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VIRAL CAUSES OF GASTROENTERITIS IN THE ERA OF WIDESPREAD 
ROTAVIRUS VACCINATIONS. Dame Idossa, Novagrami George, and Virginia Pierce 
(Sponsored by Marietta Vázquez). Department of Pediatrics, Yale University, School of 
Medicine, New Haven, CT.  
 
Background: It is unknown if widespread use of Rotavirus (RV) vaccine will impact the 

primary causative agent of viral gastroenteritis (VGE).  

Objective: To identify changes in epidemiology of VGE affected by vaccination, 

determine factors associated with higher severity of illness, and assess agreeability 

between two clinical severity-grading scales; Clark and Vesikari.  

Methods: We analyzed fecal samples of children, 6 months-5 years of age, evaluated at 

YNHH for VGE. Fecal samples were tested using a real-time PCR assay. Primer and 

probe sequences targeted conserved regions of the genome for RV, Norovirus GI/GII, 

Adenovirus, Astrovirus, and Sapovirus. Data were analyzed using SPSS.  

Results: Of the 268 fecal samples analyzed, 215 (80%) were positive for at least one 

viral pathogen. Of those, 133 (62%) had a single viral pathogen identified and 82 (38%) 

had multiple pathogens. The frequencies of pathogens were: RV in 132 (61%), Norovirus 

GI/GII in 93 (43%), Astrovirus in 32 (15%), Adenovirus in 24 (11%), and Sapovirus in 

21 (10%). For subjects <12 months of age the frequency of viral pathogens were: RV 48 

(41%), Norovirus GI/GII 41(35%), Astrovirus 12 (10%), Adenovirus 10 (9%), and 

Sapovirus 7 (6%). State of being infected by any pathogen, having educated caretakers, 

infection with RV, and not being vaccinated for RV were associated with greater severity 

of diarrheal illness. In contrast, difference in severity of illness seen with Hispanic 

ethnicity, Black race, and coinfection with multiple pathogens was not statistically 

significant. Lastly, Clark and Vesikari clinical severity grading scales were shown to 

have poor agreeability (k=0.309), which was not improved by modification.  

Conclusions: We conclude that in the era of widespread use of RV vaccine, the 

epidemiology of VGE may be changing. We’ve identified several factors that may be 

associated with higher severity of illness, which may help guide clinicians in improving 

care and directing resources. Lastly, we confirm the poor agreeability between the Clark 

and Vesikari scales, which may guide future researchers to standardize use of clinical 

severity scales.  
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INTRODUCTION 

Diarrheal illnesses are one of the most common causes of morbidity and mortality in 

children worldwide. Acute diarrhea accounts for 2 to 3 million deaths per year with most 

occurring in young children in developing countries [1]. Each year in the United States, 

gastroenteritis is responsible for approximately 600,000 outpatient medical visits, 55 to 

70,000 hospitalizations, and 20 to 60 deaths [2, 3]. The costs associated with diarrheal 

illnesses are also very high with total annual direct and indirect costs of approximately $1 

billion [4-6]. Below we review the literature on the epidemiology, risk factors, and 

clinical severity grading scales for gastroenteritis, with particular attention to viral 

gastroenteritis.  

 

Type of Pathogens Causing Gastroenteritis: Parasitic, Bacterial and Viral 

The causes of acute diarrhea in children vary depending on multiple factors such as 

location, season, and population studied. The infections responsible for causing 

gastroenteritis in children can be divided into parasitic, bacterial, and viral infections.  

 

Parasitic causes of diarrhea are not as common in developed countries as they are in the 

developing world, however, they still account for 1% to 8% of cases of diarrhea in 

pediatric patients. In the United States, Giardia and Cryptosporidium infections are the 

most common parasitic causes of disease [7]. They are usually acquired via fecal to oral 

transmission. Most community-wide epidemics have resulted from a contaminated water 

supply. Person to person transmission can also occur, most commonly in daycare centers. 

Prognosis tends to be very good with proper management of disease.  
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Bacterial pathogens are the second most common cause of gastroenteritis in pediatric 

patients in developed countries, accounting for 2% to 10% of cases [7]. The most 

common species include Salmonella, Shigella, and Campylobacter. Other notable 

bacteria also includes enterohemorrhagic Escherichia coli (EHEC) and with the 

increasing use of antibiotics, Clostridium difficile, although this tends to be uncommon in 

the pediatric population [7]. With proper management, the prognosis for bacterial 

gastroenteritis tends to be very good, especially in developed countries. Mortality is 

usually due to dehydration and malnutrition from a protracted course.  

 

Viral pathogens are by far the most common cause of diarrheal illnesses in the United 

States, accounting for 75-90% of pediatric gastroenteritis [8]. Before initiation of the RV 

vaccination program in 2006, nearly every child in the United States was infected with 

RV by age 5 years; the majority had gastroenteritis, resulting in significant morbidity and 

mortality [2]. Other viruses also known to cause gastroenteritis include Norovirus, 

Adenovirus, Astrovirus, and Sapovirus. Transmission for all of these viruses is presumed 

to be fecal to oral. The morbidity and mortality associated with viral gastroenteritis has 

significantly decreased since the initiation of RV vaccination program. The effectiveness 

of the RV vaccine is consistent with clinical trials estimates [9]. Studies from the United 

States, Europe, and Australia have demonstrated effectiveness of up to 100% (95% CI 

85%-100%) associated with decreased hospitalizations for RV gastroenteritis. Healthcare 

utilization (hospitalizations and emergency-department visits) was also reduced by up to 

90% [10, 11]. Although the efficacy of RV vaccine is reduced in developing countries, 

there are still significant reductions in burden of VGE infections.  In studies conducted in 
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Latin America, RV vaccine has resulted in a 17–51% reduction in gastroenteritis- 

associated hospitalizations and 59–81% reduction in RV hospitalization among children 

younger than five years of age [12].  

 

Characteristics of Viral Agents  

Below we review characteristics of the following viruses that were examined in this 

study: Rotavirus (RV), Norovirus, Sapovirus, Adenoirus, and Astrovirus.  

