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Abstract 
 

Epidemiology and innate immune monocyte function of  
Staphylococcus aureus carriers and non-carriers in a medical  

school community: A pilot study 
 
Catherine M. Dailey and Barbara I. Kazmierczak 
 
Section of Infectious Disease, Department of Internal Medicine 
Yale School of Medicine, New Haven, 06510 
 

Purpose: The purpose of this study was to examine host risk factors and measure 

innate immune function in order to assess their potential associations with carriage of 

Staphylococcus aureus (S. aureus). Nearly a third of individuals worldwide are carriers of 

S. aureus. These bacteria usually exist as harmless commensal organisms of the skin or 

mucosa, most frequently in the anterior nares. Some people are persistently colonized 

with S. aureus while other people are intermittently or never colonized. If S. aureus gains 

access to underlying tissues or to the bloodstream, it can cause serious life-threatening 

infections, and colonization with S. aureus is a known risk factor for S. aureus infection. 

Several factors have been associated with carriage such as diabetes, a compromised 

immune system, obesity, eczema, and smoking tobacco. In addition, microbial genetics 

and host defense mechanisms play a role in both colonization and infection. In this study, 

we aimed to identify potential host factors related to S. aureus carriage.  

Methods: Using serial nasal swabs over a 3-5 month period, we identified two 

cohorts within our medical school community: those who were persistently colonized and 

those who were never colonized with S. aureus. We assessed for risk factors for 

colonization by administering questionnaires. We collected blood samples from a subset 

of individuals within each cohort and isolated peripheral blood monocyte cells (PBMCs) 



in order perform quantitative innate immune function experiments. Toll-like-receptors 

(TLRs) are an integral part of the innate immune system. They are present on nasal 

epithelial cells as well as immune cells such as PBMCs. We stimulated host PBMCs with 

known TLR ligands and measured secretion of cytokines interleukin-8 (IL-8) and tumor 

necrosis factor alpha (TNF-) by Enzyme-Linked ImmunoSorbent Assays (ELISAs). 

Results: We enrolled 190 volunteer subjects from our medical school community 

and 25% were carriers of S. aureus after a single swab. Among those who completed all 

swabs, we identified 33 (33%) who were persistently colonized and 69 (68%) who were 

persistently not colonized. We did not identify any host risk factors significantly 

associated with persistent colonization. We noted a decreased secretion of both IL-8 and 

TNF-α by PBMCs from persistent carriers. IL-8 secretion was significantly diminished 

after stimulation with FSL-1, LTA, Agr (+) S. aureus, and Agr (-) S. aureus, as shown by 

non-parametric two-sided t-test analysis (P <0.05). Although there was an observed 

decrease in TNF-α secretion by PBMCs from persistent carriers, none of the differences 

reached statistical significance. 

Conclusion: One third of subjects who completed all swabs were found to be 

persistent carriers; and thus persistently at increased risk of S. aureus infection. We found 

a trend in which persistent carriers had a diminished innate immune response evidenced 

by less IL-8 and TNF-α secretion following TLR stimulation when compared to non-

carriers. In particular, we noted decreased IL-8 secretion after stimulation with ligands 

known to have lipoprotein properties, suggesting a possible underlying dysfunction in 

TLR-2. Further investigation into the significance of our findings is warranted. 
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Introduction 

Staphylococcus aureus: benign and pathogenic 

 Staphylococcus aureus (S. aureus) usually is a harmless commensal bacterium of 

the skin and mucosa of humans and some animals (1). It has a predilection for human 

colonization because of its enhanced capacity to extract iron nutrients from human 

hemoglobin in comparison to the hemoglobin of other animals, such as the mouse, 

making humans an excellent source of both benign and pathogenic organisms (2). The 

most frequent site of colonization, or carriage, is the anterior nare. The anterior nares 

contain keratinized squamous epithelium and hair follicles but are devoid of cilia and 

subepithelial glands (3). S. aureus binds preferentially to the keratinized epithelial cells 

(4) and depends on surface mucin secreted by the host for colonization (5). Other 

anatomical sites for S. aureus colonization are the perineum, gastrointestinal tract, 

axillae, vagina, pharynx, or damaged skin surfaces (6). Although S. aureus is known to 

colonize several locations, the relevance of extra-nasal carriage is not well known (1). 

 When there is a breach of the epithelial or mucosal barrier, staphylococci gain 

access to adjoining tissues or the bloodstream and can potentiate infection. Both host and 

bacterial factors affect the progression of an infection because there is a complex 

interplay between S. aureus virulence determinants and host defense mechanisms (7). As 

a species within the genus Staphylococcus, S. aureus is the most human-pathogenic and 

does not require a predisposing condition or an immunosuppressive setting in which to 

proliferate. In other words, infected patients can be generally healthy at baseline. S. 

aureus can cause both mild and life-threatening infections ranging from folliculitis and 

furunculosis to bacteremia, sepsis, deep tissue abscesses, pneumonia, osteomyelitis, and 
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infective endocarditis. The presence of a foreign material, such as an indwelling catheter, 

increases susceptibility to infection in an immunocompetent host (7). S. aureus ranks 

second as the cause of nosocomial blood infections, and such infections increase 

morbidity, mortality, length of stay, and health care costs (1). The growing threat of 

resistant organisms adds additional complications. The associated clinical and social costs 

are estimated at $6–9 billion per year in the United States alone, making S. aureus a 

pressing health care issue (8). 

 

S. aureus carriage and infection are interconnected 

 The link between carriage and infection was first noted in 1931. Subsequently, 

there has been considerable effort to better understand the relationship between carriage 

of S. aureus and S. aureus infection. It is now widely accepted that colonization with S. 

aureus is linked to an increased risk of infection, including life-threatening ones (9) and 

that the strain that establishes colonization is often the same one that causes infection in 

the host (5). Persistent carriers are known to have higher loads of S. aureus, and hence 

are at particular risk for infection (6).  

 The association of carriage and infection is important in the hospitalized setting 

where there are resistant bacteria, such as methicillin-resistant S. aureus (MRSA), which 

are more challenging and costly to treat. Such challenges have influenced formation of 

hospital policies across the world. Healthcare workers have been found to be a source and 

means of transmission or cross-infection between patients (10). Identification of 

asymptomatic carriers with active surveillance and placing them under contact 

precautions are standard practices. In some countries, such precautions are mandated 
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since colonized patients have been found to be the chief source of S. aureus within 

hospitals (11).  

 Those who are colonized with S. aureus have a threefold increase in the risk for 

nosocomial infection (1). Von Eiff et al. has shown a particularly increased risk of 

infection for certain colonized populations, such as post-surgical, peritoneal dialysis, and 

hemodialysis patients; and they have noted that catheter related infections are the most 

common cause of S. aureus blood infections (5). Once carriers are identified, treating 

with nasal mupirocin leads to a decrease in nosocomial infections in some populations 

(12) and elimination from the nares and other parts of the body such as the hands (13).  

Unfortunately, eradication has not been definitively shown to affect infection rates (6), 

and such treatments may allow for recolonization of the epithelium by the same or a 

different strain (14) or even make colonization more permissible (15).  

 

Identifying S. aureus  

 Most studies of S. aureus colonization of humans obtain swab samples from the 

anterior nares for culture, which are then evaluated for S. aureus. S. aureus was first 

discovered by surgeon Sir Alexander Ogston in 1880 in Aberdeen, Scotland after he 

examined pus from post-operative wound infections under a microscope. The organisms 

he saw appeared like a cluster of grapes and he called his finding “staphyle,” which is 

Greek for “a bunch of grapes.” S. aureus bacteria appear as gram-positive cocci situated 

in clusters or pairs. In 1884, scientist Rosenbach grew the same bacteria from pus and 

observed its yellow-orange pigment and he called it “aureus,” which is Latin for 

“gold”(1,16). These fundamental properties that were observed over a hundred years ago 
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are still considered defining features of S. aureus. In addition to having a distinct shape 

and color, S. aureus is among the population of bacteria that can induce hemolysis. 

Hemolysis is the capacity to break down red blood cells, which S. aureus uses to extract 

iron, a vital nutrient (2). The microscopic and macroscopic appearances of S. aureus and 

its hemolytic property serve as laboratory indicators of its presence and can be used in 

devising a method for identification. 

 Studies have identified three phenotypes of carriage: persistent, intermittent, and 

non-carriers (17). Nouwen et al. found that the positive predictive value of two 

consecutive positive swab cultures was 79% in determining persistent carriage status, but 

the best model for determining persistent carriage was two positive swab cultures plus 

quantitative evaluation of the S. aureus culture (positive predictive value 93.6%). They 

found that one negative screening virtually excluded the persistent carriage phenotype, 

and no person whose first two cultures were positive was found to be of the non-carrier 

phenotype. In order to distinguish non-carriers from intermittent carriers, their findings 

suggest that at least seven cultures are necessary (18). In order to develop a reliable 

system for identification of different carrier phenotypes, one must carefully consider how 

many swabs to obtain and how each cohort is distinguished. 

 

Prevalence of S. aureus carriage 

 Over two billion individuals worldwide are colonized with S. aureus (19). The 

National Health and Nutrition Examination Survey (NHANES) has been administered 

continuously since 1999 to a nationally representative sample of civilian and non-

institutionalized people in the United States. A single swab test along with survey data 
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regarding S. aureus nasal carriage has been collected since 2001. Gorwitz et al. 

investigated the NHANES data from 2001-2004 and found that the prevalence of 

colonization decreased from 32.4% to 28.6% over that time period, and colonization of 

MRSA increased from 0.8% to 1.5%. It is unclear, however, if such changes represent 

trends or short term modulations (9). 

