
iOS Penetration
Testing

A Definitive Guide to iOS Security
—
First Edition
—
Kunal Relan

 iOS Penetration
Testing

 A Definitive Guide to iOS Security

 First Edition

 Kunal Relan

iOS Penetration Testing: A Definitive Guide to iOS Security

Kunal Relan
Noida, Uttar Pradesh
India

ISBN-13 (pbk): 978-1-4842-2354-3 ISBN-13 (electronic): 978-1-4842-2355-0
DOI 10.1007/978-1-4842-2355-0

Library of Congress Control Number: 2016960329

Copyright © 2016 by Kunal Relan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Nikhil Karkal
Technical Reviewer: Nishant Das Patnaik
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James
Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Prachi Mehta
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-
ny@springer-sbm.com , or visit www.springeronline.com . Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text are available
to readers at www.apress.com . For detailed information about how to locate your book’s source
code, go to www.apress.com/source-code/ . Readers can also access source code at SpringerLink in
the Supplementary Material section for each chapter.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/

 Th is book is dedicated to my mom, my spiritual guru for inspiring
me to live, my mentor who always supported me

in this journey, and to all the weirdoes like me; I love you all.

v

Contents at a Glance

About the Author .. xiii

About the Technical Reviewer ... xv

Acknowledgments ... xvii

Introduction .. xix

 ■Chapter 1: Introduction to iOS .. 1

 ■Chapter 2: iOS App Development Basics 13

 ■Chapter 3: iOS App Vulnerabilities and Jailbreaking 31

 ■Chapter 4: Blackbox Testing iOS Apps .. 47

 ■Chapter 5: iOS Security Toolkit ... 73

 ■Chapter 6: Automating App Testing .. 97

 ■Chapter 7: iOS App Security Practices 119

Index .. 131

vii

Contents

About the Author .. xiii

About the Technical Reviewer ... xv

Acknowledgments ... xvii

Introduction .. xix

 ■Chapter 1: Introduction to iOS .. 1

 iOS Introduction ... 1

 Security History ... 2

 Code Signing .. 2

 Data Execution Prevention (DEP) .. 3

 Address Space Layout Randomization (ASLR) .. 3

 Sandbox .. 3

 iOS Boot Procedure ... 4

 Updates... 5

 What’s New? ... 6

 System Insight .. 7

 iOS System Hierarchy .. 8

 Applications .. 9

 Library .. 9

 Bin Folder ... 10

 Dev Directory .. 10

 Lib Folder .. 10

 Sbin Directory ... 10

 ■ CONTENTS

viii

 Tmp Directory ... 10

 Developer Directory .. 10

 System Directory .. 10

 Boot Directory ... 11

 Etc Directory ... 11

 mnt Directory .. 11

 usr Directory ... 11

 var Directory ... 11

 User Directory ... 11

 Private Directory ... 11

 iOS Application Overview .. 11

 Summary ... 12

 ■Chapter 2: iOS App Development Basics 13

 Introduction to Objective-C and Swift ... 13

 Objective-C Runtime ... 13

 Basic Terminology in Objective-C ... 14

 Object Creation ... 15

 Data Types .. 15

 Methods .. 16

 Instance Methods ... 16

 Class Methods .. 17

 Introduction to Swift .. 17

 Swift Runtime ... 18

 Compatibility with Objective-C ... 18

 Stored Properties .. 18

 Classes and Methods.. 19

 Structures ... 20

 ■ CONTENTS

ix

 Introduction to Xcode .. 20

 Getting Started with Xcode ... 21

 Cocoa Framework ... 22

 CocoaPods ... 22

 Hello World with Swift ... 23

 iOS Application Architecture .. 29

 Summary ... 30

 ■Chapter 3: iOS App Vulnerabilities and Jailbreaking 31

 Introduction to Security and Vulnerabilities in iOS 31

 What Is Jailbreaking? ... 31

 Jailbreaking iOS ... 32

 SSHing in iOS .. 34

 Installing the Tools ... 35

 Installing class-dump ... 35

 Installing the libimobiledevice Library .. 36

 Installing Cycript ... 37

 Setting Up a Proxy .. 38

 Installing Keychain Dumper .. 38

 Common iOS Vulnerabilities .. 40

 Buffer Overfl ows ... 40

 Invalidated Input ... 41

 Privilege Escalation .. 43

 Insecure Data Storage .. 43

 Insecure Transport Layer .. 43

 Client-Side Injection ... 44

 Weakness in Authentication and Authorization ... 45

 Summary ... 45

 ■ CONTENTS

x

 ■Chapter 4: Blackbox Testing iOS Apps .. 47

 Intercepting Network Traffi c .. 47

 Defeating User Validation .. 53

 Damn Vulnerable iOS App: DVIA .. 54

 Performing Runtime Analysis .. 61

 Summary ... 72

 ■Chapter 5: iOS Security Toolkit ... 73

 Advance Reverse Engineering .. 73

 A Day in the Life of a Debugger ... 79

 Debugging in Xcode .. 80

 Bypassing Jailbreak Detection .. 91

 Summary ... 95

 ■Chapter 6: Automating App Testing .. 97

 idb: Simplify Penetration Test .. 97

 iRET: iOS Reverse Engineering Toolkit ... 103

 Tweaking the Development ... 110

 Summary ... 118

 ■Chapter 7: iOS App Security Practices 119

 Storage in iOS.. 119

 Data Storage Security ... 120

 Transport Layer Security ... 122

 Certifi cate Pinning .. 123

 Anti-Debugging Protections .. 125

 Secure Development Guidelines ... 126

 Untrusted Data .. 126

 Session Management ... 127

 ■ CONTENTS

xi

 Data Storage ... 127

 Geolocation Handling .. 127

 Escape Classic C Attacks .. 127

 Transport Layer .. 128

 Closing Thoughts ... 129

Index .. 131

xiii

 About the Author

 Kunal Relan is an iOS security researcher and a
full-stack developer who has been working as security
lead for Mozilla, Delhi.

 He has published several research papers on
information security in the esteemed Journal of
ACM . Having obtained the acclaimed CCNA Security
certification, he is also an Owasp ZAP evangelist. With
his thriving experience as a security researcher and
penetration tester, Kunal is known for actively reporting
security bugs in a mobile and web applications. During
the past few years, he has been working as a mobile
application penetration tester and a security researcher
in New Delhi. Currently working as a security
consultant, he is the guy behind owlpro, a WordPress
security scanning platform.

xv

 About the Technical
Reviewer

 Nishant Das Patnaik is an experienced application
security and SecDevOps engineer. He is based out of
India and is currently working for eBay in Bangalore. In
the past, he has worked as an AppSec and SecDevOps
engineer at InMobi and Yahoo. He loves to share his
work with the community as open source projects and
hence has been a presenter at Black Hat Europe 2016,
Black Hat USA 2016, Black Hat USA 2013, and Nullcon
2012. He loves to code on Python and JavaScript. You
can reach out to him on Twitter at @dpnishant and
check out some of his open source projects at github.
com/dpnishant . When he is not working, you can find
him playing a piano or experimenting at the kitchen.

http://github.com/dpnishant
http://github.com/dpnishant

xvii

 Acknowledgments

 I would personally like to thank Apress for giving me the opportunity to write this book.
This book would not have been possible without the support of Nikhil Karkal, Prachi
Mehta, and Suresh John. You guys have really helped a lot during the completion of
this book. It has been a long journey into this amazing world of iOS development and
penetration testing, the outcome of which would never have been possible without you
guys. The long journey of framing the whole series into a book was possible only because
of your support.

 Secondly, I would like to thank my mother, who has always supported me in all the
things I ever wanted to do during my journey into the field of information security. Now,
years after being in information security, it’s a journey I loved and spent those dark and
lonely nights with, days full of passion and zeal to discover and dive deep into this area
of my interest. I would also like to say thanks to Sailmn, my beloved hacker friend as he
was always there as a part of motivation in my research and was one of those few who
understood my vision and my passion for all of this. We spent days together working on
different information security projects and he has always been so good at everything
we did. Also a big thanks to all the information security books you shared with me, as
they were really useful for all the things I do now. I would also like to say thanks to all
my friends, family, and my mentors at Mozilla: you are the reason for me being what I
am. This has been an amazing journey with you all. Lastly, a big thanks to Jay Khurana,
Kunal Mohan, and all other unknown strange and weird kids we see. I have a special love
for all of them; it is really hard to adjust in this world and I feel the same as you do. Keep
exploring this infinite universe!

xix

 Introduction

 iOS is one of the most famous mobile operating systems in the world after Android,
having about 28% of total mobile operating system market. Since its release in June 2007,
it has evolved, and the current stable version is iOS 9.3.3. Apple has a stronghold of the
mobile market, making it the second most used mobile OS in the world. iOS is a closed
source operating system, unlike its rival Android, which is open source. That makes
Android the de facto mobile OS for all other hardware manufacturers including Samsung,
LG, HTC, etc. Since its release in 2007, iOS has been prone to jailbreaking; however, Apple
has worked hard to make the security of iOS tighter with every release. They still have not
managed to avoid jailbreaking totally and the current stable version iOS 9.3.3 already has
a public jailbreak available by the Pangu team, which also claims to have jailbroken the
latest iOS 10 beta. This leaves a big question mark on Apple about jailbreaking and other
security issues being addressed.

 iOS has always been a target of attackers, with many security breaches and
causalities in the past, even though Apple has been very strict with its security policies
and the App Store environment, which has a lot of restrictions on app development
and deployment. Apple has also been very restrictive on giving up user data APIs to
developers, and has denied a lot of Private APIs for use in apps, unlike Android, which
gives its users data API like SMS, call history, etc. On the top of that, it has a sandboxed
application environment in the OS that isolates the application from the operating
system. Even with iOS’s tight architecture, app developers still manage to make their
applications vulnerable to attackers, due to penetration testing and reverse engineering
in iOS. This is very different from the Web or Android setup, with Android running
applications built in Java, which makes it easier to reverse engineer. This book will
be your guide to working with iOS penetration testing and reverse engineering, and
I recommend you go through each chapter thoroughly, follow the tutorials, and try
replicating them on your end.

1© Kunal Relan 2016
K. Relan, iOS Penetration Testing, DOI 10.1007/978-1-4842-2355-0_1

 CHAPTER 1

 Introduction to iOS

 iOS has been around since 2007, when we first saw the iPhone, a beautiful device with
iOS in it. Developed by the Apple Macintosh team, it was originally called iPhone OS,
was renamed to iOS in 2010, and now runs Apple’s iPhone, iPad, and iPod Touch. It is the
second most popular mobile phone in the world after Android. iOS has been around for
nine years and we have seen a lot of changes since its launch. It has always been in the
spotlight for its security bugs, with the first bug hitting the web in 2007.

 In this chapter, we talk about how iOS works, how it manages to keep away the
malware from the App Store, and how the architecture of iOS is laid out. This chapter is an
introduction to iOS and covers all the basics needed to understand the coming chapters. If
you already understand the architecture of iOS and its file system, you can skip this chapter
and move on to the second one, but it is always a good idea to brush up on your knowledge.

 ■ Note We will be following Apple’s latest 9.x and 8.x iOS versions; however, most of the
features and issues are backward compatible and may work in upcoming versions as well.

 iOS Introduction
 iOS has been a popular operating system since its inception and its App Store has more
than 1.5 million apps, of which 100 billion copies have been downloaded. iOS has always
been praised for its user interface and is based on the concept of direct manipulation
using multi-touch gestures. iOS shares Core Foundation and Foundation Kit frameworks
with the popular OS X (the operating system in the MacBook); however, it has its own
upgraded version of UIKit called Cocoa Touch . iOS also shares the Darwin foundation
with OS X, which is an open source UNIX operating system released by Apple in 2000.
However, iOS still doesn’t provide UNIX-like shell access to users. At the time of writing
this book, iOS 9.3.1 is the latest release and 9.x and 8.x are the most commonly installed
releases in current devices.

Electronic supplementary material The online version of this chapter
(doi: 10.1007/978-1-4842-2355-0_1) contains supplementary material, which is available
to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2355-0_1

CHAPTER 1 ■ INTRODUCTION TO IOS

2

 Lets dive deeper into how iOS works, including the security mechanisms of iOS and
many other things that make iOS what it is today.

 Security History
 Apple has been quite successful in keeping the malware off its App Store, unlike Google
Android, which has been tricked to host a ton of malware on its Play Store, harming
millions of users everyday. The Apple App Store has managed to maintain the proper
check on the quality and quantity of the apps on the store because of its long app review
process, which gets annoying at times. Apple’s app review process takes around 7-8
working days to review the app before uploading it to the App Store, which aims to keep
the ecosystem free from malware. But it has been a blackbox game for developers, at least,
as many of the apps often get rejected even after falling into whitelist categories, as Apple
never discloses its review process. It just publishes a guide on making apps that can pass
through App Store review process.

 YiSpecter was one of the first applications to bypass the strict app review process
of App Store. YiSpecter was the first iOS malware abusing private APIs in the sandboxed
environment, and a recent study shows that over 100 apps on the App Store abuse private
APIs, this taking Apple’s security a step back, in failing to safeguard its private APIs.

 ■ Note Private APIs are not publicly defined and are supposed to be used by Apple only.
iOS has many private APIs, including Telephony, Message, etc.

 Apple has drastically improved its security model since iOS version 1.0, which had
all the applications running as root user and had a bunch of security vulnerabilities.
In contrast to what we see today, where every app has its own user and a sandbox in
which it lives, the attack scope has been narrowed down to a great extent. With iOS 1.0,
a vulnerability in any app could allow attackers to gain root privileges on a device’s OS,
enabling them to perform sophisticated exploits, as there was no sandboxing or any other
strong security mechanisms. However, with its growth, Apple has introduced a lot of
security techniques, making iOS strong and managing to keep malware away from its App
Store through its app review process and strong security model.

 Code Signing
 Apple uses the code signing method to verify the authenticity of third-party applications,
which is only supposed to be coming from the App Store and nowhere else. Apple signs
off the apps on the App Store to verify it, and the kernel is allowed to only execute signed
applications. All the pages in memory also need to be signed to run, giving no access
to runtime modification of app behavior. Code signing is a very critical step, as it keeps
unverified apps out of the App Store that may abuse private APIs. Unsigned code simply
cannot run on a device unless it’s jailbroken. For code signing while developing an app
on Xcode, the developer should be registered and logged in. Without logging in, the
developer can only test the app in a simulator.

CHAPTER 1 ■ INTRODUCTION TO IOS

3

 Data Execution Prevention (DEP)
 Data Execution Prevention (DEP) has been around since iOS 5.0 and is a technique to
forbid arbitrary code from running in memory. DEP safeguards against exploitation by
preventing code execution from data pages, such as the default heap pages, various stack
pages, and memory pool pages. It is a way to distinguish between code and data, allowing
only code to execute in the memory. Payloads that produce data over the network, files,
etc., are not allowed to execute in memory. However, there is a workaround for bypassing
DEP by using ROP (return-oriented programming), which reuses snippets of executable
code that are already loaded in the memory to craft the exploit payload. Attackers
frequently use ROP to bypass DEP. iOS tries to make such bypasses harder by enforcing
code signing, which is done by Apple itself or by a trusted authority such as an enterprise
that uses Apple iOS to distribute its private/in-house apps. This limits attackers from
executing ROP, but not shell code.

 Address Space Layout Randomization (ASLR)
 Address Space Layout Randomization (ASLR) is an exploit mitigation technique used by
Apple to empower DEP. ASLR randomizes the memory address of programs loading in
memory, so even when an attacker finds a vulnerability he would still have a hard time
getting the memory location. But ASLR bypass is still doable if the attacker gets multiple
memory disclosure vulnerability. Hence, Apple implements ASLR together with DEP
to strengthen the protection. The thing to note is that not all applications use full native
ASLR provided by iOS, but by default the flag for using Position Independent Executable
(PIE) support is available in Xcode since iOS 4.3.

 An app is PIE if and only if the main executable and all its dependencies were built
as PIE. Full ASLR randomizes the memory space for executable, data, heap, stack, library,
and the dynamic linker (DYLD) .

 Let’s simplify this attack to understand it more. Consider an application that can
view a user’s bookmarks and the content of the bookmarks, which means the application
can read the memory address and memory at that particular point of bookmarks. The
application can tinker with the memory address and change the value at any particular
address, making the user visit web sites he never had in his bookmarks because of the
existing ASLR. These types of attacks are not possible in current iOS versions, which use
full ASLR.

 Sandbox
 Apple has been very particular and strict about its security, and sandboxing is the
technique implemented in iOS. It is used to isolate an app in a container so that third-
party apps are not able to access other applications or their data (including user data) or
private APIs. Sandboxing enables iOS to lay out a granular control on its third-party apps,
only allowing them to access certain functionalities. iOS uses the Apple XNU sandbox

CHAPTER 1 ■ INTRODUCTION TO IOS

4

framework, which was initially called Seatbelt . It is implemented as a policy module of the
TrustedBSD MAC (Mandatory Access Control) framework. Based on configuration that
looks like LISP, it gets compiled into binary to be processed by the kernel. Sandboxing
limits the scope of damage any malware can inflict on a third-party app, thus retaining
the privacy of all other processes and files, even when the app is compromised. Sandbox
rules are basic deny or allow written in the SBPL (Sandbox Policy Language), which
very similar to that of a typical firewall policy file, and ensures only limited amount of
permissions are given to the apps. For example, an SMS app shouldn’t be able to access
browser history and a browser app should not able to access passwords. The rules in
sandbox take care of all these permissions. We will be discussing sandboxing in depth in
later chapters.

 iOS Boot Procedure
 In recent years, Apple has greatly improved on the boot procedure of iOS and almost
all the changes have been central to the security of its platform. It is very interesting to
see how an iOS device boots up and all the security measures it takes before loading the
kernel.

 iOS has a very strict process of booting the operating system, where it checks for
authenticity at every stage. When an iOS device is turned on, the processor executes
the BootROM, which is a read-only and yet executable block of memory that’s created
during the chip fabrication process. It contains the Apple Root CA, which then
verifies the signature and decrypts the LLB (lower level bootloader) and executes it.
LLB then initiates the execution of the second level of bootloader called iBoot , after
verifying its authenticity. iBoot in turn again checks for the authenticity of the LLB.
If everything goes well, iBoot finally executes the iOS kernel to load the operating
system. Apple initiated the main OS boot, so even before the main OS is booted,
Apple verifies the authenticity of services at every step and ensures that nothing is
tinkered with.

 Once the main OS boots up, the kernel loads the system core services and iOS
components and then the Apple native and third-party apps. The system services are
loaded and the kernel then verifies these services one by one, whether they all have
been signed by Apple or not. This whole process happens seamlessly in the background,
once the device is turned on. It shows how particular Apple has been about iOS and its
security.

 Figure 1-1 illustrates the iOS boot procedure and shows the flow of booting up iOS in
a device.

CHAPTER 1 ■ INTRODUCTION TO IOS

5

 Updates
 Apple provides regular updates to its iOS through iTunes and through the over the air
update, which can be directly installed in the device (since iOS 5.0). Apple also starts
deprecating older versions of iOS as it steps higher and stops digitally signing the old
version firmware, so a device running a higher version of iOS can’t revert to an older

 Figure 1-1. iOS boot procedure

CHAPTER 1 ■ INTRODUCTION TO IOS

6

version if Apple has stopped signing it. This technique is used by Apple to keep jailbreaks
away from its ecosystem by keeping most of its users on the latest version of iOS. Hence,
jailbreak developers and their users prefer to stay on an iOS version that has a jailbreak
available, because jailbreaks usually take time to appear and then Apple releases a new
version of iOS with the security fix as soon as it finds a jailbreak available. At the time of
writing this book, the latest version of iOS was 9.3.1 and the last working jailbreak was
available for iOS 9.3. However, iOS 8.1-8.3 had the most stable jailbreak available for
iOS, developed by TaiG and the Pangu team, the two most active jailbreak communities.
We will be talking more about jailbreaks in the jailbreak section and will apply the same
techniques to an iPad for our further exploitation and testing.

 What’s New?
 The rapidly changing world of technology is very hard to keep up with. At the time
of writing this book, Apple rolled out iOS 9.3.2 and there are many things Apple has
introduced in this version. Apple has introduced new security features as well as worked
on the existing ones to make sure the user’s privacy is always protected.

• App transport security : With the web becoming more prominent
and the majority of apps becoming more Internet-centric, it is
important for app developers to secure the network traffic of their
apps from prying eyes. One way to achieve this is ensuring the
app’s communication from the iOS device to server is encrypted
and the integrity of the data is verified at both the ends. To
promote this security best practice, Apple has mandated the use
of HTTPS in apps when communicating with any remote web
server. Although developers can turn off this protection for their
app(s)in Xcode, it is recommended you not do so.

• Blocking installed apps detection : Prior to iOS 9, there were some
privacy gaps in iOS that allowed an app to gather the list of all
currently installed apps; the first bug used sysctl() to retrieve
the process list, which included the list of running apps. In iOS
9, Apple patched this bug so it did not provide the list of running
apps to sandboxed apps. The second method relied on sandboxed
apps being able to access icon cache (fixed in iOS 9) and the
third method used the UIApplicationcanopenUrl method to
open known URI schemes used by specific known apps using the
 brute force technique . This particular bug has reportedly been
exploited by Twitter, futzing around 2500 known URI schemes ,
and has also been addressed in iOS 9.

