s(1:mx,1:sPencils). These reads from global memory are perfectly coalesced. On lines 151–
154, data are copied within shared memory to fill out the periodic images1 in the x direction. Doing

1Note that in this example, we assume that the endpoints in each direction are periodic images, so f(1,j,k) =
f(mx,j,k) and similarly for the other directions.
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so allows the derivative to be calculated on lines 158–162 without any index checking. Note that the
threads that read the data from shared memory on lines 152 and 153 are not the same threads that
write the data to shared memory on line 145, which is why the syncthreads() call on line 147 is
required. The synchronization barrier on line 156 is required because data from f_s(-3:0,j_l) and
f_s(mx+1:mx+4,j_l) are accessed in lines 158–162 by threads other than those that wrote these
values on lines 152 and 153.

6.1.2.1 Performance of the x-derivative kernel
Compiling this kernel with the -Mcuda=cc35,ptxinfo option, we observe that this kernel requires
only 14 registers and uses 1152 bytes of shared memory. On the Tesla K20 at full occupancy, the number
of registers per thread must be 32 or less (65,536 registers/2048 threads per multiprocessor). Likewise,
the 1152 bytes of shared memory used per thread block times the maximum of 16 thread blocks per
multiprocessor easily fit into the 48 KB of shared memory available in each multiprocessor. With such
low resource utilization, we expect the kernel to run at full occupancy. These occupancy calculations
assume that we have launched enough thread blocks to realize the occupancy, which is certainly our
case since 642/sPencils or 1024 blocks are launched.

The host code launches this kernel multiple times in a loop and reports the average time of execution
per kernel launch. The code also compares the result to the analytical solution at the grid points. On a
Tesla K20 using single precision for this kernel, we have:

� �

Using shared memory tile of x-y: 64x4
RMS error: 5.7695847E-06
MAX error: 2.3365021E-05
Average time (ms): 2.8503999E-02
Average Bandwidth (GB/s): 73.57396

�

We can use the technique discussed in Section 2.2 to get a feel for what is the limiting factor in this
code. If we replace lines 158–162 above with:

df(i,j,k) = f_s(i,j_l)

we have a memory-only version of the code, which obtains:

� �

x derivative mem with x-y tile: 64x4
Average time (ms): 2.4025600E-02
Mem Bandwidth (GB/s): 87.28822

�
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Likewise, we can create a math-only version of the kernel:

attributes(global) subroutine derivative_math(f, df, val)
implicit none

real(fp_kind), intent(in) :: f(mx,my,mz)
real(fp_kind), intent(out) :: df(mx,my,mz)
integer , value :: val
real(fp_kind) :: temp

real(fp_kind), shared :: f_s(-3:mx+4,nPencils)

integer :: i,j,k,j_l

i = threadIdx%x
j = (blockIdx%x-1)* blockDim%y + threadIdx%y
! j_l is local variant of j for accessing shared memory
j_l = threadIdx%y
k = blockIdx%y

temp = &
(ax_c *( f_s(i+1,j_l) - f_s(i-1,j_l) ) &
+bx_c *( f_s(i+2,j_l) - f_s(i-2,j_l) ) &
+cx_c *( f_s(i+3,j_l) - f_s(i-3,j_l) ) &
+dx_c *( f_s(i+4,j_l) - f_s(i-4,j_l) ))

if (val*temp == 1) df(i,j,k) = temp

end subroutine derivative_math

which obtains:

� �

Average time (ms): 1.5646400E-02
�

Given this information, we know that the code is memory bound, since the memory- and math-only
versions execute in approximately 85% and 55% of the time the full kernel requires, respectively. The
majority of the math operations are covered by memory requests, so we do have some overlap.

To try to improve performance, we need to reassess how we utilize memory. We load data from global
memory only once into shared memory in a fully coalesced fashion; we have two syncthreads()
calls, required to safely access shared memory; and we write the output to global memory in a fully
coalesced fashion. The coefficients ax_c, bx_c, cx_c, and dx_c used on lines 159–162 are in
constant memory, which is cached on the chip. This is the optimal situation for constant memory, where
each thread in a warp (and thread block) reads the same constant value. As operations with global and
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constant memories are fully optimized, we turn to see if we can do anything with thesyncthreads()
calls.

The derivative kernel has two calls tosyncthreads(): one after data are read from global memory
to shared memory and one after data are copied between shared memory locations. These barriers are
needed when different threads write and then read the same shared memory values. You may have
noticed that is it possible to remove the first of these synchronization barriers by modifying the indexing
to shared memory. For example, in this portion of the x-derivative code:

145 f_s(i,j_l) = f(i,j,k)
146
147 call syncthreads ()
148
149 ! fill in periodic images in shared memory array
150
151 if (i <= 4) then
152 f_s(i-4, j_l) = f_s(mx+i-5,j_l)
153 f_s(mx+i,j_l) = f_s(i+1, j_l)
154 endif

we could remove this synchronization barrier on line 147 by replacing lines 151–154 with:

if (i>mx -5 .and. i<mx) f_s(i-(mx -1),j_l) = f_s(i,j_l)
if (i>1 .and. i<6 ) f_s(i+(mx -1),j_l) = f_s(i,j_l)

Using this approach, the same thread that writes to a shared memory location on line 145 reads the data
from shared memory in the preceding two lines of code. Removing a synchronization barrier might
seem like a sure performance win, but when we run the code we obtain:

� �

Single syncthreads , using shared memory tile of x-y: 64x4
RMS error: 5.7695847E-06
MAX error: 2.3365021E-05
Average time (ms): 2.8953601E-02
Average Bandwidth (GB/s): 72.43147

�

which is slightly slower than the original code. The additional index checks in the condition of the
if statement end up being slower than the syncthreads() call. Because syncthreads() acts
across a block of threads that contain a small group of warps—eight warps, in our case—their cost is
typically small.

At this point we decide to move on to the code for derivatives in other directions, since the x derivative
is fairly optimized: The kernel is memory bound and the code uses memory very efficiently.
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6.1.3 Derivatives in y and z
We can easily modify the x-derivative code to operate in the other directions. In the x derivative, each
thread block calculated the derivatives in an x × y tile of 64 × sPencils. For the y derivative, we
can have a thread block calculate the derivative on a tile of sPencils × 64 in x × y, as depicted
on the left in Figure 6.2. Likewise, for the z derivative, a thread block can calculate the derivative
in a x × z tile of sPencils × 64. The following kernel shows the y-derivative kernel using this
approach:

255 attributes(global) subroutine deriv_y(f, df)
256 implicit none
257
258 real(fp_kind), intent(in) :: f(mx,my,mz)
259 real(fp_kind), intent(out) :: df(mx,my,mz)
260
261 real(fp_kind), shared :: f_s(sPencils ,-3:my+4)
262
263 integer :: i,i_l ,j,k
264
265 i = (blockIdx%x-1)* blockDim%x + threadIdx%x
266 i_l = threadIdx%x
267 j = threadIdx%y
268 k = blockIdx%y
269
270 f_s(i_l ,j) = f(i,j,k)
271
272 call syncthreads ()
273
274 if (j <= 4) then
275 f_s(i_l ,j-4) = f_s(i_l ,my+j-5)
276 f_s(i_l ,my+j) = f_s(i_l ,j+1)
277 endif
278
279 call syncthreads ()
280
281 df(i,j,k) = &
282 (ay_c *( f_s(i_l ,j+1) - f_s(i_l ,j-1) ) &
283 +by_c *( f_s(i_l ,j+2) - f_s(i_l ,j-2) ) &
284 +cy_c *( f_s(i_l ,j+3) - f_s(i_l ,j-3) ) &
285 +dy_c *( f_s(i_l ,j+4) - f_s(i_l ,j-4) ))
286
287 end subroutine deriv_y

By transposing the shared memory tile on line 261 in this manner, we can maintain the property that
each element from global memory is read in only once. The disadvantage of this approach is that with
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FIGURE 6.2

Possible tile configurations for the y -derivative calculation. Analogous to the x derivative, where a 64 × 4
tile is used, we can use a 4 × 64 tile as depicted on the left. This approach loads each f value from global
memory only once; however, the coalescing characteristics are poor. A better alternative is depicted on the
right, where a tile with 32 points in x achieves perfect coalescing, and the tile that has 64 points in y
maintains the characteristic that f data get loaded only once. However, one problem with a 32 × 64 tile
is that a one-to-one mapping of threads to elements cannot be used, since 2048 threads exceed the limit
of threads per block. This issue can be circumvented by using a thread block of 32 × 8 where each thread
calculates the derivative at 8 points.

sPencils=4 points in x for these tiles, we no longer have perfect coalescing. The performance results
bear this out:

� �

Using shared memory tile of x-y: 4x64
RMS error: 5.7687557E-06
MAX error: 2.3365021E-05
Average time (ms): 4.6841603E-02
Average Bandwidth (GB/s): 44.77114

�

where we obtain roughly half the performance of the x-derivative kernel. In terms of accuracy, we obtain
the same maximum error of the x derivative but a different RMS error for essentially the same function.
This difference is due to the order in which the accumulation is done on the host. Simply swapping the
order of the loops in the host code error calculation would produce the same results.

One way to improve performance is to expand the tile to contain enough pencils to facilitate perfect
coalescing. For devices of compute capability of 2.0 and higher, this would require 32 pencils. Such a
tile is shown on the right in Figure 6.2. Using such an approach would require a shared memory tile
of 9216 bytes, which is not problematic for devices of compute capability 2.0 and higher with 48 KB
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of shared memory per multiprocessor. However, with a one-to-one mapping of threads to elements
where the derivative is calculated, a thread block of 2048 threads would be required, whereas these
devices have an upper limit of 1024 threads per thread block. The way around this limit is for each
thread to calculate the derivative for multiple points. If we use a thread block of 32 × 8 × 1 and have
each thread calculate the derivative at eight points, as opposed to a thread block of 4 × 64 × 1 and
have each thread calculate the derivative at only one point, we launch a kernel with the same number
of threads per block, but we regain perfect coalescing. The following code accomplishes this:

292 attributes(global) subroutine deriv_y_lPencils(f, df)
293 implicit none
294
295 real(fp_kind), intent(in) :: f(mx,my,mz)
296 real(fp_kind), intent(out) :: df(mx,my,mz)
297
298 real(fp_kind), shared :: f_s(lPencils ,-3:my+4)
299
300 integer :: i,j,k,i_l
301
302 i_l = threadIdx%x
303 i = (blockIdx%x-1)* blockDim%x + threadIdx%x
304 k = blockIdx%y
305
306 do j = threadIdx%y, my, blockDim%y
307 f_s(i_l ,j) = f(i,j,k)
308 enddo
309
310 call syncthreads ()
311
312 j = threadIdx%y
313 if (j <= 4) then
314 f_s(i_l ,j-4) = f_s(i_l ,my+j-5)
315 f_s(i_l ,my+j) = f_s(i_l ,j+1)
316 endif
317
318 call syncthreads ()
319
320 do j = threadIdx%y, my, blockDim%y
321 df(i,j,k) = &
322 (ay_c *( f_s(i_l ,j+1) - f_s(i_l ,j-1) ) &
323 +by_c *( f_s(i_l ,j+2) - f_s(i_l ,j-2) ) &
324 +cy_c *( f_s(i_l ,j+3) - f_s(i_l ,j-3) ) &
325 +dy_c *( f_s(i_l ,j+4) - f_s(i_l ,j-4) ))
326 enddo
327
328 end subroutine deriv_y_lPencils
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where here lPencils is 32. Very little has changed from the previous code. The only differences are
that the index j is used as a loop index on lines 306 and 320, rather than being calculated once, and
is set to threadIdx%y on line 312 for copying periodic images. When compiling this code using
-Mcuda=cc35,ptxinfo, we observe that each thread requires 23 registers, so register usage will
not affect occupancy on the K20. However, with 9216 bytes of shared memory used per thread block, a
total of five thread blocks can reside on a multiprocessor at one time. These five thread blocks contain
1280 threads, which result in an occupancy of 0.625. This should not be problematic since we are
employing an eight-fold instruction-level parallelism. The results for this kernel are:

� �

Using shared memory tile of x-y: 32x64
RMS error: 5.7687557E-06
MAX error: 2.3365021E-05
Average time (ms): 2.6431998E-02
Average Bandwidth (GB/s): 79.34141

�

where we have exceeded the performance of the x derivative.
We might inquire as to whether using such a larger number of pencils in the shared memory tile will

improve performance of the x-derivative code presented earlier. This ends up not being the case:

� �

Using shared memory tile of x-y: 64x32
RMS error: 5.7695847E-06
MAX error: 2.3365021E-05
Average time (ms): 3.1697601E-02
Average Bandwidth (GB/s): 66.16122

�

Recall that for the x derivative, we already have perfect coalescing for the case with four pencils. Since
the occupancy of this kernel is high, there is no benefit from the added instruction-level parallelism. As
a result, the additional code to loop over portions of the shared memory tile simply add overhead, and
as a result performance decreases.

6.1.3.1 Leveraging transpose
An entirely different approach to handling the y and z derivatives is to leverage the transpose kernels
discussed in Section 3.4. Using this approach, we would reorder our data so that the x-derivative
routine can be used to calculate the derivatives in y and z. This approach has the advantage that all
transactions to global memory are perfectly coalesced. It has the disadvantage, however, that it requires
three roundtrips to global memory: first the transpose kernel is called to reorder the input data, then the
derivative kernel is called on the reordered data, and finally the transpose kernel is called to place the
results into the original order. Because of this these addition trips to global memory, this approach is
not a viable solution to our problem. However, if our kernel were more complicated, such an approach
may be viable, which is why we mention it here.
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6.1.4 Nonuniform grids
The previous discussion dealt with obtaining derivatives on grids that are uniform, i.e., grids where the
spacings �x,�y, and �z are constant and do not depend on the indices i, j , and k. There are, however,
many situations in which a nonuniform grid is desirable and even necessary. In the case of nonperiodic
boundaries, often the function has steep gradients in the boundary region and one needs to cluster
grid points in such regions, because reducing the grid spacing throughout the entire domain would be
prohibitive. In addition, when we use a wide stencil, such as our nine-point stencil, in nonperiodic cases
we need to use different schemes to calculate derivatives at points near the boundary. Typically we use
a skewed stencil that has lower accuracy at such points. Clustering of grid points near the boundary
helps minimize the effect of the reduced accuracy in such regions.

A finite difference scheme for nonuniform grids can be implemented in several ways. One way is
to start from the Taylor series, used to determine the coefficients where the constant �x of a uniform
grid is replaced by the spatially dependent �xi in the nonuniform case. A second way, which is taken
in this study, is to introduce a second (uniform) coordinate system and map the derivatives between the
two systems. This method essentially boils down to applying the chain rule to the uniform derivative
we have already developed.

We discuss the development of the nonuniform finite-difference scheme for the x derivative. Appli-
cation of this scheme to other directions is straightforward. If x is the physical domain where our grid
points are distributed nonuniformly, and s is a computational domain where the grid spacing is uniform,
then the derivative can be written as:

d f

dx
= d f

ds

ds

dx

where the first derivative on the right-hand side is simply what has been calculated in the previous
section. The remaining issue is choosing a nonuniform spacing and with it an expression for ds/dx .
The two coordinate systems can be related by:

dx = ξ(s)ds

where ds is constant and ξ(s) is chosen to cluster points as desired. There are many documented choices
for ξ(s), but in our case we choose:

ξ(s) = C
(

1 − α sin2 (2πs)
)

Recalling that s is between zero and one, this function clusters points around s = 1/4 and s = 3/4
for positive α. C is chosen such that the endpoints in both coordinate systems coincide—namely, the
resultant expression for x(s) has x(1) = 1. The degree of clustering is determined by the parameter α,
and when α = 0 (and C = 1) we recover uniform spacing. Substituting our expression for ξ(s) into the
differential form and integrating, we have:

x = C

[
s − α

(
s

2
− sin (4πs)

8π

)]
+ D
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We want the endpoints of our two grids to coincide, i.e., for x(s) we have x(0) = 0 and x(1) = 1. The
first of these conditions is satisfied by D = 0 and the second by C = 2/(2 − α). Thus we have:

x = 2

2 − α

[
s − α

(
s

2
− sin (4πs)

8π

)]

and
ds

dx
= 1 − α/2

1 − α sin2 (2πs)

The modifications to the CUDA Fortran derivative code required to accommodate a stretched grid
are relatively easy. We simply turn the scalar coefficients ax_c, bx_c, cx_c, and dx_c, along with
their y and z counterparts, into arrays:

! stencil coefficients
! functions of index for streched grid
real(fp_kind), constant :: &

ax_c(mx), bx_c(mx), cx_c(mx), dx_c(mx), &
ay_c(my), by_c(my), cy_c(my), dy_c(my), &
az_c(mz), bz_c(mz), cz_c(mz), dz_c(mz)

and absorb ds/dx in these coefficients:

dsinv = real(mx -1)
do i = 1, mx

s = (i -1.)/(mx -1.)
x(i) = 2./(2. - alpha )*(s - alpha*(s/2. &

- sin (2.* twoPi*s)/(4.* twoPi )))
scale = (1.-alpha /2.)/(1. - alpha*(sin(twoPi*s))**2)

ax(i) = 4./ 5. * dsinv * scale
bx(i) = -1./ 5. * dsinv * scale
cx(i) = 4./105. * dsinv * scale
dx(i) = -1./280. * dsinv * scale

enddo
ax_c = ax; bx_c = bx; cx_c = cx; dx_c = dx

Once again, the y and z directions are modified similarly. These coefficients are calculated once as
a preprocessing step, and therefore their calculation does not affect timing of the derivative kernel.
However, the conversion of these variables from scalar to array does play a role in performance in
terms of the way they are accessed. For example, in the x derivative these coefficient arrays are used as
follows:
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df(i,j,k) = &
(ax_c(i) *( f_s(i+1,j_l) - f_s(i-1,j_l) ) &
+bx_c(i) *( f_s(i+2,j_l) - f_s(i-2,j_l) ) &
+cx_c(i) *( f_s(i+3,j_l) - f_s(i-3,j_l) ) &
+dx_c(i) *( f_s(i+4,j_l) - f_s(i-4,j_l) ))

and likewise for the other directions. Making these changes and running the code results in the following
performance:

Effective Bandwidth (GB/s)

Routine Uniform Grid Nonuniform Grid

x derivative

x-y tile: 64 × 4 73.6 14.2

x-y tile: 64 × 32 66.2 46.5

y derivative

x-y tile: 4 × 64 44.8 36.4

x-y tile: 32 × 64 79.3 71.7

z derivative

x-z tile: 4 × 64 44.7 36.2

x-z tile: 32 × 64 79.2 71.5

where we have included the performance of the uniform grid for comparison. We see roughly the
same performance between nonuniform and uniform grids in the y and z directions when we use the
32 × 64 shared memory tile, but all other cases show a considerable performance degradation for
the nonuniform case, especially the x-derivative kernels. Once again, the only difference between the
uniform and nonuniform derivative kernels is that the stencil coefficients are arrays rather than scalar
values. Looking at the relevant y-derivative code:

df(i,j,k) = &
(ay_c(j) *( f_s(i_l ,j+1) - f_s(i_l ,j-1) ) &
+by_c(j) *( f_s(i_l ,j+2) - f_s(i_l ,j-2) ) &
+cy_c(j) *( f_s(i_l ,j+3) - f_s(i_l ,j-3) ) &
+dy_c(j) *( f_s(i_l ,j+4) - f_s(i_l ,j-4) ))

and considering how a warp of threads accesses the coefficients, we can understand why this performs
well in the 32 × 64 shared memory tile case. For a tile of 32 × 64 case, threads in a warp will have
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different values of i_l but the same value of j when executing this statement.2 Therefore, from the
perspective of a warp, the stencil coefficients ay_c(j), by_c(j), cy_c(j), and dy_c(j) are
essentially scalar constants. Recall that constant memory is most efficient when all threads in a warp
read the same value. When threads in a warp read different values from constant memory, the requests
are serialized. This is the case when the smaller shared memory tile of 4 × 64 is used. A warp of
32 threads executing the preceding code will have eight different values of j and therefore read eight
values of each coefficient. These requests are serialized, which is the reason that the performance in
this case drops from 45 for the uniform grid to 36 for the nonuniform case. A more drastic performance
reduction is seen in the x derivative, where the 32 threads in a warp have different values of i and a warp
requests 32 contiguous values for each stencil coefficient. This access pattern for constant memory is
largely responsible for the 80% degradation going from uniform to nonuniform grid.

The way to avoid the performance degradation observed here is simply to use device memory rather
than constant memory for the stencil coefficients. We need only change theconstant variable qualifier
to device in the module declaration. Note that although reading contiguous array values is a poor
access pattern for constant memory, it is an ideal access pattern for global or device memory, since such
a request is coalesced. Implementing the change from constant to global memory and rerunning the
code, we can extend our table of results:

Effective Bandwidth (GB/s)

Uniform Grid Nonuniform Grid Nonuniform Grid

Routine constant device

x derivative

x-y tile: 64 × 4 73.6 14.2 56.3

x-y tile: 64 × 32 66.2 46.5 46.8

y derivative

x-y tile: 4 × 64 44.8 36.4 37.4

x-y tile: 32 × 64 79.3 71.7 59.4

z derivative

x-z tile: 4 × 64 44.7 36.2 37.4

x-z tile: 32 × 64 79.2 71.5 59.1

The conversion from constant to global memory for the stencil coefficients has greatly improved the
x-derivative routines, as expected. For the y and z derivatives, using constant memory for the stencil
coefficients is still preferable for the case with a 32 × 64 shared memory tile, since constant memory
is optimally used.

2In the 32 × 64 tile case, each thread will take on several values of j because this statement is contained in a loop, but at any
one time all threads in a warp will have the same value of j.
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6.2 2D Laplace equation
In this section we solve Laplace’s equation:

∇2φ = 0

in two dimensions using a compact, nine-point, two-dimensional stencil (Ferziger, 1981). This iterative
procedure calculates φ at iteration n + 1 from the values of the previous iteration (n) at the eight
neighboring points:

φn+1
i, j = 1

5

(
φn

i+1, j + φn
i−1, j + φn

i, j+1 + φn
i, j−1

)
+ 1

20

(
φn

i+1, j+1 + φn
i+1, j−1 + φn

i−1, j+1 + φn
i−1, j−1

)

where i and j are the mesh coordinates in x and y. After the update is calculated at each point, we
calculate the maximum difference or residual between iterations and base a stopping criteria on this
maximum residual. We also stop the calculation if a set maximum number of iterations is performed.

We implement this procedure in four ways: on the CPU, on the GPU using global memory, on the
GPU using shared memory, and on the GPU using textures. The full code is listed in Appendix D.5.
Here we include only sections relevant to the discussion. The CPU version of the algorithm is:

126 ! CPU version
127
128 write(*,"(/,a,/)") ’CPU results ’
129 write (*,*) ’Iteration Max Residual ’
130
131 call initialize(a, aNew)
132
133 iter=0
134 do while ( maxResidual > tol .and. iter <= iterMax )
135 maxResidual = 0.0 _fp_kind
136
137 do j=2,ny -1
138 do i=2,nx -1
139 aNew(i,j) = 0.2 _fp_kind * &
140 (a(i,j-1)+a(i-1,j)+a(i+1,j)+a(i,j+1)) + &
141 0.05 _fp_kind * &
142 (a(i-1,j-1)+a(i+1,j-1)+a(i-1,j+1)+a(i+1,j+1))
143
144 maxResidual = &
145 max(maxResidual , abs(aNew(i,j)-a(i,j)))
146 end do
147 end do
148
149 iter = iter + 1
150 if(mod(iter ,reportInterval) == 0) &
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151 write(*,’(i8 ,3x,f10.6)’), iter , maxResidual
152 a = aNew
153 end do

The do while loop on line 134 checks our stopping criteria for each iteration, and the doubly nested
loop starting on line 137 calculates aNew, equivalent to φn+1, at each interior point. The maximum
residual is updated within the nested loops on line 144 if appropriate.

The kernel for the global memory method is:

30 attributes(global) subroutine jacobiGlobal(a, aNew)
31 real(fp_kind) :: a(nx,ny), aNew(nx,ny)
32 integer :: i, j
33
34 i = (blockIdx%x-1)* blockDim%x + threadIdx%x
35 j = (blockIdx%y-1)* blockDim%y + threadIdx%y
36
37 if (i>1 .and. i<nx .and. j>1 .and. j<ny) then
38 aNew(i,j) = &
39 0.2 _fp_kind * ( &
40 a(i-1,j) + a(i+1,j) + &
41 a(i,j-1) + a(i,j+1)) + &
42 0.05 _fp_kind * (&
43 a(i-1,j-1) + a(i+1,j-1) + &
44 a(i-1,j+1) + a(i+1,j+1))
45 endif
46 end subroutine jacobiGlobal

Here the global indices are calculated on lines 34 and 35, which are checked on line 37 to make sure the
updated values are calculated only for interior points. This kernel is called from the host in the following
code:

160 tBlock = dim3(BLOCK_X ,BLOCK_Y ,1)
161 grid = dim3(ceiling(real(nx)/ tBlock%x), &
162 ceiling(real(ny)/ tBlock%y), 1)
163
164 call initialize(a, aNew)
165
166 call cpu_time(start_time)
167
168 a_d = a
169 aNew_d = aNew
170
171 iter=0
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172 do while ( maxResidual > tol .and. iter <= iterMax )
173 maxResidual = 0.0 _fp_kind
174
175 call jacobiGlobal <<<grid , tBlock >>>(a_d , aNew_d)
176
177 !$CUF kernel do <<<*,*>>>
178 do j = 1, ny
179 do i = 1, nx
180 maxResidual = &
181 max(maxResidual , abs(a_d(i,j)-aNew_d(i,j)))
182 enddo
183 enddo
184
185 iter = iter + 1
186 if(mod(iter ,reportInterval) == 0) &
187 write(*,’(i8 ,3x,f10.6)’), iter , maxResidual
188 a_d = aNew_d
189 end do
190
191 a = aNew_d
192 call cpu_time(stop_time)
193 write(*,’(a,f10.3,a)’) ’ Completed in ’, &
194 stop_time -start_time , ’ seconds ’

In this code segment, the Fortran intrinsic cpu_time is used to measure elapsed time for the overall
procedure, including transfers between the host and device. After the jacobiGlobal kernel is called,
a CUF kernel on lines 177–183 is used to calculate the maximum residual. The rest of the host code is
similar to the CPU version except that the elapsed time as measured by the host is reported.

The shared memory kernel is:

51 real(fp_kind) :: a(nx,ny), aNew(nx,ny)
52 real(fp_kind), shared :: t(0: BLOCK_X+1, 0: BLOCK_Y +1)
53 integer :: i, j, is, js
54
55 i = (blockIdx%x-1)* blockDim%x + threadIdx%x
56 j = (blockIdx%y-1)* blockDim%y + threadIdx%y
57 is = threadIdx%x
58 js = threadIdx%y
59
60 if (i > 1 .and. j > 1) &
61 t(is -1, js -1) = a(i-1, j-1)
62 if (i > 1 .and. j < ny .and. js >= BLOCK_Y -2) &
63 t(is -1, js+1) = a(i-1, j+1)
64 if (i < nx .and. j > 1 .and. is >= BLOCK_X -2) &
65 t(is+1,js -1) = a(i+1,j-1)
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66 if (i < nx .and. j < ny .and. &
67 is >= BLOCK_X -2 .and. js >= BLOCK_Y -2) &
68 t(is+1,js+1) = a(i+1,j+1)
69
70 call syncthreads ()
71
72 if (i > 1 .and. i < nx .and. j > 1 .and. j < ny) then
73 aNew(i,j) = 0.2 _fp_kind * ( &
74 t(is,js -1) + t(is -1,js) + &
75 t(is+1,js) + t(is,js+1)) &
76 + 0.05 _fp_kind * ( &
77 t(is -1,js -1) + t(is+1,js -1) + &
78 t(is -1,js+1) + t(is+1,js+1))
79 endif
80
81 end subroutine jacobiShared

where the shared memory tile t(0:BLOCK_X+1, 0:BLOCK_Y+1) holds values from the previous
iteration. Because the kernel is launched with BLOCK_X × BLOCK_Y threads per thread block, there
are not enough threads to populate the shared memory tile in one read instruction. This kernel uses four
instructions to populate the shared memory tile, on lines 60–68. Following the syncthreads() call,
the calculation of the updated values is performed.