 Colonization is influenced by environmental factors such as age, health, economic 

status, and country of residency - colonization is higher in developed countries. In the 

United States, carriage of S. aureus ranges from 26-32% of people at any given time, and 

nearly 20% of people are persistently colonized (1). In developed countries, 

approximately 20% of people are persistent carriers of S. aureus, 30% are intermittent 

carriers, and 50% are non-carriers (9) (20).  

 Persistent carriers have particular characteristics that impact their risk for serious 

infections. Those who carry MRSA are most often persistent carriers (21). Persistent 

carriers have higher loads of S. aureus (21), and usually carry a single strain, while 

intermittent carriers can carry different strains over time suggesting a different 

mechanism of colonization for those two phenotypes (22). Children, especially infants, 

have high persistent carrier rates, but values level off in adulthood as people change their 

carrier state between the ages of ten and twenty (6).  

 

Factors associated with S. aureus carriage 

  There are various medical conditions shown to promote increased S. aureus 

carriage rates, including diabetes; obesity; end stage renal disease; hemodialysis; 

peritoneal dialysis; HIV infection; compromised immune system; IV drug use; eczema; 
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psoriasis; history of smoking, and history of stroke (6) (1) (9) (17) (23). Analysis of the 

NHANES data from 2001-2004 identified an association between MRSA colonization 

and recent healthcare exposure, diabetes, old age, and poverty (9). There has been no 

relation found between carriage and seasonality, temperature, or humidity (6). Some 

activities have been associated with increased carriage rates, such as river rafting; 

football; and pig farming. The most common mode of transmission is hand-to-hand 

contact (6), and, not surprisingly, nasal carriage is strongly associated with hand carriage. 

Interestingly, most mothers carry the same strain as her children, revealing the 

significance of transmission within cohort populations.   

 The host immune system employs various barrier defense strategies against S. 

aureus including mechanical clearance and antimicrobial secretions (24). Important 

components of nasal secretions that mediate inflammation are defensins, lysozymes, 

lactoferrin, and mucin (25). Carriage is increased in hosts whose nasal secretions are 

deficient in antimicrobial activity (26). The nasal mucosa also releases complement and 

cytokines (27). Molecules such as C-reactive protein (CRP) and cytokines such as tumor 

necrosis factor alpha (TNF-α), Interleukin-8 (IL-8), Interleukin-6 (IL-6), and Interleukin-

1β (IL-1β) have been identified as host mediators during S. aureus colonization (28). 

Although it is not known, one might surmise that host deficiencies in these immunologic 

molecules would likely facilitate the carrier phenotype. 

 Persistent carriers and persistent non-carriers who were inoculated with identical 

mixtures of S. aureus had differing colonization results suggesting the importance of 

genetic host factors (14). It has been postulated that the presence of the histocompatibility 

antigen HLA-DR3 may be a predisposition to nosocomial S. aureus infections (29). 
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Polymorphisms of various genes have also been liked to nasal carriage, such as the Fc 

fragment of IgG, the human glucocorticoid receptor (30), polymorphic variations in the 

vitamin D receptor gene in patients with type I diabetes (31), IL-4 (C542T genotype), and 

the human complement cascade activator serine protease C1 inhibitor (C1INH V480M) 

(15). Emont et al. has shown that the IL-4 C-allele is associated with nasal carriage, and 

they observed decreased host production of IL-4 and mucin. Some CRP gene haplotypes 

may be associated with resistance to colonization (23). Gonzalez-Zorn et al. have 

identified CFTR and TLR-2 as genetic host factors that may protect the system against 

carriage of S. aureus in animal models (32), and one might postulate that a defect in these 

genes may diminish the protection. Despite many varied investigations, a significant 

association between carriage and a particular genetic host factor has yet to be identified. 

 Bacteria factors also play a role in colonization in concert with host factors. It has 

been suggested that there may be a bacteria-induced local immunosuppression because 

nasal fluid from carrier hosts is defective in killing carrier strains compared to non-carrier 

strains (24). Host IL-1 is secreted as an immunologic mechanism to avoid colonization, 

but it seems that are strains of S. aureus that are less susceptible to IL-1 and can maintain 

a competitive advantage in their microenvironment by evading the host immune response 

(24). Nitric oxide (NO) is a broad-spectrum host mechanism for resistance to 

microorganisms since it disrupts oxygenation, but S. aureus employs its own strategies to 

combat those of the host. S. aureus can persist and replicate using hypoxic/anaerobic 

metabolism. Unlike for any other staphylococcal species, lactate dehydrogenase (LDH) is 

induced by NO in S. aureus, providing a mechanism for survival. If this genetic 

mechanism for survival against NO is disrupted, S. aureus is less virulent (19). 



13 

 Colonizing and invasive strains of Methicillin-Susceptible S. aureus (MSSA) and 

Methicillin-Resistant S. aureus (MRSA) have been be categorized through multilocus 

enzyme electrophoresis, pulsed-field gel electrophoresis, multilocus sequence typing 

(MLST), and amplified fragment length polymorphism (AFLP). They can be categorized 

into five distinct clusters: CC8, CC30, CC5, CC22, CC45; or three major and two minor 

clusters: I, II (CC30), III (CC45), IVa, IVb. Clusters II and III (CC30 and CC45) account 

for nearly half of all carriage isolates and have evolved to colonize humans particularly 

well. There does not seem to be clear distinctions between colonizing and pathogenic 

organism between the clusters. Acquisition of the mecA regulon, which bestows 

methicillin resistance, can occur in all cluster populations. Any S. aureus genotype has 

the capacity to colonize and transform into a human pathogen. Thus, it is hypothesized 

that microbial accessory genes, apart from the core genome, may affect the pathogenic 

potential of S. aureus (1). Agr, a S. aureus accessory regulator virulence gene, is 

functional in the majority of S. aureus bacteria, but it is not a necessary virulence gene 

since agr-defective S. aureus mutants maintain the capacity for infection. It has been 

shown that 9% of host carriers are actually harboring an agr-defective organism (33).  

Further investigation into microbial accessory genes is warranted in order to determine 

which aspects of microbial genetics play a role in colonization and infection. 

 Colonization is a dynamic process that involves competition between different 

microorganisms within the context of the host immune response. An epidemiologic study 

with healthy human volunteers has shown that colonization with a species of S. 

epidermidis that secretes serine protease Esp will lead to elimination of S. aureus nasal 

colonization. This study identifies a particular circumstance in which the local 

microbiome plays a significant role affecting the presence of certain bacteria (34). In 
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children, there is an inverse correlation between the colonization of S. aureus and the 

colonization of Streptococcus pneumoniae (S. pneumoniae), and it has been shown that  

he presence of S. aureus or S. pneumoniae can facilitate the invasion of a Haemophilus 

influenza population (35), indicating the importance of inter-organism dynamics (36). 

When a resident bacteria population occupies a niche, other bacteria do not seem to have 

the capacity to replace the resident population. Margolis et al. have studied the ecology of 

nasal colonization in a neonatal rat model and have shown that bacteria in the nasal 

epithelium reach a steady state within forty-eight hours regardless of inoculum dose, 

which lasts for at least three days. They observed that S. aureus strains required the host 

to have no other S. aureus bacteria present in order to colonize effectively (1). It is 

thought, therefore, that any disruption of the local microbiome, such as with antibiotic 

use or nasal sprays, may significantly impact S. aureus colonization. 

   

The innate immune system and S. aureus 

 Carriage elicits an immune response that can be identified by seroconversion after 

colonization (37). The manners in which S. aureus evokes a host immune response 

remain topics of continued research. The primary cellular host defense against S. aureus 

infection are polymorphonuclear leukocytes (2), but the innate immune system plays an 

important role early in exposure. The innate immune system has an integral role at the 

interface between the host and its external environment. Pattern recognition receptors 

(PRRs) are expressed on the surface of effector immune cells and other cell types that are 

first to encounter pathogens, such as surface epithelia. PRRs induce endogenous signals 

allowing for effective combat against microbial invaders. PRRs have evolved to 
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distinguish pathogenic organisms, and one set of receptors for pathogen-associated 

molecular patterns (PAMPs) are Toll-Like-Receptors (TLRs) (38). 

 There have been eleven human and thirteen mouse TLRs identified. Each TLR 

identifies a conserved feature of a pathogenic organism. For example, TLR-4 recognizes 

LPS on gram-negative bacteria and TLR-9 recognizes bacterial DNA (39). Each TLR is a 

type I transmembrane receptor possessing an extracellular leucine-rich repeat and a 

cytoplasmic Toll/IL-1 receptor homology domain. When a ligand binds a TLR, the 

adaptor molecule MyD88 is recruited to the Toll/IL-1 receptor domains, which confers a 

series of intracellular signaling. MyD88 is essential for TLR signaling, and its 

downstream effect is activation of transcription factor NFkB, which permits the 

transactivation of proinflammatory cytokine genes (40). 

 Gram-positive bacteria, such as S. aureus, are recognized by TLR-2, but the nature 

of the TLR-2 PAMP was under debate until recently. It was thought that peptidoglycan 

(PGN) was a potential TLR-2 ligand, but instead it was found that PGN binds 

Nod2/Nod1 receptors. Other PAMPs such as LPS, LTA, lipomannans, and 

lipoarabinomannans have been associated with TLR-2 stimulation (39), but such a variety 

of ligands seemed dubious given the pattern principles underlying TLRs (41). It has been 

shown that the lipoprotein fraction isolated from S. aureus specifically activates TLR-2 

(42) and that lipoprotein is necessary to invoke a cytokine response (35) (43) (41). 

