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AN AUTOMATED TEMPORAL, AMPLITUDE, AND COMPLEXITY-BASED 
COMPARISON OF COMMERCIAL PLETHYSMOGRAPHS 

 
Matthew Mikhail, Aymen Alian, and Kirk  Shelley 

Department of Anesthesiology, Yale University, School of Medicine, New Haven, CT. 
 

 

The study of plethysmographic physiology has been limited by a lack of standardized and 

open plethysmographic hardware in clinical use.  Fundamental differences in the processing of 

output between various devices obfuscate direct comparison, and the role played by physiology 

versus that by technology in the final viewable plethysmogram (PPG).  This study proposes a 

largely automated, unbiased method for quantitatively comparing the outputs from proprietary 

pulse oximeter devices along three metrics: temporal delay, amplification, and complexity.  It 

then applies these methods to the deconstruction of Masimo and Nellcor pulse oximeters. 

With IRB approval, twelve healthy, awake subjects were studied.  Each individual was 

attached simultaneously to a Nellcor ear probe and a Masimo finger device, and then instructed to 

perform incentive spirometry, Valsalva, and Mueller breathing maneuvers interspersed with 

normal breathing.  For temporal delay and amplitude comparisons, the raw PPG data were first 

synchronized, then subsequently filtered into corresponding autonomic, respiratory, and cardiac 

frequency ranges.  To assess the temporal delay, they were processed according to a sliding-

window cross-correlation function, and the time shift of maximum correlation for each window 

was averaged, to determine a representative overall delay for each frequency range.  For the 

amplitude analysis, the absolute value of the filtered data were integrated over a pre-determined 

time frame chosen at each frequency range, then divided to arrive at a ratio.  These data were 

manually filtered to remove sequences corresponding to the noise artifact. Lastly, to assess pulse 

complexity, the raw data were converted from time-domain to frequency domain using digital 

Fast Fourier Transformation (dFFT), and an algorithm programmed to search for fundamental 

cardiac frequency, as well as the first five harmonic peaks.  The dFFTs were then normalized 
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according to fundamental frequency peak, and the ratios of the amplitude of each harmonic peak 

to the corresponding harmonic peak from the other device were generated. 

As outlined in the table below, the Nellcor device temporally led the Masimo in the 

respiratory and autonomic frequency ranges.  Similarly, the Nellcor device demonstrated greater 

amplitude representation in those ranges as well.  With regards to pulse complexity, however, the 

Masimo signal was better represented up to the first three harmonics.  While the generalization of 

these results may be limited by the device placement, this study successfully presents a 

systematic method for comparing commercial hardware devices, paving the way for better 

understanding of this non-invasive modality. 

 

 Table 1. Overview of results, categorized by study metric.

  Temporal Shift Amplification Pulse Complexity 

Masimo     Greater detail 

1st Harmonic (p=0.0023) 

2nd Harmonic (p=0.0003) 

3rd Harmonic (p=0.0032) 

Nellcor Leads 

Respiratory - 0.37s (p= 0.0338) 

Autonomic – 0.72s (p=0.0024) 

Greater Representation 

Respiratory – 5.95x (p<0.001) 

Autonomic – 10.84x (p<0.001) 
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INTRODUCTION	

A. Origins	of	Plethysmography	

	

The	basis	for	plethysmography	dates	back	to	at	least	the	19th	century,	with	

Italian	physiologist	Angelo	Mosso,	who	encased	an	arm	in	a	fluid-filled	chamber,	

akin	to	a	manometer	(Figure	1),	to	measure	changes	in	limb-volume	as	a	function	of	

time	[1].	This	provided	early	information	on	the	peripheral	pulse	and	cardiac	

rhythm.	Subsequently,	work	performed	by	Alrick	Hertzman	in	the	1930’s,	updated	

the	method	to	utilize	light,	and	painted	a	much	more	detailed	picture	of	vascular	

pulsatility	(Figure	2)	[2].	