The texture kernel is nearly identical to the global memory kernel except that the right-side terms are
read from a texture reference pointing to the previous iteration’s values rather than using the previous
iteration’s values themselves. This kernel has a similar memory access pattern to the texture example
in Section 3.2.3. The main difference is that the values are weighted differently.

85 attributes(global) subroutine jacobiTexture(aNew)
86 real(fp_kind) :: aNew(nx,ny)
87 integer :: i, j
88
89 i = (blockIdx%x-1)* blockDim%x + threadIdx%x
90 j = (blockIdx%y-1)* blockDim%y + threadIdx%y
91
92 if (i > 1 .and. i < nx .and. j > 1 .and. j < ny) then
93 aNew(i,j) = 0.2 _fp_kind * ( &
94 aTex(i-1,j) + aTex(i+1,j) + &
95 aTex(i,j-1) + aTex(i,j+1) ) &
96 + 0.05 _fp_kind * (&
97 aTex(i-1,j-1) + aTex(i+1,j-1) + &
98 aTex(i-1,j+1) + aTex(i+1,j+1))
99 endif

100 end subroutine jacobiTexture



208 CHAPTER 6 Finite Difference Method

When we execute the code on a Tesla K20, we obtain:

� �

Relaxation calculation on 4096 x 4096 mesh

CPU results

Iteration Max Residual
10 0.023564
20 0.011931
30 0.008061
40 0.006065
50 0.004811
60 0.004040
70 0.003442
80 0.003029
90 0.002685

100 0.002420

GPU global results

Iteration Max Residual
10 0.023564
20 0.011931
30 0.008061
40 0.006065
50 0.004811
60 0.004040
70 0.003442
80 0.003029
90 0.002685

100 0.002420
Completed in 0.540 seconds

GPU shared results

Iteration Max Residual
10 0.023564
20 0.011931
30 0.008061
40 0.006065
50 0.004811
60 0.004040
70 0.003442
80 0.003029
90 0.002685

100 0.002420
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Completed in 0.496 seconds

GPU texture results

Iteration Max Residual
10 0.023564
20 0.011931
30 0.008061
40 0.006065
50 0.004811
60 0.004040
70 0.003442
80 0.003029
90 0.002685

100 0.002420
Completed in 0.457 seconds

�

The maximum residual at each printed iteration is the same for all cases, so the results are in agree-
ment. From the output we observe that the elapsed times for all of the GPU versions appear fairly similar.
Of course, the reported elapsed times reflect not only the various kernels in the laplaceRoutines
module but also the CUF kernels that perform the reduction as well as the array copy at the end of each
iteration from aNew_d to a_d, along with the initial host-to-device transfers and the final device-to-
host transfer of the result. Since the CUF kernels and the data copies are common to each approach, the
difference in the kernel execution, percentage-wise, is larger than the overall time indicates. One could
use CUDA events to time only the kernel executions, but here we instead opt for using the Command
Line Profiler. The full output from the profiler lists the execution times of all kernel calls, including
CUF kernels, and data transfers for each iteration. Here we list representative output from each kernel
on the Tesla K20:

� �

method =[ laplaceroutines_jacobiglobal_ ] gputime =[ 2179.072 ]
cputime =[ 8.000 ] occupancy =[ 1.000 ]

method =[ laplaceroutines_jacobishared_ ] gputime =[ 1752.800 ]
cputime =[ 8.000 ] occupancy =[ 1.000 ]

method =[ laplaceroutines_jacobitexture_ ] gputime =[ 1378.272 ]
cputime =[ 12.000 ] occupancy =[ 1.000 ]

�

Comparing the global and texture memory versions, we see almost a factor of two in performance
improvement by using textures. All things considered, the global memory case doesn’t perform that
badly. Recall that the Tesla K20 does not cache global variables in the L1 cache, so it is the L2 cache that
is helping out the global memory version’s performance. Although this is far from perfectly coalesced,
there is enough locality in this compact stencil for the global version to perform reasonably well.
However, the point we want to make here is that by using textures, with relative ease we can improve
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performance simply by replacing instances of the global variable on the right-hand side with texture
pointers.

We might think that the shared memory version should be optimal, but the issue of populating a shared
memory tile with more values than there are threads in a thread block introduces some inefficiency. We
could use a larger thread block so that the shared memory tile can be populated with one instruction,
but then some threads would remain dormant during the calculation of updated values. The shared
memory version does outperform the global memory version, but the texture version is preferable to
the shared memory version, in terms of both performance and ease of programming. Texture usage is
at the moment limited to single precision, but this restriction will be removed in upcoming versions of
the PGI compiler.

In closing, we should point out that for large meshes the convergence rate of an iterative method such
as this is slow, and one would likely resort to a multigrid method. However, a discussion of multigrid
methods is beyond the scope of this book. We refer the interested reader to the work that has been done
in CUDA C on multigrid methods.
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The Fourier Transform is of fundamental importance in several fields, from image processing to compu-
tational physics. The Discrete Fourier Transform (DFT) is an approximation in which discrete samples
of a function f (x) in physical space can be transformed to Fourier coefficients f̂ via the relation:

f̂k = 1

N

N−1∑
j=0

e− 2π ı
N jk f j

This formula could be rewritten as a matrix-vector multiplication, f̂ = W f , where W is called the
Fourier matrix:

(WN ) jk = 1

N
e− 2π ı

N jk = 1

N
ω

jk
N

with ωN being the primitive N th root of unity. Instead of the expected arithmetic complexity of O(N 2)

operations typical of a matrix-vector product, Cooley and Tukey (1965) introduced the Fast Fourier
Transform (FFT) algorithm based on a divide-and-conquer approach that results in an arithmetic com-
plexity of O(Nlog2 N ) operations. In addition to this original FFT algorithm (also called the decimation-
in-time algorithm), there are now several other FFT algorithms (e.g., decimation in frequency, Bluestein,
prime factor) that are commonly used. An extensive list of such algorithms can be found in Van Loan
(1992).

7.1 CUFFT
Writing a high-performance FFT library is not a easy task. Fortunately, the CUDA C CUFFT library
contains a simple interface to FFTs that can transform arrays containing up to 227 single-precision or 226
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Table 7.1 Possible types of transforms: R (single-precision real data), C (single-precision
complex data), D (double-precision real data), Z (double-precision complex data).

Output

Real Complex

Input real - R2C/D2Z

Input complex C2R/Z2D C2C/Z2Z

double-precision elements on the GPU, provided enough device memory is available. If the array size
can be expressed as 2a · 3b · 5c · 7d , the CUFFT library will execute highly optimized kernels.

The steps needed to call CUFFT are similar to those used by the FFTW library, a very well-known
FFT library used on CPUs:

• Create a plan. This step will perform all the allocations and initializations needed by the library.
Depending on the dimensionality of the input data, there are different functions that accomplish this
task: cufftPlan1d, cufftPlan2d, and cufftPlan3d. In addition to these three functions,
the function cufftPlanMany can be used to create a plan for performing multiple independent
transforms for which the data are strided and/or offset in memory. For the 1D case, CUFFT can also
transform multiple arrays at once, using a batch argument in cufftPlan1d.

• Execute the plan. Once a plan is created, a variety of routines can be called to compute the FFT of
the input sequence. If the dimensions of the data do not change, the routine can be called multiple
times without creating a new plan. The function names arecuffExecuteX2Y , where the last three
letters depend on the data type shown in Table 7.1. For complex-to-complex transforms, we will also
need to supply the direction CUFFT_FORWARD for transforms from physical to Fourier space or
CUFFT_INVERSE for transforms from Fourier to physical space. Real-to-complex transforms have
an implicit direction (CUFFT_FORWARD), as do complex-to-real transforms (CUFFT_INVERSE).
The latter case also assumes the input data are Hermitian (to ensure that the inverse transform
resulting in real values exists).

• Destroy the plan. This step will release the resources allocated when the plan was created. The
function name is cufftDestroy.

Similar to what was done for the CURAND library in Chapter 5, we rely on the ISO_C_BINDING
module to interface with the CUFFT C functions of the CUFFT library. This interface is more complex
than the CURAND interface for several reasons. Unlike Fortran, C does not have native support for
complex data types. Luckily, the layout choosen by the library and defined by the type cuComplex
has the same layout of the native complex data type in Fortran.

We should mention a few issues involved in creating our interface. CUFFT uses plans, which are
opaque objects, to store information about the transforms and auxiliary arrays. We will declare the
plan as a type(c_ptr) variable in Fortran. The call to create a plan will generate all the proper
information; the variable is just a pointer to the opaque object with the proper size. Declaring the variable
as type(c_ptr) will also make the code portable between 32- and 64-bit systems. A second issue
is that CUFFT uses several constants, e.g., CUFFT_C2C and CUFFT_FORWARD, which are defined in
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hexadecimal in CUDA C. To express hexadecimal numbers in Fortran, the Z prefix is used. For example,
the constant in the CUFFT C header file CUFFT_R2C=0x2a will be defined as CUFFT_R2C=Z’2a’
in the Fortran module. Finally, CUFFT expects multidimensional data in row-major order, as is the
default in C, not column-major order as in Fortran. Since we are writing an interface to the library, we
need to decide whether to use the C or Fortran order in our Fortran interface. To keep a familiar coding
style, we decided to use the Fortran order.

We only show the interface for the creation of the 2D plan with cufftPlan2d that needs
to swap the arguments for the dimensions. This is done with a declaration of a generic inter-
face cufftPlan2D that contains a new subroutine cufftPlan2DSwap, declared as a module
procedure. The native cufftPlan2D routine is renamed cufftPlan2DC, which is called by the
routine cufftPlan2DSwap.

122 interface cufftPlan2d
123 module procedure cufftPlan2Dswap
124 end interface cufftPlan2d
125
126 interface cufftPlan2dC
127 subroutine cufftPlan2d(plan , nx, ny, type) &
128 bind(C,name=’cufftPlan2d ’)
129 use iso_c_binding
130 type(c_ptr ):: plan
131 integer(c_int),value:: nx, ny, type
132 end subroutine cufftPlan2d
133 end interface cufftPlan2dC
134
135 contains
136
137 subroutine cufftPlan2Dswap(plan ,nx,ny, type)
138 use iso_c_binding
139 type(c_ptr ):: plan
140 integer(c_int),value:: nx, ny, type
141 call cufftPlan2dC(plan ,ny,nx,type)
142 end subroutine cufftPlan2Dswap

The CUFFT library is capable of doing transforms either “in place” (where the same memory is used
for both the input and output arrays, i.e., the output array overwrites the input data) or “out of place”
(where different memory is used for the input and output arrays). When doing transforms in place, we
need to consider the different memory requirements that depend on the nature of the sequence (real
or complex). A complex sequence of N points is transformed to a complex sequence of N points. If
the input sequence is real, from a starting sequence of N real numbers we end up with a sequence of
N/2 + 1 complex numbers. Due to the properties of the Fourier transform, the imaginary part of the
zero-wave number and of the highest-wave number (N/2), also called the Nyquist wave number, are
zero. As such, the content of the information is preserved (N real values are transformed to N/2 − 1
complex values plus 2 real values.) However, CUFFT explicitly stores these N/2 + 1 values. To do an
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in-place real-to-complex transform, the array needs to accommodate the largest case. A complex array
of size N/2 + 1 has the same storage footprint of a real array of size N + 2.

Another important issue regarding FFTs is the normalization factor. With CUFFT, transforming an
array back and forth between physical and Fourier space will give us the original data multiplied by the
length of the transform:

I F FT (F FT (A)) = len(A)∗A

To get back our original data after a round trip through Fourier space once must divide by the length
of the array. There is also the possibility of adopting a data layout compatible1 with FFTW (but we
will not cover this option) and the choice of the stream in which the library calls will execute using the
cufftSetStream function. This is a very important optimization for several use cases, as we will
see later in the section illustrating convolutions.

Now that we have all the pieces in place, let’s do a simple transform of a signal with period 2π :

f j = cos(2x j ) + sin(3x j )

defined on x j = (2π/N ) j , with j = 0, N − 1. Since the Fourier transform is defined as

f̂k = 1

N

N−1∑
j=0

e−2π ı jk
N f j = 1

N

N−1∑
j=0

e−ıkx j f j for k = − N

2
,− N

2
+ 1, . . .,

N

2
− 1

and remembering that from Euler’s formula eıx = cos x + ısin x, cos x = eı x +e−ı x

2 and sin x =
eı x −e−ı x

2ı , we are expecting to see two nonzero real coefficients of value 0.5 at k = ±2 (corresponding to
the cosine term) and two nonzero imaginary coefficients with conjugate symmetry of value ∓0.5 at k =
±3 (corresponding to the sine term). Transforming a signal with a known output is a good way to check
the wave number layout of the library. Amplitudes for the positive wave numbers (from 0 to N/2 − 1)
are returned in the positions 1 to N/2; amplitudes for the negative wave numbers (from −1 to − N/2)
are returned in reverse order in the positions N/2 + 1, ...., N . This is a typical arrangement for several
FFT libraries. The code that performs this test is:

1 program fft_test_c2c
2 use iso_c_binding
3 use precision_m
4 use cufft_m
5 implicit none
6 integer , allocatable :: kx(:)
7 complex(fp_kind), allocatable :: cinput (:), coutput (:)
8 complex(fp_kind), allocatable , device :: cinput_d (:), coutput_d (:)
9

10 integer :: i,n
11 type(c_ptr ):: plan
12 real(fp_kind ):: twopi =8. _fp_kind*atan (1. _fp_kind),h
13

1A detailed description is available in the CUFFT manual available online at http://docs.nvidia.com.

http://docs.nvidia.com
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14 n=16
15 h=twopi/real(n,fp_kind)
16
17 ! allocate arrays on the host
18 allocate (cinput(n),coutput(n),kx(n))
19
20 ! allocate arrays on the device
21 allocate (cinput_d(n),coutput_d(n))
22
23 !initialize arrays on host
24 kx =(/ (i-1, i=1,n/2), (-n+i-1, i=n/2+1,n) /)
25
26 do i=1,n
27 cinput(i)=(cos(2* real(i-1,fp_kind )*h)+sin(3* real(i-1,fp_kind )*h))
28 end do
29
30 !copy arrays to device
31 cinput_d=cinput
32
33 ! Initialize the plan for complex to complex transform
34 if (fp_kind == singlePrecision) call cufftPlan1D(plan ,n,CUFFT_C2C ,1)
35 if (fp_kind == doublePrecision) call cufftPlan1D(plan ,n,CUFFT_Z2Z ,1)
36
37 ! Forward transform out of place
38 call cufftExec(plan ,cinput_d ,coutput_d ,CUFFT_FORWARD)
39
40 ! Copy results back to host
41 coutput=coutput_d
42
43 print *," Transform from complex array"
44 do i=1,n
45 write(*,’(i2 ,1x,2(f8.4),2x,i2 ,2(f8.4))’) i,cinput(i),kx(i),coutput(i)/n
46 end do
47
48 !release memory on the host and on the device
49 deallocate (cinput ,coutput ,kx,cinput_d ,coutput_d)
50
51 ! Destroy the plans
52 call cufftDestroy(plan)
53
54 end program fft_test_c2c

Compiling and running the code, we check that the frequencies are in the expected positions:

� �

% pgf90 -o fft_test_sp precision_m.F90 cufft.cuf fft_test.cuf -lcufft
% pgf90 -DDOUBLE -o fft_test_dp precision_m.F90 cufft.cuf \

fft_test.cuf -lcufft
% ./ fft_test_sp
i Re(in) IM(in) kx Re(out) Im(out)
1 1.0000 0.0000 0 0.0000 0.0000
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2 1.6310 0.0000 1 0.0000 0.0000
3 0.7071 0.0000 2 0.5000 0.0000
4 -1.0898 0.0000 3 0.0000 -0.5000
5 -2.0000 0.0000 4 0.0000 0.0000
6 -1.0898 0.0000 5 0.0000 0.0000
7 0.7071 0.0000 6 0.0000 0.0000
8 1.6310 0.0000 7 0.0000 0.0000
9 1.0000 0.0000 -8 0.0000 0.0000

10 -0.2168 0.0000 -7 0.0000 0.0000
11 -0.7071 0.0000 -6 0.0000 0.0000
12 -0.3244 0.0000 -5 0.0000 0.0000
13 0.0000 0.0000 -4 0.0000 0.0000
14 -0.3244 0.0000 -3 0.0000 0.5000
15 -0.7071 0.0000 -2 0.5000 0.0000
16 -0.2168 0.0000 -1 0.0000 0.0000

�

The code that performs a real-to-complex transform in place is:

1 program fft_test_r2c
2 use iso_c_binding
3 use cudafor
4 use precision_m
5 use cufft_m
6 implicit none
7 integer , allocatable :: kx(:)
8 real(fp_kind), allocatable :: rinput (:)
9 real(fp_kind), allocatable , device :: rinput_d (:)

10 complex(fp_kind),allocatable :: coutput (:)
11
12 type(c_ptr ):: plan
13 integer :: i,n,istat
14 real(fp_kind ):: twopi =8. _fp_kind*atan (1. _fp_kind),h
15
16 n=16
17 h=twopi/real(n,fp_kind)
18
19 ! allocate arrays on the host
20 allocate (rinput(n),coutput(n/2+1) ,kx(n/2+1))
21
22 ! allocate arrays on the device
23 allocate (rinput_d(n+2))
24
25 !initialize arrays on host
26 kx =(/ (i-1, i=1,n/2+1) /)
27
28 do i=1,n
29 rinput(i)=(cos (2* real(i-1,fp_kind )*h)+ &
30 sin (3* real(i-1,fp_kind )*h))
31 end do
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32
33 !copy arrays to device
34 rinput_d=rinput
35
36 ! Initialize the plan for real to complex transform
37 if (fp_kind == singlePrecision) call cufftPlan1D(plan ,n,CUFFT_R2C ,1)
38 if (fp_kind == doublePrecision) call cufftPlan1D(plan ,n,CUFFT_D2Z ,1)
39
40 ! Execute Forward transform in place
41 call cufftExec(plan ,rinput_d ,rinput_d)
42
43 ! Copy results back to host
44 istat=cudaMemcpy(coutput ,rinput_d ,n+2, cudaMemcpyDeviceToHost)
45
46 print *," Transform from real array"
47 do i=1,n/2+1
48 write(*,’(i2 ,1x,i2 ,2(f8.4))’) i,kx(i),coutput(i)/n
49 end do
50
51 !release memory on the host and on the device
52 deallocate (rinput ,coutput ,kx,rinput_d)
53
54 ! Destroy the plans
55 call cufftDestroy(plan)
56
57 end program fft_test_r2c

The input array on the device is of dimension N + 2 to accommodate the extra elements in the output,
since we are doing the transform in place. The input array on the host can be of dimension N , there is
no need to add extra space, since the transform is done on the GPU. The first copy from host to device
can be done with a simple assignment, even if there is a mismatch in the length of the array. The runtime
will transfer N real elements from the host real array to the equivalent elements in the device array.
Once the data are resident in device memory, a cufftExec call is invoked where the input and output
arrays are the same. For the transfer of results back to the complex output array on the host, we cannot
rely on the assignment, since there is a type mismatch and a call to cudaMemcpy is needed with an
explicit declaration of the direction. The size of the payload needs to be specified in elements of the
source array, in this case the number of elements in rinput_d. The output will produce only half of
the wave numbers, from 0 to N/2; the other half could be obtained using Hermitian symmetry.

� �

Transform from real array
1 0 0.0000 0.0000
2 1 0.0000 0.0000
3 2 0.5000 0.0000
4 3 0.0000 -0.5000
5 4 0.0000 0.0000
6 5 0.0000 0.0000
7 6 0.0000 0.0000
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8 7 0.0000 0.0000
9 8 0.0000 0.0000

�

For several applications, it is much easier to work in Fourier space once the wave numbers are
rearranged in a more natural layout, with the zero wave number at the center of the range. For example,
MATLAB provides functions called FFTSHIFT and IFFTSHIFT to achieve this goal. CUFFT is missing
this capability and we have to write our own. At first glance, we would think that the only way to achieve
this is via a kernel that basically performs a copy while taking care of rearranging the wave numbers: part
of the spectrum is shifted, the other one is shifted and reversed. This would be a completely memory-
bound kernel. There is another way to achieve this shift that takes advantage of the GPU’s floating-
point performance. If we multiply the input by a function shi f t(i) = (−1)(i+1) (in 2D shi f t(i, j) =
(−1)(i+ j)), the output of this modified input will give us a Fourier transform whereby the wave numbers
are in natural order (Solomon and Brecon, 2011). Since the multiplication is element-wise and the access
pattern is quite simple, we can achieve optimal throughput. We will check this method by adding the
following lines to the fft_test_c2c code before the FFT transform on line 38. After the data are in
device memory, we call a CUF kernel to multiply each element by the factor (−1)(i+1).

!$cuf kernel do <<<*,*>>>
do i=1,n

cinput_d(i)= cinput_d(i)*(( -1. _fp_kind )**(i+1))
end do

We also add a constant n to the function to better identify the zero-wave number that will contain the
average of the function and print the wave numbers in natural order, starting from −N/2.

� �

Transform from complex array
1 17.0000 0.0000 -8 0.0000 0.0000
2 17.6310 0.0000 -7 0.0000 0.0000
3 16.7071 0.0000 -6 0.0000 0.0000
4 14.9102 0.0000 -5 0.0000 0.0000
5 14.0000 0.0000 -4 0.0000 0.0000
6 14.9102 0.0000 -3 0.0000 0.5000
7 16.7071 0.0000 -2 0.5000 0.0000
8 17.6310 0.0000 -1 0.0000 0.0000
9 17.0000 0.0000 0 16.0000 0.0000

10 15.7832 0.0000 1 0.0000 0.0000
11 15.2929 0.0000 2 0.5000 0.0000
12 15.6756 0.0000 3 0.0000 -0.5000
13 16.0000 0.0000 4 0.0000 0.0000
14 15.6756 0.0000 5 0.0000 0.0000
15 15.2929 0.0000 6 0.0000 0.0000
16 15.7832 0.0000 7 0.0000 0.0000

�
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If we were to transform back this shifted sequence, we would need to multiply the output using the
same CUF kernel to remove the shift function.

7.2 Spectral derivatives
In Chapter 6, we saw how finite differencing could be used to compute approximate derivatives. There is
another way of computing derivatives, known as spectral differentiation. Despite being more expensive
from a computational point of view and less flexible with respect to the boundary conditions, spectral
methods are in many cases preferred as they have superior accuracy and are commonly used in several
computational physics fields, from computational fluid dynamics to optics.

An excellent explanation of the properties of spectral differentiation can be found in the books
by Moin (Moin, 2001) and Trefethen (Trefethen, 2000). Here we limit the description and examples
to periodic functions and linear examples, but spectral derivatives could be extended to nonperiodic
domains (using Chebyshev or Legendre polynomials) and nonlinear cases (with particular attention to
aliasing effects).

Once we have the Fourier coefficients f̂ , we can express the original function f (x j ) as:

f (x j ) =
N/2−1∑

k=−N/2

f̂keıkx j

The Fourier series for the derivative is simply:

f ′(x j ) =
N/2−1∑

k=−N/2

ık f̂keıkx j

Although the concept is quite simple, there are few important details to consider in the implementation
of such a method (Trefethen, 2000). The algorithm to compute the first derivative of a periodic function
from samples fi is:

• From fi compute the Fourier coefficient f̂i using FFT.

• Multiply the Fourier coefficient f̂i by ıkx . If N is even, the coefficient of the derivative corresponding
to N/2 + 1, the Nyquist frequency, needs to be multiplied by zero.2 This step could also include the
normalization factor.

• Transform back to the physical space using the inverse FFT to obtain f ′
i .

The second derivative can be computed in a similar matter:

• From fi compute the Fourier coefficient f̂i using FFT.

• Multiply the Fourier coefficient f̂i by the −k2
x . Since the multiplication factor is now real, there is no

need for a special treatment of the Nyquist frequency. This step could also include the normalization
factor.

• Transform back to the physical space using the inverse FFT to obtain f ′′
i .