Bacterial variants that lack lipoproteins have been found to evade immune recognition 

and cause particularly lethal infections (44). Adequate detection and response by the host 

innate immune system is paramount in keeping colonizing bacteria at bay, and it appears 

that lipoproteins are vital for TLR-2 recognition.  
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 Bacterial lipoproteins can be diacylated or triacylated. Synthetic lipoproteins, such 

as Pam3Cys and Pam2CSK4, have been used experimentally to mimic the pro-

inflammatory response to lipoproteins. These experiments led to a longstanding model 

that triacylated lipopeptides from gram-negative bacteria stimulate TLR2/TLR1 

heteromers and that diacylated lipopeptides from gram-positive bacteria stimulate 

TLR2/TLR6 heteromers (45). Tawaratsumida et al. have since isolated the activating 

TLR-2 lipoproteins identifying several molecules including diacylated lipoproteins, 

quinol oxidases, and ATP-binding cassette transporters, such as the iron regulated ATP-

binding cassette, SitC. (46).  

 It turns out that TLR-2 senses a pattern of abundant bacterial ABC transporter 

substrate-binding lipoproteins (41) as well as buried triayclated lipoproteins on the 

bacterial cell wall (47). S. aureus infection in mice that are deficient in TLR-2 or MyD88 

results in increased mortality, disease severity, bacterial burden, and impaired cytokine 

production, suggesting the importance of an intact TLR pathway in the fight against S. 

aureus (48). Strict mouse models of S. aureus infection have limitations, however, and 

future studies in transgenic mouse models may lead to more correlative findings 

regarding human TLR-2 and its impact on the host immune response to S. aureus 

colonization and infection (2).   

 In vitro experiments have shown that TLR-2 is upregulated by exposure to S. 

aureus (49). Incubation with escalating doses of S. aureus results in a dose dependent 

increase of pro-inflammatory cytokines TNF-α and IL-8 (49); IL-8 secretion is TLR-2 

dependent in human keratinocytes (50). Expression of TLR-2 is delayed by up to four 

hours by carrier strains of S. aureus compared to non-carrier strains (3) resulting in a 
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possible local immunosuppressive mechanism for colonization. In their studies 

examining the immunomodulatory factors of atopic eczema, Mempel showed that TLR-2 

expression is distributed unevenly within the layers of the skin with increased density in 

the basal epidermis, suggesting a mechanism for atopic dermatitis in which colonization 

remains benign until the barrier is disturbed. Once bacteria are exposed to the high 

concentration of TLR-2 in the deeper skin layers, the immune response is exacerbated 

(50). In vitro experiments with human cells have offered some insights into the 

relationship between S. aureus and TLR-2, but many of the secrets regarding S. aureus 

and its complex dance with the host immune system remain unknown.  
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Specific Aims 

There are environmental, medical, and genetic host factors that affect Staphylococcus 

aureus colonization. We are interested in looking at two populations of S. aureus carriers: 

persistently colonized and persistently not colonized individuals. Identification of the two 

target populations of S. aureus carriers who represent the extreme phenotypes of 

colonization provides an opportunity for comparison.  Certain environmental factors that 

occur in our healthy population may be more represented in those who are persistently 

colonized, such as children in day care, hospital exposure, and public gym exposure. 

Such factors may play a role because of the skin-to-skin transmission of S. aureus. 

Medical factors such as diabetes and current tobacco use also may be over-represented in 

our persistent carrier group. Other studies have demonstrated this association, possibly 

due to the effect of chronic systemic inflammation of the immune system’s ability to 

clear colonizing organisms. It is also possible that the function of the innate immune 

system may be impaired in those who are persistently colonized. Faced with S. aureus in 

the anterior nares, an impaired immune system may not effectively clear the organism. 

Epithelial cells expressing Toll-Like-Receptors (TLRs) in the anterior nares serve as 

innate immune system defenses triggering an immunologic cascade. Many other cell 

types, such as monocytes, express TLRs as a surveillance mechanism for invading or 

colonizing organisms. Since experiments with epithelial cells are less common and 

technically more complicated, peripheral blood monocyte cells (PBMCs) are a reasonable 

alternative for immunologic testing, and this was our avenue of exploration. If there were 

dysfunction in a particular TLR pathway, we would expect to observe a decrease in pro-

inflammatory cytokine production, specifically Interleukin-8 (IL-8) and tumor necrosis 
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factor alpha (TNF-α), after stimulation with corresponding TLR pathogen-associated 

molecular patterns (PAMPs). We aim to study the PBMC function as it relates to TLR 

stimulation. If the function of the innate immune system is a significant factor in 

colonization status, we may see a difference in cytokine response between our two cohort 

groups. 

 

1) Identify a persistent S. aureus carrier group and a persistent non-carrier group 

comprised of healthcare workers and students within this institution’s community. 

 

2) Examine questionnaire data from the identified groups and perform statistical analysis 

to assess for risk factors associated with persistent non-carriers or persistent carriers. 

 

3) Isolate peripheral blood monocyte cells (PBMCs) from the identified groups and 

assess innate immune system function by stimulating with TLR ligands and measuring 

secretion of IL-8 and TNF-α in order to determine if there is a difference in innate 

immune function between the identified groups. 
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Materials and Methods 

Recruitment 

Protocol for this study and its associated documents was approved by the local 

Institutional Review Board and Human Investigation Committee (HIC #0805003891). 

Methods for recruiting human subjects for consent and participation included the 

following: informative postings on bulletin boards around our institution’s medical 

school campus; e-mail solicitation of members of our institution’s medical community; 

informative meetings organized for specific medical community populations; and 

personal encounters with members of the community.  Informed consent was obtained for 

each participant. The personal information of all subjects was stored in a password 

protected, secured computer. Enrollment in this study was by volunteer only; individuals 

were not compensated for their participation. 

 

Identifying target groups 

At enrollment, subjects completed a questionnaire and provided a nasal swab sample. The 

subject repeated the questionnaire and nasal swab in 4-6 weeks increments for a total of 

four encounters over approximately 3-5 months. Follow-up appointments were scheduled 

using contact information provided by the participant. The presence or absence of S. 

aureus from the nasal swab was determined for each subject after each encounter. 

Questionnaire data were collated. Subjects were noted to be positive (presence of S. 

aureus) or negative (absence of S. aureus). A pattern was identified for each subject after 

the second encounter in which a subject had either the same or a different result 

compared to the prior swab. Those subjects who had different results were excluded from 
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the study. Patterns were re-assessed after each encounter for each subject. Those subjects 

who maintained a pattern of either all positive or all negative results continued to be 

included in the study. After four encounters were completed, subjects were contacted to 

schedule a fifth appointment at their convenience to donate approximately 60mL of blood 

anonymously, offer two nasal swabs, and repeat the questionnaire. After preliminary 

analysis of results from blood sample studies, it was noted that some samples were 

extreme outliers when compared to others. The subjects associated with these samples 

were identified and contacted to schedule a sixth appointment at their convenience to 

donate another blood sample, nasal swab, and repeat questionnaire.  

 

Questionnaire  

The questionnaire was developed and formatted by this author and Barbara Kazmierczak 

M.D., Ph.D. The questionnaire included questions about demographics and risk factors 

thought to be associated with S. aureus colonization or infection. It also inquired about 

settings in which subjects were in contact with hospitalized patients. The same 

questionnaire was administered at each subject encounter. The demographics section was 

usually completed only once. The data from the questionnaires were put into a digital 

spreadsheet using Microsoft Access and Microsoft Excel. (See Supplemental 

Material for example questionnaire). 
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Nasal swab 

Nasal swabs were obtained using sterile Starswab II (Starplex Scientific Inc.; Ontario, 

Canada). Each packaged unit contained two swabs attached to a plastic top and a capped 

sheath in which to put the swabbed sample. A member of the study team collected each 

sample. Holding the capped end, the two swabs were inserted into the anterior portion of 

one nostril and were rotated against the walls of the inner nose four times around. The 

swabs were then inserted into the anterior portion of the other nostril and rotated in the 

same fashion. The swabs were then placed in the labeled sheath for transport. Samples 

were kept at room temperature. At the fifth encounter, an additional swab was collected 

for frozen storage: the anterior nares were swabbed as described above, and swabs were 

cut in a sterile fashion into a sterile tube. These samples were stored at -20 degrees 

Celsius.  

 

Plate culture 

Nasal swabs were plated onto Mannitol Salt Agar (MSA) (Remel; Lenexa, KS) and 

Blood Agar: TSA with 5% Sheep Blood (BSA) (Remel; Lenexa KS) within 12-14 hours 

after collection. Swabs were removed from the sheath and spread onto one-third of each 

plate. A sterile loop was used to spread the sample into the second third of the plate. The 

second portion was then spread to the third portion of the plate with a sterile loop. Plates 

were incubated at 37 degrees Celsius for 24-48 hours or 30 degrees Celsius for 72 hours. 

Observations of color, scent, and hemolysis of were recorded for each plate. Swab 

samples and culture plates were discarded into the appropriate biohazard containers.  
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Identifying Staphylococcus aureus 

Colonies that appeared bright yellow on the MSA plate and colonies that appeared 

golden/yellow-gray on the BSA plate were suggestive of S. aureus. The golden BSA 

colonies were evaluated using the Staphaurex* test (Remel; Lenexa, KS) according to the 

manufacturer’s instructions, which has positive predictive value of 99.6% and negative 

predictive value of 99.8% for identification of S. aureus. Yellow colonies on the MSA 

plate were not evaluated directly by Staphaurex*. When identified, a few of the yellow 

MSA colonies were sub-cultured from the MSA plate onto a fresh BSA plate with a 

sterile loop and were incubated as described above. Golden colonies from the sub-

cultured BSA plates were then evaluated by Staphaurex* as described above. Once a 

sample revealed the presence of S. aureus, further evaluation of other plate samples was 

discontinued. When there was suspicion for the presence of S. aureus but the 

Staphaurex* test was negative, further work-up was pursued. For some samples, a 

catalase test was administered with 3% hydrogen peroxide. If bubbles formed, the sample 

was noted to be catalase positive with the possibility of S. aureus upon further testing. If 

no bubbles formed, sample was noted to be catalase negative and further testing was not 

done. For some samples, Gram Stain (Sigma Diagnostics, Inc.; St. Louis, MO) was 

performed on suspected samples followed by a Coagulase Plasma test (Remel; Lenexa, 

KS) of the identified gram positive cocci colonies. Plates with a negative Staphaurex* 

test, a very low suspicion for S. aureus, or a negative Coagulase Plasma test were noted 

to be negative for S. aureus. Each positive S. aureus sample was cultured in liquid LB 

media and stored at -80 degrees Celsius in a 30% concentration of 50% glycerol. The 

plate processing and identification of S. aureus was performed by this author and other 
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members of the Kazmierczak lab. (See Supplemental Material Figure 1 for schematic of 

microbial analysis). 

