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IMPROVEMENT OF ASTHMA CONTROL AND INFLAMMATION IN PEDIATRIC PATIENTS 

UNDERGOING ADENOTONSILLECTOMY.  Jonathan C Levin, Lisa Gagnon, David E Karas, and Geoffrey 

L Chupp.  Section of Pulmonary and Critical Care, Department of Internal Medicine, Yale University 

School of Medicine, New Haven, CT. 

Observational studies have suggested improvement in asthma control after adenotonsillectomy, but 

longitudinal studies that correlate the effect of the procedure on markers of airway inflammation 

with changes in asthma control are limited.  We conducted a longitudinal, observational study on 130 

pediatric patients undergoing adenotonsillectomy, including 66 with asthma and 64 control subjects.  

Asthma Control Test (ACT) scores, chitotriosidase (CHIT1) activity, and YKL-40 (CHI3L1) levels in the 

circulation were measured at the time of surgery and at a 6-month follow-up visit, and genotypes of 

chitinase family proteins were measured at baseline.  Gene expression data was analyzed from blood, 

tonsil, and nasal epithelial tissue samples at baseline and in the blood at follow-up by microarray 

analysis.  Mean ACT scores improved by 3 points (p< 0.001) after 6 months.  85% of children with 

poorly-controlled asthma demonstrated an increase in ACT score of at least 3 points or a decrease in 

Emergency Department/Urgent Care visits, oral corticosteroid courses, or rescue short acting 

bronchodilator usage.  Serum chitinase activity decreased significantly in children with asthma (p< 

0.01), but not in children without asthma (p= 0.83) undergoing tonsillectomy.  Higher chitinase 

activity levels at baseline were associated with improved asthma control following surgery in all 

children with asthma (p< 0.01) and in the subgroup of children with poorly-controlled asthma (p< 

0.05).  Subjects with asthma had a higher allele frequency of the CHIT1 mutation (p< 0.02).  Gene 

expression analysis identified a number of inflammatory genes differentially expressed in children 

who had improved asthma control that were not changed in children without improved control and 

control subjects.  Of particular interest was SerpinB2, a plasmin activation inhibitor previously 

implicated in asthma, significantly downregulated after surgery compared to baseline in children 

with improved control.  This data suggests that adenotonsillectomy improves asthma control by 

modulation of airway inflammation.  Elevated serum chitinase activity may be a clinically useful 

determinant to identify patients with poorly-controlled asthma that will benefit from the procedure. 
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Introduction 

Asthma is an inflammatory disease of the lower airways that remains a significant 

healthcare concern for the pediatric population despite public health and pharmacologic 

advances to control the disease. (1, 2)  Studies have demonstrated a systemic component to 

asthmatic disease, and that the upper airway inflammation may be specifically involved in 

the pathogenesis of asthma. (3-5)  Upper airway infections and inflammation are common 

in the pediatric population; likewise, respiratory infection and allergen exposure are 

frequently indicated as triggers for asthma exacerbations in this population.   

Adenotonsillectomy is one of the most common surgical procedures in children, 

performed to address upper airway lymphoid hypertrophy, infection, and inflammation. (6)  

Its clinical effect on asthma control has been debated, with observational studies 

demonstrating a significant improvement in symptoms, lower healthcare utilization, and 

reduction in controller or rescue medication usage following adenotonsillectomy. (7-10)  

Although there are clear effects of adenotonsillectomy on the upper airway, to our 

knowledge the effect of this procedure has not yet been studied on any markers of airway 

inflammation.   

Pediatric Asthma – Clinical Features and Pathophysiology 

Asthma is the most common chronic disease of childhood; data from the 2009 

National Health Statistics Reports showed that 9.6% of children 0-17 years of age (a total of 

7.1 million) had asthma.  4.0 million children had at least one attack in 2009 and were at 

risk for adverse outcomes such as Emergency Department visits or hospitalizations.  

Asthma prevalence increased from 2001 to 2009. (1)  Pediatric asthma has a significant 

burden; in 2003, there were 12.8 million reported days of missed school due to childhood 

asthma.  In 2004, there were 198,000 total hospitalizations (3% of all pediatric admissions) 
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and 750,000 visits to the emergency room (2.8% of pediatric visits) attributed to childhood 

asthma; mortality rate was 2.5 per 1 million. (2) 

Asthma is characterized by intermittent attacks that include symptoms of cough, 

wheezing, and difficulty breathing.  Attacks can be triggered by respiratory infections, 

allergen exposure (e.g. dust mites, cockroach allergens, animal dander, and molds), 

exposure to irritants (e.g. tobacco smoke), changes in weather, or exercise.  Inflammation 

results in hyperresponsive airways and causes bronchoconstriction and obstruction of 

airflow.  By definition, these symptoms are at least partially reversible.  Obstructive changes 

in airway physiology cause reductions in Forced Expiratory Volume (FEV1) > Forced Vital 

Capacity (FVC) and a low FEV1/FVC ratio.  In children, low FEV1 and FVC, along with a low 

Forced Expiratory Flow (FEF) 25%-75%, are better predictors of disease than FEV1/FVC 

ratio. (11)   

Asthmatic inflammation is mediated by a variety of cell types including Th2 

lymphocytes, eosinohpils, and mast cells.  Th2 cytokines including IL-4, IL-5, and IL-13 

produce inflammation that causes the pathophysiologic changes seen in asthma including 

narrowing of the airways, mucus hypersecretion, and airway hyperresponsiveness.  IgE 

plays a pivotal role in this process as well.  Airway remodeling occurs due to chronic 

inflammation and leads to bronchial smooth muscle hypertrophy, mucous gland 

hyperplasia, thickening of the subepithelial basemsent membrane due to collagen 

deposition, and fibrotic changes. (12)  

A Disease Beyond the Lower Airway 

There is evidence that asthmatic disease exists beyond the lower airways. (3)  

Upper airway respiratory infection and allergen exposure are frequently invoked as triggers 

for exacerbations.  Rhinovirus infection in the nasal airway has been shown to significantly 

increase airway reactivity to both histamine and ragweed antigen, and predisposed patients 
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to late asthmatic reactions to the challenge. (4)  Another study showed that over 70% of 

patients with asthma also have rhinitis, and this link has led to the “one airway hypothesis”, 

defining asthma and rhinitis as two manifestations of one inflammatory process. (13)  In 

patients with rhinitis, provocation with a nasal allergen produces eosinophilic inflammation 

in both the upper and lower airways, and provocation of the lower airway with an allergen 

likewise produces in eosinophilic inflammation in both the upper and lower airways. (5)  

Airway and nasal epithelial cells in both disease entities undergo similar structural and 

inflammatory changes; likewise, corticosteroid therapy targeted at these epithelial cells is 

effective for treatment of asthma as well as rhinitis.  (14) 

There are systemic components to this Th2 inflammation as well, reflected by 

markers in the circulation.  Inflammatory activity in the airways triggers eosinophil and 

basophil recruitment from the bone marrow, producing a significantly higher number of 

these cell types in the peripheral blood. (15)  IL-4 and IL-13 induce B-lymphocytes to 

produce IgE, which is elevated in the serum of asthmatics. (16)  Blocking the effect of IgE 

systemically with omalizumab (anti-IgE) has been shown to be an effective adjunctive 

therapy for asthma in uncontrolled atopic patients with elevated IgE levels and allergen 

hypperactivity proven by testing. (17)  A number of other inflammatory markers in the 

serum have also been shown to be associated with asthma, including IL-5 (18), eosinophil 

cationic protein (19), IL-8, and TNF-α. (20)  Asthma has also been associated with diseases 

of other organ systems including atopic dermatitis, gastroesophageal reflux disease, 

inflammatory bowel disease, obesity, obstructive sleep apnea, and cardiovascular disease. 

(3) 

Current Modalities of Treatment 

The current cornerstone of recommendations for the management of asthma is the 

control of symptoms and prevention of adverse outcomes.  The Healthy People 2010 
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initiative focuses on increasing the proportion of asthmatics receiving formal education and 

appropriate care according to National Asthma Education and Prevention Program (NAEPP) 

guidelines.  However, it fell short of its stated goals, particularly in patients receiving an 

asthma management plan with specific instructions on how to change the amount or type of 

medicine taken, when to call a doctor for advice, and when to go to the ED.  Report of 

receiving this asthma education differed among groups, with generally higher rates among 

children than adults and among non-Hispanic black patients than non-Hispanic white and 

Mexican patients. (1) 

Medical management is divided into two categories – controller medications to 

reduce inflammation and “rescue” medications to reverse bronchospasm.  NAEPP 

guidelines recommend a stepwise treatment to asthma.  Children with intermittent asthma 

are treated with rescue medications as needed.  Albuterol, a short acting bronchodilator 

(SABA) that relaxes airway smooth muscle and reverses bronchoconstriction, is the 

cornerstone of such treatment.   

Children with persistent asthma, as well as children whose asthma is not well-

controlled, require “step ups” of treatment to daily controller medication.  Not well-

controlled asthma is defined by frequent symptoms and/or frequent use of SABAs (>2 

days/week), nighttime awakenings, interference with normal activity, and 2 or more 

exacerbations in a year requiring oral corticosteroid therapy. (21).  The Asthma Control 

Test (ACT) is a paper and web-based validated tool developed to assess level of disease 

control over the last 4 weeks; the adult version assesses limitation at work or school, 

shortness of breath, frequency of symptoms, frequency of rescue inhaler or medication use, 

and self rating of control. (22)   A pediatric version, validated for ages 4 to 11, includes four 

questions directed at the child with a face and corresponding text (rate asthma today, 

problem with exercise, cough, wake up at night), and 3 questions directed at the parent 
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(frequency of daytime symptoms, frequency of wheeze, and frequency of nighttime 

awakening).   In both tests, a score of 19 or less suggests poor asthma control.  (23)   Data 

supports that the minimally important difference for the ACT is 3 points. (24) 

Daily controller medications include therapies targeting asthmatic inflammation, 

such as inhaled corticosteroids (ICS), leukotriene modifiers, and the anti-IgE antibody 

omalizumab.  Long acting bronchodilators (LABAs) are also used in conjunction with ICS 

therapy for patients with persistent asthma that do not achieve good control with inhaled 

ICSs alone. 