	

	

	

Figure 1. Early schematic depiction of Angelo Mosso’s whole arm plethysmography, one of the 
first documented variations. 
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Known	in	its	entirety	since	1851,	the	Beer-Lambert	law	governs	the	behavior	

of	light	as	it	passes	through	a	non-scattering	substance	[3].		While	this	law	gives	a	

simplistic	understanding	that	doesn’t	account	for	scattering	within	human	tissue,	it	

states	that	optical	absorbance	of	light	is	directly	proportional	to	the	path-length	

traveled,	as	well	as	the	concentration	of	absorbing	molecules	within	it.		It	allows	for	

optical	transmission	to	act	as	a	proxy	of	tissue	diameter,	and	served	as	the	basis	for	

Hertzman’s	and	all	modern	photoplethysmographic	techniques.		With	the	use	of	

light	also	came	the	discovery	that	oxygenated	and	deoxygenated	blood	exhibit	

different	optical	absorbance	characteristics,	which	paved	the	way	for	modern	

oximetry.		Utilizing	red	and	green	wavelengths	of	light,	Carl	Matthes	developed	the	

first	oxygen	saturation	meter	device	in	1935	[4].		This	technology	underwent	

multiple	iterations,	but	remained	largely	bulky,	impractical,	and	inaccurate	until	re-

introduced	by Nihon	Kohden	engineer	Takuo	Aoyogi	in	the	1970s.		Aoyogi’s	

technique	isolated	the	absorbance	information	from	the	pulsatile	component	of	the	

plethysmogram,	thus	eliminating	artifact	from	bone	and	venous	blood	and	greatly	

improving	accuracy	[5].		This	technology	entered	the	operating	room	setting	and,	

within	a	decade,	became	the	standard	of	care	within	all	anesthetic	settings.	
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B. Current	Understanding	of	PPG	Physiology	

 

 While the initial understanding of the Beer-Lambert law guides 

photoplethysmograph implementation, numerous assumptions have been made to 

simplify the physics involved.  At the more fundamental level is the assumption that the 

transmission medium is absorbing, but non-scattering.  Anyone who’s seen a finger-

attached pulse oximeter can attest, however, that the entire digit glows with refracted and 

scattered light from the LED.  This requires more complex physics and mathematics to 

understand [6].  Furthermore, within the heterogeneous finger, there is bone, blood, 

connective tissue, and numerous other components, each of which has its own light 

absorption characteristics.  What this means from the oximetric perspective, is that 

Figure 2. Cardiac pulsations recorded from the finger pad, traced from Alrick Hertzman’s early 
photoplethysmograph. 
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empirical algorithms have been required to calibrate saturations using volunteer reference 

subjects undergoing controlled arterial desaturation, and that no system for absolute 

calibration has been attainable [7]. 

 Assuming a more complete understanding of those elements, however, there 

remains the question of path-length.  While it’s well-observed that the caliber of a finger 

varies with the cardiac cycle, it is yet unclear what causes this variation.  What is clear is 

that vascular compliance contributes to this phenomenon, however the relative 

contribution of various levels of the vascular system is unclear [8].  There is evidence that 

arteriolar vessels dampen much of the blood’s pulsatility into a smooth flow, and thus 

may be the level of the greatest volume change [9].  If so, this means oximeters more 

directly represent the arteriolar oxygen saturation, rather than the arterial content that is 

conventionally used as a proxy. 

 

 

C. Deconstruction	of	the	Photoplethysmographic	Signal	

 

 Distinct physiological information can be isolated from different components of 

the raw PPG signal.  When analyzed from the perspective of time-scale, it has been 

shown that the PPG can be deconstructed into at least four different physiologically 

relevant components.  The first, traditionally represented, is cardiac information.  This is 

localized to the the time-scales approaching the human pulse and may be fully 

encompassed within a frequency range of 0.5-2.0 Hz (30-120bpm).  This information has 

proven useful in the monitoring of cardiac rhythm and heart rate variability, however it 
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lacks the subtler cardiovascular information within the contour of the cardiac pulse.  

Contour information can be isolated at frequencies greater than 2 Hz, and contains 

phenomena such as the incisura, or dicrotic notch, which is hypothesized to relate to 

factors including vascular compliance and distance from the aortic valve [10]. 

 On the other end, longer time-scales can capture slower physiological phenomena, 

such as respiratory or autonomic influences on the vascular caliber and flow.  At 

frequencies of 0.15-0.5 Hz (9-30 breaths/min), shifts in the venous blood associated with 

the respiratory cycle have been described.   

Lastly, autonomic vascular changes are apparent at frequencies less than 0.15 Hz 

[11] and have the potential to convey anesthetic depth information and vascular 

sympathetic status. 

 

 

D. Modern	Landscape	of	Pulse	Oximetry	

	

With	the	advent	of	modern	pulse	oximetry	came	the	industrial	competition	

which	saw	a	small	number	of	manufacturers	dominate	the	commercial	market.		