 

RV is a double-stranded RNA virus, in the family of Reoviridae, which is classified into 

various groups, subgroups, and serotypes. There are at least 15 different serotypes of RV; 

presently, 5 serotypes of RV (G1, G2, G3, G4, and G9) account for the majority of the 

strains circulating worldwide. Surface antigens VP7 (G protein) and VP4 (P protein) are 

2 important structural viral proteins involved in eliciting the immune response through 

neutralizing antibodies. Rotaviruses have substantial diversity, with a possible 132 

separate G-P combinations [3]. This great diversity of serotypes and surface antigens 

creates an opportunity for multiple assortment and combination of RV serotypes, 

allowing for the potential emergence of new serotypes of the virus.  

 

Caliciviruses are a family of single-stranded, nonenveloped RNA viruses. The two 

recognized genera that cause diarrheal disease in humans are noroviruses (Norwalk-like 

viruses) and sapoviruses (Sapporo-like viruses). Sapoviruses have the typical calicivirus 

morphology that on electron microscopy reveals the “Star of David” appearance, similar 

to many animal caliciviruses. The surface structure of Noroviruses is smooth and 
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normally does not reveal the “Star of David” appearance. Noroviruses are known as 

“small round structured viruses” [13]. Both Noroviruses and Sapoviruses are genetically 

diverse, and multiple strains with distinct genetic identities circulate within a community 

at the same time. In the Norovirus genus, the GII strains have been found to be more 

common than the GI strains worldwide [14, 15].  

 

Human adenoviruses (HAdVs) are classified in the family Adenoviridae, genus 

Mastadenovirus, which contains seven known species, from A to G [16]. They are 

double-stranded, linear, nonenveloped DNA viruses. To date there are over 60 distinct 

serotypes known to cause human infections. Adenoviruses are known to cause many 

types of illnesses including respiratory, ocular, and urinary tract infection [17]. The most 

common serotypes that are associated with gastroenteritis are 40, 41, and, to a lesser 

extent, 31 [7].  

 

Astrovirus is a nonenveloped, single-stranded RNA viruses with a characteristic starlike 

appearance by electron microscopy. Eight human antigenic types are currently known. 

Astroviruses have a worldwide distribution and multiple antigenic types are known to co-

circulate in the same region [18]. 

 

Introduction of Rotavirus Vaccine Program  

In 1998, RotaShieldR, a rhesus RV tetravalent vaccine became the first RV vaccine to be 

licensed in the United States. Unfortunately, it was recalled shortly after its licensure due 

to a rare side effect of intussusception among those vaccinated, resulting in a major set 
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back for RV vaccination program [3]. After several years, two different vaccines were 

developed, licensed, and approved for use by the US Food and Drug Administration. 

RotateqR (RV5) is a pentavalent human-bovine reassortant live-attenuated oral vaccine 

licensed in 2006; and RotarixR (RV1) is a monovalent live-attenuated human strain 

vaccine, licensed in 2008, which shares neutralizing epitopes against the most common 

RV serotypes. Universal RV vaccination was recommended for U.S. infants by the 

Advisory Committee on Immunization Practices (ACIP) in February of 2006. 3 doses of 

the pentavalent RV vaccine [RV5], RotaTeqR (Merck and Company) were to be given at 

ages 2, 4, and 6 months [2, 3]. Since the initiation of this widespread RV vaccination, the 

number RV cases and its complications in the United States have been significantly 

reduced[19, 20]. Studies from middle and low income countries have also seen many 

improvements, including reduction of VGE associated mortality of 22-41% [12].  

 

Clinical Severity Grading Systems 

The Vesikari and Clark clinical severity scales were developed and routinely used to 

assess severity of cases and assist in investigations of diarrhea and dehydration in RV 

vaccine clinical trials.  

 

The Vesikari clinical severity grading system (VSS) is a 20-point scale that is classified 

into two categories (non-severe and severe) [21]. Scores greater than or equal to 11 are 

considered severe [22]. The Clark clinical severity grading system (CSS) is a 24-point 

scale that is classified into three categories (mild, moderate and severe) [23]. Scores less 

than 9 are considered mild, scores between 9 and 16 moderate, and scores above 16 
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points severe [22]. Both severity scales assess clinical information, such as the magnitude 

and duration (in days) of diarrhea and vomiting, and the maximum temperature during 

illness. In addition to these parameters, the Clark scale assesses the magnitude and 

duration of behavioral symptoms such as irritability and lethargy, and the duration of a 

temperature greater than 38.0°C, whereas the Vesikari scale assesses dehydration and 

treatment (rehydration or hospitalization) [22]. 

 

Several studies have concluded that the Clark scale is less likely to identify a disease as 

severe, compared with the Vesikari Clinical Severity Scoring System [24]. Thus it tends 

to have a less sensitive measure of severity of illness. This is because among the five 

common items included in both scoring systems (# of stools/day, duration of diarrhea, # 

of emesis/day, duration of emesis, rectal temperature), the Vesikari scale provided a 

higher score for each item compared to the Clark scale, with the exception of temperature 

[25]. Thus higher value is reached with a lower frequency of episodes or number of days 

of duration with the Vesikari scale, resulting in greater proportion of cases being 

classified as “severe”.  
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STATEMENT OF PURPOSE  

Since the initiation of the RV vaccine program in 2006, cases of severe gastroenteritis 

have significantly decreased [2]. Nevertheless, diarrheal illness and complication 

associated with them still account for thousands of outpatient/ED visits and 

hospitalization [8]. The current distribution pattern of viral pathogens causing pediatric 

gastroenteritis in era of widespread RV vaccination program still remains unknown. Is 

the RV still the most common cause or have other viral pathogens, such as astrovirus or 

norovirus taken its place?  

 

Understanding the current pathogenic distribution of viral pathogens is of great 

importance to improving care for infants and children who suffer from diarrheal illness. 

There have been many studies that explore the viral causes of gastroenteritis, both in 

developed and developing countries [1, 13-16, 26-28]. There have also been several 

studies of active surveillance of certain viruses such as RV, post vaccination program [3, 

11, 29]. However, there haven’t been many studies that explore the epidemiology of viral 

pathogens known to cause gastroenteritis in the era of wide spread RV vaccination. This 

study will seek to identify any changes, if any, in the distributive pattern of viral 

gastroenteritis, since the initiation of widespread use of the RV vaccine.  

 

Specific Aim 1: To identify any changes in the epidemiology of viral gastroenteritis. 

Hypothesis #1: We predict that RV will still be responsible for causing viral 

gastroenteritis in notable portion of children <5 years of age. However, we predict it will 

no longer be the most common cause of viral gastroenteritis in children <5 years of age. 
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Other viral pathogens, notably Norovirus, will likely take its place.  