Adenotonsillectomy in Children and its Effect on Asthma 

Adenotonsillectomy is one of the most common surgical procedures performed in 

children.  The superior part of the pharynx contains a ring of lymphoid tissue consisting of 

the pharyngeal tonsils on the posterior wall of the nasopharynx (commonly known as the 

adenoids) and two palatine tonsils (commonly known as “tonsils”) on either side of the 

oropharynx.  The tonsils and adenoids are most active between the ages of 4 and 10, and 

then usually involute starting at puberty.  As lymphoid tissue exposed to the environment, 

the tonsils and adenoids can directly transport environmental antigens encountered on 

their surfaces to the lymphoid tissue on the interior. (6) 

There were 530,000 tonsillectomies (with or without adenoidectomy) performed on 

children under fifteen in 2006; although this number is less than it once was (1.4 million in 

1959), the prevalence of the procedure has increased in recent years (315,000 in 1996). 

(25)  Indications for tonsillectomy have shifted over time.  The most common current 

indication is hypertrophied tonsillar tissue that causes upper airway obstruction “sleep-

disordered breathing.”  Symptoms and signs can include snoring and sleep fragmentation, 

leading to daytime exhaustion, with possible effects on behavior and/or school 
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performance.  Obstructive sleep apnea (OSA) is diagnosed when there is a complete 

blockage of the airway during sleep and intermittent hypopnea, leading to hypercarbia and 

hypoxia; the gold standard for diagnosis of OSA is overnight polysomnography. (6) Recent 

studies have also shown activation of inflammatory pathways as a result of sleep disordered 

breathing, including activation of cytokine cascades. (26)  Adenotonsillectomy is a well 

proven intervention for sleep disordered breathing in children. (27)   

Recurrent or persistent pharyngitis is the second most common indication.  Classic 

studies have used as criteria for tonsillectomy: 7 infections in one year, 5 in two years, 9 in 

three years, or chronic tonsillitis defined as sore throat lasting for at least 3 months. (28)  

Studies have shown there to be a benefit from adenotonsillectomy in reducing the number 

of infections; however, the improvement in a recent meta-analysis was not dramatic. (29)  

The exact role of tonsillectomy as therapy for recurrent pharyngitis remains somewhat 

controversial. 

Other less common indications include peritonsillar abscess unresponsive to 

medical therapy and, rarely, suspected malignancy. (6, 28) 

The “one-airway hypothesis” suggests that  abnormally inflamed tonsillar tissue, 

whether due to infection or due to hypertrophy and causing sleep disordered breathing, 

may contribute to upper airway inflammation that is reflected in the lower airways and 

thus may contribute to asthma.  Studies report conflicting results on the relationship 

between obstructive sleep apnea and asthma; though studies outside of the U.S. report 

asthma as a risk factor for a diagnosis of OSA (30), one U.S. study found that asthma was not 

a risk factor and in fact parental report of asthma decreased the risk of an OSA diagnosis. 

(31)  Nonetheless, it is possible that the hypertrophied or inflamed tonsillar lymphoid tissue 
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chronically or intermittently triggers airway inflammation and asthma; removing the 

tonsils would eliminate this trigger. 

A handful of observational studies support this concept. (7)  One early study 

demonstrated that up to 88% of patients with asthma experience a significant improvement 

in symptoms and reduce or eliminate asthma controller or rescue medication usage 

following adenotonsillectomy.(8)  A recent retrospective chart review of 93 children with 

asthma who underwent tonsillectomy for standard indications showed significant 

improvements in multiple asthma measures including mean hospital visits, systemic steroid 

administration, asthma medication use, and childhood asthma control test scores.(9)  In 

addition, a recent cohort study identified children with poorly-controlled asthma and 

referred them for polysomnography; if diagnosed with OSA, the children were offered 

adenotonsillectomy.  Post-tonsillectomy data for 35 children showed a significant 

improvement from adenotonsillectomy in asthma control, defined by asthma exacerbations, 

weekly rescue medication usage, asthma symptom score, and FEV1.(10)   Limitations of the 

study include lack of control groups (non-surgical, well-controlled asthma, non-asthmatics), 

a study design that included identification of OSA as “part of clinical routine”, loss to follow-

up, and lack of time frame indicated. (32) 

Whether or not this reported improvement is a purely clinical effect on the airway, 

or is a biological effect on airway inflammation and asthmatic pathogensis, has not yet been 

studied.   

Chitinases in Asthma 

Chitinases are a family of hydrolases detectable in the circulation that correlate with 

inflammation and disease activity in a number of chronic diseases including asthma and 

adenotonsillar disease. (33)  These proteins bind to or cleave chitin, the second most 
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abundant polysaccharide in nature and the major structural polymer in cell walls of bacteria 

and fungi, the shells of crustaceans, and the exoskeletons of arthropods such as cockroaches 

and dust mites, common allergic triggers in asthma. Animal models have shown that chitin 

can have either pro- or anti- inflammatory effects – when delivered orally or intransally, 

chitin inhibits Th2 inflammation; when delivered to the lung in isolation, chitin enhances 

Th2 inflammation.  These results suggest a complex interplay between environmental chitin 

exposure and the pathogenesis of asthma. (33, 34) 

Though mammals do not have chitin, they have conserved chitinase proteins that 

break down chitin from the environment.  Like chitin itself, there is evidence in animal 

models as well as humans that chitinase proteins can act as up- or down-regulators of the 

innate immune response by interacting with and degrading chitin and by modulating the 

host’s inflammatory response. Chitinases may act as the link between environmental chitin 

exposure and the Th2 inflammatory response. (33, 35)  There are two major chitinases in 

humans; chitotriosidase (CHIT1) is a true enzyme with the ability to hydrolyze chitin, while 

YKL-40 (CHI3L1) is a chitinase-like protein, which has the ability to bind to chitin but not to 

degrade it.  Both chitinase activity and YKL-40 levels are demonstrated to be elevated in the 

bronchoalveolar lavage fluid of children with asthma. (36)  

Chitotriosidase has been shown to be the primary active chitinase enzyme in the 

human lung. (37) It also is the only active chitinase in the peripheral blood, meaning that 

measurement of serum chitinase activity is a surrogate for measurement of chitotriosidase 

levels. Serum chitinase activity has been shown to be elevated in a number of disease states, 

including Gaucher’s disease, thalassemias, arteriosclerosis, and coronary artery disease.  It 

is elevated in the bronchoalveolar lavage fluid in certain lung diseases including sarcoidosis 

and interstitial pulmonary fibrosis. (33) 
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Chitotriosidase is overexpressed in adenoid tissue of children undergoing 

adenotonsillectomy with concurrent chronic rhinosinusitis, otitis media with effusion, and 

allergic rhinitis compared to subjects without concomitant upper airway disease. (38)   

Proteins in the chitinase family have also been demonstrated as markers of the 

systemic component of asthmatic disease.  A cross-sectional study of children with allergic 

and non-allergic asthma showed that chitotriosidase levels were elevated in the serum of 

individuals with asthma children versus control subjects. (39)  YKL-40, the chitinase-like 

protein, has been reported to be elevated in the serum of individuals with asthma and levels 

correlate positively with disease severity. Specifically, Chupp et al. showed that levels 

correlated with poor pulmonary function tests, subepitithelial basement membrane 

thickening, and airway remodeling in the Paris cohort. (40)  Members of the chitinase 

family may reflect a biological link between upper airway inflammation alleviated by 

adenotonsillectomy and the effect of environmental triggers in the pathogenesis of asthma.    

Chitinase Genetics 

Studies have shown mixed results on the role of genotypes for chitinase proteins on 

asthma.  CHIT1, the gene encoding chitotriosidase, has a polymorphism containing a 24-

base pair duplication in exon 10 (rs3831317) that produces a non-functional protein.  The 

allele is highest frequency in East Asian, Middle Eastern, and Indian populations. (33)  Lee 

et al. reported associations between the 24-bp duplication and positive TB tests in 

Europeans but not in Asians, and an association with three or more atopic diseases (asthma, 

allergic rhinitis, atopic dermatitis, allergies to drugs, cosmetics or food, and frequent 

sneezing, watering, or nasal congestion) in Asians but not in Europeans. (41)  Though 

significant, the p-values were modest, the definition of atopy broad, and there were 

differences among ethnic groups, raising the possibility of a false positive result. (33)  

Vicencio et al. reported in an observational study 6 asthmatic pediatric patients with fungal 
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sensitization, all of whom had the CHIT1 24-bp duplication. (42)  However, other larger 

studies have reported no association between the allele and presence of asthmatic disease, 

emergency room visits for asthma exacerbations, or hospitalizations due to asthma. (43, 44) 

A stronger association between asthma and the genotype of CHI3L1, the gene 

encoding YKL-40, has been reported.  CHI3L1 contains a promoter SNP (rs4950928, 

131CG); the C allele (major allele) is associated with elevated YKL-40 levels.  A study 

looking at frequency of the SNP in a founder population of European descent (the 

Hutterites) as well as multiple other case-control populations showed an association of the 

C allele with asthma prevalence, poor pulmonary function, and bronchial 

hyperresponsiveness.  (45)  Cunningham et al., in a large cross-sectional study of pediatric 

patients with asthma, showed that the G allele (minor allele) was protective for asthma-

related hospitalizations. (46)  A study of Korean children demonstrated an association 

between C haplotype and atopy, though there was no association with asthma.  (47) 

Gene Expression in Asthma 

Gene expression profiling techniques allow for the high-throughput identification of 

novel genes and pathways involved in disease pathogenesis.  This technique has been 

increasingly used in asthma to study its complex etiology.  There exist a number of studies 

looking at human tissue in asthmatics. (48)   

A number of studies have examined bronchial biopsy tissue, as the principal tissue 

affected in asthma.  Liprase et al. used microarray technology to compare gene expression 

from 4 subjects with mild asthma (who were not on ICSs) and control subjects.  They found 

that 20 genes were up-regulated and 54 genes were down regulated, including immune 

signaling molecules, extracellular proteins, immune response proteins, and intracellular 

signaling molecules.  Some genes were identified that were known to be involved in asthma 
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pathogenesis, including nitric oxide synthase 2A (NOS2A), glutathione peroxidase 3 (GPX3), 

and T-cell receptor α (TCRα); others were newly implicated including arachidonate 15-

lipoxygenase (ALOX15), which may be involved in airway remodeling, and fractalkine 

receptor (CX3CR1), previously found to be elevated in peripheral CD4+ lymphocytes of 

asthmatics, serpin proteinase family inhibitors, some of which have been found to be 

elevated in the serum of asthmatics. (49)  Another study using RT-PCR of bronchial samples 

confirmed a number of genes identified by Laprise et al. and also identified others, including 

the Na+ K+ Cl- co-transporter (NKCC1) which showed eightfold increased expression in 

asthmatics. (50) Woodruff et al. studied airway epithelial cells in adults with asthma in a 

randomized trial of inhaled corticosteroids.  A calcium-activated chloride channel (CLCA1), 

periostin, and serine peptidase inhibitor B2 were up-regulated in asthmatics.  

