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Abstract 

Vemurafenib is the first FDA-approved personalized treatment for metastatic melanoma 

to show an improvement in survival. This serine threonine kinase inhibitor targets the 

mutated BRAF V600E protein, which occurs in approximately 50% of melanomas. The 

downstream effect of BRAF V600E blockade is inhibition of cell proliferation. Little is 

known about the effect of vemurafenib on glucose metabolism in melanoma cells. The 

Warburg effect, or the use aerobic glycolysis to generate energy and building blocks for 

cell proliferation, is a hallmark of cancer. Normal cells, in contrast, metabolize glucose 

through oxidative phosphorylation in the presence of oxygen and through glycolysis in 

anaerobic environments. Vemurafenib decreases glucose uptake in sensitive human 

melanoma cell lines but not in intrinsically resistant lines or lines that have been passaged 

to become resistant. The Braf/Pten mouse model of melanoma shows no major decrease 

in glucose uptake with treatment with PLX4720, an analog of vemurafenib, of up to 28 

days perhaps because PTEN deletion removes the negative feedback on the PI3K/mTOR 

pathway of cell metabolism. The decrease in uptake seen in vitro is associated with a 

decrease in hexokinase (HK) activity, which is required for entrapment of glucose as 

glucose-6-phosphate inside the cell, but not with significant changes in mRNA levels of 

glucose transporters or hexokinases (GLUT1, GLUT2, GLUT3, HK1, or HK2). The 

global effect of vemurafenib on glucose metabolism is decreased flux through glycolysis 

as shown by decreased lactate levels. These observations indicate vemurafenib targets the 

deregulated metabolism of human melanoma cells. This finding may lead to the 

discovery and development of novel therapeutics that specifically target the abnormal 

metabolism of cancer cells.  
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INTRODUCTION 

 

Molecular Pathogenesis and Staging of Melanoma 

  Melanoma is a malignancy of the pigment-producing cells of the skin called 

melanocytes. Two models of melanoma progression exist: one predicts melanoma 

formation from single cancer-prone melanocytes and another one predicts melanoma 

formation from malignantly transformed nevi1. The latter, known as the Clark model, 

depicts a continuous process of malignant transformation going from melanocyte to 

nevus with the subsequent development of dysplasia, hyperplasia, invasion, and 

metastasis (Figure 1).  

 

Figure 1. Biologic Events in the Progression of Melanoma. A benign nevus undergoes molecular changes that 
eventually lead to a premalignant dysplastic nevus, a melanoma in radial-growth phase, a melanoma in vertical-
growth phase, and finally metastatic melanoma1.  
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The mitogen activated protein kinase (MAP kinase) pathway is an important 

pathway for cell proliferation and melanomagenesis (Figure 2). It begins with a 

transmembrane receptor tyrosine kinase, which when bound by a growth factor, 

phosphorylates NRAS. Activated NRAS triggers a cascade of serine/threonine kinase 

phosphorylations. The main kinases of this cascade are RAF, MEK, and ERK. Once 

activated, ERK phosphorylates other kinases and gene regulatory proteins. By 

transmitting the signal downstream, activated ERK drives transcription of genes required 

for cell proliferation.  

 

Figure 2. Mitogen Activated Protein Kinase Pathway of Cell Proliferation. Binding of growth factors to receptor 
tyrosine kinases on the surface of the cell activate an intracellular signaling cascade that involves RAS, RAF, 

MEK, and ERK. 
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BRAF is a serine/threonine tyrosine kinase of the MAP kinase signaling pathway 

of cell proliferation. This kinase plays an important role in melanocytic neoplasias2. 

BRAF activating mutations occur in approximately 50% of melanomas and more than 

90% of these mutations result in substitution of valine for glutamic acid at the 600th 

amino acid (V600E)3, 4.  

Mutations in NRAS have been found in malignant melanoma5-7. A case-control 

study of melanoma and benign melanocytic nevi showed that 5.9% of nevi carry 

mutations in NRAS, compared to 5.2% of melanomas8. More recently, a systematic 

review of the melanoma literature revealed that the frequency of NRAS mutations in 

melanomas is much higher, at 28%4. Ultraviolet radiation appears to play a role in the 

induction of NRAS mutations, as most tumors carrying these genetic changes are located 

in areas exposed to the sun9-11. There is, however, conflicting evidence for the role of UV 

radiation in NRAS mutagenesis.  

The mutated genes of the MAP kinase pathway, known as oncogenes because 

they stimulate the development of cancer, also activate counterregulatory pathways that 

inhibit cell proliferation in nevi, leading to growth arrest or senescence (i.e., oncogene-

induced senescence, or OIS).  Senescence can be caused by various stresses, including 

oncogene activation, telomere dysfunction, oxidative stress, DNA damage, cytotoxic 

drugs, and cell culture12. Teleologically, senescence represents an evolutionary 

gatekeeper against unwanted cancer formation. OIS has been shown to be an important 

mechanism of growth arrest in oncogenically stressed cells13. Loss of OIS through 

mutations in tumor suppressive pathways is postulated to allow oncogene-driven 

malignant progression of nevi to melanoma. Two main pathways have been identified: 
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p16INK4a-RB (retinoblastoma) and ARF-p5314. As expected, these two pathways are 

often mutated in cancer14-17.  

