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Abstract 

 

The causes of high versus low, or absent, immune cell infiltration in breast cancer remain 

unknown.  The goals of this analysis were to examine if total mutation load, neoantigen load, copy 

number variations (CNV), gene-level or pathway level somatic mutations or germline 

polymorphisms (SNP) are associated with the level of immune infiltration measured by immune 

metagene expression levels. We used RNA-Seq, DNA copy number, mutation and germline SNP 

data from the TCGA representing n=627 ER+, n=207 HER2+ and n=191 TNBC cancers. 13 

published immune metagenes were used in correlation and multivariate linear regression analyses 

performed separately for the 3 major clinical subtypes. P-values were adjusted for multiple 

comparisons and permutation testing was used to assess false discovery rates. Overall mutation, 
neoantigen and amplification, or deletion loads did not correlate strongly with any of the immune 

metagenes in any subtype (Spearman coefficient 0.2). In ER+ cancers, mutations in MAP2K4 and 

TP53 were associated with lower and higher levels of immune infiltration, respectively. In TNBC, 
mutations in MYH9 and HERC2 were associated with lower immune infiltration. None were 

found in HER2+ cancers. Three SNPs (rs425757, rs410232, rs470797) in the exonic regions of 

the FHPR1 and MLP genes were associated with low immune infiltration in ER+ cancers, none in 

the other subtypes. Two amplicons in TNBC and 3 amplicons in HER2+ cancers were associated 

with lower immune infiltration. We also identified alterations in several biological pathways that 

were associated with immune infiltration in different breast cancer subtypes. At the individual 

patient level, each pathway was affected at different genes through distinct genomic mechanisms. 
Our results suggest that immune infiltration in breast cancer is not driven by a single global metric 

of genomic aberrations such as mutation, neoantigen or CNV loads, but by multiple different gene 

and pathway level associations that each affect small subsets of patients within each subtype. 
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Introduction 
 

The development of effective new immunotherapies against cancer has rekindled interest 

in the tumor immune microenvironment. Antibodies directed against CTLA4, PD-1 and PD-L1 

immune checkpoint molecules which are expressed on the surface of tumor cells and immune cells 

have induced durable responses in several different cancer types including metastatic melanoma, 

lung, renal, head and neck, bladder and breast cancers. [1-5]. However, objective tumor response 

and durable clinical benefit is only observed in 10-35% of patients and therefore, there is intense 

interest in identifying molecular predictors of response to these novel immune-targeted drugs. 

Despite the highly targeted nature of these therapeutic antibodies, surprisingly, all studies have 

shown objective responses in cancers that have very little or no detectable expression of the targets.  

The presence of tumor infiltrating lymphocytes (TIL) in the breast cancer 

microenvironment has long been recognized as a favorable prognostic marker [6]. More recently 

it has also become clear that the prognostic value of immune infiltration depends on breast cancer 

subtype. In triple negative breast cancer (TNBC), characterized by the lack of human epidermal 

growth factor receptor 2 (HER2), estrogen receptor (ER), and progesterone receptor (PR) 

expression, high levels of immune infiltration either measured as tumor infiltrating lymphocyte 

(TIL) count or through the expression of immune cell related genes, predicts for markedly 

improved survival, even in patients not receiving systemic adjuvant therapy [7] [8]. In TNBC, 

high levels of immune infiltration are also associated with higher pathologic complete response 
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rates (i.e. complete eradication of invasive cancer from the breast and lymph nodes) after 

preoperative (neoadjuvant) chemotherapy [9, 10].  However, only 5-15% of TNBCs represent 

lymphocyte predominant cancers (defined as lymphocytes constituting >50% of stromal cells), 

another 15-20% contain no lymphocytes at all, and the rest contain low to moderate immune 

lymphocytic infiltration. In HER2 positive breast cancer, high TIL count and immune gene 

expression are also associated with better prognosis, both in the presence and absence of adjuvant 

chemotherapy with or without trastuzmab [11, 12]. Among ER positive breast cancers with high 

proliferation rates, immune infiltration also predicts for better prognosis compared to immune cell 

poor cancers. In contrast, in ER-positive cancers with low proliferation and generally better 

prognosis, immune cell presence appears to have no clinically meaningful prognostic value [13]. 

Only two Phase I clinical trials reported results using immune checkpoint inhibitors (anti-PD1 

pembroluzimab and anti-PD-L1 MPDL3280A, respectively) in metastatic TNBC. Objective 

tumor responses were seen in about 20% of cases in both studies but no biomarker results were 

presented and therefore the relationship between tumor immune infiltration and response to 

immune checkpoint inhibitor therapy is unknown. An emerging hypothesis, yet to be proven, 

suggests that immunotherapies may work best in cancers with intermediate to high levels of 

immune infiltration [14] 

An important feature of the tumor immune microenvironment is the diversity of immune 

cells present. T-lymphocytes are the most abundant cell type in breast cancer tissues (70-80% of 

total immune cells), followed by B-cells (10-20%), macrophages (5-10%), natural killer and 
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dendritic cells (~5%). Each of these main cell types consist of multiple functionally distinct 

subtypes (e.g. CD8+ effector T-cells, CD4+ T helper cells, CD4+ regulatory T cells, memory T-

cells, etc..) and the functional activity of these cells changes dynamically in response to various 

stimuli in the tumor microenvironment. This anatomical feature of the immune milieu explains the 

highly correlated nature of immune gene expression signatures. For example, the expression of 

immunoglobulin genes is highly correlated with the expression of T-cell genes, the expression of 

genes involved in T-cell activation are co-expressed with interferon and NK-cell derived genes, 

etc. These immune gene signatures represent convenient mRNA expression based surrogates for 

histological assessment of immune infiltration.  