Corticosteroid therapy down-regulated expression of the three genes, and high baseline 

expression of the three predicted improvement. (51)  The limitation of bronchial studies is 

that bronchial biopsy samples are often heterogeneous due to differing biopsy techniques 

and patterns of disease. (48) 

Other studies have looked at upper airway epithelial cells.  Lilly et al. examined 

individuals with mild asthma and subjected them to an allergen challenge.  A number of 

genes previously implicated in asthma were found to be differentially expressed genes 

between pre- and post-challenge airway epithelium, including included IL-1β, IL-8, TNF-α 

induced protein 6, lipocortin-1, and plasminogen activator inhibitor 2. (52)  Guadajero et al. 

recruited 10 children with stable asthma, 10 children experiencing an acute asthma 

exacerbation, and 10 nonatopic children without asthma.  They used a pooled microarray 

analysis to compare expression profiles of nasal respiratory epithelial cells from each group.    

37 immune-related genes were among the up-related genes in the acute-exacerbation 

group, with 9 cilia-related genes consistently down-regulated. (53)  Limitations for 
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epithelial studies include sample heterogeneity, questionable representation of the lower 

airway in the nasal epithelia, and confounders including rhinitis and atopy. (48) 

Given that asthma is a systemic disease, a number of studies have looked at 

expression in circulating cells.  Brutsche et al. examined peripheral blood mononuclear 

cells.  They developed gene expression based score (composite atopy gene expression, or 

CAGE) to predict atopy with 96% sensitivity and 92% specificity; the score is based on the 

expression of 10 genes including IL-1 receptor, IL-6, and the IFN-αβ receptor.  Additionally, 

a number of B-cell isotype, cell survival, and IgE production genes were up-regulated in 

severe asthma. (54)  Aoki et al. performed expression profiling of genes related to asthma 

exacerbations in the peripheral blood mononuclear cells of children.  They found during an 

exacerbation 137 up-regulated and 16 down-regulated genes; 62 were also differentially 

expressed during an upper respiratory infection.  Many of these genes were related to 

immune responses to external stimuli, supporting the notion that asthma exacerbations and 

respiratory infections share a common mechanism. (55)  In peripheral blood lymphocytes, 

Hansel et al. found up-regulated genes in asthma to include TGF-β and genes involved in T 

cell activation. (56)  The involvement of TGF-β was confirmed by another microarray study 

of CD4+ lymphocytes in asthmatics versus controls. (57) 

Hypothesis and Aims 

Asthma is a heterogeneous disease of the lower airways that remains a significant 

healthcare concern for the pediatric population despite numerous public health and 

pharmacologic advances to control the disease.  Recent studies have shown a link between 

upper airway inflammation and asthma, and respiratory infection and allergen exposure are 

frequently indicated as triggers for asthma exacerbations in pediatric patients.  

Adenotonsillectomy is common surgical procedure in children performed to address upper 
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airway hypertrophy, infection, and inflammation.  A number of observational studies have 

demonstrated a positive clinical effect of this surgery on asthma control; however these 

studies have limitations due to study design, and no previous studies have examined the 

effect of adenotonsillectomy on biomarkers on inflammation.  Chitinases have been 

implicated in the pathogenesis of inflamed adenotonsillar tissue, and in the presence and 

severity of asthma, and may reflect a biological link between upper airway inflammation 

alleviated by adenotonsillectomy and the effect of environmental triggers in the 

pathogenesis of asthma.  Gene expression profiling in the blood and upper airway tissue of 

patients undergoing adenotonsillectomy may be able to characterize biological changes due 

to the procedure and identify genes uniquely affected in children with asthma undergoing 

the procedure. 

We hypothesize that asthmatic control will improve in children undergoing 

adenotonsillectomy.  Using chitinase levels and gene expression profile data in the serum 

and upper airway, we postulate it is possible to characterize unique biological changes 

among children with improvement in asthma control undergoing the surgery compared to 

children without improvement and children without asthma. 

Specific Aims 

1. Conduct a prospective observational study of pediatric patients, with and without 

asthma, undergoing tonsillectomy for standard indications.  Asthma will be 

characterized by clinical symptoms and pulmonary function tests.  Serum 

biomarkers including chitotriosidase activity, YKL-40 levels, and IgE will be 

measured, and expression profile data of tonsillar tissue, nasal epithelium, and 

peripheral blood will be collected.  Questions, PFTs, serum biomarkers, and 

peripheral blood expression data will be repeated 6 months post-operatively. 
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2. Compare asthma control pre- and post-operatively, and retrospectively identify any 

clinical characteristics pre-operatively that predict a positive outcome. 

3. Determine the changes in chitotriosidase activity, YKL-40 levels, and genetic 

expression profiles pre- and post-operatively of asthmatics and non-asthmatics 

undergoing tonsillectomy.   CHIT1 and CHI3L1 genotypes will be determined at 

baseline. 

4. Correlate clinical findings (in Aim 2) with biomarker and genetic findings (in Aim 3) 

to determine if there is (a) a characteristic biological response in patients who see 

symptom improvement after tonsillectomy and (b) a set of biomarkers that could be 

measured pre-operatively that would predict clinical improvement after operative 

intervention. 

Methods 

Enrollment and Follow-up 

Pediatric patients ages 2-18, with and without asthma, who were undergoing 

adenotonsillectomy for standard indications at Yale New Haven Children’s Hospital and 

North Haven Surgery Center were recruited over a 13-month period.  Informed parental 

consent and child assent for patients age ≥ 7 were obtained.    All procedures were approved 

by the Yale University and the Yale New Haven Hospital Human Investigation Committee. 

On the day of surgery, a study member administered a questionnaire to the subject’s 

parent.  Definition of asthma was based on a previous physician diagnosis prior to surgery.  

The questionnaire consists of pulmonary history, including history of asthmatic disease; a 

list of common triggers with examples including infection, allergy, household (dust, smoke, 

carpet), environment (pollution, cold weather), and exercise; Emergency Department (ED) 
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or urgent care visits related to asthma; steroid courses; comorbidities including history of 

sinus disease, gastroesophageal reflux disease (GERD), allergic rhinitis, and eczema; 

medications, including compliance, perception, and frequency of usage in the last 4 weeks; 

and days of school missed and parental days of work missed due to the child’s asthma and 

other illnesses.   Subjects with asthma also completed an age-appropriate version of the 

Asthma Control Test (ACT), with the assistance of parents or guardians as needed. (22, 23)  

Adult ACT scores were rescaled from maximum 25 to 27 in order to compare to childhood 

ACT scores, which also have a maximum score of 27.  Children were defined as having 

poorly-controlled asthma at baseline by one of the following criteria, based on asthma and 

ACT guidelines: pediatric or adult ACT < 20, two or more ED/urgent care visits in the 

previous year, two or more oral corticosteroid courses in the previous year, or using SABA 

medication more than twice per week in the last month. (21)  Children age six and above 

completed Pulmonary Function Testing (PFTs) if they were able to comply with the 

instructions given. Intraoperatively, the anesthesiology team obtained venous blood in 

serum. 

Six months after surgery, parents were contacted by telephone or email.  Primary 

study outcome for children with asthma was measured by retesting an ACT score.  The 

follow-up questionnaire was also administered to parents, with rates calculated for 

variables measuring number of incidences over a given time (Emergency/Urgent Care 

visits, steroid courses, school and work days missed). Changes were used to calculate a 

composite variable of improvement in asthma control, with improvement defined as one of 

the following: increase in ACT score of 3 or greater, decreased rate of Emergency/Urgent 

Care visits, a decreased rate of oral corticosteroid courses, or a decrease in rescue short 

acting bronchodilator (SABA) usage in the previous month.  PFTs were also repeated for 
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those study subjects with initial testing.  Repeat blood samples were drawn at this time as 

well.  Study participants were compensated for completing follow-up.  

Chitotriosidase Activity, YKL-40 levels, and IgE levels 

Serum chitinase activity was determined using a fluorimetric assay as previously 

described, and reported as nmol/mL/hr. (37, 58)  Briefly, 44 µmol/L substrate was prepared by 

mixing 1 mg 4-methylumbelliferyl-β-D-N,N’,N’’-triacetylchiotrioside in 2mL H2O and 26.9 

mL of McIlvain buffer, then sonicated and incubated at 37°C until dissolved.  Serum was 

immediately spun down at 1500rpm for 10 min after collection; the supernatant was 

extracted and stored at -20°C.  To measure the enzyme activity, 180µL substrate was mixed 

with 20µL serum.   The mixture was incubated at 37°C for 30 minutes.  2mL Stop Solution 

(0.3mol/L glycine-NaOH, pH 10.6) was added to each sample, and then each sample was 

measured using fluorometry (Sequioa Turner).  Enzyme activity was calculated in 

nmol/mL*h using a standard curve. 