As part of the p16INK4a-RB pathway, the p16 (INK4) protein inhibits cell-cycle 

progression in response to stress by blocking the formation of an active cyclin D1-Cdk4 

complex. When p16 is inactive or absent, the active cyclin D1-Cdk4 complex 

phosphorylates the retinoblastoma protein (Rb), rendering it nonfunctional. 

Phosphorylated Rb releases the gene regulatory protein E2F, allowing expression of S-

phase genes and progression of the cell cycle even in the context of damaging 

environmental or intrinsic stressors.  

The tumor suppressor protein p53 is mutated in about half of all human cancers, 

making it a paramount gene in human cancer. The protein is involved in cell cycle 

control, apoptosis, and maintenance of genetic stability. Oncogene-driven cell 

proliferation stimulates the ARF protein, which then activates p53. DNA damage may 

also stimulate p53 activation. Activated p53 induces the cell to commit suicide by 

apoptosis or blocks cell division until the damage is repaired. The p53 protein inhibits 

cell cycle progression by binding to DNA and inducing transcription of the CDKN1A 

(p21) gene. The p21 protein binds to Cdk complexes, preventing the cell from entering S-

phase and replicating its DNA.  

Tissue markers for senescence include senescence-associated β-galactosidase 

(SA-β-Gal), p16, p53, and p21. Staining of cells or tissue sections with the chromogenic 

substrates X-gal or fluorescein di-β-d-galactopyranoside (FDG) for the detection of SA-

β-Gal activity is the most widely used assay for the detection of OIS. Enzymatic activity 

is derived from the increased lysosomal content of senescent cells; its biological 
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significance, however, is still uncertain. Levels of p16, p53, and p21 can be measured by 

means of immunohistochemistry and Western blotting.  

Several studies of melanocytic neoplasia provide evidence that OIS is partly 

responsible for the growth-arrested state of nevi and that loss of senescence-inducing 

signaling pathways is associated with progression to melanoma. Normal human 

melanocytes transduced with the oncogene BRAFV600E show early growth followed by 

arrest after 21 days of culture18. Growth arrest correlated with SA-β-galactosidase 

activity and elevated levels of p16. Human melanocytic nevi, irrespective of BRAF 

mutational status, also display these markers and lack staining for the proliferation 

marker Ki-67 on immunohistochemistry. These findings are consistent with the OIS 

hypothesis of nevi.   

Immunohistochemical comparison of benign compound nevi, dysplastic nevi, and 

melanomas has also shed light on the role of the senescence-inducing pathways (e.g. 

p16INK4a-RB and ARF-p53) in melanoma development and progression19. Benign 

compound nevi show SA-β-galactosidase reactivity and intense p16 nuclear staining, 

whereas p53 and p21 are not detectable. Dysplastic nevi, in contrast, showed less 

extensive staining for p16 than benign compound nevi. Furthermore, staining was limited 

to the cytoplasm, a pattern that is associated with dysfunctional p16. A proportion of nevi 

showed pockets of p53-positive cells, often without p21, suggesting that benign nevi are 

in a p16-dependent senescent state whereas dysplastic areas of nevi may still be 

proliferating. Supporting this hypothesis, nevi from patients with a mutation that inhibits 

nuclear translocation of p16, an event required for fully functional p16, tend to be large 
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and of atypical appearance20. Furthermore, the tumor suppressors p21 and p53 are 

expressed widely in these nevi.  

Melanomas showed a few areas of immunoreactivity to p21 and p53, typically at 

the edges of the lesion, with the bulk of the nodule being negative. Likewise, most areas 

lacked detectable levels of p16, a finding more common in vertical growth-phase (VGP) 

melanomas compared to radial growth-phase (RGP) melanomas. Although the staining 

pattern of p21, p53, and p16 was similar between dysplastic nevi and the edges of 

melanomas, the latter showed more intense reaction to CHK2, a checkpoint kinase that 

mediates p53 activation on DNA damage and p53-dependent senescence. The edges of 

melanomas may represent residual senescent regions, namely nevi.  

A study using a mouse model of melanoma showed that p16 might play a less 

prominent role in OIS than originally thought21.  Mice harboring the BRAFV600E mutation 

developed nevi regardless of the mutational status of CDKN2A (p16). This means that 

nevi in CDKN2A-null mice entered senescence through an alternative tumor suppressive 

pathway.  Furthermore, tumors in mice carrying wild-type CDKN2A retained nuclear 

expression of p16, suggesting that, in contradiction with other studies, disruption of the 

p16INK4a-RB pathway is not necessary for melanoma progression. However, the study 

showed that CDKN2A-null mice were more likely to develop melanomas than wild-type 

CDKN2A mice (80% vs. 54% at 12 months). In addition, melanomas developed earlier in 

the CDKN2A-null mice than in the wild type mice (50% of mice developed tumors at 7 

months vs. 12 months). Finally, tumors in the CDKN2A-null mice were multiple whereas 

the wild type mice developed single tumors. These results suggest p16 increases tumor 

penetrance and decreases latency.  
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A biopsy of clinically suspicious lesions, which are those showing asymmetry, 

irregular borders, variation in color, diameter of greater than 6mm, and recent evolution 

in appearance (ABCDE criteria), provides histologic confirmation of cutaneous 

melanoma22. According to the American Joint Committee on Cancer, staging of 

melanoma is based on maximal thickness of the tumor (T), presence or absence of 

microscopic ulceration, the number and size of involved lymph nodes (N), and the 

presence or absence of metastasis (M) (Tables 1 and 2)23.  
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Treatments of Metastatic Melanoma 

