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EVIDENCE FOR ASSOCIATION OF NON-ACETYLATED HISTONES WITH NEWLY 

REPLICATED EPSTEIN-BARR VIRUS DNA.  Sungeeta Agrawal, Ayman El-Guindy, 
and I. George Miller.  Department of Pediatrics, Yale University, School of Medicine, 
New Haven, CT.   
 
ABSTRACT 

 Epstein-Barr Virus (EBV) has two states of infection, latent and lytic.  During the latent 

state the viral genome remains stable in cells as episomes and replicates with cellular DNA.  

During the lytic cycle the viral DNA becomes amplified and packaged in newly formed virions.  

An unsolved problem is whether newly replicated EBV DNA produced upon lytic cycle 

activation is associated with histones, and if so, whether these histones are acetylated.  This 

question has biological significance as knowing the chromatin structure of genes is important in 

determining their function and expression profile.  Our hypothesis is that newly synthesized EBV 

lytic DNA is associated with histones and the histone tails are selectively acetylated.  To 

investigate our hypothesis we performed chromatin immunoprecipitation (ChIP) in HH514-16 

cells, a Burkitt’s Lymphoma cell line, during latent and lytic replication.  We used quantitative 

PCR (qPCR) to detect the relative concentration of DNA among the different samples.  We tested 

three different variables: type of inducing agent, duration of treatment, and different regulatory 

regions in the genome of Epstein-Barr Virus.  We found that in cells induced into the lytic cycle 

with Trichostatin A (TSA), a histone deacetylase inhibitor (HDACi), association of newly 

replicated EBV DNA with acetylated histone 3 (H3) increased ~ 6-10 fold.  This increase in 

association was greatest 72 hrs after treatment.  Furthermore, activation of lytic viral replication 

in HH514-16 cells using a different inducing agent, Azacytidine (AZC), which is known to 

function as a DNA methyltransferase inhibitor, increased binding of H3 with viral DNA ~8 fold. 

However, unlike TSA, AZC increased the acetylation state of histones bound to newly 

synthesized viral DNA only ~ 2 fold.  Changing the regulatory region of the EBV genome 

analyzed in qPCR did not affect our results.  Our results suggest that newly replicated viral DNA 

is associated with histones, a fraction of which are acetylated.  The degree of acetylation likely 

depends on the agent used to induce the lytic cycle.  H3 is highly acetylated when an HDACi is 

used and less acetylated when AZC is used.  Our study provides new insight on the epigenetic 

profile of newly replicated viral DNA during the lytic cycle.  It remains to be determined whether 

histones are packaged together with viral genomes into virions and whether the chromatin state of 

virion DNA affects gene expression after the virus enters uninfected cells. 
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INTRODUCTION and LITERATURE REVIEW 

Epstein-Barr Virus and its Life Cycle 

Characteristics of the Virus 

Epstein-Barr Virus (EBV), a member of the herpesvirus family, primarily infects 

B-lymphocytes but sometimes infects epithelial cells, Natural Killer cells, and T-cells 

((1-3), as reviewed in (4, 5)).  Infection with EBV is common.  According to the CDC, in 

the United States approximately 95% of adults between ages 35 and 40 are infected.  

Worldwide, 90% of adults are infected (6). 

Most people become infected during childhood when the infection is 

asymptomatic.  An early age of infection is especially true in the developing world, as 

rates of infection in children of developed countries are lower than in developing 

countries.  Conversely, the rates of infection in adolescence or early adulthood are higher 

in developed countries than in developing countries.  When an infection occurs during 

adolescence or early adulthood the disease often manifests as infectious mononucleosis 

(IM) (7) .   

Once someone becomes infected with EBV the viral DNA will remain 

indefinitely as an episome1 in a latent2 stage in about 10% of the exposed cells (8, 9).  

This episome can be found in the nucleus of B-cells (10).  The lytic3 cycle can become 

                                                
1 An episome is a double-stranded, circular, extra-chromosomal DNA molecule. 
2 Latent cycle, also referred to as lysogenic cycle, is where the virus remains dormant. 
Gene expression of most of the viral reading frames is turned off except for a few genes 
that are sufficient to cause transformation and immortalization of infected cells.  Very 
little viral replication takes place in this cycle.   
3 The lytic cycle is when active viral replication takes place and viral particles (virions) 
are formed.  Most of the genes are expressed during this stage.   
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activated at any point in time in these cells.  If it does become activated EBV DNA is 

amplified 100-1000 times and repackaged, as a 184 kb double-stranded linear genome, 

into virions4 (11, 12).  The DNA is surrounded by a capsid, tegument5 and a glycoprotein 

spiked envelope (10, 13, 14).  Then the virion is released.  In epithelial cells in the mouth 

the virus remains in the lytic stage; it is shed in the saliva and can be passed on orally (15, 

16).  

 

Latent Infection 

The EBV genome is linear in virus particles but when it infects B-cells it remains 

in the cell as a multicopy episome.  During latency the virus expresses a small number of 

viral genes.  One such class of genes is the six EBV nuclear antigen (EBNA) genes, the 

expression of which are driven by either the BamH16 W promoter (Wp) during initial 

infection, the BamH1 C promoter (Cp) during the most transcriptionally active latent 

state (type III latency), and the BamH1 Q promoter (Qp) during a less transcriptionally 

active latent state (type I latency) (17-22).    The gene products (except for EBNA-1) are 

targets of cytotoxic T-cells ((23), as reviewed in (24)).  EBNA-1 protein also recognizes 

the EBV latent origin of replication (oriP) (25).  The binding of EBNA-1 to oriP is 

necessary for replication to take place.  Replication in latently infected lymphocyctes will 

only occur once per cell cycle (26, 27).  EBNA-1 is also important for episome 

maintenance as it tethers EBV DNA to cellular chromosomes (28-30).  EBNA-2, the first 

                                                
4 A virion is a complete virus particle that can exist outside of the cell. 
5 Tegument refers to the proteins that fill the space in between the envelope and 
nucleocapsid of a virus. 
6 BamH1 is a restriction endonuclease that recognizes the 6bp sequence of DNA 5’-
GGATCC-3’, and cleaves after the 5’-G.  It was used to digest the EBV genome, and the 
genes were named accordingly (see footnote on naming EBV genes). 
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protein that is expressed when EBV infects B-cells, is a transactivator that regulates the 

expression of genes encoding latent membrane protein 1 (LMP1), LMP2A, and also 

many cellular genes (4, 31).  LMP1 is an inhibitor of apoptosis and functions by 

upregulating expression of the BCL2 and A20 genes (which encode anti-apoptotic 

proteins) (32, 33).  In fact, LMP1 has been shown to be an oncogenic protein – 

expression of the gene encoding LMP1 in the B-cells of transgenic mice results in the 

mice developing lymphomas (34).  LMP1 also mimics tumor necrosis factor (TNF) 

receptors, which are constitutively expressed (35).  LMP2A inhibits B-cell receptor 

(BCR) function by binding to and sequestering tyrosine kinases7 (36).  This binding 

prevents EBV in infected B-cells from being activated by antigens into the lytic cycle.  

Antigenic binding also mildly stimulates the tyrosine kinases.  This stimulation is 

important for the survival of B-cells (37).  EBV also expresses non-translated RNAs: 

EBERs (EBV-encoded RNAs) and BARTs (BamH1-A rightward transcripts) (38-41).  

EBERs are thought to induce the secretion of interleukin-10, which may be responsible 

for stimulating the growth of EBV-infected B-cells as well as suppressing cytotoxic T-

cells (42).  However, the exact function of EBERs in the viral life cycle is not clear.   

There are four different patterns of EBV latency that are known (as reviewed in 

(4, 5)).  In type I latency, found in Burkitt Lymphoma cells, the viral genes expressed 

include two EBER genes, the BARTs and EBNA-1 (43, 44).  In type 2 latency, seen in 

Hodgkin’s disease, LMPs 1, 2A, and 2B are expressed in addition to the genes expressed 

in type I latency (45).  In latency type III, seen in immunocompromised patients with 

lymphoproliferative diseases as well as lymphoblastoid cell lines transformed with EBV, 

                                                
7 Tyrosine kinases are cell membrane enzymes involved in signal transduction.  They 
transduce signals by phosphorylating tyrosine residues in proteins. 
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the two EBER genes, the three LMP genes, and all six EBNA genes are expressed (46).  

Latency type 0 is found in memory B-cells and has no detectable gene expression (47).    

 

Genes Critical to Lytic Activation of Epstein-Barr Virus 

ZEBRA, a protein encoded by the viral gene BZLF18, is a major transcription 

factor critical to lytic replication of EBV (48, 49).  Expression of ZEBRA is sufficient to 

activate the lytic cycle in latently infected cells (48, 50).  ZEBRA was originally thought 

to be an immediate early protein, but an experiment with the inhibitor of protein 

synthesis, cyclohexamide, proved otherwise (51).  Blocking protein synthesis prevented 

ZEBRA mRNA from being produced.  This discovery suggests there is activation of a 

gene upstream of BZLF1 responsible for initiation of transcription of BZLF1.  