Within	the	United	States,	Biox	was	the	first	commercial	manufacturer	of	pulse	

oximetry	technologies,	however	it	saw	its	market	share	decline	with	the	arrival	of	

companies	such	as	Nellcor	and	Masimo	[5].		Since	the	fundamental	basis	for	pulse	

oximetry	was	public	domain,	the	edge	was	gained	through	the	proprietary	use	of	

filters	and	signal	processing	in	order	to	output	more	visually	desirable	

plethysmograms	(PPGs),	and	effectively	function	in	the	presence	of	mechanical,	
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electrical,	or	optical	disruption.		While	this	improved	overall	performance,	it	

triggered	debate	as	to	the	place	of	“black-box”	devices	within	medical	use	[12].		

Since	the	physiology	underlying	photoplethysmography	is	still	not	well-understood,	

these	additional	layers	of	abstraction	act	to	further	complicate	PPG	physiology	

research.	

 

 

HYPOTHESIS 

 

It is hypothesized that systematic analysis of the frequency subcomponents of two 

commercial pulse oximeters (Massimo and Nellcor) will allow for the development of an 

algorithm and transformative equations for conversion amongst them. 

 

 

SPECIFIC AIMS 

 

1. To	develop	a	systematic	method	for	synchronizing	simultaneously	gathered	

plethysmographic	waveforms.	

2. To	develop	a	means	of	systematically	deconstructing	plethysmographic	

waveforms	into	frequency	sub-components,	performing	operations	on	these	

components,	and	automating	the	comparison	of	these	sub-components.	

3. To	devise	a	standard	method	for	quantifying	the	degree	of	correlation	

between	two	plethysmographic	waveforms.	
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METHODS	

A. Data	Collection	

(Performed	by	Dr.	Kirk	Shelley	and	Dr.	Aymen	Alian)	

	

With	IRB	approval,	twelve	healthy,	awake	volunteers	were	attached	to	

multiple	clinical	monitors,	including	a	Masimo	Finger	oximeter,	a	Nellcor	Ear	

oximeter,	and	an	inline	airway	pressure	monitor.		Each	oximeter,	along	with	the	one	

shared	airway	pressure	monitor,	was	attached	to	a	separate	data	acquisition	device,	

each	recording	at	100	Hz.	

	 While	attached	to	the	devices,	each	subject	was	instructed	to	alternate	

between	four	activities:	normal	breathing,	the	Valsalva	maneuver	(exhalation	

against	closed	glottis),	incentive	spirometry,	and	Mueller	breathing	(inspiration	

against	closed	glottis).		Recording	times	for	each	patient	ranged	from	15-25	

minutes,	and	were	saved	for	later	processing.	

	

	

B. Data	Synchronization	

(Performed	by	Matthew	Mikhail)	

	

The	first	step	in	signal	analysis	consisted	of	the	synchronization	of	the	PPG	

waveforms	originating	from	separate	data	acquisition	devices.		Since	each	of	the	

devices	shared	the	same	airway	pressure,	this	pressure	waveform	was	first	used	as	

a	landmark	for	rough,	manual	synchronization	(Figure	3).	
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From	there,	more	fine-tuned	synchronization	was	performed	through	the	use	

of	automated	digital	cross-correlation	of	the	full-length	PPG	waveforms	against	each	

other,	identifying	the	time-shift	associated	with	the	maximum	correlation	between	

them,	and	then	translating	them	by	that	amount	(Figure	4).	

	

	

	
( f ∗g)(τ ) = f (t)g(t +

−∞

∞

∫ τ )dt

Figure 3. a) Example of pre-synchronization airway pressure and PPG waveforms.  
                b) Waveforms following rough synchronization with airway pressure as the landmark. 

a) b) 
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Figure 4. a) Schematic depiction of the cross-correlation function.  
                b) Plot of the resultant cross-correlation waveform, with peak representing time offset 
of the maximum agreement.  
                c) Pre- and post-synchronized PPG waveforms, using offset obtained from the 
correlation shown in b. 

b) 

a) 
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C. Data	Analysis	

(Performed	by	Matthew	Mikhail)	

	

	 Following	overall	synchronization,	waveforms	were	analyzed	according	to	

three	metrics:	Temporal	Shift,	Scaling,	and	Complexity	(Figure	5).	