2The imaginary part equal to zero is needed to generate a real function. The real part equal to zero is needed to preserve some
symmetry properties of the derivative operator.
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Having discussed the procedure for calculating spectral derivatives, we now compute the derivative
of the function used in the previous section:

f j = cos(2x j ) + sin(3x j )

defined on x j = (2π/N ) j , with j = 0, N − 1. The exact derivative is, of course:

f ′
j = −2sin(2x j ) + 3sin(3x j )

The code that performs this is:

1 program fft_derivative
2 use iso_c_binding
3 use precision_m
4 use cufft_m
5 implicit none
6 real(fp_kind), allocatable :: kx(:), derivative (:)
7 real(fp_kind), allocatable , device:: kx_d (:)
8
9 complex(fp_kind), allocatable :: cinput (:), coutput (:)

10 complex(fp_kind), allocatable , device :: cinput_d (:), coutput_d (:)
11
12 integer :: i,n
13 type(c_ptr ):: plan
14 real(fp_kind ):: twopi =8. _fp_kind*atan (1. _fp_kind),h
15
16 n=8
17 h=twopi/real(n,fp_kind)
18
19 ! allocate arrays on the host
20 allocate (cinput(n),coutput(n),derivative(n),kx(n))
21
22 ! allocate arrays on the device
23 allocate (cinput_d(n),coutput_d(n),kx_d(n))
24
25 ! initialize arrays on host
26 kx =(/ ((i-1), i=1,n/2), ((-n+i-1), i=n/2+1,n) /)
27
28 ! Set the wave number for the Nyquist frequency to zero
29 kx(n/2+1)=0. _fp_kind
30
31 ! Copy the wave number vector to the device
32 kx_d=kx
33
34 do i=1,n
35 cinput(i)=(cos(2* real(i-1,fp_kind )*h) &
36 +sin(3* real(i-1,fp_kind )*h))
37 derivative(i)=(-2*sin(2* real(i-1,fp_kind )*h) &
38 +3*cos(3* real(i-1,fp_kind )*h))
39 end do
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40
41 ! copy input to device
42 cinput_d=cinput
43
44 ! Initialize the plan for complex to complex transform
45 if (fp_kind == singlePrecision) call cufftPlan1D(plan ,n,CUFFT_C2C ,1)
46 if (fp_kind == doublePrecision) call cufftPlan1D(plan ,n,CUFFT_Z2Z ,1)
47
48 ! Forward transform out of place
49 call cufftExec(plan ,cinput_d ,coutput_d ,CUFFT_FORWARD)
50
51 ! Compute the derivative in spectral space and normalize the FFT
52 !$cuf kernel do <<<*,*>>>
53 do i=1,n
54 coutput_d(i)=cmplx (0.,kx_d(i),fp_kind )* coutput_d(i)/n
55 end do
56
57 ! Inverse transform in place
58 call cufftExec(plan ,coutput_d ,coutput_d ,CUFFT_INVERSE)
59
60 ! Copy results back to host
61 coutput=coutput_d
62
63 print *," First Derivative from complex array"
64 do i=1,n
65 write(*,’(i2 ,2(1x,f8.4),2x,e13.7)’) i,real(coutput(i)),derivative(i) &
66 ,real(coutput(i))-derivative(i)
67 end do
68
69 !release memory on the host and on the device
70 deallocate (cinput ,coutput ,kx,derivative ,cinput_d ,coutput_d ,kx_d)
71
72 ! Destroy the plans
73 call cufftDestroy(plan)
74
75 end program fft_derivative

After we compute the FFT, we multiply the data element-wise by cmplx(0.,kx_d(i),fp_kind)
on the device using a CUF kernel, taking particular care to define the multiplication factor of the right
precision using fp_kind. If we were to use cmplx(0.,kx_d(i)), we will lose double-precision
accuracy in the final result. Finally, there is an additional in-place inverse transform to return to physical
space. When we compile and run this code in both single and double precision and then compare the
results to the analytic expression, we can verify that the result is correct to the round-off error. For
double precision we have:

� �

% pgf90 -DDOUBLE -o spectral_dp precision_m.F90 cufft.cuf \
fft_derivative.cuf -lcufft

% ./ spectral_dp



222 CHAPTER 7 Applications of Fast Fourier Transform

First Derivative from complex array
1 3.0000 3.0000 0.1332268E-14
2 -4.1213 -4.1213 -.8881784E-15
3 0.0000 0.0000 -.1419503E-15
4 4.1213 4.1213 0.8881784E-15
5 -3.0000 -3.0000 -.8881784E-15
6 0.1213 0.1213 0.3108624E-14
7 0.0000 0.0000 -.6466482E-15
8 -0.1213 -0.1213 -.1776357E-14

�

and for single precision:

� �

% pgf90 -o spectral_sp precision_m.F90 cufft.cuf \
fft_derivative.cuf -lcufft

% ./ spectral_sp
First Derivative from complex array

1 3.0000 3.0000 -.2384186E-06
2 -4.1213 -4.1213 0.0000000E+00
3 0.0000 0.0000 -.2702248E-06
4 4.1213 4.1213 0.0000000E+00
5 -3.0000 -3.0000 0.0000000E+00
6 0.1213 0.1213 -.2384186E-06
7 0.0000 0.0000 0.4768569E-06
8 -0.1213 -0.1213 -.2145767E-05

�

7.3 Convolution
One of the most used properties of the FFT is that a convolution in the time domain can be expressed
as the point-wise multiplication in Fourier space:

conv(A, B) = I F FT
[
F FT (A).∗F FT (B)

]

where .∗ denotes an element-wise multiplication. Another important operation, cross-correlation, can be
implemented in a similar fashion by multiplying the conjugate transform of one array with the transform
of the other:

crosscorr(A, B) = I F FT
[
conj(F FT (A)).∗F FT (B)

]
In this example, we convolve two series, S1 and S2, of P 2D complex matrices of dimension (M,N),
focusing on minimizing the overall execution time. Each series is represented as a 3D array of
dimension (M,N,P).

A naive implementation would transfer S1 and S2 to the GPU, perform FFT(S1) and FFT(S2),
multiply the two transformed series element-wise, and transform the result back to physical space.
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However, given the independence of the planes of data in S1 and S2, this is a situation where we can
overlap data transfers and computation. Once plane n from S1, i.e.,S1(:,:,n), and its corresponding
plane S2(:,:,n) are in device memory, we can compute the correlation of these planes while trans-
ferring subsequent planes to the device. In addition, as soon as the convolution for slice n is complete,
it can be transferred to host while overlapping the host-to-device transfer as well as another convolution
computation. This approach is not only beneficial to overall execution time, but it also allows one to
stage arrays on the GPU that do not fit in GPU memory. All that is required for optimal performance
is enough planes resident in GPU memory to have effective overlap. Four planes are usually sufficient.
The convolution code that performs this overlap is:

1 program fftOverlap
2 use cudafor
3 use precision_m
4 use cufft_m
5 implicit none
6
7 complex(fp_kind), allocatable ,dimension (:,:,:), pinned :: A,B,C
8 complex(fp_kind), allocatable ,dimension (:,:,:), device :: A_d ,B_d
9 integer , parameter :: num_streams =4

10 integer :: nx, ny , nomega , ifr , i,j, stream_index
11 integer :: clock_start ,clock_end ,clock_rate , istat
12 integer(kind=cuda_stream_kind) :: stream(num_streams)
13 type(c_ptr ):: plan
14 real:: elapsed_time
15 real(fp_kind ):: scale
16
17 nx =512; ny=512; nomega =196
18 scale =1./ real(nx*ny ,fp_kind)
19
20 ! Initialize FFT plan
21 call cufftPlan2d(plan ,nx ,ny ,CUFFT_C2C)
22
23 ! Create streams
24 do i = 1,num_streams
25 istat= cudaStreamCreate(stream(i))
26 end do
27
28 call SYSTEM_CLOCK(COUNT_RATE=clock_rate) ! Find the rate
29
30 ! Allocate arrays on CPU and GPU
31 allocate(A(nx,ny,nomega),B(nx ,ny ,nomega),C(nx ,ny ,nomega ))
32 allocate(A_d(nx,ny,num_streams),B_d(nx ,ny ,num_streams ))
33
34 ! Initialize arrays on CPU
35 A=cmplx (1.,1., fp_kind ); B=cmplx (1.,1., fp_kind ); C=cmplx (0.,0., fp_kind)
36
37 ! Measure only the transfer time
38 istat=cudaThreadSynchronize ()
39
40 print *,"I/O only"
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41 call SYSTEM_CLOCK(COUNT=clock_start) ! Start timing
42
43 do ifr=1,nomega
44 istat= cudaMemcpy(A_d(1,1,1),A(1,1,ifr),nx*ny)
45 istat= cudaMemcpy(B_d(1,1,1),B(1,1,ifr),nx*ny)
46 istat= cudaMemcpy(C(1,1,ifr),A_d(1,1,1),nx*ny)
47 end do
48
49 istat=cudaThreadSynchronize ()
50 call SYSTEM_CLOCK(COUNT=clock_end) ! End timing
51 elapsed_time=REAL(clock_end -clock_start )/REAL(clock_rate)
52 print *,"Elapsed time :",elapsed_time
53
54 ! Measure the transfer time H2D , FFT , IFFT and transfer time D2H
55
56 print ’(/a)’,"Single stream loop"
57 istat=cudaThreadSynchronize ()
58 call SYSTEM_CLOCK(COUNT=clock_start) ! Start timing
59 stream_index = 1
60 call cufftSetStream(plan ,stream(stream_index ))
61 do ifr=1,nomega
62 istat= cudaMemcpy(A_d(1,1, stream_index),A(1,1,ifr),nx*ny)
63 istat= cudaMemcpy(B_d(1,1, stream_index),B(1,1,ifr),nx*ny)
64 call cufftExecC2C(plan ,A_d(1,1, stream_index),&
65 A_d(1,1, stream_index),CUFFT_FORWARD)
66 call cufftExecC2C(plan ,B_d(1,1, stream_index),&
67 B_d(1,1, stream_index),CUFFT_FORWARD)
68
69 ! Convolution and scaling of the arrays
70 !$cuf kernel do(2) <<<*,(16,16), stream=stream(stream_index)>>>
71 do j=1,ny
72 do i=1,nx
73 B_d(i,j,stream_index )= A_d(i,j,stream_index )*&
74 B_d(i,j,stream_index )* scale
75 end do
76 end do
77
78 call cufftExecC2C(plan ,B_d(1,1, stream_index),&
79 B_d(1,1, stream_index),CUFFT_INVERSE)
80 istat=cudaMemcpy( C(1,1,ifr),B_d(1,1, stream_index),nx*ny)
81 end do
82
83 istat=cudaThreadSynchronize ()
84 call SYSTEM_CLOCK(COUNT=clock_end) ! End timing
85 elapsed_time=REAL(clock_end -clock_start )/REAL(clock_rate)
86 print *,"Elapsed time :",elapsed_time
87
88 ! Overlap I/O and compute using multiple streams and async copies
89 print ’(/a)’,"Do loop with multiple streams"
90 call SYSTEM_CLOCK(COUNT=clock_start) ! Start timing
91
92 do ifr=1,nomega
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93
94 ! assign a stream for the current plan
95 stream_index = mod(ifr ,num_streams )+1
96
97 ! Set the stream used by CUFFT
98 call cufftSetStream(plan ,stream(stream_index ))
99

100 ! Send A to GPU
101 istat= cudaMemcpyAsync(A_d(1,1, stream_index),A(1,1,ifr),&
102 nx*ny, stream(stream_index ))
103
104 ! Execute forward FFTs on GPU
105 call cufftExecC2C(plan ,A_d(1,1, stream_index),&
106 A_d(1,1, stream_index),CUFFT_FORWARD)
107
108 ! Send B to GPU
109 istat= cudaMemcpyAsync(B_d(1,1, stream_index), &
110 B(1,1,ifr),nx*ny , stream(stream_index ))
111
112 ! Execute forward FFTs on GPU
113 call cufftExecC2C(plan ,B_d(1,1, stream_index),&
114 B_d(1,1, stream_index),CUFFT_FORWARD)
115
116 ! Convolution and scaling of the arrays
117 !$cuf kernel do(2) <<<*,(16,16), stream=stream(stream_index)>>>
118 do j=1,ny
119 do i=1,nx
120 B_d(i,j,stream_index )= A_d(i,j,stream_index )* &
121 B_d(i,j,stream_index )* scale
122 end do
123 end do
124
125 ! Execute inverse FFTs on GPU
126 call cufftExecC2C(plan ,B_d(1,1, stream_index), &
127 B_d(1,1, stream_index),CUFFT_INVERSE)
128
129 ! Copy results back
130 istat=cudaMemcpyAsync( C(1,1,ifr),B_d(1,1, stream_index), &
131 nx*ny, stream=stream(stream_index ))
132
133 end do
134
135 istat=cudaThreadSynchronize ()
136 call SYSTEM_CLOCK(COUNT=clock_end) ! Start timing
137 elapsed_time=REAL(clock_end -clock_start )/REAL(clock_rate)
138 print *,"Elapsed time :",elapsed_time
139
140 deallocate(A,B,C); deallocate(A_d ,B_d)
141 call cufftDestroy(plan)
142
143 end program fftOverlap
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The code has few points that need to be highlighted. The first point is that since we are planning to use
asynchronous data transfers, we need to use pinned memory for the host arrays. We also create an array
of streams that corresponds to different planes of S1 and S2. We do all the transforms in place, so there
is no need to allocate a third array on the GPU. The first do loop on lines 43–47 transfers A and B to the
device and transfers C back to CPU memory, one plane at the time. The transfer is timed and will give
us an indication on how fast we can go, once we optimize the data transfer. The second loop on lines
61–81 does the convolution one plane at the time. The convolution is performed using a CUF kernel.
The difference in time between these loops will indicate how much time is spent in the computation.
The final loop starting on line 92 is the optimized implementation. Each iteration selects a stream in
round-robin fashion, sends a plane from S1 and S2 to the GPU memory using cudaMemcpyAsync,
sets the stream for FFT functions using cufftSetStream and transform them to Fourier space,
performs the convolution using CUF kernel (this time we will need to specify the same stream of the
other operations), transforms the result back to physical space, and sends it back to the CPU with another
cudaMemcpyAsync call. All the work in one iteration is scheduled using the same stream. In theory,
we should be able to achieve 2/3 of the I/O time (aside from the first two planes for S1 and S2 and the
last one of the convolved matrix, the transfer back to CPU should be completely hidden) if the execution
time is I/O limited, since we can hide all the computations. The optimized execution time can be written
as max(2/3∗I/O_time, compute_time) to accommodate the case in which the compute time is the
dominant factor.

If we compile and run on a Tesla K20x, we obtain:

� �

% pgf90 -O3 -Minfo -o exampleOverlapFFT precision_m.F90 cufft.cuf \
exampleOverlapFFT.cuf -lcufft

% ./ exampleOverlapFFT
I/O only
Elapsed time : 0.2232550

Single stream loop
Elapsed time : 0.2951850

Do loop with multiple streams
Elapsed time : 0.1551300

�

where we observe that the overlap is very effective. From the elapsed time, our previous estimate gives
us a time of 0.15 s, and we measured a time of 0.155 s. We can use the profiler to get better insight
on the execution times and scheduling flow. Since our main interest is the transfer time and overlap,
we generate a configuration file for the Command Line Profiler that will record the timestamps, the
memory transfer size, and the stream information. We also want to use nvvp to visualize the traces, so
the traces will need to be generated in CSV format.

� �

% export CUDA_PROFILE =1
% export CUDA_PROFILE_CSV =1
% export CUDA_PROFILE_CONFIG =./ cuda_prof_conf
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% cat ./ cuda_prof_conf
conckerneltrace
timestamp
gpustarttimestamp
gpuendtimestamp
memtransfersize
streamid

�

If we use the Command Line Profiler and nvvp, the output of which is shown in Figure 7.1, we see
that the optimized version schedules the transfers and computations as expected, achieving a perfect
overlap. Each FFT takes approximately 80 ms, whereas the convolution takes approximately 40 ms,
for a total of 280 ms. Each plane transfer takes 380 ms, and we need at least one from S1 and one
from S2 before we can start the convolution for a total of 760 ms. Improving the compute time will
have no effect on the execution time: For this particular choice of N, M, and P, along with the PCI-
e bandwidth of the system, the limiting factor is the data transfers. We are also able to explain the
small discrepancy between expected and measured runtimes. On this particular system, transfers in
one direction will achieve bandwidths of 5.5 GB/s for host-to-device transfers and 6.19 GB/s for
device-to-host transfers. When we overlap both directions, the bandwidth drops to 5 GB/s.

Different parameter choices and different hardware can move the limiting factor from bandwidth to
the computation. If we run the original code on a system with Gen3 PCIe bus and a Tesla K10 (also
capable of supporting Gen3 speed), we observe the following output:

FIGURE 7.1

Kernel overlap for the K20x.
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� �

% ./ exampleOverlapFFT
I/O only
Elapsed time : 0.1116750

Single stream loop
Elapsed time : 0.2037710

Do loop with multiple streams
Elapsed time : 0.1334740

�

Here we notice a faster transfer time (0.11 s), because this chipset is able to transfer data at 10.7 GB/s
in both directions, basically halving the I/O time. For this system configuration, the compute time,
0.092 s (obtained from the difference between the single stream loop time and the I/O only time),
is larger than 2/3 of the I/O time, 0.074 s, so this will be our expected optimized runtime with a
perfect scheduling. We also notice that the overlapping strategy does not seem to give the expected
results.

The visualization of the profiler trace is able to shed some light, as we can see in Figure 7.2. The
scheduling of kernels and transfers is different on a Tesla K20x (card with compute capability 3.5 and
Hyper-Q) and a Tesla K10 (card with compute capability 3.0 with no Hyper-Q). In the multiple-streams
do loop, the FFT after the memcopyAsync of A is blocking the memcopyAsync of B. A simple fix
is to schedule the two memcopyAsync calls back to back, moving the memcopy of B just after A. After
reloading the profiler trace into nvvp, we can visually inspect that now there is a proper scheduling of

FIGURE 7.2

Kernel overlap for Tesla K10.
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FIGURE 7.3

Kernel overlap for the Tesla K10 with modified source code.

memcopy and kernel, as observed in Figure 7.3. If we look at the output of the run, we now see that the
optimized version is running in the expected time:

� �

% ./ exampleOverlapFFT
I/O only
Elapsed time : 0.1117420

Single stream loop
Elapsed time : 0.2038810

Do loop with multiple streams
Elapsed time : 9.8977998E-02

�

7.4 Poisson Solver
Many problems in computational physics require the solution of a Poisson equation, an equation of the
form:

∇2u = ρ

where ρ is a source term and ∇2 is the Laplacian operator. The general form of the Laplacian operator
in d Cartesian dimensions is:
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∇2u =
d∑

i=1

∂2u

∂x2
i

but here we focus on a two-dimensional problem where the Poisson equation is:

∂2u

∂x2 + ∂2u

∂ y2 = ρ

In addition to satisfying the preceding equation, the solution must also satisfy boundary conditions,
which can be of several forms. Dirichlet boundary conditions specify u along the boundary, and Neumann
boundary conditions specify the derivative of u along the boundary. There can also be a mixture of these
two types.

If the domain shape and the boundary conditions are appropriate, spectral methods can be used
to find the solution to the Poisson equation very efficiently and accurately. This solution utilizes the
calculation of the second derivative, which we presented for one-dimensional data in Section 7.2. In one
dimension, we observed that the spectral derivative for a function f is calculated by taking the inverse
Fourier transform of the product of the Fourier coefficient of the function f̂kx with the negative square
of the wavenumber, −k2

x . Taking the Fourier transform of our 2D Poisson equation, we obtain a set of
algebraic equations for each pair of wavenumbers kx , ky :

−
(

k2
x + k2

y

)
ûkx ,ky = ρ̂kx ,ky

Each ûkx ,ky Fourier coefficient can be found by solving this simple algebraic equation, and with an
inverse transform we obtain the solution in physical space.

The steps to solve a 2D Poisson equation using a spectral method can be summarized as:

• Find ρ̂kx ,ky , the Fourier coefficients of ρ using a 2D FFT.

• Obtain ûkx ,ky , the Fourier coefficients of u, as − ρ̂kx ,ky

(k2
x +k2

y)
. This solution is undefined at kx = ky = 0,

corresponding to an unknown constant c that must be specified. This is evident from the fact that if u
is a solution to the Poisson equation, u + c is also a solution. For problems with Dirichlet boundary
conditions, the constant can be readily obtained.

• Transform ûkx ,ky back to physical space using an inverse 2D FFT and apply the boundary conditions.

We present a code that solves the 2D Poisson equation:

∂2u

∂x2 + ∂2u

∂ y2 = (r2 − 2α2)

α4 e
− r2

2α2

on a square domain of size L centered around the origin with Dirichlet boundary condition u = 0 on the
boundary. In our source term on the right-hand side, r = √

x2 + y2 and α is a parameter. In the limit
of α → 0 the solution of u converges to:

u = e−r2/(2α2)

which we use to calculate the error of the spectral method solution. The complete code is listed in
Appendix D.6. The set-up and execution of the FFTs in the Poisson code is similar to the previous codes
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presented in this chapter. The only difference is in the definition of the wave numbers; since the domain
length is not 2π , there is a scaling factor 2π

L . We define a poisson_m module that contains several
utility routines in addition to a short Poisson solver:

1 module poisson_m
2 use precision_m
3
4 complex(fp_kind),device :: ref_sol
5
6 contains
7
8 attributes(global) subroutine real2complex(a, b, N, M)
9 implicit none

10 real(fp_kind ):: a(N,M)
11 complex(fp_kind ):: b(N,M)
12 integer , value:: N,M
13 integer :: i,j
14
15 i=threadIdx%x+( blockIdx%x-1)* blockDim%x
16 j=threadIdx%y+( blockIdx%y-1)* blockDim%y
17
18 if ( i .le. N .and. j .le. M) then
19 b(i,j) = cmplx( a(i,j), 0._fp_kind ,fp_kind )
20 end if
21 end subroutine real2complex
22
23 attributes(global) subroutine real2complex1D(a, b, N, M)
24 implicit none
25 real(fp_kind ):: a(N*M)
26 complex(fp_kind ):: b(N*M)
27 integer , value:: N,M
28 integer :: i,index
29
30 index=threadIdx%x+( blockIdx%x -1)* blockDim%x
31
32 do i=index ,N*M,blockDim%x*GridDim%x
33 b(i) = cmplx( a(i), 0._fp_kind ,fp_kind )
34 end do
35 end subroutine real2complex1D
36
37 attributes(global) subroutine &
38 complex2real(input , output , ref_sol , N, M)
39 implicit none
40 complex (fp_kind ):: input(N,M),ref_sol
41 real (fp_kind ):: output(N,M)
42 integer , value:: N,M
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43 integer :: i,j
44 real(fp_kind ):: scale
45
46 i=threadIdx%x+( blockIdx%x-1)* blockDim%x
47 j=threadIdx%y+( blockIdx%y-1)* blockDim%y
48
49 scale = 1. _fp_kind/real(N*M,fp_kind)
50 if ( i .le. N .and. j .le. M) then
51 output(i,j) = (real(input(i,j)) -real(ref_sol ))* scale
52 end if
53 end subroutine complex2real
54
55 attributes(global) subroutine &
56 solve_poisson( phi , kx,ky, N, M)
57 implicit none
58 complex (fp_kind ):: phi(N,M)
59 real(fp_kind ):: kx(N),ky(M)
60 integer , value:: N,M
61 integer :: i,j
62 real(fp_kind ):: scale
63
64 i=threadIdx%x+( blockIdx%x-1)* blockDim%x
65 j=threadIdx%y+( blockIdx%y-1)* blockDim%y
66
67 if ( i .le. N .and. j .le. M) then
68 scale = (kx(i)*kx(i)+ky(j)*ky(j))
69 if ( i .eq. 1 .and. j .eq. 1) scale = 1. _fp_kind
70 phi(i,j) = -phi(i,j)/scale
71 end if
72 end subroutine solve_poisson
73
74 end module poisson_m

The portion of the host code that performs the solution procedure outlined here is:

150 ! Set up execution configuration
151 Block = dim3 (16,16,1)
152 grid = dim3(ceiling(real(n)/Block%x), &
153 ceiling(real(m)/Block%y), 1 )
154
155 ! Transform real array to complex
156 !call real2complex <<<grid ,Block >>>(rinput_d ,cinput_d ,N,M)
157 call real2complex1D <<<64,128>>>(rinput_d ,cinput_d ,N,M)
158
159 ! Execute forward transform in place
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160 if ( fp_kind == singlePrecision) &
161 call cufftExecC2C(plan ,cinput_d ,cinput_d ,CUFFT_FORWARD)
162 if ( fp_kind == doublePrecision) &
163 call cufftExecZ2Z(plan ,cinput_d ,cinput_d ,CUFFT_FORWARD)
164
165 !Call kernel to solve the Poisson equation in Fourier space
166 call solve_poisson <<<grid ,Block >>>(cinput_d ,kx_d ,ky_d ,N,M)
167
168 !Execute backward transform in place
169 if ( fp_kind == singlePrecision) &
170 call cufftExecC2C(plan ,cinput_d ,cinput_d ,CUFFT_INVERSE)
171 if ( fp_kind == doublePrecision) &
172 call cufftExecZ2Z(plan ,cinput_d ,cinput_d ,CUFFT_INVERSE)
173
174 ! Transform complex array to real and scale
175 istat = cudaMemcpy(ref_sol ,cinput_d (1,1),1)
176 call complex2real <<<grid ,Block >>>(cinput_d ,rinput_d , &
177 ref_sol ,N,M)
178
179 ! Copy result back to host
180 routput=rinput_d

The code declares two real matrices on the CPU: rinput(N,M), used to store the source term,
and routput(N,M), which stores the solution. These two matrices are declared with the pinned
variable attribute to get the best possible transfer time. To keep the code simple, we use complex-
to-complex transforms, so we will allocate one real array rinput_d(N,M) and one complex array
cinput_d(N,M) on the device. After we transfer the source term and the arrays with the wave
numbers to the GPU, the first thing we do is trasform rinput_d to a complex array cinput_d. We
perform this operation with a simple kernel real2complex, using 2D addressing, after we compute
an execution configuration using a block with 16×16 threads. The FFT set-up and invocation are similar
to the other codes presented in this chapter. The kernel performing the solution of the Laplace operator
also uses 2D addressing and it is straightforward. Once the global indices i and j are computed from
the local thread indices, there is a check to ensure we are operating on valid data, and a scaling factor
is applied to the transformed source term, taking care of the special situation kx = ky = 0. The last
kernel extracts the real part of the solution, applies the normalization factor for the FFT, and subtracts
the value of the solution in the first corner, corresponding to the indices (1, 1), to the whole solution. We
need to take particular care in doing this last operation. We cannot use the value cinput_d(1,1)
directly because doing so would result in a race condition; we do not know when the thread block that
updates this value will execute in relation to the other thread blocks. To avoid such a race condition,
we save the value to a separate device variable, ref_sol, before invoking the kernel. We perform a
cudaMempcpy on line 175 and then pass the ref_sol to the complex2real subroutine, where
the offset in the solution is computed. Note that there is no value variable attribute in the ref_sol
scalar variable declaration, since this variable resides on the device.



234 CHAPTER 7 Applications of Fast Fourier Transform

Once we run the code, we can see that the spectral solution to the Poisson equation discretized on a
1024 × 1024 point mesh is solved in less than 6 ms on a Tesla K20x.

� �

% pgf90 -DDOUBLE -O3 -o poisson_dp precision_m.F90 cufft.cuf \
poisson.cuf -lcufft

% ./ poisson_dp
Poisson equation on a mesh : 1024 1024
Elapsed time (ms) : 5.749312
L infinity norm: 2.3077315062211532E-005
L2 norm : 5.6284773431400125E-009

�

If we run the code through nvprof, we can see where the time is spent.

� �
% nvprof ./ poisson_dp
======== NVPROF is profiling poisson_dp ...
======== Command: poisson_dp
Poisson equation on a mesh : 1024 1024
Elapsed time (ms) : 5.819744
L infinity norm: 2.3077315062211532E-005
L2 norm : 5.6284773431400125E-009

======== Profiling result:
Time (%) Time Calls Avg Min Max Name
30.64 1.41ms 3 469.18 us 2.34us 1.40ms [CUDA memcpy HtoD]
27.28 1.25ms 1 1.25ms 1.25ms 1.25ms [CUDA memcpy DtoH]
8.75 401.73 us 2 200.87 us 193.57 us 208.16 us dpRadix0032B::<fftDir=-1>
8.72 400.71 us 2 200.35 us 193.86 us 206.85 us dpRadix0032B::<fftDir=1>
6.58 302.34 us 1 302.34 us 302.34 us 302.34 us dpVector1024D:<fftDir=-1>
6.51 298.95 us 1 298.95 us 298.95 us 298.95 us dpVector1024D:<fftDir=1>
4.48 205.95 us 1 205.95 us 205.95 us 205.95 us poisson_m_solve_laplacian_
3.88 178.40 us 1 178.40 us 178.40 us 178.40 us poisson_m_real2complex_
3.05 140.32 us 1 140.32 us 140.32 us 140.32 us poisson_m_complex2real_
0.11 4.86us 1 4.86us 4.86us 4.86us [CUDA memcpy DtoD]

�

The first two calls on the nvprof output are the copies to and from device memory. The host-to-
device copy is slightly slower than the device-to-host due to the asymmetry in the two directions in
PCIe bandwidth, but they are performing at the expected rate (1024 ∗ 1024 ∗ 8B/0.00140 s/(10003) =
6 GB/s H2D and 1024 ∗ 1024 ∗ 8B/0.00125 s/(10003) = 6.7 GB/s D2H). The next four calls are the
forward and inverse 2D FFT; the profiler is showing the internal kernels that CUFFT executes to perform
the 10242 transform. Each FFT executes in 700 ms. From the formula 5N Mlog2(N M) expressing the
number of operations needed for 2D FFT, we can compute the GFlops rate at 150 GFlops. For the
very simple kernels, real2complex and complex2real, we could also use a 1D thread block,
considering the 2D array of shape (N, M) as a 1D array of shape (N∗M), as we can see in the listing for
real2complex1D. Since there are minimum computations in the kernel, this will reduce the address
computation and it will give us a 10% speed improvement.
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A
APPENDIX

Tesla Specifications

Floating-point performance

Tesla Products C870 C1060 C2050 C2070 M2090 K10 K20 K20X

Compute capability 1.0 1.3 2.0 3.0 3.5

Number of multiprocessors 16 30 14 14 16 2 × 8 13 14

Core clock (GHz) 1.35 1.296 1.15 1.15 1.3 0.745 0.706 0.732

Single-precision cores per
8 8 32 192 192

multiprocessor

Total single-precision cores 128 240 448 448 512 2 × 1536 2496 2688

Single-precision GFlops
346 622 1030 1030 1331 2 × 2289 3524 3935

(Multiply + Add)

Double-precision cores
– 1 16* 8 64

per multiprocessor

Total double-precision cores – 30 224* 224* 256* 2 × 64 832 896

Double-precision GFlops
– 78 515* 515* 665* 2 × 95 1175 1312

(Multiply + Add)

*GeForce GPUs have fewer double-precision units.