Nevertheless, ZEBRA is a very early protein that activates expression of early viral lytic 

genes.  ZEBRA also binds to its own promoter, Zp, and autoactivates transcription of 

itself, enhancing the switch from latent to lytic cycle (52).   One of the early proteins 

ZEBRA activates is R transactivator (Rta), encoded by the BRLF1 gene (53).  Na, 

another early viral protein encoded by the open reading frame BRRF1, works with Rta to 

activate ZEBRA (54, 55).  ZEBRA and Rta work synergistically to activate expression of 

downstream genes such as BMRF1, which encodes the viral DNA polymerase 

processivity factor, also known as Early Antigen Diffuse (EA-D) (56).  Both ZEBRA and 

Rta bind to the BMRF1 promoter.  ZEBRA also binds to the lytic origin of replication, 

                                                
8 Naming EBV genes: the EBV genome was digested with BamH1, thus the first letter for 
EBV genes is B.  The fragments were labeled A-Z, according to decreasing size, so the 
second letter corresponds to the size of the fragment.  The third letter corresponds to left-
ward (L) or right-ward (R) transcription.  The fourth letter stands for frame and the 
following number is which specific frame in the Bam fragment is being referred to.   
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oriLyt, where it acts as a replication protein (57).   Expression of late genes, such as viral 

capsid antigens, occurs after DNA replication is initiated (58-60).  Late gene expression 

is generally dependent on viral replication, as blocking replication results in the absence 

of late gene expression (61).   However, Rta was found to be capable of activating some 

late genes, such as BRLF2 and gp350, independent of ZEBRA and in the absence of 

DNA replication (62).  Rta was shown to actually activate these genes to a greater degree 

when ZEBRA was absent than when ZEBRA was present.  Thus, ZEBRA is thought to 

play a repressive role in Rta’s ability to activate some late genes at early times.   

 

The Structure of ZEBRA Protein 

ZEBRA has 4 domains: a transcriptional activation domain (aa 1-166), a 

regulatory domain (aa 167-177), a basic domain (aa 178-194) and a dimerization domain 

(aa 195-225) (63-65).   Two of the main functions that ZEBRA performs during the lytic 

phase of the EBV life cycle are activation of the expression of Rta and other early lytic 

genes and promotion of viral replication.  Both functions are dependent on the capacity of 

ZEBRA to recognize specific DNA sequences, known as ZEBRA response elements 

(ZREs), through its basic domain (66).  Studying 48 single point mutations, all installed 

in the DNA binding domain of ZEBRA, resulted in four different phenotypes.  The first 

phenotype was identical to the phenotype of wild type (wt).  The second phenotype was 

inability to activate expression of Rta.  These mutants also bound weakly to DNA.  The 

third phenotype was inability to syngergize with Rta to activate expression of EA-D.  The 

last phenotype was inability to activate expression of late viral genes.  There are a few 

hypotheses as to why these mutants were able to activate early but not late genes.  One 
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hypothesis is that perhaps the mutants were unable to activate a specific early gene that is 

responsible for activating late genes.  Another hypothesis is since the mutants seem to be 

more soluble in 0.3M NaCl than wt, they may be defective in nuclear compartment 

localization (described below).  Lastly, the mutants could be defective at binding oriLyt.  

Two amino acids in ZEBRA, S167 and S173, have been found to be 

phosphorylated in vivo, most likely by casein kinase 2 (CK2) which phosphorylates those 

amino acids in vitro (65, 67).  These amino acids are critical to ZEBRA’s ability to 

repress Rta from activating some of the late viral genes at early times.  If the S167 and 

S173 amino acids are not phosphorylated ZEBRA cannot repress Rta.  Additionally, 

when S173 was mutated to alanine so that it could not be phosphorylated ZEBRA was 

unable to bind to the origin of replication and initiate replication (64).  The ZEBRA 

S173A mutant was, however, able to activate Rta and EA-D.  This discovery indicates 

that phosphorylation is important for DNA binding and also suggests that stronger DNA 

binding is needed for activation of replication than for activation of transcription.   When 

S173 was mutated to aspartic acid, which resulted in a phosphomimetic mutant (the 

mutant mimics the activity of phosphorylated S173), ZEBRA was still able to activate 

DNA replication.  It did so, in fact, with greater efficiency. 

 

Lytic Replication Occurs in Nuclear Compartments 

 When fluorescent in situ hybridization (FISH)9 was used to probe viral DNA 

(specifically the BAMH1W gene) in EBV-infected cells, the viral DNA was found in 

small intranuclear dots (68).  When these cells were induced into the lytic cycle the viral 

                                                
9 FISH is a technique where fluorescent DNA probes are used to find the location of 
certain DNA sequences on chromosomes, or in this case episomes. 
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DNA was found either in course granules or larger globules.  The thought was that these 

larger globules were actually compartments in the nucleus where replication of the virus 

was taking place.  Compartmentalization in the nucleus appears to be characteristic to 

lytic replication of all of the herpesviruses, including HSV and CMV.  Upon further 

investigation ZEBRA, which is diffusely distributed throughout the nucleus immediately 

after activation, was also found to localize to these compartments about 46 hours after the 

lytic cycle was activated (69).  In addition, the protein EA-D colocalized with ZEBRA 

around this time period to form mature compartments.  If viral replication was blocked by 

the inhibitor of viral DNA polymerase, phosphonoacetic acid (PAA) (70), however, 

ZEBRA and EA-D did not colocalize after 46 hours.   

The point mutations in ZEBRA’s basic domain that were described earlier also 

affected the ability of ZEBRA to localize to these replication compartments (71).    

S186A, a mutation that led to ZEBRA’s inability to activate Rta, resulted in ZEBRA 

being diffusely distributed through the nucleus and not localized to replication 

compartments.  The mutation R179A, which resulted in ZEBRA being unable to activate 

EA-D, was found in many discrete punctate foci.  Cells transfected with these two 

mutants, S186A and R179A, did not express EA-D.  The mutation unable to activate late 

genes, Y180E, also caused ZEBRA to be found in punctate foci.  In this cell EA-D was 

present but diffusely located instead of localized to replication compartments.  The 

reason the latter two mutations led to ZEBRA being found in a speckled appearance is 

not clear, but the punctate foci could represent an intermediate stage between lytic 

activation and viral DNA replication.   Thus, the speckles wouldn’t be found when the 

S186A mutant was used as this mutant is not able to activate the lytic cycle. 
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Induction of the Lytic Cycle 

The original thought was that cells infected with EBV could be induced into the 

lytic cycle mainly through the Protein Kinase C (PKC) pathway10 ((72), as reviewed in 

(68)), as phorbol esters activate the PKC pathway and  also activate the lytic cycle of 

EBV (73).  However, subsequent evidence suggests that there is more than one pathway 

to lytic activation.  This evidence comes from the observation that there are many ways to 

activate the lytic cycle of EBV-infected cells.  Also, different cell lines are activated in 

different ways.  For example, HH514-16 cells (a Burkitt’s Lymphoma cell line) can be 

activated by HDAC inhibitors such as TSA and sodium butyrate as well as the 

demethylating agent Azacytidine (AZC), but cannot be activated by phorbol esters (68).  

In B95-8 cells (a lymphoblastoid cell line), however, the opposite is true – phorbol esters 

activate the lytic cycle but HDAC inhibitors do not (74).  In the lymphoid Raji cells, 

where HDAC inhibitors don’t activate the lytic cycle but phorbol esters do, HDAC 

inhibitors actually enhance the effect of phorbol esters.  In Akata cells, which are derived 

from a Japanese patient with Burkitt’s, the main activator is anti-IgG (75).  The other 

agents do not activate the lytic cycle in this cell line. 

Why different cell lines respond differently to inducing agents is not clear.  For 

those cells that are not respondent to phorbol esters, the lack of response does not have to 

do with failure to activate PKC because PKC was induced by the phorbol ester in all cell 

lines regardless of whether or not the lytic cycle was induced (68).  Also, the differences 

in response to HDAC inhibitors do not have to do with chromatin configuration of the 

DNA, as the nucleosomal structure of EBV in the responsive HH514-16 and the 

                                                
10 The PKC pathway is a signal transduction pathway.   
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refractory B95-8 cells were similar to each other when digested with micrococcal 

nuclease.  This mystery of why different cell lines respond differently to inducing agents 

is still under investigation.   

As a note, the inducing agents aren’t sufficient to induce the lytic cycle in all EBV 

infected cells (76).  Only 20-30% of cells enter the lytic cycle when treated in vitro.  The 

refractory cells aren’t permanently so – if they are recultured for several weeks they can 

also be induced into the lytic cycle.  Why some cells are able to be induced and some are 

not is also something that is still under investigation.   