 

Blood Draw 

Using standard phlebotomy techniques, a 21 gauge Safety-Lok (BD Vacutainer; 

Franklin Lakes, NJ) needle with plastic applicator (BD Vacutainer; Franklin Lakes, NJ) 

was used to collect approximately 60mL of blood into 6-7 blood collection tubes 

containing 143 USP units sodium heparin (BD Vacutainer; Franklin Lakes, NJ). 

Samples were processed for peripheral blood monocyte cells (PBMCs) within two hours 

of collection. The blood draws were performed by this author or Barbara Kazmierczak 

M.D., Ph.D. 

 

Peripheral Blood Monocyte Cell (PBMC) Isolation 

Blood was mixed 1:1 with Gibco  PBS (Invitrogen; Grand Island, NY) and separated 

into 30mL aliquots. Approximately 20-30 mL of the sample was layered carefully on top 

of 10.0mL Ficoll-PagueTM PLUS (GE Healthcare Biosciences Piscataway, NJ) in as 

many conical tubes as necessary. Samples were centrifuged (Sorvall Legend RT) at 

1800 rpm for 20 minutes at room temperature with the brake off. Glass pasteur pipettes 

were used to collect the middle, opaque layer containing mononuclear leukocytes 

(MNLs). The collected sample was transferred to a conical containing 10mL Gibco 

RPMI Medium 1640 (Invitrogen; Grand Island, NY). Additional RPMI was added for a 

total volume 40mL per tube. Samples were centrifuged at 1300rpm for 10 minutes at 4 

degrees Celsius. The supernatant was discarded. The pellet was washed twice with 15mL 
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chilled RPMI at 1300rpm for 10 minutes at 4 degrees Celsius. For some samples, there 

appeared to be an increased amount of red blood cell contaminants. For those samples, 

1mL red blood cell lysing buffer (Sigma Aldrich; Steinheim, Germany) was added 

between the two washes and incubated for 5 minutes. 15ml of RPMI was then added to 

neutralize the reaction. This was followed by the second wash. After two washes, the 

pellet was re-suspended in 2mL warm culture medium, which consisted of Gibco RPMI 

Medium 1640 (Invitrogen; Grand Island, NY) with 20% human serum (Lonza Group 

Ltd.; Basel, Switzerland) and 1% Penicillin/Streptomycin. Cells were counted and PBMC 

concentration was determined for each sample. PBMC isolation and stimulation 

experiments were performed by this author and other members of the Kazmierczak lab. 

 

Stimulation of PBMCs  

The PBMC isolate was diluted to a concentration of 2 x 106 cells/mL by adding the 

appropriate volume of culture media. 106 cells were added to each well of a 24-well plate 

(Costar 3526 Corning Inc.; Corning, NY). Plates were cultured at 37 degrees Celsius in 

5% CO2 for 2 hours. Plates were washed twice with 0.5mL/well RPMI in order to remove 

non-adherent cells. Monocytes remained adherent, and cells were confirmed by 

microscopy. Ligand preparations were added 0.5mL/well in concordance with our 

experiment template. Control wells contained only culture media. The following ligands 

were used: Muramyl dipeptide (MDP) (InvivoGen; San Diego, CA) 10ug/mL, which is a 

minimal bioactive peptidoglycan motif NOD 2 ligand; Ultra pure E. coli K12 LPS 

(InvivoGen; San Diego, CA) 100ng/mL, which is a purified lipopolysaccharide from E. 

coli K12 strain and TLR-4 ligand; Purified LTA-SA (InvivoGen; San Diego, CA) 
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1ug/mL, which is a purified lipoteichoic acid from S. aureus and TLR-2 ligand; ST-FLA 

(InvivoGen; San Diego, CA) 1ug/mL, which is a purified Flagellin from S. typhimurium 

and TLR-5 ligand; Pam3CSK4 (InvivoGen; San Diego, CA) 1ug/mL, which is a 

synthetic bacterial lipoprotein and TLR-2/TLR-1 ligand;. FSL-1 (InvivoGen; San Diego, 

CA) 0.1ug/mL, which is a synthetic diacylated lipoprotein and TLR-2/TLR-6 ligand; 

Agr(+) S. aureus thawed preparation (Barbara Kazmierczak M.D., Ph.D lab; New Haven, 

CT) 107cells/mL; Agr(-) S. aureus thawed preparation (Barbara Kazmierczak M.D., Ph.D 

lab; New Haven, CT) 107cells/mL. Plates were incubated at 37 degrees Celsius in 5% 

CO2. Supernatants were collected in a sterile fashion and stored at -80 degrees Celsius. 

Some wells were re-stimulated with an aforementioned ligand according to our 

experiment protocol such that cells initially stimulated with LPS or MDP were re-

stimulated with LPS or LTA. Plates were incubated for 24 hours at 37 degrees Celsius in 

5% CO2. Supernatants were collected in a sterile fashion and stored at -80 degrees 

Celsius. 

 

Enzyme-Linked ImmunoSorbent Assays (ELISAs)  

Supernatants that were collected from the PBMC stimulation experiments were used to 

perform ELISAs specific for detecting human interleukin-8 (IL-8). Human Interleukin-8 

ELISA Ready-SET-Go! Kit (eBioscience; San Diego, CA) and Human TNF-α ELISA 

MAX Set Standard kit (BioLegend, Inc.; San Diego, CA) were used according to the 

manufacturer’s instructions. Samples for the IL-8 ELISAs were diluted 1:500. Samples 

for the TNF-α ELISAs were diluted 1:50 for Agr(+), Agr(-), Flagellin, and LPS samples 

and diluted 1:10 for all other samples. Nicole Jackson (Yale College ’11) and Carla 
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Weibel aided in the troubleshooting and protocol development of both the IL-8 and TNF-

α ELISAs as well aiding in acquisition of data from the supernatant samples. This author 

and other members of the Kazmierczak lab also performed ELISA experiments on 

samples using the developed protocols. 

 

Statistical methods 

Chi squared or Fisher’s exact test was used to test for significant associations for 

categorical variables obtained from the questionnaire. Two-tailed t-test was used in 

comparing mean age for each group. In the instances where there was no response for a 

given categorical variable on the questionnaire, the missing data was omitted from the 

analysis if its frequency was ≤ 3%. Duplicate ELISA data was averaged for each subject 

and corrected by subtracting the control value (media only well). Two-tailed Mann-

Whitney test was used to test for significant differences in cytokine levels between 

carriers and non-carriers for each PBMC stimulation scenario. One-way ANOVA 

Kruskall-Wallis test with Dunn’s comparison post-test was also used to test for 

significance in the IL-8 dataset. GraphPad Prism 5 software package was used for 

statistical calculations. A value P < 0.05 was considered statistically significant. 
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Results 

Prevalence: Nasal carriage of S. aureus  

A total of 190 volunteer subjects enrolled in our study and donated a nasal swab for 

culture. After the first nasal swab, 48 (25%) subjects were carriers of S. aureus while 142 

(75%) were not (Figure 1). As swabs were collected, subjects were deliberately not 

followed if their colonization status changed. After the fourth swab was obtained, we 

identified 102 individuals who either remained culture positive for each swab or culture 

negative for each swab, and we designated these cohorts as persistently colonized or 

persistently not colonized, respectively. Of the 102 individuals who donated four swabs, 

33 (33%) were persistently colonized and 69 (68%) were persistently not colonized. A 

total of 21 subjects switched colonization statuses during the 3-5 month period in which 

the first four swabs were collected. A change from non-carrier to carrier was most 

common (data not shown). The blood draw occurred several months to a year after the 

four swabs were obtained. We lost 43 individuals to follow-up and there were 3 failed 

blood draw attempts. Of the 102 subjects whose colonization status was identified, 21 

persistent carriers donated blood, and 35 persistent non-carriers donated blood. 

Interestingly, 3 subjects changed their colonization status by the time the blood draw 

occurred as evidence by the fifth culture swab obtained during the blood donation. One 

subject switched from carrier to non-carrier while two subjects switched from non-carrier 

to carrier. These individuals were excluded from cytokine analysis. 
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FIGURE 1: Experimental design and subject count during course of this study 
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TABLE 1: Characterization of cohort populations after the first nasal swab  
 
 

 
Non-carriers 

 N = 142 (75%) 
Carriers 

N = 48 (25%) P value 

Gender    

Male 63 (44%) 25 (52%) 0.4039a 

Female 79 (56%) 23 (48%)  

Ethnicity    

Hispanic 8 (6%) 1 (2%) 0.5033b 

Non-Hispanic 116 (82%) 39 (81%)  

No Response 18 (12%) 8 (17%)  

Race    

White 95 (67%) 37 (77%) 0.2831b 

Black 6 (4%) 1 (2%)  

Asian 29 (20%) 10 (21%)  

Mixed 5 (4%) 0 (0%)  

Not Response 7 (5%) 0 (0%)  

Age (years)    

Mean 31 29 0.6194 c # 

Age (years)    

Range 22 -71 23- 68  

Median 27 27  
 
a, Fisher exact test; b, Chi-squared test; c, Unpaired t-test 
#, 1-2% of data in a group not available and was excluded in analysis. 
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Characterization of cohort groups after one and four nasal swabs 

The 190 individuals who enrolled in the study were predominantly of non-Hispanic 

ethnicity and white race. Asian was the second most represented race while black and 

mixed were least represented. The median age for both groups was 27 years and the range 

of ages for each group was similar. Carriers and non-carriers identified after the first 

nasal swab were well matched for gender, ethnicity, race, and age (Table 1). Within each 

group, the gender breakdown was nearly half female and half male. There were no 

notable differences in demographics between the two carrier groups. The 102 individuals 

who completed four swabs were representative of the larger cohort that initially enrolled, 

with a predominance of non-Hispanic white individuals and predominance of Asian 

subjects within the non-white population. The median age for each group was similar to 

that of the initial cohort. There were no notable differences between persistent carriers 

and persistent non-carriers with respect to gender, ethnicity, race, and age (Table 2). 