The observation that some breast cancers contain a large number of lymphocytes and have 

better prognosis and others contain few, or none at all, is not well understood. It is well established 

in the  immunology literature [15] that cytotoxic T cells can recognize single amino acid changes 

in antigens [16, 17]. In melanoma and lung cancer, it has been suggested that immunogenicity of 

a tumor, and the extent of lymphocytic infiltration, may be driven by total number of somatic 

mutations (i.e. mutation load) or the number of new antigen epitopes due to somatic mutations in 

the cancer (i.e. neoantigen load) [18]. Computational tools were developed to assign antigenicity 

to non-synonymous mutations in protein coding genes, and these can be used to calculate the 

number of putative neoantigens in a given cancer [19]. However, the association between these 

genome wide mutational metrics and immune infiltration of the tumor may be cancer type specific. 
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One previous study that examined many different types of cancers showed no correlation between 

overall mutation load and immune infiltration measured by immune gene expression.  This study 

also revealed only a weak association between neoantigen load and immune infiltration in breast 

cancer. Other types of genetic aberrations may also influence the immunogenicity of breast cancer. 

For instance, copy number alterations are thought to account for the vast majority of the variation 

in gene expression observed in cancers [20]. Indeed, other investigators have demonstrated that 

certain copy number alterations are associated with immunogenicity of hepatocellular carcinoma 

[21], lung squamous cell carcinoma [22], and colorectal cancer [23]  

One of the most comprehensive undertakings to date involved analysis of 18 tumor types 

with an expression-based metagene representing cytolytic activity (“CTL”), by cleverly 

implementing the geometric mean of the genes encoding perforin (PRF1) and granzyme A 

(GZMA), direct cytotoxic agents employed by CD8+ T cells [15]. In addition to the neoantigen 

calculations stated above, the authors utilized a regression-based approach to identify several 

potential somatic mutations and sites of copy number alterations significantly associated with 

cytolytic activity metagene expression in breast cancer. However, the method of encountering 

breast cancer-specific drivers of immune response by the precedent of pan-cancer significance 

may miss specific genomic events which are specific to breast cancer.  
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Statement of Purpose 
The goal of this study was to systematically examine if DNA level genomic alterations are 

associated with immune cell infiltration measured by immune metagene expression in the three 

distinct clinically relevant breast cancer subtypes. We tested the hypotheses that either (i) total 

mutation load, (ii) neoantigen load, (iii) copy number variations (CNV), (iv) gene-level or (v) 

biological pathway level somatic mutations, or (vi) germline polymorphisms (SNP) are associated 

with the levels of immune gene expression. These analyses were performed separately for TNBC, 

HER2 positive and ER positive breast cancers. While the total mutation and neoantigen loads have 

previously been correlated with immune cell activity in all breast cancers combined, 

comprehensive analysis of gene-level mutations, biological pathway level alterations and DNA 

copy number changes in breast cancer subtypes have not yet been reported. Additionally, we 

extend our analysis to examine whether somatic mutation, germline SNP, and copy number 

variation in specific genomic locations and pathways are associated with immune response.  

   

Methods 

Data 
We obtained gene-level RNA-Seq expression data and corresponding clinical information 

from The Cancer Genome Atlas (TCGA) obtained through the public access web portal (tcga-

data.nci.nih.gov/tcga/dataAccessMatrix.htm ). All cancer specimens included in our analysis 

were collected before any systemic therapy. RNA-Seq reads were mapped to exonic splice 
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junctions using MapSlice [24], and quantitation based on read mappings was performed by RNA-

Seq by Expectation Maximization (RSEM) as previously reported [25]. The output was formatted 

as the estimated fraction of transcripts using the transcripts per kilobase million (TPM) values as 

the measures of gene expression, which were log2 normalized for further analysis. 

We obtained individual gene-level variant data (MAF file) (n=817) from a recent 

publication by Ciriello et al . The data set represents high confidence somatic single nucleotide 

variants (SNVs), insertions and deletions (indels) from the TCGA after the following processing 

steps: (i) inclusion of variants previously filtered out with dbSNP-based filter at the time of first 

release of the TCGA data, (ii) point mutations called by integration of RNA-Seq data and DNA 

sequencing results [26], (iii) indels called by an improved assembly-based realignment tool [27, 

28], (iv) calls with fewer than 8 reads in tumor or normal were removed, (v) calls with high normal 

variant allele fraction (VAF), (vi) calls with minimal reads supporting the variant (< 2 DNA and 

RNA reads combined), and (vi) calls with low combined DNA and RNA VAF (and therefore, low 

precision ([29], [30],[31]]) were also removed. In our downstream analysis we only considered 

somatic mutations which affected genes expressed in the given cancer (greater than > 1 TPM) and 

were classified as non-silent.  

We obtained GISTIC2  [32] “Level 4” copy number calls for each patient from the TCGA 

public access portal. Data preprocessing was previously published by the TCGA Breast Cancer 

Workgroup [33].  Briefly, copy number value was estimated by fitting each sample to discrete 
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copy number classes by Gaussian mixture modeling, and a SNP locus is iteratively informed by 

an expectation-maximization algorithm Circular Binary Segmentation is subsequently performed 

to assign these locus values into biologically relevant contiguous segments; the TCGA data uses a 

Circular Binary Segmentation algorithm to recursively identify segments with probe distribution 

different from neighbors [34].  We assigned DNA segments to copy number alteration categories 

based on GISTIC threshold scores. We considered GISTIC scores -2 and +2 (i.e. log2-transformed 

either less than -1 or greater than 1, respectively) as evidence for define deletion or amplification, 

respectively. Values of -1 and +1 were considered as possible deletions or amplifications (log2-

transformed less than -0.3 or greater than 0.3, corresponding to noise-level) and values of 0 as low 

likelihood of copy number event. 