 

Negative Regulation of the Lytic Cycle 

 While there exists several agents that can induce the lytic cycle, there also exist 

agents that can inhibit the cycle from being activated.  Retinoic acid (RA) is one such 

agent that has been shown to negatively regulate lytic induction of the virus by the 

phorbol ester TPA (77).   RA prevents induction by blocking ZEBRA’s ability to activate 

downstream promoters (78).   The receptors for RA (RAR) appear to be involved, as 

expression of RAR plasmids blocks ZEBRA from transactivating the downstream gene 

BMRF1.   

 Endogenous proteins also serve to regulate lytic activation.  The p65 subunit of NF-

κB11 blocks ZEBRA’s function in EBV-infected cells (79).  In fact, the two proteins have 

been shown to physically interact.  The thought is that perhaps NF-κB’s inhibition of 

lytic activation is a mechanism to prevent the latent cycle from being disrupted.  Further 

evidence supporting this theory comes from the fact that when the negative inhibitor of 

                                                
11 NF-κB stands for nuclear factor kappa-light-chain-enhancer of activated B cells, and 
has become widely accepted to be a major transcription factor in most animal cells. 
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NF-κB, IκB, was overexpressed in Raji cells ZEBRA’s ability to transactivate the 

promotor of early gene BHRLF1 increased 4 fold.  Another endogenous protein, the 

tumor suppressor p53, was also shown to interact with ZEBRA (80).  P53’s 

overexpression blocked ZEBRA from activating the lytic cycle.   

 

Epigenetics 

Epigenetics is the study of the ability of cells to inherit phenotypic variations that 

do not manifest from changes in the DNA sequence (as reviewed in (81)).  Epigenetics 

plays a major role in transcriptional regulation of genes.  The way the phenotypic 

variations are thought to arise is from changes in the DNA methylation pattern or 

alterations of the chromatin structure associated with genes.  These alterations are often 

in the form of post-translational modifications of the N-terminal tails of histones.  

Histones are the core proteins that DNA is wrapped around to form nucleosomes.  The 

four core histone proteins are H2A, H2B, H3, and H4.  One nucleosome is an octamer 

that contains 2 of each core histone protein along with 147 bp of DNA.  Modifications of 

the histone tails, typically those found on H3 and H4, are thought to influence 

transcriptional activity.  These post-translational modifications include acetylation12, 

methylation13, phosphorylation14, ubiquitination15, and sumoylation16 (as reviewed in (81, 

82)).  The modification state of chromatin can then be passed on to daughter cells during 

                                                
12 Acetylation is the addition of a CH3CO group. 
13 Methylation is the addition of a CH3 group.   
14 Phosphorylation is the addition of a PO4 group. 
15 Ubiquitination is the addition of ubiquitin, a small protein.  More than one monomer of 
ubiquitin can be added.  Often these are used to tag proteins for degradation.   
16 Sumoylation is the addition of a SUMO protein, which is similar to ubiquitin but does 
not typically tag proteins for degradation. 
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mitosis.  The mechanism of conserving histone changes among progeny is not yet 

completely elucidated, but a semi-conservative model has evidence supporting it.  In this 

model the H3 and H4 histones split into 2 identical dimers, each of which go to the 

daughter strand.  These dimers can then be used as a template for the new H3 and H4 in 

the nucleosome.  The evidence supporting this model includes the finding that the form 

of H3/H4 that was shown to be deposited was a dimer and not a tetramer (83).   

 

Chromatin Structure of Herpesviruses 

 The chromatin structure of another herpesvirus, Herpes Simplex Virus 1 (HSV1), 

has been largely determined.  During the latent cycle the HSV1 DNA is packaged into 

chromatin (84).  The HSV1 DNA is also associated with histones early in the lytic cycle, 

but the histones dissociate from viral DNA during the process of packaging viral DNA 

into capsids (85, 86).  Additionally, during the lytic cycle the N-terminal tails of H3 

associated with viral DNA are acetylated such that transcription is facilitated.   

 While there is not a lot of information on chromatin structure of EBV during the 

lytic cycle, there is some literature on EBV’s chromatin structure during the latent cycle.  

For the most part EBV DNA is wrapped around histone octamers during latent infection 

(87).  However, the chromatin structure was found to be different around the latent origin 

of replication (OriP) and the gene encoding EBER1 (88).  These areas of DNA are easily 

digested by micrococcal nuclease while the remaining DNA is not.  This finding suggests 

that these areas of DNA are not protected in nucleosomes.  That the region that encodes 

the EBER gene is not chromatinized might explain why the EBER1 gene is transcribed in 

latent infection.  For the case of OriP, this area of DNA appears to be attached to cellular 
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chromosomes (88, 89).  The ZEBRA promoter (Zp) and Rta promotor (Rp), on the other 

hand, were both found to be in nucleosomes when digested with micrococcal nuclease 

(68).  This finding makes sense, as the corresponding genes are transcriptionally silent 

during the latent cycle.   

 

Acetylation 

Acetylation of the N-terminal tails of histones is often a form of regulation of 

gene expression (Figure 1).  Acetylation can also occur on proteins other than histones, 

such as transcription factors like p53 (90).  Like the majority of post-translational 

modifications, acetylation is reversible.  The enzyme responsible for acetylation is 

histone acetyl transferase (HAT), with the main mammalian members being p300, CBP, 

and pCAF (as reviewed in (82)).  HATs were first discovered to target the lysine residues 

in the N-terminal tails of histones (especially histone 3). HATs are typically found in 

multi-protein complexes with other transcription factors.  Since acetylation neutralizes 

positively charged lysine residues it makes the histones less attracted to negatively 

charged DNA.  Thus, acetylated chromatin is more loosely packed and more accessible to 

transcription factors (as reviewed in (82, 91)).  Conversely, enzymes that deacetylate 

histones, HDACS, are thought to be associated with decreased transcription as they lead 

to DNA being more tightly packed around the chromatin.  There are eleven different 

isoforms of HDACs that are numbered from 1 to 11.  The role of these HDACs is not 

only to remove acetyl groups from histone tails to induce transcriptional repression, but 

also to allow other post-translational modifications to occur at the N-termini of these 

deacetylated histones (82).  
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Figure 1: Histone acetylation as a form of transcriptional regulation.  DNA, when arranged in 
chromatin, is wrapped around an octamer of histone proteins with H3 and H4 both having N-terminal tails 
that extend out.  Acetylation of the lysines on these tails can neutralize positive charge and thus loosen the 
association of DNA with the histones.  This loosening allows greater access of transcription factors to the 
DNA, often causing activation of transcription.  The enzymes responsible for acetylation are Histone 
Acetyl Transferases (HATs), and the enzymes responsible for the counter action, deacetylation, are Histone 
Deacetylases (HDACs).  Generally, these enzymes are recruited to chromatin via transcription factors.    

 

 

 

These post-translational modifications of histones add another level of regulation during 

gene expression.  Different modifications of histone tails will have a specific effect on the 

activity of a promoter, a process known as the “histone code” (as reviewed in (92)). 

 

Acetylation May be Important for Lytic Activation of EBV 

Some experiments have been performed which demonstrate that acetylation of 

histones associated with Zp is necessary for the switch from latent to lytic cycle to occur 

(93).  Researchers stably transfected episomes containing Zp into Akata cells and found 
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that the promoter was chromatinized during the latent cycle (87).  They also found an 

increase of Zp associated with acetylated histones (specifically H4) upon induction of the 

lytic cycle.  Acetylation, however, is not sufficient for activation of the lytic cycle (74).  

A study was done looking at the effect of the HDAC inhibitors TSA and sodium butyrate 

on the acetylation state of the histones associated with Zp and the Rp in cell lines that are 

both responsive (HH514-16) and refractory (Raji, B95-8) to lytic activation by these 

agents.  Hyperacetylation of H3 and H4 on these histones occurred in both types of cell 

lines, but lytic activation did not occur in the refractory ones.  In addition, valproic acid 

(VPA), an HDAC inhibitor (HDACi) that does not induce the lytic cycle in HH514-16 

cells, also leads to hyperacetylation of H3.  Both of these experiments demonstrate that 

hyperacetylation of either Zp or Rp is not sufficient to activate the lytic cycle.  

 Another study found that transfecting CBP and p300 into cells in the presence of 

ZEBRA can enhance induction of the lytic cycle by ZEBRA (94).  Also, ZEBRA was 

discovered to be associated with CBP in cells that were lytically but not latently infected 

with EBV.  Further experiments were able to show that ZEBRA specifically activated the 

HAT function of CBP (95).  In vitro acetylation of small oligonulcotides by CBP only 

occurred when the ZEBRA protein was added to the reaction mixture, and was dependent 

on the presence of a functional HAT domain.  If the HAT domain of CBP was deleted, 

acetylation of small oligonucleotides did not occur.   