 

Specific Aim 2: To determine factors associated with higher severity of illness as graded 

by Clark and Vesikari Clinical Severity Scales.  

Hypothesis #2: We predict that having infected status, Hispanic ethnicity, Black race, 

lower education status of carers of child, infection with RV, no vaccination for RV, and 

infection with multiple pathogens will be associated with greater severity of illness. 

 

Specific Aim 3: To determine the agreeability between the clinical severity grading 

systems in children seen at Yale New Haven Hospital (Emergency department and 

inpatient units).  

Hypothesis #3: We predict that there will be poor agreeability between the Clark and 

Vesikari clinical severity grading systems.  
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MATERIALS AND METHODS  

Participants Selection Process 

Eligible children were prospectively enrolled into match-controlled study of RV vaccine 

effectiveness in children (6 months – 5 years of age) at Yale-New Haven Children’s 

Hospital in New Haven, Connecticut January 2010 through June 2011. Eligible children 

were those who met all the following criteria:  

1) Presented to the hospital with acute gastroenteritis (≥3 looser-than-normal stools 

in a 24 –hour period during the illness, and onset of diarrhea ≤ 10 days at 

presentation). 

2) Diarrhea as the main or one of the main reasons for the visit and managed as an 

emergency department (ED) patient or inpatient.  

3) Eligible to have received at least one RV1 or RV5 dose ≥14 days before 

presentation.  

4) Lived in the usual catchment area of the hospital.  

 

Children with immunocompromising condition such as a malignancy or HIV infection 

were not eligible, because this made them ineligible from receiving the RV vaccines. 

After informed consent was obtained, a standardized questionnaire was administered to 

the parent/guardian (which queried demographics, symptoms, name and location of all 

immunization providers, and general household information) and a stool sample was 

collected. Children were classified as either a RV case or a “RV-negative” gastroenteritis 

control based on the RV antigen enzyme immunoassay result. The study was in 

collaboration with researchers at the CDC.    
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Subjects were interviewed to collect clinical and demographic information. Medical 

records were reviewed to assess previous vaccination with RV vaccine and to assess 

clinical severity of disease using both the Clark and Vesikari clinical severity scales. 

Enrollment was performed approximately 40 hours per week and included evening and 

weekend periods. The project was approved by the institutional review boards the 

hospital and reviewed for human subjects protection at CDC.  

 

Study Design 

We conducted a retrospective cohort study using leftover frozen stool samples from a 

previous study that were sent to Children’s Hospital of Philadelphia (CHOP) to be tested 

for the presence of viral stool pathogen known to cause VGE such as RV, Adenovirus, 

Astrovirus, Sapovirus, and Norovirus using a new real-time PCR assay, developed by the 

collaborators at CHOP.   

 

Procedure 

A total of 293 frozen specimens [stool samples or diaper lining soaked in viral transport 

medium (VTM)] from pediatric patients were tested.  All samples had been previously 

characterized as either positive (n = 93) or negative (n = 200) for RV by RV-specific 

enzyme immunoassay, conducted as part of the case-control investigation by the CDC. 

Each stool specimen (both RV positive and negative specimens) was rapidly thawed in a 

37oC water bath and then prepared as a 5% suspension in 1.0 ml of nuclease free water, 

vigorously vortexed for 30 sec, and clarified by centrifugation at maximum speed for 5 

min in a microcentrifuge. 
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Real-time PCR Assays 

Nucleic acids were extracted from 200 µl of each clinical specimen (prepared 5% stool 

suspension supernatant or VTM-soaked diaper lining) by standard procedures using the 

MagNA Pure LC automated instrument (Roche Diagnostics, Indianapolis, IN) and 

corresponding Roche total nucleic acid isolation kit.  Extracted product was heated to 

95oC for 5 min and then immediately placed in ice for 1 min.  Individual real-time PCR 

assays were performed in 50-µl volumes on a 7500 real-time PCR system (Applied 

Biosystems, Foster City, CA) using 5 µl of eluted nucleic acid; universal master mixes 

for either RNA (Ambion AgPath-ID One-Step RT-PCR master mix; Applied Biosystems) 

or DNA (TaqMan universal master mix; Applied Biosystems); universal amplification 

conditions consisting of 1 cycle for 10 min at 45°C and 1 cycle for 10 min at 95°C, 

followed by 45 two-step cycles of 15 s at 95°C and 45 s at 45°C; and TaqMan 

fluorogenic chemistry for detection.   Positive and negative controls were processed with 

each batch of clinical specimens from extraction of nucleic acids through the detection of 

amplified products.  Negative controls consisted of 1.0 x 106 cells/ml of an uninfected 

human lung carcinoma cell line (A549 cells; ATCC CCL-185), and positive controls 

were prepared as a mixture of clinical material from previously positive patients.  No-

template controls were included in each reaction plate for all sets of primers and probes.  

Primer and probe sequences targeted conserved regions of the genome for each virus 

(Table 1) and were based on the published literature for Adenovirus types 40 and 41[30], 

Astrovirus [31], Norovirus genogroups I and II [32], RV [30], and Sapovirus [33].  

Specimens and controls were considered positive when the generated fluorescence signal 

at the threshold cycle (CT) exceeded a defined threshold limit.  Specimens that reached 
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the threshold before 38 cycles were considered positive without further testing, and those 

that reached the threshold at or after 38 cycles but before the last of 45 cycles were 

considered positive only if, upon duplicate repeat testing of separate aliquots of stored 

original specimen, at least one of the two repeat tests also reached the threshold before 45 

cycles. 
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Table 1.  Nucleotide sequences of real-time PCR primers and probesa 
Primers and 
probes 

Nucleotide sequences (5’-3’) Gene target 

Adenovirus 40 and 41 
Forward TTC CAG CAT AAT AAC TCW GGC TTT G 

Hexon Reverse AAT TTT TTC TGW GTC AGG CTT GG 

Probeb (FAM)-CCW TAC CCC CTT ATT GG-(MGBNFQ) 

Astrovirus 
Forward CCD GCC AGR CTC ACA GAA GAG 

Capsid protein 
precursor 

Reverse GAC TTG CTA GCC ATC ACA CTY C 

Probec (FAM)-ACT CCA TCG-(ZEN)-CAT TTG GAG GGG AGG 
ACC-(IABkFQ) 