	

Temporal	Shift Scaling Complexity

Figure 5. Visual depiction of the metrics of analysis. 

c) 
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1. Temporal	Shift	Analysis	

 

Given the hardware and software processing within commercial oximeters, it is 

hypothesized that frequency dependent time-shifts are introduced.  As a result, band-pass 

filters were employed to deconstruct the signal into three physiologically relevant 

frequency ranges, and relative time-shift between the Nellcor and Masimo signals was 

evaluated independently for each.  These time-ranges include cardiac (0.5-2.0 Hz), 

respiratory (0.15-0.5 Hz), and autonomic (0.01-0.15Hz) as previously outlined. 

 In order to overcome the effect of signal artifact on the synchronization of each 

frequency range, the component waveforms were cross-correlated in a stepwise fashion, 

using thirty second windows, advanced 1.5s per step (Figure 6).  The time-offset of 

maximum agreement, as determined by cross-correlation, was obtained independently for 

each fragment, at each frequency range, then subsequently plotted against the fragment 

number for each waveform (Figure 7).  

 

 

Figure 6. Illustration of data windows used for step-wise cross-correlation. 
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Subsequently, it was assumed that the large spikes from the fragment analysis 

plots represent spurious delays, and demonstrate a weaker correlation.  This weak 

correlation was corroborated when the data were re-plotted by representing the value of 

the maximum correlation coefficient for each fragment by the color of the plotted point 

(Figure 8).  Based on this, a correlation cutoff value of 0.8 was chosen as the point below 

Figure 7. Time-delay of maximum correlation, plotted against the fragment number for each 
physiological frequency range. 
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which data would be excluded.  The remainder of the data points, those lying above this 

cutoff, were averaged to arrive at a final time-shift. 

 

  

 

 

2. Scaling	Analysis	

 

For this component, the band-pass filtered PPG signals were used again.  To 

better understand the relative amplification of the Nellcor and Masimo signals at 

Figure 8. a) Example of the windowed cross-correlation of a single subject at respiratory 
frequency, with color denoting correlation coefficient (blue=low, orange=high).  
                b) Numeric depiction of the correlation coefficients. 
 

a) 

b) 



 14 

different physiological frequency ranges, each component-frequency signal was 

integrated over an arbitrarily chosen time period corresponding to approximately five 

physiological cycles of information.  This equated to ~5 heart beats for the cardiac 

frequency (10s), ~5 breaths for the respiratory frequency (50s), and ~5 cycles for the 

autonomic vascular tone changes (100s).  

For each window of integration, an amplitude ratio was calculated (Figure 9).  

The Nellcor/Masimo ratio of the integrated waveforms were then manually filtered to 

remove visible noise artifact, and the ratios of the amplitude for each time segment 

were averaged over the entirety of the sample length to arrive at a ratio that represents 

the relative amplitude of the Nellcor/Masimo signals for each subject. 

 

 

 

 

 

 

0.80 

39.0 

= 0.0205 

Figure 9. Example of 10s timed-reset integral for cardiac PPGs. 
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3. Complexity	Analysis	

 

The signal complexity comparison of the two oximeters was performed within the 

frequency domain as a means to preserve higher frequency, periodic data.  The full-

length raw PPG data were first divided into 20s fragments for each subject.  Digital 

Fast Fourier Transformation was then performed on the raw Nellcor and Masimo 

fragments, utilizing a Hamming window, with FFT size of 2048 bins, and an 

amplitude spectral mode of analysis.   

An algorithm was then devised and tested to search for and identify the 

fundamental cardiac frequency peak, along with the first five cardiac harmonics 

(Figure 10).  The amplitude spectral density graphs were subsequently normalized to 

the fundamental cardiac peak amplitude and the ratio of the Masimo/Nellcor 

harmonic amplitude was determined.  Finally, the ratios were averaged across all the 

fragments for a given subject, then across all the subjects to arrive at a relative 

measure of representation of the harmonic complexity. 

 

 

 

 

 

 

 

 

1.2 

2.1 

Ratio: 
2.1/1.2=1.75 

Figure 10. Example of the dFFT representation of PPG, including first five harmonics, with 
sample calculation of the first harmonic. 
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RESULTS 

1. Temporal	Shift	Analysis	

	

Using	two-tailed	student-t	test	to	evaluate	the	difference	between	the	

Masimo	and	Nellcor	devices	with	regard	to	time-delay,	it	was	revealed	that	the	

Nellcor	signal	led	the	Masimo	signal	by	0.37s	(p=0.0338)	and	0.72s	(p=0.0024),	for	

the	respiratory	and	autonomic	ranges,	respectively	(Figure	11).		
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Figure 11. a) Nellcor signal lead-time, broken down by frequency range and individual subject. 
                  b) Average Nellcor signal lead-time. 
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2. Scaling	Analysis	

 

Relative to the cardiac frequency range, the preservation of the respiratory and 

autonomic signals was greater in the Nellcor device than in the Masimo device, with 

Nellcor/Masimo signal ratios for respiratory and autonomic signals of 5.95-fold 

(p<0.001) and 10.48-fold (p<0.001), respectively (Figure 12). 