We also obtained germline single nucleotide polymorphisms (SNP) data for the same 

cohort through the TCGA (dbGaP) authorized access portal.  The TCGA cohort included 

18,585,361 germline variants.  We filtered out variants in duplicated genes reported in the 

Duplicated Genes Database (DGD) [35] and also rare variants with frequency <2%, which resulted 

in 5,853,796 SNPs for further analysis. Next we calculated allelic imbalance and variants that 

deviated from the Hardy-Weinberg Equilibrium were removed. The remaining 1,646,930 SNPs 

were classified as moderate (i.e. inframe indels or missense variants in coding genes or regulatory 

region ablation) or high functional impact (predicted transcript ablations, splice variant, stop-gain 

mutations, frameshift mutations, stop/start-loss). SNPs that were not predicted to be moderate or 
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high functional impact were not included in further downstream analysis, resulting in 8,861 

studied SNPs.  

 

Breast Cancer Clinical Subtype Assignment 
Three clinically relevant breast cancer subtypes were defined as (i) ER positive and HER2 

negative (ii) HER2 positive (with any ER) and (iii) ER and HER2 negative (broadly corresponding 

to triple negative cancers). This method of classification was chosen over PAM50 molecular 

subtypes because of its ready clinical applicability and to maintain consistency during analysis of 

gene expression signatures with previous studies [13]. RNAseq data of 1066 breast cancers were 

downloaded from the TCGA. Of these cases, 892 had routine pathology HER2 results available 

(160 positive, 545 negative, 11 indeterminate, 176 equivocal, 174 not evaluated). Histological ER 

status, determined by immunohistochemistry, was available for 1003 samples. To maximize 

sample size, we assigned HER2 and ER status to cases with missing or equivocal clinical 

information using HER2 and ER mRNA levels [Gong]. Receiver operating characteristic curves 

were constructed with the aid of the ‘pROC’ package in R [36] for varying thresholds of ERBB2 

and ESR1 gene expression, using the histological result as measure of true receptor status. For 

ERBB2 mRNA expression, the 95% confidence interval of optimal cutpoints was calculated from 

10,000 bootstrap replicates [37], and when ERBB2 expression was < 7.86 TPM the case was 

considered negative, when it was > 8.52 it was considered positive.  Samples between 7.86 and 

8.53 were considered indeterminate, and were excluded from further analysis (n = 51). At the end 
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197 samples were defined as HER2 positive and 818 samples as HER2 negative. The ESR1 mRNA 

expression showed a strong bimodal distribution, allowing calculation of a single optimal 

threshold of the ROC curve. This was calculated using the Youden’s J statistic (which identifies 

the maximum of the distance from the identity line) that yielded 4.35 TPM as the threshold to 

define ER positive versus negative cases based on mRNA expression. This resulted in 243 ER 

negative cases and 823 ER positive cases. The final sample size for this study is N=627 ER 

positive/HER2 negative cases, N=207 HER2 positive cases (including 47 ER- and 105 ER+ 

cancers) and N=191 ER and HER2 negative cases (largely corresponding to triple negative breast 

cancer).  

 

Assignment of Immune Groups 
 

For each sample, 13 previously reported immune gene expression metagenes were 

calculated[13, 15, 38] .The metagene values are the arithmetic mean of log2-transformed 

expression values of the genes in each metagene (Table 1). The genes included in each metagene 

represent genes which are highly co-expressed and correspond to various immune cell subtypes 

and immune functions. The prognostic and chemotherapy response predictive values of T-cell 

related immune signatures have been explored [13, 15, 38]. We, as well as multiple other 

investigators, have noted the very highly correlated co-expression of most immune metagenes. 

For correlation with DNA-level genomic variables, we used the expression level of the “most 
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representative immune metagene” as the measure of the extent of immune infiltration.  The most 

representative metagene was defined as the metagene that showed the highest average correlation 

with each of the other metagenes based on a correlation matrix, aided by the ‘corr’ function from 

the R package ‘Hmisc’ [39]. Using this continuous variable, we also created three categories of 

cancers including (i) immune-poor, (ii) immune-intermediate and (iii) immune-rich corresponding 

to the tertiles of the metagene expression distribution. 

 

Association between overall mutation load, neoantigen load, DNA copy number alterations and 

immune infiltration 

Overall mutation load was defined using the number of somatic mutations in a sample Nsomatic , 

and the length of Refseq exonic region with adequate read coverage, Lcov>=16 

Mutation Load = ML = 
��������

�������
 x 10� 

Neoantigen load information was taken from a previously published paper by Rooney et al that 

has calculated neoantigen load for each of the samples and is publically available (need reference). 

This data was generated using a neoantigen prediction pipeline [Rajasag], specific for each 

individual’s HLA type (as predicted by the POLYSOLVER pipeline [Shukla]. 

 Overall DNA deletion load was defined as the number of definitely deleted genes (GISTIC 

threshold value of -2), and amplification load was defined as the number of definitely amplified 

genes (GISTIC threshold value of 2) per sample [Mermel]. Correlation coefficients of mutation 
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load, neoantigen load, amplification and deletion loads were calculated for each immune metagene 

as continuous variables. We also performed a linear regression analysis of each immune metagene 

on each global DNA alteration metrics. Significance was tested by an ANOVA Chi-squared test 

on each respective variable.  

To identify patterns of variation in the dataset of somatic mutation and copy number reads, 

we performed a principal component analysis within ER+/HER2-, HER2+, and ER-/HER2- breast 

cancers. The principal component analysis was conducted on the highest and lowest most 

representative immune metagene tertiles, using the built-in “prcomp” function in R and median, 

maximum absolute difference (MAD) scaled values.  