One American dies from melanoma almost every hour 24. Patients with metastatic 

disease have a poor prognosis, with a median survival of <1 year 23. Durable responses 

are achieved in <10% of patients with metastatic melanoma treated with high-dose 

interleukin-2 25. Ipilimumab (CTLA4 blocking antibody) has shown a survival benefit in 

patients with metastatic melanoma, but long-term benefit was observed for only an 

additional 10% of patients compared with control arm therapy in randomized, phase III 

trials 26, 27. New treatments are needed. 
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The increased knowledge about the molecular pathogenesis of melanoma has 

opened the door to a personalized approach to the treatment of melanoma. BRAF 

mutations have been found in ∼50% of melanomas, and most of these mutations result in 

a substitution of glutamic acid for valine at the 600th amino acid of the BRAF protein 

chain (V600E) 3. BRAF is a kinase that is part of the BRAF→MEK→ERK mitogen-

activated protein kinase (MAPK) pathway of cell proliferation. The mutated kinase is 

constitutively active and, in combination with other molecular oncogenic changes, results 

in unregulated cell proliferation. In clinical trials, the selective BRAF inhibitor 

vemurafenib (formerly known as PLX4032, RG7204, and RO5185426) produced 

complete or partial tumor regression in most patients 28  

Despite the promising results of these trials and the demonstrated clinical benefit, 

responses are short-lived in many patients as a result of mechanisms that are not fully 

understood. Some studies have shed light on the molecular correlations of drug resistance 

(Figure 3). Melanoma cell lines treated with BRAF inhibitors show rebound 

phosphorylated ERK (pERK) activation and escape from BRAF inhibition 29. Second-site 

mutations that confer resistance have not been observed in BRAF to date 30. It is crucial 

to gain a thorough understanding of the underlying mechanisms so that we can develop 

novel strategies to circumvent resistance and achieve more prolonged responses. 
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Figure 3. Mechanisms of Resitance to Vemurafenib. Various mechanisms of resistance have been elucidated. 
Some depend on the MAP kinase pathway while others work independently of this pathway. 

Clinical trials for vemurafenib 

The current treatments for metastatic melanoma (i.e., interleukin-2 and 

dacarbazine) are largely ineffective because they provide no improvement in overall 

survival 31. Dacarbazine in particular has a response rate of only 15% to 20%. The 

discovery that >50% of melanomas harbor a mutation in the BRAF gene heralded the 

development of targeted therapies against the corresponding mutant, activated protein 3. 

The small-molecule BRAF inhibitor vemurafenib showed promising results in a 

phase I trial 28. This multicenter phase I trial consisted of 2 phases: a dose-escalation 

phase and an extension phase. In the dose-escalation phase, investigators determined the 
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recommended extension phase and phase II dose to be 960 mg twice daily. Higher doses 

than this resulted in intolerable fatigue, rash, and arthralgias. Another common adverse 

event was squamous cell carcinoma, keratoacanthoma-type. These well-differentiated 

skin tumors have low invasive potential and no metastatic potential, and they can be 

easily excised. The purpose of the extension phase was to determine the response rate 

according to Response Evaluation Criteria in Solid Tumors (RECIST) in patients with 

metastatic melanoma harboring the BRAF V600E mutation. Patients with brain 

metastases were excluded from the study. Of the 32 patients in the extension cohort, 26 

(81%) responded to treatment, with 68% of all patients having responses that were 

sufficiently durable to be confirmed on subsequent scans. Two patients showed a 

complete response, and 24 showed partial responses. Although some responses are 

transient, with a median progression-free survival (PFS) time of ∼7 months (including 

both responders and nonresponders), some patients show continued response for >2 years 

32. 

The single-arm, multicenter, open-label phase II trial known as BRIM2 had a 

primary endpoint of overall response rate, with a target of 20%, and secondary endpoints 

of duration of response, PFS, and overall survival 32. A total of 132 previously treated 

patients with BRAFV600E-positive metastatic melanoma were enrolled in the study. A 

companion diagnostic assay co-developed with vemurafenib, known as the cobas 4800 

BRAF V600E Mutation Test (Roche Molecular Diagnostics), was used to determine the 

BRAF mutational status of patients enrolled in the study. All patients were treated with 

960 mg of vemurafenib twice daily until disease progression occurred. At the time of 

analysis, the median follow-up was 7 months. With a response rate of 52% (62/132), 
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consisting of 59 partial responses and 3 complete responses, the trial met its primary 

endpoint. The median duration of response was 6.8 months, and the median PFS was 6.2 

months. Consistent with the phase I trial, the most common side effects (>25%) were 

rash, fatigue, and arthralgias. The most common grade 3 adverse event was cutaneous 

squamous cell carcinoma (24.2%), which was excised without interfering with the trial. 

An additional study was conducted to investigate whether vemurafenib is 

associated with improved survival compared with dacarbazine, the standard of care. This 

study, a global, randomized, open-label, controlled, multicenter phase III trial known as 

BRIM3, accrued 675 untreated patients with BRAFV600E-positive metastatic melanoma 33. 