YKL-40 levels were determined using commercially available enzyme-linked 

immunosorbent assay (ELISA) kits (MicroVue), as previously described. (40).  Briefly, serum 

from each subject was measured in duplicate.  100 µL capture solution was added to 20 µL 

of each sample in plates included with the kit.  After 1 hour incubation at room temperature, 

sample wells were emptied and then washed three times with 300 µL wash buffer.  100 µL 

enzyme conjugate was then added to each well.  Samples were incubated for another hour 

at room temperature, followed by three more washes.  100 µL substrate buffer was then 

added to each well.  After incubation for 1 hour at room temperature, 100 µL stop solution 

was added to each sample.  Levels were measured by plate reader (BioTek) based on a 

standard curve.  Median values between sample duplicates are presented.  If measured 
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levels between the duplicates showed a more than 30% discordance, the sample was 

repeated. 

IgE levels were measured by commercially available services (Healthpoint 

Diagnostix, Inc).   

Genotyping 

We extracted DNA from blood using the QuickGene DNA whole blood extraction kit 

(Fujifilm).  Briefly, blood was stored in Solution A tubes and immediately refrigerated at 

4°C.  300 µL protease and 2.5 mL lysis buffer were added to each 2 mL blood, and the 

samples were incubated 30-40 minutes at 56°C.  2.5 mL 100% EtOH was added to 

neutralize the lysis buffer, and then the DNA was extracted using the QuickGene system.  

The concentration of DNA was confirmed using the NanoDrop spectrophotometry system. 

We examined the prevalence of a promoter SNP in the CHI3L1 gene encoding YKL-

40, rs4950928 (131 CG).  The C allele has been shown to be associated with elevated 

levels of YKL-40.  The SNP was genotyped with differentially labeled primers containing the 

C and G allele using TaqMan q-PCR Assay-on-Demand (ABI).  Briefly, 1 µL of sample DNA 

was added to an Assay Mix that included the labeled rs4950928 primers, dNTPs, and 

enzyme.  After the PCR reaction was complete, each sample was scanned (Applied 

Biosystems 7500 Fast Real Time-PCR); based on the incorporated label, each sample was 

identified as having the C or G SNP. (45) 

We also examined the prevalence of the 24-bp exon 10 duplication in the CHIT1 

gene encoding chitotriosidase.  The duplication results in a nonfunctional protein.  We 

performed PCR on the DNA using primers for exon 10; the duplication genotype was 

differentiated from the wild-type using gel electrophoresis.  Briefly, 1 µL of sample DNA and 

exon 10 primers were added to premixed solutions with dNTPs and polymerase.  After the 
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PCR reaction was complete, gel electrophoresis was performed; based on segment length, 

each sample was determined to either be wild-type or include the duplication. 

Statistical Analysis 

All clinical and experimental data was uploaded onto the Yale Center for Asthma 

and Airway Diseases online database.  Statistical analyses were performed using IBM SPSS 

Statistics version 19.  Nominal data was compared using Fisher’s Exact test and Pearson’s 

chi-square; all scaled data was confirmed to be of a non-normal distribution with the 

Shapiro-Wilk test for normality; thus, non-parametric methods including Mann-Whitney U 

and Wilcoxon Signed Rank Tests were employed. p-values <0.05 were considered 

significant. 

RNA Extraction 

 Tonsillar and nasal epithelial tissue were immediately stored in 500 µL RNALater™ 

(Invitrogen) solution and refrigerated at 4°C overnight to allow for the solution to permeate 

the tissue, then stored long term at -80°C. 

 To extract DNA from tonsillar tissue, 50-100 mg sample was cut and transferred to a 

fresh 14mL Falcon tube.  1 mL Trizol solution (Invitrogen) was added.  The sample was 

homogenized using sonication for 30 seconds, with 15 second PBS washes of the sonication 

probe between samples.  The homogenized mixture was then transferred to a 1.5 mL 

centrifugation tube.  The solution was spun down at 12000g x 10 min at 4°C, and then 

incubated at room temperature for 5 minutes.  750 µL supernatant (aqueous phase) was 

extracted; 150 µL chloroform was added.  After vortexing to mix, the sample was set to 

incubate at room temperature for 3 minutes.  Afterwards, it was spun down again at 12000g 

x 15 min at 4°C.  At this point, 300 µL supernatant was transferred to a DNA column from 

the RNA Easy Mini Plus Kit (Qiagen). 
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 The DNA column was spun at 10000 rpm x 30 sec at room temperature.  Flow 

through was collected and the column discarded.  300 µL (1:1 volume) 70% EtOH was 

added to the flow through and mixed well by pipetting.  This solution was transferred to the 

RNA Column from the kit. It was spun at 10000 rpm x 30 sec at room temperature.  With the 

RNA in the column, the flow through was discarded.  700 µL RW1 Wash Buffer was added 

and spun down at 10000 rpm x 30 sec; another two washes were completed with 500 µL 

RPE Wash Buffer and spun down at 10000 rpm x 30 sec; this was followed by a dry spin of 

10000 rpm x 2 min.  Lastly, 50 µL water was added to the column and spun down at 10000 

rpm x 1 minute to elute the RNA.  The presence of RNA and concentration was measured 

using the NanoDrop spectrophotometer; if more concentration was desired, the 50 µL 

elution was re-spun through the column for a higher RNA yield.   

 This method was a modification over previously attempted methods to isolate the 

RNA using Trizol solution (Invitrogen).  At first, samples were stored in Trizol.  RNA was 

extracted after homogenization, separation of the aqueous phase once chloroform was 

added, and then purified by spinning down to create an RNA pellet.  However, it was found 

that despite good concentration, RINs (RNA Integrity Numbers) were poor, indicating RNA 

degradation.  This method was modified to use the Qiagen RNA Easy Mini Plus Kit for 

column purification of the RNA, rather than using an RNA pellet, but RINs were still poor.  

Finally, RNALater™ was used instead of Trizol as the storage solution for the tissue samples.  

This drastically improved RINs, though there was found to be some protein contamination 

(low A260/A230, as measured by NanoDrop).  The final modification to create the protocol 

as listed above, was adding an extra spin down step after homogenization but before adding 

chloroform to remove insoluble protein precipitate from the Trizol mixture before 

separation of layers.  This procedure allowed us to consistently produce high 

concentrations of high quality RNA from tonsillar samples.  However, the first 60 tonsillar 
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samples collected were stored in Trizol and therefore have low quality RNA that was not 

used in expression analysis. 

 A similar process was employed to extract RNA from nasal epithelial tissue.  Again, 

tissue was stored in 500 µL of RNALater™, and refrigerated at 4°C for one night before long 

term storage in -80°C.  Preparation for extraction included mixing 3.5 µL β-mercaptoethanol 

and 350 µL RLT buffer (Qiagen RNA Easy Mini Plus Kit).  The nasal swab brush was then 

transferred from the RNALater™ to the RLT buffer with β-mercaptoethanol and allowed to 

sit on ice for 30 minutes.  After incubation, the mixture, with the swab, was vortexed for at 

least 15 seconds.  The solution was then transferred to a QIAShredder column.  Finally, the 

original tube with the swab was spun at low speed for 1 min, and any remaining solution 

was added to the QIAShredder column.  The QIAShredder was spun at 10000rpm x 2min; 

flow through was transferred to the DNA column and the procedure was carried out with 

the Qiagen RNA Easy Mini plus Kit, exactly as stated above for the tonsillar tissue RNA 

extraction.  Again, this method was a modification after samples that were stored in Trizol 

produced low RIN numbers.  The first 60 samples collected were stored in Trizol and 

therefore have low quality epithelial RNA. 

 To extract RNA from whole blood, peripheral blood was collected in a Tempus™ 

tube (Applied Biosystems) and stored at -20°C.  It was found to be important that the blood 

was mixed well with the solution in the Tempus™ tube immediately after collection to 

ensure RNA preservation.  To extract the blood RNA, 3 mL PBS and the peripheral blood 

were mixed and vortexed, then spun at 3000g x 30 minutes at 4°C.  The supernatant was 

discarded after the spin (though kept in case RNA extraction failed and needed to be 

repeated).  Tubes were air dried, facing upside down on a paper towel for 5 minutes, then 

dried with a cotton swab (being careful not to swab the bottom of the tube, the location of 

the RNA pellet).  Using the Total RNA Purification Kit (Norgen), 400 µL Lyse Buffer was 
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added to each sample and vortexed.  200 µL 100% EtOH was added and mixed by pipetting.  

The solution was then transferred to the Norgen RNA extraction columns.  Samples were 

centrifuged at 13000 rpm x 1min at room temperature.  The flow through was discarded.  

Each sample was washed three times with 400 µL Wash Buffer, 13000 rpm x 1 min for the 

first two washes and 13000 rpm x 3 min for the last wash.  After a dry spin of 13000 rpm x 

2 min, 50 µL Elution buffer was added.  The sample was let to sit for 1-2 minutes, and then 

spun at 13000 rpm x 2 min.    

Extracted RNA from all tissue types was sent to the Keck Laboratory on the Yale 

West Campus, where RNA quality was measured by looking at the integrity of 18S and 28S 

ribosomal RNA.  Their integrity indicated good sample quality; their absence reflected RNA 

degradation in the sample.  The computer generated an RNA Integrity Number (RIN) for 

each sample based on the 18S and 28S rRNA integrity; RINs ≥ 6 were generally considered 

acceptable; however if spectrophotometric peaks for the 18S and 28S rRNA looked 

acceptable to the eye but the computer calculated a low RIN or could not calculate a RIN, the 

sample was also included. 

Microarray Analysis 

 Affymetrix™ Gene Chip Human Exon 1.0 ST microarrays were used for analysis.  

