Visual Studio

Microsoft®

Enabling Performance & Stress Test

throughout the Application Lifecycle

March 2010

Poor application performance costs companies millions of dollars and their

reputation every year. The simple challenge of releasing software that behaves

predictably, consistently and responsively continues to be a big one. Internal

applications with poor performance add another layer of cost - both in lost

productivity and missed deadlines. Microsoft Visual Studio 2010 provides the tools to

ﬂ measure, improve and verify application performance under the most demanding

conditions so that your application performs predictably regardless of the situation.

Copyright © 2010 Microsoft Corporation. All rights reserved

Poor application performance costs companies millions of dollars and their reputation every year. Why
this happens is fairly straightforward — customers can’t get to the website they want or they can’t
purchase products because the application either responds poorly or doesn’t respond at all. And that’s
just for web-based applications. Internal company applications that suffer from poor performance waste
time, and time is expensive — both in lost productivity and missed deadlines. In the past, poor
performance might not have had as visible an impact but today poor performance is extremely
expensive. It doesn’t have to be that way though. Microsoft Visual Studio 2010 provides the tools to
measure, improve and verify application performance under the most demanding conditions so that
your application performs predictably regardless of the situation. Performance testing, in many cases, is
not performed at all. The chief reason for this is not the time available but the cost and complexity of

the tooling required to undertake performance testing.

A FAMILIAR ENVIRONMENT

One of the key benefits to using the integrated performance testing tools in Visual Studio 2010 is that
they work in an environment that developers are used to. Visual Studio provides an intuitive interface
for constructing Web Tests, Unit Tests and the associated Load Tests. And all tests are based on the
same extensible testing framework which has matured over the previous five years into a robust and

well-supported framework.

In addition to the integration with Visual Studio, customizing tests do not require you to learn a new
language — they are backed by the Microsoft .NET framework. Many other industry standard
performance testing tools require you to learn a new scripting language or development language and a
new Integrated Development Environment (IDE). With the Visual Studio testing tools, you can be up and

running in a short period of time with a minimal learning curve.

FINDING PERFORMANCE PROBLEMS EARLY

Performance problems can be introduced into applications in a variety of different ways. Often,
performance issues occur because of the chosen architecture. Poor architectural structure leads to
bottlenecks in code which can slow the entire application down — even the addition of faster hardware
doesn’t help when the software isn’t architected correctly. Fixing a problem that originates with the
application architecture can be difficult and costly; finding the problem early in the process can save a

considerable amount of time and cost.

MODELING USER BEHAVIOR USING WEB PERFORMANCE TESTS

Web Performance tests are one of the key components of performance testing in Visual Studio 2010.
This feature was introduced in Visual Studio 2005; Microsoft has taken an already solid tool and

enhanced it to provide greater ease of use and better functionality.

Web Performance tests record browser traffic at the HTTP layer, which can then be run in a load test to
simulate user behavior. These tests are lightweight and very efficient at generating a large amount of

load.

Web Performance tests are rich in functionality. Ajax and page resources are handled automatically, and
you can easily add conditions and looping to your tests without writing code. In addition, dynamic
parameters, cookies and authentication are handled for you and tests can be bound to data to create
flexible data driven tests. In addition to these features, Web Performance tests are extensible. If, for
example, you need to add complex validation rules that are not met by the built-in rules, you can add
your own. Need to do custom dynamic parameter handling for the application you are testing? You can
create a plug-in using minimal code. There are numerous extensibility points which let you customize
any aspect of the Web Performance testing experience. Figure 1 shows the output of a Web

Performance test.