The study met the primary endpoints of showing improvement in overall survival and 

PFS at the time of the interim analysis, which occurred 1 month after the last patient was 

accrued. With a median follow-up of just over 3 months, the interim analysis revealed 

that the vemurafenib group achieved a 6-month overall survival of 84%, compared with 

64% in the dacarbazine group. On the basis of these extraordinary results, patients in the 

dacarbazine group were allowed to switch immediately to the vemurafenib group. The 

median PFS was 5.3 months for vemurafenib compared with 1.6 months for dacarbazine. 

Consistent with previous trials, the response rate of vemurafenib was 48% compared with 

5% for dacarbazine, and the grade 3 or worse adverse effects consisted primarily of 

arthralgias (3%), rash (8%), fatigue (2%), and cutaneous squamous cell carcinomas or 

keratoacanthoma (20%). 

Vemurafenib is the first personalized treatment for metastatic melanoma to show 

an improvement in overall survival, and it was approved by the U.S. Food and Drug 
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Administration in 2011. 

Metabolism and Cancer 

Cancer is characterized by uncontrolled cell proliferation. Recently, deregulated 

metabolism has been identified as an emerging hallmark of cancer34. Alterations in 

energy metabolism are necessary to fuel the rapid cell growth and division of malignant 

cells. Normal cells utilize glucose in two different ways depending on the availability of 

oxygen. In the presence of oxygen, normal cells metabolize glucose through glycolysis to 

pyruvate in the cytosol and then shunt it to the mitochondria for oxidative 

phosphorylation. In the absence of oxygen, normal cells break down glucose to lactate 

via glycolysis and fermentation. Cancer cells, in contrast, partially reprogram their 

metabolism to increase conversion of pyruvate to lactate irrespective of oxygen 

availability. The metabolism of glucose through glycolysis with the production of lactate 

is known as aerobic glycolysis.  

To allow for increased lactate production and the maintenance of ATP synthesis, 

cancer cells markedly upregulate glucose uptake, in part by increasing expression of  

glucose transporters, such as GLUT135-37. This observation forms the basis for visualizing 

glucose uptake using positron emission tomography (PET) with a radiolabeled analog of 

glucose, specifically 18F-fluorodeoxyglucose, as a reporter. Another glucose analog that 

is used to study glucose metabolism is the fluorescence analog called 2-[N-(7-nitrobenz-

2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) 38. This analog is 

phosphorylated by hexokinases but is not further metabolized.  
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Increased glycolysis, while generating less ATP per glucose molecule than 

oxidative phosphorylation, allows for the production of metabolic intermediates for 

various biosynthetic pathways, including those of amino acids and nucleosides. The 

result is an increased availability of building blocks for proteins and nucleic acids to 

assemble organelles and form new cells.  

The PI3K-mTOR pathway is an important pathway for metabolism, both in 

normal and cancer cells. For this reason, multiple clinical trials of agents that target the 

pathway are currently ongoing39. Activation of the pathway can involve binding of 

insulin-like growth factors (IGFs) to IGF receptors. This event activates phosphoinositide 

3-kinase (PI3K), which after a number of steps leads to activation of the mammalian 

target of rapamycin (mTOR). The tumor suppressor PTEN negatively regulates PI3K 

activation. The mTOR protein plays a central role in cell metabolism by regulating 

protein translation  (Figure 4).   
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Figure 4. PI3K-mTOR pathway. Binding of insulin-like growth factors to membrane receptors leads to 
activation of the PI3 kinase, leading to conversion of PI2P into PI3P. PI3P activates PDK1, which 
phosphorylates AKT. AKT activates mTOR, promoting protein synthesis40. 

Cell metabolism may play an important role in measuring responses to targeted 

cancer therapies. A study that evaluated FDG-PET responses to vemurafenib in BRAF-

mutant advanced melanoma showed a trend for patients with greater reductions in uptake 

of FDG to have longer progression-free survival41. At the same time, there was no 

relationship between best response according to RECIST criteria and progression-free 

survival.  
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STATEMENT OF PURPOSE: SPECIFIC HYPOTHESIS AND SPECIFIC AIMS 

OF THE THESIS 

Hypothesis: vemurafenib targets the deregulated metabolism of cancer cells.  

Aims:  

- Evaluate glucose uptake in human melanoma cell lines in vitro. 

- Evaluate glucose uptake in the Braf/Pten mouse model. 

- Characterize the mechanism of decreased glucose uptake. 

- Evaluate the global metabolic effect of treatment with vemurafenib. 
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METHODS 

In vitro Glucose Uptake Assay* 

Cells from the lines 501Mel, YUKSI, YUKOLI, YURIF, YUCOT, YULAC-

sensitive, and YULAC-resistant were cultured overnight in 2mL of Opti-MEM 

supplemented with 10% FBS at 37°C and 5% CO2 in six-well plates at a density of 

50,000 cells/mL. The YULAC-resistant line was generated by passaging the YULAC-

sensitive line in medium containing 1 µM PLX4032 for several months. Each plate 

corresponded to a specific time point. After overnight incubation, three wells were treated 

with 3 µM PLX4032 (vemurafenib) and the other three wells were treated with control 

vehicle of DMSO. For some cell lines, experiments were also performed with cells 

treated with 300 nM MEK inhibitor and high concentrations of PLX4032 and MEK 

inhibitor. At time 0, after treatment, cells were washed gently with PBS. Then they were 

incubated in 150 µL of 300 µM 2-NBDG (Invitrogen) for 10 minutes and washed gently 

three times with cold PBS. Next, they were visualized with a fluorescence microscope 

equipped with a FITC filter and the intensity of the 2-NBDG signal was subjectively 

scored using a scale from 0 (no signal, i.e. control wells) to 3 (maximum intensity). The 

above steps were repeated for time points 7 hours, 9 hours, 12 hours, 24 hours, 48 hours, 

and 72 hours. 