CUDA Fortran for Scientists and Engineers. http://dx.doi.org/10.1016/B978-0-12-416970-8.00016-X
© 2014  Elsevier Inc. All rights reserved.

237

http://dx.doi.org/10.1016/B978-0-12-416970-8.00016-X


238 APPENDIX A Tesla Specifications

M
em

o
ry

Te
sl

a
P

ro
d

u
ct

s
C

87
0

C
10

60
C

20
50

C
20

70
M

20
90

K
10

K
20

K
20

X

C
om

pu
te

ca
pa

bi
lit

y
1.

0
1.

3
2.

0
3.

0
3.

5

D
ev

ic
e

M
em

o
ry

(D
R

A
M

)

To
ta

lg
lo

ba
lm

em
or

y
(G

B
)

1.
5

4
3*

6*
6*

2
×

4*
5*

6*

C
on

st
an

tm
em

or
y

(K
B

)
64

M
em

or
y

cl
oc

k
(M

H
z)

80
0

80
0

1,
50

0
1,

56
6

1,
84

8
2,

50
0

2,
60

0
2,

60
0

B
us

w
id

th
(b

its
)

38
4

51
2

38
4

38
4

38
4

2
×

25
6

32
0

38
4

T
he

or
et

ic
al

pe
ak

ba
nd

w
id

th
(G

B
/s

)
76

.8
10

2.
4

14
4*

15
0.

3*
17

7.
4*

2
×

16
0*

20
8*

24
9.

6*

O
n

-C
h

ip
M

em
o

ry

32
-b

it
re

gi
st

er
s

pe
r

m
ul

tip
ro

ce
ss

or
8

K
16

K
32

K
64

K
64

K

M
ax

im
um

re
gi

st
er

s
pe

r
th

re
ad

12
7

12
7

63
63

25
5

S
ha

re
d

m
em

or
y

pe
r

m
ul

tip
ro

ce
ss

or
16

K
16

K
48

K
/1

6
K

48
K

/3
2

K
/1

6
K

48
K

/3
2

K
/1

6
K

L1
ca

ch
e

pe
r

m
ul

tip
ro

ce
ss

or
–

–
16

K
/4

8
K

16
K

/3
2

K
/4

8
K

**
16

K
/3

2
K

/4
8

K
**

C
on

st
an

tm
em

or
y

ca
ch

e
pe

r
m

ul
tip

ro
ce

ss
or

(K
B

)
8

*W
ith

E
C

C
en

ab
le

d
th

e
av

ai
la

bl
e

gl
ob

al
m

em
or

y
an

d
pe

ak
ba

nd
w

id
th

w
ill

be
le

ss
th

an
th

e
nu

m
be

rs
lis

te
d.

**
F

or
th

e
K

10
,K

20
,a

nd
K

20
X

G
P

U
s,

th
e

L1
ca

ch
e

is
us

ed
fo

r
lo

ca
lm

em
or

y
on

ly
.



APPENDIX A Tesla Specifications 239

E
xe

cu
ti

o
n

co
n

fi
g

u
ra

ti
o

n
lim

it
s

C
om

pu
te

ca
pa

bi
lit

y
1.

0
1.

3
2.

0
3.

0
3.

5

C
20

50
C

20
70

Te
sl

a
pr

od
uc

ts
C

87
0

C
10

60
M

20
90

K
10

K
20

K
20

X
M

20
50

M
20

70

M
ax

im
um

th
re

ad
8

8
8

16
16

bl
oc

ks
pe

r
m

ul
tip

ro
ce

ss
or

M
ax

im
um

th
re

ad
s

pe
r

51
2

51
2

10
24

10
24

10
24

th
re

ad
bl

oc
k

M
ax

im
um

th
re

ad
s

(w
ar

ps
)

76
8

(2
4)

10
24

(3
2)

15
36

(4
8)

20
48

(6
4)

20
48

(6
4)

pe
r

m
ul

tip
ro

ce
ss

or

M
ax

im
um

gr
id

65
53

6
×

65
53

6
×

65
53

6
×

21
47

48
36

47
×

21
47

48
36

47
×

di
m

en
si

on
s

65
53

6
×

1
65

53
6

×
1

65
53

6
×

65
53

6
65

53
6

×
65

53
6

65
53

6
×

65
53

6

M
ax

im
um

bl
oc

k
51

2
×

51
2

×
64

51
2

×
51

2
×

64
10

24
×

10
24

×
64

10
24

×
10

24
×

64
10

24
×

10
24

×
64

di
m

en
si

on
s



This page is intentionally left blank



B
APPENDIX

System and Environment
Management

CHAPTER OUTLINE HEAD

B.1 Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
B.1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

B.1.2 Command Line Profiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

B.1.3 Just-in-Time Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

B.2 nvidia-smi System Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 242
B.2.1 Enabling and Disabling ECC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

B.2.2 Compute Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

B.2.3 Persistence Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

B.1 Environment variables
A variety of environment variables can control certain aspects of CUDA Fortran compilation and
execution. We group them here in terms of general environment variables, those related to the Command
Line Profiler, and those related to just-in-time compilation of device code.

B.1.1 General
CUDA_LAUNCH_BLOCKING, when set to 1, forces execution of kernels to be synchronous. That is,
after launching a kernel, control will return to the CPU only after the kernel has completed. This provides
an efficient way to check whether host-device synchronization errors are responsible for unexpected
behavior. By default, launch blocking is off.

CUDA_VISIBLE_DEVICES can be used to make certain devices invisible on the system and to change
the enumeration of devices. A comma-separated list of integers is assigned to this variable, which
contains the visible devices and their enumeration as shown by the subsequent execution of CUDA
CUDA Fortran for Scientists and Engineers. http://dx.doi.org/10.1016/B978-0-12-416970-8.00017-1
© 2014 Elsevier Inc. All rights reserved.
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Fortran programs. Recall that device enumeration begins with 0. (We can use the deviceQuery code
presented earlier or the utility pgaccelinfo to obtain the default enumeration of devices.)

B.1.2 Command Line Profiler
COMPUTE_PROFILE, when set to 1, turns profiling by the Command Line Profiler on. When it’s set
to 0, profiling is off. By default, profiling is off.

COMPUTE_PROFILE_LOG is set to the desired file path for profiling output. For runs with multiple
devices, the string%dmust be added to the filename, which will be used to create separate profiler output
files for each device. Likewise, in the case of multiple host processes (e.g., MPI), the string %p must
appear in the filename. By default, profiler output will appear in the file cuda_profile_%d.log
in the local directory.

COMPUTE_PROFILE_CSV, when set to 0 or 1, either disables or enables a comma-separated version
of the profiler output. This is a convenient feature for importing the file into a spreadsheet.

COMPUTE_PROFILE_CONFIG is used to specify a configuration file containing options for tracing
execution (collecting timeline data) as well as collecting hardware counters. A list of the options for
tracing execution, as well as their interpretation, is given in the CUDA Profiler Users Guide provided with
the CUDA Toolkit, which can also be obtained online. A list of hardware counters that can be profiled
can be obtained from thenvprof profiling tool by issuing the commandnvprof--query-events.
The nvprof profiling tool is distributed in the CUDA Toolkit.

B.1.3 Just-in-time compilation
CUDA_CACHE_DISABLE, when set to 1, disables caching, meaning that no binary code is added to
or retrieved from the cache.

CUDA_CACHE_MAXSIZE specifies the size of the compute cache in bytes. By default it is 32 MB, and
the maximum value is 4 GB. Binary codes that exceed this limit are not cached, and older binary codes
are evicted from the cache as needed.

CUDA_CACHE_PATH controls the location of the compute cache. By default, the
cache is located at ∼/.nv/ComputeCache on Linux, $HOME/Library/Application\
Support/NVIDIA/ComputeCache on MacOS, and %APPDATA%\NVIDIA\ComputeCache
in Windows.

CUDA_FORCE_PTX_JIT, when set to 1, forces the driver to ignore all embedded binary code in an
application and to just-in-time compile embedded PTX code. This option is useful for testing whether
an application has embedded PTX code and whether the embedded code works. If this environment
variable is set to 1 and a kernel does not have embedded PTX code, it will fail to load.

B.2 nvidia-smi System Management Interface
Additional control of devices on a system is available through the System Management Interface utility,
nvidia-smi, which is bundled with the NVIDIA driver on all Linux platforms. The man pages for
nvidia-smi contain an extensive list of options. In this section we demonstrate some of the more
common uses of the utility.
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Without any options, nvidia-smi lists some basic information on all attached NVIDIA GPUs, as
shown in Figure B.1. Although nvidia-smi lists all devices, it only provides detailed information
on Tesla and high-end Quadro devices. The Quadro NVS 285 listed in the output of Figure B.1 is not a
high-end card, and consequently little information is provided.

FIGURE B.1

Default output of nvidia-smi on a system with a Tesla K20 and a Quadro NVS 285. The limited output
for the Quadro NVS 285 is because the GPU is not CUDA-capable.

A simple list of devices on the system can be obtained from the output of nvidia-smi -L:

� �

% nvidia -smi -L
GPU 0: Tesla K20 (S/N: 0324612033969)
GPU 1: Quadro NVS 285 (UUID: N/A)

�

B.2.1 Enabling and disabling ECC
There are several ways we can determine whether ECC is enabled or disabled on a device. The field
ECCEnabled of the cudaDeviceProp derived type can used to query the ECC status of the current
device, and the utility pgiaccelinfo also displays whether ECC is enabled or disabled for all
attached devices.

From nvidia-smi one can obtain more detailed information about ECC as well as enable or
disable ECC. Querying the ECC status for a device using nvidia-smi is done as follows:
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� �

% nvidia -smi -i 0 -q -d ECC

============== NVSMI LOG ==============

Timestamp : Tue Apr 16 16:43:35 2013

Driver Version : 304.52

Attached GPUs : 2
GPU 0000:80:00.0

Ecc Mode
Current : Enabled
Pending : Enabled

ECC Errors
Volatile

Single Bit
Device Memory : 0
Register File : 0
L1 Cache : 0
L2 Cache : 0
Texture Memory : 0
Total : 0

Double Bit
Device Memory : 0
Register File : 0
L1 Cache : 0
L2 Cache : 0
Texture Memory : 0
Total : 0

Aggregate
Single Bit

Device Memory : 0
Register File : 0
L1 Cache : 0
L2 Cache : 0
Texture Memory : 0
Total : 0

Double Bit
Device Memory : 0
Register File : 0
L1 Cache : 0
L2 Cache : 0
Texture Memory : 0
Total : 0

�
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where device 0 is specified by the -i 0 option, and the ECC output is specified by the -d ECC option.
Most of the output from this command lists the errors for the different memory types. Single-bit errors
are corrected; double-bit errors are uncorrectable. Volatile error counters track the number of errors
since the last driver load, and aggregate errors persist indefinitely.

The ECC mode near the top of this output displays both the current and pending fields. The pending
ECC mode will become the current ECC mode upon reboot or reset. The ECC mode can be disabled
as follows (assuming root privileges):

� �

% nvidia -smi -i 0 -e 0
Disabled ECC support for GPU 0000:80:00.0.
All done.
Reboot required.

�

At this point the ECC mode status printed by nvidia-smi -i 0 -q -d ECC is:

� �

Ecc Mode
Current : Enabled
Pending : Disabled

�

For the pending change to take effect, a reboot of the machine is required, after which the ECC mode
status is:

� �

Ecc Mode
Current : Disabled
Pending : Disabled

�

B.2.2 Compute mode
The compute mode determines whether multiple host processes or threads can use the same GPU. The
four compute modes, from least to most restrictive, are:

default: 0 In this mode multiple host threads can use the same device.

exclusive thread: 1 In this mode only a single context can be created by a single process systemwide,
and this context can be current to at most one thread of the process at a time.

prohibited: 2 In this mode no contexts can be created on the device.

exclusive process: 3 In this mode only a single context can be created by a single process systemwide,
and this context can be current to all threads of that process
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As with the ECC status, the compute mode can be determined using the cudaDeviceProp derived
type via the computeMode field and by the pgaccelinfo utility. Using nvidia-smi, we can
query the compute mode as follows:

� �

% nvidia -smi -q -i 0 -d COMPUTE

============== NVSMI LOG ==============

Timestamp : Thu Apr 18 13:38:29 2013
Driver Version : 304.52

Attached GPUs : 2
GPU 0000:80:00.0

Compute Mode : Default
�

which indicates that device 0 is in default compute mode. The compute mode can be changed (assuming
root privileges) by using the -c option:

� �

% nvidia -smi -i 0 -c 1
Set compute mode to EXCLUSIVE_THREAD for GPU 0000:80:00.0.
All done.

�

The effect of changing the compute mode is immediate:

� �

% nvidia -smi -q -i 0 -d COMPUTE

============== NVSMI LOG ==============

Timestamp : Thu Apr 18 13:49:40 2013
Driver Version : 304.52

Attached GPUs : 2
GPU 0000:80:00.0

Compute Mode : Exclusive_Thread
�

Upon reboot or reset of the device, the compute mode will reset to the default compute mode.

B.2.3 Persistence mode
When persistence mode is enabled on a GPU, the driver remains initialized, even when there are no
active clients, and as a result the driver latency is minimized when we run CUDA applications. On
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systems running the X Window System, this is not an issue, since the X Window client is always active,
but on headless systems where X is not running, it is important to avoid driver reinitialization when
launching CUDA applications by enabling persistence mode.

Persistence mode is disabled by default and reverts to disabled when the device is reset or the system
is rebooted. We can determine whether persistence mode is enabled or not from the general query output
of nvidia-smi:

� �

% nvidia -smi -q -i 0

============== NVSMI LOG ==============

Timestamp : Thu Apr 18 14:17:25 2013
Driver Version : 304.52

Attached GPUs : 2
GPU 0000:80:00.0

Product Name : Tesla K20
Display Mode : Disabled
Persistence Mode : Disabled
...

�

Persistence mode can be enabled (assuming root privileges) using the -pm option to nvidia-smi as
follows:

� �

% nvidia -smi -i 0 -pm 1
Enabled persistence mode for GPU 0000:80:00.0.
All done.

�
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There are several reasons one would want to call CUDA C code from CUDA Fortran: (1) to leverage
code already written in CUDA C, especially libraries where an explicit CUDA Fortran interface is not
available, and (2) to write CUDA C code that uses features that are not available in CUDA Fortran. We
provide an example for each of these use cases in this appendix.

C.1 Calling CUDA C libraries
With the advent of theiso_c_bindingmodule in Fortran 2003, calling CUDA C from CUDA Fortran
is straightforward. We demonstrate the procedure for specifying an interface using the CUBLAS library.
Note that this is not needed as of the 11.7 release of the compilers, since one simply has to use the
cublas module included with the compiler, as on line 2 in the following code that performs a matrix
multiplication via the CUBLAS version of SGEMM:

1 program sgemmDevice
2 use cublas
3 use cudafor
4 implicit none
5 integer , parameter :: m = 100, n = 100, k = 100
6 real :: a(m,k), b(k,n), c(m,n)
7 real , device :: a_d(m,k), b_d(k,n), c_d(m,n)
8 real , parameter :: alpha = 1.0, beta = 0.0
9 integer :: lda = m, ldb = k, ldc = m

10 integer :: istat
11
12 a = 1.0; b = 2.0; c = 0.0
13 a_d = a; b_d = b; c_d = c
14
15 istat = cublasInit ()

CUDA Fortran for Scientists and Engineers. http://dx.doi.org/10.1016/B978-0-12-416970-8.00018-3
© 2014 Elsevier Inc. All rights reserved.
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16 call cublasSgemm(’n’,’n’,m,n,k, &
17 alpha ,a_d ,lda ,b_d ,ldb ,beta ,c_d ,ldc)
18
19 c = c_d
20 write (*,*) ’Max error =’, maxval(c-k*2.0)
21
22 end program sgemmDevice

Here the cublas module defines the interfaces for all the CUBLAS routines, including
cublasInit() and cublasSgemm(). Prior to the cublas module introduced in the 11.7 com-
pilers, one had to explicitly interface with the C routines in the CUBLAS library, as in this user-defined
cublas_m module:

1 module cublas_m
2 interface cublasInit
3 integer function cublasInit () &
4 bind(C,name=’cublasInit ’)
5 end function cublasInit
6 end interface
7
8 interface cublasSgemm
9 subroutine cublasSgemm(cta ,ctb ,m,n,k, &

10 alpha ,A,lda ,B,ldb ,beta ,C,ldc) &
11 bind(C,name=’cublasSgemm ’)
12 use iso_c_binding
13 character(1,c_char), value :: cta , ctb
14 integer(c_int), value :: k,m,n,lda ,ldb ,ldc
15 real(c_float), value :: alpha , beta
16 real(c_float), device :: &
17 A(lda ,*), B(ldb ,*), C(ldc ,*)
18 end subroutine cublasSgemm
19 end interface cublasSgemm
20 end module cublas_m
21
22
23 program sgemmDevice
24 use cublas_m
25 use cudafor
26 implicit none
27 integer , parameter :: m = 100, n = 100, k = 100
28 real :: a(m,k), b(k,n), c(m,n)
29 real , device :: a_d(m,k), b_d(k,n), c_d(m,n)
30 real , parameter :: alpha = 1.0, beta = 0.0
31 integer :: lda = m, ldb = k, ldc = m
32 integer :: istat
33
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34 a = 1.0; b = 2.0; c = 0.0
35 a_d = a; b_d = b; c_d = c
36
37 istat = cublasInit ()
38 call cublasSgemm(’n’,’n’,m,n,k, &
39 alpha ,a_d ,lda ,b_d ,ldb ,beta ,c_d ,ldc)
40
41 c = c_d
42 write (*,*) ’Max error =’, maxval(c-k*2.0)
43
44 end program sgemmDevice

The only difference in the main program between these two codes is that the user-defined cublas_m
on line 24 in the latter code replaces the cublas module on line 2 in the former code. The cublas_m
module defined on lines 1–20 includes only interfaces to the two functions used in this application,
cublasInit() and cublasSgemm(). The interface for cublasInit() defined on lines 2–6 is
straightforward, since this function has no arguments. Within the interface, the function is listed and
bound to the C function using thebind keyword.bind() takes two arguments; the first is the language
in which the routine being called is written, in this case C, and the second is the name of the routine
being called.

The interface to cublasSgemm() is more complicated due to the subroutine arguments. Each
dummy argument is declared in the interface using the kinds c_int, c_char, and c_float, which
are defined in the iso_c_binding module. In addition to the iso_c_binding kinds, these dec-
larations make use of the device and value variable attributes as needed.

One can develop a generic interface for sgemm, which has been implemented in the cublas
module, by including the declaration for both the host sgemm() and the device cublasSgemm() in
the interface block and changing the interface name in line 8 to sgemm. In such cases, the actual routine
used will depend on whether device or host arrays are used as arguments when sgemm is called from
host code.

One final note on developing interfaces to libraries is the use of the!pgi$ ignore_tkr directive.
This directive can be used to have the compiler ignore any combination of the variable type, kind, and
rank, as well as ignoring the presence or absence of the device attribute. For example, the following
lines of code are used in the Monte Carlo chapter to interface with the CURAND library routines:

!pgi$ ignore_tkr (tr) odata
real(c_float), device :: odata (*)

Here the type and rank of variable odata are ignored. Any combination of (tkrd) can be used and
applied to individual variables in a comma-separated list:

!pgi$ ignore_tkr (tr) a, (k) b
real(c_float), device :: a(*), b(*)
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where the type and rank of a and the kind of b are ignored. The default case, where qualifiers in the
parentheses are not included, corresponds to (tkr).

C.2 Calling User-Written CUDA C Code
Interfacing CUDA Fortran with user-written CUDA C routines is very similar to interfacing with CUDA
C libraries as we have done. In fact, from the CUDA Fortran perspective, the procedure is identical: We
write an interface to the CUDA C routine using kinds in the iso_c_binding module to declare the
dummy arguments. From the CUDA C perspective there are a couple of issues we should be aware of.

To demonstrate this, we use CUDA Fortran to call a CUDA C routine that zeroes a small array. The
CUDA C kernel is:

extern "C" __global__ void zero (float *a)
{

a[blockIdx.x*blockDim.x+threadIdx.x] = 0.0f;
}

CUDA C and Fortran kernel code share quite a bit in common: Both have automatically defined variables
blockIdx, blockDim, and threadIdx, though with different offsets, and the __global__ in
CUDA C is equivalent to CUDA Fortran’s attributes(global). Of note here is the extern
"C", which is required for CUDA Fortran to interface with this routine because it prevents name
mangling. As long as the extern "C" is specified, the CUDA Fortran code is straightforward:

1 module kernel_m
2 interface zero
3 attributes(global) subroutine zero(a) &
4 bind(C,name=’zero’)
5 use iso_c_binding
6 real(c_float) :: a(*)
7 end subroutine zero
8 end interface
9 end module kernel_m

10
11 program fCallingC
12 use cudafor
13 use kernel_m
14 integer , parameter :: n = 4
15 real , device :: a_d(n)
16 real :: a(n)
17
18 a_d = 1.0
19 call zero <<<1,n>>>(a_d)
20 a = a_d
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21 write (*,*) a
22 end program fCallingC

where the interface specified on lines 2–8 is similar to that of the CUBLAS example. The CUDA C
and CUDA Fortran routines are in separate files, zero.cu and fCallingC.cuf, respectively, and
compiled as follows:

� �

nvcc -c zero.cu
pgf90 -Mcuda -o fCallingC fCallingC.cuf zero.o

�

where the nvcc compiler is used for compiling zero.cu.
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CUDA Fortran source code that was deemed too long to include in its entirety in earlier chapters is
listed in this appendix. Each section in this appendix contains all the relevant code, both host code and
device code, for the particular application.

D.1 Texture memory
The following is the CUDA Fortran code used in Section 3.2.3 to discuss how textures can be advanta-
geous in accessing neighboring data on a 2D mesh using four- and eight-point stencils:

1 module kernels_m
2 real , texture , pointer :: aTex(:,:)
3 integer , parameter :: n = 2048
4 integer , parameter :: nTile = 32
5 contains
6 attributes(global) subroutine average4(b, a)
7 implicit none
8 real :: b(n,n), a(0:n+1,0:n+1)
9 integer :: i, j

10 i = blockDim%x*( blockIdx%x-1)+ threadIdx%x
11 j = blockDim%y*( blockIdx%y-1)+ threadIdx%y

CUDA Fortran for Scientists and Engineers. http://dx.doi.org/10.1016/B978-0-12-416970-8.00019-5
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12 b(i,j) = 0.25*( &
13 a(i-1,j)+ &
14 a(i,j-1)+ a(i,j+1)+&
15 a(i+1,j))
16 end subroutine average4
17
18 attributes(global) subroutine average8(b, a)
19 implicit none
20 real :: b(n,n), a(0:n+1,0:n+1)
21 integer :: i, j
22 i = blockDim%x*( blockIdx%x-1)+ threadIdx%x
23 j = blockDim%y*( blockIdx%y-1)+ threadIdx%y
24 b(i,j) = 0.125*( &
25 a(i-1,j-1)+a(i-1,j)+a(i-1,j+1)+ &
26 a(i,j-1)+ a(i,j+1)+&
27 a(i+1,j-1)+a(i+1,j)+a(i+1,j+1))
28 end subroutine average8
29
30 attributes(global) subroutine average4Tex(b)
31 implicit none
32 real :: b(n,n)
33 integer :: i, j
34 i = blockDim%x*( blockIdx%x-1)+ threadIdx%x
35 j = blockDim%y*( blockIdx%y-1)+ threadIdx%y
36 b(i,j) = 0.25*( &
37 aTex(i-1,j)+ &
38 aTex(i,j-1)+ aTex(i,j+1)+ &
39 aTex(i+1,j))
40 end subroutine average4Tex
41
42 attributes(global) subroutine average8Tex(b)
43 implicit none
44 real :: b(n,n)
45 integer :: i, j
46 i = blockDim%x*( blockIdx%x-1)+ threadIdx%x
47 j = blockDim%y*( blockIdx%y-1)+ threadIdx%y
48 b(i,j) = 0.125*( &
49 aTex(i-1,j-1)+ aTex(i-1,j)+aTex(i-1,j+1)+ &
50 aTex(i,j-1)+ aTex(i,j+1)+ &
51 aTex(i+1,j-1)+ aTex(i+1,j)+aTex(i+1,j+1))
52 end subroutine average8Tex
53 end module kernels_m
54
55 program average
56 use cudafor
57 use kernels_m
58
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59 implicit none
60
61 real :: b(n,n), res4(n,n), res8(n,n)
62 real , device :: b_d(n,n)
63 real :: a(0:n+1,0:n+1)
64 real , device , target :: a_d(0:n+1,0:n+1)
65 type(cudaEvent) :: startEvent , stopEvent
66 type(cudaDeviceProp) :: prop
67 integer :: i, j, istat
68 real :: time
69 type(dim3) :: grid , tBlock
70
71 tBlock = dim3(nTile ,nTile ,1)
72 grid = dim3(n/nTile , n/nTile , 1)
73
74 istat = cudaGetDeviceProperties(prop , 0)
75 write(*,’(/," Device: ",a,/)’) trim(prop%name)
76
77 call random_number(a)
78 a_d = a
79
80 do j = 1, n
81 do i = 1, n
82 res4(i,j) = 0.25*( &
83 a(i-1,j)+ &
84 a(i,j-1)+ a(i,j+1)+&
85 a(i+1,j))
86
87 res8(i,j) = 0.125*( &
88 a(i-1,j-1)+a(i-1,j)+a(i-1,j+1)+ &
89 a(i,j-1)+ a(i,j+1)+&
90 a(i+1,j-1)+a(i+1,j)+a(i+1,j+1))
91 enddo
92 enddo
93
94 istat = cudaEventCreate(startEvent)
95 istat = cudaEventCreate(stopEvent)
96
97 ! 4pt averages
98
99 write (*,*) ’4-point versions ’

100
101 ! global
102
103 call average4 <<<grid , tBlock >>>(b_d , a_d)
104
105 istat = cudaEventRecord(startEvent ,0)
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106 call average4 <<<grid ,tBlock >>>(b_d , a_d)
107 istat = cudaEventRecord(stopEvent ,0)
108 istat = cudaEventSynchronize(stopEvent)
109 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
110 write (*,*) ’ Global Bandwidth (GB/s):’, &
111 4*(n**2 + (n+2)**2)/ time *1.e-6
112 b = b_d
113 write (*,*) ’ Max Error: ’, maxval(b-res4)
114
115 ! texture
116
117 ! bind the texture
118 aTex => a_d
119
120 call average4Tex <<<grid ,tBlock >>>(b_d)
121
122 istat = cudaEventRecord(startEvent ,0)
123 call average4Tex <<<grid ,tBlock >>>(b_d)
124 istat = cudaEventRecord(stopEvent ,0)
125 istat = cudaEventSynchronize(stopEvent)
126 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
127 write (*,*) ’ Texture Bandwidth (GB/s):’, &
128 4*(n**2 + (n+2)**2)/ time *1.e-6
129 b = b_d
130 write (*,*) ’ Max Error: ’, maxval(b-res4)
131
132 ! 8pt averages
133
134 write (*,*)
135 write (*,*) ’8-point versions ’
136
137 ! global
138
139 call average8 <<<grid , tBlock >>>(b_d , a_d)
140
141 istat = cudaEventRecord(startEvent ,0)
142 call average8 <<<grid ,tBlock >>>(b_d , a_d)
143 istat = cudaEventRecord(stopEvent ,0)
144 istat = cudaEventSynchronize(stopEvent)
145 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
146 write (*,*) ’ Global Bandwidth (GB/s):’, &
147 4*(n**2 + (n+2)**2)/ time *1.e-6
148 b = b_d
149 write (*,*) ’ Max Error: ’, maxval(b-res8)
150
151 ! texture
152



D.2 Matrix transpose 259

153 call average8Tex <<<grid ,tBlock >>>(b_d)
154
155 istat = cudaEventRecord(startEvent ,0)
156 call average8Tex <<<grid ,tBlock >>>(b_d)
157 istat = cudaEventRecord(stopEvent ,0)
158 istat = cudaEventSynchronize(stopEvent)
159 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
160 write (*,*) ’ Texture Bandwidth (GB/s):’, &
161 4*(n**2 + (n+2)**2)/ time *1.e-6
162 b = b_d
163 write (*,*) ’ Max Error: ’, maxval(b-res8)
164
165 ! unbind the texture
166 nullify(aTex)
167
168 istat = cudaEventDestroy(startEvent)
169 istat = cudaEventDestroy(stopEvent)
170 end program average

D.2 Matrix transpose
The following is the complete matrix transpose CUDA Fortran code discussed at length in Section 3.4.