 

Potential risk factors for nasal carriage of S. aureus 

The volunteer subjects in this study completed a questionnaire at each encounter. The 

questionnaire collected information related to demographics, past medical history, use of 

certain medications, and exposures potentially associated with S. aureus carriage. Since 

our cohort populations were composed of healthy adults from the institution’s medical 

community, we did not include questions regarding more serious medical issues that have 

been associated with carriage, such as HIV, hemodialysis, and intravenous drug use. 

Many of the volunteers were recruited in the clinical setting; thus we included questions 

regarding patient and hospital exposures as potential factors associated with S. aureus 
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TABLE 2: Characterization of cohort populations after the fourth nasal swab 
 
 

 
Not colonized 
N = 69 (68%) 

Colonized 
N = 33 (32%) 

 
P value 

Gender    

Male 29 (42%) 17 (52%) 0.4009 a 

Female 40 (58%) 16 (48%)  

Ethnicity    

Hispanic 4 (6%) 1 (3%) 0.5417 b 

Non-Hispanic 57 (83%) 30 (91%)  

No Response 8 (11%) 2 (6%)  

Race    

White 44 (65%) 26 (79%) 0.4111 b 

Black 3 (4%) 1 (3%)  

Asian 16 (23%) 6 (18%)  

Mixed 5 (7%) 0 (0%)  

No Response 1 (1%) 0 (0%)  

Age (years)    

Mean 31 30 0.5046 c # 

Age (years)    

Range 23 - 63 24 - 69  

Median 28 27  

 
a, Fisher exact test; b, Chi-squared test; c, Unpaired t-test 
#, 1-2% of data in a group not available and was excluded in analysis. 
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TABLE 3: Potential risk factors associated with S. aureus colonization of cohort 
populations after the first nasal swab 
 

 
Non-carriers 

 N = 142 (75%) 
Carriers  

N = 48 (25%) P value 
Diabetes present    

Yes 0 (0%) 0 (0%) 1.0a 
No 142 (100%) 47 (98%)  

No Response 0 (0%) 1 (2%)  
Asthma present    

Yes 11 (8%) 5 (10%) 0.5559a 
No 131 (92%) 43 (90%)  

Use tobacco    
Yes 8 (6%) 2 (4%) 1.0a 
No 134 (94%) 46 (96%)  

Seasonal allergies    
Yes - active 20 (14%) 5 (10%) 0.7078b # 

Yes - not active 40 (28%) 16 (33%)  
No allergies 81 (57%) 27 (57%)  

No Response 1 (1%) 0 (0%)  
Active eczema    

Yes 13 (9%) 7 (15%) 0.2871a 
No 129 (91%) 41 (85%)  

Use of nasal steroids    
Yes 9 (6%) 2 (4%) 0.733a 
No 133 (94%) 46 (96%)  

Cold/URI within 10 days    
Yes 9 (6%) 3 (6%) 1.0a 
No 133 (94%) 45 (94%)  

Use of systemic steroids    
Yes 1 (1%) 1 (2%) 0.4337b # 

Occasionally 3 (2%) 0 (0%)  
No 138 (97%) 46 (96%)  

No Response 0 (0%) 1 (2%)  
Antibiotics within 6 months     

Yes 28 (20%) 7 (15%) 0.5215a 
No 114 (80%) 41(85%)  

Antibiotic ointment within 2 
months    

Yes 23 (16%) 5 (10%) 0.4788a # 
No 117 (82%) 42 (88%)  

No Response 2 (2%) 1 (2%)  
Use of any nasal spray 
within 1 month    

Yes 11 (8%) 3 (6%) 1.0a # 
No 128 (90%) 45 (94%)  

No Response 3 (2%) 0 (0%)  
Hospitalization within 6 
months    

Yes 2 (2%) 0 (0%) 1.0a # 
No 139 (97%) 48 (100%)  

No Response 1 (1%) 0 (0%)  
S. aureus infection within 6 
months    

Yes 0 (0%) 1 (2%) 0.1266b 
No 134 (94%) 47 (98%)  

Not sure 3 (2%) 0 (0%)  
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No Response 5 (4%) 0 (0%)  
Children in daycare    

Yes 5 (4%) 5 (10%) 0.127a # 
No 135 (94%) 43 (90%)  

No Response 2 (2%) 0 (0%)  
Last use of public gym    

>2 months 35 (25%) 8 (17%) 0.204b # 
1-2 months 12  (8%) 5 (10%)  

2-4 weeks 11 (8%) 10 (21%)  
This week 49 (35%)  14 (29%)  

Today 5 (3%) 1 (2%)  
Never use 28 (20%) 10 (21%)  

No Response 2 (1%) 0  
Visit to hospital within 2 
weeks    

Yes 92 (65%) 37 (77%) 0.2061a # 
No 46 (32%) 11 (23%)  

No Response 4 (3%) 0  
Interact with patients as part 
of studies or job    

Yes 114 (80%) 41 (85%) 0.6618a # 
No 26  (18%) 7 (15%)  

No Response 2 (2%) 0 (0%)  
Type of patient interaction    

Talk, no contact 6 (4%) 0 (0%) 0.2766b # 
Occasional contact 8 (6%) 1 (2%)  

Repeated contact 101 (71%) 40 (83%)  
NA 25 (18%) 7 (15%)  

No Response 2 (1%) 0 (0%)  
Type of patient Interaction, 
binary analysis    

Repeated contact 101 (71%) 40 (83%) 0.1755 a #  
Not repeated contact 39 (28%) 8 (17%)  

No Response 2 (1%) 0 (0%)  
 
a, Fisher exact test; b, Chi-squared test; c, Unpaired t-test 
#, 1-2% of data in a group not available and was excluded in analysis. 
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colonization. Initial carrier status was identified after a single swab. There were no 

statistically significant findings differentiating initial carriers and non-carriers (Table 3). 

After the fourth swab, we determined which subjects were persistently colonized and 

which were persistently not colonized. There were no statistically significant findings 

differentiating colonized from not colonized (Table 4). There was a notable difference, 

however, in the type of patient interaction between the two groups, more apparent in our 

final cohort comparison. Those who were persistently culture positive for S. aureus had 

an increased proportion of repeated contact with patients as opposed to no contact, just 

talking, or occasional contact with patients. Comparing carriers and non-carriers of S. 

aureus after a single swab, 83% versus 71% had repeated contact with patients at the 

initial swab, respectively, and 85% versus 68% had repeated contact with patients as 

assessed after the fourth swab, respectively. 

 

PBMC secretion of IL-8 after stimulation with a single ligand 

A total of 56 subjects donated blood samples for analysis, 21 of which were persistently 

colonized and 35 were persistently not colonized. Three subjects were excluded from 

cytokine analysis because of a switch in colonization status. After exclusion, the analyzed 

population included 20 samples from persistently carriers and 33 samples from 

persistently non-carriers. Peripheral blood monocyte cells (PBMCs) were isolated from 

each subject’s blood sample and plated 106 cells/well. Cells were stimulated overnight 

with one of several ligands: a synthetic bacterial lipoprotein (PAM3CSK), a diacylated 

lipoprotein (FSL-1), flagellin, lipopolysaccharide (LPS), muramyl dipeptide  
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TABLE 4: Potential risk factors associated with S. aureus colonization of cohort 
populations after the fourth nasal swab 
 

 
Not colonized 
N = 69 (68%) 

Colonized 
N = 33 (32%) 

 
P value 

Diabetes present    
Yes 0 (0%) 0 (0%) 1.0a 
No 69 (100%) 33 (100%)  

Asthma present    
Yes 6 (9%) 4 (12%) 0.7237 a 
No 63 (91%) 29 (88%)  

Use tobacco    
Yes 3 (4%) 2 (6%) 0.6575 a 
No 66 (96%) 31 (98%)  

Seasonal allergies    
Yes-active 5 (7%) 3 (9%) 0.9257 b 

Yes-not active 25 (36%) 11 (33%)  
No 39 (57%) 19 (58%)  

Active eczema    
Yes 8 (12%) 4 (12%) 1.0 a 
No 61 (88%) 29 (88%)  

Use of nasal steroids    
Yes 3 (4%) 4 (12%) 0.7237 a 
No 66 (96%) 29 (88%)  

Cold/URI within 10 days    
Yes 7 (10%) 3 (9%) 1.0 a 
No 62 (90%) 30 (91%)  

Use of systemic steroids    
Yes 0 (0%) 0 (0%) 1.0 a 

Occasionally 2 (3%) 1 (3%)  
No 67 (97%) 32 (97%)  

Antibiotics within 6 months    
Yes 11 (16%) 4 (12%) 0.7686 a 
No 58 (84%) 29 (88%)  

Antibiotic ointment within 2 
months 

 
 

 

Yes 7 (10%) 5 (15%) 0.5179 a 
No 62 (90%) 28 (85%)  

Use of any nasal spray 
within 1 month 

 
 

 

Yes 5 (7%) 3 (9%) 0.7114 a 
No 64 (93%) 30 (91%)  

Hospitalization within 6 
months 

 
 

 