In addition to the HAT domain CBP also has two cysteine-histidine (C/H) -rich 

domains, referred to as C/H1 and C/H3, and a bromodomain that binds acetyl-lysines 

((96), as reviewed in (97, 98)).  The transcriptional activation domain of ZEBRA 

interacts with CBP at C/H1 and C/H3 (94).  The presence of the C/H3 and bromodomain 
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of CBP are both required for ZEBRA to be able to activate transcription of Rta (99).  

These two domains are also required for ZEBRA to stimulate HAT activity of CBP.  This 

finding was demonstrated using an approach similar to the one above, where acetylation 

of small olignoucleotides was assessed in the presence of ZEBRA protein with intact 

CBP or CBP lacking either the C/H3 or bromodomain.  ZEBRA was not able to stimulate 

HAT activity of the mutant forms of CBP protein.   

This same study also looked at which particular lysines CBP acetylates on the N-

terminal tails of the H3 and H4 histones associated with viral DNA.   ZEBRA was found 

to stimulate acetylation of all of the lysines.  This discovery was proven using western 

blot with various antibodies containing different patterns of acetylation on H3 and H4.  

Edman degradation17 was also used on H3 (Edman degradation could not be done on H4 

as in HeLa cells the N-termini of H4 are blocked) with 3H-acetylated histones to show 

that ZEBRA stimulates the acetylation of all lysines.   

The necessity of acetylation in the induction of the lytic cycle is controversial, as 

there exists some data that shows the lytic cycle can be activated in the absence of histone 

acetylation (74).  This evidence comes from using AZC to induce the lytic cycle.  When 

AZC was used, the acetylation state of Zp and Rp did not significantly increase despite 

lytic activation.  Thus, acetylation is not sufficient and may not even be necessary for 

activation of the lytic cycle. 

 

 

 

                                                
17 Edman degradation is an experimental technique used to determine the sequence of 
amino acids in a peptide.   
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Methylation of EBV DNA 

Methylation of the cytosine bases in DNA also plays a role in controlling gene 

expression for EBV, as it does for many other cell systems.  In DNA there exists CpG 

islands18, 70% of which are methylated in mammalian cells (as reviewed in (100, 101)).  

The level of methylation is typically inversely related to the transcriptional activity of the 

corresponding genes.  Methylation prevents transcription a few different ways, including 

preventing transcription factors from binding to DNA as well as recruiting HDAC 

inhibitors to deacetylate histones (as reviewed in (102)).   

 

DNA Methylation is Important for EBV 

  In latently infected cells the DNA of EBV is heavily methylated (103, 104).   

How ZEBRA can activate gene transcription when the DNA is in this state then becomes 

a question.  It turns out that ZEBRA is quite unique in that it preferentially binds to Rp 

when it is methylated (105).  Rp contains three Z response elements (ZREs), two of 

which contains a CpG motif.  This CpG island was examined in five different cell lines 

and was found to be methylated in every one of them.  When this sequence of DNA was 

used as a probe for ZEBRA the methylated form was 10 times more efficient at binding 

ZEBRA than the unmethylated form.  Also, using a construct of Rp linked to a 

                                                
18 CpG refers to a sequence of DNA where there is a cytosine nucleotide linked linearly 
with a guanosine nucleotide.  CpG islands are regions in the DNA where several of these 
pairs occur.   
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chloremphenicol acetyl transferase (CAT) gene19, ZEBRA was shown to activate 

methylated Rp at a much higher rate than unmethylated Rp.  This phenomenon is unique 

to ZEBRA – it has not been described in any other system to date.  Recently ZEBRA was 

also found to preferentially bind to the methylated promoter of another early viral gene, 

Na (106).  Na also contains methylated ZRE’s that are activated by ZEBRA at a higher 

rate than when the ZREs are unmethylated.  The serine 186 amino acid of ZEBRA is 

required for binding to both methylated promoters (106, 107).   

 The latent C promoter of EBV, on the other hand, does not behave like Rp.  As 

mentioned earlier, the EBNA proteins driven by EBV latent C promoter are targets of 

CD8+ cytotoxic T-cells.   In certain cancers associated with EBV, such as Burkitt’s 

lymphoma and Hodgkin’s disease (which will be discussed later), this promoter is not 

transcriptionally active and thus the cells are able to evade T-cell destruction (reviewed in 

(24)).  The reason the promoter is inactive is that a CpG island upstream of the promoter 

is methylated in these cancers (103).  Evidence that supports the idea that methylation is 

responsible for EBNA gene repression comes from the experiment that treated these cells 

with AZC (100).  When this DNA methyltransferase inhibitor was added to a Burkitt’s 

lymphoma cell line the latent C promoter was activated and EBNA-2 was transcribed.   

 

Medical Relevance 

While EBV is known to cause infectious mononucleosis (IM) during primary 

infection in adolescents, reactivation of a latent infection also has a role in several 

                                                
19 This gene is a reporter gene used in assays to assess function of the promoter being 
studied.  The protein produced from this gene renders cells resistant to the antibiotic 
chloramphenicol.   
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cancers.  If the lytic cycle is activated in latently infected cells EBV can predispose to 

lymphomas such as Hodgkin’s disease and Burkitt’s lymphoma (76).   It can also lead to 

lymphomas in immunocompromised patients and natural killer (NK) and T-cell 

lymphomas in patients that are chronically infected with EBV (108, 109).  Evidence that 

it is the activation of the lytic cycle that favors malignancies comes from the fact that 

elevated antibody titers against lytic antigens precede such malignancies (110, 111).  

Also, despite the fact that latent infection of cells with EBV is critical for malignancy, 

EBV strains not capable of lytic viral replication do not lead to lymphoma mice with 

Severe Combined Immunodeficiency (SCID) (112).  

 

Infectious Mononucleosis 

 According to the CDC approximately 50% of adolescents or young adults who 

have a primary infection with EBV experience IM.  Why children don’t experience IM is 

not clear, but it could have to do with the fact that adolescents may be more likely than 

children to receive the virus in higher doses through oral routes (hence the term “kissing 

disease”).  The different responses could also have to do with a different immune 

response, as IM is an immunological disease.  Pathologically, the site for initial infection 

is thought to be the B-cells or epithelial cells located in the oropharynx (113).  There the 

tonsils become invaded with lymphoblastoid cells that contain EBV in the three different 

latency patterns ((114, 115), as reviewed in (116)).  These infected cells also circulate 

among the B-cells (117).  The virus in these cells can also become lytically activated.  A 

CD8+ cytotoxic T-cell response is triggered by these latently or lytically infected cells, 

producing the atypical lymphocytes characteristic of IM (118, 119).  Of course those cells 
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lytically infected trigger a greater response due to the higher number of antigens 

produced.  This T-cell response leads to a rapid decrease in viral shedding and in the 

number of infected B-cells, resulting in convalescence (120).  The T-cell numbers are 

then thought to be reduced by apoptosis.  Subsequently, the number of genes expressed in 

the cells that are indefinitely infected with EBV in the latent cycle is somehow 

downregulated so T-cells do not also clear these cells. 

 Clinical symptoms can vary so patients could simply have a low-grade, transient 

fever or they could endure lymphadenopathy, malaise, and pharyngitis for weeks.  

Unfortunately no medical treatments have been shown to effect the course of the disease, 

including acyclovir (the nucleoside analog that blocks viral replication in vitro) (121). 

Acyclovir also had no effect on the number of EBV infected B-cells in patients during 

treatment (122).  Acyclovir did, however, stop the virus from shedding (although viral 

shedding went back up after treatment was stopped).  The fact that an inhibitor of 

replication could not reduce clinical symptoms indicates that perhaps the symptoms are 

caused by the proinflammatory cytokines like IL-1, IFN-γ, and TNF-α that are released 

by the T-cells, and not by viral replication (123).  However, if prednisolone is added to 

acyclovir there is again no effect on the duration of the clinical course (although there is a 

slight improvement during the first few days) or number of latently infected B-cells 

(124)The failure of steroids to have an effect could be due to the fact that IFN-γ is able 

to overcome glucocorticoid’s effect on decreasing the amount of TNF-α produced by 

macrophages (125).  IFN-γ is present at elevated levels during infection, which would 

explain why glucocorticoids don’t have a profound affect in IM (126).   
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Burkitt’s Lymphoma 

Burkitt’s Lymphoma was originally described by Denis Burkitt, who found a high 

incidence of the disease in equatorial Africa (127).  Most of those affected were under 15 

years of age (128).  Endemic Burkitt’s lymphoma typically presents as extranodal tumors 

in the jaw, orbit, central nervous system, or as an abdominal mass.  The histology of the 

tumor is similar to that of germinal B-cell centers, with macrophages spread throughout, 

giving the classic “starry sky” appearance (129).  The classic molecular mutation is a 

reciprocal translocation between chromosome 8 (at the site of the c-myc proto-oncogene) 

and chromosome 14 (which is where the Ig heavy chain gene resides) (130).  There are 

cases of sporadic Burkitt’s lymphoma, which typically manifests as an abdominal mass 

or in a leukemic form, with the same translocation (as reviewed in (131)).  Most of these 

sporadic cases occur in the United States.  The sporadic form has a lower association with 

Epstein-Barr Virus than the endemic form (15-25% of tumors are EBV genome positive 

in the sporadic form verses 100% in the endemic form) ((10), as reviewed in ((131)).    