1 !this program demonstates various memory optimzation techniques
2 !applied to a matrix transpose.
3
4 module dimensions_m
5
6 implicit none
7
8 integer , parameter :: TILE_DIM = 32
9 integer , parameter :: BLOCK_ROWS = 8

10 integer , parameter :: NUM_REPS = 100
11 integer , parameter :: nx = 1024, ny = 1024
12 integer , parameter :: mem_size = nx*ny*4
13
14 end module dimensions_m
15
16
17
18 module kernels_m
19
20 use dimensions_m
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21 implicit none
22
23 contains
24
25 ! copy kernel using shared memory
26 !
27 ! used as reference case
28
29 attributes(global) subroutine copySharedMem(odata , idata)
30
31 real , intent(out) :: odata(nx,ny)
32 real , intent(in) :: idata(nx,ny)
33
34 real , shared :: tile(TILE_DIM , TILE_DIM)
35 integer :: x, y, j
36
37 x = (blockIdx%x-1) * TILE_DIM + threadIdx%x
38 y = (blockIdx%y-1) * TILE_DIM + threadIdx%y
39
40 do j = 0, TILE_DIM -1, BLOCK_ROWS
41 tile(threadIdx%x, threadIdx%y+j) = idata(x,y+j)
42 end do
43
44 call syncthreads ()
45
46 do j = 0, TILE_DIM -1, BLOCK_ROWS
47 odata(x,y+j) = tile(threadIdx%x, threadIdx%y+j)
48 end do
49 end subroutine copySharedMem
50
51 ! naive transpose
52 !
53 ! simplest transpose - doesn ’t use shared memory
54 ! reads from global memory are coalesced but not writes
55
56 attributes(global) &
57 subroutine transposeNaive(odata , idata)
58
59 real , intent(out) :: odata(ny,nx)
60 real , intent(in) :: idata(nx,ny)
61
62 integer :: x, y, j
63
64 x = (blockIdx%x-1) * TILE_DIM + threadIdx%x
65 y = (blockIdx%y-1) * TILE_DIM + threadIdx%y
66
67 do j = 0, TILE_DIM -1, BLOCK_ROWS
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68 odata(y+j,x) = idata(x,y+j)
69 end do
70 end subroutine transposeNaive
71
72 ! coalesced transpose
73 !
74 ! uses shared memory to achieve coalesing
75 ! in both reads and writes
76 !
77 ! tile size causes shared memory bank conflicts
78
79 attributes(global) &
80 subroutine transposeCoalesced(odata , idata)
81
82 real , intent(out) :: odata(ny,nx)
83 real , intent(in) :: idata(nx,ny)
84 real , shared :: tile(TILE_DIM , TILE_DIM)
85 integer :: x, y, j
86
87 x = (blockIdx%x-1) * TILE_DIM + threadIdx%x
88 y = (blockIdx%y-1) * TILE_DIM + threadIdx%y
89
90 do j = 0, TILE_DIM -1, BLOCK_ROWS
91 tile(threadIdx%x, threadIdx%y+j) = idata(x,y+j)
92 end do
93
94 call syncthreads ()
95
96 x = (blockIdx%y-1) * TILE_DIM + threadIdx%x
97 y = (blockIdx%x-1) * TILE_DIM + threadIdx%y
98
99 do j = 0, TILE_DIM -1, BLOCK_ROWS

100 odata(x,y+j) = tile(threadIdx%y+j, threadIdx%x)
101 end do
102 end subroutine transposeCoalesced
103
104 ! no bank -conflict transpose
105 !
106 ! like transposeCoalesced except the first tile dim
107 ! is padded to avoid shared memory bank conflicts
108
109 attributes(global) &
110 subroutine transposeNoBankConflicts(odata , idata)
111
112 real , intent(out) :: odata(ny,nx)
113 real , intent(in) :: idata(nx,ny)
114 real , shared :: tile(TILE_DIM+1, TILE_DIM)
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115 integer :: x, y, j
116
117 x = (blockIdx%x-1) * TILE_DIM + threadIdx%x
118 y = (blockIdx%y-1) * TILE_DIM + threadIdx%y
119
120 do j = 0, TILE_DIM -1, BLOCK_ROWS
121 tile(threadIdx%x, threadIdx%y+j) = idata(x,y+j)
122 end do
123
124 call syncthreads ()
125
126 x = (blockIdx%y-1) * TILE_DIM + threadIdx%x
127 y = (blockIdx%x-1) * TILE_DIM + threadIdx%y
128
129 do j = 0, TILE_DIM -1, BLOCK_ROWS
130 odata(x,y+j) = tile(threadIdx%y+j, threadIdx%x)
131 end do
132 end subroutine transposeNoBankConflicts
133
134 ! Diagonal reordering
135 !
136 ! This version should be used on cards of CC 1.3
137 ! to avoid partition camping. It reschedules the
138 ! order in which blocks are executed so requests
139 ! for global memory access by active blocks are
140 ! spread evenly amongst partitions
141
142 attributes(global) &
143 subroutine transposeDiagonal(odata , idata)
144
145 real , intent(out) :: odata(ny,nx)
146 real , intent(in) :: idata(nx,ny)
147 real , shared :: tile(TILE_DIM+1, TILE_DIM)
148 integer :: x, y, j
149 integer :: blockIdx_x , blockIdx_y
150
151 if (nx==ny) then
152 blockIdx_y = blockIdx%x
153 blockIdx_x = &
154 mod(blockIdx%x+blockIdx%y-2,gridDim%x)+1
155 else
156 x = blockIdx%x + gridDim%x*( blockIdx%y-1)
157 blockIdx_y = mod(x-1,gridDim%y)+1
158 blockIdx_x = &
159 mod((x-1)/ gridDim%y+blockIdx_y -1,gridDim%x)+1
160 endif
161
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162 x = (blockIdx_x -1) * TILE_DIM + threadIdx%x
163 y = (blockIdx_y -1) * TILE_DIM + threadIdx%y
164
165 do j = 0, TILE_DIM -1, BLOCK_ROWS
166 tile(threadIdx%x, threadIdx%y+j) = idata(x,y+j)
167 end do
168
169 call syncthreads ()
170
171 x = (blockIdx_y -1) * TILE_DIM + threadIdx%x
172 y = (blockIdx_x -1) * TILE_DIM + threadIdx%y
173
174 do j = 0, TILE_DIM -1, BLOCK_ROWS
175 odata(x,y+j) = tile(threadIdx%y+j, threadIdx%x)
176 end do
177 end subroutine transposeDiagonal
178
179 end module kernels_m
180
181
182
183 program transposeTest
184
185 use cudafor
186 use kernels_m
187 use dimensions_m
188
189 implicit none
190
191 type (dim3) :: grid , tBlock
192 type (cudaEvent) :: startEvent , stopEvent
193 type (cudaDeviceProp) :: prop
194 real :: time
195
196 real :: in_h(nx,ny), copy_h(nx,ny), trp_h(ny,nx)
197 real :: gold(ny,nx)
198 real , device :: in_d(nx,ny), copy_d(nx,ny), trp_d(ny,nx)
199
200 integer :: i, j, istat
201
202 ! check parameters and calculate execution configuration
203
204 if (mod(nx, TILE_DIM) /= 0 &
205 .or. mod(ny, TILE_DIM) /= 0) then
206 write (*,*) ’nx and ny must be a multiple of TILE_DIM ’
207 stop
208 end if
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209
210 if (mod(TILE_DIM , BLOCK_ROWS) /= 0) then
211 write (*,*) ’TILE_DIM must be a multiple of BLOCK_ROWS ’
212 stop
213 end if
214
215 grid = dim3(nx/TILE_DIM , ny/TILE_DIM , 1)
216 tBlock = dim3(TILE_DIM , BLOCK_ROWS , 1)
217
218 ! write parameters
219
220 i = cudaGetDeviceProperties(prop , 0)
221 write(*,"(/,’Device Name: ’,a)") trim(prop%name)
222 write(*,"(’Compute Capability: ’,i0 ,’.’,i0)") &
223 prop%major , prop%minor
224
225
226 write (*,*)
227 write(*,"(’Matrix size:’, i5, i5, ’, Block size:’, &
228 i3, i3, ’, Tile size:’, i3, i3)") &
229 nx, ny, TILE_DIM , BLOCK_ROWS , TILE_DIM , TILE_DIM
230
231 write(*,"(’grid:’, i4,i4,i4, ’, tBlock:’, i4,i4,i4)") &
232 grid%x, grid%y, grid%z, tBlock%x, tBlock%y, tBlock%z
233
234 ! initialize data
235
236 ! host
237
238 do j = 1, ny
239 do i = 1, nx
240 in_h(i,j) = i+(j-1)*nx
241 enddo
242 enddo
243
244 gold = transpose(in_h)
245
246 ! device
247
248 in_d = in_h
249 trp_d = -1.0
250 copy_d = -1.0
251
252 ! events for timing
253
254 istat = cudaEventCreate(startEvent)
255 istat = cudaEventCreate(stopEvent)
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256
257 ! ------------
258 ! time kernels
259 ! ------------
260
261 write(*,’(/,a25 ,a25)’) ’Routine ’, ’Bandwidth (GB/s)’
262
263 ! -------------
264 ! copySharedMem
265 ! -------------
266
267 write(*,’(a25)’, advance=’NO’) ’shared memory copy’
268
269 copy_d = -1.0
270 ! warmup
271 call copySharedMem <<<grid , tBlock >>>(copy_d , in_d)
272
273 istat = cudaEventRecord(startEvent , 0)
274 do i=1, NUM_REPS
275 call copySharedMem <<<grid , tBlock >>> (copy_d , in_d)
276 end do
277 istat = cudaEventRecord(stopEvent , 0)
278 istat = cudaEventSynchronize(stopEvent)
279 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
280
281 copy_h = copy_d
282 call postprocess(in_h , copy_h , time)
283
284 ! --------------
285 ! transposeNaive
286 ! --------------
287
288 write(*,’(a25)’, advance=’NO’) ’naive transpose ’
289
290 trp_d = -1.0
291 ! warmup
292 call transposeNaive <<<grid , tBlock >>>(trp_d , in_d)
293
294 istat = cudaEventRecord(startEvent , 0)
295 do i=1, NUM_REPS
296 call transposeNaive <<<grid , tBlock >>>(trp_d , in_d)
297 end do
298 istat = cudaEventRecord(stopEvent , 0)
299 istat = cudaEventSynchronize(stopEvent)
300 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
301
302 trp_h = trp_d
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303 call postprocess(gold , trp_h , time)
304
305 ! ------------------
306 ! transposeCoalesced
307 ! ------------------
308
309 write(*,’(a25)’, advance=’NO’) ’coalesced transpose ’
310
311 trp_d = -1.0
312 ! warmup
313 call transposeCoalesced <<<grid , tBlock >>>(trp_d , in_d)
314
315 istat = cudaEventRecord(startEvent , 0)
316 do i=1, NUM_REPS
317 call transposeCoalesced <<<grid , tBlock >>>(trp_d , in_d)
318 end do
319 istat = cudaEventRecord(stopEvent , 0)
320 istat = cudaEventSynchronize(stopEvent)
321 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
322
323 trp_h = trp_d
324 call postprocess(gold , trp_h , time)
325
326 ! ------------------------
327 ! transposeNoBankConflicts
328 ! ------------------------
329
330 write(*,’(a25)’, advance=’NO’) ’conflict -free transpose ’
331
332 trp_d = -1.0
333 ! warmup
334 call transposeNoBankConflicts <<<grid , tBlock >>>(trp_d , in_d)
335
336 istat = cudaEventRecord(startEvent , 0)
337 do i=1, NUM_REPS
338 call transposeNoBankConflicts &
339 <<<grid , tBlock >>>(trp_d , in_d)
340 end do
341 istat = cudaEventRecord(stopEvent , 0)
342 istat = cudaEventSynchronize(stopEvent)
343 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
344
345 trp_h = trp_d
346 call postprocess(gold , trp_h , time)
347
348 ! ----------------
349 ! transposeDigonal
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350 ! ----------------
351
352 write(*,’(a25)’, advance=’NO’) ’diagonal transpose ’
353
354 trp_d = -1.0
355 ! warmup
356 call transposeDiagonal <<<grid , tBlock >>>(trp_d , in_d)
357
358 istat = cudaEventRecord(startEvent , 0)
359 do i=1, NUM_REPS
360 call transposeDiagonal <<<grid , tBlock >>>(trp_d , in_d)
361 end do
362 istat = cudaEventRecord(stopEvent , 0)
363 istat = cudaEventSynchronize(stopEvent)
364 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
365
366 trp_h = trp_d
367 call postprocess(gold , trp_h , time)
368
369 ! cleanup
370
371 write (*,*)
372
373 istat = cudaEventDestroy(startEvent)
374 istat = cudaEventDestroy(stopEvent)
375
376 contains
377
378 subroutine postprocess(ref , res , t)
379 real , intent(in) :: ref(:,:), res(:,:), t
380 if (all(res == ref)) then
381 write(*,’(f20.2)’) 2.0* mem_size *1.0e-6/(t/NUM_REPS)
382 else
383 write(*,’(a20)’) ’*** Failed ***’
384 end if
385 end subroutine postprocess
386
387 end program transposeTest

D.3 Thread- and instruction-level parallelism
The following is the complete CUDA Fortran code used to discuss thread- and instruction-level paral-
lelism in Section 3.5.2:
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1 ! This code demonstrates use of thread - and instruction -
2 ! level parallelism and their effect on performance
3
4 module copy_m
5 integer , parameter :: N = 1024*1024
6 integer , parameter :: ILP=4
7 contains
8
9 ! simple copy code that requires thread -level paralellism

10 ! to hide global memory latencies
11
12 attributes(global) subroutine copy(odata , idata)
13 use precision_m
14 implicit none
15 real(fp_kind) :: odata(*), idata(*), tmp
16 integer :: i
17
18 i = (blockIdx%x-1)* blockDim%x + threadIdx%x
19 tmp = idata(i)
20 odata(i) = tmp
21 end subroutine copy
22
23 ! copy code which uses instruction -level parallelism
24 ! in addition to thread -level parallelism to hide
25 ! global memory latencies
26
27 attributes(global) subroutine copy_ILP(odata , idata)
28 use precision_m
29 implicit none
30 real(fp_kind) :: odata(*), idata(*), tmp(ILP)
31 integer :: i,j
32
33 i = (blockIdx%x-1)* blockDim%x*ILP + threadIdx%x
34
35 do j = 1, ILP
36 tmp(j) = idata(i+(j-1)* blockDim%x)
37 enddo
38
39 do j = 1, ILP
40 odata(i+(j-1)* blockDim%x) = tmp(j)
41 enddo
42 end subroutine copy_ILP
43
44 end module copy_m
45
46 program parallelism
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47 use cudafor
48 use precision_m
49 use copy_m
50
51 implicit none
52
53 type(dim3) :: grid , threadBlock
54 type(cudaEvent) :: startEvent , stopEvent
55 type(cudaDeviceProp) :: prop
56
57 real(fp_kind) :: a(N), b(N)
58 real(fp_kind), device :: a_d(N), b_d(N)
59
60 real :: time
61 integer :: i, smBytes , istat
62
63
64 istat = cudaGetDeviceProperties(prop , 0)
65 write(*,"(/,’Device Name: ’,a)") trim(prop%name)
66 write(*,"(’Compute Capability: ’,i0 ,’.’,i0)") &
67 prop%major , prop%minor
68 if (fp_kind == singlePrecision) then
69 write(*,"(’Single Precision ’)")
70 else
71 write(*,"(’Double Precision ’)")
72 end if
73
74 a = 1.0
75 a_d = a
76
77 smBytes = prop%sharedMemPerBlock
78
79 istat = cudaEventCreate(startEvent)
80 istat = cudaEventCreate(stopEvent)
81
82 write(*,’(/,"Thread -level parallelism runs")’)
83
84 write(*,’(/," Multiple Blocks per Multiprocessor ")’)
85 write(*,’(a20 ,a25)’) ’Threads/Block’, ’Bandwidth (GB/s)’
86
87 do i = prop%warpSize , prop%maxThreadsPerBlock , prop%warpSize
88 if (mod(N,i) /= 0) cycle
89
90 b_d = 0.0
91
92 grid = dim3(ceiling(real(N)/i),1,1)
93 threadBlock = dim3(i,1,1)
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94
95 istat = cudaEventRecord(startEvent ,0)
96 call copy <<<grid , threadBlock >>>(b_d , a_d)
97 istat = cudaEventRecord(stopEvent ,0)
98 istat = cudaEventSynchronize(stopEvent)
99 istat = cudaEventElapsedTime(time , startEvent , stopEvent)

100
101 b = b_d
102 if (all(b==a)) then
103 write(*,’(i20 , f20.2)’) &
104 i, 2.*1000* sizeof(a)/(1024**3* time)
105 else
106 write(*,’(a20)’) ’*** Failed ***’
107 end if
108 end do
109
110 write(*,’(/," Single Block per Multiprocessor ")’)
111 write(*,’(a20 ,a25)’) ’Threads/Block’, ’Bandwidth (GB/s)’
112
113 do i = prop%warpSize , prop%maxThreadsPerBlock , prop%warpSize
114 if (mod(N,i) /= 0) cycle
115
116 b_d = 0.0
117
118 grid = dim3(ceiling(real(N)/i),1,1)
119 threadBlock = dim3(i,1,1)
120
121 istat = cudaEventRecord(startEvent ,0)
122 call copy <<<grid , threadBlock , 0.9* smBytes >>>(b_d , a_d)
123 istat = cudaEventRecord(stopEvent ,0)
124 istat = cudaEventSynchronize(stopEvent)
125 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
126
127 b = b_d
128 if (all(b==a)) then
129 write(*,’(i20 , f20.2)’) i, 2.* sizeof(a)*1.0e-6/ time
130 else
131 write(*,’(a20)’) ’*** Failed ***’
132 end if
133 end do
134
135 write(*,’(/,"Intruction -level parallelism runs")’)
136
137 write(*,’(/," ILP=", i0, &
138 ", Single Block per Multiprocessor ")’) ILP
139 write(*,’(a20 ,a25)’) ’Threads/Block’, ’Bandwidth (GB/s)’
140
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141 do i = prop%warpSize , prop%maxThreadsPerBlock , prop%warpSize
142 if (mod(N,i) /= 0) cycle
143
144 b_d = 0.0
145
146 grid = dim3(ceiling(real(N)/(i*ILP)),1,1)
147 threadBlock = dim3(i,1,1)
148
149 istat = cudaEventRecord(startEvent ,0)
150 call copy_ILP <<<grid , threadBlock , &
151 0.9* smBytes >>>(b_d , a_d)
152 istat = cudaEventRecord(stopEvent ,0)
153 istat = cudaEventSynchronize(stopEvent)
154 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
155
156 b = b_d
157 if (all(b==a)) then
158 write(*,’(i20 , f20.2)’) i, 2.* sizeof(a)*1.0e-6/ time
159 else
160 write(*,’(a20)’) ’*** Failed ***’
161 end if
162 end do
163
164 end program parallelism

D.4 Multi-GPU programming
The following are the complete peer-to-peer and MPI matrix transpose codes discussed in Sections 4.1.3
and 4.2.2.

We use a wall-clock timer for timing these applications, since timing using cudaEvents is not
possible across nodes in the MPI case. This timer uses the C function gettimeofday():

1 #include <time.h>
2 #include <sys/types.h>
3 #include <sys/times.h>
4 #include <sys/time.h>
5
6 double wallclock ()
7 {
8 struct timeval tv;
9 struct timezone tz;

10 double t;
11
12 gettimeofday (&tv, &tz);
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13
14 t = (double)tv.tv_sec;
15 t += (( double)tv.tv_usec )/1000000.0;
16
17 return t;
18 }

and is accessed in Fortran through the timing module:

1 module timing
2 interface wallclock
3 function wallclock () result(res) bind(C, name=’wallclock ’)
4 use iso_c_binding
5 real (c_double) :: res
6 end function wallclock
7 end interface wallclock
8 end module timing

D.4.1 Peer-to-peer transpose

1 ! multi -GPU transpose using CUDA ’s peer -to-peer capability
2 !
3 ! This code requires all visible devices have direct access
4 ! with each other. Use CUDA_VISIBLE_DEVICES to enumerate a
5 ! list of devices that are P2P accessible with each other.
6 ! Run the p2pAccess to see which devices have direct access
7 ! with each other.
8
9 module transpose_m

10 integer , parameter :: cudaTileDim = 32
11 integer , parameter :: blockRows = 8
12 contains
13
14 attributes(global) subroutine cudaTranspose( &
15 odata , ldo , idata , ldi)
16 implicit none
17 real , intent(out) :: odata(ldo ,*)
18 real , intent(in) :: idata(ldi ,*)
19 integer , value , intent(in) :: ldo , ldi
20 real , shared :: tile(cudaTileDim+1, cudaTileDim)
21 integer :: x, y, j
22
23 x = (blockIdx%x-1) * cudaTileDim + threadIdx%x
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24 y = (blockIdx%y-1) * cudaTileDim + threadIdx%y
25
26 do j = 0, cudaTileDim -1, blockRows
27 tile(threadIdx%x, threadIdx%y+j) = idata(x,y+j)
28 end do
29
30 call syncthreads ()
31
32 x = (blockIdx%y-1) * cudaTileDim + threadIdx%x
33 y = (blockIdx%x-1) * cudaTileDim + threadIdx%y
34
35 do j = 0, cudaTileDim -1, blockRows
36 odata(x,y+j) = tile(threadIdx%y+j, threadIdx%x)
37 end do
38 end subroutine cudaTranspose
39
40 end module transpose_m
41
42 !
43 ! Main code
44 !
45
46 program transposeP2P
47 use cudafor
48 use transpose_m
49 use timing
50
51 implicit none
52
53 ! global array size
54 integer , parameter :: nx = 1024, ny = 768
55
56 ! toggle async
57 logical , parameter :: asyncVersion = .true.
58
59 ! host arrays (global)
60 real :: h_idata(nx,ny), h_tdata(ny,nx), gold(ny,nx)
61 real (kind =8) :: timeStart , timeStop
62
63 ! CUDA vars and device arrays
64 type (dim3) :: dimGrid , dimBlock
65 integer(kind=cuda_stream_kind), allocatable :: &
66 streamID (:,:) ! (device , stage)
67
68 ! distributed arrays
69 type deviceArray
70 real , device , allocatable :: v(:,:)
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71 end type deviceArray
72
73 type (deviceArray), allocatable :: &
74 d_idata (:), d_tdata (:), d_rdata (:) ! (0: nDevices -1)
75
76 integer :: nDevices
77 type (cudaDeviceProp) :: prop
78 integer , allocatable :: devices (:)
79
80 integer :: p2pTileDimX , p2pTileDimY
81 integer :: i, j, nyl , jl, jg, p, access , istat
82 integer :: xOffset , yOffset
83 integer :: rDev , sDev , stage
84
85 ! determine number of devices
86
87 istat = cudaGetDeviceCount(nDevices)
88 write(*,"(’Number of CUDA -capable devices: ’, i0 ,/)") &
89 nDevices
90
91 do i = 0, nDevices -1
92 istat = cudaGetDeviceProperties(prop , i)
93 write(*,"(’ Device ’, i0, ’: ’, a)") i, trim(prop%name)
94 end do
95
96 ! check to make sure all devices are P2P accessible with
97 ! each other and enable peer access , if not exit
98
99 do j = 0, nDevices -1

100 do i = j+1, nDevices -1
101 istat = cudaDeviceCanAccessPeer(access , j, i)
102 if (access /= 1) then
103 write (*,*) &
104 ’Not all devices are P2P accessible ’, &
105 ’with each other.’
106 write (*,*) &
107 ’Use the p2pAccess code to determine ’, &
108 ’a subset that can do P2P and set’
109 write (*,*) &
110 ’the environment variable ’, &
111 ’CUDA_VISIBLE_DEVICES accordingly ’
112 stop
113 end if
114 istat = cudaSetDevice(j)
115 istat = cudaDeviceEnablePeerAccess(i, 0)
116 istat = cudaSetDevice(i)
117 istat = cudaDeviceEnablePeerAccess(j, 0)
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118 end do
119 end do
120
121 ! determine partition sizes and check tile sizes
122
123 if (mod(nx,nDevices) == 0 .and. mod(ny,nDevices) == 0) then
124 p2pTileDimX = nx/nDevices
125 p2pTileDimY = ny/nDevices
126 else
127 write (*,*) ’nx, ny must be multiples of nDevices ’
128 stop
129 endif
130
131 if (mod(p2pTileDimX , cudaTileDim) /= 0 .or. &
132 mod(p2pTileDimY , cudaTileDim) /= 0) then
133 write (*,*) ’p2pTileDim* must be multiples of cudaTileDim ’
134 stop
135 end if
136
137 if (mod(cudaTileDim , blockRows) /= 0) then
138 write (*,*) ’cudaTileDim must be a multiple of blockRows ’
139 stop
140 end if
141
142 dimGrid = dim3(p2pTileDimX/cudaTileDim , &
143 p2pTileDimY/cudaTileDim , 1)
144 dimBlock = dim3(cudaTileDim , blockRows , 1)
145
146 ! write parameters
147
148 write (*,*)
149 write(*,"(/,’Array size: ’, i0,’x’,i0 ,/)") nx, ny
150
151 write(*,"(’CUDA block size: ’, i0,’x’,i0, &
152 ’, CUDA tile size: ’, i0,’x’,i0)") &
153 cudaTileDim , blockRows , cudaTileDim , cudaTileDim
154
155 write(*,"(’dimGrid: ’, i0,’x’,i0,’x’,i0, &
156 ’, dimBlock: ’, i0,’x’,i0,’x’,i0 ,/)") &
157 dimGrid%x, dimGrid%y, dimGrid%z, &
158 dimBlock%x, dimBlock%y, dimBlock%z
159
160 write(*,"(’nDevices: ’, i0, ’, Local input array size: ’, &
161 i0,’x’,i0)") nDevices , nx, p2pTileDimY
162 write(*,"(’p2pTileDim: ’, i0,’x’,i0 ,/)") &
163 p2pTileDimX , p2pTileDimY
164