 

Gene-level Mutational Analysis  
To assess correlation between immune metagene expression and somatic mutations in 

individual genes, we performed gene-specific linear regression, with mutation load and 

histological diagnosis as patient-level covariates. Multiple hypothesis correction was performed 

using an empirical false-discovery rate cutoff of 10%.  

 

Gene-Level Copy Number Analysis  
We performed linear regression of log-normalized immune metagene expression level with 

GISTIC threshold score as the independent variable. This analysis was performed separately for 

amplified and deleted regions. The amplification-centric analysis excluded regions with negative 
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GISTIC scores and deletion-centric analysis excluded regions with positive scores. In the former, 

the overall amplification load was included as a covariate, and for the deletion-centric analysis, 

overall deletion load was used as covariate. We included histological diagnosis (i.e. invasive 

lobular versus ductal histology) as a covariate in both types of analyses.  

 The extensive auto-correlation of associations, due to the tendency of copy number 

alterations to affect many genes, precluded standard multiple-hypothesis correction for individual 

gene level analysis. We estimated significance through permutation testing. We first identified 

continuous segments of genes with nominal p values < 0.01, we refer to these as gene peaks, and 

describe each gene peak by minimum p-value of genes included in the peak as the significance 

score. To obtain the null distribution of gene peak significance scores, the most representative 

metagene value was permuted 500 times. Peak scores were generated for each permutation and 

the quantile of each true peak within this peak score null distribution was assigned as the adjusted 

p-value. These adjusted p-values were adjusted based on an empirical false-discovery rate.   

 

Germline SNP Analysis  
 Association between SNPs and log-normalized immune metagene expression levels were 

examined using linear regression analysis including histological diagnosis as a covariate. 

Significance was tested with the likelihood-ratio test between the “null” model including 

histological diagnosis alone and the “alternative” model of the SNP status variable, with 
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histological diagnosis as the covariate. False discovery rate was calculated by the Benjamini-

Hochberg method.  

 

Combined effect of genomic alterations on immune metagene expression levels 
 To examine the relative contribution of the different genomic alterations as explanatory 

variables for immune infiltration, we constructed a multivariable regression model of the most 

representative immune metagene (LCK metagene) expression and deletion, amplification, and 

somatic mutation status as the independent variables. Histological diagnosis was included as a 

categorical covariate. This regression was performed for each gene and covariates included 

expression, copy number alteration, and somatic mutation data. Null distributions of each 

regression coefficient were computed by permuting the LCK metagene and refitting the regression 

model over 5000 random iterations. The observed coefficient was compared with the 

corresponding null distribution and was considered significant if it was > 95% percentile of the 

null distribution.  For each breast cancer subtype, a Venn diagram was constructed to describe the 

number of genes with putatively significant associations of expression, deletion, amplification, 

and mutation with immune activity.  

 

Pathway-Level Analysis  

Since the functional output of a biological pathway, defined as a set of expressed genes 

that collectively contribute to a given function, may be altered by genomic changes in any of its 

member genes, and the genomic changes may include somatic mutations, gene amplification or 
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deletion, we also examined the association between immune metagene expression and pathway 

level alterations.   We have assembled 714 canonical biological pathways from the NCI Pathway 

Interaction and BioCarta Pathway databases that correspond to most known biological functions 

[Pusztai NeoALTTO citation]. For each pathway, we defined an “aberration ratio score” 

calculated as the number of genes affected by mutation or copy number change (i.e. GISTIC score 

of 2 or -2), divided by the total number of genes in the pathway. We examined the association 

between immune metagene levels and pathway aberration score using linear regression including 

the histological diagnosis as covariate. The same gene is often included in multiple different 

pathways and therefore pathway-specific p-values cannot be adjusted for multiple comparisons 

assuming from independent observations. To calculate significance, we constructed random gene 

sets with the same number of genes as a given pathway, and tested the observed aberrations in 

these random sets with immune metagene expression in 1000 iterations. The coefficients were 

compiled into a null distribution for each pathway and the observed coefficient was compared with 

this null distribution. A coefficient was considered significant if it was > 95% percentile of the 

null distribution.   
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Results 
 

Immune metagene expression distribution and co-expression correlations  
 The expression distribution of each of the 13 immune metagenes in the 3 breast cancer 

subtypes is shown on Figures 1A-C[38]. Metagenes describing IF1, macrophage, MHC1, MHC2, 

STAT1, T follicular cells, T cell inhibitory and stimulatory activity, as well as lymphocyte-

specific kinase (LCK), cytolytic activity (CTL), and consensus T-cell metagene (CTM/Giam) had 

unimodal normal distributions. Metagenes describing natural killer (NK) cells, and regulatory T-

cells (T-regs) showed bimodal distributions.  Most immune metagenes showed high levels of co-

expression in all 3 breast cancer subtypes except the Treg signature which had low correlation with 

all others (Figures 2A-C), despite no overlap in member genes.  The LCK metagene showed the 

highest degree of auto-correlation with other metagenes in all subtypes. This metagene was also 

shown to strongly correlate with the presence of T-lymphocytes on histologic evaluation in breast 

cancer samples [38]. For these reasons, we selected the LCK metagene as the most representative 

immune metagene and as our measure of immune infiltration. We used the highest expression 

tertile of the LCK metagene within each subtype to define immune-rich and the lowest tertile to 

define immune-poor cancers. For metagenes initially derived using microarray analysis, 
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correlation between RNA-Seq and Affymetrix H133A expression was demonstrated to be high, 

for each member gene in an available TCGA lung carcinoma dataset (data not shown).  