• Mac Address Randomization improved : Mac Address
Randomization was introduced in iOS 8 to disallow tracking of
users through the network card’s device address (MAC address).
Apple improved this feature, which initially worked only when
location services were off. In iOS 9 it has been fixed, this feature has
has been extended to support inclusion of location service scans.

CHAPTER 1 ■ INTRODUCTION TO IOS

7

• Six-digit passcode : A passcode with a million combinations is
harder to crack than one with just thousands. With this thought
in mind, Apple improved its screen lock password to work on a
six-digit passcode compared to its four-digit passcode in earlier
versions. This doesn’t make much difference to people using
Apple Touch ID.

 System Insight
 iOS, as I mentioned, shares its design with Darwin, an open source UNIX operating
system created by Apple. iOS gets its base from Darwin but it does not seem to be a full-
blown UNIX OS to the average user, as iOS provides no shell access and limits access to
the apps.

 Darwin uses the XNU kernel, which is a hybrid kernel consisting of a mach 3
microkernel, some elements of BSD, and an object-oriented device driver API called
I/O Kit. Darwin currently supports Apple’s latest ARMv8-A 64-bit processors, including
previous versions. The latest version of Darwin is 15.4.0, which was released in March
2016. Darwin has been licensed under version 2.0 of the Apple Public Source License and
is classified as free software. This lead to many similar forks of Darwin and some open
source communities aiming to make it better.

 The iOS platform is made up of several layers, as shown in Figure 1-2 .

 Figure 1-2. iOS platform layers

 The bottom-most layer is called the Core OS layer and it contains the low-level
technologies on the top of which all the other technologies are built. This is also the
layer that directly interacts with the hardware. Apps leverage this layer when they deal
with security or want to directly communicate with an external hardware accessory. It
contains frameworks such as the Accelerate Framework, the core Bluetooth Framework,
the Security Framework and the Kernel environment, such as networking, file systems,
standard I/O, etc. It is the main layer of iOS, as almost everything in the OS uses this layer.
Also, while developing apps, you need to use this layer directly or indirectly.

CHAPTER 1 ■ INTRODUCTION TO IOS

8

 Core Services contains basic system services for the apps such as Core Foundation
and Foundation Frameworks, which define the basic types all apps use. This layer also
provides location, iCloud, social media, and networking feature access. The main features
provided by this layer are peer-to-peer services for Bluetooth access, iCloud storage,
data protection, in-app purchases, file sharing support, SQLite, XML Support, WebKit
Framework, etc. You can find a list of all the features on Apple’s developers web site.

 The media layer, as its name suggests, contains graphics, video, and audio
technologies to add multimedia to applications, which makes it easier to integrate
media in apps and makes them look more beautiful and interactive. It contains graphic
technologies like UIKit graphics and Core Animation Image I/O, audio technologies
like AV Foundation, OpenAL, Core Audio, and Media Player Framework and video
technologies like AVKit, AV Foundation, UIImagePickerController, and Core Media. This
whole layer is all about the media and the frameworks available to make wonderful apps
look and feel even better.

 The top-most and the last layer, Cocoa Touch, is a version of Cocoa library
available in OS X. It contains key features needed to create iOS applications that define
the appearance of the app. It has high-level features like Document Picker, TextKit,
multitasking, storyboards, Apple push notification services, local notifications, and
it has frameworks like the GameKit framework, the MapKit framework, the UIKit
framework, etc.

 iOS System Hierarchy
 This section takes you through the file system of iOS and explains the system hierarchy of
iOS, summarizing the importance of each of its directories. See Figure 1-3 .

 Figure 1-3. The iOS file system

 Figure 1-3 is a screenshot of a jailbroken iPad revealing the contents of the root
directory of an iOS device. By default, iOS provides no Terminal-like app and doesn’t
permit normal users to access the contents of any directory.

 Let’s now discuss the purpose and contents of these mentioned directories. They
are very similar to ones found in all other UNIX-based operating systems, but with minor
tweaks.

 ■ Note The iOS file system follows the Filesystem Hierarchy Standard (HFS) , but still
varies by name in some places.

CHAPTER 1 ■ INTRODUCTION TO IOS

9

 Applications
 The Applications folder is a highly sensitive folder that contains all the necessary
apps to run iOS and is the home for all the native apps that come preinstalled on
your device from Apple. These apps can’t be uninstalled by a normal user and apps
in this folder can only be deleted on a jailbroken device using a File Manager with
root privileges or via shell access. Doing so can lead to unexpected results and is not
recommended. The native jailbreak apps (installed via the Cydia repository) also
reside here. The list of apps installed in this folder includes AppStore , Settings ,
 Contacts , Dialer , Camera , etc.

 Library
 This folder is a tweaked version of lib folder found in UNIX-based folders, used as
 lib32 and lib64 to support multi-architecture. It contains all the necessary files and
executables to be used by the user and the applications. Similar to other modern UNIX
OSs, this folder contains shared libraries used by applications available for iOS. This
folder has the following child folders:

• Application Support

• Audio

• Caches

• File Systems

• Internet Plug-Ins

• Keychains

• Launch-Agents

• Logs

• Managed Preferences

• MobileDevice

• Preferences

• Printers

• Ringtones

• Updates

• Wallpaper

 It is a long list extracted from the folders inside the library and used by different
applications and users.

CHAPTER 1 ■ INTRODUCTION TO IOS

10

 Bin Folder
 Like the bin directory in all other UNIX-based systems, bin contains all GNU core
utils used by the system, which are basically the text, file, or shell manipulation
utilities that come by default in iOS. On a jailbroken device, you can install more
supported utilities if needed. A few utilities in this folder include bash, chmod,
gunzip, pwd, touch, etc.

 Dev Directory
 dev stands for devices, just like in other UNIX-based systems. This is a read-only directory
and contains hidden files managed by the kernel.

 Lib Folder
 lib is supposed to have shared library images that are used to boot the system and run
the commands in the root file systems. However, iOS stores these files in /private/var/
lib and /System/Library instead. Thus, iOS lib is generally empty.

 Sbin Directory
 sbin is similar to bin and contains executable programs to boot the OS. sbin contains
sensitive information and generally is available only to the root user on all UNIX-based
systems. sbin is where RAM disks are uploaded and has important files like mount, fsck,
and launchd for booting the OS. Deleting this folder or its contents may lead to a boot
loop.

 Tmp Directory
 As the name suggests, this directory contains temporary files; the /tmp directory in iOS is
a symlink to /private/var/tmp .

 Developer Directory
 This is an empty directory initially, but once you connect your device to Xcode and
click the Use For Development button, the contents of DeveloperDiskImage.dmg are
decompressed here.

 System Directory
 This directory contains the data of the root partition, specifically the frameworks in the
 Library sub-directory.

CHAPTER 1 ■ INTRODUCTION TO IOS

11

 Boot Directory
 This directory is usually empty, but may contain over the air (OTA) update data when
available.

 Etc Directory
 This directory holds all the configuration files as specified by the Filesystem Hierarchy
Standard (HFS) and includes important files like launchd.conf , passwd , and hosts . It has
configurations files for Bluetooth, SSL, etc.

 mnt Directory
 This directory is not really used by iOS, as seen in other UNIX systems. It is supposed to
be used to mount a temporary file system by the system administrator, but in iOS even
RAM disks are mounted in the /sbindirectory .

 usr Directory
 This is a standard directory in all UNIX systems and contains static data.

 var Directory
 This is the mount point of device user/data partition and is symlinked to /private/var .
It stores all App store applications, iTunes media, settings, photos, etc.

 User Directory
 This is the home for a default non-root user called mobile and is where user media and
data is stored.

 Private Directory
 This is where /etc and /var are redirected, so you already know its importance.

 iOS Application Overview
 iOS has been doing pretty well when it comes to having apps on its App Store, with over
1.5 million apps and around 1 billion downloads. It’s quite comparable to Android. iOS
apps are written in Objective-C and Swift. Objective-C is the main programming language
used by Apple for its iOS and OS X platforms and Swift has been around since 2014 as

CHAPTER 1 ■ INTRODUCTION TO IOS

12

Apple released its first version in Apple’s 2014 WWDC. However, it does not have the
popularity it deserves as a lot of apps are still being written in Objective-C. Developers
have not made a move to this new language. In fact, even Apple doesn’t seem to be using
Swift much, as in iOS 9.2, only one App (the Calculator) uses Swift; the rest are still on
Objective-C. Apple released version 2.2 of Swift in December 2015 as an open source
programming language. Swift is compatible with almost every Objective-C library in iOS
and is growing as well, but in this book we would be focusing on Objective-C, as it is the
language iOS still works on.

 iOS apps are built with Xcode, which is an IDE for iOS and OS X applications and
only runs on Intel-based Mac, so to be an iOS or OS X developer, you need a MacBook
or an iMac (you can also install OS X on a virtual machine). Currently, Apple is shipping
Xcode 7.3 with Swift 2. iOS uses the Mach object file format, abbreviated as mach-o,
for executables, shared libraries, object code, core dumps, and dynamic loaded code,
which also allows fat binary files (a piece of code expanded to run on multiple types
of processors). This contains code for multiple architectures, allowing Xcode to build
universal binaries that can run on PowerPC and Intel based x86 platforms, including 32-
bit and 64-bit code for both architectures.

 Apple’s current devices have ARM-based 64-bit processors, including the new iPads.
In this book, we mainly use an Apple iPad mini running on iOS 8.3 (jailbroken) and
iPhone 5 running latest iOS 9.3.1 (not jailbroken). App development on iOS is a pretty
straightforward thing with not much scope of developing apps that change the way the
device operates such as tweaks or extensions. Apple exposes very few APIs for third-party
apps and, on top of that, the tough App review process includes a thorough check of an
app’s features, including a malware test. Apple’s app review process is really effective.
The fact that there have been only a few instances of malware slipping into the App Store
speaks volumes about its effectiveness. The way such apps fool their review process is by
constructing the name of the private APIs on runtime, which makes it possible to invoke
private APIs in third-party applications. This makes Apple’s static analysis of app review
process vulnerable since it is not able to recognize private APIs being used by third-party
apps.

 Summary
 This chapter was an introduction to the iOS and its workings, explaining the bits of how
this operating system works. Understanding the core iOS will help you better understand
the detailed issues in the coming chapters. In the coming chapter, we discuss applications
in iOS and the development environment for iOS application development.

13© Kunal Relan 2016
K. Relan, iOS Penetration Testing, DOI 10.1007/978-1-4842-2355-0_2

 CHAPTER 2

 iOS App Development Basics

 This chapter takes you through the basics of app development and app architecture in
iOS. This chapter is for readers who are new to this environment. Hence, those of you
who are already working on iOS development may skip this chapter and move on. This
chapter serves as a base to all further research and development in iOS. Topics covered in
this chapter are Objective-C, Swift basics, Xcode basics, Cocoa Touch framework, simple
user interface creation, MVC architecture, and more.

 Objective-C is still a popular language for iOS development as compared to the
relatively new Swift programming language, released by Apple in 2014. However, in this
chapter, we will be discussing Objective-C and Swift with equal importance. Objective-C
has all libraries accessible to Swift; therefore, we will be discussing the same piece of
code in both languages for a better understanding. Objective-C is a mature language as
compared to Swift, which is only two years old. Swift still has a lot to cover in terms of
popularity among the developer community and the number of apps developed with
it before it becomes the de facto programming language for iOS development. In this
chapter, we create a Hello World iOS app using Xcode, and a sample malware-like app for
iOS by abusing its private APIs.

 Introduction to Objective-C and Swift
 Objective-C has been primarily supported by Apple; it is one of the major languages used
by Apple for its iOS and OS X development . Objective-C is a superset of the C language
and inherits the syntax with object-oriented programming capabilities and dynamic
runtime. Objective-C has its own syntax of defining methods and classes for providing
object-oriented programming capabilities. We will be discussing basics of Objective-C,
including its methods and classes that make it different from the C language. However,
development with vanilla C and C++ is still supported. In the topics ahead, we discuss
Objective-C as a language for iOS development, not its frameworks.

 Objective-C Runtime
 Objective-C is a runtime-oriented programming language, but sadly, it is often
overlooked. Initially, when people start working on iOS or OS X development, they
start with Objective-C because it’s an easy language and can be picked up in a day.

CHAPTER 2 ■ IOS APP DEVELOPMENT BASICS

14

Nevertheless, most of the time is spent struggling through the Cocoa framework.
Understanding the runtime of Objective-C helps you understand the system and its
workings better.

 Objective-C runtime is open source and can be downloaded from http://
opensource.apple.com . Since it’s a runtime-oriented programming language, it can
decide what will be executed from the compile and can link the time to when it actually
is executed. This is unlike its predecessor, C, where you start with the main function, after
which it is pretty straight-forward. The runtime-oriented feature of Objective-C provides
a lot of flexibility to developers; you can redirect messages to appropriate objects when
needed and intentionally sweep method implementation, etc. We will see this in depth
with the following example. Let’s write a simple Hello World program in C.

 #include <stdio.h>

 intmain(intargc, const char **argv[]){
 printf("Welcome to C Programming Language");
 return 0;

 }

 When the compiler parses the code, it optimizes and transforms it into assembly. It
links it together with the library and produces an executable binary. However, the same
functionality when written in Objective-C depends on the runtime of Objective-C, which
regulates what is executed.

 Basic Terminology in Objective-C
 Let’s start with discussing basic terminologies of Objective-C and see how a regular
Objective-C program looks. In Objective-C, a class has two parts—the interface and
implementation. The interface is responsible for declaring methods and properties of
a class while the implementation file defines the actual code that makes these defined
properties and methods work. These two parts compile together to form a complete class.

 Objective-C, being an object-oriented superset of C, uses square brackets to
represent the object-oriented aspect of Objective-C, as a mark of differentiation of
Objective-C from C. See Figure 2-1 .

 Figure 2-1. Objective-C class

http://opensource.apple.com/
http://opensource.apple.com/

CHAPTER 2 ■ IOS APP DEVELOPMENT BASICS

15

 A simple interface in Objective-C looks like this:
 MyClass.h

 @interface MyClass:NSObject{
 //Class Variable Here
 }

 //Class Properties here
 //Class methods and instances methods here

 @end

 And an implementation file looks something like this:
 MyClass.m

 @implementation MyClass
 //Class methods defined here
 @end

 This example shows a simple class in Objective-C, with MyClass.h being the
interface and MyClass.m containing the actual implementation.

 Object Creation
 Objects in Objective-C are like objects in any other object-oriented programming
language; they have some properties and some behaviors associated with them. For
example, a user can be an object and have properties such as name, age, gender, address,
etc., as well as a few behaviors associated with it, like update profile, delete profile, etc.

 Let’s see how objects are created in Objective-C.
 There are two main ways to create an object.

 MyClass*nameOfObject= [MyClasstype];

 This one is a more convenient automatic style , and it creates an autoreleased object

 MyClass *nameOfObject = [[MyClassalloc]init];

 This is a nested method call; the first call is the alloc method on MyClass . This is a
low-level call that reserves memory and instantiates an object.

 The second call is init on the new object, which does the basic setup like creating
instance variables.

 Data Types
 As we discussed earlier, Objective-C is a superset of C, which means you can use all
existing standard C scalar types like int , float , and char .

CHAPTER 2 ■ IOS APP DEVELOPMENT BASICS

16

 Objective-C also has some of its own scalar types such as NSInteger , NSUInteger ,
and CGFloat .

 C-style arrays are also available in Objective-C, but collections in Cocoa and Cocoa
Touch applications typically use NSArray or NSDictionary . These classes can only collect
Objective-C objects, thus you need to first create the instances of Objective-C scalar types
like NSString , NSNumber , etc.

 ■ Note All the data types that hold a single data item are called scalar types, such as
 int , float , and char .

 Methods
 A method is just a function defined within a class (in OOP). Methods are used to organize
code in small reusable chunks to reduce the work and energy and optimize the code and
work. There are two types of methods available in Objective-C.

 Instance Methods
 An instance method can only be called by that particular instance of the class where it is
declared; it’s represented by a (-).

 This is how a simple method in Objective-C looks:

 - (int)addX:(int)xtoY:(int)y {
 int sum = x + y;
 return sum;

 }

 People who come from a JavaScript or Python programming background might find
the syntax a little intimidating, so let’s break it down to understand what each part of the
snippet means.

 The hyphen (-)indicates that this is an instance method. (int) indicates that it will
return an int value, and addX is the name of the method. Parameters are specified with
a colon after their names; thus, :(int)x is the first parameter, which is an integer named
 x . What is interesting to note here is the toY:(int)y , where toY is the part of the message
name (think of it as a verbose label of the argument) and (int)y is another parameter.

 Quite simple right? Yes! Objective-C is an easy language and it is also good enough
for absolute beginners. Now let’s see how to call a method in Objective-C.

 Objective-C is based on the message-passing model, which is something like calling
methods and some other goodies. It is similar to many other programming languages.
In Objective-C any message can be sent to any object, and the object decides whether to
handle it or ignore it In a language like C, it simply jumps to a certain location in memory
and executes the code.

CHAPTER 2 ■ IOS APP DEVELOPMENT BASICS

17

 Class Methods
 Class methods in Objective-C can be directly accessed without creating objects for the
particular class, i.e., a class method can be directly invoked by calling the class name.
A class method is represented by a (+) and can be called anytime by inheriting the
particular class.

 For example, let’s add the following class method to myClass.h :

 +(void)easyClassMethod: (NSString*)aModel;

 Implementation of this method is done in myClass.m , as follows:

 #import "myClass.h"
 static NSString *_defaultModel;

 @implementation easy {
 ...
 + (void)easyClassMethod:(NSString*)aModel {
 _defaultModel = [aModel copy];
 }

 @end

 Now you can call this method such as:

 [easy easyClassMethod:@"It's very easy"]

 Now let’s find out how Swift works.

 Introduction to Swift
 Swift was introduced in 2014 at WWDC by Apple. It is still a new language and is seen as
the future of iOS development . Swift was open sourced in December 2015 and is slowly
attracting more developers for iOS development. Even Apple is ramping up its app
from Objective-C code base to Swift and not very many apps have been migrated yet, as
discussed earlier. Swift is a sweet blend of Objective-C and C, taking all the best things
of these two programming languages. Swift uses the same runtime as Objective-C and
can easily run on Mac OS X and iOS . Currently, Swift has no compiler for Windows based
systems but as Swift got open sourced, Apple has released a compiler for Swift on Linux
that can be downloaded from https://www.swift.org . The latest stable build of Swift
already comes in the Xcode bundle, which we shall need later to work. If you haven’t yet
arranged for an OS X machine or Hackintosh , now would be the right time to do so. After
you become acquainted with Swift, you will start to play with Xcode and learn about app
development basics.

 Swift is an open source programming language developed by Apple and is just a
better version of what Apple could take from C and Objective-C. It makes the syntax
easier to work with. Swift has a simple syntax, good compatibility with the Objective-C

https://www.swift.org/

CHAPTER 2 ■ IOS APP DEVELOPMENT BASICS

18

libraries, and the support of beautiful Cocoa framework. Swift supports some really
handy features like constants (which are variables whose values cannot be changed), fast
and concise iteration over a range or collection, native error handling using try/catch/
throw , and functional programming patterns such as map and filter, to name a few. Swift
also has powerful versions of primary collection types—Array, Set, and Dictionary. Swift
is made from C and Objective-C, thus, it has advanced data types like tuples, which
originally were lacking in Objective-C.

 Swift is a type-safe language much like Java, in that it keeps you aware of the data
type of the value your code is dealing with. It makes the code easier to read and safer to
execute. For example, when an if variable or an argument expects an int , type safety
prevents you from passing a string to it, which also helps in debugging errors quickly and
easily.

 Swift Runtime
 Swift by default uses the same Objective-C runtime, so it’s fully compatible with all its
features without any modifications.

 Compatibility with Objective-C
 In Swift, you can easily import a Objective-C library by using an import statement. The
library support remains intact and is butter smooth.

 Stored Properties
 Swift uses the concept of stored properties to store data. A stored property can either be
a variable or a constant. Stored properties of constants are defined by the let keyword,
whose value, once declared, cannot be changed. In other words, it’s immutable, whereas
variable stored properties are defined by the var keyword, whose value can be changed
anytime during the code execution. During initialization of the stored property, Swift
provides it some default values through which the users can initialize and modify the
initial values.

 Let’s look at some simple Swift stored properties:

 var digit1 = 0
 let digit2 = 0

 Here, digit1 ’s value can be changed during runtime as it is a variable; however,
 digit2 is a constant and thus its value remains the same .

 ■ Note Swift doesn’t require using semicolons after every line. You may need a
semicolon if you need to write a statement that is multiple lines long.

CHAPTER 2 ■ IOS APP DEVELOPMENT BASICS

19

 Classes and Methods
 Classes in Swift are pretty similar to how we deal with classes in any other language, and
we can create a class in Swift with something as simple as:

 class Animal{

 }

 Here, class is a keyword, and Animal is the name of the class. All the proceedings
of the class goes inside these curly braces, just as with other languages, so right now, the
 Animal class is a fully functional class in Swift.

 Functionalities or behavior can be added to a class in Swift by adding a method, just
like we do in other programming languages. The following snippet is a simple example
that defines a method in a class called Animal :

 class Animal{
 varname : String?

 let gender = "female"

 //declaring some variables and constants

 funcanimalType() -> String{
 varanimalType: [String] = []
 if let name = self.name{
 animalType += [name]
 }
 if let gender = self.gender {
 animalType += [gender]
 }
 return " ".join(animalType)
 }
 }

 So, that was a really simple example of defining a class and its methods in Swift. After
defining a class, the obvious next thing is to instantiate an object of the class. The syntax is
quite similar to many other programming languages.