The mutation that leads to Burkitt’s lymphoma is thought to arise from the 

stimulation of somatic hypermutation in germinal center B cells by Epstein-Barr Virus 

(132).  There is also some evidence that the virus helps the tumor cells continue to grow 

(133).  Akata cells that had lost the EBV DNA also lost the malignant properties of 

Burkitt’s Lymphoma, such as the ability to grow in low serum and the ability to grow 

tumors in nude mice.  Also, dominant negative forms of EBNA-1 protein impair the 

growth of Burkitt’s Lymphoma cells (134).  Thus, EBV seems to play a significant role 

in Burkitt’s Lymphoma.  
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Hodgkin’s Lymphoma 

EBV is also associated with Hodgkin’s lymphoma (135).  The tumors in 

Hodgkin’s disease are made up of a mixture of mononuclear lymphocytes, multinuclear, 

malignant Reed-Sternberg cells derived from B-cells, and non-malignant cells (which 

make up greater than 98% of the tumor) (as reviewed in (136)).  In the United States and 

European countries Hodgkin’s has a low incidence in childhood and a higher incidence in 

young adults (137).  Childhood Hodgkin’s is more common in countries that are less 

developed.  This difference suggests that perhaps in more developed countries the age of 

incidence is higher due to delay of exposure to EBV.  Evidence to support this theory 

comes from studies that showed that children with factors that lead to delayed exposure 

to infectious agents (early birth order, small family, high maternal education) are at 

greater risk of getting Hodgkin’s as a young adult (137, 138). 

A study was done looking at titers of IgG antibodies against the viral capsid 

antigen of EBV as well as antibodies against early antigens (111).  Titers were found to 

be higher than normal in patients with Hodgkin’s disease.  In blood that had been drawn 

at an average of 50.5 months before diagnosis (compared to controls from the same 

population) the relative risk of Hodgkin’s disease associated with higher antibody titers 

was 2.6 (90% confidence interval was 1.1 to 6.1) for IgG and 3.7 ( 90% confidence 

interval was 1.4 to 9.3) for IgA.  The relative risk for Epstein-Barr nuclear antigen was 

4.0 (90% confidence interval was 1.4 to 11.4).  Additionally, there have been a number of 

studies that show that patients with a history of infectious mononucleosis are ~ 3 times as 

likely to get Hodgkin’s (139, 140).  Further evidence indicating that EBV is associated 

with Hodgkin’s is that 19% of biopsies from patients with Hodgkin’s had EBV DNA 
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(detected by slot blot hybridization20) (141).  In situ hybridization also showed great 

intensity of EBV DNA in Reed-Sternberg cells.  All of this evidence seems to indicate 

EBV is strongly associated with Hodgkin’s lymphoma.   

 

Malignancies in Immunocompromised Patients 

 Patients who are immunocompromised are also subject to EBV induced B-cell 

lymphomas.  Included in this category are patients with congenital immunodeficiencies, 

patients who have received organ transplants, and patients who have AIDS ((142), as 

reviewed in (143, 144)).  Congenital immunodeficiencies that result in patients being 

susceptible to these B-cell lymphoroliferative diseases include XLP (145), SCID (146), 

Wiskott-Aldrich syndrome (147), and common variable immunodeficiency (148), as 

these patients are unable to mount a proper cell-mediated immune response over the virus 

((149), as reviewed in (144)).     

 Transplant patients, because of their persistent immunocompromised state, have 

been found by numerous studies to be at a higher risk to develop lymphomas (as 

reviewed in (116, 143)).  The lymphoma in question is typically post-transplant 

lymphoproliferative disease (PTLD), and has been found to be associated with EBV (150, 

151).  The estimate is that about 6% of patients get cancers post-transplant (152).  23% of 

these cancers are PTLD, resulting in an overall incidence of 1.4%.  Who gets PTLD 

depends on a number of things, including type of transplant and whether or not the 

patient is EBV seropositive at the time of transplant.  The higher the immunosupression 

                                                
20 Slot blot hybridization, also known as dot blot, is a technique similar to Western or 
Southern blots.  However, instead of separating the molecules by chromatography, the 
mixture that contains the molecule in question is applied to a membrane as a dot.  Then 
DNA or antibody probes are used to detect the molecule in question.  



23 

needed the greater the risk of PTLD (153, 154).  Thus, patients who have heart/lung 

transplants have a 5-9% risk while patients who have renal or liver transplants have a 1-

2% risk ((155), as reviewed in (143)).  Patients receiving bone marrow transplants also 

have a ~ 1% risk.  This risk can increase to 12-24%, however, if the donor T-cells are 

depleted (156).  On the other hand, if both donor T- and B-cells are depleted the risk of 

developing PTLD is greatly reduced.  This risk reduction occurs because the EBV-

infected donor B-cells are the cells that PTLD is derived from in these patients (the hosts 

immune system is usually irradiated) (157).   Host irradiation does not occur in solid 

organ transplants, however, and it is thought that the source of PTLD in these patients is 

from the host (158).     

 A patient’s EBV status can influence their risk of PTLD.  Those who are EBV 

negative have a 20-fold higher incidence of PTLD than those who are positive, indicating 

that a primary infection is more dangerous than reactivation of a latent infection (159).  

This phenomenon was proven using DNA hybridization for the EBNA gene in tumor 

cells of patients post-transplant.  This discovery indicates why pediatric patients are at 

higher risk than adults for PTLD (160). 

The types of PTLD vary greatly both pathologically and clinically (as reviewed in 

(143)).  Different pathological lesions include plasma cell hyperplasia with reactive 

elements similar to acute IM, polymorphic lesions that look like B-cell lymphoma, and 

monomorphic lesions that resemble immunoblastic lymphoma.  Clinically, PTLD can 

present in lymph nodes or extranodally.  It can also present as one or multiple masses.  

These are just some of the clinical variations of PTLD.   



24 

The first line treatment of PTLD is typically to reduce the amount of 

immunosupression drugs so a patient’s T-cell response against EBV can take over (161).  

This form of treatment has been found in some studies to control PTLD in 31% of cases 

(162).  A risk of immunosupression reduction is allograft rejection so reduction has to be 

done carefully and the patient has to be closely monitored.  Acyclovir and Gancyclovir 

have also been used prophylactically in some patients as there has been evidence that this 

is somewhat effective (although not enough evidence to make it standard practice) (163).  

Radiation (when the CNS is involved) and chemotherapy also have some role in 

treatment of PTLD (164, 165).  The overall outcome of patients with PTLD depends on 

type, as the disease varies greatly both clinically and pathologically.   

Patients who have HIV are at an even higher risk of developing B-cell 

lymphomas than post-transplant patients (142).  They are 60 times more likely to develop 

non-Hodgkin’s lymphomas than the general population.  Half of these lymphomas are 

associated with EBV, and different types of lymphomas have different strengths of 

association (as reviewed in (166)).  These lymphomas are thought to arise from a 

deficient T-cell response to the virus (146).   

 

Manipulation of EBV to Aid in Chemotherapy 

Knowledge of how EBV functions in cells can provide ways to target tumor cells 

in EBV-associated malignancies.  There have been a few studies looking at treatments 

that take what is known about the virus into consideration. For example, certain 

chemotherapy drugs have been shown to induce the lytic cycle, including 5-flourouricil 

(5-FU) in epithelial cells (167) and methotrexate in both epithelial and B-cells (167, 168).   
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These drugs seem to require the P38 stress MAPK, P13 kinase, and PKC signaling 

pathways.  Since gancyclovir is more capable of killing EBV-positive cells in the lytic 

form (acyclovir becomes phosphorylated in cells that are lytically infected to become 

active) (169), these chemotherapeutic agents actually enhance gancyclovir’s ability to kill 

EBV-positive tumor cells (167).  Thus, the combination of gancyclovir and 

chemotherapy agents could be used to specifically target EBV-positive cells; the 

chemotherapy agent would activate the lytic cycle and then gancyclovir would kill the 

cell.   