Norovirus genogroups I and II 
Genogroup I 
forward 

CGY TCC ATG CGN TTY CAT GA 

Polymerase/ca
psid junction 

Genogroup I 
reverse 

CTT AGA CGC CAT CAT CAT TYA C 

Genogroup I probe 
A 

(FAM)-AGA TYG CGA TCY CCT GTC CA-(TAMRA) 

Genogroup I probe 
B 

(FAM)-AGA TCG CGG TCT CCT GTC CA-(TAMRA) 

Genogroup II 
forward 

CAR GAR BCN ATG TTY AGR TGG ATC AG 

Genogroup II 
reverse 

TCG ACG CCA TCT TCA TTC ACA 

Genogroup II probe (VIC)-TGG GAG GGC GAT CGC AAT CT-(TAMRA) 

Rotavirus 
Forward 1 GGA TGT CCT GTA CTC CTT GTC AAA A 

Inner capsid 
protein VP6 

Forward 2 GGA GGT TCT GTA CTC ATT GTC AAA AA 
Reverse 1 TCC AGT TTG GAA CTC ATT TCC A 
Reverse 2 TCC AGT TTG AAA GTC ATT TCC ATT 

Probe 1 (FAM)-ATA ATG TGC CTT CGA CAA T-(MGBNFQ) 

Probe 2 (FAM)-AAT ATA ATG TAC CTT CAA CAA T-(MGBNFQ) 

Sapovirus 
Forward 1 GAC CAG GCT CTC GCY ACC TAC 

 
Polymerase/ca
psid junction 

Forward 2 TTG GCC CTC GCC ACC TAC 
Reverse CCC TCC ATY TCA AAC ACT AWT TTG 
Probe (FAM)-TGG TTY ATA GGY GGT AC-(MGBNFQ) 

 

aAbbreviations:  FAM, 6-carboxyfluorsescein; MGBNFQ, minor groove binder/non-fluorescent quencher; 
VIC, proprietary formulation, Applied Biosystems; IABkFQ, Iowa Black FQ quencher, proprietary 
formulation, Applied Biosystems; TAMRA, 6-carboxytetramethylrhodamine.  International Union of 
Biochemistry base codes:  W = A or T, D = A or G or T, R = A or G, Y = C or T, B = C or G or T, N = A 
or C or G or T.  
bLogan et al. used two probes; we used one probe with mixed bases. cWe incorporated an internal ZEN 
quencher from Integrated DNA Technologies, Coralville, 
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Resolution of Discordant Results  

When there was discordance between real-time PCR and enzyme immunoassay result, 

the real-time PCR assay was repeated again using the original sample.  If the initial real-

time PCR result was positive and one or both of the duplicate retests were positive, the 

final PCR result was reported as positive.  Conversely, if the initial real-time PCR result 

was negative and one or both of the duplicate retests were negative, the final PCR result 

was reported as negative. 

 
Omissions 
 
Out of the 293 samples, 18 were duplicates (2 samples collected from same subject). In 1 

of the 9 subjects with duplicate samples, one sample was collected from a diaper lining 

and the other was collected from a whole stool. In another 3 of the 9 subjects, both 

samples were collected from a diaper lining, but were collected on different days. There 

was 1 subject in which both samples were from a whole stool, but were collected on 2 

different days. In these 5 subjects with duplicate samples, the PCR result for the two 

samples gave different results. Thus these 10 samples (from 5 subjects with discordant 

results) were omitted from the final analysis. The remaining 4 subjects had a PCR results 

that were the same for both of their samples. Because they had a total of 8 samples, 4 of 

those samples were omitted from the final analysis to insure that each subject’s sample 

was only counted once. The 11 Rota only samples were also omitted in order not to skew 

the results towards RV. These were samples tested by EIA and known to have only RV. 

This left 268 samples (293-10 discordant-4duplicate-11rota only) to be included in the 

analysis of the study.  
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Analysis 

Data were analyzed with SPSS 14.0 software for Windows. Categorical data were 

analyzed using the χ2 test. Continuous variables were analyzed using the t-test procedure. 

Cohen kappa statistics used to measure the agreement between the two severity scoring 

scales by adjusting both scales to have the same number of categories. A P-value of 

<0.05 was considered significant. 

 

Statement of Responsibility 

This researcher, Dame Idossa, was responsible for creating a database and compiling all 

of all the available data into that database. Novagrami George, BS was responsible for 

participant screening and recruitment from January through June 2010 and 2011. Virginia 

Pierce MD, our collaborator from CHOP conducted the real-time PCR for all of the 

samples and detailed out the methods that were used to do this. This researcher 

performed the statistical analysis for all of the data. Dame Idossa, Novagrami George, BS 

and Marietta Vázquez, MD interpreted the results. 
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RESULTS  
 
Participants 
 
Table 2 presents an overview of the social, demographic, insurance status, parental 

education, prematurity, and vaccination status of the 268 analyzed subjects. Overall, 

participants were approximately 18 months of age at intake (M=18.12, SD 12.2) and 

predominately comprised of males (61.2%). Almost half of the participants (47%)  

 

TABLE 2.  Characteristics for N=268 Subjects     
Characteristics Total Cases  

N= 268 (%) 
Infected 
N=215 (%) 

Not Infected 
N=53 (%) 

Age at Intake (months)    
     Mean (SD) 18.12 (12.2) 18.03 (11.9) 15.72 (12.6) 
     Median 16 16 13 
Gender    
     Male  164 (61.2% 137 (63.7%) 27 (50.1%) 
     Female 104 (38.8%) 78 (36.3%) 26 (49.1%) 
Ethnicity    
     Hispanic/Latino 127 (47.4%) 99 (46.0%) 28 (52.8%) 
     Non Hispanic/Latino 141 (52.6%) 116 (54.0%) 25 (47.2%) 
Race    
     White 114 (42.5%) 94 (43.7%) 20 (37.7%) 
     Black 57 (21.3%) 44 (20.5%) 13 (24.5%) 
     American Indian 3 (1.1%) 3 (1.40%) 0 (0%) 
     Asian 8 (3.0%) 4 1.86%) 4 (7.5%) 
     Other 84 (31.3%) 67 (31.2%) 17 (32.1%) 
Insurance    
     Private 78 (29.1%) 70 (32.6%) 8 (15.1%) 
     Public 182 (67.9%) 138 (64.2%) 44 (84.9%) 
     None 8 (3.0%) 7 (3.26%) 1 (1.9%) 
Parental education level    
     <High school 67 (25%) 51 (23.7%) 16 (30.2%) 
     High school/GED 123 (45.9%) 96 (44.7%) 27 (50.1%) 
     College 50 (18.7%) 44 (20.5%) 6 (11.3%) 
     Graduate 28 (10.4%) 24 (11.2%) 4 (7.5%) 
Prematurity    
     Full term 233 (86.9%) 187 (87.0%) 46 (86.8%) 
     Premature 35 (13.1%) 28 (13.0%) 7 (13.2%) 
Vaccinations    
     Rota 195 (72.8%) 148 (68.8%) 47 (88.7%) 
     Tdap + other vax 266 (99.2%) 213 (99.1%) 53 (100%) 
     Unknown  2 (.75%) 2 (.93%) 0 
Clinical Severity score    
     Mean Clark Clinical Severity scale 10.90 ± 3.4  11.13 ± 3.4 10.09 ± 3.4 
     Mean Vesikari Clinical Severity scale 10.38 ± 3.6 10.65 ± 3.6 9.24 ± 3.7 
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identified as Hispanic/Latino ethnicity. 42.5% of the participants identified as Caucasian,  