 Instantiating a class is very similar to invoking a function . To create an instance of a
class, the name of the class is followed by a pair of parentheses, and the value returned is
assigned to a constant or a variable.

 let rocky = Animal()

CHAPTER 2 ■ IOS APP DEVELOPMENT BASICS

20

 Structures
 Structures in C are very similar to classes, but they have a few differences. First is the use
of struct keyword rather than class . Second, classes can be inherited but structures
cannot. The third and most important key point is that structures are value types so they
are passed by value. Here is the list of all that is common between structures and classes.

• Properties are used for storing values.

• Methods are initialized to provide more functionality.

• Initial state is defined by default initializers.

• Subscripts are defined for providing access to values.

• Functionalities are extended beyond default values.

 Although there is a lot more to Swift, discussing all the programming concepts with
Swift and Objective-C is beyond the scope of this book as we are focused on the security
aspect of it. In this chapter, we discuss the basics of these languages, which should be
sufficient to lay the groundwork for app development. Then you can start moving toward
penetration testing of iOS apps. However, it is recommended to dive deep into iOS app
development to get familiar with the app internals and their penetration testing and
exploitation.

 Now, let’s hit the Xcode IDE and start to get familiar with the development
environment.

 Introduction to Xcode
 Xcode is an Integrated Development Environment (IDE) developed by Apple. It contains
a suite of applications, including an interface builder, debugger, code editor, and device
simulators used for developing apps for OS X, iOS, WatchOS, and tvOS. The current stable
version of Xcode is 7.3.1, which has the new Swift 2.2 installed. Xcode is proprietary and
is used only for developing apps for Apple products, so it’s available only for OS X and
has no version for Linux or Windows. Thus, the only way to use Xcode in these other
environments is through Hackintosh or installing OS X on a virtual machine. There are
also many cloud-based Mac rental services available that provide online rental of Mac OS
X machines.

 Xcode supports a variety of programming languages like Objective-C, C, C++,
Java, AppleScript, Python, Ruby, and Swift. Xcode comes with various iOS simulators
(mimicking form factors of various Apple products such as the iPhone, iPad etc.), which
helps the developers test their apps without requiring a physical test device. Nonetheless,
behaviors like vibration and acceleration can’t be reliably tested with a simulator and
thus, it makes a hardware device necessary for development and penetration testing.
Prior to Xcode 7, to develop and test an app on a real device, the developer needed to
obtain a provisioning profile by joining the Apple Developer Program, which was $99. Yet,
using some simple tactics, apps can still be tested on jailbroken device. With the release
of Xcode 7, in June 2015, Apple no longer requires a license for deploying apps on the
developer’s iOS device for testing and debugging purposes.

CHAPTER 2 ■ IOS APP DEVELOPMENT BASICS

21

 Getting Started with Xcode
 Xcode is available as freely downloadable software from the Apple App Store. Or, if you
want the latest beta version of Xcode, just browse to https://developer.apple.com/
xcode/download . See Figure 2-2 .

 Figure 2-2. Xcode intro

 Figure 2-3. Xcode on the App Store

 Apple has also hosted its documentation on Xcode, iOS, and OS X development on
the same portal. Although installing through the App Store is an easier and better way,
just as with any app, you can download a . dmg to extract the executable. See Figure 2-3 .

https://developer.apple.com/xcode/download
https://developer.apple.com/xcode/download

CHAPTER 2 ■ IOS APP DEVELOPMENT BASICS

22

 Once you have installed Xcode, you are all ready to start working on iOS, OS X, tvOS,
and WatchOS development. Xcode 7 has an amazing utility called Playground. Try to
find it in Figure 2-2 . Playground, as suggested by its name, is a place of experimentation;
it gives an interactive Swift coding environment, evaluates each statement, and displays
results on the go. Playground is an amazing utility for beginners and for professional
developers. Playground is a tool for testing small snippets of code without playing with
the project code for testing new implementations and other experiments. Next, we will
discuss the Cocoa framework and CocoaPods and then we will hit the ground and start
working on Xcode.

 Cocoa Framework
 Cocoa and Cocoa Touch (including the UI, animation, and touch gestures framework)
are just environments of iOS and OS X development. Cocoa Touch is a mobile version of
Cocoa, which is used for OS X development, while Cocoa Touch is used in iOS, WatchOS,
and tvOS development.

 ■ Note The term Cocoa is generally used to refer to classes or objects based on
Objective-C. Even so, Cocoa and Cocoa Touch refer to these two development environments.

 Cocoa Touch is a framework for building applications on the supported platform.
It provides you with an abstraction layer of iOS, the OS for the iOS devices. Like its OS X
version, Cocoa Touch also follows the Model-View-Controller (MVC) architecture Cocoa
Touch is the key framework for developing other frameworks, including the Foundation
framework, UIKit framework, and many others.

 CocoaPods
 Dependency managers are needed in every programming environment. They are a
bit different from package managers. Package managers can work globally as well, but
dependency managers work on a per-project basis, meaning that once you install the
dependencies of a particular project, you will need to install dependencies again for a
new project. CocoaPods is a project-level dependency manager for the Objective-C, Swift,
and other languages that work on Objective-C runtime, such as RubyMotion. CocoaPods
provides a standard format for managing third-party libraries. CocoaPods is built with
Ruby and can be installed with the default version of Ruby that comes as part of OS X.

 CocoaPods runs from the terminal and is also integrated with JetBrainsAppCode
integrated environment (a third-party commercial IDE that’s available at https://www.
jetbrains.com/objc/). CocoaPods automates the process of installing dependencies
rather than making developer manually copying the source files, and it manages the
versions of third-party libraries. The dependencies are stored in a simple text file, i.e.,
the Podfile, and Cocoa recursively resolves dependencies between libraries, fetches the
source code of the libraries, and maintains the Xcode workspace for building the project.

https://www.jetbrains.com/objc/
https://www.jetbrains.com/objc/

CHAPTER 2 ■ IOS APP DEVELOPMENT BASICS

23

 Installing CocoaPods on an OS X is as easy as using the command shown in Figure 2-4 .

 Figure 2-4. Installing CocoaPods

 Figure 2-5. Swift in Playground

 CocoaPods has its own documentation and guide available at https://cocoapods.org .
It explains the steps for installing CocoaPods, in case the first method doesn’t work for you.

 So by now, I suppose you must have installed Xcode and CocoaPods, which will help
you continue. Let’s hit the Xcode and start creating some basic modules

 Hello World with Swift
 After an introduction to these beautiful languages used for iOS development, let’s start getting
our hands dirty with Xcode . As mentioned earlier, Xcode provides us with Playground for all
our experiments and code practice, so let’s open Playground and start coding.

 Select Open Xcode ➤ Get Started with a Playground. Then, provide a name and press
Next.

 Once you open Playground, you should see a screen like the one in Figure 2-5 .

 This is the default screen of Playground, and now we can play with it. Let’s start
by making a simple Hello World program according to the tradition, and then we can
proceed to other things.

 Hello World is really easy in Swift, unlike in Objective-C. All you have to do is remove
the default code and type print(“Hello World”) .

 Let’s try some basic conditional statements with Swift.

 let age = 19
 if age >= 18{
 println("Congrats! You Are eligible to vote.")
 }

 Conditional statements are this easy in Swift. Swift has if else , nested if and switch
statements for all the decision making you might need while developing for iOS.

 Now let’s try some iterative statements before we proceed with making full-fledged
functions.

https://cocoapods.org/

CHAPTER 2 ■ IOS APP DEVELOPMENT BASICS

24

 for index in 1...5{
 print("\(index) times 5 is \(index * 5)")
 }

 This simple loop would run five times; you may check it out in your Playground.
Iterating over an array in Swift is also this easy. Let’s check it out with an example:

 let students = ["charles", "james", "ricky", "jimmy", "aisle"]
 for student in students{
 print("Hello, \(student).")
 }

 These small, iterative statements and decision making is required to make the
powerful applications that we need. See Figure 2-6 .

 Figure 2-6. Loops in Swift

 Now, let’s create a function to determine whether a person is eligible to vote. Just as we
did with an if statement previously, but this time the function will take age as a parameter.

 funceligible(age: Int) -> String {

 if age >= 18{
 return "Congrats! You are eligible to vote."
 }else {r
 return "Sorry,
 }

 }

 Now let’s call this function (see Figure 2-7):

 print(eligible(20))

CHAPTER 2 ■ IOS APP DEVELOPMENT BASICS

25

 Implementing a class in Swift is also very easy, so let’s try that as well.

 Class ageVerifier{
 let age = 20
 funceligible(age: Int) ->String {

 if age >= 18{
 return "Congrats! You are eligible to vote."
 }else {
 return "Sorry, but grow up before you think about voting."

 }

 }

 Let’s work with the class now (see Figure 2-8):

 Figure 2-7. Functions with Swift

CHAPTER 2 ■ IOS APP DEVELOPMENT BASICS

26

 let test = ageVerifier()
 print(test.age)
 print(test.eligible(20))

 Figure 2-8. Classes and methods in Swift

 Now, let’s proceed and start making a Hello World iOS app using Swift. Close your
Playground and start a new project now.

 Open Xcode ➤ Start a New Project ➤ Single View Application ➤ Language: Swift.
Click Next, as shown in Figure 2-9 .

CHAPTER 2 ■ IOS APP DEVELOPMENT BASICS

27

 Now, in the left pane, you will see a couple of files that Apple creates for us when
we create an application. For first-time users, Xcode may look confusing, but it’s actually
quite easy to get used to. In the left pane inside the App folder, you will see a list of files,
such as AppDelegate.swift , ViewController.swift , Main.storyboard , Launch Screen.
storyboard , and Info.plist , and a folder named Assets.xcassets . See Figure 2-10 .

 Figure 2-9. Creating an iOS app

 Figure 2-10. The Xcode app main screen

CHAPTER 2 ■ IOS APP DEVELOPMENT BASICS

28

 We will explain what each file does, and then you’ll create your first application in iOS.
 Info.plist file is a structured text file. It contains the essential configuration information

of an app bundle and is typically encoded using UTF-8 and structured using XML.
 Storyboard was introduced in iOS 5, and it lets you graphically lay out the user’s path

through your app consisting of scenes and segues that connect screens. Main Storyboard
is the one in which we design the complete App, and, as the name suggests, Launch
Storyboard is used for creating the launch screen of the app.

 The remaining .swift files are the ones we write in our app code.
 Now click on Main.storyboard . On the bottom right, you will find a drag and drop

toolbar of objects that are used to design the screen. Let’s drop some text inputs on the
screen as shown in Figure 2-11 .

 Figure 2-11. Storyboard designing

 Designing applications in iOS is really very easy; however, as it is not an iOS app
designing book, we are only taking a very basic tutorial on using Xcode, so it gets easy in
later chapters.

 Xcode by default provides a simulator we can use to test our app. Currently, Xcode
has selected iPhone 6S Plus, as you can see in Figure 2-11 . In the drop-down list on top-
most tab bar, you can select any of the listed devices. Then click on the Run button on the
side to test your app.

 Now, let’s use Swift to change the text of this label:

 1. On the top-right you will see a button with two rings. Click on
that button.

 2. A partitioned screen will open up, where one side is covered
by the storyboard and the other by the ViewController.swift
file. Click on the label now.

CHAPTER 2 ■ IOS APP DEVELOPMENT BASICS

29

 3. Hold the control button and drag the cursor from the label to
inside the ViewController class in the .swift file.

 4. A dialog box will open up asking for the name. Provide a name
for the label and press Enter (see Figure 2-12).

 Figure 2-12. Integrating label in a Swift file

 Now, inside viewDidLoad , write the code to change the text of this label.
 Changing text of the label is pretty straightforward; all we have to do is write this

code inside viewDidLoad :

 self.labelName.text = "Your Text Here"

 And that is it. Now, when you run your application, the text of the label will change to
what you provided in the code.

 iOS Application Architecture
 iOS strictly asks developers to follow the MVC pattern while developing their apps.
The Model-View-Controller (MVC) design pattern breaks up the app’s code into three
parts—the model, view, and controller. Each part of the app’s code shares a particular
responsibility and they integrate with each other in a particular way (see Figure 2-13).

• Model : Represents the business logic of the application.

• View : Represents what the user sees in the device.

• Controller : Acts as a mediator between the view and model just to
break the direct communication between the two.

CHAPTER 2 ■ IOS APP DEVELOPMENT BASICS

30

 An iOS app may follow other design patterns as well, which suit different scenarios.
However, MVC is a frequently used architecture. iOS has used MVC in a different way,
although following the same concepts.

 Summary
 This chapter serves as a base for iOS app development basics, taking you through
Objective-C and Swift app development using Xcode. There is still a long way to go to
penetrate into iOS apps. So let’s start the security part of iOS apps in the next chapter,
where we will discuss common vulnerabilities found in iOS apps and jailbreaking. You
may have already heard about iOS jailbreaking. It is very popular among hard-core iOS
fans, so, before jumping into the next chapter, I suggest you go ahead and practice Swift
and Objective-C to strengthen your iOS environment and programming concepts and
techniques.

Controller

Model View

Up
da

te Update

User Actions

No
tif

y

 Figure 2-13. MVC in iOS

31© Kunal Relan 2016
K. Relan, iOS Penetration Testing, DOI 10.1007/978-1-4842-2355-0_3

 CHAPTER 3

 iOS App Vulnerabilities and
Jailbreaking

 This chapter builds on the finer parts of your iOS security knowledge. In the previous
chapter, you learned about iOS applications development. This chapter discusses the
“whys” and “hows” of jailbreaking. We discuss how a jailbreak works on an iOS device
and how to install repositories on Cydia. After jailbreaking, we will set up our penetration
testing and reverse engineering lab for iOS security testing.

 ■ Note You need to be running an iOS version for which public jailbreak is available in
order to complete this module and do further testing.

 Introduction to Security and Vulnerabilities in iOS
 So far we have discussed iOS architecture in general and iOS app development. Now we’ll
jailbreak our iOS device and set up our test platform by installing our tools on the device
itself and on a host machine, preferably a Mac.

 What Is Jailbreaking ?
 Jailbreaking an iOS device is about removing any or all restrictions imposed on it by Apple.
The primary objective of jailbreaking is to gain superuser privileges. It simply allows root
access to the file system so that users can perform activities that were otherwise restricted,
such as installing apps from sources other than the official App Store.

 iOS jailbreaking has been around since iOS’s debut in 2007. Back then, it was
mostly popular among enthusiasts and hackers, and not so much with the average
user. However, more iOS developers started developing “interesting” apps and tweaks/
extensions for existing apps on the official App Store that leveraged the superuser
privileges that would otherwise not be available. That is when the average user started
noticing. Initially, people tried their hands at these tools just to make their iOS experience
“different” from others. The most common reasons for jailbreaking the devices are device

CHAPTER 3 ■ IOS APP VULNERABILITIES AND JAILBREAKING

32

customization, unlocking carrier-locked phones, and software piracy. iOS jailbreaking is
comparable to “rooting” Android devices, as technically both are a means to escalate the
privileges over the phone.

 Android devices are generally more customizable than iOS devices, as they natively
support third-party app installations (outside of Google Play Store). Certain devices even
allow users to modify their operating systems after unlocking the bootloader. So OEMs
(original equipment manufacturers) even supply documentation for unlocking their
device’s bootloader on their official web sites. On the other hand, iOS jailbreaking is a
relatively challenging task as there is no scope of customization without gaining superuser
privileges. This means finding and exploiting vulnerabilities in the device’s components.

 iOS jailbreaking violates Apple’s end user license agreement and voids the warranty
of the device. However, in 2010 the Electronic Frontier Foundation (EFF) managed to get
certain exemptions amended into the Digital Millennium Copyright Act (DMCA) that
keep the jailbreaking community safe from legal prosecutions.

 Jailbreaking iOS
 This section covers the steps required to jailbreak an iOS device. At the time of writing
this book, iOS 9.1 was the latest version of iOS to have a stable jailbreak available to the
public. However, examples in this book use a jailbroken iOS 8.3 device. Teams like TaiG,
PPJailbreak, and Pangu have released their public jailbreaks since iOS 8.

 The TaiG team has the latest jailbreak for iOS 8.3, which is readily available to
download for both OS X and Windows (see Figure 3-1).

 Figure 3-1. iOS jailbreak using TaiG

 Jailbreaking an iOS device is very easy; it’s really just a click of button. All you
need to do is install the tool that’s appropriate for your version of iOS. You can find
a list of jailbreak tools and the links released for various versions of iOS at https://
canijailbreak.com/ .

 You can follow the instructions mentioned for each of the tool’s web sites to
understand the steps required to install the jailbreak on your device. Most jailbreak tools
are well tested to be non-destructive and non-intrusive to user data, as a precaution, it
is recommended that you always back up your device with iTunes so you can restore it if
any unexpected data loss happens during the process. Figure 3-2 shows how quick the
process is when using TaiG.

https://canijailbreak.com/
https://canijailbreak.com/

CHAPTER 3 ■ IOS APP VULNERABILITIES AND JAILBREAKING

33

 Figure 3-2. iOS jailbreaking

 Finally, you will have a jailbroken device for further testing purposes . The following
examples and screenshots show an iOS 8.3 that’s been jailbroken. See Figure 3-3 .

 Figure 3-3. Penetration testing device

CHAPTER 3 ■ IOS APP VULNERABILITIES AND JAILBREAKING

34

 Once you have successfully jailbroken your device , you will notice a new app
installed on the device called Cydia. Cydia is a repository (an alternative marketplace)
for jailbroken apps and tweaks. It was developed by Jay Freeman (@saurik) and is the
one-stop shop for all your customization and tweaking needs.

 SSHing in iOS
 To access the iOS device’s file system or run a command on the device from a remote
computer (say your Mac), you might want to install the OpenSSH (SSH means Secure
Shell) server on the device. You can search the package on the Cydia app and tap on the
Install button. See Figure 3-4 .

 Figure 3-4. Installing OpenSSH

CHAPTER 3 ■ IOS APP VULNERABILITIES AND JAILBREAKING

35

 If you have a larger device like the iPad or if you are comfortable typing commands
using the onscreen keyboard, you can also install the Mobile Terminal app, using Cydia to
access the shell on the device itself.

 ■ Caution The default SSH password for an iOS device is alpine and you should
consider changing the default password.

 Once you have set up the OpenSSH server on your device, you can log in to your iOS
device using your favorite SSH client, as shown in Figure 3-5 .

 Figure 3-5. SSH in iOS

 In Figure 3-5 , I have taken a SSH on my iPad. It didn’t prompt me for a password, as
I added my OS X keys in the known hosts of iOS so that it doesn’t ask for the password
every time I log in. However, in your case when you first log in to the device, it will ask you
for the password. The default password is alpine , which you should obviously change
after you first log in. Once you get the shell access, you may want to explore the iOS file
system, as discussed in the previous chapters.

 Installing the Tools
 Now let’s install some more tools on our host machine (laptop/desktop) to prepare our
lab for iOS penetration testing.

 Installing class-dump
 The first tool on the list is class-dump . As the name suggests, class-dump is a
command-line utility to dump the declarations for the classes, categories, and protocols
specifications from the Objective-C runtime information that’s stored in mach-o files

CHAPTER 3 ■ IOS APP VULNERABILITIES AND JAILBREAKING

36

in a readable format. class-dump is an amazing utility for looking into closed source
applications, frameworks, etc., in order to gain insight into their design and make a fair
guess about their workings during runtime. See Figure 3-6 .

 class- dump is only available for OS X. Installing class-dump is easy. Let’s install it
and see how we can use it for our purposes:

 1. Download the disk image from http://stevenygard.com/
projects/class-dump/ .

 2. Mount the disk image on any Mac running OS X 10.8 or
higher.

 3. Copy the executable into one of your folders where you want
to keep class-dump .

 Figure 3-6. The class-dump options

 Using class-dump is as easy as choosing the right options from Figure 3-6 .

 class-dump [options you might need] <mach-o-file>

 ■ Note Mach-O, short for mach object file format , is the file format for executables found
in iOS and Mac OS X.

 We will return to class- dump and discuss more about it as we begin pen-testing
some apps. For now, let’s move on to setting up the next tool.

 Installing the libimobiledevice Library
 The libimobiledevice library is a cross-platform library that permits users or apps to
communicate with an iOS device using their native protocol to allow easy access to the
device's file system, including information about the device and its internals. It even
supports backup/restore of the device, manages installed applications and more without

http://stevenygard.com/projects/class-dump/
http://stevenygard.com/projects/class-dump/

CHAPTER 3 ■ IOS APP VULNERABILITIES AND JAILBREAKING

37

requiring a jailbreak, and works with the latest version of iOS to date (iOS 9.x at the time
of writing the book). It is a very useful set of tools that we will need to communicate with
our iOS devices.

 libimobiledevice is a collection of utilities that includes ifuse , ideviceinfo , and
 ideviceinstaller . Each of these tools has a different purpose, including installing apps,
syncing music, and more.

 libimobiledevice is available to download for free from http://
libimobiledevice.org .

 Once you have installed libimobiledevice , you can run it from the terminal or
command prompt, depending on the platform you installed these tools on. Since we are
using macOS, we will make our terminal use this utility and fetch the device info of our
iDevice.

