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Poor application performance costs companies millions of dollars and their

reputation every year. The simple challenge of releasing software that behaves

predictably, consistently and responsively continues to be a big one. Internal

applications with poor performance add another layer of cost - both in lost

productivity and missed deadlines. Microsoft Visual Studio 2010 provides the tools to

ﬂ measure, improve and verify application performance under the most demanding

conditions so that your application performs predictably regardless of the situation.
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Poor application performance costs companies millions of dollars and their reputation every year. Why
this happens is fairly straightforward — customers can’t get to the website they want or they can’t
purchase products because the application either responds poorly or doesn’t respond at all. And that’s
just for web-based applications. Internal company applications that suffer from poor performance waste
time, and time is expensive — both in lost productivity and missed deadlines. In the past, poor
performance might not have had as visible an impact but today poor performance is extremely
expensive. It doesn’t have to be that way though. Microsoft Visual Studio 2010 provides the tools to
measure, improve and verify application performance under the most demanding conditions so that
your application performs predictably regardless of the situation. Performance testing, in many cases, is
not performed at all. The chief reason for this is not the time available but the cost and complexity of

the tooling required to undertake performance testing.

A FAMILIAR ENVIRONMENT

One of the key benefits to using the integrated performance testing tools in Visual Studio 2010 is that
they work in an environment that developers are used to. Visual Studio provides an intuitive interface
for constructing Web Tests, Unit Tests and the associated Load Tests. And all tests are based on the
same extensible testing framework which has matured over the previous five years into a robust and

well-supported framework.

In addition to the integration with Visual Studio, customizing tests do not require you to learn a new
language — they are backed by the Microsoft .NET framework. Many other industry standard
performance testing tools require you to learn a new scripting language or development language and a
new Integrated Development Environment (IDE). With the Visual Studio testing tools, you can be up and

running in a short period of time with a minimal learning curve.

FINDING PERFORMANCE PROBLEMS EARLY

Performance problems can be introduced into applications in a variety of different ways. Often,
performance issues occur because of the chosen architecture. Poor architectural structure leads to
bottlenecks in code which can slow the entire application down — even the addition of faster hardware
doesn’t help when the software isn’t architected correctly. Fixing a problem that originates with the
application architecture can be difficult and costly; finding the problem early in the process can save a

considerable amount of time and cost.



MODELING USER BEHAVIOR USING WEB PERFORMANCE TESTS

Web Performance tests are one of the key components of performance testing in Visual Studio 2010.
This feature was introduced in Visual Studio 2005; Microsoft has taken an already solid tool and

enhanced it to provide greater ease of use and better functionality.

Web Performance tests record browser traffic at the HTTP layer, which can then be run in a load test to
simulate user behavior. These tests are lightweight and very efficient at generating a large amount of

load.

Web Performance tests are rich in functionality. Ajax and page resources are handled automatically, and
you can easily add conditions and looping to your tests without writing code. In addition, dynamic
parameters, cookies and authentication are handled for you and tests can be bound to data to create
flexible data driven tests. In addition to these features, Web Performance tests are extensible. If, for
example, you need to add complex validation rules that are not met by the built-in rules, you can add
your own. Need to do custom dynamic parameter handling for the application you are testing? You can
create a plug-in using minimal code. There are numerous extensibility points which let you customize
any aspect of the Web Performance testing experience. Figure 1 shows the output of a Web

Performance test.
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Figure 1 — Web Performance Test Output.



USING UNIT TESTS TO DRIVE LOAD

One of the great benefits of the VS 2010 performance and load testing tools is the ability to work with
unit tests. This means that you don’t need a full-up user interface or even all of the pieces of an
application to test the performance of an application. In addition, you can perform tests earlier than
normal in the process if there is a suspected performance bottleneck. This is also another benefit when
working with web services: As more applications begin working with web services which back user

interfaces, the performance of those services can be independently tested to ensure they perform well.

CREATING LOAD TESTS

How does performance testing work in Visual Studio 20107 First, you can create either unit tests or web
performance tests or a combination of both types of tests. Next, using a simple wizard, you can
construct complex load tests which have different network bandwidths, load patterns, test mixes and
use a variety of different browsers. In addition, you can specify the warm up time, how long the test will
run for, whether or not to use think times, and you can determine which machines you want to gather
performance counters for. While the interface for selecting these options is simple, taken together they
can be used to specify virtually any performance profile you want. Want some sample users on the
standard 10MB/sec network bandwidth while others are using dial-up? How about gathering detailed
performance information not only of the middle-tier system being tested but of the data tier, proxy
server, network load balancer and various other machines along the communication path? You can set

these up through the wizard as well. Figure 2 shows the Load Test Wizard.
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Figure 2 — Set the test mix to predicted usage.



You can easily collect performance counters from the system under test using counter sets, which come

with pre-configured thresholds to warn when resources are over-utilized (Figure 3).
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Figure 3 — Select Performance Counter Sets.