Yes 0 (0%) 0 (0%) 1.0 a 
No 69 (100%) 33 (100%)  

S. aureus infection within 6 
months 

 
 

 

Yes 1 (1.5%) 0 (0%) 0.6873 b 
No 62 (90%) 31 (94%)  

Not sure 1 (1.5%) 1 (2%)  
No Response 5 (7%) 1 (2%)  

Children in Daycare    
Yes 4 (6%) 2 (6%) 1.0 a # 
No 63 (91%) 31 (98%)  

No Response 2 (3%) 0 (0%)  
Last public gym use    
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>2months 14 (20%) 4 (12%) 0.6565 b 
1-2 months 4 (6%) 1 (3%)  

2-4 weeks 8 (12%) 7 (21%)  
This week 27 (39%) 11 (33%)  

Today 2 (3%) 1 (3%)  
Never use 14 (20%) 9 (28%)  

Visit to hospital within 2 
weeks   

 

Yes 47 (68%) 22 (67%) 1.0 a 
No 22 (32%) 11 (33%)  

Interact with patients as 
part of studies or job 

 
 

 

Yes 52 (75%) 27 (82%) 0.6141 a 
No 17 (25%) 6 (18%)  

Type of patient interaction    
Talk, no contact 3 (4%) 0 (0%) 0.2434 b 

Occasional contact 2 (3%) 0 (0%)  
Repeated contact 47 (68%) 28 (85%)  

NA 17 (25%) 5 (15%)  
Type of patient Interaction, 
binary analysis   

 

Repeated contact 47 (68%) 28 (85%) 0.0944 a 
Not repeated contact 22 (32%) 5 (15%)  

 
a, Fisher exact test; b, Chi-squared test; c, Unpaired t-test 
#, 1-2% of data in a group not available and was excluded in analysis. 
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TABLE 5: List of ligands for stimulation of PBMCs 
Mechanism of action for each ligand (except S. aureus) was obtained from the InvivoGen 
product information included with the purchase of the ligand. 
 
 

Ligand Innate immune system 
receptor 

PAM3CSK: synthetic lipoprotein TLR-2/TLR-1 

FSL-1: synthetic diacylated lipoprotein TLR-2/TLR-6 

Flagellin: purified from S. typhimurium TLR-5 

Lipopolysaccharide (LPS): from E. coli TLR-4 

Muramyl dipeptide (MDP): peptidoglycan motif NOD 2 

Lipoteichoic acid (LTA): purified from S. aureus TLR-2 

S. aureus Agr (+): wild type accessory regulator gene TLR-2/TLR-6 

S. aureus Agr (-): mutant accessory regulator gene TLR-2/TLR-6 
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(MDP), lipoteichoic acid (LTA), S. aureus with Agr (+) gene, and S. aureus with Agr (-) 

mutation (Table 5). Supernatants were collected for IL-8 ELISA. PBMCs from persistent 

carriers secreted less IL-8 after stimulation with each ligand compared to those cells from 

persistent non-carriers (Figure 2). After stimulation with FSL-1, median IL-8 secretion was 

41 ng/ml versus 61 ng/ml for colonized and not colonized samples respectively, p < 0.05 

(Figure 2b). Similarly, median IL-8 secretion after stimulation with LTA (40 ng/ml versus 58 

ng/ml), Agr (+) (22 ng/ml versus 60 ng/ml), and Agr (-) (29 ng/ml versus 53 ng/ml) revealed 

a significant difference (p < 0.05) between persistent carrier and persistent non-carrier 

samples, respectively  (Figure 2b, f-h). The diminished secretion of IL-8 in response to 

PAM3CSK and flagellin approached statistical significance (Figure 2a, c). With a more strict 

analysis of variance using a one-way ANOVA Kruskall-Wallis test with Dunn’s Multiple 

Comparisons Post-test nullified any suspected difference between the cohorts for any of the 

TLR experiments (Table 6). 

 

IL-8 secretion after PBMC sensitization 

PBMCs from each subject’s blood sample were plated 106 cells/well and stimulated with 

ligands as described above. Some wells that were initially stimulated with LPS or MDP 

overnight were stimulated overnight for a second time with either LPS or LTA. 

Supernatants were collected after the second stimulation. Cells from persistent carriers 

and non-carriers that were initially stimulated with LPS had equal median secretion (0 

ng/ml) after the second stimulation (Figure 3a, b), but the mean secretion revealed a 

pattern in which cells from persistent carriers secreted more IL-8 after re-stimulation 

compared to cells from non-carrier (Figure 3c, d). Cells from persistent carriers that were  
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FIGURE 2: IL-8 secretion by PBMCs after stimulation with a single ligand 
106 PBMCs from each subject were stimulated with an individual ligand: synthetic bacterial 
lipoprotein (PAM 3CSK) (a), diacylated lipoprotein (FSL-1) (b), Flagellin (c), 
lipopolysaccharide (LPS) (d), muramyl dipeptide (MDP) (e), lipoteichoic acid (LTA) (f), S. 
aureus Agr (+) (g), S. aureus Agr (-) (h). Supernatants were collected after overnight 
incubation and IL-8 ELISA was performed. Data represents quantitative box-plot analysis 
(median, minimum, maximum value, 25% and 75% percentile). Comparison for 
significance with two-tailed Mann-Whitney test. (*, denotes statistical significance, p < 0.05). 
 

a) 
 
 

d) 
 
 

b) 
 
 

c) 
 
 

e) 
 
 

f) 
 
 

g) 
 
 

h) 
 
 

p = 0.0652 
 
 

p = 0.0390* 
 
 

p = 0.0552 
 
 

p = 0.0708 
 
 

p = 0.1498 
 
 

p = 0.0445* 
 
 

p = 0.0188* 
 
 

p = 0.0348* 
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TABLE 6: IL-8 secretion analysis using one-way ANOVA (Kruskall-
Wallis) with Dunn's Multiple Comparison Test  
 

 
 

Ligand 
 

 
Comparison 

 
Difference 

in rank 
sum 

 
P < 0.05? 

PAM3CSK Not colonized vs. Colonized 78.77 No 
FSL-1 Not colonized vs. Colonized 94.77 No 
Flagellin Not colonized vs. Colonized 104.7 No 
LPS Not colonized vs. Colonized 94.10 No 
MDP Not colonized vs. Colonized 57.78 No 
Agr (+) Not colonized vs. Colonized 121.2 No 
Agr (-) Not colonized vs. Colonized 104.6 No 
LTA Not colonized vs. Colonized 84.24 No 
LPS – LPS Not colonized vs. Colonized -21.36 No 
LPS – LTA Not colonized vs. Colonized -24.25 No 
MDP – LPS Not colonized vs. Colonized 81.64 No 
MDP – LTA Not colonized vs. Colonized 63.60 No 
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FIGURE 3: IL-8 secretion by PBMCs after sensitization  
106 PBMCs from each subject were stimulated overnight with either lipopolysaccharide 
(LPS)  (a and b) or muramyl dipeptide (MDP) (e and f). Supernatants were discarded and 
cells were re-stimulated with either LPS (a and e) or lipoteichoic acid (LTA) (b and f). 
Supernatants were collected after overnight incubation and IL-8 ELISA was performed. A, b, 
e, f data represent quantitative box-plot analysis (median, minimum, maximum value, 
25% and 75% percentile); c and d represent mean with SEM. 
 
 

b) 
 
 

a) 
 
 

d) 
 
 

c) 
 
 

p = 0.6110 
 
 

p = 0.8477 
 
 

p = 0.0894 
 
 

p = 0.1209 
 
 

f) 
 
 

e) 
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initially stimulated with MDP secreted less IL-8 after the second stimulation compared to 

cells from non-carriers (Figure 3d, e). This difference approached significance. It seems 

that LPS and MDP have opposing effects on persistent carrier PBMCs in regards to IL-8 

secretion when used to prime the cells. Priming with LPS led to an increased IL-8 

response for persistent carriers, and priming with MDP led to a diminished IL-8 response 

for persistent carriers after re-stimulation compared to non-carriers. 

 

PBMC secretion of TNF-α  after stimulation with a single ligand 

Of the 53 subjects who donated blood and met criteria for IL-8 cytokine analysis, four 

samples did not produce adequate TNF-α secretion for analysis. Thus 49 samples were 

included in the TNF-α analysis. PBMCs from persistently colonized individuals secreted 

less TNF-α after stimulation with each ligand compared to those cells from not colonized 

individuals, except with LPS stimulation in which the two groups secreted a similar amount 

(Figure 4). None of the observed differences were statistically significant, but a trend toward 

significance was noted with PAM3CSK, FSL-1, LTA, Agr (+), and Agr (-) (Figure 4a-c, f-h). 