276 APPENDIX D Source Code

165 write(*,"(’async mode: ’, l,//)") asyncVersion
166
167 ! allocate and initialize arrays
168
169 call random_number(h_idata)
170 gold = transpose(h_idata)
171
172 ! A stream is associated with a device ,
173 ! so first index of streamID is the device (0: nDevices -1)
174 ! and second is the stage , which also spans (0: nDevices -1)
175 !
176 ! The 0th stage corresponds to the local transpose (on
177 ! diagonal tiles), and 1:nDevices -1 are the stages with
178 ! P2P communication
179
180 allocate(streamID (0: nDevices -1,0: nDevices -1))
181 do p = 0, nDevices -1
182 istat = cudaSetDevice(p)
183 do stage = 0, nDevices -1
184 istat = cudaStreamCreate(streamID(p,stage))
185 enddo
186 enddo
187
188 ! device data allocation and initialization
189
190 allocate(d_idata (0: nDevices -1),&
191 d_tdata (0: nDevices -1), d_rdata (0: nDevices -1))
192
193 do p = 0, nDevices -1
194 istat = cudaSetDevice(p)
195 allocate(d_idata(p)%v(nx,p2pTileDimY), &
196 d_rdata(p)%v(nx,p2pTileDimY), &
197 d_tdata(p)%v(ny,p2pTileDimX ))
198
199 yOffset = p*p2pTileDimY
200 d_idata(p)%v(:,:) = h_idata(:, &
201 yOffset +1: yOffset+p2pTileDimY)
202 d_rdata(p)%v(:,:) = -1.0
203 d_tdata(p)%v(:,:) = -1.0
204 enddo
205
206 ! ---------
207 ! transpose
208 ! ---------
209
210 do p = 0, nDevices -1
211 istat = cudaSetDevice(p)
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212 istat = cudaDeviceSynchronize ()
213 enddo
214 timeStart = wallclock ()
215
216 ! Stage 0:
217 ! transpose diagonal blocks (local data) before kicking off
218 ! transfers and transposes of other blocks
219
220 do p = 0, nDevices -1
221 istat = cudaSetDevice(p)
222 if (asyncVersion) then
223 call cudaTranspose &
224 <<<dimGrid , dimBlock , 0, streamID(p,0)>>> &
225 (d_tdata(p)%v(p*p2pTileDimY +1,1), ny, &
226 d_idata(p)%v(p*p2pTileDimX +1,1), nx)
227 else
228 call cudaTranspose <<<dimGrid , dimBlock >>> &
229 (d_tdata(p)%v(p*p2pTileDimY +1,1), ny, &
230 d_idata(p)%v(p*p2pTileDimX +1,1), nx)
231 endif
232 enddo
233
234 ! now send data to blocks to the right of diagonal
235 ! (using mod for wrapping) and transpose
236
237 do stage = 1, nDevices -1 ! stages = offset diagonals
238 do rDev = 0, nDevices -1 ! device that receives
239 sDev = mod(stage+rDev , nDevices) ! dev that sends
240
241 if (asyncVersion) then
242 istat = cudaSetDevice(rDev)
243 istat = cudaMemcpy2DAsync( &
244 d_rdata(rDev)%v(sDev*p2pTileDimX +1,1), nx, &
245 d_idata(sDev)%v(rDev*p2pTileDimX +1,1), nx, &
246 p2pTileDimX , p2pTileDimY , &
247 stream=streamID(rDev ,stage))
248 else
249 istat = cudaMemcpy2D( &
250 d_rdata(rDev)%v(sDev*p2pTileDimX +1,1), nx, &
251 d_idata(sDev)%v(rDev*p2pTileDimX +1,1), nx, &
252 p2pTileDimX , p2pTileDimY)
253 end if
254
255 istat = cudaSetDevice(rDev)
256 if (asyncVersion) then
257 call cudaTranspose &
258 <<<dimGrid , dimBlock , 0, &
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259 streamID(rDev ,stage)>>> &
260 (d_tdata(rDev)%v(sDev*p2pTileDimY +1,1), ny, &
261 d_rdata(rDev)%v(sDev*p2pTileDimX +1,1), nx)
262 else
263 call cudaTranspose <<<dimGrid , dimBlock >>> &
264 (d_tdata(rDev)%v(sDev*p2pTileDimY +1,1), ny, &
265 d_rdata(rDev)%v(sDev*p2pTileDimX +1,1), nx)
266 endif
267 enddo
268 enddo
269
270 ! wait for execution to complete and get wallclock
271 do p = 0, nDevices -1
272 istat = cudaSetDevice(p)
273 istat = cudaDeviceSynchronize ()
274 enddo
275 timeStop = wallclock ()
276
277 ! transfer results to host and check for errors
278
279 do p = 0, nDevices -1
280 xOffset = p*p2pTileDimX
281 istat = cudaSetDevice(p)
282 h_tdata(:, xOffset +1: xOffset+p2pTileDimX) = &
283 d_tdata(p)%v(:,:)
284 end do
285
286 if (all(h_tdata == gold)) then
287 write(*,"(’Bandwidth (GB/s): ’, f7.2,/)") &
288 2.*(nx*ny *4)/(1.0e+9*( timeStop -timeStart ))
289 else
290 write(*,"(’ *** Failed ***’,/)")
291 endif
292
293 ! cleanup
294
295 do p = 0, nDevices -1
296 istat = cudaSetDevice(p)
297 deallocate(d_idata(p)%v, d_tdata(p)%v, d_rdata(p)%v)
298 do stage = 0, nDevices -1
299 istat = cudaStreamDestroy(streamID(p,stage))
300 enddo
301 end do
302 deallocate(d_idata , d_tdata , d_rdata)
303
304 end program transposeP2P
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D.4.2 MPI transpose with host MPI transfers
This version of the MPI transpose uses MPI_SENDRECV on host data:

1 module transpose_m
2
3 implicit none
4 integer , parameter :: cudaTileDim = 32
5 integer , parameter :: blockRows = 8
6
7 contains
8
9 attributes(global) &

10 subroutine cudaTranspose(odata , ldo , idata , ldi)
11 real , intent(out) :: odata(ldo ,*)
12 real , intent(in) :: idata(ldi ,*)
13 integer , value , intent(in) :: ldo , ldi
14 real , shared :: tile(cudaTileDim+1, cudaTileDim)
15 integer :: x, y, j
16
17 x = (blockIdx%x-1) * cudaTileDim + threadIdx%x
18 y = (blockIdx%y-1) * cudaTileDim + threadIdx%y
19
20 do j = 0, cudaTileDim -1, blockRows
21 tile(threadIdx%x, threadIdx%y+j) = idata(x,y+j)
22 end do
23
24 call syncthreads ()
25
26 x = (blockIdx%y-1) * cudaTileDim + threadIdx%x
27 y = (blockIdx%x-1) * cudaTileDim + threadIdx%y
28
29 do j = 0, cudaTileDim -1, blockRows
30 odata(x,y+j) = tile(threadIdx%y+j, threadIdx%x)
31 end do
32 end subroutine cudaTranspose
33
34 end module transpose_m
35
36 !
37 ! Main code
38 !
39
40 program transposeMPI
41 use cudafor
42 use mpi
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43 use mpiDeviceUtil
44 use transpose_m
45
46 implicit none
47
48 ! global array size
49 integer , parameter :: nx = 2048, ny = 2048
50
51 ! host arrays
52 real :: h_idata(nx,ny), h_tdata(ny,nx), gold(ny,nx)
53 real , pinned , allocatable :: sTile(:,:), rTile (:,:)
54
55 ! CUDA vars and device arrays
56 integer :: deviceID
57 type (dim3) :: dimGrid , dimBlock
58 real , device , allocatable :: &
59 d_idata (:,:), d_tdata (:,:), d_rTile (:,:)
60
61 ! MPI stuff
62 integer :: mpiTileDimX , mpiTileDimY
63 integer :: myrank , nprocs , tag , ierr
64 integer :: nstages , stage , sRank , rRank
65 integer :: status(MPI_STATUS_SIZE)
66 real (8) :: timeStart , timeStop
67
68 integer :: i, j, nyl , jl, jg, p
69 integer :: xOffset , yOffset
70
71 ! MPI initialization
72
73 call MPI_init(ierr)
74 call MPI_comm_rank(MPI_COMM_WORLD , myrank , ierr)
75 call MPI_comm_size(MPI_COMM_WORLD , nProcs , ierr)
76
77 ! get and set device
78
79 call assignDevice(deviceID)
80
81 ! check parameters and calculate execution configuration
82
83 if (mod(nx,nProcs) == 0 .and. mod(ny,nProcs) == 0) then
84 mpiTileDimX = nx/nProcs
85 mpiTileDimY = ny/nProcs
86 else
87 write (*,*) ’ny must be an integral multiple of nProcs ’
88 call MPI_Finalize(ierr)
89 stop



D.4 Multi-GPU programming 281

90 endif
91
92 if (mod(mpiTileDimX , cudaTileDim) /= 0 .or. &
93 mod(mpiTileDimY , cudaTileDim) /= 0) then
94 write (*,*) ’mpiTileDimX and mpitileDimY must be an ’, &
95 ’integral multiple of cudaTileDim ’
96 call MPI_Finalize(ierr)
97 stop
98 end if
99

100 if (mod(cudaTileDim , blockRows) /= 0) then
101 write (*,*) ’cudaTileDim must be a multiple of blockRows ’
102 call MPI_Finalize(ierr)
103 stop
104 end if
105
106 dimGrid = dim3(mpiTileDimX/cudaTileDim , &
107 mpiTileDimY/cudaTileDim , 1)
108 dimBlock = dim3(cudaTileDim , blockRows , 1)
109
110 ! write parameters
111
112 if (myrank == 0) then
113 write (*,*)
114 write(*,"(/,’Array size: ’, i0,’x’,i0 ,/)") nx, ny
115
116 write(*,"(’CUDA block size: ’, i0,’x’,i0, &
117 ’, CUDA tile size: ’, i0,’x’,i0)") &
118 cudaTileDim , blockRows , cudaTileDim , cudaTileDim
119
120 write(*,"(’dimGrid: ’, i0,’x’,i0,’x’,i0, &
121 ’, dimBlock: ’, i0,’x’,i0,’x’,i0 ,/)") &
122 dimGrid%x, dimGrid%y, dimGrid%z, &
123 dimBlock%x, dimBlock%y, dimBlock%z
124
125 write(*,"(’nprocs: ’, i0, ’, Local input array size: ’, &
126 i0,’x’,i0)") nprocs , nx, mpiTileDimY
127 write(*,"(’mpiTileDim: ’, i0,’x’,i0 ,/)") &
128 mpiTileDimX , mpiTileDimY
129 endif
130
131 ! initialize data
132
133 ! host - each process has entire array on host
134
135 do p = 0, nProcs -1
136 do jl = 1, mpiTileDimY
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137 jg = p*mpiTileDimY + jl
138 do i = 1, nx
139 h_idata(i,jg) = i+(jg -1)*nx
140 enddo
141 enddo
142 enddo
143
144 gold = transpose(h_idata)
145
146 ! device - each process has
147 ! nx*mpiTileDimY = ny*mpiTileDimX elements
148
149 allocate(d_idata(nx, mpiTileDimY), &
150 sTile(mpiTileDimX ,mpiTileDimY), &
151 rTile(mpiTileDimX , mpiTileDimY), &
152 d_rTile(mpiTileDimX , mpiTileDimY), &
153 d_tdata(ny, mpiTileDimX ))
154
155 yOffset = myrank*mpiTileDimY
156 d_idata (1:nx ,1: mpiTileDimY) = &
157 h_idata (1:nx,yOffset +1: yOffset+mpiTileDimY)
158
159 d_tdata = -1.0
160
161 ! ---------
162 ! transpose
163 ! ---------
164
165 call MPI_BARRIER(MPI_COMM_WORLD , ierr)
166 timeStart = MPI_Wtime ()
167
168 ! 0th stage - local transpose
169
170 call cudaTranspose <<<dimGrid , dimBlock >>> &
171 (d_tdata(myrank*mpiTileDimY +1,1), ny, &
172 d_idata(myrank*mpiTileDimX +1,1), nx)
173
174 ! other stages that involve MPI transfers
175
176 do stage = 1, nProcs -1
177 ! sRank = the rank to which myrank sends data
178 ! rRank = the rank from which myrank receives data
179 sRank = modulo(myrank -stage , nProcs)
180 rRank = modulo(myrank+stage , nProcs)
181
182 call MPI_BARRIER(MPI_COMM_WORLD , ierr)
183
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184 ! D2H transfer - pack into contiguous host array
185 ierr = cudaMemcpy2D(sTile , mpiTileDimX , &
186 d_idata(sRank*mpiTileDimX +1,1), nx, &
187 mpiTileDimX , mpiTileDimY)
188
189 ! MPI transfer
190 call MPI_SENDRECV(sTile , mpiTileDimX*mpiTileDimY , &
191 MPI_REAL , sRank , myrank , &
192 rTile , mpiTileDimX*mpiTileDimY , MPI_REAL , &
193 rRank , rRank , MPI_COMM_WORLD , status , ierr)
194
195 ! H2D transfer
196 d_rTile = rTile
197
198 ! do transpose from receive tile into final array
199 call cudaTranspose <<<dimGrid , dimBlock >>> &
200 (d_tdata(rRank*mpiTileDimY +1,1), ny, &
201 d_rTile , mpiTileDimX)
202 end do
203
204 call MPI_BARRIER(MPI_COMM_WORLD , ierr)
205 timeStop = MPI_Wtime ()
206
207 ! check results
208
209 h_tdata = d_tdata
210
211 xOffset = myrank*mpiTileDimX
212 if (all(h_tdata (1:ny ,1: mpiTileDimX) == &
213 gold (1:ny, xOffset +1: xOffset+mpiTileDimX ))) then
214 if (myrank == 0) then
215 write(*,"(’Bandwidth (GB/s): ’, f7.2,/)") &
216 2.*(nx*ny *4)/(1.0e+9*( timeStop -timeStart ))
217 endif
218 else
219 write(*,"(’[’,i0 ,’]’, *** Failed ***,/)") myrank
220 endif
221
222 ! cleanup
223
224 deallocate(d_idata , d_tdata , sTile , rTile , d_rTile)
225
226 call MPI_Finalize(ierr)
227
228 end program transposeMPI



284 APPENDIX D Source Code

D.4.3 MPI transpose with device MPI transfers
The following version uses MVAPICH, whereby one can specify MPI_SENDRECV transfers on device
data. When the devices in question are peer-to-peer capable with each other, the transfer is done through
CUDA’s peer-to-peer functionality. Otherwise the copy proceeds through the host.

1 module transpose_m
2
3 implicit none
4 integer , parameter :: cudaTileDim = 32
5 integer , parameter :: blockRows = 8
6
7 contains
8
9 attributes(global) &

10 subroutine cudaTranspose(odata , ldo , idata , ldi)
11 real , intent(out) :: odata(ldo ,*)
12 real , intent(in) :: idata(ldi ,*)
13 integer , value , intent(in) :: ldo , ldi
14 real , shared :: tile(cudaTileDim+1, cudaTileDim)
15 integer :: x, y, j
16
17 x = (blockIdx%x-1) * cudaTileDim + threadIdx%x
18 y = (blockIdx%y-1) * cudaTileDim + threadIdx%y
19
20 do j = 0, cudaTileDim -1, blockRows
21 tile(threadIdx%x, threadIdx%y+j) = idata(x,y+j)
22 end do
23
24 call syncthreads ()
25
26 x = (blockIdx%y-1) * cudaTileDim + threadIdx%x
27 y = (blockIdx%x-1) * cudaTileDim + threadIdx%y
28
29 do j = 0, cudaTileDim -1, blockRows
30 odata(x,y+j) = tile(threadIdx%y+j, threadIdx%x)
31 end do
32 end subroutine cudaTranspose
33
34 end module transpose_m
35
36 !
37 ! Main code
38 !
39
40 program transposeMPI
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41 use cudafor
42 use mpi
43 use transpose_m
44
45 implicit none
46
47 ! global array size
48 integer , parameter :: nx = 2048, ny = 2048
49
50 ! host arrays (global)
51 real :: h_idata(nx,ny), h_tdata(ny,nx), gold(ny,nx)
52
53 ! CUDA vars and device arrays
54 integer :: deviceID
55 type (dim3) :: dimGrid , dimBlock
56 real , device , allocatable :: &
57 d_idata (:,:), d_tdata (:,:), d_sTile (:,:), d_rTile (:,:)
58
59 ! MPI stuff
60 integer :: mpiTileDimX , mpiTileDimY
61 integer :: myrank , nprocs , tag , ierr , localRank
62 integer :: nstages , stage , sRank , rRank
63 integer :: status(MPI_STATUS_SIZE)
64 real (8) :: timeStart , timeStop
65 character (len =10) :: localRankStr
66
67 integer :: i, j, nyl , jl, jg, p
68 integer :: xOffset , yOffset
69
70 ! for MVAPICH set device before MPI initialization
71
72 call get_environment_variable(’MV2_COMM_WORLD_LOCAL_RANK ’, &
73 localRankStr)
74 read(localRankStr ,’(i10)’) localRank
75 ierr = cudaSetDevice(localRank)
76
77 ! MPI initialization
78
79 call MPI_init(ierr)
80 call MPI_comm_rank(MPI_COMM_WORLD , myrank , ierr)
81 call MPI_comm_size(MPI_COMM_WORLD , nProcs , ierr)
82
83 ! check parameters and calculate execution configuration
84
85 if (mod(nx,nProcs) == 0 .and. mod(ny,nProcs) == 0) then
86 mpiTileDimX = nx/nProcs
87 mpiTileDimY = ny/nProcs
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88 else
89 write (*,*) ’ny must be an integral multiple of nProcs ’
90 call MPI_Finalize(ierr)
91 stop
92 endif
93
94 if (mod(mpiTileDimX , cudaTileDim) /= 0 .or. &
95 mod(mpiTileDimY , cudaTileDim) /= 0) then
96 write (*,*) ’mpiTileDimX and mpitileDimY must be an ’, &
97 ’integral multiple of cudaTileDim ’
98 call MPI_Finalize(ierr)
99 stop

100 end if
101
102 if (mod(cudaTileDim , blockRows) /= 0) then
103 write (*,*) ’cudaTileDim must be a multiple of blockRows ’
104 call MPI_Finalize(ierr)
105 stop
106 end if
107
108 dimGrid = dim3(mpiTileDimX/cudaTileDim , &
109 mpiTileDimY/cudaTileDim , 1)
110 dimBlock = dim3(cudaTileDim , blockRows , 1)
111
112 ! write parameters
113
114 if (myrank == 0) then
115 write (*,*)
116 write(*,"(/,’Array size: ’, i0,’x’,i0 ,/)") nx, ny
117
118 write(*,"(’CUDA block size: ’, i0,’x’,i0, &
119 ’, CUDA tile size: ’, i0,’x’,i0)") &
120 cudaTileDim , blockRows , cudaTileDim , cudaTileDim
121
122 write(*,"(’dimGrid: ’, i0,’x’,i0,’x’,i0, &
123 ’, dimBlock: ’, i0,’x’,i0,’x’,i0 ,/)") &
124 dimGrid%x, dimGrid%y, dimGrid%z, &
125 dimBlock%x, dimBlock%y, dimBlock%z
126
127 write(*,"(’nprocs: ’, i0, ’, Local input array size: ’, &
128 i0,’x’,i0)") nprocs , nx, mpiTileDimY
129 write(*,"(’mpiTileDim: ’, i0,’x’,i0 ,/)") &
130 mpiTileDimX , mpiTileDimY
131 endif
132
133 ! initialize data
134
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135 ! host - each process has entire array on host (for now)
136
137 do p = 0, nProcs -1
138 do jl = 1, mpiTileDimY
139 jg = p*mpiTileDimY + jl
140 do i = 1, nx
141 h_idata(i,jg) = i+(jg -1)*nx
142 enddo
143 enddo
144 enddo
145
146 gold = transpose(h_idata)
147
148 ! device - each process has
149 ! nx*mpiTileDimY = ny*mpiTileDimX elements
150
151 allocate(d_idata(nx, mpiTileDimY), &
152 d_tdata(ny, mpiTileDimX), &
153 d_sTile(mpiTileDimX ,mpiTileDimY), &
154 d_rTile(mpiTileDimX , mpiTileDimY ))
155
156 yOffset = myrank*mpiTileDimY
157 d_idata (1:nx ,1: mpiTileDimY) = &
158 h_idata (1:nx,yOffset +1: yOffset+mpiTileDimY)
159
160 d_tdata = -1.0
161
162
163 ! ---------
164 ! transpose
165 ! ---------
166
167 call MPI_BARRIER(MPI_COMM_WORLD , ierr)
168 timeStart = MPI_Wtime ()
169
170 ! 0th stage - local transpose
171
172 call cudaTranspose <<<dimGrid , dimBlock >>> &
173 (d_tdata(myrank*mpiTileDimY +1,1), ny, &
174 d_idata(myrank*mpiTileDimX +1,1), nx)
175
176 ! other stages that involve MPI transfers
177
178 do stage = 1, nProcs -1
179 ! sRank = the rank to which myrank sends data
180 ! rRank = the rank from which myrank receives data
181 sRank = modulo(myrank -stage , nProcs)
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182 rRank = modulo(myrank+stage , nProcs)
183
184 call MPI_BARRIER(MPI_COMM_WORLD , ierr)
185
186 ! pack tile so data to be sent is contiguous
187
188 !$cuf kernel do(2) <<<*,*>>>
189 do j = 1, mpiTileDimY
190 do i = 1, mpiTileDimX
191 d_sTile(i,j) = d_idata(sRank*mpiTileDimX+i,j)
192 enddo
193 enddo
194
195 call MPI_SENDRECV(d_sTile , mpiTileDimX*mpiTileDimY , &
196 MPI_REAL , sRank , myrank , &
197 d_rTile , mpiTileDimX*mpiTileDimY , MPI_REAL , &
198 rRank , rRank , MPI_COMM_WORLD , status , ierr)
199
200 ! do transpose from receive tile into final array
201 ! (no need to unpack)
202
203 call cudaTranspose <<<dimGrid , dimBlock >>> &
204 (d_tdata(rRank*mpiTileDimY +1,1), ny, &
205 d_rTile , mpiTileDimX)
206
207 end do ! stage
208
209 call MPI_BARRIER(MPI_COMM_WORLD , ierr)
210 timeStop = MPI_Wtime ()
211
212 ! check results
213
214 h_tdata = d_tdata
215
216 xOffset = myrank*mpiTileDimX
217 if (all(h_tdata (1:ny ,1: mpiTileDimX) == &
218 gold (1:ny, xOffset +1: xOffset+mpiTileDimX ))) then
219 if (myrank == 0) then
220 write(*,"(’Bandwidth (GB/s): ’, f7.2,/)") &
221 2.*(nx*ny *4)/(1.0e+9*( timeStop -timeStart ))
222 endif
223 else
224 write(*,"(’[’,i0 ,’]’, *** Failed ***,/)") myrank
225 endif
226
227 ! cleanup
228
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229 deallocate(d_idata , d_tdata , d_sTile , d_rTile)
230
231 call MPI_Finalize(ierr)
232
233 end program transposeMPI

D.5 Finite difference code
The following is the complete CUDA Fortran code used in the Finite Difference case study of Chapter
6. For the one-dimensional derivative, the derivative module containing the kernels is:

1 ! This file contains the setup host code and kernels for
2 ! calculating derivatives using a 9-point finite difference
3 ! stencil
4
5 module derivative_m
6 use cudafor
7 use precision_m
8
9 integer , parameter :: mx = 64, my = 64, mz = 64

10 real(fp_kind) :: x(mx), y(my), z(mz)
11
12 ! shared memory tiles will be m*-by -* Pencils
13 ! sPencils is used when each thread calculates
14 ! the derivative at one point
15 ! lPencils is used for coalescing in y and z
16 ! where each thread has to calculate the
17 ! derivative at mutiple points
18
19 integer , parameter :: sPencils = 4 ! small # pencils
20 integer , parameter :: lPencils = 32 ! large # pencils
21
22 type(dim3) :: g_sp(3), b_sp (3)
23 type(dim3) :: g_lp(3), b_lp (3)
24
25 ! stencil coefficients
26
27 real(fp_kind), constant :: ax_c , bx_c , cx_c , dx_c
28 real(fp_kind), constant :: ay_c , by_c , cy_c , dy_c
29 real(fp_kind), constant :: az_c , bz_c , cz_c , dz_c
30
31 contains
32
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33 ! host routine to set constant data
34
35 subroutine setDerivativeParameters ()
36
37 implicit none
38
39 real(fp_kind) :: dsinv
40 integer :: i, j, k
41
42 ! check to make sure dimensions are multiples of sPencils
43 if (mod(my,sPencils) /= 0) then
44 write (*,*) ’"my" must be a multiple of sPencils ’
45 stop
46 end if
47
48 if (mod(mx,sPencils) /= 0) then
49 write (*,*) ’"mx" must be a multiple of sPencils ’, &
50 ’ (for y-deriv)’
51 stop
52 end if
53
54 if (mod(mz,sPencils) /= 0) then
55 write (*,*) ’"mz" must be a multiple of sPencils ’, &
56 ’ (for z-deriv)’
57 stop
58 end if
59
60 if (mod(mx,lPencils) /= 0) then
61 write (*,*) ’"mx" must be a multiple of lPencils ’
62 stop
63 end if
64
65 if (mod(my,lPencils) /= 0) then
66 write (*,*) ’"my" must be a multiple of lPencils ’
67 stop
68 end if
69
70 ! stencil weights (for unit length problem)
71
72 dsinv = real(mx -1)
73 do i = 1, mx
74 x(i) = (i -1.)/(mx -1.)
75 enddo
76 ax_c = 4./ 5. * dsinv
77 bx_c = -1./ 5. * dsinv
78 cx_c = 4./105. * dsinv
79 dx_c = -1./280. * dsinv
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80
81 dsinv = real(my -1)
82 do j = 1, my
83 y(j) = (j -1.)/(my -1.)
84 enddo
85 ay_c = 4./ 5. * dsinv
86 by_c = -1./ 5. * dsinv
87 cy_c = 4./105. * dsinv
88 dy_c = -1./280. * dsinv
89
90 dsinv = real(mz -1)
91 do k = 1, mz
92 z(k) = (k -1.)/(mz -1.)
93 enddo
94 az_c = 4./ 5. * dsinv
95 bz_c = -1./ 5. * dsinv
96 cz_c = 4./105. * dsinv
97 dz_c = -1./280. * dsinv
98
99 ! Execution configurations for small and