 

 

	 	

	

	

3. Complexity	Analysis	

 

Frequency domain analysis, averaged across all the subjects, demonstrated that 

the Masimo device preserved a greater degree of signal complexity than the Nellcor 

device, with statistically greater fidelity within the first three harmonics (p=0.0023, 

p=0.0003, and p=0.0032) as shown in Figure 13. 
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Figure 12. a) Nellcor/Masimo signal scaling ratio, broken down by the frequency range and 
individual subject. 
                  b) Average Nellcor/Masimo signal scaling ratio. 
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DISCUSSION 

 

The future understanding of photoplethysmography rests on the ability to reliably 

interpret the PPG waveforms collected during real surgical settings, when human organ 

systems are stressed.  A commonly acknowledged, but previously uninvestigated barrier 

to PPG research has been the proprietary, “black-box” nature of the instruments approved 

and widely employed to monitor this vascular physiology.  While this study is not 

without limitations, it serves as a first effort to quantify these differences, and presents a 

systematic method for comparing proprietary devices on three metrics of clinical utility.  

As a proof of method, however, there exist some fundamental limitations to the 

study design chosen.  The choice to compare PPG readings from different bodily sites, 
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Figure 13. Masimo/Nellcor Harmonic Amplitude ratio, as averaged across all subjects for the 
first five harmonics. 
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with Nellcor from an ear probe and Masimo from a finger probe, clouds direct brand 

comparison.  What this study does, however, is reproduce previously documented 

phenomena, including increased respiratory variation of ear PPGs as compared to finger 

PPGs [13].  The more central location of ear vasculature may account for some of the 

observed lead-time in that device.  Additionally, since the finger is peripheral and 

vasomodulates to a greater degree based on sympathetic tone, there may be a greater 

likelihood that the subtle systemic autonomic blood fluctuations would be dampened in 

the finger, thus accounting for the lowered autonomic representation. 

This study also provides powerful tools for future plethysmographic research.  

Rather than being used as a barometer for performance of various plethysmographs, it is 

hoped that a more complete understanding of the trade-offs that go into the signal-

processing for these oximeters can inform their design.  Ideally, future studies would be 

able to take this work in one of two interesting directions.  The first is to obtain head-to-

head comparisons of different devices placed on the same appendage, which would allow 

for an isolated comparison of the technological differences at play. The second approach 

is to analyze the same device on different appendages, and thus further explore the 

physiologic differences in PPG signal that reaches various locations in the body. By 

expanding these realms of knowledge, the ultimate hope is that this will allow clinicians 

to use the tools readily available to make more informed decisions regarding the care of 

their patients.  
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APPENDIX 

A. Windowed,	threshold	cross-correlation	function	Script	

function [ shiftAve,shiftSD ] = 

WindowedCorrThresholdFn(file,fraglength,overlap,threshold) 

%UNTITLED3 Summary of this function goes here 

%   Detailed explanation goes here 

 

    load(file) 

 

    if ~exist('data','var'), 

        error('No data! Select a mat file that contains data and was created with Export 

Matlab 3.0 or later (LabChart for Windows 7.2 or later)') 

        return 

    end 

 

    [numchannels, numblocks] = size(datastart); 

    [~,length] = size(data); 

    length=length/numchannels; 

 

    overlap = overlap/100; 

 

    fraglengthSamples=fraglength*100; 

 

    numfrags=floor((length-fraglengthSamples)/(fraglengthSamples*(1-overlap))+1); 

 

    pdatarray = zeros(numchannels,length); 

    xcorrarray = zeros (numchannels,numchannels,2*length-1); 

    xcorrlagarray = zeros (numchannels,numchannels,2*length-1); 

    fragXcorrArray = zeros (numchannels,numchannels,numfrags,2*fraglengthSamples-1); 

    fragXcorrLagArray = zeros (numchannels,numchannels,numfrags,2*fraglengthSamples-1); 