  

Correlation between immune metagene expression levels and overall mutation and neoantigen 
loads and DNA copy number variations 

 Next, we examined correlation between the expression levels of each of the 13 immune 

metagenes and four different measures of global genomic aberrations including (i) overall 

mutation load, (ii) neoantigen load, (iii) DNA segment amplification load and (iv) DNA segment 

deletion load. We used the Spearman rank correlation because it is less sensitive than the Pearson 

correlation to strong outliers.  Figures 3A-C show the results for each of the 3 breast cancer 

subtypes. We only detected very weak correlations between any of the immune metagenes and the 

4 global genomic aberrations metrics.  The highest Spearman correlation was 0.21, between the 

STAT metagene and mutation load in ER+/HER2- samples. ANOVA Chi-Square significance 

testing revealed no significant linear regression coefficients between the metagenes and the 4 

different types of global genomic aberration metrics. We also performed principal component 

analysis (Figures 4A-I), which also failed to reveal any separation by global genomic measures 

between cases assigned to high vs low LCK metagene tertiles. For HER2+ cancers, the first 

principal component was responsible for explaining 40% of the variation in the data, and aligned 

most closely with overall deletion and mutation loads. For the ER-/HER2- cancers, 48% of the 

variation was explained by overall amplifications and deletion loads. For ER+/HER2- cancers, 
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41% of the variation was attributed to overall amplifications and deletion loads. Overall these 

results indicate that immune infiltration in breast cancer is not driven by a single global metric of 

genomic aberrations such as mutation or neoantigen load or copy number variation. Even when 

considered together, these anomalies account for a minority of the variation in immune metagene 

expression across cases within clinically important subtypes.  

 

Association between single gene-level somatic mutations, germline SNPs and LCK metagene 

expression  

Somatic mutations were detected for 379 ER+/HER2- , 119 HER2+, 107 ER-/HER2- cases 

including a total number of 14,440 mutated genes; it should be noted that these totals represent 

available somatic data from Ciriello et al; mutation analysis was performed for fewer samples than 

the RNASeq expression data directly available from TCGA.   

After filtering somatic mutations for > 3% frequency in each patient cohort, we had 188 

and 104 mutated genes in the ER+/HER2- and HER2+ cohorts, respectively and 37 mutated genes 

in the ER-/HER2- cohort. Among the ER+/HER2- cancers mutations in 6 genes had nominally 

significant (p<0.05) association with the LCK metagene expression but only 2 genes, MAP2K4 

and TP53 remained significant after correction for multiple hypothesis testing. Mutations in 

MAP2K4 were associated with lower levels of immune infiltration and mutations in TP53 with 

higher levels (Figure 5A). Among the ER-/HER2- cancers, mutations in 7 genes had nominally 

significant association with immune metagene expression and 2, MYH9 and HERC2 remained 
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significant after correction for multiple hypothesis testing (Figure 5B). Mutations in both genes 

were associated with lower levels of immune infiltration in these cancers. Among HER2+ cancers, 

mutations 11 genes had nominal association with immune metagenes but none remained 

significant after multiple hypothesis correction (Figure 5C). 

 Germline SNP data were available for 239 ER+/HER2-, 80 HER2+, 68 ER-/HER2- cases. 

It should be noted that these totals represent available germline data accessed from the original 

breast cancer TCGA cohort, which includes fewer samples than the expression data processed by 

RNASeq or the somatic mutation calls. In the ER+/HER2- and HER2+ cohorts, 446 and 460 SNPs 

had nominally significant p-values but none remained significant after correction for multiple 

hypotheses testing. Linear regression yielded 361 nominally significant associations in the ER-

HER2- cohort, with only 3 SNPs (rs425757, rs410232, rs470797) meeting a false discovery rate 

threshold of 10%. These 3 SNPs are located in the coding regions of FHPR1 (rs425757 and 

rs410232) and MLP genes (rs470797), and all 3 were associated with low LCK metagene 

expression (Figure 6).  

 

Association between DNA copy number deletions and amplifications and LCK metagene 
expression  

 In ER-/HER2- cancers, the deletion-centric analysis resulted in 96 peaks with nominally 

significant p-values and 4 remained significant after comparison to null gene peak distribution. 

After further adjustment for multiple hypotheses testing none remained significant. The 
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amplification-centric analysis resulted in 49 initial peaks, with 7 significant peaks after comparison 

to null peak distribution. Two of these, amplifications of 5p12-14.3 and 17q11-24, remained 

significant after adjustment for multiple hypotheses testing. Both amplifications were associated 

with lower immune infiltration measured by LCK metagene expression (Figure 7A).  0.8-23.7% 

of ER-/HER2- patients had an amplification in the former region, while 0-47.6% of ER-/HER2- 

patients had an amplification in the latter. This range reflects the uncertainty of copy number 

variations defined by GISTIC scores of -1/1. The lower bound of the range corresponds to the 

proportion of patients that had definite copy number alterations (GISTIC scores of -2 or 2), while 

the upper bound represents the proportion GISTIC scores above noise level (GISTIC scores of -1 

and -2 or 1 and 2) 

 In HER2+ cancers, the deletion-centric analysis yielded 91 initial peaks, with 4 remaining 

significant after comparison to null peak distribution but none after adjustment for multiple 

hypothesis testing. The amplification-centric analysis yielded 43 initial peaks, with 4 significant 

after comparison to null peak distribution. Three of these remained significant after adjustment for 

multiple hypothesis testing (1q21-23.1, 1q24-32.1, 17q21.2-32) and each were associated with 

lower immune infiltration (Figure 7B).  