A NI e B B =[S R S R R0 R RR R
@ Passed Click here to run again Internet Explorer 7.0 LAM Edit run settings

| Reqguest | Stakus | Tatal Time | Request Time | Request B... | Response Bytes |
@ B & Login POST 302 Found 01,035 ser 0.012 sec 379 12,937 a|
(>] = httpffibuyspyweb/IBuySpy fdefault, aspx 200 0K, - 0,009 sec 0 28,337
(>} _dn http:}fibuyspyweb/TBuySpyproductslist. aspx 200 OK 0.051 sec 0.0035 sec 1} 43,054
@ Lde http:/jibuyspyweb/IBuySpy/PraductDetails, aspx 200 O, 0,066 sec 0,020 sec [1} 70,762
(@ B &5 Loop { Repeat 2 times) 2 Trerations Comp
@ =] é! Loop Iteration 1 Condition Met
(=] Fl [http:ifibuyspywebiBuySpyAddTaCart aspx 302 Found 0.047 sec 0.020 sec 0 143
(=] 5 htepeffibuyspywebfIBUySpy/ShoppingCart.aspxe. 200 OK - 0.005 sec [1} 27,303
@ = é!. Loop Tkeration 2 Candition Met b
@ Bl & http:f/ibuyspywebiIBuySpyjaddToCart, aspx 302 Found 0.157 sec 0.122 sec [1} 143
@ S htkpeffibuyspywebfIBuySpy iShoppingCart . aspx 200 K - 0.010 sec 0 28,447
L) 42} Loop Tteration 3 Condition Mot Met: ;I

‘web Browser IRequast | Response | Conkext | Details I

1

Sign|In A ccount Gart)||'sH
MODERN LIVING — ON THE EDGE SEARCH

THE||IMOsT| SECRETIVE|PULACE | TO | SHOR ON (THE| | INTERNE TE

BUY Check Out Complete!

SPY Your Order Number Is: 34112
Product Name Model Number Quantity |Price |Subtotal —
Communications X
Multi-Purpose Rubber Band MTMES1 1 $1.99 [4$1.99
Deception Universal Repair Systerm NELRPR 1 $4.99 | 54,99
General
Munitions
Total: $6 98

Protection

Figure 1 — Web Performance Test Output.

USING UNIT TESTS TO DRIVE LOAD

One of the great benefits of the VS 2010 performance and load testing tools is the ability to work with
unit tests. This means that you don’t need a full-up user interface or even all of the pieces of an
application to test the performance of an application. In addition, you can perform tests earlier than
normal in the process if there is a suspected performance bottleneck. This is also another benefit when
working with web services: As more applications begin working with web services which back user

interfaces, the performance of those services can be independently tested to ensure they perform well.

CREATING LOAD TESTS

How does performance testing work in Visual Studio 20107 First, you can create either unit tests or web
performance tests or a combination of both types of tests. Next, using a simple wizard, you can
construct complex load tests which have different network bandwidths, load patterns, test mixes and
use a variety of different browsers. In addition, you can specify the warm up time, how long the test will
run for, whether or not to use think times, and you can determine which machines you want to gather
performance counters for. While the interface for selecting these options is simple, taken together they
can be used to specify virtually any performance profile you want. Want some sample users on the
standard 10MB/sec network bandwidth while others are using dial-up? How about gathering detailed
performance information not only of the middle-tier system being tested but of the data tier, proxy
server, network load balancer and various other machines along the communication path? You can set

these up through the wizard as well. Figure 2 shows the Load Test Wizard.

New Load Test Wizard (-9 [
| == Add tests to a load test scenario and edit the test mix
=7
Welcome Add one or more tests to the mix:
Scenario Test Name % | Distribution s |[Add. |
Load Pattern Browse 40 y 7 Ri
Test Mix Model r Semos
R L * [swowe
Distribute
3 | Search 55 8 I——/
Metweork Mix eare
Browser Mix
Counter Sets
Run Settings
Total 100
< Previous || Mext >] ‘ Finish | | Cancel

Figure 2 — Set the test mix to predicted usage.

You can easily collect performance counters from the system under test using counter sets, which come

with pre-configured thresholds to warn when resources are over-utilized (Figure 3).