 Duplicate plates were made to measure the viability of the cells to ensure changes 

in uptake were not due to cell death. Cell viability was measured by automatic trypan 

                                                
* Development and optimization of method as well as experiments on lines YULAC-sensitive and –
resistant performed by author; other cell lines evaluated by Nicholas Theodosakis. 
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blue assay (Cell Countess).  

Glucose Uptake In Vivo* 

The Braf/Pten mouse model is an immunocompetent mouse model that relies on 

the Cre-Lox recombination system42. Briefly, the Cre recombinant enzyme gene is fused 

to an estrogen receptor gene. Expression of this construct is under control of the 

tyrosinase promoter, ensuring expression is limited to melanocytes. The Cre-ER fusion 

protein is inactive until 1 µL of 50 mg/mL 4-hydroxytamoxifen diluted six-fold in 100% 

ethanol is applied to the skin of the mouse. The 4-hydroxytamoxifen binds to the estrogen 

receptor and activates the Cre recombinase. Next, the Cre-ER enzyme recombines DNA 

between loxP sites. Through this mechanism BrafWT transforms into BrafV600E and Pten is 

deleted. Two weeks after induction a melanoma tumor begins to be visible at the site of 

4-hydroxytamoxifen application.  

Mice underwent melanoma induction this way and then were treated starting at 

week 2 after induction with an analog of vemurafenib, PLX4720, for 0, 7, 14, 21, and 28 

days. The PLX4720 was compounded in mouse chow to yield a dose similar to what is 

achieved in human patients . At the given time points, the mouse was injected with 100 

µL of 700 µM 2-NBDG retro-orbitally. Analogous to the use of 18F-fluorodeoxyglucose 

for imaging of tumors using a PET scanner, the mouse was imaged using the Maestro in 

vivo imaging system (CRI) and the Maestro imaging software for detection of glucose 

uptake in the tumor 30 minutes after injection of 2-NBDG to allow distribution of the 2-

NBDG throughout the mouse’s body and tumor. The mouse was anesthetized in an 

                                                
* Performed by author 
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isoflurane chamber for injection of 2-NBDG and imaging. The images were acquired and 

analyzed as outlined in the system’s instructions manual.  

Quantitative RT-PCR* 

The cDNA levels of GLUT1, GLUT3, HK1, HK2, and HK3 in YULAC 

(sensitive) both under treatment with 3 µM  PLX4032 (vemurafenib) and control were 

measured by quantitative RT-PCR using the TaqMan® Gene Expression Assay and the 

StepOneTM Real-Time PCR System.  

Hexokinase Assay† 

The hexokinase assay (Biomedical Research Service Center University at Buffalo, 

State University of New York, Cat #: E-111) was performed by following the protocol 

previously described. Briefly, cell lysis solution was added to 105-106 pelleted cells of the 

cell lines YULAC-sensitive and 501Mel. The cell lines were incubated in 3 µM 

PLX4032 or DMSO control for 3 days. Lysate was centrifuged and supernatant was 

recovered for HK assay. Bradford protein assay was performed to determine sample 

protein concentrations for normalization. The sample protein concentration was 

normalized to 0.2-1 mg/mL by diluting in ice-cold cell lysis solution. Next, 10 µL of 

sample for each cell line was added in triplicate to a 96-well microplate. The reaction was 

initiated by adding 50 µL of working HK assay solution to each well. The plate was 

covered and incubated at 37°C for 30 minutes. Subsequently, the reaction was stopped by 

adding 50 µL of 3% acetic acid per well. Optical density was measured at 492 nm using a 
                                                
* Performed by author. 
† Performed by Nicholas Theodosakis 
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microplate reader and compared between experimental conditions and cell lines by using 

a two-tailed Student’s T-test.  

Tritiated 3-O-Methylglucose Uptake Assay* 

The purpose of this assay is to determine whether treatment with vemurafenib 

decreases glucose uptake by affecting the function of the glucose transporter (by means 

of translocation or inactivation) or by affecting the function of hexokinase (by 

downregulation of expression or inactivation). The protocol was modified from the 

literature 43,44,45. 

Cells were seeded in 6-well plates at predetermined cell densities, 2 mL/well and 

incubated for 1 day at 37°C, 5% CO2. Then they were incubated in 3 µM vemurafenib (3 

wells) or vehicle (3 wells) for 72 hours. Duplicate plates were generated for cell counting 

since control vs. treated wells have different cell densities at 72 hours. At 72 hours, cells 

were washed with 1 mL PBS followed by the addition of 1 mL of PBS. Next, 10 µL of 

tritiated 3-O-methylglucose stock solution (100X) were added and the plates were 

incubated for 30 seconds, 60 seconds, and 3 minutes.  

The 3-O-methylglucose stock solution was prepared as follows. A volume of 50 

uL of [3H]3-O-methylglucose (American Radiolabeled Chemicals, cat. No. 

NET379001MC, 60-90 Ci/mmol, 1 mCi/ml in ethanol-water 9:1) was added to 450 µL of 

1 g/L 3-O-methylglucose (3-O-methyl-D-glucopyranose; Sigma-Aldrich, cat. No. 