with the rest identifying as Black (21.3%), American Indian (1.1%), Asian (3.0%), and 

other (31.3%). The majority of the participants had health insurance coverage through 

public (67.9%) or private (29.1%) institutions. A quarter of the parents of participants had 

less than a high school level of education with the rest having high school diploma/GED 

(45.9%), College degree (18.7%) or Graduate degree (10.4%). Most of the children were 

born at full term (86.9%) and had received RV vaccine (72.8%) and other childhood 

vaccines (99.2%). The mean clinical severity score as determined by the Clark scale was 

10.9 ± 3.4 and by Vesikari scale was 10.38 ± 3.6. The stratified characteristics for the 

participants infected with any pathogen and for those not infected with any tested 

pathogen were also similar and as listed in Table 2. 

 
Pathogens and Severity 
 
Tables 3, 4, and 5 describe the pathogens detected in subjects who were infected. Of the 

215 infected subjects, 133 (49.5%) were single infections and 82 (30.6%) were multiple 

infections. Overall, Adenovirus was detected in 24 (11.2%), Astrovirus in 32 (14.9%), 

Norovirus GI in 4 (1.9%), Norovirus GII in 89 (41.4%), RV in 132 (61.4%), and 

Sapovirus in 21 (9.8%) of the participants.  

  

Of the 215 infected participants, RV caused the greatest severity of illness as measured 

by the Clark Clinical Severity scale 11.7 ± 3.4, followed by Adenovirus, Norovirus GII, 

Astrovirus, Sapovirus, and Norovirus GI (Table 3). However, Adenovirus caused the 

greatest severity of illness as measured by the Vesikari Clinical Severity scale 12 ± 3.4, 
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followed by RV, Norovirus GII, Astrovirus, sapovirus, and lastly Norovirus GI, as shown 

in Table 3.  

TABLE 3.  Pathogens Detected in Infected subjects    
Pathogens Detected Total Cases 

N= 215 (%) 
Mean Clark 
Scale (SD) 

Mean Vesikari 
Scale (SD) 

Adenovirus 24 (11.2) 11.5 (3.1) 12 (3.4) 
Astrovirus 32 (14.9) 10.2 (3.2) 9.44 (3.9) 
Norovirus GI 4 (1.9) 8.8 (4.5) 7.25 (3.6) 
Norovirus GII 89 (41.4) 10.9 (3.3) 10.66 (3.4) 
Rotavirus 132 (61.4) 11.7 (3.4) 11 (3.6) 
Sapovirus 21 (9.8) 9.5 (2.7) 9.19 (3.4) 
    
* Total adds up to > 215 because 82 subjects were coinfected with multiple pathogens and hence counted >1 times 
Clark: <9 “mild”, 9-16 “moderate”, >16 “severe” Vesikari: Scores <11 “non severe”, ≥11 “severe” 
 
 
Single Viral Infections 
 
Of the 133 subjects infected with a single virus, 8 (6%) were infected by Adenovirus, 8 

(6%) by Astrovirus, 42 (32%) by Norovirus GII, 66 (50%) by RV, and 9 (7%) by 

Sapovirus. In these subjects, Adenovirus caused the greatest severity of illness as 

measured by the Clark Clinical Severity scale 12.1 ± 3.7, followed by RV, Norovirus GII, 

Astrovirus, and Sapovirus (Table 4). However, RV caused the greatest severity of illness 

as measured by the Vesikari Clinical Severity scale 12.5 ± 3.3, followed by Adenovirus, 

Norovirus GII, Astrovirus, Sapovirus, as shown in Table 4.  

 
TABLE 4.  Pathogens Detected in Single Infections    
Pathogens Detected Total Cases 

N= 133 (%) 
Mean Clark 
Scale (SD) 

Mean Vesikari 
Scale (SD) 

Adenovirus 8(6) 12.1 (3.7) 10.4 (2.1) 
Astrovirus 8(6) 8.6 (2.8) 9.6 (2.4) 
Norovirus GI - - - 
Norovirus GII 42(32) 10.1 (3.1) 10.1 (3.3) 
Rotavirus 66(50) 11.6 (3.6) 12.5 (3.3) 
Sapovirus 9(7) 8.2 (2.3) 8.6 (3.2) 
    
Clark: <9 “mild”, 9-16 “moderate”, >16 “severe” Vesikari: Scores <11 “non severe”, ≥11 “severe” 
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Multiple Viral Infections 
 
Of the 82 subjects who were co-infected by multiple viruses, 15 (18.3%) were infected by 

Adenovirus, 26 (31.7%) by Astrovirus, 4 (4.9%) by Norovirus GI, 49 (59.8%) by 

Norovirus GII, 71 (86.6%) by RV, and 12 (14.6%) by Sapovirus. In these subjects, 

Adenovirus caused the greatest severity of illness as measured by the Clark Clinical 

Severity scale 12.3 ± 3.5, followed by Norovirus GII, RV, Astrovirus, Sapovirus and 

Norovirus GI (Table 5). Similarly Adenovirus caused the greatest severity of illness when 

measured by the Vesicari Clinical severity score 12.1 ± 3.5, followed by Norovirus GII, 

RV, Sapovirus, Astrovirus, and Norovirus GI (Table 5).   