MNew Load Test Wizard l P ||
P = Specify computers to monitor with counter sets during load test run
Welcome Selected computers and counter sets will be added to the default run
Scenario SEES
Load Pattern Computers and counter sets to monitor: Preview selections:
Test Mix Model E|l:| & teamtestwebl A teamtestwebl
Test Mix i"[7 Application
) W4 ASP.NET
Network Mix [T NET Application
Browser Mix L4 IS
e "5 Loadres
Run Settings L7 Controller
(=4 Agent Computers
[Agent
Add Computer..,] [Remaove Computer Tags: WebServer|
[< Previous] [Mext » l I Finish] [Cancel

Figure 3 — Select Performance Counter Sets.

You can also extend the testing framework by creating custom data collectors that gather information

specific to your needs. Using these capabilities, you can capture custom application logs, network usage,

SQL Server calls or virtually any other needed information.

In addition to all of the options open to you — far too many to list here — it scales, scales, and scales. The

load testing controllers and agents scale to support true enterprise scenarios with tens of thousands of

users at a lower cost than previously available. The best news here is that the licensing is simple — you

add additional users through the purchase of user packs. There are no different types of users,

additional costs for more controllers, or any hidden surprises. This gives you flexibility and predictability

in the cost of your performance testing.

ANALYZING TEST RESULTS

Load testing is great but if you can’t perform an analysis of the test results, the tests themselves are not

very useful. The Visual Studio Load Test Analyzer graph view lets you correlate performance slowdowns

with activity and conditions on the server, such as errors reported in the event log or excessive resource

utilization (Figure 4). Performance Counter thresholds are automatically configured for you in the load

test, and allow you to quickly identify resources on the server that are under pressure.

Figure 4 — Load Test Result Summary.

] Summary 4] Graphs] Tables =] Detail | A - | X = | L= | 0 | Gt - | 2| 0y
¥} Test Completed 23 threshold viclations 361 errors
Counters [Key Indicators vl Page Response Time -
|4 Overall - 100 208
4] Scenariol i ME\
=) lfé Computers <o - . hi " W
Eﬁ- EDGLAS-LT N;lv T-u.ll P !
= 5y TEAMTESTWEEL
|24 .NET CLR Interop o _ st
“ih NET CLRIT ml_glh-gﬂ 0320 0500 0640 0820 1000 0000 OL4D 0320 0500 0640 OEZ0 1000
|+4] .NET CLR Loading 1 o | —
[#4] \MET CLR LocksAndThread
yf'}i NET CLR Mernory System under Test * || Controller and Agents -
|~ .NET CLR Remoting 100 100
|+ \NET CLR Security
|+4] Active Server Pages E
[7] ASP.NET ta0 . . ﬁtﬁ
1] ASP.NET Applications HI @ W‘LMW %
& 4 Memory - -nT__ . _Tj
=] lfé Metwork Interface e '-'.— = : . : : . .
I/ﬂ Bytes Received/sec 00:00 0140 0320 0500 OfdD 05'_20 0000 0140 03:20 0500 O&<40 O0E20 10:00
1+ Bytes Sent/sec I [| O |
=] BytesTotaI,‘sec. Counter Inst.. Category Comp... Col.. Ran.. M. M.. Avg
4] Current Bandwidth
= %43 Output Queue Length 4 £ System under Test i
zﬁ Microsoft Virtual M Iw| % Processor Time _Total Processer TEAMTEST—m— 1., & 896 509 24
4] MS TCP Loopbackil lwl Axvailable MBytes - Memory TEAMTEST—s— 10,0.. 1,0181,072 1,0¢
|74 Packets Received/sec lw| Bytes Total/sec _Total Web Service TEAMTEST—a— 0 - - 0
4] Packets Sent/sec |wl Total Method Requests,_Total Web Service TEAMTES] —&— [- -
4 PhysicalDisk |w| Transactions/sec _Total S5QLServer:Dat TEAMTEST
Al proces o (Gt Qoo Lo U
|4 Processor = || 4 4 Controller and Agents
d il E lw| % Processor Time 0 Processor EDGLAS-| —m— 1. & 219 620 37.:7

Using the Virtual User Activity Chart, you can determine what individual virtual users were doing during

a performance slowdown (Figure 5).