 For ER+/HER2- cancers, the deletion-centric analysis yielded 77 initial peaks, with 10 

significant after comparison to null peak distribution. The amplification-centric analysis yielded 

58 initial peaks, with 4 significant peaks after comparison to null peak distribution.  (Figure 7C) 
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Multivariate assessment of the contribution of mutations, copy number alterations and 

expressions at gene level with LCK metagene expression 

 Next we combined gene level mutation data, gene level copy number alteration, and gene 

level expression data which resulted in 11,440 common genes between the datasets. Figures 8A-

F, ER+/HER2- cases demonstrate more frequent association (positive and negative) of expression 

with immune response. Interestingly, in HER2+ and ER-/HER2- cases, higher immune infiltration 

is more closely associated with expression, while decreased immune infiltration is more frequently 

associated with deletions and amplifications.  

 

Association between biological pathway level alterations and LCK metagene expression 
 We considered a pathway affected by genomic alterations if any of its member genes had 

a somatic mutation or copy number change as described in the methods section. After merging the 

available copy number and mutation data we had 474 ER+/HER2-, 149 HER2+, 145 ER-/HER2- 

cases. 

In ER+/HER2- samples, aberrations in 77 pathways exhibited putative significance as 

compared to the null distribution of regression coefficients. Of these, 12 met the < 10% false 

discovery rate criteria (Figure 9A). Alterations in 11 pathways were associated with decreased 

LCK metagene expression, and one was associated with higher expression. Eight pathways had 



25 
 

shared aberrations in several members of the MAP-kinase family (MAP3K1, MAPK8, MAP2K4, 

MAPK1, MAPK3, MAP2K1, MAPK14, MAP2K3) (Figure 9D). 

 In ER-/HER2- samples, aberrations in 44 pathways exhibited putative significant as 

compared to null distribution. Of these, 6 met the 10% false discovery rate criteria (“Regulation 

of beta-catenin”, “Calcium signaling in the CD4 TCR pathway”, “IL1R”. “Validated 

Transcriptional Targets of Fra1 and Fra2”,  “Stabizilation of the E-Cadherens Junction”, and “FGF 

signaling pathway”) (Figure 9B). These pathways were all associated with a decreased immune 

infiltration and shared aberrations in common genes including JUN, IL6, IL8. Figure 9E 

represents the degree of overlap of member genes in each significant pathway.  

In HER2+ cancers, aberrations in 18 pathways were putatively significant (Figure 9C). 

Only one “Visual transduction-Rods” satisfied the 10% false discovery rate criteria and was 

associated with lower immune infiltration.  

 Figures 10A-C summarizes the proportions of patient-level alterations in the various 

affected pathways for the three breast cancer subtypes. The proportion of patients with a certain 

pathway affected by a particular aberration or combination of aberrations is depicted for the 

immune low vs. immune high tertile. Thus, this figure compares the types of aberrations present 

in each pathway, but does not describe relative quantity of a particular aberration. At the individual 

patient level, each pathway appears to contain a unique combination of genomic aberrations. This 

analysis is supplemented by Figure 11A-C, which describes the aberrations in the member genes 
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from the most significant pathways for each subtype. At the individual patient level, each gene 

appears to demonstrate association of immune response with a unique combination of genomic 

aberrations. Copy number deletion and mutation are associated with low immune response in 

specific genes; amplification appears more ubiquitous in each patient, and a clear association 

pattern is difficult to ascertain.  

 

Discussion 
 While causative mechanisms cannot be determined with certainty from an association 

study, our observations raise several biologically interesting hypotheses about what processes may 

influence immune infiltration in breast cancer. Our study suggests, that in some ER positive 

cancers mutations in members of the MAP-kinase family (MAP3K1, MAPK8, MAP2K4, 

MAPK1, MAPK3, MAP2K1, MAPK14, MAP2K3) are associated with, and perhaps cause, 

decreased immunogenicity. Since many of these enzymes activate other kinases MAPK8/JNK1, 

MAPK9/ JNK2, and MAPK14/p38 involved in stress-response and response to environmental 

stimuli, they have broad downstream effects, including generation of inflammatory cytokines [40], 

inducing proliferation of cytotoxic T-cells [41]. A connection between this and MHC expression 

was also recently described in TNBC, where genomic and transcriptomic alterations in the Ras-

MAPK pathway upregulated MHC expression and had an overall negative effect on immune 

infiltration [42]. In ER negative cancer, MYH9 (non-muscle myosin IIa) mutations, seen in 4% 

of these cancers, was one of the two single gene events that were significantly associated with low 
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immune presence. This protein has been shown to function as a tumor suppressor in squamous cell 

carcinoma by leading to post-transcriptional p53 destabilization [43]. How these molecular defects 

could influence immunogenicity of a tumor remains to be investigated. Additionally, HERC2 

mutations were also shown to be significant in ER negative cancers; HERC2 is an E3 ubiquitin 

ligase. This family of genes has been implicated in development, activation, differentiation of 

lymphocytes, antigen presentation [44], although a specific mechanism involving HERC2 

mutations has not been demonstrated in the literature.  

Several germline SNPs have been linked to autoimmune disorders and immune functions 

in general, therefore we also examined if germ line SNPs may be associated with immunological 

features of breast cancer. In ER negative cancers, two co-localized variants rs425757 and rs410232 

corresponding to a missense aberration in the CFHR1 (Complement factor H-related protein) gene 

were associated with lower levels of immune infiltration. The CFHR1 protein binds to and inhibit 

the C3b components of the C5 convertase, and thus inhibit the terminal complement complex 

(TCC) [45]. CFHR1 also competes with factor H, a more potent inhibitor of the complement 

cascade and certain isoforms are associated with immunoprotection against IgA nephropathy and 

age-related macular degeneration [46, 47].  Deletion of CFHR1 is associated with autoimmune 

diseases such as hemolytic uremic syndrome and lupus.  The rs470797 variant that corresponds to 

a possible stop-gain in the MBP (myelin basic protein) gene was also associated with lower 

immunogenicity.  MBP is a putative cancer antigen; previous authors have demonstrated T-

lymphocytes react with MBP in leukocyte adherence inhibition (LAI) assays [48]. Furthermore, 
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mutated MBP peptide ligands have been shown to be capable of switching immune responses from 

Th1 cells (mediating pro-inflammatory responses) to Th2 cells (anti-inflammatory) [49]. 