 

TNF-α  secretion after PBMC sensitization  

The sensitization experiments were preformed as described above and TNF-α was 

measured after re-stimulation. Cells from persistent carriers that were primed with LPS 

secreted less TNF-α after re-stimulation compared to cells from non-carriers (Figure 5a, 

b). This difference was statistically significant for re-stimulation with LTA after LPS 

priming. Cells from persistent carriers and non-carriers that were primed with MDP 

secreted similar amounts of TNF-α after re-stimulation with LPS or LTA (Figure 5c, d). 
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Taking both the IL-8 and TNF-α datasets into consideration, it appears that priming cells 

with LPS had an opposite effect on carrier cells depending on which cytokine was 

measured. For persistent carriers, LPS priming invoked an increased IL-8 but a decreased 

TNF-α response compared to non-carriers. 
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FIGURE 4: TNF-α secretion by PBMCs after stimulation with a single ligand 
106 PBMCs from each subject were stimulated with an individual ligand: synthetic bacterial 
lipoprotein (PAM 3CSK) (a), diacylated lipoprotein (FSL-1) (b), Flagellin (c), 
lipopolysaccharide (LPS) (d), muramyl dipeptide (MDP) (e), lipoteichoic acid (LTA) (f), S. 
aureus Agr (+) (g), S. aureus Agr (-) (h). Supernatants were collected after overnight 
incubation and TNF-α ELISA was performed. Data represents quantitative box-plot 
analysis (median, minimum, maximum value, 25% and 75% percentile). Comparison for 
significance with two-tailed Mann-Whitney test. (*, denotes statistical significance). 
 

a) 
 
 

b) 
 
 

c) 
 
 

d) 
 
 

e) 
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p = 0.3139 
 
 

p = 0.2109 
 
 

p = 0.7219 
 
 

p = 0.7680 
 
 

p = 0.9028 
 
 

p = 0.2855 
 
 

p = 0.2184 
 
 

p = 0.1246 
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FIGURE 3: TNF-α secretion by PBMCs after sensitization  
106 PBMCs from each subject were stimulated overnight with either lipopolysaccharide 
(LPS)  (a and b) or muramyl dipeptide (MDP) (c and d). Supernatants were discarded and 
cells were re-stimulated with either LPS (a and c) or lipoteichoic acid (LTA) (b and d). 
Supernatants were collected after overnight incubation and TNF-α  ELISA was performed. 
Data represents quantitative box-plot analysis (median, minimum, maximum value, 25% 
and 75% percentile). (*, denotes statistical significance). 
 
 
 
 
 b) 

 
 

a) 
 
 

c) 
 
 

p = 0.1146 
 
 

p = 0.0398* 
 
 

p = 0.3043 
 
 

p = 0.3543 
 
 

d) 
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Discussion 

Epidemiology 

We examined healthy adults from our academic community. This population was 

amenable to volunteer in this study and maintain follow-up because of the collegial 

academic environment in which they work. Despite the good will of this population, there 

are limitations that result from their exclusive enrollment resulting in a selection bias. 

Those people with a particular investment in the research or academic community were 

preferentially targeted and enrolled, and young adults in their 20’s and 30’s were most 

agreeable to participate. The generalizability of these data, therefore, is limited because 

the studied population is not representative of the general, national population.  

Several factors may impact the detection of S. aureus including aspects related to 

methods of sample collection and methods of culturing (11).  Most studies administer 

nasal swabs in order to assess carriage state, but it has been reported that up to a third of 

colonized states can be missed if other sites of colonization are not tested (51). We chose 

to examine only the anterior nares for identification of S. aureus since it is the most 

common site for colonization. We cultured the swabs on agar plates rather than in liquid 

media following methods of prior studies. Our assessment of carrier status was based on 

a binary evaluation of the culture using methods that indicated that the presence or 

absence of S. aureus. We did not distinguish between samples that were floridly culture 

positive versus samples that were found to be positive only after several steps of work-

up. It has been shown that evaluation of bacterial burden can distinguish different carrier 

states since a low burden could be a falsely negative swab (52). It is possible that there 

were false negatives in our study, but they likely would have been categorized as 
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intermittent carriers; the intermittent status is most difficult to distinguish from the 

persistently negative population. There is less likelihood of a false positive in our study 

since we collected five swabs and included only those who had positive cultures for each 

swab as persistent carriers. The positive predictive value in determining persistent 

carriage status with two consecutive positive swab cultures is 79% (18); thus our positive 

predictive value with five swabs was likely considerably higher. Nevertheless, it cannot 

be discounted that we did not sample all sites of colonization, and we used a binary 

culture analysis, both factors possibly contributing to errors in identifying our cohort 

groups. 

A 2009 study by van Belkum et al. outlined a strict classification of persistent 

carriers and non-carriers in which participants were labeled persistent carriers if 80% of 

5-10 swabs over 6 months were positive for S. aureus. They noted that allowing 1 of 5 

swab samples to test negative while still categorizing a participant as persistently 

colonized minimizes misclassification of carriage states from culture or lab errors (20). In 

our study, there were subjects who would have fulfilled these criteria for persistent 

carriage, but we did not include these subjects in our TLR experiments. It is possible, 

therefore, that we unnecessarily excluded potentially revealing data from those who could 

be classified as persistent carriers.  

In the aforementioned study, they found that when persistent carriers, intermittent 

carriers, and non-carriers were treated with mupiricon for eradication, only the persistent 

carriers re-established colonization for a long stretch of time compared to the other 

carriage phenotypes. It seems, therefore, that the persistent carrier phenotype is clinically 

most relevant. Intermittent and non-carriers share similar colonization kinetics and pose 
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less of a risk for infection (20). Our data maintain clinical relevance by strictly 

identifying the persistently colonized cohort, who is at higher risk for nosocomial 

infections. In order to understand the dynamics of S. aureus colonization, the multi-

factorial mechanisms that distinguish persistent carriers and make them so susceptible to 

colonization warrant examination in future studies in order to extrapolate to a public 

health domain. 

In this study, we found that 25% of our subjects were carriers of S. aureus 

following evaluation of a single nasal swab. This distribution was slightly lower than the 

findings from other studies in which a single swab revealed 26-31% prevalence of 

colonization at any given time (1).  The observed decrease in prevalence, however, is in 

line with the finding that colonization decreased from 2001- 2004 as evidenced by the 

National Health and Nutrition Examination Survey (NHANES) (9). 

Analysis of the NHANES revealed an association between healthcare exposure, 

diabetes, old age and carriage of S. aureus (9). In our study, we did not find any 

association between carriage and any risk factor. Our population was predominantly 

young adults and did not include any diabetic participants; thus we could not adequately 

evaluate for association with diabetes or old age. Regarding healthcare exposure, our data 

suggest a trend in which increased patient contact is associated with persistent 

colonization of S. aureus. Our study population was much smaller than that of the 

NHANES. The NHANES included over 9000 participants from across the United States. 

With larger cohort populations, it is possible that we would have revealed risk factors 

associated with carriage.  Informal analysis of our subjects who were excluded after 

enrollment showed that 5 % of subjects switched their colonization status on their second 
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swab (data not shown). The NHANES examined culture results from a single nasal swab, 

providing information about a cross sectional sample rather than a targeted cohort as we 

did when we identified persistently colonized or not colonized subjects. Our final cohort 

groups were narrowed populations compared to those in the NHANES, and it is 

reasonable to presume that not all associations observed in the NHANES would carry 

over in our study.  

The notion that the microbiome and local ecology of the anterior nares may affect 

colonization is an intriguing one - the anterior nare is not a sterile environment like the 

blood. Traditional theory of ecology and competition identifies organism fitness as a 

determining factor for occupation of a niche or habitat. Recent studies have shown the 

dynamics between skin and nasal flora to be more complicated than that. Resident 

bacterial strains seem to retain a competitive advantage, possibly because of a localized 

resource that serves as a limiting factor (35). Studies have also shown that recognition of 

microbial products from one species may activate inflammatory responses that promote 

clearance of another species (53). We did not perform experiments to assess for other 

organisms within the anterior nares of our subjects, but at the blood draw encounter, we 

collected an addition nasal swab that was snap frozen for future inquiries into the 

microbiomes of our cohort populations. We cannot, therefore, discount the unknown 

variable of the microbiome when considering the findings of our study 

 

Sensitization  

 In our study, we examined PBMC sensitization. The notion of host sensitization has 

been illustrated in prior studies with gram-negative organisms in which treatment with a 
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non-lethal dose of LPS led to tolerance and resistance to subsequent exposures of 

normally lethal doses of LPS. Pre-treatment led to an attenuation of the immune 

response, preventing the physiologic decompensation that comes from a severe infection. 

Murphey et al. have examined host sensitization to cell wall elements of gram-positive 

bacteria. Mice were treated with a non-lethal dose of peptidoglycan (PGN) followed by 

challenge with an inoculum of live S. aureus. After challenge with S. aureus, pro-

inflammatory cytokines TNF-α and IFN-gamma were suppressed and IL-10 was 

increased, which suggested a preference to a Th-2 host response after PGN priming. 

Clinically, they found that pre-treatment was associated with increased bacterial 

clearance and improved host survival after subsequent challenge. In another study, pre-

treatment with pro-inflammatory cytokine IFN-gamma enhanced release of TNF-α and 

IL-8 in response to S. aureus in conjunctival epithelial cells (49). In our experiments, we 

did not observe significant differences between our groups when PBMCs were primed 

and re-stimulated. Some of our data suggests a potential pattern that LPS sensitizes 

carrier PBMCs more effectively resulting in a less robust TNF-α response. The opposite 

pattern was suggested in terms of IL-8, however, in which mean secretion from persistent 

carriers was greater than that by persistent non-carriers after LPS priming. Our findings 

regarding priming and sensitization remain inconclusive and further experiments are 

warranted on these topics between S. aureus carriers and non-carriers. 

 

Innate immune system  

 Our study is limited by the fact that we did not conduct our in vitro experiments 

with epithelial cells, which are the cells in the anterior nares that would respond 



52 

physiologically in vivo as agents of the innate immune system in response to S. aureus 

exposure. Epithelial cells are a challenge to grow and maintain. We were interested in the 

function of innate immune receptors; thus we made the assumption that the function of 

TLRs on non-sterile epithelial cells would be comparable to the function of TLRs on 

sterile peripheral blood monocytes. We also assumed the PBMCs are the same at any 

given time point. These may be false assumptions. It is possible that any local 

immunologic differences are attenuated at a systemic level; thus we would be missing 

potential differences by not using epithelial cells. It is also possible that immune cells 

obtained from a sterile environment behave significantly differently from nasal epithelial 

cells. But by using our assumptions, we aimed to generalize our PBMC findings to what 

might occur physiologically in the anterior nares during the complex interaction between 

S. aureus and the innate immune system, a requisite interaction of microbial colonization 

and one that must be addressed. 