 $ ideviceinfo

 Sample output is shown in Figure 3-7 , where the sensitive fields have been censored.
You can connect your own device and try it yourself to get a better picture of all the detail
this tool prints out.

 Figure 3-7. iDevice info

 libimobiledevice is great for running forensics on iOS devices as well. It comes
to the rescue when you need to get the maximum amount of information with the least
amount of trace left on the device. I strongly recommend you install all the tools in the
package and try them out before we start using these tools.

 Installing Cycript
 The next tool on our list is Cycript. It was created by Jay Freeman, the developer of
Cydia, and according to him it is pronounced “sssscript”. You may think of Cycript as a
scripting language that has direct access to libraries written for Objective-C and Java. It is
implemented as a Cycript-to-JavaScript compiler and uses an unmodified JavaScriptCore
(Apple’s interpreter for JavaScript) for its virtual machine.

http://libimobiledevice.org/
http://libimobiledevice.org/

CHAPTER 3 ■ IOS APP VULNERABILITIES AND JAILBREAKING

38

 Cycript scripts are more often used for hooking into processes on iOS (using the
Cydia Substrate module) and modifying their runtime using a script that has syntax very
similar to JavaScript. Let’s install it on our Mac and see how can we use it to hook running
apps and modify their behavior at runtime.

 Cycript can be downloaded from http://www.cycript.org/ . Once you download it,
extract the ZIP. You will find three folders and an executable. This is all it takes to install
Cycript on OS X. You can check the installation by running

 $./cycript

 You will be inside the Cycript shell (see Figure 3-8). Just exit using void exit(0) for
now; we will explore this more once we are done with the setup process.

 Figure 3-8. Cycript

 Setting Up a Proxy
 Now you need to set up a proxy to intercept network requests. A proxy is a tool that
will acts as a bridge between the application server and the mobile app. We will be
intercepting the network communication between the mobile app and application’s
HTTP server using this tool and will check out the network requests at runtime.

 There are many different proxy tools available for OS X, Linux, and Windows. I
personally prefer OWASP Zed Attack Proxy (ZAP), which is open source and free to use.
OWASP ZAP is an open source tool written in Java by Simon Bennets (Mozilla Security).
It is quite stable and a mature tool that automates web application penetration testing as
well, so if you are curious about that as well, you may go ahead and check this tool out at
 https://github.com/zaproxy/zaproxy/wiki/Downloads . It is written in Java, is cross
platform, and is available for Linux, OS X, and Windows.

 Another interesting proxy is Charles Proxy, which is a commercial tool that I will be using
in the examples in this book. You are free to use any other available proxy of your choice, such
as BurpSuite. They all function similarly. Charles Proxy is convenient and easy to use, so we
will be using it. It also has a trial version that can run only 30 minuets per session and needs to
be restarted after every 30 minutes, which is bearable for the utility it provides.

 Charles is available to download from http://www.charlesproxy.com/ . Once you
download and run these tools, it is very easy to actually start intercepting traffic. We will
further discuss this process in upcoming chapters.

 Installing Keychain Dumper
 Next we install keychain_ dumper , which will help you dump the keychain database of an
iOS device. If you are not familiar with keychain yet, you can find information about it in the
first chapter. Basically all the credentials used by iOS are securely stored inside a database
called the keychain DB. This utility can dump the DB for you so you can explore its contents.

http://www.cycript.org/
https://github.com/zaproxy/zaproxy/wiki/Downloads
http://www.charlesproxy.com/

CHAPTER 3 ■ IOS APP VULNERABILITIES AND JAILBREAKING

39

 keychain_dumper is available for download at https://github.com/ptoomey3/
Keychain-Dumper . It can be installed on the iOS device using the scp utility.

 ■ Note SCP (Secure Copy) is a utility for transferring files between two hosts. It is based
on the SSH protocol.

 To copy the keychain_dumper binary, we need to open our terminal in the directory.
We copy the keychain_dumper files in and run this command:

 $ scp keychain_dumper root@<iOS device IP Address>:/tmp

 If the utility prompts for a password, type in your SSH password for the device (the
default is alpine). It will copy the keychain_dumper into the tmp directory of your iOS
device. See Figure 3-9 .

 Figure 3-9. Installing keychain_dumper on iDevice

 After you have installed keychain_dumper on your iOS device, you still need to do
one final thing before you can use this tool. You need to allow read permission to the
 keychain.db file, which is stored in /private/var/Keychains/keychain-2.db . SSH
will be required again into your device. You can then run the following command (see
Figure 3-10):

 $ chmod +r /private/var/Keychains/keychain-2.db

 Figure 3-10. keychain_dumper permissions

 Now we are good to go since our pen-testing environment is ready.
 After installing a bunch of tools, you’re ready to move on to understanding common

vulnerabilities before we begin to test them.

https://github.com/ptoomey3/Keychain-Dumper
https://github.com/ptoomey3/Keychain-Dumper

CHAPTER 3 ■ IOS APP VULNERABILITIES AND JAILBREAKING

40

 Common iOS Vulnerabilities
 No piece of software is 100% secure and perfectly secure software, has never existed.
Security is an ongoing process and is evolving every day as hackers are discovering newer
ways to defeat existing defense mechanisms. Every day, thousands of security bugs come
up in different types of systems. Vulnerabilities are special types of software defects that
compromise the integrity, availability, and confidentiality, in any combination, of the
software. These defects make the application prone to being exploited by attackers with
different motivations.

 iOS, as we discussed earlier, is based on the mach kernel of OS X and so it has the
same security features available on a Mac. However, iOS has another layer of security,
i.e. sandboxing. Like all other operating systems, iOS isn’t totally immune to security
vulnerabilities despite so many advanced security features. Vulnerabilities are found in
iOS apps due to insecure coding and not following best practices.

 The following sections discuss these types of common vulnerabilities found in iOS:

• Buffer overflows

• Access-control validation

• Invalidated input

• Privilege escalation

• Insecure data storage

• Insecure transport layer

• Client-side injections

• Race conditions

• Weak authentication and authorization practices

 Buffer Overflows
 A buffer overflow is a condition that occurs when a block of pre-allocated memory
(buffer) gets forcefully exhausted and is made to hold more data than it can actually
handle. This results in unexpected parts of memory being overwritten. Buffer
overflow is a very common software vulnerability and was initially documented
back in 1972. Buffer overflows only occur in unmanaged code, i.e., software that
compiles straight to native/machine code and is directly executed by the processor.
The vulnerability is tied to the way the processor and native code manipulates
the memory. In general, buffer overflow defeats the trust of the developer in the
application.

 Buffer overflow is a very serious and dangerous vulnerability, as it can cause your
application to crash (to the least) and compromise data. Worst of all, it can cause code
execution that can escalate privileges for a full system compromise.

CHAPTER 3 ■ IOS APP VULNERABILITIES AND JAILBREAKING

41

 A typical buffer overflow attack occurs in a manner in which an attacker finds a
certain point of user input that’s vulnerable to buffer overflow. It then inputs more data
than the input can handle, leading to a situation of overflow followed by some payload
by the attacker. All of this ultimately leads to attacker’s code being able to execute in the
program. Buffer overflow attacks are of two types:

• Stack-based buffer overflow (overflows in statically allocated
memory)

• Heap-based buffer overflow (overflows in dynamically allocated
memory)

 To illustrate the workings of a typical buffer overflow, let’s consider an example
where a function reads your name and stores it, as shown in Figure 3-11 .

 Figure 3-11. Normal software is working as expected

 During a buffer overflow, the attacker introduces evil code in order to overflow the
existing memory, as shown in Figure 3-12 .

 Figure 3-12. Buffer overflow now exists

 So, as clearly depicted in Figures 3-11 and 3-12 , it is a situation in which user input
exhausts the memory space and overwrites the existing data (in this case, the return
address), causing user-controlled execution of the code.

 Memory is stored in two types of buffers—the stack and the heap—which is
obviously where a buffer overflow can happen. As iOS applications run native code, they
might at times be susceptible to this vulnerability.

 Invalidated Input
 Invalidated input is a dangerous and a serious vulnerability that exists in all types of
software. As the name suggests, it is a vulnerability that exists when user data is not
being validated and filtered. It is a situation when the developer accepts the user input
and straight away processes it without any validation. Its impact can be very serious.
User input should never be trusted blindly and should always be validated in context.

CHAPTER 3 ■ IOS APP VULNERABILITIES AND JAILBREAKING

42

Since attackers can control user input, not validating such input is analogous to allowing
anyone to enter your premises without checking their sanity or intentions. Untrusted user
input can be received in multiple ways:

• URL responses

• Command-line arguments

• Text fields

• Files being uploaded by users

• QR codes

• RFID tags

• Any other source, such as any untrusted data read from a trusted
server

 An attacker will poke every option of user-controlled data and try to attack the
software by crafting special payloads (files, strings, etc.) that are applicable in that context.
So any entry point for user-controlled untrusted data posses a risk to your application and
needs to be tested thoroughly.

 Such vulnerabilities can be very dangerous and can lead to very sophisticated
attacks. To prove this point, the best example is a jailbreak exploit based on one or more
such vulnerabilities.

 Validating user input is not so easy, considering the variety of contexts in which a
particular vulnerability can be exploited. Many applications try to blacklist certain known
malicious input patterns as a technique to patch such vulnerabilities.

 Time and again it’s been shown that whitelist pattern matching is the best way to
fix such issues. The whitelist approach is based on the “allow-few-block-rest” principle
where the legitimate inputs are allowed and all other unknown input values are rejected
before they are processed by the application. You should always validate user input based
on the following criteria:

• Specific patterns (e.g., phone number, e-mail ID, or URL)

• Data type (e.g., integer, string, float, Boolean, etc.)

• Null values

• Bounds checking (maximum and minimum allowed values)

• Duplicates

• Allowed character sets

• File (name, header, and size)

• i18n and L10n (internationalization and localization)

 Using these methodologies, you can add one more layer of checks to your software
for user input; otherwise, you never know when your software will be the next target.

CHAPTER 3 ■ IOS APP VULNERABILITIES AND JAILBREAKING

43

 Privilege Escalation
 Privilege escalation occurs when a piece of software is unable to authorize the user,
such as when the software fails to verify the things a particular user can access and
unintentionally provides access to features or information otherwise only accessible
by other user(s). Privilege escalation is a dangerous vulnerability that can lead to
more harmful attacks, because it can give attackers access to restricted features of the
application.

 iOS jailbreaking is a good example of privilege escalation, where the purpose is to
break out of the sandbox and gain superuser privileges to access restricted areas of the
file system.

 But in iOS apps, elevating privileges is not possible at the system level. However,
apps that require the user to log in and perform certain functionalities may have this
vulnerability in the way it authenticates the users and grants access to the functionalities.

 Insecure Data Storage
 This vulnerability occurs when a piece of confidential data is not stored in a secure
manner. Devices themselves are never safe and all the confidential data stored on the
client side (the iOS device in our case) is never secured and can be tinkered with by a
normal user or attacker. Normal users will not always protect themselves against such
things. If the device is tampered with or is stolen, the confidential data is at risk. Thus
confidential data should always be stored in a secure manner and in a way inaccessible to
other users.

 In iOS, confidential data is stored in plist (property list) files or in unencrypted
SQLite DBs, which again is a very bad practice. This vulnerability can occur at the server
side and with a combination of other vulnerabilities that can be used to exploit and gain
access to unauthorized data.

 ■ Note SQLite is a relational database management system contained in the C
programming library, which is usually embedded in the end program rather than being a
traditional client-server database engine.

 Insecure Transport Layer
 Insecure Transport Layer is also a high-level vulnerability existing in apps. All the apps
communicate to a server in one way or another, so securing the communication between
the app and the server is important. This vulnerability occurs when an application
sends data over the network in plain text without encryption, which can lead to other
serious attacks like a man-in-the- middle attack, which generally deals with the attacker
intercepting communication between two people.

 Network communication from a device to the server should always be secure and the
security certificate should always be validated.

CHAPTER 3 ■ IOS APP VULNERABILITIES AND JAILBREAKING

44

 ■ Note Security certificates are small data files that bind a cryptographic key to an
organization’s data and allow communication over HTTPS by ensuring that the client server
communication is encrypted.

 Client-Side Injection
 As the name explains, client-side injections are when an attacker executes malicious
code on the client side, which is a mobile device. The malicious code may come from
different means of user data input in to a mobile application. In iOS applications, this is
generally from SQLite injections, JavaScript injections, Format String injections, and XML
injections:

• SQLite Injection : This one deals with improper handling of user
queries when querying some data from the local SQLite database,
and is a very common vulnerability dealing with user-supplied
data in parameterized queries.

 ■ Note Parameterized queries force the developer to first define all the SQL code and
then to pass in each parameter to the query later. This allows the database to distinguish
between the code and the data.

• XML injection : An attack used to manipulate or compromise
XML-based service or payload that can even lead to wrong data
insertion, creation, or deletion.

• Format String injection : This vulnerability occurs when user-
submitted data is evaluated as a command by an application
allowing an attacker to execute malicious code.

• JavaScript injection : This vulnerability occurs on mobile
browsers or apps rendering web views and thus occurs in
UIWebKit. Most of the time, it is due to cross-site scripting
(unescaped user input). This can lead to user input in the form of
JavaScript to be injected and executed in the web view.

 ■ Note A web view is a browser bundled into a mobile application, and it allows a web
application to be rendered in a mobile application. iOS uses UIWebKit for rendering web
views in iOS applications.

CHAPTER 3 ■ IOS APP VULNERABILITIES AND JAILBREAKING

45

 Weakness in Authentication and Authorization
 Although user authentication and authorization is largely handled on the server side,
having the mobile application control parts of user authentication and authorization
can be problematic, because it can allow attackers to escalate privileges using different
methodologies. Common device features like unique identifiers are often used to
identify users, which is bad practice and can be easily exploited. User authentication and
authorization should be purely server side-based, giving the least significant role to the
mobile application and using the fewest device features for better security.

 Summary
 This chapter discussed all the common existing iOS vulnerabilities and showed you how
to configure the tools as well. You also learned how to jailbreak your device. This chapter
builds on your understanding about the iOS vulnerabilities, which will act as your base
for a deeper understanding of securing iOS applications.

 In the next chapter, we discuss blackbox testing of iOS-based applications, based on
these common vulnerabilities.

47© Kunal Relan 2016
K. Relan, iOS Penetration Testing, DOI 10.1007/978-1-4842-2355-0_4

 CHAPTER 4

 Blackbox Testing iOS Apps

 It’s been a long journey discussing the ins and outs of iOS, including its security features,
loopholes, development, and tools. Now we have finally reached the point where we will
start testing our applications. In this chapter, you will be using all tools we installed in the
previous chapters to test your iOS applications . We will also check out some vulnerable
iOS applications by futzing with and exploiting them.

 ■ Note You need a jailbroken iOS device to try these examples in this chapter.

 Intercepting Network Traffic
 The first thing we will be doing is intercepting the network traffic from the iOS device ,
analyzing the HTTP(S) requests, and modifying them when necessary. Intercepting
network requests is a very important part of iOS penetration testing, as we need to
analyze the network requests between the client and the server. This can be the phase
where we might find some web-related vulnerabilities such as SQL injection, cross-site
scripting, broken authentication, insecure session management, etc.

 As discussed in the previous chapters, this book uses the Charles Proxy to intercept
the application traffic. You are free to use any other tool of your choice. For intercepting
mobile traffic, we need to implicitly configure our mobile HTTP proxy; however, you can
do something similar using a network interceptor like Wireshark. Wireshark is a complex
network monitoring tool and here we only want to intercept HTTP-based traffic, so it
might be overkill in this case. Here, we will be intercepting our app traffic using Charles
Proxy. Before proceeding, consider downloading a proxy tool like Charles Proxy or
OWASP ZAP.

CHAPTER 4 ■ BLACKBOX TESTING IOS APPS

48

 Installing Charles Proxy is a pretty easy job and it is available for all platforms, as it is
built on Java. Charles Proxy is available at http://charlesproxy.com/download .

 Once you are done with installing Charles Proxy , you can configure it so that you are
ready to intercept network traffic (see Figure 4-2).

 Figure 4-1. Network interception

 Before we start intercepting network traffic, it’s important that you understand the
concept of network traffic interception; see Figure 4-1 .

http://charlesproxy.com/download

CHAPTER 4 ■ BLACKBOX TESTING IOS APPS

49

 Let’s configure Charles on our iPad to intercept app traffic. To do so, you go to the
Proxy tab, then select Proxy Settings. Enter a port and click OK.

 That’s it! Charles is now configured to intercept network requests on your selected
port. I generally use port 8181 for Charles, but you can use any other free port. Now you
need to find the IP addresses of both systems, but make sure that you choose the IP of the
same subnet to which both your Mac and iOS device are connected. In Linux/UNIX, you
can print your IP address by running the ifconfig command in a shell. Once you have
your IP address, you are all ready to set up HTTP proxy on your iOS device.

 The final step is to configure HTTP proxy on the iPad and start intercepting, as
shown in Figure 4-3 .

 Figure 4-2. Configuring Charles Proxy

CHAPTER 4 ■ BLACKBOX TESTING IOS APPS

50

 After you configure your iOS device to use your proxy settings, network requests start
passing through the Charles server and you may see a lot of requests appearing in Charles
(if the Recording mode is ON).

 The last step in intercepting is viewing and editing the SSL encrypted traffic, but to
do that, you need to find a way out to decrypt the SSL encrypted traffic as well. For this,
you need to install Charles’ root certificate on your iOS device so that when Charles Proxy
generates SSL certificates for random domains on the fly, the iOS truststore knows to
trust such certificates and the SSL protocol can function properly without any errors or
warnings.

 Figure 4-3. Configuring HTTP proxy

CHAPTER 4 ■ BLACKBOX TESTING IOS APPS

51

 Visit the http://charlesproxy.com/getssl web site and install the certificate. Click
Done, as shown in Figure 4-4 .

 Figure 4-4. Installing the SSL certificate

http://charlesproxy.com/getssl

CHAPTER 4 ■ BLACKBOX TESTING IOS APPS

52

 As an example, let’s check out the Uber rider app and intercept its network traffic to
get a sense of which requests and responses are exchanged in the background. If you have
not already installed it, you want to do so now.

 It’s really amazing to see the amount of information the Uber app’s API is fetching
from the device and sending to the server. At times this information can be a real eye
opener in that it shows the user information these apps take from our device for tracking
us and breaching our privacy.

 As you can see in Figure 4-5 , this app is tracking battery percentage , charging status,
private IP address, jailbreak status, etc. It is natural for someone to question an app’s need
to track our device’s jailbreak status. You can add a breakpoint by right-clicking on the
particular URL in order to stop the request from the app to the server and change the data
midway. See Figure 4-6 .

 Figure 4-5. Charles SSL proxying

 Once you have installed the SSL certificate, you are all set to intercept network traffic,
so let’s open the mobile application. See Figure 4-5 .

CHAPTER 4 ■ BLACKBOX TESTING IOS APPS

53

 Defeating User Validation
 If, by now, you are wondering what you can do when you intercept an app’s network
traffic, you should know that the possibilities are limitless and it is therefore a vital part of
the penetration-testing process.

 Let’s install another app—this time a popular Indian food ordering app—and try to
see its login and signup procedure using Charles Proxy. We will try to see if we can bypass
the user-validation process. As I start the app, it shows the login/signup screen; the
signup screen looks pretty similar to most mobile apps these days (see Figure 4-7).

 Figure 4-6. Network data interception

CHAPTER 4 ■ BLACKBOX TESTING IOS APPS

54

 Let’s fill in the form and intercept the form signup request on Charles Proxy. We will
try our hands at modifying the request midway to the server.

 Damn Vulnerable iOS App: DVIA
 Instead of trying our newly acquired skills on a real app (to avoid legal issues), we
need an app that is designed for learning purposes and has common and real-world
vulnerabilities to hone our skills. Exactly for this purpose, there is a popular app called
 Damn Vulnerable iOS application (DVIA) . You can download DVIA from http://
damnvulnerableiosapp.com/ or, if you want your own build, you can get its source code
from https://github.com/prateek147/DVIA . After installing DVIA, let’s open the DVIA
app and start finding some vulnerabilities. See Figure 4-8 .

 Figure 4-7. Client-side validation is particularly vulnerable

http://damnvulnerableiosapp.com/
http://damnvulnerableiosapp.com/
https://github.com/prateek147/DVIA

CHAPTER 4 ■ BLACKBOX TESTING IOS APPS

55

 DVIA covers all the top iOS vulnerabilities) , which we will discuss one by one.

 Insecure Data Storage
 This is a vulnerability that occurs when the application stores private data locally without
proper security configuration, such as plist files, NSUserDefaults, Keychain, Core Data,
and WebKit.

 Plist stands for property list. A plist is actually an XML file with a .plist extension.
Every application bundle has an Info.plist file with various keys and values that store
configuration data for proper functioning of the app. Developers often store sensitive info
in these plist files, as they find them quite easy to use.

 Let’s check out an app’s Info.plist and see the sort of data that’s stored in them.
To view or edit these files, you either log in to the jailbroken device via SSH or browse the
file directly on the device using a file system browser like iFile, which can be installed on
jailbroken devices through Cydia.