Gene Chip Human Exon 1.0 ST Arrays contain 5,362,207 features with 1.4 million probesets 

that cover over one million exon clusters, 289,961 known genes by mRNA transcript, and 

665,175 genes by Expressed Sequence Tags.  The Keck Laboratory performed all 

microarray readings according to Affymetrix protocols.  Blood samples were cleaned of 

hemoglobin prior to reading.  All samples underwent cDNA amplification using PCR prior to 

read.   
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Scanned output files were analyzed using Affymetrix™ software, and cell image data 

files were loaded into GeneSpring GX software version 11 (Agilent).  Data were log-

transformed, normalized, and baseline-converted was performed to median values by RMS 

for each individual analysis group (tonsil samples, nasal epithelial samples, baseline blood 

samples, and matched baseline & follow-up blood samples) Quality control on each set was 

performed using PCA plot.  Interpretations were performed for baseline blood, nasal 

epithelium, and tonsil samples according to improvement in asthma control.  Differential 

gene expression was determined by t-test; genes for analysis were limited to differential 

expression p<.05 and fold change > 1.5.  No post hoc testing for multiple comparisons, 

including Benjamini-Hochberg method, was used due to insufficient results after 

corrections.   Interpretations for improved control, not improved control, and control 

subjects were also performed on matched baseline and follow-up blood samples; 

differential gene expression was determined by paired t-test without post hoc testing for 

multiple comparisons; again, genes for analysis were limited to differential expression 

p<.05 and fold change >1.5.  Gene Ontology categories and pathways that were well 

represented among the gene lists were determined, with p < 0.1. (53, 59)  Individual genes 

were searched for relevance in the NCBI Gene databases. 

Results  

Cohort Characteristics 

130 patients total undergoing adenotonsillectomy were enrolled, ages 2-18, over a 

13 month period.  66 subjects had diagnoses of asthma; 64 subjects were controls (Figure 

1).  75% of study participants had a primary indication of tonsillar hypertrophy, including 

symptoms of sleep-disordered breathing, for surgery.  23% of participants had a primary 
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indication of recurrent tonsillitis/infection for surgery; there was no significant difference 

between asthma and control groups.  Compared to controls, children with asthma had 

higher incidence of expected comorbidities including atopy (seasonal allergies and/or 

eczema) and a history of GERD, and were more common of Hispanic origin (p=0.01, 0.01, 

0.03, respectively). (60)   Children with asthma had a lower median FEV1 (p=0.03), 

consistent with a physician diagnosis of asthma (Table A).  Baseline ACT scores ranged from 

6-27, with a median of 22 (interquartile range 16-22).  46 children completed the pediatric 

ACT and another 5 children completed the adult ACT at baseline; 15 children never 

completed a baseline ACT.  29 subjects were administered ACT questionnaires following 

surgery during the follow-up period, rather than prior to surgery.  These families completed 

the ACT prior to follow-up by phone or at the follow-up appointment.  There was no 

relation between indication for surgery and baseline ACT score.  38 out of 66 (58%) had 

poorly-controlled asthma (ACT < 20, ≥ 2 ED/urgent care visits in the previous year, ≥ 2 oral 

corticosteroid courses in the previous year, or using SABA medication more than twice per 

week in the last month). 

Follow-up was achieved in 81% of the enrolled subjects (N=105), 58 subjects with 

asthma and 47 control subjects.  Bloodwork was obtained for 122 participants (94%) at 

baseline; 67 parents gave consent (64% of those achieving follow-up) to have bloodwork 

performed post-operatively.  Patients were primarily lost to follow-up due to failure to 

respond or unable to contact (moved or changed phone number).  Mean time to follow up 

was 7.0 months (range 5-12, SD 1.5), and was not statistically different between study 

groups.  Follow-up rate was also not statistically different for patient age, gender, race, 

ethnicity, or indication for tonsillectomy. 
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Effect of Adenotonsillectomy on Asthma Control 

 Asthma control and asthma-related healthcare utilization were significantly 

improved after adenotonsillectomy.  There was a clinically significant improvement in ACT 

scores after 6 months (median increase from 22 to 25, p< 0.001, Figure 2a) and subjects 

with asthma reported significant decreases in the rate of ED/Urgent Care visits, oral 

corticosteroid courses, missed school days due to asthma, and total missed parental work 

days due to illness (Table B).   An improvement in score of 3 or more was considered 

clinically significant, previously shown to be the minimally important difference in score. 

(24)  Of 35 individuals with rescaled ACT scores < 25, 24 subjects (69%) had increases in 

score of 3 or more (p< 0.001, Figure 2b).  12 of 27 children (44%) on controller medications 

for asthma at baseline were no longer on controller medication at follow-up.  Two children 

“developed” asthma during the follow-up period; these children were characterized as 

controls since they were classified as without asthma at the time of surgery.  PFT scores did 

not significantly change for either study group between baseline and follow-up.  Subgroup 

analysis of children with poorly-controlled asthma at baseline demonstrated a more 

pronounced increase in ACT score, from a median of 18 to 24. (21) 

The composite variable of improvement in asthma control was defined by fulfilling 

one of the following categories: increase in ACT score of 3 or greater, decreased rate of 

Emergency/Urgent Care visits, a decreased rate of oral corticosteroid courses, or a decrease 

in rescue short acting bronchodilator (SABA) usage in the previous month.  Of the 48 

children with asthma who were not already maximally controlled at baseline, and therefore 

had room to improve (pediatric ACT <25, adult ACT <23, one or more ED/urgent care visit 

in the previous year, one or more oral corticosteroid course in the last year, or using SABA 

medication in the last month), 36 (75%) had an improvement in symptoms in at least one 
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category.  When limited to the 34 subjects with poorly-controlled asthma at baseline, 29 

(85%) had an improvement in symptoms in at least one category. 

Improvement in asthma control, using the composite variable, did not significantly 

correlate with baseline patient characteristics including age, years since asthma diagnosis, 

comorbidities, smoke exposure, indication for adenotonsillectomy, or PFTs.  In the 

subgroup analysis of children with poorly-controlled asthma at baseline, asthma control in 

all 19 subjects who listed “Environment” as a trigger improved, while control in only 10 of 

15 (67%) of those who did not improve (p=0.01).  Improvement in control was also 

significantly associated with a lower baseline ACT score among those with poor control at 

baseline (median score of 22 for subjects with improved asthma control versus score of 16 

for those without improved control, p< 0.05). 

Analysis of Chitinase Genotypes and Levels 

 Genotypic analysis of the CHIT1 24-bp exon 10-duplication showed a significantly 

higher allele frequency of the mutation in the asthmatic population undergoing 

adenotonsillectomy, 26% vs. 14%, (t-test p< 0.02, Figure 3).  Analysis of the CHI3L1 

rs4950928 (131 CG) promoter SNP showed a lower allele frequency of the minor G allele 

in the asthma populations (14% vs. 18%, respectively), a result consistent with previous 

findings though not significant in this study (p=0.39).  Of note, CHIT1 and CHI3L1 genotypes 

did not significantly associate with gender, race, or ethnicity.  CHIT1 and CHI3L1 genotypes 

also did not significantly associate with improvement in asthma control following surgery. 

Chitinase activity was evaluated at baseline and follow-up.  Corresponding to the 

increased prevalence of the exon 10-duplication in children with asthma, chitinase activity 

was significantly lower in the asthmatic population, median 3.1 nM/ml*hr (interquartile 

range 1.9-5.3) vs. 3.9 nM/ml*hr for controls (interquartile range 3.0-6.6), (p< 0.01, Figure 
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4a).  While there was a significant decrease in circulating chitinase activity in children with 

asthma (median decrease 0.4 nM/ml*hr, p< 0.01), there was no significant change in 

chitinase activity in the control subjects after surgery (median no change, p=0.83).  Within 

the asthma group, chitinase activity significantly decreased in subjects with improved 

control (p=0.001), while it was unchanged in those who did not improve (p=0.73, Figure 

4b).  Baseline chitinase activity was also significantly higher in subjects whose asthma 

control improved versus those whose control did not, median 3.5 nM/ml*hr (interquartile 

range 2.6-6.6) versus 2.2 nM/ml*hr (interquartile range 1.4-3.5) nM/ml*hr, p< 0.01).  YKL-

40 levels were higher among children with asthma (median 41.5 ng/mL versus 35.5 ng/mL , 

interquartile ranges 27.5-62.4 versus 25.8-50.1), but this was result was not statistically 

significant (Figure 4a).  This trend corresponded to the lower prevalence in the asthmatic 

population of the promoter SNP 131 GC, which increases YKL-40 expression.  YKL-40 

levels not change significantly in either study group over the study period (Figure 4c).  

Improvement in asthma control did not correlate with baseline YKL-40 level, change in 

YKL-40 level over the study period, or baseline IgE levels.   

In the subgroup analysis of children with poorly-controlled asthmatic subjects at 

baseline, the decrease in chitinase activity remained statistically significant when disease 

activity asthma control improved (median decrease 0.9 nM/ml*hr, p< 0.01), but not when 

disease activity control remained unchanged (median no change, p=1.00), as defined by the 

composite variable (Figure 4d).  In this subgroup, baseline chitinase activity was again 

significantly higher in asthmatic subjects whose asthma control improved versus those 

whose asthma control did not (median 3.4 versus 1.9 nM/ml*hr, interquartile ranges 2.4-

5.4 versus 0.8-3.0, p< 0.05).  A baseline chitinase activity ≥ 2.35 predicted improvement 

with 82% sensitivity and 80% specificity among children with poorly-controlled asthma. 
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Gene Expression Analysis 

In nasal epithelial samples, 46 exon clusters including 32 known genes were 

differentially expressed among children with asthma between those with improved control 

and those without(unadjusted p<0.05, |Fold change (FC)|>1.5, Table C).  Using NCBI 

databases, transcripts related to asthma, the upper airway, or the inflammatory response 

were identified.  Serpin Peptidase inhibitor B2 (SerpinB2), previously associated with 

asthma, was down-regulated in the nasal epithelium of children with asthma with improved 

control versus those without improved control (p<0.01, FC -1.96).  It was also down-

regulated in children with improved asthma versus control subjects (p=0.03, FC -1.61).  

Other inflammatory-related genes with differential expression in the nasal epithelium of 

children with improved control versus those without improved control included two 

glutathione S-transferases (GSTM1, p=0.03, FC -2.45; and GSTM4, p<0.01, FC -1.51) and IGF 

binding protein 2 (IGFBP2, p=0.01, FC -1.50), which were down-regulated at baseline among 

children with improved control.  A leukocyte immunoglobulin-like receptor (LILRB4, 

p=0.04, FC 1.5), cytolysis protein perforin 1 (PRF1, p=0.02, FC 1.52), and a GTPase involving 

T-cell survival (GIMAP5, p=0.02, FC 1.66) were up-regulated in baseline nasal epithelium 

among children with improved asthma control.  None of the above, aside from SerpinB2, 

was differentially expressed in children with improved asthma versus control subjects.   