Valproic Acid (VPA), an anti-seizure drug that has been shown to weakly induce 

the lytic cycle in EBV-positive tumor cells, has been found to work synergistically with 

other chemotherapy agents to induce the lytic cycle (170).  This same synergistic effect is 

not shown when AZC is used with chemotherapy drugs.  Also, VPA greatly enhances the 

ability of agents such as 5-FU and cisplatin along with gancyclovir to kill EBV-positive 

tumor cells (both epithelial and lymphoblastoid).  These experiments show that there is 

some unique property of VPA that could make it a very useful drug in cancers associated 

with EBV.    As a note, VPA has been shown to block induction of the lytic cycle by TSA 

and AZC, so whether or not VPA can be used as a chemotherapy drug is controversial 

(Derek Daigle, unpublished data).   

 

STATEMENT OF PURPOSE 

Hypothesis: During EBV lytic infection, the virus replicates its genome several hundred 

fold.  It is not known whether the newly synthesized EBV genomes interact with histones 

to form nucleosomal DNA and whether the tails of these histones are modified.  My 
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hypothesis is that newly synthesized EBV lytic DNA is associated with histones and the 

histone tails are selectively acetylated.     

 

Experimental Design: To test our hypothesis we will employ the technique chromatin 

immunoprecipitation (ChIP) performed on a Burkitt’s Lymphoma cell line.  In our 

experiments we will test three different variables: type of inducing agent, duration of 

treatment, and different regulatory regions in the genome of Epstein-Barr Virus.   

 

METHODS 

 

In this thesis, the cell line used was provided by Lee Heston.  The reagents used to induce 

the lytic cycle were provided by Lyn Gradoville.  I performed the cell treatments, ChIP 

and quantitative real time PCR (qPCR) experiments.  Dr. Ayman El-Guindy provided the 

primer pairs as well as the samples used for the standard curve.    

 

Cell Culture and Activation of EBV Lytic Cycle 

The cell line used was HH514-16, an EBV-positive cell line that was cloned from 

the human Burkitt’s lymphoma cell line P3HR1 (171). This cell line was cloned by Lee 

Heston of the Miller Lab.  I maintained the cells in RPMI 1640 media containing 8% 

fetal calf serum, 50 units/mL antibiotics (penicillin and streptomycin), and 1µg/ml 

fungizone.  

I treated HH514-16 cells during the logarithmic growth phase, during the initial 

48 hours after subculture.  At this phase the cell count ranged between 0.8-1.1 10^6 
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cells/ml.  I treated cells with 5 µM TSA or 5µM AZC.  500 µM PAA was added to some 

samples as a control.  These reagents were prepared by Lyn Gradoville.  I harvested cells 

at several time points between 12 and 72 hours after treatment.  

 

 Chromatin Immunoprecipitation   

I cross-linked ~1x10^7 cells with 1% formaldehyde for 10 minutes at 37°C in the 

growth medium to covalently link DNA-protein complexes.  I then washed the cells twice 

with phosphate-buffered saline containing the protease inhibitors Pepstatin A and PMSF 

at concentrations of 1 µg/mL and 500 µM, respectively (Roche).  After re-suspension in 

SDS lysis buffer (containing 1% SDS, 50mM Tris-HCL pH 8.1, and 10 mM EDTA), 

made by me or purchased from Millipore for my last set of experiments (in which AZC 

was the inducing agent), I sonicated the cells for 10 s x 4, using a Sonifier 450 apparatus 

(Branson).  The supernatant was obtained by centrifuging the cell lysates (14,000 rpm) 

for 10 minutes at 4ºC.  I transferred the supernatant to a new tube and diluted the samples 

10x in ChIP dilution buffer  (also made by me or purchased from Millipore for my last 

set of experiments) containing 0.01% SDS, 16.7 mM Tris-HCl pH 8.1, 1.1% Triton X-

100, 167 mM NaCL, 1.2 mM EDTA, and the protease inhibitors listed above.  100 µL 

was taken from each sample as input.  The samples were then incubated with 80 µL of 

Protein A Agarose – 50% slurry containing Salmon Sperm DNA at 4°C for half an hour.  

The samples were centrifuged for 1 minute at 1000rpm, and the supernatant was 

transferred to a new tube.  Subsequently I added 10 µg IgG along with 60 µL of agarose 

beads to the samples to clear nonspecific antibody interactions.  This incubation was for 

two hours, at 4°C.  The samples were then centrifuged for 1 minute at 1000rpm and the 
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supernatant was transferred to a new tube containing 10 µg of a polyclonal rabbit 

antibody against H3 or AcH3 (purchased from Millipore).  The protein-DNA complexes 

were incubated with the antibody overnight at 4°C.  The complexes were collected using 

the agarose beads. I then washed the beads five times with different solutions made by 

me (or purchased from Millipore for my last set of experiments): 1x with a low 

concentration salt solution ( 0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-

HCl pH 8.1, 150 mM NaCl), 1x with a high concentration salt solution (0.1% SDS, 1% 

Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8.1, 500 mM NaCl), 1x with a lithium 

chloride solution (0.25 M LiCl, 1% IGEPAL-CA630, 1% deoxycholic acid (sodium salt), 

1 mM EDTA, 10 mM Tris pH 8.1), and 2x with TE (10 mM Tris-HCl, 1 mM EDTA, pH 

8.0).  The DNA was eluted off the beads with a solution of 100 mM sodium bicarbonate 

and 1% SDS.  I then reversed the crosslinks by adding 20 µL of 5M sodium chloride and 

heating at 65ºC for four hours.  The protein was digested at 45ºC for 2 hours with 20 µg 

proteinase K, 10µL of 0.5 M EDTA, and 20 µL of 1 M Tris-HCl pH 6.5.  The DNA was 

then precipitated at 20ºC overnight with 10% sodium acetate, 2.5x volume 95% ethanol, 

and 20 µg glycogen. The samples were then spun down for 30 minutes at 4ºC (13,000 

RPM).  I washed them with 70% ethanol, spun for another 5 minutes at 4ºC (13,000 

RPM), and then the ethanol was aspirated.  After the samples dried I added 15µl of TE 

and left the samples to dissolve at room temperature for ½ hr.   

 

Quantitative Real Time PCR 

I next used Real-time PCR (qPCR) to amplify and quantitate the 

immunoprecipitated DNA, using the Biorad iCycler.  Standard curves prepared from 
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different concentrations of plasmids containing oriLyt or Zp (obtained from Dr. Ayman 

El-Guindy) were used to calculate relative concentrations of immunoprecipitated DNA.  

We used concentrations of 10, 1000, and 100,000 fg/µL.  The sequences for oriLyt and 

Zp, which were also obtained from Dr. Ayman El-Guindy, are listed below (Table 1).  

Also, the relative concentration of immunoprecipitated DNA by the antibodies was 

divided by the amount of OriLyt or Zp present in the inputs to control for the amount of 

viral DNA present in each sample.   

 

Table 1: Primer pairs  

 Forward Reverse 

Zp TTGACACCAGCTTATTTTAGACACTTCT TTACCTGTCTAACATCTCCCCTTTAAA 

oriLyt TCCTCTTTTTGGGGTCTCTG CCCTCCTCCTCTCGTTATCC 

 

 

RESULTS  

TSA Increases Acetylation of Histones Associated with EBV DNA  

The first experiment was to see the effect of TSA, a known lytic cycle inducing 

agent, on the association of viral DNA with acetylated histones.  HH514-16 cells were 

either left untreated, treated with PAA21, or had both TSA and PAA added.  Cells were 

treated for 24 hours and then we performed chromatin immunoprecipitation (ChIP) using 

an anti-acetyl H3 (AcH3) antibody.  We used qPCR with primers specific for the 

upstream region of oriLyt (origin of lytic replication).  We found that when the levels of 

DNA were normalized to the DNA in uninduced cells the addition of PAA by itself had 

                                                
21 PAA stands for phosphonoacetic acid.  It inhibits viral DNA polymerase.   
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no effect.  Treatment with TSA however, seemed to greatly increase the amount of viral 

DNA associated with acetylated histones (Figure 2A).  This increase was ~ 6-10 fold.  

When PAA was added to TSA-treated cells the amount of DNA associated with 

acetylated histones was significantly reduced by ~3-4 fold.  Analysis of DNA 

nonspecifically precipitated by normal IgG revealed no significant amounts of oriLyt 

DNA (data not shown).  The input (the DNA in the cell before the antibody was added) 

followed a similar profile as ChIP, indicating that TSA induced while PAA blocked lytic 

viral DNA replication (Figure 2B).  However, when the amount of oriLyt precipitated 

with the anti-AcH3 antibody was corrected for the level of DNA present in the 

corresponding input sample we found that TSA-treated samples had a smaller increase in 

the amount of oriLyt pulled down over uninduced samples (~2-3 fold increase) (Figure 

2C).  Also, this time, adding PAA to TSA did not seem to decrease the amount of DNA 

that was precipitated.   