] Summary | Graphs | _] Tables 2 Detail || 8]] = L AR e B3 | e E;__" =~ | =g Uy
) Test Completed 23 threshold violations 381 errors
Details Legend Virtual User Activity Chart
Page - .-"m—"-'"_ —_—
§+ {Highlight errors) =+ :. I'. 'l" — —— e e e
=== (Highlight results v o -
V| —=— storecsvs E i : :] — s — = : =
T —— storecses :_m_".._ T R tArT—————————
J| === storecsvs E e — i S——— 1
J| === ProductDetails.asp T - — —_—r
V| —#—= productslist.aspx = JE A : ; ' = — = ==
o - - mm 1 il
] Login.aspx{GET} = : ; — — rm "
i ProductDetails.asp E e ——— = T —
v SearchResults.aspx e i —————— o— - S —
v Login.aspxPOST} T ; = 2 2 - :
V| —m— AddToCart.aspx 7 T — - = —" . 3
4 n 3 i — NS — ==
Filter results § _T_ : = = = 3
|| Show only results with = : - e] .-'. — = —— d
i-[¥] Show successful result BT e — e : = = =]] = o
=-[¥] Show results with erro F . = 2 o — h
5. Exception 00:00.000 0130714 03:.01.428 04:32.142 06:02.857 07:33.571 00:04.285 10:34.990
WebTestExcept
=[] ValidationRuleErro|=|| Reference graph: Page Response Zoom to time period From: 00:00 To:10:35
ValidateRespor
=-[|HttpError
¢ +.[]500 - InternalSe 1 /\}\ 3
401 - Unauthor -f\
_J Timeout P | AMA Jn\f'ﬂ\.'\ ~ - __-‘HI_J'HL
. "}-" Tirmeot - 7| o000 00:57 0155 02:532 03:50 0447 0545 0642 0740 0837 0935 10:32

Figure 5 — Virtual User Activity Chart.

FIXING THE BOTTLENECKS

Once you have identified a problem you need to
be able to fix it. For this, Visual Studio 2010 uses
the Microsoft ASP.NET Profiler data collector.
The data collector allows you to sample or
instrument your code and even the code in the
.NET Framework to analyze it for bottlenecks
down to the method level. A typical scenario
might involve running a Load test and discovering
that one of your scenarios, Order Item, is running
slower than it should and you want to discover
why this is the case. Once you’ve identified the

problem scenario you can drop down into the

(What is the ASP.NET Profiler? \

This data collector profiles the Internet

Information Services (lIS) process. It will
monitor the overall performance of IIS relative
to a specific application, record performance
counters and monitor your code down to the
method level. You can also gather information
on calls made to a database to determine the
effect of those calls on your overall application

J

performance.

ASP.NET profiler to get detailed information on every method called during a session (Figure 6). This lets

you identify the hot path which is the slowest path through your code.

o Corrent View: |Functi0n Details

) Ve N Ve Eed 2 = A

nctions calling this function

1BuySpy.ShoppingCartDB.Updatelte
m{string,int32,int32)
(int32)

Functions called by this function

System.Data.5qldient.SqlDataReader.Read()

System.Data.SalClient. SqlDataReader. Getnt32

I1BuySpy.ShoppingCartDE.UpdateTtem(strin....