In baseline blood samples, 7 exon clusters including 5 known genes were 

differentially expressed (Table C); these included an interferon induced protein (interferon-

induced protein with tetratricopeptide repeats 1-like protein - IFIT1L, p=0.02, FC -1.51) and 

a carboxypeptidase produced by mast cells (CPA3, p<0.001, FC -1.51) which were both 

down-regulated at baseline among children with improved control.  Interestingly, IFIT1 (not 

IFIT1L) was up-regulated in the blood of children with improved asthma control versus 

control subjects.  In tonsil tissue, 9 differentially expressed clusters and 7 known genes 
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were identified, interestingly all of which are on the Y chromosome; none were 

differentially expressed compared to control subjects (Table C). 

 In matched blood samples using pairwise comparisons (Table D), expression of 

SerpinB2 decreased from baseline to follow-up in children with asthma that improved 

(p<0.01, FC -1.54), but not in children with asthma that did not improve or in control 

patients.  This was the only differentially expressed gene among all children with improved 

asthma; when limited to asthma that was poorly controlled at baseline, 25 exon clusters 

with 15 known genes were differentially expressed.  These included SerpinB2, which 

decreased in expression (p=0.01, FC -1.6), as well as interferon induced protein (IFIT1, 

p=0.02, FC 2.27), HERC5 (p=0.04, FC 2.07), CD274 (p=0.04, FC 1.69), LAMP3 (associated with 

Influenza A, p<0.05, FC 1.6), and an olfactory receptor (OR2W3, p=0.04, FC 1.52) which all 

increased in expression.  None of these significantly changed in expression in either 

children with asthma whose control did not improve or control subjects.  In control 

subjects, 29 known genes showed differential expression pre- and post-operatively, 

including interleukin 1B (IL1B, p=0.03, FC 1.53), cyclooxygenase-2 (PTGS2, the inducible 

form, p=0.03, FC 1.5), adrenomedullin (ADM, p=0.04, FC 1.66), and free fatty acid receptor 2 

(FFAR2 or GPR43, p=0.03, FC 1.64), all of which increased in expression.  Granzyme to 

eliminate transformed and virus-infected cells (GZMH, p=0.04, FC -1.65) and NK cell lectin 

receptor (KLRF1, p=0.03, FC -1.65) both decreased in expression over the study period. 

Gene Ontology analysis of differentially expressed genes between children with 

improved asthma control versus those without improved control demonstrated significance 

(p<0.1) in the baseline nasal epithelium for the classes of pathogenesis (p<0.01), MHC Class 

II protein complex (p<0.01), and membrane parts (p=0.08).  In the baseline blood samples, 

serine-type endopeptidase inhibitor activity (p<0.05) was the only significant class. 
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Discussion 

Though a number of observational studies have demonstrated a positive clinical 

effect of adenotonsillectomy on asthma control, these studies have contained limitations in 

size and study design. (32) No study to our knowledge has examined the effect of 

adenostonsillectomy on markers of airway inflammation; we chose to explore chitinases 

given previous, separate findings liking them to both asthma and adenotonsillectomy. (38, 

40)  In this study, we have demonstrated that asthma control and healthcare utilization 

significantly improve after adenotonsillectomy and that this improvement is associated 

with a decrease in chitinase activity in the circulation that is not evident in children without 

asthma.  Therefore, while this procedure has effects on upper airway inflammation and 

mechanics that contributes to improved asthma control, these results suggest that 

adenotonsillectomy also modulates airway inflammation in asthma. 

This longitudinal, observational study followed children with asthma undergoing 

adenotonsillectomy for standard clinical indications, using both clinical and biological 

characterizations.  We used a past physician diagnosis of asthma as our identification 

criteria, which was supported by the statistically lower %FEV1 in the asthmatic group.  The 

asthmatic group also had statistically more children of Hispanic or Latino heritage; 

however, this did not significantly correlate with chitinase activity or YKL-40 levels. A six 

month follow-up was chosen to minimize any natural changes of asthma control with age, 

but to provide enough time to see clinical and biological changes in airway inflammation.   

The study demonstrated that a vast majority of subjects with asthma undergoing 

adenotonsillectomy reported improvement in symptoms after 6 months.  75% of all 

children with asthma not already maximally controlled at baseline, and therefore with room 

to improve, reported symptom improvement. 85% of children with poorly-controlled 
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asthma at baseline reported improvement.  Response was significantly associated with a 

lower baseline ACT score, indicating that those with poorly-controlled asthma were most 

likely to see a benefit from the surgery, and listing environmental exposures as a trigger 

(including exposures outside the home, weather changes, and pollution). 

ACT score, a validated tool to monitor asthma symptoms and severity, increased on 

average over 3 points from baseline to post-operative follow-up. An initial group of 29 

subjects with asthma enrolled in the study had baseline scores collected after the 

procedure; median baseline ACT score in this group was identical to baseline ACT scores 

collected pre-operatively (score of 22), and thus, all scores were included in analysis. 

A strength of this study is that we have identified a serum biological marker, 

chitinase activity, which decreases with improvement in asthma after adenotonsillectomy 

but does not change in subjects without asthma undergoing the procedure.  Given the 

difficulties of performing a randomized controlled trial of surgery for pediatric asthma 

patients, identifying positive clinical and biological predictors for symptom improvement 

would help to categorize patients most likely to benefit from adenotonsillectomy and 

further justify a biological effect of the surgery on asthmatic inflammation.  Higher serum 

chitinase activity was also significantly associated with improvement in disease activity in 

both the entire cohort of individuals with asthma as well as the subgroup with poorly-

controlled asthma at baseline.  This data suggest that the surgery improves not only clinical 

asthma symptoms, but also has a biological effect on inflammation associated with asthma. 

Genotype analysis of our baseline population showed a higher prevalence of the 

CHIT1 24-bp exon 10 duplication in children with asthma who were undergoing 

adenotonsillectomy.  Correspondingly, baseline chitinase activity was significantly lower in 

this population.  These results are somewhat surprising since chitinase activity also 
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decreased in children whose asthma control improved following the procedure, and 

genotype did not associate with improvement.  One possibility is differences in genetic 

predisposition versus a response to an environmental effect (Figure 5).  Specifically, our 

data suggest that among children with tonsillar disease requiring adenotonsillectomy, 

children with the mutation are more likely to have asthma, due to an inherently decreased 

ability to modulate the effect of environmental substances on the airway (including chitin), 

potentially related to the tonsils.  This may result in more inflammation in the airway and 

the development of asthma.  Because we only explored this in a population of children with 

tonsillar pathology, these conclusions cannot be applied to children with asthma as a whole. 

The decline in chitinase activity following the surgery may represent an 

environmental response rather than an inherent trait.  The results suggest that in patients 

who improve after adenotonsillectomy, tonsillar inflammation and hypertrophy may 

contribute to inflammation of the lower airways.  In accordance with the “one-airway 

hypothesis,” removing the tonsils may reduce inflammation in the lower airway, decrease 

chitinase activity, and improve asthma control.  Those who do not improve control may 

have different triggers or a distinct form of asthma, and thus chitinase levels are likely to 

remain unchanged following the procedure in this group.  Chitotriosidase has been shown 

to have both pro-and anti-inflammatory properties. Whether the enzyme is responding to 

inflammation in the airways induced in the environment as an attempt at negative feedback 

or mediating the inflammation occurring in the airways cannot be discerned by this study.   

While prior studies have demonstrated a strong association between serum YKL-40 

and asthma severity (40), it was another chitinase family protein, chitotriosidase, whose 

activity was found in this study to correlate with asthma and improvement in symptoms 

after surgery.  This distinction may be due to differences in the mechanism of chitin 

response and Th2 inflammation in children and adults.  Additionally, as CHIT1 expression is 
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elevated in hypertrophied adenoid tissue of children with chronic upper airway and sinus 

disease (38), chitotriosidase may play a unique role in airway inflammation triggered by 

hypertrophied adenotonsillar tissue.  A future direction will be to measure chitotriosidase 

activity and YKL-40 levels in adenotonsillar tissue of children with and without asthma. 

To our knowledge, global gene expression has never been studied in patients 

undergoing adenotonsillectomy.  This analysis demonstrated a number of relevant genes 

that may act as biomarkers for changes in asthma control following to adenotonsillectomy.  

The most promising is Serpin Peptidase inhibitor B2 (SerpinB2) since it has been implicated 

in asthma previously, and it was differentially expressed in multiple compartments - blood 

and nasal epithelial tissue.  Interestingly, SerpinB2 was downregulated in the nasal 

epithelium among children whose asthma control improved versus children in which it did 

not, and also decreased in expression in the blood from baseline to follow-up in children 

that improved (but not in controls or children that did not improve).  Serpin peptidase 

inhibitor 2 inhibits tPA and uPA, thus preventing the activation of plasmin and promoting 

fibrin formation.  Its expression is provoked by IL-13. (51)  Fibrinogen and thrombin 

accumulation in the airways has been shown to be involved in airway hyperresponsiveness. 

(61)  SerpinB2 and carboxypeptidase A3, a mast cell product, were previously shown to be 

up-regulated in genome wide profiling of asthmatic bronchial epithelium.  (51) Response to 

corticosteroids was associated with decreased expression of SerpinB2; likewise, in our 

study serum expression of SerpinB2 decreased in children with improved asthma control 

after adenotonsillectomy.  Both higher SerpinB2 levels and carboxypeptidase A3 levels have 

been shown, in separate studies, to predict response to corticosteroids. (62)  However, we 

identified that lower expression of SerpinB2 and carboxypeptidase A3 in the nasal 

epithelium at baseline predicted improvement after surgery.  This pattern may identify a 

subgroup of children with asthma, possibly of a non-allergic type (given low levels of 
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carboxypeptidase A3), unlikely to be controlled by conventional therapies and likely to 

improve by adenotonsillectomy.  Additionally, SerpinB2 knockout mice poorly regulate Th1 

responses. (63)  Thus, children with low baseline SerpinB2 levels may have an underlying 

susceptibility to adenotonsillar-induced airway inflammation. 