    I = zeros (numchannels,numchannels); 

    fragI = zeros (numchannels,numchannels,numfrags); 

    corrval = zeros (numchannels,numchannels); 

    fragcorrval = zeros (numchannels, numchannels, numfrags); 

    t = zeros (numchannels,numchannels); 

    fragT= zeros (numchannels,numchannels,numfrags); 

 

    nellcor=1; 

    masimo=2; 

    n_card=3; 

    m_card=6; 

    n_resp=4; 

    m_resp=7; 

    n_auto=5; 

    m_auto=8; 

 

    fragdatarray=zeros(numchannels,numfrags,fraglengthSamples); 
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    for ch = 1:numchannels, 

        pdatarray(ch,:) = data(datastart(ch,1):dataend(ch,1)); 

    end 

 

    for ch = 1:numchannels, 

        for curfrag=1:numfrags 

            fragdatarray(ch,curfrag,:) = pdatarray(ch,(floor((curfrag-1)*(1-

overlap)*(fraglengthSamples))+1):(floor((curfrag-1)*(1-

overlap)*(fraglengthSamples))+fraglengthSamples)); 

        end 

    end 

 

    for ch2 = 1:numchannels, 

        for ch1 = 1:ch2, 

            for curfrag=1:numfrags 

                   

[fragXcorrArray(ch1,ch2,curfrag,:),fragXcorrLagArray(ch1,ch2,curfrag,:)] = 

xcov(fragdatarray(ch1,curfrag,:),fragdatarray(ch2,curfrag,:),'coeff'); 

                   [fragcorrval(ch1,ch2,curfrag),fragI(ch1,ch2,curfrag)] = 

max(fragXcorrArray(ch1,ch2,curfrag,:)); 

                   fragT(ch1,ch2,curfrag) = 

fragXcorrLagArray(ch1,ch2,curfrag,fragI(ch1,ch2,curfrag)); 

            end 

        end 

    end 

 

    fragTsec = fragT/100; 

 

    fragTthresh=fragTsec; 

    fragCorrValThresh=fragcorrval; 

 

    for ch2=1:numchannels 

        for ch1=1:ch2 

            for curfrag=1:numfrags 

                if (fragCorrValThresh(ch1,ch2,curfrag)>=threshold) && 

(abs(fragTthresh(ch1,ch2,curfrag))<4) 

                else 

                    fragCorrValThresh(ch1,ch2,curfrag)=NaN; 

                    fragTthresh(ch1,ch2,curfrag)=NaN; 

                end 

            end 

        end 

    end 

 

    cardAve = nanmean(squeeze(fragTthresh(3,6,:))); 

    respAve = nanmean(squeeze(fragTthresh(4,7,:))); 

    autoAve = nanmean(squeeze(fragTthresh(5,8,:))); 

 

    cardSD = nanstd(squeeze(fragTthresh(3,6,:))); 
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    respSD = nanstd(squeeze(fragTthresh(4,7,:))); 

    autoSD = nanstd(squeeze(fragTthresh(5,8,:))); 

 

    shiftAve=[cardAve respAve autoAve]; 

    shiftSD=[cardSD respSD autoSD]; 

 

 

end 

 
B. Harmonic	Peak-Finding	algorithm	

function [ratioAve,ratioSD] = HarmonicRatioFn(file,fraglength,overlap) 

%UNTITLED3 Summary of this function goes here 

%   Detailed explanation goes here 

 

load(file) 

 

if ~exist('data','var'), 

    error('No data! Select a mat file that contains data and was created with Export 

Matlab 3.0 or later (LabChart for Windows 7.2 or later)') 

    return 

end 

 

[numchannels, numblocks] = size(datastart); 

[~,length] = size(data); 

length=length/numchannels; 

 

overlap = overlap/100; 

nfft=2048; 

 

fraglengthSamples=fraglength*100; 

 

numfrags=floor((length-fraglengthSamples)/(fraglengthSamples*(1-overlap))+1); 

 

pdatarray = zeros(2,length); 

fragCohereArray = zeros (numfrags,floor((nfft/2 + 1))); 

fragCohereLagArray = zeros (numfrags,floor((nfft/2 + 1))); 

fragPeriodArray = zeros (2,numfrags,floor((nfft/2 + 1))); 

fragPeriodLagArray = zeros (2,numfrags,floor((nfft/2 + 1))); 

Pxy=zeros (numfrags,floor((nfft/2 + 1))); 

pks = zeros(3,numfrags,6); 

locs = zeros(3,numfrags,6); 

harmonic_ratio = zeros(numfrags,6); 

fundPos = zeros(2,numfrags); 

fundHeight = zeros(2,numfrags); 