 
TABLE 5.  Pathogens Detected in Multiple Infections    
Pathogens Detected Total Cases 

N= 133 (%) 
Mean Clark 
Scale (SD) 

Mean Vesikari 
Scale (SD) 

Adenovirus 15(18.3) 12.33 (3.5) 12.13 (3.5) 
Astrovirus 26(31.7) 10.42 (3.4) 9.54 (4.2) 
Norovirus GI 4(4.9) 8.75 (5.2) 7.25 (4.1) 
Norovirus GII 49(59.8) 11.61 (3.3)  11.24 (3.5) 
Rotavirus 71(86.6) 11.14 (3.4) 10.51 (3.5) 
Sapovirus 12(14.6) 10.17 (2.4) 9.92 (4.1) 
    
* Total adds up to > 82 because all of these subjects were coinfected with multiple pathogens 
Clark: <9 “mild”, 9-16 “moderate”, >16 “severe” Vesikari: Scores <11 “non severe”, ≥11 “severe” 
 
 
Pathogens by Age 
 
When we stratified participants by age, the children between 0-12 months of age were 

most commonly infected by RV 48 (40.7%), followed by Norovirus GII 40 (33.9%), 

Astrovirus 12 (10.2%), Adenovirus 10 (8.5%), Sapovirus 7 (5.9%), and Norovirus GI 1 

(0.85%). This trend was similar for children between 12-24 months and 24-36 months. 

For children who were ≥ 36 months of age, RV 8 (72.7%) caused the majority of the 

infections found. Astrovirus, Norovirus GII, and Sapovirus all caused 1 (9.1%) of the 
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infections detected in this age group. Adenovirus and Norovirus GI did not cause any 

infections (Table 6).   

 

TABLE 6.  Pathogens by Age     
Pathogens Detected 0-12 mo 

N= 118 (%) 
12-24 mo 

N= 122 (%) 
24-36 mo 

N= 57 (%) 
36+ mo 

N= 11 (%) 
Adenovirus 10 (8.5) 9(7.4) 4 (7) 0 
Astrovirus 12 (10.2) 15 (12.3) 6 (10.5) 1 (9.1) 
Norovirus GI 1 (.85) 0 3 (5.3) 0 
Norovirus GII 40 (33.9) 38 (31.1) 11 (19.3) 1 (9.1) 
Rotavirus 48 (40.7) 53 (43.4) 47.4) 8 (72.7) 
Sapovirus 7 (5.9) 7 (5.7) 6 (10.5) 1 (9.1) 
     
* Total adds up to > 264 because of coinfections  
 
 
RV Vaccination Status’ Effects on Infection With Pathogens and Severity of Illness 
 
Of the 268 participants, 195 (72.8%) were vaccinated against RV with at least one dose 

of RotateqR or RotarixR vaccine. In these participants, RV was the most common viral 

pathogen detected 83 (38.4%), followed by Norovirus GII 73 (33.8%), Astrovirus 27 

(12.5%), Sapovirus 16 (7.4%), Adenovirus 13 (6.02%), and Norovirus GI 4 (1.85). 

Adenovirus had the highest severity of illness when measured using the Clark Clinical 

Severity scale 11.5 ± 2.8, followed by RV, Norovirus GII, Astrovirus, Sapovirus, and 

Norovirus GI (Table 7). Adenovirus also caused the greatest severity of illness as 

measured by the Vesikari Clinical Severity scale 11.9 ± 3.6, followed by Norovirus GII, 

RV, Astrovirus, Sapovirus, and Norovirus GI (Table 7).  
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TABLE 7.  Pathogens Detected in Rotavirus Vaccinated Participants  
Pathogens N=216 (%) Clark Scale 

(SD) 
Vesikari 

Scale (SD) 
Adenovirus 13 (6.0) 11.54 (2.8) 11.92 (3.6) 
Astrovirus 27 (12.5) 9.82 (3.1) 9.18 (4.2) 
Norovirus GI 4 (1.9) 8.87 (4.5) 7.25 (3.6) 
Norovirus GII 73 (33.8) 10.52 (3.2) 10.52 (3.3) 
Rotavirus 83 (38.4) 10.73 (3.1) 9.87 (3.2) 
Sapovirus 16 (7.4) 9.56 (2.8) 9 (3.6) 
 
* Total adds up to > 195 because of coinfections  
Clark: <9 “mild”, 9-16 “moderate”, >16 “severe” Vesikari: Scores <11 “non severe”, ≥11 “severe” 
 

Of the 73 (27.2 %) participants who were not vaccinated with at least one dose of 

RotateqR or RotarixR vaccine, RV was the most common viral pathogen detected 48 

(58.5%), followed by Norovirus GII 15 (18.3%), Adenovirus 11 (13.4%), Astrovirus and 

Sapovirus both detected in 4 (4.9%) of the stool samples. Norovirus GI did not cause any 

infections in these participants. RV caused the greatest severity of illness as measured by 

the Clark Clinical Severity scale 13.4 ± 3.0, followed by Astrovirus, Norovirus GII, 

Adenovirus, and Sapovirus (Table 8). Conversely, Astrovirus caused the greatest severity 

of illness as measured by the Vesikari Clinical Severity scale 13.3 ± 2.1, followed by RV, 

Adenovirus, Norovirus GII, and Sapovirus (Table 8).  

 
TABLE 8.  Pathogens Detected Rotavirus Non Vaccinated Participants 
Pathogens N=82 (%) Clark Scale 

(SD) 
Vesikari Scale 

(SD) 
Adenovirus 11 (13.4) 11.45 (3.5) 12.09 (3.1) 
Astrovirus 4 (4.9) 13.25 (2.5) 13.25 (2.1) 
Norovirus GI 0 Na Na 
Norovirus GII 15 (18.3) 12.67 (3.6) 11.33 (3.8) 
Rotavirus 48 (58.5) 13.44 (3.0) 12.98 (3.3) 
Sapovirus 4 (4.9) 9.75 (2.4) 10.75 (2.3) 
 
* Total adds up to > 73 because of coinfections  
Clark: <9 “mild”, 9-16 “moderate”, >16 “severe” Vesikari: Scores <11 “non severe”, ≥11 “severe” 
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Factors Associated with Higher Severity of Illness 
 
We explored various factors that may be associated with higher severity of illness using 

T-test. Both the Clark and Vesikari severity scales were used to measure severity. Table 9 

depicts the p values of the various characteristics tested. 