 All your app bundles are stored under:

 /var/mobile/Containers/Bundle/Application

 Figure 4-8. DVIA

CHAPTER 4 ■ BLACKBOX TESTING IOS APPS

56

 In this directory , you will see a lot of folders with long UUID (universally unique
identifier) style names. These are the application bundle identifiers of every application
installed on the device. If you browse inside them, you will find a directory with the same
name as the app and ending with .app . Inside that, you’ll find the Info.plist file, which
can be viewed using the Property List Viewer component of iFile (see Figure 4-9).

 Figure 4-9. Reading plist files

 As you go through plist files of iOS apps, you’ll be amazed to find how much
private data, such as credentials etc., is stored in them, even in cleartext. This makes it
vulnerable to be read by anyone. In fact, while searching for examples for this book, I
found a “famous” app storing confidential API keys in the Info.plist files, as shown in
Figure 4-10 .

CHAPTER 4 ■ BLACKBOX TESTING IOS APPS

57

 As you can see, this is indeed a real-world and popular app that is storing all its
private data in a Info.plist file.

 You can try to get your hands dirty on other apps out there and see what private
information you can find by reading such plist files.

 NSUserDefaults Private Data
 The NSUserDefaults class provides a programmatic interface for interacting with the
defaults system, which allows an application to customize its behavior to match the user’s
preference.

 A lot of applications store user data in NSUserDefaults and this data persists even
when users rerun the app. NSUserDefaults lets users store 100KB of data. However, a lot
of developers use NSUserDefaults to save private data, which is generally a bad practice,
as NSUserDefaults data can be easily read in the file system. Let’s check out where we can
find user confidential data saved using NSUserDefaults .

 Figure 4-10. Plist file

CHAPTER 4 ■ BLACKBOX TESTING IOS APPS

58

 App data is generally stored in /var/mobile/containers/Data/Application/
<appId> and NSUserDefaults is located inside the Library/Preferences/ directory
of the app data bundle. Let’s go ahead and check out the Preferences directory of
different apps and see the private data they store in the NSUserDefaults data store
(see Figure 4-11).

 Figure 4-11. NSUserDefaults

 As you can see in Figure 4-11 , a famous ecommerce app is saving a lot of user data in
 NSUserDefaults in plaintext. As you no doubt understand by now, on a jailbroken device
this information is pretty easy to access. Hence, appropriate judgment is required to
decide what data should be stored in such locations.

CHAPTER 4 ■ BLACKBOX TESTING IOS APPS

59

 Dumping iOS Keychain
 iOS lets you save your confidential data in something called the keychain . Keychain is
a secure storage container that lets you save any data that is highly sensitive and secret
in nature, such as credentials, API tokens, PII, and credit card information, in a secure
manner. Keychain uses 256-bit AES encryption to store and transmit the secured data.
Keychain natively is a SQLite database saved at / private/var/Keychains/keychain-2.
db and data stored in the keychain isn’t the part of sandbox scope. That data can be
shared among apps using keychain access groups. In other words, if there are different
apps developed by the same developer and the developer wants his apps to share the
credentials or tokens to be shared by all his apps, he can do so by making his apps part of
the same keychain access group during development.

 On a jailbroken device, it is possible to dump the keychain database and view its
contents. That may include your WiFi passwords, VPN credentials, app data, etc.

 To dump a keychain , you can use a utility we’ve discussed in previous chapters,
called keychain-dumper . It’s available for download at https://github.com/ptoomey3/
Keychain-Dumper , so just download this utility from the link. Inside the folder, you will
find the keychain_dumper executable (see Figure 4-12).

 Figure 4-12. Installing keychain_dumper

 Once you have set up the keychain, all you have do to run keychain_dumper is use
this command:

 ./keychain_dumper –a

 where -a instructs the keychain_dumper to dump all the data saved in the keychain,
including certificates, credentials, etc. (see Figure 4-13).

https://github.com/ptoomey3/Keychain-Dumper
https://github.com/ptoomey3/Keychain-Dumper

CHAPTER 4 ■ BLACKBOX TESTING IOS APPS

60

 Once you dump the keychain, you have a lot in your hand you can work with,
Keychain has all the confidential data stored in your device and you can easily dump all
of that data with a very small utility tool and check out all your data in your keychain.

 Although keychain is supposed to be a secured data storage feature, once a
device has been jailbroken, the data in the keychain can be dumped and manipulated.
Therefore, it’s not a really good place to store user confidential data. See Figure 4-14 .

 Figure 4-13. Dumping the keychain

CHAPTER 4 ■ BLACKBOX TESTING IOS APPS

61

 Performing Runtime Analysis
 iOS apps are built using Objective-C, which is an object-oriented programming language.
Static analysis of Objective-C apps might be difficult for security testers who do not have
enough programming experienc e with Objective-C or when the source code of the app is
not available. This is why inspecting the Objective-C runtime is a very interesting part for
attackers as it has a huge scope of being tampered and enabling an attacker to be able to
modify the behavior or functionality of an iOS app on a jailbroken device.

 Figure 4-14. Keychain dumping reveals confidential data

CHAPTER 4 ■ BLACKBOX TESTING IOS APPS

62

The Objective-C runtime environment provides a lot of opportunities for us to
manipulate an app during runtime. Runtime analysis can be done by introducing a static
library with these functionalities, but this can be only done for your own app during
development. However, for runtime analysis of other apps, you need a jailbroken device
and need to inject an on-the-fly interpreter for manipulations.

 Cycript is an advanced method swizzling library that helps us hook into a running
process and modify its runtime. Cycript is a great blend of Objective-C and JavaScript.
Cycript provides an interactive console (REPL) when hooking into an application to
control its runtime. Next, we will pick an app and hook its runtime to modify some of its
content.

 ■ Note Method swizzling is the process of changing the implementation of an existing
selector. It’s a technique made possible by the fact that method invocations in Objective-C
can be changed at runtime, by changing how selectors are mapped to underlying functions
in a class’s dispatch table.

 Since we have already installed Cycript in the previous chapter, we’ll open up our
arsenal and start using Cycript.

 For the purposes of demonstration, I installed the Yahoo! Weather application,
downloaded from App Store. We will now SSH into the device and find the process ID of
the app so that we can tell Cycript to hook that process (see Figure 4-15).

 Figure 4-15. Finding the process ID

CHAPTER 4 ■ BLACKBOX TESTING IOS APPS

63

 Once we know the process ID we need to hook, we can use the following command
to begin the process:

 Kunals-iPad-mini:~ root# cycript –p 802

 This will open the Cycript shell, which should look something like Figure 4-16 .

 Figure 4-18. Application delegate

 Figure 4-16. Cycript shell

 If everything goes well, you can check out the instance of the application by typing
 [UIApplication sharedApplication] .

 So as mentioned earlier, Cycript is a blend of JavaScript and Objective-C. You can
confirm yourself if you see that I assigned a variable in JavaScript syntax and the value is
actually the singleton instance of the application (see Figure 4-17).

 Figure 4-17. Instance of an application

 Now to find the application delegate, we need to use [UIApplication
sharedApplication].delegate , but since the variable a already refers to the instance of
the app, we can access it via a.delegate . See Figure 4-18 .

 ■ Note Application delegate protocol defines methods that are called by a
 UIApplication object in response to important events in the app’s lifetime.

CHAPTER 4 ■ BLACKBOX TESTING IOS APPS

64

 So now we can play with the application runtime and modify its contents. The
Yahoo! Weather app hides its status bar by default, but you can toggle the status bar using
the same Objective-C code . See Figure 4-19 .

 Figure 4-19. Using Cycript to manipulate application behavior

 Notice in Figure 4-20 that the status bar is now visible. Let’s look at another example
where we change the notification badge count on the icon of the app.

 Figure 4-20. Changing the status bar

CHAPTER 4 ■ BLACKBOX TESTING IOS APPS

65

 And as you can see in Figures 4-21 and 4-22 , the count of the notification badge of
the app’s icon on the home screen has changed to 100. This way you can tinker with a lot
of app properties and define how the app will work during runtime.

 Figure 4-22. Application icon badge number changed

 Figure 4-21. Altering the application icon badge using Cycript

 By now, you should be familiar with Cycript’s capabilities . Cycript provides a whole
new perspective of security testing of iOS apps during runtime. A few hints may be
finding the login methods and directly calling the login success method from Cycript and
try to bypass user logins or maybe changing app data.

CHAPTER 4 ■ BLACKBOX TESTING IOS APPS

66

 Now lets see what else we can do using runtime manipulation. This time, we will do
some runtime manipulation on the DVIA app (see Figure 4-23).

 Figure 4-23. Runtime manipulation in DVIA

 We will follow the same steps to hook the Cycript interpreter into the DVIA app’s
runtime and start analyzing the app (see Figure 4-24).

 Figure 4-24. DVIA Cycript

 Let’s run class-dump to dump all the Objective-C runtime information (class
declarations and such) that’s stored in the app binary. We learned to install class-dump in
the previous chapter; you can install it on your iOS Device or your Mac.

 This application has three runtime manipulation challenges. Two of them are login
bypass and the third one is to change the URL of the tutorial that loads the blog URL. So
we will change the URL from which the application will fetch the content and render in
the web view.

CHAPTER 4 ■ BLACKBOX TESTING IOS APPS

67

 Let’s analyze the binary by dumping it using class-dump . For this example, we will
be using class-dump on my Mac, as I already have the binary of the DVIA app on my
machine. You can grab it from the IPA or drag it from the device using any SFTP client .
See Figure 4-26 .

 Figure 4-25. Read tutorial normal screen

 If you click on Read Tutorial button , the screen that appears looks like Figure 4-25 .

CHAPTER 4 ■ BLACKBOX TESTING IOS APPS

68

 Now that we have the dump in our terminal, let’s search for the URL variable that we
need to edit to change the URL from which the app loads the tutorial content. It’s shown
in Figure 4-27 .

 Figure 4-26. Class-dump DVIA

 Figure 4-27. Finding UrlToLoad

 While searching for the keyword url in the huge class dump, we found one
instance that seems to be a good place to start. But if you look closely, it seems to be
accurate as the view controller’s class name is RuntimeManipulationDetailsVC and

CHAPTER 4 ■ BLACKBOX TESTING IOS APPS

69

it has two variables that take a value from the text field— usernameTextField and
 passwordTextFieldwhich . We can see them in the Runtime Manipulation view of the
DVIA app. So let’s now open Cycript and change the value of the variable on runtime and
load some other URL instead of the blog.

 To change the value of the NSString type variable urlToLoad , you need to run the
command shown in Figure 4-28 .

 Figure 4-28. Changing the URL string

 Figure 4-29. Changed URL

 Now that we have changed the URL, tapping the Read Tutorial button will load
the HTML page of the www.pentestninja.me web site, as shown in Figure 4-29 . This
completes the URL challenge.

http://www.pentestninja.me/

CHAPTER 4 ■ BLACKBOX TESTING IOS APPS

70

 Similarly, we can also bypass the login view by tinkering with another method
in the same view controller. If you notice in Figure 4-24 in the list of methods of the
 classRuntimeManipulationDetailsVC , there is a method called isLoginValidated that
looks interesting. It returns a Boolean value to possibly decide whether the user is logged
in. Let’s try to change the function definition so that it always return YES (returning true
to pass the function logic) and possibly bypass the login.

 If you currently try to type a username/password combination , the app will show an
alert saying that your guess is incorrect, obviously (see Figure 4-30). Hence, let’s go back
to the Cycript interpreter modify the function.

 Figure 4-30. DVIA login is denied

 Hook up your Cycript interpreter again. We are using the same view controller and
changing the return type of the method isLoginValidated , which is pretty easy and
straightforward (see Figure 4-31).

CHAPTER 4 ■ BLACKBOX TESTING IOS APPS

71

 Figure 4-31. Changing the is LoginValidated method

 That’s it. We have modified the function. This time if we tap on the login button with
any username/password combination , the login bypassed view will be visible and that
should confirm our success (see Figure 4-32).

 Figure 4-32. Login bypass view

CHAPTER 4 ■ BLACKBOX TESTING IOS APPS

72

 Summary
 This chapter was all about using the tools we set up in last chapter, thus making your
Cycript concepts stronger. The two applications used in this chapter to depict the
vulnerability and using Cycript to execute runtime analysis and manipulation on
application behavior.

 In the coming chapter, we discuss iOS penetration testing and reverse engineering
more in depth.

73© Kunal Relan 2016
K. Relan, iOS Penetration Testing, DOI 10.1007/978-1-4842-2355-0_5

 CHAPTER 5

 iOS Security Toolkit

 So far we have been digging deep into iOS application security and have covered the
basic hacks to look for when testing iOS applications. In this chapter, we cover advanced
and low-level iOS app security concepts that will give you an even better understanding
and better skills for iOS app security testing. This chapter discusses disassembly
iOS application binaries, advance runtime manipulation, and static analysis on iOS
applications.

 Advance Reverse Engineering
 In last chapter, we bypassed the login screen with a runtime manipulation using Cycript.
As you might have guessed, the login bypass was temporary and valid only for the
particular instance of the application’s execution, because all the changes are done in the
 memory (RAM) and upon restart they would have all been lost. What if you need a better
solution where your changes become permanent and the application behaves this way
every time it runs (i.e., it bypasses the login forever)? You can bypass the DVIA login so
that it always logs in when you tap the login button.

 To achieve this goal, you have to patch the DVIA app’s binary and, for that, you use
a disassembler that will translate the mach-O binary into assembly language. There
are a couple of good disassemblers and debuggers in the market, including IDA-Pro,
Hopper, etc. IDA Pro is a Windows, Linux, and OS X hosted multi-processor disassembler
and debugger and is one the best available. Hopper is quite new but a really good
disassembler for OS X and Linux and can disassemble iOS, Mac, Linux, and Windows
executables like a charm. Hopper can disassemble any kind of binary, but its main
platform is Objective-C and that’s where it is really good. Therefore we will be using
Hopper for our work.

 Hopper is a commercial tool and costs around $100, but you can try a free evaluation
copy with some limitations (time-limited sessions for half an hour). You can download
the free version of Hopper from https://www.hopperapp.com/ and install it on your
preferred operating system. I used my Mac (running OS X 10.11) for this example. We’ll
also use a bit of Assembly language for this task and we try to explain important terms
and concepts. If you are new to ARM assembly programming (http://www.toves.org/
books/arm/), I suggest you get a small primer on it, as covering it in detail is beyond the
scope of this book.

https://www.hopperapp.com/
http://www.toves.org/books/arm/
http://www.toves.org/books/arm/

CHAPTER 5 ■ IOS SECURITY TOOLKIT

74

 At the time of writing this book, the login screen of the DVIA app looked something
like what’s shown in Figure 5-1 . As you know from the previous chapter, the app throws
an “incorrect username or password” error message when you try to log in with an invalid
username or password.

 Figure 5-1. DVIA login when you enter incorrect username or password

 Now you’ll learn how to bypass this login screen permanently, using a disassembler .
For that we have to fetch the binary from the directory of the installed app, from the
device, and open it in the disassembler.

CHAPTER 5 ■ IOS SECURITY TOOLKIT

75

 Once you open Hopper, choose Read Executable to Disassemble from the File menu
and then find your executable on the disk (see Figure 5-2). It should have the name
 DamnVulnerableIOSApp , as shown in Figure 5-3 .

 Figure 5-2. Reading an executable to disassemble

 Figure 5-3. Finding the executable to disassemble

 After you select your executable, a popup menu opens. Leave all the settings to their
defaults and click on OK to begin disassembling, as shown in Figure 5-4 .

CHAPTER 5 ■ IOS SECURITY TOOLKIT

76

 Within a few seconds, the disassembler should have completed its disassembling
process and you can start working on the disassembled binary. As you know from the
previous chapter the view controller classname (RuntimeManipulationDetailsVC), you
can straight away search for it. You know that the method was loginMethod1Tapped , as
shown in Figure 5-5 .

 Figure 5-5. The RuntimeManipulationDetailsVC page

 Figure 5-4. Selecting defaults for disassembling

 If you click on the loginMethod1Tapped method , you’ll see the jump to memory
address condition jne0x100026cd7 , which redirects the instruction pointer to two
different memory addresses, depending on the truth (blue arrow) or falsity (red arrow) of
the jump condition. This relates to the correctness of the user input. If you check out the
 Control Flow Graph (CFG) by clicking on the CFG button on top-right corner, shown in
Figure 5-6 , you will see a flow chart of the method. Then, after checking out the different
address, the method’s jump to address 0x100026cd7 seems to be the one taking you to
the login success screen. You can verify this by opening the disassembled page again
and verifying that the memory address 0x10026cd7 shows the pushSuccessPage method

CHAPTER 5 ■ IOS SECURITY TOOLKIT

77

name. You can also check out the pseudo-code of the flow by clicking on the pseudo-code
button on top right. This will give you a better overview of the program structure and
explain how you might bypass the login. Figure 5-6 shows the Control Flow Graph button
and Figure 5-7 shows the graph.

 It might now be clear that we need to somehow make this method forcefully jump
to the address 0x100026cd7 , irrespective of the validity of the credentials, every time it is
called. Let’s see how we can manipulate the binary so that our theory works.

 To start with, click on the last statement of the method and then go to Modify ➤
Assemble Instruction so that you can change the last instruction to jump to the address of
the pushSuccessPage method.

 Figure 5-6. Control Flow Graph button tab

 Figure 5-7. The loginMethod1Tapped control flow graph

CHAPTER 5 ■ IOS SECURITY TOOLKIT

78

 Once you choose Assemble Instruction , as shown in Figure 5-8 , a window will pop
up, as shown in Figure 5-9 . From there, you enter the instruction you are modifying.

 To change the instruction to jump to 0x100026cd7 , type the instruction in Assembly
language syntax, i.e., jmp 0x100026cd7 . Then click on the Assemble and Go Next button
(see Figure 5-9).

 You’ve changed the instruction , so it’s time to save a new executable code and see if
it really worked.

 Select File ➤ Produce New Executable and replace the new executable with the one
in your app directory.

 Once you have replaced the executable, you need to kill all the running instances of
the app from the memory and then restart the app.

 When you open your DVIA, go to the Runtime Manipulation module and tap on the
Login Method 1. This time, a success page opens, as shown in Figure 5-10 . It confirms
that you successfully bypassed the user login persistently.

 Figure 5-8. Assemble instruction

 Figure 5-9. Changing instruction

CHAPTER 5 ■ IOS SECURITY TOOLKIT

79

 A Day in the Life of a Debugger
 Debugging is a very important part of software development . Code doesn’t always do
what we expect it to do. In such cases, the debugger is our friend and helps us figure out
the things going wrong and saves time. However, the debugger can also be used as a tool
to understand someone else’s code or even your own code, without documentation or
comments. Apple has very mature debuggers on its platform. LLDB Debugger replaced
GDB in Xcode 5, becoming the primary debugging tool in iOS and OS X development.
LLDB is an advanced debugger and can easily be mapped to work like GDB.

 If you are an iOS or OS X developer , you might already be familiar with both of these
tools. The site http://lldb.llvm.org/lldb-gdb.html has a very good explanation of
GDB to LLDB mapping. LLDB has a command-line interface, but Apple has a relatively
approachable GUI for LLDB. Debugging is a very vast topic and there are tons of books
and other resources available in the market on debugging. However, this section
introduces some of the basic yet important concept of iOS app debugging.

 Figure 5-10. User login bypass

http://lldb.llvm.org/lldb-gdb.html

CHAPTER 5 ■ IOS SECURITY TOOLKIT

80

 Debugging in Xcode
 Xcode has useful tools for debugging and the graphical UI version of those debugging
tools take it to next level by making it very easy to get familiar with it in a relatively short
period. However, you can use them from their command-line interfaces as well. We will
discuss LLDB followed by an introduction to debugging with Xcode.

 LLDB’s GUI interface makes it quite easy to understand and use. Setting a breakpoint
is as easy as clicking next to the method you want to set the breakpoint on (see Figure 5-11).
A breakpoint is a signal that tells the debugger to pause the execution of the program at a
particular point. it allows you to trigger some command or change values of variables at
runtime, and breakpoints can be easily resumed from the same state.

 ■ Note A breakpoint is a point in a program that, when reached, triggers a special
behavior for debugging purposes.

 Figure 5-11. Setting a breakpoint

CHAPTER 5 ■ IOS SECURITY TOOLKIT

81

 The Breakpoints tab is highlighted in Figure 5-12 in the black square for your better
understanding. Once the code hits the breakpoint, the LLDB is triggered and the program
execution is paused. You will see the LLDB shell in your output console when it’s on a
breakpoint, because that is the place where you execute all your debugging commands .
See Figure 5-13 .

 Figure 5-12. The Breakpoints tab

 For example in Figure 5-11 , you can see that setting a breakpoint is as simple as
clicking on the left panel of a statement. You can check out the list of all your breakpoints
in different files in the left panel of the Breakpoints tab, as shown in Figure 5-12 .

CHAPTER 5 ■ IOS SECURITY TOOLKIT

82

 In the panel in Figure 5-13 , we set a breakpoint on the loginMethod1Tapped method
in the RuntimeManipulationDetailsVC.m file. We can also edit the breakpoint or reveal
the breakpoint from this menu, which pops up upon clicking the breakpoint.

 Here are some ways you can set breakpoints from command line

 (lldb) breakpoint set -–name functionOne -–name functionTwo
 (lldb) breakpoint set -–selector someSelector:
 (lldb) breakpoint set --method myOwnMethod
 (lldb) breakpoint set --name "-[myOwnVCmyOwnMethod:]"

 LLDB and GDB both do a shortest unique string match on command names, hence,
short forms of commands also work.