100 ! large pencil tiles
101
102 g_sp (1) = dim3(my/sPencils ,mz ,1)
103 b_sp (1) = dim3(mx,sPencils ,1)
104
105 g_lp (1) = dim3(my/lPencils ,mz ,1)
106 b_lp (1) = dim3(mx,sPencils ,1)
107
108 g_sp (2) = dim3(mx/sPencils ,mz ,1)
109 b_sp (2) = dim3(sPencils ,my ,1)
110
111 g_lp (2) = dim3(mx/lPencils ,mz ,1)
112 ! we want to use the same number of threads as above.
113 ! so if we use lPencils instead of sPencils in one
114 ! dimension , we multiply the other by sPencils/lPencils
115 b_lp (2) = dim3(lPencils , my*sPencils/lPencils ,1)
116
117 g_sp (3) = dim3(mx/sPencils ,my ,1)
118 b_sp (3) = dim3(sPencils ,mz ,1)
119
120 g_lp (3) = dim3(mx/lPencils ,my ,1)
121 b_lp (3) = dim3(lPencils , mz*sPencils/lPencils ,1)
122
123 end subroutine setDerivativeParameters
124
125 ! -------------
126 ! x derivatives
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127 ! -------------
128
129 attributes(global) subroutine deriv_x(f, df)
130 implicit none
131
132 real(fp_kind), intent(in) :: f(mx,my,mz)
133 real(fp_kind), intent(out) :: df(mx,my,mz)
134
135 real(fp_kind), shared :: f_s(-3:mx+4,sPencils)
136
137 integer :: i,j,k,j_l
138
139 i = threadIdx%x
140 j = (blockIdx%x-1)* blockDim%y + threadIdx%y
141 ! j_l is local variant of j for accessing shared memory
142 j_l = threadIdx%y
143 k = blockIdx%y
144
145 f_s(i,j_l) = f(i,j,k)
146
147 call syncthreads ()
148
149 ! fill in periodic images in shared memory array
150
151 if (i <= 4) then
152 f_s(i-4, j_l) = f_s(mx+i-5,j_l)
153 f_s(mx+i,j_l) = f_s(i+1, j_l)
154 endif
155
156 call syncthreads ()
157
158 df(i,j,k) = &
159 (ax_c *( f_s(i+1,j_l) - f_s(i-1,j_l) ) &
160 +bx_c *( f_s(i+2,j_l) - f_s(i-2,j_l) ) &
161 +cx_c *( f_s(i+3,j_l) - f_s(i-3,j_l) ) &
162 +dx_c *( f_s(i+4,j_l) - f_s(i-4,j_l) ))
163
164 end subroutine deriv_x
165
166 ! this version avoids the first syncthreads () call
167 ! in the above version by using the same thread
168 ! to write and read the same shared memory value
169
170 attributes(global) subroutine deriv_x_1sync(f, df)
171 implicit none
172
173 real(fp_kind), intent(in) :: f(mx,my,mz)
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174 real(fp_kind), intent(out) :: df(mx,my,mz)
175
176 real(fp_kind), shared :: f_s(-3:mx+4,sPencils)
177
178 integer :: i,j,k,j_l
179
180 i = threadIdx%x
181 j = (blockIdx%x-1)* blockDim%y + threadIdx%y
182 ! j_l is local variant of j for accessing shared memory
183 j_l = threadIdx%y
184 k = blockIdx%y
185
186 f_s(i,j_l) = f(i,j,k)
187
188 ! fill in periodic images in shared memory array
189 ! Use the same thread , (i,j_l), on the RHS that was used
190 ! to read the value in, so no syncthreads is needed
191
192 if (i>mx -5 .and. i<mx) f_s(i-(mx -1),j_l) = f_s(i,j_l)
193 if (i>1 .and. i<6 ) f_s(i+(mx -1),j_l) = f_s(i,j_l)
194
195 call syncthreads ()
196
197 df(i,j,k) = &
198 (ax_c *( f_s(i+1,j_l) - f_s(i-1,j_l) ) &
199 +bx_c *( f_s(i+2,j_l) - f_s(i-2,j_l) ) &
200 +cx_c *( f_s(i+3,j_l) - f_s(i-3,j_l) ) &
201 +dx_c *( f_s(i+4,j_l) - f_s(i-4,j_l) ))
202
203 end subroutine deriv_x_1sync
204
205 ! this version uses a 64x32 shared memory tile ,
206 ! still with 64* sPencils threads
207
208 attributes(global) subroutine deriv_x_lPencils(f, df)
209 implicit none
210
211 real(fp_kind), intent(in) :: f(mx,my,mz)
212 real(fp_kind), intent(out) :: df(mx,my,mz)
213
214 real(fp_kind), shared :: f_s(-3:mx+4,lPencils)
215
216 integer :: i,j,k,j_l ,jBase
217
218 i = threadIdx%x
219 jBase = (blockIdx%x-1)* lPencils
220 k = blockIdx%y
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221
222 do j_l = threadIdx%y, lPencils , blockDim%y
223 j = jBase + j_l
224 f_s(i,j_l) = f(i,j,k)
225 enddo
226
227 call syncthreads ()
228
229 ! fill in periodic images in shared memory array
230
231 if (i <= 4) then
232 do j_l = threadIdx%y, lPencils , blockDim%y
233 f_s(i-4, j_l) = f_s(mx+i-5,j_l)
234 f_s(mx+i,j_l) = f_s(i+1, j_l)
235 enddo
236 endif
237
238 call syncthreads ()
239
240 do j_l = threadIdx%y, lPencils , blockDim%y
241 j = jBase + j_l
242 df(i,j,k) = &
243 (ax_c *( f_s(i+1,j_l) - f_s(i-1,j_l) ) &
244 +bx_c *( f_s(i+2,j_l) - f_s(i-2,j_l) ) &
245 +cx_c *( f_s(i+3,j_l) - f_s(i-3,j_l) ) &
246 +dx_c *( f_s(i+4,j_l) - f_s(i-4,j_l) ))
247 enddo
248
249 end subroutine deriv_x_lPencils
250
251 ! -------------
252 ! y derivatives
253 ! -------------
254
255 attributes(global) subroutine deriv_y(f, df)
256 implicit none
257
258 real(fp_kind), intent(in) :: f(mx,my,mz)
259 real(fp_kind), intent(out) :: df(mx,my,mz)
260
261 real(fp_kind), shared :: f_s(sPencils ,-3:my+4)
262
263 integer :: i,i_l ,j,k
264
265 i = (blockIdx%x-1)* blockDim%x + threadIdx%x
266 i_l = threadIdx%x
267 j = threadIdx%y
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268 k = blockIdx%y
269
270 f_s(i_l ,j) = f(i,j,k)
271
272 call syncthreads ()
273
274 if (j <= 4) then
275 f_s(i_l ,j-4) = f_s(i_l ,my+j-5)
276 f_s(i_l ,my+j) = f_s(i_l ,j+1)
277 endif
278
279 call syncthreads ()
280
281 df(i,j,k) = &
282 (ay_c *( f_s(i_l ,j+1) - f_s(i_l ,j-1) ) &
283 +by_c *( f_s(i_l ,j+2) - f_s(i_l ,j-2) ) &
284 +cy_c *( f_s(i_l ,j+3) - f_s(i_l ,j-3) ) &
285 +dy_c *( f_s(i_l ,j+4) - f_s(i_l ,j-4) ))
286
287 end subroutine deriv_y
288
289 ! y derivative using a tile of 32x64
290 ! launch with thread block of 32x8
291
292 attributes(global) subroutine deriv_y_lPencils(f, df)
293 implicit none
294
295 real(fp_kind), intent(in) :: f(mx,my,mz)
296 real(fp_kind), intent(out) :: df(mx,my,mz)
297
298 real(fp_kind), shared :: f_s(lPencils ,-3:my+4)
299
300 integer :: i,j,k,i_l
301
302 i_l = threadIdx%x
303 i = (blockIdx%x-1)* blockDim%x + threadIdx%x
304 k = blockIdx%y
305
306 do j = threadIdx%y, my, blockDim%y
307 f_s(i_l ,j) = f(i,j,k)
308 enddo
309
310 call syncthreads ()
311
312 j = threadIdx%y
313 if (j <= 4) then
314 f_s(i_l ,j-4) = f_s(i_l ,my+j-5)
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315 f_s(i_l ,my+j) = f_s(i_l ,j+1)
316 endif
317
318 call syncthreads ()
319
320 do j = threadIdx%y, my, blockDim%y
321 df(i,j,k) = &
322 (ay_c *( f_s(i_l ,j+1) - f_s(i_l ,j-1) ) &
323 +by_c *( f_s(i_l ,j+2) - f_s(i_l ,j-2) ) &
324 +cy_c *( f_s(i_l ,j+3) - f_s(i_l ,j-3) ) &
325 +dy_c *( f_s(i_l ,j+4) - f_s(i_l ,j-4) ))
326 enddo
327
328 end subroutine deriv_y_lPencils
329
330 ! ------------
331 ! z derivative
332 ! ------------
333
334 attributes(global) subroutine deriv_z(f, df)
335 implicit none
336
337 real(fp_kind), intent(in) :: f(mx,my,mz)
338 real(fp_kind), intent(out) :: df(mx,my,mz)
339
340 real(fp_kind), shared :: f_s(sPencils ,-3:mz+4)
341
342 integer :: i,i_l ,j,k
343
344 i = (blockIdx%x-1)* blockDim%x + threadIdx%x
345 i_l = threadIdx%x
346 j = blockIdx%y
347 k = threadIdx%y
348
349 f_s(i_l ,k) = f(i,j,k)
350
351 call syncthreads ()
352
353 if (k <= 4) then
354 f_s(i_l ,k-4) = f_s(i_l ,mz+k-5)
355 f_s(i_l ,mz+k) = f_s(i_l ,k+1)
356 endif
357
358 call syncthreads ()
359
360 df(i,j,k) = &
361 (az_c *( f_s(i_l ,k+1) - f_s(i_l ,k-1) ) &
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362 +bz_c *( f_s(i_l ,k+2) - f_s(i_l ,k-2) ) &
363 +cz_c *( f_s(i_l ,k+3) - f_s(i_l ,k-3) ) &
364 +dz_c *( f_s(i_l ,k+4) - f_s(i_l ,k-4) ))
365
366 end subroutine deriv_z
367
368
369 attributes(global) subroutine deriv_z_lPencils(f, df)
370 implicit none
371
372 real(fp_kind), intent(in) :: f(mx,my,mz)
373 real(fp_kind), intent(out) :: df(mx,my,mz)
374
375 real(fp_kind), shared :: f_s(lPencils ,-3:mz+4)
376
377 integer :: i,i_l ,j,k
378
379 i = (blockIdx%x-1)* blockDim%x + threadIdx%x
380 i_l = threadIdx%x
381 j = blockIdx%y
382
383 do k = threadIdx%y, mz, blockDim%y
384 f_s(i_l ,k) = f(i,j,k)
385 enddo
386
387 call syncthreads ()
388
389 k = threadIdx%y
390 if (k <= 4) then
391 f_s(i_l ,k-4) = f_s(i_l ,mz+k-5)
392 f_s(i_l ,mz+k) = f_s(i_l ,k+1)
393 endif
394
395 call syncthreads ()
396
397 do k = threadIdx%y, mz, blockDim%y
398 df(i,j,k) = &
399 (az_c *( f_s(i_l ,k+1) - f_s(i_l ,k-1) ) &
400 +bz_c *( f_s(i_l ,k+2) - f_s(i_l ,k-2) ) &
401 +cz_c *( f_s(i_l ,k+3) - f_s(i_l ,k-3) ) &
402 +dz_c *( f_s(i_l ,k+4) - f_s(i_l ,k-4) ))
403 enddo
404 end subroutine deriv_z_lPencils
405
406 end module derivative_m
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and the host code is:

1 ! This the main host code for the finite difference
2 ! example. The kernels are contained in the derivative_m
3 ! module
4
5 program derivativeTest
6 use cudafor
7 use precision_m
8 use derivative_m
9

10 implicit none
11
12 real(fp_kind), parameter :: fx = 1.0, fy = 1.0, fz = 1.0
13 integer , parameter :: nReps = 20
14
15 real(fp_kind) :: f(mx,my,mz), df(mx,my,mz), sol(mx,my,mz)
16 real(fp_kind), device :: f_d(mx,my,mz), df_d(mx,my,mz)
17 real(fp_kind) :: twopi , error , maxError
18 type(cudaEvent) :: startEvent , stopEvent
19 type(cudaDeviceProp) :: prop
20
21 real :: time
22 integer :: i, j, k, istat
23
24 ! Print device and precision
25
26 istat = cudaGetDeviceProperties(prop , 0)
27 write(*,"(/,’Device Name: ’,a)") trim(prop%name)
28 write(*,"(’Compute Capability: ’,i0 ,’.’,i0)") &
29 prop%major , prop%minor
30 if (fp_kind == singlePrecision) then
31 write(*,"(’Single Precision ’)")
32 else
33 write(*,"(’Double Precision ’)")
34 end if
35
36 ! initialize
37
38 twopi = 8.* atan (1.d0)
39 call setDerivativeParameters ()
40
41 istat = cudaEventCreate(startEvent)
42 istat = cudaEventCreate(stopEvent)
43
44 ! x-derivative using 64x4 tile
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45
46 write(*,"(/,’x derivatives ’)")
47
48 do i = 1, mx
49 f(i,:,:) = cos(fx*twopi*(i -1.)/(mx -1))
50 enddo
51 f_d = f
52 df_d = 0
53
54 call deriv_x <<<g_sp(1),b_sp(1)>>>(f_d , df_d)
55 istat = cudaEventRecord(startEvent ,0)
56 do i = 1, nReps
57 call deriv_x <<<g_sp(1),b_sp(1)>>>(f_d , df_d)
58 enddo
59 istat = cudaEventRecord(stopEvent ,0)
60 istat = cudaEventSynchronize(stopEvent)
61 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
62
63 df = df_d
64
65 do i = 1, mx
66 sol(i,:,:) = -fx*twopi*sin(fx*twopi*(i -1.)/(mx -1))
67 enddo
68
69 error = sqrt(sum((sol -df )**2)/( mx*my*mz))
70 maxError = maxval(abs(sol -df))
71
72 write(*,"(/,’ Using shared memory tile of x-y: ’, &
73 i0, ’x’, i0)") mx, sPencils
74 write (*,*) ’ RMS error: ’, error
75 write (*,*) ’ MAX error: ’, maxError
76 write (*,*) ’ Average time (ms): ’, time/nReps
77 write (*,*) ’ Average Bandwidth (GB/s): ’, &
78 2.*1.e-6* sizeof(f)/( time/nReps)
79
80 ! x-deriv - similar to above but first
81 ! syncthreads removed
82
83 do i = 1, mx
84 f(i,:,:) = cos(fx*twopi*(i -1.)/(mx -1))
85 enddo
86 f_d = f
87 df_d = 0
88
89 call deriv_x_1sync <<<g_sp(1),b_sp(1)>>>(f_d , df_d)
90 istat = cudaEventRecord(startEvent ,0)
91 do i = 1, nReps
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92 call deriv_x_1sync <<<g_sp(1),b_sp(1)>>>(f_d , df_d)
93 enddo
94 istat = cudaEventRecord(stopEvent ,0)
95 istat = cudaEventSynchronize(stopEvent)
96 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
97
98 df = df_d
99

100 do i = 1, mx
101 sol(i,:,:) = -fx*twopi*sin(fx*twopi*(i -1.)/(mx -1))
102 enddo
103
104 error = sqrt(sum((sol -df )**2)/( mx*my*mz))
105 maxError = maxval(abs(sol -df))
106
107 write(*,"(/,a,a, i0, ’x’, i0)") &
108 ’ Single syncthreads ,’, &
109 ’ using shared memory tile of x-y: ’, &
110 mx, sPencils
111 write (*,*) ’ RMS error: ’, error
112 write (*,*) ’ MAX error: ’, maxError
113 write (*,*) ’ Average time (ms): ’, time/nReps
114 write (*,*) ’ Average Bandwidth (GB/s): ’, &
115 2.*1.e-6* sizeof(f)/( time/nReps)
116
117 ! x-deriv - uses extended tile (lPencils)
118
119 do i = 1, mx
120 f(i,:,:) = cos(fx*twopi*(i -1.)/(mx -1))
121 enddo
122 f_d = f
123 df_d = 0
124
125 call deriv_x_lPencils <<<g_lp(1),b_lp(1)>>>(f_d , df_d)
126 istat = cudaEventRecord(startEvent ,0)
127 do i = 1, nReps
128 call deriv_x_lPencils <<<g_lp(1),b_lp(1)>>>(f_d , df_d)
129 enddo
130 istat = cudaEventRecord(stopEvent ,0)
131 istat = cudaEventSynchronize(stopEvent)
132 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
133
134 df = df_d
135
136 do i = 1, mx
137 sol(i,:,:) = -fx*twopi*sin(fx*twopi*(i -1.)/(mx -1))
138 enddo
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139
140 error = sqrt(sum((sol -df )**2)/( mx*my*mz))
141 maxError = maxval(abs(sol -df))
142
143 write(*,"(/,’ Using shared memory tile of x-y: ’, &
144 i0, ’x’, i0)") mx, lPencils
145 write (*,*) ’ RMS error: ’, error
146 write (*,*) ’ MAX error: ’, maxError
147 write (*,*) ’ Average time (ms): ’, time/nReps
148 write (*,*) ’ Average Bandwidth (GB/s): ’, &
149 2.*1.e-6* sizeof(f)/( time/nReps)
150
151 ! y-derivative
152
153 write(*,"(/,’y derivatives ’)")
154
155 do j = 1, my
156 f(:,j,:) = cos(fy*twopi*(j -1.)/(my -1))
157 enddo
158 f_d = f
159 df_d = 0
160
161 call deriv_y <<<g_sp(2), b_sp(2)>>>(f_d , df_d)
162 istat = cudaEventRecord(startEvent ,0)
163 do i = 1, nReps
164 call deriv_y <<<g_sp(2), b_sp(2)>>>(f_d , df_d)
165 enddo
166 istat = cudaEventRecord(stopEvent ,0)
167 istat = cudaEventSynchronize(stopEvent)
168 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
169
170 df = df_d
171
172 do j = 1, my
173 sol(:,j,:) = -fy*twopi*sin(fy*twopi*(j -1.)/(my -1))
174 enddo
175
176 error = sqrt(sum((sol -df )**2)/( mx*my*mz))
177 maxError = maxval(abs(sol -df))
178
179 write(*,"(/,’ Using shared memory tile of x-y: ’, &
180 i0, ’x’, i0)") sPencils , my
181 write (*,*) ’ RMS error: ’, error
182 write (*,*) ’ MAX error: ’, maxError
183 write (*,*) ’ Average time (ms): ’, time/nReps
184 write (*,*) ’ Average Bandwidth (GB/s): ’, &
185 2.*1.e-6* sizeof(f)/( time/nReps)
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186
187 ! y-derivative lPencils
188
189 do j = 1, my
190 f(:,j,:) = cos(fy*twopi*(j -1.)/(my -1))
191 enddo
192 f_d = f
193 df_d = 0
194
195 call deriv_y_lPencils <<<g_lp(2), b_lp(2)>>>(f_d , df_d)
196 istat = cudaEventRecord(startEvent ,0)
197 do i = 1, nReps
198 call deriv_y_lPencils <<<g_lp(2), b_lp(2)>>>(f_d , df_d)
199 enddo
200 istat = cudaEventRecord(stopEvent ,0)
201 istat = cudaEventSynchronize(stopEvent)
202 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
203
204 df = df_d
205
206 do j = 1, my
207 sol(:,j,:) = -fy*twopi*sin(fy*twopi*(j -1.)/(my -1))
208 enddo
209
210 error = sqrt(sum((sol -df )**2)/( mx*my*mz))
211 maxError = maxval(abs(sol -df))
212
213 write(*,"(/,’ Using shared memory tile of x-y: ’, &
214 i0, ’x’, i0)") lPencils , my
215 write (*,*) ’ RMS error: ’, error
216 write (*,*) ’ MAX error: ’, maxError
217 write (*,*) ’ Average time (ms): ’, time/nReps
218 write (*,*) ’ Average Bandwidth (GB/s): ’, &
219 2.*1.e-6* sizeof(f)/( time/nReps)
220
221 ! z-derivative
222
223 write(*,"(/,’z derivatives ’)")
224
225 do k = 1, mz
226 f(:,:,k) = cos(fz*twopi*(k -1.)/(mz -1))
227 enddo
228 f_d = f
229 df_d = 0
230
231 call deriv_z <<<g_sp(3),b_sp(3)>>>(f_d , df_d)
232 istat = cudaEventRecord(startEvent ,0)
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233 do i = 1, nReps
234 call deriv_z <<<g_sp(3),b_sp(3)>>>(f_d , df_d)
235 enddo
236 istat = cudaEventRecord(stopEvent ,0)
237 istat = cudaEventSynchronize(stopEvent)
238 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
239
240 df = df_d
241
242 do k = 1, mz
243 sol(:,:,k) = -fz*twopi*sin(fz*twopi*(k -1.)/(mz -1))
244 enddo
245
246 error = sqrt(sum((sol -df )**2)/( mx*my*mz))
247 maxError = maxval(abs(sol -df))
248
249 write(*,"(/,’ Using shared memory tile of x-z: ’, &
250 i0, ’x’, i0)") sPencils , mz
251 write (*,*) ’ RMS error: ’, error
252 write (*,*) ’ MAX error: ’, maxError
253 write (*,*) ’ Average time (ms): ’, time/nReps
254 write (*,*) ’ Average Bandwidth (GB/s): ’, &
255 2.*1.e-6* sizeof(f)/( time/nReps)
256
257 ! z-derivative lPencils
258
259 do k = 1, mz
260 f(:,:,k) = cos(fz*twopi*(k -1.)/(mz -1))
261 enddo
262 f_d = f
263 df_d = 0
264
265 call deriv_z_lPencils <<<g_lp(3),b_lp(3)>>>(f_d , df_d)
266 istat = cudaEventRecord(startEvent ,0)
267 do i = 1, nReps
268 call deriv_z_lPencils <<<g_lp(3),b_lp(3)>>>(f_d , df_d)
269 enddo
270 istat = cudaEventRecord(stopEvent ,0)
271 istat = cudaEventSynchronize(stopEvent)
272 istat = cudaEventElapsedTime(time , startEvent , stopEvent)
273
274 df = df_d
275
276 do k = 1, mz
277 sol(:,:,k) = -fz*twopi*sin(fz*twopi*(k -1.)/(mz -1))
278 enddo
279
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280 error = sqrt(sum((sol -df )**2)/( mx*my*mz))
281 maxError = maxval(abs(sol -df))
282
283 write(*,"(/,’ Using shared memory tile of x-z: ’, &
284 i0, ’x’, i0)") lPencils , mz
285 write (*,*) ’ RMS error: ’, error
286 write (*,*) ’ MAX error: ’, maxError
287 write (*,*) ’ Average time (ms): ’, time/nReps
288 write (*,*) ’ Average Bandwidth (GB/s): ’, &
289 2.*1.e-6* sizeof(f)/( time/nReps)
290 write (*,*)
291
292 end program derivativeTest

The two-dimensional Laplace solver is:

1 module laplaceRoutines
2
3 integer , parameter :: nx = 4096, ny = 4096
4 integer , parameter :: fp_kind = kind (1.0)
5 integer , parameter :: BLOCK_X = 32, BLOCK_Y = 16
6
7 real(fp_kind), texture , pointer :: aTex(:,:)
8
9 contains

10
11 subroutine initialize(a, aNew)
12 implicit none
13 real(fp_kind), parameter :: &
14 pi = 2.0 _fp_kind*asin (1.0 _fp_kind)
15 real(fp_kind) :: a(nx,ny), aNew(nx,ny)
16 real(fp_kind) :: y0(nx)
17 integer :: i
18
19 do i = 1, nx
20 y0(i) = sin(pi*(i-1)/(nx -1))
21 enddo
22 a = 0.0 _fp_kind
23 a(:,1) = y0
24 a(:,ny) = y0*exp(-pi)
25 aNew = a
26 end subroutine initialize
27
28 ! Global memory version
29
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30 attributes(global) subroutine jacobiGlobal(a, aNew)
31 real(fp_kind) :: a(nx,ny), aNew(nx,ny)
32 integer :: i, j
33
34 i = (blockIdx%x-1)* blockDim%x + threadIdx%x
35 j = (blockIdx%y-1)* blockDim%y + threadIdx%y
36
37 if (i>1 .and. i<nx .and. j>1 .and. j<ny) then
38 aNew(i,j) = &
39 0.2 _fp_kind * ( &
40 a(i-1,j) + a(i+1,j) + &
41 a(i,j-1) + a(i,j+1)) + &
42 0.05 _fp_kind * (&
43 a(i-1,j-1) + a(i+1,j-1) + &
44 a(i-1,j+1) + a(i+1,j+1))
45 endif
46 end subroutine jacobiGlobal
47
48 ! Shared memory version
49
50 attributes(global) subroutine jacobiShared(a, aNew)
51 real(fp_kind) :: a(nx,ny), aNew(nx,ny)
52 real(fp_kind), shared :: t(0: BLOCK_X+1, 0: BLOCK_Y +1)
53 integer :: i, j, is, js
54
55 i = (blockIdx%x-1)* blockDim%x + threadIdx%x
56 j = (blockIdx%y-1)* blockDim%y + threadIdx%y
57 is = threadIdx%x
58 js = threadIdx%y
59
60 if (i > 1 .and. j > 1) &
61 t(is -1, js -1) = a(i-1, j-1)
62 if (i > 1 .and. j < ny .and. js >= BLOCK_Y -2) &
63 t(is -1, js+1) = a(i-1, j+1)
64 if (i < nx .and. j > 1 .and. is >= BLOCK_X -2) &
65 t(is+1,js -1) = a(i+1,j-1)
66 if (i < nx .and. j < ny .and. &
67 is >= BLOCK_X -2 .and. js >= BLOCK_Y -2) &
68 t(is+1,js+1) = a(i+1,j+1)
69
70 call syncthreads ()
71
72 if (i > 1 .and. i < nx .and. j > 1 .and. j < ny) then
73 aNew(i,j) = 0.2 _fp_kind * ( &
74 t(is,js -1) + t(is -1,js) + &
75 t(is+1,js) + t(is,js+1)) &
76 + 0.05 _fp_kind * ( &
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77 t(is -1,js -1) + t(is+1,js -1) + &
78 t(is -1,js+1) + t(is+1,js+1))
79 endif
80
81 end subroutine jacobiShared
82
83 ! Texture version
84
85 attributes(global) subroutine jacobiTexture(aNew)
86 real(fp_kind) :: aNew(nx,ny)
87 integer :: i, j
88
89 i = (blockIdx%x-1)* blockDim%x + threadIdx%x
90 j = (blockIdx%y-1)* blockDim%y + threadIdx%y
91
92 if (i > 1 .and. i < nx .and. j > 1 .and. j < ny) then
93 aNew(i,j) = 0.2 _fp_kind * ( &
94 aTex(i-1,j) + aTex(i+1,j) + &
95 aTex(i,j-1) + aTex(i,j+1) ) &
96 + 0.05 _fp_kind * (&
97 aTex(i-1,j-1) + aTex(i+1,j-1) + &
98 aTex(i-1,j+1) + aTex(i+1,j+1))
99 endif