 

 

nellcor=1; 

masimo=2; 
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fragdatarray=zeros(2,numfrags,fraglengthSamples); 

 

 

for ch = 1:2, 

        pdatarray(ch,:) = data(datastart(ch,1):dataend(ch,1)); 

end 

 

for ch = 1:2, 

    for curfrag=1:numfrags 

        fragdatarray(ch,curfrag,:) = pdatarray(ch,(floor((curfrag-1)*(1-

overlap)*(fraglengthSamples))+1):(floor((curfrag-1)*(1-

overlap)*(fraglengthSamples))+fraglengthSamples)); 

    end 

end 

 

 

for curfrag=1:numfrags 

            [fragPeriodArray(1,curfrag,:),fragPeriodLagArray(1,curfrag,:)] 

=periodogram(squeeze(fragdatarray(1,curfrag,:)),hamming(fraglengthSamples,'periodic'),nff

t,100,'psd'); 

            [fragPeriodArray(2,curfrag,:),fragPeriodLagArray(2,curfrag,:)] 

=periodogram(squeeze(fragdatarray(2,curfrag,:)),hamming(fraglengthSamples,'periodic'),nff

t,100,'psd'); 

 

            fragPeriodArray(1,curfrag,:)=sqrt(fragPeriodArray(1,curfrag,:)); 

            fragPeriodArray(2,curfrag,:)=sqrt(fragPeriodArray(2,curfrag,:)); 

 

            [fundHeight(1,curfrag),fundPos(1,curfrag)]=max(fragPeriodArray(1,curfrag,:)); 

            [fundHeight(2,curfrag),fundPos(2,curfrag)]=max(fragPeriodArray(2,curfrag,:)); 

 

            if abs(fundPos(2,curfrag)-fundPos(1,curfrag))>5 

                if fundPos(2,curfrag)>3 

                    

[fundHeight(1,curfrag),fundPos(1,curfrag)]=max(fragPeriodArray(1,curfrag,fundPos(2,curfra

g)-3:fundPos(2,curfrag)+3)); 

                    fundPos(1,curfrag)=fundPos(1,curfrag)+fundPos(2,curfrag)-4; 

                elseif fundPos(1,curfrag)>3 

                    

[fundHeight(2,curfrag),fundPos(2,curfrag)]=max(fragPeriodArray(2,curfrag,fundPos(1,curfra

g)-3:fundPos(1,curfrag)+3)); 

                    fundPos(2,curfrag)=fundPos(2,curfrag)+fundPos(1,curfrag)-4; 

                end 

            end 

 

            

fragPeriodArray(1,curfrag,:)=fragPeriodArray(1,curfrag,:)/fundHeight(1,curfrag); 

            

fragPeriodArray(2,curfrag,:)=fragPeriodArray(2,curfrag,:)/fundHeight(2,curfrag); 

 

            minDist1=max([floor(0.9*fundPos(1,curfrag)) 10]); 
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            minDist2=max([floor(0.9*fundPos(2,curfrag)) 10]); 

 

            [fragCohereArray(curfrag,:),fragCohereLagArray(curfrag,:)] = 

mscohere(squeeze(fragdatarray(1,curfrag,:)),squeeze(fragdatarray(2,curfrag,:)),[],[],nfft

,100); 

            

Pxy(curfrag,:)=cpsd(squeeze(fragdatarray(1,curfrag,:)),squeeze(fragdatarray(2,curfrag,:))

,[],[],nfft,100); 

 

 

  %          if 

~isempty(findpeaks(squeeze(fragCohereArray(curfrag,minDist2:end)),'MinPeakDistance',minDi

st2,'Sortstr','descend','NPeaks',3)) 

   %             [pks(3,curfrag,:),locs(3,curfrag,:)] = 

findpeaks(squeeze(fragCohereArray(curfrag,minDist2:end)),'MinPeakDistance',minDist2,'Sort

str','descend','NPeaks',3); 

    %            locs(3,curfrag,:)=locs(3,curfrag,:)+minDist2-1; 

     %       end 

 

            if 

~isempty(findpeaks(squeeze(fragPeriodArray(1,curfrag,minDist1:end)),'MinPeakDistance',min

Dist1,'Sortstr','descend','NPeaks',2)) && 

isequal(size(squeeze(findpeaks(squeeze(fragPeriodArray(1,curfrag,minDist1:end)),'MinPeakD

istance',10,'Sortstr','descend','NPeaks',2))),size(squeeze(pks(1,curfrag,1:2)))) 