 (lldb) b set --name functionOne

 Figure 5-13. LLDB triggering

CHAPTER 5 ■ IOS SECURITY TOOLKIT

83

 Once you run the application after setting the breakpoint, everything works the
same way. However as soon as execution reaches the method with the breakpoint, you
will see some changes in your console and will get the current address of your execution
(see Figure 5-14). You can also study the upcoming statements of the program from the
current (breakpoint hit) line. If you analyze this you can have a clear understanding of the
program’s behavior. See Figure 5-15 .

 Figure 5-14. Calling a breakpoint

 Figure 5-15. Analyzing program execution using breakpoints

 You can check out all your current breakpoints by typing this command into the
console:

 (lldb) break list

 You’ll get a list similar to the one shown in Figure 5-16 .

CHAPTER 5 ■ IOS SECURITY TOOLKIT

84

 The LLDB command gives you detailed information about your breakpoints. You can
also set more breakpoints from this console using this method. If you want to set many
breakpoints at the same time, you can use a regular expression to match a particular
string and set breakpoints in groups.

 Figure 5-16. Getting breakpoints

CHAPTER 5 ■ IOS SECURITY TOOLKIT

85

 As you can see in Figure 5-17 , with this simple RegEx command, you could set 45
breakpoints in the app that match the string "login" .

 You can disable a breakpoint at any time with this command:

 "(lldb) breakpoint disable"

 So now imagine all the interesting things you can do with breakpoints, such as
 bypassing app flows in runtime, changing values of variables in runtime, modifying
resources, etc., just by halting the program execution at any desired location.

 Debugging using LLDB can be crucial and important at the same time; the way you
use this tool is really important. LLDB debugger’s features and its capabilities is a big
topic in itself and you need to have coding experience or at least understand it to master
the art of debugging. Let’s check out some things you can and will do with LLDB.

 You can also check a variable’s current value using the LLDB debugger, which can
help you analyze and do a lot of work when it comes to penetration testing . Just like we
did in runtime manipulation, we can see the current URL of the blog in the variable called
 urlToLoad . See Figure 5-18 .

 Figure 5-17. Setting breakpoints with RegEx

CHAPTER 5 ■ IOS SECURITY TOOLKIT

86

 LLDB can also help you automate a lot of options when debugging applications, like
filling out forms and submitting them automatically. This can save a lot of time. You can
easily do this using the Add Action button from the Edit breakpoint menu, which allows
you to add expressions that will be evaluated when a particular breakpoint gets hit. See
Figure 5-19 .

 Let’s find out how we can change the value of the variable urlToLoad during runtime
using LLDB.

 Figure 5-18. Reading variables using LLDB

 Figure 5-19. The Add Action button in LLDB

CHAPTER 5 ■ IOS SECURITY TOOLKIT

87

 If you see viewDidLoad , it assigns a value to the variable urlToLoad and thus we will
set a breakpoint at the end of the function, after it has assigned a value to the variable we
want to tinker with. After that, when we click on our breakpoint, it should show a dialog
into which we can add an action.

 Clicking on the Add Action button will add a text field to this popup, where we can
put our command that we want to evaluate. See Figure 5-20 .

 expr self.urlToLoad = @"http://pentestninja.me"

 Figure 5-20. Changing the urlToLoad value

 You need to prepend the keyword expr to tell the debugger that the action is an
expression followed by the actual expression you want to execute. Here, we just change
the value of the variable urlToLoad to a different URL. Similarly, multiple variables can
be assigned values as well, which can be useful to automate form submissions during
the debug phase. You should also choose the Automatically Continue After Evaluating
Actions option, which will continue the execution after evaluating the action expression.

CHAPTER 5 ■ IOS SECURITY TOOLKIT

88

 You are finally able to load your own URL in the application by tweaking the
 urlToLoad variable . See Figure 5-21 .

 As you can see, it was really easy to change the value of urlToLoad at runtime, and
these types of utilities come in handy when you’re doing debugging and checking how an
app actually works.

 We’ll now discuss debugging third-party apps and seeing what things can be done
using LLDB.

 Debugging third-party apps is also quite easy with LLDB; however, we have to set up
the whole environment. This includes setting up debugserver , which is an Apple utility
used by Xcode to debug applications on a device. debugserver is installed automatically
in the device once you start testing an app; however, it can only debug applications that
are signed by the particular provisioning profile that contains the signing identities of
your application, because lack of entitlement to allow task_for_pid() helps you get
the task port of a process. To debug all the applications, you’ll create a new entitlement
profile which will have this flag set to True by default.

 Figure 5-21. Changed urlToLoad variable

CHAPTER 5 ■ IOS SECURITY TOOLKIT

89

 The debugserver is currently stored in a read-only RAM disk in OS X (macOS), so
you need to copy the application to a directory having write privileges and then use that
 debugserver for debugging.

 Let’s now set up debugserver and start debugging third-party apps on our jailbroken
device.

 The first step to this is to mount the Xcode’s developer disk image and copy the
 debugserver to the desktop or to any other location with write privileges. See Figure 5-22 .

 The command for this would be as follows, which we need to run on the Terminal:

 Figure 5-22. Mounting the developer disk image

 $ hdiutil attach /Applications/Xcode.app/Contents/Developer/Platforms/
iPhoneOS.platform/DeviceSupport/[Your iOS Version Here]/DeveloperDiskImage.
dmg

 Once this is done, we need to create a file named entitlements.plist , which will
enable the debugserver to run the unsigned code with following data in it.

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPEplist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/ PropertyList-1.0.dtd">

 <key>com.apple.springboard.debugapplications
 <true/>
 <key>run-unsigned-code
 <true/>
 <key>get-task-allow
 <true/>
 <key>task_for_pid-allow

CHAPTER 5 ■ IOS SECURITY TOOLKIT

90

 <true/>

 You can also download this from https://gist.github.com/kunal-relan/2acdf1f
bb52c3f781e77093238618521 .

 We will then re-sign the debugserver to the newly created entitlements.plist file
so that the debugserver can debug all the third-party apps.

 Figure 5-23. Code signing debugserver

 You’ll find the debugserver binary inside the usr/bin directory and copy it to our
desktop.

 Now you can run the following command to re-sign the debugserver :

 $ codesign -s - --entitlements entitlements.plist -f debugserver

 However, if you are using a 64-bit device you may need to use the entitlements.
plist file available at https://gist.github.com/kunal-relan/0eaa2e1ee37505ea9ad
ac83f044edebb or copy the following code into your entitlements.plist file. It should
then work properly.

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPEplist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/ PropertyList-1.0.dtd">
 <plist version="1.0">
 <dict>
 <key>com.apple.springboard.debugapplications</key>
 <true/>
 <key>run-unsigned-code</key>
 <true/>
 <key>get-task-allow</key>
 <true/>
 <key>task_for_pid-allow</key>
 <true/>

https://gist.github.com/kunal-relan/2acdf1fbb52c3f781e77093238618521
https://gist.github.com/kunal-relan/2acdf1fbb52c3f781e77093238618521
https://gist.github.com/kunal-relan/0eaa2e1ee37505ea9adac83f044edebb
https://gist.github.com/kunal-relan/0eaa2e1ee37505ea9adac83f044edebb

CHAPTER 5 ■ IOS SECURITY TOOLKIT

91

 </dict>
 </plist>

 After completing all the steps, you need to copy this debugserver binary to your
device using SCP. You’ll then be good to go and start debugging third-party iOS apps . Now
we will start the debugserver on our device, as shown in Figure 5-24 , and start debugging
the apps.

 Since the debugserver is now listening on port 5000 , we will connect our OS X
terminal to the device on port 5000. On the terminal, you start lldb by typing lldb and
then connect to the device.

 $ lldb

 This should start the lldb allowing you to further connect to the device.

 Bypassing Jailbreak Detection
 Many App Store apps have started implementing procedures to check the authenticity
of the device on which the app is being installed. Every app developer may not have the
exact same way of detecting jailbreak status. There are quite a few ways to detect the
jailbreak status of a device. Most of the time, app developers do jailbreak detection to
disable functionalities of the application, to be on the safe side, as they are worried about
their customers’ private data. Jailbreak detection has many pathways, but all of them can
be bypassed by one or another trick.

 Apps generally use one or a combination of the following techniques to check the
jailbreak status of a device:

• Directory permissions : This method works by checking the
UNIX file permissions of certain files and directories using
 NSFileManager APIs and/or lower-level C functions like statfs() ,
as jailbroken devices allow full file-system permissions and jailed
devices do not.

 Figure 5-24. Starting debugserver

CHAPTER 5 ■ IOS SECURITY TOOLKIT

92

• Existence of directories : This is one of the most popular and easies
ways to detect jailbreak status. It works by determining if the
app has access to private directories, such as /Applications/
Preferences.app or /usr/bin/syslogd . Successful access to
these directories or files confirms that the device is jailbroken.

• Process forking : App Store apps are not allowed to use fork() ,
 popen() , and so on, or any other similar low-level system calls for
child process creation in a jailed device. However, on a jailbroken
device, these calls are executed successfully. By checking the
returned pid(Process ID) from a fork() call, apps can detect the
jailbroken status of the device.

 ■ Note fork() is a system call that creates processes in UNIX/Linux, whereas popen()
is used to initiate pipe streams to or from a process.

• system() : Calling the system() function on a jailed device returns
 0 but on a jailbroken device it returns 1 , which is a straightforward
jailbreak detection.

• Loopback SSH connection : This one is not really accurate but
works on the assumption that every jailbroken device has
OpenSSH installed on it and tries connecting to the SSH server on
the device’s via its home address (127.0.0.1). Most of the time,
users leave the default SSH password unchanged (for the root
user, it’s alpine). This makes it easier to detect.

• dyld functions : This is the hardest to get around, and it works
by calling functions like _dyld_image_count() and _dyld_get_
image_name() to see which dylibs are loaded.

CHAPTER 5 ■ IOS SECURITY TOOLKIT

93

 If you look closely at Figure 5-25 , you can see the view controller named
 JailbreakDetectionVC . Inside it, there is a method called isJailbroken that has a
Boolean type return value. So it let’s fire up Cycript to try out our attempt at runtime and
later you can make your hack permanent by disassembling and recompiling it.

 Let’s hit the DVIA app again and bypass the jailbreak detection mechanism. First,
let’s class dump the binary. If you don’t have it by now, use the same methods we
discussed in the earlier chapter to get it.

 DVIA uses two methods for jailbreak detection. Let’s start with the first one and
search for the keyword Jailbreak , which will probably give us what we are looking for.
See Figure 5-25 .

 Figure 5-25. DVIA class dump

 Figure 5-26. Hooking DVIA

CHAPTER 5 ■ IOS SECURITY TOOLKIT

94

 Fire up DVIA in the device and hook it using Cycript (see Figure 5-26). Start
inspecting it.

 As you might be guessing, we need to make the isJailbroken method return a
 NO value (false) for our bypass to work and that is it. Currently in the app, if we tap on

 Figure 5-27. Device jailbreak status

 Figure 5-28. Changing isJailbroken

CHAPTER 5 ■ IOS SECURITY TOOLKIT

95

Jailbreak Test 1, it should show the message “Device is Jailbroken” (see Figure 5-27).
However, with our runtime patching it won’t show it anymore.

 In the Cycript shell , you need to change the method’s return value by typing the
following statement (see Figure 5-28):

 Cy# JailbreakDetectionVC.messages["isJailbroken"] = function() {return NO;}

 And that is it. Now, if we tap on the Jailbreak Test 1 button again, we’ll see a different
message (“Device is Not Jailbroken” as shown in Figure 5-29). This means our bypass was
successful.

 So now the second jailbreak detection challenge doesn’t get bypassed the same
way, but you can attempt to solve it with the help of a debugger (LLDB) at runtime. I will
leave that as an exercise for you. If you need help, check out the solution at https://
pentestninja.me .

 Figure 5-29. Jailbreak status bypassed

https://pentestninja.me/
https://pentestninja.me/

CHAPTER 5 ■ IOS SECURITY TOOLKIT

96

 Summary
 This chapter discussed advanced reverse engineering, disassembling applications,
and runtime manipulation. You should try all the examples in this chapter on DVIA.
In Chapter 6 , you’ll learn see how to automate different parts of your iOS application
penetration testing.

http://dx.doi.org/10.1007/978-1-4842-2355-0_6

97© Kunal Relan 2016
K. Relan, iOS Penetration Testing, DOI 10.1007/978-1-4842-2355-0_6

 CHAPTER 6

 Automating App Testing

 So far we have learned about manual penetration testing and reverse engineering of
an iOS app. In this chapter, we will check out various automated testing modules and
toolsets for performing penetration testing on third-party apps. You will learn to use
different open source tools in this chapter.

 Automation has been a popular strategy for testers ever since repetitive tasks became
an overhead issue after a certain point of time and people wanted to utilize resources in
more complex areas that needed human attention. Manual testing is the most reliable
method when it comes to testing an app’s security, but many tools can provide handy
assistance when time is a constraint.

 In this chapter, we will work with IDB, which is a tool with a GUI and was built
using Ruby. It can run many common and repetitive tasks like keychain dumping,
plist extraction, etc., which you’ll perform in every penetration test. This chapter also
covers another tool called iRET (iOS Reverse Engineering Toolkit), which is designed to
automate common tasks associated with iOS penetration testing. It automates tasks like
reading the log and plist files, binary dumping, etc.

 idb: Simplify Penetration Test
 IDB is a tool written using Ruby for iOS. It automates a lot of tasks related to penetration
testing and research, therefore saving a lot of time. IDB is a bit unstable on some devices
as reported by some users; however, it works seamlessly on most the devices. Let’s set up
IDB and see how it can help.

 You can check more about IDB at www.idbtool.com . As it’s written using Ruby, you
will obviously need Ruby installed on your machine and need to install RubyGems, which
is a package manager for Ruby.

 Apart from Ruby and RubyGems, other dependencies that need to be installed are
 qt , cmake , usbmuxd , and libimobiledevice. usbmuxd and libimobiledevice should be
installed on your Mac if you have followed the previous chapters. However, you can install
the rest of these using the Homebrew package manager on OS X. IDB can also be installed
on Linux by following the installing instructions on its web site. We only cover OS X in this
book.

 Once you have all the prerequisites installed on your machine, the IDB tool can be
installed using RubyGems simply by typing gem install idb in your Terminal. After
installation, you can launch IDB by typing idb on your Terminal, as shown in Figure 6-1 .

http://www.idbtool.com/

CHAPTER 6 ■ AUTOMATING APP TESTING

98

 Now you need to set up the SSH connection (IP, username, and password) to your
iOS device so that IDB can connect to your device. For this, just go to Ruby (top-left in the
menu bar) and select Preferences ➤ Device Config . Select Configure IDB to connect to
your iOS device. Once you are done, click on Save and connect IDB to your device.

 Figure 6-1. Launching IDB on OS X

 Figure 6-2. Configuring IDB

 After connecting to your device , you can select the app you want to work on by
clicking on the Select App button (as shown in Figure 6-3) and selecting your desired app
from the list of apps shown in the popup dialog. Since we have already been working on
DVIA, we will stick to the same for this chapter and start working with IDB.

CHAPTER 6 ■ AUTOMATING APP TESTING

99

 And after selecting the app, you can try using different tools in IDB to facilitate the
 penetration test (see Figure 6-4).

 Figure 6-3. Selecting an app to pen-test

 Figure 6-4. DVIA pen- testing

 Once you have selected the DVIA app, notice that the nine tabs in the second row are
activated. We will take a look at each one by one to understand their purpose. We start
with the second one, the Storage tab. Clicking on this tab allows you to view the plist files,
SQLite databases, and the cache database.

 Let’s start by checking out the plist files of this app. By now, you should be familiar
with the plist files and the amount of data you can get from an application, which can
help us in our penetration test.

 So now you can look around for all the sensitive information the application might
be revealing in different forms. Let’s see the different ways we can use IDB to extract the
same information from the application.

CHAPTER 6 ■ AUTOMATING APP TESTING

100

 The next tab is called URL Handlers . It allows us not only to view the list of URL
handlers registered by the selected app, but also to manually invoke them by arbitrary data
to understand their purpose. You can also fuzz test the input validation done on each one of
them. However, you can also fire up other URL handlers that are not specifically registered
by the selected App, such as tel:// or http:// . Once you click on the URL handler called
 dvia from the list of registered URLs and click Open (as shown in Figure 6-5), you will see
that the DVIA app launches on your device.

 Figure 6-5. URL Handlers tab

 The next tab is Binary, but to enable this tab, you have to click the Analyze Binary
button on App Info tab first. Then you can view all the shared libraries, strings, and weak
class dump, as shown in Figure 6-6 .

CHAPTER 6 ■ AUTOMATING APP TESTING

101

 In the next tab, called Filesystem , you can check out the file system related
information of the application and view the files contents in its directories.

 The Tools tab allows you to view the screenshots taken by iOS when an app goes in
the background. You can determine if these screenshots reveal any confidential data and
use it as a way to find to insecure parts of the application. It also has a certificate manager
for managing SSL certificates, which will help you intercept HTTPS traffic like we did
with Charles Proxy. Finally, you can edit the device’s host file, which allows you to map
hostnames to IPs.

 The next tab, called Log , is really interesting and is not scoped to this particular app.
Rather it streams the device syslog, which can reveal a lot of insightful information. This
utility also streams app data, logged using the NSLog API , which sometimes may reveal
highly sensitive data. So you should always look out for it while pen-testing an app. See
Figure 6-7 .

 Figure 6-6. Binary analyzing

CHAPTER 6 ■ AUTOMATING APP TESTING

102

 Next comes the Keychain dump, which is nothing but has the same uses as the
 keychain-dumping tool discussed in the previous chapter. This is the same manager of
that tool integrated into IDB.

 It’s an amazing utility that gathers all keychain information from the device with a
click. As you can see in Figure 6-8 , it dumped the auth token of my Facebook login stored
in my device’s keychain.

 Figure 6-7. iOS syslog

 Figure 6-8. Keychain dumping

CHAPTER 6 ■ AUTOMATING APP TESTING

103

 The last tab in IDB is Pasteboard . This tab reads the data stored on the device’s
pasteboard (also called the clipboard). Sometimes it contains a lot of private information.
All you need to do, to view the Pasteboard contents in real time, is click the Start button.
Whenever something is copied to the device, it can be fetched in real time and stored in
the logs. See Figure 6-9 .

 Figure 6-9. Pasteboard capturing

 So that was all about IDB. Surely this tool will be an important part of your iOS
 penetration-testing arsenal. Its ease of use is a huge benefit to speed up your penetration-
test process. In the next section, we discuss iRET and its utilization.

 iRET: iOS Reverse Engineering Toolkit
 iOS Reverse Engineering Toolkit (iRET) is a toolkit designed to automate a lot of the
common tasks executed while performing a penetration test and during the reverse
engineering of the application. It automates repetitive actions with a click and hence
is useful especially when performing penetration tests as a routine. It is very similar to
IDB but has different tools that help us achieve different tasks. Installing iRET on the iOS
device is also pretty easy; all you need to do is get the Debian package from https://
github.com/S3Jensen/iRET and then install the binary using the same Debian package
installer command ipkg . See Figure 6-10 .

https://github.com/S3Jensen/iRET
https://github.com/S3Jensen/iRET

CHAPTER 6 ■ AUTOMATING APP TESTING

104

 This will install iRET in the root application folder, where all the other system
applications are installed. Once iRET is installed, you need to reboot your device to
complete the installation process and verify that the iRET icon appears on your home
screen. Upon launching iRET, you can start its server and start accessing it on any browser
via the iOS device’s IP on port 5555 .

 However, if for some reason, the iRET server doesn’t boot up by the app, you can
manually start the server. But before that, you need to make sure that Python is installed
on the device. To start the server manually, go to /Applications/iRE.app/ and then
enter python iRE_Server.py to run the server. (See Figure 6-11 .)

 $ cd /Applications/iRE.app
 $ python Ire_Server.py

 Figure 6-11. Manually triggering iRET

 Figure 6-10. Installing iRET

 Now the server will start running on port 5555 , which we can access on the device’s
IP address.

 As you can see in Figure 6-12 , iRET is listening on 192.168.1.5:5555 . Let’s check out
the web interface of iRET and explore all the available features .

CHAPTER 6 ■ AUTOMATING APP TESTING

105

 iRET expects you to have some tools installed on your device. Before proceeding,
ensure you have these tools available or use these links to install them:

• oTool (http://www.unix.com/man-page/osx/1/otool/)

• dumpDecrypted (https://github.com/stefanesser/
dumpdecrypted)

• SQLite

• Theos (http://iphonedevwiki.net/index.php/Theos/Setup)

• Keychain_dumper (https://github.com/ptoomey3/Keychain-
Dumper)

• File

• Plutil (http://ericasadun.com/ftp/EricaUtilities/)

• Class-dump-z (iOS version of class-dump)

 Figure 6-12. The iRET home screen

http://www.unix.com/man-page/osx/1/otool/
https://github.com/stefanesser/dumpdecrypted
https://github.com/stefanesser/dumpdecrypted
http://iphonedevwiki.net/index.php/Theos/Setup)
https://github.com/ptoomey3/Keychain-Dumper
https://github.com/ptoomey3/Keychain-Dumper
http://ericasadun.com/ftp/EricaUtilities/

CHAPTER 6 ■ AUTOMATING APP TESTING

106

 Once you set up all the tools and open the web portal , you should see iRET with all
the green highlights, indicating you are good to go. See Figure 6-13 .