101176252, 1 g – FW 194.18 g/mol) in PBS with Ca/Mg to make a 100X, 100 µCi/mL, 5 

mM 3-O-methylglucose stock solution. 

At the end of each time point, cells were washed three times with 500 µL ice-cold 
                                                
* Performed by author 



 25 

PBS supplemented with 100 µM phloretin. Phloretin is a compound that blocks glucose 

transporters and ensures the level of radioactivity measured from the samples comes from 

the intracellular stores of tritiated 3-O-methylglucose. Next, 300 µL of modified RIPA 

buffer was added for cell lysis and the plate was incubated for 10 min. The entire cell 

lysate was transferred into a scintillation vial containing 3 mL of liquid scintillation 

cocktail (ICN). To collect any remaining lysate, 300 µL PBS buffer was added into each 

well for washing and then this buffer was transferred into the corresponding scintillation 

vial. A second wash and collection of buffer was performed followed by vortexing of the 

scintillation vial (total 3.9 mL) for a few seconds.  

The radioactivity associated with the cells was quantified using a scintillation 

counter (the “counts per minute or cpm of each scintillation vial). A volume consisting of 

600 µL PBS, 300 µL modified RIPA buffer, and 3 mL of scintillation fluid served as a 

blank and 10 µL of 3-O-MG stock solution served as the external standard.  

Metabolic Flux Cell Labeling* 

Melanoma cells were labeled with 13C-glucose and – glutamine as previously 

described46.  

Briefly, melanoma cells were seeded into 6-well plates such that at the end of the labeling 

period they were at confluency (plated 2 mL at density of ~75,000 cells/mL in Opti-

MEM with 10% v/v FBS, 1% v/v pen/strep and supplemented with 3 µM PLX4032 in 

treated wells and DMSO in control wells). For each condition, cells were seeded into 4 

wells (3 for gas chromatography-mass spectroscopy analysis, 1 for protein 

determination). After 24 hours to allow cell to attach to plate and following incubation 

                                                
* Performed by author 
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for two days, 1 mL of medium was saved. The sample was centrifuged to remove floating 

cells and the supernatant was collected and then shipped. Next, the growth medium was 

replaced with 2mL/well of glucose labeling medium (MEM--Cellgro 15-010: 1 g/L 

glucose, no glutamine--supplemented with 1 g/L [U-13C6] glucose, 10% v/v FBS, 1mM 

L-glutamine, 1% v/v pen/strep, 1% v/v MEM vitamins, 1X NEAA) or 2mL/well of 

glutamine labeling medium (MEM--Cellgro 15-010: 1 g/L glucose, no glutamine--

supplemented with 1 g/L unlabeled glucose, 10% v/v FBS, 0.5 mM unlabeled L-

glutamine, 0.5 mM [U-13C5] L-glutamine, 1% v/v pen/strep, 1% v/v MEM vitamins, 1X 

NEAA). Medium to be added to treated cells was supplemented with 3 µM PLX4032. 

Cells were incubated in the labeling media for 8 hours and 24 hours.  

For extraction, 1mL of medium from labeled cells was saved. Floating cells were 

removed by centrifugation and the supernatant was collected and shipped. Cells were 

collected by trypsinization and spun down at 500 x g at 4°C. Cells were kept on ice after 

they were harvested. Cells were resuspended in 1mL of ice-cold PBS and transferred into 

Eppendorf tubes. Then they were spun down at 500 x g for 5 minutes and the PBS was 

removed without disturbing the cell pellet. The cells were placed on dry ice for freeze 

down. The frozen pellets were kept at -70°C. The frozen samples were then shipped on 

dry ice overnight.  

 Shipments were sent to Sanford-Burnham at University of California-San Diego 

for gas chromatography-mass spectrometry analysis (GC-MS) following a previously 

described protocol46. 
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RESULTS 

2-NBDG in vitro uptake assay: 

To evaluate the effect of vemurafenib treatment on glucose uptake melanoma 

cells were exposed to the glucose analog 2-NBDG in vitro. The most sensitive cell line to 

PLX4032, YULAC-sensitive, showed a gradual decrease in glucose uptake, starting at a 

time between 7 and 9 hours. Uptake decreased to undetectable levels at 48 hours. In 

contrast, the resistant counterpart showed no decrease in uptake (Figure 5). YUCOT, 

another sensitive line showed decreased uptake as early as 9 hours after incubation in 

PLX4032 (Figure 6). The moderately sensitive lines YUKOLI and YURIF showed minor 

decrease in uptake at 72 and 24 hours, respectively. The resistant line YUKSI showed no 

decrease in uptake while the other resistant line 501Mel showed a minor decrease in 

uptake as early as 7 hours.  
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Figure 5. Effect of PLX4032 on glucose uptake in human melanoma cell lines YULAC-sensitive and -resistant. 
YULAC-sensitive is susceptible to the inhibitory effect of PLX4032 on glucose uptake. In contrast, acquired 

resistance YULAC is not. 
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Figure 6. Effect of PLX4032 on glucose uptake in the human melanoma cell lines YUCOT, YUKOLI, YURIF, 
YUKSI, and 501Mel. 
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In vivo glucose uptake assay 

To evaluate the effect of treatment with vemurafenib on glucose uptake in 

melanoma cells in vivo, a Braf/Pten mouse bearing a melanoma tumor was treated with 

the vemurafenib analog, PLX4720, and imaged using the glucose analog 2-NBDG. No 

definitive decrease in glucose uptake was observed in the melanoma tumor at 0, 7, 14, 21, 

or 28 days after initiation of treatment with PLX4720 (Figure 7).  
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Figure 7. Effect of the vemurafenib analog, PLX4720, on glucose uptake in the Braf/Pten mouse melanoma 
model. No effect on glucose uptake was observed up to 28 days of treatment. 
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hexokinases. To test this possibility quantitative RT-PCR was performed. The change in 

mRNA levels of glucose transporter genes was not significant (data not shown). . 