IBuySpy.ProductsDB.GetProduct Details(int32)

Total: 41.6% —‘I

w0% - 4

Other _I
-
Function Code View
Ci\Users\vsegal\Documents\Visual Studio 2010\Projects\IBuySpy\IBuySpy\Components\ShoppingCartDb.cs
int productId = cart.GetInt32(@); ;I
1.1 % ProductDetails details = productsDb.GetProductDetails(productId);
9.9 % SglDataReader quantityDiscounts = productsDb.GetQuantityDiscounts();
21.5 % lihile(quantityDiscounts.Read()]|
15.6 % if (productId == quantityDiscounts.GetInt32(@)) —
1
8.4 % int cartQuantity = cart.GetInt32(3);
9.6 % int discountlLevel = guantityDiscounts.GetInt32(1);
if (cartQuantity » discountlevel)
{
decimal discountAmount = quantityDiscounts.GetDecimal(2);
decimal discountedUnitCost = details.UnitCost - (details.UnitCost
1.1 % UpdateItem(cartId, productId, cartQuantity, discountedUnitCost); ;I

i

Figure 6 — Function Details view.

FIND PERFORMANCE PROBLEMS FOR GLOBAL

CUSTOMERS BEFORE DEPLOYMENT True Network Emulation

The ASP.NET Profiler works well with application))]
Microsoft Visual Studio 2010 uses software-

performance issues. Have you ever rolled out an .
based true network emulation for all test

application that worked great for local customers,)])
types. This emulation simulates network

but performed poorly for global customers accessin
P poorlyTorg & conditions by direct manipulation of the

it over a WAN? Many performance issues are due to .
network packets. This allows for easy

chatty clients or clients that send and receive large))))
simulation of wired or wireless networks and

amounts of data. These applications work fine on a o

allows for filtering at the packet level.
LAN, but have poor performance over a WAN. VS
2010 enables you to run applications while

simulating a WAN, enabling you to find these types of performance problems early.

EAsSILY CREATE LARGE DATA SETS USING DATA GENERATION

An area that often goes overlooked is the amount of data in the database. The more data there is, the
more likely it is for queries to execute slowly and introduce deadlocks. One of the features of Visual
Studio Premium and Ultimate is the ability to generate test data. Using this feature you can generate

and test large amounts of realistic data with very little effort (Figure 7).

Emailaddress Column -
Table (select ko include in data generation) Rows ko Insert I Related Table Ratio to Related Table @E ‘H' | =]
[~ [dbo.Categories] Allows Mulls— True
i j A (= S0000 Check Constr String[] Array
[~ 3 dbo.OrderDetails 50 None E:;?:Ists:f;lue [A-Z]+@[A-Z]4
I™ [dbo.Orders 0 hone Foreign Key Skring[] Array
[~ 3 dbo.Products 1000 Mardimum Len 50
[~ [dbo.quantityDiscounts 10000 Percentage M O
[[dbo.Reviews 50 Mane Primary Key False
[[dbo.shoppingCart 50 None Seed 5

Size S0
Unique Key False

4] | ®
Column {select to include in data generation) I Ke I Data Type I Generator
[~ [E] CustomerID e ink S0 Computed Yalue
v [E] FulMame rvarchar (307 Reqular Expression
v 5 Emailaddress nivarchar (500 Regular Expression
v [E] Passward rvarchar (500 Regular Expression

Allow Nulls

Specifies whether NULL values

are allowed in this column in th..
4 | 2 2 Properties JuzRSpEn

Figure 7 — Data Generation.