 Figure 6-13. The iRET web panel

 Now that you are ready to use iRET, you need to select the target application and
begin the penetration-testing process of the app. As always, we will again choose our
favorite DVIA app as the target.

 Once you load iRET and select an application, you can start doing the application
analysis using the utilities iRET provides. When you select an app from the home page,
iRET starts analyzing and redirects you to the Binary Analysis Results tab , as shown in
Figure 6-14 .

CHAPTER 6 ■ AUTOMATING APP TESTING

107

 The first tab that opens (Binary Analysis Results) shows up the otool analysis of the
application binary. Whenever you select the application from the home drop-down, otool
analysis of the binary is done in the background. You can see the status of the binary right
on your screen.

 The next tab— Keychain Analysis —is quite important. It gives you access to the
keychain data, which is supposed to a highly secured and confidential area of storage in
iOS. Unfortunately after jailbreaking, all that confidentiality goes out the window with
the Keychain_dumper utility. As you can see in Figure 6-15 , keychain dumper shows the
dumped DB of keychain in a better, more manageable way.

 Figure 6-14. Application analysis results

CHAPTER 6 ■ AUTOMATING APP TESTING

108

 You can check out the whole keychain DB according to what you want to work on
and want to check out, rather than getting the dump on your Terminal and trying to find
the meaningful data from there. This makes it a really good utility for playing with the
keychain data. The best part about this is that it separates the keychain data according to
the type so you can view keys, entitlements, passwords, and identities separately.

 Next in the row is Database Analysis tab . It’s a pretty simple but useful tool that
fetches the .db files from the Application data directory and makes them accessible over
the portal in a very easy-to-browse manner. It uses the application’s data directory and
dumps all the .db files that show up here in the Database Analysis tab. You can then check
out all the data inside those files. Many times as we have already seen, we get a lot of
sensitive information that can be used for further exploitation.

 This tool lays out the tables in the DB in a very proper manner and specifically
dumps all the tables in the DB, as you can see in Figure 6-16 .

 Figure 6-15. The keychain dumper

CHAPTER 6 ■ AUTOMATING APP TESTING

109

 The next tab is Log Viewer and it has two functions compiled into a single tab; i.e.,
it has a syslog file viewer and an application log file viewer. If you see the top of it, you
can toggle the link to see the first 100 lines of your system logs, which shows a lot of
confidential information. Then it has another section that fetches the .txt and other text
files in the application folder that might also turn out to be log files. See Figure 6-17 .

 Figure 6-17. The log viewer

 Figure 6-16. Database analysis

CHAPTER 6 ■ AUTOMATING APP TESTING

110

 In our case it just contains the readme and license text files , but in many cases I
have seen there is a lot of confidential data in these files, such as API keys. So if you are a
developer, you should take care to avoid such bad coding practices, as we have already
discussed all the places where you should take extra precautions in storing your app-
related confidential information. The client end is the worst place to store confidential
data and every piece of information stored there should be extra secure.

 So you saw all the content of README.txt here; similarly in the next tab, you can view
the plist files and their contents stored in the application folder.

 After checking out these two penetration-testing tools , let’s jump to a different part of
iOS application security—tweak development. In this section, you learn what tweaks are
and learn how to create some simple tweaks.

 Tweaking the Development
 Tweaks are extensions of the existing applications that provide more utility on the top of
the application. A tweak can be developed for a particular application only on jailbroken
devices. They can be developed in many different ways, but we will try developing one
using Theos. We already installed Theos while installing iRET. Theos is a widely used
tool for tweak development and is, essentially, a suite of development tools that allows
development and deploying of iOS apps, tweaks etc., without having to use Xcode . Theos
comes as a self-contained package and can be installed on the desktop or on the iOS
device. In this example, we will install it on our device and then code the tweak on our
desktop.

 You can learn more about Theos at http://iphonedevwiki.net/index.php/Theos .
They have a tutorial for installing Theos on multiple platforms in case you are interested
in installing it on your Linux or Windows machine . Once you have set up and installed
Theos and its dependencies, which are Perl and iOS toolchain, you can set up the SDK for
development. You can get a list of available SDKs at https://sdks.website/ and find the
specific SDK in your development environment. As per the scope of this book, we will be
installing it on our iOS device. See Figure 6-18 .

 Figure 6-19. Installing SDK 9.3

 Figure 6-18. Setting up the SDK

 You then get your specific SDK in that folder using curl. If you have yet not installed
curl, go to Cydia and install curl on the device. For now, we will install SDK 9.3 on the iOS
device, as shown in Figure 6-19 .

http://iphonedevwiki.net/index.php/Theos
https://sdks.website/

CHAPTER 6 ■ AUTOMATING APP TESTING

111

 Once you have installed the SDK, you can proceed with further configuring to start
with tweak development.

 You can set up your environment variables for Theos using this bash command.

 $ export THEOS = /opt/theos
 If you are running a 64-bit device, and you should run the given commands
for supporting these 64-bit devices.
 n -s $THEOS/makefiles/platform/Darwin-arm.mk $THEOS/makefiles/platform/
Darwin-arm64.mk
 ln -s $THEOS/makefiles/targets/Darwin-arm $THEOS/makefiles/targets/
Darwin-arm64

 And once you have set up Theos, you may need to dump the device’s private headers
or get someone else’s device headers from the Internet to make things running better.
Dumping your own headers might be time-consuming or a little chaotic, and you can
also use the headers at https://github.com/theos/headers . Copy these headers to your
 $THEOS/include . Now let’s start getting our hands dirty with tweak development.

 Once Theos is installed properly, you can enter this command in your Terminal:

 echo $THEOS

 You should see the installation path of Theos on your terminal. Now let’s start
building our first tweak.

 Once you have logged in to your device via SSH, you should create a folder in your
home directory for keeping all your tweaks. For example, I created a folder named tweaks
in my home directory.

 Figure 6-20. Initiating a tweak

 To initiate a new tweak, you enter the following bash command to open up the New
Instance Creator:

 $THEOS/bin/nic.pl

 nic stands for New Instance Creator, which has some prefixed templates. You can
also introduce some of your own templates according to your own preferences.

https://github.com/theos/headers

CHAPTER 6 ■ AUTOMATING APP TESTING

112

 So before starting tweak development, you need to make sure you have a good
grasp over Objective-C and C programming languages , as it involves a lot of coding in
these two programming languages. In this chapter, we are writing simple hooks using
minimal Objective-C code. Once you fire the NIC, you should see a screen with five
options, which are just five basic templates bundled by default. Select option five for
now, which will create a template tweak for you, followed by asking basic information
that you need to fill in.

 Once you create the tweak, you should see a folder in the tweaks directory you just
created. You’ll see a couple of files and folders in the directory, as shown in Figure 6-21 .

 Figure 6-21. Tweak files

 For now we will only work with Tweak.xm and the makefile. For the initial tweak
we will make a tweak that hooks up the Springboard and creates a popup dialog upon
launch. The objective of this tweak may be simple, but it will help you learn the basics of
creating a tweak. So open Tweak.xm first. Since you are developing it in your device itself,
you can use a text editor such as nano or use an app like Cyberduck, which connects via
 SFTB and lets you edit your files on your Mac’s text editor. We will be using Xcode’s editor
with Cyberduck to write the code.

 Once you connect to Cyberduck and open your tweak folder, you can instantly start
editing the Tweak.xm file by selecting and clicking on edit. See Figure 6-22 .

 Figure 6-22. Editing the Tweak.xm file

CHAPTER 6 ■ AUTOMATING APP TESTING

113

 When you open Tweak.xm , everything will be commented out with
some instructions. For the basics, we will be just hooking up Springboard’s
 applicationDidFinishLaunching method. A hook is declared using the %hook keyword
and the block end is denoted using the %end keyword, as shown in Figure 6-22 .

 You need to make sure you follow the proper syntax or your Springboard will crash
and might not launch. If your Springboard doesn’t launch after the tweak, you can
always take a SSH into your device and delete the tweak from the directory /Library/
MobileSubstrate/DynamicLibraries .

 Let’s hook up the method and execute some of the code in it. You need the
 Springboard header file , which we discussed earlier in the chapter, and you need to make
sure you have your headers in your %THEOS/include folder. Otherwise this tweak won’t
compile.

 This tweak is pretty simple. As shown in Figure 6-23 , you are simply importing the
header SpringBoard.h and hooking up the applicationDidFinishLaunching function .
We call the UIAlertView method to create a popup dialog on the screen.

 Figure 6-23. The Tweak.xm file

 So that is it for the Tweak.xm file . Now we need to modify the makefile a bit to finally
compile our first tweak.

 We just need to add the necessary frameworks. In this case, as we are using
UIAlertView, we need to add the UIKit framework. If you are running the tweak on a
64-bit device, you should add the first line ARCHS = amrv7 arm64 , which defines the
supported architectures, as shown in Figure 6-24 .

 ■ Note UIAlertView triggers a popup to display a message to the users.

CHAPTER 6 ■ AUTOMATING APP TESTING

114

 So that is it for the code part . Now let’s compile our tweak and run it. Compiling it is
pretty straightforward; all you need to do is go to the particular directory in your Terminal
and type make package install . After that, your device should do a soft reboot because
of the last line in the makefile. See Figure 6-25 .

 Figure 6-24. The makefile

 Figure 6-25. Compiling the tweak

 And now upon reboot, you should be welcomed by a UIAlertView that’s generated
from our tweak, as shown in Figure 6-26 .

CHAPTER 6 ■ AUTOMATING APP TESTING

115

 As you can see in Figure 6-26 , the tweak triggered a UIAlertView displaying the
message we specified. Writing a tweak isn’t too difficult in this case, as the goal was
very simple. However, writing some serious tweaks that have a lot of functionalities will
require more development effort.

 Figure 6-26. UIAlertView

CHAPTER 6 ■ AUTOMATING APP TESTING

116

 The makefile of this tweak is going to be almost same, but we don’t need to add
any framework in this tweak. The Tweak.xm file is also very simple, as you can see in
Figure 6-28 .

 Figure 6-27. The DVIA tweak

 Let’s learn how we can write a tweak for a specific application. Since we have
used DVIA for all our testing, we will be again writing a tweak for it. We will take up
the same runtime manipulation that requires us to bypass the login challenge. In
the previous chapters, you learned how to bypass the login, so you know what you
need to do. Essentially, you need to change the isLoginValidated method in the
 RuntimeManipulationDetailsVC view controller to return YES (true). The technique
will be the same here, but we need to make sure that we add the bundle of DVIA only
in the makefile, while creating the tweak so that we only hook the DVIA app. We will
then write a hook as a tweak and change the value of the isLoginValidated method of
 RuntimeManipulationDetailsVC to return YES . That will create the tweak.

CHAPTER 6 ■ AUTOMATING APP TESTING

117

 That’s it. Now we can compile this tweak the same way we did in the previous
example. If you have opted for killing the Springboard, the device will under go a soft
reboot and when you open up your DVIA and tap the login panel , the login screen will be
bypassed, as expected from our tweak.

 So this completes a very high-level introduction to iOS tweak development. For
more examples or to get further inspiration or ideas about tweaks, you may explore some
of the tweaks for real-world apps and the iOS operating system itself at repositories like
“Bigboss Repo” on Cydia.

 Figure 6-28. The login bypass

CHAPTER 6 ■ AUTOMATING APP TESTING

118

 Summary
 This descriptive chapter took you through various utilities provided by iRET and IDB,
which are equally good and important tools for iOS penetration testing. It’s a good idea
to go through all the utilities provided for a better understanding. Tweak development is
a very broad topic and we only cover a part of it here. You’ll likely have more creative and
useful ideas for tweak development when you start developing different iOS tweaks.

 In the next chapter, we talk about the defense mechanism, which can be used in iOS
application development, including the best security practices.

119© Kunal Relan 2016
K. Relan, iOS Penetration Testing, DOI 10.1007/978-1-4842-2355-0_7

 CHAPTER 7

 iOS App Security Practices

 So far it has been a journey of testing, configuring, decompiling, and debugging the iOS
apps. You have worked on different methodologies and techniques for penetrating into
an iOS application. In this last chapter, we talk about securing iOS apps according to the
best practices and industry standards. We all know that perfect security is an illusion;
however, there is a lot we can do with our app to make sure we make it hard for someone
to attack or play around with it. This chapter talks about best practices for storing data,
communicating with the server, deploying apps on the App Store, and other methods to
make sure we give our best to secure the application. We will be thinking like a security
conscious app developer and a penetration tester at the same time to ensure we develop
the application from both point of views.

 As a developer, we need to make sure the app is functional and production ready. On
the other hand, it is to be developed with a penetration tester’s perspective, making sure
attacks cannot be easily carried out on the app and that the user data is secured and safe.

 We discussing different aspects of the application architecture, including the basic
small issues a lot of developer skip in their applications. Often, a lot of developers use
plists or NSUserDefaults for storing confidential data, which is not a good idea. Because
of this, a lot of the apps end up leaking confidential user data very easily.

 ■ Tip Keep an app handy for practice and apply the methods and tools discussed in this
chapter for a better understanding.

 Storage in iOS
 iOS as an OS provides a lot of options to store user data suiting different needs. However,
we as developers need to ensure we use the best available resource depending on our
particular need with data safety in mind. Client-side data storage is not very safe, as it
can always be tampered with. Sensitive data should be stored in cases only when it is
really needed and no other option is available. You also need to ensure it is encrypted
and stored in a safe place. So for an iOS application, you should ensure the following four
points are taken care of:

• Data in transit is protected

• Authenticity of people accessing the data is confirmed

CHAPTER 7 ■ IOS APP SECURITY PRACTICES

120

• User personal identifiable information is kept safe

• Untrusted files and data are kept with care

 Data Storage Security
 User data is the most crucial part of the application so you need to make sure that the
user data is stored in a secured storage. iOS has a couple of options for storing user data
using NSUserDefault , plists, CoreData framework, and keychain. We have already studied
the security of these options to store user data. A very common mistake that a lot of
developers do is store credentials in NSUserDefault and plist files, as it is not encrypted.
However if you really want to store confidential data in CoreData, you can use this library
 https://github.com/project-imas/encrypted-core-data , which is based on the
famous SQLCipher extension for encryption of SQLite databases. You can check out the
Git repo of SQLCipher at https://github.com/sqlcipher/sqlcipher , which provides a
guide on configuring SQLCipher for your application.

 ■ Note SQLCipher is an SQLite extension that provides 256-bit AES encryption of
database files.

 For sensitive data, keychain is an encrypted service that can reliably store use data.
It looks like a reliable solution for keeping user data safely. You can consider saving your
private encrypted data in keychain, as shown in Table 7-1 . Moreover, you should be very
clear with file data protection classes in iOS and use them wisely.

 Table 7-1. Keychain Data Protection Comparison

 Availability File Data Protection Keychain Data Protection

 When Unlocked NSFileProtectionComplete kSecAttrAccessibleWhen
Unlocked

 When Locked NSFileProtectionComplete
UnlessOpen

 N/A

 After First Unlock NSFileProtectionCompleteUntil
FirstUserAuthentication

 kSecAttrAccessibleAfter
FirstUnlock

 Always NSFileProtectionNone kSecAttrAccessibleAlways

 Passcode enabled N/A kSecAttrcAccessibleWhen
PasscodeSetThisDeviceOnly

https://github.com/project-imas/encrypted-core-data
https://github.com/sqlcipher/sqlcipher

CHAPTER 7 ■ IOS APP SECURITY PRACTICES

121

 If you want to learn more about iOS data protection and understand file data
protection, you can check out more insights about it at https://www.apple.com/
business/docs/iOS_Security_Guide.pdf . You can also use obfuscation and encryption
for one more layer of security of the data. For that, you can use https://github.com/
RNCryptor/RNCryptor , which provides an AES-256 encryption wrapper for iOS.

 ■ Note Obfuscation is an intended act of making a communication or a part of data
confusing, thereby making it harder for people to understand. Encryption is a way of
encoding data in such a way that it is accessible only to the authorized people using a key
or a secret password.

 You can download RNCryptor for Swift and Objective-C depending on the platform
you are developing your iOS application with. Figure 7-1 shows an example of its
implementation in Swift; you can easily get the documentation for Objective-C. You
should always consider using it for storing usernames and passwords in local storage
rather than storing them in plaintext. The public GitHub repository of RNCryptor has
very good documentation for using the library. You should consider going through all of it
before using it. It can be easily installed using CocoaPods in your project.

 ■ Note CocoaPods is the dependency manager for Swift and Objective-C Cocoa projects
and has around 23,000 libraries.

 Figure 7-1. RNCryptor implementation in Swift

https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://github.com/RNCryptor/RNCryptor
https://github.com/RNCryptor/RNCryptor

CHAPTER 7 ■ IOS APP SECURITY PRACTICES

122

 Apart from the data storage security, here are few other best practices for secure
coding that developers should always follow while developing an app:

• Always use text fields with secure options that obfuscate the
text once it’s typed, thereby allowing the users to safely type
confidential data like passwords, PINs, and so on.

• Store user authentication tokens in keychain, which encrypts the
data before storing it, thereby ensuring the authentication token
is safe and only accessible to the application whenever needed.

• UIWebViews should be avoided, as they introduce web-based
vulnerabilities like XSS, HTML injection, etc. in your application.

• The application’s Pasteboard should be cleared once the
application goes in background mode, ensuring it’s only
accessible within the application.

• Enable PIEs (position-independent executables), as they are a
body of code that can be loaded and run from anywhere in virtual
memory and thus do no need to be loaded at a fixed address.
This makes it harder for someone to write an exploit code for the
application.

• Disable NSLog in release mode, thereby ensuring that the
application doesn’t fill up space with log messages and doesn’t
reveal any confidential data in the logs.

• Use NSURLScheme to send non-confidential data, because private
data that’s being used to facilitate NSURLScheme might lead to a
vulnerability.

 Transport Layer Security
 The transport layer is one of the most crucial components of data security and the most
attacked layer, as it deals with exchanging the app’s data between the client and the
server. Man-in-the-middle attacks are a common attack vector, and they allow attackers
to sneak into client-server communication and modify the data on transit for fun and
profit. However, most of the time, people ensure the communication from client to server
is encrypted but attackers still manage a way to subvert that encrypted communication by
installing their own root certificates. In this section, we first discuss Apple’s App Transport
Security and then talk about certificate pinning.

 App Transport Security was introduced in iOS 9 and assumingly in watchOS 2.0,
which by default, doesn’t allow unencrypted and weakly encrypted communication
traffic into the device and thereby enforces an extra layer of security in the iOS apps.
Although it can be explicitly turned off, it has some really good checks to only allow fully
encrypted data to be exchanged between the app and its server. App Transport Security
actively encourages use of best practices while communicating from the app to the server,
the most basic one being using HTTPS instead of HTTP. Apart from that, here are the
other standard checks in ATS:

CHAPTER 7 ■ IOS APP SECURITY PRACTICES

123

• Server must at least support Transport Layer Security (TLS) 1.2
(see https://www.ietf.org/rfc/rfc5246.txt)

• Certificates must be signed with SHA256 or better with at least
2048 bits for RSA or 256 bits for Elliptic curve keys (see https://
www.ssl.com/guide/ssl-best-practices-a-quick-and-dirty-
guide/)

 Connection ciphers must provide forward secrecy (see https://en.wikipedia.org/
wiki/Forward_secrecy).

 ■ Note Forward secrecy is a property of secure communications that ensures that
compromise of long-term keys doesn’t affect past session keys and protects past sessions
against future compromise of keys or passwords.

 So you must ensure you follow these guidelines before purchasing your SSL
certificate. You can also use https://letsencrypt.org for getting SSL certificates for
your server, which is a free service and has been backed up by giants like Mozilla, Cisco,
Google, etc. Installing SSL certificate with the given guidelines is just one part of the
problem. Attackers can bypass by installing their own root certificates from tools like Burp
and Charles Proxy and can still view the traffic. To counter this, there is technique called
 SSL certificate pinning , which we will discuss next.

 Certificate Pinning
 Certificate pinning is a technique of client0server secured communication. It works by
trusting only known entities and rejects communication with non-trusted entities. In this
method, the public key fingerprint of the app’s server is hard-coded into the client (in our
case, the app) and the app will reject negotiation with the server if there’s a mismatch.
Certificate pinning is an amazing technique to keep out a lot of malicious attackers
and script kiddies as it makes MITM almost impossible to execute without jailbreaking
the device. It is a simple method of adding another layer of security on the top of SSL.
However, it should be implemented properly by ensuring proper SSL configuration
or you may end up locking up yourself from communicating with the server. In iOS,
AFNetworking library supports certificate pinning and it is quite easy to integrate the
protection in existing apps (see https://infinum.co/the-capsized-eight/articles/
how-to-make-your-ios-apps-more-secure-with-ssl-pinning).