100 end subroutine jacobiTexture
101
102 end module laplaceRoutines
103
104
105 program laplace
106 use cudafor
107 use laplaceRoutines
108 implicit none
109 integer , parameter :: iterMax = 100
110 integer , parameter :: reportInterval = 10
111 real(fp_kind), parameter :: tol = 1.0e-5 _fp_kind
112
113 real(fp_kind) :: a(nx,ny), aNew(nx,ny)
114 real(fp_kind), device , target :: a_d(nx,ny)
115 real(fp_kind), device :: aNew_d(nx,ny)
116
117 real(fp_kind) :: maxResidual = 2*tol
118 real :: start_time , stop_time
119 integer :: i, j, iter
120
121 type(dim3) :: grid , tBlock
122
123 write(*,’(/,a,i0,a,i0,a)’) &
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124 ’Relaxation calculation on ’, nx, ’ x ’, ny, ’ mesh’
125
126 ! CPU version
127
128 write(*,"(/,a,/)") ’CPU results ’
129 write (*,*) ’Iteration Max Residual ’
130
131 call initialize(a, aNew)
132
133 iter=0
134 do while ( maxResidual > tol .and. iter <= iterMax )
135 maxResidual = 0.0 _fp_kind
136
137 do j=2,ny -1
138 do i=2,nx -1
139 aNew(i,j) = 0.2 _fp_kind * &
140 (a(i,j-1)+a(i-1,j)+a(i+1,j)+a(i,j+1)) + &
141 0.05 _fp_kind * &
142 (a(i-1,j-1)+a(i+1,j-1)+a(i-1,j+1)+a(i+1,j+1))
143
144 maxResidual = &
145 max(maxResidual , abs(aNew(i,j)-a(i,j)))
146 end do
147 end do
148
149 iter = iter + 1
150 if(mod(iter ,reportInterval) == 0) &
151 write(*,’(i8 ,3x,f10.6)’), iter , maxResidual
152 a = aNew
153 end do
154
155 ! GPU global version
156
157 write(*,"(/,a,/)") ’GPU global results ’
158 write (*,*) ’Iteration Max Residual ’
159
160 tBlock = dim3(BLOCK_X ,BLOCK_Y ,1)
161 grid = dim3(ceiling(real(nx)/ tBlock%x), &
162 ceiling(real(ny)/ tBlock%y), 1)
163
164 call initialize(a, aNew)
165
166 call cpu_time(start_time)
167
168 a_d = a
169 aNew_d = aNew
170
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171 iter=0
172 do while ( maxResidual > tol .and. iter <= iterMax )
173 maxResidual = 0.0 _fp_kind
174
175 call jacobiGlobal <<<grid , tBlock >>>(a_d , aNew_d)
176
177 !$CUF kernel do <<<*,*>>>
178 do j = 1, ny
179 do i = 1, nx
180 maxResidual = &
181 max(maxResidual , abs(a_d(i,j)-aNew_d(i,j)))
182 enddo
183 enddo
184
185 iter = iter + 1
186 if(mod(iter ,reportInterval) == 0) &
187 write(*,’(i8 ,3x,f10.6)’), iter , maxResidual
188 a_d = aNew_d
189 end do
190
191 a = aNew_d
192 call cpu_time(stop_time)
193 write(*,’(a,f10.3,a)’) ’ Completed in ’, &
194 stop_time -start_time , ’ seconds ’
195
196 !
197 ! GPU shared memory version
198 !
199
200 write(*,"(/,a,/)") ’GPU shared results ’
201 write (*,*) ’Iteration Max Residual ’
202
203 call initialize(a, aNew)
204
205 call cpu_time(start_time)
206
207 a_d = a
208 aNew_d = aNew
209
210 iter=0
211 do while ( maxResidual > tol .and. iter <= iterMax )
212 maxResidual = 0.0 _fp_kind
213
214 call jacobiShared <<<grid , tBlock >>>(a_d , aNew_d)
215
216 !$CUF kernel do <<<*,*>>>
217 do j = 1, ny
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218 do i = 1, nx
219 maxResidual = &
220 max(maxResidual , abs(a_d(i,j)-aNew_d(i,j)))
221 enddo
222 enddo
223
224 iter = iter + 1
225 if(mod(iter ,reportInterval) == 0) &
226 write(*,’(i8 ,3x,f10.6)’), iter , maxResidual
227 a_d = aNew_d
228 end do
229
230 a = aNew_d
231 call cpu_time(stop_time)
232 write(*,’(a,f10.3,a)’) ’ Completed in ’, &
233 stop_time -start_time , ’ seconds ’
234
235 !
236 ! GPU texture version
237 !
238
239 write(*,"(/,a,/)") ’GPU texture results ’
240 write (*,*) ’Iteration Max Residual ’
241
242 ! only single precision textures supported currently
243 if (fp_kind == kind (1.0)) then
244
245 call initialize(a, aNew)
246
247 call cpu_time(start_time)
248
249 a_d = a
250 aNew_d = aNew
251
252 ! bind the texture
253 aTex => a_d
254
255 iter=0
256 do while ( maxResidual > tol .and. iter <= iterMax )
257 maxResidual = 0.0 _fp_kind
258
259 call jacobiTexture <<<grid , tBlock >>>(aNew_d)
260
261 !$CUF kernel do <<<*,*>>>
262 do j = 1, ny
263 do i = 1, nx
264 maxResidual = &
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265 max(maxResidual , abs(a_d(i,j)-aNew_d(i,j)))
266 enddo
267 enddo
268
269 iter = iter + 1
270 if(mod(iter ,reportInterval) == 0) &
271 write(*,’(i8 ,3x,f10.6)’), iter , maxResidual
272 a_d = aNew_d
273 end do
274
275 a = aNew_d
276 call cpu_time(stop_time)
277 write(*,’(a,f10.3,a)’) ’ Completed in ’, &
278 stop_time -start_time , ’ seconds ’
279
280 end if
281
282 ! cleanup
283
284 nullify(aTex)
285
286 end program laplace

D.6 Spectral Poisson Solver
The following is the CUDA Fortran code used to solve the Poisson equation in Section 7.4.

1 module poisson_m
2 use precision_m
3
4 complex(fp_kind),device :: ref_sol
5
6 contains
7
8 attributes(global) subroutine real2complex(a, b, N, M)
9 implicit none

10 real(fp_kind ):: a(N,M)
11 complex(fp_kind ):: b(N,M)
12 integer , value:: N,M
13 integer :: i,j
14
15 i=threadIdx%x+( blockIdx%x-1)* blockDim%x
16 j=threadIdx%y+( blockIdx%y-1)* blockDim%y
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17
18 if ( i .le. N .and. j .le. M) then
19 b(i,j) = cmplx( a(i,j), 0._fp_kind ,fp_kind )
20 end if
21 end subroutine real2complex
22
23 attributes(global) subroutine real2complex1D(a, b, N, M)
24 implicit none
25 real(fp_kind ):: a(N*M)
26 complex(fp_kind ):: b(N*M)
27 integer , value:: N,M
28 integer :: i,index
29
30 index=threadIdx%x+( blockIdx%x -1)* blockDim%x
31
32 do i=index ,N*M,blockDim%x*GridDim%x
33 b(i) = cmplx( a(i), 0._fp_kind ,fp_kind )
34 end do
35 end subroutine real2complex1D
36
37 attributes(global) subroutine &
38 complex2real(input , output , ref_sol , N, M)
39 implicit none
40 complex (fp_kind ):: input(N,M),ref_sol
41 real (fp_kind ):: output(N,M)
42 integer , value:: N,M
43 integer :: i,j
44 real(fp_kind ):: scale
45
46 i=threadIdx%x+( blockIdx%x-1)* blockDim%x
47 j=threadIdx%y+( blockIdx%y-1)* blockDim%y
48
49 scale = 1. _fp_kind/real(N*M,fp_kind)
50 if ( i .le. N .and. j .le. M) then
51 output(i,j) = (real(input(i,j)) -real(ref_sol ))* scale
52 end if
53 end subroutine complex2real
54
55 attributes(global) subroutine &
56 solve_poisson( phi , kx,ky, N, M)
57 implicit none
58 complex (fp_kind ):: phi(N,M)
59 real(fp_kind ):: kx(N),ky(M)
60 integer , value:: N,M
61 integer :: i,j
62 real(fp_kind ):: scale
63
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64 i=threadIdx%x+( blockIdx%x-1)* blockDim%x
65 j=threadIdx%y+( blockIdx%y-1)* blockDim%y
66
67 if ( i .le. N .and. j .le. M) then
68 scale = (kx(i)*kx(i)+ky(j)*ky(j))
69 if ( i .eq. 1 .and. j .eq. 1) scale = 1. _fp_kind
70 phi(i,j) = -phi(i,j)/scale
71 end if
72 end subroutine solve_poisson
73
74 end module poisson_m
75
76 program poisson
77 use iso_c_binding
78 use precision_m
79 use cufft_m
80 use poisson_m
81 use cudafor
82 implicit none
83
84 real(fp_kind), allocatable :: kx(:), ky(:), x(:), y(:)
85 real(fp_kind), allocatable , device :: &
86 kx_d(:), ky_d(:), x_d(:), y_d(:)
87
88 real(fp_kind), allocatable , pinned :: &
89 rinput (:,:), routput (:,:)
90 real(fp_kind), allocatable , device :: rinput_d (:,:)
91 complex(fp_kind), allocatable , device :: cinput_d (:,:)
92
93 real(fp_kind ):: ref
94 integer :: i, j, n, m, istat
95 type(c_ptr ):: plan
96 real(fp_kind ):: twopi =8. _fp_kind*atan (1. _fp_kind)
97 real(fp_kind ):: hx, hy, alpha , L, r, norm_inf ,norm_l2 ,err
98 type(dim3 ):: grid , Block
99

100 type(cudaEvent ):: startEvent , stopEvent
101 real:: time
102 character(len =12) :: arg
103
104 istat=cudaEventCreate(startEvent)
105 istat=cudaEventCreate(stopEvent)
106
107
108 n=1024; m= 1024; L=1. _fp_kind
109 alpha =(0.1 _fp_kind )**2
110
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111 print *,"Poisson equation on a mesh :",n,m
112
113 !allocate arrays on the host
114 allocate(rinput(n,m),routput(n,m),kx(n),ky(m),x(n),y(m))
115
116 !allocate arrays on the device
117 allocate(rinput_d(n,m),cinput_d(n,m),kx_d(n),ky_d(m))
118
119 !initialize arrays on the host
120 kx= twopi/L* (/ (i-1, i=1,n/2),(-n+i-1, i=n/2+1,n) /)
121 ky= twopi/L* (/ (j-1, j=1,m/2),(-m+j-1, j=m/2+1,m) /)
122
123 hx=L/real(n,fp_kind)
124 hy=L/real(m,fp_kind)
125
126 x=-L/2+hx* (/ (i-1, i=1,n) /)
127 y=-L/2+hy* (/ (j-1, j=1,m) /)
128
129 do j=1,m
130 do i=1,n
131 r = x(i)**2 + y(j)**2
132 rinput(i,j) = exp(-r/(2* alpha)) &
133 * (r-2* alpha )/( alpha*alpha)
134 end do
135 end do
136
137 istat=cudaEventRecord(startEvent ,0) !start timing
138
139 !Copy arrays to device
140 rinput_d=rinput
141 kx_d = kx
142 ky_d = ky
143
144 !Initialize the plan for complex to complex transforms
145 if ( fp_kind == singlePrecision) &
146 call cufftPlan2D(plan ,n,m,CUFFT_C2C)
147 if ( fp_kind == doublePrecision) &
148 call cufftPlan2D(plan ,n,m,CUFFT_Z2Z)
149
150 ! Set up execution configuration
151 Block = dim3 (16,16,1)
152 grid = dim3(ceiling(real(n)/Block%x), &
153 ceiling(real(m)/Block%y), 1 )
154
155 ! Transform real array to complex
156 !call real2complex <<<grid ,Block >>>(rinput_d ,cinput_d ,N,M)
157 call real2complex1D <<<64,128>>>(rinput_d ,cinput_d ,N,M)
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158
159 ! Execute forward transform in place
160 if ( fp_kind == singlePrecision) &
161 call cufftExecC2C(plan ,cinput_d ,cinput_d ,CUFFT_FORWARD)
162 if ( fp_kind == doublePrecision) &
163 call cufftExecZ2Z(plan ,cinput_d ,cinput_d ,CUFFT_FORWARD)
164
165 !Call kernel to solve the Poisson equation in Fourier space
166 call solve_poisson <<<grid ,Block >>>(cinput_d ,kx_d ,ky_d ,N,M)
167
168 !Execute backward transform in place
169 if ( fp_kind == singlePrecision) &
170 call cufftExecC2C(plan ,cinput_d ,cinput_d ,CUFFT_INVERSE)
171 if ( fp_kind == doublePrecision) &
172 call cufftExecZ2Z(plan ,cinput_d ,cinput_d ,CUFFT_INVERSE)
173
174 ! Transform complex array to real and scale
175 istat = cudaMemcpy(ref_sol ,cinput_d (1,1),1)
176 call complex2real <<<grid ,Block >>>(cinput_d ,rinput_d , &
177 ref_sol ,N,M)
178
179 ! Copy result back to host
180 routput=rinput_d
181
182 istat=cudaEventRecord(stopEvent ,0)
183 istat=cudaEventSynchronize(stopEvent)
184 istat=cudaEventElapsedTime(time ,startEvent ,stopEvent)
185
186 print *,"Elapsed time (ms) :",time
187
188
189 ! Compute L1 and L_infinity norms of the error on CPU
190 norm_inf = 0. _fp_kind
191 norm_L2 = 0. _fp_kind
192 do j=1,m
193 do i=1,n
194 r = x(i)**2 + y(j)**2
195 rinput(i,j) = exp(-r/(2* alpha))
196 err = routput(i,j)-rinput(i,j)
197 norm_inf = max(abs(err),norm_inf)
198 norm_L2 = norm_L2+err*err
199 end do
200 end do
201 norm_L2=sqrt(norm_L2 )/(n*m)
202
203 print *,"L infinity norm:",norm_inf
204 print *,"L2 norm :",norm_L2
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205
206 deallocate(rinput ,routput ,kx,ky,x,y)
207 deallocate(rinput_d ,cinput_d ,kx_d ,ky_d)
208
209 call cufftDestroy(plan)
210 end program poisson
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A
allocatable variable attribute, see Attributes
Assigning devices to MPI ranks, see Message Passing Interface 
Asynchronous data transfers, 52–60 

Hyper-Q, 59 
pinned memory, 52 
profiling, 60 
streams, 52 

Atomics
atomicCAS, 173 
reduction with atomic locks, 173 

attributes(), 7 
Attributes 

variable attributes 
allocatable, 10

with pinned memory, 45 
with multi-GPU code, 116 

constant, 83
device , 7 
pinned, 46 
shared, 86
texture, 76 
value, 8 

function attributes 
device, 28 
global, 7–8

B
Bandwidth 

device 
effective, 41 
theoretical peak, 39–41
throughput vs. bandwidth, 42 

between host and device, 44 
asynchronous transfers, 52–60
batching transfers, 49 
cudaMemcpy(), 50 
pinned memory, 45 

BandwidthTest code, 49 
Bank conflicts, see Shared memory
bind(), see iso_c_binding module 
bind, see Texture memory 
Black-Scholes formula, 180 
blockDim predefined variable, 11 
blockIdx predefined variable, 11

C
cacheconfigexecuted, see Command Line Profiler 
cacheconfigrequested, see Command Line Profiler 
C intrinsics, 108
Coalescing 

finite difference, 189–199 
global memory, 63–74 
transpose, see Transpose 

Command Line Profiler, 34 
dynamic vs. static shared memory, 92 
fields
cacheconfigexecuted, 86 
cacheconfigrequested, 86 
conckerneltrace, 227 
cputime, 35 
dynsmemperblock, 92 
gpustarttimestamp, 60 
gpustoptimestamp, 60 
gputime, 35 
gridsize, 111
l1_local_load_hit, 82 
memtransferhostmemtype, 49 
memtransfersize, 227 
occupancy, 34 
regperthread, 87 
stasmemperblock, 92 
streamid, 60 
threadblocksize, 111
timestamp, 60

environment variables 
COMPUTE_PROFILE, 242 
COMPUTE_PROFILE_CONFIG, 242
COMPUTE_PROFILE_CSV, 242 
COMPUTE_PROFILE_LOG, 242

visualizing traces, 226–227 
Compilation

options, 24–27
instruction optimization, 107–110
just-in-time (JIT), 25–26, 242 
parallel thread execution (PTX), 24–27
separate compilation, 27–30 

Compute capability, 13, 17–18, 25–26 
Compute mode, 141–147, 245–246 
conckerneltrace, see Command Line Profiler 
Constant memory, 61, 82–85, 194–195, 203 
constant variable attribute, see Attributes 

Index
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Convolution, 222
cputime, see Command Line Profiler 
CPU timers, 32 
CUBLAS
cublasInit(), 249–251
cublas module, 249–251 
cublasSgemm(), 249–251 

CUDA_CACHE_DISABLE, 242 
CUDA_CACHE_MAXSIZE, 242 
CUDA_CACHE_PATH, 242
CUDA C libraries, calling, 249 
cudadevice module, 108
cudaDeviceCanAccessPeer(), 118–119 
cudaDeviceEnablePeerAccess(), 125 
cudaDeviceGetSharedMemConfig(), 93 
cudaDeviceProp derived type, 14–15, 18, 243, 246 
cudaDeviceSetCacheConfig(), 82, 85 
cudaDeviceSetSharedMemConfig(), 93 
cudaDeviceSynchronize(), 23–24, 32 
cudaEvent derived type, 33
cudaEventCreate(), 33 
cudaEventDestroy(), 33 
cudaEventElapsedTime(), 33
cudaEventRecord(), 34, 60 
cudaEventSynchronize(), 34
CUDA_FORCE_PTX_JIT, 242 
cudafor module, 8, 23 
cudaFuncCachePreferEqual, 85 
cudaFuncCachePreferL1, 85
cudaFuncCachePreferNone, 85 
cudaFuncCachePreferShared, 85 
cudaFuncSetCacheConfig(), 82, 85
cudaGetDeviceCount(), 15, 23 
cudaGetDeviceProperties(), 15 
cudaGetErrorString(), 23 
cudaGetLastError(), 23–24 
CUDA_LAUNCH_BLOCKING, 32–33, 241
cudaMemcpy(), 50 
cudaMemcpyAsync(), 52, 222–226 
cudaMemcpy2D(), 51
cudaMemcpy2DAsync(), 148–149 
cudaMemcpyPeer(), 121–126, 128–131
cudaMemGetInfo(), 125 
cudaPeekAtLastError(), 23–24 
cudaSetDevice(), 115–116, 137, 140, 144–146 
cudaSharedMemBankSizeDefault, 93 
cudaSharedMemBankSizeEightByte, 93 
cudaSharedMemBankSizeFourByte, 93 
cudaSuccess, 23–24
CUDA_VISIBLE_DEVICES, 120–121, 126–127, 241
CUFFT, 211
cufftDestroy(), 212 

cufftExec(), 216–218 
cufftPlan2d(), 213
cufftPlan2DSwap(), 213 
cufftSetStream(), 214, 222–226 

CUF kernels, 160
instruction-level parallelism in, 114 
reductions in, 113 
streams in, 113

CURAND, 155
library routines, 251–252 
curandGenerateUniform(), 156
curand_m module, 156–159 
generate_seed_pseudo(), 186

D
Data parallelism, 5
Data transfers, 44–60 

asynchronous, 52–60 
batching, 49 
pinned memory, 45 

Deadlocks, 174
device, see Attributes
Device intrinsics, 107 
Device management, 13–15

peer-to-peer, 117–121
Device memory, 61–85 

constant, 82–85 
declaring, 62 
global, 63–74 
local, 79–82
texture, 74–79

DFT. See Discrete Fourier Transform
Diagonal reordering, see Transpose 
dim3 type, 12–13
Direct access, see Unified Virtual Addressing
Directed rounding, 108
Direct memory access (DMA), 45
Direct transfers, see Unified Virtual Addressing
Discrete Fourier Transform (DFT), 211
Divergent warps, 109
DMA. See Direct memory access
dynsmemperblock, see Command Line Profiler 

E
ECC memory. See Error-correcting code 
Effective bandwidth, see Bandwidth 
Environment variables, 241–242 
Error-correcting code (ECC) memory 

effect on memory availability, 18 
effect on bandwidth, 66, 68–69, 71–74
enabling and disabling, 243–245

Error handling, 23–24
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Exclusive process, see Compute Mode
Exclusive thread, see Compute Mode 
Execution configuration, 8, 10 

dynamic shared memory, 87–90 
limits, 13–20, 239 
optimization, 102–106
streams, 52

F
Fast Fourier Transform (FFT) 

convolution, 222 
CUFFT, see CUFFT
Poisson solver, 229 
spectral derivatives, 219 

Fast math intrinsics, 108
fastmath, see -Mcuda compiler option
FFT. See Fast Fourier Transform 
Fine-grained parallelism, 8, 140 
Finite difference method, 189–210 

nine-point 1D finite difference stencil, 189–203 
nonuniform grids, 200–203 
2D Laplace equation, 204–210 

FMA. See Fused Multiply-Add
Fused Multiply-Add (FMA), 164
-Mcuda=nofma compiler option, 26, 108–109 
vs. MAD instruction, 109

G
generate_seed_pseudo(), see CURAND 
get_command_argument(), 181 
gettimeofday(), 137–138, 271–272
global, see Attributes 
Global memory, 18, 61, 209–210

coalescing, see Coalescing 
gpustarttimestamp, see Command Line Profiler 
gpustoptimestamp, see Command Line Profiler 
gputime, see Command Line Profiler 
gridDim predefined variable, 29 
gridsize, see Command Line Profiler 
Graphics Processing Unit (GPU), 3

H
Half-warps, memory transactions of, 63–70, 82, 93, 97–99 
Host, 6

and device, transfers between, 44–60 
asynchronous data transfers, 52–60 
pinned memory, 45–49
small data transfers, batching, 49–50

Host-device synchronization, 32 
Host-to-device bandwidth, 50–51 
Host-to-device data transfer, 45

Hybrid computing model, 4
Hyper-Q, 59–60

I
IEEE-754 Standard for Floating-Point Arithmetic, 164 
Instruction-level parallelism (ILP), 102, 105–106

in CUF kernels, 113–114
Instruction optimization 

compiler options, 108–109 
device instrinsics, 107 
divergent warps, 109–110

I/O Hub (IOH) chipset, 117–120 
iso_c_binding module 

calling CUDA C libraries, 249–252 
calling user-written CUDA C, 252–253 
with CUFFT, 212–214 
with CURAND, 157–159

J
Just-in-time (JIT) compilation, 25–26 

environment variables, 242

K
Kahan summation, 175
keepptx, see -Mcuda compiler option 
Kernel, 6
Kernel Loop Directives, see CUF Kernels

L
Laplace equation, 204–210 
L1 cache, 68, 85–86

and shared memory, 68–71
-Mcuda=noL1, 70, 73, 82, 86 

LoaD Uniform (LDU) instruction, 84–85 
Load-use separation, 105–106 
Local memory, 61, 79–82
l1_local_load_hit, see Command Line Profiler

M
Matrix transpose, see Transpose 
-Mcuda compiler option, 26 
fastmath, 37–38, 41, 108–109 
keepptx, 81, 84–85 
maxregcount:N, 27, 87 
[no]flushz, 109
nofma, 108–109, 165 
noL1, 70
ptxinfo, 24–25, 29–30, 80, 84, 91–92 
rdc,29–30 

Memory bandwidth, 39–42
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memtransferhostmemtype, see Command Line Profiler 
memtransfersize, see Command Line Profiler 
Message Passing Interface (MPI), 5 

multi-GPU programming with, 140–151 
MVAPICH, 149
ranks, assigning devices to, 141–147 
transpose, 147–151 
GPU-aware, 149 

Misaligned access, 65–69
Monte Carlo method 

atomic locks, reductions with, 173 
CUF kernels, 161
reduction kernels, 168 
CURAND, 156 
IEEE-754 precision, 164 
option pricing, 180 
summation, accuracy of, 174 

MPI. See Message Passing Interface 
mpiDeviceUtil module, 147–148 
Multidimensional arrays, 12 
Multi-GPU programming, 115–117 

MPI, 140–151
peer-to-peer, 117–140

N
[no]flushz, see -Mcuda compiler option
nofma, see -Mcuda compiler option 
noL1, see -Mcuda compiler option
nullify(), 77 
nvidia-smi, 242–247
NVIDIA System Management Interface, see nvidia-smi 
nvprof, 35, 186, 234

O
occupancy, see Command Line Profiler 
Occupancy, 102–106

Command Line Profiler, 34–35
registers, 86–87

On-chip memory, 85–93 
L1 cache, 85–86
registers, 86–87 
shared memory, 87–93

P
Pageable memory, 45
Pairwise summation, 175
Parallel computation, 3–5
Parallel Thread eXecution (PTX), 24–26
Peer-to-peer communication, see Multi-GPU programming
Persistence mode, see Compute Mode

pgaccelinfo utility, 19–20
!pgi$ ignore_tkr directive, 251–252
pinned, see Attributes
Pinned memory, 45
Poisson solver, 229–234
precision_m module, 156–157
Profiling, 34
Prohibited mode, see Compute Mode 
PTX. See Parallel Thread eXecution 
ptxinfo, see-Mcuda compiler option

R
Random number generation, 156–161 
Recursive summation, 174 
Reductions 

via CUF Kernels, 112–113, 160–161 
via atomics, 172–174 

Registers, 86–87 
limiting, 87
hardware limits, 87 

regperthread, see Command Line Profiler 
Relocatable device code (rdc), 29–30

S
shared, see Attributes 
Shared memory, 61, 87–92

bank conflicts, 93 
in coalescing, 87–90 
dynamic shared memory, 91 
used to limit occupancy, 104 

Single-instruction, multiple-thread (SIMT), 63 
Small data transfers, batching, 49 
Spectral differentiation, 219
stasmemperblock, see Command Line Profiler 
Streams, 52 

in CUF kernels, 113 
nondefault, 52–53 
in asynchonous data transfers, 52 

streamid, see Command Line Profiler 
Synchronization, host-device, 32 
syncthreads(), 90, 97, 143, 170, 192–195

T
texture, see Attributes 
Textures, 62, 74–79 

in 2D Laplace solver, 204–210
Theoretical peak bandwidth, 39–41
Thread block, 9–10
threadblocksize, see Command Line Profiler 
threadfence(), 173 
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threadIdx predefined variable, 8, 11–12 
Thread-level parallelism, 102–105 
timestamp, see Command Line Profiler 
Timing via CUDA events, 32–34
Transpose, 93–102, 131–140, 147–151 

bank conflicts, 97–98 
coalesced, 95–96 
diagonal reordered, 99–102 
multi-GPU

peer-to-peer, 131–140 
MPI, 147–151

partition camping, 
shared memory bank conflicts,

Thread-level parallelism, 102–105

U
Unified Virtual Addressing (UVA), 117

direct access, 117 
direct transfers, 121–131

V
value, see Attributes

W
warp, 63, 65–70 

divergent, 109–110
occupancy, 102–103
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