Glutathione S-transferases have also been implicated in asthma, and two (GSTM1 

and GSTM4) were found to be down-regulated in the nasal epithelium of children whose 

control improved.  Children null for the GSTM1 allele were more susceptible to asthma 

associated with environmental tobacco smoke; in older children, the GSTM1 null status 

interacted with smoke exposure to reduce peak expiratory flow rate. (64)  Likewise, 

children with asthma undergoing tonsillectomy with low glutathione s-transferase 

expression in the airway may be more susceptible to environmental stress on the airway 

from tonsillar inflammation, and more likely to improve from adenotonsillectomy. 

An interferon induced protein, IFIT1, also increased in expression in matched blood 

samples of children with uncontrolled asthma at baseline that improved control after 

surgery, but not in control subjects or children with uncontrolled asthma that did not 

improve.  This may be relevant since IFIT1L was found to be down-regulated at baseline in 

the blood of children with improved control as well.  IFIT1 is an antiviral protein expressed 

highly after viral infection. (65) 

A number of other inflammatory proteins also changed in expression in the blood in 

control subjects.  This is the first time that changes in gene expression related to 

adenotonsillectomy are reported.  These inflammatory proteins include interleukin-1 β, 

cyclooxygenase-2 (PTGS2, the inducible form), adrenomedullin (ADM), and free fatty acid 

receptor 2 (FFAR2, or Gpr43), all of which increased in expression.  Granzyme-H, which 

eliminates transformed and virus-infected cells, and NK cell lectin receptor (KLRF1) both 
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decreased in expression over the study period.  These changes support the notion that 

adenotonsillectomy affects inflammatory pathways, regardless of asthma status. Of these, 

IL-1β has previously been shown to exist in high concentrations in chronically inflamed 

adenotonsillar tissue in children. (66)  Others have been implicated in airway inflammation. 

COX-2 is implicated in asthma, particular in nasal polyposis and aspirin-associated asthma. 

(67)  Adrenomedullin has been shown to suppress Th-2 related inflammation in mice. (68)  

Mice deficient for Gpr43, a G protein coupled receptor in the gut for short chain fatty acids, 

have hyperractive neutrophilic responses. (69)  Granzyme-H targets adenovirus-infected 

cells by neutralizing an inhibitor of Granzyme B. (70)  KLRF1 has been shown to stimulate 

CD8 T cells with an inflammatory NK-like phenotype. (71) 

Limitations to the observational study include regression to the mean; however 

longitudinal measurement of ACT scores and other measures of asthma control support our 

findings.  Though 29 ‘baseline’ ACT scores were collected during the post-operative follow-

up period due to a change in study design, the median of these scores did not differ from the 

median of scores truly collected at baseline.  While this minimizes the possibility of a recall 

bias due to the timing of the questionnaire, it does not eliminate such a possibility.  Our 

asthmatic group also had a high prevalence of poorly-controlled asthma and was thus more 

severe than population data; however, this may be explained given our starting point of 

children who were candidates for adenotonsillectomy, and thus, may have been more 

connected to the medical system or more likely to have concurrent illnesses. Another 

limitation is the effect of seasonal variability with a 6 month follow-up period; however, this 

was controlled by enrolling participants year round.  Though follow-up was targeted at six 

months, actual mean follow-up time was 7 months, and ranged from 5 to 12 months.  This 

variability may have likewise affected post-operative results.  Additionally, limited PFT data 

in a young population made objective measures of asthma improvement difficult to obtain.   
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Though this study was designed to specifically examine patients undergoing 

adenotonsillectomy, the results suggest further studies comparing changes in asthma 

control and chitinase activity to a non-surgical pediatric asthma population. 

Finally, limitations to the gene expression analysis include heterogeneous cell types 

in all three tissues, inability to perform post hoc correction for multiple comparisons due to 

lack of results, and batch effect due to differences in sample processing including RIN 

number and processing date.  It is also curious that in the baseline tonsil samples, all 

differentially expressed genes were on the Y chromosome, indicating an amplification or 

detection anomaly. 

This study demonstrates that a vast majority of children with asthma, and 

particularly those with poorly-controlled asthma, undergoing adenotonsillectomy for 

standard indications are likely to see an improvement in disease control.  Clinical markers 

associated with response include lower ACT scores at baseline, environmental triggers of 

asthma, and higher serum chitinase activity at baseline.  Additionally, a number of asthma-

related or inflammatory-related genes were found to be differentially expressed between 

children with improved asthma control and children without improved control.  SerpinB2, a 

plasmin activation inhibitor previously shown to be related with asthma, may be of 

particular interest as a marker of change in airway inflammation.  This data suggest that the 

surgery affects asthma control by modulating inflammation, rather than just altering airway 

mechanics.  The clinical, serum chitinase, and expression patterns could identify a subgroup 

of children with poorly-controlled asthma likely to benefit from the surgery, and support 

the rationale behind adenotonsillectomy as an intervention for asthma.  Prospective studies 

of children with asthma will be required to determine the clinical and biologic phenotype of 

those most likely to have clinical improvement of asthma control from surgery.  
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Figures and Tables 

Figure 1 

 

Study design and follow-up rates for Asthma and Control cohorts undergoing 

adenotonsillectomy 

 

  

130 pediatric patients 
(ages 2-18) undergoing 

adenotonsillectomy enrolled

66 Asthmatics

62 (94%) with initial 
bloodwork

58 subjects 
achieved follow-up 

(88%)

42 subjects 
completed follow-

up bloodwork
(72%)

64 Controls

60 (94%) with initial 
bloodwork

47 subjects 
achieved follow-up 

(73%)

25 subjects 
completed follow-

up bloodwork
(53%)
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Figure 2 

B a s e lin e F o llo w -U p

7

1 2

1 7

2 2

2 7

A
C

T
 S

c
o

r
e

p  <  0 .0 0 1

A
C

T
 S

c
o

r
e

s

B a s e lin e F o llo w -U p

7

1 2

1 7

2 2

2 7

p  <  0 .0 0 1

a . A C T  S c o re s  in  a ll c h ild re n  w ith  a s th m a   (n = 4 2 ) b . P a irw is e  c h a n g e s  in  A C T  S c o re , fo r  b a s e lin e  s c o re s  < 2 5  (n = 1 8 )

Asthma Control Test (ACT) scores at baseline and follow-up 

Median score displayed with interquartile ranges, error bars represent range of minimum and 

maximum scores.  p-values calculated by Wilcoxon Signed Rank Test. 
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Figure 3 
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p-values calculated by t-test. 
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Figure 4 
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Chitinase Activity and YKL-40 Level in Asthma and Control cohorts 

a. p-values calculated by Mann Whitney U Test.  b-c. p-values calculated by Wilcoxon Signed Rank 

Test.  d. Poorly-controlled defined as baseline Asthma Control Test (ACT) Score < 20, rescue SABA 

usage > 2 times/week, Emergency Room / Urgent Care Visits ≥ 2/year, or Oral Corticosteroid (OCS) 

courses ≥ 2/year. p-values calculated by Wilcoxon Signed Rank Test.  Baseline  chitinase activity of 

the improved group was also significantly higher than the not-improved group, p<0.05 by Mann 

Whitney U Test. 
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Figure 5 

a. 

 

b. 

 

Concept: Adenotonsillectomy, Chitinases, and Asthma Control 

a. CHIT1 polymorphism affects asthma prevalence in patients undergoing adenotonsillectomy 

The genotypic data suggests that the CHIT1 polymorphism, which results in lower 
chitotriosidase activity, correlates with asthma prevalence among patients undergoing 
adenotonsillectomy.  Chitinases may modulate the effect of environmental stressors 
(including chitin) on airway inflammation, thus lowering asthma prevalence.  Those with the 
mutant CHIT1 allele have lower chitinase activity, and may be unable to modulate this 
inflammation, possibly relating to upper airway disease including adenotonsillar 
hypertrophy and inflammation, raising asthma prevalence.   

b. Tonsillectomy induces changes in systemic inflammation associated with asthma 

Meanwhile, longitudinal results suggest that patients with higher chitinase levels at baseline 
with tonsillar hypertrophy/inflammation & asthma are more likely to see improvement after 
tonsillectomy.  This may be a reflection of both the airway-specific and systemic 
inflammatory response to tonsillar hypertrophy and inflammation, and thus chitinase levels 
decline after adenotonsillectomy correlating with a decrease in asthma severity. 
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Table A 

Baseline demographics and clinical characteristics of Asthma and Control cohorts 

    Asthmatics (n=66)  Controls (n=64)  p-value  

Age - Mean (Range) 6.4 (2-17) 5.8 (2-18) 0.17* 

Females – n (%) 

Males – n (%)  

25 (38) 

41 (62)  

33 (52) 

31 (48)  

0.16
‡
  

Race – n (%) White/Caucasian 

  Black/African American 

  Other 

 

Hispanic and/or Latino Ethnicity – n (%) 

54 (82)  

11 (17)  

1 (1)  

 

32 (49)  

43 (67)  

20 (31)  

1 (2)  

  

19 (30)  

0.13
‡‡

 

  

  

  

0.03
‡
 

Comorbidities  Atopy – n (%) 

  History of GERD – n (%) 

  Sinusitis – n (%) 

49 (77)  

25 (38)  

22 (33)  

32 (51)  

9 (14)  

12 (19)  

<0.01
‡
  

<0.01
‡
  

0.11
‡
 

Second Hand Smoke Exposure – n (%) 18 (29)  17 (27)  1.00
‡
  

Weight (Described) – n (%)  

  Normal or Underweight 

  Overweight/Obese  

 

47 (71)  

19 (29)  

 

51 (80)  

13 (20)  

0.31
‡
 

Residence  Urban – n (%) 

  Suburban – n (%) 

  Rural – n (%) 

24 (37)  

34 (52)  

7 (11)  

20 (31)  

38 (60)  

6 (9)  

0.72
‡‡

 

Tonsillectomy Indication – n (%)  