 

HK activity assay 

Hexokinase phosphorylates glucose that enters the cell and converts it into 

glucose-6-phosphate, a form that is trapped intracellularly. To investigate whether 

vemurafenib decreases glucose uptake in melanoma cell lines by altering the function of 

hexokinase, a hexokinase activity assay was performed. The hexokinase activity level 

was halved in the YULAC-sensitive cell line (p<0.05) whereas no change was observed 

in the most resistant line, 501Mel (Figure 8). The assay neither distinguishes among the 

three hexokinases (HK1, HK2, and HK3) nor gives an indication as to the alteration that 

results in the drop in activity level.  

 

Figure 8. Effect of treatment with vemurafenib on hexokinase activity level in the YULAC-sensitive and 501Mel 
(resistant) human melanoma cell lines. 
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3-O-Methylglucose Uptake Assay 

To evaluate whether vemurafenib treatment decreases the number of glucose 

transporters, a time-course of tritiated 3-O-methylglucose uptake was generated. 

Hexokinase cannot phosphorylate this glucose analog.  The uptake of 3-O-methylglucose 

showed no difference between the control and treated samples in the YULAC-sensitive 

line. In contrast, 501Mel showed increased uptake with treatment at 30 and 60 seconds 

(p<0.05) (Figure 9). The mechanism for this increase is unclear.  
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Figure 9. Time-course of tritiated 3-O-methylglucose uptake in YULAC-sensitive and 501Mel (resistant) human 
melanoma cell lines treated with vemurafenib for 72 hours. The YULAC-sensitive line showed no change in the 
level of surface transporters, as evidenced by the equal kinetics of 3-O-MG uptake between treated and control. 
501Mel showed an increase in the level of glucose transporters, as evidenced by the increase in 3-O-MG uptake 

at 30 and 60 seconds (p-value<0.5). 
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Cell labeling 

Labeling cells with 13C-glucose followed by quantification of proportion of 

labeled metabolites, allows for the creation of a metabolic profile and for evaluation of 

flux. The YULAC-sensitive line showed decreased flux of 13C through glycolysis to 

lactate and alanine with treatment consisting of 3 µM PLX4032. This decrease in flux 

was much less marked in the YULAC-resistant line. The production of lactate and 

phosphoglyceraldehyde were slightly increased in the 501Mel cell lines. There were no 

significant changes in the level of metabolites in the tricarboxylic acid cycle. Evaluation 

of glutamine levels is out of the scope of this thesis.  
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Figure 10. Metabolic profile of YULAC-sensitive, -resistant, and 501Mel before and after treatment with 
vemurafenib. The YULAC-sensitive line shows a decrease in the level of lactate with treatment, indicating 
decreased flux through glycolysis and possibly increased flux through the TCA cycle for oxidative 
phosphorylation. A concomitant increase in TCA cycle metabolites, however, was not observed. Lactate levels 
decreased slightly in YULAC-resistant and increased in 501Mel.  
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DISCUSSION 

The effect of kinase inhibitors on cell metabolism has previously been studied. In 

particular, imatinib has been shown to decrease glucose uptake in BCR-ABL-positive 

cells and inhibit glycolysis47. Gefitinib, an EGFR receptor inhibitor, has been shown to 

inhibit glucose uptake in non-small cell lung cancer cell lines44. This study now shows 

that vemurafenib, a serine threonine kinase inhibitor, decreases glucose uptake by what 

appears to be a hexokinase-dependent mechanism and that this decrease in uptake may be 

important for the mechanism of action of the drug. The first set of data shows that 

treatment of sensitive cell lines (YULAC-sensitive, YUCOT, YURIF, YUKOLI) results 

in decreased glucose uptake whereas treatment of acquired or intrinsically resistant cell 

lines (501Mel, YULAC-resistant, YUKSI) does not. As confirmed by automatic trypan 

blue assay (Cell Countess), the decrease in uptake is not accompanied by a significant 

decrease in cell death (data not shown), indicating the result is not due to increased cell 

death in the treated samples. Interestingly, the inhibitory effect of vemurafenib on 

glucose uptake in the YULAC cell line is lost in the resistant counterpart, suggesting that 

glucose uptake may play an important role in the mechanism of resistance to 

vemurafenib. The decrease in uptake occurs between 7 and 9 hours in the YULAC 

sensitive cell line. The time course of uptake decrease points toward particular 

mechanisms. An immediate decrease in uptake would indicate a fast mechanism, such as 

phosphorylation of the transporters with subsequent blockage of the transport pore, is 

taking place. A delayed decrease, as was observed in this case, points toward a slow 

mechanism, such as downregulation of DNA transcription or alteration of translational 

efficiency.   
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The Braf/Pten mouse model was used to investigate glucose uptake in vivo. The 

melanoma tumor that forms in this model harbors a BrafV600E mutation and a PTEN 

deletion. PTEN is an inhibitor of phosphoinositide-3-kinase, a key regulator of the PI3K-

mTOR pathway of cell metabolism. The absence of decreased glucose uptake in the 

tumor after 7, 14, 21, and 28 days of treatment might indicate the genetic makeup of the 

tumor renders the model resistant to decreases in glucose uptake. The absence of PTEN, 

theoretically, leaves the PI3K-mTOR pathway without its main negative regulator, 

possibly allowing glucose uptake to continue despite BRAF inhibition. Interestingly, 

treatment with PLX4720 reduces tumor growth in these mice. This might indicate a 

decoupling of growth arrest, through inhibition of cell proliferation via BRAF blockage, 

and glucose uptake, through lack of negative feedback via PTEN in the PI3K-mTOR 

pathway. 