 Our experiments comparing cytokine secretion by PBMCs from persistent carriers 

and non-carriers included analysis with non-parametric tests. The data were not 

consistently normally distributed; thus we chose a stricter non-parametric analysis for all data 

rather than a parametric approach. We stimulated PBMCs with a variety of ligands without 

certainty about which experiment would reveal a difference between our groups. We selected 

ligands that offered some probability of revealing a difference based on literature suggesting 

that S. aureus may interact with the host immune system through various pathways. The 

likelihood of observing a difference between our groups increased as we increased the 

number of ligands that we used. To take this into account and minimize false positives, we 

performed a one-way ANOVA Kruskall-Wallis with multiple comparison Dunn’s post-test 
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analysis on the IL-8 data. The Mann-Whitney tests revealed statistical significance for some 

TLR experiments, but it proved to be marginal since the more conservative analysis with the 

one-way ANOVA nullified the findings. A caveat to the one-way ANOVA analysis, 

however, is that the chance for false negatives is increased. It is reasonable, therefore, to 

consider the non-parametric (Mann-Whitney) t-test comparisons as relative findings 

suggestive of a potential pattern for differences between our groups. If our sample size were 

larger, it is possible we would have detected more convincing statistical significance between 

our cohorts. 

 PBMCs from individuals who we identified as persistently colonized showed 

diminished secretion of IL-8 and TNF-α in response to innate immune stimulation. Our 

data do not identify a reason for this difference but do suggest some possible contributing 

factors. The statistically significant differences in the non-parametric t-test IL-8 analysis 

occurred with simulation by FSL-1, LTA, Agr (+) and Agr (-) strains of S. aureus. In 

addition, stimulation with these ligands approached statistical significance in regards to 

TNF-α secretion. These four ligands may represent an association with TLR-2. 

Lipoproteins are the primary ligands of TLR-2. FSL-1, S. aureus Agr (+) and S. aureus 

Agr (-) offer a source of lipoproteins. If TLR-2 were dysfunctional in cells from 

persistent carriers, it may explain the diminished cytokine response. LTA, a cell surface 

glycoconjugate of gram-positive bacteria is not a TLR-2 ligand, but it turns out that S. 

aureus LTA preparations contain contaminants, which serve as TLR-2 activators (54). 

Contaminations have resulted in several misleading conclusions about how TLR-2 

functions (41). It is quite possible, therefore, that LTA itself did not contribute to the 

difference we observed between carriers and non-carriers; it could have been the 
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contaminants instead.  Considering the notion that TLR-2 may be a factor in the 

differences in cytokine secretion, it is reassuring that there was less difference in IL-8 and 

TNF-α secretion between groups when cells were stimulated with MDP and LPS, known 

ligands of NOD2 and TLR-4, respectively. 

 One might expect that triacylated lipoprotein PAM3CSK would also act through 

TLR-2 and hence result in a significant diminution of IL-8 secretion by PBMCs from 

persistently colonized subjects. PAM3CSK is a synthetic lipoprotein presumed to act 

through the TLR-2/TLR-1 heterodimer. Recent studies have called into question the 

longstanding model that triacylated lipopeptides from gram-negative bacteria stimulate 

TLR2/TLR1 heteromers and that diacylated lipopeptides from gram-positive bacteria 

stimulate TLR2/TLR6 heteromers. Gram-positive S. aureus lipoproteins actually exist 

mainly in N-acylated triacyl forms rather than diacyl forms (47) and dimerization of 

TLR-2 is not as well understood as previously thought. Kurokawa et al. have shown that 

the S. aureus triacylated lipoprotein, SitC, is recognized by both TLR1/TLR2 and 

TLR2/TLR6 heteromers in mouse macrophages, but it can also induce production of IL-6 

and TNF-α independently of TLR-1 and TLR-6. They also have shown that SitC acts in a 

TLR-2- and MyD88-dependent manner (41). It is possible, therefore, that PAM3CSK 

may act in a more complicated manner than previously thought. Muller et al has found 

that TLR-2 co-localizes intracellularly with SitC (55); thus TLR-2 may act both at the 

intracellular and surface levels. Intracellular TLR-2 complexes are reported to be 

recruited to macrophage phagosomes where they discriminate pathogens and induce pro-

inflammatory signals for host defense (56). An increase in bacterial phagocytosis is 

associated with an enhanced cytokine response (57) (58). If PAM3CSK behaved 
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similarly to intracellular SitC, then it would not be affected by variations in function of 

surface TLR-2.  

 There are three well-described functional human TLR-2 genetic polymorphisms: 

Arg677Trp, Arg753Gln, and a microsatellite GT repeat in intron 2. Arg677Trp is not 

present in Caucasian patients (1). It has been correlated with lepromatous leprosy and the 

leprosy reversal reaction in Asian populations (59) while the Arg753Gln polymorphism 

has been correlated with sepsis in white populations (60). Arg753Gln also has been 

associated with mycobacterial infections, military tuberculosis, and pediatric urinary tract 

infections (UTIs) (61) (62). Children carrying the allele had a higher risk of UTI with 

gram positive pathogens, a higher risk of more than two previous UTIs, and a higher risk 

of asymptomatic UTIs (62).  

 When the Arg753Gln allele is inserted into human cells, it renders the cell non-

responsive to triacylated or diacylated lipoproteins (60). From a clinical perspective, 

however, some studies have found no association between the Arg753Gln allele and the 

severity of S. aureus infection (63). This lack of association is consistent with in vitro 

evidence that the presence of only one wild-type TLR-2 allele is required for a full 

cytokine response to S. aureus (64). In counterpoint to those studies is a recent study 

examining atopy. In the recent study, over 80% of subjects with atopic dermatitis were 

colonized with S. aureus, and they had an increased prevalence of the Arg753Gln 

polymorphism compared to a control group, 11.5% vs. 2.5% respectively. Those with 

both atopic dermatitis and the polymorphism were found to have more severe atopic 

disease. Those with both bronchial asthma and the polymorphism were found to have 

increased levels of IgE. These data suggest that the TLR-2 polymorphism Arg753Gln 
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may increase the susceptibility to infections and chronic colonization (65).  If we were to 

develop a hypothesis for further inquiry into our observed differences in cytokine 

production between persistent carriers and non-carriers, an assessment of TLR-2 

polymorphisms would be a reasonable and interesting avenue of exploration. 
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SUPPLEMENTAL FIGURE 1: Assessing for presence of S. aureus from nasal swab 
culture 
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SUPPLEMENTAL MATERIAL: Questionnaire administered to each subject at 
each encounter 
 
I. DEMOGRAPHICS: 
 
 1. GENDER: Male  Female 
 
 2. ETHNICITY: Hispanic or Latino  Not Hispanic or Latino 
 
 3. RACE: American Indian/Alaska Native Asian  White 
   
   Black or African American  Native Hawaiian/Other Pacific 
Islander 
 
 4. DATE OF BIRTH (MM/DD/YYYY):  ____/____/____ 
 
II.  Health related risks for S. aureus colonization.  Please circle Yes , No  or NA (not 
applicable) for each question. 
 
1. Do you have diabetes mellitus?  Yes  No 
 
 If you are diabetic, what has your AM fingerstick glucose been over the last week? 
 
 <110  110-180  180-250  >250  don’t know 
 NA 
 
2. Do you have asthma?   Yes  No 
 
3. Do you smoke tobacco?   Yes  No 
 
4. Do you have seasonal allergies?  Yes/Currently active  Yes/not active 
 No 
 
5. Do you have active eczema or atopic dermatitis? Yes  No 
 
6. Do you use nasal steroids?   Yes  No 
 
7. Did you have a cold or upper respiratory tract infection in the last 10 days?     Yes 
 No 
 
8. Do you use systemic steroids, such as prednisone? Yes  No 
 Occasionally 
 
9. If you take pulse-dose or intermittent steroids, when was your last dose?    NA 
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 Today This week  Last 2-4 weeks 1-2 months ago 2-6 months 
 >6mos 
 
10. Have you taken antibiotics (pills or intravenous) in the last 6 months?    Yes 
 No 
 
 If yes, when was your most recent antibiotic dose? NA 
  
 Today This week Last 2-4 weeks 1-2 months ago 2-6 months 
 
 Do you remember the name of the most recent antibiotic?  If yes, please 
list:_______________ 
 
11. Have you used an antibiotic cream or ointment in the last 2 months?  Yes 
 No 
 
 When was your most recent use?  NA 
 
 Today This week Last 2-4 weeks 1-2 months ago 
 
12. Do you use medications other than prednisone that might suppress your immune 
system? 
 
 Yes  No  Not sure whether _________________________ counts 
 
13. Have you used any sort of nasal spray in the last month? Yes  No 
 
14. Have you been hospitalized within the last 6 months?  Yes  No 
 
 If so, when:     Last week  Last month  2 months ago  2-6 
months ago 
 
15. Were you treated for a S. aureus infection in the last 6 months? Yes No
 Not sure 
 
 
III.  Exposure related risks for S. aureus colonization. 
 
1. Do you have any children in day care?  Yes  No 
 
2. When did you last use a public gym facility? NA, I never do this. 
 
 Today This week 2-4 weeks ago  1-2 months ago >2 months 
 
3. Have you been to a hospital, nursing home, or rehab center in the last 2 weeks?    
Yes  No 
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4. Do you interact with patients as part of your studies or job?  Yes 
 No 
 
 If you interact with patients, please pick the description that best fits your 
exposure: NA 
 
 Talk, but minimal physical contact  (bedside interview) 
 
 Talk, plus occasional physical contact with patient   (assist with transfer, check vitals) 
 
 Talk plus repeated physical contact, i.e. patient physical exam or patient care 
 

If you have examined patients or taken part in their care in the last month, please 
indicate in what health care setting(s)? NA 

 
 Outpatient clinic  Emergency Room  Inpatient Psychiatry Ward 
 
Surgical Floor  Non-surgical Inpatient Floor  Intensive Care 
 Operating Room 
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