We also linked several copy number alterations to lower immune infiltration. 

Amplification of the 5p12-14.3 region was associated with decreased immune cell presence in ER 

negative cancers. A potential candidate gene mapping to this region is IL7R (interleukin 7 

receptor). IL7 and IL7R over-expression has been correlated with an undifferentiated pathology 

and poor treatment response in breast cancers. Another proposed explanation involves the 

observation that IL-7 induces lymphatic endothelial cell growth [50].  Interestingly, 

lymphangiogenesis has increasingly been explored as a mechanism of immune escape [51]. 

Tumors potentially take advantage of self-tolerance functions in the lymph nodes.  

Amplifications at 17q11-25 region are also associated with decreased immune presence in 

ER negative cancers.  This amplicon is also associated with poorer prognosis in breast cancers 

[52]. A potential candidate gene in this region is CCR7 (Chemokine (C-C Motif) Receptor 7). 

High expression of CCR7 was shown to lead to decreased T-cell presence in the melanoma [53]; 

the putative mechanism for this effect is thought to be related to the establishment of a 

lymphangiogenesis-associated immune escape, as detailed above.  

Several interesting aberrations were associated with immune response on the pathway 

level. For instance, ceramide signaling was related to decreased immune metagene expression in 

ER+/HER2- cancers. Ceramide is generated by hydrolysis of plasma membrane phospholipid 
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sphingomyelin, and plays an important role in a ubiquitous apoptosis pathway [54].The inhibition 

of ceramide action has been elucidated as a method of immune escape by preventing cytochrome 

c release and caspase activation [55].Additionally, our findings of poor immune response in 

patients with eicosanoid pathway aberrations may be explained by the demonstrated effect of 

cancers to control prostaglandins and leukotrienes, in order to evade attack from the immune 

system [56].  

 Further studies may benefit from validating high interest aberrations in a dataset with 

recorded measures of clinical outcomes and histological validation of tumor infiltrating 

lymphocytes.For the purposes of clinical utility, it is imperative to focus on mutations and SNV’s 

which are mutated in a relatively high proportion of patients. It would additionally be interesting 

to explore the immunogenicity of epigenetic variations in certain areas of interest, as methylation 

of HLA genes is a well known mechanism for immune modulation [57].  

In conclusion, our analysis shows that the extent of immune cell infiltration in breast cancer 

is not driven by an all-encompassing global metric of genomic instability such as overall mutation, 

copy number or neoantigen loads, or by a few, highly recurrent, single gene mutations or 

amplifications/deletions. We identified many different individually rare mutations and interesting 

copy number alterations at single gene level, and at the level of biological pathways, that were 

significantly associated with lower (or less commonly higher) immune gene expression in different 

breast cancer subtypes. These results suggest that a broad range of genomic aberrations, as well 

as SNPs can influence the immunogenicity of a given breast cancer subtype.   
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Figure 1: The expression distribution of each of the 13 immune metagenes is shown for 

the ER+/HER2- (A), ER-/HER2- (B), and HER2+ (C) cohorts. Metagenes describing IF1, 

macrophage, MHC1, MHC2, STAT1, T follicular cells, T cell inhibitory and stimulatory activity, 

as well as lymphocyte-specific kinase (LCK), cytolytic activity (CTL), and consensus T-cell 

metagene (CTM) unimodal normal distributions. Metagenes describing natural killer (NK) cells, 

and regulatory T-cells (T-regs) showed bimodal distributions.  

 

Figure 2: The correlation matrix of each of the 13 immune metagenes is shown for the ER+/HER2- 

(A), ER-/HER2- (B), and HER2+ (C) cohorts. Most immune metagenes showed high levels of 

co-expression in all 3 breast cancer subtypes. Notably, the regulatory T-cell signature had low 

correlation in all subtypes. Metagenes marked with (*) indicate previous evidence of association 

to clinical outcome. Lymphocyte-specific kinase (LCK) was chosen as most representative 

metagene due to its high degree of correlation with prognostically favorable metagenes and 

evidence in the literature demonstrating correlation with histological T-leukocyte presence.  
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Figure 3: The correlation between each of the 13 immune metagenes and mutation, neoantigen 

copy number amplification and deletion load is shown for the ER+/HER2- (A), ER-/HER2- (B), 

and HER2+ (C) cohorts. Spearman correlation values demonstrate low levels of correlation. 

Additionally, ANOVA Chi-Square significance testing revealed no significant linear regression 

coefficients between the metagenes and the 4 different types of global genomic aberration metrics. 

 

Figure 4: Principal component analysis was performed on a combined dataset featuring mutation 

load and copy number amplification and deletion loads for each patient, according to ER+/HER2-  

(A-C) subtype, ER-/HER2- (D-F) cohort, and HER2+ (G-I) subtype. Biplots are also divided by 

PC1 vs PC2 (A,D,G), PC2 vs PC3 (B,E,H) and PC1 vs PC3 (C,F,I) Generally,  no clear pattern 

of separation by between high and low LCK metagene tertiles was apparent for any combination 

of aberrational type. . 