 

State of being infected by any pathogen, having educated caretakers (some college or 

greater level of education), infection with RV, and not being vaccinated for RV were 

associated with greater severity of illness. In contrast, having multiple infections, being 

of Hispanic ethnicity and being of Black race were not associated with greater severity of 

illness (Table 9).  

	
Table	9.	Factors	association	with	Severity of Illness	
Characteristics Mean CSS P-value 

CSS 
Mean VSS P-value 

VSS 
Non Vaccinated vs Vaccinated 12.59 vs 10.31 <0.001 12.29 vs 9.70 <0.001 
Rotavirus vs non Rotavirus 12.53 vs 9.88 <0.001 11.64 vs 9.88 0.002 
Rotavirus vs Norovirus GII 12.53 vs 10.00 <0.001 11.64 vs 10.00 0.013 
Rotavirus vs Sapovirus 12.53 vs 8.55 0.001 11.64 vs 8.22 0.006 
Rotavirus vs Astrovirus 12.53 vs 9.63 0.018 11.64 vs 8.63 0.023 
≤HS diploma vs >HS diploma 10.75 vs 11.70 0.035 9.83 vs 12.05 <0.001 
Infected vs non Infected 11.13 vs 10.09 0.047 10.65 vs 9.25 0.011 
Rotavirus vs Adenovirus 12.53 vs 10.38 0.076 11.64 vs 12.13 0.718 
Black vs non Black race 10.67 vs 11.59 0.100 10.25 vs 11.34 0.062 
Public vs Private Insurance 10.85 vs 11.54 0.130 9.88 vs 11.76 <0.001 
Non Hispanic vs Hispanic 10.71 vs 11.00 0.668 10.65 vs 9.25 0.011 
Single vs Multiple Infections 11.14 vs 10.74 0.944 11.11 vs 10.55 0.741 
	
 
Agreeability Between Vesikari and Clark Severity Scales 
 
Figure 1 shows all cases (N=268) graded by both the Vesikari and Clark severity grading 

scales individually (Panels A and B). The Clark Severity Scale was modified into a 2 

category scale by grouping the mild and moderate cases into “non severe.” This modified 
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Clark scale was then compared to the Vesikari Scale as in shown in panel C. Lastly the 

Vesikari scale was modified into a 3-category system by regrouping into mild, moderate, 

and severe groups. This modified Vesikari scale was compared the original scale as 

shown in panel D. 

 
 
Figure 1. Agreeability of Clark and Vesikari Severity Grading Scales 

 
A and B show cases as graded by Vesikari and Clark scale respectively. C shows cases as graded by 
Vesikari and modified 2-category Clark scale. D shows cases as graded by Clark and modified 3-category 
Vesikari scale. Blue=Clark, Red=Vesikari.  
 

The comparison between the two scoring scales cannot be analyzed statistically because 

the distribution categories are not even. The Clark scale is divided into 3 ranges (<9, 9–

16 and >16) while the Vesikari scale is divided into 2 ranges only (<11 and ≥11). Thus 

we modified Clark scale into a 2-category scale and the Vesikari into a 3-category scale 

to make the comparisons.  The Cohen’s Kappa coefficient [34] was used to determine the 
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agreeability between the Clark and Vesikari severity grading scales. Kappa values can 

range from -1 to 1. Values <1 suggest poor agreement, 0-0.20 slight agreement, 0.21-0.40 

fair agreement, 0.41-0.60 moderate agreement, 0.61-0.8 substantial agreement, and 0.81-

1 almost perfect agreement. As depicted in Table 10, the Kappa scores for the original 

and modified Vesikari and Clark scales show there is slight or fair agreement at best 

between the two grading systems.	 	

 

Table 10.  Agreeability between Vesikari and Clark grading systems 
Type of scale Kappa value 95%CI P-value 
Original .306 (0.218,0.394) <0.001 
Modified Clark .111 (0.050-0.172 <0.001 
Modified Vesikari .326 (0.244-0.408) <0.001 
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DISCUSSION  
 

RV vaccines have significantly reduced the burden of RV disease both in the United 

States and globally. Studies in the United States have shown a decline of approximately 

85% to 95% in RV cases during the 2008 season compared with previous seasons [2]. In 

addition, data from the Natural Respiratory and Enteric Virus Surveillance System 

(NREVSS), network of U.S. laboratories that provide the CDC with weekly reports of the 

number of tests performed and positive results obtained for a variety of pathogens, have 

shown a >50% decrease of RV positive samples in 2007–2008 season of RV when 

compared to the season of 1991–2006 [29]. Studies from developing countries have 

shown lower efficacy of the vaccine; nonetheless, great reductions in severe diarrheal 

illness in children who received the RV vaccine. For example, studies from Bangladesh 

and Vietnam have shown the vaccine to be 48% efficacious against severe disease in 

young infants [35, 36]. RV vaccine has undoubtedly reduced the mortality and morbidity 

associated with viral gastroenteritis in young children.  

 

There have also been studies that have demonstrated a shift in the seasonality of RV since 

initiation of RV vaccine [37]. In addition, the usual spread of RV associated 

gastroenteritis from southwest to northeast has not been shown post RV vaccine 

initiation. The RV season has also been noted to be later in the year, shorter, and less 

pronounced when compared to pre-vaccination era [29]. All of this information suggests 

that the morbidity and mortality associated with RV gastroenteritis is increasingly 

becoming better managed.  
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Interesting results in regards to distribution of pathogens post RV vaccination program 

have emerged from our study. Overall, our data shows RV remains the most common 

cause of both single and co-infections causing viral gastroenteritis in children in CT. 

Given the successes of the RV vaccination program [38], this is unexpected, although not 

surprising. There are many different types of the RV serotypes and surface antigens [39]. 

This great diversity of serotypes and surface antigens creates an opportunity for multiple 

assortment and combination of RV serotypes, allowing for the potential emergence of 

new serotypes of the virus. The current vaccines available cannot protect against all of 

the possible RV serotypes or any new serotypes that emerge.  