 SSL pinning (see Figure 7-2) is a method for making sure that the client checks the
authenticity of the server against known copies of certificates. SSL pinning is an ideal
solution for ensuring reliable client-server communication on mobile apps, as they
communicate with a limited number of servers, making it feasible to incorporate it in
that environment. Popular apps like Twitter, Snapchat, and Google Chrome have started
implementing this technique in their applications.

https://www.ietf.org/rfc/rfc5246.txt
https://www.ssl.com/guide/ssl-best-practices-a-quick-and-dirty-guide/
https://www.ssl.com/guide/ssl-best-practices-a-quick-and-dirty-guide/
https://www.ssl.com/guide/ssl-best-practices-a-quick-and-dirty-guide/
https://en.wikipedia.org/wiki/Forward_secrecy
https://en.wikipedia.org/wiki/Forward_secrecy
https://letsencrypt.org/
https://infinum.co/the-capsized-eight/articles/how-to-make-your-ios-apps-more-secure-with-ssl-pinning
https://infinum.co/the-capsized-eight/articles/how-to-make-your-ios-apps-more-secure-with-ssl-pinning

CHAPTER 7 ■ IOS APP SECURITY PRACTICES

124

 SSL pinning can be bypassed on jailbroken devices using tools like iOS SSL Kill
Switch (see https://github.com/iSECPartners/ios-ssl-kill-switch). It is an
application for jailbroken devices that helps bypass this certificate validation check on
runtime, but it is still suggested as it makes intruding harder for attackers and is a good
check against script kiddies.

 Now let’s see a simple implementation of SSL pinning on an iOS application.
 All you need to do is bundle the app with a known list of certificates and make sure

that every network request goes through the validation process and is dropped if the
certificate validation fails. Here is the method used for implementing SSL pinning inside
the NSURLConnectionDelegate protocol.

 connection:willSendRequestForAuthenticationChallenge:

 The Objective-C code shown in Figure 7-3 is an example of performing SSL pinning.

 Figure 7-2. SSL Pinning

https://github.com/iSECPartners/ios-ssl-kill-switch

CHAPTER 7 ■ IOS APP SECURITY PRACTICES

125

 Implementing SSL pinning is not really difficult; however, it can be easily bypassed
in jailbroken devices, thus you should make sure that you send useful data only with
all these layers of security from client to the server. A common practice of developers is
to implement SSL pinning and jailbreak detection in a combination and terminate the
application when the jailbroken device is detected. However, there are many ways of
bypassing jailbreak detection, as you saw in earlier chapters. A good combination of few
 jailbreak detection mechanisms and SSL pinning will make a good defense strategy for
less motivated attackers. Always remember that it is good to make the attack process as
difficult as possible, because the harder it gets, the more people lose motivation to attack
your application.

 Anti-Debugging Protections
 This technique is used by a lot of developers to prevent attackers from attaching
debuggers to the app on runtime, which is used to analyze and modify the app behavior.
We will discuss the most used method of preventing attackers from the attaching
debugger.

 ptrace with PT_DENY_ATTACH

 ptrace is a system call used to observe and control the execution of another process
via breakpoint debugging and system call tracing. It is called as follows:

 int ptrace(int request,pid_t pid, caddr_t addr,int data);

 In this call, the first argument (request) specifies the action that needs to be
performed. One of the operations is called PT_DENY_ATTACH with the value of 31 informing
the operating system that it doesn’t want to get traced or debugged. However, in case of
any trace/debug attempt, the operating system denies this, making the debugger unable
to attach to the particular process.

 Figure 7-3. Implementing SSL Pinning

CHAPTER 7 ■ IOS APP SECURITY PRACTICES

126

 The code shown in Figure 7-4 will prevent GDB from attaching to the application
process.

 Figure 7-4. Anti-debugger implementation

 An attacker might still be able to get around this. Getting away with this is quite easy
for an attacker by easily modifying the arguments in ptrace itself, but again it is a good
way of adding layers of security to your application.

 You should also follow the Apple Security guide available publicly at https://
developer.apple.com/library/ios/documentation/Security/Conceptual/
SecureCodingGuide/Introduction.html as a reference while developing your native
iOS applications. Make sure that your backend web services are designed with security in
mind. Follow the OWASP guide on web service security https://www.owasp.org/index.
php/Web_Service_Security_Cheat_Sheet , which will give you insight into developing
secure and robust web services for communication from your client to the server.

 Secure Development Guidelines
 This section contains a consolidated checklist of security best practices. These are the
things you need to make sure of before rolling out your app to the public. Make sure all
these guidelines are taken care of so that the app has a standard security setup. This will
make it harder for people to attack it.

 Untrusted Data
 “Never trust user data” is a wise saying in the field of information security. Doing so this
will leave you vulnerable to exploitation of entry points. User data should, ideally, be
input-filtered and output-escaped, depending on the context. Applications accept input
from the users in many ways and at many places, so they should always make sure not to
implicitly trust the input from the users and always filter it for special characters.

https://developer.apple.com/library/ios/documentation/Security/Conceptual/SecureCodingGuide/Introduction.html
https://developer.apple.com/library/ios/documentation/Security/Conceptual/SecureCodingGuide/Introduction.html
https://developer.apple.com/library/ios/documentation/Security/Conceptual/SecureCodingGuide/Introduction.html
https://www.owasp.org/index.php/Web_Service_Security_Cheat_Sheet
https://www.owasp.org/index.php/Web_Service_Security_Cheat_Sheet

CHAPTER 7 ■ IOS APP SECURITY PRACTICES

127

 Otherwise, your applications are prone to client-side cross-site scripting and
SQLInjections, which can be really dangerous for your application while using UIWebViews.
Input sanitization strips out potentially harmful characters from the user input using blacklist
methods, which include stripping out the data on the basis of a predefined list, and whitelist
methods, which include only accepting a particular format of data.

 Session Management
 User session management is another important security-oriented component in any
application and you need to be very diligent about managing user session securely. User
sessions (in the form OAuth tokens, etc.) should be encrypted and stored in keychain. It
should be renewed often so that in the event of breach, the effect is not long lasting. Session
keys or auth tokens generation should be based on a combination of different relevant
entities. A single UDID (Unique Device Identifier) found in every device or something
similar should not be linked to a particular user, as this can always be faked by an attacker.

 ■ Note The user session is a mechanism used in client-server communication to keep
track of a particular user’s activity and uniquely identify a particular user.

 Data Storage
 As already discussed, user data should be encrypted and stored in appropriate places and
private data should be stored in the keychain. Always remember that client data should
never be stored on the device except when there is no alternative.

 Geolocation Handling
 You should always be very careful about using geolocation data and should use the least
degree of accuracy while fetching user-location data. Also make sure you gracefully
handle the locationServicesEnabled and authorizationStatus method responses,
making sure user geolocation data is kept safely. You should never store user logs locally
and anonymize user data logging to your server; otherwise, privacy concerns might be
raised by the app users.

 Escape Classic C Attacks
 Always check for classic C vulnerabilities arising due to using common vulnerable
C functions resulting from buffer overflows. Remember to format the strings in your
application. Make sure you specify the exact format of the string. For example:

 Char *someVar;
 someVar = "%x%x%x%x%x%x"
 printf(someVar);

CHAPTER 7 ■ IOS APP SECURITY PRACTICES

128

 This is one of the most common vulnerabilities, where a variable is directly passed
to printf() without specifying a format string. However, in real world, the input string
might come from user input and would be carefully crafted code that could exploit a
buffer overflow vulnerability. A better version of the previous code is:

 Char *someVar;
 someVar = "%x%x%x%x%x%x"
 printf("%s",someVar);

 This version will literally print %x%x%x%x%x%x , treating it as a string rather than as a
special character.

 Transport Layer
 Your application and server should always communicate securely over HTTPS and you
should also perform a manual check on the SSL. This guide can be really helpful when
doing this: http://www.exploresecurity.com/wp-content/uploads/custom/SSL_
manual_cheatsheet.html .

 Static analyzers are tools or plugins that either integrate with the IDE or run stand-
alone to analyze the source code and find vulnerabilities in the application’s code. You
can use the native static code analyzer in Xcode by selecting Product ➤ Analyze, as
shown in Figure 7-5 .

 Figure 7-5. Validating code using static code analyzer

 The static code analyzer will parse your projects’ source code and identify issues
like memory management flaws, unused variables, API usage flaws, dereferencing null
pointers, and so on.

http://www.exploresecurity.com/wp-content/uploads/custom/SSL_manual_cheatsheet.html
http://www.exploresecurity.com/wp-content/uploads/custom/SSL_manual_cheatsheet.html

CHAPTER 7 ■ IOS APP SECURITY PRACTICES

129

 Closing Thoughts
 We have finally come to the end of this journey of getting into iOS reverse engineering
and penetration testing. This industry is continuously evolving with new attack vectors
as well as new open source and commercial mobile app security tools and techniques.
To make the most of this book, you should follow the tutorials provided in the book
as well as explore the issues more. However, there are few things you need to work on
quite a bit—reverse engineering is one of them. iOS assembly needs a lot of background
work as well, so make sure you spend a lot of time on your disassembler getting the
most of it. iOS development and testing is a very huge domain, so you should get very
clear with Objective-C and the base of C to understand the low-level APIs used in many
applications, which tend to have security vulnerabilities.

 Make sure you follow these guidelines before sending your application in testing
mode. The application should also go through blackbox penetration test before you
release it to the public.

 This book serves as an introductory base into iOS penetration testing and reverse
engineering. Upon completion of this book, you should do some deeper dives into these
tools and platforms and practice as much as possible to get comfortable. You should also
ask a lot of questions at the appropriate forums to get clearer insights into iOS penetration
testing and reverse engineering. You should also follow the OWASP guide on secure
development and SDLC specific to iOS development. Apple also has a secure coding
guide that you can look at. Read this guide and make sure you follow them at
 https://www.apple.com/business/docs/iOS_Security_Guide.pdf .

https://www.apple.com/business/docs/iOS_Security_Guide.pdf

131

 A
 Address Space Layout Randomization

(ASLR) , 3
 Anti-debugging protections , 125–126
 Application delegate protocol , 63
 ApplicationDidFinishLaunching

function , 113
 App transport security , 6
 Authentication , 45
 Authorization , 45
 Automating app testing

 manual penetration , 97
 repetitive tasks , 97

 B
 Binary Analysis Results tab , 106
 Binary analyzing , 101
 Binary button , 100
 Blackbox testing

 defi nition , 47
 intercepting network traffi c ,

(see Network interception)
 iOS applications , 47
 runtime analysis

 application icon , 65
 aprogramming experience , 61
 class-dump , 67
 classRuntimeManipulation

DetailsVC , 70
 controller’s class , 68
 Cycript , 62
 Cycript interpreter , 70
 Cycript’s capabilities , 65
 DVIA app , 66
 DVIA login , 70
 gswizzling library , 62

 JavaScript syntax , 63
 login bypass , 66
 LoginValidated method , 71
 NSString type , 69
 objective-C code , 64
 Read Tutorial button , 67
 SFTP client , 67
 status bar , 64
 URL string , 69
 URL variable , 68
 username/password combination ,

70–71
 Blocking installed apps detection , 6
 Boot procedure , 4–5
 Brute force technique , 6
 Buff er overfl ows , 40–41

 C
 Certifi cate pinning , 123
 Client-side injection , 44
 Cocoa framework , 22
 CocoaPods , 22, 121
 Cocoa Touch , 1
 Code signing method , 2
 Control Flow Graph (CFG) , 76
 Core OS layer , 7
 Cyberduck , 112
 Cycript installation , 37–38

 D, E
 Damn Vulnerable iOS application

(DVIA) , 54–55
 Data Execution Prevention

(DEP) , 3
 Data storage security , 120–122

 Index

© Kunal Relan 2016
K. Relan, iOS Penetration Testing, DOI 10.1007/978-1-4842-2355-0

■ INDEX

132

 Debugging
 iOS/OS X developer , 79
 software development , 79

 Directory permissions , 91
 Dumping iOS Keychain , 59–61
 DVIA pen-testing , 99
 Dynamic linker (DYLD) , 3

 F, G
 Filesystem , 101
 Filesystem Hierarchy Standard

(HFS) , 8, 11
 fork() , 92
 Forward secrecy , 123

 H
 Hopper , 73

 I
 iBoot , 4
 IDB , 97–98

 DVIA , 99
 Homebrew package manager , 97
 keychain information , 102
 Log , 101
 NSLog API , 101
 OS X , 98
 Pasteboard , 103
 penetration-testing , 99, 103
 pen-test , 99
 select App button , 98
 tool , 97
 tools tab , 101
 URL Handlers tab , 100

 Insecure data storage , 43, 55–57
 Insecure transport layer , 43
 Installing class-dump , 35–36
 Integrated Development Environment

(IDE) , 20
 Invalidated input , 41–42
 iOS

 application , 11
 ASLR , 3
 boot procedure , 4–5
 code signing , 2
 DEP , 3
 introduction , 1–2
 platform layers , 7

 Sandbox , 3
 security features , 6–7
 security history , 2
 updates , 5

 iOS app development
 objective-C , 13
 research , 13

 iOS app vulnerabilities
 penetration testing , 31
 security , 31

 iOS Reverse Engineering
Toolkit (iRET) , 97

 application analysis , 107
 database analysis , 109
 Database Analysis tab , 108
 Debian package installer , 103
 installation , 104
 keychain analysis , 107
 keychain dumper , 108
 links , 105
 log viewer , 109
 penetration-testing tools , 110
 penetration tests , 103
 Python , 104
 target application , 106
 text fi les , 110
 triggering , 104
 utilities , 106
 web interface , 104
 web portal , 106

 iOS security toolkit
 reverse engineering

 address 0x100026cd7 , 77
 Assemble Instruction , 78
 Control Flow Graph button , 77
 disassembler , 74
 disassembling , 76
 DVIA app , 73–74
 DVIA login , 74
 fi le menu , 75
 Hopper , 73
 instruction , 78
 loginMethod1Tapped control fl ow

graph , 77
 memory (RAM) , 73
 multi-processor disassembler , 73
 popup menu , 75
 runtime manipulation , 78
 user login bypass , 79

 iOS storage , 119
 iOS vulnerabilities , 40

■ INDEX

133

 J
 Jailbreak detection

 Cycript shell , 95
 DVIA app , 93
 functionalities , 91
 Hooking DVIA , 93
 JailbreakDetectionVC , 93
 LLDB , 95
 runtime patching , 95
 status , 91–92
 Test 1 button , 95

 Jailbreak detection mechanisms , 125
 Jailbreaking iOS , 32–34

 K
 Keychain data protection comparison , 120
 Keychain_dumper installation , 38–39
 Keychain-dumping tool , 102

 L
 Libimobiledevice library , 36–37
 loginMethod1Tapped method , 76
 Log tab , 101
 Log Viewer , 109
 Loopback SSH connection , 92
 Lower level bootloader (LLB) , 4

 M
 Mac Address Randomization

improved , 6
 Model-View-Controller (MVC) , 29

 architecture , 22

 N
 Network interception

 battery percentage , 52
 certifi cates , 50
 Charles Proxy , 47
 confi guring HTTP proxy , 50
 data , 53
 HTTP proxy , 49
 iOS device , 47, 49
 SSL certifi cate , 51
 Uber rider app , 52
 vulnerabilities , 47

 NSUserDefaults , 57–58

 O
 Objective-C

 class methods , 17
 creation , 15
 data types , 15
 instance methods , 16
 iOS and OS X development , 13
 runtime , 13
 terminology , 14–15

 open source UNIX operating system , 7

 P, Q
 Pasteboard capturing , 103
 Platform layers , 7
 Position Independent Executable (PIE) , 3
 Privilege escalation , 43
 Proxy , 38
 python iRE_Server.py , 104

 R
 RNCryptor implementation in Swift , 121
 RuntimeManipulationDetailsVC , 76

 S
 Sandbox , 3
 Seatbelt , 4
 Secure development guidelines

 classic C vulnerabilities , 127–128
 data storage , 127
 geolocation handling , 127
 transport layer , 128
 untrusted data , 126
 user session management , 127

 Six-digit passcode , 7
 SSHing , 34–35
 SSL certifi cate pinning , 123
 SSL pinning , 123–124
 Structures in C , 20
 Swift

 classes and methods , 26
 compatibility , 18
 conditional statements , 23
 default screen , 23
 drag and drop toolbar , 28
 functions , 25
 Hackintosh , 17
 Info.plist fi le , 28

■ INDEX

134

 iOS development , 17
 iterative statements , 24
 loops , 24
 methods , 19
 OS X and iOS , 17
 run button , 28
 runtime , 18
 simulator , 28
 source programming language , 17
 stored properties , 18
 storyboard designing , 28
 type-safe language , 18
 Xcode , 23, 27

 system() , 92
 System hierarchy

 applications , 9
 bin directory , 10
 boot directory , 11
 developer directory , 10
 etc directory , 11
 iOS fi le system , 8
 lib folder , 10
 library , 9
 mnt directory , 11
 private directory , 11
 sbin directory , 10
 system directory , 10
 tmp directory , 10
 user directory , 11
 usr directory , 11
 var directory , 11

 T
 Tools tab , 101
 Transport layer security

 certifi cate pinning , 123
 SSL pinning , 124

 Tweaks
 bash command , 111
 code part , 114
 C programming languages , 112
 DVIA tweak , 116
 existing applications , 110
 high-level introduction , 118
 installation path , 111
 installing SDK 9.3 , 110
 Linux/Windows machine , 110

 login bypass , 117
 login panel , 117
 makefi le , 114
 Objective-C , 112
 RuntimeManipulation

DetailsVC , 116
 SDK , 110
 SFTB , 112
 Springboard header fi le , 113
 time-consuming , 111
 Tweak.xm fi le , 112–113
 UIAlertView , 114
 Xcode , 110

 U, V, W
 UIAlertView , 113, 115
 UIApplication sharedApplication , 63
 UNIX operating system , 1
 URI schemes , 6
 URL Handlers , 100
 User validation

 client-side validation , 54
 DVIA , 54–55
 mobile apps , 53
 possibilities are limitless , 53

 X, Y, Z
 Xcode

 getting started , 21–22
 programming languages , 20
 Swift 2.2 , 20

 Xcode debugging
 action button , 86
 add action button , 86
 automate form submissions , 87
 Breakpoints tab , 81
 bypassing app , 85
 code signing , 90
 commands , 81, 89
 debugger’s features , 85
 entitlements.plist fi le , 89–90
 graphical UI , 80
 LLDB and GDB , 82
 LLDB command , 84
 LLDB’s GUI interface , 80
 loginMethod1Tapped method , 82
 OS X terminal , 91

Swift (cont.)

■ INDEX

135

 penetration testing , 85
 program execution , 81, 83
 read-only RAM disk , 89
 RegEx , 85
 third-party iOS apps , 91

 urlToLoad variable , 88
 urlToLoad value , 87
 usr/bin directory , 90
 variables , 86
 viewDidLoad , 87

	Contents at a Glance
	Contents
	About the Author

	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to iOS
	 iOS Introduction
	 Security History
	 Code Signing
	 Data Execution Prevention (DEP)
	 Address Space Layout Randomization (ASLR)
	 Sandbox
	 iOS Boot Procedure
	 Updates
	 What’s New?
	 System Insight

	 iOS System Hierarchy
	 Applications
	 Library
	 Bin Folder
	 Dev Directory
	 Lib Folder
	 Sbin Directory
	 Tmp Directory
	 Developer Directory
	 System Directory
	 Boot Directory
	 Etc Directory
	 mnt Directory
	 usr Directory
	 var Directory
	 User Directory
	 Private Directory

	 iOS Application Overview
	 Summary

	Chapter 2: iOS App Development Basics
	 Introduction to Objective-C and Swift
	 Objective-C Runtime
	 Basic Terminology in Objective-C
	 Object Creation
	 Data Types

	 Methods
	 Instance Methods
	 Class Methods

	 Introduction to Swift
	 Swift Runtime
	 Compatibility with Objective-C
	 Stored Properties
	 Classes and Methods
	 Structures

	 Introduction to Xcode
	 Getting Started with Xcode

	 Cocoa Framework
	 CocoaPods
	 Hello World with Swift
	 iOS Application Architecture
	 Summary

	Chapter 3: iOS App Vulnerabilities and Jailbreaking
	 Introduction to Security and Vulnerabilities in iOS
	 What Is Jailbreaking?
	 Jailbreaking iOS
	 SSHing in iOS

	 Installing the Tools
	 Installing class-dump
	 Installing the libimobiledevice Library
	 Installing Cycript
	 Setting Up a Proxy
	 Installing Keychain Dumper

	 Common iOS Vulnerabilities
	 Buffer Overflows
	 Invalidated Input
	 Privilege Escalation
	 Insecure Data Storage
	 Insecure Transport Layer
	 Client-Side Injection
	 Weakness in Authentication and Authorization

	 Summary

	Chapter 4: Blackbox Testing iOS Apps
	 Intercepting Network Traffic
	 Defeating User Validation
	 Damn Vulnerable iOS App: DVIA
	 Insecure Data Storage
	 NSUserDefaults Private Data
	 Dumping iOS Keychain

	 Performing Runtime Analysis
	 Summary

	Chapter 5: iOS Security Toolkit
	 Advance Reverse Engineering
	 A Day in the Life of a Debugger
	 Debugging in Xcode

	 Bypassing Jailbreak Detection
	 Summary

	Chapter 6: Automating App Testing
	 idb: Simplify Penetration Test
	 iRET: iOS Reverse Engineering Toolkit
	 Tweaking the Development
	 Summary

	Chapter 7: iOS App Security Practices
	 Storage in iOS
	 Data Storage Security
	 Transport Layer Security
	 Certificate Pinning

	 Anti-Debugging Protections
	 Secure Development Guidelines
	 Untrusted Data
	 Session Management
	 Data Storage
	 Geolocation Handling
	 Escape Classic C Attacks
	 Transport Layer

	 Closing Thoughts

	Index