                [pks(1,curfrag,1:2),locs(1,curfrag,1:2)] = 

findpeaks(squeeze(fragPeriodArray(1,curfrag,minDist1:end)),'MinPeakDistance',minDist1,'So

rtstr','descend','NPeaks',2); 

                locs(1,curfrag,1:2)=locs(1,curfrag,1:2)+minDist1-1; 

                locMin=locs(1,curfrag,2)-locs(1,curfrag,1)-3; 

                locMax=locs(1,curfrag,2)-locs(1,curfrag,1)+3; 

                for i=3:6 

                    j=i-1; 

                    searchMin=locs(1,curfrag,j)+locMin; 

                    searchMax=locs(1,curfrag,j)+locMax; 

                    if searchMin>0 && 

searchMax<=max(size(squeeze(fragPeriodArray(1,curfrag,:)))) && 

~isempty(findpeaks(squeeze(fragPeriodArray(1,curfrag,searchMin:searchMax)),'Sortstr','des

cend','NPeaks',1)) 

                        

[pks(1,curfrag,i),tempLoc]=findpeaks(squeeze(fragPeriodArray(1,curfrag,searchMin:searchMa

x)),'Sortstr','descend','NPeaks',1); 

                        locs(1,curfrag,i)=searchMin+tempLoc-1; 

                    end 

                end 

            end 

 

            if 

~isempty(findpeaks(squeeze(fragPeriodArray(2,curfrag,minDist2:end)),'MinPeakDistance',min

Dist2,'Sortstr','descend','NPeaks',2)) && 
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isequal(size(squeeze(findpeaks(squeeze(fragPeriodArray(2,curfrag,minDist2:end)),'MinPeakD

istance',10,'Sortstr','descend','NPeaks',2))),size(squeeze(pks(2,curfrag,1:2)))) 

                [pks(2,curfrag,1:2),locs(2,curfrag,1:2)] = 

findpeaks(squeeze(fragPeriodArray(2,curfrag,minDist2:end)),'MinPeakDistance',minDist2,'So

rtstr','descend','NPeaks',2); 

                locs(2,curfrag,1:2)=locs(2,curfrag,1:2)+minDist2-1; 

                locMin=locs(2,curfrag,2)-locs(2,curfrag,1)-3; 

                locMax=locs(2,curfrag,2)-locs(2,curfrag,1)+3; 

                for i=3:6 

                    j=i-1; 

                    searchMin=locs(2,curfrag,j)+locMin; 

                    searchMax=locs(2,curfrag,j)+locMax; 

                    if searchMin>0 && 

searchMax<=max(size(squeeze(fragPeriodArray(2,curfrag,:)))) && 

~isempty(findpeaks(squeeze(fragPeriodArray(2,curfrag,searchMin:searchMax)),'Sortstr','des

cend','NPeaks',1)) 

                        

[pks(2,curfrag,i),tempLoc]=findpeaks(squeeze(fragPeriodArray(2,curfrag,searchMin:searchMa

x)),'Sortstr','descend','NPeaks',1); 

                        locs(2,curfrag,i)=searchMin+tempLoc-1; 

                    end 

                end 

 

                if 

abs(fragPeriodArray(2,curfrag,locs(2,curfrag,1))/fragPeriodArray(1,curfrag,locs(2,curfrag

,1))-1)<0.15 && max(locs(2,curfrag,:))<(7*min(locs(2,curfrag,:))) && 

min(locs(2,curfrag,i))~=0 && min(locs(1,curfrag,i))~=0 

                    

harmonic_ratio(curfrag,:)=fragPeriodArray(2,curfrag,locs(2,curfrag,:))./fragPeriodArray(1

,curfrag,locs(2,curfrag,:)); 

                end 

            end 

 

 

end 

 

        phase=-angle(Pxy)/pi*180; 

        %Masimo/Nellcor ratio of amplitude of harmonics after fundamental 

        %frequency normalized to amplitute 1 

        harmonic_ratio_squeeze = harmonic_ratio(all(harmonic_ratio~=0,2),:); 

        for i=1:6 

            ratioAve(i)=nanmean(squeeze(harmonic_ratio_squeeze(:,i))); 

            ratioSD(i)=nanstd(squeeze(harmonic_ratio_squeeze(:,i))); 

        end 

    ratioAve = squeeze(transpose(ratioAve)) 

    ratioSD = squeeze(transpose(ratioSD)) 

end 
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