You can also extend the testing framework by creating custom data collectors that gather information

specific to your needs. Using these capabilities, you can capture custom application logs, network usage,

SQL Server calls or virtually any other needed information.

In addition to all of the options open to you — far too many to list here — it scales, scales, and scales. The

load testing controllers and agents scale to support true enterprise scenarios with tens of thousands of

users at a lower cost than previously available. The best news here is that the licensing is simple — you

add additional users through the purchase of user packs. There are no different types of users,

additional costs for more controllers, or any hidden surprises. This gives you flexibility and predictability

in the cost of your performance testing.



ANALYZING TEST RESULTS

Load testing is great but if you can’t perform an analysis of the test results, the tests themselves are not

very useful. The Visual Studio Load Test Analyzer graph view lets you correlate performance slowdowns

with activity and conditions on the server, such as errors reported in the event log or excessive resource

utilization (Figure 4). Performance Counter thresholds are automatically configured for you in the load

test, and allow you to quickly identify resources on the server that are under pressure.

Figure 4 — Load Test Result Summary.
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Using the Virtual User Activity Chart, you can determine what individual virtual users were doing during

a performance slowdown (Figure 5).
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Figure 5 — Virtual User Activity Chart.



FIXING THE BOTTLENECKS

Once you have identified a problem you need to
be able to fix it. For this, Visual Studio 2010 uses
the Microsoft ASP.NET Profiler data collector.
The data collector allows you to sample or
instrument your code and even the code in the
.NET Framework to analyze it for bottlenecks
down to the method level. A typical scenario
might involve running a Load test and discovering
that one of your scenarios, Order Item, is running
slower than it should and you want to discover
why this is the case. Once you’ve identified the

problem scenario you can drop down into the

(What is the ASP.NET Profiler? \

This data collector profiles the Internet

Information Services (lIS) process. It will
monitor the overall performance of IIS relative
to a specific application, record performance
counters and monitor your code down to the
method level. You can also gather information
on calls made to a database to determine the
effect of those calls on your overall application

J

performance.

ASP.NET profiler to get detailed information on every method called during a session (Figure 6). This lets

you identify the hot path which is the slowest path through your code.
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Figure 6 — Function Details view.



FIND PERFORMANCE PROBLEMS FOR GLOBAL

CUSTOMERS BEFORE DEPLOYMENT True Network Emulation

The ASP.NET Profiler works well with application ) ) ]
Microsoft Visual Studio 2010 uses software-

performance issues. Have you ever rolled out an .
based true network emulation for all test

application that worked great for local customers, ) ] )
types. This emulation simulates network

but performed poorly for global customers accessin
P poorlyTorg & conditions by direct manipulation of the

it over a WAN? Many performance issues are due to .
network packets. This allows for easy

chatty clients or clients that send and receive large ) ) ) )
simulation of wired or wireless networks and

amounts of data. These applications work fine on a o

allows for filtering at the packet level.
LAN, but have poor performance over a WAN. VS
2010 enables you to run applications while

simulating a WAN, enabling you to find these types of performance problems early.

EAsSILY CREATE LARGE DATA SETS USING DATA GENERATION

An area that often goes overlooked is the amount of data in the database. The more data there is, the
more likely it is for queries to execute slowly and introduce deadlocks. One of the features of Visual
Studio Premium and Ultimate is the ability to generate test data. Using this feature you can generate

and test large amounts of realistic data with very little effort (Figure 7).
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Figure 7 — Data Generation.



REPORTING
Visual Studio 2010 introduces a new set of reports which help you analyze test runs and share results
with stakeholders. Using the analytical power of Microsoft Excel you can quickly and easily perform

comparisons between test runs as shown in Figure 8. In this view you can see the page response time

for a given operation — both where the application became slower and where it improved.
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Figure 8 - Page run comparison

Figure 9 shows transaction comparison — that is, how long did it take to perform a set of steps which
make up a user scenario? In this figure some of the scenarios are logging onto the system, ordering an

item, and checking out.

Performance counter time, errors, overall test results and other reports are also standard reports
available and they can be filtered to provide the level of detail that you need. Once the performance
bottlenecks have been identified you can drill into the code and make changes as needed to improve

performance.
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Figure 9 - Transaction Times

PERFORMANCE TESTING FOR EVERYONE

The Visual Studio performance testing tools provide a mature, stable, extensible platform for executing,
analyzing and acting on test results. Because of the tight integration with the development
environment, performance test results are actionable — they don’t just make a good looking report.
Teams can analyze the data, drill down to the code causing the bottleneck, fix it, and re-run the test to
examine the effects of the change. Whether the application has a small number of users or a large
number, is mission critical or not, these tools can help you improve the performance of your application

without resorting to costly tooling and a steep learning curve.