  Hypertrophy, including OSA 

  Chronic/Recurrent Infection 

  

46 (70)  

18 (27)  

  

52 (81)  

12 (19)  

0.30
‡
  

  

FEV1 % Predicted – Median  93  112% 0.03* 

IgE Levels (IU/mL) – Median  45.7  25.4  0.23* 

* Mann-Whitney U Test; ‡Fisher’s Exact Test ; ‡‡Chi-Squared Test  
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Table B 

Change of clinical characteristics from baseline to follow-up in Asthma cohort (n=58) 

Event frequency per 12 months Baseline (mean) Follow-up (mean) Wilcoxon Signed 

Rank Test 

Emergency Room / Urgent Care Visits for Asthma  1.88 0.40 0.01  

Oral corticosteroid courses  1.11 0.21 <0.01  

Hospitalizations for Asthma  0.09 0.00 0.06  

Missed School Days due to Asthma  3.86 2.00 0.01  

Total Missed Parental Work Days  2.79 1.13 0.03  
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Table C 

Differentially expressed transcripts at baseline between children with asthma with 

improved control versus those without improved control 

Nasal Epithelium 

p-value Fold Change Gene Description 

0.014 2.57 HLA-DQB1| 
HLA-DRB1| 
HLA-DQB2| 
HLA-DRB2| 
HLA-DRB3| 
HLA-DRB4| 
HLA-DRB5| 
ZNF749| 
RNASE2| 
hCG_1998957 

major histocompatibility complex, class II, DQ beta 1 |  
major histocompatibility complex, class II, DR beta 1 | 
major histocompatibility complex, class II, DQ beta 2 |  
major histocompatibility complex, class II, DR beta 2 |  
major histocompatibility complex, class II, DR beta 3 |  
major histocompatibility complex, class II, DR beta 4 |  
major histocompatibility complex, class II, DR beta 5 |  
zinc finger protein 749 |  
ribonuclease, RNase A family, 2 (liver, eosinophil-derived 
neurotoxin) | similar to hCG199264 

0.030 -2.45 GSTM1 glutathione S-transferase M1 

0.003 2.44 HLA-DRB5| 
HLA-DQB1| 
HLA-DQB2| 
HLA-DRB1| 
HLA-DRB2| 
HLA-DRB3| 
HLA-DRB4| 
ZNF749| 
RNASE2| 
hCG_1998957 

major histocompatibility complex, class II, DR beta 5 |  
major histocompatibility complex, class II, DQ beta 1 |  
major histocompatibility complex, class II, DQ beta 2 |  
major histocompatibility complex, class II, DR beta 1 |  
major histocompatibility complex, class II, DR beta 2 |  
major histocompatibility complex, class II, DR beta 3 |  
major histocompatibility complex, class II, DR beta 4 |  
zinc finger protein 749 |  
ribonuclease, RNase A family, 2 (liver, eosinophil-derived 
neurotoxin) | similar to hCG199264 

0.012 -2.10 FLJ21511  

0.009 -1.96 SERPINB2 serpin peptidase inhibitor, clade B (ovalbumin), member 2 

0.047 -1.96 CD177  

0.002 1.93 ND6 NADH dehydrogenase, subunit 6 (complex I) 

0.014 -1.91 SLC22A16 solute carrier family 22 (organic cation/carnitine transporter), 
member 16 

0.043 -1.82 NELL2 NEL-like 2 (chicken) 

0.034 1.80 HLA-DQA1 major histocompatibility complex, class II, DQ alpha 1 

0.003 -1.78 ST6GALNAC2 ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-
acetylgalactosaminide alpha-2,6-sialyltransferase 2 

0.012 1.77 ADAMDEC1 ADAM-like, decysin 1 

0.018 1.76 KIR2DL3| 
KIR2DS2| 
KIR2DS4| 
KIR2DL2| 
KIR2DS1| 
KIR2DL1| 
KIR3DL2 

killer cell immunoglobulin-like receptor 

0.016 -1.74 CLDN3 claudin 3 

0.010 -1.73 CYP2S1 cytochrome P450, family 2, subfamily S, polypeptide 1 

0.005 -1.72 AHNAK2 AHNAK nucleoprotein 2 

0.037 -1.68 VSNL1 visinin-like 1 

0.044 1.67 SORD sorbitol dehydrogenase 
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0.021 1.66 GIMAP5 GTPase, IMAP family member 5 

0.015 -1.62 ATP12A ATPase, H+/K+ transporting, nongastric, alpha polypeptide 

0.014 -1.60 PTPRT protein tyrosine phosphatase, receptor type, T 

0.040 1.60 SIGLEC10 sialic acid binding Ig-like lectin 10 

0.009 -1.58 CLDN16 claudin 16 

0.009 -1.56 LAMC2 laminin, gamma 2 

0.029 -1.55 CKB creatine kinase, brain 

0.003 -1.54 KCND3 potassium voltage-gated channel, Shal-related subfamily, 
member 3 

0.026 1.52 PRF1 perforin 1 (pore forming protein) 

0.017 -1.52 CDH13 cadherin 13, H-cadherin (heart) 

0.003 -1.51 GSTM4| 
GSTM2 

glutathione S-transferase M4 |  
glutathione S-transferase M2 (muscle) 

0.010 -1.50 IGFBP2 insulin-like growth factor binding protein 2, 36kDa 

0.031 -1.50 DENND2C DENN/MADD domain containing 2C 

0.043 1.50 LILRB4 leukocyte immunoglobulin-like receptor, subfamily B (with TM 
and ITIM domains), member 4 

 
Blood 

p-value Fold Change Gene Description 

0.001 -1.62 XRRA1 X-ray radiation resistance associated 1 

0.001 -1.61 OVOS ovostatin 

0.001 -1.60 OVOS2 ovostatin 2 

0.023 -1.51 IFIT1L interferon-induced protein with tetratricopeptide repeats 1-like 

0.0004 -1.51 CPA3 carboxypeptidase A3 (mast cell) 

 
Tonsil 

p-value Fold Change Gene Description 

0.031 -3.39 UTY ubiquitously transcribed tetratricopeptide repeat gene, Y-linked 

0.035 -3.05 RPS4Y1 ribosomal protein S4, Y-linked 1 

0.019 -2.80 JARID1D jumonji, AT rich interactive domain 1D 

0.030 -2.79 EIF1AY eukaryotic translation initiation factor 1A, Y-linked 

0.029 -2.79 DDX3Y DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y-linked 

0.027 -2.66 USP9Y ubiquitin specific peptidase 9, Y-linked (fat facets-like, 
Drosophila) 

0.025 -1.85 ZFY zinc finger protein, Y-linked 

Differentially expressed genes determined by non-corrected p-value <0.05, |Fold change|>1.5. 
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Table D 

Differentially expressed transcripts at follow-up versus baseline in matched blood 

samples 

Improved Asthma Control 

p-value Fold Change Gene Description 

0.009 -1.54 SERPINB2 serpin peptidase inhibitor, clade B (ovalbumin), member 2 

 
Non-Improved Asthma Control 

p-value Fold Change Gene Description 

0.029 1.52 SNHG10| 
SCARNA13 

small nucleolar RNA host gene (non-protein coding) 10 |  
small Cajal body-specific RNA 13 

 
Improved Asthma Control Among Children with poorly controlled asthma 

p-value Fold Change Gene Description 

0.012 2.59 RSAD2 radical S-adenosyl methionine domain containing 2 

0.022 2.27 IFIT1 interferon-induced protein with tetratricopeptide repeats 1 

0.039 2.07 HERC5 hect domain and RLD 5 

0.024 1.73 EPSTI1 epithelial stromal interaction 1 (breast) 

0.040 1.69 CD274  

0.004 1.65 XK X-linked Kx blood group (McLeod syndrome) 

0.024 1.62 CMPK2 cytidine monophosphate (UMP-CMP) kinase 2, mitochondrial 

0.011 -1.60 SERPINB2 serpin peptidase inhibitor, clade B (ovalbumin), member 2 

0.048 1.60 LAMP3 lysosomal-associated membrane protein 3 

0.006 1.58 DDX60L DEAD (Asp-Glu-Ala-Asp) box polypeptide 60-like 

0.040 1.55 ELOVL7 ELOVL family member 7, elongation of long chain fatty acids 
(yeast) 

0.037 1.52 OR2W3 olfactory receptor, family 2, subfamily W, member 3 

0.040 -1.51 SH2D2A SH2 domain protein 2A 

0.038 1.51 FECH ferrochelatase (protoporphyria) 

0.013 1.51 TSPAN7 tetraspanin 7 

 
Control Subjects 

p-value Fold Change Gene Description 

0.042 1.77 KCNJ15 potassium inwardly-rectifying channel, subfamily J, member 15 

0.011 1.75 GPR109A G protein-coupled receptor 109A 

0.014 1.74 GPR109B G protein-coupled receptor 109B 

0.023 1.70 ACSL1 acyl-CoA synthetase long-chain family member 1 

0.009 1.69 PROK2 prokineticin 2 

0.041 1.68 GK|GK3P glycerol kinase | glycerol kinase 3 pseudogene 

0.013 1.67 MGAM maltase-glucoamylase (alpha-glucosidase) 

0.040 1.66 ADM adrenomedullin 

0.042 -1.65 GZMH granzyme H (cathepsin G-like 2, protein h-CCPX) 
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0.027 -1.65 KLRF1 killer cell lectin-like receptor subfamily F, member 1 

0.029 1.64 FFAR2 free fatty acid receptor 2 

0.005 1.63 ROPN1L ropporin 1-like 

0.007 1.63 VNN3 vanin 3 

0.032 1.58 GPR97 G protein-coupled receptor 97 

0.046 1.58 UNQ9368 RTFV9368 

0.030 1.53 IL1B interleukin 1, beta 

0.013 1.52 STEAP4 STEAP family member 4 

0.036 1.51 KREMEN1 kringle containing transmembrane protein 1 

0.031 1.50 PTGS2 prostaglandin-endoperoxide synthase 2 (prostaglandin G/H 
synthase and cyclooxygenase) 

Differentially expressed genes determined by non-corrected p-value <0.05, |Fold change|>1.5. 
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