 

In subjects who were previously vaccinated for RV, the frequency of RV infection was 

significantly decreased, as expected (38%), and we have noted the frequency of 

Norovirus GII has increased (34%). The data from those who were not vaccinated for RV 

seems to be similar to data from pre RV vaccination era, with RV accounting for nearly 

60% of the viral gastroenteritis. In this group Norovirus GII is found to cause only 18% 

of disease. An interesting result from this study is the change in the frequency of 

Norovirus infections when the data were stratified by ages. Norovirus GII frequency is 

increased mostly in the children <12months, who are the target population for RV 

vaccination programs. This may suggests this trend may be a direct result of RV being 

better controlled in this age group. A recent active surveillance study, since the 

introduction of RV vaccines, found that Norovirus has become the leading cause of 

medically attended acute gastroenteritis in U.S. children and is associated with nearly 1 

million health care visits annually. They estimated treatment cost associated with 
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Norovirus is >$270 million and expected to continue rising [40]. Given the recent 

advances in the development of candidate Norovirus vaccines [27, 41], the need to 

determine the burden of gastroenteritis associated with Norovirus and other viruses is 

increasingly more important.  

 
 
Several factors associated with increased severity of illness emerged from our study. 

Primarily, the detection of any viral pathogen tested was associated with greater severity 

of illness as expected. Subjects who exhibited symptoms of viral gastroenteritis but did 

not shed any of the viruses tested could have been infected with parasitic, bacterial, or 

viral agents that were not tested for. Regardless, these subjects had less severe disease 

manifestations than their viral infected counterparts. As predicted subjects who were not 

vaccinated against RV had a greater severity of illness (P=<0.001) (regardless of what 

pathogen they were infected with) when compared to those that were vaccinated against 

RV. We also found, higher education of status of caretakers was found to be associated 

with higher severity of illness as measured by both Clark (11.70 p=0.035) and Vesikari 

((12.05 p=<0.001) Scale. Given the usual association of higher level of education with 

higher annual income and, typically, better access to care/better health outcomes, this 

result was unexpected. A possible explanation for this could be that caretakers with 

higher level of education could potentially have more demanding jobs and presumably 

present their child to the ED/hospital at later or more severe stages of disease. This could 

result in detection or ascertainment bias.  Lastly, subjects who were infected with RV, as 

either a single infection of a co-infection, were found to have greater severity of illness as 
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expected. Other studies have also shown that RV associated gastroenteritis cause the 

greatest severity of illness in children <5 years old [42, 43]. 

 

Health disparities in the United States are pervasive and present in almost all realms of 

medicine. In primary care, minority children are more likely to receive poorer quality of 

care in terms of provider interactions, preventive services and management of common 

conditions [44]. However, contrary to our hypothesis, the results of this study did not 

support his fact. Hispanic ethnicity did not result in higher severity of illness, in fact non-

Hispanics were found to have greater severity of illness only by the Vesikari scale 

(p=<0.001). The difference in severity measured by the Clark Scale was found to be not 

statistically significant (p=0.095). Black race was also not associated with greater 

severity of illness, when measured by both the Clark (p=0.100) and Vesikari (p=0.062) 

scale. Lastly, subjects with public insurance were also not found to have higher severity 

of illness. In fact, subjects with private insurance were found to have a greater severity of 

illness as measure only by the Vesikari scale (p=<0.001). The data from this study did not 

demonstrate disparities in severity of illness among minority or poor participants. 

 

Interestingly, being infected with more than one pathogen also did not result in greater 

severity of illness as predicted. In fact our data demonstrated the difference between 

severity of illness of those with single and multiple infections was not statistically 

significant when measured by both the Clark (p=0.944) and Vesikari (p=0.741) scale.  
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As predicted the Clark and Vesikari severity grading systems had poor agreeability even 

with modification of the scales. The results obtained using the two severity scales differ 

significantly and can disrupt comparisons [25]. The original scales were found to have 

only fair agreement as measured by the kappa score. When the Clark three-category scale 

was transformed into a two-category scale by combining mild and moderate categories as 

non-severe, the agreeability actually worsened. Modifying the Vesikari two-category 

scale into a three-category scale by further subdividing the severe category into two parts, 

provided a better correlation between the two severity scales, but still did not achieve a 

good level of agreement. This suggests that there either needs to be a development of a 

new severity grading system or standardized use of only one of the existing scales in 

subsequent research/clinical trials.  

 
Limitations  
 
There are several limitations of this study. The greatest limitation is our choice of 

modality for detecting pathogens in the stool samples. The real time PCR assay was 

designed to detect sequences of conserved regions of the genome for RV, Norovirus 

GI/GII, Adenovirus, Astrovirus, and Sapovirus. Thus other viral pathogens, if present, 

would not be detected via this method. However, previous studies support the notion that 

the selected viral agents are known to cause the majority of viral gastroenteritis in the 

United States and worldwide [30-32, 45, 46] Additionally, the real time PCR does not 

detect other causative agents of gastroenteritis such as bacteria or parasitic agents. The 

subjects who were exhibiting symptoms of gastroenteritis, but did not show infection by 

the tested pathogens likely had infection with bacterial, parasitic, or other viral 

pathogens.  Secondly, the study analyzed data collected from January-June. There is a 
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possibility that some viruses that are seen in the other months were not fully accounted 

for in our study. Lastly, there were some samples that were omitted from the study due to 

differing PCR results. There are a number of reasons why the PCR results for two 

different samples from the same subject might give different results. Primarily, the timing 

of sample collection is important. Samples obtained on different days are more likely to 

give different results. Secondly, the sample type is also important. Stool vs. diaper lining 

squeezed out into viral transport medium (which dilutes the specimen) is more likely to 

give different results. In addition, the samples could have had low viral load. One test 

might be positive and the other negative in different samples if the PCR target was 

present in only very small amounts. Lastly, there is always the possibility of 

contamination of the sample and problems with the sample quality/specimen handling. 

These are some possible reasons for why we had these samples from the same subject 

produce different PCR results.  

 
Clinical implications  
 
Currently, there are no studies that identify the epidemiological changes in the causative 

pathogens of VGE in post the widespread RV vaccination programs. Based on results 

from our study, we conclude that in the era of widespread use of RV vaccine, the most 

common agent causing VGE at YNH children's hospital still remains RV. Norovirus 

frequency seems to be increasing, mostly in the younger children who are the target 

population for RV vaccination program. This suggests the epidemiology of VGE may 

indeed be changing as more children are protected from RV. We’ve identified several 

factors that may be associated with higher severity of illness, which may help guide 

clinicians in improving care and directing resources. Lastly, we’ve confirmed the poor 
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agreeability between the Clark and Vesikari scales, which may guide future researchers 

to standardize use of clinical severity scales.   
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