REPORTING
Visual Studio 2010 introduces a new set of reports which help you analyze test runs and share results
with stakeholders. Using the analytical power of Microsoft Excel you can quickly and easily perform

comparisons between test runs as shown in Figure 8. In this view you can see the page response time

for a given operation — both where the application became slower and where it improved.

http:/fibuyspyweb/1BuySpy/Checkout.aspx

http:/fibuyspyweb/IBuySpy/ShoppingCart.asp

Top Performance Regressions

M Comparison Run

{POST]}

% {POST}

M Baseline

000 001 001 002 0.02 003 003 004 0.04 005
Average Page Response Time (sec)

http://ibuyspyweb/1BuySpy/ProductDetails.asp

http://ibuyspyweb/IBuySpy/products|ist.aspx

http://ibuyspyweb/fibuyspy/Login.aspx {POST}

http://ibuyspyweb/ibuyspyfLogin.aspx {GET}

Top Performance Improvements

B Comparison Run MBaseline

x

http:/fibuyspyweb/ibuyspy

000 001 001 002 002 003 003 004
Average Page Response Time (sec)

ScenarionTest Case

[-

nBaseIineﬂ Comparison Run -Response Goal

Customers ShoppingCustomer http://ibuyspyweb/1BuySpy/ShoppingCart.aspx {POST} 0.03 0.04
Customers ShoppingCustomer http://ibuyspyweb/1BuySpy/Checkout.aspx {POST} 0.01 0.01
Customers BrowsingCustomer http://ibuyspyweb/ibuyspy 0.02 0.02
Customers ShoppingCustomer http://ibuyspyweb/IBuySpy/AddToCart.aspx 0.02 0.02
Customers BrowsingCustomer http://ibuyspyweb/ibuyspy/ProductDetails.aspx 0.02 0.01
Customers BrowsingCustomer http://ibuyspyweb/ibuyspy/productslist.aspx 0.01 0.01
Customers ShoppingCustomer http://ibuyspyweb/ibuyspy/Login.aspx {GET} 0.02 0.01
Customers ShoppingCustomer http://ibuyspyweb/ibuyspy/Login.aspx {POST} 0.03 0.03
Customers ShoppingCustomer http://ibuyspyweb/1BuySpy/productslist.aspx 0.03 0.02
Customers ShoppingCustomer http://ibuyspyweb/ibuyspy 0.03 0.02
Customers ShoppingCustomer hitp://ibuyspyweb/1BuySpy/ProductDetails.aspx 0.03 0.02

Figure 8 - Page run comparison

Figure 9 shows transaction comparison — that is, how long did it take to perform a set of steps which
make up a user scenario? In this figure some of the scenarios are logging onto the system, ordering an

item, and checking out.

Performance counter time, errors, overall test results and other reports are also standard reports
available and they can be filtered to provide the level of detail that you need. Once the performance
bottlenecks have been identified you can drill into the code and make changes as needed to improve

performance.

Top Performance Regressions Top Performance Improvements
HComparison Run HBaseline B Comparison Run M Baseline
Order Iltem
Browse
UpdateCart Login
Checkout
Create Client
T T T T
0.00 001 002 003 0.04 0.05 0.06 0.07 0.00 020 0.40 060 0.80 1.00 1.20
Average Transaction Time (sec) Average Transaction Time (sec)

Sc:enarioﬂTest Case ﬂ Baselin ﬂ Comparison Run n % Change from Baseline n

Customers ShoppingCustomer UpdateCart 0.03 0.06
Customers ShoppingCustomer AddToCart 0.02 0.02
Services TestlnstantOrderService Create Client 0.03 0.03 7%
Customers ShoppingCustomer Checkout 0.04 0.03
Customers ShoppingCustomer Login 0.03 0.03
Customers ShoppingCustomer Browse 0.06 0.04
Services TestinstantOrderService Order Item 112 0.34

Figure 9 - Transaction Times

PERFORMANCE TESTING FOR EVERYONE

The Visual Studio performance testing tools provide a mature, stable, extensible platform for executing,
analyzing and acting on test results. Because of the tight integration with the development
environment, performance test results are actionable — they don’t just make a good looking report.
Teams can analyze the data, drill down to the code causing the bottleneck, fix it, and re-run the test to
examine the effects of the change. Whether the application has a small number of users or a large
number, is mission critical or not, these tools can help you improve the performance of your application

without resorting to costly tooling and a steep learning curve.