Using the same ChIP samples I investigated the association of H3 with Zp 

(ZEBRA promoter).  The results were similar to the previous experiment: TSA increased 

the amount of viral DNA associated with acetylated histones by ~10 fold (Figure 3A), the 

input followed a similar profile as ChIP (Figure 3B), and when the amount of Zp 

precipitated with the anti-AcH3 antibody was corrected for the level of DNA in the 

corresponding input samples TSA-treated cells had a smaller increase in the amount of 

Zp pulled down over uninduced (~5.5 fold) (Figure 3C).   
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Figure 2: Induction of the lytic cycle with an HDAC inhibitor increases acetylation of histones associated with 
viral DNA.   HH514-16 cells were either untreated, treated with PAA, treated with TSA, or treated with TSA and 
PAA.  At 24 hours they were harvested and ChIP was performed using anti-AcH3 antibodies.  Primers against the 
origin of replication, OriLyt, were used in qPCRs.  ZZ534 #1 and #2 are technical replicates of the same ChIP 
experiment.  A.  Relative concentration of DNA associated with acetylated histones, normalized to uninduced.  B.  
Relative concentration of total DNA, normalized to uninduced.  C.  Relative concentration of DNA associated with 
acetylated histones corrected for input DNA, normalized to uninduced.   
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Figure 3: Induction of the lytic cycle with an HDAC inhibitor increases acetylation of histones with viral DNA.   
HH514-16 cells were either untreated, treated with PAA, treated with TSA, or treated with TSA and PAA.  At 24 hours 
they were harvested and ChIP was performed using anti-AcH3 antibodies.  Primers against the promoter for ZEBRA, 
Zp, were used in qPCRs. A.  Relative concentration of DNA associated with acetylated histones, normalized to 
uninduced. B.  Relative concentration of total DNA, normalized to uninduced.  C.  Relative concentration of DNA 
associated with acetylated histones corrected for input DNA, normalized to uninduced.   
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Association of Viral DNA with Acetylated Histones Increases as Replication Does 

To examine the effect of viral replication on association of viral DNA with 

acetylated histones we carried out chromatin immunoprecipitation at three time points:  

12 hours, 24 hours, and 72 hours.  We chose these time points because we knew from 

previous experiments performed with the same cell line that replication could not be 

detected after treating the cells with TSA for 12 hours.   

Like the previous experiment, HH514-16 cells were either left untreated, treated 

with PAA, induced with TSA, or treated with both TSA and PAA.  We used Zp primers 

in the qPCR.  We found that at 12 and 24 hrs there was a small increase in the amount of 

DNA associated with acetylated histones in cells induced with TSA (~6 fold for 12 hours 

and ~ 9 fold for 24 hours), but at 72 hrs there was a substantial increase of ~60 fold 

(Figure 4A). Adding PAA slightly increased the association at 12 hours but decreased the 

association at 24 and 72 hours.  As we expected, by analyzing the input we found that no 

viral replication was detected during the first 12 hours of the EBV viral lytic cycle 

(Figure 4B).  Viral DNA replication was barely detected after 24 hours.   Among these 

three time points viral replication was highest at 72 hours.  Analysis of DNA 

nonspecifically precipitated by normal IgG revealed no significant amounts of Zp DNA 

(data not shown).  When the amount of Zp precipitated with the anti-AcH3 antibody was 

corrected for the level of DNA present in the corresponding input sample the results for 

12 and 24 hours were similar to those in the previous experiment, in that there was no 

difference between association of acetylated histones with newly replicated viral DNA in 

TSA-treated cells and non-replicated DNA in the TSA and PAA treated  
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Figure 4: As Lytic Replication Increases, So Does the Amount of Viral DNA Associated with Acetylated 
Histones.  HH514-16 cells were either untreated, treated with PAA, treated with TSA, or treated with TSA and PAA.  
They were harvested either at 12 hours, 24 hrs, or 72 hrs, and ChIP was performed using anti-AcH3 antibodies.  
Primers against the ZEBRA promoter (Zp), were used in qPCR.  A.  Relative concentration of DNA associated with 
acetylated histones, normalized to uninduced.  B.  Relative concentration of total DNA, normalized to uninduced.  C.  
Relative concentration of DNA associated with acetylated histones corrected for input DNA, normalized to uninduced.   



35 

cells  (Figure 4C).  At 72 hours, however, the results were slightly different.  At this time 

point adding TSA to PAA did lead to a decrease the amount of DNA associated with 

acetylated histones, about ~2 fold.  

 

Newly Replicated DNA is Associated with non-Acetylated Histones 

 One caveat of the previous experiments is that an HDACi was being used to 

induce the lytic cycle.  The worry is that the HDACi could have increased the acetylation 

state of the histones independently.  For that reason we decided to use the DNA 

methyltransferase inhibitor AZC to induce the lytic cycle, as we know from previous 

experiments that AZC does not induce acetylation of H3 (74).  HH514-16 cells were 

either untreated or treated with AZC.  Cells were harvested after 48 hrs to allow sufficient 

time for lytic DNA replication to occur.  This time both anti-H3 and anti-AcH3 

antibodies were used in the ChIP experiment.  Zp primers were used in the qPCR.  We 

found that when AZC was added the amount of DNA associated with H3 increased ~ 8 

fold while the amount of DNA associated with AcH3 only increased ~ 2 fold (Figure 

5A).  Thus, the ratio of DNA pulled down for non-acetylated histones to acetylated 

histones was roughly 4 fold when the lytic cycle was induced. 

  The input data verified that the induction of viral replication was successful by 

showing that the overall amount of DNA had also increased, about ~5 fold, with the 

addition of AZC (Figure 5B).  Analysis of DNA nonspecifically precipitated by normal 

IgG revealed no significant amounts of Zp DNA (data not shown). When the amount of 

Zp precipitated with the antibody was corrected for the level of DNA present in the 

corresponding input sample we found that with the H3 antibody there was only a slight 
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increase in association of viral DNA with histones when AZC was added.  With the 

AcH3 antibody on the other hand, there was a decrease in association (Figure 5C).  The 

findings from this set of experiments were reproducible in three biological replicates 

(data not shown).  We also found that using oriLyt primers did not change our results 

(Figure 6): newly replicated viral DNA has a greater association with non-acetylated 

histones than acetylated histones (Figure 6A). 
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Figure 5: Newly replicated DNA appears to be associated with histones that are not acetylated.   HH514-16 cells 
were either untreated or treated with AZC.  They were harvested either at 48 hours, and ChIP was performed using 
anti-H3 and anti-acetyl-H3 antibodies.  Primers against the ZEBRA promoter (Zp), were used in qPCR.  A.  Relative 
concentration of DNA associated with acetylated histones, normalized to uninduced.  B.  Relative concentration of total 
DNA, normalized to uninduced.  C.  Relative concentration of DNA associated with acetylated histones corrected for 
input DNA, normalized to uninduced.   
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Figure 6: Newly replicated DNA appears to be associated with histones that are not acetylated.   HH514-16 cells 
were either untreated or treated with AZC.  They were harvested either at 48 hours, and ChIP was performed using 
anti-H3 and anti-acetyl-H3 antibodies.  Primers against oriLyt were used in qPCR.  A.  Relative concentration of DNA 
associated with acetylated histones, normalized to uninduced.  B.  Relative concentration of total DNA, normalized to 
uninduced.  C.  Relative concentration of DNA associated with acetylated histones corrected for input DNA, 
normalized to uninduced.   
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DISCUSSION 

 While there was some information about the chromatin structure of EBV in 

latently infected cells, not much was known about what happens to the newly replicated 

viral DNA when the lytic cycle is induced.  Here we aimed to find out whether or not the 

newly replicated viral DNA is associated with histones, and if so whether or not those 

histones are acetylated.  In our experimental plan we studied three different variables: the 

inducing agent, the length of induction, and association of histones with two DNA 

regulatory regions (Zp and oriLyt) present in the EBV genome.   

We first discovered that when TSA was used to induce the lytic cycle the newly 

replicated viral DNA in these cells was associated with AcH3 at a ~6-10 fold increase 

over untreated cells (Figure 2A).  When the amount of oriLyt precipitated was corrected 

for the amount of DNA in the corresponding input sample we found that newly replicated 

viral DNA was associated with acetylated histones at a level proportional to the 

association of acetylated histones with non-replicated DNA from cells that were treated 

with TSA and PAA (Figure 2C).  When we used different primer pairs on the same ChIP 

samples, we found no affect on the association of newly replicated viral DNA with 

AcH3, as similar results were obtained with primers for both Zp and oriLyt (Figure 3). 

We then decided to see how changing the time of induction affected our results.  

We saw that at a time point where no viral DNA replication would be taking place (12 

hours) there was only a ~ 6 fold increase in association with acetylated histones, but at 24 

and 72 hours there was a ~9 fold and ~60 fold increase, respectively (Figure 4A).  At 12 

and 24 hours TSA induced the association of viral DNA with acetylated histones 

independent of replication (Figure 4C).  At 72 hours, however, the amount of newly 
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replicated viral DNA associated with acetylated histones was greater than the amount of 

non-replicated viral DNA in the TSA plus PAA treated sample.  