 A decrease in glucose uptake can occur by either an effect on facilitative glucose 

transporters on the surface of the cell or by an effect on the intracellular hexokinase 

enzymes. The transporters allow passage of glucose into the cell. Hexokinase 

phosphorylates glucose to form glucose-6-phosphate and traps the compound inside the 

cell. The effect may be at the transcriptional (mRNA), translational (protein), or post-

transcriptional level (protein modifications). More than one mechanism may be taking 

place. For example, non-small cell lung cancer cell lines show decreased FDG uptake by 

translocation of GLUT3 transporters from the plasma membrane to the cytosol and a 

modest decrease in hexokinase activity44. GLUT3, also known as the neuronal-type 

glucose transporter because of its preponderance in cells of the nervous system, has a 

higher affinity for glucose than GLUT1,-2, or -4 and has at least a fivefold greater 
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transport capacity than GLUT1 and -448. These properties and the neural origin of 

melanocytes, namely neural crest cells, make GLUT3 a good candidate for the increased 

glucose uptake observed in melanoma cell lines. So far, however, the results do not 

confirm this hypothesis. In the case of chronic myelogenous leukemia, the decrease in 

glucose uptake observed with imatinib treatment is caused by intracellular translocation 

of GLUT1 transporters from the plasma membrane. Quantitative PCR showed changes in 

mRNA levels of GLUT1, GLUT3, HK1, HK2, and HK3 but these were within the 

margin of error. This indicates that although the time course is consistent with a 

transcriptional event, other mechanisms are taking place.  

A hexokinase activity assay revealed that treatment with vemuferanib results in 

decreased hexokinase activity in the YULAC sensitive cell line but not in highly resistant 

501Mel cell line, suggesting that vemurafenib decreases glucose uptake by a translational 

or post-translational mechanism at the level of hexokinase. For example, vemurafenib 

may inhibit translation of hexokinases. The three hexokinase isozymes differ in catalytic 

and regulatory properties as well as subcellular localization49. Hexokinase I appears to be 

constitutively expressed in a variety of cellular contexts. Hexokinases II is less abundant 

in normal tissues, but may be overexpressed in cancer. In terms of localization, HK1 and 

HK2 bind to the mitochondria and may be present in the cytoplasm whereas HK3 has a 

predominantly perinuclear localization in many cell types. 

  The glucose analog 3-O-methylglucose can enter the cell through glucose 

transporters but cannot be phosphorylated. As a result, a decrease in 3-O-MG in sensitive 

cell lines upon treatment with vemurafenib would indicate an effect at the level of the 

glucose transporters. No change was observed in 3-O-MG in YULAC-sensitive cell lines 
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suggesting glucose transporters do not translocate into cytoplasmic vesicles or become 

modified in a way that blocks their transport pores. The resistant cell line 501Mel, 

however, showed an increase in 3-OMG uptake indicating that vemurafenib might 

paradoxically enhance glucose uptake in this resistant line.  

The metabolic profile of melanoma cell lines has previously been studied46. 

Specifically, all the melanoma cell lines in that study exhibited the Warburg 

phenomenon, which means they used more glucose and produced more lactate than 

melanocytes under aerobic conditions. Other changes observed in the study were increase 

in fermentation in both melanocytes and melanoma cells under hypoxic conditions, a 

phenomenon known as the Pasteur effect. In this thesis, the metabolic profile of 

melanoma cells was evaluated in the presence of vemurafenib. The global picture of 

glucose metabolism in sensitive and resistant lines that this experiment generated showed 

that vemurafenib decreases flux through glycolysis in the YULAC-sensitive but not in the 

YULAC-resistant line as evidenced by the drop in lactate levels. Interestingly, 501Mel 

shows a slight increase in lactate levels with vemurafenib treatment. This is consistent 

with the increase in 3-O-methylglucose inflow observed with treatment in the 501Mel 

line. Overall, these experiments support the hypothesis that vemurafenib induces a 

metabolic profile in melanoma cell lines that is limited in glycolysis, reversing the 

Warburg effect. The effect of vemurafenib on glutamine levels is out of the scope of this 

thesis.  

Future directions for this study include the corroboration of glucose uptake time-

course experiments with flow cytometry in vitro. While mRNA levels of the glucose 

transporter were unchanged, Westerns blots will be important to analyze variation in 
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protein levels. The localization of the glucose transporters might also be affected, despite 

the data that showed no change in 3-O-MG uptake in the YULAC-sensitive line, and will 

be studied with confocal microscopy. Given the variety of glucose transporters and 

hexokinases, siRNA or shRNA experiments would be useful in evaluating the 

contribution of each protein to glucose uptake.  
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