 

Figure 5:  The subtype-specific significance of association between immune activity and mutation 

for all nominally significant genes. (A) represents the ER+/HER2- cohort, (B) depicts the ER-

/HER2- cohort, and (C) represents the HER2+ cohort. Rightward bars represent genes in which a 

mutation is positively associated with LCK, and leftward bars show genes in which mutation was 

negatively associated with LCK. The mutation frequency of each gene is labeled as a percentile 

value; vertical red lines represent the significance cutoffs yielding 10% FDR.  
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Figure 6:  The subtype-specific significance of association between immune activity and single 

nucleotide variation (SNV) for all nominally significant genes in ER-/HER2- cohort. ER+/HER2- 

and HER2+ not shown, as there were no SNV’s significant after correction for multiple hypothesis 

testing in these subtypes. Rightward bars represent genes in which a mutation is positively 

associated with LCK, and leftward bars show genes in which mutation was negatively associated 

with LCK. The mutation frequency of each gene is labeled as a percentile value; vertical red lines 

represent the significance cutoffs yielding 10% FDR. Only the 50 SNV’s with the smallest nominal 

p-value are depicted.  

 

Figure 7:  The subtype-specific significance of association between immune activity and copy 

number amplification/ deletion for all genic loci. (A) represents the ER+/HER2- cohort, (B) 

depicts the ER-/HER2- cohort, and (C) represents the HER2+ cohort. Rightward lines show 

nominal p-values for instances in which the lesion was positively associated with LCK, and 

leftward lines show nominal p-values for instances in which the lesion was negatively associated 

with LCK. Labeled peaks represent cytobands which were significant after adjustment for 

multiple-hypothesis testing. 
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Figure 8: Venn diagrams specific for each subtype represent the number of genes undergoing a 

nominally significant aberration type (or combination of aberration types) after multivariate 

regression of the mutations, copy number alterations, and expression at gene level with immune 

function. In  HER2+ and ER-/HER2- cases, higher immune infiltration is more closely associated 

with expression, while decreased immune infiltration is more frequently associated with deletions 

and amplifications.  

  

Figure 9: The subtype-specific significance of association between immune activity and pathway 

aberration frequency for all nominally significant pathways. (A) represents the ER+/HER2- 

cohort, (B) depicts the ER-/HER2- cohort, and (C) represents the HER2+ cohort. Rightward bars 

represent genes in which a mutation is positively associated with LCK, and leftward bars show 

genes in which mutation was negatively associated with LCK. The mutation frequency of each 

gene is labeled as a percentile value; vertical red lines represent the significance cutoffs yielding 

10% FDR.(D) and (E) represent membership of genes in each pathway found to be significant.  

 

Figures 10A-C summarizes the patient level alterations in the various affected pathways for the 

three breast cancer subtypes. The proportion of patients with a certain pathway affected by a 

particular aberration or combination of aberrations is depicted for the immune low vs. immune 

high tertile; the number of each aberration in a particular pathway is thus not reflected in this 
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figure. At the individual patient level, each pathway appears to contain a unique combination of 

genomic aberrations. 

 

Figures 11A-B summarizes the patient level alterations in member genes from the most significant 

pathways for ER+/HER2- and ER-/HER2-. At the individual patient level, each gene appears to 

demonstrate association of immune response with a unique combination of genomic aberrations. 

Copy number deletion and mutation are associated with low immune response in specific genes; 

amplification appears more ubiquitous in each patient, and a clear association pattern is difficult 

to ascertain.  
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Figure 7B 
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Figure 7C 
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Figure 9A.  
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Figure 9B.  
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Fig 9C. 
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Table 1 

  

 

References Callari Rody Rooney Rooney Rooney 
NeoSphere 
(Bianchini) 

Rooney 
  
NeoSphere 
(Bianchini) 

NeoSphere 
(Bianchini) 

NeoSphere (Bianchini) Rooney  Rooney  

Immune-system component  T cell signatures 
Activated 
 CD8/NK cells 

Antigen 
 presenting cells 

NK cells Macrophages 
Antigen 
Presentation 

Interferon-related genes T-cell regulation 

Name of the signature ImmuneScore LCK Tfh Tregs Cytolytic MHC2 NK Macrophages MHC1 STAT1 IF_I Co_stimulation Co_inhibition 

 PRF1 ARHGAP15 CD200 FOXP3 GZMA HLA-DMA KLRF1 FUCA1 HLA-A CXCL10 DDX58 CD2 BTLA 

 GZMB ARHGAP25 CXCL13 C15orf53 PRF1 HLA-DQB1 KLRC1 MMP9 HLA-B CXCL11 HERC6 CD226 C10orf54 

 CXCL13 CCL5 FBLN7 IL5  HLA-DRA  LGMN HLA-C GBP1 IFI44 CD27 CD160 

 IRF1 CCR2 ICOS CTLA4  HLA-DRB4  HS3ST2 HLA-F STAT1 IFI44L CD28 CD244 

 IKZF1 CCR7 SGPP2 IL32    TM4SF19 HLA-G  IFIT1 CD40 CD274 

 HLA-E CD2 SH2D1A GPR15    CLEC5A HLA-J  IFIT2 CD40LG CTLA4 

  CD247 TIGIT IL4    GPNMB   MX1 CD58 HAVCR2 

  CD27 PDCD1     C11orf45   OAS1 CD70 LAG3 
  CD3D      CD68   OAS3 ICOS LAIR1 
  CD48      CYBB   RSAD2 ICOSLG LGALS9 

  CD53          SLAMF1 PDCD1LG2 

  CORO1A          TNFRSF18 PVRL3 

  CSF2RB          TNFRSF25 TIGIT 
  EVI2B          TNFRSF4  
  FGL2          TNFRSF8  
  GIMAP4          TNFRSF9  
  GIMAP5          TNFSF14  
  GMFG          TNFSF15  

  GZMA          TNFSF18  
  GZMK          TNFSF4  
  HCLS1          TNFSF8  

  IL10RA          TNFSF9  

  IL2RG            
  IL7R            

  INPP5D            

  IRF8            

  ITK            

  KLRK1            

  LCK            
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