We then decided to change the type of inducing agent used.  Instead of using an 

agent that increases acetylation we used the DNA methyltransferase inhibitor AZC.  We 

found that when AZC was added to cells the association of newly replicated viral DNA 

with non-acetylated histones was increased ~8 fold (Figure 5A).  The association of 

newly replicated viral DNA with acetylated histones increased ~ 2 fold.  The association 

of newly replicated viral DNA with histones was slightly greater than the association of 

latent viral DNA with histones (Figure 5C).  The association of newly replicated viral 

DNA with acetylated histones, on the other hand, was slightly lower than the association 

of latent viral DNA with histones. 

 

Different Inducing Agents Impact Association of Viral DNA with Acetylated 

Histones 

 Figure 2A showed that when TSA was used as an inducing agent newly replicated 

viral DNA was associated with acetylated histones.   When AZC was used, on the other 

hand, newly replicated viral DNA appeared to be preferentially associated with non-

acetylated histones over acetylated histones (Figure 5A). Thus, our previous results that 

indicated that the induction of the lytic cycle significantly increases association of newly 

replicated viral with acetylated histones were most likely a result of using an HDACi to 

induce the lytic cycle.  When cells were treated with AZC the newly replicated viral 

DNA was associated with non-acetylated histones ~4 fold higher than with acetylated 

histones.  Thus, the HDACi most likely resulted in acetylation of the histones associated 
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with the viral DNA.  We could compare the amount of viral DNA immunoprecipitated 

with histones to the amount of viral DNA immunoprecipitated with acetylated histones in 

TSA treated cells to verify our results. 

 

At Early Times, Inducing Agents Increase Level of Association of Viral DNA with 

Histones Independent of Replication 

 When the amount of DNA precipitated with antibodies to acetylated histones was 

corrected for input in the corresponding samples, we found that the association of 

acetylated histones with viral DNA was very similar for newly replicated viral DNA from 

TSA treated cells and non-replicated DNA from TSA and PAA treated cells at 12 and 24 

hours (Figures 2C, 3C, 4C).  Thus, at these times association with acetylated histones 

occurs independent of viral replication.   In all of these experiments the association of 

histones with viral DNA from cells induced into the lytic cycle was greater than the 

association of histones with latent DNA from untreated cells, indicating that there is 

something about the induction itself that changes the association of viral DNA with 

histones. 

 At 72 hours, however, when more viral replication had taken place, more newly 

replicated viral DNA from TSA-treated cells associated with acetylated histones than 

non-replicated viral DNA from TSA and PAA-treated cells.  This finding indicates that as 

more viral DNA is being replicated the newly replicated viral DNA preferentially 

associates with acetylated histones. 
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Association of Viral DNA with Histones Did Not Change Whether Zp or Orilyt 

Regions were Analyzed 

 Both the Zp and oriLyt region of EBV have been previously found to be 

associated with histones in the latent stage (87, 88).  We found that these two regions are 

also associated with histones upon lytic activation.  We tested the association of 

acetylated histones with both Zp and oriLyt in two of our experiments – where we treated 

cells with TSA for 24 hours (Figure 3) and where we treated cells with AZC for 48 hours 

(Figure 6).  We obtained similar results with primers for both oriLyt and Zp.  Thus, 

changing the region of DNA analyzed for association with acetylated or non-acetylated 

histones did not affect our results.   

 

Newly Replicated DNA is Packaged into Chromatin that is Partially Acetylated 

 Our experiment with AZC as an inducing agent demonstrates that newly 

synthesized viral DNA is associated with histones (Figure 5A).   While the strength of 

association of EBV DNA with acetylated histones does depend on the inducing agent 

used, the fact that newly replicated viral DNA in AZC-treated cells does to some degree 

associate with acetylated histones indicates that the chromatin is at least partially 

acetylated.   

 

Limitations  

 Chromatin immunoprecipitation is probably the most widely used approach to 

investigate association of proteins with DNA in vivo, however there are several 
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limitations to chromatin immunoprecipitation.  All of the limitations come from the 

inability to know how efficient each step is.  It is impossible to know how efficient cross-

linking the DNA to protein, sonication, reversing the crosslinks, and DNA precipitation 

is.  Thus, these steps can vary from ChIP to ChIP.  There seems to be no solution to these 

limitations; they just have to be taken into consideration when interpreting the results of 

the experiments.  However, ChIP is still a “state of the art” experiment, and the only 

technique for knowing the chromatinization of DNA in vivo. 

In most of my experiments my results were reproducible among different 

biological replicates or even when two different regions of the EBV genome were 

compared for their extent of association with histones.  However, that does not exclude 

the presence of limited fluctuations among different experiments that do not affect the 

general outcome of the results.  For example, in Figure 2B the amount of DNA present in 

the input sample obtained from PAA-treated cells was 1.1-1.25 fold lower than the DNA 

present in the uninduced cells.  In Figure 3B, however, where the same ChIP samples 

were analyzed using a different set of primers, the amount of DNA present in PAA-

treated cells was lower than that present in uninduced cells by 2.5 fold. To further 

understand whether these fluctuations are part of the limitations of ChIP or have some 

biological significance one has to carry out several ChIP experiments to confirm the 

results as well as to analyze other EBV DNA regulatory regions.  

 

Future Directions 

 The next step of the project would be to look at the effect of TSA as an inducing 

agent on the amount of viral DNA pulled down with an H3 antibody versus an acetylated 
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H3 antibody.  If we found that TSA increased association of viral DNA with H3 the 

result would be consistent with our findings, specifically the finding that lytic induction 

by AZC increased association of viral DNA with H3.   

 Another future step of the project would be to determine whether viral DNA that 

is packaged in virions is chromatinized.  We could perform a western blot using an anti-

H3 antibody on isolated virions.  If the histones were found to be associated with the 

DNA in virions it would mean that EBV episomes don’t lose their chromatin by the time 

they enter the capsid.  If virions contain viral DNA bound to histones, the virions isolated 

from cells treated with TSA could possibly have a higher level of acetylated histones.  To 

investigate this possibility we could see what happens when virions are created by 

inducing cells with TSA vs. AZC.  If we find that the virions from the TSA-treated cells 

have a higher level of association with acetylated histones than the virions from AZC-

treated cells, we could then investigate the effect of this increase in histone acetylation on 

the establishment of latency.    

 Another experiment would be to see whether or not the histones that are 

associated with newly replicated DNA are in the replication compartments previously 

identified (68, 71).  This information would tell us whether or not DNA is chromatinized 

as its being replicated, or if chromatinization takes place later on.  

 

The Importance of Epigenetics in EBV 

 As outlined earlier in the literature review, epigenetics appears to play a 

significant role in the life of Epstein-Barr virus.  Acetylation of the histones associated 

with EBV DNA and methylation of the EBV viral DNA have been shown to be critical in 
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activation of the lytic cycle.  Typically, acetylation of histones marks transcriptionally 

active DNA regions, while methylation of DNA occurs at regions that are 

transcriptionally repressed.  In, EBV, however DNA methylation plays a different role; 

ZEBRA, a transcription factor capable of inducing the full EBV lytic cycle when 

expressed in latently infected cells, can only activate the methylated form of the Rta 

promoter.  This anomaly is one example of how epigenetics is actually quite complex.  In 

addition to the modifications that can occur on DNA there are also numerous post-

translational modifications that can take place on histones, which can lead to the binding 

of various transcription factors and inhibitors.  These modifications can also result in 

blocking transcription factors and other proteins from binding.  This complexity is the 

reason the term “histone code” was created (as reviewed in (92)).  The histone code is the 

specific pattern of post-translational modifications on histones that determines the 

activity of genes associated with the chromatin.   The particular histone code for EBV has 

been further elucidated in this study, but it is by no means complete.  We now know that 

chromatin associated with newly replicated viral DNA is not acetylated, but we don’t 

know if it is methylated, phosphorylated, ubiquitinated or sumoylated.  Investigating 

these other post-translational modifications would be the next step in cracking the histone 

code of EBV. 

  

Implications 

 The information elucidated from these and other experiments could perhaps be 

useful in developing new therapies for EBV-related cancers as well as novel ways to stop 

the virus from spreading so efficiently.  We know that the only way the virus can spread 
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between cells and humans is if it enters the lytic cycle, as the lytic cycle is when newly 

packaged virions are created.  Knowing that newly replicated DNA associates with 

histones is another piece of the puzzle of what happens when the lytic cycle becomes 

activated.  The more we know about the lytic cycle the more targets we can find to stop 

its activation.  While our data may not directly provide any new targets it does help us 

understand what is happening with the newly replicated DNA.  Hopefully this 

information will eventually lead us to develop a new approach to stop the lytic cycle from 

being activated and thus limit viral propagation.   
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